

Interlisp Reference Manoal

October, 1983

Copyright © 1983 Xerox Corporation

All rights reserved.

Portions from "Interlisp Reference Manual" Copyright © 1974,

1975, 1978 Bolt, Beranek & Newman and Xerox Corporation

This publication may not be reproduced or· transmitted in any
form by any means, electronic, microfilm, xerography, or

otherwise, . or incorporated into. any information retrieval system, .

without the written permission of Xerox Corporation.

BACKGROUND AND ACKNOWLEDGEMENTS

1 A BRIEF HISTORY OF INTER LISP

Interlisp began with an implementation of the Lisp programming language for the PDP-1 at BoI~ Beranek
and Newman in 1966. It was followed in 1967 by 940 Lisp, an upward compatible implementation for
the SDS-94O computer. 940 Lisp was the first Lisp system to demonstrate the feasibility of using software
paging techniques and a large virtual memory in conjunction with a list-processing system [Bobrow &
Murphy, 1967]. 940 Lisp was patterned after the Lisp 1.5 implementation for erss at MIT. with several
new facilities added to take advantage of its timeshared, on-line environment DWIM. the Do-What-I
Mean error correction facility. was introduced into this system in 1968 by Warren Teitelman fTeitelman,
1969].

The SDS-94O computer was soon outgrown, and in 1970 BBN-Lisp. an upward compatible Lisp system
for the PDP-10. was implemented under the Tenex operating system. With the hardware paging and
256K of virtual memory provided by Tenex, it was practical to provide more extensive and sophisticated
user support facilities, and a library of such facilities began to evolve. In 1972, the name of the system was
changed to Interlisp. and its development became a joint effort of the Xerox Palo Alto Research Center
and Bol~ Beranek and Newman. The next few years saw a period of rapid growth and development of
the language, the' system and the user support facilities, including the record package, the file package,
and Masterscope. This growth was paralleled by a corresponding increase in the size and diversity of the
Interlisp user community.

In 1974, an implementation of Interlisp was begun for the Xerox Alto. an experimental microprogrammed
personal computer fThacker et al., 1979]. AltoLisp [Deutsch, 1973] introduced the idea of providing a
specialized, microcoded instruction set that modelled the basic operations of' Lisp more closely than a
general-purpose instruction set could - and as such was the first true "Lisp machine". AltoLisp also
served as a departure point for Interlisp-D. the implementation of Interlisp for the Xerox 1100 Series of
single-user computers, which was begun in 1979 [Sheil & Masinter, 1983].

In 1976, partially as a result of the AltoLisp effo~ a specification for the Interlisp "virtual machine"
was published [Moore, 1976]. This attempted to specify a small set of "primitive" operations which
would support all of the higher level user facilities, which were nearly all written in Lisp. Although
incomplete and written at a level which preserved too many of the details of the Tenex operating system,
this document proved to be a watershed in the development of Interlisp, since it gave a clear definition
of a (relatively) small kernel whose implementation would suffice to port Interlisp to a new environment
This was decisive in enabling the subsequent implementations and preserving the considerable investment
that had been made in developing Interlisp's sophisticated user programming tools.

Most recently, the implementation of Interlisp on personal workstations (such as Interlisp-D) has extended
Interlisp in major ways. Most striking has been the incorporation of i,nteractive graphics and local area
network facilities. Not only have these extensions expanded the range of applications for which Interlisp is
being used (to include interactive interface design, network protocol experimentation and the development
of specialized workstations, among others) but the personal Inachine capabilities have had a major impact
on the Interlisp programming system itself. Whereas the original Interlisp user interface assumed a very
limited (teletype) channel to the user, the use of interactive graphics and the "mouse" poin~ng device has

iii

Interlisp Implementations

radically expanded the bandwidth of communication between the user and the machine. This has enabled
completely new styles of intera~tion with the user (e.g., the use of multiple windows to provide several
different interaction channels w,th the user) and these have provided both new programming tools and
new ways of viewing and using' the existing ones. In addition, the increased use of local area networks
(such as the Ethernet) has expanded the horizon of the Interlisp user beyond the local machine to a
whole community of machines, processes and services. Large portions of this manual are devoted to
docUmenting the enhanced environment that has resulted from these developments.

2 INTERLISP IMPLEMENT A nONS

Development of Interlisp-10 was, until approximately 1978, funded by the Advanced Research Projects
Administration of the Departthent of Defence (DARPA). Subsequent" developments, which have
emphasized the personal workStation facilities, have been sponsored by the Xerox Corporation, with
some contributions from members of the Interlisp user community.

Interlisp is currently implemented on a number of different machines. Each" distinct Interlisp
implementation is denoted by a: suffix: Interlisp-10 is the implementation for the DEC PDP-10 family of
machines running either the TENEX or TOPS-20 operating systems. Interlisp-D is the implementation
for the Xerox 1100 series of qIachines (1100, 1108, 1132). Interlisp-V AX is the implementation for
the DEC VAX family, under ieither the VMS or UNIX operating systems. Interlisp-Jericho is the
implementation for the BBN Jericho, a internal research computer "built by Bol~ Beranek and Newman.
Other implementations of Interlisp. have- been reported (e.g. Interlisp-370,· Interlisp-B5700), but are not
widely used or actively maintairied.

This manual is a reference m~ual for all Interlisp implementations. Where necessary, notes indicate
when features are only availabl¢ in certain implementations. For some implementations, there is also a
companion "Users Guide" whidh documents features which are completely unique to that machine; for
example, how to tum on the system, logging on, and unique facilities which link Interlisp to the host
environment or operating system.

3 ACKNOWLEDGEMffiNTS

The Interlisp system is the workj of many people - after nearly twenty years, too many even to lis~ much
less detail their contributions. Nevertheless, some individuals cannot go unacknowledged:

Warren Teitelman, more than anyone else, made Interlisp "happen". Warren designed and
implemented large Parts of several generations of Interlisp, including the initial versions of most
of the user facilities, coordinated the system development and assembled and edited the first
four editions of the Interlisp reference manual.,

Dan Bobrow was a principal deSigner of Interlisp's predecessors, has contributed to the
implementation of several generations of Interlisp, and (in collaboration with others) made
major advances in the underlying architecture, including the spaghetti stack, the transaction
garbage collector, and the block compiler.

iv

BACKGROUND AND ACKNOWLEDGEMENTS

Larry Masinter is the principal architect of the current Interlisp system~ has contributed
extensively to several implementations~ and has designed and developed major extensions to
both the Interlisp language and the programming environment.

Ron Kaplan has decisively shaped many of the programming language extensions and user
facilities of Interlisp, has played a key role in two implementations and has contributed
extensively to the design and content of the Interlisp reference manual.

Peter Deutsch designed the AltoLisp implementation of Interlisp which developed several key
design insights on which the current generation of personal machine implementations depend.

Alice Hartley and Daryle Lewis were key contributors to implementations of Interlisp at Bolt,
Beranek and Newmann.

No matter where one ends this list, one is tempted to continue. Many others who contributed to particular
implementations or revisions are acknowledged in the documentation for those systems. Following that
tradition, this manual, which was prepared primarily to document the extensions implemented by the
Interlisp-D group at Xerox, Palo Alto, acknowledges, in addition to those listed above, the work of

Dick Burton who designed and implemented most of the interactive display facilities

Bill van Melle who designed and implemented the local area network facilities and multiple
process extensions

and the contributions of Beau Sheil, Alan Bell, Steve Purcell, Steve Gadol, Jonl White, Don Charnley,
Willie Sue Haugeland and the many others who have helped and contributed to the development of
Interlisp-D.

Like Interlisp itself, the Interlisp Reference Manual is the work of many people, some of whom are
acknowledged above. This edition was designed, edited and produced by Michael Sannella of the
Interlisp-D group at Xerox, Palo Alto. It is a substantial revision of the previous edition fTeitelman et
at, 1978] - it has been completely reorganized, updated in most sections, and extended with a large
amount of new material. In addition to material taken from the previous edition, this edition contains
major extensions contributed by members of the Interlisp-D group and contributions from other Interlisp
developers at the Information Sciences Institute of the University of Southern California and Bolt Beranek
and Newman.

Interlisp is not designed by a formal committee. It grows and changes in response to the needs of those
who use it. Contributions and discussion from the user community remain, as· they have always been,
warmly welcome.

v

References

4 REFERENCES

[Bobrow & Murphy, 1967]
Bobrow, D.O., and Murphy, D.L., "The Structure of a LISP System Using Two
Level Storage" - Communications of the ACM, Vol. 10, 3, (March, 1967).

[Bobrow & Wegbreit, 1973]

[Deutsch, 1973]

[Moore, 1976]

Bobrow, D.O., and Wegbreit, B., "A Model and Stack Implementation for Multiple
Enviromilents" - Communications of the ACM, Vol. 16, 10, (October 1973).

Deutsch, L.P., "A Lisp machine with very compact programs" - Proceedings of
the Third International Joint Conference on Artijiciallntelligence, Stanford. (1973).

Moore, J.S., "The Interlisp Virtual Machine Specification" - Xerox PARC, CSL-
76-5, (1976).

[Sheil & Masinter, 1983]

[T eitelman, 1969:1

Sheil, B., and Masinter, L.M. (eds.), "Papers on Interlisp-D" - Xerox PARC,
CIS-5 (Revised), (1983).

TeitelmCQl, W., "Toward a Programming Laboratory" - Proceedings of the
Internatibnal Joint Conference on Artificial Intelligence, Washington, (1969).

[feitelman, et al., 1972]
Teitelman, W., Bobrow, D.G., Hartley, A.K. Murphy, D.L., BBN-LISP TENEX
Reference Manual - Bolt Beranek and Newman, (July 1971, first revision February
1972, second revision August 1972).

[feitelman, et al., 1978]

. [Thacker, et al., 1979]

Teitelman, W., et al., The Interlisp Reference Manual- Xerox PARC, (October
1978).

Thacker, C., Lampson, B., and Sproull, R., "Alto: A personal computer" - Xerox
PARC,CSL-79-11, (August, 1979).

vi

TABLE OF CONTENTS

Chapter 1 INTRODUCTION
1.1 Interlisp as a Programming Language 1.1
1.2 Interlisp as an Interactive Environment 1.2
1.3 Interlisp Philosophy 1.4
1.4 How- to Use this Manual 1.6
1.5 References 1. 7

Chapter 2 DATA TYPES
2.1 Data Type Predicates 2.1
2.2 Data Type -Equality 2.2
2.3 "Fast" and "Destructive" Functions 2.3
2.4 Litatoms 2.4

2.4.1 . Using Litatoms as· Vanables 2.4
2.4.2 Function Definition Cells 2.6
2.4.3 Property Lists 2.6
2.4.4 Print Names 2.8
2.4.5 Character Code Functions 2.12

2.5 Lists 2.14
2.5.1 Creating Lists 2.16
2.5.2 Building Lists From Left to Right 2.17
2.5.3 Copying Lists 2.19
2~5.4 Extracting Tails of Lists 2.19
2.5.5 Counting List Cells 2.21
2.5.6 Logical Operations 2.22
2.5.7 Searching Lists 2.23
2.5.8 Substitution Functions 2.23
2.5.9 Association Lists and Property Lists 2.25
2.5.10 Other List Functions 2.27

2.6 Strings 2.27
2.7 Arrays 2.32

2.7.1 Interlisp-lO Arrays 2.33
2.8 Hash Arrays 2.35

2.8.1 Hash Overflow 2.36
2.9 Numbers and Arithmetic Functions 2.36

2.9.1 Integer Arithmetic 2.38
2.9.2 Logical Arithmetic Functions 2.40
2.9.3 Floating Point Arithmetic 2.42
2.9.4 Mixed Arithmetic 2.44
2.9.5 Special Functions 2.45

Chapter 3 THE RECORD PACKAGE
3.1 FETCH and REPLACE 3.1
3.2 CREATE 3.3

vii

Chapter 4

3.3 TYPE? 3.4
3.4 WITH 3.4
3.5 Record Declarations 3.5
3.6 Defining New Record Types 3.10
3.7 Record Manipulation Functions· 3.11
3.8 Changetran 3.11
3.9 User Defined Data Types 3.14

4.1
4.2

CONDITIONALS AND ITERATIVE STATEMENTS
The IF Statement 4.4
The Iterative Statement 4.5
4.2.1 I.s.types 4.6
4.2.2 Iteration Variable I.s.oprs 4.7
4.2.3 -Condition I.s.oprs 4.10
4.2.4 Other I.s.oprs 4.10
4.2.5 Miscellaneous 4.11
4.2.6 Errors in Iterative Statements ·4.13
4.2.7 Defining New Iterative Statement Operators 4.13

Chapter 5 FUNCfION DEFINITION, MANIPULATION, AND EVALUATION
5.1 Function Types 5.2

5.1.1 Lambda .. Spread Functions 5.2
.5.1.2 Nlambda-Spread Functions 5.3

5.1.3 Lambda-Nospread Functions 5.4
5.1.4 Nlambda-Nospread Functions 5.5
5.1.5 Compiled Functions 5.5
5.1.6 SUBRs 5.5
5.1.7 Function Type Functions 5.6

5.2 Function Definition 5.8
5.3 Function Evaluation 5.10
5.4 Functional Arguments 5.15
5.5 Macros 5.17

5.5.1 MACROTRAN 5.19

Chapter 6 INPUT /OUTPUT
6.1 Files 6.1

6.1.1 File Naming and Recognition 6.3
6.1.2 Manipulating File Names 6.5
6.1.3 File Attributes 6.6
6.1.4 Randorrily Accessible Files 6.8
6.1.5 Closing and Reopening Files 6.11
6.1.6 Dribble Files 6.12

6.2 Input Functions 6.12
6.3 Output Functions 6.16

6.3.1 Printlevel 6.18
6.3.2 Printing numbers 6.19
6.3.3 User Defined Printing 6.23
6.3.4 Dumping Unusual Data Structures 6.23

6.4 READFILE and WRITEFILE 6.24

viii

6.5 PRINTOUT 6.25
6.5.1 Horizontal Spacing Commands 6.26
6.5.2 Vertical Spacing Commands 6.27
6.5.3 Special Formatting Controls 6.27
6.5.4 Printing Specifications 6.28

6.5.4.1 Paragraph Format 6.28
6.5.4.2 Right-Flushing 6.29
6.5.4.3 Centering 6.29
6.5.4.4 Numbering 6.29

6.5.5 Escaping to LISP 6.30
6.5.6 User-Defined Commands 6.30
6.5.7 Special Printing Functions 6.31

6.6 Readtables 6.32
6.6.1 Readtable Functions 6.32
6.6.2 -Syntax Classes 6.33
6.6.3 Read-Macros 6.36

6.7 TermmaI Tables 6.40
6.7.1 Terminal Table Functions 6041
6.7.2 Terminal Syntax Classes 6.41
6.7.3 Terminal Control Functions 6.42
6.7.4 Line-Buffering 6.45

6.8 Prettyprint 6.47
6.8.1 Comment Feature 6.49
6.8.2 Comment Pointers 6.51 .
6.8.3 Converting Comments to' Lower Case 6.52
6.8.4 Special Prettyprint Controls 6.53
6.8.5 Font Package 6.55

6.9 ASKUSER 6.57
6.9.1 Startup Protocol 6.57
6.9.2 Operation 6.59
6.9.3 Format of KEYLST 6.59
6.9.4 Completing a Key 6.61
6.9.5 Options 6.62
6.9.6 Special Keys 6.64

Chapter 7 V ARIABLE BINDINGS AND THE INTER LISP STACK
7.1 The Spaghetti Stack 7.2
7.2 Stack Functions 7.3
7.3 Releasing and Reusing Stack Pointers 7.10
7.4 The Push-Down List and the Interpreter 7.10
7.5 Generators and Coroutines 7.13 ,

7.5.1 Generators 7.13
7.5.2 Coroutines 7.14
7.5.3 Possibilities Lists 7.16

Chapter 8 THE PROGRAMMER'S ASSISTANT
8.1 Introduction 8.1

8.1.1 Input Formats 8.1
8.1.2 Examples 8.2

ix

8.2 Programmer's Assistant Commands 8.5
8.2.1 Event Specification 8.5
8.2.2 Commands 8.7
8.2.3 P.A. Commands Applied to P.A. Commands 8.17

8.3 Changing The Programmer's Assistant 8.18
8.4 Statistics 8.21
8.5 Undoing 8.22

8.5.1 Undoing Out of Order 8.23
8.5.2 'SAVESET 8.23
8.5.3 UNDONLSETQ and RESETUNDO 8.24

8.6 Format and Use of the History List 8.25
8.7 Programmer's Assistant Functions 8.28
8.8 'The Editor and the Programmer's Assistant 8.35

Chapter 9 ERRORS AND BREAK HANDLING
9.1 Breaks 9.1
9.2 When to Break 9.10
9.3 BREAK1 9.11
9.4 Error Functions 9.13
9.5 Error Handling by Error Type 9.16
9.6 Interrupt Char~ters 9.17
9.7 Changing and Restoring System State 9.18
9.8 Error List 9.21 .

Chapter 10 BREAKING, TRAQNG, AND ADVISING
10.1 Breaking Functions and Debugging 10.1
10.2 Advising 10.7

10.2.1 Implementation of Advising 10.8
10.2.2 Advise Functions 10.9

Chapter 11 FILE PACKAGE
11.1 Loading Files 11.4
11.2 Storing Files 11.6

11.2.1 Remaking a Symbolic File 11.10
11.3 Marking Chartges 11.11
11.4 Noticing Files i 11.12'
11.5 Distributing Change Infonnation 11.14
11.6 File Package Types 11.14

11.6.1 Functio~s for Manipulating Typed Definitions 11.16
11.6.2 Defining New File Package Types 11.19

11.7 File Package Commands 11.21
11.7.1 Exporting Definitions 11.28
11. 7.2 File V ars: 11.30
11.7.3 Defining New File Package Commands 11.30

11.8 Functions for Manipulating File Command Lists 11.32
11.9 Symbolic File Fonnat 11.34

11.9.1 Copyright Notices 11.36
11.9.2 Functions Used Within Source Files 1L37
11.9.3 File Maps 11.38

x

Chapter 12 THE COMPILER
12.1 Compiler Printout 12.2
12.2 Global Variables 12.3
12.3 LOCAL V ARS and SPECV ARS 12.4
12.4 Constants 12.5
12.5 Compiling Function Calls 12.6
12~6 FUNCfION and Functional Arguments 12.8
12.7 Open Functions 12.8
12.8 COMPILETYPELST 12.8
12.9 Compiling CLISP 12.9
12.10 Compiler Functions 12.10
12.11 Block Compiling 12.13

12.11.1 RETFNS 12.13
12.11.2 BLKAPPL YFNS 12.14
12.11.3 BLKLIBRAR Y 12.14
12.11.4 Block Declarations 12.14
12.11.5 Block Compiling Functions 12,.16

12.12 Linked Function Calls 12.18
12.12.1 Relinking 12.19

12.13 Compiler Error Messages 12.20

Chapter 13 MASTERSCOPE

Chapter 14

13.1 Command Language 13.4
13.1.1 Commands 13.4
13.1.2 Relations 13.7
13.1.3 Sets 13.10

13.1.3.1 Set Specifications 13.10
13.1.3.2 Set Determiners 13.12
13.1.3.3 Set Types 13.12

13.1.4 Conjunctions 13.13
13.2 Paths 13.13

13.2.1 Path Options 13.14
13.3 Error Messages 13.15
13.4 Macro Expansion 13.15
13.5 Affecting Masterscope Analysis 13.16
13.6 Data Base Updating 13.19
13.7 Masterscope Entries 13.19
13.8 Noticing Changes that Require Recompiling 13.21
13.9 Implementation Notes 13.22

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8

MISCELLANEOUS
Saving Interlisp State 14.2
Greeting and User Profiles 14.5
Manipulating File Directories 14.6
Sorting Lists 14.8
DatelTime Functions 14.9
Timers and Duration FunctIons 14.10
GAINSPACE 14.13
Performance Measuring Functions 14.14

xi

14.8.1 BREAKDOWN 14.15
14.9 Page Mapped Files 14.17

Chapter 15 DWIM
15.1 Spelling Correction Protocol 15.3
lS.2 Parentheses Errors Protocol 15.5
15.3 U .D.F. T Errors Protocol 15.5
15.4 DWIM Operation 15.6

15.4.1 DWIM Correction: Unbound Atoms 15.7
IS.4.2 Undefined CAR of Form 15.8
IS.4.3 Undefined Function in APPLY 15.9

IS.5 DWIMUSERFORMS 15.10
IS.6 DWIM Functions and Variables 15.11
15.1- Spelling Correction 15.13

IS.7.1 Synonyms 15.13
-lS.7.2 Spelling Lists 15.14
IS.7.3 Generators for Spelling Correction 15.15
IS.7.4 Spelling Corrector Algorithm 15.16
IS.7.5 Spelling Corrector Functions and Variables 15.17

Chapter 16 CLISP
16.1 CLISP Interaction with User 16.4
16.2 CLISP Character Operators 16.5
16.3 Declarations -16.9

16.3.1 Local Declarations 16.10
16.4 CLISP Operation 16.11
16.5 CLISP Translations 16.13
16.6 DWIMIFY 16.14
16.7 CLISPIFY 16.17
16.8 Miscellaneous Functions and Variables 16.19
16.9 CLISP Internal Conventions 16.21

Chapter 17 THE TELETYPE EDITOR
17.1 Introduction 17.1
17.2 Commands for the New User 17.7
17.3 Local Attention-Changing Commands 17.9
17.4 Commands That Search 17.13

1.7.4.1 Search Algorithm 17.15
1.7.4.2 Search Commands 17.15
17.4.3 Location Specification 17.17

17.5 Commands That Save and Restore the Edit Chain 17.20
17.6 Commands That Modify Structure 17.22

17.6.1 Implementation of Structure Modification Commands 17.23
1.7.6.2 The A, B. and : Commands 17.24
17.6.3 Fonn Oriented Editing and the Role of UP 17.26
17.6.4 Extract. and Embed 17.27
17.6.5 The MOVE Command 17.29
17.6.6 Commands That Move Parentheses 17.31
17.6.7 TO and THRU 17.32

xii

17.6.8 The R Command 17.35
17.7 Commands That Print 17.37
17.8 Commands for Leaving the Editor 17038
17.9 Nested Calls to Editor 17.40
17.10 Manipulating the Characters of an Atom or String 17.41
17.11 Manipulating Predicates and Conditional Expressions 17.42
17.12 History commands in the editor 17.42
17.13 Miscellaneous Commands 17.43
17.14 Commands That Evaluate 17.45
17.15 Commands That Test 17.46
17.16 Edit Macros 17.48
17.17 Undo 17.50
17.18 EDITDEFAULT ,17.51
17.19 Editor Functions 17.53
17.20 - Time Stamps 17.60

Chapter 18 INTERLISp-n SPECIFICS
18.1 Interlisp-D Interrupt Characters 18.1
18.2 Garbage Collection IS.2
18.3 Variable Bindings IS.3
18.4 Stack Format IS.3
18.5 Saving Virtual Memory State IS.3
18.6 Error Types IS.4
18.7 Compiler IS.5
18.8 Linked Function Calls IS.5
18.9 HELPSYS IS.5
18.10 Operating System Dependent Functions lS.6
18.11 IDA TE Format 18.6
18.12 Character Set 18.7
18.13 Read Tables 18.7
18.14 Keyboard Interpretation IS.8
18.15 Lispusers Packages IS.9
18.16 File System 18.10

18.16.1 File Names 18.10
18.16.2 Renaming Files 18.10
18.16.3 End Of Line Convention 18.10
18.16.4 Using Files with Processes 18.11
18.16.5 Miscellaneous File Manipulation 18.11
18.16.6 Connecting to Directories 18.11
18.16.7 Binary 110 18.12
18.16.8 Temporary Files and the CORE Device 18.12
18.16.9 Floppy Disks on the Xerox 1108 18.13
18.16.10 Page Mapping 18.13

18.17 File Servers 18.13
18.17.1 File Server File Names 18.14
18.17.2 Logging In 18.14
18.17.3 Abnormal Conditions 18.15
18.17.4 Caveats 18.15
18.17.5 ,New Functionality 18.16

18.18 HardCopy Facilities 18.16

xiii

18.19 Perfonnancel Considerations 18.18
18.19.1 Variable Bindings 18.19
18.19.2 Garbage Collection. 18~20
18.19.3 DatatyPes 18.21
18.19.4 Incomplete Filenames 18.21
18.19.5 Turning Off the Display 18.22
18.19.6 Gatheting Statistics 18.22

18.20 The Interlis~-D Process Mechanism 18.25
18.20.1 CreaW!tg and Destroying Processes 18.26
18.20.2 ProcesS Control Constructs 18.28
18.20.3 Events 18.29
18.20.4 Monitors 18.30
18.20.5 Global Resources 18.32
18.20.6 Typein and the 1TY Process 18.33

18.20.6.1 Switching the 1TY Process 18.33
18.20.6.2 Handling of Interrupts 18.35

18.20.7 Keeping the Mouse Alive 18.35
18.20.8 Debugging Processes 18.36
18.20.9 Non-P~ocess Compatibility 18.37 .

18.21 PROMPTFdRWORD 18.37

Chapter 19 INTERLISp·D DISPLAY FACILITIES
19.1 POSITION 19.2
19.2 REGION 19.2
19.3 BITMAP 19.3
19.4 BITBLT 19.4
19.5 TEXTURE 19.6
19.6 Saving BITMAPs 19.6
19.7 Screen Operation 19.6
19.8 Characters and Fonts 19.7
19.9 Display Streams 19.10

19.9.1 Manipulating Display Streams 19.10
.19.9.2 Drawing on Windows and Display Streams 19.12
19.9.3 Drawing Lines and Curves 19.13

19.10 Typescript Facilities: The "T" File 19.14
19.11 Cursor and ~ouse 19.15

19.11.1 Mouse; Button Testing 19.16
19.11.2 Low Level Access to Mouse 19.17

19.12 Windows 19.18
19.12.1 What are Windows? 19.19
19.12.2 Interactive Window Operations 19.20
19.12.3 ChangIng Entries on the Window Command Menus 19.22
19.12.4 Coordlnate Systems 19.23
19.12.5 Scrolling 19.23
19.12.6 Progratnmatic Window Operations 19.25
19.12.7 Window Properties 19.28

19.12.7.1 Mouse Function Window Properties 19.29
19.12.7.2 Event Window Properties 19.30
19.12.7.3 Miscellaneous Properties 19.32

19.12.8 Auxiliary Functions 19.33

xiv

19.12.9 Example: A Scrollable Window 19.34
19.13 Interactive Display Functions 19.36
19.14 Menus 19.38

19.14.1 Menu Fields 19.39
19.14.2 Miscellaneous Menu Functions 19.41
19.14.3 Examples of Menu Use 19.41

19.15 Grid Functions 19.42
19.16 Color Graphics 19.43

19.16.1 Color Bitmaps 19.43
19.16.2 ,Color Specifications 19.44
19.16.3 Color Maps 19.45
19.16.4 Turning the Color Display On and Off 19.47
19.16.5 Printing and Drawing in Color 19.48
19.16.6 Using the Cursor on the Color Screen 19.49
19.16.7 Miscellaneous Color Functions 19.49
19.16.8 Demonstration programs 19.49

Chapter 20 INTERLISP-D DISPLAY-ORIENTED TOOLS
20.1 DEdit 20.1

20.l.i General Comments 20.1
20.1.2 Operation 20.1
20.1.3 Interactive Operation 20.2

20.1.3.1 Selection 20.2
20.1.3.2 Typein', 20.3
20.t3.3 ,Shift-Selection 20.3
20.1.3.4 Commands 20.3
20.1.3.5 Multiple Commands 20.6
20.1.3.6 Idioms 20.7

20.1.4 DEdit Parameters 20.8
20.2 Interactive Bitmap Editing 20.8
20.3 Display Break Package 20.10
20.4 The Inspector 20.12

20.4.1 Inspect Windows 20.12
20.4.2 Calling the Inspector 20.13
20.4.3 Choices Before Inspection 20.14
20.4.4 Redisplaying an Inspect Window 20.14
20.4.5 Interaction With the Display Break Package 20.14
20.4.6 Controlling the Amount Displayed During Inspection 20.14
20.4.7 Inspect Macros 20.15
20.4.8 INSPECTWs 20.15

20.5 CHAT 20.17
20.6 The TEdit Text Editor 20.19

20.6.1 Selecting Text 20.21
20.6.2 Editing Operations 20.22
20.6.3 TEdit Functional Interface 20.23

20.6.3.1 TEdit Interface Functions 20.24
20.6.3.2 User-function "Hooks" in TEdit 20.27
20.6.3.3 Changing the TEdit Command Menu 20.28
20.6.3.4 Variables Which Control TEdit 20.28

20.6.4 TEdit's Tenninal Table and Readtables 20.29

xv

20.6.5 The TEdit Abbreviation Facility 20.31
20.7 The TfYIN Display Typein Editor 20.31

20.7.1 Entering Input With TfYIN 20.31
'20.7.2 Mouse Commands [Interlisp-D Only] 20.33
20.7.3 Display. Editing Commands 20.33
20.7.4 Using TfYIN for Lisp Input 20.37"
20.7.5 Useful Macros 20.37
20.7.6 Prograniming With TfYIN 20.38
20.7.7 EE Interface 20.40
20.7.8 7= Handler· 20.41
20.7.9 Read Macros 20.41
20.7.10 Assorted Flags 20.43
20.7.11 Specia1J Responses 20.44
20.7.12 Display Types 20.45

Chapter 21 ETHERNET
21.1 Ethernet Protocols 21.1

21.1.1 Protocol Layering 21.1
21.1.2 Level Zero Protocols 21.2
21.1.3 Level One Protocols 21.3
21.1.4 Higher Level Protocols 21.3
21.1.5 Connecting Networks: Routers and Gateways 21.3
21.1.6 Addressing Conflicts with Level Zero Mediums 21.4
21.1.7 References 21.4

21.2 Higher-level PUP Protocol Functions 21.4
21.3 Higher-level NS Protocol Functions 21.6

21.3.1 SPP Stream Interface 21.6
21.3.2 Courier Remote Procedure Call Protocol 21.7

21.3.2.1 Courier Template Language 21.8
21.3.2.2 Manipulating Courier Representations 21.10
21.3.2.3 Using Bulk Data Transfer with Courier 21.10

21.3.3 NS Printing 21.10
21.3.4 Clearinghouse 21.12
21.3.5 NS Filing 21.13

21.3.5.1 Pathnames and NS Fileservers 21.13
21.4 Level One Ether Packet Format 21.14
21.5 PUP Level One Functions 21.15

21.5.1 Creating and Managing Pups 21.15
21.5.2 Sockets 21.15
21.5.3 Sending and Receiving Pups 21.16
21.5.4 Pup Ro~ting Information 21.17
21.5.5 Miscellaneous PUP Utilities 21.17
21.5.6 PUP Debugging Aids 21.18

21.6 NS Level One Functions 21.21
21.6.1 Creating and Managing XIPs 21.21
21.6.2 NS Sockets 21.22
21.6.3 Sending; and Receiving XIPs 21.22
21.6.4 NS Debugging Aids 21.23

21.7 Support for Other Level One Protocols 21.23
21.8 The SYSQUEUE ~echanism 21.25

xvi

Chapter 22 INTERLISP-I0 SPEOFICS
22.1 Interlisp-l0 Interrupt Characters 22.1
22.2 Type Number Functions 22.2
22.3 Validity of Definitions [n Interlisp-l0 22.3
22.4 Reusing Boxed Numbers in Interlisp-l0 - SETN 22.3

22.4.1 Caveats concerning use of SETN 22.4
22.5 Box and Unbox in Interlisp-l0 22.5
22.6 Miscellaneous Operating System Functions 22.5
22.7 Storage Allocation and Gaibage Collection 22.7
22.8 The Assembler and LAP 22.11

22.8.1 Assemble 22.12
22.8.1.1 Assemble Statements 22.12
22.8.1.2 COREV ALs 22.14

22.8.2 LAP 22.15
22.8.2.1 LAP Statements 22.15

22.8.3 Using Assemble 22.18
- -22.9 Interfork Communication in Interlisp-l0 22.20

22.10 SUBSYS 22.21
22.11 JFN Functions in Interlisp-lO . 22.22
22.12 Display Terminals 22.23
22.13 The Interlisp-lO Swapper 22.24

22.13.1 Overlays 22.24
22.13.2 Efficiency 22.25
22.13.3 Sp~ifications 22.25

Chapter 23 LISPUSERS PACKAGES
23.1 Pattern Match Compiler 23.1

23.1.1 Pattern Elements 23.2
23.1.2 Element Patterns 23.2
23.1.3 Segm.ent Patterns 23.3
23.1.4 Assignments 23.5
23.1.5 Place-Markers 23.5
23.1.6 Replacements 23.6
23.1.7 Reconstruction 23.6
23.1.8 Examples 23.7

23.2 Printing Reentrant and Circular List Structures 23.8
23.2.1 CIRCLPRINT 23.8
23.2.2 PRINTL 23.11

23.3 Indexing and Cross Referencing Files 23.12
23.3.1 SINGLEFILEINDEX 23.12
23.3.2 MULTIFILEINDEX 23.13

23.4 Databasefns 23.15
23.5 Lambdatran 23.16
23.6 Permstatus 23.17
23.7 The Oed Package 23.18

23.7.1 Using Declarations in Programs 23.18
23.7.2 DLAMBDAs 23.20
23.7.3 DPROG 23.21
23.7.4 Declarations in Iterative Statemen'ts 23.22
23.7.5 Declaring a Variable for a Restricted Lexical Scope 23.23

xvii

23.7.6 Declaring the Values of Expressions 23.23
23.7.7 Assertions 23.24
23.7.8 Using Type Expressions as Predicates 23.24
23.7.9 Enforcement 23.24
23.7.10 Decltypes 23.25
23.7.11 Predefined Types 23.25
23.7.12 Type Expressions 23.26
23.7.13 Named Types 23.28

23.7.13.1 Manipulating Named Types 23.29
23.7.14 Relations Between Types 23.29
23.7.15 The Declaration Database 23.30
23.7.16 Declarations and Masterscope 2331

23.8 TRANSOR 23.31
23.8.1 Using TRANSOR 23.32
23.8.2 Translating 23.32
23.8.3 The Translation Notes 23.33
23.8.4 Errors and Messages 23.34
23.8.5 TRANSORSET 23.35
23.8.6 TRANSORSET Commands 2336
23.8.7 The REMARK Feature 23.37
23.8.8 Controlling the Sweep 23.39

23.9 WHEREIS Package 23.40
23.10 Hash Files 23.41

23.10.1 Unstructured Pages and Symbol Tables 23.45 .
23.10.2 The Printing Region . 23.46

23.11 EDIT A 23.46
23.11.1 Overview 23.47
23.11.2 Input Protocol 23.48
23.11.3 EDIT A Commands and Variables 23.49
23.11.4 Editing Arrays 23.52

23.12 Cjsys 23.53
23.13 Nobox 23.54

23.13.1 CONSCells 23.54
23.13.2 Number Boxes 23.55
23.13.3 Cautions 23.56

23.14 Date format 23.57
23.15 Exec 23.59

23.15.1 Exec Commands 23.59
23.15.2 EXEC Functions 23.60

23.16 Passwords 23.62
23.17 Telnet 23.62
23.18 Ftp 23.62
23.19 Net 23.64

xviii

.~.J ...
~."I.)fel:;.
ILO'Jln. O~IR'.I::e11 (pa:~'~')rd) QU9ke 1:: :;p'Jollng and 'daltlng i

{PHVLUM}<L ISPUSERS> BRAPHER. OCOIII; 29
cOllp11ed on 12-SEP-62 09: 36: 136
FILE CREATED 12-SEP-82 09: 34: 16
GRAPHERCOMS
{PHVLUM}< L I SPUSERS) &ROWSER • OCOIII; 16
10 •. SHOW ALL PATHS TO 015p1."C.11
NIL
11 •. ANALVZE FUNCrrONS ON INTERCALC

e1t::l {in EditHalle} treat as c1 isp? yes
•••••• 1 •••••••• • •••• • •• ········.···.·······,····

............•..... done
12.REDO 18 .
NIL
13.X
u.b.a.

:';,'; :.'.,.':'.:' , ... : .. :

: IJdsk5tat
. 5026 paQes used out of 5000
ell) .
366796 pages used, 6168 left
IJde'ete (files) .. ,
IIl1keep (# of ",erslons)
1111
< OMRusse" >

flo press 11 [Conf i I'll] yes.
intro.bra"'0!3 [Con1'irll] yes .

. <DMRusse 11> 1 ;speourse)
ex ere 1se1. bravo! 1 [Con1' ;rm] yes .
ex ere 1502. bravo! 1 [Con1' 1rm] yes .

(DMRusse 11>
PRETTV2 . PRESS! 1 [Conf 1 I'll] yes.
SIMPLEG!14 [Con(1rll] yes.
SIMPLEG!15 [Conf1rll] yes.

P error: &IH. IMEOUT
TREAM}"4,61614
FITEMAILilATCH aborted.
: (L0I30UT)
L
~~};~~g~~~;jQETREGION) • {OSK}S2 PRESS)

22: LOGOUT)
NIL
23 FIX 21
: (HARDCOPVII' (SCREENI'lITMAP) (QUOTE
{DSII}S2.PRESS) NIL 0.5)

CHAPTER 1

INTRODUCTION

Interlisp is a programming system. A programming system consists of a programming language, a large
number of predefined programs (or jUnctions, to use the Lisp tenninology) that can be used either
as direct user commands or as subroutines in user programs, and an environment that supports the
programmer by providing a variety of specialized programming tools. The language and predefined
functions of Interlisp are rich, but similar to those of other modem programming languages. The Interlisp
programming environment, on the other hand, is very distinctive. Its most salient characteristic is an
integrated set of programming tools which know enough about Interlisp programming so that they can act
as semi-autonomous, intelligent "assistants" to the programmer. In addition, the environment provides a
completely self-contained world for creating, debugging and maintaining Interlisp programs.

This manual describes all three components of the Interlisp system. There are discussions about the
content and structure of the language, about the pieces of the system that can be incorporated into user
programs, and about the environment. The line between user code and the environment is thin and
changing. Most users extend the environment with some special features of their own. Because Interlisp
is so easily extended, the system has grown over time to incorporate many different ideas about effective
and useful ways to program. This gradual accumulation over many years has resulted in a rich and diverse
system. That is the reason this manual is so large: . -

Whereas the rest of this manual describes the individual pieces of the Interlisp system, this chapter attempts
to describe the whole system-language, environment, tools, and the otherwise unstated philosophies that
tie it all together. It is intended to give a global view of Interlisp to readers approaching it for the first
time.

1.1 INTERLISP AS A PROGRAl\11\1ING LANGUAGE

This manual does not contain an introduction to programming in Lisp. Sadly, primers and teaching
materials for Lisp are few and quickly become dated. [Winston & Horn, 1981] discuss Lisp and its
applications, but focus on MacLisp. with only a limited section on Interlisp in an appendix. [Siklossy,
1976] and [Weissman, 1967] are both sound. but a little dated. In this section, we simply highlight a few
key points about Lisp on which much of the later material depends.

The Lisp family of languages (e.g., Interlisp, VCI Lisp [Meehan, 1979], FranzLisp [Foderaro, 1979],
Mac Lisp [Moon, 1974], Lisp Machine Lisp [Weinreb & Moon, 1979], etc.) shares a common structure
in which large programs (or functions) are built up by composing the results of smaller ones. Although
Interlisp, like most modern Lisps, allows programming in almost any style one can imagine, the natural
style of Lisp is functional- and recursive, in that each function computes its result by selecting from or
building upon the values given to it and then passing that result back to its caller (rather than by producing
"side-effects" on external data structures, for example). A great 'many applications can be written in Lisp
in this purely functional style, which is encouraged by the simplicity with which Lisp functions can be
composed together.

1.1

Interlisp as an Interactive Environment

Lisp is also a list-manipulation language. The essential primitive data objects of any Lisp are "atoms"
(symbols or identifiers) and "lists" (sequences of atoms or lists), rather than the "characters" or "numbers"
of more conventional programming lang1;lages (although these are also present in all modern Lisps). Each
Lisp dialect has a set of operations that act on atoms and lists. and these operations comprise the core of
the language.

Invisible in the programs, but essential to the Lisp style of programming, is an automatic memory
management system (an "alIOC!=ator" and a f4garbage collector"). Allocation of new storage occurs
automatically whenever a new C!iata object is created. Conversely, that storage is automatically reclaimed
for reuse when no other object makes reference to it Automatic allocation and deallocation of memory
is essential for rapid, large sc~e program development because it frees the programmer from the task
of maintaining the details of memory administration, which change constantly during rapid program
evolution.

A key property of Lisp is that it can represent- Lisp function definitions as pieces of Lisp list data.
Each sub function "call" (or function application) is written as a list in which the function is written first,
followed by its arguments. Thus, (PLUS 1 2) is a list structure representation of the expression 1 +
2. Each program can be written as a list of such function applications. This representation of program as
data allows one to apply the same operations to programs that one uses to manipulate data, which makes
it very straightforward to write' Lisp programs which look at and change other Lisp programs. This, in
tum, makes it easy to develop programming tools and translators, which was essential in enabling the
development of the Interlisp environment

One result of this ability to have one program examine another is that one can extend the Lisp programming
language itself. If some desired programming idiom is not supported, it can be" added simply by· defining
a function that translates the desired expression into simpler Lisp. Interlisp provides extensive facilities
for users to make this type of language extension. In addition, the CLISP (Conversational LISP) package
provides definitions for several commonly used programming constructs (i f... the n ... e 1 s e, for and
do loops, etc.) that make many programs easier to express. Using this ability to extend itself, Interlisp has
incorporated many of the constructs that have been developed in other modem programming languages.

1.2 INfERLISP AS AN INTERACfIVE ENVIRONMENT

Interlisp programs should not be thought of as autonomous, external files of source code. All Interlisp
programming takes place within the Interlisp environment, which is a completely self-sufficient environment
for developing and using Interlisp programs. Not only does the environment contain the obvious
programming facilities (e.g., program editors, compilers, debuggers, etc.), but it also contains a variety of
tools which assist the user by "keeping track" of what happens, so the user doesn't have to. For example,
the Interlisp file package notices when programs or data have been changed, so that the system will
know what needs to be saved at the end of the session. The "residential" style, where one stays within
the environment throughout the development, from initial program definition through final debugging, is
essential for these tools to operate. Furthermore, this same environment is available to support the final
production version. some parts providing run time support and other parts ignored until the need arises
for further debugging or development.

For terminal interaction with the user, Interlisp ptovides a "Read-Eval-Print" loop. That is, whatever the
user types in is READ by the system, executed (or "EVAL"-uated) and the result is PRINT-ed onto the
terminal. (This interaction is also recorded by the programmer's assistant, described below, so the user

1.2

INTRODUCTION

can ask to do an action again, or even to undo the effects of a previous action.) Although each interactive
terminal listener (or "executive") defines a few specialized commands, most of the interaction will consist
of simple evaluations of ordinary Lisp expressions. Thus, instead of specialized terminal. commands for
operations like manipulating the user's files, actions like this are carried out simply by typing the same
expressions that one would use to accomplish them inside a Lisp program. This creates a very rich, simple
and uniform set of interactive commands, since any Lisp expression can be typed at a command executive
and evaluated immediately.

In normal use, one writes a program (or rather, "defines a function") simply by typing in an expression
that invokes the "function defining" function (0 E FIN E Q), giving it the name of the function being defined
and its new definition. The newly defined function can be executed immediately, simply by using it in
a Lisp expression. Although most Interlisp c'ode is normally run compiled (for reasons of efficiency),
the initial versions of most programs, and all of the user's terminal interactions, will be run interpreted.
Eventually, as a function gets larger or is used in many places, it becomes more effective to compile it
Usually, by that stage, the function has been stored on a file and the whole file (which may contain many
functions) is compiled at once. DEFINEQ, the compiler (COMPILE), and the interpreter (EVAL), are all
themselves Lisp functions that use the ability to treat other Lisp expressions and programs as data.

In addition to these basic programming tools, Interlisp also provides a wi4e variety of programming
support mechanisms:' ' . . .

Structure editor

Pretty-printer

Break Package

DWIM

Since Interlisp programs are represented as list structure, Interlisp provides an editor
which allows one to change the list structure of a function's definition directly.

The pr~tty printer is a function that printS Lisp function· d~finiq.ons so that their
syritactic structure is displayed by the indentation 'and fonts used. .

When errors occur, the break package is called, allowing the user to examine and
modify the context at the point of the error. Often, this enables execution to
continue without starting over from the beginning. Within a break, the full power
of Interlisp is available to the user. Thus, the broken function can be edited, data
structures can be inspected and changed, other computations carried out, and so
on. All of this occurs in the context of the suspended computation, which will
remain available to be resumed.

The "Do What I Mean" package automatically fixes the user's misspellings and
errors in typing.

Programmer's Assistant

Masterscope

Interlisp keeps track of the user's actions during a session and allows each one to
be replayed, undone, or altered.

Masterscope is a program analysis and management tool which can analyze users'
functions and build (and automatically maintain) a data base of the results.
This allows the user to ask questions like "WHO CALLS ARCTAN" or "WHO
USES COEF 1 FREELY" or to request systematic changes like "EDIT WHERE ANY
(jUnction) FETCHES ANY FIELD OF (the data structure) FDO".

RecordlDatatype Package
.. Interlisp allows a programmer to define new data structures. This enables one to

separate the issues of data access from the details of how the data is actually stored.

1.3

File Package

Performance Analysis

Interlisp Philosophy

Files in Interlisp are managed by the system, removing the problem of ensuring
timely file updates from the user. The file package can be modified and extended
to accomodate new types of data.

These tools allow statistics on program operation to be collected and analyzed.

These facilities are tightly integrated, so they know about and use each other, just as they can be used
by user programs. For example, Masterscope uses the structural editor to make systematic changes .. By
combining the program analysis features of Masterscope with the features of the structural editor~ large
scale system changes can be made with a single command. For example, when the lowest-level interface
of the Interlisp-D I/O system was changed to a new fonna~ the entire edit was made by a single call
to Masterscope of the form EOIT WHERE ANY CALLS '(BIN BOUT···). [Burton et al., 1980] This
caused Masterscope to invoke the editor at each point in the system where any of the functiqns in the list
, (BIN BOUT ...) were called. This ensured that no functions used in input or output were overlooked
during the modification.

The new, personal machine implementations of Interlisp, such as Interlisp-D, also provide some new user
facilities, and some ~ew, interadtive graphic interfaces to some of the older Interlisp programming tools:

Multiple Processes .The multiple and independent processes allowed in Interlisp-D simplify problems
which require logically separate pieces of code to operate in parrallel.

Windows The ability to have multiple, independent' windows on the display allows many
different processes or activities to be active on. the screen at once. .

Inspector The inspector is a display tool for examining complex data structures encountered
during debugging.

The figure found at the beginning of this chapter shows a standard user display within Interlisp-D. One
window displays a list of messjiges available for browsing, using an experimental mail reading system.
This operates in parallel with me user's other activities, continually monitoring the remote mail server
and watching for any new mesSages. The "DEdit" window is editing an Interlisp function. The "Chat"
window offers a direct connectibn to a remote machine (this one is a remote file server). There are two
nested break windows showing, the environment of an interrupted evaluation. And in the lower right,
there is a Masterscope display showing all the possible execution paths to some function.

Some of the newer implementations of Interlisp have embedded within them an entire operating system
written in Interlisp. For the most part, that is of no concern to the user (although it is nice to know that one
can write programs of this complexity and performance within Interlisp!). However, some of the facilities
provided by this low level code allow the use of Interlisp for applications that would previously' have
been forced into a relatively intpoverished system programming environment. In particular. Interlisp-D
provides complete facilities for! experimenting with distributed machines and services on a local area
network, plus access to all the services that such networks provide (e.g., mail, printing, filing, etc.).

1.3 INTER LISP PHILOSOPHY

The extensive environmental support that the Interlisp system provides has develope~ over the years
in order to support a particular style of programming called '~exploratory programming" [Sheil, 1983).

1.4

INTRODUCTION

For many complex programming problems, the task of program creation is not simply one of writing a
program to fulfill pre-identified specifications. Instead, it is a matter of exploring the problem (trying
out various solutionS expressed as partial programs) until one finds a good solution (or sometimes, any
solution at all!). Such programs are by their very nature evolutionary; they are transformed over time
from one realization into another in response to a growing understanding of the problem. This point of
view has lead to an emphasis on having the tools available to analyze, alter, and test programs easily.
One important aspect of this is that the tools be designed to work together in an integrated fashion, so
that knowledge about the user's programs, once gained, is available throughout the environment.

"
The development of programming tools to support exploratory programming is itself an exploration.
Noone knows all the tools that will eventually be found useful. and not all programmers want all of the
tools to behave the same way. In response to this diversity, Interlisp has been shapec:L by its implementors
and by its users, to be easily extensible in several different ways. First, there are many places in the system
where its behavior can be adjusted by the user. One way that this can be done is by changing the value
of various "ftags" or variables whose values are examined by system code to enable or suppress certain
behavior. The other is where the user can provide functions or other behavioral specifications of what is to
happen in certain contexts. For example, the format used for each type of list structure when it is printed
by the pretty-printer is determined by specifications that are found on the list PRETTYPRINTMACROS.
Thus, this format can be changed for a given type simply by putting a printing specification for it on that
list

Another way in which users can effect Interlisp's behavior is by redefining or changing system functions.
The "Advise" capability, for instance. permits the user to modify the operation of virtually any function
in the system by wrapping user code "around" the selected function. (This same philosophy extends
to the. break package and tracing •. so almost any Dlnction in the system can be broken or traced.)
Expenrnentation is thus encouraged and actively facilitated, which allows the user to find useful pieces of
the Interlisp system which can be configured to assist with application development. This is even easier
in systems like Interlisp-D, where the entire system is implemented in Interlisp, since there are extremely
few places where the system's behavior depends on anything outside of Interlisp (such as a low level
system implementation language).

While these techniques provide a fair amount of tailorability, the price paid is that Interlisp presents an
overall appearance of complexity. There are many ftags, parameters and controls that affect the behavior
one sees. Because of this complexity, Interlisp tends to be more comfortable for experts, rather than
casual users. Beginning users of Interlisp should depend on the default settings of parameters until they
learn what dimensions of ftexibility are available. At that point, they can begin to "tune" the system to
their preferences.

The various implementations of Interlisp share not only this general philosophy, but a philosophy about
each other also. Interlisp is available in highly compatible versions across several machines. The
community of Interlisp implementors is committed to maintain this level of compatibility. One testimony
to this is the existence of pieces of very old code in modem versions of Interlisp that have been inherited
from the original BBN-Lisp system nearly 15 years ago. Many of the function definitions in the core of
the system have not changed since 1977, over many different versions of Interlisp.

Appropriately enough, even Interlisp's underlying philosophy was itself discovered during Interlisp's
development, rather than laid out beforehand. The Interlisp environment and its interactive style were
first analyzed in Sandewall's excellent paper [Sandewall, 1978]. The notion of "exploratory programming"
and the genesis of the Interlisp programming tools in terms of the characteristic demands of this style of
prograinming was developed in [Sheil, 1983]. The evolution and structure of the Interlisp programming
environment are discussed in greater depth in [feitelman & Masinter. 1981].

1.5

How to Use this Manual

1.4 HOW TO USE THIS MANUAL

This document is a reference m~ual, not a primer. We have tried to provide a manual that is complete,
and that allows Interlisp users to find particular items as easily as possible. Sometimes, these goals have
been achieved at the expense of simplicity. For example, many functions have a number of arguments
that are rarely used. In the interest of providing a complete reference, these arguments are fully explained,
even though they would normally be defaulted. There is a lot of information in this manual that is only
of interest to experts.

Users should not try to read straight through this manual, like a novel. In general, the chapters are
organized with overview explan~tions and the most useful functions at the beginning of the chapter, and
implementation details towards Ule end. If you are interested in becoming acquainted with Interlisp using
this manual, the best way wotild be to skim through the whole book, reading the beginning of each
chapter.

A few notes about the notational conventions used in this manual:

Lisp. object notation: All Interlisp objects in this manual are printed in the same font: Functions
(AND, PLUS. DEFINEQ, LOAD);! Variables (MAX. INTEGER, FILELST, DFNFLG); and arbitrary Interlisp
expressions: (PLUS 2 3), {P~OG ({ A 1» ...), etc.

Case is significant: An important piece of information, often missed by newcomers to Interlisp, is that
upper and lower case is significant. The variable FOO is not the same as the variable faa, which is not the
same as the variable F qo. By c~nvention, most Interlisp system functions and variables are all-uppercase,
but users are free to use upper and lower case for their own functions and· variables as they wish. l

This manual contains a large number of descriptions of functions, variables, commands, etc, which are
printed in the following standard format:

(FOO BAR BAZ -) [Function]
This is a description for the function named FOO. FOO has two arguments, BAR and
BAZ. Some system functions have extra optional arguments that are not documented
and should not be used. These extra arguments are indicated by "-". .

The descriptor [Function] indicates that this is a function, rather than a [Variable],
[Prog. Asst. Command], etc.. For function definitions only, this can also indicate
the function "type": [NLambda Function], [NoSpread Function], or [NLambda
NoSpread Function], which describes whether the function takes a fixed or variable
number of arguments, and whether the arguments are evaluated or not.

lOne exception to the case-sig~ificance rule is provided by the Interlisp CLISP facility, which allows
iterative statement operators and record operations to be typed in either all-uppercase or all-lowercase
letters: (for X from 1 to 5 ...) is the same as (FOR X FROM 1 TO 5 ...). The few situations
where this is the case are explicitly mentioned in the manual. Generally, one should assume that case is
significant. .

1.6

INTRODUCTION

1.5 REFERENCES

[Burton, et al., 1980] Burton, R. R., L. M. Masinter, A. Bell, Do G. Bobrow, W. S. Haugeland, R.M.

[F oderaro, 1979]

[Meehan, 1979]

[Moon, 1974]

[Sandewall, 1978]

[Sheil, 1983]

Kaplan and B.A. Sheil, "Interlisp-D: Overview and Status" - in [Sheil & Masinter,
1983].' .

Foderaro, John K., The FRANZ LISP Manual - University ofCallfomia, Bekeley,
California (1979).

Meehan, J. R., The New UCI Lisp Manual - Lawrence Erlbaum Associates,
Hillsdale, New Jersey (1979).

Moon, David, MACLISP Reference Manual- Version 0, Laboratory for Computer
Science, MIT, Camppdge,' Massachusetts, (1974)

Sandewall, Erik, "Programming in the Interactive Environmnet: The LISP
Experience" - ACM Computing Surveys, vol 10, no 1, pp' 35-72, (March 1978).

Sheil,·B.A., "Environments for Exploratory Programming" - Datamation, (February,
1983) - also in [Sheil & Masinter, 1983].

[Sheil & Masinter, 1983]

[Siklossy, 1976]

Sheil, B.A. and L. M. Masinter, "Papers on Interlisp~D", Xerox PARC Technical
Report CIS-5 (Revised), (Jan':lary, 1983).

Sildossy. L., Let's Talk Lisp - Prentic~-Hall, Englewood Cliffs, New Jersey (1976).

[Teitelman & Masinter, 1981]
Teitelman. W. and L. M. Masinter, "The Interlisp Programming Environment" -
Computer, vol 14, no 4, pp 25-34, (April 1981) - also in [Sheil & Masinter, 1983].

(Weinreb & Moon, 1979]

(Weissman, 1967]

Weinreb, D. and D. Moon, Lisp Machine Manual - Artificial Intelligence
Laboratory, MIT, Cambridge, Massachusetts, (January 1979).

Weissman, C., LISP 1.5 Primer _. Dickenson Publishing Company. Belmont,
California (1967).

(Winston & Hom, 1981]
Winston, P. H., and B.K.P. Hom, LISP- Addison-Wesley. Reading, Massachusetts
(1981).

1.7

References

1.8

CHAPTER 2

DATA TYPES

Interlisp is a system for the manipulation of various kinds of data; it provides a large set of built-in data
types, which may be used to repre~ent a variety of abstract objects, and the user can also define new data
types which can be used exactly like built-in data types.

Each data type in Interlisp has an associated "type name," a litatom.1 Some of the type names of built-in
data types are: LITATOM, LISTP, STRINGP, ARRAYP, STACKP, SMALLP, FIXP, and FLOATP. For user
data types (page 3.14), the type name is specified when the data type is created.

(OATATYPES" -) [Function]
Returns a list of all type names currently defined.

(TYPENAMEDATUM) [Function]
Returns the type name for the data ty.pe of DATUM.

(TYPENAMEP DATUM TYPENAME) [Function]
Returns r if DATUM is an object with type name equal to TYFENAME, otherwise
NIL.

No"te: TVPENAME and TYPENAMEP distingu"ish theiogical data types ARRAYP, CCOOEP and HARRAYP,
even though they may be implemented as ARRAYPs in some Interlisp implementations.

2.1 DATA TYPE PREDICATES

Interlisp provides seperate functions for testing whether objects are of certain commonly-used types:

(LITATOM x)

(SMALLP x)

(FIXP x)

(FLOATP x)

[Function]
Returns T if x is a litatom, NIL otherwise. Note that a number is not a litatom.

[Function]
Returns x if x is a small integer; NIL otherwise. (Note that the range of small
integers is implementation-dependent. See page 2.36.)

[Function]
Returns x if x is a small or large integer (between MIN. F IXP and MAX. F IXP);
NIL otherwise.

[Function]
Returns x if x is a flo"ating point nUIIlber;" NIL otherwise.

1 In Interlisp-lO, each data type also has an associated "type number." See page 22.2.

2.1

(NUMBERP x)

(ATOM x)

(LISTP x)

(NLISTP x)

(STRINGP x)

(ARRAYP x)

(HARRAYP x)

Data Type Equality

[Function]
Returns x if x is a number of any type (FIXP or FLOATP), NIL otherwise.

[Function]
Returns T if x is an atom (Le. a litatom or a number); NIL otherwise.

Warning: (ATOM x) is NIL if x is an array, string, etc. In many dialects of Lisp,
the function A T OM is defined equivalent to the Interlisp function N LIS T P.

[Function]
Returns x if x is a list cell, e.g., something created by CONS; NIL otherwise.

[Function]
(NOT (L 1ST P X». Retu~s T if x is not a list cell, NIL otherwise.

[Function]
Returns x if x is a string, NIL otherwise.

[Function]
Returns x if x is an array, NIL otherwise.

Note: In some implementations of Interlisp, ARRAYP may also return x if it is of
type CCOOEP or HARRAYP.

[Function]
Returns, x if x is a hash array, NIL otherwise."

Note: The empty list, () or NIL, is considered to be a litatom, rather than a list. Therefore, (LIT ATOM
NIL) = (A T OM NIL) = T and (LIS T P NIL) = NIL. Care should be taken when using these functions
if the object may be the empty list NIL.

2.2 DATA TYPE EQUALITY

A common operation when dealing with data objects is to test whether two objects are equal. In some
cases, such as when comparing two small integers, equality can be easily determined. However, sometimes
there is more than one type of equality. For instance, given two lists, one can ask whether they are
exactly the same object, or whether they are two distinct lists which contain the same elements. Confusion
between these two types of equality is often the source of program errors. Interlisp supplies an extensive
set of functions for testing equality:

(EQ x Y)

(NEQ x Y)

[Function]
Returns T if x and yare identical pointers; NIL otherwise. EQ should not be used
to compare two numbers, unless they are small integers; use E Q P instead.

[Function]
(NOT (EQ x y»

2.2

(NULL x)
(NOT x)

(EQP x Y)

(EQUAL x y)

DATA TYPES

(EQ x NIL)

[Function]
[Function]

[Function]
Returns T if x and yare EQ, or if x and yare numbers and are equal in value;
NIL otherwise. For more discussion of EQP and other number functions, see page
2.36.

Note: EQP also can be used to compare stack pointers (page 7.3) and compiled
code (page 5.8).

[Function]
EQUAL returns T if x and yare (1) EQ; or (2) EQP, i.e., numbers with equal value;
or (3) STREQUAL, i.e., strings containing the same sequence of characters; or (4)
lists and CAR of x is EQUAL to CAR of y, and CDR of x is EQUAL to CDR of y.
EQUAL returns NIL otherwise. Note that EQUAL can be significantly slower than
EQ.

A loose description of E'QUAL might be to say that x and y are EQUAL if they
print out the ~e way.

(EQUALALL x y) [Function]
Like EQUAL, except it descends into the contents of arrays, hash arrays, user data
types, etc. Two non-EQ arrays may be .EQUALALL if their respective componants
are EQUALALL. .

2.3 "FAST" AND i'DESTRUCTIVE" FUNCTIONS

Among the functions used for manipulating objects of various data types, there are a number of functions
which have "fast" and "destructive" versions. The user should be aware of what these functions do, and
when they should be used.

"Fast" functions: By convention, a function named by prefixing an existing function name with F indicates
that the new function is a "fast" version of the old. These usually have the same definitions as the slower
versions, but they compile open and run without any "safety" error checks. For example, FNTH runs
faster than NTH, however, it does not make as many checks (for lists ending with anything but NIL,
etc). If these functions are given arguments that are not in the form that they expect, their behavior is
unpredictable; they may run forever. or cause a system error. In general, the user should only use "fast"
functions in code that has already been completely debugged, to speed it up.

"Destructive" functions: By convention, a function named by prefixing an existing function with 0
indicates the new function is a "destructive" version of the old one, which does not make any new
structure but cannibalizes its argument(s). For example, REMOVE returns a copy of a list with a particular
element removed, but DREMOVE actually changes the list structure of the list. (Unfortunately, not all
destructive functions follow this naming convention: the destructive version of APP E NO is NCONC.) The
user should be careful when using destructive functions that they do not inadvertantly change data
structures.

2.3

Litatoms

2.4 LITATOMS

A "litatom" (for "literal atom") is an object which conceptually consists of a print name, a value, a
function definition, and a property list In some Lisp dialects, litatoms are also known as "symbols."

A litatom is read as any string of non-delimiting characters that cannot be interpreted as a number.
The syntatic characters that delimit litatoms are called separator or break characters (see page 6.32) and
normally are space, end-of-tine, line-feed, ((left paren),) (right paren), " (double quote), [(left bracket),
and] (right bracket). However, any character may be included in a litatom by preceding it with the
escape character %. Here are some examples of litatoms:

A wxyz 23SKIOOOO %] 3.1415+17

Long% Litatom% With% Embedded% Spaces

Litatqrp.s are printed by PRINT and PRIN2 as a sequence of characters with %'s inserted before all
delimiting characters (so that the litatom will read back in properly). Litatoms are printed by PRINl as a
sequence of characters without these extra %'s. For example, the litatom consisting of the five characters
A, B, C, (, and 0 will be printed as ABC%(O by PRINT and ABC(O by PRINl.

Litatoms can also be constructed by PACK, PACK·, SUBATOM, MKATOM, and GENSYM (which uses
MKATOM).

Litatoms are unique. In other words. if two litatoms print the same, they will always be EO. Note that
this is not true for strings, large integers, floating point numbers, and lists; they all can print the same
without being EO. Thus if PACK or MKATOM is given a list of characters corresponding to a litatom that
already exists, they return a pointer to that litatom, and do not make a new titatom. Similarly, if the read
program is given as input a sequence of characters for which "a litatom already exists, it returns a pointer
to that litatom. Note: Interlisp is different from other Lisp dialects which allow "uninterned" litatoms.

Note: Litatoms are limited to 255 characters in Interlisp-D; 127 characters in Interlisp-10. Attempting to
create a larger litatom either via PACK or by typing one in (or reading from a file) will cause an error,
ATOM TOO LONG.

2.4.1 Using Litatoms as Variables

Litatoms are commonly used ~ variables. Each litatom has a "top level" variable binding, which can
be an arbitrary Interlisp object. Litatoms may also be given special variable bindings within P ROGs or
function calls, which only exist for the duration of the function. When a litatom is evaluated, the "current"
variable binding is returned. This is the most recent special variable binding, or the top level binding if
the litatom has not been rebound. SETQ is used to change the current binding. For more information
on variable bindings in In terlisp , see page 7.l.

Note: The compiler (page 12.1) treats variables somewhat differently than the interpreter, and the user
has to be aware of these differences when writing functions that will be compiled. For example, variable
references in compiled code are not checked for NOB I NO, so compiled code will not generate unbound
atom errors. In general, it is better to debug interpreted code, before compiling it for speed. The compiler
offers some facilities to increase the efficiency of variable use in compiled functions. Global variables
(page 12.3) can be defined so that the entire stack is not searched at each variable reference. Local
variables (page 12.4) allow compiled functions to access variable bindings which are not on the stack.

2.4

DATA TYPES

which reduces variable conflicts, and also makes variable lookup faster.

By convention, a litatom whose top level binding is to the litatom NOB I NO is considered to have no top
level binding. If a litatom has no local variable bindings, and its top level value is· NOB I NO, attempting
to evaluate it will cause an unbound atom error.

The two litatoms T and NIL always evaluate to themselves. Attempting to change the binding of T or
NIL with the functions below will generate the error ATTEMPT TO SET T or ATTEMPT TO SET NIL.

The following functions (except BOUNOP) will also generate the error ARG NOT LIT ATOM, if not given
a litatom.

(BOUNOP VAH)

(SET VAR VALUE)

[Function]
Returns T if VAH has a special variable binding (even if bound to NOB I NO), or
if VAR has a top level value other than NOB I NO; otherwise NIL. In other words,
if x is a litatom, (EVAL x) will cause an UNBOUND ATOM error if and only if
(BOUNOP x) returns NIL.

[Function]
Sets the 66current" variable binding of vAH to VALVE, and returns VALVE.

Note that SET is a normal lambda spread function, so both VAR and VALVE are
evaluated before it is called. Thus, if the value of X is B, and the value of Y is C,
then (SET X Y) would result in B being set to C, and C being returned as the
value of SE T.

(SETQ VAR VALVE) [NLambda NoSpread Function]
Nlambda version of SET; VAH is not evaluated, VALVE is.2 Thus if the value of X
is B and the value of Y is C, (SETQ X Y) would result in X (not B) being set to
C, and C being returned.

(SETQQ VAR VALUE) [NLambda Function]
Like SETQ except that neither argUment is evaluated, e.g., (SETQQ X (A Be»
sets X to (A Be) .

(GETTOPVAL VAR) [Function]
Returns the top level value of VAH (even if NOB I NO), regardless of any intervening
local bindings.

(SETTOPVAL VAR VALUE) [Function]
Sets the top level value of VAR to VALVE, regardless of any intervening bindings,
and returns VALUE.

A major difference between various Interlisp implementations is the way that variable bindings are
implemented. Interlisp-lO and Interlisp-Jerico use what is called "shallow" binding. Interlisp-D and
Interlisp-V AX use what is called "deep" binding.

2Since SETQ is an nlambda, neither argument is evaluated during the calling process. However, SETQ itself
calls EVAL on its second argument. Note that as a result, typing (SETQ VAR FORM) and SETQ(VAR
FORM) to the Interlisp executive is equivalent: in both cases VAR is not evaluated, and FORM is.

2.5

Function Definition Cells

In a deep binding system, a variable is bound by saving on the stack the variable's new value. When a
variable is accessed, its value is found by searching the stack for the most recent binding. If the variable is
not found on the stack, the top level binding is retrieved from a "valu~ cell" associated with the variable.

In a "shallow" binding system, a variable is bound by saving on the stack the variable name and the
variable's old value and putting the new value in the variable's value cell. When a variable is accessed,
its value is always found in its value cell.

GETTOPVAL and SETTOPVAL are less efficient in a shallow binding system, because they have to search
the stack for rebindings; it is more economical to simply rebind variables. In a deep binding system,
GETTOPVAL and SETTOPVAL are very efficient since they do not have to search the stack, but can simply
access the value cell directly.

GETATOMVAL and SETATOMVAL can be used to access a variable's value cell, in either a shallow or deep
binding system.

(GETATOMVAL VAR) [Function]
Returns the value in the value cell of VAR. In a shallow binding system, this is the
same as (EVAL ATM), or simply VAR. In a deep binding system, this is the same
as (GETTOPVAL VAR). . . -

(SETATOMVAL ATM VALUE) [Function]
Sets the value cell of VAR to VALUE. In a shallow binding system, this is the same
as SET; in a deep binding system, this is the same as SETTOPVAL.

2.4.2 Function Definition Cells

Each litatom has a function definition cell, which is accessed when a litatom is used as a function. The
mechanism for accessing and setting the function definition cell of a litatom is described on page 5.8.

2.4.3 Property Lists

Each litatom has a property list, which allows a set of named objects to be associated with the litatom. A
property list associates a name, known as a "property name" or "property", with an abitrary object, the
"property value" or simply "value". Sometimes the phrase "to store on the property x' is used, meaning
to place the indicated information on a property list under the property name x.

Property names are usually litatoms or numbers, although no checks are made. However. the standard
property list functions all use EQ to search for property names, so they may not work with non-atomic
property names. Note that the same object can be used as both a property name and a property value.

Note: Many litatoms in the system already have property lists, with properties used by the compiler. the
break package, DWIM, etc. Be careful not to clobber such system properties. The variable SYSPROPS is
a list of property names used by the system.

The functions below are used to manipulate the propert lists of litatoms. Except when indicated, they
generate the error ARG NOT LIT ATOM, if given an object that is not a litatom.

2.6

DATA TYPES"

(GETPROP ATM PROP) [Function]
Returns the property value for PROP from the property list of ATM. Returns NIL if
ATM is not a litatom, or PROP is not. found. Note that GETPROP also returns NIL
if there is an occurrence of PROP but the corresponding property value is NIL;
this can be a source of program errors.

Note: GETPROP used to be called GETP.

(PUTPROP ATM PROP VAL) [Function]
Puts the property PROP with value VAL on the property list of ATM. VAL replaces
any previous value for the property ,PROP on this property list. Returns VAL.

(ADDPROP ATM PROP NEW FLG) [Function]
Adds the value NEW to the list which is the value of property PROP on the property
list of ATM. If FLG is T, NEW is CONSed onto the front of the property value of
PROP, otherwise it is NCONCed on the end (using NCONC 1). If ATM does not
have a property PROP, or the value is not a list, then the effect is the same as
(PUTPROP ATM PROP (LIST NEW». ADDPROP returns the (new) property
value. Example:

+- (PUTPROP 'POCKET 'CONTENTS NIL)
NIL
+- (ADDPROP 'POCKET 'CONTENTS 'COMB)
(COMB)

"+- (ADDPROP 'POCKET 'CONTENTS 'WALLET)
(COMB WALLET)"

(REMPROP ATM PROP) [Function]
" Removes all occurrences of the property PROP (and its value) from the property

list of ATM. Returns PROP if any were found, otherwise NIL.

(REMPROPLIST ATM PROPS) [Function]
Removes all occurrences of all properties on the list PROPS (and their corresponding
property values) from the property list of ATM. Returns NIL.

(CHANGE PROP X PROPl PROP2) [Function]

(PROPNAMES ATM)

Changes the property name of property PROPl to PROP2 on the property list of
x, (but does not affect the value of the property). Returns x, unless PROPl is not
found, in which case it returns NIL.

[Function]
Returns a list of the property names on the property list of ATM.

(0 E F LIS T L PROP) [Function]
Used to put values under the same property name on the property lists of several
litatoms. L is a list of two-element lists. The first element of each is a litatom, and
the second element is the property value for the property PROP. Returns NIL. For
example,

(DEFLIST '((FOO MA) (BAR CAl (BAZ RI)) 'STATE)

puts MA on FOO's STATE property, CA on BAR's STATE property, and RI on BAZ's

2.7

Print Names

STATE property.

Property lists are conventionally implemented as lists of the fonn

(NAMEl VALUE1 NAME2 VALUE2 ..•)

although the user can store anything as the property list of a litatom. However, the functions which
manipulate property lists observe this convention by searching down the property lists two CO Rs at a time.
Most of these functions also generate an error, ARG NOT LITATOM, if given an argument which is not a
litatom, so they cannot be used: directly on lists. (LISTPUT, LISTPUT1, LISTGET, and LISTGET1 are
functions similar to PUT PROP and GETPROP that work directly on lists. See page 2.26.) The property
lists of litatoms can be directly accessed with the following functions:

(GETPROPLIST ATM) [Function]
Returns the property list of ATM.

(SETPROPLIST ATM LST) [Function]
If ATM is a non-N IL litatom, sets the property list of ATM to be LST, and returns LST

as its value. If ATM is NIL, generates the error, ATTEMPT TO RPLAC NIL (unless
LST is also NIL).

(GETLIS x PROPS) [Function]

2.4.4 Print Names

Searches the property list of x, and returns the property list as of the first property
on PROPS that it finds. For example,

~ (GETPROPLIST 'X)
(PROP1 A PROP3 B A C)
~ (GETLIS 'X '(PROP2 PROP3»
(PROP3 B A C)

Returns NIL if no element on PROPS is found. x can also be a list itself, in which
case it is searched as described above. If x is not a litatom or a list, returns NIL.

Each litatom has a print name. a string of characters that uniquely identifies that litatom. The term
"print name" has been extended, however, to refer to the characters that are output when any object is
printed. In Interlisp, all objects have print names, although only litatoms and strings have their print name
explicitly stored. This section describes a set of functions which can be used to access and manipulate the
print names of any object, though they are primarily used with the print names of litatoms.

The print name of an object is those characters that are output when the object is printed using P R I N 1,
e.g., the print name of the litatom ABC% (0 consists of the five characters ABC (D. The print name of the
list (A B C) consists of the seven characters (A B C) (two of the characters are spaces).

Sometimes we will have occasion to refer to a "PRIN2-name." The PRIN2":name of an object is those
characters output when the object is printed using PR I N2. Thus the PR I N2-name of the litatom ABC% (0
is the six characters ABC%(O. Note that the PRIN2-name depends on what readtable is being used (see
page 6.32), since this detennines where %'s will be insened. Many of the functions below allow either
print names or PHIN2-names to be used, as specified by FLG and RDTBL arguments. If FLG is NIL, print
names are used. Otherwise, PRIN2-names are used, computed with respect to the readtable RDTBL (or

2.8

DATA TYPES

the current readtable, if RDTBL = NIL).

Note: The print name of an integer depends on the setting of RAO I X (page 6.19). The functions described
in this section (UNPACK, NCHARS, etc.) de~e the print name of an integer as though the radix was 10,
so that (PACK (UNPACK 'X9» will always be X9 (and not sometimes X 11) regardless of the setting
of RAO I X. However, integers will still be printed by PR I N 1 using the current radix. The user can force
these functions to use print names in the current radix by changing the setting of the variable PRXFLG
(see page 6.20).

(MKATOM x) [Function]
Creates and returns an atom whose print name is the same as that of the string x
or, if x isn't a string, the same as that of (MKST RING x). Examples:

(MKATOM '(A B C» =) %(A% B% C%)

(MKATOM "1.5") =) 1.5

Note that the last example returns a number, not a litatom. It is a deeply-ingrained
feature of Interlisp that no litatom can have the print name of a number.

(SUBATOM x N M) [Function]

(PACK x)

Equivalent to (MKATOM (SUBSTRING x N M», but does not make a string
pointer (see page 2.29). Returns an atom made from the Nth through Mth characters
of the print name of x. If N or M are negative, they specify Positions counting
backwards from the end of the print name. Examples:

(SUBATOM "F001.5BAR" 4 6) =) 1.5

(SUBATOM '(A B C) 2 -2) =) A% B% C

[Function]
If x is a list of atoms, PACK returns a single atom whose print name is the
concatenation of the print names of the atoms in x. If the concatenated print name
is the same as that of a number, PAC K will return that number. For example,

(PACK t(A BC OEF G» =) ABCOEFG

(PA~K '(1 3.4» =) 13.4

(PACK '(1 E -2» =) .01

Although x is usually a list of atoms, it can be a list of arbitrary Interlisp objects.
The value of PACK is still a single atom whose print name is the concatenation of
the print names of all the elements of x, e.g.,

{PACK '({A B) "CD"» =) %{A% B%)CO

Ifxis not a list or NIL, PACK generates.an error, ILLEGAL ARG.

(PACK* Xl X 2 ... X N) [NoSpread Function]
Nospread version of PACK that takes an arbitrary number of arguments, instead of
a list Examples:.

2.9

Print Names

(PACK- 'A 'BC 'OfF 'G) =) ABCDfFG

(PACK- 1 3.4) =) 13.4

(UNPACK x FLG RDTBL) [Function]
Returns the print name of x as a list of single-characters atoms, e.g.,

(UNPACK 'ABC5D) =) (A B C 5 D)

(UNPACK "ABC(D") =) (A B C %(D)

If FLG=T, the PRIN2-name of x is used (computed with respect to RDTBL), e.g.,

(UNPACK HABC(D" T) =) (%" ABC %(0 %")

(UNPACK 'ABC%(D" T) =) (A B C %% %(D)

Note: (UNPACK x) performs N CONSes, where N is the number of characters in
the print name of x.

(DUN PACK x SCRATCHLIST FLG RDTBL) . [Function]
A destructive version of UNPACK that does not perform any CONSes but instead
reuses the list SCRATCHLIST. If the print name is too long to fit in SCRATCHLIST;
DUNPACK will extend it. If SCRATCHLIST is not a list, DUNPACK returns (UNPACK
x FLG RDTBL).

(NCHARS X FLG RDTBL) [Function]
Returns the number of characters in the print name of x. If FLG=T, the PRIN2-
name is used. For example,

(NCHARS "ABC") =) 3

(NCHARS "ABC" T) =) 5

(NTHCHAR x N FLG RDTBL) [Function]
Returns the Nth character of the print name of x as an atom. N can be negative,
in which case it counts from the end of the print name, e.g., -1 refers to the last
character, -2 next to last., etc. If N is greater than the number of characters in
the print name, or less than minus that number, or 0, NTHCHAR returns NIL.
Examples: .

(NTHCHA.R 'ABC 2) =) B

(NTHCHAR 15.6 2) =) 5

(NTHCHAR 'ABC%(D -3 T) =) %%

(NTHCHAR "ABC" 2) =) B

(NTHCHAR "ABC" 2 T) =) A

Note: NTHCHAR and NCHARS work much faster on objects that actually have an internal representation
of their print name, i.e., litatoms and strings, than they do on numbers and lists, as they do not have to
simulate printing.

2.10

DATA TYPES

(L-CASE X FLG) [Function]

(U-CASE x)

(U-CASEP x)

(GENSYM CHAR)

GENNUM

Returns a lower case version of x. If FLG is T, the first letter is capitalized. If x is
a string, the value of L-CASE is also a string. If x is a list, L-CASE returns a new
list in which L -CASE is computed for each corresponding element and non-N I L
tail of the original list. Examples:

(L-CASE 'FOO) =) faa

(L-CASE 'FOO T) =) Faa

(L-CASE "FILE NOT FOUND" T) =) "File not found"

(L-CASE '(JANUARY FEBRUARY (MARCH "APR~L"» T)
=) '(January February (March "April"»

Similar to L -CASE, except returns the upper case version of x.

Returns T if x contains no lower case letters; NIL otherwise.

[Function]

[Function]

[Function]
Returns a litatom of the form X n n n n, where X = CHAR (or A if CHAR is NIL) and
n n n n is an integer. Thus, the first one generated is A 000 1, the second A 0002, etc.
GENSYM provides a way of generating litatoms for various uses within the system.

[Variable]
The value of GENNUM, initially 10000, determines the next GENSYM, e.g., if
GENNUM is set to 10023, (GENSYM) =A0024.

The term "gensym" is used to indicate a litatom that was produced by the function GENSYM. Litatoms
generated by GENSYM are the same as any other litatoms: they have property lists, and can be given
function definitions. Note that the litatoms are not guaranteed to be new. For example, if the user has
previously created AOO 12, either by typing it in, or via PACK or GENSYM itself, when GENNUM gets to
10011, the next litatom returned by G ENS Y M will be the A 00 12 ~ready in existence.

(MAPATOMS FN) [Function]
Applies FN (a function or lambda expression) to every litatom in the system.
Returns NIL

For example,

(MAPATOMS {FUNCTION (LAMBDA(X)
{if (GETD X) then (PRINT X)]

will print every litatom with a function definition.

Note: In some implementations of Interlisp, unused litatoms may be garbage
collected, which can effect the action of MAPATOMS.

2.11

Character Code Functions

2.4.5 • Character Code Functions

Characters may be represented in two ways: as single-character atoms, or as integer character codes.3 In
many situations, it is ~ore efficient to use character codes, so Interlisp provides parallel functions for both
representations.

{PACKC x} [Function]
Similar to PACK except x is a list of character codes. For example,

{PACKC '{70 79 79}} =) FOa

(C HCON X FLG RDTBL) [Function]
Like UNPACK, except returns the print name of x as a list of character codes. If
FLG=T, the PRIN2-name is used. For example,

{CHCON 'FOO} =) (70 79 79)

{OCHCON X SCRATCHL~T FLG RDTBL}
Similar to OUNPACK.

[Function]

{NTHCHARCOOE x N FLG RDTBL} [Function]

(CHCONl x)

{CHARACTER N}

(FCHARACTER N)

Similar to NTHCHAR, except returns the character code of the Nth character of the
print name of x. If N is negative, it is interpreted as a cour:tt backwards from the
end of x. If the absolute value of N is greater than the number of characters in x,
or 0, then the value of NTHCHARCOOE is NIL.

If FLG is T, then the PRIN2-name of x is used, computed with respect to the
readtable RDTBL

[Function]
Returns the character code of the first character of the print name of X; equal to
(NTHCHARCOOE x 1).

[Function]
N is a character code. Returns' the atom having the corresponding single character
as its print name.

(CHARACTER 70) =) F

[Function]
Fast version of CHARACTER that compiles open.

The following function makes it possible to gain the efficiency that comes from dealing with character
codes without losing the symbolic advantages of character atoms:

(CHARCOOE c) [NLambda Function]
Returns the character code structure specified by c (unevaluated). If c is a
I-character atom or string, the corresponding character code is simply returned.

3Interlisp-D uses an 8-bit character set, so the legal character codes range from 0 to 255. Interlisp-lO uses
standard 7-bit ASCII, so the range is 0-127.

2.12

DATA TYPES

Thus, (CHARCODE A) is 65, (CHARCODE 0) is 48. If C is a list structure, the
value is a copy of C with all the leaves replaced by the corresponding character
codes. For instance, (CHARCODE (A (B C») = > (65 (66 67»

CHARCODE pennits easy specification of non-printable ASCII character codes: A
multi-character litatom or string whose first character is 1" is interpreted as the
control-character corresponding to its second character. Thus, (CHARCODE 1"A) is
1, the code for control-A.

Also, if a multi-character litatom or string begins with #, this signifies a "meta
character", with a code between 128 to 255. # and 1" may be combined. so
(CHARCODE #-r-A) is 129. (Note: Interlisp-l0 cannot directly represent meta
characters as character litatoms, because it only supports 7-bit characters.)

The following key litatoms are mapped into the indicated codes: CR (13), IF (10),
SPACE or SP (32), 'ESCAPE or ESC (27), BEll (7), BS (8), TAB (9), NUll (0), and
DEL (127). The litatom EOl maps into the appropriate End-Of-Line character code
in the different Interlisp implementations (31 in Interlisp-l0, 13 in Interlisp-D, 10
in Interlisp-V AX).

Finally, CHARCODE maps NIL into NIL. This is included because some character
code producing functions sometimes return NIL (e.g. NTHCHARCODE); a test for
that value can be included in a CHARCODE list along with true character-code
values.

Charcode of litatomic arguments can be used wherever a structure of character
codes would be appropriate. For example:

(FMEMB (NTHCHARCODE X 1) (CHARCODE (CR LF SPACE»)
(EQ (BIN FOO) (CHARCODE -r-C»

There is a macro for CHARCODE which causes the character-code structure to be
constructed at compile-time. Thus, the compiled code for these examples is exactly
as efficient as the less readable:

(FMEMB (NTHCHARCODE X 1) (QUOTE (13 10 32»)
(E Q (B I N F 00) 3)

(SELCHARQ E CLAUSE1 ... CLAUSEN DEFAULT) [NLambda NoSpread Function]
Similar to SELECTQ (page 4.2), except that the selection keys are determined by
applying CHARCODE (instead of QUOT E) to the key-expressions. If the value of E is
a character code or NIL and it is EQ or MEMB to the result of applying CHARCODE
to the first element of a clause, the remaining forms of that clause are evaluated.
Otherwise, the default is evaluated.

Thus

{SElCHARQ (BIN FOO)
«SPACE TAB) (FUM»
«1'0 NIL) (BAR»
(a (BAZ»
(ZIP»

2.13

2.5 LISTS

is exactly equivalent to

(SELECTQ (BIN FOO)
((32 9) (F UM))
((4 NIL) (BAR»
(97 (BAZ»
(ZIP»

Lists

Furthennore, SELCHARQ has a macro such that it always compiles as an equivalent
SELECTQ.

One of the most useful datatypes in Interlisp is the list cell, a data structure which contains pointers to
two other objects, known as the CAR and the CDR of the list cell (after the accessing functions). Very
complicated structures can be built out of list cells, including lattices and trees, but list cells are most
frequently used for representing simple linear lists of objects. .

The following functions are used to manipulate list cells:

(CONS x Y)

(CAR x)

(CDR x)

[Function]
CON.S is the primary list construction function. It creates and returns a new list
cell containing pointers to x and Y. If Y is a list, this returns a list with x added
at the beginning of Y.

[Function]
Returns the first element of the list x. CAR of NIL is always NIL. For all other
non lists (e.g., litatoms, numbers, strings, arrays), the value is undefined (and in
some implementations may generate an error).

[Function]
Returns all but the first element of the list x. CDR of NIL is always NIL. The value
of CDR is undefined for other nonlists.

Often, combinations of the CAR and CDR functions are used to extract various components of complex
list structures. Functions of the form C· .. R may be used for some of these combinations:

(CAAR X) ==) (CAR (CAR X»

(CADR X) ==) (CAR (CDR X».

(CDDOOR X) ==) (CO~ (CDR (COR (CDR X}»)

All 30 c~mbinations of nested CARs and CDRs up to 4 deep are included in the system.

(RPLACO x Y) [Function]
Replaces the CDR af the list cell x with Y. This physically changes the internal
structure of x, as apposed ta CONS, which creates a new list cell. It is possible to
construct a circular list by using RPLACD to place a pointer to the beginning of a
list in' a spot at the end of the list.

2.14

DATA TYPES

The value of RPLACD is x. An attempt to RPLACD NIL will cause an error,
ATTEMPT TO RPLAC NIL (except for (RPLACD NIL NIL». An attempt to
RPLACD any other non-list will cause an error, ARG NOT LIST.

(RPLACA x y) [Function]
Similar to RPLACD, but replaces the CAR of x with Y. The value of RPLACA is x. An
attempt to RPLACA NIL will cause an error, ATTEMPT TO RPLAC NIL, (except
for (RPLACA NIL NIL». An attempt to RPLACA any other non-list will cause
an error, ARG NOT LIST.

(RPLNODE x AD) [Function]

(RPLNODE2 x y)

(FRPLACD x Y)
(FRPLACA x y)
(FRPLNODE x A D)
(FRPLNODE2 Xy)

Perfonns (RPLACA x A), (RPLACD x D), and returns x.

[Function]
Perfonns (RPLACA x (CAR Y», (RPLACD x (CDR Y» and returns x.

Faster versions of RPLACD, etc.

[Function]
[Function]
[Function]
[Function]

Warning: In Interlisp-10 and Intertisp-V AX, these functions compile open with no
error checks on the type of x, so a compiled FRPLACD can produce unpredictable
effec~. '

Usually, single list cells are not manipulated in isolation, but in structures known as "lists". By convention,
a list is represented by a list cell whose CAR is the first element of the list, and whose CDR is the rest of
the list (usually another list cell or the "empty list," NIL). List elemen~ may be any Interlisp objects,
including other lis~.

The input syntax for a list is a sequence of Interlisp data objects (litatoms, numbers, other lists, etc.)
enclosed in parentheses or bracke~. Note that () is read as the litatom NIL. A right bracket can be used
to match all left parenthesis back to the last left bracket, or terminate the lists, e.g. (A (B (C].

If there are two or more elements in a list, the final element can be preceded by a period delimited on
both sides, indicating that CDR of the final list cell in the list is to be the element immediately following
the period, e.g. (A . B) or (A B C • D), otherwise CDR of the last list cell in a list will be NIL.
Note that a list does not have to end in NIL. It is simply a structure composed of one or more list cells.
The input sequence (A B C • NIL) is equivalent to (A B C), and (A B • (C D» is equivalent to
(A BCD). Note however that (A B • CD) will create a list containing the five litatoms A, B, %.,
C, and O.

Lists are printed by printing a left parenthesis, and then printing the first element of the list, then printing
a space, then printing the second element, etc. until the final list cell is reached. The individual elements
of a list are printed by P R I N 1 if the list is being printed by P R I N 1, and by P R I N 2 if the list is being
printed by PRINT or PRIN2. Lis~ are considered to tenninate when CDR of some node is not a list. If
CDR of this tenninal node is NIL (the usual case), CAR of the tenninal node is printed followed by a
right parenthesis. If CDR of the tenninal node is not NIL, CAR of the tenninal node is printed, followed
by a space, a period, another space, CDR of the tenninal node, and then the right parenthesis., Note that
a list input as (A B C . NIL) will print as (A B C), and a list input as (A B • (C D» will print
as (A BCD). Note also that PRINTLEVEL affects the printing of lists (page 6.18), and that carriage

2.15

Creating Lists

returns may be inserted where dictated by LIN E L E NG T H (page 6.8).

Note: One must be careful when testing the equality of list structures. EQ will be true only when the two
lists are the exact same list. For exampley

~ (SETQ A '(1 2)}
(1 2)
~ (SETQ B A)
(1 2)
~ (EQ A B)
T
~ (SETQ C '(1 2)}
(1 2)
+- (EQ A C)
NIL
~ (EQUAL A C)
T

In the example above, the values of A and B are the exact same list; so they are EQ. However, the value
of C is a totally different list; although it happens to have the same elements. EQUAL should be used to
compare the elements of two lists. In general, one should notice whether list manipulation functions use
EQ or EQUAL for comparing lists. This is a frequent source of errors.

Interlisp provides an extensive set of list manipulation functions:

2.5.1 Creating Lists

(MKLIST x) [Function]
"Make List." If x is a list or NIL, returns X; Otherwise, returns (L I ST x).

XN) [NoSpread Function]
Returns a list of its arguments, e.g.

(LIST 'A 'B '(C D» =) (A B (C D»

(APPEND Xl X 2 ... X N) [NoSpread Function]
Copies the top level of the list Xl and appends this to a copy of the top level of
the list x 2 appended to ... appended to xN,e.g.,

(APPEND '(A B) '(C D E) '(F G» =) (A BCD E F G)

Note that only the first N-1 lists are copied. However N= 1 is treated specially;
(APPEND X) copies the top level of a single list. To copy a list to all levels, use
COPY.

The following examples illustrate the treatment of non-lists:

(APPEND '(A B C) '0) =) (A B C • 0)

(APPEND 'A '(B CO» =) (8 C 0)

2.16

DATA TYPES

(APPEND '(A B C • 0) '(E F G» =) (A B C E F G)

(APPEND t(A B CoD» =) (A Be. 0)

(NeONe Xl X2 ••• xN) [NoSpread Function]

(NCONC! LST x)

(ATTACH x L)

Returns the same value. as APPEND, but actually modifies the list structure of Xl

... xn- l "

Note that NeONC cannot change NIL to a list:

+-(SETQ FOO NIL)
NIL
+-(NCONC FOO '(A B C»
(A B C)
+-FOO
NIL

Although the value of the NCONC is (A B C), FOO has not been changed. The
"problem" is that while it is possible to alter list structure with RPLACA and
RPLACD, there is no way to change the non-list NIL to a list. ,

[Function]
(NCONC LST (LIST x»

[Function]
"Attaches" x to the front of i:. by doing a' RPLACA and RPLACD. The 'value is
EQUAL to (CONS x L), but EQ tOL, which it physically changes (except if L is
NIL). (ATTACH X NIL) is the same as (CONS X NIL). Otherwise, if L is not
a list, an error is generated, A R G NOT LIS T.

2.5.2 Building Lists From Left to Right

(TCONC PTR x) [Function]
TCONC is similar to NCONC 1; it is useful for building a list by adding elements one
at a time at the end. Unlike NCONC 1, TCONC does not have to search to the end
of the list each time it is called. Instead, it keeps a pointer to the end of the list
being assembled, and updates this pointer after each call. This can be considerably
faster for long lists. The cost is an extra list cell, PTR. (CAR PTR) is the list being
assembled, (CDR PTR) is (LAST (CAR PTR». TCONC returns PTR, with its
CAR and CDR appropriately modified ..

PTR can be initialized in two ways. If PTR is NIL, TCONC will create and return a
PTR. In this case, the program must set some variable to the value of the first call
to TCONC. After that, it is unnecessary to reset the variable, since TCONC physically
changes its value. Example:

+-(SETQ FOO (TCONC NIL ,1»
«1) 1)
+-(for I from 2 to 5 do (TCONC FOe I»
NIL
+-FOO

2.17

(LCONC PTR x)

Building Lists From Left to Right

«1 2 3 4 5) 5)

If PTR is initially (N I L), the value of T CON C is the same as for PTR = NIL. but
TCONC changes PTR. This method allows the program. to initialize the TeONe
variable before adding any elements to the list. Example:

~(SETQ FOO (CONS»
(NIL)
~(for I from 1 to 5 do (TCONe FOO I»
NIL
~FOO

«1 2 3 4 5) 5)

[Function]
Where TCONC is used to add elements at the end of a list, LCONC is used for
building a list by adding lists at the encL i.e., it is similar to NeONC instead of
NCONC 1. Example:

~(SETQ,FOO (CONS»
(NIL)
~(LCONC FOO '(1 2»
«1 2) 2)
~(LCONC FOO '(3 4 5)}
«1 2 3 4 5) 5}
~(LCONC FOO NIL)
«1 2 3 4 5) 5}

LCONC uses the same pointer conventions as TCONC for eliminating searching to
the end of the list, so that the same pointer can be given to TCONC and LCONC
interchangeably. Therefore. continuing from above,

~(TCONC FOO NIL)
«1 2 3 4 5 NIL) NIL)
~(TCONC FOO '(3 45)}
«1 2 3 4 5 NIL (3 4 5» (3 4 5»

The functions DOCOLLECT and ENDCOLLECT also pennit building up lists from left-to-right like TCONC,
but without the overhead of an extra list cell. The list being maintained is kept as a circular list
DOCOLLECT adds items; ENDCOLLECT replaces the tail with its second argument, and returns the full
list

(DOCOLLECT ITEM LST) [Function]
"Addsn

ITEM to the end of LST. Returns the new circular list Note that LST is
modified, but it is not E Q to the new list. The new list should be stored and used
as LST to the next call to DOCOLLECT.

(ENDCOLLECT LST TAlL) [Function]
Takes LST, a list returned by DOCOLLECT, and returns it as a non-circular list,
adding TAlL as the tenninating CDR.

Here is an example using DOCOLLECT and ENDCOLLECT. HPRINT is used to print the results because
they are circular lists. Notice that FOO has to be set to the value of DOCOLLECT as each element is

2.18

added.

+-{SETQ FOO NIL]
NIL

DATA TYPE..."

+-{HPRINT {SETQ FOO {DOCOLLECT 1 FOO]
't{l . {l})
.~{HPRINT (SETQ FOO (DOtOLlECT 2 FOO]
't(2 1 . {l})
+-(HPRINT (SETQ FOO (DOCOLLECT 3 FOO]
't(3 1 2 . {I})
+-(HPRINT (SETQ FOO {DOCOLLECT 4 FOO]
't(4 ;L 2 3 . {I})
+-(SETQ FOO (ENDCOLLECT FOO 5]
(1 2 3 4 . 5)

2.5.3 Copying Lists

·(COPY x)

(COPYALL x)

(HCOPYALL x)

[Function]
Creates and returns a copy of the list x. All levels of x are copied down to non-lists,
so that if x contains arrays and strings, the copy of x will contain the same arrays
and strings, not copies. COpy is recursive in the CAR direction only, so very long
lists can be copied.

Note: To copy juscthe top level of x~ do (APPEND x).

[Function]
Like COpy except copies down to atoms. Arrays, hash-arrays, strings, user data
types, etc., are all copied. Analagous to EQUALALL (page 2.3). Note that this
will not work if given a data structure with circular pointers; in this case, use
HCOPYALL.

[Function]
Similar to COPYALL, except that it will work even if the data structure contains
circular pointers.

2.5.4 Extracting Tails of Lists

(TAILP x Y)

(NTH x N)

[Function]
Returns x, if x is a tail of the list Y; otherwise NIL. x is a tail of Y if it is EO to
o or more CDRs of Y.

Note: If x is EO to 1 or more CDRs of Y, x is called a "proper tail."

[Function]
Returns the tail of x beginning with. the Nth element Returns NIL if x has fewer
than N elements. Examples:

(NTH '(A B ·C D) 1) =) (A BCD)

2.19

(FNTH x N)

(LAST x)

(FLAST x)

Extracting Tails of Lists

(NTH ' (A B C D) 3) =) (C D)

(NTH ' (A B C D) 9) =) NIL

(NTH ' (A . B) 2) =) B

For consistency, if N=O, NTH returns (CONS NIL .x):

(NTH '(A B) 0) =) (NIL A B)

[Function]
Faster version of NTH that tenninates on a null-check.

(lnterlisp-lO) Interpreted, generates an error, BAD ARGUMENT - FNTH, if x ends
in other than NIL.

[Function]
Returns the last list cell in the list x. Returns NIL if x is not a list. Examples:

(LAST " (A B C)) =) (C)

(LAST ' (A B . C» =) (B . C)

(LAST ' A) =) NIL

[Function] .
Faster version of LAST that tenninates on a null-check.

(Interlisp .. lO) Interpreted, generates an error, BAD ARGUMENT - F LAST, if x ends
in other than NIL.

(N L EFT L N TAlL) [Function]

(LASTN L N)

N L EFT returns the tail of L that contains N more elements than TAlL. If L does
not contain N more elements than TAlL, N L EFT returns NIL. If TAlL is NIL or not
a tail of L, N L EFT returns the last N list cells in L. N L EFT can be used to work
backwards through a list. Example:

~(SETQ FOO '(A BCD E»
(A BCD E)
~(NLEFT FOO 2)
(0 E)
~(NLEFT Faa 1 (COOR FOO»
(B C 0 E)
~(NLEFT FOO 3 (COOR Faa»
NIL

[Function]
Returns (CONS X Y), where Y is the last N elements of L, and X is the initial
segment, e.g ..

(.LASTN '(A BCD E) 2) =) «A B C) 0 E)

(LASTN '(A B) 2) =) (NIL A B)

2.20

DATA TYPES

Returns NIL if L is not a list containing at least N elements.

205.5 Counting List CeUs

(LENGTH x)

(FLENGTH x)

[Function]
Returns the length of the list x, where ulength" is defined as the number of CDRs
required to reach a non-list. Examples:

(LENGTH '(A B C» =) 3

(LENGTH '(A B C • D» =) 3

(LENGTH 'A) =) a

Faster version of LENGTH that terminates on a null-check.
[Function]

(Interlisp-lO) Interpreted, generates an error,' BAD ARGUMENT - FLENGTH, if x
ends in other thanN I L.

(EQLENGTH. x N) [Function]
Equivalent to (EQUAL (LENGTH x) N), but more efficien~ because EQLENGTH
stops as soon as it knows that x is longer than N. Note that EQLENGTH is safe to
use on (possibly) circular lists, since it is "bounded" by N.

(COUNT x) [Function]
Returns the number of list cells in the list x. Thus, COUNT is like a LENGTH that
goes to all levels. COUNT of a non-list is O. Examples:

(COUNT '(A» =) 1

(COUNT '(A. B» =) 1

{COUNT '(A (B) C» =) 4

In this last example, the value is 4 because the list (A xC) uses 3 list cells for
any object x, and (B) uses another list cell.

(COUNTDOWN x N) [Function]
Counts the number of list cells in x, decrementing N for each one. Stops and
returns N when it finishes counting, or when N reaches O. COUNTDOWN can be
used on circular structures since it is "bounded" by N. Examples:

(COUNTDOWN '(A) 100) =) 99

{COUNTDOWN '(A. B) 100) =) 99

{COUNTDOWN '(A (B) C) 100) =) 96

(COUNTDOWN '(DOCOLLECT 1 NIL) 100) =) 0

2.21

Logical Operations

(EQUALN x Y DEPTH) [Function]
Similar to EQUALy for use with (possibly) circular structures. Whenever the dep~
of CAR recursion plus the depth of CDR recursion exceeds DEPTH, EQUALN does
not search further along that chain, and returns the litatom ? If recursion never
exceeds DEPTH, EQUALN returns T if the expressions x and yare EQUAL; otherwise
NIL.

(EQUALN '«(A» B) '({(Z» B) 2) =) ?

(EQUAL~ '«(A» B) '«{Z» B) 3) =) .NIL

(EQUALN '(«A» B) '«{A» B) 3) =) T

2.5.6 Logical Operations

(LDIFF x y z) [Function]
y must be a tail of x, i.e., EQ to the result of applying some number of CDRs to
x. (LDI F F x y) returns a list of all elements in x up to y.

If z is not NIL, the value of LD IFF is effectively '{ NCONC z (LD IFF x y»,
i.e., the list difference is added at the end of z.

If y is not a tail of x, LDIFF generates an error, LDIFF: NOT A TAIL. LDIFF
tenninates on a null-check. so it will go into an infinite loop if x ~s a circular list
and· y is not a tail.

Example:

~{SETQ FOO '(A BCD E F»
(A BCD E F)
~(CDDR FOO)
(C D.E F)
~(LDIFF FOa (CDDR FOO»
(A B)
~{LDIFF FOa (CDDR FOO) '(I 2»
(1 2 A B)
~(LDIFF FOO '(C D E F»
LDIFF: not a tail
(C D E F)

Note that the value of LD IFF is always new list structure unless y= NIL. in which
case the value is x itself.

(LDIFFERENCE x y) [Function]
"List Difference." Returns a list of those elements in x that are not members of
Y.

(INTERSECTION x Y) [Function]
Returns a list whose elements are members of both lists x and Y. Note that
(INTERSECTION X X) gives a list of all members of X without any duplications.

2.22

(UNION X Y)

DATA TYPES

[Function]
Returns a (new) list consisting of all elements included on either of the two original
lists. It is more efficient to make x be the shorter list.

The value of UN ION is Y with all elements of x not in Y CONSed on the front of
it. Therefore, if an element appears twice in Y, it will appear twice in (UN ION x
Y). Since (UNION '(A) 'fA A)} = (A A), while (UNION '(A A) '(A»
= (A), UN I ON is non-commutative.

2.5.7 Searching Lists

(MEMB x Y)

(FMEMB x Y)

(MEMBER x Y)

(EQMEMB x Y)

[Function]
Determines if x is a member of the list Y. If there is an element of Y EQ to x.
returns the tail of Y starting with that element. Otherwise, returns NIL. Examples:

(MEMB 'A '(A (W) eO» =) (A (W) e D)

(MEMB 'e '(A (W) eo» => (C OJ

(MEMB 'W '(A (W) eo» =) NIL

(MEMB '(W) '(A (W) eo» =) NIL

Faster verSion of ME"MB. that terminates on "a null-check. "
[Function]

(Interlisp-lO) InterpretecL FMEMB gives an error, BAD ARGUME NT - FMEMB, if Y

ends in a non -list other than NIL.

[Function]
Identical to MEMB exc~pt that it uses EQUAL instead of EQ to check membership
of x in Y. Examples:

(MEMBER 'C '(A (W) CD» =) (C D)

(MEMBER 'W '(A (W) CD» =) NIL

(MEMB E R '(W) '(A (W) CD» =) ((W) CD)

[Function]
Returns T if either x is EQ to Y, or else y is a list and x is an FMEMB of y.

2.5.8 Substitution Functions

(SUBST NEW OLD EXPR) [Function]
Returns the result of substituting NEW for all occurrences of OLD in the expression
EXPR. Substitution occurs whenever OLD is EQUAL to CAR of some subexpression
of EXPR, or when OLD is atomic and EQ to a non-N I L CDR of some subexpression
of EXPR. For example:

2.23

Substitution Functions

(SUBST 'A 'B '(C B (X . B») =) (C A (X . A»

(SUBST 'A '(B C) '«B C) 0 B C»
=) (A 0 B C) not (A 0 • A)

SUBST returns a copy of EXPR with the appropriate changes. Furthennore, if NEW
is a list, it is copied at each substitution.

(OSUBST NEW OLD EXPR) [Function]
Similar to SUBST, except it does not copy EXPR~ but changes the list structure
EXPR itself. Like SUBST, OSUBST substitutes with a copy of NEW. More efficient
than SUBST.

(LSUBST NEW OLD EXPR) [Function]
Like SUBST except NEW is substituted ,as a segment of the list EXPR rather than
as an element For instance,

(LSUBST '(A B) 'V '(X V Z» =) (X A B Z)

Note that if NEW is not a list, LSUBST returns a copy of EXPR with- all OLD'S

deleted:

(LSUBST NIL 'V '(X V Z» =) (X Z)

(SUBLIS ALST EXPR FLO) [Function] .
ALST is a list of pairs:

((OLD1 • NEW1) (OLD2 • NEW2) ... (OLDN • NEWN »

Each OLDj is an atom. SUB LIS returns the result of substituting each NEWj for
the corresponding OLDj in EXPR, e.g.,

(SUBLIS '«A. X) (C. V» '(A B CO») =) (X B V 0)

If FLO = NIL. new structure is created only if needed, so if there are no' substitutions.
the value is E Q to EXPR. If FLO = T, the value is always a copy of EXPR.

(DSUBLIS ALST EXPR FLO) [Function]
Similar to SUB LIS, except it does not copy EXPR, but changes the list structure
EXPR itself.

(SUBPAIR OLD NEW EXPR FLO) [Function]
Similar to SUB LIS, except that elements of NEW are substituted for corresponding
atoms of OLD in EXPR, e.g.,

(SUBPAIR '(A C) '(X V) '(A BCD» =) (X B Y D)

As with SUBL I S, new structure is created only if needed, or if FLO = T, e.g., if
FLO = NIL and there are no substitutions, the value is EO to EXPR.

If oLD"ends in an atom other than NIL,the rest of the elements on NEW are
substituted for that atom. For example. if OLD = (A B . C) and NEW= (U V X
Y Z), U is substituted for A. V for B, and (X V Z) for C. Similarly, if OLD itself

2.24

DATA TYPES

is an atom (other than NIL), the entire list NEW is substituted for it. Examples:

(SUBPAIR '(A B • C) f(W X y'Z) '(C A B B V» =) «V Z) W X
X Y)

Note that SUBST, DSUBST, and LSUBST all substitute copies of the appropriate expression, whereas
SUBLIS, and DSUBLIS, and' SUBPAIR substitute the identical structure (unless FLG=T). For example:

+- (SETQ Faa ' (A B»
(A B)
+- '(SETQ BAR '(X V Z»
(X y Z)
+- (DSUBLIS (LIST (CONS 'X Faa)) BAR)
«A B) V Z)
+- (DSUBLIS (LIST (CONS 'V Faa» BAR T)
«A B) (A B) Z)
+- (EQ (CAR BAR) Faa)
T
+- (EQ (CADR BAR) Faa)
NIL

2.5.9 Association Lists and Property Lists

(ASSOC KEY ALST) [Function]
ALST is a list of lists. ASSOC returns the first sublist of ALST whose CAR is EQ to
KEY. If such a list is not found; ASSOC returns NIL. Example:

(ASSOC 'B '«A. 1) (B • 2) (C • 3») =) (B. 2)

(FASSOC KEY ALST) [Function]
Faster version of ASSOC that tenninates on a null-check.

(Interlisp-lO) Interpreted; FASSOC gives an error if ALST ends in a non-list other
than NIL, BAD ARGUMENT - FASSeC._

(SASSeC KEY ALST) [Function]
Same as Assec but uses EQUAL instead of EQ when searching for KEY.

(PUT ASSeC KEY VAL ALST) [Function]
Searches ALST for a sublist CAR of which is EO to KEY. If one is found, the CDR is
replaced (USilJ.g RPLACD) with VAL. If no such sub list is found; (CONS KEY VAL)

is added at the end of ALST. Returns VAL. If ALST is not a list, generates an error,
ARG NOT LIST.

Note that the argument order for ASSOC, PUTASSOC, etc. is different from that of LISTGET, LISTPUT,
etc.

(LISTGET LST PROP) [Function]
Similar to GETPROP (page 2.7) but works on lists using property list' format .

. Searches LST two elements at a time, by CDDR, looking for an element EQ to
PROP. If one is found, .returns the next element of LST, otherwise NIL. Returns

2.25

Association Lists and Property Lists

NIL if LST is not a list Example:

(LISTGET '(A 1 B 2 C 3) tB) =) 2

(LISTGET '(A 1 B 2 C 3) 'W) =) NIL

(LISTPUT LST PROP VAL) [Function]

(LISTGETI

Similar to PUTPROP. Searches LST two elements at a time, by COOR; looking for
an element EQ to PROP. If PROP is found, replaces the next element of LST with
VAL. Otherwise, PROP and VAL are added to the end of LST. If LST is a list with
an odd number of elements, or ends in a non-list other than NIL, PROP and VAL

are added at its beginning. Returns VAL. If LST is not a lis~ generates an error,
ARG NOT LIST.

LST PROP) [Function]
Like LISTGET, but searches LST one CDR at a time, Le., looks at each element.
Returns the next element after PROP. Examples:

(LISTGETI '(A 1 B 2 C 3) 'B) =) 2

(LISTGETI ' (A 1 B 2 C 3) , 1) =) B

(LISTGETI ' (A 1 B 2 C 3) 'W) =) NIL

Note: LISTGETI used to be called GET.

(L ISTPUT 1 LST PROP VAL) [Function]
Like LISTPUT, except searches LST one CDR at a time. Returns the modified LST.

Example:

~{SETQ FOO '(A 1 B 2»
(A 1 B 2)
~(LISTPUT FOO 'B 3)
(A 1 B 3)
~(LISTPUT FOO 'C 4)
(A 1 B 3 C 4)
~(LISTPUT FOO 1 'W)
(A 1 W 3 C 4)
~FOO

(A 1 W 3 C 4)

Note that if LST is not a list, no error is generated. However, since a non-list
. cannot be changed into a list, LST is not modified. In this case, the value of

LISTPUTI should be saved. Example:

~(SETQ FOO NIL)
NIL
~(LISTPUT FOO 'A 5)
(A 5)
~FOO

NIL

2.26

DATA TYPES

2.5.10 Other List Functions

(REMOVE x L)

(DREMOVE x L)

(REVERSE L)

(DREVERSE L)

2.6 STRINGS

[Function]
Removes all top-level occurrences of x from list L, returning a copy of L with all
elements EQUAL to x removed. Example:

{REMOVE 'A '(A BC (A) A» =) {B C (A»

{REMOVE '(A) '(A B C (A) A» =) (A B C A)

[Function]
Similar to REMOVE, but uses EQ instead of EQUAL, and actually modifies the list
L when removing x, and thus does not use any additional. storage. More efficient
than REMOVE.

Note that DREMOVE cannot change a list to NIL:

~(SETQ FOO '(A»
(A)
~(DREMOVE 'A FOO)
NIL
~FOO

(A)

The OREMOVE aboveretums N~L, and does not perfonn any CQNSes, but the value
of F 00 is still (A), because there is' no way to change a list to a non~list. See
NCONC.

[Function]
Reverses (and copies) the top level of a list, e.g.,

{REVERSE '{A B (C D») =) ({C D) B A)

If L is not a list, REVE RSE just returns L.

[Function]
Value is the same as that of REVERSE, but DREVERSE destroys the original list
L and thus does not use any additional storage. More efficient than REVE RSE.

A string is an object which represents a sequence of characters. Interlisp provides functions for creating
strings, concatenating strings, and creating sub-strings of a string.

The input syntax for a string is a double quote ("), followed by a sequence of any characters except
double quote and %, tenninated by a double quote. The % and double quote characters may be included
in a string by preceding them with the escape character %.

Strings are printed by PRINT and PRIN2 with initial and final double quotes, and %s inserted where

2.27

Strings

necessary for it to read back in properly. Strings are printed by P R I N 1 without the delimiting double
quotes and extra %s.

A "null string" containing no characters is input as "". The null string is printed by P R I N T and P R I N 2
as "". (PR INl "") doesn't print anything.

Strings are created by MKSTRING, ALLOCSTRING, SUBSTRING, cmd CONCAT.

Internally a string is stored in two parts; a "string pointer" and the sequence of characters. Several string
pointers may reference the same character sequence, so a substring can be made by creating a new string
pointer, without copying any characters. It is not possible to directly access a character sequence. so
functions that refer to "strings" actually manipulate string pointers. In most cases, the user does not have
to be aware of string pointers, but there are some situations where it is important to understand them.
For example, suppose that x is a string pointer to a sequence of characters, and Y is another string pointer
to a substring of x's characters. If the characters of y are modified (with RPLSTRING or RPLCHARCODE),
the corresponding characters of x will be modified too.

(STREQUAL x y) [Function}
Returns T if x and y are both strings and they contain the same sequence of
characters, otherwise NIL. EQUAL uses STREQUAL. Note that strings may be
STREQUAL without being EQ. For instance,

(STREQUAL "ABC" "ABC") =) T

(EQ "ABC" "ABC") =) NIL

·STREQUAL returns T if x and yare the same striitg pointer,· or t~o different string
pointers which point to the same character sequence, or ·two string pointers wllich
point to different character sequences which contain the same characters. Only in
the first case would x and y be E Q.

(ALLOCSTRING N INITCHAR OLD) [Function]
Creates a string of length N charaters of INlTCHAR (which can be either a character
code or something coercible to a character). If INITCHAR is NIL, it defaults to
character code o. if OLD is supplied, it must be a string pointer, which is re-used.

(MKSTRING X FLG RDTBL) [Function]
If x is a string, returns x. Otherwise, creates and returns a string containing the
print name of x. Examples:

(MKSTRING "ABC") =) "ABC"

{MKSTRING '(A B C» =) "(A B C)"

(MKSTRING NIL) =) "NIL"

Note that the last example returns the string "N I L ", not the atom NIL.

If FLG is T, then the PR I N2-name of x is used, computed with respect to the
readtable RDTBL.· For example.

(MKSTRING "ABC" T) =) "%"ABC%""

2.28

DATA TYPES

(SUBSTRING x N M OLDPTR) [Function]

(GNC x)

(GLC x)

Returns the substring of x consisting of the Nth through Mth 'Characters of x. If M

is NIL, the substring contains the Nth character thru the end of x. N and M can be
negative numbers, which are interpreted as counts back from the end of the string,
as with NTHCHAR (page 2.10). SUBSTRING returns NIL if the substring is not well
defined, e.g., N or M specify character .positions outside of x, or N corresponds to
a character in x to the right of the character !ndicated by M). Examples:

(SUBSTRING "ABCOEFG" 4 6) =) "OEF"

(SUBSTRING "ABCOEFG" 3 3) =) "C"

(SUBSTRING "ABCOEFG" 3 NIL) =) "COEFG"

(SUBSTRING "ABCOEFG" 4 -2) =) "OEF"

(SUBSTRING "ABCOEFG" 6 4) =) NIL

(SUBSTRING "ABCOEFG" 4 9) =) NIL

If x is not a string, it is converted to one. For example,

(SUBSTRING '(A B C) 4 6) =) "8 C"

SUBSTRING does not actually copy any characters, but simply creates a new string
pointer to the characters in x. If -OI.DFTR is a string pointer, it is modified' and
returned.

[Function]
"Get Next Character." Returns the next character of the string x (as an atom);
also removes the character from the string, by changing the string pointer. Returns
NIL if x is the null string. If x isn't a string, a string is made. Used for sequential
access to characters of a string. Example:

~(SETQ FOO "ABCOEFG")
"ABCOEFG"
~(GNC FOO)
A
~(GNC FOO)
B
~FOO

"CDEFG"

Note that if A is a substring of B, (G NC A) does not remove the character from
B. GNC doesn't physically change the string of characters, just the string pointer.

[Function]
"Get Last Character." Returns the last character of the string x (as an atom); also
removes the character from the string. Similar to GNC. Example:

~(SETQ FOO "ABCDEFG")
"ABCDEFG"
~(GLC FOO)

2.29

G
+-(GLC FOO)
F
+-FOO
"ABCOE"

Strings

(CONCAT Xl X2 ••. X N) [NoSpread Function]
Returns a new string which is the concatenation of (copies of) its arguments. Any
arguments which are not strings are transformed te strings. Examples:

(CONCAT "ABC" 'DEF "GHI") =) "ABCDEFGHI"

(CONCAT '(A B C) "ABC") =) "(A B ClABC"

(CONCAT) returns the null string, "".

(CONCATLIST x) [Function]
x is a list of strings andl or other objects. The objects are transformed to strings if
they aren't strings. Returns a new string which is the concatenation of the strings.
Example:

(CONCATLIST '(A B (C D) "EF"» =) "AB{C O)EF"

(RPLSTR I NG x N Y) [Function]
Replaces the characters of string x beginning at character position N with string
Y. 'x and y are converted to strings if they aren't already. N may be positive or
negative, as with SUBSTR I NG. Characters are smashed into (converted) x. Returns
the string x. Examples:

(RPLSTRING "ABCDEF" -3 "END") =) "ABCEND"

(RPLSTRING "ABCDEFGHIJK" 4 '(A B C» =) "ABC(A B C)K"

Generates an error if there is not enough room in x for Y, Le., the new string
would be longer than the original. If Y was not a string, x will already have been
modified since RPLSTRING does not know whether Y will "fit" without actually
attempting the transfer.

Note that if x is a substring of Z, Z will also be modified by the action of
RPLSTRING. Example:

+- (SETQ FOO "ABCDEFG")
"ABCDEFG"
... (SETQ BAR (SUBSTRING FOO 4 6)
"DEF"
+- (RPLSTRING BAR 2 "XY")
"DXY"
+- FOO
"ABCDXYG"

(RPLCHARCODE x N CHARCODE) [Function]
Replaces the Nth character of the string x with the character code CHAR CODE. N

may be positive or negative. Returns the new x. Similar to RPLSTRING. Example:

2.30

DATA TYPES

(RPLCHARCOOE. "ABCOE" 3 (CHARCOOE F» =) "ABFOE"

(STRPOS PAT STRING START SKIP ANCHOR TAIL) [Function]
STRPOS is a function for searching one string looking for another. PAT and
STRING are both strings (or else they are converted automatically). STRPOS
searches STRING beginning at character number START, (or 1 if START is NIL)
and looks for a sequence of characters equal to PAT. If a match is found, the
character position of the first matching character in STRING is returned, otherwise
NIL. Examples:.

(STRPOS "ABC" "XYZABCOEF") =) 4

- (STRPOS "ABC" "XYZABCOEF" 6) =) NIL

(STRPOS "ABC" "XYZABCOEFABC" 5) =) 10

SKIP can be used to specify a character in PAT that matches any character in
STRING. Examples:

. (STRPOS "A&C&" "XYZABCOEF" NIL '&) -) 4

(STRPOS "OEF&" "XYZABCOEF" NIL '&) =). NIL

If ANCHOR is T, ST R POS compares PAT with the characters beginning at position
START (or 1 if START is NIL). If that comparison fails, STRPOS' returns NIL
without searching ~ny . further down· STRING. ·Thus it can be used to c'ompare one
string· with some portion of another string. Examples:

(STRPOS "ABC" "XYZABCDEF" NIL NIL T) =) NIL

(STRPOS "ABC" "XYZABCDEF" 4 NIL T) =) 4

Finally, if TAlL is I, the value returned by STRPOS if successful is not the starting
position of the sequence of characters corresponding to PAT, but the position of the
first character after that, i.e., the starting position plus (NCHARS PAT). Examples:

(STRPOS "ABC" "XYZABCDEFABC" NIL NIL NIL T) =) 7

(STRPOS "A" "A" NIL NIL NIL T) =) 2

If TAIL = NIL, ST RPOS returns NIL, or a character position within STRING which
can be passed' to SUBSTRING. In particular, (STRPOS "" "") =) NIL.
However, if TAlL = T, STRPOS may return a character position outside of STRING.
For instance, note that the second example above returns 2, even though" A" has
only one character.

(STRPOSL A STR START NEG) [Function]
STR is a string (or else it is converted automatically to a string), A is a list
of characters or character codes. STRPOSL searches STH beginning at character
number START (or else 1 if START = NIL) for one of the characters in A. If one is
found, STRPOSL returns as its value the corresponding character position, otherwise
NIL. Example:

2.31

Arrays

(STRPOSL '(A B C) "XYZBCD") =) 4

If NEG=T, STRPOSL searches for a character not on A. Example:

(STRPOSL t(A B C) "ABCDEF" NIL T) =) 4

If any element of A is a number, it is assumed to be a character code. Otherwise,
it is converted to a character code via CHCON 1. Therefore, it is more efficient to
call STRPOSL with A a list of character codes.

If A is a bit table, it is used to specify the characters (see MAKEBITTABLE below)

STRPOSL uses a "bit table" data structure to search efficiently. If A is not a bit table, it is converted it to
a bit table using MAKEBITTABLE. If STRPOSL is to be called frequently with the same list of characters,
a considerable savings can be achieved by converting the list to a bit table once, and then passing the bit
table to ST RPOSL as its first argument. .

(MAKEBITTABLE L NEG A) [Function]
Returns a bit table suitable for use by STRPOSL. L is a list of characters or
character codes, NEG is the same as described for STRPOSL. If A is a bit table,
MAKEB ITTABLE modifies and returns it. Otherwise, it will create a new bit table.

Note: if NEG=T, STRPOSL must call MAKEBITTABLE whether A is a list or a bit table. To obtain bit
table efficiency with NEG = T, MAK E BIT TAB L E should be called with NEG = T, and the resulting "inverted"
bit table should be .given to STRPOSL.with NEG~NIL: .

2.7 ARRAYS

An array in Interlisp is an object representing a one-dimensional vector of objects. Arrays do not have
input syntax; they can only be created by the function ARRAY. Arrays are printed by PRINT, PRIN2,
and P R I N 1 as # followed by an integer.

Note: Interlisp-lO and Interlisp-Vax provide a much more primitive version of arrays than other
implementations of Interlisp. See page 2.33.

(ARRAY SIZE TYPE INIT ORIO) [Function]
Creates and returns a new array capable of containing SIZE objects of type
TYPE. TYPE may be one of BIT, BYTE, WORD, FIXP, FLOATP, POINTER, or
OOUBLEPOINTER.4 ARRAY also accepts any "type" ·which is legal in OATATYPE
records (such as (BITS 7). FLAG, see page 3.7). (Note: DATATYPE types are
coerced into the next "enclosing" array type. Therefore, users should not rely on
truncation of values stored in arrays of these types.)

4 For backward compatibility with Interlisp-lO arrays, TYPE can be NIL or 0 (meaning to create an array of
type OOUBLEPOINTER) or SIZE ,(meaning an array of type F IXP). For arrays of type OOUBLEPOINTER,
the functions E L TO and SE TO are defined the same as in lnterlisp-lO (page 2.34). For arrays of any
other type. EL TO and SETO are the same as EL T and SETD. Combined POINTER/FIXP arrays are not
supponed. Interlisp-D users should avoid using Interlisp-lO arrays.

2.32

(ELl A N)

(SETA A N v)

(ARRAYTYP A)

(ARRAYSIZE A)

(ARRAYORIG A)

(COPYARRAY A)

DATA TYPES

INIT is the initial value in each element of the new array. If not specifiecL the array
eleme:ijts will be initialized with 0 (for number arrays) or NIL (all other types).

Arrays can have either O-origin or I-origin indexing, as specified by the ORIG

argument; if ORIG is not specifiecL the default is 1.

[Function]
Returns the Nth element of the array A.

[Function]
Sets the Nth element of the array A to v. SE T A returns v.

[Function]
Returns a value corresponding to the second argument to ARRAY.

Note: If ARRAY coerced the array type as described above, ARRAYTYP will return
the new type.

[Function]
Returns the size of array A. Generates the error, ARG NOT ARRAY, if A is not an
array.

[Function]
Returns the origin of array A, which may· be 0 or 1. Generates an error, ARG NOT
ARRAY, if A is not an. array.

[Function]
Returns a new array of the same size and type as A, and with the same contents
as A. Generates an ARG NOT ARRAY error, if A is not an array.

2.7.1 Interlisp-lO Arrays

Interlisp-lO and Interlisp-Vax have a more primitive array facility than the other implementations of
Interlisp. In Interlisp-lO, arrays are partitioned into four sections: a header, a section containing unboxed
numbers, a section containing list cells (each with a CAR and CDR), and a section containing relocation
information. The last three sections can each be of arbitrary length (including 0); the header is two words
long and contains the length of the other sections. The unboxed number region of an array is used to
store 36 bit quantities that are not Interlisp pointers, and therefore are not to be chased during garbage
collections, e.g. machine instructions. The relocation informaion is used when the array contains the
definition of a compiled function. and specifies which locations in the unboxed region of the array must
be changed if the array is moved during a garbage collection.

A R RA Y returns an "array pointer" to the beginning of the array, but it is also possible to create a pointer
into the middle of an array. ARRAYP will accept a pointer into the middle of an array, but ELT, SETA,
EL TO, and SETD generate an error, ARG NOT ARRAY, if A is not an array pointer to the beginning of
an array.

Array-pointers print as #NNNN, where NNNN is the octal representation of the pointer. Note that #NNNN

will be read as' a literal atom, and not an array pointer.

The following functions are used to manipulate Interlisp-lO arrays:

2.33

(ARRAY N P v)

(ELT A N)

(SETA A N V)

(ELTO A N)

(SETD A N V)

(ARRAYTYP A)

(ARRAYP X)

(ARRAYBEG A)

(ARRAYORIG A)

Interlisp-l0 Arrays

[Function]
Allocates a block of N+ 2 words. of which the first two are header information.
The next P « N) words contain unboxed numbers, and are initialized to unboxed
O. The last N-P (> 0) words are list cells; both CAR and CDR are available for
storing information, and each is initialized to v. If P is NIL. 0 is used (Le., an array
containing all Interlisp pointers). ARRAY returns an "array pointer" to the array.

If sufficient space is not available for the array, a garbage collection of array space is
initiated. If this is unsuccessful in obtaining sufficient space, an error is generated,
ARRAYS FULL.

[Function]
Returns the Nth element of the array A. (E L TAl) is the first element of the
array (actually corresponds to the 3rd cell because of the 2 word header).

If N corresponds to the unboxed number region of A. E L T returns the full 36 bit
word as a boxed integer. If N corresponds to the list cell region of A. E L T returns
the CAR of the corresponding element.

[Function]
Sets the Nth element of the array A to v. If N corresponds to the unboxed number
region of A, V must be a number, and is unboxed and stored as a fqll 36 bit word
into the Nth element of A. If N corresponds to the list cell region of A, V replaces
the CAR of the Nth element. SETA returns v.

[Function]
Same as ELT for the unboxed number region of A, but returns the CDR of the Nth
element, if N corresponds to the list cell region of A.

[Function]
Same as SET A for the unboxed number region of A, but sets the CDR half of the
Nth element, if N corresponds to the list cell region of A. SE TO returns v.

[Function]
Returns the number of unboxed number words of array A. This value corresponds
to the second argument to ARRAY.

[Function]
Returns x if x is an array pointer, otherwise NIL. No check is made to ensure that
x actually addresses the beginning of an array.

[Function]
If A is a pointer into the middle of an array, returns the pointer to its beginning.
Otherwise returns NIL.

[Function]
Returns 1. A dummy function provided for compatibility with other Interlisp
arrays.

2.34

DATA TYPES

2.8 HASH ARRAYS

Hash arrays provide a mechanism for associating arbitrary lisp objects ("hash keys") with other objects
("hash values"), such that the hash value associated with a particular hash key can be quickly obtained.
A set of associations could be represented as a list or array of pairs, but these schemes are very inefficient
when the number of associations is large .. There are functions for creating hash arrays, putting a hash
key/value pair in a hash array, and quickly retrieving the hash value associated with a given hash key.

Hash keys can be any lisp object, but is should be noted that the hash array functions use E Q for
comparing hash keys. Therefore, if non-atoms are used as hash keys, the exact same object (not a copy)
must be used to retrieve the hash value.

In the description of the functions below, th~ argument HARRAY has one of three forms: NIL, in which
case a hash array provided by the system, SYSHASHARRAY, is used; a hash-array created by the function
HARRAY; or a list, CAR of which is a hash array. The latter form is used for specifying what is to be
done 9n overflow, as described below.

(HARRAY LEN) .
Creates a hash array containing at least LEN hash keys.

[Function]

(HARRAYSIZE HARRAY). [Function]

(CLRHASH' HARRAt)

Returns the size of HARRAT, the number of hash keys it can hold before becoming
"full" .

[Function]
Clears all· hash keys/values from HA1~RAY. Returns HARRAY.

(PUT HASH KEY VAL HARRAY) [Function]
Associates the hash value VAL with the hash key KEY in HARRAY. Replaces the
previous hash value, if any. If VAL is NIL, any old association is removed (hence
a hash value of NIL is not allowed), If HARRAY is full when PUTHASH is called
with a key not already in the hash array, the function HASHOVERFLOW is called,
and the PUT HASH is done to the value returned (see below). Returns VAL.

(GETHASH KEY HARRAY) [Function]
Returns the hash value associated with the hash key KEY in HARRAY. Returns NIL,
if KEY is not found.

(REHASH OLDHARRAY NEWHARRAY) [Function]
Hashes all hash keys and values in OLDHARRAY into NEWHARRAY. The two hash
arrays do not have to be (and usually aren't) the same size. Returns NEWHARRAY.

(MAP HASH HARRAY MAPHFN) [Function]
MAPHFN is a function of two arguments. For each hash key in HARRAY, MAPHFN

will be applied to (1) the hash value, and (2) the hash key. For example,

[MAPHASH A
(FUNCTION (LAMBDA (VAL KEY)

(if (LISTP KEY) then (PRINT VAL)]

will print the hash value for all hash keys that are lists. MAP HASH returns HARRAY.

2.35

Hash Overflow

(DMPHASH HARRAY1 HAR&AY2 ... HARRAYN) [NLambda NoSpread Function]
Prints on the primary output file LOADable fonns which will restore the hash-arrays
contained as the values of the atoms HARRAY1, HARRAY2, ••• HARRAY N" Example:

. (DMPHASH SYSHASHARRAY) will dump the system hash-array.

Note: all EQ identities except atoms and small integers are lost by dumping
and loading because READ will create new structure for each item. Thus if two
lists contain an E Q substructure, when they are dumped and loaded back in, the
corresponding substructures while EQUAL are no longer EQ. The HORRIBLEVARS
file pac~age command (page 11.25) provides a way of dumping hash tables such
that these identities are preserved.

2.8.1 Hash Overflow

When a hash array becomes full, attempting to add another hash key will cause the function
HASHOVERFLOW to be called. This will either automatically enlarge the hash array, or cause the error
HASH TABLE FULL. How hash overflow is handled is detennined by the fonn that was ,passed to
PUTHASH: '

HARRAY If a plain hash array is passed to a hash function, and it overflows, the error HASH
A R RA Y F U L L is generated.

NIL ' If a hash function is passed NIL as its HARRAY argument, the system hash array
SYSHASHARRAY is used~ This array is not used by the system, but is provided for'
the user. If SYSHASHARRAY overflows, it is automatically enlarged by 1.5.

(HARRAY • N) N is a positive integer. This fonn specifies that upon hash overflow. a new
hash-array is created with N more cells than the current hash-array.

(HARRAY • F) . F is a floating point number. This fonn specifies that upon hash overflow, the new
hash array will be F times the size of the current hash-array.

(HARRAY • FN) FN is a' function name or a lambda expression. This fonn specifies that upon hash
overflow, FN is called with (HARRAY • FN) as its argument If FN returns a
number, the number will be the size of the new hash array. Othenvise, the new
size defaults to 1.5 times the size of the old hash array. FN could be used to print
a message, or perfonn some monitor function.

(HARRAY) Equivalent to (HARRAY • 1. 5).

If a list fonn is used, upon hash overflow the new hash-array is RPLACAed into the dotted pair, and
HASHOVERFLOW returns it.

2.9 NUMBERS AND ARITHMETIC FUNCfIONS

Numerical atoms, or simply numbers. do not have value cells, function definition cells, property lists,
or explicit print names. There are three different types of numbers in Interlisp: small integers. large
integers, and floating point numbers. Small integers are those integers that can be directly stored within a

2.36

DATA TYPES

pointer value. The range of small integers is implementation-dependent. Since a large integer or floating
point number can be (in value) any full word quantity (and vice versa), it is necessary to distinguish
between those full word quantities that represent large integers or floating point numbers, and other
Interlisp pointers. We do this by "boxing" the number: When a large integer or floating point number is
created (via an arithmetic operation or by READ), Interlisp gets a new word from "number storage" and
puts the large integer or floating point number into that word. Interlisp then passes around the pointer to
that word, i.e., the "boxed number", rather than the actual quantity itself. Then when a numeric function
needs the actual numeric quantity, it performs the extra level of addressing to obtain the "value" of the
number. This latter process is called "unboxing". Note that unboxing does not use any storage, but that
each boxing operation uses one new word of number storage. Thus, if a computation creates many large
integers or floating point numbers, Le., does lots of boxes, it may cause a garbage collection of large
integer space, or of floating point number space. Different implementations of Interlisp may use different
boxing strategies. Thus, while lots of arithmetic operations may lead to garbage collections, this is not
necessarily always the case.

The following functions can be used to distinguish the different types of numbers:

(SMALLP x)

(FIXP x)

(FLOATP x)

(NUMBERP x)

[Function]
Returns x, if x is a small integer; NIL otherwise. Does not generate an error if x
is not a number.

[Function]
Returns x. if x is an integer (between MIN. F I X P and MAX. F I X P); NIL otherwise.
Note that F IXP is true for both large and small integers. Does not generate an
error if x is not a number.

[Function]
Returns x if x is a floating point number; NIL otherwise. Does not give an error
if x is not a number.

[Function]
Returns x, if x is a number of any type (FIXP or FLOATP); NIL otherwise. Does
not generate an error if x is not a number.

Note that if (NUMBERP x) is true, then either (FIXP x) or (FLOATP x) is
true.

Each small integer has a unique representation, so EQ may be used to check equality. Note that EQ
should not be used for large integers or floating point numbers, EQP, IEQP, or EQUAL must be used
instead.

(EQP x y) [Function]
Returns T, if x and y are E Q, or equal numbers; NIL otherwise. Note that E Q
may be used if x and y are known to be small integers. EQP does not convert
x and y to integers, e.g., (EQP 2000 2000.3) =) NIL, but it can be used
to compare an integer and a floating point number, e.g., (E Q P 2000 2000. 0)
=) T. EQP does not generate an error if x or yare not numbers.

Note: EQP can also be us~d to compare stack pointers (page 7.3) and compiled
code objects (page 5.8).

2.37

Integer Arithmetic

2.9.1 Integer Arithmetic

The input syntax for an integer is an optional sign (+ or -) followed by a sequence of digits, followed
by an optional Q, and tenninated by a delimiting character. If the Q is present, the digits are interpreted
in octal, othetwise in decimal, e.g. 770 and 63 both correspond to the same integers, and in fact are
indistinguishable internally since no record is kept of how integers were created.

The setting of RAD I X (page 6.19), detennines how integers are printed: signed or unsigned, octal or
decimal.

Integers are created by PACK and MKATOM when given a sequence of characters observing the above
syntax, e.g. (PACK '(1 2 0» = > 1 O. Integers are also created as a result of arithmetic operations.

The range of integers of various types is implementation-dependent. This infonnation is accessable to the
user through the following variables:

MIN.SMALLP
MAX.SMALLP

MIN.FIXP
MAXeFIXP

MIN. INTEGER
MAX. INTEGER

The smallest/largest possible small integer.

The smallest/largest possible large integer.

[Variable]
[Variable]

[Variable]
[Variable]

[Variable]
[Vanable]

The smallest/largest possible integer representable. Currently, these variables
are equal to MIN. F I X P and MA X . F I X P; they may be different in future
implementations with other methods for representing integers.

In Interlisp-D, the action taken on integer overflow is determined with the following function:

(OVERFLOW FLG) [Function]
Sets a Bag that detennines the system response to integer overflow; returns the
previous setting. If FLG = T, an error occurs on integer overflow. If FLG = NIL, the
largest (or smallest) integer is returned as the result of the overflowed computation.
If FLG= 0, the result is returned modulo 2t32 (the default action).

All of the functions described below work on integers. Unless specified otherwise, if given a floating point
number, they first convert the number to an integer by truncating the fractional bits, e.g., (IPLUS 2.3
3.8) =5; if given a non-numeric argument, they generate an error, NON-NUMERIC ARG.

xN)
Returns the sum Xl + x 2 + ... + xN • (IPLUS) = o.

(IMINUS x)
-x

(IDIFFERENCE x y)
X-y

2.38

[NoSpread Function]

[Function]

[Function]

DATA TYPES

(ADD1 x) [Function]
x+l

(SUBt x) [Function]
x- 1

(ITIMES Xl X2 ... xN) [NoSpread Function]

(IQUOTIENT x Y)

(IREMAINDER x y)

Returns the product Xl * x 2 * ... * xN • (ITIMES) = t.

x / y truncated. Examples:

(IQUOTIENT 3 2) =) 1

(IQUOTIENT -3 2) =) -1

Returns the remainder when x is divided by Y. Example:

(IREMAINDER 3 2) ~). 1 .

[Function]

[Function]

(IMOD x Y) [Function]
Computes the integer modulus; this differs from IRE MA I NO ERin that the result
is always a non-negative integer in the range [0, Y) .

. (IGREATERP x Y) . [Fun.ction] .

(ILESSP x Y)

(IGEQ x Y)

(ILEQ x Y)

T. if x > r, NIL otherwise.

[Function]
T, if x < r, NIL otherwise.

[Function]
T, if x ~ r, NIL otherwise.

[Function]
T, if x ::; Y; NIL otherwise.

xN) [NoSpread Function]
Returns the minimum of Xl' x2• "', XNo (1M IN) returns the largest posSible large
integer, the value of MA X . F I X P.

(IMAX Xl X2 ... X N) [NoSpread Function]

(IEQP N M)

(ZEROP x)

Returns the maximum of Xl' X 2 • . ", X N • (IMAX) returns the smallest possible
large integer, the value of MIN. F I X P.

[Function]
Returns T if N and M are EQ or equal integers; NIL otherwise. Note that EQ
may be used if Nand M are known to be small integers. IEQP converts Nand M

to integers, e.g., (IEQP 2000 2000.3) =) T. Causes NON-NUMERIC ARG
error if either N or M are not numbers.

[Function]
(EQ x 0).

2.39

(MINUSP x)

(F IX x)

(GCD x y)

Logical Arithmetic Functions

Note: ZE ROP should not be used for floating point numbers because it uses EQ.
Use (EQP ·x 0) instead.

[Function]
Returns T if x is negative; NIL otherwise. Does not convert x to an integer, but
simply checks the sign bit.

[Function]
If x is an integer, returns x. Otherwise, converts x to an integer by truncating
fractional bits, e.g., (F I X 2. 3) =) 2, (F I X -1. 7) =) -1.

Since F I X is also a programmer's assistant command (page 8.10), typing F I X
directly to Interlisp will not cause the function F I X to be called.

[Function]
Returns the greatest common divisor of x and Y, e.g., (GCD 72 64) = 8.

2e9.2 Logical Arithmetic Functions.

(LOGAND Xl x2 ... xN) [NoSpread Function]
Returns the logical AND of all its arguments, as an integer. Example:

(LOGAND 7 5 6) =) 4

(LOGOR Xl x2 ... xN) [NoSpread Function]
Returns the logical OR of all its arguments, as an integer. Example:

(LOGOR 1 3 9) =) 11

(LOGXOR Xl x2 ... xN) [NoSpread Function]

(LSH x N)

(RSH x N)

(LLSH x N)

Returns the logical exclusive OR of its arguments, as an integer. Example:

(LOGXOR 11 5) =) 14

(LOGXOR 11 5 9) (=) (LOGXOR 14 9) =) 7

[Function]
(arithmetic) "Left Shift." Returns x shifted left N places, with the sign bit
unaffected. x can be positive or negative. If N is negative, x is shifted right -N

places.

[Function]
(arithmetic) "Right Shift." Returns x shifted right N places, with the sign bit
unaffected, and copies of the sign bit shifted into the leftmost bit. x can be
positive or negative. If N is negative, x is shifted left -N places.

Warning: Be careful if using RSH to simulate division; RSHing a negative number
is not generally equivalent to deviding by a power of two.

[Function]
"Logical Left Shift."

2.40

DATA TYPES

(LRSH x N) [Function]
"Logical Right Shift"

(INTEGERLENGTH N) [Function]
Returns the number of bits needed to represent N (coerced to a FIXP). This is
equivalent to: l+floor[log2[abs[N]]] .. (INTEGERLENGTH 0) = O.

(POWEROFIWOP N) [Function]

(EVENP x y)

Returns non-N I L if N (coerced to a F I X P) is a power of two.

~oSpreadFunction]
If Y is not given. equivalent to (ZE ROP (IMOO x 2»; otherwise equivalent to
(ZEROP (IMOO x Y».

(OOOP x Y) ~oSpread Function]
Equivalent to (NOT (EVENP x Y».

The . difference between a logical and arithmetic right shift lies in the treatment of the sign bit. Logical
shifting treats it just like any other bit; arithmetic shifting will not Ghange it, and will "propagate"
rightward when actually shifting rightwards. Note that shifting (arithmetic) a negative number "all the
way" to the right yields -1, not O.

The following "logical" arithmetic functions are derived from Common Lisp, and have both macro
and function definitions (the macros are for speed in running of compiled code). The following code
equivalences. are primarily for definitional purposes,. and should not .be considered 'an implementation
(especially since the real impiementation tends to be faster and less "consy" than would be' apparent from
the code here).

Note: The following logical functions are currently only implemented in Interlisp-D.

(LOGNOT N)
(LOGXOR N -1)

(BIIIEST N MASK)
(NOT (ZEROP (LOGANO N MASK»)

(BIICLEAR N MASK)
(LOGANO N (LOGNOT MASK»

(B ITSET N MASK)
(LOGOR N MASK)

(MAS K . 1 'S POSITION SIZE)

(LLSH (SUBI (EXPT 2 SIZE»

POSITION)

(MASK.O 'S POSITION SIZE)

(LOGNOT (MASK. I' S POSITION SIZE»

(LOADBYTE N POSITION SIZE)

(LOGANO (LRSH N POSITION)

2.41

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

Floating Point Arithmetic

(MASK.1'S 0 ~ZE»

(DEPOSITBYTE N POSITION SIZE BYTE) [Function]

(LOGaR (BITCLEAR N (MASK.1'S POSITION ~ZE»
(LLSH (LOGAND BYTE (MASK.t'S 0 ~ZE»

POSITION))

(ROT x N FIELDSIZE) [Function]
"Rotate bits in field". This is a slight extension of the CommonLisp ROT function.
It perfortns a bitwise left-rotation of the integer X9 by N places9 within a field of
FIELDSIZ~ bits wide. Bits being shifted out of the position" selected by (E X PT 2
(SUB 1 FIELDSIZE» will flow into the "unitsU position.

The optional argument FIELDSIZE defaults to the "cellu size (the integerlength of
the current maximum F IXP)9 and must either be a positive integer, or else be one
of the litatoms CELL or WORD. In the latter two cases the appropriate numerical
values are respectively substituted. A macro optimizes the case where FIELDSIZE is
WORD and N is 1.

The notions of position and size can be combined to make up a "byte specmeru, which is constructed by
the macro BYTE [note reve~ of arguments as compare with above functions]:

(BYTE SIZE POSITION) [Macro]
" Constructs and returns a "byte specifier" containing SIZE and POSITION.

(BYTESIZE BYTESPEC) . [Macro]
Returns the SIZE componant of the "byte specifier" BYTESPEC.

(BYTE POS IT ION BYTESPEC) [Macro]
Returns the POSITION componant of the "byte specifier" BYTESPEC.

(LOB BYTESPEC VAL) [Macro]

(LOAOBYTE VAL

(OPB N BYTESPEC VAL)

(BYTEPOSITION BYTESPEC)

(BYTESIZE BYTESPEC»

(OEPOSITBYTE VAL

2.9.3 Floating Point Arithmetic

(BYTEPOSITION BYTESPEC)
(BYTESIZE BYTESPEC)
N)

[Macro]

A floating point number is input as a signed integer, followed by a decimal point, followed by another
sequence of digits called the fraction. followed by an exponent (represented by E followed by a signed
integer) and terminated by a delimiter.

2.42

DATA TYPES

Both signs are optional, and either the fraction following the decimal point, or the integer preceding the
decimal point may be omitted. One or the other of the decimal point or exponent may also be omittecL
but at l~ast one of them must be present to distinguish a floating point number from an integer. For
example, the following will be recognized as floating point numbers:

5.
5E2

5.00
5.1E2

5.01
5E-3

.3
-5.2E+6

Floating point numbers are printed using the fOImat control specified by the function F L T F MT (page
6.20). F L T FMT is initialized to T, or free fOImat For example, the above floating point numbers would
be printed free fOImat as:

5.0
500.0

5.0
510.0

5.01
.005

.3
-5.2E6

Floating point numbers are created by the read program when a "." or an E appears in a number,
e.g., 1000 is an integer, 1000. a floating point number, as are lE3 and 1. E3. Note that 10000,
1000 F, and 1 E 3D are perfectly legal literal atoms. Floating point numbers are also created by PAC K and
MKATOM, and as a result of arit:itn1.etic operations.

PRINTNUM (page 6.21) peImits greater controls on the printed appearance of floating point numbers,
allowing such things as left-justification, suppression of trailing decimals, etc.

The floating point number range is stored in the following variables: .

MIN. F·LOAT [Variable]
The smallest possible floating point number.

MAX. FLOAT [Variable]
The largest possible floating point number.

All of the functions described below work on floating point numbers. Unless specified otherwise, if given an
integer, they first convert the number to a floating point number, e.g., (F PLUS 1 2.3) < = > (F PLUS
1.0 2.3) =) 3.3; if given a non-numeric argument, they generate an error, NON-NUMERIC ARG.

(FMINUS x)
-x

(FDIFFERENCE x y)
X-y

(FTIMES Xl x2 ... xN)
Xl ... x

2
......... X

N

(FQUOTIENT x y)
x/y

(FREMAINDER x y)

[NoSpread Function]

[Function]

[Function]

[NoSpread Function]

[Function]

[Function]
Returns the remainder when x is divided by y. Equivalent to:

2.43

Mixed Arithmetic

(FDIFFERENCE x (FTIMES Y (FIX (FQUOTIENT x Y»»
Example:

(FREMAINDER 7.5 2.3) =) 0.6

(MINUSP x) [Function]
T, if x is negative; NIL otherwise. Works for both integers and floating point
numbers.

(FGREATERP x Y) [Function]

(FLESSP x Y)

(FEQP x Y)

T, if x) Y, NIL otherwise.

[Function]
T, if x < Y, NIL otherwise.

[Function]
Returns T if N and M are equal floating point numbers; NIL otherwise. FE Q P
converts N and M ~o floating point numbers.Causes 'NON-NUMERIC ARG error if
either N or M are not numbers.

(FMIN Xl X2 ... xN) [NoSpread Function]
Returns the minimum of Xl' x2, "', xN • (FMIN) returns the largest possible
floating point number, the value of MAX. FLOAT.

(FMAX Xl X2 '0' XN) [NoSpread Function]
Returns the maximum of Xl' X2' .. ~, X N. (FMAX) returns the smallest possible
floating point number, the value of MIN. F LOA T.

(FLOAT x) [Function]
Convens x to a floating point number. Example:

(FLOAT 0) =) 0.0

2.9.4 Mixed Arithmetic

The functions in this section are "generic" floating point arithmetic functions. If any of the arguments
are floating point numbers, they act exactly like floating point functions, and float all arguments, and
return a floating point number as their value. Otherwise, they act like the integer functions. If given a
non-numeric argument, they generate an error, NON-NUMERIC ARG.

XN) [NoSpread Function]
Xl + X2 + ... + X N ·

(MINUS x) [Function]
-X

(DIFFERENCE x Y) [Function]
X-y

2.44

DATA TYPES

(TIMES Xl X:l ... X N) [NoSpread Function]
Xl * X:l * ... * XN

(QUOTIENT x y) [Function]
Ifx and y are both integers, returns (IQUOTIENT x y), otherwise (FQUOTIENT
x Y).

(REMAINDER x y) . [Function]
Ifxand yare both integers, returns (IREMAINDER x y), otherwise (FREMAINDER
x Y).

(GREATERP x y) [Function]

(LESSP X Y)

(GEQ x Y)

(LEQ x Y)

(MIN Xl x:l

(MAX Xl X:l ...

(ABS x)

T, if X > Y, NIL otherwise.

[Function]
T if x < Y, NIL otherwise.

[Function]
T, if X ~ Y, NIL oth,erwise.

[Function]
T, if x ~ Y, NIL otherwise.

XN) [NoSpread Function]

X N)

Returns the minimum of Xl' x:l'
... , x N • (MIN) returns the value of

MAX. INTEGER.

[NoSpread Function]
Returns the maximum of Xl' X:l'

... , x N • (MAX) returns the value of
MI N. INTEGER.

[Function]
X if x> 0, otherwise ·x. ABS uses GREATERP and MINUS, (not IGREATERP and
IMINUS).

2.9.5 Special Functions

(EXPT M N)

(SQRT N)

(LOG x)

[Function]
Returns MtN. If M is an integer and N is a positive integer, returns an integer,
e.g, (E X PT 3 4) = > 81, otherwise returns a floating point number. If M is
negative and N fractional, an error is generated, ILLEGAL EXPONENTIATION. If
N is floating and either too large or too small, an error is generated, V A L U E OU T
OF RANGE EXPT.

[Function]
Returns the square root of N as a floating point number. N may be fixed or floating
point. Generates an error if N is negative.

[Function]
Returns the natural logarithm of X as a floating point number. X can be integer
or floating point

2.45

(ANTILOG x)

Special Functions

[Function]
Returns the floating point number whose logarithm is x. x can be integer or floating
point Example:

(ANTILOG 1) = e =) 2.71828 ...

(SI N x RADIANSFLG) [Function]
x is in degrees unless Returns the sine of x as a floating point number.

RADIANSFLG= T.

(COS X RADIANSFLG) [Function]
Similar to SIN.

(TAN X RADIANSFLG) [Function]
Similar to SIN.

(ARCSIN x RADIANSFLG) [Function]
xis a number between -1 and 1 (or an error is generated). The value of ARCSIN is
a floating point number, and is in degrees unless RADIANSFLG = T. In other words,
if (ARCSIN x RADIANSFLG) =z'then (SIN Z RADIANSFLG) =x. The range of
the value of ARC SIN is -90 to + 90 for degrees, -1r 12 to 1r 12 for radians.

(ARCCOS x RADIANSFLG) [Function]
Similar to ARCSIN. Range is 0 to 180, 0 to 'Ir.

(ARCTAN x RADIANSFLG) [Function]
Similar to ARCSIN. Range is 0 to 180, 0 to 'Ir.

(ARCTAN2 Y x RADIANSFLG) [Function]
Computes (ARCTAN (FQUOT lENT Y x) RADIANSFLG) , and returns a correspond
ing value' in the range -180 to 180 (or -7r to 'Ir), i.e. the result is in the proper
quadrant as detennined by the signs of x and Y.

(RAND LOWER UPPER) [Function]

(RANDSET x)

Returns a pseudo-random number between LOWER and UPPER inclusive, I.e.,
RAND can be used to generate a sequence of random numbers. If both limits are
integers, the value of RAND is an integer, otherwise it is a floating point number.
The algorithm is completely detenninistic, i.e., given the same initial state, RAND
produces the same sequence of values. The internal state of RAND is initialized
using the function RANDSET described below.

[Function]
Returns the internal state of RAND. If X= NIL, just returns the current state. If
X= T, RAND is initialized using the clocks, and RANDSET returns the new state.
Otherwise~ x 'is interpreted as a previous internal state, i.e., a value of RANDSET,
and is used to reset RAND. For example,

~ (SETQ OLDSTATE (RANDSET»

~ (for X from t to to do (PRINt (RAND 1 10»)
2847592748NIL
~ (RANDSET OLDSTATE)

2.46

DATA TYPES

+- (for X from 1 to 10 do (PRIN1 ('RAND 1 10»)
2847592748NIL

2.47

Special Functions

2.48

CHAPTER 3

THE RECORD PACKAGE

The advantages of "data abstraction" have long been known: more readable code, fewer bugs, the ability
to change the data structure without having to make major modifications to the program, etc. The record
package encourages and facilitates this good programming practice by providing a uniform syntax for
creating, accessing and storing data into many different types of data structures (arrays, list structures,
association lists, etc.) as well as removing from the user the task of writing the various manipulation
routines. The user declares (once) the data structures used by his programs, and thereafter indicates
the manipulations of the data in a data-structure-independent manner. Using the declarations, the
record package automatically computes the corresponding Interlisp expressions necessary to accomplish
the indicated access/storage operations. If the data structure is changed by modifying the declarations,
the programs automatically adjust to the new conventions.

. . .

The user describes the format of a data structure (record) by making a "record declaration" (see page
3.5). The record declaration is a description of the recor<i associating names with its various parts, or
"fields". For example, the record declaration (RECORD MSG (F ROM TO • TEXT)} describes a data
structure called MSG, which contains three fields: FROM, TO, and TEXT. The user can reference these fields
by name, to retrieve their values or to store new values into them, by using the FETCH and REPLACE
operators (page 3.1). The CREATE operator (page 3.3) Js used for creating new instances of a record, and
TY PE? (page 3.4) is used for testing whether an object is an instance of a particular record. (note: all
record operators can be in either upper or lower case.)

Records may be implemented in a variety of different ways, as determined by the first element ("record
type") of the record declaration. RECORD (used to specify elements and tails of a list structure) is just
one of several record types currently implemented. The user can specify a property list format by using
the record type PROPRECORD, or that fields are to be associated with parts of a data structure via a
specified hash array by using the record type HASH LIN K, or that an entirely new data type be allocated
(as described on page 3.14) by using the record-type DATATYPE.

The record package is implemented through the DWIM/CLISP facilities, so it contains features such as
spelling correction on field names, record types, etc. Record operations are translated using all CLISP
declarations in effect (standardlfast/undoable); it is also possible to declare local record declarations that
override global ones (see page 16.9).

The file package includes a RECORDS file package command for dumping record declarations (page 11.25),
and F I L E S? and C LEA N UP will inform the user about records that need to be dumped.

3.1 FETCH AND REPLACE

The fields of a record are accessed and changed with the FETCH and RE PLACE operators. If the record
MSG has the record declaration (RECORD MSG (FROM TO • TEXT», and X is a MSG data structure,
(fetch F ROM of X) will return the value of the F ROM field of X, and (rep 1 ace F ROM of X with

3.1

FETCH and REPLACE

Y) will replace this field with tlhe value of Y. In general, the value of a REPLACE operation is the same
as the value s.tored into the field.

Note that the fonn (fetch FROM of X) implicitly states that X is an instance of the record MSG, or
at least it should to be treated as such for this particular operation. In other words, the interpretation
of (fetch FROM of X) never depends on the value of X. Therefore, if X is not a MSG record, this
may produce incorrect results. The TYPE? record operation (page 3.4) may be used to test the types of.
objects.

If there is another record declaration, (RECORD REPLY (TEXT . RESPONSE», then (fetch TEXT
of X) is ambiguous, because X could be either a MSG or aRE PLY record. In this case, an error will
occur, AMBIGUOUS RECORD F:IELD. To clarify this, FETCH and REPLACE can take a list for their "field"
argument: (f etc h (MSG T ExiT) 0 f X) will fetch the T EXT field of an MSG record.

Note that if a field has an iden(icai interpretation in two declarations, e.g. if the field TEXT occurred in
the same location within the declarations of MSG and REP L y, then (f etc h T EXT 0 f X) would not be
considered amb iguous.

Another complication can occur if the fields of a record are themselves records. The fields of a record
can be further broken down into sub-fields by a "subdeclaration" within the record declaration (see page
3.10). For example,

(RECORD NODE (POSITION. LABEL) (RECORD POSITION (XLOC . YLOC»)

pennits the user to access the ROSITION field with (fetch POSITION of X), or its sub field XLOC
·with (fetch XLOC of X).

The user may afso elaborate a field by declaring that field name in a separate record declaration (as
opposed to an embedded subdeclaration). For instance, the TEXT field in the MSG and REPLY records
above may be subdivided with the seperate record declaration (RECORD TEXT (HEADER. TXT».
Fields of subfields (to any level of nested subfields) are accessed by specifying the "data path" as a list
of record/field names, where there is some path from each record to the next in the list. For instance,
(fetch (MSG TEXT HEADER) of X) indicates that X is to be treated as a MSG record, its TEXT
field should be accessed, and its HEADE R field should be accessed. Only as much of the data path as
is necessary to disambiguate it needs to be specified. In this case, (f etc h (MS G HEAD E R) 0 f X) is
sufficient. The record package interprets a data path by performing a tree search among all current record
declarations for a path from each name to the next. considering first local declarations (if any) and then
global ones. The central point of separate declarations is that the (sub)record is not tied to another record
(as with embedded declarations), and therefore can be used in many different contexts. If a data-path
rather than a single field is ambiguous, (e.g., if there were yet another declaration (RECORD TO (NAME
. HEADE R» and the user specified (fetch (MSG HEADER) of X», the error AMB IGUOUS DATA
PAT H is generated.

FETCH and REPLACE forms are translated using the CLISP declarations in effect. FFETCH and
FREPLACE are versions which insure fast CLISP declarations will be in effect, IREPLACE insures undoable
declarations.

3.2

THE RECORD. PACKAGE

3.2 CREATE

Record operations can be applied to arbitrary structures, i.e., the user can explicitely creating a data
structure (using CONS, etc), and then manipulate it with FETCH and REPLACE. However, to be consistant
with the idea of data abstraction, new data should be created using the same declarations that define its
data paths. This can· be done with an expression of the form:

. (CREATE RECORD-NAME • ASSIGNMENTS)

A CREATE expression translates into an appropriate Interlisp fonn using CONS, LIST, PUTHASH, ARRAY,
etc., that creates the new datum with the various fields initialized to the appropriate values. ASSIGNMENTS

is optional and may contain expressions of the following fonn:

FIELD-NAME +- FORM

Specifies initial value for FIELD-NAME.

USING FORM Specifies that for all fields not explicitly given a value, the value of the corresponding
field in FORM is to be used.

COpy I NG FORM Similar to US I NG except the corresponding values are copied (with COPYALL).

REUSING FORM Similar to USING, except that wherever possible, the corresponding structure in
FORM is used.

SMASH ING FORM. A new- instance of the ·record is' not cr~~ted at all;- rather, the value' of FORM is
used and smashed.

The record package goes to great pains to insure that the order of evaluation in the translation
is the same as that given in the original CREATE expression if the side effects of one expression
might affect the evaluation of another. For example, given the declaration (RECORD CONS (CAR .
CDR», the expression (CREATE CONS CDR+-X CAR+-Y) will translate to (CONS Y X), but (CREATE
CONS CDR+-(Faa) CAR+-(FIE» will translate to « LAMBDA ($$1) (CONS (PROGN (SETQ $$1
(Faa» (F IE» $$1») because Faa might set some variables used by FIE.

Note that (CREATE RECORD REUSING FORM •••) does not itself do any destructive operations on
the value of FORM. The distinction between USING and REUSING is that (CREATE RECORD REUSING
FORM •••) will incorporate as much as possible of the old data structure into the new one being created,
while (CREATE RECORD USING FORM •••) will create a completely new data structure, with only
the contents of the fields re-used. For example, CREATE REUSING a PROPRECORD just CONSes the new
property names and values onto the list, while CREATE USING copies the top level of the list. Another
example of this distinction occurs when a field is elaborated by a subdec1aration: US I NG will create a
new instance of the sub-record, while REUSING will use the old contents of the field (unless some field
a f the subdec1aration is assigned in the C REA T E expression.)

If the value of a field is neither explicitly specified, nor implicitly specified via US lNG, COpy ING or
REUSING, the default value in the declaration is used, if any, otherwise NIL. (Note: For BETWEEN fields
in OAT ATY P E records, N 1 is used; for other non~pointer fields zero is used.) For example, following
(RECORD A (B C. D) 0 +- 3),

(CREATE A 8+-T) ==) (LIST T NIL 3)

(CREATE A 8+-T USING X) ==) (LIST T (CADR X) (CADDR X»

3.3

TYPE?

(CREATE A B~T COPYING X» ==) [LIST T {COPYALL (CADR X» {COPYALL {CADDR X]

(CREATE A B~T REUSING X) ==) {CONS T (CDR X»

3.3 TYPE?

The record package allows the user to test if a' given datum "looks like" an instance of a record. This can
be done via an expression of the form

(TY P E? RECORD·NAME FORM)

TYPE? is mainly intended for re,ords with a record type of DATA TYPE or TYPERECORO. For DATATYPEs,
the TYPE? check. is exact; i.e. 'the TYPE? expression will return non-N I L only if the value of FORM

is an instance of the record named by RECORD· NAME. For TYPERECORDs, the TYPE? expression will
check that the value of FORM is ~ list beginning with RECORD-NAME. For ARRAYRECOROs, it checks that
the value is an array of the correct size. For PROPRECORDs and ASSOCRECOR[)s, a TYPE? expression
will make sure that the value' of FORM is a ' property/association H'st with property names among the
field-names of the declaration.

Attempting to execute a TYPE?: expression for a record of type ACCESSFNS. HASHLINK or RECORD
, will cause an error, TYPE? NOT IMPLEMENTED FOR THIS RECORD. ~e user can (re)define, the

interpretation of TY P,E? expressipns for a particular declaration by inclusion of an expression ()f the form
(TYPE? COM)" in the record declaration (see page 3.9). . " , , .

3.4 WITH

Often it is necessary to manipulate the values of the fields of a particular record. The WITH construct can
be used to talk about the fields of a record as if they were variables within a lexical scope:

(WIT H RECORD-NAME RECORI)-INSTANCE FORM 1 ... FORM N)

RECORD-NAME is the name of a: record, and RECORD·INSTANCE is an expression which evaluates to an
instance of that record. The expressions FORM1 ... FORMN are evaluated so that references to variables
which are field-names of RECORP-NAME are implemented via fetch and SETQs of those variables are
implemented via rep 1 ace.

For example. given

{RECORD RECN (FLDI FLD2~)
{SETQ INST (CREATE RECNFLDI ... 10 FLD2 ... 20»

Then the construct

(with RECN INST (SETQ FLD2 (PLUS FLDI FLD2]

is equivalent to

3.4

THE RECORD PACKAGE

(replace FL02 of INST with (PLUS (fetch FLOl of INST) (fetch FL02 of INST]

Note that the substitution is lexical: this operates by actually doing a substitution inside the fonns.

3.5 RECORD "DECLARATIONS

A record is defined by evaluating a record deciaration, l which is an expression of the fonn:

(RECORD-TYPE RECORD-NAME FIELDS • RECORD-TAIL)

RECORD-TYPE specifies the "type" of data being described by the record deciaration, and thereby
implicitly specifies how the corresponding access/storage operations are perfonned. RECORD-TYPE

currently is either RECORD. TYPERECORD,ARRAYRECORD,ATOMRECORD,ASSOCRECORD,PROPRECORO,
DATATYPE, HASHLINK, ARRAYBLOCK or ACCESSFNS. RECORD and TYPERECORD are used to describe
list structures, DATATYPE to describe user data-types, ARRAYRECORD to describe arrays, ATOMRECORD
to describe (the property list of) litatoms, PROPRECORD to describe lists in property list fonnat, and
ASSOCRECORD to describe association list fonnat. HASHLINK can be used with any type of data: it
simply specifies the data path to be a hash-link. ACCESSFNS is also type-less; the user specifies the
data-paths in the record declaration itself, as described below.

RECORD-NAME is a litatom used to identify the record declaration for creating instances of the record
via CREATE, testing via TYPE?, and dumping to files via the RECORDS file package- command (page

~ 11.25). DATATYPE and- TYPERECORD declarations also use RECORD-NAME to identify the data structure
(as described below).

FIELDS describes the structure of the record. Its exact interpretation varies with RECORD-TYPE:

RECORD

TYPE RECORD

[Record Type]
FIELDS is a list structure whose non-N I L literal atoms are taken as field-names
to be associated with the corresponding elements and tails of a list structure.
For example, with the record declaration (RECORD MSG (F ROM TO . TEXT»,
(fetch FROM of X) translates as (CAR 'X).

NIL can be used as a place marker to fill an unnamed field, e.g., (A NIL B)
describes a three element list, with B corresponding to the third element. A number
may be used to indicate a sequence of NILs, e.g. (A 4 B) is interpreted as (A
NIL NIL NIL NIL B).

[Record Type]
Similar to RECORD, except that RECORD-NAME is also used as an indicator in CAR
of the datum to signify what "type" of record it is. This type-field is used by
the record package in the translation of T Y P E? expressions. C REA T E will insert
an extra field containing RECORD-NAME at the beginning of the structure, and
the translation of the access and storage functions will take this extra field into

1 Local record declarations are defined by including an expression of this fonn in the CLISP declaration
for that function, rather than evaluating the expression itself (see page 16.10).

3 .. 5

ASSOCRECORD·

PROPRECORD

Record Declarations

account. For example, for (TYPERECORD MSG (FROM TO • TEXT», (fetch
FROM of X) translates as (CADR X), not (CAR X).

[Record Type]
FIELDS is a list of literal atoms. The fields are stored in association-list format:

«FIELDNAMEl • VALUE1) (FIELDNAME2 • VALUE2) .••)

Accessing is performed with ASSOC (or FASSOC, depending on current CLISP
declarations), stonng with PUT ASSOC. . '

[Record Type]
FIELDS is a list of literal atoms. The fields are stored in "property list" format:

(FIELDNAMEl VALUE1 FIELDNAME2 VALtTE2 •••)

Accessing; is performed with LISTGET, storing with LISTPUT.

Both ASSOCRECORD and PROPRECORD are useful for defining data structures in which it is often the
case that many of the fields are NIl. A C R EA T E for these record types only stores those fields which are
non-NIL. Note, however, that with the record d~laration (PROPRECORD FIE (H I J» the expression
(CREATE FIE) would still construct (H NIL), since a later operation of (replace J of X with
Y) could not possibly change the instance of the record if it were NIL.

ARRAYRECORD

HASHLINK

ATOMRECORD

[Record Type]
Ji'IELDS is a list of field-names that are associateq. with the corresponding elements
of an array. NIL can be used as a place marker for an unnamed field (element).
Positive integers can be used as abbreviation for the corresponding number of NILs.
For example, (ARRAYRECORD (ORG DEST NIL ID 3 TEXT» describes an
eight element array, with ORG corresponding to the first element, ID to the fourth,
and T EXT to the eighth.

Note that A R RA Y R E COR D only creates arrays of pointers. Other kinds of arrays
must be implemented by the user with ACCESSFNS.

[Record Type]
FIELDS is either an atom FIELD-NAME, or a list (FIELD-NAME HARRAYNAME

HARRAYStZE). HARRAYNAME indicates the hash-array to be used; if not given,
SYSHASHARRAY is used. HARRAYSIZE is used for initializing the hash array: if
HARRAYNAME has not been initialized at the time of the declaration, it will be
set to (LIST (HARRAY (OR HARRAYSIZE 100»). HASHLINKs are useful as
subdeclarations to other records to add additional fields to already existing data
structures .. For example, suppose that FOO is a record declared with (RECORD FOO
(A B C». To add an aditional field BAR, without modifying the already-existing
data strutures, redeclare F 00 with:

(RECORD FOa (A B C) (HASHLINK FOO (BAR BARHARRAY»)

Now, (fetch BAR of X) will translate into (GETHASH X BARHARRAY), hash
i~g off the existing list X.

[Record Type]
FIELDS is a list of property names, e.g., (ATOMRECORD (EXPR CODE MACRO

3.6

DATATYPE

THE RECORD PACKAGE

BLKLIBRARYDEF». Accessing is perfonned with GETPROP, storing with
PUTPROP. As with ACCESSFNS, CREATE is not initially defined for ATOMRECORD
records.

[Record Type]
Specifies that a new user data type with type name RECORD-NAME be allocated
via DECLAREDATATYPE (page 3.14). Unlike other record-types, the records of a
DA TAT Y P E declaration are represented with a completely new Interlisp type, and
not in tenns of other existing types.

F!ELDS is a list of field specifications, where each specification is either a list
(FIELDNAME • FIELD TYPE), or an atom FIELDNAME. If FIELDTYPE is omitted,
it defaults to PO I NT E R. Options for FIELDTYPE are:

PO I NT E R Field contains a pointer to any arbitrary Interlisp object

BITS N Field contains an N-bit unsigned integer.

BETWEEN N1 N 2 . A gener~izat.ion of BITS. Field may contain an integer
x, such that x is greater . than ·or equal to N 1 and less
than or equal to N 2' Enough bits are allocated to store a
number between 0 ~d N2-N1; Nl is appropriately added or
subtracted when the field is accessed or stored into.

IN T E G E R or -F. I X P Field contairt.s a full word signed i~teger (the size is
.' iinplementation-dependent).

FLOATING or FLOATP
Field contains a full word floating point number.

FLAG Field is a one bit field that "contains" T or NIL.

For example, the declaration

(DATATYPE FOO
«FLG BITS 12)

TEXT
(CNT BETWEEN 10 25)
HEAD
(DATE BITS 18)
(PRIO FLOATP)
(READ? FLAG»)

would define a data type F 00 which occupies (in Interlisp-10) three words of storage
with two pointer fields (one word), a full word floating point number, fields for an
18, 12, and 4 bit unsigned integer, and a flag (one bit), with 1 bit left over. Fields
are allocated in such a way as to optimize the storage used and not necessarily in the
order specified. To store ·this infonnation in ~ conventional RECORD list structure,
e.g., (RECORD MSG (FLG TEXT CNT DATE PRIO • HEAD», would take 5
words of list space .and up to three number boxes (for FLG, DATE, and PRIO).

Since the user data type must be set up at ron-time, the RECORDS file package
command will dump a DECLAREDATATYPE expression as well as the DATATYPE

3.7

ARRAYBLOCK

ACCESSFNS

Record Declarations

declaration itself. The I NIT R E COR D S file package command (page 11.25) will
dump only the DECLAREDATATYPE expression. "

Note: DATATYPE declarations should be used with caution within local declarations,
since a new and different data type is allocated for each one with a different name.

[Record Type]
(Not implemented in Interlisp-D) Similar to a DATATYPE declaration, except that
the objects it creates and manipulates are arrays. As with DATATYPE's, the actual
order of the fields of the ARRAYBLOCK may be shuffled around in order to satisfy
garbage cbllector constraints.

For example,

(ARRAYBILOCK Foa
((F 1; IN T E G E R)

(F2 FLOATING)
(F3 POINTER)
(F4 BETWEEN -30 -2)
(F5 BITS 12)
(F6 FLAG»)

[Record Type]
'FIELDS is a list of e~ements of the fonn (FIELD-NAME ACCESSDEF SETDEF) ,
Le. for each fieldname, the user. specifies hoW it is to be accessed and set.
ACCESSD~F should "be a function of one argument, the datum, and will be used
for acces~ing. SETDEF should be a function of two arguments. the datum and
the new value, and will be used for storing. SETDEF may be omitted. in which
case, no storing operations are allowed. ACCESSDEF and/or SETDEF may also be a
LAMBDA expression or a fonn written in tenns of variables DATUM and (in SETDEF)
NEWVALU'E. For example, given the declaration

[ACCESSFNS «FIRSTCHAR (NTHCHAR DATUM 1)
(RPLSTRING DATUM 1 NEWVALUE»

(RESTCHARS {SUBSTRING DATUM 2]

(replac,e FIRSTCHAR of X with Y) would translate to (RPLSTRING X 1
Y). Since no SETDEF is given for the RESTCHARS field, attempting to perfonn
(repl ac'e RESTCHARS of X with Y) would generate an error, REPLACE
UNDEF IN:ED FOR FIELD. Note that ACCESSFNS do not have a CREATE definition.
However. the user may supply one in the defaults and! or subdeclarations of the
declaratiop. as deSCribed below. Attempting to CREATE an ACCESSFNS record
without specifying a create definition will cause an error CREATE NOT DE FINED
FOR TH(S RECORD.

ACCESSDEF and SETDEF can also be a property list which specify FAST, STANDARD
and UNDdABLE versions of the ACCESSFNS fonns, e.g.

, "

[ACCESS'fNS LITATOM {(DEF (ST~ND"ARD GETD FAST FGETD)
. (STANDARD PUTD UNDOABLE /PUTD]

means if FAST declaration is in effect. use FGETD for fetching, if UNDOABLE, use

3.8

THE RECORD PACKAGE

/PUTD for saving.

The ACCESSFNS facility allows the use of data-structures not specified by one of the built-in record
types. For example, one possible representation of a data-structure is to store the fields in parallel arrays,
especially if the number of instances required is known, and they do not need to be garbage collected.
Thus, to implement a data structure called LINK with two fields F ROM and TO, one would have two
arrays FROMARRAY and TOARRAY. The representation of an "instance" of the record would be an integer
which is used to index into the arrays. This can be accomplished with the declaration:

[ACCESSFNS LINK
{{FROM (ELT FROMARRAY DATUM)

(SETA FROMARRAY DATUM NEWVALUE»
{TO (ELT TOARRAY DATUM)

(SETA TOARRAY DATUM NEWVALUE»)
(CREATE (PROGl (SETQ LINKCNT (ADDl LINKCNT»

(SETA FROMARRAY LINKCNT FROM)
(SETA TOARRAY LINKCNT TO»)

{INIT {PROGN {SETQ FROMARRAY (ARRAY 100»
{SETQ FR.OMARRAY (ARRAY 100»]

To CREATE a new LINK, a counter is incremented and the new elements stored (although the CREATE
form given the declaration should actually include a test for overflow) ..

RECORD-TAIL is optional. It may contain expressions of the form:

FIELD-NAME +- FORM

(CREATE FORM)

(INIT FORM)

(TYPE? FORM)

Allows the user to specify within the record declaration the default value to be
stored in FIELD-NAME by a CREATE (if no value is given within the CREATE
expression itself). Note that FORM is evaluated at CREATE time, not when the
declaration is made.

Defines the manner in which C REA T E of this record should be performed. This
provides a way of specifying how ACCESSFNS should be created or oveniding the
usual definition of CREATE. If FORM contains the field-names of the declaration as
variables, the forms given in the C R EA T E operation will be substituted in. If the
word DATUM appears in the create fonn, the original CREATE definition is insened.
This effectively allows the user to "advise" the create.

Note: (CREATE FORM) may also be specified as "RECORD-NAME +- FORM", e.g.
C +- (CONS AD).

Specifies that FORM should be evaluated when the record is declared. FORM will
also be dumped by the I NIT RE CORDS file package command (page 11.25).

For example, see the example of an ACCESSFNS record declaration above. In this
example, F ROMA R RA Y and T OA R RA Y are initialized with an I NIT form.

Defines the manner in which TYPE? expressions are to be translated. FORM may
either be an expression in tenns of DATUM or a ~nction of one argument.

Note: (TYPE? FORM) may also be specified as "RECORD-NAME @ FORM", e.g.
C @ LISTP.

3.9

(SUBRECORD NAME

Defining New Record Types

• DEFAULTS)
NAME must be a field that appears in the current declaration and the name of
another record. This says tha~ for the purposes of translating CREATE expressions,
substitute: the top-level declaration of NAME for the SUBRECORD fonn, adding on
any defaults specified.

For example: Given (RECORD B (E F G», (RECORD A (B CD) (SUBRECORD
B» would be treated like (RECORD A (B C D) (RECORD B (E F G») for
the purposes of translating CREATE expressions.

a sub declaration (I.e., a record declaration.)
The RECbRD-NAME of a subdeclaration must be either the RECORD-NAME of its
immediately superior declaration or one of the superior's field-names. Instead of
identifying the declaration as with top level declarations, the record-name of a
subdeclaration identifies the parent field or record that is being described by the
subdeclaration. Subdeclarations can be nested to an arbitrary depth.

Giving a subdeclaration (RECORD NAMEl NAME2) is a simple way of defining a
synonym for the field NAME 1.

Note tha4 in a few cases, it makes sense for a given field to have more than one
sub declaration. For example, in

(RECORD (A • B) (PROPRECORD B (FOO FIE FUM» (HASHLINK B C»

B is elaborated by both a PROPRECORD and a H"ASHLINK. Similarly,

(RECORD (A B) (RECORD A (C D» (RECORD A (FOO FIE»)

is also acceptable, and essentially "overlays" (FOa FIE) and (C D), i.e. (fetch
FOO of X) and (fetch C of X) would be equivalent. In such cases, the first
subdeclaration is the one used by CREATE.

3.6 DEFINING NEW RECORD TYPES

In addition to the built-in record types, users can declare their own record types by performing the
following steps:

(1) Add the new record-type to the value of CLISPRECORDTYPES;.

(2) Perform (MOVD 'RECORD RECORD-TYPE), i.e. give the record-type the same definition as that of
the function RECORD;

(3) Put the name of a function which will return the translation on the property list of RECORD-TYPE, as
the value of the property USERRECORDTYPE. Whenever a record declaration of type RECORD-TYPE is
encountered, this function will be passed the record declaration as its argument, and should return a new
record declaration which the record package will then use In its place.

3.10

THE RECORD PACKAGE

3.7 RECORD MANIPULATION FUNCTIONS

The user may edit (or delete) global record declarations with the function:
~

(EOITREC NAME COM1 ••• COMN) [NLambda NoSpread Function]
Nospread nlambda function similar to EOITF or EOITV. EOITREC calls the editor
on a copy of all declarations in which NAME is the record-name or a field name.
On exi~ it redec1ares those that have changed and undeclares any that have been
deleted. If NAME is NIL, all declarations are edited.

COM 1 ... COM N are (optional) edit commands.

When the user redeclares a global record, the translations of all expressions involving that record or any
of its fields 'are automatically deleted from CLISPARRAY. and thus will be recomputed using the new
information. If the user changes a local record declaration, or changes some other CLISP declaration, e.g.,
ST ANOARO to FAST, and wishes the new information to affect record expressions already tran~lated, he
must make sure the corresponding translations are removed, usually either by C LIS PI F Ying or applying
the t OW edit macro.

(RECLOOK RECORDNAME - - - -) [Function]
Returns the entire declaration for the record named RECORDNAME; NIL if
no record declaration with name RECORDNAME. Note that the record package
maintains internal state about current record declarations, so perfonning destructive
.operations (e.g. NCONC) on t.he value of RECLOOK may leave the record package
in an inconsistant state. To change a record declaration, use EDITRE.C. .

(F IELOLOOK FIELDNAME) [Function]
Returns the list of declarations in which FIELDNAME is the name of a field.

(RECOROF IELDNAMES RECORDNAME) [Function]
Returns the list of fields declared in record RECORDNAME. RECORDNAME may
either be a name or an entire declaration.

(RECOROACCESS FIELD DATUM DEC TYPE NEWVALVE) [Function]
TYPE is one of FETCH, REPLACE, FFETCH, FREPLACE, IREPLACE or their
lowercase equivalents. TYPE = NIL means F ETCH. If TYPE corresponds to a fetch
operation, Le. is FETCH, or FFETCH, RECORDACCESS performs (TYPE FIELD

OF DATUM). If TYPE corresponds to a replace, RECORDACCESS performs (TYPE

FIELD OF DATUM WITH NEWVALUE). DEC is an optional declaration; if given,
FIELD is interpreted as a field name of that declaration.

Note that RECORDACCESS is relatively inefficient, although it is better than
constructing the equivalent form and performing an EVAL.

3.8 CHANGETRAN

A very common programming construction consists of assigning a new. value to some datum that is a
function of the current value of that datum. Some examples of such read-modify-write sequences include:

3.11

Changetran

(SETQ X (IPLUS Xl»

(SETQ x (CONS Y X»

(PROG1 (CAR X) {SETQ X (CDR X»)

Incrementing a counter

Pushing an item on "the front of a list

Popping an item off a list

It is easier to express such computations when the datum in question is a simple variable as above than
when it is an element of some larger data structure. For example, if the datum to be modified was (CAR
X), the above examples would be:

(CAR (RPLACA X {IPLUS (CAR X) 1»)

(CAR (RPLACA X {CONS Y (CAR X»)

(PROG1 (CAAR X) (RPLACA X (CDAR X»)

and if the datum was an element in an array, (E L TAN), the examples would be:

(SETA A N (IPLUS (ELT A N) 1»)

(SETA A N (CONS Y (ELT AN»»

(PROGI (CAR (ELT A N» (SETA A N (CDR (ELT AN»»

The difficulty in expressing (and reading) modification idioms is in part due to the well·known assymmetry
of setting versus accessing operations on structures: RPLACA is used to· smash what ·CAR wOlild return,
SET A corresponds to E L T, and so on.

The "Changetran" facility is designed to provide a more satisfactory notation in which to express certain
common (but user-extensible) structure modification operations. Changetran defines a set of CLISP words
that encode the kind of modification that is to take place, e.g. pushing on a list. adding to a number,
etc. More important, the expression that indicates the datum whose value is to be modified needs to be
stated only once. Thus, the "change word" ADD is used to increase the value of a datum by the sum of
a set of numbers. Its arguments are an expression denoting the datum, and a set of items to be added to
its current value. The datum expression must be a variable or an accessing expression (envolving fetch,
CAR, LAST, EL T, etc) that can be translated to the appropriate setting expression.

For example, (ADD (CADDR X) (FOO» is equivalent to:

(CAR (RPLACA (CDDR X)
(PLUS (FOO) (CADDR X»)

If the datum expression is a complicated form involving subsidiary function calls, such as (EL T (FOO X)
(FIE Y»), Changetran goes to some lengths to make sure that those subsidiary functions are evaluated
only once (it binds local variables to save the results), even though they logically appear in both the
setting and accessing parts of the translation. Thus, in thinking about both efficiency and possible side
effects. the user can rely on the fact that the forms will be evaluated only as often as they appear in the
expression.

For AOD and all other changewords. the lower-case version (add. etc.) may also be specified. Like other
CLISP words, change words are translated using all CLISP declarations in effect (see page 16.9).

The following is a list of those change words recognized by Changetran. Except for POP, the value of all

3.12

THE RECORD PACKAGE

built-in changeword forms is defined to be the new value of the datum.

(ADD DATUM ITEMl ITEM2 •••) / [Change Word]
Adds the specified items to the current value of the datum~ stores the result back
in the datum location. The translation will use I PLUS, PLUS, or F PLUS according
to the CLISP declarations in effect.

(PUSH DATUM ITEMl ITEM2 .••) [Change Word]
CONSes the items onto the front of the current value of the datum, and stores the
result back in the datum location. For example, (PUSH X A B) would translate
as (SETQ X (CONS A (CONS B X»).

(PUSHNEW DATUM ITEM) [Change Word]
Like PUSH (with only one item) except that the item is not added if it is already
FMEMB of the datum's value.

Note that. whereas (CAR (PUSH X 'FOO» will always be FOO, (CAR (PUSHNEW .
X 'FOO» might be something else if FOO already existed in the middle of the
list.

(PUSHLIST DATUM ITEMl ITEM2 ...) [Change Word]

(POP DATUM)

Similar to PUSH, except that the items are APPENDed in front of the current value
of the datum. For example, (PUSHLIST X A B) would translate as (SETQ X
(APPEND A B X».

[Change Word]
Returns CAR of the current value of the datum after storing its CDR into the datum.
The current value is computed only once even though it is referenced twice. Note
that this is the only built-in changeword for which the value of the form is not the
new value of the datum.

(SWAP DATUM1 DATUM2) [Change Word]
Sets DATUM1 to DATUM2 and vice versa.

(CHANGE DATUM FORM) [Change Word]
This is the most flexible of all change words, since it enables the user to provide an
arbitrary form describing what the new value should be, but it still highlights the
fact that structure modification is to occur, and still enables the datum expression
to appear only once. CHANG E sets DATUM to the value of FORM"', where FORM'" is
constructed from FORM by substituting the datum expression for every occurrence
of the litatom DA TUM. For example, (CHANG E (CAR X) (I T I ME S DA TUM 5»
translates as (CAR (RPLACA X (IT IMES (CAR X) 5»).

CHANGE is useful for expressing modifications that are not built-in and are not
sufficiently common to justify defining a user-change word. As for other changeword
expressions, the user need not repeat the datum-expression and need not worry
about multiple evaluation of the accessing form.

It is possible f<?r the user to define new change words. To define a c;hange word, say sub, that
subtracts items from the current value of the datum. the user must put the property C LIS PWORD, value
(CHANGETRAN . sub) on both the upper and lower-case versions of sub:

3.13

User Defined Data Types

(PUTPROP 'SUB 'CLISPWORD '(CHANGETRAN . sub»
(PUTPROP 'sub 'CLISPWORD '(CHANGETRAN . sub»

Then, the user must put (on the lowe,..case version of sub only)" the property CHANGEWORD, with value
FN. FN is a function that will be applied to a single argument, the whole sub form. and mus~ return a
form that Changetran can translate into an appropriate expression. This form should be a list structure
with the atom DATUM used whenever the user wants an accessing expression for the current value of the
datum to appear. The form (DATUM+- FORM) (note that DATUM+- is a single atom) should occur once in
the expression; this specifies that an appropriate storing expression into the datum should occur at that
point. For example, sub could be defined with:

(PUTPROP 'sub 'CHANGEWORD
'(LAMBDA (FORM)

(LIST 'DATUM+-
(LIST 'IDIFFERENCE

'DATUM
(CONS 'IPLUS (CDDR FORM»»»

If the expression (sub (CAR X) A B) were encountered, the arguments to SUB would first be
dwimified. and then the CHANGEWORD function would be passed the list (sub (CAR X) A B). and
return (DATUM+- (IDIFFERENCE DATUM (IPLUS A B»), whichChangetranwouldconvertto (CAR
(.RPLACA X (IDIFFERENCE (CAR X) (IPLUS A B»».

Note: The sub changeword as defined above will always use IDIFFERENCE and IPLUS; add uses the
correct addition operation depending on the curr~ntCLISP declarations. .

3.9 USER DEFINED DATA TYPES

Note: The most convenient way to define new user data types is via OAT ATY PE record declarations (see
page 3.7).

In addition to built-in data-types such as atoms, lists, arrays, etc., Interlisp provides a way of defining
completely new classes of objects, with a fixed number of fields determined: by the definition of the data
type. Facilities are provided for declaring the name and type of the fields for a given class, creating
objects of a given class, accessing and replacing the contents of each of the fields of such an object, as
well as interrogating such objects.

In order to define a new class of objects, the user must supply a name for the new data type and
specifications for each of its fields. Each field may contain either a pointer (Le., any arbitrary Interlisp
darum), an integer, a floating point number, or an N-bit integer. This is done via the function
DECLAREDATATYPE:

(DECLAREDATATYPE TYPENAME FIELDSPECS) [Function]
TYPENAME is a literal atom, which specifies the name of the data type. FIELDSPECS

is a list of "field specifications". Each field specification may be one of the following:

POINTER Field may contain any Interlisp datum.

FIXP Field contains an integer.

3.14

THE RECORD PACKAGE

FLOATP Field contains a floating point number.

(BITS ~) Field contains a non-negative integer less than 2N.

DECLAREDATATYPE returns a list of "field descriptors", one for each element of
FIELDSPECS. A field descriptor contains information about where within the datum
the field is actually stored.

If T"YPENAME is already declared a datatype, it is re-declared. If FIELDSPECS is
NIL, TYPENAME is "undeclared".

(FETCHFIELD DESCRIPTOR DATUM) [Function]
Returns the contents of the field described by DESCRIPTOR from DATUM.

DESCRIPTOR must be a "field descriptor" as returned by DECLAREDATATYPE.
If DATUM is not an instance of the datatype of which DESCRIPTOR is a descriptQr~
causes error DATUM OF INCORRECT TYPE.

In Interlisp-lO, if DESCRIPTOR is quoted, FE T C H FIE LD compiles open. This
capability is used by the record p~ckage.

(REPLACEFIELD DESCRIPTOR DATUM NEWVALUE) [Function]
Store NEWVALUE into the field of DATUM described by DESCRIPTOR. DESCRIPTOR

must be a field desCriptor as returned by DECLAREDATATYPE. If DATUM is not an
instance of the datatype of which DESCRIPTOR is a descriptor, causes error DA TUM
OF INCORRECT TYPE. Value is NEWVALUE.

(NCREATE T"YPENAME FROM) [Function]
Creates and returns a new instance of datatype TYFENAME.

If FROM is also a datum of datatype T"YPENAME, the fields of the new object are
initialized to the values of the corresponding fields in FROM.

NCREATE will not work for built-in datatypes, such as ARRAYP, STRINGP, etc. If
TYFENAME is not the type name of a previously declared user data type, generates
an error, ILLEGAL DATA TYPE.

(GET FIE LOS P E C S TYPENAME) [Function]
Returns a list which is EQUAL to the FIELDSPECS argument given to DECLAREDATATYPE
for TYPENAME; if TYPENAME is not a currently declared data-type, returns NIl.

(GETDESCRI PTORS TYPENAME) [Function]

(USERDATATYPES)

Returns a list offield descriptors, EQUAL to the value of DECLARE DATA TYPE for
TYPENAME.

[Function]
Returns list of names of currently declared user data types.

Note that the user can define how user data types are to be printed-via DEFPRINT (page 6.23), how they
are to be evaluated by the interpreter via DEFEVAL (page 5.11), and how they are to be compiled by the
compiler via COMPILETYPELST (page 12.9).

The OAT A TY P E .facility in Interlisp-D is an extension of that found in Interlisp-10. Interlisp-D also
accepts BYTE, WORD, and SIGNEDWORD as datatype field descriptors equivalent to BITS 8, BITS 16,

3.15

User Defined Data Types

and BETWEEN -215 and 215_1 respectively. Interlisp-D will not move fields around in a user declaration
if they pack into words and pointers as specified. POINTER fields take 24 bits and must be 32-bit
right-justified.

3.16

CHAPTER 4

CONDITIONALS AND ITERATIVE STATEMENTS

In order to do any but the simplest computations, it is necessary to test values and execute expressions
conditionally, and to execute expressions repeatedly. Interlisp supplies a large number of useful conditional
and iterative constructs.

(CONO CLAUSE1 CLAUSE2 ... CLAUSEK) [NLambda NoSpread Function]
The conditional function of Interlisp, CONO, takes an indefinite number of
~guments, called clauses. Each CLAUSEi is a list of the form (Pi Cil ... CiN) ,
where Pi is the predicate, and Cil ..• CiN are the consequents. The operation of
CONO can be paraphrased as:

IF P l THEN cll ... C1N ELSEIF P 2 THEN C21 ..•. C2N ELSEIF P 3 ...

The clauses are considered in sequence as follows: the predicate P 1 of the clause
CLAUSE j is evaluated. If the value of Pl is "true" (non-N I L), the consequents Gil

... CiN are evaluated in order, and the value of the CONO is the value of GiN' the
last expression in the clause. If P l is "false" (EO to NIL), then the remainder of
CLAUSEi is ignored, ru:d the next clause, CLAUSEi+1, is considered. If no Pi is true
for any clause, the value of the COND is NIL.

Note: If a clause has no consequents, and has the form (pJ, then if Pi evaluates
to non-N I L, it is returned as the value of the CONo. It is only evaluated once.

Example:

~ (DEFINEO (DOUBLE (X)

(DOUBLE)
~ (DOUBLE
10
~ (DOUBLE
"FOOFOO"
~ (DOUBLE
BARBAR
.. (DOUBLE
"unknown"
(A B C)

5)

(CONo «NUMBERP X) (PLUS X X»
«STRINGP X) (CONCAT X X»
«ATOM X) (PACK· X X»
(T (PRINT "unknown") X)
«HORRIBLE-ERROR»]

"FOO")

'BAR)

'(A B C))

A few points about this example: Notice that 5 is both a number and an atom,
but it is "caught" by the NUMBERP clause before the ATOM clause. Also notice
the predicate T, which is always true. This is the normal way to indicate a CO NO

4.1

clause which will always be executed (if none of the preceeding clauses are true).
(HORRIBLE-ERROR) will never be executed.

Note: The I F statement (page 4.4) provides an easier and more readable way of
coding condition.al expressions than CONDo

(AND Xl x 2 ••. xN) [NLambda NoSpread Function]
Takes an indefinite number of arguments (including zero), that are evaluated in
order. If any argument evaluates to NIL, AND immediately returns NIL (without
evaluating the remaining arguments). If all of the arguments evaluate to non-N I L,
the value of the last argument is returned. (AND) = > T.

[NLambda NoSpread Function]
Takes an indefinite number of arguments (including zero), that are evaluated in
order. If any argument is non-N IL, the value of that argument is returned by OR
(without evaluating the remaining arguments). If all of the arguments evaluate to
NIL, N I IL is returned. (0 R) = > NIL.

AND and OR can be used as simple logic~ connectives, but note that they may not evaluate all of their
arguments. This makes a difference if the evaluation of some of the arguments causes side-effects. Another
result of this implementation of AND and OR is that they can be" used as simple conditional statements.
For example: (AND (LISTP x) (CDR x» returns the value of (CDR x) if x is a list cell, otherwise
it returns NIL without evaluating (CDR x). In general. this use of AND and OR should be avoided in
favor of more explicit "conditional statements in order to make programs more readable.

(S"ELECTQ x CLAUSEI GLAUSE2 ... GLAUSEK DEFAULT) [NLambda NoSpread Function]
Selects a form or sequence of forms based on the value of its first argument X.

Each clause GLAUSEj is a list of the form (Sj Gil ... GiN) where Si is the selection
key. The operation of SELECTQ can be paraphrased as:

IF x = 51 THEN Gll ... GIN ELSEIF x = S2 THEN··· ELSE DEFAULT.

If Si is an atom, the value of x is tested to see if it is E Q to Si (which is not
evaluated). If so. the expressions Gil ..• GiN are evaluated in sequence, and the
value of the SELECTQ is the value of the last expression evaluated. i.e., GiN'

If Si is a list. the value of x is compared with each element (not evaluated) of sj.
and if x is E Q to anyone of them, then Gil ... GiN are evaluated as above.

If CLAUSEi is not selected in one of the two ways described, CLAUSEi+ l is tested,
etc., until all the clauses have been tested. If none is selected. DEFAULT is evaluated,
and its value is returned as the value of the SE LECTQ. DEFAULT must be present.

An example of the form of a SELECTQ is:

[SELECTQ MONTH
(FEBRUARY (if (LEAPYEARP) then 29 else 28»
«APRIL JUNE SEPTEMBER NOVEMBER) 30)
31]

If the value of MONTH is the litatom FEBRUARY. the SELECTQ returns 28 or 29
(depending on (LEAPYEARP»; otherwise if MONTH is APRIL, JUNE. SE PTEMBE R,

4.2

CONDITIONALS AND ITERATIVE STATEMENTS

or NOVEMBER, the SELECTQ returns 30; otherwise it returns 3l.

SELECTQ compiles open, and is therefore very fast; however, it will not work if
the value of x is a list, a large integer, or floating point number, since SELECTQ
uses EQ for all comparisons.

Note: The function SELCHARQ (page 2.13) is a version of SELECTQ that recognizes CHARCODE litatoms.

(SELECTC x CLAUSEl CLAUSE2 ... CLAUSEK DEFAULT) [NLambda NoSpread Function]
"SELECTQ-on-Constant." Similar to SELECTQ except that the selection keys are
evaluated, and ~e result used as a SELECTQ-style selection key.

SELECTC is compiled as a SELECTQ, with the selection keys evaluated at compile
time. Therefore, tile selection .keys act like compile-time constants (see page 12.5).
For example:

[SELECTC NUM
{ (for X from 1 to 9 collect (TIMES X X» "SQUARE")
"HIP"]

compiles as:

[SELECTQ NUM
{ (I 4 9 16 25 36 49 64.81) "SQUARE")
"HIP"]

(PROG 1 Xl XiJ ... xN) [NLambda NoSpread Function]
Evaluates its arguments in order. and returns the value of its first argument Xl' For
example, {PROGI X (SETQ X Y» sets X to Y, and returns X's original value.

(PROG2 Xl X2 ... XN) [Function]

(PROGN Xl X2 ...

(PROG VARLST El

Similar to P ROG 1. Evaluates its. arguments in order, and returns the value of its
second argument x2,

X N) . [NLambda NoSpread Function]
PROGN evaluates each of its arguments in order, and returns the value of its last
argument P ROG N is used to specify more than one computation where the syntax
allows only one, e.g., (SELECTQ ... (PROGN ... » allows evaluation of several
expressions as the default condition for a SELECTQ.

E2 ... EN) [NLambda NoSpread Function]
This function allows the user to write an ALGOL-like program containing Interlisp
expressions (forms) to be executed. The first argument, VARLST, is a list of local
variables (must be NIL if no variables are used). Each atom in VARLST is treated
as the name of a local variable and bound to NIL. VARLST can also contain lists
of the form (atom form). In this case, atom is the name of the variable and is
bound to the value of form. The evaluation takes place before any of the bindings
are performed, e.g., (P ROG « X Y) (Y X» ...) will bind local variable X to
the value of Y (evaluated outside the PROG) and local variable Y to the value of
X (outside the PROG). An attempt to use anything othe'r than a . literal atom as a
PROG variable will cause an error, ARG NOT L ITATOM. An attempt to use NIL
or T as a PROG variable will cause an error, ATTEMPT TO BIND NIL OR T.

4.3

(GO x)

(RETURN x)

The IF Statement

The rest pf the PROG is a sequence of non-atomic statements (forms) and litatoms
(labels). iThe forms are evaluated sequentially; the labels serve only as markers.
The two special functions GO and RETURN alter this flow of control as described
below. The value of the PROG is usually specified by the function RETURN. If no
RETURN is executed before' the PROG "falls off the end/' the value of the PROG is
NIL.

[NLambdaNoSpread Function]
GO is used to cause a transfer in a PROG. (GO L) will cause the PROG to evaluate
forms starting at the label L (GO does not evaluate its argument). A GO can be
used at any level in a P ROG. If the label is not found, GO will search higher progs
within the same junction, e.g., (PROG ... A ... (PROG ... (GO A»). If the
label is not found in the function in which the PROG appears, an error is generated,
UNDEFINED OR ILLEGAL GO.

[Function]
A RETURN is the normal exit for a PROG. Its argument is evaluated and is
immediately returned the value of the P ROG in which it appears.

Note: If a GO or RETURN is executed in an interpreted function which is not a PROG, the GO or RETURN
. will be executed in the last interpreted P ROG entered if any. otherwise cause an error.

GO or RETURN inside of a compiled function that is not a PROG is not allowed, and will cause an error
at compile time.

As a corollary, GO or RETURN in a functional argument, e.g., to SORT, will not work compiled. Also,
since NLSETQ's and ERSETQ's compile as separate functions, a GO or RETURN cannot be used inside of a
compiled NLSETQ or ERSETQ if the corresponding PROG is outside. i.e., above, the NLSETQ or ERSETQ.

4.1 THE IF STATEMENT

The I F statement provides a way of way of specifying conditional expressions that is much easier and
readable than using the COND function directly. CLISP translates expressions employing IF, THEN,
ELSEIF, or ELSE into equivalent COND expressions. In general, statements of the form:

(IF AAA THEN BBB ELSEIF eee THEN DDD ELSE EEE)

are translated to:

(COND (AAA BBB)
(eee DDD)
(T EEE))

The segment between IF or ELSEIF and the next THEN corresponds to the predicate of a COND clause,
and the segment between THEN and the next ELSE or ELSE IF as the consequent(s). ELSE is the same as
ELSEIF T THEN. These words:are spelling corrected using the spelling list CLISPIFWORDSPLST. Lower
case versions (if, then, elseiif, else) may also be used.

If there is nothing following a THEN, or THEN is omitted entirely, then the resulting CONO clause has a

4.4

CONDITIONALS AND ITERATIVE STATEMENTS

predicate but no consequent. For example, (IF X THEN ELSEIF ...) and (IF X ELSEIF ...) both
translate to (CONO (X) ...), which means that if X is not NIL, it is returned as the value of the CONO.

CLISP considers IF, THEN, ELSE, and ELSEIF to have lower precedence than all infix and prefix
operators, as well as Interlisp forms, so it is sometimes possible to omit parentheses around predicate or
consequent forms. For example, (IF Faa X Y THEN···) is equivalent to (IF (Faa X Y) THEN
...), and (IF X THEN Faa X Y ELSE ..•) as equivalent to (IF X THEN (Faa X Y) ELSE ...).
Essentially, CLISP determines whether the segment between THE N and the next E L S E or E L S ElF
corresponds to one form or several and acts accordingly, occasionally interacting with the user to resolve
ambiguous cases. Note that if Faa is bound as a variable, (I F Faa THEN ...) is translated as (CONO'
(Faa ... », so if a call to the function F 00 is desired, use (I F (F 00) THE N ...) .

4.2 THE ITERATIVE STATEMENT

The iterative statement (Ls.) in its various forms permits the user to specify complicated iterative
- statements in a straightforward and visible manner. Rather than the user having. to perfoni1 the mental
transformations to an equivalent Interlisp form using PROG, MAPC, MAPCAR, etc., the system does it for
him. The -goal was to provide a robust and tolerant facility which could "make sense" out of a wide class
of iterative statements. Accordingly, the user should not feel obliged to read and understand in detail the
description of each operator given below in order to use iterative statements.

An iterative statement is a form consisting of a number of special words (known as Ls. -operators or
i.s.oprs), followed by operands. Many i.s.oprs (FOR, DO, WH I LE, etc.) are similar to iterative statements
in other programming languages; other i.s.oprs (COLLECT, JOIN, IN, etc.) specify useful operations in a
Lisp environment. Lower case versions of Ls.oprs (do, co 11 ect, etc.) can also be used. Here are some
examples of iterative statements:

~ (for X from 1 to 5 do (PRINT 'Faa»
FOO
FOO
Faa
Faa
Faa
NIL
~ (for X from 2 to 10 by 2 collect (TIMES X X»
(4 16 36 64 100)
~ (for X in '(A B 1 C 6.5 NIL (45» count (NUMBERP X»
2

Iterative statements are implemented through eLISP. which translates the form into the appropriate
P ROG, MAPCAR, etc. Iterative statement forms are translated using all eLISP declarations in effect
(standardlfastlundoablel etc.); see page 16.9. Misspelled i.s.oprs are recognized and corrected using the
spelling list CLISPFORWOROSPLST. The order of appearance of operators is never important; eLISP
scans the entire statement before it begins to construct the equivalent lnterlisp form. New i.s.oprs can be
defined as described on page 4.13.

If the user defines a function by the same name as an i.s.opr (WHILE, TO, etc.), the i.s.opr will no longer
have the eLISP interpretation when it appears as CAR of a form. although it w~ll continue to be treated

4.5

I.s.types

as an i.s.opr if it appears in the, interior of an iterative statement. To alert the user, a warning message is
printed, e.g., (WHILE DEFINED, THEREFORE DISABLED IN CLISP).

4.2.1 I.s.types

The following i.s.oprs are examples of a certain kind of iterative statement operator called an i.s.type. The
Ls.type specifies what is to be done at each iteration. Its operand is called the "body" of the iterative
statement Each iterative statement must have one and only one i.s.type.

DO FORM

COLLECT FORM

JOIN FORM

SUM FORM

COUNT FORM

ALWAYS FORM

NEVER FORM

[I.S. Operator]
Specifies what is to be done at each iteration. DO with no other operator specifies
an infinite loop. If some explicit or implicit terminating condition is specified, the
value of the Ls. is NIL. Translates to MAPC or MAP whenever possible.

[I.S. Operator]
Specifies that the value of FORM at each iteration is to be collected in a lisi' which
is returned as the value of the Ls. when it tenninates. Translates to MAPCAR,
MAPLIST or SUBSET whenever possible.

When COLLECT translates to a PROG (e.g .• if UNTIL, WHILE, etc. appear in the
i.s.), the translation employs an open TCONC using two pointers similar to that
used by the compiler for compiling MAPCAR. To disable this translation, perform
(CLDISABLE 'FCOLLECT).

[I.S. Operator]
Similar to COLLECT, except that the values of FORM at each iteration are NCONCed.
Translates to MAPCONC or MAPCON whenever possible. INCONC, IMAPCONC, and
IMAPCON are used when the CLISP declaration UNDOABLE is in effect

[I.S. Operator]
Specifies that the values of FORM at each iteration be added together and returned
as the value of the Ls., e.g., (FOR I FROM 1 TO 5 SUM 11"2) is equal to
1+4+9+16+25. IPLUS, FPLUS, or PLUS will be used in the translation depending
on the CLISP declarations in effect.

[I.S. Operator]
Counts the number of times that FORM is true, and returns that count as its value.

[I.S. Operator]
Returns T if the value of FORM is non-N I L for all iterations. (Note: returns NIL
as soon as the value of FORM is NIL).

[I.S. Operator]
Similar to ALWAYS, except returns T if the value of FORM is never true. (Note:
returns NIL as soon as the value of FORM is non-N I L).

The following i.s.types explicitly refer to the iteration variable (Lv.) of the iterative statemen~ which is a
variable set at each iteration. This is explained below under FOR.

THERE IS FORM [I.S. Operator]
Returns the first value of the Lv. for which FORM is non-NIL, e.g., (FOR X IN Y

4.6

CONDITIONALS AND ITERATIVE STATEMENTS

THEREIS (NUMBERP X» returns the first number in Y. (Note: returns the value
of the Lv. as soon as the value of FORM is non-N,I L).

LARGEST FORM [I.S. Operator]
SMALLEST FORM [I.S. Operator]

. Returns the value of the Lv. that provides the largest/smallest value of FORM.

$$EXTREME is always bound to the current greatest/smallest value, $$VAL to the
value of the Lv. from which it came.

4.2.2 Iteration Variable I.s.oprs

FOR VAR

FOR VARS

FOR OLD VAR

BIND VAR

BIND VARS

[I.S. Operator]
Specifies the iteration variable (Lv.) which is used in conjunction with I~. ON,

. FROM, TO, and BY. The variable is rebound within the Ls., so the value of the
variable outside the Ls. is not effected. Example:

+- (SETQ X 55)
55
+- (for X from 1 to 5 collect (TIMES X X»
(1 4 9 16 25)
+- X
55

[I.S. Operator]
VARS a list of variables, e.g., (FOR (X Y Z) IN···). The first variable is the
Lv., the rest are dummy variables. See BIND below.

[I.S. Operator]
Similar to FOR, except that VAR is not rebound within the Ls., so the value of the
Lv. outside of the Ls. is changed. Example:

+- (SETQ X 55)
55
+- (for old X from 1 to 5 collect (TIMES X X»
(1 4 9 16 25)
+- X
6

[I.S. Operator]
[I.S. Operator]

Used to specify dummy variables. which are bound locally within the i.s.

Note: FOR, FOR OLD, and BIND variables can be initialized by using the form VAR+-FORM:

(FOR OLD (X+-FORM) BIND (Y+-FORM) .•.)

IN FORM [I.S. Operator]
Specifies that the i.s.is to iterate down a list with the i. v. being reset to the
corresponding element at each iteration. For example, (FOR X IN Y DO ...)
corresponds to (MAPC Y (FUNCT ION (LAMBDA (X) ... »). If no Lv. has
been specified. a dummy is supplied. e.g., (IN- Y COLLECT CADR) is equivalent

4.7

ON FORM

Iteration Variable I.s.oprs

to {MAPCAR Y (FUNCT ION CADR».

[I.S. Operator]
Same as IN except that the i.v. is reset to the corresponding tail at each iteration.
Thus I N corresponds to MAPC, MAPCAR, and MAPCONC, while ON corresponds to
MAP, MAPLIST, and MAPCON.

Note: for both I N and ON, FORM is evaluated before the main part of the i.s. is entered, i.e. outside of
the scope of any of the bound variables of the i.s. For example, {FOR X B I NO {Y+-' (1 2 3» IN Y
.. ,) will map down the list which is the value of Y evaluated outside of the Ls., not (1 2 3),

IN OLD VAR [I.S .. Operator]
Specifies that the Ls. is to iterate down VAR, with VAR itself being reset to the
corresponding tail at each iteration, e.g., after (FOR X I N 0 L 0 L DO '" UN TIL
...) finishes, L will be some tail of its original value.

I NOLO (VAR4-FORM) [I.S. Operator]

ON OLD VAR

Same as IN OLD VAR, except VAR is first set to value of FORM.

. [I.S. Operator]
Same as IN 0 LD VAR except the Lv. is reset to the current value of VAR at each
iteration, instead of to (CAR VAR).

ON OLD (VAR+-FORM) [I.S. Operator]

INSIDE FORM

FROM FORM

. TO FORM

Same as ON OLD VAR, except YAR is first set to value OfF~RM.

[I.S. Operator]
Similar to I N, except treats first non-list, non-N I L tail as the last element of the
iteration, e.g., INS IDE '(ABC 0 . E) iterates five times with the Lv, set to
E on the last iteration. INS IDE 'A is equivalent to I NS IDE '(A), which will
iterate once.

[I.S. Operator]
Used to specify an initial value for a numerical Lv. The i.v. is automatically
incremented by 1 after each iteration (unless BY is specified). If no i. v. has been
specified, a dummy Lv. is supplied and initialized, e.g., (FROM 2 TO 5 COLLECT
SQ R T) returns (1. 4 14 1. 732 2. 0 2. 23 6) .

[I.S. Operator]
Used to specify the final value for a numerical i. v. If F ROM is not specified, the
Lv. is initialized to 1. If no Lv. has been specified, a dummy Lv. is supplied
and initialized. If BY is not specified, the i. v. is automatically incremented by 1
after each iteration.1 When the Lv. is definitely being incremented, i.e., either BY is
not specified, or its operand is a positive number, the Ls. terminates when the i. v.
exceeds the value of FORM e.g., (FOR X FROM 1 TO 10 --) is equivalent to
{FOR X FROM 1 UNT I L (X GT 10) - -). Similarly, when the Lv. is definitely

lexcept when both the operands to TO and F ROM are numbers, and TO's operand is less than FROM's
operand, e.g., FROM iO TO 1, in which case the Lv. is decremented by 1 after each iteration. In this
case, the i.s. terminates when the Lv. becomes less than the value of FORM.

4.8

CONDITIONALS AND ITERATIVE STATEMENTS

being decremented the i.s. terminates when the Lv. becomes less than the value of
FORM (see description of BY).

Note: FORM is evaluated only once, when the i.s. is first enterec:L and its value
bound to a temporary variable against which the Lv. is checked each interation. If
the user wishes to specify an Ls. in' which the value of the boundary condition is
recomputed each iteration, he should use WHILE or UNTIL instead of TO.

BY FORM (with INION) [I.S. Operator]
If I N or ON· have been specifiec:L the value of FORM determines the tail for
the next iteration, which in tum determines the value for the i. v. as described
earlier, Le., the new Lv. is CAR of the tail for IN, the tail itself for ON. In
conjunction with I N, the user can refer to the current tail within FORM by using
the Lv. or the operand for INION, e.g., (FOR Z IN L BY (CDDR Z) ...)
or (FOR Z IN L BY (CDDR L) ...) .. At translation time, the name of the
internal variable which holds the value of the current tail is substituted for the i.v.
throughout FORM. For example, (FOR X IN YBY (CDR (MEMB ' FOO (CDR
X) » COLLECT X) specifies that after each iteration, CDR of the current tail is
to be searched for the atom FOO, and (CDR of) this latter tail to be used for the
next iteration.

BY FORM (without INION) [I.S. Operator]

AS YAR

If I N or ON have not been usec:L BY specifies how the Lv. itself is reset at each
iteration. If FROM or TO have been specified, the Lv. is known to be numerical,
so the new Lv. is computeq. by adding the value of FORM (which 'is reevaluated
each iteration) to the current value of the Lv., e.g., (FOR N FROM '1 TO 10 BY
2 COLLECT N) makes a list of the first five odd numbers.

If FORM is a positive number,2 the Ls. terminates when the value of the Lv. exceeds
the value of TO's operand. If FORM is a negative number, the Ls. terminates when
the value of the Lv. becomes less than TO's operand, e.g., {FOR I FROM N TO M
BY - 2 UNT I L (I L T M) ...). Otherwise, the terminating condition for each
iteration depends on the value of FORM for that iteration: if FORM(O, the test is
whether the i.v. is less than TO's operand, if FORM)O the test is whether the i.v.
exceeds TO's operand, otherwise if 1f~ORM=O, the i.s. terminates unconditionally.

If F ROM or TO have not been specified and FORM is not a number, the i. v. is
simply reset to the value of FORM after each iteration, e.g., (FOR I FROM N BY
M ...) is equivalent to {FOR I+-N BY (IPLUS 1M) ...).

[I.S. Operator]
Used to specify an iterative statement involving more than one iterative variable,
e.g., (FOR X IN Y AS U I N V DO --) corresponds to MAP2C. The i.s. ter
minates when any of the terminating conditions are met, e.g., (FOR X IN Y AS
I FROM 1 TO 10 COLLECT X) makes a list of the first ten elements of Y, or
however many elements there are 011 Y if less than 10.·

The operand to AS, YAR, specifies the new Lv. For the remainder of the i.s.,
or until another AS' is encountered, all operators refer to the new Lv. For

2 FORM itself, not its value, which in general CLISP would .. have no way of knowing in advance.

4.9

OUTOF FORM

Condition I.s.oprs

example, (FOR I FROM 1 TO N1 AS J FROM 1 TO N2· BY 2 AS K FROM
N 3 TO 1 BY -1 - -). terminates when I exceeds N 1, or J exceeds N 2, or K
b~omes less than L After each iteration, I is incremented by 1, J by 2, and K by
.. 1.

[I.S. Operator]
For use with generators (page 7.13). On each iteration. the i.v. is set to successive
values: returned by the generator. The i.s. terminates when the generator rullS out

4.2.3 Condition I.s.oprs

WHEN FORM

UNLESS FORM

WHILE FORM

UNTIL FORM

[I.S. Operator]
Provides a way of excepting certain iterations. For example, (fOR X IN Y
COLLECT X WHEN (NUMBERP X» collects only the elements of Y that are
numbers.

[I.S. Oper~tor]
Same as WHEN except for the difference in sign, Le., WHEN Z is the same as UNLESS
(NOT Z).

[1.5. Operator]
Provides a way of tenninating the i.s. WHILE FORM evaluates FORM before each
iteration, and if the value is NIL, exits.

[I.5. Operator]
Same as WHILE except for difference in sign, Le., WHiLE X is equivalent to UNTIL
(NOT X).

UNTIL N (N a number) [1.5. Operator]
Equivalent to UNTIL (r.v. GT N).

REPEATWHILE FORM [1.5. Operator]
Same as WHILE except the test is performed after the evalution of the body, but
before the Lv. is reset for the next iteration.

REPEATUNTIL FORM [1.5. Operator]
Same as UNT I L. except the test is performed after the evaluation of the body.

REPEATUNTIL N (N a number) [1.5. Operator]

4.2.4 Other I.s.oprs

FIRST FORM

FINALLY 'FORM

Equivalent to REPEATUNTIL (r.v. GT N).

[1.5. Operator]
FORM is evaluated once before the first iteration, e.g.~ {FOR X Y Z IN L FIRST
(F 00. Y Z) ...), and F 00 could be used to initialize Y and Z.

[I.S. Operator]
FORM is evaluated after the i.s. terminates. For example,. (FOR X IN

4.10

CONDITIONALS AND ITERATIVE STATEMENTS

L BIND Y~O DO (IF ATOM X THEN Y~Y+l) FINALLY (RETURN V»~ will
return the number of atoms in L.

EACHT IMf FORM [I.S. Operator]

DECLARE: DECL

DECLARE DECL

FORM is evaluated at the beginning of each iteration before, and regardless of, any,
testing. For example, consider,

(FOR I FROM 1 TO N
DO (... (F 00 I) ...)
UNLESS (... (FOO I) ...)
UNT I L (... (FOO I) ... »

The user might want to set a temporary variable to the value of (FOO I) in order
to avoid computing it three times each iteration. However, without knowing the
translation, he would not know whether to put the assignment in the operand to
DO, UNLESS, or UNTIL, Le., which one would be executed first. He can avoid this
problem by simply writing EACHTIME (SETQ J (FOO I».

[I.S. Operator]
Inserts the fonn (DECLARE DECL) iinmediately following the PROG variable list in
the translation, or, in the case that the translation is a mapping function rather than
a P ROG, immediately following the argument list of the lambda expression in the
translation. This can be used to declare variables bound in the iterative statement
to be compiled as lotal or special variables (see page 12.4). For example (FOR X
IN Y DECLARE; (LOCALVARS ,X) ...). Several DECLARE:s can apppear in
the same Ls.; the deClarations' are inserted in the order they appear. ~

[I.S. Operator]
Same as DECLARE:.

Note that since DECLARE is also the name of a function, DECLARE cannot be used
as an Ls. operator when it appears as CAR of a form, i.e. as the first Ls. operator
in an iterative statement. However, dec 1 a re (lower-case version) can be the first
Ls. operator.

OR I GINA L I. 5; OP R OPERAND [I.S. Operator]
I.S.OPR will be translated using its original, built-in interpretation, independent of
any user defined i.s. operators. See page 4.13.

There are also a number of Ls.oprs that make it easier to create iterative statements that use the clock,
looping for a given period of time. See Timers, page 14.11..

4.2.5 Miscellaneous

• Lowercase versions of all i.s. operators are eq~ivalent to the uppercase, e.gr, (f 0 r X i n Y ...).

• Each Ls. operator is of lower precedence than all Interlisp forms. so parentheses around the operands
can be omitted. and will be supplied where necessary, e.g.. BIN 0 (X Y Z) can be written BIN 0 X Y
Z, OLD (X"-FORM)' as OLD X"-FORM, WHEN (NUMBERP X) as WHEN NUMBERP X, etc.

• RE TURN or GO may be used in any operand. (In this case, the translation of the iterative statement will

4.11

Miscellaneous

always be in the form of a PROG, never a mapping function.) RETURN means return from the 1.s. (with
the indicated value), not from the function in which the 1.s appears. GO refers to a label elsewhere in
the function in which the Ls. appears, except for the labels $$LP, $$ITERATE, and $$OUT which are
reserved, as described below.

" .
• In the case of FIRST, FINALLY, EACHTIME, .DECLARE: o.r one of the Ls.types, e.g., DO, COLLECT,
SUM, etc., the operand can consist of more than one form, e.g., COLLECT (PRINT X: 1) X: 2, in which
case a PROGN is supplied.

• Each operand can be the name of a function, in which case it is applied to the (last) Lv., e.g., (FOR X
IN Y DO PRINT WHEN NUMBERP) is the same as (FOR X IN Y DO (PRINT X) WHEN (NUMBERP
X». Note that the Lv. need not be explicitly specified, e.g., (IN Y DO PRINT WHEN NUMBERP) will
work.

For Ls.types, e.g., DO, COLLECT, JOIN, the function is always applied to the first Lv. in the i.s., whether
explicity named or not. For example, (IN Y AS I FROM 1 TO 10 DO PRINT) prints elements on
Y, not integers between 1 and 10.

Note that this feature does not make much sense for FOR, OLD, BIND, IN, or ON, since they "operate"
before the loop starts, when the Lv. may not even be bound. . .

In the case of BY in conjunction with I N, the function is applied to the current tail e.g., FOR X IN Y
BY CDDR ••• is the same as FOR X IN Y BY (CDOR X) •••.

• While the exact form of the translation of an iterative statement depends .on which op~rators are present,
. a PROG will always be used whenever the i.s. specifies duminy variables, I.e., if. a B I NO operator appears,
or there is more than one variable specified by a FOR operator, or a GO, RETURN, or a reference to the
variable $$VAL appears in any of the operands. When a PROG is used, the form of the translation is:

(P ROG VARIABLES

{initialize}
$$LP {eachtime}

{test}
{body}

$$ITERATE
{aftertest}
{update}
(GO $$LP)

$$OUT {finalize}
(RETURN $$VAL»

where {test} corresponds to that portion of the loop that tests for termination and also for those
iterations for which {body} is not going to be executed, (as indicated by a WHEN or UNLESS): {body}
corresponds to the operand of the i.s.type. e.g., DO, COLLECT, etc.; {aftertest} corresponds to those
tests for termination specified by REPEATWHILE or REPEATUNTIL; and {update} corresponds to that
part that resets the tail, increments the counter, etc. in preparation for the next iteration. {i nit i ali z e },
{final ize}, and {eachtime} correspond to the operands of FIRST, FINALLY, and EACHTIME, if
any.

Note that since {body} always appears at the top level of the PROG, the user can insert labels in {body},
and GO to them from within {body} or from other Ls. operands, e.g., (FOR X IN Y FIRST (GO A)
DO (FOO) A (F IE)). However, since {body} is dwimified as a list of forms, the label(s) should be

4.12

CONDITIONALS AND ITERATIVE STATEMENTS

added to the dummy variables for the iterative statement in order to prevent their being dwimified and
possibly "corrected", e.g., (FOR X IN Y B I NO A FIRST (GO A) DO (FOO) A (F IE)). The user
can also GO to $$LP, $$ITERATE, or $$OUT, or explicitly set $$VAL.

4.2.6 Errors in Iterative Statements

An error will be generated and an appropriate diagnostic printed if any of the following conditions hold:

1. Operator with null operand, i.e., two adjacent operators, as in FOR X IN Y UN TIL DO --

2. Operand consisting of more than one form (except as operand to FIRST, F INALL Y, or one of the
i.s.types), e.g., FOR X IN Y (PRINT X) COLLECT

3. IN, PN, FROM, TO. or BY appear twice in same i.s.

4. Both I N and 0 N used on same i. v.

5. FROM or TO used with IN or ON on same Lv.

6. More than one Ls.type, e.g., a DO and a SUM.

In 3, 4, or 5, an error is not generated if an intervening AS occurs.

If an error occurs, the Ls. is left u~changed.

If no DO, COLLECT, JOIN or any of the other Ls.types are specified, CLISP will first attempt to find an
operand consisting of more than one form, e.g., FOR X IN Y (PRINT X) WHEN ATOM X, and in this
case will insert a DO after the first form. (In this case, condition 2 is not considered to be met, and an
error is not generated.) If CLISP cannot find such an operand, and no WH I LE or UNT I L appears in the
Ls., a warning message is printed: NO DO, COLLECT, OR JOIN: followed by the i.s.

Similarly, if no terminating condition is detected, i.e., no IN, ON, WHILE, UNTIL, TO. or a RETURN or GO,
a warning message is printed: 3 POSSIBLE NON-TERMINATING ITERATIVE STATEMENT: followed
by the iterative statement. However, since· the user may be planning to terminate the i.s. via an error,
control-E, or aRE T F ROM from a lower function, the Ls. is still translated.

4.2.7 Defining New Iterative Statement Operators

The following function is available for defining new or redefining existing iterative statement operators:

(I . S. OPR NAME FORM OTHERS EVALFLG) [Function]
NAME is the name of the new i.s.opr. If FORM is a list, NAME will be a new
i.s.lype (see page 4.6), and FORM its body.

OTHERS is an (optional) list of additional Ls. operators and operands which will
be added to the Ls. at the place where NAME appears. If FORM is NIL, NAME is
a new i.s.opr defined entirely by OTHERS.

3unless the 'value of CL I SP I . S . GAG is T (initially" NIL).

4.13

I)efining New Iterative Statement Operators

In both IfORM and OTHERS, the atom $$VAL can be used to reference the value to
be returned by the Ls., I. V'. to reference the current Lv., and BODY to reference
NAME'S pperand. In other words, the current Lv. will be substituted for all
instances of I. V. and NAME's operand will be substituted for all instances of
BODY throughout FORM and OTHERS.

If EVALFLG is T, FORM and OTHERS are evaluated at translation time, and their
values used as described above. LSTVARS is a list of dummy variable names
used by !the iterative statement translator. If the user wishes to obtain a dummy

'variable for use in translation, and be sure it does not clash with a dummy variable
already 4sed by some other i.s. operators, he can use CAR of LSTVARS. and reset
LSTVAR~ to (CDR LSTVARS).

If NAME was previously an i.s.opr and is being redefined, the message (NAME

REDEFINED) will be printed (unless DFNFLG=T), and ail-expressions using the
i.s.opr NAME that have been translated will have their translations discarded.

For example, for COLLECT, FO~M would be (SETQ $$VAL (NCONCl $$VAL BODY».

For SUM, FORM would be ($$VAL +-$$VAL +BODY),4 OTHERS would be (F I RST $SVAL +-0).

For NEVER, FORM would be (IF BODY THEN $$VAL+-NIL (GO $$OUT»).5

ForTHEREIS,FORMwouldbe(IF BODY THEN $$VAL+-I.V. (GO $$OUT».

Examples:

To define RCOLLECT, a versio~ of COLLECT which uses CONS instead of NCONCl and then reverses the
list of values:

(I.S.OPR 'RCOLLECT
'($$VAL+-(CONS BODY $$VAL»
'(FINALLY (RETURN (DREVERSE $$VAL»)]

To define TCOLLECT, a version of COLLECT which uses TCONC:

(I.S.OPR 'TCOLLECT
'(TeONC $$VAL BODY)
'(FIRST $$VAL+-{CONS) FINALLY {RETURN (CAR $$VAL»)]

To define PRODUCT:

{I.S.OPR 'PRODUCT
'($$VAL+-$$VAL*BODY)
'(FIRST $$VAL+-l)]

To define UPTO, a version of TO whose operand is evaluated only once:

4$$VAL+BODY is used instead of (IPLUS $$VAL BODY) so that the choice of function used in the
translation, i.e., I PLUS, F PLUS,! or PLUS, will be determined by the declarations then in effect.

5(IF BODY THEN RETURN NIL) would exit from the i.s. immediately and therefore not execute the
operations specified via a F I NALL Y {if any).

4.14

(I.S.OPR 'UPTO
NIL

CONDITIONALS AND ITERATIVE STATEMENTS

'(BIND $$FOO~BODY TO $$FOO)]

To redefine TO so that instead of recomputing FORM each iteration, a variable is bound to the value of
FORM,. and then tha,t variable is used: .

(I.S.OPR 'TO
NIL
'(BIND $$ENO FIRST $$ENO~BODY ORIGINAL TO $$ENO)]

Note the use of ORIGINAL to redefine TO in terms of its original definition. ORIGINAL is intended
for use in redefining built-in operators, since their definitions are not accessible, and hence not directly
modifiable. Thus if the operator had been defined by the user via I .S.OPR, ORIGINAL would not
obtain its original definition. In this case, one presumably would simply modify the i.s.opr definition.

I . S . 0 P R can also be used to define synonyms for already defined Ls. operators ,by calling I. S . 0 P R
with FORM an atom, e.g., (I. S. OPR 'WHERE 'WHEN) makes WHERE be the same as WHEN. Similarly,
following (I. S. OPR 'ISTHERE 'THEREIS), one can 'write (ISTHERE ATOM IN Y), and following
(I.-S.OPR 'FIND 'FOR) and (I.S.OPR 'SUCHTHAT 'THEREIS), one can write (FIND X IN' Y
SUCHTHAT X MEMBER Z). In the current system, WHERE is synonymous with WHEN, SUCHTHAT and
ISTHERE with THERE IS, FIND with FOR, and THRU with TO.

If FORM is the atom MOD I FIE R, then NAME is defined as an Ls.opr which can immediately follow another
Ls. operator (I.e., an error will. not be gene~ated, as described previously). NAME will not te~inate the
scope of the previous operator, and, will be stripped off when OW'IMI Fy'-is called on its operand: OLD
is an example of a MOD I FIE R type of operator. The MOD I FIE R feature allows the user to define Ls.
operators similar to OLD, for use in conjunction with some other user defined Ls.opr which will produce
the appropriate translation.

The file package command I. S. OPRS(page 1l.25) will dump the definition of Ls.oprs. (I. S. OPRS
PRODUCT UP TO) as a file package command will print suitable expressions so that these' iterative
statement operators will be (re)defined when the file is loaded.

4.15

Defining New Iterative Statement Operators

4.16

CHAPTER 5

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

.
The Interlisp programming system is designed to help the user define and debug functions. Developing
an applications program in Interlisp involves defining a number of functions in tenns of the system
primitives and other user-defined functions. Once definecLthe user's functions may be referenced exactly
like Interlisp primitive functions, so the programming process can be viewed as extending the Interlisp
language to include the required functionality.

The user defines a function with a list expressions known as an EXPR. An EXPR specifies if the function
has a fixed or variable number of arguments, whether these arguments are evaluated or not, the function
argument names, and a series of fonns which define the behavior of the function. For example:

(LAMBDA eX Y). (PRINT X).(PRINT V»)

A function defined with this EX P R would have two evaluated arguments, X and Y, and it would execute
(PRINT X) and (PRINT Y) when evaluated. Other types of EXPRs are described below.

A function is defined by putting an EX P R in the function definition cell of a litatom. There are a number
of functions for ~ccessing and setting fqnction definition cells, but one usually defines a function with
DEFINEQ.(page 5:9) .. For example:

~ (DEFINEQ (FOO (LAMBDA (X Y) (PRINT X) (PRINT V»~
(FOO)

The expression above will define the function F 00 to have the EX P R definition (LAMB DA (X Y) (P R I NT
X) (PR I NT Y». After being definecL· this function may be evaluated just like any system function:

~ (FOO 3 (IPLUS 3 4»
3
7
7

All function definition cells do not contain EXPRs. The compiler (page 12.1) translates EXPR definitions
into compiled code objects, which execute much faster. In Interlisp-lO, many primitive system functions
are defined with machine code objects known as SUBRs. Interlisp provides a number of "function type
functions" which detennine how a given function is defined (EXPR/compiled code/SUBR), the number
and names of function arguments, etc. See page 5.6.

Usually, functions are evaluated automatically when they appear within another function or when typed
into Interlisp. However, sometimes it is useful to envoke the Interlisp interpreter explicitly to apply a
given "functional argument" to some data. There are a number of functions which will apply a given
function repeatedly. For example, MAPCAR will apply a function (or an EXPR) to all of the elements of
a list, and return the values returned by the function:

~ (MAPCAR '(1 2 3 4 5) '{LAMBDA (X) (ITIMES X X»

5.1

Function Types

(1 4 9 16 25)

When using functional arguments, there are a number of problems which can arise, related with accessing
free variables from within a function argument Many times these problems can be solved. using the
function' FUNCT ION to create a FUNARG object (see page 5.15).

The macro facility provides another way of specifying the behavior of a function (see page 5.17). Macros
are very useful when developing code which should run very quickly, which should be compiled differently
than it is interpreted, or which should run differently in different implementations of Interlisp.

5.1 FUNCfION TYPES ,

Interlisp functions are defined using list expressions called EX P Rs. An EX P R is a list of the form
(LAMBDA-WORD ARG-LIST FORM 1 ... FORM N). LAMBDA-WORD determines whether the arguments to
this function will be evaluated or no~ ARG-LIST determines the number and names of arguments, and
FORM1 ... FORMN area series of forms to be evaluated after the, arguments are bound to, the local
variables in ARG-LIST. '

If LAMBDA-WORD is the litatom LAMBDA, then the arguments to the function are evaluated. If LAMBDA

WORD is the litatom N LAMBDA, then the arguments to the function are not evaluated. Functions which
evaluate or don't evaluate their arguments are therefore known as "lambda'" or "nlambda" functions,
resp~cti vely.

If ARG-LIST is NIL or a list of litatoms, this indicates a function with a fixed number of arguments. Each
litatom is the name of an argument for the function defined by this expression. The process of binding
these litatoms to the individual arguments is called "spreading" the arguments, and the function is called
a "spread" function. If the arglilment list is any litatom other than NIL, this indicates a function with a
variable number of arguments. known as a "nospread" function.

If ARG-LIST is anything other than a litatom or a list of litatoms, such as (LAMBDA "FOO" ...).
attempting to use this EXPR will generate an ARG NOT LITATOM' error. In addition, if NIL or T is used
as an argument name, the error A TT EMPT TO B I NO NIL OR T is generated.

These two parameters (lambdalnlambda and spreadinospread) may be specified independently, so there
are four main function types, known as lambda-spread, nlambda-spread, lambda-nospread, and nlambda
nospread functions. Each one has a different form. and is used for a different purpose. These four
function types are described more fully below.

Note: The Lambdatran lispusers package provides facilities for creating new function types which
evaluate/spread their arguments in different ways than those provided by Interlisp. See page 23.16.

5.1.1 Lambda-Spread Functions

Lambda-spread functions take a fixed number of evaluated arguments. This is the most common function
type~' A lambda-spread EXPR has the form:

{LAMBDA (ARGl ... ARGM) FORM1 ... FORMN)

5.2

FUNCTION DEFINITION, MANIPULA nON, AND EV ALUA nON

The argument list (ARG 1 .•• ARGM) is a list of litatoms that gives the number and names of the formal
arguments to the function. If the argument list is () or NIL, this indicates that the function takes no
arguments. When a lambda-spread function is applied to some arguments, the arguments are evaluated,
and bound to the local variables ARGI ••• ARGMo Then, FORMI .•. FORMN are evaluated in order, and
the value of the function is the value of FORMN •

~ (OEFtNEQ (FOO (LAMBDA (X Y) (PRINT X) (PRINT Y»))
(FOO)
~ (FOO 99 (PLUS 3 4»
99
7
7

In the above example, the function F 00 defined by (LAMB DA (X Y) (P R IN T X) (P R I NT Y» is
applied to the arguments 99 and (PLUS 3 4), these arguments are evaluated (giving 99 and 7), the local
variab Ie X is bound to 99 and Y to 7, (P R I NT X) is evaluated, printing 99, (P R I N T Y) is evaluated,
printing 7, and 7 (the value of (PRINT V»~ is returned as the value of the function.

A standard feature of the Interlisp system is that no error occurs if a spread function is called with too
many or too few arguments. If a function is called with too many arguments, the extra arguments are
evaluated but ignored. If a function is called with too few arguments, the unsupplied ones will be delivered
as NIL. In fact, a spread function cannot distinguish between being given NIL as an argument, and not
being given that argument, e.g., (FOO) and (FOO NIL) are exactly the same for spread functions. If it
is necessary to di~tinguish between these two cases, use an nlamQdafunction and explicitly evaluate the
arguments with the EVAL function (page 5.11).

5.1.2 Nlambda-Spread Functions

Nlambda-spread functions take a fixed number of unevaluated arguments. An nlambda-spread EX P R has
the fonn:

(NLAMBDA (ARG l ... ARGM) FORMI ... FORMN)

Nlambda-spread functions are evaluated similarly to lambda-spread functions, except that the arguments
are not evaluated before being bound to the variables ARG1 ... ARGM'

~ (DEFINEQ (FOO (NLAMBDA (X Y) (PRINT X) (PRINT V»~))
(FOO)
~ (FOO 99 (PLUS 3 4»
99
(PLUS 3 4)
(PLUS 3 4)
~

In the above example, the function FOO defined by (NLAMBDA (X Y) (PR I NT X) (PR I NT Y» is
applied to the arguments 99 and (PLUS 3 4), these arguments are bound unevaluated to X and Y,
(PRINT X) is evaluated, printing 99, (PRINT Y) is evaluated, printing (PLUS 3 4), and the list
(PLUS 3 4) is returned as the value of the function.

Note: Functions can be defined so that all of their arguments are evaluated (lambda functio~s) or none

5.3

Lambda-Nospread Functions

are evaluated (nlambda functions). If it is desirable to write a function which only evaluates some of its
arguments (e.g. SETQ), the function should be defined as an nlambda, with some arguments explicitly
evaluated using the function EVAL (page S.ll). If this is done, the user should put the litatom EVAL on
the property list of the function under the property INFO. This infonns various system packages such as
DWIM, CLISP, and Masterscope that this function in fact does evaluate its arguments, even though it is
an nlambda.

5.1.3 Lambda .. Nospread Functions

Lambda-nospread functions take a variable number of evaluated arguments. A lambda-nospread EXPR
has the fonn:

(LAMBDA VAH FORMl ..• FORMN)

VAH may be any litatom, except NIL and T. When a lambda-nospread function is applied to some
arguments, each of these arguments is evaluated and the values stored on the pushdown list. VAH is
then bound to the number of arguments which have been evaluated. For example, if FOO is defined by
(LAMBDA X ...), when (FOO ABC) is evaluated, A, B, and C are evaluated and X is bound to 3.
VAH should never be reset.

The following functions are used for accessing the arguments of lambda-nospread functions:

(ARG VAR M) [NLambda Function]
Returns the Mth argument for the lambda-nospread function whose argument list .
is VAH. VAH is the name of the atomic argument list to a lambda-nospread function,
and is not evaluated; M is the number of the desired argument, and is evaluated.
The value of ARG is undefined for M less than or equal to 0 or greater than the
value of VAR.

(SETARG VAR M x) [NLambda Function]
Sets the Mth argument for the lambda-nospread function whose argument list is
VAR to x. VAR is not evaluated; M and x are evaluated. M should be between 1
and the value of VAR.

In the example below, the function FOO is defined to print all of the evaluated arguments it is given, and
return NIL (the value of the for statement).

+- (DEFINEQ (FOO
(LAMBDA X

(for ARGNUM from 1 to X do (PRINT (ARG X ARGNUM»»))
(FOO)
+- (FOO 99 (PLUS 3 4»
99
7
NIL
+- (FOO 99 (PLUS 3 4) (TIMES 3 4»
99
7
12
NIL

5.4

FUNCTION DEFINITION, MANIPULATION, AND EV ALUA TION

SolA Nlambda-Nospread Functions

Nlambda-nospread functions take a variable number of unevaluated arguments. An nlambda-nospread
EX P R has the fonn:

(NLAMBDA VAR FORM1 ... FORMN)

VAH may be any litatom, except NIL and T. Though similar in fonn to lambda-nospread EX P Rs, an
nlambda-nospread is evaluated quite differently. When an nlambda-nospread function is applied to some
arguments, VAH is simply bound to a list of the unevaluated arguments. The user may pick apart this list,
and evaluate different arguments.

In the example below, FOO is defined to print (and then return) the reverse of list of arguments it is given
(unevaluated):

~{DEFINEQ {FOO {NLAMBDA X (R~VERSE X»))
(FOO) .
~ (FOO 99 (PLUS 3 4»
({PLUS 3 4) 99)
({PLUS 3 4) 99)
~ (FOO 99 {PLUS·3 4) (TIMES 3 4»

_ (. (TIM E S 3 4) (P L U S 3 .4) 99 >" ..

({TIMES 3 4) (PLUS 3 4).99)
~

5.1.5 Compiled Functions

Functions defined by EX P Rs can be compiled by the Interlisp compiler (page 12.1), which produces
compiled code objects, which execute more quickly than the corresponding EX P R code. Functions defined
by compiled code objects may have the same four types as EXPRs (lambdalnolambda, spread/nospread).
Functions created by the compiler are referred to as compiled functions.

5.1.6 SUBRs

In Interlisp-lO, basic built-in functions such as CONS, CAR, and COND are handcoded in machine language.
These functions are known as "SUB Rs." Functions defined as SUB Rs can be lambdalnolambda or
spread/nospread, the same four function types as EX P R functions.

SUBRs are called in a special way, so their definitions are stored differently than those of compiled
or interpreted functions. GETD of a SUBR returns a dotted pair, CAR of which is an encoding' of the
ARGTYPE and number of arguments of the SUBR, and CDR of which is the address of the first instruction.
Note that each GETD of asubr performs a CONS .. Similarly, PUTD of a definition of the form (NUMBER •

ADDRESS), where NUMBER and ADDRESS are in the appropriate ranges, stores the definition as a SUBR.

5.5

Function Type Functions

5.1. 7 Function Type Functions

There are a variety of functions used .for examining the type, argument list, etc. of functions. These
functions may be given either a litatom, in which case they obtain the function definition from the
litatom's definition celt or a function definition itself.

(FNTYP FN)

(EXPRP FN)

(CCODEP FN)

(SUBRP FN)

(ARGTYPE FN)

[Function]
Returns NIL if FN is not a function definition or the name of a defined function.
Otherwise FNTYP returns one of the following twelve litatoms:

Expressions Compiled Built-In

Lambda-Spread EXPR CEXPR SUBR

Nlambda-Spread FEXPR CFEXPR FSUBR

Lambda-Nospre~d EXPR- CEXPR- SUBR-

Nlambda-Nospread FEXPR- . CFEXPR- FSUBR-

The types in the first column are all defined by EX P Rs. The types in the second
column are compiled versions of the types in the first column, ~ indicated by the

. prefix C. In the third column are the parallel types for built-in. subroutines (only
iIi.Interlisp-lO). Functions of types in tP.e first two rows have _ a -fixed number o'f
arguments, Le., are spread function·s.· Functions in the third and fourth' rows have
an indefinite number of arguments, as indicated by' the suffix •. The prefix F
indicates unevaluated arguments. Thus, for example, a C F E X P R - is a compiled
nospread"nlambda function.

FNTYP returns the litatom FUNARG if FN is a FUNARG expression. See page 5.15.

[Function]
Returns T if (FNTYP FN) is either EXPR, FEXPR, EXPR-, or FEXPR·, i.e., first
column of FNTYPs; NIL otherwise. However, (EXPRP FN) is also true if FN is
(has) a list definition that is not a SUBR, even if it does not begin with LAMBDA or
NLAMBDA. In other words, EXPRP is not quite as selective as FNTYP.

[Function]
Returns T if (FNTYP FN) is either CEXPR, CFEXPR, CEXPR·, or CFEXPR·, i.e.,
second column of FNTYPs; NIL otherwise.

[Function]
Returns T if (FNTYP FN) is either SUBR, FSUBR, SUBR·, or FSUBR·, i.e., the
third column of FNTYPs; NIL otherwise. .

[Function]
FN is the: name of a function or its definition. ARGTYPE returns 0, 1, 2, or 3, or
NIL if FN is not a function. The interpretation of this value is:

o lambda-spread functions (EXPR, CEXPR, SUBR)

5.6

(NARGS FN)

(ARGLIST FN)

FUNCTION DEFINITION, MANIPULATION, AND EV ALUA nON

1 nlambda-spread functions (F E X P R, C F EX P R, F SUB R)

2 lambda-nospread functions (EXPR*, CEXPR*, SUBR*)

3 nlambda-nospread fun~tions (FEXPR*, CFEXPR*, FSUBR*)

Le., ARGTYPE corresponds to the rows of FNTYP's.

[Function]
Returns the number of arguments of FN, or NIL if FN is not a function. If FN is
a nospread function, the value of NARGS is 1.

[Function]
Returns the "argument list" for FN. Note that the "argument list" is a litatom
for nospread functions. Since NIL is a possible value for ARGLIST, an error is
generated, ARGS NOT AVAILABLE, if FN is not a function. - -

If FN is a compiled function, the argument list is constructed, Le., each call to
ARGLIST requires making a new list. For EXPRs, whose definitions are, lists
beginning with LAMBDA orNLAMBDA, the argument list is simply CADRof GETD.
If FN has a list definition, and CAR of the definition is not LAMBDA or NLAMBDA,
ARGLIST will check to see if CAR of the definition is a member of LAMBDASPLST
(page 15.12). Ifit is, ARGLIST presumes this is a function object the user is defining
via DWIMUSERFORMS (page 15.10), and simply returns CADR of the definition as
its argument list. Otherwise A RG LIS T gene~ates an error as descri~ed above.

(Interlisp-10) If FN is a spread SUBR. the ARGLIST returns (U), (U V), (U V
W), etc. depending on the number of arguments; if a nospread SUB R. it returns
U. This is merely a "feature" of ARGLIST; SUBRs do not actually store the names
of their arguments(s) on the stack.

(SMARTARGL I ST FN EXPLAlNFLG TAlL) [Function]
A "smart" version of ARGLIST that tries various strategies to get the arglist of FN.

If FN is not defined as a function, SMARTARGLIST attempts spelling correction
on FN by calling FNCHECK (page 15.19), passing TAlL to be used for the call to
FIXSPELL. If unsuccessful, an error will be generated, FN NOT A FUNCTION.

If FN is known to the file package (page 11.1) but not loaded in, SMARTARGLIST
will obtain the arglist information from the file.

In Interlisp-10, if the HELPSYS help system is installed. SMARTARGLIST may
use it to look up the arguments to FN in the Interlisp manual files. Specifically,
HE L P S Y S will be used if EXPLAINFLG = T and FN is a nospread function, or
if FN is a spread SUB R, regardless of the value of EXPLAINFLG. For all other
cases, and when HELPSYS is undefined or unsuccessful in finding the arguments.
SMARTARGLIST simply returns (ARGLIST FN).

In order to avoid repeated calls to HE L P S Y S, and also to provide the user with an
override, SMARTARGLIST stores the arguments returned from HELPSYS on the
property list of FN under the property ARGNAMES and checks for this property
before calli~g HE L P S Y S. For spread functions, the argument list itself is stored.

5.7

Function Definition

For-nospread, the fonn is (NIL ARGLIST1 • ARGLIST2) where ARGLIST1 is the
.. value of SMARTARGLIST when EXPLAINFLG=T, and ARGLIST2 the value when

EXPLAlNFLG=NIL. For example, (GETPROP 'DEFINEQ 'ARGNAMES) = (NIL
(Xl XI ••• XN) • X). .

SMARTARGlIST is used by BREAK (page 10.4) and ADVISE (page 10.9) with EXPLAINFLG=NIL for
constructing equivalent EX P R definitions, and by the programmer's assistant command ? = (page 9.5), with
EXPLAINFLG = T.

5.2 FUNCfION DEFINITION

Function definitions are stored in a "function definition cell" associated with each litatom. This ceH -is
directly accessible via the two functions PUTD and GETD, but it is usually easier to define functions with
DE F I NEQ (page 5.9). .

(GETD FN)

(FGETD FN)

[Function]
Returns the function definition of FN. Returns NIL if FN is not a litatom, or has
no definition.

GET 0 of a compiled function constructs a pointer to the definition, with the result
that two successive calls do not produce EO results. EQP or EQUAL must be used
to compare compiled definitions.

(Interlisp"lO) GETD of a SUBR perfonns a CONS.

[Function]
Faster version of GETD. Interpreted, generates an error, BAD ARGUMENT -
FGETD, if FN is not a litatom.

FGETD is intended primarily to check whether a function has a definition, rather
than to obtain the definition. Therefore, in Interlisp-lO, F GET 0 of a SUB R returns
just the address of the function definition, not the dotted pair returned by GETD,
thereby saving the CONS.

(PUTD FN DEF -) [Function]
Puts DEF into FNS function cell, and returns DEF. Generates an error, ARG NOT
LIT ATOM, if FN is not a litatom. Generates an error, ILLEGAL ARG, if DEF is a
string, number, or a litatom other than NIL.

(PUTDQ FN DEF) [NLambda Function]
Nlambda version of PUTD: both arguments are unevaluated. Returns FN.

(PUTDQ? FN DEF) [NLambda Function]
If FN is not defined, same as PUTDQ. Otherwise, does nothing and returns NIL.

(MOVD FROM TO COPYFLG) [Function]
Moves the definition of FROM to TO, i.e., redefines TO. If COPYFLG = T, a COpy
of the definition of FROM is used. COPYFLG = T is only meaningful for EX P Rs,

. although MOVD works for compiled functions and SUB Rs as well. MOVD returns

5.8

FUNCTION DEFINITION, MANIPULATION, AND tv ALUA TION

TO.

(MOVD? FROM TO COPYFLG) [Function]
If TO is not define~ same as (MOVD FROM TO COPYFLG). Otherwise, does
nothing and returns NIL.

(DEFINEQ Xl X:2 ••• X N) [NLambda NoSpread Function]

(D E F I N'E X --:- >.

DE F INEQ is the function normally used for defining functions. It takes an indefinite
number of arguments which are not evaluated. Each Xi must be a list defining one
function, of the form (NAME DEFINITION). For example:

(DEFINEQ (DOUBLE (LAMBDA (X) (IPLUS X X»))

The above expression will define the function DOUBLE with the EXPR definition
{LAMBDA (X) (IPLUS X X». Xi may also have'the form (NAME ARGS_, ..
DEF-BODY) , in which case an appropriate Lambda EXPR will be constructed.
Therefore, the above expression is exactly the same as:

(DEFINEQ (DOUBLE (X) (IPLUS X X»)

Note that this alternate fonn can only ,be used for Lambda functions. The first
fonn must be used to define an Nlambda function.

DE F INEQ returns a list of the names of the functions defined.

, '[Function]
Lambda-spread version of DE FIN EQ. Each element of the list x is itself a list either
of the form (NAME DEFINITION) or (NAME ARGS • DEF-BODY). DEFINE will
generate an error, INCORRECT DE FINING FORM, on encountering an atom where
a defining list is expected~

Note: DEFINE and DEFINEQ will operate correctly if the function is already defined and BROKEN,
ADVISED, or BROKEN-IN.

For expressions involving type-in only, if the time stamp facility is enabled (page 17.60), both DEFINE
and DEFINEQ will stamp the definition with the user's initials and date.

DFNFLG

(SAVEDEF FN}

[Variable]
OF N F LG is a global variable that effects the operation of DE FINE (and DE F I NEQ,
which calls 0 E FIN E). If 0 F N F LG = NIL, an attempt to redefine a function FN

will cause DEFINE to print the nlessage (FN REDEFINED) and to save the
old definition of FN using SAVEDE F before redefining it, except if the old and
new definitions are the same (Le. EQUAL), the effect is simply a no-oPe If
DFNFLG=T, the function is simply redefined. IfDFNFLG=PROP or ALLPROP, the
new definition is stored on the property list under the property EXPR. ALL PROP
affects the operation of RPAQQ and RPAQ (page 11.37). DFNFLG is initially NIL.

DFNFLG is reset by LOAD (page, l1.4) to enable various ways of handling the
defining of functions and setting of variables when' loading a file. For most
applications, the user will not reset OF NF LG directly.

[Function]
Saves the definition of FN on its property list under the property EXPR, CODE,

Function Evaluation

or SUBR depending on its FNTYP. Returns the property name used. If (GETD
FN) is non-NIL, but (FNTYP FN) =NIL, SAVEDEF saves the definition on the
property name LIST. This situation can arise when a function is redefined which
was originally defined with L~MBDA misspelled or omitted.

If FN is a list, SAVEDE F operates on each function in the list, and returns a list of
the individual values.

(UNSAVEDEF FN PROP) [Function]
Restores the definition of FN from its property list under property PROP (see
SAVEDE F above). Returns PROP. If nothing is saved under PROP, and FN is defined,
returns (PROP NOT FOUND), otherwise generates an error, NOT A FUNCT ION.

If PROP is not given, i.e., NIL, UNSAVEDE F looks under the properties EXPR,
CODE, and SUBR, in that order. The vaiue of UNSAVEDEF is the property-name,
or if nothing is found and FN is a function, the value is (NOTHING FOUND);
otherwise generates an error, NOT A FUNCTION.

If D F N F LG = NIL, the current definition of FN, if any, is saved using SAVE 0 E F ..
Thus one can use UNSAVEDE F to switch back and forth between two definitions
of the same function, keeping one on its property list and the other in the function
definition cell.

If FN is 'a list, UNSAVEDEF operates on each function of the list, and its value is a
lis.t of the. individual values. . .

Both SAVEDEF and UNSAVEDEF are redefined in more general terms (see page 11.18) to operate on
typed definitions of which a function definition is but one example. Thus, their actual argument lists in
Interlisp are different than given here. However, when their extra arguments are defaulted to NIL, they
operate as described above.

5.3 FUNCTION EV ALVA TION

Usually, function application is done automatically by the Interlisp interpreter. If a form is typed into
Interlisp whose CAR is a function, this function is applied to the arguments in the CDR of the form. These
arguments are evaluated or not, and bound to the function parameters, as determined by the type of the
function, and the body of the function is evaluated. This sequence is repeated as each form in the body
of the function is evaluated.

There are some situations where it is necessary to explicitly call the evaluator, and Interlisp supplies a
number of functions that will do this. These functions take "functional arguments", which may either be
litatoms with 'function definitions, or EXPR forms such as (LAMBDA (X) ...), or FUNARG expressions
(see page 5.15).

The following functions are useful when one wants to supply.a functional argument which will always
return NIL, T, or O.

(NILL) [NoSpread Function]
Returns NIL.

5.10

FUNCTION DEFINITION, MANIPULA nON, AND EV ALVA nON

(TRUE) [NoSpread Function]
Returns T.

(ZERO) [NoSpread Function]
Returns O.

Note: When using EX P R expressions as functional arguments, they should be enclosed within the function
FUN C T ION (page 5.15) rather than QUO T E, so that they will be compiled as separate functions. FUN C T ION
can also be used to create FUNARG expressions, which can be used to solve some problems with referencing
free variables, or to create functional arguments which carry "state" along with them.

(EVAL x -) [Function]
EVAL evaluates the expression x and returns this value, Le., EVAL provides a way
of calling the Interlisp interpreter. Note that EVAL is itself a lambda function. so
its argument is first evaluated, e.g .•

~(5ETQ FOO '(ADD1"3»
(ADDl 3)
+-(EVAL FOO)
4
+-(EVAL 'FOO)
(ADDl 3)

Interlisp functions can" either evaluate" or not evaluate these arguments. For those cases where it is
desirable to specify arguments un~valuated, one may use th~"QUOTE" function:

(QUOTE x) [NLambda NoSpread Function]
This is a function that prevents its arguments from being evaluated. Its value is x
itself, e.g., (QUOTE Faa) is FOO.

Note: Since giving QUOT E more than one argument is almost always a parentheses
error, and one that would otherwise go undetected, QUOT E itself generates an error
in this case, PARENTHESIS ERROR.

(KWOT E x) [Function]
Value is an expression which when evaluated yields x. If x is NIL or a number,
this is x itself. Otherwise, (L I 5T (QUOT E QUOT E) x). For example, if the
value of X is A and the value of Y is B, then (KWOT E (CONS X Y» = (QUOT E
(A • B».

(DEFEVAL TYPE FN) [Function]
Specifies how a datum of a particular type is to be evaluated.1 Intended primarily
for user defined data types, but works for all data types except lists, literal atoms,
and numbers. TYPE is" a type name. FN is a function object, i.e. name of a
function or a lambda expression. Whenever the interpreter encounters a datum of
the indicated type, FN is applied to the datum and its value returned as the result
of the evaluation. DEFEVAL returns the previous evaling function for this type. If
FN=NIL, DEFEVAL returns the current evaling function without changing it. If

lCOMPILETYPELST (page 12.9) permits the user to specify how a datum of a particular type is to be
compiled.

5.11

/

Function Evaluation

FN= T, the evaling function is set back to the system default (which for all data
types except lists is to return the datum itself).

{APPLY FN ARGLIST -) [Function]
Applies the function FN to the arguments in the list ARGLIST, and returns its value.
APPL Y~ is a lambda function. so its arguments are evaluatecL but the individual
elements of ARGLIST are not evaluated. Therefore, lambda and nlambda functions
are tre~ted the same by APPLY; lambda functions take their arguments from
ARGLIST without evaluating them. Note that FN may still explicitly evaluate one
or more of its arguments itself, as SETQ does. Thus, {APPLY' SETQ '(FOO
(ADD1 3») will set FOO to 4, whereas (APPLY' SET "(FOO (ADD 1 3»)
will set FOO to the expression (ADD 1 3).

AP PLY can be used for manipulating EX P Rs. for example:

~(APPLY '{LAMBDA (X Y) (ITIMES X V»~
'(3 4»

12

(APPL Y· FN ARG1 ARG2 ... ARGN) [NoSpread Function]

(EVALA x A)

NospreadversionofAPPLY.equivalentto (APPLY FN (LIST ARGl ARG2 '"

ARGN)).

[Function]
Simulates a-list evalu~tion as in LISP 1.5. x is a forint A is a list of the form:

((NAMEl • VALl) (NAME2 • VAL2) ... (NAMEN • VALN))

The variable names and values in A are "spread" on the stack, and then x is
evaluated. Therefore. any variables appearing free in x, that also appears as CAR
of an element of A will be given the value in the CD R of that element.

The functions below are used to evaluate a form or apply a function repeatedly. RPT, RPTQ, and FRPTQ
evaluate a given fonn a specified number of times. MAP, MAPCAR, MAPLIST, etc. apply a given function
repeatedly to different elements of a list, possibly constructing another list. These functions allow efficient
iterative computations, but they are difficult to use. For programming iterative computations, it is usu,ally
better to use the CLISP Iterative Statement facility (page 4.5), which provides a more general and complete
facility for expressing iterative statements. Whenever possible, CLISP translates iterative statements into
expressions using the functions below, so there is no efficiency loss.

(RPT N FORM) [Function]
Evaluat~s the expression FORM, N times. Returns the value of the last evaluation.
If N ~ D, FORM is not evaluated, and R P T returns NIL.

Before each evaluation, the local variable RPTN is bound to the number of
evaluations yet to take place. This variable can be referenced within FORM. For
example, {RPT 10 '(PR I NT RPTN» will print the numbers 10, 9, ... 1, and
return 1.

(RPTQ N FORMI FORM2 ... FORMN) [NLambda NoSpread Function]
Nlamb<4-nospread version of R P T: N is evaluatecL FORMj are not Returns the
value of the last evaluation of FORMN . '

5.12

FUNCTION DEFINITION, MANIPULATION, AND EV ALVA TION

(F RPTQ N FORM1 FORM2 ... FORMN) [NLambda NoSpread Function]
Faster version of RPTQ. Does not bind RPTN ..

(MAP MAPX MAPFNl MAPFN2) [Function]
If MAPFN2 is NIL. MAP applies the function MAPFNl to successive tails of the
list MAPX. That is, first it computes (MAPFNl MAPx), and then (MAPFNl (CDR
MAPx)), etc., until MAPX becomes a non-list. If MAPFN2 is provided, (MAPFN2

MAPx) is used instead of (CDR MAPX) for the next call for MAPFN1, e.g., if
MAPFN2 were CDDR, alternate elements of the list would be skipped. MAP returns
NIL.

(MAPC MAPX MAPFNl MAPFN2) [Function]
Identical to MAP, except that {MAPFNl (CAR MAPx» is computed at each

. iteration instead of (MAPFNl MAPx), i.e., MAPC works on elements, MAP on
tails. MAPC returns NIL.

(MAPLIST MAPX MAPFNl MAPFN2) [Function]
Successively computes the same values that MAP would compute, and returns a list
consisting of those values.

(MAPCAR MAPX MAPFNl MAPFN2) [Function]
Computes the same values that MAPC would compute, and returns a list consisting
of those values, e.g., (MAPCAR X 'FNTYP) is a list of FNTYPs for each element
on X.

(MAPCON MAPX MAPFNl MAPFN2) [Function]
Computes the same values as MAP and MAPLIST but NCONCs these values to fonn
a list which it returns.

(MAPCONC MAPX MAPFNl MAPFN2) [Function]
Computes the same values as MAPC and MAPCAR, but NCONCs the values to fonn
a list which it returns.

Note that MAPCAR creates a new list which is a mapping of the old list in that each element of the new
list is the result of applying a function to the corresponding element on the original list. MAPCONC is used
when there are a variable number of elements (including none) to be inserted at each iteration. Examples:

(MAPCONC '(A B C NIL 0 NIL)
'(LAMBDA (Y) (if (NULL Y) then NIL else (LIST V»~»~

==) (A BCD)

This MAPCONC returns a list consisting of MAPX with all NILs removed.

(MAPCONC '«A B) C (0 E F) (G) H I)
'{LAMBDA (Y) (if (LISTP Y) then Y else NIL»)

==) (A B 0 E F G)

This MAPCONC returns a linear list consisting of all the lists on MAPX.

Since ft1APCONC uses NCONC to string the corresponding list') together, in this example the original list will
be altered to be ((A B 0 E F G) C (0 E F G) (G) HI). If this is an undesirable side effect, the
functional argument to MAPCONC should return instead a top level copy of the lists, i.e. (LAMBDA (Y)
(if.(LISTP Y) then (APPEND Y) else NIL»).

5.13

Function Evaluation

(MAP2e MAPX MAPY MAPFNl MAPFN2) . [Function]
Identical to MAPC except MAPFNl is a function of two arguments, and CMAPFNl

(CAR MAPX) (CAR MAPY» is computed at each iteration. Terminates when
either MAPX or MAPY is a non-list.

MAPFN2 is still a function of one argument. and is applied twice on each iteration;
(MAPFN2 MAPx) gives the new MAP~ (MAPFN2 MAPY) the new MAPY. CDR is
used if MAPFN2 is not supplied, i.e., is NIL.

(MAP2CAR MAPX MAPY MAPFNl MAPFN2) [Function]
Identical to MAPCAR except MAPFNl is a function of two arguments and (MAPFNl

(CAR MAPX) (CAR MAPY» is used to assemble the new list. Terminates when
either MAPX or MAPY is a non-list.

(SUBSET MAPX MAPFNl MAPFN2) - - [Function]
Applies ~FNl to elements of MAPX and returns a list of those elements for
which thIs application is non-N I L, e.g.,

(SUBSET '(A B 3 C,4) 'NUMBERP) = (3 4).

MAPFN2 plays the same role as with MAP, MAPC, et ale

(EVERY EVERYX EVERYFNl EVERYFN2) [Function]
Returns T if the result of applying EVERYFNl to each element in EVERYX is true,
o~erwise; NIL. For example, (EVERY '(X Y Z) 'ATOM) =) T.,

EVE RY operates by evaluating (EVERYFNl (CAR EVERYX) EVERYX). The
second argument is passed to EVERYFNl so that it can look at the next element
on EVERYX if necessary. If EVERYFNl yields 'N I L. EVE RY immediately returns
NIL. Otherwise, EVERY computes (EVERYFN2 EVERYX) , or (CDR EVERYX) if
EVERYFN2 = NIL, and uses this as the "new" EVERYX, and the process continues.
For example, (EVE RY x 'ATOM 'CDDR) is true if every other element of x is
atomic.

(SOME SOMEX SOMEFNl SOMEFN2) [Function]
Returns the tail of SOMEX beginning with the first element that satisfies SOMEFN1,

i.e., for which SOMEFNl applied to that element is true. Value is NIL if no such
element exists. (SOME X '(LAMBDA (Z) (EQUAL Z Y») is equivalent to
(MEMB E R Y X). SOME operates analogously to EVE RY. At each stage, (SOMEFNl

(CAR SOMEX) SOMEX) is computecL and if this is not NIL, SOMEX is returned as
the value of SOME. Otherwise, (SOMEFN2 SOMEX) is computecL or (CDR SOMEX)

if SOMEFN2 = NIL, and used for the next SOMEX.

(NOTANY SOMEX SOMEFNl SOMEFN2) [Function]
(NOT (SOME SOMEX SOMEFNl SOMEFN2»

(NOTEVERY EVERYX EVERYFNl EVERYFN2) [Function]
(NOT (EVERY EVERYX EVER).'FNl EVERYFN2»

(MAPRINT LST FILE LEFT RIGHT SEP PFN LISPXPRINTFLG) [Function]
A general printing function. It cycles through LST applying PFN (or P R I N 1 if PFN

not given) to each element of LST. Between each application, MA P R IN T performs

5.14

FUNCTION DEFINITION9 MANIPULA TION9 AND EV ALVA TION

PRIN1 of SEP (or" " if sEP=NIL). If LEFT is given, it is printed (using PRIN1)
initially; if RIGHT is given it is printed (using PR I N 1) at the end.

For example, (MAPRINT X NIL • %('%» is equivalent to PRIN1 for lists. To
print a list with commas between each element and a final "." one could use
(MAPRINT X T NIL '%. '%,).

If LISPXPRINTFLG=T, LISPXPRIN1 (page 8.20) is used instead of PRINt.

5.4 FUNCfIONAL ARGUMENTS

When using functional arguments, the following function is very useful:

(FUNCTION FN ENV) [NLambda Function]
IfENV=NIL, FUNCTION is the same as QUOTE, except that it is treated differently
when compiled .. Consider the function definition:

(DE FIN E Q (F 00 ...
(FIE LST (FUNCTION (LAMBDA (l) (ITIMES l l»»

))

F 00' calls the function FIE with the value of L 5 T and, the EX P R ~xpression
(LAMBDA (l)' {LIST (CAR. l»).

If FOO i.s run interpreted, it doesn't make any difference whether FUNCTION or
QUOTE is used. However, when FOO is compiled, if FUNCTION is used the compiler
will define and compile the EXPR as an auxiliary function (See page 12.8). The
compiled EX P R will run considerably faster, which can make a big difference if it
is applied repeatedly.

Note: Compiling FUNCT ION will not create an auxiliary function if it is a functional
argument to a function that compiles open, such as most of the mapping functions
(MAPCAR, MAPLIST, etc.).

If ENV is not NIL, it can be a list of variables that are (presumably) used freely by
FN. In this case, the value of FUNCT ION is an expression of the form (FUNARG FN'

pos), where pos is a stack pointer to a frame that contains the variable bindings
for those variables on ENV. ENV can also be a stack pointer itself, in which case
the value of FUNCT ION is (FUNARG FN ENV). Finally, ENV can be an atom, in
which case it is evaluated, and the value interpreted as described above.

As explained above, one of the possible values that FUNCTION can return is the form (FUNARG FN

pos), where FN is a function and pos is a stack pointer. FUNARG is not a function itself. Like LAMBDA
and N LAMBDA, it has meaning and is specially recognized by Interlisp only in the context of applying a
function to arguments. In other words, the expression (FUNARG FN pos) is used exactly like a function.
When a FUNARG expression is applied or is CAR of a form being EVAL'ed, the APPLY or EVAL takes
place in the access environment specified by ENV (see page 7.1). Consider the following example:

~ (DEFINEQ (00. TWICE (FN VAL)

5.15

Functional Arguments

(APPLY* AN (APPLY* FN VAL»))
(DO.TWICE)
~ (DOe TWICE [FUNCTION (LAMBDA (X) (IPLUS X X»]

5)
20
~ (SETQ VAL 1)
1
... (00. TWICE [FUNCTION fLAMBDA (X) (IPLUS X VAL»]

5)
20
... (00. TWICE [FUNCTION "('LAMBDA (X) (IPLUS X VAL» (VAL)]

5)
7

DO. TWICE is defined to apply ~ function FN to a value VAL, and apply FN again to the-value returned;
in other words it calculates {F~ (FN VAL». Given the EXPR expression (LAMBDA (X) (IPLUS X
X)), which doubles a given value, it correctly calculates {F N (F N 5» = (F N 10) == 20. However.
when given (LAMBDA (X) (IPLUS X VAL», which should add the value of the global variable VAL to
the argument X, it does somethimg unexpected, returning 20 again, rather than 5 + 1 + 1 = 7. The problem
is that when the EXPR is eval~ated, it is evaluated in the context of DO. TWICE, where VAL is bound
to the second argument of DO. TWICE, namely 5. In this case, one solution is to use the ENV argument
to FUNCTION to construct a FWNARG expression which contains the value of VAL at the time that the
FUNCT ION is executed. Now, when (LAMBDA (X) (I PLUS X VAL» is evaluated, it is evaluated in
an e~vironment where the global value of VAL is accessable. Adqtittedly, this is a somewhat contrived
example (it would be easy enough to change the argument names to DO. TW ICE so there would be no
conflict), but this situation arises occasionally with large systems of programs that construct functions, and
pass them around ..

Note: System functions with f\lnctional arguments (APPLY, MAPCAR, etc.) are compiled so that their
arguments are local. and not ac~essable (see page 12.4). This reduces problems with conflicts with free
variables used in functional arg~ments.

FUNARG expressions can be used for more than just circumventing the clashing of variables. For example,
a FUNARG expression can be returned as the value of a computation, and then used "higher up".
Furthermore, if the function in a FUNARG expression sets any of the variables contained in the frame,
only the frame would be changed. For example, consider the following function:

(MAKECOUNTER (CNT)
(FUNCTION [LAMBDA NIL

(PROG1 CNT (SETQ CNT (ADD1 CNT]
(CNT»)

The function MAKECOUNTER returns a FUNARG that increments and returns the previous value of the
counter CNT. However, this is done within the environment of the call to MAKECOUNTER where FUNCTION
was executed, which the FUNARG expression "carries around" with it, even after MAKECOUNTER has
finished executing. Note that ~ach call to MAKECOUNTER creates a FUNARG expression with a new,
independent environment., so that multiple counters can be generated and used:

... (SETQ C1 (MAKECOUNTER 1»
(FUNARG (LAMBDA NIL (PROGl CNT (SETQ CNT (ADDl CNT»» #1.13724/*FUNARG)
+- (APPLY Cl)
1

5.16

FUNCTION DEFINITION, MANIPULATION, AND EV ALUA TION

+- (APPLY Cl)
2
+- (SETQ C2 (MAKECOUNTER 17» .
(FUNARG (LAMBDA NIL {PROGl CNT {SETQ CNT (ADDl CNT»» #1,13736/*FUNARG)
... (APPLY C2)
17
+- (APPLY C2)
18
+- (APPLY Cl)
3
+- (APPLY C2)
19

By creating a FUNARG expression with FUNCTION, a program can create a function object which has
updateable binding(s) associated with the object which last between calls to it, but are -only accessible
through that instance of the function. For example, using the FUNARG device, a program could
maintain two different instances of the same random number generator in different states, and run them
independently.

Note: In Interlisp-10, environment switching is expensive because it is a shallow-binding system (see page
7.1), so this may restrict the applications of FUNARG expressions.

5.5 MACROS

Macros provide an alternative way of specifying the action of a function. Whereas function definitions are
evaluated with a "function call", which involves binding variables and other housekeeping tasks, macros
are evaluated by translating one Interlisp fonn into another, which is then evaluated.

A litatom may have both a function definition and a ma(:ro definition. When a fonn is evaluated by
the interpreter, if the CAR has a function definition, it is used (with a function call), otherwise if it has
a macro definition, then that is used. However, when a fonn is compiled, the CAR is checked for a
macro definition first, and only if there isn't one is the function definition compiled. This allows functions
that behave differently when compiled and interpreted. For example, it is possible to define a function
that, when interpreted, has a function definition that is slow and has a lot of error checks, for use when
debugging a system. This function could also have a macro definition that defines a fast version of the
function, which is used when the debugged system is compiled.

Macro definitions are represented by lists that are stored on the property list of a litatom. Macros are
often used for functions that should be compiled differently in different Interlisp implementations, and
the exact property name a macro definition is stored under detennines whether it should be used in a
particular implementation. The global variable MACROPROPS contains a list of all possible macro property
names which should be saved by the MACROS file package command. Typical macro property names
are 10MACRO for Interlisp-lO, DMACRO for Interlisp-D,2 and MACRO for "implementation .independent"
macros. The global variable COMPILERMACROPROPS is a list of macro· property names. Interlisp
detennines whether a litatom has a macro definition by checking these property names, in order, and

2also VAXMACRO for [nterlisp-VAX, and JMACRO for [nterlisp-Jerico.

5.17

Macros

using the first non-N I L property value as the macro definition. In Interlisp-D this list contains DMAC RO and
'MACRO in that order so that DMACROs will override the iniplementation-independent MACRO propenies.
In general, use a DMACRO property for macros that are to be used only in Interlisp-D, use 10MACRO for

- macros that are to be used only; in Interlisp-lO, and use MACRO for macros that are to affect both systems.

Macro definitions can take the following forms:

(LAMBDA ...) or (NLAMBDA ...)
A function can be made to compile open by giving it a macro definition of the form (LAMBDA
...) or (NLAMBDA ...), e.g., (LAMBDA (X) (COND «GREATERP X 0) X) (T (MINUS
X)) » for AB S. The effect is as if the macro definition were written in place of the function
wherever it appears in a function being compiled, i.e., it compiles as a lambda or nlambda
expression. This saves the time necessary to call the function at the price of more compiled code
generated in-line.

(NIL EXPRESSION) or (LIST ,EXPRESSION)
"Substitution" macro. Each argument in the form being evaluated or compiled is substituted for
the corresponding atom:in LIST, and the result of the substitution is used instead of the form. For
example, if the macro .cfefinition of ADDl is. ((X) (I PLUS Xl», then, CADD 1 (CAR Y» is
compiled as (IPLUS (CAR Y) 1).

Note that ABS could be defined by the substitution macro ({ X) {COND ({ GREATERP X 0)
X) {T (M I NUS X»». In this case, however, {ASS (FOO X» would compile as

{COND ({GREATERP (FOO.X) 0)
(FOO X»

(T (MINUS (FOa X»»

and (FOO X) would be evaluated two times. (C()de to evaluate (FOO X) would be generated
three times.)

.(OPENLAMSDA ARGS BODY)

T

This is a cross between substitution and LAMBDA macros. When the compiler processes an
OPENLAMBDA, it attempts to substitute the actual arguments for the formals wherever this preserves
the frequency and order of evaluation that would have resulted from a LAMBDA expression, and
produces a LAMBDA binding only for those that require it.

When a macro definition is the atom T, it means that the compiler should ignore the macro, and
compile the function definition: this is a simple way of turning off other macros. For example,
the user may have a function that runs in both Interlisp-D and Interlisp-lO, but has a macro
definition that should only be used when compiling in Interlisp-10. If the MACRO propeny has
the macro specification,: a DMACRO of T will cause it to be ignored by the Interlisp-D compiler.
Note that this DMAC RO would not be necessary if the macro were specified by a 1 OMAC RO instead
of a MACRO.

(= . OTHER-FUNCTION) .

A simple way to tell the compiler to compile one function exactly as it would compile another.
For example, when compiling in Interlisp-D, F RPLACAs are treated as RPLACAs. This is achieved
by having FRPLACA have a DMACRO of (= . RPLACA).

(LITATOM EXPRESSION)

5.18

FUNCTION DEFINITION~ MANIPULA nON, AND EV ALVA nON

If a macro definition begins with a litatom other than those given above, this allows computation
of the Interlisp expression to be evaluated or compiled in place of the form. LITATOM is bound
to the CDR of the calling fonn, EXPRESSION is evaluated, and the result of this evaluation is
evaluated or cOqlpiled in place of the fonn. For example, LIST could be compiled using the
computed macro:

[X {LIST 'CONS
(CAR X)
{AND (CDR X)

{CONS 'LIST
{COR X]

This would cause (LIST X Y Z) to compile as {CONS X {CONS Y (CONS Z NIL»). Note
the recursion in the macro expansion.

If the result of the evaluation is the litatom IGNOREMACRO, the macro is ignored and the
compilation of the expression proceeds as if there were no macro definition. If the litatom in
question is nonnally treated specially by the compiler (CAR, CDR, COND, AND, etc.), and also has
a macro, if the macro expansion returns IGNOREMACRO, the litatom will still be treated specially.

In Interlisp-10, if the result of the evaluation is the atom INSTRUCTIONS, no code will be
generated by the compiler. It is then assumed the evaluation was done for effect and the
necessary code, if any, has been added. This is a way of giving direct instructions to the compiler
if you understand ,it

Note: It is often useful, when constructing complex macro expressions, to use the BQUOTE facility (see
page 6.39).

The following function is quite useful for debugging macro definitions:

(EXPANDMACRO FORM QUIETFLG -) [Function]
Takes a form whose CAR has a macro definition and expands the fonn as it would
be compiled. The result is prettyprlntecL unless QUIETFLG = T, in which case the
result is simply returned.

5.5.1 MACROTRAN

Interpreted macros are implemented by the function MAC ROT RAN. When the. interpreter encounters a
form CAR of which is an undefined function,3 MACROTRAN is called. If CAR of the form has a macro
definition, the macro is expanded, and the result of this expansion is evaluated in place of the original
fonn. CLISPTRAN (page 16.19) is used to save the result of this expansion so that the expansion only has
to be done once. On subsequent occasions, the translation (expansion) is retrieved from C LIS PAR RA Y
the same as for other CLISP constructs; MAC ROT RAN never even has to be invoked.

Sometimes, macros contain calls to functions that assume that the macro is being compiled. The
variable SHOULDCOMPILEMACROATOMS is a list of functions that should be compiled to work correctly
(initially (OPCODES) in Interlisp-D, (ASSEMBLE LOC) in Interlisp-10). UNSAFEMACROATOMS is a list

3 In other words, if you have a macro on F 00, then typing (F 00 'A 'B) will work, but F 00 (A B) will
not work.

5.19

MACROTRAN

of functions which effect the operation of the compiler, so such ·macro fonns shouldn't even be expanded
except by the compiler (initially NIL in Interlisp-D. (C2EXP STORIN CEXP COMP) in Interiisp-lO). If
MACROTRAN encounters a macro containing calls to functions on these two lists, instead of the macro
being expanded, a dummy function is created with the fonn as its definition. and the dummy function is
then compiled. A fonn c0:tsisting of a call to this dummy function with no arguments is then evaluated
in place of the original fonn. and C LISP T RA N is used to save the translation as described above. There
are some situations for which this procedure is not amenable, e.g. a GO inside the fonn which is being
compiled will cause the compiler to give an UNDEFINED TAG error message because it is not compiling
the entire function, just a part of it.

Note: MACROTRAN is an entry on DWIMUSERFORMS (page 15.10) and thus will not work if DWIM is not
enabled.

5.20

CHAPTER 6

INPUT/OUTPUT

6.1 FILES

All input! output functions in Interlisp can specify their source/destination file with an optional extra
argument. which is the name of the file9 given as a litatom. These functions generally require that the file
be open. Files are opened and manipulated by the functions described below. The name T designates
terminal input and output. and is always considered open. It is also possible to supply a string as an
input "file", without needing to open it; input operations remove successive characters from the string.
Note that because of this feature, file names must 'always be specified as litatoms, not strings.

(OPE N FILE FILE ACCESS RECOG BYTESIZE MACHINE.DEPENDENT.PARAMETERS) [Function]
Opens FILE with access rights as specified by ACCESS9 one of INPUT, OUTPUT,
BOTH9 or APPEND, and rerums the full name of the file. Causes error FILE NOT
FOUND if Fri..E is not recognized by the file system9 or other errors if FILE is
recognized but canno~ be opened, e.g. FILE, WON'T OPEN if the file is already
'opened by someone else or 'is protected against the operation9 FILE SYSTEM
RESOURCES EXCEEDED if there is no more room in the file system.

For ACCESS,= INPUT, only input operations' are permitted on the file; for
ACCESS=OUTPUT or ACCESS=APPEND. only output operations are permitted.
Note: in Interlisp-lO and Interlisp-D, ACCESS=OUTPUT implies that one intends
to write a new or different file9 even if a version number was specified and
the corresponding file already exists. Thus any previous contents of the file are
discarded, and the file is empty immediately after the 0 PEN F I L E. If it is desired
to write on an already existing file while preserving the old contents, the file ~ust
be opened for access BOTH or APPEND.

RECOG specifies the recognition mode of FILE9 as described on page 6.4. If
RECOG=NIL. it defaults according to the value of ACCESS: for ACCESS= INPUT,
RECOG=OLD is used; for ACCESS = OUTPUT, RECOG= NEW is used; for the other
values of ACCESS, RECOG=OLO/NEW is used.

BYTESIZE, :f supplied. is the byte size in which to open the file. If BYTESIZE= NIL,
the bytesize used is the default for the implementation (8 for Interlisp-D, 7 for
Interlisp-lO) .

• \lACHINE.DEPENDEN'r.PARAMETERS is a list specifying additional opening parameters.
In Interlisp-lO.this list may contain the following litatoms:

WA I T Wait if file is busy.

DON'T.CHANGE.DAT~

. 6.1

Files

Don't change the access dateS.

THAWED Open file in ··thawedn mode.

In Interlisp-D, MACHINE.DEPENDENT.PARAMETERS should be a list of pairs
(ATTRlB VALUE), where ATTRlS is any file attribute that the file system is willing
to allow the user to set (see SETFILEINFO, page 6.7).

If the FILE argument to an input (output) function is not given (has value NIL), the file specified as
"primary" for input (output) is used. Normally these are both T, for terminal input and output. However,
the primary input or output file may be changed with the functions below.

(INPUT FILE)

(OUTPUT FlLE)

(INFILE FIL~)

(OUTFILE FILE)

(IOFILE FILE)

[Function]
Sets FILE as the primary input file: returns the name of the old primary input
file. FILE must be open for input. INPUT can also be given a string as argumen~
interpreted as described above.

(I N PUt) returns the current primary input file., which is not changed.

[Function 1
Sets FILE as the primary output file; returns the name of the old primary output
file. FILE must be open for output. A suing cannot be used as an output file.

(OUTPUT) returns the current primary output file, which is not changed.

. ,. [Function]
Opens riLE fb{ inpu~ and sets it.as the primary input file. Equivalent to (INPUT
(OPENFILE FILE 'INPUT 'OLD»

[Function]
Opens FILE for output., and sets it as the primary output file. Equivalent to
(OUTPUT (OPENFILE FlLE 'OUTPUT 'NEW».

[Function]
(OPENF ILE FILE 'BOTH 'OLD): opens FILE for both input and output Does
not affect the primary input or output file.

(OPENP FILE ACCESS) [Function]

(CLOSEF FILE)

If ACCESS = NIL. returns the full name of FILE if FILE is open either for input or
for output; otherwise NIL.

If ACCESS is INPUT, OUTPUT or BOTH, returns the full name of FILE if it is open
in that access mode: otherwise NIL.

Note: If FILE is not recognized, 0 PEN P returns NIL without generating an error.

(OPENP) returns a list of all files open for input or output., excluding T and the
current typescript (dribble) file .. if any (page 6.12).

[Function1
Closes FILE. Generates an error. F I LENa TOP E N. if FILE is not open. If FILE is
NIL. it attempts co close the primary input file if other than cemtinal Failing that.,
it attempts to close the "primary output file if other than temtinal. Failing both. it

6.2

.(CLOSEF? FILE)

INPUT/OUTPUT

returns NIL. If it closes any file, it returns the name of that file. If it closes either
of the primary files, it resets that primarr file to tenninal.

WHENCLOSE (page 6.11) allows the user to "advise" CLOSEF to perfonn various
8perations when a file i~ closed.

[Function]
Closes FrLE if it is open, otherwise does nothing. Returns FILE.

(CLOSEALL ALLFLG) [Function]

(OELFILE FILE)

Closes all open files, except T and the current typescript file, if any. Returns a list
of the files closed.

WHENGLOSE (page 6.11) allows certain files to be "protected" from CLOSEALL.
(CLOSEALL T) overrides this protection. .

[Function]
Deletes FILE if possible. Returns FILE if deleted, else NIL.

(RENAMEFILE OLDFILE NEWFILE) . [Function]
Renames OLDFrLE to be NEWFILE. Returns NEWFILE if successful .. else NIL.

6.1.1 File Naming and Recognition

In Interlisp, a file name is a· ·literal atom:cbmposed of one or more' fields., separated by suitable
punctuation. The precise fields and their interpretation is dependent on the implementation; the functions
PACKF ILENAME and UNPACKF ILENAME (page 6.6) are used to construct and take apart filenames in an
implementation-independent way.

Depending on the file system implementation, file names given to input/output functions may be
incompletely specified. with the file system handling the task of obtaining a specific file from a partial
name, or recognizing the file. For example, in file systems that support version numbers, one can call
OPE NFl L E giving a file name without a version number. and the file system will supply a default version
number based on the context (opening a new file for output vs. an old file for input). Internally, however,
each open file has associated with it a completely-specified filename, one that uniquely identifies the file
to the file system in any context. It is this "full" file name that is returned from OPENFILE and other
functions that return names of open files. For example. (OPENFILE 'FOO 'OUTPUT) might return
<LISP)FOO. : 3. Any time that an input/output function is called with a file name other than the full
file name. [nterlisp must perform recognition on the partial file name in order to detennine which open
file is intended. Thus if repeated operations are to be performed, it is considerably more efficient to use
the full file name returned from OPENF I LE than to repeatedly use the possibly incomplete name that
was used to open the file.

In Interlisp-lO. filenames follow the conventions of the operating system (either TENEX or TOPS-20),
i.e., FILE can be prefixed by a directory name enclosed in angle brackets, can contain (esc)s or control
F's. and can include suffixes and/or version numbers. When a file is opened for input and no version
number is given. the highest existing version number.is used. Similarly. when a file is opened for
output and no version number is given. a new. file is created with a' version number one higher than the
highest one currently in use \¥ith that file name. The full filename in Interlisp-lO consists of directory,
name, extension, and version. In [nterlisp-D, it also includes a device or host name in brackets. i.e.

6.3

File Naming and Recognition

{PHYLUM}<LISP)FOO.;3~

The following functions can be used to perfonn fiie recognition without opening a file:

Warning: In some implementations of I nterlisp (such as I nterlisp-D J, it may not be possible to determine
the full name of a new file without trying to open it. In this case, OUT F I L E P and F U L LNA,.,E may not
always return the correct value. These functions should not be used in generaL because the idea '4what a file
would be named ifi! were opened" is not well defined in some file systems.

(INFILEP FD:.E) [Function]
Returns full file name of FILE if FILE is recognized as specifying the name of an
existing file that could potentially be opened for input. NIL otherwise. Recognition
is in input context. Le.. in Interlisp-lO. if no version number is given, the highest
existing version number is returned.

(OUTFILEP FILE) [Function]
Similar to IN F I L E P, except recognition is in output context, Le., in Interlisp-lO, if
no version number is given, a version number one higher than the highest existing
version number is returned. Roughly speaking, OU T F I L E P returns the full name
of the file that would be created if OUT FILE were called with the same argument ..

A more general version of INFILEP and OUTFILEP is provided by the function FULLNAME:

(FULLNAME x RECOG) [Function]
. If x is recognized in the recognition mode specified by RECOG as an abbreviation

for some file. returns the file's full name. otherwise NIL. RECOG can be OLD.
mearung'choose the (newest) existing version of the file: NEW. meaning make the
full file name one which does not yet exist (version number one higher than
highest existing version); OLDEST, meaning choose the existing file with the lowest
version number: or OLD/NEW. meaning to recognize an existing version if possible,
otherwise a new version (useful only for writing a file). RECOG = NIL defaults to
OLD. For all other values of RECOG, generates an error ILLEGAL ARG. If x is not
a literal atom, generates an error, ARG NOT LITATOM.

For example, INFILEP could be defined as (FULLNAME FILE 'OLD) and
OUTFILEP as (FULLNAME FILE 'NEW).

The RECOG argument is used only for defaulting unspecified pans of the filename
(in Interlisp-10 and Interlisp-D. the version). not to pass judgment on the specified
pans. [n particular. RECOG = NEW does not require that the file be new. For
example. (FULLNAME 'FOO.;2 'NEW) may return <MASINTER)FOO. ;2 if that
file already exists. even though (FULLNAME 'FOO 'NEW) would default the
version to a new number. perhaps returning <MASINTER)FOO. ; 5.

Note that INFILEP, OUTFILEP and FULLNAME do not open any files, or change the primary files; they
are pure predicates. In general they are also only hints. as they do not necessarily imply that the caller
has access rights to the file. For example, INF I LEP might return non-N I L. but OPENF I LE might fail for
the same file because the file is read-protected against the user, or the file happens to be open for output
by another user at the "time. Similarly. OUTfILEP could return non-NIL, but OPENFILE could fail with
a FILE SYSTEM RESOURCES EXCEEDED error. Note also that in a multi-user file system. intervening
file operations' by another user could contradict the information returned by recognition. For example.
a file that was INFILEP might be deleted, or between an OUTFILEP and the subsequent OPENFILE~

6.4

INPUT/OUTPUT

another user might create a new version or- delete the highest version, causing the names returned by
OU T F I L E P and 0 PEN F I L E to have different version numbers. Thus, in general, the "truth" about a _ file
can only be obtained by actually opening the file; in particular, creators of files should rely on the name
returned from OPENFILE, not from OUTFILEP.

If the file system does not successfully recognize an incomplete file name, a FILE NOT FOUND error
is generated (except for INFILEP. OUTFILEP. FULLNAME and OPENP. which in this case return- NIL).
As described on page 9.16. before a FILE NOT FOUND error occurs, it is intercepted via an entry on
ERRORTYPELST, which causes SPELLF ILE (page 15.20) to be called. SPELLF I LE will search alternate
directories and possibly attempt spelling correction on the file name. Only if SPELLF I LE is unsuccessful
will the error actually occur.

Note that recognition is performed on the user's entire directory. not just the open files, which can result
in certain anomalies. Thus, even if only one file is open, say FOO. ; 1, the name F $ (F<esc» will not
be recognized if the user's directory also contains the file FIE. ; 1. Similarly. it is possible for a file
name that was previously recognized to become ambiguous. For example, a program performs (INFILE
, FOO), opening FOO. ; 1, and reads several expressions from FOO. Then the user interrupts the program,
creates a FOa. ; 2 and reenters his program. Now a call to READ giving it Foa as its FILE argument will
generate a FILE NOT OPEN error, because FOO will be recognized as FOO. ; 2.

6.1.2 Manipulating File Names

Different operating systems have different conventions for naming files. However. it is desirable for
Interlisp to be as implementation independent as possible.Therefore,~all pro-grams-that need to reference
parts of a filename, or construct new file names from existing ones, should use the functions described
below. The implementation of these functions obviously is dependent on the operating system they will
run under, but as far as the programs that use them are concerned, they permit expressing operations
that are imp lementation independent.1

Every file name is composed of a collection of fields which have different semantic interpretations. A
field name is a literal atom which is the name of a file-name field. Interlisp assumes that NAME and
EXTENSION are valid field· names; the implementor is free to allow other fields. In Interlisp-l0, allowable
field names are: DEVICE, DIRECTORY. NAME. EXTENSION, VERSION, PROTECTION, ACCOUNT, and
TEMPORARY. Interlisp-D allows HOST. DIRECTORY, NAME, EXTENSION, and VERSION.

(FILENAMEFIELD F~ENAME FmLDNAME)
Returns the contents of the FmLDNAME field of F~ENAME.

(UNPACKFILENAME F~ENAME -)
Returns a list of alternating field names and field contents.

Examples from Interlisp-D:

~ (UNPACKFILENAME 'FOO.BAR)
(NAME Faa EXTENSION BAR)

[Function]

[Function]

~ (UNPACKFILENAME- '{PHYLUM}<SANNEL~A)LISP)IMTRAN.DCOM:21)

LIn particular, the Interlisp-10 implementation recognizes file names in both Tenex and TOPS-20 format,
and builds new names as appropriate.

6.5

File Attributes

(HOST PHYLUM DIRECTORY SANNELLA)LISP NAME IMTRAN
EXTENSION DCOM VERSION 21)

Examples from Interlisp-10 on Tenex:

~ (UNPACKFILENAME '(LISP)MAC.COM;3)
(DIRECTORY LISP NAME MAC EXTENSION COM VERSION 3)
~ (UNPACKFIlENAME 'WORK.;T)
(NAME WORK EXTENSION NIL TEMPORARY T)

Note: In Interlisp-10. (UNPACKFILENAME 'DSK:FOO) rerurns (DEVICE DSK:
NAME F 00), i.e. the : is left in. This is so (D E V ICE NIL:) may be distinguished
from (0 EV ICE NIL) •

(PACK,FILENAME FIELDNAMEl FIELDCONTENTS1 ... FIELDNAMEN FrELDCONTENTSN)
[NoSpread Function]

Takes a list of alternating field names and field contents (atoms or strings),
and returns the corresponding file name. For example, (PACKFILENAME
'DIRECTORY 'LISP 'NAME 'NET) returns (LISP)NET.

If the same field name is given twice. the first occurrence is used.

If. the ufield namen BODY is give~ this means that the operand to. BODY should
itself be unpacked and spliced into the argument list at that point. This is useful
for providing default field names, or to change just one field in an existing name.

For example, to take a file name FILE and change the 0 I RECTORY field, perfonn
(PACKFILENAME 'DIRECTORY NEWDIRECTORY 'BODY FILE). Alternatively,
to provide a default for the EXTENSION field, perfonn (PACKFILENAME 'BODY
FILE 'EXTENSION DEFAULT). This uses DEFAULT as the extension unless one is
already specified in FILE.

Note that a null field is a field that has been specified, e.g., if FILE = FOO; 1 in the
above example. the default extension will be used, but if FILE = F 00. ; 1.. it will
not, because a null extension· has been specified.

If the first argument to PACKF I LENAME is a list, PACKF I LENAME is called on that
argumenL Thus PACKFILENAME and UNPACKFILENAME operate as inverses.

6.1.3 File Attributes

Any file has a number of "file attributes". such read date. protection. and bytesize. The exact attributes
that a file can have is implementation-dependent. The functions GETFILEINFO and SETFILEINFO
allow the user to conveniently access file attributes:

(GETF ILE INFO FILE ATTRlB) [Function]
Returns the current setting of the ATTRlB attribute of FILE. In Interlisp-10. FILE
may also be a J F N as returned by 'G T J F N (page 22.22).

In Interlisp-10. GET F I LEI N F 0 takes an optional third argument, SCRATCH. which
is analogous to the third argument of GOA TE (page 14.10): a string pointer to reuse

6.6-

INPUT/OUTPUT

for those ATTRlB'S which rerum string values.

(SETF'ILE INFO FILE ATTRlB VALUE) [Function]
Sets the attribute ATTRIB of FILE to be VALVE. SETFILEINFO returns T if it
is able to change the attribute ATTRlB, and NIL if unsuccessful (some attributes
cannot be changed, e.g. it doesn't make sense to change the S I Z E of a file without
writing something on it).

GETFILEINFO and SETFltEINFO currently recognize the following values for ATTRlB:

ACCESS

BYTE-SIZE

LENGTH

SIZE

The current access mode of FILE (e.g. INPUT, OUTPUT, BOTH, APPEND) or NIL
if FILE is not open.

The byte size of the file.

The byte position of the end-of-file. Like (GETEOFPTR FILE), but FILE does not
have to be open.

The size of FILE in pages.

WRITEDATE, READDATE, CREATIONDATE .
The date (and time) as a string that FILE was respectively last written, last read,
and originally created.

rWRITEDATE, IREADDATE, ICREATIONDATE

TYPE

OPENBYTESIZE

PROTECTION

DELETED

The respective date in integer form, as rDATE (page 14f lO) would return.

(Interlisp-D) Either TEXT or BINARY.

(Interlisp-lO) It is possible that the byte size for the "opening" of a file might differ
from the '4pennanent" bytesize. For example, a 7-bit text file can be opened in
36-bit mode. To obtain the "open" bytesize, use attribute OPENBYTESIZE.

(Interlisp-10) The "protection code" of FILE, as an integer.

(Interlisp-10) T if FILE is the name of a deleted file, NIL otherwise.

Additional attributes which are available for Interlisp-lO on TOPS-20 systems (DEC release 4 or later)
are:

INVISIBLE

ARCHIVED

OFF-LINE

T if FILE has the invisible attribute. NIL otherwise.

T if FILE has been archived, NIL otherwise.

T if the contents of FILE a:re off-line (Le. FILE has been archived and its contents
flushed), NIL otherwise.

(POSITION FILE N) [Function]
Returns the column number at which the next character will be read or printed.
After a end of line. the 'column number is O. If N is non-N I L. resets the column
number to be N.

Note that (POSITION FILE) is not the same as (GETFILEPTR FILE) which
gives the position in the file. not on the line.

6.7

Randomly Accessible Files

(LINELENGTH N FILE) [Function]
Sets the length of the print line for the output file FILE to N; returns the fonner
setting of the line length. FILE defaults to the primary output file. (LINELENGTH
NIL FILE) returns the current setting fOfFILE. When a file is first openecL its
line length is set to the value of the variable F I L Ell N E L E NG T H.

Whenever printing an . atom or string would increase a file's position beyond the
line length of the file. an end of line is automatically inserted first. This action can
be defeated by using PRIN3 and PRIN4 (page 6.17).

(SETLINELENGTH N) [Function]
If N is NIL. interrogates the operating system for the line length of the tenninal
device, and sets the variable TTYLINELENGTH to this value. If N is not NIL,
instructs the operating system to set the tenninal line length to N, and also sets
TTYLINELENGTH to N. Then, in either case, SETLINELENGTH perfonns (and
returns as its value) (LINELENGTH TTYLINELENGTH T).

Both AFTERSYSOUTFORMS and RESETFORMS (page 8.19) contain a (SETLINELENGTH) so that when
the user first runs a SYSOUT, or types control-D, the system obtains the latest information about the
terminal.

6.1.4 Randomly Accessible Files

·For most applications, files are read starting at their beginning and proceeding seq~entially, Le., the
next character read is the one immediately following the last character read. Similarly, files' are written .
sequentially. However, it is also possible to read/write characters at arbitrary pOSitions in a file, essentially
treating the file as a large block of auxiliary storage .. For example, one application might involve writing
an expression at the beginning of the file, and then reading an expression from a specified point in its
middle. This panicular example requires the file be open for both input and output. However, random
file input or output can also be performed on files that have been opened for only input or only output

Associated with each file is a "file pointer" that points to the location where the next character is to be
read from or written to. The file pointer to a file is automatically advanced after each input or output
operation. This section describes functions which can be used to reposition the file pointer on those files
that can be randomly accessed. A file used in this fashion is much like an array in that it has a certain
number of addressable locations that characters can be put into or taken from. However, unlike arrays,
files can be enlarged. For example, if the file pointer is positioned at the end of a file and anything is
written, the file "grows." It is also possible to position the file pointer beyond the end of file and then
to write. (If the program attempts to read beyond the end of file, an E NO 0 F F I L E error occurs.) In
this case, the file is enlarged. and a "hole" is createcL which can later be written into. Note that this
enlargement only takes place at the end of a file; it is not possible to make more room in the middle of
a file. In other words, if expression A "begins at position 1000, and expression B at 1100. and the program
attempts to overwrite A with expression C, which is 200 characters long, pan of B will be altered.

The address of a character (byte) is the number of characters (bytes) that precede it in the file, i.e., 0 is
the address of the beginning of the file. However, the user should be careful about computing the space
needed' for an expression. since end-of-line may be represented by a different number of characters in
different implementations. even though NCHARS only counts it as one; e.g., end-of-line in Interlisp-10
files is represented as the two characters carriage-return, line-feed. Output functions may also introduce
end-of-line's as a result of LINELENGTH considerations.

6.8

INPUT/OUTPUT

(GETF ILEPTR FILE) [Function]
Returns the current position of the file pointer for FILE. Le.. the byte address at
which the next input! output operation will. commence.

(SETF ILEPTR FILE ADR) [Function]
Sets the file pointer for FILE to the position ADR; returns ADR. The special value
ADR = -1 is interpreted to mean the address of the end of file. 2

(GETEOFPTR FILE) [Function]
Returns the byte address of the end of file. i.e.. the number of bytes in the file.
Equivalent to performing (SETFIL.EPTR FILE -1) and returning (GETFILEPTR
FILE) except that it does not change the current file pointer.

(EOFP FILE) [Function]
Returns T if the file pointer to FILE is pointing to the end of file; NIL otherwise.
FILE must be open for (at least) input, or an error is generated. FILE NOT OPEN.

(RANOACCESSP FILE) [Function]
Returns FILE if FILE is randomly accessible. NIL otherwise. The file T is not
randomly accessible, nor are the files L PT !., NIL: in Interlisp-10, or certain network
file connections in Interlisp-D. FILE must be open or an error is generated. FILE
NOT OPEN.

(COPYBYTES SRCFIL DSTFIL START END) [Function]
Copies bytes (characters) from SRCFIL to DSTFIL, starting from position START

and up to but not including position END. Both SRCFIL' and·DsTFIL must be ppen.
Returns T. ..

If END = NIL, START is interpreted as the number of bytes to copy (starting at the
current position). If START is also NIL, bytes are copied until the end of the file
is reached.

(F ILEPOS PATTERN FILE START END SKIP TAlL CASEARRAY) [Function]
Analogous to STRPOS (page 2.31), but searches a file rather than a string. F I LEPOS
searches FILE for the string PATTERN. Search begins at START (or the current
position of the file pointer, if START = NIL), and goes to END (or the end of FILE,

if END = NIL). Returns the address of the start of the match, or NIL if not found.

SKIP can be used to specify a character which matches any character in the file. If
TAlL is T, and the search is successful, the value is the address of the first character
after the sequence of characters corresponding to PATTERN, instead of the starting
address of the sequence. In either case, the file is left so that the next i/o operation
begins at the address returned as the value of F I LEPOS.

2Note: If a file is opened for output only, the end pf file is initially zero, even if an old file by the same
name had existed (see OPENFILE, page 6.1). If a file is opened for both input and output.. the initial file
pointer is the beginning of the file. but (S E T F I L E P T R FILE - 1) will set it to the end of the file. If
the file had been opened in append mode by (0 PEN F I L E FILE 'A P PEN 0), the file pointer right after
opening would be set to the end of the existing file, in which case a SETF ILEPTR to position the file at
the end would be unnecessary.

6.9

Randomly Accessible Files

. CASEARRAY should be a '6casearray" that specifies that certain characters should
be transformed to other characters before matching. Casearrays are returned. by
CASEARRAY or SEPRCASE below. CASEA.RRA.Y=NIL means no transformation
will be performed.

A casearray is an impiementation-dependent object that is logically an array of
charaCter codes with one entry for each possible character. FILEPOS maps
each' character in the file uthrough" CASEARRAY in the sense that each character
code is transformed into the corresponding character code from CASEARRAY
before matching. Thus if two characters map into the same value., they are
treated as equivalent by FILEPOS. CASEARRAY and SETCASEARRAY l'rovide an
implementation-independent interface to casearrays.

For example, to search without regard to upper and lower case differences.
CASEARRAY would be a casearray where all characters map to themselves. except
for lower case characters. whose corresponding elements would be the upper case
characters. To search for a delimited atom. one could use '6 ATOM" as the pattern.
and specify a CASEARRAY in wbich all of the break and separator characters
mapp.ed into the same code as space.

For applications calling for ~xtensive file searches. the function F FILE POS is often faster than FILE POS.

(FFILEPOS PATTERN FILE START END SKIP TAlL CASEA.R.RAY) [Function]
Like F ILEPOS. except much faster in most applications.3 FFILEPOS is an
implementation of the Boyer-Moore fast string searching, algorithm. This algorithm
preprocesses the string being searched for and then sCans through the file in steps
usually equal to the length of the string. Thus. F FILE POS 'speeds up roughly in
proportion to the length of the string, e.g .. a string of length 10 will be found twice
as fast as a string of length 5 in the same position.

Because of cenain fixed overheads. it is generally better to use F I L E POS for shon
searches or short strings.

(CASEARRAY OLDARRAY) [Function]
Creates and returns a new casearray. with all elements set to themselves. to indicate
the identity mapping.

(Interlisp-D) If OLDARRAY is given. it is reused. .

(SETCASEARRAY CASEARRAY FROMCODE TOCODE) [Function]
Modifies the casearray CASE.ARRAY so that character code FROMCODE is mapped
to character code TOCODE.

(SEPRCASE CLFLG) [Function]
Returns a new casearray suitable for use by FILEPOS or FFILEPOS in which all
of the break/separators of FILE ROTS L are mapped into character code zero. If
CLFLG is non-H I L. then all CLISP characters will be mapped into this character as
well. This is useful for finding a delimited atom in a file. For example. if PATTERN

:) In Interlisp-lO. a speedup of 10 to 50 times is typical. In Interlisp-D the speedup is much smaller.

6.10

INPUT/OUTPUT

is" Faa If, and (SEPRCASE T) is used for CASEARRAY, then FILEPOS will
find "(FOO+-".

6.1.5 Closing and Reopening Files

The function WHENCLOSE permits the 'user to associate certain operations with open files that govern how
and when the file will be closed, and how the file's status will be restored when a SYSOUT is started up.
The user can specify that certain functions will be executed before CLOSE F closes the file and/or after
CLOSEF closes the file. The user can make a particular file be invisible to CLOSEALL, so that it will
remain open across user invocations of CLOSEALL. Finally, the user can associate a status-saving function
with a file which will be called before SY SOUT and which can specify what to do when a SY SOUT is
restarted.

(WHENCLOSE FILE PROPl VALl ... PROPN VALN) [NoSpread Function]
FILE must specify the name of an open file other than T (N I L defaults to the
primary ,input file, if other than T. or primary output file if other than T). The
remaining arguments specify properties to be associated with the full name of FILE.

WHENCLOSE returns the full name of FILE as its value.

WHENCLOSE recognizes the following property names:

BEFORE

AFTER

STATUS

CLOSEALL

EOF

VAL is a function that CLOSE F will apply to the full name of FILE just before it is
closed. This might be used, for example, to copy information about the file from an
. in-core data structure ~o the fi~e jus.t befor~ it is closed.

VAL is a function that CLOSEF will apply to the full name of FILE just after it is
closed. This capability permits in-core data structures that know about the file to be
cleaned up when the file is closed.

BEFORE and AFTER differ in their behavior with respect to SYSOUT. If a file that
was open before SYSOUT does not have a STATUS function associated with it that
causes the file to be successfully restored after the SY SOUT is started, then the file
is considered to have been "closed" by the SYSOUT, and its AFTER function will be
executed after the SY SOUT starts. .

This property provides a way of restoring the status of files when a SYSOUT is
resumed. VAL is a function that will be applied to the full name of FILE just before
a SYSOUT. VAL is expected to return a list, CAR of which is a function which will
be APPL Y'd to the CDR when the SYSOUT is started up and which will restore the
status of FILE. If the value of the APPL Y is NIL. it is assumed the file could not be
successfully restored. a warning message is printed. and then any AFT E R functions
associated with the file are executed.

The function PERMSTATUS (page 23.17) produces an expression for re-ope~ing a file
after SYSOUT and restoring as many of its attributes as possible.

VAL is either YES or NO and determines whether FILE will be closed by CLOSEALL
(YES) or whether CLOSEALL will ignore it (NO). CLOSEALL uses CLOSEF, so that
any AF T E R functions will be executed if the file is in fact closed.

VAL is· a function that will be applied to the full name of FILE when an end-of-file

6.11

Dribble Files

error occurs, and the ERRORTYPEL5T entry for that error, if any, returns NIL. The
function can examine the context of the error, and can decide whether to close the
file, RET F ROM some function.. or perform some other computation. If the function
supplied returns normally (i.e. does not RETFROM some function), the normal error
machinery will be invoked (but FILE will not be automatically closed if the EO F
function did not close it).

Note that multiple AFTER and BEFORE functions may be associated with a file; they are executed
in sequence' with the most recently associated function executed first. However. a second 5T A TUS
specification will supercede an earlier one. The CLOSEALL and EOF values will also override earlier
values, so only the last value specified will have an effect. Files are initialized with CLOSEALL - YES,
EOF .. CLOSEF.

6.1.6 Dribble Files

A dribble file is a "transcript" of all of the input and output on a terminal. The following function
enables dribble files for Interlisp:

(DRIBB.LE FILENAME APPENDFLG THAWEDFLG) [Function1

(DRIBBLEFILE)

Opens FILENAME and begins recording the typescript. Returns the old dribble
file if any. otherwise NIL. If APPENDFLG = T. the typescript will be appended to
the end of FILENAME. If THAWEDFLG= T. the file will be opened in "thawed"
mode. for those implementations that support it (OR IBBLE) closes the dribble
file. Only one dribble file can be active at anyone ,time. so (DRIBBLE FILE1)
followed by (DR I B B LE FILE~) will cause FILEl to be closed.

[n Interlisp-D, DRIBBLE opens a dribble fil~ for the current process. recording the
input and output for that process. Multiple processes can have separate dribble
files open at the same time.

(Function1
Returns the name of the current dribble file. if any, otherwise NIL.

Terminal input is echoed to the dribble file a line buffer at a time. Thus. the typescript produced is
somewhat neater than that appearing on the user's terminal. because it does not show characters that were
erased via control-A or control-Q. Note that the typescript file is not included in the list of files returned
by (OPENP), nor will it be closed by a call to CLOSEALL or CLOSE F. Only, (OR IBBLE) closes the
typescript file.

6.2 INPUT FUNCrIONS

Most of the functions described below have an argument FILE. which specifies the name of the file on
which the operation is to take place. If F~E is N I L~ the primary input file will be used. If the file
argument is a string, input will be taken from that string (and the string pointer reset accordingly).

\1ost input functions also have a RDTBL argumen~ which specifies the readtable to be used for input. If
RDTBL is NIL. the 'primary readtable will be used. Readtables are described on page 6.32.

6.12

INPUT/OUTPUT

Note: in all Interlisp-10 symbolic files. end-of-line is indicated by the· characters carriage-return and
line-feed in that order~ Accordingly, on' input from files., Interlisp-10 skips all line-feeds that immediately
follow carriage-returns. On input from the terminal. Interlisp echos a line-feed whenever a carriage-return
is inpuL

When reading from the terminal., the input is buffered a line at a time (unless buffering has been inhibited
by (CONTROL T), or the input is being read by READe or PEEKC} and can be backed up over using
specified editing characters. The user can erase a character at a time., the whole line" or, in Interlisp-D. a
word at a time. The keys that perfotm these editing functions are assignable via the SETSYNTAX function
(page 6.34)., with the intial settings chosen to be those most natural for the given operating system:
characters are deleted one at a time by control-A under Tenex, Delete under Tops20., and BackSpace in
Interlisp-D; the whole line is erased by control-Q under Tenex and in Interlisp-D, and conuol"U under
Tops20; words are erased by control-W in Interlisp-D.

The character-deleting action on notmal terminals is to echo a \ followed by the erased character; on the
Interlisp-D display the character is physically erased from the screen (this action can also be specified for
display tenninals in other Interlisps: see page 6.43). The line-deleting action is normally to print /Iii and
start over on a new line. Neither will back up beyond the previous carriage-return.

When reading from a file, and an end of file is encountered., all input functions close the file and generate
an error, END OF FILE (unless WHENCLOSE has been used to alter this behavior, see page 6.11).

(READ FILE RDTBL FLG) [Function1
Reads one expression from FILE. Atoms are delimited by the break and separator
characters as defined in RDTBL .. To include a break or separator character in an
atom., the character must be preceded.by the input escape character %. e.g .• AB%(C
is the atom AB(C~%% is the atom %, %control-A is the atom control-A. For input
from the tetminal. an atom containing an intemJpt character can be input by typing
instead the corresponding alphabetic character preceded by control-V, e.g., l"VC for
control-C.

Strings are delimited by double quotes. To input a string containing a double
quote or a %, precede it by %, e.g . ., "AB%" C" is the string AB" C. Note that % can
always be typed even if next character is not "special", e.g .• %A%B%C is read as
ABC.

If an atom is interpretable as a number. READ creates a number, e.g .• 1 E 3 reads as
a floating point number, 103 as a literal atom, 1. a as a number. 1, a as a literal
atom. etc. An integer can be input in octal by terminating it with a Q, e.g .• 17Q
and 15 read in as the same integer. The setting of RAD I X (page 6.19) determines
in which base integers are printed.

When reading from the terminal. all input is line-buffered to enable the action
of the backspacing control characters (unless inhibited by (CONTROL T) (page
6.45». Thus no characters are actually seen by the program until a carriage-return is
typed. 4 However. for reading by READ. when a matching right parenthesis is
encountered, the effect is the same as though a carriage-return were typed. i.e .• the

4Actually, the line buffering is terminated by the character with terminal syntax class EOl (see page 6.33),
which in most cases is carriage-rerum.

6.13

Input Functions

characters are transmitted.5 To indicate this, Interlisp also prints a carriage-return
line-feed on the tenriinal.

In Interlisp-lO, the character control-W is defined as an IMMEDIATE read macro
that erases the last expression read, echoing a \ \ and the erased expression, e.g.,
(NOW IS THE TIME1'W \\ TIME) returns (NOW IS THE). ControlaW can be
used repeatedly, and can also back up and erase expressions on previous lines.
However. since control-W is implemented as an I MME D I ATE read-macro character,
(page 6.36), once it is typed, then individual characters typed before it cannot be
deleted by control-A or control-Q, since they will already have passed through the
line buffer.

In Interlisp-D, control-W is instead defined as an editing character that deletes the
last "word" of inpu 1. i.e.. back to the first non -0 THE R character preceding the first
non-SE PR character. essentially a repeated BackSpace. The character performing
this function is assignable using the WORDDELETE syntax (page 6.34).

FLG = T suppresses the carriage-return normally typed by READ following a
matching right parenthesis. (However, the characters are still given to READ:
Le .• the user does not have to type the carriage-return.)

(RATOM FILE R.DTBL) [Function]
Reads in one atom from FILE. Separation of atoms is defined by RDTBL. % is
also an escape character for RATOM, and the remarks concerning line-buffering and
editing control characters also apply.

If the characters comprising the atom would normally be interpreted as a number
by READ. that number is returned by RATOM. Note however that RATOM takes no
special action for ~, whether or not it is a break character, i.e., RAT OM never makes
a string.

(RSTRING FILE RDTBL) [Function]
Reads characters from FILE up to, but not including, the next break or separator
character. and returns them as a string. Control-A, control-Q, control-V, and %
have the same effect as with READ.

Note that the break or separator character that terminates a call to RATOM or RSTRING is not read by
that call, but remains· in the buffer to become the first character seen by the next reading function that is
called. If that function is RSTRING, it will return the null string. This is a common source of program
bugs.

(RATOMS A FILE RDTBL) [Function]

(RATEST FLG)

Calls RATOM repeatedly until the atom A is read. Returns a list of the atoms read,
not including A.

. ~~~~
If FLG = T, RA T EST returns T if a separator was encountered immediately prior
to the last atom read by RATOM, NIL otherwise.

5The line buffer is also transmitted to READ whenever an I MM ED I ATE read-macro character is typed
(page 6.36).

6.14

INPUT/OUTPUT

If FLG = NIL, RATESTreturns T if last atom read by RATOM or READ was a
break character, NIL otherwise.

If FLG = 1, RATEST returns T if last atom read (by READ or RATOM) contained
a % (as an escape character, e.g., %[or %A%B%C), NIL otherwise.

(R EADC FILE RDTBL) [Function]
Reads and returns the next character, including %, ", etc, i.e., is not affected
by break, separator, or escape character. The action of READC is subject to line
buffering, Le., READC does not return a value until the line has been tenninated
even if a character has been typed. Thus, the editing control characters have their
usual effect RDTBL does not directly affect the value returned, but is used as usual
in line-buffering, e.g., detennining when input has been terminated.. If (CONTROL
T) has been executed (page 6.45), defeating line-buffering, the RDTBL argument is
irrelevant, and READC returns a value as soon as a character is typed (even if the
character typed is one of the editing characters, which ordinarily would never be
seen in the input buffer).

(PEEKC FILE RDTBL) [Function]
Returns the next character, but does not actually read it and remove it from the
buffer. If RDTBL=NIL, PEEKC is not subject to line-buffering,6 i.e., it returns
a value as soon as a character has been typed. Otherwise, PEEKC waits until the
line has been tenninated before returning its value. This means that control-A,
control-Q, and control-V will be able to perfonn their usual editing functions.

- (LASTC FILE) [Function]-
Returns the last character read from FILE.

READ, RATOM. RATOMS, PEEKC, READC all wait for input if there is none. The only way to test whether
or not there is input is to use READP:

(READP FILE FLG) [Function1
Returns T if there is anything in the input buffer of FILE, NIL otherwise. Note
that because of line-buffering, READPmay return T, indicating there is input in
the buffer, but READ may still have to wait.

Frequently, the tenninal's input buffer contains a single EOl character left over
from a previous input. For most applications, this situation wants to be treated
as though the buffer were empty, and so (READP T) returns NIL in this case.
However. if FLG = T, READP also returns T in this case, Le., (READP T T) returns
T if there is any character in the input buffer ..

(WAITFORINPUT FILE) [Function]
Waits until input is available fronl FILE or from the tenninal, Le. from T.
WAITFORINPUT is functionally equivalent to (unt i 1 (OR (READP T) (READP

SIf reading from the tenninal, the character is echoed as ~oon as PEEKC reads it, even though it is tlien
"put back" into the system buffer. where a subsequent del (or control-Z on TOPS-20) before the character
is read can clear it, and where subsequent line buffer backspacing could change it Thus it is possible for
the value returned by PEEKC to "disagree" in the first character with a subsequent READ.

6.15

Output Functions

FILE» do NIL), except that it does not use up machine cycles while waiting.
Returns the device for which input is now available, i.e. FILE or T.

FILE can also be an integer, in which case WAITFORINPUT waits until there is
input available from the terminal, or until FILE milliseconds have elapsed. Value
is T if input is now available, NIL in the case that WA I T F OR I N PUT timed out

In Interlisp-10, WAITFORINPUT operates by dismissing, checking for available
input, and then, if there is none, dismissing again, each time for an increasingly
larger interval. The initial interval is 0 I 5M I 5S I NIT milliseconds (initially
500), and the interval grows by 1/16 for each dismissal, up to a maximum of
DISMISSMAX milliseconds (initially 10,000).

(SKREAD FILE REREADSTRING) _ [Function]
"Skip Read". It moves the file pointer for FILE ahead as if one call to READ had

. been performed, without paying the storage and compute cost to really read in the
structure. REREADSTRING is for the case where the user has already performed
some READe's and RATOM's before deciding to skip this expression. In this case,
REREADSTRING should be the material already read (as a string), and 5KREAo
operates -as though it had seen that material first, thus getting its paren-count,
double-quote count, etc. set up properly.

SKREAD always uses F I LERoTBL for its readtable. 5KREAo may have difficulties if
unusual read-macros have been added to FILE RoTBL. 5KREAo will not recognize
read-macro characters in REREADSTRING, nor 5 P L Ie E pr IN F I X read macros.
This is only a problem if the read-macros are defined to parse subsequent input in
the file which does not follow the normal parenthesis and string-quote conventions
in FILEROTBL.

SKREAO returns %) if the read terminated on an unbalanced closing parenthesis;
%] if tile read terminated on an unbalanced %], Le., one which also would have
closed any extant open left parentheses; otherwise NIL.

6.3 OUTPUT FUNCTIONS

Most of the functions described below have an argument FILE, which specifies the name of the file on
which the operation is to take place. If FILE is NIL, the primary output file is used. Some of the
functions have a RDTBL argument. which specifies the readtable to be used for output. If RDTBL is NIL,
the primary readtable is used.

Unless otherwise specified by OEFPRINT (page 6.23), pointers other than lists. strings, atoms, or numbers,
are printed in the fonn {DATAT'YPE} followed by the octal representation of the address of the pointer
(regardless of radix). For" example, an array pointer might print as {ARRAYP}#43. 2760. This printed
representation is for compactness of display on the user's tenninal, and will not read back in correctly; if
the fonn above is read, it will produce the atom "{ARRAYP}#43 • 2760".

Note: the tenn end-aj-line appearing in the description of an output function means the character or
characters used to tenninate a line in the file system being used by the given implementation of Interlisp.
For example, in Interlisp-10 end"of-line is indicated by the characters carriage-return and line-feed in that

6.16 _

INPUT/OUTPUT

order.

(PRINt X FILE) [Function]
Prints x on FILE.

(P R IN 2 X FILE RDTBL) [Function]
Prints x on FILE with %'s and "'s inserted where required for it to read back in
properly by READ, using RDTBL.

Both PRIN1 and PRIN2 print lists as well as atoms and strings; PRIN1 is usually used only for explicitly
printing formatting characters, e.g., (PR IN 1 (QUOTE %[» might be used to print a left square bracket
(the % would not be printed by P R I N 1). P R IN 2 is used for printing S-expressions which can then be
read back into Interlisp with READ; i.e., break and separator characters in atoms will be preceded by %'s.
For example~ the atom "()" is printed as %(%) by PRIN2. If RADIX=8 (page 6.19), PRIN2 prints a
Q after integers but P R I N t does not (but both print the integer in octal).

(PRIN3 x FILE) [Function]
(PRIN4 x FILE RDTBL) [Function]

PRIN3 and PRIN4 are the same as PRIN1 and PRIN2 respectively, except that
they do not increment· the horizontal position counter nor perform· any lineiength
checks. They are useful primarily for printing control characters.

(P R I NT X FILE RDTBL) [Function]
Prints the expression x using PRIN.2 followed by an end-of-line. Returns x .

(SPACES N FILE) .[Function]
Prints N spaces. Returns NIL.

(TERPRI FILE) [Function]
Prints an end-of-line. Returns NIL.

(TAB POS MINSPACES FILE) [Function]
Prints the appropriate number of spaces to move to pOSltlOn POSe MINSPACES

indicates how many spaces must be printed (if NIL, 1 is used). If the current
position plus MINSPACES is greater than POS, TAB does aTE RP R I and then
(S PAC E S pos). If MINSPACES is T. and the current position is greater than POS,

then TAB does nothing.

Note: A sequence of PR I NT, PRI N2, SPACES, and TE RPR I expressions can often be more conveniently
coded with a single PRINTOUT statement (page 6.25).

(SHOWPRIN2 x FILE RDTBL) [Function]
Like PRIN2 except if SYSPRETTYFLG=T. prettyprints x instead. Returns x.

(SHOWPRINT x FILE RDTBL) [Function]
Like PRINT except if SYSPRETTYFLG=T, prettyprints x instea<L followed by an
end-of-line. Returns x.

SHOWPRINT and SHOWPRIN2 are used by the programmer's assistant (page 8.1) for printing the values
of expressions and for printIng :the history list. by various commands of the break package (page 9.1),
e.g. ? = and B T commands, and various other system packages. The idea is that by simply settting or
binding S Y S PRE TTY F L G to T (initially NIL), the user instructs the system when interacting with the user

6.17

Printlevel

to PRETTYPRINT expressions (page 6.47) instead of printing them.

(PRINTBELLS)

(OOBE)

6.3.1 PrintIevel

[Function]
Used by DWIM (page 1501) to print a sequence of bells to alert the user to stop
typing. Can be advised or redefined for special applications, e.g .• to flash the screen
on a display terminal.

[Function]
(Interlisp-l0) Dismiss until Output Buffer is Empty. i.e., until all of the characters
that have been printed by Interlisp functions have actually been printed on the
user's tenninal. For example, it is important to perform' a DOB E after printing
an error message before clearing the input buffers to make sure that the user has
actually seen the error message.

In systems that do not handle output to the display asynchronously with user
computation, such as Interlisp-D. OOBE is a no-ope

When using Interlisp one often has to handle large, complicated lists. which are difficult to understand
when printed out. P R IN T LEV E L allows the user to specify in how much detail lists should be printed.
The print functions PRINT, PRINl, and PRIN2 are all affected by level paranieters set by:

(PRINTLEVEL CARVAL CDRVAL) [Function]
. Sets the CAR print level to CARVAL, and the CDR print level to CDRVAL. Returns a

list cell whose CAR and CDR are the old settings. PRINTLEVEL is initialized with
the value (l 0 00 • - 1) .

In order that PRINTLEVEL can be used with RESETFORM or RESETSAVE, if
CARVAL is a list cell it is equivalent to (PRINTLEVEL (CAR CARVAL) (CDR
CARVAL)).

(PRINTLEVEL N NIL) changes the CAR printlevel without affecting the CDR
printlevel. (PRINTLEVEL NIL N) changes the CDR printlevel with affecting the
CAR printlevel. (PRINTLEVEL) gives the current setting without changing either.

The CAR printlevel specifies how "deep" to print a list. Specifically, it is the number of unpaired left
parentheses which will be printed. Below that level, all lists will be printed as &. For example, suppose
x = (A (B C (0 (E F) G) H) K). If CARVAL=3. (PRINT x) would print (A (B C (0 & G)
H) K), if CARVAL = 2, (A (B C & H) K). if CARVAL = 1. (A & K), and if CARVAL = 0, just &.

If the CAR printlevel is negative. the action is similar except that an end-of-line is inserted after each right
parentheses that would be inunediately followed by a left parenthesis.

The CDR printlevel specifies how "long" to print a list. It is the number of top level list elements that
will be printed before the printing is terminated with --. For example. if CDRVAL=2. (A BCD E)
will print as (A B - -). For sUblists, the number of list elements printed is also affected by the depth
of printing in the. CAR direction: Whenever the sum of the depth of the sublist (Le. the number of
unmatched left parentheses) and the number of elements is greater than the CDR printlevel, - - is printed.
This gives a "triangular" effect in that less is printed the farther one goes in either CAR or CDR direction .

. For example, if CDRVAL=2, then {A {B C {O (E F) G) H) K L) will print as (A (B --) --)

6.18

INPUT/OUTPUT

and if CDRVAL = 3, as (A (B C - -) K - -) .

If the CDR printlevel is negative, then it is the same as if the CDR printlevel were infinite.

The printlevel setting can be changed dynamically, even while Interlisp is printing. by typing control-P
followed by a number, Le., a string of digits, followed by a period or exclamation point. As soon as
control-P is typed, Interlisp clears and saves the input buffer, clears the output buffer, rings the bell
indicating it has seen the control-P, and then waits for input, which is terminated by any non-number.
The input buffer is then restored and the program continues. If the input was terminated by a period or
an exclamation point, the CAR printlevel is immediately set to this number; otherwise, the input is ignored.
Characters cleared from the output buffer will have been lost in either case, and printing contihues with
the (possibly new) printlevel. If the print routine is currently deeper than the new level, all unfinished
lists above that level will be terminated by "- -)". Thus, if a circular or long list of atoms, is being printed
out, typing "control-PO." will cause the list to be terminated immediately.

If the string of digits following a control-P is terminated by a comma, another number may be typed
terminated by a period or exclamation point. The CA R printlevel will then be set to the first number. the
CDR printlevel to the second number.

In either case, if a period is used to terminate theprintlevel setting, the printlevel will be rerurned to
its previous setting after the current printout has finished. If an exclamation point is used, the change is
·permanent and the printlevel is not restored (until it is changed again).

PlVlFIlEFlG [Variable]
Normally, PRINTlEVEl only affects terminal output. Output to all other files
acts as though the print level is infinite. Howe'ver, if P L Vl F I L E F lG is T' (initially
NIL), then PRINTLEVEl affects output to files as well.

6.3.2 Printing numbers

How the ordinary printing functions (PRIN1, PRIN2, etc.) print numbers can be affected in several ways.
RADIX influences the printing of integers. and Fl TFMT influences the printing of floating point numbers.
The setting of the variable PRXFLG determines how the symbol-manipulation functions handle numbers.
The PRINTNUM package permits greater controls on the printed .appearance of numbers, allowing such
things as left-justification, suppression of trailing decimals, etc.

(RADIX N) [Function]
Resets the output radix for integers to the absolute value of N. If N is negative,
integers are interpreted by the print routines as unsigned numbers; i.e., the actual
two's complement representation of the integer in the integer size of the particular
implementation is interpreted as if it were a positive number on a machine of
infinite integer size. Thus. numeric output under a negative radix varies with the
implementation, and numbers printed in this way by one implementation will not
read correctly in an implementation whose integers are of a different size.

For example, in Interlisp-10, whose integer size is 36 bits, -9 will print as shown
with the following radices:

6.19

(RADIX)

10

8

-10

-8

Printing numbers

(PRINT -9)

-9

-11Q

68719476727 (Le. 236.9)

777777777767Q

The value of RAD I X is its previous setting. (RAD I X) gIves the current setting
without changing it. The initial setting is 10.

Note that RAD I X affects output only. There is no input radix; on input, numbers
are interpreted as decimal unless they end in Q. in which case they are interpreted
as octal. Thus READ and PRINT are inverses, independent of any radix setting.
RADIX also does not affect -the behavior of UNPACK, etc .• unless the value of
PRXFLG(below) is T; e.g .• with (RADIX 8). the value of (UNPACK 9) is (9),
not (1 1).

-(FLTFMT FORMAT) [Function]
Resets the output format for floating point numbers to the FLOAT format FORMAT

(see PRINTNUM beJow for a description of FLOAT formats). FORMAT = T specifies'
the default "free" formatting: some number of significant digits '(a function of
the implementation) are printed. with trailing zeros suppressed; numbe~ with
sufficiently' large or small exponents are, instead printed in exponent notation.

FL TFMT returns its current setting. (FL TFMT) returns the current setting without
changing it. The initial setting is T.

In Interlisp·lO, FORMAT may also be a ma~hine·dependent F LOA T format·code as
returned by NUMFORMATCODE (page 6.23).

Whether print name manipulation functions (UNPACK, NCHARS, etc.) use the values of RAD IX and
FL TFMT is determined by the variable PRXFLG:

PRXFLG [Variable]
If P RX F LG = NIL (the initial setting), then the "P R I N 1" name used by PAC K,
UNPACK, MKSTRING. etc., is computed using base 10 for integers and the system
default floating format for floating point numbers, independent of the current
setting of RADIX or FLTFMT. IfPRXFLG=T, then RADIX and FLTFMT do dictate
the "PRIN1" name of numbers. Note that in this case, PACK and UNPACK are not
inverses.

Examples with (RAD I X 8). (F L T FMT '(FLOAT 4 2»:

With P R X F L G = NIL.

(UNPACK 13) =) (1 3)

(PACK '(A 9» =) A9

6.20

INPUT/OUTPUT

(UNPACK 1.2345) =) (1 %e 2 3 4 5)

With PRXFLG = T,

(UNPACK 13) =) (1 5)

{PACK '(A 9» =) All

(UNPACK 1.2345) =) (1 %. 2 3)

Note that PRXFLG does not effect the radix of "PRIN2" names, so with (RADIX
8), (NCHARS 9 T), w.hich uses PRIN2 names, would return 3, (since 9 would
print as llQ) for either setting of PRXFLG.

Warning: Some system functions will not work correctly if PRXFLG is not NIL.
Therefore, resetting the global value of PRXFLG is not recommended. It is much
better to rebind PRXFLG as a SPECVAR for that part of a program where it needs
to be non-NIL.

The basic function for printing numbers under format. control is PRINTNUM. Its utility is considerably
enhanced when used in conjunction with the PRINTOUT package (page X.XX), which implements a
compact language for specifying complicated sequences of elementary printing operations, and makes
fancy output formats easy to design and simple to program.

(PRINTNUM FORMAT NUMBER FILE) [Function]
Prints NUMBER o.n FILE according to the' format FORMAT. FORMAT is a list structure
with one of the "forms described below. FORMAT can also be a machine dependent
format-code as returned by NUMFORMATCODE (page 6.23).

(Interlisp-10) If NUMBER does not fit in the field specified by FORMAT, the full
print name is printed. Then a T AS is executed so that the line position of the file
after PRINTNUM is always the position prior to printing plus the indicated width.

If FORMAT is a list of the form (FIX WIDTH RADIX PADO LEFTFLUSH) , this specifies a FIX
format. NUMBER is rounded to the nearest integer, and then printed in a field WIDTH characters long with
radix set to RADIX (or 10 if RADIX= NIL; note that the setting of RAD I X is not used as the default). If
PADO and LEFTFLUSH are both NIL, the number is right-justified in the field, and the padding characters
to the left of the leading digit are spaces. If PADO is T, the character "0" is used for padding. If
LEFTFLUSH is T, then the number is left-justified in the field, with trailing spaces to fill out WIDTH

characters.

The following examples illustrate the effects of the F I X format options (the vertical bars indicate the field
width):

6.21

FORMAT

(FIX 2)

(FIX 2 NIL T)

(FIX 12 8 T)

Printing numbers

NUMBER

3

7

14

PRINTNUM prints

I 31

1071

10000000000161

(FIX 5 NIL NIL T) 2 12

If FORMAT is a list of the form (F LOAT WIDTH DECPART E~PART PADO ROUND). this specifies a
FLOAT format. NUMBER is printed as a decimal number in a field WIDTH characters wide, with DECPART

digits to the right of the decimal point. If EXPPART is not 0 (or NIL), the number is printed in exponent
notation, with the exponent occupying EXPPART characters in the field. EXPf'ART should allow for the
character E and an optional sign to be printed before the exponent digits. As with F I X format. padding
on the left is with spaces, unless PADO is T. If ROUND is given, it indicates the digit position at which
rounding is to take place, counting from the leading digit of the number.1

F LOA T format examples:

FORMAT NUMBER PRINTNUM prints

(FLOAT 7 2) 27.689 27.691

(FLOAT 7 2 NIL Tl 27.689 10027.691 ..
(FLOAT 7 2 2) 27.689 2.77Ell

(FLOAT 11 2 4) 27.689 2.77E+011 8

(FLOAT 7 2 NIL NIL 1) 27.689 30.001

(FLOAT 7 2 NIL NIL 2) 27.689 28.001

NILNUMPRINTFLG [Variable]
If PRINTNUM's NUMBER argument is not a number and not NIL~ a NON-NUMERIC
ARG error is generated. If NUMBER is NIL. the effect depends on the setting of the
variable NILNUMPRINTFLG. IfNILNUMPRINTFLG is NIL, then the error occurs as
usual. If it is non -NIL. then no error occurs, and the value of NIL N UM P R I NT F L G
is printed right-justified in the field described by FORMAT. This option facilitates
the printing of numbers in aggregates with missing values coded as NIL.

7The interpretation of WIDTH= NIL and DECPART= NIL are not specified, and are currently a function
of the implementation. Interlisp-lO prohibits WIDTH= NIL, and treats DECPART= NIL as equivalent to
DECPART= 0: Interlisp-D "interprets WIDTH = NIL to mean no padding, i.e .• to use however much space
the number needs. and interprets DECPART = NIL to mean as many decimal places as needed.

~ As of this writing, the Interlisp-lO implementation actually does something less intuitive with the EXPPART
field: the placement of the decimal point is affected by DECPART, and padding never occurs. These two
examples in Interlisp-lO would actually print as I. 28E+021 and 127. 69E+OOOO I.

6.22

INPUT IOUTPUT

In some implementations, formatted printing of numbers receives assistance from the operating system,
provided that the format is specified in some sort of special code. P R I NTNUM works by converting the
machine-independent format specifications described above into machine-dependent codes the exact form
of which may vary from implementation to implementation. This conversion process takes place on each
call to PR I NTNUM. For efficiency purposes, if the user is going to be performing a particular call to
PRINTNUM frequently, he may wish to separate the conversion from the actual printing, performing the
conversion process just once and saving the result. The function NUMFORMATCODE is available for this
purpose: NUMFORMATCODE takes a forma~ performs the conversion and returns a machine dependent
format-code, which can be given to PRINTNUM in place of a list structure format as described above. In
this case, PRINTNUM will not have to perform the conversion, butean simply use the machine-dependent
format code directly.

(NUMFORMATCODE FORMAT SMASHCODE) [Function]
Converts the FIX or FLOAT format FORMAT to a machine-dependent format
code. If SMASHCODE is recognized as a format-code data-structure, then the
new format-code is smashed into that structure instead of allocating new storage.
(NUMFORMATCODE) returns an uninitialized datum that can later be smashed.

In Interlisp-D. this function is a no-op, as there is no special internal representation
for number formats. .

6.3.3 User Defined Printing

(DEFPRINl TYPE FN) [Function]
TYPE is a type name (see page 2.1). Whenever a printing function (P R I NT, P R IN 1,
PR I N2, etc.) encounters an object of the indicated type, FN is called with the item
to be printed as its argument. If it returns NIL, the datum is printed in the manner
the system defaults: for user data types, it is printed as {datatype}#nnnnnn. If
FN wishes to specify how the datum should be printed, it should return a list of
the form (ITEMl • ITEM2). ITEMl is printed using P R I N 1 (unless it is NIL), and
then ITEM2 printed using P R I N 2 with no spaces between the two items. (Typically,
ITEMl is a read macro character.)

In tnterlisp-lO. TYPE may also be a type number (see page 22.2). Note that the
user can specify different action for type names ARRAYP, HARRAYP, TERMTABLEP,
READTABLEP, and CCODEP, even though they all have the same type number.

Note that OEFPRINT also affects internal calls to print from PACK, CONCAT, etc., Le. any operation that
involves obtaining a print name (see page 2.8). A consequence of this fact is that in implementations
that do not have reentrant printing code (in particular, Interlisp-10), the user's DE F PR I NT function must
not call any print name manipulating functions itself. or the results of the whole printing operation are
undefined.

6.3.4 Dumping Unusual Data Structures

HPRINT (for "Horrible Print") artd HREAD provide a mechanism for printing and reading back in general
data structures that cannot normally be dumped and loaded easily, such as (possibly re-entrant or circular)
structures containing user datatypes, arrays, hash tables, as well as list structures. H P R I NT will correctly
print and read back in any structure containing ,any or aU of the above, chasing all pointers down to the

6.23

~EADFILE and WRITEFILE

level of literal atoms, numbers or strings. HPRINT currently cannot handle compiled code arrays, stack
positions, or arbitrary unboxed numbers.

HPRINT operates by simulating the Interlisp PRINT routine for normal list structures. When it encounters
a user datatype (see page 3.14), or an array or hash array, it prints the data contained therein, surrounded
by special characters defined as read-macro characters (see page 6.36). While chasing the pointers of a
structure, it also keeps a hash table of those items it encounters, and if any item is encountered a second
time, another read-macro character is insened before the first occurrence (by resetting the file pointer with
SETFILEPTR) and all subsequent occurrences are printed as a back reference using an appropriate macro
character. Thus the inverse function, I1READ merely calls the Interlisp READ routine with the appropriate
readtable. .

(HPRINT EXPR FILE UNCIRCULAR DATATYPESEEN) [Function]

(HREAD FILE)

(HCOPYALL x)

Prints EXPR on FILE. If UNCIRCULAR is non -N I L. H P R I NT does no checking for
any circularities in EXPR (but is still useful for dumping arbitrary structures of
arrays, hash arrays, lists, user data types, etc., that do not contain circularities).
Specifying UNCIRCULAR as non-N I L results in a large speed and internal-storage
advantage.

Normally, when HPR INT encounters a user data type for the firSt time, it outputs
a summary of the data type's declaration. When this is read in, the data type is
redeclared. If DATATYPESEEN is non-NIL, HPRINT will assume that the same data
type declarations will be in force at read time as were at H P R I NT time, and not
output declarations.

HPR IN T is intended priinarily for output to ~ disk files. since "the algorithm depends
on being able to reset the file pointer. If FILE is not a disk file (and UNCIRCULAR

= NIL), a temporary file, HPRINT. SCRATCH, is opened, EXPR is HPRINTed on
it, and then that file is copied to the final output file and the temporary file is
deleted.

[Function]
Reads and returns an H P R I NT -ed expression from FILE.

[Function]
Copies data structure x. x may contain circular pointers as well as arbitrary
structures.

Note: HORRIBLEVARS and UGL YVARS (page 11.25) are two file package commands for dumping and
reloading circular and re-entrant data structures. They provide a convenient interface to HPR I NT and
HREAD.

6.4 READ FILE AND WRITEFILE

F or those applications where the user simply wants to simply read all of the expressions on a file. and
not evaluate them, the function READF ILE is available:

(READF I LE FILE) [Function]
Reads succ~ssive expressions from file using READ (with FILERDTBL as readtable)

6.24

INPUT/OUTPUT

until the single atom S TOP is rea~. or an. enc! of file encountered. Returns a list
of these expressions.

(WRITEF I LE x FILE) [Function]

(END F I L E FILE)

6.5 PRINTOUT

Inverse of READ FILE. Writes a date expression onto FILE, followed by successive
expressions from x, using F I L E R D T B L as a readtab Ie. If x is atomic, its value is
used. If FILE is not open, it is opened. If FILE is a list, (CAR FILE) is used and
the file is left opened. Otherwise, when x is finishe~ a S TOP is printed on FILE

and it is closed. Returns FILE.

[Function]
Prints STOP on FILE and closes it.

Interlisp provides many facilities for controlling the fomlat of printed output. By executing various
sequences of PRINt, PRIN2, TAB, TERPRI, SPACES, PRINTNUM, and PRINTDEF, almost any effect can
be achieved. PRINTOUT implements a compact language for specifying complicated sequences of these
elementary printing functions. It makes fancy output fonnats easy to design and simple to program.

PRINTOUT is a CLISP word (like for and; f) for interpreting a special printing language in which
the user can describe the kinds of printing desired. The de~ription is traq,slated by OWIMI FY to the
appropriate sequence of PRINt, TAB, etc., before it is evaluated or compiled. PRINTOUT printing
descriptions have the following general fonn:

(PRINTOUT FILE PRINTCOM1 PRINTCOM2 ..• PRINTCOMN)

FILE is evaluated to obtain the name of the file to which the output from this specification is directed .
. The PRINTOUT commands are strung together, one after the other without punctuation, after FILE. Some
commands occupy a single position in this list, but many commands expect to find arguments following the
command name in the list. The commands fall into several logical groups: one set deals with horizontal
and vertical spacing, another group provides controls for certain fonnatting capabilities (fon~ changes and
subscripting), while a third set is concerned with various ways of actually printing items. Finally, there is
a command that pennits escaping to a simple Lisp evaluation in the middle of a PRINTOUT fonn. The
various commands are described below. The following examples give a general flavor of how PRINTOUT
is used:

Example 1: Suppose the user wanted to print out on the tenninal the values of three variables, X, Y, and
Z. separated by spaces and followed by a carriage return. This could be done by:

(PRINt X T)
(SPACES 1 T)
(PRINt Y T)
(SPACES 1 T)
(PRINt Z T)
(TERPRI T)

or by the more concise PRINTOUT fonn:

6.25

Horizontal Spttcing Commands

(PRINTOUT TXt Y • Z T)

Here the first T specifies output to the terminal, the commas cause single spaces to be printed, and the
final T specifies aTE R P R I. The variable names are not recognized as special P R I NT OU T commands, so
they are printed using PR IN t by default

Example 2: Suppose the values of X and Y are to be pretty-printed lined up at position 10. preceded by
identifying strings. If the output is to go to the primary output file, the user could write either:

(PRINt "X =")
(PRINTDEF X' 10 T)
(TERPRI)
(PRINt "Y =")
(PRINTDEF Y 10 T)
(TERPRI)

or the equivalent:

(PRINTOUT NIL "X =" 10 .PPV X T tty =" 10 .PPV Y T)

Since strings are not recognized as special commands. "X =" is also printed with P R I N 1 by default.
The positive integer means TAB: to position 10. where the . PPV command causes the value of X to be
prettyprinted as a variable. By convention. special atoms used as PRINTOUT commands are prefixed with
a period. The T causes a carriage return, so the Y information is printed on the next line .

. Example 3. As a final example, suppose that the value of X is an integer and the value of Y is a
floating-point number. X is to be printed right-flushed in a field of width 5 beginning at position 15,
and Y is to be printed in a field of width 10 also starting at position 15 with 2 places to the right of the
decimal point Furthermore. suppose that the variable names are to appear in the font named BOLDFONT
and the values in font SMALLFONT. The program in ordinary Lisp that would accomplish these effects is
too complicated to include here. With P R I NT au T, one could write:

(PRINTOUT NIL
.FONT BOLD FONT "X =" 15
.FONT SMALLFONT .15 X T
.fONT BOLDFONT tty =" 15
.FONT SMALLFONT .F10.2 Y T
.FONT BOLDFONT)

The . FONT commands do whatever is necessary to change the font on a multi-font output device. The
. 15 command sets up a F I X format for a call to the function P R IN T N U M (page 6.21) to print X iIi the
desired format The .F10.2 specifies a FLOAT format for PRINTNUM.

6.5.1 Horizontal Spacing Commands

The horizontal spacing commands provide convenient ways of calling TAB and SPACES. In the following
descriptions. N stands for a literal positive integer.

N Used for absolute spacing. [t results in a TAB to position N (literally, a (TAB
N}). [f the line is currently at position N or beyond, the file will be pqsitioned at
position N on the next line.

6.26

.TAB POS

.TABO POS

-N

, " '"

• S P DISTANCE

.RESET

INPUT/OUTPUT

.. Specifies TAB to position (the value of) pos. This is one of several commands
. whose effect could be achieved by simply escaping to Lisp, and executing the
corresponding form. It is provided as a separate command so that the PRINTOUT
form is more concise and is prettyprinted more compactly. Note that. TAB Nand
N, where N is an integer, are equivalent.

Like . TAB except that it can result in zero spaces (Le. the call to TAB specifies
MINSPACES= 0).

Negative integers indicate relative (as opposed to absolute) spacing. Translates as
(SPACES I NI).

Provides a short· hand way of specifying 1, 2 or 3 spaces, I.e., these commands are
equivalent to -1, -2, and -3, respectively.

Translates as (SPACES DISTANCE). Note that. SP N and -N. where N is an
integer, are equivalent.

Resets the current line by causing a carriage· return to be printed without a line
feed. Useful for overprinting, or for regaining control of a line on which characters
have been printed in a variable pitched font.

6.5.2 . Vertical Spacing Commands

Vertlcalspacing is obtained by calling TERPRI or printing form-feeds. The relevant commands are:

T

• SKIP LINES

.PAGE

Translates as (T E R P R I) ~ This command is functionally equivalent to the integer
command 0; they both move to position 0 (= column 1) of the next line. To print
the letter T, use the string "T".

Equivalent to a sequence of LINES (TERPRI)'S. The . SKIP command allows for
skipping large constant distances and for computing the distance to be skipped.

Puts a fonn-feed (control-L) out on the file. Care is taken to make sure that
Interlisp's view of the current line" position is correctly updated.

6.5.3 Special Formatting Controls

There are a small number of commands for invoking some of the formatting capabilities of multi-font
output devices. The available commands are:

· FONT FONTSPEC Puts out a control sequence that causes a change to font FONTSPEC (the association
between FONTSPEC and a specific font must be defined in the user's font profile. as
deScribed in page 6.55). FONTSPEC may be a font-name variable or an expression
that evaluates to the value of a font·name variable. FONTSPEC may also be a
p'ositive integer N, which is taken as an abbreviated reference to the font named
FONTN (e.g. 1 = > FONT 1).

· SUP Specifies superscripting. All subsequent characters are printed above the base of
the current line. Note that this is absolute, not relative: a . SUP following a . SUP

6.27

Printing Specifications

is a no-ope

o SUB Specifies subscripting. Subsequent printing is below the base of the current line.
As with superscripting, the effect is absolute.

• BASE Moves printing back to the base of the current line. Un-does a previous. SUP or
• SUB; a no-op, if printing is currently at the base.

6.5.4 Printing Specifications

The value of any expression in a PRINTOUT form that is not recognized as a command itself or as a
command argument is printed using PRINt by default. For example, title strings can be printed by
simply including the string as a separate PRINTOUT commanci and the values of variables and forms can
be printed in much the same way. Note that a literal integer, say 51, cannot be printed by including it as
a command, since it would be interpreted as a TAB: the desired effect can be obtained by using instead
the string specification "51", or the form (QUOTE 51).

F or those instances when P R I N1 is not app ropriate, e.g., P R I N 2 is required, or a list structures must be
prettyprinted, the following commands are available:

• P2 THING

• PPF THING

· PPV THING

• PPFTL THING

• PPVTL THING

Causes THING to be printed· using P R I N 2; translates as (P R I N 2 THING) .

Causes THING to be prettyprinted at the current line position via P R IN TOE F (page
6.49). The call to P R IN TOE F specifies that THING is to be .printed as if it. were part
of a- function definition. That is, SE LECTQ, PROG, etc., receive special treatment.

PrettyprintS THING as a variable; no special interpretation is given to SELECTQ,
PROG, etc.

Like . P P 'F, but prettyprints THING as a tail, that is, without the initial and final
parentheses if it is a list. Useful for prettyprinting sub-lists of a list whose other
elements are formatted with other commands.

Like. PPV, but prettyprints THING as a tail.

6.5.4.1 Paragraph Format

Interlisp's prettyprint routines are designed to display the structure of expressions. but they are not really
suitable for formatting unstructured text. If a list is to be printed as a textual paragraph, its internal
structure is less important than controlling its left and right margins, and the indentation of its first line.
The. PARA and. PARA2 commands allow these parameters to be conveniently specified .

. PARA L~G RMARG LmT
Prints LIST in paragraph format, using PRINt. Translates as (PRINTPARA
LMARG RMARG LIST) (see page 6.31). Example: (PRINTOUT T 10 . PARA
5 -5 LST) will print the elements of LST as a paragraph with left margin at 5,
right margin at (LINELENGTH)-5, and the first line-indented to 10 .

. PARA2 LMARG RMARG LIST

6.28

INPUT/OUTPUT

Print as--paragraph using PRIN2 instead of PRINt. Translates as (PRINTPARA
LMARG RMARG LIST T).

6.5.4.2 Right-Flushing

Two commands are provided for printing simple expressions flushed-right against a specified line position.
using ~e function FLUSHRIGHT (page 6.31). They take into account the current position, the number
of characters in the print-name of the expression. and the position the expression is to be flush agains~
and then print the appropriate number of spaces to achieve the desired effect Note that this might entail
going to a new line before printing. Note also that right-flushing of expressions longer than a line (e.g. a
large list) makes little sense, and the appearance of the output is not guaranteed.

• FR pos EXPR

.FR2 pos EXPR

6.5.4.3 Centering

Flush-right using -P R I N t. The value of pos determines the position that the
right end of EXPR will line up at As with the horizontal spacing commands.
a negative position number means I pos I columns from the current position, a
positive number specifies the position absolutely. pos=O specifies the right-margin.
i.e. is interpreted as (LINELENGTH).

Flush-right using PRIN2 instead of PRINt.

Commands for centering simple expressions between the current line position -and another specified
position are also available. As with right flushing, centering of large expressions is not guaranteed .

• CENTER pos EXPR

Centers EXPR between the current line position and the position specified by
the value of POSe A positive pos is an absolute position number, a negative pos
specifies a position relative to the current position. and 0 indicates the right-margin.
Uses PR I N 1 for printing .

• CENTER2 POS EXPR

Centers using PRIN2 instead of PRINl.

6.5.4.4 Numbering

The following commands provide FORTRAN-like formatting capabilities for integer and floating-point
numbers. Each command specifies a printing format and a number to be printed. The format specification
translates into a format-list for the function PRINTNUM (see page 6.21) .

• IFORMAT NUMBER

Specifies integer printing. Translates as a call to the function PRINTNUM with
a F IX format-list constructed from FORMAT. The atomic fonnat is broken apart
at internal periods to fonn the format-list. For example, . I5 . - 8. T yields the
fonnat-list (FIX 5 -8 T), and the command sequence (PRINTOUT T .I5.-
8. T FOO) will translate as (PRINTNUM '(FIX 5 -8 T) FOO). It will cause
the value of F 00 to be printed with radix -8 right-flushed in a field of width 5,

6.29

• F FORMAT NUMBER

Escaping to LISP

with O's used for padding on the left Internal NIL's may be omitted, e.g. the
commands . I5 .. T and . I5 . NIL. T are equivalent

Specifies floating-number printing. Like the . I format commandy except translates
with a F LOA T format-list.

.N FORMAT NUMBER
The . I and . F commands specify calls to PRINTNUM with quoted format
specifications. The . N command translates as (PRINTNUM FORMAT NUMBER),

i.e., it permits the format to be the value of some expression. Note tha~ unlike
the . I and . F commands, FORMAT is a separate element in the command lis~ not
part of an atom beginning with. N.

6.5.5 Escaping to LISP

There are many reasons for taking control away from PRINTOUT in the middle of a long printing expres
sion. Common situations involve temporary changes to system printing parameters (e.g. _ LINE LENGTH),
conditional printing (e.g. print F 00 only if FIE is T), or lower-level iterative printing within a higher-levei
print specification.

II FORM The escape command. FORM is an arbitrary Lisp expression that is evaluated
within the context established by the PRINTOUT form~ i.e., FORM can assume that
the primary output file has been s-et to be the FILE argument to PRINTOU:r. -Note
that nothing is done with the value of FORM; any printing desired is accomplished
by FORM itself. and the value is discarded.

Note: Although PRINTOUT logically encloses its translation in a RESETFORM (page 9.20) to change the
primary output file to the FILE argument (if non-N I L). in most cases it can actually pass FILE (or a locally
bound variable if FILE is a non-trivial expression) to each printing function. Thus, the RESETFORM is only
generated when the II command is used, or user-defined commands (below) are used. If many such occur
in repeated PRINTOUT forms, it may be more efficient to embed them all in a single RESETFORM which
changes the primary output file, and then specify FILE = NIL in the PR I NTOUT expressions themselves.

6.5.6 User-Defined Commands

The collection of commands and options outlined above is aimed at fulfilling all common pnntlng
needs. However, certain applications might have other, more specialized printing idioms. so a facility is
provided whereby the user can define new commands. This is done by adding entries to the global list
PRINTOUTMACROS to define how the new commands are to be translated.

PRINTOUTMACROS [Variable]
PRINTOUTMACROS is an association-list whose elements are of the form (COMM

FN). Whenever COMM appears in command position in the sequence of P R I N TOUT
commands (as opposed to an argument position of another command). FN is applied
to the tail of the command-list (including the command). .

After inspecting as' much of the tail as necessary, the function must return a list
whose CAR is the translation of the user-defined command and its arguments. and

6.30

· INPUT/OUTPUT

whose CDR is the list of commands still· remaining to be translated in the normal
way.

For example, suppose the user wanted to define a command "?", which will cause its single argument to be
printed with PRINl only ifit is not NIL. This can be done by entering (? ?TRAN) on PRINTOUTMACROS,
and defining the function ?TRAN as follows:

(LAMBDA (CaMS)
(CONS (SUBST (CADR CaMS) 'ARG

'(PROG «TEMP ARG» .
(COND (TEMP (PRINl TEMP»»)

(CDDR CaMS»)

Note that ?TRAN does not do any printing itself; it returns a form Which, when evaluated in the proper
context, will perform the desired action. This form should direct all printing to the primary output file.

6.5.7 Special Printing Functions

The paragraph printing commands are translated into calls on the function P R I NT PARA, which may also
be called directly:

(PRINTPARA LMARG RMARG LIST P2FLAG PARENFLAG FILE) [Function]
Prints LIST on FILE in line-filled paragraph format with its first element beginning at
the current line posi.tion ang ending at or before RMARG, and with subsequent lines
appearing between LMARG and RMARG. If P2FLAG is non-N I L, prints elements
using PRIN2, otherwise PRINt. If PARENFLAG is non-NIL, then parentheses will
be printed around the elements of LIST.

If LMARG is zero or positive, it is interpreted as an absolute column position.
If it is negative, then the left margin will be at I LMARG I + (POSIT ION). If
LMARG= NIL, the left margin will be at (POSITION), and the paragraph will
appear in block format

If RMARG is positive, it also is an absolute column position (which may be greater
than the current (L I N E L E NG T H». Otherwise, it is interpreted as relative to
(LINELENGTH), i.e., the right margin will be at (LINELENGTH)+ IRMARGI.

Example: (TAB 10) (PRINTPARA 5 -5 LST T) will PRIN2 the elements of
LST in a paragraph with the first line beginning at column 10. subsequent lines
beginning at column 5. and all1ines ending at or before (LINELENGTH)-5.

The current (LINELENGTH) is unaffected by PRINTPARA. and upon completion.
FILE will be positioned immediately after the last character of the last item of LIST.
PRINTPARA is a no-op if LIST· is not a list.

The right-Hushing and centering commands translate as calls to the function FLUSHRIGHT:

(FLUSHRIGHT pos x MIN P2FLAG CENTERFLAG FILE) [Function]
If CENTEflFLAG = NIL, prints x right-flushed against position pos on FILE;

otherwise, centers x between the current 'line position and POSe Makes sure that it
spaces over at least MIN spaces before printing by doing a TERPRI if necessary;
MIN= NIL is equivalent to MIN= 1. A positive pos indicates an absolute position,

6.31

Readtables

while a negative pos signifies the position which is I pos I to the right of the
. current line position~ pos:= 0 is interpreted as (L I N E LEN G T H), the right margin.

6.6 READT ABLES

Many Interlisp input functions tteat certain characters in special ways. For example, READ recognizes that
the right and left parenthesis characters are used to specify list structures. and that the quote character is
used to delimit text strings. The' Interlisp input and (to a certain extent) output routines are table driven
by readtables. Readtables are objects that specify the syntactic properties of characters for input routines.
Since the input routines parse character sequences into objects. the readtable in use detennines which
sequences are recognized as literal atoms, strings, list structures. etc.

Most Interlisp input functions take an optional readtable argument, which specifies the readtable to use
when reading an expression. If NIL is given as the readtable, the "primary readtable" is used. If T is
specified. the system terminal readtable is used. Some functiens will also accept the atom OR IG (not the
value of ORIG) as indicating the "original" system readtable. Some output functions also take a readtable
argument For example, PRIN2 prints an expression so that it would be read in correctly using a given
readtable.

The Interlisp system uses three readtables: T for input/output from terminals. the value of FILE RDTBL for
input/output from files, and the value of EDITRDTBL for input from terminals while in the editor. These
three table~ are initially copies of tbe ORIG readtable, with changes made to some of them to, provide
read macros (page 6.36) that are specific to terminal input or file input Using the functions described
below, the user may funher change, reset, or copy these tables. The user can also create new readtables.
and either explicitly pass them to input/ output functions as arguments, or install them as the primary
readtable, via SETREADTABLE, and then not specify a RDTBL argument, i.e., use NIL.

6.6.1 Readtable Functions

(READT AB LE P RDTBL) [Function]
Returns RDTBL if RDTBL is a real readtable (not T or OR IG), otherwise NIL.

(GETREADTABLE RDTBL) [Function]
If RDTBL= NIL. returns the primary read table. If RDTBL = T, returns the system
terminal readtable. If RDTBL is a real readtable, returns RDTBL. Otherwise.
generates an ILLEGAL READTABLE error.

(SETREADTABLE RDTBL FLG) [Function]
Sets the primary readtable to RDTBL. If FLG:= T, SETREADTABLE sets the system
terminal readtable, T. Note that the user can reset the other system readtables with
SETQ, e.g., (SETQ FILERDTBL (GETREADTABLE».

Generates an ILLEGAL READTABLE error if RDTBL is -not NIL, T, or a
real readtable. Returns the previous setting of the primary readtable, so
SETREAOTABLE is suitable' for use with RESETFORM (page 9.20).

6.32

INPUT/OUTPUT

(COPYREADTABLE RDTBL) [Function]
Returns a copy of RDTBL. RDTBL can be a real readtable, NIL, T, or OR I G (in
which case COPYREADTABLE returns a copy of the original system readtable),
otherwise COPYREADTABLE generates an ILLEGAL READTABLE error.

Note that COPYREADTABLE is the only function that creates a readtable.

(RESETREApTABLE RDTBL FROM) [Function]
Copies (smashes) FROM into RDTBL. FROM and RDTBL can be NIL, T, or a real
readtable. In additio~ FROM can be ORIG, meaning use the system's original
readtable.

6.6.2 Syntax Classes

A readtable is an object that contains information about the "syntax class" of each character. There are
nine basic syntax classes: LEFTPAREN, RIGHTPAREN, LEFTBRACKET. RIGHTBRACKET, STRINGDELIM,
ESCAPE, BREAKCHAR. SEPRCHAR, and OTHER, each associated with a primitive syntactic property. In
addition, there is an unlimited assortment of user-defined syntax classes, known as "read-macros". The
basic syntax classes are 'interpreted as follows:

LEFTPAREN

RIGHTPAREN

LEFTBRACKET

RIGHTBRACKET

STRINGDELIM

ESCAPE

BREAKCHAR

SEPRCHAR

OTHER

(normally left parenthesis) Begins list structure.

(normally right parenthesis) Ends list structure.
. .

(normally left bracket) Begins list· structure. Also matches RIGHTBRACKET
characters.

(normally left bracket) Ends list structure. Can close an arbitrary numbers of
LEFTPAREN lists, back to the last LEFTBRACKET.

(normally double quote) Begins and ends text strings. Within the string, all
characters except for the one(s) with class ESCAPE are treated as ordinary, Le.,
interpreted as if they were of syntax class OTHER. To include the string delimiter
inside a string, prefix it with the E SCAP E character.

(normally percent sign) Inhibits any special interpretation of the next character, Le.,
the next character is interpreted to be of class OTHER, independent of its normal
syntax class.

(None initially) Is a break character, i.e., delimits atoms, but is otherwise an
ordinary character.

(space, carriage return, etc.) Delimits atoms, and is otherwise ignored.

Characters that are not otherwise special belong to the class 0 THE R.

Characters of syntax class LEFTPAREN, RIGHTPAREN, LE FTBRACKET, RIGHTBRACKET, and STRINGDE L 1M
are all break characters. That is, in addition to their interpretation as delimiting list or string structures,
they also terminate the reading of an· atom. Characters of class B R EAKCHAR serve only to tenninate atoms,
with no other special meaning. In addition. if a break character is the first non-separator encountered by
RATOM, it is read as a one-character atom. In order for a break character to be included in an atom, it

6.33

Syntax Classes

must be preceded by the ESCAPE character.

Characters of class SEPRCHAR also terminate atomsy but are otherwise completely ignored; they can be
thought of as logically spaces. As with break charactersy they must be preceded by the ESCAPE character
in order to appear in an atom.

For example, if $ were a break character and * a separator character, the input stream ABC**OE F$GH*$$
would be read by 6 calls to RATOM returning respectively ABC, OE F, $, GHy $y $.

Although normally there is only one character in a readtable having each of the list- and string-delimiting
syntax classes (such as LEFTPAREN)y it is perfectly acceptable for any character to have any syntax classy
and for more than one to have the same class.

Note that a "syntax classH is an abstraction: there is no object referencing a collection of characters called
a syntax class. Instea~ a readtable provides the association between a character and its syntax class, and
the input/output routines enforce the abstraction by using readtables to drive the parsing.

The functions below are used to obtain and set the syntax class of a character in a readtable. CH can
either be a character code (a number), or a character (a single-character atom); those Interlisp objects
that happen to be bothy viz., one-digit numbers, are interpreted as character codes. For exampley in
Interlisp-lO, 1 indicates control-A, and 49 indicates the character l.

Note: Terminal tables, described in page 6.40, also associate characters with syntax classes, and they can
also be manipulated with the functions below. The set of readtable and terminal table syntax classes are
disjoint, so there' is never any ambiguity about which type of table is being refe~ed to.

(GETSYNTA'X CH TABLE) [Function]
Returns the syntax class of CH, a character or a character code, with respect to
TABLE. TABLE can be NIL, T, ORIG, or a real readtable or terminal table.

CH can also be a syntax class, in which case GETSYNTAX returns a list of the
character codes in TABLE that have that syntax class.

(SETSYNTAX CHAR CLASS TABLE) [Function]
Sets the syntax class of CHAR, a character or character code, in TABLE. TABLE can
be either NIL, T, or a real readtable or terminal table. SETSYNTAX returns the
previous syntax class of CHAR. CLASS can be anyone of the following:

• The name of one of the basic syntax classes.

• A list, which is interpreted as a read macro (see page 6.36).

• NIL. T, ORIG. or a real readtable or tenninal table. which means to give CHAR
the syntax class it has in the table indicated by CLASS. For example. (SETSYNTAX
'%('ORIG TABLE) gives the left parenthesis character in TABLE the same syntax
class that it has in the original system readtab Ie.

• A character code or character, which means to give CHAR the same syntax class
as the character CHAR in. TABLE. For example, (SE TSYNT AX '{,' %[TABLE)

gives the left brace character the same syntax class as the left bracket.

(SYNTAXP CODE CLASS TABLE) [Function]
CODE is a character code; TABLE is NIL. T. or a real readtable or tenninal table.

6.34

INPUT/OUTPUT

Returns T if CODE has the syntax class CLASS in TABLE; NIL otherwise.

CLASS can also be a read-macro type (MACRO, SPLICE, INFIX), or a read-macro
option (FIRST, IMMEDIATE, etc.), in which case SYNTAXP returns T if the syntax
class is a read-macro with the specified property.

Note: SYNTAXP will not accept a character as an argument, only a character code.

For convenience in use with SYNTAXP, the atom BREAK may be used to refer to all break characters,
i.e., it is the union of LEFTPAREN, RIGHTPAREN, LEFTBRACKET, RIGHTBRACKET. STRINGDELIM,
and BREAKCHAR. For purely symmetrical reasons, the atonl SEPR corresponds to all separator characters.
However, since the only separator characters are those that also appear in SEPRCHAR, SEPR and
SEPRCHAR are equivalent.

Note that GETSYNTAX never returns BREAK or SEPR as a value although SETSYNTAX and SYNTAXP
accept them as arguments. Instead, GETSYNTAX returns one of the disjoint basic syntax classes that
comprise BREAK. BREAK as an argument to SETSYNTAX is interpreted to mean BREAKCHAR if the
character is not already of one of the BREAK classes. Thus. if%(is of class LE FTPAREN, then (SETSYNTAX
'%('BREAK) doesn't do anything, since %(is already a break character, but (SETSYNTAX '%(
'BREAKCHAR) means make %(be just a break character, and therefore disables the LE FTPAREN
function of %(. Similarly. if one of the fonnat characters is disabled completely, e.g., by (SETSYNTAX
'%('OTHER). then (SETSYNTAX '%('BREAK) would make %(be only a break character; it would
not restore %(as LEFTPAREN.

The following functions provide a way of collectively accessing. and setting t,he separator and break
characters in a readtable:' .

(GETSEPR RDTBL) [Function]
Returns a list of separator character codes in RDTBL. Equivalent to (GETSYNTAX
'SEPR RDTBL).

(GETBRK RDTBL) [Function]
Returns a list of break character codes in RDTBL. Equivalent to (GETSYNTAX
'BREAK RDTBL).

(SETSEPR LST FLG RDTBL) [Function]
Sets or removes the s~parator characters for RDTBL. LST is a list of charactors or
character codes. FLG determines the action of SET S E P R as follows: If FLG = NIL.
makes RDTBL have exactly the ele:ments of LST as separators, discarding from
RDTBL any old separator characters not in LST. If FLG = 0, removes from RDTBL

as separator characters all elements of LST. This provides an "UNSETSEPR". If
FLG = 1, makes each of the characters in LST be a separator in RDTBL.

If LST= T, the separator characters are reset to be those in the system's readtable
for tenninals, regardless of the value of FLG. Le.. (S E T S E P R T) is equivalent to
(SET S E P R (G E T S E P R T». If RDTBL is T, then the characters are reset to those
in the original system table.

Returns NIL.

(SETBRK LST FLG RDTBL) [Function]
Sets the break characters for RDTBL. Similar to SETSEP.R.

6.35

Read-Macros

As with SE TSYNTAX to the BREAK class, if any of the list- or string-delimiting break characters are
disabled by an appropriate SETBRK (or by making it be a separator character), its special action for READ
will not be restored by simply making it be a break character again with SETBRK. However. making these
characters be break characters when they already are will have no effect.

The action of the ESCAPE character (normally %) is not affected by SETSEPR or SETBRK. It can be
disabled by setting its syntax to the class OTHE R, and other characters can be used for escape on input
by assigning them the class ESCAPE. As of this writing, however, there is no way to change the output
escape character; it is "hardwired" as %. That is, on outpu~ characters of special syntax that need to
be preceded by the ESCAPE character will always be preceded by %, Independent of the syntax of % or
which, if any characters. have syntax ESCAPE.

The following function can be used for defeating the action of the ESCAPE character or characters:

(ESCAPE FLG RDTBL) [Function]

6.6.3 Read-Macros

If FLG=NIL, makes characters of class ESCAPE behave like characters of class
OTHER on input. Normal setting is (ESCAPE T). ESCAPE returns the previous
setting.

Read-macros are user-defined syntax classes that can cause complex operations when certain characters
are read. Read-macro characters are defined by specifying .as a syntax class an expression of the form:

(TYPE OPTIONz •.. OPTIONN FN)

where TYPE is one of MA C RO, S P L ICE, or IN F I X, and FN is the name of a function or a lambda
expression. Whenever READ encounters a read-macro character. it calls the associated function, giving it
as arguments the input file and readtable being used for that call to READ. The interpretation of the value
returned depends on the type of read-macro:

MACRO

SPLICE

INFIX

This is the simplest type of read macro. The result returned from the macro is
treated as the expression to be read, instead of the read-macro character. Often
the macro reads more input itself. For example, in order to cause -EXPR to be
read as (NOT EXPR), one could define - as

[MACRO (LAMBDA (FL RDTBL) (LIST 'NOT (READ FL RDTBL]

The result (which should be a list or NIL) is spliced into the input using NCONC.
For example. if $ is defined by:

(SPLICE (LAMBDA NIL (APPEND FOO»)

and the value of F 00 is (A B C). then when the user inputs (X $ Y). the result
will be ()(ABC Y).

The associated function is called with a third argument, which is a list, in TCONC
fonnat (page 2.17), of what has been read at the current level of list nesting. The
function's value is taken as a new TCONC list which replaces the old one. For
example, + could be defined by:

6.36

INPUT/OUTPUT

(INFIX (LAMBDA (FL RDTBL Z)
(RPLACA (CDR Z)

Z»

(LIST (QUOTE IPLUS)
(CADR Z) .
(READ Fl RDTBl»)

If an IN F I X read-macro character is encountered not in a list, the third argument to
its associated function is NIL. If the function returns NIL. the read-macro character
is essentially ignored and reading continues. Otherwise, if the function returns a
TCONC list of one element. that element is the value of the READ. If it returns a
TCONC list of more than one element. the list is the value of the READ.

The specification for a read-macro character can be augmented to specify various options OPTION 1 ...

OPTIONN , e.g .• (MACRO FIRST IMMEDIATE FN). The following three disjoint options specify when
the read-macro character is to be effective:

ALWAYS

FIRST

ALONE

The default. The read-macro character is always effective (except when preceded
by the escape character), and is a break character, Le., a member of (GETSYNTAX
'BREAK RDTBL). .

The character is interpreted as a read-macro character only when it is the first
character seen after a break or separator character; in all other situations, the
character is treated as having class OTHER. The read-macro character is not a break
character. For example, the quote ~haracter is a FIRST read-macro character. so
that DON', T is read as the single atom DON' T,- rather than as o-ON followed by
(QUOTE T). .

The read-macro character is not a break character, and is interpreted as a read
macro character only when the character would have been read as a separate atom
if it were not a read-macro character, Le., when its immediate neighbors are both
break or separator characters. For example, • is an ALONE read-macro character
in order to implement the comment pointer feature (see page 6.51).

Making a FIRST or ALONE read-macro character be a break character (with SETBRK) disables the
read-macro interpretation, i.e., converts it to syntax class BREAKCHAR. Making an ALWAYS read-macro
character be a break character is a no-op.

The following two disjoint options control whether the read-macro character is to be protected by the
ESCAPE character on output:

ESCQUOTE or ESC The default. When printed with PRIN2, the read-macro character will be preceded
by the output escape character (%).

NOESCQUOTE or NOESC
The read-macro character will be printed without an escape, e.g., ' is a
NOESCQUOTE character. Unless you are very careful what you are doing, read
macro characters in FILERDTBl should never be NOESCQUOTE. since symbols
that happen to contain the read-macro character will not read back in correctly.

The following two disjoint options control when the macro's function is actually executed:

6.37

Read-Macros

IMMED lATE or IMMED
The read.,.macro character is immediately activated. i.e., the current line is
tenninated, as if an EOl had been typed. a carriage-return line-feed is printed, and
the entire line (including the macro character) is passed to the input function.

IMMEDIATE read-macro characters enable the user to specify a character that will
take effect immediately, as soon as it is encountered in the. input, rather than
waiting for the line to be tenninated. Note that this is not necessarily as soon as
the character is typed. Characters that cause action as soon as they are typed are
interrupt characters (see page 9.17).

Note that since an IMMEDIATE macro causes any input before it to be sent to the
reader. characters typed before an IMMEDIATE read-macro character cannot be
erased by control-A or control-Q once the IMMEDIATE character has been typed,
since they have already passed through the line buffer. However, an IN F I X read
macro can still alter some of what has been typed earlier. via its third argument.

NONIMMEDIATE or NONIMMED
The default. The read-macro character is a nonnal character with respect to the
line "buffering, and so will not be activated until a carriage-return or matching right
parenthesis or bracket is seen.

Making a read-macro character be both ALONE and IMMEDIATE is a contradiction, since ALONE requires
that the next character be input in order to see if it is a break or separator character. Thus. ALONE
read-macros are al~ays NONIMMEDIATE. reg~dless of whether or not IMM.EDIA,TE is specified.

Read-macro characters can be "nested". For example, if = is defined by

(MACRO (lAMBDA (Fl RDTBl) (EVAl (READ Fl RDTBl»»

and ! is defined by

(SPLICE (lAMBDA (Fl RDTBl) (READ Fl RDTBl»)

then if the value of FOO is (A B C), and (X = FOO Y) is input, (X (A B C) Y) will be returned. If
(X ! =FOO Y) is input, (X ABC Y) will be returned.

If a read-macro's function calls READ. and the READ returns NIL, the function cannot distinguish the
case where a RIGHTPAREN or RIGHTBRACKET followed the read-macro character. (e.g. "(A B ')"),
from the case where the atom NIL (or "()") actually appeared. Therefore. in Interlisp-lO. reading a
single RIGHTPAREN or RIGHTB~ACKET via a READ inside of a read-macro function is disallowed. If this
occurs. the paren/bracket is put! back into the input buffer. and a READ-MACRO CONTEXT ERROR is
generated. The following two functions are useful for avoiding this error:

(INREADMACROP) [Function]
Returns NIL if currently not under a read-macro function, otherwise the number
of unmatched left parentheses or brackets.

(SETREADMACROFlG FLG) [Function]
Resets the "read-macro" flag, i.e .. the internal system flag that informs READ
that it is under a read macro function, and causes it to generate a READ-MACRO
CONTEXT ERROR. if.an unmatched) or] is encountered. Returns the previous

6.38

INPUT/OUTPUT

value of the flag. The main use for this is when debugging read-macro functions: to
avoid spurious READ-MACRO CONTEXT error messages when typing into breaks,
the user can put (SETREADMACROFLG) on BREAKRESETFORMS (page 9.13).

The READ-MACRO CONTEXT-error does not occur in Interiisp-D; a READ inside of a read-macro when
the next input character is a RIGHTPAREN or RIGHTBRACKET eats the character and returns NIL, just
as if the READ had not occurred inside a read-macro.

If a call to READ from within a read-macro encounters an unmatched RIGHTBRACKET within a list, the
bracket is simply put back'into the buffer to be read (again) at the higher level. Thus, inputting an
expression such as (A B '(CD] works correctly.

(READMACROS FLG RDTBL) [Function]
If FLG = NIL, turns off action of read-macros. If FLG = T, turns them on. Returns
previous setting.

In Interlisp-D, turns off/on action of read-macros in readtable RDTBL.

The following read macros are standardly defined in Interlisp:

, (single-quote)

control-Y

, (back-quote)

Currently defined only in T and ED I T RD T B L. Returns the next expression, wrapped
in a call to QUOTE; e.g., 'FOO reads as (QUOTE FOO). The macro is defined as
a FIRST read macro. so that the quote character has no effect in the middle of a
symbol. The macro is also ignored if the q~ote character is immediately followed
by a separator character.

Defined in T and ED ITRDTBL. Returns the result of evaluating the 'next expression.
For example, if the value of F 00 is (A B), then (L 1ST 1 contro/- YF 00 2) is
read as (1 (A B) 2), but note that no structure is copied; the CADR of that
input expression is still EQ to the value of FOO. Control-Y can thus be used to read
structures that ordinarily have no read syntax. For example, the value returned
from reading (K E Y 1 contro/- Y(A R RA Y 10» has an array as its second element.
Control-Y can be thought of as an "un-quote" character. The choice of character
to perform this function is changeable with SETTERMCHARS (page 17.59).

Back-quote makes it easier to write programs to construct complex data structures.
Back-quote is like quote. except that within the back-quoted expression. forms can
be evaluated. The general idea is that the back-quoted expression is a "template"
containing some constant pans (as with a quoted form) and some pans to be filled
in by evaluating something.

Within the back-quoted expression, the character" , " (comma) introduces a form
to be evaluated. A form preceded by ", @" is to be spliced in, using APPEND. and
a form preceded by " , . to is to be spliced in, using NCONC. Unlike with control-Y.
however. the evaluation occurs not at the time the form is read, but at the time
the back-quoted expression is evaluated. That is, the back-quote macro returns an
expression which, when evaluated. produces the desired structure.

For example. if the value ofFOO is (1 2 3 4), then the form '(A, (CAR FOO)
,@(CODR FOO) D' E) evaluates to (A 1 3 4 DE); it is logically equivalent to
writing (CONS 'A (CONS (CAR FOO) (APPEND (COOR FOO) '(0 E»» .

. Back-quote is particularly useful for writing compiler macros. For example,

6.39

1

*

control-W

I (vertical bar)

Terminal Tables

'(COND
«FIXP ,(CAR X»

, (CADR X»
(T .IJ(CDDR X»)

is equivalent to writing

(LIST 'COND
(LIST (LIST 'FIXP (CAR X»

(CADR X»
(CONS 'T (CDDR X»)

Note that comma does not have any special meaning outside of a back-quote
context.

For users: without a back-quote character on their keyboards, back-quote can also
be written as I' (vertical-bar, quote). In Interlisp-D, back-quote is typed as
shift-line feed.

Defined in T andEDITRDTBL. Implements the 1= command for .on-line help
regarding the function currently being "called" in the typein (see page 9.5).

Defined in F I L E R D T B L only. Implements the comment pointer feature for saving
space by keeping the text of comments outside memory (page 6.51).

Defined in T and EDITRDTBL, Interlisp-lO only. An IMMEDIATE.read macro that.
deletes ·the previous expression. In Interlisp-D, control-W is an editing character
that deletes the previous "word".

When followed by , (quote), is a synonym for back-quote; followed by certain
other characters, it is used by HPRINT and HREAD to print and read in unusual
expressions; otherwise is ignored, Le., treated as a separator character, enabling the
editor's CliiANGECHAR feature (page 6.55).

6.7 TERMINAL TABLES

A readtable contains input/output information that is media-independent. For example. the action of
parentheses is the same regardless of the device from which the input is being performed. A terminal
table is an object that contains information that pertains to terminal input/output operations only, such
as the character to type to delete the last character or to delete the last line. In addition. terminal tables
contain such information as how line-buffering is to be performed, how control characters are to be
echoed/printed, whether lower case input is to be converted to upper case, etc.

Using the functions below, the user may change, rese~ or copy terminal tables, or create a new terminal
table and install it as the primary terminal table via SETTERMTABLE. However, unlike readtables, terminal
tables cannot be passed as arguments to input/output functions.

6.40

INPUT/OUTPUT

6.7.1 Terminal Table Functions

(TERMTABLEP TTBL) [Function]
Returns TTBL,' if TTBL is a real tenninal table, NIL otherwise.

(GETTERMTABLE TTBL) [Function]
If TTBL = NIL; retUrns the primary (Le., current) terminal table. If TTBL is a
real terminal table, return TTBL. Otherwise, generates an ILL E GA L TERM I NA L
TAB LE error.

(SETTERMTABLE TTBL) [Function]
Sets the primary terminal table to be TTBL. Returns the previous TTBL. Generates
an ILLEGAL TERMINAL TABLE error if TTBL is not a real terminal table.

(COPYTE RMT ABLE TTBL) [Function]
Returns a copy of TTBL. TTBL can be a real terminal table, NIL, or ORIG, in
which case it returns a copy of the original system terminal table. Note that
COPYTE.RMTABLE is the only function that creates a terminal table.

(RESETTERMTABLE TTBL FROM) [Function]
Copies (smashes) FROM into TTBL. FROM and TTBL can be NIL or a real terminal
table. In addition, FROM can be ORIG, meaning to use the system's original
terminal table.

6.7.2 Termi-nal Syntax Classes

A terminal table associates with each character a single "terminal syntax class", one of CHARDE LETE,
LINEDELETE, WORDDELETE (Interlisp-D only), RETYPE, CTRLV, EOL, and NONE. Unlike readtable
classes, only one character in a particular terminal table can belong to each of the classes (except for the
default class NONE). When a new character is assigned one of these syntax classes by SET~YNTAX, the
previous character is disabled (Le., reassigned the syntax class NONE), and the value of SET SYNT AX is the
code for the previous character of ' that class, if any, otherwise NIL. .

The terminal syntax classes are interpreted as follows:

CHARDELETE or DELETECHAR
(Initially control-A under Tenex, del under Tops20, BackSpace in Interlisp-D)
Typing this character deletes the previous character typed. Repeated use of this
character deletes successive characters back to the beginning of the line.

LINEDELETE or DELETE LINE .

WORDDELETE

RETYPE

(Initially control-Q in Interlisp-lO under Tenex and in Interlisp-D, control-U under
Tops20) Typing this character deletes the whole line; it cannot be used repeatedly.

(Interlisp-D only; initially control-W) Typing this character deletes the previous
"word", i.e., sequence of non-separator characters.-

(Initially control-R) Causes the line to be retyped as Interlisp sees it (useful when
repeated deletions make it difficult to see what remains).

. 6.41

Terminal Control Functions

CTRLV or CNTRLV . (Initially 'i0ntrol-V) When followed by A, B, ... Z, inputs the corresponding control
·-character control-A, control-B, ... control-Z. This allows interrupt characters to be
input without causing an interrupt.

EOL On input i from a tenninal, the EOL character signciIs to the line buffering routine
to pass the input back to the calling function. It also is used to tenninate inputs to
READL I N:E (page 8.30) .. In general, whenever the phrase carriage-return linefeed
is used, what is meant is the character with tenninal syntax class EO L.

NONE The tenninal syntax class of all other characters.

GETSYNTAX, SET SYNTAX, and SYNTAXP all work on tenninal tables as well as readtables (see page
6.34). When given NIL as a TABLE argument, GETSYNTAX and SYNTAXP use the primary readtable or
primary tenninal table dependidg on which table contains the indicated CLASS argument For example,
(SET SYNTAX CH 'BREAK) refers to the primary readtable, and (SETSYNTAX CH 'CHARDE LETE)
refers to the primary tenninal ta~le. In the absence of such infonnation, all three functions default to the
primary readtable; e.g., (SET SY~T AX '('%[) refers to the priniary read table. If given incompatible
CLASS and table arguments, all three functions generate errors. For example. (SETSYNTAX CH 'BREAK
TTBL), where TTBL is a tennidal table, generates an ILLEGAL READTABLE error. and (GETSYNTAX
'CHARDELETE RDTBL) generates an ILLEGAL TERMINAL TABLE error.

6.7.3 Terminal Control Functions

(E CHOCONTROt CHAR MODE ,TTBL) .." . [Fun~tion]
Used to indicate how control ch~acters' are" to be echoed or printed: CHAR is
a character or character code. MODE may be one of the atoms IGNORE, REAL,
SIMULATE. or INDICATE,9 which specify how the control character should be
printed:

IGNORE

REAL

SIMULATE

INDICATE

CHAR is never printed.

CHAR itself is printed; Le., the raw control character is
sent to the terminal. Some tenninals, particularly displays,
respond to certain control characters in interesting ways.

Output of CHAR is simulated. For example, control-I (tab)
may be simulated by printing spaces. The simulation is
machine-specific and beyond the control of the user.

CHAR is printed as 1" followed by the corresponding al
phabetic character.

The value.of ECHOCONTROL is the previous output mode for CHAR. If MODE = NIL,
ECHOCONjrROL returns the current output mode without changing it

Note that although the name of this function suggests echoing only, it affects all
output of the control character, both echoing of input and printing of output.

9UPARROW is an obsolete synonym of INDICATE.

6.42

INPUT/OUTPUT

The two cannot be specified independently, which can lead to some trickiness in
DELETECONTROL messages (below).

In Interlisp-lO, echoing information can be specified only for control characters
(although all echoing can be disabled using ECHOMODE, below). Therefore, if CHAR

is an alphabetic character (or code), it refers to the corresponding control character,
e.g., (ECHOCONTROL 'Z 'INDICATE) makes control-Z echo as 1"Z. All other
values of CHAR generate ILLEGAL ARG errors. In Interlisp-D and Interlisp-VAX,
it is possible to specify echoing information for all characters, using the function
ECHOCHAR.

(ECHOCHAR CHARCODE MODE TTBL) [Function]
(Interlisp-D, Interlisp-VAX only) Like ECHOCONTROL, but CHARCODE must be a
character code, and can specify any character-no coercions are performed. The
INDICATE mode for "meta" characters, i.e., characters whose codes are in the
range 200Q through 377Q, causes the character to be printed following a N. For
example, meta-A would print as #A, meta-control-B as #1"6.

CHARCODE can also be a list of characters, in which case ECHOCHAR is applied to
each of them with arguments MODE and TTBL.

(ECHOMODE FLG TTBL) [Function]
If FLG = T, turns echoing for terminal table TTBL on. If FLG = NIL, turns echoing
off. Returns the previous setting. •

(GETECHOMODE TTBL) . [Function]
Returns the current echo mode for TTBL.

(DELETECONTROL TYPE MESSAGE TTBL) [Function]
Specifies the output protocol when a CHARDELETE or LINEDELETE is typed. In
the case of character deletion, Interlisp-lO is initially set up for hardcopy terminals:
it echos the characters being deleted., preceding the first by a \ and following the
last by a \, so that it is easy to see exactly what was deleted., viz., the characters
between the \'s. Interlisp-D and Interlisp-V AX are initially set up to physically
erase the deleted characters from the display, backing up over them. The various
values of TYPE specify different pha'Ses of the deletion, as follow-s:

lSTCHDEL

NTHCHDEL

POSTCHDEL

EMPTYCHDEL

ECHO

MESSAGE is the message printed the first time CHARDELETE
is typed. Initially "\" in Interlisp-lO.

MESSAGE is the message printed on subsequent CHARDELETE's
(without intervening characters). Initially"" in Interlisp-lO.

MESSAGE is the message printed when input is resumed
following a sequence of one or more C HA RD E LET E 's.
Initially "\" in Interlisp-lO.

MESSAGE is the message printed when a CHARDELETE is
typed and there are no characters in the buffer. Initially
.. H# cr" in Interlisp-10.

The characters deleted by CHARDELETE are echoed. MESSAGE

6.43

Terminal Control Functions

NOECHO

LINEDELETE

is ignored.

The characters deleted by CHARDELETE are not echoed
MESSAGE is ignored.

MESSAGE is the message printed when LIN E DEL E T E charac
ter is typed. Initially "## cr".

Note: In Interlisp-lO, the LINEDELETE. lSTCHDEL. NTHCHDEL. POSTCHDEL.
and EMPTYCHDEL messages must be 4 characters or fewer in length.

DELETECONTROL r~turns the previous message as a string. If MESSAGE = NIL.
the value: returned is the previous message without changing it. For ECHO and
NOECHO, the value of DELETECONTROL is the previous echo mode. Le .• ECHO or
NOECHO. '

(GETDELETECONTROL TYPE TTBL) [Function]
Returns tfie current DELETECONTROL mode for TYPE in TTBL.

If the userts tenninal is a display, DELETECONTROL and ECHOCONTROL can be used to make it really
delete the last character by perfdnning the following:

(ECHOCONTROL 8 'REAL)
8 is the code for control-H. which is backspace; we want the terminal to really
backspace i when we send 1'H.

(DELETECONTROl 'NOECHO)
Do not echo the deleted characters.

(DELETECONTROL 'lSTCHDEL "1'H 1'H")
(DELETECONTROL 'NTHCHDEt "1'H 1'H")

Erase each character by backspacing over it, printing a space~ then backspacing
again to ~ut the carriage in the right place.

The following functions manipulate the RA IS E mode. which determines whether lower case characters
are converted to upper case when input from the tenninal. (There current!y is no "raise" mode for input
from files.)

(RAISE FLG TTBL) [Function]
Sets the RAISE mode for tenninal table TTBL. If FLG= NIL. all characters are
passed as, typed. If FLG = T, input is echoed as typed, but lowercase letters are
convened! co upper case. If FLG= 0, input is converted to upper case before it is
echoed. Returns the previous setting. lO

lOIn Interlisp-lO. both (RAISE) iand (RAISE T) execute Tenex/Tops20 JSYS calls corresponding to the
Executive command NORAISE. while (RAISE 0) executes the JSYS calls corresponding to the Executive
command RAISE. Thus with (~A I SET), the conversion co uppercase is performed by Interlisp, while
with (RAISE 0) the conversion! is perfonned at the operating system level. Le., before Interlisp-lO even
sees the characters. The initial setting of RA ISE in Interlisp-lO is detennined by the tenninal mode .at
the time the user first starts upChe system. When a SY SOUT is staned, the RA I SE mode is restored to
whatever it was prior to the SYSOUT.

6.44

INPUT/OUTPUT

(GETRAISE TTBL) [Function]
Returns the current RA I S E mode for TTBL.

6.7.4 Line-Buffering

Characters typed at the tenninal are stored in two buffers before they are passed to an input function. All
characters typed in are put into the low-level "system buffer", which allows typ.e-ahead. When an input
function is entered, characters are transferred to the "line buffer'9 until a character with tenninal syntax
class EOL appears (or, for calls from READ, when the count of unbalanced open' parentheses reaches 0).11
Until this' time, the user can delete characters one at a tinle from the line buffer by typing the current

CHARDELETE character. or delete the entire line buffer back to the last carriage-return by typing the
current LINEDELETE.

Note that this line editing is not perfonned by READ or RATOM, but by Interlisp. Le., it does not matter
(nor is it necessarily known) which function will ultimately process the characters, only that they are still
in the Interlisp line buffer. However. the function that is requesting input at the time the buffering starts
does detennine whether parentheses counting is observed. For example~ if a program performs (PROGN'
(RAiOM) (READ» and the ~ser types in"A (B, CD)", the user ,must type in the carriage-return
f0110wing the right parenthesis before any action is taken, because the line buffering· is happening under
RAT-OM. If the program had perfonned (PROGN (READ) (READ». the line-buffering would be under
READ, so that the right parenthesis would terminate line buffering, and no tenninating carriage-return
would be required.

. Once ~ carri",g,e-rerurn has been typed, the entire' line is .. "available". even ,if not 'all of it is. processed by, the '
, function ini~iating the request for input.' If any characters are "left oVQr", they are' returned immediately

on the next request for input. For example, (LIST (RATdM) ('READe) (RATOM» when the input is
.• A B cr" returns the three-element list (A % B) and leaves the carriage-return in the buffer.

If a carriage-return is typed when the input under READ is not "complete" (the parentheses are not
balanced or a string is in progress), line buffering continues. but the lines completed so far are not
available for editing with CHARDELETE or LINEDELETE.

The function CONTROL is available'to defeat line-buffering:

(CONTROL MODE TTBL) [Function]
If MODE = T, eliminates Interlisp's nonnalline-buffering for the terminal table TTBL.

If MODE = NIL. restores line-buffering (nonnal). When operating with a terminal
table in which (CONTROL T) has been perfonned. characters are returned to the
calling function without line-buffering as described below.

CONTROL returns its previous setting.

(GETCONTROL TTBL)

Returns the current control mode for TTBL.

,fFunctionj

The function that initiates the request for input detennines how the line is treated when (C aNT ROL T)
is in etfect: ' ,

11 PEE K C is an exception: it rerurns the character immediately when its second argument is NIl.

6.45

READ

RATOM

READC or PEEKC

Line-Buffering

"
If the expression being typed is a list, the effect is the same as though done with
(CONTRQL NIL),·"i.e., line-buffering continues until a carriage-return or matching
parentheses. If the expression being typed is not a list, it is returned as soon
as a break or separator character is encountered. e.g.~ (READ) when the input
is "ABC<space)" immediately returns ABC. CHARDELETE and LINEDELETE are
available on those characters still in the buffer. Thus, if a program is performing
several reads under (CONTROL T), and the user types "NOW IS THE TIME"
followed by control-Q, only TIME is deleted. since the rest of the line has already
been tran~mitted to READ and processed. .

An exception to the above occurs when the break or separator character is an
opening parenthesis, bracket or double-quote, since returning at this point would
leave the line buffer in a "funny" state. Thus if the input to (READ) is "ABC (",
the ABC is not read until a carriage-return or matching parentheses is encountered.
In this case the user could LINEDELETE the entire line, since all of the characters
are still i~ the buffer.

Characters are returned as soon as a break or separator character is encountered.
Until then, LINEDELETE and CHARDELETE may be used as with READ. For
example, '(RATOM) followed by "ABC<control-AXspace)" 'returns AB. (RATOM)
followed by U(<control-A)" returns (and types ## indicating that control-A was
attempted with nothing in the buffer, since the (is a break character and would
therefore 'already have been read.

The character -is_ returned iqunediately; no line editing is. possible. In _particular,
(READC): is perfectly happy to return the CHARDELETE -or -LINEDELETE
characterS, or the ESCAPE character (%).

The system buffer and line buffer can be directly manipulated using the following functions.

(CLEARBUF FILE FLG) [Function]

(SYSBUF FLG)

Clears the input buffer for FILE. If FILE is T and FLG is T, the contents of Interlisp's
system buffer and line buffer are saved (and can be obtained via SYSBUF and
LINBUF described below).

When control-D or control-E is typed. or any of the interrupt characters that
require terminal interaction is typed (control-H, control-P, or control-S), Interlisp
automatically performs (C LEARBU F T T). For control-P, control-S, and, when
the break is exited normally, control-H, Interlisp restores the buffer after the
interaction.

The action of (C LEARBU F T), i.e., clearing of typeahead, is also available as the
RUBOUT interrupt character, initially assigned to the del key in Interlisp-D and in
Interlisp-10 under Tenex. control-Z under Tops20. Note that this interrupt clears
both buffers at the time it is typed, whereas the action of the CHARDELETE and
LI-NEDELETE character occur at the time they are read.

[Function]
If FLG= T, returns the contents of the system buffer (as a string) that was saved at
the last (CLEARBUF T T). If FLG=NIL, clears this internal buffer.

6.46

INPUT/OUTPUT

(LINBUF FLG) [Function]
"Same asSYSBUF for the line buffer.

Ifboth the system buffer and Interlisp's line buffer are empty, the internal buffers associated with LINBUF
and SYSBUF are not changed by a (CLEARBUF T T).

(BKSYSBUF X FLG RDTBL) [Function]

(BKL~NBUF 5TR)

BKSYSBUF sets the system buffer to the PRIN1-name of x. The effect "is the same
as though the user typed x. Some implementations have a: limit on the length of
x., in which case characters in x beyond the limit are ignored. Returns x.

If FLG is T. then the PRIN2-name of x is used, computed with respect to the
readtable RDTBL.

Note that if the user is· typing at the same time as the BKSYSBUF is being performed,
the relative order of the type-in and the ,Characters of x is unpredictable. "

Compatibility note: Some implementations of BKSYSBUF (Interlisp-lO) use a
"system" buffer, from which keyboard interrupts are also processed. In this
case, BKSYSBUF of an" interrupt character actually invokes the intenupt at some
(asynchronous) time after" the BKSYSBUF is initiated. In other implementations
(Interiisp-D), the characters are not processed for interrupts, and it is possible to
BKSYSBUF characters which would otherwise be impossible to type.

. [Function]
5TR is a string. BKLINBUF sets Interlisp's line "buffer eo STH. -Some iniplementations
have a limit on the length of 5TR, in which case characters in 5TR beyond the
limit are ignored. Returns 5TR.

BKLINBUF, BKSYSBUF, LINBUF, and SYSBUF provide a way of "undoing" a CLEARBUF. Thus to
"peek" at various characters in the buffer, one could perform (CLEARBUF T T), examine the buffers
via LINBUF and SYSBUF, and then put them back.

The more common use of these functions is in saving and restoring typeahead when a program requires
some unanticipated (from the user's standpoint) input. The function RESETBUFS provides a convenient
way of simply clearing the input buffer, performing an interaction with the user, and then restoring the
input buffer.

(RESETBUFS FORM1 FORM2 ... FORMN) [NLambda NoSpread Function]
Clears any typeahead (ringing the terminal's bell if there was, indeed, typeahead),
evaluates FORM1, FORM2,"·· FORMN , then restores the typeahead. Returns the
value of FORM N' Compiles open.

6.8 PRETTYPRINT

The standard way of printing out function definitions (on the terminal or into files) is to use PRETTYPRINT.

(PRETTYPRINT FN5 PRETTYDEFLG -) [Function]
FN5 is a list of functions. [f FN5 is atomic, its value is used). The definitions of

6.47

Prettyprint

the functions are printed in a pretty fonnat on the primary output file using the
··-primaryreadtable. For example, if FACTORIAL were defined by typing

(DEFINEQ (FACTORIAL [LAMBDA (N) (COND «ZEROP N) 1)
(T (ITIMES N (FACTORIAL (SUBt N]

(PRETTYPRINT '(FACTORIAL» would print out

(FACTORIAL
[LAMBDA (N)

(COND
«ZEROP N)

1)
(T (ITIMES N (FACTORIAL (SUB1 N])

PRETTYDEFLG is T when called from PRETTYDE F (and hence MAKEF I LE). Among
other actions taken when this argument is true, PRE TTY P R I NT indicates its progress
in writing the current output file: whenever it starts. a' new function. it prints on
the tenninal the name of that function if more than 30 seconds (real time) have
elapsed since the last time it printed the name of a function.

PRETTYPRINT operates correctly on functions that are BROKEN, BROKEN-IN, ADVISED, or have been
compiled with their definitions saved on their property lists: it prints the original, pristine definition, but
does not change the current state of the function. If a function is not defined but is known to be on
one of the files noticed by the file package, PRETTYPRI,NT loads in the definitiQn (using LOADFNS) and
prints it (except when called from PRETTYDEF). If PRETTYPRINT is given an atom which is not the
name of a function, but has a v(ijue, it prettyprints the value. Otherwise, PRETTYPRINT attempts spelling
correction. If all fails, PRETTYP:RINT returns (FN NOT PRINTABLE).

(PP FNl ... FNN) [NLambda NoSpread Function]
For prettyprinting functions to the tenninal. PP calls PRETTYPRINT with the
primary output file set to T and the primary read table set to T. The primary
output file and primary readtable are restored after printing.

(PP FOO) is equivalent to (PRETTYPRINT '(FOO»; (PP FOO FIE) is
equivalent to (PRETTYPRINT '(FOO FIE».

As described above, when PRE TTY P R I NT, and hence P P, is called with the name of a function that is
not defined, but whose definition is on a file known to the file package, the definition is automatically
read in and then prettyprinted. However, if the user does not intend on editing or running the definition,
but simply wants to see the definition, the function P F described below can be used to simply copy the
corresponding characters from the file to the tenninal. This results in a savings in both space and time.
since it is not necessary to allocate storage to actually read in the definition, and it is not necessary to
re-prettyprint it (since the function is already in prettyprint fonnat on the file).

(PF FN FROMFILES TOFILE) [NLambda NoSpread Function]
Copies the definition of FN found on each of the files in FROMFILES to TOFILE.

If TOFILE=NIL. defaults to T. If FROMFILES= NIL, defaults to (WHEREIS FN
NIL T) (see page 11.10). The typical usage of P F is simply to type "p F FN'.

When printing to the tenninal. PF performs· several transformations on the characters in the file that
comprise the definition for FN: (1) font information (page 6.55) is stripped out (except in Interlisp-D,

6.48

INPUT/OUTPUT

whose display supports·multiple fonts); (2) occurrences of the CHANGECHAR (page 6.55) are not printed;
.. '(3) since functions typically tend to be printed to a file with a larger linelength than when printing to

a terminal, the number of leading spaces on each line is cut in half; 12 and (4) comments are elided, if
--COMMENT--FLG is non-NIL (see page 6.50).

While the function PRETTYPRINT prints entire function definitions, the function PRINTDEF can be used
to print parts of fu.nctions~ or arbitrary Interlisp structures:

(PRINTDEF EXPR LEFT'DEF TAILFLG FNSLST FILE) [Function]
PrintS the expression EXPR in a pretty fonnat on FILE using the primary readtable.
LEFT is the left hand margin (LINELENGTH determines the right hand margin.)13

DEF= T means EXPR is a function definition, or a piece of one. If DEF= NIL,
no special action is taken for LAMBDA's, PROG's, COND's, comments, CLISP, etc.
DEF is NIL when PRETTYDEF calls PRETTYPRINT to print variable's and property
lists, and when PRINTDEF is called from the editor via the command PPV.

TAILFLG = T means EXPR is' interpreted as a tail of a list, to be printed without
parentheses.

FNSLST is for use with the Font package (page·6.55). PRINTDEF prints occurrences
of any function in the list FNSLST in a different font, for emphasis. MAKE FILE
passes as FNSLST the list of all functions on the file being made:

6~8.1 . Comment Feature

A facility for annotating Interlisp functions is provided in PRETTYPRINT. Any expression beginning with
the atom - is interpreted as a comment and printed in the right margin. Example:

(FACTORIAL
[LAMBDA (N)

(COND
«ZEROP N)

1)
(T

(ITIMES N (FACTORIAL (SUB1 N])

(- COMPUTES Nt)

(- 01=1)

(- RECURSIVE DEFINITION:
N!=N-N-1!)

These comments actually form a part of the function definition. Accordingly, - is defined as an nlambda
nospread function that returns its argument. similar to QUOTE. When running an interpreted function. - is
entered the same as any other Interlisp function. Therefore, comments should only be placed where they
will not harm the computation. i.e., where a quoted expression could be placed. For example, writing

(ITIMES N (FACTORIAL (SUB1 N» (- RECURSIVE DEFINITION»

l2Uniess PFDEFAULT is T. PFDEFAULT is initially NIL.

l3PRINTDEF initially performs (TAB LEFT T). which means to space to position LEFT, unless already
beyond this position, in which case it does nothing.

6.49

Comment Feature

-in the above function would cause an error when ITIMES attempted to multiply N, N-l1, and RECURSIVE.

For compilation purposes, • is defined as a macro which compiles into no instructions (unless the comment
has been placed where it has been used for value, in which case the compiler prints an appropriate error
message and compiles • as QUOTE). Thus, the compiled form of a·function with comments does not use
the extra atom and list structure storage required by the comments in the source (interpreted) code. This
is the way the comment feature is intended to be used.

A comment bf the form (. E x) causes x to be evaluated at prettyprint time, as well as printed as it
comment in -the usual way ~ For example, (. E (RAD I X 8» as a comment in a function containing
octal numbers can be used to change the radix to produce more readable printout.

The comment character • is stored in the variable COMMENTFLG. The user can set it to some other value,
e.g. ";", and use this to indicate comments.

COMMENTFLG [Variable]
If CAR of an expression is EQ to COMMENTFLG. the expression is treated as a
comment by PRETTYPRINT. COMMENTFLG is initialized to •. Note that whatever
atom is chosen for COMMENTFLG should also have an appropriate function definition
and- compiler macro, for example, by copying those of •.

Comments are designed mainly for documenting listings. Therefore. when prettyprinting to the terminal.
comments are suppressed and printed as the string ··COMMENT··. The value of ··COMMENT··FLG
determines the action.

··COMMENT··.FLG . . [Variable]
If ··COMMENT··FLG is NIL, comments are printed. Otherwise, the value of
··COMMENT··FLG is printed. Initially" ··COMMENT·· If.

The functions P P" and P F· are provided to easily print functions, including their comments.

(Pp· x) [NLambda NoSpread Function]
pp. operates exactly like PP except it first sets • ·COMMENT·· F LG to NIL, so
comments are printed in full.

(PF* FN FROMFILES TOFILE) [NLambda NoSpread Function]
PF· operates exactly like PF except it first sets **COMMENT**FLG to NIL, so
comments are printed in full.

(COMMENT 1 L -) [Function]
Prints the comment L. COMMENTl is a separate function14 to permit the user to
write prettyprint macros (page 6.54) that use the regular comment printer. For
example, ~o cause comments to be printed at a larger than normal line length. one
could put an entry for • on PRETTYPRINTMACROS:

(* LAMBDA (X) {RESETFORM (LINELENGTH 100) (COMMENTl X»)

14COMMENTl is an entry to the PRETTYPRINT block. However. it is called internally by PRETTYPRINT
so that advising:or redefining it will not affect the action of PRETTYPRINT. COMMENTl should not be
called when not under a PR I NTDE F.

. 6.50

· ·INPUT /OUTPUT

~ This macro· resets the line length, prints the comment, and then restores the line
length.

COMMENTl expects to be called from within the environment established by
PRINTDEF, so ordinarily the user should call it only from within prettyprint macros.

6.8.2 Comment Pointers

For a well-commented collection of programs, the list structure, atom, and pname storage required to
represent the comments in core can be significant If the comments already appear on a file and are
not needed for editing, a significant savings in storage can be achieved by simply leaving the text of the
comment on the file when the file is loaded, and instead retaining in core only a pointer to the comment.
This feature has been implemented by defining * as a read-macro in FILERDTBL which, instead of
reading in the entire text of the comment, constructs an expression containing (1) the name of the file in
which the text of the comment is contained, (2) the address of the first character of the comment, (3) the
number of characters in the comment, and (4) a flag indicating whether the comment appeared at the right
hand margin or centered on the page. For output purposes~ * is defined on PRETTYPRINTMACROS (page
6.54) so that it prints the comments represented by such pointers by simply copying the corresponding
characters from one file to another, or to the terminal. Normal comments are processed the same as
before, and can be intermixed freely with comment pointers.

The comment pointer feature is controlled by the value of NORMALCOMMENTSFLG.

NORMALCOMM'ENTSFLG . [Variable]
The comment pointer feature is enabled by setting NORMALCOMMENTSFLG to NIL.
NORMALCOMMENTSFLG is initially T.

NORMALCOMMENTSFLG can be changed as often as desired. Thus, some files can be
loaded normally, and others with their comments converted to comment pointers.

For convenience of editing selected comments, an edit macro, GET *. is included, which loads in the
text of the corresponding comment The editor's pp* command, in contrast, prints the comment without
reading it by simply copying the corresponding characters to the terminal. GET * is defined in terms of
GETCOMMENT:

(GETCOMMENT X DESTFL -) [Function]
If x is a comment pointer, replaces x with the actual text of the comment, which
it reads from' its file. Returns x in all cases. If DESTFL is non-N I L. it is the
name of an open file, to which GETCOMMENT copies the comment; in this case,
x remains a comment pointer. but it has been changed to point to the new file
(unless NORMALCOMMENTSFLG = DONTUPDATE).

(PRINTCOMMENT x) [Function]
Defined as the prettyprint macro for *: copies the comment to the primary output
file by using GETCOMMENT.

(READCOMMENT FL RDTBL LST) [Function]
Defined as the read macro for * iIi FI LE RDTBL: if NORMALCOMMENT SF LG is NIL.

6.51

Converting Comments to Lower Case

it constru~ts a comment pointer.1S

Note that a certain amount of care is required in using the comment pointer feature. Since the text of the
comment resides on the file pointed to by the comment pointer~ that file must remain in existence as long
as the comment is needed. GEllCOMMENT helps out by changing the comment pointer to always point
at the most recent file that the comment lives on. However~ if the user has been perfonning repeated
MAKEFILE's (page 11.6) in which differing functions have changed at each invocation of MAKE FILE, it is
possible for the comment pointers in memory to be pointing at s.everal versions of the same file, since a
comment pointer is only updated when the function it lives in is prettyprinted, not when the function has
been copied verbatim to the new file. This can be a problem for file systems, such as Tenex and Tops20,
that have a built-in limit on the number of versions of a given file that will be made before old versions
are expunged. In such a case, the user should set the version retention count of any directories involved
to be infinite. GETCOMMENT prints an error message if the file that the comment pointer points at has
disappeared.

Similarly, one should be cognizant of comment pointers in SYSOUTs, and be sure to retain any files thus
pointed to.

When using comment pointers,: the user should also not set PRETTYFLG (page 6.54) to NIL or call
MAKE FILE with option FAST, since this will prevent functions from being prettyprinted, and hence not
get the text of the comment copied into the new file.

If the user changes the value of COMMENTFLG but still wishes to use the comment pointer feature,
the new COMMENTFLG should be given the same read-macro definition in FILERDTBL as * has, and
the same entry be put on PRETTYPRINTMACROS. For example, if COMMENTfLG is reset to be "; ",
then (SETSYNTAX '; '* FILERDTBL) should be perfonned, and (; . PRINTCOMMENT) added to
PRETTYPRINTMACRO~

6.S.3 Converting Comments to Lower Case

This section is for users operating on tenninals without lower case, e.g. model 33 teletypes, who
nevertheless would like their comments to be converted to lower case for more readable line-printer
listings. If the second atom in ~ comment is %%, the text of the comment is converted to lower case so
that it looks like English instead of LISP. Note that comments are converted only when they are actually
written to a file by PRETTYPRINT.

The algorithm for conv~rsion to lower case is the following: If the first character in an atom is 1', do not
change the atom (but remove th,e 1'). If the first character is %, convert the atom to lower case. is If the
atom (minus any trailing punctuation marks) is an Interlisp word,17 do not change it Otherwise. convert
the atom to lower case. Conver;sion only affects the upper case alphabet, Le., atoms already converted
to lower case are not changed if the comment is converted again. When converting, the first character
in the comment and the first character following each period are left capitalized. After con version, the
comment is physically modified to be the lower case text minus the %% flag, so that conversion is thus

i5Uniess it believes the expression beginning with * is not actually a comment. e.g., if the next atom is
..... or E.

l6User must type %% as % is the escape character.

L 7i.e .. is a bound or free variable for the function containing the comment, or has a top level value, or is
a defined function, or has a non-N I L property list.

6.52

INPUT/OUTPUT

- only- performed· once (unless the user. edits the comment inserting additional upper case text and another
%% flag).

LCASELST

UCASELST

ABBREVLST

[Variable]
Words on LCASELST will always be converted to lower case. LCASELST is
initialized to contain words which are Interlisp functions but also appear frequently
in comments as English words (AND, EVERY, GET, GO, LAST. LENGTH, LIST, etc.).
Therefore, if one wished to type a comment including the lisp fuction GO, it would
be necessary to type 'tGO in order that it might be left in upper case.

[Variable]
Words on UCASELST (that do not appear on LCASELST) will be left in upper
case. UCASELST is initialized to NIL.

[Variable]
ABBREVLST is used to distinguish between abbreviations and words that end in
periods. Normally, words that end in periods and occur more than halfway to the
right margin cause carriage-returns. Furthermore, during conversion to lowercase,
words ending in periods, except for those on ABBREVLST, cause the first character

- in the next word to be capitalized. ABBREVLST 'is 'initialized to the upper and
lower case forms of ETC., I. E " and E • G ••

6.8.4 Special Prettyprint Controls

PRETTYT AB F LG [Variable]
In order to save space on files, tabs are used instead of spaces for the inital spaces
on each line, assuming that each tab corresponds to 8 spaces. This results in a
reduction of file size by about 30%. Tabs are not used if PRETTYTABFLG is set to
NIL (initially T).

#RPARS [Variable]
Controls ,the number of right parentheses necessary for square bracketing to
occur. If #RPARS=NIL, no brackets are used. #RPARS is initialized to 4.

F I RSTCOL [Variable]
The starting column for comments. Initial setting is 48. Comments run between
FIRSTCOL and LINELENGTH. If a word in a comment ends with a"." and
is not on the list ABBREVLST, and the position is greater than halfway between
FIRSTCOL and LINELENGTH, the next word in the comment begins on a new

,line. Also, if a list is encountered in a comment, and the position is greater than
halfway, the list begins on a new linc.

PRETTYLCOM [Variable]
If a comment is bigger (using COUNT) than PRETTYLCOM in size, it is printed
starting at column 10. instead of F I RSTCOL. PRETTYLCOM is initialized to 14
(arrived at empirically). Comments are also printed staFting at column 10 if their
second element is also a *, i.e., comments of the fonn (* * - -).

#CARE P'ULCOLUMNS [Variable]
In the interests of efficiency, PRE TTY P R IN T approximates the number of characters

, 6.53

Special Prettyprint Controls

in each atom, rather than calling NCHARS, when computing how much will fit on
a lin~. This procedure works satisfactorily in most cases. However, users with
unusually long atoms in their programs, e.g., such as produced by C LIS PI F Y. may
occasionlly encounter some glitches in the output produced by PRETTYPRINT. The
value of #CAREFULCOLUMNS tells PRETTYPRINT how many columns (counting
from the right hand margin) in which to actually compute NCHARS instead of
approximating. Setting #CAREFULCOLUMNS to 20 or .10 will eliminate the glitches~
although it will slow down. PRETTYPRINT slightly. #CAREFUlCOLUMNS is initially
o.

(WIOEPAPER FLG) [Function]
(WIOEPAPER T) sets FILELINELENGTH to 120, FIRSTCOL to 80, and PRETTYLCOM
to 28. These are useful settings for prettyprinting files to· be listed on wide paper.
(WIOEPAPER) restores these parameters to their initial values. The value of

. WID EPA PER is its previous setting.

PRETTYFLG [Variable]
If PRETTYFLG is NIL, PRINTOEF uses PRIN2 instead ofprettyprinting. This is
useful for producing a fast symbolic dump (see FAST option of MAKE FILE. page
11.6). Note that the file loads th~ same as if it were prettyprfnted. PRETTYFlG is
initially set to T. PRETTYFLG should not be set to NIL if comment pointers (page
6.51) are being used.

CLISP IFYPRETTYFLG [Variable]
Used to ~nform PRETTYPRINT to call CLISPIFY on selected function definitions
before printing them (see page 16.20).

PRETTYPR INTMACROS [Variable]
An association-list that enables the user to control the formatting of selected
expressions. CAR of each expression being PRETTYPRINTed is looked up on
PRETTYPRINTMACROS, and if found, CDR of the corresponding entry is applied
to the expression. If the result of this application is NIL, PRETTYPRINT ignores
the expression; Le., it prints nothing, assuming that the prettyprintmacro has
done any desired printing. If the result of applying the prettyprint macro is
non-N I L, the result is prettyprinted in the normal fashion. This gives the user
the option of computing some other expression to be prettyprinted in its place.
PRETTYPRINTMACROS is initially NIL.

Note: "prettyprinted in the normal fashion" includes processing prettyprint macros,
unless the prettyprint macro rerurns a structure EO to the one it was handed, in
which case the potential recursion is broken.

PRETTYPRINTYPEMACROS [Variable]
A list of elements of the form (T¥PENAME • FN). For types other than lists
and atoms, the type name of each datum to be prettyprinted is looked up on
PRETTYPRINTYPEMACROS, and if found. the corresponding function is applied
to the datum about to be printed. instead of simply printing it with P R IN 2.
PRETTYPR INTYPEMACROS is initially NIL.

PRETTYEQUIVLST [Variab~]

An association-list that tells PRETTYPRINT to treat a CAR-of-form the same
as some other CAR~of-form. For example, if (OLAMBOA . LAMBDA) appears

6.54

CHANGECHAR

INPUT/OUTPUT

on PRETTYEQUIVLST, then expressions beginning with QLAMBDA are pret
typrinted the same as LAMBDAs. PR·fi:T-TYEQU IVLST is initially NI L. Currently,
PRETTYEQUIVLST only allows (Le., supports in an interesting way) equivalences
to fonns that PRETTYPRINT internally handles. Equivalence to fonns for which
the user has specified a prettyprint macro should be made by adding further entries
to PRETTYPRINTMACROS

[Variable]
Ifnon-NIL, and PRETTYPRINT is printing to a file or display tenninal, PRETTYPRINT
prints CHANGECHAR in the right hand margin while printing those expressions
marked by the editor as having been changed (see page 17.22). CHANGECHAR is
initially I.

6.8.5 Font Package

PRETTYPRINT contains a facility for printing elements of various classes (user functions, system functions,
clisp words, comments, etc.) in different fonts to emphasize (or deemphasize) their importance, and in
general to provide for more pleasing printout when printing to a file. -Of course, in order to be useful,
this facility requires that the user has access to a printer which supports multiple fonts, such as an XGP.

Prettyprint signals font changes by inserting a user-defined escape sequence, e.g. l' F l' C meaning change
to font 3, 'tF'tA change' back to font ~,etc. It is convenient if these sequences can consist of control
characters, because by making these characters be separator charactors in FILE RDTBL, a file with font
changes in it can also be loaded bac'k in. Otherwise, the user' WQu.1d have to dump tw'o files, 'one for
listing, and one for loading.

Currently, the user can specify fonts for each of the following eight classes, each different, or the same
for several classes.

LAMBDAFONT

CLISPFONT

COMMENT FONT

USERFONT

SYSTEMFONT

CHANGEFONT

PRETTYCOMFONT

DE.FAULTFONT

The font for printing the name of the function being prettyprinted, before the
actual definition (usually a large font).

If CLISPFLG is on, the font for printing any clisp words, i.e. atoms with property
CLISPWORD.

The font for everything inside of a comment

The font for the name of any function in the file, or any member of the list
FONTFNS.

The font for any other (defined) function.

The font for anything in an expression marked by the editor as having been
changed.

The font used in printing the operand of a file package command.

The font for everything else. or any of the above classes for which a font is not
specified.

Note: the output primitives PRINT, PRIN1, etc., currently do not know about variable width fonts, so

6.55

Font Package

the user may have to experiment to find a compatible (pleasing) set of fonts. Note also that the user does
not set LAMBDAFONT, CLISPFONT, et al, but indicates what font to be used by including an appropriate
entry in FONTPROFILE. FONTSET will then set LAMBDAFONT, CLISPFONT, et al, to a -data structure
that contains the necessary infonnation for perfonning the font change.

FONTPROFILE [Variable]
A list of elements of the fonn (FONTCLASS NIL FONT#),18 where FONTCLASS

is one of the eight' font classes and FONT# is the font number for that class. it is
assumed that the user has some way of communicating to the printing device the
correspondence between font numbers and fonts. For each fontclass, the escape
sequence consists of FONTESCAPECHAR followed by the character code for the
font number, Le. for font number 1, 'tA, for font number 2, 'tB, etc.

If FONT# is NIL for any fontclass, the DEFAULTFONT is used. Note that the
DE F AU L T F 0 N T must be specified or an error is generated.

The operation of the font package is affected by a large number of parameters, e.g. FILELINELENGTH,
LISTFILESTR, etc. plus the various fontnames themselves. To facilitate switching back and forth between
various configurations, the font package allows the user to set the various parameters to their desired
values~ and then use the function FONTNAME to package- up and save this configuration. Subsequently.
the user invokes this configuration by perfonning (FONTSET NAME).

Note that the user may also want to reset FILELINELENGTH (page 23.14), PRETTYLCOM (page 6.53),
and F I RSTCOL (page 6.53) as a part of various font configurations.

(FONTNAME NAME). [Function]
Perfonns some proceSSing on FONTPROF ILE. and then collects names and values
of variables on FONTDEFSVARS, and saves them on FONTDEFS.

(FONTSET NAME) [Function]
Restores font configuration for NAME. Generates an error if NAME not previously
defined.

FONTDEF SVARS [Variable]
The list of variables to be packaged by a FONTNAME. Initially FONTCHANGEFLG,
FILELINELENGT~COMMENTLINELENGT~FIRSTCOLPRETTYLCO~LISTFILEST~
and FONTPROF ILE.

FONTESCAPECHAR [Variable]
The character or string used to signal the start of a font escape sequence.

FONTCHANGEFLG [Variab~]
If T, enables fonts, if NIL, disables fonts, i.e. no font changes are perfonned when
prettyprinting.

18The NIL is a place marker. FONTNAME replaces (RPLACA) CADR when 'the font configuration is
defined.

6.56

LISTFILESTR

INPUT/OUTPUT

[Variable]
Passed to the operating system by LISTFILES (page 11.9). Can be used to specify
subcommands to the LIST comman<L e.g. to establish corresponciance between
font number and font name. .

COMMENTLINELENGTH [Variable]
Since comments are usually printed in a smaller font, COMMENTLINELENGTH is
provided to offset the fact that InterliSp does not know about font widths. When
FONTCHANGEFLG= T, CAR of COMMENTLINELENGTH is the line length used to
print short comments, i.e. those printed in the right margin, and CDR is the
linelength used when printing full width comments.

(CHANGEFONT FONTCLASS) [Function]

FONTDEFS

6.9 ASKUSER

Prints the font escape sequence to change to FONTCLASS. Note that FONT CLASS
is not a font name, so one should use (CHANGEFONT LAMBDAFONT), not
(CHANGEFONT 'LAMBDAFONT). For use in PRETTYPRINTMACROS.

[Variable]
The dictionary of font configurations. FONTDEFS is a list of elements of form
(NAME • PARAMETER.PAIRS). To save a configuration on· it file after performing
a FONTNAME to define it, the user could either save the entire value of FONTDE F 5,
or simply use an ALISTS file package cominand (page 11.23) to dump out just the
one configuration.

DWIM, the compiler, the editor, and many other system packages all use ASKUSER, an extremely general
user interaction package, for their interactions with the user at the terminal. ASKUSE R takes as its principal
argument KEYLST which is used to drive the interaction. KEYLST specifies what the user can type at
any given point, how ASKUSER should respond to the various inputs, what value should be returned by
ASKUSER, and is also used to present the user at any given point with a list of the possible responses.
ASKUSER also takes other arguments which permit specifying a wait time, a default value, a message
to be printed on entry, a flag indicating whether or not typeahead is to be permitted. a flag indicating
whether the transaction is to be stored on the history list (page 8.1), a default set of options, and an
(optional) input file/string.

6.9.1 Startup Protocol

Interlisp permits and enco'urages the user to typeahead; in actual practice, the user frequently does this.
This presents a problem for ASKUSER. When ASKUSER is entered and there has been typeahead, was
the input intended for ASKUSE R, or was the interaction unanticipated, and the user simply typing ahead
to some other program, e.g. the programmer's assistant? Even where there was no typ~ahead, i.e.. the
user starts typing after the call to ASKUSE R, the question remains of whether the user had time to see
the message from ASKUSE R and react to it, or simply began typing ahead at an inauspicious moment.
Thus. what is needed is an interlock mechanism which warns the user to stop typing, gives him a chance
to respond to the warning, and then allows him to begin typing to ASKUSER.

6.57

Startup Protocol

Therefore~ when ASKUSER is first entered.. and the interaction is to take place with a tenninal .. and
typeahead to ASKUSER is not pemtitted.. the following protocol is observed:

(1) If there is typeahead, ASKIJSE R clears and saves the input buffers and rings the bell to warn the user
to stop typing. The buffers will be restored when ASKUSER completes operation and returns.

(2) If MESS~ the m~sage to be printed on entry. is not NIL (the typical case), ASKUSER then prints MESS

if it is a strin~ otherwise CAR of MESS .. if ME~sis a list.

(3) After printing MESS or CAR of MESS, ASKUSER waits until the output has actually been printed on the
tenninal to make sure that the user has actually had a chance to see the output. This also give the user
a chance to react. ASKUSER then checks to see if anything additional has been typed in the intervening
period since it first warned the user in (1). If something has been typed.. ASKUSER clears it out and
again rings the bell. This latter material, i.e ... that typed between the entry to ASKUS E R and this point..
is discarded and will not be restored since it is not certain whether the user simply reacted quickly to
the first warning (bell) and this input is intended for ASKUSE R, or whether the user was in the process
of typing ahead when the call to ASKUSER occurred .. and did not stop typing at the first warning, and
therefore this input is a continuation of input intended for another program.

Anything typed after (3) is considered to be intended for ASKUSE R, i.e., once the user sees MESS or CAR
of MESS, he is free to respond. For example, UNDO (page -8.11) calls ASKUSER when the number
of undosaves are exceeded for an event with MESS= (LIST NUMBER-UNDOSAVES "undosaves.
con tin u e sa v i n 9 "). Thus. the user can type a response as soon as NUMBER~ UNDOSAVES is typed.

(4) ASKUSER then types the rest of MESS, if any.

(5) Then ASKUSER goes into a wait-loop . until something·iS typed. If-WAIT, the wait time. is not NIL, .
and nothing is typed in WAIT: seconds, ASKUSER will type" ... " and treat the elements of DEFAULT,

the default value, as a list of characters, and begin processing them exactly as though they had been
typed.. If the user does type anything within WAIT seconds, he can then wait as long as he likes, i.e., once
something has been typed.. ASKUSER will not use the default value specified in DEFAULT.

If the user .wants to consider his response for more than WAIT seconds, and does not want ASKUSER to
default. he can type a carriage return or a space, which are ignored if they are not specified as acceptable
inputs by KEYLST (see below) and they are the first thing typed.

If the calling program knows that the user is expecting an interaction with ASKUSER, e.g~ another
interaction preceded this one, it can specify in the call to ASKUSER that typeahead is pennitteci In this
case, ASKUSER simply notes whether there is any typeahead,19 then prints MESS and goes into a wait
loop as described above.

(6) Finally, if the interaction is not with the tenninal. i.e .. the optional input file/string is specified..
ASKUSER simply prints MESS and begins reading from the file/string.

19In this case. if the typeahead turns out to contain unacceptable input. ASKUSE R will assume that the
typeahead was not inte~ded for ASKUSER. and will restore the typeahead when it completes operation
and returns.

6.58

INPUT/OUTPUT

6.9.2 Operation

All input operations are executed with the teIminal table in the variable ASKUSE RTTBLn in which (1)
(CONTROL T) has been execute<L so that ASKUSER can interact with the user after each character
is typed; and (2) (ECHOMODE NIL) has been executed, so that ASKUSER can decide after it reads a
character whether or not the character should be echoed, and with what, e.g. unacceptable inputs are

, never echoed.

As each character is typed, it is matched against KEYLST, and appropriate echoing and! or prompting is
perfoImed. If the user types an unacceptable character, ASKUSE R simply rings the bell and allows him
to try again.

At any point, the user can type ? and receive a list of acceptable responses at that point (generated from
KEYLST), or type a control-A, control-Q, control-X, or <deD, which causes ASKUSER to reinitialize, and
start over.

Note that? Control-A, Control-Q, and Control-X will not work if they are acceptable inputs, Le., they
match one of the keys on KEYLST. will not work if it is an interrupt character, in which· case it is

. not seen by ASKUSER.

When an acceptable sequence is completed, ASKUSER returns the indicated value.

6.9.3 Format of KEYLST

KEYLST is a list of elements of the fOIm (KEY PROMPTSTRING • OPTIONS). where KEY is an atom
or a string (equivalent), PROMPTSTRING is an atom or a string, and OPTIONS a list of options in
property list fOImat. The following options are recognized and explained below: KEYLST, CONFIRMFLG,
PROMPTCONFIRMFLG,NOCASEFLG,RETURN,EXPLAINSTRING,NOECHOFLG,KEYSTRING,PROMPTON,
COMPLETEON, AUTOCOMPLETEFLG. If an option is specified in OPTIONS, the value of the option is the
next element. Otherwise, if the option is specified in OPTIONSLST (the seventh argument to ASKUSE R),
its value is the next element on OPTIONSLST. Thus, OPTIo.NSLST can be used to provide default options
for an entire KEYLST, rather than having to include the option at each level. If an option does not appear
on either OPTIONS or OPTIONSLST, its value is NIL.

F or convenience, an entry on KEYLST of the fOIm (KEY • ATOM/STRING). can be used as an
abbreviation for (KEY ATOM/STRING CONFIRMFLG T), and an entry of just the fOIm KEY, Le., a
non-list, as an abbreviation for (KEY NIL CONFIRMFLG T).

As each character is read, it is matched against the currently active keys. A character matches a key if it
is the same character as that in the corresponding position in the key, or, if the character is an alphabetic
character, if the characters are the same without regard for upper/lower case differences, Le. "An matches
"a" and vice versa.20 In other words, if two characters have already been input and matched, the third
character is matched with each active key by comparing it with the third character of that key. If the
character matches with one or more of the keys, the entries on KEYLST corresponding to the remaining
keys are discarded. If the character does not match with any of the keys, the character is not echoed, and
a bell is rung iFlstead.

2°Unless the NOCASEFLG option (page 6.62) is T.

6.59

Format of KEYLST

When-a key is complete. PROMPTSTRING is printed (N I L is equivalent to '''', the empty string. i.e., nothing
will be printed). Then. if the value of the CONFIRMFLG option is T, ASKUSER waits for confirmation of
the key by acr21 or space. Othexwise. the key does not require confirmation.

Then. if the value of the KEYLST option is not NIL, its value becomes the new KEYLST," and the process
recurses. Othexwise, the key is a "leaf," i.e., it terminates a particular path through the original, top-level
KEYLST, and ASKUSER returns the result of packing all the keys that have been matched. and. completed
along the way (unless the RETURN option is used to specify some other value. as described below).

For example. the following KEYLST is the default KEYLST, i.e .• is used when ASKUSE R is called with
KEYLST=NIL: {(Y "es cr") (N "ocr"»

This KEYLST specifies that if (as soon as) the user types Y (or y). ASKUSER echoes with Y, prompts with
"e s ern, and returns Y as its value. Similarly, if the user types N, ASKUSE R echoes the N. prompts with
"0 cr", and returns N. If the user types?, ASKUSE R prints:

Yes
No

to indicate his .possible responses. All other inputs are unacceptable, and ASKUSE R will ring the bell and
not echo or print anything.

Here is a more complicated example, the KEYLST used for the compiler questions (page 12.1):

{{5T "ore and redefine" KEYL5T {"" (F . "orget exprs"»
(S "arne as last time")
(F "File only")
(T . "0 terminal")
1
2
(Y • "es")
(N • "0"»

When ASKUSER is called with this KEYLST, and the user types an S, two keys are matched: 5T and 5.
The user can then type aT. which matches only the 5 T key, or confirm the S key by typing acr or space.
If the user confirms the S key, ASKUSER prompts with "arne as 1 ast t ima", and returns 5 as its
value. (Note that the confirming character is not included in the value.) If the user types a T, ASKU5ER
prompts with "0 re and redaf ina", and makes ("" (F . "0 rget exp rs")) be the new KEYLST,

and waits for more input. The user can then type an F, or confirm the "" (which essentially starts out
with all of its characters matched). If he confirms the '''', ASKUSER returns 5T as its value the res~lt of
packing 5T and "". If he types F, A5KUSER prompts with "orget exprs", and waits for confirmation
again. If the user then confirms. A5KUSER returns 5TF, the result of packing 5T and F.

As mentioned earlier. at any point the user can type a ? and be prompted with the possible responses.
For example, if the user types 5 and then?, ASKU5 E R will type:

STora and redefine Forget exprs
STore and redefine
Same as last time

21cr is used throughout the discussion to denote carriage return.

6.60

INPUT IOUTPUT

6.9.4 ' Completing a Key

The decision about when a key is complete is more complicated than simply whether or not all of its
characters have been matched. In the example 'above, all of the characters in the 5 key are matched as
soon as the 5 has been typed, but until the next character is typed, A5KU5ER does not know whether the
5 completes the 5 key, or is simply the first character in the 5T key. Therefore, a key is considered to
be complete when:

(1) All of its characters have been matched and it is the only key left, Le., there are no other keys for
which this key is a substring; or

(2) All of its characters have been matched and a confinning character is typed;, or

(3) All of its characters have been matched, and the value of the CON F I RMF LG option is NIL, and the
value of the KEYL5T option is not NIL, and the next character matches one of the keys on the value of
the KEYLST option; or

(4) There is only one key left and a confirming character is typed. Note that if the value ofCONFIRMFLG
is T, the key still has to be, confirmed, regardless of whether or not it is complete. For example, if the
first entry in the above example were instead

(ST "ore and redefine" CONFIRMFLG T KEYl5T ("" (F . "orget ex~rs"»

and the user wanted to specify the S T F path, he would have to type ST. then confirm before typing F.
even thol,1gh the 5T completed the 5T key by the rule in case (1). However, he would be prompted with
"0 re and redef i ne" as soon as he typed the T, and' completed the 5T key.

Case (2) says that confirmation can be used to complete a key in the case where it is a substring of another
key. even where the value of CON FIRM F LG is NIL. In this case, the confirming character doubles as both
an indicator that the key is complete, and also to confirm it, if necessary. This situation corresponds to
typing 5 cr in the above example.

Case (3) says that if there were another entry whose key was STX in the above example, so that after
the user typed ST, two keys, ST and STX, were still active, then'typing F would complete the ST key.
because F tpatches the (F . "orget exprs") entry on the value of the KEYLST option of the ST
entry. In this case, "ore and redefine" would be printed before the F was echoed.

Finally. case (4) says that the user can use confirmation to specify completion when only one key is left,
even when all of its characters have not been matched. For example, if the first key in the above example
were STORE, the user could type ST and then confirm, and ORE would be echoed, followed by whatever
prompting was specified. In this case, the confirming character also confirms the key if necessary. so that
no further action is required, even when the value of CONF IRMFLG is T.

Case (4) permits the user not to have to type every character in a key when the key is the only one left
Even when there are several active keys, the user can type type $ (the ESC key, or on some terminals,
the key labelled AL T) to specify the next N>O common characters among the currently active keys. The
effect is exactly the same as though these characters had been typed. If there are no common characters
in the active keys at that point, Le. N= 0, the $ is treated as an incorrect input. and the bell is rung.
For example, if KEYLST is (CLISPFLG CLISPIFYPACKFLG CLISPIFTRANFLG). and the user types
C followed by $, AS KUS E R will supply the L, I, S. and P. The user can then type F followed byt:r or
space to complete and confirm CLISPFLG. as per case (4), or type I, followed by $, and ASKUSER will
supply the F. etc. Note that the characters supplied do not have to correspond to a terminal segment of

6.61

Options

any. of the keys. Note also that the $ does not confinn the key, although it may complete it in the case
that there is only one key active.

If the user types a confirming character when several keys are left the next N>O common characters are
still supplied, the same as with $. However. ASKUSER assumes the intent was to complete a key, i.e .•
case (4) is being invoked. Therefore, after supplying the next N characters, the bell is rung to indicate
that the operation was not completed. In other words. typing a confinning character has the same effect
as typing an $ in that the next N common characters are supplied. Then, if there is only one key left,
the key is complete (case 4) and confinnation is not required. If the key is not the only key left, the bell
is rung.

6.9.5 Options

KEYLST When a key is complete. if the- value of the KEYLST option is not NIL, this value
becomes the new KEYLST and the process recurses. Otherwise, the key terminates .
a path through the original, top-level KEYLST, and ASKUSER returns the indicated
value.

CONFIRMFLG

PROMPTCONFIRMFLG

NOCASEFLG

RETURN

EXPLAINSTRING

NOECHOFLG

If T, the key must be confinned with either acr or a space. _ If the value of
CONFIRMFLG is a list, the confirming c~aractermay be any member of the list.

If T, whenever confirmation is required, the user is prompted with the string "
[Gonf i rm] ".

If T, says do not perfonn case independent matching on alphabetic characters. If
NIL, do perform case independent matching, i.e. "A" matches with "a" and vice
versa.

If non-N IL, EVAL of the value of the RE TURN option is returned as the value
of ASKUSER. Note that different RETURN options can be specified for different
keys. The variable ANSWER is bound in ASKUSER to the list of keys that have
been matched. In other words. RETURN (PACK ANSWER) would be equivalent
to what ASKUSER normally does.

If the value of the EXPLAINSTRING option is non-NIL, its value is printed when
the user types a 7, rather than KEY + PROMPTSTRING. EXPLAINSTRING enables
more elaborate explanations in response to a 7 than what the user sees when he
is prompted as a result of simpiy completing keys. See example below.

If non-N I L. characters that are matched (or automatically supplied as a result of
typing $ or confirming) are not echoed, nor is the confirming character. if any.
The value of NOECHOFLG is automatically NIL when ASKUSER is reading from a
file or string. The decision about whether or not to echo a character that matches
several keys is determined by the value of the NOECHOF LG option for the first key.

Example: one of the entries on the KEYLST used by AOOTOFILES7 (page 11.8) is:

(] "Nowhere Cr " NOECHOFLG T
EXPLAINSTRING "] - nowhere, item is marked as a dummycr")

6.62

INPUT/OUTPUT

When the user types], ASKUSER just prints "Nowherecr", Le., the] is not echoed. If the user types?,
the exphmation corresponding to this entry will be:

] - nowhere, item is' marked as a dummy

KEYSTRING

PROMPTON

COMPLETEON

If non-N I L, characters· that are matched are echoed as though the value of
KEYSTRING were used i:llplace of the key .. KEYSTRING is also used for computing
the value returned. The main reason for this feature is to enable echoing in
lowercase.

If non-N I L, PROMPTSTRING is printed only when the key is confirmed with a
member of the value of PROMPTON. See example below.

When a confirming character is typed, the N characters that are automatically
supplied, as specified in case (4), are echoed only when the key is confirmed with. _
a member of the value of PROMPTON.

The PROMPTON and COMPLETEON options enable the user to construct a KEYLST which will cause
ASKUSER to emulate the action of the TENEX exec. The protocol followed by the TENEX exec is
that the user can type as· many characters·· as he likes in specifying a. command. The command can be
completed with acr or space, in which case no further output is forthcoming, or with a $, in which case
the rest of the characters in the command are echoed, followed by some prompting information. The
following KEYLST would handle the TENEX COpy and CONNECT comands:

((COPY" (FILE LIST) ~

PROMPTON ($)
COMPLETEON ($)
CONFIRMFLG ($»

(CONNECT " (TO DIRECTORY) "
PROMPTON ($)
COMPLETEON ($)"
CONFIRMFLG ($»)

AUTOCOMPLETEFLG

MACROCHARS

EXPLAINDELIMITER

If the value of the AUTOCOMPLETEFLG option is not NIL, ASKUSER will
automatically supply unambiguous characters whenever it can, Le., ASKUSER acts
as though $ were typed after each character (except that it does not ring the bell
if there are no unambiguous characters).

value is a list of dotted pairs of form (CHARACTER • FORM). When CHARACTER

is typed, and it does not match any of the current keys, FORM is evaluated and
nothing else happens, i.e. the matching process stays where it is. For example, ?
could have been implemented using this option. Essentially MACROCHARS provides
a read macro facility while inside of ASKUSE R (since ASKUSE R does READC's, read
macros defined via the readtable are never invoked).

value is what is pri~ted to delimit explanation in response to ? Initially Her" but
can be reset, e.g. to ", ". for more linear. output.

6.63 .

Special Keys

6.9.6 Special Keys

& can be used as a key to match with any single character, provided the character does not match with
some other key at that level. For the purposes of echoing and returning a value, the effect is the same as
though the character that were matched actually appeared as the key.

$ (esc) can be used as a key to match with the result of a single call to READ. For example, if the first
entry in the TENEX KEYLST above were:

(COPY" (FILE LIST) "
PROMPTON ($)
COMPLETEON ($)
CONFIRMFLG ($)
KEYLST «$ NIL RETURN ANSWER»)

then if the user typed COP Foocr, (COpy FOO) would be returned as the value of ASKUSER. One
advantage of using $, rather than having the calling program perform the READ, is that the call to READ
from inside ASKUSER is E.RRORSET protected, so that the user can back out of this path and reinitialize
ASKU.$ER. e.g. to change from a COpy command to a C.DNNECT command, simply by typing control-E.

$$ can be used as a key to match with the result of a single call to READL I NE.

A list can be used as a key, in which case the lisVform is evaluated and its value "matches" the key.
This feature is provided primarily as an escape hatch for including arbitrary input operations as pari of
an ASKUSER sequence. For..example, the effect .of$$ could be achieved simply by using (READLINE 'T)
as a key.22 . '. '. ' .

.. ,. can be used as a key. Since it has no characters. all of its characters are automatically matched.
"" essentially functions as a place marker. For example, one of the entries on the KEYLST used by
ADDTOFILES? is:

("" "File/list: "
EXPLAINSTRING "a file name or name of a function list"
KEYLST ($»

Thus, if the user types a character that does not match any of the other keys on the KEYLST, then the
character completes the "" key, by virtue of case (4), since the character will match with the $ in the
inner KEYLST. ASKUSER then prints "F i 1 e/1 i st: "before echoing the character. then calls READ.
The character will be read as part of the READ. The value returned by ASKUSER will be the value of the
READ.

(ASKUSER WAIT DEFAULT MESS KEYLST TYPEAHEAD LISPXPRNTFLG OPTIONSLST FILE)

[Function]
WAIT is either NIL or a number (of seconds). DEFAULT is a single character or
a sequence (list) of characters to be used as the default inputs for the case when
WAIT is not NIL and more than WAIT seconds elapse without any input. In this

22For $, S$, or a list, if the last character read by the 'input operation is a separator, the character is
treated as a confirming character for the key. However, if the last character is a break character, it will
be matched against the next key.

6.64

INPUT/OUTPUT

case, the character(s) from DEFAULT are processed exactly as though they had been
typed, except that AS KUS E R first types " ..• ".

MESS is the initial message to be printed by ASKUSER, if any, and can be a string,
or a list In the lc~ltter case, each element of the list is printed, separated by spaces,
and terminated with a " ? ". KEYLST and OPTIONSLST were described earlier.
TYPEAHEAD is T if the user is pennitted to typeahead a response to ASKUSER. NIL
means any typeahead should be cleared and saved. LISPXPRNTFLG detennines
whether or not the interaction is to be recorded on the history list FILE can be
either NIL (in which case it is set to T), the name of a file, or a string.23 All input
operations take place from FILE until an unacceptable input is encountered, i.e .•
one that does not confonn to the protocol defined by KEYLST. At that point, FILE
is set to T, DEFAULT is set to NIL, the input buffer is cleared, and a bell is rung.
Unacceptable inputs are not echoed.

The value of ASKUSER is the result of packing all the keys that were matched,
. unless the RETURN option is specified (page 6.62).

(MAKEKEYLST LST DEFAULTKEY LCASEFLG -) [Function]
. LST is a list of atoms or strings. MAKEKEYLST returns an ASKUSER KEYLST which

will pemtit the user to specify one of the elements on LST by either typing enough
characters to make the choice unambiguous, or else typing a number between 1
and N, where N is the length of LST.

For example, if ASKUSER is called with KEYLST = {MAKEKEYLST '(CONNECT
SUPPORT COMPILE», then the user can type C-O-N~ S, C-O-M, t, 2, or· 3 to
indicate one of the three choices. ..

If LCASEFLG = T, then echoing of upper case elements will be in lower case (but
the value returned will still be one of the elements of LST). If DEFAULTKEY is
non-N I L, it will be the last key on the KEYLST. Otherwise, a key which pennits
the user to indicate "No - none of the above" choices, in which case the value
returned by ASKUSER will be NIL.

23If FILE is a string, and all of its characters are read before ASKUSE R finishes, FILE will be reset to T,
and the iriteraction will continue with ASKUSER reading from the terminal. '

6.65

Special Keys

6.66

CHAPTER 7

VARIABLE BINDINGS AND THE INTERLISP STACK

A number of schemes have been used in different implementations of LISP for storing the values of
variables. These include:

(1) Storing values on an association list paired with the variable names.

(2) Storing values on the property list of the atom which is the name of the variable.

(3) Storing values in a special value cell associated with the atom name, putting old valqes on a pushdown
list, and restoring these values when exiting from a function.

(4) Storing values on a pushdown list.

Interlisp-10 uses the third scheme, so called "shallow binding". When a function is entered, the value
of each variable bound by the function (function argument) is stored in a value cell associated with that
variable name. The value that was in the value cell is stored in a block of storage called the basic
frame for this function call. In addition, on exit from the function each variable must be individually
unbound; that is, the old value saved in the basic frame must be restored to the value cell. Thus there is a
higher cost for binding and unbinding avari'able than in the fourth scheme, "deep binding". However. to
find the current value of any variable. it is only necessary to access the variable's value cell, thus making
variable reference considerably cheaper under shallow binding than under deep binding, especially for free
variables. However, the shallow binding scheme used does require an additional overhead in switching
contexts when doing "spaghetti stack" operations.

Interlisp-D uses the forth scheme, "deep binding." "Every time a function is entered, a basic frame
containing the new variables is put on top of the stack. Therefore. any variable reference requires
searching the stack for the first instance of that variable, which makes free variable use somewhat more
expensive than in a shallow binding scheme. On the other hand, spaghetti stack operations are considerably
faster. Some other tricks involving copying freely-referenced variables to higher frames on the stack are
also used to speed up the search.

The basic frames are allocated on a stack or pushdown list; for most user purposes, these frames should
be thought of as containing the variable names associated with the function call, and the current values
for that frame. The descriptions of the stack functions in below are presented from this viewpoint. Both
interpreted and compiled functions store both the names and values of variables so that interpreted and
compiled functions are compatible and can be freely intennixed, Le., free variables can be used with
no SPECVAR declarations necessary. However, it is possible to suppress storing of names in compiled
functions, either for efficiency or to avoid a clash. via a LOCALVAR declaration (see page 12.4). The
names are also very useful in debugging, for they make possible a complete symbolic backtrace in case
of error.

In addition to the binding information. additional information is associated with each function call: access
infonnation indicating the path to search the basic frames for variable bindings, control information. and
temporary results are also stored on the stack iIi a block called the frame extension. The interpreter also
stores information about partially evaluated expressions as described on page 7.10. .

. ."

7.1

The Spaghetti Stack

1.1 THE SPAGHETTI STACK

The Bobrow/Wegbreit paper~ "A Model and Stack Implementation for Multiple Environments",! describes
an access and control mechanism more general than the simple pushdown stack. The access and control
mechanism used by Interlisp is a slightly modified version of the one proposed by Bobrow and Wegbreit.
This mechanism is called the "spaghetti stack."

The spaghetti system presents the access and control stack as a data structure composed of "frames." The
functions described below operate on this structure. These primitives allow user functions to manipulate
the stack in a machine independent way. Bac'ktracking, coroutines, and more sophisticated control schemes
can be easily implemented with these primitives.

The evaluation of a function requires the allocation of storage to hold the values of its local variables
during the computation. In addition to variable bindings~ an activation of a function requires a return
link (indicating where control is to go after the completion of the computation) and room for temporaries
needed during the computation. In the spaghetti system, one "stack" is used for storing all this information,
but it is best to view this stack as a tree of linked objects called frame extensions (or simply frames).

A frame extension is a variable sized block of storage containing a frame name, a pointer to some variable
bindings (the BLINK), and two pointers to other frame extensions (the ALINK and CLINK). In addition
to these components, a frame extension contains other information (such as temporaries and reference
counts) that does not interest us here.

The block of storage holding the variable bindings is called a basic frame. A basic frame is essentially
an array- of pairs, each of whiCh contains a variable name and its- value.. The reason frame extensions
point to basic frames (rather than just having them "built in") is so that two fnirne extensions can share
a common basic frame. This allows two processes to communicate via shared variable bindings.

The chain of frame extensions which can be reached via the successive ALINKs from a given frame is
called the "access chain" of the frame. The first frame in the access chain is the starting frame. The chain
through successive CLINKs is called the "control chain".

A frame extension completely specifies the variable bindings and control information necessary for the
evaluation of a function. Whenever a function (or in fact. any form which generally binds local variables)
is evaluated, it is associated with some frame extension.

In the beginning there is precisely one frame extension in existence. This is the frame in which the
top-level call to the interpreter is being run. This frame is called the "top-level" frame.

Since precisely one function is being executed at any instant. exactly one frame is distinguished as having
the "control bubble" in it. This frame is called the active frame. Initially, the top-level frame is the active
frame. If the computation in the active frame invokes another function. a new basic frame and frame
extension are built. The frame name of this basic frame will be the name of the function being called.
The ALINK. BLINK. and CLINK of the new frame all depend on precisely how the function is invoked.
The new function is then run in this new frame by passing control to that frame, Le., it is made the active
frame.

1 Communications of the ACAl. Yol. 16, 10. October 1973.

7.2

V ARIABLE BINDINGS AND THE INTERLISP STACK

Once the active computation has been completeclcontrol nonnally returns to the frame pointed to by
the CLINK of the active frame., That is, the frame in the CLINK becomes the active frame.

In most cases, the storage associated with the basic frame and frame extension just abandoned can be
reclaimed. However, it is possible to obtain a pointer to a frame extension and to "hold on" to this
frame even after it has been exited. This pointer can be used later to run another computation in that
environment, or even "continue" the exited computation.

A separate data type, called a stack' pointer, is used for this purpose. A stack pointer is just a cell that
literally points to a frame extension .. Stack pointerS print as #ADR/FRAMENAME, e.g., #1, 13636/COND.
Stack pointers are returned by many of the stack manipulating functions described below. Except for
certain abbreviations (such as "the frame with such-and-such a name"), stack pointers are the only way
the user can reference a frame extension. As long as the user has a stack pointer which references a frame
extension, that frame extension (and all those that can be reached from it) will not be garbage coll~ted.

Note that' two stack pointers referencing the same frame extension are not necessarily EQ, Le., (EQ
(STKPOS t FOO) (STKPOS t FOO)) = NIL. However, EQP can be used to test if two different stack
pointers reference the same frame extension (page 2.3). .

It is possible to evaluate a fonn with respect to ali' access chain other thailthe current orie by using a stack
pointer to refer to the head of the access chain desired. Note, however, that this can be very expensive
when using a shallow binding scheme such as that in Interlisp-lO. When evaluating the fonn. since all
references to variables under the shallow binding . scheme go through the variable's value cell, the values
in the value cells must be adjusted to reflect the values appropriate to the desired access chain. This
is done by. changing all the bindings on th~ curreI:lt access chain (all the n~e-value pairS) so that they
contain the value current at" the time of 'the' call. Then along the new access path, all bindings are made
to contain the previous value of the variable, and the current value is placed in the value cell. For that
part of the access path which is shared by the old and new chain, no work has to be done. The context
switching time, i.e. the overhead in switching from the current, active, access chain to another one, is
directly proportional to the size of the two branches that are not shared between the access contexts. This
cost should be remembered in using generators and.coroutines (page 7.13).

7.2 STACK FUNCTIONS

In the descriptions of the stack functions below, when we refer to an argument as a stack descriptor, we
mean that it is either a stack pointer or one of the following abbreviations:

• NIL means the active frame; that is. the frame of the stack function itself.

• T means the top-level frame.

• Any other literal atom is equivalent to (STKPOS ATOM -1).

• A number· is equivalent to (STKNTH NUMBER).

In the stack functions' described below, the following errors can occur: The error ILLEGAL STACK
ARG occurs when a stack descriptor is expected and the supplied argurpent is eith~r not a legal stack
descriptor (Le., not a stack pointer,' litatom. or number), or is a litatom or number for which there
is no corresponding stack .frame, e.g.~ (STKNTH -1 'FOO) where there is no frame named FOO

7.3

Stack Functions

in the active 'control' chain or (STKNTH -10 'EVALQT). The error STACK POINTER HAS BEEN
RELEASED occurs whenever a released stack,pointer is supplied as a stack descriptor argument for any
purpose other than as a stack pointer to re-use.

Note: The creation of a single stack pointer can result in the retention of a large amount of stack space.
Therefore, one should try to release stack pointers when they are no longer needed. See page 7.10.

(STKPOS NAME N POS OLDPOS) ,[Function]
. Returns a stack pointer to the Nth frame with frame name NAME. The search
. begins with (and includes) the frame specified by the stack descriptor POSe The
search proceeds along the control chain from pos if N is negative, or along the
access chain if N is positive. If N is NIL. -1 is used. Returns a stack pointer to
the frame if such a frame exists, otherwise returns NIL. If OLDPOS is supplied and
is a stack pointer, it is reused. If OLDPOS is supplied and is a stack pointer and
STKPOS returns NIL, OLDPOS is released. If OLDPOS is not a' stack pointer it is
ignored.

Note: (STKPOS 'STKPOS) causes an error, ILLEGAL STACK ARG; it is not
permissible to create a stack pointer to the active frame.

(STKNTH N POS OLDPOS) [Function]

(STKNAME pos)

Returns a stack pointer to the Nth frame back from the frame specified by the
stack descriptor POSe If N is negative, the control chain from pos is followed. If
N is positive the access chain is followed. If N equals 0, STKNTH returns a stack
pointer to POS (this provi~es a -w,ay to copy a stack .poiIlter). ,Returns NIL, if there

. are fewer than- N' frariles in the appropriate·chain. If OLDPOS is supplied and is a

. stack pointer, it is reused. If OLDPOS is not a stack pointer it is ignored.

Note: (STKNTH 0) causes an error, ILLEGAL STACK ARG; it is not possible to
create a stack pointer to the active frame.

. [Function]
Returns the frame name of the frame specified by the stack descriptor pOS.

(SETSTKNAME POS NAME) [Function]
Changes the frame name of the frame specified by pos to be NAME. Returns NAME.

(STKNTHNAME N pos) [Function]
Returns the frame name of the Nth frame back from POSe Equivalent to (STKNAME
(STKNTH N POs» but avoids creation of a stack pointer.

In summary, STKPOS convetts function names to stack pointers, STKNTH convetts numbers to stack
pointers, STKNAME converts stack pointers to function names. and STKNTHNAME converts numbers to
function names.

(DUMMYFRAMEP pos) [Function]
Returns T if the user never wrote a call to the function at POS, e.g. in Interlisp-lO,
DUMMYFRAMEP is T for *PROG*LAM, *ENV*, and FOOBLOCK frames (see block
compiler, page 12.13). -

REAL'F RAME P and REALSTKNTH can be used to write functions which manipulate the stack and work on
either interpreted or compiled code:

7.4

VARIABLE BINl)INGS AND THE INTERLISP STACK

(REALFRAMEP P~S arTERPFLG) [Function]
Returns p~s if p~s is a "real" frame, i.e. if pos is not a dummy frame and pas
is a frame that does not disappear wben compiled (such as CONO): otherwise NIL.
If lNTERPFLG=T, returns pos if pos is not a dummy frame. For example~ if
(STKNAME pos) =cor.o, (REALFRAMEP pos) is NIL, but (REALFRAMEP pas
T) is pos.

(REAlSTKNTH N P~S lNTERPFLG OLDPOS) [Function1
Returns a stack pointer to the Nth (or -Nth) frames for which (REALFRAMEP pas
lNTERPFLG) is pos.

The following functions are used for accessing and changing bindings. Some of functions take an
argument. N, which specifies a particular binding in the basic frame. If N is a literal atom. it is assumed
to be the name of a variable bound in the basic frame. If N is a number, it is. assumed to reference the
Nth binding in the basic frame. The first binding is 1. If the basic frame contains no binding with the
given name or if the number is too large or too smal.l the error ILLEGAL ARG occurs.

(STXSCAN VAB !POS opos) [Function1
Searches beginning at 11'OS for a frame in which a variable named VAB is bound..
The search follows the access chain. Returns a stack pointer to the frame if founei
otherwise returns NIL. If OP~S is a stack pointer it is reused, otherwise it is ignored.

(FRAMESCAN A.TOM pos) [Function1
Returns the relative position of the binding of ATOM in the basic frame of pas.
Returns NIL if A.TOM is not found.

(STKARG N p~s -) [Function]
Returns the value of the binding specified by N in the basic. frame of the frame
specified by the stack descriptor POS. N can be a literal atom or number.

(STKARGNAME N pos) [Function]
Returns the name of the binding specified by N, in the basic frame of the frame
specified by the stack d.escriptor POSe N can be a literal atom or number.

(SETSTKARG N P~S VALUE), [Function]
Sets the value of the binding specified by N in the basic frame of the frame specified
by the stack descriptor POSe N can be a literal atom or a number. Returns value.

(SETSTKARG~lAME N pos NAME) [Function]
Sets the NAME of the binding specified by N in the basic frame of the frame
specified by the stack descriptor pas. N can be a literal atom or a number. Returns
NAME.

'(STKNARGS pos -) [Function1

(VARIABLES POs)

ReturnS the number of arguments bound in the basic frame of the frame specified
by the stack descrip tor POSe

[Function]
Returns a list of the variables bound at POSe

As an example of the use of STKNARGS and STKARGNAME. VARIABLES could be
defined by:

7.5

(STKARGS pos -)

Stack Functions

(VARIABLES
[LAMBDA (POS)

(for N from 1 to (STKNARGS POS)
collect (STKARGNAME N POS])

Returns a list of the values of variables bound at pos.
[Function]

The following functions are used to evaluate an expression in a different environment. and! or to alter the
flow of conttoL

(ENVEVAL FORM APOS CPOS AFLG CFLG) [Function]
Evaluates FORM in the environment specified by APOS and cpos. That is. a new
active frame is created with the frame specified by the stack descriptor APOS as its
AUNK. and the frame specified by the stack descriptor CPOS as its CLINK. Then
FORM is evaluated. If AFLG is not NIL, and APOS is a stack pointer. then APOS
will be released. Similarly, if CFLG is not NIL. and CPOS is a stack pointer, then
CPOS will be released.

(ENVAPPLY 1'1'1 ARGS APOS CPOS AFLG CFLG) [Function]
APPLYs 1'1'1 to ARGS in the environment specified by APOS and CPOS. AFLG and
CFLG have the same interp~etation as with ENVEVAL.

(STKEVAL POS FORM FLO -) [Function]
EvaluiteS FORM in the access environment of the frame specified by the staCk
descriptor pos. If FLG is not NIL and pos is a stack pointer, releases pos. The
definition of STKEVAL is (ENVEVAL FORM POS NIL FLO).

(STKAP PL Y POS 1'1'1 ARGS FLG -) [Function]
Similar to STKEVAL but applies 1'1'1 to ARGS.

(RETEVAL POS FORM FLG -) [Function1
Evaluates FORM in the access environment of the frame specified by the stack
descriptor pos. and then returns from POS '.-v'1th :hat value. If FLO is not NIL
and POS is a stack pointer. then POS is released. The definition of RETEVAL is
equivalent to (ENVEVAL FORM POS (STKNTH -1 POS) FLO T). except that
RETEVAL does not create a stack pointer.

(RET APPL Y POS 1'1'1 ARCS FLO -) [Function]
Similar to RETEVAL except applies FN to ARGS.

(RETFROM POS VAL FLG) I [Function]
Return from the frame specified by the stack descriptor PQs. with the value VAL.
If FLG is not NIL. and pos is a stack pointer. then POS is released.. An attempt to
RETFROM the top level (e.g •• (RETF ROM T) causes an error. ILLEGAL STACK
ARG. RETFROM can be written in terms of ENVEVAL as fo116ws:

(RETFROM
(LAMBDA (PaS VAL FLG)

(ENVEVAL (LIST 'QUOTE VAL)
NIL

'(if (STKNTH -1 pas (if FLG then POS))

7.6

VARIABLE BINDL'IGS AND THE INTERLISP STACK

else {ERRORX (LIST 19 ~OS»)
NIL
T»)

(RETTO POS VAL FLG) [Function)
Uke RETFRO~ except returnS to the frame specified by POSe

(EVALV VAH pos) [Function]
Evaluates VAH. where VAR is assumed to be a litatom. in the access environment
specifed by the stack descriptor POSe If VAR is unbound. EVALV returns
NOBIND and does not generate an error. 'While EVALV could be defined as
(ENVEVAL VA.R pos) it is in fact a SUBR which is somewhat faster. EVALV
compiles open when pos=NIL.

The following functions and variables are used to manipulate stack pointers.

(STACKP x)

(RELSTK pos)

(RELSTKP x)

[Function]
Returns x if x is a stack pointer. otherwise returns NIL.

[Function]
Release the stack pointer pos (see page 7.10). If pos is not a stack pointer. does
nothing. Rerurns pas.

[Function]
Returns' T is x is a released stack pointer, NIL otherwise.

(CLEARSTK FLG) [Function}
If FLG is NIL. releases all active stack pointers. and returnS NIL. If FLG is T,
returns a list of all the active (unreleased) stack pointers.

CLEARSTKLST [Variable]
A variable used by top-level EVALQT. Every time EVALQT is re-entered (e.g~
following errors. or cona-ol-D), CLEARSTKLST is checked. If its value is T, all
active stack pointers are released using CLEARSTK. If its value is a list. then all
stack pointers on that list are released. If its value is NIL. nothing is released.
CLEARSTKLST is initially T. .

NOCLEARSTKLST [Variable]
A variable used by top-level EVALQT. If CLEARSTKLST is T (see above) all active
stack pointers except those on NOCLEARSTKLST are released. NOCLEARSTKLST
is initially NIL.

Thus if one wishes to use multiple environments that survive through control·D. either CLEARSTKLST
should be set to NIL. or else those stack pointers to be retained should be I explicitly added to
NOCLEARSTKLST. I

(COPYSTK POSl POS2) , [Function]
(Interlisp-lO) Copies the stack. including basic' frames. from the frame specified
by the stack descriptor POSI to the frame specified by the stack descriptor POS2.

That is. copies the frame extensions and basic frames in the access chain from
POS2 to POSl (inclusive). POSl must be in the access chain of POS2. i.e .. "above"
POS2. Returns the new POS2. This provides a way to save an entire environment

7.7

Stack Functions

. including variable bindings.

(MAPDl MAPDLFN MAPDLPOS) [Function]
Starts at MAPDLPOS and applies MAPOLFN, a function of two arguments, to the
function name at each frame, and the frame (stack pointer) itself, until the top of
the staCk is reached. Returns NIL. For example,

[MAPDl (FUNCTION (lAMBDA (X POS)
(if (IGREATERP (STKNARGS POS) 2)
then (PRINT X)]

will print all functions of more than two arguments.

(SEARCHPDl SRCHFN SRC'BPOS) [Function]
Similar to MAPDl, except searches the pushdown list starting at position SRCHPOS
until it finds a frame for which SRCHFN, a function of two arguments applied to the
name of the frame and the frame itself. is not NIL. Returns (NAME • FR..AJwlE)
if such a !Tame is found.. otherwise NIL.

(BACKTRACE !POS EPOS FLAGS F1I..E PRIN'TFN) [Function]
Performs a backtrace beginning at the frame specified by the stack descriptor !POS.
and ending with the frame specified by the stack descriptor EPOS. FLAGS is a
number in which the options of the BACKTRACE are encoded. If a bit is set. the
corresponding information is included in the b~ktrace.

bit 0 - print arguments of non-SUB Rs.

bit 1 - print temporaries of the interpreter.

bit 2 - print SUBR arguments and local variables.

bit 3 • omit printing of UNTRACE: and function names.

bit 4 • fonow access chain instead of control chain.

bit 5 - print temporaries. Le. the blips.

For example: if FLAGS = 47 Q, everything is printed: if FLAGS = 21 Q, follows the
access chain. prints arguments.

FILE is the file that the backtrace is printed to. FILE must be open. PRINTFN is
used when printing the values of variables. temporaries, blips. etc. PRINTFN= NIL
defaults to PRINT. I

(BAKTRACE IPOS EPOS SKIPFNS FLAGS F1I..E) [Function1
Prints a backtrace from !pos to EPOS onto FILE. FLAGS sp~ifies the options of
the backtrace. e.g .• do/don't print arguments, do/don't PMt temporaries of the
interpreter, etc .• and is the same as for BACKTRACE.2

2BAKTRACE calls BACKTRACE with a PRlNTFN of SHOWPRI NT (page 6.17), so that if SYSPRETTYFLG = T.
the values will be prettyprinted.

7.8

BAKTRACELST

Y ARIABLE BINDINGS AND THE INTERLISP STACK

SKIPFNS is a list of functions. As BAKTRACE scans down the stack~ the stack name
of eacQ, frame is passed to each function -in SKIPFNS~ and if any of them return
non-N lL~ pos is skipped (including all variables).

BAKTRACE collapses the sequence of several function calls corresponding to a call
to a system package into a single "'function" using BAKTRACELST as described
below. For example~ any call to the editor is printed as **EDITOR*·, a break is
printed as **BREAK**, etc.

BAKTRACE is used by the BT, BTV, BTV+, BTV*, and BTV! commands, with
FLAGS = 0, 1, 5, 7, and 47Q respectively.

(Variable]
Used for telling BAKTRACE (therefore, the BT, BTV, etc. commands) to abbreviate
various sequences of function calls on the stack by a single key. e.g. *·BREAK*·,
*·EDITOR**, etc.

The operation of BAKTRACE and format of BAKTRACELST is described so that the user can add his
own entries to BAKTRACELST. Each entry on BAKTRACELST is a list of the form (FRAMENAME KEY

• PATTERN) or {FRAMENAME (KEY1 • PATTERN1) ... (KEYN • PATTERNN)),where a pattern
is a list of elements that are either atoms, which match a single frame, or lists, which are interpreted
as a list of alternative patterns, e.g. (PROGN **BREAK** EVAL « ERRORSET BREAK1A BREAK1)
(BREAK1»)

_ BAK T RAC E operates by scanniIJ.g up the stack an~ at each point, comparing the current frame name, with
,the frame names on BAKTRACELST, i.e. it does-an ASSOC. If-the framehame does appear, BAKTRACE
attempts to match the stack as of that point with (one of) the patterns. If the match is successful,
BAKTRACE prints the corresponding key, and continues with where the match left off. If the frame name
does not appear, or the match fails, BAKTRACE simply prints the frame name and continues with the next
higher frame (unless the S1(IPFNS applied to the frame name are non-N I L as described above).

Matching is perfonned by comparing atoms in the pattern with the current frame name, and matching
lists as patterns, i.e. sequences of function calls, always working up the stack. For example, either of
the sequence of function calls " ... BREAK1 BREAK1A ERRORSET EVAL PROGN ... " or " ... BREAK1
EVAL PROGN .. .'~ would matc~ with the ~ample entry given above, causing **BREAK** to be printed.

Special features:

• The litatom & can be used to match any frame.

• The pattern "-" can be used to match nothing. - is useful for specifying an optional match, e.g. the
example above could also have been written as {PROGN *'''BREAK*· EVAL ({ ERRORSET BREAKlA)
-) 'BREAKl).

• It is not necessary to provide in the pattern for matching dummy frames. Le. frames for which
DUMMYFRAMEP (see page 7.4) is true, e.g. in Interlisp-lO, *PROG*LAM, *ENV*, NOLINKDEF1, etc. When
working on a match. the matcher automatically skips over these frames whe~ they do not match.

• [f a match succeeds and the KEY is NIL, nothing is printed. For example, (*PROG*LAM NIL EVALA
.. E NV). This sequence will occur following an error which then -causes a break if some of the function's

7.9

. Releasing and Reusing Stack Pointers

arguments are LOCAL VARS .

.
7.3 RELEASING AND REUSING STACK POINTERS

The creation of a single stack pointer can result in the retention of a large amount of stack space.
Furthermore, this space will not be freed until the next garbage collection, even if the stack pointer is no
longer being used, unless the sta¢k pointer is explicitly released or reused. If there is sufficient amount
of stack space tied up in this fashion. a STACK OVE RF LOW condition can occur, even in the simplest of
computations. For this reason, tbe user should consider releasing a stack pointer when the environment
referenced by the stack pointer is no longer needed.

The effects of releasing a stack pointer are:

(1) The link between the stack pointer and the stack is broken by setting the contents of the stack pointer
to the "released mark" (currently unboxed 0). A released stack pointer prints as #ADR/#O.

(2) If this stack pointer was the last remaining reference to a frame extension; that is, if no other stack
pointer references the frame extension and the extension is not contained in the active control or access
chain, then the extension may be reclaimed, and is reclaimed immediately. The process repeats for the
access and control chains of the reclaimed extension so that all stack space that was reachable only from
the released stack pointer is reclaimed.

A 'stack pointer may be released using the function RELSTK,but there are some cases for which RELSTK
is not sufficient. For example, if a function contains a. call to RET F ROM in which a stack pointer was used
to specifY where to return to, it would not be possible to simultaneously release the stack pointer. (A
RELSTK appearing in the function following the call to RETFROM would not be executed!) To permit
release of a stack pointer in this: situation. the stack functions that relinquish control have optional flag
arguments to denote whether or not a stack pointer is to be released (AFLG and CFLG). Note that in this
case releasing the stack pointer will not cause the stack space to be reclaimed immediately because the
frame referenced by the stack pdinter will have become pan of the active environment.

Another way of avoiding creatin$ new stack pointers is to reuse stack pointers that are no longer needed.
The stack functio"ns that create! stack pointers (STKPOS, STKNTH. and STKSCAN) have an optional
argument which is a stack pointer to reuse. When a stack pointer is reused. two things happen. First the
stack pointer is released (see above). Then the pointer to the new frame extension is deposited in the
stack pointer. The old stack pointer (with its new contents) is the value of the function. Note that the
reused stack pointer will be released even if the function does not find the specified frame.

Note that even if stack pointers are explicitly being released, creation of many stack pointers can cause
a garbage collection of stack pointer space. Thus. if the user's application requires creating many stack
pointers. he definitely should take advantage of reusing stack pointers.

7.4 THE PUSH-DOWN LIST AND THE INTERPRETER

In addition to the names and values of arguments for functions, information regarding panially-evaluated
expressions is kept on the push-down list. For example, consider the following definition of the function

7.10

VARIABLE"BINDINGS AND THE INTERLISP STACK

F ACT (intentionally faulty):

(FACT
[LAMBDA (N)

(COND
«ZEROP N)

L)
(~ (ITIMES N (FACT (SUB1 N])

In evaluating the form (FACT 1), as soon as FACT is entered, the interpreter begins evaluating the
implicit PROGN following the LAMBDA. The first function entered in this process is COND. COND begins
to process its list of clauses. After calling ZEROP and getting a NIL value, COND proceeds to the next
clause and evaluates T. Since T is true, the evaluation of the implicit PROGN that is the consequent of the
T clause is begun. This requires calling the function ITIMES. However before ITIMES can be callecL
its arguments must be evaluated. The first argument is evaluated by retrieving the current binding of N
from its value cell; the second involves a recursive call to FACT, and another implicit PROGN, etc.

Note that at each stage of this process, some portion of an expression 'has been evaluated, and another
is awaiting evaluation. The output below (from Interlisp-10) illustrates this by showing the state of the
push-down list at the point in the computation of '(F AC T 1) when the unbound atom L is reached .

.-FACT(1)
u.b.a. L {in FACT} in «ZEROP N) L)
(L broken)
:BTV!

TAIL (L)

*ARG1 «(ZEROP N) L) (T (ITIMES N "(FACT (SUB1 N»»)
COND

FORM (COND «ZEROP N). L) (T (ITIMES N (FACT (SUB1 N»»)
TAIL «COND «ZEROP N) L) (T (ITIMES N (FACT (SUB1 N»)}»

N 0
FACT

FORM (FACT (SUB1 N»
FN ITIMES
TAIL «FACT (SUB1 N»)
ARGVAL 1
FORM (ITIMES N (FACT '(SUB1 N»)
TAIL «ITIMES N (FACT (SUB1 N»»

*ARG1 «(ZEROP N) L) (T (ITIMES N (FACT (SUB1 N»»)
COND

FORM (COND «ZEROP N) L) (T (ITIMES N (FACT (SUB! N»»)
TAIL «COND «ZEROP N) L) (T (ITIMES N (FACT (SUB! N»»»

7.11

N 1
FACT

TOP

The Push-Down List and the Interpreter

Internal calls to EVAL, e.g., frOQl COND and the interpreter. are marked on the push-down list by a special
mark or blip which the backtiace prints as * FORM*. The genealogy of * FORM*'s is thus a history of the
computation. Other temporary information stored on the stack by the interpreter includes the tail of a
partially evaluated implicit PROGN (e.g., a cond clause or lambda expression) and the tail of a partially
evaluated form (Le., those arguments not yet evaluated), both indicated on the backtrace by * T A I L * ,
the values of arguments that have already been evaluated., indicated by *ARGVAL *, and the names of
functions waiting to be called., indicated by * F N * . * A RGl, "', * A RG n are used by the backtrace to
indicate the (unnamed) arguments to SUB Rs.

Note that a function is not actually entered and does not appear on the stack. until its arguments have
been evaluated (except for nlambda functions, of course). Also note that the *ARGI. *FORM*, *TAIL*,
etc. "bindings" comprise the aotual working storage. In other words. in the above example, if a (lower)
function changed the value of the *ARG 1 binding, the COND w;ould continue interpreting the new binding
as a list of COND clauses. Similarly, if the *ARGVAL * binding were changed., the new value would be
given to ITIMES as its first argument after its second argument had been evaiuated, and ITIMES was
actually called.

Note that *FORM*, *TAIL *, *ARGVAL *, etc., do not actually appear as variables on the stack, i.e.,
evaluating *FORM* or calling STKSCAN to search for it will not work. However, the functions BLIPVAL,
SETBLIPVAL, and BLIPSCAN described below are availab~e for accessing these internal blips. These
functions currently know about four different types of blips: . .

FN the name of a function about to be called

ARGVAL an argument for a function about to be called

*FORM· a form in the process of evaluation

TAIL the tail of a COND clause, implicit PROGN, PROG. etc.

(BLIPVAL BLIPT"YP IPOS FLO) [Function]
Returns the value of the specified blip of type BLIPT"YP. If FLG is a number N,
finds the Nth blip of the desired type, searching the control chain beginning at the
frame specified by the stack descriptor IPOS. If FLG is NIL, 1 is used. If FLG is T,
returns the number of blips of the specified type at IPOS.

(SETBLI PVAL BLIPT"YP IPOS N VAL) [Function]
Sets the value of the specified blip of type BLIPT"YP. Searches for the Nth blip of
. the desired type, beginning with the frame specified by the stack descriptor IPOS,

and following the control chain.

(BLIP SCAN BLIPT"YP IPos) [Function]
Returns a stack pointer to the frame in which a blip of type "BLIPT"YP is located.
Search begins at the frame specified by the stack descriptor IPOS and follows the
control chain.

7.12

V ARIABLE BINDINGS AND THE'INTERLISP STACK

7.5 GENERATORS AND CO ROUTINES

This section describes an appl~cation of the spaghetti stack facility to provide mechanisms for creating
and using simple generators, generalized coroutines, and Conniver style possibility lists.

7.5.1 Generators

A generator is like a subroutine except that it retains infonnation about previous times it has been called.
Some of this state may be data (for example, the seed in a random number generator), and some may be
in program state (as in a recursive generator which finds all the atoms in a list structure). For example,
if LISTGEN is defined as:

{LISTGEN {L}
{IF L THEN {PRODUCE {CAR L}}

{LISTGEN {CDR L)}}}

we can use the function G ENE RA TOR (described below) to create a generator that uses LIS T G E N to
produce the elements of a list one· at a rune, e.g.,

{SETQ GR {GENERATOR {LISTGEN '(A B C»)

creates a generator, which can be called by

{GENE RATEGR}'

to produce as values on successive calls. A, B, C. When GENERATE (not GENERATOR) is called the first
time, it. simply starts evaluating {LISTGEN '(A B C». PRODUCE gets called from LISTGEN, and
pops back up to G ENE RA T E with the indicated value after saving the state. When G ENE RA T E gets called
again. it continues from where the last PRODUCE left off. This process continues until finally LISTGEN
completes and returns a value (it doesn't matter what it is). GENERATE then returns GR itself as its value,
so that the program that called G ENE RA T E can tell that it is finished, i.e., there are no more values to be
generated.

(GENERATOR FORM## COMVAR##) [NLambda Function]

(PRODUCE VAL)

An nlambda function that creates a generator which. uses FORM## to compute
values. GENERATOR returns a generator handle which is represented by a dotted
pair of stack pointers.

COMVAR## is optional. If its value (EVAL of) is a generator handle, the list
structure and stack pointers will be reused. Otherwise, a new generator handle will
be constructed.

GENERATOR compiles open.

[Function]
Used from within (below) a generator to return VAL as the value of the
corresponding call to GENERATE.

(G ENE RA T E HANDLE VAL) [Function]
Restarts the generator represented by HANDLE. VAL is returned as the value of

7.13

Coroutines

the PRODUCE which last suspended the operation of the generator., When the
generator runs out of values, G ENE RA T E returns HANDLE itself.

Examples:

The following function will go down recursively through a list structure and produce the atoms in the list
structure one at a time.

[LEAVESG (l)
{ if (ATOM l)
then (PRODUCE l)
else {lEAVESG (CAR l»

{if (COR l)
then {lEAVESG (COR l)]

The following function prints each of these atoms as it appears. It illustrates how a loop can be set up to
use a generator.

{PlEAVESGl (l)
{PROG (X lHANDlE)

{SETQ lHANDlE {GENERATOR (lEAVESG L»)
lP {SETQ X (GENERATE lHANDlE»

{if (EQ X lHANDlE)
then (RETURN NIL»

(PRINT X)
-(GO lP»)

Note that the loop tenninates when the value of the generator is EQ to the dotted pair which is the value
produced by the call to GENERATOR. A CLISP iterative operator, OUTOF, is provided which makes it
much easier to write the loop in PlEAVESG1. OUTOF (or outof) can precede a fonn which is to be
used as a generator. On each iteration, the iteration variable will be set to successive values returned
by the generator; the loop will be tenninated automatically when the generator runs out. Therefore, the
following is equivalent to the above program PlEAVESG1:

(PlEAVESG2 (l)
(for X outof (lEAVESG l) do (PRINT x»

Here is another example; the following fonn will print the first N atoms.

(for X outof (MAPATOMS (FUNCTION PRODUCE»
as I from 1 to N do (PRINT X»

7.5.2 Co routines

This package provides facilities for the creation and use of fully general coroutine structures. It uses
a stack pointer to preserve the state of a coroutine, and allows arbitrary switching between N different
coroutines. rather than just a call to a generator and return. This package is slightly more efficient than
the generator package described above. and allows more flexibility on specification of what to do when a
coroutine tenninates.

7.14

· VARIABLE BINDINGS AND THE INTERLISP STACK

·(COROUTINE CALLPTR## COROUTPTR## COROUTFORM## ENDFORM##)
[NLambda Function]

This nlambda function is used to create a coroutine and initialize the linkage.
CALLPTR## and COROUTPTR## are the names of two variables, which will be
set to appropriate stack pointers. If the values of CALLPTR## or COROUTPTR##

are already stack pointers, the stack pointers will be reused. COROUTFORM## is'
the form which is evaluated to start the coroutine; ENDFORM## is a form to be
evaluated if COROUTFORM## actually returns when it runs out of values.

COROUTINE compiles open.

(RESUME FROMPTR TOPTR VAL) [Function]
Used to transfer control from one coroutine to another. FROMPTR should be the
stack pointer for the current coroutine, which will be smashed to preserve the
current state. TOPTR should be the stack pointer which has preserved the state of
the coroutine to be transferred to, and VAL is the value that is to be returned to
the latter coroutine as the value of the RESUME which suspended the operation of
that coroutine.

For example, the following is the waY'one might write the LEAVES program using the coroutine package:

{LEAVESC (L COROUTPTR CALLPTR)
{if (ATOM L)

then (RESUME COROUTPTR CALLPTR L)
else {LEAVESC (CAR L) COROUTPTR CALLPTR)

{if (COR L). then .{LEAVESC .(CDR L)COROUTPTR CALLpTR»»

A function PLEAVESC which uses LEAVESC can be defined as follows:

(PLEAVESC (L)
{bind PLHANOLE LHANOLE
first {COROUTINE PLHANOLE LHANOLE

(LEAVESC L LHANDLE PLHANDLE)
(RETFROM 'PLEAVESC»

do {PRINT (RESUME PLHANDLE LHANDLE»»

By RESUMEing LEAVESC repeatedly, this function will print all the leaves of list L and then return out
of PLEAVESC via the RET FROM. The RETFROM is necessary to break out of the non-terminating do-loop.
This was done to illustrate the additional flexibility allowed through the use of ENDFORM##.

We use two coroutines working on two trees in the example EQLEAVES, defined below. EQLEAVES tests
to see whether two trees have the same leaf set in the same order, e.g., (E Q LEA V E S '(ABC) '(A B
(C) » is true.

(EQLEAVES (Ll L2)
(bind LHANDLEl LHANDLE2 PE ELl EL2
first (COROUTINE PE LHANDLEl (LEAVESC Ll LHANDLEl PE) 'NO-MORE)

(COROUTINE PE LHANDlE2 (LEAVESC L2 LHANDLE2 PE) 'NO-MORE)
do (SETQ ELl (RESUME PE LHANDLEl»

(SETQ EL2 (RESUME PE LHANDLE2»
(if (NEQ ELl EL2)
then (RETURN NIL»

7.15

Possibilities Lists

repeatuntil (EQ ELl 'NO-MORE)
finally (RETURN T»)

7 .5.3 Possibilities Lists

A possibilities list is the interface between a generator and a consumer. The possibilities list is initialized
by a call to POSSIBI~ITIES, and elements are obtained from it by using TRYNEXT. By using the
spaghetti stack to maintain separate environments, this package allows a regime in which a generator can
put a few items in a possibilities list, suspend itself until they have been consumed, and be subsequently
aroused and generate some more.

I
(POSSIBILITIES FORM##) [NLambda Function]

This nlambda function is used for the initial creation of a possibilities list. FORM##
will be e~aluated to create the list It .should use the functions NOTE and AU
REVOI R d.escribed below to generate possibilities. Nonnally, one would set some
variable to the possibilities list which is returned, so it can be used later. e.g.:

(SETQ PLIST (POSSIBILITIES (GENERFN VI V2»).

POSS I BILl TIE S compiles open.

(NOTE VAL LSTFLG) [Function]
Used within a generator to put items on the possibilities list being generated. If
LSTFLG is equal to NIL, VAL is treated as a single item.' If LSTFLG is non-N I L •

. then' the list VAL is NCONCed on the . end of the possibilities list. Note that it
is perfectly reasonable to create a possibilities list using a second generator. and
NOTE that list as possibilities for the current generator with LSTFLG equal to T.
The lower generator will be resumed at the appropriate point

(AU- REVO I R VAL##) [NoSpread Function]
Puts VAL#;# on the possibilities list if it is given. and then suspends the generator
and returns to the consumer in such a fashion that control will return to the
generator at the AU - R E VO I R if the consumer exhausts the possibilities list.

Note: NIL is not put on the possibilities list unless it is explicitly given as an
argument to AU-REVOIR, i.e., (AU-REVOIR) and (AU-REVOIR NIL) are not
the same. AU-REVOIR and ADIEU are lambda nospreads to enable them to
distinguish these two cases.

(AD lEU VAL##) [NoSpread Function]
Like AU-REVOIR except releases the generator instead of suspending it.

(TRYNEXT PLST## ENDFORM## VAL##) [NLambda Function]
This nlambda function allows a consumer to use a possibilities list It removes
the first item from the possibilities list named by PLST## (Le. PLST## must
be an .atom ~hose value is a possiblities list). and returns that item. provided it
is not a generator handle. If a generator handle is encountered. the generator is
reawakened. When it returns a possibilities list, this list is added to the front of the
current list. When a call to TRYNEXT causes a generator to be awakened, VAL##

is returned as the value of the AU-REVOI R which put that generator to sleep. If
PLST## is empty, it evaluates ENDFOR¥## in the caller's environment

7.16

VARIABLE BINDINGS AND THE INTERLISPST ACK

TRYNEXT compiles ,open ..

(CLEANPOSLST PLST) [Function]
This function is provided to release any stack pointers which may be left in the
PLST which was not used to exhaustion.

For example, FIB is a generator for fibonnaci numbers. It starts out by NOTEing its two arguments, then
suspends itself. Thereafter, on being re-awakened, it will NOTE two more terms in the series and suspends
again. P R IN T FIB uses FIB to print the first N fibonacci numbers.

[FIB (F1 F2)
(do (NOTE F1)

(NOTE F2)
(SETQ Fl (IPLUS F1 F2»
(SETQ F2 (IPLUS F1 F2»
(AU-REVOIR)]

Note that this AU-REVOIR just suspends the generator and adds nothing to the possibilities list except
the generator.

[PRINTFIB (N)
(PROG «FL (POSSIBILITIES (FIB a 1»»

(RPTQ N (PRINT (TRYNEXT FL»)
(CLEANPOSLST FL)]

Note that FIB itself will never terminate.

7.17

Possibilities Lists

7.18

CHAPTER 8

THE PROGRA.MMER'S ASSIST ANT

8.1 INTRODUCTION

With any interactive computer language, the user interacts with the system through an "executive", which
interprets and executes typed-in commands. In most implementations of Lisp, the executive is a simple
"read-eval-print" loop, which repeatedly reads a Lisp expression, evaluates it, and prints out the value of
the expression. Interlisp has an executive which allows a much greater range of inputs, other than just
regular Interlisp expressions.

In particular, the Interlisp executive implements a facility known as the "programmer's assistant" (or
"p.a."). The central idea of the programmer's assistant is that the user is addressing an active intermediary,
namely his assistant. Normally, the assistant is invisible to the user, and simply carries out the user's
requests. However, the assistant remembers what the user has done, so the user can give commands to
repeat a particular operation or sequence of operations, with possible modifications, or to undo the effect
of specified operations. Like DWIM, the programmer's assistant embodies an, approach to system design
whose ultimate goal is to construct an environment that "cooperates" with the user in the development of
his programs, and frees him to concentrate more fully on the conceptual difficulties and creative aspects
of the problem at hand.

We will first discuss the various input formats, then the use of commands to the programmer's assistant.
and finally how to modify the programmer's assistant for specialized uses.

8.1.1 Input Formats

The Interlisp executive accepts inputs in the following formats:

(1) A single litatom. followed by a carriage-return. The value of the litatom is returned. For the purposes
of this discussion. we will call this EVALV-format.

(2) A regular Interlisp expression. beginning with a left parenthesis or square bracket and terminated by
a matching right parenthesis or square bracket. A right bracket matches any number of left parentheses,
back to the last left bracket or the entire expression. Such an input is known as an "EVAL-format" input,
since the form is simply passed to EVAL for evaluation. Notice that it is not necessary to type a carriage
return at the end of such a form; Interlisp will supply one automatically. If a carriage-return is typed
before the final matching right parenthesis or bracket, it is treated as a space, and input continues. The
following examples are all interpreted the same:

~(PLUS 1 (TIMES 2 3))

~(PLUS 1 (TIMES 2 3]

8.1

.-(PLUS 1 (TIMEscr
2 3]

Examples

(3) Often. the user, typing at the keyboarci calls functions with constant argument values, which would
have to be quoted if the user, typed it in "EVAL-format". For convience, if the user types a litatom
immediately followed by a list form, the litatom is A P PLY ed to the elements within the list, unevaluated.
For example, typing LOAD(FOO) is equivalent to typing (LOAD 'Faa), and GETPROP(x COLOR) is
equivalent to (GETPROP 'X 'COLOR). The input is terminated by the matching right parenthesis or
bracket. We will call such input "APPLY-format." APPLY-format input is useful in some situations, but
note that it may produce unexpected results when an nlambda function is called that explicitly evaluates
its arguments. For example, tYJi>ing SETQ(Faa BAR) will set Faa to the value of BAR, not to BAR itself.

However, there are times when a user does not want to terminate the input when a closing parenthesis
is typed - especially when giving a command to the' programmer's assistant. This leads us to our fourth
format.

(4) A sequence of litatoms and; lists beginning with a litatom and a space (to distinguish it from APPL Y
format), terminated by a carriage rerum or an extra right parenthesis or bracket. If a list is terminated
then Interlisp will type a carriage-rerum and " ... " to indicate that further input will be accepted. The
user can type further expressions or terminate the whole expression by a carriage-rerum.

Once the input is terminateci the programmer's assistant decides how to evaluate the expression. This
determination relies on a heuristic that says "If there is only expression, then assume EV AL V -format.
If there are two expressions, then assume APPLY-format If there are three 01,' more expressions, then
assume EV AL-format" The following inputs are examples of this rule:

.-FOO< space) cr

same as FO()cr - EV AL V-fonnat

.-LIST (A B)
cr

same as LIST(A B) - APPLY-format .
'-~LUS (TIMES 2 3)
... 1 cr

same as (PLUS (TIJtfES 2 3) l) - EVAL-format

8.1.2 Examples

So far, we have dealt only with how the executive instructs Interlisp to evaluate input. However, the same
scheme also allows the user to give commands directly to the programmer's assistant. In fac~ in each
of the above cases, it is first determined whether the initial litatom is a command to the programmer's
assistant. If so, the normal lisp evaluation process is bypassed. Note that this means that a function or
variable with the same name as a programmer's assistant command will not be evaluated (in the normal
lisp sense) if it is the first litatam of an expression input to the executive. '

The programmer's assistant facility features the use of memory structures called "history lists." A history
list is a list of the information associated with each of the individual "events" that have occurred in the

8.2

THE PROGRAMlVIER'S ASSISTANT

system. where each event corresponds to one user input. Associated with each event on the history list is
the input and its value~ plus other optional information such as side-effects, formatting infonnation, etc.

The following dialogue~ taken from an actual session at the terminal, contains illustrative (but not
necessarily useful) examples and gives the flavor of the programmer's assistant facility in Interlisp. The
number before each prompt is the "event number" (see page 8.26).

12+-(SETO FOa 5)
5
13+-(SETQ FOO 10)
(FOa reset)
10

The p.a. notices that the user has res'!t the value of FOO and infonns the user.

14+-UNOO
SETQ undone.
15+-FOO cr

5

This is the first example of direct communication with the p.a. The user has said to UN DO the previous
input to the executive.

25~SET(LSTI (A B C»
(A B C)
26~(SETQ LST2 '(0 E F»
(0 E F)
27~(FOR X IN LSTI DO (REMPROP X 'MVPROP]
NIL

The user asked to remove the property MYPROP from the atoms A, B. and C. Now lets assume that is not
what he wanted to do, but rather use the elements of LST2.

28~UNOO FOR
FOR undone.

First he undoes the REMPROP, by undoing the iterative statement. iVotice the UNDO accepted an
"argument, " although in this case UN DO by itself would be sufficient.

29~USE LST2 FOR LSTI IN 27
NIL

The user just instructed to go back to event number 27 and substitute LST2 for LSTI and then reexecule
the expression. The user could have also specified -2 instead of 27 to specify a relative address.

8.3

Examples

4 7+-(PUTHASH 'FOa (MKSTRING 'FOO) .. MYHASHARRAY)
"FOO"

If MKSTRING was a computationally expensive function (which it is not). then the user might be cacheing
its value for later use.

48+-USE FIE FUM FOE FOR FOO LN MKSTRING
"FIE"
"FUM"
"FOE"

The user now decides he would like to redo the PUTHASH several times with different values. He specifies
the event by UIN M KSTRING" rather than PUTH ASH.

49+-11 USE

48. USE FIE FUM FOE FOR FOO IN MKSTRING
+-(PUTHASH (QUOTE FIE) (MKSTRING (QUOTE FIE» MYHASHARRAY)
"FIE"
+-(PUTHASH (QUOTE FUM) (MKSTRING (QUOTE FUM)) MYHASHARRAY)
"FUM"
+-(PUTHASH (QUOTE FOE) (MKSTRING (QUOTE FOE» MYHASHARRAY)
"FOE"

Here we see the user ask the p.a. (using the 11 command) what it has on its history list for the last input
to the executive. Since the event corresponds to a programmer's assistant command that evaluates several
fonn~ these forms are saved as the input. although the user's actual input. the p.a. command, is also saved
in order to clarify the printout, of that event.

As stated earlier. the most common interaction with the programmer's assistant occurs at the top level
read-eval-print loop. or in a break, where the user types in expressions for evaluation. and sees the values
printed out. In this mode, the assistant acts much like a standard Lisp executive. except that before
attempting to evaluate an input, the assistant first stores it in a new entry on the history list. Thus if
the operation is aborted or causes an error. the input is still saved and available for modification and! or
reexecution. The assistant also nQtes new functions and variables to be added to its spelling lists to enable
future corrections. Then the assistant executes the computation (Le .• evaluates the fonn or applies the
function to its arguments), saves the value in the entry on the history list corresponding to the input, and
prints the result, followed by a prompt character to indicate it is again ready for input.

If the input typed by the user is recognized as a p.a. command, the assistant takes special action.
Commands such as UNDO and ?? are immediately performed. Commands that involved reexecution of
previous inputs, such as REDO and USE. are achieved by computing the corresponding input expression(s)
and then unreading them. The effect of this unreading operation is to cause the assistant's input routine,
LISPXREAD. to act exactly as though these expressions were typed in by the user. These expressions are
processed exactly as though they had been typed, except that they are not saved on new and separate
entries on the history list, but associated with the history command that generated them.

The net effect of this implementation of the programmer's assistant is to provide a facility which is easily
inserted at many levels. and embodies a consistent set of commands and conventions for talking about
past events. This gives the user the subjective feeling that a single agent is watching everything he does
and says, and is always available to help.

8.4

THE PROGRAMl\1ER'S ASSISTANT

8.2 - PROGRAMl\1ER'S-ASSISTANT COMMANDS

The programmer's assistant recognizes a number of commands, which usually refer to past events on the
history list These commands are treated specially; for example, they may not be put on the history list.

Note: If the user defines a function by the same name as a p.a. command, a warning message is printed
to remind him that the p.a. command interpretation will take precedence for type-in.

All programmer's assistant commands use the same conventions and syntax for indicating which event
or events on the history list the command refers to, even though different commands may be concerned

- with different aspects of the corresponding event(s), e.g., side-effects, value, input, etc. Therefore, before
discussing the various p.a. commands, the following section describes the types of event specifications
currently implemented.

8.2.1 Event Specification

An event address identifies one event on the history list It consists of a sequence of "commands" for
moving an imaginary cursor up or down the history list, much in the manner of the arguments to the
@ break command (see page 9.3). The event identified is the one "under" the imaginary cursor when
there are no more commands. (If any command fails, an error is generated and the history command is
aborted.) For example, the event address 42 refers to the event with event number 42, 42 Faa refers to
the first event (searching back from event 42) whose input contains the word Faa, and 42 Faa -1 refers
to; the event preceeding that event. Usually. an event address will contain only one or two commands.

Most of the event address commands perform searches for events which satisfy some condition. Unless
the +- command is given (see below), this search always goes backwards through the history list, from the
most recent event specified to the oldest. Note that each search skips the current event. For example, if
F 00 refers to event N, Faa FIE will refer to some event before event N, even if there is a FIE in event
N.

The event address commands are interpreted as follows:

N (an integer)

+-LITATOM

F

If N is the first command in an event address. refers to the event with event number
N. Otherwise, refers to the event N events forward (in direction of increasing event
number). If N is negative. it always refers to the event -N events backwards.

For example. -1 refers to the previous event, 42 refers to event number 42 (if
the first command in an event address). and 42 3 refers to the event with event
number 45.

Specifies the last event with an APPLY-format input whose junction matches
LIT ATOM.

Note: There must not be a space between +- and LITATOM.

Specifies that the next search is to go forward instead of backward. If given as the
first event address command. the next search begins with last (oldest) event on the
history list.

Specifies that the next object in the event address is to be searched for. regardless

8.5

=

\

SUCHTHAT PRED

PAT

Event Specification

of what it is. For example. F - 2 looks for an event containing - 2.

Specifies that the next object (presumably a pattern) is to be matched against the
values of events, instead of the inputs.

Specifies the event last located.

Specifies an event for which the function PRED returns true. PRED should be a
function of two arguments. ·the input portion of the event, and the event itself. See
page 8.25 for a discussion of the fonnat of events on the history list.

Any other event address command specifies an event whose input contains an
expression that matches PAT as described in page 17.13.

The matching is perfonned by the function HISTORYMATCH (page 8.33), which is
initially defined to call ED I T FIN D P but can be advised or redefined for specialized
applications.

Note: Symbols used below of the fonn EventAddresej refer to event addresses, described above. Since an
event address may contain multiple words, the event address is parsed by searching for the words which
delimit it. For example, in FROM Even tA ddres" 1 THRU EventAddre""2' the symbol EventAddressl corresponds
to all words between F ROM and T H RU in the event specification, and EventAddre""2 to all words from T H RU
to the end of the event specifica'tion.

FROM EventAddres"l THRU EventAddres"2

EventAddresel T H RU EventAddre."2
Specifies the sequence of events from the event with address EventAddre""t through
the event with address EventAddre."2. For example, FROM 47 THRU 49 specifies
events 47~ 48, and 49. EventAddre."l can be more recent than EventAddresB2. For
example, FROM 49 THRU 47 specifies events 49, 48, and 47 (note reversal of
order).

FROM EventAddre"IJl TO EventAddrelJ52

EventAddre""I TO EventAddre""2
Same as T HRU but does not include event EventAddrelJ52.

FROM EventAddre""I Same as FROM EventAddres"1 THRU -1. For example, if the current event is
number S3, then FROM 49 specifies events 49, 50, 51, and 52.

THRU EventAddres"2 Same as FROM -1 THRU EventAddres"2. For example. if the current event is
number 53, then THR'U 49 specifies events 52, 51, 50, and 49 (note reversal of
order).

TO EventAddre""2

ALL EventAddre"lIl

empty

Same as FROM - 1 TO EventAddres"2.

Specifies all events satisfying EventAddres"lo For example, ALL LOAD, ALL
SUCHTHAT FOO.

[f nothing is specified. it is the same as specifying -1.

Note: [n the special case that the last event was an UNDO, it is the same as
specifying -2. For example, if the user types (NCONC FOO FIE). he can then
type UNDO, followed by USE NCONC 1.

8.6

THE PROGRAlVIMER'S ASSISTANT

EventSpecl-AND EventSpec2 AND ... AND EventSpecN

@ LITATOM

@@ EventSpec

Each··of the EventSpecj is an event specification. The lists of events are concatenated.
For example, FROM 30 THRU32 AND 35 THRU 37 is the same as 30 AND 31
AND 32 AND 35 AND 36 AND 37.

If LITATOM is the name of a command defined via the NAME command (page 8.12),
specifies the event(s) defining LITATOM.

EventSpec is an event specification interpreted as above, but with respect to the
archived history list (see page 8.13)0

If no events can be found that satisfy the event specification, spelling correction on each word in the event
specification is performed using LISPXFINDSPLST as the spelling list. For example, REDO 3 THRUU
6 will work correctly. If the event specification still fails to specify any events after spelling correction,
an error is generated.

8.2.2 Commands

All programmer's assistant commands can be input as list forms, or as lines (see page 8.30). For example,
typing REDO 5 cr and (REDO 5) are equivalent

EventSpec is used to denote an event specification. Unless specified otherwise, omitting EventSpec is the
same as sp-ecifying EventSpec= -1. For example, REDO and REDO -1 are the same.

REDO EventSpec [Frog. Asst. Command]
Redoes the event or events specified by EventSpec. For example, REDO FROM -3
redoes the last three events.

REDO EventSpec N T I ME S [Frog. Asst. Command]
Redoes the event or events specified by EventSpec N times. For example, REDO 10
TIM E S redoes the last event ten times.

REDO EventSpec WHILE FORM [Frog. Asst. Command]
Redoes the specified events as long as the value of FORM is true. FORM is evaluated
before each iteration so if its initial value is NIL. nothing· will happen.

REDO EventSpec UNTIL FORM [Frog. Asst. Command]
Same as REDO EventSpec WHILE (NOT FORM).

REP EAT EventSpec [Frog. Asst. Command]
Same as REDO EventSpec WH I LE T. The event(s) are repeated until an error occurs,
or the user types control-E or control-D.

RE PEAT EventSpec WH I LE FORM
RE PEAT EventSpec UNT I L FORM

Same as REDO.

[Frog. Asst. Command]
[Frog. Asst. Command]

For all history commands that perform multiple repetitions, the variable REDoeNT is initialized to 0 and
incremented each iteration. If the event terminates gracefully, i.e., is not aborted by an error or control-D,
the number of iterations is printed.

8.7

RET R Y EventSpec

Commands

[prog. Asst. Command]
-Similar to REDO except'sets HE LPCLOCK (page 9.11) so that any errors that occur
while executing EventSpec will cause breaks.

USE EXPRS FOR ARGS IN EventSpec [prog. Asst. Command]
Substitutes EXPRS for ARGS in EventSpec, and redoes the result Substitution is
done by ESUBST (page 17.57), and is carried out as described below. EXPRS and
ARGS can include non-atomic members.

For example, USE LOG (MINUS X) FOR ANTILOG X IN -2 AND -1 will
substitute LOG for every occurrence of ANT I LOG in the previous two events, and
substitute (M INUS X) for every occurrence of X, and reexecute them. Note that
these substitutions do not change the information saved about these events on the
history list.

Any expression to be substituted can be preceded by a !, meaning that the
expression is to be substituted as a segment, e.g., LIST(A B C) followed by USE
! (X Y Z) FOR B will produce LIST(A X Y Z C). and USE ! NIL FOR B
will produce LIST (A C).

If IN EventSpec is omitted, the first member of ARGS is used for EventSpec. For
example, USE PUTD FOR @UTD is equivalent to USE PUTD FOR @UTD IN F
@UTD. The F is inserted to handle correctly the case where the first member of
ARGS could be interpreted as an event address command.

USE EXPRS IN EventSpec '[prog. Asst. Command]
If ARGS are omitted, and the event referred to was itself a USE command, the
arguments and expression substituted into are the same as for the indicated US E
command. In effect, this USE command is thus a continuation of the previous USE
command. For example, following USE X FOR Y IN 50, typing USE Z IN -1
is equivalent to USE Z FOR Y IN 50.

If ARGS are omitted and the event referred to was not a USE command. substitution
is for the "operator" in that command. For example ARGLIST (FF) followed by
USE CALLS IN -1 is equivalent to USE CALLS FOR ARGLIST IN -1.

If I N EventSpec is omitted, it is the same as specifying IN - 1.

USE EXPRS1 FOR ARGS1 AND ... AND EXPRSN FOR ARGSN IN EventSpec

[prog. Asst. Command]
More general form of US E command. See description of the substitution algorithm
below.

Note: The USE command is parsed by a small finite state parser to distinguish the
expressions and arguments. For example, USE FOR FOR AND AND AND FOR
FOR will be parsed correctly.

Every USE command involves three pieces of information: the expressions to be substituted, the arguments
to be substituted for, and an event specification. which defines the input expression in which the substitution
takes place. If the USE command has the same number of expressions as arguments. the substitution

8.8

THE PROGRAMMER'S ASSISTANT

procedure is straightforward. t . For example, USE X Y FOR U V means substitute X for U and Y for V,
. and is equivalent to USE X FOR U AND Y FOR V. However, the USE command also permits distributive
substitutions, for substituting several expressions for the same argument For example, USE ABC FOR
X means first substitute A for X then substitute B for X (in a new copy of the expression), then substirute
C for X. The effect is the same as three separate USE commands. Similarly, USE ABC FOR D AND X
Y Z FOR W is equivalent to USE A FOR D AND X FOR W. followed by USE B FOR D AND Y FOR
W, followed by USE C FOR D AND Z FOR W. USE ABC FOR D AND X FOR Y also corresponds
to three substitions, the first with A for D and X for Y, the second with B for D. and X for Y, and the third
with C for D, and again X for Y. However, USE ABC FOR D AND X Y FOR Z is ambiguous and will
cause an error. Essentially, the USE command operates by proceeding from left to right handling each
"AND" separately. Whenever the number of expressions exceeds the number of expressions available,
multiple USE expressions are generated. Thus USE ABC D FOR E F means substitute A for E at the
same time as substituting B for F, then in another copy of the indicated expression, substirute C for E
and D for F. Note that this is also equivalent to USE A C FOR E AND B D FOR F.

VARS [prog. Asst. Command]
Similar to USE except substitutes for the (first) operand

For example, EXPRP(Faa) followed by ... FIE FUM is equivalent to USE FIE
FUM FOR FOO.

Note: In the following discussion, $ is used to represent the character <esc>, since this is how <esc> is
echoed.

$ x FOR Y IN EventSpec . [Prog. Asst. Command]

..

$ y x IN EventSpec

$ is a special form of the USE command for conveniently specifying character
substitutions in litatoms or strings. In addition, it has a number of useful properties
in connection with events that involve errors (see below).

Equivalent to USE x FOR Y IN EventSpec, which will do a character
substirution of the characters in x for the characters in Y.

For example, if the user types MOVD(Faa FOOSAVE T). he can then type $ FIE
FOR Faa IN MOVD to perform MOVD(FIE FIESAVE T). Note that USE FIE
FOR Faa would perform MOVD(FIE FOOSAVE T).

$ y TO x IN EventSpec

$ y = x IN EventSpec
$. y -) x IN EventSpec

[prog. Asst. Command]
[prog. Asst. Command]
[prog. Asst. Command]
[prog. Asst. Command]

Abbreviated forms of the $ command: the same as $
which changes 1'5 to xs.

x FOR yIN EventSpec,

$ does event location the same as the US E command, Le., if IN EventSpec is not specified, $ searches for
Y. However, unlike USE, $ can only be used to specify one substitution at a time. After $ finds the event,
it looks to see if an error was involved in that event, and if the indicated character substitution can be
performed in the object of the error message, called the offender. If so, $ assumes the substitution refers

lExcept when one of the arguments and one of the expressions are the same. e.g., USE X Y FOR Y X.
or USE X FOR Y AND Y FOR X. This situation is noticed when parsing the command. and handled
correctly.

8.9

Commands

to the offender, performs the indicated character substitution in the offender only, and then substitutes the
result for the original· offender throughout the event. For example, suppose the user types (PRETTYDEF
FOOFNS 'FOO FOOOVARS) causing a U.B.A. FOOOVARS error.message. The user can now type $
00 O. which will change FOOOVARS to FOOVARS, but not change FOOFNS or FOO.

If an error did occur in the specified event. the user can also omit specifying the object of the substitution,
Y, in which case the offender itself is used. Thus. the user could have corrected the above example by
simply typing $ FOOVARS. Since ESUBST is used for performing the substitution (see page 17.57), $ can
be used in x to refer to the characters in Y. For example, if the user types LOAD(PRSTRUC PROP},
causing the error FILE NOT FOUND PRSTRUC, he can request the file to be loaded from LISP's
directory by simply typing $ (LISP)$. This is equivalent to performing (R PRSTRUC (LISP)$) on
the event. and therefore replaces PRSTRUC by (LISP)PRSTRUC.

Note that $ never searches for an error. Thus, if the user types LOAD(PRSTRUC PROP) causing a FILE
NOT FOUND error, types CLOSEALLt), and then types $ (LISP)$, LISPX will complain that there is
no error in CLOSEALL(). In this case, the user would have to type $ (LISP)$ IN LOAD, or $ PRS
(LISP)PRS (which would cause a search for PRS).

Note also that $ operates on input, not on programs. If the user types FOO(), and within the call to FOO
gets aU. D. F. CONDO error, he cannot repair this by $ CONDo LISPX will type CONDO NOT FOUND
IN FOO().

FIX EventSpec [prog. Asst. Command]
Envokes the default program editor (Dedit or the teletype editor) on a copy of the
input(s) for EventSpec. Whenever the user exits via OK. $e result is unread and
reexecuted exactly as with REDO.

F I X is provided for those cases when the modifications to the input(s) are not simple substitutions of the
type that can be specified by USE. For example, if the default editor is the teletype editor, then:

~(DEFINEQ FOO (LAMBDA (X) (FIXSPELL SPELLINGS2 X 70]
INCORRECT DEFINING FORM
FOO
'-FIX
EDIT
.p
(DEFINEQ FOO (LAMBDA & &»
·(LI 2)
.p
(OEFINEQ (FOO &»
·OK
(FOO)

The user can also specify the edit cornmand(s) to LISPX, by typing - followed by the cornmand(s) after
the event specification, e.g., F I X - (L I 2). In this case, the editor will not type ED IT, or wait for an
OK after executing the commands.

Note: F I X calls the editor on the "input sequence" of an event, adjusting the editor so it is initially
editing the expression typed. However, the entire input sequence is being edited, so it is possible to give
editor commands that examine this structure further. For more information on the format of an event's
input, see page 8.25.

8.10

? ? EventSpec

UNDO EventSpec

THE PROGRAl\1l\1ER'S ASSISTANT

[prog. Asst. Command]
" Prints the specified "events from the history list. If EventSpec is omittecL ?? prints
the entire history list, beginning with most recent events. Otherwise ?? prints only
those events specified in EventSpec (in the order specified). For example, ?? -1,
?? 10 THRU 15, e~.

For each event specified, ?? prints the event number, the prompt, the input line(s),
and the value(s). If the event input was a p.a. command that "unread" some other
input lines, the p.a. command is printed without a preceding prompt, to show that
they are not stored as the input, and the input lines are printed with prompts.

Events are initially stored on the history list with their value field equal to the
character "bell" (control-G). The fore, if an operation fails to complete for any
reason, e.g., causes an error, is abortecL etc., ?? will print a bell as its "value".

?? commands are not entered on the history list, and so do not affect relative
event numbers.- In other words. an event specification of -1 typed following a ??
command will refer to the event immediately preceding the ?? command.

?? is implemented via the function PRINTHISTORY, page 8.35. which can also be
called directly by the user. Printing is performed via the function SHOWPR I N2 (page
6.17), so that if the value of ~YSPRETTYFLG=T, events will be prettyprinted.

[prog. Asst. Command]
Undoes the side effects of the specified events. For each event undone, UNDO
prints a message: RPLACA UNDONE, REDO UNDONE "etc. If nothin~ is undone
because nothing was savecL UNDO types NOTHING SAVED. If nothing was undone
because the event(s) were already undone. UNDO types ALREADY UNDONE.

If EventSpec is not given, UNDO searches back for the last event that contained side
effects, was not undone. and itself was not an UNDO command. Note that the
user can undo UNDO commands themselves by specifying the corresponding event
address, e.g., UNDO -7 or UNDO UNDO. '

In order to restore all pointers correctly, the user should UNDO events in the reverse order from which
they were executed. For example. to undo all the side effects of the last five events, perform UNDO
THRU -5, not UNDO FROM -5. Undoing out of order may have unforseen effects if the operations
are dependent. For example, if the user performed (NCONC 1 FOO FIE), followed by (NCONC 1 FOO
FUM), and then undoes the (NCONC 1 FOO FIE). he will also have undone the (NCONC 1 FOO FUM).
If he then undoes the (NCONC1 FOO FUM), he will cause the FIE to reappear, by vinue of restoring
FOO to its"state before the execution of (NCONC1 FOO FUM). For more details, see page 8.23.

UNDO EventSpec : Xl .•. xN [prog. Asst. Command]
Each Xj is a pattern that is matched to a message printed by DWIM in the event(s)
specified by EventSpec. The side effects of the corresponding DWIM corrections.
and only those side effects. are undone.

For example. if DWIM printed the message PRINTT [IN FOO] -) PRINT,
then UNDO : PRINTT or UNDO : PRINT would undo the correction.

Some portions of the messages printed by DWIM are strings. e.g .. the message
FOO UNSAVED is printed by printing FOO and then" UNSAVED". Therefore. if

8.11

Commands

the user types UNDO UNSAVED, the OW 1M correction will not be found. He
.. should instead type UNDO : FOO or UNDO $UNSAVED$ «esc)UNSAVED(esc),
see R command in· editor, page 17.35).

NAME LITATOM EventSpec [prog. Asst. Command]
Saves the event(s) (including side effects) specified by EventSpec on the property list
of LITATOM (under the property HISTORY). For example, NAME FOO 10 THRU
15. NAME commands are undoable.

Events saved on a litatom can be retrieved with the event specification @ LITATOM.

For example, 11 @ FOO, REDO @ FOO. etc.

Commands defined by NAM E can also be typed in directly as though they were
built-in commands, e.g., FOOer is equivalent to REDO @ FOO. However, if FOO is
the name of a variable, it would be evaluated, i.e., F 00 er would return the value
of FOO.

Commands defined by NAME can also be defined to take arguments:

NAME LITATOM (ARG1 ... ARGN) : EventSpec [prog. Asst. Command]
NAME LITATOM ARG1 ..• ARGN : EventSpec [prog. Asst. Command]

The arguments ARGj are interpreted the same as the arguments for a US E command.
When LITATOM is invoked, the argument values are substituted for ARG1 .•• ARGN
using the same substitution algorithm as for USE.

NAME FOa EventSpec is equivalent to NAME FOO : Eve';tSpec. In either case. if
FOO is invoked with arguments, an error is generated. ./

For example, following the event (PUTD 'FOO (COpy (GETPROP 'FIE 'EXPR»), the user types
NAME MOVE FOa FIE: PUTD. Then typing MOVE TEST1 TEST2 would cause (PUTD 'TEST1
(COpy (GETPROP 'TEST2 'EXPR») to be executed, i.e., would be equivalent to typing USE TEST1
TEST2 FOR FOO F IE IN MOVE. Typing MOVE ABC 0 would cause two PUTO's to be executed.
Note that ! 's and $'s can also be employed the same as with USE. For example, if following

~PREPINDEX{<MANUAL>14LISP.XGP)

~FIXFILE«MANUAL>14LISP.XGPIDX)

the user performed NAME FOO 14 : -2 AND -1, then FOO 15 would perform the indicated two
operations with 14 replaced by 15.

RETRIEVE LITATOM [prog. Asst. Command]
Retrieves and reenters on the history list the events named by LIT ATOM. Causes
an error if LITATOM was not named by a NAME command.

For example, if the user performs NAME FOO 10 THRU 15, and at some time later types RETRIEVE
F 00. 6 new events will be recorded on the history list (whether or not the corresponding events have been
forgotten yet). Note that RETR I EVE does not reexecute the events. it simply retrieves them. The user
can then REDO. UNDO. F I X, etc. any or all of these events. Note that the user can combine the effects
ofa RETRIEVE and a subsequent history command in a single operation, e.g., REDO FOO'is equivalent
to RETRIEVE FOO. followed by an appropriate REDO. Actually, REDO FOO is better than RETRIEVE
followed by REDO since in the latter case, the corresponding events would be entered on the history list
twice, once for the RETR I EVE and once for the REDO. Note that UNDO FOO and 11 FOO are permitted.

8.12

THE PROGRAMMER'S ASSISTANT

BE FORE LITATOM [prog. Asst. Command]
Undoes the effects of the events named by LITATOM.

AFTER LITATOM [prog. Asst. Command]
Undoes a BEFORE LITATOM.

BEFORE and AFTER provide a convenient way of flipping back and forth between two states, namely
the state before a specified event or events were executed, and that state after execution. For example, if
the user has a complex data structure which he wants to be able to interrogate before and after certain
modifications, he can execute the modifications, name the corresponding events with the NAME command,
and then can tum these modifications off and on via BE FOR E or AFT E R commands. Both BE FOR E and
AFTE Rare no-ops if the LITATOM was already in the corresponding state; both generate errors if LITATOM

was not named by a NAME command.

The alternative to BEFORE and AF-fER for repeated switching back and forth involves typing UNDO, UNDO
of the UNDO, UNDO of that etc. At each stage, the user would have to locate the correct event to undo,
and furthermore would run the risk- of that event being "forgottenn if he did not switch at least once per
time-slice.

Note: Since UNDO, NAME, RETRIEVE, BEFORE, and AFTER are recorded as inputs they can be referenced
by REDO, USE, etc. in the nonnal way. However, the user must again remember that the context in
which the command is reexecuted is different than the original context. For example, if the user types
NAME FOO DEFINEQ THRU COMPILE, then types ... FIE, the input that will be reread will be NAME
FIE DEFINEQ THRU COMPILE as was intended, but both DEFINEQ and COMPILE, will refer to the
most recent event containing those atoms, namely the event consisting of NAM~ FOO DEF INEQ THRU
COMPILE.

ARCH IVE EventSpec [prog. Asst. Command]

F 0 RG E T EventSpec

Records the events specified by EventSpec on a permanent history list. This history
list can be referenced by preceding a standard event specification with @@. For
example, ?? @@ prints the archived history list, REDO @@ -1 will recover the
corresponding event from the archived history list and redo it, etc.

The user can also provide for automatic archiving of selected events by appropriately
defining ARCH IVE F N, or by putting the property * ARCH IVE *, value T, on the
event. Events that are referenced by history commands are automatically marked
for archiving in this fashion (See page 8.19).

[prog. Asst. Command]
Pennanentiy erases the record of the side effects for the events specified by EventSpec.

[f EventSpec is omitted. forgets side effects for entire history list.

FORGET is provided for users with space problems. For example, if the user has just
perfonned SETs, RPLACAs, RPLACDs, PUTD, REMPROPs, etc. to release storage,
the old pointers would not be garbage collected until the corresponding events age
sufficiently to drop off the end of the history list and be forgotten. FORGET can
be used to force immediate forgetting (of the side-effects only). FORGET is not
undoable (obviously).

REMEMBE R EventSpec [Prog. Asst. Command]
[nstructs the file package to .• remember" the events specified by EventSpec. These
events will be marked as changed objects of file package type EXPRESSIONS, which

8.13

PL LITATOM

PB LITATOM

FORM

SHH FORM

Commands

can be written out via the file package command P. For example, after the user
types:

~MOVO?(OELFILE IOELFILE)
OELFILE
~REMEMBER -1
(MOVO? (QUOTE DELFILE) (QUOTE IOELFILE»
~

If the user calls FILES?, MAKEFILES, or CLEANUP, the command (P (MOVO?
(QUOTE DELFILE) (QUOTE IOELFILE») will be constructed by the file
package and added to the fi1ecoms indicated by the user, unless the user has
already explicitly added the corresponding expression to some P command himself.

Note that "remembering" an event like (PUTPROP 'FOO 'CLISPTYPE EXPRESSION)

will not result in a (PROP CLISPTYPE FOO) command, because this will save
the current (at the time of the MAKEFILE) value for the CLISPTYPE property,
which mayor may not be EXPRESSION. Thus, even if there is a PRO P command
which saves the CLISPTYPE property for FOO in some FlLECOMS, remembering
this event will still require a (P (PUTPROP 'FOO 'CLISPTYPE EXPRESSION»
command to appear.

[prog. Asst. Command]
"Print Property List" Prints out the property list of LITATOM in a nice format,
with PRINTLEVEL reset to (2 . 3). For example,

~PL +
CLISPTYPE:
ACCESSFNS:

12
(PLUS IPLUS FPLUS)

PL is implemented via the function PRINTPROPS.

[prog. Asst. Command]
"Print Bindings." Prints the value of LITATOM with PRINTLEVEL reset to (2 .
3). If LITATOM is not bound, does not attempt spelling correction or generate an
error. PB is implemented via the function PRINTBINDINGS.

PB is also a break command (page 9.5). As a break command, it ascends the stack
and, for each frame in which LITATOM is bound, prints the frame name and value
of LITATOM. If typed in to the programmer's assistant when not at the top level,
e.g. in the editor. a lower USEREXEC. etc .. PB will also ascend the stack as it does
with a break. However, as a programmer's assistant command, it is primarily used
to examine the top level value of a variable that mayor may not be bound. or to
examine a variable whose value is a large list.

[prog. Asst. Command]
Allows the user to type a line of text without having the programmer's assistant
process it Useful when linked to other users, or to annotate a dribble file (page
6.12).

[prog. Asst. Command]
Allows the user to evaluate an expression without having the programmer's assistant

8.14

THE PROGRAMl\1ER'S ASSIST ANT

.process it or record it on a history list. Useful when one wants to bypass a
programmer's assistant command or to keep the evaluation off the history list.

EXEC [prog. Asst. Command]
(Interlisp-10) Calls SUBSYS (page 22.21) to descend to lower exec.

Rather than start up a new fork each time the user types EXEC, the EXEC command
will save the old fork handle upon return from an EX E C comman~ and, if the fork
handle is still active, reuse it for the next EX E C command, i.e. an EX E C followed
by another EXEC is equivalent to an EXEC followed by a CONTIN.

CONTIN [prog. Asst. Command]
(Interlisp-10) Perfonns (SUBSYS T) to continue the last call to SUBSYS (page
22.21).

TYPE-AHEAD [prog. Asst. Command]
A command that allows the user to type-ahead an indefinite number of inputs.

The assistant responds to TYPE-AHEAD with a prompt character of >. The user can now type in an
indefinite number of lines of input, under ERRORSET protection. The input lines are saved and unread
when the user exits the type-ahead loop with the command $GO «esc>GO). While in the type-ahead loop,
?? can be used to print the type-ahead, F I X to edit the type-ahea~ and $Q « esc> Q) to erase the last
input (may be used repeatedly). The TYPE-AHEAD command may be aborted by $STOP «esc>STOP);
control-E simply aborts the current line of input.

For example:

+-TYPE-AHEAD
>SYSOUT{TEM)
>MAKEFILE{EDIT)
>BRECOMPILE{{EDIT WEDIT»
>F
>$Q
\\F
>$Q
\\BRECOMPILE
>LOAD{WEDIT PROP)
>BRECOMPILE«EDIT WEDIT»
>F
>MAKEFILE{BREAK)
>LISTFILES{EDIT BREAK)
>SYSOUT{CURRENT)
>LOGOUTJ
>?1

>SYSOUT{TEM)
>MAKEFILE(EDIT)
>LOAD{WEDIT PROP)
>BRECOMPILE{{EDIT WEDIT»
>F
>MAKEFILE(BREAK)
>LISTFILES(EDIT BREAK)
>SYSOUT (CURRENT).

8.15

)FIX
EDIT

)LOGOUT]

Commands

*(R BRECOMPIlE BCOMPL)
*p
«LOGOUT) (SYSOUT &) (LISTFILES &) (MAKEFILE &) (F) (BCOMPL &)
(LOAD &) (MAKEFILE &) (SYSOUT &»
*(DELETE LOAD)
*OK
)$GO

Note that type-ahead can be addressed to the compiler, since it uses LISPXREAD for input. Type-ahead
can also be directed to the editor, but type-ahead to the editor and to LIS P X cannot be intermixed.

The following are some useful functions and variables:

(VALUEOF LINE)

IT

control-U

[NLambda NoSpread Function]
An nlambda function for obtaining the value of a particular even~ e.g., (VALUEOF
-1), (VALUEOF +-FOa -2). The value of an event consisting of several operations
is a list of the values for each of the individual operations.

Nota: The value field of a history entry is initialized to bell (control-Q). Thus a
value of bell indicates that the corresponding operation did not complete, Le., was
aborted or caused an error (or else it returned bell).

J'lote: Although the input for VALUEOF is entered 'on' the history list before
VALUEOF is called, (VALUEOF -1) still refers to the value of the expression
immediately before the VALUEOF input, because VALUEOF effectively backs the
history list up one entry when it retrieves the specified event. Similarly, (VALUEOF
F 00) will find the first event before this one that contains a F 00.

[Variable]
The value of the variable IT is always the value of the last event executed, i.e.
(VALUEOF -1). For example, '

+-(SQRT 2)
1.414214
+-(SQRT IT)
1.189207

If the last event was a multiple event. e.g. REDO - 3 T H R U -1, I T is set to value
of the last of these events. Following a ?? command, I T is set to value of the last
event printed. In other words. in all cases, I T is set to the last value printed on
the terminal.

When typed in at any point during an input being read by LISPXREAD, permits
the user to edit the input before it is returned to the calling function.

Note: control-N for [nterlisp on TOPS-20.

This feature is useful for correcting mistakes noticed in typing before the input is executed. instead of
waiting till after execution and then performing an UNDO and a F IX. For example. if the user types

8.16

THE PROGRAl\1l\1ER'S ASSISTANT

" { DE FIN E Q F 00 (" LAMB D A· (X) { F I X S PEL L . X" and at that point notices the missing left parenthesis,
instead of completing the input and allowing the error to occur, and then fixing the input, he can simply
type control-U, and finish typing normally. Control-U can be typed at any point, even in the middle of
an atom; it simply sets a variable checked by LISPXREAD.

When the line is finished, the editor is called on {DEF INEQ FOO (LAMBDA (X) (F IXSPELL X ...],
which the user can then fix. If the user exits from the editor via OK, the (corrected) expression will be
returned to whoever called LISPXREAD exactly as though it had been typed. If the user exits via STOP,
the expression is returned so that it can be stored on the history list However it will not be executed. In
other words, the effect is the same as though the user had typed control-E at exactly the right instant.

Control-U also works for calls to READL INE (page 8.30), i.e., for line commands.

8.2.3 PeA. Commands Applied to P.A. Commands

Programmer's assistant conirilands that unread expressions, such as REDO, USE, etc. do not appear in
the input portion of events, although they are stored elsewhere in the event. They do not interfere with
or affect the searching operations of event specifications. As a result, p.a. commands themselves cannot
be recovered for execution in the normal way. For example, if the user types USE ABC FOR 0 and
follows this with USE E FOR 0, he will not produce the effect of USE ABC FOR E, but instead will
simply cause E to be substituted for 0 in the last event containing a D. To produce the desired effect. the
user should type USE 0 FOR E IN USE. The appearance of the word REDO, USE or FIX in an event
address specifies a search for the corresponding programmer's assistant command. It also specifies that
the text of the programmer's assistant command itself be treated as though it were the input. However,
the user must remember that the context in which a history command is reexecuted is that of the current
history, not the original context. For example, if the user types USE FOO FOR FIE IN -1, and then
later types REDO USE, the -1 will refer to the event before the REDO, not before the USE.

The one exception to the statement that programmer's assistant commands "do not interfere with or
affect the searching operations of event specifications" occurs when a p.a command fails to produce
any input. For example, suppose the user types USE LOG FOR ANTILOG AND ANTILOG FOR LOGG,
mispelling the second LOG. This will cause an error, LOGG ? Since the USE command did not produce
any input, the user can repair it by typing USE LOG FOR LOGG, without having to specify IN USE.
This latter USE command will invoke a search for LOGG, which will find the bad USE command. The
programmer's assistant theri performs the indicated substitution, and unreads USE LOG FOR ANT ILOG
AND ANT I LOG FOR LOG. In turn, this USE command invokes a search for ANT I LOG. which, because it
was not typed in but reread, ignores the bad US E command which was found by the earlier search for
LOGG, and which is still on the history list. In other words, p.a. commands that fail to produce input
are visible to searches arising from event specifications typed in by the user, but not to secondary event
specifications.

In addition, if the most recent event is a history command which failed to produce input, a secondary
event specification will effectively back up the history list one event so that relative event numbers for
that event specification will not count the bad p.a. corrunand. For example, suppose the user types
USE LOG FOR ANTILOG AND ANTILOG FOR LOGG IN -2 AND -1, and after the p.a. types LOGG
?, the user types USE LOG FOR LOGG. He thus causes the command USE LOG FOR ANT I LOG AND
ANT I LOG FOR LOG IN - 2 AND -1 to be constructed and unread. In the normal case, -1 would refer
to the last event, Le., the "bad" USE command, and - 2 to the event before it However, in this case, -1
refers to the event before the bad USE command, and the - 2 to the event before that. In short, the caveat
above that "the user must remember that the context in which a history command is reexecuted is that of

8.17

Changing The Programmer's Assistant

. the. current history, not the original context" does not apply if the correction is performed immediately.

8.3 CHANGING THE PROGRAMMER'S ASSISTANT

(CHANGESLICE N HISTORY -) [Function]
Changes the time-slice of the history list HISTORY to N (see page 8.25). If HISTORY

is NIL, changes both the top level history list LISPXHISTORY and the edit history
list EOITHISTORY.

Note: The effect of increasing the time-slice is gradual: the history list is simply
allowed to grow to the corresponding length before any events are forgotten.
IJecreasing the time-slice will immediately remove a sufficient number of the older
events to bring the history list down to the proper size. However, CHANGESLICE is
undoable, so that these events are (temporarily) recoverable. Therefore, if the user
wants to recover the storage associated with these events without waiting N more
events until the CHANGESLICE event drops off the history list, he must perform a
FORGET command (page 8.13).

PROMPTNFLG [Variable]
When this variable is set to T, the current event number to be printed before each
prompt character. See PROMPTCHAR, page 8.31. PROMPT#FLG is initially T.

PROMPTCHARFORMS [Variable]
The value of PROMPTCHARFORMS is a list of expression which are evaluated
each time PROMPTCHAR (page 8.31) is called to print the prompt character. If
PROMPTCHAR is going to print something, it first maps down PROMPTCHARFORMS
evaluating each expression under an ERRORSET.

These expressions can access the special variables H I STORY (the current history
list), 10 (the prompt character to be printed), and PROMPTSTR, which is what
PROMPTC,HAR will print before 10, if anything. When PROMPTNF LG is T,
PROMPTSiTR will be the event number. The expressions on PROMPTCHARFORMS
can change the shape of a cursor, update a clock, check for mail. etc. or change
what PROMPTCHAR is about to print by resetting ID and/or PROMPTSTR. After the
expressions on PROMPTCHARFORMS have been evaluated, PROMPT STR is printed
if it is (still) non-N I L, and then I D is printed, if it is (still) non-N 1 L.

HISTORYSAVEFORMS [Variable]
The value of HISTORYSAVEFORMS is a list of expressions that are evaluated under
errorset protection each time HISTORYSAVE (page 8.32) creates a new event. This
happens each time there is an interaction with the user, but not when performing
an operation that is being redone.

The expressions on H ISTORYSAVE FORMS are presumably executed for effect. and
can accesS the special variables HISTORY (the current history list), ID (the current
prompt character), and EVENT (the current event which HISTORYSAVE is going
to rerum).

Note that PROMPTCHARFORMS and HISTORYSAVEFORMS together enable bracketing each interaction

8.18

THE· PROGRAMMER'S ASSISTANT

with the user. These can'· be "used to' measure how long the user takes to responcL to use a different
readtable or terminal table, etc.

RESETFORMS

ARCHIVEFN

ARCHIVEFLG

LISPXMACROS

[Variable]
The value of RESETFORMS is a list of forms that are evaluated at each RESET, i.e.
when user types control-D, calls function RESET, or types control-C followed by
START.

[Variable]
If the value of ARCHIVEFNis T, and an event is about to drop off the end of
the history list and be forgotten, ARCHIVEFN is called as a function with two
arguments: the input portion of the event, and the entire event (see page 8.25
for the format of events). If ARCHIVEFN returns T, the event is archived on a
permanent history list (see page 8.13). Note that ARCH IVE F N must be both set
and defined. ARCH IVE FN is initially NIL and undefined.

For example, defining ARCHIVE FN as (LAMBDA (X Y) {EQ (CAR X) 'LOAD»
will keep a record of all calls to LOAD.

[Variable]
If the value of ARCHIVEFLG is non-NIL, the system automatically marks all events
that are referenced by history commands so that they will be archived when they
drop off the history list ARCHIVEFlG is initially T, so once an event is redone, it
is guaranteed to be saved.

An event is "marked for archiving" by putting the property -ARCHIVE-, value T,
on the event (see page 8.25). The user could em this by means of an appropriately
defined LISPXUSERFN (see below).

[Variable]
LISPXMACROS provides a macro facility that allows the user to define his own
programmer's assistant commands. It is a list of elements of the form (COMMAND

DEF). Whenever COMMAND appears as the first expression on a line in a LIS P X
input, the variable LIS P X LIN E is bound to the rest of the line, the event is
recorded on the history list, DEF is evaluatecL and DEF'S value is stored as the
value of the event. Similarly, whenever COMMAND appears as CAR of a form in a
LISPX input, the variable LISPXLINE is bound to COR of the form, the event is
recordecL and DEF is evaluated.

An element of the form (COMMAND NIL DEF) is interpreted to mean bind
LIS P X LIN E and evaluate DEF as d€!scribed above, except do not save the event
on the history list

LISPXHISTORYMACROS [Variab~]
LISPXHISTORYMACROS allows the user to define programmer's assistant com
mands that re-execute other events. LISPXHISTORYMACROS/is interpreted the
same as LIS P XMAC ROS. except that the result of evaluating DEF is treated as a list
of expressions to be unread, ex-actly as though the expressions had been retrieved
by a REDO command, or computed by a USE command. Note that returning
NIL means nothing else is done. This provides a mechanism for defining LISP X
comm·ands which are executed for effect only.

8.19

Changing The Programmer's Assistant

Many programmer's assistant commands. such as RETRIEVE, BEFORE, AFTER, etc. are implemented
through LISPXMACROS or LISPXHISTORYMACROS.

Note: Definitions of commands on LISPXMACROS or LISPXHISTORYMACROS can be saved on files with
the file package command LISPXMACROS (see page 11.24).

LISPXUSERFN [Variable]
When LISPXUSERFN is set to T, it is applied as a function to all inputs
not recognized as a programmer's assistant command, or on LISPXMACROS or
LISPXHISTORYMACROS. If LISPXUSERFN decides to handle this input, it simply
processes it (the event was already stored on the history list before LISPXUSERFN
was called), sets LISPXVALUE to the value for the event, and returns T. The
programmer's assistant will then know not to call EVAL or APPL Y, and will simply
store LISPXVALUE into the value slot for the event, and print it If LISPXUSERFN
returns NIL, EVAL or APPLY is called in the usual way. Note that LISPXUSERFN
must be both set and defined.

LISPXUSERFN is given two arguments: x and LINE. x is the first expression typed,
and LINE is the rest of the line. as read by READLINE (page 8.30). For example, if
the user typed FOO(ABC), x= FOO, and LINE= « ABC)); if the user typed
(F 00 ABC), X= (F 00 ABC), and LINE = NIL; and if the user typed F 00
ABC, X= FOO and LINE= (A B C).

By appropriately defining (and setting) LISPXUSERFN, the user can with a
minimum of effort incorporate the features of the prograI,llIller's assistant into his
own executive (actually it is the other way around). For example, LISPXUSERFN
could be defined to parse all input (other than p.a. commands) in an alternative
way. Note that since LISPXUSERFN is called for each input (except for p.a.
commands), it can also be used to monitor some condition or gather statistics.

(LISPXPRINT x Y Z NODOFLG) [Function]
(LISPXPRINl x Y Z NODOFLG) [Function]
(LISPXPRIN2 x Y Z NODOFLG) [Function]
(LISPXSPACES x Y Z NODOFLG) [Function]
(LISPXTERPRI x Y Z NODOFLG) [Function]
(LISPXTAB x Y Z NODOFLG) [Function]
(LISPXPRINTDEF EXPR FILE LEFT DEF TAlL NODOFLG) [Function]

In addition to saving inputs and values. the programmer's assistant saves most
system messages on the history list For example, F I L E C REA TED ... , (FN

REDEFINED), (VAR RESET), output of TIME, BREAKDOWN. STORAGE, DWIM
messages, etc. When ?? prints the event, the output is also printed. This facility
is implemented via these functions.

These functions print exactly the same as their non-LISPX counterparts. Then,
they put the output on the history list under the property *LISPXPRINT* (see
page 8.25).

If NODOFLG is non-N I L, these fuctions do not print. but only put their output on
the history list.

To perform output operations from user programs so that the output will appear
on the history list, the program needs simp ly to call the corresponding LIS P X

8.20

. THE PROGRAMMER~S ASSIST ANT

printing function.

(-USERLISPXPRINT x FILE Z NODOFLG) [Function]
The function USERLISPXPRINT is available to permit the user to define additional
LIS P X printing functions. If the user has a function FN that takes three or fewer
arguments, and the second argument is the file name, he can define a LIS P X
printing function by simply giving LISPXFN the definition of USERLISPXPRINT,
for example, with MOVD(USERLISPXPRINT LISPXFN). USERLISPXPRINT is
defined to look back on the stack, find the name of the calling function, strip off
the leading "LISPX", perform the appropriate saving information, and then call
the function to do the actual printing.

LISPXPRINTFLG [Variable]
If LISPXPR INTFLG= NIL, the LISPX printing functions will not store their output

. - on the history list LISPXPRINTFLG is initially T.

8.4 ST A TISTICS

The programmer's assistant keeps various statistics about system usage, e.g., number of user inputs,
number of undo saves, number of calls to editor. number of edit commands, number of p.a. commands,
cpu time, console time, etc. These can be viewed via the function LIS P X S TAT S. The user can define add
new statistics to the p.a. statistics via the function ADDSTATS, and increment.them with LISPXWATCH.

Note: The collection of programmer's assistant statistics is not supported in Interlisp-D. ADDS TAT S and
LIS P X WA T C H are defined with null definitions, so programs can be transferred.

(LISPXSTATS RETURNVALUESFLG) [Function)
Prints programmer's assistant statistics. If RETURNVALUESFLG = T, returns the
statistics as a list of elements of the form (VALUE • EXPLANATION).

(ADDSTATS STAT1 ... STATN) [NLambda NoSpread Function)
Each STATj is a list of the form (STAT-NAME • MESSAGE). Each STAT-NAME is
defined as the name of a new statistic.

For example, (ADDSTATS (EDITCALLS CALLS TO EDITOR) (UNDOSTATS
CHANGES UNDONE) will define two new statistics, named EDITCALLS and
UNDOSTATS.

(LISPXWATCH STAT N) [Function]
Increments the statistic with name S'1~T by N (or 1 if N= NIL).

LISPXWATCH has a BLKLIBRARYDEF (see page 12.14).

The user can save his statistics for loading into a new system by performing MAKEFILE(DUMPSTATS).
After the file DUMPSTATS is loaded, the statistics printed by LISPXSTATS will be the same as those that
would be printed following the MAKE FILE.

8.21

. Undoing

8.5 UNDOING

Note: This discussion only applies to undoing under the executive and break; the editors handles undoing
itself in a slightly different fashion.

The UNDO capability of the programmer's assistant is implemented by requiring that each operation that
is to be undoable be responsible: itself for saving on the history list enough information to enable reversal
of its side effects. In other wordS, the assistant does not "know" when it is about to perform a destructive
operation, Le., it is not constantly checking or anticipating. Instead, it simply executes operations, and
any undoable changes that occur are automatically saved on the history list by the responsible functions.
The UNDO command, which involves recovering the saved information and performing the corresponding
inverses, works the same way, so that the user can UNDO an UNDO, and UNDO that etc.

At each point, until the user specifically requests an operation to be undone, the assistant does not know,
or care, whether information has been saved to enable the undoing. Only when the user attempts to
undo an operation does the assistant check to see whether any information has been saved. If none has
been saved, and the user has specifically named the event he wants undone, the assistant types NOTHING
SAVED. (When the user simply types UNDO, the assistant searches for the last undoable event, ignoring
events already undone as well as UNDO operations themselves.)

This implementation minimizes the overhead for undoing. Only those operations which actually make
changes are affected, and the overhead is small: two or three cells of storage for saving the information, and
an extra function call. However, even this small price may be too expensive if the operation is sufficiently
primitive and repetitive, i.e., if. the extra overhead may seriously degrade the overall performance of
the program. Hence not every destructive operation in a program should necessarily be undoable; the
programmer must be allowed to decide each case individually.

Therefore for each primitive destructive function, Interlisp has defined an undoable version which always
saves information. By convention, the name of the undoable version of a function is the function name,
preceeded by "I." For example, there is RPlACA and IRPlACA, REMPROP and IREMPROP, etc. The
"slash" functions that are currently implemented can be found as the value of I FNS.

The various system packages use the appropriate undoable functions. For example, BREAK uses IPUTO and
IREMPROP so as to be undoable, and DWIM uses IRPlACA and IRPlACD, when it makes a correction.2

Similarly, the user can simply use the corresponding I function if he wants to make a destructive
operation in his own program undoable. When the I function is called, it will save the UNDO information
in the current event on the history list.

The programmer's assistant cannot know whether efficiency and overhead are serious considerations for
the execution of an expression in a user program, so the user must decide if he wants these operations
undoable by explicitly calling IMAPCONC. etc. However, typed-in expressions rarely involve iterations or
lengthy computations directly. Therefore, before evaluating the user input, the programmer's assistant
substitutes the corresponding undoable function for any destructive function (see LISPX/, page 8.34).
For example, if the user types {:MAPCONC NASDIC ...), it is actually (/MAPCONC NASDIC ...) that
is evaluated. Obviously, with a more sophisticated analysis of both user input and user programs, the

2The effects of the following functions are always undoable: DEFINE, DEFINEQ, DEFC (used to give
a function a compiled code definition), DEFLIST, LOAD, SAVEDEF, UNSAVEDEF, BREAK, UNBREAK,
REBREAK. TRACE, BREAKIN, UNBREAKIN, CHANGENAME. EDITFNS, EDITF, EDITV, EDITP, EOITE.
EOITl. ESUBST, ADVISE, UNADVISE, READVISE, plus any changes caused by DWIM.

8.22

THE PROGRAlVIMER'S ASSIST ANT

decision concerning which operations to make undoable could be better advised.. However, we have
found the .. configuration described here to be a· very satisfactory one. The user pays a very small price for
being able to undo what he types in, and if he wishes to protect himself from' malfunctioning in his own
programs, he can have his program explicitly call undoable functions.

8.5.1 Undoing Out of Order

IRPLACA operates undoably by saving (on the history list) the list cell that is to be changed and its
original CAR. Undoing a IRPLACA simply restores the saved CAR. This implementation can produce
unexpected results when multiple IRPLACAs are done on the same list cell, and then undone out of order.
For example, if the user types (RPLACA Faa 1), followed by (RPLACA FOO 2 L then undoes both
events by undoing the most recent event first, then undoing the older event, F 00 will be restored to its
state before either_ RPLACA operated. However if the user undoes the first event, then the second event,
(CAR Faa) will be 1, since this is what was in ~AR of FOO before (RPLACA Faa 2) was executed.
Similarly. if the user types (NCONC1 FOO 1), followed by (NCONC1 FOO 2), undoing just (NCONC1
F 00 1) will remove both 1 and 2 from F 00. The problem in both cases is that the two ,operations are
not "independent" In general, operations are always independent if they affect different lists or different
sublists of the same list Undoing in reverse order of execution, or undoing independent operations, is
always guaranteed to do the "right" thing. However, undoing dependent operations out of order may not
always have the predicted effect.

Property list operations, (Le., PUTPROP, ADDPROP and REMPROP) are handled specially, so that operations
that affect different properties on the same property list are always independent For example, if the user
types (PUT PROP 'FOO 'BAR 1) then (PUT PROP 'FOa 'BAZ 2), then undoes the first event, the
BAZ property will remain, even though it may not have been on the property list of Faa at the time the
first event was executed.

8.5.2 SA VESET

Typed-in SETs are made undoable by substituting a call to SAVESET. SETQ is made undoable by
substituting SAVESETQ, and SETQQ by SAVESETQQ, both of which are implemented in terms of
SAVESET.

In addition to saving enough infonnation on the history list to enable undoing, SAVESET operates in a
manner analogous to SAVEDE F (page 11.18) when it resets a top level value: when it changes a top level
binding from a value other than NOB IND to a new value that is not EQUAL to the old one, SAVESET
saves the old value of the variable being set on the variable's property list under the property VALUE, and
prints the message (VARIABLE RESET). The old value can be restored via the function UNSET, which
also saves the current value (but does not print a message). Thus UNSET can be used to flip back and
forth between two values.

Of course, UNDO can be used as long.as the event containing this call to SAVESET is still active. Note
however that the old value will remain on the property list, and therefore be recoverable via UNSET, even
after the original event has been forgotten.

RPAQ and RPAQQ are implemented via calls to SAVESET. Thus old values will be saved and messages
printed for any variables that are reset as the result of loading a file.

For top level variables, SAVESET also adds the variable to the appropriate spelling list, thereby noticing

8.23

UNDONLSETQ and RESETUNDO

variables set in files via RPAQ or RPAQQ, as well as those set via type-in.

(SAVESET NAME VALVE TOPFLG FLG) [Function]

(UNSET NAME)

An undoable SET. SAVESET scans the stack looking for the last binding of NAME,

sets NAME to VALVE, and returns VALVE.

If the binding changed was a top level binding, NAME is added to the spelling list
SPELLINGS3 (see page 15.14). Furthermore, if the old value was not NOBIND,
and was also not EQUAL to the new value, SAVESET calls the file package to
update the necessary file records. Then, if 0 F NFL G is not equal to T, SA V ESE T
prints (NAME RES E T), and saves the old value on the property list of NAME,

under the property VAL U E.

If TOPFLG=T, SAVESET operates as above except that it always uses NAME'S

top-level value cell. When TOPFLG is T. and OFNFLG is ALLPROP and the old
value was not NOB I NO, SAVESET simply stores VALUE on the property list of NAME

under the property VALUE, and returns VALVE. This option is used for loading files
without disturbing the current value of variables (see page 5.9).

If FLG=NOPRINT, SAVESET saves the old value, but does not print the message.
This option is used by UNSET.

If FLG= NOSAVE, SAVESET does not save the old value on the property list,
nor does it add NAME to SPELLINGS3. However, the call to SAVESET is still
undoable. This option is used by /SET.

If FLG= NOSTACKUNDO, SAVESET is undoable only if the binding being changed is
a top-level binding, i.e. this says when resetting a variable that has been rebound,
don't bother to make it undoable. This option is used by RPAQ, RPAQQ, and
AOOTOVAR.

[Function]
If NAME does not contain a property VALUE, UNSET generates an error. Otherwise
UNSET calls SAVESET with NAME, the property value, TOPFLG= T, and FLG= NOPRINT.

8.5.3 UNDONLSETQ and RESETUNDO

The function UNOONLSETQ provides a limited fonn of backtracking: if an error occurs under the
UNOONLSETQ, all undoable side effects executed under the UNOONLSETQ are undone. RESETUNOO. used
in conjunction with RESETLST and RESETSAVE (page 9.19), provides a more general undo capability
where the user can specify that the side effects be undone after the specified computation finishes, is
aborted by an error, or by a control-D.

(UNOONLSETQ UNDOFORM -) [NLambda Function]
An nlambda function similar" to NLSETQ (page 9.15). UNDONLSETQ evaluates
UNDOFORM, and if no error occurs during the evaluation, returns (LIST (EVAL
UNDOFORM» and passes the undo infonnation from UNDOFORM (if any) upwards.
If an error does occur, the UNOONLSETQ returns NIL. and any undoable changes
made during the evaluation-of UNDOFORM are undone.

Any undo infonnation is stored directly on the history event (if LIS P X HIS T is

8.24

THE PROGRAMl\1ER'S ASSISTANT

not NIL), so that if the user control-D's out of theUNDONlSE T:Q, the event is still
undoable.

UNDONlSETQ will operate correctly if #UNDOSAVES is or has been exceeded for
this event, or is exceeded while under the scope of the UNDONlSETQ.

Note: Caution must be exercised in using coroutines or other non-standard means
of exiting while under an UNDONlSETQ. See discussion in page 9.19.

(RESETUNDO x STOPFLG) [Function]
For use in conjunction with RESETlST (page 9.19). (RESETUNDO) initializes
the saving of undo infonnation and returns a value which when given back
to RESETUNDO undoes the intervening side effects. For example, (RESETlST
(RESETSAVE (RESETUNDO» . FORMS) will undo the side effects of FORMS

on nonnal exit. or if an error occurs or a control-D is typed.

If STOPFLG=T, RESETUNDO stops accumulating undo infonnation it is saving on
x. Note that this has no bearing on the saving of undo infonnation on higher
RESETUNDO's, or on being able to undo the entire event.

For example,

(RESETlST
(SETQ FOO (RESETUNDO»
(RESETSAVE NIL (lIST 'RESETUNDO FOO»
(ADVISE ...)
(RESETUNDO FOO T)
• FORMS)

would cause the advice to be undone, but not any of the side effects in FORMS.

8.6 FORMAT AND USE OF THE HISTORY LIST

The system currently uses three history lists, lISPXHISTORY for the top-level Interlisp executive,
EDITHISTORY for the editors, and ARCHIVElST for archiving events (see page 8.13). All history
lists have the same fonnat, use the same functions, HISTORYSAVE, for recording events, and use the
same set of functions for implementing commands that refer to the history list. e.g., HISTORYF IND.
PRINTHISTORY, UNDOSAVE, e~.

Each history list is a list of the fonn (L EVENT# SIZE MOD), where L is the list of events with
the most recent event first, EVENT# is the event number for the most recent event on L, SIZE is
the size of the time-slice (below), Le .. the maximum length of L, and MOD is the highest possible
event number. lISPXHISTORY and EDITHISTORY are both initialized to (NIL a 100 100).
Setting LISPXHISTORY or EDITHISTORY to NIL disables all history features, so LISPXHISTORY
and EDITHISTORY act like flags as well as repositories of events.

Each history list has a maximum length, called its "time-slice." As new events occur, e'xisting events are
aged, and the oldest events are "forgotten." For efficiency, the storage used to represent the forgotten
event is reused in the representation of the new event. so the history list is actually a ring buffer. The

8.25

Format and Use of the History List

time-slice of a history list can be changed with the function CHANGESLICE,"page 8.18. Larger time-slices
enable longer "memory spans," but tie up correspondingly greater amounts of storage. Since the user
seldom needs really "ancient history," and a facility is provided for saving and remembering selected
events (see NAME and RETRIEVE, page 8.12), a relatively small time-slice such as 30 events is more than

-adequate, although some users prefer to set the" time-slice as large as 100 events.

If PROMPT#FLG (page 8.18) is set to T. an "event number" will be printed before each prompt More
recent events have higher numbers. When the event number of the current event is 100. the next event
will be given number 1. If the time-slice is greater than 100. the '~roll-over" occurs at the next highest
hundred, so that at no time will two events ever have the same event number. For example. if the
time-slice is 150, event number 1 will follow event number 200.

Each individual event on L is a list of the fonn (INPUT ID VALUE • PROPS). ID is the prompt character
for this even~ e.g., ... , :, ., etc. VALUE is the value of the even~ and is initialized to bell.3 PROPS is a
property list used to associate other infonnation with the event (described below).

INPUT is the input sequence for the event. Nonnally, this is just the input that the user typed-in. For an
APPL Y fonnat inpu~ this is a list consisting of two expressions; for an EVAL fonnat input, this is a list
of just one expression; for an input entered as list of atoms, INPUT is simply that list. For example.

User Input

PLUS[1 1]

(PLUS 1 1)

PLUS 1 1 cr

INPUT is:

(PLUS (1 1»

«PLUS 1 1»

(PLUS 1 1)

If the user types in a programmer's assistant command that "unreads" and reexecutes"other events (REDO,
USE" etc.), INPUT contains a "sequence" of the inputs from the redone events. Specifically. the INPUT

fields from the specified events are concatenated into a single lis~ seperated by special markers called
"pseudo-carriage returns." which print out as the string "< c . r . > " .4 When the result of this concatenation
is "reread," the pseudo-carriage-returns are treated by LISPXREAD and READLINE exactly as real carriage
returns, i.e., they serve to distinguish between APPLY and EVAL formats on inputs to LISPX, and to
delimit line commands to the editor.

The same convention is used for representing multiple inputs when a USE command involves sequential
substitutions. For example, if the user types GETD(FOO) and then USE FIE FUM FOR FOO. the input
sequence that will be constructed is (GETD (FIE) "<c.r.>" GETD (FUM», which is the result of
substituting FIE for F 00 in (G E TO (F 00)) concatenated with the result of substituting FUM for F 00 in
(GETD (FOO».

Note that once a multiple input has been entered as the input portion of a new event, that event can
be treated exactly the same as one resulting from type-in. In other words, no special checks have to
be made when referencing an event, to see if it is simple or multiple. This implementation permits an

30n ED ITHISTORY, this field is used to save the side effects of each corr;unand. See page 8.35.

4The value of the variable HIS T S T R 0 is used to represent a pseudo-carriage return. This is initially
the string "< c . r . > ". Note that the functions that recognize pseudo-carriage returns compare them to
HISTSTRO using EQ, so this marker will never be confused with a string that was typed in by the user.

8.26

· THE ·PROGRA.Ml\1ER'S ASSISTANT

event specification to refer to a single simple event, or . to-several .. events, or to a· single event originally
constructed- from several events (which' may themselves have been multiple input events, etc.) without
having to treat each case separately.

REDO, RETRY, USE, '." and F IX commands, Le., those commands that reexecute previous events, are
not stored as inputs, because the input portion for these events are the expressions to be "reread". The
history commands UNDO, NAME, RETRIEVE, BEFORE, and AFTER are recorded as inputs, and 11 prints
them exactly as they were typed.

PROPS is a property list of the form (PROPERTY1 VALUE1 PROPERTY2 VALUE2 ...), that can be used
to associate arbitrary information with a particular event Currently, the following properties are used by
the programmer's assistant: .

SIDE

USE-ARGS
••• ARGS

ERROR
CONTEXT

LISPXPRINT

*ARCHIVE·

*GROUp·
HISTORY

A list of the side effects of the event. See UNDOSAVE, page 8.33.

Used by the 11 command when special formatting is required, for example, when
printing events corresponding to the break commands OK, GO, EVAL, and 1=.

The USE -ARGS and ... ARGS properties are used to save the arguments and
expression for the corresponding history command.

ERROR and *CONTEXT* are used to save information when errors occur for
subsequent use by the $ command. Whenever an error occurs, the offender is
automatically saved on that event's entry in the history list, under the * E R RO R·
property.

Used to record calls to LISPXPRINT, LISPXPRIN1, etc. (see page 8.20).

The property *ARCH IVE * on an event causes the event to be automatically archived
when it "falls off the end" of the history list (see page 8.13).

The *HISTORY· and *GROUP* properties are used for commands that reexecute
previous events, i.e., REDO, RETRY, USE, ••• , and FIX. The value of the
HISTORY propeny is the history command that the user actually typed, e.g.,
REDO FROM F. This is used by the 11 command when printing the event. The
value of the *GROUP* propeny is a structure containing the side effects, etc. for
the individual inputs being reexecuted. This structure is described below.

When LISPX is given an input, it calls HISTORYSAVE (page 8.32) to record the input in a new event.5

Normally, HISTORYSAVE creates and returns a new event LISPX binds the variable LISPXHIST to
the value of HISTORYSAVE, so that when the operation has completed, LISPX knows where to store
the value. Note that by the time it completes, the operation may no longer correspond to the most
recent event on the history list. For example, all inputs typed to a lower break will appear later on the

5The commands ??, FORGET, TYPE-AHEAD, $BUFS, and ARCHIVE' are executed immediately, and are
not recorded on the history list.

8.27

Programmer's Assistant Functions

history list.-· After binding LIS P X HIS T, LIS P X executes the input. stores its value in tile value field of
the LISPXHIST event, prints the value, and returns.

When the input is a REDO, RETRY, USE •••• , or F IX command, the procedure is simi1ar9 except that
the event is also given a ·GROUp· property, initially NIL, and a ·HISTORY· property. and LISPX
simply unreads the input and returns. When the input is "reread", itis HISTORYSAVE, not LISPX.
that notices this fact. and finds the event from which the input originally came.6 HISTORYSAVE then
adds a new (INPUT ID VALUE • PROPS) entry to the ·GROUp· property for this event, and returns
this entry as the "new event." LISPX then proceeds exactly as when its input was typed directly, Le.,
it binds LISPXHIST to the value of HISTORYSAVE, executes the input. stores the value in CADDR of
LISPXHIST, prints the value, and returns. In fact. LISPX never notices whether it is working on freshly
typed input. or input that was reread. Similarly, UNDOSAVE will store undo information on LISPXHIST
the same as always, and does not know or care that LIS P X HIS T is not the entire event. but one of the
elements of the ·GROUp· property. Thus when the event is finished, its entry will look like:

(INPUT ID VALUE

·HISTORY·
COMMAND

·GROUp·
«INPUT1 IDl VALUE1 SIDE SIDE1)

(INPUT2 ID2 VALUE2 SIDE SIDE2)
...))

In this case, the value field of the event with the ·GROUp· property is not being used; VALUEOF instead
returns a list of the values from the ·GROUp· property. Similarly, UNDO operates by collecting the SIDE
properties from each of the elements of the ·GROUp· property, and then undoing them in reverse order.

This implementation removes the burden from the function calling HISTORYSAVE of distinguishing
between new input and reexecution of input whose history entry has already been set up.

8.7, PROGRAMMER'S ASSISTANT FUNCTIONS

(LIS P X LISPX:X LISPXlD LISPXXMACROS LISPX:XUSERFN LISPXFLG) [Function]
LISPX i~ the primary function of the programmer's assistant. LISPX takes
one user input, saves it on the history list, evaluates it. saves its value, and
prints and returns it LISPX also interpretes p.a. commands, LISPXMACROS,
LISPXHISTORYMACROS, and LISPXUSERFN.

If LISPXX is a list, it is interpreted as the input expression. Otherwise, LIS P X
calls READLINE, and uses LISPX:X plus the value of READLINE as the input for
the event. If LISPXX is a list CAR of which is LAMBDA or NLAMBDA, LISPX calls
LIS P X READ to obtain the arguments.

LISPXID is the prompt character to print before accepting user input. A user can
call LIS P X specifying any prompt character as LISPXID except for ., since in

6 If HI STORYSAVE cannot find the event. for example if a user program unreads the input directly, and
not via a history command, HISTORYSAVE proceeds as though the input were typed.

8.28

· THE PROGRA.MM:ER'S.ASSISTANT

certain cases LIS P X must use the value of LISPXID to tell whether or not it was
called from the editor.

If LISPXXMACROS is not NIL, it is used as the list of LIS P X macros, otherwise the
top level value of the variable LISPXMACROS is used.

If LISPXXUSERFN is not NIL, it is used as the LIS P X USE R F N. In this case, it is
not necessary to both set and define LISPXUSERFN as described on page 8.20.

LISPXFLG is used by the E command in the editor (see page 8.35).

Note that the history is not one of the arguments to LIS P X, i.e., the editor must
bind (reset) LISPXHISTORY to EDITHISTORY before calling LISPX to carry out
a history command. LISPX will continue to operate as an EVAL/APPLY function
if LISPXHISTORY is NIL. Only those functions and commands that involve the
history list will be affected.

LISPX performs spelling corrections using LISPXCOMS, a list of its commands, as
a spelling list whenever it is given an unbound atom or undefined function, before
attempting to evaluate the input.

LISPX is responsible for rebinding HELPCLOCK, used by BREAKCHECK (page 9.10)
for computing the amount of time spent in a computation, in order to determine
whether to go into a break if and when an error occurs.

(USEREXEC LISPXID LISPXXMACROS LISPXXUSERFN) [Function]
Repeatedly calls LIS P X under errorset protection specifying LISPXXMACROS and
LISPX:XUSERFN, and using LISPXID (or ... if LISPXID=NIL) as a prompt character.
USEREXEC is exited via the command OK, or else with a RETFROM.

(LISPXEVAL LISPXFORM LISPXID) [Function]
Evaluates LISPXFORM (using EVAL) the same as though it were typed in to LISPX,
i.e., the event is recorded, and the evaluation is made undoable by substituting
the slash functions for the corresponding destructive functions (see page 8.22).
LISPXEVAL returns the value of the form, but does not print it.

When LISPX recieves an "input/' it may come from the user typing it in, or it may be an input that
has been "unread." LISPX handles these two cases by getting inputs with LISPXREAD and READLINE,
described below. These functions use the variable READBUF to store the expressions that have been
unread. When READBUF is not NIL, READLINE and LISPXREAD "read" expressions from READBUF
until READBUF is NIL, or until they read a pseudo-carriage return (see page 8.26). Both functions return
a list of the expressions that have been "read." (The pseudo-carriage return is not included in the list.)

When READBUF is NIL, both LISPXREAD and READLINE actually obtain their input by performing
(APPLY· LISPXREADFN FILE), where LISPXREADFN is initially set to READ. The user can make
LISP X, the editor, break, etc. do their reading via a different input function by simply setting
LISPXREADFN to the name of that function (or an appropriate LAMBDA expression).

Note: The user should only add expressions to READBUF using the function LISPXUNREAD (page 8.31),
which knows about the format of READBUF.

8.29

Programmer's Assistant Functions

. (READLINE RDTBL - -) [Function]
Reads a line from the terminal, returning it as a list. If (READP T) is NIL,
READLINE returns NIL. Otherwise it reads expressions by performing (APPLY·
LISPXREADFN T) (LISPXREADFN is initially set to READ) until it encounters
either:

• a carriage-return (typed by the user) that is not preceded by any spaces, e.g.,

A B Ccr

and REAOLINE returns (A B C)

• a list terminating in a "]", in which case the list is included in the value of
READLINE, e.g.,

A B (C 0]

arid READLINE returns (A B (C D».

• an unmatched right parentheses or right square bracket. which is not included in
the value of REAOLINE, e.g.~

ABC]

and READLINE retUrns (A B C).

In. the case that one or more spaces precede a carriage-return, or a list is terminated
with a '.)". REA 0 LIN E will type" and continue reading on the next line,
e.g.,

A B Ccr
.•• (0 E F)
... (X Y Z]

and READL INE returns (A B C (D E F) (X Y Z».

If the user types another carriage-return after the " ... ", the line will terminate,
e.g.,

ABC cr
cr

and REAOLINE returns (A B C).

Note that carriage-return, i.e., the EOL character, can be redefined with SETSYNTAX
(page 6.34). READLINE actually checks for the EOL character, whatever that may
be. The same is true for right parenthesis and right bracket.

When READLINE is called from LISPX, it operates differently in two respects:

(1) If the line consists of a single) or], READL I NE returns (N I L) instead of
NIL, Le., the) or] is included· in the line. This permits the user to type F 00)
or F 00], meaning call the function F 00 with no arguments, as opposed to F 00 cr

8.30

THE PROGRAMMER'S ASSISTANT

(FOO(carriage-retum», meaning evaluate the variable FOO.

(2) If the first expression on the line is a list that is not preceded by any spaces,
the list tenninate$ the line regardless of whether or not it is tenninated by]. This
pennits the user to type ED I T F (F 00) as a single input.

Note that if any spaces are inserted between the atom and the left parentheses or
bracket, READLINE will assume that the list does not tenninate the line. This is to
enable the user to type a line command such as USE (FOO) FOR FOO. Therefore,
if the user accidentially puts an extra space between a function and its arguments,
he will have to complete the input with another carriage return, e.g.,

.-EDITF (FOO)
cr

EDIT
•

(LISPXREAD FILE RDTBL) [Function]
A generalized READ. IfREADBUF = NIL, LISPXREAD perfonns (APPLY· LISPXREADFN
FILE), which it returns as its value. If READBUF is not NIL, LISPXREAD "reads"
and returns the next expression on READBUF.

Note: If the user types control-U during the call to READ, L ISPXREAD calls the
editor and returns the edited value.

LISPXREAD also sets REREADFLG to NIL when it 'reads via READ, and sets
REREADFLG to the value of READBUF when rereading.

(LISPXREADP FLG) [Function]
A generalized READP. If FLG= T, LISPXREADP returns T if there is any input
waiting to be "read", in the manner of LISPXREAD. If FLG=NIL, LISPXREADP
returns T only if there is any input waiting to be "read" on this line. In both cases,
leading spaces are ignored, i.e., skipped over with READC, so that if only spaces
have been typed, LIS P X READ P will return NIL.

(LISPXUNREAD LST -) [Function]
U nreads LST, a list of expressions.

(PROMPTCHAR ID FLG HISTORY) [Function]
Called by LISPX to print the prompt character ID before each input PROMPTCHAR
will not print anything when the next input will be "reread", Le., when READBUF
is not NIL.

PROMPTCHAR will not print when (READP) = T, unless FLG is T. The editor calls
PROMPTCHAR with FLG=NIL so that extra ·'s are not printed when the user
types several commands on one line. However, EVALQT calls PROMPTCHAR with
FLG = T, since it always wants the .- printed (except when "rereading").

If PROMPT#FLG (page 8.18) is T and HISTORY is not NIL, PROMPTCHAR prints
the current event number (of HISTORY) before printing ID.

The value of PROMPTCHARFORMS (page 8.18) is a list of expressions that are
evaluated by PROMPTCHAR before, and if, it does any printing.

8.31

Programmer's Assistant Functions

(HISTORYSAVE HISTORY ID -INPUTl INPUT2 INPUT3 PROPS)

Records one event on HISTORY.

[Function]

If INPUTl is not NIL~ the input is of the form (INPUT1 INPUT:z • INPUT3). If
INPUTl is NIL~ and INPUT:z is not NIL9 the input is of the form (INPUT:z •

INPUT 3)' Otherwise, the input is just INPUT 3.

HISTORYSAVE creates a new event with the corresponding input, ID, value field
initialized to bell~ and PROPS. If the HISTORY has reached its full size, the last
event is removed and cannibalized.

The value of HISTORYSAVE is the new event However, if REREADFLG is not
NIL. and the most recent event on the history list contains the history command
that produced this input, HISTORYSAVE does not create a new event, but simply
adds an (INPUT ID bell . PROPS) entry to the *GROUP* property for that
event and returns that entry. See discussion on page 8.28.

HI STORYSAVE FORMS (page 8.18) is a list of expressions that are evaluated under
errorset protection each time HIS TORY SAV E creates a new event.

(LISPXSTOREVALUE EVENT VALUE) [Function]
Used by LISPX for storing the value of an event Can be advised by user to watch
for particular values or perform other monitoring functions.

(LISPXFIND HISTORY LINE TYPE BACKUP -) [Function]
LINE is an event specification, TYPE specifies the format· of'the value to be returned
by LISPXFIND, and can be either ENTRY, ENTRIES, COPY, COPIES, INPUT, or
REDO. LISPXFIND parses LINE, and uses HISTORYFIND to find the corresponding
events. LISPXFIND then assembles and returns the appropriate structure.

LISPXF IND incorporates the following special features:

(1) if BACKUP=T. LISPXFIND interprets LINE in the context of the history list
before the,current event was added. This feature is used, for example. by VALUEOF,
so that (VALUEOF -1) will not refer to the VALUEOF event itself.

(2) if LINE=NIL and the last event is an UNDO. the next to the last event is taken.
This pennits the user to type UNDO followed by REDO or USE.

(3) LISPXFIND recognizes @@, and substitutes ARCHIVELST for HISTORY (see
page 8.13).

(4) LISPXFIND recognizes @. and retrieves the corresponding event(s) from the
property list of the atom following @ (see page 8.12).

(HIS TORY FIN D LST INDEX MOD EVENT ADDRESS -) [Function]
Searches LST and returns the tails of LST beginning with the event corresponding
to EVENT ADDRESS. LST. INDEX, and MOD are the first three elements of a "history
list'9 structure (see page 8.25). EVENTADDRESS is an event address (see page 8.5)
e.g .• (43). (-1), (FOO FIE). (LOAD'" FOO), etc. If HISTORYFIND cannot
find EVENT ADDRESS, it generates an error.

8.32

THE PROGRAl\1l\1ER'S ASSIST ANT

(HISTORYMATCH INPUT PAT EVENT) [Function]
Used 'by HIS TORY FIN 0 for "matching" when EVENT ADDRESS specifies a pattern.
Matches PAT against INPUT, the input portion of the history event EVENT, as
matching is defined on page 17.13. Initially defined as (EDITFINoP INPUT PAT

T), but can be advised or redefined by the user.

(ENTRYfI mST x) [Function]
mST is a history list (see page 8.2S). x is EQ to one of the events on HIST. ENTRY#
returns the event number for x.

(UNoOSAVE UNDOFORM HISTENTRY) [Function]

flUNoOSAVES

UNoOSAVE adds the "undo information" UNDOFORM to the SID E property of the
history event HISTENTRY. If there is no SID E property, one is created. If the value
of the SIDE property is NOSAVE, the information is not saved.

HISTENTRY specifies an event. If mSTENTRY= NIL, the value of LIS P X HIS T is
used. If both HISTENTRY and LISPXHIST are NIL, UNoOSAVE is a no-ope Note
that mSTENTRY (or LISPXHIST) can either be a "real" event, or an event within
the *GROUP* property of another event (see page 8.28).

The form of UNDOFORM is (FN • ARGS).7 Undoing is done by perform
ing (APPLY (CAR UNDOFORM) (CDR UNDOFORM». For example, if the
definition of Foa is DEF, (/PUTo FOO NEWDEF) will cause a call to UNoOSAVE
with UNDOFORM= (/PUTo FOa DEF).

CAR of the SIDE property of an event is a count of the number of UNDOFORMS

saved for this event. Each call to UNoOSAVE increments this count. If this count
is set to -1, then it is never incremented, and any number of UNDOFORMS can
be saved. If this count is a positive number, UNoOSAVE restricts the number of
UNDOFORMS saved to the value of #UNoOSAVES, described below. LOAD initializes
the count to -1, so that regardless of the value of #UNoOSAVE S, no message will
be printed, and the LOAD will be undoable.

[Variable]
The value of #UNoOSAVES is the maximum number of UNDOFORMS to be saved for
a single event. When the count of UNDOFORMS reaches this number, UNoOSAVE
prints the message CONTINUE SAVING?, asking the user if he wants to continue
saving. If the user answers NO or defaults, UNoOSAVE discards the previously
saved information for this event, and makes NOSAVE be the value of the property
SIDE. which disables any further saving for this event. If the user answers YES,
UNoOSAVE changes the count to -1, which is then never incremented, and continues
saving. The purpose of this feature is to avoid tying up large quantities of storage
for operations that will never need to be undone.

If #UNoOSAVES is negative, then when the count reaches -#UNoOSAVES,
UNoOSAVE simply stops saving without printing any messages or interacting with the

7In the special case of IRPLNODE and IRPLNOoE2, the format of UNDOFORM is (x OLDCAR •
OLDCDR) . When UNDOFORM is undone. this form is recognized and handled specially. This
implementation saves space.

8.33

(NEW/FN FN)

Programmer's Assistant Functions

user. IIUNDOSAVES=NIL is equivalent to #UNDOSAVES=infinity. #UNDOSAVES
is initially NIL.'

[Function]
NEW IF N performs the necessary housekeeping operations to make FN be translated
to the undoable version IFN when typed-in. For example, RADIX can be made
undoable when typed-in by performing:

~ (DEFINEQ (/RADIX (X)
(UNDOSAVE (LIST '/RADIX (RADI~ X»

(/RADIX)
~ (NEW/FN 'RADIX)

(LISPXI x FN VARS) [Function]
LISPXI performs the substitution of I functions for destructive functions that are
typed-in. If FN is not NIL, it is the name of a function, and x is its argument list.
If FN is NIL, x is a form. In both cases, LIS P X I returns x with the appropriate
substitutions. VARS is a list of bound variables (optional).

LIS P X I incorporates information about the syntax and semantics of Interlisp
expressions. For example, it does not bother to make undoable operations involving
variables bound in x. It does not perform substitution inside of expressions CAR of
which is an nlambda function (unless CAR of the form has the property INFO value
EVAL. see page 5.4). For example, (BREAK PUTD) typed to LISPX. will break on
PUTD. not IPUTD. Similarly, substitution should be perf9rmed in the arguments
for functions like MAPC, RPTQ, etc., since these contain expressions that will be
evaluated or applied. For example, if the user types (MAPC '(FOOl F002
F003) 'PUTD) the PUTD must be replaced by I PUTD.

(UNDOLISPX LINE) [Function]
LINE is an event specification. UNDOLISPX is the function that executes UNDO
commands by calling UNDOLISPXl on the appropriate entry(s).

(UNDOLISPX 1 EVENT FLG -,) [Function]
Undoes one event. UNDO LIS P X 1 returns NIL if there is nothing to be undone.
If the event is already undone, UNDOL ISPX 1 prints ALREADY UNDONE and
returns T. Otherwise, UNDOLISPXl undoes the event, prints a message, e.g., SETQ
UNDONE. and returns T.

If FLG= T and the event is already undone, or is an undo command. UNDOLISPX 1
takes no action and returns NIL. UNDOLISPX uses this option to search for the
last event to undo. Thus when LINE = NIL. UNDOLISPX simply searches history
until it finds an event for which UNDOLISPXl returns T.

Undoing an event consists of mapping down (CDR of) the property value for SIDE,
and for each element, applying CAR to CDR, and then marking the event undone
by attaching (with I ATTACH) a NIL to the front of its S IDE property. Note that
the undoing of each element on the SID E property will usually cause undosaves to
be added to the current LISPXHIST, thereby enabling the effects of UNDO LISP Xl
to be undone.

8.34

THE PROGRAl\tIl\1ER'S ASSISTANT

(PRINTHISTORY HISTORY· LINE SKIPFN NOVALUES FILE) [Function]
LINE is an event specification. PRINTHISTORY prints the events on HISTORY

specified by LINE, e.g., (-1 T H RU -10) . Printing is performed via the
function SHOWPRIN2, so that if the value of SYSPRETTYFLG=T, events will
be prenyprinted.

SKIPFN is an (optional) functional argument that is applied to each event before
printing. If it returns non-N I L, the event is skipped, Le., not printed.

If NOVALUES= T, or NOVALUES applied to the corresponding event is true, the
value is not printed. For example, NOVALUES is T when printing events on
EDITHISTORY.

For example, the following LISPXMACRO will define ??' as a command for
printing the history- list while skipping all "large events" and not printing any
values.

(?1' (PRINTHISTORY
LISPXHISTORY
LISPXLINE
(FUNCTION (LAMBDA (X)

T
T»

(IGREATERP (COUNT (CAR X» 5»)

8.8 THE EDITOR AND THE PROGRAMlVIER'S ASSISTANT

As mentioned earlier, all of the remarks concerning "the programmer's assistant" apply equally well to
user interactions with EVALQT. BREAK or the editor. The differences between the editor's implementation
of these features and that of LISP X are mostly obvious or inconsequential. However, for completeness,
this section discusses the editor's implementation of the programmer's assistant.

The editor uses PROMPTCHAR to print its prompt character, and LISPXREAD. LISPXREADP, and
READLINE for obtaining inputs. When the editor is given an input, it calls HISTORYSAVE to record the
input in a new event on its history list, EDITHISTORy.8 EDITHISTORY follows the same conventions
and format as LISPXHISTORY. However, since edit commands have no value. the editor uses the value
field for saving side effects, rather than storing them under the property SIDE. .

The editor recognizes and processes the four commands 00, ! E, ! F, and ! N which refer to previous
events on EDITHISTORY. The editor also processes UNDO itself, as described below. All other history

8Except that the atomic commands OK. STOP, SAVE, P. ?, PP and E are not recorded. In addition,
number commands are grouped together in a single event For example, 3 3 -1 is considered as one
command for changing position.

8.35

The Editor and the Programmer's Assistant

commands9-are simply given to LISPX for execution, after first binding (resetting) LISPXHISTORY to
EDITHISTORY. The editor also calls LISPX when given an E command (page 17.45). In this case, the
editor uses the fifth argument to LIS P X, LISPXFLG, to specify that any history commands are to be
executed by a recursive call to LISPX, rather than by unreading. For example, if the user types E REDO
in the editor, he wants the last event on LISPXHISTORY I'rocessed as LISPX input, and not to be unread·
and processed by the editor.

The major implementation diffe~ence between the editor and LISPX occurs in undoing. EDITHISTORY
is a list of only the last N comm~ds, where N is the value of the time-slice. However the editor provides
for undoing all changes made in a single editing session. even if that session consisted of more than N

edit commands. Therefore, the 'editor saves undo information independently of the EDITHISTORY on
a list called UNDOLST, (although it also stores each entry on UNDOLST in the field of the corresponding
event on EDITHISTORY.) Thus, the commands UNDO, ! UNDO, and UNBLOCK, are not dependent on
EDITHISTORY, and in fact will work if EDITHISI0RY=NIL. or even in a system which does not
contain LISPX at all. For example. UNDO specifies undoing the last command on UNDOLST, even if that
event no longer appears on EDITHISTORY. The only interaction between UNDO and the history list occurs
when the user types UNDO followed by an event specification. In this case, the editor calls LISPXF IND
to find the event, and then undOes the corresponding entry on UNDOLST. Thus the user can only undo
a specified command within the scope of the EO ITH ISTORY. (Note that this is also the only way UNDO
commands themselves can be undone, that is, by using the history feature, to specify the corresponding
event, e.g.~ UNDO UNDO.)

The implementation of the actual undoing is similar to the way it is done in LIS P X: each command that
makes a change in the structure being edited does so via a function that records the change on a variable.
After the command has completed, this variable contains a list of all the pointers·that have been changed
and their original contents. Undoing that command simply involves mapping down that list and restoring
the pointers.

gas indicated by their appearance on HI STORYCOMS. a list of the history commands. EO I TO E F AU L T in
terrogates HISTORYCOMS before attempting spelling correction. (All of the commands on HISTORYCOMS
are also on EOITCOMSA and EOITCOMSL so that they can be corrected if misspelled in the editor.) Thus
if the user defines a LISP XMAC RO and wishes it to operate in the editor as well. he need Simply add it
to HISTORYCOMS. For example, RETRIEVE is implemented as a LISPXMACRO and works equally._well
in LI SP X and the editor.

8.36

CHAPTER 9

ERRORS AND BREAK HANDLING

Occasionally, while a program is running, an error may occur which will stop the computation. A coding
mistake may have caused the wrong arguments to be passed to a function, or the programmer may have
not forseen a particular unusual situation which came up, causing a function to try doing something
illegal. Interlisp provides extensive facilities for detecting and handling error conditions, to enable testing,
debugging,and revising of imperfect programs.

Errors can be caused in different ways. As mentioned above, an Interlisp primitive-function may signal an
error if given illegal arguments; for example, PLUS will cause an error if its arguments are not numbers. It
is also possible to interrupt a computation at any time by typing one of the "interrupt characters," such as
control-D or controi-E (the Interlisp-D interrupt characters are listed on page 18.1; those for Interlisp-lO
on page 22.1). Finally. as an aid to debugging, the programmer can specify that certain functions should
cause an error automatically whenever they are entered (see . page 10.1). This allows examination of the
context within the computation.

When an error occurs, the system can eitherl reset and unwind the stack, or go into a "break", an
environment where the user can examine the state of the system at the point of the error, and attempt to
debug the program. Within a break, Interlisp offers an extensive set of "break commands", which assist
with debugging.

This chapter explains what happens when errors occur. Breaks and break commands are given which
allow the user to handle program errors. Finally, advanced facilities for modifying and extending the
error mechanism are presented.

9.1 B~EAKS

One of the most useful debugging facilities in Interlisp is the ability to put the system into a "break".
stopping a computation at any point and allowing the user to interrogate the state of the world and affect
the course of the computation. A break appears to the user like a top-level executive, except that a break
uses the prompt character":" to indicate it is ready to accept input(s), in the same way that "+on is used
at the top-level. However, a break saves the environment where the break occurred, so that the user may
evaluate variables and expressions in the environment that was broken. In addition, the break program
recognizes a number of useful "break commands", which provide an easy way to interrogate the state of
the broken computation.

Note: In Interlisp-D, the break package has been extended to include window. operations (see page 20.10).

1 The mechanism used for deciding whether to unwind the stack or to go into a break is described on
page 9.10. The user can modify this mechanism.

9.1

Breaks

. Breaks may be -entered in several different ways. Some interrupt characters (page 9.17) automatically
cause a break to be entered whenever they are typed. Functions errors may also cause a break, depending
on the depth of the computation (see page 9.10). Finally, Interlisp provides functions which make it
easy to "break" suspect functions so that they always cause a break whenever they are entered, to allow
examination and debugging (see page 10.4).

Within a break the user has access to all of the power of Interlisp; he can do anything that he can do at
the top-level executive. For .example, the user can evaluate an expression, see that the value is incorrect,
call the editor, change the function, and evaluate the expression again, all without leaving the break. The
user can even type in commandS to the programmer's assistant (page 8.1), e.g. to redo or undo previously
executed events, including break commands.

Similarly, the user can prettyprint functions, define new functions or redefine old ones, load a file, compile
functions, time a computation, etc. In short anything that he can do at the top level can be done while
inside of the break. In addition the user can examine the stack (see page 7.1), and even force a return
back to some higher function via the function RETFROM or RETEVAL.

It is important to emphasize that once a break occurs, the user is in complete control of the flow of
the computation, and the computation will not proceed without specific instruction from him. If the
user types in an expression whose evaluation causes an error, the break is maintained. Similarly if the
user aborts a computation initiated from within the break (by typing control-E), the break is maintained.
Only if the user gives one of the commands that exits from the break, or evaluates a form which does a
RETFROM or RETEVAL back out of BREAK1, will the computation continue.2

The basic function of the break package is BREAK 1. Note that BREAK 1 is just another Interlisp function,
not a special system feature like the interpreter or the garbage collector.!t has arguments, and returns a
value, the same as any other function. The value returned by BREAK 1 is called "the value of the break."
The user can specify this value explicitly by using the RETURN command described below. But in most
cases, the value of a break is given implicitly, via a GO or OK command, and is the result of evaluating
"the break expression," BRKEXP, which is one of the arguments to BREAK1. For more information on
the function BREAK1, see page 9.1l.

The break expression, stored in the variable BRKEXP, is an expression equivalent to the computation that
would have taken place had no break occurred. For example, if the user breaks on the function FOO, the
break expression is the body of the definition of F 00. When the user types OK or GO, the body of Faa is
evaluated, and its value returned as the value of the break, i.e., to whatever function called Faa. BRKEXP
is set up by the function that created the call to BREAK1. For functions broken with BREAK or TRACE,
BRKEXP is equivalent to the body of the definition of the broken function (see page 10.4). For functions
broken with BREAKIN,_ using B~FORE or AFTER. BRKEXP is NIL For BREAKIN AROUND, BRKEXP is
the indicated expression (see page 10.5).

BREAK1 recognizes a large set of break commands. These are typed in without parentheses. In order
to facilitate debugging of programs that perform input operations, the carriage return that is typed to

2Except that BREAK1 does not "turn off' control-D, i.e., a control-D will force an immediate return back
to the top level.

9.2

ERRORS AND BREAK HANDLING

-complete the GO, OK, EVAL, etc. commands is discarded by BREAK1, so that it will not be part of the
input stream after the break.

GO

OK

EVAL

RETURN FORM

[Break Command]
Evaluates BRKEXP, prints this value, and returns it as the value of the break.
Releases the break and allows the computation to proceed.

[Break Command]
Same as GO except that the value of BRKEXP is not printed.

[Break Command]
Same as OK except that the break is maintained after the evaluation. The value
of this evaluation is bound to the local variable f VALUE, which the user can
interrogate. Typing GO or OK following EVAL will not cause BRKEXP to be
reevaluated, but simply return the value of ! VALUE -as the value of the break.
Typing another EVAL will cause reevaluation. EVAL is useful when the user is not
sure whether the break will produce the correct value and wishes to examine it
before continuing with the computation.

[Break Command]
FORM is evaluated, and returned as the value of the break. For example, one could
use the EVAL command and follow this with RETURN (REVERSE ! VALUE).

[Break Command]
Calls ERROR! and aborts the break, making it "go away" without returning a value.
This is a useful way to unwind to a higher level break. All other errors, including
those encountered while ,executing the GO, OK, EVAL, and RETURN commands,
maintain the break.

The following four commands refer to "the broken function." This is the function that caused the break,
whose name is stored in the BREAK! argument BRKFN.

fEVAL

1GO

10K

UB

@

[Break Command]
The broken function is first unbroken, then the break expression is evaluated (and
the value stored in ! VALUE), and then the function is rebroken. This command is
very useful for dealing with recursive functions.

[Break Command]
Equivalent to ! EVAL followed by GO. The broken function is unbroken, the break
expression is evaluated, the function is rebroken, and then the break is exited with
the value typed.

[Break Command]
Equivalent to ! EVAL followed by OK. The broken function is unbroken. the break
expression is evaluated, the function is rebroken, and then the break is exited.

[Break Command]
Unbreaks the broken function.

[Break Command]
Resets the variable LASTPOS, which establishes a context for the commands ?=,
ARGS, BT, BTV, BTV·, EDIT, and IN? described below. LASTPOS is the position

'\

9.3

Breaks

of a· function calion the stack. It is initialized to the. function just before the call
to BREAK1, Le.,{ STKNTH -1 'BREAK1).3

@ treats the rest of the teletype line as its argument(s}. It first resets LAST POS to
(STKNTI1 -1 'BREAK1) and then for each atom on the line, @ searches down
the stack for a call to that atom. The following atoms are treated specially:

(I Do not reset LAST pas to (STKNTH -1 'BREAK 1) but leave it as it was,
and continue searching from that point.

a number N \
If negative, move LASTPas down the stack N frames. If positive, move
LASTPOS up the stack N frames.

/ The next atom on the line (which should be a number) specify that. the
previous atom should be searched for that many times. For example, "(I

FOa / 3" is equivalent to "(I FOa FOa FOa".

= Resets LAST POS to the value of the next expression, e.g., if the value
of Foa is a stack pointer, '6(1 = FOO FIE" will search for FIE in the
environment specified by (the value of) FOO.

For example, if the push-down stack looks like:

BREAK1 [9}
Foa [8}
COND [7}
FIE [6}
COND [5}
FIE [4}
COND [3J
FIE [2J
FUM [IJ

then "(I FIE COND" will set LASTPOS to the position corresponding to [5); "@ @

COND" will then set LASTPOS to [3}; and "@ FIE / 3 -1" to [IJ.

If (I cannot successfully complete a search for function FN, it searches the stack
again from that point looking for a call to a function whose name is close to that
of FN, in the sense of the spelling corrector (page 15.13). If the search is still
unsuccessful, @ types (FN NOT FOUND), and then aborts.

When @ finishes, it types the name of the function at LAST pas, i.e., (STKNAME
LASTPOS).

@ can be used on BRKCOMS (see page 9.12). In this case, the next command on
BRKCOMS is treated the same as the rest of the teletype line.

3When control passes from BREAKl, e.g. as a result of an EVAL, OK, GO, REVERT, .,. command, or via
a RETFROM or RETEVAL typed in by the user, (RELSTK LASTPOS) is executed to release this stack
pointer.

9.4

?=

PB

ERRORS AND BREAK HANDLING

[Break Command]
-This is a mUlti-purpose command.4 Its most common use is to interrogate the
value(s) of the arguments of the broken function. For example, if FOO has three
arguments (X Y Z), then typing ?= to a break on Faa will produce:

:?=
X = value of X
Y = value of Y
Z = value ofZ

? = operates on the rest of the teletype line as its arguments. If the line is empty.
as in the above case, it operates on all of the arguments of the broken function. If
the user types? = X (CAR Y), he will see the value of X, and the value of (CAR
Y) .5 The difference between using ? = and typing -X and (C A R Y) directly to
BREAK 1 is that ?= evaluates its inputs as of the stack frame LASTPOS. Le., it uses
STKEVAL. This provides a way of examing variables or perfonning computations
as of a particular point on the stack. For example, @ FOO / 2 followed by ? = X
will allow the user to examine the value of X in the previous call to F 00, etc.

? = also recognizes numbers as referring to the correspondingly numbered argument,
Le., it uses STKARG in this case. Thus

:@ FIE
FIE
:?= 2

will print the name and value of the second argument of FIE.

?= can also be used on BRKCOMS (page 9.12, in which case the next command
on BRKCOMS is treated as the rest of the teletype line. For example, if BRKCOMS
is (EVAL ?= (X Y) GO), BRKEXP will be evaluated, the values of X and Y
printed, and then the function exited with its value being printed.

[Break Command]
Prints the bindings of a given variable. Similar to ?=, except ascends the stack
starting from LAS T POS, and, for each frame in which the given variable is bound,
prints the frame name and value of the variable (with PRINTLEVEL reset to (2
. 3», e.g.

:PB FOO
@ FN1:
@ FN2:
@ TOP:

3
10
NOBIND

4 In fact, ? = is a universal mnemonic for displaying argument names and their corresponding values. In
addition to being a break command, ? = is an edit macro which prints the argument names and values
for the current expression (page 17.37), and a read-macro (actually ? is the read-macro character) which
does the same for the current level list being read.

5The value of each variable is printed with the function SHOWPRI NT (page 6.17), so that if
SYSPRETTYFLG=T. the value will be prettyprinted.

9.S

BT

BTV

Brv+

BTV·

BTV!

Breaks

PB is also a programmer's assistant command (page 8.14) that can be used when
not in a break. PB is implemented via the function PRINTBINDINGS.

[Break Command]
Prints a backtrace of function names only starting at LASTPOS. The several nested
calls in system packages such as break, edit, and the top level executive appear as
the single entries ··BREAK··, ··EDITOR··, and ··TOp·· respectively.

[Break Command]
Prints a backtrace of function names with variables beginning at LASTPOS.

The value of each variable is printed with the function SHOWPRINT (page 6.17),
so that if SYSPRETTYFLG=T, the value will be prettyprinted.

[Break Command]
Same as BTV except also prints local variables and arguments to SUBRs.

[Break Command]
Same as BTV except prints arguments to SUBRs, local variables, and temporaries
of the interpreter, Le. eval blips (see page 7.10).

[Break Command]
Same as B TV except prints everything on the stack.

BT, BTV, BTV+, BTV·, and BTV! all take optional functional arguments. These arguments are used to
choose functions to be skipped on the backtrace. As the backtrace scans down the stack, the name of

. each stack frame is passed to each of the functional arguments to the back trace command. If any of
these functions returns a non-N I L value, then that frame is skipped, and not shown in the backtrace. For
example, BT SUBRP will skip all SUBRs, BTV (LAMBDA (X) {NOT (MEMB X FOOFNS») will skip
all but those functions on FOOFNS. If used on BRKCOMS (page 9.12) the functional argument is no longer
optional, Le., the next element on BRKCOMS must either be a list of functional arguments, or NIL if no
functional argument is to be applied.

For BT, BTV, BTV+, BTV·, and BTVI, ifcontrol-P is used to change a printlevel during the backtrace,
the printlevel will be restored after the backtrace is completed.

The value of BREAKDELIMITER, initially" er", is printed to delimit the output of ?= and backtrace
commands. This can be reset (e.g. to " , ") fo~ more linear output

ARGS

REVERT

[Break Command1
Prints the names of the variables bound at LASTPOS, Le., (VAR IABLES LASTPOS)
(page 7.5). For most cases, these are the arguments to the function entered at that
position, i.e., (ARGL 1ST (STKNAME LASTPOS».

[Break Gommand]
Goes back to position LAST POS on stack and reenters the function called at that
point with the arguments found on the stack. If the function is not already broken,
REVERT first breaks it, and then unbreaks it after it is reentered.

REVE RT can be given the position using the conventions described for @, e.g.,
REVE RT FOO -1 is equivalent to @ FOO -1 followed by REVE RT.

REVERT is useful for restaning a computation in the situation where a bug is

9.6

ORIGINAL

ERRORS AND BREAK HANDLING

discovered at . some. point below where the problem actually occurred. REVE RT
essentially says "go back there and start over in a break." REVERT will work
correctly if the names or arguments to the function, or even its function type, have
been changed.

[Break Command]
For use in conjunction with BREAKMACROS (see page 9.12). Fonn is (ORIGINAL
• COMS). COMS are executed without regard for BREAKMACROS. Useful for
redefining a break command in tenns of itself.

The following two commands are for use only with unbound atoms or undefined function breaks.

= FORM

-) EXPR

[Break Command]
Can only be used in a break following an unbound atom error. Sets the atom to
the value of FORM, exits from the obreak returning that value, and continues the
computation, e.g.,

UNBOUND ATOM

(FOO BROKEN)
:= (COpy FIE)

sets F 00 and goes on.

Note: FORM may be given in the fonn FN[ARGS].

[Break Command]
Can be used in a break following either with unbound atom error, or an undefined
function error. Replaces the expression containing the error with EXPR (not the
value of EXPR), and continues the computation. -) does not just change BRKEXP;
it changes the function or expression containing the erroneous fonn. In other
words, the user does not have to perfonn any additional editing.

For example,

UNDEFINED CAR OF FORM

(FOOl BROKEN)
:-) FOO

changes the F 001 to F 00 and continues the computation. EXPR need not be
atomic, e.g.,

UNBOUND ATOM

(FOO BROKEN)
:-) (QUOTE FOO)

For undefined function breaks, the user can specify a function and initial arguments,
e.g.,

UNDEFINED CAR OF FORM

9.7

EDIT

(MEMBERX BROKEN)
:-) MEMBER X

Breaks

Note that in the case of a undefined function error occurring immediately following
a call to APPLY (e.g., (APPLY ·x Y) where the value of X is FOO and FOO is
undefined), or a unbound atom error immediately following a call to EVAL (e.g.,
(EVAL X), where the value of X is FOO and FOO is unbound), there is no
expression containing the offending atom. In this case, -) cannot operate, so ? is
printed and no action is taken.

[Break Command]
Designed for use in conjunction with breaks caused by errors. Facilitates editing
the expression causing the break:

NON-NUMERIC ARG
NIL
(IPLUS BROKEN)
:EDIT
IN FOO ..•
(IPLUS X Z)
EDIT
*(3 Y)
*OK
FOO

and the user can continue by typing OK, EVA L, etc.

This command is very simple conceptually, but complicated in its implementation by all of the exceptional
cases involving interactions with compiled functions, breaks on user functions, error breaks, breaks within
breaks, et ale Therefore, we shall give the following simplified explanation which will account for 90% of
the situations arising in actual usage. For those others, ED I T will print an appropriate failure message
and return to the break.

EDIT begins by searching up the stack beginning at LASTPOS (set by @ command, initially position of the
break) looking for a form, i.e .• an internal call to EVAL. Then EDIT continues from that point looking for
a call to an interpreted function. or to EVAL. It then calls the editor on either the EXPR or the argument
to EVAL in such a way as to look for an expression EQ to the form that it first found. It then prints
the form, and permits interactive editing to begin. Note that the user can then type successive O's to the
editor to see the chain of superforms for this computation.

If the user exits from the edit with an OK, the break expression is reset, if possible, so that the user can
continue with the computation by simply typing OK. (Note that evaluating the new BRKEXP will involve
reevaluating the form that causes the break, so that if (PUTD (QUOTE (FOO» BIG-COMPUTATION)
were handled by ED IT, BIG-COMPUTATION would be reevaluated.} However, in some situations. the
break expression cannot be reset. For example, if a compiled function FOO incorrectly called PUTO and
caused the error ARG NOT ATOM followed by a break on PUTO, EDIT might be able to find the form
headed by FOO, and also find that form in some higher interpreted function. But after the user corrected
the problem in the FOO-form, if any, he would still not have in any way informed ED IT what to do about
the immediate problem, i.e., the incorrect call to PUTD. However, if FOO were interpreted EDIT would
find the PUTD form itself, so that when the user corrected that form, EDIT could use the new corrected

9.8

ERRORS AND BREAK HANDLING

fonn to reset the break expression. The two cases are shown below:

If F 00 is compiled:

F 00 compiled

ARG NOT ATOM
(FUM)
(PUlD BROKEN)
:EDIT
IN FIE ...
(FOO X)
EDIT
*(2 (CAR X»
*OK

F 00 interpreted

ARG NOT ATOM
(PUlD BROKEN)
:EDIl
IN FOO ...
(PUlD X)
EDIl
*(2 (CAR X»
*OK
:OK

NOTE: BRKEXP NOT CHANGED
FIE

PUTD

:?=
U = (FUM)
:(SETQ U (CAR U»
FUM
:OK
PUTD

IN? [Break Command]
Similar to ED IT, but just prints parent fonn, and superfonn, but does not call
editor, e.g.,

ATTEMPT TO RPLAC NIL
T
(RPLACD BROKEN)
:IN?
FOO: (RPLACD X Z)

Although EDIT and IN? were designed for error breaks, they can also be useful for user breaks. For
example, if upon reaching a break on his function FOO, the user detennines that there is a problem in
the call to FOO, he can edit the calling fonn and reset the break expression with one operation by using
ED IT. The following two protocol's with and without the use of ED IT, illustrate this:

Without EDIT:

(FOO BROKEN)
:?=
X = (A B C)
Y = 0
:BT

FOO
SETQ
COND
PROG
FIE

With EDIT:

(FOO BROKEN)
:?=
X = (A B C)
Y = 0
:EOIT
*(SW 2 3)
*OK
FIE6
:OK
FOO

9.9

CONO

:EOITF(FIE)
EDIT
*F FOO P
(FOc V U)
*(SW 2 3)
*OK
FIE
: (SETQ Y X)
(A B C)
: (SETQQ X D)
o
:1=
X = 0
Y = (A B C)
:OK
FOc

find which jUnction
FOO is called from
(aborted with t E)

edit it

reset X and Y

check them

When to Break

9c2 WHEN TO BREAK

When an error occurs, the system has to decide whether to reset and unwind the stack, or go into a
break. In the middle of a complex computation, it is usually helpful to go into a break, so that the
user may examine the state of the computation. However, if the computation has only proceeded a little
when the error occurs, such as when the user mistypes a function name, the user would normally just
terminate a break. and it would pe more convenient for the system to simply cause an error and unwind
the stack in this situatuation. The decision over whether or not to induce a break depends on the depth
of computation, and the amount of time invested in the computation. The actual algorithm is described
in detail below; suffice it to say that the parameters affecting this decision have been adjusted empirically
so that trivial type-in errors do not cause breaks, but deep errors do.

(BREAKCHECK E.RRORPOS ERXN) [Function]
BREAKCHECK is called by the error routine to decide whether or not to induce
a break when a error occurs. ERRORPOS is the stack position at which the error
occurred; : ERXN is the error number. R~turns T if a break should occur: NIL
otherwise.

BREAKCHECK returns T (and a break occurs) if the "computation depth" is greater
than or equal to HELPOEPTH. HELPOEPTH is initially set to 7, arrived at empirically
by taking into account the overhead due to LISPX or BREAK.

If the depth of the computation is less than HELPOEPTH, BREAKCHECK next
calculates the length of time spent in the computation. If this time is greater than

6 X and Y have not been changed, but B R K E X P has.

9.10

ERRORS AND BREAK HANDLING

HE LPT IME milliseconds, initially set to :1000, thenBREAKCHE CK returns T (and a
break occurs), otherwise NIL.

BREAKCHECK determines the "computation depth" by searching back up the stack looking for an
ERRORSET frame (ERRORSETs indicate how far back unwinding is to take place when an error occurs,
see page 9.15). At the same time, it counts the number of internal calls to EVAL. As soon as (if)
the number of calls to EVAL exceeds HELPDEPTH, BREAKCHECK immediately stops searching for an
ERRORSET and returns T. Otherwise, BREAKCHECK continues searching until either an ERRORSET is
found or the top of the stack is reached. (Note: If the second argument to ERRORSET is INTERNAL, the
ERRORSET is ignored by BREAKCHECK during this search.) BREAKCHECK then counts the number of
function calls between the error and the last ERRORSET, or the top of the stack. The number of function
calls plus the number of calls to EVAL (already counted) is used as the "computation depth".

BREAKCHECK determines the computation time by subtracting the value of the variable HELPCLOCK from
the value of (CLOCK 2), the number of milliseconds of compute time (see page 14.10). HELPCLOCK
is rebound to the current value of (CLOCK 2) for each computation typed in to LISPX or to a break.
The time criterion for breaking can be suppressed by setting HELPTIME to NIL (or a very big number),
or by setting HELPCLOCK to NIL. Note that setting HELPCLOCK to NIL will not have any effect beyond
the current computation, because HELPCLOCK is rebound for each computation typed in to LISPX and
BREAK.

The user can suppress all error breaks by setting the top level binding of the variable HE L P F LAG to
NIL using SETTOPVAL (HELPFLAG is bound as a local variable in LISPX, and reset to the global value
of HELPFLAG on every LISPX line, so just SETQing it will not work.) If HELPFLAG=T (the initial
value), the decision whether to cause an error or break is decided based on the computation time and
the computation depth, as described above. Finally, if HELPFLAG=BREAK!, a break will always occur
following an error. .

9.3 BREAK!

The basic function of the break package is BREAK!, which creates a break. A break appears to be a
regular executive, with the prompt": ", but BREAK! also detects and interpretes break commands (page
9.3).

(BREAK! BRKEXP BRKWHEN BRKFN BRKCOMS BRKTYPE ERRORN) [NLambda Function]
If BRKWHEN is NIL, BRKEXP is evaluated and returned as the value of BREAK 1.
Otherwise a break occurs and commands are then taken from BRKCOMS or the
terminal and interpreted. All inputs not recognized by BREAK! are simply passed
on to the programmer's assistant.

When a break occurs, if ERRORN is a list whose CAR is a number, ERRORMESS
is called to pdnt an identifying message. If ERRORN is a list whose CAR is not
a number, E RRORMESS! is called. Otherwise, no preliminary message is printed.
Following this, the message (BRKFN b raken) is printed.

Since BREAK 1 itself calls functions, when one of these is broken, an infinite loop
would occur. BREAKl detects this situation, and prints Break within a break

9.11

BREAK!

on FN, and then simply calls the function without going into a break.

The commands GO, ! GO, OK, ! OK, RETURN and 1" are the only ways to leave
BREAK1.; The command EVAL causes BRKEXP to be evaluated. and saves the
value on :the variaole ! VALUE. Other commands can be defined for BREAK1 via
B R E AKM~C ROS (below).

BRKTYPE is NIL for user breaks, I NTE RRUPT for control-H breaks, and
ERRORX for error breaks. For breaks when BRKTYPE is not NIL, BREAK1 will
clear and save the input buffer. If the break returns a value (i.e., is not aborted
via 1" or control-D) the input buffer will be restored.

The fourth argument to BREAK! is BRKCOMS, a list of break commands that BREAK1 interprets and
executes as though they were keyboard input One can think of BRKCOMS as another input file which
always has priority over the keyqoard. Whenever BRKCOMS=NIL, BREAK1 reads its next command from
the keyboard. Whenever BRKCOMS is not NIL, BREAK1 takes (CAR BRKCOMS) as its next command
and sets BRKCOMS to (CDR BRKCOMS). For example, suppose the user wished to see the value of the
variable X after a function was evaluated. He could set up a break with BRKCOMS= {EVAL (PRINT
X) OK), which would have the; desired effect Note that if BRKCOMS is not NIL, the value of a break
command is not printed. If you desire to see a value, you must print it yourself, as in the above example.
The function T RAC E (page 10.4) uses BRKCOMS: it sets up a break with two commands; the first one
prints the arguments of the func:tion, or whatever the user specifies, and the second is the command GO,
which causes the function to be evaluated and its value printed.

Note: If an error occurs while interpreting the BRKCOMS commands, BRKCOMS is set to NIL, and a full
interactive break occurs. /'

The break package has a facility for redirecting ouput to a file. All output resulting from BRKCOMS will
be output to the value of the variable B RKF I LE. which should be the name of an open file. Output due
to user typein is not affected. and will always go to the tenninal. B R K F I LEis initially T.

BREAKMACROS [Variable]
BREAKMAC ROS is a list of the fonn { (NAME1 COMll ... COM1n) (NAME2
COM21 ..• COM2n) ...). Whenever an atomic command is given to BREAK1, it
first searches the list B R EAKMAC ROS for the command. If the command is equal
to NAMEjt: BREAK1 simply appends the corresponding commands to the front of
BRKCOMS, and goes on. If the command is not found on BREAKMACROS, BREAK1
then checl(s to see if it is one of the built in commands, and finally, treats it as a
function ot variable as before.7

Example: The command ARGS could be defined by including on BREAKMACROS
the fonn: (ARGS (PRINT (VARIABLES LASTPOS T»)

(BREAKREAD TYPE) [Function]
Useful within B REAKMAC ROS for reading arguments. If B RKCOMS is non-N I L (the
command in which the call to BREAKREAD appears was not typed in), returns the
next break: command from BRKCOMS, and sets BRKCOMS to (CDR BRKCOMS).

7Jfthe command is not the name ofa defined function, bound variable, or LISPX command, BREAK! will
attempt spelling correction using BREAKCOMSLST as a spelling list If spelling correction is unsuccessful,
BREAK! will go ahead and call LISPX anyway, since the atom may also be a misspelled history command.

9.12

ERRORS AND BREAK HANDLING

If BRKCOMS is NIL (the command was typed in), then BREAKREAD returns either
the rest of. the commands on the line as a list (if TYPE = LINE) or just the next
command on the line (if TYPE is not LINE).

For example, the BT command is defined as (BAKTRACE LASTPOS NIL (BREAKREAD
'LINE) 0 T). Thus, if the user types BT, the third argument to BAKTRACE will
be NIL. If the user types BT SUBRP, the third argument will be (SUBRP).

BREAKRESETFORMS '[Variable]
If the user is developing programs that change the way a user and Interlisp normally
interact (e.g., change or disable the interrupt or line-editing characters, tum off
echoing, etc.), debugging them by breaking or tracing may be difficult, because
Interlisp might be in a "funny" state at the time of the break. BREAKRESET FORMS
is designed to solve this problem. The user puts on BREAKRESET FORMS
expressions suitable for use in conjunction with RESETFORM or RESETSAVE
(page 9.19). When a break occurs, BREAK1 evaluates each expression on
BREAKRESETFORMS before any interaction with the terminal, and saves the
values. When the break expression is evaluated via an EVAL, OK, or GO, BREAK1
first restores the state of the system with respect to the various expressions on
BREAKRESETFORMS. When (if) control returns to BREAK1, the expressions on
BREAKRESETFORMS are again evaluated, and their values saved. When the break
is exited with an OK, GO, RETURN, or 1" command, by typing control-D, or by a
RETFROM or RETEVAL typed in by the user,8 BREAK1 again restores state. Thus
the net effect is to make the break invisible with respect to the user's programs,
but nevertheless allow the user to interact in the break in the normal fashion.

As mentioned earlier, B REA K 1 detects "Break within a break" situations, and avoids
infinite loops. If the loop occurs because of an error, BREAK 1 simply rebinds
BREAKRESETFORMS to NIL, and calls HELP. This situation most frequently occurs
when there is a bug in a function called by BREAKRESETFORMS.

Note: SETQ expressions can also be included on BREAKRESETFORMS for saving
and restoring system parameters, e.g. (SETQ LISPXHISTORY NIL), (SETQ
ow 1M F L G NIL), etc. These are handled specially by B REA K 1 in that the current
value of the variable is saved before the SETQ is executed, and upon restoration,
the variable is set back to this value.

9.4 ERROR FUNCTIONS

(ERRORX ERXM) [Function]
The entry to the error routines. If ERXM=NIL, (ERRORN) is used to determine
the error-message. Otherwise, (SETERRORN (CAR ERXM) (CAOR ERXM» is
performed, "setting" the error number and argument. Thus following either

8 All user type-in is scanned in order to make the operations undoable as described on page 8.22. At
this point, RETFROMs and RETEVALs are also noticed. However. if the user types in an expression
which calls a function that then does a RETFROM, this RETFROM will not be noticed. and the effects of
BREAKRESETFORMS will not be reversed.

9.13

Error Functions

{ERROR~ '(10 T» or (PLUS T), (ERRORN) ~ (10 T). ERRORX c~~
BREAKCI1ECK, and either induces a break or prints the message and unwinds to
the last ERRORSET (page 9.10). Note that ERRORX can be c~led by any program
to intention~ly induce an error of any type. However, for most applications, the
function ERROR will be more useful.

(ERROR MESSl MESS2 NOB~K) [Function]
Prints MESSl (using P R I N 1), followed by a space if MESSl is an atom, otherwise a
carriage return. Then MESS2 is printed (using P R I N 1 if MESS2 is a string, otherwise
PRINT). For example, (ERROR "NON-NUMERIC ARG" T) prints

NON-NUMiERIC ARG
T

and (ER~OR 'FOO "NOT A FUNCTION") printsFOO NOT A FUNCTION. If
both MESSl and MESS2 are NIL, the message printed is simply ERROR.

If NOBREAK= T, ERROR prints its message and then calls ERROR 1.9 Otherw~e it
calls {ERRORX '{ 17 (MESSl • MESS2»), Le., generates error number 17, in
which cas~ the decision as to whether or not to break, and whether or not to print
a messagd, is handled as per any other error.

(HELP MESSl MESS2 BRKTYPE) [Function]
Prints ME$Sl and MESS2 similar to ERROR, and then c~ls BREAKI passing BRKTYPE

as the BRiKTYPE argument If both MESSl and MESS2 are NIL, HELP! is used
for the m~ssage. HELP is a convenient way to program a default condition, or to
terminate !some portion of a program which the computation is theoretic~ly never
supposed :to reach.

(SHOULDNT MESS) [Function]
Useful in those situations when a program detects a condition that should
never occur. C~ls HELP with the message arguments MESS and "Shoul dn' t
happen l" and a BRKTYPE argument of 'ERRORX.

(ERROR 1) [Function]
Programmable control-E; immediately returns from last E RRORSE T or resets.

(RESET) [Function]

(ERRORN)

Progranurtable control-D; immediately returns to the top level.

[Function]
Returns i~formation about the last error in the form (NUM EXP) where NUM is
the error number (page 9.22) and EXP is the expression which was (would have
been) priJ)ted out after the error message. For example, following (PLUS T),
(ERRORN) would return (10 T).

(SETERRORN ~ MESS) [Function]
Sets the value returned by ERRORN to (NUM MESS).

9unless the v~ue of HE L PF LAG is BREAK 1, in which case a break will ~ways occur (see page 9.11).

9.14

(ERRORMESS u)

ERRORS AND BREAK HANDLING

[Function]
Prints message corresponding to an E RRORN that yielded u. For example,
(ERRORMESS '(10 T» would print

NON-NUMERIC ARG
T

(ERRORMESSl MESSl MESS2 MEssa) [Function]
Prints the message corresponding to a HELP or ERROR break.

(ER-RORSTRING N) [Function]
Returns as a new string the message corresponding to error number N, e.g.,
(ERRORSTRING 10)="NON-NUMERIC ARG".

(ERRORSET FORM FLAG -) [Function]

(ERSETQ FORM)

(NLSETQ FORM)

NLSETQGAG

Performs (EVAL FORM). If no error occurs in the evaluation of FORM, the value
of ERRORSET is a list containing one element, the value of (EVAL FORM). If an
error did occur, the value of ERRORSET is NIL.

Note that ERRORSET is a lambda function, so its arguments are evaluated before
it is entered, i.e., (ERRORSET X) means EVAL is called with the value of X. In
most cases, ERSETQ and NLSETQ (described below) are more useful.

The argument FLAG controls the printing of error messages if an error occurs:

If FLAG = T, the /error message is printed; if FLAG = NIL it is not (unless
NLSETQGAG is NIL, see below). Note that if a break occurs below an ERRORSET,
the message is printed regardless of the value of FLAG.

If FLAG = INTERNAL, this ERRORSET is ignored for the purpose of deciding
whether or not to break or print a message (see page 9.10). However, the
ERRORSET is in effect for the purpose of flow of control, i.e., if an error occurs,
this ERRORSET returns NIL.

If FLAG = NOB REAK, no break will occur, even if the time criterion for breaking
is met. Note that FLAG = NOBREAK will not prevent a break from occurring if
the error occurs more than HELPDEPTH function calls below the errorset, since
BREAKCHECK will stop searching before it reaches the ERRORSE1. To guarantee
that no break occurs, the user would also either have to reset HELPDEPTH or
HELPFLAG.

[NLambda Function]
Performs (E RRORSE T 'FORM T), evaluating FORM and printing error messages.

[NLambda Function]
Performs (ERRORSET 'FORM NIL), evaluating FORM without printing error
messages.

[Variable]
If NLSETQGAG is NIL, error messages will print, regardless of the FLAG

argument of ERRORSET. NLSETQGAG effectively changes all NLSETQs to ERSETQs.
NLSETQGAG is initially 1.

9.15

Error Handling by Error Type

9.5 ERROR HANDLING BY ERROR TYPE

Occasionally the user may want to treat certain types of errors differently from others, e.g., always break,
never break. or perhaps take sottle corrective action. This can be accomplished via ERRORTYPELST:

ERRORTYPELST [Variable]
ERRORTYPELST is a list of elements of the form (NUM FORMl ... FORMN) ,
where NUM is one of the error numbers (page 9.22). During an error,
after BREAKCHECK has been completed, but before any other action is taken,
ERRORTYPELST is searched for an element with the same error number as that
causing the error. If one is found, the corresponding forms are evaluated, and if
the last one produces a non-N I L value, this value is substituted for the offender,
and the fUnction causing the error is reentered.

Within ERRORTYPELST entries, the following variables may be useful:

ERRORMESS

ERRORPOS

BREAKCHK

PRINTMSG

[Variable]
CA R is the error number, CAD R the "offender", e.g., (1 0 NIL) corresponds to a
NON-NUM;ERIC ARG NIL error.

[Variable]
Stack pointer to the function in which the error occurred, e.g., (STKNAME
ERRORPO:S) might be IPLUS, RPLACA, INFILE, etc.

Note:... If the error is going to be handled by a RETFROM, RETTO, or a RETEVAL
in the ER.RORTYPELST entry, it"probably is a good idea to first release the stack
pointer ERRORPOS, e.g. by performing (RELSTK ERRORPOS). .

[Variable]
Value of BREAKCHECK, i.e., T means a break will occur, NIL means one will not.
This may be reset within the ERRORTYPELST entry.

[Variable]
If T, means print error message, if NIL, don't print error message, Le., corresponds
to second argument to ERRORSET. The user can force or suppress the printing of
error message for various errortypes by including on ERRORTYPELST an expression
which explicitly sets PRINTMSG.

For example, putting

[10 (AND (NULL (CADR ERRORMESS»
(SELECTQ (STKNAME ERRORPOS)

«IPLWS ADD1 SUB1) 0)
(ITIMES 1)
{PROGN (SETQ BREAKCHK T) NIL]

on ERRORTYPELST would specify that whenever a NON-NUMERIC ARG - NIL error occurred, and the
function in question was I PLUS, ADD1, or SUB 1, a should be used for the NIL. If the function was
IT IME S, 1 should be used. Ot.p.erwise, always break. Note that the latter case is achieved not by the
value returned, but by the effect of the evaluation. I.e., setting BREAKCHK to T. Similarly, {16 (SETQ
BREAKCHK NIL» would prevent END OF FILE errors from ever breaking.

9.16

ERRORS AND BREAK HANDLING

ERRORTYPELST is initially «23 (SPELLFILE (CADR ERRORMESS) NIL NOFILESPELLFLG»),
which causes SPELLFILE to be called in case of a FILE NOT FOUND error (see page 15.20). If
S PEL L F I LEis successful, the operation will be reexecuted with the new (corrected) file name.

9.6 INTERRUPT CHARACTERS

Errors and breaks can be caused by errors within functions9 or by explicitly breaking a function. The user
can also indicate his desire to go into a break at while a program is running by typing certain control
characters known as "interrupt characters". The interrupt characters in Interlisp-D are listed on page 18.1;
those in Interlisp-l0 are listed on page 22.l.

The user can disable and! or redefine Interlisp interrupt characters, as well as define new interrupt
characters. Interlisp-l0 is initialized with 9 interrupt channels: RESET (control-D), ERROR (control-E),
BREAK (control-B), HELP (control-H), PRINTLEVEL (controlmp), CONTROL-T (control-T), RUBOUT (del),
STORAGE (control-S), and OUTPUTBUFFER (control-O). Interlisp-D does not have the STORAGE and
OUTPUTBUFFER interrupt channels, and has the additional channel RAID (control-C). Each of these
channels independently can be disabled, or have a new interrupt character assigned to it via the function
INTERRUPTCHAR described below. In addition, the user can enable up to 9 new interrupt channels, and
associate with each channel an interrupt character and an expression to be evaluated when that character
is typed.

User interrupts can be either "hard" or "soft". A "hard" interrupt is like control-E or control-D: it takes
place as soon as it is typed. A soft interrupt is like control-H; it does not occur until the next function
call. Soft interrupts can always be safely continued from. Hard interrupts rip the system out of the
function currently being executed and unwind back to the last function call, Le. part of the computation
that was interrupted is lost and cannot be continued.

Hard interrupts are implemented by generating error number 43, and retrieving the corresponding form
from the list USERINTERRUPTS once inside of ERRORX. Soft interrupts are implemented by calling
INTERRUPT with an appropriate third argument. and then obtaining the corresponding form from
USERINTERRUPTS. As soon as a soft interrupt character is typed, Interlisp clears and saves the input
buffers, and then rings the bell. After the interrupt form is evaluated, the input buffers are restored.
In either case, if a character is enabled as a user interrupt, but for some reason it is not found on
USERINTERRUPTS, an UNDEFINED USER INTERRUPT error will be generated.

(INTERRUPTCHAR CHAR TYP/FORM HARDFLG) [Function]
Defines CHAR as an interrupt character. If CHAR was previously defined as an
interrupt character, that interpretation is disabled.

CHAR is either a character or a character code (as returned by CHCON 1). TENEX
requires that interrupt characters be one of control-A, B, ... ,Z, space, esc(alt-mode),
rubout(delete), or break.

If TYF/FORM=NIL, CHAR is disabled.

If TYF/FORM= T. the current state of CHAR is returned without changing or
disabling it.

IfTYF/FORM is one of the 8 literal atoms HELP, PRINTLEVEL, STORAGE, RUBOUT,

9.17

Changing and Restoring System State

ERROR, RESET, OUTPUTBUFFER, or BREAK, then INTERRUPTCHAR assigns CHAR .
to the indicated Interlisp interrupt channel, (reenabling the channel if previously
disabled).

If TYP /FORM is any other literal atom, CHAR is enabled as an interrupt character
that when typed causes the atom TYP /FORM to be immediately set to T.

If TYP /FORM is a lis~ CHAR is enabled as a user interrupt character, and TYP /FORM

is' the fotm that is evaluated when CHAR is typed. The interrupt will be hard if
HARDFLG = T, otherwise soft.

(IN T E R RU P T C HA R T) restores all Interlisp channels to their original state. and
disables all user interrupts.

INTERRUPTCHAR returns _all expression which, when given as an argument to
INTERRUPTCHAR, will restore things as they were before the call to INTERRUPTCHAR.
Therefor~, INTERRUPTCHAR can be used in conjunction with RESET FORM or
RESETLST (page 9.20).

INTERRUPTCHAR is undoable.

(RESET. INTERRUPTS PERMITTEDINTERRUPTS SAVECURRENT?) [Function]
PERMITTEDINTERRUPTS is a list of interrupt character settings to be performed,
each of the form (CHAR. TYP/FORM). The effect of RESET. INTERRUPTS
is as if (INTERRUPTCHAR CHAR TYP/FORM) were performed for each item
on PERMITTEDINTERRUPTS, and (INTERRUPTCHAR OTHERCHAR NIL) were
performed on every other existing interrupt character.

If SAVECURRENT? is non-NIL, then RESET. INTERRUPTS returns the current state
of the interrupts in a form that could be passed to RESET. INTERRUPTS, otherwise
it returns: NIL. This can be used with a RESET. INTERRUPTS that appears in a
RES E T F d RM, so that the list is built at "entry", but not upon "exit".

(INTERRUPTABLE FLAG) [Function]
if FLAG = NIL, turns interrupt off. If FLAG = T, turns interrupt on. Value is
previous setting. INTERRUPTABLE compiles open.

Note: Any interrupt character typed while interrupts are off is treated the same as any other character,
i.e. placed in the input buffer, and will not cause an interrupt when interrupts are turned back on.

(INTERRUPTABLEP) [Function]
(lnterlisp-lO) Returns T if interrupts are enabled; NIL if disabled.

9.7 CHANGING AND RESTORING SYSTEM STATE

In Interlisp. a computation can be interrupted! aborted at any point due to an error, or more forcefully.
because a control-D was typed, causing return to the top level. This situation creates problems for
programs that need to perform a computation with the system in a "different state", e.g., different radix,
input file, readtable, etc. but want to "protect" the calling environment, i.e., be able to restore the state

9.18

ERRORS AND BREAK HANDLING

when the computation has completed. While program errors . and control-E can be "caught" by errorsets,
control-D is notlO Thus the system may be left in its changed state as a result of the computation being
aborted. The following functions address this problem.

Note that these functions do not and cannot handle the situation where their environment is exited via
anything other than a normal return, an error, or a reset E.g. a RETEVAL, RET FROM, RESUME, etc., will
never be seen.

(RESETLST FORM1 .•. FORMN) [NLambda NoSpread Function]
RESETLST evaluates its arguments in order, after setting up an ERRORSET so that
any reset operations performed by RESETSAVE (see below) are restored when the
forms have been evaluated (or an error occurs, or a control-D is typed). If no
error occurs, the value of RESETLST is the value of FORMN, otherwise RESETLST
generates an error (after perfonning the necessary restorations).

RESETLST compiles open.

(RESETSAVE x y) [NLambda NoSpread Function]
RESETSAVE is used within a call to RESETLST to change the system state by calling
a function or setting a variable, while specifying how to restore the original system
state when the RESETLST is exited (normally, or with an error or control-D).

If x is atomic, resets the top level value of x to the value of Y. For
example, (RESETSAVE LISPXHISTORY EDITHISTORY) resets the value of
LISPXHISTORY to the value of EDITHISTORY, and provides for the original
value of LISPXHISTORY to be restored when the RESETLST completes operation,
(or an error occurs, or a control-Dis typed). This use is somewhat anachronistic in
Interlisp-10 in that in a shallow bound system, it is sufficient to simply rebind the
variable. Furthermore, if there are any rebindings, the RES E T SAVE will not affect
the most recent binding but will change only the top level value, and therefore
probably not have the intended effect

If x is not atomic, it is a form that is evaluated. If y is NIL, x must return as its
value its "former state", so that the effect of evaluating the form can be reversed,
and the system state can be restored, by applying CAR of x to the value of x.
For example, (RESETSAVE (RADIX 8» performs (RADIX 8), and provides
for RAD I X to be reset to its original value when the RES E T L S T completes by
applying RAD I X to the value returned by (RAD I X 8).

In the special case that CAR of x is SETQ, the SETQ is transparent for the purposes
of RESETSAVE, Le. the user could also have written (RESETSAVE (SETQ X
(RAD I X 8»), and restoration would be performed by applyirig RAD I X, not
SETQ, to the previous value of RADIX.

If Y is not NIL, it is evaluated (before x), and its value is used as the restoring
expression. This is useful for functions which do not return their "previous setting".
For example,

lONote that the program could redefine control-D as a user interrupt (page 9.17), check for it, reenable
it, and call RES E T or something similar.

9.19

Changing and Restoring System State

[RESETSAVE (SETBRK ...) (LIST 'SETBRK (GETBRK]

will restore the break characters by applying SETBRK to the value returned
by (GETBRK), which was computed before the (SETBRK ...) expression was
evaluated .. Note that the restoration expression is still "evaluatedU by applying its
CAR to its CDR.

If x is NIL, Y is still treated as a restoration expression. Therefore,

(RESETSAVE NIL (LIST 'CLOSEF FILE»

will cause FILE to be closed when the RESETLST that the RESETSAVE is under
completes (or an error occurs or a control-D is typed).

Note: RESETSAVE can be called when not under a RESETLST. In this case, the
restoration will be performed at the next RESET, Le .• control-D or call to RESET.
In other words, there is~ "implicit" RESETLST at the top-level executive.

RESETSAVE compiles open. Its value is not a "useful" quantity.

(RESETVAR VAR NEWVALUE FORM) [NLambda Function]
Simplified fonn of RESETLST and RESETSAVE for resetting and restoring
global variables.ll Equivalent to (RESETLST (RESETSAVE VAR NEWVALUE)

FORM). For example, (RESETVAR LISPXHISTORY EDITHISTORY (FOO»
resets LI$PXHISTORY to the value of EDITHISTORY while evaluating' (FOO).
RESETVAR compiles open. If no error occurs, its value is the value of FORM.

(RESETVARS VARSLST El E2 : ... EN) [NLambda NoSpread Function]
Similar to' P ROG, except the variables in VARSLST are global variables. In a shallow
bound system (Interiisp-10) RESETVARS and PROG are identical.12 In a deep bound
system, each variable is "rebound" using RESETSAVE.

RESETVARS, like GETATOMVAL and SETATOMVAL (page 2.6), is provided to pennit compatibility (Le.
transportablility) between a shallow bound and deep bound system with respect to conceptually global
variables.

(RESETFORM RESETFORM FORM1 FORM2 ... FORMN) [NLambda NoSpread Function]
Simplified fonn of RESETLST and RESETSAVE for resetting a system state when
the corresponding function returns as its value the "previous setting." Equivalent
to (RESETLST (RESETSAVE RESETFORM.) FORM1 FORM2 ... FORMN). For
example, (RESETFORM (RADIX 8) (FOO». RESETFORM compiles open. If
no error occurs, it returns the value returned by FORM N.

For some applications. the restoration operation must be different depending on whether the computation
completed successfully or was atiorted by an error or control-D. To facilitate this. while the restoration
operation is being perfonned, the value of RES E T S TAT E will be bound to- NIL, E R RO R. or RES E T,

llUnnecessarily expensive in a shallow bound system as the variable can simply be rebound.

12Except that the compiler insures that variables bound in a RESETVARS are declared as SPECVARS (see
page 12.4).

9.20

ERRORS AND BREAK HANDLING

depending on whether the exit was nonnal, due to an error, or· reset (Le., control-D, or in Interlisp-lO,
control-C followed by reenter). For example,

{RESETlST
{RESETSAVE (INFIlE X)

{lIST '[lAMBDA (Fl)
(COND { (EQ RESETSTATE 'RESET)

(ClOSEF Fl)
(DElFIlE Fl]

X))
FORMS)

will cause X to be closed and deleted only if a control-D was typed during the execution of FORMS.

When specifying complicated restoring expressions, it is often necessary to use the old value of the saving
expression. For example, the following expression will set the primary input file (to F l) and execute
some fonns, but reset the primary input file only if an error or control-D occurs.

{RESETlST
(SETQ TEM (INPUT Fl»
(RESETSAVE NIL

{lIST '(lAMBDA (X) {AND RESETSTATE (INPUT X»)
TEM))

FORMS)

So that you will not have to explicitely save the old value, the variable OlDVAlUE is bound at the time the
restoring operation is perfonned to the value of the saving expression. Using this, the' previous example
could be recoded as:

{RESETlST
(RESETSAVE (INPUT Fl)

'(AND RESETSTATE (INPUT OlDVAlUE»)
FORMS)

As mentioned earlier, restoring is perfonned by applying CAR of the restoring expression to the
CDR, so RESETSTATE and (INPUT OlDVAlUE) will not be evaluated by the APPLY. This particular
example works because AND is an nlambda function that explicitly evaluates its arguments, so APPl Ying
AND to {RESETSTATE (INPUT OlDVAlUE» is the same as EVALing {AND RESETSTATE (INPUT
OlDVAlUE)). PROGN also has this property, so you can use a lambda function as a restoring fonn by
enclosing it within a P ROG N.

The function RESETUNDO (page 8.25) can be used in conjunction with RESETLST and RESETSAVE to
provide a way of specifying that the system be restored to its prior state by undoing the side effects of
the computations perfonned under the RES E T L ST.

9.8 ERROR LIST

There are currently fifty-plus types of errors in the Interlisp system. Some of these errors are
implementation dependent, Le., appear in Interlisp-lO but may not appear in other Interlisp systems.

9.21

Error List

The error number is set internally by the code that detects the error before it calls the error handling
functions. It is also the -value returned by ERRORN if called subsequent to that type of error, and is used
by ERRORMESS for printing the error message.

Most errors will print the offending expression following the message, e.g., NON-NUMERIC ARG NIL is
very common. Error number 18 ;(control-B) always causes a break (unless HELPFLAG is NIL). All other
errors cause breaks if BREAKCHECK returns T (see page 9.10).

The errors are listed below by error number:

o - JSYS ERROR

1

(Interlisp-lO) Occurs following a trap in a JSYS. As described on page 22.6, TRAP
AT LOCATION is printed, followed by the JSYS diagnostic, and control returns
to the operating system executive. The user can then safely CONTINUE, and the
Interlisp error, JSYS ERROR is then generated. A TRAP AT LOCATION can
also occur if an illegal instruction is executed. In this case, the operating system
also prints ILLEGAL INSTRUCT ION. This can happen for example if the user is
programming directly in ASSEMBLE code, or if his system somehow got smashed.
In the latter case, it is quite possible that random programs or data structures might
have already been smashed. Unless he is sure he knows what the problem is, the
user is best advised to abandon this system as soon as possible. (If the user does
elect to CONTINUE, Interlisp will (try to) generate a JSYS ERROR and unwind. In
some cases, however, the system may be so badly smashed that the error message
won't even print) Note that in some cases, e.g. illegal instruction trap while in the
garbage collector, Interlisp will print out CAN'T CONT INUE. because traps under
those conditions are fatal. The user may be able to reenter his sytem via the ST ART
command, and, if lucky, dump some data or functions before the system totally
collapses.

In Interlisp-D, this error is named SYSTEM ERROR.

No longer used.

2 - STACK OVERFLOW
Occurs when computation is too deep, either with respect to number of function
calls, or number of variable bindings. Usually because of a non-terminating
recursive computation, Le., a bug.

In Interiisp-lO, the garbage collector uses the same stack as the rest of the system,
so that if a garbage collection occurs when deep in a computation, the stack can
overflow (particularly if there is a lot of list structure that is deep in the CAR
direction). If this does happen. the garbage collector will flush the stack used by
the computation in order that the garbage collection can complete. Afterwards.
the error message STACK OVERFLOW IN GC - COMPUTATION LOST is printed,
followed by a (RESET). Le., return to top level.

3 - I LLEGAL RETURN
Call to RETURN when not inside of an interpreted PROG.

4 - ARG NOT LIST E.g., RPLACA called on a non-list.

5 - HARD DISK ERROR
(Interlisp-D) An error with the local disk drive.

9.22

ERRORS AND BREAK HANDLING

6 - ATTEMPT TO SET NIL
Via SET or SETQ

7 - ATTEMPT TO RPLAC NIL
Attempt either to RPLACA or to RPLACD NIL with something other than NIL.

8 - UNDEFINED OR ILLEGAL GO
GO when not inside of a P ROG, or GO to nonexistent label.

9 - F I L E WON'T 0 PEN
From INFILE or OUTFILE, page 6.2.

10 - NON-NUMERIC ARG
A numeric function e.g., IPLUS, ITIMES, IGREATERP, expected a number.

11 - ATOM TOO LONG
Attempted to create ~ litatom (via PACK, or typing one in, or reading from a file)
with too many characters. In Interlisp-D, the maximum number of characters in a
litatom is 255. In Interlisp-l0, the maximum is 127 characters.

12 - ATOM HASH TABLE FULL
No room for any more (new) atoms.

In Interlisp-l0, the atom hash table will automatically expand by a specified number
of pages each time it fills up until an upper limit of 32K atoms is reached.

13 - FILE NOT OPEN
From an I/O function, e.g., READ, PRINT, CLOSEF.

14 - ARG NOT LITATOM
E.g., SETQ, PUTPROP, GETTOPVAL, etc., given a non-atomic argo

15 - TOO MANY FILES OPEN
~ 30, excluding the terminal.

16 - END OF FILE From an input function, e.g., READ, READC, RATOM. After the error, the file will
then be closed.

17 - ERROR

18 - BREAK

Note: The entries on E RRORTY PE LST (page 9.16) are processed before the file
is closecL so that the user can intercept and process this error via an entry on
ERRORTYPELST, thereby preventing the file from being closed. It is also possible
to use an E RRORTY P E LST entry to return a character as the value of the call
to E RRORX, and the program will continue. e.g. returning "]" may be used to
complete a read operation.

Call to ERROR (page 9.14).

Control-B was typed .
..

19 - ILLEGAL STACK ARG
A stack function expected a stack position and was given something else. This
might occur if the arguments· to a stack function are reversed. Also occurs if user
specified a stack position with a function name, and that function was not found

9.23

Error List

. on the stack. See page 7.1.

20 ~ FAULT IN EVAL
Artifact of bootstrap. Never occurs after FAUL TEVAL has been defined as described
earlier.

21 0 ARRAYS FULL System will first initiate a garbage collection of array space, and if no array space
is reclaimed, will then generate this error.

22 0 FILE SYSTEM RESOURCES EXCEEDED
(Interlisp-l0) Includes no more disk space9 disk quota exceeded, directory full, too
many jtbs, job full.

23 - FILE NOT FOUND
File name does not correspond to a file in the corresponding directory. Can also
occur if file name is ambiguous.

Interlisp is initialized with an entry on ERRORTYPELST (page 9.16) to call
S PEL L F I LEfor error 23. S PEL L F I L E will search alternate directories or perform
spelling correction on the connected directory. If SPELLF I LE fails, then the user
will see this error.

24 ~ BAD SYSOUT FILE
Date does not agree with date of MAKESYS, or file is not a sysout file at all (see
page 14.3).

25 - UNUSUAL CDR ARG LIST
A form ends in a non-list other than NIL. e.g., (CONS T . 3).

26 - HASH TABLE FULL
See hash array functions, page 2.35.

27 - ILLEGAL ARG Catch-all error. Currently used by PUTD, EVALA, ARG, FUNARG, ALLOCATE,
RPLSTRING, etc.

28 - ARG NOT ARRAY
E L T or SET A given an argument that is not a pointer to the beginning of an array
(see page 2.33).

29 - ILLEGAL OR IMPOSSIBLE BLOCK
(lnterlisp-10) From GETBLK or RELBLK (see page 22.20).

30 - STACK PTR HAS BEEN RELEASED

31 - STORAGE FULL

A released stack pointer was supplied as a stack descriptor for a purpose other than
as a stack pointer to be re-used (see page 7.1).

Following a garbage collection, if a sufficient amount of words has not been
collectecl and there is no un-allocated space left in the system. this error is
generated.

32 - ATTEMPT TO USE ITEM OF INCORRECT TYPE
Before a field of a user data type is changecl the type of the item is first checked

9.24

ERRORS AND BREAK HANDLING

to be sure that it is of the expected type. If not this.-error is generated (see page
3.14).

33 - ILLEGAL DATA TYPE NUMBER
The argument is not a valid user data type number (see page 3.14).

34 - DATA TYPES FULL
All available user data types have been allocated. (see page 3.14).

35 - ATTEMPT TO BIND NIL OR T
In .a PROG or LAMBDA expression.

36 c TOO MANY USER INTERRUPT CHARACTERS
Attempt to enable a user interrupt character when all 9 user channels are currently
enabled (see page 9.17).

37 - READ-MACRO CONTEXT ERROR
(Interlisp-10) Occurs when a READ is executed from within a read-macro function
and the next token is a) or a] (see page 6.36).

38 - ILLEGAL READTABLE
The argument was expected to be a valid readtable (see page 6.32).

39 - ILLEGAL TERMINAL TABLE
The argument was expected to be a valid tenninal table (see page 6.40).

40 - SWAPBLOCK TOO BIG FOR BUFFER
(Interlisp-10) An attempt was made to swap in a function/array which is too large
for the swapping buffer. See SETSBSIZE, page 22.26.

41 - PROTECTION VIOLATION

42 - BAD FILE NAME

(Interlisp-lO) Attempt to open a file that user does not have access to. Also
reference to unassigned device.

Illegal character in file specification, illegal syntax, e.g. in Interlisp-10, two ; 's etc.

43 - USER BREAK Error corresponding to "hard" user-interrupt character. See page 9.17.

44 - UNBOUND ATOM
Unbound atom error. When this occurs, a variable (atom) was used which had
neither a stack binding (wasn't an argument to a function nor a PROG variable)
nor a top level value. The "culprit" «CADR ERRORMESS» is the atom. Note
that if DWIM corrects the error, no error occurs and the error number is not set
However, if an error is going to occur, whether or not it will cause a break, the
error number will be set.

45 - UNDEF INED CAR OF FORM
Undefined function error. When is occurs, a form was evaluated whose function
position (CAR) does not have a definition as a function. Culprit is the form.

46 - UNDEF INEO FUNCTION
This error is generated if A P PLY is given an undefined function. Culprit is (L I S T

9.25

Error List

FN ARGS)

47 • CONTROL-E The user typed Control-E.

48 ~ FLOATING UNDERFLOW
(Interlisp~D) Underflow during floating-point operation.

49 ~ FLOATING OVERFLOW
(Interlisp .. D) Overflow during floating-point operation.

50 ~ OVERFLOW (Interlisp~D) Overflow during integer operation.

51 - ARG NOT HARRAY
(Interlisp~D) Signaled by hash array operations when given an argument that is not
a hash array. _ (In Interlisp-10, this still triggers error 28, ARG NOT ARRAY).

52 - TOO MANY ARGUMENTS
(Interlisp-D) Signaled when too many arguments are given to a lambda-spread,
lambda-nbspread, or nlambda-spread function.

In addition, many system functions, e.g., DEFINE, ARGLIST, ADVISE, LOG, EXPT, etc, also generate
errors with appropriate messages by calling ERROR (see page 9.14) which causes error number 17.

9.26

CHAPTER 10

BREAKING, TRACING, AND ADVISING

It is frequently useful to be able to modify the behavior of a function without actually editing its definition.
Interlisp provides several different facilities for doing this. By "breaking" a function, the user can cause
breaks to occur at various times in the running of an incomplete program, so that the program state can
be inspected. "Tracing" a function causes information to be printed every time the function is entered or
exited. These are very useful debugging tools.

"Advising" is a facility for specifying longer-term function modifications. Even system functions can be
changed through advising.

10.1 BREAKING FUNCTIONS AND DEBUGGING

Debugging a collection of LISP functions involves isolating problems within particular functions and/or
determining when and where incorrect data are being generated and transmitted. In the Interlisp system,
there are three facilities which allow the, user to (temporarily) modify selected function definitions so that
he can follow the flow of control in his programs, and obtain this debugging information. All three
redefine functions in terms of a system function, BREAK1 (see page 9.11).

BREAK modifies the definition of a function FN, so that whenever FN is called and a break condition
(defined by the user) is satisfied, a function break occurs. 'I11e user can then interrogate the state of the
machine, perform any computation, and continue or return from the call.

T RAC E modifies a definition of a function FN so that whenever FN is called, its arguments (or some other
values specified by the user) are printed. When the value of FN is computed it is printed also. (T RAC E
is a special case of BREAK).

BREAKIN allows the user to insert a breakpoint inside an expression defining a function. When the
breakpoint is reached and if a break condition (defined by the user) is satisfied, a temporary halt occurs
and the user can again investigate the state of the computation.

The following two examples illustrate these facilities. In the first example, the user traces the function
FACTORIAL. TRACE redefines FACTORIAL so that it print its arguments and value, and then goes on
with the cOlnputation. When an error occurs on the fifth recursion, a full interactive break occurs. The
situation is then the same as though the user had originally performed BREAK(FACTORIAL) instead of
TRACE(FACTORIAL), and the user can evaluate various Interlisp forms and direct the course of the
computation. In this case, the user examines the variable N, and instructs BREAK 1 to return 1 as the
value of' this cell to FACT 0 R I A L. The rest of the tracing proceeds without incident The user would then
presumably edit FACTORIAL to change L to 1.

+-pp FACTORIAL

(FACTORIAL

10.1

Breaking Functions and Debugging

[LAMBDA (N)
(COND

({ZEROP N
L)

{T (ITIMES N (FACTORIAL (SUBl N])
fACTORIAL
~TRACE(FACTORIAL)
(FACTORIAL)
+-FACTORIAL(4)

FACTORIAL:
N = 4

FACTORIAL:
N = 3

FACTORIAL:
N = 2

FACTORIAL:
N = 1

FACTORIAL:
N = 0

U.B.A.
L
(FACTORIAL BROKEN)
:N
o
:RETURN 1

FACTORIAL = 1
FACTORIAL = 1

FACTORIAL = 2
FACTORIAL = 6

FACTORIAL = 24
24

In the second example, the user has constructed a non-recursive definition of FACTOR IAL. He uses
BREAKIN to insert a call to BREAKl just after the PROG label LOOP. This break is to occur only on the
last two iterations, when N is less than 2. When the break occurs, the user tries to look at the value of
N, but mistakenly types NN. The break is maintained, however, and no damage is done. After examining
N and M the user allows the computation to continue by typing OK. A second break occurs after the next
iteration, this time with N = o. When this break is released, the function FACTOR IAL returns its value of
120.

+-pp FACTORIAL
(FACTORIAL

[LAMBDA (N)

10.2

BREAKING, TRACING, AND ADVISING

(PROG « M 1»
LOOP (CONO

FACTORIAL

«ZEROP N)
(RETURN M»)

(SETQ M (ITIMES M N»
(SETQ N (SUB1 N»
(GO LOOP])

~BREAKIN(FACTORIAL (AFTER LOOP) (ILESSP N 2]
SEARCHING ...
FACTORIAL
~FACTORIAL(5)

«FACTORIAL) BROKEN)
:NN
U.B.A.
NN
(FACTORIAL BROKEN AFTER LOOP)
:N
1
:M
120
:OK
(FACTORIAL)

«FACTORIAL) BROKEN)
:N
o
:OK
(FACTORIAL)
120

Note: BREAK and TRACE can also be used on CLISP words which appear as CAR of fonn, e.g. FETCH,
REPLACE, IF, FOR, DO, etc., even though these are not implemented as functions. For conditional
breaking, the user can refer to the entire expression via the variable EXP, e.g. BREAK « FOR (MEMB
'UNTIL EXP»).

(BREAKO FN WHEN COMS - -) [Function]
Sets up a break on the function FN; returns FN. If FN is not definecL returns (FN

NO TOE FIN ED).

BREAKO redefines FN as a call to BREAK1 (page 9.11), with an equivalent definition
of FN as B RK E X P, and WHEN, FN, COMS as BRKWHEN, BRKFN, BRKCOMS. Puts a
GENSYM defined with the original definition of FN on the property list of FN under
the property BROKEN. Puts (BREAKO WHEN COMS) on the ptoperty list of FN

under the property BRKINFO (for use in conjunction with REBREAK). Adds FN to
the front of the list BROKENFNS.

If FN is non-atomic and of the fonn (FNl IN FN2), BREAKO breaks every call

10.3

(BREAK x)

(TRACE x)

Breaking Functions and Debugging

to FNl from within FN2. This is useful for breaking on a function that is called
from many places, but where one is only interested in the call from a specific
function, e.g .• (RPLACA IN FOO), (PRINT IN FIE), etc. It is similar to
BREAKIN described below, but can be performed even when FN2 is compiled or
blockcompilecL whereas BREAKIN only works on interpreted functions. If FNl is
not found in FN2. BREAKO returns the value (FNl NOT ,FOUND IN FN~).

BREAKO breaks one function inside another by first calling a function which changes
the name of FNl wherever it appears inside of FN~ to that of a new function, FN1-

IN-FN~, which is initially given the same function definition as FN1. Then BREAKO
proceeds to break on FN1- IN - FN2 exactly ~ described above. In addition to
breaking FN1- IN-FN~ and adding FN1- IN-FN2 to the list BROKENFNS, BREAKO
adds FNl to the property value for the property NAMESCHANGED on the property
list of FN2 and puts (FN~ • FN1) on the property list of FN1- IN - FN2 under the
property ALIAS. This will enable UNBREAK to recognize what changes have been
made and restore the function FN2 to its original state.

If FN is nQnatomic and not of the above fo~ BREAKO is called for each member
of FN usidg the same 'values for WHEN, OOMS, and FILE. This distributivity permits
the user to specify complicated break conditions on several functions. For example,

{BREAKO '{FOOl ({PRINT PRINl) IN (F002 F003»)
'(NEQ X T)
'{EVAL 7= (Y Z) OK))

will break on FOOl, PRINT-IN-F002, PRINT-IN-F003, PRINl-IN-F002 and
PRINl-IN-F003.

If FN is non-atomic, the value of BREAKO is a list of the functions broken.

[NLambda NoSpread Function]
Nlambda nospread function. For each atomic argument, it performs (BREAKO
ATOM T). For each list, it performs (APPLY 'BREAKO LIST). For ex
ample, {BiREAK FOOl {F002 (GREATERP N 5) (EVAL») is equivalent to
(BREAKO 'FOOl T) and {BREAKO 'F002 '(GREATERP N 5) '(EVAL».

[NLambda NoSpread Function]
Nlambda nospread function. For each atomic argument, it performs {BREAKO
ATOM T '{TRACE 7= NIL GO»1

For each list argument, CAR is the function to be tracecL and CDR the forms the
user wishes to see, Le., TRACE performs:

{BREAKO (CAR LfflT) T {LIST 'TRACE '1= (CDR LfflT) 'GO»

For example, {TRACE FOOl (F002 Y» will cause both FOOl and F002 to be
traced. All the arguments of FOOl will be printed; only the value of Y will be
printed for F 00 2. In the special case that the user wants to see only the value,

lThe flag TRACE is checked for in BREAKl and causes the message "FUNOTION :" to be printed instead
of (FUNOTION BROKEN).

10.4

BREAKING, TRACING, AND ADVISING

he can perform {T RAC E (FUNCTION». This sets up a break with commands
(TRACE 1= (NIL) GO).

Note: the user can always call BREAKO himself to obtain combination of options of BREAKl not directly
available with BREAK and TRACE. These two functions merely provide convenient ways of calling BREAKO,
and will serve for most uses.

(BREAKIN FN WHERE WHEN COMS) (NLambda Function]
BREAKIN is an nlambda function. WHEN and COMS are similar to WHEN and
COMS for BREAKO, except that if WHEN is NIL, T is used. WHERE specifies where
in the definition of FN the call to B REA K 1 is to be inserted (see below).

If FN is a compiled function, BREAKIN returns (FN UNBREAKABLE) as its value.

If FN is interpreted, BREAKIN types SEARCHING. •• while it calls the editor.
If the location specified by WHERE is not found, BREAKIN types (NOT FOUND)
and exits. If it is found, BREAKIN puts T under the property BROKEN-IN and
(WHERE WHEN COMS) under the the property BRKINFO on the property list of
FN, and adds FN to the front of the list BROKENFNS.

Multiple break points, can be inserted with a single call to BREAKIN by using a list
of the form ((BEFORE···) ... (AROUND···» for WHERE. It is also possible
to call BREAK or TRACE on a function which has been modified by BREAKIN, and
conversely to BREAKIN a function which has been redefined by a call to BREAK
or TRACE.

BREAKIN enables the user to insert a break, i.e., a call to BREAK1, at a specified location in an interpreted
function. For example, if FOO calls FIE, inserting a break in FOO before the call' to FIE is similar to
breaking F IE. However, BREAKIN can be used to insert breaks before or after PROG labels, particular
SETQ expressions, or even the evaluation of a variable. This is because BREAKIN operates by calling the
editor and actually inserting a call to BREAKl at a specified point inside of the function.

The user specifies where the break is to be inserted by a sequence of editor commands. These commands
are preceded by BEFORE, AFTER, or AROUND, which BREAKIN uses to determine what to do once the
editor has found the specified point, i.e., put the call to BREAKl BEFORE that point, AFTER that point,
or AROUND that point. For example, (BE FORE COND) will insert a break before the first occurrence
of COND, (AFTE R COND 2 1) will insert a break after the predicate in the first COND clause, (AFT E R
BF (SETQ X 8r» after the last place X is set. Note that (BE FORE TTY:) or (AFTE R TTY:) pennit
the user to type in commands to the editor, locate the correct point, and verify it for himself using the
P command if he desires, and exit from the editor with OK.2 BREAKIN then inserts the break BEFORE,
AFTER, or AROUND that point.

For BREAKIN BEFORE or AFTER, the break expression is NIL, since the value of the break is irrelevant.
For breakin AROUND, the break expression will be the indicated form. In this case, the user can use the
EVAL command to evaluate that form, and examine its value, before allowing the computation to proceed.
For examp Ie, if the user inserted a break after a CON D predicate, e.g., {A F T E R (E QUA L X Y», he
would be powerless to alter the flow of computation if the predicate were not true, since the break would

2A STOP command typed to TTY: produces the same effect as an unsuccessful edit command in the
original specificatio~ e.g., (BEFORE CONDO). In both cases. the editor aborts, and BREAKIN types (NOT
FOUND).

10.5

Breaking Functions and Debugging

not be reached. However, by breaking (AROUND (EQUAL X Y», he can evaluate the break expression,
i.e., (EQUAL X Y), look at its value, and return something else if he wished.

The message typed for a BREA~IN break, is «FN) BROKEN), where FN is the name of the function
inside of which the break was inserted. Any error, or typing control-a will cause the full identifying
message to be printed,.e.g., (FOO BROKEN AFTER CONO 2 1).

A special check is made to avoid. inserting a' break inside of an expression headed by any member of the
list NOBREAKS, initialized to (G.o QUOTE .), since this break would never be activated. For example,
if (GO L) appears before the 13:bel L, BREAKIN (AFTER L) will not insert the break inside of the GO
expression, but skip this occurrence of L and go on to the next L, in this case the label L. Similarly, for
BEFORE or AFTER breaks, BREAKIN checks to make sure that the break is being inserted at a "safe"
place. For example, if the user requests a break (AFTER X) in (PROG .•. (SETQ X Bt) •••), the
break will actually be inserted AFTER (SETQ X Bt), and a message printed to this effect, e.g., BREAK
INSERTED AFTER (SETQ X &).

(UNBREAK x) [NLambda NoSpread Function]
Nlambdanospread function. It takes an indefinite number of functions modified
by BREAK, TRACE, or BREAKIN and restores them to their original state by calling
UNBREAKO. Returns list of values of UNBREAKO.

(UNBREAK) will unbreak all functions on BROKENFNS, in reverse order. It first
sets BRKINFOLST to NIL.

(UNBREAK T) unbreaks just the first function on BROKENFNS, Le., the most
recently broken function.

(UNBREAKO FN -) [Function]
Restores FN to its original state. If FN was not broken, value is (NOT BROKE N)
and no changes are made. If FN was modified by BREAKIN, UNBREAKIN is called
to edit it back to its original state. If FN was created from (FNI IN FN2), (Le.,
if it has ai propeny ALIAS), the function in which .FN appears is restored to its
original s~te. All dummy functions that were created by the break are eliminated.
Adds pro~erty value of BRKINFO to (front of) BRKINFOLST.

Note: {U!'4BREAKO '(FNI IN FN2» is allowed: UNBREAKO will operate on
(FNl- I N ~ FN2) instead.

(UNBREAKIN FN) [Function]
Performs the appropriate editing operations to eliminate all changes made by
BREAKIN.' FN may be either the name or definition of a function. Value is FN.
UNBREAK~N is automatically called by UNBREAK if FN has property BROKEN-IN
with value: T on its property list.

(REBREAK x) [NLambda NoSpread Function]
Nlambda nospread function for rebreaking functions that were previously broken
without having to respecify the break information. . For each function on x,
REBREAK !searches BRKINFOLST for break(s) and performs the corresponding
operation .. Value is a list of values corresponding to calls to BREAKO or BREAKIN.
If no information is found for a particular function, returns {FN - NO BREAK

10.6

BREAKING, TRACING, AND ADVISING

INFORMATION SAVED).

(REBREAK) rebreaks everything on BRKINFOLST, so (REBREAK) is the inverse
of (UNBREAK).

(REBREAK T) rebreaks just the first break on BRKINFOLST, i.e., the function
most recently unbroken.

(CHANGENAME FN FROM TO) [Function]
Changes all occurrences of FROM to TO in FN. FN may be compiled or
blockcompiled. Value is FN if FROM was found, otherwise NIL. Does not perfonn
any modifications of property lists. Note that FROM and TO do not have to be
functions, e.g., they can be names of variables, or any other literals.

(VIRGINFN FN FLG) [Function]

10.2 ADVISING

The function that knows how to restore functions to their original state regardless
of any amount of breaks, breakins, advising, compiling and saving exprs, etc.
It is used by PRETTYPRINT, DEFINE, and the compiler. If FLG=NIL, as for
PRETTYPRINT, it does not modify the definition of FN in the process of producing
a "clean" version of the definition; it works on a copy. If FLG = T, as for the
compiler and DE FIN E, it physically restores the function to its original state, and
prints the changes it is making, e.g., FOO UNBROKEN, FOO UNADVISED, FOO
NAMES RESTORED, etc. Returns the virgin function definition.

The operation of advising gives the user a way of modifying a function without necessarily knowing how
the function works or even what it does. Advising consists of modifying the interface between functions as
opposed to modifying the function definition itself, as in editing. BREAK, TRACE, and BREAKDOWN, are
examples of the use of this technique: they each modify user functions by placing relevant computations
between the function and the rest of the programming environment

The principal advantage of advising, aside from its convenience, is that it allows· the user to treat functions,
his or someone else's, as "black boxes," and to modify them without concern for their contents or details
of operations. For example, the user could modify SYSOUT to set SYSDATE to the time and date of
creation by (ADVISE 'SYSOUT '(SETQ SYSDATE. (DATE») ..

As with BREAK, advising works equally well on compiled and interpreted functions. Similarly, it is
possible to effect a modification which only operates when a function is called from some other specified
function, i.e., to modify the interface between two particular functions, instead of the interface between
one function and the rest of the world. This latter feature is especially useful for changing the internal
workings of a system function.

For example, suppose the user wanted TIME (page 14.14) to print the results of his measurements to the
file FOO instead of the teletype. He could accomplish this by (ADVISE '((PRINl PRINT SPACES)
IN TIME) 'BEFORE '(SETQQ U FOO»

Note that advising PRIN1, PRINT, or SPACES directly would have affected all calls to these very
frequently used function, whereas advising «PRINl PRINT SPACES) IN TIME) affects just those

10.7

Implementation of Advising

calls to PRINt, PRINT, and SPACES from TIME.

Advice can also be specified to operate after a function has been evaluated. The value of the body of the
original function can be obtaineq. from the variable I VALUE, as with BREAK1. For example, suppose the
user wanted to perform some computation following each SYSIN, e.g., check whether his files were up
to date. He could then: (ADVISE 'SYSOUT 'AFTER '(COND «LISTP lVALUE) __ »).3

10.2.1 Implementation of Advising

After a function has been modified several times by ADVISE, it will look like:

(LAMBDA arguments
(PROG (IVALUE)

(SETQ lVALUE
(PROG NIL

advice1

advice before

advicen
(RETURN BODY»)

advice1

advice after

advicem
(RETURN lVALUE»)

where BODY is equivalent to the original definition.4 Note that the structure of a function modified by
ADVISE allows a piece of advic;e to bypass the original definition by using the function RETURN. For
example, if (COND «ATOM Xli (RETURN Y») were one of the pieces of advice BEFORE a function,
and this function was entered with X atomic, Y would be returned as the value of the inner P ROG,
!VALUE would be set to Y, and control passed to the advice, if any, to be executed AFTER the function.
If this same piece of advice appeared AFTER the function, Y would be returned as the value of the entire
advised function. .

The advice (CONO « ATOM X)· (SETQ I VALUE Y») AFTER the function would have a similar effect,
but the rest of the advice AFTE~ the function would still be executed.

Note: Actually, ADVISE uses its own versions of PROG, SETQ, and RETURN, (called ADV-PROG, AOV
SETQ, and ADV-RETURN) in or4er to enable advising these functions.

3After the SYSIN, the system will be as it was when the SYSOUT was perfonned, hence the advice must
be to SYSOUT, not SYSIN. See page 14.3 for complete discussion of SYSOUT.

4If FN was originally an EXPR, 130DY is the body of the definition, otherwise a form using a GENSYM
which is defined with the original definition.

10.8

BREAKING, TRACING, AND ADVISING

10.2.2 Advise Functions

ADV IS E is a function of four arguments: FN, WHEN, WHERE, and WHAT. FN is the function to be modified
by advising, WHAT is the modification, or piece of advice. WHEN is either BE FORE, AfTE R, or AROUND,
and indicates whether the advice is to operate BEfORE, AfTER, or AROUND the body of the function
definition. WHERE specifies exactly where in the list of advice the new advice is to be placed, e.g., FIRS T,
or (BEfORE PRINT) meaning before the advice containing PRINT, or (AFTER 3) meaning after the
third piece of advice, or even (: TTY:). If WHERE is specified, ADVISE first checks to see if it is one of
LAST, BOTTOM, END, FIRST, or TOP, and operates accordingly. Otherwise, it constructs an appropriate
edit command and calls the editor to insert the advice at the corresponding location.

Both WHEN and WHERE are optional arguments, in the sense that they can be omitted in the call
to ADVISE. In other words, ADVISE can be thought of as a function of two arguments (ADVISE FN

WHAT), or a function of three arguments: (ADV I S E FN WHEN WHAT), or a function of four arguments:
(ADVISE FN WHEN WHERE WHAT). Note that the advice is always the last argument IfWHEN=NIL,
BEFORE is used. If WHERE = NIL, LAST is used.

(ADVISE FN WHEN WHERE WHAT) [Function]
FN is the function to be advised, WHEN=BEFORE, AFTER, or AROUND, WHERE

specifies where in the advice list the advice is to be inserted, and WHAT is the piece
of advice.

If FN is of the fonn (FNl IN FN2), FNl is changed to FN1- IN - FN2 throughout
FN2, as with break, and then FN1- IN - FN2 is used in place of FN. If FNl and! or
FN2 are lists, they are distributed as with B REAKO, page 10,3.

If FN is broken, it is unbroken before advising.

If FN is not defined, an error is generated, NOT A FUNCTION.

If FN is being advised for the first time, i.e., if {GETP FN 'ADVISED)=NIL,
a GENSYM is generated and stored on the property list of FN under the property
ADVISED, and the GENSYM is defined with the original definition of FN. An
appropriate S-expression definition is then created for FN.5 Finally, FN is added
to the (front of) ADVISEDFNS, so that (UNADVISE T) always unadvises the last
function advised (see page 10.10).

If FN has been advised before, it is moved to the front of ADVISEDFNS.

If WHEN= BE FORE or AFTE R, the advice is inserted in FNS definition either
BE FOR E or AFT E R the original body of the function. Within that contex~ its
position is determined by WHERE. If WHERE = LAST, BOTTOM, END, or NIL, the
advice is added following all other advice, if any. If WHERE= FIRST or TOP,
the advice is inserted as the first piece of advice. Otherwise, WHERE is treated
as a command for the editor, similar to BREAKIN, e.g., (BEFORE 3), (AFTER
PRINT).

5Using private versions of PROG, SETQ, and" RETURN, so that these functions can also be advised.

10.9

Advise Functions

....... , - If WHEN:;:: AROUND, the body is substituted for • in the advice, and the
result· becomes the new body, e.g., (ADVISE 'FOO 'AROUND '(RESETFORM
(OUTPUT T) .». Note that if several pieces of AROUND advice are specified,
earlier ones will be embedded inside later ones. The value of WHERE is ignored.

Finally (LIST WHEN WHERE WHAT) is added (by AODPROP) to the value of
property ADV ICE on the property list of FN, so that a record of all the changes is
available for subsequent use in readvising. Note that this property value is a list
of the advice in order of calls to ADVISE, not necessarily in order of appearance
of the adv~ce in the definition of FN.

The value of ADVISE is FN.

If FN is non-atomic, every function in FN is advised with the same values (but
copies) for WHEN, WHERE, and WHAT. In this case, ADVISE returns a list of
individual: functions.

Note: advised functions can be broken. However if a function is broken at the time it is advised, it is first
unbroken. Similarly, advised functions can be edited, including their advice. UNADVISE will still restore
the function to its unadvised state, but any changes to the body of the definition will survive. Since the
advice stored on the property list is the same structure as the advice inserted in the function, editing of
advice can be performed on either the function's definition or its property list.

(UNADVISE x)

(READVISE x)

[NLambda NoSpread Function]
An nlambda nospread like UNBREAK. It takes an indefinite number of functions and
restores them to their original unadvised state. including removing the properties
added by ADVISE. UNADVISE saves on the list ADVINFOLST enough information
to allow restoring a function to its advised state using READVISE. ADVINFOLST
and READVISE thus correspond to BRKINFOLST and REBREAK. If a function
contains the property READVICE, UNADVISE moves the current value of the
property ADVICE to READVICE.

(UNADVISE) unadvises all functions on ADVISEDFNS in reverse order, so that
the most recently advised function is unadvised last It first sets ADVINFOLST to
NIL.

(UNADVISE T) unadvises the first function of ADVISEDFNS, Le., the most recently
advised function.

[NLambda NoSpread Function]
An nlambda nospread like REBREAK for restoring a function to its advised state
without having to specify all the advise information. For each function on x,
READVISE retrieves the advise information either from the property READVICE
for that function, or from ADVINFOLST, and performs the corresponding advise
operation(s). In addition it stores this information on the property READVICE if
not already there. If no information is found for a particular function, value is
(FN - NO ADVICE SAVED).

(READVISE) readvises everything on ADVINFOLST.

(READVISE T) readvises the first function on ADVINFOLST, Le., the function
most recently unadvised.

10.10

BREAKING, TRACING, AND ADVISING

A difference between ADVISE, UNADVISE, and READVISE versus BREAK~ UNBREAK, and REBREAK, is
that if a function is not rebroken between successive {UNB REAK)'8, its break infonnation is forgotten.
However, once READVISE is called on a function, that function's advice is pennanently saved on its
property list (under READVICE); subsequent calls to UNADVISE will not remove it. In fact, calls to
UNADVISE update the property READVICE with the current value of the property ADVICE, so that the
sequence READVISE, ADVISE, UNADVISE causes the augmented advice to become permanent. Note
that the sequence READVISE, ADVISE, READVISE removes the "intermediate adviceu by restoring the
function to its earlier state.

(ADVISEDUMP X FLG) [Function]
Used by PRETTYDEF when given a command of the fonn (ADVISE ...) or
(ADVICE .. ·). If FLG=T, ADVISEDUMP writes both a DEFLIST and a
READVISE (this corresponds to (ADVISE ... ». If FLG=NIL, only the DEFLIST
is written (this corresponds to (ADVICE ... ». In either case, ADVISEDUMP copies
the advise infonnation to the property READVICE, thereby making it "permanent"
as described above.

10.11

Advise Functions

10.12

CHAPTER 11

FILE PACKAGE

Most implementations of Lisp treat symbolic files as unstructured tex~ much as they are treated in most
conventional programming environments. Function definitions are edited with a character-oriented text
editor, and then the changed definitions (or sometimes the entire file) is read or compiled to install those
changes in the running memory image. Interlisp incorporates a different philosophy. A symbolic file
is considered as a database of infonnation about a group of data objects-function definitions, variable
values, record declarations, etc. The text in a symbolic file is never edited directly. Definitions are edited
only after their textual representations on files have been converted to data-structures that reside inside
the Lisp address space. The programs for editing definitions inside Interlisp can therefore make use of the
full set of data-manipulation capabilities that the environment already provides, and editing operations
can be easily intennixed with the processes of evaluation and compilation.

Interlisp is thus a "resident" programming environment, and as such it provides facilities for moving
definitions back and forth between memory and the external databases on symbolic files, and for doing
the bookkeeping involved when definitions on many symbolic files with compiled counterparts are being
manipulated. The file package provides those capabilities~ It removes from the user the burden of keeping
track of where things are and what things have changed. The file package also keeps track of which files
have been modified and need to be updated and recompiled.

The file package is integrated into many other system packages. For example, if only the compiled version
of a file is loaded and the user attempts to edit a function, the file package will attempt to load the
source of that function from the appropriate symbolic file. In many cases, if a datum is needed by some
program, the file package will automatically retrieve it from a file if it is not already in the user's working
environment.

Some of the operations of the file package are rather complex. For example, the same function may
appear in several different files, or the symbolic or compiled files may be in different directories, etc.
Therefore, this chapter does not document how the file package works in each and every situation, but
instead makes the deliberately vague statement that it does the "right" thing with respect to keeping
track of what has been changed, and what file operations need to be perfonned in accordance with those
changes.

For a simple illustration of what the file package does, suppose that the symbolic file FOO contains the
functions FOOl and F002, and that the file BAR contains the functions BARI and BAR2. These two files
could be loaded into the environment with the function LOAD:

.. (LOAD 'FOO)
FILE CREATED 4-MAR-83 09:26:55
FOOCOMS
{DSK}FOO.;1
.~ (LOAD 'BAR)
FILE CREATED 4-MAR-83 09:27:24
BARCOMS
{DSK}BAR.;l

11.1

Now, suppose that we change the definition of F002 with the editor, and we define two new functions,
NEWl and NEW2. At that point, the file package knows that the in-memory definition of F002 is no
longer consistent with the definition in the file F 00, and that the new functions have been defined but
have not yet been associated with a symbolic file and saved on permanent storage. The function F I L E S?
summarizes this state of affairs and enters into an interactive dialog in which we can specify what files
the new functions are to belong to.

+- (FILES?)
FOO ••• to be dumped.

plus the functions: NfWl.NEW2
want to say where the above go ? Yes
(functions)
NEWl File name: BAR
NEW2 File name: ZAP

new file? Yes
NIL

The 'file package knows that the file F 00 has been changed, and needs to be dumped back to permanent
storage. This can be done with MAKE FILE.

+-(MAKEFILE 'FOO)
{DSK}FOO.;2

Since we added NEWl to the old file BAR and established a new file ZAP to contain NEW2, both BAR and
ZA P now also need to be dumped. This is confirmed by a second call to F I L E S?:

+- (FILES?)
BAR, ZAP ... to be dumped.
FOO ..• to be listed.
FOO •.• to be comp i 1 ed
NIL

We are also informed that the new version we made of FOO needs to be listed (sent to a printer) and
that the functions on the file must be compiled.

Rather than doing several MAKEFILEs to dump the files BAR and ZAP, we can simply call CLEANUP.
Without any further user interaction, this will dump any files whose definitions have been modified.
CLEANUP will also send any unlisted files to the printer and recompile any files which need to be
recompiled. CLEANUP is a useful function to use at the end of a debugging session. It will call FILES?
if any new objects have been d~fined, so the user does not lose the opportunity to say explicitly where
those belong. In effect, the function CLEANUP executes all the operations necessary to make the user's
permanent files consistent with the definitions in his current core-image.

+- (CLEANUP)
FOO ... compiling {DSK}FOO.;2

BAR ... compiling {DSK}BAR.;2

11.2

FILE PACKAGE

ZAP.~.compiling {DSK}ZAP.;l

In addition to the definitions of functions, symbolic files in Interlisp can contain definitions of a variety
of other types, e.g. variable values, property lists, record declarations, macro definitions, hash arrays, etc.
In order to treat such a diverse assortment of data unifonnly from the standpoint of file operations, the
file package uses the concept of a typed definition, of which a function definition is just one example. A
typed definition associates with a name (usually a litatom)~ a definition of a given type (called the file
package type). Note that the same name may have several definitions of different types. For example, a
litatom may have both a function definition and a variable definition. The file package also keeps track of
the files that a particular typed definition is stored on, so one can think of a typed definition as a relation
between four elements: a name, a definition, a type, and a file.

Symbolic files on permanent storage devices are referred to by names that obey the naming conventions
of those devices, usually including host, directory, and version fields. When such definition groups are
noticed by the file package, they are assigned simple root names and these are used by all file package
operations to refer to those groups of definitions. The root name for a group is computed from its full

, permanent storage name by applying the function ROOT F I L E NAM E; this strips off the host, directory,
version, etc., and returns just the simple name field of the file. For each file. the file package also has a
data structure that describes what definitions it contains. This is known as the commands of the file, or
its "filecoms". By convention, the filecoms of a file whose root name is x is stored as the value of the
litatom xCOMS.' For example, the value of FOOCOMS is the filecoms for the file FOO. This variable can
be directly manipulated, but the file package contains facilities such as F I L E S? which make constructing
and updating filecoms easier, and in some cases automatic. See page 11.32.

The file package is able to maintain its databases of information because it is notified by various other
routines in the system when events take place that may change that database. A file is "noticed" when it
is loaded, or when a new file is stored (though there are ways to explicitly no~ce files without completely
loading all their definitions). Once a file is noticed, the file package takes it into account . when modifying
filecoms, dumping files, etc. The file package also needs to know what typed definitions have been changed
or what new definitions have been introduced, so it can determine which files need to be updated. This
is done by '·marking changes". All the system functions that perform file package operations (LOAD,
TCOMPL, PRETTYDEF, etc.), as well as those functions that define or change data, (EDITF, EDITV,
ED IT P, DWIM corrections to user functions) interact with the file package. Also, typed- in assignment
of variables or property values is noticed by the file package. (Note that modifications to variable or
property values during the execution of a function body are not noticed.) In some cases the marking
procedure can be subtle, e.g. if the user edits a property list using EDITP, only those properties whose
values are actually changed (or added) are marked.

All file package operations can be disabled with FILEPKGFLG.

FILEPKGFLG [Variable]
The file package can be disabled by setting FILEPKG,FLG to NIL. This will tum
off noticing files and marking changes. F I L E P KG F L G is initially T.

The rest of this chapter goes into further detail about the file package. Functions for loading and storing
symbolic files are presented first, followed by functions for adding and removing typed definitions from
files, moving typed definitions from one file to another, determining which file a particular definition is
stored in, and so on.

11.3

Loading Files

11.1 LOADING FILES

The functions below load information from symbolic files into the Interlisp environment A symbolic file
contains a sequence of Interlisp :expressions that can be evaluated to establish specified typed definitions.
The expressions oJ! symbolic files are read using FILERDTBl as the readtable.

The loading functions all have an argument LDFLG. LDFLG affects the operation of DEFINE, DEFINEQ,
RPAQ, RPAQ?, and RPAQQ. While a source file is being loade~ DFNFlG (page 5.9) is rebound to LDFLG.
Thus, if LDFLG = NIL, and a function is redefined, a message is printed and the old definition saved.
If LDFLG = T. the old definition is simply overwritten. If LDFLG = PROP, the functions are stored as
"saved" definitions on the property lists under the property EX P R instead of being installed as the active
definitions. If LDFLG=ALLPROP, not only function definitions but also variables set by RPAQQ, RPAQ,
RPAQ? are stored on property lists (except when the variable has the value NOB I NO, in which case they
are set to the indicated value regardless of DFNFLG).

Another option is available for users who are loading systems for others to use and who wish to suppress
the saving of information used tp aid in development and debugging. If LDFLG=SYSLOAD, LOAD will:
(1) Rebind DFNFLG to T, so old definitions are simply overwritten; (2) Rebind LISPXHIST to NIL,
thereby making the LOAD not be: undoable and eliminating the cost of saving undo information (See page
8.22); (3) Rebind ADDSPELLFLG to NIL, to suppress adding to spelling lists; (4) Rebind FILEPKGFLG to
NIL, to prevent the file from being "noticed" by the file package; (5) Rebind BUILDMAPFLG to NIL,
to prevent a file map from being constructed; (6) After the load has completed, set the filecoms variable
and any filevars variables l to NOBIND; and (7) Add the file name to SYSFILES rather than FILELST.

Note: All functions that have LDFLG as an argument perform spelling correction using LOADOPT IONS
as a spelling list when LDFLG i$ not a member of LOADOPTIONS. LOAoOPTIONS is initially (NIL T
PROP ALLPROP SYSLOAD). ;

(LOAD FILE LDFLG PRINTFLG') [Function]
Reads suqcessive expressions from FILE (with F ILERoTBL as readtable) and
evaluates each as it is read, until it reads either NIL, or the single atom ST 0 P. Note
that LOAD can be used to load both symbolic and compiled files. Returns FILE
(full namd).

If PRINTFLG = T, LOAD prints the value of each expression; otherwise it does not.

(LOAD? FILE LDFLG PRINTFLG) [Function]
Similar to ;LOAD except that it does not load FILE if it has already been loaded, in
which case it returns NIL.

Note: The; test is whether the root name of FILE has a F I L E oA T E S property (page
11.13).

1 A filevars variable is any variable appearing in a file package command of the form (FILECOM *
VARIABLE) (see page 11.30). Therefore, if the filecoms includes (FNS * FOOFNS), FOOFNS is set to
NOB I NO. If the user wants the value of such a variable to be retained, even when the file is loaded with
LDFLG=SYSLOAD, then he should replace the variable with an equivalen~ non-atomic expression, such
as (FNS * (PROGN FOOFNS»~

11.4

FILE PACKAGE

(LOADfNS FNS FILE LDFLG VARS) [Function]
Pennits selective loading of definitions. FNS is a list of function names, a single
function name, or T, meaning to load all of the functions on the file. FILE can be
either a compiled or symbolic file. If a compiled definition is loaded, so are all
compiler-generated subfunctions. 1be interpretation of LDFLG is the same as for
LOAD.

If FILE = NIL, LOADfNS will use WHEREIS (page 11.10) to detemtine where the
first function in FNS resides, and load from that file. Note that the file must
previously have been "noticed" (see page 11.12). If WHEREIS returns NIL, and
the WHEREIS package (page 23.40) has been loaded, LOADfNS will use the
WHEREIS data base to find the file containing FN.

VARS specifies which non-DE f I NEQ expressions are to be loaded (Le., evaluated):
T means all, NIL means none, VARS means to evaluate all variable assignment
expressions (beginning with RPAQ, RPAQQ, or RPAQ?, see page 11.37), and any
other atom is the same as specifying a list containing that atom.

If VARS is a list, each element in V.ARS is "matchedf9 against each non-D E FIN E Q
expression, and if any elements in VARS "match" successfully, the expression
is evaluated. "Matching" is defined as follows: If an element of VARS is an
atom, it matches an expression if it is EQ to either the CAR or the CADR of
the expression. If an element of VARS is a list, it is treated as an edit pattern
(page 17.13), and matched with the entire expression (using ED I T 4 E, page
17.57). For example, if VARS was {FOOCOMS DECLARE: {DEfLIST & (QUOTE
MACRO»), this would cause (RPAQQ FOOCOMS ...), all DECLARE:s, and all
DEfLISTs which set up MACROs to be read and evaluated.

If VARS is a list and (FNTYP VARS) is true (VARS is a function definition),
then LOADFNS will invoke that function on every non-DEfINEQ expression being
considered, applying it to two arguments, the first and second elements in the
expression. If the function returns NIL, the expression will be skipped; if it returns
a non-N I L litatom (e.g. T), the expression will be evaluated; and if it returns a
list, this list is evaluated instead of the expression. Note: The file pointer is set to
the very beginning of the expression before calling the VARS function definition,
so it may read the entire expression if necessary. If the function returns a litatom,
the file pointer is reset and the expression is READ or SKREAD. However, the file
pointer is not reset when the function returns a list. so the function must leave it
set immediately after the expression that it has presumably read.

LOADFNS returns a list of: (1) The names of the functions that were found; (2) A
list of those functions not found (if any) headed by the litatom NOT-FOUND:; (3)
All of the expressions that were evaluated; (4) A list of those members of VARS

for which no corresponding expressions were found (if any), again headed by the
litatom NOT-FOUND:. For example,

~ {LOADFNS '(FOO FIE FUM) F&E NIL '(BAZ (DEFLIST &»)
(FOO FIE (NOT-FOUND: FUM) (RPAQ BAZ ...) {NOT-FOUND: (DEFLIST
&»)

(LOADVARS VARS F&E LDFLG) [Function]
Same as (LOADFNS NIL F&E LDFLG VARS).

11.5

Storing Files

(LOADFROM F~E FNS LDFLG) [Function]
Same as (LOAD F NS FNS F~E LDFLG T).

Once the file package has noticed, a file, the user can edit functions contained in the file without explicitly
loading them. Similarly, those fu*ctions which have not been modified do not have to be loaded in order
to write out an updated version of the file. Files are normally noticed (Le., their contents become known
to the file package; see page 11.12) when either the symbolic or compiled versions of the file are loaded.
If the file is not going to be loaded completely, the preferred way to notice it is with LOAD FROM. Note
that the user can also load some functions at the same time by giving LOADFROM a second argument, but
it is normally used simply to infortn the file package about the existence and contents of a particular file.

(LOADBLOCK FN F~E LDFLG) [Function]
Calls LOAOFNS on those functions contained in the block declaration containing
FN (See page 12.14). LOADBLOCK is designed primarily for use with symbolic files,
to load the: EXPRs for a given block. It will not load a function which already has
an in-core EX P R definition, and it will not load the block name, unless it is also
one of the block functions.

(LOADCOMP FILE LDFLG) [Function]
Performs all operations on FILE associated with compilation, i.e. evaluates all
expressions under a DECLARE: EVAl(~COMP ILE (see page 11.26), and "notices"
the functio~ and variable names by adding them to the lists NOF IXFNSLST and
NOF IXVARSLST (see page 16.16).

Thus, if building a system composed of many files with compilation information
scattered among them, all that is required to compile one file is to LOADCOMP the
others.

(LOADCOMP? F~E LDFLG) [Function]
Similar to LOADCOMP, except it does not load if file has already been loaded, in
which case its value is NIL.

11.2 STORING FILES

(MAKEFILE FILE OPTIONS REPRINTFNS SOURCEFILE) [Function]
Makes a n~w version of the file FILE, storing the information specified by FILE'S

filecoms. Notices FILE if not previously noticed (see page 11.12). Then, it adds
F~E to NOTLISTEDFILES2 and NOTCOMPILEDFILES.3

OPTIONS is a litatom or list of litatoms which specify options. By specifying certain
options, MAK E F I L E can automatically compile or list FILE. Note that if FILE does
not contain any function definitions, it is not compiled even when OPTIONS specifies

2Except if FILE has on its property list the property F I LETYPE with value DON' TLIST, or a list containing
DON'TLIST.
3Except if FILE has on its property list the property FILETYPE with value DON' TCOMPILE, or a list
containing DON' TCOMP I LE. Also, if FILE does not contain any function definitions, it is not added to
NOTCOMPILEDFILES, and it is not compiled even when OPTIONS specifies C or RC.

11.6

FILE PACKAGE

C or RC. The- options are spelling corrected using the list MAKE F ILEOPT IONS. If
spelling correction fails9 MAKE FILE generates an error. The options are interpreted
as follows:

C
RC

LIST

CLISPIFY

NOCLISP

FAST

REMAKE

NEW

After making FILE, MAKE FILE will compile FILE by calling
TCOMPL (if C is specified) or RECOMPILE (if RC is specified).
If there are any block declarations specified in the filecoms for
FILE, BCOMPL or BRECOMPILE will be called instead.

If F, ST, STF, or S is the next item on OPTIONS following C or
RC, it is given to the compiler as the answer to the compiler's
question LIST I NG? (see page 12.1). For exarqple, (MAK E F I L E
'FOO '(C F LIST» wiUdump FOO, then TCOMPL or BCOMPL
it specifying that functions are not to be redefined. and finally list
the file.

After making FILE, MAKEFILE calls LISTFILES to print a
hardcopy listing of FILE.

MAKEFILE calls PRETTYDEF with CLISPIFYPRETTYFLG=T
(see page 16.20). This causes CLISPIFY to be called on each
function defined as an EXPR before it is prettyprinted.4

MAKEFILE calls PRETTYDEF with PRETTYTRANFLG=T (see page
16.20). This causes CLISP translations to be printe~ if any, in place
of the corresponding CLISP expressions, e.g., iterative statements,
record expressions, PRINTOUT forms, etc.

MAKEFILE calls PRETTYDEF with PRETTYFLG=NIL (see page
6.54). This causes data objects to be printed rather than
prettyprinte~ which is much faster.

MA KEF I L E "remakest9
FILE: The prettyprinted definitions of

functions that have not changed are copied from an earlier version
of the symbolic file. Only those functions that have changed are
prettyprinted. See page 11.10.

MAKEFILE does not remake FILE. If MA'KEFILEREMAKEFLG=T
(the initial setting)9 the default for all calls to MA KEF I LEis to
remake. The NEW option can be used to override this default

REPRINTFNS and SOURCEFILE are used when remaking a file9 as described on
page 11.10.

4 Alternatively, if FILE has the property F I LETYPE with value CL ISP or a list containing CL ISP,
PRETTYOEF is called with CLISPIFYPRETTYFLG reset to CHANGES, which will cause CLISPIFY to
be called on all functions marked as having been changed. If FILE has property F ILETYPE with value
C LIS P, the compiler will OW I M IF Y its functions before cOInpiling them (see page 12.9).

11.7

Storing Files

If a remake is not being performed MAKE FILE checks the state of FILE to make sure that the entire source
file was actually LOADed. If FILE was loaded as a compiled file, MAKEF I LE prints the message CAN'T
DUMP: ONLY THE COMPILED FILE HAS BEEN LOADED. Similarly, if only some of the symbol~c

-definitions were loaded via LOADFNS or LOADFROM, MAKE FILE prints CAN'T DUMP: ONLY SOME OF
ITS SYMBOLICS HAVE BEEN LOADED. In both cases, MAKEFILE will then ask the user if it should
dump anyway; if the user declin~ MAKEFILE does not call PRETTYDEF, but simply returns (FILE NOT
DUMPED) as its value.

The user can indicate that FILE must be block compiled together with other files as a unit by putting a list
of those files on the property list of each file under the property FILEGROUP. If FILE has a FILEGROUP
property, the compiler will not be called until all files on this property have been dumped that need to
be.

MAKEFILE operates by rebinQ,ing; PRETTYFLG, PRETTYTRANFLG, and CLISPIFYPRETTYFLG, evaluat
ing each expression on MAKEFILEFORMS (under errorset protection), and then calling PRETTYDEF. The
user can add expressions to MAKEFILEFORMS to implement his own options.

(MAKEFILES OPTIONS FILES) [Function]
Performs (MAKE FILE FILE OPTIONS) for each file on FILES that needs to be
dumped. If FILES = NIL. FILELST is used. For example, (MAKEFILES 'LIST)
will make .and list all files that have been changed. In this case, if any typed
definitions for any items have been defined or changed and they are not contained
in one of the files on FILELST. MAKEFILES calls ADDTOFILES? to allow the
user to specify where these go. MAK E F I L E S returns a list of all files that are made.

(CLEANUP FILE 1 FILE3 ... FILEN) [NLambda NoSpread Function]
Dumps, lists, and recompiles (with RECOMPILE or BRECOMPILE) any of the
specified files (unevaluated) requiring the corresponding operation. If no files are
specified, FILELST is used. CLEANUP returns NIL.

CLEANUP -uses the value of the variable CLEANUPOPTIONS as the OPTIONS
argument to MAKEFILE. CLEANUPOPTIONS is initially (LIST RC), to indicate
that the files should be listed and recompiled. If CLEANUPOPTIONS is set to (RC
F). no listing will be performed, and no functions will be redefined as the result
of compiling. Alternatively. if FILE 1 is a list, it will be interpreted as the list of
options regardless of the value of CLEANUPOPTIONS.

(F ILES?) [Function)"
Prints on the terminal the names of those files that have been modified but not
dumped, dumped but not listed, dumped but not compiled, plus the names of any
functions and other typed definitions (if any) that are not contained in any file.
If there are any, FILES? then calls ADDTOFILES? to allow the user to specify
where these go.

(ADDTOFILES? -) [Function]
Called from MAKEFILES. CLEANUP, and FILES? when there are typed definitions
that have been marked as changed which do not belong to any file. ADDTOFILES?
lists the names of the changed items, and asks the user if he wants to specify where
these items should be put. If user answers N(o), ADDTOFILES? returns NIL
without taking any action. If the user answers], this is taken to be an answer
to each question that would be asked, and all the changed items are marked as
dummy items to be ignored. Otherwise. ADDTOF ILES? prints the name of each

11.8

FILE PACKAGE

changed item, and accepts one of the following responses:

A file name or a variable whose value is a list
Adds the item to the-corresponding file or list, using ADDTOF ILE.

If the item is not the name of a file on FILELST, the user will be asked
whether it is a new file. If he says no, then ADDTOF I LES? will check
whether the item is the name of a list, i.e. whether its value is a list. If
not, the user will be asked whether it is a new list

line-feed
Same as the user's previous response.

space or carriage return
Take no action.

] The item is marked as a durnmy item by adding it to NILCOMS. This tells
the file package simply to ignore this item.

[The "definition" of the itenl in question is prettyprinted to the tenninal,
and then the user is asked again about its disposition.

(ADDTOF I LE S? prompts with "L I STNAME: (", the user types in the- name
of a list, I.e. a variable whose value is a list, tenninated by a). The item
will then only be added to (under) a command in which the named list
appears as a filevar. If none are founc1 a message is printed, and the user
is asked again .. For example, the user defines a new function F003, and
when asked where it goes, types (FOOFNS). If the command (FNS *
FOOFNS) is founc1 F003 will be added to the value of FOOFNS. If instead
the user types (FOOCOMS), and the command (COMS * FOOCOMS) is
found, then F003 will be added to a command for dumping functions that
is contained in FOOCOMS.

Note: If the named list is not also the name of a file, the user can simply
type it in without parenthesis as described above.

ADDTOFILES? prompts with "Near: (", the user types in the name
of an object, and the item is then inserted in a command for dumping
objects (of its type) that contains the indicated name. The item is inserted
immediately after the indicated name.

(LISTFILES FILE 1 FILE2 .•. FILEN) [NLambda NoSpread Function]
Lists each of the specified files (unevaluated). If no files are given, NOT L I 51 E D F I L E S
is used. Each file listed is removed from NOTL I STEDF I LES if the listing is com
pleted. For each file not founc1 LIS T F I L E S prints the message "FILENAME NO T
FOUND" and proceeds to the next file. LISTFILES calls the function LISTFILESl
on each file to be listed. The user can advise or redefine LIS T F I L E S 1 for more
specialized applications.

(lnterlisp-lO) LISTF ILES uses the function TENEX (page 22.6) to tell the operating
system to print the file. LISTFILES calls LISTFILESl which calls TENEX
with (CONCAT 'LISTS FILENAME LISTFILESTR), where LISTFILESTR is

11.9

(COMPILEFILES

(WHEREIS NAME

Remaking a Symbolic File

initially "c"". The user can reset LISTF ILESTR to specify subcommands for the
list comma:ncL or advise or redefine LISTF ILES1.

(Interlisp-D) LISTFILESl is initially defined as EMPRESS (page 18.17).

FILE1FILE2 :... FILEN) [NLambda NoSpread Function]
Executes the RC and C options of MAKE FILE for each of the specified files
(unevaluated). If no files are given, NOTCOMPILEDFILES is used. Each file
compiled i~ removed from NO T C OM P I LED F I L E S. If FILE 1 is a list, it is interpreted
as the OPTIONS argument to MAKEF ILES. This feature can be used to supply
an answer ;to the compiler's LIST ING? question, e.g., (COMP I LE FILES (STF»
will compile each file on NOT C OM PI LED F IL E S so that the functions are redefined
without the EXPRs definitions being saved.

TYPE FILES .FN) [Function]
TYPE is a file package type. WHEREIS sweeps through all the files on the list FILES
and returns a list of all files containing NAME as a TYPE. WHERE IS knows about
and expands all file package commands and file package macros. TYPE= NIL
defaults to: FNS (to retrieve function definitions). If FILES is not a list, the value
of FILE L$T is used.

If FN is given, it should be a function (with arguments NAME, FILE, and TYPE)
which is applied for every file in FILES that contains NAME as a TYPE. In this case,
WHE RE IS !returns NIL.

If the WHEREIS package (page 23.40) has been loaded, WHE REI S is redefined so
that FILES~ T means to use the whereis package data base, so WHERE IS will find
NAME evett if the file has not been loaded or noticed. FILES = NIL always means
use F ILELST.

11.2.1 Remaking a Symbolic FUe

Most of the time that a symbol.c file is written using MAKEFILE, only a few of the functions that it
contains have been changed sin~e the last time the file was written. Rather than prettprinting all of
the functions, it is often considerably faster to "remake" the file, copying the prettprinted definitions of
unchanged functions from an earlier version of the symbolic file, and only prettyprinting those functions
that have been changed. '

MAKE FILE will remake the symbolic file if the REMAKE option is specified. If the NEW option is given,
the file is not remade, and all of the functions are prettprinted. The default action is specified by the value
ofMAKEFILEREMAKEFLG: ifT (its initial value), MAKEFILE will remake files unless the NEW option is
given; if NIL, MAKEFILE will not remake unless the REMAKE option is given.

Note: If the file has never been loaded or dumped, for example if the filecoms were simply set
up in memory, then MAKEFILE will never attempt to remake the file, regardless of the setting of
MAKEFILEREMAKEFLG, or whether the REMAKE option was specified.

When MAKEF ILE is remaking a symbolic file, the user can explicitly indicate the functions which are
to be prettyprinted and the file to be used for copying the rest of the function definitions from via the
REPRINTFNS and SOURCEFILE arguments to MAKEFILE. Normally, both of these arguments are defaulted
to NIL. In this case, REPRINTFNS will be set to those functions that have been changed since the last

11.10

FILE PACKAGE

version of the file was written. For SOURCEFILE, MAKEFILE obtains the full name of the most recent
version of the file (that it knows -about) from the F I LEDATES property of the file. and checks to make
sure that the file still exists and has the same file date as that stored on the F I L E DA T E S property. If it
does, MAKEFILE uses that file as SOURCEFILE. This procedure permits the user to LOAD or LOADFROM a
file in a different directory, and still be able to remake the file with MAKE FILE. In the case where the most
recent version of the file cannot be found, MA KE F I L E will attempt to remake using the original version of
the file (i.e., the one first loaded), specifying as REPRINTFNS the union of all changes that have been made
since the file was first loaded, which is obtained from the F I LECHANGES property of the file. If both of
these fail, MAKEFILE prints the message "CAN'T FIND EITHER THE PREVIOUS VERSION OR THE
ORIGINAL VERSION OF FILE, SO IT WI.LL HAVE TO BE WRITTEN ANEW", and does not remake
the file, Le. will prettyprint all of the functions.

When a remake is specified, MAKE FILE also checks to see how the file was originally loaded (see page
11.12). If the file was originally loaded as a compiled file, MA KEF I L E will au tomatically call LOA 0 VA R S
to obtain those DECLARE: expressions that are contained on the symbolic file, but not the compiled
file, and hence have not been loaded. If the file was loaded by LOADFNS (but not LOADFROM), then
LOADVARS will automatically be called to obtain any non-DEFINEQ expressions.

Note: Remaking a symbolic file is considerably faster if the earlier version has a file map indicating where
the function definitions are located (page 11.38), but it does not depend on this information.

11.3 MARKING CHANGES

The file package needs to know what typed definitions have been changed, so it can detennine which
files need to be updated. This is done by "marking changes". All the system functions that perfonn file
package operations (LOAD, TCOMPL. PRETTYDE F, etc.), as well as ,those functions that define or change
data, (EDITF, EDITV, EDITP, DWIM corrections to user functions) interact with the file package by
marking changes. Also, typed-in assignment of variables or property values is noticed by the file package.
(Note that if a program modifies a variable or property value, this is not noticed.) In some cases the
marking procedure can be subtle, e.g. if the user edits a property list using ED I T P, only those properties
whose values are actually changed (or added) are marked.

The various system functions which create or modify objects call MARKASCHANGED to mark the object as
changed. For example, when a function is defined via DEFINE or DEFINEQ, or modified via EDITF, or
a DWIM correction, the function is marked as being a changed object of type FNS. Similarly, whenever a
new record is declared, or an existing record redec1ared or edited, it is marked as being a changed object
of type RECORDS, and so on for all of the other file package types.

The user can also call MARKASCHANGED directly to mark objects of a particular file package type as
changed:

(MARKASCHANGED NAME TYPE REASON) [Function]
Marks NAME of type TYPE as being changed. REASON is a litatom that indicated
how NAME was changed. MARKASCHANGED recognizes the following values for
REASON:

DEFINED

CHANGED

Used to indicate the creation of NAME, e.g. from DEFINE.

Used to indicate a change to NAME. e.g. from the editor.

11.11

DELETED

CLISP

Noticing Files

Used to indicate the deletion of NAME, e.g. by DELDEF.

Used to indicate the modification of NAME by CLISP translation.

For backwards compatibility, MARKASCHANGED also accepts a REASON of T
(= DE F I NED) and NIL (= CHANGED). New programs should avoid using these
values.

MARKASCHANGED returns NAME. MARKASCHANGED is undoable.

(UNMARKASCHANGED NAME T'YPE) [Function]
Unmarks NAME of type TYPE as being changed. Returns NAME if NAME was
marked as changed and is now unmarked, NIL otherwise. UNMARKASCHANGED is
undoable.

(FILEPKGCHANGES TYPE LST) {NoSpread Function]
If LST is not specified (as opposed to being NIL), returns a list of those objects
of type TIfPE that have been marked as changed but not yet associated with their
corresponding files (See page 11.14). If LST is specified, F I LEPKGCHANGES sets
the corresponding list (FILEPKGCHANGES) returns a list of all objects marked
as changed as a list of elements of the form (TYPENAME • CHANGEDOBJECTS).

Some properties (e.g. EXPR, ADVICE, MACRO, I. S. OPR, etc ..) are used to implement other file package
types. For example, if the user changes the value of the property I. S. OPR, he is really changing an object
of type I. S. OPR, and the effect is the same as though he had redefined the i.s.opr via a direct call to the
function I . S . 0 P R. If a property whose value has been changed or added does not correspond to a specific
file package type, then it is marked as a changed object of type PROPS whose name is (VARIABLENAME

PROPNAME) (except if the property name has a property PROPTYPE with value IGNORE).

Similarly, if the user changes a variable which implements the file package type ALISTS (as indicated by
the appearance of the property VARTYPE with value ALIST on the variable's property list), only those
entries that are actually changed ,are marked as being changed objects of type .AL I ST S, and the "name"
of the object will be (VARIABLEiNAME KEY) where KEY is CAR of the' entry on the alist that is being
marked. If the variable corresponds to a specific file package type other than ALISTS, e.g. USERMACROS,
LISP XMAC ROS, etc., then an object of that type is marked. In this case, the name of the changed object
will be CAR of the corresponding entry on the alist. For example, if the user edits LISPXMACROS and
changes a definition for PL, then: the object PL of type LISPXMACROS is marked as being changed.

11.4 NOTIONG FILES

Already existing files are "noticed" by LOAD or LOADFROM (or by LOADFNS or LOADVARS when the
VARS argument is T. New files are noticed when they are constructed by MAKEFILE, or when definitions
are first associated with them via FILES? or ADDTOFILES? Noticing a file updates certain lists and
properties so that the file package functions know to include the file in their operations. For example.

"CLEANUP will only dump files that have been noticed. .

The file package uses information stored on the property list of the root name of noticed files. The
following property names are used:

11.12

FILE

FILECHANGES

FILEDATES

FILEMAP

FILE PACKAGE

[property Name]
- When-a"file is noticeeL the property fILE, -value ({FILECOMS • LOADTYFE» is

added to the property list of its root name~ FILECOMS is the variable containing
the filecoms of the file (see page 11.21). LOADTYFE indicates how the file was
10adeeL e.g., completely 10adeeL only partially loaded as with LOADFNS, loaded as
a compiled file, etc.

The property F I LEis used to detennine whether or not the corresponding file
has been. modified since the last time it was loaded or dumped. CDR of the
F I L E property records by type those items that have been changed since the last
MAKEF ILE. Whenever a file is dump eeL these items are moved to the property
FILECHANGES, and CDR of the FILE property is reset to NIL.

[property Name]
The property FILECHANGES contains a list of all changed items since the file was
loaded (there may have been several sequences of editing and rewriting the file).
When a file is dumpeeL the changes in CDR of the FILE property are added to the
F ILECHANGES property.

[property Name]
The property F I L E DA T E S contains a list of version numbers and corresponding file
dates for this file. These version numbers and dates are used for various integrity
checks in connection with remaking a file (see page 11.10).

[property Name]
The property F I LEMAP is used to store the filemap for the file (see page 11.38).
This is used to directly load individual functions from the middle of a file.

To compute the root name, ROOTF I LENAME is applied to the name of the file as indicated in the
F I L E C REA TED expression appearing at the front of the file, since this name corresponds to the name
the file was originally made under. The file package detects that the file being noticed is a compiled file
(regardless of its name), by the appearance of more than one FILECREATED expressions. In this case,
each of the files mentioned in the following FILECREATED expressions are noticed. For example, if the
user perfonns {BCOMPL '(FOO FIE», and subsequently loads FOO.DCOM, both Foa and FIE will be
noticed.

When a file is noticeeL its root name is added to the list F I L E L S T :

FILELST

LOADEDFILELST

[Variable]
Contains a list of the root names of t.he files' that have been noticed.

[Variable]
Contains a list of the actual names of the files as loaded by LOAD, LOADFNS,
etc. For example, if the user perfonns {LOAD '(NEWLISP)EDITA.COM;3),
EDITA will be added to FILELST, but (NEWLISP)ED.ITA.COM;3 is added
to LOADEDFILELST. LOADEDFILELST is not used by the file package; it is
maintained solely for the user's benefit.

11.13

Distributing Change Information

11.5 DISTRIBUTING CHANGE INFORMA nON

Periodically, the function U PDA T E F I L E S is called to find which file(s) contain the elements that have
been changed. UPDATEFILES is, called by FILES?, CLEANUP, and MAKEFILES, i.e., any procedure that
requires the F I L E property to be up to date. This procedure is followed rather than update the F I L E
property after each change because scanning FILE LST and examining each file package command can be
a time-consuming process, and is' not so noticeable when performed in conjunction with a large operation
like loading or writing a file.

UPDATEF ILES operates by scanning F ILELST and interrogating the file package commands for each file.
When (if) any files are found that contain the corresponding typed definition, the name of the element
is added to the value of the property FILE for the corresponding file. Thus, after UPDATEFILES has
completed operating, the files that need to be dumped are simply those files on FILELST for which CDR
of their F I L E property is non-N I L. For example, if the user loads the file F 00 containing definitions for
FOOl. F002. and F003. edits F002, and then calls UPDATEFILES, (GETPROP 'FOO 'FILE) will be
{(FOOCOMS . T) (FNS FOOa». If any objects marked as changed have not been transferred to the
F I L E property for some file, e.g., the user defines a new function but forgets (or declines) to add it to the
file package commands for the corresponding file, then both FILES? and CLEANUP will print warning
messages, and then call ADDTOFILES? to permit the user to specify on which files these items belong.

The user can also invoke UPDATEFILES directly:

(UPDATEFILES - -) [Function]
(UPDATEFILES) will update the FILE properties of the noticed files.

11.6 FILE PACKAGE TYPES

In addition to the definitions of functions and values of variables, source files in Interlisp can contain a
variety of other information. e.g. property lists, record declarations, macro definitions, hash arrays, etc.
In order to treat such a diverse assortment of data uniformly from the standpoint of file operations. the
file package uses the concept of a typed definition. of which a function definition is just one example. A
typed "definition associates with a name (usually a litatom), a definition of a given type (called the file
package type). Note that the same name may have several definitions of different types. For example. a
litatom may have both a function definition and a variable definition. The file package also keeps track of
the file that a particular typed definition is stored on. so one can think of a typed definition as a relation
between four elements: a name, a definition. a type, and a file.

A file package type is an abstract notion of a class of objects which share the property that every object
of the same file package type is stored, retrieved, edited. copied etc., by the file package in the same way.
Each file package type is identified by a litatom, which can be given as an argument to the functions that
manipulate typed definitions. The user may define new file package types, as described in page 11.20.

FILEPKGTYPES [Variable]
The value of FILE PKGTYPES is a list of all file package types, including any that
may have been defined by the user.

The file package is initialized with the following built-in file package types:

11.14

FNS

VARS

PROPS

ALISTS

EXPRESSIONS

MACROS

USERMACROS

LISPXMACROS

ADVICE

FILEPKGCOMS

FILE PACKAGE

Function definitions.

(top-level) Variable values.

Property name/value pairs. When a property is changed or added, an object of
type PROPS, with "name" (LITATOM PROPNAME) is marked as being changed.

Note that some properties are used to implement other file package types. For
example, the property MAC RO implements the file package type MAC ROS, the
property ADVICE implements ADVICE, etc. This is indicated by putting the
property PROPTYPE, with value of the file package type on the propeny list
of the property name. For example, (GETPROP 'MACRO 'PROPTYPE) =)

MAC ROS. When such a property is changed or added, an object of the corresponding
file package type is marked. If (GETPROP PROPNAME 'PROPTYPE) =)

IGNORE, the change is ignored. The FILE, FILEMAP, FILEDATES, etc. properties
are all handled this way. (Note that IGNORE cannot be the name of a file package
type implemented as a property).

Alists (association lists); a list of dotted pairs accessed via ASSOC and PUT ASSOC.

A variable is declared to have an association list as its value by putting on its
property list the property VARTYPE with value ALIST. In this case, each dotted
pair on the list is an object of type ALISTS. When the value of such a variable
is changed, only those entries in the a-list that are actually changed or added
are marked as changed objects of type ALISTS (with "name" (LITATOM KEY».
Objects of type ALISTS are dumped via the ALISTS or ADDVARS file package
commands.

Note that some alists are used to "implement" other file package types. For
example, the value of the global variable USERMACROS implements the file package
type USERMACROS and the values ofLISPXMACROS and LISPXHISTORYMACROS
implement the file package type LISPXMACROS. This is indicated by putting on
the property list of the variable the property VARTYPE with value a list of the form
(ALIST FILEPKGTYPE). For example, (GETPROP 'LISPXHISTORYMACROS
'VARTYPE) =) (ALIST LISPXMACROS).

Expressions.

Objects of type EXPRESS IONS are written out via the P file package command,
and marked as being changed via the REMEMBER programmers assistant command
(page 8.13).

Compiler macros. See page 5.17.

User edit macros. See page 17.48.

(values in) LISPXMACROS and LISPXHISTORYMACR0S. See page 8.19.

Advice. See page 10.7.

File package commands/types. New file package types and commands can be
defined as explained on page 11.20 and page 11.32.

11.15

RECORDS

FIELDS

I.SoOPRS

TEMPLATES

FILES

FILEVARS

Functions for Manipulating Typed Definitions

Record declarations. See page 3.1..

Fields of records. The "definition" of an object of type FIE LOS is a list of all the
record declarations which contain the name. See page 3.1. "

Iterative statement operators. See page 4.5.

Masterscope templates. See page 13.1.

Files. Files may be treated like other typed definitions.

Filevars. See page 11.30.

11.6.1 Functions for Manipulating Typed Definitions

The functions described below can be used to manipulate typed definitions, without needing to know -how
the manipulations are done. For'example, (GETOEF 'Foa 'FNS) will return the function definition of
FOO, (GETDE F 'Foa 'VARS) will return the variable value of FOa, etc. All of the functions use the
following conventions: '

(1) Any argument that expects a list of litatoms will also accept a single litatom, operating as though it
were enclosed in a list. For example, if the argument FILES should be a list of files, it may also be
a single file.

(2) TYPE is a file package type. TYPE = NIL is equivalent to TYPE = F N S. The singular fonn of a file
package type is also recognized, e.g. TYPE=VAR is equivalent to TYPE=VARS.

(3) FlLES=NIL is equivalent to FILES=FILELST.

(4) SOURCE is used to indicate 'the source of a definition, that is, where the definition should be found.
SOURCE can be one of: '

CUR R EN T Get the definition currently in effect.

SAVED Get the "saved" definition, as stored by SAVEDE F (page 11.18).

FILE . Get the definition contained on the (first) file detennined by WHE RE I S (page 11.10.).

?

Note: WHERE IS is called with FILES = T, so that if the WHEREIS package (page
23.40) is loaded, the WHEREIS data base will be used to find the file containing the
definition.

Get the definition currently in effect if there is one, else the saved definition if there
is one, otherwise the definition from a file detennined by WH ERE I S. Like specifying
CURRENT, SAVED, and FILE in order, and taking the first definition that is found.

a file name or list of file names
Get the definition from the first of the indicated files that contains one.

NIL In most cases, giving SOURCE = NIL (or not specifying it at all) is the same as giving
?, to get either the current. saved, or filed definition. However, with HASD E F,
SOURCE=NIL is interpreted as equal to SOURCE=CURRENT, which only tests if

11.16

FILE PACKAGE

there is a current definition.

(5) All functions which make destructive changes are undoable.

The operation of most of the functions described below can be changed or extended by modifying
the appropriate properties for the corresponding file pac.kage type using the function F I LEPKGTYPE,
described on page 11.20.

(GETOEF NAME TYPE SOURCE OPTIONS) [Function]
Returns the definition of NAME, of type TYPE, from SOURCE. For most types,
GETOE F returns the expression which would be prettyprinted when dumping
NAME as TYPE. For example, for TYPE = FNS, an EXPR definition is returned, for
TYPE=VARS, the value of NAME is returned, etc.

OPTIONS is a list which specifies certain options:

NOERROR

a string

NOCOPY

NOOWIM

G E TO E F causes an error if an appropriate definition canno~ be
found, unless OPTIONS is or contains NOERROR.

If OPTIONS is or contains a string, that string will be returned if
no definition is found. The caller can thus detennine whether a
definition was found, even for types for which NIL or NOB I NO
are acceptable definitions.

GETOEF returns a copy of the definition unless OPTIONS is or
contains NOCOPY.

A F NS definition will be dwimified if it is likely to contain CLISP
unless OPTIONS is or contains NOOW I M.

(PUTOEF NAME TYPE DEFINITION) [Function]
Defines NAME of type TYPE with DEFINITION. For TYPE = FNS. does a OEF INE;
for TYPE=VARS, does a SAVESET, etc.

For TYPE = FILES, PUTOEF establishes the command list, notices NAME, and then
calls MAKE FILE to actually dump the file NAME, copying functions if necessary
from the "old" file (supplied as part of DEFINITION).

(HASOEF NAME TYPE SOURCE SPELLFLG) [Function]
Returns NAME if NAME is the name of som~thing of type TYPE. If not, attempts
spelling correction if SPELLFLG = T, and returns the spelling-corrected NAME.

Otherwise returns NIL.

(HASOE F NIL TYPE) returns T if NIL has a valid definition.

Note: if SOURCE = NIL, HASDEF interprets this as equal to SOURCE=CURRENT.
which only tests if there is a current definition.

(TYPESOF NAME POSSIBLETYPES IMPOSSIBLETYPES SOURCE) [Function)
Returns a list of the types in POSSIBLETYPES but not in IMPOSSIBLETYPES for
which NAME has a definition. F I L E P KG TY PES is used if POSSIBLETYPES is NIL.

11.17

Functions for' Manipulating Typed Definitions

(COPYOE F OLD NEW TYPE SQURCE OPTIONS) [Function]
Defines ~W to have a copy of the definition of OLD by doing PUlO E F on a copy
of the de~nition retrieved by (GETOEF OLD TYPE SOURCE OPTIONS). NEW is
substituted for OLD in the copied definition, in a manner that may depend on the
TYPE.

Forexam~le, (COPYOEF 'PDQ 'RSl 'FILES) sets up RSTCOMStobeacopyof
POQcOMs,l changes things like (VARS • PDQVARS) to be (VARS • RSTVARS)
in RSlCO'MS, and perfonns a MAKE FILE on RST such that the appropriate
definitions, get copied from PDQ.

Note: COPYDEF disables the NOCOPY option ofGETDEF, so NEW will always have
a copy of the definition of OLD.

(OELOEF NAME TYPE) [Function]
Removes the definition of NAME as a TYPE that is currently in effect

(SHOWDEF NAME TYPE FILE) i [Function]
Prettyprints the definition of NAME as a TYPE to FILE. This shows the user how
NAME wo~ld be written to a file. Used by AOOTOF ILES? (page 11.8).

(EOITOEF NAME TYPE SOURCE EDITCOMS) . [Function]

(SAVEOEF NAME

Edits the definition of NAME as a TYPE. Essentially perfonns (PUTOE F NAME
TYPE (EDITE (GETOEF NAME TYPE SOURCE) EDITCOMS».

TYPE DEFmh'ION) [Function]
Makes DEtINITION (or if DEFINITION = NIL, the definition of NAME as a TYPE that
is currentl), in effect) be the "saved" definition for NAME as a TYPE. If TYPE= FNS
(or TYPE=*NIL), this consists of storing DEFINITION on NAME'S property list under
property ElXPR, CODE, or SUBR. For TYPE=VARS, the definition is stored as the
value of tije VALUE property. For other types, DEFINITION is stored in an internal
data struct,Ure, from where it can be retrieved by GETOE F or UNSAVEOE F.

(UNSAVEOEF NAME TYPE -), [Function]
Makes th~ "saved" definition of NAME as a TYPE be the definition currently in
effect If rztYPE= FNS (or TYPE = NIL), UNSAVEDEF will unsave the EXPR property
if any, else CODE or SUBR. UNSAVEOE F also recognizes TYPE = EXPR, CODE, or
SUBR, meaning to unsave the corresponding definition only.

(LOAODE F NAME TYPE SOURqE) [Function]
Equivalent to (PUTOEF NAME TYPE (GETOEF NAME TYPE SOURCE». LOAOOEF
is essentially a generalization of LOAD F NS, e.g. it enables loading a single record
declaratioq. from a file. Note that (LOADDEF FN) will give FN an EXPR definition,
either ob~ned from its property list or a file, unless it already has one.

(CHANGECALLERS OLD NEW tYPES FILES METHOD) [Function]
Finds all qf the places where OLD is used as any of the types in TYPES and changes
those plac~s to use NEW. For example, (CHANGECALLERS 'NLSETQ 'ERSETQ)
will change all calls to NLSETQ to be calls to ERSETQ. Also changes occurrences of
OLD to NEW inside the filecoms of any file, inside record declarations. properties,
etc.

11.18

FILE PACKAGE

CHANGECALLERS attempts· to determine if OLD might be used as more than one
type; for example, if it is both" a function and a record field. If so, rather than
perfonning the transformation OLD -) NEW automatically, the user is allowed
to edit all of the places where OLD OCCUI'S. For each occurrence of OLD, the
user is asked whether he wants to make the replacement If he responds with
anything except Yes or No, the. editor is invoked on the expression containing that
occurrence.

Currently there are two different methods for determining which functions are to be
examined. If METHOD = EDITCALL.ERS, EDITCALLERS is used to search FILES
(see page 17.59). If METHOD=MASTERSCOPE, then the Masterscope database
is used instead. METHOD=NIL defaults to MASTERSCOPE if the value of the
variable DEFAUL TRENAMEMETHOD is MASTERSCOPE and a Masterscope database
exists, otherwise it defaults to EDITCALLERS.

(~ENAME OLD NEW TYPES FILES METHOD) [Function]
First performs (COPYDE F OLD NEW TYPE) for all TYPE inside TYPES. ·It then
calls CHANGECALLERS to change all occurrences of OLD to NEW, and then "deletes"
OLD with DELDEF. For example, if the user has a function Faa which he now
wishes to call FIE, he simply perfonns (RE NAME 'FOO 'F IE), and FIE will be
given FOO's definition, and all places that FOO are called will be changed to call
FIE instead.

(COMPARE NAMEl NAME2 TYPE SOURCEl SOURCE2) [Function]
Compares definiton of NAMEl with that of NAME2, Le. perfonns (COMPARELISTS
(GETDEF NAMEl TYPE SOURCE1) (GETDEF NAME2 TYPE SOURCE2»

(COMPAREDEFS NAME TYPE SOURCES) [Function]
Calls COMPARELISTS on all pairs of definitions of NAME as a TYPE obtained from
the various SOURCES.

11.6.2 Defining New File Package Types

All manipulation of typed definitions in the file package is done using the type-independent functions
GETDEF, PUTDEF, etc. Therefore, to define a new file package type, it is only necessary to specify what
these functions should do when dealing with a typed definition of the new type. Each file package type
has the following properties, whose values are functions or lists of functions:

Note: These functions are defined to take a TYPE argument so that the user may have the same function
for more than one type.

GETDEF Value is a function of three arguments, NAME, TYPE, and OPTIONS. which should
return the current definition of NAME as a type TYPE. Used by GETDEF (which
passes its OPTION argument).

If there is no GETDEF property. a file package command for dumping NAME is
created (by MAKENEWCOM). This command is then used to write the definition of
'NAME as a type TYPE onto the file FILEPKG. SCRATCH (in Interlisp-D, this file is
created on the {CORE} device). This expression is then read back in and returned
as the current definition.

11.19

FILEGETDEF

PUTDEF

OELDEF

NEWCOM

WHENCHANGED

WHENFILED

WHENUNFILED

DESCRIPTION

Defining New File Package Types

This enables,the user to provide a way of obtainingdefinitions.from a file that is more
efficient than the default procedure used by GETDEF. Value is a function of four
arguments. NAME. TYPE7 FILE, and OPTIONS. The function is applied by GETDEF
when it is determined that a typed definition is needed from a particular file. The
function must open and search the given file and return any TYPE definition for
NAME that it finds.

Value is a function of three arguments, NAME, TYPE, and DEFINITION, which should
store DEFINiTION as the definition of NAME as a type TYPE. Used by PUTDE F.

Value is a function of two arguments, NAME, and TYPE, which removes the definition
of of NAME as a TYPE that is currently in effect Used by DELDEF.

Value is a function of four arguments. NAME, TYPE, LISTNAME, and FILE. Specifies
how to makt a new (instance of a) file package command to dump NAME; an object
of type TYPE. The function should return the new file package command. Used by
ADDTOFILE, and SHOWDEF.

If LISTNAME is non-N I L. this means that the user specified LISTNAME as the filevar
in his interaction with ADDTOFILES? (see page 11.30).

If no NEWCOM is specified, the default is to call DEFAUL TMAKENEWCOM, which will
construct and return a command of the form (TYPE NAME). DE FAUL TMAKENEWCOM
can be advised or redefined by the user.

Value is a list of functions to be applied to NAME, TYPE, and REASON when NAME,
an instance of type TYPE, is changed or defined (see MARKASCHANGED, page 11.11).
Used for various applications, e.g. when an object of type I. S. OPRS changes, it is
necessary to clear the corresponding translatons from C LIS PAR RA Y.

The WHENCHANGED functions are called before the object is marked as changed, so
that it can, in fact. decide that the object is not to be marked as changed, and execute
(RETFROM 'MARKASCHANGED).

Note: For backwards compatibility, the REASON argument passed to WHENCHANGED
functions is either T (for DEFINED) and NIL (for CHANGED).

Value is a li~t of functions to be applied to NAME, TYPE, and FILE when NAME, an
instance of type TYPE, is added to FILE.

Value is a list of functions to be applied to NAME, TYPE, and FILE when NAME, an
instance of type TYPE, is removed from FILE.

Value is a string which describes instances of this type. For example, for type
RECORDS, tb.e value of DESCRIPTION is the string "record declarations".

The function F ILEPKGTYPE is used to define new file package types, or to change the attributes of
existing types. Note that it is possible to redefine the attributes of system file package types, such as FNS
or PROPS.

(FILE PKGTYPE TYPE PROPl VALl ... PROPN VALN) [NoSpread Function]
Nospread function for defining new file package types, or changing attributes of
existing file package types. PROPj is one of the property names given above; VALj

11.20

FILE PACKAGE

. is the value to be given to that property. Returns TYPE.

(FILEPKGTYPE TYPE PROP) returns the value of the property PROP, without
changing it.

(FILE PKGTYPE TYPE returns an alist of all of the defined properties of TYPE,
using the property names as keys.

11.7 FILE PACKAGE COMMANDS

The basic mechanism for creating symbolic files is the function MAKE FILE (page 11.6). For each file,
the file package has a data structure known as the "filecoms", which specifies what typed descriptions are
contained in the file. A filecoms is a list of file package commands, each of which specifies objects of a
certain file package type which should be dumped. For example, the filecoms

((FNS FOO)
(VARS FOO BAR BAZ)
(RECORDS XYZZY))

has a FNS, a VARS, and a RECORDS file package command. This filecoms specifies that .the function
definition for FOO, the variable values of FOO, BAR, and BAZ, and the record declaration for XYZZY
should be dumped.

By convention, the filecoms of a file x is stored as the value of the litatom XCOMS. For example,
(MAK E F I L E 'F 00. ; 27) will use the value of F OOCOMS as the filecoms. This variable can be directly
manipulated, but the file package contains facilities which make constructing and updating filecoms easier,
and in some cases automatic (See page 11.32).

A file package command is an instruction to MA KEF I L E to perfonn an explicit, well-defined operation,
usually printing an expression. Usually there is a one-to-one correspondence between file package types
and file package commands; for each file package type, there is a file package command which is used
for writing objects of that type to a file, and each file package command is used to write objects of a
particular type. However, in some cases, the same file package type can be dumped by several different
file package commands. For example, the file package commands PROP, IFPROP, and PROPS all dump
out objects with the file package type PROP S. This means if the user changes an object of file package
type PROPS via EDITP, a typed-in call to PUTPROP, or via an explicit call to MARKASCHANGED, this
object can be written out with any of the above three commands. Thus, when the file package attempts to
detennine whether this typed object is contained on a particular file, it must look at instances of all three
file package commands PROP, IFPROP, and PROPS. to see if the corresponding atom and property are
specified. It is also pennissible for a single file package command to dump several different file package
types. For example, the user can define a file package command which dumps both a function definition
and its macro. Conversely, some file package comands do not dump any file package types at all, such as
the E command .

..
For each file package command, the file package must be able to determine what typed definitions the
command will cause to be printed so that the file package can detennine on what file (if any) an object
of a given type is contained (by searching through the filecoms). Similarly, for each file package type,
the file package must be able to construct a command that will print out an object of that type. In other
words, the file package must be able to map file package commands into file package types, and vice

11.21

File Package Commands

versa. Infonnation can be proviq.ed to the file package about a particular file package command via the
function FILEPKGCOM (page 11.32), and infonnation about a particular file package type via the function
FILEPKGTYPE (page 11.20). In the absence of other infonnation, the default is simply that a file package
command of the fonn (x NAME) prints out the definition of NAME as a type x, and, conversely, if NAME
is an object of type x, then NAM~ can be written out by a command of the fonn (x NAME).

If a file package function is givell a command or type that is not defined, it attempts spelling corrections
using FILEPKGCOMSPLST as a spelling list. If successful, the corrected version of the list of file package
commands is written (again) on the output file.6 Ifunsuccessful, generates an error, BAD FILE PACKAGE
COMMAND.

File package commands can be u$ed to save on the output file definitions of functions, values of variables,
property lists of atoms, advised functions, edit macros, record declarations, etc. The interpretation of each
file package command is as follows:

(FNS FNl ... FNN) [File Package Command]
Writes a D'EFINEQ expression with the function definitions of FNl " •. FNN •

The user should never print a 0 E FIN E Q expression directly onto a file himself (by
using the 'p file package command, for example), because MAKE FILE generates
the filemap of function definitions from the FNS file package commands (see page
11.38). '

(VARS VAR l ... VARN) . [File Package Command]

(INITVARS VAR l

For each ~ARj' writes an expression to set its top level value when the file is loaded.
If VARj is *tomic, VARS' writes out an expression to set VARj to the top-level value
it had at ~e time the file was written. If VARj is non-atomic, it is interpreted as
(VAR FO~M), and VARS write out an expression to set VAH to the value of FORM

(evaluated !when the file is loaded).
!

VARS prin~ out expressions using RPAQQ and RPAQ, which are like SETQQ and
SET Q except that they also perfonn some special operations with respect to the file
package (see page 11.37). '

Note: VA~S cannot be used for putting arbitrary variable values on files. For
example, if the value of a variable is an array (or many other data types), a litatom
which rep~esents the array is dumped in the file instead of the array itself. The
HORRIBLEVARS file package command (page 11.25) provides a way of saving and
reloading variables whose values contain re-entrant or circular list structure. user
data types, I arrays. or hash arrays.

. .. VAR N) : [File Package Command]
INITVARS is used for initializing variables. setting their values only when they are
currently NOBIND. A variable value defined in an INITVARS command will not
change an ialready established value. This means that re-Ioading files to get some
other infoqnation will not automatically revert to the initialization values.

Sunless DWIMFLG or NOSPELLF~G=NIL. See page 15.12.

6since at this point, the uncorrected list of file package commands would already have been printed on
the output file. When the file is lqaded, this will result in FILEC OMS being reset, and may cause a message
to be printed, e.g .. (FOOCOMS RESET). The value of FOOCOMS would then be the corrected version.

11.22

FILE PACKAGE

The format of an INITVARS comrnand is just like VARS. The only difference is
that if VARi is atomic, the current value is not" dumped; instead NIL is defined as
the initialization value. Therefore, {I N I TVA RS F 00 (F UM 2» is the same as
{VARS (FOO NIL) (FUM 2», if FOO and FUM are both NOBINO.

INITVARS writes out an RPAQ? expression on the file instead of RPAQ or RPAQQ.

{AOOVARS {VARI • LSTl)'" (VARN. LSTN » [File Package Command]
For each (VARj • LSTj), writes an AOOTOVAR to add each element of LSTj to
the list that is the value of VARj at the time the file is loaded. The new value of
VARi will be the union of its old value and LSTj• If the value of VARj is NOB I NO,
it is first set to NIL.

For example, (AOOVARS (DIRECTORIES LISP LISPUSERS» will add LISP
and LISPUSERS to the value of DIRECTORIES.

If LSTj is not specified, VARi is initialized to NIL if its current value is NOB I NO.
In other words, (ADDVARS (VAR» will initialize VAR to NIL if VAR has not
previously been set.

(ALISTS (VARI KEYI KEY2 ..•) ... (VARN KEY3 KEY4 ...)) [File Package Command]
VARi is a variable whose value is an alist, such as EDITMACROS, BAKTRACELST,
etc. For each VARi' A LIS T S writes out expressions which will restore the values
associated with the specified keys. For example, (ALISTS (BREAKMACROS BT
BTV» will dump the definition for the BT and BTV commands on BREAKMACROS.

Some alists (USERMACROS, LISPXMACROS, etc.) are used to implement other file
package types, and they have their own file package commands.

(PROP PROPNAME LITATOMI ... LITATOMN) [File Package Command]
Writes a PUTPROPS expression to restore the value of the PROPNAME propeny of
each litatom LITATOMj when the file is loaded.

If PROPNAME is a list, expressions will be written for each property on that list. If
PROPNAME is the litatom ALL, the values of all user propenies (on the propeny
list of each LITATOMj) are saved. SYSPROPS is a list of propenies used by system
functions. Only propenies not on that list are dumped when the ALL option is
used ..

If LITATOMj does not have the propeny PROPNAME (as opposed to having the
property with value NIL), a warning message "NO PROPNAME PROPERTY FOR
LITATOMj " is printed. The command I F PRO P can be used if it is not known
whether or not an atom will have the corresponding property.

(IF PROP PROPNAME LITATOM 1 ... LITATOM N) [File Package Command]
Same as the PROP file package command, except that it only saves the propenies
that actually appear on the propeny list of the corresponding atom. For example,
if FOOl has propeny PROPl and PROP2, F002 has PROP3, and F003 has
propeny PROPl and PROP3, then {IFPROP (PROPl PROP2 PROP3) FOOl
F002 F003) will save only those five propeny values.

11.23

File Package Commands

(PROPS (LITATOM1 PROPNAME1) •.. (LITATOMN ~ROPNAMEN)) [File Package Command]
Similar to! PROP command. Writes a PUTPROPS expression to restore the value of
PROPNAMEj for each LITATOMj when the file is loaded.

As with the PROP command, if LITATOMj does not have the property PROPNAME
(as opposed to having the property with NIL value), a warning message "NO
PROPNAMEj PROPERTY FOR LITATOMj" is printed.

(P EXPl ... EXPN) [File Package Command]
Writes each of the expressions EXPl .•• EXPN on the output file, where they will
be evaluated when the file is loaded.

(E FORM1 ••• FORM N) [File Package Command]

(COMS COM1

(* . TEXT)

Each of the forms FORM1 ••• FORMN is evaluated at output time, when MAKEFILE
interpretes this file package command.

COM N) [File Package Command]
Each of the commands COM1 ... COMN is interpreted as a file package command.

[File Package Command]
Used for inserting comment in a file. The file package command is simply written
on the output file; it will be ignored when the file is loaded.

If the first: element of TEXT is another *. a form-feed is printed on the file before
the comment.

(ADVISE FNl .•• FNN) [File Package" Command]
For each function FNj , writes expressions to reinstate the function to its advised
state when the file is loaded. See page 10.7.

(ADV ICE FN 1 ... FN N) [File Package Command]
For each function FNj , writes a PUTPROPS expression which will put the advice
back on the property list of the function. The user can then use READVISE to
reactivate the advice.

(USERMACROS LITATOM1 ... LITATOMN) [File Package Command]
Each litatom LITATOMj is the name of a user edit macro. Writes expressions to
add the edit macro definitions of LITATOMj to US E RMAC ROS, and adds the names
of the contmands to the appropriate spelling lists.

If LITATOMj is not a user macro, a warning message "no EDIT MACRO fa r
LITATOMj " is printed.

(F I L E P KG C OMS LITATOM 1 ... LITATOM N) [File Package Command]
Each litatom LITATOMj is either the name of a user-defined file package command
or a user-defined file package type (or both). Writes expressions which will restore
each command/type.

If LITATOMj is not a file package command or type, a warning message "n a F I L E
PACKAGE COMMAND for LITATOMj" is printed.

(LISPXMACROS LITATOM1 ... LITATOMN) [File Package Command]
Each LITATOMj is defined on LISPXMACROS or LISPXHISTORYMACROS (see page

11.24

FILE PACKAGE

8.19). Writes expressions which will save and restore the definition for each macro,
as well as making the necessary additions to LISPXCOMS

(RECORDS REOl ... REON) [File Package Command]
Each REOj is the name of a record (see page 3.1). Writes expressions which will
redeclare the records when the file is loaded.

(INITRECORDS REOl •.. REON) [File Package Command]
Similar to RECORDS, INITRECORDS writes expressions on a file that will, when
loaded, perform whatever initialization/allocation is necessary for the indicated
records. However, the record declarations themselves are not written out. This
facility is useful for building systems on top of Interlisp, in which the implementor
may want to eliminate the record declarations from a production version of the
system, but the allocation for these records must still be done.

(I. S. OPRS OPRl ... OPRN) [File Package Command]
Each OPRi is the name of a user-defined i.s.opr (see page 4.13). Writes expressions
which will redefine the i.s.oprs when the file is loaded.

(TEMPLATES LITATOMl ... LITATOMN) [File Package Command]
Each LITATOMj is a litatom which has a Masterscope template (see page 13.18).
Writes expressions which will restore the templates when the file is loaded.

(BLOCKS BLOOKl ... BLOCKN) [File Package Command]
For each BLOOKi , writes a DECLARE: expression which the block compile functions
interpret as a block declaration. See page 12.14.

(MAC ROS LITATOM 1 ... LITATOM N) [File Package Command]
Each LITATOMj is a litatom with a MACRO definition (and/or a DMACRO, 10MACRO,
etc.). Writes out an expression to restore all of the macro properties for each
LITATOMj, embedded in a DECLARE: EVAL@COMPILE so the macros will be
defined when the file is compiled. See page 5.17.

(SPECVARS VARl ... VARN)

(LOCALVARS VARl ... VARN)

(GLOBALVARS VARl ... VARN)

Outputs the corresponding compiler declaration
DOEVAL@COMPILE DONTCOPY. See page 12.3.

[File Package Command]
[File Package Command]
[File Package Command]

embedded in a DECLARE:

(UGL YVARS VAR l ... VARN) [File Package Command]
Like VARS, except that the value of each VARj may contain structures for which
READ is not an inverse of PRINT. e.g. arrays, readtables, user data types. etc. Uses
HPRINT (page 6.24).

(HORRIBLEVARS VARl ... VARN) [File Package Command]
Like UGL YVARS, except structures may also contain circular pointers. Uses HPRI NT
(page 6.24). The values of VAR 1 ... VAR N are printed in the same operation. so
that they may contain pointers to common substructures.

UGL YVARS does not do any checking for circularities. which results in a large speed
and internal-storage advantage over HORRIBLEVARS. Thus. if it is known that the
data structures do not contain circular pointers, UGL YVARS should be used instead

11.25

File Package Commands

of HORRIBLEVARS.

(DECLARE: • FILEPKGCOMS/FLAGS) [File Package Command]
Normally expressions written' onto a symbolic file are (1) evaluated when loaded;
(2) copied, to the compiled file when the symbolic file is compiled (see, page 12.1);
and (3) no,t evaluated at compile time. DECLARE: allows the user to override these
defaults. '

FILEPKGCOMS/FLAGS is a list of file package commands9 possibly interspersed with
"tagsn

i The output of those fl,le package commands within FILEPKGCOMS/FLAGS is
embedded in a DECLARE: expression9 along with any tags that are specified. For ex
ample9 (D~CLARE: EVALftCOMPILE DONTCOPY (FNS ...) (PROP ... » would
produce (PECLARE: EVALftCOMPILE DONTCOPY (DEFINEQ ...) (PUTPROPS
...)}. DaCLARE: is defined as an nlambda nospread function 9 which processes
its arguments by evaluating or not evaluating each expression depending on the
setting of internal state variables. The initial setting is to evaluate9 but this can be
overridden by specifying the DONTEVAL@LOAD tag.

DECLARE: expressions are specially processed by the compiler. For the purposes
of compilation. DECLARE: has two principal applications: (1) to specify forms
that are to be evaluated at compile time, presumably to affect the compilation,
e.g., to set up macros; and/or (2) to indicate which expressions appearing in the
symbolic ~le are not to be copied to the output file. (Normally, expressions are not
evaluated and are copied.) Each expression in CDR of a DECLARE: form is either
evaluated/not-evaluated and copied/not-copied depending on the settings of two
internal s~te variables9 initially set for copy and not-evaluate. These state variables
can be re~et for the remainder of the expressions in the DECLARE: by means of
the tags DONTCOPY, EVALftCOMPILE, etc.

The tags are:

EVAL@LOAD
DOEVAL@LOAD

DONTEVAL@LOAD

EVAL@LOADWHEN

COpy
DOCOPY

DONTCOPY

COPYWHEN

Evaluate the following forms when the file is loaded (unless
overridden by DONTEVAL@LOAD).

Do not evaluate the following forms when the file is loaded.

This tag can be used to provide conditional evaluation.
The value of the expression immediately following the
tag determines whether or not to evaluate subsequent
expressions when loading EVAL@LOADWHEN T ... is
equivalent to ... EVAL@LOAD ...

When compiling, copy the following forms into the compiled
file.

When compiling9 do not copy the following forms into the
compiled file.

When compiling, if the next form evaluates to non-N I L,
copy the following forms into the compiled file.

11.26

FILE PACKAGE

EVAL@COMPILE
DOEVAL@COMPILE When compiling, evaluate the following forms.

DONTEVAL@COMPILE

EVAL@COMPILEWHEN

FIRST

NOTFIRST

When compiling, do not evaluate the following forms.

When compiling, if the next form evaluates to non-N I L,
evaluate the following forms.

For expressions that are to be copied to the compiled
file, the tag FIRST can be used to specify that the fol
lowing expressions in the DECLARE: are to appear at
the front of the compiled file, before anything else ex
cept the FILECREATED expressions (see page 11.35). For
example, (DECLARE: COpy FIRST (P (PRINT MESSl

T» NOTF IRST (P (PRINT MESS2· T) » will cause (PRINT
MESSl T) to appear first in the compiled file, followed by
any functions, then (P R I NT MESS2 T).

Reverses the effect of FIRST.

The value of DECLARETAGSLST is a list of all the tags used in DECLARE:
expressions. Ifa tag not on this list appears in a DECLARE: file package command,
performs spelling correction using DECLARETAGSLST as a spelling list.

Note that the function LOADCOMP (page 11.6) provides a convenient way of
obtaining information from the DECLARE: expressions in a file, without reading
in the entire file. This information may be used for compiling other files.

(EXPORT COM1 ... COMN) [File Package Command]
This command is used for "exporting" definitions~ Like COM, each of the commands
COM 1 ... COM N is interpreted as a file package command. The commands are also
flagged in the file as being "exported" commands, for use with GATHEREXPORTS
(see page 11.29).

(CONSTANTS VAR1 ... VARN) [File Package Command]
Like VARS, for each VARi writes an expression to set its top level value when the
file is loaded. Also writes a CONSTANTS expression to declare these variables as
constants (see page 12.6). Both of these expressions are wrapped in a (DECLARE:
EVAL@COMPILE ...) expression, so they can be used by the compiler.

Like VARS, VARi can be non-atomic, in which case it is interpreted as (VAR

FORM), and passed to CONSTANTS (along with the variable being initialized to
FORM).

(ORIGINAL COM1 ... COMN) . [File Package Command]
Each of the commands COMi will be interpreted as a file package command without
regard to any file package macros (as defined by the MACRO property of the
FILE PKGCOM function, page 11.32). Useful for redefining a built-in file package
command in terms of itself.

11.27

Exporting Definitions

Note that some of the "built-in" file package commands are defined by file package
macros, so interpreting them (or new user-defined file package commands) with
ORIGINAL will fail. ORIGINAL was never intended to be used outside of a file
package command macro.

(FILES • FILES/LISTS) [File Package Command]
Used to specify auxiliary files to be loaded in when the file is loaded. FILES/LISTS
is a list of files, possibly interspersed with lists, which may be used to specify
certain loading options. Within these lists, the following tokens are recognized:

The elements of the FILES command are the (namefield) of the files to load. There
are actually several other ways to load in files; the F I L E S command interprets
LISTP elements of the commands as a series of tokens which change its state.
Those tokens can be:

FROM DIFtECTORY Pack the given directory onto the beginning of the file. For
example, (FILES (FROM LISPUSERS) CJSYS). If this
is not specified, the default is to use the same directory as
the file containing the FILES command.

SOU RC E Load the source version of the file rather than the compiled
version.

COMPILED

LOAD

LOADCOMP

LOADFROM

SYSLOAD

PROP

ALLPROP

Load the compiled version of the file (the default).

Load the file with by calling LOAD? (the default).

Load the file with LOADCOMP? rather than LOAD? Automatically
implies SOURCE.

Load the file with LOADFROM rather than LOAD?

Load the file with LDFLG=SYSOUT. This is mainly used
when loading system files.

Load the file with LDFLG = PRO P, so function definitions
loaded will be stored on property lists.

Load the file with LDFLG=ALLPROP, so both function
definitions and variable values loaded will be stored on
property lists.

These tok¢ns can be joined together in a single list. For example, an actual
command in the FTP package is:

(FILES (LOADCOMP) NET (SYSLOAD FROM LISPUSERS) CJSYS)

11. 7.1 Exporting Definitions

When building a large system in Interlisp, it is often the case that there are record definitions, macros and
the like that are needed by several different system files when running, analyzing and compiling the source

11.28

FILE PACKAGE

code of the system, but which are not needed for running the compiled code. By using the DECLARE:
file package command with tag DONTCOPY (page 11.26), these definitions can be kept out of the compiled
files, and hence out of the system constructed by loading the compiled files files into Interlisp. This saves
loading time, space in the resulting system. and whatever other overhead might be incurred by keeping
those definitions around, e.g., burden on the record package to ,Consider more possibilities in translating
record accesses, or conflicts between sy'stem record fields and user record fields.

However, if the implementor wants to debug or compile code in the resulting system, the definitions are
needed. And even if the definitions had been copied to the compiled files, a similar problem arises if
one wants to work on system code in a regular Interlisp environment where none of the system files had
been loaded. One could mandate that any definition needed by more than one file in the system should
reside on a distinguished file of definitions, to be loaded into any environment where the system files are
worked on. Unfortunately, this would keep the definitions away from where they logically belong. The
EXPORT mechanism is designed to solve this problem.

To use the mechanism, the implementor identifies any definitions needed by files other than the one
in which the definitions reside, and wraps the corresponding file package commands in the EXPORT
file package command (page 11.27). Thereafter, GATHEREXPORTS can be used to make a single file
containing all the exports.

(GATHEREXPORTS FROMFILES TOFILE FLG) [Function]
FROMFILES is a list of files containing EXPORT commands. GATHEREXPORTS
extracts all the exported commands from those files and produces .a loadable file
TOFILE containing them. If FLG = E VAL, the expressions are evaluated as they

. are gathered; Le., the exports are effectively loaded into the current environment
as well as being written to TOFILE.

(IMPORTFILE FILE RETURNFLG) [Function]
If RETURNFLG is NIL, this loads any exported definitions from FILE into the
current environment If RETURNFLG is T, this returns a list of the exported
definitions (evaluable expressions) without actually evaluating them.

(CHECKIMPORTS FILES NOASKFLG) [Function]
Checks each of the files in FILES to see if any exists in a version newer than
the one from which the exports in memory were taken (GATHE REXPORTS and
IMPORT FILE note the creation dates of the files involved), or if any file in the
list has not had its exports loaded at all. If there are any such files, the user is
asked for permission to IMPORT FILE each such file. If NOASKFLG is non-N I L,
IMPORT FILE is performed without asking.

For example, suppose file FOO contains records RI, R2, and R3, macros BAR and BAl, and constants
CONI and CON2. If the definitions of RI, R2, BAR, and BAl are needed by files other than FOO, then
the file commands for F 00 might contain the command

{DECLARE: EVAL@COMPILE DONTCOPY
{EXPORT (RECORDS RI R2)

(MACROS BAR BAl»
(RECORDS R3)
(CONSTANTS BAl»

None of the commands inside this DECLARE: would appear on FOO's compiled file, but (GATHEREXPORTS
, (FOO) 'MYEXPORTS) would copy the record definitions for RI and R2 and the macro definitions for

11.29

FileVars

BAR and BAZ to the file MYEXPCDRTS.

lL7.2 FileVars

In each of the file package commands described above, if the litatom * follows the command type,7
I

the fonn following the *, Le., CADDR of the command, is evaluated and its value used in executing
the command, e.g., {FNS * (APPEND FNSl FNS2». When this fonn is a litatom, e.g. (FNS *
FOOFNS), we say that the varlable is a "filevar". Note that (COMS * FORM) provides a way of
computing what should be done by MA KEF I L E. '

Example:

~ (SETQ FOOFNS '(FOOl F002 F003»
(FOOl F002 F003)
~ {SETQ FOOCOMS

'((FNS * FOOFNS)
(VARS FIE)
(PROP MACRO FOOl F002)
(P (MOVD 'FOOl 'FIEl»]

~ (MAKEFILE 'FOO)

would create a file F 00 containing:

(F ILECREATED "time and date the file was made" . "other information")
(PRETTYCOMPRINT FOOCOMS)
(RPAQQ FOOCOMS ({ FNS * FOOFNS) ...)
(RPAQQ FOOFNS (FOOl F003 F003»
(DEF INEQ "definitions of FOOl. F002. and F003")
(R P AQQ FIE "value of FIE")
(PUTPROPS FOOl MACRO PROPVALUE)
(PUTPROPS F002 MACRO PROPVALUE)
(MOVD (QUOTE FOOl) (QUOTE FIEl»
STOP

11.7.3 Defining New File Package Commands

A file package command is defined by specifying the values of certain properties. The user can specify
the various attributes of a file package command for a new command, or respecify them for an existing
command. The following properties are used:

MACRO Defines how to dump the file package command. Used by MAKE FILE. Value
is a pair (ARGS • COMS). The "arguments" to the file package command are
substituteq. for ARGS throughout COMS, and the result treated as a list of file package
commands. For example, following (FILEPKGCOM 'FOO 'MACRO '((X Y) .

7Except for the PROP and IFPROP commands, in which case the * follows the property name, e.g.,
(PROP MACRO * FOOMACROS).

11.30

ADD

DELETE

CONTENTS
CONTAIN

FILE PACKAGE

-COMS).) ,- the file package command (F 00 A B) will cause A to be substituted for
X· and B for y throughout COMS. and then- COMS treated as a list of commands.

The substitution is carried out by SUB PAl R (page 2.24), so that the "argument list"
for the macro can also be atomic. For example, if (X • COMS) was used instead
of « X Y) • COMS), then the command (FOO A B) would cause (A B) to be
substituted for X throughout COMS.

Note: Filevars are evaluated before substitution. For example, if the litatom
* follows NAME in the command. CADD R of the command is evaluated substituting
in COMS.

Specifies how (if possible) to add an instance of an object pf a particular type to a
given file package command. Used by ADDTOF I LE. Value is FN, a function of three
arguments, COM, a file package command CAR of which is EO to COMMANDNAME,

NAME, a typed object, and TYPE, its type. FN should return T if it (undoably) adds
NAME to COM, NIL if not If no ADD property is specified. then the default is (1) if
(CAR COM) = TYPE and (CADR COM) =*, and (CADDR COM) is a filevar (Le.
a literal atom), add NAME to the value of the filevar, or (2) if (CAR COM) = TYPE
and (CADR COM) is not *, add NAME to (CDR COM).

Actually, the function is given a fourth argument, NEAR, which if non-N I L,
means the function should try to add the item after NEAR. See discussion of
ADDTOF ILES?', page 11.8.

Specifies how (if possible) to delete an instance of an object of a particular type from
a given file package command. Used by DELFROMFILES. Value is FN, a function
of three arguments, COM, NAME, and TYPE, same as for ADD. FN should return T
if it (undoably) deletes NAME from COM, NIL if not If no DELETE property is
specified, then the default is (1) (CAR COM) = TYPE and (CADR COM) = *, and
(CADDR COM) is a filevar (Le. a literal atom), and NAME is contained in the value
of the filevar, then remove NAME from the filevar, or (2) if (CAR COM) = TYPE
and (CADR COM) is not *, and NAME is contained in (CDR COM), then remove
NAME from (CDR COM).

If FN returns the value of ALL. it means that the command is now "empty", and
can b~ deleted entirely from the command list.

Specifies whether an instance of an object of a given type is contained in a given
file package command. Used byWHEREIS and INFILECOMS? Value is FN. a
function of three arguments, COM, a file package command CAR of which is EQ
to COMMANDNAME, NAME, and TYPE. The interpretation of NAME is as follows:
if NAME is NIL, FN should return a list of elements of type TYPE contained in
COM. If NAME is T, FN should return T if there are any elements of type TYPE in
COM. If NAME is an atom other than T or NIL, return, T if NAME of type TYPE is
contained in COM. Finally, if NAME is a list, return a list of those elements of type
TYPE contained in COM that are also contained in NAME.

Note that it is sufficient for the CONT E NT S function to simply return the list of
items of type TYPE in command COM, Le. it can in fact ignore the NAME argument.
The NAME argument is supplied mainly for those situations where producing the

11.31

Fun~tions for Manipulating File Command Lists

entire list of items involves significantly more computation or creates more storage
than simply detennining whether a particular item (or any item) of type TYPE is
contained in the command.

If a CONTENTS property is specified and the corresponding function application
returns NIL and (CAR COM) = TYPE, then the operation indicated by NAME is
perfonneq. (1) on the value of (CADDR COM), if (CADR COM) =*, otherwise (2)
on (CDR :COM). In other words, by specifying a CONTENTS property that"returns
NIL, e.g. the function NI LL, the user specifies that a file package command of
name F 00, produces objects of file package type F 00 and only objects of type F 00.

If the CONTENTS property is not provided, the command is simply expanded
according;to its MACRO definition, and each command on the resulting command
list is then interrogated.

Note that if COMMANDNAME is a file package command that is used frequently,
its expansion by the various parts of the system that need to interrogate files can
result in a large number of CONSes and garbage collections. By informing the
file' package as to what this command actually does and does not produce via the
CONTENTS property, this expansion is avoided. For example, suppose the user
has a file package command called GRAMMARS which dumps various property lists
but no functions. Thus, the file package could ignore this command when seeking
infonnation about FNS.

The function F ILEPKGCOM is used to define new file package commands, or to change the attributes of
existing commands. Note that it is possible to redefine the attributes of system file package commands,
such as FNS or PROPS, and to cause u'npredictable results.

(FILEPKGCOM COMMANDNAME PROP1 VALl'" PROPN VALN) [NoSpread Function]
Nospread function for defining new file package commands, or changing attributes
of existingifile package commands. PROPj is one of of the property names described
above; VALj is the value to be given that property of the file package command
COMMANDNAME. Returns COMMANDNAME.

(FILEPKGCOM COMMANDNAME PROP) returns the value of the property PROP,

without changing it.

(FILEPKGTYPE COMMANDNAME returns an alist of all of the defined properties
of COMMANDNAME, using the property names as keys.

11.8 FUNCTIONS FOR MANIPULATING FILE COMl\1AND LISTS

The following functions may be used to manipulate filecoms. Note that the argument COMS does not have
to correspond to the filecoms for: some file. For example, COMS can be the list of commands generated
as a result of expanding a user defined file package command.

(INFILECOMS? NAME TYPE QOMS -) [Function]
COMS is a. list of file package commands. or a variable whose value is a list of
file package commands. TYPE is a file package type. INFILECOMS? returns T if

11.32

FILE PACKAGE

NAME of type TYPE is "contained" in COMS.

If NAME = NIL, INF ILECOMS? returns a list of all elements of type TYPE.

If NAME=T, INFILECOMS? returns T if there are any elements of type TYPE in
. COMS.

(ADDTOFILE NAME TYPE FILE - -) [Function]
Adds NAME of type TYPE to the file package commands for FILE. Uses ADDTOCOMS
and MAKENEWCOM. Returns FILE. ADDTOF I LE is undoable.

(DELFROMFILES NAME TYPE FILES) [Function]
Deletes all instances of NAME of type TYPE from the filecoms for each of the files on
FILES. If FILES is a non-NIL litatom, (LIST FILES) is used. FILES = NIL defaults
to FILE LST. Returns a list of files from which NAME was actually removed. Uses
DELFROMCOMS. DELFROMF ILES is undoable.

Note: Deleting a func.tion will also remove the function from any BLOCKS
declarations in the filecoms.

(ADDTOCOMS COMS NAME TYPE - -) [Function]
Adds NAME as a TYPE to COMS, a list of file package commands or a variable
whose value is a list of file package commands. Returns NIL if ADDTOCOMS was
unable to find a command appropriate for adding NAME to COMS. ADDTOCOMS is
undoable.

Note that the exact algorithm for adding commands depends the particular
command itself. See discussion of the ADD property, in the description of
F I LEPKGCOM, page 11.32.

Note: ADDTOCOMS will not attempt to add an item to any command which is
inside of a DECLARE: unless the user specified a specific name via the LISTNAME
or NEAR option of ADDTOFILES?

(DELFROMCOMS COMS NAME TYPE) [Function]
Deletes NAME as a TYPE from COMS. Returns NIL if DELFROMCOMS was unable
to modify COMS to delete NAME. DELFROMCOMS is undoable.

(MAKENEWCOM NAME TYPE - -) [Function]
Returns a file package command for dumping' NAME of type TYPE. Uses the
procedure described in the discussion of NEWCOM, page 11.20.

(MOVETOF ILE TOFILE NAME TYPE FROMFILE) [Function]
Moves the definition of NAME as a TYPE from FROMFILE to TOFILE by modifying

. the file commands in the appropriate way (with DE LF ROMF ILES and ADDTOF I LE).

Note that if FROMFILE is specified, the definition will be retrieved from that file,
even if there is another definition currently in the user's environment

(FILECOMSLST FILE TYPE -) [Function]
Returns a list of all objects of type TYPE in FILE.

TYPE can also be the name of a file package command. For example,

11.33

Symbolic File Format

-(F ILECOMSLST FILE 'BLOCKS) will return the list of all BLOCKS declaration in
FILE. F ILECOMSLST knows about expanding user defined file package commands.

(FILEFNSLST FILE) [Function]
Same as (F ILECOMSLST FILE 'FNS).

(F ILECOMS FILE TYPE) [Function]
Returns (PACK· FILE (OR TYPE 'COMS». Note that (FILECOMS 'FOO)
returns the litatom FOOCOMS7 not the value of FOOCOMS.

(SMASHF I LECOMS FILE) [Function]
Maps down (FILECOMSLST FILE' FILEVARS) and sets to NOBIND all filevars(see
page 11.30). i.e. any variable used in a command of the form (COMMAND •

VARIABLE:). Also sets (FILECOMS FILE) to NOB IND. Returns FILE.

11.9 SYMBOLIC FILE FORl\1AT

The file package manipulates symbolic files in a particular format This format is defined so that the
information in the file is easily readable when the file is liste~ as well as being easily manipulated by the
file package functions. In general, there is no reason for the user to manually change the contents of a
symbolic file. However. in order'to allow users to extend the file package, this section describes some of
the functions used to write symbolic files, and other matters related to their format.

(PRETTYDEF PRTTYFNS PRTTYFILE PRTTYCOMS REPRINTFNS SOURCEFILE CHANGES)

[Function]
Writes a symbolic file in PRE TTY P R IN T format for loading, using F I L E ROT B L as
its readtable. PRETTYDE F returns the name of the symbolic file that was created.

PRETTYDEF operates under a RESETLST (see page 9.19), so if an error occurs,
or a contrpl-D is typed, all files that PRETTYDEF has opened will be closed, the
(partially complete) file being written will be deleted, and any undoable operations
executed will be undone.8

PRTTYFN$ is an optional list of function names. It is equivalent to including (FNS
• PRTTYP::NS) in the file package commands in PRTTYCOMS. PRTTYFNS is an
anachronism from when PRE TTY 0 E F did not use a list of file package commands,
and should be specified as NIL.

PRTTYFILE is the name of the file on which the output is to be written. If
PRTTYFILE = NIL, the primary output file is used. If PRTTYFILE is atomic the file
is opened if not already open, and it becomes the primary output file. PRTTYFILE

is closed at end of PRETTYDEF, and the primary output file is restored. Finally,
if PRTTYF]LE is a list. CA R of PRTTYFILE is assumed to be the file name, and is
opened if not already open. In this case, the file is left open at end of PRE TTY 0 E F.

8Since PRETTYDEF operates under a RESETLST, any RESETSAVEs executed in the file package commands
will also be protected. For example, if one of the file package commands executes a (RESETSAVE
(RAD I X - 8)), the RAD I X will atomatically be restored.

11.34

FILE PACKAGE

.-- - PRTTYCOMS is a list·-of file-. package commands interpreted as described on page
11.21. IfpRTTYCOMS is atomic, its top level value is used and an RPAQQ is written

_ which will set that atom to the list of commands when the file is subsequently loaded.
A PRETTYCOMPRINT expression (see below) will also be written which informs
the user of the named atom or list of commands when the file is subsequently
loaded. 9

REPRINTFNS and SOURCEFILE are for use in conjunction with remaking a file
(see page 11.10). REPRINTFNS can be a list of functions to be prettyprinted, or
EXPRS, meaning prettyprint all functions with EXPR definitions. or ALL meaning
prettyprint all functions either defined as EXPRs, or with EXPR properties. Note that
doing a remake with REPRINTFNS == NIL makes sense if there have been changes
in the file. but not to any of the functions, e.g., changes to variables or property
lists. SOURCEFILE is the name of the file from which to copy the definitions
for those functions that are not going to be prettyprinted, i.e., those not specified
by REPRINTFNS. SOURCEFILE = T means to use most recent version (Le.. highest
number) of PRTTYFILE, the second argument to PRETTYDEF. If SOURCEFILE
cannot be found, PRETTYDEF prints the message "FILE NOT FOUND, SO IT
WILL BE WRITTEN ANEW", and proceeds as it does when REPRINTFNS and
SOURCEFILE are both NIL.

PRETTYDEF calls PRETTYPRINT with its second argument PRETTYDEFLG=T, so
whenever PRETTYPRINT starts a new function, it prints (on the terminal) the
name of that function if more than 30 seconds (real time) have elapsed since the
last time it printed the name of a function.

Note that normally if PRETTYPRINT is given a litatom which is not defined as
a function but is known to be on one of the files noticed by the file package,
PRETTYPRINT will load in the definition (using LOADFNS) and print it. This is
not done when PRETTYPRINT is called from PRETTYDEF.

(PRINTFNS x -) [Function]
x is a list of functions. PR I NT F NS prettyprints a DE FIN EQ epression that defines
the functions to the primary output file using the primary readtable. Used by
PRETTYDEF to implement the FNS file package command.

(PRINTDATE FILE CHANGES) [Function]
Prints the F I LECREATED expression at beginning of PRETTYDE F files. CHANGES

used by the file package.

(F ILECREATED x) [NLambda NoSpread Function]
Prints a message (using LISPXPRINT) followed by the time and date the file
was made, which is (CAR x). The message is the value of PRE TTYHEADE R,
initialiy "FILE CREATED". If PRETTYHEADER=NIL, nothing is printed. (CDR
x) contains information about the file, e.g., full name, address of file map, list of
changed items, etc. F I L E C REA TED also stores the time and date the file was made

9In addition, if any of the functions in the file are Nlambdas, PRETTYDEF will automatically print
a DECLARE: expression suitable for informing the compiler about these functions, in case the user
recompiles the file without having first loaded the nlambda functions. See page 12.6.

11.35

Copyright Notices

on the property list of the file under the property F I L E DA T E S and perfonns other
initialization for the file package.

(PRETTYCOMPRINT x) [NLambda Function]

PRETTYHEADER

Prints x (unevaluated) using L I SPX PR I NT, unless PRETTYHEADE R = NIL.

[Variable]
Value is the message printed by F I LECREATED. PRETTYHEADER is initially" FILE
CREATED". IfPRETTYHEADER=NIL, neither FILECREATED nor PRETTYCOMPRINT
will. print, anything. Thus, setting PRE TTY HEAD E R to NIL will result in "silent
loads". PRETTYHEADER is reset to NIL during greeting (page 14.5).

(F ILECHANGES FILE TYPE) [Function]
Returns a list of the changed objects of file package type TYPE from the
FILECREATED expression of FILE. If TYPE = NIL, returns an alist of all of the
changes, With the file package types as the CA Rs of the elements ..

(FILEDATE FILE -) [Function]
Returns the file date contained in the F I L E C REA TED expression of FILE.

11.9.1 Copyright Notices

The system has a facility for automatically printing a copyright notice near the front of files, right after
the FILECREATED expression, ~pecifying the years it was edited and the copyright owner. The foimat
of the copyright notice is:

(* Copyright (e) 1981 by Foo Bars Corporation)

Once a file has a copyright noti~e then every version will have a new copyright notice inserted into the
file without user intervention. (The copyright information necessary to keep the copyright up to date is
stored at the end of the file.). .

Any year the file has been edited is considered a "copyright year" and therefore kept with the copyright
infonnation. For example, if a file has been edited in 1981, 1982, and 1984, then the copyright notice
would look like:

(* Copyright (e) 1981,1982,1984 by Foo Bars Corporation)

When a file is made, if it has no copyright information, the system will ask the user to specify the copyright
owner (if COPYRIGHTFLG=T). ,The user may specify one of the names from COPYRIGHTOWNERS, or
give one of the following responses:

(1) Type a left-SQuare-bracket The system will then prompt for an arbitrary string which will be used as
the owner-string

(2) Type a right-sQuare-bracket, which specifies that the user really does not want a copyright notice.

(3) Type "NONE" which specifies that this file should never have a copyright notice.

For example, if COPYRIGHTOWNERS has the value

11.36

FILE PACKAGE

«BBN "Bolt Beranek and Newman Inc.")
(XEROX "Xerox Corporation"»

then for a new file Foa the following interaction will take place:

Do you want to Copyright FOO? Yes
Copyright owner: (user typed ?)
one of:
BBN - Bolt Beranek. and Newman Inc.
XEROX - Xerox Corporation
NONE - no copyright ever for this file
[- new copyright owner -- type one line of text
] - no copyright notice for this file now

Copyright owner: BBN

Then "Foo Bars Corporation" in the above copyright notice example would have been "Bolt Beranek and
Newman Inc."

The following variables control the operation of the copyright facility:

COPYRIGHTFLG [Variable]
If COPYRIGHTFLG=NIL (default), the system will preserve old copyright infor-
mation, but will not ask the user about copyrighting new files. -

IfCOPYRIGHTFLG=T. then when a file is made. ifit has no copyright information,
the system will ask the user to specify the-copyright owner.

If COPYRIGHTFLG=NEVER, the system will neither prompt for new copyright
information nor preserve old copyright information.

COPYRIGHTOWNERS [Variable]
COPYRIGHTOWNERS is a list of entries of the form (KEY OWNERSTRING) , where
KEY is used as a response to ASKUSE R and OWNERSTRING is a string which is the
full identification of the owner.

OEFAULTCOPYRIGHTOWNER [Variable]
If the user does not respond in OW I MWA I T seconds to the copyright query, the
value of OEFAULTCOPYRIGHTOWNER is used.

11.9.2 Functions Used Within Source Files

The following functions are normally only used within symbolic files, to set variable values, property
values, etc. Most of these have special behavior depending on file package variables.

(RPAQ VAR VALUE) [NLarnbda Function]
An nlambda function like Sf TQ that sets the top level binding of VAR (unevaluated)
to VALUE.

(RPAQQ VAR VALUE) [NLambda Function]
An - nlambda function like SE TQQ that sets the top level binding of VAR

11.37

File Maps

(unevaluated) to VALUE (unevaluated).

(RPAQ? VAH VALUE) [NLambda Function]
Similar to RPAQ, except that it does nothing if VAH already has a top level value
other than NOB IND. Returns VALUE if VAH is reset, otherwise NIL.

RPAQ, RPAQQ, and RPAQ? genetrate errors if x is not a litatom. All are affected by the value of DFNFLG
(page 5.9). If DFNFLG =ALLPRO:P (and the value of VAH is other than NOBIND), instead of setting x. the
correspondiIlg value is stored on the property list of VAH under the property VALUE. All are undoable.

(ADDTOVAR VAH Xl X:J ... XN) [NLambda NoSpread Function]
Each Xi that is not a member of the value of VAH is added to it, i.e. after ADDTOVAR
completest the value of VAH will be (UN ION (L I ST Xl X:J ... xN) VAR).

ADDTOVAR is used by PRETTYDEF for implementing the ADDVARS command.
It perfonrls some file package related operations, i.e. "notices" that VAH has been
changed. Returns the atom VAR (not the value of VAH).

(PUTPROPS ATM PROPl VALl·'· PROPN VALN) [NLambda NoSpread Function]
Nlambda nospread version of PUT PROP (none of the arguments are evaluated). For
i= 1·· ·N, puts property PROPi' value VAL i, on the property list of ATM. Perfonns
some file ~ackage related operations. i.e .• "notices" that the corresponding properties
have been changed.

(SAVE PUT ATM PROP VAL) [Function]

11.9.3 File Maps

Same as PUT PROP, but marks the corresponding property value as having been
changed (used by the file package).

A file map is a data structure which contains a symbolic 'map' of the contents of a file. Currently, this
consists of the begin and end byte address (see GETFILEPTR, page 6.9) for each DEFINEQ expression in
the file, the begin and end addr~ss for each function definition within the DE F INEQ. and the begin and
end address for each compiled fu~ction.

MAKEFILE, PRETTYDEF, LOADFNS, RECOMPILE, and numerous other system functions depend heavily
on the file map for efficient operation. For example, the file map enables LOADFNS to load selected
function definitions simply by s~tting the file pointer to the corresponding address using SETFILEPTR,
and then perfonning a single READ. Similarly, the file map is heavily used by the "remake" option of
MAKE F I L E (page 11.10): those function definitions that have been changed since the previous version
are prettyprinted; the rest are simply copied from the old file to the new one, resulting in a considerable
speedup.

Whenever a file is written by MAKE FILE, a file map for the new file is built Building the map in this
case essentially comes for free, since it requires only reading the current file pointer before and after each
definition is written or copied. However, building the map does require that PRETTYPRINT know that
it is printing a 0 E FIN EQ expression. For this reason, the user should never print a DE FIN E Q expression
onto a file himself: but should instead always use the F NS file package command (page 11.22).

The file map is stored on the property list of the root name of the file, under the property F I LEMAP. In
addition, MAKE F I LEwrites the file map on the file itself. For cosmetic reasons, the file map is written
as the last expression in the file. However, the address of the file map in the file is (over)written into the

11.38

FILE PACKAGE

F I L E C REA TED expression that appears at the beginning of the 1ile so that the file map can be rapidly
accessed without having to scan the entire file. In most cases, LOAD and LOADFNS do not have to build
the file map at all, since a file map will usually appear in the corresponding file, unless the file was written
with ,BUILDMAPFLG= NIL, or was written outside of Interlisp.

Currently, file maps for compiled files are not written onto the files themselves. However, LOAD and
LOADFNS will build maps for a compiled file when it is loaded, and store it on the property FILEMAP.
Similary, LOADFNS will obtain and use the file map for a Gompiled file, when available.

The use and creation of file maps is controlled by the following variables:

BUILDMAPFLG

USEMAPFLG

[Variable]
Whenever a file is read by LOAD or L.OADFNS, or written by MAKEFILE, a file map
is automatically built unless BUILDMAPFLG=NIL. (BUILDMAPFLG is initially T.}

While building the map will not help the first reference to a file, it will help in
future references. For example, if the user perfonns (LOADFROM 'FOO) where
FOO does not contain a file map, the LOADFROM will be (slightly) slower than if
FOO did contain a file map, but subsequent calls to LOADFNS for this version of
FOO will be able to use the map that was built as the result of the LOADF ROM,
since it will be stored on FOO's F I LEMAP property.

[Variable]
If USEMAP F LG = T (the initial setting), the functions that use file maps will first

, check the F I LEMA P property to see if a file map for this file was previously
obtained or built. If not, the first expression on the file is checked to see if it is a
FILECREATED expression that also contains the address of a file map. If the file
map is not on the F I LEMA P property or in the file, a file map will be built (unless
BUI LDMAPFLG = NIL).

If USEMAPFLG=NIL, the FILEMAP property and the file will not be checked for
the file map. This allows the' user to recover in those cases where the file and its
map for some reason do not agree. For example, if the user uses a text editor
to change a symbolic file that contains a map (not recommended), inserting or
deleting just one character will throw that map off. The functions which use file
maps contain various integrity checks to enable them to detect that something is
wrong, and to generate the error FILEMAP DOES NOT AGREE WITH CONTENTS
OF' FILE. In such cases, the user can set USE MA P F L G to NIL, causing the map
contained in the file to be ignored, and then. reexecute the operation.

11.39

File Maps

11.40

CHAPTER 12

THE COMPILER

The compiler is contained in the standard Interlisp system. It may be used to compile functions defined
in the user's Interlisp system, or to compile definitions stored in a file. The resulting compiled code may
be stored as it is compiled, so as to be available for immediate use, or it may be written onto a file for
subsequent loading.

The most common way to use the compiler is to use one of the file package functions, such as MAK E F I L E
(page 11.6), which automatically updates source files, and produces compiled versions. However, it is
also possible to compile individual functions defined in the user's Interlisp system, by directly calling
the compiler using functions such as COMP I LE (page 12.10). No matter how the compiler is called, the
function COMPSET is called which asks the user certain questions concerning the compilation. (COMPSET
sets the free variables LAPFLG, STRF, SVFLG, LCFIL and LSTFIL which determine various modes of
operation.) Those that can be answered "yes" or "no" can be answered with YES, Y, or T for "yes"; and
NO, N, or NIL for "no". The questions are:

LISTING?

FILE:

REDEFINE?

SAVE EXPRS?

This asks whether to generate a listing of the compiled code. The LAP and machine
code are usually not of interest but can be helpful in debugging macros. Possible
answers are:

1 Prints output of pass 1, the LA P macro code.

2 Prints output of pass 2, the machine code.

YES Prints output of both passes.

NO Prints no listings.

The variable LAPFLG is set to the answer.

This question (which only appears if the answer to LISTING? is affirmative) ask
where the compiled code listing(s) should be written. Answering T will print the
listings at the terminal. The variable LST F I L is set to the answer.

This question asks whether the functions compiled should be redefined to their
compiled definitions. If this is answered YES, the compiled code is stored and the
function definition changed, otherwise the function definition remains unchanged.

The variable ST RF is set to T (if this is answered YES) or NIL.

This question asks whether the original defining EX P Rs of functions should be
saved. If answered YES, then before redefining a function to its compiled definition.
the EX P R definition is saved on the property list of the function name. Otherwise
they are discarded.

It is very useful to save the EX P R definitions, just in case the compiled function
needs to be changed. The editing functions will retrieve this saved definition if it

12.1

OUTPUT FILE?

Compiler Printout

exists, rather than reading from a source file.

The variable SVFLG is set to T (if this is answered YES) or NIL.

lbis question asks whether (and where) the compiled definitions should be written
into a file for later loading. If you answer with the name of a file, that file will be
used. If you answer Y or YES, you will be asked the name of the file. If the file
named is already open, it will continue to be used. If you answer T or TTY:, the
output will be typed on the teletype (not particularly useful). If you answer N, NO,
or NIL, output will not be done.

The variable L C F I L is set to the name of the file.

In order to make answering these questions easier, there are four other possible answers to the LISTING?
_ -,!uestion, which specify common! compiling modes:

S Same as last setting. Uses the same answers to compiler questions as given for the
last compilation.

F

ST

STF

Compile to File, without redefining functions.

ST ore new definitions, saving EX P R definitions.

STore new definitions; Forget EXPR definitions.

Implicit in these answers are the answers to the questions on disposition of compiled code and EX P R
definitions, so the questions RED,EF INE? and SAVE EXPRS? would not be asked if these· answers were
given. OUTPUT FILE? would still be asked, however. For example:

~COMPILE{{FACT FACT1 FACT2»
LISTING? ST
OUTPUT FILE? FACT.DCOM
(FACT COMPILING)

(FACT REDEFINED)

(FACT2 REDEFINED)
(FACT FACT1 FACT2)
...

This process caused the functions: FACT, FACT 1, and FACT 2 to be compiled, redefined, and the compiled
definitions also written on the file FACT. DCOM for subsequent loading.

12.1 COMPILER PRINTOUT

In Interlisp-D, for each function FN compiled, whether by TCOMPL, RECOMPILE, or COMPILE, the
compiler prints:

12.2

THE COMPILER

- {FN (ARGl ... ARGN) (uses: VARl •.. VARN) (ea 11 s: FNl ... FNN»

The message is printed at the beginning of the second pass of the compilation of FN. (AHG 1 ... AHG N)
is the list of arguments to FN; following "uses:" are the free variables referenced or set in FN (not
including global variables); following 'toea 11 s :" are the undefined functions called within FN.

In Interlisp-10, for every function compiled, the compiler prints {FN (AHGl ••• AHGN) (FREEl ...

FREEN»' where FREEl·" FREEN are the free variables referenced or set in FN.

If the compilation of FN causes the generation of one or more auxilary functions (see page 12.8), a
compiler message will be printed for these functions before the message for FN, e.g.,

{FOOA0027 (X) (uses: XX»
{FOO (A B»

-When compiling a block, the compiler first prints (BLKNAME BLKFN 1 BLKFN 2 ...). Then the normal
message is printed for the entire block. The names of the arguments to the block are generated
"by suffixing "II" and a number to the block name, e.g., (FOOBLOCK (FOOBLOCKIIO FOOBLOCKlll)
FREE-VARIABLES). Then a message is printed for each entry to the block.

In addition to the above output, both RECOMPILE and BRECOMPILE print the name of each function
that is being copied from the old compiled file to the new compiled file. The normal compiler message
is printed for each function that is actually compiled. .

The compiler prints out error messages when it encounters problems compiling a function. For example:

----- In BAl:
••••• (BAl - illegal RETURN)

The above error message indicates that an "illegal RETURN" compiler error occurred while trying to
compile the function BAl. Some compiler errors cause the compilation to terminate, producing nothing;
however, there are other compiler errors which do not stop compilation. The compiler error messages are
described on page 12.20.

Compiler printout and error messages go to the file COUTFILE, initially T. COUTFILE can also be set to
the name of a file opened for output, in which case all compiler printout will go to COUT FILE, i.e. the
compiler will compile "silently." However, any error messages will be printed to both COUTF I LE as well
as T.

12.2 GLOBAL VARIABLES

Variables that appear on the list GLOBALVARS, or have the property GLOBALVAR with value T, or are
declared with the GLOBALVARS file package command (page 11.25), are called global variables. Such
variables are always accessed through their top level value when they are used freely in a compiled
function. In other words, a reference to the value of this variable is equivalent to {GETTOPVAL (QUOTE
VARIABLE», regardless of whether or not it is bound in the current access chain. Similarly, (SETQ
VARIABLE VALUE) will compile as {SETTOPVAL (QUOTE VARIABLE) VALUE).

12.3

LOCAL V ARS and SPECV ARS

All system parameters, unless otherwise specified, are declared as global variables. Thus, rebinding these
variables in a deep bound system (like Interlisp-D) will not affect the behavior of the system: instead, the
variables must be reset to their new values, and if they are to be restored to their original values, reset
again. For example, the user mi~t write

(5 E TO GLOBALVARlABLE NEWVALUE)
FORM

(SETO GLOBALVARlABLE OLDVALUE)

Note thalin this case, if an error occurred during the evaluation of FORM, or a control-D was typed" the
global variable would not be restored to its original value. The function RESETVAR (page 9.20) provides
a convenient way of resetting global variables in such a way that their values are restored even if an error
occurred or control-D is typed.

Note: Interlisp-10 employs a shallow binding scheme as described on page 7.1. There is no distinction
between global variables and other types of variables: all variable references are to the variable's value
cell. Thus, the cost of accessing a variable is small and independent of the depth of computation, whereas
in a deep bound system, it can be expensive to search the stack for the most recent binding of a variable,
hence the need for a mechanism like global variables. Note however that in a shallow bound system, the
cost of rebinding a variable is somewhat higher than in a deep bound system (except when the variable
is a LOCALVAR). For the purposes of compilation, global variables are treated the same as SPECVARS.
i.e. their names are always visible on the stack when they are rebound.

12.3 LOCAL V ARS AND SPECV ARS

In normal compiled and interpreted code, all variable bindings are accessible by lower level functions
because the variable's name is 'associated with its value. We call such variables speCial variables, or
specvars. As mentioned earlier~ the block compiler normally does not associate names with variable
values. Such unnamed variables are not accessible from outside the function which binds them and are
therefore local to that function. We call such unnamed variables local variables, or localvars.

The time economies of local variables can be achieved without block compiling by use of declarations.
Using local variables will increase the speed of compiled code: the price is the work of writing the
necessary specvar declarations for those variables which need to be accessed from outside the block.

LOCALVARS and SPECVARS are variables that affect compilation. During regular compilation, SPECVARS
is normally T, and LOCALVARS: is NIL or a list. This configuration causes all variables bound in the
functions being compiled to be treated as special except those that appear on LOCALVARS. During block
compilation, LOCALVARS is nonnally T and SPECVARS is NIL or a list. All variables are then treated as
local except those that appear on SPECVARS.

Declarations to set LOCALVARS and SPECVARS to other values, and therefore affect how variables are
treated, may be used at several levels in the compilation process with varying scope.

(1) The declarations may be included in the filecoms of a file, by using the LOCALVARS and SPECVARS
file package commands (page 11.25). The scope of the declaration is then the entire file:

000 (LOCALVARS • T) (SPECVARS X Y) 000

12.4

THE COMPIL.ER

(2)·The declarations may be included in block declarations; the .scope is then the block, e.g.,

{BLOCKS {{FOOBLOCK FOO FIE (SPECVARS . T) (LOCALVARS X»)

(3)'The declarations may also appear in individual functions, or in PROG's or LAMBDA's within a function,
using the DECLARE function. In this case, the scope of the declaration is the function or the PROG or
LAMBDA in which it appears. LOCALVARS and SPECVARS declarations must appear immediately after the
variable list in the function, PROG, or LAMBDA, but intervening comments are permitted. For example:

{DEFINEQ {{FOO
(LAMBDA (X Y)

(DECLARE (LOCALVARS V»~
(PROG (X Y Z)

(DECLARE (LOCALVARS X»
•• 0]

If the above function is compiled (non-block), the outer X will be special, the X bound in the P ROG will
be local, and both bindings of Y will be local.

Declarations for LOCALVARS and SPECVARS can be used in two ways: either to cause variables to
be treated the same whether the function(s) are block compiled or compiled no nnally , or to affect one
compilation mode while not affecting the default in the other mode. For example:

{LAMBDA (X Y)
(DECLARE (SPECVARS . T»
(PROG (Z) .•.]

will cause X, Y, and Z to be specvars for"both block and nonnal compilation while

{LAMBDA (X Y)
{DECLARE (SPECVARS X»
. ..]

will make X a specvar when block compiling, but when regular compiling the declaration will have no
effect, because the default value of specvars would be T, and therefore both X and Y will be specvars by
default.

Although LOCALVARS and SPECVARS declarations have the same fonn as other components of block
declarations such as (LiNKFNS . T), their operation is somewhat different because the two variables
are not independent. (SPECVARS . T) will cause SPECVARS to. be set to T, and LOCALVARS to be
set to NIL. (SPECVARS Vl V2 ..•) will have no effect if the value of SPECVARS is T, but if it is a
list (or NIL), SPECVARS will be set to the union of its prior value and (Vl V2 ...). The operation
of LOCALVARS is analogous. Thus, to affect both modes of compilation one of the two (LOCALVARS or
SPECVARS) must be declared T before specifying a list for the other"

12.4 CONST ANTS

The function CONSTANT enables the user to define certain expressions as descriptions of their "constant"
values. For example, if a user program needed a scratch list of length 30, the user could specify

12.5

Compiling Function Calls

(CONSTANT (to 30 call act NIL)} instead.of (QUOTE (NIL NIL ...)}. The former is more
concise and displays the important parameter much more directly than the latter. CONSTANT can also be
used to denote values that cannot be quoted directly, such as (CONSTANT (PACK NIL)}, (CONSTANT
(A R RA Y 10)}. It is also useful to parameterize quantities that are constant at run time but may differ at
compile time, e.g. (CONSTANT BITSPERWORD) in a program is exactly equivalent to 36, if the variable·
B ITSPERWORD is bound to 36 when the CONSTANT expression is evaluated at compile time.

When interpreted, the expression occuring as the argument to CONSTANT is evaluted each' time it is
encountered. If the CONSTANT form is compiled, however, the expression will be evaluated only once:

If the value of the expression has a readable print-name, then it will be evaluated at compile-time, and the
value will be saved as a literal in the compiled function's definition, as if (QUOTE VALUE-OF-EXPRESSION)

had appeared instead of (CONSTiANT EXPRESSION).

If the value does not have a readable printname (e.g. the PACK and ARRAY examples above), then
the expression itself will be saved with the function, and it will be evaluated when the function is first
executed. The value will then be stored in the function's literals, and will be retrieved on future references.

Whereas the function CONSTANT attempts to evaluate the expression as soon as possible (compile-time,
load-time, or first-run-time), the function DE F E RREDCONSTANT will always defer the evaluation until first
running. This is useful when th~ storage for the constant is excessive so that it shouldn't be allocated
until (unless) the function is actuhlIy invoked.

Note: The functionSELECTC (page 4.3) provides a mechanism for conparing a value to a number of
constants.

(CONSTANTS VAR1 VAR2 ... VARN) [NLambda NoSpread Function]
Defines VARl' ... VARN (unevaluated) to be compile-time constants. Whenever the
compiler encounters a (free) reference to one of these constants, it will compile the
form (CONSTANT VARj) instead.

If VARj isa list of the form (VAR FORM), a free reference to the variable will
compile as (CONSTANT FORM).

Constants can be saved using the CONSTANT S file package command (page 11.27).

12.5 COMPILING FUNCTION CALLS

When compiling the call to a function, the compiler must know the type of the function, to determine how
the arguments should be prepared (evaluatedlunevaluated, spreadlnospread). There are three seperate
cases: lambda, nlambda spread, and nlambda nospread functions.

To determine which of these three cases is appropriate, the compiler will first look for a definition among
the functions in the file that is being compiled. The function can be defined anywhere in any of the files
given as arguments to BCOMPL, TCOMPL, BRECOMP I LE or RECOMP I LE. If the function is not contained
in the file, the compiler will look for other information in the variables NLAMA, NLAML, and LAMS, which
can be set by the user:

12.6

NLAMA

NLAML

LAMS

THE COMPILER

[Variable]
°ifor'NlAMbdaAtoms) A list of functions to be treated as nlambda nospread functions

by the compiler.

[Variable]
(for NLAMbda List) A list of functions to be treated as nlambda spread functions
by the compiler.

. [Variable]
A list of functions to be treated as lambda functions by the compiler. Note
that including functions on LAMS is only necessary to override in-core nlambda
definitions, since in the absence of other information, the compiler assumes the
function is a lambda.

If the function is not contained in a file, or on the lists NLAMA, NLAML, or LAMS, the compiler will look
for a current definition in the Interlisp system, and use its type. If there is no current definition, next
COMP I LEUSE RFN is called:

COMPILEUSERFN [Variable]
When compiling a function call, if the function type cannot be found by looking
in files, the variables N LAMA, N LAML, or LAMS, or at a current definition, then
if the value of COMPILEUSERFN is not NIL, the compiler calls (the value of)
COMPILEUSERFN giving it as arguments CDR of the form and the form itself,
Le., the compiler does (APPLY· COMPILEUSERFN (COR FORM) FORM). If a
non-N I L value is returned, it is compiled instead of FORM. If NIL is returned, the
compiler compiles the original expression as a call to a lambda spread that is not
yet defined. .

Note that COMPILEUSERFN is only called when the compiler encounters a list CAR
of which is not the name of a defined function. The user can instruct the compiler
about how to compile other data types via COMPILETYPELST, page 12.9.

CLISP uses COMPILEUSERFN to tell the compiler how to compile iterative
statements, IF - THE N - E L S E statements, and pattern match constructs (See page
12.9).

If the compiler cannot determine the function type by any of the means above, it assumes that the
function is a lambda function, and its arguments are to be evaluated. The function is also added to the
value of ALAMS:

ALAMS [Variable]
(for Assumed LAMbdaS) A list of functions to that the compiler has assumed to
be lambda functions. A LAMS is not used by the compiler; it is maintained for the
user's benefit so that the user can check to see whether any incorrect assumptions
were made.

If there are nlambda functions called from the functions being compiled. and they are only defined in
a separate file, they must be included on N LAMA or N LAM L, or the compiler will incorrectly assume that
their arguments are to be evaluated. and compile the calling function correspondingly. Note that this is
only necessary if the compiler does not "know" about the function. If the function is defined at compile
time, or is handled via a macro, or is contained in the same group of files as the functions that call it, the

12.7

FUNCTION and Functional Arguments

compiler will· automatically handle calls to that function correctly.

12.6 FUNCTION AND FUNCTIONAL ARGUMENTS

Compiling the function FUNCT ION (page s.15) may involve creating and compiling a seperate "auxiliary
function", which will pe called at run time. An auxiliary function is named by attaching a GENSYM
(page 2.11) to the end of the name of the function in which they appear, e.g., FOOA0003. For example,
suppose FOO is defined as (LAMBDA (X) ... (FOOl X (FUNCT ION ... » ...) and compiled. When
FOO is run, FOOl will be called with two arguments, X, and FOOAOOON and FOOl will call FOOAOOON
each time it uses its functional argument

Compiling FUNCT ION will not create an auxiliary function if it is a functional argument to a function that
compiles open, such as most of the mapping functions (MAPCAR, MAPLIST, etc.), Note that a considerable
savings in time could be achieved by making FOOl compile open via a computed macro (page 5.17). e.g.

{Z (LIST (SUBST (CADADR Z)
(QUOTE FN)
DEF)

(CAR Z»)

DEF is the definition of F 00 1 as a function of just its first argument, and F N is the name used for its
functional argument in its definition. In this case, (FOOl X (FUNCT ION ...) j would compile as an
expression, containing the argument to FUNCT ION as an open LAMBDA expression. Thus you save not
only the function call to FOOl, but also each of the function calls to its functional argument For example,
if F 00 1 operates on a list of len,gth ten, eleven function calls will be saved. Of course, this savings in
time costs space, and the user must decide which is more important

12.7 OPEN FUNCTIONS

When a function is called from a compiled function, a system routine is invoked that sets up the parameter
and control push lists as necessaFy for variable bindings and return information. If the amount of time
spent inside the function is small~ this function calling time will be a significant percentage of the to~
time required to use the function. Therefore, many "small" functions, e.g., CAR, CDR, EQ, NOT, CONS are
always compiled "open", i.e., they do not result in a function call. Other larger functions such as PROG,
SELECTQ, MAPC, etc. are compiled open because they are frequently used. The user can make other
functions compile open via MAC RO definitions (see page 5.17). The user can also affect the compiled code
via COMPILEUSERFN (page 12.7) and COMPILETYPELST (page 12.9).

12.8 COMPILETYPELST

Most of the compiler's mechanism deals with how to handle forms (lists) and variables (literal atoms).
The user can affect the compiler's behaviour with respect to lists and literal atoms in a number of ways,

12.8

THE COMPILER

e.g. macros, declarations, COMPILEUSERFN (page 12.7), etc. COMPILETYPELST allows the user to tell
the compiler what to do when it encounters a data type other than a list or an atom. It is the facility in
the compiler that corresponds to DEFEVAL (page 5.11) for the interpreter.

COMPILETYPELST. [Variable]
A list of elements of the form (TYPENAME • FUNCTION). Whenever the compiler
encounters a datum that is not a list and not an atom (or a number) in a context
where the datum is being evaluatecL the type name of the datum is looked up on
COMPILETYPELST. If an entry appears CAR of which is equal to the type name,
CDR of that entry is applied to the datum. If the value returned by this application
is not E Q to the datum, then that value is compiled instead. If the value is E Q to
the datum, or if there is no entry on COMPILETYPELST for this type name, the
compiler simply compiles the datum as (QUOTE DATUM).

12.9 COMPILING CLISP

Since the compiler does not know about CLISP, in order to compile functions containing CLISP constructs,
the definitions must first be DWIMI FYed (page 16.14). The user can automate this process in several ways:

(1) If the variable DWIMI FYCOMPFLG is T, the compiler will always DWIMI FY expressions before compiling
them. DWIMIFYCOMPFLG is initially NIL.

(2) If a file has the property FILETYPE with value CLISP on its property list, TCOMPL, BCOMPL, ..
RECOMPILE, and BRECOMPILE will operate as though DWIMIFYCOMPFLG is T and DWIMIFY all
expressions before compiling.

(3) If the function definition has a local CLISP declaration (see page 16.10), including a null declaration,
i.e., just (C LIS P :), the definition will be automatically OW I M IF Yed before compiling.

Note: COMPILEUSERFN (page 12.7) is defined to call DWIMIFY on iterative statements, IF-THEN
statements, and fetch, repl ace, and match expressions, Le., any CLISP construct which can be
recognized by its CAR of fonn. Thus, if the only CLISP constructs in a function appear inside of iterative
statements, I F statements, etc., the function does not have to be dwimified before compiling.

IfDWIMIFY is ever unsuccessful in processing a CLISP expression. it will print the error message UNABLE
TO DWIMIFY followed by the expression, and go into a break.8 The user can exit the break in several
different ways: (1) type OK to the break. which will cause the compiler to try again, e.g. the user could
define some missing records while in the break. and then continue; or (2) type 1', which will cause the
compiler to simply compile the expression as is, Le. as though CLISP had not been enabled in the first
place; or (3) return an expression to be compiled in its place by using the RE TURN break command (page
9.3).

Note: TCOMPL, BCOMPL. RECOMPILE, and BRECOMPILE all scan the entire file before doing any
compiling, and take note of the names of all functions that are defined in the file as well as the names
of all variables that are set by adding them to NOF IXFNSLST and NOF IXVARSLST, respectively. Thus,

Sunless DWIMESSGAG=T. In this case. the expression is just compiled as is, i.e. as though clisp had not
been enabled.

12.9

Compiler Functions

if a function is not currently defined, but is defined in the file being compiled, when OW I M I F Y is called
before compiling, it will not attempt to interpret the function name as CLISP when it appears as CA R
of a fonno DWIMI FY also takes into account variables that have been declared to be LOCALVARS, or
SPECVARS, either via block declarations or DECLARE expressions in the function being compiled., and
does not attempt spelling correction on these variables. The declaration USEDFREE may also be used to
declare variables simply used freely in a function. These variables will also be left alone by DWIMI FY.
Finally, NOSPELLFLG (page 15.12) is reset to T when compiling functions from a file (as opposed to from
their in-core defin.ition) so as to suppress spelling correction.

12.10 COMPILER FUNCTIONS

Nonnally, the compiler is envoked through file package commands that keep track of the state of functions,
and manage a set of files, such as: MAKE FILE (page 11.6). However, it is also possible to explicitly call the
compiler using one of a number of functions. Functions may be compiled from in-core definitions (via
COMP I LE), or from definitions in files (TCOMPL), or from a combination of in-core and file definitions
(RECOMPILE).

TCOMPL and RECOMPILE produce "compiled" files. Compiled files usually have the same name as the
symbolic file they were made from, suffixed with DCOM (Interlisp-D) or COM (Interlisp-10).9 The file name
is constructed from the name field only, e.g., (TCOMPL '<BOBROW> FOO. TEM; 3) produces FOO. DCOM
on the connected directory. The version number will be the standard default.

/'

A "compiled file" contains the same expressions as the original symbolic file, except that (1) a special
FILECREATED expression appears at the front of the file which contains infonnation used by the file
package, and which causes the message COMPILED ON DATE to be printed when the file is loaded;lo (2)
every 0 E FIN E Q in the symbolic file is replac~d by the corresponding compiled definitions in the compiled
file; and (3) expressions following a DONTCOPY tag inside of a DECLARE: (page 11.26) that appears in
the symbolic file are not copied to the compiled file. The compiled definitions appear at the front of the
compiled file, i.e., before the other expressions in the symbolic file, regardless of where they appear in the
symbolic file. The only exceptions are expressions that follow a FIRST tag inside of a DECLARE: (page
11.26). This "compiled" file can ~e loaded into any Interlisp system with LOAD (page 11.4).

Note: When a function is compiled from its in-core definition (as opposed to being compiled from a
definition in a file), and the function has been modified by BREAK, TRACE. BREAKIN. or ADVISE, it is
first restored to its original state. and a message is printed out, e.g., FOO UNBROKEN. If the function is
not defined as an EXPR, the value of the function's EXPR property is used for the compilation, if there is
one. If there is no EX P R property, and the compilation is being perfonned by R E COM PI L E, the definition
of the function is obtained from the file (using LOADFNS). Otherwise, the compiler prints (FN NOT
COMP I LEABLE), and goes on to the next function.

(COMPILE x FLG) [Function]
x is a list of functions (if atomic, (LIST x) is used). COMPILE first asks the
standard compiler questions, and then compiles each function on x, using its in-core
definition. Returns x.

9The compiled file suffix is stored as the value of the variable COMPILE. EXT.

lOThe actual string printed is the value of COMP I LEHEADE R, initially" comp i 1 ad on".

12.10

THE COMPILER

. If compiled definitions are being written to a file, the file is closed unless FLG = T.

(COMPILEl FN DEF -) [Function]

(TCOMPL FILES)

Compiles DEF, redefining FN if STRF = T (STRF is one of the variables set by
COMPSET, page 12.1). COMPILEl is used by COMPILE, TCOMPL, and RECOMPILE.

IfDWIMIFYCOMPFLG is T, or DEF contains a CLISP declaration, DEF is dwimified
before compiling. See page 12.9.

[Function]
TCOMPL is used to '6compile files"; given a symbolic LOAD file (e.g., one created
by MAKEFILE), it produces a "compiled file". FILES is a list of symbolic files to be
compiled (if atomic, (LIST FILES) is used). TCOMPL asks the standard compiler
questions. except for "OUT PUT F I L E : ". The output from the compilation of
each symbolic file is written on a file of the same name suffixed with DCOM, e.g.,
(TCOMPL '(SYMl SYM2» produces two files, SYM1. DCOM and SYM2. DCOM.

TCOMPL processes the files one at a time, reading in the entire file. For each
FILECREATED expression, the list of functions that were marked as changed by
the file package is noted, and the F I L E C REA TED expression is written onto the
output file. For each DE F I NEQ expression, TCOMPL adds any nlambda functions
defined in the 0 E FIN E Q to N LAMA or N LAM L, and adds lambda functions to
LAMS, so that calls to these functions will be compiled correctly (see page 12.7).11
Expressions beginning with DECLARE: are processed specialiy (see page 11.26).
All other expressions are collected to be subsequently written onto the output file.

After processing the file in this fashion, TCOMPL compiles each function, except
for those functions which appear on the list DONTCOMPILEFNS,12 and writes the
compiled definition onto the output file. TCOMPL then writes onto the output file
the other expressions found in the symbolic file.

Note: If the rootname of a file has the property FILETYPE with value CLISP,
or value a list containing CLISP, TCOMPL rebinds DWIMIFYCOMPFLG to T while
compiling the functions on FILE, so the compiler will OW I M I F Y all expressions
before compiling them. See page 12.9.

TCOMPL returns a list of the names of the output files. All files are properly
terminated and closed. If the compilation of any file is aborted via an error or
control-D, all files are properly closeci and the (partially complete) compiled file
is deleted. .

(RECOMPILE PFILE CFILE FNS) [Function]
The purpose of RECOMP I LE is to allow the user to update a compiled file without
recompiling every function in the file. RECOMPILE does this by using the results of

I1NLAMA, NLAML, and LAMS are rebound to their top level values (using RESETVAR) by TCOMPL,
RECOMPILE, BCOMPL, BRECOMPILE, COMPILE, and BLOCKCOMPILE, so that any additions to these
lists while inside of these functions will not propagate outside.

12Initially NIL. DONTCOMPILEFNS might be used for functions that compile open, since their definitions
would be superfluous when operating with the compiled file. Note that DONTCOMPILEFNS can be set
via block declarations (see page 12.14).

12.11

Compiler Functions

a previous compilation. It produces a compiled file similar to one that would have
been produced by TCOMPL~ but at a considerable savings in time by only compiling
selected functions, and copying the compiled definitions for the remainder of the
functions in the file from an earlier T C OM P L or R E COM PI L E file.

PFILE is the name of the Pretty file (source file) to be compiled; CFILE is the name
of the Compiled file containing compiled definitions that may be copied. FNS
indicates which functions in PFILE are to be recompiled, e.g., have been changed
or defined for the first time since CFILE was made. Note that PFILE, not FNS.
drives RECOMP I LE.

RECOMPILE asks the standard compiler questions~ except for "OUTPUT FILE :t9.
As with TCOMPL, the output automatically goes to PFILE. DC OM. RE COMP I LE
processes PFILE the same as does TCOMPL except that DEFINEO expressions are
not actually read into core. Instead, RECOMP I LE uses the filemap (see page
11.38) to obtain a list of the functions contained in PFILE. The filemap enables
R E COM PI L E to skip over the DE FIN E Os in the file by simply resetting the file
pointer, so that in most cases the scan of the symbolic file is very fast (the only
processing: required is the reading of the non-D E FIN E Os and the processing of the
DECLARE: expressions as with TCOMPL). A map is built if the symbolic file does
not already contain one~ for example if it was written in an earlier system, or with
BUILDMAPFLG=NIL (page 11.39).

After this initial scan of PFILE, R E C OM PI L E then processes the functions defined
in the file. For each function in PFILE, R E COM P I L E determines whether
or not the function is to be (re)compiled. Functions that are members of
DONTCOMPILEFNS are simply ignored. Otherwise, a function is recompiled if
(1) FNS is a list and the function is a member of that list; or (2) FNS= T or
EXPRS and the function is an EXPR; or (3) FNS= CHANGES and the function is
marked as having been changed in the F I L E C REA TED expression in PFILE; or (4)
FNS = A L L.13 If a function is not to be recompiled, R E COM P I L E obtains its compiled
definition from CFILE, and copies it (and all generated subfunctions) to the output
file. PFILE. DCOM. If the function does not appear on CFILE, RECOMPILE simply
recompiles it Finally, after processing all functions, R E COM PI L E writes out all
other expressions that were collected in the prescan of PFILE.

If CFILE= NIL, PFILE. DCOM (the old version of the output file) is used for
copying flom. If both FNS and CFILE are NIL, FNS is set to the value of
RECOMPIL,.EDEFAULT. which is initially EXPRS. This is the most common usage.
Typically, the functions the user has changed will have been UNSAVEDE Fed by the
editor, and therefore will be EX P Rs. Thus the user can perfonn his edits, dump
the file, and then simply (RECOMP I LE 'FILE) to update the compiled file.

The value of RECOMP I LE is the new compiled file, PFILE. DCOM. If RECOMP ILE
is aborted due to an error or control-D, the new (partially complete) compiled file
will be closed and deleted.

l3If FNS=ALL, CFILE is superfluous, and does not have to be specified. This option may be used to
compile a symbolic file that has never been compiled before. but which has already been loaded (since
using TCOMPL would require reading the file in a second time).

12.12

THE COMPILER

RECOMPILE is designed to allow the user to conveniently apd efficiently update a compiled file, even
when the corresponding symbolic file has not been (completely) loaded. For example, the user can
perfonn a LOADFROM (page 11.6) to "notice" a symbolic file, edit the functions he wants to change (the
editor will automatically load those functions not already loaded), call MAKE FILE (page 11.6) to update'
the symbolic file (MAK E F I L E will copy the unchanged functions from the old symbolic file), and then
perfonn (RECOMPILE PFILE).

Note: Since PRETTYDEF automatically outputs a suitable DECLARE: expression to indicate which'
functions in the file (if any) are defined as NLAMBDAs, calls to these functions will be handled correctly,
even though the NLAMBDA functions themselves may never be loaded, or even looked at, by RECOMPILE.

12.11 BLOCK COMPILING·

Block compiling provides a way of compiling several functions into a single block. Function calls between
the component functions of the block are very fast Thus, compiling a block consisting of just a single
recursive function may be yield great savings if the function calls itself many times, e.g., EQUAL, COPY,
and COUNT are block compiled in Interlisp-10.

The output of a block compilation is a single, usually large, function. Calls from within the block to
functions outside of the block look like regular function calls, except that they are usually linked (see page
12.18). A block can be entered' via several different functions, called entries.14 These must be specified
when the block is compiled. For example, the error block has three entries, ERRORX, INTERRUPT, and
F AUL T 1. Similarly, the compiler block has nine entries.

Note: In Interlisp-D, block compiling is handled somewhat differently; block compiling provides a
mechanism for hiding function names internal to a block, but it does not provide a perfonnance
improvement. Block compiling in Interlisp-D works by automatically renaming the block functions with
special names, and calling these functions with the normal function-calling mechanisms. Specifically, a
function FN is renamed to \BLOCK-NAME/FN. For example, function FOO in block BAR is renamed to
"\BAR/FOO". Note that it is possible with this scheme to break functions internal to a block.

12.11.1 RETFNS

Another savings in block compilation arises from omitting most of the infonnation on the stack about
internal calls between functions in the block. However, if a function's name must be visible on the stack,
e.g., if the function is to be returned from RETFROM, RETTO, RETEVAL, etc., it must be included on the
list RETFNS.

14 Actually the block is entered the same as every. other function, i.e., at the top. However, the entry
functions call the main block with their name as one of its arguments, and the block dispatches on the
name, and jumps to the portion of the block corresponding to that entry point. The effect is thus the
same as though there were several different entry points.

12.13

BLKAPPLYFNS

12.11.2 BLKAPPL YFNS

Normally, a call to APPLY from inside a block would be the same as a call to any other function outside
of the block., If the first argument to APPLY turned out to be one of the entries to the block, the block
would have to be reentered. BLKAPPLYFNS enables a program. to compute the name of a function in
the block to be called next, without the overhead of leaving the block and reentering it This is done by
including on the list BLKAPPL YFNS those functions which will be called in this fashion, and by using
BLKAPPLY in place of APPLY, and BLKAPPLY· in place of APPLY·. If BLKAPPL Y or BLKAPPLY·
is given a function not on BLKAPPL YFNS, the effect is the same as a call to APPLY or APPLY· and
no error is generated. Note however, that BLKAPPLYFNS must be set at compile time, not run time,
and furthermore, that all functions on BLKAPPLYFNS must be in the block, or an error is generated (at
compile time), NOT ON BLKFNS.

12.11.3 BLKLIBRARY

Compiling a function open via a macro provides a way of eliminating a function call. For block compiling,
the same effect can be achieved by including the function in the block. A further advantage is that the
code for this function will appear only once in the block, whereas when a function is compiled open, its
code appears at each place where it is called.

The block library feature provides a convenient way of including functions in a block. It is just a
convenience since the user can always achieve the same effect by specifying the function(s} in question as
one of the block functions, provided it has an EXPR definition at compile time. The block library feature
simply eliminates the burden of supplying this definition.

To use the block library feature. place the names of the functions of interest on the list BLKLIBRARY,
and their EXPR definitions on the property list of the functions under the property BLKLIBRARYDEF.
When the block compiler compiles a form, it first checks to see if the function being called is one of the
block f\lnctions. If not, and the function is on BLKLIBRARY, its definition is obtained from the property
value of BLKLIBRARYDEF, and it is automatically included as part of the block. The functions ASSOC,
EQUAL, GETPROP, LAST, LENGTH, LISPXWATCH, MEMB, MEMBER, NCONC1, NLEFT, NTH, IRPLNODE,
and TAILP already have BLKLIBRARYDEF properties.

12.11.4 Block Declarations

Block compiling a file frequently involves giving the compiler a lot" of information about the nature and
structure of the compilation, e.g., block functions, entries, specvars, linking, etc. To help with this, there
is the BLOCKS file package coIl1l11and (page 11.25), which has the form:

(BLOCKS BLOCK1 BLOCK:z ... BLOCKN)

where each BLOCKj is a block declaration. The BLOCKS command outputs a DECLARE: expression, which
is noticed by BCOMPL and BRECOMPILE. BCOMPL and BRECOMPILE are sensitive to these declarations
and take the appropriate action.

Note: Masterscope includes a facility for checking the block declarations of a file or files for various
anomalous conditions, e.g. functions in block declarations which aren't on the file(s), functions in
ENTRIES not in the block, variables that may not need to be SPECVARS because they are not used freely

12.14

THE COMPILER

below the places they are bouncL etc. See page 13.1

The form of a block declaration is:

'" {BLKNAME BLKFNl .•• BLKFNM (VARl • VALUE1) ••• (VARN • VALUEN »

BLKNAME is the name of a block. BLKFNl ••• BLKFNM are the functions in the block and correspond to
BLKFNS in the call to BLOCKCOMP I LE. The (VARj. VALUEj) expressions indicate the settings for variables
affecting the compilation of that block. If VALUEj is atomic, then VARj is set to VALUEj (e.g. (LINKFNS
. T», otherwise VARi is set to the UN ION of VALUEj and the current value of the variable VARj. Also,
expressions of the form (VAR * FORM) will cause FORM to be evaluated and the resulting list used as
described above (e.g. (GLOBALVARS * MYGLOBALVARS».

As an example, one of the block definitions for the editor is shown below. The block name is EDITBLOCK,
it includes a number of functions (EDITLO, EDITL1, ... EDITH), and it sets the variables ENTRIES,
SPECVARS, RETFNS,GLOBALVARS, BLKAPPLYFNS, BLKLIBRARY, and NOLINKFNS:

{EDITBLOCK
EDITLO EDITL1 UNDOEDITL'EDITCOM EDITCOMA EDITCOML
EDITMAC EDITCOMS EDIT]UNDO UNDOEDITCOM UNDOEDITCOMl
EDITSMASH EDITNCONC EDIT1F EDIT2F EDITNTH BPNT BPNTO
BPNT1 RI RO LI LO BI BO EDITDEFAULT #N EDUP EDIT* EDOR
EDRPT EDLOC EDLOCL EDIT: EDITMBD EDITXTR EDITELT
EDITCONT EDITSW EDITMV EDITTO EDITBELOW EDITRAN TAILP
EDITSAVE EDITH
(ENTRIES EDITLO #N UNDOEDITL)
(SPECVARS L COM LCFLG #1 #2 #3 LISPXBUFS **COMMENT**FLG

PRETTYFLG UNDOLST UNDOLST1)
(RETFNS EDITLO)
(GLOBALVARS EDITCOMSA EDITCOMSL EDITOPS HISTORYCOMS

EDITRACEFN)
(BLKAPPLYFNS RI RO LI LO BI BO EDIT: EDITMBD EDITMV

EDITXTR)
(BLKLIBRARY LENGTH NTH LAST)
(NOLINKFNS EDITRACEFN»

Whenever BCOMPL or BRECOMPILE encounter a block declaration, they rebind RETFNS, SPECVARS,
GLOBALVARS, BLKLIBRARY, NOLINKFNS, LINKFNS, and DONTCOMPILEFNS to their top level values,
bind BLKAPPLYFNS and ENTRIES to NIL. and bind BLKNAME to the first element of the declaration.
They then scan the rest of the declaration, setting these variables as described above. When the declaration
is exhaustecL the block compiler is called and given BLKNAME, the list of block functions, and ENTRIES.

If a function appears in a block declaration, but is not defined in one of the files, then if it has
an in-core definition, this definition is used and a message printed NOT ON FILE, COMPILING IN
CORE DEFINITION. Otherwise, the message NOT COMPILEABLE, is printed and the block declar~tion
processed as though the function were not on it, Le. calls to the function will be compiled as external
function calls. '

Note that since all compiler variables are rebound for each block declaration. the declaration only has to
set those variables it wants changed. Furthermore, setting a variable in one declaration has no effect on
the variable's value for another declaration.

12.15

Block Compiling Functions

After finishing all blocks, BCOMPL and BRECOMPILE treat any functions in the file that did not appear
in a block declaration in the same way as do TCOMPL and RECOMPILE. If the user wishes a function
compiled separately as well as in a block, or if he wishes to compile some functions (not blockcompile),
with some compiler variables changed, he can use a special pseudo-block declaration of the form

{NIL BLKFNI ..• BLKFNM (VARI G VALUE1) .•• (VARN • VALUEN»

which means that BLKFNI ••• BLKFNM should be compiled after first setting VAR I .•. VARN as described
above. For example9

(NIL CGETD FNTYP ARGLIST NARGS NCONCl GENSYM (LINKFNS • T»

appearing as a "block declaration" will cause the six indicated functions to be compiled while LIN K F N S = T
so that all of their calls will be linked (except for those functions on NOLINKFNS).

12.11.5 Block Compiling Functions

There are three user level functions for block compiling, BLOCKCOMPILE, BCOMPL, and BRECOMPILE,
corresponding to COMP I LE, TCOMPL, and RECOMP I LE. All of them ultimately call the same low level
functions in the compiler, Le., there is no "block compiler" per see Instead, when block compiling, a flag
is set to enable special treatment for SPECVARS, RETFNS, BLKAPPLYFNS, and for determining whether
or not to link a function call. Note that all of the remarks on macros, globalvars, compiler messages,
etc., all apply equally for block compiling. Using block declarations, the user can intermix in a single
file functions compiled normally, functions compiled normally with linked calls, and block compiled
functions.

(BLOCKCOMPILE BLKNAME BLKFNS ENTRIES FLG) [Function]
BLKNAME is the name of a block, BLKFNS is a list of the functions comprising the
block, and ENTRIES a list of entries to the block.

Each of the entries must also be on BLKFNS or an error is generated, NOT ON
BLKFNS. If only one entry is specified, the block name can also be one of the
BLKFNS, e.g., (BLOCKCOMPILE 'FOO '(FOO FIE FUM) '(FOO». However,
if more than one entry is specified, an error will be generated, CAN'T BE BOTH
AN ENTRY AND THE BLOCK NAME.

If ENTRIES is NIL, (LIST BLKNAME) is used, e.g., (BLOCKCOMPILE 'COUNT
, (COUNT COUNT 1))

If BLKFNS is NIL, (LIST BLKNAME) is used, e.g., (BLOCKCOMPILE 'EQUAL)

BLOCKCOMPILE asks the standard compiler questions and then begins compiling.
As with COMPILE, if the compiled code is being written to a file, the file is
closed unless FLG=T. The value of BLOCKCOMPILE is a list of the entries, or if
ENTRIES = NIL, the value is BLKNAME.

The output of a call to BLOCKCOMPILE is one function definition for BLKNAME,
plus definitions for each of the functions on ENTRIES if any. These entry functions

12.16

THE COMPILER

are very short functions which immediately call BLKNAME.

(BCOMPL FILES CFILE - -) [Function]
FILES is a list of symbolic files (if atomic, (LIST FILES) is used). BCOMPL
differs from TCOMPL in that it compiles all of the files at once, instead of one
at a time, in order to permit one block to contain functions in several files. (If
you have several files to be BCOMPLed separately, you must make several calls to
BCOMPL.) Output is to CFILE if given, otherwise to a file whose name is (CAR
FILES) suffixed with DCOM. For example, (BCOMPL '(ED IT WED IT)) produces
one file, ED ~ T . DCOM.

BCOMPL asks the standard compiler questions, except for "OUTPUT FILE: ", then
processes each file exactly the same as TCOMPL (page 12.11). BCOMPL next
processes the block declarations as described above. Finally, it compiles those
functions not mentioned in one of the block declarations, and then writes out all
other expressions.

If any of the files have property F ILETYPE with value CLISP9 or a list containing
CLISP, then DWIMIFYCOMPFLG is rebound to T for all of the files. See page 12.9.

The value of BCOMPL is the output fi.le (the new compiled file). If the compilation
is aborted due to an error or control-D, all files are closed and the (partially
complete) output file is deleted.

Note that it is pennissible to TCOMPL files set up for BCOMPL; the block declarations
will simply have no eff~ct. Similarly, you can BCOMPL a file that does not contain
any block declarations and the result will be the same as having TCOMPLed it.

(B RE C OM PI L E FILES CFILE FNS -) [Function]
BRECOMPI LE plays the same role for BCOMPL that RECOMP I LE plays for TCOMPL.
Its purpose is to allow the user to update a compiled file without requiring an
entire BCOMPL.

FILES is a list of symbolic files (if atomic, (LIST FILES) is used). CFILE is
the compiled file produced by BCOMPL or a previous BRECOMPILE that contains
compiled definitions that may be copied. The interpretation of FNS is the same as
with RECOMPILE.

BRECOMP I LE asks the standard compiler questions except for "OUTPUT FILE: ".
As with BCOMPL, output automatically goes to FILE. DCOM, where FILE is the first
file in FILES.

BRECOMPILE processes each file the same as RECOMPILE (page 12.11), then
processes each block declaration. If any of the functions in the block are to be
recompiled, the entire block must be (is) recompiled. Otherwise, the block is copied
from CFILE as with RECOMPILE. For pseudo-block declarations of the form (NIL
FNl ...), all variable assignments are made, but only those functions indicated by
FNS are recompiled.

After completing the block declarations, B R E C OM P I L E processes all functions that
do not appear in a block declaration, recompiling those dictated by FNS, and
copying the compiled definitions of the remaining from CFILE.

12.17

Linked Function Calls

Finally, BRECOMPILE writes onto the output file the "other expressionsn collected
in the initial scan of FILES.

The value of BRECOMP I LE is the output file (the new compiled file). If the
compilation is aborted due to an error or control-D, all files are closed and the
(partially complete) output file is deleted.

If CFILE=NIL, the old version of FILE. DCOM is used, as with RECOMPILE.
In addition, if FNS and CFILE are both NIL, FNS is set to the value of
RECOMP I LEDE FAUL T, initially EXPRS.

12.12 LINKED FUNCI10N CALLS

Note: Linked function calls are not implemented in Interlisp-D.

Conventional (non-linked) function calls from a compiled function go through the function definition cell,
i.e., the definition. of the called function is obtained from its function definition cell at call time. Thus,
when the user breaks, advises, or otherwise modifies the definition of the function FOO, every function
that subsequently calls it instead calls the modified function. For calls from the system functions, this
is clearly not a desirable feature. For example, suppose that the user wishes to break on basic functions
such as PRINT, EVAL, RPLACA, etc., which are used by the break package. We would like to guarantee
that the system packages will survive through user modification (or destruction) of basic functions (unless
the user specifically requests that the system packages also be modified). This protection is achieVed by
linked function calls.

For linked function calls, the definition of the called function is obtained at link time, I.e., when the calling
function is defined, and stored in the literal table of the calling function. At call time, this definition is
retrieved from where it was stored in the literal table, not from the function definition cell of the -called
function as it is for non-linked calls.

Note that while function calls from block compiled functions are usually linked (I.e. the default for
blocks is to link),1S and those from standardly compiled functions are usually non-linked, linking function
calls and blockcompiling are independent features of the Interlisp compiler, Le., linked function calls are
possible, and frequently employed, from standardly compiled functions.

Note that normal function calls require only the called function's name in the literals of the compiled code,
whereas a linked function call uses two literals and hence produces slightly larger compiled functions.

The compiler's decision as to whether to link a particular function call is determined by the variables
LINKFNS and NOlINKFNS as follows:

(1) If the function appears on NOLINKFNS, the call is not linked;

151n Interlisp-lO. linked function calls are actually a little slower and take more space than non-linked
calls, so that the user might want to include (NO LIN K F N S • T) in block declarations to override the
default.

12.18

THE COMPILER

(2) If block compiling and the function is one of the block functions~ the call is internal as described
earlier;

(3) If the function appears on LINKFNS, the call is linked;

(4) If NOLINKFNS=T, the call is not linked;

(5) If block compiling, the call is linked;

(6) If LINKFNS=T,-the call is linked:

(7) Otherwise the call is not linked.

Note that (1) takes precedence over (2), i.e., if a function appears on NOL I NKF NS, the call to it is not
linked, even if it is one of the functions in the block, i.e., the call will go outside of the block.

NOLINKFNS is initialized to various system functions such as ERRORSET, BREAK1, etc. LINKFNS is
initialized to NIL. Thus if the user does not specify otherwise, all calls from a block compiled function
(except for those to functions on NOLINKFNS) will be linked; all calls from standardly compiled functions
will not be linked. However, when compiling system functions such as HELP, ERROR,ARGLIST, FNTYP,
BREAK1, et al, LINKFNS is set to T so that even though these functions are not block compiled, all of
their calls will be linked.

If a function is not defined at link time, Le., when an attempt is made to link to it, -it is linked instead to
the function NO LIN K DE F. When the function is later defined, the link can be completed by relinking the
calling function using RELINK described below. Otherwise,. if a function is run which attempts a linked
call that was not completed, NOLINKDEF is called. If the function is now defined, Le., it was defined
at some point after the attempt was made to link to i~ NOLINKDEF will quietly perform the link and
continue the call. Otherwise, it will call FAUL TAPPL Y and proceed as described in page 15.6.

CALLS, BREAK on FN1- IN-FN2 and ADVISE FN1- IN-FN2 all work correctly for linked function calls,
e.g., (BREAK' (FOO IN FIE», where FOO is called from FIE via a linked function call. Note that
control-H will not interrupt at linked function calls.

12.12.1 Relinking

The function RELINK is available for relinking a compiled function, Le., updating all of its linked calls
so that they use the definition extant at the time of the relink operation.

(RELINK FN) [Function]
FN is either the name of a function, a list of functions, an atom whose value is a list
of functions, or the atom WORLD. RELINK performs the corresponding relinking
operations. R ELI N K returns FN.

(RELINK 'WORLD) is possible because the compiled code reader maintains on
LINKEDFNS a list of all user functions containing any linked calls. SYSLINKEDFNS
is a list of all system functions that have any linked calls. (RE LINK 'WORLD)
perfonns both (RELINK LINKEDFNS) and (RELINK SYSLINKEDFNS).

12.19

Compiler Error Messages

Note: To relink a function in a block, one should relink the block, not the function.

It is important to stress that linking takes place when a function is defined Thus, if F 00 calls FIE via a
linked call, and a bug is found in FIE, changing FIE is not sufficient; F 00 must be relinked. Similarly, if
FOOl, F002, and F003 are defined (in that order) in a file, and each call the others via linked calls. when
a new version of the file is loaded, FOOl will be linked to the old F002 and F003, since those definitions
will be extant at the time it is read and defined. Similarly, F002 will link to the new JOOl and old F003.
Only F003 will link to the new FOOl and F002. The user would have to perfonn (RELINK '(FOOl
F002 F003» following the LOAD.

12.13 COMPILER ERROR MESSAGES

Messages describing errors in the function being compiled are also printed on the teletype. These messages
are always preceded by·····. Unless otherwise indicated below. the compilation will continue.

(FN NOT ON FILE, COMPILING IN CORE DEFINITION)
From calls to BCOMPL and BRECOMP I LE.

(FN NOT COMPILEABLE)
An EX P R definition for FN could not be found. In this case, no code is produced
for FN, and the compiler proceeds to the next "function to be compiled, if any.

(FN NOT FOUND) Occurs when RECOMPILE or BRECOMPILE try to copy the compiled definition of
FN from CFILE, and cannot find it In this case, no code is copied and the compiler
proceeds to the next function to be compiled, if any.

(FN NOT ON BLKFNS)
FN was specified as an entry to a block, or else was on BLKAPPLYFNS, but did
not appear on the BLKFNS. In this case, no code is produced for the entire block
and the compiler proceeds to the next function to be compiled, if any.

(FN CAN'T BE BOTH AN ENTRY AND THE BLOCK NAME)
In this case, no code is produced for the entire block and the compiler proceeds
to the next function to be compiled, if any.

(BLKNAME - USED BLKAPPLY WHEN NOT APPLICABLE)
BLKAPPLY is used in the block BLKNAME,· but there are no BLKAPPLYFNS or
EN T R IE S declared for the block.

(VAH SHOULD BE A SPECVAR - USED FREELY BY FN)

In Interlisp-lO, while compiling a block, the compiler has already generated code
to bind VAH as a LOCALVAR, but now discovers that FN uses VAR freely. VAR

should be declared a SPECVAR and the block recompiled.

«. --) COMMENT USED FOR VALUE)
A comment appears in a context where its value is being used, e.g. (L 1ST X (.
- -) Y). The compiled function will run. but the value at the point where the
comment was used is "undefined."

12.20

THE COMPILER

((FORM) - NON-ATOMIC CAR OF FORM) .
If user intended to treat the value of FORM as a function, he should use A P PLY •
(page 5.12). FORM is compiled as if APPLY· had been used.

«SETQ VAH EXPR --) BAD SETQ)
SE TQ of more than two arguments.

(FN - USED AS ARG TO NUMBER FN?)
The value of a predicate, such as G R EA T E R P or E Q, is used as an argument to a
function that expects numbers, such as I PLUS.

(FN - NO LONGER INTERPRETED AS FUNCTIONAL ARGUMENT)
The compiler has assumed FN is the name of a function. If the user intended to
treat the value of FN as a function, he must use APPLY· (page 5.12).

This message is printed when FN is not defined, and is also a local variable of the
function being compiled. Note. that earlier versions of the Interlisp-lO compiler
did treat FN as a functional argument, and compiled code to evaluate it.

(FN - ILLEGAL RETURN)
RETURN encountered when not in PROG.

(TG - ILLEGAL GO)
GO encountered when not in a PROG.

(TG - MULTIPLY DEFINED TAG)
TG is a PROG label that is de(ined more than once in a single PROG. The second
definition is ignored.

(TG - UNDEFINED TAG)
TG is a P ROG label that is referenced but not defined in a P ROG.

(VAH - NOT A BINDABLE VARIABLE)
VAH is NIL, T, or else not a literal atom.

(VAH VAL -- BAD PROG BINDING)
Occurs when there is a prog binding of the fonn (VAH VALl··· VAL N) .

(TG - MULTIPLY DEFINED TAG, ASSEMBLE)
TG is a label that is defined more than once in an assemble fonn.

(TG - UNDEFINED TAG, ASSEMBLE)
TG is a label that is referenced but not defined in an ASS E MB L E fonn.

(TG - MULTIPLY DEFINED TAG, LAP)
TG is a label that was encountered twice during the second pass of the compilation.
If this error occurs with no indication of a multiply defined tag during pass one,
the tag is in a LAP macro.

(TG - UNDEFINED TAG, LAP)
TG is a label that is referenced during the second pass of compilation and is
not defined. LAP treats TG as though it were a COREVAL, and continues the
compilation.

12.21

Compiler Error Messages

Cop - OPCODE? - ASSEMBLE)
·op appears as CAR of an assemble statemen~ and is illegal. See page 22.12 for
legal assemble statements.

(NO BINARY CODE GENERATED OR LOADED FOR FN)
A previous error condition was sufficiently serious that binary code for FN cannot
be loaded without causing an error.

12.22

CHAPTER 13

MASTERSCOPE .

Masterscope is an interactive program for analyzing and cross referencing user programs. It contains
facilities for analyzing user functions to detennine w.hat other functions are callecL how and where
variables are bouncL set, or referencecL ~ well as which functions use particular record declarations.
Masterscope is able to analyze definitions directly from a file as well as in-core definitions.

Masterscope maintains a database of the results of the analyses it perfonns. Via a simple command
language, the user may interrogate the database, call the editor on those expressions in- functions that were
analyzed which use variables or functions in a particular way, or display the tree structure of function
calls among any set of functions.

Masterscope is interfaced with the editor and file package so that when a function is edited or a new
definition loaded in, Masterscope knows that it must re-analyze that function.

The following sample session illustrates some of these facilities.

~. ANALYZE FUNCTIONS ON RECORD

. NIL
~. WHO CALLS RECFIELDLOOK
(RECFIELDLOOK ACCESSDEF ACCESSDEF2 EDITREC)
~. EDIT WHERE ANY CALL RECFIELDLOOK
RECFIELDLOOK :
(RECFIELDLOOK (CDR Y) FIELD}
tty:
·OK
ACCESSDEF :
(RECFIELDLOOK DECLST FIELD VAR1)
·OK
(RECFIELDLOOK USERRECLST FIELD)
·N VARl
·OK
ACCESSDEF2 :
(RECFIELDLOOK (RE~ORD.SUBDECS TRAN) FIELD}
tty:
(RECfIELDLOOK (RECORD.SUBDECS TRAN) FIELD)
·N (CAR TAIL]
·OK
EDITREC :
(RECFIELDLOOK USERRECLST (CAR EDITRECX)}
·OK
NIL
~. WHO CALLS ERROR

13.1

{I}
{2}

{3}

{4}

{5}

(EDITREC)
.... SHOW >PATHS TO RECFIELDLOOK FROM ACCESSDEF [6J
(inverted tree)

t. RECFIELDLOOK RECFIELDLOOK
2. ACCESSDEF
3. ACCESSDEF2 ACCfSSOEF2
4. ACCESSOEF
5. RECORDCHAIN ACCESSDEF
NIL
.... WHO CALLS WHO IN IFNS [~
RECORDSTATEMENT -- IRPLNODE
RECORDECLl -- INCONC, IRPLACD, IRPLNODE
RECREDECLAREl -- IPUTHASH
UNCLISPTRAN -- IPUTHASH, IRPLNODE2
RECORDWORD IRPLACA
RECORD1 IRPLACA, ISETTOPVAL
EDITREC -- ISETTOPVAL

[I} The user directs that the functions on file RECORD be analyzed. The leading period and space specify
that this line is a Masterscope command.1

[2} Masterscope prints a . whenever it (re)anaiyzes a function~ to let the user know what it is happening.2

[3JThe user asks which functions call RECFIELDLOOK. Masterscope responds with the list.

[4} The user asks to edit the expressions where the function R E C FIE L 0 L 00 K is called. Masterscope calls
ED ITF on the functions it had! analyzed that call RECF I ELDLOOK, directing the editor to the appropriate
expressions. The user then edits some of those expressions.3

[5} Next the user asks which functions call ERROR. Since some of the functions in the database have
been changed, Masterscope re-analyzes the changed definitions (and prints out . 's for each function it
analyzes). Masterscope responds that EDITREC is the only analyzed function that calls ERROR.

[6}The user asks to see a map of the ways in which RECFIELDLOOK is called from ACCESSDEF. A tree
structure of the calls is displayed.

IThe user may also call"Masterscope directly by typing (MASTERSCOPE). Masterscope prints a greeting
and pro~pts with "... ". Within the top-level executive of Masterscope, the user may issue Masterscope
commands, programmer's assistant commands, (e.g., REDO, F IX), or run programs. The user can exit
from the Masterscope executive by typing OK. The function . is defined as a nlambda nospread function
which interprets its argument as a Masterscope command, executes the command and returns.

2The feedback when Masterscope analyzes a function is controlled by the flag MSPRINTFLG: if
MSPRINTFLG is the atom". ", Masterscope will print out a period. (If an error in the function is
detected, "1" is printed instead.) If MSPR I NT F LG is a number N, Masterscope will print the name of the
function it is analyzing every Nth function. If MSPRINTFLG is NIL, Masterscope won't print anything.
Initial setting is " .". Note that the function name is printed when Masterscope starts analyzing, and the
comma is printed when it finishes.

3In this example. the teletype editor is used. In Interlisp-D. if Dedit is enabled as the primary editor. it
would be called to edit the appropriate functions (see page 20.1).

13.2

MASTERSCOPE

[7iThe user then asks to see which functions call which functions in the list IFNS. Masterscope responds
with a structured printout of these relations.

Below is a summary of the Masterscope commands, similar to what would be printed out by the HELP
command (page 13.7). Optional elements are shown in brackets []; alternatives are shown in braces {}
separated with vertical bars I or are listed on separate lines; words in angle brackets < > are "meta-objects";
other lower-case words are "noise words" and may be omitted.

---~--
a <command> is:

[RE]ANALYZE <functions>
ERASE <functions>
show PATHS <pathoptions>
<set) {<relation> I IS I ARE} <set>
EDIT where <functions> [<relation> <set)] [- <edit commands>]
SHOW where <functions> <relation> <set>
CHECK <files>
FOR <variable> <set> <iterative statement tail>

-------~---~---------
a <set> is (at least one of):
a determiner + a type + a specification

THE
ANY
WHICH
WHO'

FUNCTIONS
VARIABLES
PROPERTY NAMES
RECORDS
FIELDS
FILES
I.S.OPRS

FIELDS OF <records>

[']{atom I list}
(j <predicate>
IN <expression>
<relation>ING <set>
<relation>ED {BY I IN} <set>
THAT ·<relation> <set>
LIKE <edit-pattern>
ON <files>
ON PATH <pathoptions>

<blockword> {ON <files> I OF <functions>}
<functions>, <files>, etc. are <set>s whose type is implied.

a <relation> is a
ve rbs:

CALL

USE
USE
USE
SET

verb and optional modifier:
modifiers (anywhere after the verb):
{SOMEHOW I FOR EFFECT I FOR VALUE I

DIRECTLY I INDIRECTLY}
AS a {RECORD I PROPERTY I record FIELD} name
AS a CLISP word
{FREELY I LOCALLY}
{FREELY I LOCALLY}
{FREELY I LOCALLY}
{FREELY I LOCALLY}
{FREELY I LOCALLY}
AS a {LOCALVAR I SPECVAR}

SMASH
TEST
REFERENCE
DECLARE
BIND
FETCH
REPLACE *--

13.3

Command Language

CREATE
CONTAIN

I <blockword>: ENTRIES, GLOBALVARS, FREEVARS,
SPECVARS, LOCALFREEVARS, BLKFNS or BLOCKFNS

<pathoptions>:

FROM <functions>
TO <functions)
AVOIDING <functions>
NOTRACE <functions>
SEPARATE <functions>
LINE LENGTH <number>

abbreviations & synonyms:

FNS = FUNCTIONS PROPS = PROPERTIES
VARS = VARIABLES
(& singular FN, VARIABLE, etc)
FREE = FREELY LOCAL = LOCALLY
AMONG = AVOIDING NOT

<sets> may be joined by AND or OR or preceded by NOT.
Any command can be followed by OUTPUT <filename>.

---~~---------

13.1 COMMAND LANGUAGE

The user communicates with Masterscope using an English-like command language, e.g., WHO CALLS
PRINT. With these commands, the user can direct that functions be analyzed, interrogate Masterscope's
database, and perform other operations. The commands deal with sets of functions, variables, etc., and
relations between them (e.g., call, bind). Sets correspond to English nouns, relations to verbs.

A set of atoms can be specified in a variety of ways, either explicitly, e.g., FUNCT IONS ON FIE specifies
the atoms in (FILEFNSLST 'FIE), or implicitly, e.g., NOT CALLING Y, where the meaning must be
determined in the context of the rest of the command. Such sets of atoms are the basic building blocks
which the command language deals with.

Masterscope also deals with relations between sets. For example, the relation CALL relates functions and
other functions; the relations BIND and USE FREELY relate functions and variables. These relations
are what get stored in the Masterscope database when functions are analyzed. In addition. Masterscope
"knows" about file package conventions; CONT A I N relates files and various types of objects (functions,
variables).

Sets and relations are used (along with a few additional words) to form sentence-like commands. For
example, the command WHO ON 'FOO USE 'X FREELY will print out the list of functions contained
in the file FOO which use the variable X freely. The command EDIT WHERE ANY CALLS 'ERROR will
call EDITF on those functions which have previously been analyzed that directly call ERROR, pointing at
each successive expression where the call to ERROR actually occurs.

13.1.1 Commands

The normal mode of communication with Masterscope is via "commands". These are sentences in
the Masterscope command language which direct Masterscope to answer questions or perform various
operations. The syntax of Masterscope commands is described below:

13.4

ANALYZE SET

REANALYZE SET

ERASE SET

MASTERSCOPE

[Masterscope Command]
Analyze the functions in SET (and any functions called by them) and include the
information gathered in the database. Masterscope will not re-analyzing a function
if it thinks it already has valid information "about that function in its database. The
user may use the command REANALYZE (below) to force re-analysis.

Note" that whenever a function is referred to in a command as a "subject" of one
of the relations, it is automatically analyzed; the user need not give an explicit
ANALYZE command. Thus,. WHO IN MYFNS CALLS FIE will automatically
analyze the functions in MY F N S if they have not already been analyzed. .

Note also that only EXPR definitions will be analyzed; that is, Masterscope will
not analyze compiled code. If there is no in-core definition for a function (either
in the definition cell or an EXPR property), Masterscope will attempt to read in
the definition from a file.4 If necessary, the definition" will be OW I M IF Yed before
analysis.

[Masterscope Command]
Causes Masterscope to reanalyze the functions in SET (and any functions called
by them) even if it thinks it already has valid information in its database. For
example, this would be necessary if the user had disabled or subverted the file
package, e.g. performed PUTD's to change the definition of functions.

[Masterscope Command]
Erase all information about the functions in SET from the database. ERAS E by
itself clears the entire database.

SHOW PATHS PATHOPTIONS [Masterscope Command]

SET RELATION SET
SET IS SET

SET ARE SET

Displays a tree of function calls. PATHOPTIONS are described on page 13.14.

[Masterscope Command]
[Masterscope Command]
[Masterscope Command]

This command has the same format as an English sentence with a subject (the first
SET), a verb (the RELATION or I S or ARE), and an object (the second SET). Any
of the SETS within the command may be preceded by the question determiners
WHICH or WHO (or just WHO alone). For example, WHICH FUNCTIONS CALL X
prints the list of functions that call the function X. RELATION may be one of the
relation wot:ds in present tense (CALL, B I NO. TEST, SMASH, etc.) or used as a
passive (e.g., WHO" IS CALLED BY WHO). Other variants are allowed, e.g. WHO
DOES X CALL, IS FOO CALLED BY FIE,e~.

The interpretation of the command depends on the number of question elements
present:

4 Files which have been explicitly mentioned previously in some command are searched first. If the
definition cannot be found on any of those files. Masterscope looks among the files on FILE LST for a
definition. If a function is found in this manner. Masterscope will print a message "(read i ng from
FILENAME)". If no definition can be found at all, Masterscope will print a message "FN can't be
ana 1 yzed". If the function previously was known, the message "FN disappeared!" is printed.

13.5

Commands

(1) If there is no question elemen~ the command is treated as an assertion and
Masterscope returns either T or NIL. depending on whether that assertion is true.
Thus, ANY IN MYFNS CALL HELP will print T if any function in MYFNS call the
. function· HE L p. and NIL otherwise.

(2) If there is one question elemen~ Masterscope returns the list of items for which
the assertion would be true. For example MYFN BINDS WHO USED FREELY BY
YOURFN prints the list of variables bound by MYFN which are also used freely by
YOURFN.

(3) If there are two question elements, Masterscope will print a doubly indexed
list:

~. WHO CALLS WHO IN
RECORDSTATEMENT -
RECORDECLl -
RECREDECLAREl -
UNCLISPTRAN -
RECORDWORD
RECORDl
EDITREC --

IFNScr
IRPLNODE
INCONC, IRPLACD, IRPLNODE
IPUTHASH
IPUTHASH, IRPLNODE2
IRPLACA
IRPLACA, ISETTOPVAL
ISETTOPVAL

EDIT WHERE SET RELATION SET {- EDITCOMSj [Masterscope Command]
(WHE RE may be omitted.) The first SET refers to a set of functions. The
EDIT command calls the editor on each expression where the RELATION actually
occurs. For example, EDIT WHERE ANY CALL ERROR will call EDITF on each
(analyzed) function which calls E R RO R stopping within a TTY: at each call to
ERROR. Currently one cannot EDIT WHERE a file which CONTAINS a datum. nor
where one function CALLS another SOMEHOW.

EDITCOMS, if given, are a list of commands passed· to ED IT F to be perfonned at
each expression. For example, EDIT WHERE ANY CALLS MYFN DIRECTLY -
(SW 2 3) P will switch the first and second arguments to MY F N in every call
to MYFN and print the result. EDIT WHERE ANY ON MYFILE CALL ANY NOT
@ GETD will call the editor on any expression involving a call to an undefined
function. Note that ED I T W HER E X SET S Y will point only at those expressions
where Y is actually set, and will skip over places where Y is otherwise mentioned.

SHOW WHERE SET RELATION SET [Masterscope Command]
Like 'the ED I T command except merely prints out the expressions without calling
the editor.

ED I T SET {- EDITCOMSj [Masterscope Command]

DESCRIBE SET

Calls ED IT F on each function in SET. EDITCOMS, if given, will be passed as a list
of editor commands to be executed. For example EDIT ANY CALLING FNl -
(R FNl FN2) will replace FNI by FN2 in those functions that call FNl.

[Masterscope Command]
PrintS out the BIND, USE FREELY and CALL infonnation about the functions in
SET. For example, the command DESCRIBE PRINTARGS might print out:

PRINTARGS[N,FLG]

13.6

CHECK SET

binds:
calls:
called by:

MASTERSCOPE

TEMtLST,X
MSRECORDFILE,SPACES,PRINl
PRINTSENTENCE,MSHELP,CHECKER

This shows that PRINTARGS has two arguments, N and FLG, binds internally the
variables TEM, LST and X, calls MSRECORDFILE, SPACES and PRINl and is called
by PRINTSENTENCE, MSHELP, and CHECKER.

The user can specify additional infonnation to be included in the description.
DESCRIBELST is a list each of whose elements is a list containing a descriptive
string and a fonn. The fonn is evaluated (it can refer to the name of the
funtion being described by the free variable FN); if it returns a non-N I L value, the
description string is printed followed by the value. If the value is a list. its elements
are printed with commas between them. For example. the entry, {" types: "
{GETRELATION FN t (USE TYPE) T) would include a listing of the types used
by each function.

[Masterscope Command]
Checks for various anomolous conditions(mainly in the compiler declarations) for
the files in SET (if SET is not given, F I LELST is used). For example, this command
will warn about variables which are bound but never referenced, functions in
BLOCKS delarations ·which aren't on the file containing the declaration, functions
declared as EN T R I E S but not in the block, variables which may not need to be
declared SPECVARS because they are not used freely below the places where they
are bound, etc.

FOR VARIABLE SET 1.S.TAIL [Masterscope Command]

HELP

This command provides a' way of combining C LIS P iterative statements with
Masterscope. An iterative statement will be constructed in which VARIABLE is
iteratively assigned to each element of SET, and then the iterative statement tail
1.S. TAIL is executed. For example,

FOR X CALLED BY FOO WHEN CCODEP DO {PRINTOUT T X ttt (ARGLIST
X) T)

will print out the name and argument list of all of the compiled functions which
are called by FOO.

[Masterscope Command]
Prints out a summary of Masterscope commands as shown on page 13.3. Optional
elements are shown in brackets []; alternatives are shown in braces {} separated
with venical bars I or are listed on separate lines; words in angle brackets < > are
"meta-objects"; other lower-case words are "noise words" and may be omitted.

Note: any command may be followed by OUT PUT FILENAME to send output to the given file rather than
the tenninal, e.g. WHO CALLS WHO OUTPUT CROSSREF.

13.1.2 Relations

A relation is specified by one of the keywords below. Some of rpese "verbs" accept modifiers. For

13.7

Relations

example~ USE. SET, SMASH and REFERENCE all may be modified by FREELY. The modifier may occur
anywhere within the command.s Verbs can occur in the present tense (e.g., USE, CALLS, BINDS, USES)
or as present or past participles! (e.g., CALLING, BOUND, TESTED). The relations (with their modifiers)
recognized by Masterscope are:

CALL

CALL SOMEHOW

USE

SET

SMASH

TEST

REFERENCE

[Masterscope Relation]
Function: F 1 calls F 2 if the definition of F 1 contains a form (F 2 - -'), (A P PLY
(QUOTE' F2) --), (FUNCTION F2), etc.

[Masterscope Relation]
One function calls another SOM E HOW if there is some path from the first to the
other. That is, if Fl calls F2, and F2 calls F3, then Fl CALLS F3 SOMEHOW.

This information is not stored directly in the database; instea~ Masterscope stores
only information about direct function calls, and (re)tomputes the CALL SOMEHOW
relation as necessary.

[Masterscope Relation]
If unmodifie~ the relation US E denotes variable usage in any way; it is the union
of the relations SET, SMASH~ TEST, and REFERENCE.

[Masterscope Relation]
A function SETs a variable if the function contains a form (SETQ var --),
(SETQQ var --),e~.

[Masterscope Relation]
A function SMASHes a variable if the function calls a destructive list operation
(RPLACA., RPLACO, DREMOVE, SORT, etc.) on the value of that variable.
Masterscope will also find instances where the operation is perfonned on a "part"
of the value of the variable; for example, if a function contains a fonn (RPLACA
(NTH X3) T) it will be noted as SMASH I NG X.

Note that if the function contains a sequence (SETQ Y XL (RPLACA Y T) then
Y is noted as being smashed, but not X.

[Masterscope Relation]
A variable is TESTed by a function if its value is only distinguished between NIL

,and non-N I L. For example, the fonn (COND « AND X --) --» tests the value
of X.

[Masterscope Relation]
This relation includes all variable usage except for SET.

The verbs USE, SET, SMASH, tEST and REFERENCE may be modified by the words FREELY or
LOCALLY. A variable is used FREELY if it is not bound in the function at the place of its use; alternatively,
it is used LOCALLY if the use occurs within a PROG or LAMBDA that binds the variable.

SIf there is more than one verb, any modifier between two verbs is assumed to modify the first one. For
example, in USING ANY FREELY OR SETTING X, the FREELY modifies USING but not SETTING
the entire phrase is interpreted ~ the set of all functions which either use any variable freely or set the
variable X, whether or not X is set freely. .

13.8

MASTERSCOPE

Masterscope also distinguishes between CALL DIRECTLY and CALL INDIRECTLY. A function is called
DIRECTLY if it occurs as CAR-of-form in a nonnal evaluation"context A function is called INDIRECTLY
if its name appears in a context which does not imply its immediate evaluation, for example {SE TQ Y
{LIST (FUNCTION FOO) 3)).6 In addition, CALL FOR EFFECT (where the value of the function is
riot used) is distinguished from CALL FOR VALUE.

BIND [Masterscope Relation]
The B I NO relation between functions and variables includes both variables bound·
as function arguments and those bound in an internal PROG or LAMBDA expression.

USE AS A FIELD [Masterscope Relation]
Masterscope notes all uses of record field names within FETCH, REPLACE or
CREATE expressions.

FETCH [Masterscope Relation]
Use of a field within a FETCH expression.

REPLACE [Masterscope Relation]
Use of a record field name within a REPLACE or CREATE expression.

USE AS A RECORD [Masterscope Relation]
Masterscope notes all uses of record names wi~in CREATE or TYPE? expressions.7

CREATE [Masterscope Relation]
Use of a record name within a CREATE expression.

USE AS A PROPERTY NAME [Masterscope Relation]
Masterscope notes the property names used in GETPROP, PUTPROP, GETLIS, etc.
expressions if the name is quoted. E.g. if a function contains a fonn {GETPROP
X (QUOTE INTERP», then that function USEs INTERP as a property name.

USE AS A CLISP WORD [Masterscope Relation]

CONTAIN

Masterscope notes all iterative statement operators and user defined CLISP words
as being used as a CLISP word.

[Masterscope Relation]
Files contain functions, records, and variables. This relation is not stored in the
.database but is computed using the file package.

DECLARE AS LOCALVAR [Masterscope Relation]
DECLARE AS SPECVAR [Masterscope Relation]

Masterscope notes internal "calls" to DEC LA R E from within functions.

The following abbreviations are recognized: FREE=FREELY, LOCAL=LOCALLY, PROP=PROPERTY.
REF = REFERENCE. Also, the words A, AN and NAME (after AS) are "noise" words and may be omitted.

6The distinction is whether or not the compiled code of the caller would contain a direct call to the callee.
Note that an occurrence of (FUNCT ION FOO) as the functional argument to one of the built-in mapping
functions which compile open is considered to be a direct call.

7 Additionally, in X: FOO. FIE, FOO is used as a record name.

13.9

Sets

Note: Masterscope· uses "templates" (page 13.16) to decide which relations hold between functions and
their arguments. For example, the· infonnation that SORT SMASHes its first argument is contained in the
template for SORT. Masterscope; initially contains templates for most system functions which set variables,
test their arguments, or perfonn destructive operations. The user may change existing templates or insert
new ones in Masterscope's tables via the SETTEMPLATE function (page 13.19).

13el.3 Sets

A "set" is a collection of things (functions, variables, etc.). A set is specified by a set phrase, consisting
of a determiner (e.g., ANY, WHICH, WHO) followed by a type (e.g., FUNCTIONS, VARIABLES) followed
by a specification (e.g., IN MYFNS, @ SUBRP). The detenniner, type and specification may be used
alone or in combination. For example, ANY FUNCTIONS IN MYFNS, ANY @ SUBRP, VARIABLES IN
GLOBALVARS, and WHO are all acceptable set phrases. Set specifications, types and detenniners are
explained below:

13.1.3.1 Set Specifications

'ATOM

'LIST

IN EXPRESSION

@ PREDICATE

LIKE ATOM

[Masterscope Set Specification]
The simplest way to specify a set consisting of a single thing is by the name of
that thing. For example, in the command WHO CALLS 'ERROR, the function
ERROR is: referred to by its name. Although the ' can be left out, to resolve
possible ambiguities names should usually be quoted; e.g., WHO CALLS 'CALLS
will return the list of functions which call the function CALLS.

[Masterscope Set Specification]
Sets consisting of several atoms may be specified by naming the atoms. For
example, the command WHO USES '(A B) returns the list of functions that use
the variables A or B.

[Masterscope Set Specification]
The fonn EXPRESSION is evaluated, and its value is treated as a list of the elements
of a set For example, I N GLOBAL VARS specifies the list of variables in the value
of the variable GLOBALVARS.

[Masterscope Set Specification]
A set may also be specified by giving a predicate which the elements of that
set must satisfy. PREDICATE is either a function name, a LAMBDA, expression,
or an expression in terms of the variable X. The specification @ PREDICATE

represents all atom for which the value of PREDICATE is non-N I L. For example,
@ EXPRP. specifies all those atoms which have EXPR defintions; @ (ST RPOSL
X CLISPCHARRAY) specifies those atoms which contain CLISP characters. The
universe to be searched is either determined by the context within the command
(e.g.. in WHO IN FOOFNS CALLS ANY NOT @ GETD, the predicate is only
applied to functions which are called by any functions in the list FOOFNS), or
in the extreme case, the universe defaults to the entire set of things which have
been noticed by Masterscope, as in the command WHO IS @ EXPRP.

[Masterscope Set Specification]
ATOM may contain ESCs; it is used as a pattern to be matched (as in the editor).

13.10

MASTERSCOPE

For example, WHO LIKE IRS IS CALLED BY ANY would find both IRPLACA
and IRPLNODE.

A set may also be specified by giving a relation its members must have with the members of another set:

RELATIONING SET [Masterscope Set Specification]
RELATION I NG is used here· generically to mean any of the relation words in
the present participle fonn (possibly with a modifier), e.g., USING, SETTING,
CALLING, BINDING. RELATIONING SET specifies the set ofal! objects which have
that relation with some element of SET. For example, CALLING X specifies the
set of functions which call the function X; USING ANY IN FOOVARS FREELY
specifies the set of functions which uses freely any variable in the value of FOOVARS.

RELATIONED BY SET [Masterscope Set Specification]
RELATIONED IN SET [Masterscope Set SpeCification]

This is similar to the RELATIONING construction. For example, CALLED BY ANY
IN F 00 F N S represents the. set of functions which are called by any element' of
FOOFNS; USED FREELY BY ANY CALLING ERROR is the set of variables which
are used freely by any function which also calls the function' E R RO R.

BLOCKTYPE OF FUNCTIONS [Masterscope Set Specification]
BLOCKTYPE ON FILES [Masterscope Set Specification]

FIELDS OF SET

KNOWN

THOSE

These phrases allow the user to ask about BLOCKS declarations on files (see page
12.14). BLOCKTYPE is one of LOCALVARS, SPECVARS, GLOBALVARS, ENTRIES,
BLKFNS, BLKAPPLYFNS, or RETFNS.

BLOCKTYPE OF FUNCTIONS specifies the names which are declared to be BLOCKTYPE

in any blocks declaration which contain any of FUNCTIONS (a "set" of func
tions). The "functions" in FUNCTIONS can either be block names or just functions
in a block. For example, WHICH ENTRIES OF ANY CALLING 'Y BIND ANY
GLOBALVARS ON 'FOO.

BLOCKTYPE ON FILES specifies all names which are declared to be BLOCKTYPE
on any of the given FILES (a "set" of files).

[Masterscope Set Specification]
SET is a set of records. This denotes the field names of those records. For
example, the command WHO USES ANY FIELDS OF BRECORD returns the list
of all functions which do a fetch or rep 1 ace with any of the field names
declared in the record declaration of BRECORD.

[Masterscope Set Specification]
The set of all functions which have been analyzed. For example, the command
WHO I S KNOWN will print out the list of functions which have been analyzed.

[Mast~rscope Set Specification]
The set of things printed out by the last Masterscope question. For example,
following the command WHO IS USED FREELY BY PARSE, the user could ask
WHO BINDS THOSE to find out where those variables are bound.

ON PATH PATHOPTIONS [Masterscope Set Specification]
Refers to the set of functions which would be printed by the command SHOW PATHS

13.11

Set Determiners

PATHOPTIONS. For example. IS FOO BOUND BY ANY ON PATH TO • PARSE
tests if FOO might be bound "above" the function PAR S E. J'ATHOPTIONS are
explained in detail on page 13.14.

Note: sets may also be specified with "relative clauses" introduced by the word THAT, e.g. THE
FUNCTIONS THAT BIND 'X.

'13.1.3.2 Set Determiners

Set phrases may be preceded bya determiner. A detenniner is one of the words THE, ANY, WHO or WHICH.
The '£question" detenniners (WHO and WHICH) are only meaningful in some of the commands, namely
those that take the fonn of questions. ANY and WHO (or WHOM) can be used alone; they are "wild-card"
elements, e.g., the command WHO USES ANY FREELY. will pri~~ out the names of all (known) functions
which use any variable freely. If the detenniner is omitted, ANY is assumed; e.g. the command WHO
CALLS' (PRINT -PRINl PRIN2) will print the list of functions which call any of PRINT, PRIN1,
PRIN2. THE isaiso allowed, e.g. WH'O USES THE RECORD FIELD FIELDX.

13.1.3.3 Set Types

Any set phrase has a type; that is, a set may specify either functions, variables, files, record names, record
field names or property names. The type may be detennined by the context within the command (e.g.,'
in CALLED BY ANY ON FOO. the set ANY ON FOO is interpreted as meaning the jUnctions on FOO
since only functions can be CALLED), or the type may be given explicitly by the user (e.g., FUNCT IONS
ON FIE). The following types are recognized: FUNCTIONS, VARIABLES, FILES, PROPERTY NAMES,
RECORDS, FIELDS, I. S. OPRS.8

The type is used by Masterscope in a variety of ways when interpreting the set phrase:

(1) Set types are used to disambiguate possible parsings. For example. both commands WHO SETS ANY
BOUND IN X OR USED BY Y and WHO SETS ANY BOUND IN X OR CALLED BY Y have the same
general fonn. However. the first case is parsed as WHO SETS ANY (BOUND BY X OR USED BY Y)
since both BOUND BY X and USED BY Y refer to variables; while the second case as WHO SETS ANY
BOUND IN (X OR CALLED BY Y). since CALLED BY Y and X must refer to functions. Note that
parentheses may be 'used to group phrases.

(2) The type is used to detennine the modifier for USE: FOO USES WHICH REtaRDS is equivalent to
FOO USES WHO AS A RECORD FIELD.

(3) The interpretation of CONTAIN depends on the type of its object: the command WHAT FUNCTIONS
ARE CONTAINED IN MYFILE prints the list of functions in MYFIlE; WHAT RECORDS ARE ON
MY F I l E prints the list of records.

/ (4) The implicit "universe" in which a set expression is interpreted aepends on the type: ANY VARIABLES
@ GETD is interpreted as the set of all variables which have been noticed by Masterscope (Le .• bound or

Sor abbreviations FNS. VARS. PROPNAMES or the singular forms FUNCTION, FN. VARIABLE, VAR, FILE,
PROPNAME, RECORD~ FIELD. Note that most of these types correspond to built-in "file package types"
(see page 11.14).

13.12

MASTERSCOPE

used in any function which has been analyzed) that also have a definition. ANY FUNCTIONS @ (NEQ
(GET"TOPVAL X) 'NOBIND) is interpreted as the set of all functions which have been noticed (either .
analyzed or called by a function which has been analyzed) that also -have a top-level value .

.
13.1.4 Conjunctions

Sets may be joined by the conjunctions AND and OR or preceded by NOT to form new sets. AND is always
interpreted as meaning "intersection'9; OR as "union", while NOT means "complement". For example,
the set CALLING X AND NOT CALLED BY Y specifies the set of all functions which call the function
X but are not called by Y.

Masterscope's interpretation of AND and OR follow LISP conventions rather than the conventional English
interpretation. For example "calling X and Y" would, in Engli~~, be interpreted as the intersection of
(CALLING X) and (CALLING Y); but Masterscope interprets CALLING X AND Y as CALLING (' X
AND 'Y); which is the null set. Only sets may be joined with conjunctions: joining modifiers, as in
USING X AS A RECORD FIELD OR PROPERTY NAME, is not allowed; in this case, the user must say
USING X AS A RECORD FIELD OR USING X AS A PROPERTY NAME.

As described above, the type of sets is used to disambiguate parsings. The algorithm used is to first try to
match the type of the phrases being joined and then try to join with the longest preceding phrase. In any
case, the user may group phrases with parentheses to specify the manner in which conjunctions should
be parsed.

13.2 PATHS

In trying to work with large programs, the user can lose track of the hierarchy of functions. The
Masterscope SHOW PATHS command aids the user by providing a map showing the calling structure of
a set of functions. SHOW PATHS prints out a tree structure showing which functions call which other
functions. For example, the command SHOW PATHS FROM MSPARSE will print out the structure of
Masterscope's parser:

1.MSPARSE
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

MSINIT MSMARKINVALID
I MSINITH MSINITH
MSINTERPRET MSRECORDFILE
I MSPRINTWORDS
I PARSECOMMAND GETNEXTWORD CHECKADV
I I PAR S ERE LA T ION {a}
I I PARSESET {b}
I I PARSEOPTIONS {c}
I I MERGECONJ GETNEXTWORD {5}
I GETNEXTWORD {5}
I FIXUPTYPES SUBJTYPE
I I OBJTYPE
I FIXUPCONJUNCTIONS MERGECONJ {9}
I MATCHSCORE
MSPRINTSENTENCE

---.----------- overflow - a

13.13

Path Options

16.PARSERELATION GETNEXTWORD {5}
17. CHECK~DV

-- overflow - b
19.PARSESET PARSESET

, 20. GETNEXTWORD! {5}
21. PARSERELATION {6}
22. SUBPARSE GETNEXTWORD {5}
-- overflow - c
23.PARSEOPTIONS GETNEXTWORD {5}
24. PARSESET {19}

The above printout displays that the function MSPARSE calls MSIN IT, MSINTERPRET. and MSPRINTSENTENCE.
MSINTERPRET in tum calls MSRECORDF ILE, MSPRINTWOR'DS, PARSECOMMAND, GETNEXTWORD, F IXUPTYPES.
and F I XUPCONJ UNCT IONS. The numbers in braces {} after a function name are backward references:·
they indicate that the tree for t,flat function was expanded on a previous line. The lowercase letters in
braces are forward references: they indicate that the tree for that function will be expanded below. since
there is no more room on the line. The vertical bar is used to keep the output aligned.

Note: In Interlisp-D, the Browser Lispusers package modifies the SHOW PATHS command so the
command's output is displayed as an undirected graph (see page 18.9). .

13.2.1 Path Options

The SHOW. PATHS command takes the fonn: SHOW PATHS followed by some combination of the
following path options:

FROM SET

TO SET

[Masterscope Path Option]
Display the function calls from the elements of SET.

[Masterscope Path Option]
Display the function calls leading to elements of SET. If TO is given before FROM
(or no FROM is given), the tree is "inverted" and a message, (inverted tree)
is printed to warn the user that if F N 1 appears after F N 2 it is because F N 1 is called
by FN2.

When both F ROM and TO are given, the first one indicates a set of functions which are to be displayed
while the second restricts the paths that will be traced: i.e., the command SHOW PATHS F ROM X TO Y
will trace the elements of the set CALLED SOMEHOW BY X AND CALLING Y SOMEHOW.

If TO is not given, TO KNOWN OR NOT @ GETD is assumed; that is, only functions which have been
analyzed or which are undefined will be included. Note that Masterscope will analyze a function while
printing out the tree if that function has not previously been seen and it currently has an EX P R definition;
thus, any function which can be analyzed will be displayed.

AVOIDING SET [Masterscope Path Option]
Do not display any function in SET. AMONG is recognized as a synonym
for AVOIDING NOT. For example. SHOW PATHS TO ERROR AVOIDING ON
FILE2 will not display (or trace) any function on FILE2.

13.14

NOTRACE SET

SEPARATE SET

LINELENGTH N

MASTERSCOPE

[Masterscope Path Option]
Do not trace from any element of SET. NOTRACE differs from AVOIDING in that
a function which is marked NOT RAe E will "be printed, but the tree beyond it will
not be expanded; the functions in an AVO I DING set will not be printed at all.
For example, SHOW PATHS FROM ANY ON FILE1 NOTRACE ON FILE2 will
display the tree of calls eminating from FIlE 1, but will not expand any function
on FILE2.

[Masterscope Path Option]
Give each element of SET a separate tree. Note that FROM and TO only insure that
the designated functions will be displayed. S EPA RA T E can be used to guarantee
that certain functions will begin new tree structures. SEPARATE functions are
displayed in the same manner as overflow lines; Le., when one of the functions
indicated by S EPA RA T E is found, it is printed followed by a forward reference (a
lower-case letter in braces) and the tree" for that function is then expanded below.

[Masterscope Path Option]
Resets LINELENGTH to N before displaying the tree. The linelength is used to
determine when a part of the tree should "overflow" and be expanded lower.

13.3 ERROR l\1ESSAGES

When the user gives Masterscope a command, the command is first parsed, Le. translated to an internal
representation, and then the internal representation is interpreted. If a command cannot be parsed, e.g.
if the user typed SHOW WHERE CALLED BY X, the message "Sorry, I can't parse that 1" is
printed and an error is generated. If the command is of the correct fonn but cannot be interpreted (e.g.,
the command EDIT WHERE ANY CONTAINS ANY) Masterscope will print the message "Sorry, that
isn't implemented I" and generate an error. If the command requires that some functions having
been analyzed (e.g., the command WHO CALLS X) and the database is empty, Masterscope will print the
message "Sorry, no functions have been analyzed!" and generate an error.

13.4 MACRO EXPANSION

As part of analysis, Masterscope will expand the macro definition of called functions, if they are
not otherwise defined (see page 5.17). Masterscope macro expansion is controlled by the variable
MSMACROPROPS:

MSMACROPROPS [Variable]
Value is an ordered list of macro-property names that Masterscope will search to
find a macro definition. Only the kinds of macros that appear on MSMACROPROPS
will be expanded. All others will be treated as function calls and left unexpanded.

Initially (MAC RO) .

Note: MSMACROPROPS initially contains only MACRO (and not 10MACRO, DMACRO,

13.15

Affecting Masterscope Analysis

etc.} in the theory that the machine-dependent macro definitions are more likely
"optimizers" .

Note that if you edit a macro, Masterscope will know to reanalyze the functions which call that macro.
However~ if your macro is of the "computed-macro" style, and it calls functions which you edit,
Masterscope will not notice .. You must be careful to tell masterscope to REANALYZE the appropriate
functions (e.g., if you edit FOOEXPANDER which is used to expand FOO macros, you have to. REANALYZE
ANY CALL I NG FOO.

13.5 AFFECTING MASTERSCOPE ANALYSIS

Masterscope analyzes the EX P R definitions of functions and notes in its database the relations that function
has with other functions and wi~ variables. To perform this analysis. Masterscope uses templates which
describe the behavior of functions. For example, the infonnation that SORT SMASHes its first argument
is contained in the template for SORT. Masterscope initially contains templates for most system functions
which set variables, test their arguments. or perform destructive operations.

A template is a list structure containing any of the following atoms:

PPE

NIL

SET

SMASH

TEST

PROP

FUNCTION

[in Masterscope template]
If an expression appears in this location, there is most likely a parenthesis error.

Masterscope notes this as a "call" to the function "ppe" (lowercase). Therefore,
SHOW WHERE ANY CALLS ppe will print out all possible parenthesis errors.
When Masterscope finds a possib Ie parenthesis error in the course of analyzing a
function definition. rather than printing the usual" . 99, it prints out a "1" instead.

[in Masterscope template]
The expression occuring at this location is not evaluated.

[in Masterscope template]
A variable appearing at this place is set.

[in Masterscope template]
The value of this expression is smashed.

[in Masterscope template]
This expression is used as a predicate (that is, the only use of the value of the
expression is whether it is NIL or non-N I L).

[in Masterscope template]
The value of this expression is used as a propeny name. If the expression is
of the form (QUOTE ATOM). Masterscope will note that ATOM is USED AS A
PROPERTY NAME. For example, the template for GETPROP is (EVAL PROP .
PPE).

[in Masterscope template]
The expression at this point is used as a functional argument For example, the
template for MAPC is (SMASH FUNCTION FUNCTION . PPE).

13.16

FUNCTIONAL

EVAl

RETURN

TESTRETURN

EFFECT

FETCH

REPLACE

RECORD

CREATE

BIND

CALL

CLISP

MASTERSCOPE

[in Masterscope template]
The expression at this point is used as a functional argument· This is like
FUNCT ION, except that Masterscope distinguishes between functional arguments to
functions which "compile open" from those that do not For the latter (e.g. SORT
and APPLY), FUNCT IONAl should be used rather than FUNCT ION.

[in Masterscope template]
The expression at this location is evaluated (but not set, smashed, tested, used as a
functional argument, etc.).

[in Masterscope template]
The value of the function (of which this is the template) is the value of this
expression.

[in Masterscope template]
A combination of TEST and RETURN: If the value of the function is non-N I L,
then it is returned. For instance, a one-element COND clause is this way.

[in Masterscope template]
The expression at this location is evaluated, but the value is not used.

[in Masterscope template]
An atom at this location is a field which is fetched.

[in Masterscope template]
An atom at this location is a field which is replaced.

[in Masterscope template]
An atom at this location is used as a record name.

[in Masterscope template]
An atom at this location is a record which is created.

[in Masterscope template]
An atom at this location is a variable which is bound.

[in Masterscope template]
An atom at this location is a function which is called.

[in Masterscope template]
An atom at this location is used as a CLISP word.

[in Masterscope template]
This atom, which can only occur as the first element of a template, allows one to
specify a template for the CAR of the function form. If! doesn't appear, the CAR
of the fonn is treated as if it had a CALL specified for it. In other words, the
templates (.. EVAL) and (! CALL .. EVAL) are equivalent.

If the next atom after a! is NIL, this specifies that the function name should
not be remembered. For example, the template for AND is (! NIL .. TEST
RE TURN), which means that if you see an "AND", don't remember it as being
called. This keeps the Masterscope database from being cluttered by too many
uninteresting relations; Masterscope also throws away relations for COND, CAR,

13.17

Affecting Masterscope Analysis

CO R, and a couple of others.

In· addition to the above atoms which Occur in templates, there are some "special forms" which are lists
keyed by their CAR.

TEMPLATE [in M~terscope template]
Any part of a template may be preceded by the atom o. (two periods) which
specifies that the template should be repeated an indefinite number (N~ 0) of times
to fill out the expression. For example, the template for COND might be { ..
(TEST .. EFFECT RETURN» while the template for SELECTQ is {EVAL .•
(NIL .. EFFECT RETURN) RETURN).

(BOTH TEMPLATEl TEMPLATE2) [in Masterscope template]
Analyze the current expression twice, using the each of the templates in tum.

(I F EXPRESSION TEMPLATE1 TEMPLATE2) [in Masterscope template]
Evaluate EXPRESSION at analysis time (the variable EXPR will be bound to the
expression which corresponds to the I F), and if the result is non-N I L, use
TEMPLATE1, otherwise TEMPLATE2• If EXPRESSION is a literal atom, it is APPL V'd
to EXPR. For example, {IF LISTP (RECORD FETCH) FETCH) specifies that if
the current expression is a list, then the first element is a record name and the
second element a field name, otherwise it is a field name.

(@ EXPRFORM TEMPLATEFORM) [in Masterscope template]
Evaluate EXPRFORM giving EXPR, evaluate TEMPLATEFORM giving TEMPLATE.

Then analyze EXPR with TEMPLATE. @ lets the user compute on the fly both a
template and an expression to analyze it with. The forms can use the variable
EX P R, which is bound to the current expression.

(MAC RO . MACRO) [in Masterscope template]
MACRO is interpreted in the same way as a macro (see page 5.17) and the resulting
form is analyzed. If the template is the atom MACRO alone, Masterscope will use
the MAC RO property of the function itself. This is useful when analyzing code
which contains calls to user-defined macros. If the user changes a macro property
(e.g. by editing it) of an atom which has template of MACRO, Masterscope will
mark any function which used that macro as needing to be reanalyzed.

Some examples of templates:

function

DREVERSE

AND

MAPCAR

COND

template

(SMASH . PPE)

(1 NIL TEST .. RETURN)

(EVAL FUNCTION FUNCTION)

(! NIL .. (IF CDR (TEST .. EFFECT RETURN) (TESTRETURN . PPE»)

Templates may be changed and new templates defined using the functions:

(GETTEMPLATE FN) [Function]
Returns the current template of FN.

13.18

MASTERSCOPE

(SETTEMPLATE FN TEMPLATE) [Function]
Changes the template for the function FN and returns the old vaiue. If any
functions in the database are marked as calling FN, they will be marked as needing
re-analysis.

13.6 DATA BASE UPDATING

Masterscope is interfaced to the editor and file package so that it notes whenever a function has been
changed, either through editing or loading in a new definition. Whenever a command is given which
requires knowing the information about a specific function, if that function has been noted as being
changed, the function is automatically re-analyzed before the command is interpreted. If the command
requires that all the information in the database be coiisistent (e.g., the user asks WHO CALLS X) then
all functions which have been marked as changed are re-analyzed.

13.7 MASTERSCOPE ENTRIES

(CALLS FN USEDATABASE -) [Function]
FN can be a function name, a definition, or a fOIlIl. Note: CALLS will also work
on compiled code. CALLS returns a list or-four elements: a lIst of all the functions
called by FN,9 a list of all the variables bound in FN, a list of all the variables
used freely in FN, and a list of the variables used globally in FN. For the purpose
of CALLS, variables used freely which are on GLOBALVARS or have a property
GLOBALVAR value T are considered to be used globally. If USEDATABASE is NIL
(or FN is not a litatom), CALLS will perform a one-time analysis of FN. Otherwise
(Le. if USEDATABASE is non-NIL and FN a function name), CALLS will use the
information in Masterscope's databa'Se (FN will be analyzed first if necessary).

(CALLSCCODE FN -) [Function]
The sub-function of CALLS which analyzes compiled code. CALLSCCODE returns
a list of jive elements: a list of all the functions called via "linked" function calls,
a list of all functions called regularly" a list of variables bound in FN, a list of
variables used freely, and a list of variables used globally.

(FREEVARS FN USEDATABASE) [Function]
Equivalent to {CADDR (CALLS FN USEDATABASE». Returns the list of variables
used freely within FN.

(MASTERSCOPE COMMAND -) [Function]
Top level entry to Masterscope. If COMMAND is NIL, will enter into a USEREXEC
in which the user may enter commands. If COMMAND is not NIL, the command

9Functions called via "linked" calls from compiled code are indicated by semicolons PACKed around
their name; e.g. (CALLS I MASTERSCOPE) might return ({ ; MASTERSCOPEXEC; ;MSINTERPRE T;
; PRINT; HELP) --). This feature can be suppressed by setting NOPACKCALLSFLG to T.

13.19

Masterscope Entries

is interpreted: and MASTERSCOPE will return the value that would be printed by
the command. Note that only the question commands return meaningful values.

(SET SYNONYM PHRASE MEANING -) [Function]
Defines a new synonym for Maste~ope's parser. Both PHRASE and MEANING
are lists of wqrds; anywhere PHRASE is seen in a command, MEANING will be sub
stituted. Fot example, (SETSYNONYM 'GLOBALS '(VARS IN GLOBALVARS
OR @(GETPROP X 'GLOBAl.:VAR») would allow the user to refer with the single
word GLOBAI:..S to the set of variables which are either in GLOBALVARS or have a
GLOBALVAR property.

The following functions are provided for users who wish to write their own routines using Masterscope's
database:

(PARSERELATION RELATION) [Function]
RELATION is a relation phrase; e.g .• (PARSERELATION '(USE FREELY».
PARSERELATION returns an internal representation for RELATION. For use in
conjunction with GETRELATION.

(GETRELATION ITEM RELATION INVERTED) [Function]
RELATION is an internal representation as returned by PARSERELATION (if no~
GETRELATIQN will first perfonn (PARSERELATION RELATION»; ITEM is an
atom. GETRELATION returns the list of all atoms which have the given relation
to ITEM. For example, (GETRELATION 'X '(USE FREELY» returns the list of
variables that X uses freely. If INVERTED is T, the inverse relation is used; e.g.
(GETRELATION 'X '(USE FREELY) T) returns the list of functions which use
X freely.

If ITEM is NIL. GETRELATION will return the list of atoms which have RELATION

with any oth~r item; Le., answers the question WHO RELATIONS ANY. Note that
GETRELATION does not check to see if ITEM has been analyzed, or that other
functions that have been changed have been re-analyzed.

(TESTRELATION ITEM RELATION ITEM2 INVERTED) [Function]
equivalent to (MEMB ITEM2 (GETRELATION ITEM RELATION INVERTED», that
is, tests if ITEM and ITEM2 are related via RELATION. If ITEM2 is NIL, the call
is equivalent to (NOT {NULL (GETRELATION ITEM RELATION INVERTED»),
Le., TESTRELATION tests if ITEM has the given RELATION with any other item.

(MAPRELATION RELATION MAPFN) "[Function]
Calls the function MAPFN on every pair of items relatedvia RELATION. If (NARGS
MAPFN) is 1~ then MAPFN is called on every item which has the given RELATION
to any other item.

(MSNEEDUNSAVE FNS MSG MARKCHANGEFLG) [Function]
Used to mark functions which depend on a changed record declaration (or macro,
etc.), and wh:ich must be LOADed or UNSAVEd (see below). FNS is a list of
functions to be marked, and MSG is a string describing the records, macros, etc.
on which they depend. If MARKCHANGEFLG is non-NIL, each function in the list
is marked as needing re-analysis.

13.20

MASTERSCOPE

(U PDA T E F N FN EVEN1FVALID -) . [Function]
Equivalent to the command ANAL YZE "FN; that is, UPDATEFN will analyze FN if
FN has not been analyzed before or if it has been changed since the time it was
analyzed. If EVENIFVALID is set, U PDA T E F N will re-analyze FN even if Masterscope
thinks it has a valid analysis in the database.

(UPDATE CHANGED) [Function]
Performs (UPDATEFN FN) on every function which has been marked as changed.

(MSMARKCHANGED FN TYPE REASON) [Function]
Mark that FN has been changed and needs to be reanalyzed. See MARKASCHANGED,
page 11.11.

(DUMPDAT ABASE FNLST) [Function]
Dumps the current Masterscope database on the current output file in a LOADable
form. If FNLST is not NIL, DUMPDA T ABASE will only dump the information
for the list of functions in -FNLST. The variable DATABASECOMS is initialized
to « E (DUMPDAT ABASE))); thus, the user may merely perfonn (MAKE FILE
'DATABASE • EXTENSION) to save the current Masterscope database. If a
Masterscope database already exists when a DATABASE file is loaded, the database
on the file will be merged with the one in core. Note that functions whose
definitions are different from their definition when the database was made must be
REANAL YZEd if their new definitions are to oe noticed.

The Databasefns package (page 23.15) provides a more convenient way of saving
data bases along with the source files which they correspond to.

13.8 NOTICING CHANGES THAT REQUIRE RECOMPILING

When a record declaration, iterative statement operator or macro is changed, and Masterscope has
"noticed" a use of that declaration or macro (i.e. it is used by some function known about in the data
base), Masterscope will alert the user about those functions which might need to be re-compiled (e.g.
they do not currently have EXPR definitions).lo The functions which need recompiling are added to the
list MSNEEDUNSAVE and a message is printed out:

The functions FN1, FN2, ••• use macros which have changed.
Call UNSAVEFNS() to load and/or unsave them.

In this situation, the following function is useful:

(UNSAVEFNS -) [Function]
Uses LOADFNS or UNSAVEDE F to make sure that all functions in the list
MSNEEDUNSAVE have EXPR definitions, and then sets MSNEEDUNSAVE to NIL.

10 Extra functions may be noticed; for examp Ie if F 00 contains (f etc h (R E C X) - -), and some
declaration other than REC which contains X is changed, Masterscope will still think that FOO needs to
be loaded/unsaved.

13.21

Implementation Notes

13.9 IMPLEMENTATION NOTES

Masterscope keeps a database of the relations noticed when functions are analyzed. The relations are
intersected to fonD. "primitive rel~tionshipsn such that there is little or no overlap of any of the primitives.
For example, the relation SET- is stored as the union of SET LOCAL and SET FREE. The BIND relation is
divided into BIND AS ARG. BIND AND NOT USE. and SET LOCAL, SMASH LOCAL, etc. Splitting the
relations in this manner reduces the size of the database considerably t to the point where it is reasonable
to maintain a Masterscope database for a large system of functions during a nonnal debugging session.

Each primitive relationship is stored in a pair of hash-tables, one for the ufoIWard" direction and one for
the "reverse". For example, there are two hash tables, USE AS PROPERTY and USED AS PROPERTY.
To retriev~ the infonnation from the database, Masterscope performs unions of the hash-values. For
example, to answer FOO BINDS :WHO Mastersc~pe will look in all of the tables which make up the BIND
relation. The "internal representation" returned by PARSERELATION is just a list of dotted pairs of
hash-tables. To perfonn GETRELATION requires only mapping down that lis~ doing GETHASH's on the
appropriate hash-tables and UNIONing the result .

Hash tables are used for a variety of reasons: storage space is smaller; it is not necessary to maintain separate
lists of which functions have bee~ analyzed (a special table, DOESN'T DO ANYTHING is maintained for
functions which neither call other functions nor bind or use any variables); and accessing is relatively fast.
Within any of the tables, if the hash-value would be a list of one atom, then the atom itself, rather than
the list, is stored as the ,hash-value. This also reduces'the size of the database significantly.

13.22

(SYSTEMTYPE)

CHAPTER 14

MISCELLANEOUS

[Function]
The SYSTEMTYPE function is intended to allow programmers'to write system
dependent code. SYSTEMTYPE returns a litatom corresponding to the implemen
tation of Interlisp: D (for Interlisp-D), TOPS-20, TENEX, JERICO, or VAX.

In Interlisp-D (and Interlisp-lO), (SELECTQ (SYSTEMTYPE) ...) expressions
are expanded at compile time so that this is an effective way to perfonn conditional
compilation.

(USERNAME A FLG) [Function]
If A = NIL, returns login directory name; if A = T, returns connected directory
name; if A is a number, USERNAME returns the user name corresponding to that
user number. r

The value is usually returned as a string. If FLG is a string ptr, it is smashed. If
FLG is not a string pointer and is non-NIL, USERNAME returns the value as an
atom.

(STORAGE FLG GCFLG) [Function]
Prints the amount of storage used for various data types. The exact printout is
implementation-dependent STORAGE returns NIL.

In Interlisp-10, the storage used by a particular type is only accurate immediately
following a garbage collection of a related type. If GCFLG=T, STORAGE will
perfonn the necessary garbage collections before printing its results. If FLG = T,
includes storage used by and assigned to the system.

(DISMISS MSECSWAIT TIMER) [Function]
In Interlisp-10, dismisses the program for MSECSWAIT milliseconds, during which
time the program uses no CPU time. Can be aborted by control-D, control-E, or
control-B.

In Interlisp-D, dismisses the current process for MSECSWAIT milliseconds, using the
timer TIMER if given (see page 14.11).

(APROPOS STRING ALLFLG) [Functi,on]
(Currently only in Interlisp-D) Prints infonnation about alilitatoms in the Interlisp
system which contain the string STRING. APROPOS will print the argument lists
of litatoms with function definitions, the values of litatoms with variable bindings,
and the property names defined for litatoms with property lists. If ALLFLG is NIL,
this scan does not include "system internal" litatoms; otherwise, all litatoms are
scanned.

14.1

(NEGATE x)

Saving Interlisp State

Returns the negation of x. For example:

(NEGATE '(MEMBER X V»~ =). (NOT (MEMBER X V»~

(NEGATE '(EQ X V»~ =) (NEQ X Y)

[Function]

(NEGATE '(AND X (NLISTP X») =) (OR (NULL X) (LISTP X»

The following two functions are 1:lseftll writing programs that wish to reuse' a scratch list to collect together
some result (Both of these compile open):

(SCRATCHLIST LST Xl X2 ••. X N) [NLambda NoSpread Function]
SCRATCHLIST sets up a context in which the value of LST is used as a "scratch"
list. The expressions Xl' X2t ••• XN are evaluated in tum. During _the course of
evaluation~ any value passed to ADDTOSCRATCHLIST will be saved, reusing CONS
cells from: the value of LST. If the value of LST is not long enough,. new CONS
cells' will be added onto its end. If the value of LST is NIL, the entire value of
SCRATCHlIST will be "new" (Le. no CONS cells will be reused).

(ADDTOSCRATCHLIST VALUE) [Function]
For use under calls to SCRATCHLIST. VALUE is added on to the end of the value
being collected by SCRATCHLIST. When SCRATCHLIST returns, its value is a list
containing all of the things that ADDTOSCRATCHLIST has added.

14.1 SA VING INTERLISP STATE

(LOGOUT FAST) [Function]
Stops Inte;rlisp, and returns control to the operating system. From there, it is
possible td continue Interlisp as of the LOGOUT. LOGOUT will not affect the state
of open files.

In Interlisp·O. LOGOUT writes out all altered pages from real memory to the file
Lisp. vi rtua 1 memo This usually takes about 30 seconds on the Xerox 1100. If
FAST is non·NIL, Interlisp is stopped without updating Lisp. vi rtualmem. Note
that it will not be possible to restart Interlisp from the point of the LOGOUT, and
it may not be possible to restart it at all. Typing (LOGOUT T) is preferable to
just booting the machine, because it also does other cleanup operations (closing
network connections, etc.).

In InterlisJ!)·10, if Interlisp was started as a subsidiary fork (see SUBSY 5, page
22.21), control is returned to the higher fork.

The function SY SOUT saves the current state of the Interlisp virtual memory on a file. The file package
(page 11.1) can be used to save particular function definitions and other arbitrary objects on files, but
SY SOUT saves the total state of the system.

The file produced by SYSOUT (known as "a sysout file", or simply "a sysout") can be restarted from the
operating system (by typing LISP SYSOUTFILE in Interlisp-O or RUN SYSOUTFILE in Interlisp-lO). This

14.2

lWSCELLANEOUS

will restart Interlisp, and restore the virtual memory to the exact state that it had when the sysout file was
made.

(SYSOUT FILE) [Function]
Saves the current state of the Intet:lisp virtual memory on the file FILE, in a form
that can be subsequently restarted. The current state of program execution is saved
in the sysout file, so {PROGN (SYSOUT 'FOO) (PRINT 'HELLO» will cause
HELLO to be printed after the sysout file is restarted.

If FILE is non-N I L, the variable SYSOUTF I LE is set to the body of FILE. If FILE
is NIL, then the value of SYSOUTFILE instead. Therefore, (SYSOUT) will save
the current state on the next higher version of a file with the same name as the
previous SYSOUT. Also, if the extension for FILE is not specifiecL the value of
SYSOUT . EXT is used. This is initially SYSOUT in Interlisp-D, SAV in Tenex
Interlisp-10, and EXE in Tops-20 Interlisp-10.

SY SOUT sets SY SOUTOA T E to (DATE), the time and date that the S Y SOUT was
performed.

If SYSOUT was notable to create the sysout file, because of disk or computer error,
or because there was not enough space on the directory, SYSOUT returns NIL.
Otherwise it returns the full file narne of FILE.

Actually, SYSOUT "returns". twice; when the sysout file is first createcL and
when it is subsequently restarted. In the latter case,. SYSOUT returns the list
(FILE • MAKESYSFILE), where FILE is the sysout file, and, MAKESYSFILE is the
original Interlisp makesys file (see MA K E S Y S, below). For example, (; f {L 1ST P
(SY SOUT I FOO» the n (PR I NT 'HE LLO» will cause HE LLO to be printed
when the sysout file is restartecL but not when SYSOUT is initially performed.

Note: SYSOUT does not save the state of any open files. WHENCLOSE (page 6.11)
can be used to associate certain operations with open files so that when a SYSOUT
is started up, these files will be reopenecL and file pointers repositioned.

In Interlisp-10, a sysout file only contains the parts of the virtual memory that the user has changed.
When the sysout file is restartecL the other pages are taken from the makesys file of the Interlisp system
within which the sysout file was made (see MAKESYS, below). Therefore, whenever the Interlisp system
is reassembled and! or reloadecL old sysout files are not compatible with the new system:

In Interlisp-D, a sysout file contains a copy bf the. entire allocated virtual memory, so it is very large. A
normal sized sysout file contains about 4000 pages. Unlike in Interlisp-10, a sysout file is copied into the
virtual memory when it is restartecL to it is perfectly permissible to overwrite a sysout file on top of the
currently running sysout, for example, (SYSOUT I {DSK} FOO. SYSOUT; 1) to overwrite FOO. SYSOUT
on the local disk. Not only is this permissible, it is much faster than making a new sysout file (almost
twice as fast, due to less disk overhead). Making a sysout file on the Xerox 1100 currently takes at least
5 minutes.

SYSOUT evaluates the expressions on BE FORESYSOUTFORMS before creating the sysout file. This variable
initially includes expressions to: (1) Set the variables SYSOUTOATE and SYSOUTFILE as described
above; (2) Default the sysout file name FILE according to the values of the variables SYSOUT FILE and
SYSOUT. EXT, as described above; and (3) Perform any necessary operations on open files as specified
by calls to WHENCLOSE (page 6.11).

14.3

Saving Interlisp State

After a sysout file is restarted (but not when it is initially created), SYSOUT evaluates the expressions
on AFTERSYSOUTFORMS. This initially includes expressions to: (1) Perfonn any necessary operations on
previously-opened files as specified by calls to WHENCLOSE (page 6.11); (2) [Interlisp-lO only] Reset the
tenninalline length with SETLINELENGTH (page 6.8); (3) [Interlisp-10 only] Reset the tenninal control
characters using SETTERMCHARS(page 17.59) if the operating system has changed from Tenex to Tops-20
or vice versa; (4) Possibly print a message, asdetennined by the value of SYSOUTGAG (see below); and
(5) Call SET I NIT I A L S to reset the initials used for time-stamping (page 17.60).

SYSOUTGAG

(SYSIN FILE)

(SYSOUTP FILE)

[V¢able]
The value of SYSOUTGAG detennines what is printed when a sysout file is restarted.
If the value of SYSOUTGAG is a lis~ the list is evaluated, and no additional message
is printed. This allows the user to print a message. If SYSOUTGAG is non-NIL
and not a list, no message is printed. Finally, if SY SOUTGAG is NIL (its initial
value), and the sysout file is being restarted by the same user that made the sysout
originally, the user is greeted by printing the value of HERALDSTRING (see below)
followed by a greeting message. If the SYSOUT file was made by a different user, a
message is printed, warning that the user profiles may be different (see page 14.5);

[Function]
[Interlisp-10 only] Restores the state of ~nterlisp from a sysout file. This is essentially
the same as exiting Interlisp, and restarting a sysout file from the operating system
executive. If SY SIN returns NIL, there was a problem in reading the file. If FILE

was not found, generates a FILE NOT FOUND error.

[Function]
[Interlisp-lO only] Returns the name of the original Interlisp makesys file (see
MA K E S Y S, below) if FILE is a sysout file, otherwise NIL.

FILE may also be a JFN.

(MAKESYS FILE NAME) [Function]
Used to store a new Interlisp system on the "makesys file" FILE. Before this is
done, the system is "initialized" by undoing the greet history, and clearing the
display [Interlisp-D].

When the system is first started up, a "herald" is printed identifying the system.
typically "Interl i sP-XX DATE ••• ". If NAME is non-NIL, MAKESYS will use
it instead of Interl isp-xx in the herald. MAKESY.S sets HERALDSTRING to the
herald strimg printed out.

MAKESYS also sets the variable MAKESYSDATE to (DATE). Le. the time and date
the system· was made.

In Interlisp-D, MAKESYS is almost the same as SYSOUT, except that it does some cleaning-up operations
(such as clearing the screen). In Interlisp-lO, however, MAKESYS is considerably different from SYSOUT,
because it saves all of the pages in the Interlisp virtual memory, and allows the makesys file to be shared
between multiple users.

The Interlisp-lO system initially obtained by the user is shared; that is, all active users of Interlisp-10
are actually using the same pages of memory. As a user adds to the system. private pages are added to
his memory. Similarly, if the user changes anything in the original shared Interlisp-10, for example, by
advising a system function, a private copy of the changed page is created.

14.4

l\1ISCELLANEOUS

In addition to the swapping time saved by having several users accessing the. same memory, the sharing
mechanism permits a large saving in garbage collection time, since it is not necessary to garbage collect
any data in the shared system, and thus Interlisp-10 does not need to chase from any pointers on shared
pages during garbage collections.

This reduction in garbage collection time is possible because the shared system usually is not modified
very much by the user. If the shared system is changed extensively, the savings in time will vanish,
because once a page that was initially shared is made private, every pointer on it must be assumed active,
because it may be pointed to by something in the shared system. Since every pointer on an initially
shared but now private page can also point to private data, they must always be chased.

A user may create his own shared system with the function MAK E SY S. If several people are using the
same system, making the system be shared will result in a savings in swapping time. Similarly, if a system
is large and seldom modified, making it be shared will result in a reduction of garbage collection time,
and may therefore be worthwhile even if the system is only being used by one user.

One problem with using MAKESYS in Interlisp-l0 is that it may protect large amounts of useless data from
being garbage collected. For example, suppose that during the course of building an Interlisp system,
a large number of list cells are used and discarded. If MAKESYS is now executed to store the system,
all of that list cell space is stored, and protected from garbage collection (unless the user changes those
pages, making a personal copy). To solve this problem, it is necessary to make sure that as little storage
as possible is allocated while creating a new system, perhaps by setting MIN F S (page 22.10) to a very low
value. Of course, this will slow down Interlisp considerably, so making a new system will take a long
time.

14.2 GREETING AND USER PROFILES

Many of the features of Interlisp are parameterized to allow the user to adjust the system to his or her own
tastes. Among the more commonly adjusted parameters are PROMPT#FLG (page 8.18), DWIMWAIT (page
15.11), CHANGESLICE (page 8.18), LOWERCASE (page 16.21), #UNDOSAVES (page 8.33), INITIALSLST
(page 17.60), etc. In addition, the user can modify the action of system functions in ways not specifically
provided for by using ADVISE (page 10.9).

In order to encourage this procedure, and to make it as painless and automatic as possible, the
programmeer's assistant includes a facility for both a site-defined profile and a user-defined profile.
When Interlisp is first run, it calls the function G R E E T (see below). This provides a way of setting defaults
for a particular community of users, patching bugs, etc.

Greeting (Le., the initialization) is undoable. and is stored as a separate event on the history list (page
8.25). The user can explicitly invoke the greeting operation at any time via the function G RE E T. This can
also be use to effect another user's initialization.

(G RE E T NAME -) [Function]
Performs the greeting for the user whose usemame is NAME (if NAME = NIL, uses
the login name). When Interlisp first starts up, it performs (G R E E T) .

Before G R E E T performs the indicated initialization, it first undoes the effects of the
previous greeting. The side effects of the greeting operation are stored on a global
variable as well as the history list, thus enabling the previous greeting to be undone

14.5

Manipulating File Directories

even if i~ is-no longer on the history list In addition, MAKESYS is advised to undo
the effects of the previous greeting, thereby returning the system to a pristine state.

GRE ET blitializes in the following way: It first evaluates each item in the list
PREGREETFORMS, then it loads the file returned from (GREETF ILENAME T),
then it 'loads the file returned from (GREETFILENAME USERNAME) , then it
evaluates\ each item on POSTGREETFORMS, and finally it prints a greeting such
as "He 11io, :xxx. ", where :xxx is the FIRSTNAME component of the user's entry
on INIT:IALSLST (page 17.60). The loads are perfonned "silently" by rebinding
PRETTYt:fEADER (page 11.36) to NIL.

(GREETFILENAME USER) [Function]
G R E E T F I L E NAM E is a system -dependent function. Its purpose is to locate existing
files used! for greeting and return them. If USER is T, then it returns the filename
of the sit~-defined profile (if it exists). Otherwise, USER is interpreted to be a user's
system name, and it returns the filename for the user-defined profile (if it exists).

GREETDATES [Variable]
The value of GREETDAJES can be used to specify special greeting messages for
various dites. GREETDATES is a list of elements of the fonn (DATESTRING •
STRING) ,i e.g. (" 2 5 -DE C" • "Me r ry C h r is tmas "). The user can add entries
to this list in his/her INIT • LISP file by using a ADDVARS file package command
like (ADOVARS (GREETDATES ("S-FEB" • "Happy Bi rthday"»). On
the specified date, the G R E E T will use the indicated salutation.

14.3 MANIPULATING FILE DIRECTORIES

The following function allows the user to conveniently specify and! or program a variety of directory
operations:

(DIRECTORY FILES COMMANDS DEFAULTEXT DEFAULTVERS) [Function]
FILES is either [1] NIL (which is equivalent to *. * ; *); or [2] an atom which can
contain S'$ or *'s (equivalent) which match any number of characters or ?'s which
match a single character, or else [3] FILES is a list of the fonn (FILES + FILES),
(FILES -: FILES), or (FILES * FILES), 1 e.g., (T S + S L) will match with any
file beginning with T or ending in L, (TS - *. DCOM) matches all files that begin
with T and are not. DCOM files.

For each file that matches, each command in COMMANDS is executed with the following interpretation:

p

PP

a string

Print file name.

Print file name (except for version number).

Prints the string.

lOR can be used for +, and AND for *.

14.6

MISCELLANEOUS

READDATE,WRITEDATE, CREATIONDATE
SIZE, LENGTH, BYTESIZE
PROTECTION,AUTHOR, TYPE

Prints the appropriate infonnation returned by GET F I LEI N F 0 (page 6.6).

COLLECT The value of DIRECTORY will be a list of file names; add the complete file name
of this file to that list

COUNTSIZE The value of DIRECTORY will be a sum; add the size of this file to that sum.

PAUSE Wait until the user types any char before proceeding with the rest of the commands
(good for display if you want to ponder).

PROMPT MESS Prompts with MESS; if user responds with No, abort command processing for this
file.

OLDE RTHAN N Continue command processing if the file hasn't been referenc~4 (read or written)
in N days.

OLDVERSIONS N Continue command processing if there are at least N more recent versions of the
same file.

BY USER Continue command processing if the file was last written by the given user.

@ x x is either a function of one argument (JFN), a function of two arguments (JFN

FILENAME) or an arbitrary expression which uses the variablers J F N and! or the
variables FILENAME freely. If x returns NIL, abort command processing for this
file.

DELETED Allows DIRECTORY to examine deleted files (nonnally, they are not mapped over.

OUT FILE Directs output to FILE.

COLUMNS N Attempt to fonnat output in N columns (rather than just 1).

TRIMTO N Deletes all but N versions of file (N~O).

DELETE Deletes file. If this is specified, the value of DIRECTORY is NIL if no COLLECT
command is specified, otherwise the list of files deleted.

UNDELETE Undeletes the indicated files that have been deleted.

DIRE CTORY uses 0 I RCOMMANDS to correct spelling, which also provides a way of defining abbreviations
and synonyms (page 15.13). Currently the following abbreviations are recognized:

AU

COLLECT?

DA
TI

=) AUTHOR

=) PAUSE

=) PROMPT " ? " COLLECT

=) WRITEDATE

14.7

DEL

DEL?
DELETE?

OLD

PR

SI

=)

=)

=)

=)

=)

Sorting Lists

DELETE

PROMPT" delete? " DELETE

OLDERTHAN 90

PROTECTION

SIZE

(FILDIR FILEGROUP -) [Function]
FILEGROUP is a file group descriptor, i.e., it can contain stars. F I LD I R returns
a list of the files which match FILEGROUP, a la the DIRECTORY function, e.g.,
(FILDIR '*.COM;O).

There is also a programmer's assistant command DIR which calls the function DI_RECTORY:

OIR FILES • COMMANDS [prog. Asst. Command]
Calls the function 0 I RECTORY with (P . COMMANDS) as the command list and
* and * as the default extension and default version respectively.

For example, to DELVER only those files which you ok, do DIR FILES PROMPT It?" TRIMTO 1.

14.4 SORTING LISTS

(SORT DATA COMPAREFN) [Function]
DATA is a list of items to be sorted using COMPAREFN. a predicate function of two
arguments which can compare any two items on DATA and return T if the first
one belongs before the second. If COMPAREFN is NIL, ALPHORDER is used; thus
(SORT DATA) will alphabetize a list If COMPAREFN is T. CAR's of items that
are lists ~e given to ALPHORDER. otherwise the items themselves; thus (SORT
A-LIST r) will alphabetize an assoc list by the CAR of each item. (SORT X
, I LESSP) will sort a list of integers.

The value of SORT is the sorted list. The sort is destructive and uses no extra
storage. The value returned is E Q to DATA but elements have been switched
around. Interrupting with control D. E, or B may cause loss of data, but control
H may be 'used at any time, and SORT will break at a clean state from which t or
control characters are safe. The algorithm used by SORT is such that the maximum
number of compares is N*log2N. where N is (LENGTH DATA).

Note: if (qOMPAREFN A B) = (COMPAREFN B A). then the ordering of A and
B mayor may not be preserved.

For example, if (FOO . FIE) appears before (FOO . FUM) in X, (SORT X T)
mayor may not reverse the order of these two elements. Of course, the user can
always specify a more precise COMPAREFN.

14.8

MISCELLANEOUS

(MERGE A B COMPAREFN) [Function]
A and Bare lists which have previously been sorted using SORT and COMPAREFN.

Value is a destructive· merging of the two lists. It does not matter which list is
longer. After merging both A and .B are equal to the merged list. (In fac~ (C 0 R
A) is EQ to (CDR B». MERGE may be aborted after control-H.

(ALPHORDER A B) [Function]
A predicate function of two arguments, for alphabetizing. Returns T if.its arguments
are in order, i.e., if B does not belong before A. Numbers come before literal atoms,
and are ordered by magnitude (using GREATERP). Literal atoms and strings are
ordered by comparing the character codes in theirpnames. Thus (ALPHORDER 23
123) is T, whereas (ALPHORDE R 'A2 3 'A 123) is NIL, because the character
code for the digit 2 is greater than the code for l.

Atoms and strings are ordered before all other data types. - If neither A nor B are
atoms or strings, the value of ALPHORDE R is T, i.e., in order.

Note: ALPHORDER does no UNPACKs, CHCONs, CONSes or NTHCHARs. It is several
times faster for alphabetizing than anything that can be written using these other
functions.

(MERGEINSERT NEW LST ONEFLG) [Function]
LST is NIL or a list of partially sorted items. MERGE INSERT tries to find the
"best" place to (destructively) insert NEW, e.g.,

(MERGEINSERT 'FIE2 '(FOO FOOl FIE FUM»
=) (FOO FOOl FIE FIE2 FUM)

Returns LST. MERGEINSERT is undoable.

If ONEFLG = T and NEW is already a member of LST, ME RG E INS E R T does nothing
and returns LST.

MERGE INSERT is used by ADDTOF ILE (page 11.33) to insert the name of a new function into a list of
functions .. The algorithm is essentially to look for the item with the longest common leading sequence of
characters with respect to NEW, and then merge NEW in starting at that point.

(COMPARELISTS x y) [Function]
Compares x and yand prints their differences, Le., COMPARELISTS is essentially
a SRCCOM for list structures.

14.5 DATE/TIME FUNCTIONS

(DATE -) [Function]
Obtains date and time, returning it as a single string with format "DD- MM- YY

HH: MMM: ss", where DD is day, MM is month, YY year, HH hours. MMM minutes.
SS seconds, e.g., "14 - MA Y - 71 14: 2 6 : 08 " .

In Interlisp-10, DA T E will accept FORMATBITS as an argumen~ which can be used

14.9

Timers and. Duration Functions

to specify other fonnats, e.g., day of week, time zone, etc., as described in the
JSYS manual.

(IDATE STH) [Function]
STR is a date and time string. Value of IDA T E is STH converted to a number
such that if DATEl is before (earlier than) DATE2t then (IDATE DATE1) < (IDATE
DATE2). (IDATE) returns (IDATE (DATE».

(GOA T E DATE FORMATBITS STRPTH) [Function]

(CLOCK N -)

Interlisp-lO function for obtaining time-date fonnatted string, DATE is in internal
date-and-time fonnat. If NIL, current time and date is used, I.e. value of
(IDA T E). FORMATBITS is 36 bit quantity to be passed to TENEX/fOPS 20
time-date conversion routines (see JSYS manual). For example, FORMAT BITS = = 1
gives a "long" date, e.g. "FRIDAY, JUN 16, 1978, 23:41:52-PDT". If
FORMATBITS = NIL, defaults to a value which will produce the same format as that
of (DATE), I.e. "DD-MM-YY HH: MMM: SS". STRPTR is an optional string pointer
to be reused. In this case, the string characters are stored in an internal scratch
string, MACSCRATCHSTRING, so that a subsequent call to GDATE will overwrite
the characters returned by this one. Note that this internal scratch string is also
used by several other functions in this r section.

The dateformat package (page 23.57) provides a convenient way of specifying the
format bits in terms of keywords.

For N=O,

For N=l,

For N=2.

For N=3,

[Function]

returns the current value of the time of day clock Le., number of
milliseconds since last system start up.

returns the value of the time of day clock when the user started up
this Interlisp, i.e., difference between (CLOCK 0) and (CLOCK
1) is number of milliseconds (real time) since this Interlisp was
started.

returns the number of milliseconds of compute time since user
started up this Interlisp (garbage collection time is subtracted off).

returns the number of milliseconds of compute time spent in
garbage collections (all types). 2

14.6 TIMERS AND DURATION FUNCTIONS

Often one needs to loop over some code, stopping when a certain interval of time has passed. Some
systems provide an "alarmc1ock" facility, which provides an asynchronous interrupt when a time interval
runs out. This is not particularly feasible in the cunent Interlisp-D envirornment, so the following facilities
are supplied for efficiently testing for the expiration of a time interval in a loop context

2In Interlisp-10, this number is directly accessible via the COREVAL GCTIM.

14.10

MISCELLANEOUS

Three functions are provided: SETUPTIMER, SETUPTIMER.OATE, and TIMEREXPIRED? Also sev.eral
new i.s.oprs have.been defined: forDuration, during, untilDate, timerUnits, usingTimer,
and resourceName (reasonable variations on upper/lower case are pennissible).

These functions use an object called a Timer, which encodes a future clock time at which a signal is
desired. A Timer is constructed by the functions SETUPTIMER and SETUPTIMER.DATE, and is created
with a basic clock "unit" selected from among SECONDS, MILL ISECONDS, or TICKS. The first two timer
units provide a machine/system independent interface, and the latter provides access to the "real". basic
strobe unit of the machine's clock on which the program is runrung. The default unit is MILLISECONDS.

Currently, the TICKS unit is the same as the MILLISECONDS unit for Interlisp-10 and Interlisp/VAX.
In Interlisp-D, the TICKS unit is a function of the particular machine that Interlisp-D is running on: The
Xerox 1100 and 1132 'have about 0.5952 microseconds per tick (1680 ticks per millisecond); The Xerox
1108 has about 28.78 microseconds per tick (34.746 ticks per millisecond). The advantage of using TICKS
rather than one of the uniform interfaces is primarily speed; e.g., on a Xerox 1100. it may take as much as
400 microseconds to interface the milliseconds clock (a software facility actually based over the real clock),
whereas reading the real clock itself should take less than about ten microseconds. The disadvantage
of the TICKS unit is its short roll-over interval (about 20 minutes) compared to the MILLISECONDS
roll-over interval (about about two weeks), and also the dependency on particular machine parameters.

(S E TU PT I ME R INTERVAL OLDTIMER? TIMER UNITS INTERVAL UNITS) [Function]
SETUPTIMER returns a Timer that will "go off" (as tested by TIMEREXPIRED?)
after a specified time-interval measured from the current clock time. SETUPT IME R
has one required and three optional arguments:

INTERVAL must be a integer specifying how long an interval is desired. TIMER UNITS

specifies the units of measure for the interval (defaults to MILLISECONGS).

If OLDTIMER? is a Timer, it will be reused and returned, rather than allocating
a new Timer. INTERVALUNITS specifies the units in which the OLDTIMER? is
expressed (defaults to the value of TIMER UNITS.

(SETUPT IME R. DATE DTS OLDTIMER?) [Function]
SETUPTIMER. DATE returns a TUner (using the SECONDS time unit) that will "go
off" at a specified date and time. DTS is a DatelTime string such as IDA T E accepts
(page 14.10). If OLDTIMER? is a Timer, it will be reused and returned, rather than
allocati';1g a new Timer.

SETUPTIMER.DATE operates by first subtracting (IDATE) from (IDATE DTS),

so there may be some large integer creation involved, even if OLDTIMER? is given.

(TIMEREXPIRED? TIMER CLOCKVALUE.OR.TIMERUNITS) [Function]
If TIMER is a Timer, and CLOCKVALVE.OR.TIMERUNITS is the time-unit of TIMER,

TIMEREXPIRED? returns true if TIMER has "gone off".

CLOCKVALUE.OR. TIMER UNITS can also be a Timer, in which case TIM ERE X PI RED?
compares the two timers (using the same time units). If X and Y are Timers, then
(TIMEREXPIRED? X Y) is true if X is set for a later time than Y.

There are a number of i.s.oprs that make it easier to use Timers in iterative statements (page 4.5). These
i.s.oprs are given below in the "canonical" fonn, with the second "word" capitalized, but the all-caps and
all-lower-case versions are also acceptable.

14.11

forDurat ion INTERVAL

duri ng INTERVAL

Timers and Duration Functions

[I.S. Operator]
[I.S. Operator].

INTERVAL is an integer specifying an interval of time during which the iterative
statement will loop. .

time rUn i ts UNITS [I.S. Operator]
UNITS specifies the time units of the INTERVAL specified in fo rDu ra t ion.

unt i 1 Date DTS [I.S. Operator]
DTS is a DatelTime string (such as IDA T E accepts) specifying when the iterative
statement should stop looping.

us in g Time r TIMER [I.S. Operator]
If usingTimer is given, TIMER is reused as the timer for forDuration or
unt i 1 Date, rather than creating a new timer. This can reduce allocation if one
of these ils.oprs is used within another loop.

resou rceName RESOURCE [I.S. Operator]
RESOUR($ specifies a GLOBALRESOURCES name to be used as the timer storage.
If RESOuRCE=T, it will be converted to a common internal name.

Some examples:

(during 6MONTHS timerUnits 'SECS
until (TENANT-VACATED? HouseHolder)
do (DISMISS <for-about~a-day»

(HARRASS HouseHolder)
finally (if (NOT (TENANT-VACATED? HouseHolder»

then (EVICT-TENANT HouseHolder»)

This humorous little example shows that how is is possible to have two termination condition: (1) when the
time interval of 6MONTHS has elapsed, or (2) when the predicate (TE NANT -VACA TED? Hou s eHo 1 der)
becomes true. Note that the "finally" clause is executed regardless of which termination condition caused
it.

(do (forDuration (CONSTANT (ITIMES 10 24 60 60 1000»
do (CARRY.ON.AS.USUAL)
finally (PROMPTPRINT "Have you had your 10-day check-up?"»)

This infinite loop breaks out with a warning message every 10 days. One could question whether the
millisecond clock, which is used by default, is -appropriate for this loop, since it rolls-over about every
two weeks.

(SETQ \RandomTimer (SETUPTIMER 0»
(untilDate "31-DEC-83 23:59:59" usingTimer \RandomTimer
when (WINNING?) do (RETURN)
finally (ERROR "You've been losing this whole year!"»

Here we see a usage of an explicit date for the time interval; also, the user has squirreled away some
storage (as the value of \RandomTimer) for use by the call to SETUPTIMER in this loop.

(forDuration SOMEINTERVAL
resourcename '\INNERLOOPBOX

14.12

MISCELLANEOUS

timerunits 'TICKS
do (CRITICAL.INNER.LOOP»

For this loop, the user doesn't want any CONSing to take place, so \ I NNE RLOOPBOX will be defined as
a GLOBALRESOURCES which "caches" a timer cell (if it isn't already so defined), and wraps the entire
statement in a GLOBALRESOURCE call. Furthermore, he has specified a time unit of TICKS, for lower
overhead in this critical inner loop. In fact specifying a resou rcename of T would have been the same as
specifying it to be \ForDurat ionOfBox; this is just a simpler way to specify that a GLOBALRESOURCE
is wanted, without having to think up a name.

14.7 G AINS PACE

For users with large programs and data bases, the user may sometimes find himself in a situation where
he needs to obtain more space, and is willing to pay the price of eliminadng some or all of the context
information that the various user-assistance facilities such as the programmer's assistant, file package,
CLISP, etc., have accumulated during the course of his session. The following function is available for
this purpose.

(GAINSPACE)

For example:

+- (GAINSPACE)

[Function]
Prints a list of deletable objects, allowing the user to specify at each point what
should be discarded and what should be retained.

purge history lists? Yes
purge everything, or just the properties, e.g., SIDE, LISPXPRINT, etc. ?
just the properties
discard definitions on property lists? Yes
discard old values of variables? Yes
erase properties? No
erase CLISP translations? Yes

GAINSPACE is driven by the list GAINSPACEFORMS. Each element on GAINSPACEFORMS is of the
form (PRECHECK MESSAGE FORM KEYLST). If PRECHECK, when evaluated, returns NIL, GA I NS PAC E
skips to the next entry. For example, the user will not be asked whether or not to purge the history
list if it is not enabled. Otherwise, ASKUSE R (page 6.57) is called with the indicated MESSAGE and the
(optional) KEYLST. If the user responds No, i.e., ASKUSER returns N, GAINSPACE skips to the next entry.
Otherwise, FORM is evaluated with the variable RESPONSE bound to the value of ASKUSER. In the
above example, the FORM for the "purge history 1 ists" question calls ASKUSER to ask "purge
eve r y t h i n g, ... " only if the user had responded Yes. If the user had responded with Everything, the
second question would not hav~ been asked.

The "e rase p rope rt i es" question is driven by a list SMASHPROPSMENU. Each element on this list
is of the form (MESSAGE • PROPS). The user is prompted with MESSAGE (by ASKUSER), and if he

14.13

Performance Measuring Functions

responds Yes, PROPS is added to the list SMASHPROPS. The "d ; scard def; nit; ons on p rope rty
1 ; sts" and "d i scard 01 d va 1 ues of var; ab 1 es" questions also add to SMASHPROPS. The user
will not be prompted for any entrY on SMASHPROPSMENU for which all of the corresponding properties
are already on SMASHPROPS. SMASHPROPS is initially set to the value of SMASHPROPSLST. This pennits
the user to specify in advance those properties which he always wants to be discardec:L and not be asked
about them subsequently. After :finishing all the entries on GAINSPACEFORMS, GAINSPACE checks to
see if the value of SMASHPROPS is non-NIL, and if so, does a MAPATOMS, i.e .• looks at every atom in
the system, and erases the indicated properties.

Note that the user can change or add new entries to GAINSPACEFORMS or SMASHPROPSMENU, so that
GAINSPACE can also be used to purge structures that the user's programs have accumulated.

14.8 PERFORMANCE MEASURING FUNCTIONS

(CONSCOUNT N) [Function]
(CONSCOUNT) returns the number of CONSes since Interlisp started up. If N is
not NIL, resets CONSCOUNT to N.

(BOXCOUNT TYPE N) [Function]

(PAGEFAULTS) .

Returns the number of boxing operations for the data type TYPE (see page 2.36)
since Interlisp started up. If N is not NIL. the corresponding counter is reset to N.

In Interlisp-lO, if TYPE = NIL, BOXCOUNT returns the number of large integer
boxes; if TYPE is nO,n-N I L, it returns the number of floating boxes. These counters
are directly accessible via the COREVALs IBOXCN and FBOXCN.

In Interlisp-D, TYPE can be any datatype name, in addition to FIXP and FLOATP.

[Function]
Returns the number of page faults since Interlisp started up.

(TIME TIMEX TIMEN TIMETYPE) [NLambda Function]
An nlambda function. It executes the computation TIMEX, and prints out the
number of conses and computation time. Garbage collection time is subtracted
out. For example, in Interlisp-lO:

~TIME«LOAD (QUOTE PRETTY) (QUOTE PROP]
FILE CREATED l-AUG-78 14:56:12
PRETTYCOMS
collecting lists
582, 10291 free cells
13169 CONSES
29.484 SECONDS
PRETTY

If TTMEN is greater than 1 (TIMEN= NIL is equivalent to TlM'EN= 1), TIMEX

is executed TIMEN times. and TIME prints out (number of conses)/TIMEN, and
(computation time)/TIMEN. This is useful for more accurate measurement on small
computations, e.g.

14.14

MISCELLANEOUS

~TIME{{COPY {QUOTE (A B C») 10)
30/10 = 3 CONSES
.055/10 = .0055 SECONDS
(A B C)

If TlMETYPE is 0, TIME measures and prints total real time as well as computation
.time, e.g.

~TIME{{LOAD (QUOTE PRETTY) (QUOTE PROP» 1 0]
FILE CREATED 7-MAY-71 12:41:14
GC: 8
582, 10291 FREE WORDS
PRETTYFNS
PRETTYVARS
3727 CONSES
11.193 SECONDS
27.378 SECONDS, REAL TIME
PRETTY

If TIME TYPE = 3, TIME measures and prints garbage collection time as well as
computation time, e.g. r

~TIME{{LOAD (QUOTE PRETTY) (QUOTE PROP» 1 3]
FILE CREATED 7-MAY-71 12:41:14
GC: 8
582,. 1091 FREE WORDS
PRETTYFNS
PRETTYVARS
3727 CONSES
10.597 SECONDS
1.487 SECONDS, GARBAGE COLLECTION TIME
PRETTY

Another option is TIMETYPE= T, in which case TIME measures and prints the
number of pagefaults.

The value of TIME is the value of the last evaluation of TIMEX.

14.8.1 BREAKDOWN

TIME collects statistics for whole computations. BREAKDOWN is available to analyze the breakdown of
computation time (or any other measureable quantity) function by function.

(BREAKDOWN FNl ..• FNN) [NLambda NoSpread Function]
The user calls BREAKDOWN giving it a list of function names (unevaluated). These
functions are modified so that they keep track of various statistics.

To remove functions from those being monitored. simply UNBREAK (page 10.6)
the functions, thereby restoring them to their original state. To add functions,
call BREAKDOWN on the new functions. This will not reset the counters for any
functions not on the new list. However (BREAKDOWN) will zero the counters of

14.15

BREAKDOWN

all functions being monitored.

The procedure used for measuring is such that if one function calls other and both
are "broken down". then the time (or whatever quantity is being measured) spent
in the inner function is not charged to the outer function as well.

Note: BREAKDOWN will not give accurate results if a function being measured is
not returned from normally, e.g., a lower RETFROM (or ERROR) bypasses it. In this
case, all of the time (or whatever quantity is being measured) between the time
that function is entered and the time the next function being measured is entered
will be charged to the first function.

(BRKDWNRE-SULTS RETURNVA,LUESFLG) [Function]

Example:

BRKDWNRESUL TS prints the analysis of the statistics requested as well as the number
of calls tp each function. If RETURNVALUESFLG is non-NIL, BRKDWNRESUL TS
will not to print the results, but instead return them in the form of a list of elements
of the form (FNNAME #CALLS VALUE).

~ (BREAKDOWN SUPERPRINT: SUBPRINT COMMENT1)
(SUPERPRINT SUBPRINT COMMENT1)
~ (PRETTYDEF '(SUPERPRINT) 'FOO)
FOO. ; 3
~ (BRKDWNRESULTS)
FUNCTIONS TIME #CALLS

365
141
8
514

PER CALL
0.023
0.226
0.201
0.081

%
SUPERPRINT 8.261 20

76
4

SUBPRINT 31.910
COMMENTl 1.612
TOTAL 41.783
NIL
~ (BRKDWNRESULTS T)
«SUPERPRINT 365 8261) ~SUBPRINT 141 31910) (COMMENTl 8 1612»

BREAKDOWN can be used to measure other statistics. by setting the following variables:

BRKDWNTYPE

BRKDWNTYPES

[Variable]
To use BREAKDOWN to measure other statistics, before calling BREAKDOWN, set the
variable BRKDWNTYPE to the quantity of interest, e.g., TIME, CONSES, etc, or a
list of such quantities. Whenever BREAKDOWN is called with BRKDWNTYPE not
NIL, BREAKDOWN performs the necessary changes to its internal state to confonn
to the new analysis. In particular, if this is the first time an analysis is being run
with a particular statistic, a measuring function will be defined, and the compiler
will be called to compile it. The functions being broken down will be redefined
to call thiS, measuring function. When BREAKDOWN is through initializing, it sets
BRKDWNTVPE back to NIL. Subsequent calls to BREAKDOWN will measure the new
statistic un~l BRKDWNTYPE is again set and a new BREAKDOWN performed.

[Variable]
The list B~KDWNTYPES contains the infonnation used to analyze new statistics.
Each entry; on BRKDWNTYPES should be of the form (TYPE FORM FUNCTION),

where TYPE is a statistic name (as would appear in BRKDWNTYPE), FORM

14.16

MISCELLANEOUS

'- computes the statistic, and FUNCTION (optional) converts the value of form to
some more interesting quantity. For example, (T IME (CLOCK 2) (LAMBDA
(X) (FQUOT I ENT X 1000») measures computation time and reports the result
in seconds instead of milliseconds. BRKDWNTYPES currently contains entries for
TIME, CONSES, PAGEFAUL TS, BOXES9 and FBOXES.

Example:

~ (SETQ BRKDWNTYPE ' (TIME CONSES»
(TIME CONSES)
~ (BREAKDOWN MATCH CONSTRUCT)
(MATCH CONSTRUCT)
~ (FLIP '(A BCD E F G H C Z) , (.• $1 o. #2 • e) , (.. #3 •• »
(A B D E F G H Z)
~ (BRKDWNRESULTS)
FUNCTIONS TIME #CALLS PER CALL %
MATCH 0.036 1 0.036 54
CONSTRUCT 0.031 1 0.031 46
TOTAL 0.067 2 0.033
FUNCTIONS CONSES #CALLS PER CALL %
MATCH 32 1 32.000 40
CONSTRUCT 49 1 49.000 60
TOTAL 81 2 40.500
NIL

Occasionally, a function 'being analyzed is sufficiently fast that the overhead involved in measuring it
obscures the actual time spent in the function. If the user were using TIME, he would specify a value
for TIMEN greater than 1 to give greater accuracy. A similar option is available for BREAKDOWN. The
user can specify that a function(s) be executed a multiple number of times for each measurement,
and the average value reported, by including a number in the list of functions given to BREAKDOWN, .
e.g., BREAKDOWN(EDITCOM EDIT4F 10 EDIT4E EQP) means normal breakdown for EDITCOM and
ED IT 4F but executes (the body of) ED IT 4E and EQP 10 times each time they are called. Of course, the
functions so measured must not cause any harmful side effects, since they are executed more than once
for each call. The printout from BRKDWNRESUL TS will look the same as though each function were run
only once, except that the measurement will be more accurate.

Another way of obtaining more accurate measurement is to expand the call to the measuring function
in-line. If the value ofBRKDWNCOMPFLG is non-NIL (initially NIL), then whenever a function is broken
down, it will be redefined to call the measuring function, and then recompiled. The measuring function is
expanded in-line via an appropriate macro. In addition, whenever BRKDWNTYPE is reset, the compiler is
called for all functions for which BRKDWNCOMPFLG was set at the time they were originally broken-down,
i.e. the setting of the flag at the time a function is broken-down determines whether the call to the
measuring code is compiled in-line.

14.9 PAGE MAPPED FILES

This facility allows paged access to files. It manages a set of paging buffers as a least-recently-used queue,
with each buffer being a full-page block. Facilities are provided for allocating and deallocating buffers.

14.17

Page Mapped Files

locking down pages, mapping a given page of the file into core, and getting the in-core location to which
a given word of the file has been mapped. Any number of files can be mapped in at one time.

Note: Interlisp-D implements the page-mapping primitives of Interlisp-lO with some notable differences
that might require major reworking of programs that rely on these facilities. The major difference is that
an Interlisp-D page contains' 256· 16-bit words, rather than the 512 36-bit words of Interlisp-lO. A given
page number or file address for MAPPAGE or MAPWORD will correspond to a very different number of
bits from the beginning of the file, and WORDCONTENTS and SETWORDCONTENTS move smaller amounts
of infomlation. A second difference is that buffers are completely integrated into the Interlisp-D storage
management system so that a page is guaranteed to be locked down as long as the user holds a pointer to
it The functions LOCKMAP and UNLOCKMAP are therefore unnecessary, but for compatibility are defined
with dummy definitions.

The following scenario illustrates the use of these facilities: The user first opens the file (or files) that
he wants to access by page-mapping using any of the ordinary file-opening functions. Then. to examine
a particular word in one of the files, the user simply gives the word number and. the file's name to the
function MAPWORD, which returns a pointer to the in-core location that that word is mapped to (Le. the
address as an unboxed number). When he has finished processing, the user simply closes the file (e.g.
using CLOSE F) and the buffers are automatically unmapped. .

The basic functions are:

(ADDMAPBUFFER TEMP ERROFtFLG) [Function]
Initially, a single buffer is allocated, so that page-mapping may be done without
further initialization. More buffers can be allocated by ADDMAPBUF FER, which may
help to avoid thrashing. ADDMAPBUFFER attempts to allocate a single new buffer.
and returns non-N I L if successful. If there is not enough space to allocate a new
buffer. then if ERRORFLG is NIL. ADDMAPBUFFER simply returns NIL. Otherwise,
ADDMAPBUFFER causes an error UNABLE TO ALLOCATE PMAP BUFFER.

If TEMP = r, the buffers are allocated on a "temporary" basis: allocation takes place
via a RESETSAVE whose restoration fonn will de-allocate the buffers.

(MAPBUFFERCOUNT ONLYUNLOCKED) [Function]
Returns the number of buffers currently allocated. If ONLYUNLOCKED= T, counts
only unlocked buffers; otherwise, counts all buffers. Thus, to insure that at
least 3 (unlocked) buffers are allocated. the user could perfonn {wh i 1 e {LESSP
(MAPBUFFERCOUNT T) 3) do (ADDMAPBUFFER NIL T».

(MAP PAG E PAGE# FILE -) [Function]
The primit,ive function for mapping in pages from FILE into the queue of buffers.
PAGE# is ~ page number in FILE. The value of MAP P AG E is a pointer to the word
in memory at which the first word of the page is located, which will always' be at
a page-boundary.

If FILE is NIL, the value of DEFAULTMAPFILE is used.

MAPPAGE searches the buffers to see if the given page for the given file has already
been mapped in. If so, it returns the core address to which it was previously
mapped. Otherwise, it replaces the previous contents of the least-recently-used
buffer with the specified file page. It is important to note that the contents of a
given core buffer are not guaranteed across calls to MAPPAGE, unless the page has

14.18

l\1ISCELLANEOUS

. ·····-beenlocked down via LOCKMAP. MAPPAGE compiles open, and in the case where
~the desired ·page is already in the buffer it is quite efficient .

MAPPAGE will allocate an additional buffer if no unlocked buffers are available
(and the desired page is not already mapped in).

In Interlisp-10, FILE may also' be a fork handle (i.e. a value of SUBSYS, page
22.21), in which case the specified page from that fork will be mapped in.

(MAPWORD FILEADR' FILE) [Function]
Like MAPPAGE, except that it allows the specification of a word-address in FILE,

not just a page number. MAPWORD determines what page that address is on, maps
that page into a buffer (using MAPPAGE), and returns a pointer into the middle
of the buffer where the indicated word appears. The rest of the words on the
same file page appear at the appropriate word offsets from the value returned by
MAPWORD.

(WORDOFFSET PTR N) [Function]
If PTR is a pointer into a buffer as returned by MAPPAGE or MAPWORD,
WORDOFFSET returns a pointer to the ~ following word. WORDOFFSET compiles
open.

(WORDCONTENTS PTR) [Function]
Returns the contents of the word at PTR as an integer. For example, (WORDCONTENTS
(MAPWORD 10 FILE» will return the value stored in word 10 of a (binary) file.
WORDCONT E NT S compiles open.

(SETWORDCONTENTS PTR N) [Function]
Sets the contents of the word pointed to by PTR to be the number N. Interpreted,
SETWORDCONTENTS checks that PTR actually is a pointer as returned by MAPPAGE
or MAPWORD. SETWORDCONTENTS compiles open with no error checks.

(CLEARMAP FILE PAGES RELEASE) [Function]

(LOCKMAP PTR)

FILE specifies a file or fork as for MAPPAGE, or it is T. PAGES is a single page number
or a list of page numbers. CLEARMAP unmaps any of those pages that are currently
mapped in, making those buffers available for other mappings. FILE = T means all
files; PAGES = NIL means all pages. Thus (C L EA RMA P T) will completely clear
the buffers.

Note that CLEARMAP unmaps any pages, whether or not they are currently locked,
i.e., CLEARMAP takes precedence over LOCKMAP.

If RELEASE = T, then not only will the buffers containing the specified pages be
unmapped, but the buffers themselves will be released, i.e. returned to the Interlisp
storage manager.

[Function]
For those situations in which a program needs prolonged access to a particular file
page, LOCKMAP can be used to prevent MAPPAGE from shifting or unmapping the
contents of the given core page. PTR is a pointer into a mapped page (Le. a value
of MAPWORD or MAPPAGE). LOCKMAP locks the indicated page in core until a
corresponding UNLOCKMAP has been performed. If a page has been locked twice,

14.19

· Page Mapped Files

it mus~ be unlocked twice before it is available for reuse. Returns PTR.

(UNlOCKMAP PTR) [Function]
PTR isa pointer into a mapped page. UNlOCKMAP removes the most recent lock
for that page.

14.20

CHAPTER 15

DWIM

A surprisingly large percentage of the errors made by Interlisp users are of the type that could be
corrected by another· LISP programmer without any information about the purpose of the program or
expression in question, e.g., misspellings, certain kinds of parentheses errors, etc. To correct these types
of errors we have implemented in Interlisp a DWIM facility, short for Do-What-I-Mean. DWIM is called
automatically whenever an error occurs in the evaluation of an Interlisp expression. (Currently, DWIM
only operates on unbound atoms and undefined function errors.) DWIM then proceeds to try to correct
the mistake using the current context of computation plus information about what the user had previously
been doing, (and what mistakes he had been making) as guides to the remedy of the error. If DWIM
is able to make the correction, the computation continues as though no error had occurred. Otherwise,
the procedure is the same as though DWIM had not intervened: a break occurs, or an unwind to the last
ERRORSET (page 9.15). The following protocol illustrates the operation of DWIM.

For example, suppose the user defines the factorial function (FACT N) as follows:

~DEFINEQ{{FACT {LAMBDA (N) {COND
({ZEROP N9 1) {{T {ITIMS N {FACCT 8SUB1 N]
(FACT)
...
Note that the definition of FACT contains several mistakes: ITIMES and FACT have been misspelled; the
9 in N9 was intended to be a right parenthesis, but the shift key was not depressed; similarly, the 8 in
8SUB 1 was intended to be a left parenthesis; and finally, there is an extra left parenthesis in front of the
T that begins the final clause in the conditional.

"'PRETTYPRNT{{FACCT]
=PRETTYPRINT
=FACT

{FACT
[LAMBDA (N)

{COND
({ZEROP N9 1)

{{T {ITIMS N (FACCT 8SUB1 N])
(FACT) ...
After defining FACT, the user wishes to look at its definition using PRETTYPRINT, which he unfortunately
misspells. Since there is no function PRE TTY P R N T in the system, an undefined function error occurs, and
DWIM is called. DWIM invokes its spelling corrector, which searches a list of functions frequently used
(by this user) for the best possible match. Finding one that is extremely close, DWIM proceeds on the
assumption that PRETTYPRNT meant PRETTYPRI NT, notifies the user of this, and calls PRETTYPR INT.

At this point, PRETTYPRINT would normally print (FACeT NOT PRINTABLE) and exit, since FACCT
has no definition. Note that this is not an Interlisp error condition, so that DWIM would not be called

15.1

as described above. Hc;>wever, it is obviously not what the user meant.

This sort of mistake is corrected by having PRETTYPRINT itself explicitly invoke the spelling corrector
portion of DWIM whenever given a function with no EXPR definition. Thus, with the aid of DWIM
PRETTYPRINT is able to detert;nine that the user wants to see the definition of the function F~CT, and
proceeds accordingly.

+-FACT(3]
N9 [IN FACT] -) N)? YES
[IN FACT] (COND -- «T :-») -)

(COND -- (T --»
ITIMS [IN FACT] -) ITIMES
FACCT [IN FACT] -) FACT,
aSUBl [IN FACT] -) (S~Bl? YES
a
+-PP FACT
(FACT

[LAMBDA (N)
(COND

«ZEROP N)
1)

(T (ITIMES N (FACT (SUBt N])
FACT

The user now calls FACT. During its execution, five errors occur, and DWIM is called five times. At
each point, the error is corrected., a message is printed describing the action taken, and the computation
is allowed to continue as if no e,rror had occurred. Following the last correction, 6 is printed, the value
of (FACT 3). Finally, the user ;prettyprints the new, now correct, definition of FACT.

In this particular example, the u~er was shown operating in TRUSTING mode, which gives DWIM carte
blanche for most corrections. The user can also operate in CAUT IOUS mode, in which case DWIM will
infonn him of intended correctiohs before they are made, and allow the user to approve or disapprove of
them. If DWIM was operating i, CAUT IOUS mode in the example above, it would proceed as follows:

+-FACT(3)
N9 [IN FACT] -) N)? ¥ES
U.D.F. T [IN FACT] FI~? YES
[IN FACT] (COND -- «T ~-») -)

(COND -- (11 --»
ITIMS [IN FACT] -) ITIM~S? ... YES
FACCT [IN FACT] -) FACT :1 ... YES
aSUBl [IN FACT] -) (SUB1? NO
U.B.A.
(aSUBl BROKEN)

For most corrections, if the user: does not respond in a specified interval of time, DWIM automatically
proceeds with the correction, so 1+hat the user need intervene only when he does not approve. Note that
the user responded to the first, second, and fifth questions; DWIM responded for him on the third and

15.2

DWIM

fourth. 1

A great deal of effort has gone into· making DWIM "smart", and experience with a large number of users
indicates that DWIM works very well; DWIM seldom fails to correct an error the user feels it should
have, and almost never mistakenly corrects an error. However, it is important to note that even when
DWIM is wrong, no harm is .done:2 since an error had occurred, the user would have had to intervene
anyway if DWIM took no action. Thus, if DWIM mistakenly corrects an error, the user Simply interrupts
or aborts the computation, UNDOes the,DWIM change using UNDO (page 8.11), and makes the correction
he would have had to make without DWIM. It is .this benign quality of DWIM that makes it a valuable
part of Interlisp.

(OWIM x) [Function]
Used to enable/disable DWIM. If x is the litatom C, DWIM is enabled in
CAUTIOUS mode, so that DWIM will ask the user before making corrections. If x
is T, DWIM is enabled in TRUSTING mode, so DWIM will make most corrections
automatically. If x is NIL, DWIM is disabled. Interlisp initially has DWIM
enabled in CAUT IOUS mode.

OWIM returns CAUTIOUS, TRUSTING or NIL, depending to what mode it has just
been put into. .

For corrections to expressions typed in by the user for immediate execution,3 DWIM always acts as
though it were in TRUSTING mode, Le., no approval necessary. For certain types of corrections, e.g.,
run-on spelling corrections, 8-9 errors, etc., DWIM always acts like it was in CAUT IOUS mode, and asks
for approval. In either case, DWIM always informs the user of its action as described below.

/'

15.1 SPELLING CORRECfION PROTOCOL

One type of error that DWIM can correct is the misspelling of a function or a variable name. When
an unbound litatom or undefined function error occurs, DWIM tries to correct the spelling of the bad
litatom. If a litatom is found whose spelling is "close" to the offender, DWIM proceeds as follows:

If the correction occurs in the typed-in expression, DWIM prints = CORRECT-SPELLING cr and continues
evaluating the expression. For example:

1 DWIM uses ASKUSE R for its interactions with the user (page "6.57). Whenever an interaction is about
to take place and the user has typed ahead, ASKUSE R types several bells to warn the user to stop typing,
then clears and saves the input buffers. restoring them after the interaction is complete. Thus if the user
has typed ahead before a DWIM interaction, DWIM will not confuse his type ahead with the answer to
its question, nor will his typeahead .be lost. The bells are printed by the function PRINTBELLS. which
can be advised. or redefined for specialized applications. e.g. to flash the screen for a display terminal.

2Except perhaps if DWIM's correction mistakenly caused a destructive computation to be initiated, and
information was lost before the user could interrupt We have not yet had such an incident occur.

3Typed into LISPX (see page 8.28).

15.3

~(SETQ FOO (IPLUSS 1 2»
=IPLUS
3

Spelling Correction Protocol

If the correction does not occur in type-in, DWIM prints4

BAD-SPELLING [I N FUNCTION-NAME] - > CORRECT-SPELLING

Then, ifDWIM is in TRUSTING :mode, it prints a carriage return, makes the correction, and continues the
computation. If DWIM is in CAUT IOUS mode, it prints a few spaces and 1 and then wait for approval.'
The user then has six options:

(1) Type Y. DWIM types es, and proceeds with the correction.

(2) Type N. DWIM types 0, and . does not make the correction.

(3) Type DWIM does not make the correction, and furthennore guarantees that the error will not
cause a break.

(4) Type control-E. For error correction, this has the same effect as typing N.

(5) Do nothing. In this case DWIM waits for DWIMWAIT seconds, and if the user has not responded,
DWIM will type . .. followed by the default answer.

The default on spelling correctioris is detennined by the value of the variable F IXSPELLDE FAUL T, whose
top level value is initially Y.

(6) Type space or carriage-return~ In this case DWIM will wait indefinitely. This option is intended for
those cases where the user wants to think about his answer, and wants to insure that DWIM does not get
"impatient" and answer for him.

The procedure for spelling corr~tion on other than Interlisp errors is analogous. If the correction is
being handled as type-in, DWIMi prints = followed by the correct spelling, and returns it to the function
that called DWIM. Otherwise, It>WIM prints the incorrect spelling, followed by the correct spelling.
Then, if DWIM if in TRUST I NG: mode, DWIM prints a carriage-return and returns the correct spelling.
Otherwise, DWIM prints a few spaces and a ? and waits for approval. The user can then respond with
Y, N, control-E, space, carriage return, or do nothing as described above.

Note that the spelling corrector it$elf is not E RRORSE T protected like the DWIM error correction routines.
Therefore, typing N and typing control-E may have different effects when the spelling corrector is called
directly. The fonner simply instructs the spelling corrector to return NIL, and lets the calling function

4The appearance of - > is to call attention to the fact that the user's function will be or has been changed.

15.4

'.

DWIM

decide what to do next; the latter causes an error which unwinds to the last ERRORSET, however far back
that may be.

1502 PARENTHESES ERRORS PROTOCOL

When an unbound litatom or undefined error occurs, and the offending litatom contains 8 or 9, DWIM
tries to correct errors caused by typing 8 for left parenthesis and 9 for right parenthesis.5 In these cases,
the interaction with the user is similar to that for spelling correction. If the error occurs in type-in~ DWIM
types =CORRECTIONcr, and continues evaluating the expression. For example:

~(SETQ FOO 8IPLUS 1 2]
= (IPLUS
3

If the correction does not occur in type-in, DWIM prints

BAD-ATOM [I N FUNCTION-NAME] - > CORRECTION ?

and then waits for approval. The user then has the same six options as for spelling correction, except
the waiting time is 3*OWIMWAIT seconds. If the user types Y, DWIM then operates as if it were in
TRUSTING mode, Le., it makes the correction and prints its message.

15.3 V.D.F. T ERRORS PROTOCOL

When an undefined function error occurs, and the offending function is T. 0 WIM tries to correct certain
types of parentheses errors involving a T clause in a conditional. DWIM recognizes errors of the following
forms:

(CONO --) (T --)

(CONO

(CONO

(-- & (T --»)
«T --»)

The T clause appears outside and immediately
following the CONO.

The T clause appears inside a previous clause.

The T clause has an extra pair of parentheses
around it.

For U. D. F 0 T errors that are not one of these three types, DWIM takes no corrective action at all, and
the error will occur.

5Actually, DWIM uses the value of the variables LPARKEY and RPARKEY to determine the corresponding
lower case' character for left and right parentheses. LPARKEY and RPARKEY are initially 8 and 9
respectively, but they can be reset for other keyboard layouts., e.g., on some tenninals left parenthesis is
over 9, and right parenthesis is over O.

15.5

DWIM Operation

If the error occurs in type-in, DWIM simply types T F I XED and makes the correction. Otherwise if
DWIM is in T RUST I NG mode, DWIM makes the correction and prints the message:

[IN FUNCTION-NAME] {BAO-CONO} -)
{CORRECTED-CONO}

If DWIM is in CAUTIOUS mode, DWIM prints

U.O.F. T
[IN FUNCTION-NAME] FIX?

and waits for approval. The user then has the same options as for spelling corrections and parenthesis
errors. If the user types Y or defaults, DWIM makes the correction and prints its message.

Having made the correction, DWIM must then decide how to p_r9Ceed with the computation. In the
first case, (CONO - -) (T - -), DWIM cannot know whether the T clause would have been executed
if it had been inside of the CONO. Therefore DWIM asks the user <;ONTINUE WITH T CLAUSE (with a
default of YES). If the user types N, DWIM continues with the form after the CONO, Le., the form that
originally followed the T clause.

In the second case, (CONO -- (-- & (T --»), DWIM has a different problem. After moving the
T clause to its proper place, DWIM must return as the value of & as the value of the CONO. Since this
value is no longer around, DWIM asks the user, OK TO REEVALUATE and then prints the expression
corresponding to &. If the user types Y, or defaults, DWIM continues by reevaluating &, otherwise DWIM
aborts, and aU. O. F. T error will then occur (even though the CONO has in fact been fixed).6

In the third case, (CONO -- « T --»), there is no problem with continuation, so no further interaction
is necessary.

15.4 DWIM OPERATION

Whenever the interpreter encounters an atomic form with no binding, or a non-atomic form CA R of which
is not a function or function object, it calls the function FAUL TEVAL. Similarly, when APPL Y is given an
undefined function, FAULTAPPLY is called. When DWIM is enabled, FAUL TEVAL and FAUL TAPPLY are
redefined to first call the DWIM package, which tries to correct the error. If DWIM cannot decide how
to fix the error, or the user disapproves of DWIM's correction (by typing N), or the user types control-E,
then FAULTEVAL and FAULTAPPLY cause an error or break.7

If DWIM can (and is allowed to) correct the error, it exits by performing RETEVAL of the corrected form.
as of the position of the call to FAULTEVAL or FAULTAPPLY. Thus in the example at the beginning
of the chapter, when DWIM determined that ITIMS was ITIMES misspelled, DWIM called RETEVAL

6If DWIM can determine for itself that the form can safely be reevaluated, it does not consult the user
before reevaluating. DWIM can do this if the form is atomic, or CAR of the form is a member of the
list OKREEVALST, and each of the arguments can safely be reevaluated. For example, (SETQ X (CONS
(IPLUS Y Z) W» is safe to reevaluate because SETQ, CONS, and IPLUS are all on OKREEVALST.

-

7If the user types l' to DWIM, DWIM exits by performing (RETEVAL 'FAUL TEVAL '(ERROR! », so
that. an error will be generated at the position of the call to FAUL TEVAL.

15.6

DWIM

with {ITIMES N (FACCT 8SUB1 N». Since the interpreter uses the value returned by FAULTEVAL
exactly as though it were the value of the erroneous form, the computation will thus proceed exactly as

- though no error had occurred.

In addition to continuing the computation, DWIM also repairs the cause of the error whenever possible;
in the above example, DWIM also changed (with RPLACA) the expression {ITIMS N (FACCT 8SUB1
N» that caused the error. Note ·th·at if the user's program had computed the form and called EVAL, it
would not be possible to repair the cause of the error, although DWIM could correct the misspelling each
time it occurred.

Error correction in DWIM is divided into three categories: unbound atoms, undefined CAR of form, and
undefined function in APPLY. Assuming that the user approves DWIM's corrections, the action taken by
DWIM for the various types of errors in each of these categories is summarized below.

15.4.1 DWIM Correction: Unbound Atoms

If DWIM is called as the result of an unbound atom error, it proceeds as follows:

(1) If the first character of the unbound atom is " DWIM 'assumes that the user (intentionally) typed
, ATOM for (QUOT E ATOM) and makes the appropriate change. No message is typed, and no approval
is requested.

If the unbound atom is just ' itself, DWIM assumes the user wants the next expression quoted, e.g.,
{CONS X '(A B C» will be changed to {CONS X {QUOTE (A B C»). Again no message will be
printed or approval asked. If no expression follows the " DWIM gives Up.8

(2) If CLISP (page 16.1) is enabled, and the atom is part of a CLISP construct, the CLISP transformation
is performed and the result returned. For example, N -1 is transformed to (SUB 1 N), and (... F 00+-3
...) is transformed into { ... (SETQ FOO 3) ...).

(3) If the atom contains an 8 (actually LPARKEY, see page 15.12), DWIM assumes the 8 was intended
to be a left parenthesis, and calls the editor to make appropriate repairs on the expression containing
the atom. DWIM assumes that the user did not notice the mistake, i.e., that the entire expression was
affected by the missing left parenthesis. For example, if the user types {SETQ X {LIST (CONS BCAR
Y) (CDR Z» Y),theexpressionwillbechangedto{SETQ X (LIST (CONS (CAR Y) (CDR Z»
Y)). Note that the 8 does not have to be the first character of the atom: DWIM will handle (CONS
X8CAR Y) correctly.

(4) If the atom contains a 9 (actually RPARKEY, see page 15.12), DWIM assumes the 9 was intended to
be a right parenthesis and operates as in the case above.

(5) If the atom begins with a 7, the 7 is treated as a ' . For example, 7 F 00 becomes 'F 00, and then
(QUOTE FOO).

(6) If the atom is an edit command (a member of ED ITCOMSA), and the error occurred in type-in: the
effect is the same as though the user typed EDITF (), followed by the atom, Le., DWIM assumes the
user wants to be in the editor editing the last thing he referred to. Thus, if the user defines the function

8' is normally defined as a read-macro character which converts 'FOO to (QUOTE FOO) on inpu~ so
DWIM will not see the ' in the case of expressions that are typed-in.

15.7

Undefined CAR of Form

Foa and then types P, he will see =FOO, followed by EDIT, followed by the printout associated with the
execution of the P command followed by ., at which point he can continue editing F 00.

(7) The expressions on DWIMUSERFORMS (see page 15.10) are evaluated in the order that they appear. If
any of these expressions returns a non-N I L value, this value is treated as the form to be used to continue
the computation9 it is evaluated and its value is returned by OW I M.

(8) If the unbound atom occurs in a function, DWIM attempts spelling correction using the LAMBDA and
PROG variables of the function as the spelling list.

(9) If the unbound atom occurr~d in a type-in to a break, DWIM attempts spelling correction using the
LAMBDA and PROG variables of the broken function as the spelling list.

(10) Otherwise, DWIM attempts'spelling correction using SPELLINGS3 (see page 15.14).

(11) If all of the above fail, DWIM gives up.

15.4.2 Undefined CAR of Form

If DWIM is called as the result of an undefined CAR of form error, it proceeds as follows:

(1) If CAR of the form is T, DWIM assumes a misplaced T clause and operates as described on page 15.5.

(2) If CAR of the form is F IL, .DWIM changes the "F IL" to "FUNCTION(LAMBDA". For example,
(F/L (Y) (PRINT (CAR V»~) is changed to (FUNCTION (LAMBDA (Y) (PRINT (CAR V»~).
No message is printed and no approval requested. If the user omits the variable list, DWIM supplies (X),
e.g., (F/L (PRINT (CAR X») is changed to (FUNCTION (LAMBDA (X) (PRINT (CAR X»».
DWIM determines that the user has supplied the variable list when more than one expression follows
F IL, CAR of the first expression is not the name of a function, and every element in the first expression
is atomic. For example, DWIM will supply (X) when correcting (F IL (PR INT (CDR X» (PRI NT
(CAR X»).

(3) If CAR of the form is a CLISP word (IF, FOR, DO, FETCH, etc.), the indicated CLISP transformation
is performed, and the result is returned as the corrected form. See page 16.1.

(4) If CAR of the form has a function definition, DWIM attempts spelling correction on CAR of the
definition using as spelling list the value of LAMBDASPlST, initially (LAMBDA NLAMBDA).

(5) If CAR of the form has an EXPR or CODE property, DWIM prints CAR-OF-FORM UNSAVED, performs
an UNSAVEDEF, and continues. No approval is requested.

(6) If CAR of the form has a F I L EDE F property, the definition is loaded from a file.9 If the value of
the property is atomic, the entire file is to be loaded. If the value is a list, CAR is the name of the file
and CDR the relevant functions. and LOADFNS will be used. For both cases, LDFLG will be SYSLOAD
(see page 11.4). DWIM uses FINDFILE (page 15.20), so that the file can be on any/of the directories
on DIRECTORIES, initially (NIL NEWLISP LISP LISPUSERS). If the file is found, DWIM types
SHALL I LOAD followed by the file name or list of functions. If the user approves, DWIM loads the
function(s) or file, and continues the computation.

gexcept when DWIMIFYing.

15.8

DWIM

(7) If CLISP is enabled, and' CAR of the form is part of a CLISP construct, the indicated transformation
is performed, e~g., (N+-N-1) becomes (SETQ N (SUB1 N».

(8) If CAR of the form contains an 8, DWIM assumes a left parenthesis was intended e.g., (CONS8CAR
oX).

(9) If CAR of the form contains a 9, DWIM assumes a right parenthesis was intended.

(10) If CAR of the form is a list, DWIM attempts spelling correction on CAAR of the form using
LAMBDASPLST as spelling list If successful, DWIM returns the corrected expression itself.

(11) If CAR of the form is a small number, and the error occurred in type-in, DWIM assumes the form
is really an edit command and operates as described for unbound atom errors above.

(12) If CAR of the form is an edit command (a member of ~9ITCOMSL), DWIM operates as in the
previous case.

(13) The expressions on DWIMUSERFORMS are evaluated in the order they appear. If any returns a
non-NIL value, this value is treated as the corrected form" it is evaluated, and DWIM returns its value.

(14) Otherwise, DWIM attempts spelling correction using SPELLINGS2 as the spelling list (see page
15.14). When DWIMI FYing, DWIM also attemps spelling correction on function names not defined but
previously encountered, using NOFIXFNSLST as a spelling list (see page 16.16).

(15) If all of the above fail, DWIM gives up.

15.4.3 Undefined Function in APPLY

If DWIM is called as the result of an undefined function in A P PLY error, it proceeds as follows:

(1) If the function has a definition, DWIM attempts spelling correction on CAR of the definition using
LAMBDASPLST as spelling list.

(2) If the function has an EXPR or CODE property, DWIM prints FN UNSAVED, performs an UNSAVEDEF
and continues. No approval is requested.

(3) If the function has a property FILEDEF, DWIM proceeds as in case 6 of undefined CAR of form.

(4) If the error resulted from type-in, and CLISP is enabled, and the function name contains a CLISP
operator, DWIM performs the indicated transformation, e.g., the user types F OO+- (A P PEN 0 FIE FUM) .

(5) If the function name contains an 8, DWIM assumes a left parenthesis was intended, e.g., EDIT8FOO].

'(6) If the "function" is a list, DWIM attempts spelling correction on CAR of the list using LAMBDASPLST as
spelling list

(7) If the function is a number and the error occurred in type-in, DWIM assumes the function is an edit
command, and operates as described in case 6 of unbound atoms, e.g., the user types (on one line) 3 - 1
P.

(8) If the function is the name of an edit command (on either EDITCOMSA or EDITCOMSL), DWIM
operates as in the previous case, e.g., user types F CON D.

15.9

DWIMUSERFORMS

(9) The expressions on DWIMUSERFORMS are evaluated in the order they appear, and if any returns a
non-N I L value, this value is treated as the function used to continue the computation, i.e., it will be
applied to its arguments.

(10) DWIM attempts spelling correction using SPELLINGS1 as the spelling list.

(11) DWIM attempts spelling correction using SPELLINGS2 as the spelling list.

(12) If all fail, DWIM gives up.

15.5 DWIMUSERFORMS

The variable DWIMUSERFORMS provides a convenient way of adding to the transformations that DWIM
performs. For example, the user might want to change atoms of the form SX to (QA4LOOKUP X).
Before attempting spelling correction, but after performing other transformations (F IL, 8, 9, CLISP, etc.),
DWIM evaluates the expressions on DWIMUSERFORMS in the order they appear. If any expression returns
a non-N I L value, this value is treated as the transformed form to be used. If DWIM· was called from
FAUL TEVAL, this form is evalua~ed and the resulting value is returned as the value of FAULTEVAl. If
DWIM is called from FAUL TAPPLY, this form is treated as a function to be applied to FAUL TARGS, and
the resulting value is returned as t;he value of F AUL TAPPL Y. If all of the expressions on DWIMUSE RFORMS
return NIL. DWIM proceeds as 4hough DWIMUSERFORMS=NIL, and attempts spelling correction. Note
that DWIM simply takes the value and returns it; the expressions on DWIMUSERFORMS are responsible
for making any modifications to t\he original expression.lO

In order for an expression on DWIMUSERFORMS to be able to be effective, it needs to know various
things about the context of the error. Therefore, several of DWIM's internal variables have been made
SPECVARS (see page 12.4) and are therefore "visible" to DWIMUSERFORMS. Below are a list of those
variables that may be useful.

fAULTX

FAULTARGS

FAULTAPPLYFLG

[Variable]
For unbound atom and undefined car of form errors. FAUL TX is the atom or form.
For undefihed function in APPLY errors, FAULTX is the name of the function.

[Variable]
For undefined function in APPLY errors, FAUL TARGS is the list of arguments.
FAUL TARGS may be modified or reset by expressions on DWIMUSERFORMS.

[Variable]
Value is T for undefined function in A P PLY errors; NIL otherwise. The value
of FAULTAPPLYFLG after an expression on DWIMUSERFORMS returns a non
NIL value' determines how the latter value is to be treated. Following an
undefined ,function in APPLY error, if an expression on DWIMUSERFORMS sets
FAULTAPPLYFLG to NIL, the value returned is treated as a form to be evaluatecL
rather than a function to be applied.

lOThe expressions on DWIMUSERFORMS should make the transformation permanen~ either by associating
it with FAULTX via CLISPTRAN, or by physically smashing FAUL TX.

15.10

TAIL

PARENT

TYPE-IN?

FAULTFN

OWIMIFYFLG

EXPR

DWIM

F AU L TAP PLY F LG is necessary to distinguish between unbound atom and undefined
function in APPLY errors, since FAULTARGS may be NIL and FAULTX atomic in
both cases.

[Variable]
For unbound atom errors, TAIL IS the tail of the expression CAR of which is the
unbound atom. OWIMUSERFORMS expression can replace the atom by another
expression by performing (/ RPLACA TAl L EXPR)

[Variable]
For unbound atom errors, PARENT is the form in which the unbound atom appears.
TAIL is a tail of PARENT.

[Variable]
True if the error occurred in type-in.-

[Variable]
Name of the function in which error occurred. FAULTFN is TYPE-IN when the
error occurred in type-in, and EVAl or APPLY when the error occurred under an
explicit call to EVAL or APPL Y.

[Variable]
True if the error was encountered while OWIMI FYing (as opposed to happening
while running a program).

[Variable]
Definition of FAULTFN, or argument to EVAL, i.e., the superform in which the
error occurs.

The initial value of OW 1M USER FORMS is ({MACROTRAN) (DWIMLOAOFNS?». MACROTRAN is a package
for running interpreted programs containing ASSEMBLE statements or calls to "functions" defined only
by MACRO properties (see page 5.19). OWIMLOAOFNS? is a function for automatically loading functions
from files. If DWIMLOAOFNSFLG is T (its initial value), and CAR of the form is the name of a function,
and the function is contained on a file that has been noticed by the file package, the function is loaded,
and the computation continues.

15.6 DWIM FUNCTIONS AND VARIABLES

DWIMWAIT [Variable]
V Cllue is the number of seconds that DWIM will wait before it assumes that
the user is not going to respond to a question and uses the default response ...
FIXSPELLOEFAULT.

DWIM operates by dismissing for 250 milliseconds, then checking to see if anything
has been typed. If'not, it dismisses again, etc. until DWIMWAIT seconds have
elapsed. Thus, there will be a delay of at most 1/4 second before DWIM responds
to the user's answer.

15.11

DWIM Functions and Variables

FIXSPELLDEFAULT [Variable]
If approval is requested for a spelling correction~ and user does not responc:L defaults
to value or FIXSPELLDEFAULT, initially Y. FIXSPELLDEFAULT is rebound to N
when DWIMIFYing.

ADDSPELLFLG [Variable]

NOSPELLFLG

RUNONFLG

If NIL, suppresses calls to ADDSPELL. Initially T.

[Variable]
If T, suppresses all spelling correction. If some other non-N I L value, suppresses
spelling correction in programs but not type-in. NOSPELLFLG is initially NIL. It
is rebound to T when compiling from a file.

[Variable]
If NIL. suppresses run-on spelling -corrections. Initially T.

DWIMLOADFNSFLG [Variable]
If T, tells DWIM that when it encounters a call'to an undefined function contained
on a file that has been noticed by the file package, to simply load the function.
DWIMLOADFNSFLG is initially T. See page IS.1I.

LPARKEY [Variable]
RPARKEY [Variable]

DWIM uses the value of the variables LPARKEY and RPARKEY (initially 8 and 9
respectively) to determine the corresponding lower case character for left and right
parentheses. LPARKEY and RPARKEY can be reset for other keyboard layouts.,
For example, on some terminals left parenthesis is over 9, and right parenthesis is
over o.

OKREEVALST [Variable]
The value of OKRE EVALST is a list of functions that DWIM can safely reevaluate.
If a form is atomic, or CAR of the form is a member of OKREEVALST, and each of
the arguments can safely be reevaluatec:L then the form can be safely reevaluated.
For example, {SETQ X {CONS (I PLUS Y Z) W» is safe to reevaluate because
SETQ, CONS, and IPLUS are all on OKREEVALST.

DWIMFLG [Variable]
DWIMF LG = NIL. all DWIM operations are disabled. (DWIM 'C) and (DWIM T)
set DWIMFLG to T; (DWIM NIL) sets DWIMFLG to NIL.

APPROVEFLG [Variable]

LAMBDASPLST

APPROVEFLG=T if DWIM should ask the user for approval before making a
correction that will modify the definition of one of his functions; NIL otherwise.

When DWIM is put into CAUTIOUS mode with (DWIM 'C), APPROVEFLG is set
to T; for TRUSTING mode. APPROVEFLG is set to NIL.

[Variable]
DWIM uses the value of LAMBDASPLST as the spelling list when correcting "bad"
function definitions. Initially (LAMBDA NLAMBDA). The user may wish to add
to LAMBDASPLST if he elects to define new "function types" via an appropriate
DWIMUS~RFORMS entry. For example, the QLAMBDAs of SRI's QLISP are handled

15.12

DWIM

in this way.

15.7 SPELLING CORRECflON

The spelling corrector is given as arguments a ·misspelled word (word means literal atom), a spelling list (a
list of words), and a number: XWORD, SPLST, and REL respectively. Its task is to find that word on SPLST

. which is closest to XWORD, in the sense described below. This word is called a respelling of XWORD. REL
specifies the minimum "closeness" between XWORD and a respelling. If the spelling corrector cannot find
a word on SPLST closer to XWORD than REL, or if it finds two or more words equally close, its value is
NIL, otherwise its value is the respelling. The spelling corrector can also be given an optional functional
argument, FN, to be used for selecting out a subset of SPLST, i.e., only those members of SPLST that
satisfy FN will be considered as possible respellings. - -

The exact algorithm for computing the spelling metric is described later, 'but briefly "closeness" is inversely
proportional to the number of disagreements between the two words, and directly proportional to the
length of the longer word. For example, PRTTYPRNT is "closer" to PRETTYPRINT than CS is to CONS
even though both pairs of words have the same number of disagreements. The spelling corrector operates
by proceeding down SPLST, and computing the closeness between each word and XWORD, and keeping
a list of those that are closest Certain differences between words are not counted as disagreements, for
example a single transposition, e.g., CONS to CNOS, or a doubled letter, e.g., CONS to CONSS, etc. In the
event that the spelling corrector finds a word on SPLST with no disagreements, it will stop searching and
return this word as the respelling. Otherwise, the spelling corrector continues through the entire spelling
list Then if it has found one and only one Uclosest" word, it returns this word as the respelling. For
example, if XWORD is VONS, the spelling corrector will probably return CONS as the respelling. However,
if XWORD is CONZ, the spelling corrector will not be able to return a respelling, since CONZ is equally
close to both CONS and CONDo If the spelling corrector finds an acceptable respelling, it interacts with the
user as described earlier.

In the special case that the misspelled word contains one or more $s «esc)s, alt-mode on some
terminals), the spelling corrector searches for those words on SPLST that match XWORD, where a $ can
match any number of characters (including 0), e.g., FOOS matches FOOl and FOO, but not NEWFOO.
$FOOS matches all three .. Both completion and correction may be involved, e.g. RPETTY$ will match
PRETTYPRINT, with one mistake. The entire spelling list is always searched, and if more than one
respelling is found, the spelling corrector prints AMB IGUOUS, and returns NIL. For example, CONS would
be ambiguous if both CONS and COND were on the spelling list. If the spelling corrector finds one and
only one respelling, it interacts with the user as described earlier.

For both spelling correction and spelling completion, regardless of whether or not the user approves of
the spelling corrector's choice, the respelling is moved to the front of SPLST. Since many respellings are of
the type with no disagreements, this procedure has the effect of considerably reducing the time required
to correct the spelling of frequently misspelled words.

15.7.1 Synonyms

Spelling lists also provide a way of defining synonyms for a panicular context. If a dotted pair appears
on a spelling list (instead of just an atom), CAR is interpreted as the correct spelling of the misspelled
word, and CDR as the antecedent for that word. If CAR is identical with the ~isspelled word, the

15.13

Spelling Lists

antecedent is returned without any interaction or approval being necessary. If the misspelled word
con-eels to CAR of the dotted pair, the usual interaction and approval will take place, and then the
antecedent, i.e., CDR of the dotted pair, is returned. For example, the user could make IF LG synonymous
with CLISPIFTRANFLG by adding (IFLG • CLISPIFTRANFLG) to SPELLINGS3, the spelling list
for unbound atoms. Similarly, the user could make OT H E RW I S E mean the same as E LS ElF by adding
(OTHERWISE • ELSEIF) to CLISPIFWORDSPLST, or make L be synonymous with LAMBDA by adding
(L • LAMBDA) to LAMBDASPLST. Note that L could also be used. as a variable without confusion, since
the association of L with LAMB DA occurs only in the appropriate context

IS. 7.2 Spelling Lists

Any list of atoms can be used as a spelling list, e.g., BROKENFNS, FILELST, etc. Various system packages
have their own spellings lists, e~g., L ISPXCOMS, CLISPFORWORDSPLST, ED ITCOMSA, etc. These are
documented under their corresponding sections, and are also indexed under "spelling lists." In addition
to these spelling lists, the system maintains, Le., automatically adds to, and occasionally prunes, four lists
used solely for spelling correction: SPELLINGSl, SPELLINGS2, SPELLINGS3, and USERWORDS. These
spelling lists are maintained only when ADDSPELLFLG is non-NIL. ADDSPELLFLG is initially T.

SPELLINGSl

SPELLINGS2

SPELLINGS3

[Variable]
SPE LL I NGS 1 is a list of functions used for spelling correction when an input
is typed in apply format, and the function is undefined, e.g., EDT I F (F 00).
SPELLINGSl is initialized to contain DEFINEQ, BREAK, MAKEFILE, EDITF,
TCOMPL, LOAD, etc. Whenever LISPX is given. an input in apply format, Le., a
function and arguments, the name of the function is added to SPELLINGSl if the
function Qas a definition.

For examllle, typing CALLS{ EDITF) will cause CALLS to be added to SPELLINGSl.
Thus if the user typed CALLS{EDITF) and later typed CALLLS{EDITV), since
SPELLINGSl would then contain CALLS, DWIM would be successful in correcting
CALLLS to CALLS.

[Variable]
SPELLINGS2 is a list of functions used for spelling correction for all other
undefined functions. It is initialized to contain functions such as ADDl, APPEND,
COND, CO~S. GO, LIST, NCONC, PRINT, PROG, RETURN, SETQ, etc. Whenever
LISPX is given a non-atomic form, the name of the function is added to
SPELLINGS2. For example, typing {RETFROM {STKPOS (QUOTE FOO) 2»
to a break' would add RET F ROM to S PEL LING S2. Function names are also added
to SPELLINGS2 by DEFINE. DEFINEQ, LOAD (when loading compiled code),
UNSAVEDEF. EDITF. and PRETTYPRINT.

[Variable]
SPE LL I NGS3 is a list of words used for spelling correction on all unbound atoms.
SPELLINGS3 is initialized to EDITMACROS, BREAKMACROS, BROKENFNS, and
ADVISEDFNS. Whenever LISPX is given an atom to evaluate, the name of the
atom is added to SPELLINGS3 if the atom has a value. Atoms are also added
to SPELLINGS3 whenever they are edited by EDITV, and whenever they are set
via RPAQ or RPAQQ. For example, when a file is loaded, all of the variables set in
the file are added to SPELLINGS3. Atoms are also added to SPELLINGS3 when
they are set by a LISPX input, e.g., typing {SETQ FOO (REVERSE (SETQ FIE

15.14

USERWORDS

-

DWIM

... ») will add both FOO and FIE to SPELLINGS3.

[Variable]
USE RWORDS is a list containing both functions and variables that the user has
reje"ed to. e.g., by breaking or editing. USERWORDS is used for spelling
correction by ARGLIST, UNSAVEDEF, PRETTYPRINT, BREAK, EDITF, ADVISE,"
etc. USERWORDS is initially NIL. Function names are added to it by DEF INE,
DE F INEQ, LOAD, (when loading compiled code, or loading exprs to property
lists) UNSAVEDEF, EDITF, EDITV, EDITP, PRETTYPRINT, etc. Variable names
are added to USERWORDS at the same time as they are added to SPELLINGS30
In addition, the variable LASTWORD is always set to the last word added to
USE RWORDS, i.e., the last function or variable referred to by the user, and the
respelling of NIL is defined to be the value of LASTWORD. Thus, if the user
has just defined a function, he can then edit it by simply typing ED I T F (), or
prettyprint it by typing P P (). - -

Each of the above four spelling lists are divided into two sections separated by a special marker. The first
section contains the "permanent" words; the second section contains the temporary words. New words are
added to the corresponding spelling list at the front of its temporary section (except that functions added
to SPELLINGS1 or SPELLINGS2 by LISPX are always adqed to the end of the permanent section. If
the word is already in the temporary section, it is moved to the front of that section; if the word is in
the permanent section, no action is taken. If the length of the temporary section then exceeds a specified
number, the last (oldest) word in the temporary section is forgotten, i.e., deleted. This procedure prevents
the spelling lists from becoming cluttered with unimportant words that are no longer being used, and
thereby slowing down spelling correction time. Since the spelling corrector usually moves each word
selected as a respelling to the front of its spelling list. the word is thereby moved into the permanent
section. Thus once a word is misspelled and corrected, it is considered important and will never be
forgotten.

#SPELLINGS1
#SPELLINGS2
#SPELLINGS3
#USERWORDS

[Variable]
[Variable]
[Variable]
[Variable]

The maximum length of the temporary section for SPELLINGS1, SPELLINGS2,
SPELLINGS3 and USERWORDS is given by the value of#SPELLINGS1, #SPELLINGS2,
#SPELLINGS3. and #USERWORDS, initialized to 30,30,30, and 60 respectively.

Users can alter these values to modify the performance behavior of spelling
correction.

15.7.3 Generators for Spelling Correction

For some applications, it is more convenient to generate candidates for a respelling one by one, rather
than construct a complete list of all possible candidates, e".g., spelling correction involving a large directory
of files, or a natural language data base. For these purposes, SPLST can be an array (of any size). The
first element of this array is the generator function, which is called with the array itself as its argument.
Thus the function can use the remainder of the array to store "state" information, e.g., the last position
on a file, a pointer into a data structure, etc. The value returned by the function is the next candidate
for respelling. If NIL is returned, the spelling "'list" is considered to be exhausted. and the closest match
is returned. If a candidate is found with no disagreements, it is returned immediately without waiting for

15.15

Spelling Corrector Algorithm

the "list" to exhaust.

SPLST can also be a generator, i.e. the value of the function G ENE RA TOR (page 7.13). The generator
SPLST will be started up whenever the spelling corrector needs the next candidate~ and it should return
candidates via the function P RODUC E. For example, the following could be used as a "spelling 1ist'~ which
effectively contains all functions in the system:

[GENERATOR
(MAPATOMS (FUNCTION {LAMBDA (X) (if (GETD X) then (PRODUCE Xl

15.7.4 Spelling Corrector Algorithm

The basic philosophy of DWIM spelling correction is to count the number of disagreements between two
words, and use this number divided by the length-of the longer of the two words as a measure of their
relative disagreement. One minus this number is then the relative agreement or closeness. For example,
CONS and CONX differ only in their last character.- Such substitution errors count as one disagreement,
so that the two words are in 75% agreement Most calls to the spelling corrector specify a relative
agreement of 70, so that a single substitution error is permitted in words of four characters or longer.
However. spelling correction on shorter words is possible since certain types of differences such as single
transpositions are not counted as disagreements. For example, AND and NAD have a relative agreement
of 100. Calls to the spelling corrector from DWIM use the value of F IXSPELLREL, which is initially
70. Note that by setting F IXSPE LLRE L to 100. only spelling corrections with "zero" mistakes, will be
considered, e.g.~ transpositions. double characters, etc.

The central function of the spelling corrector is CHOOl. CHOOl takes as arguments: a worcL a minimum
relative agreement, a spelling list, and an optional functional argument, XWORD, REL, SPLST, and FN
respectively.

CHOOl proceeds down SPLST examining each word. Words not satisfying FN (if FN is non-N I L), or those
obviously too long or too short to be sufficiently close to XWORD are immediately rejected. For example,
if REL = 70, and XWORD is 5 characters long, words longer than 7 characters will be rejected.

Special treatment is necessary for words shorter than XWORD, since doubled letters are not counted as
disagreements. For example, CONNSSS and CONS have a relative agreement of 100. (keyboard bounce
on many different kinds of keyboards actually produce this sort of stuttering.) CHOOl handles this by
counting the number of doubled characters in XWORD before it begins scanning SPLST, and taking this
into account when deciding whether to reject shorter words.

If TWORD, the current word on SPLST. is not rejected, C HOO l computes the number of disagreements
between it and XWORD by calling a subfunction, SKOR.

SKOR operates by scanning both words from left to right one character at a time. SKOR operates on the
list of character codes for each word. This list is computed by CHOOl before calling SKOR. Characters
are considered to agree if they are the same characters; or appear on the same key (Le., a shift mistake),
for example, * agrees with :, 1 with !, etc.; or if the character in XWORD is a lower case version of the
character in TWORD. Characters that agree are discarded, and the SKORing continues on the rest of the
characters in XWORD and TWORD.

If the first character in XWORD and TWORD do not agree, SKOR checks to see if either character is the
same as one previously encountered, and not accounted-for at that time. (In other words, transpositions

15.16

DWIM

are not handled by 100kaheatL but by -lookback.} A displacement of two or fewer positions is counted
as a tranposition; a displacement by more than two -positions is counted as a disagreement In either case,
both characters are -now considered as accounted for and are discardetL and S K 0 Ring continues.

If the first character in XWORD and TWORD do not agree, and neither agree with previously unaccounted
for characters, and TWORD has more characters remaining than XWORD, SKOR removes and saves the first
character of TWORD, and continues by comparing the rest of TWORD with XWORD as described above. If
TWORD has the same or fewer characters remaining than XWORD, the procedure is the same except that
the character is removed from XWORD. In this case, a special check is first made to see if that character
is equal to the previous character in XWORD, or to the next character in XWORD, i.e., a double character
typo, and if so, the character is considered accounted-for, and not counted as a disagreement. In this
case, the ,llength" of XWORD is also decremented. Otherwise making XWORD sufficiently long by adding
double characters' would make it be arbitrarily close to TWORD, e.g., XXXXXX would correct to PP.

When SKOR has finished processing both XWORD" and TWORD in this fashion, the value of SKOR is the
number of unaccounted-for characters, plus the number of disagreements, plus the number of tranpositions, '
with two qualifications: (1) if both XWORD and TWORD have a character unaccounted-for in the same
position, the two characters are counted only once, Le., substitution errors count as only one disagreement,
not two; and (2) if there are no unaccounted-for characters and no disagreements, transpositions are not
counted. This permits spelling correction on very short words, suchas edit commands, e.g., XRT->XTR.
Transpositions are also not counted when FASTYPEFLG=T, for example, IPULX and IPLUS will be in
80% agreement with FASTYPEFLG=T, only 60% with FASTYPEFLG=NIL. The rationale behind this is
that transpositions are much more common for fast typists, and should not be counted as disagreements,
whereas more deliberate typists are not as likely to combine tranpositions and other mistakes in a single
wortL and therefore can use more conservative metric. FASTYPEFLG is initially NIL.

15.7.5 Spelling Corrector Functions and Variables

(ADDSPELL X SPLST N) [Function]
Adds x to one of the four spelling lists as follows:

If x is already on the spelling list, and in its temporary section, ADDSPE L'L moves
x to the front of that section.

If SPLST=NIL, adds x to USERWORDS and to SPELLINGS2. Used by DEFINEQ.

If SPLST=O, adds x to USERWORDS. Used by LOAD when loading EXPRs to
property lists.

If SPLST=1, adds x to SPELLINGSl (at end of permanent section). Used by
LISPX.

If SPLST=2, adds x to SPELLINGS2 (at end of permanent section). Used by
LISPX.

If SPLST=3, adds x to USERWORDS and SPELLINGS3.

SPLST can also be a spelling list, in which case N is the (optional) length of the
temporary section.

ADDSPE LL sets LASTWORD to x when SPLST= NIL, 0 or 3.
\

15.17

Spelling Corrector Functions and Variables

If x is not a literal atom, ADDSPE LL takes no action.

Note that the various systems calls to ADDSPELL, e.g. from DEFINE, EDITF, LOAD, etc., can all be
suppressed by setting or binding ADDSPELLFLG to NIL (page 15.12).

(MISSPELLED? XWORD REL SPLST FLG TAlL FN) [Function]
If XWORD = NIL or $ «esc», M I 5S PEL LED? prints = followed by the value
of LASTWORD, and returns this as the. respelling, without asking for approval.
Otherwise, M I S5 PEL LED? checks to see if XWORD is really misspelled, i.e.9 if FN

applied to XWORD is true, or XWORD is already contained on SPLST. In this case,
MISSPELLED? simply returns XWORD. Otherwise MISSPELLED? computes and
returns (F I X5P ELL XWORD REL SPLST FLG TAlL FN).

(FIXSPELL XWORD REL SPLST FLG TAlL FN TIEFLG DONTMOVETOPFLG - -) [Function]
The value of FIX5PELb is either the respelling of XWORD or NIL. If for some
reason XWORD itself is on SPLST, then F I XS PEL L aborts and calls ~ R RO R 1. If
there is a possibility that XWORD is spelled correctly, M I 55 PEL LED? should be
used instead of F IX5PELL. F IXSPELL performs all of the interactions described
earlier, including requesting user approval if necessary.

If XWORD= NIL or $ «esc», the respelling is the value of LASTWORD, and no
approval is requested.

If XWORD contains lowercase characters, and the corresponding uppercase word
is correct" i.e. on SPLST or satisfies FN, the uppercase word is returned and no
interaction is ·performed.

If REL=NIL, defaults to the value of FIXSPELLREL (initially 70).

If FLG = NIL, the correction is handled in type-in mode, i.e., approval is never
requested" and XWORD is not typed. If FLG = T, XWORD is typed (before the =) arid
approval is requested if APPROVEFLG=T. If FLG=NO-MESSAGE, the correction
is returned with no further processing. In this case, a run~on correction will be
returned as a dotted pair of the two parts of the word, and a synonym correction
as a list of the form (WORDl WORD2), where WORDl is (the corrected version of)
XWORD, and WQRD2 is the synonym. Note that the effect of the function CHOOZ
can be obtained by calling F IXSPELL with FLG= NO-MESSAGE.

If TAlL is not NIL, and the correction is successful, CAR of TAlL is replaced by
the respelling (using IRPLACA). In addition, F IXSPELL will correct misspellings
caused by running two words together. l1 In this case, CAR of TAIL is replaced
by the two words, and the value of F I X S PEL L is the first one. For example,
if F IXSPELL is called to correct the edit command (MOVE TO AFTERCOND 3
2) with TA1L=(AFTERCOND 3 2), TAlL would be changed to {AFTER COND

11 In this case, user approval is always requested. In addition, if the first word contains either fewer than
3 characters, or fewer-characters than the second word, the default will be N. 'Run-on' spelling corrections
can be suppre~sed by setting the variable RUNON F LG to NIL (initially T).

15.18

DWIM

2 3),- and FIXSPELL would return AFTER (subject to user approval where
necessary).12

If TlEFLG = NIL. and a tie occurs, i.e., more than one word on SPLST is found
with the same degree of "closeness", FIXSPELL returns NIL, i.e., no correction.
If TIEFLG= PICKONE and a tie occurs, the first word is taken as the correct
spelling. If TlEFLG= LIST, the value of FIXSPELL is a list of the respellings
(even if there is only one), and F I X S PEL L will not perform any interaction with
the user, nor modify TAlL, the idea being that the calling program will handle those
tasks. Similarly, if TlEFLG= EVERYTHING~ a list of all candidates whose degree
of closeness is above REL will be retUrned, regardless of whether some are better
than others. No interaction will be perfonned.

If DONTMOVETOPFLG = T and a correction occurs, it will not be moved to the
front of the spelling list.- -

The time required for a call to FIXSPELL with· a spelling list of length 60 when the entire list must be
searched is .5 seconds. If F I X S PEL L detennines that the first word on the spelling list is the respelling
and does not need to search any further, the time required is .02 seconds. In other words, the time
required is proportional to the number of words with whicp XWORD is compared, with the time for one
comparison, i.e.~ one call to SKOR takes roughly .01 seconds (varies slightly with the number of characters
in the words being compared).

(FNCHECK FN NOERRORFLG SPELLFLG PROPFLG TAlL) [Function]
The task of FNCHECK is to check whether FN is the name of a function and if
no~ to correct its spelling. If FN is the name of a function or spelling correction
is successful, FNCHECK adds the (corrected) name of the function to USERWORDS
using ADDSPE LL, and returns it as its value.

Since FNCHECK is called by many low level functions such as ARGLIST,
UNSAVEDEF, etc., spelling correction only takes place when DWIMFLG= T, so that
these functions can operate in a small Interlisp system which does not contain
DWIM.

NOERRORFLG infonns FNCHECK whether or not the calling function wants to
handle the unsuccessful case: if NOERRORFLG is T, FNCHECK simply returns NIL,
otherwise it prints f n NOT A FUNCT ION and generates a non-breaking error.

If FN does not have a definition, but does have an EX P R property, then spelling
correction is not attempted. Instead, if PROPFLG = T. FN is considered to be the
name of a function, and is returned. If PROPFLG = NIL, FN is not considered to
be the name of a function~ and NIL is returned or an error generated.. depending
on the value of NOERRORFLG.

FNCHECK calls MISSPELLED? to perform spelling correction, so that if FN=NIL,
the value of LAST WORD will be returned. SPELLFLG corresponds to MISSPELLED?'s

12 If TAlL = T, F I X S PEL L will also perform run-on corrections, returning a dotted pair of the two words
in the event the correction is of this type.

15.19

Spelling Corrector Functions and Variables

fourth argument, FLG~ If SPELLFLG = T, approval will be asked if DWIM was en
abled in CAUTIOUS mode, i.e., if APPROVEFLG=T. TAlL corresponds to the fifth
argument to MISSPELLED?

FNCHECK is currently used by ARGLIST, UNSAVEDEF, PRETTYPRINT, BREAKO, BREAKIN, ADVISE,
CALLS, and EDITA. For example, BREAKO calls FNCHECK with NOERRORFLG=T since if FNCHECK
cannot produce a function~ SREAKO wants to define a dummy one. CALLS however calls FNCHECK with
NOERRORFLG = NIL, since it oannot operate without a function.

Many other system functions call MISSPELLED? or FIXSPELL directly. For example, BREAK1 calls
F IXSPElL on unrecognized atomic inputs before attempting to evaluate them, using as a spelling list a
list of all break commands. Similarly, LISPX calls FIXSPELl on atomic inputs using a list of all LISPX
commands. When UNBREAK is given the name of a function that is not broken, it calls FIXSPELL with
two different spelling lists, first with BROKENFNS, and if that fails, with USERWORDS. MAKEFILE calls
MISSPELLED? using FILELST as a spelling list. Finally, LOAD, BCOMPL, BRECOMPILE, TCOMPL, and
RECOMPILE all call MISSPELLED? if their input file(s) won't open.

(S PEL L F I L E FILE NOPRINTFLG NSFLG DIRLST) [Function]
If FILE does not have a directory field, S PEL L F I L E looks on the directories given
by the value of DIRECTORIES, initially (NIL LISP). (NIL corresponds to login
directory.) This correction will not require user approval, (but S PEL L F I L E will
indicate ;the correction in the usual way, by printing = followed by the new file
name). <Otherwise, S PEL L F I L E attempts spelling correction against the files in the
directory. In this case, user approval will be requested (except if NOPRINTFLG = T.
see below). Returns corrected file, if any, otherwise NIL.

If NOPRINTFLG = T, S PEL L F I L E does not do any printing, nor ask for approval.

If NSFLG = T (or NOSP ELL F LG = T), no spelling correction is attempted, though
searching through 0 IRE C TOR I E S will still be performed.

If DIRLST is non-N I L, it is used instead of the value of 0 IRE C TOR I E S.

ERRORTYPELST (page 9.16) is initially

«23 (SPELLFILE (CADR ERRORMESS) NIL NOFILESPELLFLG»)

This causes SPELLFILE to be called in case of a FILE NOT FOUND error. If the variable
NOFILESPELLFLG is T (its initial value), then spelling correction is not done on the file name, but
DIRECTORIES is still searched. If SPELLFILE is successful. the operation will be reexecuted with the
new (corrected) file name. .

(F I NO F I L E FILE NSFLG DIRLST) [Function]
If FILE is not the name of a file, calls S PEL L F I L E specifying no interaction or
printing. F I NO F I L E could be defined as:

(if (INFILEP FILE)

a 1 sa (SPELLF ILE FILE T NSFLG DIRLST»

15.20

CHAPTER 16

CLISP

The syntax of LISP is very simple, in the ~nse that it can be described concisely, but not in the sense that
LISP programs are easy to read or write! This simplicity of syntax is achieved by, and at the expense ot:
extensive use of explicit structuring, namely grouping through parenthesization. Unlike many langUages,
there are no reserved words in LISP such as IF, THEN, FOR, ~O, etc., nor reserved characters like +, -, =,
... , etc. The only special characters are left and right parentheses and period, which are used for indicating
structure, and space and end-of-line, which are used for delimiting identifiers. This eliminates entirely the
need for parsers and precedence rules in the LISP interpreter and compiler, and thereby makes program
manipulation of LISP programs straightforward. In other words, a program that "looks at" other LISP
programs does not need to incorporate a lot of syntactic information. For example, a LISP interpreter can
be written in one or two pages of LISP code. It is for this reason that LISP is by far the most suitable,
and frequently used, programming language for writing programs that deal with other programs as data,
e.g., programs that analyze, modify, or construct other prograI,lls.

However, it is precisely this same simplicity of syntax that makes LISP programs difficult to read and write
(especially for beginners). 'Pushing down' is something programs do very well, and people do poorly. As
an example, consider the following two "equivalent" sentences:

''The rat that the cat that the dog that 1 owned chased caught ate the cheese."

versus

"I own the dog that chased the cat that caught the rat that ate the cheese."

Natural language contains many linguistic devices such as that illustrated in the second sentence above
for minimizing embedding, because embedded sentences are more difficult to grasp and understand than
equivalent non-embedded ones (even if the latter sentences are somewhat longer). Similarly, most high
level programming languages offer syntactic devices for reducing apparent depth and complexity of. a
program: the reserved words and infix operators used in ALGOL-like languages simultaneously delimit
operands and operations, and also convey meaning to the programmer. They are far more intuitive
than parentheses. In fact, since LISP uses parentheses (i.e.~ lists) for almost all syntactic forms, there is
very little information contained in the parentheses for the person reading a LISP program, and so the
parentheses tend mostly to be ignored: the meaning of a particular LISP expression for people is found
almost entirely in the words, not in the structure. For example, the expression

(CONO (EQ N 0) 1) (T TIMES N FACTORIAL «SUBt N»)

is recognizable as factorial even though there are five misplaced or missing parentheses. Grouping words
together in parentheses is done more for LISP's benefit, than for the programmer's.

CLISP is designed to make Interlisp programs easier to read and write by permitting the user to
employ various infix operators, I F statements (page 4.4), and iterative statements (page 4.5), which are
automatically converted to equivalent Interlisp expressions when they are first interpreted. For example,
factorial could be written in CLISP:

16.1

(IF N=O THEN 1 ELSE N*{FACTORIAL N-l»

Note that this expression would become an equivalent COND after it had been interpreted once, so that
programs that might have to analyze or otherwise process this expression could take advan~ge of the
simple syntax.

There have been similar efforts in other LISP systems. CLISP differs from these in that.it does not
attempt to rep/ace the LISP .syntax so much as to augment it In fact, one of the principal criteria in the
design of CLISP was that users be able to freely intermix LISP and CLISP without having to identify
which is which. Users can write programs, or type in expressions for evaluation, in .LISP, CLISP, or a
mixture of both. In this way, users do not have to learn a whole new language and syntax in order to be
able to use selected facilities of CLISP when and where they find them useful.

CLISP is implemented via the error correction machinery in Interlisp (see page 15.1). Thus, any expression
that is well-formed from Interlisp's standpoint will never be seen by CLISP (Le., if the user defined a
function IF, he would effectively tum off that part of CLISP). This means that interpreted programs
that do not use CLISP constructs do not pay for its availability by slower execution time. In fact, the
Interlisp interpreter does not "know" about CLISP at all. It operates as before, and when an erroneous
form is encountered, the interpreter calls an error routine which in tum invokes the 00-What-I-Mean
(DWIM) analyzer which contains CLISP. If the expression in question turns out to be a CLISP construct,
the equivalent Interlisp form is returned to the interpreter. In addition, the original CLISP expression, is
modified so that it becomes the correctly translated Interlisp. form. In this way, the analysis and translation
are done only once.

Integrating CLISP into the Int~rlisp system (instead of. for example, implementing it as a separate
preprocessor) makes possible Oo-What-I-Mean features for CLISP constructs as well as for pure LISP
exprc;.ssions. For example, if the user has defined a function named GET-PARENT, CLISP would know not
to attempt to interpret the form (GET-PARENT) as an arithmetic infix operation. (Actually, CLISP would
never get to see this fonn, since it does not contain any errors.) If the user mistakenly writes (G E T -
PRAENT), CLISP would know he meant (GET-PARENT), and not (DIFFERENCE GET PRAENT), by
using the information that PRAENT is not the name of a variable, and that GET-PARENT is the name of
a user function whose spelling is "very close" to that of GET-PRAENT. Similarly, by using information
about the program's environment not readily available to a preprocessor, CLISP can successfully resolve
the following sorts of ambiguities:

(1) (LIST X*FACT N), where FACT is the name of a variable, means (LIST (X·FACT) N).

(2) (LIST X·FACT N), where FACT is not the name of a variable but instead is the name of a function,
means (LIST X·CFACT N», i.e., N is FACT's argument.

(3) (LIST X*FACT{N», FACT the name ofa function (and not the name ofa variable), means (LIST
X*(FACT N». .

(4) cases (1), (2) and (3) with FACT misspelled!

The first expression is correct both from the standpoint of CLISP syntax and semantics and the change
would be made without the 'user being notified. In the other cases, the user would be informed or
consulted about what was taking place. For example, to take an extreme case, suppose the expression
(LIST X*FCCT N) were encountered, where there was both a function named FACT and a variable
named FCT. The user would first be asked if FCCT were a misspelling of FCT. If he said YES, the
expression would be interpreted as (L 1ST (X • F C T) N) . If he said NO. the user would be asked if
FCCT were a misspelling of FACT, i.e., if he intended X·FCCT N to mean X*(FACT N). If he said YES

16.2

CLISP

to this question, the indicated transformation would be performed. If he said NO, the system would then
ask if X*FCCT should be treated as CLISP, since FCCT is not the name of a (bound) variable.1 If he said
YES, the expression would be transformed, if NO, it would b~ left alone, i.e., as (L 1ST X * FCCT N).
Note that we have not even considered the case where X*FCCT is itself a misspelling of a variable name,
e.g., a variable named XFCT (as with GET-PRAENT). This sort of transformation would be considered
after the user said NO to X*FCCT N -) X· (FACT N).

Note: Through the discussion above, we speak of CLISP or DWIM asking the user. Actually, if the
expression in question was typed in by the user tor immediate execution, the user is simply informed of
the transformation, on the grounds that the user would prefer an occasional misinterpretation rather than
being continuously bothered, especially since he can always retype what he intended if a mistake occurs,
and ask the programmer's assistant to UNDO the effects of the mistaken operations if necessary. For
transformations on expressions in user programs, the user can inform CLISP whether he wishes to operate
in CAUTIOUS or TRUSTING mode. In the former case (most typical) the user will be asked to approve
transformations, in the latter, CLISP will operate as it does on type-in, i.e., perform the transfonnation
after infonning the user.

CLISP can also handle parentheses errors caused by typing 8 or 9 for" {" or ")". (On most terminals, 8
and 9 are the lower case characters for "(" and ") n, Le., "(" and 8 appear on the same key, as do ")"
and 9.} For example, if the user writes N*8FACTORIAL N-lr, the parentheses error can be detected and
fixed before the infix operator • is converted to the Interlisp function TIMES. CLISP is able to distinguish
this situation from cases like N*8*X meaning (TIMES N 8 X), or N*8X, where 8X is the name of a
variable, again by using information about the programming environment. In fact. by integrating CLISP
with DWIM, CLISP has been made sufficiently tolerant of errors that almost everything can be misspelled!
For example, CLISP can successfully translate the definitio:n of FACTORIAL:

(IFF N=O THENNl ESLE N*8FACTTORIALNN-l)

to the corresponding COND, while making 5 spelling corrections and fixing the parenthesis error.2

This'sort of robustness prevails throughout CLISP. For example, the iterative statement permits the user
to say things like:

{FOR OLD X FROM M TO N DO (PRINT X) WHILE (PRIMEP X»

However, the user can also write OLD (X +-M), (OLD X +-M), {OLD (X +-M)), permute the order of the
operators, e.g., (DO PRINT X TO N FOR OLD X+-M WHILE PRIMEP X). omit either or both sets of
parentheses, misspell any or all of the operators FOR, OLD, FROM, TO, DO, or WHILE, or leave out the
word DO entirely! And, of course, he can also misspell P R I NT, P RIM E P, M or N! In this example, the
only thing the user could not misspell is the first X, since it specifies the name of the variable of iteration.
The other two instances of X could be misspelled.

1 This question is important because Interlisp users may have programs that employ identifiers containing
CLISP operators. Thus, if CLISP. encounters the expression AlB in a context where either A or B are not
the names of variables, it will ask the user if AlB is intended to be CLISP, in case the user really does
have a free variable named AlB.
2CLISP also contains a facility for converting from Interlisp back to CLISP, so that after running the
above incorrect definition of FACTOR IAL, the user could "clispify" the now correct version to obtain (IF
N=O THEN 1 ELSE N*{FACTORIAL N-l».

16.3

CLISP Interaction with User

CLISP is well integrated· into the Interlisp system. For example, the above iterative statement translates
into an following equivalent Interlisp form using P ROG, COND, GO, etc. When the interpreter subsequently
encounters this CLISP expression, it automatically obtains and evaluates the translation. Similarly t the
compiler "knows" to compile the translated form. However, if the user PRETTYPRINTs his program,
PRETTYPRINT "knows" to print the original CLISP at the corresponding point in his function. Similarly.
when the user edits his program, the editor keeps the translation invisible to the user. If the user modifies
the CLISP, the translation is automatically discarded and recomputed the next time" the expression is
evaluated.

In short, CLISP is not a language at all, but rather a system. It plays a role analagous to that of the
programmer's assistant (page 8.1). Whereas the programmer's assistant is an invisible intermediary agent
between the user's console requests and the Interlisp executive, CLISP sits between the user's programs
and the Interlisp interpreter.

Only a small effort has been devoted to defining the core syntax of CLISP. Instead, most of the effort has
been concentrated on providing a facility which "makes sense" out of the input expressions using context
information as well as built-in and acquired information about user and system programs. It has been
said that communication is based on the intention of the speaker to produce an effect in the recipient
CLISP operates under the assumption that what the user said was intended to represent a meaningful
operation, and therefore tries very hard to make sense out Qf it The motivation behind CLISP is not
to provide the user with many different ways of saying the same thing, but to enable him to worry less
about the syntactic aspects of his communication with the system. In other words, it gives the user a
new degree of freedom by permitting him to concentrate more on the problem at hand, rather than on
translation into a formal and unambiguous language.

DWIM and CLISP are invoked on iterative statements because CAR of the iterative statement is not the
name of a function, and hence generates an error. If the user defines a function by' the same name as
an i.s. operator, e.g., WHILE, TO, etc., the operator will no longer have the CLISP interpretation when it
appears as CAR of a form, although it will continue to be treated as an i.s. operator if it appears in the
interior of an i.s. To alert the user, a warning message is printed, e.g., (WHILE DEFINED, THEREFORE
DISABLED IN CLISP).

16.1 CLISP INTERACTION WITH USER

Syntactically and semantically well formed CLISP transformations are always performed without infomling
the user. Other CLISP transformations described in the previous section, e.g., misspellings of operands,
infix operators, parentheses errors, unary minus - binary minus errors, all follow the same protocol as
other DWIM transformations (page 15.1). That is, if DWIM has been enabled in TRUSTING mode, or
the transformation is in an expression typed in by the user for immediate execution, user approval is not
requested, but the user is informed.3 However, if the transformation involves a user program, and DWIM
was enabled in CAUT IOUS mode, the user will be asked to approve. If he says NO, the transformation is
not performed. Thus, in the previous section, phrases such as "one of these (transformations) succeeds"
and "the transformation LAST - E LL -) LAS T - E L would be found" etc., all mean if the user is in

3 However, in certain situations, DWIM· will ask for approval even if DWIM is enabled in T RUST I NG
mode. For example, the user will always be asked to approve a spelling correction that might also be
interpreted as a CLISP transformation, as in LAST-ELL -) LAST-EL.

16.4

CLISP

CAUT IOUS mode and the error is in a program, the corresponding transfonnation will be perfonned only
if the user approves (or defaults by not responding). If the user says NO, the procedure followed is the
same as though the transfonnation had not been found. For example, if A *B appears in the function
F 00, and B is not bound (and no other transfonnations are found) the user would be asked A * B [I N
FOO] TREAT AS CLISP 14

If the user approved, A*B would be transfonned to (ITIMES A B), which would then cause aU. B. A.
B error in the event that the program was being run (remember the entire discussion also applies to
DWIMI FYing). If the user said NO, A*B would be left alone.5

16.2 CLISP CHARACTER OPERATORS

CLISP recognizes a number of special characters operators, both prefix and infix, which are translated
into common expressions. For example, the character + is recognized to represent addition, so CLISP
translates the litatom A+B to the fonn (IPLUS A B). Note that CLISP is envoked, and this translation
is made, only if an error occurs, such as an unbound atom error or an undefined function error for the
perfectly legitamate litatom A+B. Therefore the user may choose not to use these facilities with no penalty,
similar to other CLISP facilities.

The user has a lot of flexability in using CLISP character operators. A list, can always be substituted for
a litatom, and vice versa, without changing the interpretation of a phrase. For example, if the value of
(Faa X) isA,andthevalueof(FIE Y) isB,then(LIST (FOO X)+(FIE Y)lhasthesamevalue.as
(LIST A+B). Note that the first expression is a list of four elements: the atom "LIST", the list "(FOO
X)", the atom "+", and the list "(FIE X)", whereas the second expression, (LIST A+B), is a list
of only two elements: the litatom "LIST" and the litatom "A+8". Since (LIST (FOO X)+(FIE Y»
is indistinguishable from (LIST (FOO X)U+U(FIE Y» because spaces before or after parentheses
have no effect on the Interlisp READ program,6 to be consistent, extra spaces have no effect on atomic
operands either. In other words, CLISP will treat (LIST A+UB), (LIST Au+B), and (LIST AU+UB)
the same as (LIST A+B).

+

*
/
l'

[CLISP Operator]
[CLISP Operator]
[CLISP Operator]
[CLISP Operator]
[CLISP Operator]

CLISP recognizes +, -, *, /, and l' as the nonnal arithmetic infix operators. - is
also recognized as the prefix operator, unary minus. These are converted to I PLUS,
IDIFFERENCE (or in the case of unary minus, IMINUS), ITIMES, IQUOTIENT,
and EXPT.

4The waiting time on such interactions is three times as long as for simple corrections, i.e., 3*DWIMWAIT.

SIf the value of CLISPHELPFLG=NIL (initally T), the user will not be asked to approve any clisp
transfonnation. Instead, in those situations where approval would be required, the effect is the same as
though the user had been asked and said NO.

6CLISP does not use its own special READ program because this would require the user to explicitly
identify CLISP expressions, instead of being able to intennix Interlisp and CLISP.

"

16.5

=
GT
LT
GE
LE

CLISP Character Operators

The I in IPLUS denotes integer arithmetic, i.e., IPLUS converts its arguments
to integers, and returns an integer value. Interlisp also contains fioating point
arithmetic functions as well· as mixed arithmetic functions. Floating point arithmetic
functions are used in the translation if one or both of the operands are themselves
fioating point numbers, e.g., X+l ~ 5 translates as (FPLUS X 1 G 5). In addition,
CLISP contains a f~cility for declaring which type of arithmetic is to be usetL
either by making a global declaration, or by separate declarations about individual
functions or variables (see page 16.9).

The usual precedence rules apply (although these can be easily changed by the
user), i.e., • has higher precedence than + so that A+B·C is the same as A+(B·C),
and both • and I are lower than 1" so that 2· X 1" 2 is the same as 2· (X 1" 2) .
Operators of the same precedence group from left to right, e.g., AlBIC is equivalent
to (AlB) IC. Minus is binary whenever possible, i.e., except when it is the first
operator in a list, as in (-A) or (-A), or when it immediately follows another
operator, as in A·-B. Note that grouping with parentheses can always be used
to override the normal precedence grouping, or when the user is not sure how
a particular expression will parse. The complete order of precedence for CLISP
operators is given below.

Note that + in front of a number win disappear when the number is read, e.g.,
(F 00 X + 2) is indistinguishable from (F 00 X 2) . This means that (F 00 X
+2) will not be interpreted as CLISP, or be converted to (FOO (I PLUS X 2».
Similarly, (F 00 X - 2) will not be interpreted the same as (F 00 X - 2) . To
circumvent this, always type a space between the + or - and a number if an infix
operator is intended, e.g., write (F 00 X + 2) .

[CLISP Operator]
[CLISP Operator]
[CLISP Operator]
[CLISP Operator]
[CLISP Operator]

These are infix operators for "Equal", "Greater Than", "Less Than", "Greater
Than or Equal", and "Less Than or Equal".

GT, L T, GE, and LE are all affected by the same declarations as + and ., with the
initial default to use IGREATERP and ILESSP.

Note that only single character operators, e.g., +, +0, =, etc., can appear in the
interior of an atom. All other operators must be set off from identifiers with spaces.
For example, XL TY will not be recognized as CLISP. In some cases, DWIM will
be able to diagnose this situation as a run-on spelling error, in which case after the
atom is split ap~ CLISP will be able to perform the indicated transformation.

A number of Usp functions, such as EQUAL, MEMBE R, AND, OR, etc., can also be treated as CLISP infix
operators.7 AND is higher than OR, and both AND and OR are lower than the other infix operators9 so

7Currently the complete list is MEMBER, MEMB, FMEMB, ILESSP, IGREATERP, LESSP, GREATERP, FGTP.
EQ, NEQ, EQP, EQUAL, OR, and AND. New infix operators can be easily added, as described in page 16.2l.
Spelling correction on misspelled infix operators is pefonned using eLI S PIN F I X S P L S T as a spelling
list

16.6

CLISP

(X OR Y AND Z) is the same as {X OR (Y AND Z», and (X AND Y EQUAL Z) is the same as {X
---AND -(Y EQUAL Z». All of the infix predicates have lower precedence than Interlisp forms, since it is

far more common to apply a predicate to two forms, than to use a Boolean as an argument to a function.
Therefore, (F 00 X G T FIE Y) is translated as ({ F 00 X) G T (F lEY)), rather than as {F 00 {X
G T .j (FIE Y»). However, the user can easily change this.

[CLISP Operator]
x: N extracts the Nth element of the list x. F 00: 3 specifies the third element of
F 00, or (CADD R F 00). If N is less than zero, this indicates elements counting
from the end of the list; i.e. F 00 : -1 is the last element of F 00. : operators can
be nested, so F 00 : 1 : 2 means the second element of the first element of F 00, or
(CADAR FOO).

The : operator can also be used for extracting substructures of records (see page
3.1). Record operations are implemented by replacing expressions of the form
X: FOO by (fetch FOO of X). BOthJower and upper case are acceptable.

: is also used to indicate operations in the pattern match facility (page 23.1).

[CLISP Operator]
x: N, returns the Nth tail of the list x: For example, FOO: : 3 is (CDDDR FOO),
and FOO: :-1 is (LAST FOO).

[CLISP Operator]
+- is used to indicate assignment. For example, X+-Y translates to (SETQ X Y). If
X does not have a value, and is not the name of one of the bound variables of the
function in which it appears, spelling correction is attempted. However, since this
may simply be a case of assigning an initial value to a new free variable, DWIM
will always ask for approval before making the correction.

In conjunction with : and ::, .. can also be used to perform. a more general
type of assignment, involving structure modification. For example, X: 2+-Y means
"make the second element of X be Y", in Interlisp terms (RPLACA (CDR X) Y).
Note that the value of this operation is the value of RPLACA, which is (CDR X),
rather than Y. Negative numbers can also be used, e.g., X: -2+-Y, which translates
to {RPLACA (NLEFT X 2) Y).

The user can indicate he wants IRPLACA and IRPLACD used (undoable version
of RPLACA and RPLACD, see page 8.22), or FRPLACA and FRPLACD (fast versions
of RPLACA and RPLACD, see page 2.15), by means of CLISP declarations (page
16.9). The initial default is to use RPLACA and RPLACD.

+- is also used to indicate assignment in record operations (X: FOO+-Y translates to
(repl ace FOO of X with Y).), and pattern match operations (page 23.1) .

.. has different precedence on the left from on the right. On the left, +- is a "tight"
operator, Le., high precedence, so that A+B+-C is the same as A+{S+-C). On the
right, +- has broader scope so that A+-B+C is the same as A+-(B+C).

On typein, S+-FORM «esc>+-FoRM) is equivalent to set the "last thing men-

16.7

CLISP ~ Character Operators

tioned".8 For example~ immediately after examining the value ofLONGVARIABLENAME~
the user could set it by typing $+- followed by a form.

Note that an atom of the form X+-Y, appearing at the top level of a PROG, will not be recognized as
an assignment statement because it will be interpreted as a P ROG label by the Interlisp interpreter, and
therefore will not cause an error, so DWIM and CLISP will never get to see iL Instead, one must write
(X+-Y).

(

)

[CLISP Operator]
[CLISP Operator]

Angle brackets are used in CLISP to indicate list construction. The appearance of
a "(" corresponds to a "(" and indicates that a list is to be constructed containing
all the elements up to the corresponding ")". For example, (A B (e» translates
to (L I S TAB (L I S T C» . 1 can be used to indicate that the next expression
is to be inserted in the list as a segment, e.g., (A B 1 e) translates to (CONS A
(eONS B' C» and <! ~ ! Be) to (A P PEN 0 A B (L I S T C» . I! is used
to indicate that the next expression is to be inserted as a segment, and furthermore,
all list strUcture to its right in the angle brackets is to be physically attached to
it, e.g., <!.! A B) translates to (NCONC lAB), and <! ! A ! B ! e) to (NCONe
A (APPEND B C}). Not (NeONC (~PPEND A B) C), which would have the
same value, but would attach C to Bt and not attach either to A. Note that <,
! , !!, and) need not be separate atoms, for example, <A B ! C) may be
written equally well as < A B ! C). Also, arbitrary Interlisp or CLISP forms
may be used within angle brackets. For example, one can write < FOO+-(FIE X) !
Y) which translates to (CONS (SETQ FOO (FIE X}) V). CLISPIFY converts
expressions in CONS, LIST, APPEND, NCONC, NCONCl, INCONC, and INCONCl
into equivalent CLISP expressions using <,), !, and ! !.

Note: br~ckets differ from other CLISP operators. For example, <A B 'C)
translates to (LIST A B (QUOTE C» even though following' , all operators are
ignored for the rest of the identifier. (This is true only if a previous unmatched <
has been seen, e.g., (PRINT 'A)B) will print the atom A)B.} Note however that
<A B 'Ue) D) is equivalent to (LIST A B (QUOTE C» D).

[CLISP Operator]
CLISP recognizes ' as a prefix operator. ' means QUO T E when it is the first
character in an identifier, and is ignored when it is used in the interior of an
identifier. Thus, X=' Y means (EQ X (QUOTE Y», but X=CAN' T means (EQ
X CAN'T), not (EQ X CAN) followed by (QUOTE T). This enables users to
have variable and function names with' in them (so long as the ' is not the first
character). •

Following' , all operators are ignored for the rest of the identifier, e.g., '*A means
(QUOTE *A), and 'X=Y means (QUOTE X=Y). not (EQ (QUOTE X) V). To
write (EQ (QUOTE X) V}, one writes Y=' X, or 'X =Y. This is one place where
an extra space does make a difference.

SLe., is equivalent to (SET LASTWORD FORM). See page 15.15.

16.8

CLISP

On typein~ '$ (Le.9 '<esc»isequivalent to (QUOTE VALUE-OF-LASTWORD) (see
page 15.15). For example. after calling PRETTYPRINT on LONGFUNCTION. the
user could move its definition to F 00 by typing (MOVO '$ 'F 00).9

. [CLISP Operator]
CLISP recognizes - as, a prefix operator meaning NOT. - can negate a fo~ as in
- (ASSOC X Y), or X, or negate an infix operator, e.g., (A -G T 8) is the same
as (A LEO 8). Note that -A~,8 means (EO (NOT A) 8).

When - negates an operator, e.g., -=, -L T, the two operators are treated as a
single operator whose precedence is that of the second operator. When - negates
a function, e.g.9 (-Faa X Y), it negates the whole form, i.e., (-(FOO X Y».

Order of Prededence of CLISP Operators:

+- (left precedence)
- (unary), -

*, I
+, - (binary)
+- (right precedence)

=
Interlisp fOIms
LT,GT, EQUAL,MEM8E~e~.
AND
OR
IF, THEN, ELSEIF, ELSE
iterative statement operators

16.3 DECLARATIONS

CLISP declarations are used to affect the choice of Interlisp function used as the translation of a particular
operator. For example, A+B can be translated as either (IPLUS A 8), (FPLUS A B), or (PLUS A
B), depending on the declaration in effect. Similarly X: l"'Y can mean (RPLACA X V), (FRPLACA X
V), or (/RPLACA X V), and <1 1A B) either (NCONCl A B) or (/NCONCl A 8). Note that the
choice of function on all CLISP transfoImations are affected by the CLISP declaration in effect, i.e.,
iterative statements, pattern matches, record operations, as well as infix and prefix operators.

(CLISPOEC DEOLST) [Function]
Puts into effect the declarations in DECLST. C LIS PO E C perfoIll1s spelling corrections
on words not recognized as declarations. C LIS POE C is undoable.

gNot (MOVO $ 'FOO), which would be equivalent to (MOVO LONGFUNCTION 'FOO),and would
(probably) cause aU. B. A'. LONGFUNCT ION error, nor MOVO($ FOO), which would actually move the
definition of $ to FOO, since DWIM and the spelling corrector would never be invoked.

16.9

Local Declarations

The user can makes (changes) a global declaration by calling C LIS P DEC with DECLST a list of declarations,
e.g., {CLISPDEC '(FLOATING UNDOABLE». Changing a global declaration does not affect the speed

-- of subsequent CLISP transformations, since all CLISP transformation are table driven (Le., property list),
and global declarations are accomplished by making the appropriate internal changes to CLISP at the time .
of the declarationc If a function employs local declarations (described below), there will be a slight loss
in efficiency owing to the fact that for each CLISP transformation, the declaration list must be searched
for possibly relevant declarations.

Declarations are implemented in the order that they are given, so that later declarations override earlier
ones. For example, the declaration FAST specifies that FRPLACA, FRPLACD, FMEMB, and FLAST -be used
in piace of RPLACA, RPLACD, MEMB, and LAST; the declaration RPLACA specifies that RPlACA be used.
Therefore, the declarations (FAST RPLACA RPLACD) will cause FMEMB, FLAST, RPlACA, and RPLACD
to be used.

The initial global declaration is INTEGER and STANDARD.

The table below gives the declarations available in CLISP, and the Interlisp functions they indicate:

Declaration Interlisp Functions to be used

INTEGER or FIXED IPLUS, IMINUS, IDIFFERENCE, ITIMES, IQUOTIENT, ILESSP,
IGREATERP

FLOATING FPLUS, FMINUS, FDIFFERENCE, FTIMES, FQUOTIENT, LESSP,
FGREATERP

MIXED PLUS,MINUS,DIFFERENCE, TIMES,QUOTIENT,LESSP,GREATERP

FAST FRPLACA, FRPLACD. FMEMB, FLAST, FASSOC

UNDOABLE IRPLACA, IRPLACD. INCONC, INCONCl, IMAPCONC, IMAPCON

STANDARD RPLACA, RPLACD,MEMB, LAST,ASSOC, NCONC, NCONC1,MAPCONC,
MAPCON

RPLACA, RPLACD, IRPLACA, corresponding function
etc.

16.3.1 Local Declarations

The user can also make local declarations affecting a selected function or functions by inserting an
expression of the form (C LIS P : . DECLARATIONS) immediately following the argument list, Le., as
CADDR of the definition. Such local declarations take precedence over global declarations. Declarations
affecting selected variables can be indicated by lists, where the first element is the name of a variable,
and the rest of the list the deClarations for that variable. For example, {CLISP: FLOATING (X
INTEGER» specifies that in this function integer arithmetic be used for computations involving X, and

16.10

CLISP

floating arithmetic for all other computations.10 The user can also make local record declarations by
inserting a record declaration, e.g., (RECORD --), (ARRAYRECORD --), etc., in the local declaration
list In addition, a local declaration of the form (RECORDS ABC) is equivalent to having copies of
the global declarations A, B, and C in the local declaration. Local record- declarations override global
record declarations for the· function in which they appear. Local declarations can also be used to override
the global setting of certain DWIM/CLISP parameters effective only for transformations within that
function, by including in the local declaration an expression of the form (VARIABLE = VALUE), e.g.,
(PATVARDEFAULT = QUOTE).

The CLISP: expression is converted to a comment of a special form recognized by CLISP. Whenever a
CLISP transformation that is affected by declarations is about to be performed in a function, this comment
will be searched for a relevant declaration, and if one is found, the corresponding function will be used.
Otherwise, if none are found, the global declaration(s) currently in effect will be used.

Local declarations are effective in the order that they are given, so that later declarations can be used to
override earlier ones, e.g., (CLISP: FAST RPLACA RPLACD) specifies that FMEMB, FLAST, RPLACA,
and RPLACD be used. An exception to this is· that declarations for specific variables take precedence of
general, function-wide q.eclarations, regardless of the order of appearance, as in (CLISP: (X INTEGER)
FLOATING). -

C LIS P I F Y also checks the declarations in effect before selecting an infix operator to ensure that the
corresponding CLISP construct would in fact translate back to this form. For example, if a F LOA T I NG
declaration is in effect, CLISPIFY will convert (FPLUS X Y) to X+Y, but leave (IPLUS X Y) as is.
Note that if (FPLUS X Y) is CLISPIFYed while a FLOATING declaration is under effect, and then the
declaration is changed to INTEGER, when X+Y is translated back to Interlisp, it will become (IPLUS X
V). /

16.4 CLISP'OPERATION

CLISP is a part of the basic Interlisp system. Without any special preparations, the user can include CLISP
constructs in programs, or type them in directly for evaluation (in EVAL or APPL Y format), then, when the
"error" occurrs, and DWIM is called, it will destructively transform the CLISP to the equivalent Interlisp
expression and evaluate the Interlisp expression. CLISP transformations, like all DWIM corrections, are
undoable. User approval is not requested, and no message is printed.ll

However, if a CLISP construct contains an error, an appropriate diagnostic is generated, and the form
is left unchanged. For example, if the user writes (LIST X+Y·), the error diagnostic MISSING
OPERAND AT X+Y· IN (LIST X+Y·) would be generated. Similarly, if the user writes (LAST+EL
X), CLISP knows that ((I PLUS LAST E L) X) is not a valid Interlisp expression, so the error diagnostic
MISSING OPERATOR IN (LAST+EL X) is generated. (For example, the user mi~ht have meant to

lO"involving" means where the variable itself is an operand. For example, with the declaration (FLOAT ING
(X I NT E G E R » in effect, (F 00 X) + (FIE X) would translate to F P L U S, i.e., use floating arithmetic,
even though X appears somewhere inside of the operands, whereas X+(FIE X) would translate to IPLUS.
If there are declarations involving both operands, e.g., X+Y, ~ith (X FLOATING) (Y INTEGER),
whichever appears first in the declaration list will be used.

llThis entire discussion also applies to CLISP transformation initiated by calls to DWIM from DWIMI FY.

16.11

CLISP Operation

say(LAST +E L * X).) Note that if LAST +E L were the name of a defined function, CLISP would never see
this form.

Since the bad CLISP transformation might not be CLISP at -all, for example, it might be a misspelling
of a user function or variable, DWIM holds all CLISP error messages until after trying other corrections.
If one of these succeeds, the CLISP message is discarded. Otherwise, if all fail, the message is printed
(but no change is made).12 For example, suppose the user types (R/PlACA X Y). CLISP generates
a diagnostic. since «IQUOTIENT R PLACA) X Y) is obviously not right However, since R/PLACA
spelling corrects to IRPLACA, this diagnostic is .never printed.

If a CLISP infix construct is well fOImed from a syntactic standpoint, but one or both of its operands are
atomic and not bound,13 it is possible that either the operand is misspelled, e.g., the user wrote X+YY for
X+Y, or that a CLISP transformation operation was not intended at all, but that the entire expression is
a misspelling. For example, if the user has a variable named LAST-EL, and writes (LIST LAST-ELL).
Therefore, CLISP computes, but does not actually perform, the indicated infix transformation. DWIM
then continues, and if it is able to make another correction, does so, and ignores the CLISP interpretation.
For example, with LAST-ELL, the transfoImation LAST-ELL -) LAST-EL would be found.

If no other transformation is found, and DWIM is about to interpret a construct as CLISP for which
one of the operands is not bound, DWIM will ask the user whether CLISP was intended, in this case by
printing LAST-ELL TREAT AS CLISP 114

The same sort of procedure is followed with 8 and 9 errors. For example, suppose the user writes F OOS * X
where FOOS is not bound The CLISP transformation is noted, and DWIM proceeds. It next asks the
user to approve FOOS*X -) FOO (*X. (For example, this would make sense if the user has (or plans
to define) a function named *X.) If he refuses, the user is asked whether FOOS*X is to be treated as
CLISP. Similarly, if FOOS were the name of a variable, and the user writes FOOOS-X, he will first be
asked to approve FOOOS*X -) FOOO (XX,15 and if he refuses, then be offered the FOOOS -) FOOS
correction.

CLISP also contains provision for correcting misspellings of infix operators (other than single characters),
I F words, and Ls. operators. This is implemented in such a way that the user who does not misspell them
is not penalized. For example, if the user writes IF N=O THEN 1 ELSSE N*(FACT N-l) CLISPdoes
not operate by checking each word to see if it is a misspelling of IF, THEN, ELSE, or ELSEIF, since
this would seriously degrade CLISP's performance on all I F statements. Instead, CLISP assumes that all
of the I F words are spelled correctly, and transforms the expression to (COND « Z E ROP N) 1 E LSSE
N*(FACT N-l»). Later, after DWIM cannot find any other interpretation for ELSSE. and using the

12Except that CLISP error messages are not printed on type-in. For example, typing X+*Y will just
produce aU. B • A. X+*Y message.

13For the· purpose of DWIMIFYing, "not bound" means no top level value, not on list of bound variables
built up by DWIMI FY during its analysis of the expression, and not on NOF.IXVARSLST, Le., not previously
seen.
14If more than one infix operator was involved in the CLISP construct, e.g., X+Y+Z, or the operation
was an assignment to a variable already noticed, or TREATASCLISPFLG is T (initially NIL), the user will
simply be informed of the correction, e.g., X+Y+Z TREATED AS CLISP. Otherwise, even if DWIM was
enabled in TRUSTING mode, the user will be asked to approve the correction.

15The 8-9 transformation is tried before spelling cQrrection since it is empirically more likely that an
unbound atom or undefined function containing an 8 or a 9 is a parenthesis error, rather than a spelling
error.

16.12

CLISP

fact that this atom originally appeared in an IF statemen~ DWIM attempts spelling correction, using (I F
THEN ELSE ELSEIF) "for a spelling list. When this is successful, DWIM "fails" all the way back to the
original IF statemen~ changes ELSSE "to ELSE, and starts over. Misspellings of AND, OR, L T, GT, etc.
are handled similarly.

CLfSP also contains many Do-What-I-Mean features besides spelling corrections. For example, the form
(LIST +X Y) would generate a MISSING OPERATOR error. However, (LIST -x Y) makes sense, if
the minus is unary, so DWIM offers this interpretation to the user. Another common error, especially for

. new users, is to write (LIST X* FOO(Y» or (LIST X*FOO Y), where FOO is the name of a function,
instead of (LIS T X * (F 00 Y». Therefore, whenever an operand that is not bound is also the name of
a function (or corrects to one), the above .interpretations are offered.

16.5 CLISP TRANSLATIONS

The translation of CLISP character operators and the CLISP word I F are handled by rep/acing the CLISP
expression with the corresponding Interlisp expression, and discarding the original CLISP.16 This is done
because (1) the CLISP expression is easily recomputable (by CL I S PI F Y) and (2) the Interlisp expressions
are simple and straightforward. Another reason for discarding the original CLISP is that it may contain
errors that were corrected in the course of translation (e.g., FOO+-FOOO: 1, N*SFOO X), etc.). If the
original CLISP were retained, either the user would have to go back and fix these errors by hand, . thereby
negating the advantage of having DWIM perform these corrections, or else DWIM would have to keep
correcting these errors over and over.

Note that CL I SP I FY is sufficiently fast that it is practical for the user to configure his Interlisp system so
that all expressions are automatically CLISPIFYed immediately before they are presented to him. For
example, he can define an edit macro to use in place of P which calls C LIS PI F Y on the current expression
before printing it. Similarly, he can infonn PRETTYPRINT to call CLISPIFY on each expression before
printing i~ etc.

Where (1) or (2) are not the case, e.g., with iterative statements, pattern matches, record expressions, etc.
the original CLISP is retained (or a slightly modified version thereof), and the translation is stored17

elsewhere, usually in the hash array CLISPARRAY.18 The interpreter automatically checks this array when

16IfCLISPIFTRANFLG is T, the original CLISP for IF statements (modified to correct errors) is retained.
See page 16.20. .

17by the function CLISPTRAN (page 16.19).

l8The user can also indicate that he wants the original CLISP retained by embedding it in an expression
of the fonn (CLISP • CLISP-EXPRESSION), e.g., (CLISP X:5:3) or (CLISP (A B C ! D». In
such cases, the translation will be stored remotely' as described in the text. Furthennore, such expressions
will be treated as CLISP even if infix and prefix transfonnations have been disabled by setting CLISPFLG
to NIL (page 16.19). In other words. the user can instruct the system to interpret as CLISP infix' or prefix
constructs only those expressions that are specifically flagged as such. The user can also include CLISP
declarations by writing (C LIS P DECLARATIONS • FORM), e.g., {C LIS P (C LIS P : F LOA T I NG) ...
). These declarations will be used in place of any CLISP declarations in the function definition. Note
this feature provides a way of including CLISP declarations in macro definitions.

16.13

DWIMIFY

given a form CAR of which is not a function.19 Similarly, the compiler performs a GETHASH when given
a form it does not recognize to see if it has a translation, which is then compiled instead of the form.
Whenever the user changes a CLISP expresson by editing i~ the editor automatically deletes its translation
(if one exists), so that the next time it is evaluated or dwimified, the expression will be retranslated.20 The
function PPT and the edit commands PPT and ClISP: are available for examining translations (page
16:20). If PRETTYTRANFlG is T, PRETTYPRINT will print the translations instead of the corresponding
CLISP expression (see page 16.20). This can be used for exporting programs to systems that do not
provide CLISP, and to examine translations for debugging purposes.

DWIMIFY is effectively a preprocessor for CLISP. DWIMIFY operates by scanning an expression as though
it were being interpreted, and for each form that would generate an error. calling OW 1M to "fix"
it OW I M I FY performs all OWIM transformations, not just CLISP transformations, so it does spelling
correction, fixes 8-9 errors, handles F / l, etc. Thus the user will see the same messages, and be asked for
approval in the same situations, as he would if the expression were actually run. If OWIM is unable to
make a correction, no message is printed, the form is left as it was, and the analysis proceeds.

DWIMI FY knows exactly how the interpreter works. It knows the syntax of PROGs, SElECTQs, lAMBDA
expressions, SETQs, et ale It knows that the argument of NLAMBDAs are not evalu~ted.21 It also knows
how variables are bound.22 In the course of its analysis of a particular expression, DWIMI FY builds a list
of the bound variables from the LAMBDA expressions and PROGs that it encounters. It uses this list for
spelling corrections. DWIMI FY also knows not to try to "correct" variables that are on this list since they
would be bound if the expression were actually being run. However, note that OW I M I F Y canno~ a priori,
know about variables that are used freely but would be bound in a higher function if the expression were
evaluated in its normal context Therefore, DWIMIFY will try to "correct" these variables.23 Similarly,
DWIMI FY will attempt to correct forms for which CAR is undefined, even when the form is not in error
from the user's standpoin~ but the corresponding function has simply not yet been defined.

19CLISP translations can also be used to supply an interpretation for function objects, as well as forms,
either for function objects that are used openly, i.e., appearing as CAR of form, function objects that are
explicitly APPL Yed, as with arguments to mapping functions, or function objects contained in function
definition cells. In all cases, if CAR of the object is not LAMBDA or NLAMBDA;the interpreter and compiler
will check CLISPARRAY. .
2°1f the value of CLISPRETRANFLG is T, DWIMIFY will also (re)translate any expressions which have
translations stored remotely. See page 16.16.

21The user can inform DWIMIFY that an NLAMBDA function does evaluate its arguments (presumably by
direct calls to EVAL), by including on its property list the property INFO with value EVAL or a list which
contains the atom E VAL.
22The user can inform DWIMIFY that a particular function or construct binds variables by including the
atom BINDS on the INFO property for CAR of the form. In this case, DWIMIFY assumes that CADR of
the form is the variable list, i.e. a list of atoms, or lists of the form (VAL VALUE). LAMBDA, NLAMBDA.
PROG, and RESETVARS are handled in this fashion.

23DWIMIF-Y rebinds-·FIXSPELLDEFAULT to N, so that if the user is not at the terminal when dwimifying
(or compiling), spelling corrections will not be performed.

16.14

CLISP

DWIMIFY will also inform the user when it encounters an expression with too many arguments,24 because
such an occurrence, although does not cause an error in the Interlisp interpreter, nevertheless is fr~quently
symptomatic of a parenthesis error. For example, if the user wrote (CONS (QUOTE Faa X» instead
of (CONS (QUOTE FOO) X), DWIMIFY will print:

POSSIBLE PARENTHESIS ERROR IN
(QUOTE FOO X)
TOO MANY ARGUMENTS (MORE THAN 1)

DWIMI FY will also check to see if a PROG label contains a clisp character,25 and if so, will alert the user
by printing the message SUSPICIOUS PROG LABEL, followed by the label. The PROG label will not be
treated as CLISP.

Note that in most cases, an attempt to transform a form that is already as the user intended will have
no effect (because there will be nothing to which that fonn could reasonably be transformed). However,
in order to avoid needless calls to DWIM or to avoid possible confusion, the user can inform DWIMI FY
not to attempt corrections or transformations on certain functions or variables by adding them to the list
NOFIXFNSLST or NOFIXVARSLST respectively. Note that the user could achieve the same effect by
simply setting the corresponding variables, and giving the functions dummy definitions.

DWIMI FY will never attempt corrections on global variableS, i.e., variables that are a member of the
list GLOBALVARS, or have the property GLOBALVAR with value T, on their property list Similarly,
DWIMIFY will not attempt to correct variables declared to be SPECVARS in block declarations or via
DECLARE expressions in the function body. The user can also declare variables that are simply used
freely in a function by using the USEOFREE declaration.

/

OWIMIFY and DWIMIFYFNS (used to OWIMIFY several functions) maintain two internal lists of those
functions and variables for which corrections were unsuccessfully attempted. These lists are initialized to
the values of NOF IXFNSLST and NOF IXVARSLST. Once an attempt is made to fix a particular function
or variable, and the attempt fails, the function or variable is added to the corresponding list. so that
on subsequent occurrences (within this call to DWIMIFY or DWIMIFYFNS), no attempt at correction is
made. For example, if FOO calls FIE several times, and FIE is undefined at the time FOO is dwimified,
OW I M IF Y will not bother with FIE after the first occurrence. In other words, once OW I M IF Y "notices"
a function or variable, it no longer attempts to correct ito OWIMIFY and OWIMIFYFNS also "notice"
free variables that are set in the expression being processed. Moreover, once OW I M I F Y "notices" such
functions or variables, it subsequently treats them the same as though they were actually defined or set.

Note that these intemallists are local to each call to OWIMI FY and DWIMI FYFNS, so that if a function
containing FOOO, a misspelled call to FOO, is DWIMI FYed before FOO is defined or mentioned, if the
function is DWIMIFYed again after FOO has been defined, the correction will be made.

The user can undo selected transformations performed by OW I M IF Y, as described on page 8.1l.

(DWIMIFY x QUlETFLG L). [Function]
Performs all DWIM and CLISP corrections and transformations on x that would
be performed if x were run, and prints the result unless QUlETFLG = T.

24unless DWIMCHECK#ARGSF LG = NIL (initially T).

25unless OWIMCHECKPROGLABELSFLG=NIL (initially T), or the label is a member of NOFIXVARSLST.

16.15

DWIMIFY

If x is an atom and L is NIL, x is treated as the name of a function, and its entire
definition is . dwimifie<i If x is a list or L is not NIL, x is the expression to be
dwimified. If L is not NIL;--it is the edit push-down list leading to x, and is used
for· determining context, Le., what bound variables would be in effect when x was
evaluated, whether x is a form or sequence of forms, e.g., a CONO clause, etc.

If x is an iterative statement and L is NI L, OWIMI FY will also print the translation,
i.e., what is stored in the hash array.

(OWIMIFYFNS FNl ••• FNN) [NLambda NoSpread Function]

NOFIXFNSLST

NOFIXVARSLST

Dwimifies each of the functions given. If only one argument is given, it is evalued.
If its value is a list, the functions on this list are dwimified. If only one argument
is given, it is atomic, its value is not a list, and it is the name of a known
file. OWIMI FYFNS will operate on (FI LEFNSLST FN1), e.g. (OWIMI FYFNS
FOO. LSP,) will dwimify every function in the file FOO. LSP.

Every 30 seconds, OW I M IF Y F N 5 prints the name of the function it is processing,
a la PRETTYPRINT.

Value is a list of the functions dwimified.

[Variable]
List of functions that OWIMI FY will not try to correct.

[Variable]
List of variables that OW I M IF Y will not try to correct

NOSPELLFLG [Variable]
If T, OW I MI F Y will not perform any spelling corrections. Initially NIL. NOS PEL L F L G
is reset to T when compiling functions whose definitions are obtained from a file,
as opposed to being in core.

CLISPHELPFLG [Variable]
If NIL, OW 1M I FY will not ask the user for approval of any CLISP transformations.
Instead, in those situations where approval would be required, the effect is the
same as though the user had been asked and said NO. Initially T.

OWIMIFYCOMPFLG [Variable]
If T, OW I M IF Y is called before compiling an expression. Initially NIL.

OWIMCHECK#ARGSFLG [Variable]
If T, causes OW I M I F Y to check for too many arguments in a form. Initially T.

OWIMCHECKPROGLABELSFLG [Variable]

OWIMESSGAG

If T, causes OWIMIFY to check whether a PROG label contains a CLISP character.
Initially T.

[Variable]
If T, suppresses allOW I M I F Y error messages. Initially NIL.

CLISPRETRANFLG [Variable]
If T, informs OWIMIFY to (re)translate all expressions which have remote

16.16

CLISP

translations in the CLISP hash array. Initially NIL.

. 16.7 CLISPIFY

CLISPIFY converts Interlisp expressions to CLISP. Note that the expression given to CLISPIFY need not
have originally been input as CLISP~ i.e., C LIS P IF" can be used on functions that were written b~fore

. CLISP was even implemented. C LIS PI F Y is cognizant of declaration rules as well as all of the precedence
rules. For example, CLISPIFY will convert (IPLUS A (ITIMES B C» into A+B*C, but (ITIMES
A (IPLUS B C» into A*{B+C). CLISPIFY handles such cases by first DWIMIFYing the expression.
CLISPIFY also knows how to handle expressions consisting of a mixture of Interlisp and CLISP, e.g.,
(IPLUS A B·C) is converted to A+B*C, but (ITIMES A B+C) to (A*(B+C». CLISPIFY converts
calls to the six basic mapping functions, MAP, MAPC, MAPCAR, MAPLIST, M"APCONC 9 and MAPCON, into
equivalent iterative statements. It also converts certain easily recognizable internal PROG loops to the
corresponding iterative statements. C LIS PI F Y can convert all iterative statements input in CLISP back
to CLISP, regardless of how complicated th~ translation was, because the original CLISP is saved.

eLI S PI F Y is not destructive to the original Interlisp expressioq., i.e., C LIS PI F Y produces a new expression
without changing the original.26 C LIS PI F Y will not convert expressions appearing as arguments to
NLAMBDA functions.27

Note: Disabling a CLISP operator with 'CLDISABLE (page 16.19) will also disable the corresponding
CLISPIFY transformation. Thus, if +- is "turned off", A+-B will not transform to (SETQ A B), nor vice
versa.

(CLISPIFY x L) [Function]
Clispifies x. If x is an atom and L is NIL, x is treated as the name of a function,
and its definition (or EX P R property) is clispified. After C LIS P I F Y has finished, x
is redefined (using /PUTD) with its new CLISP definition. The value ofCLISPIFY
is x. If x is atomic and not the name of a function, spelling correction is attempted.
If this fails, an error is generated.

If x is a list, or L is not NIL, x itself is the expression to be c1ispified. If L is not
NIL, it is the edit push-down list leading to x and is used to determine context
as with DWIMI FY, as well as to obtain the local declarations, if any. The value of
C LIS P I F Y is the clispified version of x.

(CLISPIFYFNS FNl ... FNN) [NLambda NoSpread Function]
Like DWIMIFYFNS (page 16.16) except calls CLISPIFY instead of DWIMIFY.

26The new expression may however contain some "pieces" of the original, since CLISPIFY attempts to
minimize the number of CONSes by not, copying structure whenever possible.

27Except for those functions whose INFO property is or contains the atom EVAL. CLISPIFY also contains
built in information enabling it to process special forms such as PROG, SELECTQ, etc. If the INFO
property is or contains the atom LABELS, CLISPIFY will never create an atom (by packing) at the top
level of the expression. P ROG is handled in this fashion.

16.17

CL:FLG

CLREMPARSFLG

CLISPIFY

[Variable]
Affects CLISPIFY's handling of forms beginning with CAR, CDR, ... CODOOR, as
well as pattern match and record expressions. If C L : F L G is NIL, these are not
transformed into the equivalent : expressions. This will prevent C LIS PI F Y from
constructing any expression employing a : infix operator, e.g.9 (CAOR X) will not
be transformed to X: 2. If CL: FLG is T. CLISPIFY will convert to : notation
only when the argument is atomic or a simple list (a function name and one atomic
argument). If CL: fLG is ALL, CLISPIFY will convert to : expressions whenever
possible.

CL: FLG is initially T.

[Variable]
If T, C LIS PI F Y will remove parentheses in certain cases from simple forms,
where "simple" means a function name and one or tWQ atomic arguments. For
example, (COND «ATOM X) --» will CLISPIFY to (IF ATOM X THEN -
). However, ifCLREMPARSFLG is set to NIL, CLISPIFY will produce (IF (ATOM
X) THE N - -). Note that regardless of the setting of this flag, the expression can
be input in either form.

CLREMPARSFLG is initially NIL.

CLISPIFYPACKFLG [Variable]
CLISPI FYPACKFLG affects the treatment of infix operators with atomic operands.
If CLISPIFYPACKFLG is T, CLISPIFY will pack these into single atoms, e.g.,
(IPLUS A (ITIMES S C» becomes A+S*C. If CLISPIFYPACKFLG is NIL,
no packing is done, e.g., the above becomes AU+USU*UC.

CLISPIFYPACKFLG is initially T.

CLISPIFYUSERFN [Variable]

FUNNYATOMlST

If T, causes the function CLISPIFYUSERFN, which should be a function of one
argument, to be called on each form (list) not otherwise recognized by C LIS PI F Y.
If a non-N I L value is returned, it is treated as the clispified form. Initially NIL

Note that C LIS PI F Y US E R F N must be both set and defined to use this feature.

[Variable]
Suppose the user has variables named A, S; and A*S. IfCLISPIFY were to convert
(IT,IMES AS) to A*S, A*S would not translate back correctly to (ITIMES A
S), since it would be the name of a variable, and therefore would not cause
an error. The user can prevent this from happening by adding A * S to the list
FUNNYATOMLST. Then, (ITIMES AS) would CLISPIFY to AU*US.

Note that A*S's appearance on FUNNYATOMlST would not enable DWIM and
CLISP to decode A*S+C as (IPLUS A*S C); FUNNYATOMlST is used only by
CLISPIFY. Thus, if an identifier contains a CLISP character, it should always be
separated (with spaces) from other operators. For example, if X* is a variable, the
user· should write (SETQ X* FORM) in CLISP as X*U+-FORM, not X*+-FORM. In
general, it is best to avoid use of identifiers containing CLISP character operators

16.18

CLISP

as much as possible.

16.8 MISCELLANEOUS FUNCTIONS AND VARIABLES

CLISPFLG [Variable]
If set to NIL, disables all CLISP infix or prefix transformations (but does not affect
IF ITHEN/E LSE statements, or iterative statements).

If C LIS P F LG = TY P E - IN, CLISP transformations are performed only on expres
sions that are typed in for evaluation, i.e., not on user programs.

If C LIS P F LG = T, CLISP transformations are performed on all expressions.

The initial value for CLISPFLG is T. CLISPIFYing anything will cause CLISPFLG .
to be set to T.

CLISPCHARS [Variable]
A list of the operators that can appear 1n the interior of an atom. Currently (+ -
• / ~ - ' = ~ : < > +- -= m I).

CLISPCHARRAY [Variable]
A bit table of the characters on CLISPCHARS used for calls to STRPOSL (page
2.31). CLISPCHARRAY is initialized by performing (SETQ CLISPCHARRAY
(MAKEBITTABLE CLISPCHARS».

CLISP INF IXSPLST [Variable]

CLISPARRAY

A list of infix operators used for spelling correction.

[Variable]
Hash array used for storing CLISP translations. t LIS PAR RA Y is checked by
FAULTEVAL and FAULTAPPLY on erroneous forms before calling DWIM, and by
the compiler.

(CLISPTRAN X THAN) [Function]
Gives x the translation THAN by storing (key x, value THAN) in" the hash array
CLISPARRAY. CLISPTRAN is called for all CLISP translations, via a non-linked,
external function call, so it can be advised.

(CLISPDEC DECLST) [Function]
Puts into effect the declarations in DECLST (see page 16.9). CLISPDEC perfonns
spelling corrections on . words not recognized as declarations. C LIS POE C is
undoable. .

(CLDISABLE oP) [Function]
Disables the CLISP operator OPe For example, (CLD ISABLE '-) makes - be
just another character. C LD I SAB LE can be used on all CLISP operators, e.g .•
infix operators, prefix operators, iterative statement operators, etc. C LO I SAB LEis

16.19

Miscellaneous Functions and Variables

undoable.

Note: Simply removing a character operator from CLISPCHARS will prevent it
from being treated as a CLISP operator when it appears as part of an atom, but it
will continue to be an operator when it appears as a separate atom, e.g. (F 00 +
X) vs FOO+X.

CLISPIFTRANFLG [Variable]
Affects handling of translations of I FITHENIELSE statements (see page 4.4). If T,
the translations are stored elsewhere, and the (modified) CLISP retained. If NIL,
the corresponding CONO expression replaces the CLISP. Initially T.

CLISPIFYPRETTYFLG [Variable]
Ifnon-NIL, causes PRETTYPRINT (and therefore PP and MAKEFILE) to CLISPIFY
selected function definitions before printing them according to the following inter
pretations of CLISPIFYPRETTYFLG:

ALL

T or EXPRS

CHANGES

a list

Clispify all functions.

Clispify all functions currently defined as EX P Rs.

Clispify all functions marked as having been changed.

Clispify all functions in that list.

CLISPIFYPRETTYFLG is (temporarily) reset to T when MAKEFILE is called with
the option CLISPIFY, and reset to CHANGES when the file being dumped has the
property FILETYPE value CLISP. CLISPIFYPRETTYFLG is initially NIL.

Note: If CLISPIFYPRETTYFLG is non-NIL, and the only transfonnation per
fonned by OW I M are well formed C LIS P transformations, Le., no spelling correc
tions, the function will not be marked as changed, since it would only have to be
re-clispified and re-prettyprinted when the file was written out.

PRETTYTRANFLG [Variable]
If T, causes PRETTYPRINT to print translations instead of CLISP expressions.
This is useful for exporting to a LISP system that does not have CLISP.
PRETTYTRANFLG is (temporarily) reset to T when MAKEFILE is called with the

. option NOCLISP. PRETTYTRANFLG is initially NIL.

e PPT x) [NLambda NoSpread Function]
Both a function and an edit macro for prettyprinting translations. It performs a
PP after first resetting PRETTYTRANFLG to T, thereby causing any translations to
be printed instead of the corresponding CLISP.

C LIS P : [Editor Command]
Edit macro that obtains the translation of the correct expression, if any, from
CLISPARRAY, and calls EOITE on it

C L [Editor Command]
Edit macro. Replaces current expression with CL I SP I FYed current expression.
Current expression can be an element or tail.

16.20

ow

CLISP

[Editor Command]
Edit macro. -DWIMI FYs current expression, which can be an element (atom or list)
or tail.

Both C L and OW can be called when the current expression is either an element or a tail and will work
properly. Both consult the declarations in the function being edited, if any, and both are undoable.

(LOWERCASE FLG) [Function]
If FLG=T, LOWERCASE makes the necessary internal modifications so that
CLISPIFY will use lowet case versions of AND, OR, IF, THEN, ELSE, ELSEIF, and
all Ls. operators. This produces more readable output. Note that the user can
always type in either upper or lower case (or a combination), regardless of the
action of LOWERCASE. If FLG=NIL, CLISPIFY will use uppercase versions of
AND, OR, et al. The value of LOWERCASE is its previous "setting". LOWERCASE is
undoable. The initial setting for LOWERCASE is T.

16.9 CLISP INTERNAL CONVENTIONS

CLISP is almost entirely table driven by the property lists of the corresponding infix or prefix operators.
For example, much of the information used for translating the + infix operator is stored on the property
list of the litatom "+". Thus it is relatively easy to add new infix or prefix operators or change old ones,
simply by addiilg or. changing selected property values. (There is some built in information for handling
minus, :, " and -, i.e., the user could not himself add such "special" operators~ although he can disable
or redefine them.)

Global declarations operate by changing the LISPFN and CLISPINFIX properties of the appropriate
operators.

CLISPTYPE

UNARYOP

[property Name]
The property value of the property CLISPTYPE is the precedence number of the
operator: higher values have higher precedence, i.e., are tighter. Note that the
actual value is unimportant, only the value relative to other operators. For example,
CLISPTYPE for :, 1', and * are 14, 6, and 4 respectively. Operators with the
same precedence group left to right, e.g., I also has precedence 4, so AlB *C is
(A/B)*C.

An operator can have a different left and right precedence by making the value
of CLISPTYPE be a dotted pair of two numbers, e.g., CLISPTYPE of +- is (8 .
-12). In this case, CAR is the left precedence, and CDR the right, i.e., CAR is used
when comparing with operators on the left, and CD R with operators on the right.
For example, A *B+-C+D is parsed as A * (B+-(C+O » because the left precedence
of +- is 8, which is higher than that of *, which is 4. The right precedence of +- is
-12, which is lower than that of +, which is 2.

If the CLISPTYPE property for any operator is removed, the corresponding CLISP
transformation is disabled, as well as the inverse CLISPIFY transformation.

[property Name]
The value of property UNARYOP must be T for unary operators or brackets. The

16.21

BROADSCOPE

LISPFN

SETFN

CLISPINFIX

CLISPWORD

CLISP Internal Conventions

operand is always on the right., i.e., unary operators or brackets are always prefix
operators~

[Property Name]
The value of property BROADSCOPE is T if the operator has lower precedence
than Interlisp forms, e.g., L T, EQUAL, AND, etc. For example, (Faa x AND Y)
parses as:((FOO X) AND V). If the BROADSCOPE property were removed from
the property list of AND, (FOa X AND Y) would parse as (FOO (X AND Y».

[Property Name]
The value of the property LISPFN is the name of the function to which the infix
operator translates. For.example, the value of LISPFN for l' is EXPT, for' QUOTE,
etc. If the value of the property LIS P F N is NIL, the infix operator itself is also
the function, e.g., AND, OR, EQUAL.

[property Name]
If FOO has a SETFN property FIE, then (FOO --)~X translates to (FIE -
X). For example, if the user makes E L T be an infix operator, e.g. #, by putting
appropriate C LIS P TY P E and LIS P F N properties on the property list of # then he
can also make # followed by ~ translate to SETA, e.g., X#N~Y to (SETA X NY),
by putting SETA on the property list of EL T under the property SETFN. Putting
the list (~L T) on the property list of SETA under property SETFN will enable
SET A forms to C LIS PI F Y back to E L T 'so

[Property Name]
The v~ue, of this property is the CLISP infix to be used in CLISPIFYing. This
property i$ stored on the property list of the corresponding Interlisp function, e.g.,
the value of property CLISPINFIX for EXPT is 1', for QUOTE is ' etc.

[Property Name]
Appears on the property list of clisp operators which can appear as CAR of a form,
such as FETCH, REPLACE, IF, iterative statement operators, etc. Value of property
is of the form (KEYWORD • NAME), where NAME is thelowercase version of the
operator, and KEYWORD is its type, e.g. FORWORD, I FWORD, RECORDWORD, etc.

KEYWORD can also be the name of a function. When the atom appears as CAR
of a form" the function is applied to the form and the result taken as the correct
form. In this case, the function shouid either physically change the form, or call
CLISPTRAN (page 16.19) to store the translation.

As an example, to make & be an infix character operator meaning OR, the user could do the- following:

~(PUTPROP '& 'CLISPTYPE (GETPROP 'OR 'CLISPTYPE»
~(PUTPROP '& 'LISPFN 'OR)
~(PUTPROP '& 'BROADSCOPE T)
~(PUTPROP 'OR 'CLISPINFIX '&)
~(SETQ CLISPCHARS (CONS '& CLISPCHARS»
~(SETQ CLISPCHARRAY (MAKEBITTABLE CLISPCHARS»

16.22

CHAPTER 17

THE TELETYPE EDITOR

The Interlisp teletype editor allows rapi41 convenient modification of list structures. Most often it is
used to edit function definitions, (often while the function itself is running) via the function ED ITF, e.g.,
EDITF (FOO). However, the editor can also be used to edit the value of a variable, via EDITV, to edit a
property list, via ED IT P, or to edit an arbitrary expression, via ED I T E. It is an important feature which
allows good on-line interaction in the Interlisp system.

In Interlisp-D, most editing is done using the display editor DEdit (page 20.1), which is-an extended,
display-oriented version of the teletype editor. The teletype editor is still available, as it offers a facility
for doing complex modifications of program, structure under program control. For example, BREAKIN
(page 10.5) calls the teletype editor to insert a function break within the body of a function. By calling
the function EDITMODE (page 20.2) it is possible to set the "default editor" (TELETYPE or DISPLAY)
called by Masterscope, the break package, etc.

This chapter begins with a lengthy introduction intended for the new user. The reference portion begins
on page 17.9.

17.1 INTRODUCfION

Let us introduce some of the basic editor commands, and give a flavor for the editor's language structure
by guiding the reader through a hypothetical editing session. Suppose we are editing the following
incorrect definition of APPEND:

[LAMBDA (X)
Y
(COND

«NUL X)
Z)

(T (CONS (CAR)
(APPEND (CDR X Y]

We call the editor via the function ED I T F :

+-EDITF(APPEND)
EDIT ~

•
The editor responds by typing EDIT followed by·, which is the editor's prompt character. This signifies
that the editor is ready to accept commands. In the examples in this chapter, all lines beginning with •
were typed by the user, the rest by the editor. '

At any given moment, the editor's attention is centered on some substructure of the expression being

17.1

Introduction

edited. This substructure is called the current expressio~ and it is what the user sees when he gives the
editor the command P, for print. Initially, the current expression is the top level one, Le., the entire
expression being edited. Thus: .

*p
(LAMBDA (X) Y (COND & &l)
*

Note that the editor prints the current expression as though printlevel (page 6.18) were set to (2 • 20) ,
Le., sub lists of sublists are printe9 as &, tails of long lists printed as - -. The command 7 will print the
current expression. as though pnntlevel were 1000.

*7
(LAMBDA (X) Y (COND «NUL X) Z) (T (CONS (CAR) (APPEND (CDR X V»~»~»~
*

and the command PP will prettyprint the current expression.

A positive integer is interpreted by the editor as a command to descend into the correspondingly numbered
element of the current expression. Thus:

*2
.p
(X)

*

A negative integer has a similar effect, but counting begins from the end of the current expression and
proceeds backward, Le., -1 refers to the last element in the current expression, - 2 the next to the last,
etc. For either positive integer o~ negative integer, if there is no such element, an error occurs. "Editor
errors" are not the same as Interltsp function errors, i.e., they never cause breaks or even go through the
error machinery but are direct calls to ERROR! indicating that a command is in some way faulty. What
happens next depends on the context in which the command was being executed. For example, there are
conditional cotiunands which branch on errors. In most situations, though, an error will cause the editor
to type the faulty command followed by a 7 and wait for more input. Note that typing control-E while
a command is being executed aborts the command exactly as though it had caused an error. The current
expression is never changed when a command causes an error. Thus:

*p
(X)
*2

2 7
"'1
*p
X
...

A phrase of the form Uthe current expression is changed" or Uthe current expression becomes ft refers to a
shift in the editor's attention. not to a modification of the structure being edited

When the user changes the current expression by descending into it, the old current expression is not lost
Instead, the editor acrually operates by maiataining a chain of expressions leading to the current one. The

17.2

THE TELETYPE EDITOR

current expression is simply the last link in the chain. Descending adds the indicated subexpression onto
the end of the chain~ thereby making it be the current expression. The command 0 is used to ascend the
chain; it removes the last link· of the chain, thereby making the previous link be the current expression.
Thus:

*p
X
*0 P
(X)
*0 -1 P
(COND (& Z) (T &»
*
Note the use of several commands on a single line in the previous output The editor operates in a line
buffered mode, the same as EVALQT. Thus no command is actually seen by the editor; or executed, until
the line is tenninated, either by a carriage return, or a matching right parenthesis. The user can thus use
control-A and control-Q for line-editing edit commands, the same as he does for inputs to the Interlisp
executive.

In our editing session, we will make the following corrections ,to APPEND: delete Y from where it appears,
add Y to the end of the argument list, change NUL to NULL, 'change Z to Y, add X after CAR, and insert
a right parenthesis following CDR X.

First we will delete Y. By now we have forgotten where we are in the function definition. but we want to
be at the "top" so we use the command t. which ascends through the entire chain of expressions to the
top level expression, which then becomes the current expression, Le., t removes all linkS" except the first
one.

*1" P
(LAMBDA (X) Y (COND & &»
*

Note that if we are already at the top, t has no effect, Le~, it is a no-ope However, 0 would generate an
error. In other words, t means "go to the top," while 0 means "ascend one link."

The basic structure modification commands in the editor are:

(N) (N)1) [Editor Command]
Deletes the corresponding element from the current expression.

(N El ... EM) (N~ 1) [Editor Command]
Replaces the Nth element in the current expression with E 1 ••• EM.

(- N El ... EM) (N~ 1) [Editor Command]
Inserts El ... EM before the Nth element in the current expression.

Thus:

*p
{LAMBDA (X) Y (COND & &»
*(3)
*{2 (X V»~
*p

17.3

Introduction

(LAMBDA (X Y) (COND & &»
*

-
All structure modification done by the editor is destructive. i.e.. the editor uses RPLACA and RPLACD to
physically change the structure it was given.

Note that all three of the above commands perform their operation with respect to the Nth element from
the front of the current expression; the sign of N is used to specify whether the operation is replacement
or insertion. Thus, there is no way to specify deletion or replacement of the Nth element from the
end of the current expression, or insertion before the Nth element from the end without counting out
that element's position from the front of the list. Similarly, because we cannot specify insertion after
a particular elemen~ we cannot attach something at the end of the current expression using the above
commands. Instead, we use the command N (for NCONC). Thus we could have performed the above
changes instead by:

*p
(LAMBDA (X) Y (COND & &»
*(3)
*2 (N Y)
*p
(X Y)
*1' P
*(LAMBDA (X Y) (COND & &»
•
Now we are ready to change NUL to NULL. Rather than specify the sequence of descent commands
necessary to reach NUL, and then replace it with NULL, e.g., 3 2 1 (1 NULL), we will use F, the find
command, to find NUL:

*p
(LAMBDA (X Y) (COND & &»
*F NUL
*p
(NUL X)
*(1 NULL)
*0 P
«NULL X) Z)
*

Note that F is special in that it corresponds to two inputs. In other words, F says to the editor, "treat
your next command as an expreSsion to be searched for." The search is carried out in printout order in
the current expression. If the target expression is not found there, F automatically ascends and searches
those portions of the higher exp~essions that would appear after (in a printout) the current expression. If
the search is successful, the new current expression will be the structure where the expression was found, 1

and the chain will be the same as one resulting from the appropriate sequence of ascent and descent

lIf the search is for an atom, e.g., F NUL, the current expression will be the structure containing the
atom.

17.4

THE TELETYPE EDITOR

commands. If the search is not success~l, an error occurs, and. neirper the current expression nor the
chain is changed: 2

*p
«NULL X) Z)
*F CONO P

CONO ?
*p
*«NULL X) Z)
*

Here the search failed to find a CONO following the current expression, although of course a CONO does
appear earlier in the structure. This last example illustrates another facet of the error recovery mechanism:
to avoid further confusion when an· error occurs, all commands on the line beyond-the one which caused
the error (and all commands that may have been typed ahead while the editor was computing) are
forgotten.

We could also have used the R command (for Replace) to change NUL to NULL. A command of the form
(REl E2) will replace all occurrences of El in the current expression by E2• There must be at least one
such occurrence or the R command will generate an error. Let us use the R command to change all Z's
(even though there is only one) in A P PEN 0 to Y:

*.,. (R Z Y)
*F Z

Z ?
*PP
[LAMBDA (X Y)

(COND
«NULL X)

Y)
(T (CONS (CAR)

(APPEND (CDR X Y]
*

The next task is to change (CAR) to (CAR X). We could do this by (R (CAR) (CAR X», or by:

*F CAR
*(N X)
*p
(CAR X)
•
The expression we now want to change is the next expression after the current expression. i.e.. we are
currently looking at (CAR X) in (CONS (CAR X) (APPEND (CDR X V»~). We could get to the

2 F is never a no-op, Le., if successful, the current expression after the search will never be the same as the
current expression before the search. Thus F EXPR repeated without intervening commands that change
the edit chain can be used to find successive instances of EXFR.

17.5

Introduction

APPEND expression by typing 0 and then 3 or -1, or we can use the command NX, which does both
operations:' .

• p

(CAR X)
*NX P
(APPEND (CDR X V»~
*
Finally, to change (APPEND (CDR X Y» to (APPEND (CDR X) V), we could perform (2 (CDR
X) Y), or (2 (C 0 R X» and (N Y), or 2 and (3), deleting the Y, and then 0 (N YJ. However. if
Y were a complex expression, we would not want to have to retype it Instead, we could use a command
which effectively inserts and/or removes left and right parentheses. There are six of these commands: B I
("Both In"), BO ("Both Out"), L I ("Left In"), L 0 ("Left Out"), R I ("Right In"), and RO ("Right Out").
Of course, we will always have the same number of left parentheses as right- parentheses, because the
parentheses are just a notational guide to structure that is provided by our print program. Herein lies one
of the principal advantages of a • LISP oriented editor over a text editor: unbalanced parentheses errors
are not possible. Thus. L I. LO. RI. and RO actually do not insert or remove just one parenthesis, but this
is very suggestive of what actually happens.

In this case, we would like a right parenthesis to appear following X in (CDR X Y). Therefore, we use
the command (RI 2 2), which: means insert a right parentheses after the second element in the second
element (of the current expression):

*p
(APPEND (CDR X V»~
*(RI 2 2)
*p
(APPEND (CDR X) Y)
*

We have now finished our editing, and can exit from the editor, to test APPEND, or we could test it while
still inside of the editor, by using the E command:

*E APPEND«A B) (C 0 E)}
(A BCD E)
*

The E command causes the next input to be evaluated by Interlisp. If there is another input following
it, as in the above example, the first will be applied (with APPL Y) to the second. Otherwise, the input is
evaluated (with EVAL).

We prettyprint APPEND, and leave the editor.'

.pp
[LAMBDA (X Y)

(COND
«NULL X)

Y)
(T (CONS (CAR X)

. (APPEND (CDR X) Y]

17.6

THE TELETYPE EDITOR

APPEND

17.2 COMMANDS FOR THE NEW USER

As mentioned earlier, the Interlisp manual is intended primarily as a reference manual, and the remainder
of this chapter is organized and presented accordingly. While the commands introduced in the previous
scenario constitute a complete se~ i.e., the user could perfonn any and all editing operations using just
those commands, there are many situations in which knowing the right command(s) can save the user
considerable effort. We include here as part of the introduction a list of those commands which are not
only frequently applicable but also easy to use. They are not presented in any particular order, and are
all discussed in detail in the reference portion of the chapter.- -

UNDO

BK

BF

\

\P

[Editor Command]
Undoes the last modification to the structure being edited, e.g., if the user deletes
the wrong element, UNDO will restore it. The availability of UNDO should give the
user confidence to experiment with any and all editing commands, no matter how
complex, because he can always reverse the effect of the command.

[Editor Command]
Like NX, except makes the expression immediately before the current expression
become. current

/'

[Editor Command]
Backwards Find. Like F, except searches backwards, i.e., in inverse print order.

[Editor Command]
Restores the current expression to the expression before the last "big jump", e.g.,
a find command, an 1', or another \. For example, if the user types F COND, and
then F CAR, \ would take him back to the CONDo Another \ would take him back
to the CAR.

[Editor Command]
Like \ except it restores the edit chain to its state as of the last print, either by P,
?, or P P. If the edit chain has not been changed since the last print, \ P restores it
to its state as of the printing before that one, i.e., two chains are always saved.

Thus if the user types P followed by 3 2 1 P, \ P will take him back to the first P, i.e., would be
equivalent to 0 0 O. Another \ P would then take him back to the second P. Thus the user can use \ P
to flip back and forth between two current expressions.

The search expression given to the F or B F command need not be a literal expression. Instead, it can be
a pattern. The symbol & can be used anywhere within this pattern to match with any single element of a
list, and -- can be used to match with any segment of a list. Thus, in the incorrect definition of APPEND
used earlier, F (NUL &) could have been used to find (NUL X"), and F (CDR --) or F (CDR & &).
but not F (CDR &), to find (CDR X V).

Note that & and -- can be nested arbitrarily deeply in the pattern. For example. if there are many places
where the variable X is set, F S E TQ may not find the desired expression, nor may F (S E TQ X &). It

17.7

Commands for the New User

may be necessary to use F (SETQ X (LIST --». However, the usual technique in such a case is to
pick out a unique atom which occurs prior to the desired expression, and perform two F commands. This
"homing in" process seems to be more convenient than ultra-precise specification of the pattern. . -

S «esc» is equivalent to - - at the character level, e.g., V E RS will match with VERY LON GA T OM, as will
SATOM, SLaNGS, (but not SLaNG). and SVSNSMS. S can be nested inside of a pattern, e.g., F (SETQ
VERS (CONS --».
If the search is successful, the editor will print :III followed by the atom which matched with the S~atom,
e.g.,

*F (SETQ V'ERS &)
=VERYLONGATOM
*

Frequently the user will want to replace the entire current expression, or insert something before it In
order to do this using a commaIl:d of the form (N El ... EM) or (-N El •.. EM)' the user must be
above the current expression. In other words, he would have to perform a 0 followed by a command
with the appropriate number. However, if he has reached the current expression via an F command, he
may not know what that numb~r is. In this case, the user would like a command whose effect would be
to modify the edit chain so that' the current expression became the first element in a new, higher current
expression. Then he coul.d perform the desired operation via (1 El ... EM) or (-1 El 0 •• EM)' UP
is provided for this purpose.

UP [Editor Command]
After UP operates, the old current expression is the first element of the new current
expression. Note that if the current expression happens to be the first element
in the next higher expression, then UP is exactly the same as o. Otherwise, UP
modifies the edit chain so that the new current expression is a proper tail (page
2.19) of the next higher expression:

*F APPEND P
(APPEND (CDR X) Y)
*UP P
... (APPEND & Y»
*0 P
(CONS (CAR X) (APPEND & V»~
*

The ... is used by the editor to indicate that the current expression is a tail of
the next q.igher expression as opposed to being an element (Le., a member) of the
next higher expression. Note: if the current expression is already a tail, UP has no
effect

[Editor Command]
Inserts El ... EM before the current expression, Le., does an UP and then a (-1
El ... EM)·

[Editor Command]
Inserts El ... EM after the current expression, i.e., does an UP and then either a
(- 2 El ... EM) or an (N El ... EM)' if the current expression is the last one
in the next higher expression.

17.8

DELETE

THE TELETYPE EDITOR

[Editor Command]
Replaces the current expression by E1 "' ."~ EM' Le., does an UP and then a (1 El

••• EM)'

[Editor Command]
Deletes the current expression; equivalent to (:).

Earlier~ we introduced the RI command in the APPEND example. The rest of the commands in this
family: B I, BO, l I, lO, and RO, perfo11I1 similar functions and are useful in certain situations. In addition,
the commands.MBD and XTR can be used to combine the effects of several commands of the BI-BO
family. MBD (page 17.28) is used to embed the current expression in a larger expression. For example,
if the current expression is (PRI NT bige%prellllion) , and the user wants to replace it by (COND (F lG
(PRINT bige%preBBion»), he could accomplish this by elI 1), (-1 FlG), (lI 1), and (-1 COND),
or by a single MBD command.

XTR (page 17.27) is used to eXTRact an expression from the current expression. For example, extracting
the PRINT expression from the above COND could be accomplished by (1), (LO 1), (1), and (LO 1)
or by a single XTR command. The new user is encouraged to include XTR and MBD in his repertoire as
soon as he is familiar with the more basic commands.

17.3 LOCAL ATTENTION-CHANGING COMMANDS

This section describes commands that change the current expression (i.e., change the edit chain) thereby
Hshifting the editor's attention." These commands depend only on the structure of the edit chain, as
compared to the search commands (presented later), which search the contents of the structure.

UP [Editor Command]
UP modifies the edit chain so that the old current expression (Le., the one at the
time UP was called) is the first element in the new current expression. If the
current expression is the first element in the next higher expression UP simply does
a O. Otherwise UP adds the corresponding tail to the edit chain.

If a P command would cause the editor to type ... before typing the current
expression, ie., the current expression is a tail of the next higher expression, UP
has no effect

For Example:

*pp
(COND «NUll X) (RETURN V»~)
*1 P
COND
*UP P
(COND (& &»
*-1 P
«NULL X) (RETURN V»~
*UP P

«NULL X) (RETURN V»~
*UP P

17.9

Local Attention-Changing Commands

••• ({NULL X) (RETURN V»~)
*F NULL P
(NULL X)
*up P
({NULL X) (RETURN V»~
*up P
••• ({NULL X) (RETURN V»~)

The execution of UP is straightforward, except in those cases where the current expression appears mor,e
than once in the next higher expression. For example, if the current expression is (A NIL B NIL C
NIL) and the user perfonns 4 followed by UP, the current expression should then be . .. NIL C NIL).
UP can determine which tail is the correct one because 'the commands that descend save the last tail on an
internal editor variable, LASTA IL. Thus after the 4 command is executed, LAST A I L is (N I L C NIL).
When UP is called, it first detemiines if the current expression is a tail of the next higher expression. If it
is, UP is finished. Otherwise, UP computes (MEMB CURRENT-EXPRESSION NEXT-HIGHER-EXPRESSION)
to obtain, a tail beginning with .the current eXI'ression.3 If there are no other instances of the current
expression in the next higher expression, this tail is the correct one. Otherwise UP uses LAST A I L to select
the correct tail. 4

N (N)1)

-N (N)1)

o

. [Editor Command]
Adds the Nth element of the current expression to the front of the edit chain,
thereby making it be the new current expression. Sets LAS T A I L for use by UP.
Generates' an error if the current expression is not a list that contains at least N

elements.

[Editor Command]
Adds the Nth element from tlie end of the current expression to the front of the
edit chain~ thereby making it be the new current expression. Sets LAS T A I L for
use by U Pi. Generates an error if the current expression is not a list that contains
at least N elements.

[Editor Command]
Sets the ~dit chain to CDR of the edit chain. thereby making the next higher
expression be the new current expression. Generates an error if there is no higher
expression, i.e., CO R of edit chain is NIL.

Note that 0 usually corresponds: to going back to the next higher left parenthesis, but not always. For
example:

3The current expression should always be either a tailor an element of the next higher expression. If it
is neither, for example the user llas directly (and incorrectly) manipulated the edit chain, UP generates an
error.
40ccasionally the user can get the edit chain into a state where LASTAIL cannot resolve the ambiguity,
for example if there were two non-atomic structures in the same expression that were EQ, and the user
descended more than one level into one of them and then tried to come back out using UP. In this case.
UP prints LOCATION UNCERTAIN and generates an error. Of course, we could have solved this problem
completely in our implementation by saving at each descent both elements and tails. However, this would
be a costly solution to a situation that arises infrequently, and when it does, has no detrimental effects.
The LAS T A I L solution is cheap and resolves 99% of the ambiguities.

17.10

*p
(A B C D,E F B)
*3 UP P
••• C D E F G}
*3 UP P
••• E F G}
*0 P
••• C D E F G}

THE TELETYPE EDITOR

If the intention is to go back to the next higher left parenthesis, regardless of any intervening tails, the
command ! 0 can be used..

! 0

NX

BK

[Editor Command]
. Does repeated 0 's until it reaches a point where the current expression is not a

tail of the next higher expression, Le., always goes back to the next higher left
parenthesis.

[Editor Command]
Sets the edit chain to LAST of edit chain, thereby making the top level expression
be the current expression. Never generates an error.

[Editor Command]
Effectively does an UP followed by a 2, thereby making the current expression be
the next expression. Generates an error if the current expression is the last one in
a list (However, ! NX described below will handle this case.)

[Editor Command]
Makes the current expression be the previous expression in the next higher
expression. Generates an error if the current expression is the first expression
in a list

For example,

*PP
. {COND ({NULL X) (RETURN V»~)

*F RETURN P
(RETURN Y)
*BK P
(NULL X)

Both NX and BK operate by perfonning a ! 0 followed by an appropriate number, i.e., there won't be
an extra tail above the new current expression, as there would be if N X operated by perfonning an UP
followed by a 2.

(NX N)

(BK N)

[Editor Command]
(N ~ 1) Equivalent to N NX commands, except if an error occurs, the edit chain
is not changed.

[Editor Command]
(N ~ 1) Equivalent to N B K commands, except if an error occurs, the edit chain
is not changed.

17.11

Local Attention-Changing Commands

Note: (NX -N) is equivalent to (BK N), and vice versa.

. ! NX [Editor Command]
Makes the current expression be the next expression at a higher level, i.e., goes
through any number of right parentheses to get to the next expression. For
example:

*pp
(PROG «L L)

(UF L»
LP (COND

«NULL (SETQ L (CDR L»)
(ERROR!»

([NULL (CDR (FMEMB (CAR L) (CADR L]
(GO LP»)

(EDITCOM (QUOTE NX»
(SETQ UNFIND UF)
(RETURN L»

*F CDR P
(CDR L)
*NX

NX ?
*lNX P
(ERRORl)
*!NX P
«NULL &) (GO LP»
*INX P
(EDITCOM (QUOTE NX»
*

! NX operates by doing O's until it reaches a stage where the current expression is not the last expression
in the next higher expression. and then does a NX. Thus! NX always goes through at least one unmatched
right parenthesis, and the new current expression is always on·a different level. i.e .• ! NX and NX always
produce different results. For example using the previous current expression:

*F CAR P
(CAR L)
*!NX P
(GO LP)
*\P p
(CAR L)
*NX P
(CADR L)
*

(NTH N) [Editor Command]
(N ~ 0) Equivalent to N followed by UP, Le., causes the list starting with the Nth
element of the current expression (or Nth from the end if N < 0) to become the
current expression. Causes an error if current expression does not have at least N

elements.

17.12

line-feed

control-X

control'-Z

THE TELETYPE EDITOR

(NTH 1) is a no-op, as is (N T H - L) where L is the length of the current
expression.

[Editor Command]
Moves to the "next" expression and prints it, i.e. performs a NX if possible,
otherwise performs a ! NX. (The latter case is indcated by first printing ")".)

[Editor Command]
Control-X5 moves to the "previous". thing and then prints it, i.e. performs a B K if
posSible, otherwise a ! 0 followed by a B K.

[Editor Command]
Control-Ze moves to the last expression and prints it, i.e. does -1 followed by P.

Line-feed, control-X, and control-Z are implemented as immediate read macros; as soon as they are read,
they abort the current printout They thus provide a convenient way of moving around in the editor.
In order to facilitate using different control characters for those macro~ the function SETTERMCHARS is
provided (see page 17.59).

17.4 COMMANDS THAT SEARCH

All of the editor commandS that search use the same pattern matching routine (the function ED IT 4 E. page
17.57). We will therefore begin our discussion of searching by describing the pattern match mechanism.
A pattern PAT matches with x if any of the following conditions are true:

(1) If PAT is EQ to x.

(2) If PAT is &.

(3) If PAT is a number and EQP to x.

(4) If PAT is a string and (STREQUAL PAT x) is true.

(5) If (CAR PAT) is the atom *ANY*, (CDR PAT) is a list of patterns, and one of the patterns on
(CDR PAT) matches x .

. (6) If PAT is a literal atom or string containing one or more Ss «esc>s), each S can match an
indefinite number (including 0) of contiguous characters in the atom or string x. e.g .• VE RS
matches both VERYLONGATOM and "VERYLONGSTRING" as do SLONGS (but not SLONG),
and SVSLSTS. Note: the atom S «esc» matches only with itself.

(7) If PAT is a literal atom or string ending in two <esc>s, PAT matches with the atom or string x
if it is "close" to PAT, in the sense used by the spelling corrector (page 15.13). E.g. CONSSSS
matches with CONS, CNONCSS with NCONC or NCONC1.

5Control-A in Interlisp on TOPS-20.

6Control-L in Interlisp on TOPS-20.

17.13

Commands That Search

The pattern matching routine always types a message of the form = MATCHING-ITEM to inform the user
of the object matched by a patt¢rn of the above two types, unless EDITQUIETFLG=T. For example, if
VER$ matches VERYLONGATOM,' the editor would print =VERYLONGA'TOM.

(8) If (CAR PAT) is the atom --, PAT matches x if (CDR .PAT) matches with some tail of x.
For example, (A -- :(&)) will match with (A B C (D)), but not (A BCD), or (A B C
(0) E) . However, note that (A - - (&) - -) will match with (A B C (0) E} . In other
words, - - can match any interior segment of a list.

If (CDR PAT) = NIL;, i.e., PAT= (--=), then it matches any tail of a list Therefore, (A - -)
matches (A), (A Be) and (A • B) . .

(9) If (CAR PAT) is the atom ==,PAT matches x if and only if (CDR PAT) is EQ to x.

This pattern is for use by programs that call the editor.as a subroutine, since any non-atomic
expression in a co111lliand typed in by the user obviously cannot be E Q to already existing
structure.

(10) If (CADR PAT) is the atom .. (two periods), PAT matches x if (CAR PAT) matches (CAR
x) and (CDDR PAT) is contained in x, as described on page 17.20.

(11) Otherwise if x is a lis~ PAT matches x if (CAR PAT) matches (CAR x), and (CDR PAT)

matches (CDR x).

When the editor is searching, the pattern matching routine is called to match with elements in the structure,
unless the pattern begins with ... (three periods), in which case CDR of the pattern is matched against
proper tails in the structure. Thus,

*p
(A B C (B C)}
*F (8 --)
*p
(8 C)
*0 F (... 8 --)
*p
... 8 C (8 C»

Matching is also attempted with atomic tails (except for NIL). Thus,

*p
(A (8 • C»
*F C
*p
• •• • C)

Although the current expression: is the atom C after the final command, it is printed as C) to
alert the user to the fact that C is a tail, not an element. Note that the pattern C will match with either
instance of C in (A C (8 • C }), whereas (. .. . C) will match only the second C. The pattern NIL
will only match with NIL as an elemen~ i.e., it will not match in (A 8). even though COD R of (A 8)
is NIL. However, (. .. . NIL): (or equivalently (... » may be used to specify a NIL tail. e.g.. { ...

17.14

THE TELETYPE EDITOR

. NIL) will match with CDR of the third subexpression of { (A . a) (C . D) (E».

17.4.1 Search Algorithm

Searching begins with the current expression and proceeds in print order. Searching usually means find
the next instance of this pattern, and consequently a match is not 'attempted that would leave the edit
chain unchanged. At each step, the pattern is matched against the next element in the expression currently
being searched, unless the pattern begins with . .. (three periods) in which case it is matched against
the next tail of the expression.

If the match is not successful, the search operation is recursive first in the CAR direction, and then in the
CDR direction, i.e., if the element under examination is a list, the search descends into that list before
attempting to match with other elements (or tails) at the same lev~l_. Note: A find command of the fonn
(F PATTERN NIL) will only attempts matches ~ at the top level of the current expression, i.e., it does not
descend into elements, or ascend to higher expressions.

However, at no point is the total recursive depth of the search (sum of number of CARs and CDRs
descended into) allowed to exceed the value of the variable MAXLEVEL. At that point, the search of
that element or tail is abandoned, exactly as though the element or tail had been completely searched
without finding a match, and the search continues with the element or tail for which the recursive depth is
below MAXLEVEL. This feature is designed to enable the user to search circular list structures (by setting
MAXLEVEL small), as well as protecting him from accidentally encountering a circular list structure in the
course of nonnal editing. MAXLEVEL can also be set to NIL, which is equivalent to infinity. MAXLEVEL
is initially set to 300.

If a successful match is not found in the current expression, the search automatically ascends to the next
higher expression. and continues searching there on the next expression after the expression it just finished
searching. If there is none, it ascends again. etc. This process continues until the entire edit chain has
been searched, at which point the search fails, and an error is generated. If the search fails (or is aborted
by control-E), the edit chain is not changed (nor are any CONSes perfonned).

If the search is successful, i.e., an expression is found that the pattern matches, the edit chain is set to the
value it would have had had the user reached that expression via a sequence of integer commands.

If the expression that matched was a list, it will pe the final link in the edit chain, Le., the new current
expression. If the expression that matched is not a list, e.g., is art atom, the current expression will be
the tail beginning with that atom, unless the atom is a tail, e.g., a in (A . a). In this case, the current
expression will be a, but will print as a). In other words, the search effectively does an UP.7

17.4.2 Search Commands

All of the commands below set LASTAIL for use by UP, set UNFIND for use by \ (page 17.21), and do
not change the edit chain or perfonn any CONSes if they are unsuccessful or aborted.

F PATTERN [Editor Command]
Actually two commands: the F infonns the editor that the next command is to be

7Unless UPFINDFLG=NIL (initially set to T). For discussion, see "'Fonn Oriented Editing", page 17.26.

17.15

Search Commands

interpreted as a pattern. This is the most common and useful form of the find
command. If successful, the edit chain always changes, i.e., F PATTERN means
find the next instance of PATTERN.

If (MEMB -PATTERN CURRENT;.EXPRESSION) is true, F does not proceed with
a full recursive search. If the value of the MEMB is NIL, F invokes the search
algorithm described on page 17.15.

Note that if the current express.on is (PROG NIL LP (CONO (-- (GO LP 1) » ... LP1 ...), then
F LP1 will find the PROG label; not the LP1 inside of the GO expression, even though the latter appears
first (in print order) in the current expression. Note that typing 1 (making the atom PROG be the current
expression) followed by F L P 1 would find the first L P 1.

F PATTERN N

F PATTERN T

(F PATTERN N)

(F PATTERN)

F PATTERN NIL

[Editor Command]
Same as F PATTERN, i.e., Finds the Next instance of PATTERN, except that the
MEMB check_ of F PATTERN is not performed.

[Editor Command]
Similar to' F PATTERN, except that it may succeed without changing the edit chain,
and it does not perform the MEMB che~k.

For example, if the current expression is (CONO ...), F CONO will look for the
next CONO, but (F CONO T) will "stay here".

[Editor Command]
(N ~ 1) Finds the Nth place that PATTERN matches. Equivalent to (F PATTERN

T) followed by (F PATTERN N) repeated N-l times. Each time PATTERN

successfully matches, N is decremented by 1, and the search continues, until N

reaches O. Note that PATTERN does not have to match with N identical expressions;
it just has to match N times. Thus if the current expression is (FOOl F002
F003), (F FOOS 3) will find F003.

If PATTERN does not match successfully N times, an error is generated and the edit
chain is unchanged (even if PATTERN matched N-l times).

[Editor Command]
. [Editor Command]

Similar to F PATTERN, except that it only matches with elements at the top level of
the current expression, Le., the search will not descend into the current expression,
nor will itl go outside of the current expression. May succeed without changing the
edit chain.

For example, if the current expression is (PROG NIL (SETQ X (CONO & &» (CONO &) •••),the
command F CONO will find the CONO inside the SETQ, whereas (F (CONO --» will find the top level
CONO, Le., the second one.

(F S PATTERN 1 ... PATTERN N) [Editor Command]
Equivalent to F PATTERN1 followed by F PATTERN2 ··· followed by F PATTERNN,
so that if F PATTERNM fails, the edit chain is left at the place PATTERNM_1
matched.

17.16

THE TELETYPE EDITOR

(F = EXPRESSION X) [Editor Command]
Equivalent to (F (== • EXPRESSION) x), Le., searches for a structure EQ to
EXPRESSION (see page 17.13).

(ORF PATTERN1 ..• PATTERNN) [Editor Cpmmand]

BF PATTERN

Equivalent to (F (*ANY*PATTERN1 .•. • PATTERNN) N), Le., searches for an
expression that is matched by either PATTERN1, PATTERN3, .•. or PATTERNN (see
page 17.13).

[Editor Command]
"Backwards Find". Searches in reverse print order, beginning with the expression
immediately before the current expression (unless the current expression is the top
level expression, in which case B F searches the entire expression, in reverse order).

BF uses the same pattern match routi~ as F, and MAXLEVEL and UPFINDFLG
have the same effect, but the searching begins at the end of each list, and descends
into each element before attempting to' match that element. If unsuccessful, the
search continues with the next previous element, etc., until the front of the list is
reached, at which point B F ascends and backs up, etc.

For example, if the current expression is

(PROG NIL (SETQ X (SETQ Y (LIST Z») (COND «SETQ W --) --» --),

the command F LIST followed by BF SETQ will leave the current expre.ssion as (SETQ Y (LIST Z»,
as will F COND followed by BF SETQ.

BF PATTERN T [Editor Command]
Similar to B F PATTERN, except that the search always includes the current
expression, i.e., starts at the end of current expression and works backward, then
ascends and backs up, etc.

Thus in the previous example, where F CONO followed by BF SETQ found (SETQ Y (LIST Z», F
CO NO followed by (BF SETQ T) would find the (SETQ W --) expression.

(BF PATTERN)

BF PATTERN NIL

(GO LABEL)

Same as B F PATTERN.

[Editor Command]
[Editor Command]

[Editor Command]
Makes the current expression be the first thing after the P ROG label LABEL, Le.
goes where an executed GO would go.

17.4.3 Location Specification

Many of the more sophisticated commands described later in this chapter use a more general method of
specifying position called a location specification. A location specification is a list of edit commands that
are executed in the nonnal fashion with two exceptions. First, all commands not recognized by the editor
are interpreted as though they had been preceded by F; normally such commands would cause errors.
For example, the location specification (CONO 2 3) specifies the 3rd element in the first clause of the

17.17

Location Specification

next COND.8

Secondly; if an error occurs while evaluating one of the commands in the location specification, and the
edit chain had been changed, i~e., was not the same as it was at the beginning of that execution of the
location specification, the location operation will continue. In other words, the location operation keeps
going unless it reaches a state Where it detects that it is "looping", at which point it gives up. Thus~ if
(COND 2 3) is being located, ;and the first clause ·of the next CONO contained only two elements, the
execution of the command 3 would cause an error. The search would. then continue by looking for the
next CONDo However, if a point were reached where there were no further CONOs, then the first command,
COND, would cause the error; the edit chain would not have been changed, and so the entire location
operation would fail, and cause ian error.

The I F command (page 17.46) jn conjunction with the ## function (page 17.46) provide a way of using
arbitrary predicates applied to elements in the current expression. I F and ## will be described in detail
later in the chapter, along with ~xamples illustrating their use in location specifications.

Throughout this chapter, the m~ta-symbol @ is used to denote a location specification. Thus @ is a list of
commands interpreted as described above. @ can also be atomic, in which case it is interpreted as (L I ST
@).

(LC. @)

(LCL. @)

(2ND. @)

(3ND. @)

(+- PATTERN)

[Editor Command]
Provides a way of explicitly invoking the location operation, e.g., (LC COND 2
3) will perform the the search described above.

[Editor Command]
Same as ~ C except the search is confined to the current expression, i.e., the edit
chain is rebound during the search so that it looks as though the editor were called
on just the current expression. For example, to find a COND containing a RETURN,
one migh~ use the location specification (COND (LCL RETURN) \) where the
\ would ireverse the effects of the LCL command, and make the final current
expression be the CONDo

[Editor Command]
Same as (L C • @) followed by another (L C . @) except that if the first succeeds
and second fails, no change is made to the edit chain.

[Editor Command]
Similar to' 2 NO.

[Editor Command]
Ascends the edit chain looking-for a link which matches PATTERN. In other words,
it keeps doing 0 's until it gets to a specified point If PATTERN is atomic. it is
matched with the first element of each link, otherwise with the entire link. If no
match is (ound, an error is generated, and the edit chain is unchanged.

Note: If PATTERN is of the form (I F EXPRESSION), EXPRESSION is evaluated
at each link, and if its value is NIL, or the evaluation causes an error, the ascent
continues.! See page 17.46.

8Note that the user could alway~ write F COND followed by 2 and 3 for (COND 2 3) if he were not
sure whether or not COND was the name of an atomic command.

17.18

For example:

*pp
[PROG NIL

(COND

THE TELETYPE EDITOR

[{NULL (SETQ L (CDR L»)
(COND

. {FLG (RETURN L]
{[NULL (CDR {FMEMB (CAR L)

(CAPR L]]
*F CADR
*(+- COND)
*p
(COND (& &) (& &»

*

Note that this command differs from B F in that it does not search inside of each link, it simply ascends.
Thus in the above example. F CADR followed by BF COND would find (COND {FLG (RETURN L»),
not the higher CONDo

(BELOW COM x)

(BELOW COM)

[Editor Commandl
Ascends the edit chain looking for a link specified by COM. and stops x links below
that (only links that are elements are counted, not tails). In other words BELOW
keeps doing O's until it gets to a specified point, and then backs off x D's.

Note that x is evaluated. so one can type {B E LOW COM (I PLUS X Y».

[Editor Command]
Same as (BELOW COM 1).

For example, (BELOW COND) will cause the COND clause containing the current expression to become
the new current expression. Thus if the current expression is as shown above, F CADR followed by
(BELOW COND) will make the new expression be ([NULL (CDR (FMEMB (CAR L) (CADR L] (GO
L P)), and is therefore equivalent to 0 0 0 O.

The BELOW command is useful for locating a substructure by specifying something it contains. For
example, suppose the user is editing a list of lists, and wants to find a sublist that contains a FOO (at any
depth). He simply executes F FOO (BELOW \).

(NEX COM) [Editor Command]
Same as (BELOW COM) followed by NX.

For example. if the user is deep inside of a SELECTQ clause, he can advance to the next clause with
(NEX SELECTQ).

NEX [Editor Command]
Same as (N E ~ +-).

The atomic form of NEX is useful if the user will be performing repeated executions of (NEX COM). By
simply MARKing (see page 17.21) the chain corresponding to COM, he can use NEX to step through the

17.19

sub lists.

(NTH COM)

Commands That Save and Restore the Edit Chain

[Editor Command]
Generalized NTH command. Effectively performs (L C L 0 COM), followed by
(BELOW \), followed by 4p.

If the search is unsuccessful, NTH generates an error and the edit chain is not
changed. .

Note that (NTH NUMBER) is just a special case of (NTH COM), and in fact, no
special check is made for COM a number; both commands are executed identically.

In other words, NTH locates COM, using a search restricted to the current expression, and then backs up
to the current level, where the new current expression is the tail whose first element contains, however
deeply, the expression that was the terminus of the location operation. For example:

*p
(PROG (& &) LP (COND & &) (EDITGOM &) (SETQ UNFIND UF) (RETURN L»
*(NTH UF)
*p
000 (SETQ UNFIND UF) (RETURN L»
•
PATTERN [Editor Command]

E.g., (COND o. RETURN). Finds a COND that contains a RETURN, at any depth.
Equivalent to (but more efficient than) (F PATTERN N). (LCL 0 @) followed
by (+- PATTERN).

An infix command " 0 ." is not a meta-symbol, it is the name of the command. @

is CDOR of the command. Note that (PATTERN •• @) can also be used directly
as an edi~ pattern as described on page 17.13, e.g. F (PATTERN •• @).

For example, if the current expression is

{PROG NIL [COND ({NULL L) {COND (FLG (RETURN L] --),

then (COND •• RETURN) will make (COND (FLG (RETURN L») be the current expression. Note
that it is the innermost eOND that is found, because this is the first COND encountered when ascending
from the RETURN. In other words, (PATr;I'ERN •• @) is not always equivalent to (F PATTERN N),
followed by (LCL • @) followed by \.

Note that @ is a location specification, not just a pattern. Thus (RETURN •• COND 2 3) can be used
to find the RETURN which contains a COND whose first clause contains (at least) three elements. Note also
that since @ permits any edit command the user can write commands of the form (COND o. (RETURN

COND», which will locate the first COND that contains a RETURN that contains a CONDo

17.5 COMMANDS THAT SAVE AND RESTORE THE EDIT CHAIN

Several facilities are available for saving the current edit chain and later retrieving it: MARK, which marks

17.20

THE TELETYPE EDITOR

the current chain for future reference, +-, which returns to the last mark without destroying it and "'+-,

which returns to the last mark and also erases it.

MARK [Editor Command]
Adds the current edit chain to the front of the list MARKLST.

[Editor Command]
Makes the new edit chain be (CAR MARKLST). Generates an error if MARKLST
is NIL, i.e., no MARKs have been performed. or all have been erased.

This is an atomic command: do not confuse it with the list command (...
PATTERN).

[Editor Command]
Similar to +- but also erases the last MARK, i.e., perfonns (SETQ MARKLST (CDR
MARKLST)).

Note that if the user has two chains marked. and wishes to return to the first chain. he must perfonn +-+-,

which removes the second mark, and then +-. However, the second mark is then no longer accessible. If
the user wants to be able to return to either of two (or more) chains, he can use the following generalized
MARK: r

(MARK LITATOM) [Editor Command]
Sets LITATOM to the current edit chain,

(\ LITATOM) . [Editor Command]
Makes the current edit chain become the value of LITATOM.

If the user did not prepare in advance for returning to a particular edit chain, he may still be able to
return to that chain with a single command by using \ or \ P.

\ [Editor Command]
Makes the edit chain be the value of UN FIN O. Generates an error if UN FIN 0 = NIL.

UNFIND is set to the current edit chain by each command that makes a "big jump", i.e., a command that
usually perfonns more than a single ascent or descent namely 1', +-, +-+-, 1 NX, all commands that involve
a search, e.g., F, LC, .. , BELOW, et al and \ and \P themselves. One exception is that UNFIND is not
reset when the current edit chain is the top level expression, since this could always be returned to via
the l' command.

For example, if the user types F COND, and then F CAR, \ would take him back to the CONDo Another
\ would take him back to the CAR, etc.

\P [Editor Command]
Restores the edit chain to its state as of the last print operation, i.e., P, ?, or P P.
If the edit chain has not changed since the last printing, \ P restores it to its state
as of the printing before that one, i.e., two chains are always saved.

For example, if the user types P followed by 3 2 1 P, \P will return to the first P, i.e., would be
equivalent to 0 0 O. Another \ P would then take him back to the second P, i.e., the user could use \ P
to flip back and forth between the two edit chains.

Note that if the user had typed P followed by F COND, he could use either \ or \P to return to the P,

17.21

Commands That Modify Structure

i.e., the action of \ and \ P are independent

S LITATOM @ [Editor Command]
Sets LITATOM (using SETQ) to the current expression after performing (LC . @).
The edit chain is not changed.

Thus (S F 00) will set F 00 to the current expression, and (S F 00 -1 1) will set F 00 to the first
element in the last element of the current expression.

17.6 COMMANDS THAT MODIFY STRUCTIJRE

The basic structure modification commands in the editor are:

(N) (N~1) [Editor Command]
Deletes the corresponding element from the current expression.

(N El 000 EM) (N~ 1) [Editor Command]
Replaces the Nth element in the curr~nt expression with El 0.' EM'

(- N El o. 0 EM) (N~ 1) [Editor Command]
Inserts El 0" EM before the Nth element in the current expression.

[Editor Command]
Attaches El 00. EM at the end of the current expression.

As mentioned earlier: all structure modification done by the editor is destructive. Le., the editor uses
RPLACA and RPLACD to physically change the structure it was given. However. all structure modification
is undoable, see UNDO (page 17.50).

All of the above commands generate errors if the current expression is not a list, or in the case of the first
three commands, if the list contains fewer than N elements. In addition, the command (1), Le., delete
the first element, will cause an error if there is only one element. since deleting the first element must
be done by replacing it with the :second element, and then deleting the second element Or, to look at it
another way, deleting the first element when there is only one element would require changing a list to
an atom (Le., to NIL) which cannot be done. However. the command DELETE will work even if there is
only one element in the current expression, since it will ascend to a point where it can do the deletion.

If the value of CHANGESARRAY is a hash array, the editor will mark all structures that are changed
by doing (PUTHASH STRUCTURE FN CHANGESARRAY), where FN is the name of the function. The
algorithm used for marking is as follows: (1) If the expression is inside of another expression already
moarked as being changecL do nothing. (2) If the change is an insertion of or replacement with a list,
mark the list as changed. (3) If the change is an insertion of or replacement with an atom. or a deletion,
mark the parent as changed.

CHANGESARRAY is primarily for use by PRETTYPRINT (page 6.47). When the value of CHANGECHAR is
non-NIL. PRETTYPRINT. when printing to a file or display terminal. prints CHANGECHAR in the right
margin while printing an expression marked as having been changed. CHANGECHAR is initially I.

17.22

THE TELETYPE EDITOR

17.6.1 Implementation of Structure Modification Commands

Note: Since all commands that insert, replace, delete or attach structure use the same low level editor
functions, the remarks made here are valid for all structure changing commands.

. .
For all replacement, insertion, and attaching at the end of a list, unless the command was typed in directly
to the editor,9 copies of the corresponding structure are used, because of the possibility that the exact
same command, (Le., same list structure) might be used again. Thus if a program constructs the command
(1 (A B C» e.g., via (L 1ST 1 F 00), and gives this command to the editor, the (A B C) used for
the replacement will not be E Q to F 00.10

The rest of this section is included for applications wherein the editor is used to modify a data structure,
and pointers into that data structure are stored elsewhere. In these cases, the actual mechanics of structure
modification must be known in order to predict the. effect that various commands may have on these
outside pointers. For example, if the value of FOO is CDR of the current expression, what will the
commands (2), (3), (2 X Y Z), (- 2 X Y Z), etc. do to FaD?

Deletion of the first element in the current expression is perfonned by replacing it with the second
element and deleting the second element by patching around it. Deletion of any other element is done by
patching around it, i.e., the previous tail is altered. Thus if FrOO is E Q to the current expression which is
(A BCD), and FIE is CDR of FDa, after executing the command (1), Faa will be (8 C D) (which
is EQUAL but not EQ to F I E). However, under the same initial conditions, after executing (2) FIE will
be unchanged, Le., FIE will still be (8 CD) even though the current expression and F 00 are now (A
C D).ll

Both replacement and insertion are accomplished by smashing both CAR and CDR of the corresponding
tail. Thus, if FOO were EQ to the current expression, (A 8 CD), after (1 X Y Z), FDa would be (X
Y Z 8 CD). . Similarly, if F 00 were E Q to the current expression, (A 8 CD), then after (- 1 X Y
Z), F 00 would be (X Y Z A 8 CD) .

The N command is accomplished by smashing the last CDR of the current expression a la NCONC. Thus
if FOO were EQ to any tail of the current expression, after executing an N command, the corresponding
expressions would also appear at the end of Faa.

In summary, the only situation in which an edit operation will not change an external pointer occurs when
the external pointer is to a proper tail of the data structure, Le., to CDR of some node in the structure,
and the operation is deletion. If all external pointers are to elements of the structure, Le .• to CAR of some

9Some editor commands take as arguments a list of edit commands, e.g., (LP F FDa (1 (CAR FOO»).
In this case, the command (1 (CAR FDa» is not considered to have been "typed in" even th.ough the
LP command itself may have been typed in. Similarly, commands originating from macros, or commands
given to the editor as arguments to EDITF, EDITV, et al, e.g., EDITF (FDa F COND (N --» are not

. considered typed in.

10The user can circumvent this by using the I command (page 17.45), which computes the structure to
be used. In the above example, the fonn of the command would be (I 1 FDa), which would replace
the first element with the value of F 00 itself.
11 A general solution of the problem just isn't possible, as it would require being able to make two lists
EQ to each other that were originally different. Thus if F IE is CDR of the current expression, and FUM is
CDDR of the current expression, perfonning (2) would have to make F IE be EQ to FUM if all subsequent
operations were to update both F IE and FUM correctly.

17.23

The A, B, and : Commands

node, or if only insertions, replacements, or attachments are performed.. the edit operation will always
have the same effect on an external pointer as it does on the current expression. .

17.6.2 The A, B, and : Commands

In the (N), (N E1 ..• EM)' and (-N E1 EM) commands, the sign of the integer is used to indicate
the operation. As a resul~ the~e is no direct way to express insertion after a particular element. (hence
the necessity for a separate N command). Similarly, the user cannot specify deletion or replacement of
the Nth element from the end of a list without first converting N to the corresponding positive integer.
Accordingly, we have:

[Editor Command]
Inserts E1 ..• EM before $~ current expression. Equivalent to UP followed by (-1
E1 ••• EM)' .

For example, to insert FOO before the last element in the current expression, perform -1 and then (B
FOO). .

DELETE
(:)

I [Editor Command]
Inserts E 1 .•• EM after the current expression. Equivalent to UP followed by (- 2
E1 ..• EM) or (N E1 ••. EM)' whichever is appropriate.

[Editor Command]
Replaces the current expression by E1 ..• EM' Equivalent to UP followed by (1
E1 ..• EM)'

Deletes the current expression.

[Editor Command]
[Editor Command]

DEL E T E first tries to delete the; current expression by performing an UP and then a (1). This works
in most cases. However, if after performing UP, the new current expression contains only one element,
the command (1) will not work. Therefore, 0 E LET E starts over and performs a B K, followed by UP,
followed by (2). For example, if the current expression is (COND « MEMB X Y» (T Y», and the
user performs -1, and then DELETE, the BK-UP-(2) method is used.. and the new current expression
will be ... «MEMB X Y»).

However, if the next higher expression contains only one elemen~ B K will not work. So in this case,
DE LETE performs UP, followed by (: NI L), i.e., it replaces the higher expression by NfL. For example,
if the current expression is (CONO « MEMB X Y» (T Y» and the user performs F MEMB and then
DEL E T E, the new current expression will be ... NIL (T Y» and the original expression would now
be (COND NIL (T Y». The rationale behind this is that deleting (MEMB X Y)' from ((MEMB X Y»
changes a list of one element to a list of no elements, i.e., () or NIL.

If the current expression is a tail, then B. A, :, and DELETE all work exactly the same as though the
current expression were the first; element in that tail. Thus if the current expression were . .. (P R I NT
Y) (PRINT Z». (B (PRINT, X» would insert (PRINT X) before (PRINT V). leaving the current
expression . .. (P R IN T X) (P R IN T Y) (P R I NT Z» .

17.24

THE TELETYPE EDITOR

The following fonnsof the A, B, and : commands,incorporate a location specification:

(INSERT El ... EM BEFORE. @) [Editor Command]

• p

«(§ is (CDR (MEMBER 'BEFORE COMMAND») Similar to (LC .@) followed by
. (B El •.. EM)'

Warning: If @ causes an error, the location process does not continue as described
on page 17.17. For example if @= (CONo 3) and the next CONO does not have a
3rd element. the search stops and the INSERT fails. Note that the user can always
write (LC CONo 3) if he intends the search to continue .

(PROG (& & X) ··COMMENT·· (SELECTQ ATM & NIL) (OR & &) (PRINt & T)
(PRINt & T) {SETQ X &

·(INSERT LABEL BEFORE PRINt)
.p
{PROG (& & X) ··COMMENT·· (SELECTQ ATM & NIL) (OR. & &) LABEL
(P R IN t & T) { user typed control-E

*

Current edit chain is not changed, but UNFIND is set.to the edit chain after the B was perfonned, Le., \
will make the edit chain be that chain where the insertion was perfonned.

(INSERT El EM AFTER. @) [Editor Command]
Similar to INSERT BEFORE except uses A instead of B.

(INSERT El ... EM FOR. @) [Editor Command]
Similar to INSERT BEFORE except uses: for B.

(REPLACE @ BY El ... EM) [Editor Command]
(REPLACE @ WITH El ... EM) [Editor Command]

Here (§ is the segment of the command between REPLACE and WITH. Same as
(INSERT El ... EM FOR . @).

Example: {RE PLAC E CONO -t WI TH {T (RE TURN L»)

(CHANGE @ TO El ... EM) [Editor Command]

(DELETE. @)

Same as REPLACE WITH.

[Editor Command]
Does a (LC . @) followed by DELETE.12 The current edit chain is not changed,
but UN FIN 0 is set to the edit chain after the DEL E T E was perfonned.

Note: the edit chain will be changed if the current expression is no longer a part
of the expression being edited, e.g., if the current expression is . .. C) and the
user performs (D E LET E 1), the tail, (C), will have been cut off. Similarly, if the

12See warning about INSERT, page 17.25.

17.25

Form Oriented Editing and the Role of UP

current expression is (CDR Y) and the user perfonns (RE PLACE WI TH (CAR
X)).

Example: (DELETE -1), (DELETE CONO 3)

Note: ifC§ is NIL (i.e., empty). the corresponding operation is perfonned on the current edit chain.

For example, (REPLACE WITH (CAR X» is equivalent to (: (CAR X». For added readability,
HERE is also permitted, e.g., {INSERT (PRINT X) BEFORE HERE) will insert (PRINT X) before the
current expression (but not chang~ the edit chain).

Note: C§ does not have to specify a location within the current expression. i.e., it is perfectly legal to ascend
10 INSERT, REPLACE. or DELETE

For example, (INSERT (RETURN) AFTER_ PROG -1) will go to the top, find the first PROG, and
insert a (RETURN) at its end, and not change the current edit chain.

The A, B, and: commands, commands, (and consequently INSERT, REPLACE, and CHANGE), all make
special checks in El thru EM for expressions of the fonn (## . COMS). In this case, the expression
used for inserting or replacing is a copy of the current expression after executing COMS, . a list of edit
commands (the execution of COMS does not change the current edit chain). For example, {I NSE RT (##
F CO NO -1 -1) AF T E R 3) will make a copy of the last fonn in the last clause of the next CONO, and
insert it after the third element of the current expression. Note that this is not the same as {I NSE RT F
CONO -1 (## -1) AFTER 3), which inserts four elements after the third element, namely F, CONO,
-1. and a copy of the last elemen,t in the current expression.

17.6.3 Form Oriented Editing and the Role of UP

The UP that is perfonned before A, B, and: commands13 makes these operations form-oriented. For
example, if the user types F SETQ, and then DELETE, or simply (DELETE SETQ), he will delete the
entire SETQ expression, whereas (DELETE X) if X is a variable, deletes just the variable X. In both
cases, the operation is perfonned on the corresponding jonn, and in both cases is probably what the
user intended. Similarly, if the user types {INSERT (RETURN Y) BEFORE SETQ), he means before
the SETQ expression, not before the atom SETQ.14 A consequent of this procedure is that a pattern of
the fonn (SETQ Y --) can be viewed as simply an elaboration and further refinement of the pattern
SETQ. Thus (INSERT (RETURN:.Y) BEFORE SETQ) and {INSERT (RETURN Y) BEFORE (SETQ
y --» perfonn the same operation15 and. in fact, this is one of the motivations behind making the
current expression after F SET Q, and F (S E T Q Y - -) be the same.

Occasionally. however. a user may have a data structure in which no special significance or meaning is
attached to the position of an atom in a list, as Interlisp attaches to atoms that appear as CAR of a list.

13and therefore in INSERT, CHANGE, REPLACE, and DELETE commands after the location portion of
the operation has been perfonned.

14There is some ambiguity in (INSERT EXPR AFTER FUNCTIONNAME), as the user might mean make
EXPR be the function's first argument. Similarly, the user cannot write (REPLACE SETQ WITH SETQQ)
meaning change the name of the function. The user must in these cases write (INSERT EXPR AFTER
FUNCTIONNAME 1), and (REPLACE SETQ 1 WITH SETQQ).

15assuming the next SE TQ is of the form (SE TQ Y - -).

17.26

THE TELETYPE EDITOR

versus those appearing elsewhere in a list. In general~ the user may not even know whether a particular
atom is at-the head of a list or not Thus, when he writes (INSERT EXPR BEFORE Faa). he means
before the atom "FOO, whether or not it is CAR of a list By setting the variable UPFINDFLG to NIL
(initially T), the user can suppress the implicit UP that follows searches for atoms, and thus achieve the
desired effect. With UP FIN D F L G = NIL, following F F 00, for example, the current expression will be
the atom FOO. In this case, the A, B, and : operations will operate with respect to the atom FOO. If the
user intends the operation to refer to the list which FOO heads, he simply uses instead the pattern (FOO
--).

17.6.4 Extract and Embed

Extraction involves replacing the current expression with one of its subexpressions (from any depth).

(XTR. @) [Editor Command]
Replaces the original c:u_rrent expression with the expression that is current after
perfonning (L C L • @) .16 If the "current expression after (L C L • @) is a tail of
a higher expression, its first element is used.

If the extracted expression is a list, then after X T R has finished, the current
expression will be that list. If the extracted expression is not a list, the new current
expression will be a tail whose first element is that non-list.

For example, if the current expression is {COND ({ NULL X) (PRINT Y»), (XTR PRINT), or (XTR
2 2) will replace the COND by the PRINT. The current expression after the XTR would be (PRINT V).

If the current expression is {COND ({ NULL X) Y) (T Z», then (XTR Y) will replace the COND with
Y, even though the current expression after perfonning (L eLY) is ... Y) . The current expression
after the XTR would be . .. Y followed by whatever followed the CONDo

If the current expression initially is a tail, extraction works exactly the same as though the current
expression were the first element in that tail. Thus if the current expression is ... (COND « NULL
X) (PRINT V»~) (RETURN Z», then (XTR PRINT) will replace the COND by the PRINT, leaving
(P R I NT Y) as the current expression.

The extract command can also incorporate a location specification:

(EXTRACT @1 FROM. @2) [Editor Command]
(@1 is the segment between EXTRACT and FROM.) Perfonns (LC • @.2)17 and
then (X T R • @ 1). The current edit chain is not changed, but UN FIN 0 is set to
the edit chain after the X T R was perfonned.

For example: If the current expression is {PRINT {COND ({NULL X) Y) (T Z») then following
(EXTRACT Y FROM COND), the current expression will be (PRINT V). (EXTRACT 2 -1 FROM
COND), (EXTRACT Y FROM 2), and (EXTRACT 2 -1 FROM 2) will all produce the same result.

16See warning about INSERT, page 17.25.

l7See warning about INSERT, page 17.25.

17.27

Extract and· Embed

While extracting replaces the current -expression by a, subexpressio~ embedding replaces the current
expression -with -one containing it as a suhexpression. .

(MBD El ... EM) [Editor Command]

Examples:

MBD substitutes the current expression for all instances of the atom & in El ... EM'
and replaces the current expression with the result of that substitution. As with
SUBST, a fresh copy is used for each substitution.

If & does not appear in El ... EM' the MBD is interpreted as {MBD (E1 ... EM
&)).

MB 0 leaves the edit chain so that the larger expression is the new current expression.

If the current expression is (PRINT Y),(MBD (COND «NULL X) &) «NULL (CAR V»~ & (GO
LP»» would replace (PRINT Y) ~ith (COND «NULL X) (PRINT V»~ «NULL (CAR V»~
(PRINT Y) (GO LP»).

If the current expression is (RETURN X), (MBD (PR I NT Y) (AND F LG &» would replace it with
the two expressions (PRINT Y) and (AND FLG (RETURN X» i.e., if the (RETURN X) appeared in
the cond clause (1 (RETURN X», after the MBD, the clause would be (T (PRINT Y) (AND FLG
(RETURN X»).

If the current expression is (PRINT Y), then (MBD SETQ X) will replace it with (SETQ X (PRINT
V»~. If the current expression is (PRINT Y), (MBD RETURN) will replace it with (RETURN (PRINT
Y». .

If the current expression initially is a tail, embedding works exactly the same as though the current
expression were the first element in that tail. Thus if the current expression were ... (P R I N T Y)
(PRINT Z», (MBD SETQ X) would replace (PRINT Y) with (SETQ X (PRINT V»~.

The embed command can also incorporate a location specification:

(EMBED @ IN. x) [Editor Command]
(@ is the segment between EMBE D and I N.) Does (LC • @)18 and then (MBD •
x). Edit chain is not changed, but UNFIND is set to the edit chain after the MBD
was perfonned.

Examples: (EMBED PRINT IN SETQ X), (EMBED 3 2 IN RETURN), (EMBED COND 3 1 IN (OR
& (NULL X»).

WITH can be used for IN, and SURROUND can be used for EMBED. e.g .• (SURROUND NUMBERP WITH
(AND & (MINUSP X»).'

EDITEMBEDTOKEN [Variable]
The special atom used in the MBD and EMBED commands is the value of this
variable, initially &.

18See warning about INSERT, page 17.25.

17.28

· THE TELETYPE EDITOR

17.6.5 The MOVE Command

The MOVE command allows the user to specify (1) the expression to be moveci (2) the place it is to be
moved to, and (3) the operation to be perfonned there, e.g., insert it before, insert it after, replace, etc.

(MOVE 81 TO COM. (2) [Editor Command]
(81 is the segment between MOVE and TO.) COM is BEFORE9 AFTER, or the name
of a list commanci e.g., :, N, etc. Perfonns {lC . 81),19 and obtains the current
expression there (or its first element, if it is a tail), which we will call EXPR; MOVE
then goes back to the original edit chain, perfonns (lC . (2) followed by (COM
EXPR) (setting an internal flag so EXPR is not copied), then goes back to 81 and
deletes EXPR. The edit chain is not changed. UNF IND is set to the edit chain after
(COM EXPR) was perfonned.

If 82 specifies a location inside of the expression to be moved, a message is printed
and .an error is generateci e.g., (MOV E 2 TO AFT E R X), where X is contained
inside of the second element

For example, if the current expression is (A BCD), (MOVE 2 TO AFTER 4) will make the new
current expression be (A COB). Note that 4 was executed as of the original edit chain, and that the
second element had not yet been removed.

As the following examples taken from actual editing will show, the MOVE command is an extremely
versatile and powerful feature of the editor.

*1
{PROG ({l l» {EDlOC (CDDR C» {RETURN (CAR l»)
*(MOVE 3 TO : CAR)
*1
{PROG ({l l» {RETURN {EDlOC (CDDR C»»
*

*p
(SElECTQ OBJPR & &) (RETURN &) lP2 (COND & &»

*(MOVE 2 TO N 1)
*p

(SElECTQ OBJPR & & &) lP2 (COND& &»

*
*p
{OR (EQ X lASTAIl) (NOT &) (AND & & &»
*{MOVE 4 TO AFTER (BELOW COND»
*p
(OR (EQ X lASTAIl) (NOT &»
*\ P

(& &) (AND & & &) (T & &»
*

19See warning about INSERT, page 17.25.

17.29

The MOVE Command

*p
«NULL X) **COMMENT** (CONO & &»
*(-3 (GO NXT]
*(MOVE 4 TO N (~ PROG»
*p
«NULL X) **COMMENT*· (GO NXT»
*\ P
(PROG (&) *·COMMENT·· (CONO & & &) (CONO & & &) (COND & &»
*(INSERT NXT BEFORE -1)
*p
(PROG (&) ··COMMENT*· (CONO & & &) (CONO & & &) NXT (CONO & &»

Note that in the last example, the user could have added the PROG label NXT and moved the CO NO in one
operation by performing (MOVE 4 TO N (4- PROG) (N NXT». Similarly, in the next example, in
the course of specifying @2, the location where the expression was to be moved to, the user also performs
a structure modification, via (N' (T», thus creating the structure that will receive the expression being
moved. .

*p
«CDR &) **COMMENT·· (SETQ CL &) (EOITSMASH CL & &»
·MOVE 4 TO N 0 (N (T» -1]
*p
«CDR &) **COMMENT** (SETQ CL &»
*\ P
*(T (EOITSMASH CL & &»,
*

If @2 is NIL, or (H ERE), the current position specifies where the operation is to take place. In this case,
UNFINO is set to where the expression that was moved was originally located. i.e., @lo For example:

*p
(TENEX)
*(MOVE ~ F APPLY TO N HERE)
*p
(TENEX (APPLY & &»
* .

*p
(PROG (& & & ATM INO VAL) (OR & &) **COMMENT**
(PRINI & T) (
P R I N 1 & T) {S E T Q I NO user typed control-E

*(MOVE * TO BEFORE HERE)
*p

(OR & &)

(PROG (& & & ATM INO VAL) (OR & &) (OR & &) (PRINt &

*p
(T (PRINt C-EXP T»
*(MOVE ~ BF PRINt TO N HERE)
.p
(T (PRINI ~-EXP T) (PRINt & T»

17.30

THE TELETYPE EDITOR

*

Finally, if @1 is NIL, the MOVE' command allows the user to specify where the current expression is to
be moved to. In this case, the edit chain is changed, and is the chain where the current expression was
moved to; UNF IND is set to where it was.

*p
(SELECTQ OBJPR (&) (PROGN & &»
*(MOVE TO BEFORE LOOP)
*p -
••• (SELECTQ OBJPR & &) LOOP (FRPLACA DFPRP &) (FRPLACD DFPRP
&) (SE LECTQ user typed control-E .

17.6.6 Commands That Move Parentheses

The commands presented in this section permit modification of the list structure itself, as opposed to
modifying components thereof. Their effect can be described as inserting or removing a single left or
right parenthesis, or pair of left and right parentheses. Of course, there will always be the same number
of left parentheses as right parentheses in any list structure, since the parentheses are just a notational
guide to the structure provided by PRINT. Thus, no command can insert or remove just one parenthesis.
but this is suggestive of what actually happens.

In all six commands, N and M are used to specify an element of a list, usually of the current expression.
In practice, N and M are usually positive or negative integers with the obvious interpretation. However,
all six commands use the generalized NTH command (NTH COM) to find their element(s), so that Nth
element means the first element of the tail found by performing (NTH N). In other words. if the
current expression is (LIST (CAR X) (SETQ Y (CONS W Z»), then (BI 2 CONS), (BI X -1).
and (B I X Z) all specify the exact same operation.

All six commands generate an error if the element is not found, Le., the NTH fails. All are undoable.

(BI N M) [Editor Command]
"Both In". Inserts a left parentheses before the Nth element and after the Mth
element in the current expression. Generates an error if the Mth element is not
contained in the Nth tail, i.e., the Mth element must be "to the right" of the Nth
element.

Example: If the current expression is (A B (C 0 E) F G), then (B I 2 4) will modify it to be (A
(B (C 0 E) F) G).

(BI N) [Editor Command]
Same as (BI N N).

Example: If the current expression is (A B (C 0 E) F G), then (B I - 2) will modify it to be (A B
(C 0 E) (F) G).

(BO N) [Editor Command]
"Both Out". Removes both parentheses from the Nth element Generates an error
if Nth element is not a list.

17.31

TO and THRU

Example: If the current expression is {A B (C DE) F G), then (BO D) will modify it to be (A B
C D E F G).

(LI N) [Editor Command]
"Left In". Inserts a left parenthesis before the Nth element (and a matching right
parenthesis at the end of the current expression), Le. equivalent to (B I N -1).

Example: if the current expression is {A B (C 0 E) F G), then (L I 2) will modify it to be {A {B
(C 0 E) F G».

(LO N) [Editor Command]
"Left Out". Removes a left parenthesis from the Nth element All elements
following the Nth element aTe deleted Generates an error if Nth element is not a
list.

Example: If the current expression is {A B (C DE) F G), then (LO 3) will modify it to be (A B
C DE).

(RI N M) [Editor Command]
"Right In". Inserts a right parenthesis after the Mth element of the Nth element.
The rest of the Nth element is brought up to the level of the current expression.

Example: If the current expression is {A (B C DE) F G), (R I 2 2) will modify it to be (A (B
C) D E F G) • Another way of thinking about R I is to read it as "move the right parenthesis at the
end of the Nth element in to after its Nth element"

(RO N) [Editor Command]
"Right Out". Removes the right parenthesis from the Nth element, moving it to
the end of the current expression. All elements following the Nth element are
moved inside of the Nth element. Generates an error if Nth element is not a list.

Example: If the current expression is {A B (C 0 E) F G), (RO 3) will modify it to be {A B (C D
E F G». Another way of thinking about RO is to read it as "move the right parenthesis at the end of
the Nth element out to the end of the current expression."

17.6.7 TO and THRU

EXTRACT, EMBED, DELETE, REPLACE, and MOVE can be made to operate on several contiguous elements,
Le., a segment of a list, by using in their respective location specifications the TO or THRU command.

[Editor Command]
Does a (L C • @ 1), followed by an UP. and then a (B I 1 (2), thereby grouping
the segment into a single element, and finally does a 1, making the final current
expression be that element.

For example, if the current expression is {A {B (C D) (E) (F G H) I) J K), following (C THRU
G), the current expression will be ({ CD) (E) (F G H».

[Editor Command]
Same as THRU except the last element not included, Le., after the B I, an (R I 1
- 2) is perfonned.

17.32

THE TELETYPE EDITOR

If both @1 and @2 are-numbers, and @2 is greater than @1, then @2 counts from the beginning of the
current expression, the same as @ 1. In other words, if the current expression is (A BCD E F G), (3
THRU 5) means.(C THRU E) not (C THRU G). In this case, the corresponding B I command is (B I
1 @2-@1+1).

T H RU and TO are not very useful commands by themselves; they are intended to be used in conjunction
with EXTRACT"EMBED, DELET-E, REPLACE, and MOVE. After THRU and TO have operated, they set an
internal editor flag informing the above commands that the element they are operating on is actually a
segment, and that the extra pair of parentheses should be removed when the operation is complete. Thus:

.p
(PROG (& & ATM IND VAL WORD) (PRIN1 & T) (PRIN1 & T) (SETQ INO &)
(SETQ VAL &) ··COMMENT·· (SETQQ user typed control-E

·{MOVE (3 THRU 4) TO BEFORE 7}
.p
{PROG (& & ATM IND VAL WORD) (SETQ IND &) (SETQ VAL &) (PRINt & T)
(PRIN1 & T) ··COMMENT·· user typed control-E

•
.p
(. FAIL RETURN FROM EDITOR. US~R SHOULD NOTE THE VALUES OF SOURCEXPR
AND CURRENTFORM. CURRENTFORM IS THE LAST FORM IN SOURCEXPR WHICH WILL
HAVE BEEN TRANSLATED, AND IT CAUSED THE ERROR.)
·{DELETE (USER- THRU CURR$»
=CURRENTFORM .
• p
{. FAIL RETURN FROM EDITOR. CURRENTFORM IS user typed control-E

•
.p

LP (SELECTO & & & & NIL) (SETQ Y &) OUT (SETQ FLG &) (RETURN V»)
·{MOVE (1 TO OUT) TO N HERE]
.p

OU T (S E TQ F LG &) (R E TURN Y) L P (S E L E C TQ & & & & NIL) (S E TQ y. &»
•
.pp
[PROG (RF TEMP1 TEMP2)

(COND
{{NOT (MEMB REMARG LISTING»

(SETQ TEMP1 (ASSOC REMARG NAMEDREMARKS» ··COMMENT··
(SETQ TEMP2 (CADR TEMP1 r)
(GO SKIP»

(T ··COMMENT··
(SETQ TEMP1 REMARG»)

(NCONC1 LISTING REMARG)
(COND '

«NOT (SETQ TEMP2 (SASSOC

17.33

TO and THRU

·(EXTRACT (SETQ THRU CADR) FROM COND)
*p.
(PROG (RF TEMPt TEMP2) (SETQ TEMP1 &) **COMMENT** (SETQ TEMP2 &) (NeONC1 LISTING
REMARG) (CONO & & user typed control-E

*

TO and THRU can also be used directly with XTR9 because XTR involves a location specification while A,
B, :9 and MBD do not. Thus in the previous example9 if the current expression had been the CONO, e.g.,
the user had first perfonned F COND, he could have used {XTR (SETQ THRU CAOR» to perform the
exbACtion. .

(@1 TO)
(@1 THRU)

[Editor Command]
[Editor Command]

Both are the same as (@1 THRU -1), i.e., from (J1 through the end of the list.

Examples:

.p
(VALUE (RPLACA OEPRP &) (RPLACO &) (RPLACA VARSWORD &) (RETURN»
*(MOVE (2 TO) TO N (~ PROG»
*(N (GO VAR»
*p
{VALUE (GO VAR»

*P
{T **COMMENT** (COND &) **COMMENT** (EDITSMASH CL & &) (COND &»
*(-3 (GO REPLACE»
*(MOVE (CONO TO) TO N ~ PROG (N REPLACE»
*p
(T **COMMENT** (GO REPLACE»
*\ P
(PROG (&) **COMMENT** (CONO & & &) (COND & & &) DELETE (CONO & &) REPLACE
(COND &) **COMMENT** (EDITSMASH CL & &) (CONO &»
*

*PP
[LAMBDA (CLAUSALA X)

{PROG (A D)
(SETQ A CLAUSALA)

LP (COND
({NULL A)

(RETURN»)
(SERCH X A)
{RUMARK (CDR A»
{NOTICECL (CAR A»
(SETQ A (CDR A»
(GO LP]

·(EXTRACT (SERCH THRU NOTS) FROM PROG)
=NOTICECL
.p

17.34

THE TELETYPE EDITOR

(LAMBDA (CLAUSALA X) (SERCH X A) (RUMARK &) (NOTICECL &»
*(EMBEO (SERCH TO) IN (MAP CLAUSALA (FUNCTION (LAMBDA (A) *]
*PP
[LAMBDA (CLAUSALA X)

(MAP CLAUSALA
(FUNCTION (LAMBDA (A)

17.6.8 The R Command

(SERCH X A)
(RUMARK (CDR A»
(NOTICECL (CAR A]

(R x Y) [Editor Command]
Replaces all instances of x by Yin the current expression •. e.g., (R CAADR CADAR).
Generates an error if there is not at least one instance.

The R command operates in conjunction with the search mechanism of the editor. The search proceeds
as described on page 17.15, and x can employ any of the patterns on page 17.13. Each time x matches
an element of the structure, the element is replaced by (a copy of) r, each time x matches a tail of the
structure, the tail is replaced by (a copy of) Y.

For example, if the current expression is (A (B C) (B • C»,

(R CD) will change it to (A (B D), (B . D)),

(R (... . C) D) will change it to (A (B C) (8 • D»,

(R C (0 E » will change it to (A (8 (0 E» (8 0 E», and

(R (... . NIL) D) will change it to (A (8 C . D) (8 . C) . D).

If x is an atom or string containing $s «esc>S), $s appearing in Y stand for the characters matched
by the corresponding $ in x. For example, (R FOO$ F IE$) means for all atoms or strings that
begin with FOO, replace the characters "FOO" by "FIE".?o Applied to the list (FOO F002 XF001),
(R FOO$ Fm$) would produce (F I E FIE 2 X F 001), and (R $ F 00$ $ FIE $) would produce (F IE
FIE2 XFIE1). Similarly, (R 0 A) will change (LIST (CAOR X) (CADDR Y» to (LIST
(CAAR X). (CAADR». Note that CAODR was not changed to CAAAR, i.e., (R 0 A) does not
mean replace every 0 with A, but replace the first 0 in every atom or string by A. If the user wanted to
replace every 0 by A, he could perform {LP (R 0 A».

The user will be informed of all such $ replacements by a IIlessage of the form x-)y, e.g., CADR-)CAAR.

Note that the $ feature can be used to delete or add characters, as well as replace them. For example,
(R $1 $) will delete the terminating 1 's from all literal atoms and strings. Similarly, if an $ in x does

2°lf x matches a string, it will be replaced by a string. Note that it does not matter whether x or
Y themselves are strings, Le. (R 0 A), (R "0" A), (R 0 "A"), and (R "0"
"A ") are equivalent. Note also that x will never match with a number, Le., (R $1 $ 2) will not
change 11 to 12.

17.35

The R Command

not have a mate in Y; the 'characters matched by the $ are effectively deleted. For example, (R 1 $)
will change AND/OR to AND.2~ .Y can also. be a list containing $s, e.g., {R $1 (CAR $» will change
FOOl to (CAR FOO), FIE1 to (CAR FIE).

If x does not contain $s, S appearing in Y refers to the entire expression' matched by x, e.g., (R
LONGATOM '$) changes LONGATOM to 'LONGATOM, {R (SETQ X Bt) (PRINT $» changes every
(SETQ X Bt) to {PRINT (SETQ X Bt)).22

Since (R $xS $ Y$) is a frequently used operation for R~placing Characters, the following ~ommand is
provided:

(RC x y) [Editor Command]
Equivalent to (R $xS $1'$).

R and RC change all instances of x to Y. The commands R 1 ~nd RC 1 are available for changing just one,
(i.e., the first) instance of x to Y.

(R1 x Y) [Editor Command]
Find the first instance of x and replace it by Yo

(RC1 x Y) [Editor Command]
(Rl $xS $1'$).

In addition. while R and R C only operate ~ithin the current expression, R 1 and R C 1 will continue
searching, a la the F command, until they find an instance of z, even if the search carries them beyond
the current expression.

(SW N M) [Editor Command]
Switches the Nth and Mth elements of the current expression.

For example, if the current expression is {LIST {CONS (CAR X) (CAR V»~ {CONS (CDR X) (CDR
V»~), (SW 2 3) will modify it to be {LIST {CONS (CDR X) (CDR V»~ {CONS (CAR X) (CAR
Y))). The relative order of N and M is not important, i.e., (SW 3 2) and (SW 2 3) are equivalent

SW uses the generalized NTH command (NTH COM) to find the Nth and Mth elements. a la the B I-BO
commands.

Thus in the previous example, fSW CAR CDR) would produce the same result.

{SWAP (jl (j2) [Editor Command]
Like SW except switches the expressions specified by (j 1 and @2, not the
corresponding elements of the current expression. i.e. (j 1 and @2 can be at different
levels in current expression, or one or both be outside of current expression.

21There is no similar operation for changing AND/OR to OR, since the first $ in Y always corresponds to
the first $ in x, the second $ in Y to the second in x, etc.

22If x is a pattern containing an $ pattern somewhere within it, the characters matched by the $s are not
available, and for the purposes pf replacement, the effect is the same as though x did not contain any
$s. For example, if the user types {R (CAR F$) (PRINT $», the second $ will refer to the entire
expression matched by (CAR F$).

17.36

THE TELETYPE EDITOR

Thus. using the previous example, (SWAP CAR CDR) would result in (LIST (CONS (CDR X) (CAR
Y» (CONS (CAR X) (CDR Y»).

17.7 COMMANDS THAT PRINT

P P [Editor Command]

P

(P M)

(P 0)

(P M N)

(P 0 N)

?

Prettyprints the current expression.

[Editor Command]
Prints the current expression as though PRINTLEVEL (page 6.18) were set to 2.

[Editor Command]
Prints the Mth element of the current expression as though PRINTLEVEL were set
to 2.

[Editor Command]
Same as P.

[Editor Command]
Prints the Mth element of the current expression as though PRINTLEVEL were set
to N. .

[Editor Command]
Prints the current expression as though PRINTLEVEL were set to N.

[Editor Command]
Same as (P 0 100) .

Both (P M) and (P M N) use the generalized NTH command (NTH COM) to obtain the corresponding
element, so that M does not have to be a number. e.g., (P COND 3) will work. PP causes all comments
to be printed as **COMMENT** (see page 6.50). P and 7 print as **COMMENT** only those comments
that are (top level) elements of the current expression. Lower expressions are not really seen by the

.editor; the printing command simply sets PRINTLEVEL and calls PRINT.

pp*

PPV

PPT

7=

[EQitor Command]
Prettyprints current expression, including comments.

pp* is equivalent to PP except that it first resets **COMMENT**FLG to NIL (see
page 6.50).

[Editor Command]
Prettyprints the current expression as a variable, i.e., no special treatment for
LAMBDA, COND, SETQ, etc., or for CLISP.

[Editor Command]
Prettyprints the current expression, printing CLISP translations. if any.

[Editor Command]
Prints the argument names·· and corresponding values for the current expression.
Analagous to the ? = break command (page 9.5). For example,

17.37

Commands for Leaving the Editor

*p
(STRPOS "AO?1?" X N (QUOTE 1) T)
*1=
X = "A011?"
Y = X
START :I N
SKIP = (QUOTE 1)
ANCHOR = T
TAIL =

The command MAKE (page 17.44) is an imperative fonn of 1=. It allows the user to specify a change to
the element of the current expression that corresponds to a particular argument name.

All printing functions print to the terminal, regardless of the primary output file. All use the readtable T.
No printing function ever changes the edit chain. All record the current edit chain for use by \ P (page
17.21). All can be aborted with control-E.

17.8 COMMANDS FOR LEAVING THE EDITOR

OK [Editor Command]

STOP

Exits from the edito"r.

[Editor Command]
Exits from the editor with an error. Mainly for use in conjunction with TTY:
commands (page 17.40) that the user wants to abort.

Since all of the commands in the editor are errorset protected, the user must exit from the editor via a
command. STOP provides a way of distinguishing between a successful and unsuccessful (from the user's
standpoint) editing session. For example. if the user is executing (MOVE 3 TO AFTER COND TTY:),
and he exits from the lower editor with an OK, the MOVE command will then complete its operation. If
the user wants to abort the MOVE command, he must make the TTY: command generate an error. He
does this by exiting from the lower editor with a STOP command. In this case, the higher editor's edit
chain will not be changed by the TTY: command.

Actually, it is also possible to exit the editor by typing control-D. STOP is,preferred even if the user is
editing at the EVALQT level, as it will perform the necessary "wrapup" to insure that the changes made
while editing will be undoable.

SAVE

For example:

*p
(NULL X)
*F COND P

[Editor Command]
Exits from the editor and saves the "state of the edit" on the property list of the
function or variable being edited under the property EDIT-SAVE. If the editor is
called again on the same structure, the editing is effectively "continued." Le., the
edit chain, mark list, value of UNF IND and UNDOLST are restored. .

17.38

(COND (& &) (T &»
*SAVE
FOO
~

+-EoITF(FOO)
EDIT
*p
(CONo (& &) (T &»
*\ P
(NULL X)
*

THE TELETYPE EDITOR

SAVE is necessary only if the user is editing many different expressions~ an exit from the editor via OK
always saves the state of the edit of that call to the editor on the property list of the atom ED IT, under
the property name LASTVALUE. OK also remprops EDIT-SAVE from the- property list of the function or
variable being edited.

Whenever the editor is entered, it checks to see if it is editing the same expression as the last one edited.
In this case, it restores the mark list and UNDOLST, and sets UNFIND to be the edit chain as of the
previous exit from the editor. For example:

~EDITF(FOO)

EDIT
*p
(LAMBDA (X) (PROG & & LP & & & &»

*p
(COND & &)
*OK
FOO

any number of LIS P X inputs
except for calls to the editor

+-EDITF(FOO)
EDIT
*p
(LAMBDA (X) (PROG & & LP & & &. &»
*\ P
(COND & &)
*

Furthermore, as a result of the history feature, if the editor is called on the same expression within a
certain number of LISPX inputs,23 the state of the edit of that expression is restored, regardless of how
many other expressions may have been edited in the meantime. For example:

23Namely, the size of the history list, which can be changed with CHANGESLICE, (page 8.18).

17.39

+-EDITF(FOO)
EDIT
*

*p

Nested Calls to Editor

(CONO (& &) (& &) (&) (T &»
*O!,
FOO

+-EDITF(FOO)
EDIT
*\ P

a small number of LISP X inputs.
including editing

(CONO (& &) (& &) (&) (T &»

*

Thus the user can always continue editing, including undoiq.g changes from a previous editing session,
if (1) No other expressions have been edited since that session (since saving takes place at exit time,
intervening calls that were aborted via control-D or exited via STOP will not affect the editor's memory);
or (2) That session was "sufficiently" recent; or (3) It was ended with a SAVE command.

17.9 NESTED CALLS TO EDITOR

TTY: [Editor Command]
Calls the editor recursively. The user can then type in commands, and have them
executed.· The TTY: command is completed when the user exits from the lower
editor. (see OK and STOP above).

The TTY: command is extremely useful. It enables the user to set up a complex operation. and perform
interactive attention-changing cotnmands part way through it For example the command (MOVE 3 TO
AFTER CONO 3 P TTY:) allows the user to interact, in effect, within the MOVE command. Thus he can
verify for himself that the corr~t location has been found, or complete the specification "by hand." In
effect, TTY: says "I'n tell you what you should do when you get there."

The TTY: command operates by printing TTY: and then calling the editor. The initial edit chain in the
lower editor is the one that existed in the higher editor at the time the TTY: command was entered. U nti!
the user exits from the lower editor. any attention changing commands he executes only affect the lower
editor's edit chain. Of course, if the user performs any structure modification commands while under· a
TTY: command, these will modify "the structure in both editors, since it is the same structure. When the
TTY: command finishes, the lower editor's edit chain becomes the edit chain of the higher editor.

EF
EV
EP

[Editor Command]
[Editor Command]
[Editor Command]

Calls EDITF or EDITV or EOITP on CAR of current expression.

17.40

THE TELETYPE EDITOR

17.10- MANIPULATING THECHARACfERS OF AN ATOM OR STRING

RA I S E [Editor Command]
An edit macro defined as UP followed by {I 1 {U-CASE (ilil 1»), Le.~ it
raises to· upper-case the current expression; or if a tail, the first element of the
current expression.

LOWE R [Editor Command]

CAP

Similar to RAISE, except uses L-CASE.

[Editor Command]
First does a RAISE, and then lowers all but the first character, i.e., the first character
is left capitalized.

Note: RA I SE, LOWE R, and CAP are all no-ops if the corresponding atom or string is already in that state.

(RAISE x)

(LOWER x)

[Editor Command]
Equivalent to {I R (L-CASE x) x), i.e., changes every lower-case x to upper
case in the current expression.

[Editor Command]
Similar to RAISE, exceptperfonns (I R x (L-CASE x».

Note that in both (RAISE x) and (LOWER x), x should be typed in upper case.

REPACK [Editor Command]

Example:

*p

Pennits the "editing" of an atom or string.

REPACK operates by calling the editor recursively on UNPACK of the current
expression, or if it is a list, on UN PAC K of its first element If the lower editor is
exited successfully, Le., via OK as opposed to STOP, the list of atoms is made into
a single atom or string, which replaces the atom or string being "repacked." The
new atom or string is always printed.

••• "THIS IS A LOGN STRING")
*REPACK
*EDIT
P
(T HIS % I 5 % A % LOG N % 5 T R I N G)
*(SW G N)
*OK
"THIS IS A LONG STRING"
*

Note that this could also have been accomplished by (R GN NG) or simply (RC GN NG).

(REPACK @) [Editor Command]
Does (LC • @) followed by REPACK, e.g. (RE PACK THIS$).

17.41

Manipulating Predicates and Conditional Expressions

17.11 MANIPULATING PREDICATES AND CONDITIONAL EXPRESSIONS

J 0 INC [Editor Command]

{SPLITC x}

NEGATE

SWAPC

Used to join two neighboring CONO's together, e.g. (CONO CLAUSEl CLAUSE2)
followed by {CONO CLAUSE3 CLAUSE .. } becomes (CONo CLAUSEl , CLAUSE2 CLAUSEa
CLAUSE ..). JOINC does an {F CONO T} first so that you don't have to be at the
first CONO.

[Editor Command]
Splits one CONO into two. x specifies the last clause in the first CONO, e.g. (SPLITC
3) splits (CONO CLAUSEl CLAUSE2 CLAUSE3 CLAUSE ..) into (CONO CLAUSEl
CLAUSE2) (CONO CLAUSE3 CLAUSE ..). Uses the generalized NTH command (NTH
COM), so that x does not have to be a number, e.g., the user can say (S P LIT C
RETURN), meaning split after the clause containing RETURN. SPLITC also does
an (F CONO T) first.

[Editor Command]
Negates the current expression, Le. perfonns (MBO NOT), except that is smart
about simplifying. For example, if the current expression is: {OR (NULL X)
(LISTP X», NEGATE would changer it to {AND X (NLISTP X».

NEGATE is implemented via the function NEGATE (page 14.2).

[Editor Command]
Takes a conditional expression of the fonn {COND (A B) (T C» and rearranges
it to an equivalent (COND ({ NOT A) C) (T B», or (COND (A B) (C D»
to {COND' ({ NOT A) {COND (C D») (T B».

SWAPC is smart about negations (uses NEGATE) and simplifying CONDs. It always produces an equivalent
expression. It is useful for those cases where one wants to insert extra clauses or tests.

17.12 HISTORY COMMANDS IN THE EDITOR

As described on page 8.35, all of the user's inputs to the editor are stored on EDITHISTORY, the editor's
history list, and all of the programmer's assistant commands for manipulating the history list, e.g. REDO,
USE. F IX, NAME, etc., are available for use on events on EDITHISTORY. In addition, the following four
history commands are recognized specially by the editor. They always operate on the last, i.e. most
recent, event.

DO COM [Editor Command]
Allows the user to supply the command name when it was omitted.

USE is useful when a command name is incorrect.

For example, suppose the user wants to perform (-2 (SETQ X (LIST Y Z») but instead types just
{SETQ X (LIST Y Z». The editor will type SETQ ?, whereupon the user can type DO -2. The
effect is the same as though the user had typed F I X, followed by (L I 1). (-1 - 2), and OK, i.e .•
the command (- 2 (S E T Q X (L 1ST Y Z») is executed. DO also works if the command is a line

17.42

THE TELETYPE EDITOR

command.

! F [Editor Command]
Same as DO f.

In the case of ! F, the previous command is always' treated as though it were a line command., e.g., if the
user types (SE TQ X' &) and then ! F, the effect. is the. same as though he had typed F (S E TQ X &),
not (F (S E T Q X &» .
IE [Editor Command]

Same as DO E.

!N [Editor Command]
Same as DO N.

17.13 MISCELLANEOUS COMMANDS

NIL [Editor Command]
Unless preceded by F or BF, is always a no,:,op. Thus extra right parentheses or
square brackets at the ends of commands are ignored.

C L [Editor Command]

ow

GET·

(*. x)

Clispifies the current expression (see page 16.17).

[Editor Command]
Dwimifies the current expression (see page 16.14).

[Editor Command]
If the current expression is a comment pointer (see page 6.51), reads in the full
text of the comment, and replaces the current expression by it

[Editor Command]
x is the text of a comment. * ascends the edit chain looking for a "safe" place
to insert the comment, e.g., in a CONO clause, after a PROG statement, etc., and
inserts (* . x) after that point, if possible, otherwise before. For example, if the
current expression is (FACT (SUB t N» in

,[CONO
« ZEROP N) t)
(T (ITIMES N (FACT (SUBt N]

(. CALL FACT RECURSIVELY)wouldinsert(* CALL FACT RECURSIVELY)
before the IT IMES expression.24

241f inserted after the ITIMES, the comment would then be (incorrectly) returned as the value of the
CONO. However, if the CONO was itself a PROG statement, and-hence its value was not being used, the
comment could be (and would be) inserted after the ITIMES expression. .

17.43

Miscellaneous Commands

- * does ,not change the edit chain, but-UNF IND ,is set to where the comment was
actually inserted.

G E TO [Editor Command]
Essentially "expands" the current -expression in line: (1) if (CAR of) the current
expressioI;l is the name of a macro, expands the macro in line; (2) if a CLISP word,
translates 'the current expression and replaces it with the translation; (3) if CAR is
the name of a function for which the editor can obtain a symbolic definition, either
in-core or from a file~ substitutes the argument expressions for the corresponding
argument names in the body of the definition and replaces the current expression
with the result; (4) if CAR of the current expression is an open lambda, substitutes
the arguments for the corresponding argument names in the body of the lambda,
and then removes the lambda and argument list

(MAKEFN (FN. ACTUALARGS) ARGLIST Nl N2) [Editor Command}
The inverse of GETD: makes the current expression into a function. FN is the
function name, ARGLIST its arguments.' The argument names are substituted for
the correSponding argument values in ACTUALARGS, and the result becomes the
body of the function definition for FN. The current expression is then replaced
with (FN e ACTUALARGS).

If Nl and N:z are supplied, (N1 THRU N:z) is used rather than the current
expression; if just Nl is supplied, (N1 THRU -1) is used.

If ARGLIST is omitted, MAK E F N will make up some arguments, using elements of
ACTUALARGS, if they are literal atoms, otherwise arguments selected from (X Y
Z ABC •..), avoiding duplicate argument names.

Example: If the current expression is (CONO «CAR X) (PRINT Y T» {T (HELP»), then
(MAKEFN (FOa (CAR X) Y) (A B» will define FOa as (LAMBDA (A B) {CONO (A (PRINT B
T» (T (HE LP)) » and then replace the current expression with {FOa (CAR X) Y).

(MAK E ARGNAME EXP) [Editor Command]

Q

o

Makes th¢ value of ARGNAME be EXP in the call which is the current expression,
i.e. a 7= command following a MAKE will always print ARGNAME=EXP. For
example:

*p
(JSYS)
*7=
JSYS[N;AC1,AC2,AC3,RE5ULTAC]
*(MAKE N 10)
*(MAKE RESULTAC 3)
*p
(JSYS 10 NIL NIL NIL 3)

Quotes the current expression, i.e. MBO QUOT E.
[Editor Command]

[Editor Command]
Deletes the current expression, then prints new current expression, Le. (:) I P.

17.44

THE TELETYPE EDITOR,

17.14 COMMANDS THAT EVALUATE

E [Editor Command]

(E x)

(E x T)

Causes the editor to call the Interlisp. executive LIS P X giving it the next input as
argument Example:

*E BREAK(FIE FUM)
(FIE FUM)
*E (Faa)

(FIE BROKEN)

Note: E only works when when typedln, e.g, (INSERT D BEFORE E) will treat
E as a pattern, and search for E.

[Editor Command]
Evaluates x, i.e., performs (EVAL x), and prints the result on the terminal.

[Editor Command]
Same as (E %) but does not print.

The (E x) and (E x T) commands are mainly intended for use by macros and subroutine calls to the
editor; the user would probably type in a form for evaluation using the more convenient format of the
(atomic) E command.

(I C Xl ... X N) [Editor Command]

EVAL

Executes the editor command (c Yl ..• Y N) where Yj = (EVAL Xi)' If c is not
an atom, c is evaluated also.

Examples:

{I 3 (GETD 'FOO» will replace the 3rd element of the current expression with
the definition of F 00.

{I N FOO (CAR FIE» will attach the value of FOO and CAR of the value of
FIE to the end of the current expression.

(I F = F 00 T) will search for an expression E Q to the value of F 00.

{I {COND ({NULL FLG) '-1) (T 1» FOO), if FLG is NIL, inserts the
value of FOO before the first element of the current expression, otherwise replaces
the first element by the value of Faa.

The I command sets an internal flag to indicate to the structure modification
commands not to copy expression(s) when inserting, replacing, or attaching.

[Editor Command]
Does an EVA L of the current expression.

Note that EVAL, line-feed, and the GO command together effectively allow the user to "single-step" a
program through its symbolic definition.

\

17.45

GETVAL

Commands That Test

[Editor Command]
Replaces the current expression by the result of evaluating it

• .• COM N) [NLambda NoSpread Function]
An nlam~~ nospread function· (not a command). Its value is what the current
expressio~ would be after executing the edit commands COM 1 .•. COM N staning
from the present edit chain. Generates an error if any of COM1 thru COMN cause
errors. The current edit chain is never changed;2S .

Example: (I R 'X (1111 (CON:S .. Z)) replaces all X's in the curr~nt expression by the first CONS
containing a Z.

The I command is not very convenient for computing an entire edit command for execution, since it
computes the command name and its arguments separately. Also, the I command cannot be used to
compute an atomic command. J'he following two commands provide more general ways of computing
commands.

[Editor Command]
Each Xi is evaluated and its value is executed as a command.

For example, (COMS (COND (X (LIST 1 X»» will replace the first element of the current expression
with the value of X if non-N I L, otherwise do nothing.26

(COMSQ COM1 ... COMN) [Editor Command]
Executes COM 1 ... COM N'

COMSQ is mainly useful in conj~nction with the COMS command. For example, suppose the user wishes
to compute an entire list of commands for evaluation, as opposed to computing each command one at a
time as does the COMS command He would then write (COMS (CONS 'COMSQ x» where X computed
the list of commands, e.g., (COMS (CONS 'COMSQ (GETP FOO 'COMMANDS»).

17.15 COMMANDS THAT TEST

(I F x) [Editor Command]
Generates; an error unless the value of (EVAL x) is true. In other words, if (EVAL
x) causes' an error or (EVAL x) = NIL, I F will cause an error.

For some editor commands, the occurrence of an error has a well defined meaning, i.e., they use errors to
branch on, as COND uses NIL anq non-N I L. For example, an error condition in a location specification may
simply mean "not this. one, try the next." Thus the location specification (I PLUS (E (OR (NUMBE RP
(1111 3» (E RROR I » T» sp~ifies the first I PLUS whose second argument is a number. The IF
command, by equating NIL to ettor. provides a more natural way of accomplishing the same result. Thus.
an equivalent location specification is (I PLUS (I F (NUMBE RP (1111 3»».

25The A, B, :, INSERT, REPLACE, and CHANGE commands make special checks for # # fonns in the
expressions used for inserting or replacing, and use a copy of # # fonn instead (see page 17.26). Thus,
(INSERT (1111 3 2) AFTER 1) is equivalent to (I INSERT (COPY (/III 3 2» 'AFTER 1).

26The editor command NIL is a no-op, see page 17.43.

17.46

THE TELETYPE EDITOR

The I F command can also be used to select between two alternate lists of commands for execution.

(IF X COMSl COMS2) [Editor Command]
If (EVAL x) is true, execute COMS1; if (EVAL x) causes an error or is equal to

. NIL, execute COMS2-

Thus I F is equivalent to

(COMS (CONS 'COMSQ
(COND

«CAR {NLSETQ (EVAL X»)
COMSl)

(T COMS2»»

F 9r example, the command (I F (R fAD P T) NIL (P» _ will print the current expression provide ·1. the
input buffer is empty.

[Editor Command]
If (EVAL x) is true, execute COMSl ; otherwise generate an error.

(lP COMS1 ... COMSN), [Editor Command]
Repeatedly executes COMSl ••• COMSN until an error occurs.

For example, (lP F PRINT (N T» will attach a T at the end of every PRINT
expression. (l P F P R I NT (I F (## 3) NIL ({ NT)) » will attach a T at
the end of each print expression which does not already have a second argument 27

When an error occurs, LP prints N OCCURRENCES where N is the number of
times the commands were successfully executed. The edit chain is left as of the
last complete successful execution of COMS! •.• COMSN.

(LPQ COMSl ..• COMSN) [Editor Command]
Same as LP but does not print the message N OCCURRENCES.

In order to prevent non-terminating loops, both LP and LPQ terminate when the number of iterations
reaches MAXLOOP, initially set to 30. MAXLOOP can be set to NIL, which is equivalent to setting it to
infinity. Since the edit chain is left as of the last successful completion of the loop, the user can simply
continue the L P command with REDO (page 8.7).

(SHOW x) [Editor Command]
x is a list of patterns. S HOW does a L PQ printing all instances of the indicated
expression(s), e.g. (SHOW FOO (SETQ FIE &» will print all FOO's and all
(Sf TQ FIE &) 'so Generates an error if there aren't any instances of the
expression(s).

27The form (## 3) will cause an error if the edit command 3 causes an error, thereby selecting ({ N
T » as the list of commands to be executed. The I F could also be written as { I F (C DO R {##» NIL
({N T»).

17.47

(EXAM x)

(ORR COMS1

Edit Macros

[Editor Command]
Like SHOW except calls the editor recursively (via the TTY: command, see page
17.40) on each instance of the indicated espression(s) so that the user can examine
and! or change them.

COMSN) [Editor Command]
ORR begins by executing COMS1, a list of commands. If no error occurs, ORR is
finished. Otherwise, 0 R R restores the edit chain to its original value. and continues
by. executing COMS2' etc. If none of the command lists execute without errors, i.e.,
the ORR °drops off the end", ORR generates an error. Otherwise, the edit chain is
left as of the completion of the first command list which executes without an error.

NIL as a co~and list is perfectly legal, and will always execute successfully.
Thus, making the last "argument" to ORR be NIL will insure that the ORR never
causes an error. Any other atom is treated as (ATOM), i.e., the above example
could be written as (ORR NX ! NX NIL).

For example, (ORR (NX) (! NX) NIL) will perform a NX, if possible, otherwise a ! NX, if possible,
otherwise do nothing. Similarly, DEL E T E could be written as (0 R R (U P (1» (B K UP (2» (UP
(: NIL»).

17.16 EDIT MACROS

Many of the more sophisticated branching commands in the editor, such as 0 R R, IF, etc., are most often
used in conjunction with edit macros. The macro feature permits the user to define new commands and
thereby expand the editor's repertoire, or redefine existing commands.28 Macros are defined by using the
M command:

(M C COMS1 ... COMSN) [Editor Command]
For C an atom, M defines C as an atomic command. If a macro is redefined, its
new definition replaces its old. Executing C is then the same as executing the list
of commands COMS1 ... COMSN •

For example, (M BP BK UP P) will define BP as an atomic command which does three things, a BK,
and UP, and a P. Macros can use commands defined by macros as well as built in commands in their
definitions. For example, suppose Z is defined by (M Z -1 (I F (R E AD P T) NIL (P»), Le., Z does
a -1, and then if nothing has been typed, a P. Now we can define ZZ by (M ZZ -1 Z), and ZZZ by
(M Z Z Z -1 -1 Z) or (M Z Z Z -1 Z Z) . '

Macros can also define list commands, Le .• commands that take arguments.

(M (c) (ARG 1 ... ARGN) COMS 1 ... COMSM) [Editor Command]
C an atom. M defines C as a list command. Executing (c El .•. EN) is then
performed by substituting El for ARG1, ... EN for ARGN throughout COMS1 ...

COMSM , and then executing COMS1 ... COMSM ,

28To refer to the original definition of a built-in command when redefining it via a macro, use the
OR I GINA L command (page 17.50).

17.48

THE TELETYPE EDITOR

For example, we-could define a more general BP by {M (BP) (N) (BK N) UP Pl. Thus, (BP 3)
. would perform (B K 3), followed by an UP, followed by a P.

A list command can be defined via a macro so as to take a fixed or indefinite number of "arguments",
as with spread vs. nospread functions. The fonn given above specified a macro with a fixed number
of arguments, as indicated by its argument list If the "argument list" is atomic, the commarid takes an
indefinite number of arguments.

(M (c) AHG COMS1 ••• COMSM) [Editor Command]
If c, ~G are both atoms, this defines C as a list command Executing (c E 1

. .• EN) is perfonned by substituting (E1 ... EN)' i.e., CDR of the command, for
AHG throughout COMS1 ... Co,MSM' and then executing COMS1 .•• COM SM.

For example, the command 2ND (page 17.18), could be defined as a macro by {M (2ND) X {ORR ({ LC
• X) (LC 0 X»».

Note that for all editor commands, "built in" commands as well as commands· defined by macros as
atomic commands and list definitions are completely independent In other words, the existence of an
atomic definition for C in no way affects the treatment of C when it appears as CAR of a list command,
and the existence of a list definition for C in no way affects the treatment of c when it appears as an
atom. In particular, C can be used as the name of either an atomic command, or a list command, or
both. In the latter case, two entirely different definitions can be used.

Note also that once C is defined as an atomic command via a macro definition, it will not be searched for
when used in a location specification, unless it is preceded by an F. Thus (INSERT -- BEFORE BP)
would not search for BP, but instead perfonn a BK, and UP, and a P, and then do the insertion. The
corresponding also holds true for list commands.

Occasionally, the user will want to employ the S command in a macro to save some temporary result.
For example, the SW command could be defined as:

(M (SW) (N M)
(NTH N)
(S FOO 1)
MARK
o
(NTH M)
(S FIE 1)
(I 1 FOO)

(I 1 FIE»

Since this version of SW sets FOO and FIE, using SW may have undesirable side effects, especially when
the editor was called from deep in a computation, we would have to be careful to make up unique names
for dummy variables used in edit macros, which is bothersome~ Furthennore, it would be impossible to
define a command that called itself recursively while setting free variables. 1l1e B I NO command solves
both problems.

(B I NO COMS 1 ... COMSN) [Editor Command]
Binds three dummy variables #1, #2, #3, (initialized to NIL), and then executes
the edit commands COMS1 ... COMSN . Note that these bindings are only in effect
while the commands are being executed., and that B I NO can be used recursively;

17.49

Undo

it will rebind #1, #2, and #3 each time it is invoked.

B I NO is implemented by (PROG (#1 #2 #3) (ED I TeOMS (CDa COM»)

where COM corresponds to the entire BIND command, and EDITCOMS is an
internal editor function which executes a list of commands.

Thus we could now write SW safely as:

(M (SW) (N . M)
(BIND (NTH N)

(S·#l 1)
MARK
o
(NTH M)
(S #2 1)
(I 1 #1)

(I 1 #2}»

(ORIGINAL COMS1 .0. COMSN) [Editor Command]
Executes :COMS1 •.. COMSN without ~ regard to macro definitions. Useful for
redefining a built in command in tenn.s of itself., Le. effectively allows user to
"advise" edit commands.

User macros are stored on a listUSERMACROS. The file package command USERMACROS (page 11.24), is
available for dumping all or selected user macros.

17.17 UNDO

Each command that causes structure modification automatically adds an entry to the front of UNDOLST
that contains the information required to restore all pointers that were changed by that command.

UNDO

IUNDO

[Editor Command]
Undoes the last, Le., most recent, structure modification command that has not
yet been undone, and prints the name of that command, e.g., MBD UNDONE. The
edit chain is then exactly what it was before the "undone" command had been
performed. If there are no commands to undo, UNDO types NOTHING SAVED.

[Editor Command]
Undoes all modifications performed during this editing session, Le. this call to the
editor. As each command is undone. its name is printed a la UNDO. If there is
nothing to be undone, ! UNDO prints NOTHING SAVED.

Undoing an event containing an I, E, or S command will also undo the side effects of the evaluation(s),
e.g., undoing (I 3 (/NCONC FOO FIE» will not only restore the 3rd element but also restore FOO.
Similarly, undoing an S command will undo the set. See the discussion of UNDO in page 8.11. (Note
that if the I command was typep. directly to the editor, I NCONC would automatically be substituted for
NCONC as described in page 8.22.)

17.50

THE TELETYPE EDITOR

Since UNDO and 1 UNDO cause structure modification, they also add an entry to UNDOLST. However, UNDO
and! UNDO entries' are skipped by UNDO, e.g., if the user perfonns an INSERT, and then an MBD, the
first UNDO will undo the MBD, and the second will undo the I NSE RT. However, the ·user can also specify
precisely which· commands he wants undone by· identifying the corresponding entry on the history list.. In
this case, he can undo an UNDO command, e.g., by typing UNDO 'UNDO, or undo a ! UNDO command, or
undo a command other than that most recently perfonned.

Whenever the user continues an editing session, the undo infonnation of the previous session is protected
by inserting a special blip, called an undo-block, on the front of. UNDOLST. This undo-block will tenninate
the operation of a 1 UNDO, thereby confining its effect to the current session, and will similarly prevent an
UNDO command from operating on commands executed in the previous session.

Thus, if the user enters the editor continuing a session, and immediately executes an UNDO or ! UNDO, the
editor will type BLOCKED instead of NOTHING SAVED. Similarly, if the user executes several commands
and then undoes them all, another UNDO or ! UNDO 'will also cause BLOCKED to be typed.

UNBLOCK

TEST

[Editor Command]
Removes an undo-block. If executed at a non-blocked state, i.e., if UNDO or 1 UNDO
could operate, types NOT BLOCKED.

[Editor Command]
Adds an undo-block at the front of UNDOLST.

Note that TEST together with 1 UNDO provide a "tentativeu mode for editing, i.e., the user can perfonn
a number of changes, and then undo all of them with a single 1 UNDO command.

(UNDO EventSpec) [Editor Command]
EventSpec is an event specification (see page 8.5). Undoes the indicated event on
the history list. In this case, the event does not have to be in the current editing
session, even if the previous session has not been unblocked as described above.
However, the user does have to be editing the same expression as was being edited
in the indicated event

If the expressions differ, the editor types the warning message "d iff ere n t
ex pre s s ion", and does not undo the event The editor enforces this to avoid
the user accidentally undoing a random command by giving the wrong event
specification.

17.18 EDITDEFAULT

Whenever a command is not recognized, Le., is not "built in" or defined as a macro, the editor calls an
internal function, . E D ITO E F AU L T, to determine what action to take.29 If a location specification is being

29Since EDITDEFAULT is part of the edit block, the user cannot advise or redefine it as a means of
augmenting or extending the editor. However, the user can accomplish this via.EDITUSERFN. If the
value of the variable EDITUSERFN is T, EDITDEFAUL T calls the function EDITUSERFN giving it the
command as an argument If EDITUS~RFN returns a non-NIL value, its value is interpreted as a single
command and executed. Otherwise, the error correction procedure described below is perfonned.

17.51

EDITDEFAULT

execute~- an internal flag··informs ED ITDEFAUL T to treat the command as though it had been preceded
by an F.

If the command is a list, an at~empt is made to perform spelling correction on CAR of the command3o

using EDITCOMSL, a list of ~ list edit commands.31 If spelling correction is successful, the correct
command name is RPLACAed irito the comman~ and the editor continues by executing the command. In
other words, if the user types {LP F PRINT {MBBO AND (NULL FLG»), only orie spelling correction
will be necessary to change MB Q 0 to MB o. If spelling correction is not successful, an error is generated.

If the command is atomic, the procedure followed is a little more elaborate.

(1) If the command is one of the list commands, i.e.,. a member of EDITCOMSL. and there is
additional input on the same terminal line, treat the entire line as a single list command.3 2

Thus, the user may omit parentheses for any list command typed in at the top level (provided
the command is not atso an atomic command, e.g. NX, BK. For example, .

• p
{COND (& &) (T &»
·XTR 3 2]
*MOVE TO AFTER tP
*

If the command is on the list ED IT C OMS L but no additional input is on the terminal line, an
error is generated, e.g .

• p

{COND (& &) (T &»
*MOVE

MOVE ?
*

If the command is on EDITCOMSL. and not typed in directly, e.g., it appears as one of the
commands in a LP c0mmand, the procedure is similar, with the rest of the command stream
at that level being treated as "the terminal line", e.g. (LP F {COND (T &» X T R 2 2) .33

(2) If the command was typed in and the first character in the command is an 8, treat the 8 as a
mistyped left: parenthesis, and and the rest of the line as the arguments to the command, e.g.,

*p
{COND (& &) (T &»

30unless DWIMFLG=NIL.
31When a macro is defined via the M command, the command name is added to EDITCOMSA or
EDITCOMSL, depending on whether it is an atomic or list command. The USERMACROS file package
command is aware of this, and provides for restoring EDITCOMSA and EDITCOMSL.

32The line is read using READL]NE (page 8.30). Thus the line can be terminated by a square bracket, or
by a carriage return not preceded by a space.

33Note that if the command is being executed in location context, EDITDEFAUL T does not get this
far, e.g., (MOVE TO AFTER CO NO XTR 3) will search for XTR, not execute it. However. {MOVE TO
AFTER COND (XTR 3» will work.

17.52

THE TELETYPE EDITOR

*8-2 {Y (RETURN Z»)
={-2
*p
{CONO . (Y &) (& &) (T &»

(3) If the command was typed. in, is the name of a function, and is followed by NIL or a list
CAR of which IS not an edit command. assume the user forgot to type E and means to apply
the function to its arguments, type = E and the function name, and perform the indicated
computation, e.g. ..

*BREAK{FOO)
=E BREAK
(FOO)

*
(4) If the last character in the command is P, and the first N-l characters comprise a number,

assume that the. user intended two commands, e.g.,

*p
{CONO (& &) (T &»
*op
=0 P
{SETQ X (CONO & &»

(5) Attempt spelling correction using ED ITCOMSA, and if successful, execute the corrected
command.

(6) If there is additional input on the same line, or command. stream, spelling correct using
EOITCOMSL as a spelling 1is~ e.g.,

*MBBO SETQ X
=MBD
*

(6) Otherwise, generate an error.

17.19 EDITOR FUNCTIONS

(EDITF NAME COM1 COM2 ... COMN) (NLambda NoSpread Function]
Nlambda, nospread function for EDITing a Function. NAME is the name of the
function, COM1, COM2t "', COMn are (optional) edit commands,

The value of ED IT F is NAME,

The action of ED IT F is somewhat complicated:

(1) In the most common case, if the definition of NAME is an EXPR (not as a result of its being
broken or advised), and EDITF simply performs (PUTD NAME (EDITE (GETD 'NAME)

(LIST 'COM1 'COM2 ·,·· 'COMN) 'NAME 'FNS».

17.53

Editor Functions

(2) If NAME is an EXPR by vjrtue of its being broken or advise~ and the original definition is also
an EXPR, then the broken/advised definition is given to ED ITE to be edited (since any changes
there will also affect the otiginal definition be..cause all changes are destructive). However, a
warning message is printed to alert the user that he must first position himself correctly before
he can begin typing commands such as (-3 - -), (N - -), etc.

(3) If NAME is an EXPR by virtue of its being broken or advised, the original definition is not an
EX P R, there is no EX P R property, and the file package "knows" which file NAME is contained
in (see EDITLOADFNS?, page 17.58), then the EXPR definition of NAME is loaded onto its
property list as deScribed below, and the ED'ITF proceeds to the next possibility. Otherwise, a
warning message is printe~ and the edit proceeds, e.g., the user may have called the editor to
examine the advice on a SUB R.

(4) If NAME is an EXPR by virtue of its being broken or advise~ the original definition is ~ot an
EXPR, and there is an EXPR property, then the function is unbroken/unadvised (latter only
with user's approval, since the user may really want to edit the advice) and EDITF proceeds to
the next possibility.

(5) If NAME is not an EXPR, but has an EXPR property, EDITF prints PROP, and per
forms (EDITE (GETPROP 'NAME 'EXPR) (LIST 'COM1 'COM2 .•. 'COMN) 'NAME
'PROP). In this case, if the edit completes and no changes have been made, EDITE prints
NOT CHANGED, SO NOT UNSAVED. If changes were made, but the value of DFNFLG (page
5.9) is PROP, EDITE prints CHANGED, BUT NOT UNSAVED. Otherwise if changes were made,
EDITE prints UNSAVED and does an UNSAVEDEF.

(6) If NAME is neither an EXPR nor has an EXPR property, and the file package "knows" which
file NAME is contained in (see EDITLOADFNS?, page 17.58), the EXPR definition of NAME
is automatically loaded (using LOADFNS) onto the EXPR property, and EDITE proceeds as
described above.34 In addition, if NAME is a member of a block, the user will be asked whether
he wishes the rest of t:he functions in the block to be loaded at the same time.35

(7) If NAME is neither an EX P R nor has an EX P R property, but it does have a definition, ED I T F
generates an NAME NOT EDITABLE error.

(8) If NAME is neither define~ nor has an EXPR property, but its top level value is a list, ED ITF
assumes the user meant to call EDITV, prints =EDITV, calls EDITV and returns. Similarly, if
NAME has a non-NIL property list, EDITF prints =EDITP, calls EDITP and returns.

34Because of the existence of the file map (see page 11.38), this operation is extremely fast, essentially
requiring .only the time to perfo~ the READ to obtain the actual definition.

35The editor's behaviour in this case is controlled by the value of EDITLOADFNSFLG t which is a dotted
pair of two flags. The CAR of EDITLOADFNSFLG controls the loading of the function, and the CDR
controls the loading of the block. A value of NIL for either flag means "load but ask first," a value of
T means "don't ask, just do it" and anything else means "don't ask, don't do it" The initial value of
ED IT LOAD F N S FL G is (T .. NIL), meaning to load the function without asking, and ask about loading
the block.

17.54

THE TELETYPE EDITOR

(9) If NAME is neitlier il function, nor has an EXPR property, nor a top level value that is a
list, nor'a' non-NIL property.list, EOITF attempts spelling correction using the spelling list
USERWOROS,36 and, if successful, goes back to the beginning.

(10) Otherwise, EOITF generates an NAME NOT EDITABLE error.

In all cases, if a function is edited, and changes were made, the function is time-stamped (by ED I T E),
which consists of inserting' a comment of the form (* USERS-INITIALS DATE) (see page 17.60). If the
function was already time-stamped, then only the date is changed.

(EOITFNS NAME COMI COM2 ... COMN) [NLambda NoSpread Function]
An nlambda, nospread function, used to perform the same editing operations
on several functions. NAME is evaluated to obtain a list of functions.37 COMI ,
COM2t 0 •• , COMN are (optional) edit commands. EDITFNS maps down the list of
functions, prints the name of each function, and calls the editor (via ED I T F) on
that function. The value of ED IT F NS is NIL.

For example. (ED ITFNS FOOFNS (R FIE FUM» will change every FIE to FUM
in each of the functions on FOOFNS.

The call to the editor is ERRORSET protected, so that if the editing of one function
causes an error, EOITFNS will proceed to the next function. In particular, if an
error occurred while editing a function via its EXPR property, the function would
not be unsaved. Thus in the above example, if one of the functions did not contain
a FIE, the R command would cause an error, it would not be unsaved, and editing
would continue with the next function.

(EDITV NAME COMI COM2 ... COMN) [NLambda NoSpread Function]
Similar to ED I T F, for editing values of variables.

The value of ED I TV is the name of the variable whose value was edited.

If NAME is a list, it is evaluated and its value given to EOITE, e.g., (EDITV (CDR (ASSOC 'Faa
DICTIONARY»). In this case, the value of EOITV is T.

However, for most applications, NAME is a variable name, Le., atomic, as in EDITV(Faa). If the value
of this variable is NOBINO, EDITV checks to see if it is the name of a function, and if so, assumes the
user meant to call ED IT F, prints = ED I T F, calls ED IT F and returns. Otherwise, ED I TV attempts spelling
correction using the list USERWOROS.38 Then EDITV will call EOITE on the value of NAME (or the
corrected spelling thereof), and TYFE=VARS. Thus, if the value of Faa is NIL, and the user performs
(EDITV Faa), no spelling correction will occur, since Faa is the name of a variable in the user's system,
Le., it has a value. However, ED I T E will generate an error, since Faa's value is not a list, and hence

36Unless DWIMFLG=NIL. Spelling correction is performed using the function MISSPELLED? (page
15.18). If NAME = NIL, MISSPELLED? returns the last "word" referenced, e.g .• by DEFINEQ, EDITF,
PRE TTY P R I NT etc. Thus if the user defines F 00 and then types (ED I T F), the editor will assume he
meant Faa. type =FOO, and then type EDIT.

371f NAME is atomic, and its value is not a list, and it is the name of a file, (FILEFNSLST 'NAME) will
be used as the list of functions to be edited.
38Unless·DWIMFLG=NIL. MISSPELLED? is also called if NAME is NIL, so that (EDITV) will edit
LASTWORD.

17.55

Editor Functions

not editable. If the user performs (EOITV FOOO), where the value of FOOO is NOBINO, and FOO is on
the user's spelling list, the spelling corrector will correct FOOO .. to FOO. Then EOITE will be called on the
value of FOO;Note that this may still result in an error if-the value of FOO is not a list.

(EOITP "NAME COM1 COM2 : •• COMN) [NLambda NoSpread Function]
Similar to ED I T F for editing property lists. If the property list of NAME is
NIL~ -EOITP attempts spelling correction using USERWORDS. Then EDITP calls
EDITE on the property list of NAME, (or the corrected spelling thereof), with
TYPE=PROPLST. When (if) EDITE returns, EOITP calls SETPROPLIST on NAME

with the value returned.

The value of ED I T P is the atom whose property list was edited.

(EDITE EXPR COMS ATM TYPE IFCHANGEDFN) [Function]
Edits the expression, EXPR, by calling EOITL on (LIST EXPR) and returning the
last element of the value returned by ED I T L. Generates an error if EXPR is not a
list.

ATM and TYPE are for use in conjunction with the file package. If supplied, ATM

is the name of the object that EXPR is associated with, and TYPE describes the
association (I.e., TYPE corresponds to: the TYPE argument of MARKASCHANGEO,
page 11.11.) For example, if EXPR is the definition of FOO, ATM= FOO and
TYPE= FNS. When EOITE is called from EOITP, EXPR is the property list of ATM,

and TYPE = PROPLST, etc ..

EOITE calls EOITL to do the editing (described below). Upon return, if both ATM

and TYP.$are non-NIL, AOOSPELL is called to add ATM to the appropriate spelling
list. Then. if EXPR was changed, 39 and the value of IFCHANGEDFN is not NIL. the
value of lFCHANGEDFN is applied to the arguments ATM, EXPR, TYPE, and a flag
which is T for normal edits from editor, NIL for calls that were aborted via control-D
or STOP. :Otherwise, if EXPR was changed, and the value of IFCHANGEDFN is NIL,
and TYPE is not NIL, MARKASCHANGED (page 11.11) is called on ATM and TYPE.
EOITE uses RESETSAVE to insure that IFCHANGEDFN and MARKASCHANGEO are
called if any change was made even if editing is subsequently aborted via control-D.
(In this case, the fourth argument to IFCHANGEDFN wi! be NIL.)

(EDITL L COMS ATM MESS EDITCHANGES) [Function]
ED I T L is the editor. Its first argument is the edit chain, and its value is an edit
chain, namely the value of L at the time ED IT L is exited.40

COMS is an optional list of commands. For interactive editing, corns is NIL. In this
case, EOIiTL types EDIT (or MESS, if it not NIL) and then waits for input from
terminal. 'All input is done with EOITROTBL as the readtable. Exit occurs only
via an OK, STOP, or SAVE commancL .

39For TYPE=FNS or TYPE = PROP, i.e., calls from EOITF, EOITE performs some additional operations
as described earlier under ED I T F.
40L is a SPECVAR, and so can be examined or set by edit commands. For example, l' is equivalent to (E
(SETQ L (LAST L» T). However, the user- should only manipulate or examine L directly as a last
resort, and then with caution.

17.56

THE TELETYPE EDITOR

. If COMS is not NIL, no message is typecL and each member of COMS is treated
.. as a: command and exeGuted. If an error occurs in the execution of one of the

commands, no error message is printed, the rest 'of the commands are ignorecL and
EorTL exits with an error, i.e., the effect is the same as though a STOP command
had been executed. If all commands execute successfully, EOITL returns the
current value of L.

ATM is optional. On calls from EO IT F, it is the name of the function being edited;
on calls from EO I TV, the name of the variable, and calls from EO IT P, the atom
whose property list is being edited. The property list of ATM is used by the SAVE
command for saving the state of the edit. Thus SAVE will not save anything if
ATM= NIL, i.e., when editing arbitrary expressions via EOITE or EOITL directly.

EDITCHANGES is used for communicating with ED IT E:

(EOITLO L COMS MESS -) [Function]
Like ED IT L, except it does not rebind or initialize the editor's various state
variables, such as LASTAIL, UNFIND, UNOOLST, MARKLST, etc. Should only be
called when already under a call to ED IT L.

(EDIT4E PAT x -) [Function]
The editor's pattern match routine. Returns T, if PAT matches x. See page 17.13
for definition of "match".

Note: Before each search operation in the editor begins, the entire pattern is scanned for atoms or strings
containing Ss «esc>s). Atoms or strings containing $s are replaced by lists of the form ($...), and
atoms or strings ending in double $s are replaced by lists of the form ($$...). Thus from the standpoint
of EDIT4E, single and double $ patterns are detected by (CAR PAT) being the atom $ «esc» or the
atom $$ «escXesc». Therefore, if the user wishes to call EOIT4E directly, he must first convert any
patterns which contain atoms or strings containing $s to the form recognized by EDIT 4E. This is done
with the function EDITFPAT: I

(EOITFPAT PAT -) [Function]
Makes a copy of PAT with all atoms or strings containing $s «esc>s) converted to
the form expected by EO IT 4E.

(EDITFINOP x PAT FLG) [Function]
Allows a program to use the edit find command as a pure predicate from outside
the editor. x is an expression, PAT a pattern. The value of EDITFINDP is T if the
command F PAT would succeecL NIL otherwise. EDITFINOP calls EOITFPAT to
convert PAT to the form expected by EOIT4E, unless FLG=T. Thus, if the program
is applying EDITF INOP to several different expressions using the same pattern, it
will be more efficient to call EOITFPAT once, and then call EDITF INOP with the
converted pattern and FLG = T.

(ESUBST NEW OLD EXPR ERRORFLG CHARFLG) [Function]
Equivalent to performing (R OLD NEW) 'with EXPR as the current expression.
i.e., the order of arguments is the sante as for SUB ST. Note that OLD and/or NEW

can employ $s «esc>S). The value of ESUBST is the modified EXPR. Generates an
error if OLD not found in EXPR. If ERRORFLG = T, also prints an error message of
the form OLD ?

17.57

Editor Functions

If CHARFLG=T and no Ss «esc)s) are specified in NEW or OLD, it is equivalent
to (Re OLD NEW). In other words, if CHARFLG=T, and no Ss appear, ESUBST

. will supply them.

ESUBST is always undoable.

(EDITLOADFNS? FN STH ASKFLGFILES) [Function]
FN is th~ name of a function. EDITLOADFNS? returns the name of file FN is
containec;l in, or NIL.

EDITLOADFNS? performs (WHEREIS FN FNS FILES) to obtain the name of
the file(s) containing FN, if any (see page 11.10). If there is more than one
file, EDITLOADFNS? asks the user to indicate which file. It then checks the
F I L E DA T E S propetty for each file to see if the version that was originally loaded
still existS.41 If- the file that was originally loaded no longer exists, but there is a
different version of the file on that directory, EDITLOADFNS? prints "****can' t
fin d FiLENAME". and then uses the version that it could find. Similarly, if the
original version is found.. but a newer version is also found.. EDITLOADFNS? prints
"****Note: FILENAME is not the newest version"andthenusesthe
newest version. .

Having decided which file the function is on, if ASKFLG=NIL, EDITLOADFN5?
prints the value of STR followed by the name of the file, and returns the name
of the file. If ASKFLG = T, ED I TLOAD F N5? calls' A5KUSE R giving (L I 5T FN
STH FILSNAME) as MESS, the message to be printed. If A5KUSER returns Y.
EDITLOADFNS? returns the filename. If STR=NIL, "loading from" is used.

EDITLOADFNS? is used by the editor, LOADFNS (when the file name is not supplied), by PRETTYPRINT,
and by DWIM.

(CHANGENAME FN FROM TO) [Function]
Replaces :all occurrences of FROM by TO in the definition of FN. If FN is an EX P R,
CHANGENAME performs {NLSETQ (ESUBST TO FROM (GETD FN»). If FN

is compiled. CHANGENAME searches the literals of FN (and all of its compiler
generated sub functions), replacing each occurrence of FROM with TO. This will
succeed even if FROM is called from FN via a linked call. In this case, the call will
also be relinked to call TO instead.

The value of CHANGENAME is FN if at least one instance of FROM was found,
otherwise· NIL.

CHANGENAME is used by BREAK and ADVISE for changing calls to FNl to calls to Fl\fl- IN-FN2•

The function EDITCALLERS provides a way of'rapidly searching a file or entire set of files. even files
not loaded into Interlisp or "noticed" by the file package, for the appearance of one or more key words
(atoms) anywhere in the file.

41In the case ·that FILES = T and the WHEREIS package has been loaded (page 23.40). files(s) may be
found that have not eeen-Ioaded or otherwise noticed, and thus will not have F I L E DA T E 5 property. In .
this case, EDITLOADFNS? does not do any version checks. but simply uses the latest version.

17.58

THE TELETYPE EDITOR

(EDITCALLERS ATOMS FILES COMS) [Function]
• Uses F FILE POS to· search the file(s} FlLES for occurrences of the atom(s} ATOMS.

It then calls EDITE on each of those objects,42 performing the edit commands
COMB. If COMS = NIL, then (E XAM • ATOMS) is used. Both ATOMS and FILES

may be single atoms. If FILES is NIL, FILE LST is used. Elements on ATOMS may
contain $s «esc>s).

EDITCALLERS prints the name of each file as it searches it, and when it finds
an occurrence of one of ATOMS, it prints out either the name of the containing
function or, if the atom occurred outside a function definition, it prints out the
byte position that the atom was found.

EDITCALLERS will read in and use the filemap of the file. In the case that the
editor is actually called, ED ITCALLERS will LOADFROM the file if the file has not
previously been" noticed.

(FINDCALLERS ATOMS FILES) [Function]
Like ED I TCALLE RS, except does not call the editor, but instead simply returns
the list of files that contain one of ATOMS.

(EDITRACEFN COM) [Function]
Is available to. help the user debug complex edit macros, or subroutine calls to the
editor. If ED IT RAC E F N is set to T, the function ED IT RAC E F N is called whenever
a command that was not typed in by the user is about to be executed, giving it
that command as its argument. However, the TRACE and BREAK op~ons described
below are probably sufficient for most applications.

If EDITRACEFN is set to TRACE, the name of the command and the current
expression are printed. If ED I T RA C E F N = B REA K, the same information is printed,
and the editor goes into a break. The user can then examine the state of the editor.

EDITRACEFN is initially NIL.

(SETTERMCHARS NEXTCHAR BKCHAR LASTCHAR UNQUOTECHAR 2CHAR PPCHAR) [Function]
Used to set up the immediate read macros used by the editor, as well as the
control-Y read macro (page 6.39). NEXTCHAR, BKCHAR, LASTCHAR, 2CHAR and
PPCHAR specify which control character should perform the edit commands N X P,
BKP, -lP, 2P and PP*. respectively; UNQUOTECHAR corresponds to contr<!>l·Y.
For each non·NIL argument, SETTERMCHARS makes the corresponding control
character have the indicated function. The arguments to SETTERMCHARS can
be character codes, the control characters themselves, or the alphabetic letters
corresponding to the control characte:rs.

If an argument to SETTERMCHARS is currently aSsigned as an interrupt character, it cannot be a read
macro (since the reader will never see it); SETTERMCHARS prints a message to that effect and makes no
change to the control character. However, if SETTERMCHARS is given a list as one of its arguments, it
uses CAR of the list even if the character is an interrupt. In this case, if CADR of the list is non·N I L,
SETTERMCHARS reassigns the interrupt function to CADR. For example, if control·X is an interrupt,

42EDITCALLERS uses GETDEF (page 11.17) to obtain the "definition" for each object. When EDITE
returns. if a change was made, PUT 0 E F is called to store the changed object

17.59

Time Stamps

{SETTERMCHARS '(X W» assigns control-W the,interrupt control-X had, and makes control-X be the
NEX'I'CHAR operator.

As part of the greeting operation, SETTERMCHARS is applied to the value of EDITCHARACTERS. which
is initially (J X Z Y N) in Interlisp-D and in Interlisp-10 under Tenex, (J A L Y K) under Tops-20
(control-] is line-feed). SETTERMCHARS is called after the user's init file is loaded, so it works to reset
EDITCHARACTERS in the init IDe; alternatively, SETTERMCHARS can be called explicitly.

17.20 TIME STAMPS

Whenever a function is edited, cmd changes were made, the function is time-stamped (by ED ITE), which
consists of inserting a comment ()f the form (* USERS-INITIALS DATE). USERS-INITIALS is the value
of the variable INITIALS. Aft~r greeting, or following a SYSIN, the function SETINITIALS is called.
SETINITIALS searches INIT1ALSLST, a list of elements of the fonn (USERNAME • INITIALS) or
(USERNAME FlRSTNAME INITIALS). If the user's name is found, IN IT IALS is set accordingly. If the
user's name is not found on INITIALSLST, INITIALS is set to the value of DEFAULTINITIALS,
initially ed ; ted:. Thus, the default is to always time stamp~ To suppress time stamping, the user must
either include an entry of the form (USERNAME) on INITIALSLST, or set DEFAULTINITIALS to NIL
before greeting, i.e. in his user profile, or else, after greeting, explicitly set INITIALS to NIL.

i

If the user wishes his functions to be time stamped with his initials when edited, he should include a file
package command command of the form (ADDVARS (INITIALSLST (USERNAME • INITIALS) » in
the user's INIT. LISP file (see page 14.5).

The following three functions IIlay be of use for specialized applications with respect to time-stamping:
(F I XED I T DA T E EXPR) which,! given a lambda expression, inserts or smashes a time-stamp comment;
(EDITDATE? COMMENT) which returns T if COMMENT is a time stamp; and (EDITDATE OLDATE

INITLS) which returns a new time-stamp comment If OLD ATE is a time-stamp comment, it will be reused.

17.60

CHAPTER 18

INTERLISp-n SPECIFICS

Interlisp-D is an implementation of the Interlisp language that runs on the Xerox 1100, 1108, and 1132
machines. It is completely upward compatable with the older Interlisp-10, except as specified in this
manual. The most significant extension to Interlisp is the window display package, described on page
19.1. However; Interlisp-D also offers many other extensions, which are described in detail below.

18.1 INTERLISp-n INTERRUPT CHARACTERS

The table below gives the interrupt characters currently enabled in Interlisp-D. Many of these are the
same as those used in the Tenex version of Interlisp-l0, but. some have been removed, and some have
had their meanings changed. It is possible to change the assignments of control characters to interrupts
using INTERRUPTCHAR (page 9.17).

Note: In IIiterlisp-D with multiple processes, it is not sufficient to say that "the computation" is broken,
aborted, etc; it is necessary to specify which process is being acted upon. Most of the interrupt characters
below refer to the 1TY process, which is the one currently receiving keyboard input. Control-H can be
used to break arbitrary processes. For more information, see page 18.35.

control-B

control-C

control-D

control-E

control-H

control-P

control-T

Causes a break within the 1TY process. Use control-H to break a particular process.
Note that this break occurs at the next function call, so it is like control-H in Interlisp-
10; it is always safe to resume the computation. There is no interrupt character like
control-B in Interlisp-10

On the Xerox 1100 and Xerox 1132, brings the user into the Raid low-level debugger.
From Raid, typing control-N resumes the Lisp computation, and control-D resets the
stack. On the Xerox 1108, after typing control-C, the system stops and waits for the
next character typed. Pre~sing the STOP key will do a HARDRESET, returning control
to the user. Pressing the UNDO key will start up the TeleRaid debugger.

Aborts the 1TY process, and unwinds its stack to the top level. Calls RESET (page
9.14).

Aborts the 1TY process, and unwinds its stack to the last ERRORSET. Calls ERROR"!
(page 9.14).

Pops up a menu listing all of the currently-running processes. Selecting one of the
processes will cause the break to take place in that process.

Changes the P R I NT LEV E L setting, as described on page 6.18.

Prints status information for the TrY process.

18.1

Garbage Collection

Note: The control-Q, and control-S interrupt characters from the Tenex-version of Interlisp-lO are not
enabled in Interlisp-D.

18.2 GARBAGE COLLECTION

Interlisp-D has a reference-counting garbage collector (Interlisp-lO uses the more familiar mark-and-sweep
algorithm). A reference-counting garbage collector uses time proportional to the garbage being collected
and not to the size of the addr~s space. This is a crucial advantage for a large address space system such
as Interlisp-D. It does have a disadvantage in that circular lists are never reclaimed, as their reference
count never goes to zero. In addition, atoms are currently not garbage collected; and non-atomic hash
array keys are not collected (in Interlisp-lO, when a non-atomic hash key is no longer referenced except
by the hash array itself, the hashlink goes away and both the key and the value, if it is nowhere ~lse
referenced, are reclaimed).

Garbage collection in Interlisp-D is controlled by the following functions and variables:

(RECLAIM) ,[Function]
Initiates a garbage collection. R E C LA I M always returns 0, independent of the actual
number of cells collected.

- (RECLAIMMIN N) [Function]
The frequency of garbage collection is user settable via the function R EC LA I MM IN
(which plays a role similar to Interlisp-lO's MIN F 5, which is a no-op in Interlisp-D).
Lisp keeps track of the number of cells of any type that have been allocated; when
it reaches the R E C LA I MM I N number, a garbage collection occurs. (R E C LA I MM IN
N) returns the current setting of the parameter, and, if N is non-N I L, sets it to N.

As there is no motivation for the Interlisp-lO CTRL-5 interrupt, it is not enabled.

RECLAIMWAIT [Variable]
Interlisp-D will invoke a RECLAIM if the system is idle and waiting for user input
for RECLAIMWAIT seconds (currently set for 4 seconds).

(GCGAG MESSAGE) [Function]
GCGAG ~ets the message that appears on the display screen while a garbage collection
is taking place. If MESSAGE is non-N I L, the cursor is complemented during a
RECLAIM; if MESSAGE = NIL, nothing happens. This limited choice exists because
it was found that printing a message took a significant fraction of the time of small
RECLAIMs. The value of GCGAG is its previous setting.

(GCTRP) [Function]
The function GCTRP returns the number of cells (of any type, not just LI5TP)
until the next garbage collection, according to the R E eLA I MM I N number, although
this number is not very meaningful. -

18.2

INTERLISp·D SPEOFICS

18.3 V ARIABLE BINDINGS

Interlisp-D uses deep binding of variables, whereas Interiisp-l0 currently uses shallow binding (prior to
1975, Interlisp-l0 used deep binding). Although this makes little difference for most programs, it can
make a difference in efficiency of execution. For example, it is better to pass parameters as arguments
than to let subfunctions reference them freely. -In addition, declaring variables that are never bound (i.e.,
whose top level value only is used) to be GLOBAlVARS is important Sloppy Interlisp-l0 code that rebinds
variables that have been declared as GLOBALVARS will not run correctly in Interlisp-D. Be careful to use
RESETVARS to "rebind" variables that are declared GLOBALVARS. RESETVARS works in both systems;
in a shallow system, RESETVARS just binds its arguments as PROG variables (and makes sure they are
declared SPECVARS), while in a deep system such as Interlisp-D, entries are made on RESETVARSLST. If
the compiler sees an attempt to bind a global variable, it will print out an error message.

For performance reasons. it'is important to de£lare global variables as such in Interlisp-D. This can be
done with the GLOBALVARS file package command (page 11.25). which causes variables to be declared
as global to the compiler. For more information on variable bindings and performance, see page 18.19.

18.4 STACK FORMAT

Both the interpreter and compiler generate different intermediate frames than are found in Interlisp-l0.
so if the user has code that assumes a particular number of frames will exist at some point (e.g.,
using STKNTH). it will probably be wrong. STKPOS and STKSCAN are still available, however, and
REALSTKNTH and REALF RAMEP are useful for ignoring those intermediate frames.

18.5 SAVING VIRTUAL MEMORY STATE

The Interlisp-D virtual memory is kept in the file Lisp.virtualmem. As virtual memory pages are accessed.,
they are loaded from this file into real memory. To exit from Interlisp-D to the Alto Executive so that it
is possible to return to the current Interlisp-D environment, it is necessary to save the state of the virtual
memory. The simplest way is to use the function LOGOUT (page 14.2). This will write out all altered
pages from real memory to Lisp. virtualmem.

If you are the sole user of Interlisp-D on a disk partition. then you will probably want to use LOGOUT.
However, if other Interlisp-D users may be using that partition, and you wish to save your state, then it
may be more appropriate to use SYSOUT (page 14.3). Note that SYSOUT in Interlisp-D saves the entire
state of the virtual memory, instead of just the saved pages, so Interlisp-D sysout file are very large.

[Function]
Returns the number of pages in use in the virtual memory. This is the roughly the
same as the number of pages required to make a sysout file on the local disk.

Interlisp-D contains a routine that writes out dirty pages of the virtual memory during I/O wait, assuming
that swapping has caused at least one dirty page to be written back into Lisp.virtualmem (making it
non-coijtinuable). The frequency with which this routine runs is determined (inversely) by:

18.3

" Error Types

. BACKGROUNDPAGEFREQ [Variable]
This global variable detennines how often the routine that writes out dirty pages is
run. Initially it is set to 4, so the dirty page routine is run once every 4 times around
the idle loop. (The lower BACKGROUNDPAGEFREQ is set, the less responsiveness
you get at typein, so it may not be desirable to set it all the way down to 1.)

The following function is used to write all of the dirty pages out, to make sure that the current state is
not lost if there is a system crash.

(SAVEVM -) [Function]
This function' is similar to logging out and continuing, but faster. It takes about
as long as a logout, which can be as brief as 10 seconds or so if you have already
written out most of your dirty pages by virtue of being idle a while. After the
SAVEVM, : and until the pagefault handler is next forced to write out a dirty page,
your virtual memory· image will be continuable (as of the SAVEVM) should there
be a system crash or other disaster.

If the system has been idle long enough, dirty pages have been written, and 'there are few enough dirty
pages left to write that a SAVEVM would be quick, SAVEVM will be automatically called. While SAVEVM
is being executed, the cursor is changed to a special "SAV / INGot cursor. You can control how often
SAVEVM is automatically called by setting the following two global variables:

SAVEVMWAIT
SAVEVMMAX

[Variable]
[Variable]

The system will call SAVEVM after being idle for SAVEVMWAIT seconds (initially
60) if there are fewer than SAVEVMMAX pages dirty (initially 600). These values are
fairly conservative. If you want to be extremely wary, you can set SAVEVMWAIT=O
and SAVEVMMAX = 10000, in which case SAVEVM will be called the first chance
available after the first dirty page has been written.

18.6 ERROR TYPES

The following additional error types occur in Interlisp-D:

5 FILE SYSTEM ERROR

48 FLOATING UNDERFLOW

49 FLOATING OVERFLOW

50 OVERFLOW

51 ARG NOT HARRAY

52 TOO MANY ARGUMENTS

Interlisp-D allows the user to trap arithmetic exceptions. The action taken when overflow occurs may be
set with the function OVERFLOW (page 2.38).

18.4

INTERLISP-O SPECIFICS

READ-MACRO CONTEXT errors are·not generated in Interlisp-D. In the situation where Interlisp-10 would
generate the· error,· the call. to READ. within the macro will simply return NIL. '

18.7 COMPILER

Interlisp-D runs a different instruction set than Interlisp-lO, so source files from Interlisp-10 must be
recompiled. The default extension (value of COMPILE. EXT) for Interlisp-D compiled files is :~DCOM"
rather than "COM" as in Interlisp-10.

The Interlisp-10 compiler translates Lisp source programs into 36-bit PDP-10 instructions .. The Interlisp-D
compiler compiles Lisp source programs into an 8-bit Lisp instruction set executed by the Xerox 1100
family machines.

In Interlisp-D, block compiling is handled somewhat differently than in Interlisp-lO; block compiling
provides a mechanism for hiding function names internal to a block, but it does not provide a performance
advantage. Block compiling in Interlisp-D works by automatically renaming the block functions with
special names, and calling these functions with the normal function-calling mechanisms. Specifically, a
function FN is renamed to \BLOCK-NAME/FN. For example, function FOO in block BAR is renamed to
"\BAR/FOO". Note that it is possible with this scheme to break functions internal to a block.

Interlisp-D has an optimizing compiler. Among other optimizations, it performs constant folding. Variables
can be declared by the user to be compiler constants using the file package command CONST ANT S (page
11.27), which is syntactically the same as VARS, but'additionally inforins the compiler that the "variables"
are constants.

18.8 LINKED FUNCflON CALLS

Linked function calls are not implemented in Interlisp-D. One noticeable result of this is that if you
break a function that is used by the system, for example in the READ-EVAL-PRINT loop, you will get
unexpected breaks within system code. These extra breaks can be safely exited with OK. To avoid this
inconvenience, BREAK the function inside another function, e.g .• (BREAK (PRINt IN FOO». (Note:
Functions that begin with a backslash (\) are system internal functions and should not be broken or
advised.)

18.9 HELPSYS

There is currently no HELPSYS facility in Interlisp-D. There are plans to reimplement a HELPSYS facility
eventually.

18.5

Operating System Dependent F~ctions

IS.10 . OPERATING SYSTEM DEPENDENT FUNCTIONS

Many Interlisp-10 functions are missing from Interlisp-D. An attempt has been made to provide an
appropriate implementation for the more useful of these functions, but some simply do not make sense on
the Xerox 1100 family machines. For example~ there is no such thing as a J SY S. Any function containing
a call on JSYS or ASSEMBLE will fail to compile.

The following Interlisp-10 functipns are not implemented in Interlisp-D: LISPXSTATS, SUBSYS, GETBLK,
RELBLK, ERSTR, GT JFN, OPNJiFN, RLJFN, OPENF, JFNS.

The following Interiisp-lO functions are implemented as dummies in Interlisp-D: LISPXWATCH, ADDSTATS, HOSTNA
USERNUMBER, HOSTNUMBER, ~OADAV. There are communication network analogs of HOSTNAME and
HOSTNUMBER called ETHERH05TNAME and ETHERHOSTNUMBER (page 21.5).

Additional Functions:

(HOSTNAMEP NAME) [Function]
Returns T if NAME is recognized as a valid device or remote file server name at
the mom~nt HOST NAME P is called.

(DIRECTORYNAMEP DIRNAME HOSTNAME) [Function]

(MACHINETYPE)

(RINGBELLS)

Returns T if DIRNAME is recognized as a valid directory. DIRNAME may include
an explicit hostname.. If HOSTNAME is supplied, it is used instead. The connected
directory and hostname are used as defaults.

[Function]
Returns the type of machine that Interlisp-D is running on: either DORADO (for
the Xerox 1132), DOLPHIN (for the Xerox 1100), or DANDELION (for the Xerox
1108).

[Function]
On the Xerox 1100, this flashes (reverse-videos) the screen several times. On the
Xerox 1108, this also beeps through the keyboard speaker.

IS.11 IDATE FORMAT

Interlisp-D uses a different time standard than Tenex does. IDATE still has the essential property that
(IDATE x) is less than (IDATE Y) if x is before Y, and (IDATE (GDATE N» equals N. If the
particular internal format of the : integer date is being used to do arithmetic on dates, the user's programs
must be fixed. But in that case the user is already in trouble with Interlisp-10, where the date standard
is subtly different between Tenex and Tops20. The most useful property that the three fOI111ats have in
common is that an internal date ¢an be incremented by an integral number of days by computing as the "1
day" constant (which can be evaluated at compile time) the difference between two convenient IDATE 's,
e~. {IDIFFERENCE (IDATE " 2-JAN-80 12:00") (IDATE " 1-JAN-80 12:00"».

Currently, the format argument of DATE and GDATE is not supported (an error will occur if the user tries
to give one). IDATE now parses most of the date forms allowed in Interlisp-10; e.g., the month can be
given numerically, slashes can be used as separators, extra spaces are ignored.

18.6

INTERLISP-D SPEOFICS

(SEll IME DATE&T11\.IE) [Function]

\TimeZoneComp

. Sets· the internal time-of-day clock. If DATE&TIME = NIL, S~TTIME attempts to
get the time' from the communications net; if it fails, the user is prompted for the
time. If DATE&TIME is a string in a form. that IDATE recognizes, it is used to set
the time. .

[Variable]
This variable should be initialized (in {DSK} INIT • IISP) to the time-zone
compensation, i.e., the number of hours west of GMT. For the U.S. west coast it
is 8. For the east coast it is 5.

18.12 CHARACTER SET

Interlisp-D uses an 8-bit character set whereas Interlisp-10 uses standard 7-bit ASCII. The values returned
by CHCON 1 range from 0 to 255, and codes in this range are acceptable arguments to CHARACTER and
FCHARACTER. Characters 0-127 have their standard ASCII interpretations; characters 128-255 are called
u meta" characters. Some of the meta characters have printed representations in some fonts (for accents,
ligatures, etc.), but most of them will be invisible if printed directly to the screen. Accordingly, the
echoing conventions nonnally defined for control characters have been extended to apply also to meta
characters. The echomode of any character may be set by the new function ECHOCHAR (page 6.43). In
the original tenninal table, the IN 0 I CA T E character mode is specified for all meta characters, so all meta
characters are echoed as a. cross-hatch (#) followed by the printed representation corresponding to the
7 rightmost bits of the character. For example, character 129 is echoed as #1'A. There is currently no
type-in syntax for meta characters.

.
The CHARCOOE function (page 2.12), defined in both Interlisp-D and Interlisp-10, can be useful when
dealing with the Interlisp-D character set.

18.13 READ TABLES

In Interlisp-D. all control characters are defined as separator characters in FILE ROTBl, so that the font
infonnation in files is ignored when files are loaded. Users who run in both Interlisp-10 and Interlisp-D
with the same files will want to make the same setting in Interlisp-10's FIlEROTBl, in order that files
created in one system can be read in the other. The appropriate expression to evaluate, which may be in
your Interlisp-10 I NIT • lIS P file, is:

(SETSEPR '(1 2 3 4 5 6 7 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26) ~

1 FIlEROTBl)

18.7

Keyboard Interpretation

18.14 KEYBOARD INTERPRETATION

In Interlisp-D, keyboard and ~ouse interpretation is now done entirely by Lisp code, and certain
lower level· keyboard facilities a,e therefore available. For each key on the keyboard/mouse there is a
corresponding bit in memory th~t the hardware/microcode tum on and off as the key moves up and down.
System-level routines decode th¢ meaning of key transitions according to a table of "key actions", which
may be to put particular Ascii qodes in the sysbuffer, cause interrupts, change the internal shift/control
status, or create events to be placed in the mouse buffer.

(KEYDOWNP KEYNAME) [Function]

(KEYACTION

Used to (ead the instantaneous state of any key, independent of any buffering or
pre-assigned key action. Returns T if the key named KEYNAME is down at the
moment the function is executed. Most keys are named by any of the characters on
the key-tqp. The shift keys are named separately as RSHI FT and LSHI FT, space
is SPACE~ the unmarked keys are BLANK-TOP, BLANK-MIDDLE, and BLANK
BOTTOM, ·and the mouse buttons are LEFT, MIDDLE, and RIGHT. Paddles on the
keyset (not generally available) are named PAD1 through PAD5. Thus (KEYDOWNP
'a) returnsT if the "a" key is down, (KEYDOWNP 'TAB) returns the state of
the TAB key. etc.

KEYNAME ACTIONS) [Function]
Changes the internal tables that define the action to be taken when a key transition is
detected by the system keyboard handler. KEYNAME is specified as for KEYDOWNP.
ACTIONS is a dotted pair of the form (DOWN-ACTION • UP-ACTION), where the
acceptable transition actions and their interpretations are:

NIL Take no action on this transition (the default for up-transitions on all
ordinary characters).

a list (CHAR SHIFTEDCHAR LOCKFLAG)
CHAR and SHIFTEDCHAR are either ascii codes or non-digit characters
standing for their ascii codes. When the transition occurs, CHAR

or SHIFTEDCHAR is transmitted to the system buffer, depending on
whether either of the 2 shift keys are down. LOCKFL.AG is optional, and
may be LOCKSH I FT or NOLOCKSH 1FT. If LOCKFLAG is LOCKSH 1FT,
then SHIFTEDCHAR will also be transmitted when the LOCK shift is
down (the alphabetic keys initially specify LOCKSHIFT, but the digit
keys specify NOLOCKSH 1FT).

Examples: (a A LOCKSHIFT) and (610 ! NOLOCKSHIFT) are
the initial settings for the down transitions of the "a" and "1" keys
respectively.

1SHIFTUP, 2SHIFTUP, LO~KUP, CTRLUP,METAUP
1SHIFTDOWN. 2SHIFTDOWN. LOCKDOWN,CTRLDOWN,METADOWN

Change the status of the internal "shift" flags for the left shift. right
shift. shift lock, ctrl, and meta keys, respectively. These shifts affect the
interpretation of ordinary key actions. If either of the shifts is down,
then SHIFTEDCHARS are transmitted. If the lock flag is down, then
SHIFTEDCHARS are transmitted if the key action specified LOCKSHIFT.
If the control flag is on, then the low-order five bits are masked out

18.8

EVENT

INTERLISp-n SPECIFICS

of the code that w9uld otherwise be transmitted to the system buffer.
If the meta flag is down, the .. high order. (8th bit) is turned on as
characters are transmitted.

Example: the initial ACTIONS for the left shift key is (15 HI F T UP.
lSHIFTOOWN).

An ~ncoding of the current state of the mouse and selected keys is
placed in the mouse-event buffer when this transition is detected.

KEYACTION returns the previous setting for KEYNAME. If ACTIONS is NIL, returns
the previous setting without changing the tables.

(MODIFY. KEYACTIONS KEYACTIONS SAVECURRENT?) [Function]
KEYACTIONS is _a list of key actions to be set, each of the fonn (KEYNAME •
ACTIONS). The effect of MODIFY. KEYACTIONS is as if (KEYACTION KEYNAME

ACTIONS) were perfonned for each item on KEYACTIONS.

If SAVECURRENT? is non-NIL, then MODIFY. KEYACTIONS returns a list of all
the results from KEY ACT ION, otherwise it returns NIL. This can be used with a
MODIFY. KEYACTIONS that appears in a RESETFORM, so that the list is built at
"entry", but not upon "exit".

(METASHIFT FLG) [NoSpread Function]
If FLG is non-NIL, changes the keyboard handler (via KEYACTION) so as to
interpret the bottom blank key ("swat") as a metashift: if a key is struck while
meta is down, it is read with the 200Q bit set For CHAT users this is a way of
getting an "Edit" key on your simulated Datamedia. Returns previous setting.

18.15 LISPUSERS PACKAGES

Most of the LISPUSERS packages (see page 23.1) are available with the Interlisp-D system as separate
loadable packages. The major exception is the HASH package, which is highly machine dependent, and
the WHEREIS package which depends on it EDITA, CJSYS, and many parts of the EXEC package are
system-dependent by their very nature, and also are not included. The various network packages are not
provided because many of these facilities are integrated into Interlisp-D at a more fundamental level.

Several packages not documented in the Interlisp Reference Manual are available. The list currently
includes the following:

GRAPHER

BROWSER

EVALSERVER

A collection of functions for laying out, displaying, and editing graphs on the
Interlisp-D screen.

Modifies the SHOW PATHS command of Masterscope so that the cOIIL~and's output
is displayed as an undirected graph. Uses the GRAPHER package.

Provides a set of routines to facilitate communication, over an Ethernet, between
two...or more Xerox 1100s running Interlisp-D.

18.9

HISTMENU

SAMEDIR

File System

Provides a simple way to access the Interlisp history list using a menu.

This package advises MA KEF I L E to notify the user if it appears that a file is being.
written onto a directory other than the one it came from, allowing the user to halt
the process.

18.16 FILE SYSTEM

Typically, the most machine-dependent part of any computer language implementation is the I/O system.
Regardless of efforts to create consistant interfaces, the fact remains that different physical machines offer
different disks, printers, etc .• and languages have to be extended to take advantage of these. In the case
of implementing Interlisp on the- Xerox 1100 family machines~ the biggest change was the addition of
facilities for using the high-resolution display, described elsewhere. Other changes have had to be made
to accomodate using files on a local disk or on a file server, and sending files to remote printers. Every
effort has been made to keep these interfaces compatible with Interlisp-l0 conventions, to reduce the
amount of work necessary when transferring programs. However, in some situations the user may wish
to take advantage of the special extensions offered by Interlisp-D.

This section contains information about a variety of extensions to Interlisp-D that accomodate the different
I/O environment

. 18.16.1 File Names

"Full" file names inside of Interlisp-D look just like Tenex file names, except that all full file names
begin with a devicelhost name (in braces) to identify the machine (or pseudo-machine) on which the file
resides. Files on the local disk belong to devicelhost DSK, e.g. {DSK} FOO. BAR; 3. PACKF I LENAME and
UNPACKF ILENAME are still the appropriate way for programs to manipulate filenames. The devicelhost
of a file may be accessed using the new field name HOS T .

On Xerox ll00s and Xerox 1132s, Interlisp-D can access partitions other ·than the one which was booted.
If the other partition is password;.protected, Interlisp insists on the correct password before accessing any
files. Partitions are denoted by {DSK1} for Partition 1, {DSK2} for Partition 2, etc. DIR, DIRECTORY,
etc. all work for other partitions. Currently, SYSOUT does not work for partitions other than the default.

18.16.2 Renaming Files

Interlisp-D implements (RE NAME F I L E OLD NEW) merely by copying OLD to NEW and then deleting
OLD. While this is quite general (and even allows one to rename files from the local disk or one file server
to another), it is slower than the Interlisp-l0 R E NAM E F I L E operation. It also, in the case of renaming a
local disk file, requires that the local disk have enough room to hold the copy of the file.

18.16.3 End Of Line Convention

Interlisp-D uses a different representation for end of line both internally and on files. Internally, end of line

18.10

INTERLISP-D SPE:CIFICS

is represented by the carriage return character (15Q), whereas the internal representation in Interlisp-l0
is the EOl character (37Q). The·CHARCOOE, macro (page 2.12) is the appropriate way to code programs
to be independent of the EOl convention: in all systems (CHARCOOE EOl) is always the appropriate
end-of-line character. (CHARCOOE CR) and (CHARCOOE TENEXEOl) provide the system-dependent
character codes. Interlisp-D also interprets a carriage return/line feed sequence in a file as an end-of-line
and reads it as a carriage return. TERPRI generates two characters in· Interlisp-l0, but only one in
Interlisp-D.

18.16.4 Using Files with Processes

Currently, Interlisp-D does not provide interlocks to keep multiple processes from trying to access the
same file. Therefore. the user has to be careful not to have two processes manipulating the same file at
the same time. For example, it will not work to have one process TCOMPl a file while another process is
running lISTFIlES on it.

18.16.5 Miscellaneous File Manipulation

(COPYFIlE ,FROMFILE TOFILE) [Function]
Copies a file to a new file. The source and destination may be any servers/devices.
COPYFIlE attempts to preserve the TYPE and CREATIONOATE where possible.

(OISKFREEPAGES - -) [Function]
Returns an estimate of the number of pages free on the local disk (current partition).
This number is only a "hint", but is usually quite accurate.

(OISKPARTITION) [Function]
Returns the number of the current partition (1 or 2 on Xerox 1100, 1-5 on Xerox

'1132).

18.16.6 Connecting to Directories

As in Interlisp-l0, Interlisp-D has a notion of a "connectedU directory, which is used as the default when
you give a filename lacking an explicit device/host (and directory). The default is changed by using the
programmer's assistant command CONN.

CONN {DEVICE/HOST}(DIRECTORY) [prog. Asst. Command]
Either part of the argument is optional; if the directory is omitted, the default for
devices that have directories is the value of (USERNAME); if the host is omitted,
connection will be made to another directory on the same host as before. If CON N
is given with no arguments, connects to the value of lOGINHOST IOIR.

Note that CONN 40es not require or provide any directory access privileges, as
does the command of the same name in Interlisp-l0. Access privileges are checked
when a file is opened.

(CNOIR HOST/DIR) [Function]
Programmatic form of CONN. Connects to the directory HOST/DIR. Returns the

18.11

(/CNOIR HosT/Dm)

LOGINHOST/OIR

Binary I/O

fullname of the now-connected directory.

[Function]
Undoable form of CNOIR. CONN is implemented via ICNOIR.

[Variable]
CONN with no argument connects to the value of the variable LOGINHOST IOIR,
initially {DSK}, but usually reset in the user's greeting file.

(OIRECTORYNAME FLG STRPTR) [Function]

DIRECTORIES

18.16.7 Binary I/O

Similar to Interlisp-lO USERNAME. If FLG is T, returns the currently connected
host and directory name. If FLG is NIL, returns the value of LOGINHOST IOIR. If
STRPTR is T, the value is returned as an atom, otherwise it is returned as a string .

. _ [Variable]
Global variable containing the list of directories searched (in order) by SPELLF ILE
and FIN 0 F I L E (page 15.20) when not given an explicit DIRLST argument. In this
Jist, the atom NIL stands for the login directory (LOGINHOST IOIR), and the atom
T stands for the currently connected directory.

Interlisp-D supports a datatype called a STREAM, whose basic operations are "input" and "output". They
provide an efficient handle to an open file. All I/O functions that currently refer to files (e.g., P R IN T,
PRIN1, COPYBYT,ES, FULLNAME) will also accept streams, and will operate slightly more efficiently on
them. In addition, the following two functions provide binary input and output on streams:

(BIN STREAM) [Function]
Returns the next byte from STREAM; thus, this operation is similar to (CHCONl
(READ C STREAM». BIN is a very efficient (microcoded) operation.

(BOUT STREAM BYTE) [Function]
Outputs a single 8-bit byte to STREAM, i.e., similar to (PRIN3 (CHARACTER
BYTE)).

In addition, the following function coerces files to streams:

(GETSTREAM FILE ACCESS) [Function]
Takes a designator which can be used as a "file" argument (e.g., a full/partial file
name, a display stream, window, etc.) and returns the corresponding stream. If
given a stream will merely return it. ACCESS is interpreted the same as in OPENP
(page 6.2).

BIN and BOUT will also accept a file designator, in which case they coerce it to a stream via GETSTREAM.
However, BIN executes in microcode only when given a stream directly.

18.16.8 Temporary Files and the CORE Device

The local DSK device and most file servers do not support the temporary or scratch files that are available

18.12

INTERLISP-D SPECIFICS

in Interlisp-10. Files, that are created do not disappear when some later, event such as logout occurs and
-instead must 'be deleted -by' specific action on the part of the user. For this reason. the ; S and ; T suffixes
in file names are simply ignored when output is directed to a particular host or device.

However, Interlisp-D does support a notion of core-resident files. and in many cases these provide
a reasonable substitute for Interlisp-10 scratch files. Core~resident files are on the device CORE (e.g.
{C 0 R E} < F 00 > FIE. DC OM ; 5). The directory for this device and all files on it are represented completely
within the user's virtual memory. These files are treated as ordinary files by all file operations; their only
distinguishing feature is that all trace of them disapp~ars when the virtual memory is abandoned.

In Interlisp-D, the function PACKF ILENAME is defined to default the device name to CORE if the file has
the TEMPORARY attribute and no explicit host is provided.

Interlisp-D is initialized with the single core-resident device CORE, but the function COREDEV~CE may
be used to create any number -of logically distinct core devices.

(COREDEVICE NAME) . [Function]
Creates a new device for core-resident files and assigns NAME as its device
name. Thus, after perfonning (CO RED E V ICE 'F 00), one can execute {OUT F I L E
'{ FOO}BAR) to open a file on that device.

r

If the directory infonnation associated with CORE devices is not needed, the device NOD I RCORE can be
used to open core-resident files which "disappear" when they are closed. Note that {NODIRCORE} files
do not have names, so the only way to manipulate them is to pass around the value that 0 PEN F I L E
returned when the file was opened.

18.16.9 Floppy Disks on the Xerox 1108

Interlisp-D on the Xerox 1108 can access the built-in floppy disk drive as device {FLOPPY}. The floppy
fonnat is compatible with the Pilot floppy disk fonnat

18.16.10 Page Mapping

Interlisp-D implements the page-mapping primitives of Interiisp-10 with some notable differences that
might require major reworking of programs that rely on these facilities (see page 14.17). The major
difference is that an InterIisp-D page contains 256 16-bit words, rather than the 512 36-bit words of
InterIisp-10. A given page number or file address for MAPPAGE or MAPWORD will correspond to a very
different number of bits from the beginning of the file. and WORDCONTENTS and SETWORDCONTENTS
move smaller amounts of infonnation. A second difference is that buffers are completely integrated into
the Interlisp-D storage management system so that a page is guaranteed to be locked down as long as the
user holds a pointer to it. The functions LOCKMAP and UNLOCKMAP are therefore unnecessary, but for
compatibility are defined with dummy definitions.

18.17 FILE SERVERS

A file server is a shared resource on a local communications network which provides large amounts of

18.13

File Server File Names

file storage. Different file servers honor a variety of access protocols. In order to support full Lisp I/O,
a file server· must provide a random access protocol. One such protocol is Leaf. It has been integrated
into· the Interlisp-D file system to allow files on a., file server to be treated in much the same way files are
accessed on the local disk. Except where noted in this section, the standard file operations (OPENFILE,
INFILEP, CLOSEF, etc.) all work for remote files. 1bis section explains how to make use of remote files
and what differences exist between them and other files.

18.17.1 File Server File Names

The full name of a file on a file server host includes the name of the host in braces, and a directory
specification in angle brackets, e.g., {PHYLUM}<LISP> FOO. DCOM; 3. These names are not necessarily
the syntax by which the actual device/server knows the files (e.g. some file servers use "!" instead of
" ; "), but Lisp presents a uniform set of naming conventions. .

The user can "connect" .to ~ directory on a file server using the CONN command (page IS.11), after which
any filename supplied that does not include the host name and! or directory will use the "connected" host
and!or directory. Specifically, if the host is omitted, then the connected host is used, and if the directory
is also omitted, the connected directory is used as well. If an explicit host is supplied, no defaulting of
the directory occurs.

Interlisp supports a preliminary version of NS filing to Xerox S030 file servers (see page 21.13). Any
device with a colon in its name is presumed to be accessible with NS protocols rather than PUP, e.g.,
{STARFILE:}. The general fonnat ofNS fileserver device names is {SERVER : DOMAIN: ORGANIZATION};
the device specification for an SOOO-series product must contain the ClearingHouse domain and organiza
tion, but if not supplied directly, then they are obtained from the defaults, which themselves are found by
a search for the nearest ClearingHouse. NS file servers are modeled after the Star world, and have "File
Drawers" rather than directories; "File Folders" are like sub-directories. The functions D IRE C TOR Y,
FILEBROWSER, INFILE, COPYFILE, LOAD, and MAKEFILE are working now with NS file servers.

NETWORKOSTYPES [Variable]

18.17.2 Logging In

Files servers on different machines have different login protocols, file name formats,
etc. For proper service from file servers other than Xerox file servers, the user
should add entries to the association-list NETWORKOSTYPES associating the host
name (all uppercase) with its operating system type, currently one of TENEX,
TOPS20, UNIX, or VMS. For example (ADDTOVAR NETWORKOSTYPES (MAXC2
• TENEX» will inform Interlisp that the file server MAXC2 is a TENEX file server.

Most file servers require a user name and password for access. When a file server requests this infonnation,
Interlisp-D first gives the name and password from the Alto Executive. If the file server doesn't recognize
that name/password, Interlisp-D prompts the user for a name and password to use. It suggests a default
name (the one on the disk), which the user can accept by typing a space, or replace by typing a new
name or backspacing over it. Interlisp~D saves names and passwords for each host, so the user can login
to different file servers using different names. .

(LOGIN HOSTNAME - - -) [Function]
Forces Interlisp-D to ask for the login name and password to be used when
accessing host HOSTNAME. Any previous login information for HOSTNAME is

.1S.14

INTERLIsp-n SPECIFICS

overriden. If HOSTNAME is NIL, it overrides login infonnation for all hosts.
Password infonnation vanishes when LOGOUT, SYSOUT, or MAKESYS is executed.
Returns the login user name.

18.17.3 Abnormal, Conditions

If Interlisp-D tries to access a file and does not get a response from the file server in a reasonable period
of time, it prints a message that the file server is not responding, and keeps trying. If the file server has
actually crashed, this may continue indefinitely. A CTRL-E or similar intenupt aborts out of this state.

If the file server crashes but is restarted before the user attempts to do anything, file operations will
usually proceed nonnally, except for a brief pause while Interlisp-D tries to reestablish any connections
it had open before the cras~. It will inform the user of any problems that arise in so doing .• The most
likely problem occurs when a file has been opened for output but has not yet been written to (or not
enough has been written so _that Interlisp-D has written to the file server). In this case the file server will
think the file is not there when Interlisp-D tries to reestablish the connection. A similar situation arises if
the system has been idle (or at least has not accessed the file server) for a sufficiently long period. In this
case, the file server will time out the connection. Nonnally, Interlisp-D will attempt to recover· gracefully
as described above.

LOGOUT closes any Leaf connections that are currently open. On return, it attempts to reestablish
connections for any files that were open before logging out. If a file has disappeared or been modified,
Interlisp-0 reports this fact.

If it is desired to break the Leaf connection without logging out, call (BREAKCONNECT ION HOST). Any
subsequent reference to files on that host will reestablish the connection. The main reason for doing this
occurs if Interlisp-0 is intenupted while a file is being opened, leaving the file server thinking the file is
open and Lisp thinking it is closed, and then getting a file busy when Interlisp-D next tries to open it.

On rare occasions, the Ethernet may appear completely unresponsive, due to Interlisp having gotten into
a bad state. Typing (RESTART. ETHER) will reinitialize Lisp's Ethernet driver(s), just as when the Lisp
system is started up following a LOGOUT, SYSOUT, etc (see page 21.15)

18.17.4 Caveats

Leaf does not currently support directory enumeration except for one minor case (in the version field).
Hence, DIRECTORY or FILDIR cannot be used on a Leaf file server to' get a list of files. .

IN F I L E P and GET F I LEI N F O' currently have to open the file for input in order to obtain their infonnation,
and hence the file's read date will change, even though the semantics of these functions do not imply it.
This differs from the operation of DSK, and from Interlisp-l0 file operations.

Interlisp supports simultaneous access to the same server from different processes and pennits overlapping
of Lisp computation with file server operations, allowing for improved perfonnance. However, as a
corollary of this, a file is not closed the instant that CLOSE F returns; Interlisp closes the file "in tile
background". It is therefore very important that the user exits Interlisp via (LOGOUT), or (LOGOUT T).
rather than boot the machine or exit via Raid.

18.15

New Functionality

18.17.5 New Fun~tionality

Certain file servers treat text and binary files differently. Files on file servers can have the attribute TYPE,
with value TEXT or BINARY, for use with GETFILEINFO and SETFILEINFO. The file type defaults to the
value of DEFAULTFILETYPE, initially TEXT. OPENFILE accepts (TYPE TEXT) or (TYPE BINARY)
as an element of its argument MACHINE.DEPENDENT.PARAMETERS.

Another allowed element of MACHINE.DEPENDENT.PAR.AMETERS is DON'T. CHANGE. DATE, which means
not to change the file's creation date when a file is opened (meaningful only for files being opened for
output).

Interlisp-D includes an implementation of the PupFtp protocol, which supports transferring files
sequentially only. In those cases where sequential access (as opposed to random access) to a file is
appropriate, the use of PupFtp generally results in considerable speed improvement over Leaf, particularly
for writing files on a Xerox IFS. The system tries to use PupFtp where possible for SYSOUT and for
the destination file of a .COPY FILE. One can indicate that a file is going to be accessed only sequentially
by including the keyword SEQUENT IAL in the list of MACHINE.DEPENDENT.PAR.AMETERS passed to
OPENF ILE; the PupFtp will be used, if possible. If for some reason your file server supports PupFtp but
you do not wish COPYFILE or SYSOUT to use it, you can set the internal variable \FTPAVAILABLE to
NIL. r

18.18 HARDCOPY FACILITIES

Note: The following implementation of hardcopy facilities is subject to change.

Interlisp-D includes facilities for generating hardcopy in both "Press" and "Interpress" formats. "Press"
is a file format used for communicating documents to laser Xerographic printers called "Dover" (at MIT,
Stanford, and CMU) or "Penguin" (everywhere else). "Interpress" is a Xerox standard format used by
the 8044 printer and other Network System printers. The hardcopy functions below will generate Press
or Interpress output depending on the setting of the function PRINTERMODE:

(PRINTERMODE x) [Function]
Sets the type of printing file format generated by LIST FILES, HARDCOPYW, and
printer devices (see PRINTERDEVICE, below). If x is PRESS, the Press file format
is used. If x is INTERPRESS, the Interpress file format is used.

Currently ~ the hardcopy interface is not smart enough to infer the printer mode
from a previously formatted file or the name of a printing host. If the user wants
to print a previously formatted Press or Interpress file, the printing mode must be
set correctly.

(PRINTINGHOST -) [Function]
The function PR I NT I NGHOST is used to find the name of the local printer.

For (PRINTERMODE 'PRESS), this merely returns the value of the variable
DEFAULTPRINTINGHOST, which is usually set by an entry in the site greeting file
(see page 14.5).

18.16

INTERLISp-n SPECIFICS

For (PRINTERMODE 'INTERPRESS), this returns the value of the variable
NS. DEFAUL T . PRINTER if non-NIL, otherwise it returns the first local printer
found in the closest clearinghouse (see page 21.11).

The function LIS T F I L E 5 1 is used by LIS T F I L E S to send a single file to a hardcopy printing device.
Interlisp-D is initialized with LISTFILESl defined to call EMPRESS in Press mode or NSPRINT (page
21.11) in Interpress mode. These functions convert a file to Press or Interpress fonnat and send it to a
printing seryer. The "default" site greeting file delivered with the Xerox 1100 redefines LIS T F I L E S 1 as
a no-ope

(EMPRESS FILE ·#COPIES HOST HEADING #SIDES) [Function]
The function EMPRESS causes #COPIES copies of the file FILE to be sent to the
printer HOST. If HOST is NIL. the value of (PRINTINGHOST) is used. #SIDES

specifies one- or two-sided printing; may be ,I or 2 (if HOST is capable of duplex
printing) or T (meaning to use the printer's default); defaults to the value of
EMPRESS#SIDES, initially 1.

If FILE is a Press or Interpress fonnat file, it is transmitted directly. Otherwise, it
is converted by calling the function MAKEPRESS (called with FONTS = NIL and
the same HEADING).

EMPRESS. SCRATCH [Variable]
EMPRESS constructs scratch press files on the {CORE} device for small files. If
the number of disk pages of the source file is larger than the limit set by the first
element of the list EMPRESS. SCRATCH, an alternate. scratch file, specified by the
second element of EMPRESS. SCRATCH, is used. EMPRESS. SCRATCH is initialized
to (30 {DSK}EMPRESS. SCRATCH).

(MAKEPRESS FILE OUTFILE FONTS HEADING TABS) [Function]
(MAKEINTERPRESS FILE OUTFILE FONTS HEADING TABS) [Function]

These functions produce a Press or Interpress file named OUTFILE from the ASC I I
file FILE. If OUTFILE is NIL, it defaults to the same file name as FILE, with
extension Press or Interpress.

These functions interpret character sequences beginning with control-F (character
code 6) as special fonnatting instructions. If the code of the next character is a
valid font number, then the fOImatting sequence indicates a change to that font
The correspondence between font numbers and fonts is specified by entries on the
list FONTS or, if FONTS is NIL, the current font profile list (see page 6.55). Each
entry is of the fonn (FONT/CLASS FONT· NUMBER DISPLAY-FONT PRESS.FONT).
For example, the entry (DE F AUL TFONT 1 (GACHA 10) (GACHA 8» indicates
that GAC HA 8 will be used in press files for font 1 which will be represented on
the display as GACHA 10. HEADING is a string that is printed as a heading on each
page. If HEADING is NIL, the file's name and creation date will be used.

These functions also allow absolute tab stops to be specified. If the control-F
is followed by a control-T, the code of the character after that is interpreted
as an absolute tab stop number. The corresponding entry on the list TABS, or
PRE SS T AB S TOP S if TABS is NIL, is taken as the number of mills from the left
margin at which printing on the current line will continue. PRESSTABSTOPS is
initially (800 0).

18.17

Performance Considerations

FONTWIDTHSFILES [Variable]
. Value is a file name or a list of file names to be searched for infonnation about
the widths of characters· in· particular fonts. This variable should be initialized in
the site greeting file.

(HARDCOPYW VVINDOWjBITMAPjREGION FILE HOST SCALEFACTOR ROTATION) [Function]
Creates bitmap hardcopy and optionally sends it to a printer. WINDOW JBITMAI' jREGION

can either be a WINDOW (open or c1osed}9 a BITMAP, or a REGION (interpreted as a
region of the screen). If NIL, the user is prompted for a region using GET R E Gl 0 N
(page 19.37) in a manner which "defaults" to the whole screen.

The logic of defaulting is complex and follows:

FILE9 if supplied, will be used as the name of the file for output. If HOST is NIL,
-- then if FILE was given, no printing is performed, else if FUlLPRESSPRINTER is

non-N I L, then output is sent to that printer, else output is sent to the value
of (PRINTINGHOST). To save an image on a file without printing it, perfonn
(HARDCOPYW IMAGE FILE).

(PRESSFIlEP FILE)

SCALEFACTOR is a reduction factor. Only SCALEFACTOR = 1 can be printed
on Dover and Penquin printers. SCALEFACTOR defaults according to the
size of the image, the size of a page, and the parameters HOST, FILE, and
FULLPRESSPRINTER in a complex but appropriate manner.

ROTATION, which can be one of 0, 90, 180, 270 (default 0) specifies how the bitmap
image shCl>uld be rotated on the printed page. This may not be supported by some
printers.

Note that "Hardcopy" in the background menu merely performs (HARDCOPYW),
which sends an image of region user selects to the default printer. Hardcopy in the
paint menu perfonns (HARDCOPYW WINDOW), which sends an image of window
to the default printer.

[Function]
Returns (FULLNAME FILE) if FILE is a Press file, NIL otherwise.

Hardcopy output may also be obtained by writing a file on the printer device L P T, e.g. (COP Y F I L E
'FOO '{lPT}). When a file on this device is closed, it is converted to Press or Interpress fonnat (if
necessary) and sent to the default printer. Thus, {LPT} acts like the device' LPT: in Interlisp-l0. Printer
devices can be defined for other network printer hosts with the following function:

(PRINTERDEVICE NAME) [Function]
Defines tlle network printer host NAME to be a printer device treated like L PT.
For example, if (PRINTERDEVICE 'YODA) is executed, then (COPYF ILE 'FOO
'{YODA}) will transmit FOO to the printer named YODA.

18.19 PERFORMANCE CONSIDERATIONS

Most Interlisp-D users will have experience using Interlisp-l0. Although Interlisp-D is completely upward

18.18

INTERLIsp-n SPECIFICS

compatible with Interlisp-lO, there are differences in the exact implementation which may influence the
... perfonnance of applications' programs. This chapter' contains a collection of notes which may help the

user improve the perfonnance of Interlisp-D programs.

18.19.1 Variable Bindings

A qlajor difference between Interlisp-lO and Interlisp-D is the method of accessing free variables.
Inter~p-lO uses what is called "shallow" binding. Interlisp-D uses what is called "deep" binding.

The binding of variables occurs when- a function or a PROG is entered. For example, if the function FOO
has the definition (LAMBDA (A B) BODY), the variables A and B are bound so that any reference to
A or B from BODY or any function called from BODY will refer to the arguments to the function F 00
and not to the value_ 9f A or B from a higher level function. All variable names (atoms) have.a top level
value cell which is used if the variable has not been bound in any function. In discussions of variable
access, it is useful to.9.istinquish between three types of variable access: local, special and global. Local
variable access is the use of a variable that is bound within the function from which it is used. Special
variable access is the use of a variable that is bound by another function. Global variable access is the
use of a variable that has not been bound in any function. We will often refer to a variable all of whose
accesses are local as a "local variable." Similarly, a variable all of whose accesses are global we call a
"global variable."

In a "deep" bound system, a variable is bound by saving on the stack the variable's name together with
a value cell which contains that variable's new value. When a variable is accessed, its value is found by
searching the stack for the most recent binding (occurrence) and retrieving the value stored there. If the
variable is not found on the stack, the variable's top level value cell is used.

In a "shallow" bound' system, a variable is bound by saving on the stack the variable name and the
variable's old value and putting the new value in the variable's top level value cell. When a variable is
accessed, its value is always found in its top level value cell.

The deep binding scheme has one disadvantage: the amount of cpu time required to fetch the value of a
variable depends on the stack distance between its use and its binding. The compiler can detetmine local
variable accesses and compiles them as fetches directly from the stack. Thus this computation cost only
arises in the use of variable not bound in the local frame ("free" variables). The process of finding the
value of a free variable is called free variable lookup.

In a shallow bound system, the amount of cpu time required to fetch the value of a variable is constant
regardless of w~ether the variable is local, special or global. The disadvantages of this scheme are that
the actual binding of a variable takes longer (thus slowing down function call), the cells that contain the
current in use values are spread throughout the space of all atom value cells (thus increasing the working
set size of functions) and context switching between processes requires unwinding and rewinding the stack
(thus effectively prohibiting the use of context switching for many applications).

A deep binding scheme was choosen for Interlisp-D because of the working set considerations and the
speed of context switching, which we expected to use heavily when processes were added. The free
variable lookup routine was microcoded, thus greatly reducing the search time. In the benchmarks we
performed, the largest percentage of free variable lookup tune was 20 percent of the total ellapsed time;
the nonnal time was betwe,en 5 and 10 percent.

One consequence of Interlisp-D's deep binding scheme is.that users may significantly improve perfotmance

18.19

Garbage Collection

by declaring global variables in certain situations. If a variable is declared global, the compiler will compile
-an access to that variable as a- retrieval-of its top level value, completely bypassing a stack search. This
should be done only for variables that are never bound in functions such as- global databases and flags.

Global variable declarations should be done using the GLOBALVARS file package command (page 11.25).
Its fonn is (GLOBALVARS VARl ••• VARN).

Another way of improving perfonnance is to declare variables as local within a function. Nonnally, all
variables bound within a function have their names put on the stack, and these names are sc~ed during
free variable lookup. If a variable is declared to be local within a function, its name is not put on the
stack~ so it is not scann~d during free variable lookup. which may i~crease the speed of lookups. The
compiler can also make some other optimizations if a variable is known to be local to a function.

A variable may be declared as local within a function by including the fonn {DEC LARE (LOCAL VARS
VAR l •.. VARN }-) following the argument list in the definition of the function. Note: local variable
declarations only effect the compilation of a function. Interpreted functions put all of their variable names
on the stack, regudless of any declarations.

18.19.2 Garbage Collection

As an Interlisp-D applications program runs, it creates data structures (allocated out of free storage space),
manipulates them, and then discards them. If there were no way of reclaiming this space, over time the
Interlisp-D memory (both the physical memory in the machine and the virtual memory stored on the
disk) would get filled up, and the computation would come to a halt. Actually, long before this would
happen the systenl would probably become intolerably slow, due to "data fragmentation", which occurs
when the data currently in use are spread over many virtual memory pages, so that most of the computer
time must be spent swapping disk pages into physical memory. This problem ("fragmentation") will
occur in any situation where the virtual memory is significantly larger than the real, physical memory. To
reduce swapping, it is desirable to keep the "working set" (the set of pages containing actively referenced
data) as small as possible.

It is possible to write programs that don't generate much "garbage" data, or which recycle data, but such
programs tend to be overly complicated and frought with pitfalls. Spending effort writing such programs
defeats the whole point of using a system with automatic storage allocation. An important part of any Lisp
implementation is the "garbage collector" which identifies discarded data and reclaims its space. There
are several well-known approaches to garbage collection. Interlisp-10 uses the traditional mark-and-sweep
garbage collection algorithm, which identifies "garbage" data by "walking" through and "marking" all
accessible data structures, and then sweeping through the data spaces to find all unmarked objects (l.e.,
not referenced by any other object). Although this method is guaranteed to reclaim all garbage. it takes
time proportional to the number of allocated objects. which may be very large. (Some allocated objects
will have been marked during the "mark" phase, and the remainder will be collected during the "sweep"
phase; so all will have to be tQuched in some way.) Also, the time that a mark-and-sweep garbage
collection takes is independent qf the amount of garbage collected; it is possible to sweep through the
whole virtual menlory, and only recover a small amount of garbage.

For interactive applications, it is! simply not acceptable to have long interruptions in a computation for
the purpose of garbage collection: Interlisp-D solves this problem by using a reference-counting garbage
collector. Wi$ this scheme, there is a table containing counts of how many times each object is referenced.
This table is incrementally updated as pointers are created and discarded, incurring a small overhead
distributed over the computation as a whole. (Note: References from the- stack are not counted, but are

18.20

INTERLISp-n SPECIFICS

handled separately at "sweep" time; thus the vast majority of data manipulations do not cause updates to
- this table.)-At- opportune moments, the garbage -collector scans this table, and reclaims all objects that are

no longer accessible (have a reference' count of zero). The time for scanning the· reference count tables
is very nearly constant (about 0.2 seconds on the Xerox 1100); the sweep time then is this small value,
plus time proportional to the amount of garbage that has to be collected (typically less than a second).
"Opportune" times occur when a certain number of cells have been allocated or when the system has been
waiting for the user to type something for long enough. The frequency of garbage collection is controlled
by the functions and variables described on page 18.2. For the best system perfonnance, it is desirable
to adjust these parameters for frequent, short garbage collections, which will not interrupt interactive
applications for very long, and which will have the added benefit of reducing data fragmentation, keeping
the working set small.

One problem with the Interlisp-D garbage collector is that not all garbage is guaranteed to be collected.
Circular data structures, which p.oint to themselves directly or indirectly, are never reclaimed, ~ince their
reference counts are always at least one. With time, this unreclaimable garbage may increase the working
set to unacceptable levels. Some users have worked with the same Interlisp-D virtual memory -for a very
long time, but it is' a good idea to occasionally save all of your functions in files, reinitialize Interlisp-D,
and rebuild your system. Many users end their working day by issuing a command to rebuild their
system and then leaving the machine to perform this task in their absence. If the system seems to be
spending too' much time swapping (an indication of fragmen~d working set), this procedure is definitely
recommended.

18.19.3 Datatypes

If an applications program uses data structures that are large (more than 8 fields) and that are used a
lot, there are several advantages to representing them as user DATATYPEs rather than as RECORDs. The
primary advantage is increased speed: accessing and setting the fields of a DATATYPE can be significantly
faster than walking through a RECORD list with repeated CARs and CDRs. Also, compiled code for
referencing user DATA TY P Es is usuatly smaller. Finally, by reducing the number of objects created (one
DATATYPE object against many RECORD list cells), this can reduce the expense of garbage collection.

For code that has been written using the record package's fetch, rep 1 ace, and c rea te operations,
changing from RECORDs to DATATYPEs only requires editing the record declaration (using EDITREC) to
replace declaration type RECORD by DATATYPE, and recompiling.

18.19.4 Incomplete Filenames «

There is a significant problem in Interlisp-D (and in Interlisp-l0) with respect to using incomplete
filenames. Whenever an I/O function is given an incomplete filename (one which doesn't have the
device/host, directory, name, extension, and version number all supplied), the system has to convert it to
a complete filename, by supplying defaults and searching through directories (which may be on remote file
servers). Currently, work is being done on speeding up the filename-compl~tion process, but in any case it
is much faster to convert an incomplete filename once, and use the complete filename from then on. For
example, suppose a file is opened with {SETQ FULLNAME (OPENFILE 'MYNAME 'INPUT». After

. doing this, (READC 'MYNAME) and (READC FULLNAME) would both work, but (READC 'MYNAME)
would take longer (sometimes orders of magnitude longer). This could seriously effect the performance
if a program which is doing many I/O operations.

18.21

Turning Off the Display

18.19.5 Turning Off the Display

Maintaining the video image on the screen uses about 30% of the cpu cycles (on the Xerox 1100), so
turning off the display will improve the speed of compute-bound tasks. When the display is off, the
screen will be white but any printing or displaying that the program. does will be visible when the display
is turned back on. Note: Breaks and PAGEFULLFN waiting tum the display on, but users should be aware
that it is possible to have the system waiting for a response to a question printed or a menu displayed' on
a non-visible part of the screen. 'The following functionS' are provided to tum the display off:

(SETDISPLAYHEIGHT NSCANLnvES) [Function]
Sets the display to only show the top NSCANLINES of the screen. If NSCANLINES

is T. resets the display to show the full screen. Returns the previous setting.

',\ (DISPLAYDOWN FORM NSCANLINES) [Function]
Evaluates' FORM (with the display set to only show the top NSCANLINES of the
screen), and returns the value of FORM. It restores the screen to its previous setting.
If NSCANLINES is not given, it defaults to O.

18.19.6 Gathering Statistics

Interlisp-D has an extended set of statistics-gathering toolso An extended version of the TIME function is
provided:

(TIMEALL TIMEFORM #TIMES TIME WHAT INTERPFLG -) [NLambda Function]
Largely subsumes the function TIME. Evaluates the' form TIMEFORM and prints
statistics on time spent in various categories (elapsed, keyboard wait, swapping
time, gc) and datatype allocation.

For more accurate measurement on small computations, #TIMES may be specified
(its default is 1) to cause TIMEFORM to be executed #TIMES number of times.
To improve the accuracy of timing open-coded operations in this case, T IMEALL
compiles a form to execute TIMEFORM # TIMES number of times (unless INTERPFLG

is non-N I L), and then times the execution of the compiled form. The compilation
is with optimizations off to avoid constant folding.

TIMEWHAT exists largely for compatibility with TIME; it restricts the statistics to
specific categories. It can be an atom or list of datatypes to monitor, and/or the
atom TIME to monitor time spent. Note that ordinarily, T IMEALL monitors all
time and datatype usage. so this argument is rarely needed.

The value of T IMEALL is the value of the last evaluation of TIMEFORM.

The Interlisp-D system has a facility for gathering very low-level statistics on function call and return.
It is conceptually like performing a BREAKDOWN on every function in the world. The system designers
regularly use this facility to determine where time is being spent in suspect computatiQns, suggesting
which parts of the system code deserve optimizing.

(DOSTATS FORM TITLE - - -) [Function]
Collects statistics of the evaluation of FORM and produces a listing of the results.
TITLE, if supplied, will appear in the neading of the listing.

18.22

INTERLIsp .. n SPECIFICS

- Performing a statistics run consists of three phases:

Gathering
The microcode is instructed to emit a statistics event for every function call and return that is
executed, and FORM is evaluated. These events are collected on a file for the next phase (the name
of the file is {DSK}x:xx.STATS, where xxx = (CAR FORM». Currently the file must reside on
{DSK}, so be sure you have a lot of space. Even seemingly short computations can generate large
numbers of function call/return events. If your disk fills up, Lisp may not recover gracefully (it
usually falls into SWAT).

Analysis
The statistics file is read in. For each event, a counter associated with the indicated function is
incremented by the amount of time spent in the function. The analysis also records who called
which functions, how often, and with how many arguments. This is by far the longest phase.

Summarizing
The results of the analysis are used to produce a listing that shows each of the functions called,
sorted by their contribution to the total time, and a cross .. reference of who called whom. The listing
is put on a file xxx. PRINTOUT on the connected directory and also shipped to your local printer.

Excerpts from a sample statistics printout are shown below, with commentary. The form is (RECLAIM),
which was fairly brief in this case.

Notes

The times shown in the· printout are for time spent in a single function; there is no cumulative time
measurement. The percentages should thus add up to 100%. If Foa calls FIE, the time spent inside FIE
is charged to FIE only, not to FOa as well.

The times recorded are of the right order of magnitude, and can be compared to each other, but should
not be taken literally, as they are inflated by the overhead of recording each call and return event. The
total elapsed time for the evaluation phase is much larger still, being dominated by the time to dump the
statistics to disk, but this part of the time is filtered out in the analysis.

Statistics from file: {DSK}RECLAIM.STATS;1

measuring: evaluation of
FORM = (RECLAIM)

Computation run on Dolphin serial #237 with 2304 pages of memory.
Versions: Ram=7401{17,1) Bcpl=17400{37,0) Lisp=106000{214,0)

(Internal version numbers of microcode, Lisp.run, Lisp.sysout) .

Unrecognized events: NIL (everything was okay)

Values from MiscStats (times in msecs):
SWAPWAITTIME 6137
PAGEFAULTS 58
GCTIME 27392

Not Windowing

18.23

Gathering Statistics

Filtering out \StackOverflow, \NWWInterrupt, \PageFault, \StatsOverflow
. (time for these functions measured separately)

Ignoring time for GETKEYS, \GETKEY, WAITFORINPUT, DISMISS, GATHERSTATS,
\GATHERSTATS, RAID

(time for these functions ignored completely)

Function timings: #ofCalls PerCa 11
total time spent in function (microseconds)

I
I
I
I

1746426
11044tO-

794862
461194-
457537

77437
52907
47308
45365

9218
7618
7428
6856

21597

4840173

percentage of total analyzed time spent in function
. I

I
. I
36.08%
22.81%
16.42%

9.52%
9.45%
1.59%
1.09%
0.97%
0.93%
0.19%
0.15%
0.15%
0.14%
0.44%

function name. Number of arguments in brackets
I number of calls recorded to this fn
I . I avg time per call (microseconds)

\GCMAPTABLE [1] 524 3332
\GCMAPSCAN [0] 1 1104420
\HTFIND [2] 1236 643
\FREELISTCELL [1] 2044 225
\GCRECLAIMCELL [1] 1533 298
\GCMAPUNSCAN [0] 1 77437
~ELEASINGVMEMPAGE [1] 3Q 1763
\GCSCANSTACK [0] 1 47308
FINDPTRSBUFFER [2] 30 1512
\ADDBASE [2] 31 297
CREATECELL [1] 18 423
\INSERTBLOCK [1] 31 239
\RECLAIMARRAYBLOCK [1] 31 221
for 18 entries not shown

(junctions contributing less than ./% are omitted)
Total for 31 entries 5511

Functi~n timings: Filtered out fns #ofCal1s Pe rCa 11

(times for functions whose contribution was omitted from the analysis above)

20225828
6900042
1635737

28761607

70.32% Subr.\StatsOverflow [0] 413
23.99% Subr.\PageFau1t [1] 58

5.68% Subr.\NWWInterrupt [0] 762
Total for 3 entries 1291

Function timings: Alphabetic #ofCa11s

48972 (stats overhead)
118966 (pagefault activity)

2146 (periodic service)

Pe rCa 11

(listing as above, but including all jUnctions, and sorted alphabetically)

Call Information:

(Alphabetic listing of jUnctions, with calls and callers infonnation)

18.24

INTERLISp-n SPECIFICS

(number 0/ calls in parentheses)

CLOCK

CLOCKO

Calls: MAKENUMBER (8), \SLOWIPlUS2 (6), CLOCK (2),
CREATECELL (2), CLOCKO (2), \SLOWIDIFFERENCE (2)

Callers: \DORECLAIM (2), CLOCK (2)

Callers: CLOCK (2)
CREATECELL

Calls: \HTFIND (1)
Callers: MAKENUMBER (16), CLOCK (2)

18.20 THE INTERLISp-n PROCESS MECHANISM

The Interlisp-D Process mechanism provides an environment in which multiple Lisp processes can run in
parallel. Each executes in its own stack space, but all share a global adress space. The current process
implementation is cooperative; i.e., process switches happen voluntarily, either when the process in control
has nothing to do or when it is in a convenient place to pause. There is no preemption or guaranteed
service, so you cannot run something demanding (e.g., Chat) at the same time as something that runs for
long periods without yielding control. Keyboard input and network operations block with great frequency,
so processes currently work best for highly interactive tasks (editing, making remote files).

In Interlisp-D, the process mechanism is already turned on, and is expected to stay on during nonnal
operations, as some system facilities (in particular, most network operations) require it. However, under
exceptional conditions, the following function can be used to tum the world off and on:

(PROCESSWORLD FLG) [Function]

(HARDRESET)

Starts up the process world, or if FLG = OF F, kills all processes and turns it
off. Nonnally does not return. The environment starts out with two processes: a
top-level EVALQT (the initial "tty" process) and the "background" process, which
runs the window mouse handler and other system background tasks.

Note: PROCESSWORLD is intended to be called at the top level of Interlisp,
not from within a program. It does not toggle some sort of switch; rather, it
constructs some new processes in a new part of the stack, leaving any callers of
PROCESSWORLD in a now inaccessible part of the stack. Calling (PROCESSWORLD
'OFF) is the only way the call to PROCESSWORLD ever returns.

[Function]
Resets the whole world, and rebuilds the stack from scratch. This is "harder" than
doing RESET to every process, because it also resets system internal processes (such
as the keyboard handler).

HARDRESET automatically turns the process world on (or resets it if it was on),
unless the variable AUTOPROCESSFLG is NIL.

18.25

Creating and Destroying Processes

18.20.1 Creating and Destroying Processes

(ADD. PROCESS FORM PROP1 VALUE1 .•• PROPN VALUEN) [NoSpread Function]
Creates a new process evaluating FORM, and returns its process handle. The
process's stack environment is the top level, i.e., the new process does not have
access to the environment in which ADO. PROCESS was called; all such information
must be passed as arguments in FORM. The process runs until FORM returns or
the process is explicitly deleted. An untrapped error within the process also deletes
the process (unless its RESTARTABLE property is T), in which case a message is
printed to that effect. .

The remaining arguments are alternately property names and values. Any
property/value pairs acceptable to PROCESSPROP may be given, but the following
two are directly relevant to ADp. PROCESS:

NAME Value should be a litatom; if not given, the process name is taken from
(CAR FORM). ADO. PROCESS may pack the name with a number to
make it unique. This name is solely for the convenience of manipulating
processes at Lisp typein; e.g., the name can be given as the PROC argument
to most process functions, and the name appears in menus of processes.
However, programs should normally only deal in process handles, both for
efficiency and to avoid the confusion that can result if two processes have
the same defining form.

SUSPEND
If the value is non-N I L, the new process is created but then immediately
suspended; Le., the process does not actually run until woken by a
WAKE. PROCESS (below).

(PROCESSPROP PROO PROP NEWVALUE) [NoSpread Function]
Used to g~t or set the values of certain properties of process PROO, in a manner
analogous to WI NDOWPROP. If NEWVALUE is supplied (including if it is NIL),
property PROP is given that value. In all cases, returns the old value of the
property. The following properties have special meaning for processes; all others
are uninterpreted:

NAME Value is a litatom used for identifying the process to the user.

RESTARTABLE
Value is a flag indicating the disposition of the process following errors or
hard resets:

NIL or NO
(the default) If an untrapped error (or control~E or control-D)
causes its form to be exited, the process is deleted. The process
is also deleted if a HARDRESET (or control-D from RA 10) occurs,
causing the entire Process world to be reinitialized.

T or YES
The process is automatically restarted on errors or HARDRESET.
This is· the normal setting for persistent "background" processes,

18.26

INTERLISp-n SPECIFICS

such as· the mouse . process, that can safely restart themselves on
errol'S.

HARDRESET
The process is deleted as· usual if an error causes its fonn to be
exited, but it is restarted on a HARDRESET. This ~etting is preferred
for persistent processes for which an error is an unusual condition,
one that might repeat itself if the process were simply blindly
restarted.

FORM Value is the Lisp form used to start the process (readonly).

AFTEREXIT
Value indicates the disposition of the process following a resumption of
Lisp after some exit (LOGOUT. SYSOUT, MAKESYS). Possible values are:

DELETE
Delete the process.

SUSPEND
Suspend the process; i.e., do not let it run until it is explicitly
woken.

<an event>

INFOHOOK

Cause the process to be suspended waiting for the event (page
lS.30).

Value is a function' or fonn used to provide infonnation about the process,
in conjunction with the process status window (page lS.36).

WINDOW
Value is a window associated with the process, the process's "main" window.
Used in conjunction with switching the tty process (page lS.33).

TTYENTRYFN
Value is a function that is applied to the process when the process is made
the tty process (page lS.33).

TTYEXITFN
Value is a function that is applied to the process when the process ceases
to be the tty process (page 18.33).

(THIS. PROCESS) [Function]
Returns the handle of the currently running process, or NIL if the Process world
is turned off.

(DEL. PROCESS PROC -) [Function]
Deletes process PROC. PROC may be a process handle (returned by ADD. PROCESS),
or its name. Note that if PROC is the currently running process, DEL. PROCESS
does not return!

lS.27

(PROCESS. RETURN

(PROCESS.RESULT

Process Control Constructs

VALUE) [Function]
Terminates the currently running process, causing it to "return" VALVE. Ther~ is an
implicit PROCESS. RETURN around the FORM argument given to ADD .-PROCESS,
so that normally a process can finish by simply returning; PROCESS e RETURN is
supplied for earlier termination.

PROCESS WAITFORRESULT) [Function]
If PROCSsS has terminatecL returns the value, if any, that it returned. This is either
the value of a PROCESS. RETURN or the value returned from the form given to
ADD. PROCESS. If the process was abortecL the value is NIL. If WAITFORRESVLT

is true, PROCESS. RESULT blocks until PROCESS finishes, if necessary; otherwise,
it returns, NIL immediately if PROCESS is still running. Note that PROCESS must
be the actual process handle returned from ADD. PROCESS, not a process name,
as the association between handle and name disappears when the process finishes
(and the process handle itself is then garbage collected if no one else has a pointer
to it).

(PROCESS. FINISHEDP PROCESS) [Function]
True if PROCESS has tenninated. The value returned is an indication of how it
fuiished: NORMAL or ERROR.

(PROCESSP FROC) [Function]
True if PROC is the handle of an active process, i.e' 9 one that has not yet finished.

(RELPROCESSP FROCHANDLE) [Function]
True if ~ROCHANDLE is the handle of a deleted process. This is analogous to
RELSTKP. It differs from PROCESS. FINISHEDP in that it never causes an error,
while PROCESS. FINISHEDP can cause an error if its PROC argument is not a
process at all.

(RESTART. PROCESS PROC) [Function]
Unwinds,PRoc to its top level and reevaluates its form. This is effectively a
DEL. PRqCESS followed by the original ADD. PROCESS.

(MAP. PROCESSES MAPFN) [Function]
Maps over all processes, calling MAPFN with three arguments: the process handle,
its name, and its fonn.

(F IND. PROCESS PROC ERRORFLG) [Function]
If FROC is a process handle or the name of a process, returns the process handle
for it, else NIL. If ERRORFLG is T, generates an error if FROC is not, and does
not name, a live process.

18.20.2 Process Control Constructs

(BLOC K MSECSWAIT TIMER) [Function]
Yields control to the next WalUng process, assuming any is ready to run. If
MSECSWAIT is specified. it is a number of milliseconds to wait before returning (in
which case BLOCK is very much like DISMISS), or T, meaning wait forever (until
explicitly woken). Alternatively, TIMER can be given as a millisecond timer (as

18.28

INTERLISP-n SPECIFICS

returned by- SETUPTIMER) of an absolute time at which to wake up. In any of
those cases, the process enters the waiting state until the time limit is up~ BLOC K

- -- -with no arguments leaves the process in therunnable state, i.e., it returns as soon
as every other runnable process of the same priority has had a chance.

(WAKE. PROCESS PROC STATUS) [Function]
Explicitly wakes process PROC, i.e., makes it runnable, and causes its call to BLOCK
(or other waiting function) to return STATUS. This is one simple way to notify a
process of some happening; however, note that if WAKE. PROCESS is applied to a
process more than once before the process actually gets its tum to run, it sees only
the latest STATUS.

(SUSPEND. PROCESS PROC) [Function]
Blocks process PROC indefinitely, i.e., PRoe will not run until it is woken by a
WAKE. PROCESS.

The· following three functions allow access to the stack context of some other process. They require a little
bit of care, and are computationally non-trivial, but they do provide a more powerful way of manipulating
another process than WAKE. PROCESS allows.

(PROCESS.EVALV PROC VAH) [Function]
Performs (EVALV VAR) in the stack context of PROC.

(PROCESS. EVAL PROC FORM WAITFORRESULT) [Function]
Evaluates FORM in the stack context of PROC. If WAITFORRESULT is true, blocks
until the evaluation returns a result, else allows the current process to run in parallel
with the evaluation. Any errors that occur will be in the context of PROC, so be
careful. In particular, note that

(PROCESS.EVAL PROC '(NLSETQ (FOO»)

and

(NLSETQ (PROCESS.EVAL PROC '(FOO»)

behave quite differently if FOO causes an error. And it is. quite permissible to
intentionally cause an error in proc by performing

(PROCESS.EVAL PROq '(ERROR!»

If errors are possible and WAITFORRESULT is true. the caller should almost certainly
make sure that FORM traps the errors; otherwise the caller could end up waiting
forever if FORM unwinds back into the pre-existing stack context of PROC.

(PROCESS. APPLY PROC FN ARGS WAITFORRESULT) [Function]

IS.20.3 Events

Performs (A P PLY FN -ARGS) in the stack context of PROC. Note same warnings
as with PROCESS. EVAL.

An -- '4event" is a synchronizing primitive used to coordinate related processes, typically producers and

18.29

Monitors

consumers. Consumer processes can "wait" on events, and producers "notify" events.

(CREATE. EVENT NAME) [Function]
Returns an instance of the EVE NT datatype, to be used as the event argument
to functions listed below. NAME is arbitrary, and is used for debugging or status
information.

(AWAIT. EVENT EVENT TIMEOUT TlMERP) [Function]
Suspends 'the current process until EVENT is notifie<L or until a timeout occurs. If
TIMEOUT is NIL, there is no timeout Otherwise, timeout is either a number of
milliseconds to wait, or, if TIMERP is T, a millisecond' timer set to expire at the
desired time using SE TUPT IME R (see page 14~11).

(NOTIFY.EVENT EVENT ONCEONLY) [Function]
If there are processes waiting for EVENT to occur, causes those processes to be
placed in the running state, with EVENT returned as the value from AWAIT. EVENT.
If ONCEONL Y is true, only runs the first process waiting for the event (this should
only be done if the programmer knows that there can only be one process capable
of responding to the event at once).

The meaning of an event is up to the programmer. In general, however, the notification of an event
is merely a hint that something of interest to the waiting process has happened; the process should still.
verify that the conceptual event actually occurred. That is, the process should be written so that it operates
co"ectly even if woken up before the timeout and in the absence of the notified event. In particular, the
completion of PROCESS. EVAL and related operations in effect wakes up the process in which they were
performed, since there is no sec;:ure way of knowing whether the event of interest occurred while the
process was busy performing the PROCESS. EVAL.

There is currently one class of system-defined events, used with the network code. Each Pup and NS
socket has associated with it an event that is notified when a packet arrives on the socket; the event can be
obtained by calling (PUPSOCKETEVENT PUPSOCKET) or (NSOCKETEVENT NSOCKET), respectively.

18.20.4 Monitors

It is often the case that cooperating processes perform operations on shared structures, and some mechanism
is needed to prevent more than one process from altering the structure at the same time. Some languages
have a construct called a monitor, a collection of functions that access a common structure with mutual
exclusion provided and enforced by the compiler via the use of monitor locks. Interlisp-D has taken this
implementation notion as the basis for a mutual exclusion capability suitable for a dynamically-seoped
environment.

A monitorlock is an object created by the user and associated with (e.g., stored in) some shared structure
that is to be protected from simultaneous access. To access the structure, a program waits for the lock
to be free, then takes ownership of the lock, accesses the stnicture, then releases the lock. The functions
and macros below are used:

(CREATE. MON ITORLOCK NAME -) [Function]
Returns an instance of the MONITORLOCK datatype, to be used as the lock argument
to functions listed below. NAME is arbitrary, and is used for debugging or status
information.

18.30

INTERLIsp-n SPEQFICS

(WITH .MONITOR LOCK • FORMS) [Macro]
Evaluates (PROGN • "FORMS) while owning LOCK. Value is the last of FORMS.
This construct is implemented so that the lock is released even if,the fonn is
exited via error (currently implemented with RESETlST). Ownership of a lock is
dynamically seoped: if the current process already owns the lock (e.g., if the caller
was itseif inside a WITH. MON ITOR for this lock), WITH. MON ITOR is a noop.

(WITH. FAST. MONITOR LOCK • FORMS) [Macro]
Like WITH. MON ITOR, but implemented without the RESETlST. User interrupts
(e.g., control-E) are inhibited during the evaluation of FORMS.

Programming restriction: the evaluation of FORMS must not error (the lock would
not be released). This construct is mainly useful when FORMS is a small, safe
computation that never errors and need never be interrupted.

(MONITOR.AWAIT.EVENT RELEASELOCK EVENT TIMEOUT TIMERP) [Function]
For use in blocking inside a monitor. PerfoIms (AWAIT. EVENT EVENT TIMEOUT

TIMERP), but releases RELEASELOCK first, and reobtains the lock (possibly waiting)
on wakeup.

Typical use for MONITOR .AWAIT • EVENT: A function wants to perfonn some operation on Foo, but only
if it is in a certain state. It has to obtain the lock on the structure to make sure that the state of the
structure does not change between the time it tests the state and perfoIms the operation. If the state turns
out to be bad, it then waits for some other process to make the state good, meanwhile releasing the' lock
so that. the, other process can alter the structure.

(WITH.MONITOR FooL~
(un til condition-ol-Foo

do (MON ITO R • AWA IT. EVE NT FooL~ EventFooChanged timeout»

operate-on-Foo)

It is sometimes convenient for a process to have WITH.MONITOR at its top level and then do all its
interesting waiting using MONITOR.AWAIT.EVENT. Not only is this often cleaner, but in the present
implementation in cases where the lock is frequently accessed, it saves the RESETlST overhead of
WITH. MONITOR.

Programming restriction: there must not be an ERRORSET between the enclosing WITH. MON ITOR and
the call to MONITOR. AWAIT. EVENT such that the ERRORSET would catch an ERROR! and continue
inside the monitor, for the lock would not have been reobtained. (The reason for this restriction is
that, although MON I TOR. AWAIT. EVENT won't itself error. the user could have caused an error with an
interrupt, or a PROCESS. EVAl in the context of the waiting process that produced an error.)

On rare occasions it may be useful to manipulate monitor locks directly. The following two functions are
used in the implementation of WITH. MON ITOR:

(OBTAIN .MONITORlOCK LOCK DONTWAIT UNWTNDSAVE) [Function]
Takes possession of LOCK, waiting if necessary until it is free, unless DONTWAIT is
true, in which case it returns NIL imnlediately. If UNWTNDSAVE is true, perfonns a
RESETSAVE to be unwound when the enclosing RESETlST exits. Returns LOCK

if LOCK was successfully obtained, T if the current process already owned LOCK.

18.31

Global Resources

(RELEASE. MONITORLOCK LOCK) [Function]
.. Releases LOCK if it is owned by the current process, and· wakes up the next process,

if any, waiting to·ob-tain the lock.

··When a process is deleted, any locks it owns are released.

18.20.5 Global Resources

The biggest source of problems in the multi-processing environment is the matter of global resources.
Two processes cannot both use the same global resource if there can be a process switch in the middle
of their use (currently this me~s calls to BLOCK, but ultimately with a preemptive scheduler means
anytime). Thus, user code should be wary of its own use of global variables,· if it ever makes sense for
the code to be run in more than one process at a time. "State" variables private to a process should
generally be bound in that process; structures that are shared among processes (or resources used privately
but expensive to duplicate per process) should be protected with monitor locks or some other form of
synchronization.

Aside from user code, however, there are many system global variables and resources. Most of these arise
historically from the single-process Interlisp-lO environment, and will eventually be changed in Interlisp-D
to behave appropriately in a multi-processing environment. Some have already been changed, and are
described below. Two other resources not generally thought of as global variables-the keyboard and the
mouse-are particularly idosyncratic, and are discussed in the next section.

The following resources, which are global in Interlisp-10, are allocated per process in Interlisp-D: primary
input and output (the streams ~ected by INPUT and OUTPUT), terminal input and output (the streams
designated by the name T), the ·primary read table and primary terminal table, and dribble files. Thus,
each process can print to its own primary output, print to the terminal, read from a different primary
input, all without interfering with another process's reading and printing.

Each process begins life with its: primary and terminal input/output streams set to a dummy stream. If
the process attempts input or output using any of those dummy streams, e.g., by calling (READ T),
or (P R I NT & T), a tty window is automatically created for the process, and that window becomes the
primary input/output and terminal input/output for the process. The default tty window is created at or
near the region specified in the variable DE FAUl TTTYREG ION.

A process can, of course, call TTYDISPlAYSTREAM explicitly to give itself a tty window of its own
choosing, in which case the automatic mechanism never comes into play. Calling TTYDISPlAYSTREAM
when a process has no tty window not only sets the terminal streams, but also sets the primary input and
output streams to be that window, assuming they were still set to the dummy streams.

(HASTTYWINDOWP PROC) [Function]
Returns T if the process PROC has a tty window; Nil otherwise. If PROC is Nil,
it defaults, to the current process.

Other system resources that are typically changed by RESETFORM, RESETlST, RESETVARS are all global
entities. In the multiprocessing· environment, these constructs are suspect, as there is no provision for
"undoing" them when a process switch occurs. For example, in the current release of Interlisp-D, it is
not possible to set the print radix to 8 inside only one process, as the print radix is a global entity.

Note that RESET FORM and similar expressions are perfectly valid in the process world. and even quite
useful, when they manipulate things strictly within one process. The process world is arranged so that

18.32

INTERLISP-D SPECIFICS

deleting a process also unwinds any RESETxxx expressions that were perfonned in the process and are
still waiting to be unwound, exactly as if a control-D had reset the process to the top. Additionally,
there is an implicit RESE-TLST at the top of each process, so that RESETSAVE can be used as a way of
providing "c1eanupu functions for when a process is deleted. For these, the value of RESETSTATE is NIL
if the process finished- nonnally, ERROR if it was aborted by an error, RESET if the process was explicitly
deleted, and HARDRESET if the process is being restarted (after a HARDRESET or a RESTART. PROCESS).

18.20.6 Typein and the TTY Process

There is one global resource, the keyboard, that is particularly problematic to share among processes.
Consider, for example, having two processes both performing (READ T). Since the keyboard input
routines block while there is no input, both processes would spend most of their time blocking, and it
would simply be a matter of chance which _process received each character of typein.

To resolve such dilemmas, the system designates a distinguished process, termed the tty process, that is
assumed to be the process that is involved in t~nninal interaction. Any typein from the keyboard goes to
that process. If a process other than the tty process requests keyboard input, it blocks until it becomes the
tty process. When the tty process is switched (in any of the ways described further below), any typeahead
that occurred before the switch is saved and associated with the current tty process. Thus, it is always the
case the keystrokes are sent to the process that is the tty process at the time of the keystrokes, regardless
of when that process actually gets around to reading them.

It is less immediately obvious how to handle keyboard interrupt characters, as their action is asynchronous
and not always tied to typein. Interrupt handling is described on page 1~.35.

18.20.6.1 Switching the TTY Process

Any process can make itself be the tty process by calling TTY. P ROC E SSe

(TTY. PROCESS PRoe) [Function]
Returns the handle of the current tty process. In addition, if PRoe is non-N I L,
makes it be the tty process. The special case of PRoe = T is interpreted to mean
the executive process; this is sometimes useful when a process wants to explicitly
give up being the tty process.

(TTY. PROCESSP PRoe) [Function]
True if PRoe is the tty process; PRoe defaults to the running process. Thus,
(TTY. PROCESSP) is true if the caller is the tty process.

(WAIT. FOR. TTY) [Function]
Efficiently waits until (TTY. PROCESSP) is true. WAIT. FOR. TTY is called
internally by the system functions that read from the tenninal; user code thus
need only call it in special cases.

In some cases, such as in functions invoked as a result of mouse action or a user's typed-in call, it is
reasonable for the function to invoke TTY. PROCESS itself so that it can take subsequent user type in.
In other cases, however, this is too undisciplined; it is desirable to let the user designate which process
typein should be directed to. This is most conveniently done by mouse action.

18.33

Switching the TIY Process

The system supports the -model that "to type to a process, you click in its window." To cooperate with
this model, any process desiring keyboard input should put its process, handle as the PROCESS property
of its window(s). To handle the common case, the function TTYDISPLAYSTREAM does this automatically
when the ttydisplaystream is switched to a new window. A process can own any number of windows;
clicking -in any of those windows gives the process the tty.

This mechanism suffices for most casual process writers. For example, if a process wants all its input/output
interaction to occur in a particular window that it has created. it should just make that window be its
tty window by calling TTYDISPLAYSTREAM. Thereafter, it can PRINT or READ to/from the T stream; if
the process is not the tty process at the time that it calls READ, it will block until the user clicks in the
window.

For those needing tighter control over the tty, the default behavior can be overridden or supplemented.
The remainder of this section describes the mechanisms involved.

There is a window property WINDOWENTRYFN that controls whether and how to switch the tty to the
process owning a window. The mouse handler, before invoking any normal BUTTONEVENTFN, specifically
notices the case of a button going down in a window that belongs to a process (Le., has a PROCESS
window property) that is not the tty process. In this case, it invokes the window's WINDOWENTRYFN of
one argument (WINDOW). WINDOWENTRYFN defaults to GIV~. TTY. PROCESS:

(GIVE. TTY. PROCESS WINDOW) [Function]
If WINDOW has a PROCESS property, performs {TTY. PROCESS (WINDOWPROP
WINDOW 'PROCESS» and then invokes WINDOw'S BUTTONEVENTFN function
(or RIGHTBUTTONFN if the right button is down).

There are some cases where clicking in a window does not always imply that the user wants to talk
to that window. For example, clicking in a text editor window with a shift key held down means to
"shift-select" some piece of text into the input buffer of the cu"ent tty process. The editor supports this
by supplying a WINDOWENTRYFN that performs GIVE. TTY. PROCESS if no shift key is down, but goes
into its shift-select mode, without changing the tty process, if a shift key is down. The shift-select mode
performs a BKSYSBUF of the selected text when me shift key is let up, the BKSYSBUF feeding input to
the current tty process.

Sometimes a process wants to be notified when it becomes the tty process, or stops being the tty process.
For example, Chat (page 20.18) turns off all keyboard intelTIlpt characters while it is the tty process,
so that they can be passed transparently to the remote host. To support this, there are two process
properties. TTYEXITFN and TTYENTRYFN. The actions taken by TTY. PROCESS when it switches the
tty to a new process are as follows: the former tty process's TTYEXITFN is called with two arguments
(OLDTTYPROCESS NEWTTYFRQCESS); the new process is made the tty process; finally, the new tty
process's TTYENTRYFN is called with two arguments (NEWTTYFROCESS OLDTTYFROCESS). Normally
the TTYENTRYFN and TTYEXITFN need only their first argument, but the othe'r process involved in
the switch is supplied for completeness. In the present system, most processes want to interpret the
keyboard in the same way, so it is considered the responsibility of any process that changes the keyboard
interpretation to restore it to the normal state by its TTYEXITFN.

A window is "owned" by the last process that anyone gave as the window's PROCESS property. Ordinarily
there is no conflict here, as processes tend to own disjoint sets of windows (though, of course, cooperating
processes can certainly try to confuse each other). The only likely problem arises with that most global
of windows, PROMPTWINDOW. Programs should not be tempted to read from PROMPTWINDOW. This
is not usually necessary anyway, as the first attempt to read from T in a process that has not set its
TTYDISPLAYSTREAM to its own window causes a tty window to be created for the process (see page

18.34

INTERLISP-D SPECIFICS

18.32}.

18.20.6.2 Handling of Interrupts

At the time that a keyboard interrupt character (page 9.17) is struck, any process could be running, and
'Some decision must be made as to which process to actually interrupt To the extent that keyboard
interrupts are related to typein, most interrupts are taken in the tty process; however, the following are
handled specially: .

RESET, ERROR
(normally control-D and control-E) These interrupts are taken in the mouse process, if the
mouse is not in .its idle state; otherwise they are taken in the tty process. Thus, control-E
can be used to abort so~e mouse-invoked window action, such as the Shape command.
As a consequence, note that if the mouse invokes some lengthy computation that the user
thinks of as Hbackgroun4", control-E still aborts it, even though that may not have been
what the user intended. Such lengthy computations, for various reasons, should generally
be performed by spawning a separate process to perform them.

The RESET interrupt in a process other than rthe executive is interpreted exactly as if an
error unwound the process to its top level: if the process was designated RESTARTABLE
= T, it is restarted; otherwise it is killed.

HE L P (Initially control-H) A menu' of processes is presented to the user, who is asked to select
which one the interrupt should occur in. The current tty process appears with a * next
to its name at the top of the menu. The menu also includes an entry "[Spawn Mouse]",
for the common case of needing a mouse because the mouse process is currently tied up
running someone's BUTTONEVENTFN; selecting this entry spawns a new mouse process,
and no break occurs. .

BREAK (Initially control-B) Performs the HELP intelrupt always in the tty process.

RUBOUT (Initially <deD) This interrupt clears typeahead in all processes.

RAID, STACK OVERFLOW, STORAGE FULL
These interrupts always occur in whatever process was running at the time the interrupt
struck. In the cases of STACK OVERFLOW and STORAGE FULL, this means that the
interrupt is more likely to strike in the offending process (especially if it is a "runaway"
process that is not blocking). Note, however, that this process is still not necessarily the
guilty party; it could be an innocent bystander that just happened to use up the last of a
resource prodigiously consumed by some other process.

18.20.7 Keeping the Mouse Alive

Since the window mouse handler runs in its own process, it is not available while a window's
BUTTONEVENTFN function (or any of the other window functions invoked by mouse action) is running.
This leads to two sorts of problems: (1) a long computation underneath a BUTTONEVENTFN deprives the
user of the mouse for other purposes, and (2) code that runs as a BUTTONEVENTFN cannot rely on other
BUTTONEVENT FNs running, which means that there some pieces of code that run differently from normal
when run under the mouse process. These problems are addressed by the following functions:

18.35

Debugging Processes

(SPAWN. MOUSE -) [Function]
. Spawns· another mouse process, allowing the. mouse to run even if it is currently
·"tied UpH under the current mouse process. This function is intended mainly to be ,
typed in at the Lisp executive when the user notices the mouse is busy.

(ALLOW. BUTTON. EVENTS) [Function]
Performs a (SPAWN. MOUSE) only when called underneath the mouse process. This
should be called (once, on entry) by any function that relies on BUTTONEVENTFNs
for compietion, if there is any possibility that the function will itself be invoked by
a mouse function.

It never hurts, at least logically, to call SPAWN. MOUSE or ALLOW. BUTTON. EVENTS needlessly, as the
mouse process arranges to quietly kill itself if it returns from the user's BUTTONEVENTFN and finds that
another mouse process· has sprurtg up in the meantime. (There is, of course, some computational expense.)

18.20.8 Debugging Processes

(PROCESS. STATUS. WINDOW WHERE) [Function]
Puts up a window that provides several debugging commands for manipulating
running processes. If the window is already up, PROCESS.STATUS.WINDOW
refreshes · it. If WHERE is a position, the window is placed in that position;
otherwi~e, the user is prompted for a position.

The window consists of two menus. The first is a menu. of all the processes at the
moment. Commands in the second menu operate on the process selected in the
first menu. The commands are:

BT, BTV,BTV·, BTV!
Performs a backtrace of the selected process. The first time, it prompts for
a window in which to display the backtrace.

WHO? Changes the selection to the tty process, i.e., the one currently in control
of the keyboard.

KBD+- Associates the keyboard with the selected process; i.e., makes the selected
process be the tty process.

INFO If the selected process has an INFOHOOK, calls it. The hook may be a
function, which is then applied to two arguments, the process and the
button (LEFT or MIDDLE) used to invoke INFO, or a form, which is
silllply EVAL'ed. The APPLY or EVAL happens in the context of the
selected process. using PROCESS. APPL Y or PROCESS. EVAL. The info
hook can be set using PROCESSPROP.

K ILL Deletes the selected process.

RESTART
Restarts the selected process.

WAKE Wakes the selected process. Prompts for a value to wake it with (see
WAKE. PROCESS).

18.36

INTERLISP-D SP.ECIFICS

SUSPEND
- -:Suspends the selected process; i.e., causes. it to block indefinitely (until

explicitly woken).

BREAK Enter a break under the selected process. This has the side effect of waking
. the process with the value returned from the break.

Currently, the process status window runs under the mouse process, like other menus, so if the mouse is
unavailable (e.g., a mouse function is performing an extensive computation), you may be unable to use
the process status window (you can try SPAWN. MOUSE, of course).

18.20.9 Non-Process Compatibility

This section describes some considerations for authors of programs that ran in the old single-process"
Interlisp-D environment, and now want to make sure they run properly in the· Multi-processing world.
The biggest problem to watch out for is code that runs underneath the mouse handler. Writers of mouse
handler functions should remember that in the process world the mouse handler runs in its own process,
and hence (a) you cannot depend on finding information on the stack (stash it in the window instead), and
(b) while your function is running, the mouse is not available (if you have any non-trivial computation
to do, spawn a process to do it, notify one of your existing processes to do it, or use PROCESS. EVAL to
run it under some other process).

The following functions are meaningful even if the process world is not on: BLOCK (invokes the system
background routine, which includes handling the mouse); TTY. PROCESS, THIS. PROCESS (both return
NIL); and TTY. PROCESSP (returns T, i.e., anyone is allowed to take tty input). In addition, the following
two functions exist in both worlds:

(EVAL. AS. PROCESS FORM) [Function]
Same as (ADD.PROCESS FORM 'RESTARTABLE 'NO), when processes are
running, EVAL when not This is highly recommended for mouse functions that
perfonn any non-trivial activity.

(EVAL. IN. TTY. PROCESS FORM WAITFORRESULT) [Function]
Same as (PROCESS.EVAL (TTY.PROCESS) FORM WAITFORRESULT), when
processes are running, EVA L when not.

Most of the process functions that do not take a process argument can be called even if processes aren't
running. ADD. PROCESS creates, but does not run, a new process (it runs when PROCESSWORLD is
called).

18.21 PROMPTFORWORD

PROMPTFORWORD is a function that reads in a sequence of characters, generally from the keyboard,
without involving READ-like syntax. The intent is. to mimic the prompted-read used by the Alto Exec
when asking for login names, passwords etc. Thus a user can supply a prompting string, as well as
a "candidate" string, which is printed and used if the user types only a word tenninator character (or
doesn't type anything before a given time limit). As soon as any characters are typed the "candidate"

18.37

PROMPTFORWORD

string is erased and the new -input takes its place.

PROMPTFORWORD accepts user type-in until one of the "word tenninator" characters is typed. Normally,
the word terminator characters are EOl, ESCAPE, IF, SPACE, or TAB. This list can be changed using the
TERMINCHAR.L8T argument to PROMPTFORWORD, for example if it-is desirable to allow the user to input
lines including spaces. '

PROMPTFORWORD also recognizes the following special characters:

Control-A, BS, or DEL
Any of these characters deletes the last character typed and appropriately erases it
from the ;echo stream if it is a displaystream. .

Control-W or Control-Q

Control-R

?

Control-V

Erases all the type-in so far.

Reprints $e accwnulated string.

Calls up a "help" facility. The action taken is defined by the GENERATE?LI8T.FN

argument: to PROMPT FORWORD (see below). Normally, this prints a list of possible
candidates.

"Quotes'" the next character: after typing Control-V, the next character typed
is added to the accumulated string, regardless of any special meaning it has.
Allows the user to include editing characters and word terminator characters in the
accumula~ed string.

(PROMPTFORWORD PROMPT.8TR CANDIDATE.8TR GENERATE?L18T.FN ECHO. CHANNEL

DONTECHOTYPEIN.FLG TIMELIMIT.sec8 TERMINCHAR8.L8T KEYBD.CHANNEL OLD8TRING)

[Function]

PROMPTFORWORD has a multiplicity of features, which are specified through a rather large number of
input arguments, but the default settings for them (Le., when they aren't given, or are given as Nil) is
such to minimize the number needed in the average case, and an attempt has been made to order the
more frequently non-defaulted arguments at the first of the argument list The default input and echo
are both to the terminal; the terminal table in effect during input allows most control characters to be
INDICATE'd.

PROMPTFORWORD returns Nil if a null string is typed; this would occur when no candidate is given and
only a terminator is typed, or w~en the candidate is erased and a terminator is typed with no other i~put
still un-erased. In all other casesl PROMPT FORWORD returns a string ..

PROMPTFORWORD uses a MONITORlOCK (see page 18.30) so that a second call cannot be started before
the first one finished; primarily' this is to limit confusion between multiple processes that might try to
access the keyboard at the same time, or print in the prompt window "at the same time"

PROMPTFORWORD is controlled through the following arguments:

PROMPT.8TH

If non-N I l, this is coerced to a string and used for prompting; an additional space is output
after this string.

CANDIDATE. 8TH

18.38

INTERLISP-O SPECIFICS

If non-N I L; this is coerced to a string and offered as initial contents of the input buffer.

GENERATE?LI8T.FN .
If non-N I L, this is either a string to be printed out for help, or a f\lnction to be applied to
PROMPT.8TH and CANDIDATE.8TR (after both have been coerced to strings), and which should
return a list of potential candidates. The help string or list of potential candidates will then be
printed on a separate line, the prompt will be restarted, and any type-in will be re-echoed.

Note: If GENERATE?LI8T.FN is a function, its value list will be "cached" so that it will be run
at most once per call to PROMPTFORWORD.

ECHO. CHANNEL
Coerced to an output stream; NIL defaultS to T, the "terminal output stream", normally
(TTYDISPLAYSTREAM). To achieve echoing to the "current output file", use (GETSTREAM
NIL 'OUT PUT). If echo is to a display stream, it will have a flashing caret showing where the
next input is to be echoed.

DONTECHOT¥PEnv.FLG
If T, there is no echoing of the input characters. If the value of DONTECHOTYPEIN.FLG is
a single-character atom or string, that character is echoed instead of the actual input. For
example, LOG IN prompt,s for a password with DONTECHOTYFEnv.FLG being ".".

TIMELIMIT.secs

If non-N I L, this is the number of seconds (as an integer) that the caller is is willing to wait with
no input from KEYBD.CHANNEL (see below); if timeout is reached, then CANDIDATE. WORD is
returned, regardless of any other type-in activity.

TERMnvCHAR.L8T

This is list of "word terminators"; it defaults to (CHARCODE (EOL ESCAPE LF SPACE
TAB) }.

KEYBD. CHANNEL

If non-N I L, this is coerced to a stream, and the input bytes are taken from that stream. NIL
defaults to the keyboard input stream. Note that this is not the same as T, which is a buffered
keyboard input stream, not suitable for use with PROMPTFORWORD.

OLDSTRnvG
If non-N I L, this must be a string, which will be destructively used to return the answer.

Examples:

{PROMPTFORWORD
"What is your FOO word?" 'Mumble
(FUNCTION {LAMBDA {} '(Grumble Bletch»)
PROMPTWINDOW NIL 30)

This first prompts the user for input by printing the first argument as a prompt into PROMPTWI NDOW;
then the proffered default answer, "Mumb 1 e", is printed out and the caret starts flashing just after it to
indicate that the upcoming input will be echoed there. If the user fails to complete a word within 30
seconds, then the result will be the string "Mumb 1 e " .

(FRESHLINE T)

18.39

PROMPTFORWORD

(LIST
(PROMPTFORWORD

(CONCAT "{" HOST "} Login:").
(USERNAME NIL NIL T»

(PROMPTFORWORD
" (password)" NIL NIL NIL '.»

This first prompts in whatever window is currently (TTYDISPLAYSTREAM), and then takes in a usemame;
the second call prompts with " (password)" and takes in another word (the password) without
proffering a candidate, echoing the typed-in characters as ".".

18.40

L
~(OEFINEQ (F (A) (IF A LT 2 THEN 1 ELSE A*(F A-1]
)
~(F 4]

~FILES?]
TTICER., .to be dumped.

plus the functions: F

NP

~
OfT N PP

S

AUX VP

.~ ~ V NP PP nt to say where the above go ? No
L
~(SETQ DRA~BETWEEN 0]
RAW8ETWEEN reset)

nLLO h~ leUR 50R Fr ':::Ifll~ ~ ~~P I /\
FOLLOW/CURSO~

NO i /\
PAO P NP

~(EDITTREE PARSE My uncle's storYiiDis"IiIl"1I1I1I1I1I1.317.3.4.6~

FOLLOW/CURSOR broken)
" SHOW PATHS FROM FOLLOW/CURSOR
L
" DOES FOLLOW/CURSOR CALL ORAWBETWEEN SOMEHOW

79:. DOES FOLLOW/CURSOR CALL ORAW8ETWeEN
NIL

: 88: ORAWBETWEEN
66

I
OfT DET N N

/~
NP N

81:,.. you to tears

ILlOIol/CURSOR

LNOOEID
LNODEPOSITION
NOOELA6EL6ITMAP
NOOEFROMPOS
NOOETOPOS
LNODEWIOTH
LNODEHEI8HT
TOLNOOES
FROIIILNOOES
LNODEFONT
NOOELA6EL
BOXNOOEFL8

(232 . 191)

r!h?
~ET &) (N &»

«PP & !e»
{FONTOESCRIPTOR}#1,115550
NP
NIL

I I '-iJ'-". I • \"U UC! Y'wItIIJr.,l'=,,",'

L

I,

I: I

NP

'N'F-' r •••• •••

. .,'
, ,

.............

~(OEFINEQ (F (A) (IF A LT 2 THEN 1 ELSE A*(F A-l]
)
~(F 4]

+FILES?]
TTICER., .to be dumped.

plus the functions: F
nt to say where the above go ? No
L
~(SETQ ORAWBETWEEN 0]
RAWBETWEEN reset)

OLLO W leUR ,OR fto!lme

~(EOITTREE (PARSE My uncle's storYiiilliiillilllll .. II .. II .. "
DOES FOLLOW/CURSOR CALL

DOES FOLLOW/CURSOR CALL {from {PHYLUM}<LISP>OEMO>LATTICER,j18
(SHOWNOOE

S

AUX

I
M

[LAMBOA (NO NOOELST OS TOSONL V) (. rrb "ZS-JAN-12 U:84"1

:, EO IT WHERE
OWLINK :

(0 display, a nOde and iU link',
II" TOSONLY IS NON-NIL, ORAWS ONLY THE TO LINKS.)

(SHOW/NODE/LABEL NO OS)

VP

(ORAW6ETWEEN (FROMPOS FRNO) (tor TONOOEIO In (TOLLINKS NO) do (SHOWUNK NO (NODEIDTONODE TONODEID NOOELST)

LLOIol/CURSOR

_NOOEID (NP (OET &) (N &»
~NODEPOSITION (232. 183)
~OOELA8EL8 I TMAP 1I,lIilmW'-iB++'
~OOEFROMPOS (232 . 175)
~OOETOPOS (232 . 191)
_NOOEWIOTH em ' _NOOEHEIGHT 1.
rOLNOOES ET &) (N &»

OS))
(OR TOSONLV (for FROMNOIO in (FROMLLINKS NO) do (SHOWLINK (NODEIDTONODE

NO OS])

D,fter
Before
Delete

Replace
SW'itch
()

() out I<,'~>,"'.""
Undo
Find

S'w'a.p
RQprint
DEdit

EditCom
Eva.l
Exit ~RO"'LNOOES ((PP & &»

_NOOEFONT {FONTOESCRIPTOR}#1,11~~
~OOELA8EL ~p
~OXNOOEFLG ~IL

CHAPTER 19

INTERLISP-D DISPLAY FACILITIES

This chapter describes the functions that support the display and the interaction with programs that use
the display. First, a brief introductory view of using the Intei"lisp-D display and how some of the other
Interlisp facilities have been extended to include display interfaces. The two screen images at left show
some of the display features as used by exploratory programming tools of the Interlisp-D environment
The screen is divided into several rectangular areas or windows, each of which provides a view onto some
data or process and which can be reshaped and repositioned at will by the user. When they overlap,
the occluded portion of the lower window-is automatically saved, so that it can be restored when the
overlapping window is removed. Since the display is bitmapped, each window can contain an arbitrary
mixture of text, lines, curves, and half-tone and solid area images.

The typescript window is in the upper left comer of the screen. It corresponds to the output channel
T.; In it, the user has defined a program F (factorial) and has then immediately run it, giving an input
of 4 and getting a result of ~4. Next, he queries the state lof his files using the file package function
FILES?, finding that one file has been changed (previously) and one function (F) has been defined but
not associated with any file yet. The user sets the value of DRAWBETWEEN to 0 in command 74, and the
system' notes that this is a change and adds DRAWBETWEEN to the set of "changed objects" that might
need to be saved.

Then, the ~ser runs his program EDITTREE, giving it a parse tree fro: the sentence "My uncle's story
about the war will bore you to tears". This opens up the big window on the right in which the sentence
diagram is drawn. U sing the mouse, the user starts to move the N P node on the left (which is inverted
to show that it is being moved). While the move is taking place, the user intemlpts the tree editor using
Control-H, which suspends the computation and causes three "break" windows to appear on top of the
lower edge of the typescript. These are part of the window break package. The smallest window shows the
dynamic state of the computation, which has been broken inside a subprogram called FOLLOW/CURSOR.
The "FOLLOW/CURSOR Frame" window to the right shows the value of the local variables bound by
FOLLOW/CURSOR. One of them has been selected (and so appears inverted) and in response, its value
has been shown in more detail in the window at the lower left of the screen. The user has marked one of
the component values as suspicious by drawing on it using the window command PA I NT. In addition, he
has asked to examine the 'contents of the BITMAP component, which used the function ED I TBM to open
a bitmap edit window to the right This shows an enlarged copy of the actual N P image that is being
moved by the tree editor.

Inside the largest break window, the user has asked some questions about FOLLOW/CURSOR, and queried
the value of DRAWBETWEEN (now 66). Using the BROWSER lispusers package, the Masterscope SHOW
PATHS command brought up the horizontal tree diagram on the left, which shows which subprograms
call each other, starting at FOLLOW/CURSOR. Each node in the call tree produced by the SHOW PATHS
command is an active element which will respond to the user's selecting it with the mouse. In the second
image, the user has selected the SHOW'~ODE subprogram, which has caused its code to be retrieved from
the file «LISP)DEMO)LATTICER) on the remote file server (PHYLUM) where it was stored and displayed
in the "Browser printout window" which has been opened at middle right. User programs and extended
Lisp fonns (like for and do) are highlighted by system generated font changes. By selecting nodes in the
SHOW PATHS window, the user could also have edited or obtained a summary description of any of the

19.1

POSITION

subprograms.

Instead, the user told Masterscope (in the break typescript window) to edit wherever anyone calls
the DRAWBETWEEN program (a line drawing function). This request causes the system to consult
its (dynamically maintained): database of information about user programs, wherein it finds that the
subprogram SHOWLINK callS DRAWBETWEEN. It therefore loads the code for SHOWLINK into an edit
window which appears under the "Browser print out window". The system then automatically finds and
underlines the first (and only) call on DRAWBETWEEN. On the previous line, DRAWBETWEEN is used as
a variable (the one the user set and interrogated earlier). The system, however, knows that this is not a
subprogram call, so it has b~n skipped. If the user makes any change to SHOWLINK in the editor, not
only will the change take effect immediately, but SHOWLINK will be marked as needing to be updated
in its file and the information about it in the program database will be updated. This, in tum, will cause
the SHOW PATHS window to be repainted, as its display may no longer be valid.

The Interlisp-D display facili~y has several layers. At the lowest level are routines which view the display
as a collection of bits and prevides primitives for moving blocks of bits around (B ITBL T). The concepts
important to this level are positions, regions and bitmaps. The next level is the display stream,. an
abstraction that implements 'clipping to rectangular areas of the screen, line and curve drawing, and
printing to the screen in dijferent fonts. The concepts important to this level are fonts and display
streams. On the input side, there is a low level interface for reading the display input devices, the cursor
location and the mouse buttoQs. The input and output come together at the next level, the window system
which allows areas of the scr¢en used by different programs to overlap by keeping track of information
covered and providing control primitives for mouse interaction. This chapter is organized according to
these levels.

19.1 POSITION

A position denotes a point iIi an X, Y coordinate system. A POS I T ION is an instance of a record with
fields XCOORD and YCOORD and is manipulated with the standard record package facilities. For example,
(create POSITION XCOORD +- 10 YCOORD +- 20) creates a position representing the point (10,20).

(POSITIONP x) [Function]
Returns x if x is a POS I T ION; NIL otherwise.

19.2 REGION

A Region denotes a rectangul~ area in a coordinate system. Regions are characterized by the coordinates
of their bottom left comer an4 their width and height. A REG ION is a record with fields LEFT. BOTTOM,
WIDTH, and HEIGHT. It can be manipulated with the standard record package facilities. There are access
functions for the REGION record that returns the TOP and RIGHT of the region.

The following functions are provided for manipulating regions:

(CREATEREGION LEFT BO'rTOM WIDTH HEIGHT) [Function]
Returns an instance of the REGION record which has LEFT, BOTTOM, WIDTH and

19.2

INTERLIsp-n DISPLAY FACILITIES

HEIGHT as respectively its LEFT, BOTTOM, WIDTH, and HE IGHT.

Example: (CREATEREGION 10 -20 100 200) will create a region that denotes
a rectangle whose width is 100, whose height is 200, and whose lower left comer
is (10,-20).

(INTERSECTREGIONS REGION1 REGION2 ••• REGIOND) [NoSpread Function]
Returns a region which is the intersection of a number of regions. Returns NIL
if the intersection is empty. If there are no regions given, it returns a very large
region.

(UNIONREGIONS REGION1 REGION2 ••• REGIOND) [NoSpread Function]
Returns a region which is the union of a number of regions, i.e. the smallest region
that contains all of them. Returns NIL if there are no regions given.

(REGIONSINTERSECTP REGIONl REGION2) [Function]
Returns T if REGIONl intersects REGION2. Returns NIL if they do not intersect.

(SUB REG IONP LARGEREGION SMALLREGION) [Function]
Returns T if SMALLREGION is a subregion (is equal to or entirely contained in)
LARGEREGION; otherwise returns NIL:

(EXTENDREGION REGION INCLUDEREGION) [Function]
Changes (destructively modifies) the region REGION so that it includes the region
INCLUDEREGION. It returns REGION.

(INSIDEP REGION x Y) [Function]

19.3 BITMAP

If x and y are numbers, it returns T if the point (x, Y) is inside of REGION. If x is
a POS I T ION, it returns T if x is inside of REGION. Otherwise, it returns NIL.

The display primitives manipulate graphical images in the fonn of bitmaps. A bitmap is a rectangular
array of "pixels," each of which is an integer representing the color of one point in the bitmap image.
A bitmap is created with a specific number of bits allocated for each pixel. Most bitmaps used for the
display screen use one bit per pixel, so that at most two colors can be represented. If a pixel is 0, the
corresponding location on the image is white. If a pixel is 1, its location is black. (This interpretation can
be changed with the function VIDEOCOLOR; see page 19.7.) Bitmaps with more than one bit per pixel
are used to represent color or grey scale images.

Bitmaps use a positive integer coordinate system with the lower left comer pixel at coordinate (0,0).
Bitmaps are represented as instances of the datatype BITMAP with fields BITMAPWIDTH. BITMAPHE IGHT,
BITMAPBITSPERPIXEL, BITMAPRASTERWIDTH, and BITMAPBASE. Only the width, height, and bits
per pixel fields are of interest to the user, and can be accessed with the following functions:

(B ITMAPWIDTH BITMAP) [Function]
Returns the width of BITMAP in pixels.

19.3

BITBLT

(BITMAPHEIGHT BITMAP) [Function]
Returns the height of BITMAP in pixels.

(BITSPERPIXEL BITMAP) [Function]
Returns the number of bits per pixel of BITMAP.

The functions used to manipulate bitmaps are:

{BITMAPCREATE WIDTH HEIGHT BITSPERPIXEL} [Function]
Creates and returns a new bitmap which is WIDTH pixels wide by HEIGHT pixels
high, with BITSPERPIXEL pits per pixel. If BITSPERPIXEL is NIL, the default is 1.

(B ITMAPB IT BITMAP x Y NEWVALUE) [Function]
If NEWVALUE is between 0 and the maximum value for a pixel in BITMAP~ the
pixel (x, Y) is .changed to NEWVALUE and the old value is returned. If NEWVALUE
is NIL, BITMAP is not changed but the value of the pixel is returned. If NEWVALUE
is anything else, an error is generated. If (x, y) is outside the limits of BITMAP, 0
is returned and no pixels are changed. BITMAP can also be a window.

(B ITMAPCOPY BITMAP) [Function]
Returns a new bitmap which is a copy rof BITMAP (same dimensions and contents).

(EXPANDBITMAP BITMAP WIDTHFACTOR HEIGHTFACTOR) [Function]
Returns a new bitmap that is WIDTHFACTOR times as wide as BITMAP and
HEIGHTFACTOR times as high. Each pixel of BITMAP is copied into a WlDTHFACTOR
times : HEIGHTFACTOR block of pixels. If NIL, WID'rHFACTOR defaults to 4,
HEIGHTFACTOR to 1. .

There are two distinguished bitmaps that are read by the hardware to become visible as the screen and
the cursor. The screen is a bJtmap SCREENWIDTH (=1024) wide by SCREENHEIGHT (=808) high. The
cursor is a bitmap CURSORWIDTH (= 16) wide by CURSORHE IGHT (= 16) high. They are accessed by:

(SCREENBITMAP) [Function]
Returns the screen bitmap.

(CURSORBITMAP) [Function]
Returns the cursor bitmap.

Note: The cursor bitmap can be changed with the function CURSOR (page 19.16).

19.4 BITBLT

B I TB L T is the primitive function for moving bits from one bitmap to another. It is similar to the function
RASTEROP that is used in other systems.

(BIT B L T SOURCEBITMAP S:OURCELEFT SOURCEBOTTOM DESTINATIONBITMAP DESTINATIONLEFT
DESTINATIONBOTTOM WIDTH HEIGHT SOURCETYPE OPERATION TEXTURE CLIPPINGREGION)

[Function]

WIDTH and HEIGHT define a pair of rectangles, one in each of the SOURCEBITMAP and DESTINATIONBITMAP

19.4

INTERLISP-D DISPLAY FACILITIES

whose le~ bottom comers are a~ respectively, (SOURCELEFT, SOURCEBOTTOM) and (DESTINATIONLEFT,
DESTINATIONBOTTOM). If these rectangles overlap the boundaries of either bitmap they are both reduced
in size (without translation) so that they fit within their respective boundaries. If CLIPPINGREGION is
non-NIL it should be a REGION and is interpreted as a clipping region within DESTINATIONBITMAP;
clipping to this region may further reduce the defining rectangles. These (possibly reduced) rectangles
define the source and destination rectangles for' B I TB LT. SOURCEBITMAP and DESTINATIONBITMAP can
also be display streams or windows, in which case their associated bitmaps are used.

The mode of transferring bits is defined by SOURCETYPE and OPERATION. SOURCETYPE and OPERATION
specify boolean functions that are used to detennine, respectively, the method of combining SOURCEBITMAP
bits with the TEXTURE and the operation between these resultant bits and DESTINATIONBITMAP. TEXTURE
is a gray pattern. as described on page 19.6. (Note: The alignment of the texture pattern with BITBL T is
such that the origin of the destination bitmap is at an intersection of the "tiles.")

SOURCET'YPE specifies how to combine the bits from SOURCEBITMAP with the bits from TEXTURE (a
background pattern) to produce a "Source". This is designed to allow characters and figures to be placed
on a background.

SOURCETYPE

INPUT

INVERT

TEXTURE

Source

SOURCEBITMAP

(NOT SOURCEBITMAP)

TEXTURE

For the INPUT and INVERT case, the TEXTURE argument to BITBL T is ignored. For the TEXTURE
case, the SOURCE13ITMAP, SOURCELEFT, and SOURCEBOTTOM arguments are ignored.

OPERATION specifies how this source is combined with the bits in DESTINATIONBITMAP and stored back
into DESTINATIONBITMAP.

OPERATION

REPLACE

PAINT

INVERT

ERASE

DESTINATIONBITMAP becomes

Source

(OR DESTINATIONBITMAP Source)

(XOR DESTINATIONBITMAP Source)

(AND DESTINATIONBITMAP (NOT Source»

SOURCELEFT, SOURCEBOTTOM, DESTINATIONLEFT, and DESTINATIONBOTTOM default to O. WIDTH and
HEIGHT default to the width and height of the SOURCEBITMAP. TEXTURE defaults to white. SOURCETYPE
defaults to INPUT. OPERATION defaults to REPLACE. If CLIPPINGREGION is not provided, no additional
clipping is done. BIT B L T returns T if any bits were moved; NIL otherwise.

Note: BITBLT and BITMAPBIT accept windows and display streams as their bitmap arguments. In
these cases, the remaining arguments are interpreted as values in the coordinate system of the window or
display stream and the operation of the functions are translated and clipped accordingly. If a window or
display stream is used as the destination to B I TB L T, its clipping region limits the operation involved.

19.5

TEXTURE

19.5 TEXTURE

A Texture denotes a pattern of gray which can be used by B ITBL T to (conceptually) tessellate the plane
to form an infinite sheet of gfay. It is currently a 4 by 4 pattern. Textures are created mteractively using
the function EDITSHADE or from bitmaps using the following function.

(CREATETEXTUREFROMBIT~AP BITMAP) [Function]
Retu~s a texture object that will produce the texture of BITMAP. If BITMAP is too
large, its lower left portion is used. If BITMAP is too small, it is repeated to fill out
the teXiture.

(TEXTUREP OBJECT) [Function]
Returns OBJECT if it is a texture, i.e. a legal texture argument to B I TB LT.

The common textures white and black are available as system constants WHITESHADE and BLACKSHADE. The
global variable GRAYSHADE is u~ed by many system facilities as a background gray shade and can be set by
the user. The original background shade of the window system is kept in WINDOWBACKGROUNDSHADE. The
background shade can be changed by the following function:

(CHANGEBACKGROUND SHADE) [Function]
Changes the background shade of the window system. SHADE detennines the
pattern of the background. If SHADE is a texture, then the background is simply
painted with it. If SHADE is a BITMAP, the background is tesselated (tiled) with it
to cover the screen. If SHADE is T, it changes to the original shade, the value of
WINDOWBACKGROUNDSHADE. -It returns the previous value of the background.

19.6 SA VING BITMAPS

Bitmaps can be saved on files with the VARS file package command (page 11.22). The following two
functions translate bitmaps into and out of a representation which may be used to transfer bitmaps
between Interlisp and other computer systems' representations.

(READBITMAP) [Function]
Creates a bitmap by reading an expression (written by PR I NTB ITMAP) from the
primary input channel.

(PRINTBITMAP BITMAP) [Function]
Prints the bitmap BITMAP on the primary output channel in a format that can be
read back in by READBITMAP.

19.7 SCREEN OPERATION

The following functions control the display screen.

19.6

INTERLISP-D DISPLAY FACILITIES

(VIDEOCOLOR BLACKFLG) [NoSpread Function]
Sets the interpretation of the bits in the screen bitmap. If BLACKFLG is NIL,
a 0 bit will be displayed as white, otherwise a 0 bit will be displayed as black.
VIDEOCOLOR returns the previous setting. IfBLACKFLG is not given, VIDEOCOLOR
will return the current setting without changing anything.

Note: This function only works on the Xerox 1100 and Xerox 1108.

(VIDEORATE TYPE) [Function]
Sets the rate at which the screen is refreshed. TYPE is one of NORMAL or TAPE. If
TYPE is TAPE, the screen will be refreshed at the same rate as TV (60 cycles per
second). This makes the picture look better when video taping the screen. Note:
Changing the rate may change the dimensions of the display on the picture tube.

Several functions are provided fef turning off the .display (partially or completely). See page 18.22.

19.8 CHARACTERS AND FONTS

Fonts control the way characters look when printed on the screen or a graphics printer. Fonts are defined
by a distinctive style or F AM I L Y (such as Gacha or TimesRoman), a S I Z E (such as 10 points), and F AC E
(such as bold or italic). Fonts also have a ROTATION that indicates ·the orientation of characters on the
screen or page. A nonnal horizontal font (also called a portrait font) has a rotation of 0; the rotation of
a vertical (landscape) font is 90 degrees. While the specification allows any combination, in practice the
user will find that only certain combinations of families, sizes, faces, and rotations are available.

In specifying a font to the functions described below, a F AM I L Y is represented by a literal atom, a S I Z E
by a positive integer, and a FACE by a three-element list of the fonn (WEIGHT SLOPE EXPANSION).
WEIGHT, which indicates the thickness of the characters, can be BOLD, MEDIUM, or LIGHT; SLOPE can
be ITALIC or REGULAR; and EXPANSION can be REGULAR, COMPRESSED, or EXPANDED, indicating
how spread out the characters are. For convenience, faces may also be specified by three-character atoms,
where each character is the first letter of the corresponding field. Thus, M R R is a synonym for (M ED I UM
REGULAR REGULAR). In addition, certain common face combinations may be indicated by special literal
atoms: .

STANDARD = (MEDIUM REGULAR REGULAR) = MRR

ITALIC = (MEDIUM ITALIC REGULAR) = MIR

BOLD = (BOLD REGULAR REGULAR) = BRR

BOLDITALIC = (BOLD ITALIC REGULAR) = BIR

A font also has the properties ASCENT, DESCENT, and HE IGHT (= ASCENT + DESCENT), and, for
each character, a width and bit pattern. The ASCENT is the maximum height of any character in the
font from its base line (the printing position). The DESCENT is the maximum extent of any character
below the base line, such as the lower part of a "p." Therefore the top line of a character will be at
Base+ASCENT-l, while the bottom line will be at Base-DESCENT. The width of each character specifies
how a stream's position will change when the character is printed. This may have both an X and a Y
component (e.g., for landscape fonts), and it varies from character to character in variable pitch fonts.

19.7

Characters and FQnts

The information about a particular font is represented in a font descriptor. The following functions
manipulate font descriptors:

(FONTCREATE FAMlLY SIZ~ FACE .ROTATION DEVICE NOERRORFLG) [Function]

(FONTP x)

Returns a font descriptor for the specified font SIZE is an integer indicating
the sue of the font in points. FACE specifies the face characteristics in one of

. the formats listed above; if FACE is NIL, STANDARD is used. ROTATION, which
t specifies the orientation of the font, is 0 (or NIL) for a portrait font and 90 for a

landscape font DEVICE indicates the output device for the font For Interlisp-D,
the possible values for DEVICE are DISPLAY for the display screen and PRESS for
Press printers. DEVICE defaults to DISPLAY.

For display fonts, FONTCREATE looks for a STRIKE file with the appropriate name
(such as TIMESROMAN8BI. STRIKE for a TIMESROMAN 8 BOLDITAlIC font),
searching ~ough directories on the list FONTDIRECTORIES. If the file is found,
it is r~ad into a font descriptor. If the file is not found, FONTCREATE looks for
fonts With less face information (in this example, TIMESROMAN8I. STRIKE) and
fakes the remaining faces (such as by doubling the bit pattern of each character
or slanting it). If no appropriately sized font is found, the action of the function
is determined by NOERRORFLG. If N,OERRORFLG is NIL, it generates a FILE
NOT FOUND error with the name of the most specific file tried (in the example
TIMESROMAN8BI .STRIKE); otherwise, FONTCREATE returns NIL.

For Press fonts, FONTCREATE accesses the widths information for the font from a
font-dictionary file whose name is in the list FONTWIDTHSF ILES (usually initialized
in the site-greeting file to contain at least {DSK}FONTS. WIDTHS). That dictionary
must contain information for the face as specified; there is no acceptable faking
algorithm for hard-copy fonts. The width and height information for press fonts is
expressed in micas (= 10 microns = 1/2540 inch), not in screen-point units.

The FAMlLY argument to FONTCREATE may also be a list, in which case it is
interpreted as a FAMlLY-SIZE-FACE-ROTATION quadruple. Thus, (FONTCREATE
'(GACHA 10 BOLD» is equivalent to (FONTCREATE 'GACHA 10 'BOLD).
FAMIL Y may also be a font descrip~or, in which case that descriptor is simply
returned.

[Function]
Returns x if x is a font descriptor; NIL otherwise.

The following functions take· a font as one argument This ar~ment must either be a particular font
descriptor or coerceable to a font descriptor. A display stream is coerced to its current font, a window is
coerced to the current font of its display stream, and anything else is coerced by applying F ON T C REA T E
to it

(FONTPROP FONT PROP) [Function]
Return~ the value of the PROP property of font FONT. PROP may be one
of FAMILY, SIZE, FACE, WEIGHT, SLOPE, EXPANSION, DEVICE, ASCENT,
DESCE'NT, HE IGHT, or ROT AT ION.

(FONTCOPY OLDFONT PROPl VALl PROP2 VAL2 ...) [NoSpread Function]
Returns a font descriptor that is a copy of the font OLDFONT, but which differs from
OLDFdNT in that OLDFONTS properties are replaced by the specified properties

19.8

INTERLISP-D DISPLAY FAOLITIES

and values. Thus, (FONTCOPY FONT 'WE IGHT 'BOLD 'DEVICE 'PRESS)
will return a bold press font with all other properties the same as those of
FONT. FONTCOPY accepts all the properties that FONT PROP interrogates except for
ASCENT, DESCENT, .and HEIGHT. If the first property is a list. it is taken to be
the PROP1 VALl PROP2 VAL2 ••• sequence. Thus, {FONTCOPY FONT '(WE IGHT
BOLD DEVICE PRESS» is equivalent to the example above.

(CHARWIDTH CHARCODE FONT) [Function]
CHARCODE is an integer that represents a valid character (as returned by CHCON1).
Returns the amount by which a stream's X -position will be incremented when the
character is printed.

(CHARWIDTHY CHARCODE FONT) [Function]
Like CHARWIDTH, but returns the Y component of the character's width, the
amount- by which a stream's Y ~position will be incremented when the character is
printed. This will be zero for most characters in nonnal portrait fonts, but may be
non-zero for landscape fonts or for vector-drawing fonts.

(STRINGWIDTH STH FONT PHIN2FLG RDTBL) [Function]
Returns the amount by which a stream's X -position will be incremented if the
printname for the Interlisp-D object 5TH is printed in font FONT. If FONT is a
display stream, its font is used. If PHIN2FLG is non-NIL, the PRIN2-pname of
STH with respect to the readtable RDTBL is used.

(STRINGREGION STH WINDOW PRIN2FLG RDTBL) [Function]
Returns the region occupied by STH if it were printed at the current location in
WINDOW. This is useful for detennining where text is in a window to allow the user
to select it The arguments PRIN2FLG and RDTBL are passed to STRINGWIDTH.

It is sometimes useful to simulate an unavailable font or to use a font with characteristics different from
the interpretations provided by the system. The following function allows the user to tell the system what
font descriptor to use for given characteristics.

(SETFONTDESCRIPTOR FAMILY SIZE FACE ROTATION DEVICE FONT) [Function]
Indicates to the system that FONT is the font with the FAMILY SIZE FACE ROTATION

DEVICE characteristics. If FONT is NIL, the font associated with these characteristics
is cleared and will be recreated the next time it is needed. As with FONTPROP and
FONTCOPY, FONT is coerced to a font descriptor if it is not one already.

(DEFAU~ TFONT DEVICE FONT -) [Function]
Returns the font that would be used as the default (if NIL were specified as a
font argument) for device DEVICE. If FONT is a font descriptor. it is set to be the
default font for DEVICE.

The following functions allow the user to access and change the bitmaps for individual characters in a
display font

(GETCHARBITMAP CHAHCODE FONT) [Function]
Returns a bitmap containing a copy of the image of the character CHARCODE in
the font FONT.

19.9

Display Streams

(PUTCHARBITMAP CHARCODE FONT NEWCHARBITMAP) [Function]
Changes the bitmap image of the character CHARCODE in the font FONT to the
bitmap NEWCHARBITMAP. Currently, NEWCHARBITMAP must be the same width
and height as the current image for CHARCODE in the font FONT.

Users can interactively edit characters using the EDITCHAR function (page 20.10).

19.9 DISPLA Y STREAMS

Streams are used as the basis for all I/O operations. Files are implemented as streams that can support
character printing and reading operations, and file pointer manipulation. Display streams are a type of
stream that also provides an interface for translation. clipping, and figure generation on bitmaps. All of
the operations that can applied to streams can be applied to display streams. For example, a display
stream can be passed as the argument to P R I NT, to print something on the bitmap of a display stream. In
addition, special functions are provided to draw lines and curves and perform other graphical operations
on display streams. Calling these functions on a stream that is not a display stream will generate an error.

r

Windows are closely related to display streams and can be thought of as a type of display stream. (In
the near future, windows will be a type of display stream.) All-of the functions that operate on display
streams also accept windows.

Display streams can be created with the following function:

(DSPCREATE DESTINATION) [Function]
Returns a display stream, with initial settings as indicated below. If DESTINATION
is specified, it is used as the destination bitmap, otherwise the screen bitmap is
used.

Each window has an associated display stream. To get the window of a particular display stream, use:

(WFROMDS DISPLAYSTREAM) [Function]
Returns the window associated with DISPLAYSTREAM, creating a window if one
does not exist. Returns NIL if the destination of DISPLAYSTREAM is not a screen
bitmap that supports a window system.

19.9.1 Manipulating Display Streams

The following functions manipulate the fields of a display stream (they may also be given a window, in
which case the associated display stream is used). These functions return the old value (the one being
replaced). A value of NIL for the new value will return the current setting without changing it. These
functions do not change any of the bits in the display stream's destination bitmap; just the effect of future
operations done through the display stream.

Waming: The window system maintains the Destination, XOffset, YOffset, and ClippingRegion fields
of each window's display stream, adjusting them during window operations. Users should be very
careful about changing these fields in a window's display stream (with DSPDESTINATION, DSPXOFFSET,
OSPYOFFSET, or DSPCLIPPINGREGION).

19.10

INTERLISP"D DISPLAY FACILITIES

(OSPOESTINATION DESTINATION DISPLAYSTREAM) [Function]
Destination: The bitmap that the display stream modifies. This can be either the
screen bitmap, or an auxilliary bitInap in order to construct figures, possibly save
them, and then display them in a single operation. Initially the screen bitmap.

(OSPXOFFSET XOFFSET DISPLAYSTREAM) [Function]
(OS PY OF F SE T YOFFSET DISPLAY STREAM) [Function]

XOffset: The x origin of the display stream's coordinate system in the destination
bitmap's coordinate system. Initially 0 (no X -coordinate translation).

YOffset: The Y origin of the display stream's coordinate system in the destination
bitmap's coordinate system. Initially 0 (no Y -coordinate translation).

Display streams have their own coordinate system. Having the coordinate system
local to the display stream allows objects to be displayed at different places by
translating the display stream's coordinate system relative to its destination bitmap.

(OSPCLIPPINGREGION REGION DISPLAYSTREAM) [Function]
ClippingRegion: A region that limits the extent of characters printed' and lines
drawn (in the display stream's coordinate system). Initially set so that no clipping
occurs.

(OSPXPOSITION XPOSITION DISPLAYSTREAM)
(OSPYPOSIT ION YPOSITION DISPLAYSTREAM)

XPosition: The current X position. Initially O.

YPosition: The current Y position. Initially O.

[Function]
[Function]

OSPXPOSITION and OSPYPOSITION specify the "current position" of the display
stream, the position (in the display stream's coordinate system) where the next
printing operation will start from. The functions which print characters or draw
on a display stream update these values appropriately.

(OSPTEXTURE TEXTURE DISPLAYSTREAM) [Function]
Texture: A texture that is the background pattern used for the display stream.
Initially the value of WHITESHAOE.

(OSPFONT FONT DISPLAYSTREAM) [Function]
Font: A Font Descriptor that specifies the font used when printing characters to
the display stream. Initially Gacha 10.

Note: OSPFONT determines its new font descriptor from FONT by the same coercion
rules that FONTPROP and FONTCOPY use, with one additional possibility: If FONT
is a list of the form (PROP1 VALl PROP2 VAL2 ...) where PROP1 is acceptable
as a font-property to FONTCOPY, then the new font is obtained by (FONTCOPY
(OSPFONT NIL OISPLAYSTREAM) PROP1 VALl PROP2 VAL 2 ...).

(OSPLEFTMARGIN XP9SITION DISPLAYSTREAM) [Function]
teftMargin: An integer that is the X position after an end-of-line (in the display
stream's coordinate system) - initially O.

(OSPRIGHTMARGIN XPOSITION DISPLAYSTREAM) [Function]
RightMargin: An integer that is the maximum X position that characters will

19.11

Drawing on Windows and Display Streams

be printed at (in the display stream's coordinate system) - initially the value of
SCREENWIDTH. This detennines when an end of line is automatically inserted by
the printing functions.

The line length of a window or display stream (as returned by lINELENGTH, page 6.8) is computed by
dividing the distance between die left and right margins by the width of an uppercase "A" in the current
font The line length is changed whenever the Fon~ LeftMargin, or RightMargin are changed.

(DSPSOURCETYPE SOURCETYPE DlSPLAYSTREAM) [Function}
Sourcerfype: The B ITBl T sourcetype used when printing characters to the display
stream. Must be either INPUT or INVERT. Initially INPUT.

(DSPOPERATION OPERATION DISPLAYSTREAM) [Function}
Operation: The default BITBl T operation (REPLACE, PAINT, INVERT, or ERASE)

- used when printing or drawing on the display stream. Initially REPLACE.

(DSPLINEFEED DELTAY DI$PLAYSTREAM) [Function]
LineFeed: An integer that specifies the Y increment for each linefeed, nonnally
negative. Initially minus the height of the initial font (Gacha 10).

(DSPSCROLl SWITCHSETTING DISPLAYSTREAM) [Function]
Scroll: A flag that detennines the scrolling behavior of the display stream; either
ON or 0FF. If ON, the bits in the display streams's destination are moved after any
linefeed that moves the current position out of the destination bitmap. Any bits
moved out of the current clipping region are lost. Does not adjust the XOffse~
YOffse~ or ClippingRegion fields. Initially OF F. (Note: if SWITCH SETTING is NIL,
the Scroll field is not changed, and the previous value is returned.)

19.9.2 Drawing on Windows and Display Streams

(DSPFILL REGION TEXTURE OPERATION DISPLAYSTREAM) [Function]
Fills REGION of the destination bitmap (within the clipping region) with TEXTURE
(a pattern of bits). If REGION is NIL, the whole destination (within the
clipping region) is used. If TEXTURE or OPERATION are NIL, the values from
DISPLAYSTREAM are used.

(FILLCIRCLE X Y RADIUS TEXTURE DISPLAYSTREAM) [Function]
Fills in a circular area of radius RADIUS about the point (x, Y) in the destination
bitmap; of DISPLAYSTREAM with TEXTURE. DISPLAYSTREAMS position is left at
(x,y).

(DSPRESET DISPLAYSTREAM) [Function]
. Sets the x position of DISPLAYSTREAM to its left margin, sets its Y position to the

top of the clipping region minus the font ascen~ and fills its destination bitmap
with its background Texture.

(MOVETO x Y DISPLAYSTREAM) [Function]
Changes the current position of DISPLAY STREAM to the point (x. Y).

(RELMOVETO DX DY DISPLAYSTREAM) [Function]
Changes the current position to the point (DX. DY) coordinates away from current

19.12

INTERLISP-D DISPLAY FACILITIES

position of DISPLAYSTREAM.

(MOVETOUPPERlEFT DISPLAYSTREAM REGION) [Function]
Changes the X position to the left edge of REGION and the Y position to the top
of REGION less the font height of DISPLAYSTREAM. This is the beginning position
of the top line of text in this region. If REGION is NIL, the clipping region of
DISPLAYSTREAM is used.°Note: this does not set the X position to the left margin
like the function DSPRESET does.

(DSPBACKUP WIDTH DISPLAYSTREAM) [Function]
Backs up DISPLAYSTREAM over a character which is WIDTH screen points wide.
DSPBACKUP fills the backed over area with the display stream's background texture
and decreases the X position by WIDTH. If this would put the X position less than
DISPLAYSTREAMS left margin, its operation is stopped at the left margin. It returns
-1 if any bits were written, NIL otherwise.

~

(CENTERPRINTINREGION EXP REGION DISPLAYSTREAM) [Function]
Prints EXP so that is it centered within REGION of the DISPLAY STREAM. If REGION

is NIL, EXP will be centered in the clipping region of DISPLAYSTREAM.

19.9.3 Drawing Lines and Curves

Interlisp-D provides several functions for drawing lines and curves onto the destination bitmap of a display
stream or window. The curve drawing functions take their BITBl T operation from the display stream,
while for straight lines the Operation may 'be specified as an 'argument to the drawing function, with the
display stream's operation only being used by default.

The following functions produce straight lines of the specified width (in screen points; the default is
1) in the display stream's destination bitmap. They do not allow "brushn patterns; however, they do
support I NVE RT mode inwhich redrawing a line will erase it. These functions are intended for interactive
applications where efficiency is important DRAWCURVE can be used to draw lines with brushes.

(DRAWTO x Y WIDTH OPERATION DISPLAYSTREAM COLOR) [Function]
Draws a line from the current position to the point (X t Y) onto the destination
bitmap of DISPLAYSTREAM. The position of DISPLAYSTREAM is set to (x, Y).

If the destination bitmap has multiple bits per pixel, COLOR is a color specification
that determines the color used to draw the line (See page 19.44). If COLOR is NIL,
this will be the DSPCOLOR of DISPL.AYSTREAM.

(RELDRAWTO DX DY WIDTH OPERATION DISPLAY STREAM COLOR) [Function]
Draws a line from the current position to the point (DX t DY) coordinates away
onto the destination bitmap of DISPL.AYSTREAM. The position of DISPL,AYSTREAM

is set to the end of the line.

(DRAWLINE Xl Y l X2 Y2 WIDTH OPERATION DISPLAY STREAM COLOR) [Function]
Draws a line from the point (Xl t Y1) to the point (X2" Y2) onto the destination
bitmap of DISPLAYSTREAM. The position of DISPLAYSTREAM is set to (x2t Y 2).

(DRAWBETWEEN POSITION1 POSITION2 WIDTH OPERATION DISPLAY STREAM COLOR) [Function]
Draws a line from the point POSITION 1 to the point POSITION 2 onto the destination

19.13

· Typescript Facilities: The "T" File

bitmap of DISPLAYSTREAM. The position of DISPLAYSTREAM is set to POSITION2•

A curve is drawn by placing a brush pattern centered at each point along the curve's trajectory. A brush
pattern is defined by its shape, size, and color. The currently recognized shapes are ROUND, SQUARE,
HORIZONTAL~ VERTICAL. and DIAGONAL. A brush size is an integer specifying the width of the brush
in screen points. The color is a color specification (see page 19.44), which is only used if the curve is
drawn on a multiple bits per pixel bitmap.

A brush is specified to the various drawing functions as a shape-width-color list (such as (SQUARE 2)
or (VERTICAL 4 RED». A brush can also be specified as a positive integer. which is interpreted as
a ROUND brush of that width. Finally. if a brush is specified as NIL, a (ROUND 1) brush is used as
default.

If a brush is a litatom, it is assumed to be a function which is called at each point of the curve's trajectory
with three arguments: the X -coordinate or the point, the Y -coordinate. and the display stream.

The appearance of .a curve is also determined by its dashing characteristics. Dashing is specified by a
list of positive integers. If a curve is dashed, the brush is placed along the trajectory for the number of
points indicated by the first element of the dashing list. The brush is off. not placed in the bitmap, for
a number of points indicated, by the second element. The third element indicates how long· it will be on
again, and so forth. The dashing sequence is repeated from the beginning when the list is exhausted. A
curve or line is not dashed if the dashing argument to the drawing function is NIL.

The curve functions use the display stream's clipping region and operation. Because of the problem of
overlapping brush points. the REPLACE and INVERT operations are not implemented.

(DRAWCURVE KNOTS CLOSED BRUSH DASHING DISPLAYSTREAM) [Function]

(DRAWCIRCLE x

(DRAWELLIPSE x
DISPLAYSTREAM)

Draws a spline curve. KNOTS is a list of positions to which the spline will be fitted.
CLOSED is a flag which indicates whether or not the spline is to be closed. The
other arguments are interpreted as described above.

Y RADIUS BRUSH DASHING DISPLAYSTREAM) [Function]
Draws a circle of radius RADfUS about the point (x I Y) onto the destination bitmap
of DISPLAYSTREAM. DISPLAYSTREAMS position is left at (x. Y). (Dashing may
not be implemented for this function yet.) The other arguments are interpreted as
described above.

Y SEMIMINORRADIUS SEMIMAJORRADIUS ORIENTATION BRUSH DASHING

[Function]
Draws an ellipse with a minor radius of SEMIMINORRADIUS and a major radius
of SEMIMAJORRADIUS abo\Jt the point (x, Y) onto the destination bitmap of
DISPLAYSTREAM. ORIENTATION is the angle of the major axis in degrees, positive
in the counterclockwise direction. DISPLAYSTREAMS position is left at (x. Y).

(Dashing may not be implemented for this function yet) The other arguments are
interpreted as described above.

19.10 TYPESCRIPT F AQLITIES: THE "T" FILE

Output to the :file T and echoing of type-in is directed to a distinguished terminal display stream. This is

19.14

INTERLISP-D DISPLAY FACILITIES

initialized to be a display stream at the top of the screen, but that initial setting can be modified by the
function TTYDISPlAYSTREAM. .

(TTYDISPlAYSTREAM DISPLAYSTREAM). [Function]
Selects the display stream or window DISPLAYSTREAM to be the tenninal output
channel. and returns the previous temrinal output display stream. TTYDISPlAYSTREAM
puts DISPLAY STREAM into scrolling mode and calls PAGEHE IGHT with the number
of tines that will fit into DISPLAY STREAM given its current Font and ClippingRegion.
The linelength of TTY DISPLAY STREAM is computed (like any other display stream)
from its LeftMargin, RightMargin. and Font If one of these fields is chang~d. its
linelength is recalculated. If one of the fields used to compute the number of lines
(such as the ClippingRegion or Font) changes, PAGEHE IGHT is not automatically
recomputed. (TTYDISPlAYSTREAM (TTYDISPlAYSTREAM» will cause it to
be recomputed.

If the window system is active, the line buffer is saved in the old TTY window, and
the line buffer is set to the one saved in the window of the new display stream,
or to a newly created line buffer (if it does not have one). Caution: It is possible
to move the TTYDISPlAYSTREAM to a nonvisible display stream or to a window
whose current position is not in its clipping region.

(CARET NEWCARET) [Function]
Sets the shape that blinks at the location of the next output to the TTYDISPlAYSTREAM.
NEWCARET is either (1) NIL - no changes, returns a CURSOR representing the
current caret, (2) OF F - turns the caret off, or (3) a CURSOR which gives the new
caret shape. The hotspot of NEWCARET indicates which point in the new. caret
bitmap should be located at the current output position. The previous caret is
returned.

(PAGEHE IGHT N) [Function]
If N is greater than 0, it is the number of lines of output that will be printed to
TTYDISPlAYSTREAM before the page is held. A page is held before the N+1
line is printed to TTYDISPlAYSTREAM without intervening input if there is no
tenninal input waiting to be read. The output is held with the screen video reversed
until a character is typed. Output holding is disabled if N is O. PAGEHE IGHT
returns the previous setting.

19.11 CURSOR AND MOUSE

The screen relative position at which the cursor bitmap is being displayed can be read or set using the
functions:

(CURSORPOSITION NEWPOSITION DISPLAYSTREAM OLDPOSITION) [Function]
This returns the location of the cursor in the coordinate system of DISPLAYSTREAM
(the current display stream, if DISPLAYSTREAM is NIL). If OLDPOSITION is a
POS I T ION, it will be reused, and returned. If NEWPOSITION is non-N I l, it should
be a position and the cursor will be positioned at NEWPOSITION.

19.15

Mouse Button Testing .

(ADJUSTCURSORPOSITION DELTAX DELTAY) [Function]
Moves the cursor DELTAX points in the X direction and DELTAY points in the Y
direction. DELTAX and DELTAY default to O.

The cursor can be changed like any other bitmap by BITBLTing into it or pointing a display stream at
it and printing or drawing curves. For most applications, it is also necessary to locate the hotspot· a
point within the CURSORWIDTH by CURSORHE IGHT area which is used to determine a point position for
the cursor. Also for some applications it is necessary to save and restore the cursor. The Cursor record
and the following functions provide these capabilities. A Cursor record has fields CURSORB ITMAP and
CURSORHOTSPOT, the latter a POSITION that gives the location of the hot spot i~ide the cursor.

(CURSORCREATE BITMAP x Y) [Function]
Returns a cursor object which has BITMAP as its image and the location (x, Y) as
the hot spot If x is a POS I T ION, it is used as the hot spot. If BITMAP has
dimensions different from CURSORWIDTH by CURSORHE IGHT, the lesser «)f the
widths! and the lesser of the heights are used to determine the bits that actually
get copied into the lower left comer of the cursor. If x is NIL, 0 is used. If Y is
NIL, CURSORHEIGHT-1 is used. The default cursor is an uparrow with its tip in

. the upper left comer and its hot spot at (0,CURSORHEIGHT-1).

(CURSOR NEWCURSOR -) ,[Function]
Returns a CURSOR record instance that contains (a copy of) the current cursor
specificzation. If NEWCURSOR is a CURSOR record instance, the cursor will be set
to the; values in NEWCURSOR. If NEWCURSOR is T, the cursor will be set to the
default cursor DE F AUL TCURSOR, an upward left pointing arrow.

(SETCURSOR NEWCURSOR -) [Function]

(FLIPCURSOR)

If NEWCURSOR is a CURSOR record instance, the cursor will be set to the values in
NEWC1lJRSOR. This does not return the old cursor, and therefore, provides a way
of changing the cursor without using storage.

[Function]
Inverts the cursor.

There are several cursors defined in Interlisp-D that may be of interest to users. One of these is
WAITINGCURSOR, an hour glass shape used by the system to indicate that a long computation is in
progress.

CURSORs can be saved on a file using the file package command CURSORS, or the UGl YVARS file package
command.

19.11.1 Mouse Button Testing

There are various graphical input devices that can be read from Interlisp-D. The devices used in this
manner are: a device called a mouse, which has three keys and steers the cursor, and seven uninterpreted
keys on the keyboard. (Some Xerox 1100 systems may also have a small, five-key keyset.) The following
macros are provided to test the state of these input devices. (The three keys on the mouse (often called
buttons) are referred to by their location: left, middle, or right.)

(MOUSEST AT E BUTTONFORM) [Macro]
Reads the mouse state and rerurns T if that state is described by BUTTONFORM.

19.16

INTERLISP-D DISPLAY FACILITIES

BUTTONFORM can be one of the key indicators LEFT, MIDDLE, or RIGHT; the
atom UP (indicating all keys are up); the form (ONL Y KEY); or a fonn of AND, OR,
or NOT applied to any valid button form. For example: (MOUSESTATE LEFT)
will be true if the left mouse button is down. {MOUSESTATE (ONLY LE FT))
will be true if the left mouse button is the only one down. {MOU S EST ATE { 0 R
(NOT LEFT) MIDDLE» will be true if either the left mouse button is up or the
middle mouse button is down.

(LASTMOUSESTATE BUTTONFORM) [Macro]
Similar to MOUSESTATE, but tests the value of LASTMOUSEBUTTONS rather than
getting the current -state. This is useful for. determining which keys caused a
MOUSESTATE to be true.

(UNTILMOUSESTATE BUTTONFORM INTERVAL) [Macro]
BUTTONFORM is as described in MOUSESTATE. Waits until BUTTONFORM is true
or until INTERVAL milliseconds have elapsed. The value of UNTILMOUSESTATE is
T if BUTTONFORM was satisfied before it timed out, otherwise NIL. If INTERVAL

is NIL, it waits indefinitely. It c()~piles into an open loop that calls the TTY
wait background function. This form should not be used inside the TTY wait
background function. UNTILMOUSES,TATE does not use any storage during its
wait loop. '

The macros KEYSETSTATE and LASTKEYSETSTATE are identical to MOUSESTATE and LASTMOUSESTATE
except that they also check the state of the five-finger keyset as well as the state of the mouse buttons.
That is t1}ey check the state of both the mouse and the keyset. Thus, if the left mouse button was the
only mouse button held down, {MOUSESTATE (ONLY LEFT» would be T even though a keyset key
was down; whereas {KEYSETSTATE (ONLY LEFT» would be NIL if a keyset button were down.

The names of the keyset keys are: LEFTKEY, LEFTMIDDLEKEY, MIDDLEKEY, RIGHTMIDDLEKEY and
RIGHTKEY.

19.11.2 Low Level Access to Mouse

This section describes the low level access to the graphical input devices and can be skipped by most
users. Graphical input information is represented in the following global variables:

LASTMOUSEX [Variable]
The X position of the cursor in absolute screen coordinates. Also see the function
LASTMOUSEX below.

LASTMOUSEY [Variable]
The Y position of the cursor in absolute screen coordinates. Also see the function
LASTMOUSEY below.

LASTMOUSEBUTTONS [Variable]
An 8-bit number that has bits on corresponding to the mouse buttons that are
down: 4Q is the left mouse button. 2Q is the right button. 1 Q is the middle b~tton.
(Bits 200Q, lOOQ, 40Q, 20Q, and lOQ give the state of the keyset keys, from left
to right, if you have a keyset.)

19.17

LAST KEYBOARD

LASTMOUSETIME

Windows

[Variable]
The state of certain keys on the keyboard (200Q = lock~ lOOQ = left shi~ 40Q =
ctrl, 10Q = right shi~ 4Q = blankBottom,2Q = blankMiddle, lQ = blankTop).
If the key is down, the corresponding bit is on.

[Variable]
The time in milliseconds since the mouse was last read (since the last call to
GETMOUSEsTATE. LASTMOUSETIME is a 16-bit positive integer so it rolls over
every 65 +. seconds.

The following functions provide low level cursor access in display stream coordinates.

(LASTMOUSEX DISPLAYSTREAM) [Function]
Returns the value of the cursor's X position in the coordinates of DISPLAYSTREAM.

(LASTMOUSEY DISPLAYSTREAM) [Function]
Returns the value of the cursor's Y position in the coordinates of DISPLAYSTREAM.

(DECODEBUTTONS BUTTONSTATE) [Function]
Returns a list of the buttons or keys that are down in the state BUTTONSTATE. If
BUTTONSTATE is nota SMALLP, LASTMOUSEBUTTONS is used (see GETMOUsEsTATE
below). The button names that can be returned are: LEFT, MIDDLE, RIGHT (the
three mouse keys), LEFTKEY, LEFTMIDDLEKEY, MIDDLE~EY, RIGHTMIDDLEKEY
and RIGHTKEY (the five keyset keys).

(GETMOUsEsTATE) [Function]

19.12 WINDOWS

Reads the current state of the mouse and sets the variables LAsTMOUsEX,
LAsTMOUSEY, LASTMOUSEBUTTONS, LAsTMOUSETIME, and LAsTKEYBOARD. In
polling. mode, the program must remember the previous state and look for changes,
such as a key going up or down, or the cursor moving outside a region of interest.

Windows provide a means by which different programs can share the display harmoniously. Interlisp-D
provides both interactive and· programmatic constructs for creating, moving, reshaping, overlapping, and
destroying windows in such a way that a program can be embedded in a window in a relatively transparent
fashion. This is impiementedby having each window save the bits that it obscures. This allows existing
Interlisp programs to be used without change, while providing a base for experimentation with more
complex window semantics in new applications.

Because the window system assumes that all programs follow certain conventions concerning control of
the screen, ordinary user programs should not perfonn display operations directly on the screen. In
particular, functions that can operate directly on bitmaps (such as BITBLT or BITMAPBIT) should not
be given (sCREENBITMAP) as the destination argument. All interactions with the screen should take
place through windows.

For specialized applications that require taking complete control of the display, the window system can
be turned off (and back on again) with the following function:

19.18

INTERLISP-D DISPLAY FACILITIES

(WINDOWWORLD FLAG) [NoSpread Function]
The window world is turned on if FLAG is T and off if FLAG is NIL. WI NDOWWORLD
returns the· previous state of the window world (T or NIL). If WINDOWWORLD is
given no arguments, it simply returns the current state without affecting the window
world.

19.12.1 What are Windows?

A window specifies a region of the screen, a display stream, a location in an occlusion stack, functions
that get called when the window undergoes certain actions, and various other items of information. The
basfc model is that a window is a passive collection of bits (on the screen). On top of this basic level. the
system supports many different types of windows that are linked to the data structures displayed in them
and provide _s.election and redisplaying routines. In addition, it is possible for the user to create new types
of windows by providing selection and displaying functions for them.

Windows are ordered in depth from user to background. Windows in front of others obscure the latter.
Operating on a window generally brings it to the top.

Windows are located at a certain position on the screen. Eachr window has a clipping region that confines
all bits splashed at it to a region that allows a border around the window, and a title above it

. Each window has a display stream associated with it, and either a window or its display stream can
be passed interchangeably to all system functions. There are dependencies between the window and its
display stream that the user should not disturb. For instance, the destination bitmap of the display stream
of a window must always be (SCREENBITMAP). The XOffset, YOffset, and ClippingRegion attributes
of the display stream should not be changed. At some future date, the notions of window and display·
stream will be merged.

Windows can be created by the user interactively, under program control, or may be created automatically
by the system.

Windows are in one of two states: "open" or "closed". In an "open" state, a window is on the occlusion
stack and therefore visible on the screen (unless it is covered by other open windows) and accessible to
mouse operations. In a "closed" state, a window is not on the occlusion stack and therefore not visible
and not accessible to mouse operations. Any attempt to print or draw on a closed window will open it.

When Interlisp-D starts up, there are three windows on the screen: a top level typescript window, a window
containing the Interlisp-D logo, and a prompt window. The top level typescript window corresponds to
the file T in the EX E C process where the read-eval-print loop is operating. The logo window is bound to
the variable LOGOW until it is closed. The prompt window is used for the printing of help or prompting
messages. It is available to user programs through the following functions:

PROMPTWINDOW [Variable]
Global variable containing the prompt window.

(PROMPTPRINT EXP) [NoSpread Function]
Prints EXP in the prompt window.

(CLRPROMPT) [Function]
Clears the prompt window.

19.19

Interactive Window ,Operations

19.12.2 Interactive Window Operations

The Interlisp-D window system allows the user to interactively manipulate the windows on the screen,
moving them around, changing their shape, etc. by selecting various operations from a menu.
Programmatic versions of these operations are described on page 19.26.

For most windows, depressing the RIG HT mouse key when the cursor is inside a window during 1/0 wait
will cause the window to come to the top and a menu of window operations to appear. If a command
is selected from this menu (by releasing the right mouse key while the cursor is over a command), the
selected operation will be applied to the window in which the menu was brought up. (It is possible for an
applications program to redefine the action of the RIGHT mouse key. In these cases, there is a convention
that the default command menu may be brought up by depressing the RIGHT key when the cursor is in
the header or border of a window. See page 19.30) The operations are:

CLEAR

CLOSE

BURY

MOVE

SHAPE

REDISPLAY

PAINT

[Window Menu Command]
Clears the window and repositions it to the left margin of the first line of text
(below the upper left comer of the window by the amount of the font ascent).

[Window Menu Command]
Closes the window, i.e, removes it from the screen. (See CLOSEW. page 19.26.)

[Window Menu Command]
Puts the window on the bottom of the occlusion stack, thereby exposing any
windows that it was hiding.

[Window Menu Command]
Moves the window to a location specified by depressing and then releasing the
L EFT key. During this time a ghost frame will indicate where the window will
reappear when the key is released. (See GETBOXPOSITION, page 19.36.)

[Window Menu Command]
Allows the user to specify a new region for the existing window contents. If the
LE FT key is used to specify the new region, the reshaped window can be placed
anywhere. If the M I DD L E key is used. the cursor will start out tugging at the nearest
comer of the existing window, which is useful for making small adjustments in a
window that is already positioned correctly. .

. [Window Menu Command]
Redisplays the window. (See REDISPLAYW, page 19.27.)

[Window Menu Command]
Switches to a mode in which the cursor can be used like a paint brush to draw
in a window. This is useful for making notes on a window. While the L EFT key
is down, bits are added. While the M I DO L E key is down, they are erased. The
RIG HT button pops up a command menu that allows changing of the brush shape,
size and shade, changing the mode of combining the brush with the existing bits,
or stopping paint mode.

Paint mode also contains a hardcopy command that makes a Press file of the bits
in a window and sends it to the printer. There are limitations on the complexity
and size of the bitmaps that some printers will print, If the printer does not print

19.20

SNAP .

INTERLISP-D DISPLA YF ACILITIES

the entire window correctly, try a smaller window or one with fewer black bits
in it. To get a hardcopy of an arbitrary part of the screen that crosses window
boundaries, use the HARDCOPY command in the background menu (below).

[Window Menu Command]
Prompts for a region on the screen and makes a new, window whose bits are a
snapshot of the bits currently in that region. Useful for saving some particularly
choice image before the window image changes.

Occasionally, a user will have a number of large windows on the screen, making it difficult to access those
windows being used. 'To help with the problem of screen space management, the Interlisp-D window.
system allows the creation of I cons. An icon is a small, rectangle (containing text or a bitmap) which is
a "shrunken-down" form of a particular window. Using the SHRINK and EXPAND commands, the user
can shrink windows not currently being used into icons, and quickly restore the original windows at any
time.

SHRINK· . [Window Menu Command]
Removes the window from the'screen and brings up its icon. (See SHRINKW,
page 19.27.) The window can be restored by selecting EXPAND from the window
command menu of the icon.

If the RIGHT button is pressed while the cursor is in an icon, the window command menu will contain
a slightly different set of commands. The REDISPLAY and CLEAR commands are removed, and the
S H R INK command is replaced with the EX PA N D command:

EXPAND [Window Menu Command]
Restores the window associated with this icon and removes the icon. (See EXPANDW,
page 19.28.)

If the RIGHT button is pressed while the cursor is not in any window, a "background menu" appears
with the following operations:

SAVEVM

SNAP

HARDCOPY

[Window Menu Command]
Calls the function SAVEVM (page 18.4), which writes out all of the dirty pages
of the virtual memory. After a SAVEVM, and until the pagefault handler is next
forced to write out a dirty page, your virtual memory image will be continuable
(as of the SAVEVM) should you experience a system crash or other disaster.

[Window Menu Command]
The same as the SNAP command described above.

[Window Menu Command]
Prompts for a region on the screen, makes a press file and sends it to the printer.

The printing is done with HARDCOPYW (page 18.18), so if FULLPRESSPRI NTE R
is non-NIL, the image will be sent there, rather than to (PRINTINGHOST).

Some built-in facilities and Lispusers packages add commands to the background menu, to provide an
easy way of calling the different facilities. The user can determine what these new commands do by
holding the RIGHT button down for a few seconds over the item in question; an explanatory message
will be printed in the prompt window.

19.21

Changing Entries on the Window Command Menus

The' following functions provide a functional interface to the interactive window operations so that user
programs can call them directly.

(DOWINDOWCOM ,WINDOW) [Function]
If WINDOW is NIL, it calls DOBACKG ROUNDCOM. If WINDOW is a shrunken window,
it brings up the uicon window" menu. If WINDOW is a unshrunken window, it
brings up the window menu. The initial items in these menus are described above.
If the user selects one of the items from the provided menu9 that item is APPLYed
to WINDOW. If WINDOW is not a WINDOW or NIL, it returns.

(DOBACKGROUNDCOM) , [Function]
Brings up the background menu. The initial items in this menu are described
above. If the user selects one of the items from the menu, that item is EVALed.

19.12.3 Changing Entries on the Window Command Menus

The window command menus for unshrunken windows, shrunken windows, and the background are
cached in the variables Wi ndowMenu, IconWi ndowMenu, and Backg roundMenu. To change the
entries in these menus, the user should change the change the menu "command lists" in the variables
Wi ndowMenuCommands, IconWi ndowMenuCommands, and Backg roundMenuCommands. and set the
appropriate menu variable to a non-MENU, so the menu will be recreated. This provides a way of adding
commands to the menu, of changing its font or of restoring the menu if it gets clobbered. The "command
lists" are in the format of the ITEMS field of a menu (see page 19.39), except as specified below.

Note: command menus are recreated using the current value of MENU FONT.

Wi ndowMenu [Variable]
Wi ndowMenuCommands [Variable]

The menu that is brought up in response to a right button in an unshrunken window
is stored on the variable Wi ndowMenu. If Wi ndowMenu is set to a non-MENU, the
menu will be recreated from the list of commands Wi ndowMenuCommands. The
CADR of each command added to Wi ndowMenuCommands should be a function
name that will be A P P L Yed to the window.

IconWi ndowMenu [Variable]
IconWi ndowMenucommands [Variable]

The menu that is brought up in response to a right button in a shrunken window is
stored on the variable IconWindowMenu. Ifit is NIL, it is recreated from the list
of commands IconWi ndowMenuCommands. The CADR of each command added
a function name that will be A P PLY ed to the window.

Backg roundMenu [Variable]
Backg roundMenuCommands [Variable]

The menu that is brought up in response to a right button in the background is
stored on the variable BackgroundMenu. If it is NIL, it is recreated from the list
of commands Backg roundMenuCommands. The CADR of each command added
to Backg roundMenuCommands should be a form that will be EVALed.

19.22

· INTERLISP-D DISPLAY FACILITIES

19.12.4 Coordinate Systems

One way of thinking of a window is as a "view" onto an object (e.g. a graph, a file, a picture, etc.)
The object has its own natural coordinate system in terms of which its subparts are laid out When the
window is created, the XOtfset and YOffset of the window's display stream are set to map the origin
of the object's coordinate system into the lower left point of the winqow's interior region. At the same
time, the ClippingRegion of the display stream is set to correspond to the interior of the window. From.
then on, the display stream's coordinate system is translated and its clipping region adjusted whenever
the window is moved, scrolled or reshaped. .

There are several distinct regions associated with a window viewing an object. First, there is a region in
the window's coordinate system that contains the complete image of the object This region (which can
only be determined by application programs with knowledge of the "semantics" of the object) is stored as
the EX-TENT property of the window (page 19.32). Second, the clipping region of the window (obtainable
with the function DSPCLIPPINGREGION) specifies the portion of the object that is actually visible in the
window. This is set so that it corresponds to the int~rior of the window (not including the border or title).
Finally, there is the region on the screen that specifies the total area that the window occupies, including
the border and title. This region (in screen coordinates) is stored as the REGION property of the window
(page 19.33).

19.12.5 Scrolling

The window system supports the idea of scrolling the contents of a window. Scrolling regions are on
the left and the bottom edge of each window. The scrolling regions will only be active if the window
has a SCROLLFN window property (page 19.31). If a window has a SCROLLFN and the cursor moves
from inside that window into its scrolling region and remains there for SCROLLWAITT IME milliseconds
(initially 10(0), a scroll bar appears. The value of the global variable SCROLLBARWIDTH (initially 24)
determines the size of the scrolling region. The LE FT key is used to indicate upward or leftward scrolling
by the amount necessary to move the selected position to the top or the left edge. The RIG H T key is
used to indicate downward, qr rightward scrolling by the amount necessary to move the top or left edge
to the selected position. The MIDDLE key is used to indicate global placement of the object within the
window (similar to "thumbing" a book).

In the scroll region, the part of the object that is being viewed by the window is marked with a gray
shade. If the whole scroll bar is thought of as the entire object, the shaded portion is the portion currently
being viewed. This will only occtir when the window "knows" how big the object is (see window property
EXTENT, page 19.32).

When the button is released in a scroll region, the function SCROLLW is called. SCROLLW calls the
scrolling function associated with the window to do the actual scrolling and provides a programmable
entry to the scrolling operation.

(SCROLLW WINDOW DELTAX DELTAY CONTINUOUSFLG) [Function]
Calls the SCROLLFN window property of the window WINDOW with argu
ments WlNDOW, DELTAX, DELTAyand CONTINUOUSFLG. See SCROLLFN window
property, page 19.3!.

The function that tracks the mouse while it is in the scroll region is SCROLL. HANDLE R.

19.23

Scrolling

(SCROLL. HANDLER WINDOW) [Function]
This is called when the cursor leaves a window in either the left or downward
direction. If WINDOW does not have a scroll region for this direction (e.g. the
window has moved or reshaped since it was last scrolled), a scroll region is created
that is SCROLLBARWIDTH wide. It then waits for SCROLLWAITTIME milliseconds
and if the cursor is still inside the scroll region, it opens a window the size of the
scroll region and changes the cursor to indicate the scrolling is taking place.

When a button is pressed, the cursor shape is changed to indicate the type
of scrolling (up, down, left, right or thumb). After the button is held for
WAITBE FORESCROLL TIME milliseconds, until the button is released SCROLLW
is called each WAITBETWEENSCROLL TIME milliseconds. These calls are made
with the CONTINUOUSFLG argument set to T. If the button is released before
WAITB;E FORESCROLL TIME milliseconds, SCROLLW is called with the CONTINUOUSFLG

argument set to NIL.

The arguments passed to SCROLLW depend on the mouse button. If the LE FT
button is used in the vertical scroll region, DY is distance from cursor position at
the time the button was released to the top of the window and DX is O. If the
RIG HT button is used, the inverse of this quantity is used for DY and 0 for DX.

If the LE FT button is used in the holizontal scroll region, DX is distance' from
cursor position to left of the window and DY is O. If the RIGHT button is used,
the inverse of this quantity is used for DX and 0 for DY.

If the MIDDLE button is pressed, the distance argument to SCROLLW will be a
FLOAT P between 0.0 and 1.0 that indicates the proportion of the distance the
cursor was from the left or top edge to the right or bottom edge.

SCROLLBYREPAINTFN is the standard scrolling function which should be used as the SCROLLFN property
for most scrolling windows.

(SCROLLBYREPAINTFN WINDOW DELTAX DELTAY CONTINUOUSFLG) [Function]
This function, when used as a SCROLLFN, BITBL Ts the bits that will remain
visible after the scroll to their new location, fills the newly exposed area with
texture. adjusts the window's coordinates and then calls the window's REPAINTFN
on the newly exposed region. Thus this function will scroll any window that
has a repaint function. If WINDOW has an EXTENT property (page 19.32),
SCROLLBYREPAINTFN will limit scrolling to keep the extent region visible or
near visible. That is, it will not scroll the window so that the top of the extent
is below the top of the window, the bottom of the extent is more than one point
above the top of the window, the left of the extent is to the right of the window
and the right of the extent is to the left of the window. The EXTENT is scrolled
to just above the window to provide a way of "hiding" the contents of a window.

If DELTAX or DELTAY is a FLOATP, SCROLLBYREPAINTFN will position the
window so that its top or left edge will be positioned at that proportion of its
EXTENT. If the window does not have an EXTENT, SCROLLBYREPAINTFN will
do nothing.

If CONTINUOUSFLG is non-N I L, this indicates that the scrolling button is being
held down. In this case, SCROLLBYREPAINTFN will scroll the distance of one
linefeed height (as returned by DSPLINEFEED, page 19.12).

19.24

INTERLISP-D DISPLAY FACILITIES

19.12.6 Programmatic Window Operations

(CREATEW REGION TITLE BORDER NOOPENFLG) [Function]

(WINDOWP x)

Creates a 'new window. REGION indicates where and how large the window should
be by specifying the exterior region of the window (the usable height and width
of the resulting window will be smaller than the height and width of the region by
twice the border size and further less the height of the title, if any). If REGION is
NIL, GETREGION is called to prompt the user for a region.

If TITLE is non-N I L, it is printed in the border at the top of the window. The TITLE

is printed using the glob'a! display stream Wi ndowT i t 1 eDi sp 1 aySt ream. Thus
.the height of the title will be (FONTPROP WindowTitleDisplayStream
'HEIGHT). .

If BORDER is a number, it is used as the border size. If BORDER is not a number,
the window will have a border WBo rde r (initially 4) bits wide.

If NOOPENFLG is non-N I L,. the window will not be opened, i.e. displayed on the
screen.

[Function]
Returns x if x is a window, NIL otherwise.

(OPENWP WINDOW) [Function]
Returns WINDOW, if WINDOW is an open window (has not been closed); NIL
otherwise.

(OPENWINDOWS) [Function]

(WHICHW x y)

Returns a list of all active windows.

[Function]
Returns the window which contains the position in screen coordinates of x if x
is a POS I T ION, the position (x, Y) if x and Y are numbers, or the position of the
cursor if x is NIl. Returns NIL if the coordinates are not in any window. If they
are in more than one window, it returns the uppermost.

Example: (WH I CHW) returns the window that the cursor is in.

(DECODE/WINDOW/OR/DISPLAYSTREAM DSORW WINDOWVAR TITLE BORDER) [Function]
If DSORW is a display stream, it is returned. I.f DSORW is a window, its display
stream is returned. If DSORW is NIL, it evaluates WINDOWVAR (which should be
an atom). If its value is a window, it is reopened if it is closed, and returned. If its
value is not a window, WINDOWVAR is set to a newly created window (prompting
user for region) and returned. If DSORW is NEW, a new window is created and
returned. If TITLE or BORDER are given and a window is involved, the TITLE or
BORDER property of the window is reset. The DSORW= NIL case is most useful
for programs that want to display their output in a window, but want to reuse the
same window each time they are called. The non-N I L cases are good for decoding
a display stream argument passed to a function.

(WIDTHIFWINDOW INTERIORWIDTH BORDER) [Function]
Returns the width of the window necessary to have INTERIORWIDTH points in its

19.25

Programmatic Window Operations

interior if the width of the border is BORDER. If BORDER is N I L~ the default
border size WB 0 r d e r is used.

(HE I G HT I FW I NDOW INTERIORHEIGHT TITLEFLG BORDER) [Function]
Returns the height of the window necessary to have INTERIORHEIGHT points in its
interior with a border of BORDER and, if TITLEFLG is non-N I L, a title. If BORDER
is NIL, the default border size WBo rde r is used.

WIDTHIFWINDOW and HEIGHTIFWINDOW are useful for calculating the width and height for a call to
GETBOXPOSITION for the purpose of positioning a window.

Interlisp-D provides a set of operations which apply to any window. In addition to being available as
functions, most of these are also available via the standard mouse interface. See page 19.20

__ (TOTOPW WINDOW NOCALLTOPWFN) [Function]
Brings WINDOW to the top of the stack of overlapping windows~ guaranteeing that
it is entirely visible. If WINDOW is closed, it is opened. This is done automatically
whenever a printing or drawing operation occurs to the window.

If NOCALLTOPWFN is NIL, the TOTOPFN of WINDOW is called (page 19.30). If
NOCALLTOPWFN is T, it is not called,r which allows a TOTOPFN to call TOTOPW
without causing an infinite loop.

(SHAPEW WINDOW NEWREGION) . [Function]
Reshapes WINDOW to the region NEWREGION, or prompts for a region (with
GETREG ION, page 19.37) if none is supplied. Calls the window's RESHAPE FN, if
any (page 19.31).

(CLOSEW WINDOW) [FunctioIi]
CLOSEW calls the function or functions on the window property CLOSE FN of
WINDOW, if any (page 19.30). If one of the CLOSEFNs is the atom DON'T or
returns the atom DON'T as a value, CLOSEW returns without doing anything
further. Otherwise, CLOSEW removes WINDOW from the window stack and restores
the bits it is obscuring. If WINDOW was closed, WINDOW is returned as the value.
If it was not closed, (for example because its CLOSEFN returned the atom DON'T),
NIL is returned as the value.

WINDOW can be restored in the same place with the same contents (reopened) by
calling OPENW or by using it as the source of a display operation.

(OPENW. WINDOW) [Function]
If WINDOW is a closed window, OPENW calls the function or functions on the
window property OPENFN of WINDOW, if any (page 19.30). If one of the OPENFNs
is the atom DO N ' T, the window will not be opened. Otherwise the window is
placed on the occlusion stack of windows and its contents displayed on the screen.
If WINDOW is an open window, it returns NIL.

(MOVEW WINDOW POSorX Y) [Function]
Moves WINDOW to the position specified by POSorX and yaccording to the following
rules:

If POSorX is NIL, GETBOXPOSITION (page 19.36) is called to read a position from

19.26

· INTERLISP-D DISPLAY FACILITIES

the user.

If POSorX is a POSITION, POSorX is used.

If POSorX and Y are both NUMBERP, a position is created using POSorX as the
XCOORD and yas the YCOORD.

If POSorX is a REGION, a position is created using its LEFT as the XCOORD and
BOTTOM as the YCOORD.

If WINDOW is not open and POSorX is non-NIL, the window will be moved without
being opened. Otherwise, it will be opened.

If WINDOW has the atom DON'T as a MOVE F N property (page 19.32), the window
will not be moved. If WINDOW has any other non-NIL value as a MOVEFN property,
it should be a function or list of functions that will be called before the window
is moved with the WINDOW as an argument. If it returns the atom DON'T. the
window will not be moved. If it returns a position, the window will be moved to
that position instead of the one specified by POSorX and Y. If there are more than
one MOVE F Ns, the last one to return a value is the one that detennines where the
window is moved to.

If WINDOW is moved and WINDOW has a window property of AF T E RMOV E F N (page
19.32), it should be a function or a list of functions that will be called after the
window is moved with WINDOW as an argument

./ MOVEW returns the new position, or NIL if the window could not be moved.

(RELMOVEW WINDOW POSITION) [Function]
Like MOVEW for moving windows but POSITION is interpreted relative to the current
position of WINDOW. Example: The following code moves WINDOW to the right
one screen point.

(RELMOVEW WINDOW (create POSITION XCOORD ~ 1 YCOORD ~ 0»

(CLEARW WINDOW) [Function]
Fills WINDOW with its background texture, changes its coordinate system so that
the origin is the lower left comer of the window, sets its X position to the left
margin and sets its Y position to the base line of the uppermost line of text, ie.
the top of the window less the font ascent.

(BURYW WINDOW) [Function]
Puts WINDOW on the bottom of the stack by moving all the windows that it covers
in front of it.

(REDISPLAYW WINDOW REGION ALWAYSFLG) [Function]
Redisplay the region REGION of the window WINDOW. If REGION is NIL, the
entire window is redisplayed. If ALWAYSFLG is NIL, .and WINDOW doesn't have a
REPAINTFN (page 19.32), WINDOW will not change and the message "That window
doesn't have a REPAINTFN" will be printed in the prompt window.

(SHR I NKW WINDOW TOWHAT ICONPOSITION EXPANDFN) [Function]
SHRINKW makes a small icon which represents WINDOW and removes WINDOW

19.27

Window Properties

from the screen. Icons have a different window command menu that contains
"EXPAND" instead of "SHRINK". The EXPAND command calls EXPANDW which
returns the shrunken window to its original size and place. '

The SIttRINKFN property (page 19.30) of the window WINDOW affects the operation
of SHRINKW. If the SHRINKFN property of WINDOW is the atom DON'T, SHRINKW
prints UCan't shrink that window" in the PROMPTWINDOW and returns. Otherwise,
the SHRINKFN property of the window is treated as a (list of) function(s) to apply
to WlNDOW, if any returns the atom DON'T, SHRINKW prints "Can't shrink that
window" in the PROMPTWINDOW and returns~

TO WHAT, if given, indicates the image the icon window will have. If TO WHAT is
a string, atom or list. the icon's image will be that string (currently implemented
as a title-only window with TOWHAT as the title.) If TOWHAT is a BIT MA p. the
icon's image will be a copy of the bitmap. If TOWHAT is a WINDOW, that window
will be. used as the icon.

If TOWHAT is not given (as is the case when invoked from the SHRINK window
command), then the following apply in tum: (1) If the window has an ICONFN
propeny (page 19.31), it gets called with arguments (WINDOW OLDICON), where
WINDdw is the window being shrunk and OLDICON is the previously created icon,
if any. The ICONFN should return one of the TOWHAT entities described above
or ret~ the OLDICON if it does not want to change it. (2) If the window has an
ICON property (page 19.31), it is used as the value of TO WHAT. (3) If the window
has neither an ICONFN or ICON property, the icon will be WINDOw'S title or, if
WINDOW doesn't have a title, the date and time of the icon creation.

ICONPOSITION gives the position that the new icon will be on the screen. If it is
NIL, the icon will be in the comer of the window furthest from the center of the
screen.

In all cases the icon is cached on the property ICONWINDOW (page 19.31) of
WINDOW so repeating SHRINKW reuses the same icon (unless overridden by the
ICONFN described above). Thus to change the icon it is necessary to remove the
ICONWINDOW property or call SHRINKW explicitly giving a TOWHAT argument.

(EXPANDW ICON) [Function]
Restores the window for which ICON is an icon, and removes the icon from the
screen. If the EXPANDFN (page 19.31) window property of the main window is
the atoin DON'T, the window won't be expanded. Otherwise, the window will be
restored to its original size and location and the EXPANDFN (or list of functions)
will be applied to it.

19.12.7 Window Properties

The behavior of a window is controlled by a set of window· properties. Some of these are used by the
system. However, any arbitrary property name may be used by a user program to associate information
with a window. For many ~pplications the user will associate the strucwre being displayed with its
window using a property. The following functions provide for reading and setting window properties:

19.28

INTERLISP"D DISPLAY FACILITIES

(WINDOWPROP WINDOW PROP NEWVALUE) [NoSpread Function]
Returns the previous value of WINDOWS PROP aspect. If NEWVALVE is given,
(even if given as NIL), it is stored as the new PROP aspect Some aspects cannot
be. set by the user and will generate errol'S. Any PROP name that is not recognized
is stored on a property list associated with the window.

(WINDOWADDPROP WINDOW PROP ITEMTOADD) [Function]
WINDOWADDPROP adds a new item to a window property. If ITEMTOADD is EQ
to an element of the PROP property of the window WINDOW, nothing is added.
If the current property is not a list, it is made a list before ITEMTOADD added.
WINDOWADDPROP returns the pr~vious property. The new item always goes on the
end of the list. (Note: If the order of items in the list is important, the list can be

, modified using WINDOWPROP.) WINDOWADDPROP is useful for adding OPENFN or
CLOSEFN functions to a window without affecting its existing functions.

(WINDOWDELPROP WINDOW PROP ITEMTODELETE) [Function]
WINDOWDELPROP deletes ITEMTODELETE from the window property PROP of
WINDOW and returns the previous list if ITEMTODELETE was an element If
ITEMTODELETE was not a member of window property PROP, NIL is returned.

19.12.7.1 Mouse Function Window Properties

These properties allow the user to control the response to mouse activity in a window. The value of these
properties, if non-N I L, should be a function that will be called (with the window as argument) when the
specified event OCCUI'S.

Note: these functions should be "self-contained", communicating with the outside world solely via their
window argument, e.g., by setting window properties. In particular. these functions should not expect to
access variables bound on the stack, as the stack context is formally undefined at the time these functions
are called. Since the functions are invoked asynchronously, they perform any TTY input operations from
their own window.

WINDOWENTRYFN

CURSORINFN

CURSOROUTFN

CURSORMOVEDFN

[Window Property]
Whenever a button goes down in the window and the process associated with
the window (stored under the PROCESS property) is not the tty process, the
WINDOWENTRYFN is called. The default is GIVE. TTY. PROCESS (page 18.34)
which gives the process associated with the window the tty and calls the
BUTTONEVENT F N.

[Window Property]
Whenever the mouse moves into the window, the CURSORINFN is called.

[Window Property]
The CURSOROUTFN is called when the cursor leaves the window.

[Window Property]
The CURSORMOVEDFN is called whenever the cursor has moved and is inside the
window. This allows a window function to implement ·'active" regions within itself
by having its CURSORMOVEDFN determine if the cursor is in a region of interest,
and if so, perform some action.

19.29

BUTTONEVENTFN

RIGHTBUTTONFN

-Event Window Properties

[Window Property]
The BUTTONEVENTFN is called whenever there is a change in the state (up or
down) of the -mouse buttons inside the window. Changes to the mouse state while
the BUTTONEVENTFN is running will not be interpreted as new button events, and
the BUTTONEVENTFN will not be re-invoked.

[Window Property]
The RIGHTBUTTONFN is called in lieu of the standard window menu operation
(DOWINDOWCOM) when the RIGHT key is depressed in a window. More
specifically, the RIGHTBUTTONFN is called instead of the BUTTONEVENTFN when
(MOUSESTATE (ONLY RIGHT»~ If the RIGHT key is to be treated like any
other key in a window, supply RIGHTBUTTONFN and BUTTONEVENTFN with the
same function. 9

Note: When an application program defines its own -RIGHTBUTTONFN, there is a
convention that the default RIGHTBUTTONFN, DOWINDOWCOM (page 19.22), may
be executed by depressing the RIGHT key when the cursor is in the header or
border of a window. User programs are encouraged to follow this convention.

19.12.7.2 Event Window Properties

CLOSEFN

OPENFN

TOTOPFN

SHRINKFN

[Window Property]
The CLOS E FN window property can be a single function or a list of functions that
are called just before a window is closed by CLOSEW (page 19.26). (Note: If the
CAR of the list is a LAMBDA word, it is tre~ted as a single function.) The function(s)
will be called with the window as a single argument If any of the CLOSEFNs are
the atom DON'T, or if the value returned by any of the CLOSEFNs is the atom
DON ,: T, the window will not be closed.

Note: A CLOSEFN should not call CLOSEW on its argument.

[Window Property]
The OPENFN window property can be a single function or a list of functions. If one
of the OPENFNs is the atom DON'T, the window will not be opened. Otherwise,
the O:p EN F Ns are called after a window has been opened by 0 P E NW (page 19.26),
with the window as a single argument.

[Window Property]
If non-NIL, whenever the window is brought to the top, the TOTOPFN is called
(with the window as a single argument). This function may be used to bring a
collection of windows to the top together.

If the NOCALLTOPWFN argument of TOTOPW (page 19.26) is non-NIL, the
TOTOPFN of the window is not called, which provides a way of avoiding infinite
loops when using TOTOPW from within a TOTOPFN.

[Window Property]
The SHRINKFN window property can be a smgle function or a list of functions
that are called just before a window is shrunken by SHRINKW (page 19.27), with
the window as a single argument If any of the SHRINKFNs are the atom DON'T,

19.30

ICONFN

ICON

ICONWINDOW

EXPANDFN

SCROLLFN

NEWREGIONFN

RESHAPEFN

·INTERLISP-D DISPLAY FAOLITIES

or if the value returned by any of the CLOSEFNs is the atom DON'T, the window
will not be shrunk.

. [Window Property]
If SHRINKW (page 19.27) is called without begin given a TOWHAT argument (as
is the case when invoked from the SHRINK window command) and the window's
ICONFN property is non-NIL, then it gets called with two arguments, the window
being shrunk and the previously created icon, if any. The ICONFN should return
one of the TOW1:l.AT entities described on page 19.27 or return the previously
c~eated icon if it does not want to change it

[Window Property]
If SHRINKW (page 19.27) is called without being given a TOWHAT argumen~ the
window's ICONFN property is NIL, and the ICON property is non-NI,L, then it is
used as the value of TO WHAT.

[Window Property]
Whenever an icon is create<L it is cached on the property ICONWINDOW of the
window, so calling SHR I NKW again will reuse the same icon (unless overridden by
the ICONFN.

Thus, to change the icon it is necessary to remove the ICONWINDOW property or
call SHRINKW (page 19.27) explicitly giving a TOWHAT argument

[Window Property]
The EXPANDFNwindow property can be a single function or a list of functions.
If one of the EXPANDFNs is the atom DON'T, the window will not be expanded.
Otherwise, the EXPANDFNs are called after the window has been expanded by
EXPANDW (page 19.28), with the window as a single argument

[Window Property]
If the S C RO L L F N property is NIL, the window will not scroll. Otherwise, it should
be' a function of four arguments: (1) the window being scrolled, (2) the distance
to scroll in the horizontal direction (positive to right, negative to left), (3) the
distance to scroll in the vertical direction (positive up, negative down), and (4) a
flag which is T if the scrolling button is being held down. For more infonnation,
see SCROLL. HANDLER (page 19.24). For most scrolling windows, the SCROLLFN
function should be SCROLLBYREPAINTFN (page 19.24).

[Window Property]
The NEWREGIONFN is passed as the NEWREGIONFN argument to GET REG ION
(page 19.37) when the window is reshaped.

[Window Property]
The RES HA P E F N window property can be a single function or a list of functions that
are called when a window is reshaped by SHAPEW (page 19.26). If the RESHAPEFN
is DON'T or a list containing DON'T, the window will not be reshaped. Otherwise,
the function(s) are called after the window has been reshaped, its coordinate system
readjusted to the new position, the title and border displayed, and the interior filled
with texture. The RESHAPEFN should display any additional infonnation needed
to complete the window's image in the new position and shape. The RESHAPEFN
is called with three arguments: (1) the window in its reshaped fonn, (2) a bitmap

19.31

REPAINTFN

MOVEFN

AFTERMOVEFN

Miscellaneous Properties

with the contents of the old window, and (3) the region within the bitmap that
contains the old image. This function is provided so that users can refonnat

. \Yindow contents or whatever. RESHAPEBYREPAINTFN (page 19.33) is the default
and should b~ useful for many windows.

[Window Property]
The REPAINTfN window property can be a single function or a list of functions
that are called to repaint parts of the window by REDISPLAYW (page 19.27). The
REPAINTFNs are called with two arguments: the window and the region in the
coordfuates of the window's display stream of the area that should be repainted.
Before the REPAINTFN is called. the clipping region of the window is set to clip
all display operations to the area of interest so that the REPAINTFN can display
the entire window contents and the results will be appropriately clipped. (Note:
CLEARW (page 19.27) should not be used in REPAINTFNs because it resets the
window's coordinate system. If aRE PAl N T F N wants 'to clear its region first, it
should use DSPF I LL (page 19.12).)

[Window Property]
If the MOVEFN is DON'T, the window will not be moved by MOVEW (page 19.26).
Otherwise, if the MOVE FN is non-N I L, it should be a function or a list of functions
that will be called before a window is moved with two arguments: the window
being moved and the new position of the lower left comer in screen coordinates.
If the 'MOVE F N returns DON'T, the window will not be moved. If the MOVE F N
returns a POS I T ION, the window will be moved to that position. Otherwise, the
window will be moved to the specified new position.

[Window Property]
If non-N I L, it should be a function or a list of functions that will be called after
the window is moved (by MOVEW, page 19.26) with the window as an argument.

19.12.7.3 Miscellaneous Properties

TITLE

BORDER

EXTENT

[Window Property]
Accesses the title of the window. If a title is. added to a window whose title
is NIL or the title is removed (set to NIL) from a window with a title, the
window's exterior (its region on the screen) is enlarged or reduced to accomodate
the change without changing the window's interior. For example, (WINDOWPROP
WlNDOW 'T IT L E " Re s u 1 t s ") changes the title of WINDOW to be "Results".
(WINDOWPROP WlNDOW 'TITLE NIL) removes the title of WINDOW.

[Window Property]
Accesses the width of the border of the window. The border will have at most 2
point of white (but never more than half) and the rest black. The default border
is the value of the global variable WBo rde r (initially 4).

[Window Property]
Used to limit scrolling operations (see page 19.23). Accesses the extent region of
the window. If non-NIL, the EXTENT is a region in the window's display stream
that cor,ttains the complete image of the object being viewed by the window. User
programs are responsible for updating the EXT E NT. The functions UN ION REG ION 5,

19.32

PROCESS

PAGEFULLFN

INTERLISP-D DISPLAYFACILmES

EXT END REG ION, -etc. (page 19.3) are useful for computing a new extent region.

In some situations, it is useful to define an EXT E NT that only exists in one
. dimension. This may be done by specifying an EXT E NT region with a width or
height of -1. SCROLLFN handling recognizes this situation as meaning that the
negative EXT E NT dimension is unknown.

[Window Property]
If the PROCESS window property is nonDNIL, it should be a PROCESS and will
be made the TIY process by GIVE. TTY .PROCESS (page 18.34), the default
WINDOWENTRYFN property. This implements the mechanism by which the
keyboard is associated with different processes. .

[Window Property]
If the PAG·E·f.ULLFN is non-NIL, it will be called with the window as a single
argument when the window is full (Le., when enough has been printed since the

-last TTY interaction so that the next character printed will cause infonnation to
be scrolled off the top of the window.) If the PAGEFULLFN is NIL, the system
function PAGE FULLFN (page 19.33) is called.

Note: PAGEFULLFN is only called on windows which are the TTYDISPLAYSTREAM
of some process (see page 19.15).

The following properties are read-only (Le. their property values cannot be changed using WINDOWPROP.

DSP

HEIGHT
WIDTH

REGION

[Window Property]
Value is the display stream of the window. All system functions will operate on
either the window or its display stream.

[Window Property]
[Window Property]

Value is the height and width of the interior of the window (the usable space not
counting the border and title).

[Window Property]
Value is a region (in screen coordinates) indicating where the window (counting
the border and title) 'is located on the screen.

19.12.8 Auxiliary Functions

(RESHAPEBYREPAINTFN WINDOW OLDIMAGE OLDREGION) [Function]
It B I TB L Ts the old region contents into the lower left comer of the new region. If
the new shape is larger in either or both dimensions, the new areas exposed are to
the top and right of the old-image. When this happens, RESHAPEBYREPAINTFN
calls WINDOWS REPAINTFN (page 19.32) to display the newly exposed region's
contents. Note that this may result in two calls to the REPAINTFN.

(PAGEFULLFN WINDOW) [Function]
If the window property PAGEFULLFN (page 19.33) is NIL. when the window is full
the system function PAGEFULLFN is called. PAGEFULLFN simply returns if there
are characters in the type-in buffer for WTNDOW, otherwise it inverts the window

19.33

Example: A Scrollable Window

and waits for the user to type a character. PAGEFULLFN is user advisable.

19.12.9, Example: A Scrollable Window

The following is a simple example showing how one might create a scrollable window.

CREATE. PPWINDOW creates ,a window that displays the pretty printed expression EXPR. The window
properties PPEXPR. PPORIG~, and PPORIGY are used for saving this expression, and the initial window
position. Using this inform~tion, REPAINT. PPWINDOW simply reinitializes the window position, and
prettyprints the expression again. Note that the whole expression is reformatted every tjrne, even if only
a small part actually lies within the window. If this window was going to be used to display very large

I

structures, it would be desirable'to implement a more sophisticated REPAINTFN that only redisplays that
part of the expression within the window. However, this scheme would be satisfactory if most of the
items to be displayed are small: -

RESHAPE. PPWINDOW resets the' window (and stores the initial window position), calls REPAINT. PPWINDOW
to display the window's expression. and then sets the EXTENT property of the window so that
SCROLLBYREPAINTFN will ~e able to handle scrolling and "thumbing" correctly.

(DEFINEQ

(CREATE.PPWINDOW
[LAMBDA (EXPR) (* "b 14 4-0CT-82 12:06'')

(* create$ a window that displays
a pretty printed expression.)

(P ROG (WINDOW) (* ask the user for a piece of the
screen and make it into 'a window.)

{SETQ WINDOW (CREATEW NIL "PP window"»
(* put the expression on the
property list of the window so that
the repaint and reshape functions
can access it)

(WINDOWPROP WINDOW (QUOTE PPEXPR)
-. EX P R) (* set the repaint and reshape

jUnctions.)
(WINDOWPROP WINDOW (QUOTE REPAINTFN)

(FUNCTION REPAINT.PPWINDOW»
(WINDOWPROP WINDOW (QUOTE RESHAPEFN)

(FUNCTION RESHAPE.PPWINDOW»
(* make the scroll function
SCROLLBYREPAINTFN, a system
jUnction that uses the repaint '

! jUnction to do scrolling.)
(WINDOWPROp:WINDOW (QUOTE SCROLLFN)

(FUNCTION SCROLLBYREPAINTFN»

(RESHAPE.PPWINDOW WINDOW)

(* call the reshape function to
initially print the expression and
calculate its extent.)

19.34

INTERLISP-D DISPLAY FACILITIES

(RETURN WINDOW])

(REPAINT.PPWINDOW
[LAMBDA (WINDOW REGION) (* "b U 4-D.CT-82 11:52',

(* the repainting jUnction for a window with a pretty printed expression.
This repainting junction ignores the region to be repainted and repaints
the entire window.) ,

(* set the window position to the
beginning of the pretty printing
of the expression.)

(MOVETO (WINDOWPROP ~INDOW (QUOTE PPORIGX»
(WINDOWPRO~-WINDOW (QUOTE PPORIGY»
WINDOW)

(PRINTDEF (WINDOWPROP WINDOW (QUOTE PPEXPR»
a NIL NIL NIL WINDOW])

(RESHAPE.PPWINDOW
[LAMBDA (WINDOW)

(PROG (BTM)

(* "b '64-0CT-82 12:01")
(* the reshape function for a
window with a pretty printed
expression.)

(* set the position of the window so that the first character appears in
the upper left corner and save the X and Y for the repaint jUnction.)

(DSPRESET WINDOW)
(WINDOWPROP WINDOW (QUOTE PPORIGX)

(DSPXPOSITION NIL WINDOW»
(WINDOWPROP WINDOW (QUOTE PPORIGY)

(DSPYPOSITION NIL WINDOW»

(REPAINT.PPWINDOW WINDOW)

(* call the repaint jUnction to
pretty print the expression in
the newly cleared window.)

(* save the region actually covered by the pretty printed expression so
that the scrolling routines will know where to stop. The pretty printing
of the expression does a carriage return after the last piece of the
expression printed so that the cu"ent position is the base line of
the next line of text. Hence the last visible piece of the expression

~ (BTM) is the ending position plus the height of the font above the
base line e.g its ASCENT.}

(WINDOWPROP WINDOW (QUOTE EXTENT)
(create REGION

LEFT +- a

19.35

)

Interactive Display Functions

BOTTOM ~[SETQ BTM (IPLUS (DSPYPOSITION NIL WINDOW)
(FONTPROP WINDOW (QUOTE ASCENT]

WIDTH ~(WINDOWPROP WINDOW (QUOTE WIDTH»
HEIGHT ~(IDIFFERENCE (WINDOWPROP WINDOW (QUOTE HEIGHT»

BTM])

19.13 INTERACfIVE DISPLAY FUNCI10NS

The following functions allow the user to interactively specify positions or regions on the display screen.

(GETPOSITION WINDOW CURSOR) [Function]
Returns a POSITION that is specified by the user. GETPOSITION waits for the
user to press and release the left button of the mouse and returns the cursor
position at the time of release. If WINDOW is a WINDOW, the position will be in the
coordinate system of WINDOw'S display stream. If WINDOW is NIL, the position
will be in screen coordinates. If CURSOR is a CURSOR, the cursor will be changed
to it while GET PO SIT ION is running. If CURSOR is NIL, the value of the system
variable CROSSHAI RS will be used as the cursor.

(GETBOXPOSITION WIDTH HEIGHT ORGX ORGY WINDOW PROMPTMSG) [Function]
Allows the user to position a "ghost" region of size WIDTH by HEIGHT on the
screen~ and returns the POS IT ION of the lower left comer of the region. If
PROMPTMSG is non-NIL, GETBOXPOSITION first prints it in the PROMPTWINOOW.
GETBOXPOSITION then changes the cursor to a box (using the global variable
BOXCURSOR). If ORGX and ORGY are numbers, they are taken to be the original
position of the region, and the cursor is moved to the nearest comer of that region.
The user is then free to move the cursor around the screen. When ~ mouse button
is depressed, a ghost region is locked to the cursor so that if the cursor is moved,
the ghost region moves with it. If ORGX and ORGY are numbers, the comer of
the original region that is nearest the cursor 'position at the time the button is
pressed is locked, otherwise the lower left comer is locked. The user can change
to another comer by continuing to hold down the left button' and holding down
the rigpt button also. With both buttons down. the cursor can be moved across
the scteen without effect on the ghost region frame. When the right button is
release~ the mouse will snap to the nearest comer, which will then become locked
to the cursor. When all buttons are released, the lower left comer of the region
is returned. If WINDOW is a WINDOW, the returned position will be in WINDOw'S
coordinate system; otherwise it will be in screen coordinates. '

Example:

(GETBOXPOSITION 100 200 NIL NIL NIL
"Specify the position of the command area.")

19.36

INTERLISP-D DISPLAY.FACILITIES

prompts the user fora 100 wide by 200 high region and returns its lower left comer
in screen coordinates.

(GET REG ION MINWIDTH MINHEIGHT INITREGION NEWREGIONFN NEWREGIONFNARG) [Function]
Lets the user specify a new region and returns that region in screen coordinates.
GETREGION prompts for a region by displaying a four-pronged box next to the
cursor arrow. If the user presses the left button, one comer of a ughost" region
outline is locked to that point and the opposite comer is locked to the cursor. As
the cursor moves, the outline expands. To specify a region, the user moves the
cursor to one comer of the intended region, presses the left button, moves the
cursor to the opposite comer while holding down the left button, and then releases
the button. .

If INITREGION is a REG ION and the user presses the middle button, the comer of
INITREGION farthest from the cursor position is fixed and the comer nearest the
cursor is locked to the cursor.

One can switch from one comer to another while positioning the region. To change
to another comer, continue to hold down the left button and hold down the right
button also. With both· buttons down, the cursor can be moved across the screen
without effect on the ghost region frame. When the right button is released, the
cursor will snap to the nearest comer, which will become the moving comer. In
this way, the region may be moved allover the screen, before its size and position
is finalized.

MINWIDTH and MINHEIGHT, if given, are the smallest WIDTH and HE IGHT that
the returned region will have. If the user specified region is smaller, it will be
increased in width or height to these dimensions.

If NEWREGIONFN is non-N I L, it will be called to determine values for the positions
of the comers. This provides a way of "filtering" prospective regions; for instance,
by restricting the region to lie on an arbitrary grid. When the user is specifying a
region, the region is determined by two of its comers, one that is fixed and one that
is tracking the cursor. Each time the cursor moves or a mouse button is pressed,
NEWREGIONFN is called with three arguments: FDCEDPOINT, the position of the
fixed comer of the prospective region; MOVTNGPOINT, the position of the opposite
comer of the prospective region; and NEWREGIONFNARG. NEWREGIONFNARG

allows the caller of GETREGION to pass information to the NEWREGIONFN. The
first time a button is pressed, MOVTNGPOINT is NIL and FIXEDPOINT is the position
the user selected for the fixed comer of the new region. In this case, the position
returned by NEWREGIONFN will be used for the fixed comer instead of the one
proposed by the user. For all other calls, FIXEDPOINT is the position of the fixed
comer (as returned by the previous call) and MOVINGPOINT is the new position the
user selected. for the opposite comer. In these cases, the value of NEWREGIONFN

is used for the opposite comer instead of the one proposed by the user. In all
cases, the ghost region is drawn with the values returned by NEWREGIONFN.

(GETBOXREGION WIDTH HEIGHT ORGX ORGY WINDOW PROMPTMSG) [Function]
Performs the same prompting as GETBOXPOSITION and returns the REGION
specified by the user instead of the POSIT ION of its lower left comer.

19.37

Menus

19.14 MENUS

A menu is basically a means of selecting from a list of items. The system provides common layout
and interactive user selection ,mechanisms, then calls a user-supplied function when a selection has been
confirmed. The two major constituents of a menu are a list of items and a "when selec,ted function."
The label that appears for each item is the item itself for non-lists, or its CAR if the item is a list The
menu includes a position on the screen where it will Qe displayed and a means of specifying the place
in the menu that is to be put at that position. In addition, there are a multitude of different formatting
parameters for specifying font. size, and layout When a menu is created. its unspecified fields are filled
with defaults and its screen image is computed and saved.

Menus can be either pop up or fixed. If fixed menus are used. the menu must be included in a window.

(MENU MENU POSITION_) [Function]
This function provides menus that pop up when they are used. It displays MENU
at. POStTION (in screen coordinates) and waits for the user to select an item with
a mouse key. While any key is down, the selected menu item is video reversed .

. When an keys are released, MENtiS WHENSELECTEDFN field is called with three
arguments: (1) the item selected, (2) the menu, and (3) the last mouse key released
(LEFT. MIDDLE, or RIGHT), and MENU returns its value. If no item is selected,
MENU returns NIL. If POSITION is NIL, the menu is brought up at the value from
MENUS MENUPOSITION field, if it is a POSITION, or at the current cursor position.
The orientation of MENU with respect to the specified position is detennined by its
MENUOF FSET field.

(ADDMENU MENU WINDOW ,POSITION -) [Function]
This function provides menus that remain active in windows. ADDMENU displays
MENU :at POSITION in WINDOW (POSITION is defaulted as in MENU except
that it is in window coordinates). MENU is added to the MENU property of
WINDOW. The CURSORINFN and BUTTONEVENTFN of WINDOW are replaced with
MENUBUTTONFN, so that MENU will be active during TTY wait. RESHAPEFN of
WINDOW is set to restore MENtis image when the window is reshaped. When an
item is selected. the value of the WHENSELECTEDFN field of MENU is called with
three arguments: (1) the item selected, (2) the menu, and (3) the mouse key that
the item was selected with (LEFT, MIDDLE, or RIGHT). More than one menu can
be put in a window, bll.t a menu can only be added to one window at a time. If
WINDOW is not given, a window is created at POSITION (in screen coordinates) that
is the size of MENU.

ADDME NU retuqls the window into which MENU is placed.

(DELETEMENU MENU CLOSEFLG FROMWINDOW) [Function]
This function removes MENU from the window FROMWlNDOW. If MENU is the only
menu in the window and CLOSEFLG is non-N I L, its window will be closed (by
CLOSEW).

If FROMWINDOW is NIL, the list of currently active (open) windows is searched
for one that contains MENU. If non is found, DELETEMENU does nothing.

19.38

INTERLISP-DDISPLAY FACILITIES

19.14.1 Menu Fields

A menu is a datatype with the following fields:

ITEMS [Menu Field]
The list of items to appear in the menu. If an item is a list, its CAR will appear
in the menu. If the item (or its CAR) is a bitmap, the bitmap will be displayed
in the menu. The default selection functions interpret each item as a list of three
elements: a label, a form whose value is returned upon selection,and a help string
that is printed in the prompt window when the user presses a mouse key with the
cursor pointing to this item. "

WHENSELECTEDFN [Menu Field]
A _ function to be called when an item is selected. The function is called with
three arguments: (1) the item seleCted, (2) the menu, and (3) the mouse key that
the item was selected with (LEFT, MIDDLE, or RIGHT). The default function
DEFAUL TWHENSELECTEDFN evaluates and returns the value of the CADR of the
item if there is one, or simply returns the "item if it is not a list or if its CAD R is
NIL

WHENHELDFN [Menu Field]
The function which is called when the user has held a mouse key on an item for
MENUHELDWAIT milliseconds (initially 1200). The function is called with three
arguments: (1) the item selected, (2) the menu, and (3) the mouse key that the
item was selected with (LEFT, MIDDLE, or RIGHT). WHENHELDFN is intended
for prompting users. The default is DEFAUL TMENUHELDFN which prints (in the
prompt window) the third element of the item or, if there is not a third element,
the string ''This item will be selected when the button is released."

WHENUNHELDFN " [Menu Field]
IfWHENHELDFN was called, WHENUNHELDFN will be called: (1) when the cursor
leaves the item, (2) when a mouse key is released, or (3) when another key is
pressed. The function is called with the same three argument values used to call
WHENHELDFN. The default WHENUNHELDFN is the function CLRPROMPT (page
19.19), which just clears the prompt window.

MENUPOSITION [Menu Field]
The position of the menu to be used if the call to MENU or ADDMENU does not
specify a position. For popup menus, this is in screen coordinates. For fixed
menus, it is in the coordinates of the window the menu is in. The point within
the menu image that is placed at this position is determined by MENUOFFSET. If
MENUPOSITION is NIL, the menu will be brought up at the cursor position.

MENUOFFSET [Menu Field]
The position in the menu image that is to be located at MENU POS I T ION. The
default offset is (0,0). For example. to bring up a menu with the cursor over a
particular menu item, set its MENUOFFSET to a position within that item and set
its MENUPOSITION to NIL.

MENUFONT [Menu Field]
The font in which the items will be appear in the menu. Default is the value of

19.39

· .
Menu Fields

MENUFONT, initially Helvetica 10.

TIT L E [Menu Field]
If· specifiecL a title will appear in a line ·above the menu. The title will be in the
same font as window titles.

CENTERFLG [Menu Field]
If non~N I L, the menu items are centered; otherwise they are left-justified.

MENUROWS [Menu Field]
MENUCOLUMNS [Menu Field]

These: fields control the shape of the menu in terms of rows and columns. If
MENUROWS is given, the menu will have that number of rows. If MENUCOLUMNS
is given, the menu will have that number of columns. If only one is given, the

- -other one will be calculated to generate the minimal rectangular menu. (Normally
only one of MENUROWS or MENUCOLUMNS is given.) If neither is given, the items
will be in one column.

ITEMHE IGHT [Menu Field]
The height of each item box in the menu. If not specified, it will be the maximum
of the height of the MENUFONT and the heights of any bitmaps appearing as labels.

ITEMWIDTH [Menu Field]
The w~dth of each item box in the menu. If not specified, it will be the width of
the largest item in the menu.

MENUBORDERSIZE [Menu Field]
The siZe of the border around each item box. If not specified, 0 (no border) is
used.

MENUOUTLINESIZE [Menu Field]
The size of the outline around the entire menu. If not specified, a maximum of 1
and the MENUBORDERSIZE is used.

CHANGEOFFSETFLG [Menu Field]
(popup menus only) If CHANGEOFFSETFLG is non-NIL, the position of the menu
offset is set each time a selection is confirmed so that the menu will come up
next time in the same position relative to the cursor. This will cause the menu to
reappe~ in the same place on the screen if the cursor has not moved since the
last selection. This is implemented by changing the MENUOFFSET field on each
use. If CHANGEOFFSETFLG is the atom X or the atom Y, only the X or the Y
coordinate of the MENUOFFSET field will be changed. For example, by setting the
MENUOiFFSET position to (-1,0) and setting CHANGEOFFSETFLG to Y, the menu
will po'p up so that the cursor is just to the left of the last item selected. This is
the setting of the window command menus.

The following fields are read only.

IMAGEHEIGHT
Returns the height of the entire menu.

19.40

[Menu Field]

-INTERLISP-D -DISPLAY FACILITIES

IMAGEWIDTH [Menu Field]
Returns the width of the entire menu.

19.14.2 Miscellaneous Menu Functions

(WFROMMENU MENU) [Function]
· Returns the window MENU is located in, if it i~ in one; NIL otherwise.

(DOSELECTEDITEM MENU ITEM BUTTON) [Function]
Calls MENtIS WHENSELECTEDFN on ITEM and BUTTON. It provides a programmatic
way of making a selection. It does not change the display.

(MENUITEMREGION ITEM MENU) [Function]
- Returns the region occupied by ITEM in MENU.

(SHADE ITEM ITEM MENU SHADE DSORW) [Function]
Shades the region occupied by ITEM in MENU. If DSORW is a display stream or a
window, it is assumed to be where MENU is displayed. Otherwise, WFROMMENU is
called to locate the window MENU is in.

19.14.3 Examples of Menu Use

(cr-eate MENU ITEMS +- '«YES T) (NO»)

Creates a menu with items YES and NO in a single vertical column. If YES is selected, T will be returned.
Otherwise, NIL will be returned.

(create MENU ITEMS +- '(1 2 3 4 5 6 7 8 9 * 0 #)
CENTERFLG +- T
MENUCOLUMNS +- 3
MENUFONT +- (FONTCREATE 'HELVETICA 10 'BOLD)
ITEMHEIGHT +- 15
ITEMWIDTH +- 15
CHANGEOFFSETFLG +- T)

Creates a touch-tone-phone number pad with the items in 15 by 15 boxes printed in Helvetica 10 bold
font. If used in pop up mode, its first use will have the cursor in the middle. Subsequent use will have
the cursor in the same relative location as the previous selection.

(SELECTQ [MENU
(CONO «type? MENU FOOMENU)

(* use previously computed menu.)
FOOMENU)

(T (* create and save the menu)
(SETQ FOOMENU

(create MENU
ITEMS +- '«A 'A-SELECTED "prompt string for A")

(B 'B-SELECTED "prompt string for B"]
(A-SELECTED (* if A is selected) (DOATHING»

19.41

Grid Functions

(B-SELECTED (* if B is selected) (DOBTHING»
(PROGN (* user selected outside the menu) NIL»)

This expression displays a pop up menu with two items, A and S, and waits for the user to select one. If
A is selected, DOA T H I NG is called. If S is selected, DOB T H I NG is called. If neither of these is selected,
the form returns NIL:

The purpose of this example is to show some good practices to follow when using menus. First. the menu
is only created once, and saved in the variable FOOMENU. This is more efficient if the menu is used more
than once. Second, all of the information about the menu is kept in one place, which makes it easy to
understand and edit. Third, the forms evaluated as a result of selecting something from the menu are
part of the code and hence will be known to masterscope (as opposed to the situation if the forms were
stored as part of the items). Fourth, the items in the menu have help strings for the user. Finally, the
code is commented (always worth the trouble).

19.15 GRID FUNCTIONS

A Grid is a partitioning of an arbitrary coordinate system (hereafter referred to as the "source system")
into rectangles. This subsecp,on describes functions that operate on Grids. It includes functions to
draw the outline of a Grid, tp translate between positions in a source system and Grid coordinates (the
coordinates of the rectangle which contains a given position), and to shade Grid rectangles. A Grid is
defined by its "unit grid", a region (called a GridSpec) which is the origin rectangle of the Grid in terms
of the source system. Its LEFT is the X-coordinate of the left edge of the origin rectangle, its BOTTOM is
the Y-coordinate of the bottom edge of the origin rectangle, its WIDTH is the width of the grid rectangles,
and its HE IGHT is the height.of the grid rectangles.

(GRID GRIDSPEC UNlTSWIDE UNITSmGH GRIDBORDER DISPLAY STREAM GRIDSHADE) [Function]
Outlines the grid defined by GRIDSPEC which is UNITSWIDE rectangles wide and
UNITSmGH rectangles high on DISPLAYSTREAM. Each box in the grid has a border
within it that is GRIDBORDER points on each side; so the resulting lines in the grid
are 2*GRlDBORDER thick. If GRIDBORDER is the atom POINT, instead of a border
the lower left point of each grid rectangle will be turned on. If GRIDSHADE is
non-N IL, it should be a texture and the border lines will be drawn in that shade.

(SHADEGRIDBOX x Y SHAIJE OPERATION GRIDSPEC GRIDBORDER DISPLAYSTREAM) [Function]
Shades: the grid rectangle (x, Y) of GRIDSPEC with texture SHADE using OPERATION
on DISPLAYSTREAM. GRIDBORDER is interpreted the same as for GRID.

The following two functions map from the X, Y coordinates of the source system into the Grid X, Y
coordinates:

(GRIDXCOORD XCOORD GRlDSPEC) [Function]
Returns the Grid X -coordinate (in the Grid specified by GRIDSPEC) that contains
the source system X -coordinate XCOORD.

(GRIDY~OORD YCOORD GRlDSPEC) [Function]
Returns the Grid Y -coordinate (in the Grid specified by GRIDSPEC) that contains
the soutce system Y -coordinate YCOORD.

19.42

INTERLISP-D DISPLAY FACILITIES

The following· two·· functions· map from the Grid X, Y coordinates into the X, Y coordinates of the source
system:

(LEFTOFGRIDCOORD GRIDX GRIDSPEC) [Function]
. Returns the source system X -coordinate of the left edge of a Grid rectangle at Grid

X -coordinate GRIDX (in the Grid specified by GRIDSPEC).

(BOTTOMOFGRIDCOORD GRIDY GRIDSPEC) [Function]
Returns the source system Y -coordinate of the bottom edge of a Grid rectangle at
Grid Y -coordinate GRIDY (in the Grid specified by GRIDSPEC).

19.16 COLOR GRAPHICS

Note: This section" describes the Interlisp-D facilities for using a color display. To use these facilities you
need to have a Xerox 1100 or Xerox 1132 'with a color display attached, and you must load in the LispUsers
files COtOR. DCOM and LLCOLOR. DCOM (automatically loaded by COLOR. DCOM).

/

The color boards on the Xerox 1100 and the Xerox 1132 differ in design. The Xerox 1100 board supports
4 bits per pixel color. The Xerox 1132 supports 4 or 8 bits per pixel. All of the user's code should be
written in higher level machine independent functions.

Both color boards produce an image that is 640 pixels wide by 480 pixels high. The image can be thought
of as a paint-by~number painting where the number of a pixel is its value. The number of bits per pixel
(4 on the Xerox 1100, 4 or 8 on the Xerox 1132) determines the number of difference colors that can
be displayed at one time. When there are 4 bpp, 16 colors can be displayed at once. When there are
8 bpp, 256 colors can be displayed at once. A mapping table called a "color map" determines what
color actually appears for each pixel value. A color map gives the color in terms of how much of the
three primary colors (red, green and blue) displayed on the screen for each possible pixel value. In the
following sections, the notions of "color map", and "color" are described.

19.16.1 Color Bitmaps

A "color bitmap" is actually just a bitmap that allows more than one bit per pixel. To test whether a
bitmap x is a "color bitmap", use the following form:

(NEQ (fetch (BITMAP BITMAPBITSPERPIXEL) of x) 1)

Color bitmaps are created by calling BITMAPCREATE (page 19.4) with a BITSPERPIXEL argument of
anything other than 1 or NIL. Currently, any value of BITSPERPIXEL except 1, 4, 8 or NIL (defaults to
1) will cause an error.

A 4 bit per pixel color screen bitmap uses approximately 76k of storage. There is only one such bitmap.
The following function provides access to it:

(COLORSC RE E NB I TMAP) [Function]
Returns the color bitmap that is being or will be displayed on the color display_ This
will be NIL if the color display has never been turned on (see COLORDISPLAY.
page 19.47).

19.43

Color Specifications

WHOLECOLORDISPLAY [Variable]
A global variable set to a REG ION that covers the entire color display screen.
Currently this is (CREATEREGION 0 0 640 480).

COLORSCREENWIDTH [Variable]
The width of the color display. Currently 640.

COLORSCREENHEIGHT [Variable]
The height of the color display. Currently 480.

19.16.2 Color Specifications

A color map maps a color number (from 0 to 2BITSPERPDCEL_1) into the intensities of the three color
guns (red., green and blue). Each entry in the color map has 8 bits for each of the primary colors
allowing 256 levels per primary or 224 possible colors (not all of which are distinct to the human
eye). Within Interlisp-D programs. colors can be manipulated as numbers, red-green-blue triples, names.
or hue-lightness-saturation triples. Any function that takes a color will accept any of the different
specifications.

If a number is given, it will be the color number used in the operation. It must be valid for the color
bitmap used in the operation. (Since all of the routines that use a color need to determine its number,
it is fastest to use numbers for colors. COLORNUMBERP described below provides a way to translate into
numbers from the other representations.)

A red.;.green-blue (RGB) triple is a list of three numbers between 0 and 255. The first element gives
the intensity for RED, the second for GREEN and the third for BLUE. When an ROB triple is used.,
the current color map is searched to find the color with the correct intensities. If none is found., an
error is generated. (That is. no attempt is made by the system to assign color numbers to intensities
automatically.) Example of ali ROB triple is (255 255 255) which gives the color white. The record RGB
with 'fields RED, GREEN, and BLUE is provided to manipulate ROB triples.

A color name is an atom that is on the association-list COLORNAMES. The CDR of the color name's entry
will be used as the color corresponding to the color name. This can be any of the other representations.
(Note: It can even be another color name. Loops in the name space such as would be caused by putting
'(RED • CRIMSON) and '(CRIMSON • RED) on COLORNAMES are not checked for by the system.)
Several color names are available in the initial system and are intended to allow color programs written
by different users to coexist. These are:

19.44

INTERLISP-D DISPLAY FAQLITIES

name ROB number in default color map

BLACK (0 0 0) 0

BLUE (0 0 255) 1

GREEN (0 255 0) 2

CYAN (0 255 256) 3

RED (266 0 0) 4

MAGENTA (255 0 255) 5

YELLOW (256 255 0) 6

WHITE (256 255 255) 7

A hue-tightness-saturation triple is a list of three numbers. The first number (hue) is between 0 and 355
and indicates a position in degrees on a color wheel (blue at 0, red at 120 and green at 240). The second
(lightness) is a FLOATP between 0 and 1 which indicates how much total intensity is in the color. The
third (saturation) is aFLOAT P between 0 and 1 which indicates how disparate the three primary levels
are. The record HLS with fields HUE, LIGHTNESS, and SATURATION is provided to manipulate HLS
triples. Example: the color blue is represented in HLS notation by (0 .5 1.0).

(COLORNUMBERP COLOR BITSPERPIXEL NOERRFLG) [Function]
Returns the color number (offset into the screen color map) of COLOR. COLOR
should be either (1) a positive number less than the maximum number of colors,
(2) a color name, (3) an ROB triple" or (4) an HLS triple. If COLOR is one of the
above and is found in the screen colonnap, its color number in the screen color
map is returned. If not, an error is generated unless NOERRFLG is non-N I L, in
which case NIL is returned.

(RGB P x) [Function]
Returns x if x is an ROB triple; NIL otherwise.

(HLSP x) [Function]
Returns x if x is an HLS triple; NIL otherwise.

19.16.3 Color Maps

The screen color map holds the infonnation about what color is displayed on the color screen for each
pixel value in the color screen bitmap. The values in the current screen color map may be changed and
this change will be reflected in the colors being displayed at the next vertical retrace (approximately 1/30
of a second). Changing the color map can be used to get dramati~ effects.

(COLORMAPCREATE INTENSITIES BITSPERPIXEL) [Function]
Creates a color map for a screen that has BITSPERPIXEL bits per pixel. If
BITSPERPIXEL is NIL, the number of bits per pixel is taken from the current
color display setting. INTENSITIES specifies the initial colors that should be in
the map. If INTENSITIES is not NIL, it should be a list of color specifications

19.45

Color Maps.

(other than color numbers), e.g. the list of ROB triples returned by the
function INTENSITIESFROMCOLORMAP (below). If INTENSITIES is NIL, the
default is the value of \DEFAUL TCOLORINTENSITIES (if BITSPERPIXEL is 4) or
\DEFAULT8BITCOLORINTENSITIES (if BITSPERPIXEL is 8).

(COLORMAPP COLORMAP?BITSPERPDCEL) [Function]
Returns COLORMAP? if it .is a color map that has BITSPERPIXEL bits per pixel;
NIL otherwise. If BITSPERPIXEL is N I Ly it returns COLORMAP? if it is either a 4

. bits per pixel or an 8 bits per pixel colormap.

(INTENSITIESFROMCOLOAMAP COLORMAP) [Function]
Retums a list of the intensity levels of COLORMAP (default is (SCREENCOLORMAP»
in a form accepted by COLORMAPCREATE. This list can be written on file and thus
provides a way of saving color map specifications.

(COLORMAPCOPY COLORMAP BITSPERPIXEL) [Function]
If COLORMAP is a color map, it returns a color map that contains the same color
intensities as COLORMAl'; otherwise it returns a color map with default color values.

(SCREENCOLORMAP NEwCqLORMAP) [Function]
Reads and sets the color map that is used by the color display. If NEWCOLORMAP
is non~NIL, it should be a color map and SCREENCOLORMAP sets the system color
map tq be that color map. Returns the previous value of the screen color map. If
NEWCOLORMAP is NIL, the current screen color map is returned without change.

(MAPOFACOLOR PfUMARIES:) [Function]
Returns a color map which is different shades of one or more of the primary
colors.; For example, (MAPOFACOLOR '(RED GREEN BLUE» gives a color map
of different shades of gray; (MAPOFACOLOR 'RED) gives different shades of red.

The following functions are provided to access and change the intensity levels in a color map.

(SETCOLORINTENSITY COLORMAP COLORNUMBER COLORSPEC) [Function]
Sets the primary intensities of color number COLORNUMBER in the color map
COLOR-MAP to the ones specified by COLORSPEC. COLORSPEC can be either an
RO B t,riple, an HLS triple or a color name. Returns NIL.

(COLORLEVEL COLORMAl' :COLORNUMBER PRIMAR)YCOLOR NEWLEVEL) [Function]
Sets and reads the intensity level of the primary color PRlMARYCOLOR (either
RED, GREEN or BLUE) for the color number COLORNUMBER in the color map
COLORMAP. If NEWLEVEL is a number between 0 and 255, it is set. The previous
value of the intensity of PRIMARYCOLOR is returned.

(ADJUSTCOLORMAP PRIMAR.YCOLOR DELTA COLORMAP) [Function]
Adds QELTA to the intensity of the primary color PRIMARYCOLOR (either RED,
GREENl or BLUE) for every color number in COLORMAP.

(ROTATECOLORMAP COLORMAP STARTCOLOR THRUCOLOR) [Function]
Rotates a sequence of colors in COLORMAP. The rotation moves the intensity values
of colo, number STARTCOLOR into color number STARTCOLOR + 1. the intensity
values of color number STARTCOLOR + 1 into color number STARTCOLOR + 2, etc.
and THRUCOLOR'S values into STARTCOLOR.

19.46

INTERLISP-D DISPLAY FACILITIES

(EDITCOLORMAP VAR NOQFLG) . [Function]
Allows interactive editing of a color map. If VAR is an atom whose value is a color
map, its value is edited. Otherwise a new color map is created and edited. The
color map being edited is made the screen color map while the editing is taking
place so that its effects can be observed. The edited color map is returned as the
value.

If NOQFLG is NIL and the color display is on, the user is asked if they want a test
pattern of colors. A yes response will cause the function SHOWCOLORTESTPATTERN
to be called which will display a test pattern with blocks of each of the possible
colors.

The user is prompted for the location of a color control window to be placed on
the black and white display. This window allows the value of any of the colors
to be changed. The color number of the color being edited is in the upper left
part of the window. Six bars are displayed. The right three bars give the color
intensities for the three primary colors of the current color number. The left three
bars give the value of the color's Hue. Lightness and Saturation parameters. These
levels can be changed by positioning the cursor in one of the bars and pressing the
L EFT button. While the L EFT button is down, the value of that parameter will
track the Y position of the cursor. When the LE FT button is released, the color
tracking stops. The color being edited is changed by pressing the MIDDLE button
while the cursor is in the interior of the edit window. This will bring up a menu
of color numbers. Selecting one sets the current color to the selected color.

The color being edited can also be changed by selecting the menu· item "PickPt".
This will switch the cursor onto the color screen and allow the user to select a
point from the color screen. It will then edit the color of the selected point

To stop the editing, move the cursor into the title of the editing window and press
the MIDDLE button. This will bring up a menu. Select STOP to quit.

19.16.4 Turning the Color Display On and OtT

The color display can be turned on and off. While the color display is on, the memory used for the color
display screen bitmap is locked down and a significant amount of processing time (35% on the Xerox
1100) is used to drive the color display.

(COLORDISPLAYP) [Function]
Returns the current color map if the color display is on; otherwise NIL.

(COLORDISPLAY COLORMAP BITSPERPIXEL CLEARSCREENFLG) [Function]
If COLORMAP is NIL, it turns off the color display. If COLORMAP is non-N I L, it
turns on the color display allocating BITSPERPIXEL bits per pixel. If COLORMAP is
a color map, it is used as the screen color map_ If CLEARSCREENFLG is non-N I L,
all of the bits in the color screen are set to O.

Turning on the color display requires allocating and locking down the memory
necessary to hold the color display screen bitmap and the system color map.
Turning the color display off frees this memory.

19.47

. Printing and Drawing in Color

19.16.5 Printing and Drawi~g in Color

The current color implementation allows display streams to operate on color bitmaps. The following two
functions set the color in which a display stream prints or draws:

(DSPCOLOR COLOR DISPL~YSTREAM) [Function]
Sets ttie foreground color of a display stream. Returns the previous foreground
color. :If COLOR is NIL, it returns the current foreground color without changing
anyt:hi1:tg. The default foreground color is 7, which is white in the default color
map.

(DSPBACKCOLOR COLOR D!SPLAYSTR;EAM) [Function]
Sets ~e background color of a display stream. Returns the previous background
color. 'If COLOR is NIL, it returns the current background color without changing
anythhitg. The default background color is 0 which is black in the default color
map.

B I TB L T, the line and curve cirawing routines and the printing routines know how to operate on a display
stream that has a color bitmap as its destination. Following are some notes about them.

BITBL T (page 19.4) When iBITBL Ting from a color bitmap onto another color bitmap with the same
bits per pixel, the operations PAINT, INVERT and ERASE are done on a bit level;
not on

i
a pixel level. Thus painting color 3 onto color 10 will result in color II.

When' B I TB L Ting from a black and white bitmap onto a color bitmap, the 1
bits will appear in the DSPCOLOR and the 0 bits in DSPBACKCOLOB. Currently,
REPLACE is the only operation that is supported BITBLTing from black and white
to color. This operation is fairly expensive; if the same bitmap is going to be put
up sev~ral times in the same color it is faster to create a color copy then bIt the
color copy.

If the $OURCET"YPE is TEXTURE and the DESTINATIONBITMAP is a color bitmap,
the TE~TURE argument is taken to be a color. Thus, to fill an area with the color
BLUE, 'do:

(BITB:LT NIL NIL NIL COLORBITMAP 50 75 100 200 'TEXTURE 'REPLACE
'BLUE)

Curve drawing (page 19.14)
For the functions DRAWCIRCLE, DRAWELLIPSE and DRAWCURVE, the notion of
a brush has been extended to include a color. A brush can be a list of the form'
(SHAPE SIZE COLOR). A brush can also be a bitmap, which can be color bitmap.

i

Line drawing (page 19.13)

Printing

The lirie drawing functions have been extended to take another argument which is
the color the line is to appear in if the destination of the display stream is a color
bitmap;. If the COLOR argument is NIL, the DSPCOLOR of the display stream is
used.

Printin~ only works (currently) in REPLACE mode. The characters will have a
foreground color of DSPCOLOR and a background of DSPBACKCOLOR. The first
time a character is printed in a new color, the color images corresponding to the

19.48

INTERLISP-D DISPLAY FACILITIES

current font are calculated and cached. Thus the first character may take a while
to appear but succeeding characters print quickly.

19.16.6 Using the Cursor on the Color Screen

The cursor can be moved to the color screen. While on the color screen, the cursor is placed using XOR
mode, thus with some color maps it may be hard to see. It is automatically taken down whenever an
operation is perfonned that changes any bits on the color screen. While the cursor is on the color screen,
the black and white cursor is cleared.

(CHANGECURSORSCREEN SCREENBITMAP) [Function]
SCREENBITMAP must be either the value of (COLORSCREENBITMAP) or the
value of (SCREENBITMAP). CHANGECURSORSCREEN moves the cursor onto the
specified screen. The value returned is the screen bitmap that the cursor was on
before CHANGECURSORSCREEN was called.

19.16.7 Miscellaneous Color Functions

The following functions provide some common operations on color bitmaps and display streams.

(COLORF I LL REGION COLORNUMBE.R COLORBITMAP OPERATION) [Function]
Fills the region REGION in COLORBITMAP with the color COLORNUMBER, using
the operation OPERATION.

(COLORF I LLAREA LEFT BOTTOM WIDTH HEIGHT COL OR NUMBER COLORBITMAP OPERATION)

[Function]
Fills an area in the color bitmap with a color.

(COLORIZEBITMAP BITMAP OCOLOR lCOLOR BITSPERPDCEL) [Function]
Creates and returns a color bitmap copying the black and white bitmap BITMAP.
The returned color bitmap will have color number lCOLOR in those pixels of
BITMAP that were 1 and OCOLOR in those pixels of BITMAP that were O. This
provides a way of producing a color bitmap from a black and white bitmap. Note:
this is a fairly expensive operation in tenns of both time and space.

19.16.8 Demonstration programs

The following functions provide some demonstrations of the color display. These are available in the Lispusers
file COLORDEMO. DCOM.

(COLORDEMO)

(COLORDEM01)

[Function]
Brings up a menu of color demonstration programs. The system will cycle through
the entries on the menu automatically, allowing each to run for a small fixed
amount of time (typically 40 seconds). Selecting one of the entries in the menu
will cause it to start that program.

[Function]
Runs the Interlisp-D logo demonstration until a button is pressed then adds

19.49

Demonstration programs

eOLO~KINETIe. The MIDDLE button will bring up a menu that allows changing
the speed of rotation or editting the color map. The L EFT button will rotate the
color map in the kinetic area

(eOLOROEM02 SIZE) [Function]
Puts up a test pattern of size SIZE, then rotates the color map. The speed of rotation
of the color map is determined by the Y position of the cursor. The M I DO L E
button! will bring up a menu that allows editing of the color map or changing the
color map to a map of different shades of one color.

(e OL ORK I NET I C REGION FIRSTCOLOR LASTCOLOR) [Function]
Runs color kinetic in a region REGION of the color display using colors FIRSTCOLOR

through LASTCOLOR.

(T UNN E L SPEED) [Function]
Draws a series of concentric rectangles of increasing size in increasing color numbers.
SPEED. detennines the size of the rectangles. This can then be "run" by calling
ROTAT:EIT described below.

(MINESHAFT N OUTFLG) [Function]

(WELL N)

Draws i a series of concentric rectangles of size N in increasing color numbers.
OUTFLP determines whether the color numbers increase or decrease. This can then
be "run" by calling ROTATEIT described below.

[Function]
Draws :a series of concentric circles on the color screen in increasing color numbers.
The circles will be of size N. This can then be "run" by calling ROT ATE I T described
below.

(SHOWCOLORTESTPATTERN! BARSIZE) [Function]
Displays a pattern of colors on the color display_ This is useful when editing a
color map. The pattern has squares of the 16 possible colors layed out in two rows
at the top of the screen. Colors 0 through 7 in the top row. Colors 8 through 15 in
the ne~t row. The bottom part of the screen is then layered with bars of BARSIZE
width with the consecutive color numbers. The pattern is designed so that every
color Has a border with every other color (unless BARSIZE is too large to allow
room ~or every color - about 20).

(ROT ATE IT BEGINCOLOR ~NDCOLOR WAIT) [Function]
Goes into an infinite loop rotating the screen color map. The colors between
BEGINqOLOR (default 0) and ENDCOLOR (default maximum color) are rotated. If
WAIT i~ given, (DISMISS WAIT) is called each time the color map is changed.
This p~ovides an easy way of "animating" screen images.

Note: The following junction ~s available in the Lispusers file eOLORPOL YGONS. DeOM.

(COLORPOLYDEMO COLORDS) [Function]
Runs a version of the Polygons program on the color screen.

19.50

· CHAPTER 20

INTERLISP-D DISPLAY-ORIENTED TOOLS

One of the greatest strengths of Interlisp-D is the window display system. Using this system, a number
of the existing Interlisp tools have been extendecL and some new ones developed. This chapter describes
some of these tools.

20.1 DEDIT

DEdit is a structure orientecL modeless, display based editor for objects represented as list structures,
such as functions, property lists, data values, etc. DEdit is an integral part of the standard Interlisp-D
environment

20.1.1 General Comments

DEdit is designed to be the user's primary editor for programs and data. To that end, it has incorporated
the interfaces of the (older) teletype oriented Interlisp editor so the two can be used interchangeably.
In addition, the full power of the teletype editor, and 'indeed the full Interlisp system itself, is easily
accessible from within DEdit

DEdit is structure, rather than character, oriented to facilitate selecting and operating on pieces of structure
as objects in their own right, rather than as collections of characters. However, for the occasional situation
when character oriented editing is appropriate, DEdit provides access to the Interlisp-D text editing
facilities. DEdit is modeless, in that all commands operate on previously selected arguments, rather than
causing the behavior of the interface to change during argument specification.

20.1.2 Operation

DEdit is normally called through of the following functions:

(OF FN) [NLambda NoSpread Function]
Calls DEdit on the definition of the function FN.

(OV VAR) [NLambda NoSpread Function]
Calls DEdit on the value of the variable VAR.

(OP NAME PROP) [NLambda NoSprcad Function]
Calls DEdit on the property PROP of the atom NAME. If PROP is not given, the
whole property list of NAME is edited.

20.1

(DC FILE)

Interactive Operation

[NLambda NoSpread Function]
Calls DEdit on the file commands for the file FILE.

DEdit is normally installed as the default editor for all editing operations, including those invoked by
other subsystems, such as the Programmer's Assistant and Masterscope. DEdit provides functions E F, E V
and E P (analogous to the corresponding Ox functions) for conveniently accessing the teletype editor from
within a DEdit context, e.g. from under a call to DEdit or if DEdit is installed as the default editor.

The default editor may be s~t with EDITMODE:

(EDITMODE NEWMODE) . [Function]
If NE¥'MODE is non-N I L, sets the default editor to be DEdit (if NEWMODE is
DISPlAY), or the teletype editor (if NEWMODE is TELETYPE). Returns the
previous setting.

DEdit operates by providing an alternative, plug compatible definition of EDITL (DEDITL). The normal
user entries operate by rede~ning ED I T L and then calling the corresponding Edit function (Le., D F calls
ED IT F etc). Thus, the normal Edit file package, ~pelling correction, etc. behavior is obtained.

If Edit commands are specified in a call to 0 E 0 I T L (e.g., in calls to the editor from Masterscope), 0 E 0 I T L
will pass those commands to EDITL, after having placed a TTY: entry on EDITMACROS which will cause
DEdit to be invoked if any interaction with the user is called for. In this way, automatic edits can be made
completely under program co'ntrol, yet DEdit's interactive interface is available for direct user interaction.

(RESETDEDIT) [Function]
Completely reinitializes DEdit Closes all DEdit windows~ So that the 'user must
specif~~ the window the next time DEdit is envoked. RESETDEDIT is also used to
make DEdit recognize the new values of variables such as DEDITTYPE INCOMS,
when the user changes them.

20.1.3 Interactive <?peration

When DEdit is called for the first time, it prompts for an edit window, which is preserved and reused
for later DEdits, and pretty ~rints the expression to be edited therein. (Note: The pretty printer ignores
user PRETTYPRINTMACROS because they do not provide enough structural information during printing
to enable selection.) A standard Interlisp-D scroll bar is set up on the left edge of the window and an
edit command menu, which remains active throughout the edit, on the right edge. DEdit then goes into a
select, command, execute loop, during which it yields control so that background activities, such as mouse
commands in other windows, continue to be performed.

20.1.3.1 Selection

Selection in a DEdit window ,is as follows: the L EFT button selects the object being directly pointed at;
the MIDDLE button selects the containing list; and the RIGHT button extends the current selection to the
lowest common ancestor of that selection and the current position. The only things that may be pointed
at are atomic objects (literal a~oms, numbers, etc) and parentheses, which are considered to represent the
list they delimit. White space: is not selectable or editable.

When a selection is made, it is pushed on a selection stack which will be the source of operands for

20.2

INTERLISP-D DISPLAY-ORIENTED TOOLS

DEdit commands. As each new selection pushes down the, selections made before i~ this stack can
grow arbitrarily deep, so only the top two selections on the stack are highlighted on the screen. This
highlighting is done by underscoring the topmost (most recent) selection with a solid black line and the
second topmost selection with a dashed line. The patterns used were chosen so that their overlappings
would be both visible and distinc~ since selecting a sub-part of another selection is quite common.

Because one can invoke DEdit recursively, there may be several DEdit windows active on the screen at
once. This is often useful when transferring material from one object to anpther (as when reallocating
functionality within a set of programs). Selections may be made in any active DEdit window, in any
order. When there is more than one DEdit window, the edit command menu (and the type-in buffer, see
below) will attach itself to the most recently opened (or current) DEdit window.

20.1.3.2 Typein

Characters may be typed at the keyboard at any time. This will create a type-in buffer window which
will position itself under the current DEdit window and do a LISPXREAD (which must be terminated
by a right parenthesis or a return) from the keyboard. During the read, any character editing subsystem
(such as TTY I N) that is loaded can be used to do character level editing on the typein. When the read
is complete, the typein will become the current selection (top of stack) and be available as an operand
for the next cO,mmand. Once the read is complete, objects displayed in the type-in buffer can be selected
from, scrolled, or even edited, just like those in the main window.

One can also give some editing commands directly into the typein buffer. Typing control-Z will interpret
the rest 'of the line as a teletype editor command which will be interpreted when the line is closed.
Likewise, "control-S OLD NEw" will substitute NEW for OLD and "control~F x' will find the next
occurrence of x.

20.1.3.3 Shift-Selection

Often, significant pieces of what one wishes to type can be found in an active DEdit window. To
aid in transferring the keystrokes that these objects represent into the typein buffer, DEdit supports
shift-selection. Whenever a selection is made in the DEdit window with the left shift key down, the
selection Il]ade is not pushed on the selection stack, but is instead unread into the keyboard input (and
hence shows up in the typein buffer). A characteristically different highlighting is used to indicate when
shift (as opposed to normal) selection is taking place.

Note that shift-selection remains active even when DEdit is not. Thus one can unread particularly choice
pieces of text from DEdit windows into the typescript window.

20.1.3.4 Commands

A DEdit command is invoked by selecting an item from the edit command menu. This can be done either
directly, using the LEFT mouse button in the usual way, or by selecting a subcommand. Subcommands
are less frequently used commands than those on the main edit command menu and are grouped together
in submenus "under" the command on the main menu to which they are most closely related. For
example, the teletype editor defines six commands for adding and removing parentheses (defined in tenns
of transformations on the underlying list structure). Of these six commands, only two (inserting and

20.3

Commands

removing parentheses as a pair) are commonlY,usecl so DEdit provides the other four as subcommands
of the common two. The sub commands of a command are accessed by selecting the command from the
commands menu with the M ~ DO L E button. This will bring up a menu of the subcommand options from
which a choice can be made.' Subcommands are flagged in the list below with the name of the top level
command of which they are pptions.

If 0l\e has a large DEdit window, or several DEdit windows active at once, the edit command window
may be far away from the ar¢a of the screen in which one is operating. To solve this problem, the DEdit
command window is a "snuggle up" menu. Whenever the TAB key is depressecl the command window
will move over to the current cursor position and stay there as long as either the TAB key remains down
or the cursor is in the cOmnland window. Thus, one can "pull" the command window over, slide the
cursor into it and then release the TAB key (or not) while one makes a command selection in the nonna!
way. This eliminates a great deal of mouse movement

Whenever a change -is made, ithe prettyprinter reprints until the printing stablizes. As the standard pretty
print algorithm is used and as it leaves no infonnation behind on how it makes its choices, this is a
somewhat heuristic process. The Rep r i n t command can be used to tidy the result up if it is not, in fact,
"pretty" . .

All commands take their ope;rands from the selection stack, and may push a result back on. In general,
the rule is to select target selections first and source selections second. Thus, a Rep 1 ace command is
done by selecting the thing td be replacecl selecting (or typing) the new material, and then buttoning the
Rep 1 ace command in the c~mmand menu. Using TOP to denote the topmost (most recent) element of
the stack and NXT the second element, the DEdit commands are:

After

Before

Delete

Replace

Switch

()

{ in

in

[DEdit Command]
Inserts: a copy of TOP after NXT.

[DEdit Command]
Inserts a copy of TOP before NXT.

[DEdit Command]
Deletes TOP from the structure being edited. (A copy of) TOP remains on the
stack and will appear, selectecl in the edit buffer.

, [DEdit Command]
Replac~s NXT with a copy of TOP obtained by substituting a copy of NXT wherever
the value of the atom EDITEMBEDTOKEN (initially, the & character) appears in
TOP. This provides an MBD facility, see Idioms below.

[DEdit Command]
Exchanges TOP and NXT in the structure being edited.

[DEdit Command]
Puts parentheses around TOP and NXT (which can, of course, be the same element).

[DEdit Command]
Subcommand of (). Inserts (before TOP (like the L I Edit command)

[DEdit Command]
Subcommand of (). Inserts) after TOP (like the R I Edit command)

20.4

() out

(out

) out

Undo

lUnda

?Undo
&Undo

Find

, Swap

INTERLISP-D DISPLAY-ORIENTED TOOLS

[DEdit Command]
Removes parentheses from TOP.

[DEdit Command]
Subcommand of () out. Removes { from before TOP (like the LO Edit command)

[DEdit Command]
Subcommand of () out. Removes) from after TOP (like the RO Edit command)

[DEdit Command]
Undoes last command

[DEdit Command]
Subcommand of Undo. Undoes all changes since the start of this call on DEdit.

[DEdit Command]
[DEdit Command]

- - Subcommands of Undo. Allows selective undoing of other than the last command.
Both of these commands bring up a menu of all the commands issued during this
calIon DEdit When the user selects an item from this menu9 the corresponding
command (and if &Un do, all commands since that point) will be undone.

[DEdit Command]
Selects, in place of TOP, the first place after TOP which matches NXT. Uses the
Edit subsystem's search routine, so supports the full wildcarding conventions of
Edit.

[DEdit Command]
Exchanges TOP and NXT on the stack, Le. the stack is changed, the structure being
edited isn't

The following set of commands are grouped together as subcommands of Swap because they all affect
the stack and the selections, rather than the structure being edited.

Center

Clear

Copy

Pop

Reprint

Edit

[DEdit Command]
Subcommand of Swap. Scrolls until TOP is visible in its window.

[DEdit Command]
Subcommand of Swap. Discards all selections (Le., "clears" the stack).

[DEdit Command]
Subcommand of Swap. Puts a copy of TOP into the edit buffer and makes it the
new TOP.

[DEdit Command]
Subcommand of Swap. Pops TOP off the selection stack.

[DEdit Command]
Reprints TOP.

[DEdit Command]
Runs DEdit on the definition of the atom TOP (or CAR oftist TOP). Uses TYPESOF
to detennine what definitions exist for TOP and, if there is more than one, asks

20.5

EditCom

Break

Eval.

Exit

OK
Stop

Multiple Commands

the user, via menu, which one to use. (Note: DEdit caches each subordinate edit
window in the window from which it was entere<L for as long as the higher window
is active. Thus, multiple DEdit commands do not incur the cost of repeatedly·
allocating a new window.) If TOP is defined and is a non-list, calls INSPECT on
that value. Ed; t also has a variety of subcommands which allow choice of editor
(DEdit, Edit, TEdit, etc.) and whether to invoke that editor on the definition of
TOP or the fonn itself.

[DEdit Command]
Allows one to run arbitrary Edit commands on the structure being DEdited (there
are far! too many of these for them all to appear on the main menu). TOP should

. be an Edit comman<L which will be applied to NXT as the current Edit expression.
On rerum to DEdit, the (possibly changed) current Edit expression will be selected
as the new TOP. Thus, selecting some exp(ession, typing (R FOO BAZ), and
buttoning Ed i tCom will cause FOO to be replaced with BAZ in the expression
selected.

In addition, a variety of common Edit commands are available as subcommands
of Edi'tCom. Currently, these include ?=, GETD, CL,' OW, REPACK, CAP. RAISE,
and LOWER.

[DEdit Command]
Does a, BREAK I N AROUND the current expression TOP. (See page 10.5.)

. . [DEdit Command]
Evaluates TOP, whose value is 'pushed onto the stack in place of TOP, and which
will therefore appear, selecte<L in the edit buffer.

[DEdit Command]
Exits from DEdit (equivalent to Edit OK).

[DEdit Command]
[DEdit Comniand]

Subcommands of Ex i t. OK exits without an error; STOP exits with an error.
Equivalent to the Edit commands with the same names.

20.1.3.5 Multiple Commands

It is occasionally useful to be able to give several commands at once - either because one thinks of them
as a unit or because the intervening reprettyprinting is distracting. The stack architecture of DEdit makes
such multiple commands eas}f to construct - one just pushes whatever arguments are required for the
complete suite of commands one has in mind. Multiple commands are specified by holding down the
CONTROL key during command selection. As long as the CONTROL key is down. commands selected will
not be executed, but merely si,tved on a list. Finally, when a command is selected without the CONTROL
key down, the command sequence is terminated with that command being the last one in the sequence.

One rarely constructs long sequences of commands in this fashion. because the feedback of being able
to inspect the intermediate results is usually worthwhile. Typically, just two or three step idioms are
composed in this fashion. Some common examples are given in the next section.

20.6

INTERLISP-D DISPLAY-ORIENTED TOOLS

20.~.3.6 Idioms

As with any interactive system, there are certain common idioms on which experienced users depend
heavily. Not only is discovering the idioms of a new system tiresome, but in places the designer may have
assumed famiUarity with one or more of them. so not knowing them can make life quite unbearable. In
the case of DEdit, many of these idioms concern easy ways to achieve the effects of specific commands
from the Edit system, with which many users are already familiar. The DEdit idioms described below are
the result of the experience of the early users of the system and are by no means exhaustive. In addition
to those that each user will develop to fit his or her own particular style, there are many more t6 be
discovered and you are encouraged to share your discoveries.

Because of the novel argument specification technique (postfix; target first) many of the DEdit idioms
are very simple, but opaque until one has absorbed the "target-source-command" way of looking at the
world. Thus, one-selects where typein is to go before touching the keyboard. After typing, the target will
be selected second and the typein selected on top, so that an After, Before or Repl ace will have the
desired effect. If the order is switched, the command will try to change the typein (which mayor may
not succeed), or will require tiresome Swapping or reselection. Although this discipline seems strange at
first, it comes easily with practice.

Segment selection and manipulation are handled in DEdit by first making them into a sublist, so they
can be handled in the usual way. Thus, if one wants to remove the three elements between A and E
in the list (A BCD E), one selects B, the~ D (either order), then makes them into a sublist with the
"()" command (pronounced "both in"). This will leave the sublist (B CD) selected, so a subsequent
De 1 e t e will remove it. This- can be issued. as a single" (); De 1 e te" command using multiple .command
selection, as described above, in which case the intermediate state of (A (B CD) E) will not show on
the screen. .

Inserting a segment proceeds in a similar fashion. Once the' location of the insertion is selected, the
segment to be inserted is typed as a list (if it is a list of atoms, they can be typed without parentheses
and the READ will make them into a list, as one would expect). Then, the command sequence "Afte r
(or Befo re or Rep 1 ace); () out" (given either as a multiple command or as two separate commands)
will insert the typein and splice it in by removing its parentheses.

Moving an expression to another place in the structure being edited is easily accomplished by a delete
followed by an insert. Select the location where the moved expression is to go to; select the expression
to be moved; then give the command sequence "Delete; After (or Before or Replace)". The
expression will first be deleted into the edit buffer where it will remain selected. The subsequent insertion
will insert it back into the structure at the selected location.

Embedding and extracting are done with the Rep 1 ace command. Extraction is simply a special case of
replacing something with a subpiece of itself: select the thing to be replaced; select the subpart that is to
replace it; Rep 1 ace. Embedding also uses Rep 1 ace, in conjunction with the "embed token" (the value
of EDITEMBEDTOKEN, initially the single character atom &). Thus, to embed some expression in a PROG,
select the expression; type "(P ROG VARSLST &)"; Rep 1 ace.

Sw; tch can also be used to generate a whole variety of complex moves and embeds. For example,
switching an expression with typein not only replaces that expression with the typein, but provides a copy
of the expression in the buffer, from where it can be edited or moved to somewhere else.

Finally, one can exploit the stack structure on selections to queue multiple arguments for a sequence
of commands. Thus, to replace several expressions by one common replacement, select each of the

20.7

DEdit Parameters

expressions to be replaced (any number), then the replacing expression. Now hit the Rep 1 ace command
as many times as there are replacements to be done. Each Rep 1 ace will pop one selection off the stack,
leaving the most recently replaced expression selected. As the latter is now a copy of the original source,
the next Replace will have the desired effect, and so on.

20.1.4 DEdit Parameters ~

There are several global variables that can be used to affect various aspects of DEdit's operation. Although
most have been alluded to above, they are summarized here for reference.

EDITEMBEDTOKEN [Variable]
Initially St. Used in both DEdit and the teletype editor to indicate the special atom
used as the "embed token".

OEd; tL; nge r [Variable]
Initially T. The default behavior of the topmost DEdit window is to remain active
on the screen when exited. This is occasionally inconvenient for programs that call
DEdit directly, so it can be made to close automatically when exited by setting this
variable to NIL.

DEDITTYPE INCOMS [Variable]
Defines . the control characters recognized as commands during DEdit typein.
Only accessed when DEdit is initialized, so DEdit should be reinitialized with
(RESETDED IT) if this is changed.

20.2 INTERACTIVE BITMAP EDITING

One important concept of the Interlisp-D display system is the idea of a bitmap, a rectangular array of
bits. While working with the display system, it is extremely useful to be able to manipulate bitmaps,
textures, and character bitmaps. The following functions provide an easy-to-use interactive editing facility
for various types of bitmaps.

(EDITBM BITMAP) [Function]
If BITMAP is a bitmap, it is edited. If BITMAP is an atom whose value is a bitmap,
its value is edited. If BITMAP is NIL, ED IT B M asks for dimensions and creates
a bitmap. If BITMAP is a region, that portion of (SCREENB ITMAP) is used. If
BITMAP is a window, it is brought to the top and its contents edited.

ED ITBM sets up the bitmap being edited in an editing window. The editing window has two major areas:
a gridded edit area in the lower part of the window and a display area in the upper left part. In the edit
area, the left button will add points, the middle button will erase points. The right button provides access
to the normal window commainds to reposition and reshape the window. The actual size bitmap is shown
in the display area.

If the bitmap is too large to: fit in the edit area, only a portion will be editable. This portion can be
changed by scrolling both up and down in the left margin and left and right in the bottom margin.
Pressing the middle button while in the display area will bring up a menu that allows global placement of

20.8

INTERLIsp-n DISPLAY-ORIENTED TOOLS

the portion of the bitmap being edited To allow more of the bitmap to be editing at once, the window
can be reshaped to make it larger or the G rid S i z e+- command described below can be used to reduce
the size of a bit in the edit area.

Pressing the middle button while not in either the edit area or the display area (Le. while in the grey area
in the upper right or in the title) will bring up a command menu. There are commands to stop editing,
to restore the bitmap to its initial state and to clear the bitmap. Holding the middle button down over a
command will result in an explanatory message being printed in the prompt window. The commands are
described below: .

OK

Stop

Clear

Reset

GridSize+-

ShowAsTile

Paint

CURSOR+-

Copies the changed image into the original bitmap, stops the bitmap editor and
closes the edit windows. The changes the bitmap editor makes during the interaction
occur on a copy of the original bitmap. Unless the bitmap editor is exited via OK,
no. changes are made in the original.

Stops the bitmap editor without making any changes to ~e original bitmap.

Sets all or part of the bitmap to O. Another menu will appear giving a choice between
clearing the entire bitmap or just the portion that is in the edit area. The second
menu also acts as a confirmation, since not selecting one of the choices on this menu
results in no action being taken.

Sets all or part of the bitmap to the contents it had when ED I T BM was called. As
with the C 1 ear command, another menu gives a choice between resetting the entire
bitmap or just the portion that is in the edit area.

Allows specification of the size of the editing grid. Another menu will appear giving
a choice of several sizes. If one is selected, the editing portion of the bitmap editor
will be redrawn using the selected grid size, allowing more or less of the bitmap to
be edited without scrolling. The original size is chosen hueristically and is typically
about 8. It is particularly useful when editing large bitmaps to set the edit grid size
smaller than the original.

Tesselates the current bitmap in the upper pan of the window. This is useful for
detennining how a bitmap will look if it were made the background (using the
function CHANGEBACKGROUND). Note: The tiled display will not automatically
change as the bitmap changes; to update it, use the ShowAsT i 1 e command again.

Puts the current bitmap into a window and call the window PAl NT command on
it. The PAINT command implements drawing with various brush sizes and shapes
but only on an actual sized bitmap. The PAINT mode is left by pressing the RIGHT
button and selecting the QU I T command from the menu. At this point, you will '
be given a choice of whether or not the changes you made while in PA I NT mode
should be made to the current bitmap.

Makes the lower left part of the bitmap become the cursor and will prompt you for
the "hot spot".

The bitmap editing window can be reshaped to provide more or less room for editing. When this happens.
the space allocated to the editing area will be changed to fit in the new region.

Whenever the left or middle button is down and the cursor is not in the edit area, the section of the

20.9

Display Break Package

display of the bitmap that is currently in the edit area is complemented. Pressing the left button while
not in the edit region will put the lower left 16 x 16 section of the bitmap into the cursor for. as long as
the left button is held down.'

{EDITSHADE SHADE) [Function]
Opens: a window that allows the user to edit small textures (4 by 4) patterns. In the
edit area, the left button adds bits to the shade and the middle button erases bits
from the shade. The top part of the window is painted with the current texture
whenever all mouse keys are released. Thus it is possible to directly' compare two
textures that differ by more than one pixel by holding a mouse key down until all
changes are made.

If SHADE is a texture object, ED ITSHADE starts with it, otherwise, it starts with
white. :

(EDITCHAR CHARCODE FONT) [Function]
Calls the bitmap editor (ED I TBM) on the bitmap image of the character CHARCODE

in the font FONT. CHARCODE can be a character code (as returned by CHCON 1) or
an atom or string, in which case the first character of CHARCODE is used.

20.3 DISPLAY BREAK PACKAGE

The display break package allows easier access to the infoll1'l:ation available during a break, by modifying
the function BREAK 1 to use the window system. It is turned on in the standard system but can be turned
off with the following function:

(WB R E AK ONFLG) [Function]
If 0NFiLG is non-N I L, installs the display break package. If ONFLG is NIL, it
uninst3.Ils the display break package, which makes BREAK 1 behave as in Interlisp-
10. WBiR EAK returns T if the display break package was previously installed; NIL
otherwise.

The display break package maintains a trace window and as many break windows as necessary. When
a break occurs, a break window is brought up near the tty window of the process that broke and the
terminal stream switched to iU. The title of the break window is changed to give the name of the broken
function, the reason for the break, and the depth of the break recursions. If a break occurs under a
previous break, a new break window is created.

While in a break window, the , middle button brings up a menu of break commands (EVAL, EVAL!, EDIT,
revert, 1', OK, BT, BT!, and 1=). The commands 8T and BT! bring up a backtrace menu beside the
break window showing the ftames on the stack. BT shows frames for which REALFRAMEP is T; BT!
shows all frames. When one of the frames is selected from this menu, it is greyed and the function name
and the variables bound in that frame (including local variables and P ROG variables) are printed in the
"backtrace frame" window. If the left button is used for the selection, only named variables are printed.
If the middle button is used, :all variables are printed (variables without names will appear as *var*N).
The "backtrace frame" window is an inspect window (see page 20.12). In this window, the left button
can be used to select the name of the function, the names of the variables or the values of the variables.

After selecting an item, the middle button brings up a command menu of commands that apply to the

20.10

INTERLISP-D DISPLAY-ORIENTED TOOLS

selected item. If the function name is selected, a choice of editing the function or seeing the compiled
code with INSPECTCODE will be given. If a variable name is selected, the command SET will be offered.
Selecting SET will READ a value and set the selected to the value read. (Note: The inspector will only
allow the setting of named variables. Even with this restriction it is still possible to crash the system by
setting variables inside system frames. It is recommended that you exercise caution in setting variables in
other than your own code.) If the item selected is a value, the inspector will be called on the selected
value.

The internal break variable LASTPOS is set to the selected frame of the backtrace menu so that' the
normal break commands ED IT, reve rt,' and 1 = work on the currently selected frame. The commands
EVAL, revert, 1', OK, and 1= in the break menu cause the corresponding commands to be "typed in."
This means that these break commands will not have the intended effect if characters have already been
typed in.

The operation of the display break package is controlled by the following variables:

MaxBk.MenuWidth
MaxBk.MenuHeight

[Variable]
[Variable]

The variables MaxBk.MenuWidth (default 125) and MaxBk.MenuHeight (default
300) control the maximum size of the backtrace menu. If this menu is too small
to contain all of the frames in the backtrace. it is made scrollable in both vertical
and horizontal directions.

AUTOBACKTRACE FLG [Variable]

BACKTRACEFONT

If the variable AUTOBACKTRACEFLG is non-NIL (default is NIL), then on error
breaks the command BT is 'executed automatically. '

[Variable]
The backtrace menu is printed in the font BACKTRACEFONT. which is initially
Gacha 8.

CLOSEBREAKWINDOWFLG [Variable]
The system normally closes break windows after the break is exited. If
CLOSEBREAKWINDOWFLG is NIL, break windows will not be closed on exit. Note:
In this case, the user must close all break windows.

BREAKREGIONSPEC [Variable]
Break windows are positioned near the tty window of the broken process, as
determined by the variable BREAKREGIONSPEC. The value of this variable is a
region whose LEFT and BOTTOM are an offset from the LEFT and BOTTOM of the
tty window. The WIDTH and HE IGHT of BREAKREG IONSPEC determine the size
of the break window.

T RAC EWI NDOW [Variable]
The trace window, TRACEWINDOW, is used for tracing functions. It is brought up
when the first tracing occurs and stays up until the user closes it. TRACEWINDOW
can be set to a particular window to cause the tracing fonnation to print out there.

TRACEREGION [Variable]
The trace window is first created in the region TRACEREGION.

20.11

The Inspector

20.4 THE INSPECTOR

The Inspector provides a display-oriented facility for looking at and changing arbitrary Interlisp-D data
structures. The inspector can be used to inspect all user datatypes and many system datatypes (although
some objects such as numbeFS have no inspectable structure). The inspector displays the field names and
values of an arbitrary object in a window that allows setting of the properties and further inspection of the
values. This latter feature makes it possible to "walk" around all of the data structures in the system at
the touch of a button. In addition, the inspector is integrated with the break package to allow inspection
of any object on the stack and with the display and teletype structural editors to allow the editors to be
used to "inspect" list structures and the inspector to "edit" datatypes.

The underlying mechanisms, of the data inspector have been factored to allow their use as specialized
editors in user applications. This functionality is described at the end of this section.

Note: Currently. the inspector does not have UNDOing. Also, variables whose values are changed will not
be marked as such.

20.4.1 Inspect Windows

An inspect window displays two columns of values. The lefthand column lists the property names of the
structure being inspected. The righthand column contains the values of the properties named on the left
For variable length data such as lists and arrays, the "property names" are numbers from 1 to the length
of the inspected item.and the values are the corresponding elements. For arrays, the property names are
the array element numbers and the values are the corresponding elements of the array.

For large lists or arrays, or datatypes with many fields, the initial window may be too small to contain all
of them. In these cases, the unseen elements can be scrolled into view (from the bottom) or the window
can be reshaped to increase its size.

In an inspect window, the LEFT button is used to select things, the MIDDLE button to invoke commands
that apply to the selected item. Any property or value can be selected by pointing the cursor directly at
the text representing it, and clicking the LE FT button. There is one selected item per window and it is
marked by having its surrounding box inverted.

The commands offered by the MIDDLE button depend on whether the selection is a property or a value.
If the selected item is a value, the commands provide different ways of inspecting the selected structure.
The exact commands that ate given depend on the type of the value. If the value is a litatom, the
commands are the types for which the atom has definitions as determined by HASDE F. Some typical
commands are:

FNS

VARS

PROP.S

Edit the definition of the selected litatom.

Inspect the value.

Inspect the property list.

If the value is a list, there will be choice of how to inspect the list:

20.12

INTERLISP-D DISPLAY-ORIENTED TOOLS

Ins p e c t Opens an inspect window in which the properties are numbers and the values
are the elements of the list.

Tty Ed i t Calls the teletype structural editor on the list.

o ; s play Ed i t Calls the display editor on the list
"-

AsPL ; st (If the list is in P-list form) Inspects the list as' a property list.

AsALi st (If the list is in ASSOC list form) Inspects the list as an association-list.

AsRecard Brings up a submenu with all of the RECORDs in the system and inspect the list
with the one chosen.

"a reca rd type" (If the CAR is the name of a TYPERECORD) Inspects the list as the record of the
type named in its CAR.

If the value is neither a litatom or a lis~ the only command is Inspect, which opens an inspector
window onto the selected value.

If the selected item is a property, the user will be asked for a new value and the selected property will be
set to the result of evaluating the read form. The evaluation of the read form and the replacement of the
selected item property will appear as their own history events and are individually undoable. Properties
of system datatypes cannot be set. (There are often consistency requirements which can be inadvertently
violated in ways that crash the system. This may be true of some user datatypes as well.)

20.4.2 Calling the Inspector

The inspector can be called directly, by using the function INS P E C T:

(INSPECT OBJECT ASTYPE WHERE) [Function]
Creates an inspect window onto OBJECT. If ASTYPE is given, it will be taken as
the record type of OBJECT. This allows records to be inspected with their property
names. If ASTYFE is NIL, the data type of OBJECT will be used to determine its
property names in the inspect window.

WHERE specifies the location of the inspect window. If WHERE is NIL, the user
will be prompted for a location. If WHERE is a window, it will be used as the
inspect window. If WHERE is a region, the inspect window will be created in that
region of the screen. If WHERE is a position, the inspect window will have its
lower left comer at that position on the screen.

INS P E C T returns the inspect window onto OBJECT, or NIL if no inspection took
place.

There are several ways to open an inspect window onto an object. In addition to calling INSPECT
directly, the inspector can also be called by buttoning an Inspect command inside an existing inspector
window. Finally, if a non-list is edited with ED ITV, the inspector is called. This also causes the inspector
to be called by the Oed i t command from the display editor or the EV command from the standard
editor if the selected piece of structure is a non-list.

20.13

Choices Before Inspection

(INSPECTCODE FN) [Function]
Opens a window and displays the compiled code of the function FN using
PRINTCOOE: The window is scrollable.

20.4.3 Choices Before Inspection

For some datatypes there is more than one aspect that is of interest or more than one method of inspecting
the object In these cases9 the inspector will bring up a menu of the possibilities and wait for $e user to
select one .

• For litatoms. the choice includes inspecting its value. its definition. its property list, its MACRO or any other
aspect returned from TYPESOF. For BITMAPs, the choice is between inspecting the bitmap's contents
wj$ the bitmap editor (EOITBM) or inspecting the bitmap's fields. For LISTPs9 the choice is how to
inspect it and is between a one level inspector. the teletype editor (EOITE) or the display editor (DEDIT).

20.4.4 Redisplaying an Inspect Window

An inspect window is not automatically updated when the structure it is inspecting is changed. The
inspect window can be updated by selecting the "re dis P 1 ayu command from the menu brought up
by pressing the MIDDLE button in the title of the window. The "redisplay" command will cause the
values of the properties to be re-fetched from the structure and redisplayed.

20.4.5 Interaction With the Display Break Package

The display break package knows about the inspector in the sense that the backtrace frame window is an
inspect window onto the frame selected from the back trace menu during a break. Thus you can call the
inspector on an object that is bound on the stack by selecting its frame in the back trace menu, .selecting
its value with the LEFT button in the back trace frame window, and selecting the inspect command
with the MIDDLE button in the back trace frame window. The values of variables in frames can be set
by selecting the variable name with the LEFT button and then the "Set" command with the MIDDLE
button.

Note: The inspector will only allow the setting of named variables. Even with this restriction it is still
possible to crash the system by setting variables inside system frames. Exercise caution in setting variables
in other than your own code.

20.4.6 Controlling the Amount'Displayed During Inspection

The amount of information displayed during inspection can be controlled using the following variables:

MAXINSPECTCDRLEVEL [Variable]
The inspector prints only the first MAXINSPECTCDRLEVEL elements of a long list,
and will make the tail containing the unprinted elements the last item. The last
item can be inspected to see further elements. Initially 50.

20.14

INTERLISP-D DISPLAY-ORIENTED TOOLS

MAXINSPECTARRAYLEVEL [Variable]
The inspector prints only the first MAXINSPECTARRAYLEVEL elements of an
array. The remaining elements can be inspected by calling the function
(INSPECT IARRAY ARRAY BEGINOFFSET) which inspects the BEGINOFFSET
through the BEGINOFFSET + MAXINSPECTARRAYLEVEL elements of ARRAY.
Initially 300.

INSPECTALLF IELDSFLG [Variable]
If INSPECTALLFtELDSFLG is T, the inspector will show computed fields
(ACCESSFNS) as well as regular fields for structures that have a record definition.
Initially T.

20.4.7 Inspect Macros

Th~. Inspector can be extended to inspect new structures and datatypes by adding entries to the list
INSPECTMACROS. An entry should be of the form (OBJECTTYPE • INSPECTINFO). OBJECTT"YPE is
used to determine the types of objects that are inspected with this macro. If OBJECTTYPE is a litatom,
the INSPECTINFO will be used to inspect items whose type name is OBJECT TYPE. If OBJECTTYFE is a
LIST of the form (FUNCTION DATUM-PREDICATE), DATUM·PREDICATE will be APPLYed to the item
and if it returns non-N I L, the INSPECTINFO will be used to inspect the item.

INSPECTINFO can be one of two forms. If INSPECTINFO is a litatom, it should be a function that
will be applied to three arguments (the item being inspectecL OBJECTTYPE, and the value of WHERE
passed to INSPECT) that should do the inspection. If ,INSPECTINFO is not a litatom, it should be a
list of (PROPERTIES FETCHFN STOREFN PROPCOMMANDFN VALUECOMMANDFN TiTLECOMMANDFN
TITLE SELECTIONFN WHERE PROPPRINTFN) where the elements of this list are the arguments for
INSPECTW. CREATE, described below. From this list, the WHERE argument will be evaluated; the others
will not If WHERE is NIL, the value of WHERE that was passed to INSPECT will be used.

Examples:

The entry « FUNCTION MYATOMP) PROPNAMES GETPROP PUTPROP) on INSPECTMACROS would
cause all objects satisfying the predicate MY A T OM P to have their properties inspected with GET P RO P and
PUTPROP. In this example, MYATOMP should make sure the object is a litatom.

The entry (MYDATATYPE . MYINSPECTFN) on INSPECTMACROS would cause all datatypes of type
MYDATATYPE to be passed to the function MYINSPECTFN.

20.4.8 INSPECTWs

The inspector is built on the abstraction of an INSPECTW. An INSPECTW is a window with certain
window properties that display an object and respond to selections of the object's parts. It is characterized
by an object and its list of properties. An INSPECTW displays the object in two columns with the property
names on the left and the values of those properties on the right. An INSPECTW supports the protocol
that the L EFT mouse button can be used to select any property name or property value and the M I DO L E
button calls a user provided function on the selected value or propeity. For the Inspector application, this
function puts up a menu of the alternative ways of inspecting values or of the ways of setting properties. .
INSPECTWs are created with the following function:

20.15

INSPECfWs

(INSPECTW.CREATE DATUM PROPERTfflS FETCHFN STOREFN PROPCOMMANDFN VALUECOMMANDFN

TITLECOMMANDFN TITLE SELECTIONFN WHERE PROPPRINTFN) [Function]
Creates an INSPECTW that views the object DATUM. If PROPERTIES is a LISTP, it
is taken as the list of properties of DATUM to display. If PROPERTIES is an ATOM,
it is APPL Yed to DATUM and the result is used as the list of properties to display.

FETCHFN is a function of two arguments (OBJECT PROPERTY) that should return the value of the
PROPERTY property of OBJECT. The result of this function will be printed (with PRIN2) in the INSPECTW
as the value.

STOREFN is a function of three arguments (OBJECT PROPERTY NEWVAL UE) that changes the PROPERTY

property of o.BJECT to NEWVALUE. It is used by the default PROPCOMMANDFN and VALUECOMMANDFN
to change the value of a property and also by the function INSPECTW. REPLACE (described below).
This can be NIL if the user provides command functions which do not call INSPECTW. RE PLACE. Each

- -replace action will be a separate event on the history list Users are encouraged to provide UNDOable
STOREFNS.

PROPCOMMANDFN is a function of three arguments (PROPERTY OBJECT INSPECTW) which gets called
when the user presses the MIDDLE button and the selected item in the INSPECTW is a property name.
PROPERTY will be the name of the selected property, OBJECT will be the datum being viewed, and
INSPECTW will be the window. If PROPCOMMANDFN is a string, it will get printed in the PROMPTWINDOW
when the MIDDLE button is pressed. This provides a convenient way to notify the user about disabled
commands on the propertiesw DEFAULT. INSPECTW. PROPCOMMANDFN, the default PROPCOMMANDFN,

will present a menu with the ,single command Set on it If selected, the Set command will read a value
from the user and set the selected property to the result of EVALuating this read value.

VALUECOMMANDFN is a function of four arguments (VALUE PROPERTY OBJECT INSPECTW) that gets
called when the user presses'the MIDDLE button and the selected item in the INSPECTW is a property
value. VALUE will be the selected value (as returned by FETCHFN), PROPERTY will be the name of the
property VALUE is the value' of, OBJECT will be the datum being viewed, and INSPECTW will be the
INSPECTW window. DEFAULT. INSPECTW. VALUECOMMANDFN, the default VALUECOMMANDFN, will
present a menu of possible ways of inspecting the value and create a new Inspect window if one of the
menu items is selected.

TITLECOMMANDFN is a function of two arguments (INSPECTW OBJECT) which gets called when the
user presses the MIDDLE buttbn and the cursor is in the title or border of the inspect window INSPECTW.

This command function is provided so that users can implement commands that apply to the entire object.
The default TITLECOMMANDFN (DEFAULT. INSPECTW. TITLECOMMANDFN) presents a menu with the
single command Red; sp 1 ay and, if it is selected, redisplays INSPECTW (using INSPECTW. RED ISPLAY,
described below).

TITLE specifies the title of the window. If TITLE is NIL, the title of the window will be the printed form
of DATUM followed by the string" Inspector". If TITLE is the litatom DON'T, the inspect window will
not have a title. If TITLE is any other litatom, it will be applyed to the DATUM and the potential inspect
window (if it is known). If this result is the litatom DON "T, the inspect window will not have a title;
otherwise the result will be used as a title. If TITLE is not a litatom, it will be used as the title.

SELECTIONFN is a function of three arguments (PROPERTY VALUEFLG INSPECTW) which gets called
when the user releases the left button and the cursor is on one of the items. The SELECTIONFN allows a
program to take action on the' user's selection of an item in the inspect window. At the time this function
is called, the selected item has been "selected". The function INSPECTW. SELECT ITEM (described below)
can be used to turn off this selection. PROPERTY will be the name of the property of the selected item.

20.16

INTERLISP-D DISPLAY-ORIENTED TOOLS

VALUEFLG will be NIL if the selected item is the property name; T if the selected item is the property
value.

WHERE indicates where the inspect window should go. Its interpretation is described in INSPECT (page
20.13).

If non-N I L, PROPPRINTFN is a function of two arguments (PROPERTY DATUM) which gets called to
determine what to print in the property place for the property PROPERTY. If PROPPRINTFN returns NIL,
no property name will be printed and the value will be printed to the left of the other values.

An inspect window uses the following window property names to hold information: DATUM, FETCHFN,
STOREFN, PROPCOMMANDFN, VALUECOMMANDFN, SELECTIONFN, PROPPRINTFN, INSPECTWTITLE,
PROPERTIES, CURRENTITEM and SELECTABLE ITEMS.

_ .(INSPECTW. REDISPLAY INSPECTW PROPERTY -) [Function]
Updates the display of the objects being inspected in INSPECTW. If PROPERTY is
a property· name or a list of property names, only those properties are updated. If
PROPERTY is NIL, all properties are redisplayed. This function is provided because
inspect windows do not automatically update their display when the object they
are showing changes.

This function is called by the Red; s play command in the title command menu
of an INSPECTW.

(INSPECTW. REPLACE INSPECTW PROPERTY NEWVALUE) [Function]
Uses the STOREFN of the inspect window INSPECTW to change the property named
PROPERTY to the value NEWVALUE and updates the display of PROPERTYS value
in the display. This provides a functional interface for user PROPCOMMANDFNS.

(INSPECTW. SELECT ITEM INSPECTW PROPERTY VALVEFLG) [Function]

20.S CHAT

Sets the selected item in an inspect Window. The item is inverted on the display
and put on the window property CURRENT ITEM of INSPECTW. If INSPECTW has
a CURRENT ITEM, it is deselected. PROPERTY is the name of the property of the
selected item. VALUEFLG is NIL if the selected item is the property name; T if the
selected item is the property value. If PROPERTY is NIL, no item will be selected.
(This provides a way of deselecting items.)

C HA T is a "remote terminal" facility, that allows one to communicate with other machines while inside
Interlisp-D. The function CHAT sets up a "Chat connection" to a remote machine. so that everything you
type is sent to the a remote machine, and everything the remote machine prints is displayed in a "Chat
window". The remote machine must support the Pup Telnet protocol.

Multiple simultaneous Chat connections are possible. To switch between typing to different Chat
connections, simply button within the Chat window you want to use. CHAT prompts for a new window
for each new connection, except that it saves the first window to reuse once the connection in that window
is closed (other windows just go away when their connections are closed).

20.17

CHAT

C HA T behaves as if its Chat window is a Datamedia-2500 tenninal of the dimensions determined by the
size of the window. Hence, you can talk to hosts that supply Datamedia service and expect something
reasonable to happen. If the host does not pay attention to the C HA T terminal specification protocol, or
you go through that host to :another host, you may need to inform the host of the dimensions of your
"screen"; these are given in' the title bar of the chat window. The font should be GachalO or other
fixed-width font for proper Datamedia emulation.

(C HA T HOST LOGOPTION INITSTREAM WINDOW -) [Function]
Opens a Chat connection to HOST, or to the value of DE F AU LTC HA T HOS T. If
HOST requires login, as determined by whether it responds to the "where is user"
protocol, C HA T supplies a login sequence, or if it determines that you have a single
detached job, an attach sequence. If you have more than one detached job, it
simply perfonns a WHERE IS command for you and allows you to select the job.
You may alternatively specify one of the following values for LOGOPTION:

LOGIN

ATTACH

GUEST

NONE

Always perfonn a login.

Always perfonn an attach. This will fail if you do not have
exactly one detached job.

Login as user GUEST, password GUEST.

Do not attempt to login or attach.

If INITSTREAM is supplied, it is either a string or the name of a file whose contents
will be. read as typein. When the string/file is exhaustecL input is taken from T.

If WINDOW is suppliecL it is a window to use for the connection; otherwise, the
user is prompted for a window.

While C HA T is in control, all Lisp interrupts are turned off, so that control characters can be transmitted
to the remote host.

Commands can be given to an active Chat connection by bugging the MIDDLE button in the Chat window
to get a command menu. Current commands are:

Close

Suspend

New

Freeze

Dribble

Input

Close this connection. Once the connection is closecL control is handed over to the
main tty window. Closes the window unless this is the primary Chat window.

Same as Close, but always leaves the window open.

Closes the current connection and prompts for a new host to which to open a
connection in the same window.

Hold typeout from this Chat window. Bugging the window in any way releases the
hold. This is most useful if you want to switch to another, overlapping window
and there is typeout in this window that would compete for screen space.

Open a typescript file for this Chat connection (closing any previous dribble file
for the' window). The user is prompted for a file name; a name of NIL just closes
the old: dribble file.

Prompts for a file to take input from. When the end of the file is reached, input

20.18

Clear

INTERLISP-D DISPLAY-ORIENTED TOOLS

reverts to T.

Clears the window and resets the simulated terminal -to its default state. This is
useful if undesired terminal commands have been received from the remote host
that place the simulated terminal into a funny state.

In an inactive Chat window, the MIDDLE button brings up a menu of one item, ReConnect, whose
selection reopens a connection to the same host as was last in the window. This is the primary motivation
for the Suspend menu command A new Chat connection can also be opened from the Background
menu.

The mouse button L EFT, when inside C HA T, holds output as long as the button is down. Holding down
MIDDLE coincidentally does this, too, but not on purpose: since the menu handler does not yield control
to other processes, it is possible to kill the connection by keeping the menu up too long.

Chat windows are a little bit knowledgable about window operations. If you reshape a Chat window,
Chat informs your partner of the new dimensions. And if you close the window, the connection is also
closed.

The following variables control aspects of Chat's behavior:

CHAT. DISPLAYTYPE [Variable]

CHAT.ALLHOSTS

The type of display (a number) that Chat should tell the remote host the user is
on. If Datamedia emulation is desired, this variable should be set to the number
corresponding to the terminal type Datamedia for the remote host. If the remote
host does not respond to the terminal- type protocol in Pup Telnet, this variable is
irrelevant

[Variable]
A list of host names, as uppercase litatoms, that the user desires to Chat to.
Chatting to a host not on the list adds it to the list These names are placed in the
menu that the background Chat command prompts with.

CLOSECHATWINDOWFLG [Variable]
If true, every Chat window is closed on exit. If NIL, the initial setting, then the
primary Chat window is not closed.

DE FAUL TCHATHOST [Variable]
The host to which C HA T connects when it is called with no HOST argument

CHAT. FONT [Variable]
If non-NIL, the font that Chat windows are created with. If CHAT. FONT is NIL.
Chat windows are created with (DEFAUL TFONT 'DISPLAY).

20.6 THE TED IT TEXT EDITOR

TEdit is a window-based, mode less text editor, capable of handling fonts and some rudimentary fonnatting.
Text is selected with the mouse, and all editor operations act on the current selection.

20.19

The TEdit Text Editor

The top-level entry to TEdit is:

(TEOIT TEXT WINDOW DONTSPAWN PROPS) [Function]
TEXT may be a (litatom) file name. an open STREAM, a string, or an arbitrary
[MKSTR I NG-able] Lisp object. The text is displayed in an editing window, and may
be edited there. If TEXT is other than a file name, a STREAM, or a string, TEOIT
will call MKS T RING on it, and let you edit the result.

If WINDOW is NIL, you will be prompted to create a window. If WINDOW is
non-NIL, TEOIT will use it as the window to edit in. If WINDOW has a title,
TED I T will preserve it; otherwise, TED I T will provide a descriptive title for the
window.

TED I T will normally spawn a new process to run the edit, so you can edit in
parallel with other work; indeed, it is possible to have several editing windows
active on the screen. To prevent a new process from being created, call TED I T
with DONTSPAWN set to T.

PROPS is a prop-list-like collection of properties which control the editing session.
The following options are possible:

FONT

QUITFN

LOOPFN

CHARFN

SELFN

TERMSA

REAOONLY

SEL

MENU

AFTERQUITFN

The default font to be used in the edit window.

A function to call when the user Qui ts.

A function to. be called each time thru the character-read
loop.

A function to be called for each character typed in.

A function to be called each time a mouse selection is made
in this edit window.

If you want characters displayed other than TEdit's default
way, set this to a character table.

If this atom is present anywhere in the list of PROPS, then the
edit window will be read-only, Le., you can only shift-select
in it.

Tells what text should be selected initially. This can be a
SELECTION (see below) describing the selected text, or a
character number, or a two-element list of first character
number ~d number of characters to select.

Describes the menu to be displayed when the MIDDLE
mouse button is pressed in the edit window's title region. If
it is a ME NU, that menu will appear. If it is a list of menu
items, a new menu will be constructed.

A function to be called after TEdit has quit. This can be
used for cleanup of side-effects by TEdit client programs.

20.20

INTERLISP-D DISPLAY-ORIENTED TOOLS

REGION

TITLEMENUFN

20.6.1 Selecting Text

A window-relative region; TEdit will use only that portion
of the window to display text &c. This is for people who
want TEdit for filling in forms. etc.

A function to get called instead of bringing up the usual
TEdit command menu when the user LEFT- or MIDDLE
buttons in the edit window's title region.

TEdit works by operating on "selected" pieces of text. Selected text is highlighted in some way, and
may have a caret flashing at one end. Insertions go where the, caret is; deletion and other operations are
applied to the currently selected text

Text is selected using the mouse. There are two regions within an edit window: The area containing text,
and a "line bar" just inside the left edge of the window. While the mouse is inside the text region, the
cursor is the normal up-and-Ieft pointing arrow. When the cursor moves into the line bar. it changes to
an up-and"right pointing arrow. Which region the mouse is in determines what kind of selection happens:

The LEFT mouse button always selects the smallest things. In the text region, it selects the character
you're pointing at; in the line bar, it selects the single line you're pointing at

The M I 00 L E mouse button selects larger things. In the text region. it selects the word the cursor is over,
and in the line bar it selects the paragraph the cursor is· next to.

The RIGHT button always extends a selection. The current selection is extended to include the
character/wordJline/paragraph you are now pointing at. For example, if the existing selection was
a whole-word selection, the extended selection will also consist of whole words.

There are special ways of selecting text which carry an implicit command with them:

If you hold the CTRL key down while selecting text, the text will be shown white-on-black. When you
release the CTRL key, the selected text will be deleted. You can abort a CTRL-selection: Hold down a
mouse button, and release the CTRL key. Then release the mouse button. .

Holding the SH I FT key down while making a selection causes it to be a "copy-source" selection. A copy
source is marked with a dashed underline. Whatever is selected as a copy source when the SH I FT key
is released will be copied to where the caret is. This even works to copy text from one edit window to
another. You can abort a copy: Hold down a mouse button. and release the SH 1FT key. Then release
the mouse button.

Holding the CTRL and SHIFT keys down while making a selection causes it to be a "move" selection.
which is marked by making it veverse video. Whatever is selected as a "move" source when the CT RL
and SH I FT keys are released will be moved to where the caret is. This even works to move text from
one edit window to another. You can abort a move: Hold down a mouse button, and release the CTRL
and SHIFT keys. Then release the mouse button. If the variable TEO IT . BLUE. PENDING. DELETE is
non-N I L, extending a selection will display the selection as white-on-black. The next time something is
typed, the selected text will be deleted first.

20.21

Editing Operations

20.6.2 Editing Operations

Inserting text: Except for command characters, whatever is typed on the keyboard gets inserted where the
caret is. The BS key and control-A both act as a backspace, deleting the character just before the caret.
Control-W is the backspace-word command.

Deleting Text: Hitting the DEL key causes the currently-selected text to be deleted. Alternatively, you
can use the C T R L -selection method described above.

Copying Text: Use SHI FT-selection, as described above.

Moving Text: Use CTRL-SHIFT-selection.

Undoing an edit operation: The top blank key is the Undo key. It will undo the most recent edit
command. Undo is itself undo-able, so you can never back up more than a single command.

Redoing an edit operation: The ESC key is the Red 0 key. It will redo the most recent edit command
on the current selection. For example, if you insert some text, then select elsewhere, hitting ESC will
insert a copy of the text in the new place also. If the last command was a delete, Redo will delete the
currently-selected text; if it was a font change, the same change wi~ be applied to the current selection.

The command menu: You can get command menus by moving into the edit window's title region
and hitting the RIGHT or MIDDLE mouse buttons. RIGHT gets the usual menu of window commands.
MIDDLE gets a menu of editor commands:

Put

Get

Include

Quit

Find

Substitute

Looks

Hardcopy

Causes an updated version of the file to be written. Tedit will ask you for a file
name, offering the existing name (if any) as the default

Lets you read in a new file to edit, without saving the one you were working on.
You'll be asked for a file name in the prompt window.

Lets you copy the contents of a file into the edit window, inserting it where the
caret is.

Causes the editor to stop without updating the file you're editing. If you haven't
saved your changes, you'll be asked to confinn this.

Asks for a search string, then hunts from the caret to'ward the end of document
for a match. Selects the first match found; if there is none, nothing happens.

Asks for a search string and a replacement string. Within the current selection, all
instances of the search string ware replaced by the replacement string. If you wish,
TEdit will ask you to confinn each replacement before actually doing it

Changes the character looks of the selected characters: The font. character size,
and face (bold, italic, etc.). Three menus will pop up in sequence: One to select
the font name, one to select the face, and one to select the size. You may select an
option in each menu. If, for example,)'ou want to leave the character size alone,
just click the mouse outside the size menu. In general, any aspect of the character
looks that you don't change will remain the same.

Prints the document to your default press or InterPress printer, with 1 inch margins

20.22

Press File

INTERLISP-D DISPLAY-ORIENTED TOOLS

all around The function· P R I NT E RMOD E controls which kind of printer TEdit will
send to.

Creates a Press or InterPress file of the documen~ with 1 inch margins all around
The file fonnat is also controlled by PRINTERMODE.

20.6.3 TEdit Functional Interface

The Text Stream

TEdit keeps a STREAM which describes the current state of the text you're editing. You can use most of
the usual stream operations on that stream: BIN, SETFILEPTR, GETFILEPTR, GETEOFPTR, BACKBIN,
and PE E KB I N do the usual things. BOUT inserts a character in the stream just in front of the next character
you'd read if you BINned You can get the stream by (WINDOWPROP Edit-WINDOW 'TEXTSTREAM).

If you need to save the state of an edi~ you can save this stream. Calling TED I T with the stream as the
TEXT argument wj.11 let you continue from where you left off.

The "Text Object"

TEdit keeps a variety of other information about each edit window, in a data structure called a TEXTOBJ.
Field F 3 of a text STREAM points to the associated TEXTOBJ, which contains these fields of interest:

\WINDOW

SEL

SCRATCHSEL

TEXTLEN

STREAMHINT

EDITFINISHEDFLG

Selections

The edit window which contains the text. If this is NIL, there is no edit window
for this text. .

The most recent selection made in this text

A scratch SELECTION, used by the mouse handler for the edit window, but
otherwise available for scratch use.

The current length of the edited text.

Points to the text STREAM which describes the text.

If this is non-N I L, TEdit will halt after the next time through the keyboard polling
loop. No check will be made for unsaved changes. Unless it it T, the value of
EDITFINISHEDFLG will be returned as the result of TEd it

The selected text is described by an object of type SELECTION, whose fields are as follows:

CHII

CHLIM

DCH

The character number of the first character in the selection. The first character in
the text being edited is numbered l.

The character number of the last character in the selection. Must be ~ CHII.

The number of characters in the selection. If DCH is zero, then no characters are
selected, and the Selection can be used only to describe a place to insen text

20.23

ONFLG

\TEXTOBJ

XO

YO

XLIM

YLIM

OX

SELOBJ

POINT

SET

SELKIND

HOW

HOWHEIGHT

HASCARET

TEdit Interface Functions

Tells whether the Selection is indicated in the edit window. If T, it is; if NIL, it's
not.

The T:EXTOBJ that describes the selected text. You can use this to get to the
Stream itself.

The X position (edit-window-relative) of the left edge of the first selected character.

The Y position of the bottom of the first selected character (not the character's
base line, the bottom of its descent).

The X position of the right edge of the last character selected. If DC H is zero (a
"point" selection), X LIM = X O.

The bottom of the last character in the selection.

The width of the selection. If DCH is zero, this will be also.

This is for a future object-oriented editing interface.

Tells which side of the selection the caret should appear on. It will be one of the
atoms LEFT and RIGHT.

T if this selection is currently valid, NIL if it is obsolete or has never been set.

What kind of selection this is. One of the atoms CHAR, WORD, L~NE. or PARA.

A TEXTURE, which will be used to highlight the selecton.

How high the highlighting is to extend. A selection's highlight starts at the bottom
of the lowest descender, and extends upward for HOWHE IGHT pixels. To always
get highlighting a full line tall. set this to 16384.

T if this selection should have a caret flashing next to it, NIL otherwise.

20.6.3.1 TEdit Interface Functions

TEdit exports the following fi,lnctions for use in custom interfaces:

(OPENTEXTSTREAM TEXT WINDow START END PROPS) [Function]
Creates a text STREAM describing TEXT, and returns it. If WINDOW is specified,
the text will be displayed there. and any changes to the text will be reflected there
as they; happen. You will also be able to scroll the window and select things there
as usual. TEXT may be an existing TEXTOBJ or text STREAM. If START and END

are given, then only the section of TEXT delimited is edited. PROPS is the same as
for TECIT.

Given the STREAM, you can use a number of functions to change the text in an
edit window, under program control. The edit window gets updated as the text is
changed.

20.24

INTERLISP-D DISPLAY-ORIENTED TOOLS

(TEDIT. SETSEL STREAM CH#orSEL LEN POINT) [Function]
Sets the selection in STREAM. If CH#orSEL is a S E L E C T ION, it is used as-is.
Otherwise, CH#orSEL is the first character in the selection, and LEN is the number
of characters to select (zero is allowed, and gives just an insertion point). POINT
tells which side of the selection the caret should come on. It must be one of the
atoms LEFT or RIGHT.

(TEDIT . GETSEL STREAM) [Function]
Returns the SELECTION which describes the current selection in the edit window
described by STREAM.

(TEDIT. SHOWSEL STREAM ONFLG SEL) [Function]
Lets you tum the highlighting of the selection SEL on and off. If ONFLG is T,
the selection SEL in STREAM will be highlit in the edit window; if NIL, any
highlighting will be turned off. If SEL is NIL, it defaults to the current selection
in STREAM.

(TEDIT. INSERT STREAM TEXT CH#orSEL) [Function]
Inserts the string TEXT into STREAM, as though it had been typed in. OH#orSEL
tells where to insert the text: If ifs NIL, the text goes in where the caret is. If
it's a F I X P, the text is inserted in front of the corresponding character (The first
character in the stream is numbered 1). If it's a SELECTION, the text is inserted
accordingly.

(TEDIT . DELETE. STREAM CH#orSEL LEN) [Function]
Deletes text ITom STREAM. If CH#orSEL is a SE LECT ION, the text it describes will
be deleted; if CH#orSEL is a F I X P, it is the character number of the first character
to delete. In that case, LEN must also be present; it is the number of characters to
be deleted.

(TEDIT. FIND STREAM TEXT CH#) [Functionl
Searches for the next occurence of TEXT inside STREAM. If CH# is present, the
search starts there; otherwise, the search starts from the caret If it finds a match,
TEDIT. FIND returns the character number of the first character in the matching
text. If no match is found, it returns NIL.

(TEDIT. HARDCOPY STREAM FILE DONTSEND BREAKPAGETITLE) [Function]
Sends the text contained in STREAM to the printer. If a file name is given in FILE,
the press file will be left there for you to use'- If DONTSEND is non-N I L, the file
will not be sent to the printer; use this if you only want to create a press file for
later use.

If BREAKPAGETITLE is non-N I L, it is used as the title on the "break. page" printed
before the text.

(TEDIT. LOOKS STREAM NEWLOOKS SELORCH# LEN) [Function]
Changes the character looks of selected characters, e.g., the fon~ character size,
etc. SELOROH# can be a S E LEe T ION, an integer, or NIL. If SELOROH# is
a SELECTION, the text it describes will be changed; if it is a FIXP, it is the
character number of the first character to changed. In that case, LEN must also be
present; it is the number of characters to be changed.

20.25

TEd it Interface Functions

NEWLOOKS is a property-list-likedescription of the changes to be made. The
property names tell what to change, and the property values describe the change.
Any property which isn't changed explicitly retains its old value. Thus, it is possible
to make a piece of text all bold without changing the fonts the text is in. The
possible list entries are as follows:

FAMILY

FACE

SIZE

UNDERLINE

OVERLINE

STRIKEOUT

. SUPERSCRIPT

SUBSCRIPT

PROTECTED

SELECTPOINT·

The name of the font family. All the selected text is changed
to be in that font

The face for the new font. This may be in either of the
two forms acceptable to FONTCREATE: a list such as (BOLD
ITALIC REGULAR), or an atom such as MRR.

The new point size.

The value for this property must be one of the atoms ON or
OFF. The text will be underscored or not, accordingly.

The value for this property musfbe one of the atoms ON or
OFF. The text will be overscored or not, accordingly.

The value for this property must be one of the atoms ON or
OFF. The text will be struck through with a single line or
not, accordingly.

A distance, in points. The text will be raised above the
normal baseline by that amount This is mutually exclusive
with SUBSCRIPT.

A distance, in points. The text will be raised above the
normal baseline by that amount This is mutually exclusive
with SUPERSCRIPT.

The value for this property must be one of the atoms ON
or OF F. If it is ON, the text will be protected from mouse
selection and from deletion.

The value for this property must be one of the atoms ON
or OF F. If a character has this property, the user can make
a point selection just after it, even if the character is also
PROTECTED.

(TEDIT • QUIT STREAM VALUE) [Function]
STREAM must be the text stream associated with a running TEdit. TED IT. QU I T
causes the editing session to end. If VALUE is given, it is returned as TEdit's result;
otherwise, TEdit will return the usual result. The user is not asked to confirm his
desire to stop editing.

(TED IT . ADD. MENU ITEM MENU ITEM) [Function]
Adds a menu ITEM to MENU. This will update the menu's image so that the
newly-added item will appear the next time the menu pops up. This is only
guaranteed to work right with pop-up menus which aren't visible.

20.26

· INTERLISP-D DISPLAY-ORIENTED TOOLS

(TEDIT. REMOVE. MENUITEM MENU ITEM) [Function]
Removes a menu ITEM from MENU. This will update the menu's image so that
the newly-added item will appear the next time the menu pops up. This is only
guaranteed to work right with pop-up menus which aren't visible. ITEM may be
either the whole menu item, or just the indicator which appears in the menu's
image.

20.6.3.2 User-function "Hooks" in TEdit

TEdit provides a number of hooks where, a user-supplied function can be called. To supply a function,
attach it to the edit window under the appropriate indicator, using WINDOWPROP. Every user-supplied
function is APPLYed to the text STREAM which describes the text. Some of these functions can also be
supplied using the PROPS argument to TEDIT or OPENTEXTSTREAM; the descriptions below contain the
details.

TEDIT.QU~TFN [Window Property]
A function to be called whenever the user ends an editing session. This may do
anything; if it returns the atom DON'T, TEdit will not terminate. Any other result
permits TEdit to do its normal cleanup and termination. This can also be supplied
using the PROPS argument to TED IT or OPENTEXTSTREAM.

TEDIT . AFTERQUITFN [Window Property]
A function to be called after the user ends an editing session. This may perfonn
any 'cleanup of side effects that you desire. This can also be supplied using the
PROPS argument to TED IT or OPENTEXTSTREAM.

TEDIT . CMD. LOOPFN [Window Property]
A function that gets called, for effect only, each time through TEdit's main
command loop. This can also be supplied using the PROPS argument to TEDIT
orOPENTEXTSTREA~

TEDIT . CMD. CHARFN [Window Property]
A function that gets called, for effect only, once for each character typed into
TEdit. The character code is passed to the function as its second argument. This
can also be supplied using the PROPS argument to TEDIT or OPENTEXTSTREAM.

TEDIT . CMD. SELFN [Window Property]
A function that gets called, for effect only, each time the user selects something
with the mouse. The new SELECTION is passed as the function's second argumen~
and an atom describing the kind of selection (one of NORMAL, COPY, MOVE, or
DELETE) as the third. This can also be supplied using the PROPS argument to
TEDIT or OPENTEXTSTREAM.

TEDIT.PRESCROLLFN [Window Property]
Called just before TEdit scrolls the edit window.

TEDIT.POSTSCROLLFN [Window Propeny]
Called just after TEdit scrolls the edit window.

TEDIT .OVERFLOWFN [Window Property]
Called when TEdit is about to move some text off-screen. This function may

20.27

Changing the TEdit Command Menu

handle the text overflow itself (say by reshaping the window), or it may let TEdit
take its normal course. If the function handles the problem, it must return a
non·N I L result If TEdit is to handle the overflow, the value returned must be
NIL.

TEDIT . TITLEMENUFN [Window Property]
Called whenever the user presses the LEFT or MIDDLE mouse button in the edit
window's title region. Can also be supplied using the PROPS argument to TED IT
or OPENTEXTSTREAM. Normally, this is the function TEDIT .DEFAULT .MENUFN,
which brings up the usual TEdit command menu.

TEdit also saves pointers 't~ its data structures on each edit window. They are available for any user
function's use.

TEXTOBJ [Window Property]
The TEXTOBJ which describes the current editing session.

TEXTSTREAM [Window Property]
The text STREAM which describes the text of the document

20.6.3.3 Changing the TEdit Command Menu

You may replace the MIDDLE-button command menu with one of your own. When you press the MIDDLE
button msid~ an edit window.'s title region, TEDIT calls the value of the TEDIT . TITLMENUFN window
property with the window as its argument Normally, what gets called is TEDIT. DEFAUL T. MENUFN, but
you may change it to anything you like. .

TED IT .DEFAULT .MENUFN brings up a menu of commands. If the edit window has a property
TEDIT . MENU, that menu is used. If not, TEdit looks for the window property TEDIT . MENU. COMMANDS (a
list of menu items) and constructs a menu from that Failing that, it uses TEDIT .DEFAULT .MENU.

This means that you can control the command menu by setting the appropriate window properties.
Alternatively, you may add your own menu buttons to the default menu, TED IT .DEFAULT .MENU.

(TEDIT.ADD.MENUITEM TEDIT.DEFAULT.MENU ITEM)

will add ITEM to the TEdit menu. Menu items should be in the form (NAME FUNCTION), where NAME

is what appears in the menu, and FUNCTION will be applied to the text stream, and can perform any
operation you deSire.

Finally, you may remove menu items from the default menu, by doing

(TEDIT.REMOVE.MENUITEM TEDIT.DEFAULT.MENU ITEM)

ITEM can be either a complete menu item, or just the text that appears in the menu; either will do the
job.

20.6.3.4 Variables Which Control TEdit

There are a number of global variables which control TEdit, or which contain state information for editing

20.28

INTERLISP-D DISPLAY-ORIENTED TOOLS

sessions in progress:

TEDIT . BLUE. PENDING. DELETE [Variable]
If this is non-N I L~extending a selection makes it into a pending-delete selection.
See the selection section.

TEDIT .OEFAULT. FONT [Variable]
A FONTDESCRIPTOR. This is the font for displaying TEdit documents which don't
specify their own font infonnation.

TEDIT .DEFAULT. FMTSPEC [Variable]
A paragraph-looks description. This contains the default looks for a paragraph.

TEOIT . SELECTION [Variable]
A SELECT ION. This is the most recent regular selection made in any TEdit window.

TEOIT .SHIFTEDSELECTION [Variable]
A SELECTION. This is the most recent SHIFT:'selection made in anyTEdit window.

TEDIT .MOVESELECTION [Variable]
A SELECTION. This is the most recent CTRL-SHIFT-selection made in any TEdit
window.

TEDIT . READTABLE [Variable]
A read table, this is used to translate typed-in characters into TEdit commands.
See the· section on TEditreadtables. .

TEOIT . WORDBOUNO. READTABLE [Variable]
The read table which controls TEdit's concept of word boundaries. The syntax
classes in this table aslo detennine which characters TEdit thinks are white space
(which gets deleted by control-W along with the preceding word).

20.6.4 TEdit's Terminal Table and Readtables

TEdit now pays attention to the system terminal table. Characters with tenninal sytax-classes CHARDELETE,
WORODELETE, or LINEDELETE act as follows:

CHAROELETE

WOROOELETE

LINEDELETE

acts as a character-backspace.

acts like control-W (in fact, this is how control-W is implemented.)

acts like DEL.

Since the system terminal table is used to implement these functions, you can assign them to other keys
at will.

TEdit also has a Readtable, which it uses to dispatch to commands. The table is named TEDIT . READTABLE, and
it is global. You can use the functions TEDIT.SETSYNTAX and TEOIT.GETSYNTAX to read it and
make changes:

(TEDIT.SETSYNTAX CHARCODE CLASS TABLE) [Function]
Sets the readtable syntax of the character whose charcode is CHARCODE to be

20.29

TEdit's Terminal Table and Readtables

CLASS in the read-table TABLE. The possible syntax classes are listed below.

(TED IT. GET S Y N TAX CHARCODE TABLE) [Function]
Returns the TEdit syntax class of the character whose charcode is CHARCODE,
according to the read-table TABLE. The possible syntax classes are listed below. An
illegal syntax will be returned as NIL.

The allowable syntax classes are:

CHARDELETE

WORDDELETE

DELETE

UNDO

REDO

FN

NONE

Typing this character acts like backspace

Typing this character acts like controlW

Typing this character acts like DE L

Typing this character causes Un do

Typing this character acts like ESC

Typing this character calls a specified function (see below)

Typing this character simply inserts it in the document NIL also has this effect.

You can also cause a keystroke to invoke a function for you. To do so, use the function

(TEDIT. SETFUNCTION CHARCODE FN TABLE) _ [Function]
Sets up the TEdit readtable TABLE so that typing the character with charcode
CHARCODE will APPL Y FN to the text STREAM and the TEXTOBJ for the document
being edited. The function may have arbitrary side-effects.

The abbreviation feature described below is implemented using this function-call facility.

Finally, TEdit uses the read table TEDIT. WORDBOUND. READTABLE to decide where word boundaries
are. Whenever two adjacent characters have different syntax classes, there is a word boundary between
them. The state of this table can be controlled by the functions

(TEDIT.WORDGET CHAR TABLE) [Function]
Returns the syntax class (a small integer) for a given character. CHAR may be either
a character or a charcode; TABLE defaults to TEDIT • WORDBOUND. READTABLE.

(TEDIT • WORDSET CHAR CLASS TABLE) [Function]
Sets the syntax class for a character. Again, CHAR is either a character or a
charcode; TABLE defaults to TED IT • WORDBOUND. READT ABLE; CLASS may be
either a small integer as returned by TEDIT. WORDGET, or one of the atoms
WHITESPACE, TEXT, or PUNCTUATION. Those represent the syntax classes in the
default TEDIT • WORDBOUND. READTABLE.

The initial TEDIT .WORDBOUND.READTABLE assigns every character to one of the above classes, along
pretty obvious lines. For purposes of control-W, whitespace between the caret and the word being deleted
is also removed.

20.30

INTERLISP-D DISPLAY-ORIENTED TOOLS

20.6.5 The TEdit Abbreviation Facility

The list TED IT • ABBREVS is a list of "abbreviations known to TEdit." Each element of the list is a
dotted pair of two strings. The first is the abbreviation (case does matter), and the second is what "the
abbreviation expands to. To expand an abbreviation, select it and type control-X. It will be replaced by
its expansion.

You can also expand single-character abbreviations while typing. Hitting control-X when no characters
are underlined (Le .• after you have typed something) will expand the single-character abbreviation to the
left of the caret.

Here is a list of the default abbreviations and their expansions:

b

m

n

"

20.7

The bullet (.)

The M-dash (-)

The figure dash (-)

Open double-quotes (") which can be matched by two normal quotes (")

THE TTYIN DISPLAY TYPEIN EDITOR

TIYIN 'is an Interlisp function for reading input from the terminal. It features altmode completion,
spelling correction, help facility, and fancy editing, and can also serve as a glorified free text input
function. This document is divided into two major sections: how to use TIYIN from the user's point of
view, and from the programmer's.

TIYIN exists in implementations for Interlisp-10 and Interlisp-D. The two are substantially compatible,
but the capabilities of the two systems differ (Interlisp-D has a more powerful display and allows greater
access to the system primitives needed to control it effectively; it also has a mouse, greatly reducing the
need for keyboard-oriented editing commands). Descriptions of both are included in this document for
completeness, but Interlisp-D users may find large sections irrelevant.

20.7.1 Entering Input With TTY1N

There are two major ways of using TIYIN: (1) set LISPXREADFN to TTYIN, so the LISPX executive
uses it to obtain input, and (2) call TTY I N from within a program to gather text input Mostly the same
rules apply to both; places where it makes a difference are mentioned below.

The following characters may be used to edit your input, independent of what kind of terminal you are
on. The more TTYIN knows about your terminal, of course, the nicer some of these will behave. Some
functions are performed by one of several characters; any character that you happen to have assigned
as an interrupt character will, of couse, not be read by lTYIN. There is a (somewhat inelegant) way of
changing which characters perform which functions, described under TTYINREADMACROS later on.

control-A, BS, DE L

20.31

Entering Input With TTYIN

Deletes a character. At the start of the second or subsequent lines of your inpu~ deletes the
last character of the previous line.

control-W
Deletes a "word". Generally this means back to the last space or parenthesis.

control-Q (control-U for Tops20 users)

cpntrol-R

Deletes the current line, or if the current line is blank, deletes the previous line.

Refreshes the current line. Two in a row refreshes the whole buffer (when doing multi-line
input).

ESC Tries to complete the current word from the spelling list provided to TTYIN, if any. In the case
of ambiguity, completes as far as is uniquely determined, or rings the bell. For LISPX inpu~
the spelling list may be USERWORDS (see discussion of TTYINCOMPLETEFLG, page 20.44).

Interlisp-lO only: If no spelling list was provided, but the word begins with a "(", tries directory
name completion (or filename completion if there is already a matching ")" in the current
word).

? If typed in the middle of a word will supply alternative completions from- the SPLST argument
to TTYIN (if any). ?ACTIVATEFLG (page 20.43) must be true to enable this feature.

control-F Sumex, Tops20 only: Invokes GT J FN for filename completion on the current "word".

control-Y
Escapes to a Lisp userexec, from which you may return by the command OK. However. when
in READ mode and the buffer is non-empty. control-Y is treated as Lisp's unquote macro
instead, so you have to use edit-control-Y (below) to invoke the userexec.

(middle-blank> in Interlisp-D, LF in Interiisp-lO

control-X

ReUieves characters from the previous non-empty buffer when it is able to; e.g., when typed at
the beginning of ~e line this command restores the previous line you typed at TIYIN; when
typed in the middle of a line fills in the remaining text from the old line; when typed following
tQ or t W restores what those commands erased.

If typed as the first character of the line m~ans the line is a comment; it is ignored, and TfYIN
loops back for more input.

Goes to the end of your input (or end of expression if there is an excess right parenthesis) and
returns if parentheses are balanced, beeps if not. Currently implemented in Interlisp-D'only.

During most kinds of input, TfYIN is in "autofill" mode: if a space is typed near the right margin, a
carriage return is simulated to start a new line. In fact. on cursor-addressable displays, lines are always
broken, if possible, so that no word straddles the end of the line. The "pseudo-carriage return" ending
the line is still read as a space, however; i.e., the program keeps track _ of whether a line ends in a carriage
return or is merely broken at some convenient point. You won't get carriage returns in your strings unless
you explicitly type them.

20.32

··INTERLISP-D DISPLAY-ORIENTED TOOLS

20.7.2 Mouse Commands [Interlisp-D Only]

The mouse buttons are interpreted as follows during lTYIN input:

LEFT Moves the caret to where the cursor is pointing. As you hold down LEFT, the caret moves
around with the cursor; after you let up, any typein will be inserted at the new position.

MIDDLE Like LEFT, but moves only to word boundaries.

RIGHT Deletes text from the caret to the cursor, either forward or backward. While you hold down
RIGHT, the text to be deleted is complemented; when you let up, the text actually goes away.
If you let up outside the scope of the text, nothing is killed (this is how to "cancel" the
command). This is roughly the same as CTRL-RIGHT with no initial selection (below). .

If you hold down t-TRL and/or SHIFT while pressing the mouse buttons, you instead get secondary
selection, move selection or delete selection. You make a selection by bugging LE FT (to select a character)
or MIDDLE (to selecfa word), 'and optionally extend the selection either left or right using RIGHT. While
you are doing this, the caret does not move, but your selected text is highlighted in a manner indicating
what is about to happen. When you have made your selection (all mouse buttons up now), lift up on
CTRL and/or SHI FT and the action you have selected will occur, which is:

SHIFT The selected text as typein at the caret The text is highlighted with a broken underline during
selection.

CTRL Delete the selected text. 'The text is complemented during selection.

CTRL-SHIFT
Combines the above: delete the selected text and insert it at the caret. This is how you move
text about.

You can cancel a selection in progress by pressing LEFT or MIDDLE as if to select, and moving outside
the range of the text.

The most recent text deleted by mouse command can be inserted at the caret by typing <middle-blank>
(the same key that retrieves the previous buffer when issued at the end of a line).

20.7.3 Display Editing Commands

On edit-key tenninals (Datamedia): In Interlisp-lO, lTIIN reads from the terminal in binary mode,
allowing many more editing commands via the edit key, in ·the style of TVEDIT commands. Note that
due to Tenex's unfortunate way of handling typeahead, it is not possible to type ahead edit commands
before TIYIN has started (Le., before its prompt appears), because the edit bit will be thrown away. Also,
since ESCAPE has numerous other meanings in Lisp and even in TIYIN (for completion), ESCAPE is
not used as a substitute for the edit key.

In Interlisp-D: Users will probably have little use for most of these cOIl?-.I11ands, as cursor positioning can
often be done more conveniently, and certainly more obviously, with the mouse. Nevertheless, some
commands, such as the case changing commands, can be useful. The (bottom-blank> key can be used
as an edit (meta) key in Chorus and subsequent releases if you perform (TTYINMETA T). This calls
(MET ASH 1FT T) to enable the meta key, redefines the middle and top blank keys, and informs TlYIN

20.33

Display Editing Commands

that you want to use them. Alternatively, you can use the EDITPREFIXCHAR (by default on <top-blank»
as described in the next paragraph.

On edit-keyless display terminals (Heath): If you want to type any of these commands, you need to prefix
them with the "edit prefix" character. Set the variable EDITPREFIXCHAR to the character code of the
desired prefix char. Type the edit prefix twice to give an~'edit-ESCAPE" command. Some users of the
TENEX TVEDIT program like to make ESCAPE (33Q) be the edit prefix, but this makes it somewhat
awkward to ever use escape completion.

On edit-keyless hardcopy tenninals: You probably want to ignore this section, since you won't be able
to see what's going on when you issure edit commands; there is no attempt made to echo anything
reasonable.

In the descriptions below, "current word" means the word the cursor is under. or if under a space, the
previous word. - Currently parentheses are treated as spaces, which is usually what you want, but can
occasionally cause confusion in the word deletion commands. The notation [CHAR] means edit-CHAR.
if you have an -edit key, or <editprefixchar> CH~ if you don't; $ = escape. Most commands can be
preceded by numbers or escape (means infinity), only the first of which requires the edit key (or the edit
prefix). Some commands also accept negative arguments, but some only look at the magnitude of the
argo -Most of these commands are taken from the display editors TVEDIT and! or E, and are confined to
work within one line of text unless otherwise noted.

Cursor Movement Commands:

[delete], [bs], [<]
Back up one (or n) characters.

[space], [>]
Move forward one (or n) characters.

[1'] Moves up one (or n) lines.

[If] Moves down one (or n) lines.

[(] Move back one (or n) words.

D] Move ahead one (or n) words.

[tab] Moves to end of line; with an argument moves to nth end of line; [$tab] goes to end of buffer.

[control-L]
Moves to stan of line (or nth previous. or start of buffer).

[{] and [}]
Go to start and end of buffer, respectively (like [$control-L] and [$tab]).

[[] (edit-left-bracket)
Moves to beginning of the current list, where cursor is currently under an element of that list
or its closing paren. (See also the auto-parenthesis-matching feature below under "Flags".)

[]] (edit-right-bracket)
Moves to end of current list

20.34

INTERLISP-D DISPLAY-ORIENTED TOOLS

[Sx] Skips ahead to next (or nth) occurrence of character x, or rings the bell.

[Bx] Backward search, Le., short for [-S] or [-nS]. -

Buffer Modification Commands:

[Zx] Zaps characters from cursor to next (or nth) occurrence of x. There is no unzap command yet

[A] or [R] .
Repeat the last S, B or Z commarid, regardless of any intervening input (note this differs from
Tvedit's A command). .

[K] Kills the character under the cursor, or n chars starting at the cursor.

[I] Begin inserting. Exit insert -with any edit command. Characters you type will be inserted, rather
than overwriting the existing text. If EMACSFLG (page 20.43) is true (default in Interlisp-D),
you are always in insert mode, and this command is a noop.

Inserting <cr> behaves slightly different from in tvedit The sequence [I<cr>] behaves as in
TVEDIT; it inserts a blank line ahead of the cursor. <cr> typed any other time while in insert
mode actually inserts a <cr>t behaving somewhat like TVEDIT's [B]. [$1] is the same as [I<cr>].

[cr] When the buffer is empty is the same as <ID, Le. restores buffer's previous contents. Otherwise
is just like a <cr> (except that it also terminates an insert). Thus, [<crXcr>] will repeat the
previous input (as will <1D<cr> without the edit key).

[0] Does "Open line", inserting a crlf after the/cursor, i.e., it breaks the line but leaves the cursor
where it is ..

[1'] Transposes the characters before and after the cursor. When typed at the end· of a line,
transposes the previous two characters. Refuses to handle funny cases, such as tabs.

[G] Grabs the contents of the previous line from the cursor position onward. [nG] grabs the nth
previous line.

[L] Lowercases current word, or n words on line. [$L] lowercases the rest of the line, or if given
at the end of line lowercases the entire line.

[U] Uppercases analogously.

[C] Capitalize. If you give it an argument, only the first word is capitalized; the rest are just
lowercased.

[control-QJ
Deletes the current line. [$control-Q] deletes from the current cursor position to the end of the
buffer. No other arguments are handled.·

[control-W]
Deletes the curre.nt woro, or the previous word if sitting on a space.

[D] and [D<cr>]
Are the same as [control-W] and [control-Q], for approximate compatibility with TVEDIT.

[J] "Justify" this line. This will break it if it is too long, or move words up from the next line

20.35

[$F]

Display- Editing Commands

if too short. Will not join to an empty line, or one starting with a tab (both of which are
interpreted as paragraph breaks). Any new line breaks it introduces are considered spaces, not
carriage returns. [nl] justifies n lines.

The linelength is defined as TTYJUSTLENGTH, ignoring any prompt characters at the margin. If
TTY JUSTLENGTH is negative, it is interpreted as relative to the right margin. TTY JUSTLENGTH
is initially - 8 in I!nterlisp-D, 72 in Interlisp-lO.

"Finishes" the input, regardless of where the cursor is. Specifically, it goes to the end of the
input and enters a <cr>, control-Z or ")", depending on whether notmaL REPEAT or READ
input is happening. Note that a "]" won't necessarily end a READ, but it seems likely to in
most cases where you would be inclined to use this command, and makes for more predictable
behavior.

Miscellaneous Commands:

[P] Interlisp-D: Prettyprint buffer. Clears the buffer and reprints it using prettyprint. If there are
not enough right parentheses, it will supply more; if there are too many, any excess remains
unprettyprinted at the end of the buffer. May refuse to do anything if there is an unclosed
string or other error trying to read the buffer. .

[N] Refresh line. Same as control-R. [$N] refreshes the whole buffer; [nN] refreshes n lines. Cursor
movement in TIYIN depends on TIYIN being the only source of output to the screen; if you
do a control-T, or a system message appears, or line noise occurs, you may need to refresh
the line for best results. In Interlisp-lO, if for some reason your terminal falls O\lt of binary
mode (e.g. can happen when' returning to a Lisp running in a lower fork), Edit-<anything> is
unreadable, so you'd have to type control-R instead.

[control-Y]
Gets userexec. Thus. this is like regular control-Y, except when doing a READ (when control-Y
is a read macro and hence does not invoke this function).

[$control-Y]
Gets a userexec, but first unreads the contents of the buffer from the cursor onward. Thus if you
typed at TIYIN something destined for the Lisp executive, you can do [control-L$control-y]
and give it to Lisp.

[~] Adds the current word to the spelling list USE RWORDS. With zero arg, removes word. See
TTY INCOMPLETEFLG (page 20.44).

Note to Datamedi~ Heath users: In addition to simple cursor movement commands and insert/delete,
TIYIN uses the display's cursor-addressing capability to optimize cursor movements longer than a few
characters, e.g. [tab] to go to the end of the line. In order to be able to address the cursor, TIYIN
has to know where it is to begin with. Lisp keeps track of the current print position within the line,
but does not keep track of the line on the screen (in fact, it knows precious little about qisplays. much
like Tenex). Thus, TIYIN establishes where it is by forcing the cursor to appear on the last line of the
screen. Ordinarily this is the case anyway (except possibly on startup), but if the cursor happens to be
only halfWay down the screen at the time, there is a possibly unsettling leap of the cursor when TTYIN
starts.

20.36

INTERLISP-D DISPLAY-ORIENTED TOOLS

20.7.4 Using ITYIN for Lisp Input

When TIYIN is loaded, or a sysout containing TIYIN is started up, the function SETREADFN is called.
If the tenninal is a display, it sets LISPXREADFN to be TTYINREAD; if the terminal is non-display,
SETREADFN will set the variable back to READ. (SETREADFN 'READ) will also set it back to READ.

There are two principal differences between TTY I NREAD and READ: (1) parenthesis balancing. The input
does not activate on an exactly balancing right parenlbracket unless the input started with a parenlbracket,
e.g., "u 5 E (F 00) FOR (F IE)" will all be on one line, t,erminated by <cr>; and (2) read macros.

In Interlisp-10, TIYIN does not use a read table (lTYIN behaves as though using the default initial
Lisp terminal input readtable), so read macros and redefinition of syntax characters are not supported;
however, " , " (QUOTE) and "control-Y" (EVAL) are built in, and a simple implementation of? and ?=
is supplied. Also, the TTYINREADMACROS facility described below can supply some of the functionality
of immediate read macros in the editor.

In Interlisp-D, read macros are (mostly) supported. Immediate read macros take effect only if typed at
the end of the input (it's not clear what their semantics should be elsewhere).

20.7.5 Useful Macros

There are two useful edit macros that allow you to use TIYIN as a character editor: (1) ED loads the
current expression into the ttyin buffer to be edited (this is good for editing comments and strings). Input
is terminated in the usual way' (by typing a balancing right parenthesis at the end of the input, typing
<cr> at the end of an already balanced expression, or control-X anywhere inside the balanced .expression).
Typing control-E or clearing the buffer aborts ED. (2) EE is like ED but prettyprints the expression into
the buffer, and uses its own window. The variable TTYINEDITPROMPT controls what prompt, if any,
EE uses; see prompt argument description in next section (the initial setting is no prompt). EE is not yet
implemented in Interlisp-10.

The macro BUF loads the current expression into the buffer, preceded by E, to be used as input however
desired; as a trivial example, to evaluate the current expression, BU F followed by a <cr> to activate the
buffer will perform roughly what the edit macro EVAL does. Of course, you can edit the E to something
else to make it an edit command.

BUF is also defined at the executive level as a programmer's assistant command that loads the buffer with
the V A L U EO F the indicated event, to be edited as desired.

TV is a programmer's assistant command like EV [EDITV] that performs an ED on the value of the
variable.

And finally, if the event is considered "short" enough, the programmer's assistant command F I X will load
the buffer with the event's input, rather than calling the editor. If you really wanted the Interlisp editor
for your fix, you could either say FIX EVENT - TTY:, or type control-U (or whatever on tops20) once
you got TIYIN's version to force you into the editor.

20.37

Programming With TTYIN

20.7.6 Programming With TTYIN

(TTYIN PROMPT SPLST HELP OPTIONS ECHOTOFILE TABS UNREADBUF RDTBL) [Function]
TIYIN prints PROMPT, then waits for input The value returned in the nonnal
case is a list of all atoms on the line, with comma and parens returned as individual
atoms; OPTIONS may be used to get a different kind of value back.

PROMPT is an 'atom or string (anything else is converted to a string). If NIL, the value of
DEFAULTPROMPT, initially "** ", will be used. If PROMPT is T, no prompt will be given. PROMPT
may also be a dotted pair (PROMPT1 • PROMPT:,z) , giving the prompt for the first and subsequent
(or overflow) lines, each prompt being a string/atom or NIL to denote absence of prompt. Note that
rebinding DEFAULTPROMPT giyes a convenient way to affect all the Uordinary" prompts in some program
module.

SPLST is a spelling list, i.e., a list of atoms or dotted pairs (SYNONYM • ROOT). If supplied, it is used
to check and correct user responses, and to provide completion if the user types ESCAPE. If SPLST is one
of the Lisp system spelling lists (e.g., USERWORDS or SPELLINGS3), words that are escape-completed get
moved to the front, just as if a FIXSPELL had found them. Autocompletion is also perfonned when user
types a break character (cr, space, paren, etc), unless one of the "nofixspell" options below is selected;
i.e., if the word just typed would uniquely complete by ESCAPE, TfYIN behaves as though ESCAPE
had been typed.

HELP, if non-NIL, determines what happens when the user types? or HELP. If HELP = T, program
prints back SPLST in suitable form. If HELP is any other atom, or a string containing no spaces, it
performs (D I S P LA Y H E L P HELP). Anything else is printed as is. If HELP is NIL,? and HELP are
treated as any other atoms the user types. [DISPLAYHELP is a user-supplied function, initially a noop;
systems with a suitable HASH package, for example, have defined it to display a piece of text from a
hashfile associated with the key HE L P .]

OPTIONS is an atom or list of atoms chosen from among the following:

NOFIXSPELL

MUSTAPPROVE

CRCOMPLETE

DIRECTORY

USER

FILE

FIX

Uses SPLST for HELP and Escape completion, but does not attempt any
FIXSPELLing. Mainly useful if SPLST is incomplete and the caller wants to
handle, corrections in a more flexible way than a straight FIXSPELL.

Does spelling correction, but requires confirmation.

Requires confirmation on spelling correction, but also does autocompletion on <cr>
(I.e. if what user has typed so far uniquely identifies a member of SPLST, completes
it). This allows you to have the benefits of autocompletion and still allow new
words to be typed.

(only if SPLST=NIL) Interprets Escape to mean directory name completion
[Interlisp-lO only].

Like DIRECTORY, but does usemame completion. This is identical to DIRECTORY
under Tenex [Interlisp-lO only].

(only if SPLST = NIL) Interprets Escape' to mean filename completion, i.e. does a
GT J FN [Sumex and Tops20 only].

If response is not on, or does not correct to, SPLST, interacts with user until an

20.38

STRING

NORAISE

NOVALUE

REPEAT

TEXT

COMMAND

READ

LISPXREAD

NOPROMPT

INTERLISP-D DISPLAY-ORIENTED TOOLS

acceptable response is entered. A blank line (returning NIL) is always accepted.
Note that if you are willing to accept responses that are not on SPLST, you probably
should specify one of the options NOXFISPELL, MUSTAPPROVE or CRCOMPLETE,

. lest the user's new response get F IXSPELLed away without their approval.

Line is read as a string, rather than list of atoms. Good for free text

Does not convert lower case letters to upper case.

For use principally with the ECHOT.OFILE arg (below). Does not compute a value,
but returns T if user typed anything, NIL if just a blank line.

For multi-line input. Repeatedly prompts until user types control-Z (as in Tenex
sndmsg). Returns one long list; with S T RING option returns a single string of
everything typed, with carriage returns (EOL) included in the string.

Implies REPEAT,·NORAISE, and NOVALUE. Additionally, input may be tenninated
with control-V, in which case the global flag CTRLVFLG will be set true (it is set
to NIL on any other tennination). This flag may be utilized in any way the caller
desires.

Only the first word on the line is treated as belonging to SPLST, the remainder of
the line being arbitrary text; i.e., "command fonnat". If other options are supplied,
COMMAND still applies to the first word typed. Basically, it always returns (CMD
• REST-OF-INPUT) , where REST-OF-INPUT is whatever the other options dictate
for the remainder. E.g. COMMAND NOVALUE returns (CMD) or (CMD • T),
depending on whether there was further input; COMMAND STRING returns (CMD
• "REST-OF-INPUT"). When used with REPEAT, COMMAND is only in effect for
the first line typed; furthermore, if the first line consists solely of a command, the
REPEAT is ignored, i.e., the entire input is taken to be just the command.

Parens, brackets, and quotes are treated a la READ, rather than being returned as
individual atoms. Control characters may be input via the control-Vx notation.
Input is tenninated roughly along the lines of READ conventions: a balancing
or over-balancing right paren/bracket will activate the input, or <cr> when
no parenthesis remains unbalanced. READ overrides all other options (except
NORAISE).

Like READ, but implies that TIYIN should behave even more like READ, i.e., do
NORAISE, not be errorset-protected, etc.

Interlisp-D only: The prompt argument is treated as usual. except that TTYIN
assumes that the prompt for the first line has already been printed by the caller;
the prompt for the first line is thus used only when redisplaying the line.

ECHOTOFILE if specified, user's input is copied to this file, Le., lTYIN can be used as a simple text-to-file
routine if NOVALUE is used. If ECHOTOFILE is a list, copies to all files in the list. PROMPT is not included-
on the file. .

TABS is a special addition for tabular input. It is a, list of tabstops (numbers). When user types a tab.
TTYIN automatically spaces over to the next tabstop (thus the first tabstop is actually the second "column"
of input). Also treats specially the characters * and "; they echo nonnally, and then automatically tab

20.39

EE Interface

over.

UNREADBUF allows the caller to "preload" the 1TYIN buffer with a line of input UNREADBUF is a
list, the elements of which are unread into the buffer (Le., "the outer parentheses are stripped off") to
be edited further as desired; a simple <cr> (or control-Z for REPEAT input) will thus cause the buffer's
contents to be returned unchanged. If doing READ input, the "PRIN2 names" of the input list are used,
i.e., quotes and %'s will appear as needed; otherwise the buffer will look as though UNREADBUF had been
PRIN1'ed. UNREADBUF is treated somewhat like READBUF, so that if it contains a pseudo-carriage return
(the value of HISTSTRO), the input line terminates there.

Input can also be unread from a file, using the HISTSTRl format: UNREADBUF = {<value of

HISTSTR1> (FILE START • END», where START and END are file byte pointers. This makes 1TYIN
a miniature text file editor.

RDTBL- [Interlisp-D only] is ttie read table to use for READing the input when one of the READ options is
given. A lot of character interpretations are hardwired into 1TYIN, so currently the only effect this has
is in the actual READ, and in deciding whether a character typed at the end of the input is an immediate
read macro, for purposes of termination.

If the global variable TYPEAHEADFLG is T, or option LISPXREAD is given, 1TYIN permits type-ahead;
otherwise it clears the buffer before prompting the user.

20.7.7 EE Interface

The following may be useful as a way of outsiders to call 1TYIN as an editor. These functions are
currently only in Interlisp-D.

(TTYINEDIT EXPRS WINDQW PRINTFN) [Function]
This is the body of E E. S witches the tty to WINDOW, clears it, prettyprints EXPRS,

a list of expressions, into it, and leaves you in 1TYIN to edit it as Lisp input.
Returns a new list of expressions.

If PRINTFN is non-N I L, it is a function of two arguments, EXPRS and FILE, which
is called instead of PRETTYPRINT to print the expressions to the window (actually
a scratch file). Note that EXPRS is a list, so normally the outer parentheses should
not be printed. PRINTFN=T is shorthand for "unpretty"; use PRIN2 instead of
PRETTYPRINT.

TTYINAUTOCLOSEFLG [Variable]
If TTY I NAUTOCLOSE F LG is true, TTY I NED IT closes the window on exit.

TTYINEDITWINDOW [Variable]
If the WlNDowarg to TTYINEDIT is NIL, it uses the value of TTY IN EDIT WINDOW,
creating it if it does not yet exist.

TTYINPRINTFN [Variable]
The default value for PRINTFN in EE's call to TTYINEDIT.

(SET. TTYINEDIT . WINDOW, WINDOW) [Function]
Called under a RESETLST. Switches the tty to WINDOW (defaulted as in
TTYINEDIT) and clears it The window's position is left so that 1TYIN will be

20.40

INTERLISP-D DISPLAY-ORIENTED TOOLS

happy with it if you now call TIYIN yourself. Specifically, this means positioning
an integral number of lines from the bottom of the window. the way the top-level
tty window normally is.

(TTYIN.SCRATCHFILE) [Function]

20.7.8 . ? = Handler

Returns, possibly creating, the scratchfile that TfYIN uses for prettyprinting its
input The file pointer is set to zero. Since TfYIN does use this file, beware of
multiple simultaneous use of the file.

In Interlisp, the 1 = read macro displays the arguments to the function currently "in progress" in the
type~. _ Since TTYIN wants you to be able to continue editing the buffer after a 1 =. it processes this
macro specially on its own, printing the arguments below your typein and then putting the cursor back
where. it was when 1 = was typed. For users who want special treatment of? =, the following hook exists:

TTYIN?=FN [Variable]
The value of this variable, if non-N I L, is a user function of one argument that is
called when 1 = is typed. The argument is the function that 1 = thinks it is inside
of. The user function should return one of the following:

NIL Normal 1= processing is performed ..

T Nothing is done. Presumably the user function has done something
privately, perhaps diddled some other window, or called TTY IN. P R I NT ARGS
(below). .

a list (ARGS • STUFF)
Treats STUFF as the argument list of the function in question, and performs
the normal 1 = processing using it

anything else
The value is printed in lieu of what 1 = normally prints.

At the time that 1 = is typed, nothing has been "read" yet, so you don't have the normal context you might
expect inside a conventional readmacro. If the user function wants to examine the typed-in arguments
being passed to the fn, however, it can perform (TTYIN. READ?=ARGS), which bundles up everything
between the function and the typing of 1 = into a list, which it returns (thus it parallels an arglist; NIL
if 1= was typed inimediately after the function name).

(TTYIN.PRINTARGS FN ARGS ACTUALS ARGTYFE) [Function]

20.7.9 Read Macros

Does the function/argument printing for 1 =. ARGS is an argument list, ACTUALS

is a list of actual parameters (from the typein) to match up with args. ARGTYFE is
a value of the function ARGTYPE; it defaults to (ARGTYPE FN).

When doing READ input in Interlisp-10, no Lisp-style read macros are available (but the ' and control
Y macros are built in). Principally because of the usefulness of the editor read macros (set by

20.41

Read Macros

SETTERMCHARS), and the desire for a way of changing the meanings of the display editing commands,
the following exists as a hack:

TTYINREADMACROS [Variable]
Value is a set of shorthand inputs useable during READ input. It is an aIist of
entries (CHARCODE • SYNONYM). If the user types the indicated character (edit
bit is denoted by the 200Q bit in charcode), TfYIN behaves as though the synonym
character had been typed.

Special cases: 0 - the character is ignored; 200Q - pure Edit bit; means to read
another char and tum on its edit bit; 4000 - macro quote: read another char and
use its original meaning. For example, if you have macros «33Q . 2000) (300
. 33Q), then Escape (330) will behave as an edit prefix, and control-X (30Q)
will behave like Escape. Note: currently, synonyms for edit commands are not
well-supported, working only when the command is typed with no argument.

Slightly more powerful macros also can be supplied; they are recognized when
a character is typed on an empty line, Le., as the first thing after the prompt.
In this case, the TTYINREADMACROS entry is of the form (CHARCODE T .
RESPONSE) or (CHARCODE CONDITION • RESPONSE). where CONDITION is a
list that evaluates true. If RESPONSE is a list, it is EVALed; otherwise it is left
unevaluated. The result of this evaluation (or RESPONSE itself) is treated as follows:

NIL The macro is ignored. and the character reads normally, Le., as though
TTYINREADMACROS had never existed.

An integer
A character code, treated as above. Special case: -1 is treated like 0, but
says that the display may have been altered in the evaluation of the macro,
so TfYIN should reset itself appropriately.

Anything else
This TIYIN input is terminated (with a crlf) and returns the value of
"response" (turned into a list if necessary). This is the principal use of
this facility. The macro character thus stands for the (possibly computed)
reponse, terminated if necessary with a crlf. The original character is not
echoed.

Interrupt characters, of course, cannot be read macros, as TIYIN never sees them, but any other
char~ters, even non-control chars, are allowed. The ability to return NIL allows you to have conditional
macros that only apply in specified situations (e.g., the macro might check the prompt (L I S P X I D) or
other contextual variables}. To use this specifically to do immediate editor read macros, do the following
for each edit command and character you want to invoke it with:

(ADDTOVAR TTYINREADMACROS (CHARCODE 'CHARMACRO? EDITCOM»)

For example, (ADDTOVAR TTY INREADMACROS (12Q CHARMACRO? ! NX» will make linefeed do the
! NX command. Note that this will only activate linefeed at the beginning of a line, not anywhere in the
line .. There will probably be a user function to do this in the next release.

Note that putting (12Q T . ! NX) on TTYINREADMACROS would also have the effect of returning
" ! NX" from the READ call so that the editor would do an ! NX. However, TIYIN would also return! NX

20.42

INTERLISP-D DISPLAY-ORIENTED TOOLS

. outside the editor (probably resulting in au.b.a. error, or convincing DWIM to enter the editor), and
also the clearing of the output buffer (performed by CHARMACRO?) would not happen.

20.7.10 Assorted Flags

These flags control aspects of rrYIN's behavior. Some have already been mentioned. Their initial values
are all NIL. In Interlisp-D, the flags are all initially T .

. TYPEAHEADFLG [Variable]
If true, TIYIN always permits typeahead; otherwise it clears the buffer for any
butLISPXREADinput

?ACTIVATEFLG [Variable]
If true, enables the feature whereby? lists alternative completions from the current
spelling list

EMACSFLG [Variable]
Affects display editing. When true, rrYIN tries to behave a little more like
EMACS (in very simple ways) than TVEDIT. Specifically, it has the following
effects currently: (1) all non-edit characters self-insert (Le. behave as if you're
always in Insert mode); (2) [D] is the EMACS delete to end of word command.

SHOWPARENFLG [Variable]
If true, then whenever you are typing Lisp input and type a right parenthesis/bracket,
TrYIN will briefly move the cursor to the matching parenthesis/bracket, assuming
it is still on the screen. The cursor stays there for about 1 second, or until you
type another character (Le., if you type fast you'll never notice it). This feature
was inspired by a similar EMACS feature, and turned out to be pretty easy to
implement.

TTYINBSFLG [Variable]
Causes TrYIN to always physically backspace, even if you're running on a non
display (not a DM or Heath), rather than print \deletedtext\ (this assumes your
hardcopy terminal or glass tty is capable of backspacing). If TrYINBSFLG is LF,
then in addition to backspacing, TrYIN x's out the deleted characters as it backs
up, and when you stop deleting, it outputs a linefeed to drop to a new, clean line
before resuming. To save paper, this linefeed operation is not done when only a
single character is deleted, on the grounds that you can probably figure,out what
you typed anyway.

TTYINRESPONSES [Variable]
An alist of special responses that will be handled by routines designated by the
programmer. See "Special Responses", below.

TTYINERRORSETFLG [Variable]

TTYINMAILFLG

[Interlisp-D only] If true, non-LISPXREAD inputs are errorset-protected (control-E
traps back to the prompt), otherwise errors propagate upwards. Initially NIL.

[Variable]
[Tenex only] When true, performs rnail checking, etc. before most inputs (except
EV ALQT inputs, where it is assumed this has already been done, or inputs indented

20.43

· .
Special Responses

by more than a few spaces). The MAILWATCH package must be loaded for this.

, TTYINCOMPLETEFLG [Variable]
If true, enables Escape completion from USERWORDS during READ inputs. Details
below. '

USERWORDS (page 15.15) contains words you mentioned recently: fjJnctions you have defined or edited,
variables you have set or evaluated at the executive level, etc. This happens to be a very convenient list
for context-free escape completion; if you have recently edited a function, chances are good you may
want to edit it again (typing; "EF xxS") or type a call to it If there is no completion for the current
word from USERWORDS, the escape echoes as "S", i.e. nothing special happens; if there is more than
one possible completion, you get beeped. If typed when not inside a word, Escape completes to the
value of LASTWORD, Le., the last thing you typed that the p.a. "noticed" (setting TTYINCOMPLETEFLG
to 0 disables this latter feature), except that Escape at the beginning of the line is left alone (it is a p.a.

- -command).

If you really wanted to enter an escape, you can, of course, just quote it with a control-V, like you can
other control chars.

You may explicitly add words to USERWORDS yourself that wouldn't get there otherwise. To make this
convenient online the edit command [...] means "add the current atom to USE RWORDS" (you might think
of the command as "pointing out this atom"). For example, you might be entering a function definition
and want to "point to" one Qr more of its arguments or prog variables. Giving an argument of zero to
this command will instead remove the indicated atom from USE RWORDS.

Note that this feature loses some of its value if the spelling list is too long, for then the completion takes
too long computationally and, more important, there are too many alternative completions for you to get
by with typing a few characters followed by escape. Lisp's maintenance of the spelling list USE RWORDS
keeps the "temporary" section (which is where everything goes initially unless you say otherwise) limited
to #USERWORDS atoms, initially 100. Words fall off the end if they haven't been used (they are "used"
if FIXSPELL corrects to one, or you use (escape) to complete one).

20.7.11 Special Responses

There is a facility for handling "special responses" during any non-READ TTYIN input. This action js
independent of the particular call to TTYIN, and exists to allow you to effectively "advise" TTYIN to
intercept certain commands. After the command is processed, control returns to the original TTYIN call.
The facility is implemented via the list TTY IN RES PO N S E S.

TTYINRESPONSES [Variable]
TTY INRESPONSES is a list of elements, each of the form:

(COMMANDS RESPONSE·FORM OPTION)

COMMANDS is a single atom or list of commands to be recognized; RESPONSE·
FORM is EVALed (if a list), or APPL Yed (if an atom) to the command and the rest
of the line. Within this form one can reference the free variables COMMAND (the
command the user typed) and LINE (the rest of the line). If OPTION is the atom
LINE, this means to pass the rest of line as a list; if it is STRING, this means to
pass it as a string; otherwise, the command is only valid if there is nothing else
on the line. If RESPONSE· FORM rentrns the atom IGNORE, it is not treated as a

20.44

INTERLISP-D DISPLAY-ORIENTED TOOLS

special response (Le. the input is returned normally as the result of TTYIN).

In MYCIN, the COMMENT command is handled this way; any time the user types COMMENT as the first
word of input, TTYIN passes the rest of the line to a mycin-defined function which prompts for the
text of the comment (recursively using TIYIN with the TEXT option). When control returns, TTYIN
goes back and prompts for the original input again. The TTYINRESPONSES entry for this is (COMMENT
(GRIPE LINE) LIST); GRIPE is a MYCIN function of one argument (the one-line comment, or NIL
for extended comments). '

Suggested use: global commands or options can be added to the top level value of TTY IN RESPONSES. For
more specialized commands, rebind TTY INRESP0NSES to (APPEND NEWENTRIES TTYI NRESPONSES)
inside any module w~ere you want to do this sort of special processing.

Special responses are not checked for during READ-style input.

.20.7.12 Display Types

[This is not relevant in Interlisp-D]

TTYIN determines the type of display by calling DISPLAYTERMP, which is initially defined to test the
value of the GTTYP jsys. It returns either NIL (for printing terminals) or a small number giving TfYIN's
internal code for the terminal type. The types TTYIN currently knows about:

o = glass tty (capable of deleting chars by backspacing, but little else);

1 = Datamedia;

2 = Heath.

Only the Datamedia has full editing power. DISPLAYTERMP has built into it the correct terminal types
for Sumex and Stanford campus 20's: Datamedia = 11 on tenex, 5 on tops20; Heath = 18 on Tenex,
25 on tops20. You can override those values by setting the variable UISPLAYTYPES to be an alist
associating the GTTYP value with one of these internal codes. For example, Sumex displays correspond to
DISPLAYTYPES = «11 . 1) (18 . 2» [although t.his is actually compiled into DISPLAYTERMP
for speed]. Any display terminal other than Datamedia and Heath can probably safely be assigned to "0"
for glass tty.

To add new terminal types, you have to choose a number for it, add new. code to TTYIN for it and
recompile. The TTYIN code specifies what the capabilities of the terminal are, and how to do the primitive
operations: up, down. left, right, address cursor, erase screen, erase to end of line, insert character, etc.

For terminals lacking an Edit key (currently only Datamedias have it), set the variable EDITPREFIXCHAR
to the ascii code of an Edit "prefix" (Le. anything typed preceded by the prefix is considered to have the
edit bit on). If your EDITPREFIXCHAR is 33Q (Escape), you can type a real Escape by typing 3 of them
(2 won't do, since that means "Edit-Escape", a legitimate argument to another command). You could
also define an Escape synonym with TTY IN R E ADMAC ROS if you wanted (but currently it doesn't work in
filename completion). Setting ED IT PRE F I XC HA R for a terminal that is not equipped to handle the full
range of editing functions (only the Heath and Datamedia are currently so equipped) is not guaranteed
to work, i.e. the display will not always be up to date; but if you can keep track of what you're doing,
together with an occasional control-R to help out, go right ahead.

20.45

Display Types

20.46

CHAPTER 21

ETHERNET

Interlisp was first developed on large timesharing machines which provided each user with access to
large amounts of disk storage,- printers, mail systems, etc. Interlisp-D, however, was designed to run on
smaller, single-user machines without these facilities.' In order to provide Interlisp-D users with access to
all of these services, Interlisp-D supports the Ethernet communications network, which allows multiple
Interlisp-D machines to share common printers, file servers, etc.

Interlisp-D supports the Experimental Ethernet (3 Megabits per second) and the Ethernet (10 Megabits
per second) local communications networks. These networks may be used for accessing file servers, remote
printers, mail servers, or other machines. This chapter is divided into three sections: First, an overview of
the various Ethernet and Experimental Ethernet protocols is presented. Then follow sections documenting
the functions used for implementing PUP and NS protocols at various levels.

21.1 ETHERNET PROTOCOLS'

The members of the Xerox 1100 family (1100, 1108, 1132), Xerox file servers and laser xerographic
printers, along with machines made by other manufacturers (most notably DEC) have the capability of
communicating over 3 Megabit per second Experimental Ethernets, 10 Megabit per second Ethernets and
telephone lines.

Xerox pioneered its work with Ethernet using a set of protocols known as PARC Universal Packet (PUP)
computer communication protocols. The architecture has evolved into the newer Network Systems (NS)
protocols developed for use in Xerox office products. All of the members of the Xerox 1100 family can
use both NS and PUP prot~ols.

21.1.1 Protocol Layering

The communication protocols used by the members of the Xerox 1100 family are implemented in a
"layered" fashion, which means that different levels of communication are implemented as different
protocol layers. Protocol Layering allows implementations of specific layers to be changed without
requiring changes to any other layers. The layering also allows use of the same higher level software with
different lower levels of protocols. Protocol designers can implement new types of protocols at the correct
protocol level for their specific application in a layered system.

At the bottom level, level zero, there is a need to physically transmit data from one point to another.
This level is highly dependent on the particular transmission medium involved. There are many different
level zero protocols, and some of them may contain several internal levels. At level one, there is a need
to decide where the data should go. This level is concerned with how to address a source and destination,
and how to choose the correct transmission medium to use in order to route the packet towards its
destination. A level one packet is transmitted by encapsulating it in the level zero packet appropriate for

21.1

Level Zero Protocols

the transmission medium selected. For each independent communication protocol system, a single level
one protocol is defined. The rule for delivery of a level one packet is that the communication system
must only make a best effort to deliver the packet. There is no guarantee that the packet is delivered,
that the packet is not duplicated and delivered twice, or that the pack~ts will be delivered in the same
order as they were sent

The addresses used in level zero and level one packets are not necessarily the same. Level zero packets are
specific to a particular transmisSion medium. For example, the destination address of a level zero packet
transmitted on one of the two kinds of Ethernet is the Ethernet address (host number) of a machine on
the particular network. Level one packets specify addresses meaningful to the particular class of protocols
being implemented. For the PUP and NS protocols, the destination address comprises a network number,
host number (not necessarily the same as the level zero host number), and a socket number. The socket
number is a higher-level protocol concept., used to mUltiplex packets arriving at a single machine destined
for separate logical processes on the machine.

Protocols in level two add order and reliability to the level one facilities. They suppress duplicate packets,
and are responsible for retransmission of packets for which acknowledgement has not been received. The
protocol layers above level two add conventions for data structuring, and implement application specific
protocols.

21.1.2 Level Zero Protocols

Level zero protocols are used to physically connect computers. The addresses used in level zero protocols
are protocol specific. The Ethernet. and Experimental Ethernet level zero protocols use host numbers,
but level zero phone line protocols contain less addressing information since there are only two hosts
connected to the telephone line, one at each end. As noted above, a level zero protocol does not include
network numbers.

The 3MB Experimental Ethernet [1] was developed at PARCo Each Experimental Ethernet packet includes
a source and destination host address of eight bits. The Experimental Etherne~ standard is used by any
machine attached to an Experimental Ethernet

The 10MB Ethernet [2] was jointly developed and standardized by Digital, Intel, and Xerox. Each Ethernet
level zero packet includes a source and destination host address that is 48 bits long. The Ethernet standard
is used by any machine attached to an Ethernet

Both of the level one protocols described later (PUP and NS) can be transported on any of the level zero
protocols described above.

The Ethernet and Experimental Ethernet protocols are broadcast mediums. Data packets can be sent
on these networks to every host attached to the net A packet directed at every host on a network is a
broadcast packet.

Other Level 0 protocols in use in industry include X.2S, broadband networks, and Chaosnet. In
addition, by using the notion of "mutual encapsulation", it is possible to treat a higher-level protocol (e.g.
ARP !\NET) as if it were a Level Zero Protocol.

21.2

ETHERNET

21.1.3 Level One Protocols

Two Level One Protocols are used in the Xerox 1100 Family, the PUP and the NS protocols. With
the proper software, computers attached to Ethernets or Experimental Ethernets can send PUPs and

. NS packets to other computers on the same network, and. to computers attached to other Ethernets or
Expenrnnental Ethernets.

The PUP protocols [3] were designed by Xerox computer scientists at the Palo Alto Research Center. The
destination and source addresses in a PUP packet are specified using an 8-bit 'network number, an 8-bit
host number, and a 32-bit socket number. The 8-bit network number allows an absolute maximum of
256 PUP networks in an internet. The 8-bit host number is network relative. That is, there may be many
host number "l"s, but only one per network. 8 bits for the host number limits the number of hosts per
network to 256. The socket number is used for further levels of addressing within a specific machine.

The Network Systems (NS) protocols [4, 5] were developed by the Xerox Office Products Division. Each
NS packet address includes a 32-bit network number, a 48-bit host number, and a 16-bit socket number.
The NS host and network numbers are unique through all space and time. A specific NS host number is
generally assigned to a machine when it is manufactured, and is never changed. In the same fashion. all
networks (including those sold by Xerox and those used within Xerox) use the same network numbering
space-there is only one network "74". '

21.1.4 Higher Level Protocols

The higher level PUP protocols include the File Transfer Protocol (FTP)and the Leaf Protocol used
to send and retrieve files from Intenrnn File Servers (IFSs) and DEC File Servers. the Telnet protocol
implemented by "Chat" windows and servers, and the EFfP protocol used to communicate with the laser
xerographic printers developed by PARC ("Dovers" and "Penguins").

The higher level NS protocols include the Filing Protocol which allows workstations to access the product
File Services sold by Xerox, the Clearinghouse Protocol used to access product Clearinghouse Services,
and the TelePress Protocol used to communicate with the Xerox model 8044 Print Server.

21.1.5 Connecting Networks: Routers and Gateways

When a level one packet is sent from one machine to another. and the two machines are not on the same
network, the packet must be passed between networks. Computers that are connected to two or more
level zero mediums are used for this function. In the PUP world, these machines have been historically
called "Gateways." In the NS world these machines are called Internetwork Routers (Routers), and the
function is packaged and sold by Xerox as the Internetwork Routing Service (IRS).

Every host that uses the PUP protocols requires a PUP address; NS Hosts require NS addresses. An
address consists of two parts: the host number and the network number. A computer learns its network
number by communicating with a Router or Gateway that is attached to the same network. Host number
determination is dependent on the hardware and the type of host number, PUP or NS.

21.3

Addressing Conflicts with· Level Zero Mediums

21.1.6 Addressing Conflicts with Level Zero Mediums

For convenience in the respective protocols, a level one PUP (8-bit) host number is the same as a level zero
Experimental Ethernet host number; i.e., when a PUP level one packet is transported by an Experimental
Ethernet to another host on the same- network, the level zero packet specifies the same· host number as
the level one packet Similarly, a level one NS (48-bit) host number is the same as a level zero Ethernet
host number.

When a PUP level one packet is transported by an Ethernet, or an NS level one packet is sent on
Experimental Ethernet, the level one host number cannot be used as the level zero address, but rather
some means must be provided to detennine the correct level zero address. Xerox solved· this problem
by specifying another level-one protocol called translation to allow hosts on an Experimental Ethernet to
announce their NS host numb~rs, or hosts on an Ethernet to announce their PUP host numbers. Thus,
both the Ethernet and Experimental Ethernet Level Zero Protocols totally support both families of higher
level protocols.

21.1.7 References

[1] Robert M. Metcalfe and David R. Boggs, Ethernet: Distributed Packet Switching for Local Computer
Networks, Communications of the ACM, vol. 19 no. 7, July 1976.

[2] Digital Equipment Corporation. Intel Corporation, Xerox Corporation. The Ethernet, A Local Area
Network: Data Link Layer and Physical Layer Specifications. September 30, 1980, Version 1.0

[3] D. R. Boggs, J. F. Shoch, E. A. Taft, and R. M. Metcalfe, PUP: An Internetwork Architecture, IEEE
Transactions on Communications, com-28:4, April 1980.

[4] Xerox Corporation. Courier: The Remote Procedure Call Protocol. Xerox System Integration Standard.
Stamford, Connecticut, December, 1981, XSIS 038112.

[5] Xerox Corporation. Internet Transport Protocols. Xerox System Integration Standard. Stamford,
Connecticut, December, 1981, XSIS 028112.

21.2 HIGHER-LEVEL PUP PROTOCOL FUNCTIONS

This section describes some of .the functions provided in Interlisp-D to perfonn protocols above Level
One. Level One functions are described in a later section, for the benefit of those users who wish to
program new protocols.

The following functions provide assorted network services.

(ETHERHOSTNUMBER NAME) [Function]
Returns the number of the named host. The number is 16-bit quantity, the high
8 bits designating the net and the low 8 bits the host. If NAME is NIL, returns the
number of the local host.

21.4

ETHERNET

(ETHERPORT NAME ERRORFLG MULTFLG) [Function]
Returns a port corresponding to NAME. A "port" is a network address that represents
(potentially) one end of a network connection, and includes a socket number in
addition to the network and host numbers. Most network functions that take a
port as argument allow the socket to be zero, in which case a well-known socket is
supplied. A port is currently represented as a dotted pair (NETHOST ~ SOCKET) .

NAME may be a litatom, in which case its address is looked up, or a port, which is
just returned directly. If ERRORFLG is true, generates an error "host not found" if
the address lookup fails, else it returns NIL. If MULTFLG is true, returns a list of
alternative port specifications for NAME, rather than a single port (this is provided
because it is possible for a single name in the name database to have multiple
addresses). If MULTFLG is NIL and NAME has more than one address, the currently
nearest one is returned. ETHERPORT caches its results.

The SOCKET of a port is usually zero, unless the name explicitly contains a
socket designation, a number or symbolic name following a +' in NAME, e.g., .
PHYLUM+LEAF. A port can also be specified in the form "net# host # socket",
wher.e each of net, host and socket is a sequence of octal digits; the socket, but not
the terminating #, can be omitted, in which case the socket is zero.

(ETHERHOSTNAME PORT USE.OCTAL.DEFAULT) [Function]
Looks up the name of the host at address PORT. PORT may be a numeric address, a
(NETHOST • SOCKET) pair returned from ETHERPORT, or a numeric designation
in string form, "net#host#socker', as described above. In the first case, the net

/ . defaults to the local net. If PORT is NIL, returns the name of the local host. If there
is no name for the given port, but USE.OCTAL.DEFAULT is true. the function returns
a string specifying the port in octal digits, in the form "NET#HOST#SOCKET", with
SOCKET omitted if it is zero. Most functions that take a port argument will also
accept ports in this octal format .

(PRINTERSTATUS PRINTERNAME) [Function]
Returns status of PRINTERNAME, the name of a Press Printer, in the form (CODE
. "readable string"). Returns NIL if the printer does not respond in a
reasonable time, which can occur if the printer is very busy, or does not implement
the printer status service. CODE is interpreted as follows:

1 Printer is not spooling (down for servicing)

2 Printer is idle

3 Printer is busy (printing or accepting a file)

(EFTP HOST FILE PRINTERFLG #SIDES) [Function]
Transmits FILE to HOST using the EFT P protocol. The FILE need not be open on
entry, but in any case is closed on exit. The principal use of the EFT P protocol
is for transmitting Press files to a printer. If PRINTERFLG is non-N I L, assumes
that HOST is a printer and FILE is a press file, and takes additional action: it
performs a PRINTERSTATUS for HOST and 'prints this information to the prompt
window; and it fills in the "printed-by" field on the last page of the press file with
USERNAME, and the "copies" field with (OR (FIXP PRINTERFLG) 1). For
printers capable of duplex printing, #SIDES may be 1 or 2, meaning print one- or

21.5

Higher-level NS Protocol Functions

two-sided, respectively; NIL means use the printer's default. EFTP returns only
on success; if HOST does not respond, it keeps trying.

21.3 HIGHER-LEVEL NS PROTOCOL FUNCI10NS

The following is a description of the Interlisp-D facilities for using Xerox SPP and Courier protocols and
the services based on them.

21.3.1 SPP Stream Interface

This section describes the stream interface to the Sequenced Packet Prot~ol.

(S P P • OP EN HOST SOCKET PROBEP NAME) [Function]
This function is used to open an SPP stream. If HOST is specified, an SPP connection
is initiated to HOST with remote socket SOCKET. If both HOST and PROBEP are
specified, then the connection is probed for a response before returning the stream;
NIL is returned if HOST doesn't respond. If HOST is NIL, a passive connection is
created which listens for an incoming connection to local socket SOCKET. NAME is
a mnemonic name for the connection process, mainly useful for debugging. The.
function returns an SPP stream. for which the standard stream operations BIN,
BOUT, CLOSEF. and EOFP are defined. In particular, COPYBYTES may be used
on SPP streams.

The SPP stream that is returned is open for both input and output, since SPP
connections are bidirectional. However, the underlying stream I/O functions use
only a single buffer. Some care must therefore be exercised to insure that any
buffered output data is forced out before any new data is read, and that all
data up to a message boundary has been read before any new data is written.
Functions described below are used for this purpose. While these restrictions may
seem severe, in practice most use of SPP streams is done by the Courier remote
procedure call facility, rather than directly by the programmer. Courier confonns
to the model of alternating exchanges of messages quite well.

SPP. USER. TIMEOUT [Variable]
Specifies the time. in milliseconds, to wait before deciding that a host isn't
responding.

(SPP.FLUSH STREAM) [Function]
This function forces any buffered output data to be transmitted.

(SPP. SENDEOM STREAM) [Function]
This function forces out any buffered data and causes an End of Message indication
to be sent .

(SPP • CLOSE STREAM ABORT?) [Function]
This function closes an SPP stream using the reliable tennination protocol. If
ABORT? is not NIL. the stream is closed even if there is an outstanding bulk data

21.6

ETHERNET

transfer in progress.

(SPP. DSTYPE STREAM DST'YPE) [Function]
This function gets or sets the current datastream type. If DSTYPE is specified, all
subsequent packets that are sent will be of this datastream type, until the next call
to SPP. DSTYPE. Since this affects the current partially-filled packe~ the stream
should probably be flushed (via SPP~ FLUSH) before this function is called. If
DSTYPE is not specified, this function returns the datastream type of the current
packet being read

(SPP. READP STREAM). [Function]
This function returns T or NIL depending on whether or not there is data to be
read without waiting.

(SPP. EOFP STREAM) [Function]
This function returns T or NIL depending on whether or not the connection has
been closed.

(SPP . EOMP STREAM) [Function]
This function returns T or NIL depending on whether or not an End of Message
indication has been reached. This will only be true after the last byte of data in
the message has been read.

21.3.2 Courier Remote Procedure Call Protocol

(COURIER. OPEN HOSTNAME SERVERT'YPE NOERRORFLG NAME) [Function]
This function opens a Courier connection to the specified HOST and returns an SPP
stream. If HOST is a LIT A T OM, string, or list representation of a Clearinghouse
name, SERVERT'YPE should specify what type of server HOST is, so that the name
may be looked up in the Clearinghouse database. Currently, SERVERT'YPE must
be one of PRINTSERVER or FILESERVER. Normally, this function will retry the
connection \MAXETHERTRIES times before generating an error. If NOERRORFLG

is specified, NIL will be returned if the connection fails. The Courier connection
will be given NAME, if specified.

(COURIERPROGRAM NAME"') [NLambda NoSpread Function]
This function is used to define Courier programs. The syntax is

(COURIERPROGRAM name (programNumber versionNumber)
TYPES
({typeName typeDefinition)
...)

PROCEDURES
{(procedureName ARGS (argType ...)

...)
ERRORS

RESULTS (resultType ...)
ERRORS (errorName ...)
procedureNumber)

{(errorName ARGS (argType ...) errorNumber)

21.7

Courier Template Language

...))
)

Type definitions are written in the Courier template language, described below.
Courier types may either be type names that are defined in the current Courier
program, qualified names of the fonn (othe rCou r ; e rP rog ram • typeName),
or explicit definitions in the template language.

21.3.2.1 Courier Template Language

This section describes how Courier types are described in Interlisp, and how corresponding values are
represented. (See also the Courier protocol definition.)

Predefined types:

BOOLEAN is represented by T and NIL; STRING is represented by strings; CARDINAL, INTEGER,
LONGCARDINAL, LONGINTEGER, and UNSPECIFIED are represented by integers.

Constructed types:

(ENUMERATION (NAME VALUE) (NAME VALUE»
(ARRAY LENGTH TYPE)
(SEQUENCE TYPE)
(RECORD (NAME TYPE) ••• (NAME TYPE»
(CHOICE (NAME VALUE TYPE) ••• (NAME VALUE TYPE»

Representation of constructed types in Lisp:

Objects of Courier type (ENUMERATION (UNKNOWN 0) (RED 1) (BLUE 2» are represented by the
litatoms UNKNOWN, RED, and BLUE.

Objects of Courier type (A R RA Y 3 I NT E G E R) are represented by lists of three integers, such as (10 1
59).

Objects of Courier type (SEQUENCE BOOLEAN) are represented by arbitrary-length lists of T and NIL,
such' as (N I L T T NIL T) .

Objects of Courier type

(RECORD (NETWORK LONGCARDINAL)
(HOST (ARRAY 3 CARDINAL»
(SOCKET CARDINAL»

are represented by lists like « NETWORK 174) (HOST (100 24 363» (SOCKET 20».

Objects of Courier type

(CHOICE (STATUS a (ENUMERATION (BUSY 0) (COMPLETE 1»)
(MESSAGE 1 STRING»

are represented by lists like (STATUS COMPLETE) or (MESSAGE "Your request has completed. It).

21.8

ETHERNET

(COUR I E R . CALL STREAM PROGRAM PROCEDURE ARG1 ... ARGN NOERRORFLG)
[NoSpread Function]

This function calls the remote procedure PROCEDURE of the Courier program
PROGRAM. STREAM is the SPP stream returned by COURIER. OPEN. The arguments
should be Lisp values appropriate for the Courier types of the corresponding formal
parameters of the procedure (defined under the ARGS property for the procedure).
Returns results of the Courier types defined under the RESULTS property. If there
is only a single result, it is returned, otherwise a list of results is returned. The
NOERRORFLG argument conq-ols the treatment of remote errors. If NOERRORFLG
is NIL, a Lisp error will be generated. If NOERRORFLG is T, NIL will be returned
as the result of the call. If NOERRORFLG is RETURNERRORS, the result of the call
will be a list consisting of the atom ERROR followed by the Courier name of the
error and any arguments.

Examples:

(COURIERPROGRAM EXAMPLEPROGRAM (17 1)
TYPES

)

{(PERSON. NAME (RECORD (FIRST.NAME STRING)
(MIDDLE (CHOICE

(NAME 0 STRING)
(INITIAL 1 STRING»)

(LAST.NAME STRING»)
(BIRTHDAY (RECORD (YEAR CARDINAL)

(MONTH STRING)
(DAY CARDINAL»» /

PROCEDURES
«GETBIRTHDAY ARGS (PERSON.NAME)

RESULTS (BIRTHDAY)
3»

Defines EXAMPLE PROGRAM to be Courier program number 17, version number 1. The example defines
two types, PERSON. NAME and BIRTHDAY, and one procedure, GETBIRTHDAY, whose procedure number
is 3. The following code could be used to call the remote GETBIRTHDAY procedure on the host with
address HOSTADDRESS.

(SETQ STREAM (COURIER.OPEN HOSTADDRESS»
(COURIER.CALL STREAM

(QUOTE EXAMPLE PROGRAM)
(QUOTE GETBIRTHDAY)
(QUOTE «FIRST.NAME "Eric")

(MIDDLE (INITIAL "C"»
(LAST.NAME "Cooper"»»

COURIER. CALL in this example will return a value such a~

«YEAR 1959) (MONTH "January") (DAY 10»

21.9

Manipulating Courier Representations

21.3.2.2 Manipulating Courier Representations

Several Courier programs use values of type (SEQUENCE UNSPECI F I ED) to handle user-defined or
otherwise extensible object types. Often it is necessary to convert between a list of 16 bit words (the
sequence of UNSPECIFIEDs) and a Courier value. The following function should be used for this
purpose.

(COURIER.READ.REP LIST.OF.WORDS PROGRAM TYPE) [Function]
. This function returns the Lisp representation of the Courier object of type TYPE

defined in the Courier program PROGRAM whose underlying Courier representation
is LIST. OF. WORDS.

21.3.2.3 Using Bulk Data Transfer with Courier

Two Courier types are treated specially when they appear in the argument list of a procedure. -They are
BULK.DATA.SINK and BULK.DATA.SOURCE. A Courier procedure may have at most one such sink or
source parameter. The result ofa COURIER. CALL on such a procedure is an SPP stream, open for input
or outPut according to whether the bulk data paramter is a sink or a source. The client uses this stream
to receive or send the appropriate bulk data object If the object consists of bytes, this may be done
with the usual stream 1/0 functions such as COPYBYTES. If the data is a stream of Courier objects, the
following function should be used.

(COURIER.READ.BULKDATA STREAM PROGRAM TYPE) [Function]
STREAM is the bulk data stream returned from COUR I ER. CALL. TYPE is the type
of each Courier object in the stream. PROGRAM is the Courier program in which
TYPE is defined. A list of objects of Courier type TYPE will be returned.

The observant reader may wonder what happens if the Courier procedure returns one or more results, in
addition to taking a bulk data parameter. If a bulk data stream is returned to the caller, what happens
to the results? The answer is that the results are collected when the bulk data stream is closed, after the
client has transferred the bulk data. The disposition of these results depends on what actual parameter
is supplied for the fonnal bulk: data parameter at the time of the call. If it is NIL, the results, if any,
will be ignored. Otherwise, the: value is assumed to be a function which to be applied to the results. A
FUNARG may be used for full generality.

For example, the Courier procedure to print an Interpress master uses a bulk data source to transfer
the master, and also returns a request identifier. The Lisp function which perfonns the COURIER. CALL
passes a functional to be called on this request identifier after the stream is closed and printing begins;
this functional in tum spawns a process which monitors the progress of the job.

(COURIERTRACE FLG REGION) [Function]

21.3.3 NS Printing

This function controls the tracing of Courier remote procedure calls. It is similar
to PUPTRACE and XIPTRACE, but operates at the call1return level rather than the
packet level.

This section describes the facilities that are available for printing Interpress masters on NS printservers.

21.10

ETHERNET

NS. DEFAULT. PRINTER [Variable]
The value of this variable is used whenever no printserver is specified for the
functions described below. If its value is a LIT ATOM, string, or Clearinghouse
name, the Clearinghouse is queried to find the address of the printserver with that
name. If its value is.N I L, it will be set automatically to some printserver in the
local Clearinghouse domain. In environments where there is no .Qearinghouse, the
value of NS. DEFAULT. PRINTER must be an appropriate NSADDRESS record.

(OPEN~NS.PRINTING.STREAM PRINTER DOCUMENT. NAME DOCUMENT.CREATION.DATE SENDER.NAME

RECIPIENT. NAME # COPIES' MEDIUM PRIORITY STAPLE? TWO.SIDED? NOWATCHDOG?) [Function]
This function returns a stream for printing an Interpress master on PRINTER or
on NS. DE FAUL T . PR I NT ERas mentioned above. The caller should write the
Interpress data to the stream and then close it using CLOSEF. Printing b~gins after
the stream is closed. .

DOCUMENT.NAME is the document name to appear on the header page (a string).

DOCUMENT.CREATION.DATE is the creation date to appear on the header page (a
Lisp integer date). The default value is the time of the call.

4

SENDER.NAME is the name of the sender to appear on the header page (a string).
The default value is the name of the user.

RECIPIENT.NAME is the name of the recipient to appear on the header page (a
string). The default value is the name of the user.

#COPIES is the number of copies to be printed. The default value is l.

MEDIUM is the medium on which the master is to be printed. This must be a
Courier value of type MEDIUM, which is a list of the fonn (PAPER (KNOWN. SIZE
NAME», where NAME is one of the LITATOMs US.LETTER, US.LEGAL, AD
through A10, ISO.BO through ISO.B10, and JIS.BO through JIS.B10. The
default value is determined by the printer.

PRIORITY is the priority of this print request (LOW, NORMAL, or HIGH). The default
value is NORMAL.

STAPLE? is T or NIL depending on whether the document should be stapled. The
default value is NIL

TWO. SIDED?' is T or NIL depending on whether the document should be printed
on two sides. The default value is NIL.

NOWATCHDOG? is non-N I L if the client does not want a watchdog process to
monitor the status of the printing job.

(NSPRINT PRINTER FILE.NAME DOCUMENT.NAME DOCflMENT.CREATION.DATE SENDER.NAME

RECIPIENT. NAME #COPIES MEDIUM PRIORITY STAPLE? TWO.SIDED?) [Function]
This function prints an Interpress master on PRINTER or on N S . 0 E F AU LT. P R IN T E R
as mentioned above. FILE. NAME should be the name of an Interpress file to
be printed. The remaining arguments are all optional, and are as described
for OPEN. NS. PRINT ING. STREAM above. DOCUMENT.NAME defaults to the full
name of the file, and DOCUMENT.CREATION.DATE defaults to the creation date of

21.11

Clearinghouse

the file.

(NSPRINTER. STATUS PRINTER) [Function]
This function returns the Courier value resulting from the GET • P R I NT E R • S TAT U S
call. .

(NSPRINTER. PROPERTIES PRINTER) [Function]
This function returns the Courier value resulting from the GET. PRINTER. PROPERTIES
call. '

21.3.4 Clearinghouse

This section describes functions that -may be used to access Clearinghouse servers. Note that these
functions are used by the NS printing functions if the printserver is specified by name rather- than address.

(START. CLEARINGHOUSE RESTARTFLG) - [Function]

CH.NET.HINT

This function enables Clearinghouse access. It performs an expanding ring
broadcast in order to find the first Clearinghouse server. If RESTARTFLG is non
NI L. the cache of Qearinghouse informatio~ is invalidated and a new broadcast is
done. This may be necessary if the local Clearinghouse server goes down.

[Variable]
Hint as to which network the local Clearinghouse server is on, for use by
START .CLEA_RINGHOUSE above. If CH.NET .HINT is bound to a network

. number, that network will be tried first. followed by the others in the routing
table. If the local Clearinghouse server is not on the directly connected network,
setting C:H. NET. H I NT to the proper network number in the local I NIT file will
speed up START .CLEARINGHOUSE considerably.

(SHOW. CLEARINGHOUSE) [Function]
This function displays the structure of the cached Clearinghouse information in a
window. Once created, it will be redisplayed whenever the cache is updated. The
structure is shown using GRAPHER".

(SHOW. ENTIRE. CLEARINGHOUSE) [Function]
This function attempts to cache information about all the Clearinghouse domains,
so that the Clearinghouse structure window will show the entire database.

CH.DEFAULT .DOMAIN [Variable]
This is a; string specifying the default Clearinghouse domain. If it is NIL, it will
be set automatically by START. CLEARINGHOUSE. Otherwise, it should be set in
an I NIT file.

CH. DEFAULT. ORGANIZATION [Variable]
This is a string specifying the default Clearinghouse organization. If it is NIL, it
will be set automatically by START .CLE.ARINGHOUSE. Otherwise, it should be set
in an I N IT file.

(CH. ORGANIZATIONS ORGANIZATIONPATTERN) [Function]
This function returns the list of organization names in the Clearinghouse database
matching ORGANIZATIONPATTERN. The default pattern is "*", which matches

21.12

ETHERNET

anything.

(CH. DOMA I NS DOMAINPATTERN) [Function]
This function returns the list of domain names in the Clearil)ghouse database
matching DOMA1NPATTERN. The default pattern is "* It. which matches anything.

(CH. ENUMERATE OBJECTPATTERN PROPERTY) [Function]
This function returns the list of object names matching OBJECTPATTERN and
having the property PROPERTY. Currently, PROPERTY must be one of USER~
PRINTSERVER, FILESERVER, and ALL. For example~

(CH.ENUMERATE "*:PARC:Xerox" (QUOTE USER»

will return a list of the names of users at Xerox P ARC.

(CH. LOOKUP. USE R NAME) [Function]
This function returns the user infonnation for the first user whose n~e matches
NAME.

(LOOKUP. NS. SERVER NAME TYPE) [Function]

21.3.5 NS Filing

This function returns the NSADDRESS for the first server whose name matches
NAME and has the property TYPE, which must be PRINTSERVER or F ILESERVER.

This section describes functions that may be used to access NS fileservers.

21.3.5.1 Pathnames and NS Fileservers

The NS Filing protocol does not support conventional file system path names directly. However, the
Interlisp-0 software that supports access to NS fileservers uses IFS-style pathnames and does the
appropriate mapping in software. One important difference. however, is that fileserver, directory, and file
names may have spaces in them~ each of which must be preceded by a percent sign. The name of an
NS fileserver is required to have a colon in it Thus, even if the fileserver is in the local Clearinghouse
domain~ a trailing colon should be appended to the name. Case is not significant. For example~

{LISPFILE:}<LISPDRAWER)XYZ;3

is a valid name for a file on the NS fileserver ItLispFile:Parc Place:Xerox lt
•

(NSDIRECTORY PATTERN) [Function]
This function returns a list of file names in PATTERN~ which must be the NS
pathname for a directory. (Any wildcards in the name field of the pathname are
ignored.)

(NSCREATEDIRECTORY HOST/DIR) [Function]
This function creates a new directory with pathname HOST /DIR. Top level directories
("file drawers") cannot be created in this way.

21.13

Level One Ether Packet Format

(CLOSE.NSFIlING.CONNECTIONS) [Function]
This function closes any open connections to NS fileservers.

21.4 LEVEL ONE ETHEl PACKET FORMAT

The datatype ETHERPACKET is the vehicle for all kinds of packets transmitted on an Ethernet or
Experimental Ethernet An EIHERPACKET contains several fields for use by the Ethernet drivers and a
large, contiguous data area ma,king up the data of the level zero packet. The first several words of the
area are reserved for the lever one to zero encapsulation, and the remainder (starting at field E PBODY)
make up the level one packet. : Typically, each level one protocol defines a BLOCKRECORD that overlays
the ETHERPACKET starting at! the EPBODY field, describing the format of a packet for that particular
protocol. For example, the rec~rds PUP and X I P define the format of level one packetS in the PUP and
NS protocols.

The extra fields in the beginning of an ETHE RPACKET have mostly a fixed interpretation over all protocols.
Among the interesting ones are:

EPLINK A point~r used to link packets, used by the SYSQUEUE mechanism (page 21.25).
Since this field is used by the system for maintaining the free packet queue and
ether transmission queues, do not use this field unless you understand it.

E P F LAGS A byte field that can be used for any purpose by the user.

EPUSERFIELD A pointer field that can be used for any purpose by the user. It is set to NIL when
a packet· is released.

E PTRANSMITT ING A flag that is true while the packet is "being transmitted", i.e., from the time that
the user instructs the system to transmit the packet until the packet is gathered up
from the: transmitter's finished queue. While this flag is true, the user must not
modify the packet.

E PRE QUE U E A pointer field that specifies the desired disposition of the packet after transmission.
The poss~ble values are: NIL means no special treatment; F RE E means the packet
is to be ~eleased after transmission; an instance of a SYSQUEUE means the packet
is to be ~nqueued on the specified queue (page 21.25).

The normal life of an outgoing Ether packet is that a program obtains a blank packet, fills it in according
to protocol, then sends the pa~ket over the Ethernet. If the packet needs to be retained for possible
retransmission, the EPREQUEUE ,field is used to specify a queue to place the packet on after its transmission,
or the caller hangs on to the packet explicitly.

There are redefinitions, or "overlays" of the ETHERPACKET record specifically for use with the PUP and
NS protocols. The following s~tions describe those records and the handling of the PUP and NS level
one protocols, how to add new level one protocols, and the queueing mechanism associated with the
E PREQUEUE field.

21.14

ETHERNET

21.5 PUP LEVEL ONE Fl:JNCTIONS

The functions in this section are used to implement level two and higher PUP protocols. That is, they
deal with sending and receiving PUP packets. It is assumed the reader is familiar with the fOlmat and
use of pups, e.g., from reading reference [3] in .section 21.1.7.

{RESTART. ETHER} [Function]
This function is intended to be invoked from the executive on those rare occasions
when the Ethernet appears completely unresponsive, due to Lisp having gotten
into a bad state. RESTART. ETHER reinitializes Lisp's Ethernet driver(s), just as
when the Lisp system is started up following a LOGOUT, SYSOUT, etc. This aborts
any Etherne't activity and clears several internal caches, including the routing table.

21.5.1 Creating and Managing Pups

There is a record PUP that overlays the data portion ofan ETHERPACKET and describes the format ofa pup.
This record defines the following numeric fields: PUPLENGTH (16 bits), TCONTROL (transmit control. 8 bits,
cleared when a PUP is transmitted), PUPTYPE (8 bits), PUPID (32 bits), PUPIDHI and PUPIDLO (16 bits
each overlaying PUPID), PUPDEST (16 bits overlayed by 8-bit fields PUPDESTNET and PUPDESTHOST),
PUPDESTSOCKET (32 bits. overlayed by 16-bit fields PUPDESTSOCKETHI and PUPDESTSOCKETLO),
and PUPSOURCE, PUPSOURCENET, PUPSOURCEHOST, PUPSOURCESOCKET. PUPSOURCESOCKETHI,
and PUPSOURCESOCKETLO, analagously. The field PUPCONTENTS is a pointer to the start of the data
portion of the pup.

(ALLOCATE. PUP) [Function]
Returns a (possibly used) pup. Keeps a free pool, creating new pups only when
necessary. The pup header fields of the pup returned are guaranteed to be zero,
but there may be garbage in the data portion if the pup had been recycled, so the
caller should clear the data tf desired.

(CLEARPUP pup) [Function]
Clears all information from PUP, including the pointer fields of the ETHERPACKET
and the pup data portion.

(RELEASE.PUP pup) [Function]
Releases PUP to the free pool.

21.5.2 Sockets

Pups are sent and received on a socket. Generally, for each "conversation" between one machine and
another, there is a distinct socket. When a pup arrives at a machine, the low-level pup software examines
the pup's destination socket number. If there is a socket on the machine with that number, the incoming
pup is handed over to the socket; otherwise the incoming pup is discarded. When a user process initiates
a conversation, it generally selects a large, random socket number different from any other in use on
the machine. A server process, on the other hand, provides a specific service at a "well-known" socket,
usually a fairly small number. In the PUP world, advertised sockets are in the range 0 to 100Q.

21.15

Sending and Receiving Pups

(OPENPUPSOCKET SKT# IFCLASH) [Function]
Opens a new pup socket. If SKT# is NIL (the normal case), a socket number is.
chosen automatically, guaranteed to be unique, and probably different from any
socket opened this way in the last 18 hours (the low half of the time of day clock
is sampled). .

If a specific local socket is desired, as is typically the case when implementing a
server, SKT# is given, and must be a (up to 32-bit) number. IFCLASH indicates
what to do in the case that the designated socket is already in use: if NIL,
an error is generated; if Ace E PT, the socket is quietly returned; if FA I L. then
OPENPU:PSOCKET returns NIL without causing an error. Note that "well-known"

I

socket numbers should be avoided unless the caller is actually implementing one
of the services advertised as provided at the socket.

(CLOSEPUPSOCKET PUPSOC NOERRORFLG) [Function]
Closes and releases socket PUPsoc. If pupsoc is T, closes all pup sockets (this
must be used with caution, since it will also close system sockets!). If PUPsoc is
already closed, an error is generated unless NOERRORFLG is true.

(PUPSOCKETNUMBER pupsoo) [Function]
Returns the socket number (a 32-bit integer) of PUPsoc.

(PUPSOCKETEVENT pupsoc) [Function]
Returns the EVENT of PUPsoc (page 18.30). This event is notified whenever a pup
arrives on PUPsoc, so pup clients can perform an AWAIT. EVENT on this event if
they have nothing else to do at the moment

21.5.3 Sending and Receiving: Pups

(SENDPUP pupsoc pup) [Function]
Sends PUP on socket PUPsoc. If any of the PUPSOURCESHOST, PUPSOURCENET,
or PUPSOURCESOCKET fields is zero, SENDPUP fills them in using the pup address
of this machine and/or the socket number of pupsoc, as needed.

(GETPUP PUPSOC WAIT) [Function]
Returns the next pup that has arrived addressed to socket pupsoc. If there are no
pups waiting on PUPSOC, then GET PU P returns NIL, or waits for a pup to arrive if
WAIT is li. If WAIT is an integer, GETPUP interprets it as a number of milliseconds
to wait, finally returning NIL if a pup does not arrive within that time.

(DISCARDPUPS soc) [Function]
Discards without examination any pups that have arrived on soc and not yet been
read by ~ GETPUP.

(EXCHANGEPUPS soc OUTPU:P DUMMY IDFILTER TIMEOUT) [Function]
Sends OUTPUP on SOc, then waits for a responding pup, which it returns. If
IDFILTER is true. ignores pups whose PUPID is different from that of OUTPUP.

TIMEOUT' is the length of time (msecs) to wait for a response before giving up and
returning NIL. TIMEOUT defaults to \ETHERTIMEOUT. EXCHANGEPUPS discards
without examination any pups that are currently waiting on soc before OUTPUP gets

21.16

ETHERNET

sent. (DUMMY is ignored; it exists for compatibility with an earlier implementation).

21.5.4 Pup Routing Information

Ordinarily, a program calls SENDPUP and does not worry at all about the route taken to get the pup to
its destination. There is an internet routing process in Lisp whose job it is to maintain infonnation about
the best routes to networks of interest However, there are some algorithms for which routing infonnation
and/or the topology of the net are explicitly desired. To this end, the following functions are supplied:

(PUPNET • DISTANCE NET#) [Function]
Returns the "hop count" to network NET#, i.e., the number of gateways through
which a pup must pass to reach NET#, according to the best routing information
known at this point. The local (directly-connected) network _i~ considered to be
zero hops away. Current convention is that an inaccessible network is 16 hops
away. PUPNET. DISTANCE may need to wait to' obtain routing information from
an Internetwork Router if NET# is not currently in its routing cache.

(SORT.PUPHOSTS.BY.DISTANCE HOSTLIST) [Function]
Sorts HOSTLIST by increasing distance, in the sense of PUPNET. DISTANCE.
HOSTLIST is a list of lists, the CAR of each list being a 16-bit Net/Host address,
such as returned by ETHERHOSTNUMBER. In particular, a list of ports «nethost .
socket) pairs) is in this format.

(PRINTROUT'INGTABLE TABLE SORT FILE), [FunctioQ]
Prints to FILE the current routing cache. The table is sorted by network number
if SORT is true. TABLE = PU P (the default) prints the PUP routing table; TABLE

= N S prints the NS routing table ..

21.5.5 Miscellaneous PUP Utilities

(SETUPPUP PUP DESTHOST DESTSOCKET TYPE m SOC REQUEUE) [Function]
Fills in various fields in pup's header: its length (the header overhead length;
assumes data length of zero), TYPE, m (if m is NIL, generates a new one itself
from an internal 16-bit counter), destination host and socket (DESTHOST may
be anything that ETHERPORT accepts; an explicit nonzero socket in DESTHOST

overrides DESTSOCKET). If soc is not supplied, a new socket is opened. REQUEUE
fills the packets EPREQUEUE field (see above). Value of SETUPPUP is the socket.

(SWAPPUPPORTS Pup) [Function]
Swaps the source and destination addresses in PUP. This is useful in simple packet
exchange protocols, where you want to respond to an input packet by diddling the
data portion and then sending the pup back whence it came.

(GETPUPWORD PUP WORD#) [Function]
Returns as a 16-bit integer the contents of the WORD#th word of pup's data
portion, counting the first word as word zero.

(PUTPUPWORD PUP WORD# VALUE) [Function]
Stores 16-bit integer VALUE in the wORD#th word of pup's data portion.

21.17

PUP Debugging Aids

(GETPUPBYTE PUP BYTE#) [Function]
Returns as an integer the contents of the BYTE#th 8-bit byte of pup's data portion,
counting the first byte as byte zero.

(PUTPUPBYTE PUP BYTE# VALUE) [Function]
Stores VALUE in the BYTE#th 8-bit byte of pup's data portion. '

(GETPUPSTRING PUP OFFSE7') [Function]
Returns a string consisting of the characters in pup's data portion starting at byte
OFFSET (default zero) through the end of PUP.

(PUTPUPSTRING PUP STR) [Function]
Appends 5TR to the data portion of PUP, incrementing pup's length appropriately.

21.5.6 PUP Debugging Aids

Tracing facilities are provided to allow the user to see the pup traffic that passes through 5 END PUP and
GETPUP. The tracing can be verbose, displaying much information about each packe~ or terse, which
shows a concise "picture" of the traffic.

PUPTRACEFLG [Variable]
Controls tracing information provided by SENDPUP and GETPUP. Legal values:

NIL No tracing.

T Every SENDPUP and every successful GETPUP call PRINTPUp·of the pup
at hand (see below).

PE E K Allows a concise "picture" of the traffic. For normal, non-broadcast
packets, SENDPUP prints"! ", GETPUP prints "+99. For broadcast packets,
SENDPUP prints " ... ", GET PUP prints ".". In addition, for packets that
arrive not addressed to any socket on this machine (e.g., broadcast packets
for a service not implemented on this machine), a "&" is printed.

PUPIGNORETYPES [Variable]
A list of pup types (small integers). If the type of a pup is on this list, then
GETPUP and SENDPUP will not print the pup verbosely, but treat it as though
PUPTRAC'EFLG were PEEK. This allows the user to filter out "uninteresting" pups,
e.g., routine routing information pups (type 201Q).

PUPONL YTYPES [Variable]
A list of pup types. If this variable is non-N IL, then GETPUP and SENDPUP
print verbosely only pups whose types appear on the list, treating others as though
PUPTRACEFLG were PEEK. This lets the tracing be confined to only a certain class
of pup traffic. ~

PUPTRACEFILE [Variable]
The file to which pup tracing output is sent by default. The file must be open.
PUPTRACEFILE is initially T.

21.18

ETHERNET

PUPTRACETIME [Variable]
If this variable is true, then each printout of a pup is accompanied by a relative
timestamp (in seconds. with 2 decimal places) of the current time (Le., when the
SENDPUP or GETPUP was called; for incoming pups, this is not the same as when
the pup actually arrived).

(PUPTRACE FLG REGION) [Function]
Creates a window for pup tracing, and sets PUPTRACEF ILE to it. IfPUPTRACEFILE
is currently a window and FLG is NIL, closes the window. Sets PUPTRACE FLG
to be FLG. If REGION is supplied, the window is created with that region. The
window's BUTTONEVENTFN is set to cycle PUPTRACEFLG through the values NIL,
T. and PEE K when the mouse is clicked in the window.

(PRINTPUP PACKET CALLER FILE PRE.NOTE DOFILTER) [Function]
Prints the information in the header and possibly data portions of pup PACKET
to FILE. If CALLER is supplied, it identifies the direction of the pup (GET or
PUT), and is printed in front of the header. FILE defaults to PUPTRACEF ILE. If
PRE. NOTE is non -NIL, it is P R IN l' ed first If DOFIL TER. is true, then if pup's type
fails the filtering criteria of PUPIGNORETYPES or PUPONL YTYPES, then PUP is
printed "tersely", Le., as a !,. +, 1", or *, as described above.

GETPUP and SENDPUP, when PUPTRACEFLG is non-NIL, call (PRINTPUP PUP
{'GET or 'PUT} NIL NIL T). .

The fonn of printing provided by PRINTPUP can be influenced by adding elements to PUPPRINTMACROS.

PUPPRINTMACROS [Variable]
An association list of elements (PUPTYFE . MACRO) for printing pups. The MACRO

(CDR of each element) tells how to print the information in a pup of type PUPTYPE
(CAR of the element). If MACRO is a litatom, then it is a function of two arguments
(PUP FILE) that is applied to the pup to do the printing. Otherwise, MACRO is a
list describing how to print the data portion of the pup (the header is printed in a
standard way).

The list fonn of MACRO consists of "commands" that specify a "datatype" to
interpret the da~ and an indication of how far that datatype extends in the packet.
Each element of MACRO is one of the following: (a) a byte offset (positive integer),
indicating the byte at which the next element, if any, takes effect; (b) a negutive
integer, the absolute value of which is the number of bytes until the next element,
if any, takes effect; or (c) an atom giving the fonnat in which to print the data,
one of the following:

BYTES

CHARS

WORDS

Print the data as 8-bit bytes. enclosed in brackets. This is
the default fonnat to start with.

Print the data as (8-bit) characters. Non-printing characters
are printed as if the fonnat were B YT E S, except that the
sequence 15Q, 12Q is printed specially as [crIf].

Print the data as 16-bit integers, separated by commas (or
the current SE PR).

21.19

INTEGERS

SEPR

IFSSTRING

FINALLY

T

REPEAT

PUP Debugging Aids

Print the data as 32-bit integers, separated by commas
(or, the current SEPR). Note: the singular BYTE, CHAR,
WORD, INTEGER are accepted as synonyms for these four
commands.

Set the separator for WORDS and INTEGERS to be the next
element of the macro. The separator is initially the two
characters, comm~ space.

Interprets the data as a 16-bit length followed by that many
8-bit bytes or characters. If the current datatype is BY T E S,
leaves it alone; otherwise, sets it to be CHARS.

If there is still data left in the packet by the time processing
reaches this command, prints ". L." and stops.

The next element of the macro is printed when the end of
the packet is reached (or printing stops because of a ...).
This command does not alter the datatype, and can appear
anywhere in the macro as long as it is encountered before
the actual end of the packet.

Perform a TERPRI.

The remainder of the macro is itself treated as a macro
to be applied over and. over until the packet is exhausted.
Note that the offsets specified in the macro must be in the
relative form, -i.e .• negative integers. For example, the macro
(INTEGERS 4 REPEAT BYTES -2 WORDS -4) says to
print the first 4 bytes of the data as one 32-bit integer, then
print the rest of the data as sets of 2 8-bit bytes and 2 16-bit
words.

Only as much of the macro is processed as is needed to print the data in the given
packet The default macro for printing a pup is (BYTES 12 ...). meaning to
print the first up to 12 bytes as bytes, and then print " ... " if there is anything left

The following functions are used by PRINTPUP and similar functions, and may be ~f interest in special
cases.

(PORTSTRING NETHOST SOCKET) [Function]
Converts the pup address NETHOST, SOCKET into the following octal string format:
net#hos~#socket NETHOST may be a port (dotted pair of nethost and socket),
in which· case SOCKET is ignored, and the socket portion of NETHOST is omitted
from the 'string if it is zero.

(PRINTPUPROUTE PACKET C;ALLER FILE) [Function]
Prints the source and destination addresses of pup PACKET to FILE in the
PORTSTRING forma~ preceded by CALLER (interpreted as with PRINTPUP).

(PRINTPACKETDATA BASE OFFSET MACRO LENGTH FILE) [Function]
Prints data according to MACRO, which is a list interpreted as described under

21.20

· ETHERNET

PUPPRINTMACROS, to FILE. The data starts at BASE and extends for L.ENGTH bytes.
The actual printing starts at the OFFSETth byte, which defaults to zero. For example,
PRINTPUP ordinarily calls (PRINTPACKETDATA (fetch PUPCONTENTS of
Pup) 0 MAORO (IDIFFERENCE (fetch PUPLENGTH of Pup) 20) FILE).

(PRINTCONSTANT VAR OONSTANTLIST FILE . PREFIX) [Function]

-
(OCTALSTRINGN)

OONSTANTLIST is a list of pairs (VARNAME VALUE), of the fonn given to the
CONSTANTS File Package Command.. PRINTCONSTANT prints VAH to FILE,
followed in parentheses by the VARNAME out of OONSTANTLIST whose VALUE is
EQ to VAR, or? if it finds no such element If PREFIX is non-N I L and is an initial
substring of the selected VARNAME, then VARNAME is printed without the prefix.

For example, if FOOCONSTANT S is {(FOO. REQUEST 1) (FOO. ANSWE R 2)
(FOO.ERROR 3», then (PRINTCONSTANT 2 FOOCONSTANTS T "FOO.")
produces "2 (ANSWER)".

[Function]
Returns a string of octal digits representing N in radix 8.

21.6 NS LEVEL ONE FUNCTIONS

The functions in this section are used to implement level two and higher NS protocols. The packets used
in the NS protocol are tenned Xerox Internet . Packets (X IPs). The functions for manipulating XIPs are
similar to those for managing PUPs, so will be described in less detail here .. The major difference is
that NS host addresses are 48-bit numbers. Since Interlisp-D cannot currently represent 48-bit numbers
directly as integers, there is an interim fonn called NSHOSTNUMBER, which is defined as a TYPE RECORD
of three fields, each of them being a 16-bit portion of the 48-bit number.

21.6.1 Creating and Managing XIPs

There is a record XIP that overlays the data portion of an ETHERPACKET and describes the
fonnat ofaXIP. This record defines the following fields:· XIPLENGTH (16 bits), XIPTCONTROL
(transmit control, 8 bits, cleared when a XIP is transmitted), XIPTYPE (8 bits), XIPDESTNET
(32 bits), XIPDESTHOST (an NSHOSTNUMBER), XIPDESTSOCKET (16 bits), and XIPSOURCENET,
XIPSOURCEHOST, and XIPSOURCESOCKET, analagously. The field XIPCONTENTS is a pointer to the
start of the data portion of the XIP.

(ALLOCATE.XIP) [Function]

(RELEASE.XIP XIP)

Returns a (possibly used) XIP. As with ALLOCATE. PUP, the header fields are
guaranteed to be zero, but there may be garbage in the data portion if the pup
had been recycled.

[Function]
Releases XIP to the free pool.

21.21

NS Sockets

21.6.2 NS Sockets

As with pups, XIPs are sent and received on a socket. The same comments apply as with pup sockets
(page 21.16), except that NS socket numbers are only 16 bits.

(OPENNSOCKET SKT# IFCLASn) [Function]
Opens a new NS socket. If SKT# is NIL (the normal case), a socket number is
chosen automatically, guaranteed to be unique, and probably different from any
socket op¢ned this way in the last 18 hours. If a specific local socket is desired,
as is typidally the case when implementing a server, SKT# is given~ and must be a
(up to 16~bit) number. IFCLASH governs what to do if SKT# is already ih use, as
with OPENPUPSOCKET.

(CLOSENSOCKET NSOC NOERRORFLG) [Function]
Closes and releases socket NSOC. If NSOC is T, closes all NS sockets (this must
be used with caution, since it will also close system sockets!). If NSOC is already
closed, an error is generated unless NOERRORFLG is true.

(NSOCKETNUMBER NSOC) [Function]
Returns the socket number (a 16-bit integer) of NSOC.

(NSOCKETEVENT NSOC) [Function]
Returns the EVENT of NSOC. This event is notified whenever a XIP arrives on
NSOC.

21.6.3 Sending and Receiving :XIPs

(SENDXIP NSOC XIP) [Function]
Sends ~ on socket NSOC. If any of the XIPSOURCESHOST, XIPSOURCENET, or
XIPSOURCESOCKET fields is zero, SENDXIP fills them in using the NS address of
this machine and! or the socket number of NSOC, as needed.

(GETXIP NSOC WAIT) [Function]
Returns tihe next XIP that has arrived addressed to socket NSOC. If there are no
XIPs waiUng on NSOC, then GET X I P returns NIL, or waits for a XIP to arrive if
WAIT is T. If WAIT is an integer, GET X I P interprets it as a number of milliseconds
to wait, finally returning NIL ifaXIP does not arrive within that time.

(0 ISCARDXI PS NSOC) [Function]
Discards. without examination any XIPs that have arrived on NSOC and not yet
been read by a GETXI P.

(EXCHANGEX I PS SOC OUTXIi' IDFILTER TIMEOUT) [Function]
Useful for simple NS packet exchange protocls. Sends OUTXIP on SOC, then waits
for a responding XIP. which it returns. If IDFILTER is true. ignores XIPs whose
packet exchange ID (the first 32 bits of the data portion) is different from that of
OUTXIP. TIMEOUT is the length of time (msecs) to wait for a response before giving
up and returning NIL. TIMEOUT defaults to \ETHERTIMEOUT. EXCHANGEXIPS
discards without examination any XIPs that are currently waiting on soc before
OUTXIP gets sent.

21.22

ETHERNET

21.6.4 NS Debugging Aids

XIPs can be printed automatically by SENOXIP and GETXIP analogously to the way pups are. The
following variables behave with respect to XIPs the same way that the corresponding PUP-named variables
behave with respect to PUPs: XIPTRACEFLG, XIPTRACEFILE, XIPIGNORETYPES, XIPONLYTYPES,
XIPPRINTMACROS. In addition, the functions PRINTXIP, PRINTXIPROUTE and XIPTRACE are directly
analogous to PRINTPUP, PRINTPUPROUTE, and PUPTRACE.

21.7 SUPPORT FOR OTHER LEVEL ONE PROTOCOLS

Raw packets other than of type PUP or NS can also be sent and received. This section describes facilities
to support such protocols. Many of these functions have a \ in their names to designate that they are
system internal, not to be dealt with as casually as user-level functions.

(\ALLOCATE . ETHERPACKET) [Function]
Returns an ETHERPACKET datum. Enough of the packet is cleared so that if the
packet represents a PUP or NS packet, that its header is all zeros; no guarantee is
made about the remainder of the packet

(\RELEASE. ETHERPACKET EPKT) [Function]
Returns EPKT to the pool of ,free packets. This operation is dangerous if the
caller actually IS still holding on' to EPKT, e.g., in some queue, since this packet
could be returned to someone else (via \ALLOCATE. ETHERPACKET) and suffer
the resulting contention.

From a logical standpoint, programs need never call \RELEASE. ETHERPACKET,
since the packets are eventually garbage-collected after all pointers to them drop.
However, since the packets are so large, nonnal garbage collections tend not to
occur frequently enough. Thus, for best perfonnance, a well-disciplined program
should explicitly release packets when it knows it is finished with them.

A locally-connected network for the trapsmission and receipt of Ether packets is specified by a network
descriptor block, an object of type NOB. There is one NOB for each directly-connected network; ordinarily
there is only one. The NOB contains ,infonnation specific to the network, e.g., its PUP and NS network
numbers, and infonnation about how to send and r~eive packets on it.

\LOCALNOBS [Variable)
The first NOB connected to this machine, or NIL if there is no network. Any other
NOBs are linked to this first one via the NOBNEXT field of the NOB.

In order to transmit an Ether packet, a program must specify the packet's type and its immediate
destination. The type is a 16-bit integer identifying the packet's protocol. There are preassigned types
for PUP and NS. The destination is a host address on the local network, in whatever form the local
network uses for addressing; it is not necessarily related to the logical ultimate destination of the packet
Detennining the immediate destination of a packet is the task of routing. The functions SENOPUP and
SENOXIP take care of this for the PUP and NS protocols, routing a packet directly to its destination if
that host is on the local network, or routing it to a gateway if the host is on some other network accessible
via the gateway. Of course, a gateway must know about the type (protocol) of a packet in order to be

'\

21.23

Support for Other' Level One Protocols

able to forward it

(ENCAPSULATE. ETHERPACKET NDB PACKET PDH NBYTES ETYPE) [Function]
Encapsulates PACKET for transmission on network ~B. PDH is the physical
destination host (e.g., an 8-bit pup host number or a 48-bit NS host number);
NBYTES is the length of the packet in bytes; ETYPE is the packet's encapsulation
type (an integer).

(TRANSMIT. ETHERPACKET NDB PACKET) [Function]
Transmits PACKET, which must already have been encapsulated, on network NDB.

Disposition of the packet after transmission is complete is determined by the value
of PACK~T's EPREQUEUE field.

In order to receive Ether packets of type other than PUP or NS, the programmer must specify what to do
with incoming packets. Lisp maintains a set of packet filters, functions- whose job it is to appropriately
dispose of incoming packets of the kind they want When a packet arrives, the Ethernet driver calls each
filter function in turn until it finds one that accepts the packet. The· filter function is called with two
arguments: (PACKET TYPE), where PACKET is the actual packet, and TYPE is its Ethernet encapsulation
type (a number). If a filter function accepts the packet, it should do what it wants to with it, and return
T; else it should return NIL, allowing other packet filters to see the packet.

Since the filter function is run. at interrupt level, it should keep' its computation to a minimum. For
example, if there is a lot to be done with the packet, the filter function can place it on a queue and notify
another process of its arrival.

The system already supplies packet filters for packets of type PUP .and NS; these filters enqueue the
incoming packet on the input queue of the socket to which the packet is addressed, after checking that
the packet is well-formed and indeed addressed to an existing socket on this machine.

Incoming packets have their EPNETWORK field filled in with the NOB of the network on which the packet
arrived.

(\ADD.PACKET.FILTER FILTER) [Function]
Adds function FILTER to the list of packet filters if it is not already there.

(\DEL.PACKET.FILTER FILTER) [Function]
Removes: FILTER from the list of packet filters.

(\CHECKSUM BASE NWORDS INITSUM) [Function]
Computes the one's complement add and cycle checksum for the NWORDS words
starting at address BASE. If INITSUM is supplied, it is treated as the accumulated
checksum for some set of words preceding BASE; normally INITSUM is omitted
(and thus treated as zero).

(PRINTPACKET PACKET CALLER FILE PRE.NOTE DOFILTER) [Function]
Prints PACKET by invoking a function appropriate to PACKET'S type. See
PRINTPUP for the intended meaning of the other arguments. In order for
PRINTPACKET to work on a non-standard packet, there must be information
on the list \PACKET • PRINTERS.

\PACKET. PRINTERS [Variable]
An association list mapping packet type into the name of a function for printing

21.24

ETHERNET

that type of packet.

21.8 THE SYSQUEUE MECHANISM

The SYSQUEUE facility provides a low-level queueing facility. The functions described herein are all
system internal: they can cause much confusion if misused.

A SYSQUEUE is a datum containing a pointer to the first element of the queue and a pointer to the last;
each item in the queue points to the next via a pointer field located at offset 0 in the item (its Q LIN K
field in the QABLE ITEM record). A SYSQUEUE can be created by calling (NCREATE 'SYSQUEUE).

(\ENQUEUE Q ITEM) [Function]

(\DEQUEUE Q)

Enqueues ITEM on Q, i.e., links it to the tail of the queue, updating Q's tail pointer
appropriately.

[Function]
Removes the first item from Q and returns it, or returns NIL if Q is empty.

(\UNQUEUE Q ITEM NOERRORFLG) [Function]

(\QUEUELENGTH Q)

Removes the ITEM from Q, wherever it is located in the queue, and returns it. If
ITEM is not in Q, causes an error, unless NOERRORFLG is true, in which case it
returns NIl.

[Function]
Returns the number of elements in Q.

(\ONQUEUE ITEM Q) [Function]
True if ITEM is an element of Q. .

21.25

The SYSQUEUE mechanism
,

21.26

CHAPTER 22

INTERLISP-I0 SPEOFICS

This chapter describes a number of features of Interlisp-10 that are machine or implementation-dependen~
and are not expected to be implemented in newer implementations of Interlisp.

22.1 INTERLISP-I0 INTERRUPT CHARACTERS

The table below gives the interrupt characters currently enabled in Interlisp-10.

Note: It is possible to change the assignments of control characters to interrupts with INTERRUPTCHAR
(page 9.17).

control-B

control-C

control-D

control-E

control-H

Generates an immediate error, and causes a break, regardless of the depth or time of the
computation. Thus if the function FOO is looping internally, typing control-B will cause
the computation to be stopped, the stack u:nwo~~d to the point at which FOO was called,
and then cause a break.

This is a stronger interruption than control-H. Note that the internal variables of FOO
above are not available in this break, and similarly, FOO may have already produced some
changes in the environment before the control-B was typed. It may not be possible to
simply continue the computation, depending on the nature of the function interrupted
and ,when it was interrupted. Therefore whenever possible, it is better to use control-H
instead of control-B.

Computation is stopped, and control returns to the operating system (Tenex, etc.) The
program can be continued with the CONT INUE command.

Aborts the computation, and unwinds the stack to the top level. Calls RESET (page 9.14).

Aborts the computation, and unwinds the stack ~o the last ERRORSET. Calls ERROR!
(page 9.14).

At the next point a function is about to be entered, the function INTERRUPT is
called instead. INTERRUPT types INTERRUPTED BEFORE FN, constructs an appropriate
break expression, and then calls BREAK 1. The user can then examine the state of the
computation, and continue by typing OK, GO or EVAL, andlor RETFROM back to some
previous poin~ exactly as with a user break. Control-H breaks are thus always "safe".

Control-H breaks only occur when a function is called, since it is only at this time that
the system is in a "clean" enough state to allow the user to interact. Thus, if a compiled
program is looping without calling any functions (or if Interlisp-lO is in a I/O wait),
control-H will not affect it Control-B, however, will.

22.1

control-O

control-P

control-S

control-T

Type Number Functions

As soon as control-H is typecL Interlisp clears and saves the input buffer, and then rings
the bell, indicating that it is now safe to type ahead to the upcoming break. If the break
returns a value, Le., is not aborted via l' or control-D, the contents of the input buffer
before the control-H was typed will be restored.

Note: Control-H will not interrupt at linked function calls (see page 12.18).

Oears the teletype output buffer.

Changes the PRINTLEVEL setting (see page 6.18).

Changes the MINFS setting (see page 22.10).

Prints total execution time for the program, as well as other status information.

22.2 TYPE NUMBER FUNCflONS

Each data type in Interlisp has an associated "type name". In Interlispe 10, each data type also has a "type
number". which can be accessep and manipulated with the functions below. In general, it is preferable
to use the type name functions (see page 2.1).

(NTYP DATUM) [Function]
Returns the type number for the data type of DATUM, e.g., (NTYP '(A • B» is
8, the type number for lists.

(TYPEP DATUM N) [Function]
Value is T, if the type number of DATUM is equal to N.

(TYPENAMEFROMNUMBER N) [Function]
Value is type name for type number N. or NIL if N is not a valid type number,
e.g. (TYPENAMEFROMNUMBER 30)=STRING.CHARS.

(TYPENUMBERFROMNAME NAME) [Function]
Value is corresponding type number for NAME, or NIL if NAME is not a type name,
e.g. (TYPENUMBERFROMNAME 'STRING. CHARS) = 30.

TYPENUMBERFROMNAME will.accept READTABLEP, TERMTABLEP, CCODE.P, and
ARRAYP, and return the same value for each, which for Interlisp-10 is 1. Note
however that (TYPENAMEFROMNUMBER 1) =ARRAYP.

(GETTYPEDESCRIPTION TYPE) [Function]
Returns the type description string for TYPE, a type name or type number.

(SETTYPEDESCRIPTION TYPE STRING) [Function]
Sets the type description string for TYPE to be STRING. The type description is
used in garbage collection messages and by STORAGE.

22.2

INfERLISP-IO SPECIFICS

22.3 VALIDITY OF DEFINITIONS IN INTERLISP-IO

Although the function definition cell is intended for function definitions, PUTD and GETD do not make
thorough checks on the validity of definitions tha~ "look like" exprs~ compiled code, or SUBRs. Thus
if PUTD is given an array pointer, it treats it as compiled code, and simply stores the array pointer in
the definition cell. GETD will then return the array pointer. Similarly, a call to that function will simply
transfer to what would normally be the entry point for the function, and produce random results if the
array were not compiled fu~ction.

Similarly, if PUTD is given a dotted pair of the form (number • add ress) where numbe r and
address fall in the subr range, PUTD assumes it is a subr and stores it away as described earlier. GETD
would then return a dotted pair EQUAL (but not EQ) to the expression originally given PUTD. Similarly,
a call to this function would transfer to the corresponding address.

Finally, if PUTD is given any other.1is~ it simply stores it away. A call to this function would then go
through the interpreter.

Note that PUTD does not actually check to see if the s-expression is valid definition, i.e., begins with
LAMBDA or NLAMBDA. Similarly, EXPRP is true if a definition is a list and not of the form (numbe r .
address), number = 0, 1,2, or 3 and address a subr address; SUBRP. is true if it is of this form.
ARGLIST and NARGS work correspondingly.

Only FNTYP and ARGTYPE check function definitions further than that described above: both ARGTYPE
and FNTYP return NIL when EXPRP is true but CAR of the definition is not LAMBDA or NLAMBDA.l
In other words, if the user uses PUTD to put (A B C) in -a fUnction definition celt GETD will return
this value, the editor and prettyprint will both treat it as a definition, EXPRP will return T, CCODEP and
SUBRP NIL, ARGLIST B, and NARGS 1.

22.4 REUSING BOXED NUMBERS IN INTERLISP-IO - SETN

RPLACA and RPLACD provide a way of cannibalizing list structure for reuse in order to avoid making new
structure and causing garbage collections.2 This section describes an analogous function in Interlisp-l0 for
reusing large integers and floating point numbers, SETN. SETN is used like SETQ. i.e., its first argument
is considered as quoted, its second is evaluated. If the current value of the variable being set is a large
integer or floating point number, the new value is deposited into that word in number storage, i.e., no
new storage is used.3 If the current value is not a large integer or floating point number, e.g., it can be

IThese functions have different values on LAMBDAs and NLAMBDAs and hence must check. The compiler
and interpreter also take different actions for LAMBDAs and NLAMBDAs, and therefore generate errors if
the definition is neither.
2The nobox package provides a more aesthetic way of reusing cons cells as well as number boxes.
However, it is still the case that technIques involving reusing static storage should be used with extreme
caution, and be reserved for those cases where the normal method of storage allocation and garbage
collection is not workable or practical. The decl package (page 23.18) takes a different approach to the
same problem by -avoiding creating number boxes in the first place via type declarations in the body of
the function definition.
3The second argument to SETN must always be a number or a NON-NUMERIC ARG error is generated.

22.3

Caveats concerning use of SETN

NIL, SETN operates exactly like SETQ. Le., the large integer or floating point number is boxed, and the
variable is set. This eliminates initialization of the variable.

SETN will work interpretively, Le., reuse a word in number storage, but will not yield any savings of
storage because the boxing of the second argument will still take place, when it is evaluated. The
elimination of a box is achieved only when the call to SETN is compiled, since SETN compiles open, and
does not perform the box if the old value of the variable can be reused.

22.4.1 Caveats concerning use of SETN

There are three situations to watch out for when using SETN. The first occurs when the same variable is
being used for floating point numbers and large integers. If the current value of the variable is a floating
point number, and it is reset to a large integer, via SETN, the large integer is simply deposited into a
word in floating poin~ number storage, and hence will be interpreted as a floating point number. Thus,

"'(SETQ FOO 2.3)
2~3

"'(SETN FOO 10000)
2.189529E-43

Similarly. if the current value is a large integer, and the new value is a floating point number, equally
strange results occur.

The second situation occurs when a SETN variable is reset from a large integer to a small integer. In
this case, the small integer is simply deposited into large integer storage. It will then print correctly. and
function arithmetically correctly, but it is not a small integer, and hence will not be EQ to. another integer
of the same value, e.g.,

"'(SETQ FOO 10000)
10000
"'(SETN FOO 1)
1
"'(IPLUS FOO 5)
6
"'(EQ FOO 1)
NIL
"'(SMALLP FOO)
NIL

In particular, note that ZEROP will return NIL even if the variable is equal to O. Thus a program which
begins with FOO set to a large integer and counts it down by (SE TN FOO (SUB 1 FOO» must tenninate
with (EQP FOO 0), not (ZEROP FOO).

Finally, the third situation to watch out for occurs when you want to save the current value of a SETN
variable for later use. For example, if F,OO is being used by SETN, and the user wants to save its current
value on FIE, (S E T Q F 00 FIE) is not sufficent, since the next SET N on F 00 will also change FIE,
because its changes the word in number storage pointed to by F 00, and hence pointed to by FIE. The
number must be copied, e.g., (SETQ FIE (IPLUS FOO», which sets FIE to a new word in number

22.4

storage.

(SETN VAH x)

INfERLISP-I0 SPE:CIFICS

[NLambda Function]
A nlambda function like SETQ. VAH is quoted, x is evaluated, and its value must
be a number. VAR will be set to this number. If the current value of VAR is a large
integer or floating point number, that word in number storage is cannibalized. The
value of SETN is the (new) value of VAR.

22.5 BOX AND UNBOX IN INTERLISP-I0

Some applications may require that a user program explicitly perform the boxing and unboxing operations
that are usually implicit (and invisible) to most programs. 1be functions that perform these operations are
LOC and VAG respectively. For example, if a user program executes a TENEX JSYS using the ASSEMBLE
directive, the value of the ASSEMBLE expression will have to be boxed to be used arithmetically, e.g.,
(IPLUS X (LOC (ASSEMBLE --))}. It must be emphasized that

Arbitrary unboxed numbers should NOT be passed around as ordinary values because they can cause trouble
for the garbage collector.

For example, suppose the value of X were 150000, and you created (VAG X), and this just happened to
be an address on the free storage list. The next garbage collection could be disastrous. For this reason,
the fUriction VAG must be used with extreme caution when its· argument's range is not known.

LOC is the inverse of VAG. It takes an address, Le., a 36 bit quantity, and treats it as a number and boxes
it. For example, LOC of an atom, e.g., {LOC (QUOTE FOa)}, treats the atom as a 36 bit quantity, and
makes a number out of it. If the address of the atom FOO were 125000, {LOC {QUOTE FOO}} would
be 125000, Le., the location of FOO. It is for this reason that the box operation is called LOC, which is
short for location.

Note that FOO does not print as #364110 (125000 in octal) because the print routine recognizes that it is
an atom, and therefore prints it in a special way, Le., by printing the individual characters that comprise
it. Thus (VAG 125000) would print as FOO, and would in fact be FOO.

(LOC x)

(VAG x)

[Function]
Makes a number out of x, i.e., returns the location of x.

[Function]
The inverse of LOC. x must be a number: the value of VAG is the unbox of x.

The compiler eliminates extra VAG's and LOC's for example (IPLUS X (LOC (ASSEMBLE --)}) will
not box the value of the ASSEMBLE, and then unbox it for the addition.

22.6 l\1ISCELLANEOUS OPERATING SYSTEM FUNCTIONS

(LOADAV) [Function]
Returns the current load average as a floating point number (this number is the

22.5

(ERSTR ERN -)

Miscellaneous Operating System Functions

first of the three printed by the SYSTAT command).

[Function]
ERN is an error number from a JSYS fail return. ERN= NIL means the most recent
error. ERSTR returns the operating system error diagnostic as a string.

(JSYS N ACl AC2 AC3 RESULTAC) [Function]
Loads the (unboxed) values of AC1, AC2, and AC3 into appropriate accumulaters.
and executes JSYS number N. If ACl, AC2, or AC3=NIL, 0 is used. JSYS returns
the (boxed) contents of the accumulator specified by RESULTAC, i.e., 1 means ACl,
2 means AC2, and 3 means AC3, with NIL equivalent to 1. Compiles open if N is
itself a small integer, and RESULTAC is a small integer, or NIL.

If the JSYS causes a trap, the message TRAP AT LOCATION NNNNN is printed
by the operating system, followed by J S Y 5 E R RO R: and the operating system
diagnostic. The user is then talking to the operating system exactly as though
control-C: had been typed. If the user then continues using the CON TIN U E
command. an Interlisp error is generated, J S Y S E R RO R, and control then proceeds
the same as for any other flavor of error, Le. unwinds to last ERRORSET or goes
into a break as described on page 9.10.

The CJSYS package (page 23.53) enables calling JSYSes by their corresponding
name, rather than their number.

(USERNUMBER A FLG) [Function]
If A = NIL, returns the login user number; if A == T, returns the connected user
number; if A is a literal atom or string, USERNUMBER returns the number of the
corresponding user, or NIL if no such user exists.

On TOPS-20, there is a difference between the user number, which is associated
with the job, and the directory number, which is associated with the file system.
Therefore, on TOPS-20, if FLG=T. USERNUMBER returns the directory number
rather than the user number.

(HOSTNAME HOSTN FLG) [Function]

(HOSTNUMBER)

Returns the hostname as a string for host number HOSTN, e.g. "PARC-MAXC2",
"BBN-TENEXD", etc. If HOSTN=NIL, the local host is used. If the local host is
not an arpanet host, value is NIL. Also returns NIL if HOSTN is not a valid host
number.

FLG is interpreted the same as in USE RNAME.

[Function]
Returns the host numer of" the local host, or NIL, if the local host is not an arpanet
host.

(TEN E X 5TR FILEFLG) [Function]
Starts up a lower exec (without a message) using SUB SY S, and then if FILEFLG = NIL
unreads 5TR, followed by "QUIT"4 (using BKSYSBUF, page 6.47). TENEX returns

4"pOP" for Interlisp on TOPS-20.

22.6

INTERLISP-IO SPECIFICS

T if all of STR is actually processed/read by the lower exec, NIL if the user
control-C's and manually QUIT's back to Interlisp.

IfFILEFLG=T, TENEX passes the string as the second argument to SUBSYS. instead
of unreading it This has the advantage that STR can be of any length, and also
that typeahead will not interfere with the call to the lower exec. The disadvantage
is that TEN E X cannot tell whether the commands to the lower exec tenninated
successfully, or were aborted. Thus, if FILEFLG=T, the value of TENEX is always
T.

For example, LISTFILES (page 11.9) is implemented using TENEX, with FILEFLG= NIL,
so LIS T F I L E S can tell if listings actually were completed.

22.7 STORAGE ALLOCATION AND GARBAGE CO:LLECTION

In the following discussion, we· will speak of a quantity of memory being assigned to a particular data-type,
meaning that the space is reserved for storage of elements of that type. Allocation will refer to the process
used to obtain from the already assigned storage a particular location for storing one data element

A small amount of storage is assigned to each data-type when Interlisp-10 is started; additional storage is
assigned oIlly during a garbage collection.

The page is the smallest unit of memory that may be assigned for use by a particular data-type. For each
page of memory there is a one word entry in a type table. The entry contains the data-type residing on
the page as well as other infonnation about the page. The type of a pointer is detennined by examining
the appropriate entry in the type table. -

Storage is allocated as is needed by the functions which create new data elements, such as CONS, PACK,
MKSTRING. For example, when a large integer is created by IPLUS, the integer is stored in the next
available location in the space assigned to integers. If there is no available location, a garbage collection
is initiated, which may result in more storage being assigned.

The storage allocation and garbage collection methods differ for the various data-types. The major
distinction is between the types with elements of fixed length and the types with elements of arbitrary
length. List cells, atoms, large integers. floating point numbers. and string pointers are fixed length; all
occupy 1 word except atoms which use 3 words. Arrays. print names, and strings (string characters) are
variable length.

Elements of fixed length types are stored so that they do not overlap page boundaries. Thus the pages
assigned to a fixed length type need not be adjacent. If more space is needed, any empty page will be
used. The method of allocating storage for these types employs a free-list of available locations; that is,
each available location contains a pointer to the next available location. A new element is stored at the
first location on the free-list, and the free-list pointer is updated.5

5The allocation routine for list cells is more complicated. Each page containing list cells has a separate
free list. First a page is chosen, then the free list for that page is used. Lists are the only data-type which
operate this way.

22.7

Storage Allocation and Garbage Collection

Elements of variable length data-types are allowed to overlap page boundaries. Consequently all pages
assigned to a particular variable length type must be contiguous. Space for a new element is allocated
following the last space used in the assigned block of contiguous storage.

When Interiisp-lO is first called, a few pages of memory are assigned to each data-type. When the
allocation routine for a type determines that no more space is available in the assigned storage for that
type, a garbage collection is initiated. The garbage collector determines what data is currently in use and
reclaims that which is no longer in use. A garbage collection may also be initiated by the user with the
function RECLAIM.

Data in use (also called active data) is any data that can be "reached" from the currently running program
(I.e., variable bindings and functions in execution) or from atoms. To find the active data the garbage
collector "chases" all pointers, beginning with the contents of the push-down lists and the components
(I.e., CAR, CDR, and function definition cell) of all atoms with at least one non-trivial component.

When a previously unmarked datum is encountered, it is marked, and all pointers contained in it are
chased. Most data-types are marked using bit tables; that is tables containing one bit for each datum.
Arrays, however, are marked using a half-word in the array header.

When the mark and chase process is completed, unmarked (and therefore unused) space is reclaimed.
Elements of fixed length types that are no longer active are reclaimed by adding their locations to the
free-list for that type. This free list allocation method permits reclaiming space without moving any data,
thereby avoiding the time consuming process of updating all pointers to moved data. To reclaim unused
space in a block of storage assigned to a variable length type, the active elements are compacted toward
the beginning of the storage block, and then a scan of all active data that can contain pointers to the
moved data is performed to update the pointers. 6

Whenever a garbage collection of any type is initiated,7 unused space for all fixed length types is reclaimed
since the additional cost is slight. However, space for a variable length type is reclaimed only when that
type initiated the garbage collection.

If the amount of storage reclaimed for the type that initiated the garbage collection is less than the
minimum free storage requirement for that type, the garbage collector will assign enough additional
storage to satisfy the minimum free storage requirement. The minimum free storage requirement for each
data may be set with the function MIN F S. The garbage collector assigns additional storage to fixed length
types by finding empty pages, and adding the appropriate size elements from each page to the free list.
Assigning additional storage to a variable length type involves finding empty pages and moving data so
that the empty pages are at the end of the block of storage assigned to that type.

In addition to increasing the storage assigned to the type initiating a garbage collection. the garbage
collector will attempt to minimize garbage collections by assigning more storage to other fixed length
types according to the following algorithm. If the amount of active data of a type has increased since
the last garba~e collection by more than 1/4 of the MINFS value for that type, storage is increased (if
necessary), to attain the MINFS value. If active data has increased by less than 1/4 of the MINFS value,

6If Interlisp-lO types the message ARRAYS FOULED during a garbage collection, it means that an array
header has been clobbered and no longer makes sense. This can be due to hardware malfunction. or an
as yet undiscovered bug in Interlisp. The best thing to do under these circumstances is to give up and
start over with a fresh system or sysout.

7The "type of a garbage collection" or the "type that initiated a garbage collection" means either the type
that ran out of space and called the garbage collector. or the argument to RECLAIM.

22.8

INTERLISP-IO SPECIFICS

available storage is increased to 1/2 MINFS. If there has been no increase, no more storage is added. For
example, if the MIN F S setting is 2000 words, the number of active words has increased by 700, and after
all unused words have been collected there are 1000 words available, 1024 additional words (two pages)
will be assigned to bring the total to 2024 words available. If the number of active words had increased
by only 300, and there were 500 words available, 512 additional words would be assigned.

(RECLAIM TYPE) [Function]
Initiates a garbage collection of type TYPE, where TYPE is either a type name or
type number. Value of RECLAIM is number of words available (for that type) after
the collection.

Garbage collections. whether invoked directly by the user or indirectly by need for storage, do not confine
their activity so/ely to the data type for which they were called, but automatically collect some or all of the
other types. .

(GCGAG MESSAGE) [Function]
Affects messages printed by the garbage collector. If MESSAGE = T, whenever a
garbage collection is begun, " co 11 e c tin g It is printed, followed by the type
description of the type that initiated the collection.8 When the garbage collection
is complete, two numbers are printed: the number of words collected for that
type, and the total number of words available for that type, Le., allocated but not
necessarily currently in use. Note that other types may also have been collected,
and had more storage assigned.

Example:

+-RECLAIM(18)

collecting large numbers
511, 3071 free cells
3071
~RECLAIM(LITATOM)

collecting atoms
1020, 1020 free cells
1020

If MESSAGE = NIL, no garbage collection message is printed, either on entering or
leaving the garbage collector.

If MESSAGE is a list, CAR of MESSAGE is printed (using PRINl) when the garbage
collection is begun, and CDR is printed (using PRINl) when the collection is
finished. If MESSAGE is a literal atom or string, MESSAGE is printed when the
garbage collection is begun, and nothing is printed when the collection finishes.

If MESSAGE is a number, the message is the same as for (GCGAG T), except if
the total number of free pages left after the collection is less than MESSAGE, the
number of free pages is printed, e.g.,

8Note that this type description can be set via the function SETTYPEDESCR I PT ION (page 22.2).

22.9

Storage Allocation and Garbage Collection

~GCGAG(100)
T
~RECLAIM()

collecting lists
10369, 10369 free cells, 87 pages lefto

The initial setting for GCGAG is 40.

The. value of GCGAG is its previous setting.

(GCMESS MESSAGE# STRING) [Function]
GCGAG is implemented in terms of the primitive GCMESS which can be used to
further r~fine garbage collection messages for specialized applications. The garbage
collection message is actually composed of seven separate messages:

collecting large numbers 12

511,3 3011 free ce11s4 , 875 pages 6 left7

message # 1 is the "collecting" string. If NIL, then neither it, nor the type
dependent field (which is settable via SETTYPEDESCR I PT ION described below) is
printed.

message #2 is the carriage-return after the type-dependent field. Thus to simply
print a string at the beginning of a garbage collection. perform (GCMESS 1) and
(GCMESS 2 STRING).

message # 3 is the " ," which comes after the number of cells actually collected.
If NIL, then neither it nor that number are printed.

message #4 is the "f ree ce 11 s" which comes after the number of cells that are
now allocated. If NIL, neither it nor that number are printed.

message # 5 is the number of pages left below which the system prints message 6.

message #6 is the "pages 1 eft" message. If NIL, neither it nor the number of
pages left are printed.

message #7 is the terminating carriage return.

(MINFS N TYPE) [Function]
Sets the minimum amount of free storage which will be maintained by the garbage
collector for data types of type number or type name TYPE. If, after any garbage
collection for that type, fewer than N free words are present. sufficient storage will
be added (in 512 word chunks) to raise the level to N.

If TYPE = NIL, LIS T P is used, Le., the MIN F 5 refers to list words.

If N = NIL, MIN F 5 returns the current MIN F 5 setting for the corresponding type.

22.10

INTERLISP-IO SPECIFICS

A MINFS setting can also be changed dynamically, even during a garbage collection, by typing et>ntrol-S9

followed bya number, followed by a period. When the control-S is typed, Interlisp immediately clears
and saves the input buffer, rings the bell, and waits for input, which is tenninated by any non-number.
The input buffer is then restored, and the program continues. If the input was tenninated by other than
a period, it is ignored. If the control-S was typed during a garbage collection, the number is the new
MIN F S setting for the type being collected, otherwise for type 8, i.e., list words.

(MINHASH x)

(GCTRP N)

(CLOSER A x)

(OPENR A)

[Function]
The atom hash table automatically expands by a specified number of pages each
time it fills up. The number of pages is set via the function M I NHASH. The initial
setting is (MI NHASH 2) (room for 1024 new atoms).

[Function]
"Garbage Collection Trap". Causes a (simulated) control-H interrupt when the
number of free list words remaining equals N, i.e., when a garbage collection would
occur in N more conses. The message GCTRP is printed, the function INTERRUPT
is called, and a break occurs. Note that by advising INTERRUPT the user can
program the handling of a GCTRP instead of going into a break.lo

GCTRP returns i~ last setting.

(GCTRP -1) will "disable" a previous GCTRP since there are never -1 free list
words. G C T R P is initialized this way.

(GCTRP) returns the number of list cells left, I.e., number of CONSes until next
type LIS T P garbage collection.

(Function]
Stores x into memory location A. Both x and A must be numbers.

[Function]
Returns the number in memory location A. Le., boxed.·

22.8 THE ASSEMBLER AND LAP

The Interlisp-10 compiler has two principal passes. The first compiles its input into a macro assembly
language called LAP.ll The second pass expands the LAP code, producing (numerical) machine language
instructions. The output of the second pass is written on a file andl or stored in binary program space.

9 control-X for Interlisp-10 on TOPS-20.

lOFor GCTRP interrupts, INTERRUPT is called with INTYFE (its third argument) equal to 3. If the user
does not want to go into a break l the advice should still allow INTERRUPT to be entered, but first
set INTYFE to -1. This will cause I NTE RRUPT to "quietly" go away by calling the function that was
interrupted. The advice should not exit INTERRUPT via RETURN, as in this case the function that was
about to be called when the interrupt occurred would not be called.

11 The exact form of the macro assembly language is extremeJy implementation dependent, as well as being
influenced by the architecture and instruction set for the machine that will run the compiled program.

22.11

Assemble

Input to the compiler is usually a standard Interlisp EX P R definition. However, in Interlisp-lO. machine
language coding can be included within a function by the use of one or more ASSEMBLE fOmls as
described below. In other words. ASSEMBLE allows the user to write portions of a function in LAP. Note
that ASSEMBLE is only a compiler directive; it has no independent definition. Therefore, functions which
use ASSEMBLE must nonnally be compiled in order to run.12

22.8.1 Assemble

Note: ASSEMBLE is provided for situations where its use is unavoidable. However, its use is definitely not
encouraged. The disadvantages are several. ASSEMBLE code is unavoidably dependent on the PDP-lO,
Tenex, and implementation details of Interlisp-lO. Thus, ASSEMBLE code is not transportable to lnterlisp
on another machine or operating system and implementation changes to I nterlisp-lO can (and frequently
do) require changes to existing ASSEMBLE code.

The fOmlat of ASSEMBLE is similar to that of PROG:

(ASSEMBLE V Sl S2 • . . SN)

V is a list of variables to be bound during the first pass of the compilation, not during the running of the
object code. The assemble statements Sl ... SN are compiled sequentially, each resulting in one or
more instructions of object code. When run, the value of the ASSEMBLE "fonn" is the contents of AC1
at the end of the execution of the assemble instructions. Note that ASSEMBLE may appear anywhere in
an Interlisp-lO function. For example, one may write:

(IGR£ATERP (IQUOTIENT (LOC (ASSEMBLE NIL

1000)
4)

to test if job runtime exceeds 4 seconds.13

22.8.1.1 Assemble Statements

(MOVEI 1 , -5)
(JSYS 13»)

If an assemble statement is an atom. it is treated as a label identifying the location of the next statement
that will be assembled.14 Such labels defined in an ASSEMBLE fonn are like PROG labels in that they
may be referenced from the current and lower level nested PROGs or ASSEMBLEs.

12The MACROTRAN package (page 5.19) does pennit the user to run programs interpretively which contain
ASSEMBLE directives. Each ASSEMBLE directive is compiled as a separate function. There is some loss
in efficiency over compiling the entire function as a unit, and not all ASSEMBLE expressions are tractable
to this procedure.

13This example is to illustrate use of ASSEMBLE. and is not a recommendation to use the above code.
The function JSYS (page 22.6) is the appropriate method.

14A label can be the last thing in an ASSEMBLE fOml, in which case it labels the location of the first
instruction after the ASSEMBLE fOml.

22.12

INTERLISP-I0 SPECIFICS

If an assemble statement is not an atom. CA R of the statement must be an atom and one of: (1) a number;
(2) a LAP op-def (Le., has a property value OPO); (3) an assembler macro (Le., has a property value
AMAC); or (4) one of the special assemble instructions given below, e.g., C, CQ, etc. Anything else will
cause the error message OPCODE? - ASSEMBLE.

The types of assemble statements are described here in the order of priority used in the ASS E MB l E
processor; that is, if an atom has both properties OPD and AMAC, the OPD will be used. Similarly a special
ASSEMBLE instruction may be redefined via an AMAC. The following descriptions are of the first pass
processing of ASSEMBLE statements. The second pass processing is described in the section on LAP, page
22.15.

(1) numbers

If CAR of an assemble statement is a number, the statement is not processed in the first pass (see page
22.15).

(2) LAP op-defs

The property OPD is used for two different types of op-defs: PDP-10 machine instructions, and LAP
macros. If the 0 PO definition (Le., the property value) is a number, the op-def is a machine instruction.
When a machine instruction, e.g., HRRZ, appears as CAR of an assemble statement, the statement is not
processed during the first pass but is passed to LAP. The forms and processing of machine instructions
by LAP are described on page 22.16.

If the OPO definition is not a number, then the op-def is a LAP macro. When a LAP macro is encountered
in "an assemble statement, its arguments are evaluated -and processing of the statement with evaluated
arguments is left for the second pass and LAP. For example, LDV is a LAP macro, and {LDV (QUOTE
X) SP) in assemble code results in (LDV X N) in the LAP code, where N is the value of SP. The form
and processing of LAP macros are described on page 22.17.

(3) assemble macros

If CAR of an assemble statement has a property AMAC. the statement is an assemble macro call. There
are two types of assemble macros: lambda and substitution. If CAR of the macro definition is the atom
LAMBDA, the definition will be applied to the arguments of the call and the resulting list of statements will
be assembled. For example, RE PEAT could be defined as a LAMBDA macro with two arguments, Nand
M, which expands into N occurrences of M, e.g., (REPEAT 3 (CAR!.» expands to ({ CARl) (CARl)
(CARl». The definition (Le .• value of property AMAC) for REPEAT could be:

{LAMBDA
(PROG

A

(N M)
(YY)
(COND

({ILESSP N 1)
{RETURN (CAR YY»)

(T (SETQ YY (TCONC YY M»
(SETQ N (SUBl N»
(GO A»»)

If CAR of the macro definition is not the atom LAMBDA, it must be a list of dummy symbols. The
arguments of the macro call will be substituted for corresponding appearances of the dummy symbols in

22.13

COREVALs

CDR of the definition, and the resulting list of statements will be assembled.15 For example, ABS could
be a substirution macro which takes one argument, a number, and expands into instructions to place the
absolute value of the number in AC1:

«X)
(CQ (VAG X»
(CAIGEo1 , 0»
(MOVN 1 , 1»

(4) special assemble statements

CQ (compile quote) takes any number of arguments which are assumed to be
regular Interlisp expressions and are compiled in the normal way. E.g.

(CQ (COND
«NULL Y)

(SETQ Y 1»)
(SETQ X (IPLUS Y Z»)

Note: to avoid confusion and minimize dependence on the current implementation,
it is best to have as much of a function as possible compiled in the normal way,
e.g., to load the value of X to AC 1, (CQ X) is preferred to (LDV (QUOT EX)
SP).

(C El ... EN) C (Compile) takes any number of arguments which are first evaluated, then compiled
in the usual way. Both C and CQ permit the inclusion of regular compilation within
an assemble form.

(E El ..• EN) E (Evaluate) takes any number of arguments which are evaluated in sequence. For
example, (PSTEP) calls a function which increments the compiler variable SP.

(SETQ VAR) Compiles code to set the variable VAR to the contents of ACt.

(VAR (op AC , VARNAME»
Permits writing a machine instruction with the value of a variable as the operand.
Generates the appropriate address and index fields to reference the value of
VARNAME. VARNAME may be a locally bound variable, free variable, GLOBALVAR,
etc. Note that VA R may generate more than one instruction.

(. ...) Used to indicate a comment; the statement is ignored.

22.8.1.2 COREVALs

There are several locations in the basic machine code of Interlisp-lO which may be referenced from
compiled code. The current value of each location is stored on the property list under the propeny

i5Note that assemble macros produce a list of statements to be assembled, whereas compiler macros
produce a single expression. An assemble macro which computes a list of statements begins with LAMBDA
and may be either spread or no-spread. The analogous compiler macro begins with an atom, (Le., is
always no-spread) and the LAMBDA is understood.

22.14

INTERLISP-IO SPECIFICS

COREVAL.16 Since these locations may change in different reassemblies of Interlisp-10, they are written
symbolically on compiled code files. Le., the name of the corresponding COREVAL is written, not its value.
Some of the COREVALs used frequently in ASSEMBLE are:

contains (pointer to) atom T KT

KNIL

MKN

MKFN

IUNBOX

FUNBOX

Contains (a pointer to) the atom NIL.

Routine to box an integer.

Routine to box floating number.

Routine to unbox an integer.

Routine to unbox floating number.

The index registers used for the push-down stack pointers are also included as COREVALS. These are
not expected to change, and are not stored symbolically on compiled code files; however, they should be
referenced symbolically in assemble code. They are:

P P Parameter s~ck.

C P Control stack.

VP Basic frame pointer.

22.8.2 LAP

LAP (for LISP Assembly Processor) expands the output of the first pass of compilation to produce
numerical machine instructions.

22.8.2.1 LAP Statements

If a LAP statement is an atom, it is treated as a label identifying the location of the next statement to be
processed. If a LAP statement is not an atom, CAR of the statement must be an atom and either: (1) a
number; (2) a machine instruction; or (3) a LAP macro.

(1) numbers

If CAR of a LAP statement is a number, a location containing the number is produced in the object
code.17 E.g.,

(ADD 1 , A (1»

l6The value of COREVALS is a list of all atoms with COREVAL properties.

17Note that if a function is intended to be swappable. it may not contain any relocatable. indexed
instructions.

22.15

A (1)
(4)
(9)

. LAP Statements

Statements of this type are processed like machine instructions, with the initial number serving as a 36-bit
op-code.

(2) Machine Instructions

If CAR of a LAP statement has a' numeric value for the property OPD t 18 the statement is a machine
instruction. The general form, of a machine instruction is:

(OPCODE AC t @ ADDRESS (index»

OPCODE is any PDP-10 instruction mnemonic or Interlisp UUO.19

AC, the accumulator fiel<L is optional. However, if presen~ it must be followed by a comma. AC is either
a number or an atom with a COREVAL property. The low order 4 bits of the number or COREVAL are
OR'd to the AC field of the instruction.

@ may be used anywhere in the instruction to specify indirect addressing (bit 13 set in the instruction)
e.g., (HRRZ 1 t @ 1 (VP».

ADDRESS is the address field which may be any of the following:

= CONSTANT

, POINTER

•

a literal atom

Reference to an un boxed constant. A lOCation containing the unboxed constant will
be created in a region at the end of the function, and the address of the location
containing the constant is placed in the address field of the current instruction. The
constant may be a number e.g., (CAME 1 t = 3596); an atom with a property
COREVAL (in which case the constant is the value of the property, at LOAD 'time);
any other atom which is treated as a label (the constant is then the address of
the labeled location) e.g., (MOV E 1 t = TAB L E) is equivalent to (MOV E I 1 ,
TABLE); or an expression whose value is a number.

The address is a reference to a Interlisp pointer, e.g., a lis~ number, string, etc.
A location containing the pointer is assembled at the end of the function, and the
current instruction will have the address of this location, e.g.,

(HRRZ 1

(HRRZ 1

, "IS NOT DEFINED")

, (NOT FOUND»

Specifies the current location in the compiled function; e.g., ('J RST • 2) has the
same effect as (SK I PA).

If the atom has a property COREVAL, it is a reference to a system location,
e.g., (SKIPA 1 9 KN IL), and the address used is the value of the COREVAL.

l8The value is an 18 bit quantity (rather than 9), since some UUO's also use the AC field of the
instruction.
19The TENEX JSYS's are not defined. that is, one must write (JSYS 107) instead of (KFORK).

22.16

INTERLISP-IO SPECIFICS

Otherwise the atom is a label referencing a location in the LAP code, e.g., (J R S T
A).

a number The number is the address; e.g.,

(MOVSI 1 , 4000000)
(HLRZ 2 , 1 (1»

a list The form is evaluated, and its value is the address.

Anything else in the address field causes an error message, e.g., (SKIPA 1 , KNILL) - LAPERROR.
A number may follow the address field and· will be added to it, e.g., (J RS T A 2) .

I NDEX is denoted by a list following the address field, i.e., the address field must be present if an index
field is to be used. The index (CAR of the list) must be either a number, or an atom with a property
COREVAL, e.g., (HRRZ 1 , 0 (l».

(3) LAP macros

If CAR of a LAP statement is the name of a LAP macro, i.e., has the property OPO, the statement is a
macro call. The arguments of the call follow the macro name: e.g., (LO 2 FIE 3).

LAP macro calls comprise most of the output of the first pass of the compiler, and may also be used in
ASSEMBLE. The definitions of these macros are stored on the property list under the property OPD, and
like assembler macros, may be either lambda or substitution macros. In the first case, the macro definition
is applied to the arguments of the call;20 in the second case, the arguments of the call are substituted
for occurrences of the dummy· symbols in the definition. In both cases, the resulting list of statements is
again processed, with macro expansion continuing till the level of machine instructions is reached.

Some examples of LAP macros are shown below.

{DEFLIST
'[{LQ ({X) (. LOAD QUOTE TO ACl)

(HRRZ 1 , ' X»)
{LQ2 ({X AC) (. LOAD QUOTE TO AC)

(HRRZ AC , ' X»)
{LDV «A SP) (. LOAD LOCAL VARIABLE TO ACl)

(HRRZ 1 , (VREF A SP»»
(STV (fA SP) (. SET LOCAL VARIABLE FROM ACl)

(H R RM 1 , (V REF A SP»»
(LDV2 «A SP AC) (. LOAD LOCAL VARIABLE TO AC)

(HRRZ AC , (VREF ASP»»
(LDF ({A SP) (. LOAD FREE VARIABLE TO ACl)

(HRRZ 1 , (FREF A SP»»
(STF «A SP) (. SET FREE VARIABLE FROM ACl)

(HRRM 1 , (FREF A SP»»
(LDF2 ((A SP) (. LOAD FREE VARIABLE TO AC)

(HRRZ 2 , (FREF ASP»»
(CARl (NIL (. CAR OF ACl TO ACl)

20The arguments were already evaluated in the first pass, see page 22.13.

22.17

Using Assem~le

(HRRZ 1 , 0 (1»»
{CDRl {NIL

{HLRZ 1 0 (I»»
{CAR2 ({AC)

{HRRZ AC , 0 (AC»»
{CLL {(NAM N)

(CCALL N 'NAM»)
{LCLL {(NAM N)

{LNCALL N t (~KLCL NAM»»
{RET (NIL

(POPJ CP ,»
(PUSHP (NIL (PUSH PP , 1»)
(PUSHQ «X)

(PUSH PP , ' X»)]
'OPD)

22.8.3 Using Assemble

(* CDR OF ACl TO AC1)

(* CAR OF AC TO AC)

(~ CALL FN WITH N ARGS GIVEN)

(* LINKED CALL WITH N ARGS)

(* RETURN FROM FN)

(* PUSH QUOTE)

In order to use ASSEMBLE~ it is helpful to know the following things about how compiled code is run.
All variable bindings and temporary pointers are stored on the parameter pushdown stack (addressed by
index register PP). Control infonnation is stored on the control pushdown stack (addressed by index
register C P). A function call proceeds as follows:

1. The calling function pushes the argument values on the parameter stack.

2. The calling function invokes! a routine that adjusts the number of arguments if too few or too many
were supplie~ and binds the arguments. Binding usually implies the creation of a basic frame. 21

3. Then the called function is run.

The arguments in the basic frame are referenced relative to index register VP, e.g., 1{VP) addresses the
first argument However, it is better to reference variables in less implementation dependent ways, such as
(CQ ...) or (VAR (... ». The compiler will then generate the correct code whether the variable
is bound locally, is a free reference. is a GLOBALVAR, etc.

The parameter stack may be u,sed for temporary storage of pointers. Both halves of a word on the
parameter stack may be pointer;s. On the control stack the right half of a word must be a pointer, the
left a non-pointer. Anything else can cause the garbage collector to fail.

For temporary storage of unboxed numbers, the following ASSEMBLE macros are provided:

(PUSHN ADDR)

(POPN ADDR)

"Pushes" the number referenced by ADDR. ADDR may be any legal ASSEMBLE
code address fiel~ for example: (PUSHN 1), (PUSHN = 0), (PUSHN @ 2)

"Pops" the most recent number to ADDR.

21Whether a basic frame is created for a PROG or open lambda depends on whether any of the variables
are specvars.

22.18

INTERLISP-IO SPECIFICS

(NREF (op AC , N»
References a previously pushed number. op is the opcode, AC is the accumulator,
N is the relative position of the desired number on the pseudo number stack. That
is, N = 0 refers to the most recent number, N = -1 to the next most recent, etc.
For example: (NREF (MOVN 1, -1»

(PUSHNN Nl .•. NM)

(POPNN N)

"Pushes" a sequence of numbers specified by Ni where Ni is a list of any legal
address field. For example: (PUSHNN (1) (2) (= 0» pushes the contents of "
AC 1, the contents of AC2, and the constant O.

"Pops" the N most recent numbers, discarding the values.

Use of these macros is subject to the following restrictions:

1. PUSHN's and POPN's must be seen by the compiler in the same order and n~mber in which they
are executed. The compiler does not analyze the code; it assumes when it encounters a PUSHN in the
sequential processing of the code that the PUSHN will in fact be executed.

2. Every number that is pushed must be popped.

3. In nested ASSEMBLE statements, if a PROG or open lambda occurs between the inner and outer level
ASSEMBLE, numbers pushed in the outer ASSEMBLE may not be referenced from the inner ASSEMBLE.

The value of a function is always returned in AC L Therefore, the pseudo-function, AC, is available for
obtaining the current contents of AC 1. For- example (CQ (F 00 (AC») compiles a call to F 00 with
the current contents of ACI as argument, and is equivalent to:

(PUSHP)
(E (PSTEP»
(CLL (QUOTE FOO) 1)
(E (PSTEPN -1»

In using AC, be sure that it appears as the first argument to be evaluated in the expression. For example:
(CQ (IPLUS (LOC (AC» 2»

There are several ways to reference the values of variables in assemble code. For example:

(CQ X) Puts the value of X in ACl.

(LDV2 (QUOTE X) SP 3)
Puts the value of X in AC3.

(SETQ X) Sets X to the contents of ACl.

(VAR (HRRM 2 , X»
Sets X to the contents of AC2.

(CQ (LOC (AC»)
Boxes the contents of AC1.

(FASTCALL MKFN)
Floating boxes the contents of ACl.

22.19

Interfork Communication in Interlisp-lO

(CQ (VAG X» Puts the unboxed value of X in ACl.

(FASTCALL FUNBOX)
Gets the floating unbox of ACl.

To call a function directly, the arguments must be pushed on the parameter stack, and SP must be
updated, and then the function called: e.g.,

(CQ (CAR X)}
(PUSHP)
(E (PSTEP»
(PUSHQ 3.14)
(E (PSTEP»

(* stack first argument)

(* stack second argument)
(CLL (QUOTE FUM) 2)
(E (PSTEPN -2»

(* call FUM with 2 arguments)
(* adjust stack count)

and is equivalent to:

(CQ (FUM (CAR X) 3.14»

22.9 INTERFORK COMMUNICATION IN INTERLISP-IO

The functions described below petmit two forks (one or both of them Interlisp-lO) to have a c6mmon
area of address space for communication by providing a means of assigning a block of storage guaranteed
not to move during garbage collections.

(GETBLK N) [Function]
Creates a block N pag~s in size (512 words per page). Value is the address of
the first word in the block, which is a multiple of 512 since the block will always
begin at ~ page boundary. If not enough pages are available, generates the error
ILLEGAL OR IMPOSSIBLE BLOCK.

Note: the block can be used for storing unboxed numbers ONLY.

To store a number in the block, the following function could be defined:

(SETBLOCK (LAMBDA (START N X) (CLOSER (IPLUS (LaC START) N) X]

Some boxing and unboxing can be avoided by making this function compile open via a substitution
macro.

Note: GETBLK should be used sparingly since several unmovable regions of memory can make it difficult or
impossible for the garbage collector to find a contiguous region large enough for expanding array space.

(RELBLK ADDRESS N) [Function]
releases a block of storage beginning at ADDRESS and extending for N pages.
Causes an error ILLEGAL OR IMPOSSIBLE BLOCK if any of the range is not a
block. Value is ADDRESS.

22.20

INTERLISP-I0 SPECIFICS

22.10 SUBSYS

This section describes a function, SUBSYS, which pennits the user to run a Tenex/fOPS-20 subsystem,
such as SNDMSG, SRCCOM, TECO, or even another Interlisp, from inside of an Interlisp without
destroying ,the latter. In particular, (SUBSYS 'EXEC) will start up a lower exec, which will print the
operating system herald, followed by It. The user can then do anything at this exec level that he can at
the top level, without affecting his superior Interlisp. For example, he can start another Interlisp, perfonn
a SYS IN, run for a while, type a control-C returning him to the lower exec, RESET. do a SNDMSG,
etc. The user exits from the lower exec via the command QUIT,22 which will return control to SUBSYS
in the higher Interlisp. Thus with SUBSYS, the user need not perfonn a SYSOUT to save the state of
his Interlisp in order to use a Tenex/fOPS-20 capability which would otherwise clobber the core image.
Similarly, SUBSYS provides a way of checking out a SYSOUT file in a fresh Interlisp without having to
commandeer another tenninal or detach a job.

While SUBSYS can be used to run any subsystem directly, without going through an intervening exec,
this procedure is not recommended. The problem is that control-C always returns control to the next
highest EXEC. Thus if the user is running an Interlisp in which he perfonns (SUBSYS 'LISP), and
then types control-C to the lower Interlisp, control will be returned to the exec above the first Interlisp. If
the user elects to call a subsystem directly, he must therefore know how it is nonnally exited and always
exit from it that way.23 '

Starting a lower exec does not have this disadvantage, since it can only be exited via QUIT or POP, Le.,
the lower exec is effectively "errorset protected" against control-C.

(SUBSYS FILE/FORK INCOMFILE OUTCOMFILE ENTRYFOINTFLG) [Function]
If FILE/FORK: EXEC, starts up a lower exec, otherwise runs <SUBSYS>system,
e.g. (SUBSYS 'SNDMSG), (SUBSYS 'TECO) etc. (SUBSYS) is the same as
(SUBSYS 'EXEC). Control-C always returns control to next higher EXEC. Note
that more than one Interlisp can be stacked. but there is no backtrace to help you
figure out where you are.

INCOMFILE and OUTCOMFILE provide a way of specifying files for input and
output. INCOMFTLE can also be a string, in which case a temporary file is created,
and the string printed on it.

ENTRYFOINTFLG may be START, REENTER, or CONTINUE. NIL is equivalent to
START, except when FILE/FORK is a handle (see below) in which case NIL is
equivalent to CONTINUE.

The value of SUBSYS is a large integer which is a handle to the lower fork. The lower fork is not
reset unless the user specifically does so using KFORK, des<;ribed below.24 If SUBSYS is given as its first

22POP on TOPS-20.
23Interlisp is exited via the function LOGOUT, TECO via the command; H, SNDMSG via control-Z, and
EXEC via QUIT.

24The fork is also reset when the handle is no longer accessible, Le., when nothing in the Interlisp system
points to it. Note that the fork is accessible while the handle remains on the history list.

22.21

JFN Functions in Interlisp-lO

argument the value of a previous call to SUBSYS,25 it continues the subsystem run by that call. For
example, the user can do (SETO SOURCES (SUBSYS 'TECO», load up the TECD with a big source
file, massage the file, leave TEeO with ; H, run Interlisp for awhile (possibly including other calls to
SUBSYS) and then perfonn (SUBSYS 'SOURCES) to return to TECD, where he will find his file loaded
atld even the TECO pointer position preserved.

Note that if the user starts a IQwer EXEC, in which he runs an Interlisp, control-C's from the Interlisp,
then QUIT from the EXEC, if he subsequently continues this EXEC with SUBSYS, he can reenter or
continue the Interlisp.

Note also that calls to SUBSYS can be stacked. For example, using SUBSYS, the user can run a lower
Interlisp, and within that Interlisp, yet another, etc., and ascend the chain of Interlisps using LOGOUT,
and then descend back down again using SUBSYS.

For convenience, (SUBSYS T) continues the last subsystem run.

SNDMSG, LISP, TECO, and EXEC are all LISPXMACROS (page 8.19) which perform the corresponding
calls to SUBSYS. CONTIN is a LISPXMACRO which perfonns (SUBSYS T), thereby continuing the last
SUBSYS.26

(KFORK FORK) [Function]
Accepts a value from SUBSYS and kills it (RESET in Tenex terminology). If
(SUBSYS FORK) is subsequently perfonned, an error is generated. (KFORK T)
kills all outstanding forks (from this Interlisp).

22.11 JFN FUNCTIONS IN INTERLISP-I0

JFN stands for Job File Number. It is an integral part of the Tenex file system and is described in
[Murl], and in somewhat more detail in the Tenex JSYS manual. In Interlisp-10. the following functions
are available for direct manipulation of JFNs:

(OPNJ FN FILE ACCESS) [Function]
Returns the JFN for FILE. If FILE not open, generates a FILE NOT OPEN
error. ACCESS = NIL, INPUT, OUTPUT, or BOTH as described in discussion of
OPENP. For example, {JSYS 51Q (OPNJ FN FILE) BYTE) will write a byte on
a file, while (JSYS ~OQ (OPNJFN FILE) NIL NIL 2) will r~ad one byte.

(GT J FN FILE EXT V FLAGS) [Function]
Sets up a "long" call to GT JFN (see JSYS manual). FILE is a file name possibly
containing control-F and/or <esc>. EXT is the default extension, v the default
version (overriden if FILE specifies extension/version, e.g., FOO. COM; 2). FLAGS is

25Must be the exact same large number. i.e., EO. Note that if the user neglects to set a variable to the
value of a call to SUBSYS, (and has perfonned an intervening call so that (SUBSYS T) will not work),
he can still continue this subsystem by obtaining the value of the call to SUBSY S for the history list using
the function VALUEOF, described in page 8.16.

26The EXEC LISPXMACRO is defined to save its value on LASTEXEC so that subsequent EXEC commands
will restart the same exec.

22.22

INTERLISP-10 SPECIFICS

as described on page 17, section 2 of JSYS manual. FILE and EXT may be strings
or atoms; v and FLAGS must be numbers. Value is JFN, or NIL on errors.

(RLJ FN JFN) [Function]
Releases JFN. (R L~ F N -1) releases all JFN's which do not specify open files.
Value of RLJFN is T.

(JFNS JFN AC3 STRPTR) [Function]
Converts JFN (a small number) to a file name. AC3 is either NIL, meaning fonnat
the file name as would O'PENp· or other Interlisp-lO file functions, or else is a
number, meaning fonnat according to JSYS manual. The value of J FNS is atomic
except where enough options are specified by AC3 to exceed atom size. In this
case, the value is returned as a string.

STRPTR is an optional string pointer to be reused. In this case, the string characters
are stored in an internal scratch string, MACSCRATCHSTRING, so that a subsequent
call to J F NS will overwrite the characters returned by this one. The value of J F NS
when STRPTR is supplied is always a string.

The followirig function is available in Interlisp-lO for specialized file applications:

(OPENF FILE x) [Function]
Opens FILE. x is a number whose bits specify the access and mode for FILE,

i.e., x corresponds to the second argument to the Tenex JSYS OPENF (see JSYS
Manual). Value is full name of FILE.

The first argument to OPENF can also be a number, which is then interpreted as
a JFN. OPENF does not affect the primary input or output file settings, and does
not check whether the file is already open • Le., the same file can be opened more
than once, possibly for different purposes.

Note that for almost all applications the function OPE NFl LE (page 6.1) provides a more convenient (and
implementation indeperident) way of opening files.

22.12 DISPLA Y TERMINALS

The value of the variable DISPLAYTERMFLG indicates whether the user is running on a display tenninal
or not DISPLAYTERMFLG is used in various places in the system, e.g., PRETTYPRINT, HELPSYS, etc.,
primarily to <;iecide how much infonnation to present to the user (more on a display tenninal than on
a hard copy tenninal). DISPLAYTERMFLG is initialized to the value of (DISPLAYTERMP), whenever
Interlisp is (re)-entered, and after returning from a sysout.

(DISPLAYTERMP) [Function]
Value is T if user is on a display terminal, NIL otherwise. In Interlisp-10,
DISPLAYTERMP is defined to invoke the appropriate jsys to check the user's
terminal type.

22.23

The Interlisp-l0 Swapper

22.13 THE INTERLISP-I0 SW APPER

Interlisp-10 provides a very large auxilary address space exclusively for swappable arrays (primarily
compiled function definitions). In addition to the 256K of resident address space9 this "shadow space" can
currently accomodate an additonal 256K words~ can easily be expanded to 3.5 million words, and with
some further modifications, could be expanded to 128 million words. Thus, the overlay system provides
essentially unlimited space for compiled code.27

Shadow space and the swapper are intended to be more or less transparent to the user. However, this
section is included in the manual to give programmers a reasonable feeling for what overlays are like,
without getting unnecessarily technical. as well as to document some new functions and system controls
which may be of interest for authors of exceptionally large systems.

22.13.1 Overlays

The shadow space is a very large auxiliary address space used exclusively for an Interlisp data-type
called a swappable array. The regular address space is called the "resident" space to distinguish it from
shadow space. Any kind of resident array - compiled code, pointer data, binary data, or a hash array
- can be copied into shadow space ("made swappable"), from which it is referred to by a one-word
resident entity called a handle. The resident space occupied by the original array can then be garbage
collected normally (assuming r.qere are no remaining pointers to it, and it has not been made shared by
a MAKESYS). Similarly, a swappable array can be made resident again at any time, but of course this
requires (re)allocating the necessary resident space. .

The main purpose and intent of the swapping system is to pennit utilization of swappable arrays directly
and interchangeably with resident arrays, thereby saving resident space which is then available for other
data-types, such as lists, atoms, strings, etc.

This is accomplished as follows: A section of th~ resident address space is permanently reserved for a
swappingbuffer.28 When a particular swappable array is requested, it is brought (swapped) in by mapping
or overlaying the pages of shadow space in which it lies onto a section of the swapping buffer. This
process is the swapping or overlaying from which the system takes its name. The array is now (directly)
accessible. However. further requests for swapping could cause the array to be overlaid with something
else. so in effect it is liable to go away at any time. Thus all system code that relates to arrays must
recognize handles as a special kind of array. fetch them into the buffer (if not already there), when
necessary check that they have not disappeared, fetch them back in if they have, and even be prepared
for the second fetch to bring the swappable array in at a different place than did the first.

The major emphasis in the design of the overlay system has been placed on running compiled code.
because this accounts for the o:verwhelrning majority of arrays in typical systems, and for as much as
60% of the overall data and code. The system supports the running of compiled code directly from the

27Since. compiled code arrays point to atoms for function names, and strings for error messages, not to
mention the fact that programs usually have data base. which are typically lists rather than arrays. there is
still a· very real and finite limit to the total size of programs that Interlisp-10 can accomodate. However,
since much of the system and user compiled code can be made swappable, there is that much more
resident space available for these other data-types.

28Initially 64.512 word pages. but can be changed via the function SETSBSIZE described below.

22.24

INTERLISP-I0 SPECIFICS

swapping buffer, and the function calling mechanism knows when a swappable definition is being called,
finds it in the buffer if it is already there, and brings it in otherwise. Thus, from the user's point of
view, there is no need to distinguish between swappable and resident compiled definitions, and in fact
CCODEP will be true for either.

22.13.2 Efficiency

Once of the most important design goals for the overlay system was that swappable code should not
execute any extra instructions compared to resident code, once it had been swapped in. Thus. the
instructions of a swappable piece of code are identical (except for two instructions at the entry point) to
those of the resident code from which it was copied, 29 and similarly when a swappable function calls
another function (of any kind) it uses the exact same calling sequence as any other code. Thus, all costs
associated with running of swappable code are paid at the point of entry (both calling and returning).30

The cost of the swapping itself, Le. the fetch of a new piece of swapped code into the buffer, is even
harder to measure meaningfully, since two successive fetches of the same function are not the same, due
to the fact that the instance created by the first fetch is almost certain to be resident when the second
is done, if no swapping is done in between. Similarly, two successive PMAP's (the Tenex operation to
fetch one page) are not the same from one moment to another, even if the virtual state of both forks is
exactly the same - a difficult constraint to meet in itself.31 Thus, all that can be reported is that empirical
measurements and observations have shown no consistent slowdown in performance of systems containing
swappable functions viz a viz resident functions.

22.13.3 Specifications

Associated with the overlay system is a datatype called a SWPARRAY, (type name SWPARRAYP), which
occupies one word of resident space, plus however much of shadow space needed for the body of the
array. ARGLIST, FNTYP, NARGS, GETD, PUTD, ARGTYPE, ARRAYSIZE, CHANGENAME, CALLS, BREAK,
ADVISE, and EDITA all work equally well with swappable as resident programs. CCODEP is true for all
compiled functions/definitions.

(SWPARRAYP x) [Function]
Analogous to ARRAYP. Returns x if x is a swappable array and, NIL otherwise.

29The relocatable instructions are indexed by a base register, to make them run equally well at any
location in the buffer. The net slowdown due to this extra level of indirection is too small to measure
accurately in the overall running of a program. On analytical grounds, one would expect it to be around
2%.
30lf the function in question does nothing, e.g. a compiled (LAMBDA NIL NIL), it costs approximately
twice as much to enter its definition if it is swappable as compared to resident. However. very small
functions are normally not made swappable (see MKSWAPP, page 22.26), because they don't save much
space, and are (typically) entered frequently. Larger programs don't exhibit a measurable slow down since
they amortize the entry cost over longer runs.

31The cost of fetching is probably not in the mapping operation itself but in the first reference to the
page, which has a high probability of faulting. This raises the problem of measuring page fault activity,
another morass of uncertainty.

22.25

(SCODEP x)

(MKSWAP x)

(MKUNSWAP x)

Specifications

[Function]
Analogous to CCODEP. Returns T if x is or has a swapped compiled definition.

[Function]
If x is a resident array, returns a swappable array which is a copy of x. If x is
a literal atom and (C COD E P x) is true, its definition is copied into a swappable
array, and it is (undoably) redefined with the latter. MKSWAP returns x.

[Function]
The inv~rse of MKSWAP. x is either a swappable array, or an atom with swapped
definition on its CODe property.

(MKSWAPP FNAME' CDEF) [Function]

(SETSBSIZE N)

All compiled definitions begin life as resident arrays, whether they are created by
'lOAD, or by compiling to core. Before they are stored away into their atom's
function cell, MKSWAPP is applied to the atom and the array. If the value of
MKSWAPP is T, the definition is made swappable; otherwise, it is left resident. By
redefining MKSWAPP or advising it, the user can completely control the swappability
of all fuQ.lre definitions as they are created. The initial definition of MKSWAPP will
make a function swappable if (1) NOSWAPFLG is NIL, and (2) the name of the
function is not on NOSWAPFNS, and (3) the size of its definition is greater than.
MKSWAPSIZE words, initially 128.

[Function]
Sets the size of the swapping buffer to N, a number of pages. Returns the previous
value. (S E T SB S I Z E) returns the current size without changing it.

Note: Currently, the system lacks error recovery routines for situations such as a
call to a swappable function which is too big for the swapping buffer. or when the
size is zero. Therefore, SETSBSIZE should be used with care.

22.26

CHAPTER 23

LISPUSERS PACKAGES

This chapter describes packages which are of sufficient utility that they would otherwise be included as
part of the Interlisp system, except for virtual address space limitations. These packages normally reside
on the directory <LISPUSERS).

23.1 PATTERN MATCH COMPILER

Note: The pattern match compiler is a LispUsers package which can be loade4 from the file MATCH. DCOM.
The entries have a F ILEDEF property (see page /5.8), so simply using a pattern match construct will cause
the file to be loaded automatically.

The pattern match compiler provides a fairly general pattern match facility within CLISP. This facility
allows the user to specify certain tests that would otherwise be clumsy to write, by giving a pattern which
the datum is supposed to match. Essentially, the user writes "Does the (expression) X look like (the
pattern) P'?" For example, X: (& 'A - - 'B) asks whether the second element of X is an A, and the
last element a B. The implementation of the matching is performed by computing (once) the equivalent
Interlisp expression which will perform the indicated operation, and substituting this for the pattern, and
not by invoking each time a general purpose capability such as that found in FLIP or PLANNER. For
example, the translation of X : (& 'A - - 'B) is:

(AND (EO (CADR X) 'A)
(EO (CAR (LAST X» , B))

Thus the CLISP pattern match facility is really a Pattern Compiler, and the emphasis in its design and
implementation has been more on the efficiency of object code than on generality and sophistication of
its matching capabilities. The goal was to provide a facility that could and would be· used even where
efficiency was paramount, e.g., in inner loops. As a resul~ the CLISP pattern match facility does not
contain (yet) some of the more esoteric features of other pattern match languages, such as repeated
patterns, disjunctive. and conjunctive patterns, recursion, etc. However, the user can be confident that
what facilities it does provide will result in Interlisp expressions comparable to those he would generate
by hand. l

The syntax for pattern match expressions is FORM: PATTERN, where PATTERN is a list as described below.
As with iterative statements, the translation of patterns, Le.. the corresponding Interlisp expressions,
are stored in the hash array CLISPARRAY (see page 16.19). The original expression, FORM:PATTERN,

is replaced by an expression of the fonn (MA T C H FORM WIT H PATTERN) . CLISP also recognizes
expressions input in ttjs form.

1 Wherever possible, already existing Interlisp functions are used in the translation, e.g., the translation of
(S 'A S) uses MEMB, (S (' AS) S) uses ASSOC, etc.

23.1

Pattern Elements

If FORM appears more than once in the translation. and it is not either a variable, or an expression that
is easy to (re)compute, such as (CAR Y), (CDDR Z), etc., a dummy variable will be generated and
bound to the value of FORM so that FORM is not evaluated a multiple number of times. For example,
the. translation of (FOO X): ($ 'A $) is simply {MEMB 'A (FOO X», while the translation of (FOO
X) : ('A 'B - -) is:

[PROG ($-S2)
{RETURN

{AND {EQ {CAR {SETQ SS2 (FOO X»)
, A)

{EQ (CADR S$2) 'B]

In the interests of efficiency, the pattern match compiler assumes that all lists end in NIL, i.e., there are
no LISTP checks inserted in the transla,tion to check tails. For example, the translation of X: ('A &
--) is (AND {EQ (CAR X) i(QUOTE A» (CDR X», which will match with (A B) as well as (A
• B). Similarly, the pattern match compiler does not insert LIS T P checks on elements, e.g., X: { (, A
--) --) translates simply as (EQ (CAAR X) 'A), and X:«Sl Sl --) --) as (CDAR X).2Note
that the user can. explicitly insen LISTP checks himself by using (I, as described below, e.g.~ X: {(Sl Sl
--) (lLISTP --) translates as:(CDR {L ISTP (CAR X»).

23.1.1 Pattern Elements

A pattern consists of a list of pattern elements. Each pattern element is said to match either an. element
of a data structure or a segment (cf. the editor's pattern matcher, ,, __ tt matches any arbitrary segment
of a lis~ while & or a subpattextn match only one element of a list.) Those patterns which may match a
segment of a list are called segrrient patterns; those that match a single element are called element patterns.

23.1.2 Element Patterns

There are several types of elem¢nt patterns, best given by their syntax:

Sl or &

, EXPRESSION

= FORM

= = FORM

Matches an arbitrary element of a 11st.

Matches only an element which is equal to the given expression e.g., 'A. '(A B).

EQ, MEM~, and ASSOC are automatically used in the translation when the quoted
expression is atomic~ otherwise EQUAL. MEMBER, and SASSOC.

Matches only an element which is EQUAL to the value of FORM, e.g., =X,
=(REVERSE V).

Same as =, but uses an EQ check instead of E Q UA L.

2The insertion of LISTP checks for elements is controlled by the variable PATLISTPCHECK. When
PATLISTPCHECK is T. LISTP checks are inserted, e.g., X: « 'A --) --) translates as: (EQ (CAR
(LISTP (CAR (LISTP X»» 'A). PATLISTPCHECK is initially NIL. Its value can be changed
within a particular function by using a'local CLISP declaration (see page 16.10).

23.2

ATOM

LISPUSE'RS PACKAGES

The treatment depends on setting of PATVARDEFAUL T. If PATVARDEFAUL T is '
or QUOTE, same as • ATOM. If PATVARDEFAUL T is = or EQUAL. same as = ATOM.

If PATVARDEFAUL T is == or EQ, same as ==ATOM. If PATVARDEFAUL T is +- or
SETQ, same as ATOM~&. PATVARDEFAUL T is initially'.

PATVARDE F AUL T can be changed within a particular function by using a local
CLISP declaration (see page 16.10).

Note: numbers and strings are always interpreted as though PATVARDE FAUL T
were =, regardless of its setting. EQ, MEMB, and ASSOC are used for comparisons
involving small integers.

(PATTERN1 ... PATTERNN) N>1
Matches a list which matches the given patterns. e.g., (& &), (- - 'A) .

ELEMENT-PATTERN@FN

*

-ELEMENT-PATTERN

Matches an element if ELEMENT-PATTERN matches it, and FN (name of a function
or a LAMBDA expression) applied to that element returns non-N I L. For example.
&@NUMBERP matches a number and (' A --)@FOO matches a list whose first
element is A, and for which FOO applied to that list is non-N I L.

For "simple" tests, the function-object is applied before a match is attempted
with the pattern, e.g., « - - 'A - -) @LISTP - -) translates as (AND (LIST P
(CAR X)} (MEMB 'A (CAR X»), not the other way around. FN may also be
a FORM in tenns of the variable @, e.g., &@(EQ @ 3) is equivalent to =3.

Matches any arbitrary element. If the entire match succeeds, the element which
matched the * will be returned as the value of the match.

Note: Nonnally, the pattern match compiler constructs an expression whose value
is guaranteed to be non-N I L if the match succeeds and NIL if it fails. However, if
a * appears in the' pattern, the expression generated could also return NIL if the
match succeeds and *. was matched to NIL. For example, X: ('A * - -) translates
as (AND (EQ (CAR X) 'A) (CADR X»,soifX is equal to (A NIL B) then
X : ('A * - -) returns NIL even though the match succeeded.

Matches an element if the element is not matched by ELEMENT-PATTERN, e.g .•
- ' A, -= X. - (- - 'A - -).

(*ANY* ELEMENT-PATTERN ELEMENT-PATTERN···)

Matches if any of the contained patterns match.

23.1.3 Segment Patterns

$ or - - Matches an¥ segment of a list (including one of zero length).

The difference between $ and -- is in the type of search they generate. For example, X: ($ 'A • B $)
translates as (EQ (CADR (MEMB 'A X» 'B), whereas X: (-- 'A 'B $) translates as:

[SOME X

23.3

Segment Patterns

{FUNCTION {LAMBDA ($$2 $$1)
{AND (EQ $$2 'A)

{EQ (CADR $$1) 'B]

Thus, a paraphrase of ($ 'A 'B $) would be "Is the element following the first A a B1", whereas a
paraphrase of (- - 'A 'B $) would be "Is there any A immediately followed by a· B1" Note that the
pattern employing $ will result in a more efficient search than that employing - -. However, ($ 0 A 'B
$) will not match with (X Y Z A M a ABC), but (- - 'A 'B $) will.

Essentially, once a pattern follpwing a 5 matches, the $ never resumes searching, whereas -- produces
a translation that will always :continue searching until there is no possibility of success. However. if
the pattern match compiler can deduce from the pattern that continuing a search after a particular
failure cannot possibly succeed then the translations for both -- and 5 will be the same. For example,
both X: (5 'A $3 5) and (... - 'A $3 --) translate as {CDDDR {MEMB (QUOTE A) X», because
if there are not three elements, following the first A, there certainly will not be three elements following
subsequent A's, so there is no reason to continue searching, even for --. Similarly, ($ 'A $ 'B 5)
and (-- 'A -- 'B- --) are equivalent.

52~ 53, etc.

! ELEMENT-PATTERN

Matches, a segment of the given length. Note that $1 is not a segment pattern.

Matches any segment which ELEMENT-PATTERN would match as a list. For
example~ if the value of F 00 is (A B C), ! = F 00 will match the segment . .. A B
C ... etc;. Note that! * is pennissible and means VALUE-OF-MATCH+-$, e.g., X: ($
'A ! *): translates to {CDR (MEMB 'A X».

Note: since 1 appearing in front of the last pattern specifies a match with some tail of the given
expression, it also makes sensei in this case for a 1 to appear in front of a pattern that can only match
with an atom, e.g., (52 l' A) :means match if CDDR of the expression is the atom A. Similarly, X: (5 !
, A) translates to {EQ {CDR (' LAST X» 'A).

!ATOM treatment depends on setting of PATVARDEFAULT. If PATVARDEFAUL T is ' or
QUOTE, ;same as !' ATOM (see above discussion). If PATVARDEFAUL T is = or
EQUAL, Same as 1 =ATOM. If PATVARDE FAUL T is == or EQ, same as ! ==ATOM. If
PATVAROEFAUL T is +- or SETQ, same as ATOM+-$.

The atom" ." is treated exactly like" 1". In addition, if a pattern ends in an atom,
the "." is first changed to "!", e.g.. ($1 . A) and ($1 ! A) are equivalent,
even though the atom "." does not explicitly appear in the pattern.

One exc~ption where " ." is not treated like "!": "." preceding an assignment
does not 'have the special interpretation that"!" has preceding an assignment (see
below). For example, X: ('A . Faa+-' B) translates as: .

{AND {EQ (CAR X) 'A)
(E9 (CDR X) 'B)
(SETQ FOO (CDR X»)

but X : ('A ! F OO+- ' B) translates as:

{AND {EQ (CAR X) 'A)
{NULL (CDDR X»

23.4

LISPUSERS PACKAGES

(EQ (CADR X) 'B)
(SETQ FOO (CDR X»)

SEGMENT-PATTER.N@FUNCTION-OBJECT

23.1.4 Assignments.

Matches a segment if the segment-pattern matches it, and the function object
applied to the corresponding segment (as a list) returns non-NIL.· For example,
($(lCDDR '0 $) matches (A BCD E) but not (A B 0 E), since CDDR of
(A B) is NIL.

Note: an (I pattern applied to a segment will require computing the corresponding
structure (with LD I F F) each time the predicate is applied (except when the segment
in question is a tail of the list being matched).

Any patternelemerit may be preceded by "VARIABLE~", meaning that if the match succeeds (Le.,
everything matches), VARIABLE is to be set to the thing that matches that pattern element. For example,
if X is (A BCD E), X : ($ 2 Y ~$ 3) will set Y to (CD E) . Nate that assignments are not perfonned
until the entire match has succeede<L so assignments cannot· be used to specify a search for an element
found earlier in the match, e.g., X: (Y ~$1 = Y - -) 3 will not match with (A ABC ...), unless,
of course, the value of Y was A before the match started. This type of match is achieved by using
place-markers, described below.

If the variable is preceded by a !, the assignment is to the tail of the list as of that point in the pattern,
i.e., that portion of the list matched by the remainder of the pattern. For example, if X is (A BCD
E), X: ($! Y~' C '0 $) sets Y to (C 0 E), Le., CDDR of X. In other words. when 1 precedes an
assignment, it acts as a modifier to the ~, and has no effect whatsoever on the pattern itself, e.g.. X: (, A
'B) and X: ('A ! FOO~' B) match identically, and in the latter case, FOO will be set to CDR of X.

Note: ·~PATTERN-ELEMENT and ! ·~PATTERN-ELEMENT are acceptable, e.g., X: ($ 'A .~(' B --)
- -} translates as:

[PROG ($$2)
(RETURN

(AND (EQ (CAAOR (SETQ $$2 (MEMB 'A X)}} 'B)
(CADR $$2]

23.1.5 Place-Markers

Variables of the fonn IN, N a number, are called place-markers. and are interpreted specially by the
pattern match compiler. Place-markers are used in a pattern to mark or refer to a particular pattern
element Functionally, they are used like ordinary variables, Le., they can be assigned values, or used
freely in fonns appearing in the pattern, e.g., X: (# 1 ~$1 = (ADD 1 11}) will match the list (2 3) .
However, they are not really variables in the sense that they are not boun<L nor can a function called

3The translation of this pattern is: (COND « AND (CDR X) (EQUAL (CADR X) Y» (SETQ Y
(CAR X}) T». The AND is used because if Y is NIL. the pattern should match with (A NIL), but
not with just (A). The T is because (CAR X) might be NIL.

23.5

Replacements

from within the pattern expect to be able to obtain their values. For convenience, regardless of the
setting of PATVAROEFAUL T, the first appearance of a defaulted place-marker is interpreted as though
PATVAROEFAULT were +-. Thus the above pattern could have been written as X: (1 =(A001 1».
Subsequent appearances of a place-marker are interpreted as though PATVAROEFAULT were =. For

. example, X:{#1 #1 --) is equivalent to X:(#1+-$1 =#1 --), and translates as (AND (CDR X)
{EQUAL (CAR X) (CADR X». (Note that (EQUAL (CAR X) (CADR X» would incorrectly match
with (N I L) .) .

23.1.6 Replacements

The construct PATTERN-ELEMENT+-FORM specifies that if the match succeeds, the part of the data that
matched is to be replaced with the value of FORM. For example, if X = (A BCD E), X: '($ 'C $ 1 +-Y
$ 1) will replace .the third element of X with the value of Y. As with assignments, replacements are not
performed until after it is determined that the entire match will be successful.

Replacements involving segments splice the corresponding structure into the list being matched, e.g., if X
is (A BCD E F) and FOO is (1 2 3), after the pattern ('A $+-FOO '0 $) is matched with X, X
will be (A 1 2 3 0 E F), and FOO will be EQ to CDR of X, i.e., (1 2 3 0 E F).

Note that ($ F ao+-FIE $) is ambiguous, since it is not clear whether F 00 or FIE is the pattern element,
Le., whether +- specifies assignment or replacement For example, if PATVAROEFAUL T is =, this pattern
can be interpreted as ($ F OO+-:: FIE $), meaning search for the value of FIE, and if found set F 00 to it,
or ($ = FOO+-F IE $) meaning;search for the value of FOO, and if found, store the value of F IE into the
corresponding position. In such cases, the user should disambiguate by not using the PATVARDEFAUL T
option, i.e., by specifying , or :1:.

Note: Replacements are normally done with RPLACA or RPLACO. The user can specify that IRPLACA
and IRPLACO should be used, or FRPLACA and FRPLACO, by means of CLISP declarations (see page
16.9).

23.1.7 Reconstruction

The user can specify a value for a pattern match operation other than what is returned by the match by
writing FORM1 : PATTERN=>FORM2•4 For example, X: (FOO+-$ 'A --) => (REVERSE FOO) translates
as:

[PROG ($$2)
(RETURN

(CONO «SETQ $$2 (MEMB 'A X»
{SETQ FOO (LOIFF X $2»
(REVERSE FOO]

Place-markers in the pattern can be referred to from within FORM, e.g., the above could also have been
written as X:(1#1 'A --)=>(REVERSE #1). If -> is used in place of a>, the expression being

4The original CLISP is replaced by an expression of the fonn (MATCH FORM1 WITH PATTERN =>
FORM2). CLISP also recognizes expressions input in this fonn.

23.6

LISPUSERS PACKAGES

matched is also physically changed to the value of FORM. For example, X: (#1 'A ! #2) - > (CONS
1- # 2) would remove the second element from X, if it were equal to A.

In general, FORM1 : PATTERN-> FORM2 is translated so as to compute FORM2 if the match is successful,
and then smash its value into the first node of FORM l' However, whenever possible, the translation does -
not actually require FORM2 to be computed in its entirety, but instead the pattern match compiler uses
FORM2 as an indication of what should be done to FORM1' For example, X: (#1 'A ! 112.) - > (CONS
#1 #2) translates as (AND (EQ (CADR X) 'A) (RPLACD X (CDDR X»).

23.1.8 Examples

X:(-- 'A --)

X:(-- 'AL

- - matches any arbitrary segment 'A matches only an A, and the second - - again
matches an arbitrary segment; thus this translates to (MEMB 'A X).

Again, - - matches an arbitrary segment; however, since there is no - - after the
'A, A must be the last element of X. Thus this translates to: (EQ (CAR (LAST
X» 'A).

X:('A '8 -- 'C $3 --)
CAR of X must be A, and CADR must be B, and there must be at least three
elements after the first C, so the translation is:

(AND (EQ (CAR X) 'A)
(EQ (CADR X) '8)
(CDDDR (MEMB 'C (CODR X»»

X:«'A '8) 'C Y"'$l $)
Since ('A '8) does not end in $ or --, (CDDAR X) must be NIL.

(COND
«AND (EQ (CAAR X) 'A)

{EQ (CAOAR X) '8)
(NULL (CDDAR X»
(EQ (CADR X) 'C)
(CODR X»

(SETQ Y (CADDR X»
T))

X:(#l 'A $ '8 'C #1 $)
#1 is implicitly assigned to the first element in the list. The $ searches for the first
8 following A. This 8 must be followed by a C. and the C by an expression equal
to the first element.

[PROG ($$2)
(RETURN

(AND {EQ (CAOR X) 'A)

X:{#l 'A -- '8 'C #1 $)

(EQ [CADR (SETQ $$2 (MEMB 'B (CODR X] 'C)
(COOR $$2)
{EQUAL (CAOOR $$2) (CAR X]

23.7

Printing Reentrant and Circular List Structures

--Similar to the pattern above, except that - - specifies a search for any B followed
by a C followed by the first element, so the translation is:

[AND (EQ (CAoR X) tA)
(SOME (CoDR X)

(FUNCTION (LAMBDA ($$2 $Sl)
(AND (EQ $$2 'B)

(EQ (CAOR $$1) 'C)
(CODR $$1)
{EQUAL (CAOOR $$1) {CAR X]

23.2 P~G REENTRANT AND ORCULAR LIST STRUCTURES

23.201 CIRCLPRINT

Note: CIRCLPRINT is a LispUsers package contained on the file CIRCLPRINT. DCOM.

HPRINT (page 6.24) is designed primarily for dumping circular or reentrant list structures (as well as
other data structures for which READ is not an inverse of PRINT) so that they can be read back in by
Interlisp. The CIRCLPRINT package is designed for printing circular or reentrant structures so that the
user can look at them and ut:lderstand them.

A reentrant list structure is one that contains more than one occurrence of the same (EQ) structure. For
example, TCONC (page 2.17) makes uses of reentrant list structure so that it does not have to search for
the end of the list each time it; is called. Thus, if X is a list of 3 elements, (A B C), being constructed
by TCONC, the reentrant list structure used by TCONC for this purpose is:

1·1.1-----------------1
----- I

I 1
V V

IAI·I---->IBI·I---->ICI/I

This structure would be printed by PR I NT as ((A B C) C). Note that PR I NT would produce the same
output for the non-reentrant structure:

I ·I·I---->ICI/I

1
V

IAI· I---->IBI ·I---->ICI/I

23.8

LISPUSERS PACKAGES

In other words, PR I NT does not indicate the fact that portions of the structure in the first figure are
identical. Similarly, if P R I NTis applied to a circular list structure (a special type of reentrant structure)

. it will never teffilinate~ ,

For example, if PRINT is called on the structure:

.
1'--->1.1/1
I
1 I
1-----1

it will print an endless sequence of left parentheses, and if applied to: .

I--->IAI ·1----1
1 ----- 1
I 1
1-------------1
will print a left parenthesis followed by an endless sequence of A's.

The function CIRCLPRINT described below produces output that will exactly describe the structure of any
circular or reentrant list structure. This output may be in either single or double-line fOffilats. Below are
a few examples of the expressions that CIRCLPRINT would produce to describe the structures discussed
above.

First Figure, single line:

«A B *1* C) (1})

First Figure, double-line:

«A B C) (1})
1

Third Figure, single-line:

(*1* (1})

Third Figure, double-line:

({1})
1

Forth Figure, single-line:

(*1* A . (1})

Forth Figure, double-line:

(A • (1})
1

23.9

CIRCLPRINT

The more complex structure:

-------->1&1·1--------------------------1
1

I . 1
V V

I--->I·I·I---->I·I·I---->IAI·I---->IBI·I
I
I I
1-----1

11" I
11-------------------1
1

--------------------1
is printed as follows:

Single-line:

{·2* (*1* {1} *3* {2} A *4* B . {3}) . {4})

Double-line:

«{1} {2} A B . {3}) . {4})
21 3 4

In both fonnats, the reentrant nodes in the list structure are labeled by numbers. (A reentrant node is
one that has two or more pointers coming into it) In the single-line fonnat, the label is printed between
asterisks at the beginning of the node (list or tail) that it identifies. In the double-line fonnat, the label is
printed below the beginning of the node it identifies. An occurrence of a reentrant node that has already
been identified is indicated by printing its label in brackets.

(C IRCLPRINT LIST PRINTFLG RLKNT) [Function]
Prints an expression describing LIST. If PRINTFLG = NIL, double-line fonnat is
used, oth,erwise single-line fonnat. CIRCLPRINT first calls CIRCLMARK, and then
calls either R L P R IN 1 (if PRlNTFLG = T) or R L P R I N 2 (if PRINTFLG = NIL). Finally,
R L RES TOR E is called to restore LIST to its unmarked state. Returns LIST.

(CIRCLMARK LmT RLKNT)

Marl
(or' ,

[Function]
ach reentrant node in LIST with a unique number, starting at RLKNT + 1
RLKNT is NIL). Value is (new) RLKNT.

(RLPRIN1 LIST)

(RLPRIN2 LIST)

Marking ,LIST physically alters it However, the marking is perfonned undoably.
In addition, LIST can always be restored by specifically calling RLRESTORE.

[Function]
Prints an. expression describing LIST in the single-line fonnat Does not restore
LIST to its unCIRCLMARKed state. LIST must previously have been CIRCLMARKed
or an error is generated.

[Function]
Same as R L P R I N 1, except that the expression describing LIST is printed in the
double-line fonnat.

23.10

LISPUSERS PACKAGES

(RLRESTORE LIST) [Function]
Physically restores list to its originaL unmarked state.

Note that the user can mark and print several structures which together share common substructures, e.g.,
several property lists, by making several calls to C'IRCLMARK, followed by calls to RLPR·IN1 or RLPRIN2,
and finally to RLRESTORE.

(CIRCLMAKER LIST) [Function]
LIST may contain labels and references following the convention used by C I R C L P R I NT
for printing reentrant structures in single line format, e.g., (* 1 * . { 1}).
CIRCLMAKER performs the necessary RPLACA's and RPLACO's to make LIST

correspond to the indicated structure. Value is (altered) LIST.

(CIRCLMAKER1 LIST) [Function]

23.2.2 PRINTL

Does the work for CIRCLMAKER. Uses free variables LABELST and REFLST. LABELST
is a list of dotted pairs of labels and corresponding nodes. REFLST is a list of
nodes containing references to labels not yet seen. C I RCLMAKER operates by
initializing LABELST and REFLST to NIL, and then calling CIRCLMAKERl. It
generates an error if REFLST is not NIL when CIRCLMAKER1 returns. The
user can call C I RC LMAKE R 1 directly to "connect up" several structures that share
common substructures, e.g., several property lists.

Note: PRINTL is a LispUsers package contained on the file PRI NTL. COM.

The PRINTL package uses a different scheme than CIRCLPRINT to present circular structures in an easily
readable format PRINTL uses indentation a la PRETTYPRINT to make it easier for the user to see the
nesting of list structure, and prints index numbers for the beginning and ends of expressions so that the
user can find what is referred back to easily. Note that PRINTL does not provide an output format which
can be read back in to reconstruct the original list structure; it is intended primarily as a debugging aid.

The following example illustrates the use of PR I NT L:

32~(PRINTL (NCONC (SETQQ X (A BCD» X»
1: (A BCD. {1}) :1

NIL
33~(PRINTL (LIST X (CDR X) (COOR X) (COODR X]

1: «A BCD. {2}) {3} {4} {5}) :1
NIL
34~(PRINTL (LIST X (CONS 'P (CDR X» (CONS 'Q (COOR X»
(CONS 'R (COOOR X]

1: «A BCD. {2}} :2
6: (P . {3}) :6
7: (Q • {4}) :7
8: (R . {5}» :1

NIL
35~USE LIST FOR CONS

1: «A BCD. {2}) :2
6: (P {3}) :6

23.11

8: (Q {4})
10 (R {5}»

NIL

Indexing and Cross Referencing Files

:8
: 1

PRINTL uses the following algorithm: Each list node that is printed (CAR or CDR) is assigned a number.
The second and subsequent appearences of this list node are represented simply by printing the number
corresponding to the node in {} brackets. Every line on which the .representation of a list begins shows
the corresponding number of the first such list. i.e. this number corresponds to the first open parenthesis
on the line. Similarly, to the right of every line on which a list ends is printed the number that corresponds
to the last close parenthesis on the line. The numbers for those list nodes which do not correspond to
the first open parentheses or the last close parentheses on a line can be obtained by simply counting from
the last numbered parenthesis. FOr" example, in the line

1: «A BCD. {2}) {3} {4} {5}) : 1

2 is (A BCD), 3 is (B C Oi), 4 is (C D), and 5 is (D).

(PRINTL ITEM DEPTH L~G RMARG FILE) [Function]

PRINTDEPTH

(PRNTL ARGS)

Prints art item which is known to be, or suspected of being a circular list structure,
in the Conn described above. DEPTH controls the depth of recursion in the
CAR direction and defaults to the value of the varible PRINTDEPTH (initially 4).
ElementS of the structure at this depth are printed as "{ - - } ".

LMARG is the left margin. If NIL, LMARG defaults to (POSITION FILE). RMARG

is the PQsition at which the righthand column of numbers will be printed. If NIL,
RMARG defaults to (LINELENGTH)-S. . .

Printing 'is to FILE, which is opened if necessary.

[Variable]
The default DE~TH argument for P R I NT L. Initially 4.

! [prog. Asst. Command]
Programtners Assistant command that perfonns (PRINTL . ARGS) provided
(CAR AkGs) is not a number. If it is, or if ARGS= NIL, the item to be printed is
taken to be the last event on the history list with a non-null value. Thus PRNTL
6 will print the last non-null value with DEPTH = 6.

23.3 INDEXING AND CROSS REFERENONG FILES

23.3.1 SINGLEFILEINDEX

Note: SINGLEFILEINDEX is a L isp Users package that is contained on the file SINGLEF I LE INDEX. DCOM.

SINGLEFILEINDEX is a package for giving the user an alphabetical function index on the front of each
lisp file listed by Interlisp. Thisi package is similar to the MULTIFILEINDEX package described below,
except that SINGLEFILEINDEX provides a table of contents for functions only, and operates on one
file at a time. However, SINGLEFILEINDEX is much simpler and faster than MULTIFILEINDEX and

23.12

· LISPUSERS PACKAGES

is useful every time a file is made.

The first page gives the filename, time of creation, and the time of the listing. Following that (on possibly
more than one page) are N columns of function names and index numbers, where the index number
indicates the function's linear occurrence within the file. The number of columns is determined by the
length of the longest function name, as well as by the number of functions in the file as described below.
The file' is then printed WIth the filename and page number at the top of every page, and each function
is preceded by its index number right-justified on the page.

When the SINGLEFILEINDEX package is "first loaded, it redefines LISTFILESl (page 11.9) so that all
files listed by LISTFILES will be listed by calling (SINGLEFILEINDEX FILE NIL NIL). Note that
the file being indexed does not have to be loaded, or even noticed in the file package sense.

(SINGLEF ILE INDEX FILE OUTPUTFILE NEWPAGEFLG) [Function]
FILE is the lisp source file. OUTPUTFILE is the destination file. If OUTPUTFILE = NIL,
then the value of PRINTER (initially LPT:) is used. NEWPAGEFLG=T means each
function will be printed on a new page. The value of FILELINELENGTH deter
mines the position of the index numbers, as well as the placement of the columns.
The value of LINESPERPAGE (initially 58) determines the number of lines per
page.

23.3.2 MUL TIFILEINDEX

Note: MULTIFILEINDEX is a LispUsers package that is contained on the file MUL TI FILE INDEX. DCOM.

Many systems built in Interlisp consist of a number of symbolic source files. Finding one's way around
in the listings can often be very tedious, even for the implementor of the system, if you don't know
the system and the structure of the files intimately. The MUL TIFILEINDEX package is an attempt
to help users deal with this problem by creating a listing of an entire system or set of files, including
an alphabetized table of contents containing entries for each function on any of the files. Information
(but not unique index numbers) is included for other entities in the files such as records, blocks, and
properties. The function MULTIFILEINDEX implements this mechanism.

(MULTIFILEINDEX SOURCEFILES DESTINATIONFILE NEWPAGEFLG) [Function]
SOURCEFILES is a list of file names (if atomic, (L I ST SOURCEFILES) is used). If
it is NIL, MUL T I FILE I NDEX returns immediately. If it is T, the value of FILE LST
is used (page 11.13). DESTINATIONFILE is the output file. If DESTINATIONFILE is
NIL, the value of PR I NT E R is used (below). If NEWPAGEFLG = T, each function
in the listing will be placed on a page by itself.

In the default case, MU L T I F I LEI NO E X does the following:

(1) Outputs an alphabetized table of contents (index) indicating the name of an object (function, record,
block, variable, and so on), the file that it belongs to, and its type (property, variable (set or saved),
record, block, and so forth). If the object is the name of a function, then the information includes a
unique index in the listing for the function, its type (EXPR, FEXPR*, etc.), and its argumant list. Note
that it handles functions/files that use DECL (page 23.18). Otherwise, the index represents the index of
the function immediately preceeding the definition of the entity.

(2) Outputs a listing of the files with each function being preceeded by its index number right-justified

23.13

MUL TIFILEINDEX

on the line. Header infonnation is placed at the top of each page, and the pages are numbered.

(3) Undoably removes the names of the files indexed from NOTLISTEOFILES (page 11.9).

M.U L T I F I LEI NO E X is eff"ectedby the following variables:

MULTIFILEINOEXMAPFLG [Variable]
If T, indicates that you want the file index output Initially T.

MUL T I FILEINOEXF I LESFLG' [Variable]
If T, indicates that you want the file listings output to DESTINATIONFILE. Initially
T.

PRINTER [Variable]
If the MAJ'FILE argument to MU L T I F I LEI NO E X is NIL, it defaults to the value of
PRI NTE R. Initially {LPT} in Interlisp-D, LPT: in Interlisp-10.

L1NESPERPAGE [Variable]
The value of LINESPERPAGE detennines the number of lines per page. Initially
65 in Interlisp-D, 58 in Interlisp-10.

FONTCHANGEFLG [Variable]
If NIL, page headings and the index numbers that preceed the definition of
each function are printed bold; that is, overprinted; otherwise, they are printed
using the BOLOFONT (PRETTYCOMFONT if BOLOFONT doesn't exist) in the current
FONTPROF I LE (see page 6.55).

F ILELINELENGTH [Variable]
The value of FILELINELENGTH detennines the width of the page.

The following four parameters affect how the columns are placed:

MUL T I FILE I NOEXCOLS [Variable]
MUL TIFILEINOEXNAMECOL [Variable]
MULTIFILEINOEXFILECOL [Variable]
MUL T I FILE INOEXTYPECOL [Variable]

The value of MULTIFILEINOEXCOLS indicates how the other three are to be
interpreted. If MUL TIFILEINOEXCOLS is the atom FLOATCOLS (its initial
value), then an attempt is made to fit the columns onto the page in a way
that max,imizes the amount of space for the type infonnation (the amount of
space allC(>Cated for the type field must be at least 45% of FILELINELENGTH in
this case). If MUL T I FILE I NOE XCOLS is either T or F I XCOLS, then the value
of the other variables are treated as absolute column positions on the page. If
MULTIFILEINOEXCOLS is either NIL or FIXFLOATCOLS, the columns will be
floated, but will not be any smaller than the column positions defined by the other
variables.

The initi~ values of these four variables are F LOA TCOLS, 0, 26 and 41, respectively.

MULTIFILEINOEX has an interface to Masterscope. If the value of either of the next two variables is
T, then MU L T I F I LEI NO E X assumes that the source files have already been analyzed by Masterscope. and
calls UPOAT ECHANGEO.

23.14

LISPUSERS PACKAGES

MUL T I FI LE INDEXFNSMSFLG [Variable]
If T, indicates that you want the Masterscope information about each function
output. This includes who c~ls each function, who this function calls, and what
variables are set or referred to either locally or freely. Initially NIL.

MULTIFILEINDEXVARSMSFLG [Variable]
If T t indicates that all variables used in the files should have some infonnation
output about them at the end of the listing. The list of variables to look at
is obtained by effectively asking Masterscope the question: "WHO IS USED BY
ANY AND WHO IS SET BY ANY". The listing will include infonnation about
who binds, uses freely or locally. or smashes freely or locally each variable. The
variable map is case-independently sorted by the name of the variable. Initially
NIL.

In-order to make the index, or map, of the files, the filecoms for all the files being listed need be
loaded (see page 11.21); MULTIFILEINDEX does a GETDEF on each file (file names are obtained using
FIN 0 F I L E) to obtain its filecoms. As other indirections are noted, they also are obtained using GET 0 E F.
For example, if you have a file TEST, and its filecoms is « FNS * TESTFNS», just doing a GETDEF
on TESTCOMS will not suffice; as the expression (FNS * TESTFNS) is parsed, a GETDEF is also done
to obtain the value of TESTFNS.

MULTIFILEINDEXLOADVARSFLG [Variable]
If T, then a LOADVARS of all the VARS on a particular file is performed before
the filecoms is loaded with GET 0 E F. Initially NIL.

MUL T I FILE INDEXGETDE F FLG [Variable]
If T, MULTI FILE INDEX will inform the user when it does GETDE Fs. Initially
NIL.

23.4 DATABASEFNS

Note: Databasefns is a LispUsers package that is contained on the file OAT ABASE F NS. DCOM.

Databasefns is a very small package whose purpose is to make the construction and maintenance of
MAST E RSCOPE databases an essentially automatic process. It modifies MAKE FILE, LOAD, and LOAD FROM
to behave in the following way:

A database will be maintained automatically for any file (containing functions) whose file name has the
property DATABASE with value YES. Whenever such a file is dumped via MAKEFILE, MASTERSCOPE
will analyse any new or changed functions on the file, and a database for all of the functions on the file
will be written on a separate file whose name is of the form FILE. OAT ABASE. Whenever a file which
has a DATABASE property with value YES is loaded via LOAD or LOADFROM, then the corresponding
. OAT ABASE file, if any, is also loaded. The database will not be dumped or loaded if the value of the
DATABASE property for the file is NO. The DATABASE property is considered to be NO if the file is loaded
with LDFLG=SYSLOAD. '

If the DATABASE property is not YES or NO, then for MAKEFILE, LOAD, and LOADFROM will ask the user
whether he wants automatic database maintenance. The user's answer will be stored on the OAT ABASE
property so that he will not be asked again. Thus when a file is dumped for the first time, the user will

23.15

Lambdatran

be asked "Do you want a M~terscope Database for this file?". Similarly, if the user loads a file which
has an associated database, thel user will be asked "load database for FILE?".

The above interactions may b~ controlled via the global variables SAVEDBFLG and LOADDBFLG. When
a file which has neither a YES or NO database property is being dumped, MAKE FILE will assume (and
store) a YES value if the value of SAVEDBLFG is YES, and a NO value if SAVEDBFLG is NO. The user
wUI be queried only if SAVEDQFLG is ASK (its initial value). Similarly, if LOADDBFLG is YES, LOAD and
LOADFROM will automatically load an existing. DATABASE file for a file which does not have a YES or
NO value for its DATABASE property. The database will not be loaded if LOADOBFLG is NO, and the user
will be interrogated as described above if LOADDB F LG is ASK (its initial value).

The user can dump and restor~ databases explicitly via the following functions:

(DUMPDB FILE)

(l:OADDB FILE)

[Function]
Dumps ~ database for FILE then sets the DATABASE property to YES, so that
database: maintenance for FILE will subsequently be automatic.

[Function]
Loads ttle file FILE. DA T ABAS E if one exists. After the database is loaded, the
DATABASE property for FILE is set to YES, so that maintenance will thereafter be
automatic.

Databas~ files include the date and full filename of the file to which they correspond.
LOADDB' will print out a warning message if it loads a database that does not
correspolld to the in-core version of the file.

Note that LOADDB is the only approved way of loading a database: Attempting to
load a d4tabase file will cause an error.

23.5 LAMBDATRAN

Note: Lambdatran is a LispUsers package that is contained on the file LAMBDATRAN. DeOM.

The purpose of this package is to facilitate defining new LAMBDA words in such a way that a variety of
other system packages will respond to them appropriately. A LAMBDA word is a word that can appear as
CAR of a function definition, like LAMBDA and NLAMBDA. New LAMBDA words are useful because they
enable the user to define his own conventions about such things as the interpretation of arguments. and
to build in certain defaults about how values are "returned. For example, the DECL package (page 23.18)
defines DLAMBDA as a new LAM;BDA word with unconventional arguments such as the following:

{DLAMBDA {(A FLOATP) (R FIXP) (RETURNS SMALLP» (FOO A B»

In order for such an expression to be executable and compilable, a mechanism must be provided for
translating this expression to an ordinary LAMBDA or NLAMBDA, with the special behavior associated with
the arguments built into the function body. The lambdatran package accomplishes this via an appropriate
entry on DWIMUSERFORMS (see; page 15.10) that computes the 'translation.

Besides executing and compiling, Interlisp applies a number of other operations to function definitions
(e.g. breaking, advising), many of which depend on the system' being able to detennine certain properties

23.16

LISPUSERS PACKAGES

of the function, such as the names of its arguments, their number, and the type of the function (EXPR,
FEXPR, etc.). The lambdatran package also provides new definitions for the functions FNTYP, ARGLST,
NARGS, and ARGTYPE which can be told how to compute properties for the user's LAMBDA-words.

A new LAMBDA-word is defined in the following way:

1. Add the LAMBDA-word itself (e.g. the atom DLAMBDA) to the list LAMBDASPLST. This suppresses
attempts to correct the spelling of the LAMBDA-word.

2. Add an entry for the LAMBDA-word to the association-list LAMBDATRANFNS, which is a list of elements
of the form: (LAMBDA-WORD TRANFN FNTYP ARGLIST), where

LAMBDA-WORD is the name of the LAMBDA-word (e.g. DLAMBDA).

_ 'rRANFN is a function of one argument that will be called whenever a real definition is needed for
the LAMBDA-word definition. Its argument is the LAMBDA-word definition, and its value should be a
conventional LAMBDA or NLAMBDA expression which will become the translation of the LAMBDA-word
-form. The free variable FAUL TFN is bound to the name of the function in which the LAMBDA-word form
appeared (or TYPE - IN if the form was typed in).

FNTYP determines the function-type of a definition beginning with LAMBDA-WORD. It is consulted if the
definition does not already have a translation from which the function type may be deduced. If FNTYP is
one of the atoms EXPR, FEXPR, EXPR*, FEXPR*, then all definitions beginning with LAMBDA-word are
assumed to have that type. Otherwise, FNTYP is a function of one argument that will be applied to the
LAMB DA-word definition. Its value should be one of the above four function types.

ARGLIST determines the argument list of the definition if it' has not already been translated (if it has,
the ARGLIST is simply the ARGLIST of the translation). It is also a function of one argument, the
LAMBDA-word definition. and its value should be the list of arguments for the function (e.g. (A B) in
the DLAMBDA example above); If the LAMBDA-word definition is ill-formed and the argument list cannot
be computed, the function should return T. If an ARGLIST entry is not provided in the LAMBDATRANFNS
elt~ment, then the argument list defaults to the second element of the definition.

As an example, the LAMBDATRANFNS entry for DLAMBDA is (DLAMBDA DECL EXPR DLAMARGLIST),
where DECL and DLAMARGLIST are functions of one argument.

Note: if the LAMBDA-word definition has an argument list with argument names appearing either as literal
atoms or as the first element of a list, the user should also put the property IN F 0 with value BIN OS on
the propeny list of the LAMBDA-word in order to inform DWIMI FY (page 16 .. 14) to take notice of the
names of the arguments when DWIMI FYing.

23.6 PERMST A TUS

Note: Permstatus is a LispUsers package that is contained on the file PE RMSTA TUS . COM.

The function PERMSTATUS defined in this package can be used in conjunction with WHENCLOSE (page
6.11) to make a file "permanently" open in the sense that as much of its status as possible will be
restored when a SYSOUT is resumed. This includes its access mode. file-pointer position, bytesize, and
any pages mapped in by the page mapping facility (page 14.17). The desired effect is achieved by saying

23.17

The Decl Package

(WHENCLOSE FILENAME 'STATUS 'PERMSTATUS) after the file has been opened.

Note that the permanency of files is not guaranteed in that files may be deleted or renamecL or their
contents changecL despite their permanent attribute in some SYSOUT. When restarting a SYSOUT, a
warning message will be printed if the file cannot be found or restored., However. PERMSTATUS will not
be able to detect that the contents of a file have been modified since the SYSOUT was created. Note
also that "permanent" files will still be closed by CLOSEF, and will not be immune to ClOSEALL or to
closing on end-of-file errors unless the appropriate WHENCLOSE attributes for CLOSEALL and EOF are
also established.

23.7 THE DECL PACKAGE

Note: Dec! is a LispUsers package that is contained on the file DECL. DCOM. The Decl package requires
the LAMBDATRAN package (section 23.5). so LAMBDATRAN .• DCOM will automatically be loaded with Dec!
if it is not already present.

The Decl package extends Interlisp to allow the user to declare the types of variables and expressions
appearing in functions. It provides a convenient way of constraining the behavior of programs when the
generality and flexibility of ordinary Interlisp is either unnecessary, confusing, or inefficient.

. The Decl package provides a ~imple language for declarations. and augments the interpreter and the
compiler to guarantee that these declarations are always satisfied. The declarations make programs more
readable by indicating the type, and therefore something about the intended usage, of variables and
expressions in the code. They facilitate debugging by localizing errors that manifest themselves as type
incompatibilities. Finally, the declaration information is available for other purposes: compiler macros
can consult the declarations to produce more efficient code; coercions for arguments at user interfaces can
be automatically generated; and the declarations will be noticed by the Masterscope function analyzer.

The declarations interpreted by the Oed package are in terms of a set of declaration types called dec/types,
each of which specifies a set of acceptable values and also (optionally) other type specific behavior. The
Decl package provides a set of facilities for defining decltypes and their relations to each other, including
type valued expressions and a comprehensive treatment of union types.

The following description of the Decl package is divided into three parts. First, the syntactic extensions
which permit the concise attachment of declarations to program elements are discussed. SeconcL the
mechanisms by which new decltypes can be defined and manipulated are covered. Finally, some additional
capabilities based on the availability of declarations are outlined.

23.7.1 Using Declarations in Programs

Declarations may be attached to the values of arbitrary expressions and to LAMBDA and PROG variables
throughout (or for part of) their lexical scope. The declarations are attached using constructs that resemble
the ordinary Interlisp LAMBDA, PROG. and PROGN, but which also permit the expression of declarations.
The following examples illustrate the use of declarations in programs.

Consider the following definition for the factorial function (FACT N):

23.18

LISPUSERS PACKAGES

[LAMBDA (N)
(COND

«EQ N 0) 1)
(T (ITIMES N (FACT (SUB1 N]

Obviously, this function presupposes that N is a number, and the run-time checks in ITIMES and SUB1
will cause an error if this is not so. For instance, (FACT T) will cause an error and print the message
NON-NUMERIC ARG T. By defining FACT as a DLAMBDA, the Decl package analog of LAMBDA, this
presupposition can be stated directly in the code:

[DLAMBDA «N NUMBERP»
(COND .

«EQ N 0) 1)
(T (ITIMES N (FACT (SUB1 N]

With this definition, (FACT T) will not result in a NON-NUMERIC ARG T error when the body of the
code is executed. Instead, the NUMBERP declaration will be checked when the function is first entered,
and a declaration fault will occur. Thus, the message that the user will see will not dwell on the offending
value T, but instead give a symbolic indication of what variable and declaration were violated, as follows:

DECLARATION NOT SATISFIED
«N NUMBERP) BROKEN)

The user is left in a break from which the values of variables, e.g. N, can be examined to determine what
the -prob lem is.

The function FACT also makes other presuppositions concerning its argument, N. For example, FACT will
go into an infinite recursive loop if N is a number less than zero. Although the user could program an
explicit check for this unexpected situation, such coding is tedious and tends to obscure the underlying
algorithm. Instead, the requirement that N not be negative can be succinctly stated by declaring it to
be a subtype of NUMBERP which is resuicted to non-negative numbers. This can be done by adding a
SATISFIES clause to N's type specification:

[DLAMBDA ([N NUMBERP (SATISFIES (NOT (MINUSP N])
(COND

«EQ N 0) 1)
(T (ITIMES N (FACT (SUB1 N]

The predicate in the SAT IS FIE S clause will be evaluated after N is bound and found to satisfy NUMB E R P,
but before the function body is executed. In the ev'ent of a declaration fault, the SA TIS FIE S condition
will be included in the error message. For example, (FACT -1) would result in:

DECLARATION NOT SATISFIED
«N NUMBERP (SATISFIES (NOT (MINUSP N») BROKEN)

The D LAMB DA construct also permits the type of the value that is returned by the function to be declared
by means of the pseudo-variable RETURNS. For example, the following definition specifies that FACT is
to return a positive integer:

[DLAMBDA ([N NUMBERP (SATISFIES (NOT (MINUSP N]

23.19

DLAMBDAs

[RETURNS FIXP (SATISFIES (IGREATERP VALUE 0])
(CONO

«EQ N 0) 1)
(T (ITIMES N (FACT (SUB1 N]

After the function body is evaluated, its value is bound to the variable VALUE and the RETURNS
declaration is checked. A declaration fault will occur if the value is not satisfactory 0 This prevents a bad
value from propagating to the caller of FACT, perhaps causing an error far away from the source of the
difficulty.

Declaring a variable causes its value to be checked not only when it is first bound, but also whenever
that variable is reset by SETQ; within the DLAMBOA. In other words, the type checking machinery will
not allow a declared variable to take on an improper value. An iterative version of the factorial function
illustrates this feature in the context of a DPROG, the Decl package analog of PROG:

(DLAMBDA ([N NUMBERP (SATISFIES (NOT (MINUSP N]
[RETURNS FIXP (SATISFIES (IGREATERP VALUE 0])

[DPROG ([TEMP 1 FIXP (SATISFIES (IGREATERP TEMP 0]
[RETURNS FIXP (SATISFIES (IGREATERP VALUE 0])

LP (CONO «(EQ N 0) (RETURN TEMP»)
(SETQ TEMP (ITIMES N TEMP»
(SETQ N (SUB1 N»
(GO LP]

OPROG declarations are much like DLAMBDA declarations, except that they also allow an initial value for
the variable to be specified. -In 'the above example, TEMP is declared to be a positive integer throughout
the computation and N -is declared to be non-negative. Thus, a bug which caused an incorrect value to
be assigned by one of the SETQ expressions would cause a declaration failure. Note that the RETURNS
declaration for a DPROG is also useful in detecting the common bug of omitting an explicit RETURN.

23.7.2 DLAMBDAs

The Oed package version of a LAMBDA expression is an expression beginning with the atom
DLAMBDA. Such an expression is a function object that may be used in any context where a LAMBDA
expression may be used. It resembles a LAMBDA expression except that it permits declaration expressions
in its argument list, as illustrated in the examples given earlier. Each element of the argument list of a
DLAMBDA may be a literal atoni (as in a conventional LAMBDA) or a list of the fonn (NAME TYPE •
EXTRAS).5

NAME fulfills the standard function of a parameter, i.e. providing a name to which the value of the
corresponding argument will be bound.

TYPE is either a Oed package type name or type expression. When the 0 LAMB DA is entered, its arguments
will be evaluated and bound to the corresponding argument names, and then, after all the argument names

5 Strictly, this would require a declaration with a SATISFIES clause to take the form (N (NUMBERP
(SA TIS FIE S - - » - -) (page 23.27). However, due to the frequency with which this construction
is used, it may be written without the inner set of parentheses, e.g. (N NUMB E R P (SA TIS FIE S - -)
--).

23.20

LISPUSERS PACKAGES

have been bound, the declarations will be checked. The type -checking is delayed so that SA TIS F IE S
predicates can include referencesto other variables bound by the same DLAMBDA. For example, one might
wish to define a function whose two arguments are not only both required to be of some given type, but
are also -required to satisfy some relationship (e.g .• that one is less than the other).

EXTRAS allows some additional properties to be attached to a variable. . One such property is the
accessibility of NAME outside _ the current lexical scope. Accessibility specifications include the atoms
LOCAL or SPECIAL. which indicate that this variable is to be compiled so that it is either a LOCALVAR
or aSP E CVAR. respectively. This is illustrat~d by the following example:

[DLAMBDA «A LISTP SPECIAL)
(B FIXP LOCAL»

0 ••]

A more informative equivalent to the SPECIAL key word is the USEDIN form. the tail of which can be
a list of the other functions which are expected to have access to the variable:6

[DLAMBDA «A LISTP (USEDIN FOO FIE»
(B FIXP LOCAL»

.. 0]

EXTRAS may also include a comment in standard format, so that descriptive information may be given
where a variable is bound:

[DLAMBDA «A LISTP (USEDIN FOO FIE)
(BFIXP LOCAL»)

000]

(* This is an important variable»

As mentioned earlier, the value returned by a DLAMBDA can also be declared, by means of the pseudo
variable RETURNS. The RETURNS declaration is just like other DLAMBDA declarations, except (1) in any
SATISFIES predicate, the value of the function is referred to by the distinguished name VALUE; and (2)
it makes no sense to declare the return value to be LOCAL or SPEC IAL.

23.7.3 DPROG

Just as DLAMBDA resembles LAMBDA, DPROG is analogous to PROG. As for an ordinary PROG, a variable
binding may be specified as an atom or a list including an initial value form. However. a D P ROG binding
also allows TYPE and EXTRAS information to appear following the initial value form. The format for these
augmented variable bindings is (NAME INITIALVALUE TYPE • EXTRAS). The only difference between
a DPROG binding and a DLAMBDA binding is that the second position is interpreted as the initial value
for the variable. Note that if the user wishes to supply a type declaration for a variable, an initial value
must be specified. The same rules apply for the interpretation of ~e type information for DPROGs as for
DLAMBDAs, and the same set of optional EXTRAS can be used. DPROGs may also declare the type of the
value they return, by specifying the pseudo-variable RETURNS.

6USED IN is mainly for documentation purposes, since there is no way for such a restriction to be
enforced.

23.21

Declarations in Iterative Statements

Just as for a DLAMBDA. type tests in a DPROG are not asserted until after all the variables have been
bound, thus pennitting predicates to refer to other variables being bound by this DPROG. If NIL appears
as the initial value for a binding (Le. the atom NIL actually appears in the code, not- simply an expression
which evaluates to NIL) the initial type test will be suppressed, but subsequent type tests, e.g. following
a S E TQ, will still be performed.

A common construct in Lisp is to bind and initialize a P ROG variable to the value of a complicated
expression in order to avoid recomputing it, and then to use this value in initializing other P ROG variables,
e.g.

[PROG «A EXPRESSION»
(R E TU RN (P ROG « B (... A ... »

(C (... A ..• »)
... J

The ugliness of such constructions in conventional Lisp often tempts the programmer to loosen the seoping
relationships of the variables by binding them all at a single level and using S E TQ's in the body of the
PROG to establish the initial values for variables that depend on the initial values of other variables. e.g.

[PROG «A EXPRESSION) B C)
(SETQ B (... A···»
(SETQ C (... A···»
... J

In the Decl package environment, this procedure undermines the protection offered by the type mechanism
~y ,encouraging the use of uninitialized variables. Therefore, the DPROG offers a syntactic form to
encourage more virtuous initialization of its variables. A DPROG variable list may be segmented by
occurrences of the special atom THEN, which causes the binding of its variables in stages, so that the
bindings made in earlier stages can be used in later ones, e.g.

[DPROG «A (LENGTH Faa) FIXP LOCAL)
THEN (B (SQRT A) FLOATP)
THEN (C (CONS A B) LISTP»

... J

Each stage is carried out as a conventional set of DPROG bindings (Le .• simultaneously, followed by the
appropriate type testing). This layering of the bindings permits one to gradually descend into a inner
scope, binding the .local names in a very structured and clean fashion, with initial values type-checked as
soon as possible.

23.7.4 Declarations in Iterative Statements

The CLISP iterative statement (page 16.1) provides a very useful facility for specifying a variety of P RaGs
that follow certain widely used formats. The Decl package allows declarations to be made for the seope
of an iterative statement via the DECLARE CLISP i.s.opr. DECLARE can appear as an operator anywhere
in an iterative statement, followed by a list of declarations. for example:

(for J from 1 to 10 declare (J FIXP) do ...

Note that DECLARE declarations do not create bindings, but merely provide declarations for existing
bindings. For this reason. an initial value cannot be specified and the fonn of the declaration is the same

23.22

LISPUSERS PACKAGES

as that of OLAMBOAs, namely (NAME TYPE • EXTRAS).

Note that variables bound outside of the scope of the iterative statement, Le. a variable used freely in the
i.s, can also be declared using this construction. Such a declaration will only be in effect for the scope of
the iterative statement

23.7.5 Declaring a Variable for a Restricted Lexical Scope

The Decl package also permits declaring the type of a variable over some restricted portion of its existence.
For example, suppose the variable X is either a fixed orfioating number, and a program branches to treat
the two cases separately. On one path X is known to be fixed, whereas on the other it is known to be
floating. The Ded package 0 P ROG N construct can be used in such cases to state the type of the variable
along each path. OPROGN is exactly like PROGN, except that the second element of the form is interpreted
as a list of OLAMBOA format declarations. These declarations are added to any existing declarations in the
containing scope, and the composite declaration (created using the ALLOF type expression, page 23.26) is
considered to hold throughout the lexical scope created by the OPROGN. Thus, our example becomes:

(if (FIXP X).
the n {O P ROG N ({ X F I X P » ...)
else (OPROGN «X FLOATP» ... »

Like OPROG and OLAMBOA, the value of a OPROGN may also be declared, using the pseudo-variable
RETURNS.

OPROGN may be used not only to restrict the declarations of local variables, but also to declare variables
which are being used freely. For example, if the variable A is used freely inside a function but is known
to be F I X P, this fact could be noted by enclosing the body of the function in {O P R OG N « A F I X P
FREE» BODY). Instead of FREE, the more specific construction (BOUNOIN FUNCTION1 FUNCTION2
...) can be used. This not only states that the variable is used freely but also gives the names of the
functions which might have provided this binding.7

Since the OPROGN form introduces another level of parenthesization, which results in the enclosed forms
being prettyprinted indented, the Oecl package also permits such declarations to be attached to their
enclosing OLAMBDA or OPROG scopes by placing a OECL expression, e.g. (DECL (A F I XP (BOUNDI N
FUM», before the first executable form in that scope. Like DPROGN's, DECL declarations use DLAMBDA
format

23.7.6 Declaring the Values of Expressions

The Oecl package allows the value of an arbitrary form to be declared with the Oecl construct THE.
A THE expression is of the form (THE TYPE • FORMS)~ e.g. {THE F IXP (FOO X». FORMS are
evaluated in order, and the value of the last one is checked to see if it satisfies TYPE, a type name or
type expression. If so, its value is returned, otherwise a declaration fault occurs.

7Like USEOIN declarations, FREE and BOUNDIN declarations cannot be checked, and are provided for
documentation purposes only.

23.23

Assertions

23.7.7 Assertions

The Ded package also allows for checking that an arbitrary predicate holds at a particular point in a
program's execution, e.g. a condition that must hold at function entry but not throughout its execution.
Such predicates can be checked using an expression of the form (ASSERT FORM1 FORM2 ..•), in which
each FORMj is either a list (which will be evaluated) or a variable (whose declaration will be checked).
Unless all elements of the ASSERT form are satisfied, a declaration fault will take place.

ASSE RTing a variable provides a convenient way of verifying that the value of the variable has not been
improperly changed by a lower function. Although a similar effect could be achieved for predicates by
explicit checks of the form (OR PREDICATE (SHOULDNT», ASSE RT also provides the ability both to
check that a variable's declaration is currently satisfied and to remove its checks at compile time without
source code modification (see page 23.25).

23.7.8 Using Type Expressions as Predicates

The Decl package extends the Record package T Y P E? construct so that it accepts decltypes, as well as
record names, e.g. (TYPE? (FIXP (SATISFIES (ILESSP VALUE 0») EXPR). Thus, a TYPE?
expression is exactly the same as a THE expression except that, rather than causing a declaration fault,
TYPE? is a predicate which determines whether or not the value satisfies the given type.

23.7.9 Enforcement

The Decl package is a "soft" typing system - that is, the data objects themselves are not inherently typed.
Consequently, declarations can only be enforced within the lexical scope in which the declaration takes
place, and then only in certain contexts. In general, changes to a variable's value such as those resulting
from side effects to embedded structure (e.g., RPLACA, SETN, etc.) or free variable references from
outside the scope of the declaration cannot be, and therefore are not, enforced.

Declarations are enforced i.e. checked, in three different situations: when a declared variable is bound
to some value or rebound with SETQ or SETQQ, when a declared expression is evaluated, and when
an ASSERT expression is evaluated. In a binding context, the type check takes place after the binding,
including any user-defined behavior specified by the type's binding function. Any failure of the declarations
causes a break to occur and an informative message to be printed. In that break, the name to which the
declaration is attached (or VALUE if no name is available) will be bound to the offending value. Thus, in
the (FACT. T) example above, N would be bound to T. The problem can be repaired either by returning
an acceptable value from the break via the RETURN command, or by assigning an acceptable value to the
offending name and returning from the break via an OK or GO command. The unsatisfied declaration will
be reasserted when the computation is continued, so an unacceptable value will be detected.8

The automatic enforcement of type declarations is a very flexible and powerful aid to program development
It does, however, exact a considerable run-time cost because of all the checking involved. Factors of two
to ten in running speed are not uncommon, especially where low level, frequently used functions employ
type declarations. As a result, it is usually desirable to remove the declaration enforcement code when

8With this exception, assignments to variables from within the break are not considered to be in the scope
of the declarations that were in effect when the break took place, and so are not checked.

23.24

LISPUSERS PACKAGES

the system is believed to be bug-free and performance becomes more central. This can be done with the
variable COMP I LE IGNOREDECL:

COMP I LE IGNOREDECL [Variable]
Setting the value of the variable COMPILEIGNOREDECL to T (initially NIL)
instructs the compiler not to insert declaration enforcement tests in the compiled
code. More selective removal can be· achieved by setting COMPILE IGNOREDECL
to a list of function names. Any function whose name is found on this list is
compiled without declaration enforcement

(IGNOREDECL . VAL) [File Package Command]

23.7.10 Decltypes

Declaration enforcement may be suppressed selectively by file using the IGNOREDECL
file package command. If this appears in a file's file commands. it redefines the
value ofCOMPILEIGNOREDECL to VAL for the compilation of this file only.

A Decl package type, or decltype, specifies a subset of data values to which values of this type are
restricted. For example. a "positive number" type might be defined to include only those values that are
numbers and greater than zero. A type may also specify how certain operations, such as assignment or
binding (see page 23.28), are to be performed on variables declared to be of this type.

The inclusion relations among the sets of values which satisfy the different types define a natural partial
ordering on types, bound by the universal type ANY (which all values satisfy) and the empty type
NONE (which no value satisfies). Each type has one or more supertypes (each type -has at least ANY as
a supertype) and one or more subtypes (each type has at least NONE as a subtype). This structure is
important to the user of Decl as it provides the framework in which new types are defined. Typically,
much of the definition of a new type is defaulted, rather than specified explicitly. The definition will be
completed by inheriting atttributes which are shared by all its immediate supertypes.

An initial set of decltypes which defines the Interlisp built-in datatypes and a few other commonly
used types is provided. Thereafter, new decltypes are created in terms of existing ones using the type
expressions described below. For conciseness, such new types can be associated with literal atoms using
the function DECL TYPE (page 23.28).

23.7.11 Predefined Types

Some commonly used types, such as the Interlisp built-in data types, are already defined when the Decl
package is loaded. These types, indented to show subtype-supertype relations, are:

ANY
ATOM

LITATOM
NIL

NUMBERP
FIXP

LARGEP
SMALLP

FLOATP

LST9
ALIST 10

LISTP

ARRAYP STRINGP
HARRAYP
READTABLEP

23.25

FUNCTION STACKP

Type Expressions

NONE

Note that the definition of LS Tcauses NIL to have multiple supertypes, i.e. LIT A T OM and L 5 T, reflecting
the duality of NIL as an atom and a (degenerate) list

In addition. declarations made using the Record package (page 3.1) also define types which are attached
as subtypes to an appropriate existing type (e.g., a TYPE RECORD declaration defines a subtype of LIST P,
a DATATYPE declaration a subtype of ANY, etc.) and may be used directly in declaration contexts.

23.7.12 Type Expressions

Type expressions provide convenient ways for defining new types in terms of modifications to, or
compositions of one or more, existing types.

(MEMQ VALUE1 ... VALUEN) [Decl Type Expression]
Specifies a type whose values can be anyone of the fixed set of elements {VALUE1
... VALrJEN}' For example, the status of ~ device might be represented by a
datum restricted to the values BUSY and FREE. Such a "device status" type could
be defined via (MEMQ BUSY FREE). The new type will be a subtype of the
narrowest type which all of the alternatives satisfy (e.g., the "device status" type
would bel a subtype of LIT ATOM). The membership test uses EQ if this supertype
is LITATOM; EQUAL otherwise. Thus. lists, floating po~nt numbers, etc .• can be
included in the set of alternatives. . .

(ONEOF TYFEl ... TYFEN) [Oecl Type Expression]
Specifies a type which is the union of two or more other types. For example. the
notion of a possibly degenerate list is something that is either LIS T P or NIL. Such
a type can be (and the built-in type LST in fact is) defined simply as (ONEOF .
NIL LIST P). A union data type becomes a supenype of all of the alternative
types specified in the ONEOF expression. and a SUbtype of their lowest coIIimon
supertype. The type properties of a union type are taken from its alternative types
if they all agree. otherwise from the supertype.

(ALLOF TYFEl ... TYFEN) [Decl Type Expression]
Specifies a type which is the intersection of two or more other types. For example.
a variable may be required to satisfy both F I X P and also some type which is
defined as (N UMB E R P (SA TIS FIE S PREDICATE». The latter type will admit
numbers that are not F I X P, Le. floating point numbers; the former does not
include PREDICATE. Both restrictions can be obtained by using the type (ALLOF
(NUMBERP (SATISFIES PREDICATE» FIXP).l1

9LST is defined as either LISTP or NIL, i.e. a list or NIL. The name LST is used. because the name
LIST is treated specially by clisp.

loALIST is defined as either NIL, or a list of elements each of which is of type LISTP.

llWhen a value is tested, the component type tests are applied from left to right.

23.26

LISPUSERS PACKAGES

(AGGREGATE OF ELEMENT) [Decl Type Expression]
Specifies a type which is an aggregate of values of some other type (e.g., list of
numbers, array of strings, etc.). AGGREGATE must be a type which provides an
EVERYFN property (page 23.28). The EVERYFN is used to apply an arbitrary ,
function to each of the elements of a datum of the aggregate type, and check
whether the result is non-N I L, for each element. ELEMENT may be any type
expression. For example, the type Ulist of either strings or atoms" can be defined
as {lISTP OF (ONEOF STRINGP ATOM». The type test for the new type will
consist of applying the type test for ELEMENT to each element of the aggregate
type using the EVERYFN property. The new type will be a subtype of its aggregate
type. 1 2

{TYPE (SA TIS FIE S FORM 1 ... FORM N)) [Decl Type Expression]

(SHARED TYPE)

Specifies a type whose values are a subset of the values of an existing type. The
type test for the new type will first check that the base type is satisfied, Le. that
the object is a member of TYPE, and then evaluate FORM1 ... FORMN • If each
fonn returns a non-N I L value, the type is satisfied.

The value that is being tested may be referred to in FORM1 ••• FORMN by either
(a) the variable name if the type expression appears in a binding context such as
DLAMBDA or DPROG (b) the distinguished atom EL T for a SATISFIES clause on
the elements of an aggregate type, or (c) the distinguished atom VALUE, wh~n
the type expression is used in a context where no name is available (e.g., a
RETURNS declaration). For example, one might declare the program variable A
to' be a negative integer via {FIXP {SATISFIES (MINUSP A»), or,declare
the value ofa DLAMBDA to be of type ({ONEOF FIXP FLOATP) {SATISFIES
(GREATERP VALUE 25»). Note that more than one SATISFIES clauses may
appear in a single type expression attached to different alternatives in a ON E 0 F
type expression, or attached to both the elements and the overall structure of an
aggregate. For example,

[LISTP OF [FIXP {SATISFIES {ILEQ ELT {CAR VALUE]
{SATISFIES {ILESSP (LENGTH VALUE) 7]

specifies a list of less than 7 integers each of which is no greater than the first
element of the list. '

[Decl Type Expression]
Specifies a subtype of TYPE with default binding behavior, Le. the binding function
(see page 23.28), if any, will be suppressed.13 For example, if the type FLOATP
were redefined so that OLAMBDA and DPROG bindings of variables that were
declared to be FLOATP copied their initial values (e.g., to allow SETNs to be free
of side effects), then variables declared (SHARED FLOATP) would be initialized
in the nonnal fashion, without copying their initial values.

12The built-in aggregate types are ARRAYP, LISTP, LST, and S,TRINGP (and their subtypes).

J 3 As no predefined type has a binding function, this is of no concern until the user defines or redefines
a type to have a binding function.

23.27

Named Types

23.7.13 Named Types

Although type expressions can be used in any declaration context, it is often desirable to save the definition
of a new type if it is to be used frequently, or if a more complex specification of its behavior is to be
given than is convenient in an expression. The ability to define a named type is provided by the function
DECLTYPE.

(DECLTYPE TYPENAME TYPE) PROPl VALl··' PROPN VALN) [NLambda NoSpread Function]
Nlamb~ nospread function. TYPENAME is a literal atom, TYPE is either the name
of an existing type or a type expression, and PROP1, VALl' "., PROPN, VALN is a
specification (in property list format) of other attributes of the type. DECL TYPE
derives a type from TYPE, associates it with TYPENAME, and then defines any
properties specified with the values given. .

The following properties are interpreted by the Decl package.14 Each of these properties can have as its
value either a function name or a LAMBDA expression.

TESTFN

EVERYFN

BINDFN

will be used by the Decl package to test whether a given value satisfies this type.
The type is considered satisfied if FN applied to the item is non-N I L. For example,
one might define the type INTEGER with TESTFN FIXP.15

specifies a mapping function which can apply a functional argument to each
"element" of an instance of this type, and which will return NIL unless the result
of every such application was non-N I L. FN must be a function of two arguments:
the aggregate and the function to be applied. For example, the EVERYFN for the
built-in tXpe LISTP is EVERY. As described on page 23.27. the Ded package uses
the EVERYFN property of the aggregate type to construct a type test for aggregate
type expressions. In fact, it is the presence of an EVERYFN property which allows
a type to be used as an aggregate type.16I7

is used to compute from the initial value supplied for a DLAMBDA or DPROG
variable of this type, the value to which the variable will actually be initialized. FN

must be a function of one argument which will be applied to the initial value,lS
and which should produce another value which is to be used to make the binding.
For example, a BINDFN could be used to bind variables of some type so that new

I4Actually, any property can be attached to a type, and will be available for use by user functions via the
function GETDECL TYPE PROP. described below.

I5Typically, the TESTFN for a type is derived from its type expression, rather than specified explicitly. The
ability to specify the TEST F N is provided for those cases where a predicate is available that is much more
efficient than that which would be derived from the type expression. For example. the type SMALLP is
defined to have the function SMALLP as its TESTFN, rather than (LAMBDA (DATUM) (AND (NUMBERP
DATUM) (FIXP DATUM) (SMALLP DATUM») as would be derived from the SUbtype structure.

I6Note that a type's EVERYFN is not used in type tests for that type, but only in type tests for types
defined by OF expressions which used this type as the aggregate type. For example, EVE RY is not used
in detennining whether some value satisfies the type LIS T P.

17The Oecl package never applies the EVE R Y F N of a type to a value wi thou t first verifying that the value
satisfies that type. .-

I8For a DPROG· binding, FN will be applied to no arguments if the initial value is lexically NIL.

23.28

SETFN

LISPUSERS PACKAGES

bindings are copies of the initial value. Thus, if F LOA T P were given the B I NO F N
FPLUS, any variable declared FLOATP would be initialized with a new floating
box, rather than sharing with that of the original initiill value.19

is used for performing a SETQ or SETQQ of variables of this type. FN is a function
of two arguments, the name of the variable, and its new value. A SET F N is
typically used to avoid the allocation of storage for intermediate results. Note that
the SETFN is not the mechanism for the enforcement of type compatibility, which
is checked after the assignment has taken place. Also note that not all functions
which can change values are affected: in particular, SET and SET N are not

23.7.13.1 Manipulating Named Types

DECL TYPE is a file package type (page 11.1). Thus all of the operations relating to file package types,
e.g. GETOEF, PUTOEF, EDITDEF, DELDEF,20 SHOWOEF, etc., can be performed on decltypes.

The file package command, DEC L T Y PES, is provided to dump named decltypes symbolically. They will
be written as a series of DECL TYPE forms which will specify only those fields which differ from the
corresponding field of their supertype(s). If the type depends on any unnamed types, those types will
be dumped (as a compound type expression), continuing up the supertype chain until a named type is
found. Care should be exercised to ensure that enough of the named type context is dumped to allow
the type de~nition to remain meaningful. .

The functions GETDECL TYPEPROP and SETDECL TYPEPROP, defined analogously to the property list
functions for atoms, allow the manipulation of the properties of named types. Setting a property to NIL
with SETDECL TYPEPROP removes it from the type.

23.7.14 Relations Between Types

The notion of equivalence of two types is not well defined. However, type equivalence is rarely of interest.
What is of interest is type inclusion, i.e. whether one type is a supertype or SUbtype of another. The
predicate COVE RS can be used to detennine whether the values of one type include those of another.

(COVERS m LO) [Function]
is T if m can be found on some (possibly empty) supertype chain of LO; else
NIL. Thus, (COVERS 'F IXP (DECLOF 4» =T, even though the OECL TYPE of
4 is SMALLP, not F IXP. The extremal cases are the obvious identities: (COVE RS
'ANY ANYTYPE) = (COVERS ANYTYPE 'NONE) = (COVERS x x) for any
type x = T.

COVERS allows declaration based transfonnations of a form which depend on elements of the form being
of a certain type to express their applicability conditions in terms of the weakest type to which they

t 9The B I NO F N, if any, associated with a type may be suppressed in a declaration context by creating a
subtype with the type expression operator SHARED, as described on page 23.27.

2°Deleting a named type could possibly invalidate other type definitions that have the named type as a
subtype or supertype. Consequently, the deleted type is simply unnamed and left in the type space as
long as it is needed.

23.29 .

The Declaration Database

apply, without explicit concern for other types which may be subtypes of it. For example, if a particular
transformation is to be applied whenever an element is of type_NUMBE RP, the program which applies that
transformation does not have to check whether the element is of type SMALLP, LARGEP, F IXP, FLOATP,
etc., but can simply ask whether NUMBERP COVERS the type of that element:

The elementary relations among the types9 out of which arbitrary traversals of the type space can be
constructecL are made available via:

(SUBTYPES TYPE) [Function]
Returns the list of types which are immediate subtypes of TYPE.

(SUPERTYPES TYPE) [Function]
Returns the list of types which are immediate supertypes of TYPE.

23.7.15 The Declaration Database

One of the primary uses of type declarations is to provide infonnation that other systems can use to
interpret or optimize code. For example, one might choose to write all arithmetic operations in terms of
general functions like PLUS and TIMES and then 'use variable declarations to substitute more efficient,
special purpose code at compile time based on the types of the operands. To this end, a data base of
declarations is made available by the Decl package to support these ope~ations.

(DECLOF FORM)

DECLOF

[Function]
Returns the type of FORM in the current declaration context21 If FORM is
an atom~ DECLOF will look up that atom directly in its database of current
declarations. Otherwise, DECLOF will look on the property list of (CAR FORM) for
a DECLOF property, as described below. If there is no DECLOF property, DECLOF
will check if (CAR FORM) is one of a lar~e set of functions of known result
type (e.g~, the arithmetic functions). Failing that, if (CAR FORM) has a MACRO
property, DECLOF will apply itself to the result of expanding (with EXPANDMACRO,
page 5.19) the macro definition. Finally, if FORM is a Lisp program element that
DECLOF "understands" (e.g., a COND, PROG, SELECTQ, etc.), DECLOF applies itself
recursively to the part(s) of the contained fonn which will be returned as value.

[property Name]
Allows the specification of the type of the values returned by a particular function.
The value of the DECLOF property can be either a type, i.e. a type name or a type
expression, or a list of the fonn (FUNCTION FN). where FN is a function object.
FN will be applied (by DECLOF) to the form whose CAR has this DECLOF property
on its property list The value of this function application will then be considered
to be the type of the form.

21The "current declaration context" is defined by the environment at the time that DECLOF is called. Code
reading systems, such as the compiler and the interpreter, keep track of the lexical scope within which
they are currently operating, in particular, which declarations are currently in effect. Note that (currently)
DECLOF does not have access to any global data base of declarations. For example, DECLOF does not
have information available about the types of the arguments of, or the value returned by, a particular
function, unless it is currently "inside" of that function. However, the DECLOF property (described below)
can be used to inform DECLOF of the type of the value returned by a particular functio~

23.30

LISPUSERS PACKAGES

As an example of how declarations can be- used to automatically generate more efficient code, consider
. an arithmetic package. Declarations of numeric variables could be used to guide code generation to

avoi<i the inefficiencies of Interlisp's handling of arithmetic values. Not only could the generic arithmetic
functions be automatically specialized, as suggested above, but by redefining the B I NO F N and the SET F N
properties for the types FLOATP and LARGEP to re-use st<;>rage in the appropriate contexts (Le., when the
new value can be determined to be of the appropriate type), tremendous eConomies could be realized by
not allocating storage to intermediate results which must later be reclaimed by the garbage collector. The
Decl package has been used as the basis for several such code optimizing systems.

23.7.16 Declarations and Masterscope

The Decl package notifies MASTERSCOPE about type declarations and defines a new MASTERSCOPE
relation, TYPE, which depends on declarations. Thus, the user can ask questions such as "WHO USES
MUMBLE AS A TYPE?," "DOES FOO USE FIXP AS A TYPE?," and so on.

23.8 TRANSOR

Note: TRANSOR is a LispUsers package contained on the file TRANSOR. DCOM.

TRANSOR is a LISP-to-LISP translator intended to help the user who has a program coded in one
dialect of LISP and wishes to carry it 'over to another. The user loads TRANSOR along with a file
of transformations. These transformations describe the differences between the two LISPs, expressed in
terms of Interlisp editor commands needed to convert the old to new, i.e. to edit forms written in the
source dialect to make them suitable for the target dialect. TRANS OR then sweeps through the user's
program and applies the edit transformations, producing an object file for the target system. In addition,
TRANSOR produces a file of translation notes, which catalogs the major changes made in the code as
well as the forms that require further attention by the user. Operationally, therefore, TRANSOR is a
facility for conducting massive edits, and may be used for any purpose which that may suggest.

Since the edit transformations are fundamental to this process, let us begin with a definition and some
examples. A transformation is a list of edit commands associated with a literal atom, usually a function
name. TRANSOR conducts a sweep through the user's code, until it finds a form whose CAR is a
literal atom which has a transformation. The sweep then pauses to let t.Q.e editor execute the list of
commands before going on. For example, suppose the order of arguments for the function TCONC must
be reversed for the target system. The transformation for TCONC would then be: « SW 2 3». When
the sweep encounters the form (TeONC X (FOO)), this transformation would be retrieved and executed,
converting the expression to (TCONC (FOO) X). Then the sweep would locate the next form. in this
case (F 00), and aD:Y transformations for F 00 would be executed, etc.

Most instances of TCONC would be successfully translated by this transformation. However, if there were
no second argument to TCONC, e.g. the form to be- translated was (TCONC X), the command (SW 2
3) would cause an error, which TRANSOR would catch. The sweep would go on as before, but a note
would appear in the translation listing stating that the transformation for this particular form failed to
work. The user would then have to compare the form and the commands, to figure out what caused the
probl~m. One might, however, anticipate this difficulty with a more sophisticated transformation: « IF
(## 3) « SW 2 3» « - 2 NIL»», which tests for a third element and does (SW 2 3) or (- 2
NIL) as appropriate. It should be obvious that the translation process is no more sophisticated than the

23.31

Using TRANSOR

transformations used.

This documentation is 'divided into two main parts. The first describes how to use TRANSOR assuming
that the user already has a complete set of transformations. The second documents TRANSORSET, an
interactive routine for building up such sets. TRANSORSET contains commands for writing and editing
transformations. saving one's work on. a file; testing transformations by translating sample forms, etc.

Two transformations files presently exist for translating programs into Interlisp. <LISP)SDS940. XFORMS
is for old BBN LISP (SDS 940) programs, and <LISP)LISP16. XFORMS is for Stanford AI LISP 1.6
programs. A set for LISP 1.5 is planned.

23.S.1 Using TRANSOR

The first and most exasperating problem in carrying a program from one implementation to another is
simply to get it to read in. Fo~ example, SRI LISP uses / exactly as Interlisp uses %, Le. as an escape
character. The function PRESCAN exists to help with these problems: the user uses PRESCAN to perform
an initial scan to dispose of these difficulties. rather than attempting to TRANSOR the foreign sourcefiles
directly.

PRESCAN copies a file, perfonning character-for-character substitutions. It is hand-coded and is much
faster than eitherREADC's or text-editors.

(PRESCAN FILE CHARLST) [Function]
Ma,kes . a new version of FILE. performing substitutions according to CHARLST.
Each element of CHARLST must be' a dotted pair of two character codes, (OLD-
CHAR-CODE • NEW-CHAR-CODE). •

For example. SRI files are PRESCANed with CHARLST = « 3 7 . 4 7) (47 . 37», which exchanges
slash (47) and percent-sign (37).

The user should also make sure: that the treatment of double quotes by the source and target systems is
similar. In Interlisp, an unmatched double-quote (unless protected by the escape character) will cause the
rest of the file to read in as a string.

Finally, the lack of a STOP at the end of a file is hannless, since TRANSOR will suppress END OF FILE
errors and exit normally.

23.S.2 Translating

T RANSOR is the top-level function of the translator itself. and takes one argument, a file to be translated.
The file is assumed to contain a sequence of forms, which are read in, translated. and output to a
file called {FILE}. TRAN. The translation notes are meanwhile output to {FILE}. LSTRAN. Thus the
usual sequence for bring a foreign file to Interlisp is as follows: PRESCAN the file; examine code and
transformations. making changds to the. transformations if needed; TRANSOR the file; and clean up
remaining problems, guided by the notes. The user can now make a pretty file and proceed to exercise
and check out his program. To iexporta file. it is usually best to TRANSOR it, then PRESCAN it, and
perform clean-up on the foreign system where the file can be loaded.

23.32

LISPUSERS PACKAGES

(TRANSOR FILE) [Function]
Translates FILE. Prettyprints translation on {F I L E} . T RA N; translation listing on
{FILE}. LSTRAN.

(TRANSORFORM FORM) [Function) ,
FORM is a LISP form. Returns the (destructively) translated form. The translation
listing is dumped to the primary output file.

(TRANSORFNS FNLST) [Function)
FNLST is a list of function names whose interpreted definitions are destructively
translated. Listing to primary output file.

TRANSORFORM and TRANSORFNS can be used to translate expressions that are already in core. whereas
TRANSOR itself only works on files.

23.8.3 The Translation Notes

The translation notes are a catalog of changes made in the user's code, and of problems which require,
or may "require, further attention from the user. This catalog consists of two cross-indexed sections: an
index of forms and an index of notes. The first tabulates all the notes applicable to any form, whereas
the second tabulates all the forms to which" anyone note applies. Forms appear in the index of forms in
the order in which they were" encountered. Le. the order -in which they appear on the source and output
files. The index of notes shows the name of each note, the entry numbers where it was used. and its text,
and is alphabetical by name. The following sainple was made by translating a small test file written in
SRI LISP. "

LISTING FROM TRANSORING OF FILE TESTFILE.;1
DONE ON 1-NOV-71 20:10:47

1. APPLY/EVAL at
[DEFINEQ

(FSET (LAMBDA &
(PROG ... 3 ...

(SETQ Z (COND
«ATOM (SETQ --»

(COND

INDEX OF FORMS

«ATOM (SETQ Y (NLSETQ "(EVAL W)"»)
--)

]
2. APPLY/EVAL at

[DEFINEQ
(FSET (LAMBDA &

--»
--»

(PROG ... 3 ...
(SETQ Z (COND

«ATOM (SETQ --»
(COND

«ATOM (SETQ --»

23.33

Errors and Messages .

"(EVAL (NCONS W»")

--»
]

3. MACHINE-CODE at
[DEFINEQ

--»

(LESS1 {LAMBDA &
{PROG ... 3 ...

(COND
••• 2 •••
{{NOT (EQUAL {SETQ X2 "{OPENR (MAKNUM & -»"

)

]
4. MACHINE-CODE at

[DEF INEQ -

--).)

(LESS1 (LAMBDA &
(PROG ..• 3 ••.

{COND
..• 2 .•.

--»

«NOT (EQUAL & (SETQ Y2

APPLY/EVAL at 1, 2.

--» .
]

"(OPENR (MAKNUM & --»"»)

INDEX OF NOTES

TRANSOR will translate the arguments of the APPLY or EVAL expression, but
the user must make sure that the run-time evaluation of the arguments returns
a BSN-compatible expression.
MACHINE-CODE at 3, 4.

Expression dependent on machine-code. User must recode.

The translation notes are generated by the transformations use<i and therefore reflect the judgment of their
author as to what should be inGluded. Straightforward conversions are usually made without comment;
for example, the DEFPROPs in this file were quietly changed to DEFINEQs. TRANSOR found four
noteworthy forms on the file, and printed an entry for each in the index of forms, consisting of an entry
number, the name of the note, and a printout showing the precise location of the form. The form appears
in double-quotes and is the last ; thing printed. except for closing parentheses and dashes. An ampersand
represents one non-atomic element not shown. and two or more elements not shown are represented as
••• N ••• , where N is the number of elements. Note that the printouts describe expressions on the output
file rather than the source file; in the example, the 0 E F PRO Ps of SRI LISP have been replaced with
DEFINEQs.

23.8.4 Errors and Messages

TRANSOR records its progress through the source file by terminal printouts which identify each expression
as it is read in. Progress within large expressions, such as a long DEFINEQ, is reported every three minutes

23.34

LISPUSERS PACKAGES

by a printout showing the location of the sweep.

If a transformation fails, TRANSOR prints a diagnostic to the teletype which identifies the faulty
transformation, and resumes the sweep with the next form. The translation notes will identify the form
which caused this failure, and the extent to which the form and its arguments were compromised by the
error.

If the transformation for a common function fails repeatedly, the user can type control-H. When the
system goes into a break, he can use TRANSORSET to repair the transformation, and even test it out (see
TEST command, page 23.36). He may then contitiue the main translation with OK.

23.8.5 TRANSORSET

To use TRANSORSET, type (TRANSORSET) to Interlisp. TRANSORSET will respond with a + sign, its
prompt character, and await input. The user is now in an executive loop which is like EVALQT with
some extra context and capabilities intended to facilitate the writing of transformations. T RANSORSE T
will thus progress APPLY and EVAL input, and execute history commands just as EVALQT would. Edit
commands, however, are interpreted as additions to the transformation on which the user is currently
working. TRANSORSET always Saves on a variable named CURRENTFN the name of the last function
whose transformation was altered or examined by the user. CURRENTFN thus represents the function
whose transfonnation is currently being worked on. Whenever edit commands are typed to the +
sign, TRANSORSET will add them to the transformation for CURRENTFN. This is the basic mechanism for
writing a transformation. In addition, TRANSORSET contains commands for printing out a transformation,
editing a transformation, etc., which all assume that the command applies to CURRENTFN if no function
is specified. The following example illustrates this process.

+-TRANSORSET()
+FN TCONC {lj
TCONC
+(SW 2 3) {2}
+TEST (TCONC A 8) {3}
P
(TCONC 8 A)
+TEST (TeONC X) {4}
TRANSLATION ERROR: FAULTY TRANSFORMATION
TRANSFORMATION: «SW 2 3» {5}
OBJECT FORM: (TCONC X)

1. TRANSFORMATION ERROR AT {6}
"(TCONC X)"

(TeONC X)
+ (I F (## 3) « SW 2 3» « - 2 NIL] {7)
+SHOW
TCONC

[(SW 2 3)
(IF (## 3) {8}

«SW 2 3»
«-2 NIL]

TeONe

23.35

+ERASE
TCONe
+REOO IF
+SHOW
TeONC

TRANSORSET Commands

[9)

[IO}

[(IF (/III 3).
«SW 2 3»
«-2 NIL]

TeONe
+TOST
=TEST
(TCONe NIL X)
+

[II}

In this exatnple. the user begins by using the FN command to set CURRENTFN to TeONC [I}. He then
adds to the (empty) transfonnation for TCONC a command to switch the order of the arguments [2} and
tests the transfonnation [3}. His second TEST [4} fails, causing an error diagnostic [5} and a translation
note [6}. He writes a better command [7} but forgets that the original SW command is still in the way
[8}. He therefore deletes the entire transfonnation [9} and redoes the IF [IO}. This time, the TEST works
[II}.

23.8.6 TRANSORSET Commands

The following commands for manipulating transfonnations are all Prog. Asst commands which treat the
rest of their input line as arguments. All are undoable.

FN

SHOW

EDIT

ERASE

TEST

ffransorset Command]
Resets CURRENTFN to its argument, and returns the new value. In effect FN says
you are done with the old function (as least for the moment) and wish to work
on another. If the new function already has a transfonnation, the message (OLD
TRANSFORMAT IONS) is printed, and any editcommands typed in will be added
to the end of the existing commands. F N followed by a 'carriage return will return
the value of CURRENTFN without changing it.

. ffransorset Command]
Command to prettyprint a transfonnation. SHOW followed by a carriage return
will show the transfonnation for CURRENTFN, and return CURRENTFN as its value.
SHOW followed by one or more function names will show each one in turn, reset
CURRENTFN to the last one, and return the new value of CURRENTFN.

[Transorset Command]
Command to edit a transfonnation. Similar to SHOW except that instead of
prettyprinting the transfonnation. ED I T gives it to ED I T E. The user can then work
on the transfonnation until he leaves the editor with OK.

ffransorset Command]
Command to delete a transfonnation. Otherwise similar to SHOW.

[Transorset Command}
Command for checking out transfonnations. T EST takes one argument, a fonn

23.36

DUMP

EXIT

LISPUSERS PACKAGES

for translation. The translation notes, if any, are printed to the teletype, but
in an abbreviated format which onlits the index of notes. The value returned
is the translated form. TEST saves a copy of its argument on the free variable
TESTFORM, and if no argument is given, it uses TEST FORM. Le. tries the previous
test agC\in. '

ffransorset Command]
Command to save your work on a file. DUMP takes one argument, a filename. The
argument is saved on the variable DUMP F I l E, so that if no argument is provided,
a new version of the previous file will be created.

The DUMP command creates files by MAKEFILE. Normally FlLEFNS will be
unbound, but the user may set it himself; functions called from a transformation
by the E command may be saved in this way. DUMP makes sure that the necessary
command is included on the FlLEVARS to save the user's transformations. The user
may add anything else to his FlLEVARS that he wishes. When a transformation file
is loaded, all previous transformations are erased unless the variable ME RG E is set
to T.

ffransorset Command]
Exits TRANSORSET, returning NIL.

23.8.7 The REMARK Feature

The translation notes ate generated by those transformations that are actually executed via an edit macro
called REMARK. REMARK takes one argument, the name of a note. When the macro is executed. it saves
the appropriate information for the translation notes, and adds one entry to the index of forms. The
location that is printed in the index of forms is the editor's location when the REMARK macro is executed.

To write a transformation which makes a new note, one must therefore do two things: define the note,
i.e. choose a new name and associate it with the desired text; and call the new note. with the R E MA R K
macro, i.e. insert the edit command (REMARK NAME) in some transformation. The NOT E command,
described below, is used to define a new note. The call to the note may be added to a transformation like
any other edit command. Once a note is defined, it may be called from as many different transformations
as desired.

The user can also specify a remark with a new text, without bothering to think of a name and perform
a separate defining operation, by calling REMARK with more than one argument, e.g. (REMARK TEXT

OF-REMARK). This is interpreted to mean that the arguments are the text TRANSORSET notices all
such expressions as they are typed in. and handles naming automatically; a new name is generated22 and
defined with the text provided, and the expression itself is edited to be (R E MA R K GENERATED-NAME).

The following example illustrates the use of REMARK.

~TRANSORSET() ,
+NOTE GREATERP/LESSP (BBN'S GREATERP AND LESSP ONLY TAKE TWO ARGUMENTS, WHEREAS
SRI'S FUNCTIONS TAKE AN INDEFINITE NUMBER. AT THE PLACES NOTED HERE, THE SRI
CODE USED MORE THAN TWO ARGUMENTS, AND THE USER MUST RECODE.] [I)

22The name generated is the value of CURRENTFN suffixed with a colon, or with a number and a colon.

23.37

The REMARK Feature

GREATERP/LESSP
+FN GREATERP
GREATERP
+(IF (IGREATERP (LENGTH (##»3) NIL «REMARK GREATERP/LESSP] [2}
+FN LESSP
LESSP
+REDO IF· [3}
+SHOW
LESSP

[(IF (IGREATERP (LENGTH (##»
3)

NIL
«REMARK GREATERP/LESSP]

LESSP
+FN ASCII
(OLD TRANSFORMATIONS)
ASCII
+(REMARK ALTHOUGH THE SRI FUNCTION ASCII IS IDENTICAL TO THE BBN FUNCTION CHARACTER
THE USER MUST MAKE SURE THAT THE CHARACTER BEING CREATED SERVES THE SAME PURPOSE
ON BOTH SYSTEMS, SINCE THE CONTROL CHARACTERS ARE ALL ASSIGNED DIFFRENTLY.] [4}

+SHOW [5}
ASCII

«1 CHARACTER)
(REMARK ASCII:»

ASCII .
+NOTE ASCII: [6}
EDIT
*NTH -2
*p

ASSIGNED DIFFRENTLY.)
*(2 DIFFERENTLY.)
OK
ASCII:
+

In this example, the user defines a note named GREATERP/LESSP by using the NOTE command [I}, and
writes transformations which caU this note whenever the sweep encounters a GREATERP or LESSP with
more than two arguments [2} and [3}. Next, the implicit naming feature is used [4} to add a REMARK
command to the transformation for ASCII, which has already been partly written. The user realizes he
mistyped pan of the text, so he uses the SHOW command to find the name chosen for the note [5j. Then
he uses the NOTE command on this name, ASCII:, to edit the note [6}.

NOTE rrransorset Command]
First argument is note name and must be a literal atom. If already defined, NOT E
edits the old text; otherwise it defines the name, reading the text either from the
rest of th~ input line or from the next line. The text may be given asa line or as
a list Value is name of note.

23.38

LISPUSERS PACKAGES

The text is actually stored.23 as a commen~ i.e. a • and %% are added in front when the note is first
defined. The text will therefore be lower-cased the first time the user DUMPs (see page 6.52).

DELNOTE [fransorset Command]
Deletes a note completely (although any calls to it remain in the transformations).

23.8.8 Controlling the Sweep

TRANSOR's sweep searches in print-order until it finds a form for which a transformation exists. The
location is markecL and the transformation is executed. The sweep then takes over again, beginning
from the marked location, no matter where the last command of the transformation left the editor.
User transformations can therefore move around freely to examine the context, without worrying about
confusing_the translator. However. there are many cases where the user wants his transformation to guide
the sweep, usually in order to direct the processing of special forms and FEXPRs. For example, the
transfo~ation for QUOT E has only one objective: to tell the sweep to skip over the argument to QUOT E,
which is (presumably) not a LISP form. N LAM is an edit macro that permits this.

NLAM [fransorset Command]
An atomic edit macro which sets a flag which causes the sweep to skip the arguments
of the current form when the sweep resumes.

Special forms such as COND, PROG, SELECTQ, etc., present a more difficult problem. For example, (COND
(A B» is processed just like (FOO (A B»: i.e. after the transformation for COND finishes, the sweep
will locate the "next form," (A B), retrieve the transformation for the function A, if any, and execute
it. Therefore, special forms must have transformations that preempt the sweep and direct the translation
themselves. The following two atomic edit macros permit such transformations to process their forms,
translating or skipping over arbitrary subexpressions as desired.

DOTHIS

DOTHESE

[fransorset Command]
Translates the editor's current expression, treating it as.a single form.

[fransorset Command]
Translates the editor's current expression, treating it as a list of forms.

For example, a transformation for SETQ might be (3 DOTHIS).24 This translates the second argument
to a SETQ without translating the first. For COND, one might write (1 (LPQ NX DOTHESE», which
locates each clause of the COND in tum, and translates it as a list of forms, instead of as a single form.

The user who is starting a completely new set of transformations must begin by writing transformations
for all the special forms. To assist him in this and prevent oversights, the file (LISP)SPECIAL. XFORMS
contains a set of transformations for LISP special forms, as well as some other transformations which
should also be included. The user will probably have to revise these transformations substantially, since
they merely perform sweep control for Interlisp, i.e. they make no changes in the object code. They
are provided chiefly as a checklist and tutorial device, since these transformations are both the first to be
written and the most difficul~ esp.ecially for users new to the Interlisp editor.

230n the global list USERNOTES.

24Recall that a transformation is a list of edit commands . .In this case, there are two commands, 3 and
DOTHIS.

23.39

WHEREIS Package

When the sweep mechanism encounters a form which is not a list, or a form CAR of which is not an
atom, it retrieves one of the following special transformations.

NLISTPCOMS [Variable]
Global value is used as a transformation for any form which is not a list

For example, if the user wished to make sure that all strings- were quoted, he might set NLISTPCOMS to
«IF (STRINGP (##» ({ORR «~ QUOTE»«MBD QUOTE»» NIL».

LAMBDACOMS [Variable]
Global value is used as a transformation for any form, CAR of which is not an
atom.

These variables are initialized by <LISP)SPECIAL.XFORMS and are saved by the DUMP command.
NLISJPCOMS is initially NIL, making it a NO-OP. LAMBDACOMS is initialized to check first for open
LAMBDA expressions, processing them without translation notes unless the expression is badly formed.
Any other forms with a non-atomic CAR are simply treated as lists of forms and are always mentioned
in the translation notes. The' user can change or add to this algorithm simply by editing or resetting
LAMBDACOMS.

23.9 WHEREIS PACKAGE

Note: The WHEREIS is a LispUsers package that is contained on the file WHERE IS. COM. WHEREIS
requires the hash file package (page 23.41). Loading WHERE IS. COM will also load HASH. COM, if it has
not already been loaded

This package extends the function WHERE IS (page 11.10) such that, when asked about a given name as a
function, WHEREIS will consult not only the commands of files that have been noticed by the file package
(page 11.1) but also a hashfile database (page 23.41) that associates function names with filenames.

(WHEREIS NAME TYPE FILES FN) [Function]
Behaves exactly like the definition on page 11.10 unless TYPE = FNS (or NIL) and
FILES = T. In this case, WH ERE IS will consult, in addition to the files on F I L E L 5 T •
the hashfile that is the value of WHERE IS. HASH (initially < L ISPUSE R)WHE RE IS. HASH).

Note: Most system functions call WHEREIS with FILES=T, so loading this package automatically makes _
the information contained in the WHEREIS database available throughout the system.

Information may be added to a WHEREIS hashfile by explicitly calling the following function:

(WHEREISNOTICE FILEGROUP NEWFLG) [Function]
Inserts the information about all of the functions on the files in FILEGROUP into
the WHE,REIS data base contained on (the value of) WHEREIS. HASH. FILEGROUP

is given:as a filegroup argument to DIRECTORY (page 14.6), so &, $, etc. may be
used. If NEWFLG = T. a new version of WH ERE IS. HAS H will be created containing
the database for the functions specified in FILEGROUP.

23.40

, LISPUSERS PACKAGES

23.10 HASH FILES

Note: The hash file facility is a LispUsers package that is contained on the file HASH. COM. It currently
only works in I nterlisp-lO.

The hash file facility pennits infonnation associated with string or atom "keys" to be stored on and
retrieved from files. The infonnation (or "values") associated with the keys in a file may be numbers,
strings, or arbitary Interlisp expressions. The associations are maintained by a hashing scheme that
minimizes the number of page-maps it takes to access a value from its key.

A hash file may contain infonnation" other than key-value associations. The user may print on the file using
ordinary printing functions (e.g. P R IN 1, P R I NT 0 E F), and he may also store non-character infonnation
(e.g. binary data) fonnatted to suit his particular applications. This infonnation is stored in regions of
the file distinct from the hash index. The hash index can be used to locate non-hash infonnation, if the
necessary file addresses are stored as hash values.

A hashfile is created by the function CREATEHASHFILE:

(CREATEHASHFILE FILE VALtJETYPE ITEMLENGTH #ENTRIES) [Function]
A new version of FILE is opened and initialized as a hash file. VALtJETYPE is an
atom interpreted as follows:

NUMBE R The values are 24-bit 'ullsigned integers.

STRING The values are strings with less than 128 characters.

EX P R The values are arbitrary Interlisp expressions. The values are stored
by printing them in the file with readtable HASHFILERDTBL, initially
ORIG.

SMALLEXPR
The values are arbitrary Interlisp expressions such that (NCHARS
VAL tJE T HAS H F I L E ROT B L) is less than 128. Storing and retrieving
is more efficient than if VAL UETYFE = EX P R .

SYMBOLTABLE
The values are 24-bit unsigned integers, as when VALtJETYPE= NUMBER,
except that the numbers are treated as the addresses of "symbols" lo
cated on non-hash pages in the file. See the discussion of symbol-tables
below.

The other arguments to CREATE HASHF I LE are optional. ITEMLENGTH is the user's
estimate of the average number of characters in the entries he expects to store in
the hash file (= the average key length plus the average number of characters in
the values for VALUETYFE STRING or SMALLEXPR). #ENTRIES is an estimate
of the the total number of key-value associations he is likely to store. These
two arguments determine how many pages in the file will be initially allocated as
hash-pages; "accurate estimates can reduce the number of times that the file must be
rehashed as information is stored in it. If these arguments are not given, reasonable
defaults are supplied.

After being initialized, FILE is left open and CREATEHASHF I LE returns as its value

23.41

Hash Files

a "hashfile datum," a handle on the hashfile that may be used as an argument for
most of tj1e functions described below.

(OPE NHASHF I LE FILE ACCESS) [Function]

(HASHFILEP x)

Re-opens the previously existing hashfile FILE. ACCESS may be IN PU T (or NIL).
in which case FILE is opened for reading only. or BOTH. in which case FILE is
open for both input and output. Causes an error NOT A HASHF I LE. if FILE is
not recognized as a hashfile.

If ACCESS is BOTH and FILE is a hash file open for reading only, OPENHASHFILE
attempts to close it and re-open it for writing. Otherwise, if FILE designates an
already:open hashfile, OPENHASHFILE is a no-ope

OPENHASHF ILE returns a hashfile datum.

[Function]
Returns x if x is a hashfile datum (Le., a value returned by C REA T E HAS H F I L E
or OPENHASHFILE). If x is NIL, returns SYSHASHFILE if it is a hashfile datum.
If x is the name of an open hashfile, returns the corresponding hashfile datum.
Otherwise, returns NIL.

The following functions require an open hash file as an argument, Le. an object for which HA S H F I L E P is
non-NIL.

(PUTHASHFILE KEY VALUE HASHFILE) [Function]
Puts VALUE in HASHFILE, indexed under KEY. If VALUE is NIL, any previous entry
for KEY is deleted. .

(GETHASHFILE KEY HASHFfLE) [Function]
Returns! the value corresponding to KEY in HASHFILE. For files where VALUETYPE
is STRI!NG, NUMBER, or SYMBOLTABLE. the value returned by GETHASHF ILE is
temporary in that any subsequent calls to a hashfile or page mapping function may
smash it CONCAT or MKATOM must be applied if the value is a string, or IPLUS
if it is a! number, in order to make the value permanent.

(HASHFILEPROP HASHFILE PROP) [Function]
Returns, the value of the PROP property of HASHFILE. The recognized PROPS and
the values returned are:

VALUETYPE
One of NUMBER, STRING, EXPR, SMALLEXi'R, or SYMBOL TABLE.

NAME The full name of the file ..

ACCESS BOTH if file is open for writing, INPUT if it is read-only.

(HASHF I LENAME HASHFILE)' [Function]
Same as (HASHFILEPROP HASHFILE 'NAME).

(CLOSEHASHF ILE HASHFILE) [Function]
Same as (CLOSEF (HASHFILEPROP HASHFILE 'NAME».

The function HASHSTATUS can be used as a STATUS function for WHENCLOSE (page 6.11) to restore

23.42

LISPUSERS PACKAGES

the state of-a hashfile when a SYSOUT is resumed. If HASHSTATUS is usecL the PERMSTATUS package
(page 23.17) must also be loaded.

(MAPHASHFILE HASHFILE MAPFN) [Function]
For, each entry in HASHFILE, performs {MAPFN KEY (GETHASHFILE KEY
HASHFILE». If MAPFN is a functien of only one argument, performs (MAPFN
KEY) thereby avoiding the call to GETHASHFILE needed to obtain the value.
KEY is temporary, as for GETHASHFILE. VALUE is also temporary, for STRING,
NUMBER, and SYMBOL TABLE files.

(REHASHF ILE HASHFILE) [Function]
After many insertions and deletions much of the space in a hashfile may be

,unusable. REHASHF I LE reclaims that space by rehashing all the keys. The
information on non-hash pages in the file is not altered or movecL except that the
print name pointers in a SYMBOL TABLE file are updated (see below).

(COPYHASHF I LE HASHFILE NEWNAME FN VTYFE) [Function]
Calls CREATEHASHFILE to open NEWNAME as a hashfile, with VALUETYFE,
ITEMLENGTH and #ENTRIES determined by examining the open hashfile HASHFILE.
Then maps through all the keys in liASHFILE, doing the equivalent of:

{PUTHASHFILE
KEY
(GETHASHFILE KEY HASHFILE)
NEWHASHFILE)

for each key KEY. In essence, COPYHASHF I LE copies the hash portion of HASHFILE
to NEWNAME.

If FN is given, then it is applied to the successive values of HASHFILE, the old
HASHFILE, and the new hashfile, and the value returned is used as the value in the
new file. In effect,

{PUTHASHFILE
KEY
{FN (GETHASHFILE KEY HASHFILE)

HASHFILE
NEWHASHFILE)

NEWHASHFILE)

is evaluated for each key. Thus, the user can intervene as each key is processed in
order to copy information associated with the key that resides on non-hash pages.

For example, an EXPR file could be implemented by printing the full expressions
in a NUMBER file's printing region (see below) and storing their byte-positions as
hash values. Instead of reading an expression into internal data structures before
writing it out to the new file, a FN could be given that transferred the expression
to the new file more efficiently, via COPYBYTES. The function would return the
byte-position on the new file where the expression ended up. (Actually, this is the
way EXPR files are copied if FN is not specified.)

If FN is given, then VTYFE, if specifiecL is a temporary valuetype (NUMBER,

23.43

Hash Files

STRING, etc.} to be used during copying. This permits the user to force the
valuetype of both files to one more suited for FN, e.g. SMALLEXPR to STRING
or EXPR to NUMBER, as in the example. VTYPE does not affect the permanent
valuetype of either file.

(HASHF I LESPLST HASHFILS) [Function]
Returns a "generator" for the keys in HASHFILE that is acceptable as an argument to
FIXSPELL (page IS.18). Thus~ (FIXSPELL BADWORD 70 (HASHFILESPLST
HASHFILE» will spelling correct a word using the keys in HASHFILE.

(LOOKUPHASHFILE KEY VALUE HASHFILE CALLTYPE) [Function]

Examples:

A generalized entry for inserting and retrieving values; provides certain options
not available with GETHASHF ILE or PUTHASHF ILE. LOOKUPHASHF ILE looks up
KEY in: HASHFILE. CALLTYPE is an atom or a list of atoms. These keywords are
interpreted as follows:

RETRIEVE
If KEY is foun~ then if CALLT"YPE is or contains RETRIEVE, the old
value is returned from LOOKUPHASHF I LE; otherwise returns T.

DELETE If CALLT"YPE is or contains DELETE, the value associated with KEY is
deleted from the file.

REPLACE If CALLTYFE is or contains REPLACE, the old value is replaced with
VALUE.

INSERT If CALLTYFE is or contains INSERT, LOOKUPHASHFILE inserts value
as the value associated with KEY.

If KEY is not foun~ LOOKUPHASHF I LE returns NIL.

To either return an old value or insert a new value in the file if one does not already exis4 perform
(LOOKUPHASHFILE KEY NEWVALUE HASHFILE '(INSERT RETRIEVE». The value returned will
be NIL if NEWVALUE was inserte~ or the old value if KEY was found.

To merely check whether KEY exists in the file without actually retrieving its value (which may be
expen~ive for the more general valuetypes), perform (LOOKUPHASHFILE KEY NIL HASHFILE NIL).

The function PUTHASHF ILE is defined as:

(LAMBDA (KEY VALUE HASHFILE)
(if VALUE=NIL

then (LOOKUPHASHFILE KEY NIL HASHFILE 'DELETE)
else (LOOKUPHASHFILE KEY VALUE HASHFILE '(INSERT REPLACE»

VALUE»

And GETHASHFILE is defined as:

(LAMBDA (KEY HASHFILE)
(LOOKUPHASHFILE KEY NIL HASHFILE 'RETRIEVE»

23.44

LISPUSERS PACKAGES ,

23.10.1 Unstructured Pages and Symbol Tables

The non-hash information in a hash-file may be formatted as printed character strlngs or binary data.
Printed information resides in a file's "printing region", while binary data is stored on "unstructured
pages".

Unstructured pages in a file are allocated and deallocated by the hash package so that they do not encroach
on hash or printing pages. Other than that, the user has complete freedom to map them in for arbitrary
reading and writing. The primitive operations are:

(GETPAGE HASH FILE N) [Function]
Returns the page number of a free page in HASHFILE. If N is given, then the user
is guaranteed that the page returned is the first of N contiguous pages all of which
are free .

. . (DELPAGE PAGE# HASHFILE) [Function]
Removes page PAGE# from HASHFILE. PAGE# should be the number of an
unstructured page, either a value of GET P AG E or within the block of free pages
guaranteed by GET P AG E. The contents of the page in the file are lost, and the
page itself becomes available for reo·allocation either by GETPAGE or internally as
a hash page. If PAGE# happens to be the number of a hash page, the hashing
information will be destroyed.

Unstructured pages are available on hashfiles so that the user can link hash keys to data in special formats.
For example, the user might. associate lists of properties with a key by writing the properties on an
unstructured page, and then storing the file address of the properties as the value of the key in a NUMB E R
file.

A SYMBOL TABLE hashfile provides an additional feature that makes it possible to implement arbitrary
file-resident symbol processing systems. The user may store the data to be associated with a key on
unstructured pages, and he can then link the file address to the key via PUTHASHF ILE, as described
above. The difference between a NUMBER and SYMBOL TABLE file is that for a SYMBOL TABLE, the hash
package also stores the reverse link from the file address to the key. This makes it possible to obtain a
"print-name" for an address on an unstructured page, via the function GETPNAME:

(GETPNAME FILEADR HASHFILE) [Function]
Returns a temporary string containing the characters of the key whose hash value is
the 24-bit unsigned FILEADR. Causes an error if HASHFILE is not a SYMBOL TABLE
file.

The hash package automatically updates the print-name information for the file address if the key is
relocated by rehashing, and it destroys the back-link if the value for the key is deleted. A SYMBOL TABLE
file imposes one restriction on the way unstructured pages are treated: If a file address is stored as a
hash-value for some key, then the right-most 24 bits of the word at that location in the file are reserved
for the use of the hash mechanism.25 The user must not write into it.

With these primitives, a list-processing system with a 24-bit non-resident address space is easy to build.
The user is. responsible for allocating "atoms" on unstructured pages, and updating the "atom hash table"

25The left-most 12 bits are available and can be used for a number of applications, e.g. to store type-bits.

23.45

The Printing Region

with PUTHASHFILE. The seqond (and subsequent) words after an atom address may be used to store
the atom's "property list", containing other atom addresses, or other addresses interpreted as pointers to
"cons" cells. These can also be allocated on unstructured pages. It is ,a simple matter to implement the
equivalent of CAR, CDR, RPl~CA. and RPlACO.

23.10.2 The Printing Region

Hashfiles are organized so tha~ it is always permissible to print at the end of the file with ordinary Interlisp
output functions. That is, the! file is arranged so that the hash and unstructured pages are always located
before the end-of-file for seq~ential reading and writing. This is accomplished by creating the file with'
the end-of-file some number bf free pages past the last hash or unstructured page. When all free pages
below the end-of-file have be~n used, the end-of-file is moved so that there are again a reservoir of free
pages before it. :

Thus, the printing region may shift as a result of calls to GETPAGE or PUTHASHF ILE, and the user
cannot rely on the output from two different printing· operations being located at adjacent positions in
the file. The expressions pri~ted cannot be retrieved by successive calls to standard reading functions.
Instead, the user should record the byte position of each printed expression as a hash value or on an
unstructured page so that he ~ay use SETFIlEPTR to position the file properly. If he does change the
file's byte-pointer, he must bei sure to reset it to the end-of-file (e.g. (SE T F I l E PT R FILE -1» before
more printing is done.

23.11 EDITA

Note: ED IT A is a LispUsers Aackage contained on the file ED I T A • COM. That portion of ED IT A relating
to compiled ~ode may not be available in implementations of Interlisp other than Interlisp-lO. EDITA also
has a FILEDEF property so thl"t the user can simply call EOITA and the file will be automatically loaded

EDIT A is an editor for arrays~ However, its most frequent application is in editing compiled functions
(which are also arrays in Interllsp-10), and a great deal of effort in implementing EDITA, and most of its
special features. are in this are~. For example, EDITA knows the format and conventions of In~er1isp-10
compiled code, and so, in acJ;dition to decoding instructions a la DDT (one of the oldest debugging
systems still around), EDIT A qan fill in the appropriate COREY ALS, symbolic names for index registers,
references to literals, linked function calls, etc. The following output shows a sequence of instructions in
a compiled function first as th¢y would be printed by DDT, and second by EDITA.

23A6

466716/
466717/
466720/
466~21/

4667221
466723/
466724/
466725/
466726/
466727/
466730/
466731/
466732/
466733/
466734/
466735/
466736/
466737/
466740/
466741/
466742/
466743/

PUSH 16,LISP&KNIL
PUSH 16,LISP&KNIL
HRRZ 1,-12(16)
CAME l,LISP&KNIL
JRST 466724
HRRZ 1,11467575
PUSH 16,1
LISP&IOFIL,,467576
-3, , -3
HRRZ 1,-14(16)
CAMN 1,467601
JRST 466734
CAME 1,467602
JRST 466740
PUSH 16,467603
PUSH 16,467604
LISP&FILEN,a 467605
JRST 467561
CAME 1,467606
JRST 466754
HRRZ 1,@-12(16)
PUSH 16,1

LISPUSERS PACKAGES

3/
4/
5/
6/
7/
8/
9/
10/
III
12/
13/
14/
15/
16/
17/
181
19/
20/
211
221
23/
24/

PUSH PP,KNIL
PUSH PP,KNIL
HRRZ 1,-10(PP)
CAME 1,KNIL
JRST 926

HRRZ 1,@'BRKFILE
PUSH PP,l
PBINO 'BRKZ
-524291
HRRZ l,-12(PP)
CAMN 1, 'OK
JRST 17
CAME 1,' STOP
JRST 21
PUSH PP, 'BREAKl
PUSH PP, '(ERROR!)
CCALL 2,'RETEVAL
JRST 422
CAME 1,' GO
JRST 33
HRRZ 1,II-I0(PP)
PUSH PP,l

Therefore, rather than presenting ED ITA as an array editor with some extensions for editing compiled
code, we prefer to consider it as a facility for editing compiled code, and point out that it can also be
used for editing arbitrary arrays. /'

23.11.1 Overview

EDITA is envoked by calling the function EOITA:

(EOITA FN COMS) [Function]
Envokes EDITA to edit the function FN. To the user, EDITA looks very much
like DDT with Interlisp-lO extensions. If COMS is given, it should be a list of
commands for EDIT A. These are then executed exactly as though they had been
typed. EDITA can be ex-ited with the command OK.

Individual registers or cells in the function may be examined by typing their address followed by a slash,
e.g.

26Note that EDITA prints the addresses of cells contained in the function relative to the origin of the
function.

23.47

Input Protocol

6/ HRRZ 1,-10(PP)

The slash is really a command to EDIT A to open the indicated register. 27 Only one register at a time
can be open, and only open registers can be changed. To change the contents of a register. the user first
opens it, types the new contents. and then closes the register with a carriage-retum,28 e.g.

7/ CAME 1,'''' CAMN: I, ' 1" cr

If the user closes a register without specifying the new contents, the contents are left unchanged. Similarly,
if an error occurs or the user ,types control-E, the open register, if any, is closed without being changed.

23.11.2 Input Protocol

EDITA processes all inputs not recognized as commands in the same way. If the input is the name of an
instruction (Le., an atom with;a numeric OPO propeny), the corresponding number is added to the input
value being assembled, 29 and a flag is set which specifies that the input context is that of an instruction.

The general form of a machi~e instruction is (OPCODE AC , (t ADDRESS (INDEX» as described on
page 22.15. Therefore. in instruction context, EDITA evaluates all atoms (if the atom has a COREVAL
property, the value of the CO~EVAL is used), and then if the atom corresponds to an AC,30 shifts it left
23 bits and adds it to the input value, otherwise adds it directly to the input value, but performs the
arithmetic in the low 18 bits. 3~ Lists are interpreted as specifying index registers, and the value of CA R
of the list (again COREVALs are permitted) is shifted left 18 bits. Examples:

PUSH PP, KNIL
HRRZ 1,-10(PP)
CAME 1, 'GO
JRST 33 ORG

EDIT A cannot in general kno~ whether an address field in an instruction that is typed in is relative or
absolute. Therefore, the user must add ORG, the origin of the function, to the address field himself. Note
that EDITA would print this· in.struction, JRST" 53 ORG, as JRST 53.

The user can also specify the address of a literal via the ' command. see page 23.50. For example, if the
literal" UNBROKEN It is in cell 85672, HRRZ 1,'" UNBROKEN It is equivalent to HRRZ 1, 85672.

27EDIT A also converts absolute addresses of cells within the function to relative address on input. Thus,
if the definition of Foa begins! at 85660, typing 6/ is exactly the same as typing 85666/.

28Since carriage-return has a sWecial meaning, EDIT A indicates the balancing of parentheses by typing a
space. !

i

29The input value is initially 0;
30Le., if a " ," has not been seen, and the value of the atom is less than 16. and the low 18 bits of the
input value are all zero.

31Jf the absolute value of the a~om is greater than 1000000Q. full word arithmetic is used. For example,
the indirect bit is handled by sUnply binding @ to 2000000 OQ.

23.48

LISPUSERS PACKAGES

When the input context is not that of an instruction, i.e., no OPO has been seen, all inputs are evaluated
(the value of an atom with a COREVAL property is the COREVAL.) Then numeric values are simply added
to the previous input· value; non-numeric values become the input value.32

The only exception to the entire procedure occurs when a register is open that is in the pointer region
of the function, Le., literal table. In this case, atomic inputs are not evaluated. For example, the user
can change the literal F 09 to FIE by simply opening that register and then typing FIE followed by
carriage-return, e.g.

'FOO/ Faa FIE cr

Note that this is equivalent to

'FOO/ Faa (QUOTE FIE) cr

23.11.3 EDIT A Commands and Variables

cr (carriage-return) If a register is open and an input was typed, store the input in the register and
close it33

. ORG

/

tab (control-I)

If a register is open and nothing was typed, close the register without changing it.

If a register is not open and input was typed, type its value.

Has the value of the address of the first instruction in the function. Le., LaC of
GETO of the function.

Opens the register specified by the low 18 bits of the quantity to the left of the /,
and types its contents. If nothing has been typed, it uses the last thing typed by
EDITA, e.g.,

35/ JRST 53 / CAME 1, 'RETURN / RETURN

If a register was open, / closes it without changing its contents.

After a / command, EDIT A returns to that state of no input having been typed.

Same as carriage-return, followed by the address of the quantity to the left of the
tab, e.g.,

35/ JRST 53 <tab>
53/ CAME 1, 'RETURN

Note that if a register was open and input was typed, tab will change the open
register before closing it, e.g.,

32Presumably there is only one input in this case.

33 If the register is in the unboxed region of the function. the unboxed value is stored in the register.

23.49

.. (period)

line-feed

SQ «esc>Q)

lITS

BOXED

S (dollar)

=

OK

?

EDIT A Commands and Variables

361 JRST 63 JRST 64 TAB
641 JRST 70 cr
361 JRST 64

Has the value of the address of the current (last) register examined .

Same as carriage-return followed by (ADD 1 .) 1 i.e. closes any open register and
opens the next register.

Same as carriage-return followed by (SUB 1 .) 1

Has as its value the last quantity typed by EDIT A e.g.

361 JRST 63
.1 JRST 64

SQ 1 cr

Has as value the (relative) address of the first literal.

Same as LITS

Has as value the relative address of the last literal in the function.

Sets RAO I X (page 6.19) to -8 and types the quantity to the left of the = sign, i.e.,
if anything has been typed.. types the input value, otherwise, types SQ, e.g.

361 JRST 64 =264000241541Q
JRST 64=264000000066Q

Following =, RAD I X is restored and EDIT A returns to the no input state.

Exits EOITA.

Returns to "no input" state. ? is a "weak" control-E, i.e., it negates any input
typed.. but does not close any registers.

ADDRESS1 , ADDRESS21

'x

: ATOM

Prints the contents of registers ADDRESS1 through ADDRESS2 • • is set to ADDRESS2
after the completion.

Output goes to FILE, initially set to T. The user can also set FILE (while in
EDIT A) to the name of a disc file to redirect the output. (The user is responsible for
opening :and closing FILE.) Note that FILE only affects output for the ADDRESS1 '

ADDRESS21 command.

Corresponds to the ' in LAP. The next expression is read, and if it is a small
number,. the appropriate offset is added to it. Otherwise, the literal table is searched
for x, and the value of 'x is the (absolute) address of that cell. An error is
generated if the literal is not found.. Le., ' cannot be used to create literals.

Defines ATOM to an address: (1) the value of SQ if a register is open, (2) the input
if any input was typed, otherwise (3) the value of " ." (Only the low 18 bits are
used and converted to a relative address whenever possible). For example:

361 JRST 64 : Foocr

23.50

LISPUSERS PACKAGES

: FIE cr

FIEI JRST FOO .=35

EDITA keeps its symbol tables on two free variables; USERSYMS and SYMlST. USERSYMS is a list of
elements of the fonn (NAME • VALUE) and is used for encoding input, Le., all variables on USERSYMS
are bound to their corresponding values during evaluation of any expression inside EDIT A. SYMLST is a
list of elements of the fonn (VALUE • NAME) and is used for decoding addresses. USERSYMS is initially
NIL, while SYML.ST is set to a list of all the COREVALS. Since the : command adds the appropriate
infonnation to both these two lists, new definitions will remain in effect even if the user exits from EDIT A
and then reenters it later.

Note that the user can effectively define symbols without using the : command by appropriately binding
USERSYMS and/or SYMLST before calling EDITA. Also, he can thus use different symbol tables for
different applications.

$W «esc)W) Search command.

Searching consists of comparing the object of the search with the contents of each register, and printing
those that match, e.g.,

HRRZ @ $wcr
81 HRRZ 1,@'BRKFILE
231 HRRZ 1,@-10{PP)
281 HRRZ 1,@-12{PP)

The $W command can be used to search either the unboxed portion of a function, Le., instructions, or
the pointer region, i.e., literals, depending on whether or not the object of the search is a number. If
any input was typed before the $W, it will be the object of the search, otherwise the next expression is
read and used as the object.34 The user can specify a starting point for the search by typing an address
followed by a ", " before calling $W, e.g., 1, J RST $W. If no starting point is specified, the search will
begin at 0 if the object is a number, otherwise at LITS, the address of the first literal.3s After the search
is completed, "." is set to the address of the last register that matched.

If the search is operating in the unboxed portion of the function, only those fields (Le., INSTRUCTION, AC,

INDffiECT, INDEX, and ADDRESS) of the object that contain one bits are compared.36 For example, HRRZ
@ $W will find all instances of HRRZ indirect, regardless of AC, INDEX, and ADDRESS fields. Similarly.
'PRINT $W will find all instructions that reference the literal PRINT.37

34Note that inputs typed before the $W will have been processed according to the input protocol, i.e.,
evaluated; inputs typed after the $W will not. Therefore, the latter form is usually used to specify searching
the literals, e.g., $W FOO is equivalent to (QUOTE FOO) $W.

35Thus the only way the user can search the pointer region for a number is to specify the starting point
via" , ".

36 Alternately. the user can specify his own mask by setting the variable MASK (while in ED IT A), to the
appropriate bit pattern.

37The user may need to establish instruction context for input without giving a specific instruction. For
example, suppose the user wants to find all instructions with AC= 1 and INDEX = PP. In this case, the user
can give & as a pseudo-instruction, e.g., type & 1. (P P) .

23.51

Editing Arrays

If the search is operating in the pointer region, a "match" is as defined in the editor. For example, $W
(&) will find all registers that contain a list consisting of a single expression.

$C «esc)C) Like $W except only prints the first -:match, then prints the number of matches
when the search finishes.

23.11.4 Editing Arrays

EOITA is called to edit a function by giving it the name of the function. EOITA can also be called to
edit an array by giving it the array as its first argument,38 in which case the following differences are to
be noted:

1. decoding - The contents of registers in the unboxed region are boxed and printed as numbers, i.e.,
they are never interpreted as instructions, as when editing a function.

2. addressing convention - Whereas 0 corresponds to the first instruction of a function, the first element
of an array by convention is element number l.

3. input protocols - If a registf)r is open, lists are evaluated, atoms are not evaluated (except for $Q which
is always evaluated). If no register is open, all inputs are evaluated, and if the value is a number, it is
added to the "input value".

4. left half - If the left half of an element in the pointer region of an array is not all O's or NIL, it is
printed followed by a ": to, e.g.

10/ (A B) ; T

Similarly, if a register is closed, either its left half, right half, or both halves can be changed, depending
on the presence or absence, and position of the ";" e.g.

10/ (A
· / B ;

· / B ;

· / A ;

B) ; T
T
NIL
C

B; cr

NIL cr

A ; Ccr

[changes left]
[changes right}

[changes both]

If";" is used in the unboxed portion of an array, an error will be generated.

38the array itself, not a variable whose value is an array, e.g., (E 0 I T A F 00), not (E 0 I T A 'F 00).

23.52

LISPUSERS PACKAGES

The $W command will look at both halves of elements in the pointer region, and match if either half
matches. Note that $W A : B is not allowed.

23.12 CJSYS

Note: Cjsys is a LispUsers package that is contained on the file CJSYS. COM. It only works with Interlisp-lO.

This package provides assistance to Interlisp-lO users who wish to make direct calls on the operating system
(via JSYSes). It also makes the coding of certain common ASSEMBLE constructions more convenient.
The package defines the following functions:

(JS JSYSNAME ACl AC2 AC3 RESULT) [NLambda Function]
All arguments are evaluated except for JSYSNAME. Like JSYS (see page 22.6),
loads the unboxed values of AC1, AC2, and AC3 into the appropriate registers, and
executes the JSYS JSYSNAME. J S differs from J S Y S in that the JSYS may be
indicated by its symbolic name, not just by its number. J S also generates slightly
cleaner code than JSYS. JS also differs from JSYS in that:

(a) if any argument is supplied as NIL. then it is not loaded at all. i.e. the
corresponding AC will contain garbage. (J SY S loads the AC with 0.)

(b) if RESULT is NIL, then no value is loaded (interpreted, JS returns the string
"garbage 'result from JS").

(c) RESULT can be T, meaning return T if the JSYS skips, NIL if not

Because of these differences, caution must be exercised in turning JSYS calls into
JS calls.

The'symbolic JSYS name is looked up on the list JSYSES, an association-list with
elements of the form (JSYSNAME JSYSNUMBER #SKIPS). If no entry is found,
then the file STENEX. MAC (or SYS ~ MONSYMS. MAC for Tops-20) is scanned.

Examples: (JS BIN (OPNJFN FILE) NIL NIL 2) returns the value of AC2 after doing a BIN from
the JFN of FILE. (JS BOUT (OPNFJN FILE) 3) sends a control-C to FILE. The value of this JS call
is garbage.

(XWO Nl N 2) [Function]
Returns (LOGaR (LLSH Nl 18) (LOGAND N2 777777Q». i.e. the word with
N 1 in the left half and N 2 in the right.

(B IT BIT# WORD) [NoSpread Function]
If WORD is not specified, BIT simply returns a number with bit BIT# set to 1 and
all other bits O. If WORD is given, then BIT is a predicate that returns T if BIT#

is set in WORD. Bits are numbered from left to right.

Examples: (B IT 32) is 8 (= 10Q), (B IT 32 8) is T.

23.53

Nobox

(JSYSERROR ERRORN) [NLambda Function]
Returns the TENEX/TOPS-20 error number for ERRORN. For example, (JSYSERROR
GJFX23) is 600103Q. JSYSERROR compiles open as a constant.

This package also defines the following ASS E MB L E macros:

(J S JSYSNAME)

(CV EXPR)

(CV2 EXPR)

23.13 NOBOX

Can be used in ASSEMBLE statements instead of (JSYS JSYSNUMBER).

Expands to {CQ {VAG (F I X EXPR»). which unboxes EXPR to AC 1.

Expands to {CQ2 {VAG (FIX EXPR»). which unboxes EXPR to AC2, saving
AC1.

Note: Nobox is a LispUsers package that is contained on the file NOBOX. COM. It only works with
I nterlisp-l O.

This package contains facilities for subverting the nonnal manner of dynamically allocating and collecting
CONS cells. large integer boxes, and floating boxes in Interlisp-lO by using static, compile-time allocation.
Storage allocation is controlled by allocating the memory for temporary results (e.g. a list that will be
thrown away or a floating number that will not exist outside a local computational context) at compile-time
or load-time. This "static" storage will be reused whenever the given line Qf code is re-executed. Because
functions which use these facilities may exhibit bizarre behaviour if they are called recursively or if values
escape outside of them, these ifacilities must be used with extreme caution, and should be reserved for
those cases where the normal' method of storage allocation and garbage collection is not workable or
practical. Note: compiled functions need no run-time support for these facilities, Le. NOBOX does not
have to be loaded to execute compiled code.

23.13.1 CONS Celis

The function CBOX may be used to avoid allocation of CONS cells. When run interpretecL CBOX is exactly
equivalent to the function CONS. Compiled, CBOX operates like CONS, except that the CONS cell returned
is constructed (once) at compile or load time. New values for CAR and CDR are smashed into the cell at
each execution.

The function LBOX perfonns ananalagous role for LIST. When run interpreted, LBOX is exactly equivalent
to LIST. Compiled. the corresponding CONS cells are allocated at compile or load time. For example.
(lBOX ABC) will cause a 3~element static list to be included with a compiled function's literals. Each
time the corresponding compiled code is executed, those three cells will be returned containing the current
values of the variables A, B. and C.

LBOX allocates as many cells as,there are arguments in the corresponding fonn. Le. the number of scratch
cells is determined at compile time. The iterative statement operator SCRATCHCOLlECT enables avoiding
CONSes when the length of a list is not known at compile-time. SCRATCHCOLLECT is used in iterative
statements exactly as COLLECT. Each time it is executed. it reuses the cells that it returned on previous
executions. which it remembers as an internal scratch list. The length of this scratch list is always the

23.54

LISPUSERS PACKAGES

length of the . longest value that was ever returned; new cells are allocated -whenever the scratch list runs
out, and they are pennanently remembered.

The SCRATCHCOLLECT i.s.opr and the function SCRATCHLIST (page 14.2) have similar applications.
With SCRATCHLIST, the user makes explicit the- origin of the list getting smashec! while with the
SCRATCH~OLLECT Ls.opr, the scratch list is hidden (and there is a different scratch-list for each occurence
of the i.s.opr).

23.13.2 Number Boxes

The functions IBOX, FBOX, and NBOX, and the record declarations IBOX and FBOX are provided to
improve the efficiency of arithmetic computations. They pennit infonnation to be given to the Interlisp-lO
compiler that will inhibit the allocation (and subsequent collection) of number boxes needed for holding
temporary results of numeric computations.39 In addition, access time to variable-values that are known
to be large integers or floating point numbers is improved.

The records IBOX and FBOX essentially describe the structure of large integer and floating point boxes
respectively. IBOX consists of a single fielc! called I, which corresponds to the actual contents of the large
integer box. FBOX consists of a single field, called F, which -corresponds to the contents of the floating
point box. For example, the user can create a large integer box containing a given value and assign it to
X by saying (SETQ X (create IBOX I +- FORM». Even if the value of FORM is a small integer,
the result will be stored in anew, large number box. This seeming inefficiency is important because if
some values of FORM might be large, making all values large means that the compiler can be told how
to treat all references to X without generating run-time _ tests to discover how to do the. unboxing. Thus,
wherever the value of X is to be referenced, the user simply writes (f etc h I 0 f X). In compiling this
expression, the compiler generates a single MOVE instruction without any type-testing whatsoever. The
user can reuse that number box by saying (repl ace I of X with (FOO», which is equivalent to,
but much more efficent than, (5 E TN X (F 00)). In other words, once it is known that X is bound to a
large integer, (rep 1 ace I of ...) can be used in all number-contexts to infonn the compiler of that
fact.

The facilities described so far do nothing to suppress the creation of unnecessary boxes; indeed, the
(c rea te IBOX --) will produces boxes for small numbers that would not be allocated otherwise. The
functions (not records) IBOX, FBOX, and NBOX are used to suppress unnecessary boxing of temporaries.
Effectively, they cause "constant" or "static" boxes of the appropriate type to be allocated and stored in a
function's literals when a function is compiled or loaded. 'Those boxes can be used (and reused) to hold
temporary results.

IBOX and FBOX can be called with 0 or 1 arguments. If no arguments are specified (as opposed to a
single argument whose value is NIL), then the value of the function is a large-integer or floating number
box which is allocated statically. For example, these might be used to construct an initial binding for a
variable into which temporary values will be stored using the I or F assignments. For example:

{PROG {{X (IBOX») (replace I of X with (FOO» ...)

39In the latter respect, these duplicate some of what SETN (page 22.5) does, except that they are more
convenient to use and are executed with less run-time checking (Le. SETN will never smash random
memory locations).

23.55

Cautions

If an argument is specified for IBOX or FBOX, then a static box of the appropriate type will be allocated
at compile- or load-time, and the value of the argument will be stored in that box whenever the I BOX
statement is executed. For example; suppose the user wanted to set a file pointer to 1 past a given byte
position. The expression

(SETFILEPTR FILE (ADD1 POS»

would generate a new numb~r box on each execution for which POS happened to be a large number.
That box would be passed int6 SET F I L E P T R and then returned as its value. Since the value is not saved,
the box would be thrown away, to be collected later. The expression

(SETFILEPTR FILE (IBOX (ADD1 POS»)

would store the desired position in a constant box. and no allocations would take place.

As another example, consider. a complicated integer expression whose value must be saved in a variable
to be used a little further down in a program:

(SETQ X (IPLUS 2000 (]TIMES FOO (IQUOTIENT FUM 5»»

(SETQ Z (IPLUS X (GET~ILEPTR FILE»)

The Interlisp-lO compiler is smart enough -to suppress the boxing inside the (I PLUS 2000 &) expression,
but it will generate a box when it comes to do the SETQ. This box can be suppr~ssed by writing

(SETQ X (IBOX (IPLUS ZOOO (ITIMES FOO (IQUOTIENT FUM 5»»)

Furthermore, since it is known that X is bound to a large integer, the Z assignment can be speeded up
by writing

(SETQ Z (IPLUS X:I (GETFILEPTR FILE»)

The function FBOX behaves tije same as IBOX, except that it uses constant floating boxes. Note that if
the argument of IBOX is FLOATP, then it will be FIXed; if the argument of FBOX is FIXP, it will be
FLOATed.

The function NBOX is a generic function for copying unknown values into constant number boxes. It
allocates two constant boxes, o~e integer and one floating, and stores the value of its argument in the one
compatible with the value's type. NBOX is useful if the argument value is a constant number box (but
one of unknown type) that needs to be copied (see caution (2) below).

23.13.3 Cautions

There are some dangers in using these facilities. The user of this package should be particularly aware of
the following:

(1) The F and I fields aim at e~ciency more than validity. This means that they do not check the type of

23.56

LISPUSERS PACKAGES

the pointer that they smash into. For example, if X, is bound to NIL, the expression (rep 1 ac e I 0 f X
w,i t!h Z will clobber CAR and CDR of NI L! The user must be very careful that the arguments given for
replacing do indeed point to cells that unboxed numbers can be smashed into. Note! the DECL package
(page 23.18) can be used to generate the rep 1 aces, IBOXes, FBOXes automatically in 'a safe and efficient
way.

(2) CBOX, LBOX, SCRATCHCOLLECT. IBOX, and FBOX all allocate constant boxes, and those boxes will
be reused (i.e. smashed with new values) every time the code containing that function call is executed.
If that box is saved in a variable or data-structure (e.g. by a SETQ) as a way of preserving the value it
contains, and then the code is re-executed, the value that was saved will be smashed. Thus. the user must
beware of using constant boxes to save information in loops or recursions that can get back to the same
statement In these situations, the values must be copied into other cells, perhaps a constant associated
with some other line of code, or into cells allocated in the ordinary way. The user must also be careful
about returning a constant box as the value of a function, since the caller might unknowingly save the
value and re-invoke the box-returner.

(3) Because the constant boxes are allocated only in compiled code, these functions will work quite
differently compiled and interpreted Side effects which occur because of inadvertent smashing of shared
structures will only occur when running compiled definitions and will not be detectable when running
interpreted.

23.14 DATEFORMAT

Note: Datefonnat is a LispUsers package that is contained on the file DATEFORMAT • COM. It only works
in Interlisp-lO.

Dateformat is a small file (one function) which provides assistance for constructing format bits for the
ODTIM JSYS (output date/time) as required by DATE and GDATE (page 14.9).

(DATE FORMAT KEY1 ... KEYN) [NLambda NoSpread Function]
KEY1 •.. KEYN are a set of keywords (unevaluated). DATE FORMAT returns a number
suitable as a parameter to DATE and GOA T E. The variable DA T E FORMA T . DE F AU L T is
the number used as the initial value to work with. Therefore, to switch any of
the defaults, set the variable DA T E FORMA T . 0 E F AU L T to be the value of a call to
DA T E FORMA T with the appropriate keys.

The keywords are given below (usually in pairs) and can be thought of as switches (Le. tum on or off a
particular format feature). If no keyword-is given for a particular pair, the default is used.

The variable DATE FORMAT . KEYS is a list of the keywords used for spelling correction.

DA T E (default)
NO. DATE Do/don't include the date information.

NAME. OF . MONTH (default)
NUMBER.OF.MONTH

Show the month as a name (NAME. OF . MONTH) or a number (NUMBE R. OF . MONTH).

MONTH. LONG

23.57

Dateformat

MONTH. SHORT (default)

YEAR. LONG

If the name of the month was requestecL spell it out (MONTH. LONG) or abbreviate
it (MONTH. SHORT).

YEAR. SHORT (default)

DAY.OF.WEEK

Print four digit year, e.g. 1978 (YEAR. LONG) or two digit year, e.g. 78
(YEAR. SHORT).

NO. DAY. OF • WEEK (default)

DAY. LONG
DAY. SHORT (default)

DASHES (default)
SLASHES
SPACES

USA. FORMAT

Do/Don't include the day of the week in the date information.

If the day of the week was includecL spell it out (DAY. LONG) or abbreviate it
(DAY. SHORT).

Separate the <day>, <month>, and <year> fields with dashes/slashes/spaces.

EUROPE. FORMAT (default)
Print the date in the order <month> <day> <year> (USA. FORMAT) or in the order
<day> <month> <year> (EUROPE. FORMAT).

LEADING. SPACES (default)
NO.LEADING.SPACES

TIME (default)
NO. TIME

TIME.ZONE

If LEADING. SPACES is specifiecL the <day> field will always be two characters
long. If NO. LEAD ING. SPACES, the <day> field can be one character for dates
earlier than the 10th.

Do/Don't include the time information.

NO. TIME. ZONE (default)
Do/Don't include the time zone in the time specification.

SECONDS (default)
NO. SECONDS Do/Don't include the seconds.

CIVILIAN. TIME
MILITARY .TIME (default)

Use 12 hour time with AM or PM (CIVILIAN. TIME) or 24 hour time

23.58

LISPUSERS PACKAGES

(MILITARY. TIME).

23.15 EXEC

Note: The Exec package is a LispUsers package that is contained on the file EXEC. COM. The Exec package
uses the passwords package (see page 23.62). Loading EXEC. COM will load PASSWORDS. COM if it has
not already been loaded Note: some of the facz1ities described below will work correctly only on TEN EX
systems, others only on TO PS-20. The system will inform the user when he attempts to use a facility not
supported by his particular operating system

This package defines a set of programmer's assistant commands which resemble features of the Tenex
EXEC. It also defines functions that provide certain EXEC capabilities for Interlisp programs, e.g. changing
the connected directory, detaching the job, etc.

23.15.1 Exec Commands

OA

LD
SY
WHE

LD USERNAME

LO ALL

OET

QU

LINK USER

TALK USER

BR

CONN DIR PWD

Prints out the current time and date.
[Exec Command]

[Exec Command]
[Exec Command]
[Exec Command]

Prints SYST AT information, just like the LO subsystem. Jobs are sorted in inverse
order of CPU utilization.

[Exec Command]
Prints information for the specified user only.

[Exec Command]
Like LO, but includes system jobs.

[Exec Command]
Detaches the current job.

[Exec Command]
Does a (LOGOUT). Does not go on history list.

[Exec Command]
[Exec Command]

Mimics the exec link command. If USER has multiple jobs logged in, asks which
tty to link to.

[Exec Command]
Breaks links.

[Exec Command]
Connects to the directory DIR. If the password- PWD is not given and is required,
CONN will prompt. DIR can be abbreviated; if omitted, it defaults to the user's login

23.59

NO I R FILEGROUP

EXEC Functions

directory. If PWD is given in command line, it is removed from the history list so
that?? will not print it out. Password prompting is handled by GETPASSWORO
from the passwords package (page 23.62).

Prints the files in FILEGROUP in a multi-column fonnat.
[Exec Command]

NOIR FILEGROUP [Exec Command]
Deletes specified files. Uses 0 I RECTORY (page 14.6). Note that if <esc> is specifie~
all files that match will be deleted. This command is undoable.

UNO FILEGROUP [Exec Command]
Undeletes the specified files (undoably).

DELVER FILEGROUP [Exec Command]
Deletes all but 1 version of the filegroup specified. Uses DIRECTORY (page
14.6), so FILEGROUP may utilize any of the options allowed for directory file group
specifications.

EX P DIR [Exec Command]
Expunges directory DIR. If the user does not have access to DIR, a message is
printed.

TY FILE OUTFILE BYTESIZE [Exec Command]
SEE FILE OUTFILE BYTESIZE [Exec Command]

DSK DIR DAYS

FI

FI JFN

Copies FILE to OUTFILE, or to T if OUT F I LEis not given. Assumes that the bytes
of FILE are BYTESIZE bits wide (BYTESIZE = NIL defaults to 7). Suppresses blank
lines and control character sequences used to indicate font changes.

[Exec Command]
Prints out disk allocation and usage for the directory DIR using DSKST AT. Also
prints total size of files untouched in days DAYS (90 if DAYS not specified).

[Exec Command]
Like the EXEC F I LEST A T comman~ prints out status of all currently assigned
lFNS for the current job.

[Exec Command]
Prints information for JFN only.

23.15.2 EXEC Functions

(J08#) [Function]
Retumsthe job number for the logged in job.

(TTY#) [Function]
Returns the teletype-number of the current job.

(DETACH) [Function]
Detaches the current job.

23.60

LISPUSERS PACKAGES

(DETACHEDP) [Function]
Returns T if the current program is running detached.

(LINKTOTTY TTY#), [Function]
Generates a two-way link· between the controlling terminal of the user's job and
TTY#. Returns T if the link was successful, otherwise prints an error message and
returns NIL.

(LINKTOUSER USER) [Function]
Links the controlling terminal to a terminal associated with USER. Generates an
error if the user is not logged in or not attached. If USER has more than one
attached job, then a systat of his jobs is printed, and the user is asked to provide
the proper tty number for the job. Returns T if successful.

(BREAKLINKS) [Function]
Breaks all1inks to the user's controlling terminal.

(C NO I R DIH PASSWORD) [Function]

(/DELFILE FILE)

(/UNDELFILE FILE)

(EXPUNGE DIH)

Implements the CONN command.

[Function]
Undoable version of DE L FILE.

[Function]
Undeletes a single file (undoably).

[Function]
Expunges directory DIR. On TENEX, DIR is ignored. and the connected directory
is expunged. On TOPS20, if the user does not have access to DIR, a message is
printed.

(COPYALLBYTES FROMFILE TOFILE BYTESIZE)
Implements the SEE command.

[Function]

(DSKSTAT DIR PRINTIFOVER PRINTSYS PRINTDEL PRINTOLD) [Function]
Prints disk usage statistics for directory DIR (either a name or number).

If PRINTIFOVER is NIL, this means always print. If PRINTIFOVER is T. this means
only print if DIR is over allocation. If PRINTIFOVER is a number, this means only
print if DIR has more than that many pages in use.

If PRINTSYS is T, this means print system disk statistics too.

If PRINTDEL is T, this means print total size of deleted files for DIR (this is slow).

If PRINTOLD is T or a number, this means print total size of files untouched in 90
(or PRINTOLD) days.

(MEMSTAT PGl PGN FORK) [Function] .
Prints the status of the memory pages PGl (0 if PGl = NIL) to PGN (the last page
of memory if NIL) in fork FORK. FORK is either NIL, meaning the current fork,

23.61

Passwords

or a fork handle.

23.16 PASSWORDS

Note: Passwords is a LispUsers package that is contained on the file PASSWORDS. COM. It only works with
I nterlisp-J O.

(GETPASSWORD DIRECTORYNAME) [Function]

23.17 TELNET

Prompts the user for the password for the given directory. The user's response
is not echoed. GETPASSWORD remembers the password so that it need not ask
again; however, saved infonnation is cleared before SYSOUT, so that the SYSOUT
contains no passwords.

Note: Telnet is a LispUsers package that is contained on the file TELNET. COM. It only works with
Interlisp-lO. Since the telnet package uses the net package. loading TELNET • COM will also load NET. COM
unless it has already been loaded

This· package makes it possib~e to interact with connections created via the net package (page 23.64)
without leaving Interlisp. In addition, all typeout is included in the DR I B B L E file. It pennits connections
to ARPANET hosts (a la TELNET).

(TELNET CONNECTION TYPE SKT -) [Function]

23.18 FTP

CONNECTION may be an instance of a CONNECTION record (as created by
MAKENEWCONNECT ION, page 23.64). Altem~tively, if CONNECTION is a litatom,
TELNEl uses (MAKENEWCONNECTION CONNECTION TYPE SKT) for the con
nection. In any case, T E LN E T returns the connection as an instance of the
CONNECTION record, so that it is possible to TELNET back.

Note: Ftp is a LispUsers package that is contained on the file FTP. COM. It only works with Interlisp-JO.
Since the Ftp package uses the net and passwords packages, loading FTP. COM will also load NET. COM and
PASSWORDS. COM if they are not already loaded

The ftp package makes it possible to deal with files at other hosts on the Arpa network almost as if they
were files on the user's local machine, i.e. the files can be operted via INFILE. OUTFILE. OPENFILE,
read from and printed to by the ordinary reading and printing functions, and closed in the standard way.

Files on remote hosts are designated by including the host name between curly brackets. {}, at the
front of the ordinary file name. Since curly brackets are illegal characters in regular file names, a BAD

23.62

LISPUSERS PACKAGES

FILE NAME error is generated. This error is intercepted by an entry on E RRORTYPE LST (see page
9.16) which then establishes the appropriate network connections.4o For example, (INF ILE '{BBN
O}<LEWIS)INIT. LISP) will open the file <LEWIS)INIT. LISP on the host BBN-D and make it be
the primary input file. The user could then say (READ) to obtain the first expression on that file. The
ftp package extends the functions PACKFILENAME, UNPACKFILENAME, and FILENAMEFIELD so that
they will associate the curly bracket syntax with the new file field HOST. Thus, (PACKFILENAME 'HOST
'BBND 'NAME 'IN IT) will return {BBND} INIT.

Remote files have certain properties that limit how they may be used:

(1) RANDACCESSP is NIL for such files, and SETFILEPTR may not be applied to them. This means, for
example, that functions and variables may not be loaded from such files via LOADFNS.

(2) The open bytesize of a remote file may not be changed (e.g. by SETFILEINFO). This means that
Interlisp-10 compiled files may not be loaded from remote hosts.

(3) The remote host may close the connection spontaneously (e.g. because of a timeout if the file is not
referenced for some length of time, or because of a crash). If this happens, the next attempt at reading
or writing on the file will generate FILE DATA ERROR. Note: it is unwise to keep a remote file open
for long periods of tlme.41

When the connection for the remote file is first established, a password for the remote machine/directory
may be required. The user will be asked to supply one via the passwords package (page 23.62).
Alternatively, .if the host name has on its property list the property LOG I N with value of the form (NAME
PASSWORD ACCOUNT). then the indicated NAME, PASSWORD. and ACCOUNT will be used to log the user
into the remote host 42

(FTP HOST FILE ACCESS USER PASSWORD ACCOUNT BYTESIZE) [Function]
Opens a network connection to the ftp server at HOST. If ACCESS = IN PUT
or OUTPUT, FTP works like OPENFILE: value is a literal atom of the form
{HOST}FlLE which can then be used as a file name by all Interlisp input and output
functions, e.g. READ, PRINT, COPYBYTES, etc.43 For example, (FTP 'SU-AI
'YUMYUM%[P; OOC%] 'I NPUT) will allow the Stanford Restraurant Guide to be
read. Note that FILE must satisfy the file name conventions of the remote host.

4°Note: it is fairly expensive to open a network connection as compared with the time to open a local
file, e.g. an order of magnitude slower.

4lFor input files, these limitations may be skirted conveniently in the following way: if a colon appears be
tween the last character of the host name and the right curly bracket (e.g. {BBND: }<LEWI S) INIT • LISP),
then the remote file will be copied to a temporary local file when it is opened, and all subsequent references
will be to that local file.
421f the value is of the form (NAME NIL ACCOUNT), then (GETPASSWORD NAME) will be used for
the password. If the ACCOUNT field is NIL, no account will be supllied to the remote host. If no LOG IN
property is supplied, ANONYMOUS will be used as the user name.

431n reality, this "file" is a network connection to the host's ftp server. This "file" has a WHENCLOSE
attribute (page 6.11) associated with. it so that· when Interlisp closes the file, the correct terminating
sequence will be perfOimed.

23.63

23.19 NET

Net

If AcC'Sss=DIRECTORY, then FTP will print on the terminal the names of
all fileS which match FILE, e.g. (FTP' PARC-MAXC2 '(NETLISP) *. SAV
'0 I RECTORY).

USER, PASSWORD, and ACCOUNT are used for logging in to the remote host. If not
supplie<:i, the values are obtained from the LOG I N property (if any) as described
above. 1;JYTESIZE is the byte size in which to open the connection. Byte sizes of 7,
8, 16. 32 and 36 are supported. BYTESIZE = NIL defaults to 7.

Note: Net is a LispUsers package that is contained on the file NET. COM. It only works with Interlisp-lO.

This package contains functions for establishing ARPANET connections from an Interlisp-lO job. A
connection is described by and is an instance of the record CONNECT ION. The only fields of interest to
the user in this record are IN ~d OUT, which are guaranteed to be CAR and CADR, respectively. IN is a
file name which can be read ~om, OUT a file name which can be printed to.

(MAKENEWCONNECTION HOST TYPE SKT SCRATCHCONN WAITFLG) [Function]
Makes ~ connection to HOST. For TYPE = ARPA, HOST is the name of the host
to which the connection is to be made. For SKT= NIL (the normal case), the
connection will be to the telnet server of HOST; connections to other servers can
be made by supplying the' appropriate value for SKT.

The val1l1e of MAKENEWCONNECTION is a CONNECTION. If WAITFLG is non-NIL,
MAKEN~WCONNECT ION waits until its request for connection is acknowledged.
Otherwi~e, CHECKCONNECT ION must be called on the result before it is used
(this allows additional processing to be done while waiting for the remote host to
respond).

If SCRATCHCONN is non-N I L, it is a scratch connection which is reused.

For example, (MAKENEWCONNECT ION 'BBND) makes an ARPA connection to BBND, (MAKENEWCONNECT ION
'SU-AI 'ARPA "F INGER) makes a connection to the Stanford WHERE IS service.

(CLOSECONNECT ION CONNE9TION) [Function]
Closes the given CONNECTION and replaces the I N and OUT fields with NIL.

!

(CHECKCONNECTION CONNE9TION) [Function]
Checks ~o make sure that the given connection is still open (e.g. it hasn't been
closed r~motely). If the connection is valid, CONNECTION is returned. If the
connectipn is in an in-between state, Le. in the process of being opened or
closed, d,HECKCONNECT ION waits to see what happens before returning. Otherwise
the connection is cleaned up (as if a CLOSECONNECT ION were performed) and
CHECKCONNECTION returns NIL.

(NETSERVER ARPA# WAITFLG) [Function]
Initiates ;a "server" connection. This is a connection which will talk to a "user"
connection. If WAITFLG is non-N I L. waits for a user to connect; if WAITFLG = NIL.

23.64

LISPUSERS PACKAGES

returns immediately (and CHECKCONNECTION must be called on the connection
before the connection is actually used). ARPA# defaults to O.

(NETUSER HOST USER ARPA# WAITFLG) [Function]
Initiates the other half of an Arpa connection. ARPA# defaults to 0 and must be
the same as the argument given the corresponding call to NETSERVER. USER must
be the USERNUMBER (directory number) under which the server job is logged in.

For example, to establish an ARPANEf connection between two Interlisp jobs (which can then be
written to and read from like files), do (SETQ CONN (NETSERVER» in one job and (SETQ CONN
(NETUSER HOST USER» in the. other job, where HOST is the machine on which the first job is
running and USER is the directory number under which the first job is logged in (obtainable through the
function USERNUMBER). Then, perform (CHECKCONNECT ION CONN) in each job; when these return.
the connection is ready to be used.

(FORCEOUT CONNECTION/FILE) [Function]
Normally, characters sent to the "OUT" of a connection are buffered locally. The
function FORCEOUT can be used to force partially filled packets of bytes to be sent
across the connection. The argument to FORCEOUT can either be the CONNECT ION
record or the OUT filename.

23.65

Net

23.66

(A El 000 EM) (Editor Command) 17.8,24

a-lists (in EV ALA) 5.12

AOOOn (gensym) 2.11

ABBREVLST (Variabk) 653

(ABS x) 2.45

AC (in an ASSEMBLE statement) 22.19

AC1 22.19; 22.12,14

access chain 7.2

ACCESSFNS (Record Type) 3.8

active frame 7.2

(ADD· DATUM ITEMl ITEM:z •..)

(Change Word) 3.13

(ADD. PROCESS FORM PROPl VALUEl
PROPN VALUEN) 18.26

(ADDl x) 2.39

(ADDMAPBUFFER TEMP ERRORFLG)
14.18

(ADDMENU MENU WINDOW POSITION

-) 19.38

(ADDPROP ATM PROP NEW FLG) 2.7

(ADDSPELL x SPLST N) 15.17; 15.18-19

ADDSPELLFLG (Variable) 15.12; 1l.4;
15.14,18

(ADDSTATS STATl 0'0 STATN) 8.21; 18.6

(ADDTOCOMS COMS NAME TYPE -
-) 11.33

(ADDTOFILE NAME TYPE F~E -
-) 11.33

(ADDTOFILES? -) 11.8

(ADDTOSCRATCHLIST VALUE) 14.2

(ADDTOVAR VAR Xl X:z .0. XN) 11.38

(ADDVARS (VARl • LST1) "0 (VARN
• LSTN » (File Package Command)
11.23

(ADIEU VAL##) 7.16

(ADJUSTCOLORMAP PRIMARYCOLOR DELTA

COLORMAP) 19.46

INDEX

(ADJUSTCURSORPOS IT ION DELTAX

DELTAY) 19.16

ADV-PROG (Function) 10.8-9

ADV-RETURN (Function) 10.8-9

ADV-SETQ (Function) 10.8-9

advice 10.8

(ADVICE FNl ••• FNN)

(File Package Command) 11.24;
10.11

ADVI CE (File Package Type) 11.15

ADVICE (Property Name) 10.10-11; 11.12

ADVINFOLST (Vanable) 10.10

(ADVISE FNl • •• FNN)

(File Package Command) 11.24:
10.11

(ADVISE FN ~N ~RE ~T)
10.9; 10.8

ADVISED (Property Name) 10.9; 5.9

ADVISEDFNS (Variable) 10.9-10

(ADVISEDUMP x FLG) 10.11

advising 10.7

AFTER (as argument to ADVISE) 10.9;
10.8

AFTER (as argument to BREAK/N) 10.5;
9.2

Afte r (DEdit Command) 20.4

AFTER LITATOM (Prog. Asst. Command)
8.13; 8.20,27

AFTER (in INSERT command)
(in Editor) 17.25

AFTER (in MOVE commandr (in Editor)
17.29

AFTEREXIT (Process Property) 18.27

AFTERMOVEFN (Window Property) 19.32

AFTERSYSOUTFORMS (Variable) 6.8; 14.4

ALAMS (Variable) 12.7

AL lAS (Property Name) 10.4; 10.6

ALINK 7.2,6

Index. 1

(ALISTS (VARI KEY1 KEY2 ...)
• .. (VARN KEY3 KE1f4 ...))

(File· Package Command) 11.23

ALISTS (File Package Type) 11.15

ALL (in event specification) 8.6.

ALL (in file package command PROP)
11.23

ALL (Lilatom) 11.35

(ALLOCATE. PUP) ll~5

(ALLOCATE. XIP) 21.21

(ALLOCSTRING N INITCHAR. OLD) 2.28

(ALLOF TYPE1 ... TYFEN)

(Decl Type Expression) 23.26

(ALLOW. BUTTON. EVENTS)' 18.36

ALLPROP (Lilatom) 5.9; 8.24; 11.4,38

ALONE (type of read-macro). 6.37

(ALPHORDER A s) 1~9

ALREADY UNDONE (Printed by System)
8.11; 8.34 .

ALWAYS FORM (IS. Operator) 4.6

ALWAYS (type of read-macro) 6.37

AMAC (Property Name) 22.13

AMBIGUOUS (Printed by DWIM) 15.13

AMBIGUOUS DATA PATH (Error Message)
3.2

AMBIGUOUS RECORD FIELD
(Error Message) 3.2

AMONG (Masterscope Path Option) 13.14

ANALYZE SET (Masterscope Command)
13.5

(AND Xl X 2 .•• xN) 4.2

AND (in event specification) 8.7

AND (in USE command) 8.8

ANSWER (Variable) 6.62

(ANT I LOG x) 2.46

ANY (in Ded package) 23.25

INDEX

(APPEND Xl X2 •.. xN) 2.16

(APPLY FN ARGLIST -) 5.12; 12.14

(APPLY· FN ARG1 ARG,2 ••. ARGN)

5.12; 12.14

approval (of D WIM corrections) 15.3;
15.2,18

APPROVE FLG (Variable) 15.12; 15.18,20

(APROPOS STRING ALLFLG) 14.1

(ARCCOS X RADIANSFLG) 2.46

ARCCOS: ARG NOT IN RANGE
(Error Message) 2.46

ARCHIVE EvelltSpec (Prog. Asst. Command)
8.13 .

ARCHIVEFLG (Variable) 8.19

ARCH IVE FN (Variable) 8.19; 8:13

ARCH IVE LST (Variable) 8.25; 8.32

(ARCSIN X RADIANSFLG) 2.46

ARCSIN: ARG NOT IN RANGE
(E"or Message) 2.46

(ARCTAN X RADIANSFLG) 2.46

(ARCTAN2 Y X RADIANSFLG) 2.46

SET ARE SET (Masterscope Command)
13.5

(ARG VAR M) 5.4

ARG NOT ARRAY (Error Message) 9.24;
2.33

ARG NOT HARRAY (Error Message) 9.26

ARG NOT LIST (Error Message) 9.22;
2.15,17,25-26

ARG NOT LITATOM (Error Message) 9.23:
2.5-6,8; 4.3; 5.2,8; 6.4; 11.38

(ARGLIST FN) 5.7; 9.6; 22.3

ARGNAME S (Property Name) 5.7
..

ARGS (Break Command) 9.6

ARGS NOT AVAILABLE (Error Message)
5.7

(ARGTYPE FN) 5.6; 22.3

Index.2

argument list 5.2

arithmetic functions 2.38

AROUND (as argument to ADVISE) 10.9;
10.10

AROUND (as argument to BREAKIN)
10.5; 9.2

(ARRAY N P v) 2.34

(A RRA Y SIZE TYPE INIT ORIG) 2.32

array header (in Interlisp-10 arrays) 2.33

array pointers (in Interlisp-10 arrays)
2.33; 2.34

(ARRAYBEG A) 2.34

ARRAYBLOCK (Record Type) 3.8

(ARRAYORIG A) 2.33-34

(ARRAYP x) 2.2,34; 22.25

ARRAYRECORD (Record Type) 3.6

arrays 2.32; 2.2

ARRAYS FOULED (E"or Message) 22.8

ARRAYS FULL (E"or Message) 9.24; 2.34

(ARRAYSIZE A) 233

(ARRAYTYP A) 2.33-34

AS VAR (I.S. Operator) 4.9

(ASKUSE R WAIT DEFAULT MESS
KEYLST TYPEAHEAD LISPXPRNTFLG
OPTIONSLST FILE) 6.57,64

ASKUSERTTBL (Van'able) 6.59

ASSEMBLE macros 22.13

ASSEMBLE statements 22.12

ASSERT (in Decl package) 23.24

assignments (in Pattern Match Compiler)
23.5

assignments (in CLISP) 16.7

(ASSOC KEY ALST) ~25

association list 7.1

ASSOCRECORD (Record Type) 3.6

atom 2.2

INDEX

(ATOM x) 2.2

atom hash table 22.11

ATOM HASH TABLE FULL (E"or Message)
9~23

ATOM TOO LONG (E"or Message) 9.23;
2.4

ATOMRECORO (Record Type) 3.6

(ATTACH"x L) "2.17

ATTEMPT TO BIND NIL OR T
(Error Message) 9.25; 4.3; 5.2

ATTEMPT TO RPLAC NIL (E"or Message)
9.23; 2.8,15

ATTEMPT TO SET NIL (E"or Message)
9.23; 2.5

ATTEMPT TO SET T (E"or Message) 2.5

ATTEMPT TO USE ITEM OF INCORRECT
TYPE (E"or Message) 9.24

(AU-REVOIR VAL##) 7.16

AUTOBACKTRACE FLG (Variable) 20.11

AUTOCOMPLETEFLG (ASKUSER option)
6.63

AUTOPROCESSFLG (Variable) 18.25

AVOIDING SET (Masterscope Path Option)
13.14

. (AWAIT. EVENT EVENT TIMEOUT TIMERP)

18.30

(B Ex ... EM) (Editor Cqmmand) 17.8,24

back-quote 6.39

background shade 19.6

Backg roundMenu (Variable) 19.22

Backg roundMenuCommands (Variable)
19.22

BACKGROUNDPAGEFREQ (Variable) 18.4

backspace 6.13,41

backtrace 9.6; 7.8,12

Index.3

(BACKTRACE !POS EPOS ~LAGS FILE

PRINTFN) 7.8

backtraceframe window 20.10

BACKTRACEFONT (Variable) 20.11

BAD ARGUMENT - FASSOC
(E"or Message) 225

BAD ARGUMENT - FGETD (E"or Message)
5.8

BAD ARGUMENT - FLAST (Envr Message)
2.20

BAD ARGUMENT - FLENGTH
(E"or Message) 2.21

BAD ARGUMENT - FMEMB (E"or Message)
2.23

BAD ARGUMENT - FNTH (E"or Message)
2.20

BAD FILE NAME (E"or Message) 9.25

BAD FILE PACKAGE COMMAND
(E"or Message) 11.22

BAD PROG BINDING (E"or Message)
12.21

BAD SETQ (E"or Message) 12.21

BAD SYSOUT FILE (E"or Message) 9.24

(BAK T RAC E IPOS EPOS SKIPFNS FLAGS

FILE) 7.8

BAKTRACELST (Variable) 7.9

basic frame 7.2; 7.1,5

(BCOMPL FILES CFILE - -) 12.17;
12.14,16

BEFORE (as argument to ADVISE) 10.9;
10.8

BEFORE (as argument to BREAKlN)
10.5; 9.2

Before (DEdit Command) 20.4

BE FORE LITATOM (Prog. Asst. Command)
8.13; 8.20,27

BEFORE (in INSERT command)
(in Editor) 17.25

INDEX

BEFORE (in MOVE command) (in Emto~
17.29

BEFORESYSOUTFORMS (Variable) 14.3

bell (in history event) 8.16; 8.11.26,32

bell (Printed by System) 6.19; 22.2,11

bells (printed by D WI M before an interaction)
15.3

(BE·LOW COM) (Editor Command) 17.19

(BELOW COM x) (Editor Command) 17.19

BETWEEN (record field type) 3.7

BF (Editor Command) 17.7

B F PATTERN (Editor Command) 17.17

(BF PATTERN) (Editor Command) 17.17

BF PATTERN T (Editor Command) 17.17

BF PATTERN NIL (Editor Command)
17.17

(BI N) (Editor Command) 17.31

(BI N M) (Editor Command) 17.31

(BIN STREAM) 18.12

(BIND COMS1 ... COMSN)

(Editor Command) 17.49

B I NO VAH (I.S. Operator) 4.7

B I NO VARS (I.S. Operator) 4.7

B I NO (in Masterscope template) 13.17

BIND (Masterscope Relation) 13.9

bindings in a basic frame 7.5

BINDS (Litatom) 16.14

(BIT BIT# WORD) 23.53

. bit tables 2.32

(BITBLT SOURCEBITMAP SOURCELEFT

SOURCEBOTTOM DESTINATIONBITMAP

DESTINATIONLEFT DESTINATIONBOTTOM

WIDTH HEIGHT SOURCETYPE

OPERATION TEXTURE

CLlPPINGREGION) 19.4

(B ITCLEAR N MASK) 2.41

Index.4

(BITMAPBIT BITMAP X Y NEWVALUE)

19.4

(B ITMAPCOPY BITMAP) 19.4

(BITMAPCREATE WIDTH HEIGHT

BITSPERPIXEL) . 19.4

(BITMAPHEIGHT BITMAP) 19.4

bitmaps 19.3

(BITMAPWIDTH BITMAP) 19.3

B ITS (as a field specification) 3.15

B ITS (record field type) 3.7

(B lTSET N MASK) 2.41

INDEX

block compiling functions 12.16

block declarations 12.14; 11.25

block library 12.14

(BLOCKCOMPILE BLKNAME BLKFNS
ENTRIES FLG) 12.16; 12.15

BLOCKED (Printed by Editor) 17.51

(BLOCKS BLOCK1 ••. BLOCKN)

(File Package Command) 11.25;
12.14

(BO N) (Editor Command) 17.31

BORDER (Window Property) 19.32

(BOTH TEMPLATEl TEMPLATE2)
(B ITSPERPIXEL BITMAP) 19.4 (in Masterscope template) 13.1~
(B ITT EST N MASK) 2.41 BOTTOM (Argument to AD VISE) 10.9

BK (Editor Command) 17.7 (BOTTOMOFGRIDCOORD GRIDY GRIDSPEC)

(BK N) (Editor Command) 17.11 19.43

(BKLINBUF STR) 6.47 BOUNDIN (in Decl package) 23.23

(BKSYSBUF x FLG RDTBL) 6.47; 22.6 (BOUNOP VAR) 2.5

BLACKSHADE (Variable) 19.6 (BOUT STREAM BYTE) 18.12

BLINK 7.2 (BOXCOUNT TYPE N) 14.14

blip functions 7.12 BOXCURSOR (Variable) 19.36

blips 7.12 BOXED (Vanable) 23.50

(BLI PSCAN BLIPT¥P IPos) 7.12 boxed numbers 2.37

(BLIPVAL BLIPTYP IPOS FLG) 7.12 boxing 2.36; 22.3-5

BLKAPPL Y (Function) 12.14 Boyer-Moore fast string searching algorithm
BLKAPPL y* (Function) 12.14 6.10

BLKAPPLYFNS (in Masterscope Set Specification) BR (Exec Command) 23.59
13.11

BLKAPPLYFNS (Variable) 12.14; 12.15-16

BLKFNS (in Masterscope Set Specification)
13.11

BLKLIBRARY (Variable) 12.14; 12.15

BLKLIBRARYDEF (Property Name) 12.14;
8.21

BLKNAME (Variable) 12.15

(BLOCK MSECSWAlT TIMER) 18.28

block compiling 12.13

brackets (use with ftp package) 23.62

Break within a break on FN

(Printed by System) 9.12

Break (DEdit Command) 20.6

BREAK (Error Message) 9.23

(BREAK x) 10.4; 9.2; 10.1,5-6

BREAK (Lilatom) 9.17

BREAK (Syntax Class) 6.35

break characters 6.33; 6.14,46

Index.5

break commands 9.3,12

break expression 9.2,8

BREAK INSERTED AFTER
(Printed by BREAK/N) 10.6

(BREAKO' FN WHEN COMS - -)
10.3; 10.4-6

(BREAK1 BRKEXP B~N BRKFN
BRKCOMS BRKTYPE ERRORN) 9.11;
9.14; 10.1-5; 15.20; 22~1

BREAKCHAR (Syntax Class) 6.33

(BREAKCHECK ERRORPOS ERXN) 9.10;
9.14,16,22

BREAKCHK (Variable) 9.16

BREAKCOMSLST (Variable) 9.12

BREAKCONNECTION (Function) 18.15

BREAKDELIMITER (Vanable) 9.6

(BREAKDOWN FNl ... FNN) 14.15

(BREAKIN FN WHERE WHEN COMS)
10.5; 9.2; 10.1-2,4,6

breaking CLISP expressions 10.3

(BREAKLINKS) 23.61

BREAKMACROS (Variable) 9.12

(BREAKREAD TYPE) 9.12

BREAKREG IONSPEC (Variable) 20.11

BREAKRESETFORMS (Variable) 9.13; 6.39

(BRECOMPILE FILES CFILE FNS -)
12.17; 11.8; 12.14,16

BRKCOMS (Variable) 9.12; 9.4-5,11; 10.3

BRKDWNCOMPFLG (Variable) 14.17

(BRKDWNRESULTS RETURNVALUESFLG)
14.16

BRKDWNTYPE (Variable) 14.16; 14.17

BRKDWNTYPES (Variable) 14.16

BRKEXP (Variable) 9.2; 9.5,7-8,10-12; 10.3

BRKFILE (Variable) 9.12

BRKFN (Variable) 9.11; 9.3; 10.3

INDEX

BRKINFO (Property Name) 10.3,5-6

BRKINFOLST (Variable) 10.6-7

BRKTYPE (Variable) 9.12

BRKWHEN (Variable) 9.11; 10.3

BROADSCOPE (Property Name) 16.22

BROKEN (Property Name) 10.3; 5.9

BROKEN- IN (Property Name) 10.5;
5.9; 10.6

BROKENFNS (Variable) 10.3-6; 15.20

brush 19.14

BT (Break Command) 9.6

BT (display break command) 20.10

BTl (display break command) 20.10

BTV (Break Command) 9.6

BTV! (Break Command) 9.6

BTV· (Break Command) 9.6

BTV+ (Break Command) 9.6

BUF (Editor Command) 20.37

BUILDMAPFLG (Variable) 11.39; 11.4;
12.12

BURY (Window Menu. Command) 19.20

(BURYW WINDOW) 19.27

BUTTONEVENTFN (Window Property) 19.30

BY FORM (with INION) (I.S. Operator)
4.9

BY FORM (without INION) (I.S. Operator)
4.9; 4.8,12

BY (in REPLACE command) (in Editor)
17.25

(BYTE SIZE POSITION) (Macro) 2.42

(BYTEPOSITION BYTESPEC) (lvfacro)
2.42

(BYTESIZE BYTESPEC) (Macro) 2.42

C (in an ASSEMBLE statement) 22.14

C (MAKEFlLE option) 11.7

Index.6

C ... R functions 2.14

CALL' (in Masterscope template) 13.17

CALL (Masterscope Relation) 13.8

CALL SOMEHOW (Masterscope Relation)
13.8

CALL DIRECTLY (Masterscope Relation)
13.9

CALL FOR EFFECT (Masterscope Relation)
13.9

CALL FOR VALUE (Masterscope Relation)
13.9

CALL INDIRECTLY (Masterscope Relation)
13.9

(CALLS FN USEDATABASE -) 13.19

(CALLSCCODE FN -) 13.19

CAN ',T - AT TOP (Printed by Editor)
17.10; 17.3

CAN'T BE BOTH AN 'ENTRY AND
THE BLOCK NAME (E"or Message)
12.20; 12.16

CAN'T FIND EITHER THE PREVIOUS
VERSION ••• (Printed by System)
11.11

CAP (Editor Command) 17.41

(CAR x) 2.14

(CARET NEWCARET) 19.15

carriage-return 6.13,16; 8.30

carriage-return (ED IT A command) 23.49;
23.48

(CASEARRAY OLDARRAY) 6.10

CAUTIOUS (DWIM mode) 15.3; 15.2,20:
16.3-4

CBOX (Function) 23.54

(CCODE P FN) 5.6; 22.3,25

(CDR x) 2.14

Cente r (DEdit Command) 20.5

CENTERFLG (Menu Field) 19.40
\

INDEX

(CENTERPRINTINREGION EXP REGION

DISPLAYSTREAM) 19.13

CEXPR (Litatom) 5.6

CEXPR* (Litatom) 5.6; 5.7

CFEXPR (Litatom) 5.6; 5.7

CFEXPR* (Litatom) 5.6; 5.7

CH • DEFAULT. DOMAIN (Variable) 21412

CH.DEFAULT.ORGANIZATION (Variabk)
21.12

(CH. OOMAI NS DOMAINPATTERN) 21.13

(CH. ENUMERATE OBJECTPATTERN

PROPERTY) 21.13

(CH • LOOKUP • USER NAME) 21.13

CH. NET. HINT (Variable) '21.12

(CH.ORGANIZATIONS ORGAN7ZATIONPATTERN)
21.12

(CHANGE DATUM FORM) (Change Word)
3.13

(CHANGE ~ TO El EM)

(Editor Command) 17.25

(CHANGEBACKGROUND SHADE) 19.6

(CHANGECALLE RS OLD NEW TYPES ,FILES

METHOD) 11.18

CHANGECHAR (Variable) 6.55; 17.22

(CHANGECURSORSCREEN SCREENBITMAP)

19.49

CHANGED (MARKASCHANGED reason)
11.11

CHANGED, BUT NOT UNSAVED
(Printed by Editor) 17.54.

CHANGE FONT (font class) 6.55

(CHANGE FONT FONTCLASS) 6.57

(CHANGENAME FN FROM TO) 10.7; 17.58

CHANGEOFFSETFLG (Menu Fie/d) 19.40

(CHANGEPROP X PROPl PROP2)

CHANGESARRAY (Variable) 17.22

(CHANGESLICE N HmTORY -)

8.26

Index.7

2.7

8.18;

Changetran 3.11

CHANGEWORD (Property Name) 3.14

changing record declarations 3.11

(CHARACTER N) ~12

character codes 2.12

(CHARCODE c) 2~2

CHARDELETE (syntax class) . 6.41,43

(CHARWIDTH CHARCODE FONT) 19.9

(CHARWIDTHY CHARCODE FONT) 19.9

CHAT 20.17

(C HA T HOST LOGOPTION INITSTREAM

WINDOW -) 20.18

CHAT. ALLHOSTS (Variable) 20.19

CHAT • DISP~AYTYPE (Variable) 20.19

CHAT. FONT (Variable) 20.19

(CHCON x FLG RDTBL) 2.12

(CHCONl x) ~12

CHECK SET (Masterscope Command)

(CHECKCONNECTION CONNECTION)

(CHECKIMPORTS F~ES NOASKFLG)

11.29

CHOOZ (Function) 15.16

(CIRCLMAKER LIST) 23.11

(CIRCLMAKERl LIST) 23.11

(CIRCLMARK LIST RLKNT) 23.10

13.7

23.64

(CIRCLPRINT LffiT PRINTFLG RLKNT)
23.10; 23.9

cjsys package 23.53

CL (Editor Command) 16.20; 17.43

CL: FLG (Variable) 16.18

(C LD I SAB LE oP) 16.19; 4.6

(CLEANPOSLST PLST) 7.17

(CLEANUP FILEt FILE2 ... FILEN) 11.8

CLEANUPOPT IONS (Variable) 11.8

C 1 ea r (DEdit Command) 20~5

INDEX

CLEAR (Window Menu Command) 19.20

(CLEARBUF F~E FLG) 6.46; 6.47

clearing input buffer 6.19

clearing output buffer 6.19

(CLEARMAP FILE PAGES RELEASE) 14.19

(CLEARPUP Pup) 21.15

(CLEARSTK FLG) 7.7

CLEARSTKLST (Variable) 7.7

(CLEARW WINDOW) 19.27

C~~FC 7.2,6

C~ISP 16.1; 15.7,9

CLISP (in Masterscope template) 13.17

CLISP (MARKASCHANGED reason)
11.12

C~ISP and compiler 12.7,11

C~ISP declarations 16.13

C~ISP interaction with user 16.4

C~ISP internal conventions 16.21

C~ISP operation 16.11

C~ISP words 15.8

CLISP: (Editor Command) 16.20; 16.14

CLISPARRAY (Variable) 16.19; 16.13,20;
23.1

CLISPCHARRAY (Variable) 16.19

CLISPCHARS (Variable) 16.19

(CLISPDEC DECLST) 16.9,19

CLISPFLG (Variable) 16.19

CLISPFONT (font class) 6.55

CLISPFORWORDSPLST (Variable) 4.5

CLISPHELPFLG (Variable) 16.16; 16.5

CLISPI.S.GAG (Variable) 4.13

CLISPIFTRANFLG (Variable) 16.20

CLISPIFWORDSPLST (Variable) 4.4

(CLISPIFY x L) 16.17; 11.7; 16.11

Index.8

CLISPIFY (MAKEFILE option) 11.7;
16.20

(CLISPI FYFNS FNl ... FNN) 16.17

CLISPJFYPACKFLG (Variable) 16.18

CLISPIFYPRETTYFLG (Variable) 6.54;
16.20; 11.7

CLISPIFYUSERFN (Variable) 16.18

CLISPINF IX (Property Name) 16.22

CLISPINF IXSPLST (Variable) 16.19; 16.6

CLISPRECORDTYPES (Variable) 3.10

CLISPRETRANFLG (Variable) 16.16; 16.14

(CLISPTRAN x THAN) 16.19

CLISPTYPE (Property Name) 16.21

CLISPWORD (Property Name) 16.22; 3.13

(CLOCK N -) 14.10

CLOSE (Window Menu Command) 19.20

(CLOSE.NSFILING.CONNECTIONS) 21.14

(CLOSEALL ALLFLG) 6.3; 6.11

CLOSEBREAKWINDOWFLG (Variable) 20.11

CLOSECHATWINDOWFLG (Variable) 20.19

(CLOSECONNECTION CONNECTION) 23.64

(CLOSEF FILE) 6.2

(CLOSEF? FILE) 6.3

CLOSEFN (Window Property) 19.30

(CLOSEHASHF I LE HASHFILE) 23.42

(CLOSENSOCKET NSOC NOERRORFLG)

21.22

(CLOSEPUPSOCKET PUPsoc

NOERRORFLG) 21.16

(CLOSER A x) 22.11

(CLOSEW WINDOW) 19.26

closing and reopening files 6.11

CLREMPARSFLG (Variable) 16.18

(CLRHASH HARRAY) 2.35

(CLRPROMPT) 19.19

INDEX

(CNDIR HOST/DIR) 18.11

(CNDIR DIR PASSWORD) 23.61

CNTRLV (syntax class) 6.42

CODE (Property Name) 5.9; S.lO; 22.26

COLL.ECT FORM (I.S. Operator) 4.6

co 11 act; ng (Printed by System) 22.9

color bitmaps 19.43

(COlORDEMO) 19.49

(COL.ORDEM01) 19A9

(COlORDEM02 SIZE) 19.50

(COlORDISPlAY COLOR~
BITSPERPIXEL CLEARSCREENFLG)
19.47

(COl.ORDISPlAYP) 19.47

(COlORFIlL REGION COLORNUMBER

COLORBIT~ OPERATION) 19.49

(COl.ORFIllAREA LEFT BOTTOM

WIDTH HEIGHT COLORNUMBER
COLORBITMAP OPERATION) 19.49

(COl.ORIZEBITMAP BIT~ OCOLOR

lCOLOR BITSPERPIXEL) 19.49

(COl.ORKINETIC REGION FmSTCOLOR

LASTCOLOR) "19.50

(COl.ORLEVEL COLOR~ COLORNUMBER

PRIMARYCOLOR NEWLEVEL) 19.46

(COl.ORMAPCOPY . COLOR~
BITSPERPIXEL) 19A6

(COL.ORMAPCREATE INTENSITms

BITSPERPIXEL) 19.45

(COL.ORMAPP COLOR~? BITSPERPIXEL)
19.46

COlORNAMES (Variable) 19.44

(COL.ORNUMBERP COLOR BITSPERPDCEL

NOERRFLG) 19.45

(COL.ORPOl YDEMO COLORDS) 19.50

(COL.ORSCRE ENB ITMAP) 19.43

COLORSC RE E NHE IG HT (Variable) 19.44

COLORSCREENWIDTH (Variable) 19.44

Index.9

COM (as suffix to file name) 12.10

COMMAND (Variable) 20.44

commands that move parentheses (in
Editor) 17.31

comment pointers 6.51; 17.43

COMMENT USED FOR VALUE
(E"or Message) 12.20

(COMMENT 1 L -) 6.50

COMMENTFLG (Variable) 6.50; 6.52

COMMENTFONT (font class) 6.55

COMMENTLINELENGTH (Variable) 6.57

comma n t s (in listings) 6.49

(COMPARE NAME1 NAME2 TYPE SOURCE1

SOURCE:l) 11.19

(COMPAREDEFS NAME TYPE SOURCES)

11.19

(COMPARE LISTS x Y) 14.9

comparing lists 14.9

(COMPILE x FLG) 12.10; 12.11

COMPILE. EXT (Variable) 12.10; 18.5

(COMPILEl FN DEF -) 12.11

compiled file 12.10

compiled functions 5.5

COMPILED ON
(Printed When File is Loaded) 12.10

(COM PI L E F I L E S FILE 1 FILE:z ... FlLEN)
11.10

COMP I LEHEAOER (Variable) 12.10

COMPILE IGNOREDECL (Variable) 23.25

compiler 12.1

compiler error messages 12.20

compiler functions 12.10; 12.16

compiler printout 12.2

compiler questions 12.1

compiler structure 22.11

COMPILERMACROPROPS (Variable) 5.17

INDEX

COMP ILETYPELST (Variable) 12.9;
5.11; 12.7-8

COMPILEUSERFN (Variable) 12.7; 12.8

compiling by datatype 12.8

compiling CLISP 12.9; 12.7,11

compiling files 12.11; 12.17

compiling FUNCfION 12.8

compiling function calls 12.6

COMPLETEON (ASKUSER option) 6.63

COMPSET (Function) 12.1

(COMS Xl 000 xM) (Editor Command)
17.46

(COMS COM1 0 •• COMN)

(File Package Command) 11.24

(COMSQ COMl .•• COMN)
(Editor Command) 17.46

(CONCAT Xl X:l 0'0 xN) 2.30

(CONCATLIST x) 2.30

(COND CLAUSE1 CLAUSE:z ... CLAUSEK)

4.1

CO NO clause 4.1

CONF IRMFLG (ASKUSER option) 6.62

Conjunctions (in Masterscope) 13.13

CONN DIR PWD (Exec Command) 23.59

CONN· {DEVICE/HOST}(DIRECTORY)

(Prog. Asst. Command) IS.11

(CONS x Y) 2.14

(CONSCOUNT N) 14.14

CONST ANT (Function) 12.5

(CONSTANTS VAR1 ... VARN)

(File Package Command) 11.27

(CONSTANTS VAR1 VAR:l .•. VARN) 12.6

constants in compiled code 12.5

constructing lists (in C LISP) 16.8

CONT A IN (Masterscope Relation) 13.9

context switching 7.3

Index.IO

CONT I N (Prog. Asst. Command) 8.15

CONTINUE SAVING? (Printed by System)
8.33

CONTINUE WITH T CLAUSE
(Printed by DWIM) 15.6

continuing an edit session

(CONTROL MODE TTBL)

control chain 7.2

control character echoing

control-A 6.13,41,43

17.39

6.45; 6.13,15

6.42

control-A (TOPS-20) (Editor Command)
17.13

control-B 9.22-23; 18.1

control-B (Ihterlisp-10) 22.1

control-C 18.1

control-C (lnterlisp-10) 22.1,21

control-D 6.8,46; 9.2,12,14; 12.4;
17.38; 18.1

control-D (Interlisp-l0) 22.1

control-E 6.46; 9.2,14; 10.6; 15.4,6;
17.2; 18.1

CONTROL-E (E"or Message) 9.26

control-E (typed to EDITA) 23.48

control-E (lnterlisp-10) 22.1

control-F (in file name) 6.3

control-G (in history list) 8.16; 8.11

control-H 6.46; 18.1

control-H (lnterlisp-10) 22.1,11

control-L 6.27

control-L (TOPS-20) (Editor Command)
17.13

control-N (TOPS-20) 8.16

control-O 18.2

control-O (Interlisp-l0) 22.2

control-P 6.19; 6.46; 9.6; 18.1

control-P (Interlisp-10) 22.2

INDEX

control-Q 6.13,41,43

control-R 6.41

control-S 6.46; 18.2

control-S (Interlisp-10) 22.2,11

control-T 18.1

CONTROL-T (Litatom) 9.17·

control-T (Interlisp-10) 22.2

control-U 8.16; 6.13,41; 8.31

control-V 6.13,42

control-W 6.14; 6.13,40-41

control-X (Editor Command) 17.13

control-X (TOPS-20) 22.11

control-Y 6.39; 17.59

control-Z (Editor Command) 17.13

control-Z (TOPS-20) 6.15,46

copy 2.19; 2.16,24-25,27

COpy (DECLARE: Option) 11.26

Copy (DEdit Command) 20.5

(COpy x) 2.19

(COPYALL x) 2.19

(COPYALLBYTES FROMF~E TOF~E
BYTESIZE) 23.61

(COPYARRAY A) ~33

(COPYBYTES SRCF~ DSTF~ START
END) 6.9

(COPYDE F OLD NEW TYPE SOURCE
OPTIONS) 11.18 .

(COPYFILE FROMF~E TOF~E) 18.11

(COPYHASHFILE HASHF~E NE~AME FN
VTYPE) 23.43

COpy I NG (Record Package) 3.3

(COPYREADTABLE RDTBL) 6.33

COPYRIGHTFLG (Variable) 11.37

COPYRIGHTOWNERS (Variable) 11.37

(COPYSTK POSl POS2) 7.7

Index. 11

(COPYTERMTABLE TTBL) 6.41

COPYWHEN (DECLARE: Option) 11.26

CORE (core device) 18.13

(COREDEVICE NAME) 18.13

cOREVAl (Property Name) 22.15; 22.16;
23.48-49

COREY ALs 22.14-15

COREVAlS (Variable) 22.15

(COROUT I NE CALLPTR##

COROUTPTR## COROUTFORM##

ENDFORM##) 7.15

coroutines 7.14; 7.13

(COS x RADIANSFLG) 2.46

(COUNT x) 2.21

COUNT FORM (I.S. Operator) 4.6

(COUNTDOWN x N) ~21

(COURIER.CAll STREAM_ PROGRAM
PROCEDURE AHG1 ••• ARGN
NOERRORFLG) 21.9

(COURIER.OPEN HOSTNAME SERVERTYPE
NOERRORFLG NAME) 21.7

(COURIER.READ.BUlKDATA STREAM

PROGRAM TYPE) 21.10

(COURIER. READ. REP LIST. OF. WORDS

PROGRAM TYPE) 21.10

(COURIERPROGRAM NAME ...) 21.7

(COURIERTRACE FLG REGION) 21.10

COUTF ILE (Variable) 12.3

(COVE RS HI LO) 23.29

CQ (in an ASSEMBLE statement) 22.14

C REA T E (in M asterscope template) 13.17

CREATE (Masterscope Relation) 13.9

CREATE (Record Operator) 3.3

CREATE (Record Package) 3.9

CREATE NOT DEFINED FOR THIS
RECORD (Error Message) 3.8

(CREATE. EVENT NAME) 18.30

INDEX

(CREATE .MONITORlOCK NAME -) 18.30

(CREATEHASHFIlE F~E VALUETYPE

ITEMLENGTH .#ENTRIES) 23.41

(CREATEREGION LEFT BOTTOM ~TH

HEIGHT) 19.2

(CREATETEXTUREFROMBITMAP BIT~)
19.6

C-CREATEW REGION TITLE BORDER

NOOPENFLG) 19.25

CROSSHAIRS (Variable) 19.36

CTRlV (syntax class) 6.42

CTRlVFlG (Variable) 20.39

curly brackets (use with ftp package)
23.62

current declaration context 23.30

current expression (in Editor) 17.2;
17.3,5,7-9,15

CURRENT FN (Variable) 23.35

CURRENT ITEM (Property Name) 20.17

(CURSOR NEWCURSOR -) 19.16

(CURSORBITMAP) 19A

(CURSORCREATE BITMAP x Y) 19.16

CURSORINFN (Window Property) 19.29

CURSORMOVEDFN (Window Property) 19.29

CURSOROUTFN (Window Property) 19.29

(CURSORPOSIT ION NEWPOSITION
DISPLAYSTREAM OLDPOSITION)

19.15

CURSORS (File Package Command) 19.16

CV (ASSEMBLE macro) 23.54

CV2 (ASSEMBLE macro) 23.54

o (Editor Command) 17.44

DA (Exec Command) 23.59

dashing 19.14

DATA TYPES FULL (Error Message) 9.25

Index. 12

DATABASE (Property Name) 23.15

DATABASECOMS (Variable) 13.21

databasefns package 23.15

DATATYPE (Record Type) 3.7

(DATATYPES -) 2.1

(DATE -) 14.9

(DATEFORMAT KEYl ... KEYN) 23.57

dateformat package 23.57
\

DATE FORMAT • DEFAULT (Variable) 23.57

DATE FORMAT • KEYS (Variable) 23.57

DATUM (in Changetran) 3.13

DATUM (Property Name) 20.17

DA TUM (Variable) 3.8-9

DATUM OF INCORRECT TYPE
(E"or Message) 3.15

(DC FILE) 20.2

(DCHCON x SCRATCBLmT FLG RDTBL)

2.12

DCOM (as suffix to file name) 12.10-11;
12.17

DDT 23.46

debugging 10.1

DECL (in Decl package) 23.23

Decl package 23.18

declaration fault (in Decl package) 23.19

DECLARATION NOT SATISFIED
(E"or Message) 23.19

declarations in CLISP 16.9; 16.7

DECLARE (Function) 12.5; 16.15

DECLARE DECL (I.S. Operator) 4.11;
23.22

DECLARE AS SPECVAR
(Masterscope Relation) 13.9

DECLARE AS LOCALVAR
(,\1asterscope Relation) 13.9

INDEX

(DECLARE: • FILEPKGCOMSjFLAGS)

(File Package Command) 11.26;
12.11,14

DECLARE: (Function) 11.26

DECLARE: DECL (I.S. Operator) 4.11

DECLARE: expression 11.25-26

(DECLAREDATATYPE TY.PENAME

FIELDSPECS) 3.14

DECLARETAGSLST (Variable) 11.27

(DECLOF FORM) 23.30

DECLOF (Property Name) 23.30

(DECLTYPE TYFENAME TYPE PROPl VALl
... PROPN VALN) 23.28

DECL TYPES (File Pac~age Command)
23-.29

decltypes (in Decl package) 23.18

(DECODE/WINDOW/OR/DISPLAYSTREAM
DSORW WINDOWVAR TITLE BORDER)
19.25

(DECODEBUTTONS BUTTONSTATE) 19.18

Dedit 20.1

DEDITL (Function) 20.2

DEditLinger (Variable) 20.8

DEDITTYPE INCOMS (Variable) 20.8

deep binding 7.1; 2.6

OEFAULT.INSPECTW.PROPCOMMANDFN
(Function) 20.16

DEFAULT.INSPECTW.TITLECOMMANDFN
(Function) 20.16

DEFAULT.INSPECTW.VALUECOMMANDFN
(Function) 20.16

DE F AUL TCHA THOST (Variable) 20.19;
20.18

OEFAUL TCOPYRIGHTOWNER (Variable)
11.37

DE FAUL TCURSOR (Variable) 19.16

DEFAUL TFILETYPE (Variable) 18.16

DEFAULTFONT (font class) 6.55

Index.13

(DEFAULTFONT DEVICE FONT -) 19.9

DEFAULTINITIALS (Variable) 17.60

DEFAULTMAKENEWCOM (Function) 11.20

DEFAULTMAPFILE (Variable) 14.18

DEFAUL TMENUHELDFN (Funciion) 19.39

DEFAULTPRINTINGHOST (Variable) 18.16

DEFAUL TPROMPT (Vanable) 20.38

DEFAULTRENAMEMETHOD (Variable) 11.19

DE FAUL TTTYREGION (Variable) 18.32

DEFAUL TWHENSELECTEDFN (Function)
19.39

DE FC (Function) 8.22

DEFERREDCONSTANT (Function) 12.6

(DEFEVAL TYPE FN) 5.11

(DEFINE x -) 5.9

DEFINED (MARKASCHANGED reason)
11.11

./

DEFINED, THEREFORE DISABLED IN
CLISP (E"or Message) 4.6; 16.4

(DEFINEQ Xl x2 ••• xN) 5.9

defining file package commands 11.30

defining file package types 11.19

defining new iterative statement operators
4.13

(DEFLIST L PROP)

(DEFPRINT TYPE FN)

del 6.15,41,46

2.7

6.23

(DEL. PROCESS PROC -) 18.27

(DELDEF NAME TYPE) 11.18

De 1 ete (DEdit Command) 20.4

DELETE (Editor Command) 17.9

(DELETE • @) (Editor Command)
. 17.24-25; 17.22

DE LETECHAR (syntax class) 6.41

(DELETECONTROL TYPE MESSAGE TTBL)
6.43

INDEX

DELETED (MARKASCHANGED reason)
11.12

DELETELINE (syntax class) 6.41

(DELETEMENU MENU CLOSEFLG
FROMW1NDOW) 19.38

(0 ELF I L E FILE) 6.3

(DELFROMCOMS COMS NAME TYPE)
11.33

(DELFROMFILES NAME TYPE FILES)

11.33

DELNOTE (Transorset Command) 23.39

(DELPAGE PAGE# HASHFILE) 23.45

DELVER FILEGROUP (Exec Command)
23.60

(DEPOSITBYTE N POSITION SIZE BYTE)
2.42

DESCRIBE SET (Masterscope Command)
13.6

DESCRIBELST (Variable) 13.7

DESTINATION IS INSIDE EXPRESSION
BE ING MOVED (Printed by Editor)
17.29

destructive functions 2.3,24,27

DET (Exec Command) 23.59

(DETACH) 23.60

(DETACHEDP) 23.61

Determiners (in Masterscope)

(OF FN) 20.1

13.12

DFNFLG (Variable) 5.9; 5.10; 8.24;
11.4; 17.54

(0 IFF ERE N C E X Y) 2.44

different expression (Printed by Editor)
17.51

01 R FILES • COMMANDS
(Prog. Asst. Command) 14.8

01 RCOMMANDS (Variable) 14.7

DIRECTORIES (Variable) 18.12; 15.20

Index. 14

(DIRECTORY FILES COMMANDS

DEFAULTEXT DEFAULTVERS) 14.6

(DIRECTORYNAME FLG STRPTR) 18.12

(OIRECTORYNAMEP DLRNAME HOSTNAME)

18.6

disabling CLISP operators 16.20

(DI5CARoPUP5 soc) 21.16

(oI5CARoXIP5 NSOC) 21.22

(OI5KFREEPAGE5 - -) 18.11

(OI5KPARTITION) 18.11

(0 I 5M I 55 MSECSWAIT TIMER) 14.1

01 5M I 55 I NIT (Variable) 6.16

01 5M I 55MAX (Variable) 6.16

Display Break Package 20.10

(0 I 5P LA YDOWN FORM NSCANLINES)

18.22

OI5PLAYHELP (Function) 20.38

OISPLAYTERMFLG (Variable) 22.23

(0 I5PLAYTE RMP) 22.23

OI5PLAYTYPE5 (Variable) 20~45

OLAMBoA (in Ded package) 23.20; 23.19

OMACRO (Property Name) 5.17

(OMPHA5H HARRAYl HARRAY2 ...

HARRAY N) 2.36

00 COM (Editor Command) 17.42; 8.35

00 FORM (I.S. Operator) 4.6

(OOBACKG ROUNOCOM) 19.22

(OOBE) 6.18

(OOCOLLECT ITEM LST) 2.18

OOCOPY (DECLARE: Option) 11.26

OOEVAL@COMPILE (DECLARE: Option)
11.27

OOEVAL@LOAO (DECLARE: Option) 11.26

OONTCOMPILEFN5 (Variable) 12.11;
12.12,15

OONTCOPY (DECLARE: Option) 11.26

INDEX

OONTEVAL@COMPILE (DECLARE: Option)
11.27

OONTEVAL@LOAo (DECLARE: Option)
11.26

(o05ELECTEoITEM MENU ITEM· BUTTON)

19.41

(o05T A T 5 FORM TITLE - - -) 18.22

00THE5E (Transorset Command) 23.39

00THI5 (Transorset Command) 23.39

(DOWINoOWCOM WINDOW) 19.22

(0 P NAME PROP) 20.1

(0 PB N BYTESPEC VAL) (Macro) 2.42

oPROG (Function) 23.20-21

OP ROGN (Function) 23.23

(ORAWBETWEEN POSITION1 POSITION2
WIDTH' OPERATION DISPLAYSTREAM

COLOR) 19.13

(ORAWCIRCLE x Y RADIUS BRUSH

DASHING DISPLAYSTREAM) 19.14

(ORAWCURVE KNOTS CLOSED BRUSH

DASHING DISPLAYSTREAM) 19.14

(ORAWELLIP5E x Y SEMIMINORRADIUS

SEMIMAJORRADIUS ORIENTATION

BRUSH DASHING DISPLAYSTREAM)

19.14

(ORAWLINE Xl Yl X2 Y2 WIDTH

OPERATION DISPLAYSTREAM COLOR)

19.13

(0 RAWT 0 X Y WIDTH OPERATION

DISPLAYSTREAM COLOR) 19.13'

(OREMOVE XL) 2.27

(OREVE RSE L) 2.27

(DRIBBLE FILENAME APPENDFLG

THAWEDFLG) 6.12

(ORIBBLEFILE) 6.12 ..
OSK DIR DAYS (Exec Command) 23.60

(OSKST AT DIR PRINTIFOVER PRINTSYS

PRINTDEL PRINTOLD) 23.61

OSP (Window Property) 19.33

Index.15

(DSPBACKCOLOR COLOR DmPLAY.STREAM)

19.48

(DSPBACKUP ~TH DfflPLAYSTREAM)

19.13

(DSPCLIPPINGREGION REGION

DISPLAYSTREAM) 19.11

(DSPCOLOR COLOR DmPLAYSTREAM)
19.48

(DSPCREATE DESTINATION) 19.10

(DSPDESTINATION DESTINATION

DISPLAY.STREAM) 19~11

(DSPFILL REGION TEXTURE OPERATION

DISPLAYSTREAM) 19.12

(DSPFONT FONT DISPLAYSTREAM) 19.11

(DSPLEFTMARGIN XPOSITION

DISPLAYSTREAM) 19~11

(DSPLINEFEED DELTAY DmPLAYSTREAM)

19.12

(DSPOPERATION OPERATION

DISPLAY STREAM.)' 19.12

(DSPRESET DISPLAYSTREAM) 19.12

(OSPRIGHTMARGIN XPOSITION

DISPLAY.STREAM) 19.11

(DSPSCROLL SWITCHSETTING

DISPLAYSTREAM) 19.12

(DSPSOURCETYPE SOURCETYFE

DISPLAYSTREAM) 19.12

(DSPTEXTURE TEXTURE DISPLAYSTREAM)

19.11

(DSPXOFFSET XOFFSET DmPLAYSTREAM)

19.11

(DSPXPOSITION XPOSITION

DISPLAYSTREAM) 19.11

(DSPYOFFSET YOFFSET DmPLAYSTREAM)

19.11

(DSPYPOS IT ION YFOSITION

DISPLAYSTREAM) 19.11

(DSU8LIS ALST EXPR FLG) 2.24

(DSUBST NEW OLD EXPR) 2.24

INDEX

(OUMMYFRAMEP pos) 7.4

DUMP (Transorset Command) 23.37

(OUMPDATABASE FNLST) 13.21

(DUMPDB FILE) 23.16

OUMPFILE (Variable) 23.37

dumping circular lists 6.23

dumping unusual data structures 6.23

(DUNPACK x SCRATCHLIST FLG RDTBL)

2.10

du ring INTERVAL (LS. Operator) 14.12

(DV VAR) 20.1

OW (Editor Command) 16.21; 17.43

DWIM 15.1

(OWIM x) 15.3

DWIM interaction with user 15.3

DWIM variables 15.10

DWIMCHECK#ARGSFLG (Variable) 16.16

DWIMCHECKPROGLABELSFLG (Variabk)
16.16; 16.15

DWIMESSGAG (Variable) 16.16; 12.9

DWIMFLG (Variable) 15.12: 15.19; 17.52,55

(DWIMI FY x QUlETFLG L) 16.14-15;
16.11

dwimify (Printed by DWIM) 12.9

DWIMIFYCOMPFLG (Variable) 16.16;
12.9,11,17

DWIMIFYFLG ,(Variable) 15.11

(DWIMIFYFNS FNl ... FNN) 16.16;
16.15

DWIMLOADFNS? (Function) 15.11

DWIMLOADFNSFLG (Variable) 15.12; 15.11

DWIMUSERFORMS (Variable) 15.10;
15.8-9; 23.16

OW IMWA I T (Vanable) 15.11; 15.4-5

E (Editor Command) 17.45

Index.16

(E x) (Editor Command) 17.45

(E x T) (Editor Command) 17.45;
8.36; 17.6

(E FORMl ••• FORMN)

(File Package Command) 11.24

E (in a floating point number) 2.42; 6.13

E (in an ASSEMBLE statement) 22.14

E (use in comments) 6.50

EACHT IME FORM (I.S. Operator) 4.11;
4.12

(ECHOCHAR CHARCODE MODE TTBL)

6.43

(ECHOCONTROL CHAR. MODE TTBL) 6.42

echoing 6.42

(ECHOMOOE FLG TTBL) 6.43

ED (Editor Command) 20.37

RELATIONE 0 I N SET

(Masterscope Sei Specification) 13.11

RELATIONE 0 BY SET

(Masterscope Set Specification) 13.11

EDIT (Break Command) 9.8; 9.9

Edit (DEdit Command) 20.5

EDIT (display break command) 20.10

EDIT (Litatom) 17.39

EDIT SET {- EDITCOMSj

(M asterscope Command) 13.6

EDIT WHERE SET RELATION SET [

EDITCOMS] (Masterscope Command)
13.6

EDIT (Printed by Editor) 17.56

EDIT (Transorset Command) 23.36

edit chain 17.2; 17.4,7 -9,15

edit commands that search 17.13

edit commands that test 17.46

edit macros 17.48

EDIT-SAVE (Property Name) 17.38-39

(EDIT 4E PAT x -) 17.57

INDEX

EDITA 23.46

(EOITA FN COMS) 23.47

(EOITBM BITMAP) 20.8

(EOI'TCALLERS ATOMS FILES COMS)

17.59

(EOITCHAR CHARCODE FONT) 20.10

EOITCHARACTERS (Variable) 17.60

(EOITCOLORMAP VAH NOQFLG) 19.47

EditCom (DEdit Command) 20.6

EOITCOMS (Function) 17.50

EOITCOMSA (Variable) 17.53; 15.7,9; 17.52

EOITCOMSL (Variable) 17.52; 15.9; 17.53

EOITDATE (Function) 17.60

EOITDATE? (Function) 17.60

(ED I TO E F NAME TYPE SOURCE

EDITCOMS) 11.18

EOITDEFAULT (Function) 17.51;8.36

(EOITE EXPR COMS ATM TYPE
IFCHANGEDFN) 17.56; 17.1,55

EOITEMBEOTOKEN (Variable) 17.28; 20.8

(EOITF NAME COM1 COM2 .•• COMN)

17.53; 17.1,55

(EOITF INOP x PAT FLG) 17.57

(EOITFNS NAME COM1 COM2 ...

COMN) 17.55

(EOITFPAT PAT -) 17.57

EOITHISTORY (Variable) 8.35;
8.25-26,29,36

editing arrays 23.46

editing compiled code 10.7; 17.58; 23.46

(EOITL L COMS ATM MESS

EDITCHANGES) 17.56

(EOITLO L COMS MESS -) 17.57

(EOITLOAOFNS? FN STH ASKFLG FILES)

17.58

EOITLOADFNSFLG (Variable) 17.54

Index. 17

(EDITMOOE NEWMODE) 20.2

(EDITP NAME COM1 COM:z ••. COMN)
17.S6; 17.1

EDITPREF IXCHAR (Variable) 20.34

EDITQUIETFLG (Variable) 17.14

(EDITRACEFN COM) 17.S9

EDITRDTBL (Variable) 6.32; 17.56

(EDITREC NAME C0141 •.• COMN) 3.11

(EDITSHADE SHADE) 20.10

'EOITUSERFN (Variable) 11.51

(EDITV NAME COM1 COM:z ••• COMN)

17.SS; 17.1

E E (Editor Command) 20.37

E F (Editor Command) 17.40

E F (Function) 20.2

E F F E C T (in M asterscope template) 13.17

(EFTP HOST FILE PRINTERFLG #SIDES)
21.S

element patterns
(in Pattern Match Compiler) 23.2

(EL TAN) 2.33-34

(EL TO A 'N) 2.34

EMACSFLG (Variable) 20.43

(EMBED @ IN • x) (Editor Command)
17.28

(EMPRESS FILE #COPIES HOST HEADING

#SIDES) 18.17

EMPRESS#SIDES (Variable) 18.17

EMPRESS. SCRATCH (Variable) 18.17

empty list 2.15

(ENCAPSULATE. ETHERPACKET NDB
PACKET PDH NBYTES ETYPE) 21.24

END OF FILE (E"or Message) 6.8.13

end-of-line 6.8,13,16

(ENDCOLLECT LST TAlL) 2.18

(ENDF ILE FILE) 6.25

INDEX

ENTRIES (in Masterscope Set Specification)
13.11 .

entries (to a block) 12.13; 12.16

EN T R I E 5 (Variable) 12.15

(ENTRY# HlST x) 833

(ENVAPPLY FN ARGS APOS cpos AFLG

CFLG) 7.6

(ENVEVAL FO~ APOS cpos AFLG

CFLG) 7.6

(EOFP FILE) 6.9

EOL (syntax class) 6.42

E P (Editor Command) 17.40

EP (Function) 20.2

(EQ x Y) 2.2

(EQLENGTH x N) 2.21

(EQMEMB x Y) 2.23

(EQP x Y) 2.3,37

(EQUAL x Y) 2.3; 2.37

(EQUALALL x Y) 2.3

(EQUALN x Y DEPTH) 2.22

ERAS E SET (M asterscope Command) 13.S

ERASE (Transorset Command) 23.36

ERROR (E"or Message) 9.23; 9.14

(ERROR MESSl MESS:ZNOBREAK) 9.14;
9.23,26

ERROR (Litatom) 9.17

error correction 15.1

error number 9.22

(ERROR!) 9.14; 9.3

(ERRORMESS u) 9.1S; 9.22

E RRORMESS (Variable) 9.16

(ERRORMESSl MESS1 MESS:Z MESS3) 9.1S

(E RRORN) 9.14; 9.22

E RRORPOS (Variable) 9.16

errors in compiler 12.20

Index.18

errors in Editor 17.2

errors in iterative statements

('ERRORSET FORM FLAG -)
9.11,14

4.13

9.15;

(ERRORSTRING N) 9.15

ERRORTYPELST (Variable) 9.16; 6.5

(ERRORX ERXM) 9.13

ERRORX (Lilatom) 9.12

{ERSETQ FORM} 9.15; 4.4

(ERST R ERN -) 22.6; 18.6

ESC (type of read-macro) 6.37

(ESCAPE FLG RDTBL) 6.36

ESCAPE (Syntax Class) 6.33

escape character 6.13; 2.4

E SCQUOT E (type of read-macro) 6.37

(ESUBST NEW OLD EXPR ERRORFLG

CHARFLG) 17.57; 8.8

(ETHERHOSTNAME PORT

USE.OCTAL.DEFAULT) 21.5

(ETHERHOSTNUMBER NAME) 21.4

ethemet 21.1

(ETHERPORT NAME ERRORFLG MULTFLG)

21.5

EV (Editor Command) 17.40

E V (Function) 20.2

EVAL (Break Command) 9.3; 10.5

Eval (DEdit Command) 20.6

EVAL (display break command) 20.10

EVAL (Editor Command) 17.45

(EVAL x -) 5.11

EVAL (in Masterscope template) 13.17

EVAL! (display break command) 20.10

(EVAL .AS. PROCESS FORM) 18.37

(EVAL. IN. TTY. PROCESS FORM

WAITFORRESULT) 18.37

INDEX

EVAL@COMPILE (DECLARE: Option)
11.27

EVAL@COMPILEWHEN (DECLARE: Option)
11.27

EVAL@LOAD (DECLARE: Option) 11.26

EVAL@LOADWHEN (DECLARE: Option)
11.26

(EVALA x A) 5.12

(EVALV VAR pos) 7.7

(EVENP x Y) 2.41

EVENT (Variable) 8.18

event address 8.5

event number 8.26; 8.5,11,18,33

event specification 8.5; 8.17

(EVE RY EVERYX' EVERYFNl EVERYFN2)
5.14

(EXAM x) (Editor Command) 17.48

(EXCHANGEPUPS sod OUTPUP DUMMY

IDFILTER TIMEOUT) 21.16

(EXCHANGEXIPS soc OUTXIP IDFILTER

TIMEOUT) 21.22

EXEC (Prog. Asst. Command) 8.15

exec package 23.59

Ex i t (DEdit Command) 20.6

E X IT (Transorset Command) 23.37

EX P DlR (Exec Command) 23.60

EXPAND (Window Menu Command) 19.21

(EXPANDBITMAP BITMAP WIDTHFACTOR

HEIGHTFACTOR) 19.4

EXPANDFN (Window Property) 19.31

(EXPANDMACRO FORM QUIETFLG -)
5.19

(EXPANDW ICON) 19.28

EXPLAINOELIMITER (ASKUSER option)
6.63

EXPLAINSTRING (ASKUSER option) 6.62

Index.19

(EXPORT COM1 •.. COMN)

(File Package Command) 11.27

EXPR (Litatom) 5.6

EXPR (Property Name) 5.9; 5.10; 11.4,12;
12.10,14; 15.8-9; 17.54-55

EXPR (Variable) 15.11; 13.18

EXPR* (Litatom) 5.6; 5.7

EXPRESS IONS (File Package Type) 11.15;
8.13

(EXPRP FN) 5.6; 22.3

EXPRS (Litatom) 11.35

(EXPT M N) 2.45

(EXPUNGE DIH) 23.61

(EXTENOREG ION REGION

INCLUDEREGION) 19.3

EXTENT (Window Property) 1~.32;
19.23-24,34

(EXTRACT ~1 FROM • ~2)
(Editor C ommarid) 17.27

F PATTERN (Editor Command) 17.15

(F PATTERN) (Editor Command) 17.16

F PATTERN T (Editor Command) 17.16

F PATTERN N (Editor Command) 17.16

F PATTERN NIL (Editor Command) 17.16

(F PATTERN N) (Editor Command)
17.16; 17.4

F (in event address) 8.5

F (Response to Compiler Question) 12.2

F / L (as a D WIM construct) 15.8

(F= EXP.RESSION x) (Editor Command)
17.17

(F ASSOC KEY ALST) 2.25; 16.10

FAST (M AKEFILE option) 11.7

fast functions 2.3

fast symbolic dump 6.54

INDEX

FASTYPEFLG (Variable) 15.17

FAUL T IN EVAL (E"or Message) 9.24

F AUL TAPPL Y (Function) 15.6; 12.19;
15.10

FAUl TAPPLYFLG (Variable) 15.10

F AUL T ARGS (Variable) 15.10

FAUL TEVAL (Function) 15.6; 9.24; 15.10

FAUL TFN (Variable) 15.11

FAUL TX (Variable) 15.10

FBOX (Function) 23.55

FBOX (record declaration) 23.55

(FCHARACTER N) ~12

(F 0 IFF ERE N C E x Y) 2.43

(FEQP x Y) 2.44

FETCH (in Masterscope template) 13.17

FETCH (in record package) 16.7

FETCH (Masterscope Relation) 13.9

FETCH (Record Operator) 3.1

(FETCHF IELO DESCRIPTOR DATUM) 3.15

FETCHFN (Property Name) 20.17

F EXPR (Litatom) 5.6; 5.7

FEXPR* (Litatom) 5.6; 5.7

FFETCH (Record Package) 3.2

(F F I L E POS PATTERN FILE START END

SKIP TAlL CASEARRAY) 6.10

(FGETO FN) 5.8

(FGREATERP x Y) 2.44

F I (Exec Command) 23.60

F I JFN (Exec Command) 23.60

(FIE LOLOOK FIELDNAME) 3.11

FIE LOS (File Package Type) 11.16

F IELOS OF SET

(Masterscope Set Specification) 13.11

(F I LO I R FILEGROUP -) 14.8

FILE (Property Name) 11.13

Index.20

FILE (Variable) 23.50

file attributes 6.6

FILE DATA ERROR (E"or Message) 23.63

file maps 11.38

file names 6.3; 6.4-5

FILE NOT FOUND (E"or Message) 9.24;
6:1,5

FILE NOT OPEN (E"or Message) 9.23;
6.2,5,9; 22.22

file package commands 11.21

file package functions 11.32

file pointer 6.8-9

FILE SYSTEM RESOURCES EXCEEDED
(E"or Message) 9.24; 6.1,4

FILE WON'T OPEN (E"or Message)
9.23; 6.1

FILE: (Compiler Question) 12.1

(F ILECHANGES FILE TYPE) 11.36

F I LECHANGES (Property Name) 11.13;
11.11

filecoms 11.21; 11.3-4

(F ILECOMS FILE TYPE) 11.34

(FILECOMSLST FILE TYPE -) 11.33

(FILECREATED x) 1135

FILECREATED expression 12.10

(F ILEDATE FILE -) 1136

FILEDATES (Property Name) 11.13;
11.11,36

F ILEDEF (Property Name) 15.8; 15.9

(FILEFNSLST FILE) 11.34

F ILEGROUP (Property Name) 11.8

F I LEL INELENGTH (Variable) 23.14; 6.54

FILE LST (Variable) 11.13; 11.4,8; 15.20

F I LEMAP (Property Name) '11.13,38

FILEMAP DOES NOT AGREE WITH
CONTENTS OF (E"or Me~ag~
11.39

INDEX

(FILENAMEFIELO FILENAME FmLDNAME)

6.5

FILEPKG.SCRATCH (file) 11.19

(FILEPKGCHANGES TYPE LST) 11.12

(FILEPKGCOM CO~ANDNAME PROPl
VALl··· PROPN VALN) 11.32

(FILEPKGCOMS LITATOMl ... LITATOMN)

(File Package Command) 11.24

FILEPKGCOMS (File Package Type) 11.15

F ILEPKGCOMSPLST (Variable) 11.22

FILEPKGFLG (Variable) 113; 11.4

(FILEPKGTYPE TYPE PROPl VALl

PROPN VALN) 11.20

FILE PKGTYPES (Variable) 11.14

(FILEPOS PATTERN FILE START END

SKIP TAIL CASEARRAY) 6.9

FILE ROTBL (Variable) 6.32; 6.16,24-25;
11.4.34; 18.7

files 6.1

(F I L E S 0 FILES/LISTS)

(File Package Command) lL28

FILES (File Package Type) 11.16

(F ILES?) 11.8

FILETYPE (Property Name) 12.9,11; 16.20

filevars 11.30; 11.4,34

F I LEVARS (File Package Type) 11.16

(FILLCIRCLE x Y RADWS TEXTURE

DISPLAY,STREAM) 19.12

F INALL Y FORM (I.S. Operator) 4.10; 4.12

F; nd (DEdit Command) 20.5

F I NO (I.S. Operator) 4.15

(FINO. PROCESS PROC ERRORFLG)

18.28

(F INoCALLERS ATOMS FILES) 17.59

(F INoF I LE FILE NSFLG DlRLST) 15.20

FIRST (Argument to ADVISE) 10.9

FIRST (DECLARE: Option) 11.27
'\

Index.21

FIRST FORM (I.S. Operator) 4.10; 4.12

FIRST (type 0/ read-macro) 6.37

FIRSTCOl (Variable) 6.53; 6.54

(FIX x) 2.40

F I X EventSpec (Prog. Asst. Command)
8.10; 8.27

FIX fonnat (in PRINfNUM) 6.21

fixed number of arguments 5.2

FIXEDITDATE (Function) 17.60

FIXP (as a field specification) 3.14

(F IXP x) 2.1,37

F ixp (record field type) 3.7

(FIXSPEll X1VORD REL SPLST FLG

T~ FN TmFLG DONTMOVETOPFLG

- -) 15.18; 15.19-20

FIXSPELlDEFAUl T (Variable) 15.12;
15.4; 16.14

FIXSPEllREl (Variable) 15.18

FLAG (record field type) 3.7

(FlAST x) 2.20; 16.10

(FlENGTH x) 2.21

(FlESSP x Y) 2.44

(FLIPCURSOR) 19.16

(FLOAT x) 2.44

FLOAT fonnat (in PRINTNUM) 6.22

FLOATING (record field type) 3.7

FLOATING OVERFLOW (E"or Me~ag~
9.26

fioating point arithmetic 2.43 ,

fioating point numbers 2.42; 2.1,36-37,40;
6.13; 22.3

FLOATING UNDERFLOW (E"or Message)
9.26

FLOATP (as a field specification) 3.15

(F LOA T P x) 2.1~37

FLOATP (record field type) 3.7

INDEX

FLOPPY (File Device) 18.13

(Fl TFMT FORMAT) 6.20

(FlUSHRIGHT pos x ~' P2FLAG

CENTERFLAG FILE) 6.31

(FMAX Xl x 2 .•. xN) 2.44

(FMEMB x Y) 2.23; 16.10

(FMIN Xl x2 ••• xN) 2.44

(FMINUS x) 2.43

F N (Transorset Command) 23.36

F N (Variable) 13.7

(FNCHECK FN NOERRORFLG SPELLFLG
PROPFLG T~) 15.19; 5.7

(FNS FNl •.. FNN)

(File Package Command) 11.22

FNS (File Package Type) 11.15

(FNTH x N) 2.20

(F NTYP FN) 5.6; 5.10; 22.3

font p'ackage 6.55

FONTCHANGEFLG (Vanable) 6.56; 23.14

(FONTCOPY OLDFONT PROPl VALl PROP2
VAL2 ...) 19.8

(FONTCREATE FAMILY SIZE FACE

ROTATION DEVICE NOERRORFLG)
19.8

FONTDE F 5 (Variable) 6.57

FONTDEFSVARS (Variable) 6.56

FONTD I RECTOR I ES (Variable) 19.8

FONTESCAPECHAR (Variable) 6.56

FONTFNS (Variable) 6.55

(FONTNAME NAME) 6.56

(FONTP x) 19.8

FONT PROF I lE (Variable) 6.56

(FONTPROP FONT PROP) 19.8

(FONTSET NAME) 6.56

FONTWIDTHSF I LES (Variable) 18.18; 19.8

FOR VAR (I.S. Operator) 4.7

Index.22

FOR VARS (I.S. Operator) 4.7

FOR OLD VAR (1.S. Operator) 4.7

FOR (in USE command): 8.8

FOR VARIABLE SET 1.5. TAlL
(M asterscope Command), 13.7

FOR (in INSERT command) ~n Eduory
17.25

(FORCEOUT CONNECTION/FILE) 23.65

forDuration INTERVAL (I.S. Operator)
14.12

FORGET EventSpec (Prog. Asst. Command)
8.13; 8.18

fork handle 22.21

forks 22.20

FORM (Process Property) 18.27

fonnat and use of history list 8.25

(FPLUS Xl X2 ••• XN) 2.43

(FQUOTIENT X Y) 2.43

frame 7.2

frame extension 7.2

frame name 7.2

frames 7.2

(FRAMESCAN ATOM POs) 7.5

FREE (in DecI package) 23.23

FREELY (use in Masterscope) 13.8

(FREEVARS FN USEDATABASE) 13.19

(FREMAINDER x Y) 2.43

FREPLACE (Record Package) 3.2

FROM ·FORM (I.S. Operator) 4.8; 4.9

F ROM (in event specification) 8.6

FROM SET (Masterscope Path Option)
13.14

FROM (in EXTRACT command)
(in Editor) 17.27

(FRPLACA X Y) 2.15; 16.10

(FRPLACD x Y) 2.15; 16.10

INDEX

(FRPLNODE X A D) ~15

(FRPLNODE2 X Y) ~15

(F RPTQ N FORMl FORM2 .•. FORMN)

5.13

(FS PATTERNl ..• PATTERNN)

(Editor Command) 17.16

F SUBR (Lilatom) 5.6; 5.7

F SUB R· (Lilatom) 5.6; 5.7

(FTIMES Xl X2 ... xN) 2.43

(FTP HOST FILE ACCESS USER PASSWORD

ACCOUNT BYTESIZE) 23.63

ftp package 23.62

full file name 6.4

(FULLNAME X RECOG) 6.4; 6.5

FULLPRESSPRINTER (Variable) 18.18

FUNARG (Litatom) 5.15; 5.6

(FUNCT ION FN ENV) 5.15

FUNCTION ~n Masterscope template) 13.16

function definition cell 5.8; 12.18; 22.3

function definition cells 2.6

function types 5.2

FUNCT IONAL (in Masterscope template)
13.17

functional arguments 12.8

FUNNYATOMLST (Variable) 16.18

(GAINSPACE) 14.13

GAINSPACE FORMS (Variable) 14.13

garbage collection 18.2; 22.7

(GATHEREXPORTS FROMFILES TOFILE
FLG) 11.29

(GCD X y) 2.40

(GCGAG MESSAGE) 18.2; 22.9

(GCMESS MESSAGE# STRING) 22.10

(GCT RP) 18.2

Index.23

(GCTRP N) 22.11

GCTRP (Printed by System) 22.11

(GOA T E DATE FORMATBITS STRPTR)

14.10

G E (C LISP Operator) 16.6

(GENERATE HANDLE VAL) 7.13

(GENERATOR FORM## COMVAR##)
7.13

generator handle 7.13

generators 7.13

generators for spelling correction 15.15;
23.44

GENNUM (Variable) 2.11

(GENSYM CHAR) 2.11; 10.3,8-9

(GEQ x Y) 2.45

GET (old name for LISTGETl) 2.26

GET· (Editor Command) 17.43; 6.51

(GETATOMVAL VAR) 2.6

(GETBLK N) 22.20; 9.24; 18.6

(GETBOXPOSITION ~TH HEIGHT ORGX

ORGY WINDOW PROMPTMSG) 19.36

(GETBOXREGION ~TH HEIGHT ORGX

ORGY WINDOW PROMPTMSG) 19.37

(GETBRK RDTBL) 6.35

(GETCHARBITMAP CHARCODE FONT)

19.9

(GETCOMMENT x DESTFL -) 6.51

(GETCONTROL TTBL) 6.45

GETD (Editor Command) 17.44

(GETD FN) 5.8; 5.10; 22.3

GETDECL TYPEPROP (Function) 23.29

(GETDEF NAME TYPE SOURCE OPTIONS)
11.17

(GETDELETECONTROL TYPE TTBL) 6.44

(GETDESCRIPTORS TYPENAME) 3.15

(GETECHOMOOE TTBL) 6.43

INDEX

(GETEOFPTR FILE) 6.9

(GETFIELDSPECS TYPENAME) 3.15

(GETFILEINFO FILE ATTRlB) 6.6

(GETFILEPTR FILE) 6.9

(GETHASH KEY HARRAY) 2.35; 16.14

(GETHASHFILE KEY HASHFILE) 23.42

(GETLIS x PROPS) 2.8

(GETMOUSESTATE) 19.18

GETP (old name of GETPROP) 2.7

(GETPAGE HASHFILE N) 23.45

(GETPASSWORO DIRECTORYNAME) 23.62

(GETPNAME FILEADR HASHFILE) 23.45

(G E T P~S I T ION WTNDOW CURSOR) 19.36

(GETPROP ATM PROP) 2.7

(GETPROPLIST ATM) 2.8

(GETPUP PUPSOC WAIT) 21.16

(GETPUPBYTE pUP BYTE#) 21.18

(GETPUPSTRING PUP OFFSET) 21.18

(GETPUPWORD pUP wORD#) 21.17

(GETRAISE TTBL) 6.45

(GETREADTABLE RDTBL) 6.32

(GETREGION MINWTDTH MINHEIGHT

INITREGION NEWREGIONFN

NEWREGIONFNARG) 19.37

(GET RE LA T ION ITEM RELATION

INVERTED) 13.20

(GETSEPR RDTBL) 6.35

(GETSTREAM FILE ACCESS) 18.12

(GETSYNTAX OH TABLE) 6.34

(GETTEMPLATE FN) 13.18

(GETTERMTABLE TTBL) 6.41

(GETTOPVAL VAH) 2.5

(GET T Y P E 0 ESC RIP T ION TYPE) 22.2

GETVAL (Editor Command) 17.46

(GETXIP NSOC WAIT) 21.22

Index.24

(GIVE. TTY. PROCESS WINDOW) 18.34

(GLC x) 2.29

global variables 12.4; 16.15.

GLOBALVAR (Property Name) 12.3,; 16.15

(GLOBALVARS VAR1 ••• VARN)
(File Package Command) 11.25

INDEX

(HARRAY LEN) 2.35

(HARRAYP x) 2.2

(HARRAYSIZE HARRAY) 2.35

(HASDEF NAME TYPE SOURCE SPELLFLG)

11.17

GLOBALVARS (in Masterscope Set Specification)

HASH ARRAY FULL (Error Message) 2.36

hash arrays 2.35; 2.2
13.11 -

GLOBALVARS (Variable) 12.3; 12.15; 16.15

(GNC x) 2.29

GO (Break Command) 9.3

(GO LABEL) (Editor Command) 17.17

(GO x) 4.4

GO (in iterative statement) 4.11

GRAYSHADE (Variable) 19.6

(GREATERP x Y) 2.45

(GREET NAME -) 14.5

GREETDATES (Van'able) 14.6

(GREETF ILENAME USER) 14.6

greeting and user profiles 14.5

(G RID GRIDSPEC UNITS WIDE UNITSHIGH

GRIDBORDER DISPLAYSTREAM

GRIDSHADE) 19.42

(GRIDXCOORD XCOORD GRIDSPEC) 19.42

(G R I DYCOORD YCOORD GRIDSPEC) 19.42

GT (CLISP Operator) 16.6

(GTJFN FILE EXT V FLAGS) 22.22; 18.6

handle 22.24

HARD DISK ERROR (Error Message) 9.22

HARDCOPY (Window Menu Command)
19.21

(HARDCOPYW WINDOW/BITMAP/REGION

FILE HOST SCALEFACTOR

ROTATION) 18.18

(HARDRESET) 18.25

hash file facility 23.41

hash keys 2.35

hash overflow 2.36

HASH TABLE FULL (Error Message)
9.24; 2.36

hash value 2.35

hash values 2.35

(HASHF ILENAME HASHFTLE) 23.42

(HASHFILEP x) 23.42

(HASHFILEPROP HASHFILE' PROP) 23.42

HASHFILERDTBL (Variable) 23.41

(HASHF I LESPLST HASHFTLE) 23.44

HASHl.INK (Record Type) 3.6

HASHOVERFLOW (Function) 2.36

HASHST ATUS (Function) 23.42

(HASTTYWI NDOWP PROC) 18.32

(HCOPYALL x) 2.19; 6.24

HE IGHT (Window Property) 19.33

(HE I G H T I F WIN DOW INTERIORHEIGHT

TITLEFLG BORDER) 19.26

(HELP MESSl MESS2 BRKTYFE)' 9.14

HELP (Litatom) 9.17

HELP (Masterscope Command) 13.7

HELP! (Error Message) 9.14

HELPCLOCK (Variable) 9.11; 8.8,29

HE LPOE PTH (Variable) 9.10

HELPfLAG (Variable) 9.11; 9.22

HE LP SY S (Function) 5.7; 18.5

Index.25

HELPTIME (Variable) 9.11

HERALDSTRING (Variable) 14.4

HERE (in edit command) 17.26

HI STORY (Property f-.(ame) 8.12

HISTORY (Variable) 8.18

history list 8.2; 8.25; 17.51

HISTORYCOMS (Van'able) 8.36

(HISTORYFIND LST INDEX MOD

EVENTADDRESS -) 8.32

(HISTORYMATCH INPUT PAT EVENT)

8.33

(HISTORYSAVE HISTORY In INPUTl
INPUT2 INPUT3 PROPS) 8.32;
8.25,27-28,35

HISTORYSAVEFORMS (Variable) 8.18

HISTSTRO (Variable) 8.26

HISTSTRl (Variable) 20.40

(HLSP x) 19.45

(HORRIBLEVARS VAR1 ••• VARN)

(File Package Command) 11.25; 6.24

HOST (as a file name field) 23.63

("HOSTNAME HOSTN FLG) 22.6; 18.6

(HOSTNAMEP NAME) 18.6

(HOSTNUMBE R) 22.6; 18.6

(HPRINT EXPR FILE UNCIRCULAR

DATATYPESEEN) 6.24

(HREAD FILE) 6.24

(I C Xl ... x N) (Editor Command)
17.45

(I . S . OP R NAME FORM OTHERS

EVALFLG) 4.13

I • S. OPR (Property Name) 11.12
..

Ls.oprs 4.5

(I. S. OPRS OPRl ... OPRN)

(File Package Command) 11.25; 4.15

I. S. OPRS (File Package Type) 11.16

INDEX

i.s.type 4.6; 4.13

IBOX ' (Function) 23.55

I BOX (record declaration) 23.55

icon 19.21

ICON (Window Property) 19.31

ICONFN (Window Property) 19.31

I CONWI NDOW (Window Property) 19.31

IconWi ndowMenu (Variable) 19.22

IconWindowMenuCommands (Variabk)
19.22

10 (Variable) 8.18

(IDA T E STH) 14.10; 18.6

(IDIFFERENCE x Y) 238

(IEQP N M) 2.39

(I F x) (Editor Command) 17.46

(I F x COMSl) (Editor Command) 17.47

(I F X COMS 1 COMS2) (Editor Command)
17.47

(I F EXPRESSION TEMPLATE 1 TEMPLATE2)

(in M asterscope template) 13.18

IF-THEN-ELSE statements 4.4

(IFPROP PROPNAME LITATOM1 ...

LITATOMN) (File Package Command)
11.23; 11.30

(IGEQ x Y) 2.39

'IGNORE (Litatom) 20.44

(IGNOREDECL,. VAL)

(File Package Command) 23.25

IGNOREMACRO (Litatom) 5.19

(IGREATERP x Y) 2.39

(ILEQ x Y) 2.39

(ILESSP x Y) 2.39

ILLEGAL ARG (Error Message) 9.24; 2.9;
5.8; 6.4,43; 7.5

ILLEGAL DATA TYPE (Error Message)
3.15

Index.26

ILLEGAL DATA TYPE NUMBER
(Error Message) 9.25

ILLEGAL EXPONENTIATION
(Error Message) 2.45

ILLEGAL GO (Error Message) 12.21

ILLEGAL INSTRUCTION (Error Me~ag~
9.22

ILLEGAL OR IMPOSSIBLE BLOCK
(Error Message) 9.24; 22.20

ILLEGAL READTABLE (Error Message)
9.25; 6.32-33,42

ILLEGAL RETURN (Error Message) 9.22;
12.21; 4.4

ILLEGAL STACK ARG (Error Message)
9.23; 7.3

ILLEGAL TERMINAL TABLE
(Error Message) 9.25; 6.41 e42

IMAGEHE IGHT (Menu Field) 19.40

IMAGEWIDTH (Menu Field) 19.41

(IMAX Xl X2 ... XN) 2.39

(IMIN Xl X2 ... X N) 2.39

(IMINUS x) 2.38 .

IMMED (type of read-macro) 6.38

IMMEDIATE (type of read-macro) 6.38

(IMOD X Y) 2.39

(IMPORTF ILE FILE RETURNFLG) 11.29

(FNl IN FN2) (arg to BREAKO) 10.4

IN FORM (I.S. Operator) 4.7

I N OLD VAR (I.S. Operator) 4.8

ON OLD· (VAR+-FORM) (I.S . . Operator) 4.8

I N OLD (VAR+-FORM) (I.S. Operator)
4.8; 4.9,12

IN (in USE command) 8.8

IN EXPRESSION

(Masterscope Set Specification) 13.10

IN (in EMBED command) (in Editor)
17.28

INDEX

IN? (Break Command) 9.9

INCORRECT DEFINING FORM
(Error Message) 5.9

incorrect number of arguments 5.3

(INF ILE FILE) 6.2

(IHFILECOMS? NAME TYPE COMS

-) 11.32

(I NF:[LE P FILE) 6.4; 6.5

INFIX (type of read-macro) 6.36

infix operators in CLISP 16.5

INFO (Property Name) 5.4; 8.34;
16.14,17; 23.17

INFOHOOK (Process Property) 18.36; 18.27

RELATIONING SET

(Masterscope Set Specification) 13.11

I NIT (in record declarations) 3.9

INITIALS (Variable) 17.60

IN IT IALSLST (Variable) /17.60

(INITRECORDS RECl ... RECN)

(File Package Command) 11.25; 3.8

(INITVARS VARl ••• VARN)

(File Package Command) 11.22

(I N PUT FILE) 6.2

input buffer 6.15,19,46; 9.12; 22.2,11

input functions 6.12

(I NREADMAC ROP) 6.38

(INSERT El ... EM FOR • @)
(Editor Command) 17.25

(INSERT El ... EM AFTER • @)
(Editor Command) 17.25

(INSERT El ... EM BEFORE • @)
(Editor Command) 17.25

INSIDE FORM (I.S. Operator) 4.8

(INSIDEP REGION X Y) 19.3

(INSPECT OBJECT AST¥PE WHERE)

20.13

INSPECT IARRAY (Function) 20.15

Index.27

INSPECTAlLFIELDSFLG (Variable) 20.15

(INSPECTCODE FN) 20.14

INSPECTMACROS (Variable) 20.15

Inspector 20.12

(INSPECTW.CREATE DATUM

PROPERTIES FETCHFN
STOREFN PROPCOMMt\.NDFN
VALUECOMMANDFN TITLECOMMANDFN

TITLE SELECTIONFN WHERE

PROPPRINTFN) 20.16

(INSPECTW. REDISPLAY INSPECTW
, PROPERTY -) 20.17

(INSPECTW.REPLACE INSPECTW
. PROPERTY NEWVALUE) 20.17

(INSPECTW. SELECTITEM INSPECTW
PROPERTY VALUEFLG) 20.17

INSPECTWTITLE (Property Name) 20.17

INSTRUCTIONS (Litatom) 5.19

INTEGER (record field type) 3.7

integer arithmetic 2.38

(INTEGERLENGTH N) 2.41

integers 2.38: 2.1

(INTENSITIESFROMCOLORMAP COLOR~)
19.46

interfork communication 22.20

interpreter 5.11

I NTE RRUPT (Function) 22.1; 22.11

I NTE RRUPT (Litatom) 9.12

interrupt characters 9.17; 18.1; 22.1

(INTERRUPTABLE FLAG) 9.18

(INTERRUPTABLEP) ~18

(INTERRUPTCHAR CHAR TYP/FORM

HARDFLG) 9.17

INTERRUPTED BEFORE
(Printed by System) 22.1

(INTERSECTION x Y) 2.22

(INTERSECTREGIONS REGION1 REGION2
... REGIONN) 19.3

INDEX

(IOF ILE FILE) 6.2

(IPLUS Xl X2 ... xN) 2.38

(IQUOT I ENT X Y) 2.39

(IREMAINOER x Y) 2.39

SET I S SET (M asterscope Command) 13.5

ISTHER.E (I.S. Operator) 4.15

IT (Variable) 8.16

ITEMHE IGHT (Menu Field) 19.40

ITEMS (Menu Field) 19.39

ITEMWIDTH (Menu Field) 19.40

ite~ative statements 4.5

(ITIMES Xl X2 ... xN) 2.39

JFN 22.22-23

(J F NS JFN AC3 STRPTR) 22.23; 18.6

JMACRO (Property Name) 5.17

(JOB#) 23:60

JOIN FORM (I.S. Operator) 4.6

JOINC (Editor Command) 17.42

J S (ASS EM B LE macro) 23.54

(JS JSYSNAME ACl AC2 AC3 RESULT)

23.53

JSYS 22.22-23

(JSYS N ACl AC2 AC3 RESULTAC) 22.6

JSYS ERROR (E"or Message) 9.22; 22.6

(JSYSERROR' ERRORN) 23.54

JSYSES (Variable) 23.53

(KEY ACTION KEYNAME ACTIONS) 18.8

keyboard layouts 15.5.12

(KEYOOWNP KEYNAME) 18.8

KEYLST (ASKUSER argument) 6.59

KEYLST (ASKUSER option) 6.62

KEYSETSTATE (Macro) 19.17

Index.28

KEYSTRING (ASKUSER option) 6.63

(K FOR K FORK) 22.22; 22.21

KNOWN (Masterscope Set Specification)
13.11

(KWOT E x) 5.11

(L-CASE X FLG) 2.11; 17.41

LABELS (Litatom) 16.17

LABELST (Variable) 23.11

LAMBDA (Litatom) 5.2; 5.10; 22.3

lambda functions 5.2

lambda-nospread functions 5.4

lambda-spread functions 5.2

LAMBDACOMS (Variable) 23.40

LAMBDAFONT (font class) 6.55

LAMBDASPLST (Variable) 15.12; 5.7;
15.8-9; 23.17

lambdatran package 23.16

LAMBDATRANFNS (Variable) 23.17

LAMS (Variable) 12.7; 12.11

LAP 22.15; 12.1; 22.11

LAP macros 22.17; ,22.13

LAP op-defs 22.13

LAP statements 22.15

LAPFLG (Variable) 12.1

large integers 2.1,36-37; 22.3

LARGEST FORM (I.S. Operator) 4.7

LAST (Argument to AD VISE) 10.9

(LAST x) 2.20

LASTAIL (Variable) 17.10; 17.15,57

(LASTC FILE) 6.15

LASTEXEC (Variable) 22.22

LASTKEYBOARD (Variable) 19.18

LASTKEYSETSTATE (Macro) 19.17

INDEX

LASTMOUSEBUTTONS (Variable) 19.17

(LASTMOUSESTATE BUTTONFORM)
(Macro) 19.17

LASTMOUSET IME (Variable) 19.18

(LASTMOUSEX DISPLAYSTREAM) 19.18

LASTMOUSEX (Variable) 19.17

(LASTMOUSEY DISPLAYSTREAM) 19.18

LASTMOUSEY (Variable) 19.17

(LASTN L N) 2.20

LASTPOS (Variable) 9.3; 9.4-6,8; 20.11

LASTVALUE (Property Name) 17.39

LASTWORO (Variable) 15.15; 15.17-19;
16.8; 17.55

LBOX (Function) 23.54

(L C . ct) (Editor Command) 17.18

LCASELST (Variable) 6.53

L C F I L (Variable) 12.1-2

(LCL·. ct) (Editor Command) 17.18

(LCONC PTR x) 2.18

LO (Exec Command) 23.59

LD ALL (Exec Command) 23.59

LO USERNAME (Exec Command) 23.59

(LOB BYTESPEC VAL) (Macro) 2.42

(LOIFF x y z) 2.22

LOIFF: NOT·A TAIL (E"or Me~ag~
2.22

(LOIFFERENCE x y) ~22

LE (CLISP Operator) 16.6

LE FT (key indicator) 19.17

LE FTBRACKET (Syntax Class) 6.33

LEFTKEY (key indicator) 19.17

LEFTMIOOLEKEY (~ey indicator) 19.17

(LEFTOFGRIOCOORO GRID X GRIDSPEC)
19.43

LEFTPAREN (Syntax Class) 6.33

Index.29

(LENGTH x) 2.21

(LEQ x Y) 2.45

(LESSP x Y) 2.45

(LI N) (Editor Command) 17.32

LIKE ATOM (Masterscope Set Specification)
13.10 .

(LINBUF FLG) 6.47; 6.46

LINE (Variable) 20.44

line buffer 6.45; 6.46-47

line-buffering 6.45; 6.13-15

line-feed 6.13.16

line-feed· (EDIT A command) 23.50

line-feed (Editor Command) 17.13

LINEDELETE (syntax class) 6.41,43

(LINELENGTH N FILE) 6.8
LINELENGTH N (Masterscope Path Option)

13.15

LINESPERPAGE (Variable) 23.14

LINK USER (Exec Command) 23.59

linked function calls 12.18

L I NKEDFNS (Variable) 12.19

LINKFNS (Variable) 12.1S; 12.15-16.19

(LINKTOTTY TTY#) 23.61

(LINKTOUSER USER) 23.61

Lisp. vi rtua 1 mem (File) 18.3

LISPFN (Property Name) 16.22

LISPX Printing Functions 8.20

(LIS P X LISPX:X LISPXID LISPXXMACROS

LISPXXUSERFN LISPXFLG) 8.2S;
8.10,16,26-27,29,36; 15.3,14,20;
17.39,45

(LISPX/ x FN VARS) 8.34; 8.22

LISPXCOMS (Variable) 8.29; 11.25

(LISPXEVAL LISPXFORM LISPXID) 8.29

(LISPXFIND HISTORY LnvE TYPE BACKUP

-) 8.32: 8.36

INDEX

LISPXFINDSPLST (Variable) 8.7

LISPXH 1ST (Variable) 8.27; 8.24,28,34

LISPXHISTORY (Variable) SG25; 8.29,36

LISPXHISTORYMACROS (Variable) 8.19

LISPXLINE (Variable) 8.19

(LISPXMACROS LITATOMl ... LITATOMN)

(File Package Command) 11.24

LISPXMACROS (File Package Type) 11.15

LISPXMACROS (Variable) 8.19; 8.29; 22.22

(LISPXPRINl x Y Z NODOFLG) 8.20

(LISPXPRIN2 x Y Z NODOFLG) 8.20

(LISPXPRINT x Y Z NODOFLG)

8.20; 8.27

(LISPXPRINTDEF EXPR FILE LEFT DEF

TAIL NODOFLG) 8.20

LISPXPRINTFLG (Variable) 8.21

(LISPXREAD FILE RDTBL) 8.31;
8.4.16,26,28,35

LISPXREADFN (Variable) 8.29; 8.30

(LISPXREADP FLG) 8.31; 8.35

(LISPXSPACES x Y Z NODOFLG) 8.20

(LIS P X S TAT S RETURNVAL UESFLG). 8.21;
18.6

(LISPXSTOREVALUE EVENT VALUE) 8.32

(LISPXTAB x Y Z NODOFLG) 8.20

(LISPXTERPRI x Y Z NODOFLG) 8.20

(LISPXUNREAD LST -) 8.31

LISPXUSERFN (Variable) 8.20; 8.29

LISPXVALUE (Variable) 8.20

(LISPXWATCH STAT N) 8.21; 18.6

(LIST Xl X;z ... XN) 2.16

LIST (MAKEFILE option) 11.7

LIST (Property Name) 5.10

list cells 2.14; 2.2

list functions 2.16

Index.30

(LIST FILES FILEl FILEa .•. FILEN)

11.9; 11.7

LISTF ILESl (Function) 11.9

LISTFILESTR (Variable) 6.57; 11.10

(LISTGET LST PROP) 2.25

(LISTGETl LST PROP) ~26

LISTING? (Compiler Question) 12.1

LIST P checks (in Pattern Match Compiler)
23.2

(LISTP x) 2.2

(LISTPUT LST PROP VAL) 2.26

(LISTPUTl LST PROP VAL) 2.26

lists 2.14-15

(LITATOM x) 2.1

litatoms (literal atoms) 2.4; 2.1; 6.13

LITS (Variable) 23.50

(LLSH x N) 2.40

(LO N) (Editor Command) 17.32

(LOAD FILE LDFLG PRINTFLG) 11.4;
8.33; 12.10

(LOAD? FILE LDFLG PRINTFLG) 11.4

(LOADAV) 22.5; 18.6

(LOADBLOCK FN FILE LDFLG) 11.6

(LOADBYTE N POSITION SIZE) 2.41

(LOADCOMP FILE LDFLG) 11.6

(LOADCOMP? FILE LDFLG) 11.6

(lOADDB FILE) 23.16

LOADDBFLG (Variable) 23.16

(LOADDE F NAME TYPE SOURCE) 11.18

LOADEDF I LE LST (Variable) 11.13

(LOADFNS FNS FILE LDFLG VARS) 11.5

(LOADFROM FILE FNS LDFLG) 11.6;
12.13

LOADOPT IONS (Variable) 11.4

(LOADVARS VARS FILE LDFLG) 11.5

INDEX

(LOC x) 22.5

LOCAL (in Ded package) 23.21

local record declarations in CLISP 16.10

local variables 4.3

LOCALLY (use in Masterscope) 13.8

(LOCALVARS VARl VARN)

(File Package Command) 11.25

LOCALVARS (in Masterscope Set Specification)
13.11

LOCAlVARS (Variable) 12A

location specification 17.17

location specification (in Editor)
17.17; 17.18,46 <

LOCATION UNCERTAIN (Printed by Editor)
17.10

(LOCKMAP PTR) 14.19

(LOG x) 2.45

(LOGAND Xl Xa ... XN) 2.40

(LOGIN HOSTNAME - - -) 18.14

LOGIN (Property Name) 23.63

LOGINHOST IDIR (Variable) 18.12

(LOG NOT N) 2.41

logo window 19.19

(LOGOR Xl X2 ... XN) 2.40

(LOGOUT FAST) 14.2; 22.22

LOGOW (Variable) 19.19

(LOGXOR Xl 'Xa ... xN) 2.40

(LOOKUP.NS.SERVER NAME TYPE)
21.13

(LOOKUPHASHFILE KEY VALUE HASHFILE

CALLTYPE) 23.44

LOWER (Editor Command) 17.41

(LOWER x) (Editor Command) 17.41

lower case 2.11

lower case comments 6.52

lower case in CLISP 16.21

Index.31

lower case input 6.44

(LOWE RCASE FLG) 16.21

(LP COMSl ... COMSN) (Editor Command)
17.47

LPARKEY (Variable) 15.12; 15.5

(LPQ COMSl .00 COMSN)
(Editor Command) 17.47

LPT (printer device) 18.18

(LRSH x N) 2.41

(LSH x N) 2.40

L S T F I L (Variable) 12.1

LSTVARS (Variable) 4.14

(LSUBST NEW OLD EXPR) 2.24

L T (C LISP Operator) 16.6:

(M C COMSl 00. COMSN)

(Editor Command) 17.48

(M (c) ARG COMSl ... COMSM)

(Editor Command) 1'1.49 .

(M (c) (ARGl ... ARGN)COMSl
COMSM) (Editor Command) 17.48

machine instructions 22.15; 22.16; 23.48

(MACHINETYPE) 18.6

(MACRO • MACRO)
(in M asterscope templale) 13.18

MACRO (Property Name) 11.12; 12.8

MACRO (type of read-macro) 6.36

Macro E~pansion (in Masterscope) 13.15

MACROCHARS (ASKUSER option) 6.63

MACROPROPS (Variable) 5.17

macros 5.17

(MAC ROS LITATOM 1 ... LITATOM)
(File Package Command) 11.25

MACROS (File Package Type) 11.15

macros (in Editor) 17.48

MACROTRAN (Function) 5.19; 15.11

INDEX

MACSCRATCHSTRING (Variable) 14.10;
22.23

(MAKE ARGNAME EXP) (Editor Command)
17.44

(MAKEBITTABLE L NEG A) 2.32

(MAKE F I L E FILE OPTIONS REPRINTFNS

SOURCEFILE) 11.6; 11.10; 12.13'
15.20 •

MAKEFILE and CLISP 16.20

M~KEFILEFORMS (Variable) 11.8

MAKEFILEOPTIONS (Vanable) 11.7

MAKEFILEREMAKEFLG (Variable) 11.10;
11.7

(MAKEFILES OPTIONS FILES) 11.8

{MAKEFN (FN • ACTUALARGS) ARGLfflT
Nl N 2) (Editor Command) 17.44

(MAKEINTERPRESS FILE OUTFILE FONTS
HEADING TABS) 18.17

(MAKEKEYLST LST DEFAULTKEY

LCASEFLG -) 6.65

(MAKENEWCOM NAME TYPE - -) 11.33

(MAKENEWCONNECTION HOST TYPE SKT
SCRATCHCONN WAITFLG) 23.64

(MAKEPRESS FILE OUTFILE FONTS
HEADING TABS) 18.17

(MAKESYS FILE NAME) 14.4

MAKESYSOATE (Variable) 14.4

manipulating file names 6.5

. (MAP MAPX MAPFNl MAPFN2) 5.13

(MAP. PROCESSES MAPFN) 18.28

(MAP2C MAPX MAPY MAPFNl MAPFN2)
5.14

(MAP2CAR MAPX MAPY MAPFNl MAPFN2)
5.14

(MAPATOMS FN) 2.11

(MAPBUFFERCOUNT ONLYUNLOCKED)
14.18

(MAPC MAPX MAPFNl MAPFN2) 5.13

Index.32

(MAPCAR MAPX MAPFNl MAPFN2) 5.13

(MAPCON MAPX MAPFNl MAPFN2) 5.13

(MAPCONC MAPX MAPFNl MAPFN2) 5.13

(MAPDL MAPDLFN MAPDLPOS) 7.8

(MAPHASH HARRAY MAPHFN) 235

(MAPHASHFILE HASHFILE MAPFN) 23.43

(MAPLIST MAPX MAPFNl MAPFN2) 5.13

(MAPOFACOLOR PRIMARJES) 19.46

(MAPPAGE PAGE# FILE -) 14.18

(MAPRELATION RELATION MAPFN) 13.20

(MAPRINT LST FILE LEFT RIGHT SEP
PFN LISPXPRINTFLG) 5.14

(MAPWORD FILEADR FILE) 14.19

margins (for PRETTYPRINT) 6.49

MARK (Editor Command) 17.21

(MARK LITATOM) (Editor Command)
.17.21

(MARKASCHANGED NAME TYPE REASON)

11.11

MARKLST (Variable) 17.21; 17.57

MASK (Variable) 23.51

(MAS K • 0 'S POSITION SIZE) 2.41

(MASK. 1 'S POSITION SIZE)

(MASTERSCOPE COMMAND -)

Masterscope Commands 13.4

2.41

13.19

MATCH (use in pattern match in CLISP)
23.1

(MAX Xl X2 ... x N) 2.45

MAX. F I X P (Variable) 2.38; 2.39

MAX. FLOAT (Variable) 2.43; 2.44

MAX. INTEGER (Variable) 2.38

MAX. SMALLP (Variable) 2.38

MaxBkMenuHeight (Variable) 20.11

MaxBkMenuWi dth (Variable) 20.11

MAXINSPECTARRAYLEVEL (Variable)
20.15

INDEX

MAXINSPECTCDRLEVEL (Variable) 20.14

MAXLEVEL (Variable) 17.15;, 17.17

MAXLOOP (Variable) 17.47

MAXLOOP EXCEEDED (Pn'nted by Editor)
17.47

(MBO El ... EM) (Editor Command)
17.28

(MEMB X Y) 2.23

(MEMBE R x Y) 2.23

(MEMQ VALUEl .•. VALUEN)

(Ded Type Expression) 23.26

(MEMSTAT PGl PGN FORK) 23.61

(MENU MENU POSITION) 19.38

MENUBORDERSIZE (Menu Field) 19.40

MENUBUTTONFN (Function) 19.38

MENUCOLUMNS (Menu Field) 19.40

MENUFONT (Menu Field) 19.39

MENUFONT (Variable) . 19.22,40

MENUHELDWAIT (Variable) 19.39

(MENUITEMREGION ITEM MENU) 19.41

MENUOFFSET (Menu Field) 19.39

MENUOUTLINESIZE (Menu Field) 19.40

MENUPOSITION (Menu Field) 19.39

MENUROWS (Menu Field) 19.40

(MERGE A B COMPAREFN) 14.9

ME RG E (Variable) 23.37

(MERGE INSERT NEW LST ONEFLG) 14.9

(METASHIFT FLG) 18.9

MIDDLE (key indicator) 19.17

MIDDLEKEY (key indicator) 19.17

MILLIS-ECONOS (Timer Unit) 14.11

(MIN Xl X2 ... xN) 2.45

MIN. F I X P (Variable) 2.38; 2.39

MIN. FLOAT (Variable) 2.43; 2.44

MIN. INTEGER (Variable) 2.38

Index.33

MIN. SMALLP (Variable) 2.38

(MINESHAFT N OUTFLG) 19.50

(MINFS N TYPE) 22el0; 18.2; 22.8-9J1

(MINHASH x) 22.11

(MINUS x) 2.44

(MINUSP x) 2.40,44

MISSING OPERAND (DWIM error message)
16.11

MISSING OPERATOR
(CLISP error message) 16.0

(MISSPELLED? XWORD REt SPLST FLG
TAlL FN) 15.18; 15.19-20

mixed arithmetic 2.44

(MKATOM x) 2.9

(MKL I ST x) 2.16

(MKSTRING x FLG RDTBL) 2.28

(MKSWAP x) 22.26

(MKSWAPP FNAME CDEF) 22.26

MKSWAPSIZE (Variable) 22~26

(MKUNSWAP x) 22.26

MOD I FIE R (Lilatom) 4.15

(MOD I FY • KEYACT IONS KEYACTIONS
SAVECURRENT?) 18.9

(MONITOR.AWAIT.EVENT RELEASELOCK
EVENT TIMEOUT TIMERP) 18.31

mouse 19.16

(MOUSESTATE BUTTONFORM) (Mfacro)
19.16

(MOVD FROM TO COPYFLG) 5.8

(MOVD? FROM TO COPYFLG) 5.9

(MOV E @ 1 TO COM • @ 2)
(Editor Command) 17.29

MOVE (Window Menu Command) 19.20

MOVEFN (Window Property) 19.32'

(MOVE TO x Y DISPLAYSTREAM) 19.12

INDEX

(MOVETOFILE TOF&E NAME TYPE
FROMF&E) 11.33

(MOVETOUPPERLEFT D~PLAYSTREAM

REGION) 19.13

(MOVEW WINDOW POSorX Y) 19.26

MSMACROPROPS (Variable) 13.15

(MSMARKCHANGED FN TYPE REASON)
13.21

(MSNEEDUNSAVE FNS MSG
MARKCHANGEFLG) 13.20

MSNEEDUNSAVE (Variable) 13.21

MSPRINTFLG (Variable) 13.2

(MULTIFILE INDEX SOURCEFILES
DESTINATIONFILE NEWPAGEFLG)
23.13

MULTIFILEINDEXCOLS (Variable) 23.14

MULTIFILEINDEXFILECOL (Variabk)
23.14

MUL T I F rLE I NDEXF I LESFLG (Variable)
23.14

MULTIFILE INDEXFNSMSFLG (Variable)
23.15

MULTIFILEINDEXGETDEFFLG (Variabk)
23.15

MULTIFILEINDEXLOADVARSFLG (Variabk)
23.15

MULTIFILEINDEXMAPFLG (Variable)
23.14

MUL T I FILE INDEXNAMECOL (Variable)
23.14

MUL TIF ILE INDEXTYPECOL (Variable)
23.14

MULTIFILEINDEXVARSMSFLG (Variabk)
23.15

MUL TIPL Y DEFINED TAG (E"or Message)
12.21

MULTIPLY DEFINED TAG. ASSEMBLE
(Error Message) 12.21

MULTIPLY DEFINED TAG. LAP
(E"or Message) 12.21

Index.34

-N (N a number) (PRINTOUT command)
6.26-27

N (N~ 1) (Editor Command) 17.10

-N (N~ 1) (Editor Command) 17.10

(N) (N~l) (Editor Command) 17.3

(N El ... EM) (Editor Command) 17.22

(N El .•. EM) (N~ 1) (Editor Command)
17.3

(-N El ... EM) (N~l)
(Editor Command) 17.3

NAME (Process Property) 18.26

NAME LITATOM EventSpec
. (Prog. Asst. Command) 8.12

NAME LITATOM AHGl ... ARGN
: EventSpec (Prog. Asst. Command)
8.12

NAME ~ITATOM (ARGl ... AHGN)
: EventSpec (Prog. Asst. Command)
8.12; 8.13,27

NAMES RESTORED (Printed by System)
10.7

NAMESCHANGED (Property Name) 10.4

(NARGS FN) 5.7; 22.3

NBOX (Function) 23.55-56

(NCHARS x FLG RDTBL) 2.10; 6.8

(NCONC Xl X2 ... XN) 2.17; 2.18

(NCONCl LST x) 2.17; 2.18

(NCREATE TYPENAME FROM) 3.15

NDIR FILEGROUP (Exec Command) 23.60

N E GA T E (Editor Command) 17.42

(NEGATE x) 14.2; 17.42

(NEQ x Y) 2.2

net package 23.64

(NETSERVER ARPA# WAITFLG) 23.64

(NETUSER HOST USER ARPA# WAITFLG)

23.65

NETWORKOSTYPES (Variable) 18.14

INDEX

NEVER FORM (I.S. Operator) 4.6

NEW (MAKEFILE option) 11.7

(NEW/FN FN) 8.34

NEWREGIONFN (Window Property) 19.31

NEWVALUE (Variable) 3.8

NEX (Editor Command) 17.19

(NEX cOM) (Editor Command) 17.19

NIL (Editor Command) 17.43; 17.46

NIL (in Block Declarations) 12.16

NIL (in M asterscope template) 13.16

\ NIL (Lilatom) 2.2,5

NILCOMS (Variable) 11.9

(NILL) 5.10

NILNlJMPRINTFLG (Variable) 6.22

N LAM (Transorset Command) 23.39

N LAMA (Variable) 12.7

NLAMBDA (Litatom) 5.2; 22.3

nlambda functions 5.2

nlambda-nospread functions 5.5

nlambda-spread functions 5.3

NLAML (Variable) 12.7

(NLE FT L N TAlL) 2.20

(NLISTP x) 2.2

NLISTPCOMS (Variable) 23.40

(NLSETQ FORM) 9.15; 4.4; 8.24

NLSETQGAG (Variable) 9.15

NO BINARY CODE GENERATED OR
LOADED (Error Message) 12.22

(FN - NO BREAK INFORMATION SAVED)
(value of REBREAK) 10.7

NO 00, COLLECT, OR JOIN
(Error Message) 4.13

NO FILE PACKAGE COMMAND FOR
(Error Message) 11.24

Index.35

NO LONGER INTERPRETED
AS FU~CTIONAL ARGUMENT
(Error Message) 12.21

NO PROPERTY FOR (Error Message)
11.23-24

NO USERMACRO FOR (Error Message)
11.24

NO VALUE SAVED: (Error Message) 8.24

NOBIND (Litatom) 2.5; 7.7; 8.23-24;
11.4; 17.55

Nobox package 23.54

NOBREAKS (Variable) 10.6

NOCASE F LG (ASKUSER option)' 6.62

NOCLEARSTKLST (Variable) 7.7

NOCLISP (MAKEFILE option) 11.7;
16.20

NODIRCORE (core device) 18.13

NOECHOFLG (ASKUSER optlon) 6.62

NOESC (type of read-macro)· 6.37

NOESCQUOTE (type of read-macro) 6.37

NOFILESPELLFLG (Variable) 15.20

NOFIXFNSLST (Variable) 16.16; 11.6;
12.9; 16.15

NOF IXVARSLST (Variable) 16.16; 11.6;
12.9; 16.12,15

NOLINKDEF (Function) 12.19

NOLINKFNS (Variable) 12.18~ 12.15-16,19

NON-ATOMIC CAR OF FORM
(Error Message) 12.21

NON-NUMERIC ARG (Error Message) 9.23;
2.38,43-44

NONE (in Decl package) 23.25

NONE (syntax class) 6.42

NONIMMED (type of read-macro) 6.38

NONIMMEDIATE (type of read-macro) 6.38

NOPACKCALLSFLG (Variable) 13.19

NOPRINT (Litatom) 8.24

INDEX

NORAISE (TENEX Command) 6.44

NORMALCOMMENTSFLG (Variable) 6.51

NOSAVE (Function) 8.33

NOSAVE (Litatom) 8.24,33

NOSPELlFLG (Variable) 15.12; 16.16

nospread functions 5.2

NOST ACKUNDO (Litatom) 8.24

NOSWAPFLG (Variable) 22.26

NOSWAPFNS (Variable) 22.26

(NOT x) 2.3

NOT A BINDABLE VARIABLE
(Error Message) 12.21

NOT A FUNCTION (Error Message) 5.7,10;
10.9

NOT A HASHF ILE (Error Message) 23.42

NOT BLOCKED (Printed by Editor) 17.51

(NOT BROKEN) (value of UNBREAKO)
10.6

NOT CHANGED, SO NOT UNSAVED
(Printed by Editor) 17.54

NOT COMPILEABLE (Error Message)
12.20; 12.10,15

(FILE NOT DUMPED)
(returned by MAKEFILE) 11.8

NOT EDITABLE (Error Message) 17.54-56

NOT FOUND (Error Message) 12.20

(NOT FOUND) (printed by BREAKIN)
10.5

(FN NOT FOUND) (printed by break) 9.4

FILENAME NOT FOUND
(printed by LISTFILES) 11.9

(PROP NOT FOUND)
(value of .UNSAVEDEF) 5.10

(FNl NOT FOUND IN FN2)

(value of BREAKO) lOA

NOT FOUND. SO IT WILL BE WRITTEN
ANEW (Error Message) 1~.35

Index.36

NOT IN FILE - USING DEFINITION IN
CORE (E"or Message) 12.20

NOT ON BLKFNS (E"or Message) 12.20;
12.14,16

NOT ON FILE, COMPILING IN CORE
DEFINITION (E"or Message) 12.15

(FN NOT PRINTABLE)
(returned by PRETTYPRINT) 6.48

NOT-FOUND: (Lilatom) 11.5

(NOT ANY SOMEX SOMEFNl SOMEFN2)

5.14

NOTCOMPILEDFILES (Variable) 11.10;
11.6

(NOTE VAL LSTFLG) 7.16

NOTE (Transor Command) 23.37

NOTE (Transorset Command) 23.38

NOTE: BRKEXP NOT CHANGED.
(Printed by Break) 9.8

(NOTEVERY EVERYX' EVERYFNl

EVERYFN2) 5.14

NOTFIRST (DECLARE: Option) 11.27

(NOTHING FOUND)
(value of UNSA VEDEF) 5.10

NOTHING SAVED (Printed by Editor)
17.50

NOTHING SAVED (Printed by System)
8.22; 8.11

noticing files 11.12

(NOTIFY.EVENT EVENT ONOEONLY)

18.30

NOTLISTEDF ILES (Variable) 11.9;
11.6; 23.14

NOTRACE SET' (Masterscope Path Option)
13.15

NS.DEFAULT.PRINTER (Variable) 21.11;
18.17

(NSCREATEDIRECTORY HOST/DIR) 21.13

(NSDIRECTORY PATTERN) 21.13

(NSOCKETEVENT NSOO) 21.22

INDEX

(NSOCKETNUMBER NSOO) 21.22

(NSPRINT PRINTER

FILE.NAME DOCUMENT,NAME

DOOUMENT.qREATION.DATE SENDER.NAME

RECIPIENT.NAME #OOPIES MEDIUM

PRIORITY STAPLE? TWO.SIDED?)

21.11

(NSPRINTER.PROPERTIES PBu.NTER)

21.12

(NSPRINTER.STATUS PBu.NTER) 21.12

(NTH N) (Editor Command) 17.12

(NTH OOM) (Editor Command) 17.20

(NTH X N) 2.19

(NTHCHAR X N FLG RDTBL) 2.10

(NTHCHARCODE X N FLG RDTBL) 2.12

(NTYP DATUM) 22.2

(NULL x) 2.3

null string 2.28-30

null-check 2.20-23,25

(NUMBERP x) 2.2,37

numbers 2.36; 2.2; 6.14

(NUMFORMATCODE FORMAT S~HOODE)
6.23

NX (Editor Command) 17.11

(NX N) (Editor Command) 17.11; 17.6

(OBTAIN.MONITORLOCK LOOK DONTWAIT

UNWINDSAVE) 18.31

OCCURRENCES (Printed by Editor) 17.47

octal 6.13; 2.38; 6.17

(OCTALSTRING N) 21.21

(0001' x Y) 2.41

(AGGREGATE OF ELEMENT)
(Decf Type Expression) 23.27

BLOOKTYPE 0 F FUNCTIONS

(Masterscope Set Specification) 13.11

OK (Break Command) 9.3; 9.8

Index.37

OK (DEdit Command) 20.6

OK (display break command) 20.10

OK (EDIT A command) 23.50

OK (Editor Command) 17.38; 17.41.56

OK (Masterscope Command) 13.2

OK (Prog. AsSL Command) 8.29

OK TO REEVALUATE (Printed by DWIM)
15.6

OKREEVALST (Variable) 15.12; '15.6

OLD (LS. Operator) 4.8

OLDVALUE (Variable) 9.21

ON FORM (I.S. Operator) 4.8

ON OLD VAR (LS. Operator) 4.8; 4.9

ON PATH PATHOPTIONS

(Masterscope Set Specification) 13.11

BLOCKTYPE ON FILES

(Masterscope Set Specification) 13.11

(ONEOF TYPEl ... TYPEN)

(Dec! Type Expression) 23.26

OPCODE? - ASSEMBLE (E"or Message)
12.22; 22.13

OPD (Property Name) 22.13; 22.16-17;
23.48-49

open ~nctions 12.8

(OPEN.NS.PRINTING.STREAM
PRINTER DOCUMENT.NAME

DOCUMENT. CREATION. DATE

SENDER.NAME RECIPlSNT.NAME

#COPIES MEDIUM PRIORITY STAPLE?

TWO.SIDED? NOWATCHDOG?) 21.11

(OPENF FILE x) 22.23; 18.6

(,OPENFILE FILE ACCESS

RECOG BYTESIZE

MACHINE.DEPENDENT.PARAMETERS) 6.1

OPENFN (Window Property) 19.30

(OPENHASHFILE FILE ACCESS) 23.42

opening files 6.1

(OPENNSOCKET SKT# IFCLASH) 21.22

INDEX

(OPENP FILE ACCESS) 6.2: 6.5

(OPENPUPSOCKET SKT# IFCLASH) 21.16

(OPENR A) 22..11

(OPENTEXTSTREAM TEXT ~OW START
END PROPS) 20.24

(OPENW ~ow) 19.26

(OPENWINOOWS) 19.25

(OPENWP WINDOW) 19.25

OPERATION (BITBLT argument) 19.5

(OPNJF.N FILE ACCESS) 22.22; 18.6

(OR Xl X2 ... xN) 4.2

order of precedence of CLISP operators
16.9

(ORF PATTERN1 ..• PATTERNN)

(Editor Command) 17.17

ORG (Variable) 23.49

OR IG (Litatom) 6.32

ORIGINAL (Break Command) 9.7

(ORIGINAL COMSl ... COMSN)

(Editor Command) 17.50

(ORIGINAL COMl ... COMN)

(File Package Command) 11.27

ORIGINAL I.S.OPR OPERAND

(LS. Operator) 4.11; 4.15

(ORR COMSl ... COMSN)

(Editor Command) 17.48

OTHER (Syntax Class) 6.33

(OUT FILE FILE) 6.2

(OUTFILEP FILE) 6.4; 6.5

OUTOF FORM (I.S. Operator) 4.10; 7.14

(OUTPUT FILE) 6.2

OUTPUT (Masterscope Command) 13.7

output buffer 6.19

OUTPUT FILE? (Compiler Question) 12.2

output functions 6.16

OUTPUTBUFFER (Litatom) 9.17

Index.38

OVERFLOW (E"or Message) 9.26; 2.38

(OVERFLOW FLG) 238

overlays 22.24

P (Editor Command) 17.37

(P M) (Editor Command) 17.37

(P M N) (Editor Command) 17.37

(P 0) (Editor Command) 1737

(P 0 N) (Editor Command) 17.37; 17.2

(P EXPl ••. EXPN)
(File Package Command) 11.24

(PACK x) 2.9

(PACK· Xl X2 ••. xN) 2.9

(PACKC x) 2.12

(PACKFILENAME FmLDNAMEl
FmLDcoNTENTSl ... FmLDNAMEN
FIELDCONTENTSN) 6.6

page 22.7

page holding 19.15

page mapped files 14.17

(PAGE FAULTS) 14.14

(PAGEFULLFN WINDOW) 19.33

PAGEFULLFN (Window Property) 19.33

(PAGEHEIGHT N) 1~15

PAINT (Window Menu Command) 19.20

PARENT (Variable) 15.11

parentheses counting by READ 6.13; 6.45

PARENTHESIS ERROR (E"or Me~ag~
5.11

(PARSERELAT.ION RELATION) 13.20

passwords package 23.62
•

Path Options (in Masterscope) 13.14

Paths (in Masterscope) 13.13

PATLISTPCHECK (Variable) 23.2

pattern match (in Editor) 17.13; 17.57

INDEX

pattern match compiler 23.1

PATVARDEFAUL T (in Pattern Match Compiler)
23.6

PATVARDEFAUL T (rariable) 23.3-4

PB (Break Command) 9.5

PB LITATOM (Prog. Asst. Command) 8.14

(PEEKC FILE RDTBL) 6.15; 6.46

period (in a list) 2.15

P E RMST A TU S (Function) 23.17

(P F FN FROMFILES TOFILE) 6.48

(P F • FN FROMFILE.S TOFILE) 6.50

PFDEFAULT (Variable) 6.49

Pl LITATOM (Prog. AsSL Command) 8.14

place-markers (in Pattern Match Compiler)
23.5

(PLUS Xl X 2 ... XN) 2.44

PlVlFIlEFlG (Variable) 6.19

POINTER (as a field specification) 3.14

POINTER (record field type) 3.7

.(POP DATUM) (Change Word) 3.13

Pop (DEdit Command) 20.S

(PORTSTRING NETHOST SOCKET) 21.20

(PaS IT ION FILE N) 6.7

(POS IT IONP x) 19.2

(POSSIBILITIES FORM##) 7.16

possibilities lists 7.16

POSSIBLE NON-TERMINATING
ITERATIVE STATEMENT
(E"or Message) 4.13

POSSIBLE PARENTHESIS ERROR
(E"or. Message) 16.15

POSTGREETFORMS (Variable) 14.6

(POWEROFTWOP N) 2.41

PP (Editor Command) 17.37; 17.2

(PP FNl ... FNN) 6.48

Index.39

pp* (Editor Command) 17.37

(Pp* x) 6.50

PPE (in Masterscope template) 13.16

ppe (used in Masterscope) 13.16

PPT (Editor Command) 17.;37; 16.14,20

(PPT x) 16.20; 16.14

PPV (Editor Command) 17.37; 6.49

precedence rules for CLISP operators 16.6

prefix operators in CLISP "16.5

PREGREETFORMS (Variable) 14.6

(PRESCAN FILE CHARLST) 23.32

(PRESSFILEP FILE) 18.18

PRESSTABSTOPS (Variable) 18.17

PRETTYCOMFONT (font class) 6.55

(PRETTYCOMPRINT x) 1136

(PRETTYDEF PRTTYFNS P~TTYFILE
PRTTYCOMS REPRnVTFNS
SOURCEFILE CHANGES) 11.34; 10.11

PRETTYEQUIVLST (Variabk) 6~

PRETTYF LG (Variable) 6.54; 11.7

PRETTYHEADER (Variable) 11.36; 11.35

PRETTYLCOM (Variable) 6.53; 6.54

(PRETTYPRINT FNS PRETTtDEFLG -)
6.47

prettyprinting by system functions 6.18

PRETTYPRINTMACROS (Variable) 6.54

PRETTYPRINTYPEMACROS (Variable) 6.54

PRETTYTABFLG (Van'able) 6.53

PRETTYTRANFLG (Van'able) 16.20;
11.7; 16.14

primary input file 6.2; 6.12

primary output file 6.2; 6.16

primary readtable 6.32; 6.12,16,42

primary terminal table 6.40,42

(PRINt x FILE) 6.17; 6.18

INDEX

6.17; 6.18 (PRIN2 X FILE RDTBL)

PRIN2-names 2.8,10,12

(PRIN3 x FILE) 6.17

(PRIN4 x FILE RDTBL)

(PRINT X FILE RDTBL)

print names 2.8

(PRINTBELLS) 6.18; 15.3

6.17

6.17; 6.18

PRINTBINDINGS (Function) 8.14; 9.6

(PRINTB ITMAP BITMAP) 19.6

PRINTCODE (Function) 20.14

(PRINT~OMMENT x) 651

(PRINTCONSTANT VAH CONSTANTL~T
FILE PREFrx) 21.21

(PRINTDATE FILE CHANGES) 11.35

(PRINTDEF EXPR LEFT DEF T~FLG

FNSLST FILE) 6.49; 6.54

PRINTDEPTH (Variable) 23.12·

PRINTER (Variable) 23.14; 23.13

(PRINTERDEVICE NAME) 18.18

(PRINTERMODE x) 1&16

(PRINTERSTATUS PRINTERNAME) 21.5

(P R I NT F N 5 x -) 11.35

(PRINTHISTORY HISTORY LINE SKIPFN
NOVALUES FILE) 8.35; 8.11

printing circular lists 23.8

printing numbers 6.19

(PRINTINGHOST -) 18.16

(P R I NT L ITEM DEPTH LMARG RMARG
FILE) 23.12

(PRINTLEVEL CARVAL CDRVAL) 6.18

PRINTLEVEL (Lilatom) 9.17

PRINTMSG (Variable) 9.16

(PRINTNUM FORMAT NUMBER FILE) 6.21

PRINTOUT (CLISP word) 6.25

PRINTOUTMACROS (Variable) 6.30

Index.40

(PRINTPACKET PACKET CALLER F~E
PRE.NOTE DOF~TER) 21.24

(PRINTPACKETDATA BASE OFFSET
MACRO LENGTH F~E) 21.20

(P R I NT PARA LMARG RMARG LIST P2FLAG

PARENFLAG FILE) 6.31

PRINT PROPS (Function) 8.14

(PRINTPUP PACKET CALLER FILE

PRE.NOTE DOF~TER) 21.19

(PRINTPUPROUTE PACKET CALLER F~E)
21.20

(PRINTROUTINGTABLE TABLE SORT

F~E) 21.17

PRINTXI P (Function) 21.23

PRINTXIPROUTE (Function) . 21.23

private pages 14.4

(PRNTL ARGS) (Prog. Asst. Command)
23.12

PROCESS (Window Property) 19.33; 18.34

Process Mechanism 18.25

(PROCESS.APPLY PROC FN ARGS
WAITFORRESULT) 18.29

(PROCESS. EVAL PROC FORM

WAITFORRESULT) 18.29

(PROCESS. EVALV PROC VAR) 18.29

(PROCESS. F INISHEDP PROCESS) 18.28

(PROCESS. RESULT PROCESS

WAITFORRESULT) 18.28

(PROCESS. RETURN VALUE) 18.28

(PROCESS. STATUS. WINDOW WHERE)

18.36

(PROCESSP PROC) 18.28

(PROCESSPROP PROC PROP NEWVALUE)

18.26

(PROCESSWORLD FLG) 18.25

(PRODUCE VAL) 7.13

(P ROG VARLST El E2

PROG label 4.4

INDEX

(PROGl Xl X2 ... xN) 4.3

(PROG2 Xl X2 ... XN) 4.3

(PROGN Xl X2 ... xN) 4.3

programmer's assistant and the editor 8.35

programmer's assistant commands applied
to p.a. commands 8.17

programmer's assistant commands that
fail 8.17

prompt character 8.4,18,31; 9.1; 17.1

prompt window 19.19

PROMPT#FLG (Variable) 8.18; 8.31

(PROMPTCHAR ID FLG HISTORY) 8.31;
8.18,35

PROMPTCHARFORMS (Variable) 8.18; 8.31

PROMPTCONFIRMFLG (ASKUSER option)
6.62

(PROMPT FORWORD PROMPT.5TR

CANDIDATE.STR GENERATE!'LIST.FN
ECHO. CHANNEL DONTECHOTYPEIN.FLG
TIMELIMIT.secB TERMINCHARS.LST

KEYBD.CHANNEL OLDSTRING)

18.37-38

PROMPTON (ASKUSER option) 6.63

(PROMPTPRINT .EXP) 19.19

PROMPTSTR (Variable) 8.18

PROMPTWINDOW (Variable) 19.19; 18.34

(PROP PROPNAME LITATOMl ...

LITATOMN) (File Package Command)
11.23; 11.30

PROP (in Masterscope template) 13.16

PROP (Litatom) 5.9

PROP (Printed by Editor) 17.54

PROPCOMMANDFN (Property Name) 20.17

proper tail 2.19

PROPIERTIES (Property Name) 20.17·

property lists 2.6

property name 2.6; 2.7

property value 2.6; 2.7

Index.41

(PROPNAMES ATM) 2.7

PROPPRINTFN (Property Name) 20.17

PROPRECORD (Record Type) 3.6

(PROP S (LITATOMl PROPNAME1) •••

(LITATOMN PROPNAMEN))
(File Package Command) 11.24

PROPS (File Package Type) 11.15

PROPTYPE (Property Name) 11.15; 11.12

PROTECT ION VIOLAT ION (E"or Message)
9.25

PRXFLG (Variable) 6.20

pseudo-carriage return 8.26

PSTEP (Function) 22.14

PSTEPN (Function) 22.19

PUPIGNORETYPES (Variable) 21.18

(PUPNET • DISTANCE NET#) 21.17

PUPONL YTYPES (Variable) 21.18

PUPPRINTMACROS (Variable) 21.19

(PUPSOCKETEVENT pupsoc) 21.16

(PUP SOCKET NUMBER PUPSOC) 21.16

(PUPTRACE FLG REGION) 21.19

PU P T RAC E F I L E (Variable) 21.18

PUPTRACEFLG (Variable) 21.18

PUPTRACETIME (Variable) 21.19

(PUSH DATUM ITEMl ITEM:z ...)
(Change Word) 3.13

pushdown list 7.10; 5.4; 7.1

(PUSHLIST DATUM ITEMl ITEM2 ...)

(Change Word) 3.13

(PUSHNEW DATUM ITEM) (Change Word)
3.13

(PUT ASSOC KEY VAL ALST) 2.25

(PUTCHARBITMAP CHARCODE FONT

NEWCHARBITMAP) 19.10

(PUTD FN DEF -) 5.8; 22.3

(PUTDEF NAME TYPE DEFINITION) 11.17

INDEX

(PUTDQ FN DEF) 5.8

(PUTDQ? FN DEF) 5.8

(PUT HASH KEY VAL HARRAY) 2.35

(PUTHASHFIlE KEY VALUE HASBF&E)
23.42

(PUTPROP ATM PROP VAL) 2.7

(PUT PROPS ATM PROP1 VALl ..• PROPN
VALN) 11.38

(PUTPUPBYTE PUP BYTE# VALUE) 21.18

(PUTPUPSTRING PUP STR) 21.18

(PUTPUPWORD PUP WORD# VALUE)

21.17

Q (Editor Command) 17.44

Q (following a number) 6.13; 2.38; 6.17,19

QU (Exec Command) 23.59

QUIT (TENEX Command) 22.21; 22.22

(QUOTE x) 5.11

(QUOTIENT x Y) 2.45

(R x Y) (Editor Command) 17.35; 17.5

(R1. x Y) (Editor Command) 17.36

(RADIX N) 6.19; 6.13,17

RAID (Litatom) 9.17

RAISE (Editor Command) 17.41

(RAISE x) (Editor Command) 17.41

(RAISE FLG' TTBL) 6.44

RAISE (TENEX Command) 6.44

(RAND LOWER UPPER) 2.46

(RANDACCESSP F&E) 6.9

random numbers 2.46

randomly accessible files . 6.8

(RANDSE T x) 2.46

RASTEROP (Function) 19.4

(RATEST FLG) 6.14

Index.42

(RATOM FILE RDTBL) 6.14; 6.34,46

(RAT OMS A FILE RDTBL) 6.14

(RC x Y) (Editor Command) 17.36

RC (MAKEFILE option) 11.7

(RCl x Y) (Editor Command) 17.36

(READ FILE RDTBL FLG) 6.13; 6.46

read-macro characters 6.34

READ-MACRO CONTEXT ERROR
(E"or Message) 9.25; 6.38

read-macro options 6.37

read-macros 6.36

(READBITMAP) 19.6

READBUF (Variable) 8.29; 8.31

(READC FILE RDTBL) 6.15; 6.46

(READCOMMENT FL RDTBL LST) 6.51

(READFILE FILE) 6.24

reading from strings 6.12

(READLINE RDTBL - -) 8.30;
8.17,20,26,28,31,35; 17.52

(READMACROS FLG RDTBL) 6.39

(READP FILE FLG) 6.15

(READTABLEP RDTBL) 6.32

readtables 6.32; 6.12.16

READVICE (Property -Name) 10.10-11

(READVISE x) 10.10; 10.11; 11.24

(REALFRAMEP POS INTERPFLG) 7.5

(REALSTKNTH N pos INTERPFLG

OLDPOS) 7.5

REANAL YZE SET (Masterscope Command)
13.5

(REB REAK x) 10.6; 10.3

(RECLAIM) 18.2

(RECLAIM TYPE) 22.9: 22.8

(RECLAIMMIN N) 18.2

RECLAIMWAIT (Variable) 18.2

INDEX

(RECLOOK RECORDNAME - - -
-) 3.11

(RECOMPILE PFILE CFILE FNS) 12.11;
11.8; 12.16

RECOMPILEDEFAUL T (Variable) 12.12,18

reconstruction (in Pattern Match Compiler)
23.6

RECORD (in Masterscope template) 13.17

RECORD (Record Type) 3.5

record declarations 3.5

record declarations in CLISP 16.11

record package 3.1

record-type (Record Package) 3.5

(RECORDACCESS FmLD DATUM DEC TYPE

NEWVALUE) 3.11

(RECORDFIELDNAMES RECORDNAME)
3.11

(RECORDS RECl ... RECN)

(File Package Command) 11.25;
3.1,7

RECORDS (File Package Type) 11.16

REDEFINE? (Compiler Question) 12.1

(FN REDE FINED) (printed by system)
5.9

REDISPLAY (Window Menu Command)
19.20

(REDISPlAYW WINDOW REGION
ALWAYSFLG) 19.27

REDO EventSpec (Prog. Asst. Command)
8.7 -

REDO EventSpec N TIMES
(Prog. Asst. Command) 8.7

REDO EventSpec UN TIL FORM
(Prog. Asst. Command) 8.7

REDO EventSpec WH I L E FORM
(Prog. Asst. Command) 8.7; 8.27

REDOCNT (Variable) 8.7

REFERENCE (Nfasterscope Relation) 13.8

RE FLST (Variable) 23.11

Index.43

REGION (Window Property) 19.33; 19.23

(REGIONSINTERSECTP REGIONl
REGION2) 19.3

(REHASH OLDHARRAY NEWHARRAY) 2.35

(REHASHF ILE HASHFILE) 23.43

SET RELATION SET
(M asterscope Command) 13.5

Relations (in Masterscope) 13.7

(RELBLK ADDRESS N) 22.20; 9.24; 18.6

(RELDRAWTO DX DY ~TH OPERATION
DISPLAYSTREAM COLOR) 19.13

(RELEASE .MONITORLOCK LOCK) 18.32

(RELEASE. PUP Pup) 21.15

(RELEASE.XIP XlP) 21.21

releasing stack pointers 7.10

(RELINK FN) 12.19

relinking 12.19-20

(RELMOVETO DX DY DfflPLAYSTREAM)
19.12

(RELMOVEW WlNDOW POSITION) 19.27

relocation information (in Interlisp-l0
arrays) 2.33

(RELPROCESSP PROCHANDLE) 18.28

(RELSTK pos) 7.7; 7.10

(RELSTKP x) 7.7

(REMAINDER x Y) 2.45

REMAKE (MAKEFILE option) 11.7

remaking a file 11.10

REMARK (Transor Command) 23.37

REMEMBE R EventSpec (Prog. Asst. Command)
8.13

(REMOVE XL) 2.27

(REMPROP ATM PROP) 2.7

(REMPROPLIST ATM PROPS) 2.7

(RENAME OLD NEW TYPES FILES
METHOD) 11.19

INDEX

(R E NAM E F I L E OLDFILE NEWFILE) 6.3

REPACK (Editor Command) 17.41

(REPACK (J) (Editor Command) 17.41

REPAINTFN (Window Property) 19.32

REPEAT EventSpec (Prog. Asst. Command)
8.7

REPEAT EventSpec UNTIL FORM
(Prog. ASSL Command) 8.7

REPEAT EventSpec WHILE FORM
(Prog. Asst. Command) 8.7

RE PEATUNT I L FORM (I.S. Operator) 4.10

REPEATUNTIL N (N a number)
(lS. Operator) 4.10

REPEATWHILE FORM (I.S. Operator) 4.10

Repl ace (DEdit Command) 20.4

(REPLACE (J BY El ... EM)
(Editor Command) 17.25

(REPLACE (J WITH E1 · .. · EM)
(Editor Command) 17.25

REPLACE (in Masterscope template) 13.17

RE PLACE (in record package) 16.7

REPLACE (Masterscope Relation) 13.9

REPLACE (Record Operator) 3.1

REPLACE UNDEFINED FOR FIELD
(E"or Message) 3.8

(REPLACEF IELD DESCRIPTOR DATUM

NEWVALUE) 3.15

replacements (in Pattern Match Compiler)
23.6

Reprint (DEdit Command) 20.5

REREADFLG (Van'able) 8.31-32

(VARIABLE RESET) (Printed by System)
8.23

(RESET) 9.14; 9.20

RESET (Litatom) 9.17

(RESET.INTERRUPTS PER~TTEDLNTERRUPTS
SAVECURRENT?) 9.18

Index.44

(RESETBUFS FORM1 FORM2 ..• FORMN)

6.47

(RESETDEDIT) 20.2

(RES E T FORM RESETFORM FORMl FORM2
••• FORMN) 9.20

RESETFORMS (Variable) 8.19; 6.S

(RESETLST FORM1 ... FORMN) 9.19

(RESETREADTABLE RDTBL FROM) 6.33

(RESETSAVE x Y) 9.19

RESETSTATE (Variable) 9.20; lS.33

(RESETTERMTABLE TTBL FROM) 6.41

(RESETUNDO x STOPFLG) 8.25; 9.21

(RESETVAR VAH NEWVALUE FORM)
9.20; 12.4

(RESETVARS VAHSLST El E2 ...

EN) 9.20

RESETVARSLST (Variable) lS.3

(RESHAPEBYREPAINTFN WINDOW

OLDIMAQE OLDREGION) 19.33

RESHAPE FN (Window Property) 19.31

resou rceName RESOURCE (I.S. Operator)
14.12

RESPONSE (Variable) 14.13

(RESTART. ETHER) 21.15

(RESTART. PROCESS PROC) 18.28

RESTARTABLE (Process Property) 18.26

(RESUME FROMPTR TOPTR VAL) 7.15

(RETAPPLY POS FN ARGS FLG -) ·7.6

(RETEVAL POS FORM FLG -) 7.6; 15.6

RETFNS (in Masterscope Set Specification)
13.11

RETFNS (Variable) 12.13; 12.15-16

(RETFROM pos VAL FLG) 7.6

RETRIEVE LITATOM
(Prog. Asst. Command) 8.12; 8.20,27

RETRY EventSpec (Prog. Asst. Command)
8.8; 8.27

INDEX

(RETTO POS VAL FLG) 7.7

RETURN (ASKUSER option) 6.62

RETURN FORM (Break Command) 9.3

(RETURN x) 4.4

RETURN (in iterative statement) 4.11

RETURN (in Masterscope template) 13.17

return link 7.2

RETURNS (in Dec! package) 23.21;
23.19,23

RETYPE (syntax class) 6.41

REUSING (Record Package) 3.3

reusing stack pointers 7.10

(REVERSE L) 2.27

REVERT (Break Command) 9.6

reve rt (display break command) 20.10

(RGB P x) 19.45

(RI N M) (Editor Command) 17.32

RIGHT (key indicator) 19.17

RIGHTBRACKET (Syntax Class) 6.33

RIGHTBUTTONFN (Window Property) 19.30

RIGHTKEY (key indicator) 19.17

RIGHTMIDDLEKEY (key indicator) 19.17

RIGHTPAREN (Syntax Class) 6.33

(RINGBELLS) 18.6

(RLJ FN JFN) 22.23; IS.6

(RLPRINl LIST) 23.10

(RLPRIN2 LIST) 23.10

(RLRESTORE L~T) 2~11

(RO N) (Editor Command) 17.32

root name of a file 11.3

ROOT F I L E NAME (F'.unction) 11.3,13

(ROT x N FIELDSIZE) 2.42

(ROTATECOLORMAP COLORMAP
STARTCOLOR THRUCOLOR) 19.46

Index.45

(ROTATEIT BEGLNCOLOR ENDCOLOR

WAlT) 19.50

(RPAQ VAH VALUE)

(RPAQ? VAH VALUE)

(RPAQQ VAH VALUE)

11.37; 8.23; 11.4

11.j8; 11.4

11.37; 8.23; 11.4,35

RPARKEY (Variable) 15.12;' 15.5

(RPlACA x Y) ~15

(RPlACD x Y) 2~4

(RPlCHARCODE x N CHARCODE) 230

(RPlNOOE x A D) ~15

(RPlNODE2 x Y) ~15

(RPlSTRING x N Y) 230

(RPT N FORM) 5.12

(RPTQ N FORMl FORM:z •.. FORMN)

5.12

(RSH x N) 2.40

(RST RING FILE RDTBL) 6.14

RUBOUT (Litatom) 9.17

run-on spelling corrections 15.3,18-19

running other subsystems from within
Interlisp 22.21

RUNONFLG (Variable) 15.12; 15.18

S LITATOM @ (Editor Command) 17.22

S (Response to Compiler Question) 12.2

(SASSOC KEY ALST) 2.25

(TYPE (SATISFIES FORM1 ... FORMN »
(Decl Type Expression) 23.27

SATISFIES (in Decl package) 23.19

SA V lING cursor 18.4

SAVE (Editor Command) 17.38;
17.40,56-57

SAVE EXPRS? (Compiler Question) 12.1

SAVEDBFLG (Van"able) 23.16

(SAVEDEF FN) 5.9

INDEX

(SAVEDEF NAME TYPE DEFINITION)

11.18; 5.10

(SAVEPUT ATM PROP VAL) 11.38

(SAVESET NAME VALUE TOPFLG FLG)
8.24; 8.23

SAVESETQ (Function) 8.23

SAVESETQQ (Function) 8.23

(SAVEVM -) 18.4

SAVEVM (Window Menu Command) 19.21

SAVE VMMAX (Variable) 18.4

SAVEVMWAIT (Variable) 18.4

(SCODE P x) 22.26

SCRATCHCOLlECT (I.S. Operator) 23.54

(SCRATCHlIST LST Xl X:z ••. xN) 14.2

(SCREENBITMAP) 19.4; 19.18-19·

(SCREENCOLORMAP NEWCOLORMAP)

19.46

SCREENWIDTH (Variable) 19.12

(SCROLL. HANDLER WINDOW) 19.24

SCROllBARWIDTH (Variable) 19.23-24

(SCROlLBYREPAINTFN WTJNDOW DELTAX

DELTAY CONTfNUOUSFLG) 19.24

SCROlLFN (Window Property) 19.31;
19.23-24

(SCROlLW WINDOW DELTAX DELTAY
CONTINUOUSFLG) 19.23

SCROLLWAITTIME (Variable) 19.23-24

search. algorithm (in Editor) 17.15

searching files 6.9

searching strings 2.31

SEARCH I NG • •• "[Printed by BREAKIN)
10.5

(SEARCHPDl SRCHFN SRCHPOS) 7.8

secon<;l. pass (of the compiler) 22.11

SECONDS (Timer Unit) 14.11

SEE FILE OUTFILE BYTESIZE
(Exec Command) 23.60

Index.46

segment patterns
(in Pattern Match Compiler) 23.3

(SELCHARQ E CLAUSE1 •.• CLAUSEN

DEFAULT) 2.13

SELECTABLE ITEMS (Property Name)
20.17

(SELECTC x CLAUSE1 CLAUSE2
CLAUSEK DEFAULT) 4.3

SELECTIONFN (Property Name) 20.17

(SELECTQ x CLAUSE1 CLAUSE2
CLAUSEK DEFAULT) 4.2

(SENDPUP PUPSOC PUP) 21.16

(SENDXIP NSOC XlP) 21.22

SEPARATE SET (Mastersc9pe Path Option)
13.15

separator characters 6.34; 6.14,46

(SEPRCASE CLFLG) 6.10

SEPRCHAR (Syntax Class) 6.33

(SET VAR VALUE) 2.5

SET (in Masterscope template) 13.16

SET (Masterscope Relation) 13.8

Set Specifications (in Masterscope) 13.10

(SET. TTYINEDIT • WINDOW WINDOW)

20.40

(SETA A N V) 2.33-34

(SETARG VAH M x) 5.4

(SETATOMVAL ATM VALUE) 2.6

(SETBLIPVAL BLIPTYP IPOS N VAL)

7.12

(SETBRK LST FLG RDTBL) 6.35

(SETCASEARRAY CASEAHRAY FROMCODE

TOCODE) 6.10

(SETCOLORINTENSITY COLORMAP

COLORNUMBER COLORSPEC) 19.46

(SETCURSOR NEWCURSOR -) 19.16

(SETD A N V) 2.34

SETDECL TYPE PROP (Function) 23.29

INDEX

(SETOISPLAYHE IGHT NSCANLINES)

18.22

(SETERRORN NUM MESS) 9.14

(SETFILEINFO FILE ATTRm VALUE) 6.7

(SETFILEPTR FILE ADR) 6.9

SETFN (Property Name) 16.22

(SETFONTDESCRIPTOR FAMILY ~ZE FACE

ROTATION DEVICE FONT) 19.9

SETINITIALS (Variable) 17.60

(SETLINELENGTH N) 6~

(SETN VAH x) 22.5; 22.3

(SETPROPLIST ATM LST) 2.8

(SETQ VAH VALUE) 2.5

SETQ (in an ASSEMBLE statement)
22.14

(SETQQ VAR VALUE) 2.5

SETREADFN (Function) 20.37

(SETREADMACROFLG FLG) 6.38

(SETREADTABLE RDTBL FLG) 6.32

Sets (in Masterscope) 13.10

(SETSBSIZE N) 22.26; 9.25

(SETSEPR LST FLG RDTBL) 6.35

(SETSTKARG N POS VALUE) 7.5

(SETSTKARGNAME N POS NAME) 7.5

(SETSTKNAME POS NAME) 7.4

(SETSYNONYM PHRASE MEANING -)

13.20

(SETSYNTAX CHAR CLASS TABLE) 6.34

(SETTEMPLATE FN TEMPLATE) 13.19

{SETTERMCHARS NEXTCHAR BKCHAR

LASTCHAR UNQUOTECHAR 26~
PPCHAR} 17.59; 14.4; 17.13

(SETTERMTABLE TTBL) 6.41

(SETT IME DATE&TIME) 18.7

(SETTOPVAL VAR VALUE) 2.5

Index.47

(SETTYPEDESCRIPTION TYPE STRING)

22.2

(SETUPPUP PUP DESTHOST DESTSOCKET
TYPE ID SOC REQUEUE) 21.17

(SETUPTIMER lNTERVAL OLDT11tlER?
TIMER UNITS lNTERVALUNlTS) 14.11

(SETUPTIMER.DATE DTS OLDTnwER?)

14.11

(SETWORDCONTENTS PTR~) 14.19

(SHADEGRIDBOX x Y SHA!JE
OPERATION GRIDSPEG' GRIDBORDER
DISPLAYSTREAM) 19.42

(SHADEITEM ITEM MENU SHADE DSORW)
19.41

SHALL I LOAD (printed by DWIM) 15.8

shallow binding 7.1; 2.6; 12.4

SHAPE (Window Menu Command) 19.20

(SHAPEW WINDOW NEWREGION) 19.26

(SHARED TYPE) (Ded Type Expression)
23.27

shared pages 14.4

SHH FORM (Prog. Asst. Command) 8.14

SHOULD BE A SPECVAR (Error Message)
12.20

SHOULDCOMP I LEMAC ROATOMS (Variable)
5.19

Shoul dn' t happen! (Error Message)
9.14

(SHOULDNT MESS) 9.14

(SHOW x) (Editor Command) 17.47

SHOW PATHS PATHOPTIONS
(Masterscope Command) 13.5

SHOW WHE RE SET RELATION SET
(M asterscope Command) _ 13.6

SHOW (Transorset Command) 23.36

SHOW PATHS (Masterscope Command)
13.13

(SHOW.CLEARINGHOUSE) 21.12

INDEX

(SHOW. ENT I RE. CLEARINGHOUSE) 21.12

(SHOWCOLORTESTPATTERN BAR~ZE)

19.50 -

(SHOWDEF NAME TYPE FILE) 11.18

SHOWPARENFLG (Variable) 20.43

(SHOWPRIN2 x FILE RDTBL) 6.17;
8.11,35

(SHOWPRINT x FILE RDTBL) 6.17;
7.8; 9.5-6

SHRINK (Window Menu Command) 19.21

SHRINKFN (Window Property) 19.30

(SHR I NKW WTNDOW TOWHAT

ICONPOSITION EXPANDFN) 19.27

S IDE (History List Property) 8.27; 8.33-35

SIDE (Property Name) 8.28

(SIN X RADIANSFLG) 2.46

single-stepping a program 17.45

(SINGLEFILEINDEX FILE OUTPUTFILE
NEWPAGEFLG) 23.13

SKOR (Function) 15.16

(SKREAD FILE REREADSTRING) 6.16

small integers 2.1.36

SMALLEST FORM (I.S. Operator) 4.7

(SMALLP x) 2.1,37

(SMARTARGLIST FN EXPLAINFLG T~)
5.7

SMASH (in Masterscope template) 13.16

SMASH (Masterscope Relation) 13.8

(SMASHFILECOMS FILE) 11.34

SMASH I NG (Record Package) 3.3

SMASHPROPS (Variable) 14.14~

SMASHPROPSLST (Variable) 14.14

SMASHPROPSMENU (Variable) 14.13

SNAP (Window Menu Command) 19.21

: (SOME SOMEX SOMEFNl SOMEFN2) 5.14

Index.48

SORRY, I CAN'T PARSE THAT
(Error Message) 13.15

SORRY, NO FUNCTIONS HAVE BEEN
ANALYZED (Error Message) 13.15

SORRY, THAT ISN'T IMPLEMENTED
(Error Message) 13.15

(SORT DATA COMPAREFN) 14.8

(SORT.PUPHOSTS.BY.DISTANCE HOSTL~T)
21.17

SOURCETYPE (BITBLT argument) 19.5

SP (in an ASSEMBLE statement) 22.14

(SPACES N FILE) . 6.17

spaghetti stacks 7.2

(SPAWN. MOUSE -) 18.36

SPEC IAL (in Decl package) 23.21

(SPECVARS VAR1 ... VARN)

(File Package Command) 11.25

SPECVARS (in Masterscope Set Specification)
13.11

SPECVARS (Variable) 12.4; 9.20; 12.15-16

(SPELLFILE FILE NOPRLNTFLG NSFLG
DIRLST) 15.20; 6.5: 9.17,24

spelling completion 15.13

. spelling correction 15.13; 8.7,29; 9.12;
11.22,27; 16.6,19: 17.52-53,55

spelling correction on file names 15.20

spelling correction on hash files 23.44

spelling correction protocol 15.3

spelling corrector 15.13: 15.1,16

spelling lists 15.14; 4.5; 8.7,29;
9.12: 11.4,22,27; 14.7; 15.8-9;
16.6,19; 17.52-53,55

SPELLINGS1 (Variable) 15.14; 15.10,15,17

SPELLINGS2 (Variable) 15.14;
15.9-10,15,17

SPELLINGS3 (Variable) 15.14; 8.24;
15.8,17

SPLICE (type of read-macro) 6.36

INDEX

(SPLITC x) (Editor Command) 17.42

(SPP • CLOSE STREAM ABORT?) 21.6

(SPP. DSTYPE STREAM DST'YPE) 21.7

(SPP. EOFP STREAM) 21.7

(SPP. EOMP STREAM) 21.7

(SPP • F LUSH STREAM) 21.6

(SPP.OPEN HOST SOCKET PROBEP

NAME) 21.6

(SPP.READP STREAM) 21.7

(SPP.SENDEOM STREAM) 21.6

SPP. USE R. TIMEOUT (Variable) 21.6

spread functions 5.2

spreading arguments 5.2

(SQRT Iv) 2.45

SQRT OF NEGATIVE VALUE
(Error Message) 2.45

square brackets inserted by PRETTYPRINT
6.53 .'

ST (Response to Compiler Question) 12.2

stack descriptor 7.3

stack functions 7.3

STACK OVERFLOW (Error Message) 9.22:
7.10; 18.35

STACK OVERFLOW IN GC -
COMPUTATION LOST (Error Message)
9.22

stack pointer 7.3

STACK POINTER HAS BEEN RELEASED
(Error Message) 7.4

STACK PTR HAS BEEN RELEASED
(Error Message) 9.24

(ST ACKP x) 7.7

(START.CLEARINGHOUSE RESTARTFLG)

21.12

statistics 8.21

STF (Response to Compiler Question) 12.2

(STKAPPL Y pos FN ARGS FLG -) 7.6

Index.49

(STKARG N POS -) 7.5; 9.5

(STKARGNAME N pos) 7.5

(STKARGS pos -) 7.6

(STKEVAL pos FO~ ,FLG -) 7.6; 9.5

(STKNAME pos) 7.4

(STKNARGS pos -) 7~

(STKNTH N pos OLDPOS) 7.4

(STKNTHNAME N pos) 7.4

(STKPOS NAME N POS OLDPOS) 7.4

(STKSCAN VAH IPOS opos) 7~

STOP (at the end of a file) 6.25; 11.4

Stop (DEdit Command) 20.6

STOP (Editor Command) 17.38; 10.5;
17.41,56-57

(STORAGE FLG GCFLG) 14.1

STORAGE (Litatom) 9.17

storage allocation 22.7

STORAGE FULL (Error Atlessage) 9.24;
18.35

STOREFN (Property Name) 20.17

STREAM (datatype) 18.12

(STREQUAL x y) ~28

STRF (Variable) 12.1; 12.11

string functions 2.28

string pointer 2.28

string pointers 2.29

STRINGDELIM (Syntax Class) 6.33

(STRINGP x) 2.2

(STRINGREGION STR WINDOW PRIN2FLG
RDTBL) 19.9

strings 2.27; 2.2; 6.13

(STRINGWIDTH STR FONT PRIN2FLG
RDTBL) 19.9

(STRPOS PAT STRING START SKIP
ANCHOR TAIL) 2.31; 6.9

INDEX

(STRPOSL A STR START NEG) 231

structure modification (in Changetran) 3.12

structure modification commands (in
Editor) 17.22

(SUB 1 x) 2.39

(SUBATOM x N M) ~9

sub declarations (Record Package) 3.10

(SUBLIS ALST EXPR FLG) 2.24

(SUBPAIR OLD NEW EXPR FLG) 2.24

SUBR (Lilatom) 5.6

SUBR (Property Name) 5.10

SUBR* (Litatom) 5.6; 5.7

(SUBREGIONP LARGEREGION
SMALLREGION) 19.3

, (SUB RP FN) 5.6; 22.3

SUBRs 5.5

(SUBSET MAPX' MAPFNl MAPFN2) 5'.14

(SUBST NEW OLD EXPR) 2.23

(SUBSTRING x N M OLDPTR) k29

(SUBSYS FILE/FORK INCOMFILE
OUTCOMFILE ENTRYPOINTFLG)
22.21; 18.6

(SUBTYPES TYPE) 23.30

subtypes (in Ded package) 23.25

SUCHTHAT (I.S. Operator) 4.15

SUCHTHAT (in event address) 8.6

SUM FORM (lS. Operator) 4.6

(SUPERTYPES TYPE) 23.30

supenypes (in Ded package) 23.25

SURROUND (Editor Command) 17.28

SUSPEND (Process Property) 18.26

(SUSPEND. PROCESS PROC) 18.29

SUSPICIOUS PROG LABEL
(Error Message) 16.15

SVFLG (Variable) 12.1-2

Index.50

(SW N M) (Editor Command). 17.36

(SWAP DATUM1 DATUM2) (Change Word)
3.13

Swap (DEdit Command) 20.5

(SWAP (§1 (§2) (Editor Command) 17.36

SWAPBLOCK TOO BIG FOR BUFFER
(E"or Message) 9.25

SWAPC (Editor Command) 17.42

swappable array 22.24

swapping buffer 22.24

(SWAPPUPPORTS Pup) 21.17

Switch (DEdit Command) 20.4

SWPA R RA Y P (datatype) 22.25

(SWPARRAYP x) 22.25

SY (Exec Command) 23.59

symbols 2.4

SYMLST (Variable) 23.51

synonyms 15.13

syntax classes 6.33

(SYNT AXP CODE CLASS TABLE) 6.34

(SYSBUF FLG) 6.46; 6.47

SYSF ILES (Van'able) 11.4

SYSHASHARRAY (Variable) 2.35-36

SYSHASHFILE (Variable) 23.42

(S Y SIN FILE) 14.4

SYSLINKEDFNS (Variable) 12.19

SYSLOAO (LOAD option) 11.4; 15.8

(SYSOUT FILE) 14.3

sysout file 14.2

SYSOUT. EXT (Variable) 14.3

SYSOUTOATE (Van'able) 14.3

SYSOUTFILE (Variable) 14.3

SYSOUTGAG (Variable) 14.4

(SYSOUTP FILE) 14.4

INDEX

SYSPRETTYFLG (Variable) 6.17; 7.8;
8.11,35; 9.5-6

S Y S PRO P S (Variable) 2.6; 11.23

system buffer 6.45; 6.46

SYSTEM ERROR (E"or Message) 9.22

SYSTEMFONT (font class) 6.55

(SYSTEMTYPE) 14.1

T (Litatom) 2.5

T (PRINTOUT command) 6.27

T FIXED (Printed by DWIM) 15.6

tab (ED IT A command) 23.49

(TAB POS MINSPACES FILE) 6.17

T A I L (Variable) 15.11

tail of a list 2.19

(TAILP x Y) 2.19

TALK USER (Exec Command) 23.59

(T AN X RADIANSFLG) 2.46

(TCOMPL FILES) 12.11; 12.12,16-17

(TCONC PTR x) 2.17; 2.18

(TEOIT TEXT WINDOW DONTSPAWN
PROPS) 20.20

TEOIT • ABBREVS (Variable) 20.31

(TEDIT.AOD.MENUITEM MENU ITEM)
20.26

TEOIT .AFTERQUITFN (Window Property)
20.27

TEDIT.BLUE.PENOING.OELETE (Variabk)
20.29

TEOIT. CMD. CHARFN (Window Property)
20.27

TEOIT. CMD. LOOPFN (Window Property)
20.27

TEOIT . CMD. SELFN (Window Property)
20.27

TEOIT. OEFAUL T. FMTSPEC (Variable)
20.29

Index.51

TEDIT .DEFAULT. FONT (Variable) 20.29
• i

TEDIT. DEFAULT. MENU (V?zriable) 20.28

TEDIT • DEFAULT. MENUFN (Function)
20.28

(TEDITcDELETE ST~ CH#«SEL LEN)
20.25

(TEDIT.FIND ST~ TEXT CH#)
20.25 .

(TEDIT. GETSEL STREAM) 20.25

(TEDIT.GETSYNTAX CHARCODE TABLE)
20.30

(TEDIT.HARDCOPY STREA¥ F&E
DONTSEND BREAKPAG~TITLE) 20.25

(TEDIT. INSERT STREAM TEXT

CH#orSEL) 20.25

(TEDIT.LOOKS STREAM N$~OOKS
SELORCH# LEN) 20125

TEDIT • MENU (Window Property) 20.28

TEDIT .MENU. COMMANDS (Window Property)
20.28 .

TEDIT .MOVESELECTION (Variable) 20.29

TEDIT .OVERFLOWFN (Window Property)
20.27

TED IT • POSTSCROLLFN (Window Property)
20.27

TEDIT. PRESCROLLFN (Window Property)
20.27

(TEDIT .QUIT STREAM VALVE) 20.26

TED IT .QUITFN (Window Property) 20.27

TEDIT • READTABLE (Variable) 20.29

(TEDIT.REMOVE.MENUITEM MENU ITEM)
20.27

TEDIT .SELECTION (Variable) 20.29

(TEDIT.SETFUNCTION CHARCODE FN

TABLE) 20.30

(TEDIT. SETSEL STREAM CH#orSEL LEN
POINT) 20.25

(TEDIT.SETSYNTAX CHARCODE CLASS
TABLE) 20.29

INDEX

TEDIT. SHIFTEDSELECTION (Variable)
20.29

(TEDIT. SHOWSEL STREAM ONFLG SEL)
20e25

TEDIT. TITLEMENUFN (Window Property)
20.28 .

TEDIT.WORDBOUND.READTABLE (Variabk)
20.29; 20.30

(TEDIT • WORDGET CHAR TABLE) 20.30

(TEDIT.WORDSET CHAR CLASS TABLE)
20.30

(TEL NET CONNECTION TYPE SKT -)
23.62

telnet package 23.62

(TEMPLATES LITATOM1 ••• LlTATOMN)

(File Package Command) 11.25

TEMPLATES (File Package Type) 11.16

Templates (in Masterscope) 13.16

(TEN E X- STR F&EFLG) 22.6

tenninal 6.2,13,50; 8.30; 17.38

terminal syntax classes 6.41

terminal tables 6.40

(TERMTABLE P TTBL) 6.41

(TERPRI F&E) 6.17

TEST (Editor Command) 17.51

TEST (in Masterscope template) 13.16

TEST (Masterscope Relation) 13.8

TEST (Transorset Command) 23.36

TESTFORM (Variable) 23.37

(TESTRELATION ITEM RELATION ITEM2
INVERTED) 13.20

TESTRETURN (in Masterscope template)
13.17

TEXTOBJ (Window Property) 20.28

TEXTSTREAM (Window Property) 20.28

(TEXTUREP OBJECT) 19.6

Textures 19.6

Index.52

THE (in Ded package) 23.23

THEN (in Ded package) 23.22

THERE IS FORM (I.S. Operator) 4.6

(THIS. PRO~ESS) 18.27

THOSE (Masterscope Set Specification)
13.11

(81 THRU) (Editor Command) 17.34

(81 THRU (2) (Editor Command) 17.32

THRU (I.S. Operator) 4.15

THRU (in event specification) S.6

T leKS (Timer Unit) 14.11

(TIME TIMEX TIMEN TIMETYFE) 14.14;
14.15

time stamps 17.60; 5.9

time-slice of history list 8.25; 8.1S

(TIMEALL TIMEFORM #TIMES TIMEWHAT
INTERPFLG -) 18.22

(TIMEREXPIRED? TIMER 14.11
CLOCKVALUE.OR. TIMER UNITS)

timers 14.11

time rUn i ts UNITS (I.S. Operator) 14.12

(TIMES Xl X3 ... xN) 2.45

TIMES (use with REDO) 8.7

TITLE (Menu Field) 19.40

TITLE (Window Property) 19.32

(81 TO) (Editor Command) 17.34

(81 TO (2) (Editor Command) 17.32

TO FORM (I.S. Operator) 4.8; 4.9

TO (in event specification) 8.6

TO SET (Masterscope Path Option) 13.14

too few arguments 5.3

too many arguments 5.3

TOO MANY ARGUMENTS (E"or Message)
9.26

TOO MANY FILES OPEN (E"or Message)
9.23

INDEX

TOO MANY USER INTERRUPT
CHARACTERS (E"or Message) 9.25

TOP (Argument to ADVISE) 10.9

top level binding 11.37

TOTOPFN (Window Property) 19.30

(TOTOPW WINDOW NOCALLTOPWFN)
19.26

(TRACE x) 10.4; 9.2,12; 10.1,5-6"

TRACEREGION (Variable) 20.11

TRACEWINDOW (Variable) 20.11

translation notes (in TRANSOR) 23.32-33

translations in CLISP 16.13

(TRANSMIT.ETHERPACKET" NDB PACKET)

21.24

(TRANSOR FILE) 23.33; 23.31

TRANSOR sweep 23.39

(TRANSORFNS FNLST) 23.33

(TRANSORFORM FORM) 23.33

TRANSORSET (Function) 23.35; 23.32

TRAP AT LOCATION (E"or Message)
9.22; 22.6 "

TREAT AS CLISP ? (Printed by DWIM)
16.12

TREATASCLISPFLG (Variable) 16.12

TREATED AS CLISP (Printed by DWIM)
16.12

(TRU~) 5.11

TRUSTING (DWIM mode) 15.3; 15.2;
16.3-4,12

(TRYNEXT PLST## ENDFORM##
VAL##) 7.16

(TTY#) 23.60

(TTY. PROCESS PRocl 18.33

(TTY.PROCESSP PROC) 1~33

TTY: (Editor Command) 17.40; 10.5;
17.38,48

TTY: (Printed by Editor) 17.40

Index.53

(TTYDISPLAYSTREAM DffiPLAYSTREAM)

19.15

TTYENTRYFN (Process Property) 18.34;
18.27

TTYEXITFN (Proeess Property) 18.34;
18.27

(TTYIN PROMPT SPLST HBLP OPTIONS
ECHOTOFILE TABS UNREADBUF
RDTBL) 20.38; 20.31

(TTYIN.PRINTARGS FN ARGS ACTUALS
ARGT"YPE) 20.41

TTYIN. READ?=ARGS (Function) 20.41

(TTYIN.SCRATCHFILE) 20.41

TTYIN?=FN (Variable) 20.41

TTYINAUTOCLOSEFLG (Variable) 20.40

TTYINBSFLG (Variable) 20.43

TTY I NCOMPLE TE F LG (Variable) 20.44

(TTYINEDIT EXPRS WINDOW PRINTFN)

20.40

TTYINEDITWINDOW (Variabl'e) 20.40

TTYINERRORSETFLG (Variable) 20.43

TTYINMAILFLG (Variable) 20.43

TTYINMETA (Function) 20.33

TTYINPRINTFN (Variable) 20.40

TTYINREAD (Function) 20.37

TTYINREADMACROS (Variable) 20.42

TTYINRESPONSES (Variable) 20.43-44

TTYJUSTLENGTH (Variable) 20.36

TTYLINELENGTH (Variable) 6.8

(TUNNEL SPEED) 19.50

TV (Prog. Asst. Command) 20.37

TY FILE OUTFlLE BYTESIZE
(Exec Command) 23.60

TYPE (Masterscope relation) 23.31

type declarations 23.18

type description 22.2

type names 2.1

INDEX

type numbers 22.2

TYPE-AHEAD (Prog. Asst. Command) 8.15

TYPE - IN? (Variable) 15.11

TYPE? (in record declarations) 3.9

TYPE? (Record Operator) 3.4

TYPE? (Record Package) 3.5; 23.24

TYPE? NOT IMPLEMENTED FOR THIS
RECORD (EmJr "Message) 3.4

TYPEAHEADFLG (Variable) 20.43; 20.40

(TYPENAME DATUM) 2.1

(TYPENAMEFROMNUMBER N) 22.2

(TYPENAMEP. DATUM TYPENAME) 2.1

(TYPENUMBERFROMNAME NAME) 22.2

(TYPEP DATUM N) 22.2

TYPE RECORD (Record Type) 3.5

types (in Masterscope) 13.12

(TYPESOF NAME POSSIBLET"YPES

IMPOSSIBLETYFES SOURCE) 11.17

U (value of ARGLIST) 5.7

(U-CASE x) 2.11; 17.41

(U-CASEP x) 2.11

U. D. F. T (Printed by DWIM) 15.5

UB (Break Command) 9.3

UCASELST (Variable) 6.53

(UGLYVARS 'VAal ... VARN)
(File Package Command) 11.25; 6.24

UNABLE TO ALLOCATE PMAP BUFFER
(Error Message) 14.18

UNABLE TO DWIMIFY (Error Me~ag~
12.9

(UNADV I SE x) 10.10; 10.9.11

UNADVISED (Printed by System) 10.7

UNARYOP (Property Name) 16.21

UNBLOCK (Editor Command) 17.51

Index.54

unbound atom 2.5; 15.6

UNBOUND ATOM (Error Message) 9.25; 2.5

unboxed numbers 22.5

unboxed numbers (in Interlisp-10 arrays)
2.33

unboxing 2.37; 22.5

(UNBREAK x) 10.6; 10.4; 14.15

(UNBREAKO FN -) 10.6

(FN UNBREAKABLE) (value of BREAKIN)
10.5

(UNBREAKIN FN) la6

UNBROKEN (Printed by ADVISE) 10.9

UNBROKEN (Printed by Compiler) 12.10

UNBROKEN (Pn'nted by System) 10.7

UNO FILEGROUP (Exec Command) 23.60

UNDEFINED· CAR OF FORM
(Error Message) 9.25

undefined function 15.6

undef i ned funct i on (Error Message)
9.25; 15.1

UNDEFINED OR ILLEGAL GO
(E"or Message) 9.23; 4.4

UNDEFINED TAG (E"or Message) 12.21;
5.20

UNDEFINED TAG, ASSEMBLE
(E"or Message) 12.21

UNDEFINED TAG, LAP (Error Message)
12.21

UNDEFINED USER INTERRUPT
(Error Message) 9.17

Undo (DEdit Command) 20.5

UNDO (Editor Command) 17.7

(UNDO EventSpec) (Editor Command)
17.50-51; 8.35

UNDO EventSpec (Prog. Asst. Command)
8.11

INDEX

UNDO EventSpec : Xl ...
xN (Prog. Asst. Command) 8.11;
8.6,23,27,34-35; 15.3

undoing 8.22; 8.36

undoing (in Editor) 17.50; 8.36; 17.7,22

undoing DWIM corrections 8.11; 16.15

undoing out of order 8.23; 8.11

(UNDOLISPX LINE) 8.34

(UNDOLISPXl EVENT- FLG -) 8.34

UNDOLST (Variable) 17.50; 8.36;
17.38-39,51,57

UNDONE (Printed by Editor) 17.50

UNDONE (Printed by System) 8.11,34

(UNDONLSETQ UNDOFORM -) 8.24

(UNDOSAVE UNDOFORM HISTENTRY)

8.33; 8.28

UNFIND (Variable) 17.21;
17.15,25,27-31,38-39,44,57

(UNION x Y) 2.23

(UNIONREGIONS REGlON1 REGlON2

REGlONn) 19.3

UNLESS FORM (I.S. Operator) 4.10

(UNLOCKMAP PTR) 14.20

(UNMARKASCHANGED NAME TYPE) 11.12

(UNPACK x FLG RDTBL) 2.10

(UNPACKFILENAME FILENAME -) 6.5

unreading 8.4,31

UNSAFEMACROATOMS (Variable) 5.19

UNSAVED (Printed by DWIM) 15.8-9

(UNSAVEDE F FN PROP) 5.10

(UNSAVEDEF NAME TYPE -) 11.18;
15.8-9

(UNSAVE FNS -) 13~21

(UNSET NAME) 8.24; 8.23

UNT I L FORM (I.S. Operator) 4.10

UNTIL N (N a number) (I.S. Operator)
4.10

Index.55

UNTIL (use with REDO) 8.7

unt i 1 Date ,DTS (I.S. Opefator) 14.12

(UNT I LMOUSEST ATE BUT'rONFORM
INTERVAL) (Macro) 19.17

UNUSUAL CDR ARG LIST (E"or Message)
9.24

UP (Editor Command) 17.8-9; 17.10,15,26

(UPDATECHANGED) 1321

(UPDATEF ILES' - -) 11.14

(UPDATEFN FN EVENlFVALip -) 13.21
!

updating files 11.14

UPFINDFLG (Variable) 17.27; 17.15,17

USE (Masterscope Relation) : 13.8

U$E AS A FIELD (Masterscope Relation)
13.9

USE AS A RECORD (Maste1"$cope Relation)
13.9

USE AS A CLIS'P' WORD
(Masterscope Relation): 13.9

USE AS A PROPERTY NAME
(Masterscope Relation) 13.9

USE EXPRS IN EventSpec
(Prog. Asst. Command) 8.8

USE EXPRS FOR ARGS IN EventSpec

(Prog. Asst. Command] 8.8

USE EXPRS1 FOR ARGS1 AND
... AND EXPRSN FOR ARGSN
IN EventSpec (Prog. Asst. Command)
8.8-9; 8.26-27

USE -ARGS (History List Property) 8.27

USED AS ARG TO NUMBER FN?
(E"or Message) 12.21

USED BlKAPPLY WHEN NOT,APPLICABLE
(E"or Message) 12.20

USEDFREE (CLISP declaration) 12.10;
16.15

US E 0 I N (in Dec! package) 23.21,23

USEMAPFlG (Variable) 11.39

INDEX

USER BREAK (E"or Message) 9.25

user defined printing 6.23

user· interrupt characters 9.17

(USERDATATYPES) 3~5

(USEREXEC LmpXID LmpXXMACROS

LISPX:XUSERFN) 8.29

USERFONT (font class) 6.55

USERINTERRUPTS (Variable) 9.17

(USERlISPXPRINT x F~E Z NODOFLG)
8.21

(USERMACROS LITATOM1 •.• LITATOMN)

(File Package Command) 11.24;
17.50,52

USERMACROS (File Package Type) 11.15

USERMACROS (Variable) 17.50; 11.24

(USERNAME A FLG) 14.1

USERNOTES (Variable) 23.39

(USERNUMBER A FLG) 22.6; 18.6

USERRECORDTYPE (Property Name) 3.10

USERSYMS (Variable) 23.51

USERWORDS (Variable) 15.15; 1,5.17,19-20;
17.55-56

USING (Record Package) 3.3

usingTimer TIMER (I.S. Operator) 14.12

(VAG x) 22.5

VALUE (Property Name) 8.23-24

VALUE (Variable) 23.20

value cell 7.1; 2.6

value of a break ' 9.2

VALUE OUT OF RANGE EXPT
(Error Atl essage) , 2.45

VAlUECOMMANDFN (Property Name) 20.17

(VALUEOF LINE) 8.16; 8.28; 22.22

variable bindings 7.1; 5.15

variable number of arguments 5.2

Index.56

(VARIABLES pos) 7.5; 9.6

(VARS VARl ..• VARN)

(File Package Command) 11.22

VARS (File Package Type) 11.15

VARTYPE (Property Name) 11.15; 11.12

VAXMACRO (Property Name) 5.17

version numbers 6.3

(VIDEOCOLOR BLACKFLG) 19.7

(VIDEORATE TYPE) 19.7

(VIRGINFN FN FLG) 10.7

(VMEMSIZE) 18.3

(WAIT.FOR.TTY) 1833

WAITBEFORESCROLL TIME (Variable)
19.24

WAITBETWEENSCROLL TIME (Variable)'
19.24

(WAIT FORINPUT FILE) 6.15

WAITINGCURSOR (Variable) 19.16

(WAKE. PROCESS PROC STATUS) 18.29

WBo rde r (Van'able) 19.25-26,32

(WBREAK ONFLG) 20.10

(WELL N) 19.50

(WFROMDS DISPLAYSTREAM) 19.10

(WFROMMENU MENU) 19.41

WHE (Exec Command) 23.59

WHEN FORM (I.S. Operator) 4.10

(WHENCLOSE FILE PROP1 VALl ... PROPN
VALN) 6.11; 23.17,42

WHENHELDFN (Menu Field) 19.39

WHENSELECTEDFN (Menu Field) 19.39

WHENUNHELDFN (Menu Field) 19.39

WHERE (I.S. Operator) 4.15

(WHEREIS NAME TYPE FILES FN)
11.10; 23.40

INDEX

WHEREIS package 23.40

WHEREIS'. HASH (Variable) 23.40

(WHEREISNOTICE FILEGROUP NEWFLG)
23.40

(WHICHW x Y) 19.25

WHILE FORM (lS. Operator) 4.10

WHILE (use with REDO) 8.7

WHITESHADE (Variable) 19.6

\IIHOLECOLORDISPLAY (Variable) 19.44

(WIDEPAPER FLG) 6.54

WIDTH (Window Property) 19.33

(W I DTH I FW I NDOW INTERIORWIDTH

BORDER) 19.25

WINDOW (Process Property) 18.27

window package 19.1

window properties 19.28

(WINOOWADDPROP WINDOW PROP

ITEMTOADD) 19.29

WINDOWBACKGROUNDSHADE (Variable)
19.6

(WINOOWDELPROP WINDOW PROP

ITEMTODELETE) 19.29

WINDOWENTRYFN (Window Property)
19.29; 18.34

Wi ndow,Menu (Variable) 19.22

Wi ndowMenuCommands (Variable) 19.22

(WINDOWP x) 19.25

(WINOOWPROP ~OW PROP NEWVALUE)
19.29

WindowTitleDisplayStream (Variabk)
19.25

(WINDOWWORLD FLAG) 19.19

WITH (Record Operator) 3.4

WITH (in REPLACE command)
(in Editor) 17.25

WITH (in SURROUND command)
(in Editor) 17.28

Index.57

(WITH. FAST .MONITOR LOCK. FORMS)
(Macro) 18.31

(WITH.MONITOR LOCK • FORMS)
(Macro) 18.31

(WORDCONTENTS PTR) 14.19

WORDDELETE (syntax class) 6.41

(WORDOFFSET PTR N) 14.19

WORLD (Litatom) 12.19

(WRITEFILE x FILE) 6.25

XIPIGNORETYPES (Variable) 21.23

X I PONLYTYPES (Variable) 21.23

XIPPRINTMACROS (Variable) 21.23
!

XIPTRACE (Function) 21.23

X I PTRACE FILE (Variable) 21.23

X I PT RAe E F LG (Variable)· 21.23

(XTR • (i) (Editor Command) 17.27

(XWD Nl N 2) 23.53

(ZERO) 5.11

(ZEROP x) 2.39

o (Editor Command) 17.10; 17.3

10MACRO (Property Name) 5.17

(2ND • (j) (Editor Command) 17.18

(3ND • (i) (Editor Command) 17.18

7 (instead of ') 15.7

8 (instead of left parenthesis) 15.5;
15.1,7.9; 17.52

INDEX

9 (instead of right parenthesis) 15.5;
15.1,7,9

[,] inserted by PRETIYPRINT 6.53

\ (Editor Command) 17.7

(\ LITATOM) (Editor Command) 17.21;
17.25

\ (in event address) 8.6

\ (Printed by System) 6.13,43

(\ADD. PACKET. F I L TER FILTER) 21.24

(\ALLOCATE. ETHERPACKET) 21.23

(\CHECKSUM BASE N1VORDS nvITSUM)
21.24

\DEFAULT8BITCOLORINTENSITIES (Variabk)
19.46

\DEFAUL TCOLORINTENSITIES (Variable)
19.46

(\DEL. PACKET. F I L TER FILTER) 21.24

(\DEQUEUE Q) 21.25

(\ENQUEUE Q ITEM) 21.25

\ETHERT IMEOUT (Variable) 21.16,22

\FTPAVAILABLE (Variable) 18.16

\LOCALNDBS (Variable) 21.23

\MAXETHERTRIES (Variable) 21.7

(\ONQUEUE ITEM Q) 21.25

\P (Editor Command) 17.7.21; 17.38

\PACKET • PRINTERS (Variable) 21.24

(\QUEUELENGTH Q) 21.25

(\RELEASE. ETHERPACKET EPKT) 21.23

\ T imeZoneComp (Variable) 18.7

(\UNQUEUE Q ITEM NOERRORFLG)
21.25

\ \ (Printed by System) 6.14

Index.58

] (use in input) 8.30

1" (Break Command) 9.3; 9.12

1" (C LISP Operator) 16.5

1" (display break command) 20.10

1" (EDITA command) 23.50

1" (Editor Command) 17.11; 17.3

l' (use in comments) 6.52

+- (C LISP Operator) 16.7

+- (Editor Command) 17.21

(+- PATTERN) (Editor Command! 17.18

+- (in event address) 8.5

+- (in Pattern Match Compiler)

+- (in record declarations) 3.9

+- (Printed by System) 9.1

+-+- (Editor Command) 17.21

• (back-quote) 6.39

(change character) 6.55; 17.22

(vertical bar) 6.40

- (C LISP Operator) 16.9

23.5

- (in Pattern Match Compiler) . 23.3

(in M asterscope template) 13.17

(in P A commands) 8.8

(in Pattern Match Compiler) 23.4-5

(use with <.> in C LISP) 16.8

!! (use with <.> in CLISP) 16.8

! 0 (Editor Command) 17.11

! E (Editor Command) 17.43; 8.35

INDEX

! EVAL (Break Command) 9.3

! F (Editor Command) 17.43; 8.35

1 GO (Break Command) 9.3

I N (Editor Command) 17.43; 8.35

1 N X (Editor Command) 17.12

I OK (Break Command) 9.3

! Undo (DEdit Command) 20.5

1 UNDO (Editor Command) 17.50

1 VALUE (Variable) 9.3; 9.12; 10.8

" 2.27; 6.13-15

"" (use in ASKUSER) 6.64

" < c . r . >" (in history commands) 8.26

IN (N a number)
(in Pattern Match Compiler) 23.5

II (followed by a number) 2.32-33

II (PRINTOUT command) 6.30

<'II COM1 COM2 ... COMN) 17.46; 17.18

III (in INSERT, REPLACE. and CHANGE commands)
17.26

III (Pn'nted by System) 6.13,43-44,46

IICAREFULCOLUMNS (Variable) 6.53

IIRPARS (Variable) 6.53

IISPELLINGS1 (Variable) 15.15

IISPElLINGS2 (Variable)' 15.15

IISPELLINGS3 (Variable) 15.15

IIUNDOSAVES (Variable) 8.33; 8.25

IIUSERWORDS (Variable) 15.15

$ «esc» 6.3

$ «esc>. use in ASKUSER) 6.64

$ y .x: IN EventSpec (Prog. Asst. Command)
8.9

Index.59

$ Y = x IN EvelltSpec

(Prog. Asst. Command) 8.9

$ Y - > x IN EvelltSpec

(P.rog. AssL Command) 8.9

$ y TO x IN EvelltSpec

(Prog. AssL Command) 8.9

$ x FOR y IN EvelltSpec

(Prog. Asst. Command) 8.9

$ «esc» (in CLISP) 16.7,9

$ «esc» (in Edit Pattern) 17.8; 17.13

$ «esc» (in spelling correction) 15.13;
15.18

$ «esc» (Prog. ASsL Command) 8.9

$ «esc» (i n R command) (in Editor)
17.35

$ (d 011 a r) (in Pattern Match Compiler)
23.3

$ (do 11 a r) (Variable) 23:.50

$$ (two <esc>s) (in Edit Pattern)
17.13

$$EXTREME (Variable) 4.7

$$VAL (Variable) 4.7,13

$1 (in Pattern Match Compiler) 23.2

$C «esc>C) (EDITA command) 23.52

$GO «esc)GO) (TYPE-AHEAD Command)
8.15

$n (in Pattern Match Compiler) 23.4

$Q «esc)Q) (TYPE-AHEAD Command)
8.15 .

$Q «esc>Q) (EDITA command) 23.50

$W «esc>W) (EDITA comrtJand) 23.51;
23.53

% (escape character) 6.13; 2.4,27;
6.14-15,17,36,46

% (use in comments) 6.52

%% (use in comments) 6.52

INDEX

& (in Edit Pattern) 17.7; 17.13

& (in M BD command) 17.28

& (in Pattern Match Compiler) 23.2

& (Printed by Editor) 17.2

& (Printed by System) 6.18

& (use in ASKUSER) 6.64

&Undo (DEdit Command) 20.5

15.7

, (C LISP Operator) 16.8

, (EDIT A command) 23.50; 23.48

, . (in a LAP statement) 22.16

, (in Pattern Match Compiler) 23.2

'LIST (Masterscope Set Specification) 13.10

'ATOM (Masterscope Set Specification)
13.10

(; n (DEdit Command) 20.4

(out (DEdit Command) 20.5

() (D Edit Command) 20.4

() out (DEdit Command) 20.5

) ; n (DEdit Command) 20.4

) out (DEdit Command) 20.5

• (as a pretlyprint macro) 6.51

• (as a read-macro) 6.51

• (C LISP Operator) 16.5

(•. x) (Editor Command) 17.43

(. • TEXT) (File Package Command)
11.24

• (in a LAP statement) 22.16

• (in an ASSEMBLE statement) 22.14

• (in file package command) 11.30

Index.60

* (in Pattern Match Compiler) 23.3

* (Printed by Editor) 17.1

* (use in comme.nts) 6.49; 6.50

* * * * * (in Compiler E"or Messages)
12.20

****can't find
(printed by EDITLOADFNS?) 17.58

****Note: FN is not
the newest version
(printed by EDITLOADFNS?) 17.58

* *BREAK * * (in backtrace) 9.6

COMMENT (Printed by Editor) 17.37

COMMENT (Printed by System) 6.50

COMMENTFLG (Variable) 6.50; 17.37

EDITOR (in backtrace) 9.6

TOP (in backtrace) 9.6

ANY (in Edit Pattern) 17.13

* ARCH IVE * (History List Property) 8.27

. *ARCHIVE * (Property Name) 8.13

*ARGl (as a blip on the stack) 7.12

*ARGVAL * (as a blip on the stack) 7.12

CONTEXT (History List Property) 8.27

* E RROR* (History List Property) 8.27

* F N * (as a blip on the stack) 7.12

FORM (as a blip on the stack) 7.12

GROUP (History List Property) 8.27

GROUP (Property Name) 8.28

H ISTORY (History List Property) 8.27

LISPXPRINT (History List Property)
8.27

LISPXPRINT (Property Name) 8.20

PRINT (History List Property) 8.27

TAIL (as a blip on the stack) 7.12

+ (C LISP Operator) 16.5

INDEX

, (EDITA command) 23.48

, (PRINTOUT command) 6.27

- (CLISP Operator) 16.5

(in Edit Pattern) 17.7; 17.14

(in Pattern Match Compiler) 23.3

(Printed by Editor) 17.2

(Printed by System) 6.18

-) EXPR (Break Command) 9.7

-) (in Pattern Match Compiler) 23.6--

-) (Printed by DWIM) 15.4; 15.2,5

-) (Printed by Editor) 17.35

o (in a floating point number) 2.43

· (in a list) 2.15

· (in M asterscope) 13.2

· (in Pattern Match Compiler) 23.4

· (printed by M asterscope) 13.2

· (Variable) 23.50

PATTERN •• @ (Editor Command) 17.20

(in Edit Pattern) 17.14

•• TEMPLATE (in M asterscope template)
13.18

(in Edit Pattern) 17.14-15

(Printed by DWIM) 15.2,4

(Printed 'by Editor) 17.8-9

(printed following a carriage-.return)
8.30

VARS (Prog. Asst. Command) 8.9;
8.27

• .• ARGS (History List Property) 8.27

· BASE (PRINTOUT command) 6.28 .

• CENTER (PRINTOUT command) 6.29

· CENTER2 (PRINTOUT command) 6.29

• F (PRINTOUT command) 6.30

Index.61

• FONT (PRINTOUT comm,!nd) 6.27

• F R (PRINTOUT command) 6.29

• F R2 (PRINTOUT command) 6.29

· I (PRINTOUT command) 6.29

• N (PRINTOUT command) 6.30

• P2 (PRINTOUT command) 6.28

• PAGE (PRINTOUT comm4nd) 6.27

• PARA (PRINTOUT comm~nd) 6.28

• PARA2 (PRINTOUT command) 6.29

• PPF (PRINTOUT command) 6.28

• PPFTL (PRINTOUT command) 6.28

• PPV (PRINTOUT command) 6.28

• PPVTL (PRINTOUT command) 6.28

• RESET (PRINTOUT commpnd) 6.27

• SKIP (PRINTOUT command) 6.27

• SP (PRINTOUT command) 6.27

• SUB (PRINTOUT command) 6.28

• SUP (PRINTOUT command) 6.27

• TAB (PRINTOUT command) 6.27

• TABO (PRINTOUT command) 6.27

I (C LISP Operator) 16.5

I (EDITA command) 23.49; 23.48

/ (use with @ break command) 9.4

I functions 8.22; 8.34 \

(/CNOIR HosT/Dm) 18.12

(/OELFILE FILE) 23.61

IFNS (Variable) 8.22

IMAPCON (Function) 16.10

IMAPCONC (Function) 16.10

INCONC (Function) 16.10

INCONCl (Function) 16.10

IREPLACE (Record Package) 3.2

IRPLACA (Function) 16.10

INDEX

I R P LAC 0 (F,unction) 16.10

IRPLNOOE (Function) 8.33

IRPLNOOE2 (Function) 8.33

(/UNOELFILE FILE) 23.61

: (CLISP Operator) 16.7

: (EDITA command) 23.50

(:) (Editor Command) 17.24

(: El ... EM) (Editor Command) 17.9

: (Printed by System) 9.1

:: (C LISP Operator) 16.7

(ED IT A command) 23.52

FORM (Prog. Ass!. Command) 8.14

< (C LISP Operator) 16.8

< ,> (use in CLISP) 16.8

= FORM (Break Command) 9.7

= (C LISP Operator) 16~6

= (EDITA command) 23.50

= (in a LAP statement) 22.16

= (in event address) 8.6

= (in Pattern Match Compiler)

= (Printed by DWIM) 15.4-5

= (Pn'nted by Editor) 17.8

= (use with @ break command)

== (in Edit Pattern) 17.14

23.2

9.4

== (in Pattern Match Compiler) 23.2

=) (in Pattern Match Compiler) 23.6

=E (Printed by Editor) 17.53

=EOITF (Printed by Editor) 17.55

=EOITP (Printed by -Editor) 17.54

Index.62

= ED I TV (Printed by Editor) 17.54

> (C LISP Operator) 16.8

?

?

?

?

(EDIT A command)

(Editor Command)

(Litatom) 2.22

(Printed by DWIM)

23.50

17.37; 17.2

15.4

? (printed by Masterscope) 13.16

1 (Read Macro) 6.40; 9.5

1= (Break Command) 9.5-

1 = (display break command) 20.10

1= (Editor Command) 17.37

1= (Prog. Asst. Command) 9.5

1? EventSpec (Prog. Asst. Command) 8.11;
8.27

1ACTIVATEFLG (Variable) 20.43

?Undo (DEdit Command) 20.5

(j (Break Command) 9.3; 9.8

(j (EDITA command) 23.48

(j (in a LAP statement) 22.16

(j (in event specification) 8.32

«(j EXPRFORM TEMPLATEFORM)
(in M asterscope template) 13.18

(j (in Pattern Match Compiler) 23.3,5

(j PREDICATE

(Masterscope Set Specification) 13.10

<(j (use with @ break command) 9.4

(j (location specification)
(in Editor) 17.18

@(j (in event specification) 8.7; 8.13,32

INDEX

Index.63

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	01.00
	01.01
	01.02
	01.03
	01.04
	01.05
	01.06
	01.07
	01.08
	02.01
	02.02
	02.03
	02.04
	02.05
	02.06
	02.07
	02.08
	02.09
	02.10
	02.11
	02.12
	02.13
	02.14
	02.15
	02.16
	02.17
	02.18
	02.19
	02.20
	02.21
	02.22
	02.23
	02.24
	02.25
	02.26
	02.27
	02.28
	02.29
	02.30
	02.31
	02.32
	02.33
	02.34
	02.35
	02.36
	02.37
	02.38
	02.39
	02.40
	02.41
	02.42
	02.43
	02.44
	02.45
	02.46
	02.47
	02.48
	03.01
	03.02
	03.03
	03.04
	03.05
	03.06
	03.07
	03.08
	03.09
	03.10
	03.11
	03.12
	03.13
	03.14
	03.15
	03.16
	04.01
	04.02
	04.03
	04.04
	04.05
	04.06
	04.07
	04.08
	04.09
	04.10
	04.11
	04.12
	04.13
	04.14
	04.15
	04.16
	05.01
	05.02
	05.03
	05.04
	05.05
	05.06
	05.07
	05.08
	05.09
	05.10
	05.11
	05.12
	05.13
	05.14
	05.15
	05.16
	05.17
	05.18
	05.19
	05.20
	06.01
	06.02
	06.03
	06.04
	06.05
	06.06
	06.07
	06.08
	06.09
	06.10
	06.11
	06.12
	06.13
	06.14
	06.15
	06.16
	06.17
	06.18
	06.19
	06.20
	06.21
	06.22
	06.23
	06.24
	06.25
	06.26
	06.27
	06.28
	06.29
	06.30
	06.31
	06.32
	06.33
	06.34
	06.35
	06.36
	06.37
	06.38
	06.39
	06.40
	06.41
	06.42
	06.43
	06.44
	06.45
	06.46
	06.47
	06.48
	06.49
	06.50
	06.51
	06.52
	06.53
	06.54
	06.55
	06.56
	06.57
	06.58
	06.59
	06.60
	06.61
	06.62
	06.63
	06.64
	06.65
	06.66
	07.01
	07.02
	07.03
	07.04
	07.05
	07.06
	07.07
	07.08
	07.09
	07.10
	07.11
	07.12
	07.13
	07.14
	07.15
	07.16
	07.17
	07.18
	08.01
	08.02
	08.03
	08.04
	08.05
	08.06
	08.07
	08.08
	08.09
	08.10
	08.11
	08.12
	08.13
	08.14
	08.15
	08.16
	08.17
	08.18
	08.19
	08.20
	08.21
	08.22
	08.23
	08.24
	08.25
	08.26
	08.27
	08.28
	08.29
	08.30
	08.31
	08.32
	08.33
	08.34
	08.35
	08.36
	09.01
	09.02
	09.03
	09.04
	09.05
	09.06
	09.07
	09.08
	09.09
	09.10
	09.11
	09.12
	09.13
	09.14
	09.15
	09.16
	09.17
	09.18
	09.19
	09.20
	09.21
	09.22
	09.23
	09.24
	09.25
	09.26
	10.01
	10.02
	10.03
	10.04
	10.05
	10.06
	10.07
	10.08
	10.09
	10.10
	10.11
	10.12
	11.01
	11.02
	11.03
	11.04
	11.05
	11.06
	11.07
	11.08
	11.09
	11.10
	11.11
	11.12
	11.13
	11.14
	11.15
	11.16
	11.17
	11.18
	11.19
	11.20
	11.21
	11.22
	11.23
	11.24
	11.25
	11.26
	11.27
	11.28
	11.29
	11.30
	11.31
	11.32
	11.33
	11.34
	11.35
	11.36
	11.37
	11.38
	11.39
	11.40
	12.01
	12.02
	12.03
	12.04
	12.05
	12.06
	12.07
	12.08
	12.09
	12.10
	12.11
	12.12
	12.13
	12.14
	12.15
	12.16
	12.17
	12.18
	12.19
	12.20
	12.21
	12.22
	13.01
	13.02
	13.03
	13.04
	13.05
	13.06
	13.07
	13.08
	13.09
	13.10
	13.11
	13.12
	13.13
	13.14
	13.15
	13.16
	13.17
	13.18
	13.19
	13.20
	13.21
	13.22
	14.01
	14.02
	14.03
	14.04
	14.05
	14.06
	14.07
	14.08
	14.09
	14.10
	14.11
	14.12
	14.13
	14.14
	14.15
	14.16
	14.17
	14.18
	14.19
	14.20
	15.01
	15.02
	15.03
	15.04
	15.05
	15.06
	15.07
	15.08
	15.09
	15.10
	15.11
	15.12
	15.13
	15.14
	15.15
	15.16
	15.17
	15.18
	15.19
	15.20
	16.01
	16.02
	16.03
	16.04
	16.05
	16.06
	16.07
	16.08
	16.09
	16.10
	16.11
	16.12
	16.13
	16.14
	16.15
	16.16
	16.17
	16.18
	16.19
	16.20
	16.21
	16.22
	17.01
	17.02
	17.03
	17.04
	17.05
	17.06
	17.07
	17.08
	17.09
	17.10
	17.11
	17.12
	17.13
	17.14
	17.15
	17.16
	17.17
	17.18
	17.19
	17.20
	17.21
	17.22
	17.23
	17.24
	17.25
	17.26
	17.27
	17.28
	17.29
	17.30
	17.31
	17.32
	17.33
	17.34
	17.35
	17.36
	17.37
	17.38
	17.39
	17.40
	17.41
	17.42
	17.43
	17.44
	17.45
	17.46
	17.47
	17.48
	17.49
	17.50
	17.51
	17.52
	17.53
	17.54
	17.55
	17.56
	17.57
	17.58
	17.59
	17.60
	18.01
	18.02
	18.03
	18.04
	18.05
	18.06
	18.07
	18.08
	18.09
	18.10
	18.11
	18.12
	18.13
	18.14
	18.15
	18.16
	18.17
	18.18
	18.19
	18.20
	18.21
	18.22
	18.23
	18.24
	18.25
	18.26
	18.27
	18.28
	18.29
	18.30
	18.31
	18.32
	18.33
	18.34
	18.35
	18.36
	18.37
	18.38
	18.39
	18.40
	19.00
	19.01
	19.02
	19.03
	19.04
	19.05
	19.06
	19.07
	19.08
	19.09
	19.10
	19.11
	19.12
	19.13
	19.14
	19.15
	19.16
	19.17
	19.18
	19.19
	19.20
	19.21
	19.22
	19.23
	19.24
	19.25
	19.26
	19.27
	19.28
	19.29
	19.30
	19.31
	19.32
	19.33
	19.34
	19.35
	19.36
	19.37
	19.38
	19.39
	19.40
	19.41
	19.42
	19.43
	19.44
	19.45
	19.46
	19.47
	19.48
	19.49
	19.50
	20.01
	20.02
	20.03
	20.04
	20.05
	20.06
	20.07
	20.08
	20.09
	20.10
	20.11
	20.12
	20.13
	20.14
	20.15
	20.16
	20.17
	20.18
	20.19
	20.20
	20.21
	20.22
	20.23
	20.24
	20.25
	20.26
	20.27
	20.28
	20.29
	20.30
	20.31
	20.32
	20.33
	20.34
	20.35
	20.36
	20.37
	20.38
	20.39
	20.40
	20.41
	20.42
	20.43
	20.44
	20.45
	20.46
	21.01
	21.02
	21.03
	21.04
	21.05
	21.06
	21.07
	21.08
	21.09
	21.10
	21.11
	21.12
	21.13
	21.14
	21.15
	21.16
	21.17
	21.18
	21.19
	21.20
	21.21
	21.22
	21.23
	21.24
	21.25
	21.26
	22.01
	22.02
	22.03
	22.04
	22.05
	22.06
	22.07
	22.08
	22.09
	22.10
	22.11
	22.12
	22.13
	22.14
	22.15
	22.16
	22.17
	22.18
	22.19
	22.20
	22.21
	22.22
	22.23
	22.24
	22.25
	22.26
	23.01
	23.02
	23.03
	23.04
	23.05
	23.06
	23.07
	23.08
	23.09
	23.10
	23.11
	23.12
	23.13
	23.14
	23.15
	23.16
	23.17
	23.18
	23.19
	23.20
	23.21
	23.22
	23.23
	23.24
	23.25
	23.26
	23.27
	23.28
	23.29
	23.30
	23.31
	23.32
	23.33
	23.34
	23.35
	23.36
	23.37
	23.38
	23.39
	23.40
	23.41
	23.42
	23.43
	23.44
	23.45
	23.46
	23.47
	23.48
	23.49
	23.50
	23.51
	23.52
	23.53
	23.54
	23.55
	23.56
	23.57
	23.58
	23.59
	23.60
	23.61
	23.62
	23.63
	23.64
	23.65
	23.66
	Index.01
	Index.02
	Index.03
	Index.04
	Index.05
	Index.06
	Index.07
	Index.08
	Index.09
	Index.10
	Index.11
	Index.12
	Index.13
	Index.14
	Index.15
	Index.16
	Index.17
	Index.18
	Index.19
	Index.20
	Index.21
	Index.22
	Index.23
	Index.24
	Index.25
	Index.26
	Index.27
	Index.28
	Index.29
	Index.30
	Index.31
	Index.32
	Index.33
	Index.34
	Index.35
	Index.36
	Index.37
	Index.38
	Index.39
	Index.40
	Index.41
	Index.42
	Index.43
	Index.44
	Index.45
	Index.46
	Index.47
	Index.48
	Index.49
	Index.50
	Index.51
	Index.52
	Index.53
	Index.54
	Index.55
	Index.56
	Index.57
	Index.58
	Index.59
	Index.60
	Index.61
	Index.62
	Index.63
	xBack

