

UNIVAC CP-823/U MILITARY COMPUTER

CENTRAL PROCESSOR UNIT

PHYSICAL SIZE AND WEIGHT
Height: 7.25 inches

Width: 14.50 inches

Depth: 17.50 inches

Weight: 50 pounds

UNIVAC CP-823/U
MILITARY COMPUTER

CONTENTS

Page

1. INTRODUCTION

Technical Characteristics 2

Applications 3

2. FUNCTIONAL COMPUTER DESCRIPTION 4

General Organization 4

Central Processor 4

Memory 6

Input/Output 7

Power Supply 15

UNIV AC CP-823 / U Computer Control Ground Console 16

3. PHYSICAL CHARACTERISTICS AND ELECTRONICS 18

General 18

Microelectronics 18

Central Processor Construction 21

Input/ Output Construction 21

Memory Unit Construction 22

4. INSTALLATION REQUIREMENTS 23

5. SOFTWARE 24

Assemblers and Compilers 24

Compilers 25

Debugging Aids 25

Cornell Utility Package 26

Subroutine Library 27

APPENDIX A-REPERTOIRE OF INSTRUCTIONS A-1

iii

ILLUSTRATIONS

Figure Title

1. CP-823 / U Computer-Block Diagram

2. Data Transfer (Buffer Mode)

3. External Function Code Transmission

4. External Function Code Transmission with Force

5. Input Data Transfer (Buffer Mode)

6. Interrupt Transmission

7. Transmitting Command Word (Case 1)

8. Transmitting Command Word by Force (Case 1)

9. Transfer of Data (Buffer Mode) Case 2

10. Computer Data Inputs from Peripheral Equipment

11. Interrupt Inputs to the Computer

12. Data Outputs and External Functions from the Computer

13. External Function with Force

14. Channel Priority

15 A. UNIVAC 1232A Input/Output Console

15 B. Maintenance/ Control Console

16. Basic Logic Circuit Packages

17. Schematic-Integrated Logic Element

18. Integrated Circuit Cutaway

19. Integrated Circuit-Enlarged View

20. Integrated Circuit-Enlarged View

21.

22.

23.

24.

Table

I.

2.

3.

Computer Logic Module

Central Processor

Central Processor-Inside View

Memory Unit

TABLES

Title

Input / Output Channel Control Signals

Input / Output Channel Control Signals for Intercomputer Communi­
cation

Summary of Equipment CharacteristicB

v

Page

5

8

8

8

9

9

10

10

10

11

12

13

14

15

17

17

18

18

19

19

19

20

21

21

22

Page

7

9

23

INTRODUCTION

The UNIV AC CP-823 /U* Digital Computer is a
miniaturized, real-time, general-purpose, stored-pro­
gram computer with performance characteristics which
exceed those of many large-scale ground machines.
Because of the utilization of solid-state microelectronic
circuitry, the CP-823 /U is an ultra-reliable device well
suited for applications which impose severe volume
and weight limitations with a minimum power con­
sumption. The CP-823 /U computer was constructed
in compliance with the exacting standards of MIL-E-
5400F.

The concept of modularity, as it is featured in the
computer, allows a selection of memory and input/
output capacity as required for the application. Form
factor flexibility is achieved by separately packaging
the central processor unit, memory unit, power supply
units, and the input/ output units.

The computer memory unit consists of ferrite core
modular arrays, each containing 4096 30-bit words.
In addition, a 4096 30-bit word magnetic thin-film
array is available when nondestructive readout is re­
quired. The memory unit may contain from one ar­
ray to eight arrays to give a memory capacity of 4096
words (minimum) to 32,768 words (maximum).
Current memory unit design provides for a mem-

ory composed of all ferrite core arrays or one thin­
film array and up to seven ferrite core arrays. Cycle
times for the core memory and read time for the film
memory are four microseconds.

One of the most powerful and most flexible features
of the CP-823 / U computer is its input/ output capa­
bility. Input/ output to the central processor is provided
over four input and four output channels and their as­
sociated control circuits. Each channel to the central
processor may be further multiplexed into four addi­
tional channels by the use of a separately packaged in­
put/ output multiplexer unit. Present multiplexer units
are designed and packaged to interface four input and
four output channels with one of the four input chan­
nels and one of the four output channels to the central
processor. By interconnecting four input/ output units
to the central processor, a total of 16 input and 16
output channels can be obtained.

Since the repertoire of instructions is identical with
that of other UNIV AC computers, an entire library
of programs. is readily available. Not the least of the
computer's attractions, however, is the direct compati­
bility with a wide range of existing peripheral equip­
ment.

*CP-823/U is the military nomenclature for the UNIVAC 1830 Avionics Computer.

TECHNICAL CHARACTERISTICS

TYPE

TYPE: General-purpose, large-scale, real-time, mi­
croelectronic, parallel-binary.

MEMORY

Core Memory (DRO): Array of 4096-word, 30 bits
magnetic core storage

Cycle Time : 4 microseconds
Capacity: 4096, 8192, 12,288, 16,384, 20,-

480, 24,576, 28,672, 32,768 30-bit
words

Magnetic Thin-film Memory (NDRO): Array of
4096-word, thin-film storage

Cycle Time : 4 microseconds

INPUT /OUTPUT

MICROELECTRONIC MULTIPLEXER

Type:

Number:

Transfer:
Rate:

Features:

Simplex, 30-bit parallel
(Logical "O" is + 3.0 volts, + 1,
-0.5)
(Logical "l" is 0.0 volt ±0.5)

16 channels of input/output maxi­
mum, in modules of four
Output or input
One output or input channel-
62,000 words per second, maxi­
mum.
Multi-channel-125,000 words per
second
• Full buffer and/ or real-time

control on each channel
• Intercomputer communication

with any or all channels
• External commands
• Internal interrupt capabilities

from buffer monitors on each
channel

• Channel "active" test

2

CONTROL

Command Structure:
Single address, 62 instructions, sev­
en index registers, seven branch
designators, and seven operand in­
terpretation designators

T nstruction Execution Time
Add: 8 microseconds
Subtract: 8 microseconds
Multiply: 32-48 microseconds
Divide / Square
Root: 48 microseconds
Shift: 8-12 microseconds
Jump: 8 microseconds

Real-Time Clock:
Automatic internal clock controlled
by main timing. Provision is made
for the use of an external real-time
clock source.

CONSTRUCTION

Modular Construction
Semiconductor Microelectronic Integrated Cir­
cuits

PRIMARY POWER
REQUIREMENTS

Voltage:
Phase:
Frequency:

200 Volts line to line
3
400 cycles

Power: 830 Watts (32,768 words of mem­
ory, 16 channels input/ output)

APPLICABLE MILITARY
SPECIFICATIONS

MIL-E-5400F MIL-STD-704

APPLICATIONS

Because the UNIV AC CP-823 /U Computer is a flexi­
ble, general-purpose computer, it can be used in many
challenging real-time and ponreal-time applications
requiring high capability, tuggedtless, small physical
size and weight, and extreme reliability. A list of ap­
plications would include the following:

• ASW Systems

• Airborne Command and Control

• Airborne Navigation

• Fire Control

• Battle Field Command and Control

• Missile Command, Control, and Launch

• Radar Data Processing

• Shipboard Systems, Surface and Subsurface

3

FUNCTIONAL COMPUTER
DESCRIPTION

GENERAL ORGANIZATION

The CP-823/U computer is composed of three prin­
cipal units:

• Central Processor-The control section inter­
prets the instructions, carries out the com­
mands, furnishes the timing, and directs the
sequence of events for logical execution of
programs. The arithmetic section performs
the arithmetic and logic functions as directed
by the control section.

• Memory-Provides random access storage of
up to 32,768 30-bit words.

• Power Supply-provides regulated d-c pow­
er to operate the computer. Power supply units
can be provided to match a variety of input
and output power requirements.

Optional input/output units are available to interface
with the computer through the four input and four out­
put channels provided in the central processor.

CENTRAL PROCESSOR

The control section contains the circuitry necessary to
procure, modify, and execute the single address in­
structions stored in the memory of the computer, and
controls all arithmetic, logical, and sequential opera­
tions of the computer except those assigned to the
input/ output section. In addition, the control section
regulates transmission into and out of storage and in­
put and output according to the program of instruc­
tions.

There are 62 basic instructions that may be used:
each instruction contains a function code {f-6 bits),
an instruction operand designator (y-15 bits), and
three execution modifiers (j, k, b - 2, 3, or 4 bits).
Execution modifiers provide for address incremen­
tation, operand interpretation, branch-point designa­
tion, or input/ output channel function. The operand
designator may be increased by the amount contained
in any one of seven index registers. The operand
specified by the execution address may be interpreted
as a 30-bit quantity or as a 15-bit upper or lower
half-word with or without sign extension. The next se­
quential program step may be skipped unconditionally
or when the branch-point designator places the skip
under control of the contents of either the accumulator
or the Q-register. (See Appendix A for a complete
explanation of the instructions and their modifiers.)

The arithmetic section of the computer performs the

4

operations of addition, subtraction, multiplication, di­
vision, shifting, comparison, and parity check. Arith­
metic and logical operations are performed in the par­
allel binary mode. For most operations, the result ap­
pears in a 30-bit accumulator register. Arithmetic is
one's complement subtractive, with a modulus (230-

1).

Below is a description of the control section registers
which are used for computer control and the arithme­
tic section registers used for numerical and logical
calculations. (See Figure 1, Block Diagram of the
Computer.)

The CT-register or program control register is a 30-
bit register that holds the instruction word during the
execution of an operation. The function code and the
various instruction designators are translated from the
appropriate sections of this register. If an address
modification is required before execution, the contents
of the appropriate B-register are added to the lower
order 15-bits of the CT-register. The lower order 15-
bits of the U-register may also be used directly as data,
modulus 215-1.

The 15-bit registers, B1 through B7, store the quan­
tities used for UL modification. These B-registers, also
called index registers, occupy the lower 15 bits of core
memory addresses 161 through 167.

I
N
p

u
T

0
u
T
p

u
T

u
N
I

NOTE: Units enclosed within double lines ore seporotely packaged.

Figure l. CP-823/U Computer - Block Diagram with Full 16 Channels Input and 16 Channels Output

5

The P-register (15 bits) holds the memory address of
a computer instruction word-that of the next in­
struction to be executed.

The K-registers (Kh K2, K3) function as a shift
counter for all arithmetic operations that involve
shifts. Some instructions employing the K-registers
are multiply, divide, and square root.

The A-register (30 bits) may be thought of, for pro­
gramming purposes, as a conventional accumulator.
Because of the logic employed, however, the A-regis­
ter is actually only the main rank of the accumulator;
the W-register serves as a second rank. The add op­
eration is typical of the relationship between the A­
and W-registers: the augend and addend are initial­
ly contained in the A- and W-registers respectively.
Before the addition is performed, the contents of the
A-register are transmitted to the X-register. The val­
ues of X and W are combined by the add network to
form the sum of the two numbers in a parallel man­
ner and then placed in the A-register.

The Q-register (30-bits) is used principally dur­
ing multiply and divide operations. The contents of

both A and Q may be shifted left or right, either in­
dividually or as one double-length, 60-bit word. The
A- and Q-registers are addressable arithmetic registers.

The X-, D-, and W-registers are 30-bit, nonaddress­
able registers. These registers are used primarily for
the exchange of data within the arithmetic section
and for communicating with the remaining sections of
the computer.

The selector is a logic network that controls trans­
missions to the arithmetic section and is used to place
data in the various registers during control sequences.
When data is read from memory or written into mem­
ory by execution of an instruction, the selector will
translate the data read or stored based upon the k
designator (see Appendix A for k designator usage).
For arithmetic operations, the selector loads the W­
register with data or its complement to satisfy the re­
quirements of the subtractive arithmetic logic. The up­
per 15 bits of the U-register (Uu) are loaded directly
from the selector as is the S-register for certain input/
output operations.

MEMORY

The memory unit consists of up to eight memory
modules, each module containing 4096 words.
Two module types--0ne a nondestructive readout
(NORO) memory module and one a ferrite core de­
structive readout (DRO) module-may be used in
combinations, which offer unusual flexibility when se­
lecting the type and amount of memory for a specific
application.

This discussion of the memory unit will include the
Z-register, S-register and translator, data control cir­
cuits, and timing control circuits. The Z-register, S­
register, and translator are physically part of the cen­
tral processor, but are discussed in the memory section
_because they are most closely associated with it.

Each memory unit allows high-speed random access
to 4096 words of storage with a cycle time of four
microseconds for DRO memory and a 4-microsecond
read time for NORO. Every storage location (ORO
and ND R 0) is assigned a separate address (000008

through 77777 8), and each word in storage consists of
30 bits that can be divided into two 15-bit words: the

upper 15 bits (Mu) and the lower 15 bits (Mi.).

By means of programming and the use of the k desig­
nator, each 15-bit word can be handled separately.
When reading an address, the whole 30-bit word is
read into the Z-register (for core memory, Z is then
written back to replace the data) and the selector, as
defined by k, wilJ control the transmission of the
whole word (Z upper* [Z,.] and Z lower* [ZL]) or half
word (Z .. or ZL) transmission to X or W. When stor­
ing half words into memory, only the half word of
the ORO storage address that is not to be changed is
read into Z from memory. The half word to be stored
is transferred from W to Z and the whole word of
Z is restored in core. (Example: Store A1. in Mu:
Ai.~SEL. , SEL1. SEL11 , SEL11~ W11 , ML~
Z1., and W .. ~Zn; Z~storage address). If a whole
word is to be stored, computer control inhibits retaining
the output of the read portion of the memory cycle
and stores the data on the write half of the cycle.

When a specific storage location in memory is refer­
enced, the S-register contains a 15-bit address word

':' Zu is used to denote the upper 15 bits , and Zr. is used to denote the lower 15 bits.

6

that specifies one of the 32,768 storage locations. The
control and input/ output sections of the computer have
independent access to the storage registers through the
use of the S-register and translator, the Z-register, and
the memory timing sequence.

The Z-register holds the information to be read out or
written into the memory unit. Data is normally trans­
ferred from the input/ output section, and the W-regis-

ter to the Z-register for storage in memory. Informa­
tion read from memory is outputted from the Z-regis­
ter to the input/ output section, and to the various com­
puter registers through the selector.

The address selector performs the task of translating
designator I/ 0 buffer requests and interrupt requests
into the proper control word memory address location.
After translation, the memory address is placed in S
to allow the control word to be read from memory.

INPUT /OUTPUT

The input/output capabilities of the UNIV AC CP-
823/U Computer will allow a variety of input/output
units to be utilized. The microelectronic multiplexers
have a maximum of 16 input and 16 output channels ,
each comprised of 30 bits, which provides for a maxi­
mum data transfer rate of 125,000 30-bit words per
second. Each channel is equipped with four control lines
to allow maximum reliable data transfer without moni­
toring or intervention from the central computer. Pack­
aged modularly, ·each input/output unit contains four
input and four output channels with associated control
lines. Table 1 illustrates the control signals associated

,---

.___

TA BLE 1. INPUT/ OUTPUT CHANNEL

CO NTROL SIGNALS

FUNCTION

INTERRUPT ENABLE

INTERRUPT

INPUT DATA REQUEST

INPUT A CKNOWLEDGE

EXTERN AL FUNCTION REQUEST

EXTERN

OUTPUT

AL FUNCTION

DAT A REQUEST

ACKNOWLEDGE OUTPUT

SIGNAL ORIGIN

COMPUTER} COMPUTER
PERIPHERAL INPUT

CHANNEL
PERIPHERAL CONTROL

LINES
COMPUTER

PERIPHERAL} COMPUTER
COMPUTER OUTPUT

CHANNEL
PERIPHERAL CONTROL

COMPUTER LINES

7

with each input/ output channel, and the technical dis­
cussion that follows is based upon its characteristics.

Through the use of an input/output buffer mode of
operation, the CP-823/U has the capability of communi­
cating with peripheral equipment on any and all input/
output channels concurrently with the operating pro­
gram. Buffering operation, once initiated by a pro­
grammed instruction, proceed to termination asynchro­
nously with the program.

The CP-642 compatible input/output unit enables di­
rect interfacing with existing peripheral equipments. A
list of compatible equipment includes the following:

• Data Links

• Magnetic Tape Units

• Paper Tape (Punch and Flex) Units

• High-Speed Printers

• Video Processors

• Keyset Systems

• Displays

• Teletypewriting Equipment

• Magnetic Drums

• Disc Files

• Punch Card Equipment

• Plotter

• Analog-to-Digital and
Digital-to-Analog Converters.

Other input/ output units can be provided for special
analog or digital applications .

SEQUENCE OF EVENTS
Normal output sequence for data transfer from com­
puter to peripheral equipment (buffer mode) is as fol­
lows:

a. Computer initiates output buffer for given
channel;

b. Peripheral equipment sets the Output Data
Request line indicating that it is in a condi­
tion to accept data;

c. Computer detects Output Data Request;
<l. Computer, at its convenience, places data on

the 30 data lines;
c. Computer sets the Output Acknowledge line,

indicating that the data is ready for samp­
ling;

f. Peripheral equipment detects the Output
Acknowledge;

g. Peripheral equipment may drop the Output
Data Request any time after detecting the
Output Acknowledge;

h. Peripheral equipment samples the 30 data
lines;

1. Computer drops the Output Acknowledge
and data lines.

Steps b through i of this sequence are repeated for
every data word until the number of words specified
in the output buffer have been transferred. Figure 2
shows the sequence for data transfer from computer to
peripheral equipment.

The sequence for transmitting an External Function
code from computer to peripheral equipment is as fol­
lows:

a.

b.

c.

d.

Peripheral equipment sets the External Func­
tion Request line when it is ready to accept
an External Function word;
Computer detects the External Function
Request;
Computer places the External Function
word on the data lines (if its External Func­
tion buff er is active) ;
Computer sets the External Function line to
indicate that the External Function word is
ready for sampling;

e. The External Function clears the External
Function Request at the peripheral equip­
ment;

f. Peripheral equipment samples the External
Function word;

g. Computer drops the External Function line
and the External Function word.

This sequence is repeated when the peripheral equip­
ment is ready to accept another External Function
word (see Figure 3) .

8

It is possible for the computer to send External Func­
tion commands to peripheral equipment without re­
ceiving an External Function Request signal. This
operation is called External Function with force gen­
eration and is shown in Figure 4.

The computer places the External Function code on
the 30 output data lines, and a minimum of 1.0 micro­
second later energizes the External Function line.
The External Function signal indicates to the periph­
eral equipment that an External Function word, which
should now be sampled, is present on the data lines.

The peripheral equipment has no control over the
rate at which External Functions with Force are sent.
If the rate is too fast so that the peripheral equipments
cannot accept External Functions, restrictions must

UNIVAC

CP-823 / U
COMPUTER

~OUTPUT DAT A REQUEST ---1

OUTPUT DATA (DATA LINES)

OUTPUT ACKNOWLEDGE

PERIPHERAL
EQUIPMENT

Figure 2. Data Transfer (Buffer Mode)

UNIVAC EXTERNAL FUNCTION REQUEST

CP-823/ U EXTERNAL FUNCTION (DATA LINES) PERIPHERAL
EQUIPMENT

COMPUTER m---- EXTERNAL FUNCTION ----11~

Figure 3. External Function Code Transmission

UNIVAC
CP-823/ U I-EXTERNAL FUNCTION (DATA LINES)._ PERIPHERAL

COMPUTER EXTERNAL FUNCTION ~ EQUIPMENT

Figure 4. External Function Code Transmission with Force

be made in the programming of External Function in­
structions to the equipment. It should be noted that if
the peripheral equipments have no provision for send­
ing an External Function Request signal, all External
Functions to existing peripheral equipment must be
sent as External Function with Force.

Normal input sequence for data transfer to computer
from peripheral equipment (buffer mode) is as fol­
lows:

a. Computer initiates input buffer for given
channel;

b. Peripheral equipment places data on the 30
data lines;

c. Peripheral equipment sets the Input Data Re­
quest line to indicate that it has data ready
for transmission;

UNIVAC INPUT DATA (DATA LINES)

CP-823/ U ~--INPUT DATA REQUEST--__. PERIPHERAL
EQUIPMENT

COMPUTER ...,_--INPUT ACKNOWLEDGE---t..ii

Figure 5. Input Data Transfer (Buffer Mode)

.----1-----INTERRUPT ENABLE ~

UNIVAC ~INTERRUPT WORD (DATA LINES)- PERIPHERAL
CP-823/ U

COMPUTER__ INTERRUPT EQUIPMENT

L_ ___ J--- INPUT ACKNOWLEDGE--~~---~

Figure 6. Interrupt Transmission

TABLE 2. INPUT / OUTPUT CHANNEL CONTROL
SIGNALS FOR INTERCOMPUTER COMMUNICATION

FUNCTION LINES

INTERRUPT ENABLE

INTERRUPT COMPUTER INPUT CHANNEL

INPUT DATA REQUEST CONTROL LINES

INPUT ACKNOWLEDGE

EXTERNAL FUNCTION REQUEST

EXTERNAL FUNCTION COMPUTER OUTPUT CHANNEL

READY CONTROL LINES

RESUME

9

d. Computer detects the Input Data Request;
e. Computer samples the 30 data lines, at its

convenience;
f. Computer sets the Input Acknowledge line,

indicating that it has sampled the data;
g. Peripheral equipment senses the Input Ac­

knowledge line;
h. Peripheral equipment drops the data lines

and the Input Data Request line.
Steps b through h of this sequence are repeated for
every data word until the number of words specified
in the input buffer have been transferred. Figure 5
shows the input data transfer to computer from pe­
ripheral equipment.

The sequence for transmitting an Interrupt from pe­
ripheral equipment to the computer is as follows:

a. Computer sets the Interrupt Enable when it
is ready to accept an External Interrupt;

b. Peripheral equipment detects the Interrupt
Enable;

c. Peripheral equipment places the Interrupt
word on the 30 data lines;

d. Peripheral equipment sets the Interrupt line
to indicate that the External Interrupt word
is on the data lines;

e. Computer detects the Interrupt signal, and at
its convenience, accepts the Interrupt word;

f. Computer drops the Interrupt Enable and
sets the Input Acknowledge line;

g. Peripheral equipment detects the drop of the
Interrupt Enable and clears the Interrupt
line and data lines.

The Input Acknowledge of an interrupt will be ini­
tiated simultaneously with the clearing of the Interrupt
Enable. The simultaneous occurrence of these con­
ditions is used by peripheral equipment to differenti­
ate between an Interrupt Acknowledge and a Data
Acknowledge. An interrupt transfer is illustrated in
Figure 6.

COMPUTER-TO-COMPUTER
INTERFACE
It is possible for the CP-823 /U computer to commu­
nicate with up to 16 other computers by converting
any or all of the input/ output channels. The control
signals for intercomputer communication are shown
in Table 2. Two cases of intercomputer communica­
tion are discussed. In both cases, computer A is
transmitting to computer B.

In case 1 where computer A is transmitting a com­
mand word, the following occurs:

a. Computer B sets the Interrupt Enable when
it is ready to accept a command word from
computer A;

b. Computer A recognizes the Interrupt Enable
as an External Function Request and places
the External Function word on the data
lines;

c. Computer A sets the External Function to
indicate that the External Function word is
on the data lines;

"""- INTERRUPT ENABLE ----1
UNIVAC ...- UNIVAC

CP-823/ U ~EXTERNAL FUNCTION (DATA LINES)~ CP-823/ U

COM:UTER EXTERNAL FUNCTION ~ COM:UTER

____ .,....---INPUT ACKNOWLEDGE----------

Figure 7. Transmitting Command Word (Case 1)

UNIVAC ~EXTERNAL FUNCTION (DATA LINES)~ UNIVAC

CP-823/ U EXTERNAL FUNCTION CP-823/ U
COMPUTER COMPUTER

A ""'- INPUT ACKNOWLEDGE B

Figure 8. Transmitting Command Word by Force (Case 1)

UNIVAC OUTPUT DATA (DATA LINES) UNIVAC
CP-823/ U,__ ____ READY-----~ CP-823/ U

COMPUTER COMPUTER
A RESUME B

Figure 9. Transfer of Data (Buffer Mode) -Case 2

10

d. Computer B recognizes the External Func­
tion as an Interrupt and accepts the com­
mand word;

c. Computer B clears the Interrupt Enable line
and sets the Input Acknowledge line;

f. Computer A recognizes the Input Acknowl­
edge as a Resume and clears the External
Function line.

In the event computer A sets the External Function
line while the Interrupt Enable line is cleared (this
is possible when an External Function with Force in­
struction is used), aU communications on the asso­
ciated group of output channels in A are suspended
until computer B acknowledges receipt of the Ex­
ternal Interrupt or until an intercomputer time-out in­
terrupt in A permits A to resolve the problem. (See
Figure 7.)

If either computer A or B is not designed for Ex­
ternal Function Requests or Interrupt Enables, then
all External Functions are transferred by force, and
interrupts are transferred as shown in Figure 8.

In Case 2 where computer A is transferring data, the
following occurs:

a. Computer B initiates an input buffer and
computer A initiates an output buffer for the
required channel;

b. Computer A places data on the data lines:
c. Computer A sets the Ready line to indicate

that the data is on the line;
d. Computer B recognizes the Ready signal as

an Input Data Request signal and, at its
convenience, accepts the data word;

e. Computer B sets the Input Acknowledge;
f. Computer A recognizes the Input Acknowl­

edge as a Resume signal and clears the
Ready (Input Data Request) line and the
data lines;

g. Repeat steps b through f for each word spec­
ified in the buffer. (See Figure 9.)

TIMING

Two types of input/ output modules are available
for the CP-823 / U computer. One type matches the
computer with existing peripheral equipments and
utilizes a - 15-volt interface. The other type of input/
output unit uses a +4-volt interface.

Because both units operate in a similar manner, the
following discussion covers only the microelectronic in­
put/ output unit.

INPUT TIMING CONSIDERATIONS

Data Input

The Input Data Request signal indicates to the com­
puter that data has been placed on the 30 Input Data
lines. To ensure that the data will be accepted, the
Input Data Request must be maintained on the lines
until an answering Input Acknowledge is received. As
shown in Figure 10, there is an 8-microsecond mini­
mum delay between the setting of the Input Data Re­
quest and its answering Input Acknowledge. There is
no maximum limit stated for the delay since its value
for any particular cycle is determined by the inter­
action with the computer program and the other input/
output channels. The data lines must remain stable
as long as the Input Data Request is set.

The Input Acknowledge indicates to peripheral
equipment that the computer has sampled the 30 data
lines. The Input Acknowledge signal is set for a fixed
time interval. Peripheral equipment must be capable
of detecting, as an Input Acknowledge, a signal which

"1"

"O''

"1"

DATA LINES

FROM PERIPHERAL
EQUIPMENT

INPUT DATA REQUEST

LINE FROM PERIPHERAL
EQUIPMENT

may exist in the stable "1" state for as little as 2.1
microseconds. The Input Data Request line and data
Jines may be dropped to the "O" state any time after
detecting the Input Acknowledge. The Input Data Re­
quest cannot be reset immediately to indicate readiness
of a second data word because the computer will not
recognize the second Input Data Request unless a
minimum time delay of 1.8 microseconds is allowed
between the start of the dropping of the first Input
Data Request and the start of the setting of the sec­
ond Input Data Request. Timing would allow a pe­
ripheral equipment requiring a maximum data trans­
mission rate to set the Input Data Request legiti­
mately to the "1" state for the second time before the
first Input Acknowledge has dropped to the "O" state.
~his will not affect operation of the cycle, however,
smce an 8-microsecond minimum delay will again be
required between the setting of the second Input Data
Request and the setting of the second Input Acknowl­
edge.

I 1.8 MICRO- I
r+- SECONDS
I MINIMUM I

I
I

"1"

~ 8.0 MICROSECONDS MINIMUM!

I
"O"

INPUT ACKNOWLEDGE LINE FROM COMPUTER I

NOTE: ALL TRANSITION TIMES ARE 1.0 MICROSECOND MAXIMUM

Figure l 0. Computer Data Inputs from Peripheral Equipment

11

Interrupt Inputs to the Computer
The Interrupt line indicates to the computer that the
peripheral equipment has placed data on the 30 data
lines. The computer then accepts the Interrupt word
at its convenience. Simultaneously, the computer drops

the Interrupt Request and sets the Input Acknowledge.
Peripheral equipment can now drop the Interrupt sig­
nal and the Interrupt word. Data lines must remain
stable as long as the Interrupt line is in the "set" con­
dition. Figure 11 shows Interrupts to the computer.

OUTPUT TIMING CONSIDERATIONS
Data Output and External Functions
Peripheral equipment must first set the Output Re­
quest line or External Function Request line indicat­
ing that it is in a condition to accept a data or Ex­
ternal Function word from the computer. Data lines
will not necessarily be cleared to the "O" state be­
fore being reset to the "1" state. Minimum time inter­
val between the Output or External Function Re-

"1"

"O"

"1"

"O"

''1''

"O"

INTERRUPT

ENABLE LINE
FROM COMPUTER

DATA LINES

FROM PERIPHERAL
EQUIPMENT

INTERRUPT LINE FROM

PERIPHERAL EQUIPMENT

WILL BE INHIBITED WHEN
RECOGNIZED INTERRUPT

I
I

quest signal and the placement of answering data
on the lines is 8 microseconds. Maximum time inter­
val depends upon the computer program, the priority
of the particular channel, and the data request rates
of the other peripheral equipment.

The Output Acknowledge or External Function sig­
nal indicates to the peripheral equipment that the re-

WILL BE RESET UNDER

PROGRAM CONTROL

1.8 MICRO
,...SECONDS~

MINIMUM I
I
I

, .. ••-- 4.0 MICROSECONDS MINIMUM --••--1
"l"

"O"
INPUT ACKNOWLEDGE LINE FROM COMPUTER

I

I 2.1 MICRO I
;.-- SECONDS ~
r MINIMUM l

NOTE: ALL TRANSITION TIMES ARE 1.0 MICROSECOND MAXIMUM

Figure l l. Interrupt Inputs to the Computer

12

quested word is now present on the data lines and
that the lines should now be sampled. As shown in
Figure 12, the Output Acknowledge or External
Function signal will be sent a minimum of 1 micro­
second after the data has been placed on the lines.
The peripheral equipment must be capable of recog­
nizing, as an Output Acknowledge or an External
Function, a signal which may exist in the stable
"1" state for as short a time as 2.1 microseconds.

The Output or External Function Request may be
dropped to the "O" state any time after detecting
the Output Acknowledge or the External Function.
The Output or External Function Request can­
not be reset immediately to indicate readiness of the
peripheral equipment to accept a second word be­
cause the computer will not recognize the second Out­
put or External Function Request unless a mini­
mum time delay of 1.8 microseconds is allowed be­
tween the start of the dropping of the first Output or
External Function Request and the start of the set­
ting of the second Output or External Function Re­
quest. The timing would allow any peripheral equip­
ment that wishes to receive data from the computer
at a maximum rate to set legitimately the Output or

"1"

"O"

"l"

"O"

OUTPUT DATA REQUEST
OR EXTERNAL FUNCTION
REQUEST FROM

PERIPHERAL EQUIPMENTI

r-8.0 MICROSECONDS MINIMUM~
I
I
I

EXTERNAL FUNCTION CODE OR OUTPUT DAT A I
LINES FROM COMPUTER I

External Function Request to the "l" state for the
second time before the first Output Acknowledge
or External Function has dropped to the "O" state.
However, this will not affect operation of the cycle
since an 8-microsecond minimum delay will again exist
between the setting of the second Output or External
Function Request and the availability of the data on
the data lines.

External Functions with Force

External Functions with Force are unique since no
request is sent by the peripheral equipment. The com­
puter places the External Function code on the 30
output data lines and a minimum of 1.0 microsecond
later energizes the External Function line. The Ex­
ternal Function signal indicates to the peripheral
equipment that an External Function word is. present
on the data lines. The External Function line will re­
main in the stable "1" state for an interval which may
be as short as 2.1 microseconds. The External Func­
tion word will remain on the data lines for a minimum
of 1.0 microsecond after the External Function signal
begins to drop. Figure 13 is an External Function
with Force timing diagram.

I 1.8 MICRO- I
,_.SECONDS ...

MINIMUM I
I
I
I
I
f'+-8 .0 MICROSECONDS MINIMUM--+-J

I I
!.+--4.1 MICROSECONDS~
I MINIMUM I

I

I
I
I
I

I
1.0 MICROSECOND ...,1 ••-....... 1

MINIMUM I H, 1.0 MICROSECOND
I MINIMUM

\\1"

"O"
OUTPUT ACKNOWLEDGE LINE OR EXTERNAL FUNCTION

LINE FROM COMPUTER

I
I

I

2.1 MICRO- I
~SECONDS +-f
I MINIMUM I

NOTE: ALL TRANSITION TIMES ARE 1.0 MICROSECOND MAXIMUM

Figure 12. Data Outputs and External Functions from the Computer

13

1 •
16 MICROSECONDS

NOMINAL

I ~4. 1 MICROSECONDS.....J

I I MINIMUM I
"1" I

I
EXTERNAL FUNCTION I

"O"
CODE FROM COMPUTER I

I
I I I

1.0 MICROSECOND
~ I • • I

1.0 MICROSECOND

MINIMUM MINIMUM
"]" I 1. •I I 12.1 MICRO I

EXTERNAL FUNCTION LINE I I SECONDS I "O" MINIMUM
FROM COMPUTER

NOTE: ALL TRANSITION TIMES ARE 1.0 MICROSECOND MAXIMUM

Figure 13. External Function with Force

Channel Priority
The channel priority will be such that the higher the
numerical value of the channel, the greater its pri­
ority. Therefore, in order of descending priority, the
channels are (15, 14, 13, 12) (11, 10, 9, 8) (7, 6,
5, 4) (3, 2, 1, and 0) . Parentheses indicate the chan­
nel groups. Each group interfaces with a separate in­
put/ output unit. However, if a channel in a group is
already active when a request occurs on another chan­
nel in the same group, this requesting channel may
not be serviced next if a channel in a different group
requests control at the same time. This priority meth­
od provides maximum 1/0 transfer rates. The com­
puter requires 8 microseconds to service a single re­
quest from an input/output unit, but the input/ output
unit requires additional time to complete the data
transfer. Therefore, rather than waiting for the in-

14

put/ output unit to accomplish the transfer and tak­
ing the next highest priority channel request in a
group, the computer may service lower priority chan­
nels in other units as shown in Figure 14.

The previous discussion dealt with the microelectronic
input/output unit. The larger CP-642 compatible input/
output unit, designed to be used with existing peripheral
equipments, is similar in operation with the following
exceptions:

• Timing considerations are generally slower;
• The Interrupt Request signal may be deleted

if the peripheral equipment does not have the
capability of sensing it. The interrupt opera­
tion proceeds as in Figure 6, using only the
Interrupt line, Input Acknowledge line, and
Data lines.

I- I-
I-(/) (/) I-w w (/) (/)

'.:) '.:) w w
0 0 ::::> ::::>
w w 0 0
ex ex w w

ex a::
~ ~ '° M

:I: :I: :I: :I:
u u u u

ACTIVE

CHANNEL 13

INACTIVE

ACTIVE

CHANNEL 15

INACTIVE

ACTIVE

CHANNEL 6

INACTIVE

ACTIVE

CHANNEL 3

INACTIVE

TIME

Figure 14. Channel Priority

POWER SUPPLY

Two power supply units are furnished with the CP-
823 / U computer: One furnishes power to the Central
Processor and Memory Units, while the second fur­
nishes power to from one to four input/ output units.

Input power requirements vary depending upon com­
puter configuration, but both power supplies operate
from a 400-CPS, 3-phase, 200-volt, line-to-line source

15

or a 400-CPS, 3-phase, 115-volt, line-to-line source.
Both power supplies have been designed for d-c out­
put voltages, at ± 5 percent, when the input power
source conforms to MIL Standard 704. Power supply
units can also be provided which operate on 60-cycle
or 28 volt d-c service. The over-all efficiency of each
power supply is greater than 75 percent at maximum
input and maximum load conditions.

UNIVAC CP-823/U COMPUTER CONTROL

GROUND CONSOLE

The UNIV AC CP-823 /U Computer Ground Console
contains the UNIVAC 1232A Input/Output Console
and a maintenance/control panel. The 1232A Input/
Output Console will provide the capability of paper
tape input/ output, while the control panel will allow
an operator to perform various functions with the com­
puter (Figure 15A).

UNIVAC 1232A
INPUT/OUTPUT CONSOLE
UNIV AC 1232A Input/Output Console consists of a
paper tape perforator, paper tape reader, page print­
er* , and alphanumeric keyboard* assembled into a
compact unit which operates on a single input/output
channel. Programs or program modification may be
loaded by the reader on punched paper tape (5- to
8-level) prepared off-line under computer program
control by the perforator. Alphanumeric entries to the
computer may be made at the keyboard with or with­
out printout. The page printer is also useful as a pro­
gram monitoring device in providing a running record
of real-time and normal program activities. It may be
used with all UNIV AC general-purpose military com­
puters.

FUNCTIONAL DESCRIPTION
The UNIVAC 1232A Input/Output Console oper­
ates under the control of the computer program. It
accepts instructions from the computer program for
any function or combination of functions assigned to
it. The control circuitry translates the function word
to initiate the proper mechanical and electronic re­
sponse and executes the operations designated. Data
are transferred in 6-bit frames from the alphanumeric

*The Keyboard and Printer are optional items.

16

keyboard to the computer and are accepted in 6-bit
frames from the computer for output on the printer.
Five to 8-bit frames may be used with the paper
tape reader and the paper tape perforator, and opera­
tions may be performed simultaneously with other in­
put or output functions.

The control circuitry supplies the necessary com­
munication signals required between the console and
the computer to complete an input/ output buffer with­
out program attention. Keyboard interruption of the
computer program is also provided.

The UNIV AC 1232A Input/Output Console may be
operated off-line to print information, to perforate pa­
per tape, or to perform both tasks simultaneously. The
information may be entered from the tape reader or
from the keyboard.

MAINTENANCE
CONTROL PANEL
The maintenance/ control panel, on the ground
console, is the man-computer interface for the UNI­
V AC CP-823 / U Computer. The maintenance/control
panel contains all controls and displays necessary to
operate and maintain the CP-823/U computer. Fig­
ure 15B shows the current panel layout and all the
controls and indicators on the panel (refer to section
entitled "Central Processor.")

The indicators are neon lights that contain a set
button to allow an operator to select manually a par­
ticular situation for the computer. During times of
low-speed operation, or whenever the computer is
stopped, the neon indicators give the operator a visual
summary of the existing conditions of the computer pro­
gram.

Figure 15A. UNIVAC 1232A Input/Output Console

Figure 158.

Maintenance/Control

Console

17

Maintenance/Control Panel

PHYSICAL CHARACTERISTICS

AND ELECTRONICS

GENERAL
The CP-823 /U computer operates over a tempera­
ture range of -54°C to +55°C and under extreme
shock and vibrational stress. as specified by the specif­
ication MIL-E-5400F. It is constructed of modularly
discrete units (i.e., power supply, central processor,
memory, and input/output) to allow the user to match
the hardware to the application.

MICROELECTRONICS
The UNIV AC CP-823 /U Computer is constructed
primarily of integrated, monolithic s.emiconductor ele­
ments. Resistors, diodes, and transistors are contained
within a single chip of silicon and interconnected by
deposited aluminum conductors in monolithic semi­
conductor elements to form a NAND logic element
(See Figure 16, logic element, and Figure 17, circuit
schematic) . Using integrated circuits obtains maximum
benefits from the state-of-the-art techniques developed
by the semiconductor industry to provide high reli­
ability, small size, light weight, and low cost. The use
of integrated semiconductor circuits eliminates most of
the packaging of discrete elements now required in
welded cordwood or soldered printed card circuits;
however, discrete components are not completely elim­
inated. The number of steps required in manufactur­
ing is reduced to about one-tenth of those required for
the same circuit function using conventional compon­
ents. Complex circuits are being mass produced
through the use of automated manufacturing techniques
which previously had been restricted exclusively to the
manufacture of better transistors.

INTEGRATED CIRCUIT
CONSTRUCTION

Microelectronic integrated computer circuits are sub­
miniature in sizes, formed by selectively oxidizing and
photo-etching 0.010-inch thick slices of silicon. The
circuits are made on silicon chips small enough to be

18

r----,
I =C)-{>-1
'~' l~I L _____ ..J

3/ 3 PACKAGE

r- ---1

l~I

'~' l~I L ____ .J

4/ 2 PACKAGE

Figure 16. Basic Logic Circuit Packages

.------------1
2 I Dl I

I
3

4

5

7

8

9 oa I
I I
L------------_J

DUAL NANO SCHEMA TIC

Figure 17. Schematic - Integrated Logic Element

•

TRANSISTOR

INTERCONNECTIONS
ALUM I NUM

RESISTOR

Figure 18. Integrated Circuit Cutaway

mounted inside 0.25 by 0.25-inch flat packages. Fig­
ure 18 depicts an integrated circuit cutaway showing
the areas into which P or N type impurities have
been diffused to dope the silicon crystal. A silicon­
oxide coating is placed over the silicon chip, forming
a glass resist to stop the diffusion of any impurities.
The impurities can be selectively diffused through
windows photo-etched in the oxide coating. First, the
crystal is divided into discrete components by a
diffusion through slots on the top surface, as shown
in Figure 18. By growing additional oxide layers,
etching new patterns through the oxide, and diffusing
impurities through the etched windows, either a resis­
tor, diode, or transistor component is diffused into each
isolated area. This component diffusion process is of
about the same complexity as the manufacturing proc­
ess used for single planar transistors. When all com­
ponents have been diffused into the silicon, an addi­
tional oxide layer is placed over the silicon slice, and
windows are etched through the oxide where the
intercomponent printed circuitry is required. An
aluminum layer is then vacuum deposited onto the
crystal, and the intercomponent printed circuitry is
obtained by photo-etching the aluminum layer. Fin­
ally, external connections are made by thermocom­
pression bonding gold wires from the component con­
nection pads to the external leads. The diffused com­
ponents, intercomponent printed circuitry, and exter­
nal wire connections for the microelectronic circuit
chip designed for a 0.25 by 0.25-inch package are
shown in an enlarged view in Figures 19 and 20.

The approach to integrated circuit construction de­
scribed previously features • photo-etching techniques to
obtain minimum size, lower costs, and higher reliabil­
ity.

19

Figure 21.
Computer Logic Module

LOGIC MODULE CONSTRUCTION

The computer logic module (Figure 21) is a pluggable
unit designed to mount and interconnect a maximum
of 64 integrated circuit flat packs. It is comprised of
a frame-connector assembly, two printed circuit boards,
and an isolation board. Outside dimensions of the
module measure 0.475 x 3.67 x 5.37 inches.

An integral part of the module frame, the 90-pin
male connector provides for intermodule and power
connections.

There are two double-sided printed circuit boards
used on the module. One, of epoxy glass, is the intercon­
nection board which is printed with horizontal circuit
interconnection lines on one side and vertical lines on
the other. The two sides are interconnected by plated
through holes at the desired interconnections to pro­
vide a signal path grid work between individual cir­
cuits and between circuits and the connector. Circuit
element leads and connector pins are also connected
to the signal path grid work by means of plated through
holes.

The second board provides for a ground, heat sink,
and for voltage bussing. One side of the board is

20

used as a ground plane for the circuit elements and
is also used for a heat sink for conductive heat re­
moval from the integrated circuit flat packs, which
are mounted flat against it. The other side of the
ground voltage board is used for bussing of the two
voltages to the various circuits from the connector vol­
tage pins.

These two printed circuit boards are mounted on both
sides of a thin piece of insulating board. Flat packs are
mounted on the ground side of the ground voltage
board with their signal leads bent at 90° and passing
through a clearance hole in the ground plane to
contact an appropriate point on the signal intercon­
nection board. Ground and voltage leads are terminat­
ed on the other board.

Although there are 64 spaces for integrated circuit
flat packs on this module, several of the spaces are
utilized by a combination resistor-capacitor flat pack,
containing eight resistors, and one capacitor. The re­
sistors are used as a collector load, where outputs of
the integrated circuit chips are tied together into an
"OR" circuit. The capacitor is used as a filter for
the supply voltage.

Figure 22. Central Processor

Figure 23. Central Processor with Module Extended-Inside View

21

CENTRAL PROCESSOR

CONSTRUCTION

The central processor is contained within a case ap­
proximately 7 1I4 inches x 17 1 /2 inches x 14 1 /2
inches (see Figure 22). Within the case are spaces
and connectors for up to 72 logic modules, heat ex­
changers and cooling ducts, and intralogic module
chasis wiring (see Figure 23). The CP-823 /U Central
Processor utilizes 71 removable logic modules (see
Figure 21) . Each logic module fits into a heat con­
ducting slot provided in the central processor and plugs
into the associated connector. The back panel con­
nector into which the modules are inserted is wired
by means of a programmed, automatic wire-wrap ma­
chine. Since many logic modules of the same type are
used within the central processor, the different logic
functions depend upon connector wiring. When the
logic modules are in place, two sides of the ground
plane (heat sink), on the logic module, contact heat
exchanger-support ducts to provide a physical path for
heat conduction. The heat exchanger ducts have been
designed to allow sufficient air flow to maintain prop­
er circuit temperature. All circuits are cooled by con­
duction, and no air flows directly over the modules
and circuits.

The top cover of the unit is secured to the frame
with quick-disconnect type fasteners to allow easy
access to the replaceable modules.

Connectors are located at each end of the unit to ac­
commodate cables to the memory, input / output, and
power supply units.

INPUT /OUTPUT

CONSTRUCTION

Each 4-channel microelectronic input/output unit is
similar to the central processor, except it is of smaller
size. Case dimensions are approximately 7 1I 4 x 13 x
14 1/2 inches. This unit has space for 42 plug-in mod­
ules and is , therefore, shorter over-all than the central
processor. All other details of construction are similar
to the central processor.

Figure 24. Memory Unit Showing 4K
Thin-Film Stack and 4K Core Stack with

Service Modules

MEMORY UNIT CONSTRUCTION

The memory unit (Figure 24) consists of removable
4096 word, 30-bit memory modules. Memory unit de­
sign provides for eight memory modules with one po­
sition designed to accept a 4096-word ferrite core
(DRO) module or a 4096-word thin-film (NDRO)
module. The entire memory unit is packaged in a
case approximately 17.5 inches x 14 inches x 14
inches over-all. The interconnection panel for all the
pluggable circuitry is in the center of the unit, with
the plug-in memory modules inserted from each side.
Modules are accessible by removing a cover on either
side of the unit. The same type of air cooling is
used as on the other units, with integral heat exchang­
ers.

Memory electronics, which are common to all mem­
ory stack modules, data register, voltage regulator, film
write, current regulator, stack select, and x-y address
select, are contained on six pluggable service modules.
Throw-away circuit blocks, similar to those discussed
in the core memory section, contain most of the
electronic components; some integrated circuit pack­
ages and discrete components are mounted directly
on the service modules' printed circuit boards.

CORE MEMORY

Each core memory module consists of a 4096 30-bit
word core stack and associated electronics packaged
as a pluggable, modular unit. A core stack is com-

22

posed of 30 double-window planes, with each plane
containing 4096 cores. The stack-associated electron­
ics, consisting of sense amplifiers, inhibit switch cir­
cuits, read and write transformers, and flat pack
strobe gates are mounted on seven printed circuit
boards. The read and write transformers and diodes
are on boards which form the two ends of the core
stack. The other five printed circuit boards are
mounted in heat conducting frames for heat transfer
to the air heat exchangers. These frame assemblies
are mounted to the periphery of the core stack and
wired to it, to form the complete 4096-stack module,
pluggable to the back panel of the memory unit.

The sense amplifier and inhibit switch circuits are
packaged in potted, individually pluggable circuit
blocks of approximately 0.5 cubic inch each. The
potted blocks are constructed of discrete components,
mounted in cordwood fashion, and soldered to a flexi­
ble printed circuit board. This assembly is mounted
to a connector and potted as a throw-away package.
One circuit of each type (sense amplifier, inhibit
switch, etc.) is contained within one potted block.

THIN-FILM MEMORY

Nondestructive readout memories are used when it is
necessary to eliminate chance alteration of stored in­
formation or critical constants and to achieve higher op­
e rating speeds by eliminating the necessity of rewrit­
ing after each readout.

•

Basic to the NDRO memory is the Bicore* element
which is used as the NDRO memory storage element.
This memory element consists of a high-coercivity
storage film and a low-coercivity readout film deposited
in a multilayer fashion that physically appears to be
a single film. The Bicore elements are deposited on a
3-mil glass substrate measuring 1. 7 by 2.4 inches. The
Bicore elements are 30 mils square and have a total
thickness of 6000 angstroms. Each substrate has 960
elements deposited in a 30 by 32 array.

The NDRO memory plane is made up of two sub­
strates holding 64 30-bit words, placed in a wiring

array which contains the drive and sense conductors.
The conductors are the same width as the film and
are etched from 2.8-mil copper laminated to 1-mil
Mylar film. Two conductor layers are used in the
NDRO array.

A component board, which is the final level of ad­
dress translation, completes the plane assembly. It con­
sists of Permalloy** switch cores, microdiodes, and in­
terconnection wiring. Memory associated electronics
are packaged on circuit boards within the thin-film
module.

INSTALLATION REQUIREMENTS

The computer has been designed to be cooled by air,
with an operating temperature range of -54 °C to
+55 °C. Cooling requirements may be found in Table
3. The operating temperature of the CP-642 compatible
input/output unit is 0 °C to +ss °C.

Signal interconnection of the units comprising a CP-
823/U computer system is accomplished through inter­
connecting cables terminated in connectors, which are
plugged into mating receptacles at each unit.

When using the microelectronic input/output unit, the
interface with peripheral equipment may be accom­
plished with up to 100 feet of shielded cable. The cable
is composed of 42 twisted pair, terminated in a 92-pin
connector. The CP-642 compatible input/output unit
will interconnect with up to 300 feet of cable. Intercon­
necting cable for the CP-642 compatible input/output
unit may be the same as that used for interconnecting
the CP-642/USQ-20 with its peripheral equipment.

TABLE 3. SUMMARY OF EQUIPMENT CHARACTERISTICS

WEIGHT VOLUME POWER
EQUIPMENT LBS. CU. FT. REQUIREMENTS

CENTRAL PROCESSOR 50 1.1 90

MEMORY
32 K CORE 90 2.1 125

MICROELECTRONIC INPUT/
OUTPUT 35 0.80 105

CP-642 COMPATIBLE
INPUT/OUTPUT* 60 1.65 200

CENTRAL POWER SUPPLY 50 .93 65

INPUT/OUTPUT POWER
SUPPLY 50 .93 110

*Contains its own power supply.

** Based on the requirement of 65 pounds of air per hour per 100 watts power dissipation.

*Registered trademark of Sperry Rand Corporation.

** Registered trademark of Western Electric Company.

23

COOLING
LBS. OF AIR** REQUIREMENTS

PER HR. (CFM SEA LEVEL)

59 13

81 18

69 17

130 30

42 10

71 17

SOFTWARE
Experience with a multitude of digital systems has
definitely demonstrated the need for support software
that will expedite delivery of the initial program and
provide for the rapid and orderly incorporation of pro­
gramming changes as the system develops. Without
such support software the initial programming and sub­
sequent incorporation of program changes become the
primary constraint in terms of initial system delivery
and subsequent product improvement. As the opera­
tional programs required for the various systems be­
come larger in terms of number of computer instruc­
tions, the need for support software becomes even
more critical.

This consideration was instrumental in determining
that the CP-823 /U computer would be compatible with
the CP-642A/USQ-20(V) and CP-642B/USQ-20(V)
computers. Compatible in this case means that the
three computers have similar instruction repertoire and
input/output. Thus, without modification any pro­
gram for the USQ-20 computers could be run on the
UNIVAC CP-823/U Computer. The CP-823/U com­
puter is also a software subset of the CP-667 in that
any program written for it can be run on the CP-667
computer.

The advantages of this software compatibility are
considerable: all software previously developed for the
CP-642A/USQ-20(V) and CP-642B/USQ-20(V) is
available for the CP-823/U computer. Further, any
subsequent software development for any of these com­
puters will be available to the CP-823/U. Such avail­
able software would not only cost several million

dollars to develop but would require a lead time of
several years.

A second advantage of selecting a compatible design
is that a large pool of programmers and systems people
exist both in the Navy and at UNIV AC who are
familiar with the CP-823/U predecessors. Thus, it is
not necessary to retrain personnel in the utilization
and programming of the computer. The extensive
system and software experience gained with the other
computers is directly applicable to the utilization of
the CP-823/U computer.

Another obvious advantage is that existing compu­
ters can be used for data reduction, analysis, pro­
gram development, etc., pertaining to the CP-823/U
computer. For example, CP-823 /U programs could be
directly checked out on the CP-642B/USQ-20(V)
computer. It is not necessary to first develop an in­
struction simulation, which not only requires de­
velopment time and money but would normally be
very inefficient in its use of computer time and mem­
ory.

In addition to the obvious software advantages, the
CP-823/U instruction and 1/0 design were chosen
because of their proven excellence in solving a mul­
titude of real-time and command and control prob­
lems.
With the selection of the compatible instruction rep­
ertoire and input/ output, assemblers, compilers, de­
bugging routines, utility packages, and subroutine li­
baries are available for the CP-823 /U computer at
no additional development cost.

ASSEMBLERS AND COMPILERS

AS-I ASSEMBLER
The AS-1 language defines a problem in machine­
oriented terminology. A thorough knowledge of the
computer is necessary to use this language. There
are four bask types of statements that can be used
with this assembler:

• Mono-operations, which mnemonically express
machine instructions;

• Poly-operations, which mnemonically express
functions that give rise to more than one
machine instruction;

• Declarative operations, which state control
information to the assembler;

24

• Debugging op,erations, which help the pro­
grammer debug his program.

Inputs and outputs of the AS-1 assembler are limited
to punched paper tape and on-line typewriter.

AS-IX ASSEMBLER
The AS-1 assembler has somewhat limited capabili­
ties in processing large programs. AS-1 X is an ex­
panded version of AS-1 that will allow assembly of
larger programs more quickly through the use of two
magnetic tape transports and a high-speed printer.

The added equipment provides much greater versa­
tility of outputs.

'

COMPILERS
CS-I COMPILER
The CS-1 compiler was jointly developed by UNI­
VAC and the Navy, primarily for use in real-time
command and control applications. It has been used
for several years and is constantly being improved.

The CS-1 compiler is a program used as an aid in
the preparation of other computer programs. It ac­
cepts information coded in an English-language, al­
gebraic-type shorthand and produces a running com­
puter program which is efficient from the standpoint
of both time and memory space. Various debugging
aids are an integral part of the compiler and signif­
icantly reduce the time normally required to debug
the program. Program maintenance is simplified by a
"librarian" which catalogues subroutines and data de­
signs for subsequent retrieval.
Some typical features included in the CS-1 compiler
are: a.

b.

A common mnemonic source language. This
language uses alphanumeric terms and sub­
divides into computer-oriented and problem­
oriented operations;

An expandable source language. The com­
piler design provides the capability of mak­
ing additions to the source language. More
powerful operations may then be continuous­
ly devised to increase the usefulness of the
system;

c. Both punched paper tape and punched card
input are used with a uniform set of coding
symbols;

d. Flexible memory assigning ability, for both
object program positioning and data position­
ing in the computer;

e. A method of correcting the source programs;
f. Format error detection with printouts;
g. An integrated librarian. This librarian

stores subroutines at the source language lev­
el. The subroutines are available for pro­
gram inclusion when constructing a program­
ming system;

h. Preparation of edited printouts of the pro­
gram at various stages and memory address
allocations;

i. Object program media option of paper tape.
magnetic tape, or cards;

j. The ability to produce object programs for
more than one computer version;

k. The ability to use AS-1 and AS-1 X assem­
bler coding as input.

CO BAL
CO BAL is primarily a business - oriented compiler de -
signed to operate with a Real-Time Executive Routine
(REX). REX controls, sequences, and provides for the
efficient use of facilities for user programs.

DEBUGGING AIDS
CS-I DEBUGGING PACKAGE
CS-1 debugging aids provide a list of changes in the
contents of computer words within a designated area
of core storage during execution of the program being
debugged. In addition, they make a non-zero dump
of the designated area, or areas, at any point of the
program during its execution. The areas to be checked
and the place in the program where these are to
be checked are designated by the debugging opera­
tions during the program compiling. The CS-1 de­
bugging packages are then operated concurrently with
the program to provide the desired debugged infor­
mation. Flex code, field data code, or magnetic tape
outputs can be selected from the debugging package.

UTILITY DEBUGGING
PACKAGE
The Utility Debugging Package consists of a set of

*Registered trademark of the Teletype Corporation.

25

programs designed to assist the programmer to debug
and check out his program. The programs are called
up via the operator console and consist of the follow­
ing routines:

• Module loader

• Paper tape handler

• Inspect and change memory addresses

• Store (Q) in memory

• Memory search
• Magnetic tape handler

• Magnetic tape editor I duplicator

• CS-1 magnetic tape output load

• Core dump on printer

• Keyboard entry
• Core dump on magnetic tape in printer for­

mat

• Teletype* handler

T~Llri:: n1Ar- ri~T1r

Trace is a diagnostic routine used for tracing the course
of a program being executed. For each instruction
traced, the contents of all appropriate registers and the
instruction itself are recorded on magnetic tape for
subsequent listing on a high-speed printer.

T V

Besides the debugging operations available in CS-1, a
real-time, data-extraction system has been developed
to assist in debugging programs in terms of the high­
level CS-1 language in which they were written. This
language is TALK (Take a Look). Basically, this
technique permits programmers to interrupt a program
at various points to extract data which they have spec­
ified by TALK requests. Extensive editing is per­
formed on the extracted data as a separate function
to allow both real-time extractions and a flexible
edited format for reading.

Some of the characteristics and capabilities of TALK
are as follows:

a. The users program is written and compiled
normally with no additional instructions gen­
erated;

b. The data to be extracted is specified by the
same high-level language names as those
used in the original source program;

c. TALK requests, which specify the data units
to be extracted during execution of the pro­
gram, are prepared and processed through a
separate translator as a post compiling proc­
ess. TALK requests may be updated or
changed as the debugging progresses;

d. Real-time capabilities exist since data is
merely extracted for later editing;

e. The edited output is an easily interpreted
listing of data associated with its high-level
source language identification. For instance,
total tables can be listed by their high-level
definitions. Decimal or octal may be speci­
fied;

f. Equipment flexibility exists for most environ­
ments so that on-site debugging can be
achieved;

g. The TALK process does not necessarily have
to be used as a debugging aid; it could be
used as a data-extraction procedure with the
user writing his own data-editing· program.

CORNELL UTILITY PACKAGE

The Cornell Utility Package is a paper tape and
magnetic tape handler. Paper tape operations handle
bioctal~ Flex code, and Teletype (TWX) code for­
mats. The following programs are available as part
of the Cornell Utility Package:

1. Paper Tape Operations

• Bioctal, Flex, and TWX dumps with/without
zero suppression

• Bioctal, Flex, TWX and relative bioctal loads

• Bioctal check-read with either Flex or TWX
code punch tape output of discrepancies

• Duplicate paper tape of any format

2. Magnetic Tape Operations

• Write UNIVAC/dual format with/without
check sum

26

• Read UNIVAC/dual format with/without
check sum

• Position/rewind tapes
• Read CS-1 machine language outputs
• Dump area for off-line high-speed printer list­

ing

3. Miscellaneous Operations

• Fault condition display
• External interrupt control
• Inspect and change
• Store Q
• Memory search with either Flex or TWX cod¢

punch tape output of addresses of the found
information

• List area on on-line Teletype with/without
zero suppression

SUBROUTINE LIBRARY

A vast subroutine library is available with the CP-823 I
U computer. The following is a representative list ot
those subroutines. It should be noted that the list is
not complete in that many more subroutines are avail­
able than those depicted.

FIXED POINT
MATHEMATICAL ROUTINES

a. Sine
b. Cosine
c. Arcsine
d. Arccosine
e. Tangent
f. Arctangent
g. Arccotangent
h. Natural logarithm
i. Exponential
j. Stable Platform to Ships Deck Coordinate

Conversion
k. Ships Deck to Stable Platform Coordinate

Conversion

FLOATING POINT
ARITHMETIC PACKAGE

a. Enter floating point accumulator
b. Floating point add
c. Floating point subtract
d. Floating point multiply
e. Floating point divide
f. Floating point store
g. Floating point compare
h. Fixed point to floating point conversion
i. Floating point to fixed point conversion

FLOATING POINT
POWERS PACKAGE

a. Logarithm
b. Powers of e
c. Powers of N

27

FLOATING POINT
TRIGONOMETRIC PACKAGE

a. Sine
b. Cosine
c. Tangent
d. Cotangent
e. Arcsine
f. Arccosine
g. Arctangent
h. Arccotangent

CONVERSION
PROGRAMS

a. Field data decimal to octal
b. Octal to field data decimal
c. XS-3 to octal
d. Octal to XS-3
e. Field data to Flex/Flex to field data

SORT
ROUTINES

a. Sort any number of 1-word items
b. Modified shell sort (sorting in small units

and then merging) with bit capabilities.

DOUBLE PRECISION
ARITHMETIC

a. Double precision addition
b. Double precision subtraction
c. Algebraic double precision addition
d. Algebraic double precision subtraction
e. Double precision multiplication
f. Double precision division

FIELD DATA ARITHMETIC
a. Field data addition
b. Field data subtraction

APPENDIX A
REPERTOIRE OF INSTRUCTIONS

The UNIVAC CP-823/U is a self-modifying, stored-program, one-address computer. Although

this means that one reference is provided for the execution of an instruction, this reference can
be modified automatically during a programmed sequence. Instructions are in the form of 30-

bit instruction words stored sequentially in memory; the computer executes the instructions sequen­
tially unless an instruction alters the sequence.

By means of five designators, a computer instruction word completely defines a computer opera­

tion. The highest order six bits constitute the function code designator, f. The balance of the
upper half of the instruction word contains the designators j, k, and b. The lower half of the
word contains the operand designator, y. The j and 'k' are designators that pertain to input/output in­

structions.

UNIVAC CP-823/U INSTRUCTION WORD
f j k b y

~---''-----~~~-----------H--------~

FUNCTION CODE DESIGNATOR-F

The f designator appears in bit positions 29 through 24 of the U-register, or an instruction, des­
ignating the function to be performed by that instruction. Values 008 and 77 8 are fault condi­
tions and if executed will cause a fault interrupt and a jump to the fault entrance address.

BRANCH CONDITION DESIGNATOR-J

The j designator appears in bit positions 23, 22, and 21 of the U-register, or an instruction; it
is used in a majority of the instructions for jump and skip determination, for B-register specifi­
cation, and for repeat status interpretation. Appropriate interpretations of the j designator are
listed below and under the descriptions of the individual instructions.

For those instructions in which the j designator has no special interpretation, it specifies the
condition under which the next sequential instruction in the program will be skipped. This per­

mits branching from a sequence without executing a jump instruction, as would normally occur if
a skip condition were not satisfied.

Skip of the next sequential instruction is determined by the following rules in all instructions ex­
cept 04, 12, 13, 16, 17, 26, 27, 60 through 67, and 70 through 76:

A-1

j=O: Execute the next instruction.

j= 1: Skip the next instruction.

j=2: Skip the next instruction if (Q) is positive.

j=3: Skip the next instruction if (Q) is negative.

j =4: Skip the next instruction if (A) is zero (positive zero).

j=5: Skip the next instruction if (A) is non-zero.

j=6. Skip the next instruction if (A) is positive.

j=7: Skip the next instruction if (A) is negative.

When the branch condition involves the sign of the quantity of A or Q, the evaluation examines
the sign bit of these quantities: hence, positive zero is considered a positive quantity, and neg­
ative zero is considered a negative quantity. A negative zero, however, that is generated as a re­

sult of an arithmetic operation is normally forced to a positive zero.

INPUT/OUTPUT CHANNEL DESIGNATOR-J

The 'f designator appears in bit positions 23, 22, 21, and 20 of the U-register, or an input/
output instruction, specifying the C-channel for the instruction. Thus the ']' provides accessi­
bility to the 16 (decimal) input/output channels numbered 0-178• Instructions 13, 17, 62, 66,
67, 73, 74, 75, and 76 use the tj'designator configuration.

OPERAND INTERPRETATION
A

DESIGNATOR-K OR K

A k designator (3 bits) appears in bit positions 20, 19, and 18 of the U-register, or an instruc­
tion; a 't designator appears only in bit positions 19 or 18 since bit 20 is a portion of the 1'
designator. Instructions 13, 17, 62, 63, 66, 67, and 73 through 76 use the~ designator configura­
tion since they perform input/output activities and require 'f designator for channel specifica­
tion. The k designator controls both operand and instruction interpretation. The ~ designator
is explained under the descriptions of the input/ output related instructions.

The k designator controls operand interpretation. Those instructions that read an operand, but
do not replace it after the arithmetic is performed are designated read instructions. Those in­

structions that do not read an operand but store it are designated store instructions. Instructions
which both read and store operands are classified as replace instructions.

A-2

The various values of k affect the operands (except where noted otherwise under individual in­
struction description) as follows:

(a) Read Instructions (01-12, 20-23, 26, 27, 30, 31, 40-43, 50-53, 60-65, 70-72):

k=O: Yu=O's; YL=Y

k= l: Yu=O's; YL=(Y)L

k=:2: Yu=O's; YL=(Y)u

k=3: Y=(Y)

k=5: Yu=All bits same as Y14 ; Yr.=(Yh

k=7: Y=(A)

For instructions 22, 52, and 53, k=7 is not used.

(b) Store instructions (14-16, 32, 33, 47):

k=O: Store operand in Q*.

k=l: Store operandL in YL, leaving (Y)u undisturbed.

k=2: Store operandr, in Yu, leaving (Y)L undisturbed.

k=3: Store operand in Y.

k=4: Store operand in the A-register**.

k=5: Store complement of operandL in Y L, leaving (Y) u undisturbed.

k=6: Store complement of operandL in Yu, leaving (Y) L undisturbed.

k= 7: Store the complement of operand in Y (storing the complement of Bj is the same
as storing a 30-bit register complemented.)

NOTE: When storing B\ the B-register is tested as a 30-bit register, with the upper 15 bits
set to 0. With a k=7, store Bj will complement as a 30-bit register ((Y)u=77777).

(c) Replace instructions (24, 25, 34-37, 44-46, 54-57):

k=:O: Not used.

k=l: Read portion-Yu=O's; YL=(Y)L.

Store portion-Store operandL in YL leaving (Y)u undisturbed.

k=2: Read portion-Yu=O's; Yr,=(Y)11.

Store portion-Store operandL in Yu leaving (Y)L undisturbed.

k=3: Read portion-Y = (Y)

*A 1400000000 instruction complements (Q)

**A 1504000000 instruction complements (A)

A-3

Store portion-Stores operand in Y.

k=4: Not used.

k=5: Read portion-Yu=All bits same as Y14 ; YL=(Y)u

Store portion-Stores operandL in Y L leaving (Y) 11 undisturbed.

k=6: Read portion-Yu=all bits same as Y29 ; YL=(Y)u

Store portion-Stores operandL in Yu leaving (Y) L undisturbed.

k=7: Not used.

NOTE: Repeat instructions require special interpretation when followed by a replace instruction.

INDEX DESIGNATOR-B

The B designator appears in bit positions 17, 16, 15 of the CT-register, or an instruction and spec­
ifies which of the B-index registers, if any, will be used to modify the operand address designator,
y, to form Y =y + (Bh). This operation employs an additive accumulator; hence, a quantity con­
sisting of all zeros cannot result unless the bits of both the operand designator, y, and (Bh) are
all zeros. Use of a B-index register to modify the operand designator, y, to form Y =y + (Bb)
will cause the higher order 15 bits of the B-register memory address to be made zero.

The effect of the various values of the b designator is a 15-bit one's complement sum as follows:

b=O: Do not modify y.

b=l: Add (B1
) toy.

b=2: Add (B2) toy.

b=3: Add (B3) toy.

b=4: Add (B 4
) toy.

b=5: Add (B5) toy.

*b=6: Add (B6) toy.

b=7: Add (B7) toy.

OPERAND DESIGNATOR-Y

The y designator appears in bit positions 14 through 0 of an instruction. The operand or ad­
dress of an operand, Y, is related to y through the expression Y=y + (Bh).

*A repeat instruction makes special use of B-register 6 when followed by a replace instruction.

A-4

Symbol

a

(a)

(a) i

(a),

(a)n

f

/,\.

J

k

12
b

y

-¥­

y

C:X)

L ¥-(Q)

A

B

LEGEND

Represents

A-register (A, Q, B"), a memory location Y, or a constant

Content of a

Initial content of a

Final content of a

The nt" bit of a

The nth bit of the content of a

Function code designator

Branch condition designator

Input/ output channel designator

Operand interpretation designator

Operand interpretation designator

Index designator

Operand designator

Operand (regardless of source)

y+ (Bh) The operand or address for the Read portion of an instruction.

The destination address for the Store portion of an instruction.

Content of memory address ..X.

Bit-by-bit multiplication, logical multiply of¥.,, and (Q)"

A-register or accumulator (30-bit arithmetic register)

Seven B-registers (15 bits each). B-registers are address-modifying registers gen­

erally used for indexing loops in a program; in addition, B7 serves as a repeat

counter. (The address modification does not alter the instructions as stored in

memory.) The j or the b designator specifies the B-register used. The B-registers

are located in seven DRO memory locations.

Q Q-register (30-bit arithmetic register)

U U-register (30 bits). The U-register holds the instruction word during execution

of an operation. If address modification is required before execution, the appro­

priate B-register content is added to the lower order 15 bits of the U-register be­

fore execution.

P P-register (15 bits). The P-register is the program address register. This register

holds the address of the next instruction throughout the program except for

jump instructions where the P-register is cleared and the new program address is

entered.

C The 16 input/ output channels (30 data lines each). Channels consist of trans­

mission lines; therefore, they cannot be considered registers. The designator i'
specifies (in octal) the channel used.

A-5

TABLE A-1. REPERTOIRE OF INSTRUCTIONS

NORMAL NORMAL
CODE INSTRUCTION EXECUTION CODE INSTRUCTION EXECUTION

(OCTAL) TIME µS (OCTAL) TIME µs

00 (Fault Interrupt) 42 Subtract Logical Product 8
01 Right Shift Q 8-12 43 Compare Mask 8
02 Right Shift A 8 -12 44 Replace Logical Product 12

03 Right Shift AQ 8-12 45 Replace A+ Logical Product 12

04 Compare 8 46 Replace A-Logical Product 12
05 Left Shift Q 8-12 47 Store Logical Product 8
06 Left Shift A 8-12

07 Left Shift AQ 8-12 50 Selective Set 8
51 Selective Complement 8

10 Enter Q 8 52 Selective Clear 8

11 Enter A 8 53 Selective Substitute 8

12 Enter Bn 12 54 Replace Selective Set 12

13 External Function on en 8 55 Replace Selective Complement 12

14 Store Q 8 56 Replace Selective Clear 12

15 Store A 8 57 Replace Selective Substitute 12

16 Store Bn 12
60 Jump (Arithmetic)

17 Store en or Test EFB 4-12
8

61 Jump (Manual) 8

20 Add A 8 62 Jump on en Active Input Buffer 8

21 Subtract A 8 63 Jump on en Active
Output Buffer 8

22 Multiply 32-48 64 Return Jump (Arithmetic) 12
23 Divide/Square Root 48 65 Return Jump (Manual) 12
24 Replace A+Y 12 66 Terminate en Input Buffer
25 Replace A-Y 12 or Enable, Disable Interrupts 4
26 Add Q 8 67 Terminate en Output Buffer,
27 Subtract Q 8 all Buffers, or Terminate C n

External Function Buffer 4

30 Enter Y+Q 8 70 Repeat 12
31 Enter Y-Q 8 71 B Skip on Bn 12
32 Store A+Q 12 72 B Jump on Bn 12
33 Store A-Q 12 73 Input Buffer on en 12
34 Replace Y+Q 12 (without monitor mode)

35 Replace Y-Q 12 74 Output Buffer on C n 12

36 Replace Y+l 12
(without monitor mode)

75 lnout Buffer on en 12
37 Replace Y-1 12 (with monitor mode)

76 Output Buffer on en 12
40 Enter Logical Product 8 (with ''· nitor mode)
41 Add Logical Product 8 77 (Fault Interrupt)

TABLE A-2. MEMORY ALLOCATIONS

TYPE OCTAL
OF ADDRESS

MEMORY RANGE USE

00000 Unassigned

00001-0001 7 Unassigned

00020-00037 External interrupt entrance address (one per input channel)

00040-00057 Input monitor interrupt entrance address (one per input channel)

00060-00077 Output monitor interrupt entrance address (one per output channel)

00100-00117 Input buffer control words (one per input channel)

Core 00120-00137 Output buffer control words (one per output channel)

Memory 00140-00157 External function buffer control word (one per output channel)

00160 Real-time clock

00161-00167 B-boxes

00170-00477 Unassigned

00500-0051 7 External function buffer monitor interrupt entrance address (one per output channel)

00520-00537 Interrupt word storage address (one per input channel)

00540-00577 Unassigned

00600-00617 lntercomputer time out interrupt entrance address (one per output channel)

00620-67777 Unassigned

Film 70000 Bootstrap entrance address

Memory 70001 Power restart entrance address

70002-77777 Unassigned

A-6

LIST OF INSTRUCTIONS

OJ RIGHT SHIFT Q

This instruction causes an open-ended shift of (Q) to the right¥ bit positions. The high­

er order bits are replaced with the original sign bit as the word is shifted. Only the lower or­

der six bits of ¥- are recognized for this instruction.

02 RIGHT SHIFT A
This instruction causes an open-ended shift of (A) to the right¥ bit positions. The higher

order bits are replaced with the original sign bit as the word is shifted. Only the lower order

der six bits of Y are recognized for this instruction.

03 RIGHT SHIFT AQ

This instruction causes an open-ended shift of (A) and (Q) as one 60-bit register to the

right ¥- bit positions. The lower order bits of A are shifted into the higher order bit posi­

tions of Q. The higher order bits of A are replaced with the original sign bit as the word is

shifted. Only the lower order six bits of¥- are recognized for this instruction.

04 COMPARE

This instruction compares the signed value of¥ with the signed value of (A) and/or (Q).

It does not alter either (A) or (Q) . The branch condition designator, j, is interpreted in

a special way for this instruction as listed below:

j=O: Execute the next instruction.

j= 1: Skip the next instruction.

j=2: Skip the next instruction if¥is less than, or equal to, (Q).

j=3: Skip the next instruction if Y is greater than (Q).

j=4: Skip the next instruction if (Q) is greater than, or equal to Y, and Y is greater

than (A).

j=5: Skip the next instruction if Y is greater than (Q), or if Y is less than, or equal to

(A).

j=6: Skip the next instruction if Y is less than, or equal to (A).

j=7: Skip the next instruction if Y is greater than (A).

05 LEFT SHIFT Q

This instruction shifts (Q) circularly to the left -¥- bit positions. The lower order bits are

replaced with the higher order bits as the word is shifted. Only the lower order six bits of

¥are recognized for this instruction. Maximum shift count permitted is 59 places.

06 LEFT SHIFT A

This instruction shifts (A) circularly to the left ¥- bit positions. The lower order bits are

replaced with the higher order bits as the word is shifted. Only the lower order six bits of

~are recognized for this instruction. Maximum shift count permitted is 59 places.

A-7

07 LEFT SHIFT AQ

This instruction shifts (A) and (Q) as one 60-bit register. The shift is circular to the

left ¥-bit positions. The lower order bits of A are replaced with the higher order bits of Q,

and the lower order bits of Q are replaced with the higher order bits of A. Only the lower

order six bits of ¥ are recognized by this instruction. Maximum shift count permitted is 59

places.

IO ENTER Q

Clear the Q-register. Then transmit ¥- to Q.

l l ENTERA

Clear the A-register. Then transmit ¥ to A.

12 ENTER B 11

Clear B-register j. Then transmit ¥- to B-register j. The branch condition designator, j, is

used to specify the selected B-register for this instruction and is not available for its normal

function.

13 EXTERNAL FUNCTION ON C 11

This instruction establishes a I -word external function buffer via the output buffer chan­

nel) from the storage address Y. The buffered word address is maintained in the lower

order 15 bits of storage address 00 I 40 plus].'

This instruction is implemented as follows: For all'k values, Y is stored in the upper and lower

order half of storage location 00140 plusi:'

Jf'k-==3, a I-word external function buffer with force is established. (With force, the instruc­

tion ignores the external function request from the exterf' :-i l device.) The program will

hold until the external function word is transmitted.

If 1==2, initiate a I-word external function buffer and proceed to the next instruction.

Subsequent to this instruction the transfer is accomplished when requested by the external

device.

If 'k== 1, a I-word external function buffer with monitor and with force is established. A

monitor interrupt follows the completion of the buffering operation.

If'k==O, a I-word external function buffer with monitor is established. Proceed to the next in­

struction. A monitor interrupt follows the completion of the buffering operations. Subse­

quent to this instruction, the individual transfer is accomplished when requested by the ex­

ternal device.

14 STOREQ

Store (Q) at storage address Y as directed by the operand interpretation designator, k.

If k==O, complement (Q). If k==4, store in A.

15 STORE A

Store (A) at storage address Y as directed by the operand interpretation designator, k.

If k==4, complement (A). If k==O, store in 0.

A-8

16 STORE 8 11

Store a 30-bit quantity, whose lower order 15 bits correspond to the content of B-register j

and whose higher order 15 bits arc zero, at storage address Y as directed by the operand

interpretation designator k. The branch condition designator, j, is used to specify the se­

lected B-register for this instruction and is not available for its normal function.

17 STORE C" OR TEST EFB

If 'k=3, transfer the interrupt word from storage address 00520 plus J to storage address Y.

The external interrupt request line is reset on channel C 11
•

If 'k= 2, transfer the contents of the C channel specified by] to storage address Y. An In­

put Data Acknowledge signal is then sent on the C channel. The program will hold until

the word is read.

If 'k°= 1 or 0, this instruction tests the status of the EF buffer on the designated channel. If

the buffer is active, a jump condition is satisfied.

Then, if 1' 1, (Yh or, if'~= O, Y becomes the address of the next instruction. If the buf­

fer is inactive, the jump condition is not satisfied and the next sequential instruction in the

current sequence is executed in the normal manner.

20 ADO A

Add ¥-to the previous content of the accumulator.

21 SUBTRACT A

Subtract ¥ from the previous content of the accumulator.

22 MULTIPLY

Multiply (0) times ¥; leaving the double-length product in AO. If the factors are con­

sidered as integers, the product is an integer in AQ.

23 DIVIDE/ SQUARE ROOT

If k¥=7, divide (AQ) by¥ leaving the quotient in the Q-register and the remainder in the

A-register. If k =7, take the square root of the (Q) leaving the root in the Q-register and

the remainder in the A-register. The remainder a=n - (Q X Q), where n=the original

number.

NOTE: If a divide overflow condition exists, no maintenance console indication is given. How­

ever, by coding each divide instruction with j=3, a program test for the divide over­

flow is automatic. With this selection of j, a skip of the next instruction occurs if a divide

overflow exists. The skip should be made to a jump instruction which provides a re­

medial means of noting the error or of correcting it. Therefore, the instruction which fol­

lows the divide instruction should have its j= 1 in order to preclude the jump instruction

whenever the divide sequence culminates in a correct answer.

A divide overflow can be detected also if the divide instruction is executed with j=2.

In this case, a correct answer is indicated when a skip occurs.

24 REPLACE A+ Y

Add (Y) to the previous content of A. Store (A) at storage address Y.

A-9

25 REPLACE A - Y

Subtract (Y) from the previous content of A. Then store (A) at storage address Y.

26 ADD Q

Interchange (A) and (Q). Then add¥- to (A). Interchange (A) and (Q). The con­

tent of A is undisturbed by this instruction. The hranch condition designator, j, has spe­

cial meaning in this instruction as listed be low:

27 SUBTRACT Q

Interchange (A) and (Q). Then subtract -¥-from (A). Interchange (A) and (Q).

The content of A is undisturbed by this instruction. The branch condition designator,

j, has special meaning in this instruction as 1 isted he low.

In instructions 26 and 27 the branch condition designator, j, has the following meaning:

j=O: Execute the next instruction.

j== 1 : Skip the next instruction.

j=2: Skip the next instruction if (A) is positive.

j=3: Skip the next instruction if (A) is negative.

j=4: Skip the next instruction if (Q) is zero.

j=5: Skip the next instruction if (Q) is non-zero.

j=6: Skip the next instruction if (Q) is positive.

j=7: Skip the next instruction if (Q) is negative.

30 ENTER¥+Q

Clear A. Then transmit (Q) to A. Then add-¥ to (A).

31 ENTER¥-Q

Clear A. Transmit (Q) to A. Then subtract¥ from (A). Finally, complement (A).

32 STORE A+O

Add (Q) to the previous content of A. Then store (A) at storage address Y as directed

by the operand interpretation designator, k.

33 STORE A-Q

Subtract (0) from the previous content of A. Then store (A) at storage address Y as

directed hy the operand interpretation designator, k.

34 REPLACE Y +O
Clear A. Transmit (Q) to A. Then add (Y) to (A). Store (A) at storage address Y.

35 REPLACE Y-Q
Clear A. Transmit (Q) to A. Subtract (Y) from (A). Then complement (A) and store

at storage address Y.

A-10

36 REPLACE Y + 1
Clear A. Set (A)=l. Then add (Y) to (A). Store (A) atstorageaddressY.

37 REPLACE .Y -1
Clear A. Set (A)= 1. Then subtract (Y) from (A). Complement (A) and store at stor­

age address Y.

40 ENTER LOGICAL PRODUCT
Enter the bit-by-bit product of¥- and (Q) in A.
The j designator is interpreted in a special way for this instruction for the values j=2 or 3.

If j=2, skip if the parity of (A) r is even.
If j=3, skip if the parity of (A)r is odd.

NOTE: Even parity means an even number of "ones" in the A-register. Odd parity means an
odd number of "ones" in the A-register.

41 ADD LOGICAL PRODUCT
Add to (A) the bit-by-bit product of¥- and (Q).

42 SUBTRACT LOGICAL PRODUCT
Subtract from (A) the bit-by-bit product of-¥ and (Q).

43 COMPARE MASK
Subtract from (A) the bit-by-bit product of-¥ and (Q), and perform the branch point eval­
uation for skip of next sequential instruction as directed by the branch condition designa­

tor, j.

This instruction results in no net change in the content of any operational register. It pro­
vides, through the branch condition designator, j, a comparison of a portion of-¥-with (A).

44 REPLACE LOGICAL PRODUCT
Enter in A the bit-by-bit product of (Y) and (Q). Then store (A) at storage address Y.
The j designator is interpreted in. a special way for this instruction for the values j=2 or

3. If j=2, skip if the parity of (A) r is even. If j=3, skip if the parity of (A) r is odd.

NOTE: Even parity-an even number of "ones" in the A-register. Odd parity-an odd num­

ber of "ones" in the A-register.

45 REPLACE A+LOGICAL PRODUCT
Add to (A) the bit-by-bit product of (Y) and (Q). Then store (A) at storage ad­

dress Y.

46 REPLACE A-LOGICAL PRODUCT

Subtract from (A) the bit-by-bit product of (Y.) and (Q). Then store (A) at storage ad­
dress Y.

47 STORE LOGICAL PRODUCT

Store in address Y the bit-by-bit product of (A) and (Q) as directed by the operand in­
terpretation designator, k.

A-11

50 SELECTIVE SET

Set the individual bits of A to "one" corresponding to "ones" in ¥-, leaving the remaining

hits of A unaltered.

51 SELECTIVE COMPLEMENT

Complement the individual bits of A to "one" corresponding to "ones" in ¥, leaving the re­

maining bits of A unaltered.

52 SELECTIVE CLEAR

Clear the individual bits of A corresponding to "ones" in ¥, leaving the remaining bits of

A unaltered. In this instruction, k==7 should not be used.

53 SELECTIVE SET

Set the individual bits of A with bits of¥ corresponding to "ones" in Q, leaving the remain­

ing bits of A unaltered. In this instruction, k==7 should not be used.

54 REPLACE SELECTIVE SET

Set the individual bits of A to "one" corresponding to "ones" in (Y), leaving the remain­

ing bits of A unaltered. Then store (A) at storage address Y.

55 REPLACE SELECTIVE COMPLEMENT

Complement the individual bits of A corresponding to "ones" in (Y), leaving the remain­

ing bits of A unaltered. Then store (A) at storage address Y.

56 REPLACE SELECTIVE CLEAR

Clear individual bits of A corresponding to "ones" in (.Y), leaving the remaining bits of A

unaltered. Then store (A) at storage address Y.

57 REPLACE SELECTIVE SUBSTITUTE

Clear individual bits of A corresponding to "ones" in Q, leaving the remaining bits of A

unaltered. Then form the bit-by-bit product of (Y) and (Q), and set "ones" of this prod­

uct in corresponding bits of A, leaving the remaining bits of A unaltered. Then store (A) at

storage address Y.

60 JUMP (Arithmetic)

This instruction clears the program address register, P, and enters a new program address

in P for certain conditions of either the A or Q-register content. The branch condition de­

signator, j, is interpreted in a special way for this instruction and thus determines the con­

ditions under which a jump in program address occurs. If the jump condition is not satis­

fied, the next sequential instruction in the current sequence is executed in a normal manner.

If the jump condition is satisfied, as listed below, then ¥ defines the address of the next

instruction and the beginning of a new program sequence.

j==O: No jump. Set interrupt enable to remove interrupt lockout, thus clearing boot­

strap and interrupt modes. Continue with current program sequence.

j== 1: Execute jump. Set interrupt enable to remove interrupt lockout, thus clearing

bootstrap and interrupt modes.

j==2: Execute jump if (Q) is positive.

A-12

61

j=3: Execute jump if (Q) is negative.

j=4: Execute jump if (A) JS zero.

j=5: Execute jump if (A) is non-zero.

j=6: Execute jump if (A) is positive.

j=7: Execute jump if (A) is negative.

JUMP (Manual)

This instruction clears the program address register, P, and enters a new program address

in P for certain conditions of manual JUMP key selections. The branch condition desig­

nator, j, is interpreted in a special way for this instruction and thus determines the condi­

tions under which a jump in program address occurs. If the jump condition is not satisfied,

the next sequential instruction of the current sequence is executed in a normal manner. If

the jump condition is satisfied, as listed below, then ¥ defines the address of the next

instruction and the beginning of a new program sequence.

Program execution may be stopped by certain STOP selections on execution of this instruction.

The branch condition designator, j, specifies which key selections are effective.

j= O: Execute jump regardless of key selections.

j= 1: Execute jump if JUMP 1 is selected.

j= 2: Execute jump if JUMP 2 is selected.

j= 3: Execute jump if JUMP 3 is selected.

j=4: Execute jump. Stop computation.

j=5: Execute jump. Stop computation if STOP 5 is selected.

j= 6: Execute jump. Stop computation if STOP 6 is selected.

j=7: Execute jump. Stop computation if STOP 7 is selected.

62 JUMP ON C11 ACTIVE INPUT BUFFER

This instruction clears the program address register, P, and enters a new program address

in P for certain input buffer conditions on the channel designated by]. If the buffer is active,

the jump condition is satisfied; then ¥- defines the address of the next instruction. If the

buffer is inactive, the jump condition is not satisfied. The next sequential instruction in

the current sequence is executed in the normal manner. 1'=0, 1, 2, or 3 permitted.

63 JUMP ON C11 ACTIVE OUTPUT BUFFER

This instruction clears the program address register, P, and enters a new address in P for
certain output conditions on the channel designated by 1.' If the buffer is active, the jump

condition is satisfied, then ¥ defines the address of the next instruction. If the buffer

is inactive, the jump condition is not satisfied. The next sequential instruction in the cur­

rent sequence is executed in the normal manner.~ 0, 1, 2 or 3 permitted.

64 RETURN JUMP (Arithmetic)

This instruction executes a return jump sequence for certain conditions of either the A or

A-13

Q-register content. The branch condition designator, j, is interpreted in a special way for this

instruction and determines the conditions under which the return jump sequence is executed.

If the return jump condition is not satisfied, then the next sequential instruction in the current

sequence is executed in a normal manner. If the return jump condition is satisfied, as listed

below, then the following sequence is performed.

Store (P) in the lower half of memory address defined by ¥. Then jump to¥+ 1.

j=O: No jump. Set interrupt enable to remove interrupt lockout, thus clearing boot­

strap and interrupt modes. Continue with current program sequence.

j= 1 : Execute jump. Set interrupt enable to remove interrupt lockout, thus clearing

bootstrap and interrupt modes.

j=2: Execute return jump if (Q) is positive.

j=3: Execute return jump if (Q) is negative.

j=4: Execute return jump if (A) is zero.

j= 5:

j= 6:

j=7:

Execute

Execute

Execute

return

return

return

65 RETURN JUMP (Manual)

jump

jump

jump

if (A) is non-zero.

if (A) is positive.

if (A) is negative.

This instruction executes a return jump sequence for certain conditions of manual key se­

lections. The branch condition designator, j, is interpreted in a special way for this in­

struction and determines the conditions under which the return jump sequence is executed.

If the return jump condition is not satisfied, the next sequential instruction in the current se­

quence is executed in a normal manner. If the return jump condition is satisfied, as listed

below, then the following sequence is performed.

Store (P) in the lower half of memory address defined by¥. Then jump to¥+ 1.

j=O: Execute return jump regardless of key selections.

j= 1: Execute return jump if JUMP I is selected.

j=2: Execute return jump if JUMP 2 is selected.

j=3: Execute return jump if JUMP 3 is selected.

j=4: Execute return jump. Then stop computation.

j=5: Execute return jump. Stop computation if STOP 5 is selected.

j=6: Execute return jump. Stop computation if STOP 6 is selected.

j=7: Execute return jump. Stop computation if STOP 7 is selected.

66 TERMINATE en INPUT BUFFER OR ENABLE, DISABLE INTERRUPTS

If 'k=O, terminate the input buffer on channel J.' No input buffer monitor interrupt will occur.

If 'k= 1, b=O, enable all interrupts. If 'k= 1, b# O, disable all interrupts. If 'k=2, b=:O, en­

able all external interrupts. If "k=2, b#O, disable all external interrupts. The external in­

terrupt request signal is removed from all channels. If t=3, b=:O, enable the external inter-

A-14

rupt on the channel specified by t' If ~==3, b=i=O, disable the external interrupt on the chan­

nel specified by 1' The External Interrupt Request signal is removed from the channel

specified by t The operand address designator, y, is not translated for this instruction.

67 TERMINATE en OUTPUT BUFFER, ALL BUFFERS, OR TERMINATE en EXTERN­

AL FUNCTION BUFFER

If i<==O, terminate the output data buffer on channel). u-£'-- 1, terminate the External Func­

tion Buffer on channel J. If the channel specified by tis involved with the use of an output

register of an intercomputer group, a resume signal is simulated and sent to the register. If 'k'
=2, terminate all buffers. If an output register is being used for intercomputer communica­

tions, a resume signal is simulated and sent to this register. For all values of 1', no output

buffer monitor interrupt will occur. The index designator, b, and the operand address de­

signator, y, is not tr:mslated for this instruction.

70 REPEAT

Clear B7 and transmit ¥- to B7• If ¥L is non-zero, transmit (j) to r (designator register),

thereby initiating the repeat mode. If ¥L is zero, skip the next instruction.

The repeat mode executes the instruction immediately following the Repeat instruction ~

times. B7 contains the number of executions remaining throughout the repeat mode.

If no skip condition is met for the repeated instruction, the repeat mode terminates and the in­

struction following the repeated instruction is executed. If the skip condition for the repeated

instruction is met, the repeat mode terminates, and the instruction following the repeated instruc­

tion is skipped. Following the repeat mode termination, the count remains in B7 •

In no way does the repeat mode alter a repeated instruction as stored in memory.

The three low-order bits of the r-designator (from j of instruction 70) affects the operand in­

dexing as follows:

r==O: Do not modify the operand address of the repeated instruction after each individual

execution.

r== 1 : Increase the operand address. of the repeated instruction by one after each execution

of the repeated instruction.

r==2: Decrease the operand address of the repeated instruction by one after execution of the

repeated instruction.

r==3: Repeat the initial B-register modification of the repeated instruction before each ex­

ecution.

r==4: Do not modify the operand address of the repeated instruction after each individual

execution. If the repeated instruction is a replace instruction, the operand ad­

dress is modified by (B6
) for the store portion of the replace instruction.

r==5: Increase the operand address of the repeated instruction by one each execution of

the repeated instruction. If the repeated instruction is a replace instruction, the in­

cremented operand address is modified by (B6) for the store portion 0f~ the re­

place instruction.

A-15

r== 6: Decrease the operand address of the repeated instruction by one after each execu­

tion of the repeated instruction. If the repeated instruction is a replace instruction,

the decremented operand address is modified by (B6
) for the store portion of the

replace instruction.

r==7: Repeat the initial B-register modification of the repeated instruction before each ex­

ecution. If the repeated instruction is a replace instruction, the modified operand

address is further modified by (B6) for the store portion of the replace instruction.

NOTE: Instruction 70 j designator establishes the repeat mode r designator since j is transmit­

ting tor.

71. SKIP ON B11

If the content of B-register j is equal to ¥, skip the next instruction in the current sequence

and proceed to the following instruction. Clear B-register j.

If the content of B-register j is not equal to ¥, proceed to the next instruction in the se­

quence in a normal manner. Increase the content of B-register j by one.

The branch condition designator, j, is used to designate the selected B-register in this in­

struction and is not available for its normal function. Only the lower order 15 bits of¥ are

used in the comparison described in the preceding paragraph.

72 J JUMP ON B11

If the content of B-register j is non-zero, execute a jump in program address as defined by

¥. Reduce the content of B-register j by one.

If the content of B-register j is zero, proceed to the next instruction in a normal manner. Do

not alter the content of B-register j.

The branch condition designator, j, is used to designate the selected B-register in this in­

struction and is not available for its normal function. If the jump condition is satisfied, then

the lower order 15 bits of ¥ define the address of the next instruction and the beginning of a

new program sequence. The highest order 15 bits defined by ¥ are not used in this in­

struction.

73 INPUT BUFFER ON C 11 (Without Monitor Mode)

This instruction establishes an input buffer via input channel ']'utilizing an area of memory

defined by (Y). The memory address limits determined from (Y) are transferred to the

buffer control register associated with the channel. Subsequent to this instruction, individual

transfers will be executed at a rate determined by the external device. The storage address

initially established by this instruction will be advanced by one preceding each individual

transfer. The next current address will be maintained throughout the buffer process in

the lower order 15 bits of control register 00100 plus t. This mo.de will continue until it is

superseded by a subsequent initiation or termination of an input buffer via the same input

channel or until the higher order half and the lower order half of control register 00100 plus

j contain equal quantities, whichever occurs first. It should be noted that since the storage

required for a buffering operation may be of any size utilizing any area of computer

memory, it is a program responsibility to ensure that correct values for the buffer limits

have been established for ¥- previous to the execution of this instruction.

A-16

This instruction is implemented as follows: If 'k' 3, store (Y) in storage location 00100 plus

1.' Hi< 1, store the lower order 15 bits of (Y) in the lower order half of storage location 00100

plus 1,' leaving the higher order half undisturbed. If 'k'=O, store (Y) in the lower order half of

storage location 00100 plus] leaving the higher order half undisturbed. Proceed to the next in­

struction.1'=2 is not permitted.

74 OUTPUT BUFFER ON en (Without Monitor Mode)

This instruction establishes an output buffer (if ~#2, output data buffer; if ~=2 Exter­

nal Function buffer) via output channel 'f utilizes an area of memory defined by (Y). The

memory address limits determined from (Y) are transferred to the buffer control register as­

sociated with the channel. Subsequent to this instruction, the individual transfers will be ex­

ecuted at a rate determined by the external device. The storage address initially established

by this instruction will be advanced by one preceding each individual transfer. The next

current address will be maintained throughout the buffer process in the lower order 15 bits

of the control register if 1 # 2, 00120 plusi'; if~=2, 00140 plus't This mode will con­

tinue until it is superseded by a subsequent initiation or termination of an output buffer

via the same output channel or until the higher order half and the lower order half of the

control register (if'k-#2, 00120 plusi; if~=2, 00140 plus 1) contain equal quantities,

whichever occurs first. It should be noted that since the storage required for a buffering

operation may be of any size, utilizing any area of computer memory, it is a program re­

sponsibility to ensure that correct values for the buffer limits have been established for ¥
previous to the execution of this instruction.

This instruction is implemented as follows: If1=3, store (Y) in storage location 00120 plus

1' If~ 1, store the lower order 15 bits of (Y) in the lower order half of storage location 00120

plusl'leaving the higher order half undisturbed. If~=O, store Y in the lower half of storage loca­

tion 00120 plust leaving the higher order half undisturbed. If1=2, store (Y) in storage location

00140 plus]. Proceed to the next instruction. -

75 INPUT BUFFER ON e11 (With Monitor Mode)
This instruction establishes an input buffer via input channel] utilizing an area of mem­

ory defined by (Y). The memory address limits determined from (Y) are transferred to the

buffer control register associated with the channel. Subsequent to this instruction, the indi­

vidual transfers will be executed at a rate determined by the external device. The storage

address initially established by this instruction will be advanced by one preceding each in­

dividual transfer. The next current addres.s will be maintained throughout the buffer proc­

ess in the lower order 15 bits of control register 00100 plus t This mode will continue

until it is superseded by a subsequent initiation or termination of an input buffer via the

same input channel or until the higher order half and the lower order half of the control

register contain equal quantities, whichever occurs first. The initiation of this input buffer

selects the input channel]' and establishes a buffer monitor on input channel J.' A monitor in­

terrupt to address 00040+j follows completion of the buffering operation. It should be noted

that since the storage required for a buffering operation may be of any size utilizing any

area of computer memory, it is a progrnm responsibility to ensure that correct values for the

buffer limits have been established for ¥- previous to the execution of this instruction.

This instruction is implemented as follows: If 'k' 3, store (Y) in storage location 00100 plus t
If 'k' 1, store the lower order 15 bits of CX) in the lower order half of storage location 00100

A-17

plus "j' leaving the higher order half undisturbed. If ~=0, store Y in the lower order half of

storage location 00100 plus1.' Proceed to the next instruction."k°=2 is not permitted.

76 OUTPUT BUFFER ON C11 (With Monitor Mode)

This instruction establishes an output buffer (if 'k¥ 2, output data buffer; if 'k=2, external

function buffer) via output channel] utilizing an area of memory defined by (Y). The

memory address limits determined from (Y) are transferred to the buffer control register as­

sociated with the channel. Subsequent to this instruction, the individual transfers will be ex­

ecuted at a rate determined by the external device. The storage address initially estab­

lished by this instruction will be advanced by one preceding each individual transfer. The

next current address will be maintained throughout the buffer process in the lower order

15 bits of control register (if~#2, 00120 plus]; if"k°=2, 00140 plus]}. This mode will con­

tinue until it is superseded by a subsequent initiation or termination of an output buffer

via the same output channel or until the higher order half and the lower order half of the

control register contain equal quantities, whichever occurs first. The initiation of this out­

put buffer selects the output channel 1 and establishes a buffer monitor on output chan­

ncl f A monitor interrupt (ifk¥ 2, to address 00060+]; if ~=2 to address 00500+ j) fol­

lows the completion of the buffering operation. It should be noted that since the storage

required for a buffering operation may be of any size utilizing any area of computer mem­

ory, it is a program responsibility to ensure that correct values for the buffer limits have

been established for ¥, previous to the execution of this instruction.

This instruction is implemented as follows: lfle=3, store (Y) in storage location 00120 plus j.
[f 'k= 1, store the lower order 15 bits of (Y) in the lower order half of storage location 00120

plus 1' leaving the higher order half undisturbed. If 'k'=O, store Y in the lower order half of

storage location 00120 plus t leaving the higher order half undisturbed. If 'k=2, store (Y) in

storage location 00140 plus f Proceed to the next instruction. -

A-18

	2025-09-06-0001
	2025-09-06-0002
	2025-09-06-0003
	2025-09-06-0005
	2025-09-06-0007
	2025-09-06-0009
	2025-09-06-0010
	2025-09-06-0011
	2025-09-06-0012
	2025-09-06-0013
	2025-09-06-0014
	2025-09-06-0015
	2025-09-06-0016
	2025-09-06-0017
	2025-09-06-0018
	2025-09-06-0019
	2025-09-06-0020
	2025-09-06-0021
	2025-09-06-0022
	2025-09-06-0023
	2025-09-06-0024
	2025-09-06-0025
	2025-09-06-0026
	2025-09-06-0027
	2025-09-06-0028
	2025-09-06-0029
	2025-09-06-0030
	2025-09-06-0031
	2025-09-06-0032
	2025-09-06-0033
	2025-09-06-0034
	2025-09-06-0035
	2025-09-06-0037
	2025-09-06-0038
	2025-09-06-0039
	2025-09-06-0040
	2025-09-06-0041
	2025-09-06-0042
	2025-09-06-0043
	2025-09-06-0044
	2025-09-06-0045
	2025-09-06-0046
	2025-09-06-0047
	2025-09-06-0048
	2025-09-06-0049
	2025-09-06-0050
	2025-09-06-0051
	2025-09-06-0052
	2025-09-06-0053
	2025-09-06-0054
	2025-09-06-0056

