SPERRY<FLINIVAC

OMPUTER SYSTEMS

Operating System/3 (0S/3)
Information Management

System 90 (IMS 90)
Applications

User Guide/
Programmer Reference

This Library Memo announces the release and availability of Updating Package B to “SPERRY UNIVAC Operating

System/3 (0S/3) Information Management System 90 (IMS 90) Applications User Guide/Programmer Reference”

UP-8614 Rev. 1.

’

Update B for release 7.1 makes several technical changes concerning the random GETUP function call, downline
load processing, batch processing, the ZZRSD and ZZHLD terminal commands, and the SWTCH transaction code.
These changes are applicable to software prior to release 7.1.

Copies of Updating Package B are now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only
the updating package, order UP-8614 Rev. 1-B. To receive the complete manual, order UP-8614 Rev. 1.

v 0/992,95 TS CONCEPIS o FRII1LIES
/

Vo A

y ¥ v/.’l)

DT
VUP- 9093
/79009

Kiridcel gy,

.

TS Boaes LRASmE 2 R I KL
Ca3BL Avp ATSEM
L ier e
ThRpzp N ST S T pE

y P S A ey
fPrl 29U LSRR ST

D/I‘\’TA DEF T T

i

31701

Mailing Lists
BZ,CZ and MZ

Mailing Lists 18, 18U, 19, 19U, 20, 20U, 21, 21U,
28U, 29U, 75, 75U, 76 and 76U
(Package B to UP-8614 Rev. 1, 24 pages plus Memo)

Library Memo for
UP-8614 Rev. 1-B

RELEASE DATE:

December, 1981

L1251 Rev, 3773

Operating System/3 (0OS/3)

information Management
System 90 (IMS 90)
Applications

User Guide/Programmer
Reference

This Library Memo announces the release and availability of Updating Package A to “SPERRY UNIVAC Operating
System/3 (0S/3) Information Management System 90 (IMS 90) Applications User Guide/Programmer Reference”,
UP-8614 Rev. 1.

Update A contains the following new or changed items for release 7.1:

IRAM files are supported only when defined as MIRAM files.

Hexadecimal and character values for contents of AUX-FUNCTION field in the output message header for
continuous output are changed.

Special considerations must be made when using the input options or report address option in the
CONTINUOUS-OUTPUT-CODE field of the OMA.

Screen formats can be displayed on the UTS 20 and on auxiliary devices.
The UPSI byte can be used to determine edit table errors.

The ZZOPN, ZZCLS, and ZZPCH terminal commands can be issued from the system console in single-thread
IMS 90.

In addition to cancelling the currently active transaction, the ZZCNC terminal command clears all output
queued to the source terminal.

Three different status messages can be issued in response 1o the SWTCH transaction code: one for message
sent, one for message not sent, and one for message queued.

Output from the ZSTAT transaction can be sent to a tape cassette or diskette.
The terminal status display has been changed.
One new unrecoverable and two new recoverable ZSTAT error messages are added.

ZSTAT places a message in the OMA if it receives an unrecognized delivery notice.

Mailing Lists BZ, Mailing Lists 18, 18U, 19, 19U, 20, 20U, Library Memo for
CZ and MZ 21, 21U, 28U, 29U, 75, 75U, 76 and 76U UP-8614 Rev. 1-A
(Package A to UP-8614 Rev. 1,
198 pages plus Memo)

RELEASE DATE:

September, 1981

L] The IBM 3270 terminal is supported.

Other changes include expanded descriptions, clarifications, or corrections that apply to the software before the
current release.

Copies of Updating Package A are now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requistioned by your local Sperry Univac representative. To receive only the
updating pacakage, order UP-8614 Rev. 1—A. To receive the complete manual, order UP-8614 Rev. 1.

‘

SPERRY<=UNIVAC

LIEOMAPLITER Sy RTEMS

Operating System/3 (0OS/3)

Information Management

System 90 (IMS 90)
Applications

User Guide/Programmer
Reference

This Library Memo announces the release and availability of “SPERRY univac® Operating System/3 (0S/3)
Information Management System 90 (IMS 90) Applications User Guide/Programmer Reference”’, UP-8614 Rev. 1.

This revision includes changes to program examples, IMS 90 internal tables, and new sections describing:
] File 1/O functions;

L] Cassette/diskette devices and additional auxiliary function byte settings in the OMA;

L Screen formatting services;

. The BUILD and REBUILD function calls used to construct screen buffer or error screen formats;

. L] Three formats of the ZSTAT transaction code used to display statistics about files, programs, transactions, and
) terminals; and

] ZSTAT recoverable and unrecoverable error messages.

Additional copies may be ordered by your local Sperry Univac representative.

Mailing Lists Mailing Lists 18, 18U, 19, 19U, 20, 20U, 21, 21U, Library Memo
‘ BZ, CZ and MZ 28U, 29U, 75, 75U, 76 and 76U
{Covers and 418 pages)

RELEASE DATE:
October, 1980

GD1--251 Rev, 3773

Information Management System 90 (IMS 90)

0S/3

L

r

User Guide/
Programmer Reference

' SPERRY==UNIVAC et .

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual
distribution time. To ensure that you have the latest information regarding levels of
implementation and functional availability, please consult the appropriate release
documentation or contact your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit
such action by others, for any purpose without prior written permission from Sperry
Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS are
additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS
400 Text Editor. It was printed and distributed by the Customer Information Distribution
Center (CIDC), 5565 Henderson Rd., King of Prussia, Pa., 19406.

©1980 — SPERRY CORPORATION PRINTED IN U.S.A.

. -

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 PSS 1
IMS 90 APPLICATIONS Update B
PAGE STATUS SUMMARY
ISSUE: Update B — UP-8614 Rev. 1
RELEASE LEVEL: 7.1 Forward
. Page Update . Page Update . Page Update
Part/Section Number Level Part/Section Number Level Part/Section Number Level
Cover/Disclaimer Orig. 81 thru 83 Orig. 20a B
84, 85 A 21,22 A
PSS 1 B 86, 87 Orig. 22a A
88 A 23 thru 27 A
Preface 1 Orig. 89 Orig. 28 Orig
90 A 29 thru 32 A
Contents 1 thru 4 Orig. 91 Orig.
5 A 92 A 6 1thru3 Orig.
6 Orig. 93 thru 95 Orig. 4 A
7 A 96 A 5 thru 13 Orig.
8 Orig. 97 thru 100 Orig. 14,15 A
8 thru 12 A 101 A 16 thru 18 Orig.
102 thru 109 | Orig. 18a Orig.
1 1 A 110, 111 B 19 thru 21 Orig.
2thru b Orig. 112 A 22,23 A
112a A 24 thru 34 Orig.
2 1 A 113 B 35 A
2 thru 13 Orig. 114 A
14 A 114a B 7 1thru 9 Orig.
15 thru 20 Orig. 115 B 10 B
21 A 116 A 11 thru 17 Orig.
22 thru 28 Orig. 116a A
29 A 117,118 A Appendix A 1,2 Orig.
30 thru 41 Orig. 118a, 118b A
42 A 118¢c B Appendix B 1thru 3 Orig.
43 thru 60 Orig. 118d B**
61 A 119 A Appendix C 1 thru 7 Orig.
62 thru 73 Orig. 120 thru 124 |Orig. 8 A
125, 126 A 9 thru 12 Orig.
3 1thru9 Orig. 126a A
10 A 127,128 A Appendix D 1 thru 6 Orig.
10a A 128a A
11 thru 18 Orig. 129 thru 140 |A Appendix E 1,2 Orig.
19 thru 21 A 140a thru 140i |A 3,4 A
22,23 Orig. 140j B 4a A
124,25 A 141 thru 152 |A 5 A
26 thru 36 Orig. 152a thru 152e |A 6 thru 12 Orig.
36 A 153, 154 A
37 Orig. Glossary 1 thru 13 Orig.
38 A 4 il thru 5 Orig
38a Orig. b A Index 1 Orig.
39 thru 43 Orig. pa A 2 A
44 A 7,8 A 3 Orig.
45 thru 48 Orig. P thru 12 Orig. 4 A
49, 50 A 5 Orig.
51 Orig. 5 1,2 Orig. 6,7 A
52 A B thru 6 A 8 Orig.
53, 54 Orig. 4 B 9 thru 12 A
55 A Bthru 11 A
56, 57 Orig. 12,13 Orig. User Comment
58 B 14,15 A Sheet
59 A 16 Orig.
60 thru 74 Orig. 17,18 A
75 A 18a A
76 thru 79 Orig. 9 A
80 A 20 B
*New pages **Deleted pages

All the technical changes are denoted by an arrow (=} in the margin. A downward pointing arrow (f) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow { ‘) is found. A horizontal arrow (=) pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions,

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 Preface 1
IMS 90 APPLICATIONS

Preface

This document is one of a series describing the SPERRY UNIVAC Information Management
System 90 (IMS 90) for users of Operating System/3 (OS/3). An introduction to IMS 90,
UP-8816 (current version), provides an overview of IMS 90 software and its use. The
system support functions user guide/programmer reference, UP-8364 (current version), is
directed to systems analysts and IMS 90 administrators. It describes communications
network structuring, pre-online processing, and IMS 90 initiation, execution, and recovery
procedures. This applications user guide/programmer reference (UP-8614) is intended for
use with the systems support functions manual and is directed to IMS 90 application
programmers and terminal operators who must prepare and process user applications.
Subjects described are:

® Preparation of data definitions for use by the uniform inquiry update element
(UNIQUE) or user-written action programs

® Preparation of action programs in COBOL, RPG II, or basic assembly language (BAL)
® Preparation of edit tables for use with user-written action programs

® Terminal operation, including operation of the master terminal and user terminals

@ Transaction processing via UNIQUE

® Batch transaction processing

IMS 90 users wishing to access a DMS 90 data base from action programs should read
the IMS 90/DMS 90 interface user guide/programmer reference, UP-8748 (current

version). Also available is the IMS 90 terminal user commands, UP-8741 (current version),
which is a pocket reference card.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 Contents 1
IMS 90 APPLICATIONS
Contents

PAGE STATUS SUMMARY

PREFACE

CONTENTS

1. INTRODUCTION
1.1 OVERVIEW 1-1
1.1.1. IMS 90 Operations 1-2
1.1.1.1 Pre-online Processing 1-2
1.1.1.2. Online Processing 1-2
1.1.1.3. Offline Processing 1-3
1.1.2. User Activities 1-3
1.1.2.1. Defining Data 1-3
1.1.2.2. Configuring IMS 90 1-4
1.1.2.3. Writing Action Programs 1-4
1.1.24. Using Uniform Inquiry Update Element (UNIQUE) 14
1.1.25. Operating Terminals 1-4
1.2. APPLICABILITY 1-5

2. DATA DEFINITION
2.1. INTRODUCTION 2-1
2.1.1. Data Flow in IMS 90 2-2
2.1.2. Creating Data Definition Records 2-5
2.2. DEFINED FILE 2-5
2.2.1. Hierarchical Structure 2-6
2.2.2. Defined Records 2-7

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 Contents 2
IMS 90 APPLICATIONS

2.3. DATA DEFINITION LANGUAGE 2-11
2.3.1. Format Presentation and Coding Rules 2-11
2.3.2. Data Definition Structure 2-14
23.2.1. Identification Division 2-14
2322, Data Division 2-15
2.3.23. Definition Division 2-15
2.3.3. Logical Data Record Description 2-15
2.3.4. Defined File Definition 2-17
2341, DEFINED FILE Statement 2-17
2.3.5. Defined Record Definition 2-20
235.1. DEFINED RECORD Statement 2-20
235.2. FROM Statement 2-21
2.35.3. FROM CONTROL BREAK Statement 2-22
2354 FROM REPEATING GROUP Statement 2-23
2355. TYPE Statement 2-24
2.35.6. PARENT Statement 2-25
2357. PREFIX Statement 2-26
2.358. POINTER Statement 2-27
2.35.9. FOLLOWS Statement 2-28
2.35.10. FILL KEY Statement 2-29
2.3.5.11. ALLOW ADD AND DELETE Statement 2-30
23512, ALSO Statement ' 2-30
2.3.6. Item Definition 2-31
2.36.1. IDENTIFIER Statement 2-32
2.36.2. ITEM Statement 2-33
236.3. HIDDEN Option 2-34
2.3.6.4. MUST ADD Option 2-35
2.36.5. ALLOW CHANGE Option ‘ 2-36
2.3.6.6. VALUE Statement 2-36
2.3.7. Supplement Definition 2-38
2371. SUPPLEMENT Statement 2-38
2372 FROM Statement 2-39
23.73. FROM REPEATING GROUP Statement 2-39
2374. POINTER Statement 2-40
23.75. FILL KEY Statement 2-41
23786. ROLE IN UPDATE Statement 2-42
2.3.8. Subrecord Definition 2-44
2.38.1. Subrecord Statement 2-44
238.2. OF Statement 2-45
2.38.3. ALLOW ADD AND DELETE Statement 2-45
2.3.9. Subitem Definition - 2-46
2.39.1. ITEM Statement 2-46
239.2. MUST ADD Option 2-47
2.393. ALLOW CHANGE Option 2-48
2.394. VALUE Statement . 2-48
2.3.10. Subfile Definition 2-49
2.3.10.1. SUBFILE Statement 2-49
2.3.10.2. CONTAINS Statement 2-50
2.4, DATA DEFINITION EXAMPLES 2-51
2.41. Example of Simple Defined File 2-51
24.2. Example of Subfile 2-54

2.4.3. Example of Supplements in Defined File 2-56

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 Contents 3
IMS 90 APPLICATIONS
244, Examples of Hierarchical Records in Defined Files 2-59
2441, Hierarchical Defined Records Using Several Record Types as Source 2-59
2442, Hierarchical Defined Records Using Repeating Group Item as Source 2-59
2443, Hierarchical Defined Records Using Two ISAM Files as Source 2-62
2444. Defined File Resulting from Different Logical File Sources 2-63
2.5. EXECUTING DATA DEFINITION PROCESSOR 2-65
25.1. Data Definition Processor Options 2-65
25.2. Execution Run Streams 2-67
2.5.3. Data Definition Processor Qutput Listing 2-67
25.4. Error Processing by Data Definition Processor 2-70

3. USER-WRITTEN ACTION PROGRAMS

3.1.
3.1.1.
3.1.2.

3.1.2.1.
3.1.2.2
3.1.23.
3.1.24.
3.1.25.

3.1.3.
3.1.4.

3.2.

3.2.1.
3.2.2.
3.2.3.
3.2.4.

3.3.
3.3.1.

3.3.1.1.
3.3.1.2.
3.3.1.3.
3.3.14.

3.3.2.
3.3.3.

3.3.3.1.
3332
3.3.33.
3.334.
3.3.35.

3.3.4.

3.4.

3.4.1.
3.4.2.
3.4.3.

3.5.

3.5.1.
3.56.2.
3.56.3.

DESCRIPTION
Action Program Environment
Transaction Structures
Simple Transaction
External Succession
Immediate Internai Succession
Delayed Internal Succession
Combination Structures
Action Program Reusability
Device Independent Control Expressions (DICE)

COBOL ACTION PROGRAMS
COBOL Action Program Sharability
COBOL Language Restrictions
Linkage Section

Procedure Division

RPG Il ACTION PROGRAMS
IMS 90/RPG Il Interface Areas
Input Message Area (IMA)
Program Information Block (PIB)
Output Message Area (OMA)
Continuity Data Area (CDA)
User Logical Files and IMS 90 Defined Files
Specifications Forms for RPG Il Action Programs
Control Card Specifications Form
File Description Specifications Form
Input Format Specifications Form
Calculation Specifications Form
Output Format Specifications Form
RPG It Action Program Restrictions

BAL ACTION PROGRAMS

Linkage Conventions

Function Requests

Reentrant Programming Considerations

USER-WRITTEN RESIDENT SUBPROGRAMS
Subprogram Reusability

COBOL Action Program Interface

BAL Action Program Interface

hbhdbbi

[y
[{e]

WWwwwwwwwww
220ud

PLELPePePReRY
NANDNMNNNNMNNNS =S o
OO PPWW=L=0NOOO

w

3-26

3-26
3-26
3-27
3-27

3-28
3-29
3-29
3-30

UP-8614 Rev. 1

SPERRY UNIVAC 0S/3
IMS 90 APPLICATIONS

Contents 4

3.6.
3.6.1.
3.6.1.1.
3.6.1.2.
3.6.1.3.
3.6.14.
3.6.15.
3.6.1.6.
3.6.2.
3.6.3.
3.6.4.
3.6.5.
3.6.6.

3.7.

3.8.
3.8.1.
3.8.2.
38.2.1.
38.2.1.1.
3.8.2.1.2.
3.8.2.13.
38.2.14.
3822
38.2.2.1.
38.222.
38.223.
3.8.3.
3.83.1.
3.8.3.1.1.
3.8.3.1.2.
3.8.3.1.3.
3.8.3.14.
3.83.2.
3.83.2.1.
3.8.3.2.2.
3.8.3.2.3.
3.8.4.
3.84.1.
3.84.2.
3.8.5.
3.85.1.
3.85.2.
3.85.2.1.
3.8.6.2.2.
3.85.23.
3.85.24.
3.85.3.
3.85.3.1.
3.85.3.2.
3.8.5.3.3.

ACTIVATION RECORD

Program Information Block (PIB)
STATUS-CODE
DETAILED-STATUS-CODE
SUCCESSOR-ID
TERMINATION-INDICATOR
LOCK-ROLLBACK-INDICATOR
Additional PIB Fields

Output Message Area (OMA)

Input Message Area (IMA)

Work Area (WA)

Continuity Data Area (CDA)

Defined Record Area (DRA)

LINK EDITING ACTION PROGRAMS

FILE PROCESSING
Formats and Rules for File 1/0 Functions
Indexed Files
Random Functions for Indexed Files
GET and GETUP Functions
PUT Function
INSERT Function
DELETE Function
Sequential Functions for Indexed Files
SETL Function
GET Function
ESETL Function
Relative Files
Random Functions for Relative Files
GET and GETUP Functions
PUT Function
INSERT Function
DELETE Function
Sequential Functions for Relative Files
SETL Function
GET Function
ESETL Function
Sequential Files
Sequential Input GET Function
Sequential Output PUT Function
Defined Record Management
Defined Record Management Returns to Action Program
Random File 1/0 Functions
GET and GETUP Functions
PUT Function
DELETE Function
INSERT Function
Sequential File /0 Functions
SETL Function
GET Function
ESETL Function

3-30
3-31
3-34
3-35
3-37
3-37
3-39
3-40
3-41
3-45
3-47
3-47
3-48

3-48

PePReeeeRPeee
[3> Mo Mo Mo T e S | IS B & B I O N1 I & G RS
Ndd

wwwwwwwwtr:wwwmwww

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 Contents 5
IMS 90 APPLICATIONS Update A

3.8.6. Online File Recovery 3-72
3.86.1. File 170 Error Returns 3-73
386.2. Prefix Area Format 3-74
3.86.3. COBOL Action Program Error Messages 3-76
3.8.7. Logical Record Lock Facility 3-76
3.8.7.1. Lock for Update 3-76
3.8.7.2. Lock for Transaction 3-77
3.8.7.3. UNLOCK Function 3-78
3.8.8. General File Processing Considerations 3-79
3.8.8.1. Opening and Closing of Files 3-79
3.8.8.2. Serial Use of File Descriptors 3-79
3.8.8.3. Dynamic Allocation of I/0 Areas 3-79
3884. File Sharing 3-80
3.8.85. Work and Record Areas for DAM File Access 3-80
3.8.8.6. Test Mode 3-81
3.8.9. Common Storage Area Files 3-81
3.9. IMPLICIT AND EXPLICIT MESSAGE OUTPUT 3-82
3.9.1. Transmitting Messages via SEND Function 3-82
3.9.2. Returns from SEND Function 3-83
3.10. PRINT TRANSACTIONS USING CONTINUOUS OUTPUT 3-85
3.10.1. Generating Continuous Output 3-86
3.10.1.1. Output Message Header Fields for Continuous Output 3-86
3.10.1.2. Terminating Print Transactions 3-92
3.10.1.3. Delivery Notice Scheduling 3-93
3.10.1 4. Recovery Considerations with Delivery Notice Scheduling 3-94
3.10.2. Output-for-Input Queueing via the SEND Function 3-98
3.10.3. Addressing a Screen Bypass Device 3-100
3.11. DISCONNECTING A LINE FROM AN ACTION PROGRAM 3-100
3.12. SNAPSHOT DUMP PROCESSING 3-100
3.12.1. Voluntary and Abnormal Termination Snaps 3-101
3.12.2. Call Snaps 3-101
3.12.3. Edited Directory for Snapshot Dumps 3-103
3.13. UTS 400 DOWNLINE LOAD CAPABILITY 3-105
3.13.1. User-written Downline Load Action Programs 3-105
3.13.1.1. Downline Load Initialization 3-109
3.13.1.2. Downline Load Processing 3-110
3.14. SCREEN FORMATTING SERVICES 3-11
3.14.1. How IMS 90 Handles Screen Formatted Messages 3-112a
3.14.2. Processing Screen Formatted Messages with COBOL and BAL Action Programs 3-113
3.14.2.1. Building a Screen Buffer (BUILD) 3-116a
3.14.2.2. Creating an Error Formatted Screen (REBUILD) 3-117
3.14.3. Processing Screen Formatted Messages in RPG Il Action Programs 3-118a
3.15. SAMPLE COBOL ACTION PROGRAMS 3-119
3.15.1. Sample COBOL Program Using Previously Coded DICE Sequences 3-119
3.15.2. Sample COBOL Programs Performing Dialog Transaction 3-122
3.15.3. Continuous Output Example Using Delivery Notice Scheduling 3-128
3.15.4. Output-for-Input Queueing Example 3-137
3.15.5. Sample COBOL Program Using Screen Format Services 3-140

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 Contents 6
IMS 90 APPLICATIONS

, 3.16. SAMPLE RPG Il ACTION PROGRAMS 3-141
3.16.1. ACT1 Discussion 3-141
3.16.2. ACT2 Discussion 3-147
3.16.3. Screen Formatting Example 3-162
3.17. SAMPLE BAL ACTION PROGRAM 3-152e

4. GENERATING EDIT TABLES

4.1. PURPOSE 4-1
4.2, INPUT TO THE EDIT TABLE GENERATOR 4-1
4.2.1. Coding Rules 4-1
4.2.2. Input Parameters 4-2
4.3, EXECUTING EDIT TABLE GENERATOR - 4-5
4.3.1. Sample Execution Run Stream 4-5
~4.3.2. Error Processing 4-6
‘4.4, ENTERING INPUT MESSAGES FROM TERMINAL 4-8
4.5, SAMPLE APPLICATION 4-9

5. TERMINAL OPERATION

© B.1. TERMINAL 1/0 MESSAGE PROCESSING 5-1
5.1.1. Initiating Online Processing 5-1
5.1.2. Transmitting Messages from Display and Hard Copy Devices 5-2
5.1.2.1. Transmitting DICE Sequences from Hard Copy Devices 5-2
5.1.2.2. Handling Multiline Terminal Messages 5-3
5.1.3. Initiating a Transaction 5-3
5.1.4. Solicited and Unsolicited Output 54
5.15. Function Keys 5-5
5.1.6. Automatic Status Messages 5-5
5.2. TERMINAL COMMANDS 5-6
5.2.1. Standard Terminal Commands 5-7
52.1.1. ZZRSD (Resend) 5-7
5.2.1.2. ZZHLD (Hold) 5-7
5.2.1.3. ZZRDY (Ready) 5-7
52.1.4. ZZTMD (Test Mode} 5-7
5.2.1.5. ZZNRM (Normal Mode} 5-8
5.2.1.6. ZZCNC (Cancel) 5-8
5.2.1.7. ZZMCH (Master Terminal Change) 5-8
5.2.2. Master Terminal Commands 5-9
52.2.1. ZZUP (Terminal Up) 5-9
5222, ZZDWN (Terminal Down) 5-10
52.23. ZZTST (Test Terminal) 5-10
5224. ZZTCT (Terminal Control Table Status) 5-11
5.2.25. ZZALT (Alternate Terminal Designation) 5-11
5.2.286. ZZCLS (Close File) 5-13
5227 ZZOPN (Open File) 5-14
5228. ZZBTH (Batch) 5-15

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 Contents 7
IMS 90 APPLICATIONS Update A
52209. ZZSHD (Shutdown) 5-
5.2.2.10. ZZHLT (Halt) 5-
52211, ZZPCH (Program Change) 5-1
5.3. IMS 90 TRANSACTION CODES 5-17
5.3.1. SWTCH (Terminal-to-Terminal Communication) 5-18
5.3.2. DLMSG (Displaying the Last Effective Output Message) 5-20
5.3.3. DLOAD (Downline Loading a UTS 400 Program) 5-20a
5.3.3.1. Downline Load to Main Storage 5-21
53.3.2. Downline Load to Auxiliary Storage Device 5-21
5.3.4. ZSTAT (Displaying Statistical Information) 5-22
534.1. Controlling the Terminal 5-29
534.2. ZSTAT Error Messages 5-30
5.4, GLOBAL NETWORK TERMINAL COMMANDS 5-31
6. TRANSACTION PROCESSING VIA UNIQUE
6.1. UNIQUE CONCEPT 6-1
6.1.1. UNIQUE Dialog 6-1
6.1.2. Defined Files Accessed by UNIQUE 6-3
6.2. UNIQUE COMMANDS 6-4
6.2.1. OPEN 6-5
6.2.2. CLOSE 6-7
6.2.3. DISPLAY 6-7
6.2.4. NEXT - 6-10
6.2.5. DELETE 6-11
6.2.6. OK 6-12
6.2.7. CANCEL 6-13
6.2.8. ADD 6-14
6.2.8.1. Display Format 6-14
6.2.8.2. Hard Copy Format 6-20
6.2.9. CHANGE 6-22
6.29.1. Display Format 6-22
6292 Hard Copy Format 6-24
6.2.10. LIST 6-25
6.2.11. MORE 6-31
6.2.12. DETAIL 6-33
6.2.13. SHOW 6-34
7. BATCH PROCESSING OF TRANSACTIONS

7.1. PURPOSE AND USES OF THE BATCH TRANSACTION PROCESSOR 7-1
7.2 PROCESSING AND OUTPUT 7-1
7.3. CONTROLLING BATCH TRANSACTION PROCESSING 7-5
7.3.1. Effect of IMS 90 Configuration Options 7-5
7.3.2. IMS 90 Control Streams for Batch Processing 7-6
7.3.2.1. Assigning Source Module Input Files 7-6
7.3.2.2. Assigning Print Files to Batch Pseudoterminals 7-7

UP-8614 Rev. 1 SPERRY UNIVAC 0S5/3 Contents 8
IMS 90 APPLICATIONS

7.3.2.3. Invoking and Contfb‘lling the Batch Processor (PARAM Statements) 7-7
7.3.24. Embedding Source Data in the Control Stream 7-8
7.3.25. Sample Control Stream 7-8
7.4. PREPARING TRANSACTION INPUT FOR BATCH PROCESSOR 7-10
7.4.1. Input Message Coding 7-10
7.4.2. Handling DICE Characters 7-11
7.5. CONTROLLING BATCH PROCESSING IN OFFLINE MODE 7-11
7.6. CONTROLLING BATCH PROCESSING IN ONLINE MODE 7-12
7.6.1. ZZBTH Master Terminal Command N 7-13
7.6.2. Initiating Online Batch Processing 7-14
7.6.3. Tracking Progress of Batch Processing 7-15
7.6.4. Resuming Batch Processing Once Terminated 7-156
7.6.5. Repetitive Use of Batch Mode

7.7. CONTINUOUS OUTPUT CONSIDERATIONS 7-15
7.8. BATCH PROCESSOR DIAGNOSTIC MESSAGES 7-15
7.9. RECOVERY CONSIDERATIONS 7-16

APPENDIXES

A. - STATEMENT CONVENTIONS
B. UNIQUE LANGUAGE ELEMENTS

C. SAMPLE IMS 90 APPLICATION

C.1. PREPARING AN RPG Il APPLICATION C-1
c.2. ICAM NETWORK GENERATION c-1
C.3. IMS 90 CONFIGURATION C-2
c.4. COMPILING AND LINKING THE RPG il ACTION PROGRAM c-4
C.5. IMS 90 EXECUTION c-1
C.6. EXECUTING THE RPG Il ACTION PROGRAM c-12

D. IMS 90 INTERNAL TABLES

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 Contents 9
IMS 90 APPLICATIONS Update A
E. DEVICE INDEPENDENT CONTROL EXPRESSIONS
E.1. GENERAL E-1
E.2. USING DICE TO FORMAT MESSAGES E-1
E.2.1. Format of DICE Sequences E-4
E.2.2. DICE Macroinstructions E-4a
E.2.3. DICE Code Generation E-5
E.2.4. Interpretation of DICE E-11
GLOSSARY
INDEX
USER COMMENT SHEET
FIGURES
2-1. Data Flow Between Action Programs and User Data Files 2-2
2-2. Flow of Defined Records to Action Programs via IMS 90 2-3
2-3. Data Flow Between Action Programs and Disk Storage 24
2-4. Data Definition Processing 2-5
2-5. Hierarchical Structure of a Defined File 2-6
2-6. Parent/Chiid Relationships in a Defined File 2-7
2-7. Fraternal Relationships in a Defined File 2-7
2-8. Defined Record Identifier Redefined from User Logical Record 2-8
2-9. Terminal Dispiay of Defined Record Identifier as Column Header 2-8
2-10. Defined Record Identifiers in a Simple Defined File 2-9
2-11. Terminal Display of Column Headers and Data Items 2-9
2-12. Parent/Child Defined Record Identifiers 2-10
2-13. Terminal Displays of Column Headers and Data ltems for Parent and Child Records 2-1
2-14. Overall Format of the Data Definition Structure 2-14
2-15. Logical Record Description Formats 2-16
2-16. Consolidated Format of Defined File Definition 2-18
2-17. Defined Record Definition Format ' 2-20
2-18. Item Definition Format 2-31
2-19. Supplement Definition Format 2-38
2-20. Subrecord Definition Format 2-44
2-21. Subitem Definition Format 2-46
2-22. Subfile Definition Format 2-49
2-23. Excerpt from a Sample Indexed State File (ST-FILE) 2-51
2-24. Defined File STATES 2-52
2-25. Subfile Definition Restricting Access to a Defined File 2-54
2-26. Indexed File with Two Logical Records for Each City (CI-FILE) 2-56
2-27. Defined File CITIES 2-57
2-28. ST-CITY Indexed File with Two Record Types 2-60
2-29. Data Definition for the Defined File BIGCITY 2-60
2-30. STATE-RG Indexed File Containing a Repeating Group Item 2-61
2-31. BIGCITY Data Definition Derived from a Repeating Group ltem 2-61
2-32. Derivation of BIGCITY Defined File from Two Distinct Files Using Pointers 2-62

I

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 Contents 10
IMS 90 APPLICATIONS Update A

2-33.
2-34.
2-35.
2-36.
2-37.
2-38.
2-39.

2-40.

i
wn =

i
o o

clnwwwcrowww
® ~ S

P
©

W w w (IAJ
N
DI O P WN=OC

w W
LLLl

oL LL L Ll
Oowvwww
CLe!

@]

|
NBN
o >

RN
N
s

o

o

i
N

© w

wwwwwwwwwywwwwwwwww
N
—_

©

i
WWWWWWWWWNNNMNDNNNN

@

PN~

& &

N

wwwtfowwww

Defined Records from the BIGCITY File as Delivered to Action Programs

Defined Records from the BIGCITY File as Listed at the Terminal by UNIQUE

Description of STATE-RECORD and CITY-RECORD in COBOL Action Program

Description of STATE-RECORD and CITY-RECORD in BAL Action Program

Execution of the Data Definition Processor (DT3DF)

Complete Data Definition Processor Qutput Listing

Last Page of Data Definition Processor Listing Showing COBOL Description of a Defined File
and a Subfile

Last Page of Data Definition Processor Listing from Unsuccessful Run

Action Program Environment

Simple Transaction

Dialog Transaction, External Succession

Immediate Internal Succession

Delayed Internal Succession

Dynamic Transaction Structure

Message Switching Program Specifications

COBOL and American National Standard 1974 COBOL Format for Program Information
Block (PIB)

BAL Format for PIB (ZA#DPIB DSECT)

COBOL and American National Standard 1974 COBOL Format for OMA Control Header
BAL Format for OMA Control Header (ZA#OMH DSECT)

COBOL and American National Standard 1974 COBOL Format for IMA Control Header
BAL Format for IMA Control Header (ZA#IMH DSECT)

Format of Prefix Area of Records in the Audit File (Online Recovery)

Action Program Interface with Cassette/Diskette

Portion of ICAM TCS DSECT in BAL Action Program Showing Delivery Notification Error Codes
Single-thread IMS 90 Activation Record Layout

Multithread IMS 90 Activation Record Layout

Portion of Snapshot Dump with Edited Directory

. Output Screen Format with Display Constants and Variable Data
. Input Screen Format with Display Constants and Changed Input Fields

Processing Screen Formatted Messages with COBOL and BAL Action Programs

. Processing Screen Formatted Messages with RPG Il Action Programs
. Snapshot Dump with PIB Status Code 01 {Screen Format Not Found)

Sample Transaction Displaying Customer Record

Sample COBOL Action Program DISP

Example of DICE Sequences Filed in a COPY Library

Sample Dialog Transaction with Option Taken

Sample Dialog Transaction with Option Not Taken

Sample Dialog Transaction with Error Message

Sample COBOL Action Program ACT1

Sample COBOL Action Program ACT2

Sample COBOL Action Program Performing Continuous Output
Sample COBOL Action Program, Directing Print Transaction at Another Terminal
Sample COBOL Program Using Screen Formats

ACT1 Control Card and File Description Specifications Forms
ACT1 Input Format Specifications Form

ACT1 Calculation Specifications Form

ACT1 Output Format Specifications Form

ACT2 Control Card and File Description Specifications Forms
ACT2 Input Format Specifications Form

ACT2 Calculation Specifications Form

2-63
2-64
2-64
2-65
2-67
2-68

3-32
3-33
3-43
3-43
3-46
3-46
3-74
3-89
3-97
3-102
3-103
3-104
3-112
3-112
3-114
3-118b
3-118c¢
3-119
3-120
3-122
3-123
3-124
3-124
3-125
3-127
3-130
3-139
3-140a
3-142
3-143
3-143
3-145
3-148
3-149
3-149

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 Contents 11
IMS 90 APPLICATIONS Update A

3-39. ACT2 OQutput Format Specifications Form

3-39A. EMPINQ, Control Card and File Description Specifications Form

3-39B. EMPINQ, Input Format Specifications Form

3-39C. EMPINQ, Calculation Specifications Form

3-39D. EMPINQ, Output Format Specifications Form

3-39E. Error Screen Format

3-40. Example of Simple Inquiry Transaction

3-41. Sample BAL Action Program

4-1 Sample Execution of Edit Table Generator

4-2 Sample Input to Edit Table Generator

5-1. Sample File Status Display

5-2. Sample Program Status Display

5-3. Sample Transaction Status Display

5-4. Sample Terminal Status Display

5-5. Sample ZSTAT HELP Output Screen Display, Page 1

5-6. Sample ZSTAT HELP OQutput Screen Display, Page 2

5-7. ZSTAT Menu Output Screen

5-8. Sample Menu Input Screen

6-1. Partial Listing of STATES File

6-2. Partial Listing of TOWNS File

7-1 Example of Output Listed by Batch Transaction Processor

7-2 Sample IMS 90 Execution Run Stream for Online Batch Processing in a Multithread System

7-3 Sample UNIQUE Dialog Transaction Prepared as Input to Batch Transaction Processor

C-1. ICAM Network Generation for RPG Hl Action Program, LSTLIM

Cc-2. IMS 90 Configuration for RPG Il Action Program, LSTLIM

C-3. Compile and Link for RPG li Action Program, LSTLIM

c-4. LSTLIM Controt Card and File Description Specifications Forms

C-5. LSTLIM File Extension Specifications Form

C-6. LSTLIM Input Format Specifications Form

c-7 LSTLIM Calculation Specifications Form

C-8. LSTLIM OQutput Format Specifications Form

C-9. Execution of Configured IMS 90

C-10. Sample Screen Displays of Simple Transaction Requesting Records from STOCKS File

D-1 Single-thread Thread Control Block (THCB)

D-2 Single-thread and Multithread Terminal Control Table (TCT)

D-3 Multithread Thread Control Block (THCB)

TABLES

2-1 Data Definition Reserved Words

2-2 Compilation Time Diagnostics Unique to the IMS 90 Data Definition Processor

3-1 Summary of Required Entries for File Description Specifications Form

3-2 File Type Specifications for Creating, Moving, and Updating the CDA

3-3 Summary of File Organizations, Access Methods, and File Types Used by RPG I
Action Programs

3-4. Allowable RPG Il File Description Specifications for ISAM, IRAM, MIRAM, DAM,

and Defined Files

3-150

3-152a
3-152b
3-152b
3-152¢
3-152d
3-152¢
3-153

4-5
4-9

5-23
5-24
5-25
5-26
5-26
5-27
5-27
5-29

QIR

CIJU’U (POO(PCPOOOOO

3-22

3-22

\

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 Contents 12

IMS 90 APPLICATIONS Update A

3-5. Allowable RPG Hl File Description Specifications for SAM Output Files 3-23
3-6. RPG Il Control Card Specifications for RPG Il Action Programs 3-24
3-7. Restricted RPG |l Langauge Features 3-25
3-8. Detailed Status Codes for Invalid Requests 3-35
3-9. Summary of Action Program Termination Types 3-38
3-10. Summary of Files Supported by IMS 90 File Management 3-49
3-11. Summary of File I/0 Function CALL Statements 3-50
3-12. SETL Parameter Choices for Indexed Files 3-56
3-13. SETL Parameter Choices for Relative Files 3-62
3-14. File Rollback 3-73
3-15. Content of Prefix Area for Records in the Audit File {Online Recovery) 3-75
3-16. Settings for Auxiliary Function Byte of Output Message Header 3-87
3-17. User Message Text for Searching Cassette/Diskette 3-91
3-18. User Message Text for Search and Positioning 3-92
3-19. Output Delivery Notice Status Codes 3-95
3-20. UNISCOPE and UTS 400 Auxiliary Device Condition Codes 3-98
3-21. Rejected Load Error Byte Definition 3-108
3-22. Screen Format Services Support of Auxiliary Devices 3-112
4-1. Edit Table Diagnostic Messages 4-7
4-2. Description of Sample Input to Edit Table Generator 4-10
5-1 Unsolicited Output Discipline 5-4
5-2 IMS 90 Terminal Commands 5-6
5-3 ZUKLOD Action Program Messages 5-21
5-4. Responses to Interruptions of ZSTAT 5-29
5-5 ZSTAT Recoverable Error Messages 5-30
5-6 ZSTAT Unrecoverable Error Messages 5-31
7-1. Batch Transaction Processor (BTP) Diagnostic Messages 7-16
E-1 DICE Input/Output Commands, Codes, and Device Interpretation E-7
E-2. DICE Primary Devices E-11
E-3 DICE Usage for Auxiliary Devices E-12

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 1-1
IMS 90 APPLICATIONS Update A

1. Introduction

1.1. OVERVIEW

The SPERRY UNIVAC Information Management System 90 (IMS 90) is an interactive,
transaction-oriented file management system. It is interactive because it operates on the

principle that a question-and-answer dialog is maintained between the terminal operator
and IMS 90.

The basic unit of work in IMS 90 is an action. An input message, the processing of it by
one or more action programs, and at least one output message define an action.
Accordingly, a sequence of one or more related actions defines a transaction. IMS 90 is
transaction-oriented because all processing is triggered by an input message or question
that requires at least one output message or answer.

To process transactions, Sperry Univac supplies a set of action programs called the
uniform inquiry update element (UNIQUE), activated by commands from remote terminals,
as a component of IMS 90. For convenience in processing messages, you can either
employ the IMS 90 UNIQUE action programs or write your own action programs in
COBOL, report program generator Il (RPG i), or basic assembly language (BAL).

IMS 90 manages user logical and defined files. User logical files are collections of logical
records created on physical devices and accessed via the standard access methods (DAM,
MIRAM, ISAM, or SAM. To access IRAM files, you must define them as MIRAM files at
configuration time.) In contrast, defined files are collections of defined records that the
defined record management component of IMS 90 composes from one or more logical disk
records according to a user-supplied data definition. You can also protect defined files by
assigning passwords. Built into the IMS 90 modular components are data verification and
protection procedures, and scheduling and queueing procedures. IMS 90 file access
techniques are compatible with existing programming and file structures. IMS 90 aiso
allows you to access data base management system 90 (DMS 90) data bases.

The interactive transaction processing capabilities of IMS 90 rely on its
communications/data management support. IMS 90 uses the SPERRY UNIVAC Integrated
Communications Access Method (ICAM) Transaction Control Interface (TCl) to support
terminal communications. Refer to the IMS 90 system support functions user
guide/programmer reference, UP-8364 (current version) for information about setting up a
communications interface.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 1-2
IMS 90 APPLICATIONS

IMS 90 provides a terminal command repertoire to assist terminal operators in using
remote terminals. A master terminal command repertoire, also provided by IMS 90,
enables the master terminal operator to control terminals assigned to IMS 90 and monitor
the system. :

When inquiries or updates to files are initiated from remote terminals, IMS 90 components
such as action scheduling, file management, and internal message control facilitate rapid
processing. Application, administration, and operation of the IMS 90 transaction
processing system are performed during pre-online, online, and offline processing by IMS
90 operations and user activities.

1.1.1. IMS 90 Operations

1.1.1.1. Pre-online Processing

IMS 90 pre-online processing employs the IMS 90 utilities and processors that prepare
and tailor the system for processing transactions online. IMS 90 pre-online processing
includes:

m initialization of the named record file via the NAMEREC utility;

= definition of passwords via the same NAMEREC file utility;

m processing of user data definitions by the data definition processor;
= configuration of the online IMS 90 system from user-specified parameters; and

® generation of edit tables.

1.1.1.2. Online Processing

IMS 90 online processing employs components that control the interactive processing of
transactions.

Online processing includes:

u system startup and shutdown procedures;

® internal message control including terminal control functions;

® scheduling and loading of UNIQUE or user-written action programs;

= IMS 90 and user file management; and

L] activation record control.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 1-3
IMS 90 APPLICATIONS

1.1.1.3. Offline Processing

IMS 90 offline processing handles the recovery of user files left damaged or in an
inconsistent state. It includes:

B the offline recovery utility (ZC#TRC); and
8 the tape copy routine (ZCHTCP).

A more detailed description of the IMS 90 components and their roles in pre-online,
online, and offline processing is provided in the IMS 90 system support functions user
guide/programmer reference, UP-8364 (current version). System preparation functions,
startup/shutdown procedures, and recovery processing are also described in UP-8364.
Applications preparation and processing, including action programming, data definition,
edit table generation, and terminal operation, are described in this document.

1.1.2. User Activities

The most important activities you perform are defining data (required for UNIQUE, optional
for user action programs); configuring the online IMS 90 system (mandatory); writing
action programs (optional); and processing your transactions from remote terminals, using
UNIQUE or user action programs.

In addition, user activities include the following optional pre-online and offline operations:
= running the NAMEREC utility to initialize the named record file and define passwords;
®m defining edit tables for input message formatting and data validation; and

m recovering user files, if necessary.

1.1.2.1. Defining Data

One of your first tasks is to define the data to be used in your IMS 90 application. To do
this, you must write a data definition if you are going to use UNIQUE or you may optionally
write one for use with your own action programs. (User action programs can also access
conventional DAM, MIRAM, IRAM, ISAM, and SAM files.) A data definition describes a
defined file, containing defined records. These defined records are redefinitions of user
logical records from existing physical files. Because the actual data for these defined
records exists as logical records in one or more user files, the defined record management
component of IMS 90 needs to know only where all parts of each defined record can be
located in your files so that it can construct the defined record when an action program
calls for it. This location information is contained in a data definition record which the data
definition processor places in the IMS 90 internal file, NAMEREC.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 1-4
IMS 80 APPLICATIONS

1.1.2.2. Configuring IMS 90

The user configures the IMS 90 system by preparing the job control stream and
configurator input, and by running the configurator job. A job control proc (jproc),
IMSCONF, performs five job steps: communications control area (CCA) linkage, internal file
initialization, configuration, assembly, and online linkage.

User-specified configurator input consists of the following sections that define IMS 90
characteristics.

NETWORK TERMINAL OPTIONS ACTION FILE

GENERAL TRANSACT TIMEOUTS PROGRAM DRCRDMGT
For detailed discussion of IMS 90 configuration procedures, see the IMS 90 system
support functions user guide/programmer reference, UP-8364 (current version).
1.1.2.3. Writing Action Programs
Action programs are written to process transactions (sequences of one or more actions).
Action programs can be user-written or supplied by IMS 90. All action programs operate

under the application management component of IMS 90 to process input messages and
generate output messages.

User action programs may be written in COBOL, Report Program Generator Il (RPG Il), or
Basic Assembly Language (BAL). The series of action programs supplied by IMS 90 is
identified as the uniform inquiry update element (UNIQUE). No user action programming is
required if you plan to process all your transactions through UNIQUE.

1.1.2.4. Using Uniform Inquiry Update Element (UNIQUE)

The Sperry Univac supplied series of action programs called UNIQUE accesses and
updates defined files via a group of UNIQUE commands issued by the user at the terminal.
The defined record management (DRM) component of IMS 90 handles the defined file
accessing operations. Section 6 of this document provides a detailed discussion of
UNIQUE.

1.1.2.5. Operating Terminals

There are two sets of terminal commands - master and standard. Master terminal
commands control and monitor the overall system and communications network. The
standard terminal commands control message processing at the terminal. All terminal
commands begin with the letters ZZ. Section 5 of this document discusses terminal
operation in detail. 4

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 1-5
IMS 90 APPLICATIONS

1.2. APPLICABILITY

IMS 90 is ideally suited for inquiry/update-oriented file processing applications. Some of
the most typical applications are:

® |[nventory control

8 Order shipping

B |nsurance

® Medical/hospital

® Interactive data collection
® Information management
m Library recall

8 Warehouse management

® Computer-aided instruction
® One-time report generation
8 Job shop operation

IMS 90 is especially suited to any application where ease of use, reliable performance,
and integrity in data manipulation and information management are the primary concerns,

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-1
IMS 90 APPLICATIONS Update A

2. Data Definition

2.1. INTRODUCTION

You write a data definition to describe a defined file. IMS 90 constructs defined files from
elements of existing ISAM, MIRAM, and DAM disk files and from data base -
subschemas according to the data definition you write and submit to the data definition
processor.

If you decide to use the IMS 90-supplied uniform inquiry update element (UNIQUE), you
must write a data definition because UNIQUE accesses user files only via defined files.
When writing your own action programs, you can use defined files or you can call on IMS
90 file management to access your conventional DAM, ISAM, MIRAM, or SAM files
directly. (To access IRAM files, you must define them as MIRAM files at configuration
time.) Your COBOL action programs can also directly access a DMS 90 data base. Refer to
the IMS 90/DMS 90 interface user guide/programmer reference, UP-8748 (current
version).

-
-

In addition to defining records and file structures in your data definition, you define
allowable functions (retrieve, modify, add, delete). The defined record management (DRM)
portion of IMS 90 file management provides strong data integrity during defined file
manipulation. Before executing any operation that changes disk files, DRM verifies that
the change is allowed and that new values are within the limits you defined in the data
definition.

IMS 90 accesses defined records by keys. For this reason, IMS 90 must construct defined
records from indexed files (ISAM or MIRAM) or a data base subschema. It can also use
nonindexed files (DAM or MIRAM), but only in combination with indexed files or a
subschema.

-

Because the formats for data definition are similar to COBOL data division formats, you
should have some knowledge of COBOL before you write a data definition.

SPERRY UNIVAC 0S/3 2-2
IMS 90 APPLICATIONS

UP-8614 Rev. 1

2.1.1. Data Flow in IMS 90

Action programs access user data files through IMS 90 file management. When a user-
written action program requests a logical input record from IMS 90, the file management
component of IMS 90 issues a request for the record to OS/3 data management. Data
management, interfacing between IMS 90 and the user data file, retrieves the physical
record (or block) containing the logical record wanted, and passes the logical record to IMS
90 file management. In turn, IMS 90 file management passes the desired logical record to
the action program. Similarly, data management receives logical record output from IMS
90 and transfers physical records to the user data files. These relationships are illustrated
in Figure 2-1.

ACTION PROGRAMS IMS 90 0s/3 O
T T T T T I
N
USER-WRITTEN ! Y — USER
ACTION LOGICAL | FILE LOGICAL PHYSICAL DATA
PROGRAMS RECORDS | MANAGEMENT | RECORDS RECORDS FILES
N u | I N DATA
e ! MANAGEMENT

S

Figure 2—1. Data Flow Between Action Programs and User Data Files

There also is a different type of record that can be requested by a user-written action
program - the defined record. A defined record comprises:

® all or part of a logical record from one of the user data files;
8 all or parts of several logical records from the same user data file; or
® all or parts of several logical records from different user data files.

It is the DRM portion of IMS 90 file management that handles requests from action
programs for defined records. DRM determines which logical records and what parts of
them are required and from which user data files they are to be retrieved by data
management. DRM then issues the necessary calls to data management, receives the
logical records as input, and constructs the defined record that is expected by the action
program. Finally, DRM passes the defined record to the program requesting it. Figure 2-2
itllustrates these activities.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-3
IMS 90 APPLICATIONS

ACTION PROGRAMS IMS 90 0573

! | |
| | |
| | |
| |]
[| I |
| USER- I |
| WRITTEN
ACTION DEFINED
| RM
| PROGRAMS RECORDS
OR
' |
|
|
|
|
|
|

< USER

PHYSICAL _/

DATA

RECORDS MANAGEMENT RECORDS v

ILES

LOGICAL

NSNS

UNIQUE

S
NS

Figure 2—2. Flow of Defined Records to Action Programs via IMS 90

The information DRM needs for calling logical records to construct defined records,
requested by action programs, is contained in the data definition record. When action
programs request defined records in response to some terminal input, DRM accesses the
data definition record (2.1.2) in an internal IMS 90 disk file called the named record
(NAMEREC) file.

A terminal operator who is using the commands of the UNIQUE language for file query
operations receives only defined records, displayed or listed at the terminal as specified by
the IMS 90 action programs that implement UNIQUE. Using UNIQUE, the terminal operator
accesses the user data files only through DRM. User-written action programs, on the other
hand, provide the terminal operator with defined records, obtained through DRM, or with
logical records, obtained from the user data files through the other components of IMS 90
file management. Similarly, updating information input to IMS 90 through a UNIQUE
action program is received by DRM as defined records. A user-written action program
provides both defined records to DRM and logical records to IMS 90 file management.
Action programs using both defined records and logical records, however, cannot directly
access a logical record that is accessed by the defined record. Figure 2-3 illustrates the
data flow between both types of action programs and disk storage, indicating in schematic
form the complete processing of logical and defined records.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-4
IMS 90 APPLICATIONS

ACTION PROGRAMS IMS 90 0S/3

_______ |
|
USER-WRITTEN.
ACTION LOGICAL ! LOGICAL _/
ot RECORDS FILE ! RECORDS
MANAGEMENT | '\
|
I PHYSICAL 3§$§
| DATA RECORDS FILES
——————— : MANAGEMENT
DEFINED : l L v
RECORDS LOGICAL
UNIQUE DRM
Q f [RECORDS v
| I N
e
DATA
DEFINITION
RECORDS

NAMED
RECORD
FILE

Figure 2—3. Data Flow Between Action Programs and Disk Storage

The collection of defined records extracted from user data files and passed by DRM to
- action programs forms the defined file.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-5
IMS 90 APPLICATIONS

2.1.2. Creating Data Definition Records

The data definition records needed by DRM to access defined files are created by writing
data definitions, using the data definition language described in 2.3. These data definitions
are processed by the data definition processor which is similar to a COBOL compiler. The
data definition processor writes the patterns for all defined records and defined files into
the NAMEREC file and produces a diagnostic listing. Figure 2-4 illustrates the use of the
data definition processor to create data definition records.

DATA DATA NAMED
DEFINITION —P oerniTion P RECORD
SOURCE CODE PROCESSOR FILE

DATA
DEFINITION
RECORD

LISTING v

Figure 2—4. Data Definition Processing

v

DIAGNOSTIC

2.2. DEFINED FILE

The defined file can be regarded as an indexed sequential file containing defined records
tailored to the needs of an application. The tailoring begins with preliminary offline
processing when you define to the IMS 90 data definition processor the data you want
extracted for use in your specific application. This data definition simplifies both user
action programs and UNIQUE because an action program need address only one defined
file rather than several logical files whose records have to be matched and processed
together in main storage. Defined files require no additional storage because they exist
only by description and consist of all or parts of existing user data files extracted by DRM.
The only storage space needed is disk storage space (NAMEREC file) to hold the data
definition records.

Action programmers think of a defined file as an indexed sequential file containing records
to be accessed via IMS 90 file 1/0 functions in the action program. It is possible for a
defined file to be identical to an ISAM file. Other defined files can consist of different
descriptions of the same user data file.

Terminal operators display or list defined records on the terminal. The image they see
informs them of the defined file structure that they are querying and updating.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-6
IMS 90 APPLICATIONS

2.2.1. Hierarchical Structure

A defined file that contains more than one type of defined record has a hierarchical
structure in which defined records have parent, child, and fraternal relationships. In Figure
2-5, defined record A1 is a parent to the child records B1, B2, and B3. But B1 is also a
parent to C1, C2, and C3, and B3 is a parent to C4 and Cb5. In addition, C4 is a parent to
D1.

Fraternal records are at the same level in the hierarchy; they can have the same parent or
no parent. Thus, defined records A1 and A2 are fraternal; B1, B2, and B3 are fraternal;
C1, C2, and C3 are fraternal; and C4 and C5 are fraternal. However, C1, C2, and C3 are
not fraternal to C4 and C5 because they have a different parent.

In practice, most defined files contain few types of defined records. This example contains
many for illustration.

Parent, child, and fraternal records must be defined in a prescribed order in the data
definition and appear in that order in the defined file. A parent record is defined first,
followed by each of the child records belonging to that parent. Each of these child records
is followed by any child record to which it is a parent. Figures 2-6 and 2-7 show the order
in which the defined records of the hierarchy shown in Figure 2-5 are defined. Figure 2-6
also illustrates the parent-child relationships in the defined file, and Figure 2-7 shows the
fraternal relationships.

Al A2

B1 B2 B3

c1 c2 c3 Cc4 Cb

D1

Figure 2—5. Hierarchical Structure of a Defined File

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-7
IMS 90 APPLICATIONS

A1l B1 C1 Cc2 Cc3 B2 B3 C4 D1 C5 A2

Figure 2—6. Parent/Child Relationships in a Defined File

A1l B1 Ci c2 c3 B2 B3 ca D1 Ccs A2

Figure 2—7. Fraternal Relationships in a Defined File

2.2.2. Defined Records

Defined records constitute the defined file. They contain the specific data needed by a
particular application. You describe your defined records to the data definition processor,
which processes the description for use by online IMS 90. In turn, DRM constructs the
defined records and passes them to the action program or UNIQUE. DRM constructs the
defined record containing record items in the same order specified in your defined record
description.

Each defined record contains a record identifier. Similar to data management’'s use of
ISAM keys to locate records, DRM uses the record identifiers to build keys that it passes to
data management. Data management then uses these keys to extract data from the user
logical data file.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-8
IMS 90 APPLICATIONS

The programmer describing his defined record to the data definition processor may specify .
a new item name on the IDENTIFIER statement of the item definition. He also specifies the

name of the logical record from which the identifier item is being extracted. Figure 2-8

shows the derivation of the identifier from the logical record.

USER LOGICAL RECORD

/\\/\/\\

ST-CODE STATE
7 P
7 7
7 e
7 rd
7 7

P e _ 7

”
7
- z

STATE-NAME

W

DEFINED RECORD

Figure 2—8. Defined Record Identifier Redefined from User Logical Record

The identifier item names appear on the terminal as column headers to the terminal ‘

operator using UNIQUE. Figure 2-9 illustrates a column header on the terminal display
screen. (Column headers are normally followed by data as shown in Figure 2-11.)

*STATE - NAME

Figure 2—8. Terminal Display of Defined Record Ildentifier as Column Header

Each defined record can have only one identifier, which may have up to 39 items. To the
action programmer, a defined record identifier consists of the first few items of the defined
record;, however, these identifier items can come from any data field of the logical record
that is part of the key. Identifier items are arranged from left to right in major-to-minor
order. Because identifier items are derived from key fields, only records in an indexed file
or a data base subschema can supply these identifier items. Additional data items in a
defined record are derived from the same record that supplies the identifier or from other
records in conventional files or a subschema by defining supplements to the data
definition. (See 2.3.7.) Nonindexed files may be used as a source for defined records only
in combination with indexed files or subschemas. Defined record supplements may name
a key or need not name a key. Thus, they may be derived from indexed or nonindexed
files.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3
IMS S0 APPLICATIONS

The identifier associated with the defined record is used by DRM to access that record.
Figure 2-10 illustrates the derivation of a defined record identifier from one logical record

in a simple defined file.

USER LOGICAL RECORD

/m/—\

STATE CITY item-1 itom-2
DV IDENTIFIER STATE-NAME FROM STATE
Record Key IDENTIFIER CITY-NAME FROM CITY
DEFINED RECORD
STATE-NAME CITY-NAME item-1 item-2 item-n
DEFINED RECORD SUPPLEMENT FROM
IDENTIFIER

Figure 2—10. Defined Record Identifier in a Simple Defined File

ANOTHER LOGICAL
RECORD

Figure 2-11 illustrates a defined record with item names used as column headers plus

data comprising the defined record.

*STATE-NAME CITY-NAME
.ALABAMA HUNTSVILLE
S Sl e T —" .

Figure 2—11. Terminal Display of Column Headers and Data Items

A hierarchical defined file contains two or more types of defined records that are related to
each other in a parent/child relationship. Several occurrences of the child-type record are

associated with each occurrence of the parent-type record.

The child record identifier is always longer than the parent record identifier because the
entire value of the parent identifier is repeated at the beginning of the child identifier
associated with that parent record. Hence, when listed at the terminal, those child records

appear in order immediately following the parent record.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-10
IMS 90 APPLICATIONS

Additional items used in a child record identifier distinguish one child record occurrence
from another. Note that the portion of the child identifier that is unique to each child
record occurrence may come from a different file than the file that provided the parent
record identifier. Figure 2-12 compares the parent and child record identifiers in a

hierarchical defined file and shows their derivation from logical records in two different
indexed files.

Figure 2-13 shows the terminal display of parent/child defined record identifiers in
response to a request for the parent record or the child record. (See also Figure 2-32.)

Indexed Files

STATE-REC Logical Record E-CY-REC Logical Record
STATE-NAME CAPITAL ENTRY ————————— | ENTRY-NUMBER CITY-NAME CITY-POP
\,\/—\J \/——v—_/
Key Key
IDENTIFIER STATE FROM STATE-NAME
ITEM CAPITAL

IDENTIFIER CITY FROM CITY-NAME
ITEM POPULATION FROM CITY-POP

Defined File

NA\

Parent
Record ldentifier

rW\
Parent
Record STATE CAPITAL
Child STATE cIry POPULATION
Record

Child Record Identifier

Figure 2—12. Parent/Child Defined Record Identifiers

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-11

IMS 90 APPLICATIONS

DISPLAY ALABAMA

STATE CAPITAL
ALABAMA BIRMINGHAM

————

a. Parent record displayed

DISPLAY ALABAMA,BIRMINGHAM

CITY POPULATION
ALABAMA ,BIRMINGHAM 325,000

e ——
e ——— et

b. Child record displayed

Figure 2—13. Terminal Displays of Column Headers and Data Items for Parent and Child Records

2.3. DATA DEFINITION LANGUAGE

The data definition language is a COBOL-like language used to describe the defined files
accessed by user action programs or UNIQUE through defined record management. Each
data definition describes one defined file in terms of one or more logical files. These may
be indexed files or a combination of indexed and nonindexed files. You can also use a
DMS 90 data base subschema as a source in a data definition. The data definition
language for a data definition that uses subschema records as source differs from that
described here. The syntax for such a data definition is documented in the IMS 90/DMS
90 interface user guide/programmer reference, UP-8748 (current version). Any number of
defined files can be created through multiple runs of the data definition processor.

2.3.1. Format Presentation and Coding Rules

In addition to the statement conventions presented in Appendix A, the following rules
apply to the presentation of formats in this section and the coding of input for the data
definition processor.

1. Underlined lowercase terms, such as record-description and defined-record-definition,
are names of formats detailed in subsequent illustrations.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-12
IMS 90 APPLICATIONS

2. Uppercase words are all reserved words.

® All underlined uppercase words are required when the statements or clauses of
which they are a part are used.

® Uppercase words that are not underlined are optional, i.e., they may or may not
be coded in the source program.

= Uppercase words, whether underlined or not, must be spelled exactly as in the
format.

3. A user-supplied word can be any sequence of not more than 30 characters, except for
reserved words. Each character is taken from the set A through Z, O through 9, and
the hyphen (-). The hyphen may not appear as the first or last character in a word.

4, User words are represented in the formats by generic terms where they are initially
defined and also where they refer to previously defined user words. All references are
in the backward direction; the definition always precedes the references.

5. Alphabetic and alphanumeric literals must be enclosed by single quotes to distinguish
them from user words. Numeric literals are not enclosed by quotes.

6. Record definitions, and item definitions within them, are described in a defined file
definition in exactly the same order as the logical data they represent appear in the
defined file.

7. The standard COBOL coding form should be used for coding the data definition
processor input. Certain statements must begin in margin A, as noted in the
descriptions of those statements later in this section. Margin A is column 8 of the
coding form. All other statements must begin at column 12 (margin B) or beyond.

8. Statements in the identification division and the data division are followed by periods.
Periods and semicolons are optional throughout the defined file definition and are
ignored by the data definition processor.

UP-8614 Rev. 1

SPERRY UNIVAC 0S/3
IMS 90 APPLICATIONS

A list of reserved words that must not be used as user words in the definition division of
the input to the data definition processor is presented in Table 2-1. Except for the words
DEFINITION and DIVISION, these reserved words may be used in the data division. The
COBOL reserved word list documented in the OS/3 extended COBOL supplementary
reference, UP-8059 (current version) and OS/3 American National Standard COBOL
programmer reference, UP-8613 (current version) applies to the data division of the data
definition.

Table 2—1.

Data Definition Reserved Words

ADD

ALL

ALLOW

ALSO

AND

ARE

AS

ASSUME

ASSUMES

BREAK

BY

CALC

CHANGE

CONTAINS

CONTROL

CONTROLLED

CONTROLLING

COUNT

DBS

DEFINED

DEFINITION

DELETE

DIVISION

DMS

DUPLICATE

FILE

FILL

FOLLOWS

FROM

GROUP

HIDDEN

IDENTIFIER

IN

IS

ITEM

KEY

KEY-NAME

MANUAL

MUST

NAME

NEUTRAL

NEXT-MEMBER-
POINTER

OF

ONLY

OWNED

OWNING

PARENT

PASSWORD

PERIOD

POINTER

PREFIX

RECORD

REPEATING

ROLE

SELECTIVE

SEMICOLON

SET

SUBFILE

SUBRECORD

SUPPLEMENT

THROUGH

THRU

TO

TOTAL

TYPE

UPDATE

USING

VALUE

VALUES

VIA

WITHIN

UP-8614 Rev. 1 SPERRY UNIVAC O0S/3 2-14

IMS 90 APPLICATIONS Update A

2.3.2. Data Definition Structure

A data definition contains three divisions: the identification division, the data division, and
the definition division. The identification division and the data division are intentionally
similar to the COBOL identification and data divisions. The definition division is unique to
IMS 90. The data division is used for describing the logical files from which the defined
file is to be extracted; the definition division describes the defined file.

Figure 2-14 illustrates the overall structure of the data definition. The record-description
and defined-file-definition entries are names of group formats that are expanded in
Figures 2-15 and 2-16.

IDENTIFICATION DIVISION.
PROGRAM-ID.data-definition-name.
[AUTHOR.comment-entry.]
[INSTALLATION.comment-entry.]
[DATE-WRITTEN.comment-entry.]
[DATE-COMPILED.comment-entry.]
[SECURITY.comment-entry.]
[REMARKS .comment-entry.]

DATA DIVISION.
FILE SECTION.

FD file-name-1.record-description [record-description]...
[FD file-name-2.record-description [record-description]...]...

DEFINITIONDIVISION.

defined-file-definition

Figure 2—14. Overall Format of a Data Definition

2.3.2.1. Identification Division

The identification division must begin with the reserved words IDENTIFICATION DIVISION
followed by a period and spaces to column 72. The PROGRAM-ID statement specifies the
data definition name that appears on the diagnostic listing and serves to identify the
contents of the listing. A data-definition-name is required on the PROGRAM-ID statement
following the division header. The data-definition-name must be alphanumeric and begin
with an alphabetic character. Although you may use more characters in the data-
definition-name, the system uses only the first six characters to identify the object
program on the compiler listing. Therefore, it is difficult to identify your programs when
the first six characters are not unique. The first six characters of each data-definition-
name within a given program library must be unique only to produce a unique object
module. Each statement must begin in margin A (column 8) of the coding form. Each
optional comment entry can contain any printable characters. If it exceeds a single line,
additional lines must begin beyond column 11 in the coding form.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-15
IMS 90 APPLICATIONS

2.3.2.2. Data Division

The data division contains only a file section, in which the user logical files are described.
It is similar to the standard COBOL file section, except that it cannot contain the VALUE
clause. Other clauses are the same as in the OS/3 implementation of American National
Standard COBOL, X3.4—1968.

You may specify multiple logical files, each containing multiple logical record descriptions.

The data division must begin with the reserved words DATA DIVISION followed by a period
and spaces to column 72. DATA DIVISION, FILE SECTION, FD statements, and O1 level
record descriptions must begin in margin A. All other entries must begin beyond column
11. The expressions filename-1, filename-2, etc, may be one to seven alphanumeric
characters in length and must begin beyond column 11. The same file names must be
specified by filename positional parameters in the configurator FILE section.

The record-description specification is illustrated and discussed in 2.3.3.

2.3.2.3. Definition Division

The definition division, unique to the data definition language, describes the defined file by
designating a defined file name and describing each defined record, item, supplement,
subrecord, subitem, and subfile.

The definition division must begin in margin A with the reserved words DEFINITION
DIVISION followed by a period and spaces to column 72. '

The defined-file-definition is described in 2.3.4.

2.3.3. Logical Data Record Description

The logical records that constitute conventional files from which the defined file is
extracted are described in FD statements in the file section of the data division. (See
Figure 2-14.) Nonindexed files can be used as source in a data division only in
combination with indexed files.

Figure 2-15 illustrates the two formats that can be used to describe user logical records.
The formats are intentionally similar to record descriptions in a COBOL data division. The
first format copies data descriptions from an existing library; the second format describes
the logical record items from which the defined records will be formed.

UP-8614 Rev. 1

SPERRY UNIVAC 0S/3
IMS 90 APPLICATIONS

Format 1:

[

Format 2:

leve

01 data-name-1;

P

REPLACING wor

word-3 BY

I-number{

> |o

NK WHEN

ED

{

ASCEND!
D
NDEXED BY

coPY

data-
FILL

EFINES data-name-3]

integer-1 T0
integer-2 TIMES

ESCENDING

library-name

d-1 BY(word-2

T didentifier-1
literal-1

.-

|

word-4
identifier-2
literal-2

name -2
ER

}

ZERO

]
} RIGHT]

} 1S character-string]

integer-2 TIMES[DEPENDING ON data-name-ﬂ}
}KEY 1S data-name-5[,data-name-G]...]

index-name-l[,index-name-Z]...]

it]

IS int

is]{

18]

eger-3 CHARACTERS]

LEADING }[SEPARATE CHARACTER]]
TRAILING

CoMP

COMPUTAT | ONAL

COMP -3

COMP-4

OMPUTATIONAL -3
PUTATIONAL-4

ISPLAY

NDEX

[y

)
=

[~}
o

L=

Figure 2—15. Logical Record Description Formats

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-17
IMS 90 APPLICATIONS

2.3.4. Defined File Definition

The defined file definition contains the defined record; item; and optional supplement,
subrecord,and subfile definitions that IMS 90 uses to construct the defined file from user
logical data files (Figure 2-16). The defined file definition is coded in the definition
division. IMS 90 requires that only one defined file be included in a data definition.

In the consolidated format for the defined file definition illustrated in Figure 2-16,
statements enclosed in solid-line rectangles are required in a data definition, and
statements enclosed in broken-line rectangles optionally can be included. Solid-line
rectangles within broken-line rectangles indicate that the statements in the inner
rectangle must be included if the statement in the outer rectangle is included.

The rectangles within rectangles illustrate a nested structure, with the defined record and
subfile definitions subordinate to the DEFINED FILE definition and the item, supplement,
and subrecord definitions subordinate to the defined record definition. (See also Figure
2-17.) All subordinate definitions can be used repeatedly within the larger definitions.

Periods and semicolons are optional throughout the defined file definition. The statements
in each box of Figure 2-16 are described in 2.3.4.1 through 2.3.10.2.

2.3.4.1. DEFINED FILE Statement

The DEFINED FILE statement indicates the beginning of a defined file definition and
supplies a name for future reference in password definition records and action programs.
The DEFINED FILE statement must begin in margin A and be the first statement in the
definition division.

Format:

DEFINED FILE defined-file-name[PASSWORD]

where:

defined-file-name
Names the defined file and must be one to seven characters in length. The name
must be different from that of any logical file assigned to IMS 90. The data
definition processor truncates a defined-file-name longer than 7 characters and
uses the first seven characters for the defined-file-name. There is no error
message when truncation occurs.

PASSWORD
Specifies that defined-file-name is to be used by terminal operators as the
password in the UNIQUE OPEN command to gain access to this defined file. If
PASSWORD is omitted, terminal operators using UNIQUE can access the defined
file only if a password is defined by means of the NAMEREE file utility.

Note that multiple passwords may be used to access a defined file and that a
password defined by means of the NAMEREC utility does not negate a password
defined in the data definition unless the passwords are the same. If access to the
defined file is to be limited to specific terminals, the PASSWORD option should
be omitted and the NAMEREC utility should be used.

SPERRY UNIVAC 0S/3
IMS 90 APPLICATIONS

UP-8614 Rev. 1

DEFINED FLLE defined-file-name {PASSWORD]

DEFINED RECORD defined-record-name-1

FROM stored-record-name-1
FROM CONTROL BREAK IN stored-record-name-2
FROM REPEATING GROUP data-name-1
[IYPE IS literal-1 }
[PARENT 1S defined-record-name-2]
[PREFIX 1S literal-2]
POINTER IS item-name-1[.item-name-2]

FOLLOWS {defined-record-name-3
supplement-name-1

[]

{FILL KEY TO literal-3 |
ALLO ADD OF RECORD
DELETE
ADD D DELETE
IDENTIFIER [item-name-1 FROM] data-name-1
ITIW [1tem-name-2 FROM] data-name-2 -
[HIDDEN}
{MUST ADD|
[ALLOW CHANGE]
VALUE IS literal-1| JTHROUGH | I1teral-2 literal-3. THROUGHY literal-a
VALUES ARE THRU THRU

SUPPLEMENT supplement-name-1
FROM stored-record-name-1
FROM REPEATING GROUP data-name-1
[POINTER IS (.

[FILL XKEY TO diteral-1 |
[ASSUHES;CO:{ROL[ING ROLE IN UPDATE
CONTROLLED
NEUTRAT

item-name-1 item-name-2]

[item-name-2 FROM| data-name-?2

e i

THROUGH
HRU

T

JIHROUGH
| THRU

o]

[ALSO (item-alias-1 FROM]|
[.[item-alias-2 FROM|

item-name-3
item-name -4}

%or monn}

ITEM [item-alias-1 rnou){

[~

AND DELETE

item-name-1
item-alias-2

)

[MUST ADD)
[ALLOW CHANGE]

YALUE 1S literal-1 THROUGH Jliteral-
THRY

YALUL THROUGH
VALUES ARE TART

V[ey

' SUBFILE subfile-name-1 [PASSWORD)

defined-record-name -1
subrecord-name-1

defined-record-name-

CONTAINS
subrecord-name-2

i

Figure 2—16. Consolidated Format of Defined File Definition

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-19
IMS 90 APPLICATIONS

. Programming Note:

The defined file name also is used to create a record key for the data definition
record. Other references to defined file names and subfile names outside the data
definition itself include:

m keyword parameters DFILE and DDRECORD* in the ACTION section of ‘the
configuration;

m keyword parameters FN and DDN* in the password definition input to the
NAMEREC file utility; '

® the defined-file-name parameter in action program function calls to defined
record management; ‘

8 the DEFINED-FILE-NAME and DATA-DEF-REC-NAME* fields in the program
information block for COBOL action programs; and

B the ZA#PDFN and ZA#PDDRN* labels in the program information block DSECT
for BAL action programs.

Examples:
8 12
. 1. | DEFINED FILE PAYROLL PASSWORD

.| FILE PAYROLL PASSWORD
3.] FILE PAYROLL

Examples 1 and 2 perform exactly the same function. The word DEFINED can be
omitted because it is not underlined in the format. The defined file name is PAYROLL,
and the password used to access the file via UNIQUE also is PAYROLL.

In example 3, PASSWORD is omitted, precluding access to the file by a terminal
operator using UNIQUE. Either a password is generated by the NAMEREC utility or
the defined file is accessed only by user action programs, not UNIQUE.

*These can be defined file names but not subfile names.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-20
IMS 90 APPLICATIONS

2.3.5. Defined Record Definition

The defined record definition describes the source and contents of each defined record and
the allowable operations. Figure 2-17 illustrates the format of the defined record
definition. The underlined lowercase terms (item-definition, supplement-definition, and
subrecord-definition) are names of group formats that are described in separate
subsections. Items appear in the defined record in the same order that their item
definitions appear in the defined record definition.

DEFINED RECORD defined-record-name-1
FROM stored-record-name-1
FROM CONTROL BREAK IN stored-record-name-2

FROM REPEATING GROUP data-name-1
[Ilff 1S literal-1]
[PARENT IS defined-record-name-2}
[PREFIX IS literal-2]

[(POINTER IS item-name-1[,item-name-2]...
FOLLOWS {defined-record-name-3
supplement-name-1

[FILL KEY TO literal-3]

[ALLOW (ADD OF RECORD
DELETE

i ADD AND DELETE
item-definition [item-definition]...

[supplement-definition]...
[ALSO [item-alias-1 FROM] item-name-3
[.[item-alias-2 FROM] item-name-4]...]

[subrecord-definition]...

Figure 2—17. Defined Record Definition Format

2.3.5.1. DEFINED RECORD Statement

The DEFINED RECORD statement indicates the beginning of a defined record definition
and assigns a name to the record being defined. It must be the first statement following
the DEFINED FILE statement or another defined record definition and must begin in
margin A of the coding form (column 8).

Format:

DEFINED RECORD defined-record-name-1

where:

defined-record-name-1
Is a 1- to 30-character name, unique within the data definition, that identifies
the defined record.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-21
IMS 90 APPLICATIONS Update A

' Examples:

8 12

1. | DEFINED RECORD EMPLOYEE
2. | RECORD EMPLOYEE

Again, both examples are the same; DEFINED is omitted in the second example
because it is not required in the format. The first defined record in the defined file,
PAYROLL, is named EMPLOYEE. If record types other than EMPLOYEE records exist

in the defined file, one or more additional DEFINED RECORD statements must be
coded in the definition division.

Programming Note:

IMS 90 accepts a maximum of 78 ITEM and IDENTIFIER statements for each defined
record.

2.3.5.2. FROM Statement
The FROM statement identifies the logical record that supplies the primary part of this
defined record. The logical record supplying the primary part must be from an indexed file.
The primary part of a defined record contains the record identifier (ISAM or MIRAM key)
and any items coming from the same logical record.

. Format:

FROM stored-record-name-1

where:

stored-record-name-1
Refers to an 01 level entry in the file section of the data division.

Programming Notes:

1. The FROM statement must be the first statement following the DEFINED
RECORD statement.

2. Stored-record-name-1 must be a unique name or be fully qualified. (Rules for a
fully qualified name are the same as for a COBOL fully qualified name.)

3. Any item within stored-record-name-1 may be included in the primary part of
this defined record if:

® it meets constraints on length and usage (see 2.3.6.2); and

] its position within stored-record-name-1 comes before any item defined with
. an OCCURS clause.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-22
IMS 90 APPLICATIONS

Example:

8 12

“DEFINED RECORD EMPLOYEE FROM EMPLOYEE-REC

In this example, the primary part of the defined record EMPLOYEE will be supplied by
the logical record EMPLOYEE-REC, which is an 01 level entry in the file section of the
data division of this data definition.

2.3.5.3. FROM CONTROL BREAK Statement

The FROM CONTROL BREAK statement specifies that the primary part of this defined
record comes from the first of a sequence of logical records, all of which contain the same
value in the leftmost characters of their record keys. In other words, the primary part of
the defined record consists of the identifier only. The typical use of the FROM CONTROL
BREAK statement is to access a specified portion of a defined file using, for example, the
FOR parameter of a UNIQUE LIST or DETAIL command. The FROM CONTROL BREAK
statement also can enable UNIQUE statistical functions to provide subtotals for subsets of
child defined records associated with occurrences of the control break.

Format:

FROM CONTROL BREAK IN stored-record-name-2

where:

stored-record-name-2

* Refers to an O1 level entry in the file section of the data division. The source
record must be from an indexed file. When necessary to avoid ambiguity, stored-
record-name-2 must be fully qualified.

As indexed records are read sequentially, a new occurrence of the current defined record
is generated each time a new value appears in those left-hand character positions of the
logical record key that contributes this defined record’s identifier. Typically, the indexed
* record that contains the identifier value (and is therefore the source of the current defined
record) also will be the source of the next occurrence of the first subordinate defined
record.

Programming Notes:

1. The FROM CONTROL BREAK statement must be the first statement following the
DEFINED RECORD statement.

2. The current defined record must be named subsequently as the parent of at least
one subordinate record. The first subordinate defined record must name stored-
record-name-2 as its source in a FROM statement or another FROM CONTROL
BREAK statement.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-23

IMS 90 APPLICATIONS

Examples:

8 12
DEFINED RECORD EMPLOYEE

FROM CONTROL BREAK IN EMPLOYEE-REC
RECORD EMPLOYEE FROM BREAK EMPLOYEE-REC

Example 1 uses the long form of both the DEFINED RECORD and FROM CONTROL
BREAK statements; example 2 illustrates the short form, using only the underlined
reserved words in the format. Both perform the same function.

The defined record named EMPLOYEE will receive only an identifier from the logical
record, EMPLOYEE-REC, which is a 01 level entry in the data division file section of
this data definition. '

2.3.5.4. FROM REPEATING GROUP Statement

The FROM REPEATING GROUP statement specifies the group item, described in the data
division with an OCCURS clause, that supplies the primary part of this defined record. This
statement must immediately follow the DEFINED RECORD statement. .

Format:

FROM REPEATING GROUP data-name-1

where:

data-name-1
Refers to a data name defined in the data division with both an OCCURS clause
and a KEY clause. When necessary to avoid ambiguity, data-name-7 must be
fully qualified.

Programming Notes:

1. The logical record that contains data-name-1 must not be created by a
UNIQUE ADD command or a defined file INSERT function; otherwise, the
value of data-name-1 is binary zeros and, therefore, cannot contain a unique
key.

2. Any item within data-name-7 may be included in the primary part of this
defined record if:

] it meets constraints of length and usage (see 2.3.6.2); and

n its position within data-name-1 precedes any item (other than data-
name-1 itself) defined as an OCCURS clause.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-24
IMS 90 APPLICATIONS

Example:

8 12

RECORD DEPENDENTS FROM GROUP DEPENDENT-REC

In this example, the primary part of the defined record DEPENDENTS is supplied by
the repeating group item DEPENDENT-REC, which is an 02 level entry in the logical
record EMPLOYEE-REC. (See example in 2.3.5.2.) IMS 90 requires that the item
DEPENDENT-REC be described in the data division file section with both an OCCURS
clause and a KEY clause. For example:

8 12

#2 DEPENDENT-REC OCCURS 5 TIMES
ASCENDING KEY S DEP-NAME
#3 DEP-NAME PIC X(15)

2.3.5.5. TYPE Statement

The TYPE statement provides user-written action programs with an indicator identifying
the record type delivered as a result of a SETL and sequential GET function. The type
indicator is presented in the detailed status code of the program information block (PIB).
This statement is applicable only when there is more than one record type in a given
defined file and the file is being accessed by user action programs.

Format:

TYPE IS fiteral-1

where:
literal-1
Is a single alphanumeric character. It is the actual value that is delivered in the
DETAILED-STATUS-CODE field in the PIB. Each defined record type must be
assigned a unique character identification.
Example:
8 12

TYPE IS *A°

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-25
IMS 80 APPLICATIONS

2.3.5.6. PARENT Statement

The PARENT statement establishes the relationship of a defined record to other defined
records in the hierarchical organization of the defined file. A defined record definition must
always contain a PARENT statement unless the record being defined is at the highest level
in the hierarchy.

Format:

PARENT IS defined-record-name-2

where:

defined-record-name-2
Refers to a defined record previously described in this data definition. It must
have been defined in the immediately preceding defined record definition or be
one of the direct ancestors of the immediately preceding defined record.

The position of defined records in the defined file reflects the order of their defined record
definitions within the defined file definition.

The first defined record definition never contains a PARENT statement. It is at the highest
level in the hierarchy and, therefore, cannot be subordinate to a parent-type record. If a
subsequent defined record definition does not contain a PARENT statement, that defined
record also is considered to be at the highest level in a hierarchy. All record types that
have no parents are considered to be fraternal.

More than one defined record definition can name the same parent. Following each
definition of a parent record, defined records subordinate to the parent record and
fraternal to each other are defined.

Programming Notes:

A defined record can be named as the parent of another defined record only if one of
four relationships exists between their sources in the logical records read from disk:

1. The source of the child record is a repeating group item occurring within the
group that is the source of the parent or one of the parent’s supplements. (See
Figure 2-31.)

2. The sources of the parent record (or one of the parent’s supplements) and the
child are two distinct record types (01 level entries) that exist, collated, in the
same indexed file. (See Figure 2-29.)

3. The source of the parent record is a control break that is detected while reading .
the source of the child record.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-26
IMS 90 APPLICATIONS

4. The source of the child record is a sequence of indexed records that exist
somewhere entirely remote from the source of the parent or any of its
supplements. In this case, IMS 90 requires a POINTER statement in the defined
record definition for the child record. (See Figure 2-32.)

Example:

8 12

PARENT 1S EMPLOYEE

In this example, the parent of the child record being defined is the previously defined
record EMPLOYEE.

2.3.5.7. PREFIX Statement

The PREFIX statement inserts an additional character or characters that are not present in
any physical record into the identifier of a defined record, thus enabling identifier values to
reflect the order of accessing or listing fraternal record types. Either the PREFIX statement
or the VALUE statement (or both) must be included for each defined record that is
fraternal to another defined record. The PREFIX statement must be used if the range of
values for the identifier items of fraternal record types overlap. This can be the case if the
records haye sources in different files or in different repeating group items.

Format:

PREFIX IS literal-2

where:

literal-2
Is a constant inserted into the identifier of a fraternal-type record and must be
enclosed by single quotes.

Programming Notes:

1. The values of successively defined prefixes for fraternal record types must be in
ascending order and must also be the same length.

2. The prefix defined by this statement appears in the identifier, as seen by the
action program and the terminal operator, of every occurrence of this defined
record. It immediately precedes the identifier item defined in the first item
definition for this defined record.

Example:

8 12

PREFIX IS ‘A’

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-27
IMS 90 APPLICATIONS

‘ In this example, assume that the defined file PAYROLL contains three types of
records: EMPLOYEE, DEPENDENTS, and PAYDATA, with EMPLOYEE being the parent
of both DEPENDENTS and PAYDATA, and DEPENDENTS and PAYDATA being
fraternal records. When listing or accessing the file sequentially, all DEPENDENTS
child-type records for an EMPLOYEE parent-type record are delivered before any
PAYDATA records. Prefixes are identified as ‘A’ for DEPENDENTS records and ‘B’ for
PAYDATA records. Because A comes before B alphabetically, and DEPENDENTS
records occur before PAYDATA records in the defined file, the prefixes support the
requirement that successive occurrences of defined records always contain identifiers
with ascending values.

2.3.5.8. POINTER Statement

The POINTER statement defines the leftmost characters of the search key for the source of
the defined record’'s primary part. The POINTER statement is used only if there is a
PARENT statement for this defined record and the source of the primary part of this
defined record and its parent exist in different files or at randomly different locations
within the same file.

Format;

POINTER IS item-name-1 [,item-name-2]

. where:

item-name :
Has been defined in a direct ancestor of this. defined record.

To retrieve the primary part of this defined record, IMS 90 concatenates the values of
item-name-1, item-name-2... to form a character string. Then:

1. if the source of this defined record’s primary part is an indexed record, that character
string comprises the characters to the left of the identifier items in the record key;
and

2. if the source is a repeating group item, then the leftmost characters of the character
string are used to locate the occurrence of the record that contains the source. If this
repeating group item is nested within a larger one, additional characters will be in the
pointer and will be used to locate the larger group item by its key.

Example:

8 12

POINTER 1S EMP-NR

In this example, assume that the parent record is EMPLOYEE and you are defining a

‘ child record called DEPENDENTS. The source of the primary part of DEPENDENTS is
an indexed file ordered by employee number and dependent-name. The item EMP-NR
of EMPLOYEE contains the employee number that points to the appropriate
dependent records and is used to position the dependent’s file.

\

\

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-28

IMS 90 APPLICATIONS

2.3.6.9. FOLLOWS Statement

The FOLLOWS statement specifies that the source of this defined record is to be read
sequentially following the source of a previously defined primary part or supplement in the
same indexed file. It is required only if the source of the defined record does not follow the
source most recently mentioned in a defined record definition or supplement definition
involving the same indexed file.

Format:

FOLLOWS{defined-record-name-3}
supplement-name-1

where:

defined-record-name-3
Identifies a previous defined record so that the source of the primary part of the
current defined record sequentially follows the source of the primary part of that
defined record.

supplement-name-1

Identifies a previous supplement so that the source of the primary part of the
current defined record sequentially follows the source of that supplement.

Programming Notes:

1. This statement never appears in the first defined record definition for a defined
file or when the source of the defined record is a repeating group item.

2. This statement is used only if the source of the defined record is an indexed file
already named as a source in a previous defined record definition or supplement
definition.

Example:

8 12

FOLLOWS BRAND-RCD

In this example, assume that a liquor wholesale application has a logical ISAM file
containing two types of user logical records: brand records and stock records. The file
layout is a brand record followed by corresponding stock records. The stock records
are the inventory record by unit of issue (i.e., pint, fifth, etc).

A defined record named BRAND-RCD has an item named SUBSTITUTE, which is a
pointer to a supplement (i.e., the brand record “JIM BEAM” could have as a
substitute 'OLD CROW"’). Another defined record named STOCK-RCD is defined after
BRAND-RCD. Its definition uses the statement in this example to indicate that IMS 90
should read logical file stock records that follow the “JIM BEAM’’ record, rather than
the logical file stock records that follow the “OLD CROW'’ record.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-29
IMS 90 APPLICATIONS Update A

2.3.5.10. FILL KEY Statement

The FILL KEY statement specifies the rightmost characters of an indexed record key to
differentiate between record types in an indexed logical file when they are identical for all
records of the same type.

Format:

FILL KEY TO literai-3

where:

literal-3

Identifies the rightmost character or characters of the indexed file’s key and must
be enclosed by single quotes. ‘

Programming Notes:

1. The FILL KEY statement is required only if the indexed file record key is longer
than the combined length of the pointer items (if any) and the identifier-items
and if the remaining characters in the key are not all spaces (hexadecimal 40).
When creating a search key, IMS 90 fills all remaining character positions with
spaces and then moves /iteral-3, if specified, into the rightmost character
positions of the record key.

The length of literal-3 following the FILL KEY clause must not be longer than the
part of the key not specified by IDENTIFIER or POINTER statements.

2. Indexed records not previously mentioned in the data definition are permitted to
intervene in the source sequence if the FILL KEY statement is present.

Example:

8 12

FILL KEY TO “E’

In this example, assume there are two types of records in an indexed file being used
as a source of defined records: EMPLOYEE-REC and DEPENDENT-REC. The key to the
employee records is xxxxE, and the key to the dependent records is xxxxn. By defining
a record EMPLOYEE with the FILL KEY statement in this example, you can access the
EMPLOYEE-REC records simply by specifying a key of xxxx.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-30
IMS 90 APPLICATIONS

2.3.5.11. ALLOW ADD AND DELETE Statement

The ALLOW ADD AND DELETE statement permits the addition and/or deletion of
occurrences of this defined record. This statement cannot be used if the FROM CONTROL
BREAK or FROM REPEATING GROUP statement is included for this defined record.

Format:
ALLOW (ADD OF RECORD
DELETE
ADD AND DELETE
NOTE:

The absence of these statements in a record definition disables the corresponding -
functional capability. For example, if ALLOW ADD or ALLOW ADD AND DELETE is not

specified in the EMPLOYEE record definition, any input of the UNIQUE ADD command or

any action program issuance of the CALL INSERT function involving an EMPLOYEE record

is rejected as invalid.

Example:

8 12

ALLOW ADD AND DELETE

This example allows the defined record EMPLOYEE (see example in 2.3.56.1) to be
added to or deleted from the defined file.

2.3.5.12. ALSO Statement

The ALSO statement specifies that the defined record is to include copies of items
described in definitions of its direct ancestors. Without the ALSO statement, these items
can be included in the defined record only by defining a supplement (by means of the
supplement definition) whose source is the same as the source of the direct ancestor
record. Note that the ALSO statement must follow the item definition and any supplement
definitions for this defined record.

Format:

ALSO [ITEM-alias-1 FROM} item-name-3 [,[item-alias-2 FROM] item-name-4]

where:

item-alias
Specifies a unique name for an item within this defined file from 1 to 30

characters in length. I

item-name
Refers to an item defined in an item definition within a defined record definition
for a direct ancestor of this defined record.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-31

IMS 90 APPLICATIONS

Example:

8 12

ALSO EMP-NAME FROM NAME

In this example, the item EMP-NAME is included in the record being defined after the
ancestor record item, NAME.

2.3.6. Item Definition

The defined record consists of elements or items known by their item names. A separate
item definition is required to describe each item name. Figure 2-18 shows the item
definition format.

IMS 90 accepts a maximum of 78 ITEM and IDENTIFIER statements. If more-than 78 are
processed, the data definition processor issues the following message:

MAX TABLE AREA FOR ITEM STATUS IS 78.

The data definition processor then terminates by indicating that it could not create the
data definition record described.

If the items being defined are to be accessed via UNIQUE, it is important to consider
carefully the size and meaning of the item names, because these item names are used as
headings in all UNIQUE command response output. Indiscriminate assignment of item
names can result in the inefficient use of CRT display screen space and erroneous
interpretation of item contents.

Note that when using UNIQUE, allow one extra byte for UNIQUE to insert a tab stop
control character.

IDENTIFIER [item-name-1 FROM] data-name-l}
ITEM [item-name-2 FROM] data-name-2
[HIDDEN)
[MUST ADD]

[ALLOW CHANGE]

VALUE 1S literal-1 [{THROUGH } Iitera|-2]
VALUES ARE THRU

[.Iiteral-3 [{ %ﬁM} |itera|-4]]]

Figure 2—18. [Item Definition Format

UP-8614 Rev. 1

SPERRY UNIVAC 0S/3 2-32
IMS 90 APPLICATIONS

2.3.6.1.

IDENTIFIER Statement

The IDENTIFIER statement indicates the beginning of an item definition and specifies the

identifier for the defined record being described.
Format:

IDENTIFIER [item-name-1 FROM] data-name-1
where:

item-name-1

Identifies the item, is 1 to 30 alphanumeric characters in length, and must be
unique within the defined file definition. This name appears as a column header
on the terminal when UNIQUE is used.

data-name-1
_Refers to a data name described in the data division as a part of the logical

record or repeating group item that is the source of the primary part of this
defined record. If the source of the primary part of this defined record is a logical
record (either the FROM statement or the FROM CONTROL BREAK statement is
employed), then data-name-1 must be part of the record key of that logical
record. If the source is a repeating group item, data-name-1 must be part of the
key of that item.

Programming Notes:

1.

Example:

8

i item-name-1 is identical to data-name-1, then item-name-1 and the word
FROM can be omitted.

Definitions of identifier items must precede those of all other items.

If more than one IDENTIFIER statement is present, items must be defined in
major-to-minor order.

12

This

IDENTIFIER EMP-NR FROM EMPL-NR
IDENTIFIER EMP-NM FROM EMPL-NAME

example illustrates the specification of multiple IDENTIFIER statements, the first

indicating the major identifier, the second indicting a minor identifier. The value of
the record key in the record that is the source of this defined record is:

EMPL-NRAAAEMPL-NAMEAAAAAAAAAANA

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-33
IMS 90 APPLICATIONS

The sequence of items defined by the IDENTIFIER statement appears at the terminal
as a string of variable-length items separated by commas:

EMP-NR,EMP-NM

When more than one IDENTIFIER statement is used, UNIQUE uses a single item name
to refer to the entire identifier string. This item name is derived from the final
IDENTIFIER statement. If the two defined items are individually named EMP-NR and
EMP-NM, as in the example, then the item name for the combination, as seen by the
terminal operator, is simply EMP-NM,

2.3.6.2. ITEM Statement

The ITEM statement indicates the beginning of an item definition and includes in the
defined record an item described in the data division file section.

Format:

JTEM [item-name-2 FROM] data-name-2

where:

item-name-2
Identifies the item, may be 1 to 30 characters in length, and must be unique
within the defined file definition. This name appears as a column header on the
terminal when UNIQUE is used.

data-name-2
Refers to a data name described in the data division as a part of the logical
record or repeating group item that is the source of the primary part or
supplement of this defined record. Data-name-2 must never be qualified;
gualification by the name of the source is always implied.

Programming Notes:

1. If jtem-name-2 is identical to data-name;Z, item-name-2 and the word FROM
may be omitted.

2. The item named in this statement should not exceed 72 bytes. Moreover, it
should not exceed line length minus 2 if UNIQUE is to display this item at any
terminal whose line length is shorter than 74 characters.

3. Defined record management moves the values of items to a new or updated
source record in the order in which they are defined. If data-name-2 overlaps the
source of another item (either item is a group item that contains the other), then
the second item moved covers up the first. Therefore, if either item is to be
changed, that item must be defined after the other item.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-34
IMS 90 APPLICATIONS

4. The data definition language permits a single item value on disk to be the source
of two items within the same defined record. If you attempt to update those
items to different new values, the resulting value on disk is unpredictable.

5. Data-name-2 must be one of the following:

® an elementary item with a USAGE clause value other than COMP-1 or
COMP-2; or

® agroup item that can be treated as if it were an elementary alphanumeric item;
i.e., it contains only alphabetic, alphanumeric, or unsigned numeric items
whose usage is DISPLAY.

Example:

8 12

ITEM EMP-NAME FROM NAME
ITEM AGE

The items NAME and AGE from the current logical record are included in the defined
record being described. The item NAME is assigned the name EMP-NAME, and the
item age retains the name AGE.

2.3.6.3. HIDDEN Option

The HIDDEN option prevents the data item defined by the ITEM statement from being
displayed at the terminal in response to a UNIQUE command. The purpose of this option is
to allow a subsequent POINTER statement to refer to the item without allowing that item
to be displayed. The HIDDEN option has no effect on a defined record accessed by user-
written action programs.

Another use of the HIDDEN clause assures the validity of a numeric field in a logical
record on which another program may later want to perform arithmetic. When you add a
defined record that does not include all fields in a logical record, binary zeros are inserted
in the missing fields. To avoid this problem, include the field in the defined record with an
ITEM statement and restrict its use with the HIDDEN clause.

Format:

HIDDEN

Programming Notes:

1. If the current item definition begins with an IDENTIFIER statement, the
specification of the HIDDEN option is ignored.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-35

IMS 90 APPLICATIONS

2. When a terminal operator using UNIQUE adds a defined record having an item
definition for which the HIDDEN option is specified, IMS 90 automatically inserts
spaces or zeros in the corresponding item of the record on disk. If the item is
defined as alphanumeric, IMS 90 inserts spaces; if numeric, IMS 90 inserts zeros
in the data format appropriate to the declared usage of the item.

Example:

8 12

ITEM DEP-KEY HIDDEN

Assume that DEP-KEY is a pointer to the supplemental dependent record in a
nonindexed file. There would be no value in displaying this data at a terminal.
2.3.6.4. MUST ADD Option
The MUST ADD option specifies that this item must be present and contain a valid value
for a record to be added to the defined file by the terminal operator. If defined as numeric,
the item must be nonzero; if alphanumeric, it must contain other than all spaces.

Format:

MUST ADD

Programming Notes:

1. This option has meaning only in item definitions that begin with the ITEM
statement; identifier items always must be present to add a defined record.

2. If this item is in a supplement, the ROLE IN UPDATE for that supplement should
be CONTROLLED.

3. This option is inoperative unless the ALLOW ADD statement is specified in the
defined record definition.

Example:

8 12

ITEM EMP-NAME MUST ADD

Before an EMPLOYEE record (see example in 2.3.5.1) can be added to the defined file,
the item EMP-NAME must contain a valid value. Obviously, an employee record
would be of little value without an employee name. Probably an item called AGE
would not have the MUST ADD option because the item is not critical to the record’s
validity and can be added later via update.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-36
IMS 90 APPLICATIONS

2.3.6.5. ALLOW CHANGE Option

The ALLOW CHANGE option permits changes to be made to the current item from the
terminal. [f this option is not specified, IMS 90 refuses to carry out any requested
changes to records on disk.

Format:

ALLOW CHANGE

Programming Notes:

1. If ALLOW CHANGE is not specified and the action program calls upon the PUT
function and delivers to IMS 90 a record in which the value of this item has been
changed, IMS 90 returns control to the action program with an invalid request
indicator (O03) in the program status code.

2. This option has meaning only in item definitions that begin with the ITEM
statement; identifier items cannot be changed.

3. If this item is in a supplement, the ROLE IN UPDATE for that supplement should
be CONTROLLED.

Example:

8 12

ITEM MARITAL-STATUS ALLOW CHANGE

This example specifies that the item MARITAL-STATUS can be changed in the defined
record to which it belongs.

2.3.6.6. VALUE Statement

The VALUE statement specifies the valid ranges of values an item may have when it is
being added or changed. IMS 90 checks the validity of the item when any type of update
(ADD, CHANGE, PUT, or INSERT) is requested and carries out the requested function only
if the value of the item lies within the specified ranges. If the VALUE statement is omitted,
any value consistent with the PICTURE and USAGE specified in the data division for the
source of this item is acceptable.

Format:
iVALUE 1S Diteral-l[’THROUGﬂzliteral-2]
VALUES ARE

[,Iitera|-3 iTHROUGHsliteral-tl
THRU

UP-8614 Rev. 1

SPERRY UNIVAC 0S/3 2-37
IMS 90 APPLICATIONS

where:

literal-1, literal-2,...

Specify the allowable values or ranges of values for an item being added or
changed. The values of literal-1, literal-2, ... must be in ascending order. Their
lengths must be exactly equal to each other and to the item named by data-
name-1 or data-name-2 in the ITEM statement. Alphanumeric literals must be
enclosed in single quotes; numeric literals are not.

if the item being defined is an identifier item, IMS 90 employs the ranges specified in the
VALUE statement to recognize the defined record type. When an identifier is supplied to
IMS 90 by an action program or by a terminal operator using UNIQUE, these range tests
are applied to the string of items comprising the identifier. When IMS 90 is asked to
produce the next defined record in a sequence, it applies the range tests to the items
comprising the record key in the records read from disk. The effect of applying the VALUE

clause to

an identifier item in this manner is to disable access to records with keys outside

the range specified. This could be an effective tool for file segmentation; i.e., processing A
through E, F through L, M through R, and S through Z segments of a payroll file in stages.

Programming Notes:

1.

Example:

8

The VALUE statement must be used for fraternal record types having the same
source (i.e., their primary parts come from successive occurrences of the same
indexed record) and their value ranges must not overlap.

When the VALUE statement is used for fraternal record types from different
sources and the value ranges of their identifiers overlap, the PREFIX statement
must ailso be included.

The VALUE statement must be used if occurrences of an indexed record
contributing to this defined record must be distinguished from successive
occurrences of the same indexed records that do not contribute to the defined
file.

12

ITEM HOURLY-RATE ALLOW CHANGE VALUE 1S 0225 THRU 1560

In this example, the item HOURLY-RATE can be changed, but new values must fall
between 225 and 1500 or the update is rejected.

A

{

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-38
IMS 90 APPLICATIONS

2.3.7. Supplement Definition

IMS 90 determines the existence of a defined record by obtaining the source of its primary
part. A defined record can contain additional items from other logical records or repeating
groups. ltems coming from a logical record or repeating group other than the source of the
primary part must be defined in a supplement definition. Figure 2-19 shows the format of
the supplement definition. Statements in the supplement definition must follow the same
sequence shown in Figure 2-19. The item definition shown in the format is required and
is the same as the item definition for a defined record (2.3.6 through 2.3.6.6). The item
definition for a supplement, however, cannot start with an IDENTIFIER statement; it must
begin with an ITEM statement.

SUPPLEMENT supplement-name-1

FROM stored-record-name-1
FROM REPEATING GROUP data-name-l}

{POINTER IS item-name-l[,item-name-ﬂ ”.]

[FILL KEY T0O |itera|-1]

[ASSUMES {c_on R .LINGIROLE IN UPDATE]
- [LED

CONTR
NEUTR

item-definition [item-definition]...

PIOIC

Figure 2—19. Supplement Definition Format

2.3.7.1. SUPPLEMENT Statement

The SUPPLEMENT statement indicates the beginning of a supplement definition and
supplies a name for future reference within the data definition. This statement must begin
in margin A (column 8) and be the first statement in the supplement definition.

Format:

SUPPLEMENT supplement-name-1

where:

supplement-name-1
Identifies the supplement, is 1 to 30 characters in length, and must be unique
within the data definition.

Example:

8 12

SUPPLEMENT DEPENDENT

This example identifies a supplement named DEPENDENT.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-39
IMS 90 APPLICATIONS

2.3.7.2. FROM Statement

The FROM statement designates the record description in the data division that describes
the source of this supplement. The FROM statement must nmmeduately follow the
SUPPLEMENT statement.

Format:

FROM stored-record-name-1

where:

stored-record-name-1
Refers to a 01 level group item in the data division file section.

Programming Note:
Any item within stored-record-name-1 may be included in this supplement if:
® it meets constraints of length and usage (see 2.3.6.2); and

® its position within stored-record-name-1 comes before any item defined with the
OCCURS clause.

Example:

8 12

SUPPLEMENT DEPENDENT FROM DEPENDENT-RECORD

The contents of the supplement DEPENDENT are supplied by the ‘logical record
DEPENDENT-RECORD, which is a 01 entry in the data division file section.
2.3.7.3. FROM REPEATING GROUP Statement

The FROM REPEATING GROUP statement designates the item, described in the data
division with an OCCURS clause, that is to be the source of this supplement. If used, it
must immediately follow the SUPPLEMENT statement.

Format:

FROM REPEATING GROUP data-name-1

where:

data-name-1
Refers to a data name defined in the data division with both an OCCURS clause
and a KEY clause.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-40
IMS S0 APPLICATIONS

Programming Notes:

1. If data-name-1 is contained within one or two larger group items in the data
division that are also described with the OCCURS clause, IMS 90 requires those
descriptions to include the KEY clause.

2. The logical record that contains data-name-1 must not be created by a UNIQUE
ADD command or a defined file INSERT function; otherwise, the value of data-
name-1 is binary zeros and therefore, cannot contain a unique key.

3. Any item within data-name-1 may be included in this supplement if:

® it meets constraints on length and usage (see 2.3.6.2); and

® jts position within data-name-1 comes before any item (other than data-
name-1 itself) defined with an OCCURS clause.

Example:

8 12

SUPPLEMENT DEPENDENT FROM REPEATING GROUP DEPENDENTS

In this example, the contents of the supplement DEPENDENT are supplied by the
repeating-group item, DEPENDENTS, which is a 02 level entry in the file section of
the data division. DEPENDENTS is described in the data division with both an
OCCURS clause and a KEY clause as follows:

8 12

82 DEPENDENTS OCCURS 5 TIMES ASCENDING KEY IS DEP-NAME
03 DEP-NAME PIC X(15)
2.3.7.4. POINTER Statement

The POINTER statement designates the items whose values are employed to locate a
particular occurrence of this supplement’s source record. This statement is required when
the source of this supplement is a repeating group item or a record in a nonindexed file.

Format:

POINTER IS item-name-1[,item-name-2)

where:

item-name-1,item-name-2
Refer to items previously defined in the current defined record definition or in a
direct ancestor of the current defined record.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-41

IMS 90 APPLICATIONS

The values of item-name-1, item-name-2 ... are concatenated from left to right to form a
character string called the POINTER. Then, if the source of this supplement is a repeating
group item, as many right-hand characters as necessary are used to match against key
items. The remaining left-hand characters are used to create a record key. These
characters are justified to the left when constructing a reference key for accessing an
indexed record. They are right-justified to create a relative record number in a nonindexed
file. Relative record numbers are filled to the left with binary O's. An indexed record key is
filled to the right with spaces (hexadecimal 40). Finally, the rightmost characters of an
indexed record key are made equal to literal-1 as specified in the FILL KEY statement, if
any.

If the source of this supplement is a record in an indexed file and that record is one of a
sequence of records that contribute items to the same defined record, the POINTER
statement is employed only if the source of this supplement is the first record of that
sequence. The values of the record keys of those records must differ only in their least
significant (rightmost) character positions, as specified by literal-1 of the FILL KEY
statement. The values of the most significant characters of the record are the same for all
records in the sequence and are determined according to the definition of the first source
in the sequence. If that is the source of a supplement rather than the primary part of this
defined record, a POINTER statement must be included in that supplement definition.

Examples:

8 12

1. POINTER IS REC-KEY
POINTER IS EMP-NO,DEP-NAME

In the first example, assume the primary part is EMPLOYEE and the supplement is
DEPENDENT. Thus, REC-KEY contains a relative record number pointing to the logical
record in a DAM file that contains the DEPENDENT data for the particular EMPLOYEE
identifier in the primary part.

In the second example, assume the same situation except that the DEPENDENT data
comes from a repeating group item whose key is equal to DEP-NAME and which is
contained in a record with a key equal to EMP-NO.

2.3.7.5. FILL KEY Statement

The FILL KEY statement specifies the rightmost characters of a record key. It is required if
there is no POINTER statement or if the POINTER statement does not specify all the
characters of a record key, and the remaining right-hand characters must have a value
other than spaces (hexadecimal 40).

Format:

FILL KEY TO literal-1

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-42
IMS 90 APPLICATIONS Update A

where:

literal-1
Specifies the rightmost character or characters of a record key and must be

enclosed in single quotes.

If there is no POINTER statement, the value of literal-1 must be greater than spaces
(greater than hexadecimal 40) and also greater than the value of literal-1 in the FILL KEY
statement, if any, in the immediately preceding supplement definition. This is because
each indexed record must have a record key whose value is greater than that of the record

key of the immediately preceding record in the file.

The length of literal-1 following the FILL KEY clause must not be longer than the part of
the key not specified by IDENTIFIER or POINTER statements.

Example:

8 12

FILL KEY TO *P’

This example applies to two applications. In the first, assume that payroll and
dependent records are included in an indexed file. The EMPLOYEE record keys are
emp-no,A, the DEPENDENT record keys are emp-no,D, and the PAYROLL records are
emp-no,P. By specifying FILL KEY TO ‘P, no POINTER statement is necessary to
generate a pointer to the source of the supplement, PAYROLL, assuming the
EMPLOYEE record was already named as a source for this defined record.

Second, assume that the source of the supplement is a separate indexed file
containing two types of records: PAYROLL and DEPENDENT. The same principle
applies as in the first situation except that the POINTER statement is required, but

only for the first supplement.

2.3.7.6. ROLE IN UPDATE Statement

The ROLE IN UPDATE statement specifies how the source of this supplement affects or is
affected by the addition or deletion of an occurrence of this defined record.

Format:

CONTROLLED

ASSUMES;CONTROLLINGgROLE IN UPDATE
NEUTRAL

where:

CONTROLLING
Specifies that addition of an occurrence of the defined record is not to take place ‘
unless the corresponding occurrence of the source of this supplement already
exists. In this way, the values of the items that point to this supplement can be
validated. Deletion of the defined record is not affected.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-43

IMS 90 APPLICATIONS

CONTROLLED
Specifies that the occurrence of the source of this supplement is to be added or
deleted whenever an occurrence of the defined record is added or deleted. The
source of this supplement must not be a repeating group item. If the source of
this supplement already exists when addition is requested, a new occurrence of
that source will replace- the old.

NEUTRAL
Indicates that the source of this supplement neither affects nor is affected by the
addition or deletion of an occurrence of the defined record. This option is
selected by default when the ROLE IN UPDATE statement is absent.

Examples:

8 12

ASSUMES CONTROLLING ROLE [N UPDATE
ASSUMES CONTROLLED
ASSUMES NEUTRAL

In the first example, assume that a primary part is an inventory record and the
supplement being defined is the vendor information pertaining to this inventory
record. The CONTROLLING option is used because normally you do not want to allow
adding of an inventory record if no vendor information is available.

In the second example, assume that a primary part is an employee record and the
supplement being defined is the payroll information pertaining to that employee. The
CONTROLLED option is specified because the adding or deleting of the employee
information always requires the corresponding adding or deleting of the payroll
information.

In the third example, assume that a primary part is a requisition record and the
supplement being defined is from an inventory master record. The NEUTRAL option is
specified because normally you do no want the deletion or addition of a requisition
record that is of a temporary nature to affect the status of the inventory master record
that is of a permanent nature. The same effect also is obtained by omitting the ROLE
IN UPDATE statement.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-44

IMS 90 APPLICATIONS

2.3.8. Subrecord Definition

Two or more variants of the same defined record can exist in the- same data definition.
They can differ in number of items included, positioning of the items, spelling of item
names (used as column headers by UNIQUE), and authorization to update. A subrecord
definition is required for each variant. The format of the subrecord definition is shown in
Figure 2-20.

SUBRECORD subrecord-name-l[QL subrecord-name-2]

ALLOW(ADD OF RECORD
— IDELETE
ADD AND DELETE

[subitem-definition]... .

Figure 2—20. Subrecord Definition Format

All identifier items of the defined record are automatically included in each of its
subrecords. The IDENTIFIER statement is used in a subrecord definition only when a new
item name is desired. Any other item is included in the subrecord only if a subitem
definition is present.

2.3.8.1. SUBRECORD Statement

The SUBRECORD statement indicates the beginning of a subrecord definition and supplies
a name for future reference within the data definition. It must begin in margin A (column
8).

Format:

SUBRECORD subrecord-name-1

where:

subrecord-name-1
ldentifies the subrecord, is 1 to 30 characters in length, and must be unique
within the data definition.

Example:

8 12

SUBRECORD EMPLOYEE-SUBI1

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-45
IMS 80 APPLICATIONS

In this example, a variant of the defined record EMPLOYEE is defined as a subrecord
called EMPLOYEE-SUB1. A possible reason is that information on dependents is
contained in a nonindexed file, which cannot be the source of a defined record’s
primary part, and the dependent information must be presented interspersed with
information from the defined record’s primary part. This cannot be done in a defined
record. Thus, a variant of the defined record must be named in the SUBRECORD
statement.

2.3.8.2. OF Statement

The OF statement is used only when other subrecord definitions have already appeared for
a defined record. It simplifies the writing of subitem definitions when item names of
subrecord-name-1 and subrecord-name-2 are mostly the same.

Format:

OF subrecord-name-2

where:

subrecord-name-2
Refers to a previously defined subrecord within this defined record definition.

Example:

8 12

SUBRECORD EMPLOYEE-SUB2 OF EMPLOYEE-SUBI

In this example, the subrecord EMPLOYEE-SUB2 is defined. The OF statement
indicates that the items that will make up EMPLOYEE-SUB2 are identified in the
definition of subrecord EMPLOYEE-SUB1.

2.3.8.3. ALLOW ADD AND DELETE Statement
The ALLOW ADD AND DELETE statement permits the addition and deletion of occurrences

of this subrecord. If this statement is not included, addition or deletion of the defined
record is not possible when it is accessed through a subfile containing this record.

Format:

DELETE

ALLOW(ADD 20F RECORD
ADD AND DELETE

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-46
IMS 90 APPLICATIONS

NOTE:

The absence of these statements in a subrecord definition disables the corresponding
functional capability. For example, if ALLOW ADD or ALLOW ADD AND DELETE is not
specified in the DEPENDENT-SUB1 subrecord definition, any input of the UNIQUE ADD or
DELETE commands or any issuance of the CALL INSERT or DELETE functions involving the
EMPLOYEE-SUB1 subrecord is rejected as invalid.

Example:

8 12

ALLOW ADD AND DELETE

This example allows occurrences of the subrecord identified by the SUBRECORD
statement to be added to or deleted from the defined file.

2.3.9. Subitem Definition

The components of the subrecord correspond to items previously defined in item
definitions in the defined record definition. Except for identifier items, which are included
automatically, a subitem definition is required for each item in the subrecord. Figure 2-21
shows the format of the subitem definition.

ITEM[item-alias-1 FROM]{item-name-l }
item-alias-2

[MusT ap0]
[ALLow CHANGE]

VALUE IS }literal-l THROUGHliteral-2
VALUES ARE THRU

[Iiteral-3 [{'ﬁ__g-u_gj}literal-4]]...]

Figure 2—21. Subitem Definition Format

2.3.9.1. ITEM Statement

The ITEM statement includes into the subrecord a previously identified specific item from a
preceding defined record or subrecord and optionally supplies a new name (alias) by which
the item is known within this subrecord. The ITEM statement must be the first statement
in the subitem definition.

Format:

ITEM item-alias-1 FROM%item-name-l ;
item-alias-2

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-47
IMS 90 APPLICATIONS

where:

item-alias-1
Provides a name for the subitem, is 1 to 30 characters in length, and must be
unique within the subrecord definition. If specified, this name appears as a
column header to the terminal operator accessing this subrecord through
UNIQUE.

item-name-1
Refers to an item previously defined within this defined record definition. If this
subrecord definition does not include an OF statement, the item-name-1 option
is required.

item-alias-2
Refers to a subitem named in a previous subrecord definition; that subrecord
must be defined as subrecord-name-2 in the OF statement for the current
subrecord. This option is required if the OF statement is included.

Programming Note:

If item-alias-1 is identical to item-name-1 (or item-alias-2), item-alias-1 and the word
FROM can be omitted.

Examples:

8 12

ITEM LAST-NAME
ITEM LNAME FROM LAST-NAME

Both examples include the item LAST-NAME that was previously defined in a record
definition or subrecord definition. Example 1 retains the same name for the item;
example 2 assigns a unique name.

2.3.9.2. MUST ADD Option

The MUST ADD option specifies that this subitem must be present and contain a valid
value in order to add an occurrence of the defined record if it is accessed via a subfile
containing this subrecord. If defined as numeric, the item must be nonzero; if
alphanumeric, it must contain other than all spaces. This option is valid only when the
ALLOW ADD or ALLOW ADD AND DELETE statement has been applied to the subrecord
definition.

Format:

MUST ADD

See 2.3.6.4 for an example.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-48
IMS 80 APPLICATIONS

2.3.9.3. ALLOW CHANGE Option

The ALLOW CHANGE option permits changes to be made to the current item when the
defined record is accessed through a subfile containing this subrecord.

Format:

ALLOW CHANGE

Refer to 2.3.6.5 for additional information.

2.3.9.4. VALUE Statement

The VALUE statement specifies the valid ranges of values an item may have when it is
added or changed, if the defined record is accessed through a subfile containing the
current subrecord. If the VALUE statement is omitted, any value consistent with the
PICTURE and USAGE specified in the data division for the source of this item is
acceptable.

Format:

VALUES ARE THRU

VALUE IS gliteral-IDTHROUGH Iiteral-Z]
,Iiteral-3[,THROUGH Iiteral-4]]...
THRU]

where:

literal-1, titeral-2,...
Specify the allowable values or ranges of values for a subitem being added or
changed. The values of literal-1, literal-2, ... must be in ascending order.
Alphanumeric literals must be enclosed in single quotes: numeric literals are not.

Programming Notes:
1. The number of literals specified may not exceed 64.
2. IMS 90 will not update the defined record if the resulting value of this item is

new and is not within one of the specified ranges. Instead, the status code 003
(invalid operation) is returned in the program information block.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-49
IMS 90 APPLICATIONS

2.3.10. Subfile Definition

Two or more variants of the same defined file can exist in the same data definition. They
can differ in number of defined record types and in the makeup of each type of defined
record. A subfile definition is required for each additional variant. It describes a subset of a
defined file independently and provides the means of accessing subrecords. Subrecords
are accessible only via a subfile. Figure 2-22 shows the format of a subfile definition.

SUBFILE subfile-name-l[PASSWORD]

CONTAINS{defined-record-name-l} fdefined-record-name-2\7...
subrecord-name-1} subrecord-name-2

Figure 2—22. Subfile Definition Format

2.3.10.1. SUBFILE Statement

The SUBFILE statement indicates the beginning of a subfile definition and supplies an
identifying name for future reference in password definition records and action programs.
This statement must begin in margin A (column 8).

Format:

SUBFILE subfile-name-1[PASSWORD]

where;

subfile-name-1
Identifies the subfile, is one to seven characters in length, and must be unique
among defined file and subfile names within the data definition. it also must be
different from the name of any conventional user file assigned to IMS 90.

PASSWORD
Specifies that subfile-name-1 is to be used as the password in the UNIQUE
OPEN command to gain access to this subfile. If PASSWORD is omitted, terminal
operators using UNIQUE can access the subfile only if a password is defined by
means of the NAMEREC file utility.

Programming Note:

Subfile names are used in the same way as defined file names within the data
definition and where reference is made to them outside the data definition. Refer to

the programming note in 2.3.4.1.

‘UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-50
IMS 90 APPLICATIONS

Example:

8 12

1. | SUBFILE EMP-FILE PASSWORD
2. | SUBFILE PAY-FILE

Assume a defined file has two record types, EMPLOYEE and PAYROLL. To restrict
access to the PAYROLL file, two subfiles, EMP-FILE and PAY-FILE, are defined. The
EMP-FILE can be accessed by all terminal operators, using the name of the subfile as
the password. The PAY-FILE can be accessed only by those terminails named in a
password definition submitted to the NAMEREC file utility.

2.3.10.2. CONTAINS Statement

The CONTAINS statement identifies the defined records and subrecords included in this
subfile.

Format:

CONTAINSidefined-record-name-1;[.;defined-record-name-2§]...
subrecord-name-1 subrecord-name-2

where:

defined-record-name-l,defined-record-ﬁame-Z,...
Identify defined records included in this subfile.

subrecord-name-1,subrecord-name-2,...
Identify subrecords included in this subfile.

Programming Notes:

1. No more than one entry can be included for each defined record; it can be either
the defined record name or a subrecord name.

2. Entries must be in the same order as their corresponding defined record
definitions appeared previously in the data definition.

3. Before an entry is submitted for a defined record, an entry must be submitted for
every direct ancestor of that defined record.

Example:

8 12

CONTAINS EMPLOYEE-SUB

In this example, the subfile EMP-FILE consists of just one type of defined record,
under its subrecord name EMPLOYEE-SUB.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-51
IMS 90 APPLICATIONS

2.4. DATA DEFINITION EXAMPLES

2.4.1. Example of Simple Defined File

Data definition language used with a simple defined file named STATES is shown in
Figures 2-23 and 2-24. The STATES file is derived from ST-FILE, whose first few records
are shown in Figure 2-23. A 14-byte field at the beginning of each record contains its key.
The record is named STATE-REC and the key is named STATE-NAME.

The data definition coding is shown in Figure 2-24a. The first few records of STATES are
shown in Figure 2-24b as IMS 90 delivers them to action programs, and in Figure 2-24c
as UNIQUE lists them at terminals. Each record contains an identifier item named STATE,
and two other items named STATE-POP and CAPITAL. These names appear at terminals
as column headers.

The defined record is named STATE-RECORD. The programmer accessing the defined file,
STATES, must provide a place for the defined record to be received in his action program.
Figure 2-24d shows how a record area for STATE-RECORD is described on a coding form
in a COBOL action program. Figure 2-24e shows the same for BAL.

ALABAMAAAANANAAGI444165MONTGOMERYAAAA22
ALASKAAAAAAANABB3B2173SUNEAUAALAAAANASS
ARTZONAAAAAAANGLTT2484PHOEN | XAAAAAAALS
ARKANSASAAAAAAGL932295LITTLE ROCKAAA2S
CALIFORNIAAAAA]T9953134SACRAMENTOAAAASL
COLORADOAAAANAD228T7259DENVERANAANAAAAS S
CONNECTICUTAAAB3032217HARTFORDAAAAAARS
DELAWAREAAAAAABB548104D0VERAAAAANANAAG L
FLORIDAAAAAAANAGETBI443TALLAHASSEEAAN2T
GEORG | AAADAAAABA58957 JATLANTAAAANANAGA

Figure 2—23. Excerpt from a Sample Indexed State File (ST-FILE)

UP-8614 Rev. 1

SPERRY UNIVAC 0S/3
IMS 90 APPLICATIONS

2-52

8 12

IDENTIFICATION DIVISION.
PROGRAM-ID. BASIC-DATA-DEF.

DATA DIVISION.
FILE SECTION.
FD ST-FILE.

01 STATE-REC.

02 STATE-NAME PIC
02 STATE-POP PIC
02 CAPITAL PIC
02 ENTRY PIC
DEFINITION DIVISION.
DEFINED FILE STATES PASSWORD

DEFINED RECORD STATE-RECORD
FROM STATE-REC

IDENTIFIER STATE FROM STATE-NAME
ITEM STATE-POP
ITEM CAPITAL.

a. Definition of STATES in data definition language

ALABAMAAAAAAAAG 34441 65MONTGOME RY AAAA
ALASKAAAAAANAAABB3B2173JUNEAUAAAAAAAA
ARIZONAAAAAAAAB1TT2484PHOEN | XAAAAAAA
ARKANSASAAAAAAB1932295LITTLE ROCKAAA
CALIFORNIAAAAALG953134SACRAMENTOAAAA
COLORADOAAAAAAB228T7259DENVERAAAAAAAA
CONNECTICUTAAAB3632217HARTFORDAAAAAA
DELAWAREAAAAAABB548184D0VERAANAAAAAA
FLORIDAAAAAAAABGET8IA43TALLAHASSEEAAA
GEORG | AAMAAAAAABAS589573ATLANTAAAAAAAA

b. First block of STATES as delivered to an action program

Figure 2—24. Defined File STATES (Part 1 of 2)

UP-8614 Rev. 1

SPERRY UNIVAC 0S/3
IMS 90 APPLICATIONS

2-83

RECORD EQU

*

* STATE STATE-POP CAPITAL
ALABAMA 3,444,165 MONTGOMERY
ALASKA 362,173 JUNEAU
ARIZONA 1,772,484 PHOENIX
ARKANSAS 1,932,295 LITTLE ROCK
CALIFORNIA 19,953,134 SACRAMENTO
COLORADO 2,207,259 DENVER
CONNECTICUT 3,032,217 HARTFORD
DELAWARE 548,104 DOVER
. FLORIDA 6,789,443 TALLAHASSEE
- GEORGIA 4,589,573 ATLANTA
c. First block of STATES as listed at a terminal display by UNIQUE
1 8 12
#1 WORK-AREA
B2 STATE-RECORD.
93 STATE PIC X(14).
03 STATE-POP PIC 9(8).
P3 CAPITAL PIC X(14).
#2 S-STATE-RECORD.
#3 S-STATE PIC X.
@3 S-STATE-POP PIC X.
83 S-CAPITAL PIC X.
d. Description of STATE-RECORD in COBOL action program
1 8 12
WORK DSECT WORK AREA

XL14 STATE NAME

STATE POPULATION

XL14 STATE CAPITAL

SNAME DS

SPOP DS XL8
SCAPITAL DS
SNAME#S DS X
SPOP#S DS X
SCAP#S DS X

STATE
STATE
STATE

NAME STATUS BYTE
POPULATION STATUS BYTE
CAPITAL STATUS BYTE

e. Description of STATE-RECORD (labeled RECORD) in BAL action program

Figure 2—24. Defined File STATES (Part 2 of 2)

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-54
IMS 90 APPLICATIONS

2.4.2. Example of Subfile

An example of the use of a subfile definition to restrict access to a defined file is shown in
Figure 2-25. Compare this example to the example shown in Figure 2-24. Both data
definitions deal with the same source data (the ISAM logical file ST-FILE in Figure 2-23).
Both data definitions make the defined file STATES available to action programs and, via
UNIQUE, to the terminal operator.

Where a subrecord is defined, it can be accessed only via the subfile, which must be
described in the SUBFILE and CONTAINS statements (Figure 2-25a). Figures 2-24b
through 2-24e still apply to the new data definition as well as the old, where data was
accessed via the defined file name STATES. The new data definition, however, also makes
the subfile, SUBFIL, available to action programs (including UNIQUE). Thus, b and ¢ in
Figure 2-25 illustrate the data that can be accessed via the subfile name, SUBFIL. In this
case, only two items are delivered to the action program. Their item names, as employed
by UNIQUE, are changed from STATE and STATE-POP to NAME-OF-STATE and
POPULATION, respectively. Figures 2-25d and 2-25e show how the programmer provides
a place for subrecords to be received in a COBOL or BAL action program.

1 8 12

IDENTIFICATION DIVISION.
PROGRAM-I1D. SUB-DEF.
DATA DIVISION.

FILE SECTION:
FD ST-FILE.

01 STATE-REC.

02 STATE-NAME PIC X(14).
02 STATE-POP PIC 9(8).
02 CAPITAL PIC X(14).
02 ENTRY PIC 9(2).

DEFINITION DIVISION.
DEFINED FILE STATES PASSWORD

DEFINED RECORD STATE-RECORD
FROM STATE-REC
IDENTIFIER STATE FROM STATE-NAME
ITEM STATE-POP
ITEM CAPITAL

SUBRECORD SUB-STATES
IDENTIFIER NAME-OF-STATE FROM STATE
ITEM POPULATION FROM STATE-POP
SUBFILE SUBFiIL PASSWORD
CONTAINS SUB-STATES.

a. Definition of STATES and SUBFIL

Figure 2—25. Subfile Definition Restricting Access to a Defined File (Part 1 of 2)

UP-8614 Rev. 1

SPERRY UNIVAC 0S/3
IMS 90 APPLICATIONS

2-55

b. First block of SUBFIL as delivered to an action program

ALABAMAAAAAAAADG 3444165
ALASKAADAAANANNDB382173
ARIZONAAAAAAAAP 1T T 2484
ARKANSASAAAAAAGL1932295
CALIFORNIAAALAAL9953134
COLORADOAAAAAAP2287259
CONNECTICUTAAAB3032217
DELAWAREAAAAANGB548104
FLORIDAAAAAALNAGGT789443
GEORG I AAAAAANAABA589573

* NAME-OF-STATE POPULATION
ALABAMA 3,444,165
ALASKA 382,173
. ARIZONA 1,772,484
. ARKANSAS 1,932,295
CALIFORNIA 19,953,134
COLORADO 2,207,259
CONNECTICUT 3.0832,217
. DELAWARE 548,104
- FLORIDA 6,789,443
GEORGIA 4,589,573
— —_— ———————
c. First block of SUBFIL as listed at a terminal by UNIQUE
1 8 12
#1 WORK-AREA.
02 SUB-STATES.
83 NAME-OF-STATE PIC X(14).
63 POPULATION PIC 9(8).
82 S-SUB-STATES.
#3 S-NAME-OF-STATE PIC X.
93 S-POPULATION PIC X.
d. Description of SUB-STATES in COBOL action program
1 10 16
WORK DSECT WORK AREA
SUBREC EQU *
SNAME DS XL14 STATE NAME
SPOP DS XL8 STATE POPULATION
SNAME#S DS X STATE NAME STATUS BYTE
SPOP#S DS X STATE POPULATION STATUS BYTE

e. Description of SUB-STATES (labeled SUB-REC) in BAL action program

Figure 2—25. Subfile Definition Restricting Access to a Defined File (Part 2 of 2)

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-56
IMS 90 APPLICATIONS

2.4.3. Example of Supplements in Defined File

The data definition for CITIES in Figure 2-27a illustrates the use of supplements in a
defined file. Each defined record in CITIES comes from three different logical records on
disk. Two of these come from the indexed file CI-FILE, an excerpt of which is shown in
Figure 2-26. Another comes from ST-FILE, shown in Figure 2-23.

The records of the indexed file CI-FILE occur in pairs. There are two records for
ABERDEEN, two for ABILENE, etc. The first supplies the primary part of CITY-RECORD; the
second supplies a supplement. Both have record keys in the same character positions: 1
through 22. The values of these keys differ only in character position 22. The first record
contains the space character and the second record contains the number 1. These values
cause the logical records to be in ascending order and identify the type of logical record
(CITY-REC or CITY-REC-TRAILER), a necessary function in case one of the pair is missing.
IMS 90 operates on the single entity represented by the defined record. Therefore, it adds,
deletes, and displays both types of records together. If the first record is missing, the
second is ignored by IMS 90. If the second record is missing, IMS 90 supplies spaces for
the item named STATE.

The second file ST-FILE contains a single type of logical record, STATE-REC. that
contributes a supplementary part of the defined record. It is accessed by means of a

pointer. As a record in an indexed file, STATE-REC contains a record key. The pointer that

IMS 90 constructs from NAME-STATE in the CITY-REC-TRAILER logical record is used as a

search key to match against the record key STATE-NAME in the STATE-REC record. In this

way, the secondary part is located. If ST-FILE is a nonindexed file, there will be no record .
key in the STATE-REC record. The pointer will be a file relative record number instead. It

still will be constructed in the same way and used for the same purpose as an indexed file

key. If IMS 90 fails to find a STATE-REC record, it supplies zeros for the item named
STATE-POP in the defined record supplement.

ABERD E ENAAAAAAANANANNNG B2 6 4 6 T ALNANAAA
ABERDE ENAAANAAAANAAAATSOUTHADAKOTALAA
AB | LEN EAAAAAANANNANAAND B89 6 5 SAANNAAAN
AB | L EN EAAAAAANNANANNANTT EXASAAANAAANA
ALAME DAAADANAAANNAANNNNAB BT 89 6 BANANANAA
ALAMEDAAANAAANANANNAAATCAL | FORN JFAAAAA
ALBANYAANAAAANANAAANNNANAG 17 5T 8 LANAAAAAA
ALBANYAAAAAANAAANAAAAATN EWAY O RKAAAAAA

Figure 2—26. Indexed File with Two Logical Records for Each City (CI-FILE)

UP-8614 Rev. 1

SPERRY UNIVAC 0S/3
IMS 90 APPLICATIONS

2-57

8 12

" IDENTIF{CATION DIVISION.

PROGRAM-1D. SEC-PART-DEF.
DATA DIVISION,
FILE SECTION.

FD CI-FILE.
01 CITY-REC.
02 CITY-NAME PIC X(21).
02 RCD-TYPE PIC X.
02 CITY-POP PIC 9(7).
02 FILLER PIC X(7).
01 CITY-REC-TRAILER.
02 CITY-1ID PIC X(21).
02 TYPE-RCD PIC X.
02 NAME-STATE ~PIC X(14).
FD ST-FILE.
01 STATE-REC.
02 STATE-NAME PIC X(14).
02 STATE-POP PIC 9(8).
02 CAPITAL PIC X(14).
02 ENTRY PIC 9(2).

DEFINITION DIVISION.
DEFINED FILE CITIES
DEFINED RECORD CITY-RECORD

FROM CITY-REC
ALLOW ADD AND DELETE

IDENTIFIER CITY FROM CITY-NAME
ITEM CITY-POP
SUPPLEMENT CITY-PART-1

FROM CITY-REC-TRAILER
FiLL KEY TO "1’ ASSUMES CONTROLLED ROLE
ITEM STATE FROM NAME-STATE

SUPPLEMENT CITY-PART-2

FROM STATE-REC
POINTER 1S STATE

ITEM STATE-POP.

a. Data definition of CITIES showing supplements

IN UPDATE

Figure 2—27. Defined File CITIES (Part 1 of 2)

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-58
IMS 90 APPLICATIONS

.ABERDEENAAA VAVAVAN APB26467SOUTHADAKOTAAARB666257
-AB I LENEAAAAAAALAA ABBBIBSITEXASAAMMAANANAAALLL96730
. ALAMEDAAAAAAANANANNANABBTBI6B8CAL I FORNIAAAAAT9953134
- ALBANYAAAAAANNAANNANAAG 1757 8 INEWAYORKAAAAAAGS 589575

b. CITIES as delivered to an action program

r teiry CiTY-POP STATE STATE-POP
ABERDEEN 26,467 SOUTH DAKOTA 666,257
ABILENE 89,653 TEXAS 11,196.7380
ALAMEDA 70,968 CALIFORNIA 19,953,134
ALBANY 175,781 NEW YORK 4,589,575
“~. m——— V—‘J

c. CITIES as listed at a terminal by UNIQUE

1 8 12

f1 WORK-AREA.
0Z CITY-RECORD.

83 CITY PIC X (21).
83 CITY-POP PIC 9 (7).
#3 STATE PIC X (14).

03 STATE-POP PIC 9 (8).
#2 S-CITY-RECORD.

B3 S-CITY PIC X.
#3 S-CITY-POP PIC X.
#3 S-STATE PIC X.
#3 S-STATE-POP PIC X.

d. Description of CITY-RECORD in COBOL action program

1 10 16

WORK DSECT WORK AREA
CTYREC EQU *

SCTYNM DS XL21

SCTYPOP DS XL7

SSTATE DS XL14
SSTPOP DS XL8
SCTYNM#S DS X
SCPOP#S DS X
SSTATE#S DS X
SSTPOP#S DS X

e. Description of CITY-RECORD (labeled CTY-REC) in BAL action program

Figure 2—27. Defined File CITIES (Part 2 of 2)

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-59
IMS 80 APPLICATIONS

2.4.4. Examples of Hierarchical Records in Defined Files

Figures 2-28 through 2-32 show portions of defined files and the data definitions needed
to define: ;

B 3 logical indexed file containing two record types;
® 3 logical indexed file. containing a repeating group item; and
B two logical indexed files.

Note that three alternative data definitions describe the same defined file taken from these
various sources. The sources themselves differ in content and organization. Nevertheless,
in these examples there is no difference in the resulting defined file that is delivered to
the action program regardless of the defined file’s source, nor is there any difference in
the way the defined file appears at the terminal when accessed via UNIQUE. Actually, the
logical files can be reorganized and the defined file redefined without any change to action
programs or terminal operating procedures. ‘

2.4.4.1. Hierarchical Defined Records Using Several Record Types as Source

Figure 2-28 illustrates the first few logical records in the indexed file, ST-CITY, from which
the defined records of the BIGCITY defined file are taken. Figure 2-29 provides the data
definition for the defined file BIGCITY, which contains records arranged in a hierarchical
structure within set occurrences.

The order of records in the BIGCITY defined file is identical to the order of their primary
parts in the logical file ST-CITY. In fact, the order of records in a defined file is derived
from the corresponding record sequence in the logical file. In this case, the source of each
parent record is followed directly by the logical source of its child records. This is just one
of several ways the sources of parent- and child-type defined records can be related in
logical files.

The resulting records defined in this data definition are delivered to the user action
program and appear at the terminal via UNIQUE, as shown in Figures 2-33, 2-34, and
2-35.

2.4.4.2. Hierarchical Defined Records Using Repeating Group Item as Source

The logical indexed file, ST-RG, shown in Figure 2-30, contains the same information as
the ST-CITY logical file (Figure 2-28), but is organized differently. Here the city information
is contained in a table within each state record. The data definition in Figure 2-31 shows
how the BIGCITY defined file would be described if its source were the logical file ST-RG.
The resulting records defined in this data definition are delivered to the user action
program and appear at the terminal via UNIQUE as shown in Figures 2-33, 2-34, and
2-35.

UP-8614 Rev. 1

SPERRY UNIVAC 0S/3
IMS 90 APPLICATIONS

2-60

ALABAMAAAAAANAAMONTGOMER YAAAA

ALABAMAAAAAAAAB | RM I NGHAMAAAAAAAAANNANNANG 32 5 8 B BANANAAAN
ALABAMAAAAAAAAHUNT SV | L EAAAAAAANAANNANANAND 14 38 8 BANAAAAN
ALABAMAAAAAAAAMOB | L EAAMAAANAAAAANANNNANNNNAB 21 5 8 B BANANANN
ALABAMAAAAAAAAMONT GOME R Y AAAAAAAANNAANAAG 15 2 8 B BAAANANN
A L A S KAAAAAANANANNNDNNNNNNNNNANNNANNNNNANANNA § UN EAULAAAANNA
ALASKAAAAAAAANAANCHORA G EAAAANAANANNANANNAB B 5 28 B BANANANAN
ALASKAAAAAAAAAF A1 RBANKSAAAANANANNNNNNNANNAG BB 19 B BANNAANNA
ALASKAAAAAAAAAT UN EAUAAAAAAANDANANNNNNNNG G B 6 8 8 BANNANNA
AR 1 ZONAAAAAAAANNNANNNNANNANNNNNNNNNNNNANNANNAP HO EN | KAAAANAN
AR 1 ZONAAAAAAAAPHO EN | XAAAAAAANANANNANAALB S 1 5 8 B BANNANANNA
AR 1 ZONAAAAAAAATUC S ONAAAAANANANANNANANNNNAD 2 8 B8 B BANANNAN
ARKANS A SAAAAANNANNANANNNANNNANNNADNNNNNANAL FTTLEARO CKAAA

Figure 2—28. ST-CITY Indexed File with Two Record Types

1 8 12

IDENTIFICATION DIVISION.
PROGRAM-1D. BIG-CITY-DEF.
DATA DIVISION.
FILE SECTION.

FD ST-CITY.

01 STATE-REC.
02 STATE PIC X(14).
02 FILLER PIC X(25).
02 CAPITAL PIC X(14).

01 CITY-REC.
02 STATE PIC X(14).
02 CITY PIC X(25).
02 POPULATION PIC 9(7).
02 FILLER PIC X(7).

DEFINITION DIVISION.
DEFINED FILE BIGCITY
DEFINED RECORD STATE-RECORD
FROM STATE-REC
IDENTIFIER STATE
ITEM CAPITAL
DEFINED RECORD CITY-RECORD
FROM CITY-REC
PARENT 1S STATE-RECORD
IDENTIFIER CITY
{TEM POPULATION.

Figure 2—29. Data Definition for the Defined File BIGCITY

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-61
IMS 90 APPLICATIONS Update A

. ALABAMAAAAAAAAMONTGOMERYAAAAD A B4
BIRMINGHAM ANMAND325008
MOB I L EAAAAA DA ANAAG215000
HUNTSVILLEAAAAA AMANB143000
MONTGOME RYAAAAAAAA 0152000

ALASKAAAAAAAAATUNEAUAAAAAAAAB BB 3
ANCHORAGEAAA AAAANAAABB52000
FAIRBANKS ADAAMAAGB 19008
JUNEAU AA po06800

ARTZONAAAAAAAAPHOEN | XAALMALAAB B @2
PHOENIX VAVAVAVAY 0515000
TUCSON VaVAYAYAVAVAY AND240000

ARKANSASAAANAALITTLEAROCKAAABBA]
LITTLEAROCK A ANMNANANG 135000

Figure 2—30. STATE-RG Indexed File Containing a Repeating Group Item

1 8 12

IDENTIFICATION DIVISION.
PROGRAM-1D. BIG-CITY-DEF-1.

' DATA DIVISION.
FILE SECTION.

FD ST-RG.

01 STATE-REC.
02 STATE PIC X(14).
02 CAPITAL PIC X(14).
02 COUNT PIC 9(4).

02 CITY-ENTRY,;
OCCURS 0 TO 5 TIMES
DEPENDING ON COUNT
ASCENDING KEY IS CITY,
03 CITY PIC X(25).
03 POPULATION PIC 9(7).
DEFINITION DIVISION.
DEFINED FILE BIGCITY
DEFINED RECORD STATE-RECORD
FROM STATE-REC
IDENTIFIER STATE
ITEM CAPITAL
DEFINED RECORD CITY-RECORD
FROM REPEATING GROUP CITY-ENTRY
PARENT IS STATE-RECORD

‘I" IDENTIFIER CITY
ITEM POPULATION.

Figure 2—31. BIGCITY Data Definition Derived from a Repeating Group Item

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-62
IMS 90 APPLICATIONS

2.4.4.3. Hierarchical Defined Records Using Two ISAM Files as Source

A third data definition of the BIGCITY defined file is given in Figure 2-32c. In this example,
the city and state records come from sources that are in two different ISAM files; the state
records come from the logical file ST-FILE, and city records come from the logical file EN-
CITY. Each state record contributes a pointer that IMS 90 uses to locate the set of city
records that are its child-type records in the hierarchy. Figure 2-32 shows the relationship
of the two ISAM files to each other and to the defined file.

Figures 2-33, 2-34, and 2-35 show the resulting records defined in this data definition as
they are delivered to the user action program and as they appear at the terminal via
UNIQUE.

DEFINITION DIVISION.
DEFINED FILE BIGCITY PASSWORD

1 8 12
\ IDENTIFICATION DIVISION. j
ALABAMAAAAAAAAG3444165MONTGOMERYAAAA22 PROGRAM-1D. BIG-CITY-DEF-2
ALASKAAAAAANAANABB3G2173JUNEAUAAAANAAANLS DATA DIVISION.
ARIZONAAAAAAAABLTT2484PHOEN | XAAALANNAE S FILE SECTION.
ARKANSASAAAAAAB 193229511 TTLEAROCKAAA2S £D ST-FILE.
CALIFORNIAAAAAL9953134SACRAMENTOAAAASL
COLORADOAAAAAAB2287259DENVERAAAANAAASS 01 STATE-REC.
CONNECTICUTAAAB3B32217THARTFORDAAAAAABS Y — 02 STATE-NAME PIC X(14).
DELAWAREAAAAAABB548184D0VERAAAAAAAAGD < f] 02 STATE-POP PIC 9(8).
FLORlDAAAAAAAANNSNHTALLAHASSEEAAAN\ 02 CAPITAL PIC X(14)
GEORG I AAAAAAAABA589573ATLANTALAAAAAABA 02 ENTRY PIC 9(2).
' : ' FD EN-CITY.

]

1 01 E-CY-REC.

H 02 ENTRY-NUMBER PIC 9(2).

1 02 CITY-NAME PIC X(25).

H 02 CITY-POP PIC 9(7).

:

i

a. VST-FILE, alphabetic 1ISAM file

_____ J
A mmmmmmmsTSmmmsTTe T DEFINED RECORD STATE-RECORD
ILMINGTON aaasou\ FROM STATE-REC
B2ERIE B134600 IDENTIFIER STATE FROM STATE-NAME

ITEM CAPITAL
ITEM ENTRY HIDDEN

DEFINED RECORD CITY-RECORD
FROM E-CY-REC

B2ZPHILADELPH I AAAAANANANAAANALBL 5088

21PEOR | AAAAANAANAANANANNANNANAB 135008

22B1RMINGHAM $325000 ?

22HUNTSV | LLEAAAAAAANANNANAAG 143088 ATE.

22M0B I LE AANDA 9215600 PAR ATE-RECORD
22MONTGOMERY 61520808 § | —-----~ POINTER 1S ENTR

23PORTLAND po67000 - "

24STALOULS YNVNIIIN 966508080 1D Y FROM CITY-NAME

25L I TTLEAROCKAAAAAAANANAAAAB 135868 ITEM POPULATION FROM CITY-POP.

c. Data definition for BIGCITY defined file

b. EN-CITY, city data ordered by state entry number

Figure 2—32. Derivation of BIGCITY Defined File from Two Distinct Files Using Pointers

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-63

IMS 90 APPLICATIONS

_2.4.4.4. Defined File Resulting from Different Logical File Sources

Figure 2-33 illustrates the first defined records of the BIGCITY defined file that IMS 90
delivers in main storage to the user action program in response to a series of GET function
calls. When each GET function call is issued, all fields of a defined record plus one status
byte per field are moved to the action program.

ALABAMAAAAAAAAMONTGOMERYAAAA
ALABAMAAAAAANAAB I RMINGHAMAA ANNANNNGI25000
ALABAMAAAAAAAAHUNTSVILLEA ANANNANNNG 1430080
ALABAMAAAAAAAAMOB | L EAAAAANAANNNDANNDNANNANNAS 215008
ALABAMAAAAAAAAMONTGOMERYAAAAA, ANAADL152080
ALASKAAAAANAAAATUN EAUAAAAAAAA
ALASKAAAAAAANAAANCHORAGEAAA ANNNANGB52000
ALASKAAAAAAANAAF AT RBANKSAAAA ANAANNNAGB190060
ALASKAAAAANAAAAT UN EAUAAAAAN 00A6800
AR ZONAAAAAAAAPHO EN | XAAAAAAA
ARIZONAAAANANAPHOEN | XAA A 8515000
ARIZONAAAAAAAATUCSONAAAA AAANANNNANNNN024000 0
ARKANSASAAMMAAALITTLEAROCKAAA

Figure 2—33. Defined Records from the BIGCITY File as Delivered to Action Programs

Figure 2-34 is the terminal display of the BIGCITY file in response to a UNIQUE LIST
command. Note that a leading asterisk indicates a line of item names that serve as column
headers. A period indicates a line of item values that comprise an occurrence of a defined
record. Because the identifier of each city record consists of both state and city names,
UNIQUE replaces the state name with a hyphen to conserve screen space.

Figure 2-35 and 2-36 illustrate the corresponding description of the receiving space that
accommodates the parent and child defined records in the user COBOL and BAL action
programs.

SPERRY UNIVAC 0S/3 2-64
IMS 90 APPLICATIONS

UP-8614 Rev. 1

Figure 2—34. Defined Records from the BIGCITY File as Listed at the Terminal by UNIQUE

* STATE CAPITAL
*-CITY POPULATION
ALABAMA MONTGOMERY
-BIRMINGHAM 325,008
-HUNTSVILLE 143,060
-MOBILE 215,009
-MONTGOMERY 152,060

ALASKA JUNEAU
-ANCHORAGE 52.008
-FAIRBANKS 19,8090
-JUNEAU 6.800
ARIZONA PHOENIX
-PHOENIX 515,000
-TUCSON 240,000
ARKANSAS LITTLE ROCK
.

8 12
01 WORK-AREA.
#2 STATE-RECORD.
83 STATE PIC X (14).
#3 CAPITAL PIC X (14).
B2 S-STATE-RECORD.
3 S-STATE PIC X.
63 S-CAPITAL PIC X.
82 CITY-RECORD.
63 STATE PIC X (13).
83 CITY PIC X (25).

3 POPULATION PIC X (7).

#2 S-CITY-RECORD.
#3 S-STATE PIC X.
#3 S-CITY PIC X.

#3 S-POPULATION PIC X.

Figure 2—35. Description of STATE-RECORD and CITY-RECORD in COBOL Action Program

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-65

IMS 90 APPLICATIONS

1 10 16

WORK DSECT WORK AREA
STREC EQU

SSTATE DS XL14
SCAPIT DS XL14
SSTATE#S DS X
SCAPIT#S DS X
CITY#REC EQU *
SCSTATE DS XL1i4
SCCITY DS XL25
SCPoP DS XL7
SCSTAT#S DS X
SCCITY#S DS X
SCPoP#S DS X

Figure 2—36. Description of STATE-RECORD and CITY-RECORD in BAL Action Program

2.5. EXECUTING DATA DEFINITION PROCESSOR

After the data definition is prepared, it must be submitted to the data definition processor
(data definition processor), whose module name in 0OS/3 is DT3DF. The data definition
processor writes a data definition record into the named record file (NAMEREC) and
produces a diagnostic listing. Multiple defined files must be created in separate runs of the
data definition processor but can be written to the same NAMEREC file. The data
definition processor cannot write to the NAMEREC file while IMS 90 is accessing
NAMEREC. The NAMEREC file must be initialized before the data definition processor is
executed for the first time. Initialization procedures are described in the IMS 90 system
support functions user guide/programmer reference, UP-8364 (current version). Note that
if the NAMEREC file is reinitialized at any time, all data definitions must be recompiled.

2.5.1. Data Definition Processor Options

You can present parameters to the data definition processor via the optional PARAM
statement. The format is:

// PARAM parameter-1 [,..., parameter-n]

PARAM statements should be placed immediately following the EXEC job control
statement (// EXEC DT3DF) in the execution job control stream. The data definition
processor prints these on the first page of the diagnostic listing. If a PARAM statement
format error or an illegal parameter is encountered, a system console message is produced
and the data definition run is terminated. Only one blank precedes the P of the word
PARAM.

To produce a single-spaced diagnostic and source listing, you must specify the following
PARAM statement:

// PARAM LST=(L,S)

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-66
IMS 90 APPLICATIONS

The format for the source library PARAM job control statement is:

// PARAM IN=program-name/file-name

where:

program-name
Is a 1- to 8-character name of your source data definition program.

file-name
Is a 1- to 8-character name used to identify the file on which your source data
definition program resides. This name must appear on the LFD job control
statement you used to define this device. If the file-name is omitted, the name
$YSSRC is automatically supplied.

The format of the PARAM statement for copy library input is:

// PARAM LIN=file-name

where:

file-name
Is a 1- to 8-character name used to identify the file on which your COPY library
resides. This name must appear on the LFD job control statement you used to ‘
define the device. If the file-name is omitted, the name COPY$ is automatically
supplied. You supply the COPY element-name in your source data definition
program via the COPY clause.

There are no output options available for the data definition processor. {// PARAM
OUT=(M) is specified only for a COBOL action program, never for the data definition
processor.)

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-67
IMS 90 APPLICATIONS

2.5.2. Execution Run Streams

To execute the data definition processor, having previously allocated the NAMEREC file
using the ZP#NRU utility or the configurator, you code and execute a job such as DATADF.
(See sample control stream in Figure 2-37.) The main storage requirement for the data
definition processor is 50K bytes.

// JOB DATADF,,C000
// DVC 28 // LFD PRNTR
// OPTION DUMP
// DVC 56 // VOL DS9999 // LBL NAMEREC DS9999 // LFD |ISAMNRF
// WORK1L
// WORK2
// WORK3
// EXEC DT3DF
/$
source cards

source cards
T
/&
// FIN

Figure 2—37. Executing the Data Definition Processor (DT3DF)

In addition to the job control and PARAM statements already discussed, the most
important part of your input to the data definition processor is your source statements
(2.3). Figure 2-16 provides a consolidated format of the defined file definition which can
be used when studying the sample diagnostic listing produced by the OS/3 data definition
processor (see Figures 2-38 and 2-39).

2.5.3. Data Definition Processor Output Listing

The printed output provided by the data definition processor comprises a source listing of
the input to the data definition processor and, when the processor has successfully
created a data definition record, a COBOL description of the defined file. Each defined
record and subrecord is described as a COBOL group item such as required in a COBOL-
written action program accessing the file. Included with each defined record description,
the processor listing describes the item status bytes, one for each elementary item defined
in the data definition record above it. The processor generates each item status byte data
name by prefixing the data name of the corresponding elementary item with ‘S’-. This
provides a data name for accessing each item’s status byte if a test is made for the
completeness and validity of data transfer after retrieving a record from the defined file in
the action program.

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-68
IMS 90 APPLICATIONS

Figure 2-38 is a listing compiled by the data definition processor for the defined file
SECOUNT. Part 1 lists the source input. Part 2 shows the COBOL description of the
defined file, the description of the defined record LIQUOR, and the description of the item
status bytes. The last line of output contains the statement DATA DEFINITION COMPLETE,
followed by compilation time figures. When a subfile definition is input to the data
definition processor, the last pages of the output listing have the format shown in Figure
2-39, in which a defined file and subfile (ZR and CH-ZR) are described.

LINE NG, SEQ, SODURCE STATEMENT

30301 IDENTIRICAYINN DIVISION,

30302 PRIGRAM«1D, DDPTA,

20903 JATA DIVISION,

30304 FILE SECTION,

30308 D DOUEIN,

3030n 31 DUE-IN,

90307 02 FILLE® rIc x,

3030n 02 DUEIN=KEY,

3030 03 DUE INeNAME PIC X(1%),

20310 03 DUEINeSIZE PIC Xt2),

20311 02 VENDOR PIC 9(2) YSAGE CnNue=s,
30212 02 QUAN-BUE-IN PIC 9(2) USAGE CPmP-6,
30913 FD DUEOUT,

20914 31 DUE-DUT,

20915 02 FILLER PIC X,

3021s 02 DUEOUY-KEY,

20917 03 DUEDUT=NAME PIC X(13),

30911 03 DUBUUT=SIZE PIC Xx(2),

20919 02 DUEOUT-TOTAL PIC 9(3) USAGE CUMP-s,
30320 U2 DUEOUY-ORDER OCCURS 8 TIMES,

30921 03 CUSTOMERWKEY PIC X(5),

30322 03 QUANSDUE-OUT PIC X(3),

30323 FD PRODFIL,

9032¢ J1 PRODPEC,

30928 02 PRUD~KEY,

30926 03 PRAD~NAME PIC X1%),

20927 03 PRNDeSIZE PIC Xxt2),

20328 02 PROD-TYPE PIC Xt2),

30329 02 ONeMAND PIC 9(2) USAGE CUMP-4,
30330 02 DUE~IN-FLAG PIC X,

90331 2 DUE-OUT=FLAG P1C X,

30332 02 STUCK=-LEVEL PIC 9(2) USAGE COMP-s,
90933 u2 REURDFRePOINT PIC 9(2) USAGE COMP-4,
30234 G2 UNIT-NFeISSUE PIC X(2),

90238 2 cosY PIC 9(4)V99 USAGE CUMp=3,
30934 02 SUBSTITUTE PIC X(17),

20337 U2 PROD-VENDOR PIC 9(2) USAGE COMP-4,
3033e 02 FILLEN PIC Xt28),

20330 FD VENDUR,

30349 51 VENDREC,

30341 -02 VENN=-NAME P1C X(20),

30242 .02 VEND-ADOR PIC X(38),

20343 JEFINITION DIVISION,

90946 JEFINED FILE SECOUNT PASSWORN,

30248 JEFINED MECORD LIQUOR FRNM PRODREC

30346 ALLOW ADD AND DELETE

20247 IDENTIFIFR PROD-NAME

20368 IDENTIFIPR BRAND FRUM PRNDeSIZE

Figure 2—38. Complete Data Definition Processor Qutput Listing (Part 1 of 2)

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-69
IMS 90 APPLICATIONS

‘ 20249 ITEM PYYPE FROM PROD-TYPE
20350 ALLOW CHANGE

20351 [TEM DN-WAND
20552 ALLOW CHANGE
30393 ITEM UNIT FROM UNIT-0OF-1SSUE
3025 ALLOW CHANGE
20355 ITEM COSY
30254 ALLOW CHANGE
30387 SUPPLEMENT NUE-OUT=SUPP
30358 FROM DUE=QUY
30359 ASSUMES CONTROLLED
303%en POINTER 1S PROD=NAME, BRAND
30261 1TEM DUE=QUT FROM DUEQUT=TOTAL
0Je62 ALLDOW CHANGE
30363 SUPPLEMENT DUE=IN=SUPP
30264 FROM DUE~IN
30%68 ASSUMES CONTROLLED
es POINTER 1S PROD-NAME BRAND
0% 7 ITEM VENOOR
30268 ALLOW CHANGE
3060 MUST ADD
3097n ITEM DUE=IN FROM QUAN-DUE=IN
9097y ALLOW CHANGE
30372 SUPPLEMENT VENDREC
0373 FROM VENDREC
3037 ASSUMES CONTROLLING
50378 POINTER 1S VENNDR
3037e 1TEM VEND-NAME
2037y ITEM VEND-ADOR

THE FOCLAWING IS THE CIBNL DFSCRIPTINN OF THE DEFINEM FILE SECOUMY
02 SECOYVT,

S 0 8 9 68 5% ¢ %0 xE k¥ S S EE s s e s e kS eSS gt E S E SN EEs
e NEFIMNEY RECOD o o 5 0 8 ¢ 8 2 5 ¢ 5 ¢ 8 86 % 8635850886353 88%83%8028s8s8 0 ¢8se
S & & ¢ 60 & & 6% 5% s 6P 3B s E B Y E S EE NS S K eSS EE SN
03 LIQJCR
06 PRUOD-MAME PIC X(15),
04 BRAND PIC Xx(02),
0% PTYPE PIC Xx(02),
04 NNaHAMD PIC 9(02) NSAGE IS CIMP-s,
04 UuIT PIC x(02)y,
0 CNSY PIC 9(05)v99 USAGE 1S CDOMP=3,
06 DUE~-QUT PIC 9(02) 'ISAGE 5 CNMP=4,
0% VENDD® PIC 9(02) ISAGE [$ CUMP=4,
04 QUE-TI? PIC 9(02) USAGE S COMP-~4,
0% VEND=MNAME PIC Xx(20v,
0% VEND=-ADDR PIC X{35),
® THE DEFINEN ‘ESURD SILL AUTDPMATICALLY INCLUDE NNF STATUS BYTE FUR EACH ELEMENTARY ITEM DEFINED ARQVE
03 S-LIQUDR,
06 S=PROMeNAME PIC X,
04 S=BRAMD PIC X,
D4 S=PTYPE PIC X,
04 S~ON=HAND PIC X,
04 S=UNIY PIC X,
04 S-COSY PIC X,
0¢ §=DUE=-QUT PIC X,
04 S=VENDUR PIC X,
0% S~DUE~IN PIC Xe
04 S=VEND=NAME PIC X,
0% S-VEND=ADDK PIC X,
DOPTA MATA LEFINITION COMPLETE START 637128 FNn 639134

*e 0
*e 8
LA N J
*e 8
[X X 2

Figure 2—38. Complete Data Definition Processor Output Listing (Part 2 of 2)

UP-8614 Rev. 1 SPERRY UNIVAC 0S/3 2-70
IMS 90 APPLICATIONS
THE FOLLOWING 1S TME COROL DESCRIPTION OF THE DEFINEC FILE 2R,
cs 2F.
LB L A A 2 2 I I I DT IEE A T I DR DN IRY IEE NN B I I T T R Y I I T R R T R Y Y TR T R S Y'Y
® DEFINED NECORD ® ® 8 9 @ 5 8 9 & O 5 0 B 8 8 8 8 " S S P B P S S G G O B S T S ST B G BT T E B OGS
LI R I I I I O D I I IO T IR D DAY DA D T TR R TR B R B N R R R U R BT R N B R R I D D T TR R SR B SR)
03 ZIRADRWO
04 2IRXOKO PIC 9105} USAGE 1S Comp-3,
04 ZRxDNR rIc xioed.
04 2RwL [214 X021,
04 2RIEILE] PIC Xt301}.
04 2R2EDILE2 L 1 2423014,
04 2RZEILED ric X413010.
04 2RZEILEY L 14 X{3010.
0% 2RZENLES LB 14 niI0H.
04 IR2EILES LB 14 X130},
® THE DEFINED FECORD SILL AUTOMATICALLY INCLUDE ONE STATUS @YTE FOR ECACH ELEMENTARY ITEM DEFINED ABOVE
03 S-2RADRRO.
04 <S-2ks0K0 PIC 3.
0% S-IRKDNR PIC X
04 S-TRNL PIC X.
04 S-IR2EILED PIC X
04 S<2R2EILE2 PIC X
04 S-IRIEILED Pl1C X,
04 S-2RZEILEN PIC X,
04 S-2REILES PIC X,
04 S-IR2EILEE PIC X
€z Cr=2k,
" & s & 8 8 8 8 & 8 e S & e s 9 e T T L LS B e ® & & 9 ¢ = 8 2 8 0 8 8 e 08 8 s s 00 s e e
o DEFINED RECORD @ & & & & 6 6 ¢ 2 8 0 8 5 & 8 O 3 B 8 & U 4 " S U S P G VT E S S LB E S S & G
S 8 8 & & & 5 4 0 0 & 5 0 8 8 s e T S S 0 e e 8 2 ® & 8 & 8 8 5 s 6 s 8 0 5 5 s s 0 s s s s 0 s s
02 (CH-2FADFWO
Cc4 2Rx0%0 PI1C v10%) USAGE IS COMmP-2,
0y IRKONF [B 1Y xeicel.
04 2°wNL rIC xX1021.
04 1Ifn0xQ FIC St0S? USAGE 15 COmP-13,
oY 2IRTEILED FI1C X130,
* IWE DEFINEC FECORD WILL AUTOMATICALLY INCLUDE ONE STATUS BYTE FOR EACH ELEMENTARY ITEM DEFINED ABOVE
03 S<CH=-2RADRWO.
vy $-26kF 00 PIC 2.
04 S-Z2RKONR PIC X
04 S-2RNL *iC x.
04 S=-2Re0R0 PIiC x.
04 S-ZRTEILE] PIiC x.
ooPrIE OsT4s OEFINITION COMPLETE START ES39117 END %19:22

Figure 2—39. Last Page of Data Definition Processor Listing Showing COBOL Description of a Defined File and a Subfile

2.5.4. Error Processing by Data Definition Processor

In processing your input, the data definition processor acts like a COBOL compiler; |t subjects
the entire input to scrutiny for syntactical errors and issues diagnostics.

The data definition processor applies the rules of COBOL to the data division of the input
and issues COBOL diagnostics for this division. The COBOL reserved word list applies to
the data division of the input to the data definition processor as well. When processing the
definition division, however, the data definition processor applies not only the appropriate
standard COBOL rules, but also rules of its own. (See 2.3.1.) Detected violations of these
rules result in the issuance of diagnostics from a set unigue to the data definition
processor. These diagnostics are listed in Table 2-2.

Each diagnostic message contains the processor-generated line number on which the
error occurred, the diagnostic severity code, the diagnostic number, and the diagnostic

message text, in that order.

Table 2—2. Compilation Time Diagnostics Unique to the IMS 90 Data Definition Processor (Part 1 of 2)

Messoge Severity o o Explanation
iagnostic Mess:
Number Code - - Reason Rule Recovery
139 U —SUSPEND CHECKING INVALID SOURCE Beginning at this source line, No validity checking for If preceded by another
STATEMENTS ON THIS LINE. the data definition processor syntax of data definition diagnostic for the same
does not recognize source input source statements occurs line number, recovery for
as data definition language. until some succeeding that diagnostic will
statement is recognized. usually suffice, but the
remainder of this line
might contain another
error. Otherwise, this
line contains an error that
that is'not embedded in a
recognized statement type.

140 v} —RESUME CHECKING SOURCE STATEMENTS Having previously issued diagnostic Error processing continues, None required. All lines

ON THIS LINE. 139, the data definition processor beginning with this source for which validity checking
again recognizes source input as line. was skipped should be
data definition language. scanned for possible

error, before recompiling.

159 u REFERENCE TO insert INVALID Self-explanatory Refer to 2.3 for the rules for each Correct the data definition

statement. and recompile.

160 U DEFINITION IS TOO LARGE The length of the data definition Block size for the NAMEREC file Reduce size of the data defi-
record exceeds the blocksize specified specified with the NBLK keyword nition record and recompile.
for the NAMEREC file. parameter of the IMSCONF jproc The line number indicated is

or the BLKSZE parameter of the the one which caused the over-

ZP#NRU utility. It ranges flow.

between 1024 and 12,800 bytes . .

but most not exceed disk track size. Alterna.tlvely, specify a larger
block size for the NAMEREC
file and reconfigure.

161 Cc CHANGE TO NEUTRAL SUPPLEMENT IS The processor has encountered the If the ALLOW CHANGE option is Correct the data definition

ILLEGAL. ALLOW CHANGE option specified in specified for an item, its and recompile. Your action
a supplement for which no ROLE ROLE IN UPDATE must be program logic may also
IN UPDATE is specified, or whose CONTROLLED. require revision,
update ROLE is specified as NEUTRAL.

162 [CHANGE TO CONTROLLING SUPPLEMENT The processor has encountered the If the ALLOW CHANGE option is Correct the data definition

iS ILLEGAL.

ALLOW CHANGE option specified in a
supplement whose ROLE IN UPDATE
is specified as CONTROLLING.

specified for an item, its
ROLE IN UPDATE must be
CONTROLLED.

and recompile. Your action
program logic may also
require revision.

SNOLLVYOINddV 06 SWI
€/S0 JVAINN AYH3dS

1 'A3Y ¥198-dN

LL-C

Table 2—2. Compilation Time Diagnostics Unique to the IMS 90 Data Definition Processor (Part 2 of 2)

. Explanation
ori
m s:“.w Disgnostic Message
Reason Rule Recovery
163 (o] ADD TO NEUTRAL SUPPLEMENT IS The processor has encountered a If the MUST ADD option is Same as 161.
H.LEGAL. MUST ADD statement specified for specified for an item, its
a supplement for which no update ROLE IN UPDATE must be
role is specified or for which CONTROLLED.
ASSUMES NEUTRAL ROLE IN UPDATE
is specified.
164 C ADD TO CONTROLLING SUPPLEMENT The processor has encounterd a Same as 163. Same as®161.
IS ILLEGAL. MUST ADD statement specified in a
supplement for which ASSUMES
CONTROLLING ROLE IN UPDATE is
specified.
165 u CANNOT ADD OR DELETE CONTROL BREAK. | The processor has encountered one of The ALLOW ADD AND DELETE Same as 161,
three options of the ALLOW ADD AND statement cannot