

The programmers that contributed to this document are:
Johnson Terry
Mohammadi Farzin
Necker Lee
Riscalla Daniel
Truyen Frank

This document was prepared using Wordperfect on the HP 835, Wordperfect on \ A
the IBM and Wordperfect on the Macintosh. A

The first draft for this document was completed on December 2, 1991

The Times Roman font was used and a Macintosh Laserwriter to print it.

All rights reserved. No part of this document may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,

mechanical, photocopying, recording, or otherwise, without the prior written

permission of The Ultimate Corp.. Printed in the United States of America in
California on December 2, 1991 .

UNIX is a registered trademark of UNIX Systems Laboratories

Table of contents December 4, 1991 4:43

Table of contents:

L Introduction @ittt 9
II. Current performance analysis i, 10
III. New Basic overviewttt 10
The old Basiccompiler 12
OptimIZerttt ittt ittt et et 12
New object code generatort nnn 12
IV. Internal architecturettt 13
A. Runtime Architecture 00t 13
1. Interpreted object versus direct Ccode 13
2. Non-stack architecturec.coniinennnnn 15
3. Descriptor and string space management: 15
4. Math operations, numeric storage & representation 16

5. Interface between the new Basic environment and the
virtual system L. e e 16
6. BasicDebugger 17
7. File system accesschanges 18
a. Current performance analysis 18
b. Proposed implementation 19
B. New Basic Runtime implementation 20
1. Calling the New Basicruntime 20
2. Descriptor data Structurecveeenennan. 22
3. Basic variables and constants 24
4.0pcodetemplates 00ttt 27
a. Anopcode template 27
b. Accessing the Basic object and opcode arguments 30
C. Accessing desCriptorsouueeenno.. 33
d. Dynamic memory allocation 34
e. Usefulmacros 35
f. Procedure for developing anopcode 35
C. The optimizerttt it et e 37
1. Architecture of the optimizer - 37
2. Support for the New Basic Runtime 38
3. Optimization techniquesused 39
V. Compatibility with current Basic 39
A. Basic source compatibility 39

Page - 3 -

The Ultimate Corp.
Proprietary and Confidential

Table of contents December 4, 1991 4:43

B.Named Commonscciiiiiiiiinienneneenn. 39
CoCalls ... e e e e e 40
D.Basic Debugger 41
E.Library Calls0, 41
F. Execute / Chain /Data Statements 42
G. Interface from Recall and Update to Basic 43
VI. Issues and questions that needtobe answered 44
VII. New Basic performance analysis 45
VIII. Project Implementationc.. 0. 45
A Qualityplan e e e 46
L.Templatesc. 0ttt iiiinennnnnennn 46
2. MaCTIOS .. e e e 46
3.C0de reVIEWS . .t e 46
4. Virtual referencet 47
5. Technical documentation 47
B.Phase 1 e 47
1.Goals ... 47
2.ReSOUICES . ..o 48
3.Schedule 48
C.Phase 2 e e 49
1.Goals 49
2.Schedule 49

Appendix A: Basic READ/READU/WRITE flowcharts, as per release
210E e e 51
Appendix B: Conversion format string 77
Appendix C: Format string parsing rules 81
Introduction e 81
Parsing a date format string 82
Parsing a numeric format string 82

Appendix D: SYSTEM functions that are good candidates for optimization . 85

Appendix E: Named commons iiiiiern... 87
Introduction 87
Executing the named COMMON statement (Opcode xX'ED") 87
Storing a value in a named common variable (Opcode x'E8") 89
Exit through Basic wrapup (see mode BRP11) 90
Implementation of named common in the optimized Basic

ENVITOMIMENt . .\ vttt et ettt e tee e eeeeeeeennnes 90

Appendix F: New Basic debugger full specifications 91
L Objectives e 91
IL ASSUmpLiONSttt it ettt e 91
III. Symbolic source debuggmg 93

Page - 4
The Ultimate Corp.

Proprietary and Confidential

R

Table of contents December 4, 1991 4:43

A. Commands and features 93
1. Upward compatibility 93
2. New Commands to implement when time permits ... 94
3. Some of the more important Basic debugger features . 96
B. Debugger Data Structures 97
1. breakpoint table : breakpoint[] 97
2.RUNoptions : options[] 98
3. Internal debugger information:db 99
4. symbol table : symbol_table 100
5. opcode information : opcode[opcode_number] 100
6. logical expression : cond_struct 100
7. Trace table : trace_table[] 101
8. Number of loaded symbols : loaded_symbols 101
C. Debugging an non-optimized program 102
l.Control Flow, 102
2.Debugger 105
D. Debugging an optimized program 107
IV. Non-source level debugging 108
V. Major components of the debugger 109
A. Initialization 109
B. DCD interface between Basic and the Debugger 110
C. Basic runtime error interface 110
D. Ultimate debugger commands parser 111
E. Ultimate commands processor 111
F. Parser for verbose set of commands 112
G. Verbose commands processor 117
H.Udlities i 119
VL Time eStimatesttt 121
Appendix G: Analysisof MathinBasic 123
Introduction e 123
Today implementation0 iiniernn... 123
Format of the numeric variables 123
Algorithms e 123
Optimized assembly code(Ultimate PLUS only) 123
Issues 124
Ultimate PLUS way of representing numbers 124
Ult/ix way of representing numbers 124
Proposed implementation for the BASIC project 126
Data structure for variables e 126
Typeconversion, e 126
Flavorbinding 127
Page - 5 -
The Ultimate Corp.

Proprietary and Confidential

Table of contents December 4, 1991 4:43

D UIt/ix flavoro it ittt it e e 127

2) Ultimate flavor e et e e 127

Operators and C library routines used for computation 128
Performance Data(BasicMath) 128
Issues e 129

Appendix H: Recall calling Basic subroutine 131
Format of this document e e it e 131

Steps taken at compile time o ... 131

Steps taken at €Xecution timeovt i inn .. 141

Steps taken upon return from the subroutinecall 145
Stepstaken onexitttt e e e 145
Conclusionst e e 146
Appendix I: Runtime Initialization 149
Tasks performed by the Basic runtime initialization 149
ConClusions it e e 152
Appendix J: Library calls i 155
Significance of Library calls to the Basic optimization project 155
Current interface between Basic and the Library calls 155
Interface with Optimized Basic 156
Transparent interface to Virtual 157

Direct interface to Virtual 158

String argument passingt 158

Conclusion e 159
Appendix K: String and space management 161
Introduction e 161
Seamlessness e e 161
Space managementinBasic 161
Heapmanipulation 0., 162
Debugging e e 162
Faimess e 163
Appendix L: Currentopcode table 165
Appendix M: Machine stack versus software stack 173
Advantages of the current stack architecture 173
Disadvantages, and reasons for not perpetuating the current design . 173
Disadvantages of not using the software stack e 174
Appendix N: Callinterface, 175
Introduction 175
Section 1 : direct call- subroutine is first invoked 176
Section 2 : direct call- subroutine has been called before 176
Section 3 : indirect call- subroutine has not been opened 177

Section 4 : indirect call- subroutine has been previously opened ... 177

Page - 6 -
The Ultimate Corp.
Proprietary and Confidential

£

C

Table of contents

December 4, 1991 4:43

Section 5 :commoncode, 178
Section 6 : elements pushed on the Basicstack 179
Section 7 : finding the object code from the subroutine name 180
Section 8 : executing the SUBROUTINE opcode 181
Section 9 : passing arguments from the caller to the subroutine 181
Section 10 : returning to the calling program 182
Questions concerning the currentcode 184
Proposal for Optimized Basic 184
Proposed object code for a directcall 185

Proposed object code for an indirectcall 185
Information stored in the objectheader 186

Initializing the runtime environment 186

Calling from a Recall subroutine 187

Passing COMMON variables between programs 187

Access to the Basic Debugger 188

Passing argument values from caller to subroutine 188

Detecting the return condition 189

Returning values back to the calling program 189

OPENISSUES . o v vttt ittt e e e e 189

Appendix O: The execute InStruCtionccuoveuennenn.. 191
Scope of thisappendix 191

Basic stack layout when the opcode (x'EB') is invoked 191

Steps taken during runtime executionc.... 191
Issues in regard to Basic optimization 195
Appendix P: Enhancements survey results 197
Appendix Q: Compatibility between old Basic and new Basic 199

Page - 7 -
The Ultimate Corp.
Proprietary and Confidential

Table of contents

December 4, 1991 4:43

Page - 8 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

I. Introduction;

The purpose of this project is to achieve a level of performance of the
Basic runtime package that equals or surpasses the speed of our major
competitors, as measured through benchmark programs such as the X-
rating and Probench.

This has to be attained with no compatibility loss (or very little if
unavoidable). This document lists all cases where the proposed
implementation does not follow this constraint.

The project is to be viewed as the first but very important step towards the
re-architecture of the Ultimate PLUS operating environment. This re-
architecture in general will migrate the Ultimate PLUS environment to an
architecture that is more seamless with the UNIX operating system. Re-
writes of other parts of the system will definitely follow (the file system,
recall etc...) as they make sense to occur as well as the introduction of new
features like SQL or relational database access. From this project on, C (or
C++) will be the programming language of choice. Virtual assembly
programming will not be used unless absolutely necessary.

Therefore, this project being the first of a few, it has to be carefully
designed to not introduce any architectural limitations that would stand in
the way of some of the following projects (file system rewrite, SQL, ...).

The ultimate goal of the Basic rewrite is to provide a new Basic runtime
that at least equals our competitors in performance. The C code developed
will replace all current Virtual code related to the Basic runtime. Links
with other software modules as well as time constraints may limit the scope
of the first phase, resulting in some of the less frequently used or very
complex Basic operations to remain in Virtual.

In addition to the runtime re-write, an optimizer will be developed in this
project. That optimizer will use conventional compiler optimization
techniques (similar to the ones used today in most C compilers) to optimize
the user’s Basic code. This should help us meet our performance goals
more easily.

Page - 9 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

Unless opposite advice from our Marketing people, the old runtime
environment will be available in parallel with the new Basic, providing a
backup for the user in case of emergency. It is understood that at some

point in time however, the old code is to be completely removed from the
system. ..

In order to limit the development cycle, and also to address the issue of
customers with no source code to their application, the basis for the
performance enhancement code is the output of the current compiler.
Options will be provided with the current compiler to produce a new
object code format and to enable the optimizer.

II. Current performance analysis:

When considering rewriting areas of Ultimate PLUS for performance
gains, the question that comes to mind is which area, if rewritten, would
provide the most gains in performance? To better answer that question,
various part of Ultimate PLUS were compared to Ult/ix. The Basic module
appears to be the one in which Ultimate PLUS suffers the most. Ultimate
PLUS seems to be about 2.5 times slower than Ult/ix when compared on
the same machine. Recall on the other hand is comparable between the two
products. Considering that most dealers have a significant investment in
Basic programming (most dealer applications are written in Basic), it was
clear that enhancing the performance of Basic was the right thing to do.

The performance of Ultimate Plus’ file system appears to be comparable to
the performance of Ult/ix’s file system. In some test cases Ultimate PLUS
is faster than Ult/ix and in some other cases Ult/ix is faster than Ultimate
PLUS. We will try to identify small enhancements that will make us over
all faster than Ult/ix for file accesses.

III. New Basic overview:

This section describes the architecture of the New Basic at a very high
level. From here on, Old Basic and Old object code will refer to the Basic
and object code that are currently released with Ultimate PLUS. New Basic
and New Object Code will refer to the Basic and object code that will result

Page - 10 -
The Ultimate Corp.
Proprietary and Confidential

A

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

from this rewrite.

The modules that make the New Basic are as follows:
(1) The old Basic compiler
(2) A new parser to parse the old object code
(3) An optimizer

(4) New object generator

\\\\\\\‘i\\\\\“\\\\\\\\“\W\W\W\W\WW\“WW}&\“\W\W\\\\‘\Q

A

.

%

[0) lC)

77 77777777777

7

Components of New Basic

T CCCO

As this list of modules seems to imply, the old compiler remains as part of

Page - 11 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite ' December 4, 1991 4:43

the current system. Here follows a description of every module:
T . Tors

This module is practically unchanged from the current Ultimate
PLUS release. It is the good old Basic compiler that takes the user’s
Basic sources and generates old object code. Some minor changes
might be made to support additional options to better control calls
and the behavior of subsequent modules. The reason the compiler
was kept is to simplify the scope of the project as we do not have to
worry about Basic parsing issues we rather can concentrate on the
runtime itself. There is not doubt that at some point in the future,
that old compiler will be taken out and a new Basic parser will be
implemented.

Parser of old object code:

After the user programs have been compiled into object, the new
compiler will go through the old object recognizing opcodes and
their arguments and building some data structures in memory that
form a representation of the program. These data structures are
appropriate for optimization algorithms (see detailed section about
optimizer). As the object is parsed, the parser will assemble some
significant information about the program being compiled and store
them in the mentioned data structures. That information will be
useful later on for a better code generation.

Optimizer:

The optimizer is then optionally called. It is not clear yet if the
default will be to call it or vice-versa, that can be determined later
on. When the optimizer is called, it will apply some traditional
compiler optimization techniques against the built data structures. It
will therefore massage the data structures resulting in a smaller,
more efficient, functionally equivalent set of data structures that
represent the original user program. This optimizer can be very
simple just including some obvious and easy techniques or can be
extremely complex. Its complexity will depend on the time we can
afford spending on it without compromising the runtime rewrite.

New object code generator:

Page - 12 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

This module is invoked last whether the optimizer was called or not.
It goes against the built data structures and produces object code that
is the new format. This module will take advantage of information
gathered throughout the compilation to try to generate smarter
object code.

Keeping the new compiler modularized into the modules just described
should help building a more stable product that is more easily modified.
For example, the compiler should be fully functional before any of the
optimizer is coded as the old object code parser produces data that is input
to the new object code generator.

IV. Internal architecture:

This section goes into a more detailed discussion of the internal
architecture of the Basic rewrite. It is sub-divided into three sections.

The first one addresses various architectural concepts and why one solution
was chosen instead of another. Most of the topics addressed have an
appendix that discusses the subject in a much more detailed fashion.

The second section will talk about the actual implementation architecture
getting into things like data structures, macros and templates. Whereas the
first section talked about concepts, this one talks about implementation;
they both relate though to the runtime.

The optimizer being a little special beast, it deserved a section all by itself.
That third section describes the optimizer architecture, the optimization
techniques it would use and how they would be implemented. This section

is merely a summary for numerous compiler material that was gathered
and analyzed.

A. Runtime Architecture:

1. Interpreted object versus direct C code:

When developing a language processor, there is always the
issue of whether the product should be an interpreter or a

Page - I3 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

compiler. Both have advantages and disadvantages. Whereas an
interpreter is more flexible and more powerful because better
in control of the runtime environment, a compiler
compensates by producing a faster model where the
interpretation of the instructions was done at compile time.

If implemented right, one can modify an interpreter to a
compiler and vice-versa with some limited efforts. That is to
say that conceptually they both are not so much apart (they
really both end up being interpreters one way or another, the
question is at what level is the interpretation being done).

We are choosing to remain an interpreter instead of translating
into C code. Translating into C code would most definitely
produce faster code but the difference should be under 10
percent. The disadvantage of translating into C code is that our
dependency on the C compiler of the machine would go up. It
is important to notice for example, that today, for the Ultimate
PLUS implementation, not all compiler options are valid.
Some options lead the C compiler (and this is true for all
machines we run on) to produce code that would fail.
Controlling the way the C compiler is invoked on a customer
machine would therefore become an additional responsibility
(it is true though that sooner or later we would have to deal
with that issue as we would allow customers to intermix C
code with their applications).

Moreover, our compile times would become significantly
dependant on the speed of the C compiler and that is not
something to take lightly. We have seen under different
implementation the C compile time represent over ninety
percent of the Basic to object code compile process.

One last issue is the issue of providing for dynamic linking
(indirect subroutine calls). That technique is not mature
enough today to the point where we can provide an easily
portable solution across all the platforms we support. UNIX
System V release 4 does make dynamic linking a standard but
this is not true for release 3.

I guess the conclusion is that a compilation in to C although

Page - 14 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

possible would end up presenting more problems than the
performance gain is worth. Moreover some tests we have done
seem to indicate that the performance gain between the two
schemes might not end up be higher than a few points.

2. Non-stack architecture:

The Unix systems that currently run Ult/PLUS are RISC based
platforms that use a fast stack architecture at the hardware
level, geared towards running C programs. Our goal is to take
the most advantage of this, without adding a software stack on
top of it.

Also from a performance angle, using the machine stack shows
a clear advantage over using a software stack.

Some tests we have run indicate that the performance loss
because of a software stack can be as much as four times
slower. Implementing a model without a software stack will
definitely lead to a more complex structure but the
performance gains seem to make it worthwhile.

Refer to Appendix M for a more in depth discussion.
3. Descriptor and string space management:

The descriptor space is implemented as a piece of memory that
comes out of the UNIX/C process heap space. When a
program is started, a chunk of memory is allocated to fit the
necessary number of descriptors. A descriptor is defined as a
C structure that can hold different types of data representation.
These structures allow for a natural representation of native C
data types, such as floating point numbers, and are generated
by the C compiler with the proper alignment thereby resolving
the bus exception issue on the HP series.

String space is also acquired from the heap of the UNIX
process.

The heap itself is manipulated either through the use of
standard C library calls (malloc()/free()/realloc) or through a

Page - 15 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

super set of these functions, under Ultimate's control.

O

Please refer to Appendix K for more details, and for some
side effects of this approach in regards to the debugger.

4. Math operations, numeric storage & representation:

In the new Basic runtime, numbers are represented as doubles.
Those are floating poin numbers with at least 32 (typicallyc 64
bits). Each program can run in one of two flavors, Ultimate
plus flavor, or Ult/ix flavor. The flavor is determined at basic
compile time. This means a compilation is required to switch
the flavor. The flavor can be controlled via an environment
variable, basic compile option, or a system wide option. In
both flavors the numbers are represented as doubles. However,
for the Ultimate flavor, each time a numeric variable is
updated, the variable is adjusted. The adjustment is based on
the scaling factor of the basic program and produces a
considerable overhead.

The basic math operations such as addition, subtraction,
multiplication and division are accomplished by using the C
operators '+, '-', "*' and '/ on doubles. If string math is
necessary then the library routines to be coded by us will be
used to do the job.

Other math operations such as SIN, COS, LN, PWR, EXP,
SQRT etc. are accomplished by using the C library routines
sin(), cos(), log(), pow(), exp(), sqrt() etc.

Please refer to appendix G for a more detailed discussion of

the math issue.

5. Interface between the new Basic environment and the
virtual system:

A uniform mechanism is going to be developed to interface
between the new Basic runtime and the virtual system.

Data structures are being represented differently in the new

Page - 16 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

Basic runtime (no or very rare use of PCB data elements, no
use of linked frames or of workspaces etc...). Therefore, a
documented (and coded if any code is necessary) API
(application programmer interface) is necessary to go from
the new Basic environment to virtual code or vice-versa. That
interface has to promote readability and ease of maintenance.
For example, if a piece of virtual code that is called from the
new Basic environment, is being modified, the virtual coder
needs to know that this is the case and the virtual coder needs
to understand how the interface is defined to make sure that
his changes preserve that interface.

The biggest beneficiary of that API will be the File System as
the new runtime will call virtual code for database access and
the Ultimate PLUS modules that call Basic but will not be
rewritten for the time being (like Recall and Update).

More detailed description of the interface between the new
Basic and the virtual system can be found in appendix R.

6. Basic Debugger:

The current debugger functionalities and commands will be
preserved in the new Basic debugger. This document is written
in complete accordance with the current debugger
requirements. However, to correct the cryptic nature of the
current debugger, the new Basic debugger has two command
modes of operation. They are the Ultimate command mode
and the verbose command mode. In the Ultimate command
mode, the debugger takes traditional debugger commands. In
the verbose command mode, a new English-like syntax is used
to issue the same commands and all the new commands. Users
should be encouraged to switch to the new verbose command

mode. Eventually, we may take away the Ultimate command
mode.

The debugger can perform symbolic source debugging for non-
optimized programs. For optimized programs, the debugger
can only provide effectively a subroutine or an event level
debugging because the one-to-one relationship between object
and source code does not exist anymore. The capability to

Page - 17 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

point out which line caused a runtime error is to be ~
implemented for both types of programs. In addition, the @
debugger also provides an opcode level debugging of all
programs for use by people who are so inclined (for internal
use mostly).

Currently, the Basic debugger can set a breakpoint on a line
number, on logical conditions and on CALL/RETURN
instructions. To further facilitate debugging of a Basic
program, there is now conditional break point on a source
line, break point on a variable when it changes, break point
inside a subroutine when it is called. The user may switch the
debugging terminal to another port on the system which will
help debugging screen type application. The entire debug
session may be logged to a Unix file. Furthermore, there is an
indexed help facility for the verbose set of commands.

Our design takes all of the desired new features into
consideration. Those new features though, will only be
implemented as time permits.

7. File system access changes:

a. Current performance analysis: File I/O in Basic is
roughly the same speed on Ultimate Plus as on Ult/ix, so we

are not proposing major changes to the Ultimate file system
now.

In general, Ult Plus is fast in these cases:
- Random access
- Large items
- Repeated access on other than the RS/6000
- The Basic SELECT statement
- Very large files
Ult/ix is fast in these cases:
- Any Recall statement
- Sequential access

Just where the dividing lines between the above categories lie
is unclear. Some tests show that Ult Plus becomes fast when
item sizes approach 100 bytes, while other tests show the

C

Page - 18 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

dividing line to be around 500 bytes.

Which operations are fast and which are slow sometimes
depends on the hardware platform. For example, Ult Plus
uses shared memory as a cache of file data, so repeated
accesses to a file do not require disk reads, which would
generally give ULT Plus a speed advantage over Ult/ix. This
is true on HP machines. However, the RS/6000 can use all of
memory as a cache of file data, so repeated accesses to a file
are improved in Ult/ix, making the speeds of the systems
comparable.

b. Proposed implementation: Webb has just changed item
retrieval to only use read locks when there is a conflict with
another process updating the group that is being read. Retix
now returns a byte value representing the condition of the
group before the item was retrieved and a pointer to the
current byte value within the group. The caller of RETIX
may choose to copy the item from the file, then compare the
values, and if they are different, redo the item retrieval with
read locks. Basic and Recall now do this instead of always
setting read locks. There were some difficult problems (Webb
cannot remember exactly what they were) with putting all of
the responsibility for data integrity inside the file system.

The elimination of setting read locks most of the time has
resulted in about a 20% improvement in file accessing speed,
so this feature will be included in Ult Plus.

The format of the interface to New Basic is still under design
because the present code requires a moderate amount of
interaction between Basic and the file system. For now, the
interaction will be minimized by making the Basic virtual code
that interfaces to the file system into a routine that can be
called from New Basic. It is possible that the interaction
between New Basic and the file system will be increased as the
design of the interface evolves.

We will therefore:
- Implement the new interface
- Tune the new interface
- Tune the file system, itself

Page - 19 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

Tuning the file system will be done as time permits and as
required to improve performance. This step consists of
making changes to file structure, such as storing the item size
in binary instead of ASCIL.

B. New Basic Runtime implementation:

This section is more down to earth than the previous ones. It will
describe the environment necessary for developing code for the new
runtime. Data structures, templates and macros are among the topics
addressed in this section. Do not underestimate the importance of the
material in this section as significant R&D resources have been spent
to come up with the described environment. this was done to ensure
a stable and consistent environment that programmers will work in.
This will pay off with faster code development in the next few
months, more readable code and more consistent coding practices.

1. Calling the New Basic runtime:

Any programmer developing opcodes for the new Basic, will
go through a particular development cycle:

develop code - compile opcode - relink it with ultvirt -
test - make changes in code - compile opcode - relink ...

Being many of us (us = opcode developers), there will
typically be more than one person going through that cycle on
the some machine. The problem is that the relink it with
ultvirt portion of the cycle is time and machine resources
consuming. Therefore we want to develop an environment that
will make that procedure less painful for everybody.

Page - 20 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

ded() code for
requests from
rest of system
to Basic runtime

All virtual modes
+
runtime library

Ultvirt executable

Released product

The way this is going to be done is by splitting the new
opcodes (just for the purposes of development) into a separate
executable that is a lot easier to link (a few seconds compared
to a many minutes!).

The previous picture highlights how the code will be
architectured for the released product. The following picture
highlights how it will be architectured during the development
cycle. The switch from one to the other is completely
transparent to the new Basic runtime code.

Page - 21 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43 -

ded() code for Current runtime lib

requests from + i

rest of system Any virtual modes called
to Basic runtime from new Basic

All virtual modes
+ .
runtime library

Ultvirt executable

Interface that hides the fact that
new Basic runtime is in a
different executable

Development product

As you can see in the picture, for development purposes, the
new runtime will be in a separate executable that contains all
of the runtime library plus whatever virtual modes are
directly referenced (those would certainly be less than the 700
or so linked today in ultvirt). An interface will be developed
between the dcd() code in ultvirt and that executable making
it completely transparent to the new Basic runtime that it is
running in a separate executable.

2. Descriptor data structure:

The following data structure is the preliminary layout for the
Basic variable and constant data elements. It can be found in
the 'descriptor.h’ file. The data structure has basically two
main pieces to it:

Page - 22 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

- The first one is the fixed portion. It contains the fields
that are always applicable no matter what type the
descriptor is. Those fields are the descriptor type, a
string pointer and the length of that string pointed to.

struct {

Basic Variable Data Struct

struct{

} fixed;
union {

Part of the structure that is NOT overlaid.
union { Structure to hold the descriptor type.

unsigned short class_type; Both class and type fields

struct {
unsigned char class; upper byte of flags; class of data
unsigned char type; lower byte of flags; the type
} byte;
} flags;
struct { Structure to hold any type of string data information.
char *ptr; pointer to character string.
int len; length of the string.
} string;
Part of the structure that gets overlaid.
struct { structure to hold a numeric value.
double float_val; floating point numeric
value.
} numeric;
struct { Structure for a select list variable.
int count; count of elements in select
list.
char* current_ptr; pointer to last element
extracted.
} select;
struct { Structure for a file variable.
int febl; open file FCBI value;
int fcb2; open file FCB2 value;
} file;
struct Structure for conversion constants.
unsigned int flags; conversion flags
union {
struct numeric format mask
structure.
short decimal; decimal digits to output.

scale; scaling factor;

Page - 23 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite

Diecember 4, 1991 4:43

) format; ‘
struct(
short group;
char year;
print.
char group_sep;
char output_sep;
} date;
struct {
short skip;
short extract;

char group_sep;

Structure for a date format
mask.

group extract count.
number of year digits to

group extract separator.
date output separator.

Structure for group extract.
number of fields to skip.
number of fields to extract.

group extract separator.

- The second portion is the overlay part of the structure.
That part will be used differently depending on the type
of variable used. For most variables, it will contain the
floating point field for the numeric value. For file
variables, select variables, string format constants (and
some more special variables), this portion of the data
structure is overlaid with a structure that is more
appropriate for that type of descriptor.

The whole data structure and especially its sub-structures and
unions will be hidden from the programmer through the use

of various macros that are described later.

3. Basic variables and constants:

There are various types of descriptors that we have to deal

with. They are various not with respect to their type in Basic
(select variable etc...) but rather with respect to their nature
like local variables, constants, commons, arrays etc... In trying

to design an appropriate data structure for these different

types, one major goal was to again promote readability of the
code and ease of programming opcode to accelerate the

development cycle.

Page - 24 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite _ December 4, 1991 4:43

It would obviously be an additional headache if for every
opcode coded one had to worry where does the variable come
from. If it is a constant, I reference it this way; if it is a
common I reference it that way etc... We therefore came up
with a data structure that makes it completely transparent to
the opcodes where the variable comes from. Meaning, the
opcode routines will not have to explicitly know that this
variable is a common or that one is a constant unless
specifically required by the nature of the opcode (some
opcodes for example will require an array as an argument).

The data structure in question is a double array. The first
array is an array of pointers to descriptor tables. A descriptor
1s the data structure that was described in the previous section.
Every descriptor table represents one type of descriptors. For
example, the first one is for commons; the second one is for
arrays in commons (if we decide to split between the two); the
third one is for local variables; the last one is for constants
etc... Then all variables are represented in the same manner.
Each one is uniquely identified by a tuple (a,b): a is the index
of the descriptor table it belongs to in the first array and b is
the index in the descriptor table itself.

For example, a local variable A would be represented by the
tuple (2, 4) where two indicates that A is a local variable
because all local variables belong to the third table (indexed as
2 because we start at 0) and A is the fifth local variable in the
descriptor table for local variables.

The new code generator module of the compiler will be
responsible for producing correct references in the object code
to the variables. The compiler will therefore evaluate the
characteristics of this double array as it has parsed the Basic
program old object code. It will determine how many elements
to each descriptor table, how many descriptor tables etc... It
will also produce at the end of the new object code a copy of
the constant descriptor table so it can be loaded directly.

Page - 25 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

Descriptor Array
for Commons

Descriptor Array
Ptr to Commons A for Commons Arrays
descriptor array -
Ptr to Commons arrays
descriptor array

Ptr to Constants
descriptor array

Descriptor Array
for Constants

Ptr to Constants
descriptor array

Double array for all descriptors

One significant advantage of this data structure is how call
becomes simplified with respect to handling local variables. To
give the program a new set of local variables, all that has to
happen is save the address of the caller’s local variables
descriptor table and make the corresponding entry in the first
array point to a newly allocated callee local variables
descriptor table.

A different approach could have been used for representing
the descriptors with a single array. The problem would have
been that arrays and commons would have probably required
some handling and special cases in the opcodes. The advantage
of such an approach is that only one indirection is necessary to

Page - 26 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

get to the descriptor instead of the two in the other scheme.
We have done some timings and determined that the
performance difference between the two is null as the
additional de-referencing has no weight on the overall time
spent in an opcode.

4. Opcode templates:

As the largest portion of the Basic rewrite will consist of
rewriting hundreds of opcodes, we have identified the need to
develop a template for those opcodes. That template would
provide the programmers with a starting point when they want
to write the code for a new opcode shortening the development
cycle.

This section presents the template for an opcode. We have
actually coded a real opcode and done numerous passes on it to
determine what is the best way for the code to look, best
macros etc...

a. An opcode template:
Here follows the template for a typical opcode. The

various concepts and macros used throughout this listing
are explained in the following few sections.

/***/

/* OPCODE.c */
/* Proprietary Information */
/* Copyright (C) Ultimate Corporation */
/* (This work is unpublished) */
/* All Rights Reserved */

/***/
/* Description: */
¥ e */
/* This file contains the code for the OPCODE function. */

/***/
#include "basic.h"
#include "opcode.h"

/***/
/* External variables specific to the instruction. */

Page - 27 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

/
/***/
/* Purpose: This routine implements the OPCODE function for basic. */
/* It expects to receive from the object stream N */
/* arguments. */
/* Some optimization are done within this implementation */
/* to handle some common cases faster: */
/* - If both the first and second arguments are */
/* of type string, we can make some assumptions... */
/* - If both the first and second arguments are */
/* of type string, and it is a full moon outside, */
/* we can make some assumptions... */
/* The algorithm used to implement this opcode is blabla... */
/* Arguments: No arguments for the C function but this opcode expects */
/* the following arguments from the object stream: */
/* - Argl is the descriptor of the variable to */
/* return the result into. */
/* - Arg2 is the mask for ... */
[* - Argn is the ... */
/* Return: */
/***/
int
OPCODE()

{
char *first_arg_ptr; /* Ptr to first argument */
int first_arg_length; /* length of first argument */
char *second_arg_ptr; /* Ptr to second argument */
double third_arg_dbl; /* Double value of third arg */

/***/
/***/

/* PARSE SOURCE ARGUMENT FLAGS. */

/* ASSIGN LOCAL DATA STRUCTURES FROM SOURCE ARGUMENTS. */
/* FORCE DATA TYPES IF NECESSARY. *

/***/
/***/

/***/

/* There are four arguments : */
/* Arg O: the destination argument: */
/* This argument is the descriptor where the result of the */
/* operation should go. TO_BE_FILLED IN */
/* Arg 1: source arg 1: */
/* The first argument for this opcode ... TO_BE_FILLED_IN */
/* Arg 2: source arg 2: */
/* The second argument for this opcode ... TO_BE_FILLED_IN */
Page - 28 -

The Ultimate Corp.
Proprietary and Confidential

AN

Specifications for the Ultimate PLUS Basic Rewrite

/¥ Arg N: source arg N: T
/* The Nth argument for this opcode ... TO_BE_FILLED_IN */

/***/

/***/

/* Prepare the first argument which is TO_BE_FILLED_IN */

/***/

if (TYPE(OBJ_DESC(1)).type != STRING_TYPE)
FORCE_DESC_TO_STRING(OBJ_DESC(1));

/***l

/* Prepare the second argument which is TO_BE_FILLED_IN */

/***/

if (TYPE(OBJ_DESC(2)).type != STRING_TYPE)
FORCE_DESC_TO_STRING(OBJ_DESC(2));

/***/

/* Prepare the third argument which is TO_BE_FILLED_IN */

/***/

if (TYPE(OBJ_DESC(3)).type != NUMERIC_TYPE)
FORCE_DESC_TO_NUMERIC(OBJ_DESC(3));

/***/

/* Setup some local variables: */
/***/
first_arg_ptr = STRING(OBJ_DESC(1)).ptr;

first_arg_len = STRING(OBJ_DESC(1)).len;

second_arg_ptr = STRING(OBJ_DESC(2)).ptr;

third_arg_dbl = NUMERIC(OBJ_DESC(3)).float_val;

JRAFFF AR ks kR kol e e e e kol e e ek ek ok sk ok ok ok ok kok ok
[R Rk R R ke e el ik ik sokololoook ok ok ok R K
/* INSTRUCTION SPECIFIC CODE */
ARk ok ok ko e e kol kol e sl e kol skl s sl ok ke ekl e ek ok ok ok |
ARk ook ke ki okl e e ek ek s ek ok e ook sk kb koo sk ok ok

/* CODE SPECIFIC TO THIS OPCODE */

Page - 29 -
The Ultimate Corp.
Proprietary and Confidential

December 4, 1991 4:43

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

/***/

/* UPDATE THE DESCRIPTOR VALUE FOR THE RESULT. */

/***/
/***/

if (result_string_ptr != NULL){

/***/

/¥ COPY A NON NULL RESULT STRING TO THE TARGET */
/* DESCRIPTOR. %/

/***/

DESC_MALLOC(OBJ_DESC(0), DISCARD, result_len);
strncpy(STRING(OBJ_DESC(0))-ptr,

result_string_ptr, result_len);
STRING(OBJ_DESC(0)).ptr{ target_string_len] = \0";
TYPE(OBJ_DESC(0)).type = STRING_TYPE;

else{
/***/

/* SET THE DESTINATION DESCRIPTOR TO A NULL STRING. */

/***l

} SET_DESC_TO_NULL_STRING(Ai;ge(m)
\
BT -DES

[k koK sk sk ok sk sk kK Rk koK ok ok sk ok sk ko sk kiR ok kR koo ko sk ks ks ok sk sk sk ko sk ok ok ok
ek ok sk sk ok ko sk sk ko sk ok ok koo sk ok sk ok ok sk ook ok ek sk ok sk s ko skl ok sk ook ok ok

/* INCREMENT THE OBJECT CODE POINTER PAST THIS INSTRUCTION */

/***/
/***/

INCREMENT_OBJECT_PTR;

/***/

/* OPCODE.c(end) */

/***/

b. Accessing the Basic object and opcode arguments:

An external uchar * named object_code_ptr will
always be pointing into the object code. The main
parsing loop will decode the opcode and position the
object_code_ptr at the byte following the opcode.

Each opcode.c file should have a corresponding
opcode.h file. That include file should have in it first a

Page - 30 -
The Ultimate Corp.
Proprietary and Confidential

TN
|

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

definition for the object code format for that opcode.
(For example if my opcode expects two variables and a
two byte length after the opcode in the object, my

structure definition should look as follows:

typedef struct{
arg_struct arg[2 1; /* Two variables */
short length; /* two bytes length */

Jopcode_object_struct;

Any variables should always be put together into an
array in that structure and should be of type
arg_struct. The structure arg_struct is defined for
the time being as follows (it could very well change as
the project evolves):

typedef struct(
short vector_index; /* index of the descriptor table in */
/* the main vector */
” short desc_index; /* index of the variable in the */
(/* descriptor table */
Jarg_struct;

Notice that this structure basically defines the way a
variable is represented in the object stream.

Note that throughout the code the word desc will
always refer to a descriptor!

The file opcode.h will also have one more declaration.
That is the declaration for the variable
object_code_ptr. Here we are going to cheat. That
variable was defined as a char * but we are going to
declare it differently in every opcode.h file. It will be
declared as of type opcode_struct *. This allows us in
the C code for that opcode (opcode.c file) to be able to
say object_code ptr->length for example to get the
two bytes field from the object stream. The advantage of

Page - 31 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

doing that is that our code will not do any byte
arithmetic as the C compiler will align the data
structures accordingly (and on the HP automatically
avoid bus exceptions!). The draw back is that if the
compiler on different machines aligns the data
differently, the new Basic object will not be
compatible between those different machines.
Notice though that some effort can be invested to
attempt to provide object code compatibility on the
machines we support through the way we declare the
data structures. If some incompatibility can happen
though, the runtime should be capable of identifying the
fact that the object code that is attempted to run is not
compatible with the machine being run on.

Therefore we will do the work to ensure that the data
structures are aligned similarly on different machines.

As you notice, the template has as a last line
INCREMENT _OBJECT_PTR (a macro). That
positions the object code_ptr past the opcode
arguments onto the next opcode. The reason this is done
in the opcode code itself is that because of the way the
object_code_ptr variable was declared, this macro
equates to ++object_code_ptr. The C compiler
calculates how many bytes it is appropriate to increment
the pointer by.

On the other side of the fence, the new object code
generator will be using the same data structures and
include files opcode.h to produce the object ensuring
proper handshake between the compiler and the
runtime.

We consider the concepts described in this section as
pretty critical. That is because we will not be doing any
byte arithmetic in this project minimizing the number
of bugs we will have in our code and increasing our
productivity!!!

So we basically have to deal with three types of
elements: object code, arguments and descriptors. We

Page - 32 -
The Ultimate Corp.
Proprietary and Confidential

) TN

\\'\M//

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

have defined macros to go from one type to another.

#define OBJ_ARG(n) object_code_ptr->arg[(n)]
#define ARG_DESC(arg) vector| (arg).vector_index][(arg).desc_index]
#define OBJ_DESC(n) ARG_DESC(OBJ_ARG(n))

Vector is the pointer to the base of the two dimentional
array that represents all of the variable on the system.

Note that the first element of the arg array in the
opcode_struct structure should always be the descriptor
to where the result is going if that is applicable for that
opcode. This allows us to rely on the fact that the
destination will always be OBJ_DESC(0).

c. Accessing descriptors:

The following macros give us access to the different
fields in the desc_struct structure. Those macros
practically hide the different levels in the desc_struct
structure (unions and sub-structures) giving a single
level of access (there will be one occurence of the ‘dot’
command)

They are all defined in the desc.h source file.

#define TYPE(desc) OBJ_DESC((desc)).ﬁxed.ﬂags.byte.?%
#define STRING(desc) OBJ SC((desc)).fixed.string
#define NUMERIC(desc) OBJ_IJESC((desc)).overlay.numeric

#define FILE(desc) OBJ SC((desc)).overlay.file
#define SELECT(desc) OBJ_DESC((desc)).overlay.select

#define FORMAT(desc) OBJ_DESC((desc)).overlay.conv.format

Page - 33 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

There will definitely be more definitions in that file as
the desc_struct structure evolves. The concept though
should remain the same. Notice that we practically can
get to any field in the structure by using a reference of
the form DESC_type(ARG(n)).field. That makes
it consistent throughout the code.

d. Dynamic memory allocation:

Heap management suddenly becomes an important issue
with this rewrite. Up till now, most heap requirements
for Ultimate PLUS were channeled through the frame
manager as all of the memory used has been in frames.
With this rewrite, workspaces for Basic programs are
no more in frames but rather in the process’s heap.
Dynamic memory management is one area where bugs
in C get pretty nasty. For that reason, we are going to
channel all of our dynamic memory requests through an
interface that will evolve to provide elaborate debugging
capabilities. No code in the system should be doing any

malloc() orrealloc() or free(). Instead the following

set of macros should be used:
DESC_MALLOC(arg, flags, length)

The first argument is of type arg_struct, the second is a
flag that affects the behavior of the heap manager and
the last one is the desired length of the memory piece to
allocate. That macro will allocate a piece of memory of
size length and will make the string pointer field of the
descriptor point to it. If the string field of the descriptor
was already pointing to a piece of memory of less or
equal size, the macro will just return without doing
much. The flag can be used to indicate if the data that is
currently in the string field of the descriptor needs to be
preserved or not. If the flag PRESERVE is used, after
the new chunk of memory is allocated the data from the
old string field of the descriptor is copied into the new
chunk of memory. If the flag DISCARD is used no
data is copied.

Page - 34 -
The Ultimate Corp.
Proprietary and Confidential

N
{
@

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

If the string field of the descriptor is already pointing to
a previously allocated chunk of memory,
DESC_MALLOC will take care of freeing it.

DESC_FREE(arg)
The macro DESC_FREE takes an argument of type
arg_struct and frees the memory that is pointed to by
string pointer field for the passed descriptor.

Both of those macros might evolve some more over the
next month or two as people start programming and
further needs are identified. It is in our intention to
provide tracing and accounting capabilities within those
two heap management macros. This should for example
help identify a piece of code that does not free memory
as i1t should making the process grow his heap
indefinitely.

The macros in the first cut will most probably make use
of the C runtime library malloc() , free(), and realloc()
although this might change if those routines are found
inappropriate in the future for performance reasons.
The use of the macros allows us to modify the heap
management implementation without having to modify
the source code.

e. Useful macros:
A macro that is worth mentioning is the one used at the
end of the template:
SET_DESC_TO _NULL_STRING(arg).
That macro will set the string field of a descriptor to an
empty string.
Jf. Procedure for developing an opcode:

Here is a brief listing of the steps to follow when a new
opcode is being coded:

- If this opcode has a corresponding opcode in the old

Page - 35 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

object code, print out a listing of the virtual mode(s) for
this opcode and go through it making sure you get a
thorough understanding of the functionality of that
opcode. Not all the functionality is highlighted in the
user manual!! That is why going through the virtual
code is important.

- Run some benchmarks on Ultimate PLUS 21xEn and
on a competitive implementation (Ult/ix or Pick Blue)
that exercises this opcode. The purpose of this exercise
is to set a performance goal for this opcode rewrite! We
have to be able to be at least equal to our competitors
performance.

- Make a copy of the files opcode.c and opcode.h and
rename them according to the opcode being developed.

- Define the opcode structure opcode_struct in the
include file by understanding the arguments that this
opcode is being passed.

- Communicate to the programmer coding the compiler
that this new data structure exists as he will need to fill
it at compile time.

- Customize the comments in the opcode.c file
describing the functionality of this opcode, its
arguments, its result and the algorithm used and

anything else appropriate. Do not leave the comment to
the end!!!

- Customize the first section of opcode.c where all the
arguments are forced to the appropriate type.

- Develop the code specific to the opcode.
- Do some preliminary testing.
- Print out a listing for the newly written code and

choose another programmer from the Basic rewrite
team and review the code with him. Make sure that the

Page - 36 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

person you picked is responsive and helpful otherwise it
is of no benefit to anybody.

C. The optimizer:

1. Architecture of the optimizer:

What has commonly been referred to so far as the optimizer is
really a little bit more than that. The compiler for the new
Basic is really made of the old Basic compiler plus some
additional modules that we are to develop. These additional
modules have been referred to so far as the optimizer although
the optimizer is really just a piece of it (a significant one).
This new piece is made of three modules:

- A parser: The parser will parse the old object code
and generate some data structures that are suitable for
optimization. That parser is pretty straight forward to
implement. The hard part is the data structures that it
will be filling out. Those will change as they are found
appropriate for the optimization algorithms.

- An optimizer: This is really the optimizer. It will
use traditional compiler optimization techniques to
squeeze as much performance as possible from the
user’s code. The fact that this optimizer should produce
some measurable performance gains is in no way a
reflection on the user’s bad coding. Some optimizations
that the optimizer is capable of doing are pretty hard to
foresee for a human being. Moreover as dealer’s
applications grow with time, they will fatten with
inefficiencies because the code gets modified in pieces
and stops being as compact as on the first day.

The optimizer will operate on the data structures that
were built by the parser and will result in the same data
structures but may be shrinked or reshuffled.

- A code generator: This module will run against the
data structure that the parser generated and that the
optimizer optimized. It will produce out of it a stream

Page - 37 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

of object in the new Basic object code format. The most
critical responsibility of this module is to generate
object code that looks like the runtime expects it (the
opcode.h structures are used for that purpose). It is also
important that this code generator can be easily
modified to generate different object. This is important
because we foresee that the object code format might
change over the life of this project and especially in the
first few weeks.

2. Support for the New Basic Runtime:

Out of the three modules described in the previous section, the
parser and the code generator are in the critical path for
the release (with the runtime rewrite). We therefore will
complete those two before we work on any optimization
techniques. The optimizer will only be implemented as time
permits.

Other than just producing object code in a format that is

appropriate for the runtime, some other tasks are expected
from the code generator:

- Temporary variables management: The object
should contains explicit references to temporary
descriptors in the temporary descriptor table. This will
be done by the code generator.

- Constants descriptor table: A constant descriptor
table will be produced at the end of the object to be
loaded by the runtime at initialization time. The object
will contain the proper references to those constants
where appropriate.

- Source/Object map: The new Basic debugger will
expect a table at the end of the object that will contain a
mapping of line number’s between the initial Basic
sources and the produced object. This is to help
symbolic debugging.

- Symbol table: A symbol table will also be produced

Page - 38 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

at the end of the object to help symbolic debugging with
variable names...

- Debugging: The code generator should be capable of
producing a dump of its internal data structures in a
humanly readable form to help track down any
problems with it.

3. Optimization techniques used:

V. Compatibility with current Basic:

This section discusses topics that are a little bit touchy as they may
represent design or implementation challenges in our seek for a fully
compatible implementation. Any things that we do not think we will
support are highlighted in their respective sections. Most of the topics
covered in this section are backed by a full appendix that reflects the
research that was done.

A. Basic source compatibility:

It is the intent of this project to maintain full compatibility with
Ultimate’s Basic implementation. All the functionality should be the
same. It is not clear what should be done about things that turn out to
be bugs in the old Basic as some customers could be relying on them.
Those need to be reviewed and assessed one by one.

B. Named Commons:

The 'named common' data concept is fully supported by optimized
Basic. Data can be shared between both the old and the new runtime
environments.

The implementation requirements are as follows:

The compiler part of the optimizer stores, in the constants
section of the new object code, the name of the common

Page - 39 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

block(s) that the runtime may access.

During runtime, when the 'mamed common' instruction is
executed, a new routine loads the current values of the named
common block into the runtime environment. These values are
stored in the old ten byte descriptor format. Conversion to the
appropriate descriptor type and scaling factor occurs at that
time.

This new piece of code interfaces to the current virtual modes
in order to scan the 'named common' table and fetch the block
address.

As part of the clean up code when the program terminates (via
opcodes EXIT or CHAIN, or via the debugger), a similar
routine writes out the new data values of the common block, in
the old descriptor format, with all numeric values converted to
string.

A special case is the EXECUTE instruction which may invoke
a Basic program using the same common data block. In this
phase of the project we are going to update and restore the
data values of the 'named common' block for this instruction.

Refer to Appendix E for an in depth overview of the 'named
common' feature.

C. Calls:

Optimized Basic can not CALL old object code, and vice versa,
because of the complexity involved in building a bridge interface
between the two environments, especially in regard to common
variables.

Both direct and indirect call formats are supported.
The implementation requirements are:

The CALL opcode interfaces with parts of the current virtual
code to retrieve the object code for the called routine.

Page - 40 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

A descriptor is kept for each direct call, so that the object
location only needs to be resolved once.

For indirect calls, the OPEN 'SUB' instruction is supported.

The called routine inherits the primary descriptor vector table
(refer to Section IV.B.3 about Basic variables and constants)
from the caller (like other global variables) thereby gaining
access to the 'common’ data variables. Sections of the vector
table that are unique to the subroutine (local variables
descriptor table, local constants table,...) are saved and
initialized to the new addresses.

The CALL instruction and the subroutine both contain a count
of the number of arguments passed, which must match.
Arguments are copied between environments in a manner
similar to the current implementation.

Refer to Appendix N for an in depth discussion of CALL.

D. Basic Debugger:

All of the current debugger functionality will be provided in the
rewrite. Some more features have identified as desirable and may be
implemented as time permits. It is desirable for some of those
features to even replace some old ones as time goes by. The
debugger will look different in functionality when a program has
been fully optimized as some capabilities are either too hard or
impossible to provide in that situation. Please refer to appendix F for
any more detailed information.

E. Library Calls:

The majority of the existing library calls do not have to be supported
since they are used for hardware specific tasks that are not available
on the Ult/PLUS platform (Vterm, 1400 diskette driver, IBM
performance monitor,...). However a number of them are used in
general purpose Basic routines and need to be supported.

The interface between the new runtime and the virtual code is the

Page - 41 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

same as for other instances where virtual code needs to be invoked.

In the new environment, the advantage of using library calls over
conversion user exits is not so strong because descriptor values can
no longer be updated in place.

In a few words, there does not appear to be any problem in
implementing the library interface. The code for the generic
interface to a virtual mode will be used here to interface to the
virtual code for libraries.

Refer to Appendix J for a more detailed description of the 'library
call' interface.

F. Execute /| Chain / Data Statements:

Execute: New and old format Basic programs can be executed from
the optimized runtime environment.
The implementation requirements are:

Using the standard interface from optimized Basic to current
virtual, a number of arguments need to passed to virtual,
either as data or as pointers.

Through simulation of the current interface, or through a new
routine, the 'execute’ Tcl level needs access to some of the
passed arguments from the Basic runtime.

With the use of routines to update descriptor data, information
returned by the execute command needs to be passed back to
the Basic runtime environment.

For a detailed description, refer to Appendix O.

Chain/Enter: The 'CHAIN ...(I)' command and the 'ENTER'
instruction are NOT supported because:

The complexity of the code involved and the likelihood of
causing problems & bugs;

Page - 42 -
The Ultimate Corp.
Proprietary and Confidential

»

TN

N

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

It makes optimization at the descriptor level impossible since
there is no way to know if and when a program will be
ENTERed, and how the previous descriptor space is going to
map to the new one.

The reason for the existence of these features is that in the old
days the object size was limited to 32K, and this was the only
way to bypass that restriction. In the new environment object
sizes can be large enough so that this is no longer an issue.
Source code can easily be kept in small portions via the
$INCLUDE directive.

So the “CHAIN...(I)” and the ENTER instruction will not be
implemented in the first phase. If there is a need for any of those two
features, it will be implemented in phase 2. Other 'CHAIN'
commands are supported.

G. Interface from Recall and Update to Basic:

The complexity involved in pre-initializing a descriptor table,
accessing it from within virtual and maintaining the runtime
environment in between calls, all make these features difficult and
time consuming to implement.

In the case of Recall subroutines, the time usually spent inside the
Basic routine is very short, and the performance gain to be expected
from optimization can only be small compared to all of the Recall
processing. Because of the common variables section that must be
included, these subroutines can only be used from Recall.

The easy solution will be to take advantage of the fact that the old
Basic runtime will remain part of the Ultimate PLUS system. We
would therefore still invoke the same virtual code as today. In the
second phase of the project we can make sure that these are
implemented.

Refer to Appendix H for a detailed description of the Recall calling
Basic interface and of the issues involved in optimizing it.

Page - 43 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

I, I n ions that n nswered:

This section lists issues and questions arising from this design effort. These
need to be resolved as soon as possible to ensure that the project is on the
right track. Every one’s input will be valuable from our management to
our marketing department.

- How much more space is it acceptable for the new object to occupy
without becoming an issue! If a Basic program produces today a 1Kb
object item, how big can it be for this rewrite? Same? 10 Kb? ...

- In view of the analysis done on the math, how many flavors of
arithmetic do we really need to implement: Ult/ix flavor, Ultimate
flavor, correct math, others...

- Is string arithmetic still a requirement for this implementation
considering that the overflow situation in the new implementation is
different (see Appendix G).

- Is Basic object code compatibility required between different
Ultimate PLUS implementations? See section about Accessing the
Basic object.

- Testing the compatibility of the rewrite will be a real challenge.
The ideal case would be for us to have some test software (automated
test) that can validate the rewrite. Such a product would help the
stability of the rewrite tremendously. It is not clear at this point if

this product could be purchased or has to be completely developed in
house.

- Documentation, QA, alpha and Beta are topics that complement the
R&D work to make the Basic rewrite become a releasable product.
Therefore a commitement and a final schedule are necessary from
the responsible groups.

- Supporting the ‘“chain ... (I)” and the ‘“enter” statements
requires some significant effort. Is it acceptable to not provide
support for these statements in the first cut? Is it acceptable to not
provide support for those statements ever?

Page - 44 -
The Ultimate Corp.
Proprietary and Confidential

C

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

VII. New Basic performance analysis:

The questions that every one is going to ask when reading this document
are how fast will new Basic be? How do you know you are going to reach
your goals? etc...

These are tough questions to answer as they will commit the team to
specific performance numbers before most of the code has been written. So
let me try to summarize our thoughts about this topic. There is no doubt
what so ever that the rewrite will produce a system that is substantially
faster than the current basic. Our goal is to be comparable with our
competition meaning worst case is same speed as competitors and best case
is faster. There is very little choice about whether or not we will reach the
goal; we have to be comparable.

Some facts now to try to substantiate the feeling that we will meet our
performance goals. First, since many of our constraints (machine,
memory, compiler, math routines ...) are the same as our competitors, we
should be able to produce comparable results. Second we have actually
rewritten some opcodes already. For some of those rewritten opcodes,
(very few) out first pass implementation obtained a performance level that
is much higher than todays Ultimate PLUS but still slower than Ult/ix’s.
For most of the opcodes that were rewritten, we did end up with a
performance level equal or higher than Ult/ix. Generally the rewritten
opcode was two to three times faster than the current Ultimate PLUS
implementation. Those timings though do not guarantee the overall desired
result, as the architecture was not fully defined when they were done. But
those timings do confirm our gut feeling that we can meet the goals. The
month of February will be critical in producing more firm timings
information that will better reflect the end result.

One last thing; the optimizer is our wildcard. None of our competitors
currently have a real optlmlzer So the optimizer will help us gain some
additional performance in our new implementation. The question here is
how much of the optimizer we will be able to implement in the first phase.

VIII. Project Implementation:

The project is basically divided in two phases. The first one to complete in

Page - 45 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

the first half of 1992 will contain a fully rewritten Basic runtime. Some
odd pieces might have not been implemented in the first phase to be able to
meet the required deadline. Two such pieces will be be Recall calling Basic
and perhaps the optimizer (the part that does the real optimization).

A

a .

It is our goal during the implementation of this project to maximize
as much as possible the quality of the code produced to allow the
product to stabilize as quickly as possible. We all are human, and
therefore the product will have bugs (specially considering the scope
of the rewrite). But through good methodology and some procedures
we will hopefully succeed in keeping the programming mistakes to a
minimum. Here is a list of the things we are doing or we plan on
doing during the implementation of this project:

1. Templates: Considering that many many opcodes are going to

be written, it made sense to define an opcode template. That
template is a piece of code that contains the framework that
would be common for most opcodes. On one hand it will
standardize the way the newly written opcode routines look
and on the other hand it will minimize mistakes in the portion
of the code that is similar for most opcodes. Templates also
shorten the time the programmers spend on each opcode as
they would not have to worry about code that is common to
many opcodes.

2. Macros: Instead of defining macros, data structures and include

files as the project evolves, we have decided to try to do the
most important ones up-front.. We have invested a
considerable amount of time up front to design the macros,
data structures and include files that will be useful throughout
the project. This is leading to better thought and better
designed macros. These are important as every programmer
will use them throughout the project. When those are
designed, emphasis is being put on their readability.

3. Code reviews: As a programmer on the Basic project develops

new opcodes, he will choose another programmer from the
team that he wants to review his work. This is not an easy
concept to implement as it has to not be confrontational but

Page - 46 -
The Ultimate Corp.
Proprietary and Confidential

,/\\“

‘)
{)
N S

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

rather productive in finding deficiencies and educational as
various programmers share their knowledge. All Basic team
members have agreed to have their code reviewed by others.

4. Virtual reference: Considering that we are rewriting an
existing piece of code, it is very important that we take
advantage of the information that is in the old code. We will
therefore, for every opcode that we rewrite, use the existing
virtual code as a reference to ensure that the new version
behaves as the old one. The appendices at the end of this
document indicate that we have already thoroughly examined
various pieces of the current virtual implementation to better
understand the pitfalls.

S. Technical documentation: During the work for this
document, a lot of technical information about the current
system was gathered and summarized in the appendixes at the
end of this document. As we proceed with the implementation,
more knowledge will be gathered about the current system and
about the new system. We will make sure that the knowledge
gathered is put back into the appendixes to this document.

B. Phase 1:

1. Goals:

The main goal of this first phase is to provide a Basic
implementation for Ultimate PLUS that is comparable to the
Basic performance of our competitors namely Universe and
Pick Systems and at least two and a half times faster than
today’s Ultimate PLUS Basic performance. This phase has to
be on schedule and has to stabilize fairly quickly! Any tasks
that are identified to not be critical to the overall performance
can be delayed to phase two of this implementation. This will
allow us to maximize our chances of meeting our goals. One
good example can be update calling Basic. If that represents a
significant piece of work we might delay its implementation
until phase two.

As it is most important for the runtime implementation to

Page - 47 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

complete (there is not much of a product without it), we will
delay any work on the optimizer until we feel comfortable that
the project is proceeding on schedule. Not all of the
optimization techniques need to be implemented in the first
phase. Some of the more complex ones can be delayed until the
second phase.

2. Resources:

From an R&D stand point, the five people currently on the
project are enough for a timely completion of the
development. We will have to be carefull that these resources
do not get side tracked on other emergencies frequently.

From a machine stand point, it does not seem necessary at this
time to have more resources than what we currently are
working with. We will try to scatter our efforts on more than
one machine.

Testing is an issue at this time. It would be very helpfull to
have a test suite for Basic to help the product stabilize more
rapidely. If such software can not be purchased, it might make
sense to allocate some resources (at a later time, may be when
the Mips project is complete) to develop such test suite.

It is not clear yet what resources would be required from
documentation and from QA. This would have to be
determined at a later time.

3. Schedule:

Dec. 3 Coding starts
Jan. 31 Functional prototype for the new Basic.

Feb. 28 The C-rating runs with the new Basic without the
execute part and the spooler part of the test.

April 20 Demoable system, ready to be QAed for the
dealer show

Page - 48 -
The Ultimate Corp.
Proprietary and Confidential

SN

“\:\’ /

Specifications for the Ultimate PLUS Basic Rewrite December 4, 1991 4:43

April 20 Start work on the functional specification for the
compatibility document between the old and the
new Basic. See Appendix Q.

May 1 Probench runs with the new Basic.

May 15 Working demo version for the dealer show.

June 1 Ultimate PLUS release 227 with the Basic rewrite
goes to QA.
July 1 227 Alpha starts

July 15 227 Beta starts.

August 1 227 is ready to ship!!

The RS6000 release (228) will lag behing the HP release of
227 by a month. Note that the documentation, QA, alpha and
beta schedules commit resources that are outside of the Basic
rewrite team. Therefore the dates that relate to QA, alpha and
beta are suggested dates that can change.

The order of 227 and 228 releases can be switch if necessary.

C. Phase 2:
1. Goals:

Complete any pieces that were left out in the first phase. This
would include enhancing the optimizer with any optimization
techniques we would not have had the time to put in. Other
modules that might have not been implemented in the first
phase could be Recall calling Basic or further enhancements in
the basic debugger.

2. Schedule:

It is not clear yet what the deadline will be for this phase as we

Page - 49 -
The Ultimate Corp.
Proprietary and Confidential

Specifications for the Ultimate PLUS Basic Rewrite

December 4, 1991 4:43

do not know yet for sure which things would be included in

there.

Page - 50 -
The Ultimate Corp.
Proprietary and Confidential

TN,

N/

Appendix A: READ/IREADU/WRITE flowcharts December 4, 1991 4:43

Appendix A: Basic

READ/READU/WRITE flowcharts, as
per release 210E

Topic: Steps taken by the Basic WRITE Thursday, September 5, 1991

instruction. specifically with regards to
1

locking Page
Basic write
v Mode BRPO2
Calculate hash based i
on the item-id Mode DISKFIO-I
Set write lock for the
group See chart Page 3
Scan group for
item-id. Assume item i
is found Mode DISKFIO-I
Update the group with
the new data Mode WRAPUP-II

Are there any
item locks set for
this group?

YES NO

Page - 51 -
The Ultimate Corp.
Proprietary and Confidential

Appendix A: READ/READU/WRITE flowcharts

December 4, 1991

4:43

v

Remove my item lock
for this group and
hash value

See chart
Page2

v

Unlock write lock and
first read lock

|

DONE J

See charn
Page 4

Page - 52 -
The Ultimate Corp.

Proprietary and Confidential

Appendix A: READ/READU/WRITE flowcharts December 4, 1991 4:43

Topic: Steps taken by the Basic WRITE Thursday, September 5, 1991

instruction, specifically ~ with regards to
locking. Page 3

set write lock for the group

Mode GLOCK

Lock the group table Mode GLOCK

frame based on the
hash value

v

Scan for the group Mode GLOCK
lock entry in the frame
selected

|s the entry in
the table?

YES —

NO
A 4

Scan group lock
frame for available
entry

Group lock

NO frame full ?

Page - 53 -
The Ultimate Corp.
Proprietary and Confidential

Appendix A: READ/READU/WRITE flowcharts December 4, 1991 4:43

< :?)

YES
4

Unlock the table
frame
Rgm

. 4

Set scan byte In
upper table &
HOST:FID in the
selected entry

Unlock group lock
frame.

RETURN

! TN,

- ;

Mode RLOCK-II

Are any reaa

locks set for this

entry?
?

NO

YES
\ 4

Release ALL read
locks that | have for Mode RLOCK-II
this group

« Page - 54 -
The Ultimate Corp.
Proprietary and Confidential

Appendix A: READ/READU/WRITE flowcharts

December 4, 1991 4:43

Is group entry

NO

currently wnte
locked?
?

YES

Is it write

YES P

locked by me ?

NO

Unlock the group
table frame, activate
the other user & Ram

F

Store the HOST PIB
value in the group lock
entry.

RETRY

Are there any
read locks set for
this group?

YES

Unlock the group table
frame. activate the top

read lock user & Ram

Release the group

-NO

table lock
RETURN

Page - 55 -
The Ultimate Corp.
Proprietary and Confidential

Appendix A: READ/READU/WRITE flowcharts December 4, 1991 4:43

Topic: Steps taken by the Basic WRITE Thursday, September S, 1991
instruction, specifically with regards to
locking. Page 2

Remove my item lock for
this group and hash value

Mode LOCK3

Lock the group table Mode GLOCK
frame based on the
hash value

y

Scan for the group Mode GLOCK
lock entry in the frame

selected

y

Recalculate the hash Mode RLOCK-I
value based on the
item-id

Is there a (next)

item lock entry? NO

YES

Does the hash
value in the entry
match?

A NO

Page - 56 -
The Ultimate Corp.
Proprietary and Confidential

Appendix A: READ/READU/WRITE flowcharts

December 4, 1991 4:43

YES

NO Does the entry

belong to me ?

YES

Clear HOST:PIB field
in item lock entry.
Remove entry from
list & add to available

queue.

Do | have the
group wrnte
locked?

NO

Are there any
read locks set tor
the group?

YES

Remove the first
readlock entry found
set by this HOST:PIB

I

YES —————*

Clear the HOST:P!B
(write lock) field in the
group lock entry

Release the group 10Cck
frame.
RETURN

Page - 57 -
The Ultimate Corp.
Proprietary and Confidential

Appendix A: READ/READU/WRITE flowcharts December 4, 1991 4:43

Topic: Steps taken by the Basic WRITE Thursday, September 5, 1991
instruction, specifically with regards to
locking. Page 4
Unlock write lock and first
read lock
Mode GLOCK

Lock the group table
frame based on the
hash value

v

Scan for the group
lock entry in the frame
selected

Release group table
lock.
RETURN

Is there an entry
in the table?

YES

Clear the HOST:PIB
YES pfield (write lock) in the
group lock entry

Is a wnite lock set
for my process ?

Release group taple

lock.
RETURN
NO
C
Page - 58 -
The Ultimate Corp.

Proprietary and Confidential

Appendix A: READ/READU/WRITE flowcharts December 4, 1991 4:43

Release group table
lock.
RETURN

Are any read
locks set for this
group?

YES
\ 4

Remove the first
readlock entry found Mode RLOCK-|
set by this HOST:PIB

Release group table
lock.
RETURN

~_

Page - 59 -
The Ultimate Corp.
Proprietary and Confidential

Appendix A: READ/READU/WRITE flowcharts

December 4, 1991

Topic: Steps taken by the Basic READ

instruction. specifically
locking.

Basic read

with regards to

Calculate hash based
on the item-id

v

Set Read lock for
the group

v

Scan group for
item-id. Assume item
is found

v

Copy theiteminto a
Basic descriptor

y

Unlock write lock and
first read lock

v

(oone)

Thursday, September 5, 1991

Page 1

Mode BRPQ2

Mode DISKFIO-|

See chart Page 3

Mode DISKFIO-I

Modes BRP02 & BRP24

See chart Page 4

Page - 60 -
The Ultimate Corp.

Proprietary and Confidential

®

AN

Appendix A: READ/READU/WRITE flowcharts December 4, 1991 4:43

Topic. Steps taken by the Basic READ Thursday, September 5, 1991

instruction, specifically with regards to

locking. Page 3
Set Read lock for the group
Mode RLOCK-I
Lock the group table Mode GLOCK
frame based on the
hash value
Scan for the group Mode GLOCK
lock entry in the frame
selected
Is the entry in
the table? YES

NO
A 4

Scan group fock
frame for available
entry

Page - 61 -
The Ultimate Corp.
Proprietary and Confidential

Appendix A: READ/IREADU/WRITE flowcharts December 4, 1991 4:43

Group lock

—NO frame full ?

YES

Unlock the table
frame
Rgm

—y

Set scan byte in
upper table & part of
the hash value in the

selected entry TN

l

Is group entry

currently wnie

locked?
2

NO

YES

Is itwrnte
locked by me ?

NO

Page - 62 -
The Ultimate Corp.
Proprietary and Confidential

Appendix A: READ/READU/WRITE flowcharts December 4, 1991 4:43

o | have a read
lock set for the
group?

YES P

NO
4

Unlock the group
table frame, activate
the other user & Rgm

v

Add a read lock entry
to the corresponding See chart Page 2
read lock frame

s the read lock
addition
successtul?

v

Unlock the group
table frame & Rgm

Page - 63 -
The Ultimate Corp.
Proprietary and Confidential

Appendix A: READ/READU/WRITE flowcharts December 4, 1991 4:43

Topic: Steps taken by the Basic READ Thursday, September 5, 1991
instruction. specifically with regards to
locking. Page 2

Add a read lock entry to the
corresponding read lock frame

Mode RLOCK-Ill

Is an entry
available ?

YES

NO

Have we reached the
max table size?

YES NO
\ 2

L 4
Unlock the table ‘
frame. RQM Acquire a frame

from overtlow &
attach it to the table

2

2

Get entry from avail
queue. Store HOST:PIB
in entry. Update offset in
Group lock entry. Unlock

the group table frame.

Page - 64 -
The Ultimate Corp.
Proprietary and Confidential

Appendix A: READ/READU/WRITE flowcharts December 4, 1991 4:43

Topic: Steps taken by the Basic READ Thursday, September 5, 1991
instruction. specifically ~ with regards to
locking. Page 4

Unlock write lock and first read lock

Mode GLOCK

Lock the group table
frame based on the
hash value

!

Scan for the group
lock entry in the frame
selected

Release group table
lock.
RETURN

Is there an entry
in the table?

YES

Clear the HOST:PIB
YES m field (write lock) in the
group lock entry

Is a wnte lock set
for my process ?

Release group table
lock.

RETURN
o \/

Page - 65 -
The Ultimate Corp.
' Proprietary and Confidential

Appendix A: READ/READU/WRITE flowcharts

December 4, 1991 4:43

Release group table
lock.
RETURN

Are any read
locks set for this
group?

YES
4

Remove the first
readlock entry found Mode RLOCK-HI

set by this HOST:PIB

Release group taole
lock.
RETURN

Page - 66 -
The Ultimate Corp.
Proprietary and Confidential

»

AN
/ ;

N ;
N

e

Appendix A: READ/READU/IWRITE flowcharts December 4, 1991 4:43

Topic: Steps taken by the Basic READU Thursday, September 5, 1991
instruction, specifically ~ with regards to
locking. Page 1

Basic readu

Mode BRP02

Calculate hash based | Mode DISKFIO-I
on the item-id

v

Set Item lock for the | See chart Page 3
group

(:

Scan group for
item-id. Assume item
is found

v

Copy theiteminto a Modes BRP02 & BRP24
Basic descriptor

v

Unlock write lock and | See chart Page 4
first read lock

Mode DISKFIO-I

v
(oone)

Page - 67 -
The Ultimate Corp.
Proprietary and Confidential

Appendix A: READ/READU/WRITE flowcharts December 4, 1991 4:43

Topic: Steps taken by the Basic READU Thursday, September 5, 1991
instruction, specifically with regards to
locking. Page 2

fidd a read lock entry to the
corresponding read lock frame

Mode RLOCK-III

Is an entry

available ? YES
NO
Have we reached the
max table size?
YES NO
Y L 4
Ur;l;ﬁ;hgg&le Acquire a frame
' from overflow &
attach it to the table
v - y
R Get entry from avail
ETURN queue. Store HOST:PIB
in entry. Update offset in
Group lock entry. Unlock
the group table frame.

v
RETURN

Page - 68 -
The Ultimate Corp.
Proprietary and Confidential

Appendix A: READ/READU/WRITE flowcharts

December 4, 1991 4:43

Topic: Steps taken by the Basic READU

instruction, specifically with regards to

locking.
Set Item lock for the group

Lock the group table
frame based on the
hash value

i

Scan for the group
lock entry in the frame
selected

Is the entry in
the table?

NO
A 4

Thursday, September 5, 1991

Page 3

Mode LOCKO

Mode GLOCK

Mode GLOCK

Scan group lock
frame for available
entry

YES

Proprietary and Confidential

Page - 69 -
The Ultimate Corp.

Appendix A: READ/READU/WRITE flowcharts

December 4, 1991 4:43

——NO

Group lock
frame full ?

YES

Unlock the table
frame
Rgm

L

Set scan byte in
upper table & store
part of the hash in the
selected entry

l

Is group entry

currently write
locked?
?

YES

Is it write
locked by me ?

Page - 70 -
The Ultimate Corp.
Proprietary and Confidential

C

Appendix A: READ/READU/WRITE flowcharts December 4, 1991 4:43

o | have a read
lock set for the
group?

YES —

NO

Unlock the group
table frame, activate
the other user & Rgm

2

Calculate the hash Mode RLOCK-I
value for the item-id

Is an item lock
curmentty set for the
same hash value?

NO

YES

Is it set by me? YES

NO

Page - 71 -
The Ultimate Corp.
Proprietary and Confidential

Appendix A: READ/READU/WRITE flowcharts

December 4, 1991 4:43

RETRY

v

Unlock the group
table frame, activate
the other user & Rgm

s the item lock

NO

table full?

Unlock the group
table frame & Rgm

N
: v
A, /
N

2

Get entry from available
queue. Set forward link of
entry to zero. Store HOST:PIB
and hash value in entry.

v

Add a read lock entry
to the corresponding
read lock frame

See chart Page 2

Page - 72 -
The Ultimate Corp.

Proprietary and Confidential

Appendix A: READ/READU/WRITE flowcharts

December 4, 1991

4:43

s the read lock
addition
successful?

NO YES
\ 2
L Unlock the group
Ragm (out of disk frame.
qspa(ce 777 RETURN
Page - 73 -
The Ultimate Corp.

Proprietary and Confidential

Appendix A: READ/READU/WRITE flowcharts

December 4, 1991 4:43

Topic: Steps taken by the Basic READU

instruction, specifically with regards to

locking.

Unlock write lock and first read lock

Lock the group table
frame based on the
hash value

v

Scan for the group
lock entry in the frame
selected

Is there an entry
in the table?

Is a write lock set
for my process ?

NO

Thursday, September 5, 1991

Page 4

Mode GLOCK

Release group table
lock.
RETURN

Clear the HOST:PIB
field (write lock) in the
group lock entry

Release group table
lock.
RETURN

Page - 74 -
The Ultimate Corp.

Proprietary and Confidential

Appendix A: READ/READU/WRITE flowcharts

December 4, 1991 4:43

Are any read
locks set for this
group?

Remove the first
readlock entry found
set by this HOST:PIB

Release group table
lock.

Release group table
lock.
RETURN

Mode RLOCK-II

Page - 75 -
The Ultimate Corp.

Proprietary and Confidential

Appendix A: READ/READU/WRITE flowcharts

December 4, 1991 4:43

Page - 76 -
The Ultimate Corp.
Proprietary and Confidential

Appendix B: ICONV/IOCONY and user exits December 4, 1991 4:43

(Appendix B: Conversion format string

If the second argument of a ICONV/OCONY instruction is a literal string,
the optimizer can parse it , initialize a data 'constant’ data structure setting
values and flags, and change the argument type (possibly the argument field
also) to reflect the optimization.

The following is a suggested parser for some of the most used conversion
codes.

Check the first character of the string for:

M Mask. Accept any of the following sub-codes:
R
L
D numeric and/or string format mask. Handle the same way as
Basic FMT instruction (see 'Format' document).

" T time format. Can be optionally followed by:
(H twelve hour format;
S include seconds;

Cx some of the character conversion codes could be handled easily
(ex: MCU, MCL).

D Date format. Handle the same way as in the Basic FMT instruction
(see 'Format string parsing' document)

G Group extract. Is followed optionally by:
m a number indicating the count of fields to skip before
doing the extract;

Is followed mandatorily by:
<sep>n a single character group separator (any non
numeric except a minus sign or a system
delimiter), followed by the count of fields to

extract.
Page - 77 -
The Uldmate Corp.

Proprietary and Confidential

Appendix B: ICONVIOCONV and user exits December 4, 1991 4:43

Length. Not used frequently but easy to implement.

U User exits. The following is a list of user exits that could either be
replaced by 'in line' code fairly easily or be converted to an already
existing system function (see the 'System' document):

US072

U8072

US0BB

U60BB
U4117

US117

U3121
U0122

US158

U6158

U7158

U018D
U218D

Return current system privilege level (0,1,2). Can be
done in line by looking at PCB bits SYSPRIV1 and
SYSPRIV2, or by using SYSTEM function 23;

Return a null string or a '1’', depending on the status of
PCB bit DOCCFLG;

Return process number and current account name (like
WHO verb). We could use a combination of SYSTEM
functions 19 and 26. The process number can also be

fetched from the PIB directly.
Return the current aeeea-n&—n&mes] Use SYSTEM Rp \&L
e e lasst

instead. \

Return the current PCB fid as a 6 byte ASCII hex
string. Can be fetched directly from the PIB.

Return the PCB fid of line O (the LOGON PCB) as a 6
byte ASCII hex string. Can be fetched out of frame
127.

Return the system REV level, as a string. Can be fetched
out of frame 127.

Return current number of PIBS. Can be fetched out of
frame 127 or from the shared memory structure.
Return input from specified line number, if any is
available. Equivalent to peripheral read. Call the code in
test_inp.c and periph.c directly.

Write given output to specified line, then return input
from that line , if any is available. Equivalent to
peripheral write followed by peripheral read. Call the
code in test_inp.c and periph.c directly.

Return the type-ahead count of a given line. Use the
test_inp.c code directly.

Increment the Basic break-off counter and set the
INHIBIT bit in the PCB. Assuming the break counter is
kept in a global variable this can be done in line.

Page - 78 -
The Ultimate Corp.
Proprietary and Confidential

o

P

Appendix B: ICONV/OCONY and user exits December 4, 1991 4:43

U118D

U318D Decrement the Basic break-off counter and reset the
INHIBIT bit in the PCB. Assuming the break counter is
kept in a global variable this can be done in line.

Remarks:

Even though no statistics are available it is reasonable to assume that output
conversions are used much more frequently that input conversions (most
user exits work the same either way). Therefore we should first
implement OCONV optimization of the above codes and perhaps only
speed up a subset for ICONV.

Page - 79 -
The Ultimate Corp.
Proprietary and Confidential

Appendix B: ICONV/IOCONY and user exits

December 4, 1991 4:43

Page - 80 -
The Ultimate Corp.
Proprietary and Confidential

Appendix C: Format string parsing December 4, 1991 4:43

Appendix C: Format string parsing
rules

Introduction:

If the second argument of a FORMAT instruction is a literal string, the
optimizer can parse it, initialize a data 'constant' data structure setting

values and flags, and change the argument type (possibly the argument field
also) to reflect the optimization.

The following is a suggested parser:

if the first character is a D then
parse for a date mask,
else
if the first character is an M ignore it;
if the next character is a D (MD), treat it the same as R;
accept any of the following justification codes:

R,L,V,U,T

R sets right justification, all other codes indicate left
Jjustification.

Parse the rest of the string for a numeric format mask.

After parsing for the date mask, if any data is left in the mask,
check for the following justification codes ONLY:

R,L,V

If the first remaining character matches any of these three then:
- set the justification flag accordingly ;
- set another flag to indicate a string format mask is present;
- store a pointer to the remainder of the mask.

Any other code causes the rest of the mask to be ignored.

After parsing for a numeric format, if any data is left in the mask, then set
a flag to indicate a string format mask is present and save a pointer to the

Page - 81 -
The Ultimate Corp.
Proprietary and Confidential

Appendix C: Format string parsing December 4, 1991 4:43

remaining string.

i for

Accept any of the following options, setting appropriate flags in the data
structure, in the sequence that they are listed here (note: none of these
options are mandatory):

n

<sep>m

<sep>

OR

DIMQY

number of digits to show the year in (between O and 4,
the default is 4);

a group extraction separator followed by a count. This
separator is a single character which can be anything
except a ';' or a system delimiter. The count specifies
the number of fields to skip prior to the start of the date
information. It needs to be converted to binary and

saved in the data structure, along with the separator.

a single character, to become the separator between the
day, month and year information. If present, the month
shows as a 2 byte number. Otherwise it is printed in a 3
character abbreviation format.

exclusive condition: either <sep> or one of the next
codes:

respectively show only the Day of month, Julienne date,
Month of year, Quarter or Year. Only one of these can
be present.

Parsi ic f ,

Past the justification code:

check for a single digit specifying the maximum number of decimal
positions to output. If omitted, the default is zero;

a single digit precision. The default is zero when used inside a
conversion, or equal to the precision value if called as a Basic

Page - 82 -
The Ultimate Corp.
Proprietary and Confidential

Appendix C: Format string parsing December 4, 1991 4:43

instruction.

Accept and set flags for any of the following codes, which appear in any

order:
$ precede output with a monetary sign;
) separate every 3 integer positions with a comma;
Z suppress leading zeroes from the output;
N do not output the sign indicator if negative;
CDME one of four credit indicators.

If any of the above conditions is true (at least one of the digits or one of the
flags settings) the format mask is considered to be of a numeric type. Note
that this mask may be followed by an output format string.

Page - 83 -
The Ultimate Corp.
Proprietary and Confidential

Appendix C: Format string parsing

December 4, 1991 4:43

Page - 84 -
The Ultimate Corp.
Proprietary and Confidential

Appendix D: SYSTEM() functions December 4, 1991 4:43

' Appendix D: SYSTEM functions that
) are good candidates for optimization

What follows is a list of SYSTEM functions that could be easily done in

line:

1. Return the NUMBER 0 or 1, depending on the value of the PCB
bit LPBIT.
2. Return the current value of PCB element OBSIZE, as a
NUMBER.
3. Return the current value of PCB element PAGSIZE, as a
NUMBER.
4. Return the current value, as a NUMBER, of

SCB elements FOOTCTR-LINCTR,

if FOOTCTR > PAGSIZE;
SCB elements PAGSIZE-LINCTR otherwise.

5. Return the current value of SCB element PAGNUM, as a

NUMBER.

6 Return the current value of SCB element LINCTR, as a NUMBER.
7. Return the current terminal type value of PCB element
TERMTYPE, as a STRING.

8. Return the current tape record length of SCB element TPRECL,
as a NUMBER.

10. Return the current system type from frame 127, as a STRING.
16. Return cause of ABORT when in TRAP subroutine. If stored in
global space, this can be done in line.

19. Return the current process number, from the PCB or the PIB,
as a NUMBER.

21 Return the current execute level from the QCB, as a NUMBER.
22 Return the current spooler hold file number. If stored in global
space, this can be done in line.

23 Return system privilege level (0,1,2), from the PCB settings of
bits SYSPRIV1 and SYSPRIV2.

25 Return the item count from the currently active select list. If
stored in global space, this can be done in line.

Page - 85 -
The Ultimate Corp.
Proprietary and Confidential

Appendix D: SYSTEM() functions December 4, 1991 4:43

Remarks: O

The functions for which a reference is made to 'global space' currently
have the data stored in the Basic stack workspace frame, prior to HSBEG.

Page - 86 -
The Ultimate Corp.
Proprietary and Confidential

Appendix E: Named commons December 4, 1991 4:43

Appendix E: Named commons

Intr ion:

At the contrary of a regular COMMON declaration, named COMMON is a
runtime statement.

The variables declared in named common are stored in a permanent area of
the user's workspace, for the duration of a LOGON session. The data can
thus be shared among various independently called programs and even
across TCL levels.

The total number of variables declared in a named common block must be
the same in each of the programs that wish to use it. Each needs to execute
a COMMON statement before any of the variables can be accessed. The
precision level does NOT have to be identical for each of the programs.

Any type of variable can be declared in named common, with the exception
of variably dimensioned arrays.

A maximum of 50 named common blocks can be active at any point in
time. The total length of all the names may not exceed the size of one
frame.
1 ! e

Three entries have been pushed on the stack. From top to bottom:

- The number of columns in the common block (always 1 and

ignored by virtual);

- The number of rows (the number of descriptors in the block);

- The name of the common block.

The opcode is followed by the offset to the target descriptor.

Two tables are used to manage the common blocks for each process:

Page - 87 -
The Ultimate Corp.
Proprietary and Confidential

Appendix E: Named commons December 4, 1991 4:43

The first one, hereafter referred to as TABLEI, is located in frame
PCB+48. It contains a list of all the names of the currently active
common blocks.

The second one, hereafter referred to as TABLE2, is located in
frame PCB+49 and contains the primary descriptor for each of the
blocks, in the same sequence as the names in TABLEI.

The runtime for opcode x'ED' scans TABLE1 for the name that it found
on the stack.

If the name can not be located (new declaration):

the named is added into TABLEIL;

a contiguous block of frames is obtained from overflow large
enough to fit the count of descriptors (row count from stack);

the top frame is initialized as a type x'60' descriptor with a subtype
of 5. The primary descriptor type is later changed to x20', to
uniquely identify a pointer to a named common block;

in the header portion of the top frame, the following information is
saved:

the total descriptor size, in bytes;

the row and column counts for the block;

the precision value of the current program.

the target descriptor, now initialized as a type x'20' with a SR
pointer to the top frame, is copied into TABLEZ2, at an offset relative
to its position in TABLEI, each entry taking 10 bytes.

If the name is found in the list:

the position in TABLEL1 is multiplied by 10 to obtain the offset to the
primary descriptor in TABLEZ2;

via the SR in that descriptor, the header section of the top frame is
examined to check if:

the number of elements in the block is the same as the count
declared in the current program (number of rows). If not, the

Page - 88 -
The Ultimate Corp.
Proprietary and Confidential

Appendix E: Named commons December 4, 1991 4:43

program abandons execution and drops into the Basic
debugger;

the precision value in the block is the same as the one in the
current program (SCALE#). If not, the current scale and
precision values are temporarily restored to the values from
the common block, after which each of its descriptors that has
a type code x'01' (direct number) is converted (via
MBDNATURAL) to a string. The string is stored either inside
the descriptor if it fits (type x'02') or inside a frame obtained
from overflow and initialized as a type x'60' descriptor.

The descriptor from TABLE?2 is copied into the current program's
descriptor space, at the offset found in the object code.

The opcode 1s followed by 8 bytes of vector/matrix information:

ddddrrrrccccoooo

-> For matrix elements only, the offset
to the first descriptor of that row.

o> o= 06w o=

!

!

!

! ———> For matrix elements, the column

! index. Otherwise set to 1.

! T > For non matrix elements, the row

! index in the common block.

e R > The offset to the primary descriptor.

The top of the stack, which contains the value to be stored, is pushed up
one entry, to satisfy the STORE interface, and a vector (type x'10") is
pushed in its place, containing the address of the target descriptor inside the
common block.

The address is computed based on the row/column/offset information from
the object code.

The subtype of this vector entry is set to x'C0', as a flag to the STORE
routine: when a string needs to be stored in a named common block, it
either needs to fit inside the descriptor or it must be stored inside a type
x'60" descriptor. It can NOT be stored in freespace.

Page - 89 -
The Ultimate Corp.
Proprietary and Confidential

Appendix E: Named commons December 4, 1991 4:43

Exit tl b Basi : ie BRP11)

Each of the descriptors in the block that has a type code x'01' (direct
number) is converted (via MBDNATURAL) to a string. The string is
stored either inside the descriptor if it fits (type x'02") or inside a frame
obtained from overflow and initialized as a type x'60' descriptor.

Implementation of named common in the optimized Basic
environment:

A program can be developed to load the descriptors from the virtual modes
into the C runtime data structures.

The major issue is when to write the descriptors back out to virtual keeping
in mind that 'chained' or 'executed' programs may be not in 'Optimized
Basic' format. Here are some possibilities:

update virtual every time a named common variable gets updated.
This is equivalent to the current implementation;

update virtual only when encountering a CALL, EXECUTE or
CHAIN instruction. For CALL and EXECUTE, the values also need

to be reloaded when returning back to the program;

store the named common blocks in shared memory, and have the
runtime check for previously loaded blocks there before going to
virtual;

store the common block in heap space, but when invoking CALL,
EXECUTE,... pass a pointer to a list of common variable blocks, as
part of the argument list. This way the data can be shared and only
on the final exit would we need to update virtual.

Note that if we want non optimized programs to access the named common
blocks we must write the descriptors out to virtual in their current format,
and also do the number to string conversions.

Page - 90 -
The Ultimate Corp.
Proprietary and Confidential

®

AN

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

Appendix F: New Basic debugger full
specifications

L_Obiectives:

To provide 2 levels of debugging of New Basic programs. They are
debugging for (1) programs with no optimization, (2) programs with
optimizations.

Symbolic source level debugging is possible in the first level of debugging.
As for the second level of debugging, it would not be source level
debugging at all.

II. Assumptions;
Some assumptions are as followed:

1. A map of detailing relationship between source line number and
pc.

2. A symbol table.

3. A flag (e.g. run_slow) to allow debugger to check for
breakpoints and other conditions to drop into the debugger and some
way to tell a break-key has been pressed (break_pressed).

4. A mechanism for the Basic runtime to call debugger directly
when certain error conditions occurs and when a DEBUG statement
is inserted in the source code (invoke_debugger).

5. A programs array that contains programs that the Basic runtime
has loaded so far on the execute level. In the each programs array
entry, there is information of filename and item that is loaded. A
call stack has a programs_index that tells which program is at the
stack entry. In the each programs entry, there is at least a pointer to
the breakpoint and trace tables.

—

Page - 91 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

prgrams_struct {
int max_breaks;
int max_trace;

break_struct *breakpoints;
trace_entry *trace_table;
char source_file[52];
char source_item[52];

6. Some standard file subroutines to get at the source. This
should exists for the regular Basic already.

e.g. Sstatus = open pfile(filename, descriptor)
status = read_pitem(descriptor, item)

7. System debugger interface from Basic debugger.

8. A way to access ERRMSG file and also way to pass parameters to
standard error processing routines.

9. It would be very helpful for all concerned if the object generator

would output an essentially disassemble listing of the object file. For
example:

pc> mnemonic

0001 70> 000F Loadstring 9 A "abcdefghi”
0002 100> 000A Store A B

0003 106> 000A Store B C

0004 112> 0O0OF Loadstring 4 $0 KILL
0004 122> 006E Call $0 1 |

0005 132> PrintCRLF A

0006 136>

10. A terminal I/O interfaces(includes interface to Ultimate
Spooler) for read/write to the terminal so that we can have a focal
point to access terminal and utilize paging in our output or even
windowing in the future. A control block for each of our_fd so that

Page - 92 -
The Ultdmate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

characteristics of the 'virtual' terminal can be kept (current lines,
pager_on, spooler, etc). There will be at least 3 our_fd's. They are
ULT+, sapphire debugger and basic debugger. On each new execute
level, there are 3 more.

High-level:

uprintf(our_fd, "format string”, arg...);
Low-level:

term_set(our _fd, FLAGS),

term_open(our_fd, path);

term_reopen(our_fd, path); /*switch phy. device*/

term_write(our_fd, buffer , len);

term_read(our fd, buffer, len);

term_writeread(our fd, buffer, wlen, rlen);

11. Some cleanup routines needs to de-allocate memory allocated by
the debugger. (e.g. breakpoint and trace tables).

ITII. Symbolic source debugging:

As noted earlier, the symbolic source level debugging is possible in the
first level of debugging. Since we can implement all of the commands and
features of the current debugger, all commands and features are identical
to the current debugger. See 6929-3 Ultimate Basic (p.g. 4-3) for more
information.

A. Commands and features:
Some of the more important commands are discussed here:

1. Upward compatibility:

a. Breakpoint : Bvoc{&voc} or B$on
Set breakpoint on logical condition where
v is variable
o is logical operator <,>,=#
c is condition to meet
n is line number when preceded by B$o
b. Call/Return breakpoint : C
c. Escape to system debugger : DE{BUG}
d. Single/multiple step execution : E{n}

Page - 93 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

e. Continue program execution at specific line : G{n}

f. Remove breakpoints : K{n} or K{{/}var}

g. Display specified source code current lines : L

h. Toggle output of Basic PRINT statement between terminal
and printer : LP

i. Bypass breakpoints/steps before reentering debugger : Nn

j- OFF

k. Inhibit/enable output from the program : P

l. Printer-close output spooler : PC

m. Display GOSUB return stack : R

n. Toggle display of source code lines and line numbers : S

0. End program execution; if executed from PROC, return to
PROC, return to PROC : STOP

p. Tum trace table on/off : T

q. Turn specified variable 'v' : T{/}v

r. Remove traces : U{n} or U{{/}v}

s. Display current program name and line number; verify
object code : §, *, ?

t. Display value of variable or if dimensioned array, entire
array with paging : /m

u. Display value of element in array : /m(x{,y})

v. Display value of element in dynamic array : /m<af{,v{,s}}>
w. Display entire symbol table : /*

X. Specify substring to display in subsequent variable display :
[x.y]

y. Specify substring to be display in whole : |

2. New Commands to implement when time permits:

a. Provide a verbose mode so that a more verbose commands
set for the above functions can be used. Like BREAK for B,
TRACE for T, STEP for E and so on.

In addition, new features will only available on this verbose
mode to avoid conflicting commands. It is not necessary for
user to type the whole word(command or modifier) in most
cases. User just have to type enough of the word to make it

unique among the many commands that we provide. Briefly,
they are:

BREAK set breakpoint by line, opcode, variable, pc

Page - 94 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

CLEAR
DISPLAY

END
GO

HELP
IGNORE

INFO
LIST
LOG
MODIFY
PROC

QUIT

conditionally or unconditionally; display
breakpoints and turn breakpoints on/off.

Clear selectively different types of breakpoints;
clear all breakpoints.

Display value of a variable by name or by
descriptor number.

leave debugger and exit program.

resume the program at a different line number or
just continue.

Get help on any topic or command.

ignore breakpoint; only display trace table
information if any.

display current line and optionally include all call
and return stack information.

list object in a disassemble form.

Log all output to a specified unix file.

Change value of a variable.

terminate basic program and return to PROC if
any.

same as END

SETBREAK set size of the breakpoint to a larger size

than number of used entries.

SETTRACE set size of the trace table to a large size than

SHOW
SOURCE

STEP
SWITCH

TRACE

number for used entries.
various table at the end of the object.
Display source program at any line number;
change source file; source on
step through program by # of lines or # of
opcodes
switch debugging terminal to another port under
control of ULT+.
display values of on variables at breakpoints as
well as turning trace on and off.

UNTRACE untrace variable(s)
VERBOSE turn this verbose mode on/off.

b. Repeat the last command for repeatable commands.

GO

SOURCE :

<CR> will automatically execute the 'GO’
debugger command. (G command)
<CR> will cause same number of lines to be

Page - 95 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

display as the last LIST command.(L command)
DISPLAY : <CR> will cause to display the next variable

c. Log all debugger output to specified Unix file : LOG
unix_file

d. From a port in Basic debugger, we can switch the
debugging terminal to another port : SWITCH p

e. Break on a line n:
BREAK [PC] <n> [IF voc [{AND | OR} voc]]
BREAK IF voc ...
Break on a line number or Break on a line number if certain
condition(s)(e.g. A=10) is true. It can be used to break at pc (
PC modifier is used).

f. Break on an opcode : BREAK OPCODE opcode-name

g. Break when a variable changes its value : BREAK
VARIABLE p

h. A way to turn breakpoint selectively on/off and turn on/off
all breakpoints : BREAK [<n>] { ON | OFF }

i. Getting into the Basic debugger from the sapphire
debugger. To be defined.

3. Some of the more important Basic debugger features:

a. DEBUG statement in source code which allows a program
execution be transferred to debugger if the program execution
is invoked with option D.

b. Pressing break-key to drop program into debugger.

c. Certain errors causes program to drop into debugger.

(B5]

[B12]
[(B17]
[B18]

[B22] -

Incorrect number of subroutine parameters
File has not been opened

Array subscript out of range ‘
Attribute less than 1 is specified in READV or and attribute number less that
-1 is specified in WRITEYV statement.

STORAGE parameter less that 10 or not a multiple of 10.

Page - 96 -
The Ultimate Corp.
Proprietary and Confidential

O

P

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

[B26]
[B27]
[B31]
[B33]
[B36]
[B37]
[B41]
[B42-44]
[B45]

(B107]
(B209]

file and was not catal
the MD. ‘
"UNLOCK C' attempted before LOCK. (does not issue this error any more|
)

RETURN executed with no GOSUB

Workspace underflow, register B. (FLZ; Reg=15 Abort @1066.103)
Precision declared in subprogram 'C' is different from that declared in the|
mainline program. ‘
Arrays in calling program and subroutine must both be either fixed|
dimensions or both variable dimensions

Variable dimensioned array element referenced before array was initialized}
by a DIM statement :
Lock number is greater that 47. (It now take the modulo of 47 of that§
number and use it as the lock number. e.g. LOCK 48 is equivalent to}
LOCK 1)

About named COMMON block

Program named in CALL statement is not a subroutine.

LOQP statements is more that 50 levels deep.

File is access protected.

mem—
—

d. It is unfortunate that we are going from a Ultimate object
file to generate our object file because source line information
is lost on the Ultimate object file for all included files. One
would think that it is possible to improve the traditional
compiler so that it put line number information in the object
and includes source file information at the end of the object.

B. Debugger Data Structures:

In order to support commands and features of the debugger, Several
data structures are needed to be kept in each execute level.

1. breakpoint table : breakpoint[]

There is actually a breakpoint table for each program in which
the Basic runtime has ever loaded during a run. It can be part
of the programs array we mentioned earlier. This is needed
because breakpoints exists across subroutine calls. There is no
practical limit on the number of breakpoints one can have in a
program.

Page - 97 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

} breakpoint_struct;

type:

opcode :

typedet struct {
short type; /* types of breakpoint */
OPCODE opcode;
INT line_number;
INT ; /* program counter */
CHAR var[52]; /* variable name */
INT descriptor_number;
descr_struct des; /* descriptor */
cond_struct condl;
cond_struct cond2;

not_used, break_on_line_number,
break_on_pc, break_on_opcode,
break_on_descriptor_mod,
break_on_logical_cond,
break_on_subr

New Basic opcode number.

line_number:

pc:
var :

hold a line number before it is converted to pc.
program counter or something equivalent

for storing variable name for display purpose or
it contains the subroutine itemname for
break_on_subr.

descriptor_number :

des :

if _cond :

break_on_descriptor_mod : internal
descriptor number of var

a copy of the descriptor used for comparing

current value with.

Used verbose mode : hold the logical operators (
0 = unconditional 1 = AND or2=0R).

condl/cond2: (see (6) below)

Note : type break_on_logical_cond is for Bvoc[&voc] in the
traditional debugger.

2. RUN options

options(] :

: options|]

an array where we can check what options are
turned on. For example: "RUN BP TEST (E" will
cause options[OPT_E] to have value of 1. This is
more for regular Basic runtime than debugger.

Page - 98 -
The Ultimate Corp.
Proprietary and Confidential

C

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

3. Internal debugger information : db

The debugger will be driven by this structure.

typedef struct {
INT

CHAR
FILE
} debug_info_struct;

verbose, source_on, break_on,bases, last_steps, debugger_steps,
call_return, entry_param, substring, substring_len, ignore_entry,
ignore_count, switched, tracing, logging;

entry_code;

*log_stream, *istream, *ostream.

verbose: flag whether verbose is on.
verbose -> DEBUG> as prompt and accept new
verbose set of commands.
not verbose -> * as prompt and the good old
debugger 1s in effect.

break_on: flag whether we want to break on breakpoints

source_on: flag to whether to display next source line when
the program drops into the debugger.

bases: ~ flag whether to display variable values in
hexadecimal(16),octal(8),binary(2) or decimal(0)

last_steps: how many steps last time

debugger_steps: current debugger steps as in the E command(
< O for line stepping and > O for opcodes stepping
).

entry_param: Used in conjunction with entry_code that tells
which breakpoint send program into debugger

call_return: flag whether CALL/RETURN breakpoint is
turned on

substring: the index of the string to start display

substring_len: the length from which the substring starts to
display

ignore_entry: number of time entry to the debugger to be
ignored (as in the N command)

ignore_count: just counting number of times debugger did
ignore entry to the debugger

switched: O or contains the port + 1 that the debugger has
been switched to.

Page - 99 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

tracing: flag whether tracing is on

logging: logging to a unix file. affects termio

entry_code: option D (D), error_cond(E), break_interrupt(I),
break_point(B), call(C), return(R)

streams: streams for input/output and log file.

4. symbol table : symbol_table

typedef struct {
char name[50];
short length;
short common,;
int address;

} symbol_table_struct;

(Question : How do we represent named COMMON?)

5. opcode information : opcode[opcode_number]

typedef struct {
int opcode_length;
char opcode_name(16];
} opcode_entry;

opcode_length : Fix-length opcode : the length of the opcode
in bytes.
Variable length opcode: -63. The real
length of the opcode is to be calculated
from the opcode fixed part. For example :

[<-=emmcmmenn fix part --------- >]
Loadstring length_of_string target string.....
opcode_name : aname given to an opcode.

6. logical expression : cond_struct

This struct is used to hold the conditions to be tested.

Page - 100 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications

December 4, 1991 4:43

typedef struct {

int first_value;
short log_op;
short desc_flag;
union {
DESCRIPTOR value;
int desc;
} cond_struct;

first_value: a symbol_table index of the variable.

log_op: EQ, LT, GT, NE, LE, GE for =, <, >, #, <=, >=
respectively. LE and GE are set in verbose mode
only.

desc_flag: flag whether second value is a variable (desc) or

a literal(value).
value/desc: is the value to which first value is compared to. It

could be a string literal or a numeric literal
defined by value or a symbol_table index of the
variable.

7. Trace table : trace_table[]

There is actually a trace_table for each program that Basic

runtime has even loaded during a run. Therefore, this can be

part of the programs array element. There is no practical limit
on the size of the table.

typedef struct {

int symbol”num;
int dim1, dim2;
} trace_entry;

symbol_num:
diml:
dim2:

index of the symbol table of the variable
row dimension
column dimension

8. Number of loaded symbols : loaded symbols

Page - 101 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

Since it is not necessary to load symbol table for every
program we run, we will use this variable to flag whether
debugger needs to load symbol table before going further.
This variable has to be updated by CALL/RETURN opcode or
by a generalized subroutine that changes current program.

The value of -1 means symbol table need to be loaded. The
value of 0 means program has no symbol table. A positive
value will indicate that the symbol table for the current
program is loaded and it has a symbol table.

. . . r

In this section, we will describe how the control is given to debugger
and how the data structures are used to provide features and
commands of the new Basic debugger for debugging an non-
optimized program.

1. Control Flow:

Initially, the basic debugger can be entered via a break-key, an
error conditions or an option D at the command line. The
debugger can be re-entered via a breakpoint, CALL/RETURN
breakpoint, error condition , a break-key or a DEBUG
statement (with option D).

The following is to appear within the Basic runtime opcode
decode loop. In addition, for CALL/RETURN breakpoint to
work, those two opcodes should look at db.call_return and set
run_slow, options[OPT_D] and db.entry_code appropriately.

if (run_slow) {

}

/* see note (a) */

if (break_pressed) { /* see note (b) */
break_pressed = 0;
options[OPT_D] =1;
db.entry_code = T /* Interrupt */

/* see note (c) */

if (db.break_on && programs(cp].breakpoints && !options[OPT_D]) {
for (i=1;i<=programs[cp].max_break;i++){

switch (programs(cp].breakpoint[i].type){

Page - 102 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

break_on_line_number:
break_on_pc:
if (..breakpoint[i].pc==Codeptr){
if (..breakpoint[i].if_conf){
checkcond();

} else {...
db.entry_param =1i;
options[OPT_D] = 1;

}

break;
break_on_opcode:
if (..breakpoint[i]. opcode = Codeptr->opcode){/* note
(d) */

< see above >
break_on_descriptor_mod:
cur= ref(..breakpoint[i].descriptor_number);
if (cur == ..breakpoint[i].des) Il
(they are string and they are the same) {
/* no modification */
} else {
db.entry_param = i;
options[OPT_D] =1,
..breakpoint[i].des <- cur;
}
break;
break_on_logical_condition:
pl=ref(..breakpoint.cond1.first_value);
...obtain p2 from desc/value...
condl_met=0;
if (evaluate(p1,p2)){
condl_met=1;
}

if (..breakpoint[i].cond2.first_value){
< evaluate cond2 >

} else
cond2_met = 1;

if (condl_met && cond2_met){
db.entry_param = i;
options[OPT_D] =1;

break;
}/* end of switch */
} /* end of for */
if (options(OPT_D])
db.entry_code = 'B';
}

“

Page - 103 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

}

/* step by line
if CEOL)

}

run_slow =0;

}

<dcd bcgins...>

if (db.debugger_steps > 0 && Toptions|OPT_D]){
/* step by opcode see note (f) */
db.debugger_steps--;
if (!db.debugger_steps){
options[OPT_D]=1;
entry_code=E’;

}
if (db.debugger_steps < 0 && !options[OPT_D]){

*/

<determine whether this is EOL>
} db.debugger_steps++;
if ('db.debugger_steps){

options[OPT_D]=1;
entry_code='E’

if (options[OPT_D] && < !'not_entering_debug >)
invoke_debugger; /* see note (g) */

if (run_slow && db.debugger_steps == 0 &&
db.breakpoints ==0)

Notes:

(1) run_slow is a flag (does not have to be hoolean)
that tells the Basic runtime to check conditions that may
suspend Basic programs. In our case, we check for
break-key, breakpoints, debug steps and
options[OPT_D]. As you may have suspected, run_slow
needed to be set before options[OPT_D] is checked(
Initially, if options[OPT_D], sets run_slow).

(2) break_pressed or other equivalent flag that tells
Basic a break-key was pressed. It has to be set by a
interrupt catching routine (e.g. checkpoint).

(3) cp is the index into the programs array for which
the Basic is running.

(4) Just to illustrate one way to access current opcode.
In reality, the opcode may be accessed in entirely

Page - 104 -
The Ultimate Corp.
Proprietary and Confidential

\“‘«Wﬂ"

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

different way. The Codeptr is a prototype opcode
(pointer.
(5) If first_value is not a symbol table index, it must
have been a B$on source line breakpoint. pc and
Codeptr are used interchangeably because at this point it
is not known how we access opcode in object file.
(6) As noted earlier, debugger_steps is actually two
mutually exclusive counters. When it is > 0, it is a
opcode counter. When it is < 0, it is a source line
counter. In both case, it is time to enter debugger once
the counter reaches zero.
(7) a macro that do all the necessary steps to invoke
debugger. It includes 1) update trace_table in the db
structure 2) update the last_steps in the db structure
after debugger has return.

2. Debugger:

Once Basic runtime decided to drop into the debugger, the
debugger will take control until a GO command is initiated.
While in the debugger, user can display variable information,
(set breakpoint for next entry into the debugger and turn on/off
debugger options. Here we will give detail description of what
debugger has to do to accomplish features and commands that

has been described in earlier sections.

Call Parameter: The Basic debugger is called with db
structure as parameter because each Basic runtime has
its own debug environment. This is apparent when you
execute a Basic program. For example : debugger(db)
where db is defined inside Basic runtime. Another way
will be to allocate db structure each execute level and
save/restore db pointer every time Basic enter/exit an
execute level. Case in point, db is a small structure.

Debugger skeleton: When called, it has to initialize itself. It
returns if it should ignore this call. Then it takes
commands from terminal and execute them. It
relinquishes control when the command is GO. Note :
we only depict how the verbose mode is going to look
here. A parallel structure will be in for the non-

Page - 105 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

verbose(ultimate compatible) mode.

init(); /* note (a) */
if (db.source_on)

display_stats(); /* note (b) */
else

display_program_info();
display_trace_table();
db.ignore_count++;
if (db.ignore_count <= db.ignore_entry)
return; ‘
db.ignore_count = 0;

while (options[OPT_D]){

prompt("DEBUG>");

term_read(command_line,command_len);

check_break;...

if (!command_len and repeatable){/* note (c) */
command_len = last_command_len;
command_line <- last_command_line;
repeatable = 0;

}

last_command_len = command_len;

last_command_line <- command_line;

if (command_len){

/* note (d) */
CtUsed = 0;

Nextc();

/* note (e) */

perform_Vcommand(NextToken(word));

L

Notes:
(a) read symbol table if needed, initialize
last_command if db.last_steps is set, locate source
file, etc.
(b) display 1 source line if possible or display 1
opcode information based on optimization levels.
(c) repeatable is set by preform_Vcommand to
tell debugger that this is a repeatable command.
(d) set CtUsed to the beginning of the
command_line for Nextc(). The Nextc() will
return the first character in ¢ and the type of

Page - 106 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

character in Ctype.

(¢) One of the command that
perform_Vcommand does is the GO command.
The GO command will reset options[OPT_D] to
cause debugger to return to Basic. It also handles
errors and tokens that are not commands.

D. Debuggi imized pr]

An optimized program has object that does not necessary have one to
one relationship with source code and basic variables attain values
not necessary in the order that appeared in the source code. These
facts make 1) stepping through the source program impossible 2)
displaying values of a variable hazardous.

There may be 4 ways we can do this.

a. No debugging for an optimized program or only provides
low level (opcode level) debugging.

Problem with this approach is that nobody really want to
debug at such a low level.

b. Only let basic program drops into debugger at the end of a
basic block. At which point, we have good idea where the
program is at and values of variables are known.

Problem with this approach is that program may well have
runtime error within a basic block. At which point debugger
lacks the knowledge to point out exactly which source line is
the cause of the error and Basic runtime would not let the
program run until the end of the basic block before it lets
program drops into debugger anyway. Because of this
problem, it will not work as is. It can probably be part of (3)
below. That means (3) can allow user to set break point at the
end of a basic block.

¢. Embedded in the Basic object the dags of all basic blocks
annotated with information about which variables hold the
value corresponding to a node in the dags at what times in both
the source and optimized program. With this information, a)
we can infer from the information which line of the source

Page - 107 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

code caused the runtime error and b) gives values of variables
in most cases while program is in debugger (due to error or
otherwise).

Problem with this approach is that the dags of all basic blocks
does not seem to be easy to generate and the size of this
information is probably as big as the object.

d. A map detailing what source line(s) corresponding to a pc
is kept at the end of the object. With this information, a) we
can probably tell which line caused an runtime error if we
pick the first source line that is involved. b) However, we
cannot give the user with any degree of certainty that a
variable having a certain value at any point of a source
program (including where the program apparently has an
runtime error). We can tell them however in the optimized
world what the values of variables are now.

The option 4 is agreed upon and adopted. User should be aware of
all this happen because it is an optimized program. As mentioned
above, we have very limited capability to debug a program with this
information. User may be forced to do opcode level debugging as
described in section 4.0.

Debugging without source is needed because there is no source, the line
number information is not in object or the object is optimized to include
global code movement. User may get a copy of the object listing and step
through the program if desired.

Since all correspondence to the original source code is too convoluted to
try to sort out, the only recourse for users to debug their programs will be
to obtain disassemble listings of their programs from the BASIC verb or
from the debugger LIST command. Users will be restricted to the opcode
level debugging. That means if users use command that refers to a line
number, they will be warned that this is an optimized program and the
command will be rejected.

Additionally, the debugger can provide a new breakpoint called opcode
breakpoint (BREAK OPCODE opcode). This is useful for user to get
some idea what the program is doing at certain part of the program. For

Page - 108 -
The Ultimate Corp.
Proprietary and Confidential

V\\'\x
) A,)“"’

C

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

V. Maj

example, user can stop at a READ opcode (i.e. BREAK OPCODE READ)
and an ICONV (i.e. BREAK OPCODE ICONV) opcode and display
values of variables before and after the opcode operation.

r_componen f th I;

There are 8 major components in the Basic Debugger. They are 1)
initialization 2) code that exists in the dcd code to determine whether to
drop into the debugger; 3) many Basic opcode calls to debugger (or
debugger utility routine like pc_to_line) due to runtime errors; 4) parser
for standard Ultimate commands; 5) command processor or perhaps
subroutines that execute the Ultimate debugger commands; 6) token parser
for the new verbose mode of the debugger; 7) the command processor or
perhaps subroutines that execute new verbose set of commands; 8) utilities
(e.g. pc_to_line, line_to_pc).

In the first phase of the implementation, the verbose mode may not be

implemented. That means only the 6 components needed to be implemented
by Apr 1992.

A note for implementation, the debugger should have a focal point to do
terminal I/O so that LOG and SWITCH commands will not cause too much
duplicated code.

A. Initialization:
Initialization of all debugger data structures should be done every

time the Basic runtime is invoked. In addition, the debugger has to
do the following every time it is called:

init()

SAVE_IO_ENYV; /* note (a) */
system_mode = In_debugger; /* note (b) */
if (loaded_symbol =-1)

read_symbol_table();
program_source(); /* note (c) */
db.debugger_steps =0;
last_command_len = 0;

if (db.last_steps){ /* note (d) */
if (db.verbose){
repeatable = 1; /* <CR> => step cmd */

last_command_line <- "STEP";

Page - 109 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications ‘ December 4, 1991 4:43

last_command_len = 4;

}

else
db.debugger_steps = db.last_steps;

Notes:
a. This is needed only if we have a terminal I/O environment
that is shared by debugger and regular Basic. The debugger
should not affect any current terminal I/O environment
variable. (e.g. paging, redirecting Output to spooler and so on
)
b. system_mode or something equivalent that tells the rest of
the system that we are running with the Basic debugger. At the
least, this affects Basic runtime error handling. See the section
5.3.
c. get the source file names and 'open' the file.
d. last_steps is made equal to the debugger_steps last time. As
you may recall that debugger_steps is actually two mutually
exclusive counts in one. One is for opcode stepping and the
other is for lines stepping.

B. DCD inter. Basi D re

This interface has been described in detail in section 3.3.1. However,
the data structures like descriptor space and structure, call_stack,
programs and data elements like run_slow, options and
break_pressed need to be finalized before one can proceed to
implement this piece of code.

C. Basic _runtime error_interface:

All Basic opcodes should go to a common routine for error
handling. We will call this basic_error(error_number). The
reasons for this are:
a. The same Basic runtime error requires different treatments
based on run option(s). For example, when the option E is
used to run the program, the program will go into the

Page - 110 -
The Ultimate Corp.
Proprietary and Confidential

@,

a
‘k‘ﬂw?ﬂ/ ;

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

debugger for any runtime error.)

b. Some errors will cause the program to go into debugger.
All errors mentioned under Basic debugger features in section
3.1 are this category.

c. Some errors are reported and ‘'ignored' by Basic. For
example, an unassigned variable is used as zero.

d. Based upon whether the program is in debugger already, an
runtime error needs different treatments. Any error that
normally causes program to abort will go into the debugger if
the program is running with the debugger.With this common
error handling routine, we can handle all the above mentioned
situations in one place and call the debugger if situation
warrants.

Food for thought: Situation arises when a variable is used before
it is assigned. We gives an error pointing out the error and
uses an zero for its value. The program keeps running. But the
variable in this case does not get assigned a value of zero. The
variable is still unassigned. What is the mechanism to tell
opcode to use this zero value not the unassigned variable for
its operation?

D] r comm rser:

Most of the Ultimate debugger commands are single character
commands and there is no space(s) between parameter(s). This setup
does not lean itself to a tokenized parser. Therefore, this parser is
just going to look at the first character and call the designated
command subroutines. Any further parsing is deferred to the
subroutines that execute the command. Obviously, it has to report
error if the first character does not matches any command.

E. Ultimate commands processor:

It is made up of many subroutines that is going to parse the rest of
the command line and execute the command or report an error.
These subroutines are as followed :

Subroutines
U_program_info()

Page - 111 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

U_substring()
U_breakpoint()
U_callreturn()
U_display_table()
U_system_debugger()
U_set_step()

U_go()
U_help()

U_clear()
U_line_number()
U_output()

U_set_ignore()
U_display_options()

O.-

U_printer()

U_display_gosub()

U_source()

U_return_to_proc()

U_trace()

U_untrace()

U_program_info()

U_change_source() H AN

%)
3
o
v

[:
B:
BYE
C:
D:
DE:
E:
END:
G:
H:
HX:
K:
L:
LP:
N
O
P/PC
- R:
S
T:
U:
V:
Z:

F. Parser for verbose set of commands:

Verbose commands:

keys: {} : have to choose one
1 : optional
<> :user supplied argument
\% : variable
n : number

BREAK { [PC] <n> | OPCODE <opcode> }

[IF <logical_cond> [{ AND | OR } <logical_cond>]]
BREAK [{ VARIABLE <v> [{,<v>}..] | SUBR <subroutine>
I[<n>] {ONIOFF} }]

Page - 112 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

(CLEAR [{ <n> | LINE | PC | OPCODE | VARIABLE | SUBR}]
DISPLAY { ALL | <v> [<n> }

END
GO[<n>][PC]
HELP [{ COMMANDS | <command> }]
IGNORE <n>
INFO [ALL]
LIST <pcl> - <pc2>
LOG { ON I OFF | TO <filename> }
MODIFY <v>
PROC
QUIT
SETBREAK <n>

(SETTRACE <n>
SHOW { SYMBOL | MAP | ?}
SOURCE{ [<n>[FOR<n>]]I

OPEN «<filename> <itemname> |
ON | OFF }

STEP <n> [OPCODES]
SWITCH [<port-number>]
TRACE VARIABLES <v>[{,<v>}..]
TRACE [{ ON | OFF }]

UNTRACE [{ <n>| VARIABLES <v> [,{<v>}..] }]
VERBOSE

It is a token parser. It consists of Nextc() and NextToken(type). The

C

Page - 113 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

NextToken(type) returns a token from the words matrix. The Nextc
returns character types (Ctypes : white space, letters, digits, period,
prefix, single, illegal, eol) to NextToken and also the character itself (¢).

The words matrix has an entry for each command and modifier. In each
entry, it includes the name, number of characters make the name unique
and the help file index.

E

géﬁ:}{vzllz/\“z":’iﬁé

"BREAK
"CLEAR
"COMMANDS
"DISPLAY
"END

"OPCODES
"OPEN

"OR

"PC

"PROC
"QUIT
"SETBREAK
"SETTRACE

2
2
2
2
1
2
2
1
3
1
1
1
2
2
2
3
3
2
2
2
3
2
3
3
2
1
2
4
4
4

Page - 114 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

"SHOW
"SOURCE
"STEP
"SUBR
"SWITCH
"SYMBOL
"TRACE

"TO
"VARIABLES

=N NN

t_VERBOSE or 45

**: Needs special handling because they can be part of other token.
(prefix Ctype for ">" and "<")
Make sure user means it.
Hint: enum tokens { t_NE=1, ... }
char dlms[] = "#(),<=>";

*.

For example : BREAK 100 IF B = 10

The NextToken would return in successive calls the following: t_ BREAK,
t_number, t_IF, t_variable, t_EQ, t_number and t_eoi. In case of
t_number, the break subroutine has to convert the 100 number in LexBuf
to numeric line number and the 10 to a scaled number. The t_eoi is
returned when NextToken reaches the end of input. In case of t_variable,
another variable has the symbol table index (call it symbol_index).

NextToken(type = { word, symbol, opcode }){

#DEFINE AppendC = {
LexBuf[LexLen] =c;
LexLen++;
if (c!="\n")

Nextc;

Page - 115 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications

December 4, 1991 4:43

l Lexlen =0;

WHILE (Ctype == white_spaces)

Nextc();
if (Ctype ==eol)
return (t_eoi);
CASE Ctype of {
letter : {

digit,
period :

quote : {

prefix :

Do {
if (SALPHA(c))
¢ =c¢ & %xdf; /* upshift */
AppendC;

until (Ctype != letter && Ctype != digit
&& Ctype != period);
CASE type of {

word : token = Lookup_wordmatrix();
symbol : token = t_variable;

symbol_index = Lookup_symbol();
opcode : token = t_opcode;

opcode_index = Lookup_opcode();

return(token);

{ While (Ctype == digit)

AppendC; /* integer part */
IF (Ctype == period){
{ AppendC;
WHILE (Ctype == digit)

AppendC;
} ,

return (t_number);

}
DO AppendC;
until (¢ == LexBuf[0] Il Ctype == eol);
if (Ctype ==eol){
<error>
} else
Nextc();
return(t_string);

}
{ AppendC;
LexBuf[LexLen] =c;
LexLen++;
if (!(token == Lookup_wordmatrix()){
/* single delimiter */
for (i =0; dlms[i] != "\n'; i++){
if (dlms[i] == LexBuf[0])
break;

Page - 116 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

token=1+1;
} else
Nextc();
return(token);
single : {
for .. <see above>
Nextc();
return(token);
)
default : return(0);
}
}
G. Verbose commands processor:

It is made up of command subroutines. Each command subroutine is
going to structure around the command syntax. It would call the
NextToken every time it needs one. If it finds the token returned is
out of place or illegal, it would report an error and returns.
Otherwise, it would process the entire input and execute the
command.

For example :

V_clear(){
/* CLEAR [{ <n> | LINE | VARIABLE | OPCODE | PC | SUBR}] */

token = NextToken(word);
switch token {
t_eoi: for (i=0;i<=programs[cp].max_break,i++)
clean_break(programs|cp].breakpoint[i]);
break;
t_number: number = atoi(LexBuf);
clean_break(programs([cp].breakpoint[number});
t_LINE: for (...)
if (programs(cp].breakpoint{i].type ==
break_on_line_number)
clean_break(programs[cp].breakpoint[i]);
t VAR: for (...)
if (programs[cp].breakpoints[i].type ==
break_on_descriptor_mod)
clean_break(wrams[cp].breakpoint[i]);

Page - 117 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

t_ OPCODE: ...
t PC: ...

t_SUBR: .
default: <error>

}

if (NextToken(word) !=t_eoi)

<error>

}

There are 22 commands in the verbose set of commands. They are as

followed :

BREAK

CLEAR
DISPLAY

END
GO

HELP
IGNORE

INFO

LIST
LOG
MODIFY
PROC
QUIT

Set breakpoint by line, opcode, variable, pc
conditionally or unconditionally; display breakpoints
and turn breakpoints on/off. Additionally, the debugger
can break inside a subroutine every time a subroutine is
called.

Clear selectively different types of breakpoints; clear all
breakpoints.

Display value of a variable by name or by descriptor
number.

Leave debugger and exit program.

Resume the program at a different line number or just
continue.

Get help on any topic or command.

Ignore breakpoint; only display trace table information
if any.

Display current line and optionally include all call and
return stack information. In case of the program has
been optimized, the debugger will show the current
opcode.

List object in a disassemble form.

Log all output to a specified unix file.

Change value of a variable.

Terminate basic program and return to PROC if any.
Same as END

SETBREAK Set size of the breakpoint to a larger size than number

of used entries.

SETTRACE Set size of the trace table to a large size than number

Page - 118 -
The Ultimate Corp.
Proprietary and Confidential

C

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

for used entries.

SHOW Show various tables at the end of the object.

SOURCE Display source program at any line number; change
source file; source on/off. In case of an optimized
program, typing "SOURCE" to display from current
line will cause a warning. If it is still possible to come
up with one line number, the debugger will display
from that line for 12 line(s). But if it cannot, it will not
display a line.

STEP Step through program by # of lines or # of opcodes.

SWITCH Switch debugging terminal to another port under
control of ULT+. (This port can first trap the target
port and switch the debugging terminal to the target
port afterward. This way there is no security breach
because the original port is already in debugger.) To
switch back, type "SWITCH".

TRACE Set trace on variables; displays trace table, trace on/off.
A trace on a variable would cause debugger to display
the value of the variable at breakpoints.

UNTRACE Untrace variable(s)

VERBOSE Turn this verbose mode on/off.

H. Utilities:

pc_to_line : maps a particular pc to the source line number. It
would use the map at the end of the object for such a calculation. If
the object is non-optimized, there is exactly one line number for one
specific pc. There may be more the one line number for a pc in a
optimized program. This routine should be used by runtime error
reporting as well as by the debugger.

line_to_pc : maps a user specified line number to a pc for setting
breakpoints. This is only meaningful it the program is not optimized.
It should not even be called if it is a optimized program.

terminal I/O routines : It may be a good idea to have the Basic
debugger's own input stream and output stream because they are not
in any way related to the program input and output streams other

Page - 119 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

than the fact that initially they refer to the same terminal. The P
command in the debugger will suppress all output from the rest of
the ULT+ system but not from the Basic debugger. The new LOG
command will redirect debugger output to a Unix file. The new
SWITCH command will switch the input and output streams of the
debugger to another terminal altogether.

If we are going to implement a standard TERMIO for the whole
system, the TERMIO had better be able to deal with different
streams, characteristics and these streams may be changed to
reference another physical device during the life of the ULT+
system. This is unlikely to be implemented for this project.

If we are going to use the existing terminal I/O code, the Basic
debugger may be forced to create its own set of routines to deal with
its terminal I[/O needs:

Initially, istream = stdin, ostream = stdout. The SWITCH command
obtains the terminal path to the new physical device and makes
istream and ostream to come from there. When the user desire to
SWITCH back, the debugger will close the istream and ostream and
makes them stdin and stdout again (remember to flush ostream).
The new LOG command will cause output to go to the ostream as
well as to the Unix file. Somewhat related, the Ultimate debugger P
command will cause the debugger to toggle a flag in virtual space to
tell VIRTUAL to suppress output to the terminal. The Ultimate
debugger LP command will use whatever mechanism that is set up
for the PRINTER ON/OFF Basic statements to redirect the output of
the Basic PRINT statements between terminal and printer.

Complication: the output of /var command and many others
commands start at the end of the input command line and it is not
affected by the Ultimate TERM type. It can be done with no echo of
<CR/LF> at the end of the input command line. But there is no such
stty attribute to help us do that. Maybe, (1) a transparent mode
character-by-character input is needed; (2) We may just have to live
with the <CR/LF> at the end of the input; or (3) The debugger uses
the Unix $TERM to pick up the escape sequence for cursor-up and
cursor-right. Here are the needed information:

Using curses termcap emulation:

Page - 120 -
The Ultimate Corp.
Proprietary and Confidential

TN
¢

W

Appendix F: New BASIC debugger specifications December 4, 1991 4:43

a) codename for cursor-up : up

b) codename for parm_right_cursor : RI
(Not all terminals support this)

c¢) codename for cursor-right : nd

char

charc;

{
}

#include <curses.h>
char up[25], rc[25]; /* we could allocate these */

*str, *area;

int our_putc(c)

/* if wy */
putc(¢, ostream);

/* Do this once at system initialization */
initscr();

area = up;

str = tgetstr("up”, &area);

area = rc;

str = tgetstr("'nd", &area);

endwin();

/* to cursor up */
tputs(up, 1, (int (*)())our_putc);
/* to cursor right non-destructively 14 spaces */
for(i=1;1<=14;1++)

tputs(rc, 1, (int (*)())our_putc);

VL Ti . .

The coding for the debugger should ideally begin when the rest of the
system has been finalized. But since time is the essence, about 80% of the
code can be written and tested without much difficulty. For every place
that interfaces with the rest of the system, a stub is used for it and a
comment of "/*A*/" is marked on the source files so that they can be easily
identified. The debugger subroutines should have broken down into
functional entities so that when the time comes to integrate, it should not
present much difficulty (e.g. load_symbol_table, find_symbol,
U_breakpoint, V_breakpoint, clear_breakpoint, pc_to_line,
display_variable, term_write, term_read, etc).

Page - 121 -
The Ultimate Corp.
Proprietary and Confidential

Appendix F: New BASIC debugger specifications

December 4, 1991 4:43

Development :

Testing :

Tasks

0) Getting Ready
1) Init

2) DCD interface
3) Basic Errors

4) ULT parser

5) ULT commands
6) utilities

7) V. cmd parser
8) V. Commands

1) ULT commands
2) Verbose

or 49 days

Page - 122 -

The Ultimate Corp.
Proprietary and Confidential

Appendix G: Analysis of Math in Basic December 4, 1991 4:43

Appendix G: Analysis of Math in Basic

Introduction:
This document discusses the implementation of math operations. First
today's implementation is discussed and then an alternative
implementation is proposed for Optimized Basic.

r ri ri

- The numeric variables are stored as a six-byte scaled numbers,
representing the numbers in the range (-(2747)/10ASCALE) to (
(2747-1)/10ASCALE).

- The numbers that are outside of the specified range are represented
as strings.

Algorithms:

- The virtual code performs the basic math operations, such as
addition or multiplication in numeric format. If any of the operands,
or the result of the operation, are too big(small) to be represented as
a scaled 48-bit binary representation, the operands are converted to
strings and string math is used.

- The string math operations such as, SADD or SMUL use the paper
and pencil algorithm to calculate the result as a string.

- The other math operations such as SIN, COS, EXP, PWR, LN, and
SQRT are implemented as subroutines in the virtual code. Each of
these subroutines uses an algorithm associated with that operation to
calculate the result. The EXP, PWR, LN use their operands as
string, consequently they are very slow.

Optimized assembly code(Ultimate PLUS only):

For performance reasons the basic math operations are implemented
in assembly code. The assembly code is used only if the two operands

Page - 123 -
The Ultimate Corp.
Proprietary and Confidential

Appendix G: Analysis of Math in Basic December 4, 1991 4:43

are numeric. If the result of the operation overflows the assembly —
code bails out to virtual code. £

P r] rs:

- Since the numbers internally are presented as scaled integers,
precision is lost during the computations. For example 3.1479 *
10000 = 31400 if the precision is 2. This occurs because 3.1479 is
internally stored as a scaled number 314.

Ult/ix way of representing numbers:

- The numbers are represented in double. The data type double is a
64-bit quantity, where 53 bits are used to represent the mantissa, and
11 bits are used to represent the exponent.

- The computations are more precise for numbers with mantissa in
the range (-4,503,599,627,370,496 to 4,503,599,627,370,495). The
precision is guaranteed only for up to 15 digits, because of the T
number of bits used in representing the mantissa. N

The following piece of code demonstrates the difference between the
Ultimate and Ult/ix. This program will print 1234 on Ult/ix
implementation and 1200 on Ultimate implementation.

PRECISION 2
A =.1234

B =A * 1000
PRINT B

- No string math is used for big numbers. Consequently, Ult/ix does
not come up with right values for very big numbers (numbers with
more than 15 digits for mantissa). The double type can represent
numbers as large as 1.79 +308(The 11 bits are used to represent
exponents -1023 to 1024, the exponent represents a binary base).

Page - 124 -
The Ultimate Corp.
Proprietary and Confidential

Appendix G: Analysis of Math in Basic December 4, 1991 4:43

- The doubles are difficult to use in logical operations. Two numbers
may be extremely close but not equal. Ult/ix uses a delta for
comparisons. For example the two variable A and B are compared to
see if they are equal:

if (abs(a-b) <delta)
TRUE

else
FALSE

The value for delta is set by an environment variable. This can be
tuned per terminal. The value of the delta is selected independently
from the precision of the basic program. This causes some of the
comparisons to fail. They resolve the problem by suggesting a
different value for delta. The following example demonstrates the
problem with delta selection:

[F A =B THEN PRINT "EQUAL" ELSE PRINT "NOT EQUAL"

OUTPUT:
100000000000000
100000000000016
NOT EQUAL

This occurs because the precision is guaranteed for up to 15 digits,
and the multiply operation magnifies the discrepancy between A and
B. No reasonable delta can be selected to avoid this problem.

Page - 125 -
The Ultimate Corp.
Proprietary and Confidential

Appendix G: Analysis of Math in Basic December 4, 1991 4:43

p { imp] ion for the BASIC project:

The proposed implementation can run in two flavors, Ultimate plus flavor,
or Ult/ix flavor. It is compatible with Ult/ix, because the variables are
internally stored in the same form. However, in order to be compatible
with Ultimate PLUS the double representation of the numbers need to be
adjusted each time they are modified. The adjustment directly depends on
the scaling factor of the basic program(see detailed explanation on the
following pages). The following sections will include the data structures
used, and the algorithms, and issues.

Data structure for variables:
The variables in basic will be presented as a structure with a
minimum of 3 fields.

typedef struct
int type;
double dbl_value;
char *str_value;
} var_t);pe;

type field:
Specifies the type of the variable, string or double

dbl_value field:
If the type field is DBL_TYPE, then this field represents the
current value of the variable.

str_value field:

If the type field is STR_TYPE, then this field represents the
current value of the variable.

T conversi

During the execution of a basic program a variable may be

converted from string to double or double to string several times.

This conversion can be accomplished via C library routines, or they
can be coded by us if the C library routines prove to be costly. A
flag field in the structure can be used to indicate if the string value

Page - 126 -
The Ultimate Corp.
Proprietary and Confidential

T
p:

A

Appendix G: Analysis of Math in Basic December 4, 1991 4:43

and the double value are up to date to avoid extraneous conversions.
F r L 1 .

The flavor is determined at basic compile time. This means a
compilation is required to switch the flavor. The flavor will be
controlled via an environment variable, basic compile option, or a
system wide option. It is also possible to set the flavor in any of the
following 2 forms:

- The flavor is determined at runtime. This means no
recompilation is required to switch the flavor. The flavor will
be controlled via an environment variable, runtime option, or
a system wide option.

- Bind the flavor per variable. This will require change to the
BASIC language, to somehow identify those variables.

1) Ult/ix flavor:
- The numeric variables are always presented as double,
meaning they are not converted to strings to gain more
precision. In the proposed implementation we can go to string
math subroutines to get better precision for huge numbers.

- The scale factor of the BASIC has no effect in the internal
representation of the number, and it will only be used for
external representation of the numbers.

- The Ult/ix flavor of the proposed implementation differs
with the Ult/ix implementation, only in selection of delta,
since the selection of delta is not a compatibility issue. The
proposed implementation will avoid some of the problems
encountered during logical operations of Ult/ix
implementation. The delta is selected based on the value of the
precision.

delta = 0.5/10/precision

2) Ultimate flavor:
- Each time a numeric variable is updated, the variable is
adjusted based on the following formula:

Page - 127 -
The Ultimate Corp.
Proprietary and Confidential

Appendix G: Analysis of Math in Basic December 4, 1991 4:43

A =floor(A * SCALE + delta) / SCALE

SCALE 10APRECISION (10000 for precision 4)
floor() truncates the number
delta 0.5/SCALE

Where floor() is C library routine to truncate, by elimination
the fraction portion of the number. On some machines such as
HP the floor() routine will be rewritten in assembly to get a
better performance.

The string field will be used if the operands, or the result are

too big to be represented as a double or if the precision of the
double is not acceptable.

Operators _and C library routines used for computation:

- The basic math operations such as addition, subtraction,
multiplication and division are accomplished by using the C
operators '+, '-', "*" and '/ on doubles. If string math is necessary
then the library routines to be coded by us will be used to do the job.

- Other math operations such as SIN, COS, LN, PWR, EXP, SQRT
etc. are accomplished by using the C library routines sin(), cos(),
log(), pow(), exp(), sqrt() etc.

Performance Data(Basic Math):

The first two columns are today implementation of Ultimate plus and
Ult/ix. The next two columns are the proposed implementation in both
flavors. The last column is today assembly code called by a stand alone C

program, to help estimate Basic r