

HANDBOOK OF AUTOMAtiON,

COMPUTATION, AND CONTROL

Volume 2

COMPUTERS AND DATA PROCESSING

NEW YORK JOHN WILEY & SONS, INC.

London • Chapman & Hall. Limited

"

HANDBOOK OF AUTOMATION,

COMPUTATION, AND CONTROL

Volume 2

COMPUTERS AND DATA PROCESSING

Prepared by a Staff of Specialists

Edited by

EUGENE M. GRABBE

SIMON RAMO

DEAN E. WOOLDRIDGE

Thompson Ramo Wooldridge Inc.
Los Angeles. California

Copyright © 1959, by John Wiley & Sons, Ine.

All Rights Reserved. This book or any part
thereof must not be reproduced in any form
without the written permission of the publisher.

Library of Congress Catalog Card Number: 58·10800
Printed in the' United States of America

CONTRIBUTORS

L. D. AMDAHL, Thompson Ramo Wooldridge Inc., Los Angeles, California
(Chapter 17)

C. E. AMMANN, American Airlines, New York City, New York. (Chapter 9)

I. L. AUERBACH, Auerbach Electronics Corporation, Narberth, Pennsylvania
(Chapters 15 and 16)

G. A. BEKEY, Space Technology Laboratories, Inc., Los Angeles, California
(Chapter 23)

E. E. BOLLES, Thompson Ramo Wooldridge Inc., Los Angeles, California
(Co-Editor, Part D)

R. BOSAK, System Development Corporation, Santa Monica, California
(Chapter 9)

J. K. BRIG DEN, Space Technology Laboratories, Inc., Los Angeles, Califor­
nia (Chapter 20)

D. R. BROWN, The MITRE Corporation (formerly with Massachusetts Insti-
tute of Technology), Lexington, Massachusetts (Chapter 19)

J. W. BUSBY, Alwac Corporation, New York City New York (Chapter 5)

J. O. CAMPEAU, Litton Industries, Beverly Hills, California (Chapter 31)

R. G. CANNING, Canning, Sisson and Associates, Los Angeles, Calif9rnia
(Chapter 4)

J. W. CARR, III, University of North Carolina (formerly with the University
of Michigan), Chapel Hill, North Carolina (Chapter 2)

R. B. CONN, Space Technology Laboratories, Inc., Los Angeles, California
(Co-Editor, Part C)

E. D. COWLES, The Detroit Edison Company, Detroit, Michigan (Chapter 8)

H. L. ENGEL, Thompson Ramo Wooldridge Inc., Los Angeles, California
(Chapter 18)

E. M. GRABBE, Thompson Ramo Wooldridge Inc., Los Angeles, California
(Co-Editor, Part D; Chapter 1)

B. M. GORDON, EPSCO, Inc., Boston, Massachusetts (Chapter 29)

W. J. KARPLUS, University of California at Los Angeles (Editor, Part E;
Chapters 21, 25, and 27)

W. KINDLE, Electronic Associates, Inc., EI Segundo, California (Chapter 21)

v

vi CONTRIBUTORS

R. T. KOLL,Creole Petroleum Corporation, Caracas, Venezuela (Chapter
10)

J. F. LA FONTAINE, EPSCO, Inc., Boston, Massachusetts (Chapter 29)

H. T. LARSON, Aeronutronic Systems, Inc., Santa Ana, California (Co­
Editor, Part C)

C. T. LEONDES, University of California at Los Angeles (Chapter 28)

H. S. LEVIN, Arthur Young & Company, New York City, New York
(Chapter 7)

H. LOW, Space Technology Laboratories, Inc., Los Angeles, California
(Chapter 26)

R. C. MACKEY, University of California at Los Angeles (Chapter 24)

M. E. MARON, Thompson Ramo Wooldridge Inc., Los Angeles, California
(Chapter 11)

M. J. MENDELSON, Norden Division of United Aircraft Corporation,
Gardena, California (Chapter 3)

I. PFEFFER, Space Technology Laboratories, Inc., Los Angeles, California
(Chapter 22)

J. I. RAFFEL, Massachusetts Institute of Technology, Lincoln Laboratory,
Lexington, Massachusetts (Chapter 19)

C. W. SCHMIDT, Teleregister Corporation, Los Angeles, California (Chap­
ter 9)

R. L. SISSON, Canning, Sisson and Associates, Los Angeles, California
(Chapter 4)

N. H. TAYLOR, Itek Corporation, Boston, Massachusetts (formerly with
Massachusetts Institute of Technology) (Chapter 14)

H. TELLIER, General' Electric Company, Richland, Washington (Chapter 8)

E. TOMASH, Telemeter Magnetics, Inc., Los Angeles, California (Chapter 6)

L. L. VAN OOSTEN, Allstate Insurance Company, Skokie, Illinois (Chap-
ter 8)

A. C. VANSELOW, The Franklin Life Insurance Company, Springfield, Illinois
(Chapter 8)

R. L. VAN WINKLE, The Franklin Life Insurance Company, Springfield,
Illinois (Chapter 8)

W. H. WARE, The RAND Corporation, Santa Monica, California (Chapters
12 and 13)

G. P. WEST, Thompson Ramo Wooldridge Inc., Los Angeles, California
(Chapter 30)

J. H. YIENGER, Aeronutronic Systems, Inc., Santa Ana, California (Chap­
ter 5)

FOREWORD

The proliferation of knowledge now makes it most difficult for scientists
or engineers to keep ahead of change even in their own fields, let alone
in contiguous fields. One of the fields where recent change has been most
noticeable, and in fact exponential, has been automatic control. This
three-volume Handbook will aid individuals in almost every branch of
technology who must constantly refresh their memories or refurbish their
knowledge about many aspects of their work.

Automation, computation, and control, as we know them, have been
evolving for centuries, but within the last generation their impact has
been felt in nearly every segment of human endeavor. Feedback prin­
ciples were exploited by Leonardo da Vinci and applied by J ames Watt.
Some of the early theoretical work of importance was contributed by
Lord Kelvin, who also, together with Charles Babbage, pointed the way
to the development of today's giant cc.mputational aids. Since about the
turn of the present century, the works of men like Minorsky, Nyquist,
Wiener, Bush, Hazen, and von Neumann gave quantum jumps to compu­
tation and control. But it was during and immediately following World
War II that quantum jumps occurred in abundance. This was the period
when theories of control, new concepts of computation, new areas of
application, and a host of new devices appeared with great rapidity.
Technologists now find these fields charged with challenge, but at the
saine time hard to encompass. From the activities of World War II
such terms as servomechanism, feedback control, digital and analog
computer, transducer, and system engineering reached maturity. More
recently the word automation has become deeply entrenched as meaning
something about the field on which no two people agree.

Philosophically minded technologists do not accept automation merely
as a third Industrial Revolution. They see it, as they stand about where
the editors of this Handbook stood when they projected this work, as a
manifestation of one of the greatest Intellectual Revolutions in Thinking
that has occurred for a long time. They see in automation the natural

vii

viii FOREWORD

consequence of man's urge to exploit modern science on a wide front to
perform useful tasks in, for example, manufacturing, transportation,
business, physical science, social science, medicine, the military, and
government. They see that it has brought great change to our conven­
tional way of thinking about the human use of human beings, to quote
Norbert Wiener, and in turn about how our ~ngineers will be trained to
solve tomorrow's engineering problems. They even see that it has precipi­
tated some deep thinking on the part of our industrial and union leader­
ship about the organization of workers in order not to hold captive bodies
of workmen for jobs that automation, computation, and control have
swept or will soon sweep away.

Perhaps the important new face on today's technological scene is the
degree to which the broad field needs codification and unification in order
that technologists can optimize their role to exploit it for the general
good. One of the early instances of organized academic instruction in
the field was at The Massachusetts Institute of Technology in the Elec­
trical Engineering Department in September 1939, as a course entitled
Theory and Application of Servomechanisms. I can well recollect
discussions around 1940 with the late Dr. Donald P. Campbell and
Dr. Harold L.' ,Hazen,which led temporarily to renaming the course
Dynamic Analysi,s of Automatic Control Systems because so few students
knew what "servomechanisms" were. But when the OI's returned from
war everybody knew, and everyone wanted instruction. Since that time
engineering colleges throughout the land have elected to offer organized
instruction in a multitude of topics ranging from the most abstract
mathematical fundamentals to the most specific applications of hardware.
Textbooks are available on every subject along this broad spectrum.
But still the practicing control or computer technologist experiences
great difficulty keeping abreast of what he needs to know.

As organized instruction appeared in educational institutions, and as
industrial activity increased, professional societies organized groups in
the areas of control and computation to meet the needs of their members
to tell one another about technical advances. Within the past five years
several trade journals have undertaken to report regularly on develop­
ments in theory, components, and systems. The net effect of all this is
that the technologist is overwhelmed with fragmentary, sometimes con­
tradictory, redundant information that comes at him at random and in
many languages. The problem of assessing and codifying even a portion
of this avalanche of knowledge is beyond the capabilities of even the
most able technologist.

The editors of the Handbook have rightly concluded that what each
technologist needs for his long-term professional growth is to have a body

FOREWORD ix

of knowledge that is negotiable at par in anyone of a number of related
fields for many years to come. It would be ideal, of course, if a college
education could give a prospective technologist this kind of knowledge.
It is in the hope of doing this that engineering curricula are becoming
more broadly based in science and engineering science. But it is unlikely
that even this kind of college training will be adequate to cope with the
consequences of the rapid proliferation of technology as is manifest in
the area of automation, computation, and control. Hence, handbooks
are an essential component of the technical literature when they provide
the unity and continuity that are requisite.

I can think of no better way to describe this Handbook than to say
that the editors, in both their organization of material and selection of
substance, have given technologists a unified work of lasting value. It
truly represents today's optimum package of that body of knowledge that
will be negotiable at par by technologists for many years to come in a
wide range of disciplines.

GORDON S. BROWN
Dean, School of Engineering
Massachusetts Institute of Technology

PREFACE

Accelerated advances in technology have brought a steady stream of
automatic machines to our factories, offices, and homes. The earliest
automation forms were concerned with doing work, followed by the con­
trolling function, and recently the big surge in automation has been
directed toward data handling functions. New devices ranging from
digital computers to satellites have resulted from military and other
government research and development programs. Such activity will
continue to have an important impact on automation progress.

One of the pressures for the development of automation has been the
growing complexity and speed of business and industrial operations.
But automation in turn accelerates the tempo of whatever it touches, so
that we can expect future systems to be even larger, faster, and more
complex. While a segment of engineering will continue to mastermind,
by rule of thumb procedures, the design and construction of automatic
equipment and systems, a growing percentage of engineering effort will
be devoted to activities that may be classified as problem solving. The
activities of the problem solver involve analysis of previous behavior
of systems and equipment, simulation of present situations, and predic­
tions about the future. In the past, problem solving has largely been
practiced by engineers and scientists, using slide rules and hand calcu­
lators, but with the advent of large-scale data processing systems,
the range of applications has been broadened considerably to include
economic, government, and social activities. Air traffic control, traffic
simulation, library searching, and language translation, are typical of
the problems that have been attacked.

This Handbook is directed toward the problem solvers-the engineers,
scientists, technicians, managers, and others from all walks of life who
are concerned with applying technology to the mushrooming develop­
ments in automatic equipment and systems. It is our purpose to gather
together in one place the available theory and information on general
mathematics, feedback control, computers, data processing, and systems

xi

xii PREFACE

design. The emphasis has been on practical methods of applying theory,
new techniques and components, and the ever broadening role of the
electronic computer. Each chapter starts with definitions and descrip­
tions aimed at providing perspective and moves on to more complicated
theory, analysis, and applications. In general, the Handbook assumes
some engineering training and will serve as an information source and
refresher for practicing engineers. For management, it will provide a
frame of reference and background material for understanding modern
techniques of importance to business and industry. To others engaged
in various ramifications of automation systems, the Handbook will pro­
vide a source of definitions and descriptive material about new areas of
technology.

It would be difficult for anyone individual or small group of indi­
viduals to prepare a handbook of this type. A large number of contrib­
utors, each with a field of specialty, is required to provide the engineer
with the desired coverage. With such a broad field, it is difficult to
treat all material in a homogeneous manner. Topics in new fields are
given in more detail than the older, established ones since there is a need
for more background information on these new subj ects. The organization
of the material is in three volumes as shown on the inside cover of the
Handbook. Volume 1 is on Control Fundamentals, Volume 2 is con..,
cerned with Computers and Data Processing, and Volume 3 with Systems
and Components.

In keeping with the purpose of this Handbook, Volume 1 has a strong
treatment of general mathematics which includes chapters on subjects
not ordinarily found in engineering handbooks. These include sets
and relations, Boolean algebra, probability, and statistics. Additional
chapters are devoted to numerical analysis, operations research, and
information theory. Finally, the present status of feedback control
theory is summarized in eight chapters. Components have been placed
with systcms in Volume 3 rather than with control theory in Volume 1,
although any discussion of feedback control must, of necessity, be con­
cerned with components. I

The importance of computing in rescarch, development, production,
real time process control, and business applications, has steadily increased.
Hence, Volume 2 is devoted entirely to the design and use of analog and
digital computers and data processors. In addition to covering the status
of knowledge today in these fields, there are chapters on unusual com­
puter systems, magnetic core and transistor circuits, and an advanced
treatment of programming. Volume 3 emphasizes systems engineering.
A part of the volume covers techniques used in important industrial
applications by examining typical systems. The treatment of components

PREFACE xiii

is largely concerned with how to select components among the various
alternates, their mathematical description and their integration into
systems. There is also a treatment of the design of components of
considerable importance today. These include magnetic amplifiers,
semiconductors, and gyroscopes.
. We consider this Handbook a pioneering effort in a field that is
steadily pushing back frontiers. It is our hope that these volumes will
not only provide basic information on new fields, but also will inspire
work and further research and development in the fields of automatic
control. The editors are pleased to acknowledge the advice and assist­
ance of Dean Gordon S. Brown and Professor Jerome B. Wiesner of the
Massachusetts Institute of Technology, and Dr. Brockway McMillan of
the Bell Telephone Laboratories, in organizing the subject matter. To
the contributors goes the major credit for providing clear, thorough
treatments of their subjects. The editors are deeply indebted to the
large number of specialists in the control field who have aided and
encouraged this undertaking by reviewing manuscripts and making
valuable suggestions. Many members of the technical staff and secre­
tarial staff of Thompson Ramo Wooldridge Inc. and the Ramo­
Wooldridge Division have been especially helpful in speeding the progress
of the Handbook.

June 1959

EUGENE M. GRABBE
SIMON RAMO
DEAN E. WOOLDRIDGE

CONTENTS

A. COMPUTER TERMINOLOGY

Chapter ,1. Computer Terminology and Symbols 1-0 I

I. Standardization 1-0 I
2. Symbols 1-0 I
3. Glossary of Terminology 1-02

References 1-22

B. DIGITAL COMPUTER PROGRAMMING

Chapter 2. Programming and Coding 2-0 I

I. Nature of Programming 2-0 I
2. Numbers and Scale Factors 2-12
3. Number Conversion Tables 2-26
4. Program Structure and Flow Dia­

grams 2-44
5. Machine Logic 2-53
6. Instruction Logic of Common Com­

puters 2-63
7. Traditional Programming Techniques

2-128
8. Automatic Programming: Develop­

ment and Objectives 2-155
9. Automatic Programming: Assembly

Programs 2-163,
10. Automatic Programming: Subroutines,

Subroutine Generators, Utility Pro­
grams and Integrated Systems 2-167

II. Automatic Programming: Languages,
Compilers, and Translators 2-186

xv

xvi CONTENTS

12. Automatic Programming: The IT irans­
lator: Translator Construction 2-200

13. Automatic Programming: A Soviet
Algebraic Language Compiler 2-228

14. Automatic Programming: Interpreters
2-234

15. Automatic Programming: Recursive
Languages 2-244

16. Logical Programming 2-246
17. Microprogramming 2-251
18. Programs for Maintenance of Equip­

ment 2-258
19. Programming with Natur~1 Language

2-259
Literature.
References

Acknowledgments.
2-260

and

c. THE USE OF DIGITAL COMPUTERS AND DATA PROCESSORS

Chapter 3.

Chapter 4.

Data Processing Operations 3-0 I

I. Introduction 3-0 I
2. Data Collection 3-02
3. Data Conversion. Transcription. and

Editing 3-03
4. Data Output 3-04
5. On-Line Versus Off-Line Processing

3-04
6. Scientific Data Manipulation 3-05
7. Business Data Manipulation 3-06
8. Checking 3-13

Quantitative Characteristics of Data
Processing ,Systems 4-0 I

I. Determining System Requirements
4-01

2. Basic System Characteristics ,4-02
3. Basic Equipment Characteristics

4-04
4. Measurement of System Factors 4-04
5. Relating System Characteristics to

Equipment Characteristics 4-09
References 4-16

Chapter 5.

Chapter 6.

Chapter 7.

Chapter 8.

Chapter 9.

Chapter 10.

CONTENTS xvii

Equipment Description 5-0 I

I. General Equipment Description 5-0 I
2. Characteristics of Electronic Data

Processing Equipment 5-04
3. Input Equipment 5-09
4. Storage Equipment 5-24
5. Output Equipment 5-33
6. Arithmetic and Logic Unit 5-38
7. Control Equipment 5-40
8. Typical Electronic Digital Equipment

5-43
References 5-43

Facility Requirements 6-0 I

I. Physical Installation 6-0 I
2. Personal Requirements 6-09

References 6-13

Design of Business Systems 7 -0 I

I. General System Requirements 7-01
2. Stages of System Evolution 7-02
3. Detailed Steps of System Design 7-03
4. Economic Impacts of System Changes

7-12
References 7-14

Accounting Applications

I. Life Insurance 8-0 I
2. Casualty Insurance 8-08
3. Public Utility Customer Billing 8-11
4. Payroll 8-15

Inventory and Scheduling Applica­
tions

I. Inventory Control 9-0 I
2. Aircraft Production Scheduling 9-07

References 9-12

Scientific and Engineering Applica-

8-01

9-01

tions 10-01

I. Introduction 10-0 I
2. Simultaneous Linear Algebraic Equa­

tions and Matrix Inversion 10-02

xviii

Chapter 11.

CONTENTS

3. Characteristic Roots and Vectors
10-04

4. Linear Programming 10-06
5. Differential Equations 10-08
6. Statistical Analysis 10-10

References 10-12

Handling of Non-Numerical Infor-
mation I 1-0 I

I. In'troduction 11-0 I
2. Performing Logic on a Digital Com­

puter 11-02
3. Game Playing Machines II-II
4. The Machine Translation of Languages

11-13
5. Automatic Literature Searching and

Retrieval 11-16
References I 1-19

D. DESIGN OF DIGITAL COMPUTERS

Chapter 12.

Chapter 13.

Digital Computer Fundamentals 12-0 I

I. Digital Computers and Control Sys­
tems 12-01

2. Digital Computer Fundamentals
12-02

3. Machine Construction 12-07
4. Number Systems and Number Codes

12-12
5. Machine Number Systems 12-18
6. Computer Design Characteristics

12-25
References 12-30

Techniques for Reliability 13-0 I

I. Introduction 13-0 I
2. Summary of Operating' and Design

Techniques 13-02
3. Operating Techniques 13-04
4. System Design 13-05
5. Circuit Design 13-07
6. Maintenance 13-08

References 13-10

Chapter 14.

Chapter 15.

Chapter 16.

Chapter 17.

CONTENTS xix

Components and Basic Circuits 14-0 I

I. Designing for Reliability 14-0 I
2. Components and Circuit Design

14-03
3. Marginal Checking 14-05
4. Reliable Computer Circuits 14-19
5. Components, Characteristics, and Ap­

plication Notes 14-43
6. Transistors 14-51

References 14-54

Magnetic Core Circuits 15-0 I

I. Fundamentals 15-0 I
2. Magnetic Cores 15-04
3. Transfer Loops 15-09
4. Magnetic Shift Registers 15-15
5. Logical Function Elements 15-16
6. Magnetic Core Storages 15-19
7. Timing Control Circuits 15-21
8. Arithmetic and Miscellaneous Appli­

cations 15-22
9. Drivers for Magnetic Core Circuits

15-23
References 15-24

Transistor Circuits

I. Introduction 16-0 I,
2. Transistor Switching Properties 16-02
3. Direct-Coupled Transistor Switching

Circuits 16-05
4. Point-Contact Transistor Pulse Ampli­

fiers 16-15
5. Transistorized Calculator 16-20

References 16-30

16-01

Logical Design 17 -0 I

I. Computer Elements 17-01
2. Algebraic Techniques of Logical De­

sign 17-10
3. Preliminary Design Considerations

17-24
4. Detailed Logical Design 17-30

xx

Chapter 18.

Chapter 19.

Chapter 20.

CONTENTS

5. Direct Simulation of a Logical Design
17-38
References 17-42

Arithmetic and Control Elements

I. System Considerations 18-0 I
2. Notation 18-02
3. Binary Operations 18-03
4. Decimal Operations 18-25
5. Special Operations 18-30
6. Control Elements 18-33

References 18-40

Storage

I. Basic Concepts 19-01
2. Magnetic Drum Storage
3. Magnetic Core Storage
4. Other Storage Techniques

References 19-33

19-04
19-13

19-29

Input-Output Equipment for Digital

18-01

19'-01

Computers 20-0 I

I. The Input-Output System 20-0 I
2. Printed Page 20-06
3. Perforated Tape 20-19
4. Punched Card Machines 20-30
5. Magnetic Tape 20~33

6. Analog-Digital Conversion 20-44
References 20-66

E. DESIGN AND APPLICATION OF ANALOG COMPUTERS

Chapter 21. Analog Computation in Engineering 21-0 I

I. Definition of Analog Computation
21-01

2. Classification of Analog Computers
21-02

3. Requirements of Analog Computers
21-05

4. General Steps in the Solution of Engi­
neering Problems 21-06

Chapter 22.

Chapter 23.

Chapter 24.

CONTENTS

5. Areas of Application of Analog Com­
puters 2 1-09

6. Symbols and Diagram Notation
21-11
References 21-1 I

xxi

Linear Electronic Computer Elements 22-0 I

I. Introduction and Computer Diagram
Notation 22-0 I

2. Passive Computer Elements 22-04
3. Direct-Current Operational Amplifiers

with Feed back 22-08
4. Sca I e Factors 22-10
5. Typical Problem Setup 22-12
6. Representation of Complex Transfer

Functions 22-13
7. Operationa I Amplifier Design 22-16
8. Errors in Linear Computer Elements

22-33
References 22-37

Nonlinear Electronic Computer Ele­
ments

I. Function Multipliers 23-0 I
2. Function Generators 23-14
3. Switching Devices 23-22
4. Trigonometric Devices 23-31
5. Time Delay Simulators 23-34

References 23-39

Analogs and Duals of Physical Sys­
tems

I. Electric Analogy of Dynamic System
24-01

2. General Terminology 24-03
3. Analysis of General Systems 24-03
4. Energy Considerations 24-07
5. Duality 24-08
6. Construction of Duals 24-09
7. Across and Through Variables in Physi­

cal Systems 24-12
References 24-13

23-01

24-01

xxii

Chapter 25.

Chapter 26.

Chapter 27.

Chapter 28.

CONTENTS

Solution of Field Problems

I. Formulation of Engineering Problems
as Partial Differential Equations
25-01

2. Continuous Type Electric Analogs
25-05

3. Discrete Element Type Electric Ana­
logs 25-11

4. Nonelectric Field Analogs 25-22
References 25-23

25-01

Noise and Statistical Techniques 26-0 I

I. Introduction and Definition 26-0 I
2. Random Variable Concepts 26-02
3. Treatment of Linear Systems 26-06
4. Treatment of Nonlinear Systems

26-09
5. Noise Generators 26-12

References 26-20

Mechanical Computer Elements 27-01

I. Introduction 27-0 I
2. Basic Operations 27-02
3. Function Generation 27-05
4. Solution of Equations 27-09
5. Scale Factors 27-14

References 27-15

Digital Techniques in Analog Compu-
tation 28-0 I

I. Introduction 28-0 I
2. Digital Differential Analyzer 28-02
3. Digital Operational Computers

28-11
4. Auxiliary Digital Computer Tech­

niques 28-15
5. Auxiliary Digital Control Techniques

28-17
References 28-18

CONTENTS xxiii

F. UNUSUAL COMPUTER SYSTEMS

Chapter 29.

Chapter 30.

Chapter 31.

INDEX

Operational Digital Techniques

I. Introduction 29-0 I
2. Basic Devices 29-05
3. Applications of Operational Digital

Techniques 29-14
4. Incremental Computation 29-17

References 29-29

Combined Analog-Digital Computer

29-01

Systems . 30-01

I. Description and Applications 30-0 I
2. System Components 30-02
3. Control and Timing 30-08
4. Modes of Operation 30-13

References 30-15

Simple Turing Type Computers 31-0 I

I. Basic Concepts 3 1-0 I
2. Functional Requirements 31-02
3. Machine Description 31-03
4. Mechanization 31-07
5. Programming 3 1-09
6. Communication with No Auxiliary

Storage 31-13
7. Machine Comparison 31-15

References 31-16

COMPUTER TERMINOLOGY

A. COMPUTER TERMINOLOGY

1. Computer Terminology and Symbols, by E. M. Grabbe

A COMPUTER TERMINOLOGY

Computer Terminology

and Symbols

I. Standardization

2. Symbols

3. Glossary of Terminology
References

I. STANDARDIZATION

Chapter 1

E. M. Grabbe

1-0 I

1-01

1-02

1-22

The growth of analog and digital computers as major components of
modern computing and control systems has done much to encourage
standardization of terminology and symbols. A sizable part of this
effort has been directed toward the terminology of digital computers.
Hence, the glossary of terminology given in Sect. 3 is largely concerned
with digital terms. No attempt has been made to define the terms asso­
ciated with computer usage in scientific computation, business data
processing, and control applications.

2. SYMBOLS

Diagram Symbols. Several sets of symbols for schematic and circuit
diagrams have been in use in the analog and digital fields. In Part E on
analog computers, one set of symbols has been chosen and used through­
out the chapters. The alternate notation is also listed for linear comput­
ing elements in Chap. 22 (see Table 1).

In the digital field, while terminology has been standardized to some
degree, the use of symbols has not. A variety of symbols is employed

1-01

1-02 COMPUTER TERMINOLOGY

for programming, logic, and circuit diagrams, depending on the author's
preference and the type of diagram. Some symbols are easier to use for
some purposes than others. In all cases the symbols are clearly defined
and usage is unambiguous.

Since symbols are not standardized, no detailed list is given, but they
are described in the various chapters. The following is a list of the
chapters in the Handbook where tables of symbols may be found:

Symbols
Digital computer

Programming
Logical design
Logical operations
Magnetic cores

Analog computer

Chapters

Chap. 2, Sect. 4
Chap. 17, Sect. 4
Chap. 17, Sect. 1, Table 1
Chap. 15, Sect. 1

Linear computing elements Chap. 22, Sect. 1
Nonlinear computing elements Chap. 23, Sect. 1
Mechanical computing elements Chap. 27, Sect. 2
Analogs and duals Chap. 24, Sect. 2
Digital differential analyzers Chap. 28, Sect. 2

Letter Symbols. Letter symbols are standardized to some extent
in Part E, Design and Application of Analog Computers. (See Chap.
21, Sect. 1.) Elsewhere letter symbols are defined when they are used.

3. GLOSSARY OF TERMINOLOGY

Terminology from the Institute of Radio Engineers (Ref. 1) and the
Association for Computing Machinery (Ref. 2) has been compiled in a
glossary. The I.R.E. terminology is largely concerned with digital com­
puter design, although some analog terms are included. The A.C.M.
terminology is concerned with programming. vVhere an overlap exists,
the I.R.E. terminology has been selected since it represents the later
effort. For some terms, minor changes or additions have been made for
clarity and explanatory notes and examples have been added. Some
terms are included which have no official definition, and reference to the
chapters where they are described and defined is given. For terms not
listed in this glossary, please refer to the index.

Terminology is reproduced with the permission of the Institute of
Radio Engineers and the Association for Computing Machinery.

Glossary of Terminology

Access Time. A time interval which is characteristic of a storage
unit, and is essentially a measure of the time required to communicate
with that unit. Many definitions of the beginning and ending of this
interval are in common use.

COMPUTER TERMINOLOGY AND SYMBOLS 1·03

Accumulator. A device which stores a number and which, on receipt
of another number, adds it to the number already stored and stores the
sum. Note. The term is also applied to devices which function as
described but which have other facilities also.

Accuracy. The quality of freedom from mistake or error, that is,
of conformity to truth or to a rule. Accuracy is distinguished from
precision. Example. A six-place table is more precise than a four-place
table. However, if there are errors in the six-place table, it may be either
more or less accurate than the four-place table.

Adder. A device which can form the sum of two or more numbers or
quantities.

Address. An expression, usually numerical, which designates a par­
ticular location in a storage or a memory device or other source or des­
tination of information. See also Instruction Code.

Absolute address, an address assigned by the machine designer
to a particular storage location.

Relative address, the address used to identify a word in a routine
or subroutine with respect to its position in that routine or subroutine.

Symbolic address (floating' address), an address chosen to identify
a particular word, function, or other information in a routine, inde­
pendent of the location of the information within the routine. Some­
times called symbol or tag.
Address Part. In an instruction, any part that is usually an address.

See also Instruction Code.
Analog (in electronic computers). A physical system on which the

performance of measurements yields information concerning a class of
mathematical problems.

Analog Computer. A physical system together with means of control
for the performance of measurements (upon the system) which yield
information concerning a class of mathematical problems.

And Circuit. Synonym for and gate.
And Gate. A gate whose output is energized when and only when

every input is in its prescribed state. Thus, this gate performs the
function of the logical and.

Arithmetic Element. Synonym for arithmetic unit.
Arithmetic Unit. That part of a computer which performs arithmetic

and logical operations.
Assemble; Assembler, Assembly Routine; Assenlbly. See Routine.
Automatic Check. See Check, Automatic.
Band. A group of tracks on a magnetic drum.
Base. See Positional Notation.
Binary. See Positional Notation.

1-04 COMPUTER TERMINOLOGY

Binary Cell. An elementary unit of storage which can be placed in
either of two stable states.

Binary-Coded-Decimal System. A system of number representation
in which each decimal digit is represented by a group of binary digits.
Note. Usually refers to the four position binary codes 0000 to 1001
(decimal 1 to 9). Another example is the excess-three code.

Binary Number System. See Positional Notation.
Binary Point. See Point.
Biquinary. See Positional Notation.
Bit. (1) An abbreviation of "binary digit." (2) A single character

of a language employing exactly two distinct kinds of characters. (3)
A unit of information capacity of a storage device. The capacity in bits
is the logarithm to the base two of the number of possible states of the
device. See also Storage Capacity.

Block. A group of words considered as a unit.
Borrow. See Carry.
Branch. A synonym for conditional jump.
Break Point. A point in a routine at which a special instruction is

inserted which, if desired, will cause a digital computer to stop for a visual
check of progress.

Buffer. (1) An isolating circuit used to avoid reaction of a driven
circuit on the corresponding driving circuit. (2) A storage device used
to compensate for a difference in rate of flow of information or time
of occurrence of events when transmitting information from one device
to another.

Bus. One or more conductors which are used as a path for trans­
mitting information from any of several sources to any of several
destinations.

Calculator. See Computer.
Carry. (1) A signal, or an expression, produced as a result of an

arithmetic operation on one digit place of two or more numbers expressed
in positional notation, and transferred to the next higher place for proc­
essing there. (2) Usually a signal, or an expression, as defined in (1)
which arises, in adding, when the sum of two digits in the same digit
place equals or exceeds the base of the number system in use. If a
carry into a digit place will result in a carry out of the same digit place,
and if the normal adding circuit is bypassed when generating this new
carry, it is called a standing-on-nines carry, or high-speed carry. If
the normal adding circuit is used in such a case, the carry is called a
cascaded carry. If a carry resulting from the addition of carries is not
allowed to propagate (e.g., when forming the partial. product in one step
of a multiplication process), the process is called a partial carry. If it

COMPUTER TERMINOLOGY AND SYMBOLS 1-05

is allowed to propagate, the process is called a complete carry. If a
carry generated in the most significant digit place is sent directly to the
least significant digit place (e.g., when adding two negative numbers by
using nines complements) that carry is called an end-around carry.
(3) In direct subtraction, a signal or expression as defined in (1) which
arises when the difference between the digits is less than zero. Such a
carry is frequently called a borrow. (4) The action of forwarding a
carry. (5) The command requesting a carry to be forwarded.

Cascaded Carry. See Carry.
Cell. An elementary unit of storage (e.g., binary cell, decimal

cell) .
Channel. That portion of a storage medium which is accessible to a

given reading station. See also Track.
Character. One of a set of elementary marks or events which may

be combined to express information. Note.' A 'group of characters, in
one context, may be considered as a single- character in another, as in the
binary-coded-deciinal system:

Check. A process of partial or complete testing of (a) the correctness
of machine operations, (b) the existence of certain prescribed conditions
within the computer, or (c) the correctness of the results produced by a
routine. A check of any of these conditions may be made automatically
by the equipment or may be programmed. See also Verification.

Check, Automatic. A check performed by equipment built into the
computer specifically for that purpose, and automatically accomplished

. each time the pertinent operation is performed. Sometimes referred to as
a built-in check. Machine check can refer to an automatic check, or to
a programmed check of machine functions.

Check Digits. See Check, Forbidden Combination.
Check, Forbidden Combination. A check (usually an automatic

check) which tests for the occurrence of a nonpermissible code expres­
sion. A self-checking code (or error-detecting code) uses code expres­
sions such that one (or more) error(s) in a code expression produces a
forbidden combination. A parity check makes use of a self-checking
code employing binary digits in which the total number of 1's (or O's)
in each permissible code expression is always odd or always even. A
check may be made for either even parity or odd parity. A redundancy
check employs a self-checking code which makes use of redundant digits
called check digits.

Check, Marginal. A preventive maintenance procedure in which
certain operating conditions, e.g., supply voltage or frequency, are varied
about their normal values in order to detect and locate incipient defec­
tive units.

1-06 COMPUTER TERMINOLOGY

Check Problem. See Check, Programmed.
Check, Programmed. A check consisting of tests inserted into the

programmed statement of the problem and accomplished by appropriate
use of the machine's instructions. A mathematical check (or control)
is a programmed check of a sequence of operations which makes use of
the mathematical properties of that sequence. A check routine or
check problem is a routine or problem. which is designed primarily to
indicate whether a fault exists in the computer, without giving detailed
information on the location of the fault. See also Diagnostic Routine
and Test Routine under Routine.

Check Routine. See Check, Programmed.
Check, Selection. A check (usually an automatic checkY to verify

that the correct register, or other device, is selected in the performance
of an instruction. .

Check, Transfer. A check (usually an automatic check)' on the
accuracy of the transfer of a word.

Circulating Register (or Memory). A register (or memory) con­
sisting of a means for delaying information and a means of regenerating
and reinserting the information into the delaying means.

Clear. To restore a storage or memory device to a prescribed state,
usually that denoting zero.

Clock. A primary source of synchronizing signals.
Code. (1) A system of characters and rules for representing informa­

tion. (2) Loosely, the set of characters resulting from the use of a code.
(3) To prepare a routine in machine language for a specific computer.
(4) To encode, to express given information by means of a code. See
also Instruction Code, Language, Operation Code, and Pseudo-code.

Coding. The list, in computer code or in pseudo-code, of the succes­
sive computer operations required to solve a given problem.

Absolute, relative, or symbolic coding, coding in which one uses
absolute, relative, or symbolic addresses, respectively.

Automatic coding, any technique in which a computer is used to
help bridge the gap between some "easiest" form, intellectually and
manually, of describing the steps to be followed in solving a given
problem and some "most efficient" final coding of the same problem
for a given computer. Two basic forms, defined under Routine, are
compilation and interpretation.
Collate. To combine two or more similarly ordered sets of items

to produce another ordered set composed of information from the original
sets. Both the riumber of items and the size of the individual items in
the resulting set may differ from those of either of the original sets and
of their sums.

COMPUTER TERMINOLOGY AND SYMBOLS 1-07

Command. (1) One of a set of several signals (or groups of signals)
which occurs as a result of an instruction; the commands initiate the
individual steps which form the process of executing the instruction.
(2) Synonym for instruction.

Comparator. A device for comparing two different transcriptions of
the same information to verify the accuracy of transcription, especially
of one copy of tape from another.

Compare. To examine the representation of a quantity for the pur­
pose of discovering its relationship to zero, or of two quantities for the
purpose of discovering identity or relative magnitude.

Comparison. The act of comparing and, usually, acting on the result
of the comparison.

Compile; Compiler, Compiling Routine; Compilation. See
Routine.

Complement. (1) A number whose representation is derived from
the finite positional notation of another by one of the following rules.
(a) True complement: subtract each digit from one less than the base;
then add 1 to the least significant digit and execute all carries required.
(b) Base minus one's complement: subtract each digit from one less
than the base (e.g., "9's complement" in the base 10 and "l's comple­
ment" in the base 2). (2) To form the complement of a number. (a)
Complement on n: subtract each digit of the given quantity from n - 1,
add unity to the least significant digit, and perform all resultant carries.
For example, the two's complement of binary 11010 is 00110; the ten's
complement of decimal 456 is 544. (b) Complement on n - 1: sub­
tract each digit of the given quantity from n - 1. For example, the
one's c01nplenwnt of binary 11010 is 00101; the nine's complement
of decimal 456 is 543. Note. In many machines, a negative num­
ber is represented as the complement of the corresponding positive
number.

Complete Carry. See Carry.
Computer. (1) A machine for carrying out calculations. (2) By

extension, a machine for carrying out specified transformations on
inf ormation.

Conditional Jump. See Jump.
Conditional Transfer of Control. Synonym for conditional jump.
Control. (1) To exercise directing, guiding, or restraining power

over. (2) Power or authority to control. (3) Usually, those parts of
a digital computer which effect the carrying out of instructions in proper
sequence, the interpretation of each instruction, and the application of
the proper signals to the arithmetic unit and other parts in accordance
with this interpretation. (See Chap. 18.) (4) Frequently, one or more

1-08 COMPUTER TERMINOLOGY

of the components in any mechanism responsible for interpreting and
carrying out manually initiated directions. Sometimes called manual
control. (5) In some business applications of mathematics, a mathe­
matical ,check.

Convert. See Routine.
Copy. To reproduce information in a new location by replacing

whatever was previously ~tored there and leaving the source of the
information unchanged. See also Transfer.

Correction. See Error.
Counter. (1) A device capable of changing from one to the next of a

sequence of distinguishable states upon each receipt of an input signal.
(2) Less frequently, an accumulator.

Counter, Ring. A loop of interconnected bistable elements such
that all but one are in their normal (or abnormal) state at anyone
time, and so that, as input signals are counted, the position of the
one abnormal (normal) state moves in an ordered sequence around' the
loop.

Cycle. (1) The sequence of events beginning with a particular event
and including intervening events leading up to a recurrence of the
original event. (2) The time interval which spans the sequence of
events of (1). See Loop, Major Cycle, Minor Cycle.

Cyclic Binary Code. See Chaps. 11 and 20.
Cyclic Shift. See Shift.
Decimal Number System. See Positional Notation.
Decimal Point. See Point.
Decoder. A network or system in which a combination of inputs is

excited at one time to produce a single output. Sometimes called matrix.
Delay Line. (1)' Originally, a device utilizing wave propagation for

producing a time. displacement of a signal. (2) Commonly, any device
for producing a time displacement of a signal.

Delay-Line Memory. Synonym for delay-line storage.
Delay-Line Storage. A storage or memory device consisting of a

delay line and means for regenerating and reinserting information into
the delay line.

Diagnostic Routine. See Routine.
Differentiator. A device, usually of the analog type, whose output is

proportional to the derivative of an input signal.
Digit. See Positional Notation.
Digital Computer. A computer which operates with information,

numerical or otherwise, represented in a digital form.
Double-Length Number, Double-Precision Number. See Number,

Double-Length.

COMPUTER TERMINOLOGY AND SYMBOLS 1-09

Edit. To rearrange information. Editing may involve the deletion
of unwanted data, the selection of pertinent data, the insertion of invari­
ant symbols such as page numbers and typewriter characters, and the
application of standard processes such as zero suppression.

Encoder. A network or system in which only one input is excited at a
time and each input produces a combination of outputs. Sometimes
called matrix.

End-Around Carry. See Carry.
Erase. To replace all the binary digits in a storage device by binary

zeros. In a binary computer, erasing is equivalent to clearing. While
in a coded decimal computer where the pulse code for decimal zero may
contain binary ones, clearing leaves decimal zero whereas erasing leaves
all-zero pulse codes. Erasing of magnetic tapes and drums may leave
all zeros or may remove all information, both ones and zeros.

Error. (1) In mathematics, the difference between the true value
and a calculated or observed value. A quantity (equal in absolute mag­
nitude to the error) added to a calculated or observed value to obtain
the true value is called a correction. (2) In a computer or data proc­
essing system, any incorrect step, process, or result. Strictly speaking,
"error" is a mathematical term, but in computer engineering the term
is also commonly used to refer to machine malfunctions as "machine
errors" and to human mistakes as "huma~ errors." It is frequently
helpful to distinguish between these as follows: errors result from approx­
imations used in numerical methods, mistakes result from incorrect
programming, coding, data transcription, manual operation, etc.; mal­
functions result from failures in the operation of machine components
such as gates, flip-flops, and amplifiers.

Inherited error, the error in the initial values, especially the error
inherited from the previous steps in the step-by-step integration.

Rounding error, the error resulting from deleting the less signifi­
cant digits of a quantity and applying some rule of correction to the
part retained.

Truncation error, the error resulting from the use of only a finite
number of terms of an infinite series, or from the approximation of
operations in the infinitesimal calculus by operations in the calculus
of finite differences.
Error-Detecting Code. See Check, Forbidden Combination.'
Excess-Three Code. A number code in which the decimal digit n

. is represented by the four-bit binary equivalent of n + 3. See also
Binary-Coded-Decimal System.

Extract. To form a new word by juxtaposing selected segments of
given words.

1-10 COMPUTER TERMINOLOGY

Field. A set of one or more characters (not necessarily all lying in
the same word) which is treated as a whole; a unit of information. See
also Item; Key.

Card field, a set of visually consecutive card columns fixed as to
number and position into which the same unit of information is regu­
larly entered.
File. A sequential set of items (not necessarily all of the same size).
Fixed-Point System. See Point.
Flip-Flop. (1) A device having two stable states and two input ter­

minals (or types of input signals) each of which corresponds with one
of the two states. The circuit remains in either state until caused to
change to the other state by application of the corresponding signal.
(2) A similar bistable device with an input which allows it to act as a
single-stage binary counter.

Floating-Point System. See Point.
Flow Diagram. A graphic representation of a routine.
Forbidden Combination Check. See Check, Forbidden Combination.
Four-Address Code. See Instruction Code.
Gate. A circuit having an output and a multiplicity of inputs so

designed that the output is energized when and only when certain input
conditions are met. See also And Gate; Or Gate.

Generate; Generator, Generative Routine; Generation. See
Routine.

Gray Code. See Chaps. 11 and 20.
Half Adder. A circuit having two input and two output channels

for binary signals (0, 1) and in which the output signals are related to
the input signals according to the following table:

Input to Output from
A B S C
000
011
101
1 1 0

o
o
o
1

: :1 L----_-------'I: :
(So called because two half adders can be used in the construction

of one binary adder.)
Hexadecimal. See Positional Notation.
High-Speed Carry. See Carry.
Information. A set of symbols or an arrangement of hardware that

designates one out of a finite number of alternatives; an aggregation
of data which mayor may not be organized.

Inhibiting Input. A gate input which, if in its prescribed state, pre­
vents any output which might otherwise occur.

COMPUTER TERMINOLOGY AND SYMBOLS I-II

Instruction. See Instruction Code.
Instruction Code. An artificial language for describing or expressing

the instructions which can be carried out by a digital computer. In auto­
matically sequenced computers, the instruction code is used when describ­
ing or expressing sequences of instructions, and each instruction word
usually contains a part specifying the operation to be performed and one
or more addresses which identify a particular location in storage. Some­
times an address part of an instruction is not intended to specify a loca­
tion in storage but is used for some other purpose. If more than one
address is used, the code is called a multiple-address code. In a typical
instruction of a four-address code the addresses specify the location of
two operands, the destination of the result, and the location of the next
instruction in the sequence. In a typical three-address code, the fourth
address specifying the location of the next instruction is dispensed with
and the instructions are taken from storage in a preassigned order. In
a typical one-address or single-address code, the address may specify
either the location of an operand to be taken from storage, the destina­
tion of a previously prepared result, or the location of the next instruc­
tion. The arithmetic element usually contains at least two storage loca­
tions, one of which is an accumulator. For example, operations requiring
two operands may obtain one operand from the main storage and the
other from a storage location in the arithmetic element which is specified
by the operation part.

Breakpoint instruction, an instruction which, if some specified
switch is set, will cause the computer to stop, or proceed in a special
way.

Conditional breakpoint instruction, a conditional jump instruction
which, if some specified switch is set, will cause the computer to stop,
after which either the routine may be continued as coded or a jump
may be forced.

One-plus-one, or three-plus-one address instruction, a two- or
four-address instruction, respectively, in which one of the addresses
always specifies the location of the next instruction to be performed.

Zero address instruction, an instruction specifying an operation in
which the location of the operands are defined by the computer
code, so that no address need be given explicitly.
Integrator. (1) A device whose output is proportional to the integral

of an input signal. (2) In certain digital machines, a device for numer­
ically accomplishing an approximation to the mathematical process of
integration.

Interlock. A device which prevents certain activities for the dura­
tion of certain other activities.

1-12 COMPUTER TERMINOLOGY

Interpret, Interpreter, Interpretive Routine, Interpretation. See
Routine.

Item. A set of one or more fields containing related information;
a unit of correlated information relating to a single person or object.

Jump. To (conditionally or unconditionally) cause the next instruc­
tion to be selected from a specified storage location.

Conditional Jump. An instruction which will cause the proper
one of two (or more) addresses to be used in obtaining the next
instruction, depending upon some property of one or more numerical
expressions or other conditions.

Unconditional Jump. An instruction which interrupts the normal
process of obtaining instructions in an ordered sequence, and specifies
the address from which the next instruction must be taken.
Key. A set of characters, forming a field, used to identify an item.
Language. (1) A system consisting of (a) a well-defined, usually

finite, set of characters, (b) rules for combining characters with one
another to form words or other expressions, and (c) a specific assign­
ment of meaning to some of the words or expressions, usually for com­
municating information or data among a group of people, machines,
etc. (2) A system similar to (1) but without any specific assignment
of meanings. Such systems may be distinguished from (1), when neces­
sary, by referring to them as formal or uninterpreted languages. Al­
though it is sometimes convenient to study a language independently of
any meanings, in all practical cases at least one set of meanings is
eventually assigned. See also Machine Language.

Library. An ordered set or collection of standard and proven routines
and subroutines by which problems and parts of problems may be
solved, usually stored in relative or symbolic coding. (A library may be
subdivided into various volumes, such as floating decimal, double-pre­
cision, or complex, according to the type of arithmetic employed by the
subroutines.)

Logic. See Logical Design.
Logical Design. (1) The planning of a computer or data processing

system prior to its detailed engineering design. (2) The synthesizing
of a network of logical elements to perform a specified function. (3)
The result of (1) and (2), frequently called the logic of the system,
machine, or network.

Logical Diagram. In logical design, a diagram representing the logical
elements and their interconnections without necessarily expressing con­
struction or engineering details.

Logical Element. In a computer or data processing system, the
smallest building blocks which can be represented by operators in an

COMPUTER TERMINOLOGY AND SYMBOLS 1-13

appropriate system of symbolic logic. Typical logical elements are the
and gate and the flip-flop which can be represented as operators in a
suitable symbolic logic.

Logical Operation. (1) Any nonarithmetical operation. Examples
are: extract, logical (bit-wise) multiplication, jump, and data transfer.
(2) Sometimes only those nonarithmetical operations which are express­
ible bit-wise in terms of the propositional calculus or a two-valued
Boolean algebra.

Logical Symbol. A symbol used to represent a logical element
graphically.

Loop. The repetition of a group of instructions in a routine. See
also Cycle.

Machine Check. See Check, Automatic.
Machine Language. (1) A language, occurring within a machine,

ordinarily not perceptible or intelligible to people without special equip­
ment or training. (2) A translation or transliteration of (1) into more
conventional characters but frequently still requiring special training
to be intelligible.

Major Cycle. In a storage device which provides serial access to stor­
age positions, the time interval between successive appearances of a
given storage position.

Malfunction. See Error.
Manchester Recording. See Chap. 19, Sect. 2.
Marginal Checking. See Check, Marginal.
Marginal Testing. See Check, Marginal.
Master Routine. See Routine, Executive.
Mathematical Check. See Check, Programmed.
Matrix (Switch). (1) A network or system having a number of

inputs and outputs and so connected that signals representing informa­
tion expressed in a certain code, when applied to the inputs, cause output
signals to appear which are representations of the input information in a
different code. (2) A network or system in which a combination of
inputs is excited at one time to produce a single output. (3) A network
or system in which only one input is excited at a time and each input
produces a combination of outputs.

Memory. See Storage.
Merge. To produce a single sequence of items, ordered according to

some rule (i.e., arranged in some orderly sequence), from two or more
sequences previously ordered according to the same rule, without chang­
ing the items in size, structure, or total number. Merging is a special
case of collation.

Memory Capacity. Synonym for storage capacity.

1-14 COMPUTER TERMINOLOGY

Minor Cycle. In a storage device which provides serial access to
storage positions, the time interval between the appearance of corre­
sponding parts of succes~ive words.

Mistake. See Error.
Modified Binary Code. See Chaps. 11 and 20.
Modifier. A quantity, sometimes the cycle index, used to alter the

address of an operand.
Modify. (1) To alter in an instruction the address of the operand.

(2) To alter a subroutine according to a defined parameter.
Multiple-Address Code. See Instruction Code.
Multiplier. A device which has two or more inputs and whose output

is a representation of the product of the quantities represented by the
input signals. (See Chap. lS.)

NRZ, Non-Return to Zero Recording. See Chap. 19, Sect. 2.
NRZI, Non-Return to Zero, Invert Recording. See Chap. 19,

Sect. 2.
Number. (1) Formally, an abstract mathematical entity which is a

generalization of a concept used to indicate quantity, direction, etc. In
this sense a number is independent of the manner of its representation.
(2) Commonly, a representation of a number as defined above (e.g.,
the binary number "10110," the decimal number "3695," or a sequence
of pulses). (3) A word composed wholly or partly of digits, and per­
haps a sign, which does not necessarily represent the abstract entity
mentioned in the first meaning. Note. Whenever there is a possibility
of confusion between meaning (1) and meaning (2) or (3), it is usually
possible to make an unambiguous statement by using "number" for
meaning (1) and "numerical expression" for meaning (2) or (3). See
also Positional Notation.

Number, Double-Length. A number having twice as many digits
as are ordinarily used in a particular computer.

Number System. See Positional Notation.
Octal. See Positional Notation.
Octonary. See Positional Notation.
One-Address Code. See Instruction Code.
On-Line Operations. See Real-Time Operation.
Operation Code. (1) The list of operation parts occurring in an

instruction code, together with the names of the corresponding opera­
tions (e.g., "add," "unconditional transfer," and "add and clear"). (2)
Synonym for operation part of an instruction.

Arithmetical operations, operations in which numerical quantities
form the elements of the calculation (e.g., addition, subtraction, mul­
tiplication, division).

COMPUTER TERMINOLOGY AND SYMBOLS 1.15

Complete operation, an operation which includes (a) obtaining
all operands from storage, (b) performing the operation, (c) returning
resulting operands to storage, and (d) obtaining the next instruction.

Computer operation, the electronic operation of hardware result­
ing from an instruction.

Logical operations, operations in which logical (yes-or-no) quan­
tities form the elements being operated on (e.g., comparison, extrac­
tion). A usual requirement is that the value appearing in a given
column of the result shall not depend on the values appearing in more
than one given column of each of the arguments.

Red tape operations, operations which do not directly contribute
to the result; i.e., arithmetical, logical, and transfer operations used
in modifying the address section of other instructions, in counting
cycles, and in rearranging data.

Transfer operations (storage operations), operations which move
information from one storage location or one storage medium to
another (e.g., read, record, copy, transmit, exchange). Transfer is
sometimes taken to refer specifically to movement between different
media; storage to movement within the same medium.
Although many operations fit the above definitions of two or more of

the terms arithmetical, logical, transfer, and red tape, these terms are
frequently used loosely to divide the operations of a given routine or of
a given instruction code into four mutually distinct classes depending on
the primary function intended for the given operation in the case at hand.

Operation Part. In an instruction, the part that usually specifies
the kind of operation to be performed, but not the location of the oper­
ands. See also Instruction Code.

Or Circuit. Synonym for or gate.
Order. (1) Synonym for instruction. (2) Synonym for command.

(3) Loosely, synonym for operation part. Note. The use of "order" in
the computer field as a synonym for terms similar to those above is
losing favor owing to the ambiguity between these meanings and the
more common meanings in mathematics and business.

Or Gate. A gate whose output is energized when anyone .01' more
of the inputs is in its prescribed state. Thus, this gate performs the
function of the logical inclusive-or.

Overflow. (1) The condition which arises when the result of an
arithmetic operation exceeds the capacity of the number representation
in a digital computer. (2) The carry digit arising from this condition.

Parallel. Pertaining to simultaneous transmission of, storage of, or
logical operations on the parts of a word, character, or other subdivision
of a word, using separate facilities for the various parts.

1-16 COMPUTER TERMINOLOGY

Parallel Digital Computer. One in which the digits are handled in
parallel. Mixed serial and parallel machines are frequently called serial
or parallel according to the way arithmetic processes are performed.
An example of a parallel digital computer is one which handles decimal
digits in parallel, although it might handle the bits which comprise a
digit either serially or in parallel.

Parity Check. See Check, Forbidden Combination.
Partial Carry. See Carry.
Place. In positional notation, a position corresponding to a given

power of the base. A digit located in any particular place is a coefficient
of a corresponding power of the base.

Point. In positional notation, the location or symbol which separates
the integral part of a numerical expression from its fractional part.
For example, it is called the binary point in binary notation and the
decimal point in decimal notation. If the location of the point is
assumed to remain fixed with respect to one end of the numerical ex­
pressions, a fixed-point system is being used. If the location of the
point does not remain fixed with respect to one end of the numerical
expressions, but is regularly recalculated, then a floating-point system
is being used. Note. A fixed-point system usually locates the point by
some convention, while the floating-point system usually locates the
point by expressing a power of the base.

Positional Notation. One of the schemes for representing numbers,
characterized by the arrangement of digits in sequence, with the under­
standing that successive digits are to be interpreted as coefficients of
successive powers of an integer called the base or radix of the number
system. In the binary number system the successive digits are inter­
preted as coefficients of the successive powers of the base two just as in
the decimal number system they relate to successive powers of the
base ten. In the ordinary number systems each digit is a character
which stands for zero or for a positive integer smaller than the base.
The names of the number systems with bases from 2 to 20 are: binary,
ternary, quaternary, quinary, senary, septenary, octonary (also octal),
novenary, decimal, unidecimal, duodecimal, terdenary, quaterdenary,
quindenary, sexadecimal (also hexadecimal), septendecimal, octodenary,
novendenary, and vicenary. The sexagenary number system has a base
of 60. The commonly used alternative of saying "base 3," "base 4," etc.,
in place of ternary, quaternary, etc., has the advantage of uniformity
and clarity. Note. In the most common form of positional notation the
expression

COMPUTER TERMINOLOGY AND SYMBOLS 1-17

is an abbreviation for the sum

n

± L: airi,
i= -m

where the point separates the positive powers from the negative powers,
the ai are integers (0 < ai < r - 1) called "digits," and r is an integer,
greater than one, called the base. Note 1. The base of a number is
usually indicated by a vertical line following the number with the base,
r, as a subscript. The decimal number 12 in octal and binary codes is
written 12ho = 1418 = 110012. Note 2. For some purposes special rules
are followed. In one such usage, the value of the base r is not constant.
In this case, the digits are coefficients of successive products of a non­
constant sequence of integers.

Precision. The quality of being exactly or sharply defined or stated.
A measure of the precision of a representation is the number of dis­
tinguishable alternatives from which it was selected, which is sometimes
indicated by the number of significant digits it contains. See also
Accuracy.

Program. (1) A plan for the solution of a problem. (2) Loosely,
a synonym for routine. (3) To prepare a program.

Automatic programming, any technique in which the computer is
used to help plan as well as to help code a problem. See Coding.

Optimum programming, improper terminology for minimal latency
.•• I coding, i.e., for producing a minimal latency routine. See Routine.

Programmed Check. See Check, Programmed.
Pseudo-Code. An arbitrary code, independent of the hardware of

a computer, which must be translated into computer code if it is to
direct the computer.

Radix. See Positional Notation.
Random Access. Access to storage under conditions in which the next

position from which information is to be obtained is in no way dependent
on the previous one.

Read. To acquire information, usually by observing some form of
storage. Note. Usually a process which can be called reading can also
be called writing, depending on the point of view of the observer.

Real-Time Operation, On-Line Operation, Simulation. Processing
data in synchronism with a physical process in such a fashion that the
results of data processing are useful to the physical operation.

Redundancy Check. See Check, Forbidden Combination.
Reflected Binary Code. See Chaps. 11 and 20.

1-18 COMPUTER TERMINOLOGY

Regeneration. (1) In a storage device whose information storing
state may deteriorate, the process of restoring the device to its latest
undeteriorated state. (2) In a storage device whose information storing
state may be destroyed by a readout, the process of restoring the device
to its state prior to the readout. This process is commonly known as
rewrite (after destructive readout).

Register. A device capable of retaining information, often that con­
tained in a small subset (e.g., one word) of the aggregate information
in a digital computer. Example. A register in an arithmetic unit as
opposed to a cell in storage.

Register Length. The number of characters which a register can
store.

Reset. (1) To restore a storage device to a prescribed state. (2) To
place a binary cell in the initial or "zero" state. See also Clear.

Rewrite. See Regeneration.
Ring Counter. See Counter, Ring.
Routine. A set of instructions arranged in proper sequence to cause

a computer to perform a desired operation or series of operations, such
as the solution of a mathematical problem. y:'~,

Executive routine (master routine), a routine designed to process
and control other routines. A routine used in realizing "automatic
coding."

Compiler (compiling routine), an executive routine which, before
the desired computation is started, translates a program expressed in
pseudo-code into machine code (or into another pseudo-code for
further translation by an interpreter). In accomplishing the trans­
lation, the compiler may be required to:

Decode, to ascertain the intended meaning of the individual
characters or groups of characters in the pseudo-coded program.

Convert, to change numerical information from one number base
to another (e.g., decimal to binary) and/or from some form of
fixed point to some form of floating-point representation, or vice
versa.

Select, to choose a needed subroutine from a file of subroutines.
Generate, to produce a needed subroutine from parameters and

skeletal coding.
Allocate, to assign 'storage locations to the main routines and

subroutines, thereby fixing the absolute values of any symbolic
addresses. In some cases allocation may require segmentation.

Assemble, to integrate the subroutines (supplied, selected, or
generated) into the main routine, i.e., to adapt, to specialize to the
task at hand by means of preset parameters; to orient, to change

COMPUTER TERMINOLOGY AND SYMBOLS 1-19

relative and symbolic addresses to absolute form; to incorporate,
to place in storage.

Record, to produce a reference record.
Check Routine. See Check, Progrmnmed.
Diagnostic Routine, a specific routine designed to locate either a

malfunction in the computer or a mistake in coding.
General routine, a routine expressed in computer coding designed

to solve a class of problems, specializing to a specific problem when
appropriate parametric values are supplied.

Interpreter (interpretive routine), an executive routine which,
as the computation progresses, translates a stored program expressed
in some machine-like pseudo-code into machine code and performs
the indicated operations, by means of subroutines, as they are trans­
lated. An interpretive routine is essentially a closed subroutine which
operates successively on an indefinitely long sequence of program
parameters (the pseudo-instructions and operands). It may usually
be entered as a closed subroutine and exited by a pseudo-code exit
instru cti on.

Minimal latency routine, especially in reference to serial storage
systems, a routine so coded, by judicious arrangement of 'data and
instructions in storage, that the actual latency is appreciably ress
than the expected random access latency. '

Rerun routine (rollback routine), a routine designed to be used
in the wake of a computer malfunction or a coding or operating mis­
take to reconstitute a routine from the last previous rerun point,
which is that stage of a computer run at which all information per­
tinent to the running of the routine is available either to the routine
itself or to a rerun routine in order that a run may be reconstituted.

Service routine, a routine designed to assist in the actual operation
of the computer. Tape comparison, block location, certain post mor­
terns, and correction routines fall into this class. Also called operator
routine.

Specific routine, a routine expressed in specific computer coding
designed to solve a particular mathematical, logical, or data handling
problem.

Subroutine. (1) In a ,routine, a portion that causes a computer
to carry out a well-defined mathematical or logical operation. (2) A
routine which is arranged so that control may be transferred to it from
a master routine and so that, at the conclusion of the subroutine, con­
trol reverts to the master routine. Such a subroutine is usually called
a closed subroutine. A single routine may simultaneously be both a
subroutine with respect to another routine and a master routine with

1-20 COMPUTER TERMINOLOGY

respect to a third. Usually control is transferred to a single subroutine
from more than one place in the master routine, and the reason for
using the subroutine is to avoid having to repeat the same sequence
of instructions in different places in the master routine.

Test routine, a routine designed to show that a computer is not
functioning properly.
RZ, Return to Zero Recording. See Chap. 19, Sect. 2.
Scale. To change the scale (i.e., the units) in which a variable is

expressed so as to bring it within the capacity of the machine or routine
at hand.

Selection Check. See Check, Selection.
Self-Checking Code. See Check, Forbidden Combination.
Serial. Pertaining to time-sequential transmission· of, storage of, or

logical operations on the parts of a word, with the same facilities for
successive parts.

Serial Digital Computer. One in which the digits are handled
serially. Mixed serial and parallel machines are frequently called serial
or parallel according to the way arithmetic processes are performed.
An example of a serial digital computer is one which handles decimal
digits serially although it might handle the bits which comprise a digit
either serially or in parallel. Antonym: Parallel Digital Computer.

Set. (1) To place a storage device in a prescribed state. (2) To
place a binary cell in the "one" state.

Sexadecimal. See Positional Notation.
Shift. Displacement of an ordered set of characters one or more places

to the left or right. If the characters are the digits of a numerical
expression, a shift may be equivalent to a multiplication by a power of
the base.

Cyclic Shift. An operation which produces a word whose characters
are obtained by a cyclic permutation of the characters of a given word.
Sign Digit. A character used to designate the algebraic sign of a

number.
Simulation. See Real- Time Operation.
Single-Address Code. See Instruction Code.
Sort. To arrange items of information according to rules dependent

upon a key or field contained by the items.
Standing-on-Nines Carry. See Carry.
Storage. (1) The act of storing information. (See also Store.) (2)

Any device in which information can be stored, sometimes called a
memory device. (3) In a computer, a section used primarily for storing
information. Such a section is sometimes called a memory or a store
(British) . Note. The physical means of storing information may be

COMPUTER TERMINOLOGY AND SYMBOLS 1-21

electrostatic, ferroelectric, magnetic, acoustic, optical, chemical, elec­
tronic, electrical, mechanical, etc., in nature.

Storage Capacity. The amount of information that can be simul­
taneously retained in a storage (or memory) device, often expressed
as the number of words that can be retained (given the number of
digits, and the base, of the standard word). \Vhen comparisons are made
among devices using different bases and word lengths, it is customary
to express the capacity in bits. This number is obtained by taking the
logarithm to the base 2 of the number of distinguishable states in which
the storage can exist. Note. The "storage (or memory) capacity of a
computer" usually refers only to the principal internal storage section.

Store. (1) To retain information in a device from which it can later
be extracted. (2) To introduce information into such a device. (3)
British synonym for storage (3).

Subroutine. See Routine.
Switch. A device for effectively making, breaking, or changing the

path of information flow. See also lkfatrix (Switch).
Ternary. See Positional Notation.
Test Routine. See Routine.
Three-Address Code. See Instruction Code.
Track. That portion of a moving-type storage medium which is

accessible to a given reading station; e.g., as on film, drum, tapes, or
disks. See also Band.

Transcriber. Equipment associated with a computing machine
for the purpose of transferring input (or output) data from a record of
information in a given language to the medium and the language used
by a digital computing machine (or from a computing machine to a
record of information).

Transfer. (1) To transmit, or copy, information from one device
to another. (2) To transfer control. (3) The act of transferring.

Transfer Check. See Check, Transfer.
Transfer Control. Synonym for jump.
Translate. To change information (e.g., problem statements in

pseudo-code, data, or coding) from one language to another without
significantly affecting the meaning.

Translator. A network or system having a number of inputs and
outputs and so connected that signals representing information expressed
in a certain code, when applied to the inputs, cause output signals to
appear which are a representation of the input information in a different
code. Sometimes called matrix.

Trunk. A path over which information is transferred; a bus.
Unconditional Jump. See Jump.

1-22 COMPUTER TERMINOLOGY

Unconditional Transfer of Control. Synonym for unconditional
Jump.

Unit. A portion or subassembly of a computer which constitutes the
means of accomplishing some inclusive operation or function, as arith­
metic unit.

Verification. The process of automatically checking the results of
one data recording process against the results of another data recording
process for the purpose of reducing the number of errors in data tran­
scription. See also Check.

Verifier. A device un which a manual transcription can be verified
by comparing a retranscription with it character by character as it is
being retranscribed.

Volatile. A term descriptive of a storage medium in which informa­
tion cannot be retained without continuous power dissipation. Note.
Storage devices or systems employing nonvolatile media mayor may not
retain information in the event of planned or accidental power removal.

Williams Tube Storage. A type of electrostatic storage.
Word. An ordered set of symbols which is the normal unit in which

information may be stored, transmitted, or operated upon within the
computer.

Word Time. Synonym for minor cycle.
Write. To introduce information, usually into some form of storage.

See also Read.
Zero Suppression. The elimination of nonsignificant zeros to the

left of the integral part of a quantity before printing operations are
initiated; a part of editing.

REFERENCES

1. IRE; Standards on Electronic Computers: Definitions of Terms, 1956. 56 IRE
8.51. Proc. I. R. E., 44, 1166-73 (1956).

2. First Glossary of Programming Terminology, Association for Computing Ma­
chinery, New York, 1954.

DIGITAL COMPUTER PROGRAMMING

B. DIGITAL COMPUTER PROGRAMMING

2. Programming and Coding, by John W. Carr 11/

B DIGITAL COMPUTER PROGRAMMING Chapter 2

Programming and Coding

John W. Carr III

I. Nature of Programming 2-0 I

2. Numbers and Scale Factors 2-12

3. Number Conversion Tables 2-26

4. Program Structure and Flow Diagrams 2-44

5. Machine Logic 2-53

6. Instruction Logic of Common Computers 2-63

7. Traditional Programming Techniques 2-128

8. Automatic Programming: Development and Objectives 2-155

9. Automatic Programming: Assembly Programs 2-163

10. Automatic Programming: Subroutines, Subroutine Generators, Utility
Programs, and Integrated Systems 2-167

II. Automatic Programming: Languages, Compilers, and Translators 2-186

12. Automatic Programming: The IT Translator, Translator Construction 2-200

13. Automatic Programming: A Soviet Algebraic Language Compiler 2-228

14. Automatic Programming: Interpreters 2-234

15. Automatic Programming: Recursive Languages 2-244

16. Logical Programming 2-246

17. Microprogramming 2-251

18. Programs for Maintenance of Equipment 2-258

19. Programming with Natural Language 2-259
literature, Acknowledgments, and References 2-260

I. NATURE OF PROGRAMMING

Problem Solving

Characteristics of Problem Solving. Basically, the general problem
which the digital computer programmer must face is the solution oj

2-01

2-02 DIGITAL COMPUTER PROGRAMMING

problems. The solution of problems with automatic information proc­
essing machines employs two tools:

1. Arithmetic (basically elementary descriptive number theory or the
manipulation of integers). The problem of evaluating and understanding
the arithmetic portion of the problem-solving job is numerical analysis
(see Vol. 1, Chap. 14).

2. Formal logic, or the making of decisions on the basis of elemental
pieces of basic information. In this chapter the emphasis will be placed
on the non-numerical portions of the problems.

Limitations. For each machine developed to solve problems, a new
pro1>lem will be found to strain its resources. Problems tend to outgrow
the ability of the present man-machine combinations to construct models
of the problem, within the computers, for solution. The important
limitations imposed by general purpose computers are:

1. Logical Portion of the Solution Process. Vast problems on classical
standards, describing the inter:action of men, machines, and nature in a
generally unpredictable (except statistically) fashion, must be solved
by mapping their description into digital information machines.
Example. The problem of commercial or military aircraft traffic control.

2. Multidimensional Arithmetic Problems. Example. Multidimen­
sional problems in partial differential equations, as described by
numerical analysis.

3. Succession of Related 01' Even N onrelated Problems. Many prob­
lems involve organizing the solution of not one problem (large or small),
but of a number of problems coming from different disciplines, so as to
make use of previous knowledge accumulated and stored in the auto­
matic digital computer.

4. Many Problems Are Not Well Defined. These experimentally and
theoretically undefined problems must nevertheless have solution proc­
esses developed for them. Examples. Air traffic control, the solution
of partial differential equa~ions, and the control of management and
information functions in a large organization.

Approaches to Programming. The two approaches to problem
solving with machines can be divided into (1) hand programming, in
which programs are produced in detail by individual practitioners in
a manner that is more an art than a science, and (2) automatic pro­
gramming, with the machine taking over most of the routine de­
cisions.

Automatic Programming. This area encompasses two basic prob­
lems:

1. The Problem of Languages. If humans are to keep up with the
voracious input capacity of the digital computers, then languages built

PROGRAMMING AND CODING 2-03

for the humans, and not the machines, must be developed and put into
operation. This involves the creation of translators, techniques for using
them, and, finally, a theory of such formal translators. Multimachine
installations, with each machine having a separate language of its own,
require a unified language for most efficient use. The development of
"automatic problem solution" requires formalism, interchangeability of
procedures, and compatibility of languages if it is to become a true
discipline in the scientific sense.

2. The Problen" of Files. Each problem solved on a computer should
be considered as part of the structure of a generalized body of knowledge,
either in a certain domain, or in the overall domain of problem solving
itself. The body of knowledge about automatic problem solving so
laboriously collected by the users of these machines must be set up so
that each machine itself can store, generate, and accept problem pro­
cedures generated not only by human beings, but also by the machine
itself and by other machines. The final long-range goal in this problem
of files and information retrieval, in relationship to what is presently
known as "computer programming," is therefore not to generate programs
or algorithms for digital computers by human beings, but instead to
develop programs or algorithms for the generation, improvement, filing,
retrieval, and combination of other algorithms by the computers
themselves.

Basic Concepts of Programming

The process of preparing a program or set of coded instructions to
solve a problem on a high-speed electronic digital computer has been
more of an art than a science.

Programming Procedure. A programmer is called upon to map an
external problem from the field of science, engineering, business, or
other field of origin, into the logical structure of a general purpose digital
computer by preparing, or overseeing the preparation of, a list of instruc­
tions to be performed in sequence by the computer. He may do this
himself, step by step; but if he is able to take advantage of certain
procedures already set up, he may be aided in many cases by the use of
the machine itself. This allows incorporation of similar or associated
procedures that he or other persons have evolved previously.

The usual procedures for the programmer are:
1. Determine the problem, since usually it is posed in such an original

form that it is necessary to determine the actual statement of the prob­
lem before proceeding further.

2. Analyze the problem in whatever external language it has been
presented-algebra, pictorialized "road map," handbook of organiz.ational

2-04 DIGITAL COMPUTER PROGRAMMING

procedures, an actual physical or organizational structure, or perhaps
only inputs allowed and outputs required.

3. Break the problem down into logical "atomic fragments," and
synthesize a resultant program or algorithm in terms of a different
language, that of the machine.

Basic Computer Organization. The heart of a scientific calculating
system is the large-scale general purpose, high-speed stored program
electronic digital computer (see Ref. 19). These computers are patterned
after the traditional sequential use of arithmetic, with internal decision
making based on partial results.

Block Diagram of Computer Solution. Figure 1 describes a flow
diagram which may be considered an example of a typical process of

Determine initial
program layout
or structure
by experience

.'

r----------------------------------i

Translate
program
within this
framework

~---'No

·Calculate other
measures of
effectiveness,
time, cost

Change selected parameters
to satisfy the technical
"measures of effectiveness"

Do these
calculated

I
I
I
I

Yes I
measures fall No I
within range? I

I
I
I
I
I
I
I
I
I
I
I
I
I

\o+-------..J I
I
I L _____________________ ~ _____________ ~

Make radical changes as to
methods, structure

No

Yes

Have all radically
new and different
approaches been
tried?

FIG. 1. Block diagram of computer solution.

~olution of a scientific, business, or real-time control problem. In Fig. 1
all the blocks within the dotted lines can be handled automatically by
a high-speed digital computer. Those blocks outside the dotted lines
have not yet been successfully attacked by machine techniques. They
require human intervention. Thus, any programming procedure embeds
the electronic digital computer in a larger data processing system with
interplay between the automatic computer on the one hand and the
mathematician or engineer or business systems analyst on the other.

PROGRAMMING AND CODING 2-05

Programming System. The programmer, whatever his region of
application, is faced with a classical problem, the same that faces either
the computer designer or any designer: the formal description of a process
or procedure. The steps are as follows:

1. Determination of a descriptive statement of the problem in a
formal language, symbolic or pictorial, matllematical or graphical.

2. Determination of a basic (canonical) set of structures or pieces
into which he will decompose his formal description. In computer pro­
gramming these are called instructions, or subroutines, or statements,
depending on the level of language involved.

3. Decomposition of the original problem into these basic pieces.
4. Optimization of the performance characteristics of the problem

under some measure of effectiveness: fastest program, smallest amount
of man and machine time, storage within some predetermined maxi­
mum.

5. Analysis of the performance. Determination of the behavior of the
final program for a "satisfactory" selection of input parameters.

Expansion of the Controlled System. At the present time, at most
the two boxes, "Translate program" and "Does program work," shown
in Fig. 2, are being handled more or less automatically by the machines

Translate Does
program within ~ program

framework work?

FIG. 2. Operations handled automatically by the machine.

themselves. The gener,al trend of the discipline now being evolved is to
extend the areas of the dotted lines of Fig. 1 as far as possible.

Self.Improvement in Systems. An ultimate desire in a system is
that it be "self-improving." A general large control system is shown in
Fig. 3a which is to improve its performance in time. Figure 3b shows an
information machine system having similar objectives. The development
of unified programming systems indicates recent trends toward complete
mechanization (Ref. 97). One system stores on magnetic tape all pro­
grams being written, corrected, and performed within the computer.

Measures of Performance. If one therefore considers computer
programming as embedded within a large structure, one can determine
several pertinent categories of measurement of the performance of pro­
grams prepared for use on a machine.

1. Degree of generalization and abstraction of the program. vVithin
bounds, a program that can handle a large variety of cases is much more
useful than one that solves only one specific case. Experience has shown

2-06 DIGITAL COMPUTER PROGRAMMING

Establishment
of

policies

File consultation

Effectuation
of

decisions

Large file for
maintenance of
information on
policies and product
miss of goal

File maintenance

Decision as to formulation
techniques/error analysis.
Detailed selection of
algorithms, logical and
numerical analysis

(a)

File consultation
for program or
previous data

Large file for maintenance
of rules of procedures,
specifications of available
algorithms and algorithms
themselves

(b)

Performance
of

problem

File maintenance

Sensing for
discrepancy between
product and plan

Sensing for
discrepancy in
preformance of
problem from
expected

FIG. 3. Computer system. Dotted lines indicate information flow is less heavy than
for solid lines. (a) Large control system. (b) Information machine system.

that existence of a sufficiently general computer program will generate
the solution of new cases not previously considered.

2. Addition to the body of knowledge of the system. A new computer
program is worth much more if it adds new techniques to an organized
laboratory programming system.

3. Standard conventions. By use of standard conventions the pro­
grammer can use the fruits of the labors of others who have obeyed the
same conventions.

4. Cost, elapsed time, human time, machine time. These are the
measures which are ordinarily uppermost in the computer user's mind

PROGRAMMING AND CODING 2-07

and on which many short-range decisions are based. In the long run,
the three previous criteria may prove much more important.

Characteristics of :Modern Problem Solving

In using a general purpose digital computer there is a need for absolute
preciseness required in transcription of data, writing of detailed instruc­
tions, operation of the machines. These areas are important, but represent
the routine aspects of problem solving.

More fundamental are the characteristics of the formalized solution of
problems presently required by the information machines as follows:

1. En!;phasis on structure rather than number. Portions of the problem
are arithmetic, but the most difficult part of the problem-solving pro­
cedure is the readying of the logical decision-making structure.

2. Difficulty in making intuitive decision processes precise.
3. Requirement of the problem-solving systern to adapt to the changing

structure oj the problem. Most problems of modern science and industrial
society are not static, but rather dynamic.

4. Extreme combinatorial complexity.
5. Importance of correct manipulation of data. Data processing

machines can perform a far greater number of operations between errors
than can a human being. This means that in smaller problems, many
of the customary checks required to guarantee accuracy of solution can
be ignored. However, since the size of problems has kept pace with the
mean free path between errors, the need of thorough error-detecting and
error-correcting procedures remains just as important on the larger
problems (see Chap. 13). Until such procedures can be included auto­
matically in an overall integrated system (as has been attempted, for
example, by Carr et al., Ref. 18), this property of machines of accuracy,
valid for smaller problems, must still be a responsibility of the human
programmer.

The Programmer and Machine Design. Onto the programmer falls
the responsibility of bridging the gap between human and machine per­
formance in the first three characteristics, as well as of taking advantage
of the machine's penchant for spectacular performance in the last two
cases. New programming procedures, when successful, have been built
later into hardware. Examples are automatic indexing, automatic
number conversion, simplified input-output, simplified and extended
languages .

. The Structure of Machine Programming

It is important to understand just what is being done when a problem
is "put on" the machine. This description may be formulated in
mathematical terms.

2-08 DIGITAL COMPUTER PROGRAMMING

Mathematical Representation of the Machine. As a simplification,
consider first the electronic portion of the machine and assume a binary
machine. At the beginning of a problem, there is a certain "binary
function" stored in the machine, with each binary storage position con­
taining either a 0 or 1. At the end of the problem, the machine contains
a second binary function, which generally is not the same.

Thus, in mathematical language, one can consider the machine proper
as a method of forming correspondence between one machine function
and another (see also Chap. 17, Sect. 5). In mathematical notation label
the binary storage positions in the machine by some index and call the
total set of such positions X. If there are N storage positions in the ma­
chine, there are 2N possible "machine functions." One such machine
function will be called f (x) . The set of all such machine functions will
be called F. (See VoL 1, Chap. 1, Sets and Relations.) Then the elec­
tronic elements of the machine form an operator ME over the set of all
functions f (x) . Figure 4 shows a picture of the machine's action.

x

FIG. 4. Machine action in symbolic form.

The operator ME can be extended to include the entire machine, with
its input and output equipment. Such a function will be called the
automatic machine or M operator, which transforms functions f(x).
The basic set X then includes not only all binary storage positions in the
machine, but also binary storage positions on the paper, magnetic tape,
and typewriters attached to it. The function space F now includes all
functions over the extended set.

Definition of Programming. Problems to be solved by the machine
must be similar in structure to the machine itself. Therefore, any prob­
lem to be solved on the machine must be in a sense "mathematically
similar" to the machine structure just outlined. A problem to be put on
the machine will be defined as some mapping or transformation or
operator. A similar picture to the above can be drawn (see Fig. 5).
Some set N with index ~, a set of functions cf> (~) over N, <P, and a trans­
formation P, which makes a correspondence between the set of functions
<P and another set <P'.

This "probl~m space" could be any type of function space. However,
only for certain problems (in fact a very small minority of possible ones)

PROGRAMMING AND CODING 2-09

N N

FIG. 5. Problem in symbolic form.

can one hope to get an exact reproduction of this problem space in a
machine. This problem of the mapping of problems into a machine is
called programming.

The Art of Programming. This is the job of translating the set of
functions <I> into F, the set of functions <1>' into F', and the problem operator
P into the machine operator M. This is shown in Fig. 6.

FIG. 6. Programming in symbolic form.

Programming a problem consists of forming a correspondence between
the original problem functions and the machine functions f(x), and
between the problem operator P and the machine operator lVI. The
mapping of functions is done by some prearranged convention, and
the mapping of the operator Pinto M is done "in the small" or piecemeal.
Thus the problem operator P is broken up into successive operators
P b P 2 , P 3 , ••• Pn , as shown in Fig. 6.

In Fig. 6,
C = a conversion operator converting problem functions into machine

functions
Pi = canonical components of the problem operator P
T = the operator transformation taking the Pi into corresponding Mi
R = a reconversion operator carrying machine functions back into

problem functions.

Usually the operator C will carry <1> into F in a f.ashion that is not
1 : 1. This means that a function in F may correspond to many functions
in <1>. Example. The mapping of irrational and rational numbers into
finite length machine numbers. All the numbers within a certain interval

2-10 DIGITAL COMPUTER PROGRAMMING

on the real line are made to correspond to one number in the machine.
This is where the celebrated roundoff problem arises.

Although the numbers or functions in F may have exact counterparts
in <P, the functions in <P' under the mapping R -1 in most cases do not
have an exact counterpart in F'. Thus, except in special cases, the
reconversion operator R cannot be the inverse mapping of C, that is,

This is due to the basic nature of any machine operator k[, which must
of necessity be restricted to a finite operator, while the problem operators
of mathematics of most scientific models generally operate on an infinity
of elements.

Problem Solution

In most high-speed computing machines, the machine operator 1v.[and
its canonical components Mi are stored as functions over the machine
set X, and since they are therefore able to operate on each other, they
introduce a further complication. This signifies merely that one natural
canonical decomposition of M is into canonical operators where each is
now a function of the preceding Mil j < i. Thus the state of the instruc­
tion portion of any program is a function of all the instruction program
at each preceding stage in the machine's path of control.

The solution problem thus consists of a number of connected problems:
encoding, programming, conversion, and reconversion.

Encoding Problem. The decision of just what functions f (x) will
correspond to a given cp (x) is called the encoding problem. Every
mathematical problem can be broken up into infinitesimal or basic logical
operations. The mathematics involved in encoding is essentially the
same as the problem of encoding mathematical objects from a given group
or algebraic structure over into binary form. Shannon, Wiener, and
others (Ref. 110), have applied this theory to certain communication
problems, but it has not been directly applied to machine problems.

There are two unsolved problems regarding encoding: minimization
and self -encoding.

Minimization. For a given engineering criterion, can some function F
for encoding Pi into Mi be minimized (either uniquely or not) ; i.e., does
min F (/, T e, Tp , C, ...) exist, where

I = amount of binary information storage
Te = time required for encoding
Tp = time required in program operation
C = variable including engineering cost

PROGRAMMING AND CODING 2-11

It is very probable that there are some workable criteria that may
improve the present methods of encoding.

Self-Encoding. Can an algorithm, or regular process, be developed by
which one can arrive at even a near-minimal encoding system? If this
can be done, it is a basic step toward the automation of problem solving.
Once a proper algorithm is developed, it should be possible for the
machine to decide on its own machine code; i.e., just how many and
what combination of binary digits will give the most efficient machine
representation of a basic canonical operator Pi. In other words (see
Fig. 6), the machine should be allowed to engineer its own construction,
once it knows what the decomposition of the operator P is to be in terms
of some basic set of P/s.

Present machines are not self-encoding and can be called fixed code
machines.

If better fixed-code machines or self-encoding machines are to be
built, this is a combined engineering and logical problem, which has to do
with a decision as to what is the best representation in the machine for
the operators Pi; that is, just what shall be the form of the Mi.

Programming. This is the job of making the canonical decomposi­
tion (Pi) and then actually performing the translation operation T. The
decomposition of P into canonical parts has so far been a hit-or-miss
proposition, There have been no overall logical studies of just how
operations P should be decomposed and in what language they should be
expressed, lVIathematics has not so far been constructed for ease in
translation to the basic binary functions of high-speed machines. Hence,
programmers have turned to the much more easily translatable language
of logic for translation purposes, mainly because the translation operation
T has to be performed by human beings.

There is no reason why the machine cannot be "taught" to perform
the operation T. The first steps are the writing and testing of the
libraries of subroutines. However, it is apparent that since the structure
of the problem P is going to be similar to the structure M, the previously
mentioned theory of the best decomposition of M may turn out to be
intimately related to a quantitative information theory of operational
mathematics.

Conversion and Reconversion. The operations C and R are the
conversion and reconversion programs that translate the functions
cp (~) into the functions f (x) of the machine. The operator C takes the
outside language and translates its basic elements into binary functions
inside the machine.

The operator R does the reverse job. If the translation C has been a
many··to-one process, where there is ambiguity outside but not inside

2-12 DIGITAL COMPUTER PROGRAMMING

the machine, the operator R will not be a true inverse. It is very prob­
able then, that C and R will be made to be approximately 1 to 1 operators,
the inverse of one another. In present machines, the beginnings of a
workable operator C are the conversion and translation read-in programs,
while the operator R is being approximated by the various print-out and
post-mortem programs.

Completely Automatic Programming. One can now outline just
what a completely automated machine will do when a particular problem
is presented to it. This machine will perhaps contain a very flexible
set of arithmetic and computational elements. It will contain stored
in it, in some form or another, a great many rules and algorithms by
which it is to perform the various operations. The following steps will
occur.

1. It will be presented with a problem operator P, in some outside
language which has been previously decided upon.

2. It will then translate P into machine language and, by some
algorithm, decompose P into some predetermined set of Pi.

3. It will enumerate each of the Pi and determine what shall be the
best encoded form for the corresponding Mi.

4. It will then translate the Pi into the Mi it has decided upon, by
means of the operator T.

5. Then by a given rule C, it will translate whatever functions cp (x)
are to be operated on over into the machine form.

6. It will then perform the basic machine operation and obtain the
corresponding functions f' (x), which will be reconverted by the operator
R into the "outside language" form.

Provided the proper rules of operation can be found, all this can be
completely automatic. The implications on construction of machines
themselves are the following:

1. The mathematical machine of the future may well be an even more
general purpose machine than now, with a very large amount of high­
speed storage Hnd a very flexible set of arithmetical elements, which it
will control and combine itself. (This allows for self-correcting by a
machine.)

2. If the "programming" process is made nearly automatic, the largest
of bottlenecks may come in the final transition of output information
from the machine to the human.

2. NUMBERS AND SCALE FACTORS

Logic and Numbers. Mathematical logicians, such as Whitehead
and Russell (Ref. 105), have shown that the concept of numbers can be
built up from the fundamentals of logic. Turing (Ref. 101), a logician

PROGRAMMING AND CODING 2-13

and early computing machine designer, showed that a very simple
machine, performing very elementary logical operations, can represent
every automatic computing device within a large class (see Chap. 31).
On the other hand, the relationship between the truth tables of the
propositional calculus and the binary number system and the mapping
of more advanced logical systems by G6del and others into the integers
shows that the concept of number and logical process are closely inter­
related.

Number Systems. Numqer systems and numerical notations used,
both by human beings and by general purpose digital computers, have
several basic prope"rties fundamental to their use: (1) base or radix of
the system, (2) method of representation of negative numbers in the
system, (3) precision or amount of information available in the repre­
sentation of a number, and (4) range of application of the notation over
the range of real numbers.

Number System Base. The base or radix of a number system is set
by the number of digits or markers in the representation. Most number
systems used by computers are of constant radix, such as the ordinary
decimal system, as compared with variable radix systems, such as the
Roman numeral notation. Each digit is a distinguishable symbol repre­
senting one of the first several consecutive integers or natural numbers,
starting at zero. The number of such markers in the numerical notation
gives the base or radix.

Most machines use number systems with base 2k , where k is most often
2, 3, 4, or 5, for ease in external or internal manipulation of numbers.
Such bases are the base 2 (binary), base 8 (octal or octenary), base 16
(hexadecimal or sexadecimal), and base 32 systems. lVlachines usually
use the binary notation as the fundamental internal number system, and
the secondary binary"-like bases as shorthand notations for input and
output.

Notation. In any of these systems, digits appear in a series of con­
secutive positions or orders, which are usually presented on paper from
left to right, proceeding from the highest order digit down to the lowest.
Thus the notation for a number n expressed in the base r

(1) nr = airi + aj_Iri- I + ... + air l + aoro + a_lr-1 + ... + a_mr-m ,

would be

where the ai could be any of the r digits or markers of the notation, and
the values of the integers j and 1n are dependent on the size of the num­
ber and the amount of information or precision it is to convey. The

2-14 DIGITAL COMPUTER PROGRAMMING

period or radix point inserted between the digits is a device for noting
the position of the ao and a_l markers.

Thus the integer representing the number of days in the year would
be written in the decimal notation as

n = 365\Io,

since n = 3 X 102 + 6 X 101 + 5 X 100 :

and in the binary notations as

n = 101101101\2

since

n = 1 X 28 + ° X 27 + 1 X 26 + 1 X 25 + ° X 24 + 1 X 23

+ 1 X 22 + ° X 21 + 1 X 2°.

Conversion of Numbers from One System to Another

Need for Conversion. There is frequently a need to convert from
decimal language to binary, octal, or hexadecimal number systems. Two
conditions frequently encountered are:

1. Conversion from a first number system to a second number system
by using the arithmetic of the first number system. Example. This
occurs on output when conversion must be made from the internal
machine number system to the external number system, with the machine
instructed to perform the conversion in the internal number system.

2. Conversion from a first number system to a second number system
by using the arithmetic of the second number system. Example. Com­
puter output may be in its internal language, and a human being must
convert to decimal. In this case the conversion must be performed in
the external language, generally the decimal number system.

Conversion in the Arithmetic of the Original System. The number
n > ° is expressed in an original number system in the following form:

(2) i= k,k-1,···,1,0, -1, -2,···.

In the second number system

(3) i = k', k' - 1, ... , 1,0, -1, -2,

It is to be converted by using the arithmetic of the first number system.
To perform the conversion it is easiest to split the number given in
eq. (2) into two parts, an integer part N, and a fractional part F, each
one to be treated separately, i.e., n = N + F.

Working first on the integer part, one divides N by r2 in the arithmetic
of the first number system to obtain a' 0 in the following fashion:

(4)

PROGRAMMING AND CODING 2-15

where [] indicates the "integral part of." Then

(5) N(O) = N,

(6) a'i = N(i) - [N(i) /r2]r2,

(7) N(i+I) = [N(i) /r2].

At each stage the reduced expression for the succeeding integer is given
by the integer part of the quotient obtained by division by the radix r2.

In converting the fractional part F of the number, instead of division,
multiplication by the power of the radix r2 is performed at each step, and
the integer part of the remainder yields the coefficient of the corresponding
term. The general formula for this process is as follows:

(8) F(O) = a'_Ir2-I + a'_2r2-2 + a'_3r2-3 + ... ,
(9) a'i = [r2F(i)],

(10) F(Hl) = r2F(i) - a'-I.

EXAMPLE 1. Conversion of a mixed number given in the decimal
notation into the corresponding binary number by using decimal arith­
metic.

n = 97.975 = N(O) + F(O),

where N(O) = 97, F(O) = 0.975.

Therefore

a'o = 97 - [97/2]2 = 1,
N(l) = [97/2] = 48,

a'I = 48 - [48/2]2 = 0,
N(2) = [48/2J = 24,

a'2 = 24 - [24/2]2 = 0,
N(3) = [24/2] = 12,

a'3 = 12 - [12/2]2 = 0,
N(4) = [12/2J = 6,

a'4 = 6 - [6/2]2 = 0,
N(5) = [6/2J = 3,

a'5 = 3 - [3/2J2 = 1,
N(6) = [3/2] = 1,

a'6 = 1 - [1/2]2 = 1,

N(6) = [1/2] = o.

N(O) = 1 . 26 + 1 . 25 + 0 . 24 + 0 . 23 + ° . 22 + ° . 21 + 1 . 2°,

2-16 DIGITAL COMPUTER PROGRAMMING

or as it is commonly written in the binary notation

N(O) = 1100001k

Similarly,

F(O) = 0.975,

a' -1 = [2 (0.975)] = 1,
F(1) = [2(0.975)] - 1 = 0.95,

a'-2 = [2(0.95)] = 1,
F(2) = [2(0.95)] - 1 = 0.90,

a'-3 = [2(0.90)] = 1,
F(3) = [2(0.90)] - 1 = 0.80,

a'-4 = [2(0.80)] = 1,
F(4) = [2(0.80)] - 1 = 0.60,

a' -5 = [2(0.60)] = 1,
F(5) = [2 (0.60)] - 1 = 0.20,

a'-6 = [2(q.20)] = 0,
F(6) = [2(0.20)] - 0 = 0.40,

a'-7 = [2(0.40)] = 0,
F(7) = [2(0.40)] - 0 = 0.80.

At this point the computation can be terminated, since F(3) == F(7),

and the result is therefore a repeating binary fraction. Hence,

F = 1 .2-1 + 1 .2-2 + 1 .2-3 + 1 .2-4 + 1 .2-5 + 0 . 2-6 + 0 . 2-7 •• '.

The number n can therefore be written

n = 97.975\10 = 1100001.11111001111100·· '\2

EXAMPLE 2. Conversion of a binary number, the integer I, into a
decimal by using binary arithmetic inside a computer. The binary
numbers obtained that are equivalent to one of the ten decimal digits
o through 9 upon completion must be printed out of the computer by
some procedure such as the use of binary-coded decimal through an
output typewriter device.

Given I = N(O) = 10110010101\2, divide by 10\10 = 1010\2, succes­
sively, [] again mean the integral part of.

a' 0 = 10110010101 - [10110010101/1010]1010

= 10110010101 - (10001110)(1010)

= 1001\2 = 9\lD,
N(1) = [10110010101/1010] = 10001110,

PROGRAMMING AND CODING

a'l = 10001110 - [10001110/1010]1010
= 10001110 - (1110)1010

= 001012 = 2110,
N(2) = [10001110/1010] = 1110,

a'2 = 1110 - [1110/1010]1010

= 010012 = 4110,
N(3) = [1110/1010] = 1,

a'3 = 1 - [1/1010]1010

= 000112 = 1110.

Therefore 1= 1011001010112 = 1429110'

2-17

A similar example could be carried out for a binary fraction.
Conversion in the Arithmetic of the Second System. When n is

expressed in the form of eq. (1), perform the operations on the right-hand
side of the equation in the r2 system. This can be done by two methods:
(a) simple multiplication of the powers which may be stored inside the
computing machine, followed by addition or (b) the synthetic division
or polynomial multiplication process which is given in the following form:

(11) Nlr2 = (... «akrl + ak-l)rl + ak-2)rl + ... + ao) 172

or

(12) PI = ak, Pi+l = Pirl + ak-i, Pk+l = N (Pi = successive iterants),

and

(13) Flr2 = (... «a_ifrl + a-U-l)/rl + a-U-2»/rt + ... a-l)/rlIT2

where the value j is picked at the beginning.
EXAMPLE 1. Conversion of a number from binary to decimal by using

the decimal number system.

n = 10110010101 k
(a) Adding successive powers of 2 in the decimal system, eq. (6),

n = 20 + 22 + 24 + 27 + 28 + 210

= 1 + 4 + 16 + 128 + 256 + 1024 = 1429110.

(b) Using the synthetic division process of eq. (7),

n= « « « « (1 (2)+0)2+ 1)2+ 1)2+0)2+0)2+ 1)2+0)2+ 1)2+0)2+ 1,

with successive iterants Pi

2, 5, 11, 22, 44, 89, 178, 357, 714, 1429, n = 1429110.

2-18 DIGITAL COMPUTER PROGRAMMING

In the first procedure, eq. (a), it was assumed that the numerical
equivalents of the power of 2 were stored in some fashion in the external
decimal system.

EXAMPLE 2. For fractions, the two procedures are, for

n = 0.10111001\2:

(a) Adding successive powers,

n = 1 (2-1) +0 (2-2) + 1 (2-3) + 1 (2-4) + 1 (2-5) +0 (2-6) +0 (2-7) + 1 (2-8)

=0.5 +0.125

= 0.72265625\10.

(b) Synthetic division,

+0.0625+0.03125 +000390625

n= (((((((1 (2-1)+0)2-1+0)2-1+ 1)2-1+ 1)2-1+ 1)2-1+0)2-1+ 1)2-1,

which yields as iterants

0.5, 0.25, 0.125, 0.5625, 0.78125, 0.890625, 0.4453125, 0.72265625,
n = 0.72265625\10.

Note. For fractional numbers the second procedure of synthetic divi­
sion, necessitating successive divisions by powers of two, does\ not work
as well because of the difficulties of the fractions involved, and because
the procedure moves from the lowest power of the radix upward.

EXAMPLE 3. The same procedure can be used in the conversion of
decimal numbers to binary by using the binary system, as in the case
of conversion of straight binary-coded decimal numbers to binary inside
the machine. Convert n = 1429\10.

(a) Adding successive powers,

n = (1 . 103 + 4 . 102 + 2 . 101 + 9 . 100) \10

= 1 (1111101000) + 100(1100100) + 10(1010) + 1001 (1)

= 10110010101 k
(b) Synthetic division,

n = ((1 (1010) + 100) 1010 + 10) 1010 + 1001

= 10110010101 k
A Trick Method. A trick method of conversion can be used when

conversion is done in the system having the lower radix. The procedure
makes use of a "magic number" which is the difference between the two
bases, determined as follows:

1. If r1 < r2, the magic number is r2 - r1, and conversion is in the r1
arithmetic.

PROGRAMMING AND CODING 2-19

2. If rl > r2, the magic number is r2 - rl (in this case always nega­
tive) and conversion is in the r2 arithmetic.

Octal to Decimal. Here rl < r2, i.e., 8 < 10. The rule in going from
an octal number to decimal is as follows. Use the magic number
2 = 10 - 8, multiply it decimally by the first left-hand octal digit con·
sidered as a decimal, and subtract the resulting number decimally from
the first two left-hand octal digits, again considered as a decimal. The
procedure is then repeated by multiplying the first two digits of the
remainder and subtracting them again, again treating all numbers as
decimals. Repeat the process, multiplying by successively larger groups
of digits by 2 in each case and subtracting until the number in that
column vanishes. Repeat the same procedure in succeeding columns
until a group of k - 1 digits has been used, where k is the number of
digits in the original number.

EXAMPLE. Convert 107718 and 67818 to decimal

n 1077\8 n
1077

678\8
678

-12
-(2X6) =--

558

-2
- (2 X 1) - 877

-16
-(2X8) =-m - (2 X 55) = -110

-(2 X 71) = -142 n

n 575110

Hexadecimal to Decimal. Here r2 > rl, i.e., 16 > 10. A similar pro­
cedure may be used for converting from hexadecimal to decimal via
decimal. Here the magic number is negative, -6 = 10 - 16. The
procedure is given directly without any further explanation.

EXAMPLE.

n

-(-6X6)
= 6A7116 = 6 10 7116

+ 3 6
10 6 7

- (-6 X 106) = + 6 3 6

17 0 3110 n

(carry occurs at 16, i.e., 10 + 6)

Conversion with Scale Factors. Decimal to Binary. In general,
when converting from arbitrary external numbers into an internal
machine language, scale factors may be introduced into the original
numbers to complicate the procedure. The procedure most often used
in the conversion of decimal numbers to binary by using binary arith-

2-20 DIGITAL COMPUTER PROGRAMMING

metic is that given by eqs. (11) to (13). In the computer with internal
bin2try arithmetic the scale factors allowable will generally consist of a
decimal scale factor and a binary scale factor. In the MAGIC notation
for use with the MIDAC computer, and in similar notations for other
binary computers such as the IBM 704 and Univac Scientific, the follow­
ing is the standard form of a digital number as applied on input. In
many cases the binary and decimal scale factors will be zero so that the
number itself will be given by the fractional part.

n = 97.975 X 2-7,

n = 0.97975 X 2-7 X 102,

MAGIC form = 0.97975 - 7b + 2d.

The general procedure for conversion of these numbers is as follows.
The decimal digits themselves are input into the machine using binary­
coded decimal and shifted in the proper direction by binary shifts of
multiples of four, either left or right, depending upon the decimal scale
factor. The result is then split into integer and fractional parts. These
are then converted by the methods given by eqs. (11) to (13) above.

When the resulting binary number is obtained, it is shifted finally by
the corresponding binary scale factor to give the internal machine result.

If the machine is translating digital numbers, that is, numbers with
absolute values less than one, it is required that the number itself, multi­
plied by its various scale factors, be less than one in absolute value.
In case the number is being translated into a floating point form with a
fractional part less than one in absolute value in binary and an accom­
panying exponential part also given in binary, the number is stand­
ardized with its fractional part less than one in absolute value but greater
than one-half.

EXAMPLE. n = 1.55 X 2 - 5 X 101

becomes upon conversion

n = 31/32 X 2- 1 .

In some cases in order to save space, the fractional part and exponent are
"packed" into one register or machine location with the binary fractional
part and the exponential integer part stored together.

Binary to Decimal Procedure. In the MAGIC system on MIDAC
the inverse procedure of binary to decimal conversion can also be applied,
although in most cases the decimal scale factor is not stored in the
machine, but instead only a binary scale factor is used. Output con­
version requires a fractional part in absolute value less than one, and a
corresponding binary scale factor to obtain a composite external decimal
number. The scale factor is used to shift the fraction either left or

PROGRAMMING AND CODING 2-21

right depending upon the value of the binary scale factor, before
conversion of the corresponding binary integer and fraction, with a
method such as that given by eqs. (4) to (10). The resultant series
of binary-coded-decimal digits is then printed out of the machine by
using the binary-coded-decimal notation, or a "single character" notation
depending upon the particular type of printout being used.

Roundoff in Conversion. vVith such systems as the Michigan
MAGIC system or the MIT CSSR (Comprehensive System of Service
Routines) (Ref. 24) with their complete conversion of numbers from
binary to decimal and decimal to binary handled automatically by the
machine itself, it is entirely possible for a binary machine to work
satisfactorily in the external decimal language, but there are still diffi­
culties involved. Exact binary numbers inside the machine will not be
translated in every case into exact decimal numbers. Unless special
provisions for a decimal type of roundoff are made, the user of a binary
machine will find that his decimal numbers are being output in an
incorrect form. Such an error can be corrected by performing the round­
off of numbers inside the machine in decimal rather than binary
arithmetic.

Internal Decimal Scale Factors. Because of the complexities of the
use of binary scale factors, some computer installations with binary
machines have nevertheless made use of internal decimal scale factors.
'Vith this procedure the number conversion problem can be made much
easier; however, it does not take advantage of special operations in the
binary machines which allow the binary numbers to be shifted to the right
or left, meanwhile saving the number of shifts that have been accom­
plished, thus allowing automatic binary scaling. Use of internal decimal
scale factors also requires the storage of multiprecision constants in some
cases, if precision is to be retained. The Illinois computer (ILLIAC)
(Ref. 56), which makes use of decimal scale factoring in many of its
routines and in its floating decimal point interpretive program, in its
original mode of operation did not have a comprehensive system of
input-output and therefore did not have as easy a system of converting
by using a binary scale factor.

The effort that many mathematicians and programmers have expended
on the problems of converting from one number system into another has
convinced many of them that computers with internal decimal arithmetic
are more useful to the external user. Many of the commercial business­
oriented machines make use of some type of binary-coded-decimal
representation. Many of the users of binary machines have converted
them by internal programming into equivalent decimal machines on the
outside. This indicates a trend toward the use of decimal arithmetic

2-22 DIGITAL COMPUTER PROGRAMMING

inside the machine even though the actual circuitry may be of the binary
type and the storage may be of a binary-coded-decimal nature. The
IBM 709 design is an exception to this trend.

Representative of Negative Numbers

Since electronic adders and complementers are much easier to design
and require less hardware than subtractors, many digital computers make
use of the technique of complementation, by which negative numbers are
mapped into positive numbers outside of the usual range. Complemented
numbers, under the proper conventions, may be added to a second number
to yield the equivalent of the subtraction of the first number from the
second.

Complementation. Two basic complementation techniques, each
based on hardware considerations, must be kept in mind by the computer
programmer if the machine he is using should be designed to make use
of one or the other. These are (1) the "tens" (decimal), "twos" (binary),
or radix complement; and (2) the "nines" (decimal), "ones" (binary), or
diminished radix complement.

Ip the case of the radix complement, negative numbers less than one
in absolute value may often be stored inside the computer in the range
from 9 to 10 (for the tens complement) or one to two (for the ones com­
plement). The diminished radix complementation scheme performs a
similar mapping, with the added difficulty in the latter case that there
are two representations of zero (negative and positive zero) which often
must be treated as a special case. Problems arise with these complements
in the shifting of numbers (multiplication by powers of the base) and in
logical operations on stored negative numbers, since they do not follow
the usual conventions. However, on those machines which follow the
usual notation, of sign followed by absolute value, none of these difficulties
can arise.

Precision or Amount of Information Available

Fixed Word Length. Machines, called fixed-word-length computers,
have standardized the length of their numbers in the range from about
nine to twelve decimal digits, or 36 to 45 binary digits. The number of
digits used to represent a number gives an indication of the precision, or
amount of information that the number itself contains. Rather than
make only one number length available, several machines have offered
the user the alternative of (1) longer word lengths as listed above, or
(2) shorter numbers, for example, half the number of digits.

Multiprecision Operations. For machines with a fixed word length,
it is possible to obtain the equivalent of operating with longer numbers of

PROGRAMMING AND CODING 2-23

twice or three times the number of digits by making use of multiprecision
types of operations, in which combinations of programmed instructions
perform the equivalent of an arithmetic unit handling numbers of higher
precision.

Variable Word Length. Computers developed particularly for busi­
ness applications have a variable word length which allows numbers and
groups of alphanumeric characters to be operated upon flexibly. With
such internal computer structures, numbers of almost any digit length
may be operated upon arithmetically, at a cost in time approximately
proportional to the number of digits in each operand.

Range of Numbers

Fixed Point Machines. A machine in which the arithmetic cir­
cuitry is so designed that the decimal point for operands and result re­
mains in a corresponding fixed position, is called a fixed point computer.
The fixed point may be located so as to make the numbers involved
either fractions less than one in absolute value, integers, or mixed
numbers.

Location of Radix Point. In general, a digital computer in which the
radix point is located at the extreme left of the number deals with numbers
of absolute value less than one, i.e., In! < 1. Such numbers have been
called "digital" numbers (Ref. 19), and the term is used throughout this
chapter. The product of two such numbers gives as a result another
"digital" number, i.e., In'l < 1. On the other hand, division, addition,
or subtraction of two "digital" numbers does not necessarily result in
another "digital" number, and the problem of overflow arises.

Any other position of fixing the radix point can be made equivalent to
fixing it at the extreme left by the use of appropriate scale factors. These
scale factors are usually powers of the base, with their main purpose to
keep partial results within the range of the computer and at the same time
prevent these results being crowded together into a small region of the
interval of the machine's range of application. In the case of "digital"
numbers the latter interval would generally be close to zero, and numbers
there would be said to have lost significance, since they have few
information-containing digits.

The optional position for the radix point at the extreme right so as
to make numbers inside the computer all integers is somewhat less
satisfactory, since the product of two integers of n digits yields an integer
containing 2n significant digits. In this case scale factors are required
for every multiplication, and overflows occur as before in many cases
for addition, subtraction, and division. Placing of the radix point some­
where midway between these two extremes does not apparently gain any

2-24 DIGITAL COMPUTER PROGRAMMING

further advantage, since scale factors or equivalent multiplication by
powers of the base must be inserted after each multiplication.

Floating Point Machines. As an alternative to one or the other of
the above fixed point notations, machines have been built with a variable
radix point or, as it is better known, a floating point number system.
With such a scheme, numbers are represented by a fractional part or
mantissa, containing the significant digit portion of the number, and an
exponent representing the power of the base by which the fraction must
be multiplied in order to obtain the number itself. For example, one
standard notation for floating point numbers n is

n = fore,

where f is the fractional or significant part of the representation, with
If I < 1, and e is the power of the base r needed to bring f up or down to
the value of n,

Number System Triad. Floating point numbers are generally carried
inside a digital computer with m significant digits representing the frac­
tional part f, and n digits representing the exponent e (which may be
complemented to represent negative as well as positive integer exponents).
The integers m and n, along with a third integer p representing the number
of digits to the left of the radix point, may be combined in a number sys­
tem triad (m, n, p) indicating the number structure of a computer. Fixed
point machines have n = O. Machines using "digital" numbers (absolute
value less than 1) have p = O.

EXAMPLES. A (10, 0, 0) decimal computer would be one with 10 sig­
nificant decimal digits in the fractional part of a number, no digits in
the exponent, and no digits to the left of the decimal point. Numbers
in a (10, 0, 0) decimal computer, therefore, would be fixed point "digital"
numbers containing ten decimal digits, and with the decimal point there­
fore located at the extreme left. A (30, 6, 0) binary computer would
be one with 30 binary digits in the fractional part, and six in the exponent
part of a floating point number, and with the binary point at the extreme
left. Finally, a (10, 2, 10) decimal computer would be one with the
mantissa expressed in ten-decimal integers, and the exponential part of
the number given by two-decimal digits.

Scale Factors in Fixed Point Computations

The recent appearance of built-in floating point arithmetic on many
machines, as well as the use of standard translator-compilers which pro­
vide automatic floating point programming via subroutines has decreased
the need for emphasis on fixed point computation. However, as Burks,
von Neumann, and Goldstine (see Ref. 19) point out, computations with

PROGRAMMING AND CODING 2-25

floating point can lead to violent arithmetic errors unless thoroughly
analyzed. Hence, fixed point computations will continue, either as part
of automatically scaled programs turned out by translators, or else as
hand-tailored programs written for fixed point computers.

Procedure. The easiest technique for introduction of scale factors
into a program is as follows.

1. Determine on the basis of values of input parameters, supposing
their range is known at the beginning of a problem, the desired scale
factor needed to bring each computed value down to absolute value less
than one.

2. Insert shift operations at each stage of the computation which will
guarantee that over the range of inputs the resulting numbers will remain
digital.

With the PACT system (see Ref. 71), the programmer performs step
1 and the assembler step 2. The latter can also be done by hand.

EXAMPLE. Suppose the problem to be calculated is as follows:
Compute the value of the polynomial

p(x) = 2.42x3 + 10.05x2 - 1024.1x - 20327

for

x = -10, - 9, ... , 0, 1, ... , 9, 10.

The computation used will be the nested sequence procedure

p(x) = ((2.42x + 10.05)x - 1024.1)x - 20327,

which may be decomposed into the following set of arithmetic operations
where bounds on the absolute values of the partial result are also listed.
Arrows indicate transfer of information (storage).

1. Po ~ 2.42 (IPol = 2.42, x ~ 10)
2. PI ~ Pox (ipil < 25)
3. P2 ~ PI + 10.05 (lp21 < 35)
4. P3 ~P2X (lp31 < 350)
5. P4 ~ P3 - 1024.1 (lp41 < 1400)
6. P5 ~ P4X (lp51 < 15,000)
7. pG ~ P5 - 20327 (lpGI < 36,000)

The bounds on these partial results could be improved by taking the
signs of the summands at each stage into consideration. From the list of
bounds, the scale factors required to bring the partial results into "digital"
number range are:

x· 10-2, Po . 10-1, PI . 10-2, P2 .10-2, P3 '10-3, P4 ·10-4, P5 .10-5, P6 ·10~Q ..

2-26 DIGITAL COMPUTER PROGRAMMING

Therefore, the sequence of arithmetic statements would be listed stepwise,
starting at the first, proceeding downwards, and inserting scale factors as
required:

1. (Po· 10-1) f- (2.42 . 10-1)

2. (Pl· 10-2) f- (PO· 10-1) (x . 10-2) (101)

3. (P2· 10-2) f- (Pl· 10-2) + (10.05 . 10-2)

4. (P3· 10-3) f- (P2 . 10-2) (x . 10-2) (101)

5. (P4 .10-4) f- (P3 .10-3)(10-1) - (1024.1.10-4)

6. (P5· 10-5) f- (P4 . 10-4)(x . 10-2)(10 1)

7. (pu· 10-5) f- (P5· 10-5), - (20,237· 10-5)

There is a redundant left shift followed by a right shift in steps 4 and 5
that should be canceled for coding efficiency.

Computer Instructions. The translation from the latter sequence into
a sequence of fixed point arithmetic instructions for any computer should
now be a simple process. The program, as written for the Datatron 205,
(see Sect. 6) upon ignoring use of any special features, such as the index
registers and input-output, and coding only the arithmetic sequence,
would be, when x = -10:

o. ea 0101

l. mr 0100

2. s10001

3. ad 0102

4. n:r 0100

5. ad 0103

'6. mr 0100

7. s10001

8. su 0104

9. true 0105

100. - 1000000000

101. 2420000000

102. 1005000000
103. 1024100000

104. 2023700000

2.42 .10-1 -* ACC

(2.42 . 10-1) (x . 10-2)

(2.42 . 10-1) (x . 10-2) (101) = PI . 10-2

(Pl· 10-2) + (10.05 . 10-2) = P2 . 10-2

(P2 . 10-2) (x . 10-2) = P3 . 10-4

(P3 . 10-4) + (1024.1 . 10-4) = P4 . 10-4

(P4· 10-4) (x . 10-2)

(P4 . 10-4) (x . 10-2)(101) = P5 . 10-5

(P5 . 10-5) - (20237· 10-5)

(p (x) . 10-5) -* Location 105
(x . 10-2)

(2.42 . 10-1)

(10.05 . 10-2)

(1024.1 . 10-4)

(20237 . 10-5)

105. (p(x) . 10-5)

3. NUMBER CONVERSION TABLES

Most number conversion in binary computers is now done completely
by the machine itself. However, for completeness and easy access to the

PROGRAMMING AND CODING 2-27

programmer who from time to time has to check a number obtained from
lights on the console of the computer, or printed out in nonstandard nota­
tion, Tables 1 to 5 are included from Carr and Scott (Ref. 24) and the
IBM 704 manual (Ref. 54).

Table Page
Table 1. Octal-Decimal Integer Conversion 2-28
Table 2. Octal-Decimal Fraction Conversion 2-36
Table 3. Hexadecimal-Decimal Conversion (Two-Way) 2-42
Table 4. Powers of 2 (Positive and Negative) Expressed in Decimal 2-43
Table 5. Hexadecimal Multiplication 2-44

0000
to

0777
(Octal)

0000
to

0511
(Decimal)

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

0000
0010
0020
0030
0040
0050
0060
0070

0100
0110
0120
0130
0140
0150
0160
0170

0200
0210
0220
0230
0240
0250
0260
0270

0300
0310
0320
0330
0340
0350
0360
0370

TABLE 1. OCTAL-D..J:CIMAL INTEGER CONVERSION

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0000 0001 0002 0003 0004 0005 0006 0007 0400 0256 0257 0258 0259 0260 0261 0262 0263
0008 0009 0010 0011 0012 0013 0014 0015 0410 0264 0265 0266 0267 0268 0269 0270 0271
0016 0017· 0018 0019 0020 0021 0022 0023 0.420 0272 0273 0274 0275 0276 0277 0278 0279
0024 0025 0026 0027 0028 0029 0030 0031 0430 0280 0281 0282 0283 0284 0285 0286 0287
0032 0033 0034 0035 0036 0037 0038 0039 0440 0288 0289 0290 0291 0292 0293 0294 0295
0040 0041 0042 0043 0044 0045 0046 0047 0450 0296 0297 0298 0299 0300 0301 0302 0303
0048 0049 0050 0051 0052 0053 0054 0055 0460 0304 0305 0306 0307 0308 0309 0310 0311
005~ 0057 0058 0059 0060 0061 0062 0063 0470 0312 0313 0314 0315 0316 0317 0318 0319

0064 0065 0066 0067 0068 0069 0070 0071 0500 0320 0321 0322 0323 0324 0325 0326 0327
0072 0073 0074 0075 0076 0077 0078 0079 051.0 0328 0329 0330 0331 0332 0333 0334 0335
0080 0081 0082 0.083 0084 0085 0086 0.087 0520 0336 0337 0338 0339 0340 0341 0342 0343
0088 0089 0090 0091 0092 0093 0094 0095 0530 0344 0345 0346 0347 0348 0349 0350 0351
0096 0097 0098 0099 0100 0101 0102 0103
0104 0105 0106 0107 0108 0109 0110 0111

0540 0352 03S3 0354 0355 0356 0357 0358 0359
0550 0360 '0361 0362 0363 0364 0365 0366 0367

0112 0113 0114 0115 0116 0117 0118· 0119 0560 0368 0369 0370 0371 0372 0373 0374 0375
0120 0121 0122 0123 0124 0125 0126 0127. 0570 0376 0377 0378 0379 0380 0381 0382 0383

0128 0129 0130 0131 0132 0133 0134 0135 0600 0384 0385 0386 0387 0388 0389 0390 0391
0136 0137 0138 0139 0140 0141 01'42 0143 0610 0392 0393 0394 Q395 0396 0397 0398 0399
0144 0145 0146 0147 0148 0149 0150 0151 0620 0400 0401 0402 0403 0404 0405 0406 0407
0152 0153 0154 0155 0156 0157 0158 0159 0630 0408 0409 0410 0411 0412 0413 0414 0415
0160 0161 0162 0163 0164 0165 0166 0167 0640 0416 0417 0418 0419 0420 0421 0422 0423
0168 0169 0170 0171 0172 0173.0174 0175 0650 0424 0425 0426 0427 0428 0429 0430 0431
0176 0177 0178 0179 0180 0181 0182 0183 0660 0432 0433 0434 0435 0436 0437 0438 0439
0184 0185' 0186 0187 0188 0189 0190 0191 0670 0440 0441 0442 0443 0444 0445 0446 0447

0192 0193 0194 0195 0196 0197 0198 0199
0200 0201 0202 0203 0204 0205 0206 0207

0700 0448 0449 0450 0451 0452 0453 0454 0455
0710 0456 0457 0458 0459 0460 046i 0462 0463

0208 0209 0210 0211 0212 0213 0214 0215
0216 0217 0218 0219 0220 0221 0222 0223
0224 0225 0226 0227 0228 0229 0230 0231

0720 0464 0465 0466 0467 0468 0469 0470 0471
0730 0472 0473 0474 0475 0476 0477 0478 0479
0740 0480 0481 0482 0483 0484 0485 0486 0487

0232 0233 0234 0235 0236 0237 0238 0239 0750 0488 0489 0490 0491 0492 0493 0494 0495
0240 0241 0242 0243 0244 0245 0246 0247 0760 0496 0497 0498 0499 0500 0501 0502 0503
0248 0249 0250 0251 0252 0253 0254 0255 0770 0504 0505 0506 0507 0508 0509 0510 0511

N
I
N
Q)

o
(j)
=i » r-
()
o
~
""0
C
--I
m
;;;a

""0
:;:c
o
(j)
:;:c
»
~
~
Z
(j)

1000
to

1777
(Octal)

0512
to

1023
(Decimal)

1000
10lD
1020
1030
1040
1050
1060
1070

1100
1110
1120
1130
1140
1150
1160
1170

1200
1210
1220
1230
1240
1250
1260
1270

1300
1310
1320
1330
1340
1350
1360
1370

0 1 2 3 4 5 6 7

0512 0513 0514 0515 0516 0517 0518 0519 1400
0520 0521 0522 0523 0524 0525 0526 0527 1410
0528 0529 0530 0531 0532 0533 0534 0535 1420
0536 0537 0538 0539 0540 0541 0542 0543 1430
0544 0545 0546 0547 0548 0549 0550 0551 1440
0552 0553 0554 0.555 0556 0557 0558 0559 1450
0560 0561 0562 0563 0564 0565 0566 0567 1460
0568 0569 0570 0571 0572 0573 0574 0575 1470

0576 0577 0578 0579 0580 0581 0582 0583 1500
0584 0585 0586 0587 0588 0589 0590 0591 1510
0592 0593 0594 0595 0596 0597 0598 0599 1520
0600 0601 0602 0603 0604 0605 0606 0607 1530
0608 0609 0610 0611 0612 0613 0614 0615 1540
0616 0617 0618 0619 0620 0621 0622 0623 1550
0624 0625 0626 0627 0628 0629 0630 0631 1560
0632 0633 0634 0635 0636 0637 0638 0639 1570

0640 0641 0642 0643 0644 0645 0646 0647
0648 0649 0650 0651 0652 0653 0654 0655 1

1600
1610

0656 0657 0658 0659 0660 0661 0662 0663 I 1620
0664 0665 0666 0667 0668 0669 0670 0671 1630
0672 0673 0674 0675 0676 0677 0678 0679 1640
0680 0681 0682 0683 0684 0685 0686 0687; 1650
0688 0689 0690 0691 0692 0693 0694 0695 1660
0696 0697 0698 0699 0700 0701 0702 0703 1670

0704 0705 0706 0707 0708 0709 0710 0711 1700
0712 0713 0714 0715 0716 0717 0718 0719 1710
0720 0721 0722 0723 0724 0725 0726 0727 1720
0728 0729 0730 0731 0732 0733 0734 0735 1730
0736 0737 0738 0739 0740 0741 0742 0743 1740
0744 0745 0746 0747 0748 0749 0750 0751 1750
0752 0753 0754 0755 0756 0757 0758 0759 1760
0760 0761 0762 0763 0764 0765 0766 0767 1770

0 1 2 3 4 5 6 7

0768 0769 0770 0771 0772 0773 0774 0775
0776 0777 0778 0779 0780 0781 0782 0783
0784 0785 0786 0787 0788 0789 0790 0791
0792 0793 0794 0795 0796 0797 0798- 0799
0800 0801 0802 0803 0804 0805 0806 0807
0808 0809 0810 0811 0812 0813 0814 0815
0816 081~ 0818 0819 0820 0821 0822 0823
0824 0825 0826 0827 0828 0829 0830 0831

0832 0833 0834 0835 0836 0837 0838 0839
0840 0841 0842 0843 0844 0845 0846 0847
0848 0849 0850 0851 0852 0853 0854 0855!
0856 0857 0858 0859 0860 0861 0862 0863
0864 0865 0866 0867 0868 0869 0870 0871
0872 0873 0874 0875 0876 0877 0878 0879
0880 0881 0882 0883 0884 0885 0886 0887
0888 0889 0890 0891 0892 0893 0894 0895

0896 0897 0898 0899 0900 0901 0902 0903
0904 0905 0906 0907 0908 0909 0910 0911
0912 0913 0914 0915 0916 0917 0918 0919
0920 0921 0922 0923 0924 0925 0926 0927
0928 0929 0930 0931 0932 0933 0934 0935
0936 0937 0938 0939 0940 0941 0942 0943
0944 0945 0946 0947 0948 0949 0950 0951
0952 0953 0954 0955 0956 0957 0958 0959

0960 0961 0962 0963 0964 0965 0966 0967
0968 0969 0970 0971 0972 0973 0974 0975
0976 0977 0978 0979 0980 0981 0982 0983
0984 0985 0986 0987 0988 0989 0990 0991
0992 0993 0994 0995 0996 0997 0998 0999
1000 1001 1002 1003 1004 1005 1006 1007
1008 1009 1010 1011 1012 1013 1014 1015
1016 1017 1018 1019 1020 1021 1022 1023

" :;;0

o
(j)
:;;0 »
~
~
Z
(j)

»
z
t:J
()
o
o
z
(j)

N
~
..0

2000 11024
to to

2777 1535
(Octal) (Decimal)

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

TABLE 1. OCTAL-DECIMAL INTEGER CONVERSION (Continued)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 !

2000 1024 1025 1026 1027 1028 1029 1030 1031 2400 1280 1281 1282 1283 1284 1285 1286 1287
2010 1032 1033 1034 1035 1036 1037 1038 1039 2410 1288 1289 1290 1291 1292 1293 1294 1295
2020 1040 1041 1042 1043 1044 1045 1046 1047 2420 1296 1297 1298 1299 1300 1301 1302 13D3
2030 1048 1049 1050 1051 1052 1053 1054 1055 2430 1304 1305 1306 1307 1308 1309 1310 1311
2040 1056 1057 1058 1059 1060 1061 1062 1063 2440 1312 1313 1314 1315 1316 1317 1318 1319
2050 1064 1065 1066 1067 1068 1069 1070 1071 2450 1320 1321 1322 1323 1324 1325 1326 1327
2060 1072 1073 1074 1075 1076 1077 1078 1079 2460 1328 1329 1330 1331 1332 1333 1334 1335
2070 1080 1081 1082 1083 1084 1085 1086 1087 2470 1336 1337 1338 1339 1340 1341 1342 1343

2100 1088 1089 1090 1091 1092 1093 1094 1095 2500 1344 1345 1346 1347 1348 1349 1350 1351
2110 1096 1097 1098 1099 l100 1101 1102 1103 2510 1352 1353 1354 1355 1356 1357 1358 1359
2120 1104 1105 1106 1107 1108 1109 1110 1111 2520 1360 1361 1362 1363 1364 1365 1366 1367
2130 l112 1113 1114 1115 1116 1117 1118 1119 2530 1368 1369 1370 1371 1372 1373 1374 1375
2140 1120 1121 1122 1123 1124 1125 1126 1127 2540 1376 1377 1378 1379 1380 1381 1382 1383
2150 1128 1129 1130 1131 1132 1133 1134 1135 2550 1384 1385 1386 1387 1388 1389 1390 139i
2160 1136 1137 1138 1139 1140 1141 1142 1143 2560 1392 1393 1394 1395 1396 1397 1398 1399
2170 1144 1145 1146 1147 1148 1149 1150 1151 2570 1400 1401 1402 1403 1404 1405 1406 1407

2200 1152 1153 1154 1155 1156 1157 1158 1159 2600 1408 1409 1410 1411 1412 1413 1414 1415
2210 1160 1161 1162 1163 1164 1165 1166 1167' 2610 1416 1417 1418 1419 1420 1421 1422 14231
2220 l168 l169 1170 1171 l172 1173 1174 l175
2230 l176 l177 l178 1179 1180 1181 1182 1183

2620 1424 1425 1426 14-27 1428 1429 1430 1431
1 2630 1432 1433 1434 1435 1436 1437 1438 1439

2240 1184 1185 1186 1187 1188 1189 1190 1191
2250 1192 1193 1194 1195 1196 1197 1198 1199
2260 1200 1201 1202 1203 1204 1205 1206 1207

2640 1440 1441 1442 1443 1444 1445 1446 1447
2650 1448-1449 1450 1451 1452 1453 1454 14551
2660 1456 1457 1458 1459 1460 1461 1462 1463

2270 1208 1209 1210 1211 1212 1213 1214 1215 2670 1464 1465 1466 1467 1468 1469 1470 1471!

2300 1216 1217 1218 1219 1220 1221 1222 1223
2310 1224 1225 1226 1227 1228 1229 1230 1231
2320 1232 1233 1234 1235 1236 1237 1238 1239

2700 1472 1473 1474 1~5 1476 1477 1478· 147~
2710 1480 1~81 1482 1483 1484 1485 1486 1487
2720 1488 1489 1490-1491 1492 1493 1494 14951

2330 1240 1241 1242 1243 1244 1245 1246 1247 2730 1496 1497 1498 1499 1500 1501 1502 1503'
2340 1248 1249 1250 1251 1252 1253 12541 1255 2740 1504 1505 1506 1507 1508 1509 1510 1511
2350 1256 1257 1258 1259 1260 1261 1262 1263 2750 1512 1513 1514 1515 1516 1517 1518 1519
2360 1264 1265 1266 1267 1268 1269 1270 1271 2760 1520 1521 1522 1523 1524 1525 1526 1527
2370 1272 1273 1274 1275 1276 1277 1278 1279 2770 1528 1529 1530 1531 1532 1533 1534 1535

N
W
o

o
(j)
=i
> .-
()
o
~
""C
C
-f
m
;;0

""C
;;0

o
(j)
;;0

»
~
~
Z
(j)

0 1 2 3 4 5 6 7

3000 11536
to to

3777 2047
(Octal) (Decimal)

3000 1536 1537 1538 1539 1540 1541 1542 1543
3010 1544 1545 1546 1547 1548 1549 1550 1551
3020 1552 1553 1554 1555 1556 1557 1558 1559
303.0 1560 1561 1562 1563 1564 1565 1566 1567
3040 1568 1569 1570 1571 1572 1573 1574 1575
3050 1576 1577 1578 1579 1580 1581 1582 1583
3060 1584 1585 1586 1587 1588 1589 1590 1591
3070 1592 1593 1594 1595 1596 1597 1598 1599

3100 1600 1601 1602 1603 1604 1605 1606" 1607
3110 1608 1609 1610 1611 1612 1613 1614 1615
3120 1616 1617 1618 1619 1620 1621 1622 16213
3130 1624 1625 1626 1627 1628" 1629 1630 1631
3140 1632 1633 1634 1635 1636 1637 1638 1639
3150 1640 1641 1642 1643 1644 1645 1646 1647
3160 1648 1649 1650 1651 1652 1653 1654 1655
3170 1656 1657 1658 1659 1660 1661 1662 1663

3200 1664 1665 1666 1667" 1668 1669 1670 1671
3210 1672 1673 1674 1675 1676 1677 1678 1679
3220 1680 1681 1682 1683 1684 1685 1686 1687
3230 1688 1689 1690 1691 1692 1693 1694 1695
3240 1696 1697 1698 1699 1700 1701 1702 1703
3250 1704 1705 1706 1707 1708 1709 1710 1711
3260 1712 1713 1714 1715 1716 l717 1718 1~19
3270 1720 1721 1722 1723 1724 1725 1726 1727

3300 1728 1729 1730 1731 1732 1733 1734 1735
3310 1736 1737 1738 1739 1740 1741 1742 1743
3320 1744 174~ 1746 1747 1748 1749 1750 1751
3330 1752 1753 1754 1755 1756 1757 1758 1759
334.0 1760 1761 1762 1763 1764 1765 1766 1767
335.0 1768 1769 1770 1771 1772 1773 1774 1775
3360 1776 1777 1778 1779 178.0 1781 1782 1783
337.0 1784 1785 1786 1787 1788 1789 179.0 1791

.0 1 2 3 4 5 6 7

3400 1792 1793 1794 1795 1796 1797 1798 1799
3410 18.00 1801 1802 1803 1804 1805 1806 1807
3420 1808 1~09 1810 1811 1812 1813 1814 1815
3430 1816 1817 1818 1819 1820 1821 1822 1823
3440 1824 "1825 1826 1827 1828 1829 183.0 1831
3450 1832 1833 1834 1835 1836 1837 1838 1839
3460 184.0 1841 1842 1843 1844 1845 1846 1847
3470 1848 1849 1850 1851 1852 1853 1854 1855

3500 1856 1857 1858 1859 1860 1861 1862 1863
3510 1864 1865 1866 1867 1868 1869 1870 1871
3520 1872 1873 1874 1875 1876 1877 1878 1879
3530 1880 1881 1882 1883 1884 1885 1886 1887
3540 1888 1889 1890 1891 1892 1893 1894 1895
3550 1896 1897 1898 1899 1900 19.01 1902 1903
3560 1904 1905 1906 1907 1908 1909 1910 1911
3570 1912 1913 1914 1915 1916 1917 1918 1919

3600 192.0 1921 1922 1923 1924 1925 1~26 1927
361.0 1928 1929 1930 1931 1932 1933 1934 1935
3620 1936 1937 1938 1939 1940 1941 1942 1943
3630 1944 1945 1946 1947 1948 1949 195.0 1951
364.0 1952 1953 1954 1955 1956 1957 1958 1959
3650 1960 1961 1962 1963 1964 1965 1966 1967
3660 1968 1969 197.0 1971 1972 1973 1974 1975
3670 1976 1977 1978 1979 1980 1981 1982 1983,

3700 1984 1985 1986 1987 1988 1989 199.0 19911
3710 1992 1993 1994 1995 1996 1997 1998 1999
3720 2000 2001 2002 2003 2004 2005 2006 2007
3730 2.008 2009 201.0 2011 2012 2013 2014 20151
3740 2.016 2017 2018 2019 2020 2021 2022 2623
3750 2024 2025 2026 20272.028 2029 2030 2031
3760 2032 2.033 2034 2035 2036 2037 2.038 2.039
377.0 2.040 2041 2042 2.043 2.044 2-045 2.046 20471

-c
;:c
o
(j)
;:c
»
~
~
Z
(j)

»
z
o
()
o
o
Z
(j)

to.)

w

4000 I 2048
to to

4777 2559
(Octo I) (Decimal)

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

4000
4010
4020
4030
4040
4050
4060
4070

4100
4110
4120
4130
4140
4150
4160
4170

4200
4210
4220
4230
4240
4250
4260
4270

4300
4310
4320
4330
4340
4350
4360
4370

TABLE 1. OCTAL-DECIMAL INTEGER CONVERSION (Continued)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

2048 2049 2050 2051 2052 2053 2054 2055 4400 2304 2305 2306 2307 2308 2309 2310 2311
2056 2057 2058 2059 2060 2061 2062 2063 4410 2312 2313 2314 2315 2316 2317 2318 2319
2064 2065 2066 2067 2068 2069 2070 2071 4420 2320 2321 2322 2323 2324 2325 2326 2327
2072 2073 2074 2075 2076 2077 2078 2079
2080 2081 2082 2083 2084 2085 2086 2087

4430 2328 2329 2330 2331 2332 2333 2334 23351
4440 2336 2337 2338 2339 2340 2341 2342 2343

2088 2089 2090 2091 2092 2093 209(2095 4450 2344 2345 2346 2347 2348 2349 2350 2351
2096 2097 2098 2099 2100 2101 2102 2103 4460 2352 2353 2354 2355 2356 2357 2358 2359
2104 2105 2106 2107 2108 2109 2110 2111 4470 2360 2361 2362 2363 2364 2365 2366 2367

2112 2113 2114 2115 2116 2117 2118 2119 4500 2368 2369 2370 2371 2372 2373 2374 2375
2120 2121 2122 2123 2124 2125 2126 2127 4510 2376 2377 2378 2379 2380 2381 2382 2383
2128 2129 2130 2131 2132 2133 2134 2135 4520 2384 2385 2386 2387 2388 2389 2390 2391
.2136 2137 2138 2139 2140 2141 2142 2143
2144 2145 2146 2147 2148 2149 2150 2151

4530 2392 2393 2394 2395 2396 2397 2398 2399
4540 2400 2401 2402 2403 2404 2405 2406 2407

2152 2153 2154 2155 2156 2157 2158 2159 4550 2408 2409 2410 2411 2412 2413 2414 2415
2160 2161 2162 2163 2164 2165 2166 2167 4560 2416 2417 2418 2419 2420 2421 2422 2423
2168 2169 2170 2171 2172 2173 2174 2175 4570 2424 2425 2426 2427 2428 2429 2430 2431

2176 2177 2178 2179 2180 2181 2182 2183 4600 2432 2433 2434 2435 2436 2437 2438 2439
2184 2185 2186 2187 2188 2189 2190 2191 4610 2440 2441 2442 2443 2444 2445 2446 2447
2192 2193 2194 2195 2196 2197 2198 2199 4620 2448 2449 2450 2451 2452 2453 2454 2455
2200 2201 2202 2203 2204 2205 2206 2207 4630 2456 2457 2458 2459 2460 2461 2462 2463
2208 2209 2210 2211 2212 2213 2214 2215 4640 2464 2465 2466 2467 2468 2469 2470 2471
2216 2217 2218 2219 2220 2221 2222 2223 4650 2472 2473 2474 2475 2476 2477 2478 2479
2224 2225 2226 2227 2228 2229 2230 2231 4660 2480 2481 2482 2483 2184 2485 2486 2487
2232 2233 2234 2235 2236 2237 2238 2239 4670 2488 2489 2490 2491 2492 2493 2494 2495

2240 2241 2242 2243 2244 2245 2246 ·2247 4700 2496 2497 2498 2499 2500 2501 2502 2503
2248 2249 2250 2251 2252 2253 2254 2255 4710 2504 2505 2506 2507 2508 2509 2510 2511
2256 2257 2258 2259 2260 2261 2262 2263 4720 2512 2513 2514 2515 2516 2517 2518 2519
2264 2265 2266 2267 2268 2269 2270 2271 4730 2520 2521 2522 2523 2524 2525 2526 2527
2272 2273 2274 2275 2276 2277 2278 2279 4740 2528 2529 2530 2531 2532 2533 2534 2535
2280 2281 2282 2283 2284 2285 2286 2287 4750 2536 2537 2538 2539 2540 2541 2542 2543
2288 2289 2290 2291 2292 2293 2294 2295 4760 2544 2545 2546 2547 2548 2549 2550 2551
2296 2297 2298 2299 2300 2301 2302 2303 4770 2552 2li53 2554 2555 2556 2557 2558 2559

N
W
N

c
(i)
=i »
r
()
o
~
""'C
C
-I
m
;::0

""'C
;::0

o
(j)
;::0

>
~
~
Z
(j)

5000
to

5777
(Octal)

2560
to

3071
(Decimal)

5000
5010
5020
5030
5040
5050
5060
5070

5100
5110
5120
5130
5140
5150
5160
5170

5200
5210
5220
5230
5240
5250
5260
5270

5300
5310
5320
5330
5340
5350
5360
5370

0 1 2 3 4 5 6 7

2560 2561 2562 2563 2564 2565 2566 2567 5400
2568 2569 2570 2571 2572 2573 2574 2575 5410
2576 2577 2578 2579 2580 2581 ~582 2583 5420
2584 2585 2586 2587 2588 2589 2590 2591 5430
2592 2593 2594 2595 2596 2597 2598 2599 5440
2600 2601 2602 2603 2604 2605 2606 2607 5450
2608 2609 2610 2611 2612 2613 2614 2615 5460
2616 2617 2618 2619 2620 2621 2622 2623 5470

2624 2625 2626 2627 2628 2629 2630 2631 5500
2632 2633 2634 2635 2636 2637 2638 2639 5510
2640 2641 2642 2643 2644 2645 2646 2647 5520
2648 2649 2650 2651 2652 2653 2654 2655 5530
2656 2657 2658 2659 2660 2661 2662 2663 5540
2664 2665 2666 2667 2668 2669 2670 2671 5550
2672 2673 2674 2675 2676 2677 2678 2679 5560
2680 2681 2682 2683 2684 2685 2686 2687 5570

2688 2689 2690 2691 2692 2693 2694 2695 5600
2696 2697 2698 2699 2700 2701 2702 2703 5610
2704 2705 2706 2707 2708 2709 2710 2711 5620
2712 2713 2714 2715 2716 2717 2718 2719 5630
2720 2721 2722 2723 2724 2725 2726 2727 5640
2728 2729 2730 2731 2732 2733 2734 2735 5650
2736 2737 2738 2739 2740 2741 2742 2743 5660
2744 2745 2746 2747 2748 2749 2750 2751 5670

2752 2753 2754 2755 2756 2757 2758 2759 5700
2760 2761 2762 2763 2764 2765 2766 2767 5710
2768 2769 2770 2771 2772 2773 2774 2775 5720
2776 2777 2778 2779 2780 2781 2782 2783, 5730
2784 2785 2786 2787 2788 2789 2790 2791 5740
2792 2793 2794 2795 2796 2797 2798 2799 5750
2800 2801 2802 2803 2804 2805 2806 2807 5760
2808 2809 2810 2811 2812 2813 2814 2815 5770

0 1 2 3 4 5 6 7

2816 2817 2818 2819 2820 2821 2822 2823
2824 2825 2826 2827 2828 2829 2830 2831
2832 2833 2834 2835 2836 2837 2838 2839
2840 2841 2842 2843 2844 2845 2846 2847
2848 2849 2850 2851 2852 2853 2854 2855
2856 2857 2858 2859 2860 2861 2862 2863
2864 2865 2866 2867 2868 2869 2870 2871
2872 2873 2874 2875 2876 2877 2878 2879

2880 2881 2882 2883 2884 2885 2886 2887
2888 2889 2890 2891 2892 2893 2894 2895
2896 2897 2898 2899 2900 2901 2902 2903
2904 2905 2906 2907 2908 2909 2910 2911
2912 2913 2914 2915 2916 2917 2918 2919
2920 2921 2922 2923 2924 2925 2926 2927
2928 2929 2930 2931 2932 2933 2934 2935
2936 2937 2938 2939 2940 2941 2942 2943

2944 2945 2946 2947 2948 2949 2950 2951
2952 2953 2954 2955 2956 2957 2958 2959
2960 2961 2962 2963 2964 2965 2966 2967
2968 2969 2970 2971 2972 2973 2974 2975
2976 2977 2978 2979 2980 2981 2982 2983
2984 2985 2986 2987 2988 2989 2990 2991
2992 2993 2994 2995 2996 2997 2998 2999
3000 3001 3002 3003 3004 3005 3006 3007

3008 3009 3010 3011 3012 3013 3014 3015
3016 3017 3018 3019 3020 3021 3022 3023
3024 3025 3026 3027 3028 3029 3030 3031
3032 3033 3034 3035 3036 3037 3038 3039
3040 3041 3042 3043 3044 3045 3046 3047
3048 3049 '3050 3051 3052 3053 3054 3055
3056 3057 3058 3059 3060 3061 3062 3063
3064 3065 3066 3067 3068 3069 3070 3071

""tJ
:;;0

o
(j)
:;;0

»
~
~
Z
(j)

» z
c
()
o
2
z
(j)

N
W
w

6000 I 3072
10 10

6777 3583
(Oclol) (Decimol)

Octal Decimal
10000· 4096
20000· 8192
30000· 12288
40000 • 16384
50000 • 20480
60000·24576
70000·28672

6000
6010
.6020
6030
6040
6050
6060
6070

6100
6110
6120
6130
6140
6150
6160
6170

62QO
6210
6220
6230
6240
6250
6260
6270

6300
6310
6320
6330
6340
6350
6360
6370

TABLE 1. OCTAL-DECIMAL INTEGER CONVERSION (Continued)

0 1 2 3 '4 5 6 7 0 1 2 3 4 5 6 7

3072 3073 3074 3075 3076 3077 3078 3079
3080 3081 3082 3083 3084 3085 3086 3087
3088 3089 3090 3091 3092 3093 3094 3095
3096 3097 3098 3099 3foo 3101 3102· 3103
3104 3105 3106 3107 3108 3109 3110 3111
3112 3113 3114 3115 3116 3117 3118 3119
3120 3121 3122 3123 3124 3125 3126 3127
3128 3129 3130 3131 3132 3133 3134 3135

6400 3328 3329 3330 3331 3332 3333 3334 3335
6410 3336 3337 3338 3339 3340 3341 3342 3343
6420 3344 3345 3346 3347 3348 3349 3350 3351
6430 3352 3353 3354 3355 3356 3357 3358 3359
6440 3360. 3361 3362 3363 3364 3365 3366 3367
6450 3368 3369 3370 3371 3372 3373 3374 3375
6460 3376 3377 3378 3379 3380 3381 3382 3383
6470 3384 3385 3386 3387 3388 3389 3390 3391

3136 3137 3138 3139 3140 3141 3142 3143 6500 3392 3393 3394 3395 3396 3397 3398 3399
3144 3145 3146 3147 3148 3149 3150 3151
3152 3153 3154 3155 3156 3157 3158 3159
3160 3161 3162 3163 3164 3165 3166 3167
3168 3169 3170 3171 3172 3173 3174 3175
3176 3177 3178 3179 3180 3181 3182 3183
3184 3185 3186 3187 3188 3189 3190 3191
3192 3193 3194 3195 3196 3197 3198 3199

6510 3400 3401 3402 3403 3404 3405 3406 3407
6520 3408 3409 3410 3411 3412 3413 3414 3415
6530 3416 3417 3418 3419 3420 3421 3422 3423
6540 3424 3425 3426 3427 3428 3429 3430 3431
6550 3432 3433 3434 3435 3436 3437 3438 3439
6560 3440 3441 3442 3443 3444 3445 3446 3447
6570 3448 3449 3450 3451 3452 3453 3454 3455

3200 3201 3202 3203 3204 3205 3206 3207
3208 3209 3210 3211 3212 3213 3214 3215
3216 3217 3218 3219 3220 3221 3222 3223
3224 3225 3226 3227 3228 3229 3230 3231
3232 3233 3234 3235 3236 3237 3238 ~239
3240 3241 3242 3243 3244 3245 3246 3247
3248 3249 3250 3251 3252 3253 3254 3255
3256 3257 3258 3259 3260 3261 3262 3263

6600 3456 3457 3458 3459 3460 3461 3462 3463
6610 3464 3465 3466 3467 3468 3469 3470 3471
6620 3472 3473 3474 3475 3476 3477 3478 3479
6630 3480 3481 3482 3483 3484 3485 3486 3487
6640 3488 3489 3490 3491 3492 3493 3494 3495
6650 3496 3497 3498 3499 3500 3501 3502 3503
6660 3504 3505 3506 3507 3508 3509 3510 3511
6670 3512 3513 3514 3515 3516 3517 3518 3519

3264 3265 3266 3267 3268 3269·3270 3271
3272 3273 3274 3275 3276 3277 3278 3279
3280 3281 3282 3283 3284 3285 3286 3287
3288 3289 3290 3291 3292 3293 3294 3295
3296 3297 3298 3299 3300 3301 3302 3303
3304 3305 3306 3307 3308 3309 3310 3311
~312 3313 3314 3315 3316 3317 3318 3319
3320 3321 3322 3323 3324 3325 3326 3327

6700 3520 3521 3522 3523 3524 3525 3526 3527
6710 3528 3529 3530 3531 3532 3533 3534 3535
6720 3536 3537 3538 3539 3540 3541 3542 3543
6730 3544 3545 3546 3547 3548 3549 3550 3551
6740 3552 3553 3554 3555 3556 3557 3558 3559
6750 3560 3561 3562 3563 3564 3565 3566 3567
6760 3568 3569 3570 3571 3572 3573 3574 3575
6770 3576 3577 3578 3579 3580 3581 3582 3583

N
W
..r.

o
(j)
=t
>
I

()
o
~

" C
--f
m
:;:0

" ;::c
o
(j)
:;:0 »
~
~
Z
(j)

7000
to

7777
(Octol)

3584
to

4095
(Decimol)

7000
7010
7020
7030
7040
7050
7060
7070

7100
7110
7120
7130
7140
7150
7160
7170

7200
7210
7220
7230
7240
7250
7260
7270

7300
7310
7320
7330
7340
7350
7360
7370

0 1 2 3 4 5 6 7

3584 3585 3586 3587 3588 3589 3590 3591
3592 3593 3594 3595 3596 3597 3598 3599
3600 3601 3602 3603 3604 3605 3606 3607
3608 3609 3610 3611 3612 3613 3614 3615
3616 3617 3618 3619 3620 3621 3622 3623
3624 3625 3626 3627 3628 3629 3630 3631
3632 3633 3634 3635 3636 3637 3638 3639
3640 3641 3642 3643 3644 3645 3646 3647

36483649 3650 3651 3652 3653 3654 3655
3656 3657 3658 3659 3660 3661 3662 3663
3664 3665 3666 3667 3668 3669 3670 3671
3672 3673 3674 3675 3676 3677 3678 3679
3680 3681 3682 3683 3684 3685 3686 3687
3688 3689 3690 3691 3692 3693 3694 3695
3696 ~697 3698 3699 3700 3701 3702 3703
3704 3705 3706 3707 3708 3709 3710 3711

3712 3713 3714 3715 3716 3717 3718 3719
3720 3721 3722 3723 3724 3725 3726 3727
3728 3729 3730 3731 3732 3733 3734 3735
3736 3737 3738 3739 3740 3741 3742 3743
3744 3745 3746 3747 °3748 3749 3750 3751
3752 3753 3754 3755 3756 3757 3758 3759
3760 3761 3762 3763 31643765 3766 3767
3768 3769 3770 3771 3772 3773 3774 3775

3776 3777 3778 3779 3780 3781 3782 3783
3784 3785 3786 3787 3788 3789 3790 3791
3792 3793 3794 3795 3796 3797 3798 3799
3800 3801 3802 3803 3804 3805 3806 3807
3808 3809 3810 3811 3812 3813 3814 3815
3816 3817 3818 3819 3820 3821 3822 3823
3824 3825 3826 3827 3828 3829 3830 3831
3832 3833 3834 3835 3836 3837 3838 3839

7400
7410
7420
7430
7440
7450

. 7460
7470

7500
7510
7520
7530
7540
7550
7560
7570

7600
7610
7620
7630
7640
7650
7660
7670

7700
7710
7720
7730
7740
7750
7760
7770

0 1 2 3 4 5 6 7

3840 3841 3842 3843 3844 3845 3846 3847
3848 3849 3850 3851 3852 3853 3854 3855
3856 3857 3858 3859 3860 3861 3862 3863
3864 3865 3866 3867 3868 3869 3870 3871
3872 °3873 3874 3875 3876 3877 3878 3879
3880 3881 3882 3883 3884 3885 3886 3887
3888 3889 3890 3891 3892 3893 3894 3895
3896 3897 3898 3899 3900 3901 3902 3903

3904 3905 3906 3907 3908 3909 3910 3911
3912 3913 3914 3915 3916 3917 3918 3919
3920 3921 3922 3923 3924 3925 3926 3927
3928 3929 3930 3931 3932 3933 3934 3935
3936 3937 3938 3939 3940 3941 3942 3943
3944 3945 3946 3947 3948 3949 3950 3951
3952 3953 3954 3955 3956 3957 3958 3959
3960 3961 3962 3963 3964 3965 3966 3967

3968 3969 3970 3971 3972 3973 3974 3975
3976 3977 3978 3979 3980 3g8r 3982 3983
3984 3985 3986 3987 3988 3989 3990 3991
3992 3993 3994 3995 3996 3997 3998 3999
4000 4001 4002 4003 4004 4005 4006 4007
4008 4009 4010 4011 4012 4013 4014 4015
4016 4017 4018 4019 4020 4021 4022 4023
4024 4025 4026 4027 4028 4029 4030 4031

4032 4033 4034 4035 4036 4037 4038 4039
4040 4041 4042 4043 4044 4045 4046 4047
4048 4049 4050 4051 4052 4053 4054 4055
4056 4057 4058 4059 4060 4061 4062 4063
4064 4065 4066 4067 4068 4069 4070 4071
4072 4073 4074 4075 4076 4077 4078 4079
4080 4081 4082 4083 4084 4085 4086 4087
4088 4089 4090 4091 4092 4093 4094 4095

."
;:;0

o
(j)
;:;0 »
~
~
Z
(j)

»
z
o
()
o
o
Z
(j)

~
w
en

TABLE 2. OCTAL-DECIMAL FRACTION CONVERSION

OCTAL DEC. OCTAL DEC. OCTAL DEC.

.000 .000000 .100 .125000 .200 .250000

.001 .001953 .101 .126953 .201 .251953

.002 .003906 .102 .128906 .202 .253906

.003 .005859 .103 .130859 .203 .255859

.004 .007812 .104 .132812 .204 .257812

.005 .009765 .105 .134765 .205 .259765

.006 .011718 .106 .136718 .206 .261718

.007 .013671 .107 .138671 .207 .263671

.010 .015625 .110 .140625 .210 .265625

.011 .017578 .111 .142578 .211 .267578

.012 .019531 .112 .144531 ~ 212 .269531

.013 .021484 .113 .146484 .213 ' .271484

.014 .023437 .114 .148437 .214 .273437

.015
)

.025390 .115 .150390 .215 .275390
.016 .027343 .116 .152343 .216 .277343
.017 .029296 .117 .154296 .217 .279296

.020 .031250 .120 .156250 .220 .281250

.021 .033203 .121 .158203 .221 .283203

.022 .035156 .122 .160156 .222 .285156

.023 .037109 .123 .162109 .223 .287109

.024 .039062 .124 .164062 .224 .289062

.025 .041015 .125 .166015 .225 .291015

.026 .042968 .126 .167968 .226 .292968

.027 .044921 .127 .169921 .227 .294921

.030 .046875 .130 .171875 .230 .296875

.031 .048828 .131 .173828 .231 .298828

.032 .050781 .132 .175781 .232 .300781

.033 .052734 .133 .177734 .233 .302734

.034 .054687 '.134 .179687 .234 .304687

.035 .056640 .135 .181640 .235 .306640

.036 .058593 .136 .183593 ~236 .308593

OCTAL DEC.

.300 .375000

.301 .376953

.302 .378906

.303 .380859

.304 .382812

.305 .384765

.306, .386718

.307 .388671

.310 .390625

.311 .392578

.312 .394531

.313 .396484

.314 .398437

.315 .400390

.316 .402343

.317 .404296

.320 .406250

.321 .408203

.322 .410156

.323 .412109

.324 .414062

.325 .416015

.326 .417968

.327 .419921

.330 .421875

.331 .423828

.332 .425781

.333 .427734

.334' .429687

.335 .431640

.336 ..!433593

I

I

I

I

I

I

N
W
~

o
(j)
=i » .--
()
o
s=
"'tJ
C
-I
m
:;:0

"'tJ
:;:0

o
(j)
::::c »
~
~
Z
(j)

.037 .060546 .137 .185546 ~237

.040 .062500 .140 .187500 .240

.041 .064453 .141 .189453 .241

.042 .066406 .142 .191406 .242

.043 .068359 .143 .193359 .243

.044 .070312 .144 .195312 .244

.045 .072265 .145 .197265 .245

.046 .074218 .146 .199218 .246

.047 .076171 .147 .201171 .247

.050 .078125 .150 .203125 .250

.051 .080078 .151 .205078 .251

.052 .082031 .152 .207031 .252

.053 .083984 .153 .208984 .253

.054 .085937 .154 .210937 .254

.055 .087890 .155 .212890 .255

.056 .089843 .156 .214843 .256

.057 .091796 .157, .216796 .257

.060 .093750 .160 .218750 .260

.061 .0.95703 .161 .220703 .261

.062 .097656 .162 .222656 .262

.063 .099609 .163 .224609 .263

.064 .101562 .164 .226562 .264

.065 .103515 .165 .228515 .265

.066 .105468 .166 .230468 .266

.067 .107421 .167 .232421 .267

.070 .109375 .170 .234375 .270

.071 .111328 .171 .236328 .271

.072 .113281 .172 .238281 .272

.073 .115234 .173 .240234 .273

.074 .117187 .174 .242187 .274

.075 .119140 .175 :244140 .275

.076 .121093 .176 .246093 .276

.077 .123046 .177 .248046 .277

.310546 .337

.312500 .340

.314453 .341

.316406 .342

.318359 .343

.320312 .344

.322265 .345

.32421"8 .346

.326171 .347

.328125 .350

.330078 .351

.332031 .352

.333984 .353

.335937 .354

.337890 .355

.339843 .356

.341796 .357

.343750 .360

.345703 .361

.347656 .362

.349609 .363

.351562 .364

.353515 .365

.355468 .366

.357421 .367

.359375 .370

.361328 .371

.363281 .372

.365234 .373

.367187 .314

.369140 .375

.371093 .376

.373046 .377

.435546

.437500

.439453

.441406

.443359

.445312

.447265

.449218

.451171

.453125

.455078

.457031

.458984

.460937

.462890

.464843

.466796

.468750

.470703

.472656

.474609

.476562

.478515

.480468

.482421

.484375

.486328

.488281

.490234

.492187

.494140

.496093

.498046

."
;;0

o
(j)
:;;c
»
~
~
Z
(j)

» z
o
()
o
2
z
(j)

N
W
~

TABLE 2.' OCTAL-DECIMAL FRACTION CONVERSION (Continued)

OCTAL DEC, OCTAL DEC. OCTAL DEC.

,000000 .000000 ,000100 .000244 ,000200 .000488
.000001 .000003 .000101 ,000247 ,000201 .000492
.000002 .000007 ,000102 ,000251 ,000202 ,000495
.000003 .000011 ,000103 .000255 .000203 .000499
,000004 .000015 .000104 .000259 ,000204 .000503
.000005 ,000019 .000105 .000263 .000205 ,000507
.000006 ,000022 ,000106 ,000267 .000206 .000511
,000007 ,000026 .000107 ,000270 .000207 .000514

.000010 .000030 ,000110 .000274 .000210 .000518

.000011 .000034 .000111 .000278 .000211 .000522

.000012 ,000038 .000112 .000282 .000212 .000526
,000013 ,000041 ,000113 .000286 .000213 .000530
.000014 .000045 ,000114 .000289 .000214 .000534
.000015 .000049 ,000115 .000293 ,000215 .000537
,000016 ,000053 .000116 .000297 ,000216 .000541
,000017 .000057 .000117 ,000301 ,000217 .000545

,000020 .000061 ,000120 .000305 ,000220 .000549

.000021 ,000064 .000121 ,000308 ,000221 ,000553

.000022 .000068 ,000122 ,000312 ,000222 .000556
,000023 ,000072 .000123 .000316 .000223 .000560

.000024 .000076 .000124 .000320 ,000224 .000564
,000025 .000080 .000125 .000324 .000225 .000568
,000026 ,000083 .000126 .000328 .000226 .000572

.000027 .000087 .000127 .000331 .000227 .000576

.000030 .000091 ,000130 .000335 ,000230 .000579

.000031 .000095 .000131 .000339 ,000231 .000583

.000032 .000099 .000132 .000343 .000232 .000587

.000033 .000102 .000133 .000347 .000233 .000591

.000034 .000106 .000134 .000350 ,000234 .000595

.000035 .000110 .000135 .000354 .000235 .000598

.000036 .000114 ~000136 .000358 ~_000236 .000602

OCTAL DEC,

.000300 .000732
,000301 ,000736
.000302 ,000740
.000303 ,000743
,000304 .000747
.000305 .000751
.000306 .000755
.000307 .000759
.000310 ,000762
.000311 .000766
.000312 .000770
.000313 .000774
.000314 .000778
.000315 .000782
.000316 .000785
.000317 .000789
.000320 .000793
.000321 .000797
,000322 ,000801
,000323 .000805
.000324 .000808
,000325 .000812
.000326 .000816
.000327 .000820
.000330 ,000823
.000331 .000827
.000332 .000831
.000333 .000835
.000334 .000839
.000335 .000843
.000336 .000846

I

t-.)

w
co

o
(fi
=i » r-
()
o
3:'.':
."
C
-I
m
:::0

."
:::0 o
(j)
:::0 »
3:'.':
3:'.':
z
(j)

.000037 ·.oooluf ~·000137 .000362 .0002:37"

.000040 .000122 .000140 .000366 .000240

.000041 .000125 .000141 .000370 .000241

.000042 .000129 .000142 .000373 .000242

.000043 .000133 .000143 .000377 .000243

.000044 .000137 .000144 .000381 .000244

.000045 .000141 .000145 .000385 .000245

.000046 .000144 .000146 ,000389 ,000246
,000047 .000148 .000147 .000392 .. 000247

,000050 .000152 .000150 .000396 ,000250
,000051 ,000156 .000151 .000400 .000251
,000052 ,000160 ,000152 .000404 .000252
.000053 .000164 ,000153 ,000408 .000253
,000054 .000167 .000154 .000411 .000254
,000055 ,000171 .000155 .000415 .000255
.000056 .000175 .000156 .000419 .000256
.000057 .000179 .000157 .000423 .000257

.000060 .000183 .000160 .000427 .000260

.000061 .000186 .000161 .000431 .000261

.000062 .000190 .000162 .000434 .000262

.000063 .000194 .000163 .000438 .000263

.000064 .000198 .000164 .000442 .000264

.000065 .000202 .000165 .000446 .000265

.000066 .000205 .000166 .000450 .000266

.000067 .000209 .000167 .000453 .000267

.000070 .000213 .000170 .000457 .000270

.000071 .000217 .000171 .000461 .• 000271

.000072 .000221 .000172 .000465 .000272

.000073 .000225 .000173 .000469 .000273

.000074 .000228 .000174 .000473 .000274

.000075 .000232 .000175 .000476 .000275

.000076 .000236 .000176 .000480 .000276

.000077 .000240 ,000177 ,000484 .000277

.000606 .000337

.000610 .000340

.000614 .000341

.000617 .000342

.000621 .000343

.000625 .000344

.000629 .000345
:000633 .000346
.000637 .000347
.000640 .000350
.000644 .000351
,000648 .000352
.000652 .000353
.000656 .000354
.000659 .000355
.000663 .000356
.000667 .000357
.000671 .000360
.000675 .000361
.000679 .000362
.000682 .000363
.000686 .000364
.000690 .000365
.000694 .000366
.000698 .000367
.000701 .000370
.000705 .000371
.000709 .000372
.000713 .000373
.000717 .000374
.000720 .000375
.000724 .000376
,000728 ,000377

.000850

.000854

.000858

.000862

.000865

.000869
,000873
,000877
,000881
,000885
,000888
,000892
,000896
,000900
.000904
.000907
.000911
.000915
.000919
.000923
.000926
.000930
.000934
.000938
.000942
.000946
.000949
.000953
.000957
.000961
.000965
.000968
.000972

"'0
;:;0

o
(j)
;:;0 »
~
~
Z
(j)

» z
o
()
o
o
z
(j)

N
W
-0

TABLE 2. OCTAL-DECIMAL FRACTION CONVERSION (Continued)

OCTAL DEC. OCTAL DEC. OCTAL DEC.

.000400 .OQ0976 .000500 .001220 .000600 .001464

.000401 .000980 ,000501 ,001224 .000601 .001468
,000402 ,000984 ,000502 ,001228 ,000602 .001472
.000403 ,000988 ,000503 ,001232 ,000603 ,001476
,000404 ,000991 ,000504 .001235 ,000604 .001480
.000405 ,000995 .000505 .001239 .000605 ,001483
,000406 ,000999 ,000506 ,001243 ,000606 ,001487
,000407 ,001003 ,000507 ,001247 ,000607 ,001491

.000410 ,001007 ,000510 ,001251 ,000610 ,001495

.000411 ,001010 ,000511 ,001255 ,000611 ,001499
,000412 ,001014 ,000512 .001258 ,000612 ,001502
,000413 ,001018 ,000513 ,001262 ,000613 ,001506
,000414 ,001022 ,000514 ,001266 ,000614 ,001510
.000415 ,001026 ,000515 ,001270 ,000615 ,001514
.000416 ,001029 ,000516 ,001274 ,000616 ,001518
,000417 .001033 ,000517 ,001277 .000617 ,001522

,000420 ,001037 ,000520 ,001281 ,000620 ,001525
.000421 ,001041 ,000521 .001285 ,000621 ,001529
,000422 ,001045 ,000522 ,001289 ,000622 ,001533
~000423 ,001049 ,000523 ,001293 ,000623 .001537
,000424 ,001052 ,000524 ,001296 ,000624 ,001541
.000425 ,001056 ,000525 ,001300 .000625 ,001544
,000426 ,001060 ,000526 ,001304 ,000626 ,001548
,00,0427 ,001064 ,000527 ,001308 ,000627 ,0:>1552

,000430 .001068 .000530 ,001312 .000630 ,001556
,000431 .001071 ,000531 ,001316 ,000631 .001560
,000432 .001075 ,000532 .001319 .000632 ,001564
.000433 .001Q79 .000533 ,001323 .000633 .001567
,000434 .001083 .000534 ,001327 .000634 .001571
.000435 .001087 ,000535 .001331 ,000635 .001575
.000436 ,001091 .000536 .001335 ,.000636 ,OQ157<}

OCTAL DEC.

.000700 .001708

.000701 .001712
,000702 .001716
.000703 .001720
.000704 .001724
,000705 ,001728
,000706 ,001731
,000707 ,001735
,OOO~10 .001739
,000711 ,OOi743
.000712 .001747
.000713 ,001750
.000714 ,001754
,000715 ,001758
.000716 ,001762
,000717 ,001766

,000720 ,001770
,000721 ,001773
,000722 ,001777
.000723 .001781
,000724 .001785
.000725 .001789
,000726 ,001792
,000727 ,001796
,000730 ,001800
.000731 ,001804
.000732 ,001808
,000733 .001811
,000734 ,001815
.000735' .001819
.000736 .001823

N

~ o

o
(i)
=i » .--
()
o
~
."
C
-I
m
;::c

."
;::c
o
(j)
;::c »
~
~
Z
ql

.000437 .001094 .000537 .001338

.000440 .001098 .000540 .001342

.000441 .001102 .000541 .001346

.000442 .001106 .000542 .001350

.000443 .001110 .000543 .001354

.000444; .001113 .000544 .001358

.000445 .001117 .000545 .001361

.000446 .001121 .000546 .001365

.000447 .001125 .000547 .001369

.000450 .001129 .000550 .001373

.000451 .001132 .000551 .001377

.000452 .001136 .000552 .001380

.000453 .001140 .000553 .001384

.000454 .001144 .000554 .001388

.000455 .001148 .000555 .001392

.000456 .001152 .000556 .001396

.000457 .001155 .000557 .001399

.000460 .001159 .000560 .001403

.000461 .001163 .000561 .001407

.000462 .001167 .000562 .001411

.000463 .001171 .000563 •. 001415

.000464 .001174 .000564 .001419

.000465 .001178 .000565 .001422

.000466 .001182 .000566 .001426

.000467 .001186 .000567 .001430

.000470 .001190 .000570 .001434

.000471 .001194 .000571 .001438

.000472 .001197 .000572 .001441

.000473 .001201 .000573 .001445

.000474 .001205 .000574 .001449

.000475 .001209 .000575 .001453

.00Q476 .001213 .000576 .001457

.000477 .001216 .000577 .001461

.000637 .001583

.000640 .001586

.000641 .001590

.000642 .001594

.000643 .001598

.000644 .001602

.000645 .001605

.0.00646 .001609

.000647 .001613

.000650 .001617

.000651 .001621

.000652 .001625

.000653 .001628

.000654 .001632

.000655 .001636

.000656 .001640

.000657 .001644

.000660 .001647

.000661 .001651

.000662 .001655

.000663 .001659

.000664 .001663

.000665 .001667

.000666 .001670

.000667 .001674

.000670 .001678

.000671 .001682

.000672 .001686

.000673 .001689

.000674 .001693

.000675 .001697

.000676 .001701

.000677 .001705

.000737

.000740

.000741

.000742

.000743

.000744

.000745

.000746

.000747

.000750

.000751

.000752

.000753

.000754

.000755

.000756

.000757

.000760

.000761

.000762

.000763

.000764

.000765

.000766

.000767

.000770

.0<W771

.000772

.000773

.000774

.000775
·.000776
.000777

.001827

.001831

.001834

.001838

.001842

.001846

.001850

.001853

.001857

.001861

.001865

.001869

.001873

.001876

.001880

.001884

.001888

.001892

.001895

.001899

.0019.03

.001907

.001911

.001914-

.001918

.001922

.001926

.001930

.001934

.001937

.001941

.001945

.001949

."
~ o
(j)
~ »
~
~
Z
(j)

» z
b
()
o
c
z
(j)

N
1..

2-42 DIGITAL COMPUTER PROGRAMMING

TABLE 3. HEXADECIMAL-DECIMAL CONVERSION (TWO-WAY)

Dec. Hex. Dec.
100 1 16 X 1 16
101 a 2 32
102 64 3 48
103 3e8 4 64
104 2710 5 80
105 186aO 6 96
106 f4240 7 112
107 989680 8 128
108 5f5e100 9 144
109 3b9acaOO 10 160
1010 2540be400 11 176
1011 174876e800 12 192
1012 e8d4a51000 13 208

14 224
15 240
16 256

Dec. Dec.
160 1 167 268435456
161 16 168 4294967296
162 256 169 68719476736
163 4096 1610 1099511627776
164 65536 1611 17592186044416
165 1048576
166 16777216

PROGRAMMING AND CODING 2-43

TABLE 4. POWERS OF 2 (POSITIVE AND NEGATIVE)

EXPRESSED IN DECIMAL

n 2n n 2-n

0 1 0 1.0
1 2 1 0.5
2 4 2 0.25
3 8 3 0.125
4 16 4 0.062 5
5 32 5 0.031 25
6 64 6 0.015 625
7 128 7 0.007 812 5
8 256 8 0.003 906 25
9 512 9 0.001 953 125

10 1 024 10 0.000 976 562 5
11 2 048 11 0.000 488 281 25
12 4 096 12 0. 3 244 140 625
13 8 192 13 O. 122 070 312 5
14 16 384 14 O. 061 035 156 25
15 32 768 15 O. 030 517 578 125
16 65 536 16 0. 3 015 258 789 062 5
17 131 072 17 O. 007 629 394 531 25
18 262 144 18 O. 003 814 697 265 625
19 524 288 19 O. 001 907 348 632 812 5
20 1 048 576 20 0. 6 953 674 316 406 25
21 2 097 152 21 O. 476 837 158 203 125
22 4 194 304 22 O. 238 418 579 101 562 5
23 8 388 608 23 O. 119 209 289 550 781 25
24 16 777 216 24 0. 6 059 604 644 775 390 625
25 33 554 432 25 O. 029 802 322 387 695 312 5
26 67 108 864 26 O. 014 901 161 193 847 656 25
27 134 217 728 27 O. 007 450 580 596 923 828 125
28 268 435 456 28 0. 6 003 725 290 298 461 914 062 5
29 536 870 912 29 O. 001 862 645 149 230 957 031 25
30 1 073 741 824 30 O. 000 931 322 574 615 478 515 625
31 2 147 483 648 31 O. 000 465 661 287 307 739 257 812 5
32 4 294 967 296 32 0. 9 232 830 643 653 869 628 906 25
33 8 589 934 592 33 O. 116 415 321 826 934 814 453 125
34 17 179 869 184 34 O. 058 207 660 913 467 407 226 562 5
35 34 359 738 368 35 O. 029 103 830 456 733 703 613 281 25
36 68 719 476 736 36 0. 9 014 551 915 228 366 851 806 640 625
37 137 438 953 472 37 O. 007 275 957 614 183 425 903 320 312 5
38 274 877 906 944 38 O. 003 637 978 807 091 712 951 660 156 25
39 549 755 813 888 39 O. 001 818 989 403 545 856 475 830 078 125
40 1 099 511 627 776 40 0. 12 909 494 701 772 928 237 915 039 062 5
41 2 199 023 255 552 41 O. 454 747 350 886 464 118 957 519 531 25
42 4 398 046 511 104 42 O. 227 373 675 443 232 059 478 759 765 625
43 8 796 093 022 208 43 O. 113 686 837 721 616 029 739 379 882 812 5
44 17 592 186 044 416 44 0. 12 056 843 418 860 808 014 869 689 941 406 25

2-44 DIGITAL COMPUTER PROGRAMMING

TABLE 5. HEXADECIMAL MULTIPLICATION

1 2 3 4 5 6 7 8 9 a b e d e f
2 4 6 8 a e e 10 12 14 16 18 1a 1e 1e
3 9 e f 12 15 18 1b 1e 21 24 27 2a 2d
4 10 14 18 1e 20 24 28 2e 30 34 38 3e
5 19 1e 23 28 2d 32 37 3e 41 46 4b
6 24 2a 30 36 3e 42 48 4e 54 5a
7 31 38 3f 46 4d 54 5b 62 69
8 40 48 50 58 60 68 70 78
9 51 5a 63 6e 75 7e 87
a 64 6e 78 82 8e 96
b 79 84 8f 9a a5
e 90 ge a8 b4
d a9 b6 e3
e e4 d2
f e1

4. PROGRAM STRUCTURE AND FLOW DIAGRAMS

Logical Structure of a Program

The general purpose stored program digital computer requires the prep­
aration of an external set of instructions which may be formulated in
terms of a language similar to the data language of the computer. For
example, the instructions may also be binary numbers if numbers are
operated on in the binary notation, decimal numbers if the internal
number structure is decimal, or alphanumeric characters if the basic
data language is alphanumeric. These instructions must be listed in de­
tail, one after another, to provide the procedure or algorithm by which the
machine is to perform the problem. Instructions must be exact; only a
few machines have even rudimentary built-in mistake detection circuits
by which programmer mistakes in the use of machine or instruction con­
ventions can be caught.

Control Function. That portion of the computer which automatically
executes the previously prepared program instructions, generally stored
before performance in the same storage locations as the numbers, is
called the control or control1lnit (see Chap. 18). In general, the sequence
of instruction through the program is called the path of control. It may
be considered a one-dimensional path, and it can often be represented on
paper in the form of a sequence or flow diagram, where the path of con­
trol is designated by a directional line.

The control serves as a sort of instructional interpreter, which selects
the pertinent instruction, decodes it into its fundamental components,

PROGRAMMING AND CODING 2-45

which in general represent one or more operands and a particular opera­
tion, and then proceeds onto the next instruction, which may be located by
convention in the next machine position in sequence, or else may be given
by the previous instruction itself.

Sequential and Concurrent Control. In the simplest case, the con­
trol will decode and perform one instruction at a time. Such computer
operation is called sequential and is generally used in digital computers.
Concurrent computer operation is a more complex one in that two or
more different machine instructions, for example, reading and adding or
adding and multiplying, may be going on at the same time. Most
computers are either entirely sequential, or have only input-output opera­
tions performing at the same time as internal computational instructions.
The intermeshing of such input-output operations with calculations for
such computers can become an intricate part of the programming.

Iteration Loops. The passage of control through the sequence of
instructions will not necessarily be a linear one, but will jump back and
forth among the instructions. Most problems are not expressed in a linear
fashion, but rather recursively, by the use of recursive functions or itera­
tion loops. An example is the addition of a column of numbers.

1. Group Summation. Addition directly by human beings generally
may be considered addition of all of a group of n numbers Xi (i = 1, 2,
... , n) at once, since most persons add column by column. Such a pro­
cedure for obtaining the sum S may be written symbolically as

(14)
n

S = LXi,
i=l

where the L may be considered a simultaneous operator on all the Xi.

2. Stepwise Addition. On the other hand, in using a desk calculator,
or an automatic stored program digital computer, the addition is done two
numbers at a time, and may be expressed thus symbolically:

(I5a)

(I5b)

(15e)

81 = Xl,

S HI = S i + X i+l (i = 1, 2, ... , n - 1),

Since very few automatic calculators possess a summation instruction in
the sense of eq. (14), most additions of numbers are performed recursively,
as in eqs. (15), with an iteration loop technique.

3. Straight Line Coding. The sum of a sequence of numbers may be
obtained by a linear or sequential technique, which consists of "unwind-

2-46 DIGITAL COMPUTER PROGRAMMING

ing" the iteration loop to produce a sequence of approximately n + 1
instructions. These may be given symbolically by

(16)

S3 = S2 + X3

Sn-l = Sn-2 + Xn-l

Sn = Sn-l + Xn

S = Sn.

Comparison. The summation procedure requires only one high­
powered built-in machine instruction; the linear addition technique re­
quires one stored instruction per addition. The iteration loop procedure
occupies a compromise position between these two extremes. Actually,
of the three equations given in (15), (15a) and (15c) are expressions
which indicate the start and finish of the overall procedure, and corre­
spond to the first and last equations of (16). The sequence of values
given for i in the parentheses to the right of (15b) indicates that that
equation must be performed for each value of i from 1 through n - 1.
In the iteration loop procedure usually only one computer instruction is
stored to correspond to (15b), but it is considered a function of i, and
modified to perform the addition over and over again the required number
of times. The machine must perform this modification of the addition
instruction and at the same time decide when it has performed the opera­
tion corresponding to (15b) the proper number of times.

Loop Control. Such behavior of a general purpose computer is
called loop control, and requires that the machine have three basic
properties. It should be able to (1) modify its own instructions by some
method, (2) change the sequence of the path of control through the
stored instructions, and (3) make decisions on the basis of its partial
results. In particular, in case of the iteration procedure given in eqs.
(15), the computer must be able to decide when it has performed (15b)
n - 1 times. A diagram of the iterative procedure in (15) is given in Fig.
7. Theoretically, the third requirement is included in the other two.
Practical machines have all three requirements fulfilled.

PROGRAMMING AND CODING 2-47

FIG. 7. Diagram of iterative procedure.

Flow Diagrams

The diagram of Fig. 7 gives a geometric picture of the path of control
for eqs. (15), represented by linear path, which in this case intersects
itself. The presence of a closed loop in the diagram indicates a recursion
or iteration. Such diagrams can be extremely helpful, as they have
previously been with chemical processes, analog computers, and business
procedures analyses, in presenting an overall picture of the structure
of the process described.

The flow diagram is an attempt at a graphical portrayal of the course
of the problem's solution, later to be approximated by the path of the
machine's control through the instruction information stored in the
machine during the course of solution. The flow diagram shall consist
of a sequence of directed line segments or curves, called the control
line, extending from one "box" or "block" on paper to the other boxes or
blocks. Each box shall indicate an Rrithmetic, instructional, or index
change, or an assertion about the status of the problem.

Notation for Flow Diagrams. Several different notations have been
devised for giving as exact a picture of the problem process as possible.
Such diagrams are called flow or sequence diagrams; the original notation
was introduced by Burks, Goldstine, and von Neumann (see Ref. 19),
and is particularly applicable to the computers with single-address logic
of the type first designed at the Institute for Advanced Study. The flow
diagram procedure developed by the Princeton group was adapted to
one particular machine; a generalized notation is shown in Table 6.
The notation of this table is aimed at providing a general language useful
for all machines. Individual users may change the notation given here
to suit particular machines for which they are preparing problems.

Advantages of a General Notation. The flow diagram is the closest
to a "universal machine language" that has been developed. Use of such

2-48 DIGITAL COMPUTER PROGRAMMING

TABLE 6. PROGRAMMING FLOW DIAGRAM NOTATION

Box Notation

(a) Calculation

(b) Indicial operations

(c) Alternative

(d) Variable remote
connections

M Equivalent fixed
remote connections

(f) Assertion or·
information

(g) Table of
variables

--:-.~)--®

0
0

or

~0

)

®r---~-

6)1---+-­

®I---~-

(0)

0

x -Vai2+ bi
2 .

y aJbi

Z aibi

PROGRAMMING AN.D CODING 2-49

a common language, not aimed at a particular machine, (1) in the forma­
tive stages of problem preparation delays narrowing down problem
expression to one particular machine to the later stages, allows easy use
of a particular flow diagram on any machine, and (2) permits easier
exchange of methods between users of different machines. , The value of
the flow diagram is its use as a representation of a general solution of the
problem, not of any particular machine's solution.

Structure of Flow Diagrams. The control line of the flow diagram
and its various parts may come together at any point, indicating tlult
two possible courses of the path of control through the instructional
machine information have formed a junction; one line segment may split
into two or more to form a disjunction or branch point. Every branch
point must be immediately preceded by a box or boxes indicating the
cause of the branching or the method by which control is to decide which
path to take.

A linear sequence of operations, with no decisions to be made by the
control, and therefore no branching, will consist of a continuous control
line interrupted only by boxes. In the case of iterative calculations or
data processing sequences in which operations will be performed in a
repetitive or near-repetitive fashion, loops will appear in the flow diagram.
Each such loop will consist of a curve equivalent to a circle, interrupted
by one or more boxes.

Ordinarily, most flow diagrams will be two dimensional, and can be
laid out on a two-dimensional surface without crossovers. However, it
is possible for problems to require flow diagrams with crossovers in the
control lines. For this reason, and for the purpose of providing un­
crowded layouts in two-dimensional problems, the flow diagram structure
can be broken up into a set of smaller diagrams, with particular notation
indicating the connections between the various diagrams.

Flow Diagram Boxes. There are two types of operation boxes, indicia I
operations boxes, connected with the formation of indices and machine
addresses ("red tape" boxes), and calculational operation boxes, represent­
ing actual numerical calculations as shown in Table 6a, b. Any operation
box of either type must have only one input and one output path.
Alternative boxes (see Table 6c) usually ask questions, answered by a
"yes" or "no," but they may often indicate other types of binary de­
CISIOns.

Remote Connections. Because a problem may require a multichoice
rather than binary disjunction or branching at a particular stage,
and since the machine, by assumption, has the property of modifying its
own sequence of instructions, a particular representation is needed for
multiple disjunctions. Such representation is given by a variable remote

2-50 DIGITAL COMPUTER PROGRAMMING

connection. This is represented by termination of the control line by
a circle marked with a Greek letter with a Roman letter subscript, indi­
cating a variable terminal. Alternative continuations from this circle will
be originated at other circles. located at a distance, each marked with
the same Greek letter, properly indexed by successive integers. (See
Table 6d.) .

In some cases, need of space on paper, or lack of two dimensionality in
the diagram may require a fixed remote connection. Such a connection
shown in Table 6e consists of a terminating circle on the control line
followed by an originating circle some distance away, beginning a new
control line. Fixed remote connections will be denoted by Greek letters
without subscripts, indicating their nonchanging value. It is sometimes
helpful, because of the geometry of the diagram, to have two terminating
circles on a diagram referring to one originating circle, indicating the
equivalent of a junction preceding one terminating circle.

An assertion or information block (see Table 61) contains no informa­
tion of operational significance, but it is only present in order to assert
the validity of certain relationships in the problems, during the course
of control, or to provide useful information for the formulator or reader.
Such boxes will be rectangles "hung" from the control line with the line
itself serving as one side of the rectangle and will contain one or more
equalities, inequalities, or similar relations, as in Table 6f.

A table of variables is purely an explanatory and storage device, simi­
lar to the assertion boxes. It can take two forms; an overall table,
giving sequential values of each floating variable as functions of the
bound variables for each constancy interval, and a running table, in
which portions of the overall table are stored directly adjacent to each
constancy interval. A combination of both may be used, if desired. The
running table of variables is usually attached by a dashed line to the
control line somewhere on the constancy interval, as in Table 6g.

In many practical cases, neither assertion boxes nor tables of variables
will be used by a problem formulator. Nevertheless, in the case of com­
plicated problems, their value cannot be overlooked.

Notation for Constants and Variables. Standard practice in label­
ing is as follows:

1. Constants and variables: Roman letters followed by decimal integer
subscripts.

2. Constants: c's.
3. Arithmetic variables: end-of-the-alphabet letters such as w, x, y, z.
4. Indices: middle-alphabetical characters such as i, j, k, l, m, and n.
The calculation variables are most often free variables, able to be

changed at the beginning of a problem. In the sequence diagram lan-

PROGRAMMING AN,D CODING 2-51.

guage, free variables offer no difficulty; they belong to the same class.
as constants as far as all except initial behavior is concerned, and are
generally changed by operation boxes. Floating variables are not assign­
able from the beginning. Once they are defined in terms of free or
previously defined floating variables, they have the same behavior. When
the values of the bound variables (usually indices) that assume a sequence
of different values during the course of a problem solution change, how­
ever, such variables are ch~nged in actual, although not notational value.
By a change in such an index, therefore, no change is made in the flow
diagram notation, although the actual value of free or floating variables
will change.

A transition point is defined as a point on the control line where the
value or domain of variation of any bound variable changes. The interval
between two consecutive points along the control line will then be called
a constancy interval.. A constancy interval will be marked by transition
points at its beginning and end (sometimes the same point) as in Fig 8.

I f-oE E:-------Constancy interval--------~) I

'------Constancy interval----------J

FIG. 8. Constancy intervals. Problem, form (xo)2N.

Floating variables within such an interval will remain unchanged, at
least when considered as direct, but not indirect, functions of the bound
variable in question.

By virtue of the more generalized definition given here, transition
points will occur at indicial operations boxes. Finally, constancy inter­
vals can be enumerated by a sequential decimal notation similar to the
standard library Dewey decimal system.

Contents of Boxes: The contents of the various operational boxes
shall in all cases express floating or bound variables in terms of other
such variables. Indicial operational boxes, which mark transition points,
if expressing a bound variable as a function of the same bound variable
(in a previous iteration), will use an arrow to indicate that a function of
the value held during the immediately preceding constancy interval for
purposes of calculation is to replace the old value (see Table 6b). A

s = s + aij bjk

Cp(i,k) = s

N-l

Cp(i,k) = 2: aijbjk (i,k=O,l,"',N-l)

j=o
p(i,k) = iN + k

FIG. 9. Flow diagram for multiplication of two matrices.

t-.)

en
t-.)

~
(j)
=i » r-
()
o
~
.."
C
-f
m
;;:0

.."
;;:0

o
(j)
;;:0 »
~
~
Z
(j)

PROGRAMMING AND CODING 2-53

calculational operational box will be a functional equality expressing the
new value as a function of the previous value of the variable being ob­
tained. No confusion will arise here, since floating variables will be direct
functions of indices, whenever they are functions also of themselves. In
such cases, the relationship will be expressed as an equation, with the
new variable to the left of the equality sign.

EXAMPLE. A flow diagram, drawn with the above conventions, is
given for the multiplication of two matrices in Fig. 9.

The problem required is, given two matrices, each stored in a one­
dimensional sequence, to form their product and store it in a similar one­
dimensional storage. The product matrix

n-l

Cik = L: aiibik
i =0

(~k = ~ 1,·· ·,n - 1)

is to be formed so that each element CiT.; is stored in a one-dimensional
position Cp (i, k). This is a practical problem in that all present-day stor­
age can be considered, for practical purposes, one dimensional.

Machine. Application. As the drawing of Fig. 9 is shown it repre­
sents a formulation that may be translated in a static fashion into any
machine instructional code that obeys the assumptions of this chapter.
Certain difficulties will arise in performing such a translation to anyone
particular machine, particularly if an attempt is made to make the coding
process most efficient time-wise or space-wise. For example, in order
to save space, more than one floating variable (temporary value) should
perhaps be stored in one storage position in the particular machine.
Moreover, since there are variants in the formulation of most problems
that will still give perfectly correct solutions, it is probable that some
variants will be particularly suited to direct static coding on one machine,
while other variants will be suitable for others. A programmer who has
gained experience on one particular machine will soon learn to develop
those flow diagram formulation variants that will prove suited to the
particular code required by his machine.

5. MACHINE LOGIC

The modern electronic computer or information processor consists of
the following parts: the control, the storage, the arithmetic and logic
unit, and the input-output unit. The control unit is responsible for the
initiation and monitoring of all computer operations (see Chap. 18).
Instructions from the storage are translated or decoded in the control
unit and as a result the computer performs transfers, computing, logic,
and input-output operations. Hence, transfers into and out of the com­
puter, transfers between the various computer units, and appropriate

2-54 DIGITAL COMPUTER PROGRAMMING

processing of information is automatically carried out as a result of
instruction translation.

Internal Machine Structure

Loop Control. Digital computer programming, in the usual sense,
is the formalization of problem solution for general purpose stored pro­
gram electronic digital computers. Such machines are said to have
loop control if they have the following characteristics:

1. Numbers and instructions are physically indistinguishable as to
storage position and method of storage. The storage may be shared in
any ratio between numbers and instructions.

2. The ability to modify instructions in the computer's arithmetic unit.
This enables the machine to modify £ts own syntax, that is, change its
own logical structure.

3. The passage of control through the sequence of instructions can
be modified on the basis of the contents of one or more accessible posi­
tions inside the machine's storage, arithmetic, or control units. Usually,
the only decision producing information is the sign of the number in a
specified location in the arithmetic unit (accumulator) or equivalently,
the relative size of two numbers in the storage. Other portions of com­
puters that have been used in the past for decision making are external
human;..operated switches, electronic switches operated by other machines
(interrupt features), internal switches operated by overflow and other
error detection devices, etc.

Variahle Instruction Computers. The presence of these loop control
features requires that a machine belong to the class of variable instruction
computers, in which instructions may be changed externally and are not
built into the hardware. This class may be divided into two types, de­
pending on how instructions are modified:

1. Indicial instruction logic, with a separate, special instruction arith­
metic element in addition to the standard arithmetic element for oper­
ating on both numbers and instructions.

2. Ambiguous-word logic, with both number and instruction words
sharing the. same storage and handled only by the same (arithmetic)
processing element.

Indicial Instruction Machines. This design resulted from the need
for two levels of arithmetic, (a) the actual computations themselves and
(b) computations necessary to determine the values of indices and there­
fore addresses of data. Indices are always integers; numerical data will
be manipulated generally as fixed or floating point numbers with a much
larger number of significant figures. Index and address computations,
or "red tape" operations are performed on integers requiring far fewer
significant digits.

PROGRAMMING AND CODING 2-55

Separate arithmetic elements for numbers and instructions work best
on computers with serial storage and transfer of information, since in such
machines arithmetic elements can be inserted in instruction-handling
paths without loss of operating time or large increase in cost. Many
computers with parallel storage and data transfer, however, now have
such separate arithmetic elements.

It should be noted that the computer with purely indicial instruction
logic is virtually nonexistent. Under the definitions given here, most
modern computers, especially those of general purpose, are variable in­
struction computers which are hybrids of the indicial instruction and
ambiguous-word types. Most have ambiguous-word logic and many of
these, in addition, have special capability such as the B box (see below)
which gives them an indicial instruction character.

B Box or Index Register. A B box or automatic instruction modifier
is an example of such a separate arithmetic unit. lYlany artificial instruc­
tion codes (abstractions) use such index registers to speed up hand
programming. A certain portion of every instruction word is used to
designate just how that particular instruction is to be modified with
respect to one or more such special locations, which have been filled with
specified values of an index by previously performed instructions.
Usually the contents of such a special register is added to (or subtracted
from) the address (es) of the instruction. Loop control is obtained by
special instructions performing complex index comparisons combined
with control transfer. Often arithmetic operations themselves can be
performed on the (usually integer) numbers stored in the index registers,
by means of special operations. The proper use of index registers can
save both time and storage space over the methods required when they
are not available.

A rather exceptional case is the "repeat instruction" of the Univac
Model Il03-A (see Sect. 6). This instruction specifies the number of
times the following instruction is to be repeated and how the addresses
are to be modified.

Amhiguous-W ord Manipulations. In this case, instructions are
treated as numbers and operated upon in the common arithmetic unit.
Indices must be stored with the proper scale factors so that they can be
added directly to instructions. Comparisons are now made with respect
to certain comparison instructions which specify the state at the end of
an entire iteration process of an instruction being varied.

Relative Advantages. The use of separate indices and their separate
manipulation in index registers is mathematically more satisfying with
respect to hand programming. 'Vith respect to machine-composed pro­
grams, the optimum use of B registers may make the automatic program­
ming technique itself more complicated. For hand programming, the

2-56 DIGITAL COMPUTER PROGRAMMING

pedagogical difficulties inherent in considering numbers as instructions
and instructions as numbers can raise difficulties in the learning process.

Machine-Level Languages. The instruction code of a digital com­
puter is indeed a command language, obeying all the rules of formal
logical languages, and one that can be studied as such. Machine-level
languages were basically designed for two purposes: (1) to allow control
of machine performance by human beings and (2) to require as little
complex circuitry as possible for mechanizing this control.

The latter condition arose because the original computer designers
were more concerned with building operable machines than the ease of
operation by humans.

Basic Units. The basic unit in a digital computing machine is called
a word. Such a word is an informational unit of more than one digit,
which can be transported as a whole from one part of the machine to
another. Most storage systems, to be used most efficiently, require
manipulation of fixed length groups of digits at one time. Thus most
machines have fixed word lengths and fixed instruction formats. The
advent of variable word length data processing equipment (IBM 702 and
705, Bizmac) have shown designers that storage used ingeniously can
allow variable data groupings. Variable groupings of storage digits into
instructions is planned for new computers such as Stretch and Gamma 60.
In some machines instructions are multiples of one, two, or three standard
lengths.

Each word is given an address or location number. The instruction
words that the machine uses contain one or more addresses or datum
numbers, one or more operations, and numerous modifiers, which can
modify both the address and operation portions of such an instruction.
Machine languages have so far been positional, with location in the
instruction being the identifying tag as to the fashion in which an address
is to be interpreted.

Multi-Address Codes. The instructions with which machines are
supplied serve only to express manipulations on numbers (usually
arithmetic) or in some cases on instructions themselves. The most
general such instructions require a set of basic information:

1. The addresses of the operands or numbers to be operated on.
2. The location or address to which the result is to be sent.
3. The numerical (or logical) operation to be performed.
4. The location or address of the next instruction.
Figure 10 summarizes the structures of the various instruction types

discussed below.
Four-Address Codes. In the simpler arithmetic operations such as

addition, subtraction, multiplication, and division, there are only two

Operation
code

Operation
code

PROGRAMMING AND CODING

First Second
Result operand operand

address
address address

Four-address instruction

First Second
operand operand
address address

Three-address instruction

Operation
First Second

operand operand code
address address

Two-address instruction

Next
Operation Operand instruction

code address

One + one-address instruction

Operation
code

Operand
address

One-address instruction

FIG. 10. Instruction types.

address

2-57

Next
instruction
address

Result
address

operands and one result. Thus, including the location of the next
instruction as an additional address, the most general type of instruc­
tion for the elementary operations mentioned should contain four
addresses. Such a four-address code was originally devised for the
EDV AC and SEAC (Ref. 92). The fourth or subsequent instruction
address has the specific function of allowing minimal access machine
performance if the programmer so desires and it also simplifies changing
or correcting a program in machine language.

Three-Address Codes. With parallel machines, instructions are
normally assumed to be stored in sequential address positions. Random

2-58 DIGITAL COMPUTER PROGRAMMING

access noncyclic storage machines, therefore, can without loss in efficiency
dispense with one of the four addresses, if provision is made for special
instructional operations to provide a change of control if desired. It is
therefore possible for a three-address code in such a machine to be highly
efficient. In addition, numerous cyclic machines have sacrificed the
subsequent address in their instruction codes to obtain simpler formats.
The NORC is a random-access three-address instruction parallel machine
(see Ref. 111); the MIDAC is a machine with cyclic storage and a
three-address instruction code with no subsequent address in its instruc­
tion (see Ref. 25).

Two-Address Codes. If again, by convention, some of the operand
or result addresses required by a three-address code are considered as
fixed locations, it is possible to eliminate one .o.r two other addresses.
Several two-address machines have been designed. Such instruction
logic offers instructions with addresses of one operand and a result, or
an operand and a subsequent address, or combinations of the other
possible variants, with a standard location again being used. The Univac
1103, 1103A, and 1105 are two-address instruction machines (Ref. 103).

Single-Address Instructions. The standard location mentioned above
has most often been called an accumulator by the designers, after the
nomenclature of the ordinary desk calculator. In parallel machines,
it is usually a part of the adder and multiplier, and thus serves an opera­
tional as well as storage purpose. vVith such a storage position, the num­
ber of addresses required in an instruction can be cut to one. In such a
one-address or single-address code, in the simpler arithmetic orders one
operand is by convention in the accumulator, and the result is left in
the accumulator. Separate instructions are needed to store results ob­
tained in the accumulator, when desired.

The trend has been, on the grounds of machine simplicity and simplicity
of coding, toward single-address machines. Examples are the Univac I
and II, the SAGE System Air Defense Computers, the IBM 700 Series,
and the "Princeton Class" of equipments.

Machines have even been proposed with no addresses, but rather
operands themselves, stored in the instructions.

One-Plus-One Address Codes. In the one-plus-one addressing pro­
c~.dure, each instruction has a basic single-address format, but also
includes a second address to be used to designate the location of the next
instruction to be performed. This allows minimal access programming
with the cyclic storage system on a magnetic drum. The IBM 650 is a
machine with such a structure (Ref. 102).

Circulating Loops. A method used with single-address magnetic
drum computers to provide efficiency comparable to the one-plus-one

PROGRAMMING AND CODING 2-59

addressing system is the use of the circulating loop which provides a
smaller, more rapid access storage region where instructions may be
performed, and data stored and retrieved. The presence of such a smaller,
speedier storage system, surrounded by a larger, slower storage region,
provides an example of the storage hierarchy problem in programming.
(See Ref. 32.)

A "Best" Addressing System. Programmers and designers have long
argued the merits of one or the other instruction format for programming
ease and ease of machine construction and design. A formal study was
made by Elgot (Ref. 33), who compared single-address versus three­
address codes with results interpretable in favor of either system depend­
ing upon the measures of effectiveness to be used. The advent of newer
storage systems and automatic programming techniques involving trans­
lation from extremely flexible external languages has generally eliminated
the controversy. Future designs will depend on: (1) ease of design
compatibility of instructions with hardware and (2) ease of machine
programming of itself (automatic programming, see Sects. 8 to 15) in
the most efficient manner, rather than the ease of human hand pro­
gramming. Experience with all systems of instruction logic would
indicate that extreme flexibility would probably be most compatible
with (2), if not with (1).

Operations. Usually, each instruction contains only one operation,
although attempts have been made on some machines (such as the
Illinois computer, ILLIAC) (Ref. 56), to systematize the instructions,
in that they are actually made up of a number of separate commands
which can be combined in a straightforward manner into one operation.
There are six different types of operations that are usually available, as
given below.

Operating Types.

1. Arithmetic Operations. These include the four basic operations of
addition, subtraction, multiplication, and division, with several variants;
scale-factoring or numerical normalization operations; number shifting
by multiplication by powers of the radix, and special purpose combina­
tions of all of these.

2. Digital Logical Operations. These operations include means of
replacing specific digits of one number by those of another, circular
shifting of numerical storage, and various operations to aid in the
modification of instructions, such as address substitution, and storage
of the present address of control for later use.

3. Decision Operations. Most computers make use of the sign of
numbers or a comparison with zero to effect assignment of the next step

2-60 DIGITAL COMPUTER PROGRAMMING

of control to one of two locations in the storage. Such assignment may
be made after forming differences of numbers or of the absolute values of
numbers in the multiaddress machines. Other instructions will cause
the machine to repeat subsequent instructions one or more times depend­
ent on contents of certain registers, etc.

4. Change of Control Operations. In addition to the conditional
change of control operations given under (3), it is usually useful to have
an unconditional change of control operation available to provide for
jumps in the instructional sequence. Even so, conditional change of
control operations can be used by means of forced comparisons to pro­
vide unconditional control transfers.

5. Storage and Input-Output Operations. In machines with accu­
mulators, it is usually necessary to provide operations permitting storage
of the accumulator contents, Similarly, with machines with more than
one (high-speed and medium-speed, for example) type of storage, instruc­
tions are required to transfer information back and forth. Access to
the external read and write devices must also be controlled by special
input-output operations.

6. Indexing Operations. These are used with the index registers to
alter, in the control unit, just prior to execution, the address or addresses
of the instruction to be performed. Generally the instruction in storage
itself is not changed. Indexing operations may be involved with de­
cisions (ending an iteration after a count down in an index register), and
with input-output (using the contents of an index register to specify
where the next input is to be stored, etc.). Included in this category are
operations specifically designed to alter instruction operands in machines
without index registers.

Complexity of Operations. Square roots and trigonometric functions
can be built in as operations in any machine, but this is not usually done.
An exception is the Soviet computer Strela, described in Sect. 6. Such
functions, and others like them, can be formed satisfactorily by purely
coded methods. The gain in shorter performance time and in decreased
instructional storage over coded methods for such built-in operations has
not overcome the increased cost of equipment.

Finally, the use of synthetic instructions as part of assembly programs
provides a method to effectively increase the computer's repertoire of
instructions without the necessity of building in further machine "hard­
ware." Such coded tools may tend to provide more operations in future
machines, without added machine cost.

Address Modification M;ethods. In the indicia 1 instruction machines,
some of which also allow ambiguity in the words used, a special portion
of each instruction is used as an address modifier, to indicate whether

PROGRAMMING AND CODING 2-61

or not an address or addresses are to be modi1led before the instruction
is performed. This modification usually consists of (a) addition or
subtraction of a B line, base counter, or index register to or from the
address before it is used to select a particular word, or (b) the use of
an index register to perform automatic counting for inductive loops, 01'

to store return addresses for use with side passages through subroutines
or precoded, pretested standard coded functional operations.

More than one index register may be included to allow numerous loop
paths of control. If only one is available, provisions are usually made
to exchange its contents with that of an address in the other available
storage. If considered in index notation, such B line devices provide an
easy means for almost direct static translation for the notation of
numerical analysis, without the intervention of a flow diagram.

Breakpoint Notations. Some machines provide breakpoint informa­
tion in an instruction. This usually consists of one binary digit or a
decimal digit value that can be used to indicate special action-usually
special printing of several of the significant pieces of information in a
particular instruction. The latter process, termed "automonitoring" by
some groups, and "mistake or error diagnosis," or "checking" by others,
combined with the special breakpoint behavior provides useful running
information of a program's progress. Most machines do not include this
feature built-in, but use programmed "trace" routines to provide a run­
ning account of the performance of the problem.

Word Length and Instruction Types. Most computers, especially
those for scientific and engineering calculations, have a word length which
depends on the number length desired for arithmetic operations. Usually
this is 10-13 decimal digits or 36-44 binary digits. With this requirement
met, instructions are fitted into the basic structure as appropriate.

The number of digits required to describe the operations and the
addresses in a single-address instruction of course depends on the number
of operations and addresses involved. In early single-address computers
two instructions were placed in one 36-bit word, 18 bits being sufficient
to describe, say, 128 operations (7 binary digits) and 2048 addresses (11
binary digits). When greater instruction repertories and greater storage
capacities become important, only one instruction per word could be
provided for in a 36-bit word. At the same time the need grew for other
binary digits in the word for address modification, breakpoint def­
inition, etc. Thus, the single-address instruction "grew into" the 36-bit
word.

Greater instruction flexibility and greater storage systems are placing
more pressure on increasing the word length of computers now under
design. These factors have now replaced the considerations of number

2-62 DIGITAL COMPUTER PROGRAMMING

size in arithmetic operations in providing the principal criterion for word
length.

Various instruction system formats are as follows:
1. The Princeton design (Ref. 19) places two instructions in one

word, leaving the number as the standard unit of information, and enu­
merating instructions by the word address plus a separate designator for
right- or left-hand instructional position. Such a scheme leads to un­
usual conventions to be used with instructions, such as requirements
that changes of control must be made to left-hand instructions only,
etc.

2. The EDSAC design (Ref. 108), later used on the IBM 701 (Refs.
71 and 87), treats the shorter single-address instruction as the basic
element with standard addresses, and may provide for two types of num­
bers, short and long, the first the length of the instruction, the second
twice as long. Here conventions are again necessary to meet the physical
nature of the structure; for example, long numbers must always have even
addresses. Type 701 machines using larger storage units must use an
even more complex address-instruction-word numbering relationship.

3. The Whirlw1:nd I design (Ref. 57) arbitrarily made the instruction
and number length the same, 16 binary (approximately 4 to 5 decimal)
digits. For useful computation it is necessary to combine two or more
words through programmed methods to provide a satisfactory number
length. Only high speed, however, allows such programmed operation
without a disastrously low final speed.

4. Later designs, such as the IBM 704, 709, STRETCH, UNIVAC­
LARC, and Datatron 205-220 machines, have kept the single-address
structure in each instruction word, but have used the large number of
digits available to allow for larger amounts of storage to be addressed,
many index registers, access to more than one accumulator, and other
special control features.

Use of Instructions. Many problems solved on scientific calculators
make little use of 'other than the arithmetic operations.

Examples. (1) In a study of three typical small scientific problems
performed on the MANIAC (a Princeton type computer) at the Los
Alamos Scientific Laboratory of the Atomic Energy Commission, Herbst,
Metropolis, and Wells (Ref. 112) noted that no input-output transfer to
magnetic drums or. magnetic tapes occurred. In a hydrodynamics prob­
lem (the numerical solution of a multidimensional partial differential
equation), almost 65% of the total computing time was devoted to
multiplication and division.

(2) In business qata processing programs, about 60% of the time is
spent in data manipulation not involving arithmetic.

PROGRAMMING AND CODING 2-63

Small scientific problems, termed process limited, or computer lim,ited,
are limited by calculating speed and the effectiveness of arithmetic cod­
ing. As the size of the scientific problem increases relative to available
storage, the storage hierarchy problem enters in, and the quantity of
input-output instructions goes up. Such scientific problems like the
business data processing problems, called tape limited, or input-output
limited, are limited by the efficiency of the input-output devices and the
coding used in that area.

6. INSTRUCTION LOGIC OF COMMON COMPUTERS

This section describes the instruction logic of some of the common com­
puters. The set of descriptions includes scientific and business machines of
both large and small scale. Table 7 shows some of the features of common
computers. The instruction logic is given for the following computers:

Computer

IBM 704
Univac Scientific 1l03A
Univac II
IBM 650
Datatron 205
Bendix G-15D

Royal-McBee LGP-30
Soviet Strela
MIDAC
EASIAC

Page
2-63
2-77
2-83
2-93
2-98

See Intercom example,
Interpreters, Sect. 14

2-109
2-111
2-115
2-122

MIDAC is included as an illustration of a three-address instruction
machine. EASIAC is an interpretive routine for MIDAC and is included
as an example of that form of programming.

Instruction Logic of the IBM 704

The IBM 704 is a binary digital computer with fixed or floating point
arithmetic and either a (27, 7, 0) or (35, 0, 0) "digital" (absolute value
less than one) number system. N umbers are stored in absolute value form.
There are available from 4096 to 32,768 locations of high-speed (magnetic
core) as well as up to 16,384 words of nonaddressable magnetic drum.
storage. Up to ten magnetic tape units with up to 900,000 machine words
(each of 36 bits) are available as secondary storage, which can be trans­
ferred in or out, after the tape is in motion, at the rate of 2500 words per
second.

Input-output is via 80-column punched cards either direct or through
peripheral equipment to and from magnetic tape. A high-speed printer and
a cathode ray tube display are also available for output.

TABLE 7. FEATURES OF COMMON COMPUTERS

Numher Number
System, Word Triad Operating

Computer Operation Size (m, n, p)a Instructionsb Speedc Maximum Storage

IBM 704 Binary, parallel 36 bits (27, 7, 0) or Single address two per word; +: 84 JLsec Cores, 32,768 words,
(35, 0, 0) 86 operations, X: 200 JLsec drums, 16,384 words,

index register tapes, 10
IBM 705 Alphanumeric, Variable (m, 0, 0) Single address, +: 200 JLsec Cores, 20,~00 char-

serial m variable 35 operations X : 2480 JLsec acters,
(10 dig. dec. nos.) tapes, 10

Univac Binary, parallel 36 bits (35, 0, 0) or Two address, +: 48 JLsec Cores, 4096 words,
1103A (27, 8, 0) 50 operations X: 266 JLsec tapes, 10
Univac II Alphanumeric, 12 decimal (12, 0, 0) Single address, two per word; +: 400 JLsec Cores, 10,000 words,

serial digits 63 operations X : 2100 JLsec tapes, 16
IBM 650 Decimal, serial 10 decimal (10, 0, 0) One-pIus-one address, 2.4 msec Drum, 2000 words,

digits 70 operations, average tapes, 6
1 to 3 index registers access time

Datatron 205 Decimal, serial 10 decimal (10, 0, 0) Single address, 8.5 msec or Drum, 4000 words,
digits 55 operations, 0.85 msec aver- tapes, 10

index register age access time
Bendix G-15 Binary, serial 29 bits (28, 0, 0) Two-pIus-one address 14.5 msec or Drum, 2176 words,

0.54 msec aver- tapes, 4
age access time

Royal McBee Binary, serial 32 bits (30, 0, 0) Single address 9 msec average Drum, 4096 words
LGP-30 access time
Soviet Strela Binary, parallel 43 bits (35, 6, 0) Three address 220-500 JLsec Cores, 2048 words

Drums, 5120 words
MIDAC Binary, serial 45 binary (44, 0, 0) Three address, 19 opera tions, +: 192 JLsec Acoustic, 512 words

digits index registers X : 2304 JLsec Drum, 24,576 words

a Number triad (m, n, p):
m = significant digits representing the fractional part of a number,
n = digits in the exponent of the number (n = 0 is a fixed point computer, n > 0 is a floating point machine),
p = digits to the left of the radix point (p = 0 means all numbers have absolute value less than 1; such numbers are called

"digital" numbers).
b One instruction per word unless noted.
C For computers with circulating storage only the average access time is given.

to.)

0..
~

0
(fi
=i
> r-
()
0
~
""C
C
-t
m
;;:c.

""C
;;:c
0
(j)
;;:c
»
~
~
Z
(j)

PROGRAMMING AND CODING 2-65

Instruction Description. This machine has three index registers
and has only one single-address instruction stored per word. There are two
types of instructions, A and B. Type A instructions contain a fifteen-bit
address portion and a fifteen-bit "decrement" portion (the latter for
index use in certain cases) as well as a three-bit operation portion and a
three-bit "tag." Type B instructions contain an eleven-bit operation
portion, a three-bit tag, and a fifteen-bit address portion.

Instructions are either indexable or nonindexable. Presence of one or
more of the three tag bits automatically adds in the contents of the corre­
sponding index registers into the instruction address. In certain type B
instructions this process will change the operation code as well.

There are two arithmetic elements, an accumulator (AC) of 37 bits plus
sign and a multiplier-quotient register (MQ) of 35 bits plus sign. The
two extra AC bits are for special overflow information. Instruction
sequencing is of the standard single-address type. The IBM 704 has a
special operational mode, the "Trapping Mode," into which it may be
transferred by a special instruction. This allows machine tracing of
programs by observing the flow of control automatically without detailed
interpretation.

Type A instructions are written in the form:

TNX 02301 B 03449

where the three-letter code indicates the operation, the first five-digit
decimal code the decrement to be used with the index registers, the next
letter, one or more of the three index registers (A, B, or C), and the last
five-digit decimal code the address.

Type B instructions are written usually as

SLW C 2644

where the decrement field is now omitted. In some cases, type B in­
structions do not have tag locations.

The following list of instructions for the IBM 704 is taken from a "Man­
ual of Operation" (Ref. 54). Notation is standard, C(Y) indicating
contents of location Y, and subscripts corresponding to specific digits.
S, P, Q are the sign and two overflow digits of AC, respectively.

All instructions are indexable except those with an X in the operation
code, designating an index register. The four digits alongside each
mnemonic operation indicate the octal operation equivalent. In cases
where the operation code extends into the address, there may be more
than four digits. The first integer gives the number of cycles (each of
12 microseconds) for performance of the instruction. The detailed han­
dling of overflow and floating point zero is not included in this account, nor
is a complete account of the problems of normalization.

2-66 DIGITAL COMPUTER PROGRAMMING

Fixed Point Arithmetic Operations.

Clear and Add. 2 CLA Y +0500. The C (Y) replace the
C(AC)S,I-35. Positions Q and P of the AC are cleared. The C(Y) are
unchanged.

Add. 2 ADD Y +0400. This instruction algebraically adds
the C(Y) to the C(AC) and replaces the C(AC) with this sum. The C(Y)
are unchanged. AC overflow is possible.

Add Magnitude. 2 ADM Y +0401. This instruction alge­
braically adds the magnitude of the C (Y) to the C (AC) and replaces the
C (AC) with this sum. The C (Y) are unchanged. AC overflow is possible.

Clear and Subtract. 2 CLS Y +0502. The negative of the
C (Y) replaces the C (AC)S,I-35. Positions Q and P of the AC are cleared.
The C (Y) are unchanged.

Subtract. 2 SUB Y +0402. This instruction algebraically
subtracts the C(Y) from the C(AC) and replaces the C(AC) with this
difference. The C (Y) are unchanged. AC overflow is possible.

Subtract Magnitude. 2 SBM Y - 0400. This instruction
algebraically subtracts the magnitude of the C(Y) from the C(AC) and
replaces the C (AC) with this difference. The C (Y) are unchanged. AC
overflow is possible.

Multiply. 20 MPY Y +0200. This instruction multiplies the
C(Y) by the C(MQ). The 35 most significant bits of the 70-bit product
replace the C (ACh-35 and the 35 least significant bits replace the
C (MQ) 1-35. The Q and P bits are cleared. The sign of the AC is the
algebraic sign of the product. The sign of the MQ agrees with the sign
of the AC.

Multiply and Round. 20 MPR Y -0200. This instruction
executes a multiply followed by a round. (The latter operation is defined
below.) AC overflow is not possible.

Round. 2 RND +0760···010. If position 1 of the MQ con­
tains a 1, the magnitude of the C(AC) is increased by a 1 in position 35.
If position 1 of the MQ contains a zero, the C(AC) remain unchanged.
In either case, the C (MQ) are unchanged. AC overflow is possible.

Divide or Halt. 20 DVH Y +0220. This instruction treats
the C(AC)S,Q,P,I-35 and the C(MQ)I-35 as a 72-bit dividend plus sign, and
the C(Y) as the divisor. If IC(Y)I > IC(AC)I, division takes place, a
35-bit quotient plus sign replaces the C(MQ) and the remainder replaces
the C(AC)S,I_35. The sign of the remainder always agrees with the sign
of the dividend.

If IC(Y)I ~ IC(AC)I, division does not take place and the calculator
stops with the divide-check indicator and light on. Consequently, if po-

PROGRAMMING AND CODING 2-67

sition Q or P of the AC contains a 1, division does not take place since
IC(Y)I < IC(AC)I. The dividend remains unchanged in the AC.

Divide or Proceed. 20 DVP Y +0221. This instruction exe­
cutes a division (as defined above) if IC(Y)I > IC(AC)I. If IC(Y)I ~
I C (AC) I, division does not take place, the divide-check indicator and light
are turned on, and the calculator proceeds to the next instruction. The
dividend remains unchanged in the AC.

Load MQ. 2 LDQ Y +0560. The C(Y) replace the C(MQ).
The C (Y) are unchanged.

Store MQ. 2 STQ Y -0600. The C(MQ) replace the C(Y).
The C (MQ) are unchanged.

Store Left-Half MQ. 2 SLQ Y -0620. The C(MQ)S,l-17
replace the C(Y)S,l-17. The C(Y)18-35 and the C(MQ) are unchanged.

Store. 2 STO Y +0601. The C(AC)S,l-35 replace the
C(Y)S,l-35. The C(AC) are unchanged.

Store Zero. 2 STZ Y +0600. The C (Y) are replaced by
zeros and the sign of Y is made plus.

. Store Prefix. 2 STP Y +0630. The C(AC)P,l,2 replace the
C(Y)S,l,2' The C(Y)3-35 and the C(AC) are unchanged.

Store Decrement. 2 STD Y +0622. The C(AC)3-17 replace
the C(Yh-17. The C(Y)S,l,2,18-35 and the C(AC) are unchanged.

Store Address. 2 STA Y +0621. The C(AChl-35 replace the
C(Yhl-35. The C(Y)S,l-20 and the C(AC) are unchanged.

Clear Magnitude. 2 CLM +0760···000. The C(AC)Q,P,l-35
are cleared. The AC sign is unchanged.

Change Sign. 2 CHS +0760··· OO~. If the AC sign bit is
negative, it is made positive, and vice versa.

Set Sign Plus. 2 SSP +0760··· 003. A positive sign replaces
the C(AC)s.

Set Sign Minus. 2 SSM - 0760 ... 003. A negative sign
replaces the C (AC)s.

Logical Operations.

Clear and Add Logical Word. 2 CAL Y - 0500. This in­
struction replaces the C(ACh,l-35 with the C(Y). Thus the sign of the
C (Y) appears in position P of the AC, and the Sand Q bits are cleared.
The C (Y) are unchanged.

Add and Carry Logical Word. 2 ACL Y +0361. This in­
struction adds the C(Y)S,l-35 to the C(AC)P,l-35, respectively, and re­
places the C(AC)P,1~35 with this sum (position S of register Y is treated as
a numerical bit, and the sign of the AC is ignored). A carry out of the P

2-68 DIGITAL COMPUTER PROGRAMMING

bit adds into position 35 of the AC, but does not add into Q. Q is not
changed. The C (Y) are unchanged. No overflow is possible.

Store Logical Word. 2 SLW Y +0602. The C(AC)P,1-35
replace the C(Y)S,1-35. The C(AC) are unchanged.

AND to Acculllulator. 3 ANA Y -0320. Each bit of the
C(AC)P,1-35 is matched with the corresponding bit of the C(Y)S,1-35, the
C(AC)p being matched with the C(Y)s. When the corresponding bit of
both the AC and location Y is a one, a one replaces the contents of that
position in the AC. When the corresponding bit of either the AC or
location Y is a zero, a zero replaces the contents of that position in the AC.
The C(AC)s,Q are cleared. The C(Y) are unchanged.

AND to Storage. 4 ANS Y +0320. Each bit of the
C(AC)P,I-35 is matched with the corresponding bit of the C(Y)S,I-35,
the C(AC)p being matched with the C(Y)s. When the corresponding bit
of both the AC and location Y is a one, a one replaces the contents of that
position in location Y. When the corresponding bit of either the AC or
location Y is a zero, a zero replaces the contents of that position in location
Y. The C(AC) are unchanged.

OR to Acculllulator. 2 ORA Y -0501. Each bit of the
C(AC)P,I-35 is matched with the corresponding bit of the C(Y)S,I-35, the
C (AC)p being matched with the C (Y)s. When the corresponding bit of
either the AC or location Y is a one, a one replaces the contents of that
position in the AC. When the corresponding bit of both the AC and
location Y is a zero, a zero replaces the contents of that position in the AC.
The C(Y) and the C(AC)s,Q are unchanged.

OR to Storage. 2 ORS Y -0602. Each bit of the C(AC)P,I-35
is matched with the corresponding bit of the C(Y)S,1-35, the C(AC)P being
matched with the C (Y)s. When the corresponding bit of either the AC or
location Y is a one, a one replaces the contents of that position in location
Y. When the corresponding bit of both the AC and location Y is a zero,
a zero replaces the contents of that position in location Y. The C(AC)
are unchanged.

COlllplelllent Magnitude. 2 COM +0760··· 006. All ones
are replaced by zeros and all zeros are replaced by ones in the C(AC)Q,P,I-35.
The AC sign is unchanged.

Shift Operations. Shift instructions are used to move the bits in a
word to the right or left of their original positions in the ACor MQ register
or both. With the exception of the RQL instruction, zeros are automati­
cally introduced in the vacated positions of a register. Thus, a shift larger
than the bit capacities of the registers involved in the shifting will have no
significance after the capacities of the registers are exceeded. When an
instruction is interpreted as a shift instruction, the extent of the shift is

PROGRAMMING AND CODING 2-69

determined by the least significant eight bits of the address of the in­
struction. Since the maximum possible shift is 255, a number larger than
255 in the address part of a shift instruction is interpreted modulo 256.

Acculllulator Lcft Shift. 2-1 ALS Y +0767. The C(AC)Q,P,1-35
are shifted left Y modulo 256 places. If a nonzero bit is shifted into or
through position P, the AC overflow indicator and light are turned on.
Bits shifted past position Q are lost. Positions made vacant are filled in
with zeros.

Acculllulator Right Shift. 2-1 ARS Y +0771. The
C(AC)Q,P,1_35 are shifted right Y modulo 256 places. Bits shifted past
position 35 of the AC are lost. Positions made vacant are filled in with
zeros.

Long Lcft Shift. 2-1 LLS Y +0763. The C (AC)Q,P,1-35 and
the C(MQh-35 are shifted left Y modulo 256 places. Bits enter position
35 of the AC from position 1 of the MQ. If a nonzero bit is shifted into or
through position P, the AC overflow indicator and light are turned on.
Bits shifted past position Q are lost. Positions made vacant are filled in
with zeros. The sign of the AC is replaced by the same sign as that of
the MQ.

Long Right Shift. 2-1 LRS Y +0765. The C(AC)Q,P,1-35
and the C (MQh-35 are shifted right Y modulo 256 places. Bits enter
position 1 of the MQ from position 35 of the AC. Bits shifted past position
35 of the MQ are lost. Positions made vacant are filled in with zeros.
The sign of the MQ is replaced by the same sign as that of the AC.

Logical Lcft. 2-1 LGL Y -0763. The C(AC)Q,P,1-35 and the
C(MQ)S,1-35 are shifted left Y modulo 256 places. Bits enter position S
of the MQ from position 1 of the MQ, and enter position 35 of the AC from
position S of the MQ. If a nonzero bit is shifted into or through position P
of the AC, the AC overflow indicator and light are turned on. Bits shifted
past position Q are lost. Positions made vacant are filled in with zeros.
The sign of the AC is unchanged.

Rotatc MQ Lcft. 2-1 RQL Y -0773. The C(MQ)S,1-35 are
rotated left Y modulo 256 places. The bits rotate from position 1 to
position S of the MQ, and from position S to position 35 of the MQ.

Floating Point Arithlllctic Opcrations.

Floating ADD. 7-11 FAD Y +0300. The C(Y) are alge­
braically added to the C(AC), and this sum replaces the C(AC) and the
C(MQ). The C(Y) are unchanged. The fractional part of the product is
normalized to between Y2 and 1 in absolute value.

During execution of a floating point addition, the AC or MQ overflow
indicator and the corresponding light on the operator's cons0le are turned

2-70 DIGITAL COMPUTER PROGRAMMING

on by too large a characteristic or too small a characteristic in the AC or
the MQ, respectively.

Unnormalized Floating Add. 6-11 UFA Y -0300. Same
as floating add except the resultis not normalized.

Floating Subtract. 7-11 FSB Y +0302. Same as floating
add except that the negative of the C(Y) is added.

Unnormalized Floating Subtract. 6-11 UFS Y -0302.
Same as floating subtract except that the result is unnormalized.

Floating Multiply. 17 FMP Y +0260. The C(Y) are multi­
plied by the C(MQ). The most significant part of the product appears in
the AC and the least significant part appears in the MQ.

The product of two floating point numbers is in normalized form if
the multiplier and multiplicand are in this form. If either the multiplier or
multiplicand is not in normalized form, the product is in normalized form
only if a shift of one place is sufficient to normalize· it.

During execution of floating point multiplication, too large or too small
a characteristic in the AC or the MQ, respectively, turns on the AC or the
MQ overflow indicator and the corresponding light on the operator's
console.

Unnormalized Floating Multiply. 17 UFM Y -0260.
This operation is the same as floating multiply except that no shifting is
included.

Floating Divide or Halt. 18-IV FDH Y +0240. The C (AC)
are divided by the C(Y), the quotient appears in the MQ and the remainder
appears in the AC. The MQ is cleared before actual division takes place.

If positions Q or P of the AC are not zero, division may take place and
either or both of the AC and/or MQ overflow indicators may be turned on.
When division by zero is attempted, the divide-check indicator and light
are turned on and the calculator stops, and the dividend is left unchanged
in the AC. The quotient is in normalized form if both divisor and dividend
are in that form. If divisor or dividend or both are not in normalized form,
the quotient is in normalized form if

2IC(Y)9-351 > IC(AC)9-351 ~ !IC(Y)9-351

During execution of a floating point division, t:he ,AC or MQ overflow
indicator and the corresponding light on the operator's console are turned
on for too large or too small a characteristic in the AC or MQ ,respectively.

Floating Divide or Proceed. 18-IV· FDP Y +0241. This
operation is the same as floating divide or halt except for division by zero.

When division by zero is attempted, the divide-check indicator and light
are turned on, division does not take place and the calculator proceeds to
the next instruction. If the magnitude of the fraction in the AC is greater

PROGRAMMING AND CODING 2-71

than (or equal to) twice the magnitude of the fraction in the SR, the divide­
check indicator and light are turned on, division does not take place and
the calculator proceeds to the next instruction. The dividend in the AC is
unchanged.

Control Operations.

No Operation. 2 NOP +0761. The calculator takes the next
instruction in sequence.

Halt and Proceed. 2 HPR +0420. This instruction causes the
calculator to stop. If the start key on the operator's console is depressed,
the calculator proceeds to the next instruction in sequence.

Enter Trapping Mode. 2 ETM +0760···007. This instruc­
tion turns on the trapping indicator and also the trap light on the operator's
console. The calculator operates in the trapping mode until a leave trap­
ping mode operation is executed or until either the clear or reset key is
pressed on the console.

Leave Trapping Mode. 2 LTM -0760···007. This instruc­
tion turns off the trapping indicator and the trap light on the operator's
console. The calculator will not operate in the trapping mode until another
enter trapping mode operation is executed.

Note. When the calculator is operating in the trapping mode, the
location of every transfer instruction (except trap transfer instructions)
replaces the address part of location 0000, whether or not the conditions for
transfer of control are met. If the conditions are met, the calculator takes
the next instruction from location 0001 and proceeds from that point. The
location of each transfer instruction replaces the address part of location
0000.

Halt and Transfer. 2 HTR Y +0000. This instruction stops
the calculator. When the start key on the operator's console is depressed,
the calculator starts again, taking the next instruction from location Y
and proceeding from there.

Transfer. 2 TRA Y +0020. This instruction causes the cal­
culator to take its next instruction from location Y, and to proceed from
there.

Transfer on Zero. 2 TZE Y +0100. If the C(AC)Q,P,1-35
are zero, the calculator takes its next instruction from location Y and
proceeds from there. If they are not zero, the calculator proceeds to the
next instruction in sequence.

Transfer on No Zero. 2 TNZ Y -0100. If the C(AC)Q,P,1-35
are not zero, the calculator takes its next instruction from location Y and
proceeds from there. If they are zero, the calculator proceeds to the next
instruction in sequence.

2-72 DIGITAL COMPUTER PROGRAMMING

Transfer on Plus. 2 TPL Y +0120. If the sign bit of the AC
is positive, the calculator takes the next instruction from location Y and
proceeds from there. If the sign bit of the AC is negative, the calculator
proceeds to the next instruction in sequence.

Transfer on Minus. 2 TMI Y -0120. If the sign bit of the
AC is negative, the calculator takes the next instruction from location Y
and proceeds from there. If the sign bit of the AC is positive, the calculator
proceeds to the next instruction in sequence.

Transfer on Overflow. 2 TOV Y +0140. If the AC overflow
indicator and light are on as the result of a previous operation, the indicator
and light are turned off and the calculator takes the next instruction from
location Y and proceeds from there. If the indicator and light are off,
the calculator proceeds to the next instruction in sequence.

Transfer on No Overflow. 2 TNO Y -0140. If the AC over­
flow indicator and light are off, the calculator takes the next instruction
from location Y and proceeds from there. If the indicator and light are on,
the calculator proceeds to the next instruction in sequence after turning
off the indicator and light.

Transfer on MQ Plus. 2 TQP Y +0162. If the sign bit of the
MQ is positive, the calculator takes the next instruction from location Y
and proceeds from there. If the sign bit of the MQ is negative, the cal­
culator proceeds to the next instruction in sequence.

Transfer on MQ Overflow. 2 TQO Y +0161. If the MQ
overflow indicator and light have been turned on by an overflow or under­
flow in the MQ characteristic during a previous floating point operation,
the indicator and light are turned off, the calculator takes the next instruc­
tion from location Y and proceeds from there. If the indicator and light
are not on, the calculator proceeds to the next instruction in sequence.

Transfer on Low MQ. 2 TLQ Y +0040. If the C(MQ) are
algebraically less than the C(AC), the calculator takes the next instruction
from location Y and proceeds from there. If the C (MQ) are algebraically
greater than or equal to the C (AC), the calculator proceeds to the next
instruction in sequence.

Transfer and Set Index. 2 TSX Y +0074. Not indexable.
This instruction places the 2's complement of the location of this instruction
in the specified index register. The calculator takes the next instruction
from location Y and proceeds from there.

The 2's complement is used in this instruction because indexing is a
subtractive process on the IBM 704 and subtracting the 2's complement of
a number is equivalent to adding the number.

Transfer with Index InereIllented. 2 TXI Y +1000. Not
indexable. Contains a decrement part. This instruction adds the decre-

PROGRAMMING AND CODING 2-73

ment to the number in the specified index register and replaces the num­
ber in the index register with this sum. The calculator takes the next
instruction from location Y and proceeds from there.

Transfer on Index High. 2 TXH Y +3000. Not indexable.
Contains a decrement part. If the number in the specified index register is
greater than the decrement, the calculator takes the next instruction from
location Y and proceeds from there.

If the number in the specified index register is less than or equal to the
decrement, the calculator proceeds to the next instruction in sequence.

Transfer on Index Low or Equal. 2 TXL Y - 3000. Not
indexable. Contains a decrement part. If the number in the specified
index register is less than or equal to the decrement, the calculator takes
the next instruction from location Y and proceeds from there.

If the number in the specified index register is greater than the decrement,
the calculator proceeds to the next instruction in sequence.

Transfer on Index. 2 TIX Y +2000. Not indexable. Con­
tains a decrement part. If the number in the specified index register is
greater than the decrement, the number in the index register is reduced by
the amount of the decrement, and the calculator takes the next instruction
from location Y and proceeds from there.

If the number in the specified index register is equal to or less than the
decrement, the number in the index register is unchanged, and the calcu­
la tor proceeds to the next instruction in sequence.

Transfer on No' Index. 2 TNX Y -2000. Not indexable.
Contains a decrement part. If the number in the specified index register is
equal to or less than the decrement, the number in the index register is
unchanged, the calculator takes the next instruction from location Y and
proceeds from there.

If the number in the specified index register is greater than the decre­
ment, the number in the index register is reduced by the amount of
the decrement and the calculator proceeds to the next instruction in
sequence.

Trap Transfer. 2 TTR Y +0021. This instruction causes the
calculator to take its next instruction from location Y and to proceed from
there whether in the trapping mode or not. This makes it possible to have an
ordinary transfer even when in the trapping mode.

P Bit Test. 2 PBT -0760···001. If the C(AC)p is a one,
the calculator skips the next instruction and proceeds from there. If
position P contains a zero, the calculator takes the next instruction in
sequence.

Low Order Bit Test. 2 LBT +0760··· 001. If the C (ACh5
is a one, the calculator skips the next instruction and proceeds from there.

2-74 DIGITAL COMPUTER PROGRAMMING

If position 35 contains a zero, the calculator takes the next instruction in
sequence.

Divide Checl{ Test. 2 DCT +0760··· 012. If the divide-check
indicator and light are on, the indicator and light are turned off, and the
calculator takes the next instruction in sequence. If the indicator and light
are off, the calculator skips the next instruction and proceeds from there.

Redundancy Tape Test. 2 RTT -0760··· 012. If the tape­
check indicator and light are on, the indicator and light are turned off and
the calculator takes the next instruction in sequence. If the indicator and
light are off, the calculator skips the next instruction and proceeds from
there.

COlllpare Acculllulator with Storage. 3 CAS Y +0340.
If the C(Y) are algebraically less than the C(AC), the calculator takes the
next instruction in sequence. If the C (Y) are algebraically equal to the
C (AC), the calculator skips the next instruction and proceeds from there.
If the C(Y) are algebraically greater than the C(AC), the calculator skips
the next two instructions and proceeds from there. Two numbers are
algebraically equal when the magnitude of the numbers and the sign are
both equal. A plus zero is algebraically larger than a minus zero.

Indexing Operations.

Load Index frolll Address. 2 LXA Y +0534. Not indexable.
The address part of the C (Y) replaces the number in the specified index
register. The C (Y) are unchanged.

Load Index frolll Decrelllent. 2 LXD Y -0534. Not in­
dexable. The decrement part of the C(Y) replaces the number in the
specified index register. The C(Y) are unchanged.

Store Index in Decrelllen t. 2 SXD Y - 0634. Not index­
able. The C (Y)a-17 are cleared and the number in the specified index
register replaces the decrement part of the C(Y). The C(Y)S,l,2,18-35 are
unchanged. The contents of the index register are unchanged if one index
register is specified. If a multiple tag is specified, the logical or of the
contents of these index registers will replace the C (Y)a-17 and will also
replace the contents of the specified index registers.

Place Address in Index. 2 PAX +0734. Not indexable. The
address part of the C(AC) replaces the number in the specified index
register. The C(AC) are unchanged.

Place Decrelllent in Index. 2 PDX -0734. Not indexable.
The decrement part of the C (AC) replaces the number in the specified
index register. The C (AC) are unchanged.

Place Index in Dccrelllent. 2 PXD -0754. Not indexable.
The AC is cleared and the number in the specified index register is placed

PROGRAMMING AND CODING 2-75

in the decrement part of the AC. The contents of the index register are
unchanged if one index register is specified. If a multiple tag is specified,
the logical or of the contents of these index registers will replace the C (AC)a-17
and will also replace the contents of the specified index registers.

Input-Output Operations. The identifying numbers for the various
input-output components appear in the address part of an instruction
whenever the programmer wants to operate one of these units. Whether
the address part of an instruction refers to a storage location or to one
of the components depends on the operation part of the instruction. 80m3
operations make no sense if the address is interpreted as a location in
storage; other operations make no sense if the address is interpreted as a
component identification. Thus, an address is automatically interpreted
by the calculator in the light of what it is asked to do by the operation
part of the instruction.

The addresses of the input-output units are given below.

Component Octal Decimal
Cathode ray tube 030 024
Tapes

Binary coded decimal 201-212 129-138
Binary 221-232 145-154

Drum 301-310 193-200
Card readp.r 321 209
Card punch 341 225
Printer 361 241

Read Select. 2-111 RDS Y +0762. This instruction causes
the calculator to prepare to read one record of information from the
component specified by Y. If Y specifies a tape unit, the MQ is cleared by
this instruction.

Write Select. 2-111 WRS Y +0766. This instruction causes
the calculator to prepare to write one record of information on the com­
ponent specified by Y. WRS 3338 is used to delay the execution of any
instruction until the MQ is available for computing after reading informa­
tion from a tape.

Backspace Tape. 2-111 BST Y +0764. This instruction
causes the tape designated by Y to space one record in a backward di­
rection. If the tape designated by Y is positioned at the load point, tp.e
BST Y instruction is interpreted as no operation.

Write End of File. 2-111 WEF Y +0770. This instruction
causes the tape unit designated by Y to leave an end-of-file space, an
end-of-file mark, and a redundancy character on its tape.

Rewind. 40ms-III REW Y +0772. This instruction causes
the tape unit designated by Y to rewind its tape to the load point.

2-76 DIGITAL COMPUTER PROGRAMMING

End of Tape Test. 2 ETT -760··· OIl. This instruction
must be given while the t~pe unit is selected (i.e., after a WRS or WEF
instruction and before the tape disconnects; no more than 744 microseconds
after the last CPY if WRS instruction; and any time up to 40 milliseconds,
if WEF). Failure to program this instruction may cause the tape to be
pulled from its reel. If the tape indicator and the tape indicator light are
off, the calculator skips the instruction immediately following the ETT and
proceeds from that point. If the tape indicator and the tape indicator
light are on, they will be turned off and the calculator will take the next
instruction in sequence (no skip).

If tape instructions are given to a tape while the tape indicator is on,
they will operate normally.

Locate Drulll Address. 2 LDA Y +0460. This instruction
follows a read select or write select instruction referring to a drum unit, and
the address part of the C (Y) specifies the first location of the record to be
read from or written on the drum. Not giving this instruction is equivalent
to giving the instruction with the address part of the C (Y) equal to zero.

Copy and Skip. -Ill CPY Y +0700. This instruction is
used after an RDS, WRS, or another CPY instruction to transfer a word
of information between location Y in storage and an input-output com­
ponent specified by the address part of the preceding RDS or WRS in­
struction. When this instruction is executed, the 36-bit word is formed in
the MQ and then is transmitted to storage or to the component. If the
CPY instructions are not given within specific time ranges (found in the
descriptions of these components), the calculator stops, and a read-write
check light on the operator's console is turned on.

If an additional CPY instruction is given after the last word of a unit
record has been copied from a card or a record of tape, the CPY is not
executed, and the calculator skips the two instructions immediately
following the CPY and proceeds from there. If an additional RDS in­
struction is given for which there is no corresponding record, the calculator
sets up an end-of-file condition. The first CPY instruction given after this
RDS is not executed; instead, the calculator skips the instruction im­
mediately following the CPY and proceeds from there.

Plus Sense. 2 PSE Y +0760. This instruction provides a
means of testing the status of sense switches (and of turning on or off the
sense lights on the operator's console), thus providing the programmer
with flexible means of altering the sequence of instructions being executed.
This instruction also permits the transmission of an impulse to or from the
exit or entry hubs on the printer or card punch.

The address part of this instruction determines whether a light, switch,
printer, or card punch is being sensed, and it further determines which light,
switch, or hub is being sensed.

PROGRAMMING AND CODING 2-77

Minus Sense. 2 MSE Y - 0760. This instruction provides a
means of testing the status of sense lights on the operator's console. The
addresses of the four sense lights are 141-144. If the corresponding sense
light is on, the light is turned off, the calculator skips the next instruction
and proceeds from there. If the light is off, the calculator takes the next
instruction in sequence.

Univac Scientific (1103A) Instruction Logic

The Univac Scientific computer is a (35, 0, 0) binary machine, with
option of (27,8,0). The arithmetic unit contains two 36-bit X (exchange)
and Q (quotient) registers and one 72-bit A register (accumulator).
Negative numbers are represented in one's complement notation.

Input-output is via high-speed paper tape reader and punch, direct card
reader and punch, and Uniservo magnetic tape units, which may be
connected to peripheral punched card readers and punches and a high­
speed printer. In addition, information may be recorded on magnetic
tape directly from keyboards by the use of Unitypers. Communication
with external equipment is via an 8-bit (lOA) register and a 36-bit (lOB)
register. Information sent to these registers controls magnetic tapes as
well as other input-output equipment. The program address counter
(P AK) contains the present instruction address. Storage is in up to 12,288
locations of magnetic core storage, along with a directly addressable drum
of 16,384 locations. Instructions are of the two-address form, with six
bits for the operation code and two fifteen-bit addresses (u and v).

The following information is taken from a Univac Scientific Manual
(Ref. 103).

Definitions and Conventions.

I nstruction Word

la5· ..

u
15 bits

bg·· .

oc Operation code.
n First execution address.
v Second execution address.

v
15 bits

114 ... 10

For some of the instructions, the form jn or jk replaces the u address; for
others the form k replaces the v address.

j One-digit octal number modifying the instruction.
n Four-digit octal number designating number of times instruction

is to be performed.

2-78 DIGITAL COMPUTER PROGRAMMING

Ii Seven-digit binary number designating the number of places the
word is to be shifted to the left.

Address Allocations (Octal)

1

00000-07777 4096,
~C 00000-17777 8192, or

00000-27777 12,288 36-bit words.
Q 31000-31777 1 36-bit word.
A 32000-37777 1 72-bit word.
MD 40000-77777 16,384 36-bit words.

Fixed Addresses

FI 00000 or 40001
F2 00001
Fa 00002
F4 00003

Arithmetic Section Registers

A 72-bit accumulator with shifting properties.
AR Right-hand 36 bits of A.
AL Left-hand 36 bits of A.
Q 36-bit register with shifting properties.
X 36-bit exchange register.

Note. Parentheses denote contents of. For example, (A) means con­
tents of A (72-bit word in A); (Q) means contents of Q (36-bit word in Q).

Input-Output Registers

lOA 8-bit in-out register.
lOB 36-bit in-out register.
TWR 6-bit typewriter register.
HPR 7-bit high-speed punch register.

Word Extension

D (u) 72-bit word whose right-hand 36 bits are the word at address u,
and whose left-hand 36 bits are the same as the leftmost bit of the word at u.

S(u) 72-bit word whose right-hand 36 bits are the word at address u,
and whose left-hand 36 bits are zero.

D(Q) 72-bit word-right-hand 36 bits are in register Q, left-hand
36 bits are same as leftmost bit in register Q.

SeQ) same as D(Q) except left 36 bits are zero.
D(AR), S(AR) are similarly defined.
L(Q) (u) 72-bit word-left-hand 36 bits are zero, right-hand 36 bits

are the bit-by-bit product of corresponding bits of (Q) and word at address
u.

PROGRAMMING AND CODING 2-79

L(Q') (v) 72-bit word-left-hand 36 bits are zero, right-hand 36 bits
are the bit-by-bit product of corresponding bits of the complement of (Q)
and word at address v.

Transmit Instructions.

11 * Transmit Positive TPuvt: Replace (v) with (u).
13 Transmit Negative TNuv: Replace (v) with the comple­

ment of (u).
12 Transmit Magnitude TMuv: Replace (v) with the absolute

magnitude of (u).
15 Transmit V-address TVuv: Replace the 15 bits of (v) desig­

nated by V15 through V29, with the corresponding bits of (u), leaving the
remaining 21 bits of (v) undisturbed.

16 Transmit V -address TVuv: Replace the right-hand 15 bits
of (v) designated by Vo through V14, with the corresponding bits of (u),
leaving the remaining 21 bits of (v) undisturbed.

35 Add and Transmit ATuv: Add D(u) to (A). Then replace
(v) with (AR).

36 Subtract and Transmit STuv: Subtract D(u) from (A).
Then replace (v) with (Au).

22 Left Transmit LTjkv: Left circular shift (A) by k places.
If j = 0 replace (v) with (AL); if j = 1 replace (v) with (AR).

Q-Controlled Instructions.

51 Q-controlled Transmit QTuv: Form in A the number
L(Q) (u). Then replace (v) by (AR).

52 Q-controlled Add QAuv: Add to (A) the number L(Q) (u).
Then replace (v) by (AR).

53 Q-controlled Substitute QSuv: Form in A the quantity
L(Q)(u) plus L(Q') (v). Then replace (v) with (AR). The effect is to
replace selected bits of (v) with the corresponding bits of (u) in those
places corresponding to l's in Q. The final (v) is the same as the final (AR).

Replace Instructions.

21 Replace Add RAuv: Form in A the sum of D(u) and D(v).
Then replace (u) with (AR).

23 Replace Subtract RSuv: Form in A the difference D(u)
minus D(v). Then replace (u) with (AR).

27 Controlled Complement CCuv: Replace (AR) with (u)
leaving CAL) undisturbed. Then complement those bits of (AR) that
correspond to ones in (v). Then replace (u) with (AR).

* Octal notation.
t Mnemonic notation.

2-80 DIGITAL COMPUTER PROGRAMMING

54 Left Shift in A LAuk: Replace (A) with D(u). Then left
circular shift (A) by k places. Then replace (u) with (AR). If u = A,
the first step is omitted, so that the initial content of A is shifted.

55 Left Shift in Q LQuk: Replace (Q) with (u). Then left cir­
cular shift (Q) by k places. Then replace (u) with (Q).

Split Instructions.

31 Split Positive Entry SPuk: Form S (u) in A. Then left circular
shift (A) by k places.

33 Split Negative Entry SNuk: Form in A the complement of
S(u). Then left circular shift (A) by k places.

32 Split Add SAuk: Add S(u) to (A). Then left circular shift
(A) by k places.

34 Split Subtract SSuk: Subtract S(u) from (A). Then left
circular shift (A) by k places.

Two-Way Conditional JUIllP Instructions.

46 Sign JUlllp SJuv: If A71 = 1, take (u) as NI. If A71 = 0,
take (v) as NI. (NI means next instruction.)

47 Zero JUIllP ZJuv: If' (A) is not zero, take (u) as NI. If (A)
is zero, take (v) as NI.

44 Q-JUlllp QJuv: If Q35 = 1, take (u) as NI. If Q35 = 0, take
(v) as NI. Then, in either case, left circular shift (Q) by one place.

One-Way Conditional JUIllP Instructions.

41 Index JUlllp IJuv: Form in A the difference D(u) minus 1.
Then if A71 = 1, continue the present sequence of instructions; if A71 = 0,
replace (u) with (AR) and take (v) as NI.

42 Threshold JUIllP TJuv: If D(u) is greater than (A), take (v)
as NI; if not, continue the present sequence. In either case, leave (A) in
its initial state.

43 Equality JUlllp EJuv: If D(u) equals (A), take (v) as NI, if
not, continue the present sequence. In either case leave (A) in its initial
state.

Onc-Way Unconditional JUIllP Instructions.

45 Manually Selective JUIllP MJjv: If the number j is zero,
take (v) as NI. If j is 1, 2, or 3, and the correspondingly numbered MJ
selecting switch is set to "jump," take (v) as NI; if this switch is not set to
"jump," continue the present sequence.

37 Return JUlllp RJuv: Let y represent the address from which
CI was obtained. Replace the right-hand 15 bits of (u) with the quantity
y plus 1. Then take (v) as NI.

PROGRAMMING AND CODING 2-81

14 Interpret IP: Let y represent the address from which CI was
obtained. Replace the right-hand 15 bits of (F l) with the quantity y + 1.
Then take (F 2) as NI.

Stop Instructions.

56 Manually Selective Stop MSjv: If j = 0, stop computer
operation and provide suitable indication. If j = 1, 2, or 3 and the corre­
spondingly numbered MS selecting switch is set to "stop," stop computer
operation and provide suitable indication. Whether or not a stop occurs,
(v) is NI.

57 Program Stop PS-Stop computer operations and provide
suitable indication.

External Equipment Instructions.

17 External Function EF -v: Select a unit of external equipment
and perform the function designated by (v).

76 External Read ERjv: If j = 0, replace the right-hand 8 bits
of (v) with (lOA); if j = 1, replace (v) with (lOB).

77 External 'Vrite E'Vjv: If j = 0, replace (lOA) with the right­
hand 8 bits of (v); if j = 1, replace (lOB) with (v). Cause the previously
selected unit to respond to the information in lOA or lOB.

61 PRint PR-v: Replace (TWR) with the right-hand 6 bits of (v).
Cause the typewriter to print the character corresponding to the 6-bit code.

63 PUnch PUjv: Replace (HPR) with the right-hand 6 bits of (v).
Cause the punch to respond to (HPR). If j = 0, omit seventh level hole;
if j = 1, include seventh level hole.

Arithmetic Instructions.

71 Multiply MPuv: Form in A the 72-bit product of (u) and (v),
leaving in Q the multiplier (u).

72 Multiply Add MAuv: Add to (A) the 72-bit product of (u)
and (v), leaving in Q the multiplier (u).

73 Divide DVuv: Divide the 72-bit number (A) by (u), putting
the quotient in Q, and leaving in A a non-negative remainder R. Then
replace (v) by (Q). The quotient and remainder are defined by: (A)j =
(u) . (Q) + R, where ° ~ R < 1 (u) I. Here (A) i denotes the initial
contents of A.

74 Scale Factor SFuv: Replace (A) with D(u). Then left cir­
cular shift (A) by 36 places. Then continue to shift (A) until A34 ~ A35.
Then replace the right-hand 15 bits of (v) with the number of left circular
shifts, k, which would be necessary to return (A) to its original position.
If (A) is all ones or zeros, k = 37. If u is A, (A) is left unchanged in the
first step, instead of being replaced by D (AR).

2-82 DIGITAL COMPUTER PROGRAMMING

Sequenced Instructions.

75 RePeat RPjnw: This instruction calls for the next instruction,
which will be called Nluv, to be executed n times, its u and v addresses
being modified or not according to the value of j. Afterwards the program
is continued by the execution of the instruction stored at a fixed address Fl.
The exact steps carried out are:

(a) Replace the right-hand 15 bits of (F1) with the address w.
(b) Execute Nluv, the next instruction in the program, n times.
(c) If j = 0, do not change u and v.

If j = 1, add one to v after each execution.
If j = 2, add one to u after each execution.
If j = 3, add one to u and v after each execution.

The modification of the u address and v address is done in program control
registers. The original form of the instruction in storage is unaltered.

(d) On completing n executions, take (Ft), as the next in­
struction. F 1 normally contains a manually selective jump whereby the
computer is sent to w for the next instruction after the repeat.

(e) If the repeated instruction is a jump instruction, the
occurrence of a jump terminates the repetition. If the instruction is a
Threshold Jump or an Equality Jump, and the jump to address v occurs,
(Q) is replaced by the quantity j, (n - r), where r is the number of execu­
tions that have taken place.

Floating Point Instructions.

64 Add FAuv: Form in Q the normalized rounded packed floating
point sum (u) + (v).

65 Subtract FSuv: Form in Q the normalized rounded packed
floating point difference (u) - (v).

66 Multiply FMuv: Form in Q the normalized rounded packed
floating point product (u) . (v).

67 Divide FDuv: Form in Q the normalized rounded packed
floating point quotient (u) -;- (v).

01 Polynolllial Multiply FPuv: Floating add (v) to the floating
product (Q)i' (u), leaving the packed normalized rounded result in Q.

02 Inner Product FIuv: Floating add to (Q)i the floating product
(u) . (v) and store the rounded normalized packed result in Q. This
instruction uses Me location F4 = 00003 for temporary storage, where
(F4) f = (Q)i.The subscripts i and f represent "initial" and "final."

03 Unpack UPuv: Unpack (u), replacing (u) with (U)M and re­
placing (v)c with (u)c or its complement if (u) is negative. The charac­
teristic portion of (U)l contains sign bits. The sign portion and mantissa

PROGRAMMING AND CODING 2-83

portion of (v)t are set to zero. Note. The subscripts M and C denote the
mantissa and characteristic portions.

04 Normalize Pack NPuv: Replace (u) with the normalized
rounded packed floating point number obtained from the possibly un­
normalized mantissa in (u) i and the biased characteristic in (v)0' Note.
It is assumed that (u) i has the binary point between U27 and U2G; that is,
that (u) i is scaled by 2-27•

05 Normalize Exit NEj-: If j = 1 normalize without rounding
until a master clear or until the instruction is again executed with j = o.

Univac II Instruction Logic

The Univac I and II are successive models of one of the earliest com­
puters produced successively by the Eckert-Mauchly Corporation and
later the Remington-Rand Univac Division of the Sperry-Rand Corpora­
tion. The latter machine is compatible with programs written for the
former. Univac II is a (12, 0, 0) decimal machine.

The basic storage of the Univac II is 2000 words on magnetic cores of
12 alphanumeric characters each. Larger memories up to 10,000 words
are available. The secondary storage is on magnetic tape units called
Uniservos. All input-output, except through a console keyboard, is via
the magnetic tape units, which may be loaded directly from typewriter
(Unityper) or from punched cards (card-to-tape converter) and unloaded
by typewriter, high-speed printer, or tape-to-card converter. The Univac
II has a "variable field length" property which is designed to be of use in
data processing. All arithmetic is in fixed point "digital" numbers (abso­
lute value less than one).

Registers. The following are the registers in the Univac II computer:

1. rA
2. rX
3. rL
4. rF
5. rW
6. rZ
7. rI

Accumulator
X register
Quotient register
Extraction register
9-word transfer register
60-word transfer register
60-word input register

The following Univac II instrumentation code is taken from a Univac II
manual (Ref. 34).

Conventions. In describing the actions caused by Univac II system
instructions, the phrase "transfer the contents of ___ to ___ " is taken
to mean: the information in the component following the "of" is duplicated
in the component following the "to." The component to which information
is transferred is erased of its original contents just before the new informa-

2-84 DIGITAL COMPUTER PROGRAMMING

tion is entered into it. Unless otherwise specified, the contents of the com­
ponent from which information is transferred remains unaltered.

SYIllbology. A symbolic notation is used to designate the operations
caused by the execution of an instruction. This symbolic notation, as
described below, is shown for each instruction. In addition a verbal
description is given.

Symbol Meaning

is transferred to
III a main storage location whose address is m

) the contents of the element within the parentheses. Thus,
(m) = the contents of a main storage location where address
is m

r register, the letter of the register follows the r. Thus, rA =
register A

X those characters of any element, X, which correspond to
character positions in rF containing extractors

X those characters of any element, X, which correspond to
character positions in rF containing nonextractors.

An instruction is symbolized by three characters-two characters specify
the operation code, the third character, always m, stands for the four­
digi t address portion of the instruction.

One-Word Transfer Instructions.

BOIll (Ill) ~ rA, rX. Transfer the contents of the storage location
specified by ill to both register A and register X.

FOIll (Ill) ~ rF. Transfer the contents of the storage location
specified by ill to register F.

LOIll (Ill) ~ rL, rX. Transfer the contents of the storage location
specified by ill to both register L and register X.

HOIll (rA) ~ Ill. Transfer the contents of register A to the storage
location specified by m.

COIll (rA) ~ Ill; 0 ~ rAe Transfer the contents of register A
to the storage location specified by m. Clear register A to a word of
decimal zeros.

GOIll (rF) ~ Ill. Transfer the contents of register F to the storage
location specified by m.

IOIll (rl ..) ~ Ill. Transfer the contents of register L to the storage
location specified by m.

JOIll (rX) ~ Ill. Transfer the contents of register X to the
storage location specified by ill.

PROGRAMMING AND CODING 2-85

KOm (rA) -? rL; 0 -? rAe Transfer the contents of register A
to register L. Clear register A to a word of decimal zeros.

Arithmetic Instructions.

AOm (m) -? rX; (rX) + (rA) -? rAe Transfer the contents of
the storage location specified by m to register X. Then send the contents
of register X and register A to the Adder and add them. Return the sum
to register A.

AHm (m) -? rX; (rX) + (rA) -? rA, m. Transfer the contents
of the storage location specified by m to register X. Then send the con­
tents of register X and register A to the Adder and add them. Return the
sum to both register A and the storage location specified by m.

XOm (rX) + (rA) -? rAe Send the contents of register X and
register A to the Adder and add them. Return the sum to register A.

SOm - (lll)"-? rX; (rX) + (rA) -? rAe Transfer the contents
of the storage location specified by m to register X. In transit reverse the
sign of the word being transferred (from 0 to -, or from - to 0). Then
send the contents of register X and register A to the Adder and add them.
Return the sum to register A. (Note: plus signs are represented by 0.)

SHm - (lll) -? rX; (rX) + (rA) -? rA, m. Transfer the con­
tents of the storage location specified by m to register X. In transit
reverse the sign of the word being transferred (from 0 to -, or from - to
0). Then send the contents of register X and register A to the Adder and
add them. Return the sum to both register A and the storage location
specified by m.

MOm (m) -? rX; (rL) X (rX) -? rA (rounded). Transfer the
contents of the storage location specified by m to register X. Then multiply
the contents of register L by the contents of register X. Return an 11-
digit product, with the least significant digit rounded, to register A. The
previous contents of rX and rF are destroyed.

NOm - (lll) ~ rX; (rL) X (rX) ~ rA (rounded). Transfer the
contents of the storage location specified by m to register X. In transit
reverse the sign of the word being transferred. Then multiply the contents
of register L by the contents of register X. Return an ll-digit product,
with the least significant digit rounded, to register A. The previous con­
tents of register X and register F are destroyed.

POrn (m) ~ rX; (rL) X (rX) -? rA, rX (22 digits). Transfer
the contents of the storage location specified by m to register X. Then
multiply the contents of register L by the contents of register X. Return
the sign and first 11 digits of the product to register A. Return the sign
and second 11 digits of the product to register X. The previous contents
of register F are destroyed.

2-86 DIGITAL COMPUTER PROGRAMMING

DOm. (m.) ~ rA; (rA) -;- (rL) ~ rA (rounded), ~ rX (un­
rounded). Transfer the eontents of the storage location specified by m
to register A. Then divide the contents of register A by the contents of
register L. Return a rounded quotient to register A, and an unrounded
quotient to register X.

The Second-Digit Modifier F. The second-digit modifier Fallows
the isolation and independent treatment of groups of characters, which are
stored as a part of a word. Two memory-to-register one-word transfer
instructions and six arithmetic instructions may be written with the second
instruction digit, F (instead of a zero as they have been shown). The
second instruction digit F modifies the instruction and causes it to be
operative on only a portion of the word. Those characters of the word
upon which it is desired to have the instruction operate are indicated to the
computer by an "extract pattern."

The Extract Pattern. Each of the 63 Univac II system characters is
either an extractor or a nonextractor. Those characters whose seven­
place code representations have a binary zero in their rightmost bit posi­
tions are extractors; e.g., decimal 1. Those characters whose seven-place
Univac II system code representations have a binary one in their right­
most bit positions are nonextractors; e.g., decimal O.

An extract pattern is a word so arranged that characters which are
extractors occupy the same character positions within the extract pattern
word as are occupied within their word by those characters that it is
desired to enter an operation. All other character positions in the extract
pattern are nonextractors. The extract pattern governing an operation
must be in register F at the time of execution of the operation. Extract
patterns are stored in the main storage and brought to register F (by an
FOm instruction) as needed.

The second instruction digit F can modify the Bam and Lam one-word
transfer instructions. As modified by the second instruction digit F, the
BFm and LFm instructions direct the central computer to:

1. Transfer to corresponding character positions in the appropriate
registers (the same register affected by the unmodified instruction), only
those characters of the storage location specified by m whose positions in
the word in m correspond to positions in register F containing extractors.

2. Place zeros in those positions in the receiving registers which corre­
spond to nonextractors in register F. Thus,

BFm.

LFm.

(rn) ~ rA, rX; 0 ~ rA, rX.

(rn) ~ rL, rX; 0 ~ rL, rX.

The second instruction digit F can modify the AOm, Sam, MOm,
NOm, Pam, and Dam arithmetic instructions. As modified by the F the

PROGRAMMING AND CODING 2-87

AFm, SFm, MFm, NFm, PFm, and DFm instructions direct the central
computer to:

1. Transfer to corresponding positions in the appropriate registers (the
same registers affected by the unmodified instruction) only those characters
in the storage location specified by m correspond to positions in register F
containing extractors.

2. Place zeros in those positions in the receiving registers which corre­
spond to nonextractors in register F.

3. Then perform the proper arithmetic function returning the complete
results to the appropriate registers. Thus,

AFIll (iii) ~ rX; 0 ~ rX; (rX) + (rA) ~ rAe

SFIll (iii) ~ rX; 0 ~ rX; (rX) + (rA) ~ rAe

MFIll (iii) ~ rX; O~rX;

NFIll (iii) ~ rX; O~rX;

PFIll (iii) ~ rX; O~rX;

DFIll (iii) ~ rA; O~rA;

COIllposite Extract Instructions.

(rL) X (rX) ~ rA (rounded).

(rL) X (rX) ~ rA (rounded).

(rL) X (rX) ~ rA~
rX (22 digits).

(rA) (rL) ~ rA (roundcd)~
~ rX (unrounded).

EOIll (iii)~ (rA) ~ rAe Form a composite word in register A by
transferring to register A those characters of the contents of the storage
location specified by m, whose positions in m correspond to character
positions in register F containing extractors. Do not alter those characters
in register A corresponding to character positions in register F containing
nonextractors.

EFIll (rA)~ (.!!!) ~ Ill~ rAe Form a composite word in both m and
register A by transferring to register A those characters of m whose posi­
tions in m correspond to character positions in register F containing
nonextractors. Do not alter those characters in m corresponding to
character positions in register F containing extractors. Return the com­
posite word, thus formed, tom.

Control Instructions.

UOIll JUIllP to Ill. Take next instruction word from the storage
location specified by m of right-hand instruction of the instruction word
containing the DOm instruction, rather than the next sequential storage
location. Then continue sequential operations from m.

QOIll If (rA) = (rL)~ JUIllp to Ill. Send the contents of both
register A and register L to the comparator, and compare them. If they

2-88 DIGITAL COMPUTER PROGRAMMING

are found to be equal take the next instruction word from the storage
location specified by m of the right-hand instruction of the instruction
word containing the QOm rather than the next sequential storage location.
Then continue sequential operation from m. If the contents of register A
do not equal the contents of register L continue on with uninterrupted se­
quential operations.

TOIll If (rA) > (rL), JUlllp to Ill. Send the contents of both reg­
ister A and register L to the comparator, and compare them. If the contents
of register A are found to be algebraically greater than the contents of
register L, take the next instruction word from the storage location specified
by m of the right-hand instruction of the word containing the Tam instruc­
tion rather than the next sequential storage location. Then continue
sequential operation from m. If the contents of register A are not greater
than the contents of register L continue on with uninterrupted sequential
operations.

OOIll SKIP. Proceed to the next instruction.
901ll STOP. Stop processing.
ROIll 000000 UO (c + 1) ~ Ill. Place in the storage location

specified by m the following word: 000000 UO (c + 1), where c = the
storage location of the instruction word of which Ram order is a part.

Shift Instructions .

• nlll Shift (rA) right, with sign, n places. * Shift all twelve
characters of the word in register A the number of places specified by n to
the right. (The n least significant digits of the word are destroyed by this
shift.) Place zeros in the n left-hand character position of register A.

;nlll Shift (rA) left, with sign, n places. * Shift all twelve
characters of the word in register A the number of places specified by n to
the left. (The n left-hand characters of the word are destroyed by this
shift.) Place zeros in the n-least significant digit positions of register A.

-nlll Shift (rA) right, excluding sign, n places. * Shift the
eleven significant digits (excluding sign) the number of places specified by
n to the right. (The n least significant digits of the word will be destroyed
by this' shift.) Place zeros in the n-most significant digit positions exclud­
ing sign of register A.

Onlll Shift (rA) left, excluding sign, n places. * Shift the
eleven significant digits (excluding sign) the number of places specified
by n to the left. (The n-most significant digit of the word will be destroyed
by this shift.) Place zeros in the n-least significant digit positions of
register A.

* n = may be any digit from 1 to 9.

PROGRAMMING AND CODING 2-89

Multiword Transfer Instructions.

Vnlll (lll, III + I, .. " III + n - I) ~ rW. If n = 0, skip. If
n equals 0, treat this instruction as a skip instruction. If n equals any other
digit, transfer n consecutive words beginning with the word in m from the
main storage to register W.

'Vnlll (r'V) ~ lll, III + I, .. " III + n - 1. If n = 0, skip. If
n equals 0, treat this instruction as a skip instruction. If n equals any other
digit, transfer n consecutive words from register W to n consecutive storage
locations in the main storage beginning with the storage location specified
bym.

Ynlll (lll, III + 1, .. " III + IOn - 1) ~ rZ. If n = 0, 7, 8, 9,
skip. If n = 0, 7, 8, 9 treat this instruction as a skip instruction. If n = 1,
2, 3, 4, 5, or 6, transfer IOn consecutive words beginning with the word in
storage location m from the main storage to register Z.

Znlll (rZ) ~ lll, III + I, .. " III + IOn - 1. If n = 0, 7, 8, 9,
skip. If n = 0, 7, 8, or 9 treat this instruction as a skip instruction. If n
equals 1, 2, 3, 4, 5, or 6, transfer IOn consecutive words from register Z to
IOn consecutive storage locations in the main storage beginning with the
storage location specified by m.

Input-Output Instructions.

Inlll 60 words frolll tape to rI, forward. Read the next block
from tape mounted on Uniservo n, with the tape moving in the forward
direction. Place the block as it is being read from tape, into register I.

2nlll 6{) words frolll tape to rI, backward. Read the next block
from the tape mounted on Uniservo n, with the tape moving in the back­
ward direction. Place the block, as it is being read from tape, into register
I in the same word order as it would have been placed in register I had it
been read with a forward read.

30111 (rI) ~ lll, III + I, .. " III + 59. Transfer the contents of
register I to 60 consecutive storage locations beginning with storage
location m.

40111 (rI) ~ lll, III + 1, .. " III + 59. Same as 30m instruction,
above.

3nlll (rI) ~ lll, III + I, .. " III + 59; 60 words frOlll tape ~
rI, forward. Transfer the contents of register I to 60 consecutive storage
locations beginning with storage location m. Then read the next block
from the tape mounted on Uniservo n, with the tape moving in the forward
direction. Place the block, as it is being read from tape, into register I.

4nlll (rI) ~ lll, III + I, ... , III + 59; 60 words frOlll tape to rI,
backward. Transfer the contents of register I to 60 consecutive storag.e

2-90 DIGITAL COMPUTER PROGRAMMING

locations beginning with storage location m. Then read the next block
from the tape mounted on Uniservo n with the tape moving in the back­
ward direction. Place the block, as it is being read from tape, into register I
in the same word order as it would have been placed in register I had it
been read with a forward read.

10m Supervisory Control Keyboard ~ m. Stop processing until
a word is typed on the supervisory control keyboard. When a word has

. been typed, and the word release key has been depressed, place the typed
word into storage location m.

5nm (m, m + 1, ... , m + 59) ~ Tape, 250 characters per
inch. Transfer the contents of the 60 consecutive storage locations
beginning with storage location m to register O. Then write the contents of
register 0 onto the tape mounted on Uniservo n at a recording density of
250 characters per inch.

7nm (m, m + 1, ... , m + 59) ~ Tape, 50 characters per inch.
Transfer the contents of the 60 consecutive storage locations beginning
with storage location m to register O. Then write the contents of register 0
onto the tape mounted on Uniservo n at a recording density of 50 charac­
ters per inch.

50m (m) ~ S.C.P. Write the contents of storage location m on
the supervisory control printer. This instruction can be modified by a set
of buttons on the supervisory control panel to cause the contents of:

1. Register A.
2. Register L.
3. Register X.
4. Register F.
5. The Control Counter, or
6. The Control Register.
7. Successive storage locations beginning with a specified storage

location to be printed on the supervisory control printer.
6nm Rewind tape. Rewind the tape mounted on Uniservo n.
8nm Rewind tape with interlock. Rewind the tape mounted on

Uniservo n. Set an interlock on Uniservo n which will cause the computer
to stop if any other order is directed to that Uniservo.

The input-output instructions which direct Uniservo operations are
symbolized with a second instruction digit of n. The n specifies the
particular Uniservo to which the instruction is directed and is usually
written as 1, 2, 3, 4, 5, 6, 7, 8, 9,-, A, B', C, D, E, or F. It may, however, be
written as a delta (A). If it is written as a A, the Uniservo to which the
order is directed is determined by a set of 16 buttons (one for each Uni­
servo) on the supervisory control console. Only one of these buttons may
be depressed at anyone time. The Uniservo corresponding to the de­
pressed button becomes Uniservo A.

PROGRAMMING AND CODING 2-91

Breakpoint Ins true tions.

,Ill Breal{point stop. If the comma breakpoint switch on the
supervisory control panel is in the breakpoint position, stop. If the
comma breakpoint switch is not in the breakpoint position,' skip.

Qnlll If the button in the breakpoint section of the supervisory
control panel corresponding to n is not depressed, treat as a OOIll instruc­
tion. If the button in the breakpoint section of the supervisory control
panel corresponding to n is depressed, perform the comparison between the
contents of register A and register L, light a neon on the supervisory control
panel indicating whether or not a jump would normally take place, and
stop. The operator can then force a jump or no jump to take place and
continue processing.

Tnlll If the button in the breakpoint section of the supervisory
control panel corresponding to n is not depressed, treat as a TOm instruc­
tion. If the button is depressed, perform the comparison between the
contents of register A and register L, light a neon on the supervisory
control panel indicating whether or not a jump would normally take place,
and stop. The operator can then force a jump or no jump to take place
and continue processing.

SUllllllary Table. A summary of the instructions for Univac II is
given in Table 8.

TABLE 8. SUMMARY OF UNIVAC II INSTRUCTIONS

Execution
Instruc- Time,a

tion microseconds Description
AOO1 200 (01) ~ rX; (rX) + (rA)~' rA
AF01 200 (01) ~ rX; 0 ~ rX; (rX) + (rA) ~ rA
AH01 240 (01)~rX; (rX) + (rA)~rA~01
BOO1 120 (01)~rA, rX
BFnl 120 (iii) ~ rA, rX; O~ rA, rX
COO1 120 (rA) ~ 01; O~ rA
DOO1 (3700) (01) ~ rA; (rA) + (rL) ~ rA (rounded)

rX (unrounded)
EOO1 120 (01) + (rA) ~ rA
EF01 200 (rA) + (m)~rA~01
FOO1 120 (01)~rF

GOO1 120 (rF)~ 01
HOO1 120 (rA)~ 01
1001 120 (rL) -7 01
JOO1 120 (rX) ~ 01
KOO1 120 (rA) -7 rL; 0 ~ rA
LOO1 120 (01)~rL; rX

a Times shown in parentheses are statistical averages. The exact times for execution
depends upon the data upon which these orders are operating.

TABLE 8. SUMMARY OF UNIVAC II INSTRUCTIONS (Continued)

Execution
Instruc- Time,a

tion microseconds Description

LFm 120 (m) -+ rL; 0 -+ rL
MOrn (1900) (m) -+ rX; (rL) X (rX) -+ rA (rounded)
MFm (1900) (m) -+ rX; 0-+ rX; (rL) X (rX) -+ rA

(rounded)
NOm (1900) - (m) -+ rX; (rL) X (rX) -+ rA (rounded)
NFm (1900) - (m) -+ rX; 0-+ rX; (rL) X (rX) -+ rA

(rounded)
POrn (1900) (m) -+ rX; (rL) X (rX) -+ rA, rX (22 digits

unrounded)
PFm (1900) (m) -+ rX; 0-+ rX; (rL) X (rX) -+ rA, rX

(22 digits unrounded)
Qnm 200 If (rA) = (rL), jump to m; stop if breal{point

n is selected
ROm 120 Record 000000 UO [c + I] in m
SOm 200 - (m) -+ rX; (rX) + (rA) -+ rA
SHm 280 - (m) -+ rX; (rX) + (rA) -+ rA -+ m
SFm 200 - (rn) -+ rX; 0-+ rX; (rX) + (rA) -+ rA
Tnm 200 If (rA) > (rL), jump to m; stop if breakpoint

n is sclected
UOm 120 Jump to m
Vnm 80 + 40n (m), (m + I), .. " (m + n - I) -+ rW
Wnm 80 + 40n (rW) -+ m, m + I··· m + n - I
XOm 120 (rX) + (rA) -+ rA
Ynm 80 + 405n (m), (m + I), .. " (m + IOn - I) -+ rZ
Znm 80 + 405n (rZ) -+ m, m + I,' . " m + IOn - I
OOm 120 SKIP
.nm 80 + 40n Shift (rA) right, with sign, n places
;nm 80 + 40n Shift (rA) left, with sign, n places
-nm 80 + 40n Shift (rA) right, without sign, n places
Onm 80 + 40n Shift (rA) left, without sign, n places
90m 120 STOP
,Om 120 Stop if comma breal{point is selected
Inm (3500) 60 words from tape n to d, forward
2nm (3500) 60 words from tape n to d backward
30m 2675 (d) -+ m, m + I, .. " m + 59
40m 2675 Same as 30m, above
3nm 3500 (d) -+ m, m + I" . " m + 59; 60 words from

tape n to d, forward
4nm (3500) (d) -+ m, m + I" . " m + 59; 60 words from

tape n to d, backward
5nm (3500) (m), (m + I), .. " (m + 59) -+ tape n, 250

characters/inch
6nm 299 Rewind tape n
7nm (3500) m, (m + I), .. " (m + 59) -+ tape n, 50 char-

acters/inch
8nm 200 Rewind tape n, with interlock

a Times shown in parentheses are statistical averages. The exact times for execution
depends upon the data which these orders are operating.

2-92

PROGRAMMING AND CODING 2-93

IBM 650 Instruction Logic

The basic IBM 650 is a magnetic drum (10,0,0) decimal computer with
one-pIus-one address instruction logic. It has a storage of 1000 or 2000
10-digit words (plus sign) with addresses 0000-0999 or 0000-1999. More
extended versions of the equipment have built-in floating point arithmetic
and index accumulators, but the basic machine will be described here.
There are three arithmetic registers in addition to the standard program
register and program counter. All information from the drum to the
arithmetic unit passes through a signed 10-digit distributor. A twenty­
digit accumulator is divided into a lower and upper part, each of 10 digits
with sign. Each of these is addressable (distributor 8001, lower accumu­
lator 8002, and upper accumulator 8003). Each accumulator may be
cleared to zero separately (in IBM 650 terminology, "reset"). The entire
20-digit register can be considered as a unit, or each part separately (but
affecting the other in case of carries). The 10-digit instruction is broken
down into the following form:

10
1

9 8
1

7
1

6
1

5 41 21 31 1 0

Op. Data N ext Instruction
Sign

Code Address Address

One particular instruction, Table Look-Up, allows automatic table search
for one particular element in a table, which can be stored with a corre­
sponding functional value. Input-output is via 80-digit numerical punched
cards. An "alphabetic device" allows limited alphabetical entry on cards.
Only certain 10-word groups on the magnetic drum are available for input
and output. The following information is taken from an IBM 650 manual
(Ref. 102). Much of the input-output is handled via board wiring, which
is not described in detail below. The two-digit pair represents the machine
code. The BRD (Branch on Digit) operation is used with special board
wiring to tell when certain specific card punches exist.

Inpu t-Outpu t Instructions.

70 RD (Read). This operation code causes the machine to read
cards by a two-step process. First, the contents of the 10 words of read
buffer storage are automatically transferred to one of the 20 (or 40) possible
10-word groups of read general storage. The group selected is determined
by the D address of the Read instruction. Secondly, a card is moved under
the reading brushes, and the information read is entered into buffer storage
for the next Read instruction.

2-94 DIGITAL COMPUTER PROGRAMMING

71 PCH (Punch). This operation code causes card punching in
two steps. First the contents of one of the 20 (or 40) possible 10-word
groups of punch storage are transferred to punch buffer storage. The
group selected is specified by the D address of the Punch instruction.
Secondly, the card is punched with the information from buffer storage.

69 LD (Load Distributor). This operation code causes the con­
tents of the D address location of the instruction to be placed in the
distributor.

24 STD (Store Distributor). This operation code causes the
contents of the distributor with the distributor sign to be stored in the
location specified by the D address of the instruction. The contents of the
distributor remain undisturbed.

Addition and Subtraction Instructions.

10 AU (Add to Upper). This operation code causes the contents
of the D address location to be added to the contents of the upper half of
the accumulator. The lower half of the accumulator will remain unaffected
unless the addition causes the sign of the accumulator to change, in which
case the contents of the lower half of the accumulator will be complemented.
Also, the units position of the upper half of the accumulator will be reduced
by one.

15 AL (Add to Lower). This operation code causes the contents
of the D address location to be added to the contents of the lower half of
the accumulator. The contents of the upper half of the accumulator could
be affected by carries.

II SU (Subtract from Upper). This operation code causes the
contents of the D address location to be subtracted from the contents of
the upper half of the accumulator. The contents of the lower half of the
accumulator will remain unaffected unless the subtraction causes a change
of sign in the accumulator, in which case the contents of the lower half of
the accumulator will be complemented. Also, the units position of the
upper half of the accumulator will be reduced by one.

16 SL (Subtract from Lower). This operation code causes the
contents of the D address location to be subtracted from the contents of
the lower half of the accumulator. The contents of the upper half of the
accumulator could be affected by carries.

60 RAU (Reset and Add into Upper). This operation code
resets the entire accumulator to plus zero and adds the contents of the D
address location into the upper half of the accumulator.

65 RAL (Reset and Add in to Lower). This opera tion code
resets the entire accumulator to plus zero and adds the contents of the D
address location into the lower half of the accumulator.

PROGRAMMil~G AND CODING 2-95

61 RSU (Reset and Subtract into Upper). This operation code
resets the entire accumulator to plus zero and subtracts the contents of the
D address location into the upper half of the accumulator.

66 RSL (Resct and Subtract into Lower). This operation code
resets the entire accumulator to plus zero and subtracts the contents of the
D address location into the lower half of the accumulator.

AccuIllulator Store Instructions.

20 STL (Store Lower in MCIllory). This operation code causes
the contents of the lower half of the accumulator with the accumulator
sign to be stored in the location specified by the D address of the
instruction. The contents of the lower half of the accumulator remain
. undisturbed.

It is important to remember that the D address for all store instructions
must be 0000-1999. An 8000 series D address will not be accepted as
valid by the machine on any of the store instructions.

21 STU (Store Upper in MeIllory). This operation code causes
the contents of the upper half of the accumulator with the accumulator
sign to be stored in the location specified by the D address of the instruc­
tion. If STU is performed after a division operation, and before another
division, multiplication, or reset operation takes place, the contents of the
upper accumulator will be stored with the sign of the remainder from the
divide operation (Op-Code 14). The contents of the upper half of the
accumulator remain undisturbed.

22 STDA (Store Lower Data Address). This operation code
causes positions 8-5 of the distributor to be replaced by the contents of the
corresponding positions of the lower half of the accumulator. The modified
word in the distributor with the sign of the distributor is then stored in the
loca tion specified by the D address of the instruction.

23 STIA (Store Lower Instruction Address). This operation
code causes positions 4-1 of the distributor to be replaced by the contents
of the corresponding positions of the lower half of the accumulator. The
modified word in the distributor with the sign of the distributor is then
stored in the location specified by the D address of the instruction. The
contents of the lower half of the accumulator remain unchanged, and the
sign ·of the accumulator is not transferred to the distributor. The modified
word remains in the distributor upon completion of the operation.

Absolute Value Instructions.

17 AABL (Add Absolute to Lower). This operation code
causes the contents of the D address location to be added to the contents
of the lower half of the accumulator as a positive factor regardless of the

2-96 DIGITAL COMPUTER PROGRAMMING

actual sign. When the operation is completed, the distributor will contain
the D address factor with its actual sign.

67 RAABL (Reset and Add Absolute into Lower). This
operation code resets the entire accumulator to zeros and adds the contents
of the D address location into the lower half of the accumulator as a
positive factor regardless of its actual sign. When the operation is com­
pleted, tlie distributor will contain the D address factor with its actual sign.

18 SABL (Subtract Absolute frolll Lower). This operation
code causes the contents of the D address location to be subtracted from
the contents of the lower half of the accumulator as a positive factor
regardless of the actual sign. When the operation, is completed, the
distributor will contain the D address factor with its actual sign.

68 RSABL (Reset and Subtract Absolute into Lower). This
operation code resets the entire accumulator to plus zero and subtracts
the contents of the D address location into the lower half of the accumulator
as a positive factor, regardless of the actual sign. When the operation is com­
pleted, the distributor will contain the D address factor with its actual sign.

Multiplication and Division.

19 MULT (Multiply). This operation code causes the machine
to multiply. A 10-digit multiplicand may be multiplied by a 10-digit
multiplier to develop a 20-digit product. The multiplier must be placed
in the upper accumulator prior to multiplication. The location of the
multiplicand is specified by the D address of the instruction. The product
is developed in the accumulator beginning in the low-order position of the
lower half of the accumulator and extending to the left into the upper half
of the accumulator as required.

14 DIV (Divide). This operation code causes the machine to
divide without resetting the remainder. A 20-digit dividend may be di­
vided by a 10-digit divisor to produce a 10-digit quotient. In order to
remain within these limits, the absolute value of the divisor must be
greater than the absolute value of that portion of the dividend that is in the
upper half of the accumulator. The entire dividend is placed in the 20-
position accumulator. The location of the divisor is specified by the D
address of the divide instruction.

64 DIV RU (Divide and Reset Upper). This operation code
causes the machine to divide as explained under operation code 14 (DIV).
However, the upper half of the accumulator containing the remainder with
its sign is reset to zeros.

Branching Instructions (Decision Operations).

44 BRNZU (Branch on Non-Zero in Upper). This operation
code causes the contents of the upper half of the accumulator to be exam-

PROGRAMMING AND CODrNG 2-91

ined for zero. If the contents of the upper half of the accumulator is
nonzero, the location of the next instruction to be executed is specified by
the D address. If the contents of the upper half of the accumulator is zero,
the location of the next instruction to be executed is specified by the I
address. The sign of the accumulator is ignored.

45 BRNZ (Branch on Non-Zero). This operation code causes
the contents of the entire accumulator to be examined for zero. If the
contents of the accumulator is nonzero, the location of the next instruction
to be executed is specified by the D address. If the contents of the ac­
cumulator is zero, the location of the next instruction to be executed is
specified by the I address. The sign of the accumulator is ignored.

46 BRMIN (Branch on Minus). This operation code causes
the sign of the accumulator to be examined for minus. If the sign of the
accumulator is minus, the location of the next instruction to be executed
is specified by the D address. If the sign of the accumulator is positive,
the location of the next instruction to be executed is specified by the I
address. The contents of the accumulator are ignored.

47 BROV (Branch on Overflow). This operation code causes
the overflow circuit to be examined to see whether it has been set. If the
overflow circuit is set, the location of the next instruction to be executed
is specified by the D address. If the overflow circuit is not set, the location
of the next instruction to be executed is specified by the I address.

90-99 BRD 1-10 (Branch on 8 in Distributor Position 1"';10).
This operation code examines a particular digit position in the distributor
for the presence of an 8 or 9. Codes 91-99 test positions 1-9, respectively;
of the test word; code 90 tests position 10. If an 8 is present, the location
of the next instruction to be executed is specified by the D address. If a 9
is present, the location of the next instruction to be executed is specified by
the I address. The presence of other than an 8 or 9 will stop the machine.

Shift Instructions.

30 SRT (Shift Right). This operation code causes the contents
of the entire accumulator to be shifted right the number of places specified
by the units digit of the D address of the shift instruction. A maximum
shift of nine positions is possible. A data address with units digit of zero
will result in no shift. All numbers shifted off the right end of the ac­
cumulator are lost.

31 SRD (Shift Round). This operation causes the contents of
the entire accumulator to be shifted right the number of places specified
by the units digit of the D address of the instruction. A 5 is added (-5 if
the accumulator is negative) in the twenty-first (blind) position of the
amount in the accumulator. A data address units digit of zero will shift
10 places right with rounding.

2.98 DIGITAL COMPUTER PROGRAMMING

35 SLT (Shift Left). This operation code causes the contents of
the entire accumulator to be shifted left the number of places specified by
the units digit of the D address of the instruction. A maximum shift of
nine positions is possible. A data address with a units digit of zero will
result in no shift. All numbers shifted off the left end of the accumulator
are lost. However, the overflow circuit will not be turned on.

36 SCT (Shift Left and Count). This operation code causes
(1) the contents of the entire accumulator to be shifted to the left until a
nonzero digit is in the most significant place, (2) a count of the number of
places shifted to be inserted in the two low-order positions of the accumu­
lator. This instruction is to aid fixed-point scaling.

Table Look-Up Instructions.

84 TLU (Table Look-Up). This operation code performs an
automatic table look-up using the D address as the location of the first
table argument and 'the I address as the address of the next instruction to
be executed. The argument for which a search is to be made must be in
the distributor. The address of the table argument equal to, or higher
than (if no equal exists) the argument given is placed in positions 8-5 of the
lower accumulator. The search argument remains, unaltered, in the dis­
tributor.

Miscellaneous Instructions.

00 No-Op (No Operation). This code performs no operation.
The data address is bypassed, and the machine automatically refers to the
location specified by the instruction address of the No-Op instruction.

01 Stop. This operation code causes the program to stop provided
the programmed switch on the control console is in the stop position. When
the programmed switch is in the run position the 01 code will be ignored
and treated in the same manner as 00 (N o-Op).

Datatron 205 Instruction Logic '

A typical magnetic drum computer of the single-address type is the
,Datatron 205 computer manufactured by the ElectroData Division of the
Burroughs Corporation. The following description of the machine is
obtained from a Datatron manual (Ref. 32). This computer, in its simplest
form, is a fixed point, decimal (10, 0, 0) computer. The numbers are
"digital" numbers, in absolute value less than one. Each instruction (and
number) occupies one machine word. The address part of an instruction
occupies the four least significant digits, with a two-digit operation code
immediately preceding.

Storage is on a magnetic drum with 4000 words capacity. A quick

PROGRAMMING AND CODING 2-99

access storage (recirculating loop) has a capacity of 80 words in four
separate blocks of 20 words each. Addresses in the main storage range
from 0000 through 3999; addresses in the quick access storage are 4000,
5000, 6000, and 7000. Numbers block-transferred back and forth between
main and quick access storage can ordinarily be altered in one while
remaining unchanged in the other.

Registers.

A register. This register contains 11 decimal-digit positions. Ten
are for the number or instruction and one for the algebraic sign. This
register acts as an accumulator, and the results of most operations appear
here at the end of the operation.

R register. This register contains 10 decimal-digit positions (no
algebraic sign). In several operations, it serves as an extension of the A
register and holds the 10 least significant digits of the number contained
in the combined A and R registers.

B register. This register contains 4 decimal-digit positions, and
is used to facilitate the modification of commands and for tallying. As
each command is received from memory, it is checked to determine whether
its address part is to be modified or not. This is determined by a 1 or a 0
in the algebraic sign position. If the sign digit is 1, the four-digit number
contained in the B register is added absolutely to the four least significant
digits (the address part) of the command, and the command is then exe­
cuted as modified by the contents of the B register. It is important to note
that the commands with negative sign, as stored in the memory, are not
altered by the operation of this register; they are temporarily modified in
the electronic registers immediately before execution. Thus, the same
command may be executed many times during a computation, temporarily
modified each time by a different number in the B register.

The R register may be loaded from the drum by means of a right shift
through the A register.

Information to be punched out on paper tape or printed on the type­
writer comes from the A register.

Arithllletic Instructions. In all arithmetic operations one operand is
stored in the A register, the other having been fetched from the storage
Ioca tion specified in the address part of the command word. If the sign
digit of the command word is 1, the B register will be added to the address
before the command arrives at the C register. If on input the sign digit
of the command is 3, the B register will be added to the address before the
command reaches the drum; and the word will be stored with a 1 in the
sign digit, to produce B modification on execution. If on input the sign
digit of the command word is 2, the B register will be added to the address

2-100 DIGITAL COMPUTER PROGRAMMING

before the command reaches the drum and the word will be stored with a
o in the sign digit. In the following description the alphanumeric codes and
two-digit numbers in parentheses after the name of the command are those
used on standard code sheets.

Addition.

ADD (ad x, 74). Add to the number in the A register the number in
storage location x. This command and associated add commands do not
affect the contents of the R register.

SUBTRACT (su x, 75). Subtract from the contents of the A register
the number in storage location x.

ADD ABSOLUTE VALUE (ada x, 76). Add to the A register the
number in storage location x with a positive sign attached.

SUBTRACT ABSOLUTE VALUE (sua x, 77). Subtract from the
number in the A register the value of the number in storage location x with
a positive sign attached.

CLEAR AND ADD (ca x, 64), CLEAR AND SUBTRACT (cs x, 65),
CLEAR AND ADD ABSOLUTE VALUE (caa x, 66), and CLEAR AND
SUBTRACT ABSOLUTE VALUE (csa x, 67). These commands clear
the A register before the operation, and then have the same effect as the
corresponding commands without the clearing.

Multiplication.

MULTIPLY AND HOLD (Inh x, 60). Bring the number from
storage location x into the D register; multiply it by the number in the A
register; and hold the 20-digit product in the A and R registers. In the
MULTIPLY-HOLD command, R is considered to be an extension of A.
Before any multiplication command the R register is automatically cleared.

MULTIPLY AND ROUND OFF (Inr x, 70). Bring the number
from storage location x into the D register; multiply it by the number in
the A register and round off. If the first digit of R is 5 or greater, increase
the absolute value of the number in the A register by 10-1°. If the first
digit of R is less than 5, do not change A. In either case, the R register is
cleared after the command has been executed. There is no possibility of
overflow upon execution of a MULTIPLY AND ROUND OFF command.

ROUND OFF (ro, 23). If the first digit of R is 5 or greater, add
10-10 to the absolute value of the number in the A register and clear R. If
the first digit of R is less than 5, clear R. Overflow is possible if A contains
all 9's and the first digit of R is 5 or greater.

Division.

DIVIDE (div x, 61). Divide the number in the A and R registers by
the number in storage location x. In this case the R register is considered

PROGRAMMING AND CODING 2-101

as an extension of A. If the number in A and R is less in absolute value
than the number in x, the division is performed; the A register will contain
the 10-digit quotient; and the R register will contain the true remainder
after the DIVIDE command has been executed. If, however, the number
in A and R is greater in absolute value or equal to the number in the D
register, the overflow toggle is set; and A and R are cleared.

CLEAR R (cl R, 33). Set all digits of the R register to zero.

Logical Insiructions.
Unit Adjust.

UNIT ADJUST (ua, 06). Set the "I" toggle in the first position of
the A register. This command effectively increases an even digit in AI,
making it odd; and leaves an odd digit unchanged. This command is
normally used after a right shift to compensate for overflow on an addition.
It allows the coder to compensate for the overflow without testing for sign.

Al before ua
o
1
2
3
4
5
6
7
8
9

Al after ua
1
1
3
3
5
5
7
7
9
9

Storage. The results of arithmetic operations are stored in the A
register. The transfer of these results to storage is effected by two com­
mands which do not affect the R register. They are:

TO MEMORY AND HOLD (tInh x, 12). Store the number in the
A register in storage location x, and retain the number in the A register.

TO MEMORY AND CLEAR (tInC x, 02). Store the number in the
A register in storage location x, and clear the A register, including the sign
position.

Shift.

SHIFT RIGHT (sr n, 13). Shift the number in the A and R regis­
ters, not including sign, n places to the right (n is interpreted modulo 20).
The n rightmost digits are lost. The n leftmost digits become zero. In this
command as well as the following command, the number of shifts (n) is
indicated by the address part of the command word.

2-102 DIGITAL COMPUTER PROGRAMMING

SHIFT LEFT (sl r~ 14). Circulate the number in the A and R
registers, not including sign, n places to the left (n is interpreted modulo
20). The n leftmost digits in A become the n rightmost significant digits
in R.

LOGICAL CYCLE LEFT (lcl n~ 01). Circulate the A register, in­
cluding the sign digit, n + 1 places to the left (n is interpreted modulo 20).
The R register is not affected by this command.

SPECIAL LEFT SHIFT (spl y~ 15). If the number in the A register
is not zero, shift the A and R registers to the left until the first nonzero
digit in A is in the first position of the A register. Change of control does
not take place. If the A register contains zero, replace the contents of
the A register by the contents of the R register and change control to
storage location y.

This command normalizes the number in A and R and, therefore, is
frequently used in floating point operations.

Since it is important to know the number of shifts that occur as a result
of the SPECIAL LEFT SHIFT, a count of these shifts is stored in the
special counter.

Special Counter. The special counter is a four-toggle binary counter
recycling on 15 (1111). It is used in the machine for three purposes:

1. To count the shifts during multiplication.
2. To count the shifts during division.
3. To count the shifts necessary to normalize a number with a special

left. The number in the special counter after the completion of a MULTI­
PLY or DIVIDE command is 9 (except' when division sets the overflow
toggle). After a SPECIAL LEFT (spl y) command the special counter'
shows the number of zeros that were to the left of the first nonzero digit
in A before the shift. In the case where A = 0, the special counter counts
to 10. The number in the special counter is retained until a multiply,
divide, or other special left has been executed. In all these cases it is
cleared before the new number is added to it. Information may be obtained
from the special counter by means of two commands.

ADD SPECIAL COUNTER (spc+~ 16). Add (algebraically) the
number in the special counter scaled 10-10 to the number in the A register.

SUBTRACT SPECIAL COUNTER (spc-~ 17). Subtract (alge:­
braically) the number in the special counter scaled 10-10, from the number
in the A register.

As in the addition commands, there is a possibility of overflow. Also,
the special counter can contain a forbidden combination (when A =
o before spl). In such a case, the execution of the special counter (either

add or subtract) command will signal the forbidden combination alarm,
and the computer halts.

PROGRAMMING AND CODING 2-103

EXTRACT (ex x, 63). In normal operation, storage location x will
contain a combination of O's and l's. This number is referred to as an
extract combination. For the digits of the extract combination that are
zeros, replace the corresponding digits in the A register including the sign
by zeros. For the digits of the extract combination that are ones, leave
the corresponding digits in the A register, including the sign, unchanged.

Loop Transfer.

BLOCK TRANSFER INTO A LOOP (bl (4) ~ x, 34). Block trans­
fer into the 4000 loop the 20 words at storage location x through storage
location x + 19, the main storage and loop addresses corresponding modulo
20. The commands bl(5) ~ x, bl(6) ~ x, bl(7) ~ x are executed in the
same way as the above command, the 20 words being blocked into the
5000, 6000, and 7000 loops respectively. Because it is not possible to block
transfer from one loop to another, all blocking commands are interpreted
modulo 4000. Information transferred from main storage into a high­
speed loop remains in main storage.

BLOCK TRANSFER INTO MAIN MEMORY (bl(4) ~ x, 24).
Block transfer into 20 main storage positions starting at storage location x
the words in the 4000 loop. The words will go into main storage locations
corresponding modulo 20 to their loop addresses. The bl(5) ~ x, bl(6) ~
x, bl (7) ~ x commands are defined as above with the exception that 5000,
6000, and 7000, respectively, are substituted for 4000. After execution of
the command, the information is retained in the loop until new information
is written in.

Change Control.

UNCONDITIONAL CHANGE OF CONTROL (cu y, 20). Change
control unconditionally to storage location y. This command replaces the
contents of the control counter with the address part of the cu command.

CONDITIONAL CHANGE OF CONTROL (cc y, 28). If the
overflow toggle is set, change control to y and reset the overflow toggle to O.
If the overflow toggle is not set,. ignore this command.

Control Block Transfer. The two commands listed below and two
of the commands under Control-Record are a combination of change of
control commands and block transfer.

BLOCK AND UNCONDITIONAL CHANGE OF CONTROL
(cub y, 30). Block transfer into the 7000 loop the words at 20 consecutive
locations starting at main storage location y, and change control to the
image y in the 7000 loop; y is interpreted modulo 4000. It is important to
note that the words occupy locations in the 7000 loop which are congruent

2-104 DIGITAL COMPUTER PROGRAMMING

modulo 20 to their previous main storage addresses. Change of control is
effected by replacing the first two digits in the address part of the command
word by 70 and placing this in the control counter. This command, there­
fore, automatically changes control to the 7000 loop.

BLOCK AND CONDITIONAL TRANSFER OF CONTROL (ccb
y, 38). If the overflow toggle is set, this command acts in the same way
as the cub y command described in the previous paragraph. If the over­
flow toggle is not set, this command is ignored.

Since the control counter performs the operation of counting up one
only after the command word has been fetched, it can be seen readily that
the cub command must replace the first two digits by 70, not merely replace
the first digit by 7. If, say, a cub 2999 were executed and only the first
digit were replaced by 7, one command execution would cause a control
change from the 7000 loop into main storage.

Control-Record.

UNCONDITIONAL CHANGE OF CONTROL AND RECORD
(cuR y, 21). Clear the R register; replace its four most significant digits
with the contents of the control counter; and change control uncondition­
ally to storage location y. This command records the address from which a
departure into a subroutine has been made and makes it possible to provide
in advance for a control change to the next address in the main routine.

,CONDITIONAL CHANGE OF CONTROL AND RECORD (ccR
y, 29). If the overflow toggle is set, clear the R register, replace its four
most significant digits with the contents of the control counter, and change
control to storage location y. If the overflow toggle is not set, ignore this
command.

BLOCK, UNCONDITIONAL CHANGE OF CONTROL AND
RECORD (cubR y, 31). Clear the R register and replace its four most
significant digits with the contents of the control counter; block transfer
the words in storage location y and the following 19 locations into the
7000 loop and change control unconditionally to the number corresponding
to y in the 7000 loop.

BLOCK, CONDITIONAL TRANSFER OF CONTROL AND
RECORD (ccbR y, 39). If the overflo\v toggle is set, effect a cubR y
command. If the overflow toggle is not set, ignore this command.

All block transfer commands are interpreted modulo 4000. The y's in
the commands that perform a blocking operation are interpreted modulo
4000, while those in other commands are interpreted modulo 8000. These
commands do not disturb the contents of any register.

ZERO CHECK (z y, 04). If the A register does not contain ±O
before the execution of this command, change control to storage location

PROGRAMMING AND CODING 2-105

y. If the A register contains ±O, ignore this command (-0 is changed
to +0).

SIGN COMPARE (sgc x, 73). If the sign of the A register is the
same as the sign of the word in storage location x, do not set the overflow
toggle. If the sign of the A register is not the same as the sign of the word
in storage location x, set the overflow toggle.

The SIGN COMPARE command is usually followed by a cc, ccR, ccb,
or ccbR command. If it is not, the setting of the overflow toggle will cause
the machine to stop. It is only because of the sgc x command that the
programmer need know the sign of zero.

B Register.

REPLACE B (B x, 72). Set the B register to the last four digits in
storage location x. The sign of the number in x has no bearing on the
setting of B.

INCREASE B (B+, 32). Add 1 to the contents of the B register.
If the B register before the execution of a B+ command contains 9999,
it will contain 0000 after the execution of the command.

B TO A (B ~ A, 11). Clear the A register and then replace its four
rightmost digits with the contents of the B'register. The B register is not
changed by this command.

DECREASE B (B- y, 22). If the B register before the execution
of this command did not contain zero, subtract 1 from the contents of the B
register and change control to storage location y. If the B register before
the execution of this command contained zero, do not change control. In
this case the command leaves the B register set to 9999.

STOP (s, 08). Halt the machine. The operator can continue his
program by pressing the CONTINUOUS button.

Input-Output Instructions.
Paper Tape and Keyboard Input. The INPUT SELECTOR switch

may be set to OPTICAL READER, MECHANICAL READER (on the
Flexowriter) or KEYBOARD.

INPUT (in x 00). Start reading the first word on the tape or received
from the keyboard into storage location x. Read following words into the
next consecutive locations. (See Special Use of the Sign Column below.)

SINGLE DIGIT ADD INPUT (dA 10). Algebraically, add to the
contents of the A register in the Ala position the positive value of the
number punched on the keyboard or read by the mechanical reader or
photoelectric reader. When the command is executed, the machine will
stop until a digit has been entered, after which it resumes operation.

SPECIAL USE OF THE SIGN COLUMN. Words containing num­
bers other than a or 1 in the sign column are used for control of the input

2-106 DIGITAL COMPUTER PROGRAMMING

device and for B modification of words during input. A 2 or 3 placed in the
sign column will cause the address part of the word to be modified by the
B register as the word is read into storage. In storage, the word will have
a positive sign if there was a 2 in the sign column, a negative sign if there
was a 3 in the sign column. In both cases, the word will be stored with
the contents of the B register added to its address part. This is summarized
in Table 9.

TABLE 9. SPECIAL USE OF SIGN COLUMN, INPUTS 0 TO 3

Sign Column B Modification B Modification
on Input before Execution

o No
1 Yes
2 No

3 Yes

on Input
No
No
Yes

Yes

Comments

}
May be a command
or part of the data
Sign appears in
storage as 0
Sign appears in
storage as 1

An input sign 4 is used only to control input and causes the command
to be read directly into the C register. The effect of each of these numbers
with cu or STOP appears in Table 10.

TABLE 10. SPECIAL USE OF SIGN COLUMN, INPUTS 4 TO 7

Sign
Column

4
5

Tape Stops or
Keyboard is
Deactivated

No
No
Yes
Yes

B Modification
before Execution

No
Yes
No
Yes

a With the IN command, a 6 or 7 in the sign column does not stop the input device.

The commands most often used with an input control digit in the sign
column are cu, cub, in, and stop.

Flexowriter and Paper Tape Output. There are two printout com­
mands. With either of them, the second digit of the address part is a coded

, format instruction to the Flexowriter, Flexowriter punch or console punch.
(The two punches carry along the format instruction as an information
digit for. the typewriter control. It does not affect format until the printing
operation is carried out.) These instructions, which are sensed and carried
out before any other part of the command is executed, are as follows:

Second Address Digit
o
1

2
3

4

5
6
7

8
9

PROGRAMMING AND CODING 2-107

Instruction
None.
Feed out one character-space of blank tape (10 to the

inch). (This instruction has no effect on the Flexo­
writer.)

Print decimal point and suppress sign digit.
Suppress sign digit and substitute a space for sign digit

when the word is printed.
Translate alphanumerically, two A register digits per

alphanumeric character.
Actuate carriage return.
Actuate tab key.
Stop printout. Idle the computer if any printout com­

mand comes up before the typewriter control RESET
is pressed.

Actuate space bar.
None.

PRINT OUT (po n, 03). This command prints out the sign and n
digits of the A register (unless the sign has been suppressed by a 2 or a 3
format instruction), n being interpreted modulo 20. The R register is not
affected. The A register, including the sign, is circulated n + 1 places left.
This operation differs from that of the shift commands in that they do not
shift the sign.

The format instruction digits make it possible to control format com­
pletely by proper construction of the computer command word.

PRINT OUT (po f, 07). The po f command carries out the format
instruction contained in the second address digit.

PUNCH OUT (po n, 03; po f, 07). The console punch uses the same
two commands as the Flexowriter and typewriter control with the difference
that the OUTPUT SELECTOR is set to TAPE. The console punch has
no connection with the typewriter control except that its output tape may
be an input to various arrangments of the typewriter control patch panel.

ALPHANUMERIC CODE. Typewriter action corresponding to the
various two-digit combinations read out from the A register is given in
Table 11. Alphanumeric information comes out on the console punch as
pairs of decimal digits. The format instruction (4) accompanies the infor­
mation so that when the tape is read for printing later it will be translated
by the typewriter control into alphanumeric Flexowriter action.

Since it takes two digits to represent one alphabetic character, a po 0406,
written 0.0000030406, will print out three alphabetic characters from the
A register. Example. If (A) = +.7065464646, and the command men­
tioned in the above paragraph is executed, the following characters will be
printed out: if6.

2-108 DIGIT AL COMPUTER PROGRAMMING

TABLE 11. TYPEWRITER ACTION CORRESPONDING TO
VARIOUS TWO-DIGIT CODES

Typewriter Action
Alphanumeric

Typewriter Action
Alphanumeric

L.C. U.C. Code L.C. U.C. Code
a A 20 0) 40
b B 61 1 1/2 41
c C 62 2 & 42
d D 63 3 / 43
e E 64 4 $ 44
f F 65 5 % 45
g G 66 6 ? 26
h H 67 7 47

I 70 8 * 40
j J 71 9 51
k K 72 + 54
1 L 36 25
m M 73 26
n N 74 31
0 0 75 32
p P 76 33
q Q 77 Lower case 27
r R 21 Upper case 30
s S 22 Space 34
t T 23 Color shift 35
u U 52 Ignore 00
v V 53 Back space 01
w W 54 Tab 06
x X 55 Carriage return 05
y Y 56 Stop 07
z Z 57

Punched Card Input-Output.

CARD INPUT ([1000 - Ill] ci x, 44). Read in m cards, starting at
storage location x. The number of words per card, from 1 to 8, is set on
a selector switch. The first three digits of the command word, excluding
sign, are 1000 - m. The x is interpreted as follo\vs:

0000 = 0000
1000 = 1000
2000 = 2000
3000 = 3000

4000 = 0000
5000 = 1000
6000 = 2000
7000 = 3000

8000 = 4000
9000 = 4000

After the command, the storage cells which have received new information
are x through x + mk - 1 + (20 - k), where m is the number of cards
read, and k is the setting of the input WORDS PER CARD switch.

PROGRAMMING AND CODING 2-109

CARD/TABULATOR OUTPUT ([1000 - m] co x, 54). Punch
out m cards, starting at storage location x. The number of words per card,
from 1 to 8, is set on a selector switch. The first three digits of the com­
mand word, excluding sign, are 1000 - m. The x is interpreted as for card
input. After the command, the 4000 loop contains the words transferred
from x + mk - 1 + (20 - k) and the 19 preceding cells, where m is the
number of cards punched, and k is the setting of the output WORDS PER
CARD switch.

For tabulator output, the command is the same except that the words
"line" and "printed" are substituted for the words "card" and "punched,"
respecti vely.

Magnetic Tape.

TAPE SEARCH (ts x, 42). In preparation for a TAPE READ or
WRITE command, search for block x on the tape unit designated by the
third digit of the command word. As with word addresses on the drum, x
is the last four digits of the command word. If a TAPE READ or WRITE
command is fetched before the addressed block is found, skip the EXE­
CUTE cycle of the tr or tw command and set the overflow toggle.

TAPE READ (tr x, 40). From the tape unit designed by the third
digit of the command word, read as many consecutive blocks of 20 words
each as are indicated by the first two digits of the command word. Write
these words in successive storage locations beginning with storage loca­
tion x.

TAPE WRITE (tw x, 50). On the tape unit designated by the third
digit of the command word, write as many consecutive blocks of 20 words
each as are indicated by the first two digits of the command word. These
words will be read from successive storage locations, beginning with
storage location x.

REWIND (rw,52). Rewind the tape in the tape unit, designated by
the third digit of the command word, to the 0000 end. If the rewind
switch on the designated tape unit is in the normal position upon com­
pletion of the rewind, the unit will be locked out of the system. If the
switch is in the rewind-ready position, the unit can again be called upon for
a subsequent search, read, or write operation.

Royal-McBee LGP-30 Instruction Logic

A typical small machine is the LGP-30, built by Librascope and mar­
keted by Royal-McBee. It is desk size, its input-output is a Flexowriter,
and it has a single-address instruction code with a 30 binary digit word
length using digital numbers (absolute value less than one). The instruc­
tion code for this magnetic drum (30, 0, 0) binary machine is exceedingly

2-110 DIGITAL COMPUTER PROGRAMMING

simple, lacking the complex optimization features of the "next instruction
address" or the recirculating loop. There is only one input and one output
instruction.

List of Instructions. The following list of commands is taken from
an LGP-30 instruction manual (Ref. 66).

Instructiona Effect

B nI Bring. Clear the accumulator, and add the contents of m to it.
A nI Add contents of m to the contents of the accumulator, and retain

the result in the accumulator.
S nI Subtract the contents of m from the contents of the accumulator,

and retain the result in the accumulator.
M nI Multiply the number in the accumulator by the number in

memory location m, and terminate the result at 30 binary places.
N nI Multiply the number in the accumulator by the number in m,

and retain the least significant half of the product.
D nI Divide the number in the accumulator by the number ill memory

location m, and retain the rounded quotient in the accumulator.
H nI Hold. Store contents of the accumulator in m, and retain the

number in the accumulator.
C nI Clear. Store contents of the accumulator in m and clear the

accumulator.
Y nI Store only the address part of the word in the accumulator in

memory location m, while leaving the rest of the word undis­
turbed in memory.

R nI Return address. Add one, to the address held in the counter
register . (C) and record in the address portion of the instruction
in memory location m. The counter register normally holds the
address, of the next i:qstruction to be executed.

E nI Extract, or logical product order, i.e., clear the contents of the
accumulator to zero in those bit po·sitions occupied by zeros in m.

U nI Transfer control to m unconditionally, i.e., get the next instruc-
tion from m. '

T nI Test, or conditional transfer. Transfer control to m only if the
number in the accumulator is negative.

I 0 Input. Fill the accumulator from the Flexowriter.
P x Print a Flexowriter symbol. The symbol is denoted by the track

number part of the address (x).
Z t Stop. Contingent on five switch (T1 ··· Ts) settings on the

control panel.

a The address part of the instruction is denoted by m when it refers to a memory
]ocation.

PROGRAMMING AND CODING 2-111

Instruction Logic of the Soviet Strela (Arrow)

A typical general purpose digital computer using three-address instruc­
tion logic is the Strela (Arrow) constructed in quantity under the leadership
of Iu. Ia. Basilewskii of the Soviet Academy of Sciences, and described in
detail by Kitov (Ref. 61). This computer uses a (35, 6, 0) binary floating
point number system. Its instruction word, of 43 digits, contains a six­
digit operation code, and three 12-digit addresses, with one breakpoint bit.
In octal notation, two digits represent the operation, four each the ad­
dresses, and one bit the breakpoint. This machine operates with up to
2048 words of high-speed cathode ray tube storage.

Input-output is ordinarily via punched cards and punched paper tape.
A "standard program library" is attached to the computer as well as mag­
netic tape units (termed "external accumulators" below). Note. This
computer is different from both the BESM described by Lebedev (Ref. 65)
and the Ural reported by Basilewskii (Ref. 7). Apparently, it is somewhat
lower in performance than BESM.

Since all arithmetic is ordinarily in floating point, "special instructions"
perform fixed point computations for instruction modifications.

Ordinarily instructions are written in an octal notation, but external to
the machine operation symbols are written in a mnemonic code. The
notation used is similar to that described below for the EASIAC. The
two-digit numerals are the octal instruction equivalent.

Arithllletic and Logical Instructions.

01. + a. ~ y. Algebraic addition of (a) to ({3) with result in 'Y.

02. + 1 a. ~ y. Special addition, used for increasing addresses
of instructions. The command (a) or ({3) is added to the number ({3) or (a)
and the result sent to the cell with address 'Y. As a rule, the address of the
instruction being changed corresponds to the address 'Y.

03. a. ~ y. Subtraction with signed numbers. From the
number (a) is subtracted the number ({3) and the result sent to 'Y.

04. -1 a. ~ y. Difference of the absolute value of two numbers
I (a)1 - I ({3)1 = ('Y).

05. X a. ~ y. Multiplication of two numbers (a) and ({3) with
result sent to 'Y.

06. " a. ~ y. Logical multiplication of two numbers in cells
a and {3. This instruction is used for extraction from a given number or
instruction a part defined by the special number ({3).

07. V a. ~ y. Logical addition of two numbers (a) and ({3) and
sending the result to cell 'Y. This instruction is used for forming numbers
and commands from parts.

2-112 DIGITAL COMPUTER PROGRAMMING

10. Sh a. p y. Shift of the contents of cell a by the number of
steps equal to the exponent of the ({3). If the exponent of the ({3) is posi­
tive then the shift proceeds to the left, in the direction of increasing value;
if negative, then the shift is right. In addition, the sign of the number,
which is shifted out of the cell, is lost.

II. -2 a. p y. Special subtraction, used for decreasing the
addresses of instructions. In the cell a is found the instruction to be trans­
formed, and in cell {3 the specially selected number. Ordinarily addresses
a and 'Yare identical.

12. ~ a. p y. Comparison of two numbers (a) and ({3) by
means of digital additions of the numbers being compared modulo two. In
the cell 'Y is placed a number possessing ones in those digits in which in­
equivalence results in the nuinbers being compared.

Control Instructions.

13. C a. p 0000. Conditional transfer of' control either to in­
struction (a) or to instruction ({3), depending on the results of the preceding
operation. With the operations of addition, subtraction, and subtraction
of absolute values, it appraises the sign of the result: for a positive or zero
result it transfers control to the command (a), for negative results to the
command ({3).

The result of the operation of multiplication is dependent on the relation­
ship to unity. Transfer is made to the command (a) in the case where the
result is greater than or equal to one, and to command ({3), if it is smaller
than one.

For conditional transfer after the operation of comparison, transfer to
the instruction (a) is made in the case of equality of binary digits, and to
({3) when there is any inequivalence.

After the operation A (logical sequential multiplication) the conditional
transfer command jumps to the instruction (a) when the result is different
from zero, and to instruction ({3) when it is equal to zero.

A forced comparison is given by

C a. a. 0000

The third address in this command is not used and in its place is put zero.
14. 1-0 a. 0000 0000. This instruction is executed parallel

with the code of the other operations, and guarantees bringing into working
position in good time the zone of the external accumulator (magnetic tape
unit) with the address a.

15. H 0000 0000 0000. This instruction executes an absolute
halt.

Group Transfer Instructions. Special instructions for group trans­
fer serve for the accomplishment of a transfer of numbers to and from the

PROGRAMMING AND CODING 2-113

accumulators. In the second address in these instructions stands an integer,
designating the quantity of numbers in the group which must be trans­
ferred. Group transfers always are produced in increasing sequence of
addresses of cells in the storage.

16. Tl 0000 n y. The instruction Tl guarantees transfer from
a given input unit (with punched cards, perforated tape, etc.) into the
storage. In the third address 'Y of the instruction is indicated the initial
address of the group of cells in the storage where numbers are to be written.
With punched paper tape or punched cards the variables are written in
sequence, beginning with the first line.

17. T2 0000 n y. The instruction T2 guarantees transfer of a
group of n numbers from an input unit into the external accumulator in
zone 'Y.

20. T3 a. n y. This instruction guarantees a line-by-line se­
quence of transfers of n numbers from zone a of the external accumulator
into the cells of the storage beginning with the cell with address 'Y.

21. T4 a. n 0000. This instruction guarantees the transfer
to the input-output unit (to punched paper tape or punched cards) of a
group of n numbers from the storage, beginning with address a. The
record on punched paper tape or punched cards as a rule will begin with
the first line and therefore a positive indication of the addresses of the
record is not required.

22. T5 a. n y. Instruction T5 guarantees transfer of a group
of n numbers from one place in the storage with initial address a into
another place in the storage with initial address 'Y.

23. To a. n y. Instruction To guarantees transfer of a group
of n numbers from the storage with initial address a into the external
accumulator with address 'Y.

24. T7 a. n 0000. Instruction T7 serves for transfer of n
numbers from the zone of the external accumulator with address a into
the input-output unit.

Instructions T2 and T7 cannot be performed concurrently with other
machine operations.

Standard Subroutine Instructions. Certain instructions in the
Strela, although written as ordinary instructions are actually "synthetic"
instructions which call on a subroutine for computation of the function
involved. The amount of machine time (number of basic instruction
cycles) for an iterative process depends on the required precision of the
computed function. The figures given below are based on approximately
ten-digit decimal numbers with desired precision one in the tenth place.

25. D a. p y. This standard subroutine serves for execution
of the operation of division: The number (a) is divided into the number
({3) and the quotient is sent to cell 'Y.

2-114 DIGITAL COMPUTER PROGRAMMING

The actual operation of division is executed in two steps: the initial
obtaining of the value of the inverse of the divisor, by which the dividend
is then multiplied. The computation of the inverse is given by the usual
Newton formula, originally used with the ED SAC (Ref. 108).

Yn+1 = Yn(2 - YnX).

For x = d . 2P , where! < d < 1, the first approximation is taken as 2-p
•

The standard subroutine takes 8 to 10 instructions and can be executed in
18-20 machine cycles (execution time for one typical command).

26. V a. 0000 "I. This instruction guarantees obtaining the
value vx from the value x = (a) and sending the result to cell 'Y. Initially
I/VX is computed by the iteration formula

where the first approximation is taken as

yo = 2[p/2],

the bracket indicating "integral part of." After this the result is multiplied
by x to obtain vx. This standard subroutine contains 14 instructions and
is executed in 40 cycles.

27. eX a. 0000 "I. This instruction guarantees formation of
eX for the value x = (a) and sending the result to cell 'Y. The computation
is produced by means of expansion of eX. in a power series. The standard
subroutine contains 20 instructions and is elmcuted in 40 cycles.

30. In x a. 0000 "I. This instruction guarantees formation of
the function In x for the value x = (a) and sending the result to location 'Y.

Computation is produced by expansion of In x in series. The subprogram
contains 15 instructions and is executed in 60 cycles.

31. sin x a. 0000 "I. This instruction guarantees eIcecution of
the function sin x and sending the result to location 'Y. The computation
is produced in two steps: initially the value of the argument is translated
into the first quadrant, then the value of the function is obtained by a
series expansion. The subroutine contains 18 instructions and is executed
in 25 cycles.

32. DB a. n "I. This instruction performs conversion of a
group of n numbers, stored in locations a, a + 1, ... from binal"y-coded
decimal into binary and sending of the result to locations 'Y, 'Y + 1,
The subroutine contains 14 instructions and is executed in 50 cycles (for
each number).

33. BD a. n "I. This instruction performs the conversion of a
group of n numbers stored in locations a, a + 1, ... from the binary sys­
tem into binary-coded decimal and sends them to locations 'Y, 'Y + 1, .. • .

PROGRAMMING AND CODING 2-115

The subroutine contains only 30 instructions and is executed with 100 cycles
(for each number).

34. MS a. n 'Y' This is an instruction for storage summing.
This instruction produces the formal addition of numbers, stored in loca­
tions beginning with address ex, and the result is sent to location,... Num­
bers and instructions are added in fixed point. This sum may be compared
with a previous sum for control of storage accuracy.

Instruction Logic of the MIDAC

The MIDAC, Michigan Digital Automatic Computer (Ref. 25), was
constructed on the basis of the design of the SEAC at the National Bureau
of Standards. Its instruction code is particularly of interest because it
incorporates the index register concept into a three-address binary instruc­
tion. Numbers in this machine are (44,0,0) fixed points. The word length
is 45 binary digits with serial operation.

Word Structure. The data or address positions of an instruction are
labeled the ex, {j, and ,.. positions. Each contains twelve binary digits
represented externally as three hexadecimal digits. Four binary digits, or
one hexadecimal digit, are used to convey the instruction modification or
relative addressing information. The next four binary digits or single
hexadecimal digit represents the operation portion of the instruction. The
final binary digit is the halt or breakpoint indicator for use with the in­
struction.

For example, the 45-binary-digit word,

000001100100000011001000000100101100000001011

considered as an instruction would be interpreted as

ex {j-y abcd Op halt
000001100100 000011001000 000100101100 0000 0101 1

In external hexadecimal form this would be written

064 Oc8 12c 0 5

The above binary word is the equivalent machine representation of the
following instruction: "Take the contents of hexadecimal address 064, add
to it the contents of hexadecimal address Oc8, and store the result in hexa­
decimal address 12c. There is no modification of the 12-binary-digit
address locations given by the instruction. Upon completion of the opera­
tion, stop the machine if the proper external switches are energized." The
binary combination represented by 5 is the operation code for addition.

Data or Addresses. The addresses given by the twelve binary digits
in each of the three locations designate in the machine the individual
acoustic storage cells and blocks of eight magnetic drum storage cells. The

2-llb DIGITAL COMPUTER PROGRAMMING

addresses from 0 to 1023 (decimal) or 000 to 3FF (hexadecimal) correspond
to acoustic storage cells. The addresses from 1024 to 4095 (decimal) or
400 to FFF (hexadecimal) correspond to magnetic drum storage blocks. In
certain operations, however, the addresses 0 to 15 (decimal) or 0 to F
(hexadecimal) represent input-output stations rather than storage locations.

These twelve-binary-digit groups will in some cases be modified by the
machine in order to yield a final twelve-binary-digit address. The method
of processing will depend on the values of the instruction modification
digits. After modification, the final result will then be interpreted by the
control unit as a machine address.

In some instructions, namely those that perform change of control
operations, which involve cycling and counting rather than simple arith­
metic operations on numbers, the a and f3 positions in an instruction are
not considered as addresses. In those cases, they are used instead as
counters or tallies. In other instructions, which do not require three
addresses, but only one or two, the f3 position is not considered as an
address. In these cases, the oddness or evenness of the f3 address is used
to differentiate between two operations having the same operation code
digits. That is, the parity of binary digit P22 is used as an extra function
designator.

Instruction Modification Digits. The four binary digits P9-P6 are
used as instruction modification or relative addressing digits. Their normal
function is relatively simple; nevertheless, the possible exceptions to the
general rule can make their behavior complicated. These four digits are
labeled the a, b, c, and d digits. Ordinarily the a digit is associated with
the a position, the b digit with the f3 position, and the c digit with the 'Y

position in an instruction.
When binary digit P22 (or the f3 position) is used in an instruction to

represent extra operation information, the instruction modification digit b
is ignored. In the case of input and output instructions, when the various
address positions represent machine address locations on the drum, input­
output stations, or block lengths, and modification of these addresses is not
desired in any case, the corresponding relative addressing digits are ignored.

The purpose of the instruction modification digits is to tell the machine
whether or not to modify the twelve binary digits making up the corre­
sponding address position in an instruction by addition of the contents of
one or the other of two counters. In the normal case, if the a, b, or c digit
is a zero, the twelve binary digits in the corresponding position are inter­
preted, unchanged, as the binary representation of the machine address of
the number word to be processed by the instruction.

If one or more of the a, b, or c digits is a one, the contents of one of two

PROGRAMMING AND CODING 2-117

auxiliary address counters is added to the corresponding twelve binary
digits to yield a final address usually different from that given by the
original twelve-digit portion of the instruction word. The addresses are
then said to be relative to the counter.

The two counters involved in the address modification feature of the
MIDAC are known as the instruction counter and the base counter. In
the normal case, if the fourth instruction modification or d digit is a zero,
the contents of the instruction counter will be added to the contents of the
various twelve-digit addresses (dependent on the values of the a, b, and c
digits) before further processing of the instruction. If the a digit is one and
the d digit zero, the contents of the instruction counter will be added to the
a address; similarly for band d digits and {1 address, etc.

If the d digit is a one, the contents of the base counter will be normally
added to the contents of the twelve digits in the a, {1, and "I positions (again
dependent on the values of the a, b, and c digits), before further processing
of the results. If the a digit is one and the d digit one, the contents of the
base counter will be added to the a address, etc.

The effect of the instruction modification digits may be summarized as
follows:

The contents of the two counters will be designated by Cd (d = 0, 1).
Co = contents of the instruction counter,
C1 = contents of the base counter.

Then the modified addresses a', {1', and "I' are related to the a, {1, and "I

addresses appearing in the instruction by the following:

"I' = "I + CCd (a, b, c, d = 0, 1).

In certain instructions addresses relative to one of the two counters may
be prohibited. Thus, if in a particular instruction a may be relative only
to the instruction counter, then for that instruction

a' = a + aCo,

no matter whether the d digit is a ° or a 1.
The notation (a'), ({1'), or ("I') is used to indicate the word stored in the

location whose address is a', {1', or "I'.
Instruction Counter. The instruction counter is a twelve-binary

digit (modulo 4096) counter which contains the binary representation of the
address of the instruction which the control unit is processing or is about to
process. In normal operation when no change of control operation is being
processed, the contents of the instruction counter is increased by one at
the completion of each instruction. Thus, normally the next instruction to

2-118 DIGITAL COMPUTER PROGRAMMING

be processed is stored in the acoustic storage cell immediately following the
cell which contains the present instruction.

A change of control operation is one ,vhich selects a next instruction not
stored in sequence in the acoustic storage. That is, at the completion of
such instructions the contents of the instruction counter is not increased by
one, but instead is changed entirely.

Base Counter. The base counter is a second twelve-binary-digit
counter (modulo 4096), physically identical to the instruction counter,
which contains the binary representation of a base number or tally. Unlike
the instruction counter, however, the base counter does not sequence
automatically, but remains unchanged until a change of base instruction is
processed. This counter serves two primary purposes, dependent on the
usage to which it is put:

1. It may contain the address of the initial word in a group, thus serving
as a base address to which integers representing the relative position of a
given word in the group of words may be added by using the address
modification digits.

2. It may contain a counter or tally which can be increased by a base
instruction. This instruction makes use of the address modification digits
to change the counter so as to count the number of traversals of a particular
cycle of instructions.

Instruction Types. Instructions used in MIDAC can be divided into
three categories: change of information, change of control, and transfer
of information. The first category can be further subdivided into arith­
metic and logical instructions. In the arithmetic instructions are included
addition, subtraction, division, various forms of multiplication; power
extraction, number shifting; and number conversion instructions. The
sole logical instruction is extract, which modifies information in a non­
arithmetic fashion.

The transfer of information or data transfer instructions include transfers
of individual words or blocks of words into and out of the acoustic storage
and drum and magnetic tape control.

The possible change of control instructions includes two comparisons
that provide different future sequences dependent on the differences of two
numbers. In the compare numbers or algebraic comparison, the difference
is an algebraic, signed one. In the compare magnitudes or absolute com­
parison, the difference is one between absolute values. Two other instruc­
tions, file and base, perform other tasks beside transferring control. The
file instruction transfers control unconditionally. The file instruction files
or stores the contents of the base or instruction counter in a specific address
position of a particular word in the storage. The base or tally instruction

PROGRAMMING AND CODING 2-119

provides a method for referring addresses automatically relative to the
address given by the base counter, irrespective of its contents. The base
instruction also gives a conditional transfer of control.

The nineteen MIDAC instructions can be described functionally as
follows:

Change of Information.

1. Add. (a') + ({3') is placed in "'('. Result must be less than 1 in
absolute value.

2. Subtract. (a') - ({3') is placed in "'('. Result must be less than
1 in absolute value.

3. Multiply, Low Order. The least significant 44 binary digits of
(a') X ({3') are placed in "'('.

4. Multiply, High Order. The most significant 44 binary digits of
(a') X ({3') are placed in "'('.

5. Multiply, Rounded. The most significant 44 binary digits of
(a') X ({3') ± 1.2-45 are placed in "'('. The 1.2-45 is added if (a') X ({3')
is positive, and subtracted if (a') X ({3') is negative.

6. Divide. The most significant 44 binary digits of ({3')/ (a') are
placed in "'('. (N ote the inversion of order of a and (3.) Result must be
less than 1 in absolute value.

7. Power Extract. The number n . 2-44 is placed in "'(' where n is
the number of binary O's to the left of the most significant binary 1 in (a').
The b digit is ignored; (3 may be any even number. If (a') is all zeros, zero
is placed in "'('.

B. Shift Number. The 44 binary digits immediately to the right
of the radix point in (a') . 2<j3') . 244 are placed in "'('. The result, in /, is
the equivalent of shifting (a') n places, where n . 2-44 = ({3') and n positive
indicates a shift left, n negative a shift right. If Inl ~ 44, zero is placed
in "'('.

9. Extract or Logical Transfer. Those binary digits in ("'('), in­
cluding the sign digit, whose positions correspond to 1's in ((3') are replaced
by the digits in the corresponding positions of (a').

10. Decimal to Binary Conversion. This operation may be in­
terpreted in two ways: (a) (a') is considered as a binary-coded-decimal
integer times 2-44• It is converted to the equivalent binary integer times
2-37 and the result is placed in "'(', or (b) (a') is considered as a binary­
coded-decimal fraction, D. It is converted into an intermediate binary
fraction, B i, such that Bi = D X 1011 X 2-37 and the result placed in "'('.
To obtain B, the true binary equivalent of D, Bi must be multiplied by
(10-11 X 237). However, since this factor is greater than 1 and therefore

DIGITAL COMPUTER PROGRAMMING

cannot be represented in the machine, two operations must be performed.
For example,

Bi X (10-11 X 237 - 1) = Bj,

B = Bi + B j •

Here the b digit is ignored, and {3 may be any even number.
II. Binary-to-Decimal Conversion. (a'), considered as a binary

fraction, is converted into the equivalent eleven-digit binary-coded-decimal
fraction. The result is placed in "'I'. The b digit is ignored, and {3 may be
any odd number.

Change of Control.

12. Compare Numbers. 'Y can be relative only to the instruction
counter. If (a') ~ ({3'), the contents of the instruction counter are in­
creased by one as is normally done at the end of each instruction. If
(a') < ({3'), the contents of the instruction counter are set to 'Y'.

13. Compare Magnitudes. 'Y can be relative only to the instruc­
tion counter. If I (a')1 ~ I ({3')I, the contents of the instruction counter are
increased by one as is normally done at the end of each instruction. If
I (a') I < I ({3') I, the contents of the instruction counter is set to 'Y'.

14. Base or Tally. The d digit is ignored. a and {3 may be relative
only to the base counter, "'I only to the instruction counter. If a' ~ {3', the
contents of the base counter are set to zero and the contents of the instruc­
tion counter increased by one as usual. If a' < {3', the contents of the
base counter are set to a' and the contents of the instruction counter to "'I'.
(Note. The comparisons made here are of addresses themselves, not their
contents.)

15. File. {3 may be any odd number. a and "'I may be relative only
to the instruction counter.

If d = 0, the contents of the instruction counter increased by one is
placed in the 'Y position of (a'), and the instruction counter is set to "'I'.

If d = 1, the contents of the base counter is placed in the a position of
(a'), and the instruction counter is set to 'Y'. In addition, if b = 1, the
contents of the base counter is set to zero; if b = 0, the contents of the
base counter is not changed.

Transfer of Information.

16. Read In. The a digit must be 0; the b digit is ignored. If (3 is
in the range 0 to 7 (decimal) or 000 to 007 (hexadecimal) a words are read
into the acoustic storage from input-output station {3. The first word read

PROGRAMMING AND CODING 2-121

in is placed in "I', the second in "I' + 1, etc. If {3 is in the range 1024 to
1791 decimal (400 to 6FF hexadecimal), ex words are read in to the acoustic
st)rage from the drum starting with the first word in the drum block whose
address is {3. The first word is placed in "I', the second in "I' + 1, etc.

17. Read Out. The a digit must be 0, the c digit is ignored. Start­
ing with ({3'), read out ex consecutive words from the acoustic storage to
input-output station "I, if "I is in the range 0 to 7 decimal (000 to 007 hex­
adecimal), or to the drum starting at the beginning of the drum block whose
address is "I, if "I is in the range 1024 to 1791 decimal (400 to 6FF hex­
adecimal).

16. Alphanumeric Read In. The a digit must be 1; the b digit
is ignored. If (3 is in the range 0 to 7 (decimal) or 000 to 007 (hexadecimal)
ex characters are read into the acoustic storage from input-output station {3.
The first character read in is placed in "I', the second in "I' + 1, etc. Each
character occupies the six most significant digit positions of the register
into which it is read; the other positions are set to zero. This operation may
not be used to read words from the drum into the acoustic storage.

17. Alphanumeric Read Out. The a digit must be 1; the c digit
is ignored. Starting with ({3'), read out ex consecutive characters from the
acoustic storage to input-output station "I; "I must be in the range 0 to 7
(decimal) or 000 to 007 (hexadecimal). This operation may not be used
to read words from the acoustic storage onto the drum.

18. Move Tape Forward. (a, b, c, and d digits are ignored.) {3 may
be any even number; "I must be in the range 0 to 15 decimal (000 to OOF
hexadecimal). The magnetic tape at input-output station "I is moved
forward n blocks where

[
ex - IJ n = -8- + 1,

that is, one plus the integral part of ex - i, or the number of blocks that
include ex words.

19. Move Tape Backward. (a, b, c, and d digits are ignored.) {3
may be any odd number; "I must be in the range 0 to 15 decimal (000 to
OOF hexadecimal). The magnetic tape at input-output station "I is moved
backward n blocks where

[
ex - IJ n = -8- + 1,

that is, one plus the integral part of ex - i, or the number of blocks that
include ex words.

2-122 DIGITAL COMPUTER PROGRAMMING

EASIAC Instruction Logic

As an example of a typical three-address machine a description of the
EASIAC (Easy Instruction Automatic Computer) is given here. This
machine, an abstraction, made use of the MIDAC (Michigan Digital
Automatic Computer) as the host computer. EASIAC is an interpretive
routine (see Sect. 13), and is included as an example of that form of auto­
matic programming. Its internal structure has been described thoroughly
by Perkins (Ref. 80). It performs its arithmetic operations on floating
point numbers (actually binary, but printed out in standard decimal form
with properly located decimal point. If anyone of eight specific program­
ming errors occurs (given by the codes listed below under EASIAC Error
Printout), then a printout occurs automatically. Such errors as division
by zero, taking the square root of a negative number, or using an operand
of the wrong type of information (an instruction) are some of the causes of
such printouts. In addition the contents of seven index registers are
printed, along with a "jump table" listing the instructions where transfers
of control were made, and how many times each loop was performed.

The addresses in the three-address instructions are symbolic or floating
addresses. The first two digits in an address give the position in a region
for which the letter and last two digits are the name. This "computer"
was used for two years for undergraduate instruction purposes at the
University of Michigan without any kind of error diagnosis other than the
automatic printouts described.

The EASIAC reads all the alphabetical and numerical characters listed,
and, as noted in the Summary of Operations (see Table 12), contained very
thorough alphabetical input-output instructions with punched paper tape
high-speed input and typewriter and high-speed punch output.

A demonstration problem, calculation of a polynomial for a number of
values, is included. The notation "fa--aOl" indicates that the given
instruction or number has been assigned the floating address "aOl.'.' The
signal "end" notes the end of information to be read in. Index accumulator
(tally) modification is noted by the suffix (Ti) added on to an address,
where i is the tally number.

PROGRAMMING AND CODING 2-123

SYMBOLS.

< less than
> grea ter than
~ greater than or equal to
¢ is not identical to
I absolute value
a the cell whose floating address appears in the first component of an

instruction
{3 the cell whose floating address appears in the second component

of an instruction
"(the cell whose floating address appears in the third component of

an instruction
a' the cell whose address is obtained by modifying the address of a

by the contents of the proper tally
{3' the cell whose address is obtained by modifying the address of {3 by

the contents of the proper tally
"(' the cell whose address is obtained by modifying the address of "(

by the contents of the proper tally
(a') the contents of a'
({3') the contents of {3'
("(') the contents of "('
~ becomes the new contents of
C i instruction sequencer

Characters.

0 G g W w
1 H h X x
2 I Y y
3 J j Z z
4 K k &
5 L I /
6 M m $

7 N n %
8 0 0 ?
9 p p !
A a Q q *
B b R r (
C c S s)
D d T t "
E e U u
F f V v ¢

1
"2
1
"4
3
"4

(Back space)
(Space)
(U pper case shift)
(Lower case shift)
(Tab)
(Carriage return)
(Color shift)
(Back space)

2-124

Operation
Code
add
sub
mul
div
xfr
cmp

cav

jmp
lev
ret

set-x
ndx-x
cyc-x

fil-x
stp

pno

rno

pch

rch

sqr
s-c

atn

DIGITAL COMPUTER PROGRAMMING

TABLE 12. EASIAC, SUMMARY OF OPERATIONS

Operation
Add
Subtract
Multiply
Divide
Transfer
Compare

Compare absolute
values

Jump
Leave}
Return

Set tally x
Index tally x
Cycle tally x

File tally x
Stop

Print out numbers

Read in numbers

Print out alphanumeric
characters

Read in alphanumeric
characters

Square root
Sine-cosine

Arctangent

Symbolic Notation
(a') + (f3') ~ "('
(a') - (f3') ~ "('
(a') X (f3') ~ "('
(a') + (f3') ~ "('
(a') ~ "('
if (a') ~ ({1'): (Ci) + 1 ~ Ci

if (a') < (f3'): "(' ~ Ci

if l(a')1 ~ ({1'): (C i) + 1 ~ Ci

if (a') < (f3'): "(' ~ Ci
"(' ~ Ci
"(' ~ Ci

Address of order immediately following
last unpaired lev order ~ Ci

(a') ~ Tx
(a') + (Tx) ~ Tx
if (Tx) + 1 ~ (f3'): 0 ~ Tx,

(Ci) + 1 ~ Ci
if (Tx) + 1 < (f3'): (Tx) + 1 ~ Tx,

"(' ~ Ci
(Tx) ~ "('
Halt computer. Upon pushing start

button, process next instruction and
continue

Print (a') numbers starting at {1' with
("(') digits to the right of the decimal
point. Print carriage returns after
each number but the last

Read in (a') numbers from station (f3')
and store, starting at "('

If (a') is a number, print (a') characters
starting at "('

If (a') is a character, print characters
[starting at "(' to, but not including, the
first occurrence of (a')

If (a') is a number, read in (a') char­
acters from station (f3') and store,
starting at "('

If (a') is a character, read characters
from station (f3') and store, starting at
"(' to, and including, the first occur­
rence of (a')

V (a') ~"('
sin (a') ~ {1', cos (a') ~ "('

(a')
arctan (f3') ~ "('

PROGRAMMING AND CODING 2-125

EASIA C Error Prin tou t.

Code No.

1.
2.

3.

4.

5.
6.
7.
8.
9.

10.

002a07
8
2
o
o
1
o
o
o
OOOaOO
001aOO
000a07

Error

Trying to interpret a noninstruction
More than 5 unpaired lev instructions
A ret instruction with no unpaired lev preceding
In a simple loop more than 250 times
Attempt to jump to, or to obtain an instruction or operand

from a nonexistent cell (i.e., a cell before the first instruction
or more than 250 cells beyond the first)

Attempt to divide by 0, take the arctan of 0/0, or take the
square root of a negative number

Not used
Not used
Operand not right type of information
Operand not integer, or not in required range
Attempt to read, print, or generate a number too large
Attempt to put result or to read in to a cell already containing

an instruction

004aOO
000b21

1
14

Address where computation stopped
Error code (see above)
Contents of: Tl

" "T2
" "T3
" "T4
" "Ts
" "To
"

Jump table

Demonstration Problem.

Problem. Evaluate f(x) = aox4 + alx3 + a2x2 + a3X + a4 for x =
1, 2, 3, ... , 25.

After the 25 values of x have been evaluated, print out the 25 values of
f(x).

The values of the coefficients are:

ao = 1, a2 = 0.02, a3 = -23, a4 = -56.

f(x) = X4 + 1.5x3 + 0.02X2 - 23x - 56.

2-126 DIGITAL COMPUTER PROGRAMMING

For easier computation let

f(x) = {[(aox +. aI)x + a2]x + a3}x + a4.

Analysis. For one value of x the problem would consist of:
1. Calculating aox.
2. Calculating aox + aI.
3. Calculating (aox + aI)x.
4. Calculating (aox + aI)x + a2.
5. Calculating [(aox + aI)x + a2]x.
6. Calculating [(aox + aI)x + a2]x + a3.
7. Calculating {[(aox + al)x + a2]x + a3}x.
8. Calculate f(x) = {[(aox + aI)x + a2]x + a3}x + a4.

Additional Steps.

9. Setting any tallies needed.
10. Reading in a new value of x for the iterative process.
11. Storing the value of f(x).
12. Counting the number of times an iteration takes place.
13. Printing out the 25 values of f(x).
14. Stopping the computer.
15. Writing all the constants and temporaries which will be needed

during computation.

Flow Diagram.

Yes

No Print out 25
values f{x)

Stop

PROGRAMMING AND CODING 2-127

PROGRAM FOR EVALUATION OF A POLYNOMIAL

Instructions
fa--aOO cO2 0 0 set-l o ~'1'l
fa--aOl cOO* ('1'1) cO2 dOO add x = Xi, current X

dOO bOO cOO mul aoX
cOO lbOO cOO add aoX + al
cOO dOO cOO mul (aox + al)x
eOO 2bOO cOO add (aox + al)x + a2
eOO dOO cOO mul [(aox + al)x + a2jx
cOO 3bOO eOO add [() + a2]x + a3
eOO dOO cOO mul ([]x + a31x
eOO 4bOO cOO add f(x) = I Ix + a4
eOO 0 cOl * ('1'1) xfr f(x) ~ cOO*('1'1)
lc02 0 0 ndx-l 1 + '1'1 ~ '1'1
dOO 2c02 aOl cmp x < 25? Yes, to aOl; no, go on
2c02 cOl lc02 pno Print out 25 values of f (x) begin-

ning with cell cOl.
0 0 0 stp Stop computer

Numbers
fa-bOO 1 ao~

1.5 a1
.02 a2 coefficients
-23. a3
-56. a4

fa--cOO 1
2 values of x 3
4
5 J

6
7
8
9
10
11
12 i 13
14
15
16
17
18 i

19 !

20
21
22
23
24
25

fa-cOl }Answersf(x)
empty--24 25 temporaries

fa-cO2 0 Constant 0
1 Constant 1
25 Constant 25

fa-dOO Current x, empty cell
fa-eOO Partial answers, empty cell
end

2-128 DIGITAL COMPUTER PROGRAMMING

7. TRADITIONAL PROGRAMMING TECHNIQUES

Method. The traditional hand-programming method for a scientific or
engineering problem for a high-speed digital computer occurs in the fol­
lowing sequence:

1. Selection of a numerical method of solution, a priori appraisal of
errors, selection of finite difference step size, and decision as to digit length
of numbers (single or multiple precision).

2. Preparation of a flow diagram using the symbology of Sect. 4 or a
similar one.

3. Static translation from the flow diagram into a sequence of instruc­
tions and listing of the constants, both in the original language of the
machine (generally octal or hexadecimal notation for binary machines,
decimal or alphanumeric decimal for equipment using that machine
notation).

4. Entry into the machine of this sequence of information, now consid­
ered merely as a string of machine words, on punched cards or punched
paper tape.

5. Checking or debugging of the written procedure by comparison of
contents of the machine registers during and after performance of the
problem, with previously obtained partial results computed by hand.

6. Upon obtaining deviations between the hand-computed results and
those read out on lights or by printer from the machine, a complete search
of the pertinent portion of the program to determine the error or errors.

7. Correction of the errors by changing the set of coded instructions,
with or without the corresponding change in the flow diagram, and then a
return through steps 3 through 7 until all results check with the hand­
computed values. (Mistakes may occur in the hand computation.)

8. Upon complete satisfaction that the program performs as it should,
entry of supplementary parameters in machine language and performance
of all necessary cases.

PrograInIning Errors. The above sequence is precisely that of Fig. 1,
Sect. 1. However, the repetition of steps 3 through 7 are the most routine,
detailed, and time-consuming part of the process. These steps are most
prone to error and at the same time require the lowest level of basic skills.
One minor mistake in transcription, hand conversion, or data punching,
if not caught, can cause major mistakes in output, or a frustrating search
requiring vast outlays of programmer and computer time.

Once a programming error is discovered, instructions must be changed,
and often inserted or deleted. In the latter case, succeeding instructions
will acquire new addresses, and any instructions referring to them must be
changed to refer to the new address. One minor error can therefore cause
a chain reaction of corrections. This may be avoided by patching or

PROGRAMMING AND CODING 2-129

inserting transfer of control instructions to remote unused locations, where
insertions may be made without complete renumbering of addresses.
Similar insertions of transfer of control instructions can be used to accom­
plish deletions. These procedures tend to cause further programming
errors.

Physical Restrictions on Programming

One ever present set of restrictions on digital computer programming
is that set of measures of magnitude (human effort, elapsed time, computer
time, computer storage) that describe the programming process and its
relation to the external practical world. Unfortunately, evaluation of most
of these measures is mainly a matter of experience.

Human Time. No formulas are available that can predict the amount
of human time required to program a particular problem, given an original
general description of a problem. Experience indicates that such time
estimates are usually underestimated. The advent of automatic program­
ming has generally decreased the amount of programmer time needed.

If an estimate of the (static) number of instructions is available (this
may be obtained by comparison with previously written programs), then
an estimate of human cost (and therefore time) may be based on the
common estimate for cost of hand-coded programs of $5.00 per checked out
instruction. This figure compares very unfavorably, of course, with corre­
sponding programming costs using the translator-compilers of the IT,
Fortran, Math-matic types.

Elapsed Time. Overall elapsed time is a function of the previously
discussed variables and is particularly a function of the machine aids to the
programming process available. Regular routine program debugging
procedures, such as described by Pietrasanta (Ref. 82), can aid markedly
in decreasing elapsed time. Combined use of translators with hand-coded
insertions, if easily available (such as with the IT system, see Sect. 12),
may cut elapsed programming time markedly.

General discussions of the programming process from this point of view
are available, for scientific problems, in Carr (Ref. 20), and for data proc­
essing problems, in Gottlieb and Hume (Ref. 113).

Computer Time. The original estimate was made by Burks, Goldstine,
and von Neumann (Ref. 19) that in most scientific problems the multi­
plication time of a computer would be the dominant factor, and therefore
an estimate of the number of such operations, multiplied by the time per
multiplication, would give a reasonable time estimate. The most satis­
factory method of such estimations at present, however, is still an experi­
mental one for any particular problem.

Computer Storage. Sooner or later almost every computer will find
its primary storage completely saturated by a problem, which must then

2-130 DIGITAL COMPUTER PROGRAMMING

be broken up into component parts and fed into the main storage'in smaller
blocks. If there is no secondary storage, this process is dependent on the
flexibility and speed of external input-output equipment, such as punched
cards or punched paper tape. If there is secondary internal storage, such
as magnetic drum storage or magnetic tape units, the amount of time that
a problem requires will depend very strongly on the method of division
of a problem into pieces, and the routing of these pieces in and out of main
working storage in the most efficient sequence. Some of the obvious
procedures possible are:

1. Storage of data in main storage and bringing in programs in blocks
from secondary storage.

2. Storage of program in main storage and bringing in data in blocks
from secondary storage.

3. Mixture of (1) and (2).
A discussion of the third process, with the inclusion of built-in checks, is

given in Brown et al. (Ref. 18). The most experience with such hierarchy
transfer of information has been by users of the Univa,c I, which had a
relatively small main storage in the form of acoustic delay lines and a large
secondary storage in the form 'of magnetic tape units. A discussion of an
automatic system which fac'es the problem of segmenting a program, either
data or instructions, into pieces is given by this group (see Ref. 2). The
general conclusions of these and other workers is that while rules may be
set up to prescribe the storage hierarchy manipulation process so that a
computer may do it automatically, it is imperative that a programmer be
allowed to override any automatic segmenting and allocation system in
order to provide increased efficiency.

Minhnal Latency PrograInIning. For those computers with a one­
plus-one address instruction scheme, on the other hand, machine allocation
of storage seems satisfactory in a large majority of cases. Most work of
this type has been done for the IBM 650. Gordon (Ref. 41) first wrote
a program assigning next instruction addresses automatically by machine
for this computer; this was later incorporated into SOAP (Symbolic
Optimal Assembly Program) (Ref. 83).

ExaInples of COInputer PrograInIning

The most straightforward way to describe the process of digital computer
programming is to give a sequence of equivalents for each type of element
in the flow diagram notation already discussed. Two "target" machine
languages will be described in the list of equivalents: a computer with a
single-address (actually "one-plus-one") instruction logic, the IBM 650;
and a computer with a three-address instruction logic, the MIDAC (Michi­
gan Digital Automatic Computer). (See Sect. 6.)

PROGRAMMING AND CODING 2-131

In the examples that follow, the first few will be in the original languages
of these machines, so that the results will be the actual ones that might be.
used. The later ones will use symbolic addresses in place of the usual
decimal or hexadecimal integer addresses. This allows much easier under­
standing of the routines. These symbolic addresses will generally use five
or fewer alphanumeric symbols, such as are used in the SOAP (Symbolic
Optimal Assembly Program) for the IBM 650. The MIDAC notation
used on that machine with the MAGIC system is somewhat simpler, but
comparable, and for uniformity the same addressing system will be used.
For the IBM 650, when the next instruction address (NI Add) is not written,
it means that the next instruction follows directly below in sequence~ See
Sect. 6 for instruction codes of the IBM 650 and MIDAC computers.

Notation.

Au
AL
C(n)
Loc(a)

"store"
Upper accumulator
Lower accumulator
Contents of location n
Address of the location containing a

Parentheses surrounding an address mean it is modified during the
program. Dotted lines drawn underneath instructions indicate conditional
transfer of control. Solid lines indicate unconditional transfer of control.

ArithIlletic Boxes. A typical arithmetic box would be that of Fig. 11

-~)--il Yl~(Y2 + Y3)/(Y4 x Ys) II--~)-

FIG. 11. An arithmetic box.

where the values of YI, Y2, .. " etc., are "digital numbers." The corre­
sponding sequence of IBM 650 instructions, using the SOAP assembly
language notation, is given in Table 13. It is assumed that numbers are so

TABLE 13. IBM 650 PROGRAM FOR PROBLEM OF FIG. 11

Machine Language

SOAP
Program

Symbolic Loca- Opera- Data NI
Program tion tion Address Address Explanation

RAU YOO04 0100 60 0204 0101 Y4~Au
MPY YOO05 0101 15 0205 0102 C(Au) X Y5~ AL
STU TOOOI 0102 21 0301 0103 C(Au) ~ h
RAU YOO02 0103 60 0202 0104 Y2~Au
AUP YOO03 0104 10 0203 0105 C(Au) + Y3 ~ Au
DIV TOOOI 0105 14 0301 0106 C(Au)/h ~ AL
STL YOOO1 0106 20 0201 0107 C(AL) ~ YI

2-132 DIGITAL COMPUTER PROGRAMMING

scaled so that overflow would not occur. The next instruction address of
. the IBM 650 may be omitted in the SOAP program, since it is filled in
automatically. The translation of this program, with both data and next
instruction address included, is given alongside the original sequence, with
explanation at right. It is supposed that the following decimal address
storage assignments have been made:

Program:
Y0001:
T0001:

100
201
301

(instructions follow in sequence)
(other Y's follow in sequence)
(other T's follow in sequence)

(Generally, if minimum latency or optimal coding were used, the location
of successive instructions and the corresponding next instruction addresses
would not appear in sequence.)

On the MIDAC, the corresponding program in the MAGIC system
might be used (see Table 14). It is assumed that the same storage assign-

TABLE 14. MIDAC PROGRAM: FOR PROBLEM OF FIG. 11

Machine Language Program
(Hexadecimal)

Hexa- a {3 l'
MAGIC Symbolic decimal Ad- Ad- Ad- Oper-

Program Location dress dress dress ation Explanation
Y04 Y05 TOl MU 064 OCC OCD 12D 08 Y4 X Y5~ tl
Y02 Y03 T02 AD 065 OCA aCE 12E 05 Y2 + Y3~ t2
T01 T02 YOl DV 066 12E 12D OC9 OB t2/fI ~ YI

ments hold as above. N ate that a computer with a three-address instruc­
tion logic does not use an accumulator and does not need as many machine
words to perform the same problem in this case. (Hereafter, machine
language translations will be omitted.)

COIllparison Boxes. The act of comparison can generally be accom­
plished by one instruction using either type of logic. A typical comparison
box would be that of Fig. 12. Now assign the same locations for YI and
program as before, and assume in addition that the number .15 is in
location tl. All numbers are "digital." The IBM 650 program is given in

FIG. 12. A typical comparison.

PROGRAMMING AND CODING 2-133

Table 15. The MIDAC program is given in Table 16. The "base" in­
struction (BA) is a simple transfer of control instruction to 104, which
corresponds to the next address "0108" of instruction 0104 of the IBM 650
program above. In Table 16 C(Y2) is assumed originally zero.

TABLE 15. IBM 650 SOAP PROGRAM FOR COMPARISON OF FIG. 12

Next
Data Instruction

Location: Operation Address Address Explanati9n
0100 RAL YOOOI YI~AL
0101 SLO TOOOI C(AL) - tl ~ AL

(102 BMI 0105 C(AL) < 0 ~ NI Add = 105

0103 RAL YOOOI YI~AL
0104 STL YOO02

)
C(AL) ~ Y2

0105 RAU YOOOI YI~Au
0106 MPY YOOOI C(Au) X YI ~ Au
0107 STU YOO02 C(Au) ~ Y2
0108 (continue)

TABLE 16. MIDAC MAGIC PROGRAM FOR COMPARISON OF FIG. 12

a {3 'Y
Decimal Ad- Ad- Ad- Oper-
Location dress dress dress ation Explanation

(:: Y1 T1 103 CN YI < 11 ~ NI Add = 103 .
- - - -"- - - - - - - - - -
Y1 Y1 Y2 EX YI~Y2

102 000 001 104 BA 000 < 001 ~ NI Add = 104

103 Y1 Y1 Y2 MU YI X YI ~ Y2.
104 (continue)

Indicial Boxes. Indicial boxes in a flow diagram are most often part of
a more elaborate loop or induction structure. Index modification is usually
accomplished in two ways: (1) in the arithmetic unit; (2) by means of an
index register.

Performance of an inductive process usually involves four separate
functions:

1. Initial setting of an index or counter to an initial value (often, but
not always, zero or one).

2. Modification of an address of arithmetic (or other) instruction as a
function of the index.

3. Increasing the value of, or incrementing, the index (in some cases
this may be a decrementing process).

2-134 DIGITAL COMPUTER PROGRAMMING

4. Testing the value of the index to see if the induction has be~n com­
pleted.

An example of a process containing all four of these functions is the com-
n

putation of the vector inner product L aibi • It is assumed that the
i=l

numbers are "digital" and that they are so scaled that no overflow will
occur. The flow diagram is as in Fig. 13.

n

FIG. 13. Vector inner product, ~ aibi.
i = 1

Programmers are generally advised, even if it costs more instructions, to
preset all counters, instructions, etc., to original conditions as is shown on
the flow diagram of Fig. 13 rather than afterwards, as could possibly be
done with "loops within loops." It is possible to make use of input of

TABLE 17. IBM 650 SOAP PROGRAM FOR VECTOR INNER PRODUCT, FIG. 13

Loca­
tion
0100
0101
0102
0103

r~0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118

0119

0120
0121

OpeI;- Data
ation Address
RAL TOOOO
STL SIGMA
RAL TOOOI
STL 10000
RAL 0120
ALO 10000
STL 0110
RAL 0121
ALO 10000
STL 0111
RAU (AOOOO)
MPY (BOOOO)
AUP SIGMA
STU SIGMA
RAL 10000
ALO TOOOI
STL 10000
SLO NOOOI

__ B __ M! ___ O~O~~
HLT OOOO~

RAU AOOOO
MPY BOOOO

Next
Instruction

Address Explanation
O~AL
C(AL) ~ ~
1 X 1O-6~ AL
C(AL) ~ i X 10-6

"RA U AOOOO" ~ AL
Form "RAU Loc (ai)"
C(AL) ~ 0110
"MPY BOOO" ~ AL
Form "MPY Loc (b i)"

C(AL) ~ 0111
ai~Au
C(Au) X bi~ Au
~ + C(Au)~Au
C(Au)~ ~
i X 10-6~ AL
(1 X 10-6) + C (AL) ~ AI.
(i + 1) X 10-6~ i X 10-6
C(AL) - (n + 1) X 10-,6 ~ AL
C(AL) < O~NI Add = 0104

Stop

Base instruction for ai
Base instruction for bi

PROGRAMMING AND CODING 2-135

information from outside the computer to do the initial setting. However,
in this case, one cannot start over at the initial internal instruction, but
must start over at the point of reading in of instructions. The process of
"resetting" counters to their original condition after the testing process
is completed should not be used unless one is willing to take the conse­
quences of possible improper runs upon starting over.

Note that a temporary location ~ (SIGMA) is used to hold the partial
sum. The coding for the IBM 650, using address modification in the
arithmetic unit, is given in Table 17. (It is assumed that location TOOOO
contains 0, TOOOI contains 1 X 10-6, T0002 contains n X 10-6, al is in
A0001, a2 in A0002, bi in B0001, b2 in B0002, ... , etc., and (n + 1) X 10-6

in location NOOOl.)
In this program (Table 17) locations 100-103 preset the initial conditions,

locations 104-109 modify the instruction addresses, locations 114-116
perform the incrementing, and locations 117-118 perform the comparison.
This program may be rewritten as in Table 18 to use the two instructions
being modified themselves as counters. (Hereafter symbolic addresses will
be used as instruction location addresses as well as data.) Note that now
the flow diagram of Fig. 13 is not followed precisely.

TABLE 18. ALTERNATE IBM 650 SOAP PROGRAl\I FOR VECTOR INNER PRODUC'l'

Loca- Opcr- Data Next
tion ation Address Address Explanation

BEGIN RAL TOOOO lO-7 ~
STL SIGMA

{RA U AOOOO ---> MULT 1 RAL INST1
STL MULT1
RAL INST2 f :MPY ROOOO -7 MULT2
STL :MULT2

ENTRY RAL 1\1:ULT1 1 Generate
ALO 1'0001
STL :MULTl J RAU Loc (ai)

RAL 1\1:ULT2 1 Generate ALO 1'0001
STL MULT2 J MPY Loc (bi)

SLO TESTl
}IS i = n + 1?

/BMI MULT1
I ----------I
\ HLT 0000
\

MULT1 '~RAU (AOOOO) MULT2

}:!: + (a, X b,) ---> :!: MULT2 MPY (BOOOO) NEXT
NEXT AUP SIGMA

STU SIGMA ENTRY

INST1 RAU AOOOO MULT2 Initial instruction
INST2 MPY BOOOO NEXT Initial instruction
TEST1 MPY B(n + 1) NEXT Test instruction

2-136 DIGITAL COMPUTER PROGRAMMING

In certain Cases the latter technique may prove quicker or may require
less storage. (Above, the second technique requires twelve instead of
fifteen instructions in the loop itself.) Only the first procedure will be
coded for the MIDAC as shown in Table 19.

TABLE 19. MIDAC MAGIC PROGRAM FOR VECTOR INNER PRODUCT, FIG. 13

Loca- a {3 l' Oper-
tion Address Address Address ation Explana tion

BEGIN INCRE TOOOO 10000 AD l~i
TOOOO TOOOO SIGMA AD O~~

INSTR TOOOO MULTI AD Set instruction
r-~MULTI (AOOOO) (BOOOO) TOO02 MU ai X bi~ t2
I TOO02 SIGMA SIGMA AD t2 + ~.~ ~
I 10000 INCRE 10000 AD i+ l~i I
I INCRE MULTI MULTI. AD Increase addresses
L __ ~ "'- _____ IOOOO TESTI MULTI CN i ~ n~NI = MULTI

000 000 000 RI Stop

INCRE 001 001 000 00 Increment
INSTR (AOOOO) (BOOOO) TOO02 MU Base instruction
TESTI (n + 1) (n + 1) 000 00 End of cycle test

Use of Index Registers. The augmented IBM 650, with index
registers, has three index registers, A, B, and C, of four decimal digits each.
Modification of an address at execution time by using an index register
will be indicated by one of these letters following the address in a "tag"
position. The modified program for vector inner product given in Table 20
requires some new IBM 650 instructions not previously described, and
uses a value of n = 100.

RSA. Reset and subtract from index accumulator A. Index accumulator
A will be reset to zero and the data address will be subtracted from it.

AXA. Add to index accumulator A. Add the data address to index
accumulator A.

NZA. Branch on nonzero index accumulator A. If the contents of the
index accumulator A is nonzero, take the next instruction from the data
address. Otherwise take the next instruction from the instruction address.

RAA. Reset and add to index accumulator A. Index accumulator A will
be reset to zero and the data address will be added to it.

Note that the program of Table 20 is much shorter when using the index
registers, but the flow diagrarri has been slightly altered so as to count down
from i = -100 to i = O. The instructions in location ENTER and its
successor still perform their operations in an increasing sequence, however.

The MIDAC has one index register, the base counter, which is added to
any address in an instruction; at the time of execution, when that address

PROGRAMMING AND CODING

TABLE 20. IRM 650 (AUGl\IENTED) SOAP PROGRAl\I FOR
VECTOR INNER PRODUCT WITH INDEX REGISTERS

Next

2-137

Loca- Oper-
tion ation

Data
Address Tag

Instruction
Address Tag Explanation

RSA
RAL
STL

r~ENTER RAU
I MPY
: AUP
I STU
: AXA
L __________ NZA

NEXT HLT

0100
TOOOO

SIGMA
AOlOl A
BOlOl A

SIGMA
SIGMA

0001
ENTER

0000

NEXT

-lOO~i

lO~~

j 2; + a, X b,---> 2;

i+ l~i
i > 0 ~ NI = ENTER

Stop

is "tagged" with a negative sign. One operation, the base operation, is
used to set, increase and test the counter. The instruction

-a {3 'Y -BA

performs all of the following operations in sequence:

C (Base Counter) + a ~ Base Counter;
if C (Base Counter) < (3 ~ Next Instruction Address equals 'Y;
if C (Base Counter) ~ (3 ~ Next Instruction Address is i~ sequence,

and a ~ Base Counter.

Thus the base counter is ordinarily set to zero by an instruction

000 000 000 BA

The above vector inner product program for MIDAC would now be that
of Table 21.

TABLE 21. l\UDAC MAGIC PROGRAM FOR VEC1'OP.. INNER PRODUCT
WITH AN INDEX REGISTER

Loca­
tion

BEGIN

a {3 'Y Oper-
Address Address Address ation

000 000 000 BA
SIGMA SIGMA SIGMA SU

r-~ ENTER - AOOO1 - BOOOI T0002 MU
l T0002 SIGMA SIGMA AD

L _________ ~~~~ - - :00 -~~'~:t- ~~:)

Explanation
Clear base counter
O~~

ei X bi~ t2
~ + t2~ ~
i < n~NI = ENT~R

Stop

2-138 DIGITAL COMPUTER PROGRAMMING

Note that here the counter i ranges from 0 to n - 1. The comparison
in efficiency between the IBM 650 and MIDAC is not a completely Iair one,
since some of the features of the IBM 650 (performance of instructions froL1
the accumulator, use of the distributor, etc.) have not been used. N ever­
theless, these examples do show the marked advantage in this type of
cyclical problem of a three-address instruction logic with index register
over a comparable single-address instruction logic.

Multiway Switch. The flow diagram notation for the variable remote
connector, or multi way switch, provides another example of address modi­
fication. Such a multiway switch might be used with a table look-up
process, such as is required in many function evaluation processes, inter­
pretive programs, and other problems in which performance is dependent
upon a value of a function. The flow diagram is given in Fig. 14, where,

FIG. 14. A multi way switch.

dependent on the value of j, control jumps to one of n + 1 remote con­
nections.

Four possible programs are described below, two for a single-address
(IBM 650) and two for a three-address (MIDAC) instruction logic, with
and without the use of index registers.

EXAMPLE 1. IBM 650 SOAP program for multiway switch without use
of index accumulators. Note performance of an instruction from the
lower accumulator.

Loca­
tion

BEGIN

r--JUMP
I
I JOOOO
: ALPHA
I ~
1// /",;r

1<
..........

...... '"

Oper­
ation
RAL
ALO
NOP

00

Data
Address
JUMP

JOOOO
0000

0000

Instruction
Address

8002
(ALPHA)

j

Explanation
\Set JUMP to
J "NOP 0000 (ALPHA + j)"
Jump to (Xj(performed in Ad

PROGRAMMING AND CODING 2-139

EXAMPLE 2. MIDAC MAGIC program for multiway switch without
use of base counter, see Table 23.

Loca- a {3 'Y Oper-
tion Address Address Address ation Explanation

tet JUMP to
BEGIN JOOOO JUMP JUMP AD "000 000 (ALPHA + j)

BA"
r--JUMP 000 000 (ALPHA) BA Jump to ai
I JOOOO 000 000 j 00 I
I ALPHA
I 11 } Locations "'0, "1, I I ",>Y' I I __

II --
... , an

~--........
.... "-

EXAMPLE 3. IBM 650 (Augmented) SOAP program for multiway
switch with index register. Note that for the special case where the
address of the RAA instruction is greater than 7999, the index register A
is loaded directly.

Loca­
tion

BEGIN

JOOOO
ALPHA

Oper- .Data Instruction
ation Address Tag Address Tag Explanation
RAL JOOOO
RAA 8002 ALPHA }

j ~ Index Acc A;
A jump to aj

00 0000 j

j

Locations ao,
aI, ... ,an

. EXAMPLE 4. MIDAC MAGIC program for multi way switch with an
index register. Again in this case the use of the base counter is hindered
because there is no direct way to store an integer in it.

Loca­
tion

BEGIN

r--JUMP2
I

: JOOOO
I JUMPl
I ALPHA
i /f
V---~'

............... .
.... :11...

a
Address

000
JOOOO
(000)

j
000

{3
Address

. 000
JUMPl
999

000
999

'Y
Address
000
JUMP2

-ALPHA

Oper­
ation
BA
AD
BA

000 00
-ALPHA BA

Explanation
Clear base counter
Store j in a of JUMP2
j ~ base counter,
jump to ai

.jLocations ao, aI,
"', an

2-140 DIGITAL COMPUTER PROGRAMMING

Dynalllic Stop. I t is possible to code a transfer to the same instruction
to give a tight loop that accomplishes the equivalent of stopping the machine
but allows it to run on at high speed. For computers with electrostatic
storage, where the "read-around" or "consultation ratio" is important, this
is definitely not recommended. It has mainly been used on computers
without built-in halt instructions. On the two machines being used in
examples, the following would constitute "dynamic stops."

EXAMPLE 1. IBM 650 SOAP program for dynamic stop.

Loca- Oper- Data Instruction
tion ation Address Address Explanation

LOOP NOP 0000 LOOP NI Add = LOOP

EXAMPLE 2. MIDAC MAGIC program for dynamic stop.

Loca- a {j 'Y Oper-
tion Address Address Address ation Explanation

LOOP 000 001 LOOP BA NI Add = LOOP

Subroutine Linkages. Entry to subroutines must accomplish the
following:

1. Store the address of the next word (which may contain the next main
program address, or else a program parameter to be used in the subroutine).

2. Transfer control to the first address of the subroutine.
This is given by the flow diagram of Fig. 15 .

. ·.~Gr---~0-
8f---+-~ ----I Subroutine 1---)~--0

'---------'

FIG. 15. Two main program entries to the same subroutine.

On the IBM 650, the transfer of information about the position to which
control is to be returned in the main program in one technique makes use
of the one-plus-one address features of the computer. The next instruction
to which control is to be returned in the main program is loaded in an
available machine register (the distributor) and then, after transfer to the
subroutine, the latter stores the next-instruction in an exit-instruction
location (Table 22). Note that the exit instruction originally is loaded with
a halt instruction, so that if control should be transferred improperly to the

Sub- [
routine

PROGRAMMING AND CODING 2-141

TABLE 22. IBM 650 SOAP PROGRAM FOR SUBROUTINE ENTRY

Loca­
tion

RJUMP
NEX'r

SUBRN

EXIT

Oper­
ation

(HLT

Data
Address

0000

Next
Instruction

Address

0000)

Explanation

{

"RAL AOOOO", to
Distr., jump to
subroutine

fStore next instr. in
lEXIT

EXIT instruction

subroutine, the computer would stop. Such safeguards are sometimes
useful in debugging programs.

If the IBM G50 did not have a next instruction address and'no special
subroutine entry instruction were avaihtble, the following so-called Wheeler
entry (Ref. 108) could be used. The instruction JlVIP is not an actual
IBM 650 instruction.

Sub-
routine

Loca­
tion

SELF

Oper­
ation
RAL
ALa
JJVIP

Data
Address
SELF
THREE
SUBRN

~ --------
RAL AOOOO

r
UBRN SDA EXIT

EXIT JMP (0000)

THREE 00 0003

Next
Instruction

Address

0000 '

Explanation
"RAL SELF" ~ AL
"RAL (SELF + 3)" ~ AL
Jump to subroutine

N ext instruction

Store NIAdd in EXIT

This becomes
"JMP (SELF + 3)"

2-1.42 DIGITAL COMPUTER PROGRAMMING

With an index accumulator, the following subroutine sequence could be
used to provide a return jump from a subroutine on the IBM 650.

Sub­
routine

Loca­
tion

JUMP

NEXT

I
SUBRN

EXIT

Next
Oper- Data Instruction
ation Address Tag Address
RAA NEXTSUBRN

RAL AOOOO

{Now. Irrelevant)

xxx xxxxx 0000

Tag Explanatlon

{

"NEXT" ~
LA.A.; jump
to ~ubroutine

{

Return to the
A address given by

C(LA.A.)

(Here the sequences of x's indIcate the operation and data address can be
anything. LA.A. stands for index accumulator A.)

In the MIDAC's typical three-address instruction logic, one instruction,
the "file" (FI) operation, performs the same function as the instruction
labeled JUMP for the modified IBM 650.

Loca­
tion

JUMP

Cl {3 'Y Oper-
Address Address Address ation
·EXIT 001 SUBRN FI

AOOOO BOOOO COOOO AD

SUBRN (Irrelevant)

EXIT 000 001 (000)

Explanation

{
" (JUMP + 1)" to 'Y position
of EXIT,jump to SUBRN

Note. If program parameters (variables needed in the subroutine) are
required, they are generally stored in (1) the accumulator and other
p::>sitions, except in the Wheeler entry method, and (2) registers following
the JUMP instruction in the main program. In the latter case, the sub­
rJutine entries or the subroutines themselves must be altered in an obvious
fashion.

Table Look-Up. In many cases, it is desired to find the value of a
function stored in a table. Since the process of finding an inner product
described above obviously requires looking up ai (and bi) in a table with

PROGRAMMING AND CODING 2-143

argument i, a similar procedure can also be used, as long as the arguments
occur at equal intervals. The flow diagram for one approach is shown in
Fi6. 16; no actual coding is included. Here the argument is x at equal

~_i_~_[X_I_AX_]---,I---~)---t1 Y -Y;, I--~---IS

FIG. 16. Table look-up of y = f(x).

intervals Ax,and the function values are Yi. Again [... J means "integral
part of." The result will be the value in the table corresponding to [xl.

The table look-up instruction on the IBM 650 (see Sect. 6) provides 11

similar technique using only one instruction on the IBM 650. Several
hardware restrictions render this instruction less useful, but it is still a
very powerful device.

A binary table look-up procedure may often prove most efficient when
an equal interval table or table look-up operation is not available. Suppose
there exist 16 arguments, xo, ... , XI5 in a table. A value of x is given, and
it is desired again to find the approximation Y = f(x) from a table of
Yi(i = 0, ... , 15). The flow diagram is shown in Fig. 17. Again, no
coding is included.

This process may obviously be recorded in a recursive (loop) structure.
The number of comparisons in this process is C(N) ~ log2 N, where N is
the number of elements in the table.

(Portion of
di:lgram omitted)

FIG. 17. Binary table look-up procedure.

2-144 DIGITAL COMPUTER PROGRAMMING

Programming with Secondary Storage

Since secondary storage varies from digital computer to computer, it is
difficult to give specific rules for its usage. The various devices which have
been attached to general purpose computers as secondary storage include:
(1) magnetic drums, (2) magnetic tape units, and (3) large-scale random
access devices (bin type magnetic tape units, magnetic disks, large-size
drums).

All these devices employ magnetic methods of recording, and are there­
fore storage of a general nonvolatile nature. They nevertheless have the
capacity for malfunctions; dust on a magnetic surface, improper relay
closure, etc., may cause an incorrectly read or written digit. It is therefore
necessary, if satisfactory reliability or built-in checks are not available, to
include programmed checks, usually by using storage-summing techniques,
to guarantee proper performance. These techniques are described below
under Integrated Systems (see Sect. 10).

Some magnetic drum systems are integrated into the high-speed storage
unit; here the only programming requirement is to provide economy of
performance either by minimal latency programming or an interlace
feature. (See Ref. 103.) Use of magnetic drums in this fashion causes no
basic problems. Drum equipment used as a secondary storage, however,
entails a scheduling problem that generally can be solved exactly only by a
computer itself, a procedure which has not been followed. Simpler methods
of approximate solution are needed. Programs for such hierarchy transfer
are discussed in Sect. II.

The use of magnetic tape units is very dependent on the presence or
absence of built-in checking, ability to read both forward and backward,
presence of fixed or variable block length. The reader is urged to consult
Sect. 6, and then the various manufacturer's operation manuals or reports
(see Refs. 34, 50, 54, 93, 103, and 148) for a fuller discussion of the instruc­
tions that govern magnetic tape equipment.

Large-scale, so-called random access storage, as embodied in tape bin
storage (see Ref. 119) and magnetic disk storage (see Ref. 118) basically
require methods of mapping call words of long digit length (for example,
inventory parts numbers) into a smaller number of digits giving the address
in the random access storage. A parts number, ten digits in length, may
correspond to a five-digit address in a random access unit. How can a
unique correspondence be made? Certainly if there are more than 100,000
different parts, this is impossible; but if there are fewer than that, some
method of randomization may allow an almost one-to-one mapping from
the set of parts numbers (scattered thinly throughout the entire ten-digit
range) into the set of storage addresses (most of which would be used),

PROGRAMMING AND CODING 2-145

One popular technique is a variation of the so-called mid-square procedure
(see Ref. 74), to produce (in this case) the desired five-digit address.

EXAMPLE. Suppose an inventory parts number were 1122305151. The
twenty-digit product of the number with itself is:

12595688518611232801
L....-J

If one uses digits 8 through 12 to provide a five-digit address, one obtains
85,186. With high probability, out of a group of 100,000 parts numbers
each with ten digits, no two of them will have the same set of five mid­
square digits. If more than one number does have a duplicate address
under this mapping, the address can be tagged as an "exception" and either
a second mid-square process based on the center ten digits of the resultant
square, or another group of five digits in the square, may be used to gener­
ate a new address, which again can be tested for duplications, etc.

Sorting and Merging. One primary problem that involves the use of
secondary storage is the problem of rearrangement of input data in an
ordered fashion. This problem can occur on one hand in assembly pro­
grams where symbolic addresses are to be arranged in an easily entered,
ordered list or, on the other hand, in any sort of business file maintenance
problem where inquiries or changes that are not externally ordered in
sequence are to be compared with a main file. Goldstine and von Neumann
(see Ref. 19, Part II, Vol. II) developed the first theoretical analysis of two
of the main methods of information rearrangement and compared the use
of a general purpose digital computer for these purposes with standard
punched card equipment, with some advantage in favor of the former.
Later studies, as listed in Seward's dissertation (Ref. 140), produce a better
"informational advantage" as far as use of a general purpose digital com­
puter is concerned, but still indicate that this present machine structure is
far from dominant in such performance.

There are two general classes of information rearrangement:
1. Merging. The act of taking two (or more) previously numerically

increasing (or decreasing) ordered sequences of numerical information
and combining them in one numerically increasing (or decreasing) se­
quence.

2. Sorting. The act of taking an arbitrarily ordered sequence of (nu­
merical) information and arranging it in a numerically increasing (or de­
creasing) sequence. Since alphabetical information in a computer is most
often encoded in some numerical form that is ordered analogous to the
position in the alphabet, these definitions also cover merging and sorting of
alphabetical and other nonnumerical information.

Such blocks of information (called items) are usually sorted with respect
to a key, a sequence of one or more symbols (digits) which are pertinent to

2-146 DIGITAL COMPUTER PROGRAMMING

the position of the information in the sequence. In this discussion, it will
be assumed, without loss of generality, that the key is numeric and the
ordering desired is generally increasing.

Use of Main Storage in Sorting. If the blocks of information to be
sorted each contain few enough computer words, many of them may be
stored in the high-speed storage of a computer. During the sorting process,
the relative values of the keys (usually located at the beginning of a block)
may be used to exchange entire blocks. A simpler and often more effie lent
process, however, is to move only the addresses of the blocks rather than the
blocks themselves after a comparison of the keys has been made. Thus, if
n blocks of m words are to be sorted, to be stored in nm positions, space
must be also left for n addresses, which will be shuffled into an order corre­
sponding to the order into which the blocks should be moved. After this
process of rearranging the n addresses is completed, the corresponding
blocks may then be read out onto secondary storage in the proper sorted
order. This technique may obviously be extended to use of magnetic
drums as well, since they in general have a relatively small access time.

Sorting Methods

There are two main types of sorting: (1) digital sorting and (2) merge
sorting.

Digital Sorting. This method uses successive digits (or groups of
digits) in the key to arrange the sequence being sorted into an ascending
order. This is the method usually used on punched card equipment, where
the information is passed through the sorter one time for each digit in the
key, and the cards are collected in one of a number of output units (10 in a
decimal sorter) at the end of each pass. If one starts at the least significant
digit and proceeds up~vard in sequence, ordering the entire stack by digits
after each pass, the entire process requires d passes, where d is the number
of digits in the key.

The logical extreme of the digital sort technique is the so-calle~ address­
sorting technique on a stored-program computer. If, for example, in a
decimal computer single words are to be sorted on a two-digit key, each
value of which is to appear only once, this key may be used as an index to
modify a storage address for each word in turn. Thus, if the resultant
storage block for ordered information is in locations 1900 to 1999, and if
the two-digit key is 65, the machine word corresponding should be sent to
location 1965. Even if the information being sorted is in larger blocks, if
the keys are unique and occur densely within the entire possible range of
key values, a similar technique may be used, either with the blocks them­
selves or with their addresses. Duplicate keys, if very few occur, may be
handled by signals designating an exceptional case.

PROGRAMMING AND CODING 2-147

With magnetic tape units, (decimal) digital sorting may be achieved by
reading from one tape and storing the output on one of ten tapes, each
corresponding to a possible digit of the key. With two banks of ten-tape
units, the previous output can be used as the next input, with the next
successive significant digit being sorted on in order.

The time required for such a digital sort is

T = t X n,

where T is total time, t is time for one passage of the entire information
through the storage, and n the number of digits, or as Seward (Ref. 140)
has noted, approximately

T = NA[logr R]

where N is the number of items being sorted, A the access time to read or
write items in the storage, the range of the key is from 0 to R, and r is the
base or radix used in representing the key.

Sorting by Merging. This technique is that recommended by Goldstine
and von Neumann for internal sorting. Sorting by merging consists in
taking two or more ordered groups of items and merging them into one
ordered group (usually called a string). Figure 18 shows an example of
such a merging process.

Goldstine and von Neumann (Ref. 19) have discussed merging in detail
in the case where information is stored in the main storage. The flow
diagram is shown in Fig. 19. In this case, an item Xi consists of a one-word

Merged
Ordered St . Ordered
String rrg String
NO.~2-(No.2

1 ~ 3 2
3 ~ 7 ______ 8

7- 8~
11 ~ 11 ______ 13

12 ~ ~~::===---= 14

21 14 -17

~17~~ 22
21 24

25_______ 22 ~ ---------= 28

26~ ~~ ---_________

30. 26 ~
------ 28 32

31 ______ ~30~
~31~35

32
35

FIG. 18. Example of sorting by merging.

Yes

The bOX-;..!wk...:-X i71 ~WOUld consist of:

Wl_Uq
i +1

and similarly for W k _ yi+ 1 and Zr _ W r

FIG. 19. Merging two strings of m and n item<:: each of order p.

~
..j:Io.
00

o
(i)
=i » r-
()
o
~

" C
--i
m
;;:0

-0
;;:0

o
(j)
:;::c
»
~
~
Z
(j)

PROGRAMMING AND CODING 2-149

key Xi followed by p other words (p is the order of the item). A string S
will consist of n items, where n is the length of the string. A string would
then contain n (p + 1) words. The flow diagram describes the merging of
two strings S = (Xl, X2, .. " Xn) (of n items) and T = (yI, y2, .. " ym)
(of m items) to produce an ordered string R = (ZI, Z2, Z3, .. " Zn+m)
where each Zi is one of the previous X's or V's such that the keys Xi and
yi are now arranged in increasing order. The string Xi would be given
by Xi = (Xi, UI i, .. " U p

i), yi by yi = (yi, VI i, .. " vp
i), and Zi by

Zi = (Zi, WI i, •• " wp
i).

In the general case of merging two strings from two tapes into a third
string on a third tape, there would need to be further storage boxes in­
cluded in the flow diagram.

Sorting of an arbitrarily ordered string of length N can now be accom­
plished by successive merging. This can be accomplished as follows:

1. Each pair of items in sequence is merged by considering each a string
of length one to form a string of length two.

2. Each pair in sequence of strings of length 2v(v = 1, ...) is merged,
using the merging process described above, to yield a merged string of
length 2,,+1.

3. When 2,,+1 ~ N and there is only one string, the process is complete.
The fact that N is not exactly equal to 2" can be disregarded by con­

sidering the remaining r" = N - 2" elements as a separate string which
mayor may not be merged at each stage of the process.

An example of the merge-sort process is given for a general string of 35
items (here merely keys) in Fig. 20.

A non ordered string of items {A 1, A 2, A 3, •• " AN}, each of order p, to
be sorted may be manipulated by the flow diagram of Fig. 21. Here the
merge routine of Fig. 19, with parameters m and n, is the heart of the
process. There will be two indices involved, v, indicating the number of
overall mergings that have been completed, and w, the number of mergings
of strings of length 2" that have been completed for this value of v. To use
the subroutine, the main program furnishes values m", and n"" which are
used as m and n in the merge routine, and the addresses of Xl, yI, and ZI.
The resulting merged sequence {Zk} is stored beginning at the address of
Xl. (The manipulation of these addresses is not included in the merge
routine, for the sake of simplicity, but it is an obvious extension of the
flow diagram of Fig. 21.)

For the worst possible case, when the keys are present in exactly the
reverse order, the number of comparisons required for sorting n items,
C (N), which may be considered a measure of the amount of effort needed to
sort using this method, can be shown to be bounded from above:

C(N) ~ N log2 N

2-150 DIGIT AL COMPUTER PROGRAMMING

Initial Sequences Sequences Sequences Sequences Sequences Sequences
String of 2 of 4- of 8 of 16 of 32 of 64- (or less)

50 27 } 2~)
2 2 2 2

27 50 20 3 3 3
39 3~ }

39 21 5 4 4
2 50 27 11 5 5

21 21 }
20)

39 15 9 9
46 46 21 46 16 11 11
65 20 } 46 50 20 12 12
20 65 65 65 21 15 15
3 ~ } 2~ }

3 27 16 16
5 5 29 17 17

61 29 } 11 31 18 18
29 61 61 15 39 19 19
16 16 } 11] 16 46 20 20
31 31 15 29 50 21 21
15 11 } 16 31 61 25 25
11 15 31 61 65 26 26
48 28 } 2~)

4 4 27 27
28' 48 17 9 28 28
4

41 }
44 28 12 29 29

44 48 44 17 31 31
49 17 } 17 }

48 18 33 33
17 49 49 49 19 39 39
62 55 } 55 55 25 43 42
55. 62 62 62 26 44 43
18 18 } 1~)

9 28 46 44
43 43 12 33 48 46
9 2~ }

25 18 43 49 48
25 43 19 44 50 49
33 12 } 12 }

25 48 55 50
12 33 19 26 49 61 55
20 19 } 26 33 55 62 56
19 26 33 43 62 65 61
56 56 } 42 }

42

}
42

}
42

}
62

63 63 56 56 56 56 63
42 42} 63 63 63 63 65

FIG. 20. An example of merge-sorting by pairs.

(It can be easily shown where N = 2v, van integer, that:

C(N) = N log2 N - N + 1 (N = 2v)

and the bound can be 'extended by somewhat more complicated analysis.)
For the most favorable case, when the items are already sorted by key,

the number of comparisons can be made as low as

C(N) ~ N.

v+l

i) ,mw-N - 2v+1
w

nw-O

m w-2V

nw _N_(2v+1 w +2V
)

mw~2V

nw- 2v

Address(X1) __ Address(A2V +1 W+1)

Address(yl) __ Address(A2V+lW+2V+l)

Address(Zl) _ Address(A2V +1 W+1)

Merging
routine of

Fig. 19

FIG. 21. Sorting a sequence of N items using merging.

"'0
;;C

o
(j)
;;C »
~
~
Z
(j)

» z
o
o o
o
Z
(j)

t;-->
U1

2-152 DIGITAL COMPUTER PROGRAMMING

This requires that the merging routine of Fig. 21 be reprogrammed in a
more complicated fashion to take advantage of the possibility of an original
string that is almost ordered.

For sorting external to a high-speed storage, where the number of com­
parisons is no longer dominant, but rather the amount of input and output,
a similar process can be used, but here the strings resulting at the various
stages of the merging process would be divided approximately equally on
two (or more) output tapes. Upon passage through the entire data, the
tape units being used for the output strings could now be rewound, and
their information considered the input for a new merging process. If one
item is read in successively (rom each tape, keys compared, and the item
with the smaller key sent to one of several output tapes, successively
larger strings can be built up as with the internal storage procedure. If
there are 2b tape units available, the number of passages through the entire
information will be

10gb N,

where b units are used for input and b for output. The detailed procedure
in this case depends upon how many items can be held in the internal
storage at one time. In general, it is best to perform internal sorts when­
ever possible and in as large a string as possible. If it is possible to hold
only two items in the internal storage at once, it may pay to modify the
von Neumann-Goldstine procedure to allow merging to continue to produce
a string as long as a sequence of keys is monotone. This string would be
rea,d out on one of the output tapes. The next string, of arbitrary length
depending on the sequence of keys read in, would be put out on another
tape, etc. Upon exhaustion of the input information, the role of input and
output tapes would be reversed.

Other Internal Sorting Methods

Seward (Ref. 140) has collected statistics for various other methods of
internal sorting:

Finding the SIllallest. Find the smallest of a group N, and store it.
Find the smallest of the group N - 1, and store it. Continue the process
until the group is exhausted. The number of comparisons is

C (N) = N (N - 1) .
2

Interchanging Pairs. Compare, and interchange if necessary, the
pairs beginning with an odd-numbered item (1,3,5, ... , N). Repeat for
the pairs beginning with even-numbered items. Alternate this process
until no interchanges occur. The number of comparisons in the worst

. possible case is
C(N) = N2/2.

PROGRAMMING AND CODING 2-153

Sorting by Sifting. Compare items in sequence, moving them for­
ward in the list until an item with smaller key is reached. When the last
item is "sifted" the items are ordered. The number of comparisons in the
worst case is

C(N) = N(N - 1) .
2

Partial Sorting. Items 1 and 2, 2 and 3, .. " j and j + 1, .. " are
compared, interchanging where necessary. The process is repeated until
no interchanges occur. Again

C(N) = N(N - 1) .
2

It is apparent from a more detailed study that the bounds on number
of comparisons given by digital sorting or sorting by merging with

C(N) = N log2 N

are by far the best. Except in rare cases where much information is known
about the a priori sequence of the items, only these two methods should be
used.

A Practical Exam pIe

As a practical example of a process in use with magnetic tape units on
an actual equipment, the following procedure taken from a description of
the use of magnetic tapes on the IBM 650 is given. (See Ref. 148.) A
tape record on this machine (block stored on or read from tape) ranges
from 1 to 60 words. It is assumed first that one item may be stored in a
record. In this procedure:

1. The original sequence of items (here written on two tapes) is processed
and written on two output tapes.

2. The two output tapes, considered as new input tapes, are merged
to write two other output tapes. The process is repeated until completion.

At each step, two new records are compared with each other and with
the last output record written out. If either one of these is in proper
sequence with the last output record written out, it is written out on that
tape. If not, a new sequence is started on the second tape using the item
with the smallest key. The process is shown by an example, and in the flow
diagram of Fig. 22. When no new sequence has been set up during a
merging pass, W = 0, and the entire process is complete. In the case below,
strings are separated by vertical lines.

FIG. 22. Two-tape merge sorting process.

~
U1
~

o
(j)
=i » .--
()
o
~

---:0
C
-I
m
;::c

" ;::c
o
(j)
;::c »
~
~
Z
(j)

PROGRAMMING AND CODING 2-155

EXAMPLE.

First Pass

Initial Tape 1 23, 13, 11, 18, 29, 4, 5, 30, 15, 10
Initial Tape 2 16, 6, 24, 2, 17, 22, 33, 9, 7, 28
Output Tape 3 16, 23 12, 11, 17, 18, 22, 29, 33 17, 15, 28
Output Tape 4 6, 13, 24 I 4, 5, 9, 30 110
These tapes now become input tapes 1 and 2.

Second Pass

Output Tape 3 6, 13, 16, 23, 24 I 7, 10, 15, 28
Output Tape 4 2,4, 5, 9, 11, 17, 18, 22, 29, 30, 33 I
These tapes now become input tapes 1 and 2.

Third Pass

Output Tape 3 2, 4, 5, 6, 9, 11, 13, 16, 17, 18, 22, 23, 24, 29, 30, 33
Output Tape 4 7, 10, 15, 28
These tapes now become input tapes 1 and 2.

Fourth Pass

Output Tape 3

Output Tape 4

~4,~6,7,~ 10, 11, 13, 15, 1~ 17, 18,22,23,24,28,
29,30,33

8. AUTOMATIC PROGRAMMING: DEVELOPMENT AND OBJECTIVES

Defini tion. A utomatic programming can be defined as all those methods
which attempt to shift the burden of formulation and programming of
problems for automatic computers onto the machines themselves.

AutoInatic Coding SysteIns. Bemer (Ref. 141) has collected a list
of various automatic coding systems for computers which is reproduced in
Table 23. This list shows that:

1. The amount. of effort put into automatic coding systems has been
large.

Note. Fig. 22 explanation.

Given four tape units numbered 1, 2, 3, 4:
Let m, m + 1 be the numbers of the input tape units,

n, p be the numbers of the output tape units,
i be the index on tape m,
j be the index on tape m + 1,
k be the index on tape n,
l be the index on tape p.

Let I m •i

k(A)
io
io

be the ith item on tape m, etc.,
be the key for item A, etc.,
be the number of items on tape m,
be the number of items on tape m + 1.

TABLE 23. AUTOMATIC CODING SYSTEMS (REF. 141) ~
System Name Oper. Index- FI U1

Computer or Acronym Developed by Code M.L. Assem. Inter. Compo Date ing Pt Symb. Algeb. ~

IBM 704 AFAC Allison G.M. C X Sept. 57 M2 M 2 X
CAGE General Electric X X Nov. 55 M2 M 2
FORC Redstone Arsenal X June 57 M2 M 2 X
FORTRANa IBM R X Jan. 57 M2 M 2 X
NYAP IBM X Jan. 56 M2 M 2
PACT IAa Pact Groupb X Jan. 57 M2 M 1 0
REG-SYMBOLIC Los Alamos X Nov. 55 M2 M 1

(j) SApa United Aircraft R X Apr. 56 M2 M 2
NYDPP Servo Bur. Corp. X Sept. 57 M2 M 2 ::::j

KOMPILER3 UCRL Livermore X March 58 M2 1\1 2 X » r-
IBM 701 ACOM Allison G.M. C X Dec. 54 S1 S 0 ()

BACAIC Boeing Seattle A X X July 55 S 1 X 0 BAP Univ. of Calif., Berk. X X May 57 2 s: DOUGLAS Douglas SM X May 53 S 1 -u
DUAL Los Alamos X X March 53 S 1 C
607 Los Alamos X Sept. 53 1 -i

m
FLOP Lockheed Calif. X X X March 53 S 1 ;;C
JCS 13 Rand Corp. X Dec. 53 1 -u
KOMPILER 2 UCRL Livermore X Oct. 55 S2 1 X ;;C
NAA ASSEMBLY N. Am. Aviation X 0
PACT Ia Pact Groupb R X June 55 S2 (j)
QUEASY NOTS Inyokern X Jan. 55 S ;;C

QUICK Douglas ES X June 53 S 0 »
SHACO Los Alamos X Apr. 53 S 1 s:
SO 2 IBM X Apr. 53 1 s:
SPEED CODING IBM R X X Apr. 53 S1 S 1 Z

IBM 705-1, 2 AC01\1 Allison G. M. C X Apr. 57 S1 0 (j)
AUTOCODERa IBM R X X X Dec. 56 S 2
ELI Equitable Life C X May 57 S1 0
FAIR Eastman Kodak X Jan. 57 S 0
PRINT Ia IBM R X X X Oct. 56 82 S 2
SYMB. ASSEM. IBM X Jan. 56 S 1
SOHIO Std. Oil of Ohio X X X May 56 SI S 1
FORTRAN IBM-Guide A X Nov. 58 S2 S 2 X
IT Std. Oil of Ohio C X S2 S 1 X
AFAC Allison G.M. C X S2 S 2 X

System Name Oper. Index- Fl
Computer or Acronym Developed by Code M.L. Assem. Inter. Compo Date ing Pt Symb. Algeb.

IBM 705-3 FORTRAN IBM-Guide A X Dec. 58 1\:12 M 2 X
AUTOCODER IBM A X X Sept. 58 S 2

IBM 702 AUTOCODER IBM X X X Apr. 55 S
ASSEMBLY IBM X June 54
SCRIPTa G. E. Hanford R X X X X July 55 Sl S

IBM 709 FORTRAN IBM A X Jan. 59 1\12 1\1 2 X
SCAT IBM-Share R X X Nov. 58 M2 1\1 2

IBM 650~ ADES II Naval Ord. Lab X Feb. 56 S2 S 1 X ""C
:;;c

BACAIC Boeing Seattle C X X X Aug. 56 S 1 X 0
BALITAC 1\U.T. X X X Jan. 56 Sl 2 (j)
BELL L1a Bell Tel. Labs X X Aug. 55 Sl S 0 :;;c
BELL L2, L3 Bell Tel. Labs X X Sept. 55 Sl S 0 »
DRUCO I IBM X Sept. 54 S 0 ~
EASE II Allison G.M. X X Sept. 56 S2 S 2 ~
ELI Equitable Life C X May 57 Sl 0 Z ESCAPE Curtiss-Wright X X X Jan. 57 Sl S 2 (j)
FLAIR Lockheed MSD, Ga. X X Feb. 55 Sl S 0
FOR TRANSIT a IBM-Carnegie Tech. A X Oct. 57 S2 S 2 X »
ITa Carnegie Tech .. C X Feb. 57 S2 S 1 X Z
MITILAC M.LT. X X July 55 Sl S 2 C
OMNICODE G. E. Hanford X X Dec. 56 Sl S 2 ()
RELATIVE Allison G.M. X Aug. 55 Sl S 1 0
SIR IBM X May 56 S 2 C
SOAP I IBM X Nov. 55 2 Z SOAP IIa IBM R X Nov. 56 M 1\1 2 (j)
SPEED CODING Redstone Arsenal X X Sept. 55 Sl S 0
SPUR Boeing Wichita X X X Aug. 56 1\1 S 1
FORTRAN (650T) IBM A X Jan. 59 1\12 1\1 2 X

Sperry Rand COMPILER Ia Boeing Seattle X X 1\1ay 57 S 1 X
n03A FAP Lockheed MSD X X Oct. 56 Sl S 0

MISHAP Lockheed MSD X Oct. 56 1\11 S 1
RA WOOP-SNAP Ramo~ Wooldridge X X June 57 M1 1\1 1
TRANS-USE Holloman A.F.B. X Nov. 56 1\11 S 2
USEa Ramo-Wooldridge R X X Feb. 57 M1 1\1 2 t;-l
IT Carn. Tech.-R-W C X Dec. 57 S2 S 1 X U'1
UNICODE R Rand St. Paul R X Jan. 59 S2 1\1 2 X '-I

TABLE 23. AUTOMATIC CODING SYSTE~IS (RET''. 141) (Continued) ~
System Name Oper. Index- FI U1

Computer or Acronym Developed by Code M.L. Assem. Inter. Compo Date ing Pt 8ymb. Algeb. 00

Sperry Rand CHIP Wright A.D.C. X X Feb. 56 81 S 0
1103 FLIP/SPUR Convair San Diego X X June 55 SI 8 0

RAWOOP Ramo-Wooldridge R X March 55 81 1
8NAP Ramo-Wooldridge R X X Aug. 55 81 8 1

Hperry Rand AO Remington Rand X X X May 52 81 8 1
~ Univac Al Remington Rand X X X Jan. 53 81 8 1

I and II A2 Remington Rand X X X Aug. 53 81 8 1 (j)
A3, ARITHMATICa Remington Rand C X X X Apr. 56 SI S 1 =i
AT3, MATHMATICa Remington Rand C X X June 56 SI S 2 X >-
BO, FLOWMATICa Remington Rand A X X X Dec. 56 S2 S 2

r-

BIOR Remington Rand X X X Apr. 55 1 ()
GP Remington Rand R X X X Jan. 57 S2 S 1 0
MJS (UNIVAC I) UCRL Livermore X X June 56 1 ~
NYU,OMNIFAX New York Univ. X Feb. 54 S 1 ."

C RELCODE Remington Rand X X Apr. 56 1 -I
8HORT CODE Remington Rand X X Feb. 51 8 1 m
X-I Remington Rand C X X Jan. 56 1 ;;:c

IT Case Institute C X 82 S 1 X ."

MATRIX MATH Franklin Inst. X Jan. 58 ;;:c
0

Sperry Rand (j)
;;:c

File Compo ABC R Rand St. Paul June 58 >-
Sperry Rand K5 UCRL Livermore X X M2 M 2 X ~

Larc SAIL UCRL Livermore X M2 M 2 ~
Z

Burroughs DATACODEI Burroughs X Aug. 57 MSI S (j)
Datatron DUMBO Babcock and Wilcox X X
201. 205 ITa Purdue Univ. A X July 57 S2 S 1 X

SAC Electrodata X X Aug. 56 M 1
UGLIAC United Gas Corp. X Dec. 56 S 0

Dow Chemical X
STAR Electrodata X

Burroughs UDECIN-I Burroughs X 57 MIS S
UDEC III UDECOM-3 Burroughs X 57 M S

System Name Oper. Index- FI
Computer or Acronym Developed by Code M.L. Assem. Inter. Compo Date ing Pt Symb. Algeb.

M.LT. ALGEBRAIC M.LT. R X S2 S 1 X
Whirlwind COMPREHENSIVE M.LT. X X X Nov. 52 Sl S 1

SUMMER SESSION M.LT. -.r
~"- June 53 Sl S 1

Midac EASIAC Univ. of Michigan X X Aug. 54 SI S
MAGIC Univ. of Michigan X X X Jan. 54 Sl S

Datamatic ABC I Datamatic Corp. X
Ferranti TRANSCODE Univ. of Toronto R X X X Aug. 54 l\I1 S
Illiac DEC INPUT Univ. of Illinois R X Sept. 52 SI S
Johnniac EASY FOX Rand Corp. R X Oct. 55 S
Norc NORC COMPILER Naval Ord. Lab X X Aug. 55 M2 M

Seac BASE 00 Natl. Bur. Stds. X X
UN IV. CODE Moore School X Apr. 55

a Indicates present heavy usage.
b Pact group contains Douglas SM, ES, LB, Lockhee:l, NOTS, N. Am., Rand.

Chart Symbols
Code

Indexing

Floating point

Symbolism

Algebraic

M.L.
Assem.
Inter.
Compl.

R = Recommended for this computer, sometimes only for heavy usage.
C = Common language for more than one computer.
A = System is both recommended and has common language.
M = Actual Index registers or B boxes in machine hardware.
S = Index registers simulated in synthetic language of system.
1 = Limited form of indexing, either stopped undirectionally or by one word only, or having certain registers applicable to only certain variables,

or not compound (by combination of contents of registers).
2 = General form, any variable may be indexed by anyone or combination of registers which may be freely incremented or decremented by

any amount.
M = Inherent in machine hardware.
S = Simulated in language.
o = None.
1 = Limited, either regional, relative or exactly computable.
2 = Fully descriptive English word or symbol combination which is descriptive of the variable or the assigned storage.

A single continuous algebraic formula statement may be made. Processor has mechanisms for applying associative and commutative laws to
form operative program.

= Machine language.
= Assemblers.
= Interpreters.
= Compilers.

-c
:;:c
o
(j)
:;:c
»
~
~
Z
(j)

»
z o
()
o
o
z
(j)

~
0'1
-.0

2-160 DIGITAL COMPUTER PROGRAMMING

2. Most early efforts were in the direction of interpreters, but most
efforts now are in the design of compiler-translators.

3. Many systems have been replaced by newer, more efficient languages.

DevelopIDen t

Some of the most important steps in development of automatic pro­
gramming are listed below. The ideas listed here were proposed by many
persons; among those particularly to be mentioned are M. V. Wilkes,
D. J. Wheeler, and S. Gill of Cambridge University, C. W. Adams of M.LT.,
Grace Hopper of Remington Rand, and N. Rochester of IBM.

1. Understandable Language. Translation, MneIDonic Codes,
COIDpiling, and Interpretation. The ambiguity of instructions and
numbers inside machines makes instructions appear only as numerical
sequences.

(a) Programs were devised which automatically translated both num­
bers and instructions from an external decimal language (more useful to
human beings) into an internal binary language (more useful to the
machine). The important step was the recognition of the principl~ of a
dual language system and a programmed translation between the two
languages, with the computer to perform the translation.

(b) Along with the numerical translations came the use of "mnemonic"
-easy to remember-instruction operations, such as standard algebraic
notations, or abbreviations of the corresponding English words.

These are now known as "input translation programs." The general
idea of translation leads to two basic techniques: pretranslation or com­
piling, and running translation or interpretation.

(c) Compiling requires a large amount of medium access storage
(generally magnetic tape). The compiling process usually occurs only once.

(d) Interpretation is the only feasible translation method in machines
with small amounts of storage; this process is less efficient since the same
translation may occur over and over again during performance of a
problem.

The first attempts to improve the procedures of coding in machine
language resulted in a set of input orders that changed alphanumerical
sequences representing instructions on teletype tape over into internal
binary machine notation. (Ref. 108.) Today, most of the automatic
programming schemes make use of the pretranslation idea.

2. Easy-to-Correct and Easy-to-Use Input Languages. SYID­
bolic Addresses and Control Instructions. The use of external
languages that were easily understandable, such as mnemonic codes, does
not prevent arithmetic, logical, or clerical programming mistakes. The
translation process, developed to handle the requirement of an under­
standable input language, can also be applied to the use of so-called sym-

PROGRAMMING AND CODING 2-1.61

bolic or floating addresses, which have no permanent absolute machine
internal counterparts. With these addresses, which are almost com­
pletely equivalent to an algebraic notation, assignment of addresses can be
made completely automatic by the computers themselves.

The use of such automatic address assignment, it turns out, requires
two "passes" or traverses through the input information in order (1) to
find out what algebraic addresses are present and what their internal
equivalent absolute addresses are, and (2) to assign these absolute ad­
dresses wherever the floating addresses occur (Ref. 21). (D. J. Wheeler
has shown, for the EDSAC II, that two passes are not always necessary.)
The assignment of absolute addresses cannot take place until all algebraic
addresses are known. The existence of these two passes through informa­
tion immediately presents opportunities to perform all sorts of other
transformations on the input information. From this grew the concept of
floating or symbolic address (Ref. 106). A similar system was developed
shortly thereafter for the I;BM 701 (Ref. 87), using a Dewey decimal type
of symbolic addressing system.

In order to control the processes of correction, reassignment, and deletion,
and to handle the process of translation, a new kind of instruction is re­
quired. So-called control combinations, which tell the translation program,
rather than the computer hardware, what is to be done, . give another
dimension of latitude of expression between the programmer and machine.
These new "tag words" allow the instruction process on input to expand
indefinitely.

3. Elhnination of Repetitious Coding. Subroutines, AsseInbly
Prograllls, and Synthetic Instructions. To eliminate duplication of
effort that occurs when similar problems are repeated often, routines were
developed which performed standard operations. Such routines could be
called on by any programmer without the necessity of being rewritten
from the beginning. To make the most of such routines, complete gener­
ality was required. The floating addresses developed for correction
purposes helped provide this feature; similar so-called preset and program
parameters were devised to make such routines flexible. Such assembly
programs alleviated much of the effort in making corrections to instruc­
tions by insertion or deletion. Because of the "floating" nature of the
symbolic addresses which were retranslated at each new machine input,
insertions and deletions caused no further requirements for changing other
instruction addresses. With the advent of secondary storage in the form of
magnetic drums and magnetic tape, the need for two inputs of the program
punched tape or cards was eliminated; the two passes could be made
completely inside the machine.

The combination of these standard subroutines (see Subroutines below),
as they came to be called, with the input translation (compiling) techniques

2-162 DIGITAL COMPUTER PROGRAMMING

brought forth the concept of automatic assembly of programs. Here code
words called pseudo instructions or synthetic instructions are used to call in
and store precoded subroutines in a main program. Such open subroutines,
without automatic entry and exit, worked best with compiling techniques;
closed subroutines, which act in the same unitized manner as an ordinary
instruction, fitted most easily into the interpretive schemes.

Extension of assembly programs to the use of pseudo instructions that
replaced one line of coding external to the machine by more than one
inside, allowed an increase in the number and variety of instructions
available to the programmer. Such efforts probably reached their peak
in the PACT system (Ref. 6) developed for the IBM 701 by a group of
Los Angeles users of that equipment. This system included automatic
insertion of scaling instructions for fixed-point computations as well as a
long list of pseudo instructions .. A more recent example of such an assem­
bly is the Share Assembly Program (SAP), and the X-I assembly system
for Univac (Ref. 100). Details of SAP are given in Sect. 9.

4. Easy Mistake Discovery. Utility Programs. Relatively straight­
forward methods of correcting mistakes did not speed up program checkout
as much as would be expected, since before programming mistakes can be
corrected, they must be found. Unless complete retranslation of stored
information is made available to a programmer, he is forced to know and
use both external and internal languages, which nullifies some of the ad­
vantages discussed under 1 above. Such retranslation adds to the complex­
ity of the translation procedure, as well as causing possible ambiguities
because of many-to-one input translations. Nevertheless, such retrans­
lation can contribute to aiding the discovery of human programming
mistakes.

However, there are many difficulties attendant with a retranslation to
symbolic language in mistake diagnosis. One of these difficulties is that
a complete directory or dictionary must be retained in the machine and
consulted. Often, retranslation becomes difficult because a machine cell is
not uniquely identifiable with a symbolic address. These difficulties have
led, in many cases, to performing diagnosis in machine language. Unfor­
tunately, this often leads the programmer to another difficulty: making
corrections in machine language.

Diagnostic procedures fall into two categories: static or dynamic. Static
procedures give results only at specific points during solution of a problem,
usually only at the beginning, end, or both. "Sieved" or "changed-word
post-mortems," or storage printouts, have proved a welcome use of the
principle of machine screening of unnecessary information.

Dynamic mistake diagnosis, on the other hand, has often suffered from
the fact that it has of necessity been interpretive and, hence, machine­
time consuming, or else that it has put out information in an unretranslated

PROGRAMMING AND CODING 2-16.3

form. A new concept in dynamic procedures, which give results as the
problem is being performed, combines built-in automatic switching with
programmed retranslation to speed up this process and make it com­
petitive in time. This is discussed in Sect. 10 under Utility Programs.

5. Prevention of Mistal{cs bcforc They Occur. Gcncrators. The
widespread use of precoded subroutines, which had been checked thoroughly
for both arithmetic, logical, and clerical mistakes, is an example of a
preventative technique. Instead of storing complete programs, however,
a more efficient method appears to store programs called generators that
can generate large classes of programs. If a correct algorithm can be de­
veloped by which a computer can generate a general class of small problems,
mistake-free codes can be produced directly. Similarly, automatic assem­
bly and automatic subroutine call-in techniques, if correct themselves,
will generate mistake-free programs.

6. Unification of Techniqucs. Combined Systems. Systems using
portions of the techniques listed above have been developed (Ref. 8).
Certain of the categories are directly opposed. Hence, the useful combi­
nations are employed with the objective of a self-sufficient method of
machine operation that requires a minimum of human intervention.

7. Universal Computer Language. The progress through the steps
listed above leads, of necessity, toward some sort of standardization of the
basic input language of all computers, as it looks to the users, before the
computer matches the internal language to the external human language.
Present day lack of compatibility between algorithms or programs devel­
oped on one computer and another is causing as much undue duplication
of effort in space as occurred in time before the advent of subroutines.
Universal languages, more or less standardized, exist for certain types
of problems, for example, those that can be expressed entirely alge­
braically.

9. AUTOMATIC PROGRAMMING: ASSEMBLY PROGRAMS

Structure and Objectives

Basically an assembly program accommodates programs written in
machine language. However, it allows the programs to be written with
certain flexibilities and conveniences not available in pure computer
language. The assembly program usually provides for the following:

1. Specification of all numerical constants in convenient decimal form.
(Provision is usually made, however, to allow the writing of binary num­
bers in appropriate cases.)

2. The use of symbolic addresses, addresses with mnemonic content.
3. The use of mnemonic two- or three-letter pairs to describe machine

instructions.

2-164 DIGITAL COMPUTER PROGRAMMING

4. The use of free addresses for instructions to allow the arbitrary
naming of an instruction without stating its location in the storage.

5. The automatic assembly of precoded programs (subroutines) into the
program, often by the use of pseudo instructions.

Two kinds of assembly programs are possible:
1. One-pass assemblers, where the computer, in translation, makes one

pass through the data to perform the required translation.
2. Two-pass assemblers, where the computer, in translation, first makes

a pass through the data to discover all symbolic addresses and to determine
subroutines to be used. The symbolic addresses are assigned machine
addresses, and the subroutines are included in the second pass.

If symbolic addresses are used, and they are in almost every assembly
program, a directory must precede the data''in' the case of a one-pass com­
piler. This directory is simply a list of symbolic addresses with corre­
sponding machine addresses; the directory tells the assembly program how
to assign the machine addresses. The directory is developed during the
first pass through the data, through the technique involving the use of a
location counter (see Assembly Procedure, below).

The difference between an assembly program and a compiler, discussed
in following sections, is tenuous. A compiler is considered to allow more
complex operations. It usually expands a convenient problem-oriented
language (such as algebraic formulas) into machine language. However,
the difficulty in terminology arises when the assembly program allows
many powerful pseudo operations which result in appropriate subroutines
included into the program. The compiler, in its truest sense, usually makes
no provision for machine instructions, or at lease deemphasizes them,
while the assembly program, as the name implies, assembles pieces of
machine instruction programming.

Two assemblers are prominent; the USE Compiler (Ref. 152) prepared
for the Univac Scientific Exchange (USE) for the Univac 1103A by The
Ramo-Wooldridge Corporation; and SAP, Share Assembly Program,
prepared for the Share Cooperative Programming Group for the IBM 704
by the United Aircraft Corporation. Both these compilers are of the two­
pass type, as are nearly all modern assembly programs. An assembly pro­
gram of the one-pass variety was RA WOOP (Ramo-Wooldridge One-Pass)
assembler (Ref. 8). The SAP program is described in some detail below.

Assmubly Procedure

The procedure of assembly is in two parts:
1. Examination of the program to be assembled in order to define each

symbol used in writing the program. A location counter L is used to specify
the absolute location of each word (number or instruction) in the program.
L is set initially to an integer common to all programs, or in exceptional

PROGRAMMING AND CODING 2-165

cases, supplied to the assembly program by the program being assembled.
Thereafter, each new instruction input increases the contents of L by one.
Simultaneously a table or directory is constructed. Each directory entry
gives an equivalence relationship between a symbolic address S and the
corresponding absolute machine address Ls assigned by the counter at the
time of input. Entries in the table may also be made by means of certain
pseudo operations. The order of the absolute instructions produced by the
assembly program is governed only by the order in which information is
input.

2. During the second assembly pass, the value of the counter L is com­
puted in the same manner as on the first pass. In addition, replacements
are made for symbolic addresses by integers stored in the directory as a
result of the first pass.

Share AsseInbly PrograIn (SAP)

This assembly program was written for the IBM 704 computer (Ref. 143).
Instructions for this system are written with addresses expressed as com­
binations of symbols and decimal integers. A typical IBM 704 instruction
has operation, address, and a tag and decrement to be used with that
machine's index registers. In addition to instructions, data in decimal,
octal (the IBM 704 is a binary machine internally), or Hollerith alpha­
numeric code may be read from punched cards. Previously coded library
routines may be conveniently inserted into a program whenever desired.

A number of pseudo operations which help carry out the assembly
process are as follows:

1. Origin specification (ORG). The location counter L is set to the
value of the expression (previously defined symbol) in the address portion
of the instruction. (This allows gaps in the sequence of input assignment
at any stage.)

2. Equality (EQU). The symbol appearing to the left of the operation
code is assigned the integer value given by the previously defined expression
in the address portion of the instruction. (This allows programmer
assignment of pre-set parameters.)

3. SynonYIn (SYN). The symbol appearing to the left of the oper­
ation code is assigned the integer value given by the previously defined
expression in the address portion of the instruction. (This allows pro­
grammer assignment of blocks of storage.)

4. DeciInal data (DEC). The decimal data following are to be con­
verted to binary and assigned to consecutive locations L, L + 1, .. '.
Successive words of data on a card are separated by commas. Depending
on whether or not each number contains an exponent or not, it will be
translated into a floating point, or scaled fixed point number, or fixed
point integer.

2-166 DIGITAL COMPUTER PROGRAMMING

5. Octal data (OCT). The octal data following are to be converted
to binary integer form, and assigned to consecutive storage locations,
L, L + 1,···.

6. Hollerith data (BCD). The 10 six-character words of Hollerith
(binary-coded-decimal) information are read and assigned to locations L,
L + 1,···.

7. Block started by sYlllbol (BSS). The block of storage from L to
L + N - 1, where N is the value of the expression following the operation,
is reserved, and any symbol preceding the operation is assigned the
value L.

8. Block ended by sYlllbol (BES). Similar to BSS, except any
symbol preceding this operation is assigned the value L + N.

9. Repeat (REP). Two expressions, separated by a command, follow­
ing this operation, define integers M and N such that the block of instruc­
tions or data preceding the REP operation in locations L, L + 1, ... , L +
M - 1 is repeated N times, stored in locations L + M, L + M + 1,
... , L + (MN) - 1.

10. Library search (LIB). The library routine of k words, identified
by the symbol preceding the operation, is obtained from a library tape and
inserted in the program being assembled at locations L, L + 1, ... ,
L + k - 1. Any symbols appearing in the library routine are entered in
the directory and properly defined.

11. Heading (HED). If two or more programs use the same symbolic
addresses, they may be combined with this heading pseudo instruction
which prefixes each symbol used in the following program by the single
character given in the usual address position. Thus nonunique designa­
tions are made unique.

12. Define (DEF). This pseudo instruction assigns the value of the
expression in the address position to any subsequent undefined symbols
in successive integer order.

13. Relllarl{s (REM). Any Hollerith (alphanumeric) characters
following this operation will be printed in the output listing of the assem­
bled program. but not processed in any other way.

14. End of progralll (END). The value of the expression in the
address position is punched as the transfer (starting) address in an IBM
704 binary transfer card, the last in the output deck.

The input to this assembly program, on the IBM 704, is either a binary­
coded-decimal (alphanumeric) magnetic tape, previously generated by
peripheral card-to-magnetic-tape equipment, or punched cards.

Output is on binary nonrelocatable (fixed address) or relocatable
punched cards (in machine storage) along with a printed copy of the entire
program with or without library routines suppressed.

Additions to an already assembled program can be made if the table of
symbols (directory) punched out during assembly is available. Upon

PROGRAMMING AND CODING 2-167

reloading this table, additional new parts may be assembled. Any change
to the original program which does not require relocation of any part of
the program or reassignment of any symbols, may be made by assembly of
only those parts of the program requiring change.

An Example of a SAP Program. A SAP program for evaluation of
a quadratic form

is given in Table 24. The first column (a) gives the octal machine location,
the next four columns (b) (12 octal digits with sign) give the translation,
the next column (c) the symbolic location, operation or pseudo-operation,
and symbolic address, tag, and decrement. The last column (d) explains
the instruction. The reader is referred to the instruction list for the IBM
704 for the meaning of the operation codes. (Sect. 6.)

TABLE 24. A SAP PROGRAM FOR EVALUATION OF QUADRATIC FORM

a b c d

04000 ORG 2048
04000 -0 53400 5 04011 LXD PI, J + K Initialize index registers
04001 -0 63400 4 04020 P4 SXD P2, K Store K
04002 0 50000 1 04022 CLAA+ 1, J Obtain first element
04003 1 77777 1 04004 TXI P6, J, -1 X
04004 -2 00001 4 04017 P6 TNX P5, K, 1 X
04005 0 76500 0 00043 P3 LRS 35 Form polynomial
04006 0 26000 0 04046 FMPX InX
04007 0 30000 1 04022 FAD A + 1, J X
04010 1 77777 1 04011 TXI PI, J, -1 Step coefficient
04011 2 00001 4 04005 PI TIX P3, K, 1 Test reduced K
04012 0 60100 0 04051 STO S Store partial sum
04013 0 56000 0 04050 LDQZ Form polynomial
04014 0 26000 0 04047 FMPY In Y
04015 0 30000 0 04051 FADS X
04016 -3 77754 1 TXL OUT, J, - R/2 + 1 X
04017 0 60100 a 04050 P5 STO Z X
04020 1 00000 4 04001 P2 TXI P4, K X

00005 N EQU5
00052 R EQU N*N + 3*N + 2 [Note that the a.;" am
04021 A BSS R/2 stored in the order aoo•

04046 0 00000 0 00000 X a14, a04, a23, a13, a03,
04047 0 00000 0 00000 Y •• " aOO from location
04050 a 00000 0 00000 Z A on.
04051 0 00000 0 00000 S

00001 J EQU 1
00004 K EQU4
04000 END P4 - 1
00000 OUT

10. AUTOMATIC PROGRAMMING: SUBROUTINES. SUBROUTINE
GENERATORS. UTILITY PROGRAMS. AND INTEGRATED SYSTEMS

Subroutines are precoded, pretested, conventional coded programs, which
can be used over and over again in many different programs and by many
different machine users. Subroutines were first used with the Bell relay

2-168 DIGITAL COMPUTER PROGRAMMING

computers (Ref. 96); their use with variable stored program machines was
first expounded by Burks, Goldstine, and von Neumann (Ref. 19). The
EDSAC group first experimented successfully with subroutines on a
machine (Ref. 108).

Synthetic Instructions. A synthetic or programmed instruction is a
subroutine or precoded combination of real instructions that may be treated
conventionally as an instruction. For example, some machines have built­
in instructions for square rooting. Such instructions are real instructions;
in other machines exactly the same operations can be performed only by a
subroutine.

Structure of Subroutines. In structure any subroutine is nothing
more than a function of one or more variables. These variables, which
are considered to be the parameters of the subroutine, may be numbers,
addresses, or very infrequently, actual instructions. The variables for a
subroutine can be either free or floating variables (see Sect. 4). A param­
eter to be used with a subroutine or any coded program is a variable of the
program. A program parameter, as defined by Wilkes et al. (Refs. 108
and 109) is the machine counterpart of the floating variable. Such a param­
eter is thus a number calculated elsewhere in a program, whose value is not
known until just before the performance of the subroutine, when it must be
assigned. A preset parameter, on the pther hand, corresponds to a free
variable, assigned at the beginning of a problem and remaining constant
from one performance of the subroutine to the next.

For example, if a subroutine is to be used to calculate a function to the
same precision each time it is performed, the constant determining the
precision of the result could be assigned at the beginning as a preset param­
eter. On the other hand, if the tolerance must be changed at each per­
formance of the subroutine, it is actually a free variable, and must be
inserted as a program parameter.

Open Subroutines. An open subroutine is a combination of instruc­
tions which must be inserted directly into a larger program. For each
successive operation of the subroutine another copy or set of instructions
must therefore be stored. The open subroutine has been most thoroughly
investigated by the programmers of the Univac staff, including Hopper and
Ridgway (Ref. 2), in the larger framework of the compiler or "compiling
routine." Its advantage is its simplicity of entrance and exit (control
moves sequentially in succession into, through, and out of the subroutine),
which eliminates the need for red tape operations. The chief disadvantage
is that successive copies must be stored for successive operation of the
subroutines, which require a large amount of storage. The success of the
Univac compiler schemes came because of the availability of large amounts
of magnetic tape storage that could be handled efficiently. A sample
flow diagram for successive open subroutines is shown in Fig. 23.

Main
program

Open
subroutine

I

PROGRAMMING AND CODING

Main
program
(Contd.)

Open
subroutine

II

Main
program
(Contd.)

Open
subroutine

I (repeated)

2-169

Main
program
(Contd.)

FIG. 23. Use of open subroutines interspersed with hand-coded program.

Closed Subroutines. The closed subroutine eliminates the duplications
of storage required for open subroutines. One closed subroutine can per­
form the same function of many copies of an open subroutine. A closed
subroutine is not stored in its proper place in the linear operational se­
quence in storage, but occupies a storage position away from the main
coded program which is to refer to it. Such a subroutine is entered by a
change of control operation which sends control to the entrance (often the
first) instruction of the subroutine. After completion of the operations
required by the subroutine, it is then necessary for it to return control to
the instruction following the change of control instruction which transferred
control to it originally. If this process is done automatically, as it generally
is, the subroutine is called a closed automatic subroutine. The flow diagram
for such a subroutine used several times during a program is shown in
Fig. 24.

Automatic Exit from a Subroutine. The methods providing for
automatic exit from a subroutine are in general two, depending on the
absence or presence of a built-in instruction to aid the process. For an
automatic return of control, the subroutine needs to know, as one of its
floating variables, the setting of the control counter or instruction counter
at the change of control instruction that originally transferred control.
On the machines which have no special operation for this purpose, this
contents of control must be considered a program parameter. The process
of entering such parameters into a subroutine has been labeled preliminary
preparation of the subroutine for use.

Wheeler Method (Ref. 108). This standard method of preliminary
preparation makes use of the following preparatory sequence of operations:

1. An instruction is stored in a standard location (usually in a machine
with a single-address code, the accumulator). The instruction stored is
that one which performed the storage.

2. Addition of an instruction considered a constant (usually containing
three in the address portion) to the stored instructions so as to make the
result a change of control instruction.

{3

FIG. 24.

Main
program

Closed
subroutine

I
------ ,('Yi

Main
program
(Contd.)

Closed
subroutine

II

02 1
Main

program
(Contd.)

Closed

.. (END

1'3) ~ I subroutine t-I ~"--1 o· }

II (Contd.)

Use of closed subroutines in a program. (Here the main program calls on subroutine I, and also on subroutine II,
which in turn calls on subroutine I.)

~
.......
o

c
(j)
=i » r-
()
o
~

" C
-t
m
;.0

" :;:0

o
(j)
:;:0 »
~
~
Z
(j)

PROGRAMMING AND CODING 2-171

3. Entry into the subroutine by a standard change of control instruction.
This procedure usually leaves a change of control instruction containing

as its address portion the proper return address for the subroutine. The
first instruction of the subroutine must then be to store this instruction in
the proper exit location of the subroutine.

Deferred Preparation. This method can be used only when the instruc­
tion code for the computer contains an operation designed especially to
accomplish this deferred preparation (Ref. 17). Two machines with such
an instruction are the Whirlwind I (single-address) and the MIDAC
(three-address). The Whirlwind I change of control instructions sub­
program (sp) and conditional program (cp) automatically transfer the pres­
ent location of control (contents of the control counter), increased by one,
to a standard position, the machine's A register (Ref. 57). The first
instruction of the subroutine must be a transfer address, ta n instruction
(where n is a storage location), which stores the address given in the A
register in the address position of storage location n, which is usually the
exit change of control instruction. When this instruction is processed,
control will transfer to the location following the original call-in instruction.

On the MIDAC, one three-address instruction, file (fi), performs the
deferred preparation (Ref. 25). This change of control operation transfers
control to the subroutine entrance, at the same time storing the return
address in the proper position in the exit instruction or in a previously
agreed upon conventional location.

Subroutine Specifications Manuals. How subroutines are used
depends on the storage medium on which they are stored. Generally
subroutines have been stored in two or more fashions at once. Usually a
written copy of the subroutine is stored in a subroutine specifications
manual compiled in a looseleaf notebook form. Each subroutine is usually
explained thoroughly on a subroutine specification sheet which gives a
thorough statement of its characteristics, including:

1. Preset and program parameters to be assigned.
2. Method of such assignment.
3. Length of subroutine.
4. Entry of subroutine.
5. Exit of subroutine.
6. Type (open or closed).
7. Time for execution expressed as a function of the parameters.
8. Precision of the results.
9. Description of the numerical process involved.
A second sheet, containing the actual coded program for the subroutine,

is also kept on file in the subroutine specifications manual. The program­
mer who desires to know the actual behavior of a subroutine may use this

2-1.72 DIGITAL COMPUTER PROGRAMMING

manual as a reference. An example of a subroutine library is given in
Table 25. Examples of typical storage specifications forms for the MIDAC
and Univac 1103 computers are given in Tables 26 and 27.

TABLE. 25. SUBROUTINE LIBRARY FOR THE MIDAC COMPUTER

The following is a list of all the subroutines available for use on MIDAC. All
subroutines are available on paper tape and seven have also been stored per­
manently on the drum. The specification sheets for the subroutines marked
with an asterisk have been included under Tape Storage Subroutines and those
marked "Drum" have been included under Drum Storage Subroutines.

A. Printout
1. Printout subroutine: Binary to decimal (adjustable format), drum
2. Printout subroutine: Binary to decimal (fixed format)
3. Graphical output

B. Number conversion
1. Fixed point number conversion: Binary to decimal (integers), drum
2. Fixed point number conversion: Decimal to binary
3. Standardized number conversion: Binary to decimal (approximate)
4. Standardized number conversion: Binary to decimal (exact)
5. Fixed point double precision conversion: Decimal to binary (fractions)
6. Floating point number conversion: Binary to decimal (approximate)

C. Interpretive routines
*1. Floating point interpretive routines
*2. Interpretive routine for operations on complex numbers

D. Logarithm and exponential routines
1. Natural logarithm, drum
2. Exponential (for fractional exponents only), drum

*3. Exponential (for fractional and integral exponents)
E. Square root

1. Square root (fixed point, single precision), drum
*2. Square root (floating point numbers)

F. Trigonometric routines
1. Sine
2. Cosine
3. Sine, cosine, drum
4. Arctangent (polynomial approximation)
5. Arctangent (Taylor's series), drum

G. Random numbers
*1. Normal random deviates

H. Integration
*1. Integration by Simpson's rule

1. Matrix routines
1. Transpose of a square matrix

*2. Transpose of a rectangular matrix
3. Matrix multiplication for square matrix

*4. Matrix multiplication for rectangular matrices
5. Jacobi diagonalization

J. Linear systems
1. Seidel code

*2. Jordan elimination

TABLE 26. MIDAC SUBROUTINE SI'ECIFICA'l'ION SHEET

Title
No. of consecutive

registers required
No. of instructions

and constants

Normal Random
Deviates

HI (exclusive of
registers 510 and 511)

19
Location

Tape
Classification

Machine Code

Range Scaled

14D20 m2
Closed

Relative Address

Parameter (see descrip- Di 510 0< Di < 244 2-44
tion)

Results

Method of entry
No. of modified

instructions
Error halts
Description

Di+l
Ni
Standard

2
None

510 0< Di+l < 244 2-44

511 Ni ~ G 2-4

·When a correct value of Di (as explained below) is placed in register 510, the result, Ni, is
a pseudo random number from a normal distribution with mean 0 and a standard deviation of
1. The routine takes Ri.o = Ri.;· 517 (low order 44 bits). To obtain Ni the high order
14 bits of the (j = 1,' •. , 12) are extracted, shifted, added together and the result subtracted
from G. 2""<4. Do = 517 and the D's are defined by Di:l = Ri.;+12. A correct value of D must
be placed in register 510 before each entry to the subroutine. If the contents of cell 510
are not changed between successive files to this subroutine a correct value of D will already
be in that cell. Otherwise Di:l must be transferred and saved by the program and replaced
in cell 510 the next time this subroutine is to be used. For programs requiring more than
one period on the machine the last Di:l may be printed out and read in again at the beginning
of the next run. However, since an error in a single bit or digit during readout, transcription,
or read in might destroy the validity of all further runs, the following table of correct starting
values of D is supplied. D IOOO " (n = 0, 1, 2, .•.) are tabulated.

Hexadecimallislin{] n
o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

D IOOOn

Obla2bc2ec5
Oe35a475d45
3237a9fcbc5
2156d657a45
9a6ec3868c5
Of800b89745
843948605c5
ac4a140b445
4a3d088a2c5
cd9dbfdd145
31a5d403fc5
Ibb3defee45
39cb7acdcc5
e1154170b45
ec5ecce79c5
da9ab732845
2d609a516c5
076d1044545
Ob21b30b3c5
79051ca6245
8e4237150c5
232bac57f45
89b5066edc5
abf98f59c45
6ab8e118ac5
7bd795ab945
08df47127c5
4d7e8f4d645
7609085c4c5
7 df7 4c3f345
ce66f4f61c5

Coded by Bauer and Perkins
Checked by
Date March 11, 1954

2-174 DIGITAL COMPUTER PROGRAMMING

TABLE 27. A UNIVAC 1103 SUBROUTINE SPECIFICATION SHEET

Linear Matrix Equation Solver (AX = B)

Specifications
Identification tag:
Type:
Storage:

Program entrance:
Program exit:
Alarm exit:
Machine time:

Mode of operation:
Coded by:
Code checked by:
Machine checked by:
Approved by:

Description

MTI-O
Subroutine available on cards for assembly
217 instructions, addresses

lOMOO (OOMOO) thru lOM51 (OM51)
llMOO (OlMOO) thru llM37 (OlM37)
12MOO (02MOO) thru 12M63 (02M63)
13MOO (03MOO) thru 13M62 (03M62)

12 constants in program, addresses
CINOO (CONOO) thru C1Nll (CONll)

Temporary storage used, but not stored in program
(see text).

229 words total program storage.
The constant pool and temporary storage pool are used

by this routine.
Address lOM02
Address lOMOl
The alarm exit is used by this routine.
For all storage in ES time is approximately (in milli­

seconds) :
.3n3 + .9n2m + 1.7n2 + .3m2 + 2.5nm
+ 1.8n + 1.6m + 2.7 (matrix size = n X m)

For temporary storage (see text) on drum add approxi­
mately (in milliseconds):

.04[n3 + 4n2m + 3n2 + lOmn] + 51
Fixed point
W. L. Frank
W. L. Frank
W. L. Frank
W. F. Bauer

October 25, 1955
November 15, 1955
November 17, 1955
November 30, 1955

This subroutine solves the linear matrix equation AX = B, where A is a non­
singular matrix of size n X nand B has the dimensions n X m. The solution,
X = A-IB, is a matrix of size n X m. For the special case, when B is the
identity matrix (I), one obtains the inverse of the matrix A. Otherwise, one can
solve m sets of n simultaneous linear equations in n unknowns.

Considerable flexibility is afforded the programmer with respect to the storage
of the matrices A, B, and the answer X. The programmer must code two aux­
iliary routines as follows:

(a) The first must provide successive rows of the augmented matrix [A, B].
(When B = I, one only need supply rows of A.) Each row, consisting of
(n + m) elements (or n elements when B = 1), must be set up in the
fixed location immediately following the subroutine. This data must be
scaled at 235 and be such, that for all elements aij of [A, B]

laii. 235
1 ~ 234

)

PROGRAMMING AND CODING 2-175

In the general case, for B ~ I, the rows of [A, B] may be scaled independ­
ently. However, in the case of inverting a matrix, it is necessary that
the entire matrix be scaled by the same factor.

(b) The second auxiliary must take the successive columns of X, found in the
n cells immediately following the routine, and either store them internally
or punch them out. Since the columns of X are independently calculated,
each has an associated scale factor (scaled at 2°). This parameter posi­
tions the binary point (assuming the input matrices are scaled at 235) and
is to be found in the (n + 1)st cell following the routine. If one hl:'..s
inverted a matrix, and if the input rows were originally scaled by lOP
(or 2P), then the output columns must be rescaled by lOP (or 2P). These
auxiliary routines are automatically entered nand m times respectively
by RJ instructions. The subroutine sets up these two RJ instructions
from information gleaned from the parameters of the entry. This proce­
dure allows storage of A, B, and X on ES, MD, magnetic tape or externally
on cards or tape. It is also possible to generate the elements of successive
rows when a functional relation exists. In addition to the 229 words of
storage needed by the subroutine, it is necessary to provide 2(n + m)
cells temporary storage immediately following the subroutine, and a block
of [n(n + 1)/2] + nm cells, either all on ES or all on MD.

Operating Instructions
1. Entrance to the subroutine is made by the following orders (B ~ I):

p RJ OOMOl 00M02
p + 1 00 OOXOO OOYOl
p + 2 - uuuuu vvvvv
p+3 - -- xxxxx

where OOMOO is the location of the first word of the subroutine

OOXOO is the location of the first word of the first auxiliary
OOYOl is the location of the second word of the second auxiliary
uuuuu = m (number of columns of B)
vvvvv = n (number of rows of A)
xxxxx = is the location of the first cell of the block of [n(n + 1)/2] + nm

cells all in ES or all in MD.

2. For the case when B = I, the p + 1 word must be 40 OOXOO OOYOl
3. The auxiliary routines must be available and coded so that they can be

entered with
RJ OOXOO OOXOl

and
RJ OOYOO OOYOl respectively.

This implies that the first and second words of both auxiliaries are exit and
entrances respectively.

Alarm Conditions
Two alarm conditions can result:
1. A test is made to see that all elements, aij of the input rows are within the

limits

2-176 DIGITAL COMPUTER PROGRAMMING

If this is violated the alarm routine ALR-1 is entered and "alarm-xxxxx" is
printed where xxxxx-3 is the address of the cell from which the subroutine was
entered.

2. If a singular matrix is detected in the process of inversion, the alarm routine
ALR-1 is entered and "singul-wwwww" is printed where wwwww-3 is the address
of the cell from which the subroutine was entered. The routine can not, however,
detect all singularities due to roundoff errors (see below).

Starting again at xxxxx + 1 will cause the rest of the main program to be
obeyed.

Machine Time
The machine time is as indicated on the first page when all operations are

carried on in ES. This time is exclusive of the times taken by the auxiliaries.
In case the block of [n(n + 1)/2] + nm words are stored on MD, the time must
be increased, by the terms indicated.

These times are approximate and will be a minimum in most cases. Sample
computation times for matrices of order 27 and 99 were respectively 53 seconds
and 30 minutes.

Mathematical Method (Gauss elimination method)
Elementary row operations are performed on the matrix A reducing it to an

upper triangular matrix A. At the same time, these operations are performed on
the matrix B giving a new matrix B. A partial floating point arithmetic is main­
tained, in that the rows of the augmented matrix [A, B] are always kept within
the limits such that the largest element of the row (in absolute value) lies in the
interval

234 > laii. 235
1 ~ 233

In addition, before eliminating, leading elements of two rows are compared and
the element of largest magnitude becomes the pivotal point. N ext, successive
columns of B are taken and the equation AX = B is solved by the back substitu­
tion procedure.

Singularities in A are detected if a zero appears on the diagonal of A. Since
roundoff errors can prevent this from occurring~ one must i.nspect the size of the
scale factor if A is suspected of being singular. Ill-conditioned matrices will
cause the scale factors to be very small. That is, the elements of X will be
very large.

Accuracy

The accuracy in the result is a function of the condition of the matrix A. Seven
to eight decimal place accuracy was obtained for matrices of order 10 to 16. A
matrix of order 39 and 99 yielded 7 and 6 place accuracy respectively.

The program for this problem on the Univac 1103 is given in Table 28.

PROGRAMMING AND CODING 2-177

TABLE 28. UNIVAC 1103 PROGRAM FOR LINEAR MATRIX EQUATION SOLVER

0 101100 00100 1 00 00000 00000
0 lUIOO 00152 230 00 00000 00000
0 12MOO 00190 276 00 00000 00000
0 13MOO 0025 .. 376 00 00000 00000
0 OOMOO 00100 1 .. 4 00 00000 00000
0 01MOO 00152 230 00 00000 00000
0 02MOO 00190 276 00 00000 00000
0 03MOO 0035" 376 00 00000 00000
0 C1NOO 00317 .. 75 00 00000 00000
0 CONOO 00317 475 00 00000 00000
10MOO 37 75701 75702' B AlARU AND 1 .. 4 37 75701 75702
10MOl I.IJ 00000 a NORMAL EXIT 1 .. 5 45 00000 00000

·101.102 54 001.101 20017 BRB ENTRY 146 54 00145 20017
101.10 :3 TU AOOOO 00M11 P-1 147 15 20000 00157
101.104 TU AOOOO 011.109 150 15 20000 00241
101.105 AT 00015 AOOOO P-2 151 35 00017 20000
101106 TU AOOOO 001121 152 15 20000 00171
101107 A T 00015 AOOOO P-3 153 35 00017 20000
101.106 T U AOOOO 001.119 :154 15 20000 00167
101109 TU AOOOO 011.102 155 15 20000 00232
101110 TU AOOOO 011.103 156 15 20000 00233
101111 TP 00000 AOOOO SE T 157 11 00000 20000
101112 T U AOOOO 011.106 A 160 15 20000 00236
101113 TV AOOOO 03M .. e u 161 16 20000 00456
101114 AT 00015 AOOOO X 162 35 00017 20000
101115 SS 00016 00015 I 163 34 00020 00017
101116 TU AOOOO 031146 L 164 15 20000 00456
101117 LA AOOOO 00042 165 54 20000 00052
101116 TV AOOOO 011.106 166 16 20000 00236
101119 TV 00000 021.150 SET r 167 16 00000 00360
101120 TN 00016 CON10 170 13 00020 00507
101121 TP 00000 AOOOO 171 11 00000 20000
101122 TV AOOOO CON06 SET N 172 16 20000 00503
101.123 TU AOOOO CONoe SET M 173 15 20000 00505
101124 AT 02Ml0 AOOOO Y 174 35 00310 20000
101.125 TV AOOOO 011.113 175 16 20000 00245
101.426 TV AOOOO 011.114 176 16 20000 00246
101127 TV A 00'0 0 031102 177 16 20000 00400
10112e 54 CON06 20071 BRB 200 54 00505 20071
101.129 AT CON06 AOOOO 201 35 00503 20000
101.430 TV AOOOO CON07 SET M-fl 202 16 20000 00504
10M31 AT 021.110 AOOOO T 203 35 00310 20000
101.432 TV AOOOO CaNOl 204 16 20000 00476
101.433 TV AOOOO 021.401 205 16 20000 00277
10 1.4.3 4 LA AOOOO 00015 206 54 20000 00017
101.435 TU AOOOO 021.406 207 15 20000 00304
10M 36 T U AOOOO a 2M 5 a 210 15 20000 00360
101.437 TU AOOOO 021.411 211 15 20000 00311
10M36 TU AOOOO 021.117 212 15 20000 00317
101139 TP CON 01 AOOOO 213 11 00476 20000
101.440 AT CON06 AOOOO Z 214 35 00503 20000
101.441 TV AOOOO 03M16 215 16 20000 00416
101.442 TP 00021 00000 216 11 00025 10000
101.143 QS CON06 011.112 217. 53 00505 00244
101.444 TP CON10 AOOOO SET 220 11 00507 20000
10M45 AT CON06 CON09 NOl 221 35 00503 00506
101.446 54 CON07 20017 BRB 222 54 00504 20017
101.447 TU AOOOO 01M25 M-N 223 15 20000 00261
101.446 RA 001.101 CaNaS P-4 EXIT 224 21 00145 00502
101.149 TV 031.102 031.147 225 16 00400 00455
101.450 TU 021.162 011.117 226 15 00374 00251
10M51 TU 02"162 021.107 227 15 00374 00305
l1MOO TV 021.150 011.101 SET 0 FOR 230 16 00360 00231
111.101 T P 00013 00000 INTERCHANGE 231 11 00015 00000
111.102 TV 00000 021.150 RESET 232 16 00000 00360
111.10 3 54 00000 20017 ORB TO 233 54 00000 20017
111.104 TU AOOOO 021.101 F ADDRESS 234 15 20000 00277
llM05 TP CON02 CON11 SET SF INDEX 235 11 00477 00510
111.106 RJ 00000 00 TO AUX 1 236 37 00000 00000
llM07 TP CON07 00023 SET INDEX 237 11 00504 00027
l1M08 TP 00021 00000 240 11 00025 10000
111.409 T P 00000 AOOOO T EST FOR 241 11 00000 20000
111.410 SJ 01Ml1 011.116 INVERSION 242 46 00243 00250
111.411 RS CON11 00016 243 23 00510 00020
111.412 75 10000 01M14 B B R AUGMENT 244 75 10000 00246
111.413 TP 00013 00000 ROW of 245 U. 00015 00000
l1M14 TP CON04 00000 UN I T 246 11 00501 00000
111.415 RA 011.414 00016 MATRIX 247 21 00246 00020
111.416 TP CON 0 4 AOOOO C HE C K IF ALL 250 11 00501 20000
111.417 TM 00000 00024 ELEMENTS I N 251 12 00000 00030

2-178 DIGITAL COMPUTER PROGRAMMING

TABLE 28. UNIVAC 1103 PROGRAM FOR LINEAR MATRIX EQUATION SOLVER

(Continued)

11"'18 TJ 00024 001A00 ROW ARE 252 42 00030 00144
11"'19 RA 01M17 00015 SCALED 253 21 00251 00017
11"'20 IJ 00023 011.116 CORRECTLY 254 41 00027 00250
11"'21 RA CON10 00016 A D V A.N C E AND 255 21 00507 00020
111.422 TP CON10 00026 SET INDEX eS6 11 00507 00032
11"'23 OS 011.125 o 2M 0 0 257 53 00261 00276
11"'24 OS 01M25 02M45 260 53 00261 00353
11"'25 MJ 00000 011.128 261 45 00000 00264
l1M26 RS 02MOO 00015 262 23 00276 00017
l1M27 RS 02M45 00015 263 23 00353 00017
11"'28 TU 02"'00 021.149 264 15 00276 00357
11"'29 TV CONOl .021,1 30 R·E SET 265 16 00476 00334
111.430 TU 021.406 021.122 T 266 15 00304 00324
111.431 RA 02M07 00015 ADVANCE 267 21 00305 00017
111.432 TU 021.407 02M12 X 270 15 00305 00312
111.433 TU 021.407 02M16 271 15 00305 00316
l1M34 TU 02M07 02M21 .272 15 00305 00323
l1M35 TU 02M07 02M46 273 15 00305 00354
llM36 55 02M07 10025 B R B 274 55 00305 10025
l1M37 TV 00000 02M26 .275 16 10000 00330
121.400 75 30000 02M02 BBR TRANSMIT ITH 276 75 30000 00300
12MOl T P 00000 0 ROW TO ES 277 11 00000 00000
12M02 TV 03M26 02M21 SET FOR 300 16 00430 00323
12M03 TV 03M26 02M22 INVERSION 301 16 00430 00324
12M04 TP 00013 00024 302 11 00015 00030
12 M 0·5 TP 00013 00028 303 1l. 00015 00034
12 M 06' TM 00000 00029 COMPARE LEAD 304 12 00000 00035
12M07 TM 00000 AOOOO ELEMENTS 305 12 00000 20000
12MOB TJ 00029 02M16 306 42 00035 00316
121.409 ZJ 02Mll 02M13 307 47 00311 00313
121.410 00 00000 CON12 CONSTANT 310 00 000 00 00511
121.411 MP 00000 CON03 R INTER 311 71 00000 00500
12M12 DV 00000 00024 0 312 73 00000 00030
121.413 RA 02M21 00016 IV CHANGE 313 2l. 00323 00020
121.414 TN eON 0 4 00027 314 13 00501 00033
121.415 MJ 00000 02M20 315 45 00000 00322
12M16 54 00000 20043 B NO ROW 316 54 00000 20043
12M17 DV 00000 00024 INTER 317 73 00000 00030
12M18 RA 021.422 00016 320 21 00324 00020
12M19 TP 00013 00027 CHANGE 321 11 00015 00033
12M20 TN 00024 00024 OK 322 13 00030 00030
12M21 TP 00000 L 323 11 00000 00000
12M22 TP 00000 I 324 11 00000 00000
12M23 54 00030 20043 BRB N 325 54 00036 20043
121.424 MA 00031 000·24 E 326 72 00037 00030
12M25 MJ 00000 03M58 A 327 45 00000 00470
12M26 TP BOOOO 000 0 R 330 11 30000 00000
12M27 TM BOOOO .'0000 L 331 12 30000 20000
12M2B TJ 0002B 02M30 Y 332 42 00034 00334
12M29 TP AOOOO 00028 COMBINE 333 11 20000 00034
12M30 TP 00031 00000 334 11 00037 00000
12M31 RA 02M21 00015 R 335 21 00323 00017
12M32 RA 02M22 00015 0 336 21 00324 00017
12M33 RA 02M30 00016 W 337 21 00334 00020
121.134 RA 021.126 00016 S 340 21 00330 00020
121.135 S T CON 01 AOOOO 341 36 00476 2000 O·
121.136 ZJ 021.121 02M 37 342 47 00323 0034·3
121.137 EJ 00026 021.147 R 343 43 00034 00355
12M36 TV 00013 02M46 E 344 16 00015 00354
121.139 55 00026 10001 BRB S 345 55 00034 10001
121.140 QJ 02M44 021.141 C 346 44 00352 00347
121.141 QJ 021.147 02M42 A 347 44 00355 00350
12"'42 RA 021.146 00016 L 350 21 00354 00020
121.443 Q J 021.145 02M42 E 351 44 00353 00350
12M44 TV 031.456 02M46 R 352 16 00466 00354
121.145 75 20000 02M47 B B R 0 353 75 20000 00355
121.146 LA 00000 W 354 ·54 00000 00000
121.147 TP 00027 AOOOO REPLACE ROW 355 11 00033 20000
121.146 SJ 021.149 02M51 ON ORUM IF 356 46 00357 0036l.
121.149 75 30000 02M51 BBR INTERCHANGE 357 75 30000 00361
12M 50 TP 00000 TOOK PLACE 360 11 00000 00000
121.151 TP 00021 QOOOO 361 11 00025 10000
121.452 TP 02MOl AOOOO 362 11 00277 20000
12M53 QA 02MOO 02MOl 363 52 00276 00277
12M54 LA AOOOO 00057 364 54 20000 00071
12M55 TV AOOOO 02M50 365 16 20000 00360
12M56 IJ 00026 01M26 I TIMES 366 41 00032 00262
12M 57 I J CON09 00M50 N- 1 TI"'ES 367 41 00506 00226
12M56 RS eON07 CON06 SE T MOl 370 23 00504 00503
12M 59 RS CON07 00016 FOR I NO E X 371 23 00504 00020

PROGRAMMING AND CODING 2-179

TABLE 28. UNIVAC 1103 PROGRAM FOR LINEAR MATRIX EQUATION SOI~VER
(Continued)

12t.t60 54 CON06 20017 BRB 372 54 00503 20017
12 ... 61 OS 1.0000 03t.t55 373 53 20000 00465
12t.t62 TP CO N 11 00029 374 11 00510 00035
12t.t63 TV 0310116 03t.t14 375 16 00416 00414
13"'00 TP CON10 00026 SE T 'NOEl(376 11 00507 00032
13t.tOl TU 02t.tOl 03t.t14 377 15 00277 00414
13t.t02 TP CON04 00000 SE T SCALE 400 11 00501 00000
13t.t03 TP 00021 QOOOO 401 11 00025 10000
13t.t04 OS 00013 03 ... 13 402 53 00015 00413
13t.t05 TP 00013 00028 COUNTERS TO 403 11 00015 00034
13"'06 TP 00013 00027 ZERO 404 11 00015 00033
13"'07 RA 00028 00015 ADVANCE 405 21 00034 00017
13"'0a RA 03t.t13 00015 COUNT 406 21 00413 00017
13"'09 RS 03"'14 CONoa 407 23 00414 00505
13"'10 TU 03"'14 03"'16 TRANSFER 410 15 00414 00416
13"'11 RS 03"'14 00016 ROWS 411 23 00414 00020
1·3 t.l12 RS 03"'14 00028 OF UPPER 412 23 00414 00034
131.113 RP 30000 031.115 TRIANGULAR 413 75 30000 00415
13"'14 TP 00000 0 MATRIX TO 414 11 00000 00000
13"'15 RA 031.116 CON09 E S 415 21 00416 00506
131.116 TN 00000 00 416 13 00000 00000
131.117 54 031.116 20017 ORB 417 54 00416 20017
131.118 TU AOOOO 031.125 420 15 20000 00427
131.119 TV 031.102 031.125 421 16 00400 00427
131.120 TP 00027 00032 SE T INDEX 422 11 000'33 00040
13M21 TP 00013 AOOOO 423 11 00015 20000
13M22 "'J 00000 031.125 424 45 00000 00427
13M23 54 00030 2004.3 BRB B 425 54 00036 20043
13M24 CC 00031 00013 A 426 27 00037 00015
13M25 lolA 00000 0 C 427 72 00000 00000
13M26 TP BOOOO 00030 K 430 11 30000 00036
131.127 TP AOOOO 00031 431 11 20000 00037
13M28 TM 00030 1.0000 S 432 12 00036 20·000
13M29 TJ CON 04 03M31 U 433 42 00501 00435
13M30 MJ 00000 03M54 RESCALE B 434 45 00000 00464
13M31 RS 031.125 00017 S 435 23 00427 00021
13M32 IJ 00032 03M23 T 436 41 00040 00425
13M33 TU 03M25 03M36 I 437 15 00427 00442
13M34 TV 031.125 03M44 T 440 16 00427 00452
13M35 TU 031.125 03M44 U 441 15 00427 00452
131.136 TM 00000 00024 T 442 12 00000 00030
13M37 TN 00030 00030 E 443 13 00036 00036
13M38 TN 00031 00031 444 13 00037 00037
13M39 TM 00030 AOOOO 445 12 00036· 20000
131.140 TJ 00024 03M42 446 42 00030 00450
131.141 MJ 00000 031.154 RESCALE 447 45 00000 00464
13M42 54 00030 20043 8RB 450 54 00036 20043
131.143 CC 00031 00013 451 27 00037 00015
13M44 oV 00000 452 73 00000 00000
13M45 RA 00027 00016 ADVANCE 453 21 00033 00020
131.146 I J 00026 031.107 N01 TIM E S 454 41 00032 00405
13M47 TP 00029 00000 455 11 00035 00000
13M48 RJ 00000 0 TO AUX 2 456 37 00000 00000
131.149 RA CON09 00015 457 21 00506 00017
131.150 I J CON07 021.162 /.1-1 T I /.I E S 460 41 00504 00374
13M 51 MJ 00000 001.101 E X I T 461 45 00000 00145
13M52 11 CONOO 75756 BRB SET ALARM 462 11 00475 75756
13M53 MJ 00000 OOMOO W 0 R 0 463 45 00000 00144
131.154 RS 00029 00016 RESCALE 464 23 00035 00020
13M55 RP 20000 03M57 465 75 20000 00467
13M56 LA CON13 00071 466 54 00512 00107
13M57 SJ 03M52 03M17 467 46 00462 00417
13M58 TP CON04 00032 470 11 00501 00040
13M59 SJ 03M60 03M61 471 46 00472 00473
13M60 TN CO NO 4 00032 472 13 00501 00040
131.161 AT 00032 AOOOO 473 35 00040 20000
13M62 MJ 00000 021.126 474 45 00000 00330
C1NOO 24 14061 33411 SINGUL 475 24 14061 33411.
C1NOl TP BOOOO 000 C 476 11 30000 00000
C1N02 00 00000 00 42 B 0 477 00 00000 00042
C1N03 37 77777 77777 B N 500 37 77777 77777
C1N04 20 00000 000 0 B AND S 501 20 00000 0000 a
C1N05 00 00000 3 B T 502 00 00000 00003
C1N06 00 0 TEMP A 503 00 00000 00000
C1N07 00 0 N 504 00 00000 00000
C1Noa 00 STORAGE T 505 00 00000 00000
C1N09 00 0 S 506 00 00000 00000
C1Nl0 00 507 00 00000 00000
C1Nll 00 a 510 00 00000 00000

2-180 DIGITAL COMPUTER PROGRAMMING

Methods of Call-In

Momentary Call-In. In magnetic drum storage, a selection of sub­
routines could be stored permanently on the drum ready for use when
desired. With most magnetic drum machines (the ERA 1103 and 1103A
being the exceptions) the drum and high-speed storage are separate
logical entities; in general instructions can be formed only in the high­
speed storage. The Manchester computer group (Ref. 15) developed a
method of use of these two storages which shall be defined here as momen­
tary call-in. In this scheme subroutines are called into the primary storage
from the secondary storage only whenever their actual operation is re­
quired. Thus, generally no more than one subroutine is ever stored in the
high-speed storage at once, and enough space must be saved for subroutines
to hold the largest one to be performed. On some machines this method
provides a satisfactory match between drum to high-speed storage transfer
speed and the operating speed of the computer's arithmetic element.

Permanent Call-In. On other computers with a greater ratio between
arithmetic operation and storage transfer speeds, a method of handling
subroutines called permanent call-in seems desirable. In the permanent
call-in scheme, as many subroutines as possible that are required in a
program are stored in the high-speed storage at the beginning of the
program, and performed when desired without any further need for call-in.
The advantage of this method is: instead of a subroutine being called in
each time it is to be performed, it is called in only once, thereby saving time,
Here, as in many other computer applications, space is traded for time.
The permanent call-in system requires storage space for all subroutines
used, not just the longest one.

Combined Methods. In some cases where there is not enough storage
for all such subroutines, a compromise must be made in using both methods.
The decision as to just what subroutines shall be called in only once and
which ones for each performance is usually a matter of guess, since a priori
a programmer cannot say just how many times a particular subroutine will
be used during the course of a program, and therefore cannot solve the
empirical time-storage relationship required for a best solution.

Arithllletic Classification of Subroutines. The Whirlwind sub­
routine specifications manual originally listed seventeen different categories
included in the Whirlwind Library of Subroutines (Ref. 57). The ED SAC
library contains a smaller number of classifications (see Ref. 108). The
tendency, with the advent of synthetic instructions, has been not to list
subroutines by classifications but rather by the operation itself. The
following types of subroutines appear to have been most useful in scientific
and engineering calculations.

PROGRAMMING AND CODING 2-181

1. Elementary Functions: (a) sine, (b) cosine, (c) sine and cosine,
(d) tangent, (e) arc sine, (f) arc cosine, (g) arc tangent, (h) exponential,
(i) logarithm, and (j) hyperbolic functions.

2. Roots: (a) square roots, (b) cube roots, (c) Nth roots, N arbitrary,
and (d) solution of Nth degree algebraic equations.

3. Integrators for ordinary differential equations.
4. Functional summation methods (Gauss's, etc.).
5. Matrix manipulations (including some simultaneous equation

solutions).
6. Interpolation routines.
Red Tape Subroutines. In addition to the calculational subroutines

listed here, there are numerous other red tape data handling routines which
are usually stored and filed by various computer organizations along with
such computational subroutines. The trend is to classify these red tape
routines with the utility programs (see Utility Programs in this section);
in many cases a complete integration of non calculational subroutines into
master automatic organizational 'schemes is made.

NUlllerical Methods (See Vol. 1, Chap. 14.)

Most of the subroutines listed above have as their purpose the deter­
mination of some sort of approximation in a finite number of steps to an
algebraic or transcendental function, with a resulting error that is to be
kept small. The machine operations to be used are not the actual opera­
tions, but in general certain pseudo operation approximations to them.
Whether codes for subroutines should be written to fit in the least storage
space in a machine, to operate in as short a time as possible, or to minimize
some complicated function of these two variables, will vary from machine
to machine. No constituted theory or procedure for any particular method
of approximation in terms of the standard machine operations on any
computer has 'been established. For this reason, most of the numerical
methods used with subroutines have been ones similar to those used
previous to the advent of the high-speed computer.

However, methods of overall approximation, such as those making use
of the Tchebysheff polynomials, have begun to replace the Taylor-McLaurin
series "approximations in a neighborhood," which often have very slow
ratio of convergence.

Similar deviations exist between the standard hand calculational tech­
niques and those used with machine subroutines. The need for workable
approximations will open up entire new fields in analysis and numerical
methods. (See Vol. 1, Chap. 14.)

2-182 DIGITAL COMPUTER PROGRAMMING

Subroutine Generators

As Rutishauser first noted (Ref. 89), a stretched program eliminating all
red tape operations or instructions will run much faster on a computer than
does the corresponding inductive, loop-controlled program. However, it
may also occupy much more storage space. A general program, prepared to
accept all possible variables as program parameters, will run more slowly
because of the time spent on the red tape modification of instructions to
agree with the parameters. In this case, however, a program written
specifically for inverting a matrix of order 10, although faster than a
general nth order routine, may also occupy more space than a general
program for inversion of matrices of degree n.

Judicious combination of the techniques of stretching or linearizing
program loops, plus constructing programs for specific values of key param­
eters, may produce subroutines that minimize storage, performance time,
or some combination of both. Subroutine generators are computer pro­
grams that do this automatically, taking in as input the parameters of the
problem as it is to be performed. The concept of the subroutine generator
is apparently first due to Hopper (Ref. 49), and her co-workers.

EXAMPLE 1. Suppose a particular problem required a sine subroutine
with a precision of approximation € over a given range (for example,
-1 < x < 1). A sine subroutine generator would take this given value
of €, determine the coefficients of the Tchebysheff approximation needed
to provide this precision, and then punch out the most efficient program
for calculating a polynomial of that degree.

EXAMPLE 2. Suppose that a large quantity of numbers were to be
printed out with n numbers per line, m lines between spaces, each number
to have d digits before the decimal point. The numbers m, n, and p would
be fed as parameters to a subroutine print generator which would then
produce a printing subroutine tailor-made to perform printout in this
format as efficiently as possible.

EXAMPLE 3. In analysis of propagation of error in a computational
process, bounds may be determined in terms of certain maxima of derivatives
of the functions involved. As shown by Kahrimanian (Ref. 150), formal
differentiation may be performed on a computer. A simple recursive
procedure for differentiation may be used more efficiently using techniques
discussed by Kantorovich (Ref. 60). A differentiation generator could be
used to proceed through a machine (or more likely, an algebraic language)
program, constructing the corresponding derivatives of the functions
involved, and combining the whole in a rational error analysis program
that could be run immediately following the actual computation.

PROGRAMMING AND CODING 2-183

Utili ty Programs

Similar to a subroutine, but not generally used in the same fashion, the
utility program provides testing, program debugging, and general auxiliary
aid to the computer programmer. Utility programs are mainly of the
following types: (1) storage printouts, (2) selective (changed-word) post­
mortem programs, (3) tracing programs, (4) input programs, (5) assembly
programs, (6) storage transfer programs, (7) interpretive programs, and
(8) compiler-translators.

Storage printouts may be used as standard subroutines, controlled
by the programmer, or as programs controlled by the computer operator
in case of unexpected program behavior. Such printouts generally provide
optional formats ("octal words, decimal fixed point numbers, assembly
language instructions, decimal floating point numbers," might be one
sequence of options for a binary machine). Under programmer or operator
control any selected portion of high-speed storage could be printed out in
anyone of these formats.

Selective post-mortems (called in only after a program is dead) allow
only those portions (instructions and numbers) of storage that are different
from the original program previously read in to be printed out. Thus a
programmer need study only that portion of the program that has changed
since original input. Thus the changed-word post-mortem compares the
contents of storage after a problem has been performed, with input informa­
tion stored on an external medium, such as punched paper tape or cards,
or else with a copy of the previous input stored on a secondary storage, such
as magnetic drum or magnetic tape.

Tracing programs are devices for following the course of a program
during its performance. Their mechanism is described in detail under
Interpretive Programs (see Sect. 14). Such programs usually allow detailed
printouts of location, instruction, one or more operands, and result for each
instruction performed. If desired, only instructions with certain selected
operations, in certain selected regions of the storage, or with certain selected
addresses may have this tracing information output; all else will be by­
passed. Tracing of closed subroutines may also be eliminated if desired.

Input programs often, dependent on the machine, provide simple
translation from decimal number input to internal binary, from standard
numerical notation to internal coded floating point, or from external
mnemonic instructions to internal machine language.

Assembly Programs. When such routines are combined into a pro­
gram-controlled whole, it is usually called an assembly or translation program
(see Sect. 11). Control of each process in turn on input translation makes

2-184 DIGITAL COMPUTER PROGRAMMING

use of so-called control combinations, which are special instructions describ­
ing to the translator the information to be translated (see Ref. 108).
More recently, many translators have determined information type from
context, thus limiting the need for many control combinations. (See
Sect. 9 for a description of the Share Assembly Program.)

Storage transfer pro graInS are usually coded to move information
back and forth from a main storage to secondary storage, and may be
considered subroutines. However, they are also often used under control
of an operator in a semiautomatic fashion. They usually contain auto­
matic input and output stoi~ge-summing routines, which allow checking
of all transfers, and may also contain rollback features by which the contents
of any "volatile" main storage may be stored on a more permanent sec­
ondary storage so that a program may be restarted at the last rollback
point in case of any sort of machine failure. Such a procedure is described
by Brown et ale (Ref. 18). Some programs provide a complete magnetic
tape titling and checking procedure to prevent incorrect mounting of reels.

Interpretive prograInS usually provide methods for calculating with
types of arithmetic not built into machine hardware (such as floating point,
comp~x numbers, and matrix-vector arithmetic) using machine-like
instructions. Their mechanism is described in more detail in Sect. 14.
Such programs generally are provided with input and output instructions,
the former in machine language and the latter in the interpreter language,
so that machine language and interpreter language portions of a program
may be interconnected at will.

COInpiler-translators are often not considered utility programs, but
since they perform the same general function, they may well be considered
so. These programs generally translate from an external (usually alge­
braic) nonmachine-oriented language into machine language, assign
storage, call in and orient subroutines, and usually provide an assembly
language program as translated output. Their mechanism is described in
Sect. 11. They may also store programs automatically in secondary
storage to be called in later.

Integrated SysteIns

Interconnection of some or all these different utility programs into an
organized, programmer-controlled, semiautomatic or automatic whole is
usually called an integrated system. The first such systems, described by
Adams and Laning (Ref. 1), and Brown and Carr (Ref. 17), were appar­
ently the MIT CSSR (Comprehensive'System of Service Routines) and
the MAGIC (Michigan Automatic' General Integrated Computation)
systems. These provided either operator control through typing in
English code words through an external typewriter: "translate," "com-

PROGRAMMING AND CODING 2-185

pute," "trace," "post-mortem," etc., or similar code words placed on the
program tape or punched cards.

Such syste~s have spread to include almost all the classes of utility
programs listed above, and have been extended more and more to provide
completely automatic, nonstop running of a problem (the General Motors­
North American System for the IBM 704), or complete program storage
inside a machine (the Corbie system of the National Bureau of Standards
on the same type of machine). Bauer (Ref. 8) has described a program
allowing manual operator as well as program control for the Univac 1103.
Swift (Ref. 97) has proposed certain machine hardware changes including
interlocks and timers that would aid in preventing programming errors
from causing major catastrophes in these new automatic systems.

Among the present or proposed automatic features of these integrated
systems, are the following:

1. Complete time-keeping, machine time billing"and bookkeeping for
machine operation.

2. Storage of programs during check out and production.
3. Scheduling of program priorities.
4. Thorough checking of input programs or data to catch logical or

transcription errors.
5. Automatic recovery procedures after all recognized programming

errors (machine overflow, division by zero, improper operations, etc.).
6. Automatic recovery procedures after all recognized machine mal­

functions (storage, arithmetic, or input-output failure).
7. Keeping track of previous errors, types of operations used, etc., so as

to improve future performance.
Incorporation of these processes would allow continuous machine

operation without programmer, operator, or engineer intervention, save at
long intervals for program or hardware maintenance. Recent proposals,
still in the proposal stage, have called for complete computer buffering to
and from a large number of programmer input-output stations, each con­
taining a typewriter. Programmers could each independently communi­
cate at their leisure with the computer, which could process several programs
in the checking-out stage at the same time that main ,production problems
would also be in operation. A machine interrupt feature, now available in
a simplified form on several commercially available computers, would
allow high-speed performance of the production problems except at widely
spaced'intervals when programmers' requests would be answered. Such a
system awaits more programming effort and built-in hardware at the
present time. '

The final goal of such a process is a completely automatic file system,
containing all'information acquired by the programming system during

2-186 DIGITAL COMPUTER PROGRAMMING

operation. Development of fil~-searching and correlation procedures,
provided with inductive artificial' intelligence processes, might allow com­
puter generation of programs on the basis of past processes that had
proved successful.

II. AUTOMATIC PROGRAMMING: LAN,GUAGES. COMPILERS.
AND TRANSLATORS

Three basic elements are involved in the solution of a problem with a
computer: (1) The language of the problem, (2) preparation of the problem
in terms of building blocks, and (3) the recursive use of these building
blocks. The recursive use of building blocks is covered in Sect. 15. An
automatic computer program for performing a translation from one
machine language to another is called a translator. A program which can
call in, connect into, and feed parameters into previously prepared sub­
routines, is a compiler. Translation is usually part of this step.

Language

The first experiments to use algebraic languages to describe problems of
necessity depended on satisfactory symbolic and alphabetic input and were
made in 1951-52. It was not until 1956 that development of a sequence of
languages began, including Fortran (Formula Translator) for the IBM
704; IT (Internal Translator) for the Datatron 205, IBM 650, Univac
Scientific 1103A, IBM 701, and Univac I; Math-Matic for the Univac I
and II; Unicode for the Univac Scientific 1103A; as well as others for the
IBM 709, Ferranti Mercury (United Kingdom), PERM (Western Ger­
many), and Strela (Soviet Union).

An Ad Hoc Committee on Common Algebraic Languages was set up
in 1957 by the Association for Computing Machinery to propose standards
for such languages. The activity of this committee was extended to joint
meetings with the GAMM (German-Swiss Applied Mathematics Society)
in 1958. The purpose of these activities has been to standardize defini­
tions and symbology so as to set up a class of languages that will be easily
translatable by machine from one to another, and also easily recognizable
to the ordinary human user.

Translators. Such languages form the input to a class of automatic
computer programs called translators, which perform a translation from
the algebraic language over into a second or target language. The latter
may be either (1) an assembly language, such as SOAP, SAP, or MAGIC
(see Sects. 7 and 9), or (2) a straight machine language, in pure decimal,
binary (or in some cases such as the Univac I and II), alphanumeric.

One-Pass and Two-Pass Systellls. Translation directly from an
algebraic language into machine language is generally called a one-pass

PROGRAMMING AND CODING 2-1.87

system. Translation from an algebraic language into an assembly language
and then into machine language is generally called a two-pass system.

The advantages of the two-pass system are: (a) it allows the programmer
to see the results of the first translation stage in the assembly language,
which he may add to, delete from, or change easily in any fashion he desires.
This combination mates the abilities of automatic programming with
hand-tailored programming in the most flexible fashion possible, and
(b) it allows the programmer to use the usual techniques of program
checkout such as tracing programs and post-mortems that have been
developed for use with programs in the assembly language.

The advantage of the one-pass system is that it eliminates the need for
the user to know anything about a machine-oriented assembly language.
If he can obtain a correctly tested program without the necessity for using
the classical checkout tools of the hand programmer, he will have sped up
the programming process considerably. This, however, is not always
possible.

The Fortran program for the IBM 704 is a one-pass translator, in that
while it provides as output of its translation phase a listing in IBM 704
assembly language (SAP), the latter may not be used or altered by the
programmer and is in many cases incomprehensible.

The IT Translator. The IT (Internal Translator) program for the
various machines on which it has been developed is generally available in
both one-pass and two-pass versions. The Internal Translator, as first
written by Perlis and Smith (Ref. 81), is described in Sect. 12.

Preparation of Problems in Terms of Building Blocl{s

Extensions to the Language. The second important element in the
solution of any problem on a computer is the use of primary building blocks
(subroutines), pieced together to form a program. In the IT language,
such building blocks are called extensions, because they extend the range of
the language beyond the simple algebraic operations originally defined.
In the IT language, extensions are included by two techniques:

1. Extension Operands. These are basic subroutines which have one or
more input parameters but only one numerical output variable. They
may be inserted bodily in a statement like any other type of operand.
Such extension operands are typified by the standard square root and
trigonometric functions.

2. Extension Statements. These are basic algorithms or subroutines
that perform much more complex transformations on larger masses of data,
for which there may be many input parameters and many output results.
Typical of this type of statement is an extension statement that performs
an ordering of a string of numbers in storage. It might be described in

2-188 DIGITAL COMPUTER: PROGRAMMING

terms of the name of the first variable and the number of variables to be
ordered. Certainly such an algorithm is not a simple function-operand
such as the first type. .

The addition of the ability to handle such building blocks of already
prepared programs makes the IT language translator into a true compiler.
The IT language, as described in Sect. 12, does all this in terms of a notation
again very similar to (but not precisely) that of ordinary mathematical
notation. An example of an extension of the IT language is given in Sect. 12.

Some computing machines, instead of using a compiler to tie into
previously coded subroutines, actually have the subroutines wired into the
computer, and have specific entry instructions set up which may be used on
a machine language level to call in the subroutines automatically and
perform them, just as with any other instruction. Kitov (Ref. 61) describes
such a system with three-address instructions on the BESM and Strela
computers of the Academy of Sciences, of the Soviet Union. The following
subroutines are listed as being performed automatically as the result of
one written three-address instruction: square root, sine, cosine, natural
logarithm, exponential, conversion of n numbers from binary to decimal,
conversion of n numbers from decimal to binary, and fixed point memory
summation of n machine words.

The method of the Academy of Sciences of the Soviet Union is powerful
as long as such relatively simple functions are used, but use of a translation
technique such as that of the IT language to provide automatic subroutine
interconnection allows much more complex subroutines to be handled
easily. The next step for the Academy of Sciences machines is to combine
a translation procedure along with the built-in subroutine entry technique.
Once hand coding is eliminated, the need for one-instruction subroutine
entries is no longer so important.

A Flexible Filing SystelD. One of the weaknesses of such translator­
compilers as IT and Fortran is the inability of the programmer to develop
his own building blocks easily. As has been seen, it is entirely possible to
write extensions or subroutines in machine or assembly language-the
Runge-Kutta extension described in Sect. 12 is a case in point-but there
is no way in the present versions of these languages to take portions of the
algebraic language programs, define them as an extension operand or
extension statement, and then be easily able to call on these newly defined
pieces of coding by name, with automatic interconnection of entry, exit,
and parameters.

What is needed in the solution of scientific problems is an application of
the data processing techniques of the automatic file system to the writing
of programs. Several programs are at present being used, although none
has made use of the simplified algebraic language structure that has been
used for the translators such as that for the IT system.

PROGRAMMING AND CODING 2-189

A programming system developed by the National Bureau of Standards,
the Corbie system (Ref. 153), is just such a file system, basi9ally built to
handle entire programs, not subroutines. In order to save input-output
card reading time on an IBM 704 lacking peripheral tape-to-card and
card-to-tape converters, Wegstein and others have developed a file system
by which entire programs may be stored on magnetic tape inside the
machine. Corrections may be inserted from outside via a small number of
cards, changes made, and the programs tested, all without the necessity of
giant input-output activity. This extends the policy of control by ex­
ception, basic to the heart of all automatic machine activity, to the process
of program testing.

Generalized Programming. Manipulation of entire programs is not
enough, however, for the building block construction necessary for most
efficient automatic and semiautomatic construction of complicated pro­
gramming algorithms. Again, as with the Corbie system without a
connection to an algebraic language, GP or Generalized Programming
constructed by Holt and Turanski (Ref. 154) for the Univac I and II and
later as GPX (Generalized Programming Extended) for the Univac­
LARC, provides the building block procedure necessary for handling sub­
routines. With this programming system, any sequence of coding, regard­
less of its size, may be named, its entries and exits and input and output
parameters added to lists, and the name and coding itself added to a mag­
netic tape file semiautomatically. Thus, many portions of the process per­
formed by the subroutine writer for the Runge-Kutta-Gill IT subroutine in
adding it to the library of subroutines for that system can be performed
by the machine using the GP program. For GP, programming using a sub­
routine hierarchy system, with its many advantages of pretesting individual
blocks before combining them, is apparently most natural for the user.
The use of subroutines within subroutines is simple. The chief attributes
of such a system may be listed as follows:

1. Natural coding in small blocks.
2. Possibility of automatic filing of any portion of a problem.
3. Possibility of automatic call-in and use of any portion of a previously

developed portion of the same or different problem.
4. Ease of program testing because of the building block principle.
5. Possible conjunction of work of different persons easily.
The major difficulty of the GP systems is their requirement of knowledge

of a nonmnemonic, non rational code to describe to the compiler the filing.
system activities listed above. GP is in the full sense of the word a "pro­
grammer's" compiler, whereas the language of IT (and the other languages
analogous to it) is tailor-made for the novice.

Future Trends. The merger of the two philosophies of algebraic
language and simple command structure on the one hand, and generalized

2-190 DIGITAL COMPUTER PROGRAMMING

filing systems on the other, seems to be the obvious trend. Already
specifications for changes in such languages as IT and Fortran to allow
some or all of the features of GP have been announced. A similar merger
of GP with Univac algebraic languages may be underway. The next stage
of the compiler-translator development is: (1) a machine-independent
language of the IT algebraic type, allowing (2) definition of program
sequences in the algebraic language as functions or more complex algo­
rithms, combined with (3) a filing system for storing such building block
pieces for automatic call-in by algebraic type function statements.

This is not the limit of present day compiler-translator goals. The
initial successes in the use of the IT language for more than one computer,
followed by the standardization efforts of the ACM Ad Hoc Committee on
a common algebraic language, indicate that the multimachine language is
the target of today's automatic programming efforts. Such a language has
been proposed for many different computers and data processors now in
use for the United States Army. Such a language would allow definition
of existing assembly or compiler languages as sublanguages of the overall
language and would provide machine aided techniques for actually con­
structing the translating and compiling programs themselves.

Perlis and Smith (Ref. 156) describe a "string language" for writing
compiler programs and natural language as well as algebraic translators.
Included as the core of an overall compiler system, this device would allow
easy description of symbol-manipulation algorithms necessary for con­
struction of new definitions in any. overall language. Other papers by
Graham (Ref. 156) and Bemer (Ref. 11) described language translations
between IT and Fortran and Fortran and IT.

The Theory of Algorithms. The most thorough description of this
symbol manipulation structure is given in a monograph by the Russian
mathematician Markov (Ref. 67) now being translated into English. IIi
this, Markov, from the point of view of a theoretical logician, describes a
notation and develops a series of processes for complete manipulation of
symbols. With some changes in symbology this language could be used
directly as an input to compilers which are to perform symbol manipulation
(such as compiler-producing compilers). The extension of such language
application to such other indirect reasoning processes as theorem proving,
natural language translation, and complex decision making is discussed in
papers by Razumovski (Ref. 151), Ianov (Ref. 52), Kantorovich (Ref. 60),

. and other Soviet mathematicians. The extent of actual Soviet computer
programs now in operation is uncertain. In the United States, the most
advanced work so far described has been done by Newell, Simon, and
Shaw (Ref. 76), to be described in Sect. 15.

Automatic Instruction Modification. The popularization of the
B line or index register on the Ferranti Mark I and later the Datatron 205

PROGRAMMING AND CODING 2-191

and IBM 704 brought an increasing use of subroutines, even without the
advantages of algebraic languages. But these automatic indexing devices
did not solve the overall subroutine usage problem. The presence of only
one index register on the first two named machines required a thorough
complement of instructions for loading, unloading, and incrementing this
special register, as can be seen by examination of the Datatron 205 code list
(see Sect. 6). Even the three index registers of the IBM 704 prove in­
sufficient in many problems, and much of the complexity of the Fortran
compiler-translator program is caused by necessity for the planning by the
compiler of the sequence of use of this limited number of index registers.
More advanced computers such as the Univac-Larc, the IBM-STRETCH,
and the Univac M-460 have 5 to 15 index registers.

It remained for the "one-and-a-half address" instruction code, described
in Kitov (Ref. 61), but detailed in full by Schecher (Ref. 91) in his design
for the Munich Technische Hochschule PERM computer, to carry the
idea of index registers to its logical conclusion. He proposed that every
storage location inside a computer be made available as an index register,
and that the ordinary computer instruction word be provided with a
second "half" address along with various modification digits to allow
various types of modification procedures to be described below. Most
important to the Schecher design was an indirect addressing "digit" in
each word to provide for recursive indexing if required.

Types of Instruction Modification. In the use of subroutines and
programming in general, four types of changes of instruction information
are generally required:

1. Subroutine instruction orientation, so that a computer subroutine
may be written with nonfixed addresses, yet located on call-in in an arbi­
trary location in the storage. (Subroutine orientation.)

2. At the time of subroutine execution, closed subroutines, upon transfer
to them from the main computer program or a higher subroutine in a
subroutine hierarchy assemblage, must have their exit instructions changed
to give the proper return jump. (Return jump modification.)

3. During the performance of loops, addresses must be changed as new
data are to be used. (Inductive modification.)

4. At the time of subroutine execution, the main program or higher
subroutines must feed either (a) the parameters required or (b) the ad­
dresses of required parameters to subroutines lower in the hierarchy.
(Indirect addressing.)

The automation of types 2 and 3 is handled most rationally by index
registers. For a return jump, the location of the present address of the
subroutine entry instruction may be stored in an index register, and this
later used to modify the return jump exit instruction in the subroutine.
For subroutines within subroutines, one index register is not enough, or else

2-192 DIGITAL COMPUTER PROGRAMMING

instructions must be made available to exchange the contents of the index
registers with other locations, etc. For a complex subroutine hierarchy, if
this switching process is to be avoided, the number of index registers re­
quired is equal to the level of penetration into the hierarchy.

For induction changes in which an operation such as

(i = 1, 0 •• 100)

is to be performed for such a range of i, the index register is again a rational
answer. However, if "loops within loops" are programmed (as occurs, for
example, in the simplest case in matrix multiplication) then more than one
index register is required, or else complete and efficient facilities are needed
for exchanging the contents of the sole such device. Again, if there is to be a
sequence of inductions in depth, as can occur in many recursive processes,
the number of index registers must correspond to the furthest penetration
of loops in the hierarchy.

Type 1 changes, subroutine orientation, can be handled by several
different inefficient processes, each of which requires tagging all subroutine
instruction addresses to be modified, or else all those not to be modified. A
B box can be used, as on the Datatron 205 and PERM, to store the initial
subroutine address, or else some other idle register in the arithmetic unit.
The Datatron and PERM facilities were designed to orient automatically
subroutines stored on an external medium, in this case paper tape.

Present Address Relative. Until 1958 when the Gamma 60 machine
was announced, only two computers, the MIDAC and the FLAC (a sister
computer to the MIDAC), provided automatic subroutine orientation
from secondary storage (in this case a magnetic drum) (Ref. 25). In these
computers subroutines are written with all addresses relative to the present
instr,uction location, as opposed to the usual technique of coding subroutine
addresses relative to the first location in the subroutine. The MIDAC and
FLAC instruction systems allow direct performance of these "present
address relative" instructions. This technique is equivalent to the index
register technique (but requires one less counter in the computer, since only
an instruction counter is required). A difficulty in the MIDAC-FLAC
design is that only one register can modify an instruction; instructions
modified by the present address cannot be modified by the index register,
thus making loop operation in subroutines difficult.

Present day techniques of subroutine orientation, therefore, may use
a B box orientation process, provided enough index registers are available.
Since most subroutines require the use of one or more loops for induction
purposes, the most widely used technique apparently at present is to forego
the use of any automatic indexing and to orient subroutines with standard
instruction modification techniques using the arithmetic unit.

PROGRAMMING AND CODING 2-193

Indirect Addressing. The indirect addressing technique, with its
proposed recursive indexing and index addition, eliminates this requirement
and others. Portions of the PERM scheme have been incorporated in the
IBM 709, and the National Advisory Committee on Aeronautics (NACA)
in Cleveland has modified its Univac 1103 for indirect addressing. There­
fore, a complete discussion of instruction modification as planned with the
PERM should be very useful in describing future trends.

Schecher proposed that digits be included in the instruction address to
signify changes of types 2,3, and 4. (With a decimal machine language one
digit would provide 10 possible combinations.)

In Fig. 25 at the top is the main program. After location 51G, the sub­
routine entry location, appear four hatched locations, which are the
location of information about the program parameters for the subroutine.
These can contain either (a) the parameters of the subroutine, or (b) their
addresses, or in unusual cases (c) the addresses of their addresses. At the
bottom of the figure is shown a subroutine with the following typical add
instruction in location 834:

add 002' +.
This contains two signals, the prime, and the plus. At the time of sub­
routine entry, the address 51G is stored in an auxiliary location in the control
unit. At the time of performance of the instruction in location 834, the
prime in the instruction will cause this value to be added in automatically
to the data address of that location giving the instruction

Main pr og;;;..r_am ___ -.

516

parameters 518 ~~~"""""'~
519

Program [517

~~~~~ 
520 

""",,~~u..u.:.L.o:.oI 

828 '--___ ---I 

8341 add 002' + 

Memory· contents 

add 518+. 

add 518 + 
Instruction in 

control unit after 
first change 

add 1050 

Instruction in 
control unit after 
second change 

FIG. 25. Simple indirect addreosing without "half-addresses." 



2-194 DIGITAL COMPUTER PROGRAMMING 

The plus sign performs a second purpose. If it is present, the control unit 
will not take the contents of location 518 to the arithmetic unit for addition, 
but will instead substitute the address portion of location 518 into the 
address portion of the instruction. In the case of the figure, this would yield 

add 1050, 

and the instruction now would be performed in the usual fashion to supply 
the contents of location 1050 to the subroutine. 

If, however, the contents of location 518 should contain as its address 
portion 

1050+ 

then the instruction would again be delayed, and the address portion of 
location 1050 used to replace the instruction address. Thus a recur­
sive "address of an address of an address· .. " similar to the IT language 
subscripts on subscripts is available. 

The addition of a second or half-address to each instruction now makes 
possible multiple index modification. The "auxiliary register" of the orig­
inal subroutine entry can now be any storage location designated by that 
instruction's half-address. The prime signal can now represent addition 
of the contents of an instruction's half-address location rather than the 
contents of a fixed location. Now if one wanted to bring XHi+k into a 

TABLE 29. INDIRECT ADDRESSING 

Location Operation Data Address Half-Address 
000 (516)a 000 

516 jrnp 828 000 
517 
518 i' 519 
519 j' 001 
520 k' 001 
521 1000 000 
522 Continued Program 

828 

834 add 002'+ 000 

840 ret 006' 000 

a Parentheses indicate contents after performance of instruction 516 which stores 
the latter address in the data address portion of 000. 



PROGRAMMING AND CODING 2-195 

subroutine, where Xo is stored in location 1000, one could proceed as in 
Table 29. The sequence of changes of instruction 834 in the control unit 
would be: 

add 002'+ 000 
add 518+ 000 
add 

., 
~ 519 

add (i + j)' 520 
add (i+j+k)' 521 
add (1000 + i + j + k) 521 

which would then bring the contents of location (1000 + i + j + k) into 
the accumulator for action by the subroutine. 

The exit entry from this subroutine would be as in location 840 which 
would return control to 006 + 516 = 522, the next location in the main 
program. 

The use of such indirect addressing procedure allows efficient machine 
control of recursive subroutine hierarchy structures. Instead of requiring 
actual transfer of data from one subroutine to the next below it in the 
hierarchy, as is described in the next section on subroutine hierarchy 
programming, the program now has only to pass the names (addresses) of 
variables along by using the indirect addressing scheme. The use of such 
built-in techniques will probably grow markedly as the need for recursive 
subroutine programming becomes more evident. 

Use of Subroutine Hierarchy Counters 

Suppose that now two special machine counters, telling how deep into a 
hierarchy of subroutines the path of control has penetrated, are added to 
the control unit of the half-address machine. These will be called the 
Permanent Subroutine Hierarchy Counter (PSHC) and the Temporary 
Subroutine Hierarchy Counter (TSHC). Signal for their use in modifying 
an address, as written here, will be the asterisk (*), for the PSHC and 
exclamation point (!) for the TSHC. 

At the occurrence of each jmp instruction to a subroutine lower in the 
overall hierarchy of subroutines, the contents of both counters will be 
increased by one. At the occurrence of each ret instruction back from a 
lower subroutine to a higher subroutine, the contents of both counters are 
decreased by one. The original value of their contents at the start of a 
program is zero. Thus, at any stage the value of PSHC will indicate the 
depth into the subroutine hierarchy that has been penetrated. Even if 
such a structure is recursive (a lower subroutine enters one higher above it 
in the hierarchy), the PSHC contents will indicate the number of levels, 
by whatever complex route, to the top or main program level. 

The TSHC, in any normal situation, will have the same value as the 



2-196 DIGITAL COMPUTER PROGRAMMING 

PSHC. Howev~r, when a lower level subroutine is calling for an operand to 
be fed to it from a higher level, at each process of address substitution the 
TSHC will be decreased by one before the next cycle of address substitution 
or actual instruction operation begins. After an instruction is actually 
performed the computer resets TSHC to correspond to PSHC. 

The contents of the PSHC correspond to the index j in the flow diagram 
of Fig. 26. 

The computer is now able to perform automatically all the subroutine 
entry, exit, and parameter transfer manipulations given in Fig. 26. How­
ever, due to the automatic address modification and indirect address 
substitution, the programmer needs to follow only a very simple set of rules. 

As an example, suppose a main program (MP) is to refer to a subroutine 
(SRI), which in turn is to refer to a lower subroutine (SRIl), which is to 
refer to a third (SRIIl), which is to refer recursively to the original main 
program (see Table 30). Such a process will "loop" infinitely often unless 
some sort of stopping criterion is included. The tr neg (transfer control on 
negative accumulator) instruction in location 101 can be considered to 
serve such a purpose, since if the number being tested is negative, the 
return trip up the subroutine hierarchy chain will begin. 

As the path of control travels down through these subroutines, the main 
program is to feed a parameter po to SRI, SRI a parameter PI to SRIl and 
on to SRIll, SRIl a parameter P2 to the subroutine below SRnI (which 
turns out to be SRI, etc.). 

Suppose that the instruction counter in the machine is directly address­
able at location 001. This means that the half-address of a primed instruc­
tion referring inside the same subroutine can use the instruction counter 
location 001 as its half-address and thus all such instructions can be com­
pletely independent of all absolute machine addresses. (This is the 
"present address relative" addressing system mentioned earlier.) Location 
000 will contain zero. 



aj+l=f(aj,bj,cj) 

bj+l=bj 

cj+l=Cj +1 

aj+l=aj 

bj+l=bj 

Cj+l=Cj + 1 

aj+l=aj 

bj+l=h(aj,bj ,Cj) 

Cj+l=Cj + 1 

aj_l=aj 

bj-l =g(aj ,bj ,Cj) 

aj-l_aj+l 

bj~l_bj 

aj_l=aj 

bj-F~·f(aj,bj ,Cj) 

Cj-:l=Cj 

Cj-l=Cj 

FIG. 26. A subroutine recursion hierarchy allowing reentry. 

" ;;:a 
o 
(j) 
;;:a 
» 
3: 
3: 
z 
(j) 

» z o 
() 
o 
o 
z 
(j) 

~ 
-0 ..... 



2-198 DIGITAL COMPUTER PROGRAMMING 

TABLE 30. PROGRAM USING SUBROUTINE HIERARCHY COUNTERS 

Symbol 
arid 

Absolute Regional Oper- Data Half-
Location Location ation Address Address Explanation 

MP = 50 0 read 002' 001 
1 jmp SRr RET* Po~ 002 + C(rO) = 052 

r (PSHC) + 1-> PSHC 
2 storage for Parameter Po and TSHO 

100~ IC 
3 stop 51 ~ 1000 + C (PSHC) 

SRI = 100 0 read 004' 001 PI ~ 004 + C(IC) = 104 
1 cIa 001' RET! C(001 + 0(1000 + 

C(TSHC))) ~ ACC 
/2 tr neg 003' 001 tr neg to 003 + 

I O(rO) = 105 I 
I 3 jmp SRU RET' r (PSHC) + 1-> PSHC I and TSHO I 
I 200 ~ 10, 103 ~ 1000 
\ + C(PSHO) \ , , 4 storage for Parameter PI 
~5 ret 002' RET* 002 + C(1000 + 

O(PSHC)) = 002 
+ 051 = 053~ 10 

SRU = 200 0 read· 005' 001 P2~ 005 + C(IC) =205 
1 cla DOl' RET* 0(001 + C(1000 + 

O(PSHC))) ~ ACO 
2 sto 
3 jmp 'SRIlI RET' r(PSHC) + l->PSHC 

and TSHO 
300 ~ 10, 203 ~ 1000 

+ O(PSHO) 
4 001'+ RET! Name of parameter PI 
5 storage for Parameter P2 
6 ret 002' RET* 002 + C(1000 + C(PSHC)) 

= 002 + 103 = 105~ IC 
SRUI'= 300 0 cla 001' RET* 0(001 + C (1000 + 

O(PSHC))) ~ ACC 
1 sto 
2 cla 002' RET* C(002 + C(1000 + 

C(PSHC))) ~ ACC 
3 sto 
4 jmp SRI. RET* C(PSHC) + l~PSHCand 

TSHC 
100 ~ IC, 305 ~ 1000 

+ O(PSHC) 
5 002'+ RET! Name of parameter P2 
6 ret 003' RET* 003 + C(1000 + O(PSHC)) 

= 003 + 203 = 206~IC 



PROGRAMMING AND CODING 2-199 

The storage in region RET will be as follows during the course of opera-
tion: 

RET = 1000 
0 000 
1 051 
2 103 
3 203 
4 304 

One can now trace through the performance of those instructions of the 
above program that are pertinent to the demonstration of the techniques 
of indirect addressing, use of the half-address, and the PSHC and TSHC. 
Initially these latter two counters will contain 00 (see Table 31). 

TABLE 31. INSTRUCTIONS OF TABLE 30 PROGRAM 
INVOLVED IN INDIRECT ADDRESSING 

IC IC PSHC TSHC 
Before Instruction After Before After Before After 

50 read 002' 001 50 00 00 00 00 
read 052 000 

51 jrnp 100 1000* 100 00 01 00 01 
jrnp 100 1001 

100 read 004' 001 101 01 01 01 01 
read 104 000 

101 add 001' 1000! 01 01 
add 001' 1001 
add 052 000 102 01 01 

102 103 01 01 01 01 
103 jmp 200 1000* 01 02 01 02 

jrnp 200 1002 200 02 02 
200 201 02 02 02 02 
201 add 001' 1000* 02 02 

add 001' 1002 
add 104 000 202 02 02 

202 203 02 
203 jrnp 300 1000* 02 03 02 03 

jrnp 300 1003 300 03 03 
300 add 001' 1000* 03 03 

add 001' 1003 03 
add 204 000 03 03 03 
add 001' 1000! 03 03 03 02 
add 001' 1002 03 02 02 
add 104 000 301 03 02 02 

301 302 03 03 03 03 
302 add 002' 1000* 

add 002' 1003 
add 205 000 303 03 03 

303 304 03 03 
304 jrnp 100 1000* 03 04 03 04 

jrnp 100 1004 100 04 04 04 04 



2-200 DIGITAL COMPUTER PROGRAMMING 

TABLE 3l. INSTRUCTIONS OF TABLE 30 PROGRAM 
INVOLVED IN INDIRECT ADDRESSING (Continued) 

10 10 PSHO TSHO 
Before Instruction After Before After Before After 

100 101 04 04 
101 add 001' 1000! 04 04 

add 001' 1004 
add 305 04 04 
add 002' 1000! 04 04 04 03 
add 002' 1003 
add 205 04 03 

102 tr neg 003 001 04 04 
tr neg 105 001 105 04 04 
(Suppose AOO is negative.) 

105 ret 002' 1000* 04 04 04 04 
ret 002' 1004 04 03 04 03 
ret 306 000 306 03 03 

306 ret 003' 1000* 03 03 03 03 
ret 003' 1003 03 02 03 02 
ret 206 000 206 02 02 

206 ret 002' 1000* 02 02 02 02 
ret 002' 1002 02 01 02 01 
ret 105 000 105 01 01 

105 ret 002' 1000* 01 01 01 01 
ret 002' 1001 01 00 01 00 
ret 053 000 053 00 00 

053 stop 

In this program one has transferred to anyone subroutine from only one 
sequence above in the hierarchy, but there could also be many entries from 
many different routines into a lower level sequence, and the process would 
work in the same fashion. 

Until more machines are built with this half-address feature and hier­
archy storage counters, users will have to content themselves with compiler­
translator processes or direct interpreters that will perform the same 
actions. 

12. AUTOMATIC PROGRAMMING: THE IT TRANSLATOR. 
TRANSLATOR CONSTRUCTION 

The IT program (Internal Translator) was first written by Pedis and 
Smith (Ref. 81) for the IBM 650 and was later modified and enhanced at 
the University of Michigan Digital Computation Unit. The IT language, 
with its general translation techniques, was the first adopted over a wide 
range of computers representing a number of manufacturers. In this sense, 
it was one of the first universal programming languages. Because of its 



PROGRAMMING AND CODING 2-20 I 

preeminent position, the IT program is described in detail here. It is 
available in both the one-pass and two-pass versions (see Sect. 1.1). 

The IT Translator 

Two versions of this program are available. The input language in both 
cases is based on the symbols available on the Share standard (Fortran) 
IBM 026 Key Punch. The same symbols are used to print the programs 
on the IBM 407 printer. Standard symbols are used in every case possible, 
although the number of symbols available with input equipment to the 
IBM 650 is not enough to express algebraic manipulation satisfactorily. 

The command language for IT is machine independent in that it has not 
been adapted to any of the vagaries of any of the target language machines 
with which it is used. Programs are written in the form of statements. 
Each statement is a string of letters and algebraic symbols (limited by 
readability, input medium flexibility, and the power of the translator itself). 
In the IT translator for the IBM 650, this number varies from translator 
version to version, but the number of characters per statement is of the 
order of magnitude of 100. 

The output of the one-pass version of the translator is in straight machine 
language, ten decimal digits per word, output in general on punched cards, 
with information stored on the card in a standard five-word-per-card 
random load format that allows storage of anyone of the five words in an 
arbitrary position inside the computer storage. 

The output of the two-pass version of the translator is first to an assembly 
routine, SOAP (Symbolic Optimal Assembly Program) which is generally 
the standard assembly language for the IBM 650. The SOAP language is 
written in the form of one instruction per line, with mnemonic three-digit 
operation code and symbolic addresses for the IBM 650 one-plus-one 
address system. The latter uses two addresses, one to indicate the data 
to be operated, the other to indicate the next instruction to be used. 

As opposed to other languages such as Fortran used on larger computers, 
where a more powerful translator is available, the IT language for the IBM 
650 uses three different classes of variables, I variables (fixed point ten­
digit integers) and Y and C variables (floating point (8, 2, 0) decimal 
numbers). Any variable may be subscripted by an integer or an integer 
variable (I variable) so that sUbscripting in depth (for example, ii7) is 
entirely possible, as well as computed subscripts, for example, iil+07Xia)fi2' 
Subscripts are obtained by direct concatenation, since they are not on the 
key punch, for example YIl, Y7. 

Rules for IT Language. A complete set of rules for the IT language, 
as adapted from the original specifications by Perlis and Smith (Ref. 81), 
are given here for completeness. The mechanics of key punching, input­
output, card format, and computer operation are omitted. 



2-202 DIGITAL COMPUTER PROGRAMMING 

1. Characters of the Language. The language as described is 
applicabl~ to the IBM 650 with Fortran characters which admits the digits 
o through 9, the (Roman capital) letters A through Z, and the special 
characters (,) , +, -, =, . , *, I, and, (comma). Certain standard symbols 
are represented by alphabetical characters at particular portions of the 
language ~ranslation process because of printer limitations. Except when 
it occurs in an English word, each alphabetical character has one and only 
one meaning in this language. 

Punctuation Characters. 

Symbol 

( 
) 

> 
~ 

Name 

Left parenthesis 
Right parenthesis 
Decimal point 
Substitution 
Relational equality 
Greater than 
Greater than or equal 

Representation 

(or L 
) or R 
. or J 
= or Z 
U 
V 
W 

The following punctuation characters will be introduced as they arise: 

, , , 

Variable Characters. 

Digit Characters. 

Comma 
Quotation marks 
Type 
Finish 
Extension identifier 

I y C 

The integers 0 through 9 
B 

,orK 
Q 
T 
F 
E 

In the sequel lower case letters, such as k, 1, m, and n, will be used to 
represent arbitrary positive integers. 

Operator Characters. 

Symbol Name 

Binary Operators 
+ Addition 

x 
I 
exp 

Subtraction 
Multiplication 
Division 
General exponentiation 

Representation 

+ orS 
- orM 
* or X 
lor D 
p 



PROGRAMMING AND CODING 

Note. Y1 P Y2 means Y1
Y

2 

Unary Opera tors 

I ... ·1 Absolute value A 

2-203 

(- ... ) Negative of (- ... ) orLM ... R 

2. Admissible Variables. 

Problem (floating point) Variables. 

Yn YIn YIIn For example: 
Cn Cln CIIn 

Y3 
C3 

YI47 
CIO 

YII21 
CII7 

These two classes of variables have the same logical significance in the 
language. They aid in the (external) differentiation between two classes 
of data or problem variables. The numerical value of any of these variables 
is always represented in floating point form. 

Problem (fixed point) Variables. 

In IIn IIIn For example: 18 1136 1II2 

These variables take on integral values only and are used primarily 
as indices. 

Composite Variables. 

Y (oo.) 
I (oo ,) 
C (oo.) 

For example: Y (II + 6) 
I (II3 X 19) 
C (1(11 + 2)) 

The parenthesized quantities must be fixed point expressions (see 4. 
Admissible Operands). 

Matrix (floating point) Variables. 

YN C .. ,., ••• ) 

CN ( .... , ... ) 

These variables are general elements of matrices (listed row-wise) whose 
components are YO, Y1, .. '; and CO, C1, .. " respectively. 

The parenthesized quantities, which must be fixed point expressions, 
specify the row and column location respectively of the matrix variable. 

The row dimensions of YN and CN, i.e., the number of columns in the 
matrices, must be specified by assigning them to I1 and 12, respectively. 

The row number and the column number always range from 0 to their 
respective dimensions less one. 

For example, a rectangular matrix may be assigned as 

YO 
Y3 
Y6 
Y9 

Y1 
Y4 
Y7 
Y10 

Y2 
Y5 
Y8 
Yll 



2-204 DIGITAL COMPUTER PROGRAMMING 

Thus YN (0,0) refers to YO, and YN (1,2) refers to Y4, while II and 
12 must be assigned the value 3 and 4, respectively. 

3. AdIllissibl~ :Constants. 

Fixed Point Constants (Integers). 

nln2 ... nk k ~ 10 For example: 1066; 10; 1292345566 

However 123. is not such a ~opstant since it contains a decimal point. 

Floating Point Constants. 

a. nln2 ... nt. ntH· .. nk k ~ 8 For example: 14.92; .11; 13. 
b. nln2··· nkBm k ~ 8 which means nln2 ... nk X 10m

, where 
a. nln2 ... nk is either a fixed or a floating point constant, and b. m is either 
mlm2 or -mlm2, where mlm2 is a fixed point constant. 

Rule. If m is of the form -mlm2 then the entire constant must be en­
closed in parentheses. 

For example. 14.92B3; (1066B-11); and (-727B-5) mean 14.92 X 
103 ; 1066 X 10-11 ; and -727 X 10-3 ; respectively. 

Note. Floating point constants used within statements (see Admissible 
Statements) must be of the above form and not in standard floating point 
form. Thus 14.92 would be used as 14J92 but not as 1492000051. 

4. AdIllissible Operands. 

The following rules apply: 
a. Any variable or constant is an operand. 
b. If vI and v2 are operands, then (vI ~ v2) is an operand, where ~ is an 

admissible operator character. 
c. Subroutines, themselves functions of one or more operands, are 

operands. They are represented as CinE, vI, v2, ... , vj" which means the 
subroutine whose identification number is n (nth extension) and which is a 
function of the variables vI, v2, ... , vj. Here n must be a fixed point 
constant less than 626. For example, if the sine subroutine were the sub­
routine number 21, then sin (Y1 + Y2) would be represented by 21 E, 
Y1 + Y2. The statement "1 E, "21 E, Y1 + Y2" " would represent the 
IOglO (sin (Y1 + Y2» if the subroutine number 1 were the log routine. 

d. If vI and v2 are operands, then vI ~ v2 is an expression, where ~ is an 
admissible operator char"acter. Owing to the method by which the compiler 
examines strings of symbols, some expressions will not be treated as 
operands. However, all operands are expressions. The norm of an ex­
pression is the number of symbols, exclusive of spaces, making up the 
expression. Although not necessary for correct interpretation, users are 
urged to parenthesize all statements fully to avoid mistakes. 



PROGRAMMING AND CODING 2-205 

e. If an operand is a variable or a constant its arithmetic is that of the 
variable or constant. 

f. If any operand, with the exception of subroutines, is composite and at 
least one of its members is floating point, the entire operand is floating point. 

g. The arithmetic of subroutines is determined by their extension num­
ber, according to the following: 

n < 500 floating point n ~ 500 fixed point 

5. Admissible Statements. 

Each statement is identified by a nonnegative integer k ~ 626. The 
execution sequence of a set of statements is not determined by this identifier, 
but rather by the physical ordering. 

A natural correspondence exists between the types of processes found in 
flow charts and the kinds of statements in the language. Statements may 
be considered as sentences-correctly formed strings in the characters of 
the language. A description of the various statement forms follows. 

Substitution Statement, 

The statement 
k: vl~v2, 

where vI is a variable, v2 is an expression, and k is the statement identifier 
(number), has the following effect: the value of vI is set equal to that of v2 
in the arithmetic of v 1. For example, 

7: YI2 ~ 11 + (13 X (Y3 - Y4» 

sets the value of YI2 equal to that of 11 + 13 X (Y3 - Y4) in statement 7. 

Unconditional Linkage Statement. 

Any of 
k: Gn, 
k:. GI··· In, 
k: G(·· .), 

where k is the statement number, have the following effect: the next state­
ment is defined in the execution sequence as that one having its statement 
number equal to the value of n, or the value of I ... In, or the value of the 
parenthesized fixed point expression (operand), whichever the case may be. 

Relational (Conditional) Linkage Statement. 

Any of k: Gn 
k: GI· .. In IF vI',), v2 
k: G(:··) 



2-206 DIGITAL COMPUTER PROGRAMMING 

where vI is an operand, v2 an expression, and 'Y is one of the three relations 
= : > : ~, is interpreted as: if vI is in the relation 'Y to v2, the effect is 
that of the G portion of the statement; if not, the execution sequence is 
unaltered. Thus, 

4: G 13 IF (YI + Y2) ~ 9 

transfers control to the statement having a number which is the value of 
13 if YI + Y2 ~ 9; otherwise the sequence is unaltered. Removing the 
parentheses would make the statement inadmissible since YI would not 
then be an operand for relational statements. In these statements when 
the left operator is compound, it must be delimited by parentheses. 

Halt Statement. 
k: H. 

The effect is to suspend computer operation. 

Input Statement. 
k: READ. 

The effect is to initiate the input of one or more data cards. The format. 
is dependent on the particular structure of the input subroutine, which may 
differ from installation to installation. Reading ceases upon presentation 
of a terminating symbol (hole in a certain column, for example). Read 
statements can call in numbers, alphanumerical characters, or both. 

Output Statement (Type Statement). 

k: TvITv2Tv3Tv4Tv5. 

The effect is to punch a card, whose format is that of an input card, c~n­
taining the names and current values of vI, v2, .. " v5. Here the v's must 
be variables and from one to five may be listed in the statement. If a 
variable is composite, e.g., YI6, its current name is punched, e.g., if, at 
punching, the value of 16 is 4 then the value of Y 4 will be punched along 
with the name Y 4. The statement number is always punched on the card. 

Conditional output statements have the same form as output state­
ments except that the statement number must be zero. They provide 
output conditional on the IBM 650 sign storage entry switch as follows. 
Storage entry switch set to minus (-) activates output; positive (+) 
setting causes output to be by-passed. 

Iteration Statement. 
k: j, vI, v2, v3, v4. 

Here j is an integer which must be positive; vI is a variable; v2 is an ex­
pression; v3 is an expression; and v4 is an expression which must not 



PROGRAMMING AND CODING 2-207 

contain the operators X, D, or P. The norm of each v must not exceed five. 
(Here norm is defined as the number of characters.) The effect is to con­
struct an iteration of the set of statements interposed between k and 
(including) j-called the scope of the iteration statement-on the variable 
vI as it varies from v2 to v4 in increments of v3. Thus, 

15: 19, II, 13 + 4, 14, 15 + 1. 
21: Y5 f- Cl1 + 2 
19: Yl1 f- Y 5 - 7 

causes statements 21 and 19 to be executed sequentially for all values of 
II from 13 + 4 to 15 + 1 in steps of 14. That statement which follows 
an iteration statement must name a unique nonzero statement number. 

If v4 - v2 is not divisible by v3 the iteration stops before vI assumes a 
value greater than v4. If v3 is to be taken an actual decrement it must be 
of the form - v where v takes on only non-negative values, and must be a 
constant or variable. 

A hierarchy of nesting of iterations is permitted, i.e., an iteration state­
ment may be included in the scope of a prior iteration statement. However, 
no particular nesting may exceed a depth of four. 

In general, fixed point quantities should be used in iteration statements. 
If floating point quantities are used, care should be taken to guarantee the 
desired number of iterations. 

Extension Statement. 
k: CInE, ... ". 

The effect is to accomplish the subroutine before passing to the next state­
ment in sequence. Such a statement is used wherever compound sequences 
of operations, not necessarily leading to the definition of a single variable, 
are required, for example, sorting, solving a system of differential equations, 
packing and unpacking data, etc. 

Flow Diagrallls in COlllpiler Language. The following will indicate 
how a particular flow chart may be represented in compiler language. 
The flow chart of Fig. 27 evaluates the polynomial 

10 

y = L: aixi. 
i=O 

10 
FIG. 27. Flow chart for evaluating the polynomial y = L aixi. 

i = 0 

7 
Stop 



2-208 DIGITAL COMPUTER PROGRAMMING 

Using the notation for variables in the compiler language, the flow chart 
is given in Fig. 28. The corresponding program (I) in the compiler language 
is given in Table 32. 

FIG. 28. Flow chart of Fig. 27 in compiler language. 

TABLE 32. PROGRAM (I) IN COMPILER LANGUAGE 

1: READ 
2: Y2 f-O 
3: Ilf-ll 
4: Y2 f- CIl + (Y1 X Y2) 
5: Ilf-Il-1 
6: G4 IF Il ~ 1 
7: H 

Using an iteration statement and letting the degree be variable by 
assigning it to the variable 15, the program is given in Table 33. 

TABLE 33. PROGRAM (II) IN COMPILER LANGUAGE 

1: READ 
2: Y2 f-O 
3: 4, Il, 15, -1,1, 
4: Y2 +-- CIl + (Y1 X Y2) 
7: H 

Using the required representation for all symbols, the alternate program 
(II) for evaluating a polynomial of any degree is given in Table 34. 

TABLE 34. PROGRAM (II) FOR EVALUATING A POLYNOMIAL OF ANY DEGREE 

1 : 
2: 
3: 
4: 
7: 

Y1 C1 through Cll READ 
Y2 = 0 
4, Il, 15, -1, 1 
Y2 f- CIl + (Y1 X Y2) 
H 

F 
F 
F 
F 
FF 

DATAREAD 
SETP 
I LOOP 
NEWP 
STOP 

This program, punched one statement to a card, is then translated within 
the computer to yield a machine program in SOAP language. 

The following remarks concerning the representation of the flow chart 
are pertinent: 



PROGRAMMING AND CODING 2-209 

a. Each process in the flow chart leads to one and only one statement 
in (I). However (II) encompasses in one statement, that numbered 3, the 
processes numbered 3, 5, and 6 in the flow chart. These three processes are 
typical of certain iterations where a process f(· .. ) is to be carried out for 
all nl ~ i ~ n2. Process 3 sets the parameter; process 5 increments it; 
and process 6 determines whether its upper limit has been surpassed. 
These responsibilities are combined in the iteration statement. 

b. Since Y1 is a floating point variable it is convenient, but not necessary, 
to use a zero which is a floating point constant. 

c. The degree of the polynomial is, properly speaking, a problem vari­
able. Treating it as such in (II) consequently makes for a more general 
program. 

d. The F and FF mark the statement end and program end respectively. 
The Compiled Program. Compilation on the IBM 650 two-pass system 

proceeds in two phases: (1) translation (into a symbolic program), and 
(2) assembly (into a specific machine code). The result of the translation 
phase is a symbolic program in SOAP language; i.e., one instruction per 
card in standard alphanumeric SOAP format. 

The compiled output (translation) consists of four parts: (1) the main 
(symbolic) program; (2) the statement dictionary, to be described in the 
sequel; (3) the constants (abcons) used within statements; (4) ten reserva­
tion cards. 

The code for each statement is punched out as soon as the statement 
has been translated. A statement dictionary entry is the first card punched 
for each statement. This dictionary provides the linkages for transfer 
statements. In addition to the program and the statement dictionary, a 
list of constants (those found in the statements together with several 
required by the finished program and furnished by the compiler itself) is 
punched together with ten cards which reserve space in the machine for 
these constants, the statement dictionary, and the problem variables. 

For the program (II) which evaluates the polynomial of degree 10, the 
output of the translation phase is given in Table 35. 

General ReInarI{s. The following remarks concerning the translation 
produced are pertinent: 

1. SOOOI is the first location of the statement dictionary and contains a 
link to the (symbolic) location given to the statement whose identifier is 1. 

2. Locations within statements are of the form L - - - - , e.g., LAAAC 
or LBCAA, which refer to the third instruction within the first statement 
and the first' instruction within the twenty-ninth statement respectively. 
The first instruction of each statement is always assigned a symbolic 
location. 

3. Symbolic locations of the form E - - - - refer to the entry locations of 
subroutines (extensions). Those listed in the example are to floating point 



2-210 DIGITAL COMPUTER PROGRAMMING 

TABLE 35. OUTPUT OF TRANSLATION PHASE FOR PROGRAM (II) 
WHICH EVALUATES A POLYNOMIAL OF DEGREE 10 

1 SOOOI 00 0000 LAAAA 
2 LAAAA LDD LABAA EOOAQ READ 
3 SOO02 00 0000 LABAA 
4 LABAA RAL AOO07 Y2 Z OJ 
5 STL YOO02 LACAA 
6 SOO03 00 0000 LACAA 
7 LACAA RAL 10005 II Z 
8 STL 10001 LADAA IS 
9 50004 00 0000 LADAA 

10 LADAA RAL YOO02 LADAC Y2 Z CI 
11 LADAB RAL YOOOI LADAD 1 S Y1 X Y 
12 LADAC STL ACC LADAB 2 F 
13 LADAD LDD EOOAJ 
14 RAL 10001 
15 SLT 10003 
16 ALO 8002 
17 RAL C 
18 LDD EOOAI 
19 5TL YOO02 LAEAA 
20 50000 00 0000 LAEAA 
21 LAEAA RSL AOO08 II Z 
22 ALO 10001 II S 
23 5TL 10001 LAFAA LMIR 
24 SOOOO 00 0000 LAFAA 
25 LAFAA RAL 10001 G 0004 
26 STL W IFL 1 
27 RAL AOO08 RW 11 
28 SLO W 
29 BMI LAFAG 
30 Nap S 50004-
31 LAFAG Nap LAFAG LAGAA 
32 50007 00 0000 LAGAA 
33 LAGAA HLT LAGAA LAHAA H 
33 A 00 0000 0022 
34 AOO08 00 0000 0001 
35 AOO07 00 0000 
36 AOO06 00 0000 3000 
37 AOO05 00 0000 2000 
38 AOO04 00 0000· 1000 
39 AOO03 00 0000 0010 
40 AOO02 00 0000 0007 
41 AOO01 00 0000 0001 
41 4 I UOOOl 
41 3 10002 0006 
41 4 y UOO07 
41 3 YOO08 0009 
41 4 C UOOIO 
41 3 C0011 0021 
41 4 5 U0022 
41 3 S0023 0029 
41 4 A U0030 
41 3 A0031 0038 



PROGRAMMING AND CODING 2-211 

arithmetic subroutines, e.g., EOOAI is the entry to the floating point 
addition routine. 

4. ACC is the floating point accumulator. W refers to a temporary 
storage location. The symbolic locations of the variables are their names. 

5. All constants appearing in a statement, after being converted into the 
appropriate fixed or floating point format, are assigned an absolute constant 
location. In addition, certain constants needed during program operation 
are assigned, as required, by the compiler. The same constant will never 
be assigned more than one symbolic location. After the last statement has 
been translated, the abcon locations with their respective values are 
punched out, one per card. 

6. Appearing as (SOAP) comments in the first and ensuing instructions 
of each statement is the original (untranslated) statement. A maximum of 
ten contiguous characters of the original statement may appear as com­
ments with a single SOAP instruction. 

Table 36 gives the name and meaning of all symbolic addresses or 
locations which may be found in a translated program" 

TABLE 36. N AMES AND MEANINGS OF SYl\IBOLIC ADDRESSES 

OR LOCATIONS IN TRANSLATED PROGRAM 

Name 
LcxIcx2{3I{32 
I 0000 + n 

Y 0000 + n 
C 0000 + n 

W 0000 + n(O ~ n ~ 9) 

A 0000 + n 
ACC 

P 0000 + n(O ~ n ~ 9) 
E 00CXICX2 
S 0000 + n 

Meaning 
An instructioD lucation 
A fixed point. variable, In 
A floating point. variable, Yn 
A. floating point variable, Cn 
Temporary storage required by parentheses and/or 

quot.ation nesting 
An absolute constant 
Floating point accumulator 
Subroutine parameter storage 
Name of (entry to) a subroutine 
Entry in the statement dictionary 

PO-P9 is a temporary storage block used only for temporary storage of 
subroutine parameters, including those used by TYPE statements. The 
floating point accumulator, ACe, is required for the floating point arith­
metic subroutines. The first four abcons, AO through A3 will contain the 
machine locations of SO, 10, YO, CO respectively. Contiguous blocks of 
storage are assigned, in the order given, to (a) variables (I, Y, C), (b) state­
ment dictionary (S), (c) absolute constants (A), (d) the compiled program 
(L), including extensions (E). 

The actual assignments are indicated on (SOAP) reservation cards, 
which are the last ten cards punched during compilation. The first instruc­
tion of the first statement, LAAAA, always appears in 650 location 1999. 

Examples of IT Language Problems. The two examples given here 
are problems as written for the IT language, a root determination process 



DIGITAL COMPUTER PROGRAMMING 

and a simple differential-equation integration. These are adapted from 
problems given in the M173 course at Michigan by B. A. Galler and the 
author. 

EXAMPLE 1. Problem. Solve the equation ax3 + bx2 + ex + d = 0 
by Newton's method by using various initial values (xo) and various 
criteria for accuracy of the solution. 

Analysis. Newton's method for the equation f(x) = o. 
. f(Xi) 

Xo gIven: Xi+! = Xi - f' (Xi) . 

For the equation of this problem, 

Xo given: Xi+l = Xi - qi, 
where 

Criterion for stopping iteration: 

Iqil = IXi+! --, xii < e 

Flow Diagram of Solution Procedure. See Fig. 29. 

3 

Read 
a, b,c,d, E,XO 

FIG. 29. Flow diagram for Example 1. 

Rough Program. 

1: Read a, b, e, d, Xo, ~ 
2: i~O 

3: q ~ (ax3 + bX2 + ex + d)/ (3ax2 + 2bx + e) 
4: Go to7 if I q I ~ e 
5: Punch x, i 
6: Go to 1 



PROGRAMMING AND CODING 2-213 

7: x~x - q 
8: i~i + 1 
9: Go to 3 

Correct Compiler Program: Note. We make the following storage assign­
ments: 

i: 
x: 
q: 

II 
Y1 
Y2 

a: 
b: 
c: 

C1 
C2 
C3 

d: C4 
C5 

1: a, b, c, d, E, Xo READ F 
2: I1~0 F 
3: Y2 ~ ((C1 . Y1 . Y1 . Y1) + (C2· Y1 . Y1) + (C3 . Y1) 

+ C4)/((3' C1· Y1· Y1) + (2· C2· Y1) + C3) F 
4: G7 IF IY21 ~ C5 F 
5: TY1 TIl F 
6: G1 F 
7: Y1 ~ Y1 - Y2 F 
8: II ~ II + 1 F 
9: G3 FF 

Note. To produce a more efficient and accurate program, Statement 3 
could be replaced by 

Y2 t- ((((((C1 . Y1) + C2) . Y1) + C3) . Y1) + C4)/ 
((((3 . C1 . yo + 2 . C2) . yo + C3). 

EXAMPLE 2. Problem. y' = x - y2 to be solved from x = Xo to x = Z 
with initial conditions y(xo) = yo. 

Method of Solution. Step-by-step integration (Euler process). 

~y = (x - y2) ~x. 

Initial Conditions and Parameters. 

~x = 0.1, x = 1, y = 1, Z = 1.5. 

Rough Program. Final Program. 

1: ~x, x, y, z READ 1: C1, YO, Y1, Y2 READ 
2: Tx Ty 2: TY1 TYO 
3: ~y~ (x - y2) ~x 3: CO~ (Y1 - (YO X YO))· C1 
4: y~y+~y 4: YO~YO+CO 
5: x~x+~x 5: Y1 ~ Y1 + C1 
6: Tx Ty 6: TY1 TYO 
7: G3 IF x < z 7: G3 IF Y1 < Y2 
8: H 8: H 

Storage Assignments. y: YO, x: Y1, z: Y2, ~y: CO, 
~x: C1. 



2-214 DIGITAL COMPUTER PROGRAMMING 

Flow Diagram. See Fig. 30. 

FIG. 30. Flow diagram for Example 2. 

An Example of an Extension of the IT Language. An example of 
a typical extension to the IT language is given by the subroutine for the 
solution of a system of ordinary differential equations using the Runge­
Kutta-Gill technique. The complete version, as available to the program­
mer, is given below. As with all compiler subroutines, the written outline 
includes: (1) number, (2) title, (3) number oflocations occupied, (4) storage 
needed in addition to subroutine, (5) description, including method of entry, 
(6) flow diagram, (7) assembly language (SOAP) version of the subroutine 
code, (8) test example in compiler language. 

Of course, entry in the IT language is relatively easy, since all the storage 
of parameters, setting up of return addresses, etc., is handled by the 
translator-compiler and the subroutine itself. 

University of Michigan IT Subroutine Library. 

Extension No. 26. 
Title. Runge-Kutta solution of differential equations. 
No. of locations. 101. 
Storage needed in addition to subroutine. Y (j), Y (j + 1), .. " Y (j + 

3n - 1), where,j is any base subscript and n is the order of differential 
equation systems to be solved. 

Error indication. Program Register 69xxxx9271 indicates floating 
point overflow or underflow. 

Description. This is a floating point program based on the Gill version 
of the fourth order Runge-Kutta process. The equations are assumed to 
have the form 

(i = 0, 1, .. " n - 1), 

where yo is the independent variable and is regarded as the solution to the 
equation 

ytO = f(yo, YI,"', Yn-l) = 1. 

The user must reserve for the subroutine a block of 3n consecutive Y varia­
bles, starting with Y(j), for somej, and ending with Y(j + 3n - 1). The 
first n of these locations will contain the current values of Yo, YI, .. " Yn-l, 



PROGRAMMING AN,D CODING 2-215 

the next n locations will contain the values of leo, leI, .•. , len-l (~vhere 
lei = AYi = y'i AX), and the next n locations will be used by the sub­
routine for the so-called bridging q's. 

The subroutine is entered by means of a single extension statement (with 
a nonzero statement number) of the form 

h: "26E, n, j, r", 
where n is a fixed point expression whose value is the order of the equation 
system to be solved, j is a fixed point expression whose value is the base 
subscript of the block of Y variables provided for the subroutine, and r is 
a fixed point expression whose value is the nonzero statement number of 
the first statement of the le program described below. The expressions for 
n, j, and r may not involve extensions. Moreover, the statement im­
mediately following the extension st~tement must also have a nonzero 
statement number. 

Before entering the subroutine the user must (a) set Y(j), YU + 
1), ... , Y U + 3n - 1) to the initial values of Yo, YI, ... , Yn-l, (b) set n, 
j, and r to their respective values. The subroutine will itself clear qo, 
ql, ... , qn-l, to zero. 

Since the Ji must be evaluated several times during the computation of 
the Runge-Kutta subroutine, a part of the subroutine must be supplied by 
the user. (It should be regarded as a subroutine for the Runge-Kutta 
program.) This small program, called the le program, computes new values 
of leo, ... , len- l from the current values of Yo, YI, ... , Yn-l, by using the 
definition lei = Y' i(X). The le program will actually be entered by the 
Runge-Kutta program four times during the computation of a single point 
of the solution. The only restrictions of the k program are that (1) it must 
begin with a nonzero statement number r (see description of extension 
statement above), and (2) it must end with a statement Gh, where h is the 
statement number of the extension statement. 

At the end of the Runge-Kutta computation, the initial values of 
Yo, YI, ... , Yn-l will have been replaced by their values at the next solution 
point. These new values may then serve immediately as the initial values 
in the computation of the next set of values. The user must provide his 
own test to determine the end of the computation, and must also provide 
for punching out any of the Yi desired. The testing and punching portion 
of the program must follow immediately the extension statement calling 
for the Runge-Kutta subroutine. If after the process has been completed 
(i.e., the equations have been solved over the entire interval specified), the 
user seeks to reenter the subroutine again with different initial values, a 
different step size, or a different set of equations, he need only reinitialize 
n, j, and r. The accuracy of the solution is approximately (AX )5yi. See 
Fig. 31 for a flow diagram of the Runge-Kutta IT compiler and Table 37 
for the SOAP language version of the program. 



Original 
entry 

[AOOOO] --sb 

[A0002] --Yb 

n = number of equations 
j = base of Y block 
r = ki routine entry 

Yi = Yj+i 
ki = Yj+n+i 

qi = Yj+2n+i 
Sb = address of 80000 
Yb = address of YOOOO 
ti = temporary storage 

(xl = contents of location x 

8001--1'2 
n __ tl 

n+Yb-- t2 

~ 
~ 

r+sb--'Yl 
O--i 0--Yj+(2n+l)~i+ 1-- i 

FIG. 31. Flow diagram of Runge-Kutta IT compiler extension 26. 

to..) 

N 
0"-

----, 
2--g 
1--h 

-.---J 
0 
(f) 
=i 
> r-
() 
0 
~ 
""'C 
C 
-I 
m 
;::c 

""'C 
;::c 
0 
(j) 
;::c 
> 
~ 
~ 
Z 
(j) 



PROGRAMMING AND CODING 2-217 

TABLE 37. SOAP LANGUAGE VERSION 

EOOBA STD BAEX BAN9 LDD BAAl BAN5 
BAN9 STL BAN BAN5 STD EOOBA 

-RAL 1809 STU BACA 
lDD BANl RSL 8002 
SDA BANl STL BACB 
LDD BAN2 RAL BAYJ 
SDA BAN2 RAA 8001 

-RAB 0000 BANI ALa BAN 
BANl lDD AOOOO RAB 8002 

STD BASB ALa BAN 
-AXB 0002 BAN2 RAC 8002 BAN6 

BAN2 LDD AOO02 BAN6 RAU BACA 
STD BAYB BAN3 -FMP 0000 B 

BAAl STD BAEX BAN9 STU ACC4 
STL BAN BAN3 RAU BACB 

BAN3 RAl BAYB -FMP 0000 C 
-ALa POO02 FAD ACC4 

STL BAYJ -FAD 0000 B 
ALa BAN -FSB 0000 C 
ALa 8001 STU ACCS 
RAA 8001 -FAD 0000 A 
RAB 8002 -STU 0000 A BAD 
STL BAYJN BAN4 BAD RAU BAS BAN7 

BAN4 -STU 0000 B BAN7 FMP 'ACC5 
-AXB 0001 -FAD 0000 C 

-SXA 0001 -FSB 0000 B 
NZA BAN4 FSB ACC4 
RAL BASB -STU 0000 C BANS 

-ALa POOOl BANS -AXA 0001 
STL BAKE -AXB 0001 
LDD BAA2 -AXC 0001 
STD EOOBA RAL B006 
LDD BAl SLO BAYJN BAG 
STD BAD BAG BMI BAN6 BAKE 
LDD BA2 BAI RAU BAa BAN7 
STD BAG 8001 BA2 BMI BAN6 BAKE 

BAA2 RSU BA4 BA3 BMI BAN6 BAEX 
LDD BAA3 BANS BASB 00 0000 

BAA3 RSU BA5 BAYB 00 0000 
ALa B003 BAEX 00 0000 
LDD BAA4 BAN5 BAKE 00 0000 

BAA4 RAU BA5 BACA 00 0000 
ALO 8003 BACB 00 0000 
LDD BAA5 BAN5 BAYJ 00 0000 

BAA5 LDD BANB BAYJN 00 0000 
STD BAD BA4 50 0000 0050 
LDD BA3 BA5 70 7106 7850 
STD BAG BA6 B3 3333 3350 
RSU SA6 SA7 66 6666 6750 
SLO BA7 BAB 30 0000 0051 

BAN 00 0000 

Negative Instruction Means Fixed Data Address. 



2-218 DIGITAL COMPUTER PROGRAMMING 

Compiler Program for Runge-Kutta Test Case. Given d2y/dx2 = 6x with 
initial conditions (y)x=o = 0, (dy/dx)x=o = 0, determine y in the interval 
o ~ x ~ 3, for h = 0.1. Writt~n as a system of three equations, the 
problem becomes, 

with initial conditions, 

y' 0 = 1, , 
Y 1 = Y2, 
y'2 = 6yo, 

Yo = 0, 
YI = 0, 
Y2 = O. 

For this problem the following compiler variables are defined. 

Yo, YI, Y2 = Y5, Y6, Y7, 
lco, kI, k2 = Y8, Y9, YI0, 
qo, qI, q2 = Yll, Y12, Y13, 

h = Cl = 0.1, 
n = II = 3, 
j = 12 = 5, 
r = 13 = 8. 

n, j, and r could appear in the statements as constants if only one equation 
is to be solved by the subroutine, 

For the header card 

nI = 5, 
ny = 15, 
nc = 2, \ 
ns = 15, 
N = (2000 - 772) = 1228, 
nE = 750 (Package 3). 

Notice that the values of the n's may be greater than the actual number of 
locations needed by the program. * 

Statements: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 

Cl, II, 12, 13, READ 
3, 14, 0, 1, 11-1 
Y(I2 + 14) = 0 
Q26E, II, 12, I3Q 
TYI2 TY(I2 + 1) 
G4 IF 3.0 V 'YI2 
H 

* Program author: Bruce W. Arden. 

F 
F 
F 
F 
F 
F 
F 



PROGRAMMING AN,D CODING 2-219 

8. Y(I2 + 3) = C1 F 
9. Y (12 + 4) = Y (12 + 2) . C 1 F 

10. Y(I2 + 5) = 6.0· YI2· C1 F 
II. G4 FF 

Run Request. For use with the IT language and its translation on the 
IBM 650 at the University of Michigan, a Run Request of punch-card size 
is used to indicate operations to be performed. The programmer indicates 
what parts of the one-step or two-step system he wants performed. He 
may indicate one or all of the options. 

a. Compile (translate by using the IT language compiler-translator). 
b. Translate from SOAP II to IBM 650 five-word-per-card basic lan­

guage, with possible options as to SOAP subroutines and reservation decks 
for IT extensions (IT language subroutines). 

c. Perform an actual run on a basic machine language problem, obtained 
either from hand coding (straight) or compiled. With this, he indicates 
any special subroutines, the particular package of the various IT options to 
be used, the kind and amount of data to be read in, conditional punch 
output for diagnostic purposes, output kind and quantity expected, and 
any special utility routines to be used or other information to be obtained 
by the operator. 

During the translation process the IT translator will punch error cards 
to indicate to the programmer that he has violated the conditions of the IT 
language [either the formation rules, based on two-letter pairs, to be 
described below, or the stop rules, which give the limits on the number 
characters per statement or per card, the number of nested subscripts or 
extensions (subroutines), etc.]. Such an error card will consist of the word 
"ERROR" followed by the offending two-character combination, or else a 
corresponding two-character code to indicate the violation of the stop rules. 

This process, at the option of the computer operator, can be carried on 
with either the one-step or two-step process. Again at the option of the 
operator output may continue to be translated after an error has occurred 
or has been terminated. Generally, because of the nature of the two-step 
target language (SOAP) which uses symbolic addresses, an error in one 
statement will not affect the correctness of a later translation. The one­
step target language (basic machine language) is an absolute address 
language which, if an error is made, will be incorrect thereafter. In the 
latter case, occurrence of an error always terminates the translation, 
although the translator may continue to scan input data so as to locate any 
other mistakes, without putting out any translation. 

At the time of running a problem, one of several "subroutine packages," 
depending on what has been asked for by the programmer on the Run 
Request, will be stored in the machine by the operator. These packages 
will contain successively longer lists of subroutines starting with floating 



2-220 DIGITAL COMPUTER PROGRAMMING 

point operations (if required) and input-output processes, and including 
such functions as square root and trigonometric functions, and also more 
elaborate checking and utility procedures. By using a smaller package, a 
programmer will have more of the IBM 650's 2000 words of storage avail­
able, but fewer subroutines. 

Further checks are built into the operation of this system in that each 
subroutine, as in most standard systems, has a built-in error indication in 
the case of, for example, an attempt to take a negative square root. 

To request a run on an IBM 650 computer where the IT compiler is in 
use, the programmer fills out a Run Request form (Fig. 32). This form 

RUN REQUEST 
(one for eoch problem) 

Date ................................................................•.....• 

D COMPILE 

D SOAP II 

Sub .................... . 

R •.•........••..•••.•.•.• E ...•..••..••..•...••.••• 

D CHECK RUN D Straight D Compiled 

Sub ................... . 

p •..............•...•.... 

Data •................• 

Conditional Punch ................................•. 

Output expected ................................... . 

Utility Routines and Special Information 
Requested: 

Error Indications 

Program Reg ........................................ . 

Distributor 

Lower Ace. 

Upper Ace. 

Additional Notes on Back 

+­
+­
+-

Class .......................... Problem No .................... . 

Name ................................................................. . 

FIG. 32. IT compiler run request. 



PROGRAMMING AND CODING 2-221, 

allows the indication of the large number of options from which the pro­
grammer can choose in compiling, testing, and running his program. 

Translator Construction 

The Symbol Pair Technique. The IT compiler, as constructed 
originally by Perlis, Smith, and Van Zoeren, had built into it a set of checks 
for the formation rules of the language. This is accomplished by scanning 
statements from left to right, two characters at a time. Each symbol pair 
actuates a machine or assembly language generator which produces a 
corresponding sequence of one or more instructions in either basic IBM 
650 or SOAP language dependent on whether or not this is a one-pass or 
two-pass compiler. Any symbol pair which is not admissible in the sense 
of occurring in a meaningful string of symbols in the language will cause 
an error alarm in the compiler itself. 

The list of admissible symbol pairs, among the more than 1000 that 
could possibly occur, can be generated by laying out formation rules, such 
as that described in the example below. The syntax or grammar of the 
language is a slightly simplified version of that given earlier, with all 
references to norms of variables, statements, etc., omitted. Each rule in 
the language allows certain admissible symbol pairs. Each entity, when 
substituted into the succeeding rule, allows other admissible pairs formed 
by juxtaposition of the last symbol of certain entities combined with the 
first symbol of others. 

Note that the symbol pair method of checking and translating allows 
errors to occur. For example, unless some type of memory is included in 
the compiler generators, such a sequence as 

123.45.67 

with two decimal points in a number, may be translated incorrectly, as well 
as passed by the translator as a perfectly well-formed string of symbols. 

Example of Formation Rule: Floating Point Constants. 
nln2··· nkBm k ~ 8 Examples: 14.92B3; 1066B(-11) 
nln2 ... nk: fixed or floating points constant of type A with m = nln2 

or (-nln2) , 
First symbols: n, . ; Last symbols: n, ) 
Admissible pairs. 

Bn n) - n ( - B ( nB .B 

Restrictions : Upon occurrence of nB, counter set to 8. Decimal point 
has no effect. (N ote: "( +" is not considered admissible.) 

Permissible Symbol Pairs and CompHer Representation. The 
end result of this rational sequence of generating all possible symbol pairs 
on the basis of the original 'rules describing the language can be given in 
Table 38. 



2-222 DIGITAL COMPUTER PROGRAMMING 

TABLE 38. PERMISSIBLE SYMBOL PAIRS AND COMPILER REPRESEN'l'A'l'ION 

AC AC .X JX "X QX ~C WC 
AI AI .n In "n Qn ~I WI 
A( AL ,A KA )1 RD ~. WJ 
A" AQ ,C KC )F RF ~( WL 
AY AY ,F KF )1 RI ~" WQ 
B( BL ,I KI ), RK ~Y WY 
Bn Bn ,. KJ )- RM ~n Wn 
CI CI ,( KL )P RP XA XA 
C( CL " KQ )" RQ XC XC , 
Cn Cn ,Y KY » RR XI XI 
IA DA ,n Kn )+ RS X. XJ 
IC DC (A LA )T RT X( XL 
DF DF (C LC )= RU X" XQ 
II DI (I LI » RV XY XY 
I. DJ (. LJ )~ RW Xn Xn 
I( DL (( LL )X RX YI YI 
I" DQ (- LM )~ RZ Y( YL 
IY DY (" LQ +A SA Yn Yn 
In Dn (Y LY +C SC f-A ZA 
E, EK (n Ln +1 SI f-C ZC 
FA FA -A MA +. SJ f-I ZI 
FC FC -C Me +( SL f-. ZJ 
FF FF -I MI +" SQ f-( ZL 
FI FI -J MJ +y SY f-II ZQ 
F. FJ -( ML +n Sn f-Y ZY 
F( FL " MQ TC TC f-n Zn 
F" FQ -Y MY TI TI n~ nZ 
Fn Fn -n Mn T( TL nB nB 
GI GI PA PA TY TY nl nD 
G( GL PC PC =A UA nE nE 
Gn Gn PI PI =C UC nF nF 
HF HF P. PJ =1 UI n. nJ 
IF IF P( PL UJ nI nI 
II II P" PQ =( UL n, nK 
I( IL PY PY " UQ n- nM 
In In Pn Pn =Y UY nP nP 
.1 JD "1 QD =n Un nn nn 
.F JF "F QF >A VA n" nQ 

JK " QK >C VC n) nR ., , 
JM " QM >1 VI n+ nS 

.P JP IIp QP >. VJ nT nT 
" JQ "" QQ >( VL n= nU 

.) JR ") QR >" VQ n> nV 

.+ JS "+ QS >Y VY n~ nW 
JU " QU >n Vn nX nX 

.> JV "> QV ~A WA n nZ 

.~ JW "~ QW 



PROGRAMMING AND CODING 2-223 

A More Rational Procedure for Translator Construction. The 
weaknesses of the symbol pair process are apparent. Errors when symbols 
like decimal points are repeated indicate that all recursive definitions 
cannot be checked without the complicated process of adding memory to 
the generators, which becomes completely an ad hoc process. 

A multiple scan process is therefore necessary to produce a complete set 
of checks on the formation rules, as well as rational setting up of generator 
entries. In describing this, a notation of productions, or language definition 
rules, as described in Rosenbloom (Ref. 88), will be used. The list of 
productions that follows below can be seen to parallel the original set of 
rules set up for the IT language (again questions of variable statement 
norms are omitted for simplicity). (Production 1 below can be read as 
"If a is a number, then a is a fixed point integer constant." Production 2 
would read, "If the string a is a fixed point integer constant, and if the 
string {3 is a fixed point integer constant, then the concatenated string a{3 

is a fixed point integer constant." Production 27 would read, "If the string 
a is an operand, (3 is an operator, and the string 'Y is an operand, then the 
string (a{3'Y) is an operand.") 

From the set of 46 productions, each of which defines a new string which 
can be developed in terms of previous older ones, a "production tree" will 
be set up that describes this definition process graphically. 

Fonna] Representation of the IT Language. Writing the formation 
rules in a symbolic fashion, one defines the following classes: 

m numbers 
JJ fixed point integer constants 
a floating point constants type a 
93 floating point constants type b 
e all constants 
~ 

~ 
"0 
L\ 
&> 
9) 

t) 

fY 
g; 

fixed point integer variables 
floating point variables 
all variables 
operations 
extensions 
fixed point operands 
operands 
subroutine parameter sets 
statements 

GU unconditional transfers 
fit 
'X 

rela ti onshi ps 
conditional decisions 

Then, by adding these symbols to the language one can obtain a formal 
system based on a set of axioms, and a set of productions, that produce all 



2-224 DIGITAL COMPUTER PROGRAMMING 

possible constants, variables, extensions, operands, and statements. One 
can consider that the extra symbols carried above are used in the machine 
to designate an object of the particular type. Small Greek letters will 
indicate strings of symbols. 

Axioms. AO. ~I, :FY, :FC, CUlO, CUll, .. " CUl9, g{ =, g{ >, g{ ~, Send 
HF, §end READ F, .1+, .1-, Ax, .1/, A exp 

Productions: 

PI. CUla ~ Jja 
P2. Jja, Jj{3 ~ Jja{3 
P3. Jja, Jj{3 ~ Cia.{3 
P4. Jj a, Jj (3 ~ 03aB{3 
P5. Cia, Jj{3 ~ 03aB{3 
P6. Jja, Jj{3 ~ 03aB( -(3) 

P7. Cia, Jj{3 ~ 03aB(-{3) 
P8. Jja ~ ea 
P9. Cia ~ ea 
PIO. 03a ~ ea 
PI1. Jja ~ ~Ia 
P12. ~a~~Ia 
P13. ~a ~ :FYa 
P14. ~a ~ :FCa 
P15. Jja ~ :FYa 
P16. Jja ~ :FCa 
P17. 9)a ~ :FYa 
PI8. 9)a ~ :FCa 
PI9. 9)a ~ ~Ia 
P20. :Fa~~a 
P2I. ~a~~a 
P22. ~a ~ 0(a) 
P23. ea~0a 
P24. ~a ~ 0( -a) 
P25. 0a ~ 0(a) 
P26. 0a~ 0Aa 
P27. 0a, A{3, 0)' ~ 0 (a{3)' ) 
P28. ~a~ 9)a 
P29. Jja ~ 9)a 
P30. 9)a, A{3, 9))' ~ 9) (a{3)') 
P31. 9)a ~ 0a 
P32. 0a ~ 9'a 
P33. 0a, 0{3 ~ 9' a, {3 
P34. 9'a, 0{3 ~ 9'a, {3 
P35. Jja, 9'{3 ~ & "aE, {3" 



PROGRAMMING AND CODING 

P3G. f9a ~ ea 
P37. 19a, 19{3 ~ ~end a ~ {3F 
P38. 19a, (9{3 ~ Send a ~ (3F 
P39. fDa ~ GUGa 
P40. ~a ~ GUG(a) 
P41. GUa ~ Send aF 
P42. (9a, ffi.{3, (9')' ~ JC a{3"{ 

P43. GUa, JC (3 ~ ~end aIF{3F 
P44. "'rJa, 19{3, 19,)" 198 ~ Send TaT{3T,),T8F 
P45. f9a ~ Send aF 
P46. tja, fi'{3 ~ Send a, {3, F 

2-225 

N ow invert the process of productions in order to develop an inverse 
process that will allow us to check any arbitrary string a in our original 
symbols. Speaking intuitively, we are looking for a method by which we 
can guarantee that any statement in the Perlis IT language obeys the rules 
for generating such statements that we have set up. Formally, we should 
add two new symbols, r (true) and cp (false), to our present language to 
indicate intuitively that a string obeys the rules or does not, and then 
develop an entirely new set of productions (computer program!) that will 
produce the string ra whenever our original string obeys the rules of 
the language, and cpa whenever our original string does not obey the 
rules. 

Such a procedure is a decision process, one which arises over and over 
again in formal mathematics. In terms of the description here, a decision 
process is nothing but a set of productions which separates out a particular 
class of strings in a language. Other decision processes pertinent to com­
puter programming include the following: 

1. Decide whether or not a given computer program runs to completion 
(does not end in a loop) without ever running it. 

2. Decide whether a given iterative process converges, without ever 
actually calculating with it. 

Instead of writing out a set of such productions, we will concentrate here 
on the process by which they might be obtained. In particular we include 
a production tree, a graph describing the definition sequence given of the 
productions, and the inverse of such a graph, a similar tree describing 
the decision process itself. 

By starting at the symbol S, which is the end point in the production 
process of producing all possible IT statements, one can proceed backward 
up the tree of Fig. 33, testing each path in the maze in turn. The results 
are shown in Fig. 34. Here, if a translator proceeds along the paths in the 
direction of the arrows, based on subsequent decisions as to whether or not 



2-226 DIGITAL COMPUTER PROGRAMMING 

"l'Ja, "l'J{3, "l'J,)" 'Uo - Send TaT{3T,),ToF -------~\ 

FIG. 33. Pattern for computing all possible statements in the IT language. 



PROGRAMMING AND CODING 2-227 

ffi' - (jaBS{3 

~ ffiaB/3 -->- S~ 

oa e~~aa~ a~B:S:; 
ffiaB(-.B) - 9aB(-9/3) Substitution 

Type 

end &aF - &a - "9/3, E, ff'''/'' ., 19a ~19 

j ~:ff9 

7 
endaF~ ~a 

(]) ® 
/~ 

end aF - 90, ff'€ 

Extension 

Conditional Linkage 

Unconditional 

Iteration 

FIG. 34. Production tree for checking arbitrary strings. 



2-228 DIGITAL COMPUTER PROGRAMMING 

the string has the form in question, it will arrive at a decomposition of the 
original language string into a hierarchical structure. For example, 

Y2 f- (Y(I1 + 7) - C3)/(Y(I3 + 6) X CI2) 

will become decomposed into the structure of Fig. 35. N ow if the trans­
lator starts at the bottom of this tree structure and performs a bottom-to-

/..t.-~ 

! /""x 
/-", / '" y eye 

! ~ i ~ 
+ 3 + I 

/ \ / \ ~ 
I 7 I 6 2 

~ i 
1 3 

FIG. 35. Decomposition example: 
Y2 f- (Y(n + 7) - C3)/(Y(13 + 6) X CI2). 

top dictionary translation, a completely rational translation will be the end 
result, with no possibility for errors as in the symbol pair method. As 
Kantorovich (Ref. 60 ) has pointed out, this method of decomposition 
allows application of syntactical transformation rules (commutativity, 
associativity, etc.) to be applied before translation to produce more efficient 
hierarchical structures. Such procedures are reported by Kitov (Ref. 61) 
with reference to the compiler-translator for the Strela and in the Fortran 
description (Ref. 35). 

This technique of formal decomposition also applies to natural languages, 
as might be expected. The difficulty here, of course, is not in the develop­
ment of the decomposition process, but in the listing of the original defini­
tions of acceptable strings (original productions) which are far more than 
the approximately 50 required by the IT language. 

13. AUTOMATIC PROGRAMMING: A SOVIET ALGEBRAIC 
LANGUAGE COMPILER 

Description 

Mathematicians of the Soviet Union V. A. Steklov Mathematical 
Institute have developed a programming technique similar to that of the 



PROGRAMMING AND CODING 2-229 

algebraic language compilers in the United States and Western Europe, 
but enough different so that the technique should be included here sepa­
rately. This technique, that of "operational programming," is due to 
Liapounov, Ianov, and others, and is described by Kitov and the originators 
(see Refs. 51, 52, and 61). 

The Soviet programs, analogous to compiler-translators, translated 
literally as "programs that program," are based on an external notation 
that is written linearly across the page. 

EXAMPLE. Adams' method for integrating an ordinary differential 
equation dy/dx = f(x, y), requires three arithmetic operators: AI, setting 
up initial data; A 2 , computing the three starting ordinates of the integral 
curve; A3i , computing the ordinate in the next ith point in terms of the 
already known previous three ordinates. If these are combined with an 
iteration operator 

n-l 

Tr 
i=3 

the sequence describing the program performance for n steps would be 

n-l 

A IA2 II A3 i 

i=3 

If there is need to calculate m integral curves rather than one, the 
program description would become 

m n-l 

II (Ali A2i II A3(ii») 
.i =1 i=3 

The symbol II is one of a class of logical operators. (N ote the similarity 
of this notation to the vertical statement language of the Internal Trans­
lator (see Ref. 81 and Sect. 12) with each arithmetic or logical "operator" 
replaced by an arithmetic or iteration "statement.") 

A second type of logical operator is the logical condition, an arithmetic 
proposition that may be either true or false and is denoted by the forms 

p(x = y) 

p(x ~ y), etc. 

with the proposition being given within the parentheses. Ianov (Ref. 52) 
has suggested the use of brackets to indicate possible program sequence. 
Brackets would occur in pairs with the same subscripts. Ordinarily the 
sequence of operators in a "program scheme," as a line of operators de­
scribing a program is called, will indicate their sequence of performance. 
Following each logical condition a subscripted left bracket will indicate 



2-2.30 DIGITAL COMPUTER PROGRAMMING 

possible change of control out of the usual left-to-right sequence. If the 
condition is false, the next operator to be performed will be that operator 
following the correspondingly subscripted right bracket. If the condition 
is true, the next operator to be performed will be the next operator in 
sequence. 

EXAMPLE. AIP(X = y)[A2A3JA4 
1 1 

Interpretation. 1. Perform AI. 2a. If x = y, perform A 2, A3, and 
A4. 2b. If x ~ y, perform A 4. 

Note. Indexing operators, including both prestoring, restoring, and 
incrementing of addresses, will be designated by the letter r. 

Comparison with Other Methods. Three comparable notations for 
describing the process of matrix multiplication are shown in Fig. 36. The 
first is the standard flow diagram notation already described. The second 
is the original string notation of Liapounov, designed for use with a com­
puter with a three-address instruction logic. Here the bracket superscript 
indicates the number of the operator to which control is to be transferred 
when the logical condition is false. The bracket subscript indicates the 
number of the operator to which control is to be transferred when the logical 
condition is true. 

The third notation is that of Ianov described above. The advantage 
of the third notation, as he and Kantorovich noted (Refs. 51 and 60), is 
that such an algebra of string transformations allows development of a set 
of transformation rules by which a "string language" of the Ianov type of 
notation may be manipulated to produce a "more efficient" program in the 
sense of some measure of effectiveness. Perlis and Smith (Ref. 155) have 
developed a string language manipulator for the IBM 704, based partially 
on the work of Markov (Ref. 67) on the theory of algorithms, which per­
forms such manipulations easily. The string language manipulator is 
proposed to be used not only with such symbolic operational programs, 
but also algebraic language compiler-translators and natural language 
transla tors. 

Rules. Ianov gives a complete set of transformation rules for pro­
grams. These rules, when applied to any program written in terms of 
operators, logical conditions, and left and right strokes, may be used to 
generate all possible equivalent variants of a program. 

Let us call an expression, every finite line composed of various symbols, 
of operators, logical conditions and right strokes so that not more than one 
left and not more than one right stroke with the subscript i is found therein 
for every natural number 1. A logical condition a L is subordinate, for 

i 

a given set of parameters, to the logical condition {1 if a is performed only 
when {1 is performed for the given set of parameters. 



n (i = 1, "', n) 
C"k = L aijbjk (k = 1 ... n) 

t j = 1 " 

Comparable Liapounov (three-address) string notation 

11 9 7 5 3 2 

h J12 JA 314 ]A5I sP7(j = n + 1) [lsP 9(k = n + 1) [I10P l1 (i = n + 1) [ 
2 3 5 8 10 12 

Comparable Ianov (single-address) string notation 

h.J 12.J A314.J A5I sP 7(j = n + 1) LIsP 9 (k = n + 1) LhoP l1 (i = n + 1) L 
12332 1 

FIG. 36. Matrix multiplication (method 1). Various operational programming notations. 

""C 
;:::c 
o 
(j) 
;:::c 
» 
~ 
~ 
Z 
(j) 

» 
z o 
() 
o 
o 
Z 
(j) 

~ 

t...> 
w 



2-232 DIGITAL COMPUTER PROGRAMMING 

The following system of axiom schemes and derivation rules (where 
<mI, m are arbitrary expressions; ~ (<mI) is an expression containing the 
expression <mI formally; Ak are arbitrary operators; a, (3, 0, 1 are the formu­
las of classical propositional calculus) is complete in the sense of the 
deducibility of every true formula of the form a = 93 for a given set of 
values of parameters, where a and 93 are program schemes. 

N ole. In the following equations the symbols & and V are used for 
logical and and inclusive or. 

I. (1) 0 L Ak.J = 0 L.J ; 
iii i 

(2) 1 L <mI.J = 0Tl.; 
i i 

(3) .J <mil L = <mi. 
i i 

II. (1) (a & (3) L <mI.J = a L (3 L <mI.J .J; 
iii iii 

(2) .J <mI(a & (3) L = .J .J <mIa L {3 L; 
iii iii 

(3) a V {3 L = a L (3 L.J. 
iii i 

III. <mIm = 0 L.J mo L.J <mIO L.J. 
k i i k 

IV. .J .J =.J .J. 
iii i 

V. a L..J = A, where A is an empty scheme (null-program). 
i i 

VI. (1) a L <mI.J a L m.J = a L <mIa L m.J .J ; 
iii iii ii 

(2) a L <mI _J m.J a L = a L <mI .J .J ma L; 
iii iii i i 

(3) .J 01'La L m.J a L = .J .J <mIa L ma L; 
iii j i i ii 

(4) ..J a L <mIa L ~ . .J = a L <mIa L m.J .J ; 
iii iii i i 

(5) .J a L <mI.J ma L = a L <mI.J .J ma L; 
iii iii i i 

(6) .J <mI.J aLma L = .J .J <mIa L ma L ; 
iii iii i i 

VII. .J a L <mI.J a L = a L <mI.J .J a L; 
iii iii i i 

\ a == {3 (This implies that the bottom expression holds 
VIII. <mICa) == 0R({3). whenever the top one does.) 

<mI = m ~(0R) == g{ 
IX. ~(~) == g{ ,where ~(m) is also an expression. 



PROGRAMMING AND CODING 2-233 

X. The pair of corresponding strokes L, .-J, in one expression can be 
i i 

replaced by any other pair L, .-J but so that the expression would 
i i 

remain an expression. 

XI. If the logical condition a L for a given set of parameter values is 
i 

subordinate to {3, then a L can be replaced by (a & {3) L. 
i i 

Mechanization of This Notation 

The translation of the Liapounov-Ianov string programming for the 
Strela (see Sect. 6) has been performed semiautomatically. Each symbol 
in a string would be coded into a corresponding number. The strings 
of numbers would then be read into the computer and the corresponding 
subroutines generated and compiled, as in the IT compiler. However, the 
algebraic translation of operators written as statements, if desired, could 
be relatively easily accomplished. 

ExaInple of Use of the Ianov TransforInation Rules 

Given the program scheme of Fig. 36, in the Ianov notation, one may 
obtain the following sequence of transformations. It is assumed that 
duplication of any operators requires duplicate storage facilities. 

1. 11.-J 12 .-J A314.-J A 516P7 L I sPg L l lOP 11 L (Given). 
1 2 3 3 2 1 

2. 11.-J (12 & 12 ) .-J A314.-J A 5IuP7 L (IsPg & IsPg) L I lOP 11 L. 
1 2 3 3 2 1 

(Propositional calculus: a & a == a) 

3. 11.-J 12 .-J 12 .-J A314.-J A 516P7 L I sPg L I sPg L IIOP11 L. 
1 2 4 3 3 4 2 1 

(Rule II.2) 

4. II.-J 12 .-J A31sPg L 12 .-J 14.-J A 5IuP7 L I sPg L IIoP11 L. 
1 2 243 3 4 1 

(Arithmetic independence of A3 and 14.-J A516P7 L.) 
3 3 

5. (II & II) .-J 12 .-J A31sPg L 12 .-J 14.-J A 5IuP7 L I sPg L 
1 2 24 3 3 4 

(Propositional calculus) 

(IIoP11 & IIOP11) L. 
1 

6. II.-J II -1 12 -1 A31sPg L 12 -1 14 -1 A 516P7 L I sPg L 
51 2 24 3 3 4 

11OP11 L 110P11 L. 
5 1 



2-234 DIGITAL COMPUTER PROGRAMMING 

(Rule II.2) 

7. h..J 12 ..J A31gP g L l IOPll L lI..J 12 ..J 14..J A516P7 L 
5 2 2 51 4 3 3 

I gP g L llOP11 L. 
4 1 

(Arithmetic independence of 12 ..J A31gP g L 
2 2 

and 

12 ..J 14..J A 516P7 L I gP g L; IT MN = IT M IT N 
43 3 4 iii 

if M and N are independent.) 

8. h..J 12 ..J A31gP g L hOP11 L h..J 14..J 12 ..J A51gPg L 
52 2 51 34 4 

16P7 L l lOP11 L. 
3 1 

(IT IT A5 = IT IT A5.) 
i j j i 

9. h..J 12 ..J A31gP g L hOP11 L 14..J h..J 12 ..J A51gPg L 
5 2 2 53 1 4 4 

I lOP 11 L16P7 L. 
1 3 

IT (11 (12 ..J A51gP g L)) = IT (IT (12 .J A;jlgP g L .)) 
j k 4 4 k j 4 4 

The resulting flow diagram for matrix multiplication is given in Fig. 37, 
and shows a less efficient, but at the same time less standard method of 
performing matrix multiplication. The reader is urged to draw the inter­
mediate flow diagrams to picture the sequence of the program transforma­
tion. A similar discussion of such program equivalences, but not in this 
formal fashion, is given by Jeenel (Ref. 113). 

14. AUTOMATIC PROGRAMMING: INTERPRETERS 

Interpretive Routines 

Turing (Ref. 101) originally described a simple computer based on paper 
tape storage, the ability to read and write on it, and to move right or left 
along it, dependent on the symbols written on the tape. Turing showed 
that such a machine, restricted to reading and writing binary digits (l's 
and O's) could nevertheless simulate the behavior of any other such machine, 
provided the first machine had a large enough set of different internal states 
(different configurations). Any machine that has this capacity of universal 
simulation of another computer, irrespective of symbols read or written 
and numbers of internal states in the machine being simulated, is now 
called a Universal Turing Machine. Moore (Ref. 73) describ'es a similar 
proof of Turing's original results. The design of Turing type machines 
is discussed in Chap. 31. 



n (i=l .... ,n) 
C'k = J. aijbil,; (k - l' .,. n) 

I /~1 _" 

Cik+Cik +aijbjk 

1 anov notation 

h--1 12--1 A31sP9 LhoPll L 14--1 h--1 12--1 A51sP9 Ll10Pll L16P7 L 
52 2 5314 4 1 3 

FIG. 37. Matrix multiplication (method 2). The transformed flow diagram of Fig. 36, obtained by using the Ianov method. 

." 
::::c o 
(j) 
::::c » 
3:: 
3:: 
z 
(j) 

» 
z 
o 
() 
o 
o 
z 
(j) 

t-.) 

t..:J 
w 
01 



2-236 DIGITAL COMPUTER PROGRAMMING 

It can be shown that any general purpose digital computer with the 
facilities to read from, and transfer into its storage, is such a Universal 
Turing Machine. Therefore, any general purpose digital computer, given 
enough storage, can simulate in precise detail the internal behavior of any 
other such machine. 

The key to this interpretation process is the use of a set of closed sub­
routines to represent the individual instructions of the computer being 
simulated. The instructions of the simulated machine may be considered 
parameters of these subroutines which tell which subroutine is to be used 
along with which operands. Interpretive routines first came into extensive 
use with the desire to perform floating point arithmetic on fixed point 
arithmetic machines. Arithmetic programs interpreted as floating point 
programs on the fixed point IBM 701, for example, were used extensively. 

EXAMPLE. Simulation of one computer on another computer. Given a 
very simple single-address instruction digital computer with the following 
six instructions (the two-digit pairs at left are the operation code for the 
computer). 

(01) inp n Input one number from the external input-output 
unit. 

(02) add n Add the contents of location n into the accumulator. 
(03) sub n Subtract the contents of location n from the accumu­

lator. 
(04) sto n Store the contents of the accumulator in location n. 
(05) cmp n Compare the contents of the accumulator with 

zero; if less than zero, take next instruction from location nj. 
Otherwise proceed in a normal fashion. 

(06) out n Output one number from location n through the 
input-output unit. 

Figure 38 gives a flow diagram describing the process of simulating this 
computer on any other digital computer of sufficiently large storage 
capacity. 

The following notation is used: I j designates the instruction in the 
simulated computer being stored at position j of that computer. Each 
instruction and each number considered as an integer contains five digits. 
The instruction form is 

I j = c X 103 + n, 

where c is the two-digit operation and n the three-digit address. 
The process of performance of interpretation is as follows. Instructions 

in the language of the computer being simulated are stored in the usual 
single-address sequence. The address of the first simulated instruction 



PROGRAMMING AND CODING 

2 

Cj = [Ij x 10-3] 

nj =Ij -Cj x 103 

(3 

FIG. 38. A simple interpretive routine 
(brackets H[ ... J" mean 
"integral part of"). 

4 

Read one word 
into storage 
location nj 

(ACc]+(nj) 

(Ace) 

6 

@1 (Accl-(nj) 

(Ace) 

7 

~ nj~(Acc) 

10 

Output one word 
from storage 

location nj 

2-237 

~ 
HD 

to be performed is given to the "host" machine via its external facilities: 
input-output, console switching, etc. 

The following steps are involved in the interpretation (execution) of an 
instruction. 

1. In box 1, this value replaces j, which serves as an "instruction counter" 
for the simulated machine. 

2. In box 2, the five-decimal digit instruction I j is decomposed into a 
two-digit integer Cj, representing the operation, and a three-digit integer 
nj, representing the address of I j. 

3. In box 3, a remote connector, control is transferred to the subroutine 
corresponding to Cj. 

4. Boxes 4, 5, 6, 7, and 10 perform the standard actions of the corre­
sponding instruction, relative to a host machine location which has been 
labeled "Acc" (accumulator). 

5. Upon completion of this subroutine, in box 11 the counter j is in­
creased by one, corresponding to usual single-address computer behavior, 
and the process now returns to box 2 and step 2 aboye. 

6. If on the other hand the simulated operation is compare (05), then 
control is transferred at step 4 to box 8. This now makes a decision on the 
basis of the contents of the location Acc. If that number is non-negative, 
the procedure is to box 11 and then step 2 above. If (Acc) is negative, the 



2-238 DIGITAL COMPUTER PROGRAMMING 

"next instruction address" is placed into the "instruction counter" in 
box 9, and control is transferred back to box 2 and step 2 above. 

This process will continue around the overall "loop" as long as instruc­
tions in the machine being simulated are available and behave "properly." 
The reader is urged to follow through the sequence of operations for the 
following test program on the simulated machine. At the beginning of 
the program, j 0 is 003. 

Number or Stored 
Location Instruction lVord Explanation 

000 00000 00 000 Temporary 
001 00001 00 001 
002 -00001 -00 001 Constant for forced jump 
003 sto 000 04 000 (Acc) ~ (000) 
004 sub 000 03 000 Clear Acc 
005 add 001 02 001 Xi to Acc 
006 out 001 06 001 Print Xi 

007 add 001 02 001 Xi+ Xi 

008 sto 001 04 001 2Xi~ 001 
009 sub 001 03 001 Clear Acc 
010 add 002 02 002 Make Acc Neg 
011 cmp 003 05 003 Jump to 003 

This program of the simul.ated machine will print the following integers 
in sequence: 

1, 2, ~, 8, 16, ... 

until it overflows, performing the problem 

Xo = 1, 

The sequence taken through the boxes of the flow diagram of Fig. 38 will 
be as follows: 

Instruction 
Location 

003 
004 
005 
006 
007 
008 
009 
010 
011 
003 

Instruction 
04 000 
03 000 
02 oor· 
06 001 
02 001 
04 001 
03 001 
02 002 
05 003 
04 000 

Sequence through 
Boxes of Flow Diagram 

1,2,3,7, 11 
1,2, 3, 6, 11 
1,2,3,5, 11 
1, 2, 3, 10, 11 
1,2,3,5, 11 
1,2,3,7, 11 
1,2,3, 6, 11 
1,2,3, 5, 11 
1,2,3,8,9 

2, 3, 7, 11, etc. 



PROGRAMMING AND CODING 2-239 

This computer may be simulated on any general purpose digital com­
puter that has a reasonable complement of operations, whether it be single­
address, two-address, three-address, decimal, binary, etc. The further 
removed the host and simulated computers are in structure, the more 
complex the interpreter will be in the coding required; but otherwise there 
is no problem. 

Simulation of One Machine by Another 

During the process of transferring work from one digital computer to 
another, users or manufacturers have made use of the interpretation 
principle to simulate a new not-yet produced digital computer. For ex­
ample, the first such simulation was the preparation of an interpretative 
program simulating the IBM 704 on the IBM 701 before the former 
computer was completed. The list of such simulations includes: 

1. IBM 704 on IBM 701 (IBM Programming Research) 
2. IBM 650 on IBM 704 (Corporation for Economic and Industry 

Research) 
3. Univac II on Univac I (Remington Rand Univac) 
4. IBM 650 on Datatron 220 (Burroughs Corporation) 
5. RW 300 on ERA 1103A (Ramo-Wooldridge Corporation) 
6. IBM 704 (Share Assembly Program) on IBM 701 (University of 

Michigan) 

Some of these simulating programs were not interpretive procedures, 
but rather compiling programs that compiled open subroutines dependent 
on the program (not the machine) being simulated. Simulation of a 
program, by a compilation technique, rather than a machine by an inter­
pretive technique, can make a large difference in efficiency of performance. 
Some of the interpretive processes were slower than the original computer 
by several orders of magnitude. 

Acceptance Tests. The simulation of one machine on another has been 
used extensively for equipment and program acceptance tests, especially 
by the armed services. If a special purpose computer is to be delivered, 
along with a certain program, by a contractor, a program is prepared 
for a general purpose computer to simulate the special purpose machine. 
Mter this simulation program is prepared, the contractor-prepared program 
for the special purpose computer can be run on the general purpose com­
puter. The same program can be run on the special purpose computer. 
If the results agree, this constitutes an acceptance test for the special 
purpose machine. In addition, if both programs produce the desired 
results, this constitutes an acceptance test for the special purpose computer 
program. Figure 39 shows the process where the special purpose computer 
is "embedded," by the interpretive process, in the general purpose machine. 



2-240 DIGITAL COMPUTER PROGRAMMING 

General purpose computer 

- r---------, -
I Special purpose I 
l __ <E~.p~~!.._J 

, Agreement, acceptan 
Program for I Compare I , 

special purpose 
computer 

Disagreement, 
no acceptance 

ce 

J Special purpose I 
I computer I 

FIG. 39. Block diagram of acceptance test for a special purpose computer using an 
interpretive process. 

Tracing Prograllls 

If one universal machine can simulate any other machine of a somewhat 
smaller storage capacity (which is what Turing's statement on universal 
machines means), it should therefore be possible for a computer to simulate 
a version of itself with a smaller amount of storage. Such self-interpretation 
is called "automonitoring," "checking," "tracing," "mistake diagnosis," 
etc., by different groups. The procedure is basically simple. Suppose the 
machine of the example above actually existed, and one wanted to be able 
to follow through every step of its action, with values of its internal locations 
printed out in detail. A box could be inserted between boxes 2 and 3 of 
Fig. 38 to obtain complete information about every instruction as it was 
parformed. This is shown in Fig. 40 with the new box marked 2a. 

2 

Cj = [Ij x 10-:-3] 

nj =Ij - CjX 103 

2a 

Print 

j,Cj ,nj , (Acc), (nj ) 

FIG. 40. Box added for print out. 

3 

N ow if this flow diagram was coded on the original machine, which is 
now the one being simulated, programs could be run (using a smaller 
section of storage) that would perform in the standard fashion, and at the 
same time print out pertinent information such as: location, instruction, 
previous contents of Acc, and the previous contents of the address of the 
instruction. If two output print stations were available, one could be used 
for regular program output, the other for information derived from the 
tracing process. 

The SEAC computer of the National Bureau of Standards had the 



PROGRAMMING AND CODING 2-241 

tracing ability built in as a hardware design feature. The computer could 
be operated in the "automonitor mode" and would print out the instruction 
counter, the instruction, and the contents of the three operand registers. 
It would do this optionally on each instruction or on each instruction 
designated as a breakpoint by a digit in the instruction. This feature has 
not been included on later machines; the interpretive program is always 
used. However, the IBM 704 does have the trapping mode defined in 
Sect. 6, which causes a transfer of control to a standard cell on each transfer 
of control instruction. 

Most practical tracing programs involve techniques of decision-making 
on the part of the program to trace: (a) only certain instruction regions, 
(b) only certain specified types of operations (for example, transfers of 
control), and (c) only operations with certain addresses, etc. 

Tracing may be done on computers with any address structure, although 
the example here is of a single-address instruction. 

EXAMPLE. Use of the Intercom system on the Bendix G-i5. The Bendix 
G-15 computer is a binary computer with 2160 words in its main storage 
and 16 words on a rapid-access magnetic drum loop (see Ref. 143). This 
computer has been designed to use a minimum of circuitry, with the logical 
structure based on transfers to and from the storage. For this reason, 
although the address system in an instruction resembles a three-address 
system, it is more complex in that it is described in terms of a source and 
timing number, destination and timing number, and next command 
timing number. The "sources" and "destinations" in many cases play the 
part of operations in the more common instruction logic. 

To make programming for the G-15 easier, an interpretive routine has 
therefore been written that simulates a decimal, floating point computer 
with index registers (see Ref. 56 y. The simulated machine has available 
to it 864 locations as the "interpretive memory." An accumulator, or 
"A Register," is simulated by the interpretive routine. This holds one 
number and is used in a fashion analogous to the accumulators of the IBM 
704, Univac 1103A, and IBM 650 computers already described. 

Index Registers. There are eight sets of three-digit index registers in the 
Intercom system. Each set contains the following: 

1. B register. This register stores a number, as usual, to be added to 
the address of an instruction at the time of performance. 

2. D register. This register is used to store a number which may be 
added to the contents of the corresponding B register. 

3. L register. This register contains a "limit" to which the B register 
may be compared in determining whether or not to transfer control. 

Numbers. All numbers n are entered into the computer in a form 
equivalent to: 

n = N X lOt-50, 



2-242 DIGITAL COMPUTER PROGRAMMING 

where N is a five-digit decimal fraction between 0.10000 and 0.99999 and 
t is a two-digit decimal integer 

12 ~ t ~ 88 

A number is therefore represented by the seven-digit couple (t.N) with a 
decimal point separating. Arithmetic operations are on six-digit numbers; 
results are rounded to five digits upon being typed out. 

Instructions. Instructions are written in a six-digit single-address form, 
with the first two digits an operation code. The next three digits represent 
a location in the interpretive memory from 000 to 863. The sixth digit is 
ordinarily 0, except when one of the corresponding index register sets 
(B i , D i , L i ), where i = 1, ... , 8, is to be involved in the instruction either 
as an address modification or as an operand. 

The instruction list of the Intercom system is given in Table 39. Instruc­
tions are normally taken in sequence from storage. 

Of these instructions, the arithmetic operations in the first group corre­
spond to the usual standard single-address instructions. The five oper­
ations affecting only the accumulator include four functions that are not 
usually found in a computer instruction code, and are here available 
because they are actually performed by closed subroutines in the basic 
G-15 language. 

The "marked transfer" and "return transfer" instructions allow auto­
matic entry to and return from subroutines coded in the Intercom language. 

The index register instructions are standard except for the following: 

Instruction 
Decrement 

Increment 

Address 
B i , n 

if 
if 

if 
if 

Explanation 
(Bi) - (Di) ~ Bi 
(Bi) ~ (L i ), n ~ IC 
(Bi) < (Li), (IC) + 1 ~ Ie 
(Bi) + (Di) ~ Bi 
(Bi) ~ (L i ), n ~ IC 
(Bi) > (L i ), (IC) + 1 ~ IC 

The "replace" index register instruction allows the contents of any index 
register to be transferred into any other index register. 

The output operations, in order to save computer time, allow informa­
tion to be output in a standard three numbers per line format and to be 
"stacked" in an output stack, so that they can be typed out in a group. 
Typing of a fixed point number allows integer labeling of output. 

The following operations are improper: 
1. Division by zero. 
2. Log of zero. 
3. Log of negative number. 
4. Square root of negative number. 
5. Exponential of a number greater than 128 In 2. 



PROGRAMMING AND CODING 2-243 

6. Any arithmetic operation resulting in a number whose absolute value 
is greater than 2128. 

7. When an improper order is sensed by the machine, "xxxxxxx" is 
typed out, the bell rings continuously for about 12 seconds and computa­
tions are halted. The A register will contain a meaningless result. When 
the compute switch is reset to "Go," computations are resumed with the 
order that is next in sequence. 

TABLE 39. INTERCOM INSTRUCTION LIST 

Arithmetic operations 

Operations involving a memory position and the A register 
49 Clear and subtract 
4v Clear and add 
4z Divide 
59 Subtract 
5v Add 
5x Store 
67 Multiply 

Operations involving the A register only 
07 Square root 
11 Natural logarithm 
13 Absolute value 
16 Exponential 
29 Negate 

Transfers of control operations 
Ov Transfer if A register is negative 
10 Transfer if A register is non-negative 
19 Unconditional transfer 
42 Halt 
43 Marked transfer (unconditional) 
44 Return transfer (unconditional) 

Operations on index registers 
3x Set B register 
40 Set D register 
41 Set L register 
57 Decrement B register 
65 Increment B register 
1y Replace index register 

Output operations 
1z Type and tab 
20 Type and carriage return 
21 Stack 
22 Type the stack 
23 Space 

, 24 Type fixed point number 
33 Ring bell 

Input operations 
09 Read punched tape 



2-244 DIGITAL COMPUTER PROGRAMMING 

COIn parisons 

It is useful to compare the Intercom system with the other interpreter 
described, the EASIAC (see Sect. 6). The EASIAC, which simulated a 
three-address instruction logic on a three-address logic machine, also had 
a large number of index registers. Since the MIDAC, its "host" machine, 
had a large storage (6, 144 words of secondary storage), larger EASIAC 
programs were possible, but the EASIAC storage was also decreased over 
the original MIDAC storage. 

Compared with the Intercom system, which uses almost 1300 locations, 
out of about 2200, the final stages of the IT compiler on the IBM 650 uses 
only about 400 out of 2000 locations to accomplish the same features. This 
difference is due to the noninterpretive nature of the IT compiler. The 
speed of EASIAC and Intercom, although they can perform address modi­
fications rapidly and quite efficiently, is limited by the interpretation cycle 
which causes a drop in speed, with the need for floating point subroutines, 
that may be as much as an order of magnitude. 

The following conclusions may be drawn from the discussion: 

1. Interpreters may be very useful in simulating another computer 
on an original host machine. 

2. Interpretation will slow down speed of operation markedly. 
3. The use of a preliminary translator with closed subroutines will 

generally produce much more effective results (but note the exceptions 
below under Recursive Languages, Sect. 15). 

15. AUTOMATIC PROGRAMMING: RECURSIVE LANGUAGES 

Recursive Use of Subroutines 
One of the most powerful techniques that has been developed for using 

digital computers is that first attempted by Newell, Simon, and Shaw 
(Ref. 143). The basis of their technique is to free the programmer from all 
dependence upon machine characteristics, including storage allocation. 
They have made use of the concept of indirect addressing (described in 
Sect. 11) to build upon an "associative memory." The latter is a list-like 
structure that allows one or more "lists" (the counterpart of the usual 
programming "region") to be built up in storage-added to or deleted from, 
either at the ends or in the middle-without the need for the user's keeping 
track of any storage positions. This, in a sense, is an extension of the 
symbolic or floating address technique from instruction addresses to data 
addresses, and moreover it allows the usual program changes of deletion 
and insertion to be made during actual performance of the problem, rather 
than merely before its operation. 



PROGRAMMING AND CODING 2-245 

The first problem that this group of researchers attacked was that of 
instructing a machine to play chess. This was later changed to proof of the 
first listed theorems of the propositional calculus in the Principia ill athe­
matica (Ref. 105). The chess player's performance, as has been shown by 
de Groot (Ref. 152), is a recursive one, in that he will attack a portion of the 
problem, move onward through a chain of successive subproblems, and 
then return to the original problem as a result of some decision made in the 
subproblem investigations, proceed once more to the subproblems, etc. 

A similar performance was discovered in the behavior of human beings 
attempting to solve the theorems of the propositional calculus. The need 
is apparent, in such problems, to have available complete facility for con­
struction of a completely flexible hierarchy of subroutines, so that anyone 
may call on any other (even one above it in the chain) without loss of 
control of the process, and without introduction of any of the standard 
logical paradoxes. 

To a certain extent this has been realized in the Holt and Turanski GP 
compiler (Ref. 149); but without indirect addressing, associative memory 
features of the IPL (Interpretive Programming Language) of Newell, 
Simon, and Shaw, use of the techniques on any machine is limited because 
of storage assignment and reassignment requirements that must be met 
during the course of performance. The IT, Unicode, and Fortran compiler 
languages (Sects. 11 and 12), which allow subscripting, are general enough 
to permit such a recursive subroutine description. As Schecher (Ref. 91) 
has shown, one way of handling subroutines in a recursive fashion is for each 
subroutine to supply all variables and return addresses to the subroutine 
one level in the hierarchy above or below it. A "level index" (j in Fig. 26, 
see Sect. 11) must be kept, which is increased at each time of subroutine 
entry and decreased at each time of subroutine exit. 

Figure 26, Sect. 11, describes a problem involving three subroutines, 
entered at a, "I, and €, and controlled by a master routine. If each sub­
routine, as a closed type, is required to return to the level from which it was 
entered, and if enough storage space is provided so that the variables can be 
stored for every entry of a subroutine, then this process will work. Since 
in such a problem as that of Fig. 26 the knowledge of how many times a 
subroutine is to be performed is unavailable at the start of the problem, 
some device such as the associative memory described above must be used 
to guarantee that storage is used to the fullest. Similarly, the computer 
can be programmed to check the time that has occurred in any area of the 
problem so that it can stop that portion whenever time is up. 

The problem in Fig. 26 is not an actual one, but is typical of the type of 
problems involved with this technique. A flow diagram, command com­
piler language, or machine code is necessary for description of such prob-



2-246 DIGITAL COMPUTER PROGRAMMING 

lems. Whether this problem ever terminates or not is dependent on the 
three functions f(ah bh Cj), g(aj, bj, Ci), and h(aj, bh Cj) and the values 
read in, and in the general case cannot be predicted. 

lb. LOGICAL PROGRAMMING 

The standard uses for a digital computer are in computation of problems 
in numerical analysis. However, binary machines can be used for many 
nonarithmetical problems involving logical predicates. (See Chap. 11.) 
As an example of such problems the checker game first analyzed by Strachey 
(Ref. 15) and later improved by Samuel in a program for the IBM 704 
makes use of machine words with binary zeros and ones representing the 
absence or presence of checker men on the board. This technique has been 
used by Ulam and Kister (Ref. 114) also, apparently, in their first try at a 
solution of a game of chess. 

Below is given a simple problem, that of evaluation of truth tables in the 
propositional calculus, along with an explanation of the instructions avail­
able on four binary computers (Univac Scientific 1103A, IBM 701 and 
704, and MIDAC). . 

Problem in the Propositional Calculus. The following statement 
is drawn from Copi (Ref. 115, p. 52, problem 24). 

"If old Henning wants to retire, then he will either turn the presidency 
over to his son or sell the business. If old Henning needs money then he 
will either sell the business or borrow additional capital. Old Henning will 
never sell the business. Therefore if he neither turns the presidency over 
to his son nor borrows additional capital, then he neither wants to retire 
nor needs money." 

With the notation R, T, S, N, B, and the symbols:) (material implica­
tion), + (or), . (and), and - (negation), one has 

[R :) (T + S)] . [1Y :) (S + B)] . [S] :) [( T . B) :) (R· N)] 

One would like to know whether the statement is true or false. The prob­
lem can easily be programmed to be solved on the computer. The truth 
tables for all possible combinations of R, T, S, N, B are stored by columns 
(5 columns of 32 bits each) in a binary machine. Starting at the innermost 
parenthesis, one may perform operations on columns in pairs and the re­
sults stored. Working from the inner parenthesis out by such two-valued 
functional procedures, one finally obtains the truth value of the statement 
for all possible combinations. 

If the computer operations do not permit or and material implication, 
for example, they can be replaced as follows: 

A+B=A.j3 
-

A:)B=A+B=A·B=A·B 



PROGRAMMING AND CODING 2-247 

Logical Programming for the Univac Il03A 

The (u) will be represented by Uj,n, where j will indicate the digit (j = 
0, .. " 35) and n, the time of operation of the instruction, with a similar 
notation for v. 

Vj,n == 1 will indicate that all digits (j = 0, .. " 35) of V contain a 
binary one. 

Uj,n == ° will indicate that all digits (j = 0, .. " 35) of U contain a 
binary zero. 

Five Univac 1l03A instructions are particularly pertinent for use with 
the basic two-valued logical functions: 

27. Controlled Complement (CC). Replace AR with (u) leaving 
AL undisturbed. Then complement those bits of (AR) that correspond to 
ones in (v). Then replace (u) with An. 

Truth Table 

Ui.n V i.n U i.n+l 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

Result: 

U i.n+1 == (U in t= Yin) == (jin' Yin + U in · Yin (j = 0, .. ,,35), 

(j = 36, .. " 71), 

(j = 0, .. " 35). 

51. Q-Controlled Transmit (QT). Form in A the number L(Q) (u). 
Then replace (v) by (AR). (L(Q) (u) has leftmost bits zero and righthand 
bits given by individual bit product.) 

A Li •n+1 == ° (j = 0, .. ,,35), 

A R ;.n+l == U in · Qin (j = 36, .. ,,71), 

V i .n+1 == U in . Qin (j = 0, .. ,,35). 

53. Q-Controlled Substitute (QS). Form in A the quantity (Q) (u) 
plus L(Q)' (v). Then replace (v) with (AR). The effect is to replace 
selected bits of (v) with the corresponding bits of (u) in those places corre­
sponding to l' s in Q. 

A L ;.n+l == 0, 

AR;.nH == V in' Qin + U in · Qin 

V i.n+l == Vin·Qin +Uin·Qin 

(j = 36"",71), 

(j = 0, .. " 35). 



2-248 DIGITAL COMPUTER PROGRAMMING 

Special Case I 

If U = 1, 

A Ri.n+1 ==(Vin · Qin) + (1 . Qin) 

== V in . Q in + Q in 

(j = 36, .. " 71) 

== Q in + V in . Q in 

== (Qin + Yin) . (Qin + Qin) 

== (Q in + V in) . 1 

== Qin + Yin. 

(Distributive law) 

Therefore if U = 1 (or = Q), the Q-controlled substitute yields the logical 
or. 

Special Case II 

If V = 1, 

A Rj •n+1 == 1 . Qin + U in · Qin 

== Q in + U in . Q in 

== (Qin + U in ) . (Qin + Qin) 

== (Qin + U in ) • 1 

== Qin + U in 

== Qin :J U in by definition (j = 0, .. " 35). 

Therefore if V == 1 (or Q), then Q-Controlled Substitute yields the logical 
material implication. 

II. Translllit Positive (TP). Replace (v) with (u) 

(j = 0, .. ,,35). 

12. Translllit Negative (TN). Replace (v) with the complement 
of (u). 

(j = 0, .. ,,35). 

If one therefore performs (in some cases) proper preliminary storage of 
o and 1, one can express all the logical operations :J , . , + , -, ¢ im­
mediately with at most two instructions. 

Logical Progralllllling for the IBM 704 

Unlike the Univac 1103A, the IBM 704 has one instruction for each of 
the common logical operations and, or, and not. In the description below 
digits P of the accumulator and S of the storage location are labeled digit 
zero (0). Digits Sand Q of the accumulator are labeled -2 and -1 
respectively. 



PROGRAMMING AND CODING 2-249 

AND to Acculllulator ANA Y. Each bit of the C(AC)P,l_35 is 
matched with the. corresponding bit of the C(Y)S,l-:35, the C(AC)p being 
matched with the C(Y)s. When the corresponding bit of both the AC and 
location Y is a one, a one replaces the contents of that position in the AC. 
When the corresponding bit of either the AC or location Y is a zero, a 'zero 
replaces the contents of that position in the AC. The C(AC)s,Q are 
cleared. The C (Y) are unchanged. 

(j = 0, .. " 35), 

Aj,n+l == ° (j = -2, -1), 

Yj,n+l == Yin (j = 0, .. ',35). 

AND to Storage ANS Y. Each bit of the C(ACh,1-35 is matched 
with the corresponding bit of the C(Y)S,l-35, the C(AC)p being matched 
with the C (Y)s. When the corresponding bit of both the AC and location 
Y is a one, a one replaces the contents of that position in location Y. When 
the corresponding bit of either the AC or location Y is a zero, a zero replaces 
the contents of that position in location Y. The C(AC) are unchanged. 

Ai,n+l == Ain (j = 2, -1,0, .. ,,35), 

(j = 0, .. ',35). 

OR to Acculllulator ORA Y. Each bit of the C(AC)P,1_35 is 
matched with the corresponding bit of the C(Y)S,l-35, the C(AC)p being 
matched with the C (Y)s. When the corresponding bit of either the AC or 
location Y is a one, a one replaces the contents of that position in the AC. 
When the corresponding bit of both the AC and location Y is a zero, a zero 
replaces the contents of that position in the AC. The C (Y) and the 
C(AC)s,Q are unchanged. 

Ai,n+l == Ain + Yin (j = 0, .. ',35), 

Ai,n+l == Ain 

Yi,n+l == Yin 

(j = -2, -1), 

(j = 0, .. " 35). 

OR to Storage ORS Y. Each bit of the C(ACh,1_35 is matched 
with the corresponding bit of the C(Y)S,l-35, the C(AC)p being matched 
with the C (Y)s. When the corresponding bit of either the accumulator or 
location Y is a one, a one replaces the contents of that position in location 
Y; when the corresponding bit of both the AC and location Y is a zero, a 
zero replaces the contents of that position in location Y. The C(AC) are 
unchanged. 

(j = -2, -1,0, .. ',35), 

(j = 0, .. " 35). 



2-250 DIGITAL COMPUTER PROGRAMMING 

COIllpleIllent Magnitude COM. All ones are replaced by zeros 
and all zeros are replaced by ones in the C(AC)Q,P,l-35' The AC sign is 
unchanged. 

A i ,n+l == Ai,n 

A i ,n+l == Ain 

(j = -1,0"",35), 

(j = -2). 

Logical PrograIllIlling for the IBM 701 

The IBM 701 has easily available only three logical operations particu­
larly pertinent for use with the basic two-valued logical functions. 

Extract Y EXTR. 

(j = 0, .. ,,35), 

(j = 0, .. ·,35). 

Add Y ADD. 
Subtract Y SUB. 
If position Y contains the binary number -.111 ... 1 (all ones), then if 

the accumulator is positive or positive zero, addition of (Y) will give the 
negation of ACC in all 36 positions. If the accumulator is negative or 
negative zero, then subtraction of (Y) will give the negation of ACC in all 
36 positions. 

If Ao == 0, then A i ,n+l == Ain after ADD Y. 
If Ao == 1, then A i ,n+1 == Ajn after SUB Y. 

Logical PrograIllIlling on the MIDAC 

On the MIDAC, a 44-bit computer built at the University of Michigan 
as a modification of the National Bureau of Standards SEAC design, there 
exists a special three-address instruction that combines several of the 
logical operations in one machine order. The "extract" operation is 
defined as follows: 

ex a. ~ 'Y. Whenever {3 has a digit "one," replace the corre-
sponding digit of 'Y by the digit of a; otherwise, leave 'Y unchanged. The 
truth tables for this instruction could be constructed as follows. 

a {3 'Yn-l "In 

0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 



·PROGRAMMING AN.D CODING 

Forming the Boolean equivalent of the table, one gets 

'Yn == Ii . 13 . 'Yn-l + a . i3 . 'Yn-l + a . {3 • 'Yn-l + a . {3 • 'Yn-l 

== (Ii + a) . i3 . 'Yn-l + a . a' ('Yn-l + 'Yn-d 

== i3 . 'Yn-l + a . {3. 

2-251 

N ow, if the 44-bit word (ignoring sign) a is given the value of all "one's," 

'Yn == 13 . 'Yn-l + 1 . {3 

== i3 . 'Yn-l + {3 

== {3 + 'Yn-l· 

On the other hand, if 'Yn-l == 1, then 

'Yn == 13 • 1 + a . {3 == i3 + a . {3 == 13 + a == (3 :) a. 

Certainly, if 'Yn-l == 0, then 

'Yn == a . {3. 

Finally, if 'Yn-l == 1 and a == 0, then 

'Yn == i3 . 1 + ° . {3 == i3. 
Thus one instruction contains and, or, not, and material implication. 

17. MICROPROGRAMMING 

Many programmers have thought that the technique of programming 
should allow greater internal control by the programmer of the detailed 
behavior of the computer. This direction of procedure would move the 
programmer in the direction of the logical designer, rather than in the 
direction of the numerical analyst and mathematician as the use of trans­
lators and compilers had been carrying him. At a meeting of computer 
designers and programmers at the Massachusetts Institute of Technology, 
Cambridge, Massachusetts, in 1956 (proceedings not published), it was 
agreed to call this technique, still not clearly defined, microprogramming. 
Several formal definitions of this technique were proposed, two of which 
are listed. 

1. Wheeler of Cambridge University described the technique used in 
the construction of the EDSAC II there as a useful example for program­
mers. This machine's designers had used a magnetic core storage matrix 
of large size as the heart of the c~mtrol element. By passing leads through 
various cores in sequence, the standard instruction code of the computer 
was being developed. 

2. Others proposed an extension of the Cambridge technique to allow 
continuous control by the programmer of the computer's instruction code 
or at least a subset of it. This would be accomplished by transferring 



2-252 DIGITAL COMPUTER PROGRAMMING 

certain words (equivalent in meaning to the wiring sequence used with the 
EDSAC II) to specified storage locations in the control unit of the com­
puter. These would, in essence, then change the actions and time sequence 
of a given instruction. By this technique a computer could theoretically 
be changed quickly from single to double precision arithmetic or to floating 
point. The input-output instructions could be changed to suit the problem 
at hand. 

The TX-O Developlllen t 

Hardware development on microprogramming has been done by a group 
including Clark, Farley, Gilmore, Peterson, and Frankovich (Ref. 39) in 
connection with the instruction logic for the TX-O, an experimental com­
puter designed at the Lincoln Laboratory of the Massachusetts Institute 
of Technology. This computer was constructed to test a large 256 X 
256 (65,536-word) magnetic core storage system. The logical design, 
therefore, was simple in that it had only four operations in two bits of 
the standard 18-bit word. The remaining 16 bits of each word were used 
to address anyone of the 216 storage positions. 

The computer, in addition to the standard program counter and instruc­
tion register, contains intervention registers, as well as four internal 
registers which can be used in the arithmetic process: 

1. Memory buffer register (MBR) with 18 bits plus one parity check bit. 
2. Accumulator (Ae) with 18 bits, used to store results of numerical 

operations as well as an input-output buffer. It is constructed as a one's 
complement ring adder modulo 218, with no overflow alarm. 

3. Memory address register (MAR) with 16 bits, which selects informa­
tion in storage and "operate class commands." (See below.) 

4. Live register (LR) with 18 bits, a high-speed flip-flop rapid access 
register. 

Three of the four instructions are similar to those used in any single­
address instruction code: 

Sto X. Replace the contents of register X with the contents of AC. 
Leave AC unchanged. 

Add X. Add the word in register X to the contents of the AC and leave 
the sum in AC. 

Trn X. If the sign digit of the accumulator (ACo) is negative (i.e., a 
one) take the next instruction from register X. If the sign is positive 
(i.e., a zero) proceed as usual. 

The one unusual instruction of this computer which may be considered 
as the first announced true microprogramming instruction is the following: 

Opr X. Execute one of the operate class commands indicated by the 
number X. 



PROGRAMMING AND CODING 2-253 

The operate class commands all have the same binary combination in 
the two-bit instruction position, but the remaining 1G bits selected 21 
possible microoperations dependent upon the bit combination. Each 
micro operation has a specific time pulse during control on which it was 
scheduled to operate. Thus a given sequence of address bits in any "opr" 
instruction gives a unique sequence of microoperations. 

The basic microoperations, in time pulse sequence, with the octal address 
corresponding, include: 

At pulse time 0.8: 
CLL. Clear the left nine digits of AC-100,000 (octal). 
CLR. Clear the right nine digits of AC-40,000 (octal). 
lOS. In-Out Stop. Stop machine so that an in-out command (spec­

ified by bits G, 7, 8 of the MAR) may be executed-20,000 (octal). 
P7H. Punch holes 1-6 in punched tape from AC positions 2, 5, 8, 

11, 14, 17, with an added seventh hole-7000 (octal). 
P6H. Same as previous, no seventh hole-GOOO (octal). 
PNT. Print on typewriter one six-digit character from positions 2, 5, 

8, 11, 14, 17---":4000 (octal). 
RIC. Read one line of punched tape into AC positions, 0, 3, 6, 9, 12, 

15-1000 (octal). 
R3C. Read three characters into 2,5,8,11,14,17; 1,4,7,10,13,16; 

and 0, 3, 6, 9, 12, 15 of AC-3000 (octal). 
DIS. Intensify a point on oscilloscope output with one's complement 

x coordinate given by AC digits 0-8 and one's complement y coordinate 
given by AC digits 9-17-2000 (octal). 

At pulse time 1.1: 
PEN. Read light pen flip-flops (set by viewing the intensity of the 

output oscilloscope at a point by a light pen including a phototransistor as 
its penpoint) into ACo and AC1-100 (octal). 

TAC. Insert a one in each digital position of the AC wherever there is a 
one in the corresponding position of the T AC (I8-toggle switch accumu­
lator)-4 (octal). 

A t pulse time 1.2: 
COM. Complement every digit in AC-40 (octal). 
AMB. Store contents of AC in MBR-1 (octal). 
TBR. Store contents of TBR in MBR-3 (octal). 
At pulse time 1.3: 
MLR. Store the contents of MBR in LR-200 (octal). 
LMB. Store the contents of the LR in MBR-2 (octal). 
At pulse time 1.4: 
PAD. Partial add AC to MBR, that is, for ACarter == {(ACberore ~ 

MBR)-20 (octal)}. 



2-254 DIGITAL COMPUTER PROGRAMMING 

SHR. Shift AC right one place (multiply by 2-1 )-400 (octal). 
CYR. Cycle AC right one position modulo 18 (ACn -7 ACn+l modulo 18) 

-18 (ACn -7 ACn+l modulo 18)-600 (octal). 
At pulse time 1.7: 
CRY. Carry partial add (see above) the 18 digits of the AC to the 

corresponding 18 digits of the carry (shifted left one place modulo 18, 
with an end-around carry included as usual with the one's complement 
addition)-10 (octal). 

Macroinstructions from Microinstructions. Many macroinstruc­
tions can be constructed from properly sequenced microinstructions. For 
example, an instruction CYL (cycle left) can be represented as 

CYL == opr 31 
since opr 31 combines 

AMB (1.2), PAD (1.4), and CRY (1.7) 

in that order. Cycle left will perform a sequence analogous to CYR listed 
above. The address 31 (octal) is obtained by the logical disjunction of the 
bits in the three octal addresses 1, 20, and 10. 

Among the list of combinations which were found to be useful in forming 
macrooperations were many useful ones available on more standard 
computers plus others that ordinarily would not have been in the hardware. 
A translation program was written to translate these operations, considered 
as ordinary instructions, into sequences of operate instructions intermixed 
with the three standard instructions. Among the list of instructions found 
to be useful, which continued to grow with the u~e of the computer, were 
the following: 

0.8 0.8 
CLL + CLR = apr 140,000 = Clear the AC (CLA). 

1.2 1.4 1.7 
AMB + PAD + CRY = apr 31 = Cycle the AC left one digital position (CYL). 
0.8 0.8 1.2 

CLL + CLR + COM = apr 140,040 = Clear and complement AC (CLC). 
0.8 0.8 
lOS + DIS = apr 22,000 = Display (this combination was included as a 

reminder that with every in-out command the lOS must be 
included) (DIS). 

0.8 0.8 0.8 
lOS + CLL + CLR = apr 160,000 = In out stop with AC cleared. 
0.8 0.8 1.4 
lOS + P7H + CYR = apr 27,600 = Punch 7 holes and cycle AC right. 
0.8 0.8 1.4 
lOS + P6H + CYR = apr 26,600 = Punch 6 holes and cycle AC right. 



PROGRAMMING AND CODING 2-255 

0.8 0.8 0.8 0.8 
lOS + CLL + CLR + P6H = apr 166,000 = Clear the AC and punch a blank 

space on tape. 
0.8 0.8 0.8 
lOS + PNT + CYR = apr 24,600 = Print and cycle AC right. 
0.8 0.8 1.2 104 
lOS + P7H + AMB + PAD = apr 27,021 = Punch 7 holes and leave AC 

cleared. 
0.8 0.8 1.2 104 
lOS + P6H + AMB + PAD = apr 26,021 = Punch 6 holes and leave AC 

cleared. 
0.8 0.8 1.2 104 
lOS + PNT + AMB + PAD = apr 24,021 = Print and leave AC cleared. 
0.8 0.8 0.8 

CLL + CLR + RIC = apr 141,000 = Clear AC and start photoelectric tape 
reader running (notice no lOS, which means computer 
has not. stopped to wait for information). 

0.8 1.2 104 1.7 
RIC + AMB + PAD + CRY = apr 1,031 = Start petr running and cycle AC 

left. 
0.8 004 

RIC + CYR = apr 1600 = Start petr running and cycle right. 
0.8 0.8 0.8 0.8 

CLL + CLR + lOS + R3C = apr 163,000 = Clear AC, read 3 lines of tape. 
0.8 0.8 0.8 0.8 

CLL + CLR + lOS + RIC = apr 161,000 = Clear AC and read one line of 
tape. 

0.8 0.8 0.8 0.8 104 1.7 
CLR + CLR + lOS + RIC + PAD + CRY = apr 161,031 = Read 1 line of 

tape and cycle AC left. 
0.8 0.8 0.8 0.8 104 

CLL + CLR + lOS + RIC + CYR = apr 161,600 = Read one line of tape and 
cycle right. 

0.8 0.8 1.1 
CLL + CLR + TAC = apr 140,004 = Put contents of TAC in AC. 

104 1.7 
PAD + CRY = apr 30 = Full-add the MBR and AC and leave sum in AC. 

0.8 0.8 1.3 104 
CLL + CLR + LMB + PAD = apr 140,022 = Clear the AC, store LR con­

tents in memory buffer register, add memory 
buffer to AC, i.e., store live register contents 
in AC (LAC). 

1.2 1.3 
AMB + MLR = apr 2.01 = Store contents of AC in MBR, store contents of 

MBR in LR, i.e., store contents of AC in LR (ALR). 
1.3 104 

LMB + PAD = apr 22 = Store contents of LR in MBR, partial add AC and 
MBR, i.e., partial add LR to AC (LPD). 



2-256 DIGITAL COMPUTER PROGRAMMING 

1.3 
MLR = apr 200 = Since MLR alone will have a clear MBR, this is really clear 

LR (LRO). 
1.3 1.4 1.7 

LMB + PAD + CRY = apr 32 = Full-add the LR to the AC (LAD). 
0.8 0.8 1.3 1.4 

CLL + CLR + TBR + PAD = apr 140,023 = Store contents of TBR in AC. 

An Exalllple of a Progralll. As an example of a program (coded with 
octal addresses) and using the microprogramming technique, an input 
program that reads in a following program in standard binary form, three 
6-bit paper tape characters, making up an 18-bit word, is shown in Table 40. 
This routine is automatically punched out by the translation program at 
the head of the binary output tape. 

The basic read in mode of the TX-O computer allows read in of this 
standard input routine by merely pushing the machine's Read In button, 
which automatically reads the input routine in and automatically transfers 
control to octal location 1777 44. Words of the succeeding binary program 
are punched on the tape in a block whose first word is a store instruction 
(stoW 1) which contains the address WI into which the block is to be stored. 
The second word is the complement of a store instruction (stoWn ), where 
W n is the address of the nth (last) word in the block. Following this comes 
a sequence of binary words (the progra:in), terminated by a word (sum 
check) containing the complement of the sum of all the preceding words in 
the block including the first two control words. 

The starting instruction for this block is given in the address of an 
instruction following the last block of words in a program to be input. 
If that instruction is add Z (Z the starting address), the computer stops 
before transferring control. If the instruction is trn Z then the transfer of 
control is immediate. 

The three microprogrammed instructions used in the input routine are: 
Opr 160,000 - CLL + CLR + lOS + R3C. Clear AC and read three 

lines on the paper tape, cycling each time so that they are assembled as an 
18-bit word in AC. 

Opr 140,000 - CLL + CLR (CLA). Clear both halves of the accumu­
lator. 

Opr 30,00o-Halt. 



.T ABLE 40. INPUT ROUTINE FOR THIJ TX-O C01\lPUTER 

177741 
;>177742 

Temporary storage Partial, sum of block 

[ 

177743 
add'177773' If the preceding block's sum is 
trn 177772 ------, correct, go on to next block O!' 

Enter >177'744 
177745 

opr 163,000 (R3C) 
sto 177756 ------, 

177746 trn 177756 

177747 add 177774 
177750 trn 177775 __ -I 

177751 opr 163,000 (R3C) 
177752 sto 177777 

177753 add 177756 
177754 sto 177741 

177755 opr 163,000 (R3C) 
177756 (sto vVi) 

(add Z) (Not used) 
(trn Z) <E('-------i 

177757 add 177741 
'177760 sto 177741 
177761 opr 140,000 (CLA) 
177762 add 177756 
177763 add 177773 
177764 sto 177756 
177765 add 177777 
177766 trn 177755") 

177767 opr ,163,000 (R3C) 
177770 add 177741 
177771 trn 177742") 

177772 opr 30,000 (HLT)...i::-E-

177773 1 
177774 200,000 
177775 sto 177777 ~"'------' 
17777f} opr 30,000 (HLT) 

177777 trn Z (or the comple­
ment of the address of 
the last, word in a 
block). 

transfer control word. If not, 
go to 177772 and stop computer. 
Read in the first word of n. block 
or the transfer control word 
(add Z or trn Z) ,and store it in 
register 177756. 
Is it st vV 1, add Z, or trn Z? If 
trn Z go directly to register 
177756. 
I t is either, st vV 1 or add Z; ad'd 
200,000 to the AC. If it was 
add Z, the AC is now neg. 
(= trn Z), so go to 177775. 
Read in the complement of the 
address of the last word in the 
block and store it in the register 
177777. 
Add the first two control words 
of the block together and store 
in 177741 to initiate the partial 
sum. 

Read in the ith word and store 
it in its assigned memory loca-
tion. ' 
Add the ith word to the partial 
sum of the block. 
Index the address section of the 
register 177756 by one. 

Has the nth word been tramJ­
ferred to storage? If AC is 
negative-no, return to 177755. 
Read in the sum of the block. 
Is it the same as the sum in 
register 41?, If it is, AC = 
minus zero, go to 177742. If it 
is positive ... stop the com­
puter. The sum checkis wton~. 
Constants 

,The last block has been stored 
and the transfer control word 
was add Z. Put trn Z in'regis­
ter 177777 and stop the com-
puter. ' 
Upon restarting, transfer con­
trol to register Z. 



2-258 DIGITAL COMPUTER PROGRAMMING 

18. PROGRAMS FOR MAINTENANCE OF EQUIPMENT 

A very useful type of programming is used to test a computer, either 
in the construction and design stages or later during operation. This type 
of program has been discussed by Graney (Ref. 44) and Brock and Rock 
(Ref. 16). 

Such maintenance programs must be used periodically with or without 
marginal testing (see Chap. 13). Acceptance tests are those evolved for 
testing a computer in its earliest stages, before it has ever been used in 
productive operation. 

Among the criteria that have been stressed for programs to do these 
two jobs are the following. 

1. Severe operating conditions for the computer must be produced. 
2. A sufficiently large set of random (actually pseudo random) num­

bers must be operated on and the results verified, so that a satisfactory 
sampling of machine conditions will have been tested; or, alternatively, 

3. Elements of the computer must assume all possible states and be 
checked for correctness. 

Regular maintenance programs are usually bootstrap programs stored 
originally in a small, pretested area of storage (for example, on 'Vhirl­
wind I, in a given bank of hand switches for storage) that call in the next 
portion of the program which tests a wider area of machine structure 
before proceeding. Usually the simplest arithmetic, control, and storage 
operations will be first verified. After this a storage summing operation 
will be used to check a larger portion of storage. Automatic procedures 
are usually available that will print out a notation of a failing storage 
position or a failing machine operation. 

After the main storage unit has been satisfactorily checked, then the 
more elaborate instructions may be verified, including secondary storage 
(drums and magnetic tapes): 

Input-output equipment using punched paper tape or punched cards 
cannot be verified automatically, and with its mechanical components is 
a major source of failures. Generally, information is printed out and 
then read back in after having been physically handled by human beings. 

The presence of automatic checking devices such as parity checks, for­
bidden character checks, and duplicate arithmetic checks, and casting out 
nines (see Chap. 13), built into the machine, can be useful, but they also 
cause delays in the automatic performance of such checking, since upon 
finding its own errors the computer usually stops. This requires human 
intervention and the difficult task of finding the actual error. Automatic 
recovery, by which upon discovering an error, a computer notes it, cor­
rects it, and then proceeds, has been used mainly on magnetic tape han-



PROGRAMMING AN.D CODING 2-259 

dling equipment. While maintenance testing programs built to use such 
features are more difficult to program, they improve efficiency of the 
equipment. 

Random numbers for such programs may be generated by the tech­
niques discussed by Moshman (Ref. 74) for decimal number systems. 

19. PROGRAMMING WITH NATURAL LANGUAGE 

Language Commands. The possibility of programming digital com­
puters to respond to simple English commands has already been realized 
on a low level by a group working under Hopper (Ref. 98) which pro­
duced the Flow-matic compiler for the Univac I and II. Important 
advances in this field have come from linguistic studies, either in the field 
of mechanical translat.ion (see Ref. 120 and Chap. 11), or in linguistic 
structure of natural languages. The results quite surprisingly correspond 
to the analyses described for the Fortran and IT compilers (Ref. 144). 
The most thorough such analysis has been described in a series of papers 
by Chomsky (Refs. 26-28). Chomsky follows the pattern first laid out 
by Post (Ref. 84) and described in Rosenbloom (Ref. 88). 

Language Decomposition. Appendix II of Ref. 26 lists a set of eleven 
basic phrase structure rules for a set of productions for decomposing 
English sentences into constituent parts. These must in certain cases be 
preceded in a certain order by a set of fifteen more transformations, 
involving such relationships as the passive voice, interrogat.ive mood, 
conjunctions, gerunds, and participles. To these morphemic rules would 
be adjoined a set of phonomorphemic rules relating to the changes in word 
structure caused by phonetic rules of performance of English-speaking 
persons. 

A sentence decomposition in the earliest stages of this analysis structure 
is similar to the tree structure developed for the simpler algebraic­
programming languages already described (see Sect. 12). For example, 
the sentence "The man hit the ball," when decomposed into constituents 
such as noun phrase (NP), verb phrase (VP), noun (N), verb (V), and 
article (T), decomposes into the tree of Fig. 41. 

Storage Requirements. This is not much more involved than the 
standard parsing of high school grammar. However, the overall set of 
rules developed by Chomsky allows complete explanation and decompo­
sition of such ambiguous sentences as "I found the boy studying in the 
library," and such phrases as "the shooting of the hunters." Based on 
Chomsky's analysis, or one carried even further, a complete program can 
be written to give complete structural decomposition of the English lan­
guage upon entry into a computer. The semantic or meaning portion of 
the machine language problem is dependent on further theoretical investi-



2·260 DIGITAL COMPUTER PROGRAMMING 

Sentence 

/~ 
NP VP 

/ " / "'" T N V NP 

I I I / ""-
The man hit 1 I 

the ball 

FIG. 41. Tree structure resulting from decomposition of the sentence, "The man hit 
the ball." 

gations as well as further experiments with large-scale storage devices 
such as the RAMAC (see Ref. 118) and Tapefile (Ref. 119). The problem 
of pattern recognition to recognize structures such as that of Fig. 41 has 
been studied for simpler proble~s by Dineen (Ref. 116), and Minsky 
(Ref. 117). The construction of automatic dictionaries has already been 
begun with such algebraic languages as Fortran, Unicode, and GP at one 
end, and with the language translation experiments at the other. By the 
time successful translation of scientific documents will have been accom­
plished, a programmed knowledge of the structure of English and other 
natural languages will have had to be acquired. The pattern recognition 
procedures and compiling will fill the gap between such decomposition 
and actual machine instructions which are to correspond to the original 
English input. 

The use of any large magnetic tape storage should be sufficient for 
large portions of a natural language (for example, scientific vocabularies 
combined with a basic vocabulary). The need for speed, however, deter­
mines the requirement for the more rapid large-scale storage devices noted 
above. 

LITERATURE, ACKNOWLEDGMENTS, AND REFERENCES 

LITERATURE 

Books. For the elementary approach to programming, the texts by 
McCracken (Ref. 68) and Gottlieb and Hume (Ref. 113) may be con­
sulted. For a detailed discussion of programming for a specific machine, 
described in detail, Wilkes, Wheeler, and Gill (Refs. 108 and 109) is' a 
thorough documentation of the work on EDSAC. A compilation of a 
series of articles in Control Engineering (Ref. 99) provides many prac­
tical -examples not found elsewhere. In the area of mechanical translation 
the book edited by Locke and Booth (Ref. 120) gives an account perti­
nent to many programming problems. The University of Michigan 
Summer Session Notes edited by Carr and Scott (Refs. 24, 25) contain 



PROGRAMMING AN.D CODING 2-261 

practical accounts of recent procedures. Books on the general structure 
of digital computers, such as those by Bowden (Ref. 15), Booth and 
Booth (Ref. 121), Richards (Ref. 122), 'Vilkes (Ref. 124), Eckert and 
J ones (Ref. 111), the ERA Staff (Ref. 125), Stibitz and Larrivee (Ref. 
96), and Berkeley and vVainwright (Ref. 126) usually include one or 
more chapters on elementary programming. 

From the point of view of business problems, such books as Kozmetsky 
and Kircher (Ref. 127) , Canning (Ref. 128), Chapin (Ref. 129), Berkeley 
(Ref. 130), and a small pamphlet by Gorn and Manheimer (Ref. 131) 
give simplified accounts tailored to the nontechnical reader. Practical 
examples in this are'a are available in publications of the Joint Computer 
Conferences of the American Institute of Electrical Engineers, Institute 
of Radio Engineers, and Association for Computing Machinery (Ref. 
136), and those of the American Management Association (Ref. 132), 
and the Office lVlanagement Association of Great Britain (Ref. 134). 

Perhaps the most thorough account of digitai' computer programming, 
containing detailed examples and analyses of both hand processes and 
automatic programming, is in the Russian language book by Kitov 
(Ref. 61). Portions of this have been translated into English and may 
become available through the Association for Computing Machinery. In 
the area of automatic programming the Proceedings of Office of Naval 
Research Symposia (Ref. 98) are important. The only book available 
in the area of artificial intelligence as it might be applied to general pur­
pose computer programming is that of Shannon and McCarthy (Ref. 94). 

In addition to the b~'oks, numerous publications are available from the 
manufacturers. They range from simple descriptions of particular com­
puters to automatic programming schemes for a particular computer. 
A particularly thorough bibliography is that of Remington Rand Univac 
(Ref. 137), which includes listings from outside that organization as 
well as inside. 

Journals. These might be catalogued as follows: 

1. Theory of programming and examples of general programming techniques: 
Journal of the Association for Computing Machinery, published by the Associa· 

tion, 2 East 63 Street, New York 23, New York. 
Communications of the Association for Computing Machinery, published by the 

Association, 2 East 63 Street, New York 23, New York. 
Journal of Research and Development of the International Business Machines 

Corporation, published by International Business Machines Corporation, 590 Madison 
Avenue, New York. 

Transactions of the Professional Group on Electronic Computers (LR.E.) ,pub­
lished by the PGEC of LR.E., 1 East 79 Street, New York 21, New York. 

Systems (Remington Rand Univac), published by Remington Rand Univac, Phila-
delphia, Pennsylvania. ' 



2-262 DIGITAL COMPUTER PROGRAMMING 

Journal of the Franklin Institute, published by the Franklin Institute, Philadel­
phia, Pennsylvania. 

The Computer Journal, published by the British Computer Society, London, 
England. 
2. Examples of problem formulation and programming in the areas of scientific 
computation: 

Journal of the Society for Industrial and Applied Mathematics, published by the 
Society, Box 7541, Philadelphia, Pennsylvania. 

Journal of the Association for Computing Machinery, published by the Associa­
tion, 2 East 63 Street, New York 23, New York. 

Control Engineering, published by McGraw-Hill, 330 West 42nd Street, New 
York 36, New York. 

Mathematical Tables and Other Aids to Computation, published by the National 
Academy of Sciences, National Research Council, Washington 25, D. C. 

Computing News, published by Jackson Granholm, 12805 Sixty-fourth Avenue, 
South, Seattle 88, Washington. 

The Computer Journal, published by the British Computer Society, London, 
England. 
3. Examples of problem formulation in the areas of business and industrial 
applications: 

Journal of the Operations Research Society of America, published by the Opera­
tions Research Society of America at Mount Royal and Guilford Avenues, Balti­
more 2, Maryland. 
4. Applications to business problems: 

Data Processing Digest, published by Canning, Sisson, and Associates, 914 South 
Robertson Boulevard, Los Angeles 35, California. 
5. Popular discussions of programming· and applications: 

Computers and Automation, published monthly by Berkeley Enterprises, Inc., 
815 Washington Street, Newtonville 60, Massachusetts .. 
6. Foreign journals: 

Zeitschrift fur angewandte Mathematik und Physik 
Doklady, Akad. Nauk S.S.S.R. (Proceedings of the Academy of Sciences of the 

U.S.s.R.) 
N umerisches Mathematik 

7. General reference and current reviews: 
Mathematical Reviews, published by the American Mathematical Society, Provi­

dence, Rhode Island. 
Matematicheski Refneraty, published by the Academy of Sciences of the U.S.S.R. 

ACKNOWLEDGMENTS 

The cooperation of the following organizations is gratefully acknowl­
edged in granting permission to reproduce material in this chapter. 
General 

University of Michigan. Material from courses and summer sessions. 
Section 3 

University of Michigan. Number conversion tables from summer 
session notes. 



PROGRAMMING AND CODING 2-263 

International Business Machines. Number conversion tables from 
IBM 704 manual. 
Section 6 

International Business Machines. Instruction codes from the IBM 704 
and IBM 650 manuals. 

Remington Rand Univac. Instruction codes from the Univac II and 
Univac Scientific 1l03A manuals. 

Electrodata, a division of the Burroughs Corporation. Instruction 
codes from the manual for the Datatron 205. 

University of Michigan. Instruction codes from manuals for the 
MIDAC computer and the Easiac interpretive system. 

Librascope Corporation. Instruction codes from manuals for the 
Royal-McBee LGP-30 computer. 
Section 8 

International Business Machines. Symbolic optimum assembly pro­
gramming (SOAP), from IBM 650 programming bulletins. 

University of Michigan. The MAGIC system used for the MIDAC 
computer. 
Section 9 

General Motors Corporation. Description of the SHARE assembly 
program. 

International Business Machines. SHARE assembly programs from 
IBM 704 bulletins. 
Section 10 

The Ramo-Wooldridge Corporation. Subroutines from the Subroutine 
Library for the Univac Scientific 1103A. 
Section 12 

Bendix Computer Division. The Intercom 101 system for the Bendix 
G-15 computer. 

Carnegie Institute of Technology. The IT system for the IBM 650 
computer, from a manual by A. J. Perlis, J. W. Smith, and Harold Van 
Zoeren. 
Section 17 

Massachusetts Institute of Technology, Lincoln Laboratory. Instruc­
tion codes for the TX-O computer from reports. 

REFERENCES 

1. C. W. Adams, and J. H. Laning, Jr., The M.I.T. systems of automatic coding: 
Comprehensive, summer session, and algebraic, Symposium on Automatic Program­
ming Jor Digital Computers, Office of Naval Research, Washington, D. C., May 1954. 



2-264 DIGITAL COMPUTER PROGRAMMING 

2. R. Ash, E'. Broadwin, V. Della Valle, M. Greene, A. Genny, C. Katz, and L. Yu, 
Preliminary Manual for M ath-M atic and Arith-M atic Systems for Algebraic Trans­
lation and Compilation for Univac I and II, Automatic Programming Development, 
Remington-Rand Univac, Philadelphia, Pa., April 1957. 

3. Automatic Coding for the Univac Scientific System (A Progress Report), 
Remington-Rand Univac, Philadelphia, Pa., 1955. 

4. Automatic programming the A-2 compiler system, Pts. 1 and 2, Computers and 
Automation, 4, 25-31, Sept. 1955, 15-23, Oct. 1955. 

5. J. W. Backus, The IBM speed coding system, J. Assoc. Compo Mach., 1, 4-6 
(1954). 

6. C. L. Baker, The PACT I coding system for the IBM Type 701, J. Assoc. 
Compo Mach., 3, 272-278 (1956). 

7. Iu. Ia. Basilwskii, The universal electronic digital machine (URAL) for engi­
neering research, J. Assoc. Compo Mach., 4, 511-519 (1957). 

8. W. F. Bauer, An integrated computation system on the ERA-1103, J. Assoc. 
Compo Mach., 3, 181-185 (1956). 

9. 1. K. Belksaja, Machine translation of languages, Research, 10, 383-389 (1957) 
(in Russian). ' 

10. R. W. Berner, What the engineer should know about programming, Automatic 
Control, 6, 66-69, March 1957. 

11. R. W. Berner, E. Krasnow, G. Jira, A. Hoggatt, and R. Levitan, IBM 705 
Print I Manual, Programming Research Dept., International Business Machines 
Corporation, N ew York. 

12. Bendix G15 Preliminary Operations Manual, Bendix Computer Division, Los 
Angeles, Calif. 

13. E. K. Blum, Automatic Digital Encoding System II (ADES II), Navord 
Report 4209, U. S. Naval Ordnance Laboratory, White Oak, Md., Feb. 8, 1956. 

14. Bendix Intercom !Ol-G15 Interpretive Routines, Bendix Computer Division, 
Los Angeles, Calif., July 1956. 

15. B. V. Bowden, Editor, Faster than Thought, Pitman, London, 1953. 
16. P. Brock, and S. Rock, Problems in acceptance tests of digital computers, 

J. Assoc. Compo Mach., 1, 92-87 (1954). 
17. J. H. Brown, and J. W. Carr III, Automatic programming and its development 

on the MIDAC, Symposium on Automatic Programming for Digital Computers, 
Office of Naval Research, Washington, D. C., May 1954. 

18. J. H. Brown, J. W. Carr III, B. Larrowe, and J. R. McReynolds, Prevention 
of propagation of machine errors in long problems, J. Assoc. Compo Mach., 3, 309-
313 (1956). 

19. A. Burks, H. H. Goldstine, and J. von Neumann, Preliminary Discussion of 
the Logical Design of an Electronic Computing Instrument, Institute for Advanced 
Study, Princeton University, Princeton, N. J., 1946 (published under contract 
W360340RD7481, can be obtained from Ballistics Research Laboratory, Aberdeen 
Proving Grounds, Md.). 

20. J. W. Carr III, Solving scientific problems, Control Eng., 3, 63-70, January 
1956. 

21. J. W. Carr III, Towards an automatic programming procedure, Proc. Assoc. 
Compuiing ]vI achinery, Meetings, May 1952, .Pittsburgh, Pa. 

22. J. W. Carr III, and A. J. Perlis, A comparison of large scale calculators, 
Control Eng., 3, 83-92/ Feb. 1956. 



PROGRAMMING AND CODING 2-265 

23. J. W. Carr III, and A. J. Perlis, Small scale computers as scientific calculators, 
Control Eng., 3, 99-104, March 1956. 

24. J. W. Carr III, and N. R. Scott, Editors, Notes on the Special- Summer Con­
ference on Digital Computers, Special Summer Conferences on Digital Computers, 
University of Michigan, Ann Arbor, Mich., 1955. 

25. J. W. Carr III, and N. R. Scott, Editors, Notes on Digital Computers and 
Data Processors, Special Summer Conferences on Digital Computers, University of 
Michigan, Ann Arbor, Mich., 1956. 

26. N. Chomsky, Syntactic Structures, Mouton, 's-Gravenhage, 1957. 
27. N. Chomsky, Three models for the description of language, I.R.E. Trans. on 

Informat£on Theory, IT-2, Proc. Symposium on Information Theory, 113-124, 
Sept. 1956. . 

28. N. Chomsky, Transformational Analysis, Ph.D. Dissertation, University of 
Pennsylvania, 1955. 

29. W. A. Clark, The Lincoln TX-2 computer development, Proc. TV estern Jt. 
Compo Conf., 143-145, Feb. 1957. 

30. H. B. Curry, On the composition of programs for automatic computing, 
Naval Ordnance Laboratory Memorandum 9805, Naval Ordnance Laboratory, 
White Oak, Silver Springs 19, Md. 

31. J. L Derr, and R. C. Luke, Semi-automatic allocation of data storage for 
PACT I, J. Assoc. Compo Mach., 3, 299-308 (1956). 

32. Datatron Programming and Coding Manual, Electro Data Corporation, Pasa­
dena, Calif. 

33. C. Elgot, On single vs. triple address and computing machines, J. Assoc. Compo 
Mach., I, 118-123 (1954). 

34. Features of the new Univac II data automation system, Manual U23, Reming­
ton-Rand Univac Division orthe Sperry Rand Corporation, Philadelphia, Pa., 1957. 

35. Fortran Automatic Coding System for the IBM 704 EDPM, Applied Science 
Division and Programming Research Dept., International Business Machines Cor­
poration, New York. 

36. J. M. Frankovich and H. P. Peterson, A functional description of the Lincoln 
TX-2 computer, Proc. TV estern Jt. Compo Con1., 146-155, Feb. 1957. 

37. General Motors Research Staff, 704 Operations Manual-Share Assembler, 
Detroit. 

38. J. T. Gilmore, Jr., TX-O direct input utility system, Memorandum 6M-5097, 
Lincoln Laboratories, M.LT., Cambridge, Mass., Apr. 10, 1957. , 

39. J. T. Gilmore, Jr., and H. P. Peterson, A functional description ,of the Tx-d 
computer, Memorandum 6M-4789, Lincoln Laboratories, M.LT., Cambridge, Mass., 
Nov. 20, 1956. 

40. H. T. Glantz, A note on microprogramming, J. Assoc. Compo Mach., 3, 77-84 
(April 1956). 

41. B. Gordon, An optimizing program for the IBM-650, J. Assoc. Compo Mach., 
3, 3-5 (1956). 

42. S. Gorn, An experiment in universal coding, BRL Rept. No. 953, Ballistics 
Research Laboratories, Aberdeen Proving Grounds, Md., Aug . .1955. 

43. S. Gorn, Standardized programming methods and universal coding, J. Assoc. 
Compo Mach., 4, 254-273 (1957). 

44. E. P. Graney, Maintenance and acceptance tests used on the MIDAC, J. Assoc. 
Compo Mach., 2, 95-98 (1955). 



2-266 DIGITAL COMPUTER PROGRAMMING 

45. M. Grems, and R. E. Porter, A Digest of the Boeing Airplane Co. Algebraic 
Interpretive Coding System, Physical Research Staff, Boeing Airplane Co., Seattle, 
Wash., July 1955. 

46. 1. D. Greenwald and H. G. Martin, Conclusions after using the PACT I 
advanced coding technique, J. Assoc. Compo Mach., 3, 309-313 (1956). 

47. G. Hempstead and J. Schwartz, PACT loop expansion, J. Assoc. Compo Mach., 
3, 292-298 (1956). 

48. G. M. Hopper, Report to the Association for Computing Machinery-First 
Glossary of Programming Terminology, Association for Computing Machinery, 
New York, 1954. 

49. G. M. Hopper, The education of a computer, Proc. Assoc. Compo Mach., Meet­
ings, May 1952, Pittsburgh, Pa. 

50. J. H. Hughes, Tape file maintenance, Programmer, Sperry-Rand Corporation, 
July 1957. 

51. Yu. 1. Ianov, On matrix schemes, Doklady Akad. Nauk S.s.S.R., 113, 283-
286 (1957) (in Russian; translation available). 

52. Yu. I. Ianov, On the equivalence and transformation of program schemes, 
Doklady Akad. Nauk S.S.8.R., 113, 39-42 (1957) (in Russian; translation 
available) . 

53. The Fortran Automatic Coding System for the IBM 704 EDP}'! (Program­
mer's Reference Manual), Applied Science Division and Programming Research 
Department, International Business Machines Corporation, N ew York, Oct. 15, 
1956. 

54. IBM 704 Electronic Data Processing, Form 24-6661-2, International Business 
Machines Corporation, New York. 

55. IBM 705-III Data Processing System, Form 22-6730-0, International Business 
Machines Corporation, N ew York. 

56. Illiac Programming Manual, University of Illinois, Urbana, Ill. 
57. D. R. Israel, Introduction to coding, Engineering Note E-2000-1, Servomech­

anism Laboratory (later Project Whirlwind), M.LT., Cambridge, Mass., Sept. 26, 
1950. 

58. D. R. Israel, The Application of a High-Speed Digital Computer to the 
Present-Day Air Traffic Control System. Master's Thesis EE, M.LT., Cambridge, 
Mass., 1949. 

59. J. L. Jones, A Survey of Automatic Coding Techniques for Digital Computers, 
Master's Thesis, M.LT., Cambridge, Mass., May 1954. 

60. L. V. Kantorovich, On a mathematical symbolism convenient for performing 
machine cal~ulations, Doklady Akad. Nauk S.s.S.R., 113, 738-741 (1957) (in Rus­
sian; translation available). 

61. A. 1. Kitov, Elektronnie Tsifrovie Mashiny (Electronic Digital Machines); 
Izdatelstvo "Sovetskoe Radio," Moscow, 1956 (partial translation available). 

62. S. C. Kleene, Introduction to Metamathematics, Van Nostrand, Princeton, 
N. J., 1952. 

63. L.N. Korolev, Coding and code compression, Doklady Akad. Nauk S.s.8.R., 
113, 746-747 (1957) (in Russian; translation available). 

64. J. H. Laning and N. Zierler, A program for translation of mathematical equa­
tions for Whirlwind I, Engineering Memorandum E-364, M.LT. Instrumentation 
Laboratory, Cambridge, Mass., January 1954. 

65. S. A. Lebedev, The high-speed calculating machine of the Academy of Sciences 
of the USSR, J. Assoc. Compo Mach., 3, 129-133 (1956). 



PROGRAMMING AND CODING 2-267 

66. Librascope, Inc., Librascope LGP-30, Manual, Librascope Inc., 80 Western 
Ave., Glendale, Calif. 

67. A. A. Markov, The theory of algorithms, ]'l'udy V.A. Steklov Math. 11Ist., 
42, 3-374 (1954) (partial translation available). 

68. D. D. McCracken, Digital Computer Programming, Wiley, New York, 1957. 
69. W. S. Melahn, A description of a cooperative venture in the production of an 

automatic coding system, J. Assoc. Compo Mach., 3, 266-271 (1956). 
70. R. J. Mercer, Micro-programming, J. Assoc. Compo Mach., 4, 157-171 (1957). 
71. R. C. Miller, Jr., and B. Oldfield, Producing computer instructions for the 

PACT I compiler, J. Assoc. Compo Mach., 3, 288-291 (1956). 
72. O. Mock, Logical organization of the PACT I compiler, J. Assoc. Compo 

Mach., 3, 279-287 (1956). 
73. E. F. Moore, A simplified universal Turing machine, Proc. Assoc. Compo 

Mach., Toronto, 1952. 
74. J. Moshman, The generation of pseudo-random numbers on a decimal calcu­

lator, J. Assoc. Compo Mach., 1, 88-91 (1954). 
75. F. J. Murray, Univac acceptance tests, Mathematical Tables and Aids to 

Computation, 5, 176-177 (1951). 
76. A. Newell, J. C. Shaw, and H. A. Simon, Empirical explorations of the logic 

theory machine: A case study in heuristic, Proc. Western Jt. Compo Conf., 218-239, 
Feb. 1957. 

77. A. P. Newell, Notes for the Lectures on Heuristic Programs, delivered at the 
University of Michigan Summer Session on Advanced Programming, August 1957. 

78. A. Newell andH. A. Simon, The logic theory machine, I.R.E. Trans. on 
Information Theory, IT-2, 61-79, Sept. 1956. 

79. A. Oettinger, Simple learning by a. digital computer, Proc. Assoc. Compo Mach., 
Toronto, 1952. 

80. R. Perkins, EASIAC, a pseudo-computer, J. Assoc. Compo Mach., 3, 65-72 
(1956). 

81. A. J. Perlis, J. W. Smith, and H. R. Van Zoeren, Internal Translator (11')­
A Compiler for the 650, Carnegie Institute of Technology, Computation Center, 
Pittsburgh, Pa., 1956. 

82. A. M. Pietrasanta, Debugging Programs on the IBM-650, New York Scien­
tific Computation Center, International Business Machines Corporation, New 
York. 

83. S. Poley and G. Mitchell, Symbolic Optimum Assembly Programming (SOAP), 
650 Programming Bulletin 1, Form 22-6285-1, International Business Machines 
Corporation, New York. 

84. E. L. Post, Formal reductions of the general combinatorial decision problem, 
Am. J. Math., 65, 197-215 (1943). 

85. Proposed Specifications for Fortran for the Type 704, Programming Research 
Department, International Business Machines Corporation, N ew York. 

86. F. Ragusa and S. Zucker, The NYU Omnifax compiler and library of sub­
routines, NYU-7692 Physics Rept., Institute of Mathematical Sciences, New York 
University, New York, Oct. 15, 1956. 

87. N. Rochester, Symbolic programming, Trans. I.R.E., EC-2, 10-15, 1953. 
88. P. Rosenbloom, Elements of Mathematical Logic, Dover, New York, 1950. 
89. H. Rutishauser, Automatische Rechenplanfertigung bei programmgesteuterten 

Rechenmaschinen, Mitteilung aus dem Institut fur angewandte Mathematik, Basel, 
1952, pp. 1-45. 



2-268 DIGITAL COMPUTER PROGRAMMING 

90. H. Rutishauser, Some programming techniques for the ERMETH, J. Assoc. 
Compo Mach., 2,1-4 (1955). 

91. H. Schecher, Programmierung fUr eine Maschine mit erweiterten Addressen­
rechenwerk; International Kolloqium in. Probl. d. Rechentechnik, Dresden, 1955, 
pp. 69-81. 

92. SEAC Operating and Programming Notes I-VIII, RP 1612, 1807, 1873, 1917, 
1957, 2342, 2461, and 2918; Office of Scientific Publications, National Bureau of 
Standards, Washington, D. C. 

93. 70J,. Electronic Data Processing Machine, Manual of Operation (Form 24-
6661-3), International Business Machines Corporation, New York, 1955. 

94. C. Shannon and J. McCarthy, Editors, Automata Studies, Princeton University 
Press, Princeton, N. J., 1956. 

95. R. J. Solomonoff, An inductive inference machine, 1957 I.R.E. National Con­
vention Record, Pt. 2 (Circuit Theory and Information Theory), pp. 56-62. 

96. G .. Stibitz and J. Larrivee, Mathematics and Computers, McGraw-Hill, 
New York, 1956. 

97. C. J. Swift, Machine features for a more automatic monitoring system on 
digital computers, J. Assoc. Compo Mach., 4, 172-173 (1957). 

98. Symposium on Automatic Programming for Digital Computers, May' 13-14, 
1954; Office of Naval Research, Department of the Navy, Washington, D. C. 

99. The Uses of Digital Computers, a series of reprints by Grabbe, Carr, PerIis, 
and others from Control Eng., 1955-1957, McGraw-Hill, New York, 1957. 

100. The X-1 Assembly System, Remington-Rand Univac Division, Sperry Rand 
Corporation, New York, 1956. 

101. A. M. Turing, On computable numbers, with an application to the entschei­
dungs problem, Proc. London Math. Soc., ser. 2, 42 0936-37). 

102. Type 650 Magnetic Drum Data-Processing Machine (Manual of Operations), 
Form 22-60 60-1, International Business Machines Corporation, New York, 1955. 

103. Univac Scientific Electronic Computing System Model 1103A, Form EL 338, 
Remington-Rand Corporation, 1902 West Minnehaha Ave., St. Paul W4, Minn. 

104. M. Weik, A Second Survey of Domestic Electronic Computing Machines, 
BRL Rept. No. 1010, Aberdeen Proving Grounds, Md., 1957. 

105. A. N. Whitehead and B. Russell, Principia Mathematica, Vol. I, 1st edition, 
Cambridge, 1910, 2nd edition, 1925. 

106. M. V. Wilkes, The use of a "floating address" system for orders in an auto­
matic digital computer, Proc. Camb. Phil. Soc., 49, Pt. I, 84 (1953). 

107. M. V. Wilkes and J. B. Stringer, Micro-programming and the design of the 
control circuits in an electronic digital computer, Proc. Camb. Phil. Soc., April 1953. 

108. M. V. Wilkes, D. J. Wheeler, and S. Gill, The Preparation of Programs for a 
Digital Computer, Addison-Wesley, Cambridge, Mass., 1952. 

109. M. V. Wilkes, D. J. Wheeler, and S. Gill, Programs for an Electronic Digital 
Computer, 2nd edition, Addison-Wesley, Reading, 1957. 

110. C. E. Shannon, The Mathematical Theory of Communication, University of 
Illinois Press, Urbana, Ill., 1949. 

111. W. J. E'ckert and R. Jones, Faster, Faster, McGraw-Hill, New York, 1952. 
112. E. Herbst, N. Metropolis" and M. B. Wells, Analysis of problem codes on 

the MANIAC, Mathematical Tables and Aids to Computation, 9, 14-20 (1955). 
113. C. C. Gottlieb and J. N. P. Hume, High-Speed Data Processing, McGraw­

Hill, New York, 1958. 
114. J. Kister, P. Stein, S. Ulam, W. Walden, and M. Wells, Experiments in 

chess, J. Assoc. Compo Mach., 4, 174-177 (1957). 



PROGRAMMING AND CODING 2-269 

115. 1. Copi, Symbolic Logic, Macmillan, N ew York, 1954. 
116. G. P. Dineen, Programming pattern recognition, Proc. Western Jt. Compo 

Conf., Los Angeles, Calif., 1955. 
117. M. Minsky, Heuristic aspects of the artificial intelligence problem, Group 

Rept. 34-55, Lincoln Laboratories, M.LT., Cambridge, Mass. 
118. Manual of Operation, IBM 650 Data Processing System with 355 Random 

Access Memory, Form 22-6270-1, International Business Machines Corporation, 
New York. 

119. Handbook, Model 560 DATAFILE, Multiple Bin Tape Unit, Bulletin 3026, 
Electro-Data Corporation, Pasadena, Calif., 1956. 

120. W. N. Locke and A. D. Booth, Machine Translation of Languages, The Tech­
nology Press, Boston, and Wiley, New York, 1956. 

121. A. D. Booth and R. H. V. Booth, Automatic Digital Calculators, Butterworth, 
London, 1953. 

122. R. K. Richards, Arithmetic Operations in Digital Computers, Van Nostrand, 
Princeton, N. J., 1955. 

123. S. Langer, Introduction to Symbolic Logic, Dover, New York, 1955. 
124. M. V. Wilkes, Automatic Digital Computers, Wiley, New York, 1956. 
125. ERA Staff, High-Speed Computing Devices, McGraw-Hill, New York, 1952. 
126. E. C. Berkeley and L. Wainwright, Computers, Their Operation and Appli­

cations, Reinhold, New York, 1956. 
127. G. Kozmetsky and P. Kircher, Electronic Computers and Management 

Control, McGraw-Hill, New York, 1956. 
128. R. Canning, Electronic Data Processing for B'Llsiness and Industry, Wiley, 

New York, 1956. 
129. N. Chapin, An Introduction to Automatic Computers: A Systems Approach 

for Business, The Technology Center, Chicago, Ill., 1955. 
130. E. C. Berkeley, Giant Brains, Wiley, New York, 1951. 
131. S. Gorn and W. Manheimer, The Electronic Brain and What It Can Do, 

Science Research Associates, Inc., Chicago, Ill. 
132. Pioneering in data processing, Special Rept. No.9, American Management 

Association, New York. 
133. Electronic Data Processing in Industry, American Management Association, 

New York, Aug. 1955. 
134. Scope for Electronic Computers in the· Office, A Symposium, Office Manage­

ment Association, London, 1955. 
135. Impact of Computers on Office Management, Office Management Series No. 

136, American Management Association, New York, 1954 .. 
136. Trends in computers: Automatic control and data processing, Proc. Western Jt. 

Compo Conf., Am. lnst. Elec. Engrs., Feb. 11-12, 1954. 
137. Large Scale Digital Computers-An Annotated Bibliography, EL 335, Rem­

ington-Rand Univac Division of the Sperry Rand Corporation. 
138. G. M. Hopper, Chairman, First glossary of programming terminology, Com­

mittee on Nomenclature of the ACM, The Association for Computing Machinery, 
New York, June 1954. 

139. Unicode, Preliminary Reference Manual, Remington-Rand Univac Division 
of the Sperry Rand Corporation, U 1451, New York. 

140. H. Seward, Information Sorting in the Application of· Electronic Digital 
Computers to Business Operations, M.S. Thesis, M.LT., Cambridge, Mass., 1954. 

141. R. W. Bemer, The status of programming for scientific problems, Proc. 4th 
Compo Appl. Symp., Armour Research Foundation, Chicago, Oct. 24-25, 1957. 



2-270 DIGITAL COMPUTER PROGRAMMING 

142. Introduction to Transac S-2000 Data Processing System, Philco Corporation, 
Government and Industrial Division, Philadelphia, Pa., May 1957. 

143. A. Newell, J. C. Shaw, and H. A. Simon, Empirical explorations of the logic 
theory machine: A case study in heuristic, Proc. Western Jt. Compo Conf., Feb. 26-28, 
1957, Los Angeles, Calif., pp. 218-230. 

144. Automatic Coding, Proc. of the symposium held January 24-25, 1957, at the 
Franklin Institute, Philadelphia, Monograph No.3, J. Franklin Institute, Phila­
delphia, Pa. 

145. Univac II Programming Manual, Remington-Rand Univac, Philadelphia, Pa. 
146. Principal Characteristics of Bendix G-15D General Purpose Digital Computers, 

Bendix Computer Division, Los Angeles, Calif. 
147. J. Jeenel, Programs as a tool for research in systems organizations, IBM J. 

Research and Development, 2, 105-122 (1958). 
148. IBM 650 Manual of Additional Features-Magnetic Tapes, High-Speed 

Storage, Printer, Form 22-6265-1, International Business Machines Corporation, 
New York. 

149. Univac Generalized Programming, Management Services and Operations 
Research Department, Remington-Rand Univac Division of Sperry Rand Corpora­
tion, 1957, New York. 

150. H. Kahrimanian, Univac Programming Report, Sperry Rand Corporation, 
Philadelphia, Pa. 

151. S. N. Razumovskii, On the question of automatization of programming of 
problems of translation from one language to another, Doklady Akad. Nauk S.8.8.R., 
113, 760-762 (1957). 

152. A. D. de Groot, fiber das Denken des Schachspielers, Rev. Psicol., 50, 73-104 
(1956). 

153. J. Wegstein and J. Cooper, Corbie system for the 704, BSCRB, National 
Bureau of Standards, Washington, D. C., 1957. 

154. J. W. Carr III, Editor, Notes on applications of logic to automatic program­
ming, Engineering Summer Conference, University of Michigan, Ann Arbor, Mich., 
1957. 

155. R. M. Graham, Translation between algebraic coding languages, Paper 29, 
Assoc. Compo Mach., 13th Nat!. Meeting, Urbana, Ill., June 11-13, 1958. 

156. A. J. Perlis and J. W. Smith, A command language for handling strings of 
symbols, Paper 30, Assoc. Compo Mach., 13th Natl. Meeting, Urbana, Ill., June 11-13, 
1958. 

157. R. W. Berner and D. A. Hemmes, Computer language compatibility through 
multilevel processors, Paper 31, Assoc. Compo Mach., 13th Natl. Meeting, Urbana, 
Ill., June 11-13, 1958. 



THE USE OF DIGITAL COMPUTERS 

AND DATA PROCESSORS 

C. THE USE OF DIGITAL COMPUTERS AND 
DATA PROCESSORS 

H. T. Larson and 
R. B. Conn, Editors 

3. Data Processing Operations, by M. J. Mendelson 
4. Quantitative Characteristics of Data Processing Systems, by R. L. Sisson 

and R. G. Canning 
5. Equipment Description, by J. W. Busby and J. H. Yienger 
6. Facility Requirements, by E. T omash 
7. Design of Business Systems, by H. S. Levin 

8. Accounting Applications, by A. C. Vanselow 
R. L. VanWinkle 
L. L. van Oosten 
E. D. Cowles 
H. Tellier 

9. Inventory and Scheduling Applications, by C. E. Ammann 
C. W. Schmidt and R. Bosak 

10. Scientific and Engineering Applications, by R. T. Koll 
11. Handling of Non-Numerical Information, by M. E. Maron 





c THE USE OF DIGITAL COMPUTERS 

AND DATA PROCESSORS 
Chapter 3 

Data Processing Operations 

J. Introduction 

2. Data Collection 
3. Data Conversion, Transcription, and Editing 

4. Data Output 

S. On-Line Versus Off-Line Processing 
6. Scientific Data Manipulation 

7. Business Data Manipulation 

8. Checking 

I. INTRODUCTION 

M. J. Mendelson 

3-01 

3-02 

3-03 

3-04 
3-04 

3-0S 

3-06 

3-13 

Data processing begins the instant any action takes place which will 
generate information whose content will be a subject for subsequent 
analysis, and terminates only when all such analyses have been com­
pleted, records up-dated, and reports generated. In some instances it 
may never be completed since these outputs may themselves become new 
sources of data or evoke new pieces of information for processing. In 
any event, since data processing is a continuous and not a discrete 
process, planning for an efficient data processing system must begin at 
some point earlier than the generation of the first information and extend 
through all subsequent operations. This chapter will delineate and define 
the more important and basic operations which permeate all data 
processing situations. These definitions will serve to clarify the content 
of the succeeding chapters. 

3-01 



3-02 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

2. DATA COLLECTION 

It is important for the efficiency of the data processing operation that 
data be recorded in some form which admits of subsequent automatic 
processing. Generally, it is equally desirable that this recording be 
effected at the earliest possible point in the process since it is only at 
this time that all the contributing factors are simultaneously present, 
the adequacy and correctness of the record may be verified, and errors 
of recording rectified. In addition, the earlier the recording, the more 
the processing can be automated. Because of this desire, it is convenient 
to break data collection situations into two categories: (1) Processor 
controlled collection systems are those which are processor oriented. 
(2) Collection controlled collection systems are those which are collection 
oriented. This split is chosen since the subsequent processing may be 
profoundly effected by the category to which its data collection system 
belongs. 

Language, Medium, and Structure. These are important aspects of 
data collection systems. Language is the particular set of marks and 
symbols which are used to represent data in any particular consistent 
system. These may take such forms as printed characters, holes punched 
in particular places on a document, or groups of magnetic markings on 
a magnetizable surface. Medium is the physical unit on which the 
information is recorded and retained. Typical examples are the card 
which is punched, the paper which is printed, the magnetic tape which 
is magnetized. Structure pertains to the organization of the data, with 
respect to such factors as sequence, groupings, and special punctuations. 

Processor Controlled Collection Systems. These are systems in 
which the language, medium, and structure of the data collected are 
made to conform with the requirements of the input system of the data 
processor which will perform the subsequent analyses. Processor con­
trolled collection systems represent the ideal situation from the view­
point of data processing system efficiency, and should be achieved if the 
operation and the data collection process permit. Achievement of this 
goal eliminates time-consuming and possibly error-producing interme­
diate operations. 

Manual Systems. Intermediate operations are most common when 
data generation is manual and there is no alternative but for human 
operators to transcribe the data to machine language by a subsequent 
second manual operation of equipment vv'hich produces suitable media. 
In this instance, since the second manual operation is required, the char­
acteristics of the processor input system can in great part determine the 



DATA PROCESSING OPERATIONS 3-03 

nature of the transcription equipment and the structure of the transcrip­
tion process. 

Automatic SysteJr/'s. ,Vhen data collection is automatic, it may still 
be possible to define the characteristics of the data collection system 
on the basis of the processor input system and produce input data 
suitable for processor assimilation. Two conditions must generally be 
met before this can be true. 

1. The collection process and instruments must be such that they 
permit the collection of the data in a suitable form on a suitable media. 

2. There exists no requirement that the primary data be available in 
a form for direct and immediate human utilization. 

Collection Controlled Collection Systems. Many data collection 
situations are not readily adapted to the above conditions. vVhere any 
combination of the process, the instrumentation, or human requirements 
determine any particular combination of the media, or language, or struc­
ture of the data collected, the system is called collection controlled. 
Data may also be forced into a particular structure by virtue of the 
requirements of remote transmission equipment. 

EXAMPLES. Scientific data collection is often analog in form and not 
suitable for digital processor assimilation. Business data must often be 
in a form suitable for human consumption and therefore they may not 
be in proper language, or on a proper media, or in a proper structure 
for direct processor use. 

3. DATA CONVERSION. TRANSCRIPTION. AND EDITING 

Where data collection is collection controlled, an intermediate step 
consisting of a combination of conversion, transcription, and editing 
processes is generally required. 

Conversion is the process of changing data from one language form 
to another. Analog data may be converted to digital data; binary data 
may be converted to decimal data; data in one coded system may be 
converted to data in a second coded system. 

Transcription is the process of changing data from onc medium of 
recording to a second. Written records may be transcribed to punched 
cards; punched paper tape data may be transcribed to magnetic tape 
recording. 

Editing is the process of changing data from one structure to another. 
This may consist of changing the sequence of the data on the storage 
medium and of adding or deleting information. These functions are also 
usually required at the output end of the system where data must be 
transformed appropriate to its end use. 



3-04 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

4. DATA OUTPUT 

At the other end of the data processing stream lies the problem of 
output data preparation. Here the end use of the data will determine 
their language, medium, and structure. Data output preparation may be 
conveniently categorized on the basis of this end use. In general, data 
are prepared by the processing system for use by (a) humans, (b) for 
later reuse by itself, or (c) for use by machines other than itself. 

Output Data for Human Use. The most common form of output 
use for human consumption is the printed document. This may take 
several forms: 

1. A printed report whose entire content is generated within the 
processor, or a document generated from the insertion of information 
ona partially preprinted form such as an invoice or a check. 

2. A graph or pictorial representation of a set of information. 
Output Data for Machine Reuse. The nature of data generated for 

machine reuse is often dependent on whether the information is retained 
internal to the machine's system or is to be transmitted outside the 
machine's domain for subsequent return and reentry. Magnetic tape 
files are an example of the former, punched card checks of the latter. 

Output Data for Other Machine Use. Data may often be generated 
by one machine for subsequent use by another. This may occur where 
a piece of processing equipment also acts as a data collecting device for 
later processing operations. 

EXAMPLES. The point of sale type of data processor which prepares 
punched tape for subsequent processing. Installations where remote 
data transmission by teletype is a system requirement. 

5. ON-LINE VERSUS OFF-LINE PROCESSING 

Once the data have been organized in a suitable language, are on a 
suitable input medium, and have a structure suitable for assimilation by 
automatic processing equipment~ they may be subjected to a number of 
data manipulative processes. Of fundamental importance for considera­
tion at this point is the time position of the data processor in the data 
processing sequence. A data processor is called off-line if data are 
collected on a storage medium and brought to the processor for processing 
at a later time. The data processor is called on-line if it participates 
directly in the data processing operation, manipulating the data as they 

In a second sense, if the output of the data processor is made available 
at practically the same time as the input data which called for the 
process, it is said to be an on-line processor, but if its output can satis-



DATA PROCESSING OPERATIONS 3-05 

factorily be produced with a significant time delay, it is said to be an 
off-line processor. 

EXAMPLES. A department store in which the daily sales activity is 
collected from a set of point of sale recorders and daily analyses com­
piled at the end of the day would be using the point of sale recorders 
in an on-line fashion and the data processor in an off-line fashion. 
An automatic airline reservation system in which' space availability, 
sales of seats, and reservation cancellations are automatically processed 
as they occur is an example of a system operating in an on-line fashion. 

Where the processor is in an on-line status and is required to keep 
pace with some physical phenomena, it is often referred to as a real-time 
processor. Example. A digital autopilot and control system which must 
accept current status signals from an aircraft's sensing system, process 
them, and provide proper control signals would be an example of a real­
time processor. 

The determination of which status is required of a processor in a given 
data processing situation will have a profound effect on the entire data 
processing system to be employed. 

6. SCIENTIFIC DATA MANIPULATION 

Scientific data manipulation functions can be characterized only in a 
broad sense. Most scientific problem solutions consist of a central 
processing scheme peculiar to the problem being solved working in con­
junction with a set of standardized suboperations. 

Central Processing Methods. The central processing methods tend 
to be so highly individualistic as to defy classification. The alternative 
seems to be, therefore, to define classes of problems rather than classes 
of operations. See Chap. 10 for a detailed description of these classes 
of problems. 

Suboperations. Although the central process in a scientific calcula­
tion is unique, the suboperations it employs are generally drawn from a 
"library" of such operations which are common to many processing 
situations. The suboperations of such a library are of three maj or types: 

1. Function Generation. Function generation, as its name implies, 
consists of the evaluation of a function for a given value of a variable. 
Obtaining the sine of a given angle or the square root of a given 
number is a typical suboperation of the function generation class. 

2. Computing Sequences. Operations such as the integration step in 
the solution of a set of differential equations or the multiplication of 
two matrices in a coordinate transformation operation are common to 
many different scientific data processes. 



3-06 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

3. Modification Operations. These are suboperations which are de­
'signed to have the effect of modifying the machine program to one more 
suitable to a given application. Typical routines of this class provide 
for such facilities as floating point arithmetic operations or complex 
number manipulation. 

7. BUSINESS DATA MANIPULATION 

Since the initial applications of data processors in the business field 
have been largely of a record keeping and statistic reporting nature, it 
becomes quite possible to characterize business data manipulation on an 
operation basis. That is, rather than each application being unique unto 
itself as in the scientific field, business data problems tend to show a 
strong similarity of structure and generally can be shown to consist of 
combinations and sequences of some fundamental operations. 

As the modern data processors are applied to the business field, more 
and more of the data analysis will be turned over to the processor and, 
therefore, an increasing proportion of the business applications will 
tend to match their scientific brothers in individuality. 

Units of Information. The description of business data processing 
operations which follow will be greatly simplified by a definition of a 
few fundamental terms describing the basic units of information involved 
in a processing situation. The unit of information in any data processor 
is the binary digit. A binary digit may be defined as the amount of 
information described by a single yes-no decision. (See Vol. I, Chap. 16.) 
In electronic systems, all information is ultimately expressed in terms 
of binary digits. 

Although the binary digit is a fundamental unit of information within 
a data processor, it is of little use in communicating information to the 
human users of a system. The human user communicates by means of 
combinations of symbols each of which represents far more information 
than a single bit. The fundamental element of this set of symbols is 
defined to be the character. The characters of a typical business system 
consist of the numbers from zero to nine, the alphabetic symbols from 
A to Z, punctuation marks, and special symbols such as dollar signs, per­
centage symbols, and asterisks. A group of characters used to describe 
a piece of information is called a field. A field may contain any number 
of characters. A unit of information which may be described only by 
a combination of a number of fields of information will be termed an 
item. The particular field of an item by which the item is identified in 
any processing situation is often termed the key. An assemblage of 
items, usually ordered with respect to a key, necessary to describe a 



DATA PROCESSING OPERATIONS 3-07 

complete system of information will be termed a file. The items of a 
file are often referred to as records. 

EXAMPLE. One example will suffice to clarify these definitions. An 
inventory file consists of a set of items each describing one unit of mer­
chandise, and ordered according to the field containing the stock number 
as a key. Other fields of each item contain descriptive and quantitative 
information, such as color or amount on hand, expressed in terms of the 
basic characters available within the system. If such a file is recorded 
on a magnetic tape, the ultimate form of data representation is in terms 
of binary digits of information as defined by magnetized areas on the 
surface of the tape. 

Data Rearranging 

Editing. In addition to the editing functions required in order that 
data may be initially assimilated by a processor, there are a number of 
other data manipulations which may be grouped under the general cate­
gory of data rearranging. Because the initial input medium is quite 
often one of the slower communication elements in the processor system, 
it is generally desirable to minimize the number of times that data are 
transferred from it to the processor. However, the initial input data 
quite often contain information which will ultimately be distributed to, 
and have an effect on, a large variety of different processing activities. 
It is expedient, then, to absorb the data from the input medium only 
once, and, in the process, create a number of different standard items of 
information each peculiar to its own end use. EXa1nple. A punched 
paper tape from a point-of-sale recorder may contain such diverse 
information as clerk number, customer number, stock number, quantity 
sold, sales price, state tax, and federal tax. From this information, 
reports and records such as clerk sales analyses, buyers reports, inventory 
records, customer billing, and tax reporting are generated. For each 
report, a specific subset of information recorded on the paper tape must 
be extracted, regrouped, and appropriately organized for the data 
processes which it will undergo. This type of processing thus constitutes 
a second kind of editing problem. 

Sorting. If it is assumed that a set of standard items relating to 
a given reporting function has been generated, it is generally required 
that the items be placed in some orderly sequence. The process of arrang­
ing a set of items of information into a sequence dependent upon a 
specific set of characters within each item is called sorting. The need 
for sorting information stems from two principal sources. First, many 
auxiliary storage systems used for the recording of files of information 



3-08 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

are of a serial access nature. That is, the time for acquisition of a given 
item in a file is dependent on the relationship of its position in the file 
to the position of the last preceding item acquired. In such a situation, 
it is absolutely essential that the file be used in an orderly fashion in 
order to minimize the time delays of data acquisition. This is most 
easily accomplished by keeping the file in some fixed sequence and sorting 
the input information to that sequence before file processing begins. 
When suitable random access auxiliary storages (i.e., each data acquisi­
tion time is essentially independent of any preceding data acquisition) 
become available, file updating processes will cease to be a reason for 
sorting. However, the advent of such pieces of equipment will by no 
means eliminate the need for sorting since a second requirement for 
sorting exists which is independent of such equipment. Most reports 
generated for human use must be presented in an orderly fashion, and 
this order is quite frequently determined by the input data themselves. 
The buyer's report of our previous example is a record of the sales 
made in the departments which come under his jurisdiction. This 
record is only of use to him if it is presented in a logical sequence that 
can be determined only by sorting the input information, no preorganiz­
ing being possible since there is no control over what items will be sold 
on a given day. 

Merging and Collating. It is frequently required that two sets of 
items, each independently sorted according to a common key, be com­
bined into a single set of items sorted with respect to that same key. 
This operation is called merging when the two sets of items have an 
identical item structure, and it is called collating when the two sets of 
items have independent structures (except for the common key, of 
course) . Merging operations are frequently used in obtaining a sort 
on a large set of data. They are often conveniently used when several 
different activities may affect a common file. For example, separate 
ordered reports may be required to indicate sales of merchandise to cus­
tomers, receipt of merchandise from vendors, and returns of merchandise 
from customers. Each of these reports would require a separate sorting 
operation. Since each of these activities will affect a common inventory 
file, it is desirable to perform a merge or collation of these sets of data 
before the file updating process begins. 

Match-Merge. In some processing systems, a number of variations 
of the merge operation are provided. One such variation is called the 
match-merge. In this operation, one set of items is considered as a 
control set and the second as a master set. The result of the match­
merge operation is to produce an output set of items which consists of an 
ordered combination of the control set and those items of the master 



DATA PROCESSING OPERATIONS 3~09 

set whose keys exactly match the keys of the control set. Such an 
operation is useful in selecting from a large file only those items which 
are actually to be operated on in a subsequent process. This is most 
frequently done where special equipment is available to accomplish the 
match-merge process since it relieves the equipment involved in the sub­
sequent process of the task of recognizing, and time delay involved in 
bypassing, inactive items in the master file. Another variation of the 
merge process uses the control set to cause the insertion or deletion of 
items in the master set. 

Scanning. Scanning is the process of moving systematically through 
a set of data in search of the items whose key meets a specified set of 
criteria. Since in summarizing a set of sorted data, one wishes to 
accumulate all those items with a common key, it is necessary to scan 
the item keys until one is found which is different from its predeces­
sors. The results of such a scan thus determine the exact point at which 
the current accumulation should be terminated and a new scan opera­
tion begun. 

Another common scan application is that of table-look-up. Many 
business functions can only be expressed in a tabular form whose entry 
arguments are nonuniformly spaced. A utility rate table where the rate 
changes do not occur at equal increments of consumption is an example 
of such a function. In order to obtain the correct function value for an 
arbitrary argument, it is necessary to scan the table until one finds an 
entry argument which is greater than or equal to the specified arbitrary 
argument. The result of the scan determines the exact point at which the 
correct function value can be found. A scanning operation also occurs 
when it is required to sift out of a set of items all those which have a 
common set of characteristics. The scanning of a set of loan payment 
records to determine all those which are delinquent is an example of such 
an operation. 

File Maintenance 

Almost without exception, every business application requires the 
maintenance of files. The addition or deletion of records and the addi­
tion, deletion, or modification of information within a record constitute 
the major elements of the file maintenance problem. The removal of 
the records of no longer stocked items from an inventory file or the dele­
tion of the records of subscribers who have failed to renew a magazine 
subscription are typical examples of a record deletion operation. Simi­
larly, the introduction of records pertaining to items that have just 
become active in a system constitutes the bulk of the addition of records 
type of operation. 



3-10 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

r Nature of the File. An important determinant in the file mainte­
nance process is the physical nature of the file system employed. If the 
information storage system of the file enforces, either by its physical 
structure or logical organization, a "nextness" relationship between rec­
ords (i.e., no record may be inserted between any two adjacent records) 
it will be termed a continuous system. When no nextness relationship 
is implied, the file system will be termed discrete. Magnetic tapes and 
drums (without special index devices) are typical examples of continuous 
file systems. Punched cards represent the most common example of a 
discrete file system. If the system is such that a particular record may 
be modified, at least in content if not in space occupied, and replaced 
in its original position in the file without having any effect on the remain­
ing contents of the file, the system is said to admit of selective recording. 
All discrete systems and some continous systems admit of selective 
recording. 

Continuous File Processing. In a continuous file system which does 
not admit of selective recording, it is necessary to make a completely 
new copy of the entire file whenever any portion of the file is to be modi­
fied, with an obvious concomitant time cost. Where the number of 
records to be modified is a small percentage of the total file, this time 
cost- can become quite excessive. If a continuous file system has the 
ability to locate a particular record independent of the data processor 
and its medium admits of selective recording, a large percentage of this 
time may often be saved provided the modified record does not require 
more storage space than is available. Any continuous system faces a 
severe problem when the file maintenance procedure requires addition 
and deletion of information in the file. Here, even though selective 
recording may be available, the nextness characteristics of the continu­
ous system preclude the possibility of its use. The entire file must be 
recopied in such an operation. 

Discrete File Processing. Discrete systems generally obtain their 
characteristics in one of two fashions. 

1. The actual storage medium may be divided into discrete pieces 
with a single record of information occupying one or more such pieces, 
and not more than one record occupying a single piece. In such a situa­
tion, it is trivially possible to record selectively, to expand, or to contract 
the file without disturbing unmodified data. 

2. The actual storage medium is physically continuous but it is broken 
into discrete pieces logically by means of an index which is used to define 
where each piece of stored information is located. Such a system always 
admits of selective recording and of expansion and contraction of infor­
mation. It is to be pointed out, however, that the index is a special 



DATA PROCESSING OPERATIONS 3-11 

file itself and has many of the problems of file maintenance inherent in 
its own structure. Further, many file modifications also require index 
modifications thus doubling the work required in these instances. After 
a reasonable period of use, the indexing system tends to become quite 
complex and cumbersome in its attempt to describe the locations of new 
records added, new pieces of old records stored in spaces not physically 
near their parent record, and spaces made available by the deletion 
of old records. In such systems, a periodic housecleaning and revamp­
ing of the file and its index is required for any reasonable efficiency in 
file processing. 

Retrieval of Information from Storage 

l\10st files are organized with respect to some key characteristic of 
the data they contain, with direct access to the file being available only 
through the specification of the correct key. For example, an inventory 
file is organized with respect to the item stock number as a key, and 
no item may be located directly without specific knowledge of its stock 
number. Thus, even though a verbal or technical description completely 
defining a single item may be available, direct access to the item is not 
possible without its stock number. In view of this fact, it is convenient 
to break information retrieval operations into two classes, one which is 
externally controlled and the other internally controlled. 

Externally Controlled Retrieval. The first class is termed external 
because sufficient information is available external to the file itself to 
determine the precise identification of the desired record. A request for 
the current status of a particular item whose stock number is known is 
an example of an external file operation. 

Internally Controlled Retrieval. On the other hand, it is frequently 
required that an item be located with respect to some characteristic 
other than the key with respect to which it is filed. This situation gives 
rise to the second class, which is internally controlled. Internal situa­
tions require that a scanning operation be applied to a file in order to 
accomplish the location of the desired information. (Many file systems 
have this as a requirement for locating information even when the key 
is known.) This may be further clarified by considering a particular 
application and a particular file system. Consider a loan account file, 
ordered according to account number, and stored on a selectively record­
able magnetic tape in a file system which has the ability to locate any 
record if it is given the account number. The posting of payments in 
such a system would become an example of an externally controlled 
operation since it would be trivially possible to identify the proper 
account number when the payment is received. The process of determin-



3-12 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

ing delinquencies is an example of an internally controlled operation 
since the file must be scanned to locate those records in which no pay­
ment has been posted. 

Categorical Types of Information Retrieval. This operation brings 
up another characteristic internal operation of fundamental importance 
in automatic file systems. Information to be obtained from a given 
file often consists of locating all those records whose characteristics 
match a prespecified set of characteristics. An inventory file might be 
scanned in order to produce a list of all those items which are used in 
the manufacture ,of a specific product, which are in short supply, and 
which require a purchase lead time of six weeks or more as an example 
of such an operation. Manual systems have provided for such informa­
tion searches (which the author terms category search), on a limited basis, 
provided the particular set of classifying characteristics were known at 
the time the system was installed. Edge-punched cards are a common 
example of such a system. 

Automatic systems for the first time provide the user with the ability 
to provide economically for internal file operations of this type on a 
large scale and not necessarily predetermined basis. It is apparent that 
giving the business man the ability to scan his records for information 
matching any prescribed set of characteristics provides him with one of 
the most powerful analytical tools available in modern data processing 
equipment, and that this feature will be one of the first to be exploited 
after the first rush of straight data reporting jobs have been taken care of. 

The Interrogation Problem. One of the most important and at the 
same time difficult problems facing the user of automatic data processing 
equipment in the business field is the necessity for making file information 
available to both the processing equipment in its language, structure, 
and medium and to the human users in theirs. Unfortunately, situations 
arise where the people using a data processing system simply must be 
able to obtain specific information from the records contained within the 
system on a random and reasonably rapid basis. A department store 
customer who wishes to pay up his account before leaving town on an 
extended trip must be provided with his current balance within a short 
time of his request. One simply does not tell him that he cannot leave 
town until the twenty-fifth because that is when his bill is due to be 
computed according to the current machine billing procedure. Yet such 
data as this must be contained within the 'automatic auxiliary storage 
of the processing equipment and cannot be simultaneously and econom­
ically duplicated in a form satisfactory for human use. At the present 
time, no really satisfactory solution for this problem exists. Present 



DATA PROCESSING OPERATIONS 3.13 

methods generally require a printing of a minimum amount of informa­
tion for each record in the file to serve as a basis for a manual interro­
gation process. This problem can be readily handled by a system with 
a random access storage, but no such device is today capable of provid­
ing sufficient processing speed for the bulk data processing activity to 
justify its inclusion for the interrogation problem. In certain on-line 
data processing systems with reasonably slow input-output requirements 
such a solution is provided. The automatic reservation devices employed 
by some airlines and railways are examples of such systems. 

8. CHECKING 

Few systems can tolerate the introduction, generation, or perpetuation 
of erroneous information. Of course this statement applies to a greater 
or lesser degree depending on the particular situation. One erroneous 
data point in a missile tracking situation will not have profound effect 
on the final analysis. A mistake in an inventory record of a few hundred 
washers would not upset a hardware warehouse, but a similar mistake 
might be catastrophic to a supplier of household laundry equipment. 
Error detection and correction takes on a considerably more important 
aspect in automatic data processing situations than it has in manual 
systems for several reasons. The data within an automatic system 
does not pass under human scrutiny where reasonability judgments may 
readily take place. The sale of five thousand fur coats might be readily 
accepted by an automatic business system, whereas it would be imme­
diately questioned by its human operators. Just as important perhaps 
is the fact that the user has a considerable investment in his data process­
ing system and that location and error correction may entail the execution 
of a difficult, time-consuming, and costly operation. It is therefore ex­
tremely important that provision be made to detect and provide correc­
tion procedures for all errors which may be introduced in any phase of 
operation of an automatic system. 

Checking procedures may be described as being either automatic or 
programmed. Automatic checking systems provide for the verification 
of the correctness of all operations by special equipment built into the 
automatic processing system. As such, automatic checking systems do 
not introduce any new function for the system user. Programmed 
checks, however, are basic data processing functions because they consist 
of the verification of the correctness of system operation by means of 
special procedures introduced by the system user. 

Input Data Checking. Three techniques are in common use for the 
checking of input data. 



3-14 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

1. \Vhere the sequence with which data are entered is important, each 
input item is made to contain a sequence number, and a programmed 
check for the continuity of this sequence number is provided. 

2. Where the correctness of a particular set of input characters is 
especially important, a redundancy check may be employed. In this 
case, the set of input characters is augmented by the addition of one 
or more characters whose nature is determined in a well-defined fashion 
by the input characters with which they are associated. Subsequent to 
the input operation, a programmed check is performed to verify that 
the input characters and their associated check characters satisfy the 
correct relationship. An example for numerical data entry verification 
is to provide a "mod II" check character. This character is obtained 
by alternately adding and subtracting the digits of the data, casting out 
any multiples of 11 which may accrue during the process. (The mod 11 
check digit for the number 52719 is obtained as 9 - 1 + 7 - 2 + 5 = 18, 
18 - 11 = 7.) This digit is then entered along with the data (thus 
52719 would be entered as 752719), and a programmed check provided 
to ensure that the check character matched the data entered. The mod 
11 check ensures that no single digit was entered incorrectly and that no 
transposition of digits occurred, and is, therefore, an excellent check 
against the most common types of operator transcription errors. 

3. The third common form of input data check is the sum check. In 
this instance, a set of input items are arbitrarily chosen and each field 
of· each item is added into a common total. This total is then entered 
together with the set of input items to which it refers and a similar sum­
ming operation is performed subsequent to the entry process. 

Checking of Data Processing. Operations internal to an automatic 
data processor often permit programming checks. Internal operations 
may be repeated and results compared or a given result may be obtained 
by two independent methods. It is often the case that two independent 
and necessary results can act as a crosscheck against each other because 
some fundamental relationship is known to exist between them. It is 
sometimes possible to provide reasonability type checks on the results 
of computations. In scientific problems differencing techniques will 
reveal out of line results. In business data processing situations, reason­
able activity levels may be established and recorded for checking 
purposes. Such a check would remove the possibility of recording a 
sale of ninety-five mink coats because of the entry of an incorrect stock 
number in an inventory updating procedure. 

Output Data Checking. Checking of data transmitted from the 
internal processor to output equipment is usually accomplished by 
automatic checking equipment since it is generally impossible to acquire 



DATA PROCESSING OPERATIONS 3-15 

any information on output results for programmed checks. One major 
exception to this is the checking of magnetic recording. No automatic 
check of magnetic recordings is satisfactory that is not obtained by a 
direct reading subsequent to writing of the actual magnetic record pro­
duced. Since such a system is not generally provided in current equip­
ment, the only satisfactory check of magnetic recording is a programmed 
check in which the data are read back from the magnetic medium and 
compared with those which were transmitted originally. It is sometimes 
possible to circumvent this requirement by delaying the read back check 
until the current recording operation has been entirely completed, and 
then executing some useful processing operation utilizing the recorded 
information. By this means a writing error from the previous operation 
can be caught and corrected during the current operation provided the 
magnetic system admits of selectable recording. 





c THE USE OF DIGITAL COMPUTERS 

AND DATA PROCESSORS 

Quantitative Characteristics 

of Data Processing Systems 

Chapter 4 

Roger L. Sisson and Richard G. Canning 

I. Determining System Requirements 

2. Basic System Characteristics 

3. Basic Equipment Characteristics 

4. Measurement of System Factors 

5. Relating System Characteristics to Equipment Characteristics 

References 

I. DETERMINING SYSTEM REQUIREMENTS 

4-01 

4-02 

4-04 

4-04 

4-09 

4-16 

The objectives of this section are to point out the basic characteristics 
or factors which exist in any data processing system, and to discuss 
methods of (a) measuring the system characteristics and (b) relating 
the system characteristics to the possible equipments for performing 
the systems functions. 

The boundaries of the system under consideration are set to exclude 
areas over which the designer has no control. The information flowing 
into the system across these boundaries determines the input character­
istics, and the type and nature of the inputs can usually be measured. 
The information that flows out of the system is produced in accordance 
with clearly defined requirements which are the output characteristics. It 
is assumed that the designer has complete control over the structure 
within the boundaries, being limited only by (1) the techniques known, 
(2) equipment, (3) the economics of the situation (in military systems 

4-01 



4-02 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

values other than dollar economy might be defined), and (4) policy 
restrictions. 

The steps in designing a data system are: 
1. Determine and clearly state requirements. 
2. Determine the sources of data (outside the system) which allow 

the realization of these requirements. 
3. Determine, from an analysis of the requirements, the sequences of 

data manipulations and transmissions to meet the requirements. 

2. BASIC SYSTEM CHARACTERISTICS 

Input Factors. 
1. The rate at which data come into the system and the fluctuations 

in this rate for each source of data. See Vol. I, Chap. 16. 
2 .. The significance of the data. Each quantity must refer to some 

entity in the physical or economic system, either explicitly, by symbols 
or descriptive matter, or implicitly, by its location in relation to other 
data. 

Output Factors. 
1. The rate and variations in rate. 
2. The significance of each output specified explicitly (e.g., by a 

heading), implicitly (by format), or by data previously supplied. An 
output might be a variable which is a function of one or more others, 
the rate of change (trend) of a variable (occasionally higher order rates 
of change are required), or the past history of a variable (sometimes 
expressed as the integral). 

Internal System Characteristics. The internal structure of a system 
may vary, depending upon the job being done. However, many data 
systems fall into the following pattern: 

1. Data collected. Input recorded, ready for use by the system when 
required. Conversion, transcription, and editing might occur here. 
See Chap. 7. 

2. Input data stored (filed), often by storage of the recording medium. 
3. Data transmitted to a central point (data gathering). 
4. Data batched, i.e., collected into groups for ease in processing. 
5. Data stored or filed, to make it possible: (a) to hold for processing 

or until external processes affecting the data occur; (b) to maintain 
records of past events (historical or integral data); (c) to combine data 
for processing; (d) to determine rates of change of data (trend analysis). 

6. Computations and logical manipulations performed on the data, 
such as: (a) maintenance of the files noted in step 5; (b) computations 
required for the outputs. The inputs for these steps consist both of 
incoming data and data extracted from the central files. 



QUANTITATIVE CHARACTERISTICS 4-03 

7. Conversion and transcription of the data to a usable form. 
Table 1 illustrates these steps in typical systems. 

TABLE 1. EXAMPLES OF DATA PROCESSING SYSTEM CHARACTERISTICS 

System 

Business 
System Data Reduc- Computation Control 

(Inventory tion (Guided (Linear (Tape Driven 

Function Control) Missile) Programming) Machine) 

1. Record data Record trans- Not recorded Record pa- Record on 
actions on in missile; rameters on magnetic tape 
keyboard transmit to paper during pre-

ground where paratory 
recorded on process 
tape 

2. File data (Not done) Store tape Hold data Hold tapes 
(temporary) (paper) 

3. Gather data Transmit Send tapes Organize Receive error 
electrically to processing parameters in signals, and 
to paper center form required signals from 
tape punch by program tape 

4. Batch data Combine Put tapes Organize None 
paper tapes in proper parameters in (on line) 

sequence form required 
by program 

5. Store data File on mag- Not required File on mag- None 
netic tapes netic tape (on line) 

6. Manipulate 
File Bring master Not required Linear pro- None 
maintenance files up to gram compu- (on line) 

date tation 
Output Prepare Edit, cali- Linear pro- None 
pre para tion reports, brate, com- gram compu- (on line) 

orders, etc. pute (data tation 
reduction) 

7. Transcribe Print out Print out, Print out Convert to 
plot answers servo signals 

to guide 
machine tool 

General System Factors. 
1. Accuracy, correspondence of results to reality ( error rate). 
2. Precision, repeatability. 
3. Flexibility, ability to solve new problems (meet new situations). 
4. Cost (or value, e.g., to the military). 
5. Installation time. 
6. Reliability, probability of the machine being available when needed. 



4-04 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

3. BASIC EQUIPMENT CHARACTERISTICS 

Table 2 outlines briefly the factors which characterize data processing 
devices. 

TABLE 2. BASIC EQUIPMENT CHARACTERISTICS 

Factors Defining Data 
Equipment Processing Characteristics 

Communication or transmission 
devices 

Peak capacity to transmit information 
Error rates 

Storage (storage filing) elements Storage capacity 
Maximum rate of data entry or extrac­

tion 
Access time to individual elements of 

data, minimum, average, and 
maximum 

Arithmetic and logical manipulators Basic operations the equipmEmts can 
perform 

Rate of performance of basic operations 
Input rate 
Output rate' 

Data converters, including input and 
output units 

Form of input to converter 
Rate of conversion of data from input 

form to converter output form 
Form of output from converter 

4. MEASUREMENT OF SYSTEM FACTORS 

This section describes how the characteristics described above are 
measured and discusses them in more detail. 

Location of Sources of Data. Table 3 gives examples of sources of 
data and typical data rates. 

TABLE 3. EXAMPLES OF DATA SOURCES 

Type of Data 
Processing, 

Guided missile data 
reduction 

Scientific computation 

Business systems 

Location of Source 
Instruments in the missile 

Person who defines the 
problem 

Devices (or persons) that re­
cord data about trans­
actions (sales, purchases, 
work done, etc., and the 
results of management 
decisions) 

Typical Data Rates 
0.1-10,000 binary digits 

per second 
A few binary digits per 

minute 
From a few binary digits 

per day to 200 binary 
digits per second 



QUANTITATIVE CHARACTERISTICS 4-05 

Source Data Units 

Source data rate is measured in number of binary digits per second 
(as a function of time) entering the system. If data are recorded in a 
definite format, it is possible to use other units such as: (1) documents 
per unit of time, where all documents have approximately the' same 
number of digits; (2) transactions per unit of time, where the same data 
are recorded about each transaction, e.g., points between which a machine 
tool is directed to travel. ' 

The data may enter the system at a uniform rate; but more often they 
enter at random intervals so that a choice must be made between a 
system handling the average rate but introducing delays, and the more 
expeniive system which is capable of handling peak loads. 

Measurement of Source Data Rates. This is usually performed by 
one of the following methods. 

1. Estimating from knowledge of the type of source. For example, 
knowing the limits of performance of a guided missile, it is possible to 
estimate the maximum rate of data transmission required to record faith­
fully the variation in the various factors, e.g., fuel pressure. 

2. Determining the existing rate of input, e.g., counting incoming sales 
orders over a period of time in a business system. 

3. Knowledge of the problem. For example, by knowing the size of the 
matrix problem to be solved, it is possible to determine the number of 
coefficients to be fed into the computing system per iteration. 

Storage of Data 

The two key factors in data storage systems are (1) storage capacity 
and (2) rate at which data must enter and leave storage. 

Storage Capacity. This quantity is basically measured in binary 
digits. However, a particular system may use derived measures. For 
example, in a decimal system, storage may be measured in decimal digits. 
Often a system handles data in groups of digits because of the storage 
media used (e.g., cards) or because of the equipment design (many 
equipments handle small groups of digits called words). Then the 
storage capacity is stated in terms of the number of words in the storage 
or the number of cards it will hold. 

In every storage or filing system, data within the storage are located 
by an address. The address is a number (or code) which the access or 
scanning equipment recognizes, and it is used to locate the data for inser­
tion or withdrawal. 

Data Entry. Entry of data into a storage system can occur in two 
ways: (1) the data can already be arranged into address sequence; (2) 



4·06 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

data arrive at the storage randomly with respect to the address at which 
a given item will be stored. These are referred to respectively as sequen­
tial and random arrivals. The requirements imposed on the system may 
determine the sequence in which data arrive at the storage. Very often, 
however, this choice is left to the system designer. For example, the 
designer may allow data which are arriving in a random fashion to enter 
storage as they arrive, or he may first collect a group of the incoming 
data and order them on a unit which sorts them into the desired sequence 
of address numbers. Then this set of data can be fed into a storage 
sequentially. Thus the system for entering data into storage cannot be 
divorced from the types of equipment available. 

Collation Ratic:}. This is defined as the number of unit records (of a. 
file) used in a given period of time to the total number of unit records 
in the file. With low collation ratios (few records affected per cycle 
time) the use of sequential data storage units becomes costly. If the 
collation ratio is high, and if the data can be arranged in the proper 
sequence, sequential storage may be more practical. 

Size of Files. The process of determining the size of files and the 
access type and time required is an integral part of the system study 
and involves a detailed analysis of the problem. The file size depends 
upon: (1) instantaneous rates of data coming into and out of the file and 
(2) the number of items ,which the file represents. 

Access Requirements. These are determined by: (1) the rate of 
information arrival and withdrawal, both average and peak; (2) the max­
imum permissible delay between the arrival of an inquiry of the file and 
final response to the inquiry; (3) the size of the file. 

Computation and Logical Manipulation 

The basic operations performed by a data processing system are 
described in Chap. 3. The job of the system designer is to arrange these 
basic operations so that the required outputs are obtained in the most 
economical manner within the permissible time limits. An important 
question is how to measure computation and manipulation. Almost 
every system has basic items or transactions which it is processing (e.g., 
payroll records, points in space-missile position, iterations of a relaxa­
tion computation). 

Manipulation Rate. This can be measured as items or transactions 
processed per unit time. Examples of the items of transactions that 
define the size of a given data processing task may be obtained by 
studying Chaps. 8, 9, and 10. 

Computation Rate. As with storage, the computational character­
istics of a system often cannot be completely measured without relating 



QUANTITATIVE CHARACTERISTICS 4-07 

the problem to the equipment which can perform the job. If a general 
purpose computing device is used in part of a system, it can be pro­
grammed to perform any computational procedure required. On the 
other hand, a special purpose computer might be designed to perform 
only that sequence of operations required of a particular system. The 
problem in either case consists of estimating the economics and time 
involved. 

Output Factors 

The form of the output is determined by the requirements of the 
elements, external to the system, which are to utilize the information 
from the system. The factors to consider when determining these require­
ments are: (1) the language or form of data presented, e.g., analog or 
digital; (2) the format, that is, the arrangement of data; (3) the medium 
(see Chap. 5); (4) the rate at which data will be produced and the fluc­
tuations in the rate. 

The Rate of Output Data. This can be derived by knowing the input 
data rates from the data sources, the computational procedures used, and 
the requirements for output information content. Since this process is 
rather lengthy in complex systems, it is sometimes sufficient, for quick 
estimates of the output factors, to count or to measure the output rates 
in an existing system. These data must be used carefully, however~ 
because the new system is often being designed to provide some new 
and different outputs. In some cases t,he new system will result in more 
output data; in other cases, the output rate is reduced because the new 
system performs more of the decision-making functions internally (see 
Vol. I, Chap. 15). 

Errors and Reliability 

Important characteristics whieh must be considered at every point in 
a system are error rate and reliability. 

Error Rate. All the characteristics mentioned above (for instance) 
rate of input and rate at which computations proceed) must also include 
information on rate at which errors may occur. With good design it is 
possible to reduce the probability of undetected errors to such a low 
value that it is effectively zero in actual operation of the system. But 
when error detecting and correcting methods are included (see Chaps. 5 
and 13), it becomes important to recognize that the effective rate at which 
data are arriving or computation is proceeding is reduced because 
part of the information is redundant (i.e., involved with the error cor­
rection procedures). 



4-08 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

Reliability. The reliability requirements of the system are also ex­
tremely important. There are some systems (for instance, the control 
of air traffic) in which, ideally, no failures can be tolerated. On the 
other hand, there are other systems such as certain business systems in 
which machine failures would merely delay the overall process, but would 
cost little money and certainly no lives. Where extremely high reliability 
is required, the cost of the system must be expected to be higher. 

Flexibility 

A data processing system is a tool designed to process information. 
As with any tool, there may be "tool design" and also "setup" time 
and effort required, if the tool is expected to perform a variety of spe­
cific jobs. The tool design aspect of a data processing system includes 
such things as programming a computer, or wiring the plugboard of 
punched-card or analog computing equipment. Setup includes such 
steps as entering the program into the computer memory and inserting 
the plugboard. 

Where a large variety of jobs must be processed, the system must be 
flexible, and the ease. and rapidity of designing and setting up for a 
new job become vital. In high volume applications, the programming 
(design) occurs less often (usually only to make improvements) so that 
flexibility is less important. In this case, special purpose machines 
designed to perform only one specific job can be effective. 

Flexibility is measured by comparing the time and cost for preparing 
for a new job required by the systems under consideration. 

Cost 

Given specific system characteristics, there generally are specified 
economic limits within which the equipment costs, installation costs, and 
operating costs must fall, if the system is to be satisfactory. 

Equipment Costs. These include the cost of data transducers and 
recorders, transmission equipment, data converters, input devices, com­
puters and data processors, output devices, auxiliary data storage equip­
ment, office furniture, supply storage equipment, air conditioning 
machinery, and maintenance equipment. 

Installation Costs.- These include three maj or items: 
1. The planning of the new data processing system, organizing for its 

inception, and training personnel to operate the new system (see Chap. 7). 
2. The preparation -of the physical facilities for the new equipment, 

and the actual installation and check out (see Chap. 6). 
3. The operation of the new system in parallel with existing systems 



QUANTITATIVE CHARACTERISTICS 4-09 

for a period of time, to establish its reliability and shake out the system 
bugs before depending upon it (see Chap. 7). 

Operating Costs. These costs include the types of costs associated 
with operating any system of men and machines. The major items of 
operating costs are depreciation or rental, salaries and wages and asso­
ciated overhead, maintenance, space, supplies, and power. 

Installation Time 

An important overall system requirement or factor is the time required 
to put the system into operation. The major steps which account for 
the installation time are those listed under installation costs in the 
previous paragraph. 

5. RELATING SYSTEM CHARACTERISTICS TO 
EQUIPMENT CHARACTERISTICS 

The equipment characteristics are described in detail in Chap. 5. This 
section will attempt to show how the system designer must relate various 
system factors in selecting equipment. 

Recording, Transmission, and Temporary Storage 

The input source factors are determined by location, rate, and content. 
These affect equipment characteristics in several ways: 

1. Devices may be needed for converting physical phenomena (pressure, 
shaft position) or informational inputs (quantity of items processed, 
item of a sales order) to a form which the data processing equipment 
can then handle, such as electric impulses, punched cards, and mechanical 
motions. 

2. Devices for recording these data for temporary storage may be 
required. 

3. The temporary storage media itself must be selected. 
4. Communication links to bring the data from sources to interme­

diate and to central processing centers are usually involved. 
Location. The location of data sources in relation to each other 

and to the central processing units of the system determines the need 
for the recording, temporary storage, and communication links in the 
input part of the system. 

Rate and Content. The rate at which data are generated at the 
sources in relation to each other and to the processing rate determines 
the need for temporary storage within the input system. If data are 
generated at peak rates which differ from processing rates or the rate 
at which data are generated at other sources, some temporary storage 
is required. Often data are generated intermittently and/or processed 



4-10 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

intermittently, so that storage is required to hold data during inactive 
periods. The need for and size of temporary input storage is related to 
the type and size of storage facilities in the central processing unit and 
to the type of communications available. For example, broad-band links 
which handle peak loads of information may require little storage; links 
available only intermittently may create a need for more input storage. 

Temporary input storage is generally sequential, since any rearranging 
to be performed is accomplished at the main processing center; that is, 
data are read out in the same sequence as received but sometimes at a 
different rate. 

The need for conversion is brought about when, for example, the source 
data are in analog form and the processing or communications are digital. 
In almost every system the data as they arrive from the source must be 
converted to some other form or medium for further processing into the 
system. For examples, see Table 4. 

TABLE 4. EXAMPLES OF DATA CONVERSION 

Source Form 
Pressure 
Shaft position 

Handwritten figures on paper 
Coded information on magnetic tape 

Required Form 
Electric voltage 
Digital signals (pulses representing num­

bers) 
Punched cards 
The same information in a different code 

on paper tape 

EXAMPLES. Relation of Data Source and Input Equipment. 
1. Guided missile system. The data are generated at various rates 

at points throughout the missile (see Fig. 1). The data are converted 

Transducers 

Pressure 

Air flow 

FIG. 1. 

Missile 

Selection and 
temporary 

storage 

I 
I 

"'-------' T . I 
ransmltter I 

I Receiver 

I 
I 

Ground 

Communication 

Temporary 
storage 

Central 
processing Results 

Relation of data source and input equipment, guided missile system. 



QUANTITATIVE CHARACTERISTICS 4-11 

by transducers from the physical form to a fOfln convenient for trans­
mISSIOn. They are transmitted to a central air-to-ground transmission 
link by communications systems within the missile. Some temporary 
storage may be required here as the internal transmission rate may differ 
from the rate at which air-to-ground communications occur. The data 
are then transmitted to the ground. Here they may be communicated to 
a processing center, or may be stored (e.g., on magnetic tape) and then 
processed later. 

2. Processing sales orders. The data originate at random times with 
the customers and are communicated by mail to a branch office of the 
firm (see Fig. 2). Here they are stored, by holding the media, and then 

Customers Branch Office Main Office 

FIG. 2. Relation of data source and input equipment, sales order processing. 

eventually further translated by retyping into standard forms and 
punched on paper tape. Data are then communicated (by teletype, for 
example) to the main office where they may be stored again, and finally 
processed on an intermittent basis. 

Storage Equipment (Memory Units) 

The storage capacity of the required equipment relates directly to the 
storage requirements in the central processing system. There must be 
provision for equipment to hold the number of binary digits (basically) 
that must be stored. 

The rate and sequence in which data will arrive partially determine 
the type of access or scanning system required. In a sequential storage 
the access mechanism locates the desired item by scanning one item after 
another, usually in order of the address numbers. In a random access 
storage, the access mechanism can go dir@ctly to the desired item 
(address). Most storage systems are a compromise. Table 5 shows that 
many access systems are partly random and partly sequential. 



4-12 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

TABLE 5. SCALE OF DATA STORAGE ACCESS METHODS 

Examples 

Scale of 
Randomness 

(Arbitrary) 

Completely Sequential 

Semlrandom 

Completely Random 

Tape (magnetic and paper) 

Tape drum and tape loops 

Magnetostrictive lines. 
Acoustic lines 

Magnetic drum 

Disk array 

ledger card 

Magnetic cores 

The functional difference between random and sequential access 
systems ifil great, and the system design will vary appreciably, depend­
ing upon which is used. With a sequential storage; data may have to 
be batched and sorted by address numbers before entering the file or 
storage. 

The choice between random and sequential methods and equipment 
is affected by the collation ratio. See Sect. 4. With sequential equipment 
it is often nearly as easy to examine all unit records of a file as it is to 
examine a few, so that systems with a high ratio can be processed almost 
as cheaply as those with a low ratio. 

In a sequential system access time is measured for two cases: (1) time 
to read or write the next item in sequence; (2) rate at which data are 
transferred when transferring continuously. 

The access time is measured as the time required to locate the 
desired item, sometimes termed the search time. If not a completely 
random system, the average access time is given. 

If a naturally sequential system (e.g., magnetic tape) is used as a 
random access system (which is usually possible) then the system would 
have a long mean access time with a large variance or range. See the 
magnetic tape entry in Table 6. The naturally "random" system is 



QUANTITATIVE CHARACTERISTICS 4-13 

TABLE 6. ACCESS TIl\IES OF STORAGE DEVICES 

Storage Representative Representative Access Times 
Device Capacity Min. Mean Max. 

Magnetic coresa 5000-600,000 10 j.l.sec 10 j.l.sec 10 j.l.sec 
binary digits 

Mercury delay linesa 20,000-50,000 50 j.l.sec 200 j.l.sec 400 j.I./Sec 
binary digits 

Magnetic drums 
Univac file com- 180,000 alpha- 1 msec 18.5 msec 36 msec 
puter drum numeric char-

acters 
Univac Larc drum 3,000,000 decimal 3 msec 1.25 sec 2.5 sec 

digits 
Datatron druma 40,000 decimal 0.5 msec 8.5 msec 17 m~ec 

digits 
Magnetic tapes 1,000,000-28,000,000 10 msec 2 min 10 min 

characters per reel 
Tape strips (data file) 20,000,000 decimal 2 sec 16 sec 48 sec 

digits per unit 
Magnetic disks 6,000,000 decimal 150 msec 500 msec 800 msec 

digits 
Photographic disks 4,000,000 decimal 0.1 msec 12.5 msec 25 msec 

digits 

co Internal storage devices. 

characterized by a short mean access time with a small range or vari­
ance (e.g., see magnetic drums and magnetic cores in Tab1e 6). Mixed 
systems often have a short mean time but a wider variance than the 
naturally random system. For example, a group of short tapes might 
have a mean access time of 100 milliseconds and a range of 5 to 200 
milliseconds. See Chap. 20. 

Computational and Logical Proceisors 

The computational and manipulation facilities required are determined 
by the processing which must be performed. Table 7 reviews some of 
the characteristics of digital computing equipment and their relation to 
system factors. 

The size of storages (2 and 3) will be influenced in part by whether 
the system is on line or off line. On-line systems require large internal 
memory to hold programs for all possible occurrences, but small auxiliary 
memories. Off-line system must have large auxiliary storages to hold 
batches of data, but can be operated with smaller internal storages. 

The flexibility required by the system determines the requirements for 
ease in reprogramming or rearranging the equipment. Analog computing 
equipment is often used when a number of different problems must be 



4-14 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

Table 7. EQUIPMENT FACTORS AND RELATED SYSTEM FACTORS 

Equipment Factors 
1. Internal operation, including index 

registers, buffers, special commands 
for sorting, merging, floating point 

2. Internal storage 

3. Auxiliary storage 

Related System Factors 
1. a. Manipulations required 

b. Flexibility and ease of program­
ming and setup required 

2. The need for storage of factors and 
programs during computation 

3. The requirements for storage of all 
information in the system at any 
one time 

4. Capacity: number length, alpha- 4. Language and size of the fields in 
betic facilities the data processed 

5. Reliability 5. Freedom from undetected errors 

6. Cost 
7. Physical size 
8. Availability 
9. Auxiliary features: converters, 

processors," sorters 

required; efficiency required (effec­
tive computing speed, including 
redundancy for error detection and 
correction, and down time) 

6. System economics 
7. Space available 
8. System installation plans 

"file 9. Auxiliary system requirements: 
Conversion, transcription, editing, 
sorting and file manipulation re­
quiremEmts (not to be performed in a 
computer) 

solved quickly, since it is easy to program or design the system for a 
particular problem. Programming for a digital computer is more costly, 
although special features and techniques are available to make program­
ming easier. Programming ease can be "bought" by sacrificing comput­
ing time through the use of automatic programming techniques. See 
Chap. 2. 

Output Equipment 

The form and media on which the output must be presented determine 
the type of output equipment. The equipment must accept the data 
in the form and on the media available from the processor proper. The 
output equipment must translate or convert these data to a required 
output form, including inserting the format arrangement or position 
data inserted to make interpretation easier. The equipment must handle 
the data at the required rate. Details such as requirements for multiple 
copies, reproduction copies, instantly visible copies, and other factors 
not necessarily explicit in the data themselves must be considered. 

The control of format may be performed in two places, in the com­
putational facilities or within the output units themselves. In either case 



QUANTITATIVE CHARACTERISTICS 4-15 

the format control must be able to provide the foreseeable range of 
fonnats. 

The output media required, of course, determine the type of output 
units which can be used. 

If the computations are performed digitally and an analog output is 
required, a digital-analog converter is required having the proper char­
acteristics. 

In many output systems it is common to measure the output rate in 
terms of the output form rather than basic binary digit rate. Thus, we 
have units such as decimal digits per second, points plotted per minute, 
lines printed per second, and cards punched per minute. 'Vhen output 
information rates are given in terms of these larger units, additional 
information is often needed to determine the actual information rate. For 
example, the information per line depends on the number of characters 
in each line. 

The output requirements also can affect the computational procedures. 
They can affect the sequence in which computations are performed, so 
that data arrive at the output in the correct order. 

Type 
Parity 

Redundant 
digits 

TABLE 8. TYPICAL REDUNDANCY CHECKING METHODS 

Typical Use 
Checking magnetic tape data 

transfers 
Checking internal computer 

transfer and arithmetic oper­
ations, e.g., in Datamatic 
1000 

Redundancy 
One binary digit of 7 

4 binary digits of 40 

Self-checking number systems One decimal digit of 7 
Calculating and checking Typically 10 digits of 1000 

"batch" or control totals 
Duplication Repeating complete message 100% 

transmission (duplication 
in time) 

Duplicate arithmetic logic, 100% 
unit, e.g., in Univac 

Reasonableness Checking to see if data devi- The computation involved in 
ate by a given percentage extrapolation, comparison 
from an extrapolation of and storage of limitsa 

previous data 
Consistency Checking agreement of stock Storage of correct combina-

number and name tion and checking calcula­
tion timea 

Completeness Checking to see if a field is Checking calculation timea 

missing or if an item is 
skipped in a sequence 

a Such checking typically consumes 10% of the time for a complete calculation. 



4-16 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

Equipment Error Rate and Reliability 

The undetected error rate permissible directly affects the type of 
equipment which can be selected for a given system. Where extremely 
low undetected error rates are required a large amount of redundancy 
must be introduced into all phases of equipment. Redundancies of 
about 17 per cent (e.g., a parity bit for every six information binary 
digits) are common. Redundancy as high as 100 per cent, that is, com­
plete duplication, is used (e.g., equipment duplication as in the Univac 
arithmetic unit, or a time duplication as in the IBM transceiver). Com­
munication channels must carry extra data, in the form of error-correcting 
codes, for instance. Computational procedures must include a large 
number of checks in the form of redundancy (duplication, perhaps) and 
consistency checks. See Table 8. 

REFERENCES 

1. R. G. Canning, Electronic Data Processing for Business and Industry, Wiley, 
New York, 1956. 

2. C. W. Adams, Automatic data-processing equipment: a survey, Electronic Data 
Processing in Industry, pp. 125-138, American Management Association, New York, 
1955. 



c THE USE OF DIGITAL COMPUTERS 

AND DATA PROCESSORS 

Equipment Description 

Chapter 5 

J. W. Busby and J. H. Yienger 

I. General Equipment Description 
2. Characteristics of Electronic Data Processing Equipment 
3. Input Equipment 
4. Storage Equipment 
5. Output Equipment 
6. Arithmetic and Logic Unit 
7. Control Equipment 
8. Typical Electronic Digital Equipment 

References 

I. GENERAL EQUIPMENT DESCRIPTION 

Organization of Electronic Dig~tal Equipment 

5-01 

5-04 

5-09 

5-24 

5-33 
5-38 
5-40 

5-43 
5-43 

All electronic digital computers and data processors have five func­
tional elements, namely input, storage, arithmetic and logic, output, and 
control, as shown in Fig. 1. 

The input unit is the means of getting both the data to be processed 
and the directions for processing this data (control instructions) into 
the equipment. The storage unit provides a resting place for all data 
placed into the equipment, for data developed during the processing 
operations, and for the instructions that direct the operations. The 
arithmetic and logic unit processes the data according to the rules of 
arithmetic and a predetermined logic. The output unit accepts the 
results of the processing and passes them out of the equipment. The 

5-01 



5-02 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

control unit directs the processing operations by informing the various 
units when and how they should perform. The arithmetic and logic, 
storage, and control units are referred to as the processing unit. 

Processing unit 

1'-'-'-'-"' 
I· Arithmetic and ,. 

logic unit 

I I 
I I 

I 
I 
I . 

I ii I 
I I . I '-------t--- Control unit =-~_+ _____ ..:J 

L. _______ . __ ._· _J 
FIG. 1. Organization of electronic digital equipment. 

Transmission: information -- ; control - - -. 

Major Components. The major components that make up electronic 
digital equipment are illustrated in Fig. 2. 

Input Media. The most widely used input media are punched cards 
and magnetic tape. They contain the data to be processed and the direc­
tions for the processing in a coded form. 

Storage Media. The most widely used storage media are magnetic 
cores, magnetic drums, and magnetic tapes. They hold the data to be 
processed and the instructions for the processing in magnetic form. Mag­
netic drums and magnetic cores are permanent components of the storage 
unit, whereas magnetic tapes may be disconnected from the processor 
and replaced with other reels. 

Arithmetic and Logic and Control Units. The arithmetic and logic 
and control units consist of electronic circuits. 

Output Media. The most 'widely used output media are punched cards, 
magnetic tapes, and printed reports. These media are used to record 
the results of the data processing. Punched paper tape, electric type­
writers, visual displays and special electronic equipment can also be 
used for output. 



OUTPUT 

PTlfNf£l) l1£POPTS 

__ . __ '--....1 

FIG. 2. Components of electronic digital equipment. 

m 
-0 
c 
-a 
~ 
m 
Z 
-i 

o 
m en 
() 
~ 
-a 
-i o 
Z 

Cl"I 
b 
w 



5-04 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

General Purpose and Special Purpose Equipment. General pur­
pose electronic digital equipment has the ability to perform a large 
variety of problems. This equipment is designed to perform a set of 
basic arithmetic and logical operations. The sequence of the operations 
executed can be readily changed by changing the stored program. This 
feature makes general purpose equipment very versatile and results in 
a flexibility that permits it to be used in a variety of applications. 

Special purpose electronic digital equipment have the following char­
acteristics: 

. 1. They are limited in the types of problems they can solve. 
2. Most special purpose equipment is designed for only one particular 

application. 
3. The sequence of operations which special purpose machines execute 

is often fixed into the control unit. To change this sequence, it is neces­
sary to make an engineering change within the equipment. 

4. Special input media are usually employed. 
EXAMPLE. Reservation machines (see Chap. 9). 
Distinction between Scientific and Business Machines. There is 

no sharp dividing line between scientific and business electronic digital 
equipment. In general, the two kinds of machines have the same func­
tional organization and can do the same things. Electronic digital equip­
ment for scientific applications is designed with emphasis primarily on 
the speed of arithmetic operations and the ability to perform complicated. 
arithmetic processes. Scientific computations are characterized by gener­
ally low volume of input and output, little or no reference file require­
ments, and extensive repetition of internal arithmetical operations. 

Electronic digital equipment for business applications is designed with 
emphasis primarily on fast means of transferring data into and out of 
the equipment, large capacity file storage, and the ability to manipulate 
data. Business data processing is characterized by voluminous file stor­
age requirements, high volume input and output of data, and generally 
nominal amounts of internal computations. 

New designs tend to combine the features of scientific and business 
machines. 

2. CHARACTERISTICS OF ELECTRONIC 
DATA PROCESSING EQUIPMENT 

Number Systems. Numbers may be described by the digits compos­
ing them and the number system on which they are based. The number 
system used in everyday living is the decimal system, based on the 
number 10. Electronic computers use some form of the binary number 
system (see Chaps. 2 and 12). 



EQUIPMENT DESCRIPTION 5-05 

The conversion of a decimal number to a binary number and vice versa 
can be performed by the electronic digital equipment. The basic arith­
metic operations of addition, subtraction, multiplication, and division can 
also be, performed in the binary system. See Chaps. 12 and 18. 

Coding of Information. The numerical data that have to be proc­
essed are usually in decimal form on the input documents, and the results 
of the processing have to be in the same form on the output documents. 

Electronic digital equipment has been constructed to represent numbers 
in the decimal system. However, this is a very inefficient and costly 
method of number representation in electronic form. Hence, the binary 
number system or a binary coded system is usually employed. (See 
Chaps. 12 and 13 for other codes.) 

Binary Code. The binary system has been widely used in electronic 
digital equipment, especially computers for scientific and engineering 
work. The major disadvantage to the binary number system is that 
it is difficult for human beings to interpret without training. 

Binary Coded Decimal. Another method of coding information in 
electronic digital equipment is the binary coded decimal system or the 
8421 system shown here: 

8421 Binary Coded Decimal 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 

Decimal Equivalent 

o 
1 
2 
3 
4 
5 
6 
7 
8 

1001 9 

A decimal number such as 267 is represented as (0010) (0110) (0111), 
while 1959 is represented as (0001) (1001) (0101) (1001). The advan­
tages of this system are that it is fairly easy to interpret and there is 
room for additional symbols because the ten-decimal digits use only ten 
of the sixteen possible combinations. A disadvantage is that it is not 
as efficient as the binary system if the six additional code combinations 
are not used. 

Alphanumeric Codes. The coding of decimal digits can be extended 
to include alphabetic characters and special symbols. Six binary digits 
make it possible to accommodate sixty-four different combinations. 
Therefore, six binary digits can handle the ten-decimal digits, twenty-six 



5-06 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

alphabetic characters, and up to twenty-eight additional characters such 
as punctuation marks and special symbols. One adaptation of the use 
of six binary digits to represent various characters is as follows: 

Character Binary Coded Character 

1 000001 
2 000010 
3 000011 
4 000100 

9 
o 
A 
B 
C 
D 

z 
, 

% 
$ 

* 

001001 
001010 
110001 
110010 
110011 
110100 

011001 
011011 
011100 
101011 
101100 

This type of binary coded character representation is used in the 
alphanumeric machines. Its advantages are that (a) it is fairly easy 
to interpret, and (b) twenty-eight possible combinations left after the 
ten-decimal digits and twenty-six alphabetic characters provide room 
for additional symbols. 

Information Representations. Number systems are represented 
within electronic digital equipment by discrete electric signals. These 
signals are interpreted by establishing a correspondence between their 
characteristics and the characteristics of the number system used, as 
shown in Fig. 3. 

Electronic digital equipment is designed to treat a specific group of 
digits as a single item called a "word." It can treat a sequence of binary 
digits as a binary word, binary number, a binary coded decimal word, 
or a binary coded decimal number, as illustrated in Fig. 3. 

Words. A word within electronic digital equipment is a grouping or 
a collection of digits and/or characters that represents a specific number 
or another piece of information. Most arithmetical and logical opera-



EQUIPMENT DESCRIPTION 5-07 

tions are performed upon the word as a whole. In fixed word length 
equipment, the size of all words, such as ten-decimal digits, is constant. 
In variable word length equipment, the size of the words is not necessarily 
constant. 

I 
u 

f- t-

0 1 0 1 0 o 0 0 
5 0 

0 1 0 1 0 o 0 0 

o 1 o 1 o 0 o 0 

o 1 o 1 o 0 o 0 

f-- n. f--~ 
rt n. n. n. fL rL n-rL 

I I I 
9 Y G -

1 o 0 1 0 1 1 0 0 o 1 1 0 1 1 1 
9 6 3 7 

1 o 0 1 0 1 1 0 0 o 1 1 0 1 1 1 

1 0 o 1 o 1 1 0 o 0 1 1 o 1 1 1 

1 0 o 1 o 1 1 0 o 0 1 1 o 1 1 1 

n-t- t--rt I--n-rL rt rt-t--fL rL rL 

fL rt rt n-rt tL rt n-rt n-n-n. n-n-n. n. 
Time~ 

FIG. 3. Discrete electric signals. 

Binary 
alphan 
word 

Binary 

coded 
umeric 
U9YG 

coded 
decima I number 

37 5096 

Binary 
whose 

number 
decimal 
ent is 
,335 

equival 
5,281 

Signal digits 

Pulse s ignal 

Timing signal 

Operating Speeds. Elementary switching operations in computers 
can be performed at rates of the order of 1,000,000 per second. However, 
in most electronic digital equipment, the arithmetic and logical data 
processing operations require several hundred switching times or periods 
and, therefore, are performed at rates of the order of 1000 to 10,000 
per second. 

Control Signals and Instruction Code. The collection of digits or 
characters representing a control signal is interpreted as a control word. 
The complete list of control words, together with an identifying descrip­
tion, is called the instruction code of the data processing equipment. 
This instruction code is the list of the different operations that the equip­
ment can perform. (See Chap. 2.) 

Addressing. Distinguishing one storage location from another is 
accomplished in certain electronic digital storage devices, such as mag­
netic cores and magnetic tapes, by assigning an address to each sto~age 
location. 



5-08 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

In some magnetic tape storage units, the individual storage locations 
on magnetic tape are not assigned addresses. The storage locations are 
distinguished by the pieces of information stored in the locations. The 
pieces of information contain distinguishing labels such as account num­
bers or part numbers and are stored in a particular sequence on the 
magnetic tape. When a particular piece of information is required in 
this addressing scheme, the equipment has to search for it because it does 
not know exactly where it is located. 

Types of Instructions. The various types of instructions used are 
shown in Fig. 4. 

First Second 
Operation operand operand 

code address address 

(a) 

Operation First 
operand 

code 
address 

(b) 

Operation First 
operand 

code address 

(c) 

Operation Operand 
code address 

(d) 

Operation 
code 

(e) 

Result 
Next 

instruction 
address address 

Second Result 
operand 
address 

address 

Second 
operand 
address 

Next 
instruction 

Operand 
address 

address 

FIG. 4. Instruction types: (a) four-address instruction, (b) three-address instruction, 
(c) two-address instruction, (d) one + one address instruction, 

(e) one-address instruction. 

Programming and Coding. Before electronic data processing equip­
ment can solve a problem or process data, it is necessary for human 



EQUIPMENT DESCRIPTION 5-09 

beings to prepare a program for the equipment. This program is a 
specific, predetermined sequence of instructions that the equipment can 
perform. The program is prepared by the human operations of problem 
definition, programming, coding, and debugging. (See Chap. 2.) 

3. INPUT EQUIPMENT 

Scope of Input Function. The input unit connects the electronic 
digital equipment with the external world. It supplies the data that are 
to be processed as well as the instructions that guide the processing. It 
converts the data from the form used in the external world into machine 
language. 

The complete input function starts with the preparation of the media 
that carry the required data into the system from the source documents. 
It ends with the actual placing of the data and control instructions into 
the equipment. The input preparation equipment is not connected to 
the electronic digital equipment, but it is included so as to bring out 
the full scope of the input function. The preparation of the input media 
is usually accomplished by operating a keyboard and manually keying 
the information contained in the source documents into the input media. 
In general, the same amount of data to be processed will require the same 
number of operators working for the same length of time to prepare the 
input media, no matter what input media are used. 

Requirements of a Good Input Medium. 
1. Machine language that can be fed automatically into electronic 

digital equipment or can be automatically converted to such a medium. 
2. Simple and inexpensive recorder. Most applications require much 

recording equipment; therefore, it is necessary to minimize cost and 
maintenance. 

3. Obtainable as by-product. Input medium should be obtained as 
a by-product of another machine operation, thereby eliminating dupli­
cation. 

4. Compact, inexpensive, and lightweight. 
5. Visually auditable, for ~hecking and editing. 
6. Reusable. 
7. High-speed input; approaching internal speed of electronic digital 

equipment. 
8. Automatically convertible to high-speed input, if not a high-speed 

input itself. 
Comparison of Input Media. Based on the above requirements, 

Table 1 gives a comparison of punched cards, punched paper tape, paper 
documents, and magnetic tape. Table 2 compares speeds and costs (1958 
data) for these input media. 



5-1.0 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

TABLE l. COMP ARISON OF INPUT MEDIA 

Punched Punched Paper Magnetic 
Requirements Cards Paper Tape Documents Tape 

Machine language Yes Yes Yes Yes 
Simple and inexpensive 

recorder No Yes Yes No 
Obtainable as by-product Yes Yes Yes No 
Compact and inexpensive No Yes No Yes 
Visually auditable Yes Yes Yes No 
Reusable No No No Yes 
High-speed input No No No Yes 
Convertible to high-speed 

input Yes Yes Yes 

TABLE 2. SPEEDS AND COSTS OF INPUT MEDIA 

Punched Punched Paper Magnetic 
Speed and Costa Cards Paper Tape Documents Tape 

Speeds, char/sec 150-2,500 400-2,000 500-1,000 6,000-60,000 
Costs, approximate 

Input media, per char 
Preparation equipment 

$0.00001 $0.0001 $0.00001 

Key unit $2,500 $2,250 $500 $4,500 
By-product $3,000 $~500 N.A. 

Input units $15,000 $4,000 $20,000 

a Based on 1958 costs. 

Speed and Costs. Magnetic tape is by far the fastest input medium 
available. The cost of a magnetic tape input unit is the greatest, but 
the cost per character in information transferred per unit of time is much 
less. This accounts for the extensive use of magnetic tape as an input 
medium. 

The cost of the input media is very small and does not play a large 
part in the overall cost problem. The cost of the equipment required to 
obtain punched cards as a by-product is much greater than the cost for 
punched paper tape. This is one of the reasons punched paper tape has 
been more extensively used as a common language medium. 

Input Preparation Equipment 

Key-Driven. The most basic method of preparing input media is that 
of finger-driven keyboard devices. The two most prevalent keyboards 
available are the typewriter keyboard and the ten-key numeric keyboard. 
The typewriter keyboard is a general purpose board for handling the 
ten-decimal digits, twenty-six alphabetic ch~r~ctersl punctuation marks, 



EQUIPMENT DESCRIPTION 5-11 

and special symbols. In cases where the data are, or can be made to be, 
all numeric, the ten-key numeric decimal keyboard is frequently used. 

Card punches, paper tape punches, and magnetic tape preparation 
devices are the most widely used key-driven input preparation equipment. 
These devices prepare the input media as the operator keys the data onto 
the keyboard. For example, as the operator keys the data onto the key­
board of a card punch, the data are permanently recorded in the card 
by means of the punched holes. 

Speed. The speed with which information can be keyed onto an 
input medium depends upon the type and form of the data to be recorded, 
the operator's familiarity with the data, and the equipment being em­
ployed. Operators using typewriter keyboards can average 7000 to 12,000 
key depressions per hour. A ten-key numeric keyboard can be operated 
30 to 50 per cent faster because of its smaller size. 

By-Product. Input media can be produced as a by-product during 
the preparation of other material, such as a bill, invoice, or check. In 
this operation, the input preparation equipment is directly connected to 
another machine, such as a typewriter, bookkeeping, or accounting ma­
chine. Then as this machine is operated, the data are not only recorded 
on a document but are also recorded on the input medium. This elimi­
nates one entire keying operation. 

Equipment, such as couplers, makes it possible to connect card 
punches, and paper tape punches to standard office machines, such as 
typewriters, bookkeeping machines, adding machines, and desk calcu­
lators. This office equipment uses either the typewriter keyboard or the 
ten-key numeric keyboard. The speed with which these devices can be 
operated is equivalent to the operating speed of the regular key-driven 
devices. However, these by-product machines require more time for 
set up. 

Automatic. The objective of this equipment is to accomplish the 
recording of input data in machine readable form as a by-product of 
other necessary automatic functions. This reduces the time expended 
and cost involved in preparing an input medium. Also, it increases the 
accuracy of the input data. 

In the process control field, special gages and meter readers can con­
vert their sensings to digital data. These digital data can then be either 
recorded on an input medium or transmitted from the sensors to a central 
recording station. This eliminates one human operation of reading the 
gages and meters and another human operation of recording these data 
on an input medium. 

In the manufacturing field, time clocks that punch time cards. are used 
to record the working hours of employees automatically. Other devices 



5-12 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

can count, measure, and weigh products coming off assembly lines. Then 
this information is automatically recorded in machine readable form 
for further processing. 

Verifiers. When preparing an input medium, especially by a human 
operation, there is an opportunity for errors to be made in the record­
ings. If these errors are not corrected, they will enter the processing and 
thereby affect all succeeding operations. Therefore, it is a necessary 
part of the input function to locate and correct errors that have been 
made during the original recordings. 

Several techniques are available for verifying input data: (1) systems 
or logical techniques, such as proofreading or control totals, are frequently 
used but do not require any special equipment; (2) machine verifica­
tion. 

Machine verifiers are used to check the accuracy of the original record:­
ings. After the input medium has been originally prepared, it is sent 
to the verifier. Here a second operator keys in the same information 
as the original operator. This is compared with the recorded data. If 
there is a disagreement, an indication is given, and the proper steps can 
be taken to correct the mistake. Machine verifiers can be operated at 
a rate equivalent to that of the original key-driven equipment. 

Directly Connected Manual Input. Equipment 

There are several manual means of getting information directly into 
electronic digital equipment, but all these methods depend upon human 
operations. Since they are therefore relatively slow, they are not used 
to introduce any large amount of data into the processing. They are 
used primarily for: (1) control over the computer, (2) basic communica­
tions between the operator and the equipment, (3) the insertion of small 
amounts of input data. 

Consoles. A console is the primary means of communication between 
the human operators and the electronic digital cquipment. It is a panel 
with a series of switches, lights, and buttons that are used manually 
(1) to control the machine, (2) to correct errors, (3) to determine the 
status of machine circuits, registers, and counters, (4) to determine the 
contents of storage locations and accumulator storage, and (5) to revise 
the contents of a storage location. 

Electric typewriters. Most electronic digital equipmcnt has an elec­
tric typewriter associated with it. In a great many cases, the electric 
typewriter is a part of the console. It is used primarily for input and 
output of very small amounts of data, correctional information, and 
control data. Human operator speed is about 8 to 10 characters per 
second. 



EQUIPMENT DESCRIPTION 5-13 

Inquiry Units. One of the primary drawbacks of electronic storage 
units is that the information contained therein cannot be visually exam­
ined. The information has to be read, interpreted, or translated by the 
electronic digital equipment, and then printed out. This can be accom­
plished by the main processor, but such use is inefficient. Because of 
this, several electronic digital equipments have special input units asso­
ciated with them that make it possible to search for and print out the 
information contained in the electronic storage units. These special 
input units are called inquiry units or interrogation units. 

Special Keyboards. Special keyboards have been developed for use 
with particular applications. Examples are the bank savings window 
machine for use in the savings account application and the reservation 
agent's set for use in the airline's reservation systems. These special 
keyboards have been designed, for special applications and are not usable 
for any other purposes. 

Punched Card Equipment 

Kinds of Punched Cards. The three types of punched cards used are 
the 80-column card (International Business Machines), the 90-column 
card (Remington Rand), and the punched price tags. The 80- and 
90-column cards are used to feed data directly into electronic digital 
equipment. The Kimball and Dennison punched price tags are used 
primarily in the retail business and are not directly fed into electronic 
digital equipment. 

The International Business Machine card is 3~ inches high and 7% 
inches wide. It is divided horizontally into 80 vertical columns, each 
capable of storing one character of information. Each vertical column 
is divided into 12 row positions, numbered from 0 to 9 and 11 and 12. 
Decimal digits are represented by a single punch in the appropriate 
row 0 to 9. Alphabetic characters are coded by two punches in the same 
column; one in one of the rows 1 to 9 and another in either row 0, 11, 
or 12. See Fig. 5a. 

The Remington Rand card is 3~ inches high and 7% inches wide. It is 
divided vertically into an upper half and a lower half. Each half is 
divided horizontally into 45 vertical columns, each capable of storing one 

, character of information. This gives a total capacity of 90 columns per 
card. Information is represented within each column by a combination of 
one, two, or three punched holes. See Fig. 5b. 

The Kimball and Dennison punched price tags are used primarily in the 
retail trade. The tag is detached from an article when it is sold (see 
Fig. 5c, d). These tags are then read by a ticket converter and the 
information contained in the tag is converted to punched cards or punched 



5-14 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

/ 

o 1 2 3 45 6 7 8 9 ABC D E F G H I J,K L M N 0 P Q R STU V W X Y Z 
I I II I I I, I I 

11111111'. 

1000000000000000000000000000000000000000000000000000 0 0 0 0 10 10 10 10 10 10 10 10 0 0 0 0 0000 
I 2 J .. II I , I 11011 1213141511171"12011 UZlN 25 2627 Zl2IlO313211lC 35)fj 31383'1404142 4l444545UCl495Q 515213 54 555157 M591011 52 6l14SSAIJII Q 7011 n 7J '4 7571717179 10 

11 a 111111'1.11111111111111111 t 11111111 t 11111111 ttl ttl t t t t t, t t t t t t t t t t t t t t t t ttl t t t t t 

2222122222222222222222122222222222222222122222222222 2 22 2U22 2 2 222 2 2 2 2 22222222222 

,333333133333333333333333133333333333333333133333333 3 3 3 3 3 3 313 3 3 3 3 33 f3 3 3 3 3 3 3 3 3 3 3 3 3 

444 44 44 4144 4 44 444 444 44 44 4 4144 44 44 4 4 4 44 44 44 44144 4 44 44 44 4 44 44 414444 4 4 4 4 4 4 44 44 4 4444 

5'55555555515555555555555555515555555555555555515555 5 5 5 5 5 5 5 5 555155555555555555' 555 

6 6 6 6 6 6 6 6 6 6 6 61 6 6 6 6 6 6 6 6 '6 6 6 6 6 6 6 6 616 6 6 6 6 6 6 6 6 G ,6 6 6 6 6 6 616 6 6 6 6 6 6 6 6 6 6 6 6 6 6 16 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

777777717777771777777777777777771777777 i 7 7 77 7 77 7 7 717 77 7 7 7 77 7 7 7 n 7 717 7 7777777,7777 

888888888888818818888888888888 a 8 8 818 8 8 8 8 8 8 8 8 8 8 8 8 8 8 811S 8 8 8 8 8 8 818 8 8 8 8 81S 8 8 8 8 8 8 8888 

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 919 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 919 9 9 9 9 9 9 9 99 9 9 9 9 9 9 919 9 9 9 9 9 9 9 9 9 9 9 9 9 9199 9 9 9 9 9 9 9 
1 Z 3 41i " I ,'01112131CI51SnttI9r.1212223242528272121303112lJ34lS3&l13U9404142434U54847C841505152S35H'565158591011126364ISIGIJIII97DlIn73741H6J171'UO 

11 .. 4:01 ... 409 N.A.A. I040-K-1 SOOt 

ABC DEF 
• (Ie 

GHI 

(a) 

PQR YZ 

1; ~li-ii -1; -1; .,,-1; -I, -I, -1; -.-li-12 -I, -I, -1, .. -I, -I, -I, -I, -1, .. -Ii. ii. -1;. -1; -1; -1; -Ii -;i -1; ii. Ii i; -1; Ii -I, Ii Ii' 

444444444 •• 4440.4 •• 444404084,44844 •• 44.4444444 

~MMMM8.MM.MMM8M.M.8MM •• ~~~8~~0~.~~~~~M.~~~~~~ 

~~~~~~~.~~~O~.8~~~~~~,~~~~ ••• ~ •• 8~~.8~~.~~~~~~ 
; : : ; : .. ; : : ': 19' • ~J '9' '9' '9' ': '9' Ii. 19' 2: • :' :' :' 19' :' 19' '9° it S: ': " '9

5 i '9' .;;. :0 ·9' ': :' :' :'
1 .~ 3 ~ ~ 6 7 8 ~ ~

i2- it- 12" iz• iz- iz• it'" i:" i: ·e-12 -.- 12 - I: -1-2 - 12- i"'2 - 12 - i'2 -1-: - i2 -iz -lZ -i2 -;2 -i2-tz -l~-I-Z -1~ - i"2 - I: - lz- lZ - 12 -12 - lz - i2 -i2 -1-2 -1-2- ij-l-z -1-2-12

J"J4J4J"J.J4J4J4J43" 34 343,,034.J4 3434J4J4J.4 J4J434'34 34 34 3434 34 J4 3434]4141414343434]4 3434 3-4

~M~~~~~~~~~~~~~~~.~.~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~8~.~~~~~~~~~~~~~~~~~~~~~ 

••• 9 ••• 9.99 •• 9.8.998999898 •• 99.9.99.999.99999 
,III .7111 •• '.0.111':.'. 5' 'III I? 'I '1.0,,1111 '1""" ",. "'0 '17.",."" ,,7'''''0.'.; ,J ••• S" .,. ••••• 0 

• 

v 
Macy's I 

SIZE 12 

01 
••• 1 

Macy's 
SI~ 12 

• IB..J • 

:::.:1:. :: 
37 165 222 37 165. 

" . 222 

~O B 
S,ze 

for 

8 1 0720 
I 
I 

1 

$ 1.40 4. 1$ 

Size 

for 

! ~~ ______ ~A~ ________ J 

(c) 

(b) 

r-' ~ -~ ~:-----' 

14 4757 62 10 • 

• ~~:;'6.E)7.~V:: 9A7 
• 64 29530. 5ST ---.. - ---- - --- --', 

14 4757 62 70· 

• ~~:;'6.E)7.~V::9A7' 
• 64 29530. S8T 

L-, ~ 

(d) 

FIG. 5. Punched cards: (a) IBM punched card (80 columns), (b) Remington Rand 
punched card (90 columns), (c) Kimball punched tag, Cd) Dennison punched tag. 



EQUIPMENT DESCRIPTION 5-15 

paper tape. Then the punched cards or punched paper tape are used as 
input media to the electronic digital equipment. 

Preparation Equipment. Card punches are the basic machines used 
to prepare punched cards. They operate from a keyboard, either type­
writer or ten-key numeric, and permanently record information in cards 
by means of punched holes. Reproducing punches are capable of pro­
ducing a duplicate set of cards or many duplicates from a single master 
card. Punched cards can also be produced as a by-product of another 
machine operation such as a typewriter or bookkeeping machine. Punched 
card verifiers are available to check the accuracy of the original punch­
ing. Punched price tickets are prepared by a dial set machine. 

Reading Techniques. There are three basic techniques for reading 
the information contained in punched cards, namely electric contact, 
mechanical probes, and photoelectric cells. 

In the electric contact lnethod the card passes over a contact roller 
under a set of brushes. These brushes are kept from touching the con­
tact roller by the card, which acts as an insulator. However, when a 
punched hole is reached, the brush drops into the hole and touches the 
contact roller. This completes an electric circuit and electric current 
flows until the contact is broken by an unpunched portion of the card. 
Information is recognized by the time spacing of the holes from the edge 
of the card. 

vVith mechanical probes, punched cards can be read by moving a set 
of probes against the card. If there is a hole, then the probes protrude 
through the hole. The movement of the probe may be used to control 
other mechanical devices or to generate an electric impulse. 

Photoelectric card reading is accomplished by moving the punched card 
under a beam of light. The card acts as an opaque substance until a hole 
is reached. Then the beam of light travels through the card, impinges 
upon a photoelectric cell, and thereby generates an electric impulse. 

Punched cards are generally read a row at a time. In this manner, all 
card columns are read simultaneously. Reading speeds are 100 to 900 
cards per minute. Punched cards can be read a column at a time by 
a photoelectric reader. Speeds up to 2000 cards per minute have 
been achieved with this technique by the National Cash Register Com­
pany. 

Input Units. Punched card readers of various kinds are used as input 
units for electronic digital equipment. Standard electrical accounting 
machine equipment such as reproducing punches, summary punches, and 
collators operate in the range from 100 to 240 cards per minute. Special 
card readers have been developed for specific digital equipments that 
operate in the range from 100 to 2000 cards per minute. 



5-16 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

Paper Tape Equipment 

Kinds of Paper Tape. There are two kinds of paper tape, namely 
printed and punched. 

Printed paper tape has the information represented by dot patterns or 
bar patterns. Printed paper tape is not used as extensively as punched 
paper tape; however, it does offer several advantages such as compact­
ness and simple, inexpensive, mechanical recorders. 

Punched paper tape can be either fully perforated or chadless. Fully 
perforated paper tape has the hole punched completely through. 'Vith 
chadless paper tape the holes are not punched all the way through so 
that no chad or confetti is produced; this permits legible overprinting. 
With electronic digital equipment fully perforated tape is most exten­
sively used. 

There are four types of fully perforated paper tape, namely the 5, 6, 
7, and 8 channel. See Fig. 6. On all these tapes there is a sprocket hole 
which, when meshed with a small gear in the reading equipment, provides 
a means of advancing the tape. 

Five-Channel Tape. The 5-channel punched paper tape has been used 
since the last century with the telegraph. The 5-channel tape with holes 
and no holes provides 32 combinations. These 32 combinations are suffi­
cient to designate the 26 letters of the alphabet. Then by using one of 
the remaining combinations as a line signal to shift, the 32 combinations 
can be used over again to designate the ten decimal digits, punctuation 
marks, and other special characters. 

Disadvantages of the Five-Channel Tape. 
1. It does not provide a self-checking channel. 
2. In electronic digital equipment it is sometimes advantageous to 

have the coding on the tape correspond to the coding used to represent 
information within the electronic equipment. 

As a result of these disadvantages, 6-, 7-, and 8-channel punched paper 
tapes have been developed for use in local or private communications 
networks and with electronic digital equipment. Punched paper tapes 
range in width from 17iG inch to 1 inch, and the holes are usually spaced 
ten to the inch along the length of the tape. 

Preparation Equipment. Tape perforators are the basic machines 
used to prepare punched paper tape. They operate from a typewriter 
keyboard and record information in the paper tape by means of punched 
holes. Punched paper tape can also be prepared as a by-product of 
another machine operation. For example, it is possible to connect the 
tape perforator to a typewriter, calculator, bookkeeping machine, or cash 
register designed for such use. Then as these machines are being oper-



EQUIPMENT DESCRIPTION 5-17 

ated, selected information can automatically be transferred to punched 
paper tape. Punched paper tape verifiers are available to check the 
accuracy of the original recording. 

•• ••• ••• ••• ••• • •• •• • ••• • ••• • •• ••• •••• •• •••••• ••• • ••• • ••• •• ••• •• ••• o • 

• •• • • •••• ••• ••• •• ••• •• • • •• •••••• • • •• ••• • • • • •• ••• ••••• • • • •• •••• •• • •• • • •• • • 
• ·0 ••• • •• ......... 

(a) 

v ... ~ •• 

•••• ..G 
• • • • • · 0 •• • •• •• • • •• • • ••• •• ..... • •• · • · • • • • •• · •• •• 0 

• •• • • ••• • • •••• • •• • • • • • · • .G • •• •• ft 

• •• • .. ••• •• •••• • •• • • • • • · • •• • •• •• • •••• • •• · • · • • • • •• · o. •• • • •• • • ••• •• •••• ••• · • • • • · • •• • •• o • • • •• • 0 ••• eo ....... ..A..a..a.. 

(b) 

•• ~ .A. -y • e.· 
• •• •• • 

• •••• 

• 

•• • • ••• • ••• • • • • · • • • ••••• • •• • ••• • ••• e •••• • • •••••• • • •••• • ••• • ••••• • • • ••••• • • •••• • •••• • ••••• • • • ••••• • • •••• • ••• • •••••• • • • ••••• • • 
• ••• • •••• • Iit 

• • ••••• • • •••• • o ••• 
4H). 0 

. .. aL .1IiII .8 ... 

(c) 

A 

• • • • ••••• • ••• • • • • • 

• 

• ••••• • ••••• 
I •••••• 

•••••• 
• 0 • • • • 

• • • • •• • ••••• ••• • • •• • • 
• 0 • ••• • ••• • ••••• • • • • • • • • •• 

• 0 

• ••• • • • • • • • • • • • ••• •• o· •• 
o ••• 
• ••• • • • • • • • ••••• • ••••• • ••••• .A .......... .a..a..~ 

(d) 

FIG. 6. Punched paper tape: (a) 5-channel, (b) 6-channel, (c) 7-channel, (d) 8-channel. 

Reading Techniques. Punched paper tape can be read by mechanical 
means. A set of probes, one for each channel, is moved against the tape. 
If there is a hole in the tape, a probe protrudes through the hole and an 
electric impulse is generated. If there is no hole in the paper tape, the 
probe does not protrude and no electric impulse is generated. Since this 
is a mechanical process, it operates at relatively slow speeds of about 
60 to 100 characters per second. 

A photoelectric system can also be used to read the holes in punched 



5-18 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

paper tape. Light from a single source is projected through the holes 
in the paper tape onto a series of photocells. If there is a hole, then light 
is projected on that channel's photocell and an electric impulse is pro­
duced. If there is no hole, no electric impulse is produced. .Reading 
speeds are in the range of 200 to 2000 characters per second. All 
punched paper tapes are read a character (column) at a time, so that 
reading speed is proportional to linear tape speed. 

Brush contact readers such as those used for punched cards have not 
been developed for paper tape. 

Input Units. Several types of punched paper tape readers are used 
as input units for electronic digital equipment. lYlost electric type­
writer-perforators are also mechanical punched paper tape readers. They 
operate at a maximum of 10 characters per second. There are several 
types of photoelectric punched paper tape readers. They operate in the 
range from 200 to 2000 characters per second. 

Magnetic Tape Equipment 

Kinds of Magnetic Tape. Magnetic tape is a strip of either plastic 
or metal that is coated with a ferromagnetic substance. See Magnetic 
Tape under Sect. 4 for equipment description. 

Preparation Equipment. Magnetic tape used as an input is generally 
prepared by a process of converting information from another medium 
such as punched cards or punched paper tape to the magnetic tape. The 

-punched cards and punched paper tape are verified before the data are 
placed on magnetic tape. 

A typewriter keyboard device has been developed that directly places 
information onto magnetic tape as it is keyed onto the keyboard. A 
magnetic tape verifier operates on the same principle as the punched 
card verifier. The primary advantage of directly produced magnetic tape 
is the elimination of the conversion operation. The disadvantages are 
that the recording density is much less than on magnetic tape produced 
by other methods, and there is no off-line method of producing batch 
totals often used in checking the accuracy of input data. 

Reading and Recording Techniques. Information is usually re­
corded on magnetic tape in a series of records or blocks as shown in Fig. 7. 

The size of the records can be fixed or variable, depending upon the 
specific electronic digital equipment. The records can have specific 
addresses or the identifying labels of the information stored in each 
record can serve as distinguishing marks. The gaps between the records 
serve as a nonusable area to allow for starting and stopping of the tape. 
When the tape is motionless, the reading and recording head rests over 
the middle of the gap. One-half the length of the gap is required to 



EQUIPMENT DESCRIPTION 5-19 

accelerate the tape motion up to full reading or recording speed. Also, 
one-half the length of the gap is required for the tape to decelerate to a 
complete stop. 

Record 
Gap 

Record 
Gap 

Record 
Gap 

Record 
Gap 

Record 
5 4 3 2 1 

---~~ Tape movement 

FIG. 7. Recording on magnetic tape. 

Reading and recording are accomplished by moving the tape past 
the stationary head (see Chap. 19). Binary digits are recorded in the 
range 50-534 per linear inch. The magnetic tapes can be transported 
up to several hundred inches per second. 

Input Units. Magnetic tape units contain the magnetic tape reels, 
one for feeding and another for takeup, the reading and recording heads, 
and the motors required to move the tape. All magnetic tape units con­
tain some system to prevent tension from being placed upon the magnetic 
tape during its sudden starts and stops. Magnetic tape units operate 
in the range from 6000 to 60,000 characters per second and can be accel­
erated to full speed in 2 to 50 milliseconds. A common size of tape reel 
is 10 inches in diameter, and the reel holds 2400 feet of tape. For addi­
tional information on tape handling mechanisms, see Sect. 4. 

Document Reading Equipment 

Electronic digital equipment can also accept input data in the language 
of the business world as it is recorded on the original documents. This 
eliminates the battery of typists needed to translate the input information 
from the source documents to the input medium. Automatic character 
recognition techniques make this possible. These techniques make use 
of either special codes to represent the characters, or they can read the 
printed characters themselves. These special codes or printed characters 
are recorded on the original documents themselves. 

Character recognition techniques can be classified as: 
1. Codes or patterns: (a) mark sensing, (b) electrically conductive 

spots, (c) fluorescent ink spots, (d) magnetic bar codes. 
2. Printed characters: (a) printer's ink, (b) magnetic ink. 
Codes and Patt'erns. J1;1 ark sensing uses special electrical conducting 

marks placed in various positions on punched cards. These marks are 



5-20 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

made by hand with special marking pencils and are read by the repro­
ducing punch. Depending upon where the mark is located on the card, 
an appropriate digit will be punched into the card. 

Electrically conductive spots use coding inks that have a special prop­
erty that will upset a balanced electronic circuit when the spots are 
sensed. These coding inks may be colored or clear. Electrically con­
ductive spots can be placed on the source document by means of a special 
ribbon containing the coding ink or special carbon paper. 

Fluorescent ink spots use a special phosphorescent ink in a pattern of 
dots to represent characters. The documents are irradiated with ultra­
violet light as they pass under the reading head, and the phosphorescent 
ink spots fluoresce and thereby generate a signal in the reading head. 

NO. 1001 

----19-

_

0 .. , R" •• T._ A.... LESLIE VAN & STORAGE COMPANY NO, 1001, 
455 Broadway 

- 90-86 
TIIT 

PAYTOTHEORDERO' 19 ~ 

..... ....::::::-: (SP~_~"I.~~)_ "0'" _ ••• _ """ •• _,_. __ , $ __ _ 
~----

:: .. :'::;:: DOLIARS 

(HESTER) BRANCH LESLIE VAN & STORAGE COMPANY 

Bank of America 
s;~~6~~.E:A~~~~~IA 15730094 ---------

II I 
II I 

I I II 
IIII I 

II I 
15730094 

FIG. 8. Magnetic bar codes. Account numbers printed on the customer's check, on 
the back in code and on the front in arabic numbers, are printed in magnetic ink for 

use by the check scanner. 

Magnetic bar codes use bars printed with magnetic ink. As the docu­
ments pass under a reading head, the magnetic ink is sensed by the 
reading head and a pattern of voltages is generated that represents the 
information coded into the pattern of bars. Fluorescent ink spots and 
magnetic bar codes can be placed on the source documents during the 
document original printing process. 

Special reading equipment has been developed to read these codes 
and patterns automatically. Figure 8 shows some typical code patterns. 



EQUIPMENT DESCRIPTION 5-21 

Some of this reading equipment is directly connected to the electronic 
digital equipment. Other reading equipment pro~luces other input media, 
such as punched cards or punched paper tape, which are used to transfer 
the information into the electronic digital equipment. 

Printed Characters. It would be advantageous for a machine to 
read not codes but conventional alphabetic characters and arabic nu­
merals. Characters and numbers are easier to print, are visually 
auditable, and do not require additional space (for codes and patterns) 
on the document. The following techniques have been developed to 
read and interpret printed characters. 

5 4 3 2 

5 4 3 2 
(a) 

5 

5 

4 

4 

3 

3 
(b) 

2 

2 

FIG. 9. Photoelectric reading of printed characters: (a) five scanning lines, (b) pulse 
output of scanning circuits. 

With printer's ink, information is recorded on the document in the 
normal fashion. Photoelectric scanning techniques have been developed 
to read and interpret the printed characters. As the characters move 
past the reading station, they are continually scanned by a beam of 
light. A photoelectric cell is used in the operation, and the output of 
this cell is a pattern of pulses. Each character will produce its own 
unique pattern of pulses. See Fig. 9. 

Magnetic ink has an advantage over printer's ink whose primary dis­
advantage is obliteration and mutilation. Extraneous markings are 



5-22 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

sensed and cause incorrect interpretations of the characters. Some of 
this mutilation disadvantage can be overcome by using magnetic ink 
because the printing can be performed when the document is originally 
prepared or the magnetic ink characters can be recorded at a later time 
by special ribbons or carbon paper. The characters printed with mag­
netic ink are read by passing the document beneath a magnetic reading 
head which produces an electric signal that is unique for each different 
character. See Fig. 10. 

FIG. 10. Magnetic reading of printed characters. As the printed numbers pass hori­
zontally beneath the read head, the head sums up the total magnetic ink covered in a 
given time interval and produces a proportional electric signal. Signal forms for several 

numbers are shown. 

Special reading equipment is required to read either printer's ink 
or magnetic ink. Either it can be connected directly to the electronic 
digital equipment, or it can be used to prepare another input medium, 
such as punched cards. 

Auxiliary Input Equipment 

In business data processing applications, large amounts of input data 
generally have to be placed into the processing. Since the input opera­
tions are generally much slower than the internal operations of the elec­
tronic digital equipment, the machine will be tied up for long periods of 
time while it performs the time-consuming operation of inserting the data. 
This utilizes the electronic equipment's abilities inefficiently. Several 
things have been done to speed up the input operations. 



EQUIPMENT DESCRIPTION 5-23 

Conversion Equipment. Conversion is the process of transcribing 
information from one input medium to another. The primary purpose 
for the transcription is to take advantage of the inherently higher speeds 
of certain input media (see Table 2). This is the case where information 
on punched cards, punched paper tape, or paper documents is converted 
to information on magnetic tape. These transcription operations are 
performed automatically by special machines, and they are performed 
independently of the main electronic digital equipment. 

Transcription of information from one medium to another is often 
performed for other reasons, such as compatibility or ease of preparation. 
For example, punched cards to punched paper tape conversion is required 
for transmission over a telegraph system. In other cases, punched 
paper tape to punched cards conversion is required for computer input. 
Punched cards to magnetic tape and punched paper tape to magnetic 
tape conversions are used because in a great many cases cards and paper 
tapes are easier to prepare and verify than the magnetic tapes. 

Buffering Equipment. Most input devices handle data at a much 
slower rate than the electronic digital equipment does. Since, in the 
normal chain of processing, each component normally must wait before 
beginning its operations until the preceding operations performed by 
other units have finished, the overall speed of the processing is consid­
erably reduced by the input operations. To overcome this drawback, 
buffer storage devices are used. They permit internal processing oper­
ations to be performed during input operations. Thus, by enabling all 
the components to operate simultaneously, buffer storage devices reduce 
waiting times and increase the overall speed of the data processing. 

The buffer has some or all of the following features: 
1. It is usually capable of operating at two speeds, slow, dealing with 

input-output, and fast, dealing with computer. 
2. It serves as a kind of synchronizer, by taking over from the control 

unit the control functions associated with input. 
3. It can assist in rearranging data. For example, a word can go into 

the buffer most significant digit first and come out least significant digit 
first. 

4. Code conversion from language of input medium to language of 
digital equipment can be performed. Additional equipment is required 
in this case. 

Many buffers have some computing capability. 
lVIultiplexing Equipment. Another way of speeding up the input 

of information into electronic digital equipment is to connect multiple 
input units to the machine. Each one of these units has its own buffer 
3ts~ociat~d with it, Then by having multiplexing equipment, it is pos-



5-24 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

sible to connect these various input units to the central computer in a 
definite sequence. 'Vhile one input unit is connected to the computer, 
the remaining units are free to be loading their input buffers. The multi­
plexing unit scans the various input devices, searching for one that is 
ready to transmit to the central electronic equipment. When it finds 
one, the computer is connected to that input device. As soon as the 
necessary information has been transferred, the multiplexing unit searches 
for another input unit that is ready to transmit to the central equipment. 
Multiplexing equipment is very important with in-line equipment having 
many manual input stations. 

4. STORAGE EQUIPMENT 

Types of Storage 

Internal. Internal storage forms an integral physical part of the 
equipment and is directly controlled by the equipment. It holds the 
control instructions which direct the processing, the data to be processed, 
the intermediate results of the processing, and the final results of the 
processing. Internal storage usually consists of one or both of the fol­
lowing types of storage: (1) fast access, low capacity storage, such as 
magnetic cores; (2) medium speed access, medium capacity storage, 
such as magnetic drums. 

External. External storage is divorced from the equipment itself but 
holds the information in the form prescribed by the electronic digital 
equipment. It is a bulk storage medium used for long-range filing of 
reference data. External storage must be low in cost because of the rela­
tively large volumes required. It is usually a long access, large capacity 
type such as magnetic tape. Punched cards and punched paper tape can 
also serve as external storage media, but their use in this capacity is 
relatively restricted. 

General Characteristics of Storage Devices 

1. Capacity. The upper limit of information that can be stored within 
the storage unit. 

2. Access time. The time interval between the instant at which in­
formation is called for from the storage location and the instant at which 
delivery is complete. There are three types of access to information, 
namely random, sequential (or serial), and a combination of these two. 
Random access implies an access time which is constant, regardless of 
storage location. In equipment with this characteristic, it is possible to 
move from one randomly selected storage location to another randomly 
chosen storage location in the same amount of time as is required to go 



EQUIPMENT DESCRIPTION 5-25 

from one random storage location to its adjacent storage location. 
Sequential access occurs when it is necessary to go sequentially through 
all intervening storage locations to get from one storage location to 
another. As a result of this, sequential access time is directly proportional 
to the number of storage locations between the starting storage location 
and the ending storage location. A combination of random and sequential 
access is obtained when it is possible to have random access to a particular 
group of information, but then it is necessary to proceed sequentially 
through that group to locate the particular piece of information desired. 

3. Volatility. Nonpermanence of the recording when the applied elec­
tric power is cut off. 

4. Erasabil1:ty. Capable of being erased and reused. 
5. Physical. Size, shape, heat generated, power required, sensitiv­

ity, etc. 
6. Cost. Cost per unit of information stored. 

Spectrum of Electronic Storage Devices 

Table 3 indicates the characteristics of various types of storage devices 
used in electronic digital equipment. Some general relations can be ob­
served from this table: 

1. Capacity and access time. As capacity increases the access time 
also increases. 

2. Capacity and cost. As capacity increases the cost per unit of infor­
mation stored decreases. 

3. Access time and cost. As access time increases the cost per unit 
of information stored decreases. 

Operation and Uses. Table 4 describes the various storage devices, 
principles of operation, and their uses. See Chap. 19 for details of design 
and operations of magnetic drums and cores. Magnetic tapes and random 
access devices are discussed below. 

Magnetic Tape 

Recording. Magnetic tape is a thin, nonmagnetic base material 
coated with a magnetic material on which information is recorded. See 
Chap. 19 for details on magnetic coatings. The base material can be 
either a metallic ribbon or a plastic (acetate or Mylar) ribbon. Mag­
netic tape is usually several thousandths of an inch thick, from ~ to 3 
inches wide, up to 2400 or 2700 feet in length, and wound on la-inch 
diameter reels. 

Information is recorded on magnetic tape in a series of records or 
blocks shown in Fig. 7. Tape records have the following features. 



01 
TABLE 3. SPECTRUM OF ELECTRONIC STORAGE DEVICES N 

0" 

Representative Representative Physical 
Storage Device Capacity Access Time Volatile Erasable Characteristics Cost per Unita C 

til 
Vacuum tubes 50-100 binary Random Yes Yes Electronic $60 per m 

and transistors digits 0.000001 sec circuits character a 
"T1 

Magnetic cores 10,000-100,000 Random No Yes Small cores, $7 per 0 
characters 0.00001 sec large units, character (j) 

complicated =i 
circuits » 

r-
Electrostatic 5,000-50,000 Random Yes Yes Very sensitive, $7 per () 
tubes characters 0.00001 sec delicate, com- character a 

plicated ~ 
"'tJ 

circuits C 
-I 

Mercury 5,000-12,000 Combination Yes Yes Sensitive, $20 per m 
;;:0 

delay lines characters avo 0.001 sec bulky character til 

Magnetic drums 20,000- Combination No Yes Large size, $0.1 per » z 
2,000,000 avo 0.01 sec very reliable character 0 
characters 0 

Random 5,000,000- Combination No Yes Large size, $0.01 per » 
-I 

access devices 75,000,000 avo 0.5 sec complicated character » 
characters mechanical "'tJ 

;;:0 
features a 

Magnetic tapes 2,000,000- Serial 0.01 sec No Yes Compact, $0.01 per 
() 
m 

24,000,000 Random 2 min lightweight character til 
til 

characters per removable (attached) a 
;;:0 

reel $0.00001 per til 

character per reel 
a Based on 1958 costs. 



EQUIPMENT DESCRIPTION 5-27 

Storage Device 
Vacuum tubes and 
transistors 

Magnetic cores 

Electrostatic tubes 

Mercury delay lines 

Magnetic drums 

Random access 
devices 

Magnetic tapes 

TABLE 4. STORAGE DEVICES 

Principle of Operation 
Bistable circuits 

Two opposite states of 
magnetization of cores 

Positively or negatively 
charged spots of dielectric 
tube face 

Ultrasonic sound pulses 
traveling in a column of 
mercury 

Rotating cylinder, mag­
netic coating, areas of 
magnetiza tion 

Jukebox-many magnetic 
disks 
Tape strips-open or 
closed loops 
Multiple magnetic drums 

Magnetic coated tape 

Use 
Registers, temporary 
storage 

High-speed internal 
storage 

Early high-speed internal 
storage 

Early high-speed internal 
storage 

Medium-speed internal 
storage 

Large capacity storage 
under computer contro] 

Usually external bulk 
storage, computer input 

1. The size of the records can be fixed or variable, depending upon the 
electronic digital equipment. 

2. The records can have specific addresses or the identifying labels of 
the information stored in each record can serve as distinguishing marks. 

3. The gaps between the words are unused areas that are required for 
starting and stopping the tape. 

4. 'Vhen the tape is motionless, the reading and recording head rests 
over the middle of the gap. 

5. One-half the length of the gap is required to accelerate the tape up 
to full reading and recording speed. Also, one-half the length of the 
gap is required for the tape to decelerate to a complete stop. 

Operation details are as follows. 
1. Information is recorded within the records by magnetizing smfill 

areas. Each such area can represent a binary digit. 
2. These small areas are magnetized by a reading and recording head, 

which is a tiny electromagnet. See Chap. 19. 
3. 'Vhen reading information stored on magnetic tape, this same read­

ing and recording head is used to determine the magnetic state of these 
small areas. 



5-28 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

4. Reading and recording are accomplished by moving the tape past the 
stationary reading and recording head. 

5. Binary digits can be recorded with densities up to many hundred 
per linear inch. 

6. The magnetic tapes can be transported up to several hundred inches 
per second. 

7. The time required to accelerate the tape from standstill to full 
speed ranges from several milliseconds to 50 milliseconds. 

8. A number of channels are recorded across the tape. See li'ig. 11. 

Tape travel --~ 

~1[:==J 

~1[:==J 

E]Jo[:==J 
E]Jo[:==J 
E]Jo[:==J 
~1[:==J 

FIG. 11. Recording channels on magnetic tape. 

Capacity. The size of the interrecord gap has to be considered when 
determining the capacity of one reel of magnetic tape. 

EXAMPLE 1. Consider a magnetic tape, 2400 feet long, with recording 
density of 200 characters per inch and a % -inch interrecord gap. Each 
reel has a theoretical capacity of: 

2400 feet = 28,800 inches, 

(28,800 inch) (200 characters/inch) = 5,760,000 characters. 



EQUIPMENT DESCRIPTION 5-29 

However, it is necessary to take into consideration the size of the inter­
record gap. If the information to be stored is a fixed record of 80 char­
acters, the capacity of one reel of magnetic tape is developed as follows: 

Record length 

Interrecord gap 

Record plus gap 

80 characters _ . h 
-------. - - 0.40 mc 
200 characters/mch 

= 0.75 

= 1.15 inches 

28,800 inches 
. I / d = 25,000 records, 

1.15 mc les recor 

(25,000 records) (80 characters/record) = 2,000,000 characters. 

EXAMPLE 2. If the fixed record contained 600 characters, the capacity 
of one reel of magnetic tape would be 4,620,000 characters contained in 
7700 records. Record length = 3 inches, gap = 0.75 inch. 

In general, the larger the size of the record, the greater amount of 
information that can be stored per reel of tape because of the propor­
tionally smaller space wasted with the interrecord gaps. 

Speed. Start-stop time has to be considered when determining effec­
tive tape speed. 

EXAMPLE 1. Consider a magnetic tape with start-stop time of 10 milli­
seconds and a transfer rate of 15,000 characters per second. For a fixed 
record of 150 characters, then the effective tape speed is: 

150 characters 
= 0.01 second to read 

15,000 characters/record 

Start time = 0.01 

Time required per record = 0.02 second 

150 characters 

0.02 second 
= 7500 characters/second 

EXAMPLE 2. If the fixed record contained 600 characters, the effective 
tape speed would be 12,000 characters per second. Time to read = 0.04 
second, and start time = 0.01 second. 

In general, the larger the size of the record, the greater the effective 
tape speed because of the proportionally lel!ls time wasted in accelerating 
the tape to full speed. The total time required to read the length of a 
reel ranges from 3 minutes to 10 minutes. 

Tape Handling Mechanism. The tape transport mechanisms must 
on demand be able: 



5-30 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

1. To start the tape motion rapidly, 
2. To maintain a uniform speed over the heads, 
3. To stop the tape, 
4. To maintain continuously proper tape guidance and control. 
Other requirements on the equipment are: 
5. The tape bearing surfaces must be smooth and free of sharp edges 

to reduce wear to a minimum and protect the tape from tears. 
6. The read-write heads of all tape mechanisms must be aligned to a 

standard so that tapes written on one tape mechanism may be mounted 
and read by the other tape mechanisms. 

Operation is as follows: 
1. A typical tape mechanism consists of a feed reel and a takeup reel 

which can hold the entire length of magnetic tape. 
2. The tape is threaded from the feed reel through some kind of surge 

tank containing a few feet of tape, over a reverse tape drive capstan, 
over the read-write and erase heads, over a forward tape drive capstan, 
through a second surge tank and onto the takeup reel. See Fig. 12. 

3. The tape drive capstans rotate continuously in opposite directions, 
always ready to drive the tape when a pressure roller forces the tape 
against one of the capstans. 

4. The surge tanks are used to isolate the relatively slow acting reel 
drives from the capstan drives which must actuate tape motion as rapidly 
as possible. 

5. When the amount of tape in a surge tank becomes either longer or 
shorter than the nominal amount, the associated reel servo is signaled 
by vacuum or photoelectric sensing to adjust the tape in the surge tank 
accordingly. 

Use of Magnetic Tape for Storage. Practically all modern business 
data processors have adopted the magnetic tape for large capacity storage. 

Advantages 
1. By using many reels of tape, it is possible to store almost any de­

sired amount of information. 
2. It has proved to be a very reliable storage medium. 
3. It has made possible the solution of a great many business applica­

tions where random access to the file information is not an absolute 
requirement. 

Disadvantages 
1. Access to items on the tape is sequential and hence extremely slow 

compared with internal operating speeds. It is more efficient to run 
through a file and update it in a sequential fashion rather than a random 
fashion. 

2. Updating the files also presents some problems. To modify an entry 



EQUIPMENT DESCRIPTION 5-31 

on magnetic tape without rewriting the entire tape, it is necessary to 
read the information from the tape, and, while the entry is being modi­
fied, hack-space the tape so that the modified record can be recorded 
back into the original space. This is a very time consuming operation. 

o 

Surge tank loops with 
reel servo sensing 

Feed reel 

Vacuum or 
phbtoelectric 

sensing 

I 
Vacuum 
suction 

FIG. 12. Typical magnetic tape handling mechanism. 

To add a new entry to an ordered file it is necessary to provide empty 
spaces between each original entry "in the file, or else rewrite the entire 
file and put the new entry in its correct location. N either of these possi­
bilities is attractive. Leaving blank spaces in the original file means 
that storage space is wasted with no guarantee that the blank spaces 
will be properly arranged for the additions that have to be made. Re-



5-32 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

writing the entire file to make additions and changes is costly and intro­
duces the possibility of errors. 

Random Access Devices 

In most business applications, very large capacity storage units are 
required to maintain the files of business records. The most economi­
cal method of storing this information is magnetic tape, which has 
a very long average access time. To overcome this serious drawback, 
random access devices have been developed. These devices have large 
storage capacities and relatively short average access times. (See Chap. 
4.) 

These devices do not have full random access ability (see above). In 
general, they have an average access time in the range of one-half to 
several seconds. However, the term random access has been associated 
with these devices and is commonly accepted. 

Large Capacity Magnetic Drums. Several types of magnetic drums 
have been developed with a storage capacity of up to several million 
characters per drum. Many drums can be connected to the electronic 
digital equipment to bring the total storage capacity up to the order of 
100,000,000 characters. These drums operate on the same principles 
as the regular magnetic drums. They have an average random access 
time in the range from 0.01 to 0.05 second. 

Magnetic Disks. Magnetic disks are fiat circular shaped records that 
have a coating of magnetic material on both faces. These disks are 
mounted on a shift. A movable reading and recording arm is used to 
read and record information on both sides of the disk. These units look 
and operate like a jukebox (see Chap. 19). It is possible to store 
up to 5,000,000 characters of information in one magnetic disk unit. 
The average random access to information is on the order of 0.5 sec­
ond. 

Magnetic Tape Devices. Several devices have been constructed to 
use magnetic tape in a different manner so that the average random 
access time to information stored in these devices is in the range from 
1 to 20 seconds. One device makes use of strips (250 feet) of magnetic 
tape. There is a series of bins with one strip of tape in each bin. A 
movable reading and recording head can be moved from bin to bin. Then 
the strip of magnetic tape within that particular bin is moved, in either 
direction, to the particular storage 10'cation desired. 

Another device makes use of short strips of magnetic tape mounted on 
movable frames. These frames are stored within a bin. They are selected 
from the bin and brought against a reading and recording head. After 
reading or recording, the frames are returned to their bin. 



EQUIPMENT DESCRIPTION 5-33 

5. OUTPUT EQUIPMENT 

The output unit connects the electronic digital equipment with the 
external world. It delivers the results of the data processing in a form 
that can be used outside of the equipment. It converts data from the 
form of discrete electric signals used inside the equipment to a form 
required by the output medium. Output devices are compared in Table 5. 

Output Media 
Low speed 

Punched cards 
Punched paper tape 

Printed page 
Visual display 

Plotters 

Line printers 
Prin ted page 

Prin ted page 

Prin ted page 

Magnetic tape 

Electronic printers 
Photographic COpy} 
Xerography copy 

Types of Output 

TABLE 5. OUTPUT DEVICES 

Equipment 

Reproducing punches 
Flexowriter, teletype 
punch, etc. 

Electric typewriter 
Mechanical annunciators 
Electric picture tube 

Analog plotters 

Typewriters 

Accounting machine, 
wheel or bar printer 

High-speed wheel 

High-speed matrix 

Tape units 

Picture tube 

Speeds 

100-200 cards/min 
6-60 characters/min 

6-12 characters/sec 
Audio alarm 
several words/sec 

Depends on equipment 
(see Chap. 23) 

6-12 points/sec 

100-150 lines/min 

300-900 lines/min 

500-1000 lines/min 

6000-60,000 
characters/ sec 

Up to 20,000 
characters/ sec 

Direct and Indirect. Output from electronic digital equipment is 
either direct or indirect. The direct manner produces data in a form 
that is directly usable, e.g., printed data from an electric typewriter or 
line printer. The indirect manner produces data in a form that is not 
directly usable, e.g., punched cards or magnetic tape. In this case, the 
information on the output medium is usually reproduced into a usable 
form independent of the main equipment. The information on paper 
tape is usually reproduced into a report form by an electric typewriter 
whereas the information on punched cards and magnetic tapes is repro­
duced by line printers. 



5-34 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

Reports. The primary means of communicating the results of the 
data processing with human beings is the printed report. These reports 
contain results of the processing for use by management, employees, 
operators, and users of electronic digital equipment. In business applica­
tions, these reports can be classified as legal records, management infor­
mation reports, and operating results. In scientific and engineering 
applications, these reports will generally be in the form of tables or 
graphs. 

Machine Readable Outputs. In many applications, the output of 
one processing cycle is required as input to another. 'V-hen this occurs, 
it is important to record the results of the first processing cycle in machine 
readable form that can be used automatically in the next processing 
cycles. This can be achieved by producing the results on machine read­
able media such as punched paper tape, punched cards, and magnetic 
tape. Then the results can be used as automatic input to the next process­
ing cycle and can be used to produce printed reports. 

Low-Speed Outputs 

Several slow-speed methods are available for output. These methods 
have operating speeds in the range from 10 to 200 characters per second. 
The equipment required with these methods operates at these low speeds 
because it is primarily mechanical in its operation. Table 5 shows a 
comparison of the various low-speed outputs. Punched card machines 
are standard electric accounting machines. Punched paper tape data 
can be printed out by an electric typewriter. Electric typewriters are 
used primarily for low volume output and operating instructions. Vola­
tile visual displays are useful where temporary and short-term indication 
of limited amounts of data is required. Electrically actuated mechanical 
annunciators are used on supervisory and monitor consoles, as well as 
electronic picture tubes which can be used to display rapidly several 
words such as the contents of a specific storage location. Graph plotters 
eliminate human transcription of the results from digital to graphical 
form. Digital-to-analog converters are required for analog plotters. 

Line Printers 

Line printers may be defined as those that print an entire line at one 
time. The line may be composed of from 25 to 120 printed positions 
spaced approximately 10 characters per inch and with approximately 
six lines per inch vertically. These printers may also skip blank lines 
(slew) at 3 to 5 times their line printing speed. Some printers have a 
means for horizontal and vertical format control through plugboards 
and paper tape control loops located on the printer. In other printers, 



EQUIPMENT DESCRIPTION 5-35 

the format may be controlled by the program in the electronic digital 
equipment. Printing may be done on preprinted forms, card stock, multi­
lith master, multipart forms, and plain paper. The paper stock is usually 
fan-fold and edge-perforated for sprocketed paper advance. 

8 Z 

L T 

(b) 

R 

(a) 

9 /Comma , 
o 11 $ .~Decimal 

••••• ••••• ••••• ••••• ••••• ••••• ••••• 
Wire matrix 

••••• 
• 0000 
.0000 
•••• 0 
0000. 
0000 • 
•••• 0 

Digit 5 

(c) 

FIG. 13. Line printing mechanisms: (a) accounting, (b) print wheel, (c) matrix. 

There are two types of line printers, namely the accounting machine 
and the high-speed printers, as shown in Table 5. 

Accounting Machine. Accounting machine line printers are standard 
EAM accounting machines. They can be used as either main output 
devices or auxiliary printing devices. These printers make use of writing 
type bars or slow-speed print wheels. See Fig. 13. 

High-Speed Printers. High-speed printers may be defined as those 
that print from 300 to 1000 lines per minute. 



5-.36 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

The wheel printer utilizes a continuously spinning printer wheel wit.h 
the characters embossed on the periphery and a printing hammer which 
is timed to strike the paper against the ribbon and the wheel as the 
desired character passes. Each printing wheel must contain each char­
acter to be printed. Most wheel type printers utilize a rotating drum 
containing a "wheel" of print for each print column, such as 120 wheels 
for printing a line containing 120 character positions. See Fig. 13b. 

In the wire matrix printer, the characters are formed by selectively 
actuating appropriate wires in a rectangular matrix usually containing 
five columns of seven wires each. The printed character then is an array 
of dots which is readable but is not as plain as the characters printed from 
a wheel type printer. See Fig. 13c. 

Magnetic Tape 

Magnetic tape also can be used as an output medium. The main ad­
vantage of using it arises from its much higher speed compared with 
low-speed media or line printers. vVith these other media, the maximum 
possible output speed is about 2000 characters per second, but with 
magnetic tape output speed is in the range from 6000 to 60,000 characters 
per second. See Table 5. This means that when magnetic tape output 
is used, the ratio of output time to computing time is lower than when 
other mediums are used. 

Electronic Printers 

Principles of Operation. Electronic printers are those in which the 
character image is generated in the form of an electron beam with a 
cross section in the shape of the desired character or is generated by line 
scanning electron beams such as in television. These devices are capable 
of translating binary coded information used within the electronic digital 
equipment into characters and displaying them on the face of a cathode 
ray tube. In the charactron tube, this is accomplished by directing an 
electron beam through a miniature matrix which contains cutout letter 
and decimal digit shapes. The electron beam is then deflected into the 
proper position on the face of the picture tube and thus creates an image 
in the shape of the desired character. See Fig. 14. 

Producing Hard Copy. The picture tube may be directly viewed. 
However, most applications require the results to be produced in report 
or other printed form. One method of producing a printed report uses 
a photographic process in which pictures of the face of the tube are taken. 
In some cases, the film can be developed by darkroom techniques, while 
in other cases the film is exposed, developed, and fixed automatically. 

Another method of producing hard copy of the face of the tube utilizes 



Selection Plates~~~ 

Convergence coil 

Reference plates (

Matrix 

7 0 030 0 210 
. Deflection yoke 

spaces. . m. 

I' 'I 
i- •• o· 

0.012 in. 
o x y V M W Z 

a H N G S T u 

bD0246 B 

d F 1 3 5 9 r 

f C H P U f\ n 

+ h K 13 E 1:1 m • 

t 1 .t '.I. • () to> • 

... + • ':; ~ • 
L .J 

Displayed character 
(dotted line indicates path 

of electron bcaf11) 

Viewing screen 
~....d8:;:::::;:j: f-

FIG. 14. Charactron shaped beam tube. (Courtesy of Stromberg-Carlson, a division of General Dynamics.) 

m 
-0 
c 
""C 

~ 
m 
Z 
-f 

o 
m 
en 
() 
~ 
""C 
-f 
(5 
Z 

f{1 
w ....., 



5-38 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

an xerographic printing process. This process uses an electrostatic 
method whereby tiny, dustlike particles are attracted and adhere to the 
surface of a selenium-coated drum that has been exposed to the face of 
the tube. A subsequent step, after these particles have been transferred 
to paper, fuses the character shapes permanently to the paper by means 
of heat and pressure. 

These electronic printers operate much faster than electromechanical 
printers. They can operate as high as 20,000 characters per second. 

Auxiliary Output Equipment 

In business data processing applications, extensive amounts of output 
data are generated. Since the output operations are much slower than 
the internal operations of electronic digital equipment, the ratio of output 
time to computing time may be too high. This is inefficient utilization 
of the electronic equipment. Several things have been done to speed 
up the output operations. 

Conversion Equipment. Conversion is the processing of transcribing 
information from one output medium to another. (See Sect. 3.) Con­
version equipment such as magnetic tape to card and tape to printer is 
used to take advantage of the inherently higher speeds. Because of the 
speeds at which information can be put out on magnetic tape, the elec­
tronic digital equipment is not tied up for as extensive a period of time 
during the output functions and thereby has more time available for 
da ta processing. 

Buffer Equipment. The advantages of buffering equipment in per­
forming output operations are similar to the advantages of buffering in 
input operations, as described above under Input (see Sect. 3). 

6. ARITHMETIC AND LOGIC UNIT 

Description. The arithmetic and logic unit performs the arithmetical 
and logical operations necessary in the processing of data. It has a set 
of basic operations that it can perform, such as addition, subtraction, 
multiplication, division, shifting, comparison of two numbers, and the 
transfer of data to and from the storage unit. Design of arithmetic and 
logic units is covered in Chap. 18. This section considers equipment 
aspects. 

Arithmetic. Both serial and parallel adders are used. The advantage 
of the parallel mode arises from its very fast speed. For example, to 
add two pure binary numbers, each 36 binary digits in length, in the 
serial mode would require about thirty-six times as long as it would to 
add two one-digit binary numbers. In the parallel mode, it would require 
only two to four times as long, depending upon the internal design of the 



EQUIPMENT DESCRIPTION 5-39 

equipment, thereby making a substantial savings in time. As a result 
of this, most large-scale electronic computers of today operate in the 
parallel mode. 

Electronic digital equipment that codes its information in one of the 
binary coded representations performs addition in a combination of the 
serial and parallel modes. Consider the binary coded decimal number 
representation. In a mode of operation known as the serial-parallel 
mode, commonly called serial, there are four adders that operate in 
parallel on the bits of each binary coded decimal digit. Then the binary 
coded decimal digits are added successively in time by the same set of 
four adders. In the parallel-serial mode, there is one adder for each 
binary coded decimal digit, the four binary digits representing each 
binary coded decimal digit being added successfully through time by 
the one adder. 

Subtraction is usually performed by adding the complement. Multi­
plication is usually performed by making repeated additions. Division 
is performed in electronic data processing equipment by the combined 
operations of subtracting, shifting, and counting the number of times 
subtraction is possible before shifting is necessary. 

Logical Operations. The comparison of two numbers, which is an 
example of a logical operation, may be performed by subtracting one 
number from the other, and determining whether the remainder is zero 
or not. As a result of this determination, the equipment can choose be­
tween two alternative courses of action, and in effect can make a logical 
decision. Operations of this type are often called logical operations. 

Alphabetic Information. The handling of alphabetic and special 
character information is accomplished in two ways. 

1. In the large electronic data processors, alphabetic information 
is handled by a six binary digit coded character representation similar to 
the one presented earlier. 'Vhen this type of code is used and the equip­
ment is to treat the character as a decimal digit, the first two binary digits 
are ignored in arithmetic operations. The remaining four binary digits are 
then treated as a binary coded decimal digit and are operated upon in a 
manner entirely analogous to the operations upon a binary coded decimal 
digit. 

2. Another way of handling alphabetic information is to use two 
decimal digits to designate one letter or special character. For example, 
61 would represent A and 62 would represent B. 

Special Operations. The requirements of a great many scientific 
and engineering applications are such that special operations, such as 
double precision, automatic floating point, and base counter or tally are 
built into the equipment. These operations are used either to increase 



5-40 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

the accuracy of computations or facilitate logical operations. They may 
also be programmed. 

7. CONTROL EQUIPMENT 
Description. The control unit receives the instructions from the 

storage unit, interprets them, and directs the components to perform the 
appropriate operations. It can direct the arithmetic and logical unit to 
manipulate the data and the input-output units to communicate with the 
outside world. A control unit makes the electronic digital equipment 
accomplish what the human programmer wishes the equipment to do, 
within the limits designed into the equipment. 

Instructions Classified by Functions Performed. There are three 
basic functional groups of instructions required in the operations of elec­
tronic digital equipment, namely arithmetic, data movement, and deci­
sion. In each of these groups, there are several general instruction 
requirements, shown in the Table 6. 

Sequencing of Instructions. The sequencing of the control instruc­
tions can be accomplished in two ways, namely by an instruction counter 
or by the previous control instruction. 

Control Console 

The control console is a panel composed of switches, lights, and buttons 
that provides the human operators with the means of communication and 
controlling the electronic digital equipment. The control console in­
cludes indicators and controls for power, maintenance, monitoring, and 
operations. 

Power. Controls are available for turning a-c power onto the power 
supply and then turning the various d-c levels onto the computer circuits 
in the proper order. There are meters for monitoring the voltages and 
other controls for changing the applied voltages during checking pro­
cedures. 

Maintenance. There are logical circuit indicators, alarm lights, and 
specialized operating controls which are helpful in preventive mainte­
nance as well as in trouble shooting when the machine stops on account 
of some alarm condition or malfunction. Examples of such controls are 
switches which can be set to stop the computer on specified instructions, 
and others that permit the equipment to execute only one cycle of opera­
tion for each push of the starter button. 

Monitoring. Indicators that show the contents of internal storage 
locations, principal registers, and counters are provided. In addition, 
there is a monitor printer (usually an electric typewriter) which can make 
periodic reports on the progress of an operation. 

Operations. Start, stop, and off buttons. 



EQUIPMENT DESCRIPTION 5-41 

TABLE 6. BASIC INSTRUCTION TYPES AND REQUIREMENTS 

Required Address 

Order Type 
Arithmetic 

Add, subtract, 
multiply, divide 
Shift 

Data Movement 
Read in 

Transfer data 

Clear 

Write out 

Decision 
Compare 

Conditional trans­
fer of control 

U ncondi tional 
transfer of control 
Stop 

Functions 

To perform basic arith­
metic operations 
To move the digits of a 
number right or left with­
in a word 

Movement of data from 
input media or external 
storage to internal 
storage 

Selective rearrangement 
within internal storage 

Internal destruction of 
da ta no longer desired 
Movement of data from 
internal storage to 
external storage 'or out­
put media 

Two words for equality, 
greater than or less than 

Transfer of control based 
upon predescribed con­
ditionsa 

Transfer of control under 
all conditions 
Halt all machine opera­
tions 

Information 
(Explicit or Implicit) 

Storage location of 
operands 
Direction of shift and the 
number of digit positions 
to shift 

Identification of input unit 
or external storage unit, 
amount of data and inter­
nal storage location to 
place data in 
Storage location of data 
to be transferred, amount 
of data, final storage loca­
tion of data 
Storage location of data 
to be cleared 
Identification of external 
storage or output unit, 
amount of data, and in­
ternal storage location 
from which to write out 

Storage locations of two 
words and location of next 
instructions for each of 
three possible outcomes 
Storage locations of next 
instruction for each of the 
possible prescribed con­
ditions 
Storage location of next 
instruction 
No address information 
required 

a Conditional transfer of control refers to choosing one of two or more logical paths 
in a program based upon the condition of a machine calculated result or of a data word 
supplied as input for processing. For example, when two identification numbers are sub­
tracted for matching, one of three conditions will exist: (1) result zero if identifications 
are equal, (2) result positive, (3) result negative. Conditional transfer orders either 
jump to another sequence of instructions or permit normal program sequencing, depend­
ing upon the condition of the result. 



TABLE 7. TYPICAL ELECTRONIC DIGITAL EQUIPMENTS 

General Characteristics 
Arithmetic and logic unit 

Royal McBee 
LGP-30 

N umber system Binary 
Word size 30 binary digits plus sign 
Operating mode Serial, fixed point 

Arithmetic speeds 

Control unit 
Instruction type 
Checking features 

Internal storage 

Add, 8.75 msec; mult., 
24.00 msec 

One address 
Accumulator overflow 

Type Magnetic drum 
Capacity 4096 words 
Access time 7.5 msec 

Magnetic tape equipment 
Number 
Start time 
Transfer rate 

Input equipment 
Type 
Speed 

Output equipment 
Type 
Speed 

Printing equipment 
Type 
Speed 
Use 

Approximate costsa 

Rental 
Purchase 
a Based on 1958 costs. 

None 

Papertape IICeyboard 
10 char/sec Manual 

Paper tape I Printed page 
10 char/sec 10 char/sec 

Flexowriter 
10 char/sec 
On-line or off-line 

$1100/month 
$50,000 

Electrodata Datatron IBM 705 

Binary coded decimal Binary coded alphanumeric 
10 decimal digits plus sign Variable word length 
Serial-parallel, fixed or float- Serial, fixed point 

ing point 
Add, 1.1 msec; mult., 9.3 Add, 0.119 msec (five-digit numbers); 

msec mult., 0.799 msec (five-digit 
numbers) 

One address One address 
Overflow, read-write Character check, overflow, read-write 

Magnetic drum Magnetic cores I Magnetic drum 
4080 words 40,000 char 60,000 char 
0.85 msec 0.017 msec 8.0 msec 

Up to 10 Up to 100 
6 msec 10 msec 
6000 digits/sec 15,000 char/sec 

Punched cards I Paper tape Punched cards 
240/min 540 digits/sec 250/min 

Punched cards I Paper tape Punched cards 
100/min 60 digits/sec 100/min 

-Wheel Wheel I Matrix 
150 lines/min 150 lines/min 500 lines/min 
On-line On-line or off-line 

$4,000-$10,000/month $25,000-$60,000/ month 
$140,000-$350,000 $1,250,000-$3,000,000 

en 
~ 
N 

c 
(,I) 
m 

0 
"T1 

0 
(i) 
=i » r-
() 
0 
~ 
." -c 
-I 
m 
;::c 
(,I) 

» 
Z 
0 

0 » 
-I » 
." 
;::c 
0 
() 
m 
(,I) 
(,I) 

0 
;::c 
(,I) 



EQUIPMENT DESCRIPTION 5-43 

Checking Features 

In order to ensure accurate and reliable results, electronic digital equip­
ment has checking features built in as extra hardware. The checking 
features commonly used are the parity check, duplication, and indicator 
checks. See Chap. 13. 

Parity Checking. In some parts of electronic digital equipment, a 
redundant check bit is added to the code for each character so that each 
character always has either an even number or an odd number of binary 
one bits. The characters are checked for parity each time they are read, 
transferred, or written. This type of check detects the most common 
type of malfunction that occurs in electronic digital equipment, an error 
in one binary digit of a code. See Chaps. 4 and 13. 

Duplication. Duplicate electronic units or dual operations can be 
used to ensure the accuracy of all calculations. Dual recording on mag­
netic tape is sometimes used to increase the reliability of magnetic tape 
reading and writing. 

Other Checks. Other built-in checks are used to indicate undesirable 
conditions that can occur within the electronic digital equipment. Such 
checks can indicate conditions like accumulator overflow, incorrect sign, 
and invalid instruction codes and address. 

8. TYPICAL ELECTRONIC DIGITAL EQUIPMENT 

There are several commercially available data processing systems for 
business data processing and scientific computation. Shown in Table 7 
are comparative features, speeds, and capabilities of typical available 
equipment. In general, the equipment described in this table represents 
a basic system, which can usually be expanded in capacity. 

REFERENCES 

1. E. C. Berkeley, Giant Brains, or Machines That Thinlc, Wiley, New York, 
1949. 

2. A. D. Booth and K. H. V. Booth, Automatic Digital Computers, Butterworths, 
London, 1953. 

3. B. V. Bowden, Editor, Faster than Thought, Pitman, London, 1953. 
4. W. J. Eckert and R. Jones, Faster, Faster, International Business Machines 

Corporation, New York, 1955. 
5. R. K. Richards, Arithmetic Operations in Digital Computers, Van Nostrand, 

Princeton, N. J., 1955. 
6. N. Chapin, An Introduction to Automatic Computers, Illinois Institute of 

Technology, Chicago, 1955. 
7. E. C. Berkeley and L. Wainwright, Computers, Their Operation and Applica­

tions, Reinhold, New York, 1956. 



5-44 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

8. R. G. Canning, Electronic Data Processing for Business and Industry, Wiley, 
New York, 1956. 

9. G. Kozmetsky and P. Kircher, Electronic Computers and Management Control, 
McGraw-Rill, New York, 1956. 

to. M. V. Wilkes, Automatic Digital Computers, Wiley, New York, 1956. 
11. G. Kozmetsky and P. Kircher, Electronic Computers and Management Control, 

McGraw-Hill, New York, 1956. 
12. J. W. Carr and A. J. Perlis, A comparison of large-scale calculators, Control 

Eng., 3,84-92 (February 1956). 
13. R. K. Richards, Digital Computer Components and Circuits, Van Nostrand, 

Princeton, N. J., 1957. 
14. W. D. Bell, A Management Guide to Electronic Computers, McGraw-Hill, 

New York, 1957. 
15. E. M. Grabbe, Editor, Automation in Business and Industry, Wiley, New York, 

1957; 
16. Haskins and Sells, Introduction to Electronic Data Processing, Haskins and 

Sells, Los Angeles, Calif., 1957. 
17. D. D. McCracken, Digital Computer Programming, Wiley, New York, 1957. 
18. M. H. Weik, A Second Survey of Domestic Electronic Digital Computing 

Systems, Office of Technical Services, U. S. Department of Commerce, Washington, 
D. C., 1957. 

19. M. Phister, Jr., Logical Design of Digital Computers, Wiley, New York, 1958. 



c THE USE OF DIGITAL COMPUTERS 

AND DATA PROCESSORS 

Facility Requirements 

I. Physical Installation 

2. Personnel Requirements 

References 

J. PHYSICAL INSTALLATION 

Overall Planning 

Chapter 6 

Erwin T omash 

6·01 
6-09 

6·13 

The installation of an electronic data processing system will pose 
unique problems not encountered in the installation of other types of 
equipment, and careful consideration must be given to these problems 
if an efficient, effective operation is to result. Planning the actual physi­
cal installation, which can be a major item of expense, is an often 
neglected phase of the overall make-ready program. 

This chapter is concerned primarily with the installation of large-scale 
equipment. The installation of smaller equipment will pose problems 
similar in nature, but to a lesser degree. Often, these smaller instal­
lations may be treated as extensions of existing punch card installations. 

General Engineering Services. Experience has shown that it is im­
portant to seek the advice and assistance of those experienced in installing 
and operating data processing systems. Two approaches are: 

1. Prospective users having available the services of a plant engineer­
ing department (or equivalent) will be wise to avail themselves of this 

6·01 



6-02 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

service, since careful supervision and coordination of the technical 
details is mandatory. 

2. Prospective users not having such services available will find it 
advantageous to obtain the services of an industrial engineering con­
sultant to work with the equipment supplier and the various sub­
contractors, and thus assure proper coordination of all aspects. 

Equipment Manufacturers' Services. IV[ost suppliers make avail­
able an experienced installation department prepared to work with the 
customer's staff. They also furnish installation and specification manuals, 
which provide the technical information needed. However, the installa­
tion of a large-scale system poses many special problems requiring 
individual customer review and decision. 

The supplier's fundamental responsibility ends with his submission of 
complete specifications and installation requirements. Usually these are 
furnished together with particular recommendations for the installation 
at hand. The supplier is primarily concerned that proper power and 
refrigeration facilities be provided in such a manner as to make possible 
the trouble-free operation of his equipment. He is much less concerned 
about such matters as physical layout, operational convenience, minimi­
zation of installation expense, and standby facilities. 

The user wishes to comply with the supplier's installation specifications 
in order to have trouble-free operation of the equipment, and also to be 
able to hold the supplier responsible for equipment malfunction. The 
user must concern himself with certain installation details, particularly 
physical layout, so as to obtain proper and efficient utilization of the 
equipment. He should give careful study to work flow, traffic control, 
personnel housing, appearance, etc. Most users have chosen to use the 
equipment supplier's installation department on an informal consultant 
basis. In this manner, the user avails himself of the supplier's service 
and yet is able to retain control of planning to take into account his 
own individual requirements. 

Physical Layout 

From the user's point of view the most important aspect of the instal­
lation planning is to provide adequate, properly laid out working space. 
It is safe to assume that power, refrigeration, and structural problems 
will be resolved and that these problems, however difficult of solution, 
once handled may be forgotten (except for routine maintenance). On 
the other hand, problems which arise during operation due to improper 
area and equipment layout remain with the user as long as the equipment 
is in use, or must be corrected at great expense. 



FACILITY REQUIREMENTS 6-03 

Main Equipment Room. Important factors to consider are: 
1. Space. A main equipment room is required to house the central 

data processing and computing equipment and any intimately associated 
input-output devices. The space recommended by most suppliers is 
around 3000 to 3500 square feet. This should be regarded as a minimum. 
Several installations have used as much as 4500 square feet and have 
found the additional space more than welcome.' The exact layout of the 
operational area is dependent upon the individual operational require­
ments and type of equipment installed. 

2. Control Console. All data processing systems have some sort of 
monitoring and control desk, and this control station should be located 
so that while seated at the console the operator in charge can view all 
equipment directly connected to the machine, such as magnetic tape units, 
card readers, printers, and typewriters. All elements of the system 
which require starting or stopping, loading or reloading and which can 
be controlled from the monitoring station should be located adj acent to 
the control station and in clear view of it. 

3. Accessibility. The various elements which compose the data proc­
essing system must be placed to permit accessibility for maintenance 
and ease of operation. It should be possible to replace or change control 
panels, operate all controls, load and unload units, etc., without having 
to move these units. Generally, for commercial systems now in field 
use, suppliers recommend that a service area extending 3 or 4 feet from 
the unit in all directions be provided to permit ready access to the 
front, sides, and rear. If space is severely limited, this figure can be 
reduced somewhat by careful checking of control panel and access door 
clearances. Prior to installation, this checking can be done against 
manufacturer's specifications and drawings. 

4. Viewing Area. Another important aspect of machine location 
results from the interest in equipment appearance. Most installations 
have provided viewing rooms for visitors. It has been found desirable 
to place the more dramatic and impressive units of equipment, such as 
the printing devices, monitoring panels, and magnetic tape units close 
to and facing out toward the viewers. 

5. Magnetic Tape Reels. As a by-product of a large-scale data proc­
essing operation, a large active file of magnetic tape reels will be estab­
lished and maintained. Suitable shelves, racks, files, or carts will have to 
be provided, generally adjacent to the magnetic tape units, for storage and 
effective control of these tape reels. Both file drawers and open shelves 
are in common use, with the latter somewhat more popular. Specially de­
signed office style units to house these reels are available from the office 



6-04 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

equipment manufacturers, as are tape dollies, etc. It will also be neces­
sary to develop a very complete tape reel control and identification 
system, so that the wrong tapes are not inadvertently used or an excessive 
inventory of tapes is not developed. 

Maintenance Room. In addition to the central equipment area, the 
supplier usually requires that an adj acent maintenance area be pro­
vided. An area of 300 to 400 square feet is recommended. The main­
tenance crew for a large-scale system will be permanently assigned to the 
user's installation, and will occupy this area. Suppliers generally request 
that facilities such as desks, chairs, and coat racks be provided for these 
personnel. If floor area immediately adjacent to the machine is at a 
premium, it will also be necessary to provide a small bulk-storage area 
for spare parts. This may be a separate room at some other convenient 
location, or it may be adjacent to the maintenance area. Ordinarily, for 
leased equipment, the manufacturer supplies all special equipment relating 
to the maintenance work itself, such as work benches, test equipment, 
tools, drawing racks, and spare parts drawers. For purchased machines 
it is necessary for the customer to provide equivalent facilities. From 
the appearance and control point of view it has been found preferable 
to establish the maintenance room with its own separate entrance and 
doorway,' rather than as an area simply adjacent to the computer 
machine itself. 

Central Supply Room. A small supply room approximately 100 
square feet in area and suitably equipped' with shelves or cabinets should 
be provided. This room is used to stock supplies associated with the 
data processing center, such as forms and paper, punch cards, and mag­
netic tape. This room should be convenient to the central processing 
room, if not adjacent to it. If the former, then a set of shelves or a 
cabinet should be provided in the main equipment room for small 
amounts of supplies. 

Power Room. A wall area to mount controls for power and refriger­
ation equipment is usually all that is required in the central equipment 
room. Special provisions are often made so that large switches, circuit 
breakers, etc., are hidden behind panels or cover plates. Large trans­
formers, motor generators, compressors, etc., to which limited accessi­
bility. is required, are in some instances located near the central 
installation in "power rooms," or they are distributed throughout the 
building, as convenient. 

Office Space. It has rarely been possible to provide offices adjacent 
to the central equipment for all personnel associated with the operation. 
Certain personnel should be housed adjacent to the area, if at all possible. 



FACILITY REQUIREMENTS 6-05 

The department manager or other administrative official who is in day­
to-day charge of the operation should, by all means, have his office 
adj acent to the computer area. In addition, ~he chief operator should 
have his office adj acent to the central equipment area. Additional oper­
ating personnel usually share common office space near that of the chief 
operator. 

Systems analysts and programming staff will require housing accessible, 
but not necessarily adjacent, to the central equipment room. Experience 
has indicated that, for the bulk of the programming staff, it is not 
efficient to use a common working room. The usual solution is to estab­
lish two-man offices, or use eye height partitions to create these. Systems 
analysis and programming require close and continued concentration, 
and the privacy and quiet resulting from the two-man office arrangement 
seems to be conducive to greater work output. 

Visitors' Area. Most users have found it advantageous to establish 
and maintain a visitors' viewing room which permits ready view of all 
ope~ations within the equipment room. These generally have been 
designed to accommodate ten to twelve people comfortably and to include 
glass panels for viewing and a suitable display and poster area where 
models and explanatory charts may be shown. It has been found neces­
sary at most installations to supplement the operations being shown with 
a brief explanatory talk, and also to furnish diagrams, charts, and 
reprints of articles. 

Staff Conference Area. During planning, initial cutover, and regular 
operation, frequent staff conferences will be needed, and a conference 
room seating at least six to eight people should be provided. 

Power Requirements 

General. The user has little latitude in the matter of power require­
ments. The manufacturer's specifications must be closely followed. 
Local building codes and type of power available will effect installation 
detail; power control apparatus of various manufacturers may be used; 
however, any differences will be in detail rather than function, and the 
switchgear supplier may be relied upon to provide complete and satis­
factory details for its installation. 

Regulation. The major problem encountered from the electrical 
point of view is to provide adequate regulation of voltages entering the 
machine. Local power companies are usually cooperative in providing 
information as to regulation of power lines. If given sufficient advance 
notice, they will monitor and record data on the very lines which will 
be used. These regulation data provide the magnitude and frequency 



6-06 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

of the variations likely to be encountered. A new installation represents 
a major increase in load and any advance notice which can be provided 
to the power company is. greatly appreciated. 

Since it is not possible to use unregulated voltages, some sort of regu­
lating apparatus is required. Two approaches have been used: 

1. Provide a buffering motor-generator set. Some manufacturers 
provide this motor-generator set as an integral part of the system. 
Others specify that such a motor-generator set be provided to ensure 
proper operation. 

2. Other manufacturers recommend use of stabilizing voltage regula­
tors, rather than the use of motor-generator sets. 

In each case, manufacturers specifications should be followed carefully. 
The power lines for the compressors, blowers, etc., required to provide 
proper cooling of the system should be kept independent of those supplied 
to the computer proper in order to minimize further regulation problems. 

Experience has indicated that electrical contractors accustomed to 
doing standard electrical work cannot be relied upon exclusively because 
of the special nature of this work. It will be necessary for the user to 
maintain close liaison between equipment manufacturer and electrical 
contractor to assure that the system is properly and efficiently wired 
and powered. 

Load Requirements. The user should take precaution during plan­
ning to make certain that the primary source of power is greater than 

'- that amount exactly required to operate the equipment presently being 
installed. Future expansion of the system should be regarded as almost 
inevitable and as new or more modern units are added, these may require 
additional amounts of power. In addition, when estimating total power 
requirements, it is essential to remember that a large amount of power 
will be required for the refrigeration system. In fact, the power required 
by the refrigeration system very nearly equals that required for the 
data processing system itself. 

Cabling and Wiring. Interconnecting cabling to connect the various 
elements of the system with the main power supply and with each other 
is provided by the manufacturer. The customer is expected to provide 
wiring from the primary source of power to the switchgear and voltage 
regulating system and to power supplies of the units. Usually inter­
connecting cables are run underneath the system. A false floor is often 
used to handle these cables and conduits. An alternate approach is to 
build or dig trenches in the floor between units. Both methods are in 
common use and have proved satisfactory, the false floor providing some­
what more flexibility and being somewhat more expensive. 



FACILITY REQUIREMENTS 6·07 

A third alternative, which is the least attractive, the least expensive, 
and the least satisfactory, has also been used. This is to build a ramp 
over the cables and run the cables along the floor. The ramp acts as a 
protective cover to the cables but it also impedes the use of dollies in 
the machine area and provides a traffic obstacle. 

Convenience Outlets and Maintenance Area Power. It will be 
necessary to install a number of convenience outlets all along the central 
equipment room walls for powering of maintenance test equipment and 
for operation of mechanic's tools, etc. In addition to convenience outlets 
at the work benches in the maintenance area, special power facilities are 
often needed for specialized maintenance test equipment. 

Complete information regarding these special facilities is furnished by 
the manufacturer. 

Refrigeration Requirements 

General. Proper equipment cooling has been a cause of great concern 
to both equipment manufacturers and equipment users. Equipment 
manufacturers have attempted in various ways to handle this problem 
in a convenient and economical manner. Simply stated, these large 
systems dissipate large amounts of power (from 50 to 150 kilowatts), 
and this heat must be remoycd from the equipment and the room 
housing the equipment. 

Equipment manufacturers state their cooling requirements in different 
ways. Refrigeration equipment suppliers also provide specifications with 
varying terminology. Therefore, the following table will be found useful: 

1 kilovolt-ampere = 3400 British thermal units per hour 
1 ton = 12,000 British thermal units per hour 
1 kilovolt-ampere = 0.283 ton 
1 ton = 3.6 kilovolt-amperes 

A ton (of refrigeration) means the refrigeration required to remove an 
amount of heat equal to the heat of fusion of one ton of ice per day. 

System Requirements. The general type and amount of refrigeration 
required is usually specified in fairly complete detail by the supplier. 
The amount of refrigeration required is determined by the amount of 
power dissipated by the system. The exact type of refrigeration required 
depends in large part upon the design of the data processing equipment. 

Essentially two types of systems are in common use today. These 
may be referred to as the open-ended and closed-loop systems. 

1. Open-Ended Systems. The heat dissipated by the equipment is 
exhausted into the room, and the refrigerating system is required to 



6-08 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

remove this hot air and provide incoming cool air to the machine. This 
type of system is almost universally used in smaller machines. The room 
air conditioning system is required to handle the machine heat load very 
much as it would handle any other room heat load. 

Open-ended systems have been used quite effectively for large systems 
as well as smaller units. Quite obviously, when very large heat loads 
are installed in a few thousand square feet of floor space, then large 
capacity, carefully ducted air cooling systems are required. 

2. Closed-Loop Systems. The closed-loop approach has also found 
considerable acceptance and a number of variations have been used in 
commercial data processing equipment. In this system, the cooling air 
is circulated but kept within the confines of the room or kept within 
the machine itself. The machine being cooled may be considered as a 
sealed unit. A set of internal cooling coils at the bottom of the unit 
cool the air; it is then blown past the heat dissipating elements; finally, 
the warm air is returned to the cooling coils. 

The internal cooling coils are usually fed from a chilled water source, 
and these systems are often referred to as "chilled water" systems. The 
heat is carried away from the machine by the warm water return. 
The machine, therefore, contains within its own casework the blowers 
and heat' exchangers which transfer the heat developed by the equipment 
to the water system, which is connected in turn to a refrigeration system. 
The user is required to furnish the necessary chilled water to such units. 
This type of system has an important advantage in that it is independent 
to a large extent of the heat ambient of the room in which the equipment 
is installed. The heat load of other units in the room, humidity condi­
tions, etc., and other conditions external to the machine have no affect 
on the operation. 

It should be pointed out, however, that during maintenance periods, 
access doors must be open, and there is, of necessity, an interchange of 
air between equipment and the room. Thus, depending on the humidity, 
condensate may form on the heat exchangers, and drains must be pro­
vided to remove this condensate if it should occur. 

An advantage of the closed-loop system is that the refrigeration load 
is constant during summer or winter and, as stated before, is independent 
of external influences. A disadvantage of this system is that in addition 
to the chilled water system, it is generally necessary to provide a room 
air conditioning system for personnel comfort and to accommodate the 
heat load of small input-output units, such as magnetic tape units, card 
units, and key punch machines, which are not connected to the central 
sealed-air chilled-water system. Thus two air conditioning units may be 
needed, the second, however, of much lesser capacity. 



FACILITY REQUIREMENTS 6-09 

Floor Loading 

Specifications for sizes and weights of the various elements in the 
system will be provided by the equipment supplier. It is important to 
note that many units are on casters, legs, or wheels ; therefore, floor 
loading and structural plans must be checked for capacity to withstand 
concentrated loads. It is often desirable to insert metal floor plates at 
the load points, and thus distribute the load over a greater area. This 
also prevents damage to composition floors, such as linoleum, which 
otherwise would be damaged by pressure over a period of time. 

Soundproofing 

The noise level associated with most commercial large-scale systems 
is considerably lower than that found in large punch card installations, 
but it is still somewhat higher than that encountered in most office 
operations. This is due in part to the noise created by input-output 
devices such as card readers, card punches, and printing units, and in 
part to blower noise, air conditioning equipment, and electric motors. 
Generally speaking, no special soundproofing is required beyond the use 
of acoustic tiles, such as those now commonly used in modern office 
construction, for ceiling and walls. 

Lighting Control 

For most commercial equipment available today, there are no partic­
ular special lighting requirements. Light levels used in normal office 
operation are satisfactory. 

2. PERSONNEL REQUIREMENTS 

General. Unlike problems in physical installation, which may be 
overlooked, a great deal of attention has been focused upon personnel 
training and procurement. Although there is no unanimity of opinion 
with regard to the number and type of people required, certain common 
patterns seem to be emerging. 

In general, it seems to be considerably easier to teach data processing 
to company personnel experienced in the operation than it is to teach 
operational and systems background to data processing experts. Based 
upon this philosophy, most users have tried to train and use personnel 
from within their own organization and to hire a minimum of specialized 
experience. This is particularly true during the first phase of conversion 
where attention is focused on mechanizing present procedures. 

An important development has been the use of specialists trained in 
the scientific disciplines who have been working with company systems 



6-10 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

and procedures personnel to develop new approaches to the operational 
problems. This is particularly true in the upper echelons of data process­
ing work where operations research teams and systems analysis depart­
ments are quite common. 

A number of users have also chosen to employ the services of consulting 
firms to assist with the conversion problems. lVlanagement consulting 
firms have on their staffs trained individuals capable of assisting users 
in more effective utilization of the equipment. 

Training. The primary source of education in the fundamentals of 
data processing is found in training courses offered by equipment manu­
facturers. Colleges and universities are now starting to provide gen­
eralized data processing training and each year more and more courses 
are being offered at universities throughout the country. The true source 
of practical training in data processing has been at the user's installation. 
Practical experience on an operating system remains the best source of 
training available today. Most users have found it not only advan­
tageous but necessary to maintain their own continuing training program. 
This has been done on a more or less formal basis, often in cooperation 
with the equipment supplier. This on-the-job training has provided, 
of course, better control, emphasis, and format, and, not unimportantly, 
it serves as an excellent training vehicle for those individuals conducting 
the courses. 

The training required by the various members of the data processing 
center staff varies with their function. The amount and type of training 
required are discussed below 'under the various staff classifications. 

Staffing 

Management Staff. In general, the data processing center reports to 
a member of the middle management group who is responsible for results 
obtained in relation to the established objectives. This individual should 
be familiar with the general principles and concepts of electronic data 
processing. He should, in all probability, attend one of the shorter 
training courses of the equipment suppliers, as well as university seminars, 
management conferences, etc. He should have sufficient time available 
and sufficient interest in data processing to visit other installations, act 
on industry-wide committees, and in general represent the using organ­
ization in the field of data processing. He should, of course, act as the 
primary communication link to the top management of the user organiza­
tion and to other using organizations with similar interests. 

Reporting to the executive level position described above, most users 
have designated a direct managing head of the data processing center. 
This individual usually has had extensive experience with the using 



FACILITY REQUIREMENTS 6-11 

organization and has a detailed knowledge of the organization, its 
systems and procedures, and its objectives. He should be able to devote 
full time to the management of the data processing operation. In addi­
tion to training in principles and concepts, attendance at seminars and 
meetings, he should attend programming and coding courses and be 
completely familiar with the properties of the equipment to be installed. 

Systems Planning Staff. This is by far the most important activity 
in the operation of the data processing center, and success or failure of 
the entire operation will hinge largely on the effectiveness of the systems 
planning work. All too often no distinction has been made between 
"systems planning" and "programming." The importance of the distinc­
tion should not be disguised by the fact that good systems analysts are 
usually experienced programmers and as such often do some programming 
or coding work themselves. 

The systems analysis portion of the work load, especially during initial 
conversion, is perhaps 80 per cent of the total effort to be expended. 
The detailed programming and coding which follows may require a 
greater man-hour expenditure, but they can be accomplished by lower 
level, less highly trained individuals following careful rules of procedure 
delineated by the systems design. 

The typical systems analyst is a senior staff individual familiar with 
the application to be mechanized and its objectives. In addition, he has 
been thoroughly trained in the application and programming of the 
particular equipment being used. Most users have found that a group 
of six to eight systems analysts are required to accomplish a maj or 
conversion. The primary source of personnel for this group is from 
within the using organization. Experience has indicated, however, that 
it is wise to add to this group one or two very experienced analysts from 
other installations who will make up for their lack of knowledge of 
systems detail by their superior knowledge of equipment utilization. 
These experienced analysts very often may be used successfully as a 
consulting group to the other systems analysts and to the programmers. 
The equipment supplier is often able to furnish one or two analysts of 
this calibre to assist the customer in a consulting capacity. 

The systems analyst should take a complete programming, coding, and 
applications course for a total of about three months formal training, 
and should have several years of systems and procedures experience. 

Programmers and Coders. The detail work of carrying out the 
systems design and preparing it for running on the data processing 
machine is accomplished by the programming group. Very often, a dis­
tinction is drawn between programmers and coders, the former sometimes 
being considered more senior ~nd more experienced than the latter, 



6-12 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

Programmers are considered capable of taking systems flow diagrams and 
preparing these completely for use on the machine. Coders are consid­
ered capable of t2,king individual runs within an operation and preparing 
these for use on the equipment. The number of programmers and coders 
required is dependent upon the size of the application being converted 
and the rate of progress desired. In general, a minimum size program­
ming group consists of about fifteen individuals. Groups of thirty 
programmers and coders are not uncommon. 

The training provided for programmers and coders should include at 
least three months of formal programming training. After this training 
program, about nine months of experience will be necessary before their 
skills may be considered adequately developed. 

Instructional Staff. As mentioned heretofore, most users have found 
it advantageous to establish their own training program and assign at 
least one individual to work with new employees, conduct training 
courses, etc. Experience has indicated that the user will require a con­
tinuing source of programmers and coders to take care of normal attri­
tion, promotions, etc. Usually a member of the programming and coding 
group, or a junior systems analyst, is selected for this training function. 

Operators. One of the major advantages of an electronic data 
processing system and its attendant centralization of processing is the 
large reduction in number of machine operators required. However, a 
small number of skilled individuals will be necessary. 

A chief operator, preferably having extensive experience in another 
installation, will be required. This individual can be considered a 
member of the administrative staff and will be useful in training, pro­
gram planning, machine scheduling, etc. In addition, he will supervise 
the activity of his staff of from four to eight operators. Naturally, the 
number of operators will depend upon the complement of equipment in 
use and the number of shifts the equipment is operated. Two classes of 
operators are found in most large installations. These are computer 
operators and auxiliary machine operators, the former being more highly 
trained and skilled than the latter. 

Computer operators should have basic programming training, although 
certainly not as completely as programmers. In addition, they will 
require a rudimentary knowledge of the equipment logic and, of course, 
a detailed knowledge of its operation. After this training period, which 
generally requires about three months, time should be allowed for the 
operating skills to be developed. The timing of computer operator 
training is somewhat critical in that operators should continue to operate 
equipment in order to keep their skills fully developed. Training more 
than six months in advance of equipment installation has been found 



FACILITY REQUIREMENTS 6-13 

to be wasteful. Auxiliary machine operators, on the other hand, require 
very little formal training beyond an understanding of the control of the 
particular units they will operate. A training program consisting of a 
one- or two-week course and a few weeks to acquire operating skill is 
generally satisfactory for these individuals. 

Maintenance. Maintenance services are provided by the manufac­
turers for users leasing equipment and poses no particular problem. 
Many users of large electronic data processing programs have found it 
advisable to hire a senior engineer trained and experienced in data 
processing to act as a staff consultant on equipment procurement, instal­
lation, etc. This individual also serves in a liaison capacity, with the 
maintenance engineers provided by the equipment supplier. 

For those users purchasing equipment, it will be necessary to hire and 
train a maintenance staff. Equipment suppliers provide their customers 
with thorough and detailed training courses similar to those provided 
for their own maintenance crews. A chief service engineer should be 
employed as soon as possible after the decision to purchase equipment. 
This person should have a formal education in electronic engineering 
and should be experienced in the maintenance of the particular equip­
ment being purchased. 

At least one year before installation of the equipment, a group of 
maintenance technicians should be hired and training started. It will not 
be necessary for these maintenance technicians to have completed formal 
education at the university level. The graduates of technical institu­
tions, servicing schools, and armed forces training schools have been 
found to be adequately prepared to take manufacturers' training courses. 

A period of six months should be allQwed for the formal training on 
the computer system and auxiliary units. In addition, six months will 
be required for sufficient skill to be developed on the part of the main­
tenance crew to provide adequate maintenance services. 

REFERENCES 

1. R. G. Canning, Installing Electronic Data Processing Systems, Wiley, New 
York, 1957. 

2. W. C. Bell, Management Guide to Electronic Computers, McGraw-Hill, New 
York, 1957. 

3. G. Kozmetsky and P. Kircher, Electronic Computers and Management Control, 
McGraw-Hill, New York, 1956. 

4. American Management Association, Electronics in Action: The Current Prac­
ticality of Electronic Data Processing, New York, 1957. 

5. American Management Association, Establishing an Integrated Data Processing 
System: Blueprint for a Company Program, New York, 1956. 





c THE USE OF DIGITAL COMPUTERS 

AND DATA PROCESSORS 
Chapter 7 

Design of Business Systems 

I. General System Requirements 

2. Stages of System Evolution 

3. Detailed Steps of System Design 

4. Economic Impacts of System Changes 

References 

I. GENERAL SYSTEM REQUIREMENTS 

Howard S. Levin 

7-01 

7-02 

7-03 

7-12 

7-14 

Digital computers offer new opportunities to the systems planner. 
Computers allow development of business information systems charac­
terized by high-speed computation, rapid search, and procedural rigor. 
These factors, when coupled with new input and output devices and with 
scientific techniques for administrative control, enable design of a truly 
effective, integrated information system attuned to the needs of the firm. 

The information needs of a firm are not necessarily the output of 
present procedures. Current methods are often a patchwork imposed by 
machine limitations, supervisory -inflexibility, and reaction to business 
emergencies. As a consequence, the information required for policy 
guidance and day-to-day operation of the business may not be clearly 
reflected by current office activity. Nevertheless, present procedures 
provide a starting point for redesign of a business information system. 
They picture the way in which the firm is currently operated, reveal the 
emphasis presently placed on various aspects of the office work cycle, and 

7-01 



7.02 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

provide a basis for viewing office costs. With present procedures as a 
starting point, the system analyst can work toward a statement of basic 
information needs. Initially he will gain only an approximation of such 
needs; but this approximation is valuable in judging the feasibility of 
computers and choosing among competitive machines. 

The impact of information handling on management effectiveness 
provides ample justification for careful design of information systems. 
An information system should be regarded as a growing thing in which 
no final or optimum form is ever achieved. The information output of 
the system, once established, should be used to reevaluate and reshape 
the information system to serve management purposes better. 

2. STAGES OF SYSTEM EVOLUTION 

The effective use of computing equipment and management sciences 
in meeting the information needs of business is brought about in several 
distinct stages. These are (1) analysis of present information flow 
patterns, (2) system definition and selection of equipment, and (3) system 
implementation. These stages are discussed first in general terms and 
then are detailed in outline form. 

Analysis of Present Information Flow Patterns. The level of detail 
reached in analysis of present procedures is a basic problem. A careful 
balance must be sought between cursory survey of current procedures 
and detailed recital of clerical operations which may obscure funda­
mentals. The emphasis should be on the major paths of information 
flow rather than on the processing of paper. 

Real effort is necessary at this stage to "see through" present pro­
cedures and gain insight into their basic structure. Preparation of charts 
showing major paths of information flow and important exceptions can 
provide insight to planners starting redesign of an information system. 
Questions regarding current information flow are much in order. Why? 
For whom? What does he do with it? vVhat would happen if he didn't 
do it? ,Vhat other information outputs would be desirable if available 
when needed at attractive prices? The answers are meaningful in deter­
mining the information requirements which underlie present systems. 

System Definition and Selection of Equipment. Fundamentals of 
present activities are distilled and used to structure an idealized infor­
mation processing system in this stage. This idealized system serves as 
a basis for equipment selection. To choose among competing data 
processors, it is necessary to know the kinds and volumes of information 
inputs and outputs, size of reference files, frequency of file use, sorting 
requirements, and computational formulation. Totaling these elements 
for many application areas builds a picture of requirements that data 



DESIGN OF BUSINESS SYSTEMS 7-03 

processing equipment must satisfy. These requirements can then be 
weighed against equipment specifications and costs to choose among 
available equipments and to select the most economic basis of acquisition. 

System Implementation. Computer system implementation has the 
prerequisite of careful problem definition. There must be an absolutely 
complete statement of the job to be done. Each step of the procedure 
must be explicitly stated with a precision not generally found in business 
information handling. 

Programming a complex data processing operation is a task for which 
firm guides are not yet established. Automatic coding will shorten the 
actual job of machine instruction, but automatic coding is no substitute 
for the planning that must precede computer application. The system 
planner through problem definition must establish the framework in 
which automatic coding can be used. 

The administrative problems of system implementation are not trivial. 
This is particularly true of the transition from one system to another. 
Careful advance planning is needed in such areas as file conversions, code 
changes, operational cutover, and personnel relocation. 

Management Review. The three stages of system evolution take 
place consecutively and the completion of each affords an opportunity for 
top management review and evaluation. At each stage, understanding 
and support at the upper levels of company administration are required 
since far-reaching changes in company procedure may prove desirable. 
Positive attitudes toward change, particularly in the middle management 
group, must be won through both top management support and the per­
suasiveness of the system planner. 

Scope of Study. The number of people and the investment required 
in design of an information system vary with the scope of the work 
undertaken. For limited areas, system design can be a modest under­
taking; but where the total information system of a large and complex 
business is under study, the jobs of system design and implementation 
rise sharply in magnitude. Yet the design of an information system on 
the widest possible basis is important to satisfaction of management 
needs and efficient utilization of computer potential. 

3. DETAILED STEPS OF SYSTEM DESIGN 

The detailed steps of system design are as follows: 

1. Analysis of Present Information Flow Patterns 
. A. Establish system design program 

1. Objectives and scope of study 
2. Reporting status of study group 



7-04 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

3 .. Group selection on basis of 
a. Management perspective 
b. Knowledge of company operations 
c. Knowledge of information handling technology 

B. Review present data processing activities placing emphasis 
on: 
1. Flow of information within the company 
2. Isolation of exceptions to general routines 

C. Develop information flow patterns as a basis for system 
design. These patterns contain: 
1. l\1ajor paths of information flow and important exceptions 
2. System parameters for each information processing area 

a. Input data 
b. Search requirements 
c. File maintenance 
d. Computation 
e. Output requirements 
f. Data transmission requirements 

D. Analyze information use within the company to discover: 
1. Motivation for output of present systems 

a. Management decisions 
b. Operating practices 
c. External requirements 

1) Federal, state, and local governments for tax and regu~ 
latory purposes 

2) Independent auditors 
3) Equity and credit financing 
4) Security exchanges 

2. Needs not met by current procedures 
3. Time factors bearing on usefulness of information 

E. Measure present costs in data processing areas 
F. Determine basic direction of further systems study 

1. Basic technical and economic feasibility of electronic data 
processing 

2. Practical levels of automaticity in data processing 
3. Potential for operations research tools 

II. System Definition and Selection of Equipment 
A. Develop specifications for a business information system in 

which: 
1. Information needs of management for policy guidance and 

operational control are adequately met 



DESIGN OF BUSINESS SYSTEMS 7-05 

2. Computational and search abilities of electronic computers 
arc employed where useful 

3. Applicable operations research techniques are employed 
4. Related data processing activities are integrated 

B. Project system requirements against various general purpose 
and special purpose computers. Determine the system implica­
tions of each data processor and its auxiliaries in terms of: 
1. Equipment items necessary 

a. Computing equipment 
b. Input and output devices 
c. Communications equipment 
d. Data conversion equipment 

2. Operating personnel required 
a. Input transcription clerks 
b. Machine operators 
c. Clerical workers 
d. Maintenance crews 

3. Information output of the system 
C. Select equipment on the basis of: 

1. System implications stemming from use of equipment items 
in various combinations 
a. Information outputs 
b. Automaticity of data handling operations 
c. Capacity for growth in volume of data and system com­

plexity 
2. Machine characteristics 

a. Computing equipment 
1) Compatibility with various input and output equip-

ments 
2) Machine logic and speed 
3) Status of programming development 
4) Error detection and correction features 
5) User experience 
6) Availability of computer, auxiliaries, and spare parts 
7) Manufacturer training facilities for programmers and 

maintenance personnel 
8) Manufacturer reputation and financial responsibility 

b. Auxiliary storages 
1) Sequential access: magnetic tapes 
2) Random access: drums, disks, etc. 
3) Extent of buffering 



7-06 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

c. Input and output devices 
1) Compatibility with computing equipment 
2) Program features 
3) Operation speed 
4) Reliability 
5) Extent of automatic input sensing 
6) Input verification features 
7) Extent of buffering 

d. Communications equipment 
1) Kind of data transmission (i.e., keyboard, page copy, 

teletype tape, punched cards, magnetic tape) 
2) Kind of data receipt 
3) Program features 
4) Transmission speed 
5) Transmission reliability 
6) Selection and switching features 

e. Data conversion equipment 
1) Speed of conversion 
2) Program features 
3) Reliability 

3. Economic factors 
a. Projected cost reductions, if any 
b. Value of improved information output 
c. Equipment, programming, and transition costs 
d. Rate-of-return calculations to determine desirability of 

equipment acquisition and whether purchase or rental is 
most economical 

D. Verify key system "design assumptions and capabilities of 
selected equipment 
1. Develop selected routines and computer test critical runs 
2. Confirm estimated usefulness of library routines and auto­

rna tic coding 
3. Validate computer timing estimates on the basis of tests 

III. System Implementation 
A. Organize implementation effort 

1. Select and train personnel for detailed system design and 
operation 
a. Supervisors 
b. Analysts versed in business systems, statistics, or opera­

tions research 
c. Programmers 
d. Operating technicians 



DESIGN OF BUSINESS SYSTEMS 7-07 

e. Maintenance engineers and technicians (if required) 
2. Establish implementation group 

a. Resolve reporting status to senior management 
b. Provide for coordinating decisions which cut across depart­

mental lines 
c. Announce system implementation effort to company em­

ployees 
d. Set up group administration 

1) Group leadership 
2) Working level contacts throughout the company 
3) Organization of balanced teams containing system 

analysis skills, programming knowledge, statistical 
know-how, and operations research experience in model 
building and optimization 

B. Plan equipment acquisition 
1. Contract arrangements 

a. Delivery of computer and other data processing equipment 
b. Training arrangements 
c. Maintenance contracts 
d. Legal and tax implications of contract terms 
e. Acceptance tests on customer site 
f. Insurance on equipment 

2. Site preparation 
a. Space for computer, auxiliaries, and staff 
b. Communications facilities 
c. Power 
d. Air conditioning as required 
e. Special housings as required 

3. Purchase of spare parts and test equipment if necessary 
C. Set priorities for implementation of various application areas 
D. Define input, output, data processing, and data transmission 

requirements within each application area through: 
1. Further development of system requirements and their adap­

tation to the specifics of the selected equipment 
2. Formulation of policy and operating decisions which will 

meet management objectives and contribute to effective 
system design 

3. Coordination of policy and operating decisions within the 
company 

4. Development of models reflecting company operation for 
study of: 
a. Interdependence of operating variables within the firm 



7-08 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

b. Optimization of cost, service, or production objectives 
c. Intra-firm communications 

E. Design procedures for auxiliary equipment 
1. Input engineering 

a. Forms design 
b. Explicit procedures for completing each input document 
c. Equipment programming for keypunches, typewriter tape 

punches, etc. 
2. Communications engineering 
3. Programming of conversion devices required by the system 
4. Design of system outputs 

F. Program computer operations 
1. Broad computer planning: process charts projecting com­

puter runs 
2. Specification of computer logic through block diagrams 
3. Detailing of exact procedural steps through computer flow 

charts 
a. Use of automatic coding techniques 
b. Basic computation routines 

1) Problem formulation routines 
2) Error detection routines 

c. Housekeeping routines 
1) Input routines 
2) Output routines 
3) Rerun procedures 

4. Preparation of machine instructions by computer coding 
G. Debug computer routines 

1. Prepare sample problem for each routine which tests flow 
chart branches and uses subroutines 

2. Hand compute answers to sample problem and contents of 
selected storage locations 

3. Run sample problem and compare with hand computations 
4. Analyze computer routine if computer hangs up or if com­

puter calculations are in error 
a. Stop computer at preselected check points 
b. Read out selected storage locations and compare with 

expected contents 
c. Correct routines where errors are discovered 

H. Debug system operation by running individual routines succes­
sively as planned in actual use 
1. Combinations of routines with test data 
2. Parall~l operation with existing system 



By employee 

Labor 
I------:)~ Distribution 

Accounting 

Totals 

Stock purchase fund 
Disbursements Bond accruals 

Union dues 
Federal withholding and FICA taxes 

Prepare r+- Community service fund 
Meal tickets ~
nsurance funds 

Transfer of funds 

{

W-2 (yearly) 
State tax withheld (yearly) 
Earnings subject to FICA 

and UC taxes (quarterly) 
Tax reports 

Provides FICA cutoff 

FIG. 1. A payroll procedure chart which emphasizes information flow. 

o 
m 
til 

(j) 
Z 

o 
"T1 

tD 
C 
~ 
Z 
m 
til 
til 

til 
-< 
til 
-t 
m 
~ 
til 

..... 
b 
..0 



7-10 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

1. Plan transition to new system operation 
1. Train personnel in new duties 
2. Phase over to new procedures 

a. Preparing records in the form required by the new system 
b. Converting to new codes and designators where necessary 
c. Adjusting to policy changes embodied in the new system 
d. Labor scheduling to provide for expanding work load 

during changeover 
e. Scheduling of equipment operation 

3. Relocation of personnel as older procedures are superseded 
J. Evaluate system operation 

1. Utilization of information outputs 
2. Analysis of exceptions requiring manual handling 

a. Input errors 
b. Unplanned occurrences 

3. Programming inefficiencies 
4. Programming errors 
5. Justification of various special handling routines through 

analysis of their use 
K. Research further into information needs and the means of satis­

fying them 
EXAMPLE. Charting techniques are helpful in both setting down 

present information flow patterns and defining system requirements as 
a basis for machine selection. A payroll example will be used to illus­
trate the procedure. 

Existing System. Figure 1 charts information flow in a public utility 
payroll procedure. The figure represents an existing system before rede­
sign in the light of computer potentials. It is intended to show major 
paths of information flow and to deemphasize paper handling. 

The operations and controls noted by the system analyst are shown. 
Key-driven payroll accounting machines were used in the procedure and 
the characteristics and limitations of this equipment are reflected in 
Fig. 1. Consequently, a computer system would not necessarily dupli­
cate the processing shown. Figure 1 should be considered as providing 
raw material for redesign of the information system. 

Redesigned System. Figure 2 suggests redesign for three related areas: 
personnel records, payroll, and labor distribution. From the standpoint 
of present information flow these areas are separate procedures, each 
under different administrative control. These related areas have been 
integrated as one stOep of system definition. Figure 2 should not, however, 
be interpreted as specifying computer processing. The processing indi-



{

W-2(yearIY) 
State taxes withhetd (yearly) 
Earnings subject to FICA 

and UC taxes (quarlerly) 

!
~~:~~~:~Of:~ShistOry } 

Service pin and birthday notices PERSONNEL 
t-----:)~ Overtime and absentee records RECORDS 

(by employee and department) 
Strength totals by organizational 

element 

Paychecks 
Check register 
Accounting control information 
Accounts payable disbursements 

Insurance 
Stock purchase 
Bonds PAYROLL 
Union dues 
Taxes 
Community service fund 
Meal tickets 
Transfer of funds 

Labor Charges to Work 
Authorizations and 
Production orders 

FIG. 2. A broad view of information processing in three related areas. 

LABOR 
DISTRIBUTION 

o 
m 
til 

(i) 
Z 

o 
" OJ 
C 
~ 
Z 
m 
til 
til 

til 
-< 
til 
-i 
m 
3: 
til 

...... 
I 



7-12 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

cated should be modified in the light of eventual equipment selections. 
Rather, Fig. 2 provides an idealized system as a starting point for equip­
ment evaluation. 

4. ECONOMIC IMPACTS OF SYSTEM CHANGES 

Economic Evaluation. The decision to acquire a computer and asso­
ciated data processing equipment is very largely a dollar and cents matter. 
Both reduction of clerical costs and the value of better information can 
be used to estimate the net dollar effect of computer system utilization. 
This net figure results from considering all cash costs incurred in com­
puter system operation and all benefits which result. The flow of cash 
over the useful life of the system allows the desirability of computer 
acquisition to be measured in definitive terms. 

Return on Investment. Computers and allied equipment represent 
just one area in which management may have opportunity for investment. 
Acquisition of data processing equipment must compete for funds with 
other worth-while projects within the firm. This acquisition can be 
judged in terms of rate of return on invested capital. Installing a com­
puter system through either rental or purchase necessitates a considerable 
investment. The return on this investment is calculated from the cash 
flows generated through system use. This analysis requires an assump­
tion of useful life for the computer, associated equipment, and computer 
routines. An estimate of useful life for these elements plays an impor­
tant role in economic analysis. While computer routines may undergo 
substantial revision after operational experience is gained with the com­
puter system, the computer itself should have relatively long life. It does 
not matter if cheaper, more powerful, or otherwise more enticing machines 
are developed; a given computer can provide productive service over an 
extended period. Estimates of useful computer life range from five to 
fifteen years with the writer tending to accept the higher figure as a 
reasonable estimate. 

Another important factor in economic analysis is the depreciation of 
capitalized facilities taken for tax purposes. Such depreciation makes 
possible an estimate of the net cash effect of the system over the useful 
life of the system. This net cash after taxes allows computation of the 
rate of return on the project. The rate of return on invested capital is 
defined as the rate at which future earnings of a project must be dis­
counted so that their present worth equals the investment. Such analysis 
provides a sound basis for evaluating the economic desirability of com­
puter acquisition. Choices among competitive machines and between 
rental and purchase are facilitated through comparison of rates of 
return on invested capita!. 



TABLE 1. RATE-OF-RETURN CALCULAT ONS FOR EQU PMENT PURCHASE AND RENTAL 

Out-of-Pocket I nvestmenl 
A. Equipment Purchase 

Equipment cost 
Programming and transition costs 
Site preparation and additional capitalized costs 

Income tax saving through expensing of program­
ming and transition cost 

$ 700,000 
400,000 
100,000 

$1,200,000 

~o,ooo 

$1,000,000 

B. Equipment Rental 

Programming and transition cost 
Site preparation and additional capitalized costs 

Income tax saving through expensing of program­
ming and transition cost 

Rates of Return 

$400,000 
100,000 

$500,000 

200,000 
$300,000 

I terns Determining Cash Flow 

A. Equipment Purchase 

Life of System 
Five Years Ten Years 

B. Equipment Rental 

Life of System 
Five Years Ten Years 

-1. Out-of-pocket investment in data processing equipment, computer routines, 
and other costs 

2. Net annual cost reduction before cost of equipment maintt~ance 
3. Less equipment rental (including maintenance) 
4. Less depreciation on equipment, site, and other capitalized costs 
5. Less cost of equipment maintenance 
6. Net taxable savings 
7. Income tax, 50% of item 6 

$1,000,000 
$ 325,000 

160,000 
60,000 

$ 105,000 
52,500 

8. Added annual cash generated (item 2 minus items 3, 5, 7) $ 212,500 
9. Pay-back period (length of time needed to get the out-of-pocket investment 

back-item 1 divided by item 8) 
10. Return on investmenta 

a Calculated by P =! (1-~) 
r enr ' 

4i years 
2% 

81,000,000 
$ 325,000 

80,000 
60,000 

$ 185,000 
92,500 

$ 172,500 

5i years 
12% 

where P is the pay-back period, n the number of years of economic life, and r the per cent return on investment. 

8300,000 8300,000 
$325,000 $325,000 
220,000 220,000 

20,000 10,000 

$ 85,000 $ 95,000 
42,500 47,500 

$ 62,500 $ 57,500 

4i years 51 years 
12% 15% 

o 
m 
(J') 

(j) 
Z 

o 
"T1 

OJ 
C 
~ 
Z 
m 
(J') 
(J') 

(J') 

-< 
(J') 
-t 
m 
~ 
(J') 

';'" 
w 



7-14 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

EXAMPLE. Table 1 contains sample rate-of-return calculations. These 
have been determined for equipment rental and purchase under two 
assumptions of system useful life. Several simplifying assumptions have 
been made for illustrative purposes: level rather than accelerated depre­
ciation, equal useful life for all system elements, income tax at 50 per 
cent, equal annual savings over the useful life of the system. 

These rates of return, when viewed with the amount invested in system 
implementation, allow management to make knowledgable decisions 
about the desirability of equipment acquisitions. 

REFERENCES 

1. W. D. Bell, A Management Guide to Electronic Computers, McGraw-Hill, 
New York, 1957. 

2. R. G. Canning, Electronic Data Processing in Business and Industry, Wiley, 
New York, 1956. 

3. R. G. Canning, Installing Electronic Data Processing Systems, Wiley, New 
York, 1957. 

4. C. W. Churchman, R. L. Ackoff, E. L. Arnoff, et al., Introduction to Operations 
Research, Wiley, New York, 1957. 

5. M. P. Doss, Editor, Information Processing Equipment, Reinhold, New York, 
1955. 

6. L. H. Hattery and G. P. Bush, Editors, Electronics in Management, The 
University Press of Washington, D. C., 1956. 

7. I. A. Herrmann, Office Methods, Systems and Procedures, Ronald, New York, 
1950. 

8. G. Kozmetsky and P. Kircher, Electronic Computers and Management Control, 
McGraw-Hill, New York, 1956. 

9. H. S. Levin, Office Work and Automation, Wiley, New York, 1956. 
10. D. D. McCracken, Digital Computer Programming, Wiley, New York, 1957. 
11. F. Wallace, Appraising the Economics of Electronic Computers, Controllership 

Foundation, New York, 1956. 
12. C. C. Gotlieb and J. N. P. Hume, High-Speed Data Processing, McGraw-Hill, 

New York, 1958. 



c THE USE OF DIGITAL COMPUTERS 

AND DATA PROCESSORS 

Accounting Applications 

Chapter 8 

I. Life Insurance Accounting, by A. C. Vanselow and R. L. VanWinkle 8-01 

2. Casualty Insurance Accounting, by L. L. van Oosten 8·08 
3. Public Utility Customer Billing, by E. D. Cowles 8-11 

4. Payroll and Salary Distribution, by H. Tellier 8-15 

I. LIFE INSURANCE ACCOUNTING 
A. C. Vanselow and R. L. VanWinkle 

Overall System Description 

A centralized life insurance accounting system requires speed in 
processing large volumes of data for the preparation of all reports and 
records generated for many policyowners and agency representatives. 
These reports are a result of the combination of a brought-forward file 
and new input data. 

To handle such applications as premium billing, premium accounting, 
dividend accounting, agents' commission accounting, and valuation of 
policy reserves with maximum efficiency requires an integrated data 
processing system. 

Franklin Life's integrated system is built around a master tape file 
of 240 digit items and a name and address tape file of a variable item 
size with basic items of 120 digits. These two files replace five major 
punched card files, an Addressograph system of 650,000 plates, and seven 
ledger and index card files. 

Equipment. The equipment employed for the integrated data 
processing consists of: 1 large data processor (Univac I), 18 typewriter 

8-01 



8-02 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

inputs for magnetic tapes (Unit ypers) , 12 magnetic tape units (includes 
2 for high-speed printers), 2 high-speed printers (600 lines/minute). 

Installation and Operation. The planning and preparation of the 
programs necessary to convert our entire system to E.D.P. required 504 
man-months. This was accomplished by 14 men. Five persons attended 
computer manufacturer's programming courses. The data processing 
system is used 580 hours per month for production and debugging. 
Scheduled and unscheduled downtime are 13 per cent and 3 per cent, 
respectively. 

The operating staff required for the integrated system consists of 4 
analysts, 10 programmers, 4 operators, and 12 maintenance personnel. 

Master Tape File 

The master file contains 20 Univac words for each policy item. This 
includes all the policy data necessary for the five major accounting sys­
tems except the policyowner's name and address, which is maintained 
on a separate tape file. The sequence of the master file is policy number 
within each premium billing due day (1-31 inclusive). 

There are many policy changes, including premium payments, termina­
tions, data changes, policy loans, partial surrender of dividends or 
coupons, and new business, each reflecting a change in the status of the 
policy. Daily application of all such changes to the entire tape file, 
approximately one hundred twenty reels of 6000 items each, is not jus­
tified economically. As a result, accumulated changes are applied for 
a particular due day on a monthly cycle basis when the due day is 
scheduled to be processed for the selection of premiums due for billing, 
dividends, policy loan interest, etc. 

All policy changes are unityped daily and verified. The verified tape 
is purified for legitimate coding and merged with the previous accumu­
lated change file simultaneously selecting off all changes for the due day 
to be processed. These changes are then applied and the master file is 
now current. Updating the master file for one particular due day takes 
about 30 minutes to process external changes. Total time spent each 
month in updating the entire file is approximately 20 hours. 

Dividend Accounting 

The following is a description of the dividend accounting procedure. 
Objectives. The dividend accounting system is designed to calculate 

the amount of current dividends and coupons, calculate interest on the 
savings fund, prepare dividend checks, and record which of the five 
dividend options a policy owner has chosen each year. The options 



ACCOUNTING APPLICATIONS 8-03 

are: (1) part payment of premium due, (2) purchase of additional 
paid-up insurance payable at maturity or death, (3) deposit with the 
company as an interest-bearing savings account, (4) shorten the premium 
paying period, (5) cash. 

In contrast to most life companies, Franklin allows the policyowner 
to make this selection with each dividend payment. Our system is unique 
in that we prepare in excess of 1200 checks daily for the majority of the 
current dividends which are mailed to our agency representatives for 
delivery to the policy owner. All checks are returned directly to the 
home office for processing with the selected option indicated except those 
which are cashed. Certain plans of insurance contain coupons which 
are guaranteed endowments and are credited to the policyowner's account 
automatically at the rate of 600 items daily as an interest-bearing fund 
subject to the clipping of the coupons in the policy if the cash is desired 
when earned. 

Input and Output. 
1. Input. 

a. Master file magnetic tape. 
b. Data on dividend options on magnetic tape (prepared by. Uni­

typer, electric typewriter to magnetic tape). 
c. Supervisory control panel type-in: check numbers. 

2. Outputs. 
a. Magnetic tape, new master file dividend, coupon result tape. 
b. Printed reports. 

Major Processing Steps. 
1. Determine if dividend and/or coupon is due. 
2. Calculate dividend and/or coupon. 
3. Prepare dividend, coupon item. 
4. Determine if dividend and/or coupon interest earned. 
5. Calculate dividend and/or coupon interest earned. 
6. Prepare output tapes using name and address file. 
7. Accumulate control totals. 
8. Print out reports. 
Quantity of Data Processing Performed. 
A. Input and output. 

1. Input. 
a. 181,440,000 digits of information stored in master file. 
b. 103,680,000 digits of information stored in name and address 

file. 
2. Output. 

a. 5,685,000 digits printed. 
b. 6,500,000 digits recorded on magnetic tape. 



8-04 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

B. Each day's portion of the master file is processed as a self-contained 
group; daily result tapes are processed when eight days' tapes have 
been accumulated. 

C. File storage requirements. 
1. Magnetic tape master file contains 120 reels, 6000 items per reel, 

and twenty words per item. 
2. High-speed storage. 

a. 300 words temporary Btorage. 
b. 700 words of program storage. 

Processing Steps Performed in Dividend Accounting 

Selection of Dividends and/or Coupons Due. 
1. Check for presence of dividendi coupon code. Absence of dividend 

coupon code will cause computer to proceed to next policy. 
2. If code present, examine policy issue year to determine if policy 

is old enough to earn a dividend or a coupon. 
3. If policy is old enough, is dividend or coupon due the current 

working month? 
4. If dividend due, determine if policyowner has returned previous 

dividend for deposit as an interest bearing savings fund. 
5. If deposit field is negative, an error has occurred and the master 

item key is written out for manual checking. 
6. If deposit field is zero, no interest is due. 
7. If deposit field is positive, calculate interest earned. 

a. Store interest amount for future notification to policyowner. 
b. Add interest to amount of deposit and return to storage to be 

inserted into new master item. 
8. Write new master item on new master tape (also, retain in storage). 
9. Calculate the dividend or coupon duration year. 

10. Prepare from the new master item a dividendi coupon item. 
a. Indicative information. 
b. Dividend interest earned. 
c. Amount of insurance. 
d. Coupons and interest on deposit. 
e. Paid-up additions on deposit. 

11. Write dividendlcoupon item on a result tape. 
12. This procedure is repeated for each policy on each tape for the 

selected due day. 
13. The result tapes are retained for a period of eight days as an arbi­

trary procedure to save computer time. 
14. The eight tapes are then sorted by the key (fund, mortality table, 

duration year, kind of policy, and age at issue). 



ACCOUNTING APPLICATIONS 8-05 

15. The key of the sorted dividend/coupon items is matched for equal­
ity against the dividend rate index. 

16. If equality is not found, the item is written out for manual coding 
of an index item so that the dividend/coupon can be run through 
the next eight-day cycle. 

17. When equality is found, is a dividend, a coupon, or both earned? 
18. If a dividend is earned, calculate the current dividend earned and 

the amount of additional paid up insurance this dividend would 
purchase. 

19. If a coupon is earned, calculate the current coupon earned. 
20. If previous coupon and interest on deposit, add to current coupon 

and calculate one year's interest. 
21. If no previous coupon on deposit, calculate one year's interest on 

the current coupon. 
22. Prepare and write out' an item on the qividend/ coupon result 

tape. 
23. The result tape of dividends and coupons are now sorted by their 

new key which is due day and policy number. 
24. Match this sorted result tape with the policyowner's name and 

address file for a selected due day. 
25. When equality is found with the name and address file prepare 

output tapes with items: 
a. Outstanding dividends. 
b. Dividends, coupons, and interest due. 
c. Dividends, coupons, and interest not due (d~e days other than 

selected, controlled by name and address tapes). 
d. Dividends. 

26. If equality is not found, follow same procedure with no name and 
address on the dividend check (manually typed). 

27. Accumulate totals for dividend amount, coupon amount, interest 
on coupons, and interest on dividends. 

28. Assign a check number to each dividend check (controlled by super­
visory control panel type-in). 

29. The accumulated totals are entered at the end of the dividend, 
coupon, and interest due tape. 

30. The tape of dividends, coupons, and interest due is listed on the 
high-speed printer for the check register. 

31. The dividend total on check register represents the amount of the 
checks written and is used as the basis to prepare manually a check 
requisition. 

32. Coupons, interest on coupons, and interest on dividends are auto­
matically placed on deposit for the policyowners by manually 



8-06 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

preparing a journal voucher from totals printed on the check 
reg~~~ \ 

33. List the dividend checks on the high-speed printer. 
34. Manually select all dividend checks with a permanent option 

indicated. 
35. All other dividend checks are mailed to the agency representatives 

for delivery to the policyowners. 
Permanent options are dividends which are automatically placed on 

deposit at the request of the policyowner. Checks are prepared with 
"Void" in the amount so they may be processed in the same manner as 
returned checks. 

Specific conditions require that certain options are not available, there­
fore, a series of X's is printed on the check form in this option field. For 
example, the premiums paid by bank draft, salary deduction, government 
allotment, or any automatic premium payment plan, special authoriza­
tions are necessary each time the amount is changed; therefore, the 
option of applying the current dividend to reduce the next premium pay­
ment is deleted. 

The calculation of the dividend and coupon interest is different because 
the dividend is credited at the beginning of the policy year whereas the 
coupon, the coupon interest, and dividend interest are credited at the 
end of the policy year. 

Processing Returned Dividend Checks and Automatic Option 
Voided Checks. This procedure is for the voided permanent option 
checks, the checks returned from the policyowner with a selected option, 
and the cashed checks returned from the bank. 

1. Tally checks by selected option code with an adding machine. 
2. Attach adding machine tape to each group of returned checks. 
3. Unitype 20 digits of information for each check. 

a = check number 
b = policy number 
c = selected option code 
d = amount of dividend 

4. U nitype selected option code control totals from attached adding 
machine tape into the first sentinel item. 

5. Tally unityped tapes on Univac by selected option code and bal­
ance with control totals in sentinel block. 

6. If there is no balance, a manual determination must be made as to 
whether the checks must be re-unityped or the error is of a nature 
which will later be detected by Univac and ejected. 

7. If the checks balance or it is decided to continue the processing 



ACCOUNTING APPLICATIONS 8-07 

of the checks which are out of balance, they are now sorted by 
check number and policy number. 

8. J.YIatch the sorted returned checks against the outstanding check 
file by check number and policy number. 

9. If no equality is found with the returned check items, they are 
rejected for manual consideration due to a unityping error. 

10. If no equality is found with the outstanding items, they are tested 
for determination as to whether six months outstanding. 

11. If the checks have been outstanding six months, they are removed 
from the outstanding check file and classified as an "automatic 
transfer." 

12. These automatic transfers are credited by Univac to be left on 
deposit as an interest-bearing savings or to purchase additional 
paid up insurance contingent upon the provisions of the policy 
contract, whether Franklin or of a company acquired by Franklin. 

13. The automatic transfers are tallied by option code and written on 
the same result tape as the returned checks. 

14. If the checks have not been outstanding six months, but are 90 
days outstanding, they are written on a follow-up tape and the 
new outstanding file. Follow up notices are run on all checks 
outstanding over 90 days reminding the policyowner to return 
the check to the home office with a selected option indicated or 
to cash it. 

15. If the outstanding checks are not 90 days out5tanding, they are 
written on the new outstanding check file. 

16. If equality is found with returned check and the outstanding check 
items, the outstanding is selected for further processing and written 
on the dividend result tape. 

17. When the match and select run is completed, the dividend result 
tape is tallied by trial balance account (determined by the divi­
dend option) within state, county, and fund and added to the 
previous dividend liability summary tape for the year to date. 

18. The dividend result tape is listed for a detailed listing of transac­
tions. 

19. The next program contains four input tapes: 
a. Monthly coupon liability brought forward. 
b. Unityped dividends and coupons surrendered. 
c. Current day dividend and coupon interest and coupons. 
d. Returned dividend checks and automatic transfers. 

20. The current coupons and surrenders of dividends and coupons are 
tallied by trial balance accounts within state, county, and fund. 



8-08 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

21. These tallies are added to the coupon liability summary file tape 
preparing a new summary tape. 

22. At the same time mast~r file change items are prepared: 
a. Dividends and coupons surrendered. 
b. Coupon interest and coupons. 
c. Returned dividend checks and automatic transfers. 

These changes will be merged into the accumulated master change file 
to be applied to next billing cycle by due day. 

23. The dividend liability and coupon liability tapes are merged and 
summarized monthly producing figures to be used in the annual 
statement. 

2. CASUALTY INSURANCE ACCOUNTING L. L. van Oosfen 

Introduction 

Casualty insurance accounting requires the rapid generation of many 
reports. These reports are generated by combining brought-forward data 
with those on source documents representing premiums, losses, and 
expense. In the past, cards representing the source documents were 
punched and balanced at each of Allstate's 28 branch offices. These cards 
were sent to the zone office (there are five zones) for summarizing and 
balancing and these summary cards were then sent to the home office. 
These summary cards were used then as inputs to punched card machines 
to develop the necessary reports. 

To provide the smallest changeover transient and retain the desirable 
features of the punched card system and yet take advantage of electronic 
data processing machines it was decided to. keep the above method of 
providing inputs and do the final processing with a stored program elec­
tronic data processor. Thus orice the summary card information has 
been fed into the data processor, one pass produces the desired report~, 
comparisons, and ratios. This one pass does the job formerly requiring 
many passes through different types of punched card equipment. 

Remarks on Overall System 

The data processor used in this installation is a Datatron. It has a 
4080 word storage, an IBM 528 reproducer for punched card input, an 
optical tape reader (540 decimal digits/second) for punched paper tape 
input, an IBM 407 line printer for output, and three magnetic tape drives 
for auxiliary storage. Each tape drive holds a 2500-foot reel of magnetic 
tape on which can be stored 4,000,000 decimal digits grouped in 20,000 
blocks of 200 digits each. 

The planning and preparation of the first ten programs was accom-



ACCOUNTING APPLICATIONS 8-09 

plished by five men, four of whom attended a two-week. programming 
course provided by ElectroData. This group then trained four men in 
programming and these men do any programming required now. The 
computer system is currently used approximately 230 hours per month 
and is operated by a staff of three operators and two service engineers. 
During 1955 there was 1.7 per cent unscheduled down time and about 
7 per cent scheduled down time. The figures for 1956 are 3 per cent and 
3 per cent respectively. 

The accuracy of the Datatron system is greater than any other method 
ever used by Allstate to accomplish the same results. This does not mean 
that other equipment is necessarily inaccurate. However, by obtaining 
required results from one system capable of doing all the work. involved 
in reporting instead of using many machines, plus several manual opera­
tions, the vulnerability to transpositions, sorting errors, lost cards, etc., 
is greatly reduced. 

Application Example 

1. The System. The following is a description of how one of All­
state's reports is prepared with the Datatron. The name of the 
report is "Analysis of Claims Closed by Duration." 
A. This report is an analysis by branch of the claims closed during 

a given accounting month by claim report month, that is, the 
months in which the claims were originally reported. The 
past history of the claims closed for these report months is 
combined with the current closed claims to provide manage­
ment with experience for the report months on a to-date basis, 
a 12-month moving average basis, and a 12-month-to-date 
moving average basis. Only claim cards are used in this 
particular report with no comparison to policies written. 

B. Input and output. 
1. Input. 

a. Magnetic tape. Brought forward information from pre­
vious report. Stored by branch. 

b. Punched cards. Claims closed for current accounting 
month and closures for the accounting month one year 
prior to current month. 

2. Output. 
a. Magnetic tape. Carry forward information for next 

period report. 
b. Printed report on IBM 407 line printer. 

C. Maj or processing steps. 
1. Punched cards are sorted together by branch code only. 



8-10 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

2. Punched cards are read into the computer by an IBM 528. 
3. Brought forward information is read from magnetic tape 

and adjusted by the information in the punched cards. 
4. Calculated report is printed out directly on the IBM 407. 
5. New carry forward information is created and stored on 

magnetic tape. Each block of data is summed, stored on 
tape, and checked for control purposes on future reports. 

II. Quantity of Data Processing Performed. 
A. Input and output. 

1. Input. 
a. 4000 cards (as noted, sorted by branch only). 
b. 21,840 digits of information stored on magnetic tape in 

order by branch. 
2. Output. 

a. 174,720 digits printed. 
b. 218,400 digits recorded on tape. 

B. Each of 26 branches is processed as a self-contained group. 
Within each branch there are five possible coverages (A, B, 
C, D, H). Coverages A and C are further broken down by 
24 report months, coverages B, D and H by 12 report months. 

C. File storage requirements (one word equals ten digits and sign). 
1. Tape. 840 computer words for each of 26 branches for the 

brought forward and also for the carry forward, or a total 
of 1680 words for each branch. 

2. Computer proper, for each branch. 
a. 840 words to store brought forward. 
b. 840 words to store information taken from the cards. 
c. 672 words to store the computations. 

III. Processing Steps Performed. 
A. The program deck in the form of punched cards is read into 

the computer and a check sum or total of the program codes 
is created. 

B. "Digit add" the current accounting month, used to check if 
correct decks are being used. 

C. Punched cards are automatically read into computer in groups 
of 60 by the IBM 528. ' 

D. Control totals are read onto the drum from the beginning of 
the brought forward magnetic tape and checked. Later they 
are used to check the brought forward for each branch. 

E. After reading in the 60 cards on the drum, each card is tested. 
1. If there is a change in branch in the group of cards just 



ACCOUNTING APPLICATIONS 8-11 

read, the magnetic tape is searched for brought forward 
information. 

2. If all cards are for the same branch as previously read in, 
the coverage and report date determine where the informa­
tion is accumulated on the drum (pseudo sorting). 

3. \Vhen the last card of a branch being processed is sensed, 
the brought forward information is read onto the drum from 
magnetic tape and checked against the control total stored 
on the drum at the beginning of the job (III, D). The 
carry forward tape is in position for storage of the new 
carry forward. Calculations are performed, report is printed 
out, new carry forward information is rearranged for use 
next month, and then stored on magnetic tape. The carry 
forward information is then read back onto the drum and 
checked against the control total. 

F. At end of each run the control totals are recorded on the new 
carry forward tape with a check sum. The information thus 
stored on magnetic tape then becomes next month's brought 
forward. 

Within the computer, sorting as explained in III, E, 2 is done. Eleven 
averages are also computed for each line of the report (924 for each 
branch). Tapes are searched, read from, and written on. 

Total time is 4 hours of which 4.3 minutes are used in reading and 
writing from tape. 

Data on tape are stored so that for anyone branch one read order 
brings in all the information needed and in the form needed. The cal­
culations are stored so that only five output instructions will cause all 
the calculations to be printed in the proper form. 

3. PUBLIC UTILITY CUSTOMER BILLING E. D. Cowles 

Note. This section describes the billing operations at The Detroit 
Edison Company in effect from 1955-1957. Conversion to IBM 705 was 
started in March 1957, and was completed in l\1ay 1958. This de­
scription is still valid for systems requiring only a medium speed ma­
chine. 

1. Task Performed. 
A. General Description of Task. Every public utility has the 

job of preparing customer billing. This description of customer 
billing at the Detroit Edison Company is an example of data 
processing in a public utility. The meters are read, a calcula­
tion is performed to determine each customer's use, then com-

"'<!' 



8-12 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

pared to previous use to determine if this billing is reasonable, 
the bill amount calculated, accumulations for revenue and sta­
tistics are made, and each customer's bill is prepared. 

B. Inputs. 
1. Meter reading card (mark sense with provisions for four read­

ings). The economy and usefulness of a multiple use card 
must be weighed against manual and machine complications 
due to multiple codes, control of reading field, errors and cor­
rections. There is a minimum of one card for each meter on 
the customer's premises. If a meter has been changed during 
the billing period there will be a card for each meter used 
during the billing period. 

2. Minimum charge card. This card gives the special (other 
than normal) minimum charge for the customer under 
consideration. 

3. Rate information. 
C. Outputs. 

1. Customer's ledger record (billing card). This card is used in 
preparing the bill form with a punched coupon as part of the 
customer's bill. The ledger record card is used as the accounts 
receivable record where payments are posted and from which 
overdue statements are rendered if required. 

2. Outgoing meter card. The customer's meter change notice is 
prepared from this card. 

3. Ledger total cards. These cards contain the accumulated 
total of kilowatthours and net billing. They are also used 
to check the numeric bill printer operation. 

4. Detail revenue cards for statistical purposes. There are usu­
ally one or more of these cards depending on the number of 
municipalities, revenue classes, and tax classes within the 
ledger. These are accumulations of customer count, kilo­
watthours use, and net billing. 

D. Major Processing Steps. 
1. Calculate customer billing. 
2. Prepare revenue accumulations. 
3. Prepare billing statistics. 
4. Prepare bills. 

II. Quantity of Information Processed. 
A. Input and Output. There are one or more input cards per 

account and normally one output card per account. However, 
more than one output card may be required because of estimated 



ACCOUNTING APPLICATIONS 8-13 

billing, meter change, and multiple meter accounts. In addition, 
ledger total cards, detail revenue cards, and statistics cards are 
prepared. Anywhere from one to fifty of these cards per ledger 
are prepared depending on the required breakdown. 

B. Number of Accounts. 
1,080,000 residential customers; billed bimonthly. 

120,000 commercial customers; billed monthly. 
110,000 off-peak water heater accounts; billed separately from 

residence accounts. 
1,800 steam accounts. 

35,000 accounts are processed daily. 
C. File Storage Required. Detroit Edison has file storage require-

ments for: 
2 million name and address cards. 
2 million 400 thousand reading and historical record cards. 
800 thousand outstanding accounts receivable cards. 
2 million cards representing three months of paid records. 

III. Equipment and Staff. 
An IBM 650 is operated 12 hours per day, to process the 35 thou­

sand accounts handled daily. The only output equipment used is 
the card punch associated with the machine. 

Five key people were trained for the original planning; 3 of these 
were first line supervisors, and 2 were staff personnel. 325 man­
days were used in programming the customer billing job. This was 
accomplished in 15 calendar months. 

Two people are now sufficient to operate the processor when it is 
used on the customer billing application. 

IV. How Processing Is Performed. 
A. Processing Steps. 

1. Read-in rate information. 
2. Read-in other supplementary information. 
3. Read-in meter reading and account information. 
4. Calculate billing charges for a period. 
5. Check billing for a divergence from expected amount. 
6. Punch results into output card. 
7. Prepare supplementary output card or cards as required. 
8. Sort output cards, segregating various types. 
9. Reproduce bill forms. 

10. Print the billing side of the post card bill. 
11. Address other side. 
12. Perform various control and quality checks. 



8-14 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

13. Customer bill form to post card size. 
14. Mail bills. 

B. Types of Data Processing Operations. 
1. Transcription. 
2. Calculation. 
3. Sorting. 

Prog~amming 

Coded Information. It is very desirable to keep the amount of in­
formation coded into machine language to a minimum. On the other 
hand, the machine must be told everything necessary to bill the account 
properly. Codes must be designed for the particular billing system at 
hand. No rule can be set down that would apply generally. The fol­
lowing are only some of the many conditions that require codes: (1) out­
going meter, (2) disconnected account, (3) skip billing, (4) estimated 
billing, (5) prorated billing for first, special, or final bills, (6) multiple 
meters, (7) rates, (8) tax applications, (9) revenue classification, (10) 
town distribution. 

Programming Techniques. Many tricks may be developed as famil­
iarity is gained with the machine programming techniques. It takes two 
instructions to test for zero whereas other values, requiring the subtrac­
tion of a number, require at least three instructions and an additional 
storage location for the "constant." 'Vhen space is at a premium, these 
things become valuable, and sometimes a requirement, if the job is to 
be done at all. 

The first several times through the programming, no regard should be 
given to efficient placement of instructions or stored data. Location of 
errors and testing can be done more efficiently if coding is sequential. 
When making corrections or adding small subroutines, to take care of 
some oversight, a check should be made for possible interference with 
other operations. This is very easy to overlook. Quite a few routines 
are seldom used, and it may take a long time to prove them out in actual 
practice. It is well to build up a "test" deck of cards for input that will 
prove every routine programmed. This may be quite difficult to do, but 
it may payoff in "trouble shooting" when in production. Once the 
program has been "debugged," then optimum coding can be under­
taken. 

Optimum programming of the 650 raised the card output sp'eed from 
48 cards per minute to 92 cards per minute for calculations on residence 
billings. (Maximum output rate is 100 cards per minute.) 

Instruction Breakdown. A breakdown of instructions for the billing 
application is about as follows: 



ACCOUNTING APPLICATIONS 

Input instructions 
Output instructions 
Processing instructions 

To pass inactive records 
To process 81 % of active records 
To process remainder of active 

records (involving exceptions) 

Total instructions 

4. PAYROLL AND SALARY DISTRIBUTION 

1. Task Performed. 

150 
200 

90 
1260 

3300 

8-15 

5000 

H. Tellier 

A. General Description. Preparation of the weekly payroll and 
the distribution of salary costs for cost accounting. 

B. Inputs and Outputs. The basic information required each 
week is in the following form: 
1. Punched card payroll master file. Contains a card for each 

authorized person with such data as hourly rate, occupation, 
cost center, and number of dependents. 

2. Punched card deduction files. Each file contains a card for 
each person who has authorized that particular type of de­
duction. 

3. Weekly time card for each employee. Daily attendance is 
printed by clock recordings. Hours worked or absent each day 
and a weekly summarization are entered manually on the 
card. Daily time distribution and weekly summarization are 
recorded manually. 

4. Vacation payment authorization cards. 
5. Earnings adjustment and correction cards. 
6. Previous week's up-dated payroll record tape. Contains 

year-to-date earnings and taxes. 
The information produced each week is listed in detail in Sect. IV 

below. 
C. Major Processing Steps. 

1. Prepare new time cards. 
2. Process time cards. 
3. Up-date files. 
4. Calculate payroll and prepare payroll reports. 
5. Prepare salary distribution reports. 

II. Quantity of Information Processed. 
The payroll represents some 7000 persons who distribute their 

hours worked to some 18,000 entries. The output of payroll and 



8-16 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

salary distribution represents some 250,000 printed line~ of records 
and reports. Payroll preparation and salary distribution represent 
less than 20 per cent of the electronic data processing work load. 

The time card itself is considered to be the official record, and all 
time cards are retained in a records center for an extended period. 
The payroll record magnetic tape file for each week is retained for 
two years. All other payroll and salary distribution reels are re­
tained only through the next payroll cycle. The input data cards 
are retained for two months. 

III. Equipment and Staff. 
A. Data Processing Equipment Used. The central data process­

ing center is equipped with an IBM Type 702 electronic data 
processing machine. In addition to the central processor (which 
contains a 10,000 character storage), the following peripheral 
equipment is available: 

1 card reader 
2 printers (150 lpm) 
1 card punch 
1 magnetic storage drum ((60,000 character storage) 
9 magnetic tape units 

The following IBM auxiliary punched card equipment is also 
available and used for payroll and labor distribution, in addition 
to key punches and verifiers: 

2 Type 077 collators 
3 Type 082 sorters 
1 Type 101 electronic statistical machine 
1 Type 407 accounting machine 
1 Type 519 document originating machine 
1 Type 552 alphabetical interpreter 

B. Staff Necessary. 
1. Conversion to the 702. Payroll preparation and salary dis­

tribution were already mechanized by coilVentional punched 
card equipment. In converting these operations to the 702, 
no changes were made in input data fed into the data process­
ing operation, and no changes were made in output reports 
prepared by the data processing operation. This policy was 
established so that no changes had to be negotiated with the 
customers, the personnel of the data processing organization 
did not have to learn a new system as well as the new ma­
chine, and the two machine systems could operate in parallel 
with identical output to test the accuracy of the new machine 
system. 



ACCOUNTING APPLICATIONS 8-17 

Some 10,000 man-hours by analysts, programmers, oper­
ators, and control clerks were spent on programming, debug­
ging, parallel runs, and comparison of the two machine systems 
through the first independent 702 processing. 

2. Weekly Routine Operation. Owing to the variety of work 
performed by the data processing operation staff, requirements 
for payroll preparation and salary distribution are best ex­
pressed in average man-hours per week. 

115 man-hours keypunch and verify hours worked and 
distribution of hours to cost codes 

36 man-hours clerical control 
98 man-hours punched card machine operations 
36 man-hours operating the 702 

IV. How Processing Is Performed. 
Time Card Preparation. Time cards for each week are prepared 

from the payroll master file and sorted to clock location. 
Prepayroll Processing. Payroll master file, appropriate deduction 

files, and key-punched payroll adjustments are translated from cards to 
tape. These tape files and last week's up-dated payroll file are then 
subjected to a file maintenance and editing procedure which produces 
an up-dated payroll file plus the necessary tapes to produce the following 
reports: submitted deductions by type and employee master list. 

Time Card Processing. At the end of the payroll period, time cards 
are sorted to payroll number and matched with the master file to identify 
missing time cards. 

Time cards are reviewed manually and a summary of hours is entered 
on each card. From the summary on each time card, a detail hours card 
is key-punched. 

Vacation payment authorizations are also key-punched. These two 
types of cards are sorted to payroll number and processed card to tape. 

Payroll Calculation and Report Preparation. Tape records of vaca­
tion, detail hours and the previously up-dated payroll status are used to 
perform the calculation from hours to net pay and continue through 
several additional computer operations to prepare various output reels. 

Output. 
1. Pay checks, earnings statements, reconciliation cards, and check 

transmittal receipts. 
2. Payroll register. 
3. Used and unused deductions by type. 
4. Overtime summary by employee for the year. 
5. Reports of hours worked, vacation, absence, year-to-date earnings, 

taxes, etc. 



8-18 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

6. Force reports by occupation organization, working area, etc. 
7. Accumulated deductions for savings bonds, bonds to be purchased 

and bond distribution transmittal lists. 
8. Control totals on hours, earnings, etc. 
Time Card Processing for Salary Distribution. After detail hours 

cards have been punched from the time cards, the time cards are sorted 
to cost center and manually checked for time distribution by cost code. 
Salary distribution cards are punched for time distribution by cost code, 
sorted to payroll number and processed card to tape. 

Salary Distribution Calculation. Tape records of hours by cost code 
and the current week's payroll record are processed to calculate salary 
distribution. Additional passes are made to sort and arrange informa­
tion for the followin~ salary distribution reports. 

Outputs. 
1. Distribution of regular earnings by cost code for each employee. 
2. Individual charges to cost codes in payroll number sequence with 

cost code. Summary totals by cost code are computed and,used later in 
month-end cost reports. Individual cost entries charged to work orders 
are later used as partial input to a work order cost system. 

3. Listings of premiums and allowances by payroll number within 
cost center. Summary totals are computed and used later in month-end 
cost reports. 

V. Processing Time Scale. 
Table 1 shows for each phase of the application the average time 

required for each type of operation in the data processing center. The 
following facts should be noted: 

1. The actual 702 processing from hours worked to net pay requires 
only one 702 pass taking 1.75 hours. However, to manipulate the data 
into output reels for payroll reports calls for six additional passes. 

2. The relative large number of punched card machine hours is needed 
to process punched card checks and earnings statements for distribution 
and the printing of numerous payroll reports from card output from 
702 processing. 

3. 702 auxiliary operations include card-to-tape, tape-to-card, and 
ta pe-to-printer operations. 

A word of caution to persons developing electronic data processing 
systems is in order. Do not overlook: 

1. The time it takes to sort data in the processor. 
2. The time required to print the voluminous quantities of reports 

required for an integrated payroll system. Calculated answers are of 
no value as long as they are still on magnetic tape. Their value is not 
realized until they have been printed in report format. 



TABLE 1. AVERAGE Tum REQUIRED FOR DATA PROCESSING OF PAYROLL AND SALARY DISTRIBUTION 

Punched Card Key Punch Control 
702 Central Machine 702 Auxiliary, Verification, Clerk, 

Phase Processing Unit Processing, hrs. hrs.a hrs. hrs. » 
() 

No. of () 

Passes Hours 0 
C 

Time card preparation 6 Z 
Prepayroll processing 4 2.75 1 4 9 4 :::! 

Z 
Time card processing 10 46 (j) 
Payroll calculation and report » 

preparation 7 7.50 67 37 26 "'t:J 

Time card processing for salary 
"'t:J 
r 

distribution 6 60 0 
Salary distribution calculation 5 7.50 8 10 6 ~ 

Total 16 17.75 98 51 115 36 (5 
Z 

.. Card-to-tape and tape-to-printer operations. Vl 

c;o 
-0 



8-20 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

VI. Accuracy Control. 
The same general types of control over input data are used with the 

702 as were previously used in punched-card applications: control totals 
in the form of number of entries, sums of quantities or sums of dollars 
are established at time of original input. When control factors change 
from one element to another, the original element is verified, and the 
new element is established for further operation. 

For example, attendance hours are the original control element for 
payroll. As soon as earnings expressed in dollars have been computed, 
if the number of hours is still under control, dollars then become the 
control element. Each processing step ties back to the prior control 
element. 

Into the 702 processing we programmed such control elements and the 
console typewriter records control totals, both to tie back into prior 
processing and to establish new controls for the next processing. 

Built into the 702 system are certain systems checks which test the 
validity of the machine's operation. From an operational standpoint, 
the major concern is that units of data are not lost in processing because 
of errors in programming logic. 



c THE USE OF DIGITAL COMPUTERS 

AND DATA PROCESSORS 

Inventory and Scheduling 

Applications 

Chapter 9 

I. Inventory Control, by Charles E. Ammann 9-01 

2. Aircraft Production Scheduling, by C. W. Schmidt and R. Bosak 9-07 
References 9-12 

I. INVENTORY CONTROL Charles E. Ammann 

Application Description 

General. The major task performed in this use of electronic data 
processing equipment is the maintenance of a timely record of the 
inventory of passenger seats on American Airlines. Inventory informa­
tion is quickly disseminated to airline personnel upon request, and the 
inventory is instantly adjusted as sales and cancellations occur at many 
sales outlets (Ref. 1). Other types of inventory control systems are 
discussed in Refs. 2 and 3. 

A second purpose of the system described here is to provide arrival and 
departure information, giving such information as arrival time, departure 
time, and delayed departure status with the reason for delay. 

The system consists of a centrally located special purpose processing 
unit operated remotely by input-output devices referred to as agent sets. 
The agent sets are located in various airline reservation and ticket offices 
located in some instances hundreds of miles away from the processing 
equipment. 

Inputs. The major inputs for this data processing system are the fol­
lowing (unless otherwise specified, these inputs are via the agent sets): 

1. An initial inventory of seats available for sale on each flight leg. 
9-01 



9-02 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

(A flight is often made up of several portions known as "flight legs.") 
This inventory is entered by using a master agent set, a separate entry 
for each flight leg of a given day. 

2. An initial inventory of seats allowed on each flight leg, also entered 
via the master agent set. "Seats allm,yed" refers to the capacity of the 
plane when flown over the particular leg, while ':seats available" are those 
available for sale after deducting any 'which may be set aside for extra 
gas or other load purposes. 

3. Requests for information as to the availability of seats, specifying 
the date, the number of seats, and destination. 

4. Sales of seats, specifying the same information as in (3) but with 
a specific indication of the leg or legs required. 

5. Cancellations of sales, specifying the same information as in (4). 
6. Flight status information, entered via a special agent set located 

in flight dispatch. Arrival information is given in 5-minute increments, 
and departure information is given as routine or in terms of reason for 
delay. Sixteen conditions can be entered for designating flight status. 
If the flight information condition is complicated, the answer signal to the 
agent set indicates "call," requiring the agent to obtain details elsewhere. 

7. Requests for information on flight status specifying the information 
as in (4). 

8. Information on changes in operating schedules which introduce or 
delete' flights or flight legs, change the number of seats available, etc. 
This input is made via the master agent set. 

Outputs. The outputs of the system are the following (via the agent 
sets, unless otherwise specified) : 

1. Availability of seats, in response to specific requests defined as in 
(3) under inputs. 

2. Sale completion information, telling the seller that the computer 
has effected the changes required by the sale. 

3. Indication that insufficient seats exist to make a sale stated by an 
agent set. 

4. Cancellation completion information. 
5. Indication that inventory is at zero when a cancellation is attempted, 

rejecting the cancellation input. 
6. Date and flight leg on which inventory has been exhausted. This 

output is by a teletype printer and punch. 
7. Indication of improperly conditioned input information, produced 

whenever input information is incomplete, inconsistent, or requests in­
formation not in the present inventory records. Input is not accepted. 

8. Indication of erroneous operation within the computer or unavail­
ability of the computer due to malfunction. 



INVENTORY AND SCHEDULING APPLICATIONS 9-03 

9. Flight status information. 
10. Total inventory of unsold seats, sold seats, and number of seats 

set aside for load purposes on any flight leg, via master agent set. 
Major Processing Steps. The central processing equipment is capable 

of performing several fixed programs. A program is provided for each 
of the several modes of operation required of this system, such as sale, 
availability inquiry, and cancellation. 

1. Availability Progrant. The date, number of seats desired, and 
coded reference to the particular group of flights indicated on the destina­
tion plate are transmitted to the processing equipment along with a signal 
indicating that this is an availability inquiry. The computer compares 
the inventory remaining on each of the eight flights or flight legs in the 
group with the number of seats requested. Signals are then transmitted 
to the agent to show which flights or flight legs have the number of seats 
requested. 

2. Sale Program. The input steps are similar to those in an avail­
ability request except that they are confined to selected flights or legs 
in the group. The computer subtracts the number of seats sold from the 
inventories on the designated flight legs. One of several procedures then 
takes place: (1) If the inventory or inventories contain enough seats to 
cover the sale, the reduced inventory is stored in the processing equip­
ment and the fact that the computer has taken the desired action is sig­
naled to the agent set. (2) If any inventory is reduced to zero by this 
sale, this event is also signaled to the teletype output. (3) If an inven­
tory is insufficient to cover the sale, this condition is signaled to the agent 
set, and the inventory is not reduced. 

3. Cancellation ProgranL Here the computer usually increases the 
designated inventory by the number of reservations canceled and signals 
the completion of the action to the agent set. If, however, the inventory 
is zero at the time the computer attempts to increase inventory, the 
action will depend on the type of agent set we are using. On agent sets 
designated as "limited cancel," the inventory remains at zero and a 
signal is sent to the agent set that the cancellation was not accepted. 
Such cancellations are then routed to a sales agent who maintains a wait 
list of people who previously were unable to obtain space on the flight 
of their choice. If no demand exists for the space these positions can 
input the cancellation on their "unlimited cancel" agent sets even though 
the inventory is at zero. 

Quantity of Information Processed 

Daily Volume of Transactions. In a normal business day, the eqUIp­
ment will handle over 45,000 calls. This includes all the major types of 



9-04 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

transactions: availability inquiries, sales, and cancellations. Most of 
this volume occurs in one ten-hour period. Peak loads of 70,000 calls 
a day occur. 

Once per day the inventory information for the day just passed is 
deleted and the starting inventories for another day are inserted auto­
matically. Inventories for approximately 1300 flight legs are entered 
into the storage. 

Input-Output Stations. Over 170 agent sets are connected to the 
central processing equipment. 

Storage Requirements. An inventory of up to 255 seats for 31 days 
on approxim'ately 2000 flight legs can be stored. Two days designated 
as X Day and Y Day provide availability information for any special 
period, for example, a future holiday. Storage is also provided for flight 
information on today's flights and the weekly frequency pattern of all 
flights which limits all action to days of the week each flight will operate. 

Data Processing Equipment 

General. The electronic equipment performing this inventory control 
task is the Magnetronic Reservisor, manufactured by The Teleregister 
Corporation specifically for this job. The central processing unit has a 
memory capacity suitable for the volume of information described above, 
plus storage for certain tables that aid in the location of specific inven­
tories in the storage. The machine performs fixed wired-in programs. 
The computer has a limited arithmetic and logical capability appropriate 
for this task. 

The computer is in duplicate, each unit performing all operations. The 
operation of the two units is compared, and when a discrepancy occurs 
the call in process is printed out on a maintenance teletypewriter and the 
inventory retained in the original state prior to the call. A signal is also 
returned to the originating input unit and indicates that the call has been 
rejected. The system can operate at full speed with only one computer, 
in the event the other is down for repair. 

The agent sets resemble a small adding machine in size and appearance 
(see Fig. 1)., The central processing unit is connected to these input­
output devices via multiple wire cables for on-premise extensions and by 
telephone circuits for off-premise points. Calling agent sets are connected 
serially to the computer and only one call is processed at a time. The 
computer remains connected to a given agent set long enough to com­
plete a transaction, and then steps on to the next calling unit. The aver­
age waiting time experienced by an agent is less than one second, with 
a maximum of 5 seconds. 



INVENTORY AND SCHEDULING APPLICATIONS 9-05 

Destination Plates. The designation of the flight or flight legs desired 
on a given transaction is performed with the aid of steel destination 
plates. Each plate has printed material on it presenting in abbreviated 

FIG. 1. Reservisor agent set. 

form schedules for 64 flight legs. As shown in Fig. 2, the printed material 
on each side is in four rows of eight boxes; each box represents one leg. 
The two top rows are printed upside down. The top and bottom edges 
of the plate are notched. 

When inserted into the agent set, the notches along the bottom edge 
of the plate control a series of switches. These switches set up a code 
which designates the two rows of eight legs visible right side up on the 



9-06 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

lower half of the plate. A movable shutter in front of the destination 
plate modifies the input code to indicate the upper or lower row. 

Agent Sets. The form of the inputs and outputs which take place 
via the agent sets is shown in Fig. 1. The travel date is indicated by 

FIG. 2. Reservisor destination plate. 

depressing the proper tens and units buttons in the two columns of buttons 
on the left. The number of seats is indicated by depressing the 1, 2, 3, 
or 4 button on the right. 

The desired group of flights or flight legs is designated by the destina­
tion plate, inserted into the agent set. Of the two rows of flight legs ap­
pearing right side up, the desired row is selected by flipping a shutter up 
or down and exposing the desired row. 

When availability is' requested, a small lamp lights (in the combination 
lamp-buttons below the destination plate) directly below each leg on the 
destination plate where the required number of seats is available. In 



INVENTORY AND SCHEDULING APPLICATIONS 9-07 

a sale or cancellation action, the specific flight legs in question are indi­
cated by depressing the lamp buttons aligned directly under the appro­
priate boxes on the destination plate. 

The indicator lights on the face of the agent set serve several operating 
and output functions. A green check bulb lights whenever a given trans­
action has been successfully processed by the system and assures the 
agent that the desired action has taken place and has been checked for 
accuracy. A yellow bulb lights when an insufficient number of seats is 
available to satisfy a sell transaction, or when a cancellation is attempted 
on a leg containing zero inventory. A red error light signals when in­
complete or impossible input data are entered into the agent set, such 
as when the transaction concerns a flight leg inventory not stored in the 
computer, or when the computer does not successfully crosscheck itself. 

Performance. In the small hours of the morning the Reservisor is 
taken off the line for a period not exceeding two hours when the entire 
equipment undergoes a marginal check. During the first year, the central 
equipment operated 99.8 per cent of its scheduled time of 22 hours per 
day, 7 days per week. Unscheduled down time runs less than 0.1 per cent 
with outages so short that only minor disruption of service is incurred. 

Staff 

Aside from the persons operating the agent sets, the only personnel 
required is the maintenance staff. This staff is composed of five main­
tenance technicians and one electronic engineer. At least one technician 
is on duty at all times. The equipment is operated 24 hours per day. 

2. AIRCRAFT PRODUCTION SCHEDULING 
C. W. Schmidt and R. Bosak 

Requirements of a Good Schedule 

A good aircraft production schedule is one developed in a short time 
with a minimum of human effort and having a smooth acceleration from 
zero to peak production. An organization large and complex enough 
to manufacture aircraft can best develop in the manner of the well-known 
"growth" curve. This curve can be expressed mathematically as the 
integral of the normal error curve. Schedule development involves evalu­
ation of this function and is thus facilitated by use of an electronic com­
puter (see Refs. 3 and 4). 

It is impossible to analyze properly and evaluate a production schedule 
without knowing its effect on manpower. Consequently, manpower fore­
casts are a basic part of this computer-developed schedule. 



9-08 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

Characteristics of Aircraft Production 

Unitwise, aircraft production rates are very low compared with those 
of television sets and automobiles; however, the manhours required are 
extremely high. Since a limited number of people can work on an air­
craft at one time, it has an unusually long production cycle. During this 
time it goes through three different types of manufacturing operations. 
These are fabrication, assembly, and production flight. 

Fabrication. A large aircraft may have 20,000 detail parts which are 
produced on a lot basis during fabrication. The time between releases 
on successive lots is called the "lot cycle" and is relatively constant at 
approximately five months. The lot size varies with the production rate. 
Scheduling of fabricated parts is a separate problem and is not considered 
here. 

Assembly. Major subassemblies are brought together and the airplane 
takes on a recognizable form. After completion of the airframe, the func­
tional items (electrical, hydraulic, etc.) are installed. The work is broken 
down into line positions, and the airplanes. physically move along an 
assembly line. All work must be done in its proper sequence. 

Production Flight. This involves installing electronic gear, checking 
controls, systems and engines, inspection, test flights and working off 
"squawks." Airplanes can move to work stations somewhat at random 
so it is not a strict assembly line operation. Thus only the start and 
completion dates are significant. The completion of production flight 
operations is the delivery date to the customer. 

Approach to Problem 

This application of data processing provides data for management 
decisions. The two major considerations that differentiate this from 
ordinary data processing are first, the relatively small amount of input 
and output, and secondly, the irregularity with which the work is done. 
The input will rarely exceed 200 cards, and the output 1000 cards. The 
job is done only when a new design is being considered for production 
or modification of existing schedules is necessary. 

Input. The input cards contain the program, the basic parameters 
which represent management decisions and can be varied to suit the 
problem, and the time cuts which represent the times at which manpower 
requirements are to be determined. . 

Output. The output cards contain the schedule of time into each 
assembly station and the average manpower required between successive 
time cuts. 



INVENTORY AND SCHEDULING APPLICATIONS 9-09 

Method. The essential method consists, for each plane, in (1) deter­
mining the delivery date; (2) calculating the amount of elapsed time in 
production flight, thereby determining the time into production flight; 
(3) calculating the elapsed time in each assembly line position and the 
time into that position. 

Symbols. 
i plane number 
j assembly station number; j = 1 denotes the final assembly 

station 
tk time cut 
Tii time into station j for plane i 
H ik cumulative manhours expended in stationj up to tk 

M ik average manpower required in station j from tk-l to tk 

m total number of stations 
n total number of planes 
TiD * delivery time of plane i according to contractual commitments 
TiD scheduled delivery time 

Equations 

The following equations refer to portions of the flow diagram' (see 
Fig. 4): 

(1) TiD = a + bi - ce-di, 

where b = the time between successive completions when full produc­
tion rate is achieved and a = T nD * - bn. The quantities c and dare 
determined so that 

n 

and I: (TiD* - TiD) 
i=l 

is a minimum. 

(2) 

where f is elapsed time required in production flight to complete work 
on a plane after full production rate has been reached. The quantities 
g and h are determined by considering the elapsed time required on the 
first plane and the rate at which this elapsed time is to be reduced to f. 

(3) 

= Tii-l - r = Ti-l. i-1 

before a fun pro­
duction line is 
reached 

after production 
line is filled, 



9-10 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

in which r is the elapsed time required in each station after full production 
rate has been reached, 

s is a constant determined by considering the amount of elapsed 
time required on the first plane, 

'Y is called a span decrease rate factor. 

By assigning y various values, control can be achieved of the rate at 
which the elapsed time required for successive planes in each station 
is diminished. 

Let Vijk represent the fractional portion of the work completed on 
aircraft i in station j at time t k , assuming that the man hours are expended 
evenly during the time the aircraft remains in that station. Then 

(4) 
m 

Hik = L ViikKi-p
• 

i=l 

where K is the number of manhours required to complete the work on 
the first airplane at station j, and p is the learning curve factor for the 

Schedule decisions 
Developed by effected 
organizations 

Engineering ~ 

Planning 
Production 
etc. 

I Issued I 
schedule 

r-------,.....----, 

Final decision made 
Master 
scheduling 

by master scheduling Draws 
organization schedule 

I j 
labor analysis 
by separate 

! organization 

[

This portion nowJ-7L-----------­

developed by 
computer 

FIG. 3. Relation of production scheduling to overall management. 



INVENTORY AND SCHEDULING APPLICATIONS 9-11 

Start 

(1) Compute delivery time (1iD) for plane i 
(2) Compute time into production flight (1io) for plane i 

I-j 

(3) Compute time into station j (1'ij) for plane i 
j + I-j 

(4) and (5) Compute manpower 
requirements (Mjk ) 

k + l-k 
tk-tk_1 
i + l-i 

FIG. 4. Simplified flow diagram for production schedule computer run. 



9-12 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

type of work performed in station j. 

(5) Mik = Hik - H ik- 1 • 

tk - tk-l 

Computation Time. After the schedule is determined the average 
manpower requirements are calculated. Computation time on the IBM 
Type 650 computer is approximately one second per airplane per assem­
bly station. Only one person is needed to run the problem. Programming 
and checkout required about 100 manhours. 

Flow Diagrams 

Figure 3 shows how the computations fit into the overall management 
decision-making process. To determine a satisfactory schedule, it may 
be necessary to rerun the problem several times, each time modifying 
one or more of the basic parameters until a satisfactory schedule is pro­
duced. Figure 4 shows a simplified flow diagram of the actual compu­
tation run. 

Advantages. The major advantage of using electronic data processing 
for schedules is that it is feasible to develop several schedules and labor 
forecasts within a period of four or five days and allow management to 
choose the schedule as desired. Formerly, only one schedule would be 
developed and that would be modified and reworked until a suitable 
schedule had been determined. This process took a considerably longer 
period of time. 

REFERENCES 

1. M. L. Haselton and E. L. Schmidt, Automatic inventory system for air travel 
reservations, Elec. Eng., 73, 641-646 (1954). 

2. J. L. Hill, Design features of Remington Rand speed tally, Proc. Western 
Computer Conj., S-59, 155-162, April 1954. 

3. W. L. Martin, A merchandise control system, Proc. Western Computer Coni., 
S-59, 184-191, April 1954. 

4. Electronic data processing in industry, Special Rept. No.3, 206-214, American 
Management Association, N ew York. 

5. Frank J. Andress, The learning curve as a production tool, Harvard Bus. Rev., 
32 [1], 87-97 (1954). 



c THE USE OF DIGITAL COMPUTERS 

AND DATA PROCESSORS 

Scientific and Engin~ering 

Applications 

I. Introduction 

Chapter 10 

R. T. Koll 

2. Simultaneous Linear Algebraic Equations and Matrix Inversion 
10-01 

10-02 

10-04 

10-06 

10-08 

10-10 

10·12 

3. Characteristic Roots and Vectors 

4. Linear Programming 

5. Differentia I Equations 

6. Statistica I Ana lysis 

References 

I. INTRODUCTION 

Scientists and engineers from almost every technical field have learned 
to program and run their own problems. As a consequence of the close 
relationship that has developed between the source of problems and 
the computer, a large variety of problems has been placed on computers. 

This chapter describes some of the mathematical methods that are 
frequently used and which are usually available to the problem originator 
in digital computer program libraries. The methods were selected for 
discussion because of their applicability to a large number of engineering 
and scientific areas. Some of the advantages and disadvantages of 
specific techniques are mentioned, and a rough estimate of the required 
solution time on a typical computer is given. 

Formulas and more details on these techniques are covered in Vol. I, 
Chap. 14. 

10-01 



10-02 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

2. SIMULTANEOUS LINEAR ALGEBRAIC EQUATIONS 
AND MATRIX INVERSION (See Vol. I, Chap. 14) 

Direct Methods. Of the numerous methods of solving systems of 
linear algebraic equations, certain ones are particularly adaptable to 
stored program computers. The well-known Gaussian elimination method 
that leads to a readily solvable triangular system of equations is easily 
coded and theoretically can solve any nonsingular system. The calcula­
tion is complicated by the accumulation of roundoff errors which are 
inherent in the computation ,and common to all methods of solution. 
Multiple precision arithmetic and other techniques are often adopted to 
preserve a sufficient number of significant digits in the final results. 

Matrix inversion, in one sense, is a generalization of solving a system 
of linear algebraic equations that, by methods analogous to Gaussian 
elimination, requires about three times as much computation. Direct 
methods of solution are generally used to invert matrices of high order. 

The Jordan method simply extends Gaussian elimination to the forma­
tion of an auxiliary matrix that, when the original matrix has been 
reduced to an identity matrix, is the inverse of the original matrix. The 
accumulation of roundoff errors in inverting a matrix by the Jordan 
method may be so rapid that the results obtained are of little value. 
The use of floating point arithmetic is practically required for inverting 
by the Jordan method high order matrices whose elements differ signifi­
cantly in magnitude, and it eliminates the need for scaling the data. 

The von Neumann-Goldstine method (Ref. 1) is an adaptation of the 
elimination scheme that combines optimum scaling of data and position­
ing for size by interchanging rows and columns of the matrix, to insure 
maximum accuracy. This technique involves a considerable amount of 
nonproductive data handling and requires lengthy and complex coding. 
It is a useful method for inverting poorly conditioned matrices in fixed 
point arithmetic. Simpler schemes involving only row and column inter­
changes are generally adequate for floating point operations. 

Table 1 indicates the order of matrices that can be inverted by various 
techniques on several computers without using any form of auxiliary 
storage, as well as the time required for computing the inverse. 

Iterative Methods. In contrast to Gaussian elimination and other 
direct methods, iterative methods assume an approximation to the solu­
tion and then repeatedly improve it in some mathematical sense. Each 
iteration consists of a fixed number of steps. Iterations are performed 
until a desired degree of accuracy is reached, the number of iterations 
required depending upon the particular problem. Roundoff errors may 
limit the degree of accuracy that can be obtained. An advantage of 



TABLE 1. MATRIX INVERSION WITH COMMERCIALLY AVAILABLE COMPUTERS 

Method Computer 
Highest 

Mathematical Arithmetic Type of No. of \Vords Order 
Method Mode Matrix Type of Storage (approx.) 

Jordan Floating point Arbitrary real Magnetic drum 2000 40 

High speed 4096 60 

von Neumann- Fixed point Real positive definite High speed 4096 50 
Goldstine symmetric· 

Elimination com- Floating point Arbitrary real High speed 4096 60 
bined with 
positioning for Double preci- Arbitrary real High speed 4096 50 
size sion floating 8192 80 

point 

Approximate 
Time to In vert 

a Matrix 
of Order n 

0.072n3 sec 
n = 20, 10 min 
0.5n3 msec 
n = 20,4 sec 
n = 50, 8 min 
n = 20,30 sec 
n = 50, 1 min 
n = 20,4 sec 
n = 50,5 min 
n = 20,20 sec 

U') 

n 
m 
Z 
--f 

J} 
() 

» z 
o 
m 
Z 
~ 
Z 
m 
m 
~ 
Z 
(j) 

» 
.." 
.." 
r 
o 
~ o z 
U') 

o 
b w 



10-04 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

many iterative methods is that calculating errors at intermediate steps 
do not affect the final results. For iterative processes in general, miscal­
culated results of one iteration are equivalent to a new set of approxima­
tions to begin improving by successive iterations. For the iterative 
methods that are discussed here and for all others that may initially 
assume any arbitrary approximations, such errors are eliminated from 
the final results. 

Two iterative methods for solving systems of linear algebraic equations 
are the Gauss-Seidel and the conjugate gradient. The Gauss-Seidel 
method in effect uses each equation of the system to compute a better 
approximation of one variable by substituting successively improved 
values of the other variables into the equation. The conjugate gradient 
method (Ref. 2) obtains the roots of the system by minimizing a specific 
function of the variables. In both these methods the original matrix of 
coefficients is unaltered by the computation. This permits eliminating 
unnecessary calculations when zero coefficients appear in the system of 
equations. For both methods it is a simple matter to restart the compu­
tation by using intermediate results. 

The Gauss-Seidel method converges to the roots of the system when 
the system is positive definite symmetric or when each diagonal element 
is greater than the absolute value of the sum of the off-diagonal ones 
in the same equation. The larger the diagonal elements relative to the 
off-diagonal ones, the more rapidly the improved values converge. For 
systems particularly suited to the method, a solution may be obtained 
to the desired degree of accuracy by the Gauss-Seidel method in less 
than n iterations, where n is the order of the system. For other systems, 
many times n iterations may be required. The conjugate gradient method 
guarantees convergence in at most n iterations in the absence of roundoff 
errors. In many cases, roundoff errors necessitate that a few more than 
n iterations be performed. The conjugate gradient method may be ap­
plied to a symmetric system or in a somewhat different form to a non­
symmetric system without altering the original coefficient matrix. 

Table 2 indicates the order of systems of simultaneous equations that 
can be solved by various methods with several computers and the time 
of computation for a representative system. 

3. CHARACTERISTIC ROOTS AND VECTORS 

Most of the common methods of finding the characteristic roots and 
vectors of a matrix are subject to an excessive accumulation of roundoff 
errors for even relatively low order matrices and fail completely when 
repeated roots are encountered. 

Danielewsky's Method. An iterative method that has been used 
with success on a magnetic drum computer for matrices of the fifth order 



TABLE 2. SOLVING SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS WITH COMMERCIALLY AVAILABLE COMPUTERS til n 
Approximate Time m 

Method Computer Z 
Highest to Make :::! 

Mathematical Arithmetic Type of "Vords of Order Representative ::!! 
Technique Mode System Type Storage (approx.) Computationa () 

Gaussian elimination Double precision Arbitrary real High speed 4096 600b 3.6n3 msec, » 
z 

floating point regardless of N 0 
n = 200, 8 hrs m 

Gauss-Seidel Fixed point Real positive definite Magnetic drum 2000 100e n = 90, N = 600, Z 
symmetric or 40 sec/iteration ~ 

Fixed or float- predominately High speed 4096 200e n = 90, N = 600, Z 
m 

ing point diagonal 0.4 sec/iteration: m 
;;:0 

n = 150, N = 1500, Z 
1 sec/iteration (j) 

Conjugate gradient Double precision Real symmetric High speed 4096 200C or n = 200, N = 12,000, » floating point moreb 1 min/iterationb 
.." 

N onsymmetric High speed 4096 200e or n = 200, N = 12,000, .." 
r-

moreb 2 min/iterationb 0 
a n, order of system; N, number of nonzero coefficients. » 

-I 
b Using magnetic tape for auxiliary storage. 5 
C A large number of coefficients being zero. Z 

til 

o 
b 
U"I 



10-06 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

is Danielewsky's, which performs a series of transformations on the 
matrix so that the coefficients of the characteristic equation are obtained. 
By using double precision floating point arithmetic, results for matrices 
of the twelfth order can be satisfactorily obtained by this method. 

Jacobi's Method. Considerably greater accuracy at the expense of a 
greater amount of computing at each iteration is obtained by using 
Jacobi's method, which, by a sequence of orthogonal transformations to 
diagonalize the matrix, yields the characteristic roots directly. Experi­
ence indicates that roundoff errors are kept reasonably low by Jacobi's 
method and are practically independent of the order of the matrix. 
Jacobi's method has the additional advantage of finding all roots even 
when roots are repeated. 'Vith Jacobi's method for real symmetric 
matrices, computations for matrices of the forty-fifth order can be made 
by a high-speed computer with 4096 words of storage; of the sixty-eighth 
order, with 8192 words of storage. About fourteen seconds of computing 
per iteration are required for a twentieth order matrix. The time per 
iteration is roughly proportional to the cube of the order of the matrix. 
The number of iterations required is usually close to the order of the 
matrix, although it may be significantly less for matrices of order greater 
than ten. 

EXAMPLES. The complete processing times for four representative 
matrices, including the time required to get all the necessary informa­
tion into and out of the computer as well as the time spent performing 
the computation itself, follow: 

8th order matrix: 
12th order matrix: 
20th order matrix: 
40th order matrix: 

1.2 minutes 
2.4 minutes 
6.0 minutes 
20 minutes 

Greenstadt's Method (Ref. 3). From a computing point of view, 
this method is similar to Jacobi's. It has been developed as a'method 
for finding the roots of arbitrary complex matrices. Its general applica­
bility, however, has not been rigorously demonstrated'. 

4. LINEAR PROGRAMMING 

Problem Statement. A problem in linear programming is defined 
mathematically as finding the values of Xj satisfying conditions of the 
form (see Refs. 4 and 6) : 

(1) 

or 

LaijXj = bi , 

LaijXj ~ bi, 

LaijXj ~ bi, 



SCIENTIFIC AND ENGINEERING APPLICATIONS 10-07 

as well as the condition that 

(2) X i ~ 0 for all values of j, 

such that some function 

(3) f(x) = LCiXi is a maximum, 

where aij, bi , and Cj are given constants. Problems requiring minimiza­
tion rather than maximization of f (x) and problems not requiring restric­
tion (2) for some or all of the variables can be reduced to the same form. 

Simplex Method (see Refs. 4 and 5, and Vol. I Chap. 15 for details of 
the simplex technique). This is a general method of solving problems in 
linear programming. In the simplex method the coefficients and constants 
appearing in the constraint eq. (1) and in the function being maximized 
(3) are incorporated in a matrix array that also includes entries corre­
sponding to slack and artificial variables introduced into the problem 
for computing convenience. A series of transformations is performed 
that ultimately leads to the optimum solution. Various calculations and 
tests are made to determine whether or not the optimum solution has 
been obtained, and to indicate successive transformations that lead to the 
optimum solution. The modified simplex method is basically the same 
mathematical technique altered ~n such a way as to facilitate efficient 
computation of large problems by means of electronic computers using 
some form of auxiliary storage, such as magnetic tape, for a large part 
of the data. 

Problem Size. The size of a problem in linear programming is usually 
defined by m, the number of rows, and n, the number of columns, of the 
matrix array; m is the number of the constraint eqs. (1) in the problem, 
and n is the total number of variables in the problem plus the number 
of slack and artificial variables introduced for computational purposes. 
A magnetic drum computer, with 2000 words of storage, can solve by the 
simplex method problems where 1n < 30, n < 60, and m(n + 1) < 1400. 
\Vith the modified simplex method and storing data on magnetic tape, 
there is effectively no limit to the number of variables involved in prob­
lems the drum computer can accommodate. The approximate time, T, 
required by the drum computer to perform an iteration is 

T = 90m X n milliseconds. 

A high-speed computer with 4096 words of storage can solve by the 
modified simplex method problems involving 255 restrictions on a virtu­
ally unlimited number of unknowns. The approximate time required 
per iteration by the high-speed computer is 

T = 1. 5m X n milliseconds. 



10-08 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

The Transportation Problem. The transportation problem is a 
specific type of linear programming problem that can be solved more 
economically by a special technique than by the simplex method. The 
technique is not limited to transportation problems in the literal sense, 
and it is applicable to any problem that can be completely defined by 
essentially the same tabular array of data. 

Tabular Form. Unit shipping costs are presented in a rectangular 
table, each row associated with a specific destination, each column asso­
ciated with a specific origin. Amounts to be shipped from each origin 
to each destination must be determined for a similar table that obeys 'the 
restrictions that each column total equals the amount of material avail­
able at the location associated with that column, and that each row 
total equals the delivery requirement of the destination associated 
with that row. 

Solution. A large number of such tables will fulfill the requirements. 
Starting with one such table that is easily calculated, a special technique 
ascertains whether a more economical solution exists, and points out 
which way the table should be modified to decrease total shipping costs. 
This modified table is then formed, and the process is repeated until the 
test for determining whether a best solution has been obtained is satisfied. 
From this best solution a similar technique determines all equally good 
solutions. 

Problem Size. A magnetic drum computer with 2000 words of storage 
can be used to solve transportation problems involving 100 origins and 
450 total number of origins plus destinations. With the drum computer, 
an iteration for a problem having 7 origins and 85 destinations requires 
about 1.5 minutes. Most problems of this size are completely solved in 
less than an hour. 

A high-speed computer with 4096 words of storage can be used to 
solve transportation problems involving 600 origins and as many as 
5600 total number of origins plus destinations. The approximate time, 
T, required per iteration by the high-speed computer is approximately 

T = a.8m X n milliseconds, 

where m is the number of destinations and n is the number of origins. 
For a problem with 7 origins and 85 destinations, the time per iteration is 
about one-half second. 

5. DIFFERENTIAL EQUATIONS 

Ordinary Differential Equations 

Methods. The numerical methods usually employed to solve ordinary 
differential equations evaluate the solution of a first order equation step 



SCIENTIFIC AND ENGINEERING APPLICATIONS 10-09 

by step through a series of intervals in the independent variable. Most 
of the common methods are readily extended to a system of simultaneous 
differential equations of the first order, and they can thus be adopted 
to solve ordinary differential equations of any order. The accuracy of 
the solution depends upon the fineness of the interval in the independent 
variable and upon the order of the derivatives preserved by the method. 
To obtain accurate results over a wide range of values, the usual digital 
computer practice is to maintain fourth order accuracy in the method, 
and to choose an interval that will give the desired degree of accuracy 
for each particular problem. The methods that are subsequently de­
scribed are generally applied in this way. 

Numerical Integration. There are a number of methods for the 
numerical solution of ordinary differential equations based on formulas 
for numerical integration, using at each new interval values of the func­
tion obtained in preceding steps. These methods require determining 
the first few values of the functions by Taylor's series or some other 
suitable technique, using known initial values of the variables. These 
"starting values" must be computed to the number of significant figures 
desired in the solution. Their determination is an important and labori­
ous part of the computation. In methods of this type it is not a very 
simple matter to change the integration interval except by doubling it. 
Two such methods are those of Adams and Milne. Of the two, Adams' 
is simpler to apply; its chief disadvantage is the lack of a suitable check 
on the accuracy of the computations and of the process itself throughout 
the calculation. A measure of the error at each step in Milne's method 
(Ref. 7) is easy to compute, and it can be used to control the integration 
interval, doubling the interval and reducing the number of integrations 
performed whenever the error becomes sufficiently small. When the 
error becomes too large, it is usually necessary to restart the computation 
with a smaller interval, by using the most recent computed values as 
new initial conditions. 

Increment Evaluation. In contrast to the methods described above, 
the methods of Runge-Kutta and Gill (Ref. 8) are based on a set of 
formulas that evaluate the increment in the dependent variable for 
some increment in the independent variable, using only the values 
at the preceding step. Hence initial conditions suffice to begin the 
computation, and no special techniques are required to evaluate "start­
ing values." Furthermore, the length of the interval may be modified 
in any way at any step in the computation. However, at each step 
four evaluations of the function appearing in each differential equa­
tion must be made. For complicated equations this may demand an 
excessive amount of computation. Another disadvantage is that a 



10-10 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

measure of the error in either method requires computations independent 
of the process itself. The Gill method insures greater accuracy than the 
Runge-Kutta. The latter is subj ect to computational errors that do not 
recommend the method for general use in solving large systems, or for 
integrating over a wide range of values. 

Solution. Large-scale computers can solve by Adams', Milne's, 
Runge-Kutta's, or Gill's methods, systems of simultaneous first order 
differential equations of at least the fiftieth order. The, time required 
to compute a new value for each variable is about 4 milliseconds with 
Milne's method and about 3 milliseconds with Adams'. Since the bulk 
of the computation at each step in the methods of Runge-Kutta and 
Gill is devoted to evaluating the functions appearing in the system of 
differential equations, the time required by these methods is largely 
dependent upon the particular problem. 

Partial Differential Equations 

The most general numerical method for solving partial differential 
equations that is applicable to digital computers replaces the partial 
derivatives by finite differences and then solves the difference equation. 
By this method the differential equation is effectivly reduced to a set of 
simultaneous algebraic equations. During an iterative solution of these 
equations, successively improved values of the function are evaluated 
at discrete points of a grid that includes known boundary values of the 
function. This method gives good results for boundary value problems 
involving quasilinear partial differential equations of elliptic, parabolic, 
and hyperbolic types. For examples of applications of large-scale com­
puters in solving partial differential equations, see Refs. 9 and 10. 

6. STATISTICAL ANALYSIS 

Digital computers are used in a wide variety of statistical analyses 
including simple correlation, first and second order partial correlation, 
autocorrelation and power spectrum analysis, analysis' of variance, sea­
sonal adjustment of time series, and factor analysis. One of the most 
fruitful statistical applications of digital computers is multiple linear 
regression and correlation analysis. This application, along with factor 
analysis, is singled out to demonstrate the ability of digital computers 
in the field of statistics. 

Multiple Linear Regression and Correlation Analyses. A basic 
objective in this analysis is the expression of a dependent variable, for 
purposes of prediction or fitting, as a suitable linear function of various 



SCIENTIFIC AND ENGINEERING APPLICATIONS 10-11 

independent variables. The regression function which expresses this 
linear relationship is so derived that it best approximates the sample 
observations of the dependent variable in a least squares sense. The 
regression function is considered suitable if, apart from what may reason­
ably be attributed to chance, the values predicted by it for the dependent 
variable account for a large part of the dependent variable's sample 
variance. 

The first step in the analysis is to calculate the sample means, standard 
deviations, and simple correlation coefficients. A symmetric matrix is 
formed whose elements are the simple correlation coefficients. Partial 
and multiple correlation coefficients, the regression coefficients and their 
standard errors; and the standard error of estimate are readily com­
puted from the inverse of the simple correlation matrix. 

A high-speed computer can perform sueh an analysis for as great a 
total number of observations as 900,000. The number of independent 
variables carried throughout the entire computation is restricted by the 
matrix inversion program used. The complete processing for a problem 
consisting of 200 observations of each of 30 variables requires about 10 
minutes. IV[ultiple regression analysis can be performed by a magnetic 
drum computer for problems involving as many as 30 variables. 

Factor Analysis. Another type of statistical analysis often entailing 
computation of such volume that the use of a high-speed computer is 
desirable is factor analysis. Factor analysis is a branch of statistical 
theory concerned with resolving a set of descriptive variables in terms 
of a small number of categories or factors by an analysis of their inter­
correlation. The aim of factor analysis is to account for the observed 
correlation among the variables in terms of the smallest number of 
factors with the smallest possible residual errors. Its purpose, as con­
trasted with multiple regression and correlation analysis, is economy 
of description rather than prediction. 

Various mathematical methods of performing factor analysis have 
been developed. A method commonly applied to high-speed computers 
is the principal components method. As in the case of multiple linear 
regression and correlation analysis, the principal components method of 
factor analysis requires the calculation of elementary statistics and the 
formation of a simple correlation matrix. The characteristic roots of 
the simple correlation matrix are then computed and interpreted to 
identify the significant factors. Since the most significant part of the 
computation is finding the characteristic roots of a matrix, the reader 
is referred to Sect. 3 for an estimate of the time required by a high-speed 
computer to perform factor analysis by 'the principal components method. 



10-12 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

REFERENCES 

1. J. von Neumann and H. H. Goldstine, Numerical inverting of matrices of high 
order, Bull. Am. Math. Soc., 53 (11), 1021-1099 (1947). 

2. M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving 
linear systems, J. Research Natl. Bureau Standards, 49 (6),409-436 (1952). 

3. J. Greenstadt, A method for finding roots of arbitrary matrices, Math. Tables 
and Other Aids to Computation, IX (50), 47-52 (1955). 

4. A. Charnes, W. W. Cooper, and A. Henderson, An Introduction to Linear 
Programming, Wiley, New York, 1953. 

5. G. B. Dantzig, Wm. Orchard-Hays, et al., various papers on the simplex method, 
Rand Corporation, Los Angeles, Calif. 

6. K. Eisemann, Linear programming, Quart. Appl. Math., XIII (3), 210-232 
(1955). 

7. W. E. Milne, Numerical Solution of Differential Equations, Wiley, New York, 
1953. 

8. S. Gill, A process for the step-by-step integration of differential equations in 
an automatic computing machine, Proc. Cambridge Phil. Soc., 1951. 

9. J. Sheldon and L. H. Thomas, The use of large scale computing in physics, 
J. Appl. Phys., 24, 235-242 (1953); The numerical solution of a partial differential 
equation on the IBM Type 701 electronic data processing machine, Proc. Assoc. 
Computing Machinery, 1952. 

10. W. J. West, W. W. Garvin, and J. W. Sheldon, Solution of the equations of 
unsteady state two-phase flow in oil reservoirs, Trans. Am. Inst. M echo Eng., 1953. 

11. F. S. Beckman and D. A. Quarles, Jr., Multiple regression and correlation 
analysis on the IBM Type 701 and Type 704 electronic data processing machines, 
Am. Statistician, 10, 6-9 (1956). 



c THE USE OF DIGITAL COMPUTERS 

AND DATA PROCESSORS 

Handling of Non-Numerical 

Information 

I. Introduction 

2. Performing Logic on a Digital Computer 

3. Game Playing Machines 

4. The Machine Translation of Languages 

5. Automatic Literature Searching and Retrieval 

References 

I. INTRODUCTION 

Chapter 11 

M. E. Maron 

11-01 

11-02 

II-II 

11-13 

11-16 

11-19 

Characteristics of Non-Numerical Problems. Digital computers 
may be used to handle problems for which strict mathematical methods 
of solution are not known. Such problems involve many more logical 
operations than arithmetic operations and allow a spectrum of results 
rather than a single exact solution. These problems are, by and large, 
problems involving non-numerical information such as logic, games, 
language translation, and literature searching. This chapter will de­
scribe (a) some of the problems, (b) methods of attack, and (c) results 
involved in the computer . handling of non-numerical information. 

Brain Behavior. One of the really exciting facets of work on non­
numerical computer applications lies in the insights that are to be gained 
from the handling of complex problems-insights into the nature of auto­
matic problem solving. Perhaps the primary characteristic of brain 
behavior is the ability to solve problems, not just to solve problems in 

11-01 



11-02 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

the sense of finding answers by using old methods, but to solve new and 
different problems by using new and different methods of solutions. 
Human beings solve many problems daily without knowing how the 
solutions were found, certainly without executing a rigidly prescribed 
sequence of logical and arithmetic operations. The task of programming 
complex non-numerical problems for a computer could lead to insights 
into the nature of problem solving and to an understanding of the func­
tioning of the brain. 

Computers are useful tools for research in brain behavior because 
brain models can be simulated on a digital computer, or better still, special 
purpose machines can be built such as those of Grey ,Valter (Ref. 1) and 
Ashby (Ref. 2), which behave in ways resembling brain activity. This 
means that complex models of the brain, which cannot be analytically 
evaluated, could be simulated by a digital computer and could thereby 
allow the machine's behavior to make explicit those features of the model 
which are only implicit in the design. 

This sort of work also will lead eventually to new concepts of com­
puter design, to new principles of organizing digital computers so that 
they will become even more useful tools both in automatic control and 
in the automatic handling of non-numerical information. 

2. PERFORMING LOGIC ON A DIGITAL COMPUTER 

Development of Logic (Ref. 3). The subject of logic, which dates 
back 2200 years to Aristotle's theory of syllogistic reasoning, remained 
essentially unchanged for over twenty centuries. Then, beginning with 
the work of Boole, Schroder, Frege, and Peano in the years around 1850, 
and accelerated with the publication of the monumental Principia M athe­
matica by Whitehead and Russell in the early part of this century, the 
field of logic mushroomed and today it encompasses a very wide area, 
including all classical mathematics. 

Mechanization of Logic (Ref. 4). The mechanization of logic does 
not have such a long history; the first logic machine dates back only 
150 years, although Leibnitz, in the seventeenth century, envisioned a 
universal symbolism and a calculus of reasoning for the mechanical 
manipulation of non-numerical information. The British statesman 
Charles Stanhope first constructed a machine for solving syllogisms at the 
close of the eighteenth century and in 1947, two Harvard students, Kalin 
and Burkhardt (Ref. 5), built the first electromechanical logic machine 
for the solution of logical problems more complex than the syllogism. 
Since that time several varieties of logic machines have appeared, includ­
ing one by McCallum and Smith (Ref. 6) in England, one by Burke, 



HANDLING OF NON-NUMERICAL INFORMATION 11-03 

Warren, 'Vright, and Miehle (Refs. 7,8) and one by lVlaron (Ref. 23). 
The last machine will be described as an illustration. 

The Nature of Logic. The following factors characterize logic: 
(a) The expressions of logic are tautological, i.e., true by virtue of 

their form alone and completely empty of content. 
(b) All logic is reducible to sentences of the type "A or not A," "A is 

equivalent to A," etc., and they are true, regardless of whether the sen­
tence that is substituted for A is true or false. 

(c) The primary occupation of the logician is to find expressions 
which have this tautological character and to prove that the expressions 
in question are, in fact, tautological. Such tautological expressions are 
theorems of logic. 

Methods of Proof. Basically, there are two ways of proving that 
an expression is a theorem. Each method has given rise to a different 
kind of logic machine. 

1. Evaluation Procedure. The evaluation method consists in u8ing 
a set of rules which describe precisely and in complete detail how to deter­
mine whether an expression is a theorem. These rules function in much 
the same way as recipes in that they dictate step by step the operations 
to be performed, starting with an arbitrary expression whose validity is 
to be analyzed and ending with a yes or no arlswer to whether the ex­
pression is a theorem. Such a set of rules is called a decision procedure. 
Decision procedures have been found for only some parts of modern logic, 
and for other parts of logic it has been proved that no decision procedures 
are possible. Decision procedures, where they do exist, are capable in 
principle of being mechanized by means of digital circuitry. Hence, one 
may build or program a computer to determine automatically whether 
or not an expression is a theorem of logic. 

2. Free Derivation. This method consists in deriving theorems from 
axioms or from other theorems which are themselves tautological. See 
section entitled The Mechanization of Deductive Procedures below. 

The Sentential Calculus and Its Decision Procedures 

Definitions. The sentential calculus is that part of logic whose basic 
symbols are two-valued variables which may be thought of as sen­
tences whose truth values must be either true or else false. An atomic 
sentence is one which contains no proper part which is itself a sentence. 
The atomic sentences designated as p, q, r, etc., may be connected by 
certain logical connectives to form molecular sentences. The logical 
connectives are designated by such familiar terms as not, and, or,· and 
ill then, The simplest example of obtaining a molecular sentence from 



11·04 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

an atomic sentence is by means of negation (e.g., not p is obtained from 
p by negation). Similarly, given any two sentences p and q, one can 
connect them with such terms as and, or, and if, then and thereby obtain 
the following molecular sentences: p and q, p or q, and if p, then q. 

The process of constructing molecular sentences by means of the logical 
connectives can be continued indefinitely, giving rise to such expressions 
as: (p or not q) and [(not r and not s) if and only if t]. If the truth 
values of the atomic components are known, there are rules of logic by 
means of which the truth value of molecular sentences can be determined. 

Truth Table Analysis. Tables 1 and 2, called truth tables, give some 
of the rules for calculating the truth values of molecular sentences given 
the truth values of their atomic components (see Chap. 17). The symbols 
T for true and F for false correspond to the 1 and 0 used in logical design. 
The Boolean notation for various logical operations is given in paren­
thesis under the column headings. 

TABLE 1. TRUTH TABLE FOR ATOMIC VARIABLE A 

NotA 
A (1) 

T F 
F T 

TABLE 2. TRUTH TABLE FOR FUNCTIONS OF ATOMIC VARIABLES A AND B 

A orB A andB If A, then B A if and only if B 
A B (A + B) (A· B) (1 + B) (A· B + 1· B) 
T T T T T T 

T F T F F F 

F T T F T F 

F F F F T T 

EXAMPLE. Use of truth tables to determine the truth value of a molec­
ular sentence. Consider the sentence p or (if q then r). If p and q 
are true and r is false, what is the truth value of the above sentence? The 
tables tell us that if q then r is false since q is true and r is false, but 
since p is true, the entire sentence is true. 

Truth table analysis can be used to determine whether an expression 
is a theorem of logic. An expression in the lIientential calculus is a theo­
rem if it is true regardless of the individual truth values of its atomic 
components. If an expression contains n different variables, there· are 2n 

possible combinations of truth and falsity which the variables might 



HANDLING OF NON-NUMERICAL INFORMATION 11-05 

assume. This then is the decision procedure for the sentential calculus; 
in order to determine whether an arbitrary molecular sentence of n dif­
ferent variables is a theorem, examine with the aid of truth tables each 
of the 2n combinations of truth values of the atomic sentences. If the 
molecular sentence is never false for any of the 2n combinations, then 
it is a theorem of logic. 

The Mechanization of the Decision Procedures for the 
Sentential Calculus 

Shannon (Ref. 9) showed that the logical structure of electric switching 
circuits (Chap. 17) is essentially identical to the logic (viz., sentential 
calculus) discussed above. With only series and parallel connections and 
relays it is possible to construct the electrical analog for any complex 
expression in the sentential calculus. This makes it possible to construct 
an electromechanical "analog" decision machine. 

The following requirements must be met in order to mechanize physi­
cally the decision procedure. 

1. There must be a flexible way of combining elementary circuits to 
form complex circuits, i.e., to form the electrical equivalent of the ex­
pression to be tested. 

2. There must be some way of automatically examining all 2n possible 
cases and testing each of the cases to see whether the circuit is open 
or closed. 

3. There must be some controls so that the machine may stop if it 
detects a false case and some way of indicating whether or not there 
were any false cases. 

A Decision Machine. A decision machine constructed in 1952 (Ref. 
23) can handle problems involving a maximum of eight variables. Each 
varia ble is represented by a wire contact relay with eight pairs of con­
tact points. Seven of the eight pairs of relay points are brought out 
to a control panel and the eighth pair of points is used to control a light 
on the face panel of the machine. This light indicates whether the relay 
is on or off; that is, it indicates whether the corresponding sentence is 
true or false. Adjacent to the input variable hubs (jacks) on the control 
panel are the hubs, which connect with the inputs and outputs of the 
logical connectives. Each or connection is simply a set of hubs connected 
in parallel and each and connection is a set of hubs connected in series. 
The connectives for these circuits are wired on the underside of the 
control panel assembly as indicated in Figs. 1 and 2. 

Thus, if one takes the normally open and common terminals from the 
p variable and the corresponding points from the q variable and connects 



;11-06 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

Inputs Output ,----------.------, 
I 'I 

I I I 
o I 0 I 

I , 
, I I 

I 0 '0 I 
I : I 
I 'I I ___________ L ______ .J 

FIG. 1. Or circuit. Each input has 
two connection wires. 

Inputs Output 
r----------I------~ 
, I 
I I 

! ,,~ 
I ~~ 
I I 
I I 
I I L __________ L _____ _ 

FIG. 2. And circuit. Each input has 
two connecting wires. 

them to the input hubs of an or circuit, one obtains the compound electric 
circuit corresponding to the expression p or q. In order to program 
not p or not q, the common and normally closed points of each of the 

+vl/I 

Input Output 
r---r---, 

.-----+--0 : 0--4-,----.. 
I I 

I I --__ L--..J 

FIG. 3. Negation circuit. If the 
input hubs are connected by a 
closed circuit (true sentence), then 
the relay is energized and the 
output hubs constitute an open 

circui t (false sentence). 

relays are taken. The hubs representing 
the input and output for the negation 
circuit of Fig. 3 also appear on the con­
trol panel. By combining the above 
connections the electrical equivalents 
for if, then, and if and only if were wired 
and the corresponding input and output 
points were brought out to the control 
panel. 

The completed control panel has eight 
input variables each of which has seven 
common, normally open and normally 
closed points. It has fourteen or circuits, 
fourteen and circuits, ten negation cir­
cuits, six if, then, and four if and only if 
circuits. Thus, given the input variables 

and the connectives, any expression which contains no more than eight 
variables (and no more than about 50 connectives) can be programmed 
on the control panel by connecting the correct hubs with connecting wires. 

For any complex expression programmed on the machine, there is 
always a single output of two leads. These are two ends of the relay 
circuit which represents the logical expression being tested. One end 
is connected to a 40-volt source and the other end is connected to a relay 
which will be energized and pick up if the circuit is closed (expression 
true), and it will not pick up if the circuit is open (expression false). A 
light on the face of the machine indicates the state of this indicator relay. 
Automatic examination of each of the 2n possible combinations of truth 
values of the n atomic sentences which make up the complex expression 



HANDLING OF NON-NUMERICAL INFORMATION 11-07 

is accomplished by connecting an eight-stage binary counter to the eight 
input variable relays, one stage to each variable. The binary counter 
receives impulses from a set of relays which pick up and drop and thereby 
send a regular sequence of impulses to the counter. The output of the 
final stage of the counter is connected to the end of a latch relay. \Vhen 
the counter runs through all 2n cases the latch relay picks up and cuts off 
the power to the pulse generator and thus stops the instrument. By touch­
ing a reset switch the latch relay drops out and the unit can begin to 
opera te again. 

The truth value of a complex expression is automatically tested simply 
by determining whether the corresponding electric circuit is open or 
closed. The solution time on this machine is a function solely of the 
number of basic variables and is independent of the kinds or number of 
logical connectives. 

Application of the Decision Machine. \Vhenever information 
(whether it be in law or business) is unambiguous and can be formu­
lated in terms of sentences connected by the truth functional connectives, 
then that information can be processed automatically on a logic machine 
for the following kinds of analysis: 

1. To determine whether or not the information is logically consistent, 
that is, whether or not it contains a contradiction. 

2. To make decisions about logical implication; that is, to decide 
whether some arbitrary information is logically implied by other given 
information. The machine can do this because logic tells us that "B" is 
logically implied by "A," if "A implies B" is a tautology. 

3. To determine whether two classes of information are logically 
equivalent. Since there is a sameness of structure between the type of 
logic that this machine can handle and the electrical properties of switch­
ing circuits, the machine can be programmed to determine whether two 
different switching circuits are electrically equivalent. 

EXAMPLE. To illustrate one type of problem which the decision 
machine can handle, consider the following. Assume that information 
A, which is contained in sentences 1 through 5, is true. 

1. If the 1958 financial report for the Acme Electronics Co. indicates 
a net gain, then basic research at the company will be increased, and 
either a stock dividend will be declared or employee benefits will be 
increased. 

2. If, however, the 1958 financial report does not indicate that Acme 
has enjoyed a net gain, then either plant P will be closed or a govern­
ment contract will be obtained for Acme. 



11-08 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

3. There will be no government contract without an increase in basic 
research at Acme, and basic research cannot be expanded without an 
increase in scientific research personnel. 

4. If it is the case that either employee benefits are not increased or 
the company prestige drops, then it will be impossible to obtain new 
scientific personnel. 

5. The prestige of the Acme Electronics Co. will fall if and only if the 
stockholders do not obtain a stock dividend. 

Given this information, determine whether the following information 
is true: 

Dl If plant P is closed, then the financial report did not indicate a net 
gain. 

D2 If there is no stock dividend, then basic research at Acme will not 
be increased. 

One notes that the above information is made up of eight basic or 
atomic sentences. These sentences are the following: 

p = The 1958 financial report for the Acme Electronic Co. indicates a 
net gain. 

q = Basic research at Acme Electronic Co. will be increased. 
r = A stock dividend will be declared. 
s = Employee benefits will be increased. 

= Plant P will be closed. 
u = A government contract wi1l be obtained for Acme. 
v = Scientific research personnel at Acme will be increased. 
w = The prestige of the Acme Electronics Co. will fall. 

These elementary sentences are put together by means of logical con­
nectives such as not, or, and, and if, then so as to make the information 
previously stated. The information merely has to be programmed on 
the control panel, and in approximately 30 seconds, the machine tells 
us that D2 is true since it logically follows from the input information 
A, whereas Dl does not logically follow from A. Many other decisions 
are also possible on the basis of the input information A-it is not limited 
to Dl and D 2 • 

Automatic Programming (Ref. 24). In 1953 a small multiplier­
accumulator was built which was controlled automatically by a logic 
machine so as to solve elementary probability problems (see Ref. 6). It 
can compute the probability of occurrence of any logical combination 
of n independent events El to En, for example (E 1 and not E 2 ) if and 
only if (Eg and not E4 or E 5 ), given the probabilities for the individual 
events. 



HANDLING OF NON-NUMERICAL INFORMATION 11-09 

The initial probability values are set up by means of selector switches 
on the multiplier. Each switch is gang-connected so that if a probability 
p is set up on one switch, its complement 1 - p is automatically set up. 
The combination logic machine and multiplier-accumulator operate in 
the following manner. Assume the problem is to compute the probability 
of occurrence of the event El and either E2 or not E 3 • The problem is 
programmed on the machine, and the probabilities p, q, and r associated 
with the events E l , E 2 , and E3 are set on the multiplier selector switches. 
The logic machine begins to examine all 2n combinations of the n 
variables. 

A single built-in program for the multiplier consists of the operation 
"multiply and accumulate." As the logic machine goes through the 2n 

cases, it gives a signal for all cases that are logically compatible with the 
original expression, that is, for all cases where the programmed expression 
is true. When the multiplier-accumulator receives the true signal, it 
multiplies the corresponding probabilities (or their complements) and 
accumulates the result, as shown in Table 3. When the machine has gone 

TABLE 3. PROGRAMMING OF PROBABILITY PROBLEM 

Case 
1. El and E2 and E3 
2. El and E2 and not E3 
3. El and not E2 and E3 
4. El and not E2 and not E3 
5. Not El and E2 and E3 
6. Not El and E2 and not E3 
7. Not El and not E2 and E3 
8. Not El and not E2 and 

not E3 

Logical 
Value 
True 
True 
False 
True 
False 
False 
False 
False 

Action 
Multiply p, q, r and accumulate 
Multiply p, q, 1 - r and accumulate 
Do nothing 
Multiply p, l-q, l-q and accumulate 
Do nothing 
Do nothing 
Do nothing 
Do nothing 

through 2n cases the final probability value in the accumulator is dis­
played. 

Limitations. A logic machine has limitations for handling ordinary 
language. The larger part of the language that is used in science and 
everyday life is so complex and vague that it cannot be mapped into 
the language of the sentential calculus for subsequent handling. In 
many cases, the logical structure within a sentence must be analyzed in 
order to determine the logical relationships of consistency, implication, 
equivalence, validity, etc., and for such linguistic situations this type of 
logic machine would be inadequate. 

Because most of logic and mathematics involves problems in which 
there are no decision procedures, and because in those cases where they 
do exist they are so complex as to be impractical, the usual proof pro-



11-10 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

cedure consists in free derivations rather than the evaluations by decision 
procedures. 

Proof by Free Derivation 

Method. Starting with (1) an initial set of axioms and those theorems 
already proved and (2) a set of inference rules, the inference rules are 
then applied sequentially until the desired expression results. Thus the 
proof is the sequence leading from the initial axioms to the final result 
or theorem via continued application of the few inference rules. 

Inference Rules. The most common inference rules in logic are those 
of modus ponens and of substitution. Modus ponens states that if A is an 
axiom or theorem and "A implies B" is an axiom or theorem, then B is a 
theorem. Substitution permits the substitution of any expression for any 
variable in any theorem, provided that the substitution is made uniformly 
throughout the theorem wherever the variable appears. 

Inference rules are not strict prescriptions as to how to proceed, but 
rather descriptions of operations that are allowable, so consequently, 
there are no explicit rules dictating in what sequence they are to be used. 
The inference rules are used in a groping fashion, by trial and error, by 
intuition, by creative insight, until the desired expression turns up. Even 
though an expression is a theorem there is no guarantee that it will be 
found, with the technique of free derivation. The only guarantee is that, 
if a chain is found leading from axioms and theorems via the inference 
rules to the desired expression, the expression in question must be a 
theorem. 

The Mechanization of Deductive Procedures 

Newell, Shaw, and Simon (Ref. 10) have programmed this method of 
free derivation on a high-speed digital computer, the J ohnniac for which 
the sentential calculus is used as the logical language. Programs have 
been written for the J ohnniac for deriving theorems by the technique 
of free derivation. The machine is supplied (1) an axiom set for the 
sentential calculus (taken from 'Vhitehead and Russell (Ref. 11), (2) a 
set of three inference rules, and (3) some general operating guides called 
heuristics, which describe to the machine how to grope for proofs. For 
example, in attempting to find a proof for some expression B, the machine 
is instructed to look among its list of axioms and theorems for" A implies 
B" and if that can be found, then to look for A in the list of theorems. 
If, however, the machine can find "A implies B," but cannot find A, then 
it executes a routine which searches for some other expression C which is 
similar to A; the machine has rules instructing it how to transform C in 
an attempt to obtain A. 



HANDLING OF NON-NUMERICAL INFORMATION II-II 

Thus a machine can be supplied with strategies to follow in order to 
be efficient in groping. 'Vith improved heuristics and machine strategies 
it is hoped that the "proving" capabilities of the machine will be im­
proved. 

3. GAME PLAYING MACHINES 

Approaches. During the past decade a variety of small-scale game 
machines has been developed. There have been Nim machines (Ref. 12), 
Tic, Tac, Toe machines, a machine to play Hex, and coin matching ma­
chines (Ref. 13). The last machines will play the game of matching 
coins with a human opponent by using a strategy that searches for pat­
terns in their human opponents' betting behaviors. They have racked 
up a remarkable ratio of wins to losses. There also has been much 
interest in programming a general purpose digital computer to play other 
more complex games, in particular, checkers and chess (Refs. 14, 15). 
Strachey, in England (Ref. 16), has programmed checkers on the Man­
chester machine, which played a very good game, and in this country 
a modified form of chess has been programmed on the Maniac with 
good results. 

The Analogy between Logic and Games. Many games and puzzles 
are reducible to simple problems in logic, and consequently there is an 
analogy between the two. 'The analogy between chess and sentential 
calculus is shown in the following table: 

Sentential Calculus 

Inference rules of logic 
Initial axioms 
Theorems 
Theorem derivation 

Chess 

Rules for moves 
Initial position of pieces 
Subsequent arrangement of pieces 
Allowable sequences of moves 

To complete the analogy the following two problems might be con­
trasted: (1) determining whether some arbitrary arrangement of 
pieces on the chess board could be arrived at by use of legal moves and 
(2) determining whether an arbitrary expression in sentential calculus is 
a theorem. For example, any position with both black bishops on squares 
of the same color would be an impossible arrangement unless a pawn 
had been promoted. 

Machine Methods of Solution. Most games have a discrete nature 
and the positions and moves can be described precisely. Hence, it is 
relatively easy to (1) build a special purpose game machine with digital 
equipment or (2) program games on a general purpose digital computer. 
Such machines can be made to execute legal moves for almost any game. 



11-12 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

The real problem is to have the machine playa competent game, that is, 
to use a good strategy of play. For many games a complete mathematical 
theory has been developed which describes an optimal strategy, and in 
such cases it is possible in principle to have a machine play an optimal 
game. For games whose mathematical theory is relatively simple as, for 
example, the game of Nim, it is relatively simple to build a machine which 
will play the best possible game against any opponent. Thus, just as a 
machine can decide automatically whether an expression is a theorem 
given a decision procedure, so also a machine can play an optimal strategy 
given a mathematical theory of the game. Because of the enormous 
storage requirements and the lengthy computing time, it is not practical 
to build machines for games such as chess whose optimal strategy is very 
complicated, even though this is possible in principle. 

Consider now those games for which no mathematical theory has been 
developed and games with complicated optimum strategies. In such cases 
it is possible to develop heuristic methods which will guide the machine 
along the path of a reasonably good strategy. Such general principles 
of play correspond to the general principles of derivation that Newell 
et al. (Ref. 10) have used to derive theorems on the Johnniac. Again, 
there is no guarantee that the machine will win a game, but if the designer 
(programmer) has a good insight into the game, he will be able to formu­
late a reasonably good machine strategy. 

Programming Chess on a General Purpose Computer. Kister, 
Stein, Ulam, Walden, and Wells (Ref. 17) performed a series of experi­
ments in which a modified form of chess was played on the Maniac I. 
The game is played on a 6 by 6 board, omitting the bishops and using 
6 pawns on each side. Castling is not allowed, but the promotion of a 
pawn is allowed. The machine is programmed to "look ahead" two moves, 
that is, two by white and two by black. The machine considers for each 
legal move of its pieces the possible consequences in terms of the oppo­
nent/s counter moves, and for each of those subsequent arrangements it 
considers again the consequences of its very next move. The number of 
chains that must be examined is very large even for a 6 by 6 game with 
only two looks ahead, and it requires an average of 12 minutes for the 
Maniac to consider all such chains. 

The real problem is to program the computer to make an evaluation 
for each chain it examines, so as to be able to select the most promising 
alternative. Two basic criteria have been used for evaluating the posi­
tion for each chain of four moves: (1) material advantage and (2) mo­
bility (see Ref. 17). Material advantage involves an evaluation of the 
kinds and numbers of pieces that result after any exchanges for each 
chain. A minimax method is used to evaluate mobility in terms of the 



HANDLING OF NON-NUMERICAL INFORMATION 11-13 

number of legal moves available to the player after the first, second, and 
third moves of the chain. Although these evaluation techniques might 
appear crude, the above machine could be compared to a human player 
who has average aptitude for the game and experience amounting to 20 
or so full games played. Clearly the maehine eould play an even better 
game if it were able to look "three deep" instead of two, and this would 
be quite feasible with a faster machine. 

If the machine is to playa better game, an improved method of evalua­
tion might be programmed, but the problem of describing evaluation 
criteria in precise and unambiguous language is extremely difficult. A 
competent chess player can make an evaluation of a chess move, but it 
is not something that he can easily describe in precise language; such 
a description is required if a computer is to be programmed. A chess 
master is able to look many many moves deep (sometimes as much as 
20 moves in depth), but he certainly does not consider all possible chains 
in such detail. Rather he is able to weight the chains intuitively as he 
proceeds to examine them. He quickly rejects those which do not look 
promising and examines only the most promising chains in detail. Per­
haps this method of weighting the chains could be formulated so that 
a machine also could concentrate preferentially on the highly weighted 
alternatives while quickly rejecting the others. 

The use of a general purpose computer as a chess playing device seems 
to be one good way of empirically verifying the effectiveness of possible 
chess strategies. However, the really valuable aspect of mechanical chess 
is that it provides a wonderful tool with which to experiment and obtain 
data concerning problem solving. 

4. THE MACHINE TRANSLATION OF LANGUAGES (Refs. 18 to 20) 

Code Conversion. The problem of machine translation of languages 
is essentially the problem of code conversion, i.e., the problem of convert­
ing information which is represented in one code to identical information 
represented in a different code. (See Chap. 2.) vVhen dealing with strict 
codes, the conversion problem is relatively simple and straightforward 
to mechanize because there are strict, definite, and explicit rules that 
describe which code patterns are equivalent. 

l\IIuch work has already been done in clarifying the problem of machine 
translation and in obtaining a set of linguistic rules for making a trans­
lation by ma'chine. Most of this work concerns the translation from 
Russian to English. The prospects for good, intelligible, accurate 
translation by means of a digital computer (forgetting for the moment 
considerations of cost, speed, etc.) depend upon the type of information 
to be translated. The primary function of ordinary language as it is 



11-14 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

used in scientific discourse is to convey information, and the prospects 
of obtaining good machine translations of scientific literature are excellent. 

In the case of so-called natural languages, such as English, Russian, 
and German, there is no exact one-to-one correspondence between the 
words of different languages; even if there were, there still would be a 
problem because the conversion must keep meaning invariant and mean­
ing is not a function of words in isolation. Strictly speaking, only sen­
tences have meaning, and the meaning of a sentence is a function of 
the semantic content of its individual words, and the syntactical form 
of the individual words. The content and grammatical function of many 
words vary with their position or order relative to the other words in the 
sentence. Since the "code conversion" must keep the meaning invariant, 
and since meaning is a function of the form, content, and order of indi­
vidual words, a number of linguistic problems must be solved in order 
to have a machine translate from one natural language to another. Three 
of the key linguistic problems are the recognition of individual words, 
the translation of recognized words, and the transposition of translated 
words. 

The Recognition Problem. In a strongly inflected language such as 
Russian, the nouns, verbs, and adjectives may appear in a multitude of 
forms (Ref. 21). That is to say, there are many different kinds of end­
ings which may be attached to the stem of a word in order to indicate 
such grammatical information as number, gender, case, and tense. There­
fore, when a word appears in any of a variety of forms, the primary 
machine problem is that of recognition, i.e., of determining what the word 
actually is, independent of its inflectional ending. 

One computer solution to the problem of recognition is to strip the 
endings off the word in question, letter by letter, until the stem is recog­
nized by comparing it with entries in a "stem dictionary." The endings 
then are compared with the entries in an "ending dictionary" so that 
one has not only the information content of the word but also its gram­
matical function. 

Another solution to the recognition problem concerns the use of a 
paradigm dictionary, one which lists all words with all their inflectional 
forms. This solution requires more machine storage since a paradigm 
dictionary would be much greater in size than a stem and ending dic­
tionary together. However, it might well involve fewer machine opera­
tions in order to recognize any given word. 

The Translation Problem. Once a word has been recognized it must 
be translated, at which point the problem of semantic ambiguity arises. 
Ambiguity arises out of the fact that the same word may have several 



HANDLING OF NON-NUMERICAL INFORMATION 11-15 

meanings. For example, the word "fair" as an adjective may mean 
beautiful and as a noun may mean festival. It may be argued that this 
ambiguity is resolved once the grammatical function of the term in 
question is identified, as for example, when it is known that the word 
"fair" is an adjective. However, an even more subtle ambiguity remains. 
Webster's New Collegiate Dictionary lists fourteen separate and distinct 
meanings for the word "fair" as an adjective (it may mean beautiful, 
plausible, gracious, ample in size, desirable, elegant, light, blond as 
opposed to brunet, impartial, clean, etc.). 

Studies have indicated that the semantic ambiguity of a word can be 
reduced considerably when the word is viewed in context. Usually knowl­
edge of the preceding word or the subsequent word helps to reduce the 
ambiguity enormously. In order for a machine to eliminate semantic 
ambiguity it would have to "know" hundreds of rules concerning the 
kinds of nouns which follow certain prepositions, the kinds of adjectives 
which give specific meaning to certain nouns, etc., and these rules have 
not yet been formulated. In order to determine how context reduces 
ambiguity in particular instances, it would be necessary to do an 
elaborate analysis of language as it is ordinarily used. But given such 
rules a machine could be instructed to select the proper meaning for 
a word in a particular instance as a function of the other words used 
with it. 

The Transposition Problem. It is often necessary to transpose the 
linear order of terms so as to preserve the meaning of a sentence when 
translating from one language to another. In the case of a highly 
inflected language such as Russian, this transposition (at least in the 
case of scientific Russian) is not critical since a straight word-by-word 
translation is usually quite intelligible. However, in the case of German, 
for example, meanings will be lost in the translation of words alone; it is 
necessary to transpose the order of the German into the usual word 
order of English (i.e., subject before verb, adjective before noun, and 
direct object after verb). 

This problem of automatically reordering the words from the German 
to grammatically correct English can be best carried out clause by clause 
(Ref. 22). That is, the individual terms must be unscrambled within 
their respective clauses. Thus there are two aspects to this problem: 
(1) recognizing the beginning of a clause, the end of a clause, and the 
type of clause; (2) recognizing the grammatical function of each word 
in the clause and rearranging the words so that they will conform to the 
standard order in which they would appear in an English clause of the 
same type. 



11-16 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

5. AUTOMATIC LITERATURE SEARCHING 
AND RETRIEVAL 

Library Problem (Ref. 25). With the increasing rate of publica­
tions of all sorts, libraries are growing at an exponential rate. It is be­
coming increasingly difficult to find all and only the relevant information 
on a specific subject matter in a relatively short time. Automatic search 
and retrieval systems would be a boon not only to technical and scientific 
libraries but also for patent searching, legal searching (i.e., to find a 
precedent), medical searching, etc. The possible applications are mani­
fold, and they are all variations on the 'same theme, viz., the use of 
machines to store, search for, and retrieve information. 

Need for an Indexing System. The central linguistic problem in 
automatic literature searching is that of identifying similar meanings in 
information usually formulated in ordinary language with all its vague­
ness and ambiguity. At the library, both the man who requests the ma­
terial and the author who produces it have formulated their meanings 
in the same ordinary language. The problem is to determine automati­
cally whether the subject of the request is the same as, or close to, that 
contained in the various books, journals, etc., of a library. Because, at 
least for some time to come, no machine can actually read a document 
and decide whether or not its subject matter relates to some given 
requested subj ect, it is necessary to use some intermediate identifying 
tags, viz., an indexing system. 

An index to a document is a code which provides a tag by means of 
which one can identify the subject content of the document. The index­
ing system of a library is the common language which the library uses 
to match the language of its documents with the language of the users. 
Then the only remaining task is to compare the indexes associated with 
the documents with those associated with requests and to retrieve those 
documents for which there is a match. 

Nature of an Index. What is the best method of indexing? One 
approach is to divide all information (knowledge) into subject classes 
and then continually subdivide these classes until one arrives at very 
specific subject classes; then assign codes (addresses) to the subject 
classes and search for specific information by searching within these 
groups. This is classification indexing as represented by the Dewey deci­
mal system, Library of Congress system, universal decimal system, etc. 

It is extremely difficult to divide all knowledge into exclusive and 
exhaustive classes, and therefore an alternate indexing system known 
as coordinate indexing has developed. Coordinate indexing assumes 
that any subject matter can be identified as a point in an n-dimensional 



HANDLING OF NON-NUMERICAL INFORMATION 11-17 

meaning space where the coordinates of the point in question are one or 
many freely chosen terms (coordinates). For example, with the method 
of coordinate indexing, one might index Shannon's book on communica­
tion theory with the following set of terms (meaning coordinates): 
information theory, coding, error control, noise, entropy, Shannon, etc. 

Both classification and coordinate indexing have serious limitations 
as to their capability for adequately representing the subject content 
of a document. 

Mechanized Systems. Once a set of indexes has been assigned to 
each document it can be encoded into digital form, put on a suitable 
machine medium, and scanned automatically. For example, a punched 
card could contain indexes along with an accession number for the docu­
ment. A duplicate card could be prepared for each different index of a 
document, and these could be sorted and stored. Then given any request 
for documents on some specific subject, one could drop the proper pile 
of punched cards into a sorter and search for all those cards which satisfy 
the request. Those cards which are thus retrieved could be fed into a 
tabulator which, in turn, would list the resulting accession numbers. 
Then the actual process of retrieving the documents would be a hand 
process. 

One could put the same information on a continuous medium such as 
magnetic tape (in which case it might not be necessary to prepare a 
duplicate for each different index of a document) and scan the informa­
tion at high speed with a high-speed digital computer (Ref. 26). The 
computer would be programmed to print out all those accession numbers 
which corresponded to a match of their indexes and the given request. 

A further step in this type of mechanization would consist in using 
photographic film, instead of magnetic tape, to allow the document to 
be photographed beside its indexes and thereby save much space and 
provide a copy of the document immediately. In this way the machine 
could scan the film, match indexes with request, photocopy, and thereby 
supply a hard copy of the desired documents as a result of a search. 
Such a system; called the Rapid Selector, has been developed (see Ref. 25). 

A recent variation on the Rapid Selector theme is the Minicard system 
developed by Eastman Kodak Company (Ref. 27). In the Minicard 
system the documents are reduced by a factor of 60 to 1 and copied on 
16-mm film. The film is cut into units (instead of a continuous strip) 
and sorted into cells according to the digital information associated with 
each document image. 

Irrelevant and Incomplete Retrieval. In each of the cases consid­
ered above, a machine searches and retrieves (either a copy of the docu­
ment, an abstract, or an accession number) by matching indexes or some 



11-18 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

logical combinations of indexes with each request. Thus the actual 
matching procedure is a go or no-go affair. A set of indexes either sat­
isfies a request or it does not. There is no middle ground. On the other 
hand, the correspondence between the information content of a docu­
ment and its set of indexes is not exact, for it is extremely difficult to 
specify precisely the subject content of a document by means of one or 
a set of indexes. Furthermore, the correspondence between the user's 
request, as formulated in terms of one or many indexes, and his real need 
(intention) is not exact. Thus there is "semantic noise" in both the index 
and in the user's request. The machine, however, is used to match the 
indexes and the request exactly. As a consequence of this the result of 
a search provides documents which are irrelevant to the real need and, 
even worse, some really relevant documents are not retrieved. 

If one "broadens" his request so as to reduce the probability of missing 
a document, he increases the probability of obtaining irrelevant material 
and, conversely, if he "narrows" his request in order to avoid irrelevant 
material, he increases the probability of missing relevant information. 

Other Techniques. One way of reducing the noise which results from 
inadequate indexing is to put a human user in the retrieval loop to func­
tion as a filter. This might be accomplished as follows. A request is 
programmed on a machine and it proceeds to scan its storage to find all 
docum.ents whose indexes satisfy the request in question. At the same 
time, the machine would search a stored cross-reference system and 
print out indexes closely associated with the indexes in the original 
request. Then the machine would display to the user, abstracts of those 
documents which resulted from the original retrieval. On the basis of 
both the resulting abstracts which he could scan quickly on a convenient 
display and the associated indexes that the machine would .supply, the 
user could modify his initial request and make a second "pass" on the 
machine. Hopefully, the result of this second retrieval would converge 
much more closely with his real information needs. 

An automatic searching and retrieval system which employed a much 
improved indexing language might eliminate the need for a human in 
the loop. This indexing language would consist of a standard vocabulary 
and linguistic rules describing which words should be used in which 
combinations to obtain specific meanings. Thus the index to a document 
would consist not merely of sets of words, but, rather, sets of sentences 
formulated in a standard language. In principle, a system that included 
a print reader automatically could read documents, abstract them, and 
translate them to the standard language. 

Given an improved indexing language one would hope to generate 
computer programs which, in effect, would mechanize the notion of rele-



HANDLING OF NON-NUMERICAL INFORMATION 11-19 

vance so that a machine would not only look for an exact match of 
indexes, but would also retrieve items which were not explicitly requested 
but which are relevant to the user's request. 

REFERENCES 

1. G. Walter, The Living Brain, Duckworth, London, 1953. 
2. W. R. Ashby, Design for a Brain, Wiley, New York, 1951. 
3. E. W. Beth, Hundred years of symbolic logic, Dialectica, 1, 311-346 (1947). 
4. W. Mays, C. E. M. Hansel, and D. P. Henry, No~e on the exhibition of 

logical machines at the joint session, July 1950, Mind, 60, 262 (1951). 
5. E. C. Berkeley, Giant Brains, Wiley, New York, 1949, p. 144. 
6. D. M. McCallum and J. B. Smith, Mechanical reasoning, Electronic Eng., 23 

(April 1951). 
7. A. W. Burks, D. W. Warren, and J. B. Wright, An analysis of a logical machine 

using parenthesis-free notation, Mathematical Tables and Other Aids to Compu­
tation, VIII (April 1954) . 

8. W. Miehle, Burroughs truth function evaluation, J. Assoc. Compo Mach., 4 [2], 
189-192 (1957). 

9. C. E. Shannon, A symbolic analysis of relay and switching circuits, Trans. Am. 
Inst. Elec. Eng., 57, 713-723 (1937). 

10. A. Newell, J. C. Shaw, and H. A. Simon, Empirical explorations of the logic 
theory machine: A case study in heuristics, The Rand Corp., 15 March 1957. Also 
Proc. Western Joint Computer Conf., 218-229, Feb. 1957, Los Angeles, Calif. 

11. A. N. Whitehead and B. Russell, Principia 111 athematica, Cambridge University 
Press, Cambridge, England, Vol. I, 1910. 

12. B. V. Bowden, Faster than Thought. Pitman, London, 1953, Chap. 15, Machines 
for the Solution of Logical Problems; Chap. 16, Special-Purpose Automatic Com­
puters; Chap. 25, Digital Computers Applied to Games. 

13. D. W. Hagelbarger, SEER, a sequence extrapolating robot, I.R.E. Trans. Elec­
tronic Computers, EC-5, 1-6, March 1956. 

14. A. Newell, The chess machine: An example of dealing with a complex task by 
adaptation, Proc. Western Joint Computer Conf., 101-107, March 1955, Los Angeles, 
Calif. 

15. C. E. Shannon, Programming a computer for playing chess, Phil. Mag., 41, 
256-275 (1950). 

16. C. S. Strachey, Logical or non-mathematical programmer, Proc. Assoc. Compo 
Mach., 46-49, Toronto, 1952. 

17. J. Kister, P. Stein, S. Ulam, W. Walden, and M. Wells, Experiments in chess, 
J. Assoc. Compo Mach., 4 [2], 174-177 (1957). 

18. Y. Bar-Hillel, Can translation be mechanized? Am. Scientist, 42 [2] (1954). 
19. W. N. Locke and A. D. Booth, Machine Translation of Languages, Technology 

Press of M.LT., Cambridge, Mass., 1955. 
20. "Design Study for an Integrated USAF Intelligence Data Handling System 

Appendix A, Machine Translation of Languages," Submitted by The Ramo­
Wooldridge Corporation, Los Angeles, Calif. to Rome Air Development Center, 
Griffiss Air Force Base, Rome, N. Y. 



11-20 USE OF DIGITAL COMPUTERS AND DATA PROCESSORS 

21. K. E. Harper, Translating Russian by machine, J. Communs., 5 [21, 41-46 
(1955). 

22. V. A: Oswald, Jr., and S. L. Fletcher, Jr., Proposals for the mechanical resolu­
tion of German syntax patterns, Modern Language Forum, 36 [3-4], 1-24 (1951). 

23. M. E. Maron, A decision machine for the sentential calculus, IBM Engr. Lab., 
San Jose, Calif., Tech. Rept. 205.002.018, March 6, 1953. 

24. M. E. Maron, Some remarks concerning automatic programming, IBM Engr. 
Lab., San Jose, Calif., Tech. Memo. 201.071.002, July 27, 1954. 

25. L. Ridenour et al., Bibliography in An Age of Science, University of Illinois 
Press, Urbana, Ill., 1951. 

26. R. H. Bracken and H. E. Tillitt, Information searching with the 701 calcu­
lator, J. Assoc. Compo Mach., 4 [2], 131-136 (1957). 

27. J. W. Kuipers, A. W. Tyler, and W. L. Myers, A Minicard system for docu­
mentary information, Am. Documentation, 8 [4], 246-268 (1957). 

Other References 

F. P. Brooks, Jr., A. L. Hopkins, Jr., P. G. Neumann, and W. V. Wright, An 
experiment in musical composition, I.R.E. Trans. Electronic Computers, EC-6, 175-
181, Sept. 1957. 

C. Cherry, On Human Communication, The Technology Press of M.LT., Wiley, 
N. Y., 1957. 

M. E. Maron, Logic, discovery and the foundations of computing machinery; I.R.E. 
Trans. Electronic Computers, EC-3, 2-7, June 1954. 

A. Oettinger, Programming a digital computer to learn, Phil. Mag., 43, 1243-62 
(1952). 

C. E. Shannon, Presentation of a maze-solving machine, Trans. Eighth Cybernetics 
Coni., Josiah Macy, Jr. Foundation, New York, 1952. 

C. E. Shannon and E. F. Moore, Machine aid for switching circuit design, Proc. 
I.R.E.,41 [101,1348-51 (1953). 

C. E. Shannon, Computers and automata, Proc. I.R.E., 41 [10], 1235-41 (1953). 
N. Wiener, Cybernetics, Wiley, New York, 1948. 



DESIGN OF DIGITAL COMPUTERS 

D. DESIGN OF DIGITAL COMPUTERS 

E. E. Bolles and E. M. Grabbe. Editors 

12. Digital Computer Fundamentals, by W. H. Ware 
13. Techniques for Reliability, by W. H. Ware 
14. Components and Basic Circuits, by N. H. Taylor 
15. Magnetic Core Circuits, by I. L. Auerbach 
16. Transistor Circuits, by I. L. Auerbach 
17. Logical Design, by L. D. Amdahl 
18. Arithmetic and Control Elements, by H. L. Engel 
19. Storage, by D. R. Brown and J. I. Raffel 

20. Input-Output Equipment, by J. K. Brigden 





D DESIGN OF DIGITAL COMPUTERS Chapter 12 

Digital Computer Fundamentals 

I. Digital Computers and Control Systems 

2. Digital Computer Fundamenta Is 

3. Machine Construction 

4. Number Systems and Number Codes 

5. Machine Number Systems 

6. Computer Design Characteristics 

References 

I. DIGITAL COMPUTERS AND CONTROL SYSTEMS 

Willis H. Ware 

12·01 

12·02 

12·07 

12·12 

12·18 

12·25 

12·30 

The digital computer is a device which operates on information, numer­
ical or otherwise, represented in digital form, and it may be regarded 
as an extremely versatile, general purpose information or data handling 
device. The digital computer may be applied to many problems in the 
automation and control field as well as to scientific computation and 
general data processing. However, the choice in a particular application 
between the digital computer or analog computer must always be resolved 
on the basis of suitability, economics, reliability, and similar factors. 
Generally, the digital computer will represent more equipment than the 
analog, but in return will provide more precise results, may achieve a 
solution in shorter time, may be a more versatile and powerful computer, 
will be more readily adaptable to a wider range of problems, and may, 
because of its speed, be able to handle sequentially in time many prob­
lems in a sampled data fashion. 

12·01 



12·02 DESIGN OF DI<;IT AL COMPUTERS 

2. DIGITAL COMPUTER FUNDAMENTALS (Refs. 1,2) 

Block Diagram. A typical general purpose digital computing system 
will include the following sections: an input unit, an output unit, an 
arithmetic and logical unit, one or more storage units, a control unit. 
Figure 1 illustrates a typical set of interconnections between these sections. 

Storage Input/output 

FIG. 1. Block diagram of a digital computing system. 

Input and Output Units. These serve as communication channels 
between the computing system and the external world, which in an auto­
mation or control application may represent people or other machines, 
of a computing nature or otherwise. The input-output section may be 
thought of as a converter, which speaks the language of digital com­
puting machines on the one hand, and speaks the language of the external 
world on the other hand. 

Arithmetic and Logical Unit. This provides the facility for perform­
ing (1) any required arithmetic operations, e.g., add, subtract, divide, 
multiply, sometimes square root; and (2) certain logical f ()perations, 
e.g., transfer of data, other manipulations of data which are nonarith­
mctic in nature. 

The Storage Unit. This serves as a repository for (1) initial infor­
mation, (2) intermediate results during a computation, and (3) completed 
results before they are returned via the output unit to the external world. 
The storage may be thought of as an array of pigeonholes, each of which 
is identified to the machine system by an address (Ref. 3). The address 
of a storage location permits repeated reference to the same pigeonhole 
to make use of any information which may be stored there, or to put new 
information into that location. The address (a number) signifies nothing 
about the contents of a storage location, but merely identifies the location. 

Control Section. This is the master mind of the entire system and 
serves to interpret the statement of the problem to all other parts of the 



DIGITAL COMPUTER FUNDAMENTALS 12-03 

system. Machine systems at their conception are endowed with the 
ability to understand and execute a certain set of instructions. Typical 
instructioml are: multiply, add, bring in information through the input, 
put out information through the output, transfer information from 
arithmetic unit to storage, etc. 

Statement of the Problem to the Machine System. This is a list 
of instructions used in such an assortment and arranged in such a 
sequence. as to cause the computational process to proceed as planned 
by the user. The plan of solution for a problem is called the program 
and its graphical representation, a flow diagram. The statement of this 
program as a list of instructions for the machine to execute is called the 
routine. An instruction specifies to the computer system what is to be 
done and also specifies the location of the data upon which the 
operation is to be performed. The what of an instruction is called the 
operation part and the location of the information to be operated upon 
is specified by one or more addresses. A machine whose instructions 
contain one operation part plus one address is called a single-address 
machine. Instructions which contain more than one address are referred 
to as· two-address, three-address, etc. Figure 2 illustrates the format of 
an instruction. 

IkE--------lnstruction--------H~ I 
I Operation part Address I 

"What" "Where" 

FIG. 2. Instruction format. 

An instruction must be specified to a machine system in a language 
understandable to the system. Since a machine has been organized 
to operate on numeric data, it follows that instructions will also be in 
numerical form. The normal unit of information with which a machine 
system deals is called a word; a word may then represent either a piece 
of data or it may represent one or more instructions, depending upon the 
length of an instruction relative to the length of a word. Some machines 
have one instruction per word whereas others have two instructions 
per word. 

Method of Operation 

Information Input. Two distinct kinds of information must be given 
to a digital computing system: the routine, or list of instructions which 
describes the problem, and the data with which the machine must deal 
in solving this problem. In some machines the data and the routine are 
placed in the same storage, whereas in other machines the data and the 



12-04 DESIGN OF DIGITAL COMPUTERS 

routine are in separate sto"rage devices. In either case the sequence of 
operations which a system goes through is, in broad outline, the same. 

Execution of Instructions. A machine normally executes the list 
of im;tructions sequentially; hence, given the routine and the data, the 
control section when started generally proceeds through the following 
steps: (1) obtains the first instruction in the routine from the storage; 
(2) inspects the operation part of the instruction and interprets it to 
determine what function is to be performed; (3) routes one or more ad­
dresses to the storage device to transfer data to/from the indicated 
location(s) from/to an appropriate source/destination; (4) causes the 
appropriate arithmetic, logical, input, output or other operation to be 
executed; (5) remains quiescent until all parts of the system report back 
that their individual functions have been completed; (6) again refers 
to storage for the next instruction in the routine. This basic sequence 
is repeated for each instruction in the routine, although deviations occur 
under some circumstances. The control routes appropriate signals to 
all other parts of the machine so that the ensemble acts together as a 
unit to carry out the instruction indicated. 

If 1St machine is a single-address machine, each instruction can procure 
only one piece of data from this single address. A series of three single­
address instructions is therefore necessary to carry out anyone of the 
four fundamental arithmetic processes, since each process must obtain 
two factors and store the result. In a three-address machine, the three 
addresses may be used to indicate the locations of the two factors enter­
ing into the arithmetic operation and the third address may be used to 
indicate the location to which the result is to be returned. 

Jump Instructions. Although the control generally proceeds sequen­
tially down the ordered list of instructions, under some circumstances it 
is necessary to depart from the ordered sequence and go to an entirely 
different part of the routine. If this departure is to be executed regard­
less of conditions in the machine at the time of this instruction, such an 
instruction is called an unconditional transfer or jump. However, 
machine systems generally have the ability to detect simple conditions, 
e.g., to detect whether a number is zero or not, to detect whether a 
number is positive or negative. A conditional transfer or branch instruc­
tion calls for a jump to another part of a routine only if a specified con­
dition is satisfied; if unsatisfied, the branch instruction is ignored and 
the control proceeds sequentially. This effectively permits the machine 
to make simple yes-no decisions. The address part of the jump or 
branch instruction (if satisfied) specifies the location of the next 
instruction. 



DIGITAL COMPUTER FUNDAMENTALS 12-05 

Computation Loops. Generally, a program for a problem may be 
regarded as loops of computation (perhaps loops within loops within 
loops, etc.) connected by segments of straight Line or Linear routine. The 
jump and branch instructions are the means by which the machine circles 
each loop the proper number of times and then eseapes from the loop. For 
instance, the computation of the sine from its infinite series expansion 
would contain a loop designed to compute the jih term of this series. 
After the jth term is completed and the new partial sum of the series is 
formed, an auxiliary loop adjusts the instructions in the first loop so 
that when the computation returns to the first loop, it computes the 
(j + 1) st term. Meanwhile, another loop keeps track of the number 
of terms computed and decides when the job is completed. 

Machine decisions are typically used for (1) recognizing the status 
of a problem, (2) controlling the path of computation, frequently on 
the basis of previously computed results, (3) answering arbitrarily com­
plicated questions, such as identification of characters or symbols. 

Typical Machine Instructions. 
1. Arithmetic, consisting of add, subtract, divide, multiply, occasion­

ally square root. 
2. Input-output, which govern the input-output equipment both elec­

trically and mechanically, and cause a flow of information via these 
converters into or out of the machine system. 

3. Logical, which include the jump and branch operation, the transfer 
of data from one location to a second, the extract or mask instructions 
which form a new word by combining selected segments of other words, 
shift instructions which shift the position of data columnwise and thus 
may scale the data. In a shift instruction the address part is not used 
to specify a location in storage, but is used to specify the number of 
places that the data is to be shifted. 

4. Console, which permit manual control of the computing system and 
operator intervention into the automatic operation of the system. 

Computer Equipment 

Input-Output Section (see Chap. 20). If the machine application is 
that of scientific computing or data processing, the input-output will con­
sist of devices for communicating with people; e.g., punched card reader, 
card punch, photoelectric paper tape reader, typewriter, printers, and 
plotters. If the application is one of control or automation, the input­
output may also contain devices for communicating with other machines; 
e.g., analog-digital converters, digital-analog converters, magnetic tape, 
and digital servos. There may also be associated with this section certain 



12-06 DESIGN OF DIGITAL COMPUTERS 

error-detecting or verification equipment to monitor the correctness 
of translation of information from one "language" to another. 

The Arithmetic and Logical Section (see Chap. 18). This typically 
contains (1) an adder to effect the arithmetic process of addition and 
(2) three registers to store the two factors for and the result of an arith­
metic or logical process. A register is a storage device for one word and 
frequently also possesses the ability to step (or shift) its contents column­
wise in either direction. The shift feature is valuable for scaling d'ata 
and for some logical manipulations of information. The adder .Etnd one 
register are frequently associated to form the accumulato~. 'there is 
no standard terminology for labeling the registers of the arithmetic unit. 
In some machines they are referred to as the accumulator, the M-Q (this 
register receives the multiplier in multiplication, the quotient in division) 
and the number register (this register receives the multiplicand in mul­
tiplication and the divisor in division); in others they are merely 
designated by letters or numbers. Some machines also contain additional 
arithmetic or logical equipment for special purposes, e.g., more than one 
accumulator, additional registers for the storage of special information, 
and special equipment to permit extremely high-speed multiplication. 

The Storage Units (see Chap. 19). This contains some device which 
possesses a property capable of storing information and also whatever 
electronics may be necessary to control and manipulate appropriately 
this physical means of storing and retrieving information. Typically, 
the associated electronics for the storage will be amplifiers, pulse control 
equipment, pulse sources, etc. For economic reasons the storage will 
normally be organized in a hierarchy in which a relatively small but fast 
principal storage is supported by a larger but slower secondary storage 
which may in turn be supported by a tertiary larger and slower storage, 
to as many levels as required. 

The Control Section (see Chap. 18). This is the most heterogeneous 
part of the machine. It contains a large amount of equipment to make 
decisions and to remember that certain events in machine operation have 
occurred. The decision-making elements are called gates (Chap. 14), 
which in turn are referred to as and gates, or or gates, according as the 
logical process which the gate accomplishes is the and operation, or the 
or operation of formal logic. The element which remembers that some 
particular event has occurred stores a single yes-no piece of information 
and is called a flip-flop or a toggle (see Chap. 14). An instruction 
counter keeps a running tally of the address in which the instruction 
next to be executed is to be found. If the machine system is executing 
a linear routine placed in consecutive addresses, the counter proceeds 



DIGITAL COMPUTER FUNDAMENTALS 12-07 

through a consecutive sequence of numbers; if a jump instruction occurs, 
the counter will be forced to commence counting at some new origin. 
There must also be a counter to tally the several steps in a multiplication 
or division process or the number of shifts required in a shift instruction. 

The Power Supplies. For large digital electronic' :computers these 
frequently become heavy-current units. It is frequently necessary that 
close regulation be maintained, both under long-term drifts and under 
severe transient load conditions. Although rotating machines have been 
used, magnetically regulated, gas-tube, or solid state power supplies are 
most common. 

The Console. This portion of a digital computing machine system 
serves two functions, which are sometimes physically separated: (1) the 
operating console presents to the operator those manual controls and 
displays of information which an operator needs to control the machine 

,adequately and observe its status; (2) the maintenance console presents 
a complete picture of conditions within the machine and provides the 
maintenance engineer with the ability to effect changes in any of the 
information stored within the machine system. 

Optional parts of the console system are: (1) a rather extensive super­
visory protective system which monitors all power supply voltages to 
verify that these voltages are not too far from nominal values, (2) an 
elaborate system of fusing which often takes such a form that a blown 
fuse automatically turns off machine power and indicates the location 
of trouble, (3) marginal checking facilities by means of which the oper­
ating environment of the system (e.g., supply voltages, temperature, pulse 
rates) can be systematically varied to detect incipient failures and to 
investigate the system's tolerance to drifting components. 

3. MACHINE CONSTRUCTION 

A functional description of a computing system can be realized in 
terms of a number of distinctly different techniques, e.g., mechanical, 
electromechanical, photoelectric, electronic. The nature of the engineer­
ing technique in which the machine is realized will bear heavily on the 
reliability of the completed system and on the speed at which the com­
pleted system operates. 

Mechanical Computers. Desk calculators are not included because 
they do not have the facility for being automatically sequenced through 
a long series of arithmetic and logical operations. 

The Mark I machine, constructed and designed jointly by the Inter­
national Business Machines (IBM) Corporation and Harvard Univer­
sity, consisted principally of mechanical arithmetic devices and it may 



12-08 DESIGN OF DIGITAL COMPUTERS 

be regarded as a mechanical computer. It was automatically sequenced 
from a routine contained on paper tapes; motive power was supplied 
from a central rotating drive shaft. 

Punched Card Machines. Several manufacturers offer lines of equip­
ment in which the unit record of information is a paper card containing 
punched holes. In the equif)ment offered by IBM, the card is 7% in. 
by 3~ in. by 0.0065 in. thick, and contains 80 columns by 12 rows of 
hole positions. The card code (Hollerith code) in which information is 
represented depends on the position and number of punches. Although 
212 or 4096 distinct characters in principle could be represented in each 
column, in practice, a maximum of three punches per column is permitted 
and only a total of 47 characters per column is available. Numeric 
digits are indicated by a punched hole in one of ten possible rows, whereas 
alphabetic and special characters are indicated by two or three punches, 
one or two occurring in the ten numeric positions and one in an additional 
two rows of zone positions. 

In the Remington-Rand equipment line the unit record is again a paper 
card, of the same dimensions, but which is effectively 90 columns by 
6 rows although this is physically arranged on the card as 12 rows by 
45 columns. The code in which information is represented is more 
sophisticated and utilizes combinations of holes in 6 rows to represent 
all the numeric and alphabetic symbols. The IBM and Remington-Rand 
card codes are tabulated in Fig. 3. 

For each of these kinds of cards there is available a line of machinery 
for originating, reading, and manipulating the cards: (1) key punches 
which produce cards from keyboard information; (2) card readers which 
translate punched information into electrical or mechanical signals; (3) 
card punches which are actuated by electrical or mechanical signals to 
produce a new card; (4) sorters which inspect a specified column of the 
card and, on the basis of the information contained therein, physically 
move the card to one of several collection pockets; (5) devices for pro­
ducing a new card identical to an original card; (6) certain other kinds 
of special equipment. Some equipment is available for manipulating 
cards which are physically shorter than full width. In general, card 
speeds vary from 100 to 1000 cards per minute depending on the par­
ticular equipment. 

The IBM Card Program Calculator (CPC) and the Remington-Rand 
409-2 machine are typical of the punched card computers. In each, the 
instruction specifying the operation to be performed and the data to be 
operated upon is contained in punched cards. Each machine provides 
a certain amount of storage and contains a plugboard by means of which 
a large amount of internal electromechanical equipment may be organ-



DIGITAL COMPUTER FUNDAMENTALS 12·09 

ized to effect a wide variety of logical and arithmetic operations. Such 
punched card computers are relatively slow devices, being paced by the 
card-handling equipment which normally operates in the vicinity of 100 
to 150 cards per minute. 

Frequently, punched card equipment, particularly readers and punches, 
finds application in the input-output section of a high-speed electronic 
digital computer. 

Relay Computers. Some general purpose computing machines have 
been built that make use of relay techniques. A series of relay com­
puters known as the Bell relay computers were designed and constructed 
by the Bell Telephone Laboratories. Harvard University designed and 
constructed the Mark II computer with relay techniques for the arith­
metic and logical operations of the machine. Such machines are limited 
in speed by the relay components. 

Electronic Computers. After 1946 a large number of computing 
machine systems appeared which extensively use various electronic circuit 
techniques. These machines are generally the fastest and most powerful 
of the digital computers. The first was the Eniac machine, designed 
and constructed at the University of Pennsylvania. Subsequently, a 
family of machines patterned after the developments at the Institute 
for Advanced Study of Princeton, New Jersey, appeared: the Illiac, the 
Ordvac, the Avidac, the Johnniac, the Maniac, and the Oracle. Com­
mercially, IBM introduced its 700 series of machines; Sperry-Rand 
introduced its Univac and Univac-Scientific series of machines. A 
number of small, medium-priced machines were also introduced on the 
market, among them the series by National Cash Register, the Datatron 
machine by the Electro Data division of the Burroughs Corporation, 
the machines by Librascope, Bendix Computer Division, and others. A 
number of companies have also introduced special purpose machines 
intended to accommodate a restricted class of problems. 

Three Categories of Electronic Machines. 
1. The arithmetic machine, whose principal function is to accomplish 

arithmetic processes, but which in addition must also perform many 
logical types of operations. This class of machines includes most existing 
business and scientific computers and is the type previously discussed 
here. 

2. The logical machine whose function is to handle problems that are 
stated in the language of formal logic, e.g., the Kalin-Burkhart or Truth 
computer. (See Chap. 11.) 

3. The special purpose machines, which include the digital differential 
analyzer, the inventory control machines, the check sorting machines, 
and the ticket reservation machines. 



FIG. 3a. IBM card with Hollerith code. 

N 
I 

o 

C 
m 
Vl 

(j) 
Z 

o 
"T1 

o 
(j) 

~ 
r 
o o 
~ 
-g 
C 
-I 
m 
;;:a 
(f) 



AB.CDEFGH .··.JK~MNOP'QRSTUVWXYZ ... .... , .... ',' 
"-l~~{i-l"i-l;-l;-lZ ~li -1';' ":11 -,i ~li -12-1;-1;-12 ~12 -I; •• -12 -12 lZ.1;-1;-12~.-t; -11 -11 -t; .'. -,i •• 1: -t~ -t21: 12".-12 

>4 >4 ;4 34 ;4 34 ·'4 ;4" 34 ;4 ;4' 34 ;4 •• 14 14 •••• l4 J4 ;~ ••• 34 ' •• 34 •• >4 • ~4 

S6 56 So S6 '6 56 S6 50 !:(, 56 56 ;6 •• ;6 • $6 $6 • 5(i ••• >6 •• '6 '6 • S6 • 56 • 56 $& .56 S& 

is 78 7i 78 7'S 78 7S 7~ 
!t q' H 14 15 

I) ? ~ '1 'i '1 

1Z 12 It 12 1: 12 1= .12 1Z lZ 1: 1:: lZ lZ 1Z 12 12 12 12 12 12 

3. :34 >4 '. ;4 ;4';4 If l4 >. ;4 14 14;4 34 !4 !. '4 >4 >4 i4 ;~ 3. J. '4 ;~ ,'4 14 l~ 34 34 34 34 '4 ;, 

5(} 56 S6 '6' >6 So 56 56 56 5(, 56 56 56 S(, 56 56 >6 ~6 56 56 S6 So 56 . 51> 50 '6 5&" S4 56 1& ~& 5(, 56' ;& S6 

~~%%~~~~~~~h~%~~~~~~~hh~h~~~h~ 

FIG. 3b. Remington-Rand card and code. 

o 
(fi 
=i » 
r-
() 
o 
~ 
""tJ 
C 
-I 
m 
;;0 

"T1 
C 
Z 
o » 
~ 
m 
Z 
-I » r­
til 

N 
I 



12-12 DESIGN OF DIGITAL COMPUTERS 

The Digital Differential Analyzer (see Chap. 28). This differs from 
the general purpose arithmetic machine in that it is very highly organ­
ized internally so that efficient use is made of equipment. This machine 
accomplishes the mathematical operation o'f integration by making use 
of a num<trical approximation to it. It is therefore competitive with 
analog types of differential analyzers and accommodates the same class 
of problems. It provides for more precision in the results, and, generally, 
for a given amount of equipment it provides a larger number 'of inte­
grators than the analog system. As many as 100 integrators are 
typical. 

The digital differential analyzer also differs from the general purpose 
arithmetic machine in that it represents information in a different form. 
Frequently, information in the digital differential analyzer is repre­
sented in incremental form as a train of pulses, whereas in arithmetic 
machines digital information is usually represented by the relative 
position of an electric signal. 

4. NUMBER SYSTEMS AND NUMBER CODES (Refs. 2 and 4) 

Number Representation. Care must be taken to distinguish between 
two different meanings of number. Formally, a number is an abstract 
mathematical entity which is a generalization of a concept used to indi­
cate quantity, direction, etc. In this sense a number is independent of 
the manner of its representation. Commonly number is taken to mean 
a representation in a specific number system of a quantity as above 
defined. In the following discussion number is used to refer solely to the 
abstract mathematical entity, whereas a representation of a number 
in . a particular number system will be called a numerical expression. 

A number is independent of its manner of representation, and there­
fore, since counting may be accomplished in any number system, rules 
must exist for transforming a numerical expression in one system to the 
equivalent numerical expression in any other system. 

Modern notation for a numerical expression makes use of the concept 
of positional notation. In a given number system there is a specified 
number of permitted symbols which may be used to indicate entries in 
the system, e.g., the decimal number system contains 10 digits. The 
number of symbols permitted in a system is called the base or radix of 
the system. A number N may be expressed in the number system of 
radix R in the following form: 

N =<: ••• +a4R4 + a3R3 +a2R2+ alR 1 + aoRo+ a_lR-l + a_2R-2+ a_3R-3 + ... , 
-----Integral part,---'---- ---Fractional part---



DIGITAL COMPUTER FUNDAMENTALS 12-13 

where the ai < R and it is agreed that this expression is to be written as 

The magnitude represented by a particular value of ai depends not only 
on ai itself but also upon its position with respect to the point which is 
the mark separating the integral and fractional parts. 

EXAMPLE. 

555 = 500 + 50 + 5 

= 5 X 102 + 5 X 101 + 5 X 10°. 

Here a2 = al = ao = 5, but the same symbol represents magnitudes of 
500, 50, and 5 respectively. Since the digits traditionally used in the 
decimal number system (0, 1, 2, 3, ... , 9) are also commonly used to 
express the digits in any number system of radix less than 10, frequently 
a subscript (written in decimal notation) at the right end of the numerical 
expression is used to indicate the base in use, e.g., 179310 , 17658 , 

11102 , 

A comparison of the first 2010 entries for the binary, octal, decimal, 
and hexadecimal systems is shown in Table 1. In the hexadecimal sys­
tem, six additional symbols are necessary, and letters have been used. 

TABLE l. A COMPARISON OF NUMBER SYSTEMS 

Decimal Binary Octal Hexadecimal 
0 0 0 0 
1 1 1 1 
2 10 2 2 
3 11 3 3 
4 100 4 4 
5 101 5 5 
6 110 6 6 
7 111 7 7 
8 1000 10 8 
9 1001 11 9 

10 1010 12 A 
11 1011 13 B 
12 1100 14 C 
13 1101 15 D 
14 1110 16 E 
15 1111 17 F 
16 10000 20 10 
17 10001 21 11 
18 10010 22 12 
19 10011 23 13 
20 10100 24 14 



12-14 DESIGN OF DIGITAL COMPUTERS 

Note that the symbol 10 (not to be pronounced ten) specifies a magni­
tude representing the radix of the system. The correctness of this 
table is easily verified by writing any entry in positional notation. In 
base 101o : 

2010 = 2 X 101 + 0 X 10°110 = 1 X 24 + 0 X 23 + 1 X 22 

+ 0 X 21 + 0 X 2°110 ~ 101002 

= 2 X 81 + 4 X 8° 110 ~ 248 

= 1 X 161 + 4 X 16°110 ~ 1416. 

Care must be taken because of the equality sign to see that a uniform 
number system is used on both sides of an equation; e.g., 810 could not 
appear in an octal expression nor 210 in a binary expression. 

Conversion from One Base to Another (Ref. 5) 

Whole Numbers. 
Base R to Decimal. To convert a number in base R to its equivalent 

in decimal, write the number in its base R form but with decimal nota­
tion. Expand the resulting decimal expression. 

EXAMPLES. 

238 = 2 X (10)1 + 3 X (10)°18 

~ 2 X (8)1 + 3 X (8)°110 

16 + 3110 

1910. 

1416 = 1 X (10)1 + 4 X (10)°116 

~ 1 X (16)1 + 4 X (16)°110 

16 + 4 110 

2010. 

Decimal to Base R. To convert a decimal numerical expression to its 
equivalent in base R: (1) divide the given numerical expression by the 
new base, performing the arithmetil:l in the decimal system; (2) the 
remainder is ao in the new expression; (3) with only the integral part 
from the previous operation, again divide by the new base; (4) the 
remainder is a1 in the new expression; (5) continue this process until the 
division produces only a remainder; (6) this will be the final ai in the 
new expression. 



or 

DIGITAL COMPUTER FUNDAMENTALS 

EXAMPLE. 

5510 = ... ai X 2i + ... + a323 + a222 + al2l + ao2°11O 

55 1 
2" = 27 + "2 : ao = 1 

27 1 
2" = 13 + "2 : a1 = 1 

13 

2 

6 

2 

3 
2 

1 

2 

1 
6 +"2 : a2 = 1 

o 
3 +"2 : a3 = 0 

1 
1+"2: a4 =1 

1 
0+-

2 
: a5 = 1 

5510 ~ as a4 a3 a2 al ao 
=11011b 

10 

12-15 

~ 1 X 25 + 1 X 24 + 0 X 23 + 1 X 22 + 1 X 21 + 1 X 2° 110 

= 32 + 16 + 0 + 4 + 2 + 1 110 
= 5510. 

Arithmetic Operations. If the arithmetic operations have to be carried 
out in the new base, the same processes work but the expressions must 
be transliterated into the new base before performing arithmetic. 

EXAMPLE. (Refer to Table 1 for equivalences.) 

Conversely, 

7510 = 7 X 101 + 5 X 10°110 

~ (0111) X (1010)1 + (0101) X (1010)°12 

= 1000110 + 0101k 

= 1001011k 

1001011/1010 = 0111 + 0101/1010 : ao = 010b ~ 510 

0111/1010 = 0 + 0111/1010 : al = 011b ~ 710 

~ 7510. 



12-16 DESIGN OF DIGITAL COMPUTERS 

It should be noted that integers of finite length always convert to integers 
of finite length. 

Fractional Numbers. The powers of the radix now appear in the 
denominator, i.e., 

0.34510 = -to + rto + nfool1O 
= 3 X 10-1 + 4 X 10-2 + 5 X 10-3 110. 

Decimal to Base R. Accordingly, to convert from a decimal fraction 
to one in another base: (1) multiply the decimal fraction by the new 
base, performing the multiplication in the decimal system; (2) the 
integral part is the a -1 in the new expression; (3) with only the frac­
tional part from the previous operation, again multiply by the new base; 
(4) the integral part is the a_2 in the new expression; (5) continue until 
the process terminates or until sufficient precision is achieved. Con­
versely, to convert a base R fractional into decimal, express the fractional 
in its base R form but use decimal notation and expand the resulting 
decimal expression. 

EXAMPLES. 

but 

0.110b --+ 1 X 2-1 + 1 X 2-2 + 0 X 2-3 + 1 X 2-4 110 

0.610 

~ + 1- + 0 + /6 110 
_ 13 • 
- 1610' 

0.6 X 2 = 1.2 : a-I = 1 

0.2 X 2 = 0.4 : a-2 = 0 

0.4 X 2 = 0.8 : a-3 = 0 

0.8 X 2 = 1.6 : a-4 = 1 

0.6 X 2 = 1.2 : a-5 = 1 
etc. 

0.610 --+ 0.10011 .. ·2. 

Rational fractions will convert to repeating fractions where a finite 
fraction is considered a degenerate case of a repeating fraction. Irra­
tional fractions will convert to infinite fractions. 

EXAMPLES. 

-to = 0.610 --+ 0.1001 1001 1001···2 

t = 0.333 .. ·10 --+ 0.13 

7r = 3.14159· . ·10 --+ 3.110374· . ·s 



DIGITAL COMPUTER FUNDAMENTALS 12·17 

Mixed Numbers. The integral and fractional parts must be sepa­
rated, converted individually, and reassembled. 

Bases Related as Powers or Roots. In the special case where the 
old and new bases are related one as the power of the other, conversion 
is particularly easy. To convert from the larger base to the smaller 
transliterate digit by digit from the high base to the low base. Con­
versely, use the power which relates the two bases to determine the length 
of groups into which the digits of the lower-based expression is formed, 
and interpret these groups as digits in the higher base. 

EXAMPLE. Base 2 and Base 8: 23 = 8, and therefore the group 
length is 3: 

and 

001 110 111 0102 ~ 16748 

1038 ~ 001 000 0112. 

Reflected Number Systems (Ref. 6) 

In some applications, e.g., analog-digital converters (see Chap. 20), 
it is desirable to avoid the characteristic of normal number systems that 
in counting more than one digit may change at a time, e.g., the transition 
from 999 to 1000. Reflected number systems avoid this difficulty by 
counting first upwards and then downwards in each digIt position in 
turn. Table 2 demonstrates the method of constructing reflected systems. 
Of particular importance is the reflected binary system or Gray code. 
If the true binary number is represented as AnAn-l ... Al and the re-

TABLE 2. A TABLE OF NORMAL AND REFLECTED NUMBER SYSTEMS 

Reflected Normal Reflected Normal Reflected 
Decimal Decimal Octal Octal Binary Binary 

0 0 0 0 O· 0 
1 1 1 1 1 1 
2 2 2 2 10 11 
3 3 3 3 11 10 
4 4 4 4 100 110 
5 5 5 5 101 111 
6 6 6 6 110 101 
7 7 7 7 111 100 
8 8 10 17 1000 1100 
9 9 11 16 1001 1101 

10 19 12 15 1010 1111 
11 18 13 14 1011 1110 
12 17 14 13 1100 1010 
13 16 15 12 1101 1011 
14 15 16 11 1110 1001 
15 14 17 10 1111 1000 
16 13 20 20 10000 11000 



12-18 DESIGN OF DIGITAL COMPUTERS 

flected binary number as anan-l •.• al, then one set of rules for con­
version is: 

1. To find ak, add mod 2 (i.e., the carry is discarded), the digits Ak 
and A k + l . Notice that an always equals An. 

2. To find A k, add ak through an, divide by 2, and the remainder 
is Ak • 

Other rules can be formulated which avoid the arithmetic operations, 
but, which may require the new number to be formed sequentially start­
ing from the most significant digit. 

5. MACHINE NUMBER SYSTEMS 

Binary Coded Systems (Ref. 2). Storage devices are not presently 
available which are wholly satisfactory for number base systems higher 
than 2. Computing machines are therefore commonly organized to do 
arithmetic in the binary number system. If necessary to design a machine 
which is internally decimal or higher base than 2, the high base informa­
tion is encoded in terms of binary digits. Although only 3.32 binary 
digits are required to express one decimal digit, practically, this must be 
rounded to four, and the resulting inefficiency of approximately 20 per 
cent must be accepted. 

For the decimal system, ten distinct symbols are necessary. A tetrad 
of binary digits has 2 X 2 X 2 X 2 or sixteen possible configurations 
and may be used to encode the decimal digits. Some ten of the sixteen 
possible combinations are selected to represent the decimal digits, and 
the balance is discarded. Of the approximately 1010 such codes (the 
permutations of 16 things taken 10 at a time) only a small number have 
found practical application. 

Machines that are so organized that decimal information is internally 
represented in terms of binary tetrads are referred to as binary coded 
decimal machines. If decimal information as well as alphabetic informa­
tion must be accommodated, such a machine is called alphanumeric or 
alphameric and represents information in sextuples of binary digits. One 
alphanumeric code would be to use the first 10 natural binary numbers 
for the decimal digits, the next 26 to represent the alphabet and as many 
more as necessary to represent punctuation and special characters .. The 
unused of the 26 (= 64) sextuples are discarded. 

Factors Determining the Choice of a Code. Such things are consid­
ered as efficiency of storage requirements, ability to detect errors, ability 
to correct errors, convenience in arithmetic operations such as comple­
menting, no code groups without at least a single 1, the same number of 
l's in each code group, the minimum number of l's in the complete code, 
and convenience to human beings. 



DIGITAL COMPUTER FUNDAMENTALS 12-19 

Weighted Codes. The ten combinations to be used may be so 
selected that if weights are assigned to each column of the binary tetrad, 
the decimal value of that tetrad may be found by adding up the weights 
of those columns in which a binary 1 appears. A simple example of a 
weighted code (see Table 3) is one in which the four columns of the 

TABLE 3. WEIGHTED CODE 

Decimal 8, 4, 2, 1 Code 
0 0 0 0 0 
1 0 0 0 1 
2 0 0 1 0 
3 0 0 1 1 
4 0 1 0 0 
5 0 1 0 1 
6 0 1 1 0 
7 0 1 1 1 
8 1 0 0 0 
9 1 0 0 1 

tetrad have weights 8, 4, 2, 1. This expresses the decimal digits as the 
first ten binary natural numbers. A list of 70 weighted 4-bit codes is 
given by Richards (Ref. 2). Other common weighted codes are the 5, 4, 
2, 1; the 2, 4, 2, 1; the 5, 3, 1, 1. It is not necessary that the weight be 
a positive integer, e.g., 7, 4, -2, -1. The representation of the decimal 
digits in these codes is exhibited in Table 4. The sum of the positive 
weights must be 9 or more. 

TABLE 4. EXAMPLES OF WEIGHTED BINARY CODES 

Decimal 5,4,2,1 2,4,2,1 5,3,1,1 7,4, -2, -1 
0 0000 0000 0000 0000 
1 0001 0001 0001 0111 
2 0010 0010 0011 0110 
3 0011 0011 0100 0101 
4 0100 0100 0101 0100 
5 1000 1011 1000 1010 
6 1001 1100 1001 1001 
7 1010 1101 1011 1000 
8 1011 1110 1100 1111 
9 1100 1111 1101 1110 

Nonweighted Codes. Sometimes it is desirable to use a 4-bit code 
to which weights cannot be assigned. One such code which has received 
fairly extensive application (see Self-Complementing Codes) is the 
excess 3 code shown in Table 5. In it the decimal digit D is represented 
as D + 3 in the 8, 4, 2, 1 code. Thus the group 0000 which might 



12-20 DESIGN OF DIGITAL COMPUTERS 

TABLE 5. 

Decimal 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

EXCESS 3 CODE 

Excess 3 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 

be represented by absence of all signal does not appear; thus absence of 
all signal is readily detected as an error. 

Self-Complementing Codes. The arithmetic process of subtraction 
may be performed by making use of complement representation of nega­
tive numbers (see Negative Numbers). In a binary coded decimal 
machine it is then necessary to form the decimal complement (as opposed 
to binary complement) of the binary tetrad. Generally the decimal 
complement is not the binary complement of the tetrad, except that 
some codes have the property that if l's and D's are interchanged, i.e., 
form the binary l's complement, then the 9's complement of the decimal 
digit is obtained. Such codes must have the property that the algebraic 
sum of the weights is 9. The 8, 4, 2, 1 code is not a self-complementing 
code, but the 2, 4, 2, 1 is. A detailed listing of this particular code and 
its complements are exhibited in Table 6. It should be noted that other 
than weighted codes may exhibit this self-complementing property as, 
for instance, the excess 3 code. 

Higher Than 4-Bit Codes. Groups of binary digits longer than four 
may be used to represent decimal or other information under certain 

TABLE 6. SELF-COMPLEMENTING PROPERTY OF THE 2, 4, 2, 1 CODE 

Decimal Number Complement Decimal 
Digit 2,4,2,1 2,4,2,1 9's Complement 

0 o 0 0 0 1 1 1 1 9 
1 000 1 1 1 1 0 8 
2 001 0 1 1 0 1 7 
3 001 1 Changing 1 1 0 0 6 
4 o 1 0 0 l's and O's 1 0 1 1 5 
5 1 0 '1 1 o 1 0 0 4 
6 1 100 o 0 1 1 3 
7 1 101 o 0 1 0 2 
8 1 1 1 0 o 0 0 1 1 
9 1 11 1 o 0 0 0 0 



DIGITAL COMPUTER FUNDAMENTALS 12-21 

circumstances. The use of extra bits not used for character representa­
tion adds redundancy to the code. This redundancy may be utilized to 
provide error-detecting or error-correcting features (see Refs. 7 and 8). 
One such error-detecting code is generated by adding a fifth bit to any 
of the 4-bit codes, the value of the fifth bit being chosen in such a way 
that the total number of l's present in the resulting 5-bit group is even 
(or odd). Thus a parity check of any code group will detect an odd 
number of errors. See Table 7. (See also Vol. I, Chap. 16.) 

TABLE 7. THE 8, 4, 2, 1 CODE WITH AN ODD PARITY CHECK 

Decimal 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

8, 4, 2, 1 Code 
0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 

8 , 4, 2, 1 Code and 
Parity Bit 

10000 
00001 
00010 
10011 
00100 
10101 
10110 
00111 
01000 
11001 

A 7-bit weighted code is the biquinary code, shown in Table 8. Five 
of the bits are grouped together to form a representation of the decimal 
digits 0 through 4. The other pair of bits indicates the presence of 

TABLE 8. 

Decimal 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

BIQUINARY CODE 

5,0,4,3,2,1,0 
o 1 000 0 1 
o 1 000 1 0 
o 1 001 0 0 
o 1 0 100 0 
o 1 100 0 0 
1 0 0 0 0 0 1 
1000010 
1000100 
100 1 000 
1 0 1 000 0 

decimal 5 or the presence of decimal o. Each code group contains two, 
and only two binary l's. This characteristic may be utilized to inspect 
code groups for errors. 

Arithmetic Processes in Binary Coded Machines. Not all combina­
tions of tetrads (or larger groups) are used, e.g., 10 of 16, and since 



12-22 DESIGN OF DIGITAL COMPUTERS 

the, arithmetic section will treat these groups as true binary numbers, 
special measures will need to be taken when performing arithmetic opera­
tions in a coded machine to prevent the appearance of these invalid 
groups. The corrections are peculiar to the code in question and can be 
deduced by a study of the code. The difficulty of performing arithmetic 
limits the usefulness of some weighted codes and most of the nonweighted 
codes. 

In the 8, 4, 2, 1 code, the first 10 of the 16 code groups are used. The 
corrective procedure for addition is to add 6 (0110) to the preliminary 
sum if it exceeds 9. 

EXAMPLES. 

3 
+5 

8 

0011 
0101 

1000 

Negative Numbers 

6 
+7 

(1)3 
i 

Carry 

0110 
0111 

1101 > 1001 
011 0 Corrective 6 

(1)0011 
i 

Carry 

Negative numbers may be represented in a digital computing system 
in two ways. The conventional way in which people deal with a nega­
tive number (representing it as a magnitude plus algebraic sign) is 
referred to as sign and magnitude notation. The alternative to this repre­
sentation is the complement representation by means of which the arith­
metic process of subtraction is replaced by the arithmetic process of 
addition. 

Complement Representation. In subtracting two numbers N 1 and 
N2 in base R, the process may be rearranged as follows: 

Nl - N2 = Nl - N2 + Rn - Rn = Nl + (Rn - N2) - Rn, 

where n has been chosen so that Rn exceeds the largest expected N. The 
expression (Rn - N 2) is the complement of N 2 with respect to Rn or 
commonly, the complement of N 2 • (See Sign Digit below for representa­
tion of the sign of a complement.) The usefulness of this technique will 
be exhibited by the following examples. 

EXAMPLES. Let 

Nl = 0.769, 

N2 = 0.345. 



Then 

and 

but: 

DIGITAL COMPUTER FUNDAMENTALS 

(10 - N 2) = 10.000 - 0.345 = 9.655 

(10 - Nl) = 10.000 - 0.769 = 9.231 

Sign and As Carried 
Magnitude Out 

0.769 0.769 
-0.345 +9.655 

0.424 ~(--+-) (1)0.424 

0.345 
-0.769 
-0.424 

t 

t 
Carry is discarded 

0.345 
+9.231 

9.576 

t 
Indicates this is a complement. 
Its sign and magnitude repre­
sentation is found by again 
complementing and affixing a 
negative sign. 

Actual 
Meaning 

0.769 
+9.655 - 10 
10.424 - 10 

0.345 
9.231 - 10 

9.576 - 10 

-10.000 
9.576 

-0.424 

t 
10.000 J 

-9.576 
0.424 ~ - 0.424 

12-23 

The (-Rn) which is not carried along in the arithmetic manipulations 
is canceled by a carry from the most significant place of the addition 
process when required. The value of complementing is the replacement 
of subtraction by addition. The arithmetic section need thus have only 
adding properties. Implicit is the assumption that the complement can 
be formed without actually performing subtraction. Consider forming 
the complement of 69 with respect to 100. 

(100 - 69) = (99 - 69) + 1 

= 30 + 1 = 31. 

Since each digit column of 99 contains the largest digit of the decimal 
system, i.e., 9, it can be guaranteed that no borrows can arise in forming 
(99 - 69) and hence, each column of this operation can be handled 
independently. This replaces subtraction with a columnwise logical 
operation. Thus, even the formation of the complement is reduced to a 
logical operation plus an addition. In this example, (99 - 69) = 30 is 
called the 9's complement whereas 31 is the true or 10's complement. 



12-24 DESIGN OF DIGITAL COMPUTERS 

In a binary system, the 1'8 complement is a process of swapping 
l's and O's. The complement of 0101 is 1010 as shown below: 

(10000 - 0101h = (1111 - 0101) + 112 ~ (16 - 5ho = (15 - 5) + 1110 

= 1010 + 1 = 101112 = 10 + 1 = 11110. 

In this example 1010 is the l's complement and 1011 the 2's complement. 
In general, the complement with respect to some power of the base 

is referred to as the true complement, whereas the complement with 
respect to (some power of the base -1) is referred to as the (radix -l)'s 
complement. 

Although complementing simplifies addition and subtraction, it com­
plicates multiplication and division since spurious terms will arise in the 
result. Certain corrective operations must be performed at the end of 
the process in order to eliminate them. (N 1) (-N 2) 12 would be done as: 

(Nd (2r - N 2) = 2rNl - NIN2, 

whereas the desired result is (2r - N 1N 2)' 
Sign and Magnitude Representation. Here the multiplication and 

division proceed smoothly. Multiply or divide the magnitudes of the 
factors and form the sign of the result from an inspection of the signs 
of the factors. Difficulty with respect to addition and subtraction may 
arise. It is not known a priori whether the difference of two numbers 
will be positive or negative. If the minuend enters the arithmetic section 
first and is larger, the sign of the result will be positive and no difficulty 
occurs. If the subtrahend enters first and is larger, the result will not 
appear in its true sign and magnitude representation, but will appear in 
complement form. This behavior is illustrated by noting the action of 
the dials in the carriage of a desk calculator. Upon subtracting a larger 
number from a smaller one, all the dials rotate through zero to produce 
the complement of the sign-magnitude form of the result. 

If a complement form appears in the arithmetic element in this way, 
it must be complemented to return it to the sign and magnitude notation 
for which the rest of the machine system is organized. 

Roundoff (Ref. 9) 

Since multiplication of two numbers n places long may yield a product 
2n places long, a machine may be forced to truncate a number. In so 
doing, it is hoped that a roundoff process can be chosen so that the result­
ant error statistically cancels in an extended computation. 

Rounding must be separately investigated for the number system of 
interest. Generally, it consists of half-adjusting which in decimal adds 
5 (in binary, 1) in the column to the right of the column to be rounded on, 



DIGITAL COMPUTER FUNDAMENTALS 12-25 

Sign Digit 

An algebraic sign must be attached to each number. In binary ma­
chines the leftmost bit is generally reserved for this feature and a common 
choice is 0 for positive, 1 for negative. In decimal machines, the left­
most decimal digit is often used for sign information, and the other 8 
values of the digit (only two are needed for sign information) may be 
used for special purposes. 

The treatment of the sign digit depends on the means of representing 
negative numbers. In sign-magnitude representation, the sign digit does 
not enter into the arithmetic process but is treated separately. In com­
plement representation, the sign digit enters into the arithmetic opera­
tion as though it were a numerical digit. The examples of the paragraph 
on Complement Representation demonstrate this; the sign digit is the 
o or 9 to the left of the point. 

Overflow 

vVithin a machine, the result of an arithmetic operation can exceed 
the range of numbers which it can accommodate. Most machines detect 
such an overflow situation. A machine reaction to an overflow can be a 
console indication, a halt, or an automatic correction procedure. Rules 
for detecting overflow depend upon the manner of representing negative 
numbers. For sign and magnitude machines, it is sufficient to detect a 
carry from the most significant digit column. For a complement machine, 
if numbers N 1 and N 2 are being added, the rules are: 

1. If the sign digits of N 1 and N 2 differ, there cannot be an overflow. 
2. If the sign digits of N 1 and N 2 are alike, there is or is not an over­

flow according as the sign digit of the answer disagrees or agrees with 
the like sign digits of N 1 and N 2. 

6. COMPUTER DESIGN CHARACTERISTICS 

Computing machines may be classified according to a number of 
characteristics. A representative list of the more pertinent, with a short 
discussion of each, follows. 

General Purpose vs. Special Purpose. Digital computing machines 
intended to accommodate the broadest possible class of problems are 
categorically known as general purpose machines. On the other hand, 
one designed to be particularly efficient for a special class of problems 
is known as a special purpose machine. An example of the latter is the 
digital differential analyzer for which the special class of problems is 
ordinary total differential equations. 



12-26 DESIGN OF DIGITAL COMPUTERS 

Serial vs. Parallel. The particular property for deciding whether a 
particular system is serial or parallel is not generally agreed upon. Fre­
quently it is the mode in which the arithmetic unit operates. If suc­
cessive digits of a number are handled in time sequence with the same 
equipment for each digit, the machine is said to perform serial arithmetic. 
If sufficient equipment is provided that all digit columns of a number 
may be operated upon essentially simultaneously, the machine is said to 
perform parallel arithmetic. Binary coded machines may be hybrid 
seriai-parallel machines in that the 4 bits of the coded tetrad may be 
operated upon in parallel, but the successive decimal digits operated on 
in series; serial-serial machines also exist. Serial and parallel may also 
be applied to transmission processes within a machine system. If the 
digits of a word are transmitted essentially simultaneously over parallel 
transmission channels, the machine is said to utilize parallel transmission; 
a machine having serial transmission will transmit the successive digits 
of a word in time sequence over a single transmission channel. Hybrid 
systems may exist. 

Binary vs. Decimal vs. Alphanumeric. A machine system organized 
to perform arithmetic operations in the binary number system is known 
as a binary machine. A machine organized to perform arithmetic 
processes in terms of some binary coded decimal format is known as a 
decimal or binary-coded-decimal machine. Frequently a decimal ma­
chine also includes some binary instructions to provide flexibility in 
manipulating data in logical processes. Some machines have been. 
referred to as octal or hexadecimal machines but they are actually true 
binary machines, in which the binary digits are grouped in triads or 
tetrads respectively and are interpreted as base 8 or base 16 digits. 

A machine organized to deal with 6-bit or larger groups in order to 
accommodate alphabetic and numeric information is referred to as an 
alphanumeric or alphameric machine. 

Type of Storage. A machine system is frequently characterized by 
the nature of the principal internal storage. Generally, a machine system 
will have a hierarchy of storage devices where the most rapid form of 
storage may be thought of as the principal internal working storage, 
supported by slower and more capacious levels of storage. A machine 
whose principal storage is a magnetic drum is termed a magnetic drum 
machine. Alternatively, a machine whose principal internal storage is 
electrostatic might be termed an electrostatic storage machine, and so 
forth. The nature of the secondary storage, tertiary storage, and such 
other levels of storage as may exist, is often not specified in the short 
description of a system. 

Storage may be random access, which implies that the time required 



DIGITAL COMPUTER FUNDAMENTALS 12-27 

to consult any location is essentially the same; or it may be serial access, 
which implies that the locations appear in an ordered sequence and 
hence, the time to consult a location is variable and depends upon when 
the request is received by the storage and possibly upon past history. 
These characteristics may be likened to a pigeonhole file (any hole 
reachable in substantially the same time) and to a tub file respectively 
(the information comes sequentially and waiting time is a function of 
the position of the tub). By extension, random access has come to be 
used to describe storages whose access time may vary but whose maxi­
mum access time is short compared to the interval between successive 
consultations of the storage. Thus, a given storage device may be 
random access for one machine system but serial access for another. 
Further, for a fixed machine system, a given storage may be random 
access for one problem but serial access for another. 

With respect to the rest of the machine, the store may exhibit a 
destructive or nondestructive read process. These imply respectively 
that the act of consulting the storage for a piece of information destroys 
or does not destroy that piece of information within the storage. The 
nondestructive storage has the advantage that a given location may be 
repeatedly read for the same information without any special care in 
programming. 

Word Length. A word is the unit of information usually handled 
within a digital computing system and is measured in terms of the 
number of characters it contains. If the word is constrained to be 
numeric only, then its length will be measured as so many binary digits, 
or so many octal digits, or so many decimal digits, and so forth. If, on 
the other hand, a word may be either numeric or alphabetic or mixed, 
then its length will be measured as so many characters, where a char­
acter may be numeric, alphabetic, or other special symbols. 

A machine may be organized as a fixed word length machine in which 
case all words are of constant length. Alternatively, it may be a variable 
word length machine in which case the beginning and ending of each 
word must be indicated, or an adjustable word length machine in which 
the length of the word may be adjusted to suit the problem. 

If insufficient precision is available from numbers one word in length, 
a machine may be programmed to compute with numbers which are 
actually n words in length. Usually this is done for numbers two words 
long, and such numbers are called double length numbers. 

Number of Addresses per Instruction. A machine system whose 
instructions contain one address per instruction is known as a single­
address machine. Machines whose instructions contain two addresses 
are known as two-address machines, and so forth. It may be that all 



12-28 DESIGN OF DIGITAL COMPUTERS 

of the several addresses in an instruction are not of the same length. 
Commonly an address in the instruction will be capable of referring to 
the entirety of the principal internal storage. Sometimes an address 
within an instruction is used to refer to other parts of the machine as, 
for instance, the registers of the arithmetic unit, a particular one of many 
input-output units, and so forth. Under these circumstances the address 
need not be as long as one intended to refer to the entire principal storage, 
and is sometimes called a degenerate address. Machines with this struc­
ture are sometimes designated as one and one-half address rnachines, 
two and one-half address rnachines and so forth. 

Sometimes an address does not refer to an absolute location in storage, 
but indicates an incremental change from the last-used address. This 
arrangement is referred to as relative address organization. 

Nature of the Control Section. It is possible to organize the control 
section of a digital computer in two broad ways. The synchronous 
machine has a clock within the control section which provides the source 
of all timing signals needed by the machine. All electronic activity in 
the machine is paced by these regularly recurring clock signals, and no 
event occurs within the machine except at one of the clock signals. Be­
tween signals, transient phenomena are allowed to decay. A synchro­
nous machine is sometimes called a clocked rnachine. 

The control may also be organized so that each event within the entire 
system is permitted to proceed at a rate which is governed only by the 
natural time constants of that event. All other events are effectively 
interlocked so that no other may occur until the stated one is complete. 
At that time, the completing event indicates the termination of its cycle 
.and invites, so to speak, the beginning of the next event in sequence. 
This type of organization is referred to as asynchronous control. 

If the events in section A of a computing machine are occurring at 
essentially random intervals or at a rate which is unrelated to the occur­
rence of events in section B, then the term asynchronous is sometimes 
used to state that section A is asynchronous with respect to section B. 
In this usage there is no implication as to whether section A or section B 
is in itself either synchronously or asynchronously organized. An example 
of this case is that of a magnetic drum running at its own clock rate 
but having to communicate with a synchronous machine running at its 
own clock rate. At the time of communication between them, the two 
devices must be synchronized for the interval during which information 
is being transmitted. 

Fixed Point vs. Floating Point. If the position of the radix point, 
e.g., binary point or decimal point, is always fixed in position with 
respect to the machine word, the machine is said to be a fixed-point 



DIGITAL COMPUTER FUNDAMENTALS 12-29 

machine. The two most common cases are: the point at the right end 
of a word, in which case the machine performs integral arithmetic; the 
point at the left end of the word, in which case the machine performs 
fractional arithmetic. The position of the point may not be fixed with 
respect to the word but may be indicated by additional information con­
tained within the word. This type of operation is known as floab:ng­
point operation and is similar to the widely used scientific notation. The 
number 636,107 may be written as 0.636107 X lOG or the number 0.00053 
may be written as 0.53 X 10 -:{. A floating-point word would then con­
tain a 1nagnitude which in the above examples would be 0.636107 or 
0.530000 and an exponent which in the above examples is + 6 or -3. 
Floating point accommodates an extremely wide range of size in the 
numbers that can be handled, but careless use can give rise to serious 
errors or can be misleading as to the number of significant digits in the 
result. 

In a fixed-point computation there sometimes is considerable difficulty 
in adjusting the parameters of a problem so that all the numerical in­
formation fits within the range of numbers which the machine system 
can accommodate. Fitting a problem to a machine so far as number size 
is concerned is referred to as scaling. 

Internally vs. Externally Programmed Machines. If the list of 
instructions directing a machine system is in the principal internal 
storage of the system, the machine is known as an internaUy programmed 
or stored progra1n machine. The advantage of this method is that the 
storage can be allocated as much to routine and as much to data as a 
particular problem demands. A further advantage is that the machine 
system can have access to its own instructions and can therefore alter 
them by performing arithmetic or logical operations upon these instruc­
tions; thereby it can govern its future course of progress on the basis of 
its past results. Most of the electronic computing machines in existence 
today are the internally programmed type. Alternatively, a machine 
may be organized so that its list of instructions is outside its principal 
operating storage, in which case the machine generally cannot have 
access to these instructions to change them. Such a machine is referred 
to as an externally programmed l1wchine and is typified by the IBM 
Card Program Calculator or the Harvard Mark I machine. The latter 
machine stores its list of instructions on punched paper tape. 

Real Time or On-Line Operation. A computer designated as a real 
time machine is one in which the operation rate is sufficiently rapid that 
it can perform the problem solution in the same time that a parallel 
physical process occurs. In machine simulation of physical processes, 
real time implies that the machine accomplishes the simulation in the 



12-30 DESIGN OF DIGITAL COMPUTERS 

same time as that required by the original physical process. An on-line 
machine is one which processes data in synchronism with some physical 
process such that the results of the computation are useful to this physical 
operation. Many of the applications of computing machines in automa­
tion or in control fall into either of these categories, particularly applica­
tions to process control. 

REFERENCES 

1. Engineering Research Associates, High Speed Computing Machines, McGraw­
Hill, New York, 1950. 

2. R. K. Richards, Arithmetic Operations in Digital Computers, Van Nostrand, 
Princeton, N. J., 1955. 

3. Standards on Electronic Computers, Proc. IR.E., 44 (9) (1956). 
4. Staff of Harvard Computational Laboratory, Synthesis of electronic computing 

and control circuits, Ann. Harvard Computation Lab., 27, Harvard Univ. Press, 
Cambridge, Mass., 1951. 

5. J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, 
New York, 1939. 

6. 1. Flores, Reflected number systems, I.R.E. Trans. Elec. Computers, EC.5, 
79-82, June 1956. 

7. R. W. Hamming, Bell System Tech. J., 29, 147 (1950). 
8. W. Keister, A. E. Ritchie, and S. H. Washburn, Design of Switching Circuits, 

Van Nostrand, Princeton, N. J., 1951. 
9. F. B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill, New 

York, 1956. 



D DESIGN OF DIGITAL COMPUTERS 

Techniques for Reliability 

I. Introduction 
2. Summary of Operating and Design Techniques 
3. Operating Techniques 
4. System Design 
5. Circuit Design 
6. Maintenance 

References 

I. INTRODUCTION 

Chapter 13 

Willis H. Ware 

13·01 
13·02 

13·04 
13·05 
13·07 

13·08 

13·10 

Digital computer systems must exhibit "instantaneous reliability," e.g., 
a single failure could (1) change an instruction into a completely different 
kind, (2) cause the machine to consult a wrong address, (3) cause the 
machine to execute a meaningless sequence of instructions, or (4) intro­
duce an undetected error which unbeknown to the user invalidates the 
final solution. 

Contributions to the overall operational reliability of a digital system 
can be made at three levels: (1) operating techniques, (2) design tech­
niques, and (3) maintenance techniques. 

The importance of the type of error that will occur will depend, to 
some extent, on the use to which the digital computer is applied. In 
general, computer applications can be -divided into three categories: (1) 
scientific and engineering computations, (2) business data processing, 
and (3) on-line control operations. In the first two cases, low reliability 

13·01 



13-02 DESIGN OF DIGITAL COMPUTERS 

will increase the cost and time of operation. In the third case, computer 
malfunction can result in loss of product or plant shutdown. Hence, for 
on-line control, higher reliability is required, and computer reliability 
must be considered as a system parameter. 

In the typical electronic analog computing device, there exist two dis­
tinct kinds of feedback (see Refs. 1 and 4). 

1. Electronic circuit feedback techniques are employed to stabilize the 
various parts of the analog system against fluctuation in performance 
and parameter values of the circuit components. 

2. Feedback loops exist by virtue of the way in which the analog com­
puter mechanizes the solution of the differential or other type of equation. 

Because of these two kinds of feedback protection the analog computer 
is, in a· large sense, proof against relatively maj or fluctuations in the 
performance of its components. It need, therefore, exhibit only "reliabil­
ity on the average." In the electronic digital computing system the situa­
tion is radically different. Here, because of the high speeds of operation 
of the all-electronic circuits, it is often difficult to make use of feedback 
techniques in circuit des.ign. More importantly, however, the methods 
of problem preparation for digital machines are not such as to exhibit the 
second, or "logical" kind of feedback. Alternate techniques that can be 
used are discussed in Sect. 3. 

2.$UMMARY OF OPERATING AND DESIGN TECHNIQUES 

Table 1 summarizes the characteristics of various operating and design 
checks. 

Evaluation Criteria. In determining which programmed checks are 
appropriate, the user will consider such things as: 

1. The cost in machine time for the various checks . 
... 2. The behavior pattern and the idiosyncrasies of the machine in use, 

especially where and how it tends to give trouble. 
3. The consequences in time or money if the solution proves wrong. 
4. The nuisance of having to rerun part or all of the problem. 
The programmer will consider the trade-off between an investment in 

some amount of machine time for programmed checks versus the expecta­
tion that some or all of the problem may have to be rerun because of 
machine malfunctions. 

In determ,ining which checks should be built int.o a machine, the designer 
will consider such things as: 

1. The cost of the equipment which must be added for the checking 
features. 

2. ,His faith in the ability of his components and his techniques to 
perform satisfactorily. 



TABLE 1. SUMMARY OF OPERATING AND DESIGN CHECKS 

Check Usually for: 

Name Errors Likely Trans. Arith. Store 
of Check Programmed Automatic to be Detected Oper. Oper. Oper. Remarks 

Duplication Usually Sometimes Systematic or transient errors x x x 'Vhen automatic, only part of 
in a machine operation. machine may be duplex (Univac I) 

or entire machine (Sage 
AN/FSQ-7). 

Reawna bleness Usually Unlikely Gross mistakes in the x x x Yields fairly rough measures of --I 
solution. confidence in details of solution. m 

Mathematical Usually Unlikely Depending on the mathematical x x x Restricted generally to scientific () 
properties employed, gross or and engineering problems. I 
detailed, transient or system- Z 
atic machine malfunctions. .(5 

Check sum Usually Possible Any which are not compensat- x x May be applied to any transfer of C 
ing with respect to addition. a block of data. m 

til 
Parity Possible Usually Any odd number of errors x x Very common with stores, 

which are not compensating especially magnetic tapes. "T1 

with respect to this check. 0 
:;::c 

Self-check code Possible Usually Any errors giving riEe to a x x Similar to forbidden combina-
but unlikely forbidden combination in the tion check except code groups :;::c 

code. here are usually longer. Ex- m 
r-

amples are: Bell Relay Calcu- ); 
lators, IBM-650. CC 

Error detecting- Possible Usually Any for which code is de- x x Rarely med unless expense of r-
correcting code but unlikely signed; e.g., detect single and large amount of additional =i 

double but correct only single. equipment is justified. -< 
Weighted check Possible Usually Probably transpositions and x x Examples are: Raydac, 

any which are not compensat- Datamatic-lOOO. 
ing under the arithmetic or 
logical technique used. 

Forbidden Possible Usually Any which produce an illegal x x Relatively common in binary 
combination but unlikely combination of the code in coded decimal machines. 

question. 
Casting out Possible Usually All except those which make x Examples are: Raydac, 

the result of the operation NORC, Datamatic-lOOO. w 
wrong by: (any integer times b 
the number cast out). w 



13-04 DESIGN OF DIGITAL COMPUTERS 

3. The environment in which the machine may have to operate, espe­
cially as the environment may affect the performance of the equipment; 
e.g., dirt and dust on the performance of magnetic tapes. 

4. The possibility that, since the checking equipment increases the total 
quantity of equipment in the system, the checked system may be no more 
reliable than the smaller unchecked system. 

5. The possibility that a less carefully designed basic machine sup­
ported by an adequate checking system may result in a more economic 
but equally reliable design. 

6. The class of problems for which the machine system is intended; 
e.g., business data processing may be more demanding of machine per­
formance than scientific problems. 

3. OPERATING TECHNIQUES (Ref. 2) 

Programmed Checks. The programmer, in preparing a problem for 
a digital system, has available several possible schemes for incorporat­
ing into a routine additional operations which serve as checks on the 
proper functioning of the machine. The most valuable techniques will 
be those which check large segments of machine operation, and which 
serve to catch transient as well as systematic malfunctions of the equip­
ment. Such checks are called programmed checks. 

Programmed checks may also be used to improve the operation of the 
system of which the computer is a part. Examples are reasonableness 
checks on input data and mathematical error minimizing technique~. 
Such programming techniques, which reject, smooth, or filter errors due 
to malfunction of input. equipment, measuring equipment, or other seg­
ments of the system, will not be included in this discussion. 

Duplication of Machine Operations. A possible technique is dupli­
cation of an operation, either arithmetic or data transfer type. This, how­
ever, will fail to catch systematic malfunctions of the system unless, in 
the checking operation, the equipment is used in a completely different 
fashion. 

EXAMPLES. 

1. Form ab the first time, but form ba for the check multiplication. 
2. Form a + b = c, but form c - a and compare the result with b for 

the check. 
3. Extract a square root by an iterative process but check by squaring 

the result and comparing with the original operand. 
Reasonableness Checks. In many problems there are bounds to cer­

tain problem parameters or to certain solutions of the problem. The 
existence of any'supplementary information about the problem can be 



TECHNIQUES FOR RELIABILITY 13-05 

used to increase the confidence in a solution. When applied to the input 
data, this is often called a consistency check. 

EXAMPLES. (1) The total payroll for a given period is less than some 
maximum amount. (2) No individual payroll check is larger than some 
maximum amount. (3) The specific gravity in a physical problem must 
always be a positive number. (4) The size of inventory for each item 
falls within some bound. (5) The magnitudes or rates of change of cer­
tain physical quantities fall within some bound. 

Mathematical Checks. Frequently such checks are available only in 
the scientific problem where the problem is one of mathematical as 
opposed to data processing nature. This check depends on the mathe­
matical properties of a sequence of operations. 

EXAMPLES. (1) If the sine must be computed, also compute the cosine, 
and verify that the sum of the squares is unity. (2) A sufficiently high 
order difference of the solution of a differential equation exhibits relative 
constancy. (3) Upper and lower bounds are known for the variables of 
the problem. 

Check Sums (Ref. 5). A block of data and/or instructions is summed 
as though it were a sequence of numbers. This check sum is carried with 
the block as a tag. At any subsequent time the block may be verified by 
again summing and checking the new sum against the previous tag. 

4. SYSTEM DESIGN (Refs. 2, 4) 

Choice of System Organization. By adding redundancy to a digital 
system in appropriate ways, reliability may be increased by endowing the 
system with an ability to detect, or possibly to detect and correct either 
single or multiple errors. A check of this kind, if it involves additional 
equipment in the system, is referred to as an automatic or, sometimes, 
a machine check. If the normal machine instructions in an appropriate 
routine are used to accomplish the check, this is another form of a pro­
grammed check. Different checks must be used for data transfer and 
arithmetic processes. 

Data Transfer Checks 

These techniques are useful for verifying the correctness of data trans­
fers or for verifying the proper functioning of a storage device. They do 
not behave properly under arithmetic processes. Such a check could be 
used to (a) check data transfer from the internal store to an output device, 
(b) check data transfer from a magnetic tape to the internal store, (c) 
check that information retrieved from a storage device is without errors 
of the kind which the particular check can detect. 



13-06 DESIGN OF DIGITAL COMPUTERS 

Parity Check (Ref. 6). In the parity check (see Chap. 12), an addi­
tional binary digit is added to a message in such a way that the number 
of l's in the message is, say, even. The parity check could also be made 
odd rather than even, or on the number of D's rather than the number of 
l's. An extension of this scheme would add redundant information about 
both the number of D's and number of l's. The message to which a 
parity or check digit is added might be a word, a character, or a block of 
data. A simple parity check will detect only an odd number of errors 
per message. 

Self-Checking Codes. In such codes some characteristic of each code 
group is a priori known; e.g., each code group contains a specified number 
of l's, no code group contains all D's. An example of such a code is the 
biquinary code first utilized in early relay calculators (see Chap. 12). 
A particular kind of self -checking code is the error-detecting and error­
correcting code (see Ref. 3). In such a code additional bits of information 
are added in such a way that the presence of single or multiple errors is 
indicated. If sufficient additional information is added, it is possible to 
correct for single or multiple errors automatically. 

Weighted Check. A check tag is derived from the message to be 
checked and carried with the message. At any subsequent time, the 
message may be verified by again deriving the tag and comparing it to 
the tag accompanying the message. This technique may detect trans­
positions in the message. 

EXAMPLE. (1) Divide the message by an appropriate factor (often 
a prime number) and use the remainder as the tag. (2) Sum the digits 
of the inessage "casting out" multiples of an appropriate factor [often the 
(base - 1)] (see Arithmetic Checks: Casting Out). 

Forbidden Combinations. A kind of redundancy check which is 
applicable to several of the above schemes is the forbidden combination 
check. Here a simple test is made to determine that a given code group 
is one of the allowable set of code groups which a machine utilizes; e.g., 
in a binary coded decimal machine, the six discarded combinations of the 
sixteen binary tetrads would be regarded as forbidden combinations, and 
their presence would therefore indicate an error. 

Arithmetic Checks 

An automatic clieck for the arithmetic operation is considerably more 
difficult to implement. 

Duplication of the Arithmetic Section. In such a system all arith­
metic operations are performed twice, simultaneously by different sets 
of equipment. 



TECHNIQUES FOR RELIABILITY 13-07 

Casting Out. For this process additional equipment over and beyond 
that of the normal arithmetic section is provided to perform the casting 
out operation. 

EXAMPLE. In the check procedure multiples of 9 might be discarded. 

Operation 

1978 

X2156 

11868 
9890 

1978 
3956 
4264568 

Check 

1 + 9 + 7 + 8 = 25; 25 - 18 7 
(2X9) 

2 + 1 + 5 + 6 = 14; 14 9 X5 
(IX9) 

3+5=~ 35; 

4 + 2 + 6 + 4 + 5 + 6 + 8 = 35; 35 - 27 = ffiI 
(3X9) 

The equality of the two check results gives a high prob­
ability that the original operation was done correctly. 

Other than 9's might be cast out, but the total number of possible errors 
'checked for will be different; e.g., if 2's are cast out, only the parity 
(evenne'ss or oddness) of the final digit of the product will be verified; 
if 99's are cast out, a larger class of errors will be detected but the equip­
ment or time required to perform the check increases. 

5. CIRCUIT DESIGN 

The typical computing system represents, relatively speaking, a sub­
stantial quantity of electronic components. The parameters that specify 
the characteristics of the components will be statistically distributed; 
these statistical distributions will be a function of (1) the manufacturing 
process which produced these components, and (2) time through various 
aging effects, through temperature and humidity effects, and through 
fabrication techniques, such as those which might induce temperature 
cycling. (See Chap. 14.) 

Component Variations. It is necessary at the outset that the designer 
incorporate in his design technique means for accommodating such statis­
tical fluctuation of component parameters. This generally means, for 
instance, that a given circuit design must operate satisfactorily, even 
though, say, all resistors deviate from normal values by 5 per cent; all 
active elements deviate from normal parameters by perhaps 25 per cent; 
supply voltages deviate from normal values by perhaps 10 per cent; and 



13-08 DESIGN OF DIGITAL COMPUTERS 

all the deviations must be assumed to occur simultaneously and in the 
worst possible directions. By definition, the tolerance of any component 
parameter for which the circuit fails, specifies end of life for the com­
ponent in question. In order to maintain a circuit near the center of 
its region of operability, components which reach end of life (as here 
defined) will usually be periodically replaced, even though such com­
ponents may have considerable additional life expectancy for other 
applications. 

Environment. The operating environment of a component may 
drastically affect its life expectancy. Frequently components designed 
for commercial application are rated in such a way that the life expec­
tancy is considerably less than that required by a digital application; 
therefore, it has become customary in digital circuit design to apply 
derating factors to the commercially established characteristics. For 
example: (1) resistors may be operated at 50 per cent dissipation rating; 
(2) capacitors may be operated at 80 per cent voltage rating; (3) active 
elements may be operated at 50 per cent of current rating. 

Design Philosophy. A conservative attitude on the part of the 
designer toward the performance of his circuit and the performance 
which he expects from his components is valuable. In some cases this may 
require additional components in order to absorb parameter variations 
of the basic parts of the circuit. In other cases it may require additional 
circuits in order to avoid possible faults which the designer might foresee 
in the performance of his basic circuit. The designer attempts to "design 
away" from all the difficulties of which he can conceive. 

6. MAINTENANCE 

Scheduled. Maintenance for the typical digital system usually con­
sists of regularly scheduled preventive maintenance periods, in which the 
system is carefully checked for its compliance with design center per­
formance. In such preventive maintenance periods, there may be typi­
cally a systematic: 

1. Cleaning of relay contacts. 
2. Checking of parameters of active elements. 
3. Visual inspection of solder joints, or condition of plugs. 
4. Inspections by means of an oscilloscope of signals throughout the 

system. 
5. Replacement of components whose parameters are approaching end-

of-life values. 
6. Cleaning and lubrication of mechanical equipment. 
7. Inspection of mechanical components for loose connections. 
8. Verification of system performance by use of test problems. 



TECHNIQUES FOR RELIABILITY 13-09 

9. Verification of system performance by marginal checking. 
Unscheduled. In addition to scheduled maintenance, there also will 

occur occasional intervals of unscheduled maintenance, in which an un­
expected failure causes catastrophic or transient machine malfunction. 

Maintenance Techniques. For performing maintenance, the follow­
ing specific features typically are available. 

1. Marginal Checking Facilities. This is an arrangement for system­
atically varying the operating environment of a machine, e.g., basic pulse 
widths and repetition rate, supply voltages, temperature of cooling air. 
Generally, facilities are provided for varying all aspects of the operating 
environment in all combinations of ways. Sometimes it is possible for 
the machine itself to control a systematic search through all combinations 
of its possible marginal situations. This technique is valuable in indicat­
ing the location or existence of incipient difficulties. 

2. A Carefully Designed Maintenance Console. From this facility it 
is usually possible to monitor a maj or part of the internal operation of the 
system; e.g., all flip-flops may be reported by suitable indicators; supply 
voltages may be directly indicated; various alarm conditions may be 
reported; internal conditions may be manually controlled. 

3. Diagnostic Problems. These are of the nature of a test problem for 
the machine, usually arranged so that the nature of the failure in such a 
problem will provide information about the existence and/or the location 
of trouble. Sometimes such problems are referred to as trouble location 
problems if their prime purpose is to indicate the location of difficulty, 
or trouble detection problems if their prime purpose is to indicate the 
presence of some difficulty. Such diagnostic routines generally grow to 
cover a more exhaustive set of possible difficulties with a machine, as 
maintenance experience with the machine accumulates. Care must be 
taken that the maintenance personnel do not "groom" the machine to do 
its diagnostic problems while not really fixing a fault. Often the best 
kind of diagnostic problem is the problem itself on which the machine 
system failed. 

4. Miscellaneous. As a measure of the ability of an operating system 
to survive unpredicted environmental influences, techniques such as the 
following are frequently employed. 

(a) SUbjection of the equipment to a low level of mechanical shock; 
as, for instance, by tapping with a rubber mallet. This tends to cause 
incipient difficulties to appear as permanent so that they may be remedied 
during scheduled periods of maintenance, e.g., poor solder joints, loose 
tube elements, faulty socket connections. 

(b) Subjection of the equipment to extraneous electrical interference 
as, for instance, might be generated by a spark discharge. This technique 



13-10 DESIGN OF DIGITAL COMPUTERS 

tends to measure the ability of a system to rej ect noise interference, 
which is always present in a machine environment but usually difficult 
to locate as a source of trouble, since most often it would produce mal­
functions of a transient nature. 

REFERENCES 

1. W. H. Ware, Proc. West. Jt. Compo Con!., 27-31, February, 1957. 
2. Ref. 1, Chap. 1, and definition of check, Chap. 1. 
3. R. Hamming, Bell System Tech. J., 29, 147 (1950). 
4. A. W. Boldyreff, Proc. West. Jt. Compo Con!., 18-20, February, 1957. 
5. D. D. McCracken, Digital Computer Programming, Wiley, New York, 1957, 

p. 154. 
6. D .D. MeCracken, Digital Computer Programming, Wiley, New York, H157, 

p. 151. 



D DESIGN OF DIGITAL COMPUTERS Chapter 14 

Components and Basic Circuits 

Norman H. Taylor 

I. Designing for Reliability 

2. Components and Circuit Design 

3. Marginal Checking 

4. Reliable Computer Circuits 

5. Components, Characteristics, and Application Notes 

14·01 

14·03 

14·05 

14·19 

14·43 

14·51 

14·54 

6. T ra nsistors 

References 

I. DESIGNING FOR RELIABILITY 

Note. The research described in this chapter, carried out at Lincoln 
Laboratory, was supported jointly by the Army, Navy, and Air Force 
under contract with the Massachusetts Institute of Technology. 

Design Philosophy. Circuits have been designed and constructed 
using the design philosophy described in this chapter. A typical circuit 
including its tube has an operating lifetime of over 100,000 hours. A 
routine maintenance scheme in which the marginal-checking principle 
is properly exploited can predict failures of over 90 per cent of the total 
to be expected. System operating efficiency (useful time/total time) 
over 95 per cent is attainable even in systems where 20,000 circuits are 
employed. 

The achievement of reliability is a goal that must be pursued from the 
very beginning of the system design proj ect. 

14·01 



14-02 DESIGN OF DIGITAL COMPUTERS 

Step 1. Consider each individual component to be used in the system 
and critically analyze its capabilities. 

Step 2. Employ the data from Step 1 to evaluate applications of these 
components that avoid their worst limitations. This chapter lists analyses 
of components and the resulting component applications that have been 
made by the staff of Lincoln Laboratory over a period of several years. 

Step 3. The final phase of the design proj ect is the electronic circuit 
design, based on the component analyses and applications notes derived 
earlier, with the objective of the achievement of high reliability. The 
thorough design method developed by Lincoln Laboratory is described 
in detail. This method provides reasonable component tolerances and 
adequate safety margins, and incorporates marginal checking throughout 
the design process. 

The method is illustrated in a detailed example of a high-speed vacuum 
tube flip-flop. Additional tube and transistor basic building-block cir­
cuits are described and discussed in Sects. 5 and 6 of this chapter. These 
basic circuits have been used in the assembly of large data processing 
systems. 

Reliability in Control Systems. In approaching the problem of reli­
ability in computing and control systems, the concept changes consider­
ably from the commonly accepted rules of the radio, television, and home 
appliance field. In the area of automatic control, the system under 
control is often a very costly one. It places a premium on its controlling 
parts; and, in military operations, human life itself is sometimes depend­
ent on the reliability of the controlling electronics. Therefore, the elec­
tronic designer is faced with an extremely stringent design requirement 
and he must "design for reliability" from the start, even changing the 
systems concept, if necessary, to insure the desired result. 

Three vulnerable areas influence reliability: components, component 
application, and design. 

Components. Choice of components has a first order effect on system 
reliability. Two factors in component manufacture must be considered: 

Component Stability. Components are never absolutely stable. They 
drift in value with time, temperature, humidity, and altitude. Stability 
factors must be known and considered before design work is undertaken. 

Component Reproducibility. This is a factor of production tolerances. 
The 1 per cent resistor is now common, but the tube with 1 per cent toler­
ance in plate current has never been built. Tolerances must be known to 
the circuit designer and taken into account before design work is started. 

Component Application. The way in which a component is used, 
with consideration given to the problems of stability and reproducibility, 
is the second major factor contributing to reliability. Ideally, the natural 



COMPONENTS AND BASIC CIRCUITS 14-03 

properties of the component are exploited, and its inherent weaknesses 
are avoided or bypassed by careful design. 

Design Considerations. The design of specific circuits is the third 
requirement for reliable electronics. Of the three factors in reliability, 
the design phase is the more difficult, because it must encompass the 
decisions and account for the boundary conditions imposed by the other 
two factors. 

2. COMPONENTS AND CIRCUIT DESIGN 

Component Failures. A good method of appraising a particular ap­
plication of a component is an evaluation based on the four major 
types of failures. These are: 

1. Deterioration. Deterioration is a disease that the designer must 
face. "How fast is this component going to wear out in this applica­
tion?" is the question which must be answered. 

2. Sudden Failures. Sudden failure is self-explanatory. A vacuum 
tube loses its vacuum, a resistor opens up, a fuse blows-these are com-. 
plete, sudden failures. 

3. Intermittent Failures. Means are available for coping with almost 
all types of failures except intermittents. Eventually, intermittents 
must be designed out of the components wherever possible. 

4. Maladjustments. These are related to proper maintenance. The 
best possible solution is to create a design without adjustments. This, of 
course, is not always possible, but attention must be given to permissible 
adjustments and recommended procedures. . 

EXAMPLE. Magnetic Cores. A good example of a component appli­
cation that meets the basic requirements of reliable design is the storage 
core in a magnetic storage plane. Failure characteristics are: 

1. The component deteriorates slowly; in fact, present data indicate 
practically no change in characteristics with time. 

2. Sudden failures are rare, limited to broken cores and usually occur­
ring only in assembly. 

3. Intermittents are rare; adequate insulation on the wires through the 
cores is all that is required. 

4. No adjustments are necessary. 
In addition, cores are stable with respect to temperature and humidity, 

and are reproducible to close tolerances. 
The core storage itself is not useful without driving and sensing circuits. 

However, these auxiliary circuits cannot be made as reliable as the cores 
themselves. Magnetic core storage units have run for weeks and even 
months with complete freedom from error. They are presently the most 
reliable part of high-speed computers. 



14-04 DESIGN OF DIGITAL COMPUTERS 

Component Vulnerability. Although a core is a good component, 
current techniques do not allow systems to be built entirely of cores. 
The designer is faced with the choice and use of many other components 
that are more subject to deterioration, intermittents, sudden failures, mal­
adjustments, instability, and limitations in reproducibility. The follow­
ing list suggests an order of vulnerability, with the most vulnerable 
components at the head of the list: (1) vacuum tubes, (2) diodes, (3) 
connectors, (4) relays, (5) resistors, (6) condensers, (7) transformers, 
(8) inductors, (9) cores. Transistors have not been included since there 
is not an equivalent amount of supporting information. On the basis of 
present units, they probably rank either above or below diodes. 

The individual characteristics of tubes and other components as these 
affect reliability are discussed in detail in Sect. 5, and notes on applica­
tions of these components are also included there. Transistors are treated, 
briefly, in Sect. 6. (See also Chap. 16.) 

Design Considerations. Safety Margins. The electronic designer is 
not accustomed to provide safety margins adequate to allow for the 
various disturbances that may occur in a circuit during its lifetime. The 
increasing use of electronic controls in larger and more critical areas 
forces the circuit engineer to pay greater attention to these factors. 

The circuit engineer is usually asked to make a circuit perform some 
specific function as a portion of a system. In the computer field, such a 
requirement may be for a high-speed switcher: Performance specifica­
tions are given on the limits on the speed of switching, the voltage swing 
that the switch should deliver, the resolution time, and perhaps some 
power limitation. The circuit designer must know about component sta­
bility and tolerances, and must build his design around such knowledge. 

Thus, the problem that really confronts the circuit designer becomes 
one of designing highly reliable and stable circuitry made up of com­
ponents that are not reproducible and which are subject to deterioration, 
intermittents, maladjustment, and sudden failure. "Components," as 
used above, include power supply voltages, diode characteristics, tube 
characteristics, and resistors, anything that can change to the detriment 
of circuit performance. 

Design Criteria. Three criteria are effective guides for the recogni­
tion of component tolerances and their effect on adequate safety margins. 

DESIGN CRITERION 1. The circuit must meet its performance specifica­
tions with all components at their worst initial tolerances, and with any 
component at its worst end-of-life tolerance. 

By "worst" is meant deviation of the components in whatever direction 
is least favorable for the circuit. Usually, several worst combinations of 
components must be evaluated. The initial tolerance on a composition 



COMPONENTS AND BASIC CIRCUITS ' 14-05 

resistor might be ±5 per cent, and end-of-life + 15 per cent. The num­
bers to use for these tolerances must be the result of a component study, 
as discussed in Sect. 5. 

In some simple circuits, it might be possible to have all components 
deteriorate to end-of-life at once, and still have satisfactory performance; 
this capability is desirable only if it requires no increase in circuit com­
plexity. Added components result in a greater probability of inter­
mittents; the increased complexity results in more difficult servicing. 
Statistically, one of a group of components will reach end-of-life while 
most of the others are still good; therefore, criterion 1 above is suggested 
as being a good engineering compromise in the search for circuit longevity. 

When a circuit geometry has been found that shows promise of meeting 
criterion 1 above, criteria 2 and 3 must be considered and met. 

DESIGN CRITERION 2. The circuit must be able to withstand the loss 
of anyone of the supply voltages in itself or in any circuit connected to 
its input or output without component damage. 

When diode logic is used, criterion 2 will usually necessitate use of 
protection diodes to prevent excessive back voltages. 

DESIGN CRITERION 3. Since all components (especially vacuum tubes) 
degenerate with life, circuit design should include means for detecting 
significant changes in c01nponent values during use of the circuit, and 
soon enough to insure replacement of the component before failure occurs. 

Provision of means for detecting deterioration allows near failures of 
components to be discovered and eliminated during routine, scheduled 
maintenance periods. Costly, unscheduled downtime can be minimized. 
Slow deterioration of tubes and other components may be observed over 
a period of time, and replacement can be predicted and even scheduled 
through the application of marginal checking. 

3. MARGINAL CHECKING 

Requirements. To determine whether or not a circuit design meets 
the given performance specifications with the desired reliability, there 
is need for a method of evaluation that will (1) make graphically clear, 
in an explicit quantitative way, what tolerance a given circuit has to 
variations in its components, and (2) provide a method, usable in the 
later systems phase, of preventive maintenance that will adequately cope 
with the problems of component deterioration. Such a method for 
marginal checking was developed by Lincoln Laboratory; it has been 
extensively used in the design phases of large real time control systems, 
as well as in day-by-day operation of such systems. 

In the design phase, the allowable variation of a component is deter­
mined as a function of a selected circuit parameter, usually a supply 



14-06 DESIGN OF DIGITAL COMPUTERS 

voltage. This measures the margins of circuit performance in terms of 
the marginal-checking parameter. 

Tolerance Plots. In practice,the tolerance of one of the components 
in the circuit is plotted against the variation in this marginal-checking 
parameter, as illustrated in Fig. 1. The intersection of mean-value and 
normal marginal-checking parameter lines near the center of the parabola 
indicates the operating point of the circuit, i.e., normal voltage on the 

.... 
s:::: 
OJ 
u ... 
OJ 
0-

c: 10 
0 

:.::; 
III 

0 .:; 
OJ 

"C 

~ -10 
s:::: 
o 
0-
E 
o 
u 

1 

Point 

Failure 
region 

I 
I 
I 
iNormal 
I value 
I 
I 
I 

----

Marginal-checking parameter 

FIG. 1. Locus of failure points in a typical circuit. 

circuit and mean value of the components. By considering the supply 
voltage as the marginal-checking parameter and lowering it, a point is 
plotted on the contour line where the circuit fails to perform. This failure 
can be defined as the point at which the function of the circuit deviates 
from that prescribed in the specification. In an oscillator, for instance, 
the point at which the frequency shifts out of tolerance can be consid­
ered failure; in a flip-flop, the point at which some standard pulse fails 
to switch the position may be failure. Changing the tolerance on the 
component by some factor such as 10 per cent in a negative direction 
and again varying the marginal-checking voltage will result in a dif­
ferent failure point, such as Point 2 on the curve. By raising the toler­
ance of the component 10 per cent, another failure point, Point 3, can be 
plotted. When this study is continued, a contour line representing the 
locus of the failure point of the circuit to tolerance in componentry, as 
a function of some marginal-checking parameter, can be drawn enclos­
ing an area of reliable operation. The result is that the contour often 



COMPONENTS AND BASIC CIRCUITS 14-07 

is not symmetrical about the operating point, and that wide safety 
margins occur on one side but very narrow margins occur on the 
other. 

In most cases, the contour would be a closed loop if the marginal­
checking parameters could be varied far enough without damaging the 
components. 

Plotting the curves and varying each of the components in even a 
moderately complex circuit represents a rather long and tedious study. 
However, the reader should remember that the circuits under discussion 
are to be subjected to all sorts of variations; failure in such circuits may 
cause losses of life or of large sums of money. With these factors in mind, 
the acceptability of the circuit to the system can be based only on the 
knowledge of tolerance plots. 

Marginal Checking: Components 

The application of marginal-checking procedures to components in­
volves a variety of techniques which can be tailored for the particular 
problem at hand. The discussion in Sect. 1 assumed a one-dimensional 
(one-parameter) tolerance plot; whereas, of course, in reality there are 
many dimensions that vary simultaneously. Therefore, numerous experi­
ments are usually needed to verify the initial studies. 

Ideally, one would like to plot a curve for each component of the 
circuit, with the component's deviation from nominal value on one axis 
and the marginal-checking parameter on the other, resulting in points 
on the curve that represent the boundary between satisfactory and un­
satisfactory operation. To ease this job, engineering jUdgment must be 
used to determine which data shall be taken. Enough data must be 
taken so that the effect of change in each component may be deduced. 

All the component variations (or branch supply voltages where appli­
cable) must be plotted against the marginal-checking voltage to deter­
mine that the required component tolerance is not prohibitive, and that 
the normal operating point is centered in the area of operation. If a 
component tolerance turns out to be + 1 per cent and -30 per cent, 
clearly the design is not centered, and a different nominal value for the 
component is indicated. Common sense indicates that all margins will 
not be symmetrical. Example. The plate supply voltage of a cathode 
follower can be lowered only until grid current loads the input circuit 
too much, but it may be possible to raise it until arc-over occurs. 

Resistors and Tubes. The effect of change of characteristics in 
resistors and in tubes may often be determined by varying the supply 
voltage for individual branches of the circuit and plotting this branch 
supply voltage against the marginal-checking voltage to determine the 



14-08 DESIGN OF DIGITAL COMPUTERS 

area of satisfactory operation. In the case of resistive voltage dividers, 
a variation of the supply voltage for the divider may be converted to 
an equivalent change in the divider resistors. 

B+ 

Input 0---1-

EXAMPLE. Consider the direct­
coupled amplifier in Fig. 2. The 
output voltage is a function of the 
input, B +, C -, Rb R2 , and R3 , 

so that a change of anyone of 
these parameters will affect the 
output level. If the permissible 
excursion of C - is determined 

c-

Output experimentally (other parameters 
held fixed), the resulting change 
in the output level may be calcu­
lated. From this change in out-

FIG. 2. Direct-coupled amplifier. put, it is possible to calculate the 
equivalent change in any of the 

other parameters that would cause this same limiting change in output 
level. By employing this principle, one set of Elata can be used to deter­
mine the required tolerance of many components. 

The Pentode. The effect of loss of emission in a pentode can be simu­
lated by reducing the screen voltage-a drop in screen voltage being 
equivalent to a drop in available zero-bias plate current. A rise in screen 
voltage will increase the cutoff voltage required, and it is useful for 
checking the adequacy of the bias 
provided. 

The Triode. Aging in triodes is 
much more difficult to simulate. The 
principle used is to reduce the plate 
supply voltage, so that the tube at­
tempts to pass the same current at 

B+ 

1--------+ Output 

less plate voltage. Consider the cir- Inputo------l:.... 

cuit in Fig. 3, where the input will 
be either at ground or cutoff, and 
the output voltage swing will be 
dependent on the current the tube 
draws at zero bias. 

FIG. 3. Plate-loaded amplifier. 

The load line is shown in Fig. 4 along with the zero-bias lines for, both 
a new and an end-of-life tube. A new tube would operate at point A and 
an end-of-life tube at point B. An end-of-life tube is not generally avail­
able for checking the circuit's operation at this point, so the supply 
voltage is reduced from El to a voltage E2 so that with the new tube the 



COMPONENTS AND BASIC CIRCUITS 14-09 

operating point shifts to point C. The output voltage swing corresponds 
to an end-of-life tube with B + and E 2 , since the same plate current 
is switched into the load resistor for each case. This type of analysis 
may be used to evaluate the supply voltage variations observed in a 
circuit, in order to determine the adequacy of a design. If the magnitude 
of the supply variation alone were considered in comparing two com-

E2 El 
Plate voltage, B + 

FIG. 4. Load line chart of circuit of Fig. 3. 

peting circuits, the circuit chosen might be the one that is the least tol­
erant of an old tube. An analysis similar to that given above will enable 
the engineer to make the better choice. 

It is often possible to substitute for an end-of-life tube a different type 
that will normally have characteristics close to those that would be 
expected from an end-of-life tube of the type to be used in the circuit. 
For example, a 6072 or a 12A Y7 has approximately the same mu as a 
5965, but about one-third the zero-bias current. If a 6072 works in 
circuits designed for 5965's, one knows then that the circuit will tolerate 
an end-of-life 5965 tube.· 

The Semiconductor Diode. In general, diodes may deteriorate in 
the direction of lower back resistance or higher forward resistance. A 
diode with low back resistance may be simulated by a shunt' resistor 
across a good diode. High forward resistance may be simulated by 
series resistors. 

Land C Components. The variations in inductors and capacitors 
generally must be determined by replacing them with different values 
or with series-parallel combinations. Every variation that might affect 
the circuit should be tried. 



14-10 DESIGN OF DIGITAL COMPUTERS 

Marginal Checking: Circuits 

The application of marginal checking to circuit design will be de­
scribed in terms of an example, a high-speed flip-flop designed for use 
in a large, high-speed digital computer. The complete treatment of this 
circuit includes performance and component specifications, and an evalua­
tion of the performance, including plots of pertinent margins of operation. 

High-Speed Flip-Flop. The circuit for the high-speed flip-flop is 
shown in Fig. 5. Its complete specifications follow. 

+150 v 

-150 v 

r---+-----r-~ One output 

-150 v 
Marginal check 

Clear 
input 

CRs 
Complement 

input 

CRa 

FIG. 5. High-speed flip-flop. Unless otherwise specified: (1) resistors are in ohms, 
lw ± 5%; (2) VI and V 2 are 5965 tubes. 

Performance Specifications. 
Input. 0.08 to 0.12-p.sec half-sine wave positive pulses, 20 to 40 

volts amplitude, 0 to 2 megacycles/sec pulse repetition frequency (prf) , 
set, clear, or complement. 

Output. Upper level, + 10 to + 12.5 volts; lower level, -27 to 
-30.5 volts. Total transition time, less than 0.5 p'sec (measured from 
the beginning of the pulse until the new level is reached), and a delay 



COMPONENTS AND BASIC CIRCUITS 14-11 

suitable for counting. (The same pulse is used to complement the 
flip-flop and to sense a gate tube connected to its output.) 

Load That Can Be Driven. 90 p.p.f maximum per output, with a 
total load of no more than 100 p.p.f. 

Marginal Checking. It must be possible to marginal-check the cir­
cuit from a remote point so that drift in the components can be de­
tected before they cause failure of the circuit during system use. 
Component Specifications. 

Resistors. Composition resistors used were nominal 1- and 2-watt 
size, had no more than 500/0 of the manufacturer's rated dissipation, 
an initial tolerance of ±5%, and an end-of-life tolerance of + 15%; 
no more than 500 volts rms applied. Nominal half-watt composition 
resistors had no more than 25% of the manufacturer's rated dissipa­
tion, an initial t<,>lerance of +5% and an end-of-life tolerance of + 15%, 
and no more than 350 volts rms applied. Values were restricted to the 
50/0 RETMA (now EIA) series. 

Precision film resistors had no more than 50% of the manufacturer's 
rated dissipation, an initial tolerance of + 1 % and an end-of-life tol­
erance of ±50/0, and no more than 500 volts rms for the nominal I-watt 
size or 750 volts rms for the nominal2-watt size. Values were restricted 
to the 5% RETMA (now EIA) series. 

Capacitors. Capacitors were ceramic-dielectric, ±5% initial and 
+ 15% end-of-life tolerance, 50% of the manufacturer's rated voltage 
(which is 500), and available in the 100/0 RETMA (now EIA) series 
from 12 p.p.f to 330 fLfLf. 

Pulse Transformers. A small hermetically sealed canned trans­
former, designed to pass the standard O.l-fLsec pulses, was used. 

Germanium Diodes. A special group of diodes was specified. The 
high points of these specifications follow. 

Type W diode (intended for pulse mixing and clamping). With a 
low duty factor O.l-fLsec half-sine 50-ma current pulse, the forward 
drop was not to exceed 3 volts; acceptance back resistance was to be 
at least 500 kn between -10 and -50, 100 kn design value back re­
sistance, except 50 kn design value for the first 0.5 fLsec after applying 
back voltage; for reverse recovery, after 5 ma forward for 1 fLsec, 40 
volts reverse was to be applied, through a series resistance of 2 kn 
and the back current was to be less than 0.5 ma in 0.3 fLsec; forward 
current was not to exceed 150 ma peak for 0.1 fLsec or 60 ma rms; 
reverse voltage was not to exceed 60 volts. 

Type Y diode (a less expensive general purpose diode). At 1 volt 
forward voltage, the current was to be between 5 and 20 ma; back 
resistance specification was the same as for type W above, except 



14-12 DESIGN OF DICSITAL COMPUTERS 

reverse current need decay to only 0.8 rna 0.3 p'sec after applying 
back voltage, and forward current was not to exceed 45 rna peak or 
16 rna rms. 

Volts (\1 t PA 

6 ~PW~ Input trigger 

10 

D 
0 

-10 

-15 

-20 

-30 
Output negative transition 

10 
Upper level 

0 

-10 
-15 

-20 

Lower level 

Output positive transition 

FIG. 6. Output waveforms. PA, pulse amplitude, 20 v::; P A::; 40 v; PW, pulse­
width, 0.08 p.sec::; PW ::; 0.12 p.sec; D, circuit delay, PW::; D ::; 0.20 p.sec; TT, 
transition time from + 10 v to -30 v, TT ::; 0.5 p.sec; FT, fall time, 0.2 p.sec ::; FT 

::; 0.3 p.sec; RT, rise time, 0.2 p.sec::; RT ::; 0.5 p.sec. 

Tubes. Only tubes that are acceptable as reliable types by manufac­
turers were specified. Triodes were preferred to pentodes since the 
triode has a simpler structure, and is less prone to intermittent shorts. 
Twin triodes were preferred over single triodes since fewer tube sockets 
are needed. Very high performance types were avoided on account of 



COMPONENTS AND BASIC CIRCUITS 14-13 

their inherent close internal spacing and attendant high probability of 
intermittents. 

Power Supplies. Only centralized power supplies were used; for this 
system, the voltages available were + 250, + 150, + 90, + 10, -15, 

100r----,-----.-----.-----r----~ 

80r---------~~----------~--_1 

Q) 

~ 
.~ 40 t--------=-...""=:---------~~----__j 
c­
ro 

U 

20 

and current, milliamperes 

FIG. 7. Maximum load for less than 0.5 p,sec fall time. 

-30, -150, and -300. All supplies had ± 1 % regulation with +10/0 
additional due to line drops, giving a total specification of ±2%. The 
end-of-life figure used was +5%. 

30r------------,r--------------------.---------------, 

.!1 
'0 
> 
ID20~------------+---------------------r---------------~ 
'C 

~ 
c.. 
E 
ro 

0.08 }J.sec 
pulse width 0.10 }J.sec 

pulse width 

@ 10~--------~--+---------r_----==~~~~~----------~ gg 
~ 

OL-------------~--------------------~--------------~ o 0.5 2 5 
Pulse repetition frequency, megacycles 

FIG. 8. Pulse repetition frequency response characteristics versus pulse width. 

Circuit Description. The feature of the circuit of the high-speed 
flip-flop (Fig. 5) is low-performance triodes with cathode followers isolat­
ing the plates from both the external load and the capacitance of the 



14-14 DESIGN OF DIGITAL COMPUTERS 

2 

30~----------~-------------------,-----------------' 

y-100 J.LJ.Lf I side 
y-47 J.LJ.Lf/side g 

~ 20~------------~--------------------~---'~~----------~ 
~ /No load 

"'i5. 
E 
ro 

~1O~======~====~~~~r---------~ gg I-
~ 

0L-----------~------------------~----------------~5 
05 2 
Pulse repetition frequency, megacycles 

FIG. 9. Pulse repetition frequency response characteristics versus load. 

20 I I I I I 

Upper output level 
10 -' 

Complete failure 
(circuit does not have o - two stable states) I /,Arbitrnry failure 

VI 

~ 
2 
'0 

-10 

.:: -20 
'5 
e 
(3 

-30 
:: 

-90 

-100 

t-

-

-

-110 
o 

(circuit fails to 
meet specification 

on lower level) 

\1 

N lower output level 

II 
! J 
I I Positive bias + Negative bias Ek 

~ ~ EgOn 

...-: I 

~N- (a) (b) (c) (d) 
Eg Off , , , , , 

4 8 12 16 20 24 28 
On tube Ib in ma at 120 v E b• 0 vEe 

-

-

-
:-

-

32 

FIG. 10. Circuit voltages versus tube characteristics: (a) -40% average, (b) average 
tube, (c) Off tube, (d) +25% average. 



COMPONENTS AND BASIC CIRCUITS 14-15 

opposite grid. The plate circuits are clamped through diodes to both 
+ 10 and -30, stabilizing both the output swing and the signal trans­
mitted to the opposite grid to make the circuit less sensitive to variations 
in plate current of the triodes. The bias return of one grid divider is the 
marginal-checking point; this is moved above and below its nominal 
voltage of -150 to determine the circuit's margin. This simulates drift 
in the four voltage divider resistors directly (R 7 through RIO). 

20~--------~----------~----------~--------~ 

15 
os 

10~--------~----------~----------+-~~~--~ 

re, 5 
oS 
'0 
> 
~ 
(,) 

Average 
tube 

Other 
tube 

~ O~----~--~----------~--~---+--+---------~ 
..!. 
ro c 
.~ 

~ -5 

-1°r--r-Tr=====t==:;:;~::c==~ 
ss 

-15 

-2~~--~~--~8~--~~--~1~6--~~~~~--~~---=32' 

One tube 1b in rna at 120 v E b , 0 vEe 

FIG. 11. Marginal-check voltages versus tube characteristics. 

Performance Data. Figures 6 and 7 define the performance of the 
flip-flop for system timing analysis. Figure 6 shows output and input 
waveforms; the time taken for the output to reach -15 is of interest 
since that is the level required to cut off a gate tube (described later). 
Figure 7 shows the maximum amount of capacitance and/or and curtent 
that the flip-flop can handle and still fall to the indicated voltage level 
within 0.5 microseconds. Rise time is inherently faster than fall time. 
and current is current drawn by a load connected to a positive voltage, 
measured when the flip-flop output is at its lower level. 



!Po 
.B 

20~----~----~----~----~----r-----~----~----' 

15 

10r----------+-----

g 5 
~ 
u 
CI) 

.s:: y 
~ o~--------~~------------~------------+-~--------~ 
.~ 

ro 
:E 

-5 

-10~--------~------

-15~ __ ~ ____ ~ ____ ~ ____ ~~~~ ____ ~~ __ ~ ____ ~ 
-40 -30 -20 -10 0 10 20 30 40 

Tolerance, per cent 

FIG. 12. Marginal-check voltages versus divider-resistor tolerance. 

20~----------~----------r-----------r---------~ 

15 

10 
CI) 
bO 
.B 
"0 
> 5 ~ 
u 
CI) 

.s:: 
> 0.5 J,Lsec transition time 

u 
I ro 

0 c 
.~ 

r 
ro 
~ 

-5 

-10 

-15 
-80 -60 -40 -20 o 80 

Tolerance, per cent 

FIG. 13. Marginal-check voltages versus cathode-resistor tolerance. Tolerance with 
balanced tubes: +30%, -64%. Tolerance range: = 90%. 

14-16 



COMPONENTS AND BASIC CIRCUITS 14-17 

Figure 8 shows the minimum complement trigger amplitude plotted 
against prf for various pulse widths, and Fig. 9 shows how the minimum 
complement trigger amplitude varies with prf for different capacitive 
loads. 

Reliability Data. 
Marginal Checking. Figures 10 through 16 show reliability data, ob­

tained by marginal checking, that indicate the component tolerances and· 
safety margins of the circuit. In these diagrams, as means that the 
curve represents circuit behavior when the component concerned was on 
the opposite side of the circuit from which the marginal-checking input 
was located; SS means the same side. 

Figure 10 shows how critical voltages in the circuit vary as the tube 
ages. These data were taken by reducing the filament voltage to simu­
late the weak tube, a very touchy method. The tube was connected to 
a three-pole two-position switch, switched to a test position until the 
plate current stabilized, and then switched into the flip-flop circuit; the 
d-c voltages were then measured. 

Plate Current. Figure 11 shows the circuit margins plotted against 
the test plate current of one tube while the other is held fixed. The tube 
was "aged" by filament variations as described above. 

V oltage Divider Resistors. Figure 12 shows circuit margins plotted 
against the variations of the four voltage divider resistors, R7 through 
R 10• This linear relationship is expected, and could have been obtained 
analytically. 

Cathode Resistors. Figure 13 shows margins plotted against tolerance 
of the cathode resistor, R ll. A note on the curve explains how it shifts 
with low-current tubes, so that the apparent unbalance in tolerance is 
not obj ectionable. 

Plate Load Resistors. Figure 14 shows how the margins vary with the 
plate load resistors, Rl and R 2 • 

Low Back Resistance. Figure 15 shows the effect on margins of low 
back resistance in the -30-volt clamp diodes, CR 3 and CR 4 • 

Trigger Amplitude. Figure 16 shows margins as a function of trigger 
amplitude. This plot is the most useful one for optimizing the final cir­
cuit, especially when the data are taken for both low and high (2-Mc) 
prf's, maximum and minimum loads, unbalanced tubes, etc. 

Other data were taken to show margins versus the back resistance of 
the trigger diodes (CR D and CR 10 ), cathode-follower plate voltage, mem­
ory capacitors (C 1 and C2 ), cathode bypass capacitor (C 3 ), forward 
drop of input diodes (CR 5 through CR g ), etc. 

Summary. The detailed analysis illustrated in this example gives 
the circuit designer quantitative figures for component tolerances and 



20 

15 

10 

Q) 
0.0 
S 

5 "0 
> 

oX: 
U 
Q) 
.c 
u 
I 0 ro c: 
.~ 

III 

:: 
-5 

-10 

-15 

-80 

a 
oX: 

LO 
r-I n 
~ 

-60 

> 0.5 fJ,sec transition time 
I 
I 
I 
I 
I 
I 

-40 -20 o 20 
Tolerance, per cent 

ss 

40 60 80 

FIG. 14. Marginal-check voltages versus + l50-volt plate-resistor tolerance. 

15r-----~----~----~r-----------~------------------~ 

10~------~--~~----~--------~~~~--------------~ 

~ 5 
S 
g 
oX: 
U 

~ O~----~~-----+------~------------~--------------------~ 
<t 
ro 
c: 
.~ 

~ -5 

-10~-----+----~----~-----------+~-=~----------~ 

-15~----~----~----~------------~----------------~ 
2 5 10 20 100 1000 

Diode back resistance, kilohms 

FIG. 15. Marginal-check voltage versus back resistance of -30-volt clamp diode. 

14-18 



COMPONENTS AND BASIC CIRCUITS 14-19 

safety margins in his circuit from which he can extrapolate the effect of 
simultaneous change in several components. 

A large electronic computing system is made up of a number of basic 
circuits of which the high-speed flip-flop is one. Each of these basic 

20.------------.-------------.------------. 

15 

10r---------~~r_------------+_----------~ 

~ 5 
~ 
'0 
> 
~ 
u 
(1) 

~ Or------r+-----r---------~--r_----------~ 
I ro 
c: 
'[0 
III 
~ 

-5 

-10r-----------~~------------r_----------~ 

-15 

-20~----~------~----~------~----~----~ o ro ~ ~ ~ W W 
O.I-JLsec complement trigger amplitude, volts 

FIG. 16. Marginal-check voltage versus input-trigger amplitude. 

circuits must be designed with the same thoroughness with respect to itfi 
performance, component tolerances, and safety margins. 

4. RELIABLE COMPUTER CIRCUITS 

General Considerations. A group of typical and compatible com­
puter circuits is presented to illustrate applications of the philosophy 
of reliable design. Each of the tube circuits was designed with the same 
care and study as the high-speed flip-flop example of the previous section. 



14-20 DESIGN OF DIGITAL COMPUTERS 

The design of the transistor circuits has been slightly less rigorous because 
of the newness of the transistor. 

The group of circuits includes pulse sources, pulse amplifiers, logical 
gate circuitry, flip-flops, cathode followers, indicators, and blocking 
oscillators. These basic units can be interconnected to perform most 
logic functions. Together with a storage system, this circuitry is ade­
quate for reliable high-speed computer application. 

In a large system, signal levels must, whenever possible, conform with 
a standard to make possible the interconnection of circuits, such as those 
listed below, in building-block fashion. 

The use of a set of centralized d-c power supplies offers many advan­
tages over the use of several small supplies. With only one set of supplies 
to build, it is advantageous to devote a sizable effort to them. Greater 
potential reliability accrues from the use of fewer components. Trouble 
detection equipment (such as low-voltage and overvoltage detectors), 
control circuitry, and emergency supply switch gear is far less extensive 
than the composite of analogous equipment used for many smaller 
supplies. 

Vacuum Tuhe and Associated Semiconductor Diode Circuits 

The circuits to be described are designed to operate in a system using 
positive, nominally half -sinusoid (between triangular and square) pulses 
between 0.08 and 0.12 fLsec duration, and between 20 and 40 volts in am­
plitude, as standard control pulses. The prf can be between 0 and 2 Mc. 
Figure 17 shows such a standard O.I-fLsec pulse. Circuits such as flip-

t 
20 v 
to 

40 v 

-15V~ 

J 
FIG. 17. Standard pulse. 

5-v max 

t 

flops generate outputs at + 10 volts or -30 volts d-c levels, and are 
designed to be triggered by standard O.I-fLsec pulses. Gate tube circuits 
used as and gates are designed for standard O.I-fLsec pulse inputs to 
control grids and for levels to the suppressor grids of more positive than 
+ 10 volts (for selection) or more negative than -15 volts (for non­
selection). Since the flip-flops generate + 10 volts and -30 volts, and 
the gate tubes require only + 10 volts and -15 volts, the signal level 
from the flip-flop may be allowed to climb and be 3tttenuated through 



COMPONENTS AND BASIC CIRCUITS 14-21 

cathode followers and diode logic on its way to a gate tube, without 
restandardizing the level. 

Whenever possible, gate tubes and pulse amplifiers are designed to 
have less than unity gain with pulse inputs of less than 5 volts; greater 
than unity gain but less than 40 volts output for inputs between 20 and 
25 volts; and, for inputs of from 25 to 40 volts, to have outputs of 25 
to 40 volts (see Fig. 18). This transfer characteristic creates a tendency 

40 

c 
2 
'0 
> 30 
OJ-
"0 

~ 
C. 

~ 20 
OJ 
(J) 

'S 
Co 

"510 .e-
::l 

0 

10 20 30 40 50 
Input pulse amplitude, volts 

FIG. 18. Transfer characteristics. Specifications require that the transfer curve 
intersect vertical lines a, b, and c. Shading indicates normal operating region. 

toward standardization of pulse amplitudes and alleviates the need for 
restandardization of pulses traveling through chains of gate tubes and 
pulse amplifiers. Marginal-checking facilities are included in each circuit 
to aid in detection of failing or deteriorating components. 

The circuits described here have been designed to operate from cen­
tralized power supplies with outputs of -300, -150, -30, + 10, + 90, 
+ 150, and + 250 volts. Particular attention has been paid to decoupling 
supply voltages to prevent interaction between circuits. 

Pulse Source. The circuit of Fig. 19 is a typical clock pulse (stand­
ard O.l-microsecond) generator. This circuit is designed to supply 0.1-
microsecond pulses into a 93-ohm load at a 2-megacycle rate. The 2-Mc 
sine wave output from the first stage is clipped in stage 2 and amplified 
(now as 2-megacycle pulses), and reclipped and standardized in stage 3. 
The ability of stage 3, and circuits like it, to standardize pulses to 0.1-
microsecond width is described in succeeding paragraphs. 

Marginal checking of each stage is accomplished by decreasing screen 
grid voltage and sensing the output for failure. 

Pulse Amplifiers. In many computer applications, the relatively 
large loads (long lines or many stages) that must be driven, require the 
use of pulse amplifiers, such as those shown in Figs. 20 and 23. 



+150 v +10 v +250 v +250 v 

C2 -'- Cs ~ ~·lI ~II~ 4'-1 
0-30 J.l.J.I.f To.1 J.l.f 10 Tight 

~R12 
100 

...L C13 
TO.01/.Lf 

R4 Rs ...L C ~ Rll ..L C ~ R 13 C4 220 22 0.oi
1
J.1.f 220 To.1 ~f22 0.01 J.l.f 

-::- 0 0 
+90v -15 v +90 v -15 v 

Marginal Marginal 
check check 

FIG. 19. Clock pulse generator. 

~11~g\ Output 
Tight 

I -LC ~R1S -r: _.14 • 220 

-::-
+90 v 

Marginal 
check 

~ 
N 
N 

c 
m 
Ul 

ffi 
Z 

0 
"T1 

C 

ffi 
=i 
> r 
() 
0 
~ 
"'tJ 
C 
--I 
m 
:;:c 
Ul 



COMPONENTS AND BASIC CIRCUITS 14-23 

The general purpose pulse amplifier of Fig. 20 has an output relatively 
independent of load and input voltage when load resistance is greater 
than 91 ohms and input greater than 20 volts. Figure 21 shows the 
transfer characteristics of this circuit for various loads. Partial ampli­
tude "standardization" of output pulses is accomplished by "plate bot-

C2 
0.01 J.d~ 

-15 v 

Marginal 
checking 

+250 v +90 v 

R5 
220 

FIG. 20. General purpose pulse amplifier. 

Output 

-15v 

toming"; width standardization is accomplished by the characteristics 
of the pulse transformer. Pulse width standardization by this type of 
circuit is illustrated by Fig. 22, which shows the relationship between 
input pulse (width and amplitude) and output pulse width. It should be 
noted from the transfer characteristics (Fig. 21), that this circuit performs 
well for a load resistance of 91 ohms and above. 

The input capacitor C 1 is large enough to cause negligible loss of the 
input signal in spite of the grid current. L1 presents a high shunt im-



14-24 DESIGN OF DIGITAL COMPUTERS 

6or-----~------~------~----~------__, 

50 

40r-------------+-------------~----~ 

20r---------~-+~~----------~----~ 

10 

o 270-ohm load 

• 47-oh,m load 

t:. 91-ohm load 

°0~-=---1~0------2~0------3~0------4~0------~50 

Input, volts 

FIG. 21. Transfer characteristics, general purpose pulse amplifier. 

0.12.-----------,----------,-------. 

0,08 '--____ --1-____ -::1=-____ -:' 

o W ~ ~ 
Input pulse amplitude, volts 

FIG. 22. Relationship between input and output pulse widths for 
typical pulse amplifier. 



COMPONENTS AND BASIC CIRCUITS 14-25 

pedance to the input source and low impedance to d-c, and Rl critically 
damps the circuit. Since the pulses are generated by a transformer, the 
area of the pulse equals the area of the overshoot, and therefore they may 
be passed through such an a-c coupling circuit with no shift in relative 
baseline. The 4/1 pulse transformer matches the high-impedance plate 
circuit to a 91-ohm load. At this impedance level, pulses can be efficiently 
carried through coaxial cables. 

Marginal 
checking 

+150 v +90 v 

C3 
JO.01 JJ.f 

Tl 
4:1 

~_--r-----+----,TiifC:ut 

0-} 1--.....--f\I\I' • .--J 

Input Cl 1 0.01 ~f 

-15 V 

FIG. 23. High-power pulse amplifier. 

For applications in which greater pulse amplitudes are desired (such 
as driving long lines) or in which larger loads must be driven, the high­
power pulse amplifier of Fig. 23 is used. N one of the transfer curves 
(Fig. 24) of this amplifier satisfies the standard transfer characteristic 
illustrated in Fig. 18. However, this high-power pulse amplifier ordi-



14-26 DESIGN OF DIGITAL COMPUTERS 

narily drives nonlinear loads involving large numbers of gate tubes or 
pulse amplifiers which enable the circuit to meet the standard transfer 
characteristic requirement easily. 

Vacuum Tube Gate. The circuit for a gate tube is shown in Fig. 25. 
Inputs to this circuit are: G1 , O.I-microsecond pulses, 20 to 40 volts am­
plitude; Gs, + 10 volts for selection, -15 volts for nonselection. This 

~ g 

60~----~------~----~----~~----~ 

50 

40~------------+---+--------,~----~ 

'5" 30 
.e 
::J o 

20r---------~~~------------~----~ 

10 

o 270-ohm load 

• 47-ohm load 

A 91-ohm load 

O~~--~------~----~------~----~ o 10 20 30 40 50 
Input, volts 

FIG. 24. Transfer characteristics, high-power pulse amplifier. 

gate tube circuit, like the pulse amplifier circuits mentioned above, is 
capable of partially standardizing pulses. Standardization of pulse am­
plitude is not so good as in the general purpose amplifier, as can be seen 
from the transfer characteristics (Fig. 26). Selection in the gate tube 
is accomplished by applying a voltage greater than + 10 at the sup­
pressor grid input. Nonselection, that is, prevention of pulses applied 
to control grid from "getting through" to the plate circuit, is accomplished 
by applying a voltage more negative than -15 volts to the suppressor 
grid. By using + 10 as the selection voltage, enough power can be deliv­
ered from the gate tube circuit to drive four flip-flops, or four gate tubes, 
or any combinations of these, without inter~ediate buffering. Under 
applications of light load to the gate tubes, the output of gates should 



COMPONENTS AND BASIC CIRCUITS 14-27 

be resistance-loaded to give pulses of standard amplitudes. Marginal 
checking of the circuit is accomplished by varying the screen voltage: 
a drop in screen voltage makes the tube look older, and a rise in screen 
voltage detects dangerously high noise pulses at its input. 

Selection o-----f\I\f\~-+ 
input 

Pulse o----1l---r-....... f\.f\fl.........J 

input Cl 1 0.011'1 

-15 V 

Marginal, 
checking 

+250 v +90 v 

C3 JO.Ol p.f 

Tl 
4:1 

r---=--+----I"ilhGm 

FIG. 25. Gate tube circuit. 

Diode Capacitor Gate. A passive element pulse gating circuit is shown 
in Fig. 27a. vVhereas the setup time of a vacuum tube gate is determined 
only by the transition time of its suppressor grid input, the diode capaci­
tor circuit setup time (assuming a step function selection input) is deter­
mined by the charging time of the capacitor, C l' If there is to be no 
feed through of pulses when the selection input is at -30 volts, care must 
be exercised to keep input pulses always below 40 volts amplitude. This 
can be achieved by always driving sets of diode capacitor gates with 
the general purpose pulse amplifier mentioned earlier. Since no pulse 



14-28 DESIGN OF DIGITAL COMPUTERS 

regeneration or partial standardization takes place within this type of 
gating circuit, long chains of these gates are not practical except when 
they are broken up by pulse amplifiers. In Fig. 27, Ll is chosen to give 
a high impedance to O.l-microsecond pulses to isolate the pulse source 
from shunt capacitance of a possible long lead between Rl and L 1 . Rl 
is large enough to isolate the source for the selection input (usually a 

60r-----~------~----~------~----~ 

50 

40r-----------~~----------~------~ 

J!! 
g 
:: 30 
.e-
:J 
o 

20r---------+-+-~~----------4_----~ 

10 

• 47-ohm load 

A 91-ohm load 

o--~--~------~----~------~----~ o 10 20 30 40 50 
Input, volts 

FIG. 26. Transfer characteristics, gate tube. 

flip-flop) from the same shunt capacitance, as well as from C 1• At the 
same time, Rl must be small enough to prevent loss of pulse amplitude, 
but small enough to allow reasonable values for R 1 . 

An alternate termination for the gate is shown in Fig. 27b. L 2 , R 2 , 

and the stray capacitance comprise a damped RLC circuit that reshapes 
the pulse which is then a-c coupled to the grid, where a clamp diode is 
used to establish a baseline. 

Low-Speed Flip-Flop. In applications where compactnesiS is desir­
able and high speed is unnecessary, a flip-flop such as that shown in 
Fig. 28 is useful. It is capable of being complemented at a 200-kilocycle 
rate, and has one tube (two cathodes) as compared to the 2-megacycle 
capability and the two tubes (four cathodes) of the high-speed flip:-flop 



COMPONENTS AND BASIC CIRCUITS 14-29 

described in Sect. 3. Rise and fall times of the outputs are on the order 
of 5 microseconds, depending on the load. 

Basically, this flip-flop is an Eccles-Jordan circuit. A d-c coupling 
path is provided between each plate and the opposite grid. The 10,000-
ohm resistor in the common cathode provides a large amount of d-c 

Type Wdiode 

~~~------~----~ 
Pulse input Cl 1 0.001 p.f

+lOv
-30 v

Selection input

+1Ov

(a)

-_.--+o Usually part of gate i or PA input system

~~~--~--~~~--~~----~------------
Pulse input Cl L2 I 

1_ 

0.001 IJ,f 27 IJ,hl 
I Type Y 
I diode 
I 

+lOv 
-30v 

Selection input 
(b) 

I 
+10 v I -15 v 

L ____ ~ 

FIG. 27. Diode capacitor gate circuits. 

degeneration and thus stabilizes the circuit against changes in tube char­
acteristics. A 70-micromicrofarad cathode condenser stabilizes cathode 
voltage during transition of the flip-flop from one state to another. 

The circuit is capable of driving up to 320 micromicrofarads of load 
capacitance on each output. Transformers are provided at each input to 
invert pulses for flip-flop triggering. 

Cathode Followers.' The limited load-driving capabilities of most 
flip-flops restrict loading to little more than a few gate tubes or their 
equivalent. Diode logic, if it is at all extensive, or long coaxial lines 
require the use of flip-flop output buffering. The cathode follower of 
Fig. 29 is adequate for moderate loads. (Little can be said about rise 



-30 v 

CRI 
Type Y 

+90 v -30 v 

CR3 
Type Y 

One output"""Ef---+-----------I I----------t-~~ Zero output 

One 
inputs O--l~~If--r.:------' 

CR13 

CR I4 

CR I5 

R17 
100 

-300 v 

Complement input 

C3 
70 f..Lf..Lf 

FIG. 28. Low-speed flip-flop. 

CR4 
Type Y 

+lOv 
R9 

82 kG 

Zero 
inputs 

CRI6 

CR17 

CRI8 

f" w 
o 

0 
m 
Vl 

(fi 
Z 

0 
"T1 

0 
(fi 
::::j 
» 
r-
() 
0 
~ 

" C 
-f 
m 
:;:0 
Vl 



COMPONENTS AND BASIC CIRCUITS 14-31 

+150 v 

220 

0.01 J.1.f J 
Input O----v'vv'-----t- - - - ~ 5965 

t----~ Output 

-150 V 

FIG. 29. Cathode follower. 

+ 150 v +250 v +90v 

Input ~----,\N\r--+-----t---~ Output 

-150 v -300 v -150 v 

FIG. 30. Power cathode follower. 



14-32 DESIGN OF DIGITAL COMPUTERS 

and fall times without specifying load impedance.) Variations of this 
circuit include paralleling of the circuit for driving heavier loads. 

For applications involving heavy loads or where cathode follower bias 
buildup must be kept to a minimum, the feedback circuit of Fig. 30 is 
used. Comparison of input and output levels and amplification of the 
difference signal takes place in stage 1. Unity gain can be achieved by 
attenuating the feedback signal. With an input rise or fall time of 
0.3 p,sec, output rise or fall time will be 0.7 microsecond for the nominal 
+ 10-volt to -3D-volt signal. Power output capabilities of this circuit 
may be increased by paralleling other sections of 5998's to the present 
half-section of 5998. 

Flip-Flop Indicators. Indicator neon lamps on flip-flops are useful 
in general systems operation and are particularly valuable in trouble­
shooting. 

The indicator circuit of Fig. 31 is often used. Its operation depends 
on the difference between the outputs of the flip-flop to fire the appro-

One 
output 

+150 v 

Zero 
output 

FIG. 31. Twin-neon flip-flop indicator. 

priate neon lamp. The indicators may be separated from the flip-flop 
by hundreds of feet. In such a case, 56-kilohm resistors in the flip-flop 
prevent loading of the flip-flop by the interconnecting cable to the neon 
lamps in a remote indicator unit. 

A circuit providing one neon per flip-flop saves space in the indicator 
unit, since only one lamp is necessary for each flip-flop, and saves cable 



COMPONENTS AND BASIC CIRCUITS 14-33 

since only one line is required from each flip-flop to the indicator unit 
(see Fig. 32). The pulse power supply is an integral part of the indicator 

(-------------, 
I Saturable reactor 

I - I 

I 
I Input 
I 
I 

I 0 L Pulse power supply .J 
---------~--

Point A d-c bias 
Output 

FIG. 32. Single-neon indicator circuit. 

unit assembly. The pulse ignites all neons regardless of the states of 
the flip-flops. By proper adjustment of the d-c bias (point A in Fig. 32), 
the neons may be made to remain 
ignited or turn off according to the 
states of the flip-flops. 

Measurements have shown the 
ranges of ignition and extinction 
voltages of a large sample of new 
and aged NE-2A indicator lamps 
to be as shown in Fig. 33. The 
single neon indicator system of Fig. 
32 depends on the fact that a 15-
volt change will bring any lamp 
from conduction to below extinc-
tion. 

2 
"0 

83 

~ 68 
:p 

c::: 

-5 
c.. 
c.. 67 
E 
~ 

52 

FIG. 33. 

I::.ij.,:.,. } All lamps had extinguishing 
i) voltages in this range 
mr 

Summary of measurements 
on NE-2A. 

Diode Logic. Circuits of nonlinear passive elements such as diodes 
can perforn:l many of the logical or and and functions in computing 
systems. The circuit of Fig. 34a is an or circuit. Its inputs are mixed 
so that its output is + 10 volts if anyone of the inputs is at + 10. The 
value of R is chosen to give the circuit adequate fall time. (The smaller 



14-34 DESIGN OF DIGITAL COMPUTERS 

the R, the closer the output will follow input fall time.) The circuit of 
Fig. 34b is a diode and circuit. Output level will be + 10 volts (as 
opposed to -30 volts) if and only if all inputs are at + 10. The choice 
of R here is governed by the desired rise time of the circuit output. 

+90 v 
Type Y Type Y 

Input 1 Input 1 

Type Y Type,Y R 

Input 2 Input 2 

Type Y 
Output 

Type Y 
Output 

Input 3 Input 3 

Type Y R Type Y 
Input 4 Input 4 

-150 v 
(a) (b) 

Type W From cathode follower Output 
Input 1 , 

Type W Type Type Type 
Input 2 

Output 
Y Y Y 

Type W 
Input 3 470 470 470 

Type W 
27 ~h 

Input 4 -30 v 

660 
(d) 

-30 v 

(c) 

FIG. 34. Diode logic: (a) diode or circuit, (b) diode and circuit, (c) pulsed or circuit, 
(d) diode protection. 

The circuit of Fig. 34c is an or circuit similar to that of Fig. 34a. 
This circuit is designed to mix OJ-microsecond pulses. Although only 
four inputs are shown, any number of inputs (up to the point where the 
back resistance of the diodes loads the driving circuits) can be used. The 
shape of the leading edge of the output pulse is determined by that of 
the input, whereas the shape of the trailing edge is determined by R, L, 
and the shunt (stray) capacitance. Rand L are so chosen that the trail­
ing edge of the pulse returns to the baseline, with no overshoot. 

These diode logic circuits are usually driven by cathode followers such 
as that shown in Fig. 29. If the tube were pulled from its socket in this 
circuit, the output line would drop to -150 volts and apply a large back 



COMPONENTS AND BASIC CIRCUITS 14-35 

voltage to diodes connected to the cathode follower. Failure of a tube, 
removal of a plug-in unit, or loss of certain supply voltages can similarly 
damage diodes such as those of the circuits of Figs. 34a, b. Figure 34d 
shows a protection circuit that prevents the output of the cathode fol­
lower from going very much below -30 volts (normal back voltage 
for the diodes in the logic circuits). Enough diode-resistor combinations 
must be used to clamp the cathode follower output near -30 volts without 
exceeding the current rating of the protection diodes. The 470-ohm 
resistors insure equitable current distribution through the diodes. 

Blocking Oscillators. Blocking oscillators normally subject tubes to 
extremely hard usage, for example, high peak cathode current. The 
circuit of Fig. 35 has been designed to provide near-standard O.l-micro-

Input o--J .-......-~ 
Cl 

0.01 J.Lf 

Rl 
56 kn 

Rs 
750 

+90 v 
Marginal 

+ 150 v checking 

Type W 
diodes 

Rs 
220 

FIG. 35. Blocking oscillator. 

second pulses from an input waveform of 20-volt rise at the minimum 
rate of 100 volts per microsecond. This circuit will operate between 
o and 100 kilocycles prf. Marginal checking is performed by varying 
the gO-volt screen supply voltage. Degeneration supplied by the load 
in p~rallel with R7 limits cathode current of the 7 AK7 to a safe value. 



14-36 DESIGN OF DIGITAL COMPUTERS 

Transistor Circuits 

The reliability of transistor circuits is affected by the same basic factors 
that determine reliability in tube circuits and some of the techniques of 
tube circuit design are adaptable to transistor circuits. . (This parallel 
must not be carried too far-in no case can a transistor be "plugged" 
into a circuit in place of a tube and have the circuit operate equally 
well.) In general, transistor circuits operate at an impedance level 
an order of magnitude below that of similar tube circuits. This reduces 
the problem of accidental triggering from external noise but magnifies 
the problem of driving several paraUel stages from a single transistor 
stage. 

The group of transistor circuits to be discussed were designed around 
the high-speed Philco surface barrier transistor (SBT). These circuits 
are intended for use in a system with standardized supply voltages of 
+ 10, -3, and -10 volts, negative pulses of 3-volt amplitude and 
80-millimicrosecond duration, and flip-flop levels of 0 and -3 volts. 

Problem of Transistor Circuit Design. The problems of practical 
transistor circuit design involve in order of ease of solution (1) static 
operating margins, (2) dynamic operating margins, (3) temperature 
stability, (4) transient response. 

1. Static Operating Margins. Design of transistor circuits with large 
static operating margins follows essentially the same procedures used 
with tubes. In general, however, the problem is easier with transistors 
since power consumption is so low compared to tube circuits that the 
power efficiency of the resulting network is less critical. 

2. Dynamic Operating Margins. The achievement of acceptable 
dynamic margins is aided by the very sharp cutoff characteristics' of 
transistors which may be utilized to fix limits on pulse amplitudes. How­
ever, the problem is complicated by the fact that the transistor is a 
low-input-impedance, high-output-impedance device and, therefore, sus­
ceptible to loading effects. 

3. Temperature Stability. Both static and dynamic circuit margins 
are sensitive to temperature. The current gain and frequency response 
vary slowly with temperature, but the exponential variation of the leak­
age current is such that it approximately doubles for each 8°C tempera­
ture increment. 

In general, a large dynamic margin may be designed into the circuitry 
by taking into consideration the effects of static operating point drift 
with temperature. Stabilizing devices, such as emitter degeneration 
resistors and heavy bleeder networks, should be used. The effects of 
temperature on the frequency response of the input and output networks, 



COMPONENTS AND BASIC CIRCUITS 14-37 

~s well as on the gain and frequency response of the transistor, must be 
considered. 

4. Transient Response. The major adverse influence on circuit tran­
sient response results from temperature-induced transistor impedance 
variations which load the input network and alter the available "drive" 
power at the input to the transistor. The causes of temperature varia­
tions include both external ambients and internal self-heating caused 
by power dissipation at the transistor junctions and in the bulk material. 
Since present day units have fairly high thermal resistance (O.2-0.5°C per 
milliwatt), the circuit must be designed to guard against the effects of 
power dissipation. 

High-Speed Flip-Flop Group. The basic flip-flop and its associated 
circuits are illustrated in Fig. 36. Transistors QB and Q4 are the flip-flop 
transistors; Ql and Q2 are input pulse amplifiers for the two sides of 
the flip-flop; Q5 and Q(j are buffer inverter amplifiers; Q7-Q{} and QS-QI0 
are cascode power amplifiers which drive the output lines. This group 
of circuits is usually constructed on two etched cards, mounted together 
in one miniature pluggable unit, to minimize lead lengths between the 
individual circuits. 

Marginal Checking. The circuits are marginal checked with the 
two + IO-volt supply buses as indicated in Fig. 36. The + IO-volt lines 
for the individual circuits may be separated if it is desired to marginal­
check the circuits independently. 

The basic flip-flop is a direct-coupled Eccles-Jordan circuit in which 
triggering is done with input pulse amplifiers in series with the emitters 
of transistors Q3 and Q4, as shown in Fig. 36. 

The input-amplifiers Ql and Q2 are grounded emitter pulse amplifiers 
that are normally saturated or turned on. A positive pulse at the input 
terminal is coupled to the base of the input amplifier, turning this pulse 
amplifier off. The output is directly coupled from the collectors of the 
amplifiers to the emitters of the flip-flop transistors. 

The inverters are grounded-emitter amplifiers that serve as buffers 
between the flip-flop transistors and the output cascode power amplifiers. 

The designs of the flip-flop, input amplifier, and inverter are conven­
tional and straightforward transistor circuit design, but the cascode 
power amplifier is unique. Transistor QI0 in the zero-side cascode am­
plifier is basically an emitter follower which drives the zero output line 
in the negative direction. Since these are saturating circuits with the 
inherent difficulties of "hole storage," the rise time of these circuits 
would deteriorate if these emitter followers were required to drive the 
output lines in the positive direction as well. Hole storage in the emitter 
fQUQwer ~nq succeeding stages has the same effect on the output rise 



Zero One ~ 
input input W 

co 
MC B (+10 v) 

MC A (+10 v) 
Ground 

-,1 I~ 

c 
m 
5!! 
(j) 
Z 

0 
" 180 kQ C 
(f) 
::j 
» r-

One +1 Q7 47 ~~f I :(~l)rn II: qlYVV ~YVY I~i ill·n~: 1471~JLf Qs ~ Zero 
0 
0 output ! (Jh I •• I I .. .. I I ., I (J.h . output 
~ 

" C 
-I 
m 
;;0 
til 

VV~: -r--I~;;rt;;--l-

560 

C=====j[========t=======~======~========~=::=!~V 
FIG. 36. High-speed transistor flip-flop. 



COMPONENTS AND BASIC CIRCUITS 14-39 

time as line capacity. Transistor Qs serves as a positive driver in this 
cascode circuit to make it possible to drive greater t,rue or hole storage 
capacity. These cascode power amplifiers work so well that the rise time 
from 10 to 90 per cent on unloaded output lines is about 20 millimicro­
seconds, whereas the fall time is about 30 millimicroseconds unloaded. 

Input and output waveforms of the flip-flop group are shown in Fig. 37. 
With 50-millimicrosecond trigger pulses as illustrated in the figure, the 

~ ~ll,,:Jt"'l:£j ~ ~11r--"~-1:-----:tf2r----~-\J--'~ 
o 100 200 o 100 200 

Time, mj.tsec Time, mj.tsec 

(a) (b) 

FIG. 37. High-speed flip-flop waveforms; (a) output, (b) trigger input. 

maximum prf of the flip-flop group is approximately 10 megacycles. 
Maximum prf and minimum pulse widths are limited primarily by the 
lack of ability to generate and handle very narrow pulses. The circuit 
operates very reliably at the design goal of 5 megacycles prf. 

3.5 

3.0 

2.5 

1/1 

~ 2.0 
> 

1.5 

1.0 

0.5 
0 2 4 

9 mw dissipation 
limit 

6 8 

Design limit 

10 12 
Milliamperes 

14 

FIG. 38. Cascade d-c output characteristic. 

16 18 20 

The d-c output characteristic of the cascade circuit is shown in Fig. 38. 
The maximum output current is 16.8 milliamperes at the intersection of 
the characteristic curve for {3 near end of life and the 9-milliwatt tran-



14-40 DESIGN OF DIGITAL COMPUTERS 

sistor dissipation limit. Design maximum for the output current is 12 
milliamperes. The slope of the output characteristic or the internal 
equivalent resistance of the circuit is about 16 ohms. 

The capacity-driving capability of the cascode is shown in Fig. 39. 
More than 400 micromicrofarads of output capacity can be driven at a 

225 

200 

175 0 

{l150 
s:: 
0 
0 
<1.1 en 
g 125 

~ 
.~ 100 
<1.1 
E 

:0:; 

<1.1 en a: 75 

50 

o~----~--------~----~--------~----~--------~~~ o 100 200 300 400 500 600 700 
load capacitance, micromicrofarads 

FIG. 39. Cascade output rise time versus load capacitance. 

20 

~ 
oS 10 g 
..:.:: 
o 
~ 0 o 

I 
«i 
s:: 
·~-10 
«l 
:E 

r-

r-

-.20 
o 

I 

I 
p 

\ 
.. , 

1 . 2 

I I I 

Normal 
operating 

point 

J I I 
34567 

pulse amplitude, volts 

I 

I 
8 9 

-

-

10 

FIG. 40. High-speed flip-flop marginal-check voltage versus input pulse amplitude. 



COMPONENTS AND BASIC CIRCUITS 14-41 

rise time of 0.1 microsecond. One cascode can drive up to eight inverter 
circuits with a normal amount of interconnecting wiring. 

or 

The specifications for these SBT transistors are summarized as follows: 

leo = 0.2 to 3J..ta; 

Initial a > 0.94 

End-of-life a = 0.92 

leo = 0.2 to 3ILa 

or {3 > 15.6; 

or {3 = 11.5. 

V max (punch through) = 6 to 20 volts 

V CE (saturation) ~ 0.1 volt at lbase = 2.5 rna Ie = 8 rna 

T = 30 to 70 mILsec. 

The factor T is a measure of hole storage in a standard circuit. 

(1) 
tlO 

20 

~ 10 
:> 

.::s:. o 
~ 0 
o 
I ro 

c: 

I 

f-

/ 

I I I J.... 

~ 
Normal -

operating 
pOint 

'[0-10 f- , 1'>. -m )000- a..--
:E: 

-20 I , I , 1 
-5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 

Output from -lO-volt supply 

FIG. 41. High-speed flip-flop marginal-check voltage versus -lO-volt supply. 

The marginal-checking curves for the flip-flop group are illustrated ill 
Figs. 40,41,42, and 43. Variation of the marginal-checking voltage from 
its nominal + 10-volt value as a function of input pulse amplitude is 

(1) 

tl.O 
.s 

20r---~--~--~--~----r---~--~---r---.---. 

(5 10 
:> 

.::z:: 
o 
(1) 

~ O~------~------~--------~-------r------~ 
I 

ro 
c: 

'~-10 
:?: 

-20~--~--~--~--~----~--~--~--~--~~~ o -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 
Output from -3-volt supply 

FIG. 42. High-speed flip-flop marginal-check voltage versus -3-volt supply. 



14-42 DESIGN OF DIGITAL COMPUTERS 

shown in Fig. 40. The margins with respect to the output of the -10-
volt supply are shown in Fig. 41 and with respect to the output of the 
-3-volt supply in Fig. 42. The margins in pulse amplitude are plotted 
in Fig. 43 for variations in f3 and T in one of the basic flip-flop transistors. 

20 

~ 10 
III 

15 
> 

.;s: 
u 
C1.l 

..c 0 y 
"iii 
c: 
"§ 

~ -10 

-20 
o 

I 

I 

e--~-----~-~-~----"~--
/ Normal {3, high T 

I I 
I f/ , Normal {3 and T 

'1'- ------<>--'R:d;tJ~~~-;:I-;.--
-~ 

\ , 
\ 'e----_----- -----e------

"-

I I 
2 345 6 7 

Pulse amplitude, volt~ 

FIG. 43. Margins versus pulse amplitude for variations in {J and T in one of the 
Hip-Hop transistors. 

For norm9.1 values, the curve is symmetrical about the marginal-check 
axis. For either low f3 or high T, the curve is asymmetrical, thereby 
indicating variation of these transistor parameters. 

+10 v 

level 
inputo----'--.l\f\J"--I----'--f~ 

Pulse 
input O----'--vVV'~----'--f__l 

Output 

FIG. 44. Transistor pulse gate. Transistors: Philco SBT L-5122; resistors: Ihw 5%. 

High-Speed Pulse Gate. A pulse level and gate for use with the 
high-speed flip-flop, described above, is shown in Fig. 44. This gate is 
equivalent in function to the circuit of Fig. 25 in which a pulse input 



COMPONENTS AND BASIC CIRCUITS 14-43 

and a level input are gated together. The output of the pulse gate is 
usually connected directly to one of· the inputs to the flip-flop group. 
The components in these inputs constitute collector load and supply for 
the pulse gate. 

The emitter of transistor Q2 may be returned directly to ground to 
make Q2 a simple pulse amplifier instead of a pulse level and gate. 
The outputs of several such gates and/or such pulse amplifiers may be 
tied directly together at flip-flop inputs for logical or functions. 

5. COMPONENTS, CHARACTERISTICS, AND APPLICATION NOTES 

The discussion of design methods in the body of the report has specified 
many components and their applications in particular circuits. Certain 
component characteristics and notes on applications that have led to 
reliable electronic design are discussed in this section. 

Tubes 

Construction Characteristics. The best tubes are assembled in air­
conditioned, lint-free rooms, since the cause of many intermittent shorts 
has proved to be carbonized particles of lint and foreign matter within 
the tube envelope. Residual gases in -the tube are reduced by a better­
than-average vacuum. A tube designed for simplicity and ease of 
assembly will be more dependable than a complex construction. 

Metal evaporated from the cathode and deposited on the structural 
mica insulators tends to lower the leakage resistance between the elec­
trodes. To counter this, slots are cut in the insulators to lengthen these 
leakage paths. 

Grid wires are plated to minimize secondary emission. Plates are 
designed to maximize the heat-radiating area, and are made of materials 
with minimum gas content. 

Grid Spacing. A short, rugged mount structure with a minimum of 
0.005- to 0.006-inch interelectrode spacing will minimize the incidence 
of shorts and troubles resulting from rough handling. For mount struc­
tures longer than 1 inch, even wider spacings are necessary. A require­
ment for high transconductance is basically opposed to the requirement 
for high tube reliability. 

Cathode Temperature. The operating temperature of the cathode 
must be chosen as a best compromise among several factors that affect 
tube life. Lower cathode temperature may reduce emission below usable 
levels early in life, may increase the susceptibility of the cathode to 
poisoning by gases, and may increase cathode interface (an impedance 
that develops between the cathode base and the emitting material). 



14-44 DESIGN OF DIGITAL COMPUTERS 

High cathode temperature increases the evaporation of the coating and 
sublimation of the base metal (with consequent increase in grid emission 
and depositing of metal coatings on structural insulators), increases the 
probability of heater burnout, and may accelerate the growth of cathode 
interface. 

Notes on Applications. 
1. Vibration and shock must be avoided during tube operation, since 

long-life pulse tubes are not usually designed to minimize microphonics. 
2. Bulb temperature must be reduced to 80 to 100°C by forced-air 

circulation or air conditioning, to avoid evolution of gas from the glass 
envelope and to reduce the incidence of electrolysis of the glass between 
base pins under the influence of d-c potential. 

3. Heater voltage regulation within 2 per cent of rated value has been 
demonstrated to give increased tube life. 

4. D-c cathode current should be limited to 50 to 60 milliamperes per 
square centimeter of active cathode area. 

5. Pulse cathode current should be limited to about 10 times this value 
for short pulses (under 1 psec) and low duty factors (under 10 per 
cent) . 

Note. Although these numbers have been proved safe in operation, 
they are not presented as limiting- boundary values. 

6. For longest tube life, design ratings for plate current and dissipa­
tion may have to be reduced from those given in manufacturers' literature. 
It is well to remember that manufacturers base their ratings both on the 
demand for particular tube characteristics and on the results of exten­
sive life tests. For any particular tube application, the components 
engineer should work with the manufacturer's applications engineer to 
determine the basis for the tube's ratings, and the life that can be 
expected from the tube in this application. 

7. Tests to determine compliance with specifications must be performed 
by the manufacturer, the user, or both. The manufacturer should give 
a preburning test to every tube to detect weak heaters. Tests to pick up 
transient shorts are particularly important if intermittent failures in 
service are to be minimized; these tests should be sufficiently sensitive to 
detect shorts of as little as I-microsecond duration. Pulse and steady­
state life tests on a sample basis, if continued sufficiently long, will give 
an indication of expected life. Manufacturers' tests should weed out 
potentially unserviceable tubes. 

8. Standardization on a minimum number of tube types, and coopera­
tion with the manufacturer's tube applications engineer to assure best 
use of these types, will materially reduce the incidence of interrupting 
tube failures. 



COMPONENTS AND BASIC CIRCUITS 14-45 

Semiconductor Diodes 

Characteristics. Semiconductor diodes are most often used in switch­
ing networks or as blocking or clamping devices, to hold d-c levels in the 
presence of pulses, and to clip unwanted tails from pulses. All these 
applications presuppose that the diode will have nearly perfect rectifier 
characteristics-an open circuit in one direction, and a short circuit in 
the other. Every realizable diode falls short of this ideal. Furthermore, 
the diode acts differently when subjected to pulses than it does under 
static d-c conditions. 

The principal characteristics of diodes are of importance to the pulse 
circuit designer. The first three of these are relatively self-explanatory, 
but forward recovery and reverse recovery are important factors that 
may be ovelooked. 

1. Static (d-c) Forward Voltage Drop. The diode volt-ampere curve 
is nonlinear, and electrical description of this characteristic should include 
a maximum value (or a tolerable range of values) of voltage drop at a 
specified forward current. 

2. Static Back Current. A maximum value of back current should be 
specified at a fixed back voltage. 

3. Reverse Voltage Breakdown. At sufficiently high reverse voltages, 
the back resistance of semiconductor diodes decreases rapidly, so much 
so that the diode may destroy itself. This reverse breakdown voltage 
point should be well above the highest back voltage that will be applied 
to the diode in any circuit application. 

4. Forward Recovery. When a forward current is suddenly forced 
through some diodes, the voltage drop across them initially is as much 
as 200 per cent greater than the steady-state value and decays to the 
steady-state value in a fraction of a microsecond. 

5. Reverse Recovery. The reverse 'resistance of a diode requires a 
finite time to build up after the diode has been switched from the forward 
to the back direction. In some junction diodes, the back resistance, im­
mediately after switching, may be as low as the forward resistance before 
switching, and the recovery time may be hundreds of microseconds. In 
the faster whisker diodes, the initial back resistance is often not less than 
one-tenth the static back resistance and has a time constant of the order 
of 0.1 microsecond. 

The characteristics described above should be specified at values close 
to those existing in the circuit application. If a diode is to be used under 
conditions different from those in the diode manufacturer's specifications, 
the tests performed should duplicate as much as possible the actual 
operating conditions. 



14-46 DESIGN OF DIGITAL COMPUTERS 

Since diode characteristics are adversely altered by the effects of 
moisture and other contaminants, a sealed housing should be specified. 
Glass-enclosed diodes have been proved more satisfactory than diodes 
that depend upon some waxy filling compound for moisture resistance. 

Notes on Applications. 
1. Silicon and tungsten-whisker germanium diodes do not exhibit the 

very low forward pulse voltage drop needed for core driving and other 
high-current applications. Gold-bonded and indium-plated whisker 
diodes are better suited for such uses. 

2. Junction diodes, some gold-bonded, and some tungsten-whisker 
diodes exhibit a long switching time (slow reverse recovery). Diodes 
for use in fast-pulse computers should be specified for fast reverse 
recovery. 

3. If a diode is exposed to high temperatures during soldering, its char­
acteristics may change, and life may be impaired. It is wise to solder 
quickly, and to use a heat shunt (a copper alligator clip would do) on 
the diode lead while heat is being applied. 

4. The back resistance of a diode may change markedly during life, 
particularly when traces of contaminants introduced during manufacture 
remain within the diode case. For circuits intended to give long service, 
the designer should use for back resistance a design figure that is consid­
erably less than the one given in the manufacturer's specifications. A 
factor of 5 for degradation of back resistance from initial to end-of-life 
specifications has been used successfully. 

5. Diodes should not be used indiscriminately in series to increase the 
back voltage rating, or in parallel to increase current-handling ability. 
In series connection, a larger fraction of the applied back voltage will 
appear across the diode with the higher back resistance, increasing the 
probability of failure. Likewise, in the parallel connection, the diode 
with lower forward resistance will carry most of the current. Balancing 
resistors across each diode in the series connection, and in series with 
each diode in the parallel connection, will help to equalize the voltages 
and currents. The effect of the balancing resistors is to reduce back 
resistance, and to increase effective forward resistance, respectively. 

Connectors 

Connectors often give rise to intermittent contact troubles. These 
usually result from inadequate contact pressure, which allows oxide or 
other insulating films to develop on the contact surfaces. After being 
flexed many times, spring members of the contact may become fatigued 
or distorted, and so reduce the contact pressure. If plugs are left dis-



COMPONENTS AND BASIC CIRCUITS 14-47 

engaged for long periods, oxide or other insulating layers may develop 
on contact surfaces. The following suggestions may help prevent these 
difficulties. 

1. Contact spring members should be relatively long, to avoid stress 
concentration when the spring is bent, and should be made of a non­
fatiguing material such as beryllium-copper. 

2. When a plug is mated with its socket, one contact surface should 
wipe over the mating surface for a considerable distance, to break down 
any insulating films. 

3. Contacts should be plated with a nontarnishing metal. Gold and 
rhodium have been satisfactory. 

4. Contact pressure from surface to mating surface should be high, 
whereas the force required to mate the connector should be moderate to 
avoid damaging the connector parts during mating. 

Relays 

Construction Characteristics. Relay difficulties center around con­
tact erosion, failure to make contact through oxide or foreign matter on 
contacts, and mechanical failure of contact springs and armature sup­
ports. For low-current, signal-handling relays, the following suggestions 
apply: 

1. Extreme miniaturization should be avoided. Relatively long spring 
members will prevent stress concentration. A relatively large, conserva­
tively rated coil should be used to avoid overheating and burnout. 

2. Bifurcated (twin) contacts on each contact spring will ensure that 
if one contact of the pair is blocked by dust or foreign matter the other 
one will still provide continuity. 

3. A dust cover with a gasket seal should be provided. 
4. Cotton, paper, or other such organic insulations will, under the 

influence of d-c potential and moisture, contribute to electrolytic cor­
rosion of the windings. Nylon, cellulose acetate, and similar synthetic 
insulations are satisfactory. The potential of the coil should be negative 
with respect to the relay frame. 

5. Arc-suppression networks across contacts that break current-carry­
ing circuits should be provided to absorb the inductive voltage produced 
when the contacts open. 

Enclosed Relays. In high-altitude, moist or saline conditions, and in 
situations where tampering can occur, the hermetically sealed relay is 
essential. However, since the products of arcing, or varnish products 
produced when the coil overheats, may collect within the relay case and 
interfere with contact operation, sealing is not a cure-all. Further, the 



14-48 DESIGN OF DIGITAL COMPUTERS 

relay cannot be adjusted if its parts should fatigue after many opera­
tions, and it must therefore be discarded. Where expert maintenance 
personnel are available, as is the case at a large computer installation, 
relays can be equipped with removable dust covers and thus be accessible 
for servicing. 

Time Delays. There is always a time delay between application of 
voltage to the relay coil and the actual closing of the contacts. Likewise, 
there is a delay between removal of the voltage and the actual openings 
of the contacts. This timing may change during the life of the relay, 
as a consequence of fatigue of spring members. The initial timing, and 
that after a large number of operations on a repetitive life test, should 
be studied if close timing is required by the circuit application. 

Various means are used to increase the delay in the closing or opening 
of a relay, including mounting copper slugs on the relay core (which 
act as a short-circuited turn to delay the buildup or decay of the mag­
netic field), provision of fluid-filled or air dashpots, and use of external 
RC timing circuits. 

Power Supply Transients. Relay operation may create power supply 
transients in other parts of the system when large currents are inter­
rupted. Such transients may be minimized in some cases by operating 
the relays when minimum current is flowing through their contacts. In 
other cases, it is necessary to resort to decoupling networks or filters. 

Resistors 

If intelligently selected and applied, resistors are a particularly depend­
able class of components. To assure long life, all standard resistors 
should be derated from their nominal power and voltage ratings. 

Composition Carbon Resistors. Available in 5, 10, and 20 per cent 
initial tolerances, composition resistors are not so stable as other types 
during long life. A resistor considered by the manufacturer as a +5 per 
cent unit may vary as much as ±20 per cent during several years use. 
The nominal power ratings of these resistors should be cut by 50 per cent 
to assure stability and long service. 

Film Resistors. These include deposited carbon, precious metal, and 
electrically conductive glass film types. They are considerably more 
stable than composition resistors, but a resistor nominally of 1 per cent 
tolerance should be included in the power rating of deposited carbon 
types: they should be derated to 50 per cent of nominal power rating. 
The metal and glass films are not so critical. If deposited carbon resistors 
are used, they should be hermetically sealed. Varnish coatings have 
been shown to admit moisture, causing early failures. Glass housings, 
and ceramic housings with solder-sealed ends, are satisfactory. 



COMPONENTS AND BASIC CIRCUITS 14-49 

Precision Wire-Wound Resistors. These resistors are quite reactive, 
and thus are not highly useful in fast-pulse circuitry. They may be of 
great value in digital-to-analog decoders, since they are more stable 
than any other kind of resistor. A 1 per cent tolerance resistor will stay 
within 5 per cent during life if it is properly derated (50 per cent of nom­
inal rating) and is not subjected to violent temperature excursions. Wire 
smaller than 0.002 inch should not be used in critical equipment. The 
construction that employs a cast or molded plastic bobbin, with an outer 
housing of the same plastic, is far superior to the older ceramic-bobbin, 
paper-wrap, varnish-impregnated construction. 

Power Wire-Wound Resistors. These are useful in power supply 
bleeder and other high-power applications. Only the vitreous-enameled 
varieties are recommended. Power dissipated in the resistor should not 
exceed 50 per cent of the nominal power rating. Resistance wire smaller 
than 0.002 inch should not be used. A metal mounting bracket to conduct 
heat to a metal panel or chassis should be used to carry off most of the 
heat dissipated in the resistor. 

Potentiometers. For low-power noncritical uses, the carbon poten­
tiometer with a molded resistance element is satisfactory. As with 
composition carbon resistors, potentiometers should be derated, and con­
sideration should be given to end-of-life tolerances. Vitreous-enameled 
power rheostats have proved reliable in values up to 5000 ohms. 

Capacitors 

If adequately specified and properly applied, capacitors need cause 
little trouble in electronic equipment. Capacitor failures result prin­
cipally from poor construction techniques and from application of exces­
sive "'I",Toltage. 

Paper Capacitors. These should be hermetically sealed in metal 
cans, should have at least three layers of dielectric paper, and use a fluid 
impregnant such as mineral oil or one of the complex hydrocarbons. 
Applied voltage should not exceed 50 per cent of the manufacturer's rated 
voltage, and should be even less for use at temperatures greater than 
55°C. Alternating-current ripple voltage impressed on the capacitor 
may cause dielectric heating, which would require further derating. The 
capacitance can vary by 12 per cent over the initial tolerance during life. 
Paper capacitors should not be used in circuits where day-to-day stability 
of capacitance is important. Tubular, bathtub, and rectangular can 
cases are popular. 

Mica Capacitors. Mica capacitors, particularly those using silver 
paint as the electroqe material, are quite stable and trouble-free. Sil­
vered micas, though, are subject to migration of the silver across insulat-



14-50 DESIGN OF DIGITAL COMPUTERS 

ing boundaries under the influence of moisture and d-c voltage. Ordinary 
molded phenolic housings are not sufficiently moistureproof to prevent 
silver migration. The design tolerance should be taken as ± 10 per cent 
beyond the nominal purchase tolerance for nonsilvered units, and ±5 per 
cent beyond purchase tolerance for silvered micas; 50 per cent voltage 
derating should be applied. Some trouble has been encountered in 
capacitors where the termination of the pigtail lead is crimped rather 
than soldered in a slot in the end plate inside the body. 

Ceramic Capacitors. These, in the disk and tubular forms, are quite 
dependable. Units over 0.001 micromicrofarad use ceramic with high 
dielectric constant, and are quite unstable; these should be used only 
for bypass and decoupling applications where exact values of capacitance 
are of no concern. In smaller values, the design tolerance should be con­
sidered to be +10 per cent beyond the purchased tolerance. 

Electrolytic Capacitors. The best electrolytic capacitors are "tele­
phone quality," originally developed and produced by several suppliers 
for the Bell System; they are intended to give ten years or more service 
life, and two years nonoperating shelf life. A 10 per cent voltage­
derating factor should be applied, and surge voltages seen by the capaci­
tor should never exceed the manufacturer's rated operating voltage. 
Capacitors that have been out of service for some time should be re­
formed by connecting each in series with a 1000-ohm resistor to a source 
sufficient to develop rated voltage across the capacitor for a period of 
one hour. 

Transformers and Inductors 

The principal troubles encountered in transformers stem from the 
effects of moisture. Electrolytic corrosion, plating away the copper wire 
onto the transformer frame in the presence of d-c potential and moisture, 
may cause open-circuit failures. Decomposition of insulation, as evi­
denced by low insulation resistance, is also caused by moisture. 

Such troubles can be remedied by insisting upon adequate varnish 
impregnation of the winding, and hermetically sealing the case. Very 
small wires used in miniature transformers may also be subject to failure 
from corrosion. High operating temperature of the windings may accel­
erate failure of the insulation. The maximum operating temperature 
of the windings recommended for long, reliable service is 70°C. 

Small pulse transformers using toroidal ferrite cores have been most 
satisfactory for short-pulse circuits. When hermetically sealed and 
operated within the manufacturer's d-c ratings, they have proved ex­
tremely dependable. 



COMPONENTS AND BASIC CIRCUITS 14-51 

RF chokes have given very little trouble in service. Vacuum-varnish­
impregnated coils, wound on ferrite, powdered iron, or passive cores have 
been most satisfactory. 

6. TRANSISTORS 

Introduction. The transistor does not have the long history of use 
accruing to most other electronic components. The transistor field is 
a fast-moving one in which the picture is continually changing; this 
means that practices and procedures may change as the units themselves 
change. Although various revolutionary devices are now on the horizon, 
this section is concerned with devices presently available in production 
quantities. 

The original transistors were point-contact devices, and the theory of 
these was not completely developed. Mechanical and electrical stability 
of early units was poor. The appearance of the junction transistor in 
1950-1951 brought about the big break-through of the transistor into 
equipment design. Mechanically, it is a rugged unit which can be made 
to handle power of the order of a few watts. 

Construction Characteristics. Most of the problems of transistor 
reliability can be traced to contamination in manufacture and leakage 
of water vapor into the device after fabrication. After receiving its final 
clean-up etch, the transistor must be handled under extremely clean con­
ditions and well-controlled humidity to prevent accidental contamination 
of the surfaces before or during encapsulation. For long life, a hermetic 
seal is a "must." 

Potting compounds-solid, liquid, or gaseous-may be used for pro­
tection against welding vapors or soldering fluxes, or they may be used 
to fix the surface potential at a stable point. Different treatments may 
be required for different types of units. 

Types of Junction Transistors. Junction transistors are basically 
very small sandwiches of p-type and n-type semiconductor material. 
These sandwiches may be arranged as p-n-p or n-p-n in structure in 
which these layers are, respectively, the emitter-base-collector electrodes 
of the transistor. The sandwich structure may be built up by either an 
alloying process (alloy junction transistor) or a crystal-growing process 
(grown junction transistor). 

The existence of the junction transistor in the two forms, n-p-n and 
p-n-p, using bias supplies of opposite polarity, makes possible some very 
useful circuits. The alloy j unction transistor makes a practical switch, 
having an off resistance of about a megohm and an on or saturated 
resistance of about 10 ohms. 



14-52 DESIGN OF DIGITAL COMPUTERS 

Most of the present day transistors are made from germanium. Silicon 
transistors, however, are available and can be used at temperatures 
about 100°C. 

Junction Transistor Characteristics 

Since transistors have not yet been widely used in computer circuits, 
little life data have been accumulated. Therefore, transistor types 
cannot be selected on the basis of proven reliability. If the transistors 
are to be used in large numbers, the types chosen should be those that 
can be manufactured with reasonable yields by present fabrication tech­
niques. Characteristics that are important in the design of reliable 
transistor circuits are frequency response, power dissipation, and storage 
time. 

Frequency Response. The frequency response of a junction tran­
sistor is inversely proportional to the square of the base width. Unfor­
tunately, in an alloy junction transistor, the maximum emitter-collector 
voltage, the punch-through voltage, varies directly as the square of the 
base width. Therefore, as the frequency response is raised, the maximum 
operating voltage is decreased. This punch-through voltage relationship 
does not hold in a grown junction transistor. However, with present 
methods of fabrication, it is difficult to obtain high production yields 
of conventional, high-frequency, grown junction transistors (15 to 20 
megacycles) . 

Special jet-etching and plating techniques make possible extremely 
accurate base width control in the surface barrier transistor. These 
units are in the 60- to 70-megacycle cutoff range. Maximum voltage is 
usually 6 to 20 volts, with recommended operating voltage 4 to 5 volts. 

Power Dissipation. The power-handling capability of a transistor 
depends on good thermal design. Heat must be conducted away from 
the collector junction which, in a germanium transistor, cannot be allowed 
to exceed about 85°C. Provision for external connection to a heat sink 
is desirable for high-power units. 

Since maximum voltages are normally limited to less than 50 volts, 
high-power transistors must be capable of passing high currents. The 
tendency for current gain to decrease with increased emitter current 
(alpha crowding) can be alleviated by double-doping the emitter. The 
problem of self-cutoff for the center region of the emitter is eliminated 
by the use of an elongated rectangular emitter. 

Most high-power units will have poor frequency response (in the audio 
range) because the large electrode area necessary for high currents means 
high junction capabilities and wider base widths (to allow for the possi­
bility of uneven alloying). Most high-frequency transistors tend to have 



COMPONENTS AND BASIC CIRCUITS 14-53 

low power ratings. The surface barrier transistor is rated at 10 milli­
watts. 

Storage Time. The collector current of a transistor that has been 
saturated or turned on does not stop flowing the instant a turn off signal 
is applied. The transistor remains at a low impedance for a short period 
of time until it recovers from the saturated condition. This delay or 
storage time is of considerable importance in high-speed saturating type 
switching circuits. Storage time can be reduced by making the base 
width small, that is, by designing a high-frequency transistor. 

Notes on Applications 

1. Temperature limits must be rigidly observed and units should be 
operated close to or below room temperature if possible. Transistors 
good for tens of thousands of hours at room temperature may fail in 
hundreds of hours at 100°C. Since high power dissipations cause internal 
temperatures to rise, circuits must be designed to keep power dissipation 
low. Silicon transistors should be used where high temperatures are 
unavoidable. 

2. Aging. In general, as transistors age, collector leakage current will 
increase, current gain will decrease, and breakdown voltage will decrease. 
Circuits must be designed to allow for these gradual variations in 
parameters. 

3. Soldering. For best reliability, transistors should be soldered into 
circuits and a heat sink should be used to prevent excessive junction 
temperatures. The leakage in ordinary 110-volt a-c soldering irons may 
be sufficient to damage certain types of low-power transistors (such as 
the surface barrier transistor). Irons with on-off switches have been 
found to develop large momentary transients capable of destroying these 
units. A small 6-volt iron is recommended and will eliminate many of 
these difficulties. 

4. Testing. Transistors should be tested individually in the grounded 
emitter configuration by using an automatic curve plotter. Grounded 
emitter displays magnify most of the important irregularities by the 
factor of the current gain f3. The avalanche breakdown voltage occurs 
at a lower value for this configuration. 

5. For saturating switching applications, the alloy junction transistor 
is usually superior to the grown junction transistor since it has a lower 
emitter-collector impedance. 

6. Life tests made under conditions similar to those of the contem­
plated use are helpful in predicting reliability. These tests may possibly 
be accelerated by operation at increased ambient temperatures (with 
considerable reservations about the validity of such a practice since addi-



14-54 DESIGN OF DIGITAL COMPUTERS 

tional failure mechanisms may occur at elevated temperatures). This 
procedure is not recommended if reasonable time is available for room 
temperatures tests. 

ACKNOWLEDGMENTS 

In the preparation of this report, particular contributions are those of R. L. 
Best in the section· on Basic Circuit Criteria and Marginal Checking Techniques, 
and W. J. Canty in typical tube computer circuitry. Transistor circuitry was 
contributed by K. H. Olsen and his section. The transistor as a component has 
been reported by D. J. Eckl. The component work has been reported by 
B. B. Paine. 

Nolan Jones has carried the burden of collecting and clarifying the text. The 
Publications group of the Laboratory has made many helpful suggestions as to 
methods of organization and expression. 

Much of this material is based on an article written by Norman H. Taylor and 
is used with the permission of the Institute of Radio Engineers. 

REFERENCES 

1. N. H. Taylor, Designing for reliability, Proc. I.R.E., 45 (6), 811-822 (1957). 
2. N. H. Taylor, Marginal checking as an aid to computer reliability, Proc. I.R.E., 

38, 1418-1421 (1950). 
3. H. W. Boyd, Design of a reliable flip-flop, RETMA Symposium on Reliable 

Applications of Electronic Tubes, Philadelphia, Pa., May 21, 1956. 
4. J. J. Hofler, Application techniques leading to reliable circuit performance, 

RETMA Symposium on Reliable Applications of Electron Tubes, May 21, 1956. 
5. K. Henney et al., Reliability Factors for Ground Electronic Equipment, 

McGraw-Hill, New York, 1956. 
6. W. J. Canty, Designing for reliability, Joint Military-Industry Guided Missile 

Reliability Symposium, Huntsville, Ala., October 16, 1956. 
7. N. L. Daggett and E. S. Rich, Diagnostic programs and marginal checking with 

the Whirlwind I computer, 1953 I.R.E. Convention Record, Pt. 7, 48-54. 
8. W. J. Canty, Experiences in setting up a SAGE prototype computer, Am. Inst. 

Elec. Engrs. Summer General Meeting, Paper No. CP 57-679, June 24-28, 1957. 
9. H. F. Heath, Jr., R. E. Nienburg, M. M. Astrahan, and L. R. Waters, Reliability 

of an air defense computing system, I.R.E. Trans. Elec. Computers, EC-5, 224-237, 
December 1956. 



D DESIGN OF DIGITAL COMPUTERS 

Magnetic Core Circuits 

I. Fundamentals 

2. Magnetic Cores 
3. Transfer Loops 

4. Magnetic Shift Registers 

5. Logical Function Elements 
6. Magnetic Core Storages 

7. Timing Control Circuits 

8. Arithmetic and Miscellaneous Applications 

9. Drivers for Magnetic Core Circuits 
References 

I. FUNDAMENTALS 

Chapter 15 

. Isaac L. Auerbach 

15-01 
15-04 

15-09 

15-15 

15-16 
15-19 

15-21 

15-22 
15-23 

15-24 

Circuits employing bistable magnetic cores are characterized by com­
pactness, low power consumption, and long life with reliable operation. 
They are capable of performing most of the functions of digital data proc­
essing systems, including storage, delay, control, and logical operations. 

Switching Concepts. The idealized rectangular hysteresis loop of 
Fig. 1 illustrates the binary property of cores used in these circuits. The 
positive residual state + Br is designated binary 1, the negative state 
- Br binary O .. Application of a pulsed magnetizing force along the H 
axis of sufficient amplitude and duration will· set the core in a desire~ 
binary state where it will remain until pulsed in the opposite sense. 

15-01 



15-02 DESIGN OF DIGITAL COMPUTERS 

Reapplication of magnetization in the same sense results in relatively 
little flux change, e.g., from point Br to Bm and back to Br-

B 

-Br 

~Zero(O) 

FIG. 1. Idealized rectangular hysteresis loop. H m, applied magnetizing force; H 0, 
coercive force; B T , B m , magnetic induction. 

The core may be used as an ampere-turn transformer (T in Fig. 2) 
with output coupled to the input of another core or device. Conventional 
dot notation indicates winding polarity with the added definition that 

cu~~ f;\ ~ t Output 
~U~ voltage 

FIG. 2. Magnetic core transformer, T. 

current into a dot terminal (positive end) will set the core to the 0 state. 
Typical waveforms of voltages induced in the output winding are illus­
trated in Fig. 3 together with total flux variations within the core ma­
terial. Signal-to-noise -voltage ratios are generally greater than twenty 
to one with commercially available cores, 



o 

MAGNETIC CORE CIRCUITS 

Input 

i
current 
pulses 

!-------! 

I Induced 
.---__,. ~-...;..---.......,....f_'-- output 

voltages 

o Flux 
---"-t---I------'------------\---t--- va'riation 

I+-lf---~ Core switching time 
-Br 

-Bm 

FIG. 3. Typical waveforms associated with bistable magnetic cores. 

15-03 

The core may also be regarded as a variable impedance (Fig. 4). If 
the core is in the 1 state when 1 is applied, the core will switch, a rela­
tively large counter-emf, e, will be generated in the winding, and a high 
impedance will be presented to the driving 
source during the period of switching. If in 
the 0 state, the emf and presented impedance 
will be small. This bistable impedance char­
acteristic is the basis for a number of circuits. 

Logical Representation. A simplified func- FIG. 4. Magnetic core as 
tional representation is helpful in understand- a variable impedance. 
ing the operation of magnetic core systems and 
as a basis for circuit design. A core is represented by a circle. A line 
with an arrow pointing to the circle (Fig. 5) denotes an ip.put to the 
core, and the numeral within the circle the state to which the core is 
set by the input. Open arrows indicate pulses; closed arrows d-c signals. 
Two opposed signals applied simultaneously cancel and leave the core 
in the original state. Double arrows indicate overriding inputs that 
determine the state of the core regardless of opposing inputs. 

A line originating at the circle denotes an output from the core. The 
output signals are generally limited to a single polarity by the use of 
unilateral elements; thus, the numeral within the circle at the origin of 
the line indicates the state to which the core must be switched from the 
other state to produce the output. If an output is produced by only one 
of several transfer inputs, the signal output is said to be conditional, 
indicated by an "eyebrow" drawn within the circle. Symbols along lines 
identify signals, and often include the times at which the data appears. 



15-04 DESIGN OF DIGITAL COMPUTERS 

Information signal 
(asynchronous) 

tl---~ 
Time signals 
(synchronous) 

p 
Occurs at time t2 
or coincident with p, 
provided core is in 

P3 state 1 immediately 
beforehand 

Conditional output 
occurring only at t2, 
provided core is in 
state 1 immediately 
beforehand 

Overriding a ) ) 00 1 ... (;..---- b DC signal 
pulse input ----:~ input 

FIG. 5. Basic logical symbols. 

2. MAGNETIC CORES 

Magnetic cores have been developed in two basic forms, the metal 
strip types and the molded ferrites. The strip cores usually consist of a 
number of wraps of a microthin alloy tape wound on a ceramic bobbin, 
spot welded in place and annealed. They may be plastic covered, or 
potted in resin to afford greater mechanical and chemical protection. 
Ranging in nominal sizes from about 7~ to 1 inch diameter, metal cores 
are generally employed in manipulative or logical types of circuits. Al­
though considerably more expensive than ferrite cores, they are less 
affected by temperature change and require less power under com­
parable operating conditions. 

The ferrites are fabricated from various mixtures of pure metals, 
metallic oxides, and binding materials pressed into toroid shapes and 
fired at high temperatures-a process familiar to the ceramics industry. 
They may be obtained in sizes smaller than is possible with wound 
strip, diameters of 80 mils (0.080 inch) being quite common. Because of 
size and low cost, the ferrites are generally preferred in static memory 
applications where the number of cores required is likely to be large. 

Magnetic Cores as Circuit Elements. Windings are applied to the 
core in conformity with the design requirements-either by the sup­
plier or, more commonly, at circuit assembly. So fitted, the core be­
comes a circuit element in the more usual sense, but one which lends 
itself to flux-current considerations rather than voltage-resistance 
analysis. 



MAGNETIC CORE CIRCUITS 15-05 

Technical Data for Circuit Design. While the basic properties of 
magnetic cores are described by the hysteresis curves, of more practical 
importance are the relationships between magnetomotive forces NI and 
switching flux <P s , switching time T s , and squareness ratio S. The curves 
are generally shown, in the case of <Ps and T s , as upper and lower limits 
over the recommended operating range. Squareness ratio S, defined as 
Brl Bm, is important as a figure of merit of the particular core alloy. The 
curves of Fig. 6 are typical of a type of metal strip core used in magnetic 
core manipulative circuits. 

0 

.... ~ 0 

~ l:l 
t:Q :g 
-0) 

J.. .... 

t:Q ~ 
c-
\I) 

~ 
0) 

..Cl 
0) 

~ e 
u 
'E 
x 
::J 
u: 

VI 

E 
.a 

I e 
0) 
c.. 
E 
ro 
u: 
:::E 
:::E 

1.0 I 
0.9 

0.8 
O 

0.34 

0.32 

0.30 
o 

0.7 

0.5 

0.3 

0.1 
1.0 

1.0 

I E I 
I Minifum I 

I I I I 
(a) 

0.2 0.4 0.6 0.8 1.0 
. MMF. ampere-turns 

I . I't Upper hm' 

~ ~-V 
(b) 

Lower limit 

~ ---IT 
0.2 0.4 0.6 0.8 1.0 

MMF. ampere-turns 

,'" "-
~ 

....... 
~U/J ~ ~'/Jer// 

"~ low. r--... 
er/,. ;:--..... 

~ 1/}]it 
~r--.. 

(c) 

"" ~ ~ 
" " 

0.8 0.6 0.4 0.2 o (l/Ts) 

! !! !! I 

1.5 2.0 3 4 5 10 20 00 

Switching time. microseconds 

FIG. 6. Characteristic curves for a typical metal strip magnetic core. Material, 4-79 
Permalloy; tape thickness, ¥s mil; tape width, ¥s in.; mean diameter, 0.200 in.; 
number of wraps, 20. (a) Squareness ratio S. (b) Switching flux <1>.. (c) Switching 
time T.; current pulse rise time 0.5 p.sec. (Courtesy the Burroughs Research Center.) 



15·06 

0.08 v 

/ 
II 

o / i'. 

0.24 v 

o 

·0.80 v 

o 

0.56 v 

o 

DESIGN OF DIGITAL COMPUTERS 

v ......... 
~ 

'" ""-, 

""" 
0.5 ,usee/div. ~ 

(a) 

1\ 
I \ 

lr, \. 

0.5 ,usee/div. ~ 

(b) 

r~ 
I \ 
I \ 

II-.... '~ 

0.5 ,usee! div. ~ 

(c) 

I/~ 
I \ 
I ~ 1'\.11 
I/;. \ "-
~ ....... 

0.5 ,usec/div. ~ 

(d) 

......... III 

(a) Material, 48% Ni-Fe; tape thickness, 
% mil; tape width, Ys in.; mean diameter, 
0.5 in.; squareness ratio, 0.90; number of 
wraps, 2; H m, applied magnetizing force 
equals 1.0 oersted. 

(b) Material, 4-79 Permalloy; tape thick­
ness, % mil; tape width, Ys in.; mean 
diameter, 0.5 in.; squareness ratio, 0.91; 
number of wraps, 9; H m equals 0.5 
oersted. 

(c) Material, MF-1118 (ferrite); cross­
sectional area, 0.0026 sq in.; mean di­
ameter, 0.58 in.; squareness ratio, 0.95; 
H m equals 3.0 oersteds. 

(d) Switching voltages only for different 
values of applied magnetizing force H nt, 
core (b). I, 1.0 oersted; II, 0.5 oersted; 
III, 0.25 oersted. 

FIG. 7. Switching and nonswitching voltages of various bistable magnetic cores. 



MAGNETIC CORE CIRCUITS 15-07 

Core Constants. Two useful constants may be derived from the 
switching time-mmf characteristic or "core curve," shown in Fig. 6e. 
The pulse threshold mmf (F 0), which corresponds to the intercept at 
l/Ts = 0, is defined as that value of magnetomotive force below which 
no switching is possible. It is important from the standpoint of noise 
immunity. Coefficient G, the slope of the core curve referred to the l/Ts 

base, is constant over the useful operating range. vVith the aid of the 
upper and lower limits of <l>s, Fo, and G, it is possible to make quanti­
tative calculations of a core's performance under many conditions with­
out resort to the complete characteristic curves. 

Noise in Bistable Magnetic Cores. A source of noise inherent in mag­
netic cores is nonsquareness of the hysteresis loop. The amount of flux 
change produced when a core is driven from remanence to the corre­
sponding point of saturation can be considered as false information; 
the noise source theoretically would vanish if a unity squareness ratio 
were attainable in actual square-loop magnetic materials. 

Figure 7 illustrates the switching waveforms of three representative 
bistable cores. The larger of the waveforms is the information signal; 
the smaller, the noise signal. Figure 7 d shows a comparison of the three 
information signals for the types of core material noted. 

Ferrite Storage Cores. Ferrite cores which are carefully manufac­
tured and tested for uniform characteristics are generally required for 
coincident-current storage applications. These minute cores must change 
state in response to a current pulse of specified waveform, but they 
remain unaffected by a series of pulses one-half the amplitude. See 
Chap. 19 for a general discussion of storage. 

To evaluate the cores properly for the storage application, test specifi­
cations generally are formulated which subject a single core to conditions 
that might be encountered in an operating array. Figure 8 shows a 
current pulse pattern which: 

1. Sets a typical storage core in the positive state of magnetizing. 
2. Disturbs the state by a series of partial pulses that tend to reduce 

the magnitude of residual flux. 
3. Switches the core from the disturbed positive state to the negativf; 

state. 
4. Disturbs the negative state toward the positive. 
5. Restores the core from the disturbed negative state to the normal 

negative state. 

In the case of a satisfactory core, the amount of flux change during the 
disturbance is not a function of the number of partial pulses, provided 
the number of such pulses is greater than some small number, usually 



15-08 DESIGN OF DIGITAL COMPUTERS 

2 or 3. The flux changes, moreover, should be as small as possible since 
the noise voltages thus induced may cause error in the information 
readout. 

+400 (1) 

If) 

~ 
Q) 
a. 
E 0 
~ 
:E 

-400 

+15 

+10 

.s 
'0 

+5 

(2 I> 

(3) 

(a) 

Pulse duration, 5.6 J,lsec 
Rise time, 1.0 J,lsec 
prf, 2000 cps 

(1) Switching from undisturbed 0 at 
-Br to 1 at +Br 

Zero (0) 

~ Or:----==::........,,,..:::...~~----~~------
~ (5) Nonswitching voltage, 

-5 

-10 

-15 

T-__ disturbed 0 to 0 

(2d Disturbed One (1) 

(2n) 

(3) Switching from disturbed 
lIto 0 state 

~Pulse sampling time 
I I 
2 3 4 5 
Microseconds 

(b) 

(5) 

FIG. 8. Determination of minimum signal and maximum noise in the output of 
a ferrite core for storage matrix application. Core of ferrite, type 83 (grade B); 
outside diameter, 0.080 in.; inside diameter, 0.050 in.; thickness, 0.025 in. (a) Applied 

current pulse pattern. (b) Observed output voltages at 77 ±2° F. 

Signal-to-noise ratios in the outputs of individual cores accordingly 
are considerably less favorable, on a peak amplitude basis, than in appli­
cations where partial pulses need not be taken into account. These 
ratios, however, usually may be improved by employing sampling 
methods in the matrix output equipment. 



MAGNETIC CORE CIRCUITS 15-09 

Temperature Stability. Normal changes in operating temperature 
have negligible effect upon the characteristics of metal strip cores. 
Variations of less than +2 per cent over the range of 0 to 150°F are 
not uncommon in the case of many quality components. The molded 
ferrites, on the other hand, are considerably less stable, particularly the 
special grades supplied for coincident current matrix applications. Reli­
able operation of these systems usually requires control of core tem­
peratures within a few degrees of a specified ambient value. 

3. TRANSFER LOOPS 

Transfer loops are circuits connecting two or more cores for the pur­
pose of information transfer. The loop includes basically an output 
winding of the transmitting core and an input winding of the receiving 
core. 

Single Diode Transfer Loop. The single diode transfer loop is the 
simplest form of loop. It is illustrated schematically in Fig. 9, together 
with the logical representation. The diode isolates core M b when 1 is 

FIG. 9. Single diode transfer loop. Typical values: cores, t,4 mil, 4-79 Permalloy, 
VB in. wide; 10 wraps, 0/16 in. diameter; diode, T6; windings: N 1, 21 turns; N2, 5 
turns; No, 15 turns; current waveforms, trapezoidal; rise times, current pulse, 1 JLsec; 

p = 1(tl), 70 rna; tl, 190 rna; core switching times: M a, 8.0 JLsec, Mb, 3.5 JLsec. 

being set into Ma. A turn ratio Nl/N2 of about 4/1 and the nonlinear 
characteristic of the diode, discriminating against the smaller signals, 
prevent an undesired backward flow of information at time t 2 . 

The use of this type of loop in logical circuits is limited to applications 
where it is desired to switch the core whenever switching current exists 
in No or any similar winding on the core. In these instances the transfers 
are said to be unconditional. 



15-10 DESIGN OF DIGITAL COMPUTERS 

Split-Winding Transfer Loop. (See Refs. 1, 2, and 9.) The split­
winding loop, one form of which is shown in Fig. 10, provides for condi­
tional transfer of information while permitting isolated operations on 
either the transmitting or the receiving core. Unlike the single diode 
loop, it is immune to the backward flow of information and makes prac­
ticable the simultaneous switching of as many as five or six receiving 
cores. By proper design the impedance of N 1 will be large relative to 

I I Transfer loop 

p~j ~ ~_/I -----; 

:JO 
p 

FIG. 10. Split-winding transfer loop. Typical values: cores, 14 mil, 4-79 Permalloy, 
% in. wide; 10 wraps, 0/16 in. diameter; diodes, T6, windings: NI, 31 turns; N2, 6 
turns; coil resistance, N 2, 8 ohms; current waveforms, trapezoidal; rise times, 
current pulse, 1 JLsec; tl, 125 rna; h, 8 rna; 12, 117 rna; core switching times: Ma, 

lOA JLsec; M b, 4.0 JLsec. 

the other impedances in the transfer loop (see Fig. 10), and branch current 
11 will be much smaller than 12 , The resultant ampere-turns difference 
is sufficient to switch M b to 1. Branch current 11 clears M a to the 0 state. 

Another type of conditional transfer loop is shown in Fig. 11. As in 
the case of the split-winding loop, the two diodes insure immunity to the 
backward flow of information and permit isolated operations upon either 
core. The function of conditional transfer from Ma to Mb in response 
to 1 (t 1 ), while analogous to that of the preceding circuit, is accomplished 
in a somewhat different manner. Current pulse 1 (t 1 ) is steered through 
either the upper or the lower branch of the loop, depending upon the state 
of core Ma immediately prior to t1 . If in the 0 state, except for effects 
traceable to a nonideal core, all the applied current will flow through 
the high-conductance diode D 2 , bypassing M 2 and leaving core M b in 
the 0 state. 'Vhen Ma previously has been set to 1, 1 (td acting through 
No switches the transmitting core toward O. The changing flux induces 
a voltage in the output loop such that nearly all the current flows through 



MAGNETIC CORE CIRCUITS 15-11 

Dl and N 2, switching 111 b to 1. In practical circuits, parameters are 
generally so chosen that approximately 10 per cent of the current flows 
through the lower loop during transfer to stabilize the switching action 
of core Ma. 

FIG. 11. Another form of transfer loop. Typical values: cores, Ferrite 83, General 
Ceramics; diodes, T25G; windings: No, 23 turns; NI, 20 turns; N2, 8 turns; l(tI), 

100 rna; ex, 0.9; core switching time: M a, 3 Ilsec; M b, 2 Ilsec. 

Note 1. This means effectively that the current signal generated in 
the loop does not completely cancel I (td in the lower branch of the loop. 

Note 2. To insure a complete forward transfer of data, the switching 
time of the driving core must be longer than that of the driven core. 

Condenser Delay. In certain data-handling systems it is often desir­
able to transfer information both from and to the same core by appli­
cation of a single timing pulse. Such operation is possible if provision 
is made in the transfer loop to delay the input to the core until readout 
has been accomplished. Assuming the cores of Fig. 12 contain 1 's, both 
are switched to 0 at time t. The delayed output of M a then resets M b 

to 1 before arrival of the next timing pulse (see Ref. 3). 
Figure 13 illustrates a practical method for accomplishing the above. 

If the forward resistance of the diode is small compared with R, the 



15-12 DESIGN OF DIGITAL COMPUTERS 

FIG. 12. Transfer of information into and out of core M b by a single pulse, 
by using a condenser delay. 

UTL 
FIG. 13. Circuit corresponding to Fig. 12. Approximate circuit requirements: core 
switching times: Ma = T; Mb = 1.75RC; turns ratio: 

Nl T 

N2 = 1.6ZC (1 + 2m), 

where Z equals average impedance of N 2 during read-in of 1, and m is ratio of average 
drop across diode during charge to E c (max.); maximum operating frequency: 

1 
1m = T + 2.5RC· 



MAGNETIC CORE CIRCUITS 15-13 

capacitor charges to nearly the peak value of the induced voltage as 
M a is switched by t, and sufficient charge is present to switch M b to 1 
after termination of t. These loops have been operated at frequencies 
as high as 500 kilocycles in cascades up to 50 stages with high stability. 
The technique adds to the flexibility of magnetic core circuit design. 

Transistor-Magnetic Core Loops. (See Refs. 4 and 5.) The basic 
magnetic core transfer loop can be extended to include a transistor as a 
power-supplying element within the loop. Generally a grounded emitter 
configuration is employed with at least one core winding in the collector 
branch. Owing to the element of gain, input signals need only trigger 
the transistor to effect switching of the cores, and possible speeds of 
operation exceed those attainable with passive loops. Power consump­
tion is characteristically low, and wide tolerances in component values 
and transistor parameters insure good reliability of operation. 

A basic loop, applied successfully in circuits operating in the neigh­
borhood of 100 to 150 kilocycles, is shown in Fig. 14. The transistor is 
biased at cutoff and is normally nonconducting. Owing to coupling 

t2!U 
r--------------, 

G 
-Vc 

-Ye 
FIG. 14. Transistor magnetic core information transfer loop. 

through the core, a fractional microsecond current pulse (tl) is sufficient 
to initiate a regenerative switching process, provided M a contains a 1. 
When switching of the cores is completed, the feedback loop gain falls 
below unity and the transistor again ceases to conduct. Reset of M a to 1 
results in the appearance of a positive voltage at the base, tending to 
drive the transistor further into cutoff. The buffering action of the 
transistor eliminates backward flow of information in the loop (noise) 
and permits multiple branching between cores without difficulty. 

The loop of Fig. 15 illustrates the addition of a diode for improved 
stability and an intermediate storage capacitor to enable both readout 



15-14 DESIGN OF DIGITAL COMPUTERS 

and readin of core M b to take place within the same pulse time. Current 
pulse t switches both cores (if previously in state 1) to 0, and at the same 
time the inhibit pulse maintains the transistor cutoff. At the termina-

t ~ 220 rna -1.0 .usee r----
O 

~...---------,~ 

::JG G 
Inhibit 
pulse f 5 v -1.0 ~sec 

+ 1.5 v +6.0 v 
GE-2N78 (npn) 

FIG. 15. Magnetic core transistor information transfer loop with a diode for im­
proved stability. Circuit values, 200-kc operation : No, 5 turns; N 1, 15 turns; N 2, 

10 turns; N c , 30 turns; C, 0.001 p.f; R, 4.7 kn. 

tion of the pulses, the voltage across the capacitor is sufficient to initiate 
switching of M b to 1. Operational frequencies up to 500 kilocycles are 
possible by the use of fast surface barrier transistors and very low 
flux cores. 

(a) 

Input 1 0 1 0 1 0 1 0 1 0 
00000 

tl----~---~----~----_+-----~----­

t2---------~-----------~-------------
(b) 

Data storage 
cores 

Delay cores 

FIG. 16. Shift register, serial input, and output. Cores per binary digit of register 
capacity, 2; number of timing pulses per cycle, 2; direction of shift, right; data 

insertion, one binary digit between tl pulses. (a) Schematic; (b) logical. 



MAGNETIC CORE CIRCUITS 15-15 

4. MAGNETIC SHIFT REGISTERS 

Shift registers for handling binary data are synthesized by means of 
magnetic cores and transfer loops. By suitable design and choice of 

tp--~~------------~~------------~~-----

In 

tl----~--------~~----~~------~~----~~--­
t2------------~~------------~~-----------

FIG. 17. Shift register, serial input-parallel output. Similar to Fig. 16 with addition 
of conditional transfer loops. Parallel read-out accomplished by t p applied as 

required at times other than t1, t2, or during input. 

t3--------------------~------------------, 

Input 

t2------~--------+-------~ 

tl----------------+-----------------~ 
FIG. 18. Serial shift register, reduced core complement. Cores required, 3 for each 
2 binary digits of register capacity; number of timing pulses per cycle, 3; direction 
of shift, right. The use of n + 1 cores and drivers for each n binary digits of register 

capacity may be extended indefinitely. 

Input Output 

FIG. 19. Serial shift register, with delay network. Cores per binary digit of register 
capacity, 1; number of timing pulses per cycle, 1; direction of shift, right. 

coupling determined from preliminary logical diagrams, registers may 
be constructed that (a) accept information serially or in parallel, (b) 
step the recorded sequence along the register in either direction, and 
(c) furnish a serial or parallel output. One complete timing cycle 



15-16 DESIGN OF DIGITAL COMPUTERS 

(tl' t2 , ••• ,tn ) accomplishes a shift by one binary place, for example, 
100100 to 010010 in a six-bit register. Figures 16 to 20 show various 
forms of shift registers. 

r-------------------~----------------t4 

~--------+_--------~------t3 

tl------~--------_r--------~ 

t2----------------~------------------~ 

FIG. 20. Serial shift register, reversible. Cores per binary digit of register capacity, 
2; number of timing pulses per cycle, each direction, 2; direction of shift, right or left. 

5. LOGICAL FUNCTION ELEMENTS 

Bistable magnetic cores are combined with conditional and uncondi­
tional transfer loops in a variety of unit arrangements capable of per­
forming the basic logical operations of and, or, exclusive or, and negation. 

Ma 

Mb 
(a) 

Ma 

Mb 

(b) 

Ma 

Mb 

(c) 

FIG. 21. And, or and inhibit logical symbols. Requirements for input to Me: (a) 
and (.), coincident outputs from Mil. and Mb, Afa·Mb; (b) or (+), output from 
MI!. or Mb or coincident Mil. and Mb, Ma + Mb; (c) inhibit, output from Ma only; 

transfer inhibited by coincident output from M b. 



MAGNETIC CORE CIRCUITS 15-17 

By means of these elements, the more complex digital data processing 
functions can be synthesized (see Ref. 7). 

The unit functions in many instances involve the combination or mix­
ing of the outputs of a number of cores. And, or, and inhibit (negate) 
symbols are required to indicate the nature of the combination and to 
assist in the interpretation of the logical diagrams. The symbols, illus­
trated in Fig. 21, are employed only when the particular function is to 
be obtained by a single transfer loop in the implementing physical circuit. 

And Circuits. (Conjunction or union, see Vol. I, Chap. 11.) Figure 
22 shows block diagrams for an and circuit implementation for three 

p q Output 

(a) 1 1 1 

Other 
combinations 

0 

p r q Output 
1 1 1 1 

Other 
0 combinations 

(b) 

FIG. 22. And circuits, truth tables and block diagrams for (a) two inputs and 
(b) three inputs. 

p 

p q Output 
1 0 
011 
1 1 1 

o 0 0 
q 

FIG. 23. Or circuit and truth table. 



15-18 DESIGN OF DIGITAL COMPUTERS 

inputs and two inputs. Note that for three inputs an intermediate or 
circuit is used. The truth tables are also given. 

Or Circuits. (Intersection or inclusive disjunction, see Vol. I, Chap. 
11.) Figure 23 shows an or circuit with the corresponding truth table. 

Exclusive or Circuits. (Symmetric difference or -exclusive disjunc­
tion, see Vol. I, Chap. 11.) Figure 24 shows a block diagram for an 
exclusive or circuit. A circuit diagram and truth table is also given in 
Fig. 24. 

P(t2) 

tl 
(p (±) q)(t2) 

q(t2) 
Output 

(a) o 
1 1 0 

~ 

'21 :J0 
tl (0 
~ 

:J8 (b) 

FIG. 24. Exclusive-or (EEl) circuits. (a) Block diagram and truth table. (b) Circuit 
diagram (output winding, C and D, not shown). 

Negation. The circuit shown in Fig. 25 provides a means for obtain­
ing the complementary functions of other elements. Output p occurs 
in consequence to absence of input p and vice versa. For example, 

P (t3) 

FIG. 25. Negation circuit. 



MAGNETIC CORE CIRCUITS 15-19 

the material equivalence function can be realized by negating the 
output of an exclusive or circuit, i.e., combining the logical elements 
of Figs. 24 and 25. 

ill aterial Equivalence Function 
Inputs Output 

p q 
100 
o 1 0 
o 0 1 
111 

6. MAGNETIC CORE STORAGES 

Important use of bistable magnetic cores is found in storage, or memory, 
devices of digital data processing systems. Such devices may have very 
short access times, require no power to maintain storage of information, 
and are not dependent upon mechanical movement of parts for operation. 
Circuits and techniques of the present chapter are directly applicable in 
a number of arrangements. 

Note. See also the coincident-current magnetic core storage, Chap­
ter 19. 

Magnetic Shift Registers. These registers serve often to provide 
buffer storage. Information from a tape, drum, or other source can be 
inserted in the register as available, and delivered to the output when­
ever desired. Because of input and output versatility and high speed 
of operation, these registers are further employed in transformation of 
mode of data transmission (serial to parallel, and vice versa), and 
matching of systems components of different repetition rates. 

Note. Refer to Figs. 16 to 20 for technical details of this type of 
register. 

Large-Scale Static Storages. Figure 26 illustrates a method by which 
a storage of desired word capacity may be realized with a single core 
and diode per bit. Insertion and extraction of data are accomplished in 
parallel (Ref. 8). A write pulse, applied to a selected row (address) of 
cores, inserts l's in those digit positions wher,e an appropriate voltage, 
impressed at the control point, enables diode conduction. Reading is 
accomplished by interrogating all cores of a selected address. In this 
operation, a voltage appears at each control point where the correspond­
ing core switches to 0 from the 1 state. 

Selection Circuits. Selection of data location (address) in a storage 
system involves switching circuits that are digital in character. The 
basic requirement of such a network is that each of the outputs, equal 
to the number of word locations, may be obtained by a prescribed com-



15-20 DESIGN OF DIGITAL COMPUTERS 

bination of input signals. Suitable circuit arrangements are numerous 
and may employ such components as semiconductors, electron tubes, or 
magnetic cores. In general, the number of switching functions is equal 
to the total possible input combinations, or 2N , where N is the number 
of input variables. 

Address and operation 
selection circuits 

Read drillers Write drivers - -----·------------11-------------,----------- -
, r----t'---p--

I 

----------4------------ -
I 

FIG. 26. Two-by-two magnetic storage (see Ref. 8). 

Figure 27 illustrates a logical configuration by which four distinct 
outputs are obtained by combinations of the presence and absence of two 
inputs. The and circuit of each channel, shown functionally, requires the 
simultaneous arrival of two signals to generate an output. The occur­
rence of each of these signals in turn is dependent upon a specific condi­
tion of input to the core by which it is produced, e.g., A, X, B, or B. 

Note. Cf. Fig. 22. X and B symbolize the absence (or negation) of 
the respective inputs, as opposed to their electrical presence. In terms of 
Boolean algebra, each of the four switching functions may be expressed 
in the form Zl = AB, Z2 = XB, etc. 

Two different core arrangements provide for 'sensing of the presence 
or absence of signal input, the latter being accomplished by the principle 
of negation. The symbols noted at each output in the figure indicate 
the input combination that will gate the particular network. 



MAGNETIC CORE CIRCUITS 

AB AB 

B(t2 ) 
----~--~--+---~~------~--------~~~----------~ 

tl----~--~------~~----------------~ 
(Preset) 

15-21 

FIG. 27. Illustration of a logical circuit, four outputs for inputs A and B. 

7. TIMING CONTROL CIRCUITS 

In general, magnetic core functional units require the application of 
a number of unconditional signals in the execution of a single logical 
operation. Depending upon the circuitry employed, these signals trigger 
driving elements, or drive the cores directly to effect switching in an 
ordered sequence. 

Magnetic Cycle Distributor. Figure 28 illustrates a cycle distributor 
frequently employed' as a multioutput signal generator for timing and 

Tl-------4--------~------~------~~ 

T2--------------__ ~--------------~~ 
FIG. 28. Cycle distributor for timing control circuits. 



15-22 DESIGN OF DIGITAL COMPUTERS 

control signals. Following initial preset, a time signal is derived on 
a separate control line each time the signal 1 is advanced one position 
along the closed end chain in response to Tl or T 2 . These clock pulses 
usually are obtained from an external oscillator, such as a continuously 
running multivibrator. 

Unequal spacing of signals in the output pattern may be achieved 
by disregarding appropriate cores in the control line connections. These 
cores assume simply the function of delay, but must be included in time 
and frequency considerations. For example, in the configuration shown, 
the repetition frequency of each of the line signals is 2/n that of T1 , 

where n is the total number of cores. 

8. ARITHMETIC AND MISCELLANEOUS APPLICATIONS 

It previously has been shown how bistable magnetic cores and the 
basic transfer loops can be arranged to realize most of the essential 
functions of a digital data processing system. These functions have 

FIG. 29. Serial binary half adder. Serial input of digits of two binary numbers with 
in-phase entry of corresponding orders, starting with the least significant. Note. The 
last core has been added so that the carry output occurs at the same clock time as S 
but delayed by one cycle. This is necessary in order that the carry generated during 
anyone cycle can be added to the sum bit generated during the next cycle when 

two half adders are placed in cascade to form a full serial binary adder. 

included storage, delay, control, and the fundamental logical operations. 
With these building blocks and the principles delineated, virtually any 
function can be performed with the efficiencies characteristic of the new 
techniques. The diagrams of Figs. 29 through 31 are representative of 
the combinative possibilities. 



MAGNETIC CORE CIRCUITS 15-23 

Output 

t~--~--+-------~-------4--------~------~------~ 

Count 
(t2) --_~-------6------------I 

FIG. 30. Mod 3 ring counter. Note. This arrangement can be used in general to 
obtain any count. The number of cores required in each case is twice the count. 

Upper array: 2m cores 

tl----~--4_--4_------+-------r_--_+~ 
Count 
(t2) ----I----..--------..--+---t---' 

tl------~----~~----~-------+------~ 

FIG. 31. Mod 7 counter, illustrating use of cascaded distributors and feedback tech­
niques. Note. For long counts, this method requires fewer cores than in the preceding 

arrangement. A count of (n - I)m + a is obtained with 2(m + n) cores. 

Nondigital Applications (Ref. 9). Although the present chapter is 
devoted mainly to digital processes, the use of bistable magnetic cores 
is not so limited, and numerous nondigital applications are to be found. 
The magnetic cycle distributor of the preceding paragraph, employed as 
a multi output signal generator, is an example; others include devices 
for automatic phase control, and control of pulsing circuits to recording 
heads in a unique matrix printing process. 

9. DRIVERS FOR MAGNETIC CORE CIRCUITS 

Except for the more recently developed transfer loops containing active 
elements (transistors), pulse power from an external source is required 
to drive magnetic core networks and is commonly derived from electron 



15-24 DESIGN OF DIGITAL COMPUTERS 

tube type generators. Vacuum and gas tubes, transistors, and magnetic 
amplifiers all are used for driving magnetic core circuits. A detailed 
description of the magnetic and transistor drivers lies outside the scope 
of the present chapter. 

Constant-current sources are most commonly used, to simplify the 
analY$is and the loop design equations. The pulses sometimes may be 
nearly rectangular, but more often are approximated by trapezoidal 
functions. Driver current amplitude must be stable over the range of 
impedances presented by the variable load conditions. 

Readout drivers for magnetic core circuits include vacuum tube pen­
todes triggered by appropriate pulses, blocking oscillator type circuits, 
and self-extinguishing thyratron circuits. .The last two can be triggered 
by the output from a single core and may be used as amplifiers where 
it is required that one transmitting c~re switch a large number of receiv­
ing cores. Frequencies of 500 kilocycles are obtainable without difficulty 
except for the thyratron drivers which are generally limited to 5 kilo­
cycles due to deionization time or pulse-forming network delays. 

Considerations in the development of transistor drivers are that, for 
good efficiency as a series switch, the collector saturation voltage should 
be low, and to drive many cores, the collector voltage and dissipation 
ratings should be high. As high-power junction transistors and driver 
circuits using them to best advantage are developed, these drivers may 
be used increasingly in place of electron tube drivers, in order to advance 
the reliability and reduce the size and power requirements of magnetic 
core data processing systems. 

REFERENCES 

1. A. J. Meyerhoff, Application of magnetic cores to digital devices, Auto. Con., 
April, May, and July, 1956. 

2. W. Keister, A. E. Ritchie, and S. H. Washburn, The Design of Switching 
Circuits, Van Nostrand, Princeton, N. J., 1951. 

3. R. D. Kodis, S. Ruhman, and W. D. Woo, Magnetic shift register using one 
core per bit, Convention Record I.R.E., Pt. 7, 1953. 

4. A. J. Meyerhoff and R. M. Tillman, A high-speed two-winding transistor-core 
oscillator, I.R.E. Trans. on Circuit Theory, Transistor Circuits Conference, February 
15, 1956. 

5. S. S. Guterman and W. M. Carey, Jr., A transistor-magnetic core circuit; a new 
device applied to digital computing techniques, Convention Record I.R.E., Pt. 4, 
1955. 

6. H. Epstein and F. Innes, The electrographic recording technique, Convention 
Record I.R.E., Pt. 4, 1955. 



MAGNETIC CORE CIRCUITS 15-25 

7. T. L. Auerbach and S. B. Disson, Magnetic elements in arithmetic and control 
circuits, Elec. Eng., 74, Pt. 2, 766-770, September, 1955. 

8. I. L. Auerbach, A static magnetic memory system for the ENIAC, Proc. Assoc. 
for Computing Machinery, 213-222, May, 1952. 

9. ·W. MiehIe, J. Paivinen, J. WyIen, and D. Loev, BIMAG circuits for digital 
data processing systems, Convention Racord I.R.E., 3, Pt. 4, 70-83, 1955. 





D DESIGN OF DIGITAL COMPUTERS 

Transistor Circuits 

I. Introduction 

2. Transistor Switching Properties 

3. Direct-Coupled Transistor Switching Circuits 

4. Point-Contact Transistor Pulse Amplifiers 

5. Transistorized Calculator 

References 

I. INTRODUCTION 

Chapter 16 

Isaac L. Auerbach 

16-01 

16-02 

16-05 

16-15 

16-20 

16-30 

Transistors can be used to perform practically any of the basic gating, 
storage, and control functions in digital computers. As a logical element 
the transistor has the following advantages: 

1. The transistor life span is several orders of magnitude greater than 
that of vacuum tubes. 

2. The transistor because of switch contact like parameters may be 
d-c coupled. They may also be connected in parallel and series. This 
type circuitry can be exceptionally simple. 

3. By using npn's and pnp's toegther in circuits possessing comple­
mentary symmetry, great design flexibility can be obtained. 

4. High efficiency is possible in switching. 
5. The transistor provides considerable economies in size, weight, and 

power requirements. 
This chapter presents the design approach and basic circuits for three 

demonstrated techniques of transistor digital computer design: (a) direct-
16-01 



16-02 DESIGN OF DIGITAL COMPUTERS 

coupled transistor logic (DCTL) or switching circuits, (b) point-contact 
transistor pulse amplifiers with diode gates, and (c) transistor circuitry 
connected by d-c paths with diode clamping. In each case a computer 
based on the technique is described; they are, respectively, (a) Transac 
(Philco, Ref. 1), (b) Tradic Phase 1 (Bell Telephone Laboratories, 
Ref. 2), and (c) IBM 608 (Ref. 3). The essential features of the ma­
chines are summarized in Table 1. 

Particular attention is given to the logic and control circuit techniques. 
Storage techniques and auxiliary units such as clock supplies are covered 
elsewhere in the handbook. 

2. TRANSISTOR SWITCHING PROPERTIES 

Transistor Types. Point-contact transistors were used for Tradic 
because of their availability at the time Tradic was being developed. 
Of more general current interest are the various types of junction tran­
sistors. To a large extent the differences are determined by the method 
of manufacture. The various types are commonly referred to as: grown 
junction, alloy junction, surface barrier, diffused junction or graded base 
junction. 

The diffused junction transistor is manufactured by a combination of 
techniques. Because of its high switching speed it is excellent for com­
putinguse. 

Switching Characteristics of Transistors 

The junction transistors exhibit switching properties that may be 
likened to those of a relay: the base-to-emitter voltage or current may 
be considered as the actuating factor, and the collector-to-emitter current 
or voltage may be regarded as the output signal. The switching prop­
erties are given below. 

Signal Path Resistance When "Open." For each of the transistors 
listed above the resistance in the operating region is measured in terms 
of hundreds of thousands of ohms or megohms. 

Signal Path Resistance When "Closed." The alloy and surface­
barrier transistors have "closed" resistances of 1 to 5 ohms, when driven 
to saturation; grown junctions usually have greater resistance. 

Speed of Switching. The speed at which the transistor can be 
turned on (the switch closed) ranges from 10 microseconds for low­
frequency alloy junction switching types to less than 10 millimicroseconds 
for surface-barrier transistors. The turn-on speed is a function of the 
application. See Refs. 4 and 5. 

Turn-off time, i.e., opening the switch, runs from many microseconds 
to millimicroseconds, depending upon the particular circuits and voltages 



TABLE 1. SUMMARY OF CHARACTERISTICS OF THREE TRANSISTOR COMPUTERS 

Power 
Requirements, Supply 

Watts Transistors Diodes Voltages 

Transaca 100 2500 -3 
(DCTL) (surface 

barrier) 
Tradic: 75 700 11,000 6 

phase 1 (point 1 
computer contact) 0.5 

-2 
-8 

IBM 608b 310 2165 3600 15 
transistor (junction) -5 
calculator -8 

-15 

a Housed in a 2 cu ft cabinet. Uses 780 resistors and 100 capacitors. 
bUses 95% less power than vacuum tube model. 

Reliability Circuit Philosophy 

Transistor failure of Direct-coupled transistor 
0.01 %/1000 hrs logic. 0.25-J,Lsec delay 

per flip-flop stage 
15,000 hrs operation. Diode logic synchronous 

Transistor failure of pulse amplifier 1-mega-
0.07%/1000 hrs. No cycle 4-phase clock 
failure of capacitors, 
resistors, and diodes 

5% of transistors replaced Diode gating in conjunc-
under adverse operating tion with a 50-kc clock 
conditions 

-i 
:;::c 
» 
Z 
Ul 

Ul 
-i 
0 
:;::c 

n 
:;::c 
() 
C 
=i 
Ul 

~ 

b 
w 



16-04 DESIGN OF DIGITAL COMPUTERS 

used, even for the same transistor type. The turn-off time is related to 
storage time and decay time. These switching times are related to 
emitter and collector currents, a, and a cutoff frequency. 

Logical Gain Characteristics. The ability of one transistor switch 
to drive many others is related to the direct-current gain, or "switch­
ing {3" and to the leakage current, I co. 

The logical gain or treeing factor may run from 5 to about 15, depend­
ing upon the particular circuit and transistor. With each type of junction 
transistor listed above, the ability to drive others without buffer ampli­
fiers decreases as they are pushed to their speed limit. At the current 
state of the art, the surface barrier affords somewhat lower logical gain, 
but greater frequency response, than the others. 

Reliability Characteristics. Transistor characteristics vary with 
temperature and with the operating voltage: the direct-current gain, {3, 
decreases with temperature rise, and the leakage current, I co, increases 
with increase in the operating voltage. Available evidence indicates 
that the life span of the germanium transistor is several orders of magni­
tude greater than the life span of the vacuum tube. Failure rates of less 
than '0.01 per cent per thousand hours have been observed in tests with 
several hundred transistors for several thousand hours in computer 
circuits at room temperature. 

Design Factors 

The essential circuit design considerations for computers are speed, 
reliability, logical gain, noise immunity, and power dissipation. These 
factors are discussed below. 

Speed. From an analysis of the factors determining turn-on time 
and turn-off time, an important basic principle can be stated: 

In any given transistor, fast turn on is accomplished by using high 
initial base current, or by preventing saturation; fast turn off is accom­
plished by using a high inverse base current in relation to the steady­
state forward base current. 

Further speed up depends upon gain and cutoff frequency, margins for 
gain and time constants, and the operation in saturated or unsaturated 
conduction. 

Reliability. Reliability is often built into computers by means of 
"worst case" design. In worst case design, the circuits are built to per-

, form even though all parameters are at their "end-of-life" values. This 
criterion is very conservative since it is highly improbable that all end­
of-life values will be reached simultaneously, and since, in general, the 
circuit will operate when one or two parameters have exceeded their 
assigned end-of-life values, 



TRANSISTOR CI RCUITS 16-05 

Circuit parameters that must be controlled in worst case design of 
transistor computers include: supply voltage tolerances, component tol­
erances, transistor parameter tolerances, and temperature tolerances. 
Among the principal transistor parameters are the direct-current gain, 
{3, and the operating collector leakage current. 

Logical Gain. The establishment of worst case tolerances dictates 
rules for permissible logical interconnections between transistors. As 
noted previously, logical gain is a function of the direct-current gain, {3, 
and leo. In driving bases in parallel, the worst case is high base resist­
ance and low {3. Statistical spread in base resistance adds to the prob­
lem; to turn on a high-resistance base in parallel with a low-resistance 
base, the latter is made to draw more current than necessary. 

Noise Immunity. Consideration of noise generated within the ma­
chine and from external sources enters into the safety margins allowed 
in the worst case design. The principal external noise factor affecting 
transistor circuitry is radio-frequency radiation. Internal sources fall 
into two categories: proximity coupling and common impedance coupling. 
Proximity coupling denotes spurious electromagnetic and electrostatic 
fields; common impedance coupling includes' the. usual factors of power 
supply common impedances and ground plane currents. 

Power Dissipation. Transistor switching power dissipation in both 
static and transient operation must be held within ratings. Manufac­
turers' specifications may indicate a pulsed dissipation rating higher than 
the average limits, but caution should be observed. Thermal time con- . 
stants can be much shorter then the overall time constant. 

In the saturation state, static collector dissipation is simply the 
product of collector voltage and collector current; in the cutoff state, 
collector dissipation is a function of leakage current and collector volt­
age. 

3. DIRECT-COUPLED TRANSISTOR SWITCHING CIRCUITS 

Description. The Transistor Automatic Computer (Transac), devel­
oped by the Philco Corporation, is designed for "real time" control prob­
lems involving as many as 3000 single address instructions. Provisions 
are made for some 30 inputs and 30 outputs. Inputs generally take the 
form of quantized physical variables, and outputs are registered by indi­
cators and power servos. Operations are performed in parallel to obtain 
the requisite speed, and the machine has been made asynchronous to 
avoid undue complexity in its design. Direct-coupled transistor logic 
(DCTL) circuitry is employed for the arithmetic and arithmetic control 
functions. 



16-06 DESIGN OF DIGITAL COMPUTERS 

Direct-Coupled Transistor Switching Circuits 

Transistors can serve as bistable elements, the two stable states being 
saturation and cutoff. When the transistor is at saturation, the collector­
to-emitter voltage is very low; when the transistor is at cutoff, the col­
lector-to-emitter voltage is very high. With a low enough voltage applied 
to the base of a transistor the transistor can be maintained at cutoff; 

I c or Ib in 'milliamperes 

-20.0 -10.0 -3.8 00 

I--f-+--I--f---,I--+\-I----j~ -0.5 

-1.0 

.l1 
~ 
:::..'" 
5 

:::....:) 

FIG. 1. Combined collector and base characteristics of surface barrier transistor. 

with a high enough voltage applied to the base of a transistor, the tran­
sistor can be maintained at saturation. These characteristics make 
practical direct-coupled chains of common emitter switching circuits. 
In these chains, adjacent stages are in opposite states, and all stages 
switch when a signal is applied to the input stage. 

Figure 1 shows the base characteristic and the collector characteristics 
for a surface-barrier transistor with a definite power supply and load 
resistance. Figure 2 shows three stages in a direct-coupled amplifier 
chain. If bias and leakage currents are minimized the load current of 
an on transistor (saturated) consists almost entirely of collector current 

, (point Y in Figure 1) ; and the load current of an off transistor (cutoff) 
consists almost entirely of the base current of the transistor in the fol­
lowing stage (point X). 

In DCTL some of the factors discussed in Sect. 2 are modified as 
described below. 



TRANSISTOR CI RCUITS 16-07 

Logical Gain. The logical gain in transistor circuits depends on f3 
and leo. For DCTL the gain also depends on the base-to-emitter resist­
ance and the output impedance of the transistor in the closed position 
of the switch. 

r-----~r_-----1r_------1r_--- -1.5 v 

200 200 

FIG. 2. Direct-coupled amplifier chain. 

Parameters in Worst Case Design. In addition to all the parameters 
listed in Sect. 2, the base and collector voltages during the on and off 
states must be taken into account in worst case design in DCTL. 

Switching Speed. DCTL provides fast turn on and turn off. Turn 
on is fast because a high initial base current is supplied the transistor 
through the load resistor of the previous stage. Turn off is fast because 
of the high reverse base current. The reverse base current is high because 
the base acts as a low negative voltage source of very low internal im­
pedance, and because the base returns to ground through the low satura­
tion resistance of the previous stage (now on) . 

...------------t__-- - Vee 

pnp 

FIG. 3. Basic direct-coupled saturation flip-flop. 

Saturation Flip-Flop 

A closed two-stage chain, or saturation flip-flop, is shown in Fig. 3. In 
this circuit, the collector voltage of the cutoff transistor is negative, cor­
responding to point X in Fig. 1. This voltage is the same as the ba~e 



16-08 DESIGN OF DIGITAL COMPUTERS 

voltage of the saturated transistor. The collector of the saturated 
transistor is low or near ground, corresponding to point Y. 

The flip-flop can be triggered to the opposite state by dropping the 
base voltage of the saturated transistor to or near ground. This causes 
the collector voltage to rise, energizing the transistor that was previously 
cut off. Two slightly different methods of triggering a saturation flip-flop 

r-------------------------~--------------------------~----------------~c 

FIG. 4. Flip-flop triggering and sensing. 

are shown in Fig. 4. A negative pulse of sufficient amplitude and dura­
tion applied to the base of TR4 will saturate TR4 and cut off TR2. A 
negative signal applied to the base of TR5 will saturate TR5 and cut off 
TR I . The connection of the TR5 collector to a tap on the TR2 load im­
pedance permits the use of TR5 in triggering other flip-flops at the same 
time by sharing the load impedance between the TR5 collector and the 
power supply among all the flip-flops to be triggered simultaneously. 

The state of the flip-flop can be sensed by connecting the input of a 
sensing element, such as TR6 , to the appropriate base-collector-load tie 
point. 

One-Shot Multivibrator 

A one-shot circuit or monostable flip-flop is essentially a flip-flop with 
an RC circuit inserted in one of the collector-to-base cross-coupling paths. 
Figure 5 shows a typical circuit. In the quiescent state, TR2 is main­
tained saturated by the base current supplied through Ro. The collector 
of TRI is essentially at the supply voltage since negligible leakage current 
flows in TRI and TR3. 

A negative trigger applied to the base of TR3 causes it to conduct and 
charge capacitor Co. The resultant positive going potential applied to 



TRANSISTOR CIRCUITS 16-09 

the base of TR2 causes TR2 to conduct less. This condition in turn 
makes the base of TRl more negative, thus turning TRl on. This action 
is cumulative: TRl quickly reaches saturation and TR2 reaches cutoff. 

As soon as this stable state is reached, Co begins to discharge. After 
an interval of time determined by the circuit time constant, the voltage 
at the base of TR2 reaches the point where it causes TR2 to conduct 

------~------------~----------~----~-~c 

FIG. 5. Typical one-shot circuit. 

again. Once TR2 starts conducting, cumulative action brings TR2 to 
saturation and TRl to cutoff, and the circuit remains in this state until 
another trigger is applied. 

At the collector of TR2 is produced a rectangular pulse, whose width 
is determined by the amount of time it takes Co to bring the base poten­
tial of TR2 to the point where TR2 starts conducting. The width of the 
output pulse is independent of the width of the trigger. An approximation 
to the pulse width at the collector of TR2 is obtained by calculating the 
discharge time. The initial capacitor voltage is Vee + (Vee - Vb2 sat) ; 
the final voltage is approximately Vee; and the time constant is RoCo. 
Therefore, 

T = RoColn (2 - V b2 saJVce). 

With SB-IOO and similar transistors, this expression yields better than 
5 per cent accuracy for pulse widths above 0.5 microsecond. For shorter 
pulses the rise time and fall time may add to the error. Other consid­
erations include the exact values of saturation voltage and V b2 turn-on 
voltage, the effects of leakage currents, and variation of Vee and RoC o. 

Gates 

Various types of gates can be built: and's and or's, using direct­
coupled transistors either paralleled or series-connected. General con­
figurations are shown in Figs. 6 and 7. Depending upon whether a 1 at 



16-10 DESIGN OF DIGITAL COMPUTERS 

any of the input bases is defined as a negative voltage or a near-zero 
voltage, the series circuit operates as an and or an or, and the parallel 
circuit functions as an or or an and. For convenience, let the negative 

AO---f--I 

BO---f--I 

Co---t--I 

Out 

Parameters: 

Vee = -3 v; RL = 1 kn; 

Vout = 100 rnv; {:J = 10 

Currents when saturated: 

1 CI = 2.900 rna; hi = 0.290 rna, 

1 C2 = 1RL + hi = 3.190 rna, 

h2 = 0.319 rna, 

1ca = 1RL + 1b2 + hi = 3.509 rna, 

h3 = 0.351 rna. 

FIG. 6. Representative series gate. Output, A ·B·e. 

input gate be termed a "negative gate" and the near-zero input gate be 
termed a "positive gate." The gates also invert the output signal. 

Series Gates. If each base in Fig. 6 is negative in the absence of a 
1 input, the collector load path through TR17 TR2 , and TR3 is then com-

.-------~-----,.....-_o Out 

A 0---+--1 

FIG. 7. Parallel gate. Output, A + B + e. 

plete, and the output is "positive." If any or all of the bases go positive, 
the load path is interrupted and the output is negative. This is a 
"positive or" circuit. For the same circuit but reversing the 1 and 0 
convention, the function is a negative and. The relationship -among 



TRANSISTOR CIRCUITS 16-11 

currents in an on series stack are tabulated for a typical case in Fig. 6. 
Design difficulty can result from the fact that the on output is the 

sun" of the individual saturation voltages, and there is a maximum volt­
age above which the next stage will not be held off. Hence the number 
of series stages that can be stacked is limited, to not over two to four, 
using SB-lOO's, depending upon the worst case design stringency and 
operating parameters. The saturation voltage can be minimized by 
making Rl as large as possible, consistent with drive requirements. 

There is a limit to the number of transistors that can be placed in 
series, because of base current adding. In Fig. 6, for instance, TR3 
must be able to draw the base currents of TRl and TR2 in addition to 
its own. 

A disadvantage of the negative and circuit is that rise times of the 
series-connected transistors add together (in an rms manner), and thus 
slow their operation. 

Parallel Gates. A parallel gate circuit is shown in Fig. 7. If the 
inputs are normally near ground, the output is negative; if any or all 
inputs are made negative, the output goes to ground. This constitutes 
"negative or" operation. Similarly, if the inputs are normally negative 
and the output near ground, all the inputs must approach ground to cause 
the output to swing negative, and the circuit functions as a "positive 
and." 

The parallel arrangement can be used with more inputs than the series 
circuit since there is very little change of output levels or rise time as 
more stages are added. Ultimately, the number of stages that can 
be paralleled is dependent on the effective leakage current (I co) in the 
off state. Since all individual leo's flow through the common R L , the 
(~leo) (R L ) drop may be sufficient to turn off the following stage. To 
some extent this can be counteracted by lowering R L , but without exceed­
ing the maximum Ie rating during conduction. The leo's increase appre­
ciably with temperature, and the practical maximum number of inputs 
in parallel is approximately ten, for SB-lOO's operating at 3 volts supply 
and 40°C. Exact limits depend also on /3, on R L , and on the operating 
point, and number of stages driven. 

Combined Gates 

Representative combined gate circuits performing addition are shown 
in Figs. 8, 9, and 10. 

Half-Adder. All the gates in the half-adder circuit shown in Fig. 8 
are negative. The complementary pairs of inputs, (A, ..4) and (B, B), 
are the outputs of opposite sides of flip-flops; for error protection the 
states of both sides are carried through the logic gates. In like manner 



16-12 

-Vce 

B 

A 

B 

A 

DESIGN OF DIGITAL COMPUTERS 

.---____________ --0 Carry 
AB 

-Vce 

-Vcc 

Sum 
.---------1f'---oAB + AB 

FIG. 8. Half-adder. 

Carry 
A(BC + BC + BC) + ABC 

-Vee 

Sum 

(AB + AB)C + (AB + AB)C 

FIG. 9. Full adder. 



'"' \ -r I 
Carry out 

-Vee 

-Vcc .---i----t------<D S (+) 
Sum out 

-=- -=- pnp -=- -=- -=-

-Vcc -Vcc 

B(-) B(+) A (-) 11 (+) Inputs C(+) c (-) 

FIG. 10. Full adder with not over two transistors in series. Symbols: (-). complement; (+), indicated logic state cor .. 
responds to O-volt level; (-), indicated logic state corresponds to minus volt level. 

--I 
7J 
> 
Z 
til 
til 
--I o 
;;:c 

Q 
;;:c 
() 
C 
~ 
til 

'r 
w 



16-14 DESIGN OF DIGITAL COMPUTERS 

the single outputs shown may be supplemented by inverters to provide 
double outputs for each sum and carry. 

Full Adders. Figure 9 shows a three-input or full adder. In Fig. 10 
is given a special full-adder circuit with series stacks limited to two tran­
sistors in height. This restriction is derived, under a worst case design 
philosophy, from the limitations pointed out previously. Input buffer 
inverters are included in the full-adder circuit of Fig. 10. Throughout a 
computer, the inverter buffers may be used, singly or in trees, as a pulse 
distribution system. 

He Speedup. For some transistors the gates and buffers can be 
speeded in turn off by the addition of a parallel resistor-capacitor com­
bination in the base. The same technique is applicable to the flip-flops. 
It is sometimes also advantageous to return the base to a positive bias 
voltage, and thus hold it off· more firmly and improve noise rej ection. 
The RC and bias are depicted in Fig. 11. (See also Design Factors under 
Sect. 2.) 

+v -Vcc 

'-JP"---v Out 

FIG. 11. Inverter with R-C speedup and 
base bias. 

In 0----+---'1 

''Y/----o Out 

+v 
FIG. 12. Emitter follower. 

Emitter Followers. The emitter follower, shown in Fig. 12, is a 
current amplifier that works in the nonsaturation region. This means 
that hole storage time has no effect on the speed. The use of the emitter 
follower is analogous to the use of cathode followers in vacuum tube com­
puting circuits. The loss in voltage swing between input and output 
limits the number of emitter followers that can be put in a direct-coupled 
chain without compensation. 

Transac Packaging and Power Requirements 

For the Transac computer designed and built by the Phil co Corpora­
tion, packaging is in the form of plug-in cards containjng from 50 to 70 
transistors and their associated components. Particular attention has 
been paid to the problem of maintenance with unskilled personnel. 



TRANSISTOR CIRCUITS 16-15 

Exclusive of the input devices, indicators, and output converters, 
Transac requires approximately 2500 transistors, 700 resistors, and 100 
capacitors. All transistors are surface barrier except for 72 power tran­
sistors in the storage. The computer can be economically contained in 
approximately 2 cubic feet and requires less than 100 watts, including 
35 watts for driving the storage drum. For some environments the com­
puter must be maintained below the ambient temperature; the 2!..cubic­
foot volume is cooled without difficulty. 

4. POINT-CONTACT TRANSISTOR PULSE AMPLIFIERS 

Description. The Phase 1 Tradic computer, developed by the Bell 
Telephone Laboratories, was built to demonstrate the feasibility of a 
transistor computer for military airborne service. A binary serial ma­
chine with a complete arithmetic unit, it operates at a pulse repetition 
frequency of 1 megacycle per second. Point-contact transistors are used 
for pulse regeneration, semiconductor diodes for logic, and electromag­
netic delay lines for storage and incidental delay. 

Active Element. The elemental block around which the Tradic phase 
1 computer is designed is the transistor pulse amplifier. This circuit 
contains a single point-contact transistor and associated resistors, capaci­
tors, and diodes; its function is to reshape and retime half-microsecond 
digit pulses at appropriate intervals in the logic networks. One amplifier 
will drive one to seven similar amplifiers, depending on the intervening 
logic. 

The point-contact transistor is employed in a common base configura­
tion to take advantage of its negative resistance emitter characteristic, 
shown in Fig. 13. This property, not generally shared by junction type 
transistors, occurs when the current gain of a transistor is greater than 
unity and the input and output signal voltages are in phase. 

Pulse Amplifier. The RC-coupled pulse amplifier circuit is given in 
Fig. 14. Input, output, and clock waveforms are represented in Fig. 15. 
The circuit normally rests in the low-current state, where current flow 
through R 2 , X 2 , and X3 holds the junction of the diodes at point A on 
the emitter characteristic, a voltage just below the peak point. A posi­
tive input signal (1) raises the emitter voltage to the negative resistance 
region. With sufficient bandwidth, the transistor is unstable in this 
region and snaps out on a load line provided by capacitor Ce to point D. 
The capacitor then discharges from D to B, at which point diode X 2 

conducts and the transistor is locked in its high-current state. The fol­
lowing positive clock pulse at the base in effect lowers the emitter voltage 
into the unstable region, and the circuit returns to its initial state. 

Only the positive half-cycles of the clock sine wave appear at the base 



16-16 DESIGN OF DIGITAL COMPUTERS 

(xz load line 
for 1 signal)\. 

z-i.._ 

FIG. 13. Idealized point-contact emitter V -I characteristics and operating load line 

R1 
R2 
Rb 
RL 
C1 
C2 
C3 
C~ 
Cc 

v+ 
(Nom mal + 6) 

Signal o--...,...--t4-.----t-~ 
input 

'Vcc 

V clamp 
-=-

12 k11 Vee 
22 k11 V clamp 
470 11 1'+ 
470 11 Clock 
O.01p,f coupling 
O.OIp,f filter Xl 
O.OIp,f filter X2 
15 p,p,f X3 
50 p,p,f 

sine 
wave 

-8 volts 
-1 volt 
+6 volts 
lO-volt peak, symmetrical re-

spect to ground 
Base diode 
Emitter clamp diode 
Input diode 

FIG. 14. RC-coupled pulse amplifier circuit. 



TRANSISTOR CIRCUITS 16-17 

of the transistor, and these recur regularly at I-megacycle rate. Input 
information signals are timed to arrive toward the end of the clock pulse, 
and the transistor triggers as the sine wave goes through ground potential. 
Since turn on and turn off are controlled, respectively, at the termination 
of one base pulse and the beginning of the next, the timing and duration 

+2v 
One (1) 

o -t---J'-t------'I--i-----+-Input pulse 

-2v 

+2v 
One (1) 

O+----:,..+-----+-\---~ Output pulse 

-2v 

+lOv 

I-Mc 
0-f------'1----#-----4- sine wave 

clock 

-lOv 

FIG. 15. Typical waveforms, Tradic packages. 

of the square wave output is determined by the clock rather than the 
input signal. In the case of a 0 input signal (no signal) during a cycle 
of operation, the clock tends merely to drive the transistor further into 
cutoff, and no output occurs. 

Transformer Coupling. Improved amplifier performance may be 
obtained with transformer coupling and the use of additional circuit 
components. The RC circuit, previously described, and the transformer­
coupled circuit operate fundamentally in the same way. The circuit 
schematic of the basic transformer-coupled amplifier may be obtained 
from Fig. 16, the schematic of the four-input or package, by omitting 
diodes CR 141 CR 211 CR 221 CR 23 , and CR 241 and all but one of the signal 



16-18 DESIGN OF DIGITAL COMPUTERS 

input leads. The outstanding advantages of the transformer-coupled 
amplifier are a higher and more uniform output signal level and a sizable 
reduction in clock input power. 

Phase I Packages. For convenience, the amplifiers are packaged 
singly with the appropriate diode logic _ gates included. Each type of 
package has a simple function and can drive several packages in parallel. 
The or, and, inhibit, and storage packages are representative of those 
employed in the arithmetic unit of the computer. Schematics of the 
packages are shown in Figs. 16, 17, 18, and 19. A number of features 
are common to all packages. 

Strappable Load. With the collector circuit heavily loaded, safety 
margins are improved due to deepening of the valley of the negative 
resistance curve. Diodes CR l7 and CR lg , and resistor R lO are provided 
as a strappable load in order that packages may always be connected 
with a minimum of four loads. 

Bypass Capacitors. Capacitors Ca, C4, C5 , and C6 prevent transients 
through the common voltage supplies from affecting amplifier operation. 

Waveforms. Typical input and output voltage waveforms relating to 
the functional packages are illustrated in Fig. 15. 

Four-Terminal Or Circuit. The or circuit, shown in Fig. 16, will 
have an output if there is a signal (a positive pulse) on any of the input 
leads. The purpose of CR 2l , CR22 , CR23 , and CR 24 is to isolate the 
inputs from one another. CR 14 is required because the series diode 
reduces the effect of the clamp of the driving package. 

Four-Terminal And Circuit. The and circuit, shown in Fig. 17, will 
have an output only if there is a simultaneous signal on all its input 
leads. The logic circuit consists of resistors R 6 , R 7 , R g, and Rg and 
diodes CR 7 , CRg, CRg, and CRlO' All these diodes must be cut off if 
the amplifier is to trigger and provide an output signal. The absence 
of a signal on anyone of the leads permits the corresponding input 
diode to clamp the transistor emitter below the peak point. Unused and 
inputs are connected to ground to provide a continuous signal at these 
terminals. 

Inhibitor Circuit. The inhibitor circuit, shown in Fig. 18, will have 
an output if there is a simultaneous signal on both of the and input 
terminals, provided there is no accompanying signal on the inhibit 
terminal. Diodes CR 3l and CR 32 , together with R14 serve the dual 
purpose of providing damping for T 2 , and of establishing a current 
threshold to give protection against spurious inhibition. In the quiescent 
state, both CR 3l and CRa2 carry small currents. The inhibiting signal 
must replace this current in CR al and cut it off before it can cause eRg 
to conduct and thus inhibit the package. 



PI 

.6 

+6 VC~-Vo41 . 
r----- -CR-----------' 

-k:l I 21 I ~I I 
I 

1 

I 

I 
I 

.l!! 
:J 
a. 

oS 
r... 
Q 

I 

-U I CR221 I ~I I 
CR7 I 

CR 23 

1.. ____ _ 

R4 
22,000 

x 
C2 

I 15 
_ J..LJ..Lf 

-2 v---U I .-- t I I -:- 1 . I 

C5 rO
.
Ol 

Phase-~ll-:-lr-+------=~_~~1 

-8V--~ I I lY 

10
1 -2 v---f-:O 

pnp 

-=-

Part of PI 

fm--- Collector 

1
121 __ Clamped ---....... -----.0+- output 

I, ~I I 0-+--- Unclamped 
output 

C4 

r°.oI '----+--1 0-+--- See Note 2 

FIG. 16. Tradic four-input or circuit. Notes. (1) All values are expressed in ohms and microfarads unless otherwise indicated. 
(2) With one or two . loads, strap 9 to 8. With three loads, strap 9 to 10. With more loads, leave 9 open. 

-I 
:::0 » 
Z 
Vl 
Vi 
-I o 
:::0 

n 
:::0 
() 
c 
=i 
Vl 

cr 
..0 



16-20 DESIGN OF DIGITAL COMPUTERS 

The inhibit clock input circuit, consisting of CR 9 , CR 22 , and R 8 , is 
an additional and type input to prevent a false output should the input 
and signals last longer than the inhibit signal. The inhibit clock voltage, 
which lags the amplifier clock voltage by 90 degrees, goes negative at the 
time the input signals would normally disappear. This causes CR 9 to 
conduct and clamp the emitter below the peak point. 

and 
Inputs 

1 

13 

15 

2 

C!18 

~R7 
I~ 

:>12,000 
9!19 
I~ 

~R8 
~> 12,000. CRlO 

I~ 
~ 

>R9 
~12,000 

~~7 
I~ 

~R6 
<> 
<;> 12,000 

Y 

X 

Remainder of circuit identical 
to or circuit package 

FIG. 17. Tradic four-input and circuit. Remainder of circuit identical to 
or circuit package. 

Storage Circuit. 'Vhen a signal is applied to the Set 1 input of the 
circuit shown in Fig. 19, an output signal occurs ~ microsecond later, 
and every digit period thereafter until a signal is applied to the Set 0 
input. Simultaneous signals to both terminals result in no output signal. 

An output signal is fed back through the delay circuit of T 3 , CR25 , 

C8 , and CR24 , and into the amplifier input. The delay circuit is arranged 
so that the total loop delay is 1 microsecond, and recirculation of the 
pulse continues until the transistor emitter is clamped negative by the 
inhibiting Set 0 input. 

Power Requirements. The total power required, d-c and clock, is 
75 milliwatts for a pulse amplifier and logic package. ,The requirements 
for the computer system, which contains approximately 700 transistors 
and 11,000 diodes, is less than 100 watts from all sources. 

5. TRANSISTORIZED CALCULATOR 

Description. This transistorized equipment is functionally identical 
to the IBM 604 electronic calculating punch, a vacuum tube machine in 



Part of PI 
--, 
6 

+6V{==~, 
Phase --115 ! 

...LCs 1-0.01 
I __ I 

__ Clamped 
output 

and{ 111 
• • __ I "'i --,--- <i -.--

Inputs I 2 I 

I 
-- I 

--rl 1141 ±Ii Ii CR a ! (0) 
· ,.,. i: I ""161 3 
1~lld3 

I .1 I i-- Unclamped 
CRI7 output 

CRa2 

12Z80lJ 
·1 

RI4 
CR2 

-8v--

6800 

--See Note 2 
Inhibit 13 
input -- 11 PI 
0.5 v--Ti9 
-2 v-- 10 

-2v--TI 
Phase--TI 

Ground--h 

FIG. 18. Tradic inhibitor circuit. Notes. (1) All values are expressed in ohms and microfarads unless otherwise indicated 
(2) With one or two loads, strap 9 to 8. With three loads, strap 9 to 10. With more loads, leave 9 open. 

--I 
;;::0 » z 
Vl 
Vl 
--I 
0 
;;::0 

() 
;;::0 
() 
C 
=i 
Vl 

0" 
~ 



+6 v{=~ 

Pa~Pl 
6 

• CR15 

Clamped 
-- output 

Unclamped 
output 

Set I __ 
input 

0.5 v-

Direct 
set 0 
input 
-8v--

-2v--
-2v __ 
Diode 
set 0 --
input 

Phase --

Ground --

.11 

113 1 

8 

-~ 

:t~ 

~CRI 

-- See Note 2 L----r-. -. I 

FIG. 19. Tradic storage circuit. Notes. (1) All values are expressed in ohms and microfarads unless otherwise indicated. 
(2) With one or two loads, strap 9 to 8. With three loads, strap 9 to 10. With more loads, leave 9 open. 

0-
N 
N 

o 
m 
Vl 

(i) 
Z 

o 
" o 
(i) 
=i » 
r-
() 
o 
~ 
." 
C 
-f 
m 
:;:0 
Vl 



TRANSISTOR CI RCUITS 16-23 

widespread use. The calculator has a decimal arithmetic unit and deci­
mal storage. It operates in the 1-2-4-8 binary coded decimal system, 
with numbers transferred in parallel by decimal digit, and uses an essen­
tially d-c type of logic. Transistor logic circuits are employed where 
the speed requirements dictate; elsewhere diode logic elements are utilized. 
The circuitry is based on direct-coupled junction transistors with diode 
clamping (Ref. 6). 

Characteristics. The input-output is by punched cards which are 
read and punched at the rate of 100 cards per minute. Calculations are 
performed at a basic pulse repetition frequency of 50 kilocycles. The 
computer cycle occurs between the time a card is first read and before 
it arrives at the punching station. Thus, the calculated result is punched 
in one card while the next is being read. As a service check, the calcu­
lator must operate without failures at 70 kilocycles. 

Basic Circuits. Various types of basic circuits are employed to 
accomplish the necessary switching and control functions. Included 
among these circuits are inverters, emitter followers, flip-flops, and and 
or transistor gates, and output drivers. 

The germanium junction transistors which are used in most of the 
circuits are fairly low-frequency response units with alpha cutoff at 
1 megacycle. Further specification includes a beta between 40 and 90, 
and a reverse current, a~ room temperature, not greater than 10 micro­
amperes with 5 volts reverse bias. 

The 5-volt signal excursion, from -5 volts to ground, is considered 
optimum for a number of reasons, the most important of which is the 
need for reliability. In general, the cutoff current of a transistor has a 
higher increase with time at the higher collector voltages, and this would 
indicate that a low collector voltage, and hence a low signal swing should 
be maintained. The use of low signal levels, on the other hand, intro­
duces problems relating to the speed of operation and the amount of 
energy required for switching. Alpha cutoff is directly related to the 
collector voltage, and collector capacitance is inversely related to the 
collector voltage. These factors would indicate that a high signal level 
is best for high-speed operation. The 5-volt swing employed in the 
circuits proves to be a satisfactory compromise. 

Inverter. The inverter is shown in Fig. 20a, b, with pnp and npn 
junction transistors. The pnp inverter is capable of charging rapidly a 
capacitive load when a positive output is required. Conversely, the npn 
inverter can be used when a capacitive load must be driven rapidly in 
the negative direction. 

The diode clamps, Dl and D 2 , reduce by a factor of two the turn-off 
time of the output signal when the inverter is driving a capacitive load. 



16-24 DESIGN OF DIGITAL COMPUTERS 

They also firmly establish the off level, and make this level less depend­
ent on the type of load being driven. R1 and C1 serve to decrease turn­
off delay caused by minority carrier storage effects. The value of load 
resistor Rc is chosen so as to limit the maximum collector current to 
5 milliamperes. 

+ 15 v 

Input 
I Ov ~-+~~AP-~--~-+~ 

L.-5v 

Input 
--, a v O---+-~I 

L_5v 

...--11*----+------------0 Output 

(a) -15 v 

+15 v 

rOv 
----1 -5 v 

,----+e-------t------------o Output 

-15 v 

(b) 

rOY 
----1 -5 v 

FIG. 20. Inverter. (a) pnp type: Rl, 10 kn; R2, 110 kn; Re, 3 kn; CI, 680 {.L{.Lf. 

(b) npn type: RI, 10 kn; R2, 75 kn; Re, 3.9 kn; CI , 680 {.L{.Lf. 

Emitter Follower. Emitter followers of types pnp and npn are 
shown in Fig. 21a, b. The characteristics of the basic arrangement cause 
the signal to suffer a loss in amplitude and a shift in level. After the 
signal is lowered by several stages of emitter followers or diode logic, 



TRANSISTOR CI RCUITS 16-25 

....... -----0 Output 

Input o--~...J\I\I\J-~...--t--; 

-15 V -81/' 

(a) 

+ 15 v 

I n put 0------4--,1\/\ ('-.....---f----t 

....... -----0 Output 

(b) -15v 

CI 

Input O---+-,'\/\J v-----. t------o Output 

(c) -8 v 

FIG.21. Emitter follower. (a) pnp type: RI, 1 kO; R2, 75 kO; R., 3.9 kO; Ct, 680 ,.,.,.,.f. 
(b) npn type: Rt, 1 kO; R2, 110 kO; R., 3 kO; CI , 680 ,.,.,.,.f. (c). Complemented type: 

Rl, 20 0; R2, 20 0; Ra, 510 0; Ct, 1000 fJ-fJ-f. 



16-26 DESIGN OF DIGITAL COMPUTERS 

the loss in amplitude is corrected by passing the signal through an in­
verter. Compensation for shift in level, on the other hand, is made at 
each emitter follower by means of resistors R1 and R 2 , and the voltage 
to which R2 is returned. 

One serious difficulty encountered with an emitter follower, when driv­
ing a capacitive load, is an overshoot in the output waveform. This dis­
tortion is minimized by shunting the input resistor R1 with capacitor C1. 

The collector of the pnp emitter follower is returned to -8 volts rather 
than. - 5 volts. This prevents minority carriers from being inj ected 
into the base region from the collector when the input is more negative 
than the latter value. Because the npn emitter followers in the calcu­
lator are used to drive loads with long time constants, the minority 
carrier effects in this case are not appreciable. 

When fast rise and fall times are required with capacitive loads, a 
complemented emitter follower (Fig. 21c) is used. A positive-going 
input causes the pnp transistor to cut off and the npn transistor to supply 
the load current. As the input goes negative, the conditions are reversed 
and the pnp unit discharges the capacitive load. This, circuit can drive 
as many as twelve flip-flops in paraliel at the pulse repetition of 50 kilo­
cycles. 

Flip-Flops. The basic (Eccles-Jordan) flip-flop is shown in Fig. 22a. 
The collector on the left side is clamped at -5 by means of diode D 1 ; 

the collector on the right side is similarly clamped by the emitter-base 
junction of the auxiliary npn transistor. This npn unit develops a volt­
age swing of 40 volts and is required for operation of the neon indicator 
lamps. 

The basic drive circuits used in conjunction with the flip-flop circuit 
are shown in Fig. 22b, c. The type of input shown at (b) is used when 
the trigger is operated in a ring circuit. The flip-flop can be reset by 
means of a cam-driven contact which opens the collector supply on one 
side of the flip-flop. It can also be reset by means of diode D1 when the 
input is driven positive by a pnp inverter which is normally off. Positive 
going waveforms at the Set on or Set off terminals set the trigger in the 
on (right transistor conducting) or off (left transistor conducting) state, 
respectively. 

Figure 22c shows the type of input connection for flip-flops used in 
counter applications. The diode D1 is connected to -5 volts, and no 
cam reset is required. The circuits comprising R 5 , D 2 , and C 3, and 
R 6 , D s, and C 4 act as gates or steering circuits. Capacitor C5 and 
diode D4 provide a reset off input. These binary flip-flops may be cas­
caded, with blocking feedback from the fourth to the second stage, to 
form a binary-coded decimal counter as indicated in Fig. 23. 



....... 
Q) 
VI e 
~ 
Q) 

> o 

"S a.. 

(a) 
Input Output 

1
e5 
+ Reset off 

(c) 

FIG. 22. (a) Basic flip-flop circuit: Rl, 10 kO; R2, 110 kO; Rg, 39 kO; R4, 200 
kO; CI, 680 p.p.f; Re, 3 kO. (b) Ring trigger drive: C2, 680 p.p.f. (c) Counter 
trigger drive: Rs, 3 kO; R6, 3 kO; R7, 3 kO; Rs, 27 ko; Cg, 1000 p.p.f; C4, 1000 

p.p.f j C5, 1000 p.p.f. 

16·27 



16-28 DESIGN OF DIGITAL COMPUTERS 

Logic Elements. Transistors are used for logic in the calculator 
wherever the requirements of speed dictate. And and or operations are 
performed by emitter followers, paralleled as shown in Fig. 24a, b. The 
output of the and circuit is at ground level if X, Y, and Z are simulta­
neously at ground. The or circuit output is at ground if any of the 
inputs are at ground. 

Input 

pulses 

(Blocking feedback) 

8 on + Carry 

- With 
Ion 

Positive-goi ng 

input pulses 

FIG. 23. Coded decimal counter. 

-15 v 

Output Drivers. Relays and other electromagnetic devices are driven 
by a power transistor developed by IBM. This transistor exhibits a 
negative resistance characteristic, and its use is quite similar to that 
of a thyratron tube in a control application. 

The relay driver circuit is shown in Fig. 25. The transistor latches on 
with a short input pulse of about 1 microsecond duration, and the col­
lector circuit is opened mechanically to return the transistor to its low­
conduction state. The average emitter to collector current gain is four; 
the average voltage drop is 2 volts at 100 milliamperes. 

Packaging. The transistorized calculator occupies less than one-half 
the volume of the model 604 vacuum tube equivalent, and further min­
iaturization is practicable. Printed wiring techniques are used for assem­
bly of the transistor circuitry. A pluggable unit arrangement is used to 
facilitate assembly and servicing of the machine. The calculator con­
tains 2165 transistors and 3600 diodes. A typical package consists of 
circuit components soldered on a 3-inch by 5~~-inch card with 18 termi­
nals. The 595 cards in the calculator comprise a total of 40 different 
types. 



+x 

TRANSISTOR CIRCUITS 

-15 v -8v 
(a) 

+15 v 

(b) 

16-29 

Compare 
Fig.21a 

Output 
+(X+ Y+Z) 

Compare 
Fig.21b 

FIG. 24. Logic elements: (a) and circuit, (b) or circuit. 

-15 v -48 v 

FIG. 25. Relay driver. 

II 

Relay 
pick.up 

cOil 



16-30 DESIGN OF DIGITAL COMPUTERS 

Power Supplies. The supply voltages are + 15, -5, -8, and -15 
volts for the transistor circuits; + 45 and -45 volts are supplied for 
the neon indicators. The power supply has a tuned transformer input 
which enables the circuits to operate satisfactorily with a line variation 
from 90 to 125 volts at 60 cycles per second. 

The total power requirements for the calculator is 310 watts. Com­
pared with the requirements of the vacuum-tube machine, this represents 
a power reduction of the order of 95 per cent. 

ACKNOWLEDGMENTS 

The author wishes to express his appreciation for the permission received from 
the various companies to include the material contained in this chapter. He 
further gratefully acknowledges the assistance of those listed for their assistance 
in providing information included here: H. A. Affel, Jr., Philco Corporation, for 
material on Transac and DCTL circuitry; E. G. Clark and J. H. Dahms, Bur­
roughs Corporation, for material on design factors and information on transistor 
switching properties and for their assistance in compiling the figures; J. R. Harris, 
Bell Telephone Laboratories, for his critical review of the text; R. M. Shultz, 
Auerbach Electronics Corporation, for his contribution on DCTL circuitry. 

REFERENCES 

1. R. H. Beter, W. E. Bradley, R. H. Brown, and M. Rubinoff, Electronics, 28, 
132-136 (June 1955). 

2. Tradic Phase I Computer-Summary Engineering Report, Bell Telephone 
Laboratories, Whippany, N. J., under contract AF 33(600)-21536. 
, 3, G. D. Bruce and J. C. Logue, The IBM 608 Calculator, International Business 
Machines Corporation, Poughkeepsie, N. Y. 

4. J. J. Ebers and J. L. Moll, Large-Signal Behavior of Junction Transistors, 
Proc. I,R.E., 42, 1761-1772 (1954). 

5. J. L. Moll, Large-Signal Transient Response of Junction Transistors, Proc. 
I.R.E., 42, 1773-1784 (1954). 

6. G. D. Bruce and J. C. Logue, An Experimental Transistorized Calculator, 
Elec. Engr., 74, 1044-1048 (1955). 

7. E. Wolfendale, L. P. Morgan, and W. L. Stephenson, The Junction Transistor 
as a Computing Element (Pt. 2), Elec. Engr., 29, 83-87 (1957). 

8. R. H. Baker, Boosting Transistor Switching Speed, Electronics, 30, 190-193 
(1957). 

9. G. J. Prom and R. L. Crosby, Junction Transistor Switching Circuits for High­
Speed Digital Computer Applications, Trans. I.R.E. Elec. Camps., EL-5, 192-196 
(1956) . 

10. G. W. Booth and T. P. Bothwell, Basic Logic Circuits for Computer Applica­
tions, Electronics, 30, 196-200 (1957). 

11. W. D. Rowe and G. H. Royer, Transistor Nor Circuit Design, Trans. Am. 
Inst. Elec. Engrs., Paper No. 57-196. 

12. E. V. Cobler, Steady State Conditions of a Junction Transistor Flip-flop, MIT 
Lincoln Laboratory Memo No. M-2686, March 1954. 

13. A. E. McMochon, I. L. Lebon, and R. H. Baker, A Design Procedure for 
Junction Transistor Flip-flops, MIT Lincoln Laboratory Internal Memo No. 
M24-34, 4pril 1954. 



D DESIGN OF DIGITAL COMPUTERS 

logical Design 

I. Computer Elements 

2. Algebra ic Techniques of Logica I Design 

3. Preliminary Design Considerations 

4. Detailed Logical Design 

5. Direct Simulation of a Logical Design 

References' 

I. COMPUTER ELEMENTS 

Definitions 

Chapter 17 

Lowell Amdahl 

17·01 
17-10 

17-24 

17-30 
17-38 

17-42 

Logical design is the specification of the interconnection of computer 
elements to produce a computer with the desired operational properties. 
Computer elements are aggregates of components which, as independent 
units, perform elementary computing functions. Examples. Flip-flops, 
inverters, cathode followers, gates. 

Logical elements are computer elements which perform a nontrivial 
10gical function; that is, some input or combination of inputs produces 
something new as an output. The cathode follower is not a logical element, 
whereas an inverter is. 

Two classes of logical elements are decision elements and storage elements. 
Outputs of decision elements respond to their input stimuli during the 
same time interval as the inputs. Decision elements are frequently referred 
to as gates. Examples. Inverters, and gates, or gates. 

Outputs of storage elements respond to the input stimuli in a later time 
17-01 



."'. ... 

1.7-02 DESIGN OF DIGITAL COMPUTERS 

interval. Such a time interval is a basic characteristic of a storage element. 
Examples. Flip-flops, delay lines, magnetic cores. For asynchronous 
computers, time intervals are determined by completion of events. 

Note. It will be assumed in the following discussion that all logical 
elements have input or output values of 1 or 0 only, in accord with the 
widespread use of binary devices in electronic computers. Other terms 
used for the binary states are true or false, on or off, mark or space, open 
or closed, and up or down. 

SYlDbols. The elements used in computer logical design may be rep­
resented by symbols. Three different representations in use are shown 
in Table 1. Representation (a) simply uses a box containing the opera­
tion name, (b) uses a segment of a circle containing the algebraic symbol, 
and (c) uses a purely symbolic representation. N one of these has achieved 
universal adoption. 

TABLE 1. BLOCK SYMBOLS FOR COMPUTER ELEMENTS 

(a) ~=:1 .... _or_--,~A+B ~~ and ~A'B A--1 not 

(b) ;=t>-A+B ;=t>-A'B A--0-X 

(c) ;==!)--A+B ;=D-A'B A-{)--X 
Decision ElelDen ts (See Ref. 1, Chap. 2; Ref. 2, Chap. 3; Ref. 3, 
Chap. 4; Ref. 4, Chaps. 3 and 4) 

Inputs to decision elements will be designated by letters at the beginning 
of the alphabet, A, B, C, etc. Outputs of decision elements will be desig­
nated Fo, F I , F2, etc. Later it will be convenient to identify outputs by 
their functional relationships to inputs, since all outputs of decision ele­
ments are dependent only on the input variables. 

One Input. A decision element with one input has two possible 
input configurations and four possible output responses. In general, an 
N input decision element can have 2N input combinations and 22N possible 
output responses. Some of these responses are trivial. 

Table 2 shows the possible values of 0 or 1 for input A. Each of the 
remaining four columns indicates a possible response to this input, followed 
by its usual name and Boolean algebraic representation. 

Functions Fo and F3 are trivial in that they provide constant outputs 



LOGICAL DESIGN 17-03 

of 0 and 1, respectively, completely unaffected by the input information. 
Function Fl repeats the input information, commonly performed in com­
puters by a wire, a cathode or emitter follower, or a noninverting amplifier. 
Only one binary decision element with a single input and output exist s-the 
inverter, F2 = A. This function is commonly referred to as not, ne gation, 
or complementation. 

TABLE 2. DECISION ELEMENTS WITH ONE INPUT 

Input Possible Outputs 

A Fo Fl F2 F3 

0 0 0 1 1 

1 0 1 0 1 

·Wire, 
Inverter, Name (Trivial) cathode follower, complementer (Trivial) 

amplifier 

Algebraic function 0 A A 1 

Two Inputs. Table 3 shows the four combinations of inputs A and B, 
and the sixteen possible output responses, Fo to F1 5, often referred to as 
switching functions. Fo and F15 are trivial in that they have no dependence 
on the inputs. F3, F5, F1O, and F12 are special cases since they depend on 
only one of the two inputs. F2 and F4 , and also Fll and F 13, can be sym­
metrically paired since an interchange of the name of the inputs produces 
the paired function. There are eight functions of interest: 

F 1, F2 or F4, F6, F7, Fs, Fg, Fll or F 13, F14. 

Because of their simple diode and resistor realization, the most prevalent 
of these are Fl and F7, the and gate and the or gate. F6, the exclusive or, 
and its complement F g, occur frequently in arithmetic processes. The 
remaining functions are rather simply mechanized by magnetic core tech­
niques. They are also of considerable theoretical interest (see the sec­
tion on Completeness). 

Many Inputs. Decision elements with many inputs are usually exten­
sions or combinations of those already discussed. For example, a six­
input and gate will produce an output of 1 only when all six inputs are 
simultaneously 1. Similarly, a three-input or gate produces an output of 
o only when all three inputs are simultaneously O. Although not common 
in practice, a many input exclusive or gate produces an output of 1 if an 
odd number of inputs has a value of 1, and produces an output of 0 if an 
even number of inputs has a value of O. 



17-04 DESIGN OF DIGITAL COMPUTERS 

~I~I~I~I~I (IU!AFL) I 1 

~I~I~I~IOI uon~unJ IlloV!U+Y 
J8J.J811S !HI V 

~1~1~IOI~1 
I 

UOJ7V :JJlduq 
I 

H<= V 
H+Y 

~1~1~IOIOI (8SU~ lup8dS) 
I Y 

~1~IOI~I~1 I U+V 

~I~IOI~IOI (8S'B~ lup8dS) 
I U 

~1~IOIOI~1 IlloV+Uoy 
w. =HEB V ..... 
~ 
0.. ..... 
~ 

uon~unJ H'V 0 00 
~ 0 0 0 

(1) k. 8~J!8d =iI fv 
:0 
'00 
w. 

~IOI~I~I~I I 
0 

P-i .to H+V 

<0 
0 ~ ~ k. 0 

.to U'V+H'Y 
aaJsnpx[f[ !HEB V 

~IOI~IOI~1 (8SU~ lup8dS) 
I H 

~IOI~IOIOI I H'Y 

~IOIOI~I~I (8SU~ lup8dS) I V 

~lolol~lol I U'V 

k:lololol~1 puV I H'V 

~IOIOIOIOI (IU!AFL) I 0 

w. 04101~IOI~ .~ d 
..... (1) c;3 0 
~ S ............ 

..0 ..... 
0.. 

~IO ~I~ 
c;3 (1) 0 

d Z Q()d 
H 

0 ~.E 



LOGICAL DESIGN 17-05 

Storage Elements 

A binary storage element is capable of retaining one bit of information. 
For synchronous computers in which events are timed by clock signals, 
storage elements have the property of retaining information for one or 
more time intervals. For asynchronous computers in which events occur 
at irregularly spaced intervals of time, a storage element has the property 
of retaining information from one input event to the next. Bistable 
storage elements can remain indefinitely in a given state in the absence of 
input events; thus, these devices are suitable for either synchronous or 
asynchronous computers. Bistable storage elements used in the arithmetic 
and control sections of a computer are referred to as flip-flops or toggles. 
(See Chap. 14.) Monostable storage elements are binary devices which 
have only one stable state, but are capable of indicating a second state 
as a transient response to an input event. These elements are well suited 
to synchronous operation, and several computers that utilize them to a 
large extent have been built. There is no widely accepted nomenclature 
for monostable storage elements; however, delay element and dynamic 
flip-flop have been used. 

For purposes of logical design, the properties of storage elements used 
for arithmetic and control are of especial importance. The outputs of 
flip-flops are dependent on the previous state, or stored value, of the flip-flop 
and the previous input configuration. The equation which relates the 
output to the input and previous state is a difference equation in time. 
(See Vol. I, Chap. 4.) It will be assumed that the output responds to the 
input in a later time interval as shown by the superscripts in the differ­
ence equations. 

Flip-flops have been mechanized in vastly different ways with a large 
number of variations in their logical response to inputs. Some of the 
more usual logical configurations will be described. (See Ref. 1, Chap. 5; 
Ref. 3, Chap. 3.) 

Outputs of Storage Elements. Almost all storage elements have a 
normal, or l's, or true output that is equivalent to its stored value (state). 
That is, if a flip-flop stores a value of 0, the output has a value of 0. It is 
usually desirable to have a complement, or 0' s, or false output which has 
the opposite value to that stored by the flip-flop. Some flip-flops provide 
a differentiated output which is activated by a transition in the stored value 
of the flip-flop, say a 1 to ° transition. This type of output has particular 
utility in a binary counter. Table 4 shows the different types of outputs 
as related to an arbitrary sequence of stored values of a flip-flop for suc­
cessive unit time intervals T to T + 4. 

Note. Since these output values are directly derivable from the sequence 
of states, the subsequent discussion will consider only the relationship 



17-06 DESIGN OF DIGITAL COMPUTERS 

TABLE 4. OUTPUTS AS RELATED TO AN 
ARBITRARY SEQUENCE OF FLIP-FLOP STATES 

Time Interval T T+1 T+2 T+3 T+4 
Flip-flop state 1 0 0 1 0 

Normal (l's) output 1 0 0 1 0 
Complement (O's) output 0 1 1 0 1 
Differentiated (1 ~ 0) output 0 1 0 0 1 

between inputs to storage elements and their states (or normal outputs). 
Single Input Storage Elelnents. The two most common single input 

storage elements are called delays and triggers. The two differ markedly, 
since the state of a delay is not inherently a function of its previous state, 
whereas the state of a trigger is completely dependent on its previous state. 

Delay Elelllents. A delay element is a storage device which delays its 
input information one or more time intervals before presenting.it on its 
normal output terminal. The state of a single time interval delay storage 
element U at time T + 1 depends only on its input D at time T, as shown 
by the following difference equation: 

The truth table specifying the relationship between the input and the 
state of the delay element is also extremely simple as shown in Table 5. 

TABLE 5. STORAGE CHARACTERISTICS OF A SINGLE TIME INTERVAL DELAY 

DT UT+l 

0 0 
1 1 

The delay element has a striking dissimilarity to other storage elements 
to be described in that its state is not intrinsically a function of previous 
states (that is, UT does not appear on the right-hand side of the difference 
equation). From the standpoint of input gating, it is not surprising that 
the delay is best suited for applications where such dependence is not 
desired, e.g., shifting registers. However, by making the input a function 
of its own output, a delay element can be used to "latch" or hold informa­
tion as shown in the following example. 

EXAMPLE. A delay element is provided with external gating which 
enables it to hold information provided on the "set" input until a "reset" 
input of 1 occurs. This configuration, shown in Fig. 1, is sometimes 
referred to as a latch. 



LOGICAL DESIGN 17-07 

Set Reset 

L_________ _ _______ ~ 

Output 

FIG. 1. Delay latch. 

Triggers. A flip-flop that changes state when its input is 1 and retains 
its state when its input is 0 is called a trigger or a scale-of-two counter. The 
state of trigger U at time T + 1 is a function of its own state and its input 

TABLE 6. STORAGE CHARACTERISTICS OF A TRIGGER (SCALE-OF-Two COUNTER) 

Tr Ur ur+! 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

T at time T as described by the truth table of Table 6 and the following 
difference equation: 

Triggers are innately well suited for applications which involve counting 
or certain other arithmetic operations such as sum functions. 

Multiple Input Storage Elelllents. A majority of flip-flops utilize 
two or more inputs. Additional inputs can provide "intrinsic" gating as 
indicated by the complexity of the difference equation defining the storage 
element. If this intrinsic gating is well adapted to the application, sub-



17-08 DESIGN OF DIGITAL COMPUTERS 

stantial economies in the required decision elements can be realized, as 
compared with that required in conjunction with a simple storage device 
such as a delay element. 

R-S Flip-Flop. The R-S flip-flop has two inputs, Rand S, which reset 
and set the flip-flop to 0 and 1 respectively. Sometimes these are also 
referred to as O's and l's inputs. If both inputs are 0 at time 7, the flip­
flop retains its previous state. The situation that both inputs are 1 is not 
normally permitted because the flip-flop does not respond in a uniform 
way to this input configuration. The truth table for the R-S flip-flop is 

TABLE 7. STORAGE CHARACTERIS'l'ICS OF AN R-S FLIP-FLOP 

ST RT UT UT+l 

0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 ? 
1 1 1 ? 

shown in Table 7, and is expressed by the following difference equation 
with its auxiliary condition: 

UT+! = (S + R . U)T, 

R . S = 1 not permitted. 

In a number of important variations of the R-S flip-flop Rand S inputs 
simultaneously equal to 1 are permitted. For example, a flip-flop which 
responds with a state of 1 to simultaneous inputs (that is, the last two 
entries for UT+l of Table 7 are l's) has an overriding set input. The "latch" 
made up of a delay flip-flop and external gating as described in the pre­
ceding example has an overriding set input. 

J-I( Flip-Flop. Another variation of the R-S flip-flop is one which 
changes state (triggers) when simultaneous inputs of 1 are applied. 
This flip-flop is termed a J-K flip-flop and is described by Table 8 and 
the following difference equation: 

UT+l = (J. lJ + K . U)T. 

R-S-T Flip-Flop. A flip-flop which has been widely used has three 
inputs, R, S, and T, which serve to reset, set, or trigger the flip-flop. In its 
most common form, no more than one input is permitted to have the 
value 1 during a given time interval. The truth table for the R-S-T flip-



LOGICAL DESIGN 17-09 

TABLE 8. STORAGE CHARACTERISTICS OF A J-I( FLIP-FLOP 

JT I(T UT UT+l 

0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 0 

flop is shown in Table 9, and has the fol1owing difference equation subject 
to its auxiliary condition: 

UT+l = (8 + T· (J + R· T· U)T, 

R . S + R . T + S . T = 1 not permitted. 

TABLE 9. STORAGE CHARACTERISTICS OF AN R-S-T FLIP-FLOP 

TT ST RT UT UT+l 

0 0 0 0 0 
0 0 0 1 1 
0 0 1 0 0 
0 0 1 1 0 
0 1 0 Q 1 
0 1 0 1 ·1 
0 1 1 0 ? 
0 1 1 1 ? 
1 0 0 0 1 
1 0 0 1 0 
1 0 1 0 ? 
1 0 1 1 ? 
1 1 0 0 ? 
1 1 0 1 ? 
1 1 1 0 ? 
1 1 1 1 ? 

Selecting a Set of Computer Elements 

A minimum requirement of a set of computer elements is that they form 
a complete set and operate with adequate re1iability. Beyond this, it is 
desirable to have elements which permit flexibility and economy in mecha­
nizing a computer system (see Ref. 5). 

Completeness. A function or set of functions is complete if all other 
functions can be formed from them. Of the decision elements described 



17-10 DESIGN OF DIGITAL COMPUTERS 

in Table 3, only the Sheffer function (F14 ) and Peirce function (Fs) are 
of themselves complete. A less known fact (see Ref. 6) is that functions 
F2, F4, Fu, and F13 are each complete if the constants 0 or 1 are available. 
(These constants are usually a d-c voltage or a clock pulse.) Pairs of func­
tions which are complete are and and negation, or and negation, and and 
exclusive or (Fl and F6), and or and exclusive or (F7 and F6). Note that 
and and or do not form a complete set. But and, or and negation form a 
complete set, the one most frequently used in logical design. 

Decision elements which are complete, together with a nontrivial storage 
element, form a complete set of logical elements. Because of the intrinsic 
gating associated with flip-flops, it is also possible to have a storage element 
which is a universal logical element and which requires no external de­
cision elements. 

Versatility. In only rare instances have minimal sets of computer 
elements been chosen because of the versatility and economy of a wider 
array of decision elements. The decision elements and, or, and negation 
are commonly used because of their availability, and also because they 
are well adapted to the pattern of human thought. Usually and and or 
gates are mechanized with varying numbers of inputs to suit the need. 
Circuit limitations sometimes severely restrict the sequence in which 
gating and permissible cascading of gates can occur. In some computer 
designs, negation is provided only by storage elements .having both 
"normal" and "complement" outputs, i.e., inverters are not used. 

2. ALGEBRAIC TECHNIQUES OF LOGICAL DESIGN 

Boolean algebra provides a mathematical framework for describing the 
design of computers utilizing binary computer elements (Vol. I, Chap. 11). 
An algebraic statement of the interrelation of binary variables is a switching 
junction, referred to frequently as a function. Switching functions have 
been the object of much study, particularly with regard to their simplest 
representation. (See Ref. 1, Chap. 4; Ref. 2, Chap. 2; ana Ref. 4, Chap. 5.) 

This section describes the representation of switching functions and 
their simplification. Section 4 shows the application of these techniques 
to the particular problem of determining inputs to storage elements. 

SUInInary of Equivalences in Boolean Algebra 

The relations in Table 10 are useful in working with logical expressions. 
They are postulates or theorems of Boolean algebra. 

Representation of Switching Functions 

Switching functions are frequently derived from equivalent tabular or 
diagrammatic representations. Both of these representations to be 
described have their merits and limitations for a particular use. 



A +0 = A 

A + 1 = 1 

A+A=A 

TABLE 10. 

A + A = 1 

A+B=B+A 

LOGICAL DESIGN 

EQUIVALENCES IN BOOLEAN ALGEBRA 

A·O = 0 

A·1 = A 

A·A = A 

A·A = 0 

A·B=B·A 

(A + B) + C = A + (B + C) (A . B) . C = A . (B· C) 

17-11 

A + (B· C) = (A + B) . (A + C) A . (B + C) = (A· B) + (A . C) 

(A) = A 

A + B = AB 

A + B + C = ABC 

AB = A + B 
ABC = A + B + C 

A + AB = A 

A + AB = A + B 

AB + AB = A 

AB + AC + BC = AC + Be 

(A + B) (A + C) = A + BC 

(A + B) (A + C) = AC + AB 

(AB + AC) = A + BC 

(AB + AC) = AB + AC 

(A + B)(A + C) = A (B + C) 

(A + B) (A + C) = (A + B) (A + C) 

Truth Tables. The binary value of a switching function for each 
combination of binary variables can be tabulated in a truth table in the 
following manner. 

1. Assign a column to each binary variable. 
2. Assign a column to each binary function. 
3. Assign a row to each different combination of values of the binary 

variables. If there are n variables, there will be 2n rows. 
4. In each row, enter the appropriate functional value corresponding to 

the combination of variables in that row. 
EXAMPLE. Consider a function F of the two binary variables A and B 

defined by the truth table of Table 11. 

TABLE 11. A TRUTH TABLE IN Two VARIABLES 

A B P 

0 0 0 
0 1 1 
1 0 1 
1 1 0 



17-12 DESIGN OF DIGITAL COMPUTERS 

F has a value of 1 in two instances: when A is 0 and B is 1 (usually 
written AB omitting the and dot between A . B and read as "not A, and 
B"), or when A is 1 and B is 0 (written AB and read "A and not B"). 
The and operator is sometimes called the logical product. 

In words, F has a value of 1 when A or B is 1, but not both. This is 
the exclusive or function, and is given the symbol EB; that is, F = A EB B 
(see Table 3). 

Had the last entry in the F column of Table 11 been 1, then F would 
have a value of 1 when either or both of A or Bare 1. This is the inclusive 
or operator (also called the logical sum), and is given the symbol +. 
Hereafter, if the word or is used in the sense of a logical function, the 
inclusive or is meant. 

Minterm Canonical Form. Each row of a truth table corresponds 
to a minterm, also called a primitive. The four minterms of two variables 
A and Bare AB, AB, AB, and AB. Since any function can be described 
by a truth table, it. can also be described by utilizing minterms. The 
general form for the representation of a function F of n variables by min­
terms is: 

(1) 
2n-l 

F = 2: ai' mi, 
i=O 

where 2: implies the connective or C+) between terms and· is the connec­
tive and between the factors ai and mi. The a/s are the functional values 
which can be obtained from a truth table corresponding to a minterm, mi. 
A function expressed in this manner is in canonical form. 

EXAMPLE. The minterm canonical expression for function F of Table 11 
is obtained as follows. Assign the minterms mo to m3 to successive rows 
of Table 11 and substitute into eq. (1). 

3 

F = 2:ai' mi 
i=O 

= ao . mo + al . ml + a2 . m2 + a3 . m3 

=O·A·B+l·A·B+l·A·B+O·A·B 
=A·B+A·B 
= AB +AB 

The last step of dropping the and dot conforms to usual practice. Note 
that the final canonical form can be written directly from the truth table 
merely by connecting with or's all minterms having functional values of 1. 

Maxterms. Logical functions may also be expressed as maxterms. 
A maxterm is the logical sum of all of the variables with each variable or 
its complement appearing once. Hence, the maxterms of two variables 
are A + B, A + B, A + B, and A + B. Any function can be repre-



LOGICAL DESIGN 17-13 

sented as a logical sum of minterms or a logical product of maxterms. 
(See Ref. 2, Chap. 3.) 

NorIllal ForIll. A typical computIng system will consist of several 
levels of cascaded decision elements of the and, or, and not type. A direct 
algebraic statement of this gating network may be quite complicated. 
Techniques are available to the logical designer to enable him to manipu­
late these complex functions for purposes of simplification or reorganization. 
In the previous section it was shown that any function can be written in 
canonical minterm form by consulting a truth table of that function. It is 
also possible to transform an arbitrary function into canonical form by 
algebraic manipulation only. 

DE MORGAN'S THEOREMS. Manipulations of functions frequently in­
volve the use of De Morgan's theorems: 

(2) 

(3) 

A·B·C=A+B+C 

A+B+C=A·B·C 

A switching function composed of terms with an or connective, each 
term being composed of factors with an and connective is in normal 
form, also called disjunctive form. A normal function is closely related to 
a minterm canonical function; they differ only in that a term of a normal 
function need not be a minterm. 

Functions are frequently expressed in normal form as a basis for com­
parison or simplification. 

EXAMPLE: Put the following expression into normal and canonical form. 

(A + B + D) . (B + C + D) 

= (A + B + 15) + (B + C + D) 
= (A· B . D) + (B . C . D) 
= ABD + BCD normal form 

= ABD(C + C) + BCD(A + A) 
= ABCD + ABCD + ABCD 

+ ABCD canonical minterm form. 

It is possible to reverse this procedure and go from a normal expression to 
some other form which, for example, may be required by the available 
decision elements. 

Veitch DiagraIlls. A very useful form of the truth table has been 
devised by E. VV. Veitch which contains all the information of a tabulated 
truth table in a more compact form (see Refs. 7 and 8). Moreover, it is 
a convenient representation for simplifying functions by geometrical 
rela tionshi ps. 

The Veitch diagram has a unit square for each minterm of the binary 



17-14 DESIGN OF DIGITAL COMPUTERS 

variables, each square corresponding to a row entry in a tabulated truth 
table. Figure 2 illustrates a Veitch diagram for two variables, A and B. 
It has the following characteristics: 

1. All squares for which A has a value of 1 are in the column headed by A. 
2. All squares for which A has a value of 0 are in the column headed by if. 
3. All squares for which B has a value of 1 are in the row headed by B. 
4. All squares for which B has a value of 0 are in the row headed by 13. 

Figure 2 shows the appropriate minterm entered into each square, this 
being the coordinates of the square by column and row heading. Note. In 
practice, headings if and 13 are omitted since they are implied by the 
absence of A and B headings respectively. 

A A 

B AB AB 

13 AB AB 

FIG. 2. A Veitch 
diagram in two 

variables. 

B~ 
~ 

FIG. 3. F = A EBB. 

A Veitch diagram of the exclusive or function of A and B is shown in 
Fig. 3, and corresponds to the tabulated truth table of Table 11. Here 
the functional values of 0 or 1 have been entered into the appropriate 
minterm square. 

A 

A 
B 

B 
~r-

D 

" C '" I'A BCD 
c 

FIG. 4. A diagram in three FIG. 5. A diagram in four 
variables. variables. 

The Veitch diagram for three and four variables is a straightforward 
extension of that shown for two variables, and is illustrated in Figs. 4 
and 5. Like tabulated truth tables, Veitch diagrams can be extended to 
any number of binary variables; however, their utility becomes marginal 



LOGICAL DESIGN 17-15 

for a large number of variables. Beyond four variables, variable groups 
must be repeated. Figures 6 and 7 show diagrams for five and six variables. 

E E 
A I A A A 

B B 
D F D ." 

........... A 
.. ABCDEF BCDE 

C C 
B 

D 

C C 

FIG. 6. Five variables. FIG. 7. Six variables. 

Simplification of Switching Functions 

Once a tentative logical design for a computer has been prepared, it is 
important to attempt to simplify it. There are two approaches to this 
problem: 

1. Achieving the same or equivalent operation by a different approach. 
2. Reducing the gating network by algebraic techniques. 
The first of these approaches to simplification requires a thorough recon­

sideration of the logical design. The following questions should be asked: 
What are the alternatives? Has time-sharing of equipment been properly 
emphasized? Are the chosen timing signals unique? Particular study 
should be given to repetitious parts of the computer, since savings in 
equipment are multiplied. 

The second approach to simplification is formal in nature and can 
therefore be applied in a systematic way. This section is devoted to 
simplification by algebraic techniques. 

Simplification by Inspection. The following four equivalences are 
given to aid the simplification process by inspection. A logical designer 
will find these very useful, particularly if he can perceive these simplifica­
tions in a subtle multivariable form. 

(4) A +AB = A, 

since A + AB = Al + AB = A(I + B) = A(I) = A. 

(5) AB + A.8 = A, 

since AB + A.8 = A(B +.8) = A(I) = A. 

(6) A + AB = A + B, 



17-16 DESIGN OF DIGITAL COMPUTERS 

since A + AB = A + AB + AB = A + B. 

(7) AB + AC + BC = AC + BC, 

since AB + AC + BC = ABC + ABC + AC + BC = AC(B + 1) + 
BC (A + 1) = A C + BC. 

Following each of the above equivalences is the proof that it holds, 
assuming A(I) = A, A + 1 = 1, A + A = 1, andAB + AC = A(B + C). 

EXAMPLE 1. 

AB + BC + ABC = AB + BC + AB from (6), 

= B + BC from (5), 

= B from (4). 

EXAMPLE 2. 

AB + AC + BC + ABC = AB + BC + ABC from (7), 

= AB + BC + BC from (6). 

Note. For Example 2 there is an equivalent result, AC + BC + BC. 
Quine Shnplification Method. Any switching function can be 

reduced to its simplest normal form. Therefore, any switching circuit 
composed of or's and and's (normal form) can be reduced to its most eco­
nomical form. This is true for any reasonable way of evaluating the cost of 
the decision elements. In its simplest form, a function is irredundant. 
A method of obtaining the simplest normal representation of a function 
has been devised by W. V. Quine. (See Refs. 9 and 10.) 

The Quine method consists of three steps: (1) Find the prime implicant 
terms. (2) Find the essential prime implicant terms. (3) If the essential 
terms do not complete the function, find the simplest combination of 
remaining prime implicant terms required for completion. 

The expressions prime implicants and essential prime implicants are 
defined later by the processes which obtain them. However, it is evident 
from the brief statement of the three steps that the simplest function con­
tains only prime implicant terms and at least all of the essential prime 
implicants. 

Step 1. Finding the Prime Implicant Terms. It is assumed that the 
switching function to be simplified is in normal form. (See preceding 
paragraphs for techniques for transforming functions into normal form.) 
The prime implicants are obtained by two distinct processes of reduction 
and expansion of the function being simplified. The process of reduction 
is simplification by inspection, by using the first three rules given by eqs. 
(4), (5), and (6). These rules are repeated here as they apply to normal 
functions, where A is a single factor of a term and X and Yare either 
single or multiple factors of a term: (a) Replace X + XY by X. (b) Re-



LOGICAL DESIGN 17-17 

place A + AX by A + X and A + AX by A + X. (c) Replace 
AX + AX by X. The third of these simplifications is not necessary, but 
it is frequently convenient. The next process, expansion of the simplified 
function, consists of adding terms of consensus obtained in the following 
manner: For any two terms AX + AY, add the term XY. Of course, if 
a factor in X appears also in Y in complementary form, then XY would 
be zero and no term would be added. 

These two processes, simplification by inspection and adding terms of 
consensus, must be repeated until no more changes occur, or until an 
"oscillation" sets in, that is, all new terms of consensus would be removed 
by the simplification process. The resulting terms are the prime impli­
cants. 

Step 2. Finding the Essential Prime I mplicants. The essential prime 
implicant terms can be found by forming a table. The rows of the table 
are defined by the prime implicants. The columns of the table are defined 
by all minterms of the function (and hence, all minterms of the prime imp li­
cants). The procedure for finding the essential terms consists of entering a 
check mark under each minterm column included in each prime implicant. 
When all check marks for each row have been entered, encircle all checks 
that occur singly in a column. All prime implicants in rows containing an 
encircled check are essential terms. Any simplest function must include 
the essential prime implicants. 

Draw a line through each row having an encircled check; then draw 
a line through every column containing a check mark with a line through it. 
If all the columns are lined out by this process, the simplest equivalent 
function has been found-the or of the essential terms is the simplest 
equivalent. If there are columns not ruled out by this process, Step 3 must 
be performed. 

Step 3. Finding the Simplest Combination of Remaining Prime I mplicants 
to Complete the Function. The remaining minterms are to be expressed 
by the simplest combination of remaining prime implicants. It is possible 
to get several equally simple expressions at this point. 

In most situations the function can be completed by inspection. Alterna­
t.ively, a new table can be constructed consisting only of the remaining 
minterm columns, and the rows of prime implicants which are not essen­
tial, but having a check mark in one of the remaining minterm columns. 
This table is referred to as the reduced table of prime implicants. The 
problem of selecting reduced prime implicants to most simply represent 
the minterms, nevertheless, is a cut-and-try procedure. References 11 
and 12 are a more thorough investigation of this problem. 

ExaIllples of Quine SiIllplification. 

EXAMPLE 1. Function: AB + AB + ABC. 



17-18 DESIGN OF DIGITAL COMPUTERS 

Step 1. AB + AB + ABC reduced 

AB + AB + A C (+ BC) added term of consensus 

These are the prime implicants. 
Step 2. 

Table of Prime Implicants for Example 1 

Prime Minterms 

Implicants ABC ABC ABC ABC ABC 
f....l~ I I I 

AB I-T¥-I- --(-- -1- --i-- ----,+J 

AB 
I , 

~¥ ~-f-f--:-- --+- --1.. t- ----
I '-t/ 

AC I ¥ I I ../ I I I 

BC I I I Y ./ 
i i ! ", 

The core is AB + AB identified by rows containing encircled checks. 
Step 3. The remaining minterm to be included by the function is ABC. 

Reduced Table of Prime I mplicants for Example 1 

ABC 

AC V 
BC V 

Either of the terms AC and BC complete the function, hence there are 
two equally simple equivalent functions to that above. The result is: 

AB + AB + AC or AB + AB + BC. 

EXAMPLE 2. A common design situation is to obtain a function in 
canonical minterm form. This example shows the complete Quine simpli­
fication procedure for the following function: 

ABCD + ABCD + ABeD + ABeD + ABCD 
+ ABeD + ABCD + ABeD + ABCD + ABCD. 

Step 1. The first reduction process in finding the prime implicants is 
not unique, but one such reduction is shown. . 

ABC ABC BCD 
(ABCD + ABCD) + (ABeD + ABeD) + (ABCD + ABCD) 

ABD ABD 
+ (ABeD + ABCD) + (ABeD + ABCD) 

= ABC + ABC + BCD + ABD + ABD, 



LOGICAL DESIGN 17-19 

and by adding terms of consensus 

= ABc + ABC + BCD + ABD + ABD + (ACD) 

+ (BCD) + (ABD) + (BCD) + (ACD) + (ABC). 

The second reduction 

CD 

(ACD + ACD) + ABc + ABC + ABD + ABD 

+ ABD + BCD + ABC 

= CD + ABc + ABC + ABD + ABD + ABD + BCD + ABC. 

The second addition of terms of consensus: 

= CD + ABc + ABC + ABD + ABD + ABD + BCD 

+ ABC + (BCD) + (ACD) + (ACD) + (BCD). 

The third reduction drops out all these terms of consensus since they are 
contained in CD: 

= CD + ABc + ABC + ABD + ABD + ABD + BCD + ABC. 

No further attempts to add terms of consensus should be made, smce 
they will merely be canceled out by the next reduction. 

The table of prime implicants is shown below. 
Step 2. 

Table of Prime Implicants for Example 2 

ABCD ABCD ABeD ABeD ABCD ABeD ABCD 
I } v I }-CD I I 
I I I 'j 

ABC -$- t--}- 1 I ---- ---- ----1--1-- --j--
I I I 

ABC 
I I 

/ v- I I 
I I i I 
I I I 

ABD 
I I -$-I--~---1-- --1-- ---- ---- ----
I I 

ABD i I I 
I I 

I I 

ABD 
I I .; I 
1 I V I 
I I I 
I I .; I 

BCD I I I 
I I I 
I I I 

ABC I I I 
I I I j 

- - .. ---- ... --_ ..... -, .. -... -

ABeD ABCD ABCD 

v-
--- --- t----

1---- --- ---

v v-

II' 

v .; 



17-20 DESIGN OF DIGITAL COMPUTERS 

Essential terms: ABC, ABD. 
-Step 3. 

Reduced Table of Prime I mplicants for Example 2 

ABCD ABCD ABCD ABCD ABCD 

CD 

ABC 

ABD 

ABD 

BCD 

ABC 

ABCD 

Since each of these prime implicants represents only two minterm 
columns, it requires at least three prime implicants to represent all six 
minterms. If only three are required, and if CD can be one of these three, 
it will represent the simplest solutions since it has one fewer factors than 
the other prime implicants. Such a choice is possible with the first three 
prime implicants, CD, ABC, ABIJ By combining these terms with the 
essential terms, the simplest equivalent function is 

ABC + ABD + CD + ABC + ABD. 

Veitch DiagraIn SiInplification. The Veitch diagram (see Veitch 
Diagrams) is a convenient representation for the simplification of functions 
because many of the rules of simplification can be deduced by geometrical 
consideration (see Ref. 1). The relationship between these rules and the 
geometry can best be learned from examples. The following four func­
tions of two variables can be readily simplified: 

ifB + AB = B, 
ifB + AB = B, 
AB + AB = A, 
ifB + ifB = if. 

The Veitch diagrams of these four functions are shown in Fig. Sa, b, c, d. 
There are two other functions of two variables which are composed of two 
minterms which do not reduce: 

ifB + AB, 

ifB + AB. 



LOGICAL DESIGN 17-21 

(a) (b) (c) (d) (e) (f) 

FIG. 8. Geometric relationships. 

The Veitch diagrams of these two functions are shown in Fig. 8e,.f. It is 
evident from the figure that those normal functions which can be simpli­
.fied (a, b, c, and d) occupy adjoining squares on the 
Veitch diagram; those which cannot be simplified (e 
and f) are not adj oined. 

These relationships can be used to simplify system­
atically any function in normal form. The function 

Brn rn 
with a Veitch diagram of Fig. 9 can be written by FIG. 9. Veitchdia­
minterms as AB + AB + AB; but from the geome- gram for AB + 
try it can be deduced that B + AB and A + AB also AB + AB. 
represent this function; and a simplest normal representation of the func­
tion is given by A + B. 

The rules of geometrical relationships do not always require that the 
related squares in the Veitch diagram form a cluster, since for more than 
two variables different arrangements of the terms are possible. An example 

A A D 

B 1--1--1--1--1- C I--+--+--

B 

FIG. 10. Equivalent arrangements of the minterms of A . B. 

of the term AB of a function of four variables is shown in Fig. 10, in which 
the same relationship is involved, but the geometrical arrangement differs 
in each instance. For four variables, any four minterms on a Veitch 
diagram can be associated if they form a 2 by 2 square, a 1 by 4 rectangle, 
a pair of 1 by 2 rectangles symmetrically located on opposite edges, or 
4 squares in opposite corners. 

EXAMPLE 1. A full binary adder has three inputs (A, B, C) and two 
outputs (8, K). The sum output Sis 1 whenever exactly one or all three 
of the inputs are 1. The carry output K is 1 whenever any two or all 



17-22 DESIGN OF DIGITAL COMPUTERS 

three of the inputs are l. 

S = ABC + ABC + ABC + ABC, 

K = ABC + ABC + ABC + ABC. 

Veitch diagrams of these two functions are shown in Fig. 11 and Fig. 12. 
It is evident that the sum function cannot be reduced in normal form since 

A 

B 0 1 0 1 B o 

1 0 1 0 o 
C 

FIG. 11. Sum function (8). FIG. 12. Carry function (K). 

the l's entered into the Veitch diagram are geometrically unrelated. 
However, the carry function can be simplified, its simplest normal repre­
sentation being 

K = AB + AC + BC. 

EXAMPLE 2. The function described by the Veitch diagram of Fig. 13 
has as its simplest normal equivalent function 

ABC + ABD + ABC + ABD. 

Note that the center cluster of four l's (CD) is not a term in the simplest 
representation. This example points up a need for systematically obtain­
ing the simplest normal function from the Veitch diagram. 

A 

0 1 0 0 
B B 

0 1 1 1 
D 

1 1 1 0 

0 0 1 0 

C 

FIG. 13. Veitch diagram for Example 2. FIG. 14. Veitch diagram illustrating the 
Quine simplification. 

Such a systematic approach can be obtained by adapting Quine simpli­
fication to the Veitch diagram. This adaptation results in a two-step 
procedure: (1) Find the essential terms. (2) Find the best representation 
for the minterms which are not included in the essential terms. 



LOGICAL DESIGN 17-23 

Step 1. The essential terms on a Veitch diagram are determined by 
the following criteria: 

(a) Any minterm which is geometrically unrelated to any other minterm 
is an essential term. Example. All minterms of the sum function of 
Fig. 11 are essential terms. 

(b) Any minterm which is geometrically related to only one other 
minterm or group of minterms has the largest such grouping as an essen­
tial term; 

The Veitch diagram of Fig. 14 shows a function completely defined by 
the two essential terms in the shadea areas, ACD + AB. Those minterm 
squares containing dots require that the associated term be essential. 

Step 2. Finding the best representation of minterms not included in 
the essential terms is sometimes obscured because often there may be more 
than one equally simple function. In this respect, it is like working with 
the reduced table of prime implicants in the Quine method. To show 
this, Example 2 of the Quine simplification procedure is repeated here; 
see Fig. 15. 

A A A 

1 1 0 1 o 
B BI---+--t----If---f-- B I---t---t----I+-++-

0 1. 1 1 o 
D D 

1 1 1 0 

0 0 1 0 o 0 0 

C C 

(a) (b) (c) 

FIG. 15. Simplest normal equivalent function: ABD + ABC + CD + ABD + ABC. 
(a) Function (see Example 2, Quine simplification procedure), (b) essential terms 

ABD + ABC, (c) best representation of remaining min terms CD + AB fj + ABC. 

Redundancies. Many switching functions of interest have either 
(a) nonoccurring combinations of variables or (b) functional values which 
are not of interest for certain combinations of variables. In either case, 
it is often possible to simplify a function by properly utilizing these 
redundancies or "don't care" conditions. 

For Veitch diagram simplifications, all minterms which are redundant 
will have an X placed in their minterm square; all other squares will have 
functional values of 1 or O. Redundancies are utilized as l's whenever 
their use will simplify a term, or they are ignored otherwise. Two examples 
with binary-coded decimal numbers will be given. Figure 16a shows a 
diagram with the decimal value of four binary bits AI, A2, A4, As which 



17-24 DESIGN OF DIGITAL COMPUTERS 

are weighted 1 2 4 and 8 respectively. For the decimal digits 0 through 9, , , , . h 
this is referred to as binary-coded decimal representation. ,Assummg t at 
representations for 10 through 15 do not occur, Fig. 16b shows the use 
of a redundancy to specify the digit 3 as Al . A2 . A4. 

Al Al Al 

3 7 6 2 
A2 

11 15 14 10 
As 

9 13 12 8 

(11 0 0 0 
A2 

l!) X X X 
As 

0 X X 0 

1 0 0 1 
A2 

X X X X 
As 

0 X X 0 

1 5 4 0 0 0 0 0 1 1 1 1 

A4 A4 A4 

(a) (b) (c) 

FIG. 16. Examples illustrating redundancies. (a) Decimal equivalents, (b) decimal 
digit 3, (c) decimal digits ~ 5. 

Figure 16c shows the Veitch diagram of a function which detects all 
decimal digits less than, or equal to, five. There are three equally simple 
representations of this function; however, since the redundancies are used 
differently, the functions are not equivalent for all minterms. 

A4 . As + A2 . As; A2 · A4 + A2 . As; A4 · As + A2 . A4. 

Shnplification Including Storage Elements. Techniques have also 
been developed for determining the minimum number of storage elements 
required for a given logical network (see Refs. 13 and 14). These tech­
niques are usually more applicable to well-defined portions of a computer 
design than to the whole design. 

3. PRELIMINARY DESIGN CONSIDERATIONS 

System Aspects 

A computing system is typically made up of a number of subsystems 
such as input, output, storage, and arithmetic and control. The integra­
tion of these subsystems must be considered early in the design effort. 
For example, input might consist of multiple magnetic tape units, punched 
card readers, analog-to-digital converters, and a keyboard for manual entry 
of data. Each of these input devices has its own peculiar characteristics­
it may provide digital information at a different rate, on a different number 
of wires, in a different block size, and with a different word composition. 

The following discussion assumes the usual situation in which the arith­
metic and control form the hub of the system. 



LOGICAL DESIGN 17-25 

Matching Input and Output. 
Direct Presentation. One method of incorporating inputs with arith­

metic and control is the direct presentation of "raw" digital information 
to one or more of the arithmetic registers of the computer at the rate at 
which it is being read. This technique has the advantage of being econom­
ical to mechanize, but suffers from two, disadvantages. First, the computer 
usually is slowed down because it must operate at the speed of slower 
input devices. Second, the arithmetic and control unit becomes special­
ized ,with respect to the input devices. That is, the computer registers 
must be designed to accept the input information at the input rate, and 
perhaps in an undesirable format. 

Buffer Storage. A second method of incorporating inputs is to provide 
a buffer storage. The buffer storage accepts information at a rate com­
mensurate with the input devices, and the computer then takes the infor­
mation from the buffer at a higher rate. It is also possible to reorganize 
data which normally are not read in the desired form. For example, serial 
information can be put into parallel form, or punched card information can 
be suitably organized into word size. 

Extension of Buffer Storage. A third method of incorporating inputs is 
gaining favor, particularly for large-scale systems. This method is an 
extension of the buffer storage technique, and it involves additional 
equipment which makes the input buffer a computer in 'its own right. In 
addition to acting merely as buffer storage for input information, this 
device has the ability to search for information-a feature especially useful 
for magnetic tape. It is imperative that the input computer be suitably 
interlocked with the central computer. 

Computer output can be coordinated with arithmetic and control by 
techniques analogous to the three methods discussed for inputs: direct, 
buffer, or output computer. 

Storage. Usually the arithmetic and control unit communicates 
directly with the storage unit through one or more of its registers. The 
transmission of information is ordinarily in one of these three forms: 
serial by bit, parallel by word, or serial-parallel (serial by character). 
Two aspects of the main storage bear heavily on the logical design. 

1. Speed compatibility of the storage and the arithmetic circuits may 
influence the choice of serial or parallel operation. 

2. The type of storage, serial or random access, may affect both arith­
metic speed requirements and the type of instructions. 

There is an increasing tendency in large-scale computers to provide 
a buffer storage for instructions and operands which are about to be used. 
Since the determination of which instructions and operands will be needed 
is rather complex (especially with automatic address modification and 
program branch points), such a buffer device is in itself a computer. 



17-26 DESIGN OF DIGITAL COMPUTERS 

Arithllletic and Control Aspects. Before the logical design can pro­
ceed, decisions must be made as to the representation of numbers and 
instructions, the arithmetic operations to be performed, and the arith­
metic techniques which will be employed (see Ref. 2). 

Instructions. (See Chaps. 2 and 12 for greater detail.) The number 
of addresses of an instruction are generally specified for arithmetic oper­
ations. For example, a three address instruction specifies two storage 
addresses from which to obtain operands and an address at which the 
result is to be stored. The most prevalent address structures for instruc­
tions are one address, two addresses, and three addresses. In addition to 
operand and result addresses, the address from which the next instruction 
is to be obtained must be specified. Most large-scale computers use a 
program address counter for this purpose, selecting instructions from sequen­
tial addresses in storage. Deviations from this pattern are referred to as 
branching or program transfers. Program transfer instructions therefore 
explicitly contain an instruction address. Computers with a serial main 
storage (such as a magnetic drum) often have in each instruction an 
explicit address from which the next instruction will be obtained .. Alterna­
tively, a modified form of a program address counter is used. 

For computers with a fixed word length, it is desirable to have numbers 
and instructions either the same length, or one having a length that is an 
integral multiple of the other. This permits the efficient use of storage 
locations for either instructions or numbers, and allows arithmetic oper­
ations on instructions. 

NUlllber Representation. (See Chaps. 2 and 12 for greater detail.) 
The categories of number representation commonly employed in electronic 
computers are alphanumeric, decimal, and binary. Alphanumeric coding 
is a representation of an alphabetic or decimal symbol by combinations of 
six or more binary bits. The decimal symbol is a combination of four or 
m0re bits, the most common representation being binary-coded decimal 
which has four bits with "weights" of 1, 2, 4, and 8. Some decimal codes 
employ different weights which are capable of expressing every decimal 
digit 0 through 9; other decimal codes, such as the excess three code, have 
no column weighting associated with them. The "pure" binary number 
system is usually used for internal computing because it is economical. 
Negative numbers are commonly represented in one of several different 
ways in binary computers, for example, minus sign and magnitude, 2's 
complement, and l' s complement. The last two are useful because of their 
properties in subtraction. 

Arithllletic Operations. (See Chap. 18 for greater detail.) The choice 
of techniques for performing arithmetic operations will in a large measure 
be determined by the operational speed requirements and the way in 



LOGICAL DESIGN 17-27 

which numbers are presented to the arithmetic unit. If operations are 
performed on operands as they appear serially in time, the operation is 
serial; if operands are utilized in parallel, the operation is parallel; if one 
operand is used serially and the other in parallel (for example, in multi­
plication), the operation is serial-parallel. Generally, the more parallel 
the operation, the greater the speed achieved and the more equipment. 
required. Operands may themselves appear in serial-parallel form. For 
example, decimal codes may be transmitted parallel by bit, serial by 
decimal digit. 

PreliIninary Design of the Arithmetic and Control Unit 

When the required capabilities of the computer have been specified, 
the logical design can begin. 

Separation. If possible, a breakdown of the logical design into inde­
pendent parts should be made. This is especially important for complex 
computers which will require a parallel effort of several logical designers, 
since such a breakdown will enable them to work independently. There 
usually are other benefits of such an approach: the education of others 
on the workings of the computer is simplified, the isolation of malfunction­
ing parts of the completed computer is simpler, and the layout of the 
computer for packaging purposes is improved. 

Certain portions of a computer quite naturally separate out. For 
instance, arithmetic and instruction registers with their associated control 
flip-flops can usually be singled out. Also, arithmetic equipment for 
various arithmetic operations may be separable. The most difficult part 
of the arithmetic and control unit to sectionalize is that associated with 
control. Three techniques in common use are: 

1. Group the controls which are needed for similar types of instructions. 
2. Break up the execution of each instruction into suboperations. 

(Usually different instructions will have some sub operations in common.) 
Group the controls for a sub operation. 

3. Determine the different control states required of the computer to 
execute all types of instructions. Group the controls for a given state. 

Manual Control and Display. These items, unfortunately, are often 
dealt with as afterthoughts. If these requirements are specified and borne 
in mind during the initial design effort, it is often possible to include them 
with little additional electronic equipment. There are few generalizations 
that can be made concerning manual control. Hmvever, one universal 
problem is the ability to start a computer. This is usually accomplished 
by providing a suitable starting instruction or instruction address manu­
ally, or by having an implied instruction or instruction address. In order 
to start satisfactorily, it is necessary to have some of the computer flip-flops 



17-28 DESIGN OF DIGITAL COMPUTERS 

in known states. Considerable ingenuity can be used to determine which 
flip-flops must have known states, and of these, which must be forced into 
these states. 

A word of warning with respect to manual control-manual intervention 
into the operation of a high-speed computer is expensive in time and is 
fraught with possibilities of introducing errors. The need for these controls 
for program correction or maintenance should be clearly established. 

Representation of Logical Design 

Diagrammatic techniques of recording logical design are used toa large 
extent, however, symbolic (9Jgebraic) design is becoming increasingly 
popular because of advantages in a number of areas. 

Block Diagram.s. The interconnection of computer elements, which 
constitutes the logical design of a machine, can be depicted by equivalent 
interconnections of blocks or circuit symbols representing these elements. 
Although several sets of circuit symbols have been employed, none has 
achieved universal adoption, see Table 1, Sect. 1. 

Usually, a block is chosen to correspond to a physical unit in the com­
puter so that the input and output terminals also represent plug connec­
tions. This permits the use of the logical diagram as a wiring diagram 
also (see Refs. 5 and 15). Figure 17a gives the block diagram for the 
ten-stage counter used as a design example in Sect. 4. The block diagram 
uses gates, delay elements with two outputs, and amplifiers. For com­
parison the logical equations for the counter are given in Fig. 17b. 

Advantages of the block diagram: (1) It affords a "picture" of the logical 
network which often enhances intuitive understanding. (This is partic­
ularly true of certain highly developed representations of contact net­
works.) (2) It usually serves as a wiring diagram. (3) It is easily under­
stood by maintenance personnel. 

Disadvantages of the block diagram: (1) Complex control circuits present 
a formidable layout problem that requires a substantial amount of time, 
complicates changes, and thereby discourages improvements. (2) The 
pictorial representation may obscure rather obvious formal simplifications. 

Sym.holic Design (Ref. 16). Algebraic representation of computer 
design is coming into widespread use for the following reasons: (1) Con­
tinued improvement in formal techniques for synthesis and simplification 
tends to generate a symbolic design. (2) The use of computers for the 
design of computers requires a machine language. Examples. Logical 
simulation to detect logical design errors, layout and wiring calculations, 
tabulations of loading on outputs. (3) Revisions in design are easily incor­
porated. 

Symbols for computer elements should be chosen which are unique and, 



dO dl 

Storage Element Inputs 
I(A) = AD + BCD 
I(B) = A 
I(C) = B 
I(D) = Ac + AD 

d2 d3 

A 
B 

Ii 

c 
c 
D 

D 

d4 d5 d6 

(a) 

dO = AB 
dl = Be 
d2 = CD 
d3 = AD 

(b) 

d7 d8 

Amplifier Outputs 
d4 = BD 
d5 = AC 
d6 = ACD 

Amplifiers 

d9 

d7 = ARD 
dS = ABC 
d9 = BCD 

FIG. 17. Design of a ten-state master counter. (a) Block diagram, (b) logical equations corresponding to (a). (See Sect. 4.) 

r-
o 
(i) 
(5 
> r-
o 
m 
Vl 

(j) 
Z 

...... 
N 
~ 



17-30 DESIGN OF DIGITAL COMPUTERS 

if possible, provide a mnemonic association. Inputs and outputs to an 
element are easily described by augmenting the symbol describing the 
basic element. For example, a J-K flip-flop which occupies the thirteenth 
bit position of the B register of a computer could be identified by the 
symbols of Fig. 18. Here the inputs have J and ]{ added to the flip-flop 
designations. The normal output has been assigned the same symbol as 
the flip-flop itself-usually there is no difficulty in distinguishing between 
the two. The output symbol, B13', is frequently used rather than B13 
because it is more easily typed. 

(J input) B13J o---j B13 t----" B13 (normal output) 

(K input) B13K ~L.... ___ -I~ B13 (complement output) 

FIG. 18. Typical flip-flop symbolic notation. 

It is extremely useful to have the completed design on unit records 
such as punched cards. This permits sorting, merging, duplication, and 
tabulation by standard card equipment, and also facilitates revisions. 
Punched card representation of symbols requires the use of capital letters 
only and may restrict the use of special symbols. For example, the com­
plement output of Fig. 18 could be represented as B13C or B13 -. 

The First Design Attelllpt. A good place to start in the detailed 
design of a computer is to consider that operation which will require the 
most equipment. Then, as additional requirements are added, an attempt 
should be made to utilize as much of the equipment already in use as 
possible. It is important to determine the flip-flops that will be required 
and to specify their functional roles, since the detailed logical design will 
require it. As an example of this approach, consider the logical design of 
an arithmetic unit which will have serial-parallel multiplication but will 
perform the other arithmetic operations serially. It is quite likely that 
providing a minimum of equipment for the. multiplication will provide 
nearly enough equipment to perform the rest of the arithmetic operations. 

As the logical design proceeds, there may arise a need for miscellaneous 
control flip-flops. It is usually advantageous to carry these as separate 
flip-flops and attempt to time-share them only after the design has been 
quite well established, since minor changes can upset the economics of 
time-sharing. It may be desirable to redefine the roles of flip-flops as the 
logical design proceeds, or even change some of the system specifications 
to achieve a balanced design. 

4. DETAILED LOGICAL DESIGN 

The preliminary planning of the logical design of a computer involves 
a determination of the storage elements to be used and their functional 



LOGICAL DESIGN 17-31 

roles. This plan provides a foundation on which the detailed logical 
design can be built. The detailed logical design is a statement of the 
interconnections of computer elements required to mechanize the desired 
computer. It will be assumed in the following discussion that the logical 
design is specified by input equations to flip-flops, although the complete 
design may require other specifications also. (See Ref. 1.) 

The input equations must be in a form compatible with the computer 
elements used and their permissible arrangement. 

Tillle Difference Equations 

If a storage element retains information for one time interval, its time 
difference equation relates its output at time T + 1 to its input and its 
previous state at time T. If the difference equation of a flip-flop is known 
for all time (for any T), the complete input gating required for this flip-flop 
can be determined. Since the functional roles of all flip-flops are known, 
their difference equations (and hence their inputs) can be defined. Knowl­
edge of the role of a flip-flop usually defines its output (or state) in one 
of the following three ways: (1) The output as a time sequence. Examples. 
Sequencing control, timing. (2) The output as a combination of inputs. 
Examples. Accumulator, shifting register, error detector. (3) The output 
as time sequences of combinations. Examples. Time-shared registers, 
operation control. 

Outputs Given as a Tillle Sequence. It is typical of many of the 
control flip-flops of a computer that the preliminary design provides a 
description of the outputs as l's or O's during each time interval. For 
example, a timing flip-flop may be required to produce a 1 during the 
fifth time interval of the execution of each instruction, and a 0 at all other 
times. This output is stimulated by its input during the fourth time 
interval, and the problem becomes that of uniquely specifying the fourth 
time interval. If the preliminary design does not provide a unique identi­
fication of this time interval, then it must be modified accordingly. 

Knowledge of the output sequence F of a flip-flop U does not provide 
a difference equation directly, but requires specification of the input 
sequence G: 

UT+1 = FT+1 (output sequence) 

= GT (input sequence). 

Frequently the inputs for a flip-flop with defined outputs can be written 
directly; in the example above, the simplest unique identification for the 
fourth time interval would provide the simplest input equation. Input 
equations can also be derived from difference equations. The following 
example of a ten-state counter shows the complete transition from a known 
output sequence to input equations for various types of flip-flops. 



17-32 DESIGN OF DIGITAL COMPUTERS 

If it does not matter what the outputs of a flip-flop are for certain time 
intervals, it may be possible either to simplify the input equations or 
to time-share the flip-flop, that is, to assign it some other role during this 
period of time. 

Outputs Given as a COInbination of Inputs. It is typical of flip­
flops in the arithmetic portion of a computer to have outputs which depend 
on the information being processed. It is not known in advance whether 
the state of such a flip-flop will be 0 or 1 at a particular time, since it will 
depend on the instructions or numbers of the computer program. The 
difference equation for flip-flop U is immediately obtained from ,the input 
function G: 

The input equations for flip-flops are derived directly from their difference 
equations as shown in the example of a ten-state counter which follows. 

Outputs Given as TiIne Sequences of COInbinations. Most con­
trol flip-flops have a different sequence of outputs in executing different 
instructions, and hence depend on Iparticular operation code combinations. 
Similarly, most arithmetic flip-flops have a somewhat different role during 
particular time intervals. These cases are a combination of the two 
previously described, and the flip-flop input equations can either be written 
directly or be deduced from the difference equations. 

Design of a Ten-State Counter 

The following example will illustrate the following points: (1) the use 
of the Veitch diagram as an aid to creative logical design; (2) obtaining 
time difference equations for flip-flops; (3) obtaining equations for flip­
flop inputs. 

The ProbleIn. It is desired to have a four flip-flop counter with any 
ten unique states which repeat. The states of the counter will be used in 
many places for timing; hence, it is desirable to reduce the gating required 
to sense each count, and thereby also reduce the output loading of the 
counter flip-flops. 

DetcrInination of the Ten States. The four flip-flops will be called 
A, B, C, and D. It should be noted that no count can be specified by just 
one of the four flip-flops, since this would permit at most nine counts. At 
least one count can be specified by two flip-flops. Figure 19a shows 
a Veitch diagram with an arbitrarily placed count which, by virtue of its 
associated three redundant minterms (hatched), allow it to be specified 
by AB. Note. Redundant minterms are usually marked by an x; how­
ever, in these examples such squares are shaded to show the symmetrical 
configurations. Figure 19b shows an efficient extension of the redundant 
nucleus such that six counts are achieved which are specified by only 



LOGICAL DESIGN 17-33 

two of the four flip-flops. In order to obtain ten counts, only one more 
minterm of the remaining five can be selected as a redundancy. 

Figure 19c shows the final choice which again has maximum efficiency, 
but requires sensing three of the four flip-flops to obtain the remaining 

--+----1 D 

C 

(a) (b) 

BD 

D 

(c) 

FIG. 19. Determining counts which require limited sensing. (a) One count, (b) six 
counts, (c) ten counts. 

four counts. In Fig. 20 the ten counts have been labeled dO to d9, and the 
table of the figure shows the values of the flip-flops for all counts, and 
the coincidence required to recognize a particular count. The choice of 

Count 
States Count 

ABCD Recognition 

dO 1 1 0 0 AB 
dl o 1 1 0 BC 
d2 001 1 CD 
d3 100 1 AD 
d4 o 1 0 1 BD 
d5 1 0 1 0 AC 
d6 o 1 0 0 ACD 
d7 o 0 1 0 AED 
d8 000 1 ABC 
d9 1 000 BCD 

FIG. 20. Assignment of counter sequence. 

the sequence of counts bears heavily on the input gating that will be 
required to generate it. There are no simple techniques which give the 
best choice of sequence. This choice will, of course, depend on the proper-
ties of the storage element used. 

Inputs for Flip-Flop A, B, C, and D. The inputs for the flip-flops 
can be obtained directly from the time difference equations. 

Difference Equations for A, B, C, and D. In Fig. 20 it can be seen 
that A has a value of 1 for dO, d3, d5, and d9; thus for an arbitrary time 



17-34 DESIGN OF DIGITAL COMPUTERS 

interval T + 1: 

Note that this is not a difference equation since the time superscripts are 
the same on both sides of the equation. To obtain a difference equation, 
the right-hand side of the equation is replaced by its preceding count: 

AT+1 = (d9 + d2 + d4 + d8)T. 

A substitution for d9, d2, d4, and d8, in terms of A, B, C, and D provides 
the desired function (together with the "don't care" conditions for simpli­
fication). This is readily shown in the diagram of Fig. 21, where the 
symbol T has been dropped from A T+1. The remaining difference equa­
tions can be obtained in the same manner. The results are summarized 
below: 

A +1 = AD + BCD, 

B+1 = A, 

C+1 = B, 

D+1 = AC + AD. 

T(A) = D + AB + AC 

FIG. 21. Diagram of A +1. FIG. 22. Diagram of T(A). 

Delay Flip-Flops. If A, B, C, and D are delay flip-flops, their inputs 
I are the same as the difference equation. 

leA) = AD + BCD, 

I(B) = A, 

I(C) = B, 

leD) = AC + AD. 

Time does not appear in the total input equations for flip-flops, since the 
gating structure of the computer is fixed. 

Trigger Flip-Flops. If flip-flop A is a trigger flip-flop, its input T (A) 
is defined by the diagram of Fig. 22. Note that it differs from the diffcr-



LOGICAL DESIGN 17-35 

ence equation for A (Fig. 20) in that l's and D's are interchanged in the 
columns for A = 1. This is because the flip-flop is in the l's state, and 
it is desired that it remain in the l's state for the next time interval, 
requiring an input of zero. 

The inputs required for trigger flip-flops A, B, C, and Dare: 

T(A)=D+A(B+C) 

T(B) = AB + AB 

T(C) = BC + BC 

T(D) = A (CD + CD) 

R-S Flip-Flops. If flip-flop A is an R-S flip-flop, its inputs S (A) and 
R (A) are diagrammed in Fig. 23. N ate that additional redundancies 
have been added to those of the difference equation of Fig. 21. This 

S(A) = AD 

FIG. 23. Inputs to R-S flip-flop A. 

happens because there is not always a unique input sequence for a given 
output sequence. For example, set inputs do not have to be applied a 
second time if an R-S flip-flop is to remain in the l's state two successive 
time intervals. The diagram for R (A) has entries which are the comple­
ment of these in the difference equation, and all D's for A = 0 become 
redundant. The R (A) input equation is not unique, as shown by the 
equivalent terms within braces. 

Inputs for R-S flip-flops A, B, C, and Dare: 

SeA) = AD, 

S(B) = A, 

S(C) = B, 

SeD) = AC. 

JABl JAC} 
R(A) = lBDJ + AD + lCD ' 

R(B) = A, 

R(C) = B, 

R(D) = AC. 



17-36 DESIGN OF DIGITAL COMPUTERS 

J-I( Flip-Flops. If flip-flop A is a J-K flip-flop, its inputs J (A) and 
K (A) are diagrammed in Fig. 24. Note that J inputs can be anything 
if the state of the flip-flop is 1 in the same time interval. Similarly, K 

J(A) = D K(A)=B +C +D 

FIG. 24. Inputs to J -K flip-flop A. 

inputs can be anything if the state of the flip-flop is 0 in the same time 
interval. Minimal equations for J and K inputs never include the output 
of the same flip-flop. 

Inputs for J-K flip-flops, A, B, C, and Dare: 

SeA) = 0 

J(A) = D, 

J(B) = A, 

J(C) = B, 

J(D) = AC. 

K(A) = B + C + D, 

K(B) = A, 

K(C) = B, 

K(D) = AC. 

T(A) = D R(A) =AB + AC 

FIG. 25. Inputs to R-S-T flip-flop A. 

R-S-TFIip-Flops. If flip-flop A is an R-S-T flip-flop, its inputs 
R (A), S (A ), and T (A) are diagrammed in Fig. 25. In several instances 
R, S, or T appear as entries rather than 0 or 1; for example, T appears 
in S (A) and S in the same position of T (A). This implies that equivalent 
operation can be obtained by a set or a trigger input, but both are not 



LOGICAL DESIGN 17-37 

allowed simultaneously. The equations shown are not unique-the terms 
shown for R (A) could be put in T (A) instead. 

Inputs for R-S-T flip-flops A, B, C, and Dare: 

SeA) = 0, 

S(B) = A, 

S(C) = B, 

SeD) = AC. 

Further Considerations 

R(A) = A(B + C), 

R(B) = A, 

R(C) = B, 

R(D) = AC. 

T(A) = D, 

T(B) = 0, 

T(C) = 0, 

T(D) = 0. 

To complete the design of this counter, three more items ~hould be 
considered: (1) the initiation of each count, (2) presetting of the count, 
(3) behavior of the counter in unused states. 

Count Initiation. The counter as described by the final equations will 
produce a count each time interval. That is, the storage or decision 
elements are internally acted upon by clock signals so that the counter 
continually sequences through its ten states. 

If it is desired to count external pulses, these counting signals must be 
introduced into the input equations for the storage elements. For the 
T, R-S, J-K, and R-S-T flip-flops, this is easily done by introducing the 
count signal into an and gate with each input equation. This is sufficient 
since all these flip-flops retain their states if all of their inputs have a 
value of zero. The delay element does not have this implicit holding 
property, hence, holding of a given state requires external feedback of 
the type shown in Fig. 1. 

Count Preset. Presetting the counter to a particular count will be 
required if it must be slaved to other events in the computer. If, how­
ever, it is a master counter, it may serve to bring all other devices into 
step with it, without requiring a preset. The external signal which causes 
the preset is incorporated in the equations in such a way as to force each 
storage element into the desired state. 

Unused States. A final consideration is the possibility of the counter 
going into a state that is normally not used. This might happen, for 
example, when power is applied to the computer, or in the event of a 
transient failure. If the preset condition is not adequate to take care of 
this situation, then a "clearing" signal can be provided. This produces 
the same effect as a preset, but it may be a part of a general clearing signal 
provided to all parts of the computer. 

For a master timing counter which can begin its counting cycle at any 
time, it is sufficient to determine that the counter will not lock into an 
unused state. Figure 26 is a study of the unused states of the ten-state 



17-38 DESIGN OF DIGITAL COMPUTERS 

counter using delay elements. The unused states are shown in rectangles. 
The arrows indicate the transitions made in advancing the counter by a 
count of one. This shows that the six unused states all eventually move 
into one of the ten desired states. The result of this analysis depends on 

ABeD 

1 0000 \ 

ABeD 
I 1 1 10 I 

\ ...-8--- I 
@ ® 

I \ 
@ @ 
t ! 
® 

\ 
8",--

e 
I 

@ 
®'--1 

10 1 1 

ABeD t ABeD 
111011~loilll~llllll 

FIG. 26. Analysis of unused counter states. 

the storage element since the unused states were employed as redundancies 
for simplification. For example, the above variations of this counter that 
employ storage elements other than delays would lock into the state 
ABeD = 0000. Additional gating logic would be required to release the 
counter from a transient excursion into this configuration. 

5. DIRECT SIMULATION OF A LOGICAL DESIGN 

Little use has been made of digital computers as tools in the design of 
other digital systems. This section discusses an approach to direct simu­
lation of the logical behavior of a system from its definitive logical design. 
See Ref. 17. 



LOGICAL DESIGN 17-39 

Objectives. The prime objective of logical simulation is the detection 
of mistakes in the logical design of the simulated computer. There are 
several aspects of this problem. 

1. These mistakes are costly in checkout time of first-of-a-kind com­
puters because detection of the error must be followed by a correction 
process which inevitably requires some rewiring of the computer, and very 
likely requires more computer elements. In addition, the detection of 
wiring mistakes and circuit malfunctions is complicated when errors in 
logical design are present or suspected. 

2. Logical simulation facilitates changes. Just as the first designs have 
mistakes, frequently changes which are proposed have mistakes in them. 
Thus a simulation program written for a first design is available to check 
changes in subsequent models. 

3. In applications of digital systems to control problems, the amount 
of digital output may be small. This lack of voluminous digital outputs 
may indefinitely conceal subtle mistakes in logical design. The resulting 
infrequent computational errors might be attributed to transient condi­
tions rather than to its true cause. 

Initial Considerations 

The sucesss or failure of a simulation program depends heavily on the 
initial approach. It should be borne in mind that in all but the simplest 
cases a limited objective must be sought. 

The Silllulator. It is assumed that the design group has a general 
purpose digital computer available to them. This compJter (the simu­
lator) need not be larger than the computer undergoing simulation in 
the sense of word length, storage capacity, or speed. 

A special purpose computer could also be designed to simulate the 
logical design of a digital system (see Ref. 18). 

Initial States. The behavior of a digital system is completely de­
scribed by (1) the initial states of all storage elements, (2) the states of 
all inputs-initially and thereafter, (3) the logical design of the system. 

The initial state of all storage elements can be set by storing l's or D's 
in their proper places within the simulator. These initial states may not 
be known, however. In this case it is good practice to emulate computer 
behavior from "power on" to "running." For example, all simulated 
flip-flops can be set to a random state to typify their condition after 
power has been applied. Thereafter, the steps which the operator would 
go through to get the machine "cleared" could be taken. 

Shnulated Inputs. It is desirable to minimize the number of inputs 
which must be simulated. Also, it is desirable for these inputs to be 
closely related to the programmed variables of the machines-instructions 



17-40 DESIGN OF DIGITAL COMPUTERS 

and numbers. -Usually, both of these ends will be served if the simulated 
portion (if not all) of the system is chosen as one of the sUbsystems or a 
combination of the subsystems. For example, the arithmetic and control 
portion of the computer can usually be separated from the rest of the 
system. The inputs which would require simulation then would typically 
be numbers and instructions from the storage unit, control signals and 
keyboard information from the console, etc. Note that this separation 
would not, for example, test a program address counter in the arithmetic 
and control unit directly by actually obtaining a number or instruction 
from the storage unit. 

Test ParaIneters. The parameters of the test are the sequences of 
values which are applied to each of the inputs. It becomes apparent 
that there are far too many sequences of input combinations to test the 
logical design for all possibilities. 

Consider those inputs which correspond to instructions and numbers. 
It is not reasonable to test each arithmetic instruction for all combinations 
of numbers. Instead, one should make an intelligent choice of the combina­
tions which represent differences in the logical design. For example, the 
choice of arithmetic instruction-number combinations would be influenced 
by (1) combinations of signs of the operands, (2) operand combinations 
to yield all possible rounding effects, (3) operands resulting in overflow, 
( 4) special cases such as operands or results which are zero, (5) various 
choices of operands for adder input combinations. 

For a parallel arithmetic device, it ordinarily would not be necessary 
to test the last of the above conditions for every adder position. Sym­
metry usually exists which can easily establish the equivalence of opera­
tion of many such adders; thus, checking one adder checks the rest. 

PrograInIning the SiInulation 

The simulation program performs the required functions of setting 
initial values of simulated flip-flops (or other storage elements), and 
thereafter updating these flip-flops. In each succeeding simulated time 
interval, the logical design defines the influence that the current flip-flop 
and input states shall exert upon the next state of a simulated flip-flop. 
Part of the working storage of this program is therefore the present value 
of each simulated storage element. 

COInpiled Logic. The simulation program requires a logical descrip­
tion of the simulated digital system. It would be possible to use the 
symbolic logical design directly. However, the use of this design in up­
dating simulated storage elements is the heart of the program and it is 
important that this part be as efficient of time as possible. 

The transcription of the symbolic logical design into an effective simu­
lator process is called the compiled logic. _ The nature of the compiled 



LOGICAL DESIGN 17-41 

logic will depend on the computer to be used for simulation. A typical 
procedure would evaluate an equation for the S (set) input of an R-S 
flip-flop which consists of and's, of or's (normal form), of other flip-flop 
outputs. 

EXAMPLE. Consider the logical equation: 

A12S = All· AXI + A13· AXI . AX2. 

The symbolic design might not contain the symbols =, . , + explicitly. 
For example, in punched card representation the leftmost columns might 
always be reserved for the input designation, A l2S. 

The compiled logic for this equation would be a short sequence of 
instructions which would evaluate A 128 . as a 0 or 1 depending on the 
present values of All, A13, AXl, and AX2. Thus, if All and AXI are 
both 1, A 128 would have the value 1. The compiled logic contains 
instructions with addresses corresponding to the location in the simulator 
storage of these simulated flip-flop values. The instructions would be 
chosen in such a manner that the indicated logical operation of and, or, 
or not would take place. This is easily achieved with a general purpose 
simulator having logical instructions. Ordinary arithmetic instructions 
can also be used. For example, multiplication of single l's or all O's have 
the same property as the logical and. 

After the evaluation of all simulated storage element inputs, the next 
state of each element can be determined. At this point, a condition such 
as simultaneous Rand S inputs could cause an alarm indication. 

Driver Progralll. The program which causes sequential simulation is 
called the driver program. The compiled logic is used in a subroutine to 
evaluate the states of all storage elements for each time interval. Another 
subroutine places new values on the inputs each simulated time interval 
from a list of instructions and numbers, and switch and keyboard settings. 
The driver program also provides a subroutine to calculate independentlY 
the expected result produced by the simulated computer. These calcula­
tions are made only when results are supposed to be available from the 
simulated computer. Rounding, negative number representation, and 
word length of the computer undergoing simulation must be considered. 

Silllulation Output. The driver program provides a comparison 
between the simulated computer outputs and the expected outputs. If 
these are not identical, the simulator indicates that a malfunction has 
occurred. In this event, it is desirable also to provide sufficient information 
for the logical designer to pinpoint the source of the error. Such informa­
tion would be available, for example, from a sequential recording of simu­
lated storage element states and inputs. These would be provided for all 
simulated time intervals in the execution of the instruction in error. 



17-42 DESIGN OF DIGITAL COMPUTERS 

REFERENCES 

1. M. Phister, Jr., Logical Design of Digital Computers, Wiley, New York, 1958. 
2. R. K. Richards, Arithmetic Operations in Digital Computers, Van Nostrand, 

Princeton, N. J., 1955. 
3. Engineering Research Associates, High-Speed Computing Devices, McGraw-Hill, 

New York, 1950. 
4. Staff of the Computation Laboratory, Synthesis of Electronic Computing and 

Control Circuits, Annals of the Computation Lab. of Harvard Univ., Harvard Uni­
versity Press, Cambridge, Mass., Vol. 27, Chaps. 3, 4, and 5, 1951. 

5. S. Greenwald, R. C. Harter, and S. N. Alexander, SEAC, Proc. I.R.E., 41, 1300-
1313 (1953). 

6. N. M. Martin, On completeness of decision element sets, J. Computing Systems, 
1 [3], 150-154 (1953). 

7. E. W. Veitch, A chart method for simplifying truth functions, Proc. Assoc. Com­
puting Machinery, 127-132, May 2-3, 1952. 

8. M. Karnaugh, The map method for synthesis of combinational logic circuits, 
. Trans. Am. Inst. Elec. Engrs., Pt. I, 72, 539-598 (1953). 

9. W. V. Quine, The problem of simplifying truth functions, Am. Math. Monthly, 
59, 521-531 (1952). 

10. W. V. Quine, A way to simplify truth functions, Am. Math. Monthly, 62, 627-
631 (1955). 

11. M. J. Ghazala, Irredundant disjunctive and conjunctive forms of a Boolean 
function, IBM J. Research and Dev., 1 [2], 171-176 (1957). 

12. E. J. McCluskey, Jr., Minimization of Boolean functions, Bell System Tech. J., 
35 [ 6], 1417-1444 (1956). 

13. D. A. Huffman, The synthesis of sequential circuits, J. Franklin Inst., Pt. I, 257 
[3], 161-190; Pt. II, 257 [4], 275-304 (1954). 

14. G. H. Mealy, A method for synthesizing sequential circuits, Bell System 
Tech. J., 34 [5], 1045-1079 (1955). 

15. J. H. Felker, Typical block diagrams for a transistor digital computer, Com­
munications and Electronics, No.1, 175-182, July 1952. 

16. E. C. Nelson, An algebraic· theory for use in digital computer design, Trans. 
I.R.E., PGEC, EC-3 [3], 12-21 (1954). 

17. S. R. Cray and R. N. Kisch, A progress report on computer applications in 
computer design, Proc. Western Joint Computer Conf., 82-85, Feb. 7-9, 1956. 

18. W. E. Smith, A digital system simulator, Proc. Western Joint Computer Conf., 
31-36, Feb. 26-28, 1957. 



D DESIGN OF DIGITAL COMPUTERS Chapter 18 

Arithmetic and Control Elements 

H. L. Engel 

I. System Considerations 18·0!. 

2. Notation 18·02 

3. Binary Operations 18·03 

4. Decimal Operations 18·25 

5. Special Operations 18·30 

6. Control Elements 18·33 

References 18·40 

I. SYSTEM CONSIDERATIONS 

The arithmetic element of a digital computer should be designed together 
with the computer system of which it is a portion. Some of the important 
system considerations that influence the design of an arithmetic element 
are listed in the following table: 

Feature 
Input and output 

Speed 

Circuitry 

Flip-flops 

Gates 

Arithmetic operations 

Numbers 

Consideration 
Decimal or binary numbers, analog, combinations. 

The importance of speed. Speed can be increased by 
adding equipment or by increasing the basic computer 
rate. A parallel or partially parallel arithmetic 
element will be faster than a serial element using the 
same clock rate, but it will require more hardware. 

Transistors, cores, tubes, etc. 

Static or dynamic. 

Levels of gating that can be used; tube, transistor, 
diode, core, resistor, etc. 

Only addition, subtraction and multiplication; pos­
sibly also division and square root. 

Fixed or floating point, binary or decimal, location of 
sign bit (most significant or least significant end). 

18·01 



18-02 DESIGN OF DIGITAL COMPUTERS 

All these factors greatly influence the design of the arithmetic ehment. 
In the work to follow, the techniques of logical design described in Chap. 17 
are used to design portions of arithmetic elements. An attempt has been 
made to include a large variety of possible implementations in order to 
demonstrate that logical design techniques can be adapted to the hard­
ware available. 

The design of an arithmetic element is partly art and partly science. 
The design of a control element involves more art and less science. Thus 
design of a control element is best illustrated by exhibiting the techniques 
used in design. This is done in this chapter by designing the control 
element of a simple computer, showing many of the devices available to 
the logical designer and the many choices he must make. 

2. NOTATION 

Logical Operations. A plus (+) indicates logical sum, or, and a 
dot (.) logical product, and. Dots may be omitted in logical products. 
Where these symbols are used for arithmetic sums and products instead, 
this is indicated. A bar () indicates a logical complement; a prime (') 
is frequently substituted in typing. The summation sign CE) indicates an 
arithmetic sum. 

Flip-Flop. The name of a flip-flop is an upper case letter or an upper 
case letter and a number, for example, F, X, F1, F3, D14. The normal 
output of the flip-flop has the same name as the flip-flop and provides a 
signal only when the flip-flop is in the l's state. The complementary 
output, if there is one, carries the name of the flip-flop with a bar over 
it (). It provides a signal only when the flip-flop is in the O's state. 
Conventionally, each output is assigned the value 1 when it provides a 
signal, and 0 when it does not. 

Flip-Flop Logic. Three of the many logically different flip-flops are 
used in this chapter. They are shown with their truth tables in Fig. 1. 

1. The first is the delay flip-flop with the name D, outputs D and D, 
and the single input I. In terms of the input at digit time n, the output 
at digit time n + 1 is 

(1 ) 

2. The second flip-flop is the trigger flip-flop, named U, with outputs 
U and V, and inputs J and K. The state of this flip-flop at digit time 
n + 1 in terms of the state and inputs at digit time n is 

(2) U+1 = JV + RU. 

3. The third flip-flop is the set-reset flip-flop, named Q, having outputs 
Q andQ, and inputs Sand R. The state of the flip-flop at digit time 



ARITHMETIC AND CONTROL ELEMENTS 

l~~ 
(a) 

t---0==g 
(b) 

~---0==~ 
(c) 

_1_ D+l D+1 
001 
1 1 0 

J J( U+1 U+1 
-0---0- [J U 

o 1 0 1 
1 0 1 0 
1 1 U U 

s 
o 
o 
1 
1 

R Q+1 Q+1 
o Q Q 
1 0 1 
010 
1 Unknown Unknown 

18-03 

FIG. 1. Symbols and truth tables. (a) Delay flip-flop, (b) trigger flip-flop, (c) set-reset 
flip-flop. 

n + 1 is given in terms of the state and inputs at digit time n by 

(3) Q+l + RS = SQ + RQ + RS. 

Here RS is written on both sides of the equation so that it is not possible 
to find Q+l if both Rand S are 1. This describes the behavior of the flip­
flop; the next state cannot be predicted if there are two simultaneous 
inputs. Set-reset flip-flops are used in Sect. 6. Different flip-flop names 
are employed there to indicate the flip-flop usages. 

Note. The name F is applied to any flip-flop for which the logic has 
not yet been selected. 

COlllbined Elelllents. Boolean polynomials may be assigned names 
consisting of single upper-case letters. 

The outputs of a half adder are named S~ and C~ (for sum and carry). 
See Sect. 3. The outputs of a half subtract or bear the same names. 

The outputs of a full adder are named Sand Cl for sum and carry. 
See Sect. 3. The outputs of a full subtract or are similarly named. 

3. BINARY OPERATIONS 

Count 

The number N in an M-stage binary counter is given by 
M 

N = L 2m- 1 Fm 
m=l 

where Fm is the name applied to the mth stage and has the value 1 when 
that flip-flop is in the l's state, and 0 when that flip-flop is in the O's state. 



18-04 

(a) 

DESIGN OF DIGITAL COMPUTERS 

N Dl D2 ---- --
0 0 0 
1 1 0 
2 0 1 
3 1 1 
4 0 0 
5 1 0 
6 0 1 
7 1 1 
8 0 0 
9 1 0 

10 0 1 
11 1 1 
12 0 0 
13 1 0 
14 ,0 1 
15 1 1 

(b) 

D3 D4 
----0 

0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 

=E>- and gate 

=tV-or gate 

FIG. 2. Scale of 16 counter. (a) Truth table, (b) block diagram. 

An M stage counter that takes all succeeding values of N from 0 to 
2m - 1 and then repeats is called a scale of 2M binary counter. As a truth 
table shows, the state of Frn at digit time n + 1 in terms of the flip-flop 
states at digit time n is 

Fm+l = [Fl· F2 ... F(m - 1)] Fm + [Fl· F2 ... F(m - 1)] Fm. 



ARITHMETIC AND CONTROL ELEMENTS 18-05 

If delay flip-flops are substituted for these unspecified flip-flops, the input 
to the mth flip-flop is 

1m = [DI . D2 ... D (m - 1)] Dm + [DI . D2 ... D (m - 1)] Dm 

as may be easily seen· since Dm+l = 1m. 
EXAMPLE. For a scale of 16 counter consisting of DI, D2, D3, D4, the 

inputs are 

II = DI 

12 = DI D2 + DI D2 

13 = [DI . D2]D3 + [DI . D2] D3 

= DI D2D3 + DI D3 + mD3 

14 = [DI' D2· D3]D4 + [DI' D2· D3] D4 

= DI D2 D3 D4 + DI D4 + D2 D4 + D3 D4 

These results can be verified by the truth table in Fig. 2. A block 
diagram of the logic appears in the same figure. 

Shift 

The state of the mth stage, Fm, of a shifting register at digit time 
n + 1 in terms of the stage F(m - 1) at digit time n is given by 

Fm+l = F(m - 1). 

If the shifting register consists of set-reset flip-flops Qm, then 

8m = Q(m - 1) 

Rm = Q(m - 1). 

It follows from eq. (3) that 

or 

Qm+l + [Q(m - 1)] . [Q(m - 1)] = Q(m - 1) Qm + [Q(m - 1)] Qm 

+ [Q(m - 1)] . [Q(m - 1)] 

Qm+l = Q(m - I)[Qm + Qm] 

= Q(m - 1). 

This shows that the set-reset flip-flops with the indicated inputs act as 
a shifting register. See Fig. 3a. 

The shifting register can be constructed with a single magnetic core 
per stage. In this case the core circuit has the same logical description 
as the delay flip-flop described in Sect. 2, but it lacks the complementary 
output. A typical logic equation is (see Fig. 3b, c), 

1m = D(m - 1). 



18-06 DESIGN OF DIGITAL COMPUTERS 

(a) ••• =1L8(~m-=-1.J-) I------l 8m 1 8(m+l)t=== ••• 

(b) Dmd~Dm 

(e) ••• ~.I f :9~1 f ~ ... 
Clock ---

(d) 

Out~~-< Delay line 

(e) 

Out ~-+----< Delay line -

FIG. 3. Shift registers. (a) Set-reset flip-flops, (b) magnetic core, block diagram, 
(c) magnetic core, single core per stage, (d) and (e) variable length shift registers using 

delay lines. 

In serial computers a multibit delay line closed on itself through flip-flops 
may be used as a register with the bits available sequential1y. It may be 
necessary to left shift or right shift the contents of this register with respect 
to the contents of other similar registers. A left or right shift of one bit 
per circulation time may be accomplished by increasing or decreasing the 
register length one bit. Say the register consists of a delay line and three 
flip-flops, as in Fig. 3d. An additional flip-flop introduced, as in Fig. 3e, 
will delay the contents of the delay line one bit each circulation time. 
Conversely, removing a flip-flop, as in Fig. 3j, will advance the contents 
of the delay line one bit each circulation time. 

The delay line length may be varied under the influence of two control 
flip-flops, say DID and DI1. If both are in the D state, the register is to 



ARITHMETIC AND CONTROL ELEMENTS 18-07 

(f) 

Out 
Delay line 

and 

(g) 

Out 
Delay line ~ 

FIG. 3 (continued). Shift Registers. (f) and (g) variable length shift registers using 
delay lines. 

circulate normally. If DIO is I the register is to be lengthened one bit. 
If DII is I the re6ister is to be shortened one bit. DIO and Dll are not 
allowed to be I simultaneously. For the variable length delay line, then 

Readin 

12 = DI 

13 = D2 

14 = DIO D3 + DIO DII D2 + DII Dl. 

A new word may be read into a register either serially or in parallel. 
In serial readin the register may be a static register so that each new bit 

must be addressed to a flip-flop by external control circuitry, or the 
register may be a shift register so that all the bits are read successively 
into the same flip-flop of the register and are distributed by the normal 
shift operation. 

In parallel readin, all the bits of the new word are simultaneously placed 



18·08 

(a) 

(b) 

(c) 

(d) 

A B ----
0 
0 
1 
1 

A 

B 

A 
B 

;=8 
A 
Ii 

A 

B 

~=8 

A 

B 

0 
1 
0 
1 

DESIGN OF DIGITAL COMPUTERS 

A 
SYz CYz B 
0 0 (e) 8~ 
1 0 A 
1 0 B C~ 

0 1 

8~ 
A 

B 

(f) 
C32 A 

B 

~=8 
8~ 

C~ A =0= s. (g) 
H 2 

A 
B C~ 

8~ 

A 

B r-+--------------- C~ 

832 

C~ 

FIG. 4. Half adder. (a) Truth table, (b), (c), (d), (e), (f) block diagrams, «(I) symbols. 

in the correct flip-flops. With set-reset flip-flops in this appJication it is 
sometimes economical first to set all flip-flops in the register to 0, and then ' 
supply l's inputs only to the flip-flops that are to be set to 1. 

Add 

Half Adder. A half adder is a device that produces two outputs, one 
of which is the sum modulo 2 of its two input signals, and the other is 
a "carry" that is 1 only if both input signals are l's. Figure 4a is a truth 
table for the half adder. 



ARITHMETIC AND CONTROL ELEMENTS 18-09 

Let A and B be the half adder inputs. The outputs, named S~ and C~ 
(for sum and carry) are 

s~ = AB + AB, 

CY2 = AB. 

To illustrate some of the many embodiments of these equations, first 
assume that the complements A and Bare avai1ab1e. The above equations 
may then be translated directly into hardware, as in Fig. 4b. 

The sum equation may also be written as 

s~ = (A + B)(A + B) 

and mechanized as in Fig. 4c. 
If A and B are not available, it may be better to write the sum equation 

in another form that will save equipment. For example, 

s~ = (A + B) (AB), 
= (A + B)C~. 

This statement requires only one inverter as in Fig. 4d, or one inhibiting 
gate as in Fig. 4e. If circuit design does not permit multiple use of the 
output of an inverter or gate, then one way of mechanizing the half adder 
with only normal outputs is shown in Fig. 4/. 

A half adder may be indicated schematically as in Fig. 4g. 
Full Adder. A full adder has three inputs, two of which are an augend 

bit A, and an addend bit B. The third input is the carry C from the 
previous addition. The modulo 2 sum of the three adder inputs is called 
the sum S. There is a carry output C1 if at least two of the inputs are l's. 

Of the many ways to implement a full adder, hereafter called an adder, 
only three are illustrated here. The adder truth table is Fig. 5a. The 
logic equations are 

S = ABC + ABC + ABC + ABC, 

C1 = ABC + ABC + ABC + ABC 
= AB +BC+ CA. 

Adder 1. The sum equation may also be written 

S = (AB + AB)C + (AB + AB)C 

= (AB + AB)C + (AB + AB)C, 

and this shows that a full adder may be made with two half adders, as in 
Fig. 5b. In this figure, the box containing a C represents a delay flip-flop, 
such as might be used in a serial adder to store the carry for one digit time. 

Adder 2. An adder can also be produced by direct embodiment of 
the first equations for Sand ClI as in Fig. 5c. 



18-10 DESIGN OF DIGITAL COMPUTERS 

A B C S r------------------, ---- ----~ I 0 
0 
0 
0 
1 
1 
1 
1 

I 0 0 0 0 I I 
0 1 1 0 L_-r--r --. I 

I C L I I 
1 0 1 0 L __ ...J - I I 
1 1 0 1 (b) C I 

0 0 1 0 H 

0 1 0 1 A 
A 

1 0 0 1 H 

1 1 1 1 B A 
or 

(a) 

A 
Ii 
c 
A 
B 
C 

,13 
A 
B 
C 

A 

A =0= (c) B (e) B F S 
c C - ,A Cl 

~=En 
B 

C 
Cl 

C 

A 

Cl 

A ---l,,.....~-I- .......... -6--8 
(d) B~'-

C--"\_ ...... 

IM!l 

-1.5 v 

FIG. 5. Adder. (a) Truth table, (b), (c) block diagrams, Cd) Kirchhoff adder, 
Ce) symbols. 

S 

Ct 



ARITHMETIC AND CONTROL ELEMENTS 18-11 

Adder 3. Still another form of adder, shown in Fig. 5d, is called a 
Kirchhoff adder, for it employs Kirchhoff's law. For this adder the logic 
equations are 

s = (A + B + C)Cl + ABCCl, 

Cl = AB + BC + CA. 

A, B, C are voltage sources of 1 volt if they represent l's, and 0 volts if 
they are O's. T1 and T2 are ideal triodes such that grids negative with 
respect to the cathodes result in zero plate curre~t, and grids positive with 
respect to the cathodes reduce the cathode-plate impedances to O. Then, 
for the circuit shown, T1 conducts if and only if the logical sum AB + 
BC + CA is 1; i.e., the current in Tl represents Cl , and the plate voltage 
of T1 represents Cl . Cl , A, Band C can then be used in another current. 
adder to produce S at the grid of T2 and S at its plate. 

A full adder (FA) may be indicated schematically as in Fig. 5e. 
Parallel Adder. In the parallel adder all the addend and augend bits 

are available simultaneously. The parallel adder for two n-bit numbers 
is not necessarily n times faster than a serial adder, for the addition time 
of a parallel adder is determined by the time needed to propagate a carry 
from the least significant bit to the most significant bit, or the time re­
quired to set up all carries before actual addition. 

In parallel addition the sum may be placed in a sum register separate 
from the addend and augend registers, or the sum may replace the augend. 
In the latter case the register holding the sum is called an accumulator. 

EXAMPLE 1. Use of a sum register and carry propagation are illustrated 
in Fig. 6a. A typical stage is shown, where A and B are flip-flops in the 
addend and augend registers. S is the sum digit resulting at this stage 
from the addition of the augend bit, the addend bit, and the carry from 
the previous stage. Separate lines M and N are used to indicate carry (C) 
or no carry (C) between stages. Two lines are needed so that whether or 
not there is a carry, there is a signal to the next stage. Addition is initiated 
by a pulse in the no carry line of the least significant stage. Since there 
must be a carry or no carry from this stage, line M or N to the next stage 
will be energized. The process progresses from stage to stage until com­
pletion is indicated by a signal on the M or N line from the most significant 
stage. With AIl and N 1 for the lines out of a stage, the logic equations 
for that stage are 

S = ABM + ABN + ABN + ABll1 
(= ABC + ABC + ABC + ABC), 

ll!l = ABN + Bll! + AM (= ABC + BC + AC), 

Nl = ABM + BN + AN (= ABC + BC + XC). 



18-12 DESIGN OF DIGITAL COMPUTERS 

Typical addend 
register flip-flop 

and 

M-------4--r-4---~--~--~ 

"Carry" signal from 
previous stage 

N----------+---~~+---~~--~ 

"No carry" signal 
from previous 

stage 

B 

Typical augend 
register flip-flop 

Typical addend 
register flip-flop 

(a) 

and 

c------------4--+--4--4-~ 

Typical 
accumulator 

register 
flip-flop 

N-""*----I 

I-----M l 

"Carry" signal to 
next stage 

~---s 

Sum bit to 
correspo:1ding 
sum register 

flip-flop 

1------N1 

"No carry" signal 
to next stage 

~----------------------------------s 
(b) 

FIG. 6. Parallel addition. (a) Using sum register and carry propagation, (b) using 
accumulator and half sums. 



ARITHMETIC AND CONTROL ELEMENTS 18-13 

EXAMPLE 2. An accumulator and a different carry technique are 
illustrated in the next example. See Fig. 6b. Here the addend and 
augend bits are combined in one digit time to produce half sums in 
the accumulator, and in the next digit time the half sums are altered in 
accordance with the carries from each stage. 

For any stage 

S!1 = AB + AB, 

S = CS!1 + CS!1' 

C1 = AB + BC + CA. 

Since B is not available at the time the carries must be formed, having 
been replaced by S~, it is necessary to find an expression for C1 not in­
volving B. By multiplying the equation for S!1 by A, it is seen that 

AS!1 = AB. 

From the same equation 

S!1 = AB + AB 

and 

AS!1 = AB. 

Further C1 may be written 

so 

C1 = AB + (AB)C + CA 

= AS!1 + AS!1C + CA 

= AS!1 + S!1C + CA. 

With a trigger flip-flop to mechanize this, in the firet digit time 

U+1 = S!1 = JB + I?B 
= AB +AB 

J = K = A. 

In the second digit time 

so 

U+1 = S = JS!1 + I?SY2 

= CS!1 + CSY2 

J = I( = C. 

With M and N to denote first and second digit times, it follows that 

J = I( = MA + NC 

and 

C1 = A UN + UC + CA. 



18-14 DESIGN OF DIGITAL COMPUTERS 

Subtract 

Half Subtractor. The half subtractor accepts a minuend bit and a 
subtrahend bit, and produces a half difference and a half borrow. Letting 
A, B, 872 and C72 represent these quantities in order, the logic equations 
of the half subtractor are 

872 = AB + AB, 

C72 = AB. 

The corresponding truth table is Fig. 7. No examples of implementation 
are given because of similarity to the half adder. 

~~ 8 72
1 C72 

o 0 0 0 

o 1 1 I 1 
1 0 1 0 
1 100 

FIG. 7. Half subtractor truth table. 

Serial Subtractor. The three inputs of a serial subtractor are a 
minuend bit A, a subtrahend bit B, and a borrow bit C. The outputs are 
a difference bit 8, and a borrow bit Cl. The lo.;ic equations are 

8 = ABC + ABC + ABC + ABC, 

C1 = AB + BC + CA. 

The truth table appears in Fig. 8a. The difference equation is identical 
with the sum equation of the adder. The borrow equation is like the 
adder carry equation except that A replaces A. One embodiment of a 
subtract or is shown in Fig. 8b,litnd a conventional representation in Fig. 8e. 

Subtraction Using COIllpleIllents. The similarity of the logic 
equations for addition and subtraction suggests that subtraction can be 
accomplished by adding the 2's complement of the subtrahend to the 
minuend. This may be done with an adder by interchanging Band B 
whenever they occur in the logic equations for sum and carry, provided 
the carry flip-flop is initially 1. This is illustrated in subtracting 0.0110000 
from 0.1001001. Normally this would be 

0.1001001 A 
-0.0110000 -B 

0.0011001 8 

Replacing O's by l's and vice versa in B, and putting in an initial carry 



A 

B 

ARITHMETIC AND CONTROL ELEMENTS 

A B C S C1 ---- ----
0 0 0 0 0 
0 0 1 1 1 
0 1 0 1 1 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 0 
1 1 0 0 0 
1 1 1 1 1 

(a) 

H t---------~ H 1--- S 

S S 

or 

(b) 

FIG. 8. Serial subtractor. (a) Truth table, (b) block diagrl!tm, (c) symbol. 

it is found that 

0.1001001 
+0.1001111 
+ 1 

1.0011001 

A 
l's complement of B 
Initial carry setting 

18-1.5 

If the overflow to the left of the binary point is ignored, the result is A 
minus B. 

A subtrahend larger than the minuend results in a negative difference. 
In this case the output of the subtract or is the 2's complement of the result. 
If the computer represents negative numbers as 2's complements, this is 
fine. If the machine stores numbers as magnitude and sign, the result, 
2n - N, must be complemented. The magnitude may be found by sub­
tracting the result from 2n since N = 2n - (2n - N), or by subtracting the 
result from 0 and discarding the overflow since N == 0- (2n - N) mod 2n, 
or by generating the l's complement and adding 1 in the least significant 
place. 

Parallel Subtractor. The techniques of logical design of a parallel 
subtractor are so like those for a parallel adder that no e~amples are given 
here. 



18-16 DESIGN OF DIGITAL COMPUTERS 

Zero Representation. A machine that stores numbers as magnitude 
and sign may have two representations for zero, namely +0 and -0. In 
such a machine if it is desired to always store a 0 as +0, it may be necessary 
to provide special circuits to detect a 0 result. 

Add-Subtract 

Since the logical equations for addition and subtraction are so alike, it 
is frequently convenient to use the same equipment for both operations. 
Only one example is given here. Letting M be the signal to add, N the 
signal to subtract, and maintaining M N = 0, 

Multiply 

S = M(ABC + ABC + ABC + ABC) 
+ N(ABC + ABC + ABC + ABC) 

= ABC + ABC + ABC + ABC, 

Cr = M(AB + BC + CA) + N(AB + BC + CA) 
= BC + MAB + MCA + NAB + NAB. 

Binary Multiplication. Binary multiplication is very easy since the 
multiplication table is just a two by two array, as shown in Fig. 9a. Figure 
9b is an example of binary multiplication. In a digital computer it is 
usually more convenient to determine each partial product in succession, 
as in Fig. ge. 

If numbers in a computer are represented as magnitude and sign, 
multiplication is accomplished by multiplying the magnitudes and affixing 
a sign to the result determined from the signs of the multiplicand and 
multiplier. 

If negative numbers are represented by 2's complements, the product 
of signed numbers could be found by a subroutine that would determine 
the signs and magnitudes of the operands, perform the multiplication as 
indicated above, and then, if the result were negative, cast the result into 
2's complement form. It seems preferable, however, to devise a scheme 
for multiplying such numbers without a special subroutine. Two tech­
niques are presented here. 

Shaw Method. In the Shaw method, x and yare two signed numbers 
of magnitude less than 1. X and Yare their binary representations, being 
equal to the numbers when those are positive, and being their 2's comple­
ments when the numbers are negative. If a bit of Y is 1, X (less its por­
tion to the left of the binary point) is added to the partial product. If a 



ARITHMETIC AND CONTROL ELEMENTS 18-17 

bit of Y is 0, the bit of X to the left of the binary point is added to the 
partial product. This process ends just before the bit of Y to the left of 

Multiplier 

Digit 

Multiplicand 
Multiplier 

Multiplicand 
Digit 

101 1 

-01-
0
1-

0 

101 

(a) 

0.11101 
0.11110 

00000 
11101 

11101 
11101 

11101 
Product 0.1101100110 

(b) 

Multiplicand 0.11101 
Multiplier 0.11110 

00000 
00000 
00000 

11101 
111010 

11101 
10101110 
11101 

110010110 
11101 

Product 0.1101100110 

(c) 

Multiplier 
Digit 
o 
1 
1 
1 
1 

Partial Multiplier 
Product Digit 

V 
0 

V 
1 

V 
1 

V 
1 

V 
1 

FIG. 9. Binary multiplication. (a) Multiplication table, (b) example of manual opera­
tion, (c) example of machine operation. 

the binary point is examined. N ext, if x is negative 1 + 2-n is added to 
the partial product. Finally, if y is negative, the 2's complement of X is 
added to the partial product. 



18-18 DESIGN OF DIGITAL COMPUTERS 

EXAMPLES. M uliiplication. 

0.1001 x = rt 1.0111 x= -/6" 
0.1011 y=H 0.1011 y = n 
01001 00111 

01001 00111 
00000 10000 

01001 00111 
001100011 010001101 
00000 sign x correction 10001 sign x correction 
001100011 110011101 
00000 sign y correction 00000 sign y correction 

0.01100011 1.10011101 

0.1001 x = 16" 1.0111 x= 9 
-T6" 

1.0101 y= -H- 1.0101 y= - ~~ 

01001 00111 
00000 10000 

01001 00111 
00000 10000 

000101101 011000011 
00000 sign x correction 10001 sign x correction 
000101101 111010011 
10111 sign y correction 01001 sign y correction 

1.10011101 /,(1)0.01100011 
overflow 

Booth Method. In the Booth method, Y m is the mth most significant 
bit of an n bit multiplier representation. Y n+l is zero. Starting with 
m = n, Y m and Y m+l are compared: 

1. If Y m = Y m+l add o. 
2. If Y m = 1, Y m+l = 0 add the 2's complement of X to the partial 

product. 
3. If Y m = 0, Y m+l = 1 add X to the partial product. 
EXAMPLE. 

1.0111 
0.1011(0) 

-~--

000001001 
00000000 
1110111 
001001 
10111 

/'
(1)1.10011101 

overflow 

x =-A 
y = t~ 

Y4 = 1 
Y3 = 1 
Y 2 = 0 
Yl = 1 
Yo = 0 

Y 5 = 0 
Y4 = 1 
Y3 = 1 
Y2 = 0 
Y 1 = 1 



ARITHMETIC AND CONTROL ELEMENTS 18-19 

Serial MultipHcation. Machine processes in multiplication are most 
easily explained in terms of positive numbers. In serial multiplication 
the digits of the multiplicand and multiplier are each assumed available 
in succession from shifting registers or delay lines. Another register or 
delay line, here called the accumulator, holds the partial products. See 
Fig. 10. In this example, the multiplicand and intermediate sums are 
assumed to be in delay lines and the multiplier in a shifting register. The 

Multiplier register 

Multiplicand delay line 

Accumulator delay line 

FIG. 10. Serial multiplication. 

and 

F 
A 

multiplicand delay line is one bit longer than the accumulator delay line. 
As a result, the multiplicand precesses, i.e., is shifted left, one digit with 
respect to the partial product each time the accumulator register circulates. 
This permits successive powers of two times the multiplicand to be added 
to the partial product in successive circulations. The multiplier register 
shifts right just once at the end of each circulation time to bring a new 
multiplier bit into position. According as the multiplier digit in the last 
flip-flop of the multiplier register is one or zero the multiplicand is added 
or not added to the partial product. Serial-parallel multiplication is 
multiplication using a parallel adder or parallel accumulator for adding. 

Parallel Multiplication. Multiplication of two binary numbers can 
be achieved in a single digit time by parallel multiplication, in which each 
bit of the product is expressed directly in terms of all the bits of the multi~ 



18-20 DESIGN OF DIGITAL COMPUTERS 

plier and the multiplicand. It can be seen that the logical expressions for 
the product bits rapidly become complicated as the number of bits of the 
operands are increased. The amount of hardware necessary to generate 
the product bits makes parallel multiplication impractical for operands 
more than four digits long. To illustrate this point, the expression for a 
single bit of the product resulting from the multiplication of two three-bit 
numbers is indicated below. The multiplicand is a2alaO (= 22a2 + 21al + 
2°ao) and the multiplier is b2blbo. The product is C5C4C3C2CICO. The logic 
equation for C3 is 

C3 = lioall!2b2 + alli2b1b2 + aoala2bob2 + lioa1b1b2 + a2bob1b2 + lila2b1b2 

+ liOa2boblb2 + lila2bobl + aoalli2bob1b2 + aolila2bob1b2. 

Precision. In the explanations of multiplication given above, all the 
bits of the product have been retained, so that the product may have as 
many bits as the multiplicand and multiplier together. In designing a 
digital computer it is often desirable to allow no more digits in the product 
than in the largest possible multiplicand or multiplier. In this case, in­
stead of shifting the multiplicand left one place for each successive partial 
product, the partial products are shifted right one place for each successive 
partial product. This results in the loss of the least significant digits of 
the product. To illustrate this point the example of Fig. 9c is repeated 
below. 

Multiplicand 0.11101 
Multiplier 0.11110 
o X multiplicand 00000 
Partial product A 00000 
Right shift 00000 
1 X multiplicand 11101 

Partial product B 11101 
Right shift 01110 
1 X multiplicand 11101 

Partial product C 101011 
Right shift 10101 
1 X multiplicand 11101 
Partial product D 110010 
Right shift 11001 
1 X multiplicand 11101 

Partial product E 110110 
Right shift 0.11011 Product 

Roundoff Correction. Now the product obtained by this means is 
less than the actual product by 0.0000000110. In another example it 
might have been smaller than the full product by almost 0.00001. The 



ARITHMETIC AND CONTROL ELEMENTS 1 B-21 

difference between the product obtained by this means and the full product 
is called the truncation error. The truncation error is always in the same 
direction. To eliminate this bias it is the usual practice to add a correction 
term to the product. The two most common roundoff corrections are 
(1) always replace the last digit retained in the product by 1, and (2) add 
a 1 to the digit place beyond the last to be retained, allow all carries to 
occur, and then drop all digits beyond the last to be retained. In the 
second roundoff procedure it may be more convenient to add the rounding 
1 to the product register before the multiplicand can first be added in. 

Both of these methods result in essentially unbiased products, but the 
second results in a smaller variance. ' 

Divide 

In a binary digital computer division may be done in at least four ways. 
They are described as though divisor and dividend are both positive. 

Iteration. If alb is to be found, lib can be determined by an iteration 
scheme involving only addition, subtraction and multiplication, and then 
alb found by multiplying by lib. One iteration formula for lib is 

U n+l = un(2 - unb) 

where Un approaches lib as n approaches co. 

Restoring Division. In this the divisor is subtracted from the re­
mainder; if the result is positive, a 1 is placed in the quotient; if the result 
is negative, a 0 is placed in the quotient and the remainder is restored to 
its previous value by adding the divisor to it. 

Trial Division. Special circuitry is provided to determine if the divisor 
exceeds the remainder without actually performing a subtraction. If the 
divisor is greater, no subtraction is performed and a 0 is placed in the 
quotient. If th~ divisor is not greater than the remainder, the divisor is 
subtracted from the remainder and a 1 is placed in the quotient. 

Nonrestoring Division. In this method the divisor is always sub­
tracted from the remainder if the remainder is positive, or added to the 
remainder if it is negative. If the new remainder is positive, a 1 is placed 
in the quotient. If the new remainder is negative, a 0 is placed in the 
quotient. 

Division may be performed serially or serial-parallel, depending on the 
equipment available. 

The same roundoff procedures may be used for the quotient as for the 
product, although to use the second method one more quotient digit 
must be found. 

Fixed Point Division. If the dividend exceeds the divisor in a fixed 
point machine the methods given above may result in very erroneous 
quotients. It is common in fixed point machines to provide special cir­
cuitry to detect this situation. It is also possible to mechanize the division 



1.8-22 DESIGN OF DIGITAL COMPUTERS 

process so that the largest number the quotient register can hold will 
result if the true quotient is beyond the range of that register. 

Magnitude and Sign. If numbers are stored in the computer as 
magnitude and sign, the magnitude of the quotient is determined from the 
magnitudes of the divisor and dividend, and the sign of the quotient 
determined from their signs. . 

COlnpleInents. If negative numbers appear in the computer as 2's 
complements, the quotient could be found through a subroutine involving 
determination of the magnitudes of the divisor and dividend. However, 
it is more convenient, for numbers of this kind, to have a division process 
that does not depend upon the signs of the dividend and divisor. One 
such scheme is described below. 

EXAMPLE. Compare the sign of the remainder (the dividend is con­
sidered the zeroth remainder) with the sign of the divisor. Shift the 
remainder left one place; this results in loss of the sign digit of the remainder, 
but this does no harm. If the divisor and remainder had like signs, perform 
a subtraction. If the signs were unlike, perform an addition. Each time 
an addition is performed the quotient digit is made 1, each time a subtrac­
tion is done the quotient digit is made o. The quotient determined by 
this scheme is not correct. To it a 1 in the sign position and a rounding 1 
in the final position must be added. This process is illustrated below. 

1.1001 a(=ro) --i6 
0.1101 b i~ 

1.0010 2ro 
0.1101 +y 
1.1111 rl 
1.1110 2rl 
0.1101 +y 
0.1011 r2 
1.0110 2r2 
0.1101 

0.1001 r3 
1.0010 2r3 
0.1101 
0.0101 r4 

O. 0 
1. 0 

1. 0 

Square Root 

-y 

-y 

1 1 0 
0 0 1 1 + 2-4 ( correction) 

1 1 1 alb = -/6 

Of the many ways to find the square root of a number only three are 
described here. These are by (1) iteration, (2) subtraction of successive 
odd numbers, and (3) square root process. 



ARITHMETIC AND CONTROL ELEMENTS 18-23 

Iteration. Va can be found from the iteration formula 

Xn+1 = t (Xn + :J. 
where Xn is the nth approximation of Va. 

Subtraction of Successive Odd Numbers. There is a theorem 
in the theory of numbers that the sum of the first n odd numbers is n2 • 

Letting a be n 2, it can be seen that Va can be found by determining how 
many times successive odd integers can be subtracted from a. 

Square Root Process. Square root can be found by a process akin to 
that learned in high school. Here it is modified so that restoring is not 
necessary. Let the positive number whose root is desired be called the 
zeroth remainder, roo The first divisor, PI, is 0.01. If a remainder rk is 
positive, the divisor Pk+1 is subtracted from it. If a remainder rk is nega­
tive, Pk+1 is added to it. If rk+1 is positive, the triplet 1 . 2-(k+1), 0 . 2-(k+2), 

1 . 2-(k+3) is injected into Pk+1 in place of the digits in the corresponding 
positions to obtain Pk+2. If rk+1 is negative, instead, the triplet 0 . 2-(k+1), 

1 . 2-(k+2), 1 . 2-(k+3) is injected. Pk differs from V~ by less than 3· 2-(k+2). 

An example is given below. 
EXAMPLE. 

PI 0.01 0.100101100001 a( =ro) 

.01 

P2 O. 101 0.0101 rl 

10l 

P3 0.1101 0.000001 r2 

1101 

P4 0.11011 1.11010010 r3 

11011 

P5 0.110011 1.1110110100 r4 

110011 

P6 0.1100011 1.111110011101 r5 

1100011 

P7 0.11000 101 0.000000000000 r6 

Number System Conversion 

A binary digital computer may have decimal inputs and outputs or 
Gray code inputs and outputs. The binary digital computer has to perform 
the conversions from code to code. 

Decimal to Binary. _ A binary machine can convert a binary coded 
decimal integer to a binary number as follows. Treating each binary 
coded decimal digit as a four-bit binary number, first multiply the most 
significant digit by ten (= 1010). To this product add the next decimal 



18-24 DESIGN OF DIGITAL COMPUTERS 

digit and again multiply by ten. Continue adding decimal digits and 
multiplying by 10, until the last decimal digit is added in. 

Binary to Decimal. To convert a binary integer to a binary coded 
decimal number it is necessary to divide successively by ten (= 1010), the 
remainders being the binary coded decimal digits in order-the units 
digit, the tens digit, etc. 

EXAMPLE. Convert the binary number 11011010110 to a decimal 
number. 

10101111 

1010 I 11011010110 
1010 

1110 
1010 

10010 
1010 

10001 
1010 

1111 
1010 

1010 
1010 

o =0 

10001 

1010 10101111 
1010 

0001111 
1010 

0101 

01 

1010 10001 
1010 

0111 

o 
1010 I 01 

0000 
0001 

=5 

=7 

= 1 
= 1750 

Gray Code to Binary. The binary equivalent of a Gray code number 
can be obtained by a rule. The most significant binary digit is the same 



ARITHMETIC AND CONTROL ELEMENTS 18-25 

as the corresponding Gray code digit. Thereafter, the binary digit changes 
if the Gray code digit is a 1 and remains the same if the Gray code digit 
is a O. 

EXAMPLE. Convert the Gray code 110100110 to a binary number. 

Gray Code Binary 

1 Same ~ 1 
1 Change ~ 0 
0 No change ~ 0 
1 Change ~ 1 
0 No change ~ 1 
0 No change ~ 1 
1 Change ~ 0 
1 Change ~ 1 
0 No change ~ 1 

Hence the binary number is 100111011. 

Binary to Gray Code. This conversion can be accomplished as 
follows: The most significant Gray code digit is the same as the correspond­
ing binary digit. Thereafter the Gray code digit is 1 if the binary digit 
changes and 0 if it does not. 

EXAMPLE. Convert the binary number 0110100 to Gray code. 

Binary Gray 

o Same ~ 0 
1 Change ~ 1 
1 No change ~ 0 
o Change ~ 1 
1 Change ~ 1 
o Change ~ 1 
o No change ~ 0 

Gray code = 0101110. 

4. DECIMAL OPERATIONS 

Decimal Codes 

There are very many possible decimal codes. Choice of a particular 
code will generally depend on system considerations. 

There are weighted decimal codes in which each position has a numerical 
value associated with it. One such code would use 10 binary digits for 
the representation of a decimal digit, only one of the binary digits being 
permitted to be a 1. A more common code, known as "binary coded 
decimal" uses four binary digits for each decimal digit and assigns these 
binary digits the weights 23, 22, 21, and 2°. Two other common weighted 
decimal codes assign the values 1, 2, 4, 7 or 1, 2, 2, 4 to the binary digits. 



18-26 DESIGN OF DIGITAL COMPUTERS 

In addition to the weighted codes there are others with special advan­
tages. One such code is the "excess 3" code, which can be obtained by 
adding 3 to the binary coded decimal representations of the decimal digits. 
One of the advantages of this code is that 10's complements can be obtained 
by substituting O's for l's and l's for O's. 

Another code is the 2 out of 5 code, in which the representation of each 
decimal digit has exactly two l's. An advantage of this code is that errors 
resulting in a different number of l's are easily detected. 

Count 

The way in which counting is done depends upon the code in use. 
One Out of Ten Code. In a: lout of ten code, counting can be done 

simply by shifting. Here a supplementary circuit must be supplied to 
shift the next higher decade by 1 when all the lower decades are changing 
from 9 to O. 

EXAMPLE. Representation of counting in lout of 10 code. 

N Units Tens Hundreds 

795 
796 
797 
798 
799 
800 

0123456789 

0000010000 
0000001000 
0000000100 
0000000010 
0000000001 
1000000000 

0123456789 

0000000001 
0000000001 
0000000001 
0000000001 
0000000001 
1000000000 

0123456789 

0000000100 
0000000100 
0000000100 
0000000100 
0000000100 
0000000010 

Binary Coded Dechnal. In other codes counting may be more com­
plicated. For example, in binary coded decimal each counter stage may 
be designed as a scale of 16 counter modified so that it will count only from 
o to 9 and then reset to zero. 

EXAMPLE. To illustrate this, the scale of 16 counter of Sect. 3 is 
modified: 

N D1 

o 0 
1 1 
2 0 
3 1 
4 0 
5 1 
6 0 
7 1 
8 0 
9 1 

D2 

0 
0 
1 
1 
0 
0 
1 
1 
0 
0 

D3 D4 

0 0 II = D1 
0 0 
0 0 12 = D1 D2D4 + D1D2 
0 0 
1 0 13 = D1 D2 D3 + D1 D3 + D2 D3 
1 0 
1 0 14 = D1 D2D'J. + D1D4 
1 0 
0 1 
0 1 



ARITHMETIC AND CONTROL ELEMENTS 18-27 

Shift 

In a binary computer a shift of one bit position corresponds to multipli­
cation by the radix 2. In the decimal computer, multiplication by the 
radix (10) requires that the contents of the four or more binary digit 
positions used to represent a decimal digit be shifted to the corresponding 
position for the next higher order digit. A like rule covers division by 
the radix. 

Add 

Decimal addition, too, depends upon the code employed. 
Addition may be done by counting. In this scheme as the digits of one 

operand are counted down to zero the corresponding digits of the other 
operand are increased. Special provision must be made for carries between 
orders of digits. 

Design of the computer may be such that if two decimal digits are to be 
added the digits of their binary representations are available serially. It 
may be possible to take advantage of this. For example, if the "excess 3" 
code is used, four bit digits from each of the operands may be added 
together as though they were binary digits, and then a simple correction 
may be performed to obtain the right answer; if there is no carry to the 
fifth digit, the correction consists of subtracting 3 from the sum; if there is 
a carry to the fifth place, the correction consists of adding 3 to sum. 
The addition or subtraction of 3 is accomplished by special circuitry. 
The above-mentioned carry is also a true carry to the next decimal digit. 

If the four or more bits of a decimal digit must be added in parallel, the 
same techniques for designing a parallel binary adder may be employed 
to construct an adder capable of summing two decimal digits at a time. 

Subtract 

Decimal subtraction can be performed by true subtraction or by adding 
the complement of the subtrahend. In the latter case either 9 or 10's 
complement may be used. If a 9's complement is used, an "end-around 
carry" is needed to correct the difference; i.e., any overflow from the 
most significant digit must be added in again at the least significant 
position. 

The discussion of codes and methods of decimal addition apply to 
decimal subtraction as well. 

Multiply 

There are many ways to perform decimal multiplication. Some are 
listed here. 



18-28 DESIGN OF DIGITAL COMPUTERS 

Russian Peasant Method. In the Russian Peasant method the 
multiplicand is written at the top of one column, and at the top of a second 
column the multiplier is written. The multiplicand is repeatedly doubled 
and the multiplier repeatedly halved, and the successive results are 
written in columns one and two. In column three the remainders are 
written, and in column four are written those entries in column 1 preceding 
remainders of 1. The sum of column four is the desired product. 

EXAMPLE. 

57 X 38 
114 19 0 
228 9 1 114 
456 4 1 228 
912 2 0 

1824 1 0 
0 1 1824 

2166 Product 

Adding and Shifting Method. Decimal multiplication can also be 
performed by adding the multiplicand into the accumulator as many 
times as indicated by the least si~nificant digit of the multiplier, then 
shifting the multiplicand one decimal place to the left and adding the 
multiplicand into the accumulator as many times as indicated by the 
second multiplier digit, and so on until the multiplier is exhausted. 

EXAMPLE. 

5792 
X352 --
5792 
5792 

5792 
5792 
5792 
5792 
5792 

5792 
5792 
5792 

.. :'~~ 2038784 

Stored Multiples. Another way of performing decimal multiplication 
is first to generate and store 1, 2, 3" ", 8, 9 times the multiplicand. Then 
the multiplier digits are used to s elect from these multiples the partial 
products to be accumulated. 



EXAMPLE. 

ARITHMETIC AND CONTROL ELEMENTS 

Multiplicand 5792 

1 X 5792 = 5792 
2 X 5792 = 11584 
3 X 5792 = 17376 3 
4 X 5792 = 23168 5 
5 X 5792 = 28960 2 
6 X 5792 = 34752 
7 X 5792 = 40544 
8 X 5792 = 46336 
9 X 5792 = 52128 

5792 
X352 

17376 
28960 

11584 

2038784 

18-29 

Multiplication Table. In another method of performing decimal 
multiplication, the multiples of the multiplicand may be generated as 
needed, digit by digit, by building a decimal multiplication table into the 
computer. The multiplication table must produce a units digit and a 
tens digit for the product of two decimal digits. 

The multiplication table may be constructed in terms of the decimal 
code used throughout the machine. It may also be constructed in a 
more convenient code with provision for translating the operands to this 
code and the results back to the normal machine code. 

Roundoff. If a machine is equipped for decimal multiplication and the 
results are to be rounded, the usual rounding technique is to add 5 in the 
place just beyond the Jast place to be retained, permit al1 carries to propa­
gate, and then drop all places to be discarded. 

Divide 

Restoring Division. In a decimal machine division is usually per­
formed by successive subtractions of the divisor until the remainder goes 
negative. If restoring division is being used, the divisor is added in once 
to give a positive remainder. The quotient digit is the number of sub­
tractions performed less one. The remainder is then left shifted one 
decimal place and the subtraction process continued to obtain the next 
quotient digit. 

Nonrestoring Division. If, on the other hand, nonrestoring division 
is being used, the divisor is not added back in when the remainder goes 
negative. Instead, the remainder is left shifted one decimal place and the 
divisor added in repeatedly until the remainder becomes positive. Again 
the remainder is left shifted one decimal place and subtraction begun, 
and so forth. If, in any decimal position nine additions or subtractions do 
not affect the sign of the remainder, the remainder is left shifted one 
decimal place and the additions or subtractions continued unchanged. 



18-30 DESIGN OF DIGITAL COMPUTERS 

The number of subtractions or additions at each decimal place is recorded 
and forms a pseudo-quotient from which the quotient may be obtained. 
Subtractions result in a positive pseudo-quotient digit, and additions a 
negative pseudo-quotient digit. The true quotient is obtained from the 
pseudo quotient by adding and subtracting the quotient digits, starting 
at the least significant end. 

EXAMPLE. Division methods. 

Restoring 

147 I 3675441 
-441 
- 9926 
+147 
00735 

882 
99853 
+147 
000004 

-147 
999857 

+147 
0000044 

-147 
9999897 

+147 
00000441 

-588 
99999853 

+147 
00000000 

Quotient 

Square Root 

3 - 1 = 2 

6 - 1 = 5 

1 - 1 = 0 

1 - 1 = 0 

4 - 1 = 3 

25003 

N onrestoring 

147 I 3675441 
-441 
99265 
+735 
000004 

-147 
9998574 

+1323 
99998971 

+1029 
00000000 

Pseudo-quotient 3 
+3 

Quotient 2 

3 

1 

5 1 9 '7 
o 0 0 0 

-5 0 0 0 
+1 0 0 

-9 0 
-7 

5 003 

Restoring decimal square root is related to the manual square root 
process in the same way as restoring division (above) is related to the 
manual proc ess of division. 

5. SPECIAL OPERATIONS 

A number of other operations may be performed with the arithmetic 
element of a digital computer. In some cases these operations could be 



ARITHMETIC AND CONTROL ELEMENTS 18-31 

performed by means of a sequence of operations like addition, subtraction, 
division, and square root. In many instances, however, it costs very 
little equipment to mechanize these operations so that they are carried out 
by a single command. In many other instances the cost of these special 
operations is high but the convenience of having the special operation has 
outweighed cost. Some of these special operations are described here. 

Extract. A variety of extract operations permit the programmer to 
pull out of any word only those digits which he wishes to retain. In one 
extract command, one operand, known as the extractor, indicates which 
digits are to be retained in the second operand. Let An be one digit of 
the extractor, Bn the corresponding digit of the second operand, and Dn the 
corresponding digit of the result. Then Dn = An . Bn. 

EXAMPLE. 

000111100 A 
101101011 B 

000101000 D 

Logical Transfer. In another variety of extract command, known as 
a "logical transfer," there are three operands: A and B defined above, and 
a third operand C. Each digit Dn of the result can be expressed as 
Dn = An' En + Cn. (Here + indicates logical sum.) 

EXAMPLE. 

000111100 A 
101101000 B 
110001001 C 

110101001 D 

Comparison. Comparison commands are used for making decisions. 
A comparison command can be phrased in the form of a question that can 
be answered yes or no; for example, "Is a ~ b?" If the answer is yes, the 
computer follows one routine. Otherwise the computer pursues an alter­
nate routine. Some typical comparison commands are: 

Is a ~ b ? 

Is a > b ? 

Is a b ? 

Is lal ~ Ibl ? 

The above comparisons can be determined by performing an arithmetic 
operation. They can also be accomplished without an arithmetic opera­
tion if special circuitry is provided. 



18-32 DESIGN OF DIGITAL COMPUTERS 

A compare command can also include an extract command, as, for 
example, "Is the logical product of the digits of the result of an extrac­
tion I?" 

Checking. One means for checking arithmetic, the 2 out of 5 code, 
was mentioned in Sect. 4. Another scheme, adaptable to machines of 
any radix, is modulus checking. It is familiar to most everyone in the 
decimal system as "casting out 9's." More formally, this is a modulo 9 
check. 

Let a, b, and c be the sums modulo 9 of the digits of the decimal numbers 
A, B, and C, and let 0 indicate addition, subtraction, or multiplication. 
Then if 

A 0 B = C, it follows that a 0 b = c (mod 9). 

In binary computers another modulo check is useful. Let A, B, and C 
be binary numbers, and a, b, and c the sums of the bits taken with alter­
nating signs. Then for three binary numbers where A 0 B = C, it follows 
that a 0 b = c (mod 2). 

Fixed Point Operation. Thus far in this chapter attention has been 
restricted to fixed point digital computers in which a number has a fixed 
number of digits and a fixed decimal or binary point. Such machines have 
a comparatively limited range of numbers, and consequently the program­
mer is burdened with the need to watch scale factors closely or all signifi­
cance in the result may be lost. Consider, for example, a digital computer 
having words consisting of up to 31 binary digits and a sign. The com­
puter could then hold 0 or any positive or negative integer up to 231 - 1. 
If six more binary digits are added to each word, the computer can hold 
o or any positive or negative integer up to 237 - 1. If, instead, these six 
extra digits are used to indicate the sign and five binary digits of the power 
of two by which the original 31-bit number should be multiplied, the 
computer ean specify 0 and any positive or negative number with mag­
nitude between 1 and 262 - 231 to 31 significant bits. 

Floating Point Operation. A machine in which numbers are indi­
cated by a number times a variable power of the radix is known as a float­
ing point machine. In a floating point machine multiplication is accom­
plished by taking the product of the numbers and the sum of the exponents. 
Division is less trouble than in a fixed point machine because the relative 
magnitudes of the numbers are less important. Addition and subtraction, 
however, are difficult, for the number with the smaller exponent must be 
altered to have the same exponent as the other. If the number part of 
the result does not lie in bounds, it must be shifted and the exponent 
altered. 



ARITHMETIC AND CONTROL ELEMENTS 

EXAMPLE 1. Floating point addition. 

20,370,000. X 10-9 + 59,250,000. X 10-:-13 

20,370,000. X 10-9 

+00,005,925. X 10-9 

20,375,925. X 10-9 

EXAMPLE 2. Floating point addition. 

20,370,000 X 10-9 + 89,000,000 X 10-9 

20,370,000 X 10-9 

89,000,000 X 10-9 

109,370,000 X 10-9 = 10,937,000 X 10-8 

6. CONTROL ELEMENTS 

1.8-33 

The design of a computer control unit is best illustrated by the actual 
design of such a unit. This design would indicate the many tricks that 
are available to the designer and the many choices he must make. 

This section will be restricted to a general discussion of the functions of 
a control unit, and the design of a "toy" computer. 

Function of a Control Unit. The function of the control unit is the 
interpretation of commands. When a command is received in the control 
unit, that unit must provide or gate the signals that will cause the com­
puter to perform that command. The actions of the control unit may be 
divided into gating, timing, and counting. 

1. First, the control unit must open those gates that will cause the com­
mand to be carried out. In the adder-subtract or of Sect. 3, for example, 
the signals ]1 and N would be outputs of the control unit. M, being the 
signal to add, would cause the carry to be formed in the manner necessary 
for addition. N, the signal for subtraction, would cause the carry to be 
formed as needed for subtraction. This example is typical of computer 
design. 

2. The second function of the control unit, timing, has not been men­
tioned at all in earlier sections in order to simplify the explanations there. 
Actually the gating signals from the control unit must be functions of 
time. Consider a machine with multiple address commands. A single 
command might· well be "Multiply the number in storage location a by 
that in storage location b. Put the result in storage location c and pick up 
the next command from storage location n." In sequence, the computer 
must transfer the contents of a to the arithmetic unit, transfer the con­
tents of b to the arithmetic unit, form the product, round it, transfer the 



18-34 DESIGN OF DIGITAL COMPUTERS 

result to c, and pick up a new command from n. Each of these operations 
may take a fixed length of time, in which case the control unit can use a 
digit counter to determine when the operation is completed. On the other 
hand, the time required for an operation may be a function of the operands, 
as in an asynchronous computer, and in this case the arithmetic unit may 
signal to the control unit the completion of the operation. 

3. The third function of the control unit is counting. A command may 
say, for example, "Shift the contents of the A register left five places," or 
in a relative address machine a command may state, "Wait 11 words 
before picking up the next command." In these instances and others, the 
control unit must count the number of times an operation occurs to find 
when that operation is completed. 

External Control. Control of the digital computer may be external 
to the computer, as in a punched card sorter, a desk calculator or an 
abacus, where the human operator may enter every operand and deter­
mine every command. A less elementary form of control is wired control, 
which has appeared on a number of punched card machines and a few 
electronic calculators. A machine with wired control has a plugboard 
that can be wired to make the machine perform sequences of orders. 
A more sophisticated form of control is internal control, in which the 
computer performs long sequences of orders stored in its memory unit or 
stored on external media under the control of the computer. 

ProgranInled Control. Programmed control comprises all forms of 
control in which the computer performs long sequences of varying com­
mands without intervention from a human operator; that is, a machine 
for which the sequence of commands has been predetermined by the 
designer or by a programmer is said to have programmed control. In 
such a machine, once the start button is pressed, the control unit will 
cause the computer to perform commands according to the instructions 
within the machine or accessible to the machine. The sequence of com­
mands, called a program, may be very simple as would be required to 
obtain the sum Laibi; or it might be very complicated, as would be the 
case in solving sets of partial differential equations I with mixed boundary 
conditions. 

Digital computers have no intelligence; they can only perform opera­
tions that are spelled out in detail in terms of the limited variety of com­
mands that the computer has. This means that finding the solutions of 
an equation like x = tan x, which is fairly simple for a desk calculator 
operator to do if supplied with tangent tables, may involve a long sequence 
of commands in a computer having addition, subtraction, multiplication, 
and comparison as its arithmetic functions. See Chap. 2, Programming 
and Coding. 



ARITHMETIC AND CONTROL ELEMENTS 18-35 

Design of a Control Unit 

The functions of a control unit will become clearer in the following 
example. Design of a very simple computer will be used just to indicate 
the techniques used in designing a control unit, and to illustrate the func­
tions of a control unit: 

Description of a Hypothetical Computer. Numbers in this fixed 
point serial binary computer are less than one in magnitude, and negative 
numbers are represented by 2's complements. Numbers are transferred 
least significant digit first; the sign, which is represented by the one digit 
to the left of the binary point, comes last. 

The computer memory consists of a flip-flop shifting register A, and 
a magnetic drum. The drum has four bands for commands and four 
bands for numbers. 

The commands the computer can perform are: 
1. Tab Transfer contents of address a to address b. 
2. Aab Add contents of address a to contents of A, place result in 

address b, and replace contents of A by contents of ad­
dress a. 

3. Buv If the contents of A are> 0, pick up the next command 
in the present command band; otherwise pick up the next 
command in command band u, waiting v word times 
(v = 1, 2, 3). 

4. S Stop. Carry out no more orders. 
Since there are only four different commands, the states of two flip-flops 

considered together suffice to specify the type of command. These two 
flip-flops in the control unit will be called Xl and X2. 

Since there are only four sources of numbers that must be specified as 
a addresses, two flip-flops, X3 and X4, serve this function. Similarly 
X5 and X6 indicate the b address. 

Addresses u and v, also, each require two flip-flops, but X3 through X6 
shall be time shared for this purpose. Two additional flip-flops, X7 and 
X8, however, are required to control from which band the current com­
mand is read. 

Furthermore, since all commands are effected in one word time (other 
than S), another register, PI through P6, is provided to hold the succeeding 
command for parallel transfer into the command register Xl through X6. 

In addition, a relative address scheme will be used for orders, the next 
order in sequence in the current command channel always being the next 
picked up, except in Buv orders, where a following command may be 
chosen from a selected channel. 

Each number will consist of 5 bits and a sign, so that numbers and 



18-36 DESIGN OF DIGITAL COMPUTERS 

commands have the same number of digits. This is convenient but not 
really required. The A register, then, consists of A 1 through A 6. 

A flip-flop Cl is needed to hold carries in addition. The reading ampli­
fiers for the command channels are named Rl through R4, the reading 

Command 
storage 

Number 
storage 

FIG. 11. Outline block diagram of computer. 

amplifiers for the number channels R5 through R8, and the writing ampli­
fiers for the number channels WI through W 4. The read and write heads 
are separate. 

A partial block diagram of this computer may now be drawn. See 
Fig. 11. All flip-flops are set-reset flip-flops. (See Sect. 1.) 

Logical Equations. N ext, the logical equations for this computer 
can be written. To do this symbols must be introduced for digit times. 
Each word will consist of six information bits and a space bit. The digit 
time during which the least significant bit of a number is available at the 
output of a reading amplifier is called digit time one and is represented by 
Tl. The succeeding digit times are T2, T3, T4, T5, T6, and T7. 



ARITHMETIC AND CONTROL ELEMENTS 18-37 

The A register shifts at all digit times other than T7, so it follows from 
Sect. 3 that 

S(A2) = Al 'P7, 

R(A2) = Al 'P7; 

S(A4) = A3 ~C7, 

R(A4) = A3 'P7; 

S(A3) = A2 T7, S(A5) = A4 T7, 

R(A3) = A2 1'7; R(A5) = A4 T7; 

S(AG) = A5 T7, 

R(AG) = A5 T7. 

Inputs to AI. 

The inputs to Al depend upon the command being performed. The 
four different kinds of commands are indicated thus 

Tab Xl X2 

Aab Xl X2 

Buv. Xl X2 

S XIX2 

The input to A I may now be written, for in the command Add the con­
tents of register A are to be the contents of address a 

SeAl) = Xl X2 [X3X4R5 + X3 X4RG + X3 X4R7 + X3 X4R8] T7, 

R(AI) = XIX2[X3X4R5 + X3X4RG + X3X4R7 + X3X4R8] T7, 

whereas in all other commands the contents of A are to be unchanged 

SeAl) = (Xl X2) AG T7, 

R(AI) = (Xl X2) AG T7. 

The quantity in the brackets in the first equation for S (A I) will be used 
in a number of places. In order to save gating equipment an amplifier 
named YI is introduced. The input to this amplifier is called L(YI), 
and it has the outputs YI and n. Then 

L(YI) = X3X4R5 + X3X4RG + X3X4R7 + X3X4R8. 

The equations for flip-flop Al now become 

SeAl) = Xl X2 YI T7 + Xl AG T7 + X2AG T7, 

R(AI) = Xl X2 YI T7 + Xl AG 'P7 + X2 AG T7. 

The sum in an Add order is used as the input to an amplifier Y2. It is 

L(Y2) = AG YI CI + AG YI Cl + Au Yl Cl + AG YI Cl. 



18-38 DESIGN OF DIGITAL COMPUTERS 

Write AJDplifiers. The storage drum write amplifiers have two inputs. 
The input named M causes l's to be written. The input named N causes 
O's to be written. If there is no input, nothing is written. In a Transfer 
order the quantity to be written is YI. In an Add order it is Y2. 

Xl is required to write l's or O's. X2 indicates Yl is to be written. 
X2 indicates Y2 is to be written. X5 and X6 specify the particular write 
amplifier. The inputs to the write amplifiers are then 

M(Wl) = XIX2 Yl X5X6 + Xl X2 Y2X5X6, 

N(Wl) = XlX2 YlX5X6 + Xl X2 Y2X5X6; 

M(W2) = XlX2 Yl X5X6 + Xl X2 Y2X5X6, 

N(W2) = XlX2 YlX5X6 + Xl X2 Y2 X5X6; 

M(W3) = XlX2 Yl X5X6 + Xl X2 Y2X5X6, 

N(W3) = Xl X2 Yl X5 X6 + Xl X2 Y2 X5 X6; 

M(W4) = XlX2 Yl X5X6 + Xl X2 Y2X5 X6, 

N(W4) = Xl X2 Yl X5 X6 + Xl X2 Y2 X5 X6. 

Flip-flop Cl is used only for storing carries in the command Add. Its 
inputs in that command are 

S(Cl) = Yl A6, 

R(Cl) = Yl A6. 

In an Add command, the carry must be initially zero, and this is accom­
plished by always using T7 to set Cl to zero. Then 

S(Cl) = Yl A6 T7, 

R(Cl) = Yl A6 + T7. 

Observe that it has not been necessary to restrict inputs to Cl to just the 
command Aab because the output of Cl affects the action of the computer 
only in the command Aab. 

COJDJDand Register. The flip-flops Xl through X6 of the command 
register receive new commands in parallel from the preparatory register at 
T7 unless the command in the command register is S or a branch command 
that causes a command channel change with wait time not yet exhausted. 
A stop order is Xl X2, a branch command causing a channel change and 
with wait time not yet exhausted is indicated by T7 Al Xl X2[X5 + X6]. 
Letting L (Y3) be the signal to permit a transfer from the preparatory 
register to the command register, it follows 

L(Y3) = (Xl X2)(T7 Al Xl X2[X5 + X6])T7 

= Xl T7 + X2Al T7 + X2 X5X6 T7. 



ARITHMETIC AND CONTROL ELEMENTS 18-39 

If there is a branch command with wait time not yet exhausted X5, X6 
must count down. vVhat happens to X5 and X6 during S is not important, 
so Y3 can be used as the signal for X5, X6 to count down. 

XIS = Y3PI, X3S = Y3 P3, X5S = Y3P5, 

XIR = Y3PI; X3R = Y3 P3; X5R = Y3P5 + Y3 X6 T7; 

X2S = Y3P2, X4S = Y3P4, X6S = Y3 P6 + Y3X6 T7, 

X2R = Y3P2; X4R = Y3P4; X6R = Y3 P6 + Y3 X6 T7. 

The preparatory register, PI through P6, is a shifting register with P2 
through P6 having as inputs the outputs of the next lower numbered flip­
flops. The input to PI is the order read head selected by X7 and X8. 

S(PI) = X7 X8RI + X7 X8R2 + X7 X8R3 + X7 X8R4, 

R(PI) = X7 X8RI + X7 X8R2 + X7 X8R3 + X7 X8R4; 

S(P2) = PI, 

R(P2) = PI; 

S(P3) = P2, 

R(P3) = P2; 

S(P4) = P3, 

R(P4) = P3; 

S(P5) = P4, 

R(P5) = P4; 

S(P6) = P5, 

R(P6) = P5. 

Flip-flops X7 and X8 are set from X3 and X4 in a branch command if 
the sign of the contents of A is negative. This decision can be made at T7 
by inspecting Al at that time. 

S(X7) = Xl X2 X3 T7 AI, 

R(X7) = Xl X2 X3 T7 AI; 

S(X8) = Xl X2 X4 T7 AI, 

R(X8) = Xl X2X4 T7 AI. 

Throughout this design it has been necessary to use only one digit 
timing pulse, namely T7. Consequently a digit time counter is not needed. 
Instead, T7 may be derived directly from a track on the drum that has one 
pulse per word. 

SUllllllary. The equations describing the logic of a simple digital 
computer have now been written. This particular computer is useless 
because means have not been provided for starting it, nor any connections 
to the external world for input or output of data. Even though the 
computer is useless, the description is not, for it shows how a control 
element may be designed and functions. It also demonstrates the fact 
that the design of the arithmetic element may be intertwined with that of 
the control element. 



18-40 DESIGN OF DIGITAL COMPUTERS 

REFERENCES 

1. R. F. Shaw, Arithmetic operations in a binary computer, Rev. Sci. Instr., 21, 
687 (1950). 

2. A. D. Booth, A signed binary multiplication technique, Quart. J. M echo and 
Appl. Math., 4., Pt. 2, 236 (1951). 

3. R. K. Richards, Arithmetic Operations in Digital Computers, Van Nostrand, 
Princeton, N. J., 1955. 

4. E. E. Bolles and H. L. Engel, Control elements in the computer, Con. Engr., 3, 
93-98 (1956). 

5. M. Phister, Jr., Logical Design of Digital Computers, Wiley, New York, 1958. 



D DESIGN OF DIGITAL COMPUTERS Chapter 19 

Storage* 

I. Basic Concepts 

2. Magnetic Drum Storage 

3. Magnetic Core Storage 

4. Other Storage Techniques 

References 

I. BASIC CONCEPTS 

David R. Brown and Jack I. Raffel 

19-01 

19-04 

19-13 

19-29 
19-33 

The Storage Unit. The storage unit of a general purpose digital 
computer stores both the instructions which control machine operation 
and the data which are to be processed. The principal information trans­
fer paths between the storage unit and other parts of a typical general 
purpose computer are shown in Fig. 1. Instructions may be transferred 
from the storage unit to the control, and storage addresses transferred 
from the control to the storage unit. Numbers or instructions may be 
transferred between the storage unit and the arithmetic unit and between 
the storage unit and the input and output equipment. 

Pdncipal Parts of the Storage Unit. The principal'parts of a typical 
storage unit are: the address register, selection circuits, storage medium, 
storage (or buffer) register, and storage control. The information trans­
fer paths between these parts are shown in Fig. 2. 

* Many of the examples and circuits in this chapter are the result of research 
programs supported jointly by the Army, the Navy and the Air Force, under 
contract with the Massachusetts Institute of Technology. 

19·01 



19-02 DESIGN OF DIGITAL COMPUTERS 

I Input ·l Output I 

Storage Arithmetic 
.unit unit 

~ 
, Control 

FIG. 1. Principal information paths between 
storage and other units of the computer. 

Sometimes more than one 
storage register may be used. 
The storage register is used as 
a buffer between the storage 
medium and the other elements 
of the computer such as the 
arithmetic registers or the input 
and output units. In some 
computers this register is time­
shared and utilized as one of 
the arithmetic registers. 

Principle of Operation. 
Words are read from or stored 
in a typical storage unit in the 
following sequence. 

1. The address of the word to be read or written is transferred to the 
address register and, if the word is to be written, the word is transferred 
to the storage register. 

Selection 
circuits 

(Control) 

"C 
C\l 
a> 
c:: 

Storage 
medium 

(Control) (Control, arithmetic unit, 
input, and output) 

FIG. 2. Simplified block diagram of a storage unit. Connecting line width in­
dicates roughly the number of parallel conductors. 

2. The selection circuits decode the address and select the storage 
location involved. 

3. Storage control is informed, by the central control, when to begin 
the reading or writing process. 



STORAGE 19-03 

4. If reading, the word is then transferred from the storage medium 
to the storage register. 

5. If writing, the word is transferred from the storage register to the 
storage medium. 

Characteristics. The important characteristics of a storage unit are: 
capacity, speed, reliability, cost, power requirement, and physical size. 
The emphasis placed on each factor varies with the particular applica­
tion. The first three characteristics require definition. 

Capacity. Storage capacity is generally measured by the equivalent 
number of bits or in terms of the number of words and digits of a stated 
base; e.g., 4096 32-bit words or 131,072 bits, or 4096 8-decimal-digit 
words. 

Speed. Measurement of the speed of a particular storage unit is 
least ambiguous when accompanied by a statement of the type of access 
used. Two classes of access are recognized. 

1. A random access storage unit is one in which the time required to 
read or write a word is independent of the location. The access time 
is the time required from the instant the address has been transferred 
to the address register until the word is available in the storage register, 
or ~ntil the word has been transferred from the storage register to the 
storage medium. The minimum time from the beginning of one access to 
the beginning of the next is often important and is sometimes called 
cycle time; it is generally longer than the access time. Example. Mag­
netic core storage unit. 

2. A sequential access storage unit is one in which the access time is 
dependent on the location. Maximum, minimum, and average access 
times are often stated, also the minimum time from the beginning of one 
access to the beginning of the next. Example. Units which use cyclical 
mechanical positioning (drums) or pulse regeneration (delay lines). 

Reliability. Three important measures of reliability are: 
1. Mean time between malfunctions during scheduled operation. 
2. Percentage of scheduled operating time lost because of malfunctions. 
3. The number of hours per week of scheduled maintenance required. 
The most common checking technique for detecting storage malfunc-

tions is the use of a word parity check which requires an additional bit 
per word and the equipment needed to calculate and check parity. Re­
dundance in other forms is sometimes used to increase storage reliability. 
Critical parts, or an entire storage unit, can be duplicated. Self-checking 
codes can be used, transfers can be repeated, or words can be stored in 
more than one location. 

Storage Hierarchies. A hierarchy of different storage units within 
a single machine may be used. The advantages of each type for handling 



19-04 DESIGN OF DIGITAL COMPUTERS 

different parts of the overall machine storage function may then be 
realized. For instance, a relatively small, high-speed, random access 
storage unit is commonly supplemented by a large-capacity, relatively 
slow, sequential access unit. Auxiliary storage, in the form of punched 
paper tape, magnetic tape, or punched cards, is also used extensively. 
(See Chaps. 5 and 20.) 

The trend in recent years has been toward greater use of magnetic 
core storage, supplemented by magnetic drums, further supplemented 
by magnetic tapes. 

Storage Techniques. Storage techniques and the resulting character­
istics of storage units have had a dominating influence on the design of 
digital computers and data processing systems. For a history of the 
development of storage techniques see· Ref. 3. 

1. Storage capacity is a fundamental characteristic of the system, 
establishing the size of problem which can be undertaken or the amount 
of information which can be processed. 

2. The access time of the storage unit often determines the speed of 
operation of the system. 

Magnetic drum storage and magnetic core storage, the two most im­
portant types used for computer storage, will be discussed in some d.etail 
in this chapter; other types will be described only briefly. 

2. MAGNETIC DRUM STORAGE 

Principle of Operation. A cylindrical drum, rotating with constant 
angular velocity, may have information written on, or read from, its 
magnetic surface by means of magnetic heads. Figure 3 is a photograph 
of a 4-inch diameter magnetic drum. Usually, many tracks of informa­
tion are spaced along the axis of the drum, each track having a single 
head used for both reading and writing. Information can be read only 
at the times when that place where the information was written is passing 
under a read-write head. This means that time (the angular position 
of the drum) becomes one of the selection coordinates. 

Block Diagram. A simplified block diagram of a parallel magnetic 
drum storage unit is shown in Fig. 4. Many drum systems record words 
in a serial manner; however, the principles of operation are the same 
for both serial and parallel drum storage systems. In this example, the 
16 bits (binary digits) of a word, plus one parity bit, are read or written 
in parallel on anyone of 12 bands, each band having 17 tracks with read­
write heads. Words are stored at 2048 angular positions, or slots, giving 
a total capacity of 24,576 words. Fifteen bits are required to address 
all the storage locations, 4 for band selection and 11 for angular position 
selection. The reading or writing cycle is as follovvs. 



STORAGE 19-05 

1. The 4 flip-flops of the address register which are used for band 
selection provide the input for a band selection decoder which selects 
one of the 12 bands in which reading or writing is to take place. 

2. The storage control is informed, by central control, whether to read 
or write. 

FIG. 3. IBM Type 650 magnetic drum. The drum is 16 in. long and 
4 in. in diameter. 

3. The 11 flip-flops of the address register which are used for angular 
position selection are compared, in a coincidence detector, with an angu­
lar position counter which is indexed by pulses derived from a separate 
timing track permanently recorded on the drum. 

4. Upon coincidence, the coincidence detector sends a pulse to storage 
control which, in turn, causes the reading or writing to take place in the 
selected band and sends an operation-complete pulse to the central 
control. 

Access Time and Interlace. The average access time is one-half a 
drum revolution time, and the maximum access time is a complete revo­
lution time. The time between two adjacent angular positions I or slots, 
however, is much shorter, 



19-06 DESIGN OF DIGITAL COMPUTERS 

The drum described (see Fig. 4) is an auxiliary storage unit designed 
by Engineering Research Associates for the Massachusetts Institute of 
Technology's 'Vhirlwind I computer. A complete drum revolution re­
quires 16 milliseconds, and adjacent slots are 8 microseconds apart. The 
central computer 'can process each word in slightly less than 32 micro­
seconds. Therefore, the circuits comparing the angular position counter 

Band 
selection 
decoder 

c 
o 
~ 
Qj 
o. 
o 

FIG. 4. Simplified block diagram of a magnetic drum storage unit. Width of con­
necting lines indicates roughly the number of parallel conductors. 

with the address register are arranged to provide an interlace of four by 
having consecutive addresses refer to every fourth slot on the drum. 
In this case then, consecutive addresses appear every 32 microseconds. 
Since the computer frequently refers to consecutive addresses (e.g., block 
transfers), the effective access time is made much less than the average 
access time. 

Forced Coding. In addition to interlace, a technique known as forced 
or minimum latency coding can reduce the effective access time. Here 
the program is coded and storage locations are allocated so that the 
desired storage location will become available just after the address is 
transferred to the storage unit by central control. 



STORAGE 19-07 

Checking. In the example, a parity bit is determined for each word 
just before it is stored, and a parity check is performed whenever a 
word is read from the drum. Other checking schemes may be used, as 
discussed previously. 

TABLE 1. SOME OPERATING DRUM SYSTEl\ISa 

Diameter, inches 
Length, inches 
Nominal rpm 
Capacity, kilobits 
Maximum access time, milliseconds 
Scan rate, kilobits/second 
Circular packing density, bits/inch 
Bits/track 
Number of tracks 
Recording method 
Same head read write 
Head spacing, inches 
Horsepower drive 

IBM 650 
3.98 
16 
12620 
124 
4.8 
126.2 
48 
600 
207 
RZ 
Yes 
0.0005-0.001 
1 
"2 

"Bits is used as an abbreviation for binary digits. 

ERA 1110 
22 
29 
1190 
255~ 
51 
110 
80 
5500 
464 
RZ 
Yes 
0.002 
1! 

Drum Construction. The dimensions and angular velocities of drums 
vary over a wide range as indicated in Table 1 (Ref. 6). Sometimes a 
disk, rather than a drum, is used, with a magnetic coating on one or 
both sides of the disk. Normally in drum systems, the heads do not 
make contact with the drum surface; wear would be too severe. The 
most common technique is to mount the head rigidly to the same assembly 
which holds the drum bearings, although air-floated heads and some 
other techniques have been used. vVhen the heads are rigidly mounted, 
a spacing of 0.001 to 0.002 inch is common. The specification on drum 
run out (total indicator reading) may be less than 0.0002 inch; precision 
machining is necessary. Special attention must be given to prevent 
strains which might be caused by centrifugal force, thermal stress, etc. 

Drum Coatings. Characteristics of some iron oxide and metal drum 
coatings are listed in Table 2. 

Heads. Typical read-write heads are shown in Fig. 5a, b. The air 
gap, sometimes filled with a nonmagnetic spacer, plays an essential role in 
both reading and writing. The head is mounted close to the drum surface, 
as indicated in Fig. 5c, so that the fringing field in the vicinity of the 
air gap will be sufficient to magnetize the drum surface during writing 
and so that the remanent magnetization in the drum coating will generate 
a voltage in the head winding during reading. The width of the air gap 
is usually less than 0.001 inch. The head itself may be made up of thin 
laminations of a metal like Permalloy, or a high-permeability, low-loss 



19-08 DESIGN OF DIGITAL COMPUTERS 

leads 
from turn 

(c) 

(d) 

" ........•. . ~ 

.·(b)~--

d-write head 

FIG. 5. Drum heads: (a) ERA type 202, %-in. outer diameter; (b) ERA type 205, 
14-in. outer diameter; (c) sketch of conventional read-write head; (d) single turn head. 



STORAGE 19-09 

TABLE 2. CHARACTERISTICS OF SOME DRUM COATINGS 

Material 
Manufacturer's type 
How applied to drum 
Thickness, inches 
Coercivity, oersteds 
Retentivity, gauss 

Minnesota Mining 
& Manufacturing Co. 

Oxide 
RD301O, R1519 

Sprayed 
0.001-0.002 

200, 250 
450 

Brush Electronics Co. 
80% Co, 20% Ni 

Electropla ted 
0.0005 

220-240 
12,000 

ferrite. It is usually made in two pieces, the windings being set in place 
before final assembly of the head. Other types of heads, e.g., the single 
turn head, have been utilized. 

The single turn head (Ref. 7), shown in Fig. 5d, uses a yoke formed by 
two rectangular blocks separated only by a single foil turn placed between 
them at the extremes (flush with the pole faces). This construction forces 
all the flux produced to pass outside the head and eliminates the addi­
tional wasted flux which crosses the gap in the conventional head. This 
type of head provides higher efficiency, compactness, ease of construc­
tion, and simplified shielding and gap positioning. 

Writing Techniques. The writing techniques discussed in the follow­
ing paragraphs are the most common. However, numerous other tech­
niques for writing have been proposed, some using a modulated carrier. 

Return-to-Zero. The return-to-zero (RZ) technique is illustrated in 
Fig. 6a, where the writing current or longitudinal flux pattern is shown. 
For one kind of binary digit, the flux changes from zero to an extreme 
value and returns to zero; for the other kind the flux changes in the 
opposite sense. Ordinarily the extreme values are positive and negative 
saturation. The writing pulses may be very short compared with the 
time between slots; the pulse duration used will depend upon the head 
design, drum speed, drum coating, etc. The drum surface must be ini­
tially erased by an a-c erase current, but properly timed writing currents, 
during normal operation, automatically erase, or write over, information 
previously stored. 

Return-to-Bias. A return-to-bias (RB) technique, shown in Fig. 6b, 
is similar to the RZ technique except that the reference level is one of 
the saturation states instead of zero flux. The flux changes from one 
extreme value to the other and returns for one kind of binary digit, and 
does not change for the other kind. A d-c erase current is used initially, 
instead of an a-c erase current. 

Non-Return-to-Zero. A non-return-to-zero (NRZ) technique is shown 
in Fig. 6c. Here one extreme value of flux corresponds to 1 and 



19-10 DESIGN OF DIGITAL COMPUTERS 

the other to O. A flux change occurs only when a digit differs from the 
digit immediately preceding. The initial state of magnetization of the 
drum surface is not important; writing automatically erases informa­
tion previously stored. This technique permits higher linear cell densities 
than can be obtained with the RZ or RB techniques. This is because 

Sequence 

~Io 
(a) 

(b) 

0 1 1 : I 1 1 I 
I I I I I I I 

o~i 
I I I I I I I I 

o tlffiU i: lR 
1 I 1 I I~ 

o LJJ! ! Uffii i 

I I I I I I I I 

(c) 

(d) 

(e) ·0 lffi±mruwlI1 
I I I I I I I I I 

FIG. 6. Write current or flux pattern for a sequence of bits for (a) three-level RZ, 
(b) RB, (c) two-level NRZ, (d) NRZI, and (e) Manchester. 

the shortest region of unidirectional magnetization is about twice as 
long in the case of the NRZ technique, for the same linear cell density. 
The NRZ technique can be used effectively only in a serial storage unit, 
whereas the RZ and RB techniques can be used in serial or parallel stor­
age units. Also, the NRZ technique has the disadvantage of requiring 
writing current continuously, when writing a sequence of bits, with the 
possibility of a large d-c component. 

Non-Return-to-Zero, Invert. A variation of the NRZ technique, 
known as NRZI, is illustrated in Fig. 6d. The flux changes from one 
extreme to the other for each 1, and does not change for a O. 

Manchester. Another variation of the NRZ technique, known as the 
phase reversal or Manchester technique, is illustrated in Fig. 6e. It 
eliminates the d-c component of writing current. The flux changes be-



STORAGE 19-11 

tween the extreme values for each digit. A 1 has one extreme value fol­
lowed by the other, and a 0 has the opposite sequence. 

Writing Circuits. Circuits for generating the writing current vary 
widely, and are closely related to the selection circuits used. Circuits 
employ relays, thyratrons, hard tubes, magnetic cores and crystal diodes, 
and transistors. The writing circuits used for the Whirlwind I auxiliary 
drum are indicated in Fig. 7; a 2-microsecond, O.5-ampere pulse is applied 
to the 30-turn winding on the head. The circuit is designed to permit the 
maximum possible writing rate, every 8 microseconds. The RZ tech­
nique is used. 

7AK7 

2-p.sec pulse from band selection 
decoder and storage control 

FIG. 7. A writing circuit for a magnetic drum using the three-level RZ technique. 

Reading Circuits. The circuits used for reading are also extremely 
varied. The signal at the head terminals may be a few millivolts, or 
a few volts. The operations performed on the read signal may be com­
plex, depending very much on the writing technique being used. With 
the RZ or RB techniques, the signal is usually amplified, differentiated, 
and then strobed by a delayed timing pulse (supplied by a storage 
control). vVhen an NRZ technique is used, some logical manipulations 
are necessary to restore the information to standard form. With very 
high cell densities on large drums, strobing with timing pulses from 
a reference track may not be practical, and self-strobing schemes must 
be used. 

Effect of Loss of Power. A magnetic drum storage unit can be de­
signed so that the information stored will not be lost in case the power 
being supplied to the system is interrupted. The design must ensure that 
the sequence in which different voltages are lost, or turned on, does not 
result in spurious writing currents. 



19-12 DESIGN OF DIGITAL COMPUTERS 

FIG. 8. IBM magnetic disk file. Disk diameter is 24 in. 

Reliahility. The reliability of a' carefully designed magnetic drum 
storage unit can be good, and is limited by the circuitry rather than the 
drum itself. Adequate margins in the reading circuits are essential to 
accommodate variations from head to head, modulation of the read 
signal caused by drum runout, and variations caused by temperature, 
vibration, etc. Drums have been operated continuously for several years 
without mechanical failure, or signs of wear. Malfunction of the 
circuits associated with the drum can be expected, and routine preventive 
maintenance is advisable. Intermittent failures, especially those common 
to electron tubes, are most troublesome. (See the section on circuit design 
for a discussion of circuit reliability.) 

The Whirlwind I auxiliary drum unit has a storage capacity of 393,216 



STORAGE 19-13 

bits on a drum 8.5 inches' in diameter and 15 inches long. The drum is 
in a temperature-controlled enclosure which protects it from dust and 
dirt. The floor area required is approximately 8 square feet, with another 
16 square feet for the associated circuits, which include 780 electron 
tubes. Total power consumption is approximately 4000 watts. The aver­
age time between malfunctions during scheduled operating periods is 
350 hours, and 3 hours of maintenance time are required per week. 

Magnetic Disk Storage. An experimental storage unit of unusual 
design, the IBM type 305 magnetic disk storage unit (Ref. 11) is shown 
in Fig. 8. Fifty disks, 24 inches in diameter, rotate at 1200 revolutions 
per minute. The disks are coated with an iron oxide dispersion on both 
sides; the heads are air-floated. The storage capacity is 5 million 
characters, with 7 binary cells plus a space per character. The NRZI 
technique is used. The reading circuits are self-strobing. :Multiple 
independent access can be provided. Maximum access time for one 
pair of pneumatically positioned heads is 0.7 second. 

3. MAGNETIC CORE STORAGE 

Principle of Operation. In a magnetic core storage unit, each bit 
is stored in the magnetic field of a small, ring-shaped magnetic core. 
The most important storage techniques make use of coincident current, 
in which two aspects of the core's rectangular flux current characteristic 
are utilized: (1) flux remanence for storage and (2) extreme nonlinearity 
for selection (Ref. 12). 

Two-Coordinate-Read, Three-Coordinate-Write System. Figure 9 
shows the flux current loop for a typical core. The remanent flux points 
are arbitrarily designated as 0 and 1. The loop is sufficiently non­
linear so that the application of a current 1m/2 switches negligible flux, 

. whereas the full current 1m is capable of switching the core to the oppo­
site remanent state. Figure 10 illustrates how this nonlinearity may 
be used to select one core out of many by the coincidence of two half­
currents in a two-coordinate scheme. The extension to three coordinates 
may be accomplished by juxtaposing planes like those schematically illus­
trated in Fig. 10 and connecting the respective x and y selection lines 
in series to obtain a three-dimensional array, as indicated in Fig. 11. 
Each plane in the array can then be threaded with its own z winding 
linking all the cores in that plane. This third coordinate can then be 
used for selective excitation during the write process (Ref. 13). 

Read. The application of a half-current to the coordinate Xi (Fig. 11) 
results in the half excitation of a selection "plane" through the array. 
The same is true for the coordinate Yi and the result is full-current exci­
tation of the line of cores along the z axis at the intersection of the two 



19-14 DESIGN OF DIGITAL COMPUTERS 

selection "planes." A parallel type storage unit might well resemble 
Fig. 11, and the selected line of cores represent the selected storage loca-

FIG. 9. Flux current character­
istic of a typical core. 

Zero if core is 

1m 
"2 

Y2O---"'-+T'1H \:.f---+t'IH t:/--------f 

Ylo----+VJIH tJ---~H I+----f 

FIG. 10. A two-coordinate coincident current 
array. 

to be switched; z ~::::"'-4fllLf.I.JJ.~~ 
Im/2 if switching~......, 
is to be inhibited 

t 
x 

FIG. 11. Selection in a three-coordinate array. 

tion. Each plane, or place, has its own read winding threaded through 
every core to bring out the signal representing the stored digit. If a core 



STORAGE 19-15 

holds a 1, a voltage pulse will occur when the core switches. If it holds 
a 0, there is negligible output. This part of the read operation is destruc­
tive, and the word must be rewritten. Note that no excitation is required 
for any of the z selection lines during the read process. 

Write. For the rewrite (or write) part of the cycle, the selection 
technique is basically the same. The half-currents on the x and y selec­
tion planes, in the write polarity, would result in the writing of l's into 
all the cores of the selected storage location, except that this writing is 
controllable in each place by the use of the z winding on which may be 
applied a half-current of a polarity opposite to the write currents in the 
x plane and y plane. The presence of this inhibiting current in any z 
plane, or place, during the write operation leaves a 0; absence of the 
inhibiting current, leaves a 1. 

Multicoordinate Selection Principles. The system described in the 
preceding paragraphs employs a two-coordinate read and a three­
coordinate write. This system is represented in tabular form in Table 3a, 
where Sand U denote selecting and unselecting coordinate excitations. 
The ratio, R, of the excitation of the selected core to the absolute value 
of the m~ximum excitation of an unselected core, is 2 : 1. 

TABLE 3. SELECTION SYSTEM 

Excitation X y Z 
(a) 2-to-1 Read, 2-to-1 Write 

Read S 1 1 0 "2 "2 
U 0 0 0 

Write S 1 1 0 -"2 -"2 

U 0 0 .! 
2 

(b) 3-to-1 Read, 2-to-1 Write 

Read S 2 1 0 3 3 
U 0 1 0 -3 

Write S 1 1 0 -"2 -"2 

U 0 0 1 
"2 

In general, in an m coordinate system (Ref. 14), each core would be 
at the unique intersection of m wires, each wire from a different coordi­
nate. To determine the maximum selection ratio, Rmax, that can be 
obtained for any m, assume a difference excitation of one unit between 
selected and unselected lines in each coordinate. The selected core is 
selected in all m coordinates. All others are unselected in from 1 to m 
coordinates. If t is the maximum positive excitation which results from 
unselecting in only one coordinate, then to obtain Rmax , make 

t - (m - 1) = - t. 



19-16 DESIGN OF DIGITAL COMPUTERS 

That is, unselecting the remaining m - 1 coordinates should leave an 
equal but opposite excitation. Since the selected core receives an exci­
tation t + 1, 

t + 1 
Rmax = -t-. 

Substituting for t, 

m+1 
Rmax = ---1. 

m-

This means that for a two-coordinate read cycle, Rmax is 3 : 1, an im­
provement over the system of Table 3a, which has an R of 2 : 1. The 
selection system for the improved selection ratio is shown in Table 3b. 
The write, being three-coordinate, has Rmax = 2 : 1, so no overall im­
provement can be made. 

Redundant Coordinates. In the systems just described, the selec­
tion of one line in each coordinate is sufficient to select the cell at an 
intersection. The addition of redundant coordinates is possible by the 
introduction of selection planes having different slopes. Each line of 
an added coordinate intersects a line of one of the original coordinates 
at only one cell. The excitation of a line in each of these redundant 
coordinates subjects the selected element to an additional unit excitation 
without adding any excitation to any other elements previously selected. 
Using P redundant coordinates improves the selection ratio to 

Rmax = m + 1 + 2P . 
m - 1 

At the same time the number of input drivers and wires per core go up 
in proportion to the number of redundant coordinates (Ref. 15). 

Core Switches. Multicoordinate core switches are commonly used 
for switching the high-current pulses needed to drive selection lines of 
core memories. The symmetrical read-write excitations required are 
well suited to the alternating flux output from switch cores (see Chap. 15). 

Magnetic· Core Storage. A block diagram of a parallel magnetic core 
storage for 4096, 16-bit words (65,536 bits), is shown in Fig. 12. This 
unit has a cycle time of 5 microseconds and an access time. of 2 micro­
seconds. A seventeenth plane is used to store parity. 

The core array measures 10 inches by 10 inches by 20 inches; a floor 
area of 29 square feet is required for the entire unit, mainly for the cir­
cuits, which include 652 electron tubes. Total power consumption is 
8800 watts. The average time between malfunctions during scheduled 
operating periods is 623 hours, and 4 hours of maintenance time are 
required per week. 



STORAGE 19-17 

The operation is as follows: 
1. The read-rewrite cycle begins when the address is transferred to 

the address register and storage control has been informed, say, that a 

x decoder ~ 

I 

Address 
register 

Read­
write 
gates 

L/ 
Magnetic core 

array 

Read-write 
gates 

y decoder 

Storage 
control 

'C 
ro 
Q) 

'0::: 

I' 

I 

Strobe 

Inhibiting 
gates 

t 
Storage 
register 

1 

I 

\ 

Reading 
circuits 

FIG. 12. Simplified block diagram of a magnetic core storage unit. Width of 
connecting lines indicates roughly the number of parallel conductors. 

read operation is to take place. Six of the flip-flops of the address 
register control the x decoder and the other six control the y decoder. 

2. The decoders translate from the base 2 to the base 64 and set the 
read-write gates. 

3. After the decoders have had time to set the read-write gates, storage 
control pulses the read-write gates, and causes the selected x and y lines 
to be pulsed in the read direction. 

4. At the proper instant, storage control then sends a timing pulse to 
all 17 reading circuits, and samples the output voltage of each plane. 



19-18 DESIGN OF DIGITAL COMPUTERS 

5. For each plane in which a 1 had been stored, the timing pulse will 
be gated to set the corresponding place in the storage register. The 
word is thus transferred from the selected storage location to the storage 
register. 

Address 
register 

x and y 
selection 

lines 

Inhibiting 
pulse 

- / '" r 1\ 
~ U 

r- -- ... , 
I 

I \ 
I \ - ------ .... 

o 2 3 4 5 6 7 8 
Time, microseconds 

FIG. 13. Timing diagram. 

6. If the information is to be retained, the next step must be to rewrite 
the word in the same storage location. After the inhibiting gates have 
been set, storage control pulses the read-write gates again, and the inhib­
iting gates, and causes the x and y lines to be pulsed in the write direc­
tion. However, the inhibiting pulse, which pulses all z planes in which 
O's are to be rewritten, overlaps the write pulses in the x and y lines. 
The timing is illustrated in Fig. 13. 

If a write operation had been called for, the word to be stored would 
have been transferred to the storage register at the beginning of the cycle. 
The cycle is then the same except that no timing pulse is sent to the 
reading circuits. 

Selection Circuits. The read-write and address selection circuits of 
a magnetic core storage unit are illustrated in Fig. 14 (Ref. 16). When 
selected, one of the 64 output lines of the crystal diode matrix is pulled 
down to a voltage level which cuts off the first 5965 section, the resulting 
rise in plate voltage is coupled through the cathode follower and raises 
both grids of the 5998 array driver. No current flows, however, because 
the cathodes of the 5998 are normally held at a high voltage level by 
the read and write gate generators. At the appropriate time a start-read 



x 
Decoder 

From x half of 
address register 

64 
Output 
lines 

-30v -150v -300v 

Pulse 
transformer 

,...----r-----, 

-150v -150v 

63 x read cathodes 

2 kG 
to 

3.1 kG 

-300 v 

63 oX write cathodes 

2 kG 
to 

3.1 kG 

-300 v 

64 
lines 

,. ,. " ,. ~
,. " 

~---- ,," 

Core 

64 
lines 

-300 v -150v -30v 

FIG. 14. Read-write and address-selection circuits of MIT magnetic core storage unit. 

2 

(/) 
-I o 
~ 

> 
(j) 
m 

-p 
~ 



19-20 DESIGN OF DIGITAL COMPUTERS 

pulse from storage control turns on the read flip-flop which, through its 
two direct-coupled stages, turns off the two 5998 output tubes of the 
read gate generator. All 64 read cathodes of the array driver tube sec­
tions then drop to a voltage level such that the proper current is drawn 
by the selected section. The current is shut off about 1 microsecond later 

+250 v +150 v +150v +150v 

Fr01J read ' 
winding 

-30v 

FIG. 15. Simplified circuit of read amplifier. 

by the stop-read pulse. The current pulse from the array driver section 
is stepped up by approximately 2 to 1 in the ferrite core pulse transformer 
and delivered to the series-connected lines of the proper coordinate in 
the core array. The 2-ohm terminating resistor is mainly for purposes 
of observing the shape and size of the current pulse. Current amplitudes 
are set by the two large variable resistors which connect the x read and 
x write cathodes to the -300-volt supply. The z plane currents are 
supplied directly from both sections of a 5998 driven by a stable amplifier. 

Read Circuits. A reading circuit is illustrated in Fig. 15. The signal 
from the read, or sense wire, in the case where a 1 is read, is stepped up 
in a balanced linear pulse transformer to about 0.5 volt. It is then 
rectified by crystal diodes in a full-wave circuit and subsequently am­
plified by simple pulse amplifiers to about 30 volts preceding the 7 AK7 
gate tube. The 7 AK7 is used in a standard and gate, and receives the 
signal from the read amplifier on its suppressor grid and a O.I-microsecond 



STORAGE 19-21 

strobe pulse on its control grid. The output of this gate tube, a D.1-micro­
second pulse for a 1 and nothing for a 0, goes to the set input of the 
corresponding flip-flop in the storage register. Figure 16 shows wave­
forms at the input to the reading amplifier and at the suppressor grid 
of the gate tube. 

----------~~--+-------------------lOOmv 

--------~~----~~------------~One 

(a) Zero::::::3~3~-t--I--+---+:~-I-:;A=-----o 

----~----~~~~~~--------------+lO 

--------I--!-+-+--+~-t---;----·O 
(b) 

------------~--------~~-------lO 

____ Z_er_o~~~ ______________ ~ _____ 20 

FIG. 16. Voltages at (a) input to reading amplifier and (b) suppressor grid of the 
gate tube. 

Parity Check. An additional plane is included in the array described, 
to provide for a parity check. vVhen a word is to be stored, a parity 
check bit is determined while the word is in the storage register, and the 
seventeenth flip-flop of the storage register is set correspondingly. When 
a word is read, the parity is checked immediately after the word has 
been transferred from the storage location to the storage register .. 

Fabrication Details. Figure 17 shows the wiring details of a 16-by-16 
plane. The cores are spaced on D.1-inch centers. Four wires pass through 
each core, an: x wire, a y wire, a z wire, and a read wire. When the 
planes are stacked in an array as illustrated in Fig. 18, the correspond­
ing x and y terminals of all the planes are connected by means of short 
jumpers so that two terminals at opposite ends of the array are obtained 
for each of the x selection lines and the y selection lines (Ref. 17). 

Core Design. Very satisfactory ferrite cores have been developed 
(Ref. 18) having diameters as small as can be handled, tested, and wired 
into arrays conveniently. A high squareness ratio, as defined in Fig. 19, 



19-22 DESIGN OF DIGITAL COMPUTERS 

Start 

FIG. 17. Sixteen by sixteen plane wiring details. 

is essential. The dimensions and characteristics of typical commercial 
cores are listed in Table 4. The following general statements apply. 

1. Cores with higher coercive forces have shorter switching times in 
coincident current storage units. This is because switching time is in­
versely proportional to the absolute difference between the applied field 
and a threshold field which is very nearly the same as the coercive force. 

2. For a given core material, the current required for operation of 
an array is directly proportional to the mean diameter of the core. 

3. The energy required to switch a typical core is of the order of 
one erg. 



STORAGE 19-23 

FIG. 18. A 4096-word magnetic core array. Plane dimensions are 9 by 9 in. 

Detection Problem. The sensing problem in a magnetic core array 
is primarily due to undesired outputs from half-selected cores on the 
!:lingle x and single y lines which are excited during the readout time 
(Ref. 19). If all cores had equal half-select. outputs, a sense winding 
which linked halves of each row and each column in opposite directions, 

TABLE 4. CHARACTERISTICS OF SOME FERRITE CORES FOR MAGNETIC CORE 

STORAGE UNITS 

Type 
Saturation flux density, gauss 
Retentivity, gauss 
Coercivity, oersteds 
Curie temperature, °C 
Dimensions, inches 
Squar~ness ratio, Rs 
Optimum current, 1m , amperes 
Switching time, microseconds 

General Ceramics Corporation 
Ferramic S1 F-394 Ferramic S3 F-394 

1780 2000 
1590 1920 

1.5 0.65 
300 300 

"·0.080 O.D., 0.050 I.D., 0.025 thick 
0.8 0.95 

0.82 0.35 
1 5 



19-24 DESIGN OF DIGITAL COMPUTERS 

would give a net half-select output of approximately zero for excitations 
on any row and column. (One core on the row and one on the column 
remain uncanceled.) 

For the canceling sense winding of Fig. 17, + and - denote positive 
or negative core coupling to the sense wire. It is obvious that any 
"checkerboard" winding will fulfill the core cancellation requirements. 

FIG. 19, Definition of the squareness ration, R •. 

In practice, the half-select signal from a core is a function of both 
the information it holds (lor 0), and the previous half-select pulse 
which it has received. It is possible to have all the largest half-select 
outputs located on the positive half of the sense winding and all of the 
smallest on the negative half, or vice versa. The result then is that the 
core output voltage for a sense winding linking an n-by-n array will be: 

V t = ±[Vs - 2Vhs ± (n - 2) V 8], 

where Vs is the magnitude of the voltage from the selected core, V hs is 
the magnitude of the voltage from a half-excited core, V8 is the uncanceled 
voltage from a pair of half-excited cores of opposite polarity (sometimes 
called delta noise). In the worst case, then, l's may be decreased and O's 
increased by delta noise. 

Since the noise component varies linearly with n, it establishes an 
upper limit on the size of a single sense winding. This factor also ac­
counts for the emphasis on uniformity and the care exerted in core 
testing. Single sense windings are used for n as large as 64, and, by the 
use of time-consuming tricks, can probably be extended to 128. 

Any checkerboard winding (Ref. 20) will also be free of air coupling 



STORAGE 19-25 

to the x and y lines if care is taken to keep the air-flux areas of both 
polarities equal. The canceling areas of the winding of Fig. 18 are 

FIG. 20. Canceling air flux components of sense winding. 

denoted by the diagonal dark and light areas of Fig. 20. This comp1i­
cated looking winding has sometimes been used instead of simple rec­
tangular sections because it eases insertion of the sense wire, after x, y, 



19-26 DESIGN OF DIGITAL COMPUTERS 

and z are in place; by allowing it to enter perpendicular to the hole 
surface. 

Ambient Temperature. Although the power dissipated by the cores 
in the array of a magnetic core storage unit is negligible compared with 
the power required by the associated circuitry, some attention must be 
given to the maintenance of a satisfactory ambient temperature for the 
array. The coercive force and other .characteristics of the cores depend 
upon temperature, and any given system will have certain minimum and 
maximum limits for the ambient temperature. Limits of the order of 
± 10°F are typical. 

Current Regulation. Also, care must be taken to ensure that well 
regulated array-driving currents, with clean waveshapes, are obtained. 
Regulation of the driving current in a coincident current storage unit 
should keep the driving current within less than ±5 per cent of the 
nominal amplitude. 

Core Stability. The characteristics of ferrite storage cores are ex­
tremely stable. Ferrite cores will withstand considerable shock and 
vibration, and their characteristics will not be changed permanently by 
temperature cycling, provided the temperature does not rise high enough 
to change the structure of the ferrite. A carefully constructed array will 
not malfunction and will last indefinitely. However, a magnetic core 
storage unit as a whole can be expected to malfunction and require main­
tenance. The reliability of the storage unit will depend on the reliability 
of the associated circuitry. 

Typical Storage Units. Characteristics of several magnetic core stor­
age units are listed in Table 5 (Ref. 21). Core storage units employing 
only transistors in associated circuitry have been designed. The detec­
tion circuits for such units are ideally suited to transistors. The high­
current switches required to drive lines of storage cores which appear 
as large inductive loads are a more serious problem. The combination 
of high current, fast rise time, and high peak inverse voltage represents 
a significant challenge which is beginning to be met successfully by 
transistor manufacturers. 

Other Discrete Magnetic Storage Techniques 

A number of different techniques which make use of the nonlinearity 
and remanence of discrete magnetic cells for storage units have been 
developed. 

Nondestructive Readout. Nondestructive readout of cores is possible 
using a number of different systems. N one of these has been used in 
any large-scale storage but nondestructive readout techniques can be 
applied to smaller storage units. 



TABLE 5. SOME OPEnAT KG l\1AGNET C CORE STORAGE UNITS 

M.LT. Sperry-Rand Corp. International 
Lincoln Laboratory UNIVAC Division Telemeter Corp. IB:M 

Type TX-2 ERA 1103A Johnniac IBM 705 
Storage capacity, bits 2,490,368 147,456 163,840 280,000 
Read-write cycle time, Ul 

microseconds 6 12 15 9 --I 
0 

N umber of words 65,536 4,096 4,096 8,000 :;;0 

'Yord length, bits 38 36 40 35 » 
~ 

(j) 
Tube count 604 + 1406 transistors 469 1,200 711 m 
Array structure and Thirty-eight 256 by 256 Thirty-six 64 by 64 Forty 32 by 128 planes. Thirty-five 100 by 80 

circuits planes. Tube-driven planes. Tube-driven Separate 128 position planes. Core switches 
core switches on each co- diode transformer core switches for y in 8 by 10 and 10 by 10 
ordinate. Sense wind- matrices drive both each plane. 32 tube- drive x and y lines 
ing in four sections. x and y lines. driven x lines in series. respectively. 

No z drivers. 

-.0 
~ 
'-I 



19-28 DESIGN OF DIGITAL COMPUTERS 

One system (Ref. 22) uses a transverse field excitation obtained by 
running current through the wraps of tape cores or by using an auxiliary 
core at right angles to the main core. It is possible to obtain small 
reversible rotational outputs which will be of opposite polarity for l's 
and for O's. 

Another system (Ref. 23) uses distinct r-f excitations on x and y 
coordinates. The core nonlinearity produces sum and difference fre­
quencies due to the second-degree term in the power series expansion for 
the hysteresis loop at remanence. The coefficient of this term is of oppo­
site sign at either remanent state so that there is 180 degree phase shift 
in the beat frequency output for the two remanent states. The 1 and 0 
ouputs are then identified by tuning to the beat frequency and detecting 
the phase. 

Thin Magnetic Films. Thin magnetic films of Permalloy deposited 
by vacuum evaporation or by electrochemical deposition can be used 
as storage cells in a fashion very similar to magnetic toroids (Ref. 24). 
These films, when put down in a strong magnetic field, exhibit an easy 
axis of magnetization in the direction of the field. The hysteresis loop 
of such materials is extremely square for circular spots of about Ys inch 
diameter and about 1000 A thick. 

The distinguishing property of these films is that magnetization rever­
sal can take place by rotation, an inherently fast process, rather than 
by the domain wall motion which is present in bulk material and rela­
tively slow (Ref. 25). The rotational switching is enhanced by the 
presence of a field perpendicular to the easy axis. The important char­
acteristics of these film storage cells are: 

1. Rotational switching allows fast switching at relatively low fields. 
2. The amount of material, and hence flux switched, is extremely small, 

about three orders of magnitude less than small toroids. 
3. Many cells can be fabricated at a single time and need not be 

handled individually. 
4. Power dissipation at very high speeds is no great problem because 

of the small amount of material and large surface-to-volume ratio. 
5. Flux return paths are through air; films must be shielded from out­

side fields, such as the earth's. 
6. Input and output wires are placed in proximity to spots and do not 

thread holes. 
The principal problems are in obtaining spot-to-spot uniformity and in 

eliminating the formation of domain walls below the rotational threshold. 
Many of the multidimensional selection principles used in core storage 

are directly applicable to films, with many additional variations possible 
because of the strong effect of transverse fields on mode of operation. 



STORAGE 

Demagnetizing factors which tend 
to cause loop squareness to deteriorate 
increase with thickness and decrease 
with spot diameter. Since the total 
signal out is proportional to the prod­
uct of thickness and diameter, packing 
density . and output signal may be 
traded for one another. Most work 
has been done with spots Ys inch in 
diameter in the range from 500 A to 
3000 A. These films, when switched 
in 0.1 microsecond, give outputs of 1 
to 10 millivolts. 

Figure 21 shows hysteresis loops of 
films in the easy and transverse direc­
tions. 

Ferrite Plates. The use of sheets 
of ferrite prepared with holes elimi­
nates the handling and fabrication of 
individual cores (Ref. 26). These 
units operate the same as magnetic 
toroids. The main disadvantages are 
the difficulty of obtaining perfect 

B 

B 

19-29 

H 

(a) 

H 

(b) 

plates and the slight degeneration in FIG. 21. B-H characteristics for typi­
performance due to interference be- cal Permalloy films in (a) easy direc-
tween adjacent holes. tion and (b) transverse direction. 

Multiaperture Cores. Cores hav-
ing more than one hole have been used experimentally to provide higher­
speed storage (Ref. 27). Here, by separating selection and storage 
functions, it has been possible to obtain extremely fast switching at the 
cost of higher current drive. Very high back voltages and core dissipation 
at such high-speed operation are an important drawback to such systems. 

4. OTHER STORAGE TECHNIQUES 

Acoustic Delay Line Storage 

Acoustic delay line storage was used in many of the systems which 
followed the ENIAC, notably in the EDSAC, SEAC, RA YDAC, and the 
first UNIVAC's. A simplified block diagram of an acoustic delay line 
storage unit is shown in Fig. 22. Information is stored as a sequence of 
bits, pulses representing 1 's and the absence of pulses representing D's 
(Ref. 28). The driver causes each pulse to apply a fractional micro-
second burst of r-f power to a transducer at the transmitting end of the 



19-30 DESIGN OF DIGITAL COMPUTERS 

line. After a time equal to the total delay of the line, the acoustic pulse 
strikes the receiving transducer and produces a voltage which can be 
detected and amplified. The amplified pulse is then gated and reshaped 
by a timing pulse and reentered into the delay line. Stored information 
is thus circulated indefinitely, and can be read at times when it is being 
reentered. To write, the clear gate is closed, and the new sequence of 
pulses is sent to the driver by way of the write gate. Many words are 
usually stored in a single line. In the UNIVAC, ten 91-pulse words 
(including a 7-pulse space between words) are circulated in a mercury 

Delay line 

Inhibit 

~-----l Gate ..... ----... 

FIG. 22. Simplified diagram of a delay line storage unit. 

tank with a total delay time of 404 microseconds. A tank actually 
accommodates 18 channels, each with its own circulating amplifier and 
driver. Addressing the storage unit requires both channel and time 
selection. 

Mercury Delay Lines. J\1ercury delay lines have been most common 
and have the following characteristics. 

1. Quartz crystal transducers are used, resonant at the radio frequency 
(5 to 30 megacycles) of the driver. 

2. The delay in mercury is 17.5 microseconds per inch, and several 
pulses can be stored per microsecond. 

3. The velocity is dependent on temperature, and necessitates precise 
temperature control. 

4; The amount of circuitry per channel is relatively large, considering 
the number of bits which can be stored. 

5. Larger channels, which improve the ratio of stored bits to circuitry, 
have the disadvantage of longer access time. 

Improvements in magnetic core storage have made acoustic delay line 
storage less desirable for general use. 



STORAGE .19-31 

Other Delay Lines. Delay line storage units using magnetostrictive 
or piezoelectric delay lines have had limited application. In the case of 
magnetostrictive delay lines, pulses can be picked up or inserted at any 
point along a magnetic rod. Such features lend themselves to special 
applications. 

Electrostatic, Ferroelectric, and Cryogenic Film Storage 

Storage Tubes. Before magnetic core storage was developed, electro­
static storage provided the shortest access times obtainable with a storage 
capacity of more than a few hundred words. Of the several types used, 
the type attributed to F. C. Williams has been most common (Ref. 31). 
Bits are stored on the phosphor screen of a cathode ray tube of conven­
tional design, and the electron beam is used to write a bit at anyone of, 
say, 1024 locations on the screen of a single tube. Reading is accom­
plished by returning the beam to the same location and observing the 
signal produced at a metal backplate which covers the outside face of 
the cathode ray tube screen. Access times of the order of 10 micro­
seconds can be obtained. 

In a typical computer (Ref. 32), a parallel storage unit employs 72 
cathode ray tubes, two in each place of a 36-bit word. Storing 1024 bits 
in each tube gives a storage capacity of 2048 words. The operation is 
as follows. 

1. All the electron beams are deflected simultaneously by x and y 
decoders controlled by the address register. 

2. After the beam deflection voltages have stabilized, the beam is un­
blanked for 1 microsecond, and the initial polarity of the read signal 
determined. 

3. If it is positive, indicating that a dash (or 1) had been stored, the 
beam is turned on again, this time for nearly 2 microseconds, and de­
flected slightly to rewrite a dash. 

4. If the initial polarity of the read signal is negative, indicating that 
a dot (or 0) had been stored, no further unblanking is required during 
the cycle; the dot is effectively rewritten during the read operation. 

5. The stored information also requires periodic regeneration, even at 
those locations to which no reference is made. Three regeneration cycles 
are required for each instruction executed. Two storage locations can 
be regenerated during each 12-microsecond regeneration cycle. Regen­
eration is interleaved with other operations; regeneration requirements 
are maintained by a separate regeneration control unit. Storage locations 
are scattered so that, by maintaining a read-around ratio greater than 
400, the programmer is not concerned with read-around ratio. (This 
ratio is the number of references to adjacent storage locations required to 
change the storage location from a dot to a dash.) 



19-32 DESIGN OF· DIGITAL COMPUTERS 

Many other electrostatic storage systems have been used (Ref. 33). 
All have required special tubes, with the possible exception of Williams' 
technique. 

Electrostatic storage is marginal in operation, requiring exr.essive main­
tenance and subject to frequent malfunction. By 1955, magnetic core 
storage had replaced electrostatic storage in new designs. 

Capacitor-Diode Storage. Information can be stored in capacitors. 
With high back resistance diodes used for switching, regeneration require-

FIG. 23. Superconciucting storage call. 

ments may not be severe (Ref. 36). An experimental storage unit at the 
National Bureau of Standards employs one capacitor and two diodes 
per bit and has a cycle time of 3 microseconds. 

Ferroelectric Storage. Ferroelectric materials such as barium titan­
ate can have square hysteresis loops. Such materials have been used 
in experimental storage units, whose operation is the dual of magnetic 
core storage (Ref. 37). The principal disadvantages of this storage 
medium are the high energy required to reverse the remanent charge, 
the disastrous heating which occurs under continuous operation, and an 
instability which results in deterioration of characteristics with time. 
However, the development of new materials like triglycine sulphate has 
greatly improved future prospects. 

Cryogenic Films. Single storage cells have been constructed that 
use superconducting thin films of lead at liquid helium temperature 
(Ref. 38). These operate on the principle that flux lines cannot cut the 
ring of zero resistance material that surrounds them. The application of 
magnetic fields above a certain threshold level forces the material into 
the normal state, and allows flux lines to penetrate and become trapped 
when the material goes superconducting again. Figure 23 shows the 
orientation of a drive wire, superconducting cell, and sen~e wire. The 
cell consists of a circular hole in a superconducting sheet having a super-



STORAGE 19-33 

conducting crossbar. Binary information is denoted by the direction of 
circulation of flux lines around the crossbar and through the hole areas 
on either side. The principal advantages of this storage medium are the 
sharp switching threshold, low drive fields, the near perfect shielding 
between drive and sense circuits provided by the superconducting sheet, 
and the possibility of very high switching speed. The principal disad­
vantages are difficulties in fabrication, which requires successive evapo­
rations of lead and insulating layers, and the problems associated with 
a liquid helium environment. 

The Twistor. Experiments (Ref. 39) have been performed on mag­
netic·wire of various Ni-Fe compositions in which helical flux patterns are 
used for information storage. The application of tension to the ends of 
the wire introduces a helical strain anisotropy and by using the magnetic 
wire itself for the sense winding the circular flux component is detected 
giving rather large signals even for very thin wire. lVlany bits can be 
stored along a continuous piece of wire. Principal problems are in main­
taining uniform tension, in obtaining high bit densities without interaction, 
and in developing thin enough wires to provide a sufficiently low Sw. 

The Parametron. Information storage is possible with two phases 
of oscillation of a resonant circuit (Ref. 40). If the L or C of a resonant 
circuit is modulated at a pump frequency Wp which is twice its resonant 
frequency, a sustained oscillation at resonance will occur if it is excited 
above its threshold level. This oscillation will be locked to the pump 
frequency, but it can be of either phase. vVork is being done with both 
the voltage-variable capacity of a p-n junction and the current-controlled 
inductance of nonlinear magnetic materials. 

REFERENCES 

1. R. K. Richards, Arithmetic Operations in Digital Computers, Van Nostrand, 
Princeton, N. J., 1955. 

2. R. K. Richards, Digital Computer Components and Circuits, Van Nostrand, 
Princeton, N. J., 1958. 

3. J. P. Eckert, Jr., A survey of digital computer memory systems, Proc. I.R.E., 
41 (10), 1391-1406 (1953), . 

4. A. A. Cohen, Magnetic drum storage for digital information processing systems, 
Mathematical Tables and Other Aids to Computation, IV, 31-39 (Jan. 1950). 

5. B. F. C. Cooper, A magnetic drum digital storage system, Proc. I.R.E. 
(Australia), 14, 169-177 (1953), 

6. M. H. Weik, A survey of magnetic drum memory systems for electronic com­
puters, Ballistic Research Laboratories Rept. 819, Aberdeen Proving Ground, Md., 
August 1954. 

7. D. F. Brower, A "one-turn" magnetic reading and recording head for computer 
use, I.R.E. Convention Record, Pt. 4, Computers, Information Theory, Automatic 
Control, pp. 95-100, 1955. 



19-34 DESIGN OF DIGITAL COMPUTERS 

8. E. S. Hughes, Jr., The IBM· magnetic drum calculator type 650, engineering 
and design considerations, Proc. Western Computer Conference, pp. 140-154, Los 
Angeles, Calif., Feb. 11, 12, 1954. 

9. H. W. Fuller, P. A. Husman, and R. C. Kelner, Techniques for increasing 
storage density of magnetic drum systems, Proc. Easlern Joint Computer Conference, 
pp. 16-21, Philadelphia, Pa., Dec. 1954. 

10. M. K. Taylor, A small high-speed magnetic drum, Computers and Automation, 
4, 18-19 (1955). 

11. T. Noyes and W. E. Dickinson, Engineering design of a magnetic-disk, random­
access memory, Proc. lVestern Joint Computer Conference, 42-44, San Francisco, 
Calif., Feb. 7-9, 1956. 

12. J.W. Forrester, Digital information storage in three dimensions using magnetic 
cores, J. Appl. Phys., 22, 44-48 (1951). 

13. W. N. Papian, A coincident-current magnetic memory cell for the storage of 
digital information, Proc. I.R.E., 40, 475-478 (1952). 

14. R. R. Everett, Selection systems for magnetic core storage, Engineering Note 
E-413, p. 13, Project Whirlwind, Servomechanisms Laboratory, M.LT., Cambridge, 
Mass., Aug. 1951. 

15. R. C. Minnick and R. L. Ashenhurst, Multiple-coincidence magnetic storage 
systems, J. Appl. Phys., 26, 575-579 (1955). 

16. W. N. Papian, New ferrite-core memory uses pulse transformers, Electronics, 
28~ 194-197 (March 1955). 

17. E. A. Guditz and L. B. Smith, Vacuum and vibration speed assembly of core 
memory planes, Electronics, 29 [2], 214-228 (1956). 

18. D. R. Brown and E. Albers-Schoenberg, Ferrites speed digital computers, 
Electronics, 26 [4], 146-149 (1953). 

19. J. R. Freeman, Pulse response of ferrite memory cores, Proc. WESCON 
Computer Sessions, 50-61, Los Angeles, Calif., Aug. 25, 1954. 

20. J. L Raffel, Sensing winding geometry and information patterns, M .l.T. 
Lincoln Laboratory Rept. 6M-2919, Lexington, Mass., July 1954. 

21. M. H. Weik, A second survey of domestic electronic digital computing systems, 
Ballistic Research Laboratories, Rept. 1010, Aberdeen Proving Ground, Md., June 
1957. 

22. D. A. Buck and W. 1. Frank, Non-destructive sensing of magnetic cores, Trans. 
Am. Inst. Elec. Engrs., 72, Pt. 1 (Comm. and Elec.), 822-830 (1953). 

23. B. Widrow, Radio-frequency non-destructive readout for magnetic core 
memories, Trans. I.R.E., Prof. Group on Electronic Computers, EC-3 [41, 12-15, Dec. 
1954. 

24. A. V. Pohm and S. M. Rubens, A compact coincident-current memory, Proc. 
Eastern Joint Computer Conference, pp. 120-124, Dec. 1956. 

25. D. O. Smith, Magnetizf1tion reversal and thin films, static and dynamic be­
havior of thin Permalloy films, J. Appl. Phys., 29, 264-273 (1958). 

26. J. A. Rajchman, Ferrite apertured plate for random-access memory, Proc. 
Eastern Joint Computer Conference, pp. 107-115, Dec. 1956. 
. 27. W. W. Lawrence, Jr., Recent developments in very-high-speed magnetic storage 
techniques, Proc. Eastern Joint Computer Conference, pp. 101-104, Dec. 1956. 

28. 1. L. Auerbach, J. P. Eckert, R. F. Shaw, and C. B. Sheppard, Mercury delay 
line memory using a pulse rate of several megacycles, Proc. I.R.E., 37, 855-861 (1949). 

29. E. A. Newman, D. O. Clayden, and M. A. Wright, Mercury-delay-line storage 
system of ACE pilot model electronic computer, Proc. Inst. Elec. Engrs., 100, Pt. 2 
(76), 445~52 (1953). 



STORAGE 19-35 

30. H. N. Beveridge and \V. \V. Keith, Piezoelectric transducers for ultrasonic 
delay lines, Proc. I.R.E., 40, 828-835 (952). 

31. Symposium of papErS on digital computers, Proc. Inst. Elec. Engrs., 100, Pt. 2 
(77), 487-539 (953). 

32. S. H. Dodd, H. Klemperer, and P. Youb, Electrostatic storage tube, Elec. 
Eng., 69, 990-995 (1950). 

33. M. Knoll and B. Kazan, Storage Tubes and Their Basic Principles, Wiley, 
New York, 1952. 

34. J. A. Rajchman, The selective electrostatic storage tube, RCA Rev., 12, 53-97 
(1951). 

35. J. P. Eckert, Jr., H. Lukoff, and G. Smoliar, A dynamically regenerated electro­
static memory system, Proc. I.R.E., 38, 498-510 (1950). 

36. A. W. Holt, An experimental rapid access memory using diodes and capacitors, 
Proc. Assoc. for Computing Machinery, pp. 133-141, Sept. 8-10, 1952, Toronto, 
Canada. 

37. D. A. Buck, Ferroelectrics for digital information storage and switching, 
M.I.1'. Digital Computer Laboratory Rept. R-212, Cambridge, Mass., June 5, 1952. 

38. J. W. Crowe, Trapped-flux superconducting memory, IBM J. Research and 
Development, 1 (4), 295-303 (1957). 

39. A. H. Bobeck, A new storage element suitable for large-sized memory arrays: 
The twistor, Bell System Tech. J., 36, 1319-1340 (1957). 

40. J. von Neumann, Non-linear capacitance or inductance switching, amplifying, 
and memory organs, U.S. Patent Office, Patent No. 2,815,488, Dec. 3, 1957. 



,I"i 



D DESIGN OF DIGITAL COMPUTERS 

Input-Output Equipment 

for Digital Computers 

I. The Input-Output System 

2. Printed Page 

3. Perforated Tape 

4. Punched Card Machines 

5. Magnetic Tape 

6. Analog-Digital Conversion Techniques 

References 

I. THE INPUT-OUTPUT SYSTEM 

Chapter 20 

J. K. Brigden 

20-01 

20-06 

20-19 

20-30 

20-33 

20-44 

20-66 

Input-output equipment is a term generally applied to the components 
of a computing system which are used for the transfer of data to and 
from the computer and for manipulation of data external to the computer. 
The requirements for input-output equipment vary considerably depend­
ing on the specific application for which the computing system is 
intended. There are, however, three major areas of application which 
may be considered: (1) business, (2) scientific, and (3) automatic control. 

Business Applications. Business computers usually require the most 
extensive input-output systems. Large amounts of data are frequently 
associated with a business problem and very often comparatively little 
computation is required. Thus a large percentage of computer time will 
be spent conducting input-output operations unless care is taken to pro­
vide an adequate input-output system. The following simplified model 
will serve to illustrate the problem of selecting an input-output system 
with the appropriate capacity. Let C be the average cost of the COffi-

20-01 



20-02 DESIGN OF DIGITAL COMPUTERS 

puting system per problem (input-output equipment included) ; then: 

C = (Te + Tr)(Ce + Cr), 

where Te = average time per problem required for computation (deter­
mined by choice of computer and the class of problems to 
be solved), 

Tr = average time per problem required to conduct input-output 
operations (determined by choice of input-output equipment 
and the class of problems to be solved), 

Ce = cost of computer per hour, 
Cr = cost of input-output equipment per hour. 

To match the input-output equipment to the computer assume that 
Ce has been fixed in advance. Further assume that Cr is proportional 
to the speed of the input-output equipment, i.e., 

From this one obtains: 

C = TeCe + k + kCe + TeCr. Cr 

The value of C,o for which the C0st per problem, C, is minimized in the 
above expression is given by: 

Since, for a fixed Cr, k is proportional to T,o, k is, to some extent, a 
measure. of the average amount of data which must be handled per 
problem during input-output operations. For a business problem where 
this amount is large and the time required for computation, Te, is small, 
it is likely that most optimum use of the computer system will be obtained 
by using a relatively costly or elaborate input-output system. 

Scientific Applications. Scientific problems, on the other hand, 
generally require considerable computation on small amounts of data. 
From our simple formulation above, one would expect that, for optimum 
use of the overall system, the input-output system should be relatively 
small. Considerable programming effort accompanies scientific prob­
lems, however, and in utilizing a computer for machine programming, 
one is again faced with a class of problems whose input-output require­
ments are similar to those found associated with business problems. In 
addition to this, scientific problems involving data reduction also have 
these same characteristics of large amounts of data and relatively short 
computation times. For these reasons information regarding data reduc-



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-03 

tion requirements and the programming techniques which are to be 
employed should be available prior to establishing the input-output 
system for the scientific computer. 

Some scientific computers have also been used in conjunction with 
analog computers to increase the overall computational capability of 
both. (See Chap. 30.) In these instances analog-digital conversion 
units are required as part of the input-output system. 

Automatic Control Applications. Problems associated with digital 
control systems very often require large amounts of data to be handled 
by the computer. Although these data are occasionally in digital form, 
more often than not the requirement exists for conversion both from and 
to analog signals. Input from the operator is accomplished much in 
the same manner as with computers used in other applications. An addi­
tional problem associated with the automatic controller input-output 
system is that the timing of the input and output signals is frequently 
critical. (See Vol. 3, Chap. 8.) 

General Requirements for an Input-Output System. In any of 
the three applications above, the one necessary requirement for an input­
output system is modification of data from one form to another so it 
may be accepted by the computer during input operations or presented 
in usable form during output operations. A second requirement is that 
the computing system be utilized in a reasonably efficient manner. The 
most critical problem arises when large amounts of data must be handled 
at rapid rates. A number of approaches have been taken in meeting 
this problem, such as increasing the speed and number of input-output 
devices which are operated with the computer. Although considerable 
success has been achieved along these lines, the problem is not generally 
solved by this method alone. 

Buffer Storage. Another approach has been to install intermediate 
or buffer storage between the computer and input-output devices. 
Utilization of this approach provides for more economic use of the 
computing system in two ways: (1) It allows the programmer greater 
freedom in executing input-output operations and in many cases permits 
him to conduct these operations in a more expeditious fashion. (2) Both 
computation and input-output operations may be carried on for the most 
part simultaneously. 

The latter advantage allows the use of input-output equipment which 
is only as fast as the average rate at which the computer puts data out 
or takes data in. However, if equipment with only the minimum speed 
is used, it becomes necessary to provide a buffer storage of considerable 
capacity if something is to be gained from the first advantage. A 
compromise is necessary among (1) the cost of input-output equipment, 



20-04 DESIGN OF DIGITAL COMPUTERS 

(2) cost of the buffer storage and its associated control circuitry, 
(3) cost of computer time which is spent conducting input-output opera­
tions, and (4) cost of constraining the programmer in executing these 
operations. The optimum values of all these factors is difficult if not 
impossible to calculate, but with sufficient judgment and experience it is 
possible to arrive at a configuration which is close enough to optimum 
for all practical purposes. 

A slightly different method of accomplishing buffer action is to utilize 
the. main computer storage as the buffer storage also. This is accom­
plished by establishing appropriate computer control circuitry so that 
the computer may carryon computation at the same time it is reading 
data into and out of its main storage. Although this approach does 
not impose the requirement for an additional independent storage, 
it does necessitate a considerable amount of control circuitry which 
is rarely warranted except under most unusual input-output require­
ments. 

Another approach has been to utilize comparatively high-speed input­
output equipment, usually magnetic tape units, for transfer of data to 
and from the computer and to make use of equipment external to the 
computer for preparing and reading the magnetic tape. This, in effect, 
is another method of accomplishing buffer action since the computer is 
free to proceed with additional computation while the magnetic tape is 
being processed. Here, one can also note the distinction between on-line 
and off-line equipment. 

On-Line Equipment. Equipment that is used for transfer of data 
to and from the computer and that is directly connected to it is referred 
to as on-line equipment. When large amounts of data are involved and 
comparatively little computation is required, on-line equipment should 
be of the high-speed variety. On the other hand, if only a small portion 
of computer time is spent conducting input-output operations, it becomes 
more efficient to utilize slower equipment such as keyboards, typewriters, 
and printers, and thereby to avoid the expense of extensive off-line 
equipment. Thus nearly all the different input-output devices are 
applicable to on-line use, and the selection of any particular device 
depends on the intended use of the computing system. 

Off-Line Equipment. Equipment which is used for manipulation of 
data external to the computer is referred to as off-line equipment. 
Obviously all the equipment used for on-line purposes can also be used 
off-line. In fact, a more flexible computing system is obtained by allow­
ing the equipment to be used in either capacity. Aside from the readers 
and recorders found associated with off-line equipment one also finds 
various control units which are used to couple the readers and recorders 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-05 

together. These control units are occasionally extremely complex and 
may conduct simple arithmetic operations, change format, and buf­
fer incoming or outgoing data. Equipment which is employed solely 
in off-line applications is frequently referred to as auxiliary equip­
ment. 

External Storage Requirements. External storage devices which 
are not under computer control are an important feature of many com­
puting systems. Although not directly related to input-output operations 
in the sense of communicating with personnel or equipment outside the 
computing system, external storage does involve communication with the 
computer and to some extent manipulation of data external to the 
computer. Combination of the input-output and external storage func­
tions may result in more optimum use of the equipment available. 
Requirements for external storage should therefore be considered in 
establishing the input-output system. 

Recording Media. Recording media are used extensively in prac­
tically all input-output systems and are, therefore, an important design 
consideration. Since the choice of a particular recording medium dictates 
to a large extent which type of equipment will be used, one should, of 
course, consider not only the characteristics of the medium but also the 
general characteristics of the equipment associated with that medium. 
Some of the more important items to consider are listed: 

1. Compatibility with the computer and other input-output equipment. 
2. Form and quality of displayed data or compatibility with the user. 
3. Ease of handling and accessibility of data. 
4. Erasability. 
5. Permanence of record. 
6. Durability of recording medium. 
7. Storage density or volume of bulk storage for a given amount of 

data. ' 
8. Costs associated with bulk storage of data. 
9. Size, weight, and power consumption of equipment. 
10. Speed of reading and recording. 
11. Reliability and maintainability of equipment, reliability of data 

obtained. 
12. Installation and operating costs of equipment, cost of recording 

material. 

The printed page, punched tape, punched cards, and magnetic tape have, 
in the past, been the most popular recording media. Other media avail­
able which hold some promise employ processes such as photography, 
electrophotography, electrography, and magnetography. 



20-06 DESIGN OF DIGITAL COMPUTERS 

2. PRINTED PAGE 

Page Reading Equipment 

The printed page provides data in one of the more convenient forms 
for the user and therefore is as important as other digital computer 
recording media. The major disadvantage associated with this medium 
is that considerable difficulty has been experienced in designing machines 
which will read printed data. The basic problem here is one of character 
recognition. Some success along these lines has been achieved, and 
commercial print reading machines are available. Of the various 
approaches taken to solve the problem, three seem most promising: 
(1) use of a light source and either photoelectric or kinescope sensing, 
(2) use of magnetic ink and flux sensing, and (3) use of conductive ink 
and current sensing. 

All the machines developed so far use matrix printing or a special type 
font to simplify recognition. 

Keyhoards 

The most practical means of reading data from the printed page to 
machines is by using an operator and keyboard. Most frequently, 
keyboards are operated off-line and used to enter data on some other 
recording medium such as punched tape or punched cards. With appro­
priate buffer storage, however, it may be more practical to avoid the 
intermediate step by connecting keyboards directly to the computer and 
operating them on-line. Typewriters, calculators, and keypunches 
are examples of equipment that have keyboards directly associated 
with them. Separate units are also available and usually cost under 
$1000. 

Mechanical Printers 

Two general categories of page printing equipment have been devel­
oped. Those which make use of mechanical motion of, say, a hammer 
or type bar to transfer ink to paper are referred to as mechanical printers. 
The second category makes use of other means for marking the paper 
and is discussed under the heading of nonmechanical printers in the 
next section. In selecting the appropriate printing device various gen­
eral requirements and characteristics should be considered. A number 
of these are listed below. 

1. Mechanism for recording 
a. Mechanical 
b. N onmechanical 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-07 

2. Mechanism for character selection 
a. Electromechanical 
b. Electronic 

3. General characteristics of the machine 
a. Size, weight, and power consumption 
b. Reliability and maintainability of machine, reliability of data 

obtained 
c. Installation and operating costs 

4. Recording medium (if other than ordinary paper stock is required) 
a. Durability of medium 
b. Permanence of record 
c. Cost of medium 

5. Input 
a. Serial 
b. Parallel 

6. Output 
a. Serial-sin-gle action 
b. Parallel, e.g., line-a-time 

7. Line feed 
a. Intermittent or continuous 
b. Pin fed, friction fed, or both 

8. Lines per inch 
9. Line size 

a. Columns per line 
b. Columns per inch 

10. Form and quality of printed data 
a. Character size 
b. Type font or matrix printing 
c. Registration of characters 

11. Speed of printing 
a. Characters per second 
b. Lines per second 

12. Characters per column 
a. Numerical 
b. Alphabetical 
c. Alphanumerical 

13. Number of copies obtained 

Table 1 lists values for some of the above characteristics which are 
typical of the various types of mechanical printers. 

Typewriters. Standard electric typewriters may be used as output 
printers. These devices are relatively slow compared with other printing 
machines because they are single action in nature and only one character 



20-08 DESIGN OF DIGITAL COMPUTERS 

TABLE 1. TYPICAL CHARACTERISTICS OF MECHANICAL PRINTERS 

Type- Line-a-
writers Time On-the-Fly Matrix 

N umber of copies 7 7 4 4-7 
Characters per 

second 10-20 
Lines per second 1-3 7.5-20 15-350 
Characters per 

column 10-86 10-47 10-64 47 
Columns per inch 12, 16 6-10 6-10 8-10 
Columns per line 110-300 5-120 20-130 5-120 
Lines per inch 6 6-8 4-8 5-6 
Cost, dollars $1000-$3000 $300-$50,000 $50,000- $100,000-

$165,000 $200,000 
Typical inputs Keyboard, Punched Magnetic Magnetic 

punched cards tape, digital tape, digital 
tape computer computer, 

punched 
cards 

FIG. 1. IBM electric typewriter action. 

may be printed at a time. Speeds up to twenty characters per second 
are obtained on some machines, but most of them cannot exceed ten or 
twelve. Typewriters may also be adapted for use as keyboard input 
devices. Figure 1 illustrates a method used by IB~1 for mechanizing 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-09 

the input and output functions in their typewriter. Only the equipment 
associated with one type bar has been shown. Pressing the key a very 
short distance actuates a linkage, which causes a cam to engage the 
rubber-covered power roll. The motor-driven power roll flips the cam 
upward until it disengages the roll. This action causes the character to 
be printed and opens or closes the switch contacts. These contacts may 

FIG. 2. Mechanical decoder. 

be used to generate signals for an external device. Energization of the 
magnet by an external signal actuates the push rod and thus causes the 
cam to engage the power roll just as if the key were depressed. The 
mechanism therefore operates as described above, and· data from an 
external source may be printed out in this fashion. 

The equipment described above requires a separate signal line for each 
character which is to be printed from an external source. To avoid this, 
many typewriters are equipped with a mechanical decoder such as the 
one illustrated in Fig. 2. This device accepts a binary-coded number 
which is used to position decoding bars. Projections on the bars are so 
arranged that only one of a set of seekers is opposite a slot in each bar 
and can be pulled in by its spring. A bail moving vertically downward 



20-10 DESIGN OF DIGITAL COMPUTERS 

causes this seeker also to move 'do'wilwai'd and engage its key and thus 
actuate the printing mechanism for the appropriate character. 

Some typewriters also have provision for incorporating perforated 
tape punches and readers. The most popular of these is the Flexowriter 
manufactured by Commercial Controls Corporation. Its basic unit 
consists of a heavy-duty, motor-driven typewriter capable of printing 
at a rate of about 9.5 characters per second. This machine receives data 
through its keyboard or, with appropriate accessories, from a computer 
or other digital device, or from a punched tape reader which may be 
mounted directly on the typewriting unit. Its output is in the form of 
the printed page and, with appropriate accessories, may also include 
punched tape and signals to a computer or other digital device. The 
cost of this unit ranges from $1800 to $3100 depending on the acces­
sories purchased. Standard electric typewriters modified for computer 
applications cost around $1200. 

Line-a-Time Printers. Machines which print an entire line at one 
time are referred to as line-a-time printers. Their speeds are in general 
higher than those of typewriters because the printing operation for each 
character position on a line is carried out simultaneously rather than 
individually as is the case with single action machines. There are two 
basic types of line-a-time printers, (1) type bar printers and (2) type 
wheel printers. The first of these employs a separate type bar for each 
character position or column on the line. The type bars each have a 
complete set of pallets. Printing is accomplished by first positioning 
the type bars so that the appropriate pallet in each column is directly 
opposite the paper and then by striking all the pallets simultaneously 
with a set of hammers. This drives the pallets against the paper, which 
is held on a platen roll. These machines cost anywhere from $300 to 
$50,000 or more depending on the number of columns available and the 
control circuitry required. Printing speeds are about 11/2 lines per 
second. For greater speeds, use of type wheels in lieu of the bars allows 
more rapid positioning. Machines of this type cost about the same as 
type bar machines and can print about twice as fast. Line-a-time 
printers are often an integral part of desk calculators or tabulating 
machines and occasionally these machines are used instead of separate 
printers as output devices for digital computers. 

On-the-Fly Printers. Printing speeds are limited with line-a-time 
machines because each printing operation requires acceleration of rela­
tively heavy type bars or type wheels. This difficulty is overcome in 
the on-the-fly printers by allowing type wheels to rotate continuously. 
Printing is accomplished by actuating hammers when the appropriate 
character is opposite the paper. The movement of the hammers drives 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-11 

the paper against the type wheel, and the character is thus printed. 
There are two basic types of on-the-fly printers, (1) multiwheel and 
(2) single wheel. Figure 3 illustrates a possible mechanization of the 
multiwheel on-the-fly printer. At an appropriate time data are inserted 
into the binary counters and the circuit waits for a pulse from the upper 
pickoff. Upon receipt of this pulse the and gate is enabled and the 
binary counters begin to count pulses from the lower pickoff. As each 

Type: I:: i I 
wheels I 'III: 

Magnetic or 
photoelectric pickoff 

One pulse per 
J revolution L 

{
: . II!~ 

Paper anU ..---~""'" 
ri bbon '--------' 

Control signals 
~ _____ ~between digital 

device and 
printer 

Binary 
counters 

! Jlii: I ~~---. 
Hammers \---------r--------J 

Input; from 
digital device 

FIG. 3. A mechanization of the multiwheel on-the-fiy printer. 

register overflows, the corresponding hammer solenoid is actuated and 
the character opposite the hammer at that particular time is printed. 
Upon receipt of the second pulse from the upper pickoff, the paper is 
advanced and new data are inserted into the binary registers in prepara­
tion for printing the next line. 

Figure 4 illustrates the single wheel printer and shows the relationship 
between the paper, print wheel, and hammers. Actuation of the hammers 
may be controlled in a fashion somewhat similar to that used for the 
multiwheel printer. For the circuit shown in Fig. 3, however, the counters 
would have to be started at different times. This would allow for dif­
ferences in timing that are dependent upon the particular position of 
each hammer along the line. Potter Instrument Company is the only 
manufacturer of printers of this type. 

In general, the speeds of on-the-fly printers vary according to the 
number of different characters which may be printed in a column. 



20-12 DESIGN OF DIGITAL COMPUTERS 

u 

Photoelectric 
commutator 

FIG. 4. Potter Instrument Company single wheel on-the-fiy printer. 

Numeric machines with 10 characters per column are capable of speeds 
between 15 and 20 lines per second whereas alphanumeric printers run 
at a slower rate somewhere between 7.5 and 15 lines per second. The 
number of columns per line for this type machine varies between 20 
and 130. It can be seen that considerable electronic circuitry is required 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-13 

to control and operate these machines when numerous columns are to be 
printed, and the cost is accordingly quite high compared with line-a-time 
printers. Typically these machines cost anywhere between $50,000 and 
$165,000. 

Matrix Printers. Rather than using type font for printing characters, 
matrix printers record a number of dots arranged in a 5 X 3 or 7 X 5 
matrix. The dots to be printed are selected so as to form an image of 
the desired character. Although numbers formed using a 5 X 3 matrix 
are readable, the 7 X 5 matrix yields a much clearer representation for 
alphanumeric characters. The dots themselves are printed by using 
small hammers or wires which strike the paper in order to transfer 
ink to it. 

Matrix printers are of two types: (1) the simultaneous matrix printer 
and (2) the scanning matrix printer. The first uses a complete matrix 
of wires for each column on the line. The second type uses a row of 
wires which are actuated several times in order to print a single line 
of characters. Intrinsically printers that employ the matrix technique 
are capable of speeds which are high compared with other types of 
mechanical printers. This is because no requirement exists for moving 
type font in and out of position. In practice, however, speeds for matrix 
printers rarely exceed those for on-the-fiy machines, and their capa­
bilities are about the same. A notable exception to this is an Eastman 
Kodak address label printer which produces five columns of data at a 
rate of 350 lines per second. 
, Since it is necessary to control somewhere between 5 and 35 hammers 
or wires per column, the electronic circuitry associated with matrix 
printers is extensive if numerous columns are to be printed; the cost is 
correspondingly high. The quality of matrix printing tends to be some­
what inferior to conventional printing, but registration of the characters 
is generally better than that obtained in using an on-the-fiy machine. 

Nonmechanical Printers 

The term nomnechanical printer refers to the class of printers which 
use means other than mechanical for selecting and transferring charac­
ters to be printed. By avoiding the use of mechanical equipment such 
as hammers and type wheels, this class of equipment provides the fastest 
means of producing printed data. To accomplish the pI inting operation 
various processes may be used. Photography, electrophotography, mag­
netography, and electrography are discussed below. Since two of these 
methods frequently employ cathode ray tube display devices, a section 
is also included on this equipment which may also be classed as input­
output equipment in its own right. In general, attention is focused 



20-14 DESIGN OF DIGITAL COMPUTERS 

toward the printing of numeric or alphanumeric characters. All the 
methods, however, lend themselves to the printing of binary information, 
and extremely high recording speeds are possible. In addition, reliable 
techniques have been developed for reading binary information printed 
in this fashion. 

Cathode Ray Tube Display Devices. Conventional cathode ray 
tubes may be used conveniently for the display of quantities in plotted 
form. U sing digital to analog converters, 0.1 % accuracies are obtain­
able on each axis, and the beam may be directed by a 20-bit number 
to anyone of the spots in a 1024 X 1024 matrix. Alphanumeric charac­
ters may be displayed in matrix form by selecting the appropriate spots, 
but this procedure requires either considerable electronic circuitry or 
extensive programming. 

A more practical method for displaying numeric or alphanumeric char­
acters is to employ a shaped beam tube. Typical of these tubes is the 
Charactron manufactured by the Stromberg-Carlson Division of General 
Dynamics Corporation. It is illustrated in Fig. 5. The tube uses an 
electron gun which generates a diffused beam. Deflection plates are 
employed to direct the beam toward anyone of 64 holes in an aperture 
plate. This aperture plate shapes the beam, and the desired character 
is formed. After leaving the aperture, the beam is redirected toward 
the desired position on the viewing screen. The character may be written 
at any point on a 1024 X 1024 matrix. One 6-bit number is required 
for character selection, and up to 20 bits can be used for position 
selection. Between writing of successive characters a blanking signal is 
required. An additional feature of this tube is that it may also be used 
as a conventional cathode ray tube by directing the beam through a 
round hole in the aperture plate rather than through a shaped character. 
At present writing speeds on the order of 15,000 to 30,000 characters per 
second can be obtained, but from 100,000 to 200,000 characters per 
second should be possible in the future. For use as a display device, 
tubes of this type have screens up to 19 inches in diameter. 

Another example of a shaped beam tube is the Typotron manufactured 
by Hughes Aircraft Company. It is similar in many respects to the 
tube previously discussed, but it has an additional feature in that char­
acters are retained on the face of the tube until an erase signal is applied. 
(See Ref. 1.) 

Photography. One of the more obvious means of recording data 
displayed on a cathode ray tube is to employ photographic techniques. 
This approach is particularly desirable if large amounts of data must 
be filed since extremely high recording densities are obtainable. The 
procedures employed are fairly standard and so the discussion here is 



Aperture plate 

FIG 5. Charactron shaped beam tube. The aperture plate matrix has 64 characters and symbols. 
(Courtesy of Stromberg-Carlson, a division of General Dynamics.) 

z 
" C 
-I 

b 
c 
-I 

" C 
-I 

m 
-0 
C 

" ~ 
m 
Z 
-I 

"T1 o 
~ 

o 
(J) 
=i » r-
() 
o 
3: 
" C 
-I 
m 
~ 
Vl 

t-.) 

'? 
01 



20-16 DESIGN OF DIGITAL COMPUTERS 

somewhat limited. The chief disadvantage associated with this technique 
is that the wet developing process is not well suited to printer applica­
tions. It is both expensive and cumbersome when employed in a printing 
device. 

Electrophotography. The term electrophotography refers to record­
ing techniques which involve the capture of light images on an elec­
trically charged surface and the subsequent development of these images. 
Electrophobgraphic processes are similar to conventional photographic 
processes in the sense that a iight source is used to create latent images 
in some recording medium. The two processes differ, however, in the 
nature of the latent images that are stored and therefore in the methods 

Drum corona 
charging elem~ 

Coated 
drum 

f 

FIG. 6. Xerography. 

Heating pad 

required for development for these images. For printer applications, 
electrophotography appears superior to conventional photography be­
cause the methods required for development do not involve wet process­
ing. Figure 6 illustrates an electrophotographic process developed by 
the Haloid Company under the name of Xerox. Xerography interpreted 
literally means dry printing. As seen in Fig. 6, a drum coated with a 
thin film of photoconductive material is charged just prior to being ex­
posed to a light source. Area upon which the light falls becomes conduc­
tive and loses its charge through the drum. The surface of the drum 
is then brought in contact with a developing powder of opposite charge. 
The particles of powder cling to the drum until it contacts a roll of 
paper which is charged so that the particles are transferred to it. The 
powder images are then fixed on the paper by heating. The Stromberg­
Carlson Division of General Dynamics Corporation has marketed a 
printer that employs this process and the Charactron display tube. The 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-17 

unit costs about $150,000 and is capable of printing eighty-three, 120 
column lines per second. 

Other xerographic machines have been developed which may be used 
for the duplication of data which have already been printed. In these 
cases reflected light from the master copy is used in lieu of the cathode 
ray tube display device. Another example of electrophotographic proc­
esses has been developed by RCA under the name of Electrofax. It is 

.C::::::::::::::(\ 
Ligiit-V 

source 

FIG. 7. Electrofux. 

similar to the one previously discussed except that the electrostatic image 
is produced directly on the paper. Figure 7 illustrates this process and 
shows the various operations which are required. 

Magnetography. A printing process that has been developed by the 
General Electric Company involves the use of magnetic materials. 
Latent magnetic images are recorded on a steel tape that is passed 
through:a bath of ferromagnetic powder. The small particles of powder 
cling to the magnetized portions of the steel tape until the tape is pressed 
against a strip of warm wax paper. At this point the powder is carried 
away by the paper and secured to it by cooling. The tape is then de­
magnetized and new images are recorded on it. Figure 8 shows a repre­
sentation of this process. To record the magnetic images on the tape, a 
drum is provided which has core pieces mounted upon it, shaped in the 

. form of characters. A special electromagnet or pulsing shoe is mounted 
directly opposite the drum on the other side of the steel tape. Pulsing 
this shoe causes a magnetic image of the particular core piece opposite 
the shoe at that time to be formed in the steel tape. The relative speeds 



20-18 DESIGN OF DIGITAL COMPUTERS 

of the steel tape and drum must be properly adjusted so that all the 
different characters on the drum pass each line on tape within range 
of the pulsing shoe. Timing circuitry is required in order to select 
the desired character and to position it correctly on the steel tape. 
Speeds up to 200 lines per second have been reported with this tech­
nique. 

Electrography. This term generally refers to those recording tech­
niques which make use of an electric spark for recording images of 
characters on a medium. To accomplish this a row of wires is usually 
placed across the width of the paper which is moved continuously past 

FIG. 8. Magnetography. 

the recording head. The characters are printed in matrix form by using 
the scanning matrix technique. One type of electrographic printing em­
ploys Teledeltos paper manufactured by Western Union. This paper 
is a multilayer material used in facsimile work and contains beneath the 
light gray reading surface a pitch black layer which is exposed during 
the sparking process. Atomic Instrument Company has developed a 
printer that uses this paper. Speeds up to 600 lines per second have 
been obtained. 

Another form of electrographic recording has been developed by the 
Burroughs Corporation (see Ref. 2). Their technique involves the 
use of paper coated with a thin layer of thermoplastic material of high 
resistivity. The coating maintains a latent electrostatic image of the 
character after it has passed through the recording head. The image is 
made visible by inking with a powder which clings to the charged portion 
of the medium. The powder is fixed by heating. Speeds in the neighbor­
hood of 5000 characters per second have been reported using only one 
recording head. 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-19 

3. PERFORATED TAPE 

Types of Perforated Tape 

Paper is the most frequently used material for punched tape. Mylar 
plastic bonded to metal foil or paper has also found application. Per­
forated tape is available in several widths depending on the number 

(a) (b) 

0.500 0.394 

rtl':~oo 
II I 0.100 

0.100 -,---+--+++-+++' -U.~.M.~. 
I I I I I I 

(c) 

cv 
boO 
"0 
cv 
boO 
c: 
:.a 
'5 
(!:I 

FIG. 9. Standard punched tape: (a) 5-level tape, (b) 6- and 7-level tape, (c) 8-level 
tape. 

of channels used. The number of channels, or levels, is the number of 
information bits per character. The term character refers to one row 
of holes across the width of the tape. Five-, six-, seven-, and eight-level 
tapes are common. For these tapes an additional smaller hole is per­
forated in each character so that the tape may be conveniently pulled 
over a reading or recording head. This hole is called ,a feed or sprocket 
hole. Figure 9 depicts various types of punched tapes and shows the 



20-20 DESIGN OF DIGITAL COMPUTERS 

position of holes. Six-level tap!C has the same measurements as seven­
level tape but uses only six of the seven hole positions. Table 2 sum­
marizes these data in tabular form. Although Fig. 9 indicates that 
the sprocket holes are in-line with the information holes, some commer­
cially available punches produce sprocket holes a small distance (0.013 
inch) ahead of the information holes. 

TABLE 2. TYPICAL CHARACTERISTICS OF PERFORATED TAPE 

Tape width (inches) 
5-level 
6-level 
7-level 
8-level 

Tape thickness (mils) 
Distance between holes, center to center (inches) 
Distance between sprocket hole centers and guiding edge of punched 

tape (inches) 
Diameter of information holes (inches) 

. Diameter of sprocket holes (inches) 
Characters or codes per inch 
Approximate diameter of punched tape rolls (inches) 

1000 ft 
250 ft 

Approximate volume of 1000 pieces of loosely packed chad (waste) 
(cubic inches) 

11 
16 

7 
8" 
7 
8" 
1 
3-8 
0.100 

0.394 
0.072 
0.046 

10 

9 
4 

0.02 

Table 3 summarizes the characteristics of typical perforated tape equip­
ment.· 

TABLE 3. CHARACTERISTICS OF TYPICAL PERFORATED TAPE EQUIPMENT 

Speeds, 
Characters/ Weight, Size, Power, Cost, 

Mechanical Sec lb cu ft watts dollars 
Punches Motor 20-250 25 1 150 1000 
Mechanical 

readers Motor 20-60 25 1 150 1000 
Solenoid 20-40 2 0.05 30 800 

Photoelectric 
readers Motors 150-750 125 3 350 4000 

Tape Punches 

General Characteristics. Commercially available tape punches have 
maximum speeds which range from 20 to about 250 characters per second. 
A large majority of them, however, cannot operate faster than 60 char­
acters per second. Punches which fall into this category are generally 
priced under $1000 whereas a very high-speed punch will cost as much 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-21 

as $10,000. Tape punches derive mechanical power from an electrical 
motor and conduct three basic operations: (1) punching, (2) tape feed, 
and (3) synchronization or timing control. Some punches are capable 
of accepting any common width of tape with only minor adjustments 
while others have been designed to handle only one particular width. 

Punching Mechanisms. Various means are available to accomplish 
the basic operation of punching; three illustrative examples of mecha­
nisms which accomplish this function are described below. 

~
COde magnet Die~V/?://F.:l!ww) ~Tape 

Armature 
Punch pin 

guide 
u7r~--=-':':---

(( 
I I 
II 
I I 

Latch,lever II \ 

spnng~ \ \ 

~:tChlever 

C 

Punch pin 
guide 

FIG. 10. Punching action of the Commercial Controls 20-character-per-second 
punch. 

Figure 10 shows a simplified version of the approach taken by Com­
mercial Controls Corporation for their 20-character-per-secont\ punch. 
Only that equipment necessary to punch one hole is shown. With the 
latch lever in the latched position indicated by the solid lines, a force is 
applied at A which drives the punch pin up into the die, thus perforating 
the tape. In the unlatched position indicated by the dotted lines, a force 
at A will cause only the punch lever to move and not the punch pin. 
This is due to the restraining force applied by the punch lever spring. 
During an appropriate time of the punch cycle positive latching is insured 
by applying a force to all the latched latch levers at point B. Upon 
completion of the punch cycle, a force is applied to all latched levers at 
point C. This action returns the latch levers to the position indicated 
by the dotted lines in preparation for punching the next character. 

Figure 11 shows a simplified version of the approach taken by Tele­
type Corporation for their 60-character-per-second punch. A vertical 
reciprocating type motion is imparted to the long toggle arm at point 
A. When the armature and blocking pawl are in the position indicated 



20-22 DESIGN OF DIGITAL COMPUTERS 

by the solid lines, the punch pin is driven through the tape on each 
downward stroke. When the armature is in the position indicated by 
the dotted lines, the blocking pawl engages the long toggle arm on its 
downward stroke and causes the knee to buckle in the direction indicated 
by the arrow at B. This action prevents appreciable movement of the 
drag link and thus inhibits the punching of a hole. The long toggle arm 

Armature 

:-L~.t1 ~ ~~~~ I I Long toggle arm spring 

Short toggle arm 

FIG. 11. Punching action of the Teletype Corporation's 60-character-per-second 
punch. 

spring insures that the knee will not buckle when a hole is to be punched. 
The force applied by this spring is overcome if the blocking pawl has 
been moved to intercept the downward movement of the long toggle 
arm. 

Figure 12 shows a simplified version of an approach taken by Soroban 
Engineering, Inc., in one of their 240-character-per-second punches. With 
the interposer in the position indicated by the solid lines, a downward 
motion of the punch bail drives the punch pin into the die and thus perfo­
rates the tape. On the upward stroke of the punch bail, the punch pin is 
withdrawn from the die. If the interposer is in the position indicated 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-23 

by the dotted lines, the punch bail slides along the punch pin, but 
does not drive it' through the tape. The same punch bail is used to 
'drive all the punch pins. At the end of the cycle another bail applies 
a force to all the interposed interposers at point A, and thus returns 
them to the position indicdted by the dotted lines in preparation for 

\ 
\ 

Code 
magnet 

I 
I 
I 
I 
I 

// 
I I 
I I 
1(. 

: I Armature I, , / : , 
/1 
// 

A~[====~~~~~~~~~==~_ II 
~_~--.~,' J / 

~'-'..'I-~'t> 

FIG. 12. Punching action of a Soroban 240-character-per-second punch. 

punching the next character. Considerable effort is required in the de­
sign of very high-speed punches to reduce accelerations and impact loads. 
The motion of the punch bail in this case is fixed by a special cam 
in order to reduce impact on the interposers. The elimination of 
springs is also important since they can cause undesirable mechanical 
resonances. 

Tape Feed Mechanisms. Various means are available for advancing 
the tape. A typical method is shown in Fig. 13. In this diagram, the 
ratchet wheel and sprocket wheel form an integral unit. The feed pawl 
arm moves under the influence of the feed rod and causes the feed pawl 
to engage the ratchet. The ratchet rotates in the direction shown. The 
pins on the sprocket wheel engage the tape feed holes previously 
punched by the punching mechanism, and the tape is therefore advanced 
each time the feed rod is actuated. Actuation of the feed rod may be 
accomplished by a number of means. Frequently, feed magnets are used 
to control the motion of various mechanical parts which in turn actuate 
the mechanism. The detent in Fig. 13 insures positive indexing of the 
ratchet-sprocket combination. 



20-24 DESIGN OF DIGITAL COMPUTERS 

Ratchet 
wheel 

FIG. 13. Typical tape feed mechanism. 

Synchronization and Timing. Requirements for synchronization 
fall into two general categories: (1) synchronization of input data with 
the punch and (2) synchronization of the internal elements of the punch 
with each other. In the first category, some means is required to ensure 
that the code magnets are energized during the appropriate portion of the 
punching cycle. A common method of accomplishing this is to mount 
electric contacts or reluctance pickups on the drive shaft in order to 
generate timing signals which can be used by the input circuitry. A 
simplified block diagram of such an approach is illustrated in Fig. 14. 
It has been assumed that the punch generates two pulses each cycle, a 
ready signal indicating that the code magnets should be energized by the 
appropriate word, and a complete signal indicating that the code magnets 

From computer or other digital device 

Punch 
Complete 

signal 

Ready 
signal 

FIG. 14. Block diagram of synchronizing system. 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-25 

should be deenergized. A buffer register has been provided for loading 
the driver register. 

Note that in the configuration shown, the time between insertions of 
words into the buffer register should be at least as great as the time 
required for one complete punch cycle and that no word should be 
inserted during the small interval of time required to load the driver reg­
ister and clear the buffer register. Additional buffer storage is required 
if it is desirable to accept data at higher instantaneous rates. The aver­
age rate at which data are transferred to the punch input circuitry over 
a long period of time of course cannot exceed the punching speed regard­
less of the buffer size. Sufficient buffer action is obtained from the two 
registers shown, however, to gain the following advantages: 

1. The computer or digital source of information has been left free 
between word insertions to accomplish other operations while punching 
takes place. 

2. The punch can record at near its maximum rate and computer opera­
tion is inhibited only a small portion of the time. Without proper 
buffering or timing control it may be impossible to utilize the punch in 
an efficient manner. This is due to timing uncertainties associated with 
the time between insertion of data and use of them by the punch. 

In addition to proper energization of the code magnets, some punches 
also require external logic to control the actuation of a feed magnet. 
This may be accomplished by using timing signals from the punch and 
a signal generated by the data source to indicate that an output opera­
tion is being carried out. 

Synchronization of the internal elements of the punch is accomplished 
for the most part by mechanical means through the use of linkages, 
cammed surfaces, etc. Electric contacts, magnets, and electrically oper­
ated clutches are also used in some punches to achieve the necessary 
control. Some of the control requirements are to insure that: 

1. The tape is not advanced before the punch pins have been sufficiently 
withdrawn from the tape. 

2. The punching operation does not commence too soon in relation 
to the normal time that the code magnets are energized. 

3. The tape advance has been sufficiently completed before actual 
punching occurs so as to prevent tearing of the tape. 

4. The various operations are carried out in the appropriate order and 
with a minimum of delay. 

Tape Readers 

Commercially available tape readers fall into two general categories: 
(1) mechanical readers and (2) photoelectric readers, depending on the 



20-26 DESIGN OF DIGITAL COMPUTERS 

method of sensing holes. With photoreaders, sensing is accomplished by 
using a light source and photoelectric cells. This allows much higher 
reading speeds than are possible with mechanical readers. A second 
difference between the two types of readers is the method for transporting 
the tape. Photoreaders have a more elaborate tape transport system in 
order to utilize effectively their intrinsic capability of high-speed sensing. 

Mechanical Tape Readers. Commercially available mechanical 
readers generally cost less than $1000, and have maximum speeds which 
range from 20 to 60 characters per second. They employ either a sole­
noid or motor to obtain the necessary mechanical power. Readers that 
use motor drive have some form of latching mechanism or clutch in 
order to control the application of power to the reader. The latching 
mechanism or clutch is usually actuated by an electromagnet. In general, 
the motor-driven readers are more appropriate than solenoid-actuated 
readers in applications which require continuous reading and higher 
speeds. 

Readers perform three basic operations: (1) sensing, (2) tape advance, 
and (3) synchronization or timing control. Tape advance may be ac­
complished by a number of means. The ratchet-sprocket combination 
described in the previous section for tape punches is a typical method. 
Synchronization of the internal elements of the reader is achieved by 
appropriate mechanical design rather than through the use of electric 
control circuitry. Synchronization of the reader with external equipment 
may be accomplished by transmitting a signal to the tape reader each 
time a character is to be sensed. Higher reading speeds are usually ob­
tainable, however, if the tape reader is allowed to run at its own speed. 
In this case the external equipment is synchronized to the reader and 
employs pulses which are generated by the reader each time a character 
is sensed. In addition, start and stop signals are required from the 
external equipment in order to initiate or discontinue the reading opera­
tion. 

Mechanical Sensing Mechanisms. Mechanical readers generally 
sense holes by driving a pin toward the punched tape. Electric contacts 
are closed if the pin passes through a hole. A typical mechanization of 
the sensing operation is shown in Fig. 15. It is a simplified version 
of one employed by the Teletype Corporation. The main bail is com­
mon to all the sensing pins and moves with a vertical reciprocating type 
motion. On its upward stroke it allows the sensing pin to move up 
under the force of the sensing pin spring. If there is a hole in the tape, 
the sensing pin continues its upward motion, passing into the hole. 
The switch bar, which follows the sensing pin, rocks from the spacing 
contact to the marking contact. If there is no hole in the tape, the 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-27 

upward motion of the sensing pin is halted by the tape, and the switch 
bar remains on the spacing contact. 

Terminal 

FIG. 15. A mechanical sensing mechanism for paper tape. 

Photoelectric Tape Readers. Typical reading speeds for photoelec­
tric tape readers range from 150 to 750 characters per second. Higher 
speeds are obtainable, however, and up to 2000 characters per second 
have been successfully read. The cost of these units ranges from $3000 to 
$5000. Other data concerning them have been provided in Table 4. 

TABLE 4 .. TYPIC.\L CHARACTERISTICS OF COMMERCIAL HIGH-SPEED 

PHOTOELECTRIC TAPE READERS 

(TAPE TRANSPORT INCLUDED) 

Number of channels 
Ta pe speed (inches per second) 
Reading speed (characters per 

second) 

Start or stop time 
Stopping distance 

Tape capacity of transport (feet) 
Size 
Weight (pounds) 
Power requirements (watts) 
Gost (dollars) 

5, 6, 7, or 8 
1&--75 
150~750 (2000 characters per second 

possible with some very high-speed 
photo readers ) 

Less than 5 milliseconds 
On the stop character or on the char-

acter following the stop character 
1000 
2 feet of standard relay rack 
75-150 
100-450 
3000-5000 

Photoelectric tape readers have three major components: (1) the 
reading head, (2) the tape drive, and (3) the reel assembly. The last two 
items make up the tape transport system and are similar in many 
respects to the tape transports associated with magnetic tape recorders. 



20-28 DESIGN OF DIGITAL COMPUTERS 

Some photoelectric readers are not supplied with a reel assembly, and 
discussion of this unit is deferred to the section on magnetic tape 
equipment. 

Tape Drivers for Photoelectric Readers. These units generally 
employ a capstan friction drive system to pull the paper past the reading 
head. Use of friction drive eliminates much of the tape wear experienced 
with mechanical readers. A means of stopping the tape is also required. 
Short starting and stopping times are desirable and many photoreaders 

Photoreading 
head assembly ~ 

\ From tape 
\\ transport 

fl To tape 
f transport 

FIG. 16. Potter tape drive assembly. 

are capable of stopping and starting without missing a character. This 
capability eliminates the requirement for leaving blank tape between 
blocks of data during the recording operation. Two examples of tape 
drive assemblies are discussed below. 

The first, pictured in Fig. 16, is one employed by Potter Instrument 
Company. In the forward mode, the forward solenoid pinches the tape 
to the lower capstan. In the reverse mode, the reverse solenoid pinches 
the tape to the upper capstan. The lower capstan is friction driven by 
the upper capstan, which in turn is driven by a motor. To stop the tape, 
the brake solenoids operate together to pinch the tape between their 
pinch rollers and the brake table. 

Figure 17 illustrates a differential gear arrangement used by Ferranti 
Ltd., for driving punched tape in their high-speed reader. The input to 
the differential gear is driven by a continuously running motor. One 
output shaft of the differential gear is used as a combined tape drive 
and brake. The other output shaft is used as a clutch drum. The tape 
drive and brake drum is started or stopped by the application of 
electromechanically operated brakes to one or the other of the output 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-29 

shafts. The brake coils are driven by a flip-flop so that at any particular 
time one and only one brake is actuated. 

Pbotoreading Heads. Reading head assemblies for photoelectric 
tape readers consist of a light source, a bank of photoelectric cells, and 
the equipment necessary to focus the light through the perforated holes 
onto the photo cells. One cell is used for each information channel, and 

Differential gear assembly. 

Spring loaded tape 
pressure roller 

Tape 

FIG. 17. Ferranti tape drive assembly. 

one is used for the sprocket channel. The signal obtained from the 
sprocket channel is used for control purposes. Both photoconductive 
and photovoltaic devices have been successfully employed. Some readers 
have been provided with a mechanical light chopper. 1Vlodulation of the 
light source in this fashion allows a-c amplification and eliminates drift 
problems due to temperature variations of the photocells. 

Auxiliary Equipment 

Auxiliary equipment associated with punched tape includes the fol­
lowing items: 

1. K.ey punches. Consists of a keyboard, tape punch, and control 
circuitry necessary to prepare tape manually. Typewriters are frequently 
used in this application. Occasionally a mechanical reader is also pro­
vided so that the data being punched may be compared with another 
tape for verific;ation purposes. 

2. Comparators. Consists of two readers (sometimes one dual me­
chanical reader) and the circuitry necessary for comparison of two tapes. 

3. Reproducers. Consists of reader, punch, and circuitry necessary 
for reproduction of tapes. 

4. Converters. Consists of a reader or punch and equipment asso­
ciated with some other recording medium. Used to transfer data to 
and from other recQrding media. 



20-30 DESIGN OF DIGITAL COMPUTERS 

4. PUNCHED CARD MACHINES 

Punched Cards 

Of the several types of punched cards which are available for various 
machine accounting systems, two have found the widest use in digital 
computer applications. The first of these is manufactured by IBM and 

/ 

0123456789 ABC 0 EFGH 1 J K L I.INOPQR S TUVWXYZ 
111111111 

111111111 

I D D D GO D D D D D D D D D DOD ODD DOD DODO ODD 00000000000000000000000000000000000 DODO D 0 11111111 
IJI.I"II~"n"M"U"UU.flDDMB.naa.~»D~ •• n ••• fluaM •• U ••• "UUMs.n ••• ~aaNe.n •• ~"nnuft~nnn. 
1 1111111111111111111111111111111111111111111111111111111111111111111111111111111 

2 212 %2 2 2 2 2 2 ~ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 212 2 2 2 2 Z 2 212 2 2 2 2 2 2 12 2 2 2 2 2 2 

33 313 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 33 3 3 3 3 3 3 3 3 3 3 3 3 3 33 3 3 3 3 3 3 3 3 313 3 3 3 3333133333331333333 

44441444444444444444444444444444444444444444444444444444414444444414444444144444 

5 5 5 5 515 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5,5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 5 5 5 5 5 15 5 5 5 5 5 5 5 15 5 5 5 5 5 5 15 5 5 5 

1& & & 6& 1& & i & & & & & 6 &6 6 6 6 6 &6 6 6 6 66 6 6 6 6& 6 5,6 6& 66 6& 66 & 66 6 6 66 & & 6 & 6 6 6161 6 6 6 6 6 & 16 66 6 6 6 616 6 6 

1777777177 7 7 7 7 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 717 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 717 7 7 71 7 7 717 7 7 7 7 7 717 7 

1111111111111118 811118811111111111181111111111111111111111111 BUIIIIIIIIIII, I'll 

III II 1111199 9 9 99 9 9 99 99 9 9999 99 9 9 9 9199 9 9919 9919 99 9919999999999 9 919 9 919 9 9 919 9 9119 91 
111.11111~"""""~"~~a~DnMa.n.am"aa~ •• n ••• ~GUM •• " ••• ~UUM •• n ••• ~aAM •• n •• ~"nn"n.nn". 

0123456789 • 
I. !. I. 1.1. I. I. 1.1. 1.1. 1.1.1.1.,1.1.1.1.1 ••• 1.1.1.1.1.1 .1.1.1.1.1.1.1.1.1.1.1.,,1,1.1,1.1. 

~~~~~~~~~~~~~~~~~~~~~~ •• ~h~~~~~~h~~~~hh~hhhh~ 

, 2 , • 5 I , I 9 to 1t 11 U U " 18 " tI " .. 2t __ IS __ 2S ___ U 2t 10 !t !It H :u H ,. n ,. H '0 ., .u ., .u B

ABCO£FGHI~K~MNOPQR5TUVWXYZ ••• ••• • ••••
~ lZ-1i-.i-iili-_ ii ii' ii i;1I1Jtz-ii1z" fjitiz- iz-_iz- it it iz -~-_-i2-_-_-i2-t-; -l'2-ii -1;-1~-li-t;i21;ii"i; lili1z- iz

~~~~~~~~~~~~~~ .. ~~ .... ~~~ ... ~~.~ .. ~.~~~~~~~~~~ 
~ !6 !6 !6 !6 !6 !6 !6 !6 16 !6 •• ! •• !6 !6 • ! •••• !6 •• !6 !6 • !6 • ~ • !. !6 !. ! •• !. !. !6'!6 !6 !6 !6 !. !. 

=~~~~~~~~~~~~.~~ ... ~~~hhh~ •••••• h •• h.h~h~h~hhh 
'~9 9 9 9 9 9 9 9 ~ 9.9 9 9 9.9 9 9 9 •• 9.9 9 9 9 9.9.9 ••• 9 9 9 9 99999 
Q. .... , •• "·50 51'51 !n , .. !IS S' "S. SI'O ""2""'" I!I lie" Ie "''70 71 717' ,,,'n '7, 7''''''110 ".t" •• " •• IS 18"81" •• ·.0 

Thickness, 0.0070" to 0.0067"; width, 314"; length, 7%". 

FIG. 18. Standard punched cards: (a) IBM, (b) Remington Rand. 

the other by Remington Rand. They are the same size and both cost 
approximately $1.50 per thousand. They differ however in the format 
used for punching data. The IBM card has 80 columns with 12 positions 
for rectangular holes in each column, while the Remington Rand -card 
uses 90 columns each with 6 positions for round holes. Figure 18 shows 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-31 

these cards with their measurements and illustrates the standard code 
used for recording alphanumeric data on each of the cards. Of course 
other codes are also possible and frequently used particularly when 
binary data must be recorded. (See Chap. 5.) 

Punched Card Readers 

Card readers may be used in both on-line and off-line applications. 
When used for off-line purposes, they are generally associated with other 
equipment such as that discussed in the paragraph on auxiliary punched 
card equipment. There are a number of different techniques for reading 
cards. The most common of these involves the use of mechanical brushes 
which sense the holes. Electric contact is usually made through the hole 
or less frequently in a fashion similar to that described for punched 
tape readers. Other reading techniques involve photoelectric or electro­
static sensing. These machines are capable of speeds which range from 
100 to 1000 cards per minute. They cost in the neighborhood of $40t)00. 

Card Punches 

Card punches, like card readers, may be found in both on-line and 
off-line applications. Their speeds are slower than readers, however, and 
range between 100 and 200 cards per minute. When used for off-line 
purposes, they are generally associated with other equipment such as 
that discussed in the next section. The price of these units is in the 
neighborhood of $30,000. Additional information on card punches and 
card readers may be found in Chap. 5. 

Auxiliary Equipment 

Aside from readers and punches there are numerous other types of 
punched card equipment which have been developed for machine account­
ing systems prior to the advent of the large-scale digital computer. In 
addition, conversion equipment has been developed for· transferring data 
between punched cards and other recording media. All these units make 
use of either a card reader, a card punch, or both, but they have addi­
tional equipment associated with them for accomplishing various other 
functions. Since these functions may be found useful in off-line digital 
compute! applications, a number of them are discussed below. 

Key Punches. These machines have a keyboard, a card punch, and 
the control equipment necessary for manual preparation of cards. Some 
have a small mechanical storage which may be set and used to punch 
any data which are identical on all the cards being prepared. Other key 
punches are capable of printing the data on the card or interpreting 
while the punching operation takes place. Operator speeds for these 



20-32 DESIGN OF DIGITAL COMPUTERS 

machines of course varies widely; a good operator, however, should be 
able to punch roughly 125 eighty-column cards per hour. 

Verifiers. These' machines are used to verify the correctness of 
holes punched in cards which have been prepared by an operator. There 
are various methods whereby this is accomplished, but in general it 
amounts to another keying operation in which the second version is 
compared with the first. Errors are indicated by locking the keyboard 
or by other appropriate means. Verifiers are frequently combined with 
a key punch to form a single unit capable of both functions. 

Reproducing Punches. These machines have a card reader, a card 
punch, and the control equipment necessary for duplicating punched 
cards. Some have additional readers and capabilities for collating, com­
parison, addition, and subtraction. Most of them are capable of repro­
ducing cards at a rate of at least 100 per minute. 

Tabulators. Tabulating machines generally include several card 
readers and a line-a-time printer. (See Sect. 2, Mechanical Printers.) 
Data may be read from the cards and printed out for visual study. 
In addition these machines also have the capability of following instruc­
tions on the cards and adding or subtracting numbers as required by 
these instructions. Results of the computation and information in 
alphabetical form can be printed out. The usual speed for these machines 
is 150 cards per minute. 

Sunlmary Punches. Results and other data obtained by tabulators 
may be punched onto cards with summary punches. These machines 
are not capable of reading cards as is the case with reproducing punches. 

Sorters. Card sorters have a card reader and the appropriate equip­
ment for separating cards according to the data on them. Sorting of 
the cards usually requires one pass per column. Speeds up to 1000 cards 
per minute are possible on some card sorters. 

Collators. These machines employ two separate magazines for the 
cards, and are capable of. accomplishing more complicated rearrange­
ments of cards than is possible with sorters. Sets of cards are read 
and then merged or separated depending on how the data compare. 
Collators also have the capability of checking the sequence of cards 
in the magazine. They are capable of speeds of about 250 cards per 
minute. 

Interpreters. Punched data may be read by these machines and 
printed on the same or different cards at a rate of approximately 100 
cards per minute. 

Calculating Punches. These machines are basically small digital 
computers. They read numerical data and instructions from punched 
cards, perform various arithmetic operations, and punch out the results. 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-33 

Converters. A large variety of equipment has been developed for 
transferring data back and forth between punch cards and other recording 
media such as punched tape and magnetic tape. Equipment is also 
available for transferring data between IBlVI and Remington Rand cards. 
Digital to analog converters have been incorporated with punched card 
readers for obtaining signals which may be used with plotting devices. 

5. MAGNETIC TAPE 

Magnetic Tape Description 

Magnetic tape employed in computer applications generally consists 
of a cellulose acetate or polyester base of about 1.5 mils thickness and 
a magnetic coating which may be from 0.3 to 0.7 mil in thickness. The 
magnetic coating is made up of finely divided iron oxide particles 
embedded in a binder such as vinyl resin. The particles themselves are 
less than 0.7 micron in length and are generally about one-quarter of 
that in thickness. The coatings are roughly 75% iron oxide by weight 
and 50% by volume. Of the two bases, cellulose acetate and polyester, 
the latter appears to have better properties for magnetic tape. The 
polyester, or Mylar (DuPont trade name) as it is usually called, is more 
immune to changes in physical dimensions due to environmental con­
ditions. l\1agnetic tape has also been made with a nonmagnetic metal 
base plated with a magnetic material. Only a few of the commercially 
available tape readers, however, have been specifically designed to use 
this type of tape. Rolls of plastic tape are available in lengths up to 
5000 feet for the 1.5-mil base tapes and 7200 feet for the 1.0-mil tapes. 
Common widths vary between lti and 1 inch. A major problem associated 
with magnetic tape recording is concerned with blemishes and imperfec­
tions in the tape that hinder proper recording. The problem has been 
severe enough that, in some instances, imperfections have been marked 
and equipment provided to avoid recording over the imperfect areas. 
Various other characteristics which are representative of commercially 
available plastic base tapes have been listed in Table 5. 

Magnetic Heads 

Small electromagnets or heads, as they are called, are used to record, 
read, and erase data on magnetic tape. (See also Chap. 19.) The heads 
are grouped together to form head stacks. These stacks may contain 
anywhere from 15 to 30 heads per inch; thus, for example, from 7 to 15 
tracks can be recorded on Y2-inch tape. Table 6 provides data for a 
typical magnetic head stack. However, since the design of heads varies 
considerably throughout the industry and differs depending on whether the 



20-34 DESIGN OF DIGITAL COMPUTERS 

TABLE 5. CHARACTERISTICS OF TYPICAL PLASTIC BASE MAGNETIC TAPE 

Cellulose 
Polyester Acetate 

Typical thicknesses (mils) 
Base 
Coating 
Total 

Tensile strength (pounds per i-in. tape) 

1.0 
0.35 
1.35 

70°F 50% relative humidity 7.3 
70°F 90% relative humidity 7.3 
140°F 50% relative humidity 6.0 

Yield strength (pounds per i-in. tape 
5% stretch) 

70°F 50% relative humidity 
70°F 90% relative humidity 

Coefficient of expansion 

4.0 
4.0 

1.5 
0.6 
2.1 

12.0 
12.0 
10.0 

5.7 
5.7 

Humidity (per % relative humidity) 1 X 10-5 

Temperature (per OF) 2 X 10-5 

Approximate cost ($ per inch2 ; the 

1 X 10-5 

2 X 10-5 

price per inch2 is greater for long 
or wide tapes) 0.0018 0.0022 

Common lengths (feet) 
Coefficient of friction 

1200-7200 1200-5000 
0.2 

Safe temperature limits (OF) 
Standard widths (inches) 
Reel size (inches) 

-40 to 160 
1, !, ttl (+0.000 in., 

2500 ft. 
5000 ft 

Coercive force (oersteds) 
Remanence (maxwells) 
Retentivity (gausses) 
Approximate number of errors per 

2500-ft roll with 100 bits per inch 
at 60 in. per second with two 50-
mil heads per i-in. tape 

10! 
14 
250 
0.7 
800 

2 

TABLE 6. CHARACTERISTICS OF TYPICAL 

Gap scatter (inches) 
Gap azimuth (degrees) 
Gap width (mils) 
Track width (mils) 
Track spacing (mils) 
Inductance (millihenries) 
Resistance (ohms) 

MAGNETIC HEAD 

±0.00005 
±0.02 

0.3 
50 
70 
10 
15 

1.5 
0.6 
2.1 

5.6 
4.2 
4.4 

4.7 
3.0 

15 X 10-5 

3 X 10-5 

0.0015 
1200-5000 

-0.004 in.) 

STACK 

head is used for reading or recording, wide variations are to be expected 
from some of the data given. 

Head Design. Some of the considerations which go into the design 
of magnetic heads are as follows: 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-35 

1. The poles of the magnet are arranged in the direction shown in 
Fig. 19 since higher bit densities can be achieved with the axis of the 
magnet in this direction. 

2. To allow the use of low writing 
currents and to obtain higher reading 
voltages the reluctance of the magnetic 
path should be low. This dictates a 
short path and use of a magnetic ma­
terial with high permeability. 

3. Low writing currents and high 
reading voltages may also be obtained 
by increasing the number of turns. A 
compromise is necessary in this area, 
however, since both inductance and 

E 1 

Direction of 
tape movement 

FIG. 19. Magnetic head. 

mechanical size are increased as the number of turns are increased. 
4. The head construction should take into account the frequency 

response required for digital recording. 
5. The magnetic material should have a high resistivity so as to limit 

losses due to eddy currents. 
6. Track width should be small for high bit densities, but a compromise 

must be established since the output voltage is decreased as the track 
width is made smaller. 

7. Appropriate consideration must be given to the reduction of cross 
talk between heads in the same headstack. 

8. Mechanical design is one of the more critical factors. The tolerances 
are small, and the design must be extremely compact. In addition the 
metal surface over which the tape moves must be prepared carefully. 

Methods of Reading and Recording 

Various methods exist for recording digital data on a magnetic medium 
and for extracting these data from the output voltage obtained during a 
reading operation. A number of these are discussed below. Some of 
the various characteristics which should be considered in selecting 
any particular method are as follows: (1) requirements for erasing, 
(2) requirements for a synchronization track, (3) recording density 
obtainable, (4) amount of circuitry required, and (5) reliability. 

The writing currents for various recording techniques ai'e summarized 
at the end of this section in Fig. 23. 

Polarizd Dipole Method. For this method, the direction of mag­
netization of small dipoles is used to differentiate between D's and l's. 
The tape is magnetized by current pulses which may be positive or 



20-36 DESIGN OF DIGITAL COMPUTERS 

negative depending on whether a 1 or a 0 is to be recorded. Figure 20a 
illustrates the waveform of the writing current and Fig. 20b indicates 
roughly what the waveform of the reading or output voltage will be if 
the bits are not packed too closely together. Note that the current in 
the writing head goes to 0 after each bit is recorded. This is a property 
of a class of recording methods known as return to zero or RZ methods. 

(a) Writing 
current 

(b) Reading 
voltage 

(c) Reading 
voltage 

(d) Reading 
voltage 

o 0 0 I 0 0 
I 
I 

I I I 
I 

, I I I , II I I I 'I ' 
I I I ,I 'I I 
I I I I I I I I I I I 
I 1\' R lJ\ I f\ I 1\1/\ iJ\ 11\ I f\lJ\ I 

K[!t'WKri 'if' V: V,V I VI 
I I I I I I I I I I I 
I I I I I' I 

FIG 20. Polarized dipole method. Reading voltages are for different recording 
densities. 

Of the various RZ methods, the polarized dipole method is the most 
commonly used. Conventional pulse techniques can be used to extract 
data from the waveform shown in Fig. 20b, and numerous methods are 
possible. Note that a synchronizing signal is not required to complete 
the extraction process. Three levels of magnetization are involved, and 
complete erasure is necessary before recording. 

High-Density Recording. With increased packing density certain 
refinements in extraction techniques become more important. Figure 20c 
and Fig. 20d give some indication of the appearance of the output 
voltage waveforms which are obtained if the bits are packed closer 
together. As packing density increases, a sequence of identical bits has 
a tendency to become one large dipole rather than a series of individual 
dipoles. For this reason, the magnitude of flux change and, therefore, 
the magnitude of the output voltage are greatest at points between 
dissimilar hits and least in the middle of long sequences of identical bits .. 
A common property of all the output waveforms shown is that cells 
which contain l's generate a signal which is more positive in the first 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-37 

half of the cell than in the second half. The opposite is true for cells 
containing a O. This fact is frequently used to advantage in extracting 
data from the output signal. By delaying the output signal and sub­
tracting it from itself, a difference signal is obtained which is positive 
or negative depending on whether a 1 or a 0 has been stored. This 
difference signal may be amplified, clipped, and then sampled at the 
appropriate time to obtain the digital data. This procedure requires a 
synchronizing pulse to insure that sampling takes place at the proper 
time. A time delay which corresponds to one-half a cell will usually be 
appropriate. Note that as the delay decreases the magnitude of the 
difference signal also decreases and a corresponding increase in amplifi­
cation is required. As the delay approaches zero, this procedure amounts 
to taking the derivative of the output signal, and difficulties due to 
noise may be encountered. 

It was previously noted that the magnitude of the output voltage 
would become small in the middle of long sequences of identical bits. 
In some cases, therefore, it will be impossible to determine whether the 
difference signal "indicates a 1 or a O. Since this situation should arise 
only in a sequence of identical bits, the difficulty may be avoided by 
providing logical circuitry which changes any indeterminate bit to corre­
spond to its predecessor. Recording densities up to 900 bits per inch 
have been achieved using the polarized dipole method, but in practice 
densities greater than 200 bits per inch are rarely used. 

Dipole Method. When dipoles are recorded on the tape to represent 
1 's and nothing is recorded for O's, the recording method may be referred 
to as the dipole method. In its simplest form, this method involves the 
erasure of the tape prior to use. Erasing may be accomplished by 
using an alternating current to obtain an unmagnetized surface or by 
using a direct current which will saturate the medium in a direction 
opposite to that which will be employed to record the dipole. Figure 23b 
illustrates what the writing current will be in this case. Note that the 
current returns to zero after each pulse; hence this is an RZ method. 
A variation of this method which eliminates the need for erasure prior 
to use is to maintain a d-c bias in the head at all times during the record­
ing operation. The direction of current is switched momentarily when 
it is desired to record a dipole representing a 1. This variation is 
referred to as the modified dipole method in Fig. 23c, which shows the 
writing current used for this approach. 

The voltage waveform obtained by using the dipole method is similar 
to that shown for the polarized dipole method in Fig. 20b, except that 
no signal is obtained in cells which contain a O. To detect O's, there­
fore, a synchronizing signal is required. 



20-38 DESIGN OF DIGITAL COMPUTERS 

Non-Return to Zero Method. The term non-return to zero, or NRZ, 
refers to a characteristic of several recording methods in which the 
direction of the current is switched in an appropriate fashion to record 
information, but the magnitude of the current does not remain at zero 
for an appreciable amount of time. In general, NRZ methods require 
a synchronizing signal and have heavier recording head duty cycles than 

(a) Writing 
current 

(b) Reading 
voltage 

(c) Reading 
voltage 

I I 0 I 0 0 1 0 1 1 0 
I I 
I I 
I 
I 

FIG. 21. NRZ method of recording. 

the RZ methods. Advantages of the NRZ methods over RZ methods are: 
(1) the erasure of previous information stored on the tape is more 
complete and may be conducted during the reading operation, and 
(2) increased bit densities may be obtained while still using conven­
tional pulse techniques. 

The most common NRZ method makes use of the direction of mag­
netization to determine whether l's or O's are recorded. Although the 
term NRZ refers to a general class of recording techniques, it may also 
be used in reference to only this particular method. The writing current 
for this method is depicted in Fig. 21a. The output voltage waveform has 
been illustrated in Fig. 21b. Conventional pulse techniques may be used 
to extract the data from this signal, and since the flux changes at a 
maximum of only once per cell, bit density may be approximately twice 
that for the polarized dipole method using conventional circuits. Figure 
21c illustrates the appearance of the output voltage waveform when the 
bits are packed closer together. Data extraction in this case may be 
accomplished in a fashion similar to that discussed for high density 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-39 

extraction in the polarized dipole method. Note the similarities between 
the waveforms for both methods at high bit densities. Although high 
bit densities may be achieved with the NRZ method, bit densities greater 
than 400 per inch are rarely used in practice. 

Change-on-One or NRZI Method. A variation of the NRZ method 
of recording is to change the direction of the writing current each time 
a 1 is to be recorded. This approach is known as the NRZI method 
where the I represents the word invert. Figure 23e illustrates the writing 
current for this method. Techniques for data extraction are similar to 

(a) Writing 
current 

(b) Reading 
voltage 

o a o 1 0 1 

FIG. 22. Manchester recording method. 

those discussed previously. If a number of bits are to be recorded 
simultaneously across the width of the tape, use of this method may be 
advantageous since a code may be easily devised in such a way that 
there will be at least one 1 at every character position along the length 
of the tape. This procedure eliminates the need for a separate timing 
track. 

Phase Modulation or Manchester Method. To avoid difficulties 
experienced when long sequences of identical bits are recorded by the 
methods discussed previously, the phase modulation method may be 
employed. vVith this system a 1 is recorded by sending current through 
the head in the positive direction for the first half of the digit interval 
and in the negative direction for the second half. Zeros are recorded in 
the same manner except that the phase is shifted 180 degrees. Figure 22a 
illustrates the writi~g current for this method. Figure 22b gives some 
indication of the output voltage waveform. Note that the voltage in 
the center of each digit interval is positive for l's and negative for O's. 
This signal may be amplified, clipped, and then sampled at the appro­
priate time to obtain the digital data. There are also other means of 
extracting data from this signal which are similar to those already 
discussed for previous recording methods. The approach discussed here 



20-40 DESIGN OF DIGITAL COMPUTERS 

(a) Polarized dipole-method 

(b) Dipole method 

(c) Modified dipole method 

(d) NRZ-

(e) NRZI 

(f) Manchester method 

(g) Frequency doubling method 

I 1 I I t I I lIt, lIt t I ' I 1 ' I 
I I I I I I I I I I I , I I I I , 

, I I I I I', I I I I I I I I I I 1111 
I I I I I I I I , I I I I I I I I , I I I 
I I I II I I I I I I I I I I I I ' I I , II 
I I :n! I Ininlni 'nlni i -H14-~ 
rTTTjTTTTITIT I I I I' I 
I I I I I ' I I I I , , I I. , I , I I I , 
I I I I I I I I I I I I I I , I I I I I I I ,I," I ,I , 

~'~: : I !~qJjJ 
I,Lf 111'lml'l 

I I I I : I I " , , I I I I ' I I , I I I 
I I,' I I n-ti ' '.1 I I I 1'1 I I I 

~ +nn ln ,1=R I I H ,4tt ,\=W 
I, ~I II I II I I I I I I I FA III cittlH III Ii i~ 
r=PIIU~!i: 11q:t1 
I , i I, II i I I Ii; ; i I I iii I I I 
I I I I, I I I , , I' I I I 

I I r 
I I I 'I' I I I I I " I I I I 
I I I I I I I I I I I I I I I I I I I 
I, 1 I I I I 1 I , I' I I , , 
10 [0 iOn! Or 0: 10DI 10 iOo! !O 10 10 1001 01 01 10 10 I 
I UI UI IU IU IUU' IUUI Or '00 1 UI oi n 10 IU IUOI 01 U' - , I , I , I I I I I I I I ii' , I I I 
10' 0 '110 10 111111' 01111 10 10101110 I 0 111010 I 

FIG. 23. Writing currents for various recording techniques. 

is an NRZ method; a similar technique has been developed which involves 
phase modulation using RZ recording. 

Frequency Doubling Method. Figure 23g illustrates the writing 
current for this method of recording. At high bit densities, where this 
method is used, the frequency associated with a 0 will be twice that 
associated with a 1. Through use of appropriate circuitry, data have 
been extracted from signals for bit densities as high as 1100 per inch. 

Tape Transports 

The term tape transport refers to the equipment used to hold the tape 
and move it past the head. Transports consist of two maj or units: 
(1) the tape drive and (2) the tape reel assembly. The drive unit is 
required for starting and stopping the tape, moving it past the head, 
and for controlling tape speed. Except for the considerable emphasis 
on short starting and stopping times mechanical configurations for 
magnetic tape drives are somewhat similar to those used in photoelectric 
tape units; the reader is therefore referred to that section for additional 
information. Magnetic tape reel units are also similar to their counter­
part in photoelectric readers; they supply and take up tape as required 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-41 

by the drive unit. Since it is required to accelerate the tape rapidly 
during start and stop operations, reel units are designed to maintain 
slack tape between the reels and tape drive assembly. This allows the 
reels to accelerate more slowly than the tape and is desirable because of 
the relatively high inertia of the loaded reels and motors which drive 
them. The speeds of these motors are controlled by sensing the amount 
of tape which has been left slack. A number of different sensing tech­
niques have been employed. Use of the follower arms is most common; 

FIG. 24. Follower arm tape transport system. 

other methods include pneumatic control, photoelectric sensing, and 
weight measurement (Ref. 3). 

Figure 24 depicts the front panel of a transport system that uses 
follower arms. The arms are spring loaded and move back and forth 
maintaining tape tension at about 11/2 ounces. The positions of the 
follower arms are sensed, and the signals generated are used to control 
the speed of the reel motors. vVhen sudden changes in tape speed take 
place, the movement of the arms acts as a buffer, and they either let out 
or take up slack until the reel motors catch up. Table 7 lists various 
characteristics of typical commercially available magnetic tape transport 
systems which employ follower arms. 

Figure 25 shows a transport system that employs pneumatic control. 
The tape is drawn into columns by a vacuum, and pressure-sensitive 



20-42 DESIGN OF DIGITAL COMPUTERS 

TABLE 7. TYPICAL CHARACTERISTICS OF MAGNETIC TAPE TRANSPORTS 

Typical tape widths (inches) 
N umber of tracks 
Typical tape speeds (inches/second) 

(rewind speeds may be higher) 
Stop and start time (milliseconds) 
Tape capacity 
Size 
Weight (pounds) 
Power (watts) 
Cost (dollars) 

Tape 
loops 

Surge 
tanks 

Reels 

Tape drive 
~~...:-- unit 

FIG. 25. Pneumatically controlled 
tape transport system. 

t,i,!,1 
6-20 

15, 30, 60, 75, 100, 150 
5.0-1.5 
2500 ft on lO!-in. reels 
2 ft of standard relay rack; depth 1 ft 
150 
500 
30'00-20,000 

switches determine whether the slack 
tape supply is above or below a pre­
determined level. These switches are 
used to control the reel motors and thus 
regulate the supply of tape. Trans­
ports which use pneumatic control are 
generally larger and heavier than the 
follower arm variety, but they often 
have the capability of higher speeds 
with shorter starting and stopping times. 

Auxiliary Equipment 

Auxiliary equipment involving mag­
netic tape units generally falls into the 
category of conversion equipment for 
transferring data to or from the printed 
page, punched tape, and punched cards. 
Since the reading and recording speed 
for magnetic tape units is considerably 
higher than for the other media, buffer 
storage is frequently desirable, and the 
units may be both complex and expen­
sive. There are also commercially 
available units for direct keyboard 
input to magnetic tape. These units do 
not employ a buffer storage, but instead 
move the tape intermittently once for 
each character (Ref. 4). 

Magnetic Cards 

A recent development in the area 
of magnetic recording equipment has 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-43 

been the Magnacard system produced by the Magnavox Company. This 
equipment makes use of a magnetic card which consists of a Mylar base 
(0.005 in.) with a ferric oxide coating (0.0007 in.) protected by a Mylar 
overlay (0.0005 in.). The card measures 1 in. by 3 in., has 17 tracks 
arranged along the length of the card, and has a capacity of 1000 decimal 
digits. These cards are arranged in stacks and are transferred to rotating 
vacuum drums which move the cards to the desired locations. The 
machines are capable of transferring cards between feed-stack stations, 
past reading or recording heads, or between drums. Four basic units have 
been made a vaila ble. 

1. The Transcriber handles input-output operations. It consists of 
two vacuum drums, one feed station, one stack station, a reading head, 
a recording head, and a drum-to-drum transfer station. Cards are taken 
from the feed station, passed under the reading and recording heads, and 
subsequently transferred to the stack station. Data may be recorded 
on the cards or read from the cards; it is also possible to verify what has 
been recorded. The cards are handled at a rate of 100 cards per second. 

2. The Collator accomplishes all card rearrangement functions, includ­
ing sorting, merging, and selection. It consists of four vacuum drums, 
four double drum-to-drum transfer stations, five reversible feed-stack 
stations, two reading heads, one recording head, and two hold stations. 
The unit is capable of executing its operations under control of data read 
from the cards. The speed of the various operations which are conducted 
on this machine depends on the number of passes which are required. A 
typical decimal sorting operation requires four passes, giving an effective 
speed of 1500 cards per minute for each digit. 

3. The File Block is a large capacity magnetic card filing device for 
use with the collator. It consists of two rectangular arrays of 51 magnetic 
card trays; each tray contains up to 3000 cards. The unit measures 28 in. 
by 24 in. by 31 in. In operation the file block is attached to a collator. All 
positioning and selection of trays is under program control. The tray 
array within the file block cabinet is positioned horizontally and verti­
cally to the desired tray, which is then automatically pulled into the 
master feeding station of the collator. Processing of cards in the tray 
commences as described for the collator. After processing, the tray is 
automatically reinserted into the file, and positioning of the next tray 
begins. Positioning, tray extraction, and reinsertion operations require 
about five seconds for each tray. 

4. The Interrogation File is a rapid access magnetic card file. It con­
sists of a set of 40 trays, each holding 3000 magnetic cards, and a vacuum 
drum array which includes four drums, two reversible feed-stack stations, 
a reading head, a writing head, one hold station, three drum-to-drum 



20-44 DESIGN OF DIGITAL COMPUTERS 

transfer stations, and one special file access station. The trays are 
arranged with one side open to the drum array to permit access to a 
segment of 100 cards at a time. All positioning, selection, and processing 
are under program control. In operation, the file is positioned vertically 
to a desired tray, and horizontally to a desired index position within the 
tray. The set of 100 cards is located and extracted, and cards are fed 
continuously into the vacuum drum array. When a match is found, the 
feed is stopped and the desired card circulates on a drum for processing. 
Information can be read, recorded, and verified. When this processing is 
completed, feed is again started and transfer is reinstated from drum to 
drum; cards are finally stacked in the original order in the file. The 
interrogation file also can be used for merging new cards into the file, 
extraction, and other typical card-handling functions. 

6. ANALOG-DIGITAL CONVERSION TECHNIQUES 

General Considerations 

Definitions. An analog to digital (AID) converter is a device 
which converts analog quantities or measurements into digital numbers. 
It may be part of some measuring equipment or a separate unit, and is 
often referred to as a coder. Digital to analog (DI A) converters or 
decoders perform the opposite function. The term analog-digital con­
version refers to both processes and does not specify the direction in 
which the transformation takes place. 

Areas of Application. There are three major classes of systems 
which require analog-digital conversion equipment as shown in Table 8. 
In certain of these applications, digital computers play an important 
role, and the conversion equipment forms a part of the computer's input­
output system. In the area of data handling, conversion equipment may 
be used on-line, but it is more often found associated with off-line 
equipment. In the other categories, conversion equipment associated 
with digital computers is usually operated on-line. 

Characteristics of Conversion Equipment. In evaluating the 
features and performance of conversion equipment the following char­
acteristics are normally considered. 

1. Form of Analog Data. This characteristic refers to the type of 
analog data found associated with the analog-digital conversion equip­
ment. Time, frequency, voltage, and shaft position are the most common 
quantities, and other forms of analog data are most frequently obtained 
or derived from these. 

2. Range of Analog Data. The term range refers to the limits in 
magnitude between which the analog signal may vary. 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-45 

3. Digital Code. Decimal, straight binary, cyclic binary, and the 
8421 code are the most frequently used. The decimal code requires 
ten lines for each digit, but is the most desirable when data are to be 

TABLE 8. ApPLICATIONS OF ANALOG-DIGITAL CONVERSION EQUIPMENT 

Associated 
Conversion with Digital 

System Application Inputs Outputs Required Computers Examples 
Data handling systems 

Data transmission A, D A, D A/D, D/A Rarely Telemetry, 
PCM 

Data logging A D A/D Occasionally Process data 
logging 

Data reduction A D A/D, D / A Frequently Engine tests, 

Digital control systems 

A display wind tunnel, 
aircraft and 
missile tests 

Programmed control D A D/A Occasionally Machine tool 
control, air­
craft and 
missile 
checkout 

Feedback control A, D A A/D, D/A Frequently Aircraft flight, 

Computing systems 
Combined analog- A, D A, D 

digital computation 

Analog computer A, D A 
devices 

A/D, D/A Invariably 

A/D, D/A Never 

missile 
guidance, 
chemical 
processes 

Computing 
installations 
(see Chap. 
30) 

Function 
generators, 
multipliers 
(see Chap. 
23) 

displayed. The 8421 code is next most desirable for data display, and 
the straight binary code is the most suitable one for use as a digital 
computer input. Table 9 provides a comparison of these codes for 
numbers up to fifteen. For additional information concerning codes 
see Chap. 12. 

4. Number of Bits. The precision of conversion equipment is largely 
determined by the number of bits (binary digits) generated or used. 

5. Quantization Error. With AID converters the most precise meas­
urement which can be made corresponds to the least significant bit. 
Error in measurement due to this limited precision is frequently referred 
to as quantization error. 

6. Accuracy. This term refers to the correctness of the measurements 
rather than to their precision. Since some conversion equipment has a 



20-46 DESIGN OF DIGITAL COMPUTERS 

TABLE 9. COMMON DIGITAL CODES EMPLOYED WITH ANALOG-DIGITAL 

CONVERSION EQUIPMENT 

Decimal Straight Binary Cyclic Binary 8421 Code 
0 0000 0000 0000 0000 
1 0001 0001 0000 0001 
n 0010 0011 0000 0010 ~ 

3 0011 0010 0000 0011 
4 0100 0110 . 0000 0100 
5 0101 0111 0000 0101 
6 0110 0101 0000 0110 
7 0111 0100 0000 0111 
8 1000 1100 0000 1000 
9 1001 1101 0000 1001 

10 1010 1111 0001 0000 
11 1011 1110 0001 0001 
12 1100 1010 0001 0010 
13 1101 1011 0001 0011 
14 1110 1001 0001 0100 
15 1111 1000 0001 0101 

tendency to drift, it is often important to speak of accuracy over a 
given period of time without adjustment or calibration. 

7. Holding Characteristics. Frequently it is necessary to hold the input 
signal to an AID converter constant during the time conversion takes 
place. Requirements for holding and the manner in which it may be 
accomplished are referred to as the holding characteristics of a coder. In 
the case of a decoder, it may be necessary to store the digital data or to 
insure that digital data are transferred to the decoder at periodic inter­
vals; this is in order to properly hold or maintain the analog output 
signal. In its simplest form a holding device for a decoder amounts to a 
binary register and converts the impulse outputs of the computer to step 
functions. 

8. Number of Channels. Depending on the nature of the conversion 
equipment, it may be possible to time share various portions of the con­
verter with a number of inputs or outputs. This process is referred to as 
multiplexing. Certain types of conversion equipment lend themselves 
to a multiplexing operation better than others. 

9. Conversion Time. The time required to complete one decoding or 
coding process is referred to as conversion time. 

10. Conversion Rate. This term refers to the number of conversions 
which may be accomplished during a unit interval of time. The conver­
sion rate of some coders varies according to certain characteristics of the 
input analog signal. 

11. Total Value and Incremental Methods. Certain types of analog-



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS "20-47 

digital conversion equipment obtain a complete new value at each con­
version whereas other types change their output only in small incremental 
steps. 

12. Feedback and N onfeedback AI ethods. Some types of analog-digital 
conversion equipment conduct the actual conversion on the output signal 
rather than on the input. The data obtained in this fashion are compared 
with the input, and an error signal is developed. This error signal is 
used to adjust the output and thus reduce itself to zero. Nonfeedback 
methods are straightforward and do not involve comparison. 

13. Direct and Indirect Conversion. Indirect conversion is used- here 
to imply that the analog data are converted to another analog form 
before use. Such conversion is frequently employed when it is necessary 
to obtain or measure analog quantities other than time, frequency, volt­
age, or shaft position. In this case, however, the analog-to-analog equip­
ment is often completely dissociated from the analog-digital conversion 
equipment, and thus is not discussed in this chapter. In some cases 
where indirect methods are employed, the analog-to-analog conversion 
involves the quantities listed above and is directly associated with the 
analog-digital conversion equipment. Examples of these particular in­
direct conversion methods are given later. 

Requirements on conversion equipment from the point of view of the 
characteristics listed above are determined to a considerable extent by 
the analog portion of the system and are therefore not discussed here. 
For a more overall treatment of systems which employ both analog and 
digital quantities see Chaps. 28, 29, and 30 and Vol. I, Chap. 26. 

The rem"aining portions of this section include various examples of 
analog-digital conversion techniques. No attempt has been made to li3t 
all methods which have been developed, but those given should serve to 
illustrate the most common techniques presently employed. Since the 
primary concern here is with input-output equipment for digital com­
puters, the examples given are almost all straight binary code devices. 

Analog to Digital Conversion 

Time Interval. An example of a common method for converting the 
duration of time between two pulses to a binary number is illustrated in 
Fig. 26. \Vith the flip-flop and binary counter initially set to 0, the first 
timing pulse will set the flip-flop to the 1 position and start the counting 
cycle. The second pulse will reset the flip-flop and stop the counting 
cycle. Thus an appropriate binary number will be left in the counter. 
After the number is sampled by the computer, the counter is reset to ° 
in preparation for taking the next measurement. Eliminntion of the 
flip-flop makes it possible to measure the time durn.tion of the received 



20-48 DESIGN OF DIGITAL COMPUTERS 

pulses rather than the time interval between pulses. Increased precision 
of measurement may be obtained by increasing the frequency of the 
oscillator. Above 10 megacycles, however, counting is somewhat im­
practical and vernier techniques, which do not require high counting 
rates, are resorted to for more precise measurements (Ref. 5) . 

1st 
2nd 

Flip-flop and gate Binary counter Reset to 
~-----~) I ~ zero 

tlllll!!ll! 
Digital output 

Pulse generator 

FIG. 26. AID time conversion. 

An indirect method of converting time can be developed with a ramp 
generator. The voltage obtained from the generator may be converted 
to a digital number as described later. 

Frequency. A method for obtaining a digital representation of fre­
quency is illustrated in Fig. 27. An oscillator with a frequency lower 
than that being measured is used to establish a fixed time interval 

~FIiP-fIOP and gate Binary counter 

Digital output 

Input frequency Pulse shaper 

FIG. 27. AID frequency conversion. 

Reset to 
zero 

between two pulses. These pulses gate the input signal to be measured 
into a binary counter for this fixed amount of time. The number ob­
tained in the counter will be a measure of the frequency. 

An indirect method of converting frequency is to establish a time 
interval by counting a fixed number of input cycles. This time interval 
may then be converted to a digital number as previously described. 

Voltage. lVIany voltage-to-digital converters make use of feedback 
techniques discussed later. There are, however, a number of straight­
forward techniques. 

Cathode Ray Tube. A diagram of a cathode ray tube which may be 
used for voltage AID conversion is shown in Fig. 28 (Ref. 6). The 
voltage to be converted is applied to the vertical deflection plates. When 
a readout is desired, a sweep voltage is applied to the horizontal deflec-



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-49 

tion plates. As the beam sweeps across the face of the tube, it will 
strike the output plate only if it is directed at an opening in the aperture 
plate. Brief study of the aperture plate depicted in Fig. 28 will show 
that if the vertical deflection remains constant during a sweep, the signal 

-"-nrTT""rri--t- ----t-+ --+-=-- 0 

Aperture plate 

Deflection 
plates 

FIG. 28. Cathode ray tube for AID voltage conversion. 

which appears on the output plate will be a serial straight binary 
representation of the input voltage. The quantizing grid wires and 
collector are used to generate a signal which is fed back to the vertical 
deflection plates in order to insure that the vertical deflection of the beam 
remains constant and in the center of quantum level during the time it is 
swept across the aperture plate. Since this circuit is made inoperative 
after completing a sweep, the input voltage is free to move the electron 
beam to any other quantum level before each new measurement is made. 
This conversion method is particularly suited to applications where short 
conversion times on the order of 10 microseconds are required. The cy­
clic binary code has also been used with this method (Ref. 7). 

Ramp Method. The ramp method is an indirect voltage-to-digital 
con-version technique in that voltage is first converted to a time interval 
and then to digital form. A simplified block diagram for such a scheme 
is illustrated in Fig. 29. The upper portion of the diagram is identical 
with Fig. 26 and has been discussed previously as a method for convert­
ing from time to digital. In the lower portion of the diagram there is 
equipment for generating a ramp function which is compared with the 
input analog signal to be converted. Upon detection of coincidence be­
tween the input signal and ramp function, the coincidence detector emits 
a pulse which is used to stop the counting cycle. The binary number left 
in the counter thus represents the magnitude of the input voltage at the 
time the counting cycle was completed. After the computer samples the 
binary register, both the register and the ramp generator are reset to 0 
in preparation for taking the next measurement. 

A variation of this a~p'proach is to generate a ramp type function which 



20-50 DESIGN OF DIGITAL COMPUTERS 

consists of a series of small step functions rather than a smooth con­
tinuous slope. The rate at which the function increases is controlled by 
the oscillator, and one incremental step is made in the ramp each time 

Flip-flop 
Sample o----~ 
pulse 

V(t) Analog input 

and gate 

Pulse gene;"ator 

Binary counter 
Reset to 

Coincidence detector 

FIG. 29. Ramp method for AID voltage conver~ion. 

the counter is pulsed. In this fashion the requirement for correlation 
between the slope of the ramp and the oscillator frequency may be 
eliminated. This technique is almost logically equivalent to the con­
tinuous balance feedback method discussed later. 

Analog input -.,----
I 
I 
I 

Voltage I 
comparatc~-;-t...l-__ 

L1_J 

o----'-----=}---------L----=}----____ ...1.. __ _ 

\~-----v------
Digital 'outp~t 

FIG. 30. Cascaded stages voltage-to-digital conversion. 

Cascaded Stages. Figure 30 illustrates a method for converting volt­
age to a digital number by successive comparisons and subtractions 
(Ref. 8). At each stage the input voltage is compared with the reference 
voltage and then on basis qf the comparison either a 0 or a 1 is read out. 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-51 

If a 1 is read out, the reference voltage is subtracted from the input 
voltage; the result is multiplied by two and fed to the next stage. If a 0 
is read, only the multiplication by two takes place. 

Shaft Position. Three maj or classes of conversion methods are asso'" 
ciated with AID shaft position converters: (1) coded pattern methods, 
(2) incremental pattern methods, and (3) indirect conversion methods 
involving voltage or time. Although the discussion here is limited to the 
shaft position type converter, devices which employ techniques similar 
to those discussed have been developed for other types of mechanical 
motion such as translation. 

_---~-Read pulse 

Digital output 

FIG. 31. Straight binary code wheel. 

Coded Pattern Methods. The most common shaft position to digital 
converters make use of a code wheel and direct reading techniques. 
Reading is accomplished by using either mechanical brushes or photo­
electric cells. The code wheel is designed to give a digital output, which 
is a function of the angular position of the shaft. The most common 
function, of course, is a linear representation of the angular position; 
others available include sine or cosine of the angular position. The 
digital output may be in one of several codes; straight binary, binary 
coded decimal, and cyclic binary are common. Figure 31 illustrates a 
straight binary coded wheel. Only the three least significant bits are 
shown. The black areas represent interconnected conducting material and 
the small dots represent brushes. The read pulse will appear on any of 
the output lines that are resting on the conducting material. Photo­
electric cells and a light source can be used with nn aperture in a some­
what similar arrangement. 



20-52 DESIGN OF DIGITAL COMPUTERS 
I 

Ambiguities. A problem ass9ciated with coded pattern devices is the 
ambiguous reading which may result when two or more bits are required 
to change at the same time. For example, if the wheel in Fig. 31 were 
reading between (000) 2 and (111) 2, any other number between these two 
would be obtainable by offsetting the brushes or conducting material only 
a sm'all amount. There are several methods of preventing this ambiguous 
representation of binary numbers, and these are discussed below. 

Cyclic Binary Codes. Use of the cyclic binary code is one popular 
method. Such a wheel has been illustrated in Fig. 32. This figure, or a 
study of Table 9, will show that no more than one bit changes at any 
given time. Thus it is ensured that the digital number obtained is never 
off from the correct value by more than bnecount. Logical circuitry 
for converting from cyclic binary to straight l?.inary code is also shown 
in Fig. 32. Rules for this code conversion are given in Chapter 18, 
Sect. 3. 

Dual Brush Method. Figure 33 illustrates another antiambiguity 
scheme which alleviates this difficulty by allowing only one of two num­
bers to be read from the wheel as it turns from one number to another. 
Its operation may be understood by realizing that so long as the least 
significant brush is on the black or conducting material an improper 
reading will not result if the remaining brushes are displaced from the 
reading azimuth by a small angle in a clockwise direction. Likewise, so 
long as the least significant brush is on the white or nonconducting ma­
terial, an improper reading will not result if the remaining brushes are 
displaced from the reading azimuth by a small angle in a counterclock­
wise direction. A study of the logic will show that this in effect is what 
is accomplished. By doing this it can be seen that: 

1. Switching for all bits takes place simultaneously, and therefore 
ambiguous results are not obtained. 

2. The exact position of the wheel at which switching takes place is 
determined solely by the outside, least significant track. 

3. Misalignment of the least significant brush results in only a constant 
bias error. 

4. Misalignment of the other brushes by a small amount does" not 
affect what is read. 

5. Except for the least significant track, the accuracies of the tracks 
are not critical. 

6. Except for the least significant track, all switching takes place after 
the brush has made contact. 

7. The track which is critical is on the outside where more accuracy is 
possible. 



INPUT.OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20·53 

Reading 
azimuth -HH-r----I-: 

21 

Digital output 

FIG. 32. Cyclic binary code wheel. 

Reading -++-t-I--.---.-f-
azimuth 

21 
Digital output 

FIG. 33. Dual brush method. 

Inverters 

and gate:> 

and gates 



20-54 D-ESIGN OF DIGITAL COMPUTERS 

V Brush Method. Figure 34 illustrates a variation of the previous 
scheme and is referred to as the V brush method. Here the particular 
brushes which are used are not determined solely by the least significant 
brush. Instead the particular brush used is dependent on what is read 
from the next least significant bit. However, the operation may be under-

Reading ---1--4--1-- -+-__ _ 
azimuth 

21 

Digital output 

FIG. 34. V brush method. 

Inverters 

and gates 

stood in the same way as the previcus scheme, and the list of advantages 
all apply; an additional advantage is that the placing of the brushes in 
the more significant positions is even less critical than before. This is 
desirable of course, since the circumference of the tracks gets smaller as 
they approach the center of the wheel. Note that the logic required for 
brush selection is similar to that shown for cyclic to binary conversion 
in Fig. 32. 

A disadvantage of the above anti ambiguity schemes is that external 
logical circuitry is required. This is not acute if a number of converters 
are to be used, since this logical circuitry may be time shared and little 
cost will result from an overall point of view. Figure 35 illustrates a 
converter which, for the most part, avoids the necessity for external 
logic by accomplishing most of the required logical functions on the 
wheel itself. The elimination of external logic is paid for by increasing 
the number of brushes and complexity of the wheel. This method is 
referred to as the self-switching V brush method. 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-55 

Multispeed Coders. In order to increase the precision of measure­
ment without incurring problems associated with providing numerous 
tracks on a single wheel, many code wheel converters employ a second 
wheel which is coupled to the first through a reduction gear train. These 
units are referred to as multispeed coders. Although considerable care 
must be exercised in coupling the input shaft to the converter, no serious 
difficulty arises in the design of the gear train between the two wheels. 

r---------------------~------------------~22 

r----------.------------~21 

Digital output 

Inverter 

FIG. 35. Self-switching V brush method. 

This is because various antiambiguity schemes may be employed to elimi­
nate the effects of backlash etc. The V· brush method appears to be the 
most practical approach. For converters which employ the cyclic code, it 
is possible to eliminate improper reading by providing redundant tracks 
on the two wheels and logical circuitry which makes the necessary 
corrections. 

Typical Code Wheel Converters. Table 10 provides data on typical 
commercially available code wheel converters. Some remarks are in 
order concerning what has been presented. First it will be noted that 
photoelectric code wheels normally employ the cyclic binary code. This is 
because the other antiambiguity methods do not lend themselves particu­
larly well to an optical mechanization. Secondly it may be inferred 
from the figures for the number of bits and counts per revolution that 
the photoelectric code wheel converters employ a single wheel whereas 
brush type devices are often multispeed converters. The rel:tdout rate 
for photoelectric coders is usually limited by the flash lamp. Continuous 



20-56 DESIGN OF DIGITAL COMPUTERS 

TABLE 10.' SOME TYPICAL CHARACTERISTICS OF COMMERCIALLY AVAILABLE 

CODE WHEEL CONVERTERS 

Mechanical Brush 

Heavy Duty Light Duty Photoelectric 

Digital code Binary, binary coded Binary, binary coded Cyclic binary 
decimal, decimal decimal, cyclic bi-

nary 
Readout Linear Linear Linear, sine, cosine 
Number of bits 10-15 7-19 13-18 
Counts per revolution 10-64 128-256 21L218 

Maximum readout rate 
(per .second) 2 106 100 (w /flash lamp) 

Maximum rotation 
speed (rpm) 1800-12,000 200-1500 50-1200 

Operating torque (inch-
ounce) 0.1-0.8 0.2-0.8 0.1-0.2 

Contact rating (am-
peres) i-I 0.002-0,020 

Housing length (inches) 3-6 1-5 3-7 
Housing diameter 

(inches) 2-3 It-3 4-15 
Weight (pounds) 2 i-2 1-4 
Cost $200-700 $200-700 $4500 

lighting may be used, but this complicates the sensing circuitry since 
the light-dark adjustments are more critical. The readout rate for 
heavy-duty coders is shown considerably lower than that for the rest 
because frequently the brushes are lifted on these devices while the 
wheel is in motion, and time is required to move them back into position. 
For this reason, however, much higher operating speeds are possible. 
The speeds shown for the other devices are given on the assumptio!l that 
they are read on the fly. However, the figure of 1500 rpm would be 
applicable for only short periods of time, and 200 rpm would be closer 
to the upper limit for continuous operation without undue brush wear. 
In this regard it should be remembered that if it is desirable to gear up 
to the converter in order to allow the full digital range to correspond 
with one revolution of the input shaft, the maximum speed of the input 
shaft must be even lower. 

Incremental Pattern Methods. Converters in this class of position 
to digital devices generate a signal each time the position is changed by 
an incremental amount. A digital representation of the position is 
obtained by summing these incremental signals. An example of such a 
device is illustrated in Fig. 36. Photoelectric cells sense the movement 
of the slotted disk, and the interpreting circuit. determines whether the 
number in the counter should be increased or decreased by one increment. 
Note that once an error occurs with this configuration, the readout will 
remain incorrect until another compensating error is made. Some incre­
mental pattern d~vices limit this possibility by providing error correcting 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-57 

circuitry. Although photoelectric cells have been shown in the diagram, 
other means are also available for sensing movement. :Magnetic record­
ing techniques and commutator-brush arrangements have been frequently 
utilized in this connection. 

Note that incremental pattern devices may also be used for measuring 
speed. The frequency of the incremental signals may be obtained in 
digital form by a method previously discussed and thus will provide 
appropriate digital rate data. 

I Slotted 

Light /0- disk 
source Q ........... -1---

Shaft input 

Light 5""0-1 __ _ 
source "-.:-1 

Photocell 

Photocell 

Count up 

Sensing 
device 

FIG. 36. Incremental pattern device. 

Cinary counter 

Digital 
output 

Indirect Methods. A typical indirect method for shaft to digital 
conversion involves an intermediate conversion of shaft position to volt­
age and the su hsequent conversion of the voltage signal to digital form 
by means previously discussed. Perhaps the simplest method of effecting 
the intermediate conversion is through the use of a potentiometer 
mounted directly to the shaft which is to be measured. 

Another common indirect conversion method involves an intermediate 
conversion of shaft position to time in the form of phase angle between 
two a-c voltages. Use of synchros is one popular means of obtaining the 
required phase shifted signals. 

Digital to Analog Conversion 

Time Interval. One of the most common approaches taken for 
generating a time interval which corresponds to the magnitude of a 
binary number is illustrated in Fig. 37. A start pulse that is received 
at the beginning of each cycle forms the first output pulse and is used 
to gate the complement of digital word to be converted into the binary 
counter. In addition, it sets the flip-flop to the 1 position and thereby 
enables the and gate. The resultant train of pulses which pass through 
the and gate increases the stored number by one count for each pulse 



20-58 DESIGN OF DIGITAL COMPUTERS 

transmitted. A stop pulse is generated by the counter when it overflows. 
This' stop pulse forms the second output pulse and is used to reset the 
flip-flop to 0 and thereby disables the and gate. The conversion unit 
then waits idle until the next start pulse is received. The signal at x can 
also be used as an analog output since the duration of the pulse which 
appears at this point corresponds to the binary number being converted. 

The precision obtained with this method is limited by the counting 
rate. Rather than using frequencies above 10 megacycles for greater 
precision, it is usually better to employ the least significant bits to gate 
short delay lines in or out of the output line. 

Start pulse from computer 

x 

Pulse generator 

or gate 

- }rom computer 

Binary and 
counter gates 

FIG. 37. D/A time conversion. 

Output 

Voltage. Two general D/ A methods for obtaining voltage are con­
sidered here: (1) resistance network methods and (2) RC network 
methods. The first of these provides the greater accuracy while the 
second approach will usually lead t~ a configuration which requires the 
least amount of circuitry. 

Resistance Network Methods. This general category of methods 
involves the gating of constant voltage or constant current sources into 
appropriate points of a resistance network or the modification of the 
values of resistances in a network so as to obtain an output voltage 
which is proportional to the number being converted. Two examples 
are illustrated. Figure 38 shows a current summation method that makes 
use of flip-flops which deliver zero current when in the zero state and 
some fixed current, I, when in the one state. Similar circu,its are easily 
developed for constant voltage sources, but in general use of current 
sources entails fewer circuit design problems when electronic switching 
is required. If requirements on conversion rate are not severe, relays or 
other electromechanical switching devices can be used to good advantage. 
Figure 39 illustrates an appropriate circuit in this case. Study of the 
diagram will show that it functions as a digital potentiometer. Numerous 
other network configurations are possible, and those given here should 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-59 

Constant current 
flip-flops 

Digital 
input 

----------,------';~Eout 

R 

Least significant 
bit 

FIG. 38. Current summation digital-to-voltage conversion. 

where n = number of bits 
.N = magnitude of the binary number 0 ~ N ~ 2 n 

- 1 

- - - - - --1---4--·-> 

FIG. 39. Digital potentiometer-digital-to-voltage conversion. 

rk = r o2-k, k = 0, 1, 2, ... , n - 1 

Eoo. ~ [(2' -: + ~JN 
where n = number of bits 

N = magnitude of the binary number 0 ~ N ~ 2 n - 1 

All switches are shown in the 0 position. 



20-60 DESIGN OF DIGITAL COMPUTERS 

only serve to illustrate a general approach. Often the output of these 
networks is buffered by using a d-c operational amplifier. 

Re Network Methods. Figure 40 shows a simple RC network which 
can be used for DI A voltage conversion. The flip-flop shown delivers 
either zero or some fixed value of current depending on its state and is 
driven by a pulse train which corresponds to the binary number being 
converted. Numerous methods are available for generating an appro­
priate sequence of pulses, and the particular method chosen usually 
depends to a large extent upon holding requirements. 

Constant current flip-flop 

Pulse train from --~ 
a digital device --~ Eout 

FIG. 40. RC network digital-to-voltage conversion. 

Shaft Position. There are three general classifications of methods 
for converting a digital number to a shaft position: (1) use of quantized 
motor devices, (2) feedback methods such as those discussed in the next 
section, and (3) indirect methods. A typical example of the third 
category has been provided in the discussion of plotters where a digital 
number is first converted to a voltage and then, through the use of 
standard servo techniques, into position. 

In the first category, a train of pulses is usually generated which 
corresponds to the desired incremental change in position. This pulse 
train can be fed to anyone of a number of devices such as a stepping 
motor or rotary solenoid. 

Feedback or Comparison Techniques 

General Method. All the various analog-digital conversion tech­
niques which have been described thus far have been straightforward in 
the sense that signals were transformed into the desired type of quantity. 
A second class of techniques involves feedback methods in which actual 
conversion takes place in the direction opposite to that required. Figure 
41 illustrates block diagrams for two such methods, Fig. 41a for AID 
conversion and Fig. 41b for DI A conversion. In both these cases a wide 
latitude of possible circuits is available and nearly all the techniques 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-61 

discussed thus far could be incorporated in one of these two schemes. A 
few of the more practical configurations are discussed below. 

D/ A Shaft Conversion. A method for converting a digital number 
to a shaft position is shown in Fig. 42. Here a number which has been 

Error 
Digital switching Analog input Analog signal 

comparison circuits and 
register 

Digital output 

! 
D/A I I converter 

(a) 

Digital input 

I----,------;~Analog output 

(b) 

.T!'IG. 41. General feedback method: (a) for AID conversion, (b) for DI A 
conversion. 

Digital input 
to computer r-'-'--'-1...L.L..L.&..., 

FIG. 42. D I A shaft conversion using feedback. 

generated during computation by the computer represents the required 
shaft position. The computer samples the number in the shaft position 
converter and then, on the basis of a comparison of the two digital 
numbers, issues a discrete error signal that drives the motor toward the 
correct shaft position. This procedure would be used in situations where 
very accurate positioning was required. 



20-62 DESIGN OF DIGITAL COMPUTERS 

AID Voltage Conversion. The two methods illustrated in Fig. 43 
and Fig. 44 employ a feedback technique which is referred to as the 
continuous balance method. In Fig. 43 the digital-to-voltage portion 

Anall'lg input Reversible counter 
-1 

Clock pulses 

E==~EE Digital 
I=::;::+rn:t=~ output 

FIG. 43. Continuous balance voltage-to-digital conversion. 

of the circuit has not been specified, but any method that is sufficiently 
accurate and fast might be used. The output of the D/ A converter is 
compared with the analog input signal. The resultant error signal 

Analog input 

! A-c amplifier 

~ 
Chopper 

Relay stepping switches 
r-------, Count up 

Phase 
sensing Digital 
circuitry Count down /" output 

Lf:~:...J"-----:/4 / //' 

I / (/ 
L --------./ I 

I 
I Reference 

voltage 

Digital 
potentiom~ter 

FIG. 44. Electromechanical continuous balance voltage-to-digital conversion. 

is clamped and used to control the direction in which the counter is 
stepped. Figure 44 illustrates an electromechanical converter which is 
typical of those used in digital voltmeters. A study of the diagram will 
show that it is logically equivalent to the one previously discussed. 

If either of the two methods discussed above have n bits in the output, 
then 2n - 1 steps are required to cover the entire range. For this reason 
another feedback method is more appropriate when speed is important 
and n must be large. 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-63 

Successive Approximation Method. This second method is referred 
to as the successive approximation method and although it makes a 
complete new measurement each time digital data is sampled, it requires 
only n steps to complete the measurement. Figure 45 illustrates a 
simplified version of such a converter. The diagram is the same as that 
shown in Fig. 45 except that the binary register is adjusted in a different 
fashion. At the beginning of the sampling interval each flip-flop is set 
to zero by a clock pulse. The numbered circles represent consecutive 

Ana log input .--:::----:------, 
o ~----~----~ 

FIG. 45. Successive approximation voltage-to-digital conversion. 

Digital 
output 

clock pulses following the original one and may be generated by a com­
puter or an oscillator and a ring counter. The operation is as follows. 
The most significant digit is switched on at time 1. If this is larger than 
the input voltage, it is switched off; if smaller, it remains on. The 
same procedure is repeated at times 2,3,"', 2n - 1, 2n. It should be 
noted that the circuit requirements may be simplified by allowing pulses 
2 and 3, 4 and 5, etc., to occur simultaneously. This converter lends 
itself well to time-sharing techniques and only a minimum of cOHtrol 
circuitry is required to switch from one analog input to another. 

Plotters 

Requirements. Frequently the results obtained from digital com­
puter runs are so voluminous that considerable effort is required on the 
part of the user to make practical use of the data. Editing by pro­
gramming is a partial solution to this problem, but often it is difficult, 
if not impossible, to program in the required "judgment." Another 
solution to the rapid assimilation of data by the user is through the use 



20-64 DESIGN OF DIGITAL COMPUTERS 

of display devices such as plotters. This approach provides a means 
whereby the user may intelligently and rapidly accomplish his own 
editing. The discussion which follows concerns the use of plotters as 
digital computer output devices and gives some indication of the D/ A 
equipment normally associated with them in this application. 

Continuous and Discrete Plots. Both continuous and discrete plot­
ting are often possible with commercial plotters. Choice of the most 
appropriate mode is to a large extent determined by the number of 
points to be plotted and the distance between them. In general, the 
points are close together when there is a great number to plot. As the 

Vref lJ 
~ I---~ 
.~ 

"t:J 

Vref 
J§ 
"ga 
o ~P~lo-t~co-m-p-le-!e--------7-----~ 

To pen· 
so:enoid 
circuit 

I 

Chopper 

2¢ motor I 
.--...---J'---____ -,. G-__ L __ - - ;:-a~;-driv~ 

Vref G 
FIG. 46. Circuitry for discrete plotting. 

number of points increases, the importance of plotting speed also tends 
to increase. This is compatible with plotter characteristics since speed 
of plotting increases as the distance between points decreases. Discrete 
plotting is the most desirable in the sense that it presents a more intrinsic 
representation of digital data. This is particularly true when the points 
are far apart since the trace between points provided by a continuous 
plot has little significance other than the response of the plotter to a unit 
step function. On the other hand, if speed of plotting is important, 
continuous plotting is more appropriate since there is no requirement 
to actuate the pen each time a point is plotted and data may therefore 
be accepted at higher rates. The trace obtained between points in this 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-65 

case is usually insignificant since the points are likely to be close together. 
Plotter Operation. A simplified block diagram of plotter used to 

plot discrete points is illustrated in Fig. 46. By removing the null 
detector and flip-flop, the plotter circuit would be suitable for continuous 
plotting. The digital device represented on the left may be a computer 
or some item of off-line equipment. The D/ A converters are generally 
of the resistance network variety discussed previously. All-electronic 
converters are required for high-speed plotting whereas electromechanical 
converters are satisfactory for slow speed plotting. 

TABLE 11. TYPICAL CHARACTERISTICS OF COMMERCIAL PLOTTERS 

Plotting board size 
(inches) 

Slewing speed 
Maximum plotting speeds 
Static accuracy, including 

point plotting 
Dynamic accuracy, at 

normal plotting speeds 
. Maximum plotting rate 

Pen or arm acceleration 
(maximum) 

Sensitivity 
Paper hold down 
Size (inches) 
Weight 
Power requirements 
Cost 

Table or Rack Mounted 

8! X 11-11 X 16! 
20 in./sec 
5-12 in./sec 

.075-0.25% full scale 

0.1-0.5% full scale 
1-10 points/sec 

100-750 in./sec2 

0.5 mv/in.-10 volts/in. 
Mech. or vacuum-mech. 
24 X 19 X 10 
25-751b 
60-300 watts 
$2000 

Console 

30 X 30 
20 in./sec 
9 in./sec 

0.05% full scale 

0.10% full scale 
1-10 points/sec 

100-350 in./sec2 

50 mv/in.-lO volts/in. 
Vacuum-mech. 
50 X 45 X 40 
500-10001b 
500-2000 watts 
$10,000 

The outputs of the D/ A converters are compared with voltages which 
represent the position of the pen. If the D / A converters are of the 
digital potentiometer variety, these comparison circuits in effect form 
bridge type null detectors. The magnitude of the a-c voltages generated 
by the choppers represents the error, and the phase of these voltages 
represents the direction or sign of the error. After the a-c voltages have 
been amplified, they are fed to phase sensitive servo motors which drive 
the pen toward the correct position. Some commercially available 
plotters have tachometers mounted on the drive shafts. The signals 
generated by these tachometers are fed back to the amplifiers for damp­
ing purposes. Others make use of RC networks to obtain damping. Just 
after the digital words have been inserted into the D / A converters, the 
digital device shown on the left sends a plot command pulse. This pulse 
sets the flip-flop and thereby enables the null detector. When the pen 



20-66 DESIGN OF DIGITAL COMPUTERS 

has reached the correct position on both axes the null detector generates 
a plot complete signal which causes the pen to plot a point and signals 
the digital device that the plotter is ready to accept the next set of data. 
In addition, this signal resets the flip-flop and thus, in effect, turns itself 
off in preparation for plotting the next point. An a-c amplifier and 
chopper have been shown in the diagram since this mechanization is 
characteristic of commercially available plotters. When D/ A converters 
are of the digital potentiometer type, the choppers may be eliminated by 
using an a-c voltage source in lieu of the d-c source shown. Many 
variations of the scheme shown here are possible, and a number of them 
are used in commercial equipment. Table 11 lists various characteristics 
of commercially available plotters together with representative data. 
The discussion here has been limited to the x-y type plotter; strip charts 
and printing devices may also be used for plotting digital data. 

REFERENCES 

1. H. M. Smith, The typotron, a novel character display storage tube, I.R.E. 
Convention Record, Pt. 4, 129-134, March 21-24, 1955. 

2. H. Epstein and F. Innes, The electrographic recording technique, I.R.E. Con. 
vention Record, Pt. 4, 135-138, March 21-24, 1955. 

3. S. Baybick and R. E. Montijo, Jr., An RCA high performance tape transport 
system, Proc. Western Jt. Compo Conf., 52-56, Feb. 26-28, 1957. 

4. Louis D. Wilson and Saul Meyer, The model II unityper, Trans. I.R.E. PGEC, 
EC-2, No.4, 19-27, Dec. 1953. 

5. D. W. Burbeck and W. E. Fra'dy, Precision automatic time measurement equip­
ment, Hughes Aircraft Co., Culver City, presented at LR.E. National Convention, 
New York, March 5, 1952. 

6. R. W. Sears, Electron beam deflection tube for pulse code modulation, Bell 
System Tech. J., 27 (1),44-57 (1958). 

7. H. J. Gray, Jr., P. V. Levonian, and M. Rubinoff, An analog-to-digital converter 
for serial computing machines, Proc. I.R.E., 41, 1462-1465, Oct. 1953. 

8. W. S. Shockency, Multi-channel analog-digital conversion system for d.c. volt­
ages, Proc. Western Compo Conf., AlEE, 113-117, Apr. 1954. 

9. Taylor C. Fletcher and Norman C. Walker, Analog measurement and conversion 
to digits, ISA J., 2, 345, Sept. 1955. 

- 10. Ivan Flores, Reflected number systems, Trans. I.R.E. PGEC, EC-5 (2), 79-
82, June 1956. 

11. R. Hunt Brown, Office Automation, Automation Consultants, Inc., New York. 
12. W. F. Bauer, Input-output equipment, Chap. 10, Automation in Business and 

lndustry, E. M. Grabbe, Editor, Wiley, New York, 1957. 
13. Bernard S. Benson and George G. Bower, Analog-to-digital conversion units, 

Chap. 9, Automation in Business and Industry, E. M. Grabbe, Editor, Wiley, New 
York, 1957. 

14. J. M. Carroll, Trends in computer input-output devices, Electronics, 29, 142-
149, Sept. 1956. 



INPUT-OUTPUT EQUIPMENT FOR DIGITAL COMPUTERS 20-67 

15. M. Phister, Logical Design of Digital Computers, Chap. 8, Wiley, New York, 
1958. 

16. J. A. Brustman, K. L. Chien, D. Flechtner, Input and output devices of the 
RCA BIZMAC system, I.R.E. Convention Record, Pt. 4, 88-93, March 19-22, 
1956. 

17. James W. Forgie, The Lincoln TX-2 input-output system, Proc. Jt. Camp. 
Conf., 156-160, Feb. 26-28, 1957, Los Angeles, Calif. 

18. Heview of input and output equipment used in computing systems, Jt. AIEE­
IRE-ACM Camp. Conf., Dec. 10-12, 1952, published March 1953. 

19. D. T. Olmsted, Charactron shaped beam tube, Military Automation, 138-140, 
May-June 1957. 

20. E. M. DiGiulio, Burroughs G-I01 high speed (matrix) printer, I.R.E. Conven­
tion Record, Pt. 4, 94-100, March 19-22, 1956. 

21. C. B. Tompkins, J. H. Wakelin, W. W. Stifter, Jr., High Speed Computing 
Devices, 146-181, McGraw-Hill, New York, 1950. 

22. D. F. Brower, A "one turn" magnetic reading and recording head for com­
puter use, I.R.E. Convention Record, Pt. 4, 95-100, March 21-24, 1955. 

23. R. K. Richards, Digital Computer Components and Circuits, Chaps. 7 and 11, 
Van Nostrand, Princeton, N. J., 1957. 

24. M. V. Wilkes, Automatic Digital Computers, pp. 168-188, Wiley, New York, 
1956. 

25. S. Lubkin, An improved reading system of magnetically recorded digital data, 
Trans. of the I.R.E. PGEC, EC-3 (3), Sept. 1954. 

26. A. Dean Glick, High-speed digital-to-analog conversion by integration of a 
variable-rate pulse train, Proc. Western Jt. Compo Con}., 128-133, Feb. 26-28, 1957, Los 
Angeles, Calif. 

27. A. K. Susskind, Notes on Analog-Digital Conversion Techniques, Technology· 
Press of M.I.T., and ""Viley, New York, 1957. 

28. M. Rubinoff and R. H. Beter, Input and output equipment, Control Eng., 
3, 115-123 (1956). 

29. P. Partos, Industrial data-reduction and analogue-digital conversion equipment, 
J. Brit. Inst. Radio Eng., 16, 651-678, Dec. 1956. 

30. K. R. Eldredge, F. J. Kamphoefner, and P. H. Wendt, Automatic input for 
business data-processing systems, Proc. Eastern Jt. Compo Conf., December 10-12, 
1956, New York, 69-72 (1957). 

31. D. N. MacDonald, Datafile-a new tool for extensive file storage, Proc. East­
ern Jt. Compo Conf., Dec. 10-12, 1{)56, New York, 124-127 (1957). 

32. H. Epstein and P. Kinter, The Burroughs electrographic printer-plotter for 
ordnance computing, Proc. Eastern Jt. Compo Conf., Dec. 10-12, 1956, New York, 
73-80 (1957). 

33. A. K. Susskind, Characteristics and appraisal of analog-digital conversion tech­
niques, Proc. Compo in Control Conf., October 16-18, 1957, Atlantic City, AlEE, 
T-I01, 26-29, May 1958. 

34. D. H. Shepard, P. F. Bargh, C. C. Heasly, Jr., A reliable character sensing 
system for documents prepared on conventional business devices, I.R.E. 1957 Wescon 
Convention Record, Pt. 4, 111-120. 

35. F. Bauer, The Burroughs 220 high speed printer system, Proc. Western Jt. 
Compo Conf., March 3-5, 1959, San Francisco. 

36. R. M. Hayes and J. Wiener, Magnacard-a new concept in data handling, 
I.R.E. 1957 Wescon Convention Record, Pt. 4, 205-210. 



20-68 DESIGN OF DIGITAL COMPUTERS 

37. A. M. Nelson, H. M. Stern and L. R. Wilson, Magnacard-mechanical handling 
techniques, I.R.E. 1957 Wescon Convention Record, Pt. 4, 210-214. 

38. J. Burkig and L. E. Justice, Magnacard-magnetic recording studies, I.R.E. 
1957 Wescon Convention Record, Pt. 4, 214-218. 

39. A. M. Angel, A very high speed punched paper tape reader, I.R.E. 1957 
Wescon Convention Record, Pt. 4, 218-227. 

40. K. R. Eldredge, Magnetic reader speeds travelers check processing, Control 
Eng., 5, 79-84, July 1958. 

41. E. J. Kompass, What about digital transducers?, Control Engr., 5, 94-100, 
July 1958. 

42. E. G. Wild anger, Tape recording systems for computers, Automatic Control, 
7, 36-42, Dec. 1957. 

43. W. Gersch, Recording media, techniques and devices, Pt. II, Automatic 
Control, 7, 11-17, Jan. 1958. 



DESIGN AND APPLICATION OF 

ANALOG COMPUTERS 

E. DESIGN AND APPLICATION OF ANALOG COMPUTERS 

w. J. Karplus. Editor 

21. Analog Computation in Engineering, by W. J. Karplus and W. Kindle 

22. Linear Electronic Computer Elements, by I. Pfeffer 

23. Nonlinear Electronic Computer Elements, by G. A. Bekey 
24. Analogs and Duals of Physical Systems, by R. C. Mackey 
25. Solution of Field Problems, by W. J. Karp/us 

26. Noise and Statistical Techniques, by H. Low 

27. Mechanical Computer Elements, by W. J. Karplus 

28. Digital Techniques in Analog Computation, by C. T. Lcondes 





E DESIGN AND APPLICATION 

OF ANALOG COMPUTERS Chapter 21 

Analog Computation in Engineering 

Walter J. Karplus ana William Kindle 

I. Definition of Analog Computation 

2. Classification of Analog Computers 

3. Requirements of Analog Computers 

4. General Steps in the Solution of Engineering Problems 

5. Areas of Application of Analog Computers 

6. Symbols and Diagram Notation 

References 

21-01 

.21-02 

21-05 

21-06 

21-09 
21-11 

21-11 

I. DEFINITION OF ANALOG COMPUTATION 

Introduction. Stimulated by the demands of modern technology, 
engineers have undertaken the design of systems of ever increasing 
complexity. Prior to the advent of automatic computing equipment, 
engineering design and product testing were separated at a point deter­
mined primarily by the ability of the engineer to solve the design 
problems manually, or by using such restricted aids as the slide rule 
or desk calculator. As systems became more and more complex and as 
equipment became extremely expensive, and sometimes dangerous, to 
build and test, means had to be found to expand greatly the capabilities 
of the design engineer. Analogs and digital computers were developed 
to help fill this need. 

Definition. The analog computer is an engineering tool used in the 
laboratory to study physical systems which are too complicated to 
analyze with pencil and paper and with manual computational aids, and 
for which the "cut-and-try" process of design and test is prohibitively 

21-01 



21-02 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

time-consuming and expensive. The principal distinctive feature of such 
computers is that the data involved in the computation are carried in 
continuous form, for example as continuously varying voltages or shaft 
rotations. The sensing and display of these quantities is likewise con­
tinuous. Thus, the precision, or number of significant figures available, 
is determined entirely by the quality of the computer components and 
the output equipment. In most analog computers, each step or operation 
of computation is performed by a separate unit, and all units operate 
simultaneously. This type of computation is termed parallel operation, 
and makes the solution available almost immediately. This feature is 
particularly important in engineering design problems, for it permits the 
engineer to adjust and vary any of the design parameters and observe 
at once the effect of these variations upon the response of the system. 
The direct insight into the operation of the system, gained in this manner, 
constitutes an important advantage of analog computers. 

Analog and Digital Computers. By contrast, the other maj or type 
of automatic computer, the digital computer, handles data in discrete 
steps. Arithmetical operations are performed consecutively in a pre­
determined sequence, termed serial operation. The precision of a digital 
computer is limited only by the number of significant figures carried in 
the solution. This is determined by the size of the computer, and can 
be increased as desired by expanding the installation. The major differ­
ences between analog and digital equipment are summarized in Table 1. 

TABLE 1. MAJOR DIFFERENCES BETWEEN AN ALoa AND DIGITAL COMPUTERS 

Analog Computers 
Data 'in continuous form 
Operations performed simultaneously 

(parallel) 
Precision and accuracy limited by 

quality of components 
Relatively inexpensive for accuracies 

within 1 per cent, relatively expen­
sive for higher accuracies 

Digital Computers 
Data in discrete form 
Operations performed sequentially 

(serial) 
Precision limited by size of installation 

Basic cost relatively high regardless of 
accuracy 

2. CLASSIFICATION OF ANALOG COMPUTERS 

Analog computers may be classified on the basis of their application, 
their basic principles of operation, and the types of physical variables 
within the computer which constitute the continuous data. 

Special Purpose and General Purpose. Special purpose analog 
computers are designed to perform specific and frequently highly spe­
cialized operations within a larger system. Their design characteristics 
vary widely, depending upon their application. General purpose analog 



ANALOG COMPUTATION IN ENGINEERING 21-03 

computers include all analog devices which are designed for the solution 
of a general class of problems and which may be applied, as desired by 
the engineer, in the design and analysis of physical systems. Such 
computers are generally not a part of any specific system but are main­
tained separately as a permanent laboratory installation. See Fig. 1. 

ANALOG COMPUTERS 

I 
General Purpose 

I 
Direct 

I 
I 

Discrete 

I 
. Electrical 

~ 

I 

I 
Continuous 

Mechanical 
Mass-Spring 

Systems 

I 

I 

Electronic 
Differential 
Analyzers 

I 

I 
Indirect 

Mechanical 
Differential 
Analyzers 

Resistance Networks 
Thermal Analyzers 
Structural Analyzers 

Long-Time 
1 

Short-Time 

Electrical 
Electrolytic Tanks' 
Resistance Paper 

Mechanical 
Stretched 
Membrane 

Hydraulic· 
Fluid Mappers 

FIG. 1. Classification of analog computers. 

I 
Special Purpose 

Digital 
Differential 
Analyzers 

Direct and Indirect. General purpose analog computers may be 
divided into two broad categories: direct and indirect. Direct computers, 
also known as direct simulators, establish a physical analogy between 
the simulator and the prototype system under study. Such an analogy 
is recognized by comparing the characteristic equations, usually ordinary 
or partial differential equations, describing the transient or static behavior 
of the two systems. If these equations are similar in form, an analogy 
exists, and the response of the prototype system to an excitation may be 
determined by subjecting the analog system to a similar excitation and 
observing its response. Such analog systems are constructed by simu­
lating every element in the protoype by an element having similar 
properties, that is, by an element whose excitation and response are 
related in a similar manner. These analogous elements are intercon­
nected so that the topological properties of the original system are 



21-04 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

conserved. The concept of duality may then be employed to obtain 
analog systems with inverse structures. 

Direct analogs may be either of the discrete or continuous variety. 
Discrete analogs employ lumped physical elements such as resistors and 
capacitors, and the behavior of the system is defined only for the node 
points of the circuit. Analog models of this type are useful for the 
analysis of systems comprised of lumped mechanical elements governed 
by ordinary differential equations, and for the solution of the finite differ­
ence approximations of the partial differential equations governing con­
tinuous fields. Continuous analog systems are used to simulate distrib­
uted field problems, containing time and space variables, so that every 
point in the analog corresponds to a specific point in the prototype. 
Such simulations are employed in the solution of problems governed by 
partial differential equations. 

Indirect analog computers are employed in engineering to perform the 
,mathematical operations necessary to solve the equations governing the 
system. Such devices employ only one dependent variable, for instance, 
voltage, to represent all the dependent variables of the prototype. For 
example, at one point in a computer voltage may be analogous to dis­
placement, whereas at another location voltage may represent velocity. 
Such a computer is essentia:ily an equation solver, and the manner of 
interconnecting its components generally has no direct relation to the 
topology of the system being simulated. Indirect analog computers are 
by far the most important and widely used analog computers for auto­
mation and control problems. 

Other Classifications. Both the direct and indirect analog computers 
may be subdivided according to the physical area to which they belong. 
Thus, electrical analogs employ voltage or current as dependent variables, 
while in mechanical analog computers linear or rotational shaft displace­
ments compose the basic data. The indirect electrical analogs are 
further subdivided into the long-time and short-time classes. The 
former are designed so that solutions are obtained in from 10 seconds 
to several minutes, and the output displayed on a strip chart or servo­
driven recorder. Short time computers, also known as repetitive com­
puters, have solution times of several milliseconds. The solution of the 
problem is then repeated periodically and displayed on a cathode ray 
oscilloscope. A recently developed class of long-time, indirect analog 
computers, known as digital differential analyzers, solve the system of 
equations comprising the problem in essentially the same mathematical 
fashion as other indirect analog computers, but perform the individual 
operations digitally, with pulses and a magnetic drum memory. 



ANALOG COMPUTATION IN ENGINEERING 21-05 

3. REQUIREMENTS OF ANALOG COMPUTERS 

Input Requirements. The analog computer must be able to accept 
all data necessary to simulate the excitation and characteristics of the 
prototype system under study. These include: 

a. The c01nplete systel1~ of equations, differential and algebraic, as well 
as necessary graphical or tabular data which together specify the system. 
The complexity of this analog model is governed by the nature of the 
physical system under study and how accurately its characteristics are 
known, as well as by the specific use to which the solution is to be put. 

b. The parameters of the system. These may remain permanently 
fixed, or they may be a function either of time or of the dependent vari­
ables of the problem. 

c. Initial conditions, denoting the magnitudes of all dependent variables 
and their derivatives at the commencement of the computation. 

d. All external excitations or stimuli imposed upon the system. These 
may be of constant magnitudes, varying with time in a prescribed manner, 
or may be of a random character. 

Output Requirements. The computer must furnish the operator all 
data required for the accomplishment of his objective. The requirements 
placed upon the analog computer, therefore, tend to vary widely, depend­
ing upon their specific area of utilization, and generally include the 
following: 

a. A cont1:nuous display of the variation of the dependent variables 
and their derivatives as a function of time or some other independent 
variable. Frequently these data are required only for a limited number 
of locations in the overall system. 

b. A display demonstrating the effect of varying a number of the sys­
tem parameters. Particularly in design problems, the experimental 
determination of an optimum solution demands the systematic investi­
gation of the behavior of numerous alternative designs. 

c. Permanent records of the system response. These may be strip 
chart records, servo-driven potentiometer records, photographs of cathode 
ray oscillograph displays, tables of measured d-c or a-c voltages, or 
merely indications of whether the system is stable or unstable under 
specified conditions. 

Flexibility. To be a truly general purpose engineering tool, the adap­
tation of the computer to the treatment of any of a large class of problems 
must require no m~jor modifications or alterations. In the indirect analog 
computer, units performing specific computational functions are arranged 
in such a manner that they may readily be interconnected and utilized 



21-06 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

as required by the specific application. The devices for the generation of 
excitations, establishment of initial conditions, and displaying the out­
puts of interest are likewise arranged so as to permit their connection to 
any point of the simulation system. The excitation instruments and 
elements determining the magnitude of the sy~tem parameters must be 
adjustable over a wide range. 

Convenience. A major portion of the time spent in the computer 
treatment of engineering problems is devoted to the setting up and check­
ing out of the computer system prior to the obtaining of any useful data. 
To minimize this effort, the interconnecting and adjusting of the com­
puter units and subunits should be as simple and convenient as possible. 
To this end, all internal connection points are generally brought out to 
a centrally located patch bay, and plug-in type patch cords are employed 
to interconnect the terminals as required. These patch boards are usually 
removable, so that they may be programmed, checked, and stored sepa­
rately. This avoids the tying up of the computer installation by a single 
problem and greatly extends the usefulness of the system. 

4. GENERAL STEPS IN THE SOLUTION OF ENGINEERING PROBLEMS 

Formulation. A clear and complete description of the problem must 
be provided. The problem statement must include an adequate specifi­
cation of the physical system, its excitations, and the data which would 
constitute an acceptable solution. This step usually requires the coopera­
tion of the design engineer and the computer specialist, and frequently 
poses a serious communication problem. The design engineer should have 
at least a general understanding of the principles of operation of the 
computer, and the computer operator should possess some insight into 
the characteristics of the physical system under study. 

Mathematical Modeling. The problem statement is then translated 
into mathematical language. This process almost invariably requires 
approximations or idealizations of system behavior and strongly affects 
the final accuracy and value of the solution. Considerable experience 
and analytical skill are required for this purpose. 

Rearrangement. The mathematical model is then rearranged to make 
it suitable for computer solution. This is determined to some extent by 
the idiosyncrasies of available computer equipment. 

Block Diagram. The computer units required to perform the specified 
mathematical operations, to supply the necessary excitations, and to 
display the desired outputs, are summarized in a block diagram. From 
such a block diagram it may readily be determined whether or not suffi­
cient computer equipment is available, and how the various units are 
to be interconnected. 



ANALOG COMPUTATION IN ENGINEERING 21-07 

Scale Factoring. Scale factors relating each dependent and inde­
pendent variable of the prototype system with a corresponding variable 
within the computer are selected. The characteristics of the computer 
place definite upper and lower limits upon the excursions permitted the 
machine variables. Since the transient behavior of the dependent vari­
ables may be initially unknown and may actually comprise the solution 
of the problem, scale factoring frequently involves the making of judi­
cious guesses, which are revised and improved subsequently. A detailed 
machine diagram is then drawn, showing the detailed patch board inter­
connections of all computer units, as well as the dial settings of all 
parameter units, excitations, etc. 

Problem Setup. The computer is programmed as indicated by the 
detailed machine diagram. Since errors in patch board connections are 
frequently very difficult to pin­
point after all wiring has been 
completed, it is vital to employ 
great care and a systematic ap­
proach in making the plug board 
connections. 

Check of Problem Setup. 
Where possible, check runs are 
made for excitations or initial con­

R L 

c 
R = 10000 
L = 30 Henrys 
c=? 
At t = 0, i = 1 

FIG. 2. Simple electric system. 

ditions for which the response is known either approximately or exactly. 
In this way errors may be recognized and eliminated by trouble shooting. 

Problem Solution. The data comprising the solution of the problem 
are obtained and recorded. Most frequently, the final records are fami­
lies of curves illustrating the system behavior under various conditions. 

Application of Computer Results. The computer solutions are 
translated back into the language of the original problem, and the results 
are utilized as required. 

EXAMPLE. As a simple illustration of the steps involved in the analog 
computer treatment of a system, consider the problem of predicting the 
behavior of the electric circuit shown in Fig. 2 with initial conditions 
as shown. 

a. The objective of this problem is to determine what capacitance, C, 
is required to make the frequency of oscillation equal to 100 radians 
per second. 

b. The dynamic equation for the circuit of Fig. 2 is 

(1) d' lIt 
L d~ + Ri + C 0 i dt = 0, 

at t = 0, i = 1. 



21-08 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

c. This may be rearranged for computing purposes as 

(2) 
dq2 _ R dq 1 
dt2 - - L dt - LC q, 

where 

d. A block diagram for the computer solution of this simple equation is 
shown in Fig. 3. 

e. If servo-driven recorders are to be used, the frequency of operation 
should not exceed 1 radian per second. It is, therefore, necessary to 

q 
Multiplier - IO;OOO'LC 

x (lO,OOOLC) 

Multiplier 

xC':' lO~L) 

R dq q 
- lOOL dt - 1O,OOOLC 

FIG. 3. Block diagram for computer solution. 

define a computer time variable T which is related to the time variable 
in the prototype system according to 

(3) 
T 

t=-. 
100 

Equation (2) then becomes 

(4) 
d2q = R dq 1 
dT2 - 100L dT - 10,000LC q. 

J. A detailed wiring diagram as shown in Fig. 4 is now drawn. A poten­
tiometer is employed to permit adjustment of the parameter C. A com­
plete discussion of this procedure is presented in Chap. 22. 

g. Computer runs are now made using various settings of the potenti­
ometer. This process is continued until a potentiometer setting has been 
obtained for which the recorded frequency is 1 radian per second, cor­
responding to 100 radians per second in the original system. 

h. The setting of this potentiometer is then translated into capacitance 



ANALOG COMPUTATION IN ENGINEERING 21-09 

To 
recorder 

FIG. 4. Circuit diagram for computer solution. 

values in the original system. According to 

(5) Resistance setting in megohms = C in JLfarads, 

which is the solution of the problem. 

5. AREAS OF APPLICATION OF ANALOG COMPUTERS 

Indirect Computers. Indirect computers have found wide applica­
tion in many areas of engineering analysis and design. Some of the more 
important of these are listed below. Since many similar types of prob­
lems arise in engineering fields, no clear-cut line can be drawn between 
the type of problem and the aSi:lOciated engineering field. 

Engineering Fields Types of Problems 

1. Guided missiles 
2. Aircraft 
3. Automotive design 
4. Submarines 
5. Nuclear reactors 
6. Chemical unit and process 

operation 
7. Internal combustion and 

turbine engines 
8. Electrical, hydraulic, and pneu­

matic control devices 
9. Electronic, electromagnetic, 

electromechanical instl'u-
ments 

10. General process control 
11. Information theory 
12. Operations research and linear 

programming 

1. Dynamics of rigid bodies 
2. Structural dynamics 
3. Dynamics of bodies of varying 

characteristics 
4. Aerodynamic and hydro­

dynamic stability 
5. Stability and accuracy of 

automatic control syster~1s 
6. Heat transfer 
7. Dynamics of compressible and 

incompressible fiuids 
8. Nuclear kinetics 
9. Chemical kinetics and statics 

10. Nonlinear electronics 
11. Signal processing 
12. Trajectory computations 



21-10 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

Direct Computers. Direct computers are used primarily in the simu­
lation of field problems, and some of their areas of application have 
included: 

1. Determination of stability and load characteristics of electric 
power systems. 

2. Temperature distribution in irregular bodies. 
3. Stress distribution in complex structures under static and transient 

conditions. 
4. Pressure and fluid distribution in oil reservoirs. 
5. Electrostatic fields in capacitors and vacuum tubes. 
6. Neutron diffusion in nuclear reactors. 
7. Magnetic field patterns in the vicinity of antennas, in wave guides, 

and in resonators. 
8. Pressure distribution in gas pipelines. 
9. Trajectory of charged particles in electromagnetic fields. 

10. Diffusion of air pollutants in the atmosphere. 

TABLE 2. SYMBOLS USED IN CHAPTERS ON AN ALoa COMPUTERS 

Symbol 
A 
B 
C 
e, e(t) 
E 
E(s) 
f 
h 

j 
k 
K 
L 
M 
0 

q 
R 
s 
t 
T 
u, v, w 
v 
x, y, z 
Z 
8 
() 

'T 

W 

Meaning 
Amplifier gain constant 
Friction constant; time scale factor 
Capacity 
Time-varying voltage 
Constant voltage 
Laplace transform of e(t) 
Function; force; frequency; subscript indicating feedback 
Weighting function, unit impulse response 
Current; subscript for input 
Imaginary 
Constant; subscript for summation 
Constant, spring constant 
Inductance 
Mass 
Subscript for output 
Charge 
Resistance 
Laplace transform (complex frequency variable) 
Time variable 
Time interval; integration time 
Variables 
Velocity 
Variables 
Impedance 
Unit impulse 
Angle 
Time constant, delay time 
Frequency (radians per second) 



ANALOG COMPUTATION IN ENGINEERING 21-11 

6. SYMBOLS AND DIAGRAM NOTATION 

Symbols. An effort has been made to standardize symbols used in 
the chapters on analog computers. Lower-case letters are used for 
variables. Laplace transforms are capitals, alw:1Ys indicated as a func­
tion of s. Capitals are used for circuit constants. Other constants may 
be lower case or capital. 

Those symbols appearing frequently are listed in Table 2. In a few 
cases, deviations from the normal usage are also listed in the table. 
Other symbols used are defined in the sections in which they are used. 

Diagram Notation. Notation for analog computing elements is given 
in the following chapters: 

Linear computing elements 
Nonlinear computing elements 
Mechanical computing elements 
Analogs and duals 
Digital differential analyzer 

REFERENCES 

Chap. 22, Sect. 1 
Chap. 23, Sect. 1 
Chap. 27, Sect. 2 
Chap. 24, Sect. 2 
Chap. 28, Sect. 2 

1. G. A. Korn, and T. N. Korn, Electronic Analog Computers, McGraw-Hill, 
N ew York, 1956. 

2. H. M. Paynter, A Palimpsest on the Electronic Analog Art, G. A. Philbrick 
Researchers, Boston, Mass., 1955. 

3. W. J. Karplus, Analog Simulation: Solution of Field Problems, McGraw-Hill, 
New York, 1958. 

4. W. W. Soroka, Analog Methods in Computation and Simulation, McGraw-Hill, 
New York, 1954. 





E DESIGN AND APPLICATION 

OF ANALOG COMPUTERS Chapter 22 

Linear Electronic Computer Elements 

I. Introduction and Computer Diagram Notation 
2. Passive Computer Elements 
3. Direct-Current Operational Amplifiers with Feedback 
4. Scale Factors 

5. Typical Problem Setup 
6. Representation of Complex Transfer Functions 
7. Operational Amplifier Design 
8. Errors in Linear Computer Elements 

References 

Irwin Pfeffer 

22-01 
22-04 
22-08 

22-10 

22-12 
22-13 
22-16 
22-33 
22-37 

I. INTRODUCTION AND COMPUTER DIAGRAM NOTATION 

One .of the most important applications of electronic analog computers 
is the solution of systems of ordinary linear differential equations with 
constant coefficients. The method employed in the solution is a funda­
mental one and is readily extended to the solution of systems of ordinary 
nonlinear differential equations. 

Consider an ordinary linear differential equation with constant co­
efficients. 

(1) 

General Solution. 
order derivative. 

(2) 

n dky 
L ak -d k = J(t). 
k=O t 

This may be rewritte,n to solve for the highest 

d_n_y = J_(_t) _ I:1 ak • _dk_y 
dtn an k=O an dtk • 

22-01 



22-02 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

The general method of solution utilizes a procedure of repeated integra­
tion and is based upon the form of eq. (2). A block diagram of the 
computer configuration is shown in Fig. 1. The solution has the following 
steps: 

a. The analog computer independent variable is real time. Assume 
that a continuously varying electric voltage, proportional in amplitude 

FIG. 1. Block diagram of computer configuration for solution of general ordinary 
linear differential equation. 

at every instant to the highest order derivative, dny/ dtn, is generated at 
the output of element S in Fig. 1. 

b. This output is connected to the input of integrating element 11 
which generates an output voltage proportional to the time integral of its 
input, i.e., proportional to dn-1y/dtn- 1. 

c. This output is connected to 12 , etc., forming a cascade of n integrat­
ing elements, each generating a voltage representing one of the deriva­
tives of y. 

d. Each output voltage is multiplied by an appropriate constant, ak/ an, 
producing a voltage (ak/an) . (dky/dtk) at the output of the multiplying 
element. 

e. These voltages are passed through devices which invert the sign, 
i.e., reverse the polarity, and are introduced into the summing element S. 

f. A voltage representing f (t) / an is also introduced into S. 



LINEAR ELECTRONIC COMPUTER ELEMENTS 22-03 

g. Equation (2) indicates that the output of S is indeed the quantity 
dny/ dtn, originally assumed to be available. 

The computer configuration is a closed loop system, operating in real 
time in a manner similar to any closed loop servo system, generating 
continuously the quantity y and its derivatives. The integrations, multi­
plications, sign inversions, and summation all occur simultaneously, and 
the quantities dny/dtn, (ak/an)' (d"y/dt k ) , y, etc., exist simultaneously 
as continuous voltage waveforms at the outputs of the various computing 
elements within the computer. 

Equation (1) can be written alternatively in the form 

(3) 

A method of solution utilizing a procedure of repeated differentiation 
based on eq. (3) is equally acceptable mathematically as the method 
actually described. In practice, however, this method is almost never 
used since the process of differentiation tends to accentuate the noise 
present in all electrical apparatus. A solution based upon differentiation 
therefore would tend to be noisy and inaccurate; worse yet, the noise 
might saturate some element in the computer, resulting in a grossly 
incorrect solution. 

Computing Elements. The following linear computing elements are 
required for the solution of systems of linear ordinary differential equa­
tions with constant coefficients: 

1. An element capable of multiplying a voltage by a positive constant 
coefficient. 

2. An element capable of inverting the sign of a voltage. 
3. An element capable of generating the SU1n of two or more voltages. 
4. An element capable of generating the time integral of a voltage. 
In addition, a device for generating an arbitrary function of time is 

required if nonhomogeneous differential equations are to be solved. 
Strictly speaking, such a device is not a linear element, and its treat­
ment is deferred to Chap. 23. 

Computer Diagram Notation. Two basic notations for drawing 
computer diagrams are in widespread use. The first has evolved for use 
with computers featuring amplifiers with fixed internal resistors and 
capacitors, and hence having fixed gains. The second has evolved for 
use with computers featuring plug-in components. Figure 2 shows the 
correspondence between these notations. It is felt that the first notation 
enjoys the advantage of brevity. It will be used in this manual wherever 
applicable. 



22-04 DESIGN AND APPLICATiON OF ANALOG COMPUTERS 

Symbols. The symbols used throughout this and other chapters are 
defined in Chap. 21, Sect. 6. 

Device 

1. Potentiometer 
eo = OAel. 

2. Summer 
eo = - (el + 4e2) 

3. Summing integrator 

eo = - feel + 5e2)dt 

4. High gain d-c ampli­
fier (No feedback im­
pedance) 

eo = - -IT (el + 10 e2) 

First Notation Second N oiaiion 

0.4 "1-e1-Q-eo 
0.4 ~ '0 

"=t>- el 
eo eo 

e2 4 e2 

5. High gain d-c ampli- --€>- -V-
fier (N 0 input or feed- el G eo el eo 
back impedance) 

eo = - A el 

FIG. 2. Two notations for drawing computer diagrams. Values of resistors and capac­
itors given in megohms and microfarads. 

2. PASSIVE COMPUTER ELEMENTS 

Multiplication of a Voltage by a Constant Coefficient. The simplest 
and most satisfactory means of multiplying a voltage by a constant, a, 
uses a simple resistive voltage divider, or potentiometer as shown in 
Fig. 3. 

In the absence of loading 

(4) (0 ~ a ~ 1), 

where a is the mechanical rotation of the arm, i.e., dial reading, provided 
the potentiometer is perfectly linear. If the potentiometer is not linear, 
or if it is loaded, the arm is set to provide the proper electrical output 
regardless of the dial reading. This is usually done by applying a known 
voltage, ei, and adjusting the arm for the desired voltage eo as read by 
an accurate voltmeter with the load resistance connected across the 
output terminals. For a potentiometer set in this manner linearity is of 
little importance. The only important electrical characteristics are reso-



LINEAR ELECTRONIC COMPUTER ELEMENTS 22-05 

lution, freedom from noise, and stability with temperature and age. For 
a potentiometer set by means of a dial, linearity is indeed an important 
factor, since any departure from linearity results in an error in the elec­
trical setting. vVhen setting by means of a dial, the following load 
correction 

(5) 

must be added to the desired electrical setting a, and the dial actually 
set to (a + €). Figure 4 shows a normalized plot of the loading correc­
tion € for the case Rp/RL « 1. 

FIG. 3. Multiplication of a voltage by a constant coefficient using a 
potentiometer. 

Multiturn, helical, wire-wound potentiometers are usually used for 
coefficient setting. Values of Rp commonly range from 10,000 ohms to 
100,000 ohms. The lower limit is determined by power requirements, the 
upper limit by considerations of loading and the difficulty in manufacture 
of high-resistance elements. 

Passive Summing Network. The passive summing network of Fig. 5 
has an output voltage, in the absence of loading, given by 

e. = 1 1 1 1 (~', + ~: + .. -) 
-+-+-+ ... 
Ro Rl R2 

(6) 

1 t~. 
1 ~ l k =lRk -+L.J-

Ro k=l Rk 

This network performs the operation of multiplication by a constant, as 
well as the operation of summation. There exists a serious drawback, 
however, in that the gain with loading depends appreciably on the load 



22-06 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

resistance R L . This dependence can be made small by use of a very small 
output resistor Ro, but this results in severe attenuation of the output. 

0.2 

- &«1 
RL 

/.....--~ 

/ \ 
i\ 

/ \ 
I \ 

0.1 

V ~ 
/ 1 

If \ I 
./ 

V \ 
0.5 1.0 
a 

FIG. 4. Loading correction curve for lightly loaded potentiometer. 

An output buffer amplifier with high input impedance might be used to 
restore the gain, but the gain of this amplifier would have to be very 

R3 -----, 
e3O---"I./\/'V\J'V'---,!1 

Rn I 
en o---J\./V\M----

FIG. 5. Passive summing network. 

I 
I 
I 

..J ... :-
4;:RL ::. 

r" 
I 
I 
I 

~~-

stable and very accurately known. A much more basic and satisfactory 
method of using amplifiers is presented in Sect. 3. 



LINEAR ELECTRONIC COMPUTER ELEMENTS 22-07 

Passive Integrating Network. The passive RC integrating network 
of Fig. 6 has an output voltage, in the absence of loading, given by the 
differential equation 

(7) 

In operational, or Laplace, notation, eq. (7) may be rewritten as 

(8) 

or 

(8a) 

where T] equals RC, s is the complex frequency variable, and Eo(s) and 
Ei (s) are the Laplace transforms of the output and input voltages respec­
tively. The network of Fig. 6 can be made to approach a true integrator 

R 
VV~--r------o-------~ 

FIG. 6. Passive integrating network. 

I 
I 
). 
4:: 
:: ... RL 

.2: 
4j 
I 
I -:--

as the time constant T] appearing in the expression TIs/ (T]S + I) is made 
very large. Several formidable obstacles exist to the widespread use of 
this network as an integrator: 

1. In order to obtain acceptably large time constants, very large, costly 
capacitors are required. 

2. The integrator time constant T] and the integrator gain l/RC are 
reciprocally related in this network, so that large time constants neces­
sarily result in low gain. 

3. The integrator time constant is strongly dependent on the load 
resistance R L • 

The practical use of passive integrating networks is restricted to those 
cases where a reasonably small integrator time constant is satisfactory, 
i.e., those cases involving high-frequency inputs and/or short computing 
times. 



22-08 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

3. DIRECT-CURRENT OPERATIONAL AMPLIFIERS WITH FEEDBACK 

General Operational Amplifier with Feedback. The high gain d-c 
operational amplifier with feedback is truly the heart of the electronic 
analog computer. This device is capable of performing the basic linear 
operations of multiplication by a constant, sign inversion, summation, 
and integration, as well as other more complex operations. Figure 7 
shows a block diagram of this device. 

e1 
~ 

e2 J4. 
eo 

eo 
High gain 

d-c amplifier 

eno m in -

FIG. 7. Block diagram of d-c operational amplifier with feedback. 

Z, is a series feedback impedance with current ill Zl, Z2, ... , Zn are 
series input impedances with currents ii, i2 , ••• , in, and eG is the grid 
voltage. The gain of the amplifier must be negative, i.e., the amplifier 
must provide a polarity reversal. Calling this gain -A, eqs. (9-12)' 
describe the circuit operation if no grid current is drawn. 

(9) eo = -AeG, 

n 

(10) if + :L i k = 0, 
k=l 

(11) 

(12) k . = 1, 2, ... , n. 



LINEAR ELECTRONIC COMPUTER ELEMENTS 22-09 

Solution of this set of equations for the output voltage gives 

(13) 

where 

The amplifier gain A is made very high, in the order of many thousands 
or even millions. For high amplifier gain the denominator of eq. (13) 
approaches unity, so that the output voltage is very nearly given by 

(14) 

n e 
~-ZfL~. 

k=l Zk 

Note that the grid voltage eo must be very nearly zero since in eq. (9) 
eo is finite. The grid is said to be at virtual ground potential. 

Sign Inverters and Summers. If all the impedances Z" Zl, Z2, ... , 
Zn are of the same kind, e.g., pure resistances, the output voltage is the 
negative sum of the input voltages, each mUltiplied by a constant which 
is the ratio of the feedback resistance to the particular input resistance. 
For the case of a single input with the feedback and input resistances 
made equal, the output is simply the negative of the input and the am­
plifier is spoken of as a sign inverter. For the multiple input case the 
amplifier is spoken of as a summing amplifier or summer. Gains greater 
than unity are achieved by choosing an individual input resistor smaller 
than the feedback resistor. In some commercially available computers, 
the feedback and input resistors are selected and plugged in by the 
operator. In others the feedback and several input resistors are perma­
nently connected with gains of 1, 4, 5, and 10 commonly provided. 
Values of resistors for this purpose usually range from 100,000 ohms 
to 1 megohm. 

Integrators and Summing Integrators. A nearly perfect integrator 
is obtained by using a capacitor 0 as the fe~edback impedance and a 
resistor R as the input impedance. The output voltage, in operational 
notation, is, from eq. (14) 

(15) 
1 

-E·(s) ROs t • 



22-10 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

The time constant of this integrator ideally is infinite, as may be seen 
by comparing eqs. (15) and (8a). The gain is finite and equal to 
-lIRO. Values of feedback capacitance from 0.1 to 1.0 microfarad 
are commonly used with input resistances from 100,000 ohms to 1 meg­
ohm. By use of multiple input resistors, the sums of integrals may be 
generated with a single amplifier. Such an amplifier is sometimes spoken 
of as a summing integrator. In like manner to the summing amplifier, 
integrator gains of 1, 4, 5, and 10 second -1 are commonly provided by 
proper selection of input resistors and feedback capacitor. 

Initial Conditions. In general, n initial conditions are required to 
specify the solution of a homogeneous nth order differential equation. 
In the electronic analog computer, these initial conditions are applied 
as initial voltages at the output of the n integrators shown in Fig. 1. An 
initial voltage at the output of an integrator is produced by charging the 
feedback capacitor to the desired level prior to the start of computation. 
This usually is accomplished by using an appropriate voltage source 
together with an auxiliary charging network. 'The charging network, 
consisting of a separate input resistor and a feedback resistor in shunt 
with the feedback capacitor, is removed at the start of computation. 

4. SCALE FACTORS 

Dependent Variables. In electronic analog computation, the magni­
tude of each dependent variable of the problem is represented by a voltage 
at the output of a computing element. The constant relating the mag­
nitude of the voltage to one unit of the variable is called the amplitude 
scale factor. Every element in the computer has a scale factor associated 
with it. Considerable care must be exercised in the selection of these 
scale factors to assure proper operation of the computer. 

Considerations in Choice of Amplitude Scale Factors. The maxi­
mum available output voltage from an operational amplifier is limited 
by practical considerations to approximately one hundred volts. Before 
scale factors are assigned, the maximum magnitudes of all variables in 
the problem must be roughly ascertained by some means or other. The 
scale factor for each variable is then chosen so that the maximum voltage 
expected is a sizable fraction of the amplifier limiting level. If the 
scale factor is thus chosen, the amplifier will never be driven into limit­
ing; yet the output voltage will be large compared with the spurious 
noise or drift voltages always present in electronic equipment. It fre­
quently happens, particularly when dealing with new or novel problems, 
that initial scale factor assignments are greatly in error. This results 
either in overloading of one or more amplifiers or else in noisy, inaccurate 



LINEAR ELECTRONIC COMPUTER ELEMENTS 22-11 

solutions. The scale factors must be readjusted by trial and error when 
this situation occurs. 

When convenient, it is usually desirable to choose simple rational scale 
factors, such as 0.01, 0.4, 5.0, or 200. This facilitates both problem 
checking and the recording of solutions. Example. If a variable repre­
senting displacement is known to have a maximum value in the range 
of 0.2 to 0.4 feet, a scale factor of 200 volts per foot is appropriate. 

Independent Variable. In electronic analog computation the inde­
pendent variable is represented by computer time. The constant relating 
computer time in seconds to one unit of the independent variable is called 
the time scale factor. Thus 

(16) tc = Bx, 

where tc = computer time in seconds, 

x = independent variable in appropriate units, 

B = time scale factor. 

It frequently occurs, particularly in the study of dynamic systems, 
that the problem independent variable is time. In this case, the time 
scale factor relates computer time to problem time. A value of B greater 
than unity indicates that the computer operates more slowly than the 
actual system. 

Considerations in Choice of Time Scale Factors. In a linear 
problem, choice of time scale factor is influenced by the following con­
siderations: 

1. Integrator errors are increased by long computer runs. 
2. Long computer runs are associated with low, inaccurate potenti­

ometer settings. 
3. Short runs are associated with high amplifier gains and frequently 

require cascaded amplifiers to provide sufficient gain. 
4. The high frequencies associated with short runs cause phase shift 

in amplifiers, and thus produce errors. 
5. The dynamics of recording devices must be considered so that 

recorder response characteristics do not affect the recording. 
Integrating errors in modern drift-stabilized computers are usually 

sufficiently low so that runs of many minutes duration may be tolerated. 
Much more serious limitations apply to high-speed operation. Cumula­
tive phase shift due to cascading of amplifiers generally imposes a maxi­
mum frequency limitation of about 10 cycles per second on the com­
puter. In some cases the errors resulting from phase shift may even 
become significant at frequencies below 10 cycles per second. If a servo­
driven recorder is used, rather than a galvanometer type recorder or an 



22-12 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

oscilloscope, the maximum permissible frequencies usually are limited 
to 1 cycle per second or less, owing to the inability of this device to 
follow large amplitude excursions at high frequencies. 

In most computer usage, normal operating frequencies range from 
about 0.02 to 3.0 cycles per second; solution times range from 2 or 3 
seconds to 5 minutes. 

5. TYPICAL PROBLEM SETUP 

Problem Statement. An understanding of the use of linear comput­
ing elements and of the manner in which scale factors are determined is 
best obtained by following through the steps required for the setup of 
a typical linear problem on the computer. These steps will be carried 
out for the differential equation 

(17) 
d2y dy 
dt2 + al dt + aoy = aou(t), 

which relates the response y (t) of a second order system to a unit 
step forcing function u(t), applied at t = O. For definiteness assume 
ao = + 1600, al = + 8, and all initial conditions are zero. 

Scale Factor. To determine a proper scale factor for this problem, 
it is first noted that the undamped natural frequency of the system is 

Wn = vi ao =40 rad/ sec. 

If it is desired to display the solution on a servo-driven recorder, it is 
necessary to effect a time scale change which will reduce the natural 
frequency on the computer to a much lower value, in the order of 1 to 5 
radians per second. A time scale factor, B = 20, will be chosen for this 
purpose. From eq. (16) it is noted that 

~=B!i 
dt dte ' 

(18) 
d2 d2 
_=B2-
dt2 dt c

2 • 

With these relations, eq. (17) may be rewritten for the computer in the 
form 

(19) d2y = al dy ao ao (tc) 
dte2 - B dte - B2 Y + B2 U 13 . 

Problem Setup. Examination of eq. (17) shows that the steady-state 
value of y is unity. It is easily shown, however, that for very small 
(positive) al, the maximum value of y can approach 2. It can also be 



LINEAR ELECTRONIC COMPUTER ELEMENTS 22-13 

shown that the maximum value of the derivative dy / dte cannot exceed 
a value equal to the product of the computer natural frequency and the 
peak amplitude of the sinusoidal component of y. In this example, 
therefore, dy/ dte is limited to a value of 2 per second. Similar reasoning 
indicates that d'2y/dte2 will not exceed a value of 4 per second2 • Hence 

20 ao 
100.1 • B2 = 0.8 

20 al 
50·1·"B=0.16 dy 

+5°Tt 
'------~P.. c 

~.~-50'4 B2 - 0.4 

+50y 

~--~ Ps r---------------------------------~ 

Recorder 

FIG. 8. Computer schematic diagram for solution of second order differential 
equation. 

amplitude scale factors 50y, 50dy/ dte, and 20d2 y/ dte2 are reasonable 
for this problem. The computer schematic diagram is shown in Fig. 8. 
It is not necessary to use a switch in series with potentiometer P 1 to 
apply the step-forcing function, u, since the very act of starting the 
computation applies this function automatically. 

6. REPRESENTATION OF COMPLEX TRANSFER FUNCTIONS 

Definition and Methods. The concept of the complex transfer func­
tion is extremely valuable in the study of dynamic systems on the analog 
computer. The linear complex transfer function is defined as a math­
ematical operator which relates the output function (response) to the 
input function (stimulus) for a particular linear device. 

(20) G( ) = Eo(s) 
s Ei(S) , 

where G(s) = linear complex transfer function, 
Ei(S) = Laplace transform of input, 
Eo(s) = Laplace transform of output. 

If the device is such that the relation between its output and input 
can be described by a linear differential equation with real constant 



22-14 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

coefficients, 

(21) 

then the complex transfer function G (s) may be represented as a quotient 
of two polynomials in s. 

(22) 

Transfer functions of the type of eq. (22) include most cases of interest 
to the engineer. They may be represented on an analog computer, with 
certain restrictions, by any of three general methods: (1) direct analog 
method using passive networks; (2) operational amplifier method using 
complex input and feedback networks; (3) differential analyzer method 
which solves eq. (21) by use of potentiometers, summers, integrators, and 
(when necessary) differentiators. 

FIG. 9. Typical passive network circuit for realizing simple transfer functions. With 
no loading: 

Eo(s) Zz(s) 

Ei(S) Zl(S) + Z2(S) • 

Direct Analog Method. This method consists of using a passive 
network whose input voltage and open-circuit output voltage are related 
by the desired transfer function. A typical network of this type is 
shown in Fig. 9. The impedances Zl and Z2 usually consist of series 
and/ or parallel combinations of resistance and capacitance. 

Ladder networks consisting of many sections of the type of Fig. 9 are 
sometimes useful. So too are bridged T and parallel T networks. 

Passive networks of this type are simple out somewhat restricted in 
application. For example, if only resistance and capacitance are used, 



LINEAR ELECTRONIC COMPUTER ELEMENTS 22-15 

the transfer function poles are restricted to the negative real axis. Also, 
output loading affects both the gain and transfer function. 

FIG. 10. 

(a) 

Cb) 

(a) 

(b) 

Generation of first and second order transfer functions by differential 
analyzer method. 

EoCs) = _ bls + bo 

EiCS) al8 + ao 

EoCs) b2S2 + bls + bo 

EiCS) a2s2 + als + ao • 

Operational Amplifier Method. The operational amplifier method 
is based upon eq. (14), rewritten here for the case of a single amplifier 
input, Ei (s). 

(23) 
Eo(s) = Zf(S) 
Ei(S) - Zi(S)' 

Suitable selection of input and feedback impedances allows a large 
class of transfer functions to be realized. Moreover, the input and feed­
back impedances are not restricted to the usual two-terminal or series 
type impedance, but may include linear four-terminal networks as well. 



22-16 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

Equation (23) is valid for four-terminal networks provided that the 
impedance functions used are the short-circuit transfer impedances of 
the networks, that is, the ratio of input voltage to short-circuit output 
current. The proof of this follows immediately from the fact that the 
input grid is at virtual ground potential and draws no current. Table 1 
lists the short-circuit transfer impedances of a number of networks suit­
able for use with- operational amplifiers. 

Differential Analyzer Method. Figure 10 shows how a general first 
order and second order transfer function is realized using potentiometers, 
amplifiers, and integrators to solve eq. (21). 

Higher order transfer functions may be realized by logical extension 
of the schematics shown or by decomposition of the function into products 
of first and second order transfer functions. If the order m of the 
numerator exceeds the order n of the denominator, (m - n) differen­
tiators are required. This situation rarely arises in practical problems. 

7. OPERATIONAL AMPLIFIER DESIGN 

Characteristics. Operational amplifiers used in electronic analog 
computers must possess a number of characteristics in order to insure 
satisfactory performance. Some of the most important of these charac­
teristics are the following: 

1. High gain at frequencies from dc to several kilocycles. 
2. Linear output .range from + 100 volts to -100 volts (bipolar 

output) . 
3. High input impedance. 
4. Low -output impedance. 
5. Stable operation when connected to a variety of feedback and load 

impedances. 
6. Low closed loop phase shift at frequencies from dc to several 

kilocycles. 
7. Low noise output', 
8. Low output drift. 
9. Low grid current, 
The high gain characteristic usually requires that the amplifier be a 

multistage device. The d-c gain requirement necessitates use of a d-c 
amplifier. The linear, bipolar output range requirement necessitates the 
use of both positive and negative power supplies of sufficient voltage, and 
also influences the design of the amplifier output stage. High input 
impedance is usually obtained by placing the signal directly on the first 
stage grid. Low output impedance results from proper design of the 
output stage and the strong effect of large negative feedback. Stability, 
good frequency response (to several kilocycles), and low noise output 



LINEAR ELECTRONIC COMPUTER ELEMENTS 22-17 

(to some extent) are achieved by careful attention to the design of inter­
stage coupling networks and compensation networks. 

The achievement of low output drift and low grid current are perhaps 
the most difficult goals of amplifier design and will be considered at 
greater length. 

Drift in D-C Amplifiers. The output voltage of a d-c amplifier is sen­
sitive to variations in plate, bias, and filament supply 'voltages, vacuum 
tube characteristics, and circuit resistance values. The output voltage 
thus contains, in addition to its correct value a spurious component 
which depends upon the aforementioned factors and tends to change 
slowly with time. This spurious component is usually called drift, and 
its presence gives rise to computer' errors. These errors can be serious, 
particularly when they are integrated. Great care is given in amplifier 

FIG. 11. Equivalent circuit for analysis of the effect of drift and grid current. 

design to selection of high quality components and tubes, choice of 
operating conditions, and stabilization of supply voltages, in order to 
minimize drift. In addition a manual drift control is usually provided, 
yvhich varies the cathode, grid or screen potential in the first or second 
stage, so that the amplifier may, from time to time, be adjusted to zero 
output for zero input. Satisfactory performance is sometimes achieved 
by such means, but for highest accuracy some additional drift reduction 
device must be provided. 

Representation and Analysis of Drift. For purposes of analysis, it 
is convenient to replace those actual factors causing drift by a single, 
small, equivalent voltage at the first stage grid. The magnitude ed of 
this voltage is just that which would produce the observed output drift 
voltage in the absence of the actual factors. These factors may act in 
any stage, of course, but those acting within the first stage will in general 
have the most effect on output drift. 

In Fig. 11, ed is the equivalent drift voltage, ia the first stage grid 
current, Z, the feedback impedance, and Zi an input impedance. For this 



TABLE 1. SHORT-CIRCUIT TRANSFER IMPEDANCES FOR OPERATIONAL AMPLIFIERS a 

This table is used to find networks whose impedance Zo(s), ZI(S), Z2(S), ••• , match the desired equation for operational 
amplifiers: 

Transfer Impedance 

A 

A 
1 + sT 

A(l + sT) 

Zo(s) Xl 
Xo = - ZI(S) 

Network 

R 

-----'WVVv--

R 

D-
c 

R R 

~ 
t 

or [
Xl X2 ] Xo = -ZO(S) -- + -- + ... . 

ZI(S) Z2(S) 

Relations 

A=R 

A=R 

T = RC 

A = 2R 

T = RC 
2 

R=A 

R=A 
T 

C=­
A 

R=~ 
2 

Inverse Relations 

C = 4T 
A 

a Reproduced by permission of the McGraw-Hill Publishing Company from F. R. Bradley and R. McCoy, Driftless d-c amplifier, 
Electronics, April 1952. This table was developed by S. Godet of the Reeves Instrument Corporation, New York City. 

to..) 

~ 
co 

C 
m 
Vl 

(J) 
z 
» z 
c 
» 
.." 
.." 
r o 
~ o 
z 
o 
"'T1 

» 
Z » r o 
(j) 

() 
o 
~ 
.." 
C 
-I 
m 
:;:0 
Vl 



A (11 :s:~) R2 
A = RI + R2 RI = AO 

~ 
T = R2C R2 = A(1 - 0) 

0<1 0= RI T 
C RI + R2 C = A(1 - 0) 

C 

RI = A 
Z 

A = RI m 
Rl » 

-D 
T = (RI + R2)C AO :;::c 

R2=-- m 

0= R2 
1-0 r 

m 
T(1 - 0) 0 RI + R2 

C= --I 
R2 C A 

:;::c 
0 
Z 
0 

A ( 1 + sTI ) A = 2RI A 0 RI =-1 + s2TIT2 RICI 2 0 
Rl Rl TI = -- = 2R2C2 

R2 = ATI 
~ 

2 "'a 
C 

4T2 --I 
T2 = RIC2 n;'I 

C
I 

= 4TI 
:;::c 

m 
A r 

m 

C2 = 2T2 ~ 
m 

A Z 
--I 
(I') 

1 B=C C=B 
sB ---;r--- ~ 

c ~ 
I 

...0 



TABLE l. SHORT-CIRCUIT TRANSFER IMPEDANCES FOR OPERATIONAL AMPLIFIERS-Continued to..) 
to.) 

~ 

Transfer Impedance Network Relations Inverse Relations 
0 

0 
m 

B=C 
R='I. 

Ul I R C (j) 
sB (1 + sT) ----wNv--i /--- T= RC B Z 

C=B » 
z 
0 

~(l + ST) B=q T » 
C C R=- " sB sT 
~tr-

2 4B " r-
T = 2RC C = 2B 0 » 

:::! 
0 
Z 

1 (I + ST) B = Cl T(l - ()) 0 
R= " sB I + s()T R B T = R(Cl + C2) » 

Z 
()<1 ~O () = C2 

Cl = B » c1 r-
c2 

Cl + C2 B() 0 
C2 =-- (j) l-() 

() 
0 

B = Cl + C2 T 
~ 

c1 " R = B(l _ ()) c 

CJ-- T = RC2 
-t 
m 

Cl = B() 
:;:c 

() = Cl 
Ul 

R c2 Cl + C2 C2 = B(l - ()) 



A (1 + ST) A = 2RlR2 A 
R2 Rl = 2(1 _ 0) 1 + sOT 

~ 
2Rl + R2 

0<1 T = RIC A 
R2 =-

2 0 
~C 

0= 2Rl C= 
4T(1 - 0) C 

2Rl + R2 A Z 
m » 
;;0 

m 
Rl Rl A = 2Rl A r-

,Rl = 2" m 

~ T=(R2+~1)C 
() 
-i 
;;0 

JR' 
AO 0 

0= 2R2 
R2 = 4(1 _ 0) Z 

4T(1 - 0) 
() 

2R2 + Rl 
C= () 

A 0 
3: 
-c 
C 
-i 
m 
;;0 

A = 2R 
R=:! 

m 
R R r-

m 

~ 
R 2 ~ 

T = 2 (Cl + C2) 2T(2 - 0) 
m 

Cl = 
Z 

A 
-i ell 0= 2C2 Vl 

01 + O2 C2 = 2TO 
A 

to.,) 
to.,) 

N 



TABLE 1. SHORT-CIRCUIT TRANSFER IMPEDANCES FOR OPERATIONAL AMPLIFIERS-Continued N 
N 
~ 
t-.) 

Transfer Impedance Network Relations Inverse Relations 
0 
m 
tn 

1 (1 + sOT) c2 
B = C2 T()2 (i) 

sB 1 + sT 4~ T = RCI (2C2C~ C1
) 

R = 4B(1 _ () Z 

()<1 2B(1 - () » 
CtCl C1 = 

Z 
() 0 

() = 2C2 » 
2C2 + Cl C2 = B ." 

." .--
0 
>-

C12 T()2 -I 

B= R = 4B(1 _ () 
(5 

c1 c1 2Cl + C2 Z ---;1 

~:2 
II-

0 T = RC2 2B 
C1 =- " 

() = 2Cl 
() >-

4B(1 - () 
Z 

2Cl + C2 
C2 = » 

()2 .--
0 
(j) 

T()2 
() 

B = (Rl; R2) C 
0 

C C Rl = 2B(2 _ () ~ 

~F 
." 

T = R2C T() 
C 
-I 

R2 =- m 

()=~-
2B :;;0 

tn 

Rl + R2 C = 2B 
() 



1- [(1 + sT l ) (1 + 8T3)] 
sB 1 + sT2 

Tl < T2 < T3 CJ-
R2 c2 

A [ 1 + ST2 ] 
(1 + sT l )(1 + sTa) 

Tl < T2 < T3 -DO 
C1 C2 

e 
C2 

B = Cl + C2 

Tl = RlCl 

( 
ClC2 ) 

T2 = (Rl + R2) Cl + C2 

T3 = R2C2 

A = Rl + R2 

Tl = RlCl 

( 
RlR2 ) 

T2 = Rl + R2 (Cl + C2) 

T3 = R2C2 

A = R2 

T2 = RlCl 

TlT3 = RlR2ClC2 

Tl + T3 = RlCl + R2C2 
+ R2Cl 

T l (T3 - T l ) 
Rl = B(T2 - T l ) 

T3(T3 - T l ) 
R2 = B(T3 - T2) 

B(T2 - T l ) 
C 1 = -T-'----3----=-T 1-

B(T3 - T2) 
C2 = T3 - Tl 

A(T2 - T l ) 
R 1 = --'--T-3 ---=T:--

l 

A(T3 - T2) 
R2 = T3 - Tl 

T l (T3 - T l ) 
Cl = A(T2 - T l ) 

T3(T3 - T l ) 
C2 = A(T3 - T2) 

AT22 
Rl = 

(T3 - T2)(T2 - T l ) 

R2 = A 

C _ (T3 - T2)(T2 - T l ) 
1 - AT2 

C2 = TlT3 
AT2 

!:: 
Z 
m » 
;:::0 

m 
r 
m 
() 
-i 
;:::0 

o 
z o 
() 
o 
~ 
-C 
C 
-i 
m 
;:::0 

m 
r 
m 
~ 
m 
Z 
-i 
(J') 

....., 

....., 
~ 
w 



TABLE 1. SHORT-CIRCUIT TRANSFER IMPEDANCES FOR OPERATIONAL AMPLIFIERS-Continued 

N 

Transfer Impedance Network Relations Inverse Relations 
N 
N 
..a:a. 

A = Rl + R2 AT22 0 
Rl = 

m 
Ul 

T = ( RlR2 ) C 
TlT2 + T2 T 3 - TlT3 (j) 

2 Rl + R2 2 R2 = A(T3 - T2)(T2 - T l ) Z 

TlT3 = RlR2ClC2 
TlT2 + T2T3 - TlT3 » 

C TlT3 Z 
0 

Tl + T3 = RlCl + R2C2 1 = AT2 » 
+ R2Cl C2 = (Tl T2 + T2 T 3 - Tl T3)2 ""'C 

""'C 
r-AT2(T3 - T 2)(T2 - T l ) 0 

A [ 1 + sT2 ] 

(1 + sTl )(1 + sT3) 

Tl < T2 < T3 

C1 

A = Rl Rl = A 
~ 
(5 

T2 = R2(Cl + C2) R2 = 
A(T3 - T2)(T2 - T l ) Z 

(Tl + T3 - T2)2 a 
TlT3 = RlR2ClC2 Tl + T3 - T2 

-n 

Tl + T3 = RlCl + R2C2 
Cl = 

A » z 

Rl 

+R2Cl C2 = T l T3(Tl + T3 - T 2) » r-
A(T3 - T2)(T2 - T l ) a 

(j) 

R12 AT2 
() 

A = 2Rl +- Rl = (Tl + T3) 
a 

R2 ~ 
""'C 

AT22 C 
Tl = RlCl R2 = --i 

(Tl + T3)(Tl + T3 - 2T2) m 
~ 

T2 = ( RlR2 ) (Cl + C2) C _ Tl(Tl + T3) Ul 

Rl +2R2 1 - AT2 

A [ 1 + ST2 ] 
(1 + STl)(1 + sT3) 

T2 ~ Tl ~ T3 

Rl Rl 

T3 = R l C2 
C2 = 

T3(Tl + T3) 
AT2 



A L(1 + s~T~)(u1~ ~ ST3)J 
.L.L - .LIJI I .L"~ 

RI = (T:~ IT3) Rl R2 
TI = RICI 

T1 ~ T3 ~ T2 -oro AT3 
R1R2 R2 = T1 + T3 

T2 = R1 + R2 (2C1 + C2) 
T1 + T3 

T3 = R2C1 
C1 = 

A 
~C2 

C2 = T1 + T3 (T2 + T2 _ 2) C 
Z A T3 T1 m 
> 

A ( 1 + sT l ) 
R2 A = R2 R _ AT1 

;;0 

-C::l 
m 1 + sTI + s2TIT2 T1 = 2R1C 

1 - 4T2 r-
m 

R2 = A () 

T2 = R2C 
-i Cf,C ;;0 

Rl 2 C = 2T2 0 
Z A 
() 

A ( 1 + ST2 ) c2 
A = 2R A () 

R=- 0 1 + sTI + s2T1T2 

-0- TI = 2RC2 2 ~ 

C
1 

= 4T2 " 
T2 = RCI 

C 
-i A m 

~Cl 
2 ;;0 

T1 m C2 =- r-A m 
~ 

1 B = C2 (v0\ - VT;)2 m 
sB (1 + sT1)(1 + ST2) R1 = Z 

TIT2 = R 1R2ClC2 B -i 

Rl R2 c2 
en 

Tl ~ T2 ~r- T1 + T2 = RICl + R2C2 R2 = VTl T 2 

J
C1 + R l C2 B 

C
1 

= BVTl T 2 t-.) 
t-.) 

(VT1 - VT2)2 ~ 
U1 

C2 = B 



TABLE 1. SHORT-CIRCUIT TRANSFER IMPEDANCES FOR OPERATIONAL AMPLIFIERS-Continued 
to.) 
to.) 

~ 
Transfer Impedance Network Relations Inverse Relations 0'0 

C 

(~ -VT2)2 
m 

~ [(1 + sT, )(1 + ST2)] B = C2 Vl 

sB sVTI T2 RI = 
B 

(i) 
cl c2 R2 TIT2 = RI R2CI C2 Z 

Tl~ T2 ~1~ TI + T2 = RICI + R2C2 R2 = VT 1T2 » 
z 

+ RI C2 B C 
Rl 

C
I 

= BVTI T2 »-
""C 

(VTI - V T2)2 ""C .-
C2 = B 0 

:> 
-i 

~ [C1 + STI)(l + sT2)] B = CI C2 T I (T2 - T I ) 0 
sB . s2TI T2 cl c2 cl CI + 2C2 

R= 
2BT2 

Z 

~r;r~ 0 
TI < T2 TI = RCI C _ 2BT2 11 

R R I - :> 
T2 = R(CI + 2C2) 

T2 - TI 
Z 

C2 = BT2 » .-
TI 0 

(j) 

1. [(1 + STl)(l + ST3)] B = CI TI + T3 - T2 () 

RI = 0 
sB 1 + sT2 Rl T2 = CRI + R2)C2 B ~ 

iO ""C 

Tl < T2 < T3 TIT3 = RI R2CI C2 R2 = TI T3CTI + T3 - T2) c 
-i 

BCT3 - T2)(T2 - T I ) m 
;::0 

TI + T3 = RICI + R2C2 CI = B Vl 

R2 c2 
+ RI C2 

B(T3 - T2)(T2 - T 1 ) 
C2 = 

(TI + T3 - T2)2 



B = Cl + C2 RI = TITa 

T = R ( CI C2 ) 
BT2 

C1 

4(1 
2 2 Cl + C2 R2 = (TI T2 + T2 Ta - TI Ta)2 

TITa = RI R2CI C2 BT2(Ta - T2)(T2 - T I ) 

TI + Ta = RICI + R2C2 
BT22 C 

CI = 
R2 C2 + R l C2 TlT2 + T2 Ta - TlTa Z 

m 

C2 = B(Ta - T2)(T2 - T I ) 
» 
:;;0 

TIT2 + T2Ta - TITa m 
r-
m 
() 

B = CI R _ TlTa --I 
:;;0 

R'l. T2 = R2C2 
I - BT2 0 

Z 4%0 TITa = R l R2Cl C2 R2 = (Ta - T2)(T2 - T I ) n 
Tl + Ta = RICl + R2C2 

BT2 . () 
0 

+ R2Cl 
Cl = B ~ 

C2 
""'C 

BT22 C 
C2 = --I 

(Ta - T2)(T2 - T l ) m 
:;;0 

m 
r-

B = Cl R _ TlTa m 

Rl C1 T2 = R2C2 
1 - BT2 ~ 

m 

~~ 
Z 

Tl Ta = R IR2Cl C2 R2 = TIT2 Ta 
--I en 

f' R2 TI + Ta = RICl + R2C2 
B(Ta - T2)(T2 - T I ) 

+ Rl C2 Cl = B 

C2 = B(Ta - T 2)(T2 - T 1) 
t-.J 
t-.) 

TlT3 N 
""oJ 



TABLE 1. SHORT-CIRCUIT TRANSFER IMPEDANCES FOR OPERATIONAL AMPLIFIERs-Continued 

N 

Transfer Impedance Network 
N 

Relations Inverse Relations I 
N 
OOP 

A = 2RlR2 A T 32 0 
m 

Rl = Vl 
2Rl + R2 2[T32 - Tl (T3 - T2)] (fi 

Tl = 
Rl (R l Cl + 2R2C2) AT32 z 

2Rl + R2 
R2 = » T l (T3 - T2) 

T2 = R l R2Cl C2 4[T32 - T l (T3 - T2)] Z 
Cl = 0 

RlCl + 2R2C2 AT3 » 

A [ 1 + sT3 ] 
1 + sTl + s2TlT2 

Tl 
T2 > 4" (complex roots) 

T3> T2 

C2 

R2 

T3 = RlCl C2 = TlT2 
., ., 
r-

2 AT3 n 
A 

» 
A = 2Rl -i 

Rl =- (5 
Tl = R2Cl + 2Rl C2 2 

Z 

Rl(Rl + 2R2)Cl C2 
R2 = ATl (T3 - T2) 0 

T2 = 4[T32 - Tl (T3 - T2)] " R2Cl + 2Rl C2 4[T32 - T l (T3 - T2)] » 
T3 = ( R2 + ~1) C 1 

C l = 
AT3 

Z » 
C2 = TlT2 

r-
0 

A T 3 (j) 

C2 

A 
() 

A = 2R 0 R=-
~ 

Tl = R(C2 + 2C3) 
2 ., 
2[2T32 - T l (T3 - T2)] C 

C l = -i RC3(Cl + C2) A T3 m 
T2 = ;::0 

C2 + 2C3 2Tl (T3 - T2) Vl 

R 
C2 = 

AT3 
T3 = "2 (C l + C2) 

C3 = TlT2 
AT3 

C3 



R .. .1.-'..5 

.L.L Ll + sTI + s2TI T2J 
-.~ 

I = 

t3 TI = 2RI CI + R2C2 4[TI T2 - T3(TI - T3)] 

TI R2 = A 
T2 > 4 (complex roots) T2 = 

R I R2CI (CI + 2C2) 2[TI T2 - T3(T1 - Ta)] 
2RI CI + R2C2 C1 = 

AT3 
T3 < TI ~ T3 = 2RI CI (T1 - T3) 

C2 = 
A ~ 

Z 
m 

A = R2 AT32 ' » 
R2 

CI (2RI C2 + R2C1) 
R I = :;;0 

--G;iJ- TI = 4[TI T2 - T3(TI - T3)] m 
2CI + C2 R2 = A r-

m 

T2 = R IR2Cl C2 C _ 2TIT2 () 
--I r 2R1C2 + R2CI I - AT3 :;;0 

0 Rl 
T3 = 2R1C1C2 4Tl T2[T1 T2 - T3(TI - T3)] Z 

2C1 + C2 
C2 = 

AT32(TI - T3) () 

() 

A = R3 AT32 0 
R3 

Rl (2R2 + R3)C 
R 1 = ~ 

TI = 
2[2Tl T2 - T3(TI - T3)] ""tJ 

Rl + R2 R2 = AT3 
C 
--I 
m 

T2 = R2R3C 2(Tl - T3) :;;0 

R3 = A m 2R2 + R3 r-
T3 = 2R1R2C C = 2TIT2 

m 
~ 

Rl + R2 AT3 m 
Z 
--I 

A(l + STl)(l + ST2) A = 2RI + R2 R = A (T2 - Tl) 
Vl 

Rl R2 Rl 

Tl < T2 ~ ( RIR2 ) 
1 2T2 

TI = 2RI + R2 C Tl 
R2 = A-

Y T2 to.) 

T2 = RIC 
to.) 

2T22 ~ 
C= ..0 

A(T2 - T I ) 



22-30 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

arrangement 

(24) 

(25) 

(26) 

eo = - A (ed + e), 

For large A, solution of the above equations yields for the output voltage 
with feedback: 

(27) eo = - Kei - (1 + K)ed + iaZj, 

where K = Zj/Zi. 

If for the moment the effect of grid current is neglected, the output 
voltage without feedback is merely 

(28) 

Although feedback reduces the output due to drift in the ratio of 
AI (1 + K), the output due to the signal ei is reduced by an even larger 
ratio AI K. Therefore, feedback, despite its many other virtues, actually 
increases the fractional error due to drift in the ratio of (1 + K) I K. 

Besides the drift, there is in eq. (27) a spurious component of output 
voltage due to first stage grid current, the magnitude of the voltage being 
that produced by the flow of all the grid current through the feedback 
impedance. In practice, there is no simple method of determining 
whether a given spurious output voltage is caused by drift or by grid 
current, but the distinction is nevertheless important, particularly in the 
consideration of drift-corrected amplifiers. 

Drift-Corrected Amplifiers. The effect of drift can be reduced by 
adding to the main d-c amplifier an auxiliary drift-free amplifier which 
amplifies the input signal but not the drift voltage ed. The circuit used 
is shown in Fig. 12, and a practical method of providing the auxiliary 
drift-free amplification is presented in the following section. If the gain 
of the auxiliary amplifier is A', the following equations describe the 
operation of the circuit of Fig. 12. 

(29) 

(30) 

(31) 

eo = -Aed - A (1 + A')e, 

It is seen that eqs. (29-31) are identical to eqs. (24-26) except for the 
additional amplification - AA' provided for the signal e. Solution of 



LINEAR ELECTRONIC COMPUTER ELEMENTS 22-31 

eqs. (29-31) for large A results in 

(32) 

where l( = Z JiZi. 

Comparison of eqs. (27) and (32) shows that the addition of the 
auxiliary amplifier reduces the output voltage due to drift by a factor 
(1 + A'). Values of A' of the order of 103 arc not difficult to achieve, 
so that the reduction in drift is indeed dramatic. Exam,ple. Modern, 

;;>----'----0 Co 

FIG. 12. Use of auxiliary amplifier for drift correction. 

high quality, operational amplifiers utilizing this method of drift correc­
tion may have output drift levels as low as 10 to 100 microvolts over 
very long periods of time. 

Comparison of eqs. (27) and (32) once again shows that the spurious 
output due to grid current is in no way lessened by addition of the 
auxiliary amplifier. The only practical remedy for input grid current 
troubles is the selection of a tube with sufficiently small grid current. 
Fortunately some currently available triodes have grid currents of the 
order of 10 - 10 to 10 -11 ampere. After initial balancing, the output due 
to grid current can be maintained as low as 10 to 20 microvolts if a 
I-megohm feedback resistor is used. 

Chopper Amplifiers. The usual method of providing auxiliary drift­
free amplification is to use the voltage e at the junction of the input 
and feedback resistors to modulate a carrier signal. The auxiliary ampli­
fier is an a-c amplifier, inherently drift free, which amplifies this carrier 
signal. The output of the auxiliary amplifier is demodulated and applied 
to, the first stage of the main amplifier along with the direct path 
voltage e. Addition of these two voltages is usually accomplished 



22-32 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

through the use of differential amplification in the first stage of the 
main amplifier. Modulation and demodulation are usually achieved by 

eio----.J'V\J~-'::'"e. ,Q--------------=-t 

e 

I I r-= 

.--
I I 

( r ~ 
J J L 
r \ r '\ 

FIG. 13. Operation of chopper amplifier circuit. 

the action of a single vibrating relay or chopper, driven by an alter­
nating current of suitable frequency. 

Figure 13 illustrates the operation of this circuit, commonly referred 
to as a chopper amplifier. The voltage e is chopped, amplified, rectified, 



LINEAR ELECTRONIC COMPUTER ELEMENTS 22-33 

filtered, and applied to the main amplifier. The output filter has a very 
low passband compared with the chopper frequency, so that the com­
bination of chopper contacts, a-c amplifier, and filter form, effectively, 
an auxiliary driftless d-c amplifier having a bandwidth from zero to 
perhaps 1 cycle per second. This small bandwidth is the principal reason 
why the chopper amplifier cannot be used by itself as the main amplifier. 
The benefits of the increased gain from the chopper amplifier are, of 
course, only realized over this very narrow band, but this is sufficient for 
the suppression of drift in the main amplifier. 

The combination of the main amplifier and the chopper amplifier is 
usually spoken of as either a chopper stabilized d-c amplifier or a drift 
corrected d-c amplifier. Development of the chopper stabilized d-c 
amplifier was one of the most important events in the development of 
present day electronic analog computers. 

The schematic of a typical amplifier employing chopper stabilization 
is shown in Fig. 14. 

8. ERRORS IN LINEAR COMPUTER ELEMENTS 

Error Sources. The most important errors in the solution of ordinary 
linear, constant coefficient differential equations on an electronic analog 
computer arise from the following sources: (1) potentiometer errors, 
(2) amplifier gain errors, (3) loading errors, (4) amplifier time constant 
effects (limited bandwidth effects), (5) integrator time constant effects, 
(6) amplifier drift, (7) amplifier noise, and (8) recording errors. 

Potentiometer Errors. For potentiometers set by means of an 
external voltmeter, the principal errors are due to voltmeter inaccuracy, 
potentiometer resolution, and potentiometer stability. For modern multi­
turn potentiometers and precision voltmeters, potentiometer errors as 
low as 0.01 to 0.02 per cent may be achieved. 

Amplifier Gain Errors. The closed loop gain of a summer or inte­
grator is a function only of the ratio of the feedback and input imped­
ances provided the open loop amplifier gain is sufficiently high. By use of 
precision resistors and capacitors enclosed in temperature controlled 
ovens, this ratio can be made accurate to about 0.01 to 0.02 per cent. 
The error in closed loop gain due to finite open loop amplifier gain is 
considerably less than 0.01 per cent, under normal operating conditions, 
and is therefore negligible. 

Loading Errors. Output loading errors, so serious in passive com­
puting networks, are virtually eliminated by the action of high amplifier 
gain in a feedback loop. The closed loop amplifier output impedance is 
of the order of 0.1 ohm or less. The load impedance seen is almost :nJ~v~:r 



22-34 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

r---------------------------

rll 
I I Feedback 
I I network 

LTJ 

I c 

I r-1r, 
r---..., I I I 

cr-~ r4 ,v.~+-l-~--<~ 
L ___ ...J 

Input 
network 

Input 

Resistor 
Resistor 

High quality 
.ground 

A-c input 
to chopper 

R20 
100 kP. 

FIG. 14. A typical operational amplifier schematic diagram, 



LINEAR ELECTRONIC COMPUTER ELEMENTS 22-35 

------------------------------, 
---------------------------------------------------0+110 I 
----~-------_.------------------~-----_.-------~+300 I 

"4 
5881 

r--t------o -300 

r-----o -500 

± Gnd 

I 
I 
I 
I 

RIO 
33 kH 

I 
I 
I 
I 

Output ___ -.J 
~---~-;~r_r_--~ 

RI2 
150 k12 
1w 

RI3 
100 krl 

C22 
1500 

" 
~ 
.:>Rc 

I 
..... J 

--~---------+-----------~---------------~~~~r_--~ 

(Courtesy of Electronic Associates Inc., Long Branch, N. J.) 



22-36 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

less than about 5000 ohms. The resulting gain error due to loading is 
considerably less than 0.01 per cent and is therefore negligible. 

Amplifier Time Constant Effects. Actual amplifiers used in high 
quality analog computers have a closed loop bandwidth extending from 
dc to about 10 kilocycles. The effect of limited bandwidth may be 
represented approximately by including a small, low pass, time constant, 
TA, in the amplifier transfer function 

l?o(S) ~f(S) 1 
l?i(S) = - ~i(S) . 1 + TAS' 

(33) 

where TA is of the order of 10 to 30 microseconds. The gain and phase 
errors contributed by this effect are generally significant only at reason­
ably high frequencies, above about 10 cycles per second. 

Integrator Time Constant Effects. The time constant of an integrator 
consisting of an operational amplifier with capacitive feedback, is non­
infinite because of two practical effects, capacitor leakage and noninfinite 
amplifier gain. The actual integrator transfer function is 

(34) ~(S) = _ ~~ TIS 
RC S TIS + 1 ' 

where liRO is the integrator gain, and TI, the integrator time constant, 
is given by 

(35) 
RC 

TI = 1 . 

A + (R/R z) 

R z, the capacitor shunt leakage, is of the order of 1011 ohms for a high 
quality polystyrene capacitor of 1 microfarad. For a I-megohm input 
resistance, Rz/ R is of the order of 105• Since the gain of a chopper 
stabilized amplifier at low frequencies is in the order of 107 , leakage is 
the dominant effect and TI is of the order of 105 seconds. The compu­
tation errors due to TI are quite negligible. 

Amplifier Drift. As indicated in Sect. 7, the output drift voltage of 
a chopper stabilized amplifier, referred to an amplifier gain of unity, is 
of the order of 100 microvolts or less. The computational error resulting 
from this drift is generally quite negligible, except for very long computer 
runs involving open ended integrations. 

Amplifier Noise. Random noise at the output of an operational 
amplifier exists at all frequencies passed by the amplifier. The rms 
value of this noise may be of the order of 10 millivolts or even greater. 
However, that portion of the noise within the usual computation fre­
quency bandwidth is much less, perhaps of the order of 1 or 2 millivolts 



LINEAR ELECTRONIC COMPUTER ELEMENTS 22-37 

rms. By proper scaling of a problem, it is almost always possible to 
minimize the effect of noise on computer accuracy. 

Recording Errors. The accuracy of solutions of linear differential 
equations obtained with an electronic analog computer is frequently 
limited by the characteristics of the output or recording device. The 
most commonly used recording devices are the galvanometer type and 
the servo-driven type. Assuming that the time scale of the problem is 
properly chosen so that the dynamic characteristics of the recorder do 
not adversely affect the solution, static recording errors and reading 
errors will nevertheless deteriorate the accuracy in the order of 2 to 5 
per cent for the galvanometer type recorder, and 0.1 to 0.5 per cent for 
the servo-driven recorder. 

Overall Accuracy. Exclusive of recording error, the most important 
errors occurring in the solution of linear systems on a properly scaled 
analog computer result from potentiometer and amplifier gain errors. 
The error in each individual linear operation is of the order of 0.01 to 
0.02 per cent. The overall error will grow in some manner with the size 
of the problem and the number of operations required. For many linear 
systems, the overall accuracy of solution is of the order of 0.1 to 1.0 
per cent, which is compatible with the accuracy of the recording devices 
used, and is sufficient for most engineering purposes. 

REFERENCES 

1. C. L. Johnson, Analog Computer Techniques, McGraw-Hill, New York, 1956. 
2. G. A. Korn, and T. M. Korn, Electronic Analog Computers, 2nd edition, 

McGraw-Hill, New York, 1956. 
3. C. A. A. Wass, Introduction to Electronic Analogue Computers, McGraw-Hill, 

New York, 1955. 





E DESIGN AND APPLICATION 

OF ANALOG COMPUTERS 
Chapter 23 

Nonlinear Electronic Computer 

Elements 

I. Function Multipliers 

2. Function Generators 

3. Switching Devices 

4. Trigonometric Devices 

5. Time Delay Simulators 

References 

I. FUNCTION MULTIPLIERS 

George A. Bek.ey 

23-01 

23-14 

23-22 

23-31 

23-34 

23-39 

Introduction. Chapter 22 describes linear operations such as addition, 
multiplication by a constant, and integration with respect to time. 
Nonlinear operations cannot be performed with amplifiers and potenti­
ometers alone, but require specially constructed computer elements. 

Many devices have been developed for performing multiplication of 
variable quantities in electronic analog computers. The most important 
of these in practical use are the electronic time division multiplier, the 
"quarter squares" multiplier, and the electromechanical servo multiplier. 
These are treated in detail in this section. Other types of multipliers 
are surveyed more briefly. A general list of symbols is given in Chap. 21, 
Sect. 6. 

Multiplication of Positive and Negative Numbers. In general an 
electronic multiplier will have two input voltages x and y. The output 
will be a voltage proportional to the product. 

(1) z = kxy, 

where k is a positive or negative constant. 
23-01 



23-02 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

Four-quadrant multipliers are devices that accept plus or minus for 
both x and y and give a product with the correct sign. 

Two-quadrant multipliers permit one variable to change sign but not 
the other. 

One-quadrant multipliers can accept one sign only for either x or y. 

x(±) -------'---+I Two-quadrant 
I----~ 

(y + E1)(+) multiplier 

z= -xy 

FIG. 1. Four-quadrant multiplier, El ± Y > o. 

A two-quadrant multiplier may be made to behave as a four-quadrant 
device by adding a constant voltage to the variable that is not permitted 
to change sign. 

ExAMPLE. Multiply ±x and ±y by using a two-quadrant multiplier. 
Let:x be the variable that can assume plus and minus values for input. 
Cho'ose El so that El ± Y is always positive. Then the product 

(2) . (X)(EI + y) = XEl + xy 

will be formed as shown in Fig. 1, and the desired product is 

(3) z = xy = X(EI + y) -xE1• 

yo---r---, y 

">-oE--......---0Z = ay 

(a) 

~E---,--<> Z = kxy 

Servo 
amplifier 

(b) 

Motor 

.FIG. 2. Comparison of linear and servo-driven potentiometers. 

Electromechanical Servo Multipliers 

Potentiometers are used to multiply by constants, since the voltage 
at the potentiometer arm represents a constant fraction of the total 
voltage applied across the potentiometer (see Fig. 2a). If the position 



NONLINEAR ELECTRONIC COMPUTER ELEMENTS 23-03 

of the potentiometer arm is made proportional to another variable, the 
voltage appearing at the wiper will be proportional to the product of the 
voltage across the potentiometer and the wiper position, or 

(4) z = lcxy, 

+w +Y' 

-w -Y 

(a) 

+100 

(b) Zl = O.OlxYl 

" 

FIG. 3. (a) Basic servo multiplier. (b) Servo multiplier with multiI?le ,outp.,uts. 

where x is the wiper position and y is the voltage applied across the 
potentiometer, as illustrated in Fig. 2b. A practical servo multiplier is 
shown in schematic form in Fig. 3a in which x is the input voltage,' ±w is 
the constant voltage on the follow-up potentiometer, and ±y is the 
voltage on the multiplying potentiometer. The follow-up and multi­
plying potentiometers are ganged together mechanically so that their 
positions always correspond. Then, 

(5) 
x z - =-, 
w y 

1 
z = - xy = lcxy 

w 
(; = Ie = constant) . 



23-04 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

It is customary to set w = 100 so that k = l/w = 0.01. A practical 
servo multiplier is shown in Fig. 3b. Note the following: 

(a) More than one product can be obtained with a single servo 
amplifier by mounting additional potentiometers on the shaft, thus 
obtaining a series of products kXYb kXY2, kxys, etc. 

(b) Four-quadrant mutiplication is obtained by applying positive 
and negative voltages across the multiplying potentiometers, as illus­
trated in Fig. 3. In this case the grounded center taps are employed. 

(c) Sign reversal of the output is obtained by reversing the polarities 
of the voltages applied to the multiplying potentiometers. 

(d) Increased accuracy can be obtained in two-quadrant multiplica­
tion by removing the center taps and grounding one end of all the 
potentiometers. In this case the x input is restricted to one polarity and 
the greater accuracy results from increased resolution on the multiplying 
potentiometers. 

(e) An indicating dial can be mounted on the servo shaft to provide 
a continuous measure of the input voltage. 

Limitations. Owing to the presence of mechanical elements (motor 
and gear trains) the frequency response of a servo multiplier is severely 
limited. With 60 cps servos this response seldom exceeds a few cycles 
per second for full-amplitude input signals, and may reach 10 or 15 cps 
for low-level input signals. Considerable improvement in frequency 
response is achieved by the use of 400 cycle servo motors, since at a 
higher frequency less rotor material is required and thus the inertia of 
the motor is decreased. Servo multiplier response is often specified for 
10 per cent amplitude signals. However, a low amplitude signal reduces 
the resolution available and consequently reduces the accuracy of multi­
plication. Overall accuracy can be improved by the use of highly stable 
and accurate reference voltages, larger diameter or multiturn potenti­
ometers of high linearity, low-inertia servos, and by attention to loading 
errors (see below). Accuracies better than 0.05 per cent of full scale 
have been obtained with these devices. 

Loading. Errors due to loading of potentiometers can be compensated 
by loading the feedback potentiometer with a resistance equal in value 
to the load on the multiplying potentiometers, as illustrated by the 
resistor R in Fig. 3b. It should be noted that: 

(a) For proper loading compensation, all the multiplying potentiome­
ters must connect to equal resistances, such as unity gain inputs of 
amplifiers. 

(b) Since this method is one of compensation and not correction, the 
servo position (and thus the indicating dial) is no longer a correct indi­
cation of the input voltage. 



NONLINEAR ELECTRONIC COMPUTER ELEMENTS 23-05 

(c) A multiplying potentiometer itself presents a variable load which 
depends on the servo position, and should therefore always be fed from 
a low-output impedance device, such as an amplifier, rather than directly 
from another potentiometer. 

Time Division ,Electronic Multipliers 

The basic principle of this type of multiplier consists of determining 
the average value of a voltage which consists of a series of modulated 

~ 

Time 

FIG. 4. Output pulse train in a time division multiplier. 

rectangular pulses, such as shown in Fig. 4. With reference to this figure, 
the ayerage value of the voltage is 

(6) 

where e is the height of the pulse, T 1 is its duration, and T is the period. 
Thus, if one of the input variables is made proportional to the pulse 
height, and the other to the ratio of pulse duration to cycle time, the 
average amplitude of the rectangular wave will be proportional t'o the 
product xy, since 

(7) 

Hence z = kxy, 

T 
y = k2 Tl . 

1 
k = klk2 . 

The words "time division" are due to the fact that one of the variables 
is used to control the ratio of on time to on-plus-off time during a cycle. 
In England the device is known as a "variable mark space multiplier" 
for the same reason (Ret 4). 

Basic Description. A practical time division multiplier is shown in 
block diagram form in Fig. 5a and the corresponding waveshapes in 
Fig. 5b. The operation of the device may be summarized as follows: 

(a) The bistable multivibrator generates a series of gating pulses 
which control two electronic switches. 



23 .. 06 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

'(b) When the switches are closed, the input to the integrator is 
(E 1 - ER + y). El and ER are reference voltages. Scale factors are 
~elected in such a manner that a linearly decreasing integrator output is 

x adjust 

X O-----L----1 

I1J1.JL Bistable 
multi-

, vibrator 

yo------------------------------~~ 

Output of 
switch 2 

Integrator 
input 

Integrator 
output 

Output of 
switch 1 

(a) 

-r~----~~~--~--~----~~------------~Time 

-t-T-----r~r----r--+_----+__+------------~Time 

-r~~----~~----~~~----~~~--------~Time 

-r~----~~~---L--L-----~-L------------~Time 

(b) 

FIG. 5. (a) Block diagram of electronic time division multiplier. (b) Typical 
waveforms in a time division multiplier. 

produced, with a slope proportional to - (E 1 - E R + y). 'Vhen the 
integrator output reaches the switching level eb of the multivibrator, the 
switches open (see Fig. 5b). 



NONLINEAR ELECTRONIC COMPUTER ELEMENTS 23-07 

(c) With the switch open, the integrator input is (-ER + y), and the 
output has a positive slope proportional to (E R - y) which continues to 
rise until it reaches the multivibrator switching level ea. 

(d) The output of switch 1 is zero when the switch is open, and is 
proportional to (Ell - x) when the switch is closed, thus creating a series 
of output pulses as shown in Figs. 4 and 5b. 

(e) The duration of the pulses is determined from their slope and am­
plitude, as follows (see Fig. 5b): 

k(ea - eb) 
Tl = -----'---

El - ER + y' 
(8) 

(9) T2 = k(e a - eb) 
ER - Y , 

where k is a constant of proportionality. The average amplitude of the 
output is therefore (e = ER - x) 

(10) 

Thus, 

(11) 
1 

Eav = - (ER2 - ERx - ERy + xy). 
El 

In practice, the terms ER2, ERx, and ERy are usually removed before filter­
ing of the pulse train. As indicated in Fig. 5, the output amplifier and 
filter adds the correcting factors and filters the output to produce a 
voltage proportional to the product xy. 

(f) The operation of the circuit as described above depends on main­
taining the inputs x and y essentially constant over several cycles of oper­
ation. Thus, the repetition rate of the multivibrator must be considerably 
higher than the highest frequency of interest. Practical rates are of the 
order of 1 to 50 kilocycles. 

Accuracy. The accuracy of a multiplier of the type shown in Fig. 5 
is of the order of 0.1 to 1.0 per cent of full scale. Higher accuracies, 
of the order of-O.Ol per cent are possible with chopper-stabilized amplifiers 
used for the summing, integrating, and output filtering functions; with 
higher repetition rates; and with the use of stabilized electronic switches. 
Electronic multiplier accuracies are quoted as percentage of full scale 
since they generally refer to a specific error in volts. Thus a multiplier 
with a quoted accuracy of 0.02 per cent can have a possible error of 
0.04 volt. This voltage represents the error of 0.02 per cent with 100-volt 
inputs, but may represent a much greater percentage error if one· or 
both inputs are near zero. Some commercial multipliers have a band-



23-08 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

width selector, which allows the multiplier to obtain maximum accuracy 
at a sacrifice in frequency response or vice versa. The bandwidth is 
thus dependent on accuracy and repetition rate. Practical values range 
from 50 cps to 2000 cps. During operation, the repetition rate of a 
multiplier of the type shown in Fig. 5 may vary over a ratio of 2 to 1. 
High-accuracy multipliers have also been built using a constant repeti­
tion rate. An excellent discussion of problems involved in multiplier 
design is given in Ref. 2, pages 275-280, and Refs. 5 and 6. 

Quarter Squares Multipliers 

This type of multiplier is based on the relationship 

(12) z = xy = i [(x + y)2 - (x - y)2]. 

The main differences in the methods of mechanizing this equation come 
about from differences in the squaring circuits used. 

Triode Squaring Circuits. Early models of quarter squares multi­
pliers were based on the fact that the plate current of a triode is approxi­
mately proportional to the square of the plate voltage over a limited 
range of operation, i.e., 

(13) 

A number of repetitive analog computer installations use multipliers 
based on this principle. 

-x o---r----=-I 

- y o---f-""---.!.i 

FIG. 6. Block diagram of quarter squares multiplier. 

Biased Diode Squaring Circuits. Biased diode type function gen­
erators (see Sect. 2) can be used to perform accurate squaring of th~ 
input voltages, and thus, in conjunction with computer amplifiers, can 
be used to form a quarter squares multiplier as shown in Fig. 6 (Ref. 7). 

Features. 
(a) Frequency Response. Can be excellent, since it is not limited by 

mechanical elements as is the servo multiplier. 



NONLINEAR ELECTRONIC COMPUTER ELEMENTS 23-09 

(b) Accuracy. Can be of the order of 0.1 per cent of full scale. The 
error can be quite large when the values of the variables are approxi­
mately equal and thus make the difference (x - y) small. No difficulty 
is experienced near zero for one of the variables, as is the case for 
certain models of the time division multiplier (see above). 

(c ) Modifications. The quarter squares multiplier is sometimes modi­
fied to obtain functions which are easier to set up on function generators 
than the square. One type of multiplier makes use of the functions 
VI + V1 2/a and V 2 - V22/a, where 

(14) V1 = (x + y), V2 = (x - y), a = constant 

thus solving the relation: 

a ([ (x + y)2J [ (x - y)2J 1 
(15) z = xy = 4: (x + y) + a + (x - y) - a - 2x . 

Other Types of Multipliers 

The three types of multipliers discussed above are those in most 
common use in large analog computer installations in the United States. 
A number of other devices are briefly mentioned below. More extended 
discussions and further references can be found by consulting the refer­
ences at the end of the chapter (in particular, Refs. 2 and 8). 

xo-----~ 

z = kxy 

yo-----~ 

FIG. 7. Block diagram of logarithmic multiplier. 

Logarithmic Multiplier. Function generators can be used for multi­
plication by using the rule for the logarithm of a product, 

(16) log xy = log x + log y, 

and therefore 

(17) z = xy = antilog (log x + log y). 

as indicated in block diagram form in Fig. 7. 
Dynamometer Multiplier. Based on the principle of operation of a 

dynamometer type measuring instrument, in which the torque T acting 
on the needle is proportional to the product of the two coil currents II 



23-10 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

and 12 if the angle of displacement is small, i.e., 

(18) 

A feedback circuit which detects shaft motion creates an equal and 
opposite torque to keep the angular displacement small. Overall accu­
racy, about 1 per cent. 

Crossed Fields Multiplier. This device operates on the crossed fields 
in a cathode ray tube, and is illustrated in Fig. 8. A voltage propor­
tional to x, applied to the horizontal deflection plates, gives the cathode 
ray beam a horizontal component of velocity. In the presence of a 
concentric magnetic field proportional to the voltage Yi the cross product 

x 

-b 

FIG. 8. Crossed fields multiplier. 

z=kxy 
>---'--~ 

Amplifier 

of horizontal velocity and magnetic field deflects the beam in a vertical 
direction. This vertical deflection is detected by an error amplifier 
which applies a voltage to the vertical plates which keeps the beam 
horizontal. The governing equation is, in vector form: 

(19) f = B X v 

which reduces to z = ei = kxy. Accuracy of the order of 0.5 per cent 
and frequency response of 3000 cycles per second have been obtained 
with this multiplier (Ref. 9). 

AM-FM Multiplier. In this scheme one of the variables controls the 
carrier amplitude into an FM discriminator, while the other variable 
affects the carrier frequency through a frequency modulator as indicated 
in block diagram form in Fig. 9. Accuracy of 0.5 per cent has been 
obtained with a frequency response of several kilocycles (Ref. 10). 

Step Relay Multiplier. This device is basically a variable gain am­
plifier, thus obtaining a product of input voltage and gain. The variable 
gain is achieved by using relay-controlled precision attenuator networks 
actuated by a binary counter circuit. While the cost of this type of 



NONLINEAR ELECTRONIC COMPUTER ELEMENTS 23-11 

multiplier is quite high, accuracy of 0.02 per cent has been reported 
(Ref. 11). 

Probability Multiplier. The operation of this device is based on at 

theorem in probability theory which states that the probability of simul­
taneous occurrence of two events which have a random distribution in 
time is equal to the product of their separate probabilities. This prin­
ciple can be mechanized by generating two trains of pulses the durations 

x 

y~------------------------------------------------------------~ 

FIG. 9. Block diagram of AM-FM multiplier. 

of which are proportional to the variables to be multiplied. If there is 
no integer relation between the two frequencies, the product can be 
obtained by detecting the coincidence of the pulse trains (R:ef. 12). 

Use of Multipliers 

Scaling. Most commercial multipliers introduce a scale factor of 
1/100 into the computation of a product, so that, if z = xy 

lexk y 
l~ = --, 

z 100 
(20) 

where kz, k;c, and ky are the scale factors of the variables z, x, and y 
respectively. Consequently, care must be taken when the output of a 
multiplier is required at a high scale factor. Amplification of multiplier 
outputs is almost always undesirable, since noise levels are generally 
higher at the output of the multiplier than elsewhere in the computer. 

Powers. Any multiplier can be used to obtain powers of the input 
variables by successive multiplication. A single servo multiplier can 
be used to obtain higher powers by applying the output of a multiplica­
tion across another multiplying potentiometer, while loading and scale 
factors are carefully observed (see Fig. 10). It should be noted that 
powers of the independent variable time can be obtained simply by suc­
cessive integration, since 

(21) 

and so forth. 

2 ftdt = t2
, 

3 ft 2dt = ta, 



23-12 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

+100 +x 

-100 -x 

FIG. 10. Higher powers using a servo multiplier. 

Division. Division can be performed by using multipliers in the 
feedback circuit of a high-gain operational amplifier, and thus solve 
an implicit .equation of the form 

(22) x + zy = 0, 

so that 

(23) z:= 
x 
y 

High-gain 
amplifier 

y~------------------~ 

z= -kf 

FIG. 11. Division by inverse multiplication. 

Such a circuit for division is shown in Fig. 11. Similar circuits can be 
used for extracting square roots, cube roots, and for other operations. 
The following should be noted in connection with Fig. 11: 

(a) Operation is limited to two quadrants. This can be noted by 
observing that negative feedback is required for stability in the circuit 
of Fig. 11. If the multiplier introduces a sign change into the compu-



NONLINEAR ELECTRONIC COMPUTER ELEMENTS 23-13 

tation, the situation is as follows. Assume that x is positive and y is 
negative. Then the output of the high-gain amplifier z will be negative 
and the output of the multiplier, yz, will be negative thus resulting in a 
feedback signal, which will cancel the original input. If y were positive 
the multiplier output would also be positive and so would give positive 
feedback and instability. Thus for this situation the x input to the 
divider can be either positive or negative, but the y input must be nega­
tive. If the multiplier introduces no sign change, the y input is restricted 
to positive values for stability. 

X~------------------------------------~ 

Yo---'~ 

1 
Y 

z=kj-

FIG. 12. Division by reciprocal multiplication. 

(b) Care must be taken with a division circuit if the denominator 
approaches zero. 

(c) Because of the high g,ain of the system, noise is considerably am­
plified at the lJutput of a division circuit. Operation can be improved 
by filtering out high frequencies with a small condenser across the 
amplifier, if an electronic multiplier is utilized in the feedback. Servo 
multipliers have sufficient mechanical inertia to enable them to act as 
a low-pass filter. 

Division is also possible by using a function generator to obtain the 
reciprocal and then multiplying, as shown in Fig. 12. 

A servo multiplier can be used for division directly by applying a 
variable voltage to the feedback potentiometer. However, since the 
gain of the feedback loop depends on the voltage applied to the feedback 
potentiometer, the servo divider is unsatisfactory unless some form of 
automatic gain control (AGC) is used in the feedback loop. 

Integration with Respect to a Dependent Variable. Multipliers are 
often used for this operation, which may be performed on an electronic 
analog computer by the relation 

(24) 

since the electronic integrator is capable only of integration with respect 
to time. 



23-14 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

2. FUNCTION GENERATORS 

Many nonlinear problems require the use of information which is avail­
able in graphical form, such as the results of experimental work, certain 
nonlinear parameters, or arbitrary functions of the dependent variables. 
These functions are usually introduced into the computer by one of the 
following techniques: (a) curve follower devices, (b) biased diode func­
tion generators, (c) servo-driven tapped potentiometers, (d) photo­
formers. 

Curve Follower Devices 

Manual. An arbitrary function can be introduced into the computer 
by hand-following a drawn eurve. The abscissa is servo-driven in 
accordance with a particular computer variable and a sight is positioned 
on the curve by the operator using a hand crank. 

Advantages. (a) Simplicity, (b) direct utilization of graphical in­
formation. 

Disadvantages. (a) Slow speed, (b) limited accuracy, (c) human 
tendency to overcompensate for errors. 

Photoelectric. The above process can be mechanized by using an 
automatic curve follower device which tracks a black line on white paper 
(or the edge between a black and white boundary). Its main disadvan-

Linear potentiometer 

tages are that it is complex 
and difficult to adjust, and it 
cannot return to the curve if 
accidentally displaced. 

Potentiometer Type. If 
the function to be generated 
is represented by a suitably 
shaped wire which makes con­
tact at one point with a linear 
potentiometer, as illustrated 
in Fig. 13, the voltage ob­
tained is proportional to the 

FIG. 13. Drum type curve follower function ordinate of the curve. In Fig. 
generator. .13 the wire curve is wrapped 

on the surface of a rotating 
cylinder, and thus simplifies contact problems and makes repetitive 
operation possible. The wire curve is usually prepared by cementing 
the wire directly over a drawn curve. Its main disadvantage is that a 
great deal of care and adjustment is required for proper operation. 
Obtainable accuracy depends on the linearity of the potentiometer and 
the resolution obtainable on a given size of input curve. 



NONLINEAR ELECTRONIC COMPUTER ELEMENTS 23-15 

Conducting Ink Curves. A variation of the device above makes use 
of a curve drawn on paper with conducting ink and excited with a high­
frequency voltage, thus enabling a pickup coil to position itself above 
the curve. The voltage signal from the pickup head is demodulated and 
used as an input to the servo amplifier which drives the motor to 
position it. 

Advantages. (a) Makes use of graphical information directly; (b) 
can find the line if displaced. 

Disadvantages. (a) Limited speed (bandwidth) on account of me­
chanical elements; (b) accuracy limited by thickness of conducting line. 

Nate. :Most curve follower type function generating devices can also 
be used as output recorders if the follower heads are replaced with an 
appropriate pen or stylus. 

Biased Diode Function Generators 

By means of diodes it is possible to approximate a desired curve by a 
series of straight line segments, thus producing a function generator 
without the mechanical elements of the curve follower devices discussed 
above. 

Diode 
current i 

Breakpoint 
/ 

/ 

/ 
/ 

/ 
/ 

/ 

/ 

/ 
/ 

/ 

/ . 
/~Actual diode 

/ characteristic 

Applied voltage e 

FIG. 14. Typical thermionic diode characteristics. 

Basic Theory. Figure 14 is a representation of the switching char­
acteristic of a thermionic diode. An ideal diode can be considered to 
be an on-off switch. By suitable choice of bias voltages and circuit 
resistors, the location of the breakpoint and the slope of the conduction 
line can be varied. If a number of diodes are biased in such a way as 
to begin conduction in succession, an arbitrary curve can be approxi­
mated by a series of straight line segments (see Ref. 13). 

Practical Circuits. Two stages of a typical variable-breakpoint diode 
function generator are shown in Fig. 15. The portion of the circuit 



23-16 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

shown controls two segments of the function being generated, one in the 
positive range and one in the negative range of the input variable. A 
practical device may include four to twelve circuits of the type of Fig. 15 
in cascade, and thus a curve with eight to twenty-four straight line seg-

500kn 

x 

Slope 
adjustments 

y = f(x) 

FIG. 15. Portion of a biased diode function generator circuit. 

ments may be obtained. Each breakpoint and the corresponding slope 
are adjusted by the two potentiometers associated with each diode, from 
tabulated values of x and f (x). The two amplifiers associated with 
Fig. 15 may be internal to the function generator, or they may be 
connected at the patchboard. 

Variations of the Basic Principle. 
(a) Silicon diodes may be used instead of thermionic diodes, thus 

obtaining better stability, more reliability, and eliminating the small 
plate current present in the off condition in a thermionic diode. 

(b) The sharp corners of the straight line segment output may be 
rounded by superimposing a high-frequency noise signal on the input 
which causes the diode to start conducting earlier, or by placing a first 
order lag in series with the function generator. 

(c) The breakpoint and slope potentiometers can be positioned with 
a servo system controlled from punched paper tape or similar input, thus 
making it possible to store the curve for future use. 

Features. 
Advantages. (a) Good frequency response (1 to 10 kc); (b) obtain­

able accuracy, of the order of 0.1 per cent, . depending on components, 
circuit design, and number of segments. 

Disadvantages. (a) Output has slope discontinuities; (b) does not 
use graphical information directly. 



-. ~' 

NONLINEAR ELECTRONIC COMPUTER ELEMENTS 23-17 

Tapped Potentiometer Function Generators 

A potentiometer will perform linear interpolation between two values 
applied as voltages across it, if the potentiometer arm is connected to 
an infinite impedance. Based on this principle it is possible to construct 
a function generator from a potentiometer with a large number of taps 
which are supplied with appropriate voltages. If the wiper is driven in 
accordance with an input variable x, the wiper voltage y will result 
from interpolation between each pair of tap voltages. 

Construction of a Practical Device. Multitap potentiometers are 
often included with a servo multiplier (see Sect. 1) and a wiper displace­
ment proportional to the input variable is thus obtained. Figure 16a 
illustrates the simulation of a particular function, and Fig. 16b shows 
a practical circuit for a potentiometer padder system. In Fig. 16, the 
following should be noted: 

(a) Each padding potentiometer can be connected to the plus 
or the minus reference voltage ER , it can be left open, or grounded (see 
Fig. 16b). 

(b) Isolation amplifiers are provided to prevent interaction between 
tap voltages during setup. Unless such isolation is provided, the taps 
will have to be set several times until the voltages converge to the desired 
values. 

(c) The taps are set in sequence in order to apply the correct voltage 
to the next tap to be adjusted. 

(d) Fixed resistor networks can be used to pad the tapped potenti­
ometer for a particular function. These networks can be stored and 
re-used. 

(e) On account of loading effects the interpolation between tap volt­
ages is not linear, and the curve is approximated by a series of curved line 
segments, as shown in Fig. 16a. 

Features. 
Advantages. (a) Can be combined with a servo multiplier. (b) Ad­

justment networks can be stored and re-used. (c) Accuracy of the order 
of 0.1 per cent can be obtained. 

Disadvantages. (a) Output has slope discontinuities. (b) Frequency 
response is limited because of mechanical elements. 

Nonlinear Potentiometers. A potentiometer can be used to 
generate many functions directly, without the necessity of padding 
a series of taps, if the winding is nonlinear and corresponds to the 
function being simulated. Such nonlinear potentiometers have been 
wound for trigonometric, exponential, and logarithmic functions (see 
Sect. 4). 



23.18 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

Output voltage 
y = {(x) 

E ~NO load output voltage 
..... 3 Output voltage under load 

.,., (exaggerated) 
E4 , 

'E5 __ Es __ 

-Or-__ ~----------------------~ 
Shaft rotation x 

=>----i----r--'\I'V\r.....L.-....;-.-o~ + E2 

Null 
meter 

(b) 

o-E2 

°Open 

~ 

FIG. 16. (a) Simulation of a function with a padded potentiometer. (b) Simplified 
schematic of potentiometer padder system. Two padders are shown; others may 

be added. 



NONLINEAR ELECTRONIC COMPUTER ELEMENTS 23-19 

The Photoformer 

In this device the spot on the face of a cathode ray tube is made to 
follow an opaque mask which represents the function being generated, 
and thus a function generator of excellent frequency response which is 
particularly suitable for repetitive analog computers is obtained. 

FIG. 17. Block diagram of photoformer. 

Construction Features. A typical photoformer circuit is indicated 
in block diagram form in Fig. 17, and its operation can be summarized 
as follows: 

(a) A mask is prepared as a plot of the function f(x) desired, and the 
lower area of the mask below the curve made opaque. 

(b) The input voltage x is applied to the horizontal deflection plates 
and thus produces a horizontal beam displacement which is propor­
tional to x. 

(c) The vertical position of the beam is made to follow the edge of 
the beam by the combination of photocell detector and biased amplifier 
which drive the vertical deflection plates of the tube. 

Features. 
Advantages. (a) Excellent frequency response; (b) masks can be 

stored and re-used. 
Disadvantages. (a) Accuracy limited by size of face on cathode 

ray tube and spot size necessary for satisfactory operation; (b) distor­
tion of the function may result from nonlinearities in the tube deflection 
circuits and the fact that horizontal and vertical deflection plates may not 
be exactly perpendicular. 

Function Generator Applications 

Scaling. The following points should be noted when function gen­
erators are used to include arbitrary functions in an analog problem: 

(a) Maximum accuracy is obtained with as wide a range of voltages 
as possible. 



23-20 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

(b) Wide voltage ranges may exceed the slope limitations of certain 
function generators, in which case vertical scales need to be reduced 
and horizontal scales increased. 

(c) If the range of variation of dependent or independent variable 
is limited, it is frequently possible to bias and amplify this variable in 
such a way as to make possible utilization of the full range of the func­
tion generator. 

Uses. Function generators are among the most useful and versatile 
components available with an analog computer. Some of the uses are: 

(a) Introduction of empirical data into the computer. 
(b) Generation of analytic functions which may be difficult to obtain 

with other components, such as certain trigonometric functions or com­
binations of transcendental functions. Function generators can be used 
to obtain higher powers of variables. 

(c) Where multipliers are in short supply, quarter squares multipliers 
can be synthesized at the patchboard by using function generators and 
amplifiers. 

(d) Machine variables can be transformed to logarithms for easier 
computation in certain problems. 

(e) Division can be facilitated by obtaining the reciprocal of a quan­
tity by using a function generator and then multiplying. 

Generation of Functions of Two Variables 

In many physical problems it is neces3ary to consider arbitrary func­
tions which depend on more than one variable, such as ! (x,y), where 
both x and yare functions of the independent variable. If the function 
is analytic, for example, 

(25) f(x,y) = sin (x + y), 

it is possible simply to add x and y and obtain the sine of the sum by 
using a function generator or servo resolver (see Sect. 4). The follow­
ing sections deal with several techniques of obtaining arbitrary functions 
of two variables, when the desired function cannot be obtained as a 
combination of functions of a single variable. For an excellent discussion 
of function generation see Ref. 14. 

Interpolation Techniques. 
(a) Tapped potentiometers. If the taps on the potentiometers dis­

cussed above are supplied with voltages proportional to !(X,Yl), !(X'Y2) ' 
etc., where the Yk (k = 1, 2, ... ) are chosen so as to coincide with the 
location of the taps on the potentiometer, and if the wiper displacement 
is made proportional to y, the output voltage will be the required function 
of two variable3, f (x,y) • The accuracy of the method is dependent on 



NONLINEAR ELECTRONIC COMPUTER ELEMENTS 23-21 

the accuracies of the voltages supplied to the taps and on the number 
of taps (see Fig. 18). The functions f (x,y,J may be the outputs of other 
function generators. 

(b) Resistive materials. Two-dimensional field effects can be repre­
sented conveniently by using an electrolytic tank or resistive sheet 
analogy. A servo-positioned probe is used to pick up an electrical signal 
in the field, which will be a function of its vertical and horizontal posi­
tion. A more general function of two variables can be represented by a 

>-----:>+---1--{(x, y} 
I 
I 
I . 
y servo-driven 

f(x, Y5) 

FIG. 18. Generation of function of two variables using a tapped potentiometer. 

resistive sheet if lines corresponding to constant value of the function 
are drawn on the sheet with a conductive material and excited by a 
voltage proportional to the value of the function (see Fig. 19). The 
pickup probe is then positioned in the x and y directions by a servo 
system (a standard x-y plotter may be used), and the probe will pick 
up a voltage proportional to the function of x and y being considered. 
The linearity of interpolation is dependent on the linearity of the resistive 
material between the lines and on the input impedance of the probe 
circuit. 

Variahle Reference Diode Function Generators. Biased diode func­
tion generators can be made useful for the generation of functions of 
two variables. For certain classes of functions a good representation 
can be obtained by replacing the reference voltage of the function gen­
erator with a variable voltage y. Then an output is obtained for each 
value of· y and the breakpoints are proportional to this value; a repre-



23-22 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

sentation, as shown in Fig. 20, is thus obtained. A more general function 
of two variables can be obtained if the bias voltages of the individual 
diode circuits are made functions of y, as discussed in Ref. 15. 

f(x,y) = 0.4 

y 

~--f(x,y) == 0.3 

• P(x,y) 
f(x,y) :c 0.2 

~f(x,y'=O.l 

~----------------------~~x 

FIG. 19. Resistive sheet representation of a function of two variables. 

f(x,y) 

./ y=O.4 

~----------------------~x 

FIG. 20. Generation of function of two variables with variable reference 
diode function generator. 

Variable Density Film. A number of techniques which utilize film 
of variable optic~l density are being investigated. Opacity variations 
of 200 to 1 ratio can be detected. The film density at anyone point on 
a sheet of film -can be a function of the abscissa and ordinate at that 
point, and thus represent a function of two variables (Ref. 16). 

3. SWITCHING DEVICES 

In the study of physical phenomena it is often necessary to include 
the effects of quantities which are defined differently in different regions 



NONLINEAR ELECTRONIC COMPUTER ELEMENTS 23-23 

and thus show discontinuities in slope. Among these are such nonlinear 
phenomena as limiting, backlash, and coulomb friction. This type of 
phenomenon is usually represented on an analog computer by means of 
diodes or polarized relays, both of which approximate ideal on-e>ff 
switches in their action (Ref. 17). 

General Features 

Since relays and diodes are used to represent functions with slope dis­
continuities, they should have as sharp a switching action as possible. 
The features of each can be summarized as follows: 

Relays. 
Advantages. (a) Switching action is true on-off action, (b) three 

stable states are possible with a polarized relay. 
Disadvantages. (a) Finite closing time introduces an error into many 

problems, (b) high sensitivity is required for fast action, (c) special am­
plifiers may be required for driving polarized relays. 

Diodes. 
Advantages. (a) Low cost and ready availability, (b) simplicity of 

application, (c) no mechanical motion in switching action. 
Disadvantages. (a) Imperfect switching action, (b) finite back re­

sistance, (c) nonzero forward resistance. 

------

FIG. 21. Diode limiter characteristic. 

Limiting Operations. In many mechanical systems the motion is 
limited by physical constraints. A typical limiting operation is shown 
in Fig. 21, where the dotted line represents the limiting obtained with 
diodes. The lack of sharpness in clipping is due to diode contact poten­
tial, as may be seen in a representation of diode characteristics, such 
as Fig. 14. 

Computer Representation. The limiting operation can be stated 



23-24 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

mathematically as: 

(26) 

eo = -a, 

eo = b, 

-a < ei < b; 

_ ei > b. 

This circuit, shown in schematic form in Fig. 22, operates as follows: 
(a) If -a < ei < b, neither diode conducts, and eo = ei. 

>-------.-----~~~ 

R2 

FIG. 22. Shunt output limiter circuit. 

(b) If ei < -a, diode Dl conducts and the output voltage is limited 
by the battery or floating d-c supply in series with D 1 . 

(c) If ei > b, diode D2 conducts and the output is limited by the 
voltage in series with D 2 • 

The limiting action is due to the conducting diode and voltage source 
acting as a low-impedance feedback path for the operational amplifier; 
this reduces the gain until the output voltage is reduced to the bias level. 

Generalized Limiting Circuit. Insertion of resistances R 1 , R 2 , R 3 , 

and R4 into the circuit of Fig. 22 to give that of Fig. 23, makes it pos­
sible to vary the slopes of all three line segments of the output and thus 
give the response of Fig. 24. 

Input Sh'unt Limiter Circuit. Both the circuits of Fig. 22 and Fig. 23 
apply limiting to the output of an amplifier. It is possible to limit the 
input of an amplifier with a pair of diodes to obtain similar results, but 
generally this also reduces sharpness in clipping action. 

I dealized Limiter. The use of a more complex circuit which uses four 
diodes and three amplifiers produces a considerable increase in the 
sharpness of the clipping action (see Fig. 25), since the high-gain ampli­
fier makes operation of the circuit independent of diode characteristics. 



NONLINEAR ELECTRONIC COMPUTER ELEMENTS 23-25 

Limiting Integrator Outputs. The limiting circuits discussed above 
cannot be applied directly to the output of an integrator without caution, 
since such limiting would result in an incorrect value of the derivative 

>-------~------~eo 

FIG. 23. Generalized shunt output limiting circuit. 

~
o 

+Eb 

Slope = ~~ ! 
I 

Different 
values of R3 

-::------- R3 = 0 

------------~----~~-----L------------~ei 

Different 
values of R4 

FIG. 24. Response of limiting circuit of Fig. 23. 

and consequent wrong results. In general, the differential equation 
governing the integrator in question changes during the limiting period 
and the circuit needs to be adjusted accordingly (see Ref. 1, page 121). 

Simulation by Switching Devices 

Dead Zone Simulation. The simulation of a dead zone, i.e., no driv­
ing action until the input exceeds certain limits, is performed by using 
the circuits of Fig. 26. It should be noted that this circuit resembles 



23-26 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

eio-------~~------------------------------~ 

(a) 

(b) 

FIG. 25. Idealized diode limiter circuit and its response. 

FIG. 26. Diode circuit for dead zone simulation. 



NONLINEAR ELECTRONIC COMPUTER ELEMENTS 23-27 

very closely those used for limiting operations, but that the diodes are 
placed in series with the amplifier and thus the effect shown in Fig. 27 
is produced. · 

FIG. 27. Response of dead zone circuit of fi'ig. 25. 

Coulomb Friction Simulation. "Dry," "solid," or coulomb friction 
is simulated by a variation of the limiter circuits above which omit the 
feedback resistor, and thus make the output of the amplifier very large 
for even small variations from zero at the input. The output is then 
limited as above and gives the response shown in Fig. 28. 

High-gain 

(a) 

------I+~ 

-----1i------~ei 

-F
1 
1-------

(b) 

FIG. 28. Simulation of coulomb friction. 

Absolute Value of a Quantity. A circuit commonly used to obtain 
the absolute value is shown with its response in Fig. 29. This circuit is 
used for the simulation of a full-wave rectifier. 

Simulation of Backlash. Backlash or lack of driving action occurs 
in gear reversal and other reversing physical phenomena. Two diode 
circuits for simulation of backlash are shown with their response in 
Fig. 30., Two alternative circuits are'shown to '.indicate that none of the 



23-28 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

(a) (b) 

FIG. 29. Absolute value circuit and its response. 

(b) 

------------~~+-~----------~ei 

(c) 

FIG. 30. Diode circuits for backlash simulation and their response. 



NONLINEAR ELECTRONIC COMPUTER ELEMENTS 23-29 

circuits discus.sed above is unique, but that other schemes may be used 
to accomplish the desired nonlinear operations. 

Use of Polarized Relays 

All the circuits described above can be constructed with relays instead 
of diodes to perform the limiting operations, if relay-driving amplifiers 
are available. If special relay amplifiers are not available, it is desirable 

I -= I 

+FI : 
O~-------~~ ______ ~ 

-FI ) eo 
01------0 

FIG. 31. Dry friction simulator with a polarized relay. 

to use operational amplifiers without feedback resistors to obtain the 
necessary high gain and sensitivity. An open loop amplifier, however, 
will saturate with even a very small input, and unless the chopper stabili­
zation loop can be disabled, the amplifier's recovery from saturation 
will be too slow for satisfactory operation. The alternative is to limit 
the output of the amplifier with diodes as discussed above. This tech­
nique offers certain advantages due to the sharp switching characteristics 
of the relay, but it does not replace diodes. Some types of discontinuities, 
such as changing from one equation to another during a computation, 
are best performed with relays. 

Relay Simulation of Coulomb Friction. This circuit is shown in 
Fig. 31. Similar circuits can be constructed for the other operations 
above. 

Generation of Square and Sawtooth Waves 

Switching devices can be used conveniently in the generation of square 
or sawtooth driving functions to be used in the computer. The use of 
a relay to produce a low-frequency square wave is shown in Fig. 32. 
The voltages El and -El are supplied from the computer reference 
voltage supply. The switch is closed at t = O. Prior to closing the 
switch, the voltage ea equals minus the input voltage E 1, and the polar­
ized relay remains closed in the positive direction as indicated. When 
the switch is opened, the integrator will begin integrating the voltage E 1 



23-30 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

until the output of the summer becomes zero, when the relay is thrown 
in the opposite direction.. The frequency of the square wave obtained 
is (1/4RC) , where RC is the time constant of the integrator. 

Initial 
condition = 0 

El 
0----0 

~--"""-~eo 

FIG. 32. Low-frequency square wave generator. 

Diode Circuit for Square Wave. The circuit of Fig. 32 is adequate 
only for frequencies of the order of a few cycles per second owing to 
the finite closing time of the relays. Higher frequency square waves can 

FIG. 33. Diode circuit for square wave generation. 

be produced by using diode shunt limiter circuits to replace the relay, as 
shown in Fig. 33. 

Sawtooth Wave. A sawtooth wave can be obtained by passing the 
summer voltage ea in either Fig. 32 or 33 through a full-wave rectifier 
(Fig. 29). The repetition rate of the sawtooth is 1/ (2RC). 



NONLINEAR ELECTRONIC COMPUTER ELEMENTS 23-31 

4. TRIGONOMETRIC DEVICES 

Many physical problems require the use of trigonometric functions to 
express angular variations or to perform coordinate transformations. 
Several techniques for obtaining these circular functions are described 
in this section. 

Trigonometric Functions of Time. The solution of the differential 
equation 

(27) 
d2x - + W2X = 0 
dt2 

yields sine and cosine functions of time with adjustable frequency. The 
long time stability of the sine wave obtained from the solution of this 
equation on the computer is a function of amplifier phase shift. At very 
low frequencies the oscillations may tend to decrease in amplitude, 
whereas at higher frequencies they may tend to diverge. Stable sine 
and cosine functions can still be obtained by including a damping term 
in eq. (27) which corrects for the phase shift by adding in a positive 
or negative damping term. 

Series Expansions. Very accurate approximations to the trigo­
nometric functions can be obtained by using the first few terms of the 
series expansions for these functions, if their total angular excursion 
is not too large. Multipliers and function generators can be used to 
obtain the necessary powers of the argument (see Sects. 1 and 2). 

Function Generator Representation. Good accuracies can be ob­
tained by setting up the trigonometric function on a function generator, 
if the total angular variation is small. 

Servo-Driven Potentiometers. These represent the most frequently 
used method of obtaining trigonometric functions. 

Linear Potentiometers. Combinations of linear potentiometers and 
resistors can be used for approximating the sine function over certain 
restricted ranges of its argument. Such potentiometer circuits -are de­
scribed in Ref. 2, page 425. 

Nonlinear Servo-Driven Potentiometers. Tapered potentiometers are 
frequently used in conjunction with servo mult.ipliers (see Sect. 1) to 
perform polar to rectangular transformations. In schematic outline, a 
combination of four such tapered potentiometers would appear as in 
Fig. 34, where two brushes separated by 90° are used to give the sine 
and cosine respectively. The two outputs then correspond to the results 
of the transformation, since 

(28) 
x = R cos 0, 

y = R sinO. 



23-32 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

These potentiometers can be mounted on the same shaft with linear 
potentiometers in a servo multiplier, and the device can perform multi­
plication as well as resolution. Transformation from rectangular to 
polar coordinates is considered below. 

FIG. 34. Tapered sine-cosine potentiometer. 

A-C Resolvers. Induction resolvers may be used to obtain the polar 
to rectangular transformations if the input a-c voltages are modulated 
by the proper d-c values from the computer and the outputs are demodu,:, 
lated to obtain the quantities x and y. The modulating and demodulat­
ing circuits are subject to drift and are difficult to construct for high 
accuracy, so that induction resolvers are generally used only Ylith a-c 
computers on flight tables or other special applications. 

Sines and Cosines from Implicit Computation. If the derivative 
of the argument () with respect to time is available in the problem, it 
is possible to obtain sines and cosines by using amplifiers and multipliers 
only as shown in Fig. 35. This circuit gives satisfactory answers in 
many applications, but must be used with caution since it is possible to 
lose the uniqueness of () in the problem if the computation is long. 

Rectangular to Polar Transformations. The equations governing 
this transformation are 

(29) 
R = Yx2 + y2, 

() = arc tan (y/x). 

Although it is possible to solve these equations directly, it is usually 
more convenient to use servo-driven resolvers to solve for Rand () by 
implicit computation by using the equations 

-ysin(} + ycos(} = 0, 
(30) 

x cos () + Y sin () = R, 



NONLINEAR ELECTRONIC COMPUTER ELEMENTS 23-33 

which are equivalent to the transformation eq. (29). If resolver poten­
tiometers are used to obtain the quantities x sin (), x cos (), y sin (), and 
y cos 0, these can be combined in accordance with the equations above. 

dO diO-------I 

-cosO 

sin (1 

FIG. 35. Sines and cosines from implicit computation. 

R 

+100 +x +y 

Servo Motor 
amplifier 

-100 -x -y 

FIG. 36. Servo resolver connections for rectangular to polar transformation. 

The output of the second equation provides the vector length R. The 
output of the first equation should be zero, and is therefore applied as 
an input to the servo amplifier which positions the angle () to reduce 
it to zero. For satisfactory performance such "inverse resolvers" require 



23-34 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

servo amplifiers with automatic gain control (AGe). The schematic 
of this transformation is shown in Fig. 36. 

5. TIME DELAY·SIMULATORS 

Time delays are encountered in the solution of two types of problems 
on analog computers. The first involves "transportation lags" such as are 
those found in flow of material in pipes, signal transmission in hydraulic 
or pneumatic lines, or the motion of neutrons in nuclear reactors. The 
need for time delay units also arises in the evaluation of correlation 
functions and convolution integrals. In this section several methods 
of introducing time delays into a computation are discussed. 

While time delay is properly a linear operation, it is included in this 
chapter because it is often simulated with specially constructed devices. 

True Time Delays 

Simulation of a true time delay of the form 

(31) j(t - 7") 

necessarily involves use of some device to store information during the 
delay period. 

Two-Pen Recorders. Probably the oldest technique of introducing 
a function of the form of eq. (31) into a computer was used with a 
mechanical differential analyzer, and in modified form is still used in 
some cases. A two-pen recorder is a device used for plotting two func­
tions of the same independent variable on the same sheet of paper with 
fixed displacement between their vertical axes. If the displacement be­
tween the two pens is made equal to the delay time, and the second 
pen is replaced by a sight, the curve can be manually tracked, thus 
generating the fu'nction f (t - T). An automatic curve follower device 
can also be used, but this may require generation and plotting of f(t) 
beforehand. 

Disadvantages. (a) A very limited range of delay times is available 
due to the spacing of the recorder heads. (b) Speed of response is 
severely limited by human tracking and mechanical components. 

Magnetic Tape. A complex and expensive but very effective way 
of introducing a time delay into a computation is by means of a magnetic 
tape recorder with two recording heads. One head is used for recording 
the information and the second for reading it back to the computer after 
a suitable delay. The delay is introduced either by an adjustment of 
movable heads, or by an adjustment of pulleys which regulate the length 
of tape between the two heads. Tape speed, which directly affects the 
delay time, is generally fixed by the desired frequency response of the unit. 



NONLINEAR ELECTRONIC COMPUTER ELEMENTS 23-35 

Digital Storage Techniques. In large installations where analog to 
digital converters enable the computer to be interconnected with a digital 
computer, it is possible to take advantage of the digital storage for 
introduction of a time delay. This may take the form of recording the 
function f(t) on a magnetic drum channel in digitized form and then 
reading it back after a suitable delay through a digital to analog 
converter. It may also be possible to utilize the buffer storage present in 
the analog-digital-analog converter unit itself. The frequency response 
available in this type of system is related to the sampling rate of the 
converter, and needs to be carefully considered. 

Approximations to the Time Delay 

All the devices discussed above utilize a form of storage and retrieval 
of information to achieve a time delay. It is also possible to simulate 
an approximation to the time delay by noting that the Laplace transform 
of eq. (31) is 

(32) ff [J(t - r)] = F(s)e-ST
, 

where F (8) is the La place transform of f (t ) . 
The problem: of obtaining a time delay is then reduced to that of approxi­
mating the function e-7"8 in such a way as to allow convenient variation 
of the delay time over a wide range while maintaining a constant ampli­
tude characteristic. 

Power Series Approximation. It is possible to expand the function 
e-7"8 by its Taylor series expansion 

(33) 
(r8)2 (r8)3 

e-TB = 1 - rS + -- - -- + ... 
2! 3! . 

Unfortunately, this series requires a series of differentiations for its 
simulation on the computer. Furthermore, the rate of convergence of 
the series is slow for large values of the argument T8 and therefore it is 
not suitable for high frequencies or long values of delay. For short 
delays and limited frequency response, it is possible to obtain satisfac­
tory response from a circuit which simulates the first few terms of the 
series eq. (33), especially if the problem includes a first order lag in 
series with the delay, and thus filters out noise from the differentiation 
process. In many physical problems, such as a pipe transport lag, the 
transfer functions are of the form 

Ke-TI S 

KG(8) = --, 
r28 + 1 

(34) 

and thus include a lag term with a delay circuit. 



23-36 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

Multiple Lag Approximation. The exponential function can be 
written as the limit 

(35) e-1'8 = lim ( 1 )n. 
n-> 00 1 + TS/n 

If a finite value of n is used, the approximation consists of a pole of 
order n located on the negative real axis of the S plane at -n/ T. For 
small values of n the approximation is not very good (Ref. 18). In one 
computer study the time delay was represented by 80 cascaded first order I 

lags, i.e., n = 80 in the above equation (Ref. 19). 
The Pade Approximation. A much more satisfactory method of 

approximating e-7"8 is by means of a rational algebraic function in 
which both numerator and denominator are polynomials in s. This 
rational function is known as the Pade approximation (Ref. 20) with 
numerator of degree n and denominator of degree m: 

PnCS) e-1'8 ~ ---. 

- Qm(S) 
(36) 

The coefficients of the polynomials are selected in such a way that the 
Maclaurin expansion of the approximation agrees with the expansion 
of e-7"8 (eq. 33) for the largest number of terms possible. 

EXAMPLE. Approximate e-7"8 by a ratio of a third to a second degree 
polynomial. There are six coefficients to be determined: 

1 + alS + a2s2 + a3s3 
e-1'8 

'" 

bo + blS + b2s2 (37) 

If the coefficients are chosen so that the first six terms of the Maclaurin 
series are correct, one obtains 

-1'8'" 1 - t TS + ;0 (TS)2 - -/-0 (TS)3 • 
e = 2 1 ( )2' 1 + "5 TS + 20 TS 

(38) 

The Maclaurin series expansion of eq. (38) is 

(39) 1- TS + t (TS)2 - if (TS)3 + -;4" (TS)4 - rto (TS)5 + 8~O (TS)6 - •••. 

Since the expansion of e-1'8 is 

(40) e-1'8 = 1-TS+t (TS)2 -if (TS )3+-;4" (78)4 - 1 ~o (T8 )5+ 7 ~o (TS )6_ .... 
Note that the two series differ only in the seventh term. 

The coefficients of the Pade approximation for various degrees of 
polynomials in the numerator and denominator have been tabulated 
(Refs. 18, 20). Commercially available time delay units have made 
use of approximations where n = n = 2, and also n = m = 4. Thus, 



NONLINEAR ELECTRONIC COMPUTER ELEMENTS 23-37 

the approximation for n = 1n = 2 is 

12 - G(TS) + (TS)2 e-TB 1"'>.1 • 

- 12 + G(TS) + (TS)2 
(41) 

There are two ways of mechanizing the transfer function of eq. (41). 
Figure 37 shows a circuit for the second order approximation which can 

-f(t) 

L...---~f(t -r) 

FIG. 37. Circuit for the generation of the second order Pade approximation. 

be set up on the computer with amplifiers and potentiometers. Figure 38 
is a representation of eq. (41) with amplifiers with complex input and 

Ro 

1ft) 
>--'---~I(t -T) 

FIG. 38. Two-amplifier circuit for the second order Pade approximation. 

feedback networks, which thus reduce to two the total number of am­
plifiers required. 

Limitations and Features of the Approximation. Time delay in 
the circuits for the Pade approximation means a linear variation of phase 



23-38 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

shift with fr~quency. The phase shift limit of the second order approxi­
mation (n = m = 2) is approximately 1000

, and its frequency limit is 
too low for all but crude approximations. The phase shift limit for 
linearity in the fourth order approximation (n = m = 4) is approxi­
mately 400 0

, thus giving a four-to-one improvement in frequency 
response. A practical circuit for the fourth order approximation, which 

f(t) 

FIG. 39. Practical circuit for fourth order approximation to time delay. 

includes a small lag term for filtering the 'output, is shown in Fig. 39 
(Ref. 21). Regarding this circuit, the following can be noted: 

(a) Frequency response can be improved by cascading several units 
of the type shown in Fig. 39. A comparison in approximate frequency 
response to -a step function input is shown in Fig. 40. 

(b) If the resistors R connected with dotted lines in Fig. 39 are ganged 
potentiometers, it is possible to make the delay itself a function of time 
by driving these potentiometers with an appropriate servo. Over a 
limited range, the delay can be varied as function of time without dis­
tortion in this circuit. 

(c) Output amplitude is independent of delay time. 
(d) The amplitude-frequency characteristic is flat over the range of 

frequencies of interest, up to the breakpoint determined by the time 
constant of the output filter, i.e., 1/ (RoCo) rad per second. This time 
constant is sometimes chosen as Y1 00 of the delay time. 

(e) In certain closed loop applications the so-called diagonal approxi­
mation (degree of numerator and denominator equal) will result in in­
stability. In this case, an approximation by a higher degree polynomial 



NONLINEAR ELECTRONIC COMPUTER ELEMENTS 23-39 

in the denominator must be used to restrict the frequency range of the 
unit. 

(j) It should be noted that even the rather sophisticated circuit dis­
cussed here is only an approximation, and it is still quite limited in fre-

1.0 

Response of ideal time delay 

Response of Fig. 38 circuit 

_--!-T-H!-++f--i._T-+---l;:---i--f-lr-l-:-l-:::--__________ T __ im~e (tIT) 

FIG. 40. Step function response of circuit for fourth order Pade approximation 
(circuit of Fig. 38). 

quency response for large values of delay, since its frequency limit is 
approximately equal to the inverse of the delay time selected. External 
storage type delay simulators, such as a magnetic tape recorder, can 
offer advantages in frequency response, but these may be offset by the 
cost and complexity of the interconnecting equipment with the computer. 

REFERENCES 

1. C. L. Johnson, Analog Computer Techniques, McGraw-Hill, New York, 1956. 
2. G. A. Korn and T. M. Korn, Electronic Analog Computers, 2nd edition, 

McGraw-Hill, New York, 1956. 
3. W. W. Soroka, Analog Methods in Computation and Simulation, McGraw-Hill, 

N ew York, 1954. 
4. C. A. Wass, Introduction to Electronic Analogue Computers, McGraw-Hill, 

New York, 1955. 
5. E. A. Goldberg, A high-accuracy time-division multiplier, RCA Rev., 23, 265 

(1952). 



23-40 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

6. C. D. Morrill and R. V. Baum, A stabilized electronic multiplier, Trans. I.R.E., 
PGEC, December 1952. 

7. S. Giser, An all-electronic high-speed multiplier, M.I.T. Instrumentation Labora­
tory, Rept. R-67, November 1953. 

8. C. M. Edwards,: Survey of analog multiplication schemes, J. Assoc. Computing 
Machinery, 1, 27-35 (1954). 

9. A. B. MacNee, A crossed-fields electron beam multiplier, Proc. I.R.E., 37, 1315 
(1949). 

10. W. A. McCool, An AM-:FM electronic analog multiplier, Proc. I.R.E., 41, 1470-
1477 (1953). 

11. E. A. Goldberg, Step mUltiplier in a guided missile computer, Electronics, 24, 
121-124 (August 1951). 

12. W. R. Thomas and M. Squires, Electronic analog methods of multiplication, 
RAE Tech. Note GW-53, October 1949. 

13. H. Hamer, Optimum linear-segment function generation, Trans. Am. Inst. 
Elec. Engrs., Paper No. 56-696, 1956. 

14. P. E. Stanley, The generation of functions for analog computing, Am. Inst. 
Elec. Engrs., Conference Paper, No. CP 57-661, 1957. 

15. H. R. Meissinger, An electronic circuit for the generation of functions of 
several variables, I.R.E. Convention Record, Pt. IV, 1955. 

16. R. A. Sinker, A photo-electric function generator, Electronics, 9, 178 (October 
1956). 

17. C. D. Morrill and R. V. Baum, Diode limiters simulate mechanical phenomena, 
Electronics, 25, 122-126 (November 1952). 

18. J. G. Truxal, Automatic Feedback Control System Synthesis, Sect. 9.8 (pp. 
546-553), McGraw-Hill, New York, 1955. 

19. K. L. Chien, J. B. Reswick, and J. A. Hrones, On the automatic control of 
generalized passive systems, Trans. Am. Soc. Mech. Engrs., 74, 175-183 (1952). 

20. R. D. Teasdale, Time domain approximation by use of Pad6 approximants, 
I.R.E. Convention Record, Pt. V, pp. 89-94, 1953. 

21. C. H. Single and G. S. Stubbs,. Transport delay simulation circuits, Westing­
house Atomic Power Division Tech. Rept. WAPD-T-38, May 1952. 



E DESIGN AND APPLICATION 

OF ANALOG COMPUTERS 
Chapter 24 

Analogs and Duals of Physical 

Systems 

Richard Mackey 

I. Electric Analogy of Dynamic System 

2. General Terminology 

3. Analysis of General Syst9ms 

4. Energy Considerations 

5. Duality 

6. Construction of Duals 

7. Across and Through Variables in Physical Systems 

References 

I. ELECTRIC ANALOGY OF DYNAMIC SYSTEM 

24-01 

24-03 

24-03 

24-07 

24-08 

24-09 

24-12 

24-12 

Introduction. True analogies are not just a superficial correspondence 
of a few parameters; consequently in many ,cases their significance is 
not fully appreciated. The validity of 
an analogy depends solely on the math- I k 01 ~ 
ematical proof of the correspondence rrrfffffff((~J 
between the two systems. The exist- -
encc of a rigorous analogy implies an FIG. 1. Basic mechanical circuit. 
exact similarity in the form of the 
mathematical equations which describe the behavior of the two systems 
under consideration. (See Chap. 21, Sect. 6, for table of symbols and a 
brief discussion of usage.) 

Basic Mechanical Elements. Consider the simple damped oscillator 
shown in Fig. 1. The free element behavior of the mecha,nical com-

24-01 



24-02 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

ponents is given by: 

Friction f~ B 1 

~~:b 
f = Bv, v =-f 

B 

Mass f~b 
dv 

v = ~ Jfdt f=M-, 
dt 

f~ K 

f = k J v dt, 
1 df 

Spring ~~ v=--
k dt 

Free element response of mechanical components: f = force, v = veloc­
ity, B = dash}4)Qt constant (represents any form of viscous friction), 
M = mass, K = spring constant. 

Analysis. This mechanical circuit may be solved by either the path 
or junction (loop or node) principle. A loop is defined as any closed 
path in a circuit; a node or junction is the point of intersection of two or 
more distinct paths through the network. The method used will in general 
depend upon the particular structure (circuit) at hand. 

Each of the elements of Fig. 1 has the same velocity difference with 
respect to the .reference frame and therefore the system may be said to 
have one independent velocity node (junction). This circuit is most 
easily solved by the junction method since there are fewer junctions than 
paths. Writing the summation of forces at the velocity node equals 
zero gives: 

(1) dv J 'Lf = 0 = M - + Bv + k v dt. 
dt 

Because mechanical circuits may be drawn in any number of pictorial 
ways, the actual circuit connections may be hidden and thus cause confu­

R c 

FIG. 2. Basic electric circuit. 

sion during analysis. It is of ad­
vantage to develop a technique for 
reducing such pictorial connection 
diagrams to standard schematic 
diagrams. This schematic system 
will be worked out along the lines 
of electric circuit principles mainly 
because of the systematic formu­
lation established for the solution 
of electric networks. 

Basic Electrical Elements. 
Consider the three-element electric circuit given below which represents 
the general oscillator. The basic electric circuit is shown in Fig. 2. The 



ANALOGS AND DUALS OF PHYSICAL SYSTEMS 24-03 

free element behavior of the component parts is given by 

Resistance 
. R 1 
l~~ e = iR, i = - e 

R 
~e 

i~ L di 
i = -i Ie dt Inductance \OOO~ e = L-, 

-""""::=:e dt 

i-~ lie 
e =.! Ii dt i = Cde Capacitance '---e~ . C ' dt 

Free element response of electrical components: e = voltage, i = cur­
rent, R = resistance, L = inductance, C = capacitance. 

Analysis. Since all these elements have the same voltage difference 
across them, a simple junction equation is suggested. 

(2) . de III I>=O=C-+-e+- edt. 
dt R L 

Equations (1) and (2) have the same general structure but different 
symbols for the element constants and variables. Note that the across 
and through variables share the same role in the two systems (dependent 
variable or excitation)-this is the basis for the structure analogy. An 
across variable requires two points for its specification and is a measure 
of the difference of magnitude of a variable between these points such 
as voltage, velocity, and temperature. The through variable requires 
only one quantity for its specification and is a measure of variables that 
have the same magnitude at all points along the element, such as current, 
force, and heat flux. 

2. GENERAL TERMINOLOGY 

It is convenient to reduce all circuits, whether electric, magnetic, 
thermal, mechanical, or other, to a schematic diagram using the elec­
trical symbols to represent the various components. Thus Table 1 giveil 
the relations of across variables to the through variables for various 
types of elements and the corresponding symbol representation. ex, f3, 
and yare parameters. Relations (A), (B), (C) may be solved explicitly 
for the through variable resulting in (A'), (B'), (C'). 

3. ANALYSIS OF GENERAL SYSTEMS 

Schematic Diagrams. The schematic diagram is developed with the 
following definitions: 

Series. Elements are said to be in series if the same through variable 
passes through each element. 



24-04 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

TABLE 1. ELEMENT REPRESENTATION FOR ACROSs-THROUGH RELATIONS 

Across-Through Variable 
Relation Symbol 

(A) Across = a (through) ---MIVW'----

(B) 
. d 

Across = (3 dt (through) -
(C) Across = 'Y f (through) dt II-

(A') 
1 

Through = - (across) ~ 
a 

(B') Through = ~ f (across) dt -
(C') 

1 d 
Through = - d (across) 1\ 'Y t 

Parallel. Elements are said to be in parallel if the same across variable 
exists across each element. 

N ow Kirchhoff's laws may be expressed as: 
Path principle. ~ across variable around closed path = O. 
Junction principle. ~ through variable at junction = O. 
The following relationships also exist between the across and through 

variables: 

Across variable .. 
h = CirCUlt parameter (structure). 

T rough variable 

EXAMPLE. Electrical resistance, eli = R. 

(Across variable) X (Through variable) = Power. 

EXAMPLE. Electrical power, ei = watts. 
Identifying Elements. The ideas behind the equations representing 

the characteristic behavior of the schematic symbols may be expanded 
to provide a ·test (conceptual or experimental) for the element behavior. 
Suppose an unknown component from some system is encountered and 
the schematic circuit diagram is desired. The across variable response 
to a known through stimulus immediately determines which symbol to 
use according to the relations (A), (B), (0). Thus if the unknown 
system component is tested with a step function of through variable and 
the result is a unit impulse function, by relation (B) that component 
must be represented by the schematic element ~. These tests may 
be presented in a tabular form shown in Table 2. 

The table is entered by picking a function of one of the forms in the 
row under Test Variable. The element response is one of the three 



ANALOGS AND DUALS OF PHYSICAL SYSTEMS 24-05 

functions in the column headed by the chosen test variable. When the 
response has been determined, move along that row to the last column 
to find the schematic symbol to represent the unknown clement. If 
the testing function was a through variable, move left to the first column 
to find the schematic symbol; if the testing function was an across 
variable, move right to the last column for the schematic symbol. 

TABLE 2. TEST TABLE FOR COMPONENT BEHAVIOR 

Test Variable 
Through Across 

Test V y I ~ + ~ Test 
Symbol Symbol 

-H- V V ./ F ~ bC\ ...IQO\-
90· lag 

-'\N\r- V y I JL + ~ -'VV'v-

...ro6'- / ~ --.lL -Y -V- f\:f -H-
90· lead 

If these principles are applied to the mechanical circuit of Fig. 1, the 
schematic diagram of Fig. 3 may be arrived at immediately by noting 
that the across variable is velocity and the through variable is force. 

Junction Technique. Consider 
the more complex system shown in ~0~~~~~~~~~~~~ 
Fig. 4. Mark all points with veloc­
ity different from reference frame. 
(These are velocity nodes, Vi, V2, V3)' 

It is important to realize in any 
method of analysis that the mass is 

t 
B IJ 

FIG. 3. Symbolic representa­
tion of circuit of Fig. 1. 

FIG. 4. Complex mechanical 
circuit. 

a two-terminal element with one terminal connected to the inertial 
reference (usually ground or frame). Thus before either the path or 
junction technique is applied sketch in the reference terminals for all the 
masses. 



24-06 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

Mark these nodes above a reference plane and connect the corre­
sponding schematic symbols between the various nodes and reference. 
The resulting circuit is the desir~d schematic shown in Fig. 5. 

FIG. 5. Schematic of circuit of Fig. 4. 

FIG. 6. Paths traced through circuit of Fig. 4. 

FIG. 7. Individual loops for circuit of Fig. 6. 

Path Technique. Start anywhere, trace through the pictorial of 
Fig. 5 in such a way as to end up at the starting point (from a closed loop), 
and replace each pictorial element by its schematic symbol. Continue 



ANALOGS AND DUALS OF PHYSICAL SYSTEMS 24-07 

making loops until every element has been traced through, as shown in 
Fig. 6. The individual loops are shown symbolically in Fig. 7. 

N ate. The resulting schematic is the same regardless of the technique 
used. The choice of which technique to use will depend on the relative 
number of junctions and paths. 

4. ENERGY CONSIDERATIONS 

The power delivered to a system must equal the rate of kinetic energy 
storage plus the rate of potential energy storage plus the power loss due 
to dissipation. The rate at which work is done or power delivered to a 
system (considered as a driving point impedance) is given by eq. (3). 

(3) p = ~ (T + V) + D, 
dt 

where P = power supplied = (across) (through), 
T = kinetic energy, 
V = potential energy, 
D = dissipation. 

Continuing the mechanical-electrical comparison. 
Mechanical System. 

P = Jv, T = ! Mv2, V = ! kX2, 

(4) 
ctv dx 

P = M - v + k - x + Bv2 = Jv. 
dt dt 

Dividing through by v gives 

(5) 

Electrical System. 

P = ei, 

(6) 

dv J J = M - + Bv + k v dt. 
dt 

P di. q dq R '2 • 
= L - 1, + - - + 1, = e1,. 

dt edt 

Dividing through by i gives 

(7) L di R' + 1 J'd e = - + 1, - 1, t. 
dt C 

Expressions (5) and (7) meet all the requirements of analogous equa­
tions and hence must represent analogous systems. 

The choice of electrical element to store kinetic energy and the one to 
store potential energy is somewhat arbitrary. An analogy exists between 



24-08 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

two elements or systems if the form of their mathematical equations is 
the same. Thus the energy stored in a mass by virtue of its motion could 
equally well be considered analogous to the stored energy of a capacitor 
or an inductor, that is, 

(S) 

However, closer observation of these relations seems to favor the choice 
of the inductor for kinetic energy storage and the capacitor for potential 
energy storage. Rewriting the above eq. (S) with the relations e = q/C 

and q = J i dt gives 

(9) ! ~ (Ji dt)2 = ! M [dXJ2 = ! L [dqJ2 . 
2 C 2 dt 2 dt 

Likewise for the stored potential energy of a spring, 

(10) 1 1 (J )2 1 (J )2 1 [dqJ2 2 c i dt = 2 k v dt = 2 L dt . 
Thus the similarity of energy terms in eqs. (9) and (10) leads to the 
mass-inductor, spring-capacitor analogy. Physically this is also reason­
able since kinetic energy is energy of motion. Energy can be stored in 
the field of an inductor only when there are charges in motion. Potential 
energy is stored in the spring by displacement of an elastic medium and 
likewise for the dielectric of a capacitor. This similarity is thus termed 
the conventional energy analogy but is not unique. 

5. DUALITY 

Since eqs. (1) and (5) are identical and express lJ = 0 for the' 
mechanical system, eqs. (2) and (7) must bear some relation to each 

L 
other. They must have the same solution 
since each represents the same physical 
phenomena and each has form lJ = 0, 
where in (2) the symbol i corresponds to 

R force and in (7) e corresponds to force. 
Equation (7) represents an application of 
Kirchhoff's voltage law and must there­
fore apply to an end-to-end or loop con-FIG. 8. Second analog of me-

chanical circuit of Fig. 1. nection of the elements, as shown in Fig. 
S. Thus there are two electric circuits 

which behave like the given mechanical circuit. This relationship is 
illustrated in Fig. 9. The two electric circuits are termed "duals." 

Thus the conventional energy approach suggests another set of cor­
responding quantities. A comparison of the coefficients of eqs. (5) and 



ANALOGS AND DUALS OF PHYSICAL SYSTEMS 24-09 

(7) shows that mass, mechanical resistance, and compliance in the 
mechanical system are analogous to inductance, electrical resistance, and 

/ -
L 

t ~M C e 
I 

f B 

03 
(a) (b) (c) 

FIG. 9. (a) Structural analog, preservation of through and across variables. (b) Given 
mechanical circuit. (c) Energy analog, preservation of "conventional" kinetic and 

potential energy terms. 

capacitance respectively. Also it may be seen that force corresponds to 
voltage and velocity to current (Table 3). 

TABLE 3. CORRESPONDENCES: ANALOGOUS QUANTITIES IN MECHANICAL 

AND ELECTRICAL SYSTEMS 

Electrical 
(Structure Basis) 
Current, i 
Voltage, e 
Flux, f 
Capacitance, C 
Conductance, llR 
Inductance, L 
Through 
Across 

Mechanical 
(Rectilinear System) 

Force, f 
Velocity, v 
Displacement, x 
Mass, ~1 
Resistance, B 
Compliance, 11k 
Through 
Across 

Electrical 
(Energy Basis) 

Voltage, e 
Current, i 
Charge, q 
Inductance, L 
Resistance, R 
Capacitance, C 
Across 
Through 

Just as two electric circuits were found to represent a given mechanical 
circuit, two mechanical circuits can conceptually be found to represent 
a given electric circuit. These mechanical circuits will also be duals of 
one another. This correspondence is represented in Fig. 10. 

6. CONSTRUCTION OF DUALS 

Given any planar schematic network, there are two methods of finding 
its dual (duality fails if the original network is nonplanar). One method 
may be considered the junction method and the other the path method. 

Junction Method. Consider the schematic network shown in Fig. 11. 
The procedure is: 



24-10 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

Mechanical .... Structure analog :. Electrical 

'T.f=O 'T.i = 0 

~ 

t t 
Dual Dual 

{ 
Mechanical E Structure analog ~ Electrical 

'T.u=O 'T.e = 0 

FIG. 10. Relation of duals and analogs. 

/~--------------..., /"..----- --, 
( \ k2 k3 I \ 

~~----~----~~ 

I 

: B3 
------0------ -, 
B2 D 1 

I 

I 
I 
I 
I 

, _____ -_-,:: _-___ - ___________ _=_ -=--::.. -=--=-.-=--...0=-==-=--------.::-=:: = =: ~ ~:::::: .:-:~ _/ J 

1 
B1 

A 

Ref. 

FIG. 11. Original circuit; center of loops marked. 

D 

FIG. 12. Dual of circuit of Fig. 11. 

t 



ANALOGS AND DUALS OF PHYSICAL SYSTEMS 24-11 

1. Mark the center of each loop or "windowpane" with a node and 
place a reference node outside the circuit. 

2. Place these nodes above a reference plane. 
3. Connect these nodes in the original circuit by crossing elements. 
4. Place the dual of each element between corresponding nodes in the 

dual circuit. 
The result of this procedure is shown in Fig. 12. 
Path .1.11 ethod. The path method will be applied to the dual circuit 

just derived so as to return to the original circuit (often a convenient 
check on the correctness of the derived dual). The procedure is: 

1. Mark all nodes in the network and encircle each node, as shown in 
Fig. 13. 

FIG. 13. Circuit of Fig. 12, nodes encircled. 

2. Connect all elements crossing the circle at each node except the 
reference node in an end-to-end series manner replacing each element by 
its dual, as shown in Fig. 14. 

FIG. 14. Elements of Fig. 13 replaced by duals. 

3. Now make this connection for the reference node (Ref.) and join 
the other loops to it, as shown in Fig. 15. 

Note that one loop is redundant; this comes about because the circuit 
may be solved by N - 1 node equations. A separate node equation for 
the reference node is therefore not written. 



24.12 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

If the derived circuit is redrawn, the original circuit, shown in Fig. 16, 
results. 

B3 

FIG. 15. Loops joined in Fig. 14. 

B3 

FIG. 16. Redrawn Fig. 15, identical with Fig. 11. 

7. ACROSS AND THROUGH VARIABLES IN PHYSICAL SYSTEMS 

The pertinent variables of several physical systems are summarized 
in Table 4. 

TABLE 4. ACROSS AND THROUGH VARIABLES IN PHYSICAL SYSTEM 

System 
Electrical 
Mechanical (rectilinear) 
Mechanical (rotation) 
Acoustical 
Thermal 
Fluid 
Magnetic 
Chemical 

Across 
Voltage 
Velocity 
Angular velocity 
Pressure 
Temperature 
Pressure 
Magnetomotive force 
Chemical potential 

REFERENCES 

Current 
Force 
Torque 

Through 

Volume current 
Heat flow 
Flow 
Flux 
Speed of reaction (molecules) 

1. H. F. Olson, Dynamical Analogies, D. Van Nostrand, Princeton, N. J., 1943. 
2. W. C. Johnson, Mathematical and Physical Principles of Engineering Analysis, 

McGraw-Hill, New York, 1944. 



ANALOGS AND DUALS OF PHYSICAL SYSTEMS 24-13 

3. L. A. Pipes, Applied Mathematics for Engineers and Physicists, McGraw-Hill, 
New York, 1946. 

4. M. F. Gardner and J. L. Barnes, Transients in Linear Systems, 'Wiley, New 
York, 1942. 

5. W. Thompson, Mechanical Vibrations, Prentice-Hall, Englewood Cliffs, N. J., 
1948. 

6. B. Gehlshoj, Electromechanical and Electroacoustical Analogies, Denmark, 1947. 
7. M.I.T. Electrical Engineering Staff, Electric Circuits, Wiley, New York, 1943. 





E DESIGN AND APPLICATION 

OF ANALOG COMPUTERS Chapter 25 

Solution of Field Problems 

Walter J. Karp/us 

I. Formulation of Engineering Problems as Partial Differential 
Equations 

2. Continuous Type Electric Analogs 
3. Discrete Element Type Electric Analogs 

4. Nonelectric Field Ana logs 
References 

I. FORMULATION OF ENGINEERING PROBLEMS AS PARTIAL 
DIFFERENTIAL EQUATIONS 

25·01 

25·05 

25·11 

25·22 

25·23 

Introduction. Field problems arise in phy:sical systems in which the 
system properties or parameters are distributed in a continuous fashion 
throughout the system. The independent variables of the problem there­
fore include one or more of the space coordinates, as well as the time 
variable in transient problems. The complete solution of such a problem 
then provides values for the dependent variables at all points within a 
region of interest, i.e., the field. 

Analogs represent a powerful tool for dealing with such problems 
because the field problems characteristic of the many diverse areas of 
physics and engineering may be described compactly by a relatively 
small number of partial differential equations. General analog tech­
niques developed to solve these equations may then be applied as desired 
to the specific problem of interest. A more detailed discussion of this 
subj ect is presented by Karplus (Ref. 1), and a portion of this chapter is 

25·01 



25-02 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

abstracted from this reference with permission of the publishers. (See 
Chap. 21, Sect. 6, for a brief table of symbols.) 

Dependent Variables. Just as in lumped systems (see Chap. 24), 
it is convenient in treating field problems to identify across and through 
variables. The across variable, generally termed the potential function 1>, 
expresses the value of a dependent variable with respect to some reference 
point. It is therefore really the difference in potential between (or across) 
two points. The through variable, usually called the stream function j, 
is proportional to the gradient of the potential function (first partial 
derivative of 1> with respect to a space coordinate) and describes the 
flow through a region of the field. In Cartesian coordinates 

(1) 
. acf> 

Jx= - -, 
ax 

. acf> . acf> 
Jy= - -, 

ay Jz = - az ' 
where jx, jy, and jz represent the flow rate in the x, y, and z directions 
respectively. 

In presenting the solution of a field problem all points having the 
same potential 1> are connected to form equipotential lines; all points 
for which the stream function j is the same are joined to form stream­
lines. The complete solution of a field problem is then usually a grid 
of orthogonal equipotential and streamlines. 

Coordinate Systems. It is advisable to formulate a field problem in 
the coordinate system which will make the resulting mathematical expres­
sions take as simple a form as possible. The selection of the coordinate 
system is therefore governed to a large extent by the shape and symmetry 
of the field boundaries. Where these boundaries are rectangular, 
Cartesian coordinates are indicated; where'there exists symmetry about 
a straight line, cylindrical coordinates become appropriate; and where 
there is symmetry about a point, spherical coordinates are preferable. 
These basic coordinate systems are defined in Fig. 1. Other coordinate 
systems may be developed as needed. In two-dimensional problems the 
technique of conformal mapping (Vol. 1, Chap. 10) is very useful. 
Parabolic and hyperbolic coordinates, and phase plane plots are also of 
occasional advantage. 

The Laplacian. In order to make the partial differential equations 
of physics as general as possible it is desirable to make them independent 
of specific coordinate systems. To this end it is convenient to define the 
Laplacian operator \72 as a shorthand notation. Expressions for \72 

in the principal coordinate system are included in Fig. 1. 
In problems of elasticity the biharmonic operator \74cf> represents 

a4cf> a4cf> a4cf> -+2--+-
&x4 ax2 ay2 ay4 

in Cartesian coordinates. 



Coordinate 
System 

Cartesian 
x,Y,Z 

Cylindrical 
r, (J, Z 

Spherical 
rB, a, {3 

Cartesian 

x x 
y y 

z Z 

x r cos (J 
y r sin (J 

Z Z 

x = r 8 sin {3 cos a 
y = r 8 sin {3 sin a 
z = rs cos {3 

·z 

To Convert to 
Cylindrical 

r = Vx2 + y2 . 
~------= 

(J = cos- l (x/V x2 + y2) 

Z = Z 

r r 
(J=(J 

Z = Z 

r = rs sin {3 
(J=a 
Z = rs cos (3 

'P(x,y,z) 
1 
1 
1 : .. 
I 

y 

Spherical 

r s = vi x2 + y2 + Z2 
a = COS-l(x/~ y2) 

(3 = cos-1 (z/V X2+y+Z2) 

rs = Vr2 + Z2 
a = (J 
(3 = cos-1(z/Vr2 + Z2) 

rs = rs 
a=a 
(3={3 

fP(r, 0, .. ) 
1 
I 
1 
I z 

01 : 

, // Y 
o ,r / 

, 1 / 
, 1 / 

-- - - ----'~/ 
:r 

v2¢ 

a2¢ a2¢ a2¢ -+-+­ax2 ay2 az2 

1 a ( a¢) + 1 a
2
¢ + a2

¢ 
-;. ar r or ~ a(J2 az2 

.l ~ (r2 a¢) + 1 a
2
¢ 

r2 ar ar r2 sin2 {3 aa2 

1 a (. a¢) + r2 sin {3 a{3 sm {3 a{3 

Cartesian Coordinate System Cylindrical Coordinate System Spherical Coordinate System 

FIG. 1. Basic coordinate systems. 

Vl o 
r­
C 
--f 
(5 
Z 

o 
"T1 

:!} 
m 
r­
o 
-c 
;:0 

o 
c::J 
r­
m 
~ 
Vl 

N 
U'1 

b 
w 



25-04 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

Important Equations 

The fundamental partial differential equations of physics and engi­
neering and examples of the more important areas of their application 
are summarized below. 

Laplace's Equation. "V2¢ = 0. 
Gravitation: gravitational potential in free space 
Magnetics: magnetic potential in free space 
Electrostatics : electrostatic potential in an ideal dielectric 
Electrodynamics: voltage distribution in a nonreactive field 
H eat transfer: steady-state temperature distribution 
Fluid mechanics: velocity potential of an incompressible fluid in 

a porous medium, velocity potential of homo­
geneous liquid moving irrotationally 

Statics: steady-state deflection of mass spring systems 

Diffusion Equation. "V2¢ = K(a¢/at) . 
. Electrodynamics: voltage distribution in a field having distributed 

resistance and distributed inductance or ca­
pacitance 

H eat transfer: transient temperature distribution 
Particle diffusion: concentration of particles of one fluid, diffusion 

into space occupied by another fluid 
Fluid mechanics: velocity potential of compressible fluid in a 

porous medium 
. Electromagnetics: skin effect equation 
Optics: diffusion of light by a scattering material 
Soil compaction: hydrostatic pressure in consolidating soils 

Wave Equation. "V2¢ = K(a 2¢/at2 ). 

Electrodynamics: voltage distribution in fields containing distrib­
uted inductance and capacitance (ideal trans­
mission lines) 

Dynamics: vibration of system with negligible mass 
Fluid mechanics: propagation of vibration in compressible media 
Electromagnetics: propagation of electromagnetic energy in field 

with negligible conductivity 

Poisson's Equation. "V2¢=f(x,y,z) and the related equation "V2¢=f(¢). 
H eat transfer: temperature distributions in solids in which 

nuclear, electrical, or chemical energy is being 
converted to heat 

Electron optics: motion of electron in space charge regions 
Shear analysis: shear distribution in torsional problem 

Biharmonic Equation. "V4¢ = 0, "V4¢ = K, "V4¢ = K(a2¢/at2 ). 

Elasticity: stress distribution in solid structure 



SOLUTION OF FIELD PROBLEMS 25-05 

2. CONTINUOUS TYPE ELECTRIC ANALOGS 

Basis for the Analogy. Continuous type analogs are based upon the 
recognition that the current and voltage distribution in an electrical 
conductor having negligible reactance is governed by Laplace's equation. 
They may therefore be employed to simulate any field governed by 
Laplace's equation. Occasionally their application may be extended to 
fields containing distributed internal sources and sinks and governed by 
Poisson's equation as well. If the conductive material simulating the 
field is a solid, only the potential field at the external surfaces of the 
analog system can be studied. These are therefore generally limited to 
field problems which can be formulated in two space dimensions. Liquid 
analog systems on the other hand are suitable for three-dimensional 
problems as well as two-dimensional ones. 

Conducting Sheet Analogs 

As the name implies, conducting sheet analogs consist of a thin layer 
of electrically conductive material. Kirchhoff introduced this technique 
in 1845 by describing the simulation of an electric field by means of a 
thin copper disk. The application of conducting sheet analogs was ham­
pered for many years by the unavailability of sufficiently uniform and 
isotropic sheets with resistivities of the right order of magnitUde. Great 
strides have been made in this direction since World War II, however. 
The solution of problems governed by Laplace's equation proceeds in 
three steps: 

1. A conductive sheet having the same geometrical shape (or a con­
formal transformation thereof) as the field under study is devised. 

2. The boundary conditions of the original field are simulated in the 
analog systems by the application of voltage and/or current sources at 
the boundaries of the sheet. In the case of equipotential boundaries, a 
highly conductive material is placed in contact with the sheet along the 
entire boundary line, and a constant voltage source is connected to this 
conductor . 
• 3. By means of suitable sensing equipment the voltage distribution on 

the surface of the conductive sheet is measured and recorded. The 
voltages measured in this manner are then directly proportional to the 
potentials existing at corresponding points of the original field. 

4. If desired, the streamlines of the original field may be plotted by 
changing all streamline boundaries to equipotential boundaries and vice 
versa, and repeating the above procedure. 

A typical conducting sheet analog system is illustrated in Fig. 2. 
Resistance Paper. The impetus for the recent popularization and 

development of the conducting sheet technique was provided by· the 



25-06 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

introduction of so-called resistance paper. First described by Hotchkiss 
(Ref. 2) in 1948, resistance paper, manufactured under the trade name 
Teledeltos, was designed for use as electrosensitive recording paper in 
telegraphic instruments. It is formed by adding carbon black to the 
paper pulp in the pulp beating stage of the manufacturing process. The 

electrical behavior of such paper is usu­
ally specified as "ohms per square," re­
ferring to the resistance between opposite 
sides of a square of paper (the size of the 
square is irrelevant) . 

Boundaries at which the voltage is 
constant are painted directly on the 
paper with silver paint. Occasionally a 
copper wire is pasted on top of the silver 
strip to assure equipotential conditions. 
Boundaries of varying potential are read­
ily obtained by connecting discretely 
spaced points along the boundary to volt-

Potentiometer age sources of suitable magnitudes. Al-
FIG. 2. Conductive sheet analog ternating or direct current may be used 

system. to excite the system. The paper may be 
cut as desired to form streamline boundaries. 

The field plotting apparatus may be very simple. A blunt metal probe, 
possibly a roller, is guided along the paper in such a fashion that the 
galvanometer reads zero at all times for a given potentiometer setting. 
The line drawn in this manner is an equipotential line. 

Accuracy. This type of apparatus has a limit of accuracy of about 
2 per cent and is probably the simplest and cheapest of all the analog 
methods. 

Other Types of Conducting Sheet Analogs. From time to time 
other types of conducting sheet analogs have been used to advantage. 
The more important of these include: metal sheets, metalized paper, 
conductive rubbers (rubbers with carbon black dispersions), cloth im­
pregnated with graphite, and untreated paper. The suitability and 
relative merits of these materials for use as conducting sheet analogs are 
summarized in Table 1. 

Conducting Liquid Analogs 

Water containing small amounts of dissolved salts is an electrical 
conductor, and may be used as a continuous type conducting analog. 
Until- the development of Teledeltos paper, conductive liquid analogs, 
generally termed electrolytic tanks, were by far the most widely used 



TABLE 1. COMPARISON OF CONDUCTIVE SHEET ANALOGS 

Approx. Approx. 
Approx. Uniformity, Isotropicity 

Resistivity, % R.longitudinal 
Type Source a/sq. Fluctuations R. transverse Advantages Disad vantages 

Teledeltos paper Western TypeL:2000 10% 0.9 Cheap, easy to cut, Easily damaged by 
Union Type H: 20,000 convenient to use probes; absorbs 

moisture (hence 
sensitive to tempera-

til ture changes); easily 0 damaged by bending r-
Untreated paper Ordinary 5 X 109 2% Good Cheap, convenient, Very sensitive to C 

-i 
drafting electrodes may be humidity; requires (5 
paper (non- drawn with pencil very high impedance Z fibrous) sensing circuit 

Conductive rubbers U. S. Rubber 400-2000 5% 0.9 May be ltlayered" Sensitive to mechan- 0 
(Uskon) Co. to effect local ical stress " 

change in resist- :!! 
ivity, layers adhere m 

r-
to each other 0 

Conductive fabrics Pacific Mills 1000 Excellent 0.95 May be layered Sensitive to mechan- ""C 

ical stress ;;:0 

0 
Conductive plastics 100-1000 Poor Poor Very hard, not Sensitive to mechan- cc 

r-
(Markites) easily damaged, ical stress; hard to m 

not affected by cut and shape ~ 
moisture til 

Metal sheets Very low Poor Good Readily available Electrodes must be 
highly conductive 

Homemade sprays 1K-300K 5% Good Hard surface not Requires special ap-
easily damaged paratus for prepara-

tion of sheets; diffi-
cult to work with 

Graphite and wax models Low Poor Poor Suitable for studies N 
c.n 

of 3-dimensional b 
fields ....., 



25-08 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

electric ·analog systems· for the solution of Laplace's equation. The 
solution of field problems by this method proceeds as follows: 

1. A large container open at the top is filled with a suitable electrolyte. 
2. A scale model of the boundary configuration of the field under study, 

or a conformal transformation thereof, is immersed in the tank. Bound­
aries which are equipotential surfaces are made of metal, while an 
insulating material is employed for streamline boundaries. 

~1500CPS 

Potentiometer 

e 
/' -, Cathode ray 
I ~\ oscilloscope 
\ I , / ......... 

FIG. 3. Conductive liquid analog system. 

3. A-c voltage sources of appropriate magnitudes are then applied to 
all equipotential boundaries. 

4. The voltage distribution along the surface of the liquid is measured 
and recorded by means of suitable sensing equipment. In three­
dimensional field problems the sensing probe is inserted into the liquid, 
while it is kept at the liquid-air interface in two-dimensional problems. 

A typical electrolytic tank system is illustrated in Fig. 3. 
Electrolyte. The conductive liquid must possess the following prop­

erties: (1) no electrical reactance; (2) uniform, linear resistivity; 
(3) resistivity large compared with resistivity of electrodes, small com­
pared with input resistance of sensing device; (4) small surface tension 
to obviate errors due to meniscus; (5) inert chemically, free of films. 

Often ordinary tap water is adequate. Small amounts of copper 



SOLUTION OF FI ELD PROBLEMS 25-09 

sulfate, sulfuric acid, and ethyl alcohol are frequently used additives. 
Excitation. At low a-c frequencies most electrolytes exhibit non­

linear resistive and reactive properties at the electrode-electrolyte 
interface. These phenomena tend to become negligible at operating 
frequencies above approximately 1500 cps. Sinusoidal voltage generators 
are most frequently employed, although squ~re waves have been used 
to advantage occasionally. 

110 v 
235'"'1..1 

x-motor 

Preamplifier 

3 

2 

Voltage 
divider 

Probe 

r-------.------,------~ 2~f 

Limit 
switch 

110 v 60'"'1..1 

Relays 
and 

timer 

200--0 
19 

17
18 

y-motor 

FIG. 4. Automatic field plotter (Ref. 3). 

Tank 

Boundaries. Boundaries at which the voltage is constant may be 
graphited silver or aluminum painted surfaces, or tin or aluminum foil 
may be used to line the container at the required locations. 

Field Plotters. Single probes, connected to a potentiometer, are 
employed to sense the field potential. These are generally thin, platinum 
wires or needles. To detect streamlines, two and four probe arrays are 
employed. 

To achieve high accuracies, precision field plotting apparatus is 
required. Automatic field plotters for sensing and recording equipoten­
tial lines have been described by Green (Ref. 3) and others. A typical 
automatic plotting device is shown in Fig. 4. 



25-10 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

In this type of plotter the probe is made to move with a constant 
velocity in the x direction. Any difference between the voltage at the 
probe and an arbitrarily set reference voltage actuates a servo system, 
which alters the position of the probe along the y coordinate in such a 
direction that this discrepancy is eliminated. The probe is therefore 
kept on the desired equipotential line. \Vhen the probe reaches a 
boundary, a relay causes the probe to reverse its direction of travel and 
changes the reference voltage at the same time, so that the next desired 
equipotential line is plotted. In this way any number of preset equi­
potentials may be traced. A pantograph is employed to obtain a graphic 
record of the position of the probe within the tank. 

Electrolyte 

Tapered 
wax bottom 

FIG. 5. Electrolytic tank for system with radial symmetry. 

Cylindrical Coordinates. Electrolytic tanks are well suited for the 
study of problems in which there exists symmetry about a straight line. 
A typical wedge of the cylindrical system may readily be simulated by 
tilting a shallow electrolytic tank as shown in Fig. 5. Since the depth of 

~ [r Electrolyte 

Glass separating plate 

FIG. 6. Electrolytic tank for the simulation of infinite fields. 

the electrolyte is everywhere proportional to the distance r from the 
cylinder axis, Laplace's equation V2¢ = 0, is satisfied. 

Infinite Fields. Fields which extend to infinity in all directions may 
be simulated by a double layer electrolytic tank. In this method, 
accorcling to Boothroyd (Ref. 4), a thin circular sheet of insulating 
material is mounted as shown in Fig. 6, and separates the electrolyte 
into two circular conductive sheets, joined at their periphery. The top 
sheet behaves aE;l though it were part of an infinite plane. 



SOLUTION OF FI ELD PROBLEMS 25-11 

Accuracy. Accuracies of the order of 5 per cent are readily achieved 
with inexpensive and simple instrumentation. Accuracies as high as 0.1 
per cent have been reported by Einstein (Ref. 11), Sanders (Ref. 12), 
and others by means of extremely careful and precise experimental 
techniques. 

3. DISCRETE ELEMENT TYPE ELECTRIC ANALOGS 

Basis for the Analogy. Discrete element type analogs are based 
upon the recognition of the formal similarity between Kirchhoff's law 
equations for networks of electric elements and the equations resulting 
from the finite difference expansion of the partial differential equations 
describing field problems. The analog method of solution proceeds as 
follows: 

1. The partial differential equations governing the field under study 
are expanded in finite differences. The grid spacing (mesh size) is 
chosen so that the expected truncation errors resulting from this process 
are sufficiently small in all regions of the field. 

2. An electric network is constructed in which (a) each node in the 
finite difference grid is represented by a junction of two or more electric 
elements and (b) the node equation (according to Kirchhoff's current 
law) for each node of the network is similar in form, term by term, to 
the finite difference equation at the corresponding location in the origi­
nal field. 

3. By means of suitable voltage and. current sources the electric 
network is excited at its boundaries as well as possibly at internal node 
points as specified by the finite difference equation. 

4. The voltages appearing at the nodes of the network are measured 
and recorded. These are then proportional to the potential at the corre­
sponding points in the original field. If desired, the family of equipoten­
tial lines may be sketched by interpolating between points of known 
potential. 

Finite Difference Expansions of Partial Differential Equations. 
The mathematical techniques whereby partial differential equations may 
be transformed into systems of algebraic equations is discussed in Vol. 1, 
Chaps. 4 and 14. Numerous expansions for first and second derivatives 
are available. For analog simulation purposes however, the so-called 
second central difference type of expansion is most useful in approxi­
mating the second derivative. Frequently only the space derivatives are 
expanded in finite differences whereas the time derivatives are left in 
continuous form. 

Table 2 is a summary of the most useful finite difference expansions 
for the terms of the basic partial differential equations in Cartesian 



TABLE 2. FINITE DIFFERENCE EXPANSIONS IN CARTESIAN COORDINATES 

Location of Node Points 

Node No. Coordinate 
(J2cp 1 
ax2 = Ax2 [CP1 + CP2 - 2cpo] 

0 to, Xo, Yo, Zo 

1 to, Xo + Ax, Yo, Zo 

2 to, Xo - Ax, Yo, Zo 

3 to, Xo, yo + Ay, Zo 

a2cp 1 
ay2 = Ay2 [CP3 + CP4 - 2cpo] 

4 to, Xo, Yo - Ay, Zo 

5 to, Xo, Yo, Zo -+ Az 

a2cp 1 
az2 = AZ2 [CP5 + CP6 - 2cpo] 

6 to, Xo, Yo, Zo - Az 

7 to + At, Xo, Yo, Zo 

aE/> _ cP 1 - CPo forward difference 
ax - A -- , 

CPO - CP2 backward difference , 8 to - At, Xo, Yo, Zo 

9 to, Xo + 2Ax, Yo, Zo 

10 to, Xo - 2Ax, Yo, Zo 
CP1 - CP2 . --, average difference 

ocp CP3 - CPO CPO - CP4 CP3 - CP4 
11 to, Xo, Yo + 2Ay, Zo 

-= , , 
oy Ay Ay 2Ay 12 to, Xo, Yo - 2Ay, Zo 

ocp CP5 - CPo CPO -?6 CP5 - CP6 
13 to, Xo, Yo, Zo + 2Az 

-= , , 
az Az Az 2Az 14 to, Xo, Yo, Zo - 2Az 

15 to, Xo + Ax, Yo + Ay, Zo 

16 to, Xo - Ax, yo - Ay, Zo 
04cp 1 
ox4 = Ax4 [CP9 + CPlO - 4CP2 - 4CP1 + 6cpo] 

N 

Cf1 
N 

o 
m 
!:!! 
(i) 
Z 

» z 
o 
» 
" " r-
(5 

~ 
(5 
Z 

o 
"'T1 

» z » 
r-o 
(j) 

() 
o 
~ 

" C 
--I 
m 
:;;0 
Vl 



a4¢ 1 
ay4 = l1y4 [¢11 + ¢12 - 4¢3 - 4¢4 + 6¢ol 

17 to, Xo - l1x, yO + !ly, Zo 

18 to, Xo + l1x, Yo - l1y, Zo 

a4¢ 1 
az4 = l1z4 [¢13 + ¢14 - 4¢5 - 4¢6 + 6¢ol 

19 to, Xo + l1x, Yo, Zo + l1z 

20 to, Xo - l1x, Yo, Zo + l1z 

a4¢ 1 . 
ax2ay2 = l1x2l1y2 [¢15 + ¢16 + ¢17 + ¢lS - 2¢1 - 2¢2 - 2¢3 - 2¢4 + 4¢ol 

Vl 
21 to, Xo - l1x, Yo, Zo - l1z 0 

r-
22 to, Xo + l1x, Yo, Zo - l1z c 

::! 
a4¢ 1 

ax2az2 = l1x2l1z2 [¢19 + ¢20 + ¢21 + ¢22 - 2¢1 - 2¢2 - 2¢5 - 2¢6 + 4¢ol 
23 to, Xo, Yo + l1y, Zo + !lz 0 

Z 

24 to, Xo, Yo - l1y, Zo + !lz 0 
"T1 

a4¢ 1 
ay2az2 = l1y2l1z2 [¢23 + ¢24 + ¢25 + ¢26 - 2¢3 - 2¢4 - 2¢5 - 2¢6 + 4¢ol 

25 to, Xo, Yo - l1y, Zo - l1z :!! 
m 

26 to, Xo, yo + l1y, Zo - l1z r-
0 

a2¢ 1 
at2 = l1t2 [¢7 + ¢s - 2¢ol 

""tJ 
;;:c 
0 
tD 
r-

a¢ _ ¢7 - ¢o forward difference 
at - l1t ' 

m 
~ 
Vl 

¢o - ¢s backward difference 
l1t ' 

¢7 - ¢s average difference 
2l1t ' 

t-.) 

'f1 
w 



TABLE 3. FINITE DIFFERENCE EXPANSIONS IN CYLINDRICAL COORDINATES 

Location of Node Points 

Node No. Coordinate 

! [acP (r acP)] = ~ [(2ro + 11r)(cP1 - cPO) + (2ro - 11r)(cP2 - cPO)] 
r ar ar ro 2.6r2 211r2 

0 rO, ()O, Zo 

1 ro + 11r, 0o, Zo 
a2cp = cP5 - CPO + CP6 - CPo 
aZ2 11z2 .6z2 2 ro - 11r, 0o, Zo 

1 a2cp CP3 - <Po CP4 - CPO 
~ -a()-2 = ro 211() 2 + _r---'02::-.6_()~2 

3 ro, ()O + .6(), Zo 

4 ro,Oo - 110, Zo 

5 ro, ()O, Zo + 11z 

6 ro, ()O, Zo - 11z 

TABLE 4. FINITE DIFFERENCE EXPANSIONS IN SPHERICAL COORDINATES 

Location of Node Points 

Node No. Coordinate 

[( 
11rs)2 (11r )2 ] ~ ~ (rS2 acp) = _1_ rso + 2 (CP1 - cPo) rso.- T (cP2 - cpo) 

rs ars ars rs02 11r 2 + 11 2 8 ~ 

0 rso, ao, {30 

1 rso + 11rs, ao, {30 

2 rso - 11rs, ao, {30 

_1 _ a2cp = _1_ [(CP3 - cpo) + CP4 - cPo ] 
rs2 sin2 {3 aa2 rs02 .6a2sin2{30 .6a2 sin2 (30 

3 r so, ao + .6a, {3o 

__ 1 _ ~ (sin {3 acp) = _1 [Sin C!0 + ¥) (</>5 - </>0) + sin C!0 - ¥) (</>. - </>0)] 

a{3 a{3 rs0 2 '11{32 sin {30 .6{32 sin {30 

4 rso, ao - .6a, {30 

5 r so, ao, {30 + 11{3 

6 r so, ao, (30 - 11{3 

N 

'f1 
~ 

o 
m 
!:!! 
(j) 
Z 

» z 
o 
» 
-a 
-a 
r-o 
~ 
(5 
Z 

o 
" » 
z » r-o 
(j) 

() 
o 
~ 
-a 
C 
-f 
m 
;;0 
Vl 



SOLUTION OF FIELD PROBLEMS 25-15 

coordinates. Table 3 lists the expansions for cylindrical coordinates, and 
Table 4 summarizes the pertinent approximations in spherical coordinates. 
Finite difference expansions for complete equations are constructed by 

I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I I I I I I I I I I I I I I I I I I I Xl X2 Xa X4 x5 Xs 

(a) 

(b) (c) 

FIG. 7. Resistance networks: (a) one dimension, (b) two dimensions, 
(c) three dimensions. 

combining the expressions for the individual terms making up the 
equations. 

Resistance Networks. These network analogs are in general rectan­
gular arrays of electrical resistors. Portions of one-, two-, and three­
dimensional resistance networks are shown in Fig. 7. Typical junctions 
in these networks and the corresponding node equations are presented in 
Fig. 8. Vo, V 1, V 2, •• , are voltages at points 0, 1; 2, ' ". A formal simi­
larity is evidenced between the above node equations and the finite 
difference equations from Tables 2, 3, and 4, when written as: 



25-16 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

6 

4 

5 
(b) (c) 

FIG. 8. Typical functions and node equations: 

(a) One dimension, 

(b) Two dimensions, 
1 1 1 1 

- (VI - Yo) + - (V2 - Yo) + - (Va - yo) + R- (V4 - yo) = o. 
Rl R2 Ra 4 

(c) Three dimensions, 
1 1 1. 1 

- (VI - yo) + - (V2 - yo) + - (Va - Yo) + - (V4 - Yo) 
Rl R2 Ra R4 

1 1 + - (V 5 - yo) + - (V 6 - Yo) = O. 
R5 R6 

Cartesian coordinates (x, y, z): 

(2) V2cp = q,1 - CPo + CP2 - CPo + CPa - CPo + CP4 - cpo + CP5 - cpo + CP6 - CPo • 
.1x2 .1x2 .1y2 .1y2 .1z2 .1z2 

Cylindrical coordinates (r, 0, z): 

2 _ 2ro + .1r _ ,,) 2ro - I1r ( _ ) 
(3) V cP - 2 .1 2 (CPl ctu + 2 A 2 CP2 CPO 

~ r ~ur 

+ cpa - CPO + CP4 - CPO + CP5 - CPO + CP6 - CPO • 
ro2.102 ro21162 I1z2 I1z2 



SOLUTION OF FI ELD PROBLEMS 25-17 

Spherical coordinates (rs, ex, f3), radial symmetry (rs): 

(4) 2 _ [rso + (.1rs/2)] ( _ ) [rso - (.1rs/2)] ( _ ) 
\7 cP - 2 A 2 CPl CPo + ? A 2 CP2 CPo. rso I-lrs rsO~l-lrs 

A resistance network may, therefore, be employed to simulate the poten­
tial distribution in fields governed by Laplace's equation. The relative 
magnitudes of the resistors are determined by comparing the finite dif­
ference equation for the particular node under consideratio!l with the 
corresponding electrical node equation. For example, in the case of a 
node located at radius ro, in a field in polar coordinates, the resistors 
comprising the two-dimensional net are found by eq. (3) to be 

(5) ~ = 2ro + .1r , 
Rl R 2ro.1r2 

1 2ro - f1r 
-= , 
R2 R2ro.1r2 

1 1 1 
-=-= , 
R3 ,R4 Rro2.182 

where R is a scale factor introduced to obtain resistors of convenient 
magnitudes. The magnitudes of resistors along streamline boundaries 
and in the vicinity of irregular boundaries must be appropriately modi­
fied. Similarly, if the properties of the field to be simulated vary with 
position, or if different mesh spacings are employed in different portions 
of the field, the relative magnitudes of the network resistors are changed 
accordingly. Detailed discussions of this technique are presented in 
Refs. 1 and 5. 

Resistance Networks with Internal Excitation. Fields with internal 
distributed excitations governed by Poisson's equation and equations 
of the type 

(6) \72cp = f(x, y, z, t, cp) 

are simulated by introducing currents of the appropriate magnitude at 
each network node. The equations for typical network junctions under 
these conditions are given in Fig. 9. The currents are frequently applied 
to the network nodes by voltage sources coupled to the node by variable 
resistors. If the value of these feed-in resistors is large compared with 
that of the network resistors, the precise adjustment of their resistance 
magnitudes is relatively simple in most cases. Where the applied 
currents are specified to be a function of the node voltages or their 
derivatives, the feed-in resistors must be adjusted and readjusted by 
an iterative procedure. Electronic computer units may be used to 
advantage for this purpose. 

Applications 'of Resistance Networks. Resistance networks have 
been applied to the solution of the diffusion equation by Liebmann 
(Ref. 6). The method employs a "backward difference" approximation 
of the time derivative, and its underlying principle is illustrated in 



25-18 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

n
2 

' IlO RI 

2~12 

(a) 

3 

4 
(b) 

5 
(c) 

FIG. 9. Typical functions of resistance networks with current applied to each node. 

(a) One dimension, 

(b) Two dimensions, 

1 1 1 1 
- (VI - Vo) +- (V2 - Vo) +- (V3 - V o) +- (V4 - Vo) = -io. 
Rl R2 R3 R4 

(c) Three dimensions, 
111 1 
- (VI - Vo) + - (V2 - V o) + - (V3 - Vo) + - (V4 - Vo) 
Rl R2 R3 R4 

1 1 +- (V6 - Vo) + - (V6 - Vo) = -io. 
R6 R6 

Fig. 10. The resistances R form the network analog of the space deriva­
tives. At each node, a current is fed through the feed-in resistor R" 
whose magnitude is proportional to R6.t/6.x2 , in the case of the problems 
in one space dimension. It can be shown that if the feed-in voltages Vn 
represent the potentials existing in the network at time n6.t, the voltages 
at the network nodes are proportional to the potential distribution at 

R R R R R 

FIG. 10. Resistance network for iterative solution of the diffusion equation. 



SOLUTION OF FIELD PROBLEMS 25-19 

time (n + 1) D.-t. The transient potentials are then obtained by repeating 
these measurements over as many time increments as required, each time 
resetting the feed-in voltages. 

Liebmann (Ref. 7) is also responsible for a resistance network method 
for solving the bihannonic equation in two space dimensions. Two 
rectangular resistance networks interconnected by feed-in resistors are 
employed. 

The wave equation under steady-state conditions becomes 

(7) 

This equation is similar in form to eq. (6) and may be treated by the 
resistance analog method by introducing a current proportional to Kw2 cp 
at each node. 

FIG. 11. Typical nodes of R-C network for simulation of heat conduction in a two­
dimensional system, 

Comparatively high accuracies are readily obtained with resistance 
networks. If the manufacturer's tolerance of the individual components 
is ± 1 per cent, accuracies within 0.1 per cent are attainable. Truncation 
errors due to the approximation of a continuous field by a discrete analog 
may be minimized by refining the network as required. 

Resistance-Capacitance Networks. Resistance networks modified by 
connecting a capacitor from each network node to ground are used to 
simulate fields governed by the diffusion equation. Their principal 
application is in the area of heat transfer, where thermal analyzers have 
assumed an important role. Network m'odels of this type are also impor­
tant in petroleum reservoir engineering in studying unsteady state fluid 
flow through porous media. A typical node of an R-C network is shown 
in Fig. 11. 

In selecting resistor and capacitor values, the solution time is first 



25-20 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

"scaled" to have a convenient magnitude. The element values are then 
determined by establishing a term-by-term correspondence between the 
finite difference equation and the node equation of the electric network. 

The basic R-C network technique has been extended by Paschkis 
(Ref. 8) and others to the treatment of fields with time-varying parame­
ters and nonlinear parameters, fields in which latent heats of fusion play 

2 

FIG. 12. Typical node of network analog for wave equations, 

1 1 1 1 d2Vo 
(VI - V o) + - (V2 - Vo) + - (Va - Vo) + - (V4 - Vo) = Co - • 

Ll L2 La L4 d~ 

a part, and a multitude of combinations of initial and boundary conditions. 
Inductance-Capacitance Network. Networks containing only reac­

tors are occasionally employed for the simulation of fields governed by 
the wave equation. The structure of the network is similar to that of 
the R-C systems described above, with inductors replacing the resistance 
elements. A typical node of such a network is illustrated in Fig. 12. 

At any given frequency an inductor has a positive reactance of con­
stant magnitude, while a capacitor has a negative reactance of constant 
magnitude. This property has led to the application of L-C networks 
to problems generally treated by means of resistance networks, but in 
which negative resistors are required. 

R·L-C Nehyorks. Networks including large numbers resistors, induc­
tors, capacitors, as well as transformers, all of which may be inter­
connected as desired, constitute a powerful tool for the solution of 
numerous problems occurring particularly in the areas of power utiliza­
tion and distribution, and the stress and vibration analysis of elastic 
structures. So-called a-c network analyzers for the simulation of electric 
power lines, generators, loads, and transformer stations play an important 
part in the planning of electric power systems. A partial list of problems 
handled by this method includes: 



SOLUTION OF FI ELD PROBLEMS 25-21 

Load division problems: circuit loadings, desirable locations of new 
generators, effect of increased system loadings, effects of system 
reactances, ratings of transformers. 

Short-circuit problems: effect of three-phase and unbalanced faults, 
evaluation of protective measures. 

Stability problems: steady-state and transient limits, remedial 
measures. 

Such networks are, of course, also useful in solving problems governed 
by any of the basic field equations of engineering and physics. 

McCann (Ref. 9) has developed a large scale, highly flexible network 
analyzer for the solution of static and transient beam problems. The 
network permits the study of one-, two-, and three-dimensional problems 
with a wide variety of end conditions. A typical application of this 
analog simulator is illustrated in Fig. 13. 

I 
I 01.5 02.5 03.5 04.5 05.5 06.5 07.5 

, ~ "L~L 
J: 

I 

1:1= = = = = = = 

1 
f6 

,Clamped 
I end 

3 
If) 

x_ 
13 
16 

15 
10 

FIG. 13. Circuit for steady-state vibration of a uniform cantilever beam with eight 
cells: 0, slope; y, vertical deflection; L, inductance; C, capacitance (Ref. 9). 

Use of Electronic Analog Computers. Howe (Ref. 1) and Rogers 
(Ref. 5) have described techniques for employing d-c analog computers 
at each node of an analog network to perform the additions and integra­
tions specified by the finite difference equation for that node. Complex­
element transfer functions (see Chap. 22) may be used to advantage to 
obtain the required response with a minimum of equipment. Fields 
governed by the wave equation, equations containing first space deriva­
tives, and fields with certain nonlinearities, are successfully treated by 
this method. 



25-22 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

In general, however, the d-c analog computer finds its most important 
application in the solution of field problems as an adjunct to passive 
network analogs. The generation of time functions comprising the 
excitation of network models is rea'dily accomplished with this equipment. 
The application of currents to the internal network nodes is likewise 
facilitated. 

4. NONELECTRIC FIELD ANALOGS 

Numerous mechanical, thermal, chemical, and hydraulic systems satis­
fying Laplace's equations have been employed from time to time to 
locate the equipotential and streamlines in two- and three-dimensional 
fields. For the most part, these methods are qualitative at best and have 
in recent years been replaced to a large extent by the electric analog 
models. Some of the more familiar of these systems are briefly discussed 
below and are considered in more detail in Refs. 1, 5, and 10. 

Stretched Membranes. If a very thin film .of negligible weight is 
placed under uniform tension, its vertical displacement, perpendicular 
to the plane of the membrane, is determined by Laplace's equation. A 
model of the field boundary is constructed so that its height is propor­
tional to the boundary potentials of the field under study, and a thin 
membrane is then stretched over this boundary structure. The membrane 
then adjusts itself so that its height at interior points of the model is 
proportional to the potential field at the corresponding points in the 
original system. Commonly used membranes include soap films and thin 
sheets of rubber. Considerable skill is required in the application of 
this method to complex regions and fields with internal excitations. 
Models of this type have been used widely in the area of electron optics. 

Fluid Mappers. The pressure in an inviscid incompressible fluid 
obeys Laplace's equation. This condition may also be approached by 
causing a viscous, incompressible fluid such as glycerin to flow between 
two closely spaced parallel walls. Dyes such as potassium permanganate 
may be introduced into the flow stream at discretely spaced points and 
a visual display of the streamline pattern obtained. Regions of varying 
characteristics are readily studied by this method. 

Blotter Type Electrolytic Models. The motion of ions in an elec­
trolyte under the influence of externally applied electric potentials is 
governed by Laplace's equation. Ionized salts solution may therefore be 
injected into an electrolytic system at points corresponding to sources 
or sinks in the original system and their progress through the system 
noted. The motion of the ions can be made visible by employing 
electrolyte-ion solution combinations which change color on contact. 
For example, a piece of blotting paper may be soaked in a colorless 



SOLUTION OF FIELD PROBLEMS 25-23 

electrolyte containing phenolphthalein, which turns red in the presence 
of OR - ions. A weak solution of sodium hydroxide is then used as the 
injected fluid, and a permanent record of the flow pattern may be 
obtained by photographing the paper at regular time intervals. This 
method has been used successfully to study the shapes of injection fluid 
fronts in petroleum engineering problems. 

Electro-Optical Method. A liquid having a large Kerr constant, 
such as a colloidal suspension of bentonite, is placed between two parallel 
pieces of polaroid, and is subjected to an electric field determined by the 
boundary conditions of the field to be simulated. The applied voltage 
(approx. 60 cps ac) effects a change in the polarization characteristics 
of the liquid so that, if light is beamed through the liquid and the polaroid 
boundaries, a distinctive pattern of dark lines is observed. These are then 
related to the potential field within the liquid. 

Guehhard's Rings. A polished sheet of copper is placed in an elec­
trolytic tank, parallel to the air-electrolyte interface. Solutions of 
copper and lead acetates are used as the conductive liquid, and deposits 
of lead peroxide form on the surface of the copper sheet when the 
system is excited electrically. Lines of constant color of this deposit 
correspond to the equipotential lines of the field. 

Lichtenberger Figures. A high transient voltage is applied to a 
piece of photographic paper so that a discharge occurs across its surface. 
Upon developing, a pattern corresponding to the streamlines of the field 
are observed on the paper. 

REFERENCES 

1. W. J. Karplus, Analog Simulation: Solution of Field Problems, McGraw-Hill, 
New York, 1958. 

2. G. Hotchkiss, Electrosensitive recording paper for facsimile telegraphic apparatus 
and graphic chart instruments, Western Union Tech. Rev., 2, 176-187 (1948). 

3. P. C. Green, Automatic plotting of electrostatic fields, Rev. Sci. Instr., 19, 
646-653 (1948). 

4. A. R. Boothroyd, E. C. Cherry, and R. Makar, An electrolytic tank for the 
measurement of steady state response, transient response, and allied properties 
of networks, Proc. Inst. Elec. Engrs., 96, Pt. I, 163-177 (1949). 

5. W. W. Soroka, Analog Methods in Computation and Simulation, McGraw-Hill, 
New York, 1954. 

6. G. Liebmann, A new electrical analog method for the solution of transient heat 
conduction problems, Trans. Am. Soc. M echo Engrs., 78, 655-665 (1956). 

7. G. Liebmann, Solution of plane stress problems by an electric analogue method, 
Brit. J. Appl. Phys., 6, 145-157 (1955). 

8. V. Paschkis and H. D. Baker, A method for determining unsteady-state heat 



25-24 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

transfer by means of an electrical analogy, Trans. Am. Soc. M echo Engrs., 64, 105-
112 (1942). 

9. G. D. McCann and R. H. McNeal, Beam vibration analysis with electric analog 
computer, J. Appl. Mechanics, 17, 13-26 (1950). 

10. P. E. Green, Methods of plotting electrostatic fields, Eng. School Bull. 45, 
Dept. of Eng. Research, N. Carolina State College, Raleigh, 1949. 

11. P. A. Einstein, Factors limiting the accuracy of electrolytic plotting tanks, 
Brit. J. Appl. Phys., 2, 49-55 (1951). 

12. K. F. Sanders and J. G. Yates, The accurate mapping of electric fields in an 
electrolytic tank, Proc. Inst. Elec. Engrs., 100, Pt. II, 167-183 (1953). 



E DESIGN AND APPLICATION 

OF ANALOG COMPUTERS Chapter 26 

Noise and Statistical Techniques 

I. Introduction and Definition 

2. Random Variable Concepts 

3. Treatment of Linear Systems 

4. Treatment of Nonlinear Systems 

5. Noise Generators 

References 

I. INTRODUCTION AND DEFINITION 

Henry Low 

26-01 

26-02 

26-06 

26-09 

26-12 

26-20 

Noise theory has become an essential element in communications and 
control systems. In such systems noise is usually the predominant factor 
limiting range, sensitivity, and reliability of the equipment, consistent 
with economic and size considerations. On the other hand, the develop­
ment of efficient testing procedures based on the use of a noise wave as 
input to a system has re-evaluated the concept that noise is inherently 
evil (Refs. 1 and 2). 

Noise, from the point of view of this chapter, is perhaps best defined 
as phenomena which may not be predicted with complete certainty. 
These random phenomena include thermal noise arising from Brownian 
motion of electrons in kinetic equilibrium with the molecules of a 
conductor, static from electrical disturbances in the atmosphere, contact 
noise associated with fluctuating conductivity, random mechanical vibra­
tions such as encountered in electron tube elements and aircraft landing 
gears, atmospheric air turbulence and random fluctuations in manufac­
turing tolerances. 

26-01 



26-02 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

In many branches of engineering and science there occur problems 
whose solutions may be expressed only in statistical terms. A notable 
example is the frequent occurrence of such problems in modern aerial 
guidance and control systems. These systems are seldom designed to 
perform a single task which may be completely specified beforehand; 
rather, they are designed to perform a task selected at random from a 
complete repertory of possible tasks. Analysis of the behavior of systems 
whose forcing functions are a combination of predictable and random 
functions, is often complicated by the fact that these systems are non­
linear, time-varying, or both. With proper random function generators 
and appropriate computing techniques, the analog computer approach is 
a powerful means for studying the effects of random disturbances on 
complicated systems. (See Chap. 21, Sect. 6, for a brief table of symbols.) 

2. RANDOM VARIABLE CONCEPTS 

Probability Theory. An understanding of the basic concepts of 
probability theory is essential to the analysis of statistical problems on 
an analog computer. (See Vol I, Chap. 12.) Only a rudimentary expla­
nation of statistical terms applicable to this chapter will be given here. 
For more information on this subject see Ref. 3. 

Consider the quantitative description of the voltage output x (t) of a 
noise generator most commonly used with analog computers and de­
scribed in Sect. 5. The output of the noise generator will fluctuate in 
a random fashion around some average value. It is impossible to predict 
what the value of the noise voltage x (t) will be at any given time; how­
ever, the problem may be clearly formulated in terms of probability 
theory. 

Ensemble and Probability Functions. The outputs Xn (t) of a large 
number of identical noise generators (an ensemble of noise generators) 
are recorded at a definite time t. If the number of voltages falling in a 
voltage interval ~x is counted, a probability density function of x (t) is 
approximated. This probability density function p (x, t) is defined by 

(1) ( ) 1
. (Number of voltages in range LlX)/ LlX 

P x, t = 1m . , 
Total number of nOIse generators = n 

n ~ 00, LlX ~ O. 

The probability that a particular measured voltage lies in an infinitesimal 
interval dx is given by p (x, t) dx and the probability that the measured 
voltage lies in a range Xa to Xb is given by 

(2) 
rXb 

Pr(xa < x < Xb) = Jxa p(X, t) dx. 



NOISE AND STATISTICAL TECHNIQUES 26-03 

The probability distribution function P(x, t) is defined as the probability 
that the measured voltage is less than some specified voltage x.· It is 
given by 

(3) P(x, t) = iX~ p(x, t) dx. 

The average or mean value of the ensemble of voltages xn(t) may be 
found from 

(4) j'+~ 
x(t) = _ ~ xp(x, t) dx, 

and will in general depend on the time t. x(t) can also be determined by 
averaging at time t the noise outputs Xl (t), X2 (t), .. " xn(t) of the ensemble 
of noise generators; hence, x(t) is termed the ensemble average. 

Stationary and Ergodic Processes. If the above-mentioned noise 
generators do not change their characteristics with time, each will gen­
erate a stationary output; i.e., the noise outputs will have statistics 
which do not change with time. In dealing with stationary random 
processes it is usually assumed that time averages are equivalent to en­
semble averages. This is the so-called ergodic hypothesis of statistical 
mechanics. Since the nature of the underlying mechanism does not 
change with time, it is expected that a large number of observations 
made on a single noise generator at randomly chosen times will have the 
same statistical properties as the same number of observations made 
on randomly chosen noise generators at the same time. 

The noise output from a noise generator is said to belong to an ergodic 
process if its time average 

(5) - I IT x(t) = lim -T x(t) dt, 
2 -T 

T -'; 00 

is equal to the ensemble average x(t). In this case the output record for a 
long period of time from a single noise generator is sufficient to determine 
p(x), which now will be independent of time. The ensemble and time 
averages of any function of X (t) are given, respectively, by 

(6) 

and 

(7) 

f[x(t)] = i:f[x(t)] p(x, t) dx, 

f[x(t)] = lim IT IT f[x(t)] dt, 
2 -T 

T-,;oo, 

wheref[x(t)] is any function of x(t) such as x, X2, (x - 5;)2, etc. 
Variance and Standard Deviation. Time and ensemble averages are 

very. useful in describing a random process. Besides physical interpreta-



26-04 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

tions, such as the d-c value of the output of the noise generator given by xU) 

and the power output given by (x - X)2, the averages are measures of the 
shape of the probability density function. (x - X)2 is termed the variance 
and is a measure of the spread of the probability density function. The 
positive square root of the variance is termed the standard deviation (J. 

1 
q~ 

o--------~------~----~--------~ 
o x 

(a) 

1.0 -------------~~-

o=====--+------~------------~ 
o x 

(b) 

FIG. 1. (a) Probability density function for Gaussian distribution. (b) Probability 
distribution function for Gaussian case. 

Gaussian Distribution. A probability density function which occurs 
very frequently in physical problems is the normal or Gaussian function 
defined by 

(8) p(x) ~ 0"~2'" exp [ - (x ;:253 )2J ' 
and is illustrated in Fig. la. The associated probability distribution 
function for the Gaussian case 

(9) 1 [ (x - x)J 
P(x) = - 1 + erf _ / ' 

2 (v 2(J) 



NOISE AND STATISTICAL TECHNIQUES 26-05 

where the error function (erf) is defined as 

erf z = :; lZ exp [_"A2] d"A 

and is illustrated in Fig. lb. 
Autocorrelation and Spectral Density. The average value of the 

product of a function of time with the function displaced T seconds is 
termed the autocorrelation function. This function is important because 
it is the link between the direct or time description and the frequency 
component description of a random variable. For an ergodic process the 
autocorrelation function is given by 

(10) ¢(T) = x(t)x(t + r) = lim IT fT x(t)x(t + r) dt, 
2 -T 

T~ 00. 

The majority of statistical problems studied on an analog computer 
concern themselves with the effect of a random variable on a frequency 
filter. The description of the spectral structure of a random function 
is a very useful and important concept; this description is the spectral 
density <I>(w). (See Vol. I, Chaps. 17 and 24.) In this treatment W(f) 
will be used as the spectral density, since most measurements are made 
in cycles per second rather than in radial frequency. To convert W (j) 
to <I> (w) replace f by w/2-rr. 

For a stationary random voltage x(t) impressed across a I-ohm re­
sistor, W (j) df is ,the average power dissipated in the resistance in the 
frequency interval (j, f + df)' In this case, W (f) has the dimensions 
of (volt) 2/ cps. The principal usefulness of the spectral density lies in 
the fact that if Y (2-rrjf) is the transfer function of a linear time-invariant 
system and Wi (f) is the spectral density of the input, then the output 
spectral density Wo (f) is 

(11) 

The correlation function and power spectral density are Fourier trans­
forms of each other: 

(12) f
+OO 

¢(T) = _ 00 W(f)e i27rJr df 

(13) 

White Noise. The concept of white noise is a useful mathematical 
tool and arises in connection with such physical phenomena as shot noise 
and thermal noise. White noise has a Gaussian probability distribution 
and a spectral density N that spreads uniformly over all frequencies. 



26-06 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

Noise is considered white with respect to any given system if the band­
width of the system is small compared with the noise spectrum. 

3. TREATMENT OF LINEAR SYSTEMS 

Note. Portions of the material used in Sects. 3 and 4 were taken from 
an article by R. R. Bennett (Ref. 4). 

Definitions. A system is said to be linear provided that the principle 
of superposition can be applied; i.e., for every pair of inputs [Xl (t), X2 (t)] 
and corresponding outputs [Yl (t), Y2 (t)], the input axdt) + bX2 (t) 
produces an output aYl (t) + bY2 (t), where a and b are arbitrary con­
stants or time-varying coefficients. Time-varying systems are thereby 
included. Any linear system may be completely described by a unit­
impulse-response or weighting function h (t2, t l ) which is defined as 
follows: 

h (t2, t l ) is the system output measured at time t2 in response to a 
unit impulse S(t - td applied at time t l , where t2 > t l . 

The fundamental characteristic of constant coefficient linear systems 
is that their weighting functions depend solely upon the difference be­
tween the instant of observation t2 and the time h of application of the 
unit impulse. 

If the input to the linear system is X (t) the output Y (t) at a particular 
time t2 is by superposition 

(14) 

If the input to the linear system is white noise of spectral density N, 
where N is measured over real frequencies only, the mean square en­
semble output at time t2 is given by 

(15) 

The mean square output is usually the most significant value of interest. 
For stationary noise of spectral density W (f) 1 the mean square en­

semble output is given by 

(16) 

where H (t2 , s) is the Laplace transform of the weighting function. 
Equations (14) and (15) show that the weighting function h (t 21 td is 
needed if the output to a system for an arbitrary input is desired. The 
role of the analog computer is that of determining the weighting function, 
since this may. be difficult by analytical methods. 



NOISE AND STATISTICAL TECHNIQUES 26-07 

If a unit impulse is introduced at time tl1 a simulated system gives 
h (t 2 , t 1 ) as a function of t 2 • Since the variable of integration in eqs. 
(14) and (15) is tl1 to evaluate y(t)2' for a particular value of t2 it 
would appear necessary to take a number of unit impulse responses for 
various values of t 1 , cross-plot the results, and integrate eqs. (14) and 
(15) numerically. Laning and Battin (Refs. 5, 6) have shown that by 
replacing the system under study by another that is closely related to it, 

(1) 
a$:a+b+C 
b 1: 
c a+b+c 

d+e~d d+e . 1: 
d+e e 

(2) X~X{(tJ y{(tJ--EJ---y 

(3) O(S)Y~Y. 
(a) (b) 

FIG. 2. Construction of adjoint system used to obtain weighting function: (a) build­
ing blocks of original system; (b) adjoint system. The three types of operations 
are (1) addition, (2) multiplication by a function J(t) " and (3) application of a 

linear constant coefficient operator, 0 (8). 

called the adjoint system, the desired weighting function may be com­
puted directly in terms of the variable 7' = t2 - t 1. The adjoint tech­
nique can often effect a considerable saving in computing time. 

Adjoint Method. Any linear system may be instrumented by a com­
bination of three types of operations. In terms of analog computer block 
diagrams these three operations are shown in Fig. 2a. They are sum:' 
mation, multiplication, and linear constant coefficient operations. By 
using the same topological system block diagram, but with the direction 
of flow through each block reversed as shown in Fig. 2b, the adjoint 
system is evolved. Note that new variables appear in the adjoint. 

The input to the original system becomes the output of the adjoint 
system, and vice versa. The adjoint system has the property that its 
response to a unit impulse, applied at time t 2 , is the desired weighting 
function. The difficulty of having time run backwards is circumvented 
by making the mathematical change of variable 7' = t2 - t17 where 
7' is now the independent variable for the computer. Since the change 
of variable has shifted the origin of time as well as reversed the direction 
of time, the unit impulse input is applied at time tl = t2 or 7' = 0, which 



26-08 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

corresponds to the instant of starting the simulator test. All time-varying 
parameters in the system will be generated as if the independent variable 
were decreasing from t2 to - 00 rather than increasing from - 00 to t 2. 

The adjoint technique is also valid for nonstationary inputs to the 
linear system, provided that a suitable time-varying shaping filter can 
be found. 

If physical hardware is employed in the simulation the use of the 
adjoint technique is generally not convenient. The presence of time­
varying elements within the hardware may preclude reversal of the 
system to form the adjoint. 

(a) (b) 

FIG. 3. (a) Schematic diagram for solution of eq. (17). (b) Schematic diagram for 
solution of adjoint of eq. (18). 

d 2y dy 
(a) - + t - + y = x 

dt 2 dt 

d2v d 
(b) -2 + - [(t2 - T )v] + v = U. 

dtl dt 

EXAMPLE. Consider the system described by the following second 
order differential equation: 

d2y dy 
(17) dt2 + t dt + y = x. 

This system may be simulated by using only integrators, summers, and 
time-varying scale factor potentiometers, as shown in Fig. 3a. The 
adjoint system is obtained from this simulation by interchanging all 
inputs and outputs of each of the computing elements and replacing the 
variable t by t2 - T. The schematic diagram for the adjoint system is 
shown in Fig. 3b. 

The differential equation instrumented with the schematic of Fig. 3b 
is found to be 

(18) 



NOISE AND STATISTICAL TECHNIQUES 26-09 

Equation (18) is the adjoint of the equation of the original system with 
t replaced by t2 - T. The collection of responses of the original system 
at time t2 as a result of unit impulses applied at all times prior to time 
t2 may be generated by a single computer run by recording the response 
of the adjoint system when this system is excited by a unit impulse 0 (T) 
at time T = o. The unit impulse input is accomplished by placing an 
initial condition on an integrator. 

orr) 
Unit 

impulse 

FIG. 4. Block diagram for obtaining mean square ensemble output 
with adjoint system. 

If the input to the system is white noise of spectral density N, the 
relation between the mean square ensemble output of the original system 
and the weighting function of the modified system, h*, is obtained 
from eq. (15): 

(19) 

The mean square ensemble output may be obtained by a single computer 
run as indicated in Fig. 4. The quantity y2 (t) is the steady-state value 
of the integrator output. 

4. TREATMENT OF NONLINEAR SYSTEMS 

For nonlinear systems, when attempting to find the response to statis­
tical inputs, in general it is necessary to generate the appropriate inputs 
and apply these to the analog computer. The measurements taken from 
the analog computer will then exhibit a statistical character. Section 
5 describes random function generators for analog computers. 

If a complete time history of the variables of interest is desired, the 
usual recording methods common to analog computer operation are 
applicable. If, however, the values otthe variables at a specific instant 
are desired, it is expeditious to record only those values. It is economical 
to provide some automatic means for repeating solutions on the computer 
(Ref. 7); the only difference between successive solutions is that a dif­
ferent sample of noise or random input is applied each time. Mathe­
matically, the form of the equations is the same each time; the forcing 



26-10 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

TABLE 1. STATISTICAL PROBLEMS AMENABLE TO ANALOG· COMPUTER STUDY 

Problem Field 
1. Radar 

2. Missile and 
aircraft systems 

3. Servo system 

4. Aerodynamics 

5. Operations research 
Economics 
Inventory 
Traffic 
Cargo handling 

6. Data reduction 
7. Fil ter analysis and 

synthesis 
8. Noise analysis, 

generation, and 
measurement 

Random Variable 
Angular scintillation due to 

multiple reflections from 
targets (target glint) 

Amplitude scintillation due 
to atmospheric disturbances 
(fading) 

Receiver noise 
Quantizing errors in analog-

to-digital signal converSlOn 
Launching errors 
Target maneuver 
Thrust vector variations 
vVind disturbances 
Instrument errors 
Human response time 
Probability of hit 
Input 
Gear noise 
Potentiometer noise 
System gain 
Atmospheric conditions 
Winds 
Turbulence 
Air density 
Temperature 
Runway roughness (land and 

sea) 
Arrival time 
Service time 
Mean time in queue 
Manufacturing irregularities 
Human response time 
Economic fluc,tuations 
Data 
Input 

Noise 

References 
8 to 12 

8 to 12 

11, 13, 14 

8, 9, 12 
8, 9, 12, 15 

16, 17 

16, 18, 19 
9, 58 
2, 4, 5, 6, 20 to 25 
26 
26 
27 

16, 17 

28 

29, 31 

29 
29 

30 
32, 33, 34 
11, 14, 35, 36 

7, 10, 14, 21, 22, 
23, 25, 37 to 55, 59 

functions, initial conditions, and certain parameters vary randomly from 
solution to solution. The statistical measure now consists of an ensemble 
measure over the possible solutions of the same transient problem. It 
is important that the significance which can be attached to a set of such 
measurements be fully understood (Ref. 4). 



NOISE AND STATISTICAL TECHNIQUES 26-11 

Random Variables. The random inputs to the analog computer cor­
respond to the various quantities of the problem of interest which are 
statistical in nature. These statistical quantities may be of various 
types. Table 1 indicates a number of problems that can be studied on 
an analog computer and the random variables that are usually asso­
ciated with that particular problem. A selected list of references is 
given. The indicated references show specific applications of analog 
computers to statistical problems. 

EXAMPLE. Consider the simulation of stationary, normally distrib­
uted radar scintillation noise jJ.. with a zero mean and a spectral density 
given by 

(20) W(f) = (1/10)2 + 1 
3000 2 

(1/2)2 + 1 ft /cps. 

The standard deviation or root-mean-square value of the radar noise 
is obtained from 

(21) '" = ~ 1- W(f) dJ = ~"'w ~~oJo = 97.08 ft. 

Gaussian 
noise 

generator 

Simulated 
system 

W{f) = "w,: 0 ft2jcps 
• (ftfo) + 1 

k = 0.2 vo!t/ft 

FIG. 5. Schematic of Radar noise simulation. 

Assume that the analog computer Gaussian noise generator has an 
output spectral density N, which is uniform from zero to 50 cps with 
a value of 5.0 volts2/ cps. The noise voltage has a zero mean and·· an 
rms voltage in the order of' 18.0 volts. 

Since the noise generator has a constant spectral density over a fre­
quency range much greater than the cutoff frequency fo of the noise to 
be simulated, it can be considered as a source of white noise. 

By using the relationship of eq. (10) with Wi = N = 5.0 volts2/cps 
and a computer scale factor k = 0.2 volt/foot, the radar noise may be 
simulated as indi~ated in Fig. 5. 



26-12 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

5. NOISE GENERATORS 

Desirable Characteristics. An analog computer noise generator 
should possess the following characteristics: 

1. A stationary output voltage with the desired probability distribu­
tion. 

2. An output voltage of adequate root-mean-square value in order to 
reduce further amplification requirements. 

3. A stable power spectral density that is uniform from zero frequency 
to a frequency that is sufficiently large when compared to the noise 
spectrum to be simulated. 

4. A stable zero mean. A mean other than zero is obtained by adding 
the required d-c voltage. 

5. An averaging type output monitoring circuit with a large time 
constant. 

Noise Sources. The two most commonly used primary noise sources 
for analog computer noise generators are (a) a radioactive emitter with 
an associated Geiger-Mueller tube and (b) a grid-controlled gas-discharge 
tube. 

Random numbers (Refs. 52, 53), current-carrying resistors (Refs. 
1, 50), temperature-saturated diodes (Ref. 1), and photoelectron multi­
plier tubes (Ref. 1) have also been used as primary noise sources. 

Radioactive Source. Gamma and beta radiations emitted by a radio­
active source and triggering a self-quenching Geiger-Mueller tube will 
result in random voltage pulses with a Poisson probability distribution 
function given by 

(22) Pen) = (AT)n exp (-AT) . 
n! 

That is, in any fixed time of observation T, the number of voltage 
pulses n obtained in that interval would have the probability distribu­
tion P(n), where A is the average rate of occurrance of the pulses in a 
unit time interval. 

The GM tube is a gas-filled diode operated in the region of unstable 
corona discharge. The condition for triggering a discharge in the GM 
tube is that at least one low-energy electron be produced within the 
GM tube by the radioactive rays. A voltage pulse is emitted by the 
formation of an ion sheath which first forms at the anode and then moves 
to the cathode. The deionization time of the GM tube is the fundamental 
barrier limiting the highest noise frequency available from a tube (Ref. 
56). The Anton 315 S, Victoreen 1 B 85 and Raytheon CK 1019 GM 
tubes have been used for noise generator applications. 



NOISE AND STATISTICAL TECHNIQUES 26-13 

Gas-Discharge Tube. The noise in a grid-controlled gas-discharge 
tube arises from fluctuations in the dense layer of positive ions near the 
cathode. The noise has a normal probability density distribution and 
the frequency beyond which the noise energy begins to fall off varies 
inversely with the atomic weight of the gas. Resonance peaks associated 
with the natural oscillation frequencies of the ions may be suppressed 
by application of a transverse magnetic field from a permanent magnet 
enclosing the tube (Ref. 1). Most gas-discharge tubes exhibit an inherent 
instability with distinct jumps in noise level occurring at random times. 

Radioactive 
source 

Poisson 
distributed 

pulses 

~ 

~ Limiter 

x t 

Geiger-Mueller 
tube 

Random 
telegraph 

signal 

~ 
Bistable 

multivibrator 

Low-frequency noise 
with Gaussian 

Low-pass probability distribution 
filter 

+e yet) 

FIG. 6. Block diagram of Geiger-Mueller type generator. 

These jumps have been attributed to (a) variations in heater and plate 
supply voltages, (b) variations in tube envelope temperatures, and (c) 
variations in cathode emission. Since these variations are at low fre­
quencies, noise generators using gas tubes resort to a regulator circuit 
to compensate for them (Ref. 39). The 6D4 argon-filled triode and the 
2D21 xenon-filled tetrode are extensively used as hot cathode arc noise 
sources. 

Geiger-Mueller Type Noise Generators. The basic principle of this 
method is the utilization of a radioactive material and a Geiger-Mueller 
tube to trigger a bistable multivibrator circuit (Refs. 41, 43, 45, 51). A 
block diagram of a GM type noise generator is shown in Fig. 6. The 
output of the multivibrator is clipped at equal positive and negative 
voltages. The result is a random telegraph signal which is defined as 
a signal that has two possible levels of + e and -e volts, the crossovers 
between these levels being Poisson distributed in time. 



26-14 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

The spectral density W (f) of the random telegraph signal can be 
shown to be 

(23) 
e2 1 

W (f) = }: (21TJ)2 ' 1+ -
2A 

where e is the magnitude of the positive or negative excursion from 
zero of the random telegraph signal and A is the average rate of occur­
rence of the Poisson distributed pulses. If the random telegraph signal 
is passed through a suitable low-pass filter, the filter output will have 
an amplitude probability density distribution which is approximately 
Gaussian. The power spectral density of the output will be essentially 
uniform from zero frequency to the filter cutoff frequency, provided the 
input power spectrum W (f) of the random telegraph signal is uniform 
over this frequency interval. 

Gas Tube Noise Generator. Noise generators using a gas-discharge 
tube may be classified into two types: (a) sampling type noise generator, 
and (b) demodulator type noise generator. Both types employ a fre­
quency shifting technique in order to obtain low-frequency noise from 
the wide band noise source. This technique produces a noise output of 
a magnitude which is comparable in magnitude to that of the input 
energy, rather than being a small fraction thereof. Owing to the limita­
tions of the gas tube noise source at low frequencies, the frequency 
shifting technique also insures a uniform spectrum at ultra-low fre­
quencies. 

Sampling Type Noise Generator. A block diagram showing the 
basic principle of the sampling type noise generator is shown in Fig. 7 
(Refs. 14,47,55). The wide band output from the gas tube is first passed 
through an amplifier to equalize the noise tube characteristics. The 
output of this amplifier is passed through an automatic gain control 
(AGC) regulating circuit to compensate for the low-frequency spec­
trum variations from the gas tube. The noise voltage from the AGC 
circuit is fed to a sample and hold circuit. The requirements for the 
sample and hold circuit are that the sampling occur in a linear manner 
during a very short portion of the sampling period. The sampling may 
be performed by a rotating commutator or an electronic gate. The hold­
ing or storing part of the circuit is usually a condenser. 

The output from the sample and hold device will be a stepped voltage 
wave e (t). Each step being a fixed duration T and equal to the dura­
tion of every other step (see Fig. 7). The amplitude probability density 
distribution will be the same as the amplitude distribution of the noise 
source, namely Gaussian. If the bandwidth of the primary noise source 



NOISE AND STATISTICAL TECHNIQUES 26-15 

is large when compared to the sampling frequency liT, successive 
samples of the primary noise voltage may be considered to be uncor­
related. In this case the spectral density W (f) of the stepped voltage 
wave in Fig. 7 will be 

(24) W (f) = (J2T [Sin 7rf TJ2 , 
7rfT 

where (12 is the mean square value of the sampled noise and T is the 
sampling period. The spectral density is essentially uniform from zero 
frequency to some higher frequency determined by the sampling rate. 

Gas tube AGe 
noise Amplifier regulating 

source circuit 

t 
Reference 

voltage 

e(t)~ 
Low-frequency 
noise with 
Gaussian 

Sample 
probability 

Low-pass distribut~n 
~ and hold filter 

, 

circuit Gaussian noise 
with high-

i frequency 
components 

Sampling 
rate 

oscillator 

FIG. 7. Block diagram of sampling type noise generator. 

Demodulator Type Noise Generator. A block diagram showing the 
basic principle of this type of low-frequency noise generator is shown 
in Fig. 8 (Refs. 21, 38, 39, 42, 48). A description of a widely used noise 
generator employing the principles used in Fig. 8 follows (Ref. 39): 

The primary source of noise is a type 5727 or 2D21 thyratron con­
nected in a diode configuration. The noise supplied to the regulating 
circuit extends from about 30 cps to 3 kc. This bandwidth is sufficiently 
wide to permit adequate averaging of the noise level and yet allows for 
a reasonably short time constant for the regulating action. 

Figure 9 shows a block diagram of the AGe regulator circuit. The 
noise is passed through a variable gain pentode, amplified, and then 
half-wave rectified. The rectified noise is compared with a reference 



26-16 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

voltage and the difference is averaged by the integrator circuit. If the 
average noise amplitude is greater than the reference voltage the gain 
of the variable gain pentode is reduced, and if the noise is less, the gain 

Gas tube AGC Bandpass 

noise ~ 
A-C-coupled 

~ regulating ~ 
filter >--amplifier centered source circuit around to 

t 
Reference 

voltage 

~ 
A-C-coupled 

~ Demodulator ~ 
Low-pass 

~ amplifier filter Low-frequency 
noise with 

t Gaussian 
probability 

. distribution 
Demodulating 

oscillator 
to 

FIG. 8. Block diagram of demodulator type noise generator. 

Input Variable 
gain 

pentode 

O-C-coupled 
integrating 
amplifier 

Reference 
voltage 

A-C-coupled 
amplifier 

Rectifier 

FIG. 9. Block diagram of regulator circuit. 

Output 

is raised. Thus, the output of the regulator is noise whose average am­
plitude is constant and whose spectrum extends from 30 cps to 3 kc. A 
portion of this spectrum is selected by a bandpass filter whose transfer 
gain is given in Fig. lOa. The output of the filter is centered at 400 cps 
and has a bandwidth of approximately 100 cps. 



NOISE AND STATISTICAL TECHNIQUES 26-17 

After amplification the noise is demodulated by the use of a 400-cps 
electromechanical chopper. The chopper alternately multiplies the noise 
voltage by plus one and minus one. This multiplication results in fre­
quency components consisting of sums and differences of the noise frequen­
cies and the chopper frequency and its harmonics. Thus, there results 
a low-frequency noise and noise centered at 800 cps, 1200 cps, 1600 cps, 

2.0 r-----r------r------r-----, 

Q) 

§ 1.51-----t-?...,..-----t-------........,.-t----; 
c. 

e 1.01--~~-~~=--~~---; 
Q) 

.~ 
}§ 0.51---T----t-----t------t--"~ 
Q) 

0:: 

350 400 
Frequency, cps 

(a) 

450 

il"d I 
10 20 30 40 50 60 70 80 

Frequency, cps 

(e) 

500 

~ 2.5 
'Vi 

~ 2.0 

~ 1.5 
u 
Q) 

~ 1.0 
Q) 

~ 0.5 

L 
L 

/v 

~ 

~ 
\ 
~ 

ro 
(j) 

0:: 00 10 20 30 40 50 60 70 80 
Frequency, cps 

(b) 

h:::1 I f~ I ~ ~ 0.51---+--+--T----i---I 
(j) 

0:: O~-~--~-~--~ o 10 20 30 40 50 60 70 80 
Frequency, cps 

(d) 

FIG. to. Development of uniform spectrum: (a) gain of 400-cps filter; (b) low­
frequency portion of noise spectrum before modification by RC filter; (c) gain of 

RC filter which follows chopper; (d) net output spectrum. 

etc. The low-pass filter which follows the chopper effectively eliminates 
the high-frequency components. If there were no low-pass filter, the 
spectrum of the low-frequency portion of the output would be as shown 
in Fig. lOb. The low-pass RC filter, whose gain is shown in Fig. 10c, 
modifies the spectrum of Fig. lOb to give the output spectrum shown 
in Fig. 10d. 

The filtering and demodulating process described above results in a 
noise generator with the following characteristics: 

(a) An output spectrum that is within 0.1 db of uniform from zero 
to 35 cps. 

(b) The spectral density has a value of approximately 4.0 volts2/ cps. 



26-18 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

(c) The output voltage has a probability density distribution which 
does not deviate from the Gaussian distribution by more than 1 per cent. 

(d) The average output is less than 50 millivolts, with 95 per cent 
certainty. 

Figure 11 shows a typical recorded sample of the nOIse generator 
output. 

Noise with Other Cbaracte~istics. Beginning with a noise generator 
whose output spectrum is uniform over a sufficient range, it is a simple 
matter to alter the spectrum shape in a known manner by passing the 
noise through a filter composed of passive elements or feedback ampli­
fiers. One may generate special types of nonstationary noise by utilizing 
time-varying filters. Noise having certain distributions other than 
Gaussian may be generated from Gaussian noise by combinations of 
linear and nonlinear filtering. For example, narrow band filtering and 
subsequent envelope detection of Gaussian noise results in an output 
having a Rayleigh distribution; phase-detecting narrow band Gaussian 
noise with reference to a fixed-phase carrier frequency and subsequent 
filtering will result in an output with a uniform probability density dis­
tribution (Ref. 40). 

Measuring Noise Generator Characteristics. The most demanding 
aspect of low-frequency noise measurement is the length of time neces­
sary to establish accurate estimates of the statistical properties of the 
noise. Bennett and Fulton (Ref. 38) have derived the measurement 
time required in order to determine the characteristics of low-frequency 
noise generators. 

Determination of Probability Distribution. The easiest probability 
distribution to determine experimentally is the probability distribution 
function P (x) of eq. (3). All that is necessary is to measure the time 
the voltage from the noise generator is below a level Xl and to compare 
it to the total obser'vation time. In other words, 

(25) 
Tl 

P(xI) =-, 
TT 

where Tl and TT are the times below the level Xli and the total observa­
tion time, respectively. By varying the comparison voltage Xl, the 
cumulative distribution can be obtained for all x. 

Special cumulative distribution analyzers have been built (Ref. 41) 
and commercial instruments for this purpose are readily available 
(Ref. 57). 

Determination of Mean Value. The mean value of a noise voltage may 
be found by integrating the voltage for a sufficiently long time. For a 



-\. 

NOISE AND STATISTICAL TECHNIQUES 

7""'-0. 
l-I-

~ P 
!-- f.-- ~ 

~ I- K 
!--~ [..5 
!-- f- F- r0o-t-
!-- f.-- E> 
~ I--~p 

!-- f.-- d. __ 
l-I- t:2 
l-I-- I"--Il-b 
1-1- c::~ 
l-I-- -c::::: 

!--I-- D 
l-I--

~ +--
I--I-- I...:::: e. 
V I-- I~~ 
v I-- l.) 
vI-
I--I-- rs-' 
v ~ ....... 1-1 
vI- c: ....... 
I--I-- 17 
vI- 'c::: 1--1:> 

I--~ c~ 
v ~ ~ 
I--I-- F:::; 
I--I-- II"" 

'"-
I--I-- -c: t;;: *=--l-I-- ~b 
l- I'- t:::t:> 
I.-~ ~ 
l-I-- "C~ ~ 

l.-I--
C 
~~ 
'-

l.-I-- ~~ 
I- 1-===12 
v I-- 1<:: .... 
I--j.-- .~ 
l-I-- .... t> 
l-I-- K--~ 
J..-I-- ~ 
v I-- D 
l-I-- ,'" 
1-1- (~ 

l.-I-- .ct. 
I--10- ..;~ 
1--1- "'r-~ 

t-- t-
t-- r--
t-- t-
t-- t-
t-- t-
t-- t-
t-- t-
t-- t--t-
t-- t-
-t-
t-- I---t-
t-- t-
t-- I--
r-- t--V-a t-

I--

q t-
t-

r--I--
-t-
~ t--t-
r--t-
r---t--
t---t-
t---t-
t---t-
r--. t-
t---t--t--t-
t---t-

u 
Q) 
Ul 

00 o o o ...;; 
::l 
~ l! "5 
o 

p 

2 
(5 
> 
o 
(Y) 

!-:::::l/ 

i-t-
r---t-
t---t-' 
t---t-
t---t-

t-
t---t-
r--. t-
r---t-
r---t-

26-19 



26-20 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

normally distributed noise voltage with a uniform spectral density of N 
volts2 / cps and a theoretical mean value of x volts, the measured mean 
voltage e will be within 95 per cent of the theoretical mean as dictated by 

(26) e = x ± V2N/T volts, 

where T is the integration ti~e in seconds. The only way to improve 
the accuracy of the measurement of the mean is to integrate over a longer 
period of time. 

Determination of Mean Square Value. The mean square value x2 

of a low-frequency noise voltage may be obtained on an analog com­
puter by squaring the noise voltage and integrating the square over a 
period of time T. The length of time T required to determine, with 
95 per cent certainty, the mean square value to within a percentage 
accuracy P, for normally distributed noise with zero mean having a 
spectral density given by eq. (20), is approximately 

(27) 
4 X 104 

T = 7rfOP2 seconds. 

Determination of Spectral Density. There is a variety of methods 
used for determining the spectral density of a noise voltage (Refs. 33, 
34, 41). In the case of an analog computer noise generator whose spec­
trum is known to be essentially uniform in the regions of interest, the 
noise is usually passed through a selective filter composed of analog 
computer amplifiers, and the transmitted power is then measured. Re­
peating this process at a number of different frequencies will give a 
measure of the spectrum shape. The time of observation required for 
selective filters of this type is inversely proportional to the bandwidth 
of the filter. In order to obtain finer resolution of the spectral density, 
longer measurement times are required. 

REFERENCES 

1. W. R. Bennett, Equipment for generating noise, Electronics, 29 (4), 134-135 
(1956). 

2. M. V. Mathews, A method for evaluating non-linear servos, Trans. Am. Inst. 
Elec. Engrs., 74, Pt. 2,188 (May 1955). 

3. W. R. Bennett, Methods of solving noise problems, Proc. I.R.E., 44, 609-638 
(1956). 

4. W. R. Bennett, Analogue computing applied to noise studies, Proc. I.R.E., 41, 
1509-1513 (1953). 

5. J. H. Laning, Jr., and R. H. Battin, On an application of the use of analogue 
computers to methods of statistical analysis, Project Cyclone Symposium II, Reeves 
Instrument Corp., New York, 1952. 



NOISE AND STATISTICAL TECHNIQUES 26-21 

6. J. H. Laning, Jr., and R. H. Battin, Random Processes in Automatic Control, 
McGraw-Hill, New York, 1956. 

7. R. R. Bennett and A. S. Fulton, Automatic REAC operation for statistical 
studies, Project Cyclone Symposium II on Simulation and Computing Techniques, 
Pt. 2, p. 129. Reeves Instrument Corp., New York, 1956. 

8. R. R. Bennett, R. R. Favreau, and 1. Pfeffer, The adjoint computing method 
applied to guided missile system design, Project Typhoon Symposium III on 
Simulation and Computing Techniques, Univ. of Pennsylvania, Philadelphia, Pa., 
October 1953, Confidential. 

9. R. R. Bennett and W. E. Mathews, Analytical determination of miss distance 
for linear homing navigation systems, Secret Technical M emorandum No. 260, 
Hughes Aircraft Company, Los Angeles, Calif., March 31, 1952. 

10. Columbia University, Beam splitting and search radar simulation, Confidential 
Rept. F/A-VIII, ERL Columbia University, New York, November 30, 1954. 

11. R. H. Delano 'and I. Pfeffer, The effect of AGC on radar tracking noise, Proc. 
I.R.E., 44, 801-810 (1956). 

12. W. W. Seifert, A Study of Noise in Missile Control Systems, Confidential 
Sc. D. Thesis, Department of Electrical Engineering, Massachusetts Institute of 
Technology, Cambridge, Mass., 1951. 

13. J. A. Aseltine, The Use of Electronic Analog Computers in the Solution of 
Certain Radar Noise Problems, Presented at the I.R.E. West Coast Convention, 
San Francisco, Calif., August 1955. 

14. D. F. Winter et al., Radar tracking data and filter studies, Confidential 
NAVORD Rept. 1414, Washington University School of Engineering, Division of 
SponsClred Research, St. Louis, June 30, 1052. 

15. H. Ehlers and E. Vogel, Simulation of noise in missile homing problems, 
Project Cyclone Symposium I on REAC Techn1:ques, Reeves Instrument Corp., 
New York, March 1951. 

16. Goodyear Aircraft Corporation, Application of Geda to human dynamics 
studies, Rept. GER-6608, Goodyear Aircraft Corp., Akron, 0., March 4, 1955. 

17. N. W. Trembath, Wind gust simulation, Internal Memo GM 45.3-268, Ramo­
Wooldridge Corp., Los Angeles, Calif., May 9, 1957. 

18. J. R. Clark, A. B. Fontaine, and C. E. Warren, The generation of a continuous 
random signal for use in human tracking studies, Research Bull. 53-40, Human 
Resources Research Center, Air Research and Development Command, Lacklin Air 
Force Base, Tex., October 1953. 

19. C. E. Warren, P. M. Pitts, and J. R. Clark, An electronic apparatus for the 
study of the human operator in a one-dimensional, closed-loop continuous pursuit 
task, Trans. Am. Inst. Elec. Engrs., 71, 19-23 (1952). 

20. J. A. Aseltine and R. R. Favreau, Weighting functions for time varying feed­
back systems, Proc. I.R.E., 42, 1559-1564 (1954). 

21. R. C. Booton, Jr., Nonlinear control systems with statistical inputs, Rept. 
No. 61, Dynamic Analysis and Control Laboratory, Massachusetts Institute of 
Technology, Cambridge, Mass., March 1, 1952. 

22. R. C. Booton, Jr., M. V. Mathews, and W. W. Seifert, Nonlinear servo­
mechanisms with random inputs, Rept. No. 70, Dynamic Analysis and Control 
Laboratory, Massachusetts Institute of Technology, Cambridge, Mass., August 1953. 

23. T. B. Garber, RMS Errors in Systems with Constant and Time Varying 
Coefficients, M.S. Thesis, Department of Aeronautical Engineering, Massachusetts 
Institute of Technology, Cambridge, Mass., 1952. 



26-22 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

24. Goodyear Aircraft Corporation, Geda simulation study ofa relay servo­
mechanism, Rept. GER-4799, Goodyear Aircraft Corp., Akron, 0., May 9, 1952. 

25. E. C. Hall, Analog simulation for noise analysis in control systems, Rept. R-74, 
Instrumentation Laboratory, Massachusetts Institute of Technology, Cambridge, 
Mass., May 1954. 

26. Goodyear Aircraft Corporation, Geda simulation study of a carrier-type 
instrument servomechanism, Rept. GER-5779, Goodyear . Aircraft Corporation, 
Akron, 0., April 21, 1954. 

27. A. Rosenbloom, Analysis of Randomly Time-Varying Linear Systems, Ph.D. 
Dissertation, University of California at Los Angeles, Calif., July 1954. 

28. H. Press and J. W. Tukey, Power spectral methods of analysis and their 
application to problems in airplane dynamics, AGARD Flight Test Manual, Pt; IVC, 
pp. 1-41, June 1956, Bell Telephone System, Monograph 2606, New York. 

29. Goodyear Aircraft Corporation, Two applications of Geda computers to 
statistical problems of operations research, Rept. GER-0729, Goodyear Aircraft 
Corp., Akron, 0., June 4, 1955. 

30. O. J. M. Smith, Economic analogs, Proc. I.R.E., 41, 1514-1519 (1953). 
31. D. L. Trautman et al., Analysis and simulation of vehicular traffic flow, 

Research Rept. No. 20, Institute of Transportation and Traffic Engineering, Uni­
versity of California, Los Angeles, Calif.', December 1954. 

32. R. A. Johnson and D. Middleton, Measurement of Correlation Functions of 
Modulated Carriers and Noise Following aNon-Linear Device, Paper presented at 
Symposium on Applications of Communication Theory, Institute of Electrical Engi­
neers, London, September 1952. 

33. F. B. Smith, Analog equipment for processing randomly fluctuating data, 
Aeronaut. Eng. Rev., 14, 113-119 (1955). 

34. H. W. Smith et al., A power spectrum computer, Rept. No. 80, Electrical 
Engineering Research Laboratories, University of California, Berkeley, Calif., No­
vember 15, 1956. 

35. R. R. Favreau, H. Low, and 1. Pfeffer, Evaluation of complex statistical 
functions by an analog computer, I.R.E. Convention Record, 4, Pt. 4, 31, March 
1956. 

36. A. Rosenbloom, Analysis of an optimum filter with derivative constraints, 
Memo GM 41-5, Ramo-Wooldridge Corp., Los Angeles, Calif., May 8, 1956. 

37. G. W. Anderson and J. E. Murrin, Autocorrelator for Radioactive Sample 
N vise Generator, Paper given at the 1.R.E. WESCON Conference, August, 1956, 
Los Angeles, Calif. 

38. R. R. Bennett and A. S. Fulton, The generation and measurement of low­
frequency random noise, J. Appl. Phys., 22, 1187-1191 (1951). 

39. R. .R. Bennett, D. E. Beecher, and H. Low, Electronically stabilized noise 
generation, Electronics, 27, 163-165 (July 1954). 

40. R. Bernstein, H. Bickel, and E. Brookner, A generator of uniformly distributed 
random noise, I.R.E. Convention Record, Pt. 10, 97, 1954. 

41. H. Dern et al., Noise studies, Tech. Rept. T-1 /122, Electronic Research Labora­
tories, Columbia University, New York, December 31, 1955. 

42. R. R. Favreau, Noise generators, Rept. PCC 19, Electronic Associates Princeton 
Computation Center, Princeton, N. J., 1955. 

43. J. W. Follin, Jr., G. F. Emch, and F. H. Walters, Modifications and additions 
to the REAC, Project Cyclone Symposium II on Simulation and Computing Tech­
niques, p. 173, Reeves Instrument Corp., New York, April-May 1952. 



NOISE AND STATISTICAL TECHNIQUES 26-23 

44. H. H. Goode, W. A. Wheatley, and G. G. den Broeeler, The generation of a 
vector with an N-dimensional normal distribution by means of analog equipment, 
Project Cyclone Symposium I on BEAC Techniques, p. 75, Reeves Instrument 
Corp., New York, March 1951. 

45. Goodyear Aircraft Corporation, Random noise generator for simulation studies, 
Rept. GER-64S6, Goodyear Aircraft Corp., Akron, 0., December 13, 1954. 

46. C. E. Hendrix and R. B. Purcell, A low-frequency random noise generator, 
1'. 1~f. 1788, U. S. Naval Ordnance Test Station, Inyokern, China Lake, Calif., 
February 1954. 

47. M. A. Karpeles, Noise Compressor, U. S. Patent 2,649,386, May 19, 1953. 
48. M. V. Mathews, Noise generator evaluation study, Rept. DIC 6387, M-4.40-2, 

Dynamic Analysis and Control Laboratory, Massachusetts Institute of Technology, 
Cambridge, Mass., December 19, 1951. 

49. M. V. Mathews, White noise tape specifications, Rept. DIC 6978, M-l,.l,1-1, 
Dynamic Analysis and Control Laboratory, Massachusetts Institute of Technology, 
Cambridge, Mass., April 1, 1953. 

50. H. Meister, A thermal noise generator for low-frequency test, Tech. Mitt. 
Schweiz. Telegr.-Teleph. Verw., 28, 320-324 (1950). 

51. K. A. Otto, Generation oj Low-Frequency Random Noise, Master's Thesis, 
U.S.A.F. Institute of Technology, Wright-Patterson Air Force Base, 0., March 1955. 

52. S. Sherman and E. Lakatos, Noise generation for analog simulation, Project 
Typhoon, Symposium IlIon Simulation and Computer Techhiques, Pt. I, p. 155, 
University of Pennsylvania, Philadelphia, Pa., October 1953. 

53. L. B. Wadel, C. C. Calvin, and J. W. Atkins, Jr., Repeatable generation of 
noise with a masked cathode-ray tube, Proc. N atl. Simulation Conj., p. 34.1, Dallas, 
Tex., January 1956. 

54. C. A. A. Wass, Introduction to Electronic Analogue Computers, p. 177, 
McGraw-Hill, New York, 1956. 

55. D. F. Winter, A Gaussian noise generator for frequencies down to 0.001 cycles 
per second, I.RB. Convention Record, Pt. 4, p. 23, 1954. 

56. H. Friedman, Geiger counter tubes, Proc. I.R.E., 37, 791 (1949). 
57. Berkeley Division of Beckman Instruments, Instruction Manual jor Universal 

Counter and Timer, Model 7S60-15, Richmond, Calif., March 6, 1957. 
58. T. B. Van Horne, An analog method for the solution of probability of hit and 

related statistical problems, I.R.E. Trans. Electronic Computers, 6, 170 (September 
1957). 

59. M. R. Bates, D. H. Bock, and F. D. Powell, Analog computer applications in 
predictor design, I.R.E. Trans. Electronic Computers, 6, 143 (September 1957). 





E DESIGN AND APPLICATION 

OF ANALOG COMPUTERS 
Chapter 27 

Mechanical Computer Elements 

I. Introduction 

2. Basic Operations 

3. Function Generation 

4. Solution of Equations 

5. Sca Ie Factors 

References 

I. INTRODUCTION 

Walter J. Karp/us 

27-01 

27-02 

27-05 

27-09 

27-14 

27-15 

Historically, mechanical computing elements represent the oldest form 
of automatic computation. In this method the dependent arid inde­
pendent variables of the problem are represented by either linear or 
angular displacements. Elements employing linear displacements or com­
binations of angular and linear displacements in the computing process 
include such well-known devices as linkage mechanisms, contour cams 
and gears, and levers. Computing elements of this type, described in 
some detail by Svoboda (Ref. 1) and Soroka (Ref. 2), are used almost 
exclusively in special purpose applications, while virtually all general 
purpose computation by mechanical means is carried out with angular 
displacement mechanisms. This discussion will, therefore, be limited 
to the later type of elements. N ate. Most of the examples used in this 
treatment were contributed by Professor W. C. Hurty of the University 
of California in Los Angeles. A brief table of symbols is given in 
Chap. 21, Sect. 6. 

27-01 



27-02 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

Comparison of Mechanical and Electronic Elements. Mechanical 
computing elements are precision-machined devices employing shafts, 
gears, and disks. The accuracy of such elements is limited by the 
following: 

Machining errors, resulting from machine shop tolerances. 
Slippage errors, where frictional contact forces are employed to 

transmit displacements. 
Theoretical errors, resulting from approximations made in mecha-

nizing the mathematical operation. 

Since all these errors may be minimized by careful design and fabrica­
tion, accuracies of the order of 0.01-0.1 % are readily obtained in mechan­
ical computers. Compared with electronic computing elements (see 
Chapters 22 and 23), mechanical general purpose computing elements 
have the following advantages and disadvantages: 

Advantages 

Greater accuracy 
More rugged 
Simplicity of design 
More dependable 
Need not work.in real time 
Solution may be interrupted and 

continued as desired 
Not greatly influenced by power 

line fluctuations 

2. BASIC OPERATIONS 

Multiplication by a Constant 

Disadvantages 

Require more space 
Greater weight 
Generally more expensive 
More difficult to "program" 
Less flexible in application 
Require more time for solution 

This is accomplished simply by stepping up or stepping down as the 
case may be, the angular rotation of the shaft by means of a pair of 
gears or a gear train. Since the direction of rotation is identified with 
the algebraic sign of the variable, coupling two shafts with identical 
gears would represent a mUltiplication by minus one, or a simple change 
in sign. 

Addition and Subtraction 

A differential gearing arrangement is used to obtain an angular dis­
placement which is the sum of two separate angular displacements. 
Familiar differential arrangements include the bevel gear differential 
and the spur gear differential. In such devices the rotation of the output 
shaft is equal to one-half the algebraic sum of the rotation of the two 



MECHANICAL COMPUTER ELEMENTS 27-03 

input shafts. Subtraction is accomplished by merely employing a one­
to-one gear coupling to change the sign of one of the variables prior to 
applying it to the adder. 

Integration 

A mechanical integrator relates three quantities, u, v, and w, in the 
following way 

.w = Jud~·, 

where all three functions are generally continuous and have continuous 
derivatives. Discontinuities in u and v are permissible provided that 
they are finite in number and do not occur at the same instant in the 
computing process. 

~~ =Ku 

1-. 

v 

FIG. 1. Kelvin disk integrator. 

Kelvin Disk Integrator. The Kelvin disk integrator, shown in Fig. 1, 
is the most commonly used general purpose integrator. The angular 
displacement of the turntable is proportional to v, that of the integrator 
wheel to w, and that of the lead screw to u. Accordingly, the distance 
from the center of the turntable to the plane of the integrator wheel is 
proportional to u. If it is assumed that there is no slippage of the inte­
grator wheel on the surface of the turntable, a small displacement of the 
turntable, AV, will produce a small rotation of the wheel AW, according to 

.6w = Ku .6v, 

where K is a constant. This may be generalized as 

f
V2 

W = udv. 
III 



27-04 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

Initial Values. It is seen that in so far as initial values are concerned, 
the initial setting of u is the only one which has significance in deter­
mining the subsequent output of the integrator. The lead screw of the 
integrator must, therefore, be set to correspond to the appropriate initial 
value before the commencement of each computation. 

Torque Amplifiers. The accuracy of an integrator is limited by the 
extent to which the integrator wheel is capable of following the rotation 
of the turntable. Since this drive is accomplished by frictional forces, 
care must be taken to assure that there is no slippage at the point of 
contact. The mechanical load or torque upon the integrator wheel must, 
therefore, be minimized. The first successful torque amplifiers for this 
purpose were developed in 1925 by Bush and consisted of a relay servo­
mechanism activated by means of mercury drop contacts between two 
disks. Subsequent torque amplifiers having gains in excess of 10,000 
are described by Soroka (Ref. 2) and include the following: 

1. Two-stage capstan type, a two-stage amplifier consisting of two 
stepped drums driven in opposite directions by a powerful electric motor. 

2. Polarized light servo, in which a beam of light is passed through 
a polaroid disk mounted on the integrator wheel as well as through a 
polaroid disk mounted on a follow-up disk, and a servomechanism is em­
ployed to keep the light falling on a photocell at a constant value. 

3. Capacitance type, in which the integrating wheel essentially acts 
as the plate of a condenser and the variations in capacity resulting from 
the rotation of the wheel are sensed and amplified. 

Input and Output Tables 

Units, called input and output tables, are devices from which plotted 
functions may be applied as angular displacements to the system, or to 
which functions present in the system as angular displacements may be 
applied and translated into plotted curves. In either case, for Cartesian 
coordinates, they consist of a carriage carrying either a sighting target 
or a pen that is made to move in a horizontal as well as a vertical 
direction by means of two screws, which may be rotated by connecting 
them to appropriate shafts in the. computing system. If the argument 
of the function is fed into the input table and is made to control one 
of the coordinates, say the abscissa, then the operator can, by turning 
a crank, adjust the other screw, so that the sighting target will always 
follow the plotted curve. The crank rotation, then, will be proportional 
to the function and may be fed back into the system. If both screws 
are driven by machine variables and a pen is attached to the carriage, 
the graphical relationship between the two machine variables will be 
plotted automatically by the pen. Input and output tables may readily 
be adapted for use with polar coordinates by making one screw rotate 



MECHANICAL COMPUTER ELEMENTS 27-05 

the table while the other screw is used to adjust the radial position 
of the carriage. 

(a) 

p. 
. (b) 

v w u 

z = fly) 

w = Judv 
z y 

(c) (d) 

FIG. 2. Schematic representation of basic operations: (a) gear train, multiplies by 
constant factor n, y = nx; (b) adder; (c) function table; (d) integrator. 

Schematic Representation of Basic Operations 

Diagrams of the basic operations of mUltiplication by a constant, 
addition, function unit (input and output tables), and integration are 
shown in Fig. 2. 

~x 
-}~~ .. -oo a: 1 0----.-----. 

ax y = eGX 

FIG. 3. Generation of exponential, eax• Governing equation: dy/dx = aeax• 

3. FUNCTION GENERATION 

A wide variety of algebraic and transcendental functions may be gen­
erated mechanically by suitable combination and utilization of the basic 
operations of constant multiplication, addition, and integration. Sche-



27-06 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

matic diagrams of mechanical circuits suitable for the generation of 
some of the more importa:c.t analytic functions, without the aid of input 
tables, are shown in Figs. 3 through 9, together with the basic equation 
from which these generators were constructed. The governing equations 
are given in Table 1. The trick in each case is to recognize or derive a 

x y = frI x 

-1:1 

x -Iogx 

In X = f}dx t=-ftd(1 x) 

FIG. 4. Generation of logarithm and reciprocal. Governing equation: 

d2y (dy)2_ 
dx2 + dx - O. 

functional relationship which permits the realization of the desired 
function with the basic elements available. 

TABLE 1. ANALYTIC FUNCTIONS THAT MAY BE GENERATED BY 

MECHANICAL CIRCUITS 

Function Governing Equation Solution 

Exponential, eax dy 
Fig. 3 - = aeax 

dx 

Reciprocal, ! dy _ - log x 
Fig. 4 

x dx - x 

Logarithm, log x d
2
y = _ (dy)2 

dx2 dx, 
Fig. 4 

Square, x 2 dy 
Fig. 5 - = 2x 

dx 

Product, xy xy = J y dx + J x dy Fig. 6 

Sine wx d2y 
Fig. 7 

Cosine wx -+w2y = 0 
dx2 

Tangent x dy = 1 + y2 
dx 

Fig. 8 

Power, xn 
dy 

Fig. 9 =y 
d(n log x) 



MECHANICAL COMPUTER ELEMENTS 27-07 

y = X 2 

X--~~------~-r--~ 

2:1 

x 2x 

X2 =j2xdx 

FIG. 5. Generation of square. Governing equation: dy/dx = 2x. 

~---~xy 

X--r-~--------~~------------------------+---, 

y --r-~--------+-~--~----------------~ 

x y y x 

Jydx JxdY 

FIG. 6. Generation of product. Governing equation: xy = f y dx + f x dy. 



27-08 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

cos wx 
~ 

-1:1 sin wx ... 

)i ow:l 

wx ~ -sin wx wx cos wx 

~ -'-

cos wr = J -sin wx d(wx) sin wx = J cos wx d (wx) 

FIG. 7. Generation of sine wx and cosine wx. Governing equation: 
(d2y/dx2) + w2y :::= O. 

y = tan x 

2:1 

tan x 2 tan x ..-_-+--+-_--1-...... x 1 + tan 2 x 
,.:.:---J--I----L. ...... 

tan x = J (1 + tan2 x)dx tan2 x' = /2 tan xd (tan x) 

FIG. 8. Generation of tangent x. Governing equation: dy/dx = 1+y2. 



x 

x 

MECHANICAL COMPUTER ELEMENTS 

log x = J i dx 

1 
x 

log x 

-1 :1 

-Iogx 

t = - f ~ d (log x) 

1 
x 

n:1 

n logx 

x" =f x"d(n log x) 

27-09 

FIG. 9. Variable raised to power n. Governing equation: dyjd(n log x) = y. 

EXAMPLE. Suppose it is desired to generate y = tan x. Then 

dy/dx = sec2 x = 1 + tan2 x = 1 + y2. 

The generation of the desired function is then equivalent to the solution 
of the equation 

dy/dx = 1 + y2, 

so that after integration 

y = J (1 + y2) dx. 

This in terms of x is 

tan x = J (1 + tan 2 x) dx. 

If it is recognized that 

tan2 x = J 2 tan xd(tan x), 

the appropriate diagram is readily constructed as shown in Fig. 8. 

4. SOLUTION OF EQUATIONS 

Ordinary Second Order Differential Equation. Consider the 
equation 

(1) 
d2y dy 
-+2r-+k2y=O. 
dt2 dt 



27-10 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

Rearrange to express the highest order term in terms of lower order. 

d2y dy 
(2) dt2 = - 2r dt - k2y. 

Integrate 

(3) dy = -2ry - k2 Jy dt. 
dt 

A second integration gives 

(4) 

Output 

y 

dy 
dt 

FIG. 10. Schematic diagram for solution of 
d2y dy 
dt 2 + 2r dt + k 2

y = O. 

y 

!ydt 

Two integrators are required, the first to give J y dt Ceq. 3) and the second 

to give J (dy/dt) dt (eq. 4). y, which is generated by the second integra­

tion, is fed back as an input to the first and also to the other term in eq. (3). 
The schematic arrangement for the mechanization of eqs. (3) and (4) is 

shown in Fig. 10. 



MECHANICAL COMPUTER ELEMENTS 27-11 

The constant coefficients 2r and /\,2 are represented by gear trains with 
corresponding ratios. An adder is required to give the sum of the two 
terms on the right side of eq. (3). The initial values of y and dy/dt must be 
known to proceed with the solution. Note that both these quantities are 
instrumental as settings of the leadscrews of integrators. 

Nonlinear Differential Eq~ation. Consider the equation 

(5) 
d2y dy 
dx2 + y dx + f(y) = cos x. 

Rearrange to express the highest· order term in terms of lower order. 

(6) 
d2y dy 
-=cosx-y -fey). 
dx2 dx 

Integrate 

(7) ~~ = sin x - J y dy - J.f(y) dx. 

A second integration gives 

(8) 

It is also necessary to generate cos x. 

(9) sin x = Jcos x dx; cos x = J - sin x dx. 

Five integrators are required, two in eq. (7), one in eq. (8), two in 
eq. (9). Two adders eq. (7) and one input table, to supply the arbi­
trary fun ction f (y), are also necessary. 

The schematic arrangement is shown in Fig. 11. The initial values of 
x, y, and dy/ dx are needed to proceed with the solution. 

Note that one of the integrations is with respect to a dependent vari­
able. When this occurs it usually means that the turntable (disk) of 
one integrator is being driven by the output of another, a condition 
referred to as "cascading." 

Simultaneous Differential Equations. Consider the two-loop net­
work in Fig. 12, with voltage e any arbitrary function of time and with 
the nonlinear inductance L2 a function of the current i 2 • 

The pertinent differential equations are: 

(10) 

(11) 

L1 ~t1 + (R1 + R2)i1 - R2i2 = e(t), 

L ( . ) di2 R' 1 J' dR' 0 . 2 1,2 at + 21,2 + C 1,2 t - 21,1 = . 



27-12 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

Output 
Input 

~ F-
~ 

y x fey) y 

dy 
-i 

sin x 
dX 

- jydy - ff(y)dx 

-1:1 

-1'1 '-0--

\x J 

" 
dy 

x d% y y x fey) x cos x x - sin x 

~ ~ -- -- ~. 

y =fdy jydy ff(y)dx sin x = f cos xcix cos x = f - sin xcix 

FIG. 11. Schematic diagram for solution of 

d2y dy 
dx2 + y ax + f (y) = cos x. 



MECHANICAL COMPUTER ELEMENTS 

ell) 

~(,-f---+--O 1. 1 ~..L.-----;~ 
R2 (i2-i 1)J 

...!..·1~ 
L' 

. J(dil)d q = 7ft t 

27-13 

1 
L 2(i 2 ) 

1 
L 2(i 2 ) 

FIG. 13. Schematic diagram for two-loop network problem of Fig. 12. 

Rearrange each equation to express the highest order term as a function 
of lower order terms. 

(12) 

(13) di2 1 [R' R' 1 J' d ] - = --. - 21,1 - 21,2 - - 1,2 t . 
dt L2(t2) C 

Equation (12) may be integrated to give 

(14) . J dil d 
1,1 = at t. 

But in eq. (13), the expression for di2/dt is the product of two variables. 



27-14 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

This may be treated as the integration of a product as follows 

(15) i2 ~ J L2~i2) d [J( R2i, - R2i2 - a f;2 dt) dt]' 
A total of four integrators, four adders, and two input tables, one for 

the function e(t) and the other for the function 1/L2(i2), is required. Five 
gear trains are needed for constant coefficients. The initial values of 

dil/dt, il, i2, and J i2 dt must be supplied as well. The schematic 

arrangement is shown in Fig. 13. 

5. SCALE FACTORS 

Definition. In mechanical computation the magnitude of each vari­
able 'of the problem is simulated by the angular displacement of a shaft. 
Some number of revolutions of that shaft is therefore proportional to 
one unit of magnitude of the corresponding variable. The constant 
relating the number of shaft revolutions to one unit of the variable 
represented by this shaft is called the scale factor. Every shaft in a 
mechanical computing system has a scale factor associated with it. 
Considerable care must be exercised in the selection of these scale factors 
to assure proper operation of the computer system. 

Consideration in Choice of Scale Factors. Before an intelligent 
assignment of scale factors can be made, the maximum and sometimes 
the minimum values of all variables and their derivatives must be approx­
imated. Frequently the initial approximation of these values may be 
excessively erroneous and may result in poor performance of the com­
puter system. The scale factors must then be readjusted by trial 
and error. 

Limitations on Dependent Variable Scale Factors. 
1. The excursion of the integrator wheel is limited by the number of 

threads on the lead screw. 
2. The excursion of the carriage of input and output tables is limited 

by the number of threads on its screw. 
3. The excursion of the shaft as a result of the computing process 

should be large compared to "noise" deflections due to vibration, back­
lash, etc. 

Limitation on Independent (Time) Variable Scale Factor. 
1. The maximum speed of shafts is limited by: characteristics of bear­

ings, sensitivity of follow-up servos in torque amplifiers, capability of 
driving motors, characteristics of output tables (pens, paper, etc.), capa­
bilities of human operators of input tables. 

2. The time scale factor should not be so small that an inconveniently 



MECHANICAL COMPUTER ELEMENTS 27-15 

long time is consumed in obtaining a solution over a specified region of 
interest. 

The time scale factor should be selected so that a plot of the entire 
region of interest is displayed on the output table to a convenient scale. 

Other Considerations. 
1. The scale factors at the t"vo inputs of an adder must be equal. 
2. The output scale factor of an adder is determined by the input 

scale factors. 
3. The scale factor at the output of an integrator is equal to the product 

of the two input scale factors divided by a constant (usually 16 or 32). 

REFERENCES 

1. A. Svoboda, Computing Mechanisms and Linkages, MIT Radiation Laboratory 
Series, 27, McGraw-Hill, N ew York, 1948. 

2. W. W. Soroka, Analog Methods in Computation and Simulation, McGraw-Hill, 
New York, 1954. 





E DESIGN AND APPLICATION 

OF ANALOG COMPUTERS Chapter 28 

Digital Techniques in Analog 

Computation 

I. Introduction 

2. Digital Differential Analyzer 

3. Digital Operational Computers 

4. Auxiliary Digital Computing Techniques 

5. Auxiliary Digital Control Techniques 

References 

Cornelius T. Leondes 

28·01 

28·02 

28·11 

28·15 

28·17 

28·18 

I. INTRODUCTION 

Digital techniques may be incorporated in analog computers in certain 
instances with resultant extensions in their capabilities. There are several 
aspects to this approach. 

a. In the basic analog computer operational units, discrete variable 
or digital number representation may be employed rather than the usual 
continuous variable representation. 

b. Data entering an analog computer may be in digital number form. 
Such instances occur, for example, in analog computers employed in traffic 
control systems. Modified analog operational units such as multipliers, 
may accept a discrete variable for one input and a continuous variable 
for the other to produce the product of the two variables in analog form. 
This provides equipment economies and better overall accuracy when 
compared with a procedure which employs a digital to analog converter 
and then supplies the two variables to a conventional analog multiplier. 

c. The generation of arbitrary functions of machine variables is often 
28·01 



28-02 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

a troublesome process in analog computers, particularly when functions 
of several variables are to be generated. In this instance digital tech­
niques can often be introduced into the analog computer to advantage. 

d. In addition, digital techniques can often be advantageously intro­
duced into analog computers for the purpose of automatically controlling 
large analog computing installations. Complete problem setups can be 
stored on punched tapes or cards and patch panels so that by feeding 
the punched tapes or cards into the digital tape or card reader complete 
problems can be automatically set up on the analog computer. Time 
can be saved, errors can be more readily detected, more reliable opera­
tion can be achieved, and more efficient use can be made of the analog 
computer. 

Definitions. The mechanization of analog computer operational units 
can be based upon the employment of discrete variable representation 
rather than the usual continuous variable representation. The discrete 
representation employed can be in the form of digital numbers or variable 
pulse repetition rates. When digital number representation is employed 
the associated computer mechanization will be referred to as a digital 
differential analyzer or DDA. When variable pulse repetition rate rep­
resentation is employed the associated computer mechanization will be 
referred to as a digital operational computer. 

2. DIGITAL DIFFERENTIAL ANALYZER 

Method of Integration. A mechanical integrator establishes the 
relationship of eq. (1) between the x, y, and z shafts (see Chap. 27). 

(1) dz = ley dx. 

These shaft positions represent directly and on a continuous basis the 
variables x, y, and z and it follows that 

(2) z = le !ydx. 

If one considers finite increments and a discrete variable representation 
for the variables involved then, corresponding to eq. (1) is the equation 

(3) ~z = ley ~x, 

and if the increments are taken to be very small, the integral of eq. (2) 
may be approximated to a very high degree by a device which mechanizes 
the equation 

(4) 
n 

Zn = L: Yi ~Xi. 
i=O 

This is the approximation to the integral when rectangular integration 



DIGITAL TECHNIQUES IN ANALOG COMPUTATION 28-03 

as implied by eq. (3) is employed. A better approximation can be 
provided by more sophisticated integration techniques such as the trape­
zoidal integration equation 

(5) AZ = (y + Ay/2) AX. 

Basically, a DDA actuates eq. (4) for variables represented in a dis­
crete manner, and solves differential equations in a manner analogous 
to that outlined for the mechanical differential analyzer. 

Operational Integrators in a DDA. Each operational integrator unit 
in a DDA accepts as inpu.ts 6.x and 6.y, and provides a 6.z output. The 
integrator must contain at the start of the problem the initial value of 
y, and this value of y is continually kept up to date by the accumula­
tion of all subsequent 6.y's supplied to the integrator. The 6.z outputs 
may serve as inputs to other integrators in the computer and are also 
accumulated to provide a continual and up-to-date indication of the 
value for the variable z. All the numbers X, 6.x, y, 6.y, z, and 6.z are 
represented digitally in the computer on a binary, decimal, or other basis 
depending on such considerations as ease of circuit mechanization, pro­
gramming convenience, etc. 

I1z=y/1x 

llz 

l1y 

y (integrand) 

FIG. 1. Symbol for integrating unit of DDA. 

Integrator Schematic. Schematically an integrating unit of a DDA 
may be represented externally as shown in Fig. 1. Inter,nally an inte­
grating unit of a DDA may be represented as shown in Fig. 2. The y 
integrand register contains the value for y at the start of the problem 
and accumulates the incoming values of 6.y in order to keep the value of 
y up to date. The contents of the y register are multiplied by !l.x and 
added periodically to the R accumulator register. The overflow from 
the R register is 6.z. The R register contains the digits of lowest sig­
nificance of the variable z with the digits of highest significance held in 
the register which is supplied by 6.z. There may be multiple 6. inputs to 
the integrand register. 

Solution of Differential Equation. The integrators of a DDA may 
be interconnected to solve differential equations in much the same manner 



28-04 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

as integrators of d-c analog computers or mechanical integrators of 
electromechanical analog computers. Thus in this procedure, the highest 
order derivative is isolated in terms of all other variables. Itsexistence 
as an integrand is assumed, and it is integrated repeatedly to provide all 
lower order derivatives. The feedback path is ,'closed to the highest order 
derivative by combining all lower order terms according to the conditions 
of the differential equations. 

R register (accumulation) 

tlZ 

y register (integrand) 

FIG. 2. Internal configuration of an integrating unit of a DDA. 

EXAMPLE. Consider the differential equation 

d2y dy 
----2y=x 
dx2 dx 

(6) 

according to the above procedure and rewrite eq. (6) as 

(7) 
d2y dy 
-=-+2y+x. 
dx2 dx 

fly 

The solution to this equation is shown in Fig. 3 and integrator 1 has the 
output d (dy/ dx). This output serves as the input to the integrand regis­
ter of integrator 2. The output of integrator 2 then is summed with the 
other inputs to the integrand register of integrator 1 to generate the inte­
grand d2 y/ dx2 • The output of integrator 2 also goes to the integrand reg­
ister of integrator 3 where the variable y is accumulated and is thus always 
available. The independent variable x may be generated as part of some 
other set of equations being solved in the computer, or it may be gen­
erated at a regular computer-timed rate. 

Scaling Problem. In placing a problem on the DDA, variables must 
be scaled to fit the numerical range of the machine. Once the scaling 
relations are established it is possible to determine the initial value of 



DIGITAL TECHNIQUES IN ANALOG COMPUTATION 28-05 

every integrand arid to express these integrands in terms of machine 
values. Some of the points to be considered in scaling a problem for 
a DDA are analogous to those to be considered in an analog computer 

Integrator 1 

Integrator 2 

dy 
dx 

Integrator 3 

4y 

~--dx 

~--od(~) 

>-----il---o 2dy = d(2y) 

FIG. 3. Computer solution for the equation: 
d2y dy 
- - - - 2y = x. 
dx 2 dx 

which employs continuous variable representation. The important 
factors in scaling a problem for the DDA are: 

1. All quantities are represented as integers. 
2. The output relationship for an integrator is dz = y dx. 
3. Scaling is done· in terms of powers of the radix r of the DDA 

number representation. Thus for binary number representation r = z, 
and the scaling is done in terms of powers of two. 

4. Associated with each variable u there exists an integer scale factor 
Su having the significance that the number r,su represents one unit of the 
quanti~y to the machine. "" " 

5. Associated with each integrand there exists a quantity m having 
the property that rm > maximum absolute value of the integrand, where 
m is the smallest integer satisfying this property. 

6. In" general, one of two incompatible criteria, precision or time, is 
used to fix the scaling. Some particular variable may be required to be 



28-06 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

of a certain precision, and thus fix its scale and establish all others. 
Alternatively, the length of computing time for a solution may be speci­
fied; and thus fix the scale on the independent, or driving variable of the 
problem. An increase of one in the scale of the independent variable 
causes the computer to execute r times as many operations (r is the 
radix of number representation), each of which is of fixed time duration. 
Hence, increased accuracy is obtained at the expense of increased com­
puting time, and decreased computing time is obtained at the expense 
of decreased accuracy. 

7. Once a choice has been made eq. (12) below may be applied to 
define the length of each integrator. 

8. In the final analysis, the scaling of a problem is completely deter­
mined by the integrator lengths. A correctly scaled problem may be 
stepped up in accuracy or in speed of computation by readjusting all 
integrator lengths by the same amount. 

Scaling Relation for an Integrator. The ~z output of an integrator 
represents the spillover, from the least significant digits which are con­
tained in the R register; Thus if the Rand Y (integrand) registers are 
both N digits long, where ,the digits are expressed in the radix r, then 
it follows that 

(8) 
1 

Az = -yAx 
rN 

for an integrator. Now letting Sz equal the scale factor of the ~z output, 
Sy equal scale factor of ~y input, and Sa; equal the scale factor of ~x 
input, the relationship realized will be 

(9) 

or 

(10) 

To meet' the condition that Az = y Ax requires that 

(11)' 

or 

(12) 

Equation (12) is a basic scaling relation and establishes a relationship 
among the number of digits in the Rand Y registers, the scale factors 
on the variables of integration, and the scale factor on the output variable. 

The Y register must be capable of holding the integrand y of the 
integrator at all times during the computat:on. Thus for each unit of 



DIGITAL TECHNIQUES IN ANALOG COMPUTATION 28-07 

the integrand y, the Y register will have to hold the number rSY. More':' 
over, the integrand may be almost as large as rln units at some time 
during the computation. Therefore, the total capacity of the Y register 
of any integrator must be capable of holding a number as large as 
rmrSy or rm+Sy. Hence, since the Y register is N digits long, it follows 
that 

(13) 

which says that the number of digits required for an integrator is equal 
to the scale factor of the integrand plus the quantity m. If 1n is not 
correctly known, or estimated, the capacity of the Y register may be 
exceeded. In this case the problem will be automatically halted (by an 
overflow signal) and must then be rescaled. 

Equations (12) and (13) may be combined to yield a very useful, 
though not independent equation as follows: 

From eq. (12) 

(14) 

From eq. (13) 

(15) Sy ~ N - m. 

Therefore, 

(16) Sz + N - Sx ~ N - m, 

or 

(17) 

or 

(18) 

Scaling Relations between Integrators. Equations (12), (13), and 
(18) define the relations necessary for the scaling of any single integrator, 
but they say nothing about scaling relations between integrators. These 
are simple and straightforward. To achieve compatible operation all 
integrators must accept a variable at a common scale factor. Violating 
this rule results in multiplication by powers of the radix, which may be 
useful at times. 

Any set of scale factors satisfying eqs. (11) and (12) and meeting 
the compatibility requirement may be successfully used. The following 
procedure leads to a simple solution of the scaling problem. 

Draw a schematic of the integrator interconnection as was done, for 
example, in Fig. 3. For each integrator enter scale factors and integrator 



28-08 D.ESIGN AND APPLICATION· OF ANALOG COMPUTERS 

length as indicated in Fig.' 4,' with Ni the length of accumulator· and 
integrand registers of the ith integrator. 

Now, let 8 1 be the output (dz) scale factor for integrator 1. Enter 8 1 

as the scale factor for the accumulator or integrand inputs for each 
integrator where the output of integrator 1 is used as an input. Let 
8 2 be the output scale of integrator 2 and repeat the operation. Proceed 
in this manner until all scales are established. Note that if more than 
one integrator output is used as the integrand input to an integrator, 

Integrator i 

~-- inDDA 
---

Sy ~ 
~--------~~---

}~~h:~~~~~~ 
FIG. 4. Integrator marked for scaling purposes. 

all such outputs must have a common scale. This process assures 
compatibility of all scale factors. 

For each integrator write eq. (18). This yields a set of simultaneous 
inequalities of the form 8 i - 8 j > mk which must be satisfied. 

Magnetic Drum Registers. Thus far in the description, the registers 
have been depicted as being physically laid out as such. Actually, in the 
case of binary addition or subtraction, for example, the steps can be 
performed one column at a time, and it is therefore not necessary to 
have entire registers present in the electronic circuits of the DDA at 
one time. Thus in the DDA the integrator registers need be nothing 
more than segments on a magnetic drum (see Chap. 19) or bits in an 
acoustic or lumped parameter electrical delay line. The integrators can 
be processed either serially or in parallel. 

For serial processing, numbers or areas from these registers are read 
one column at a time into the adding circuits and the altered numbers 
are replaced on the drum. or in the delay lines. The integrators are 
processed serially or in parallel once per revolution of the drum or in 
each circulation through the delay line. 

Mechanization of a Serial DDA. Consideration will now be given 
to some of the mechanization details for a DDA which processes the 
integrators serially. Mechanization details for an all parallel DDA 
follow in like manner except that the integrators are processed in parallel. 
For the serial DDA one track of the magnetic drum storage must be 
reserved to contain serially the integrand or Y registers for each of the 



DIGITAL TECHNIQUES IN ANALOG COMPUTATION 28-09 

integrators. Similarly, one track must be reserved to contain serially 
the R registers of each integrator. There is also one "hookup track," 
labeled the L track, which contains serial registers, one for each inte­
grator, and provides the necessary information to interconnect the 
outputs and inputs of each integrator. The L track operates in con­
junction with an additional track referred to as the ~z track to supply 
the ~y and ~x inputs to each of the integrators. Thus as each ~z is 
generated in the DDA it is deposited on the ~z track in a space reserved 

Gate 2 

Write Read 
heads heads 

• LlZ LlZ 
L Magnetic 

Gate 3 
L R drum 

and R storage y 
y 

C 
Llz 

Gate 1 

FIG. 5. DDA schematic. 

for the ~z output of the particular integrator. Hence as indicated in 
Fig. 3, this ~z output can serve as a ~y input for approprIate integrators 
in the problem under consideration. Thus typically as in Fig. 3, when 
integrator 1 is processed, it can generate a ~z output. This ~z output 
is placed in a space reserved in the ~z track for integrator 1. As a 
result of the equation involved, during the processing of integrator 2 its 
~y input is obtained from the ~z output of integrator 1. The L, or 
problem hookup, track is coded so that it inspects the ~Z track only in 
the space at which this ~z is placed, and upon detecting a ~z in this 
space sends it to the y register of integrator 2 as a ~y input. This 
process is then readily generalized for more complicated problem hookups. 

DDA Processing Schematic. Schematically the DDA may be 
depicted as shown in Fig. 5. In the box labeled storage, on the right­
hand side, are depicted the read head outputs (see Chap: 19) of the 



28-10 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

various DDA tracks. The lowest track labeled C is the clock pulse 
track. The function of this track is to supply pulses for timing and 
pulse reshaping purposes. The output of the Y track, which contains 
the integrand register contents in serial for the various integrators of the 
DDA, goes two places. (a) First it goes to block 1, which combines it 
with AX in order to produce y AX, which in turn is added to the R 
register, as pointed out earlier. (b) It also goes to the y + ~ Ay adder, 
where it is combined with the sum of the incremental inputs from the 
other integrator outputs which are to supply the integrand currently 
being processed. Thus in Fig. 3, for example, the integrand of inte­
grator 1 picks up incremental inputs from three sources. The sum of 
incremental inputs from such sources is represented as ~ Ay. The output 
of . the y + ~ Ay adder then goes back to the Y track of the drum to 
bri,ng ;the contents of the Y integrand register up to date. 

The output of the R track goes directly to the R + y AX adder. This 
adder produces two results, an overflow pulse which is placed in an 
appropriate place on the AZ track and an updated value for R which 
is placed in the R track and which thus replaces the previous value of 
R for the integrator being processed. 

The output of the L track goes to three places. (a) It goes first to 
a ~ Ay coincidence block. The function of this block is to examine the 
L track which has been coded at the outset of the problem according to 
the problem being solved. Pulses placed in the L track for each inte­
grator register cause the AZ track to be examined at the spaces reserved 
for the appropriate AZ outputs through the action of the coincidence 
block. Thus the increment in y is determined by computing ~ Ay in the 
coincidence circuit. The output of the coincidence circuit then goes to 
the y + ~ Ay adder to form the updated value for y. (b) The L 
track also goes to block 2, which is a coincidence circuit for producing 
AX. That is, the L track is also coded at the outset of the problem to 
pick up the required AX for each integrator of the problem. (c) The 
L track also goes back to the input of the L track to be replaced 
without change since the coding stays fixed throughout the problem. 

The AZ track also goes three places. (a) It goes to the ~.6.y coinci­
dence block and (b) to block 2 to combine with the L track at both 
of these blocks with the results described above. (c) It also goes back 
to the input of the AZ track after combining at block 3 with the AZ 

output of the integrator just processed. 
Handling Positive and Negative Increments. There are several al­

ternatives for transferring positive and negative information in the DDA. 
The first of these involves a two-level or binary transfer scheme. In this 
scheme positive incremental rates are represented by a predominance of 



DIGITAL TECHNIQUES IN ANALOG COMPUTATION 28-11 

1'8 transmitted, negative incremental rates are represented bya pre­
dominance of zeros transmitted, and zero incremental rates are repre­
sented by alternate l's and O's. It is readily possible to mechanize a 
DDA using this information transferral scheme (Ref. 1). 

A second alternative involves the use of a three-level or ternary 
transfer scheme. Here information is transmitted directly as + 1, 0, 
or -1. This scheme is more accurate than the binary transfer scheme 
in that it has less inherent roundoff error, but requires more equipment 
to realize (Ref. 2). 

Selection of Method of Mechanization. It is possible to mechanize 
DDA's by using rectangular, trapezoidal, or other integration tech­
niques. The more sophisticated technique will, in general, produce a 
more accurate computation, but it will, in general, also require more 
equipment to mechanize. 

The choice of integration technique and information transfer scheme 
for a DDA intended to solve specific classes of problems is based on 
such considerations as accuracy requirements consistent' with reasonable 
equipment demands. For a DDA intended for general problem usage 
where accuracy and frequency requirements may be specified to cover 
a broad spectrum, it is often felt essential to consider the construction 
of the DDA to employ ternary transfer and trapezoidal integration. 
However, special purpose DDA's intended for problems with modest 
requirements may make it possible to employ a simpler DDA con­
figuration. 

The integration technique and information transfer schemes required 
of a DDA to handle any particular class of problems may be determined 
to a good degree of approximation by analytical means (Refs. 3, 4, and 5) 
whose results can be verified by suitable simulation studies (Ref. 6). 

3. DIGITAL OPERATIONAL COMPUTERS 

Approach. An analog computer can employ discrete variable repre­
sentation for information transfer through the use of a variable pulse 
repetition frequency. Thus to establish the feasibility of such a mech­
anization it is merely necessary to establish the configuration of suitable 
operational units such as multipliers, dividers, and integrators. Once 
these units have been described, it is then a straightforward step to 
realize that such an approach can be suitably employed to solve differ­
ential equations by properly interconnecting the units as was done, for 
example, to solve the problem shown in Fig. 3. For more details of 
operational digital techniques see Chap. 29. 

Multiplier. For configuration of a multiplier for a system employing 
this data representation technique may be established by considering the 



28-12 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

simplified situation depicted in Fig. 6. The blocks labeled 1 through 4 
are the ~tages of a binary counter. Thus if a chain of pulses whose rate 
of occurrence is proportional to the number x is supplied at the left hand 
of the counter, the and gate (see Chap. 14) on the first line of the multi­
plier receives from the first stage of the binary counter a pulse rate of 
x/2, and so on for the succeeding stages of the binary counter. The 
contents of the y register then determine which of these sequences of 

x--~ 

y 

==t>-- and gate 

=E>-0rgate 

x 
16 

FIG. 6. A digital operational multiplier. 

pulses are passed on to be added through the or gate (see Chap. 14) 
shown at the right of the multiplier. The output of the or gate then is 
the desired product. Thus if y is zero and the contents of the y register 
consists of all zeros, all the and gates will prohibit the scaled down x 
pulse rates from passing through to the or gate. Thus the output 
product will be zero as it should. Similarly, if y is at its maximum 
value, the maximum number of pulses will be passed on to the output 
of the multiplier, and the output pulse rate will again be proportional 
to the product xy. 

The pulses from the various and gates must be separate from one 
another, otherwise when these pulses litre combined at the output of the 
or -gate any overlap would result in a loss of information. This overlap 
is avoided in a straightforward manner by taking the pulses out of the 
binary counter into the and gate at the noncarry time of the respective 
stages of the counter. Thus when the pulses are combined at the output 



DIGITAL TECHNIQUES IN ANALOG COMPUTATION 28-13 

of the or gates, they are separate and distinct, and the resultant pulse 
train output is indeed proportional to the product xy. 

Divider. Now that a multiplier configuration has been established 
a mechanization for a divider follows readily. Thus in Fig. 7 the three 
multipliers combined with a forward backward counter, i.e., a counter 
which counts up or down depending upon the inputs to F (forward) or 
B (backward), result in a circuit which produces the quotient in the 
forward backward counter. The schematic shown in Fig. 7 has one 

. feedback loop involving z. The P input is a pulse rate, and the numbers 
x and yare held in the indicated registers. The forward backward 

p 

B 

Forward-backward 
counter z register 

FIG. 7. A digital operational divider. 

p 

counter will count forward or backward, adjusting z until the counter 
input Px - Pyz is equal to zero. At that time the quantity z held in 
the forward backward counter is related to x and y by 

(19) 

or 

(20) 

Px - Pyz = 0, 

x 
z=­ , 

y 

and z is the desired quotient. 
Divider Time Constant. A transient analysis may be made of this 

divider. Thus if there are n stages in the X, Y, and Z registers, from an 
examination of Fig. 7 there follows 

(21) i t XP it YPZ(t) 
Z (t) = - dt - dt. 

o 2n 0 2n 



28-14 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

By differentiating this there follows 

(22) 

Solving this equation for the initial conditions at t = 0, Z (t) = Z (0) gives 

(23) Z (t) = ~ {I - [1 - Z (0)] e- (YP/2n) t}. 

Thus the equivalent time constant of an operational divider is given 
as 2n/YP. The equivalent time constant can be reduced by increasing 
the pulse repetition rate P or by decreasing n, the number of stages. 

Integration. The process of integration by this representation tech­
nique may be mechanized by simply accumulating all incoming pulses 
in a forward backward counter such as that used in Fig. 7. As a positive 
pulse rate is supplied to the F input of a forward backward counter, its 
contents increase. Negative pulse rates are supplied to the B input and 
the counter's contents decrease. 

Reasons for Using Discrete Variable Representation 

There are several reasons for considering the use of this approach in 
computing. 

1. A serial DDA where only one set of adders and other computing 
functions are required may lead to a simpler computing equipment when 
the dynamic and accuracy demands of the equations being solved are 
modest. 

2. In real time simulation or control where high accuracy require­
ments must be met and/or where high dynamic requirements exist, the 
best solution to the computing problem may well be provided by the 
use of all parallel DDA elements either throughout the computing system 
or else at critical positions in the system. For example, an all parallel 
DDA employing registers 30 binary digits in length, a basic pulse repeti­
tion frequency of one megacycle, trapezoidal integration, and ternary 
transfer provides an accurate computing facility with good dynamic 
properties as evidenced by the fact that its precision is one part in 
better than 1,000,000,000, and its integration interval is 30 microseconds, 
i.e., it provides better than 30,000 quadratures a second. 

Choice of Computing Method. Thus, for example, as one approach 
to choosing between the computing methods, a comparison between the 
true characteristic frequencies of a linearized set of system equations may 
serve to provide sufficient data to select between the methods, particu­
larly so if one of them shows up very badly in the comparison. N on­
linear systems can often be linearized in the Liapounoff sense (Ref. 10) 
for such analyses to a very good degree of approximation over a consid-



DIGITAL TECHNIQUES IN ANALOG COMPUTATION 28-15 

erable region. Consider for example, the very good degrees of approxi­
mation afforded by linearizing the generally nonlinear equations of 
motion of aircraft over certain ranges of the dependent variables. Tech­
niques for determining the difference between the true characteristic 
frequencies of a system and those computed by an analog computer 
employing continuous variable representation have been presented in the 
literature (Refs. 8 and 9). Similar techniques for ar:alog computers 
employing discrete variable representation have also been presented 
(Ref. 3). If the system equations are nonlinear to the extent that this 
approach is not held to be valid or if complete verification is desired 
before embarking on an extensive computer design and construction 
program, full scale system simulation must ultimately be employed 
(Ref. 6). 

Summary. The reasons for using discrete variable representation 
in an analog computer include possible equipment reductions or/and 
better accuracy and dynamic performance. 

4. AUXILIARY DIGITAL COMPUTING TECHNIQUES 

It is often possible and desirable to incorporate auxiliary digital 
computing elements in an analog computer. Thus function generation 
may be conveniently carried out in this manner particularly when func­
tions of several variables are involved. Also in certain control systems 
it is often necessary or desirable to be able to multiply an analog variable 
directly by a digitally represented variable to produce a product in 
analog form. By avoiding the conversion of the digital variable to an 
analog variable through the use of a digital to analog converter and then 
applying the result to a conventional analog multiplier an overall 
system which is simpler and generally more accurate results. 

Digital Function Generation in Analog Computers (Ref. 11). It is 
possible to generate functions of analog variables by converting the 
analog variable to a digital number through an analog to digital 
converter. The digital number then may go to a small auxiliary mag­
netic drum and associated circuitry which is programmed to generate the 
desired function. Arbitrary functions of several variables can also be 
generated in this same manner. If it is then desired to multiply the 
desired function directly' by another variable in the computer as is so 
often the case, it is not necessary to convert the digitally evaluated 
function back to analog form. Instead, the quantity can be fed directly 
to the digital analog multiplier described below. 

Function generation can also be accomplished by means of a digital 
function table as shown in Fig. 8. Thus values of x over the expected 
range of x, in suitable increments are stored in parallel in the x space 



28-16 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

of the drum. This space is examined by the read heads and converted 
to an analog quantity by the digital to analog converter shown in the 
figure. This converted quantity is compared with the variable x for 
which an arbitrary function is desired. When coincidence occurs the 
read heads associated with the function table, stored on the drum and 
shown as f (x), are gated, and the digits passing under them are read 

Digital analog 
converter 

x--------l~ 

Coincidence 
detector 

FIG. 8. Digital function table. 

Output 
Yf(x) 

through the gate shown into the register. The register contents then 
may go to a digital analog multiplier, as shown, to generate the quantity 
yf(x). Although only one arbitrary function was shown generated in 
Fig. 8, it is evident that this same technique can be extended to the 
instance where several different arbitrary functions of any arbitrary 
variable can likewise be generated. 

Digital Analog Multiplier (Ref. 11). It was shown in Chap. 22 that 
for an operational amplifier the output voltage is equal to the input 
voltage multiplied by the ratio of the output impedance to the input 
impedance. Thus if this impedance ratio can be directly related to one 



DIGITAL TECHNIQUES IN ANALOG COMPUTATION 28-17 

variable and the input voltage is another variable, the output voltage 
is proportional to the product of the two variables. This concept then 
leads to the simple digital analog multiplier shown in Fig. 9, wherein 

Analog 
inpu-t x-"--~---I 

L-..r--I 
Digital 
inputs 

y 

e = xy Sign ± e = ± xy 
>----L--:~_I switching 

circuit 

=B- orgate 

FIG. 9. Digital analog multiplier. 

the parallel conductances of the input conductance are switched into or 
out of the circuit according to the variable. The sign digit of the digital 
variable can be used for switching purposes at the output in order to 
produce a four-quadrant multiplier. 

5. AUXILIARY DIGITAL CONTROL TECHNIQUES (Refs. 12 and 13) 

Digital techniques can also be advantageously employed for control 
purposes in an analog computer. These techniques are of particular 
advantage in large scale installations. Thus entire problems can be 
placed on punched tapes or cards operating in conjunction with patch 
panels. Thus the tapes or cards can control the settings of coefficient 
potentiometers, condensers, initial conditions, etc., through the use of 
associated suitable switching circuitry operating in conjunction with 
servomechanisms coupled to the proper points at the proper time in the 
computer through suitable clutching arrangements. The patch panel 
would contain the information to interconnect the proper amplifiers, 
potentiometers, etc. 



28-18 DESIGN AND APPLICATION OF ANALOG COMPUTERS 

Advantages. Problems can be readily checked since at any desired 
time the interconnections and all settings can also be arranged to be 
printed out in some suitable form. 

Problems can be rapidly placed on the machine and removed if need 
be temporarily with the full realization that the problems can again 
be rapidly placed on the computer. 

More efficient use can be made of extensive facilities. 

REFERENCES 

1. L Reed, Fundamental concepts of the DDA, Mathematical Tables and Other 
Aids to Computation, 6, 41-49 (1952). 

2. M. Poalalevsky, The design of the Bendix DDA, Proc. I.R.E., 41, 1352-1356 
(1953). 

3. H. J. Gray, Numerical methods in digital real time simulation, Quart. Appl. 
Math., 12, 133-140 (1954). 

4. K. Miller and F. J. Murray, A mathematical basis for an error analysis of 
differential analyzers, J. Math. and Phys., 32, 136-163 (1953). 

5. H. Rademacher, On the accumulation of errors in integration, Ann. Computation 
Lab. Harvard Univ., 16 (1948). 

6. F. Wright Jr., Dynamic System Studies. Pt. 13. Error Studies, WADC Tech. 
Rept. 54-250, September 1956. 

7. L. P. Meissner, Real-time digital differential analyzer (DART), Proc. 1954 West. 
Jt. Compo Con/., 134-139, Los Angeles, Calif., February 1954. 

8. A. B. MacNee, Some limitations on accuracy of electronic differential analyzers, 
Proc. I.R.E., 40, 303-308 (1952). 

9. E. Goldberg and G. Brown, An electronic simultaneous equation solver, J. Appl. 
Phys., 19, 339-345 (1948). 

10. N. Minorsky, Introduction to Nonlinear Mechanics, Edwards Bros., Ann Arbor, 
Mich., 1947. 

11. Digital techniques in analog computers, Proc. West. Jt. Compo Con/., 60--63, 
San Francisco, Calif., February 1956. 

12. An automatically controlled large scale Geda computing and simulation 
installation, GER-7808, Goodyear Aircraft, Akron, 0., August 1956. 

13. Operating Manual EASE 1200 Series Analog Computer, Beckman Instruments, 
Palo Alto, Calif., 1957. 

14. J. M. Mitchell and S. Ruhman, The THRICE-a high speed incremental 
computer, 1958 LR.E. Convention Record, Pt. 4, 206-216. 



UNUSUAL COMPUTER SYSTEMS 

F. UNUSUAL COMPUTER SYSTEMS 

29. Operational Digital Techniques, by Bernard M. Gordon and 
John F. La Fontaine 

30. Combined Analog-Digital Computing Systems, by George P. West 
31. Simple Turing Type Computers, by Joseph O. Campeau 





F UNUSUAL COMPUTER SYSTEMS Chapter 29 

Operational Digital Techniques 

Bernard M. Gordon and John F. La Fontaine 

I. Introduction 

2. Basic Devices 

3. Applications of Operational Digital Techniques 

4. Incremental Computation 

References 

29-01 

29-05 

29-14 

29-17 

29-29 

I. INTRODUCTION 

Operational digital techniques describe an approach to computation 
that attempts to combine the advantages of both the analog and the pro­
grammed digital methods of computation. These combined techniques 
effect what is called a hybrid system. They do not always provide 
the best solution to a computation problem, and their useful application 
is generally economically possible only when especially developed novel 
components are used. 

Characteristics of Hybrid Systems. Essentially, in the hybrid sys­
tem, digital techniques are used in functional units that are laid out in 
operational form. Objectives of the hybrid system are: 

1. Greater precision that can be attained with analog techniques and 
at lower cost. 

2. Greater control and speed than is possible with programmed digital 
units. 

3. Less complexity than is involved when programmed digital units 
alone are used. 

29-01 



29-02 UNUSUAL COMPUTER SYSTEMS 

4. The ability to accept input data in the analog form, in which they 
usually occur. These data are translated into the digital language of 
human beings and with as little recourse as possible to accuracy limiting 
analog components. 

A consideration of operational analog systems and of programmed 
digital systems indicates the advantages and disadvantages of each type. 

Analog Systems. In analog systems, the variables to be represented 
or controlled are physically characterized by parameters which may vary 
over a limited range. A varying voltage, for example, may be propor­
tional to, and thus represent, a varying parameter. Other examples are: 
signal frequencies, mechanical shaft positions, and light intensities. 

Advantages 

1. The analog system is essentially a visual working model of the 
parameters being controlled or measured. The design of a given system 
is reduced to the interconnection of components in a straightforward 
"operational" manner. Functional units (gears, potentiometers, and 
synchros), each performing a specific function, are arranged so that the 
overall transfer function has the desired properties. Example. An analog 
system for multiplying an input quantity by three would consist of gears 
arranged so that three turns of an output shaft occurred for every single 
turn of the input shaft. 

2. The real time characteristic of analog operational techniques is also 
an advantage. By real time is meant simply that the analog process 
occurs during the same time as does the variation of the parameters it 
represents. This continuous, as it may be called, nature of analog oper­
ational techniques makes them especially applicable for closed loop sys­
tems. Particularly when the control function is complex, the operational 
system may respond faster than is sometimes possible with the periodic 
sampling operation of programmed digital systems. 

Disadvantages 

1. In terms of accuracy and ultimate reliability, the analog system is 
limited by the precision of the components composing it. 

2. Economics often impose restrictions on the precision of an analog 
system. There is a practical consideration here, namely how much time 
and money should be put into developing ultra-precision components 
for a particular analog system? 

3. In practice, the accuracies of practical complex analog systems are 
limited to one part in a thousand. 

4. Some operations such as multiplication may be slow. 



OPERATIONAL DIGITAL TECHNIQUES 29-03 

Swnnwry. The analog approach has the advantages of high speed 
and real time operation. It is limited in precision, however; and it is 
also limited in its ability to perform those operations that are not readily 
representable in analog form, namely certain nonlinear mathematical 
functions. 

Digital Systems. The programmed digital technique is quite different 
from the operational analog technique. Data are not processed in a 
form analogous to the input information, but rather in the discrete form 
of a series or set of characters, i.e., information in language form. 

Advantages 

1. The components in a digital system can vary and drift and be off 
tolerance considerably before they cease being dependable functional 
units. (See Chap. 12.) Such extreme component tolerances are never 
possible in the analog system. 

2. Any degree of accuracy can be obtained and maintained if a suffi­
cient number of characters are used in the language code of the system. 
In straight binary code, for example, accuracies on the order of one part 
in 1000 can be obtained if 10 decision elements are used, or one part in 
2000 if 11 decision elements are used. 

3. The digital computer is flexible enough to perform any type of 
mathematical operation. 

Disadvantages 

1. Since the processing is carried out by means of an ordered program, 
the digital machine must be complex and must contain an internal stor­
age to provide storage of data and commands. The computer and storage 
are both large and costly. 

2. In the digital computer the input quantity must be periodically 
sampled in order for the machine to determine if a change has taken 
place. Example. Consider the same example given above, that is, mul­
tiplying an input quantity by three. For the digital machine to execute 
this simple function it is necessary for the input data to be transferred 
to the internal storage. The data are then transferred to the arithmetic 
element where each digit is multiplied by three in accordance with the 
program previously inserted in the machine, and then the result of this 
multiplication is returned to the storage and finally transferred to the 
output. 

3. These operations-sampling, transferring to storage, operating as 
programmed, transferring to storage, generating control 'data, etc.-take 
time. Consequently, in a digital computer the rate of sampling must 
be limited, and thus information sacrificed, or the computer must operate 



29-04 UNUSUAL COMPUTER SYSTEMS 

at extremely high speeds; or a combination of these adjustments must 
exist. 

Summary. The digital computer techniques have the advantages of 
reliability and versatility; these advantages are offset by complexity 
and expensiveness. But if the problem to be solved or the measurement 
required demands that minimum time elapse between receipt of the input 
information and the computed response, much of the utility of the digital 
type of instrumentation is negated. 

Hybrid or Operational Digital Systems. The purpose of the hybrid 
system, therefore, is to combine the advantages noted above for each of 
the two types of conventional computer, while at the same time obviating 
the disadvantages. 

It is often assumed that because the physical world is a continuously 
moving analog system, only analog techniques are applicable to it. A 
closer look at nature, however, reveals that there are many physical 
phenomena that are basically discrete. To name a few, the breakdown 
of nuclear energy, the passing of time intervals, and the occurrence of 
resonant cyclic vibrations occur incrementally. 

EXAMPLE. The application of operational digital techniques to the 
doppler phenomenon as the basis for the analysis of motion is a good 
example. It is known that when energy of a specific frequency is re­
flected from a moving object, the returned energy undergoes an apparent 
frequency shift, the doppler shift. This change, or doppler frequency, 
is proportional to the velocity of the object under observation, and there­
fore it can be used as a source of data in velocity measuring, tracking, 
and navigational systems. In analog systems this doppler information 
is converted to shaft rotation rate or proportional voltage. A closer 
investigation of the doppler relation indicates that each cycle of the 
received data can indicate a definite distance traveled by the 'object 
causing the frequency shift. The doppler relation is of the form 

v 
f d = k - f = k}..v, 

c 

where fd = doppler frequency, 
v = velocity to be measured, 
f = transmitted frequency, 
c = propagation velocity, 
k = a constant, 
}.. = transmitted wavelength. 

Since f d (cycles per second) is proportional to v (distance per second), 
by removing time from the relationship, each cycle of the received data 
represents a definite distance traveled. To integrate, it is necessary only 



OPERATIONAL DIGITAL TECHNIQUES 29-05 

to count the number of cycles received. No conversions are required. 
Limitations on accuracy are (1) the wavelength of transmission and (2) 
the number of digits that can be held in the counting device. 

Note the following: 
1. The doppler information is an analog of the moving object, hence, 

the system receiving and using this information is in a sense an analog 
system. 

2. The measurement is made in real time. 
3. A discrete meaning is applied to each cycle of the received energy, 

hence, the information is digitally characterized. 
4. The combination is a hybrid system. 
In this hybrid system: 
a. The measurement is operational, that is, it is accomplished in real 

time; the received data are proportional to the parameter being measured. 
b. As a digital system, the received data are in language form, and the 

degrees of accuracy realizable with the digital technique are therefore 
possible. A characteristic name for such a technique, therefore, is 
operational digital. 

2. BASIC DEVICES 

Data representation within operational digital systems takes the form 
of both unitary-weighted pulse trains and binary codes. Pulses which 
form a unitary-weighted pulse train each have the same numeric weight. 
Thus, 432 units are represented by a train of 432 pulses; 654 units are 
represented by a train of 654 pulses, etc. 

Binary Rate Multiplier 

Characteristics. 
1. This unit accepts a unitary pulse train as one input and a numeric, 

that is, binary, code as the other input. 
2. The output is a pulse train containing a number of pulses equal to 

the product of the number of input pulses (the multiplicand) and the 
numeric code (the multiplier). 

3. Each pulse of the output train has exactly the same unitary weight 
as those of the input train. 

Operation. A binary rate multiplier consists of binary scalers and 
diode gates. The scaler is a device that yields an output for every two 
inputs and is indicated by C 2 in figures. Thus, if several scalers are 
arranged in a series fashioned as in Fig. 1 and a pulse train applied to 
the input of the series: 

1. The first scaler will yield an output after two inputs. 



29-06 UNUSUAL COMPUTER SYSTEMS 

2. The second scaler will yield an output after two inputs from the 
first scaler, and therefore after four inputs to the series of scalers. 

3. The third scaler will, similarly, yield an output after two inputs 
from the second scaler, which means it will yield an output after eight 
inputs to the series of scalers. 

fay = X 

"'"'' 
Multiplicand -
(pulse train) 

al 

a2 

aa 

Multiplier a4 

y= f~ 
2 n 

1 a5 

an 0--------------------------; 
Multiplier y = O. al a2 aa ... an 

a's are binary numbers 
n n an 

Product = I an xn = XL -2n 1 2 1 

= xy 

C2 = binary scaler 

FIG. 1. Binary rate multiplier block diagram. 

Product 

4. The scaler outputs, therefore, during the interval in which input 
pulses arrive are: x/2, x/4, x/8, ... , x/2n , when n = number of scalers. 

5. This means that one-half of the total number of input pulses, during 
a certain interval, will occur at the output of the first scaler, one-quarter 
at the output of the second scaler, one-eighth at the output of the third, 
etc. Since the sum of all these fractions approaches one, as n becomes 
large, it is evident that the total number of scaler outputs will tend to 
equal the number of input pulses. 



OPERATIONAL DIGITAL TECHNIQUES 29-07 

The binary-weighted scaler outputs are applied to gates that are 
opened or closed according to the dictates of the binary-coded multiplier. 
vVhen a gate is opened, the output pulses of the associated scaler will be 
passed. The outputs of all gates are combined through a buffer to yield 
a train of pulses that are the product desired. The multiplier must be 
scaled to be a fraction less than unity. 

x Input 
(16 pulses) 

Scaler 
outputs 

:x 
"2 
:x 
4 
:x 
8 

:x 
16 

I I I • 

I I 

I I 

I 

I I I I • I • tLl 

I I I I I 

I I 

I 
I 

G 
-- --- -- --- r- - ,- -- ~. -I-

y input a2 
al,a3=1 
a2, a4 = 0 a3 --

xy product 
(10 selected pulses) 

I 

-- ---

I 

---- .- --- ,- --,---

! I I I I I ~ I 

x = 16 10 
Y = 0.625] decimal = 0.1010] binary = 16 ] decimal 

xy = 10 

FIG. 2. Binary rate multiplier timing diagram. 

ate 
Open 

Closed 

Open 

Closed 

EXAMPLE 1. Consider an input pulse train of 1000 pulses. If it is 
desired to multiply this input by zero, the binary numeric code for zero, 
0.0000 ... 0, sets all the gates closed, and thus none of the input pulses 
appears at the output, and the product is zero. If it were desired to 
multiply the input train by one, the binary code for one, 0.1111 ... 1, 
would open all the gates, and thus all the scaler outputs would be passed. 
For a more sophisticated example, assume that it were desired to multiply 
the 1000 pulses by 0.6250, the binary code for which would be 0.1010 ... 0 
(i.e., ~ + Ys). In this case, the gate associated with the first scaler 
would be opened, and the one associated with the third scaler would be 
opened. Since half of the pulses, or 500, would be passed by the first 
scaler, an one-eighth of the pulses, or 125, passed by the third scaler, 
the output train would consist of 625 pulses, which is the correct product 
for such multiplication. 



29-08 UNUSUAL COMPUTER SYSTEMS 

EXAMPLE 2. Figure 2 illustrates the input, gating, and output involved 
in multiplying x = 16 by y X 0.625. 

Accuracy. According to the number of scalers and gates used, namely 
the number of digits used in the binary code multiplier, any degree of 
accuracy can be achieved. For example, for an accuracy of one part 
in 2000, 11 gates would be required. 

Timing. In order that the output device receives pulses one at a 
time, which it must do if ·a unitary pulse train composed of the correct 
number of pulses is to be obtained, no two scaler outputs can occur at 
the same time. This prevention is accomplished by interconnecting the 
scalers so that the carry from one stage to another is out of phase with 
the output pulses. 

'--_______ ..L-_______ --1. ___ ~ Product 

Vc = operating voltage 
a1. a2. aa = binary digits of multiplier (0. al a2a3' 

FIG. 3. Magnetic core transistor multiplier block diagram. 

Magnetic Core Transistor Multiplier. Another operational digital 
device is the magnetic transistor multiplier. This unit consists of one 
magnetic square loop core and one current source per binary stage. Each 
stage operates as a combination gate, flip-flop, and blocking oscillator. 

Operation. The operation of the unit is as follows. (See Fig. 3.) 
1. Each collector drives current around both its related core and the 

succeeding core; each core then has two collector windings from successive 
stages. These windings are in opposing directions. 

2. As the successive stages are excited, the flux is caused to vary from 
the upper remanence point (arbitrarily called 1 state) to the lower 
remanence point (zero state). 



OPERATIONAL DIGITAL TECHNIQUES 29-09 

3. During a flux change, the polarity of a pulse developed in the lower 
winding of a given core will depend on the initial condition of that core. 

Consider any particular stage. vVhen a positive pulse is developed in 
the second winding, it is applied to the emitter of the next transistor. 
'''hether or not that transistor is excited depends on the polarity of the 
pulse simultaneously developed in its base winding. If that polarity is 
positive, the emitter-to-base voltage does not become positive, and no 
transistor action ensues. If the base pulse is negative, the combination 
transistor-magnetic circuit is caused to regenerate much in the manner 
of a blocking oscillator. Thus, each stage is caused to read out once for 
every two pulses received and a binary count is achieved. Note. This 
alternate reinforcement and cancellation action ensures that pulses never 
exist simultaneously on two or more output lines. 

and 

tl t2 

C2 = binary scaler 
S = synchronizer 

SR = shift register 
tv t2 = timing pulses 

FIG. 4. Dynamic rate multiplier block diagram. 

Dynamic Rate Multiplier 

Product 

Description. In the basic rate multiplier, as discussed above, the 
input pulses occur asynchronously, and consequently the gate signal 
inputs of the binary coded multiplier had to be present at all times. Thus, 
storage in static storage elements was necessary. An arrangement known 
as a dynamic rate multiplier (see Fig. 4) permits the binary multiplier 
coefficient to be stored in a circulating shift register, and once every major 
shifting cycle, the multiplier code is in the proper position relative to the 
gates. If the incoming pulses are synchronized to the shift pulses, proper 



29-10 UNUSUAL COMPUTER SYSTEMS 

gating action takes place. The advantage of this arrangement is that 
static storage is obviated and full use is made of magnetic switching 
elements basically suited for dynamic operation. 

Pulse Rates. In the dynamic rate multiplier, the rate of pulse occur­
rence determines the multiplication required for a given accuracy. For 
example, if 0.1 per cent accuracy is desired, time intervals for occurrence 
of at least 1000 pulses must be allowed. Such pulse rates are easily 
attained with present magnetic circuit techniques. 

Applications. The basic rate multiplier and its variations may be 
used to perform a series of rate multiplications in which the output of 
one multiplier is fed directly into another without need for intermediate 
storage. The units may also be incorporated into feedback systems to 
provide operational units whose transfer characteristics can be analyzed 
in terms of equivalent time constants in a manner analogous to propor­
tional servomechanisms. 

Adder 

S = synchronizer 
tl, t2 = timing pulses 

x+y 

FIG. 5. Adder block diagram. 

The addition of unitary-weighted pulse trains is simply performed, as 
indicated in Fig. 5. The pulse trains x and yare synchronized at pulse 
times tl and t2 , respectively, so that the pulses of each train occur out 
of phase with the pulses of the other train. The two out-of-phase scaler 
output trains are then combined, and the output pulse train is the sum 
of the two input trains. A simple adder could be designed using only 
two saturable core elements and two diodes. 

Subtractor 

The next diagram shows a device used to subtract one pulse train input 
x from another. Pulse train y is to be subtracted from pulse train x. 
A reversible binary counter, a forward-backward counter, is used, along 
with two binary scalers. The x pulse train is applied to the forward 
input of the counter and the y to the backward input. Thus, the count 



OPERATIONAL DIGITAL TECHNIQUES 29-11 

in the counter is, at all times, the difference between the two pulse trains. 
The difference x - y in the counter register may be used as the multi­
pliers input for a binary rate multiplier (BM) to produce the product 
fo (x - y) as shown in Fig. 6. 

x--~ r--------~F 
Forward-backward 

counter 
y--~ I--------~B 

Divider 

S = synchronizer 
tl, t2 = timing pulses 
BM = binary multiplier 

, I 

x-y 

fo~fo(X-Y) 
FIG. 6. Subtractor block diagram. 

With the basic devices of the binary rate multiplier and the reversible 
counter, an operational digital divider can be devised. The divider 
shown in Fig. 7 consists of three binary rate multipliers and one reversible 

x 

F Forward-backward 
t----o----~ counter 

r---~B 

y 

At equilibrium: to x = to yz, x = yz, z =.y 
BM = binary multiplier 

FIG. 7. Divider block diagram. 

to 

counter, connected as shown. Assume that it were desired to divide 
binary code x by binary code y. The x code is applied to a binary rate 
multiplier to generate a pulse train proportional to x. The y code is ap­
plied to a binary rate multiplier. The x pulse train is applied to the 



29-12 UNUSUAL COMPUTER SYSTEMS 

forward input of the counter and the y pulse train to the backward 
input. In the counter z is the desired quotient, i.e., z = x/yo The count 
z is applied to another binary rate multiplier to produce a pulse train 
proportional to z. This pulse train is multiplied by the y code input 
mentioned above, and the output of the binary rate multiplier is a pulse 
train proportional to the product of yz. This output is applied to the 
backward input of the counter. 

Since z = x/y can be written x = yz, due to the feedback loop, the 
counter will tend to reach equilibrium with as many pulses applied to 
the forward input as applied to the backward input. At equilibrium the 
contents in the counter z will therefore be the desired quotient. 

x 

#0 F Forward-backward 
t---~>----~ B counter 

...------¢y 

At equilibrium: y2fo = xfo, y2 = x, Y = vx. 
BM = binary multiplier 

FIG. 8. Square root unit block diagram. 

Square Root 

fo 

The ease with which algebraic and exponential relationships may be 
accommodated might best be illustrated by implementing a device to 
extract square roots with exactly the same circuit elements as just de­
scribed for an operational digital divider. Refer to Fig. 8. Whereas in 
the divider, the output of the counter is multiplied by a rate fo, and that 
product is multiplied again by an external function y, in the case of the 
square rooter, the output of the counter will be designated y, and applied 
simultaneously to the two subsequent binary rate multipliers. The output 
of the first multiplier is yf o. The second rate multiplier is that product 
multiplied by y, or y2fo. When this feedback is applied to the backward 
count, while xfo is applied to the forward count, equilibrium will be 
achieved in the counter when 

xfo = y2fo or y = Vx~ 



OPERATIONAL DIGITAL TECHNIQUES 29-13 

A comparison of Fig. 8 with Fig. 7 illustrating the divider will show 
that the circuit configuration is identical with the exception of one lead, 
used to set z = y. 

Variations. There are obvious variations to this setup. If, for ex­
ample, a unitary-weighted pulse train were to be divided by a binary 
code, only two binary rate multipliers would be required, for the pulse 
train could be applied directly to one of the inputs to the counter. If the 
problem involved two unitary-weighted pulse trains, only one binary 
rate multiplier would be required. In such a case, one pulse train would 
be applied directly to the forward input to the counter and the y pulse 
train would be multiplied by the count in the counter z, and the product 
applied to the backward input to the counter. 

!::.y--~ 

!::.Z 
For furlher 
integration 

~--Llx 

(From storage) 

(Llz = yLlx) 

FIG. 9. Digital differential analyzer block diagram. 

Differential Analyzer 

A description of the basic tools of operational digital techniques in 
hybrid operations would not be complete without reference to a familiar 
device, the digital differential analyzer (DDA). The DDA can be likened 
in many ways to an operational amplifier of the type commonly em­
ployed in analog computers, in that it can sum, integrate, and multiply. 
However, an analog operational amplifier can integrate only with respect 
to time. In the case of the DDA, the operational digital technique can 
be used to integrate some variable with respect to any other variable, 
clearly an important advantage in control or simulation applications. 

A typical DDA is all digital in operation, i.e., all information flow 
between integrators is in the form of pulse trains. In integrating y with 
respect to x as shown in Fig. 9, the procedure is as follows. A counter 



29-14 UNUSUAL COMPUTER SYSTEMS 

has the initial value of y preset into it. It is stepped by a unitary pulse 
train of D.y values. Associated with the counter is a serial adder which 
has a pulse input of D.X values. At the occurrence of a D.X pulse, the 
contents of the y counter is added to a second z counter, which puts O __ J 

overflow pulses, when filled, having the value D.z. The rate of the D.Z 

pulses is proportional to y and the rate of D.X pulses, such that D.Z = yD.x. 

If the D.Z pulse train is counted in another similar integrator, the result 
is a step-by-step rectangular area integration of y with respect to x. 

Machine commands (tape) 

Advance to 
next command 

Machine control 

~ 
function 

(motion power) 

Pickoff I 
I 

w~ ! 
L-_____ J 

BM* = binary multiplier and advance signal generator 

FIG. 10. Machine tool control diagram. 

3. APPLICATIONS OF OPERATIONAL DIGITAL TECHNIQUES 

Machine Tool Control 

A practical application for use of the operational digital devices can 
be derived from one of the variations described above. In this applica­
tion a machine tool, such as a milling machine or lathe, is to be auto­
matically controlled by means of programmed commands from a tape 
mechanism. The device involves two unitary-weighted pulse trains, 
requiring but one rate multiplier and one forward-backward counter as 
shown in Fig. 10. The programmed commands D.X from the tape mech-



OPERATIONAL DIGITAL TECHNIQUES 29-15 

anism are fed to a binary rate multiplier via a command register. A fixed 
rate input, /0, is applied to the other input of the rate multiplier. The 
commands from the tape mechanism modify the fixed pulse rate so that 
the output of the multiplier is a train of pulses, AX/o, proportional in 
number to the command increment. This pulse train is applied to the 
forward input F of the forward-backward counter in such a manner that 
the output of the counter is the machine control information, namely, 
the output provides the forward motion power for the machine. 

As the machine moves in the direction indicated by this information, 
a pickoff transducer generates incremental motion pulses, which are fed 
to the backward input B of the forward-backward counter as the second 
unitary-weighted pulse train. Thus, the count in the reversible counter 
is always the difference between the machine commands and the actual 
position of the controlled element. The entire device is a closed loop 
positioning servo. It functions as a smoothing and rate control mecha­
nism. The last pulse of a pulse group from the binary rate multiplier 
is used to advance the tape mechanisms so that the next command is 
then read into the command register. 

Information Averaging 

In some industrial process control situations, (1) it is necessary to 
sample periodically and find the derivative for the rate of progress of the 
operation, and (2) it may be desirable also to integrate the rate informa­
tion over a period of time, so as to yield an optimum approximation or 
prediction. 

Problem. Figure lla is a block diagram of a two-loop system 
where averaged output data x(t) are compared periodically with the 
sampled input data x (tn ) • The difference between the sampled input and 
the averaged output is applied to one integrator, is then combined with 
the difference information and, finally, is applied to a second integrator 
whose output is the averaged process state information. The difference 
values applied to both integrators are weighted by factors that indicate 
the importance that is to be given to the information involved and are 
appropriately chosen for the specific system. If it is recognized that a 
temperature-measuring device, for example, is not absolutely accurate, 
its full output will not be used to modify the system. Instead, its output 
will be weighted and only a fraction of it applied to the computing sec­
tion. Thus, the averaged data integrator (the output integrator) not 
only gets process state corrections at the time of the sampling measure­
ment but, of interest to the present discussion, continuously accumulates 
rate data. and keeps up to date by extrapolating that rate information. 

Rate Aiding. The problem exists of how to store accurately and 
utilize the rate information. As compared to analog or programmed 



29-16 UNUSUAL COMPUTER SYSTEMS 

digital approaches, the operational digital technique for "rate-aiding" 
(as this averaging system is called) is extremely simple and requires 
only a single rate multiplier as shown in Fig. lIb. Assume that an inte­
grated rate x is stored in a digital storage register. Physically, this 
might be a magnetic shift register or counter. Let the maximum possible 
process rate be represented by a continuous pulse train of rate fmax. 
Then, as shown in the lower portion of the figure, the entire rate inte­
grator consists of a single binary multiplier. As the code of the instan­
taneous rate is applied to the binary multiplier to modify the maximum 

+ 

(a) 

x(tn) = data sampled at time tn 

Ki, K2 = weighting factors 

Averaged 
output 

t--~~x(t) 

FIG. 11. Information-averaging system diagram. 

To x(t) 
integrator 

(b) 

Rate 
(max 

rate fmax, a new pulse train whose rate is proportional to the process rate 
is generated. The pulse outputs of this binary rate multiplier may 
now be applied to the extrapolating integrator so as to predict x(t) 
continuously. 

EXAMPLE. This action may be better understood by considering a 
numerical example. Suppose that in a certain chemical process a temper­
ature builds up toward a final critical value. The nature of the process 
is such that only periodic measurements of the temperature may be 
obtained and, indeed, these measurements are less accurate than are 
required. A rate-aided system is to be employed to average these sam­
pled data and to provide continuous temperature information. For 
purposes of numerical example only, let the maximum rate of tempera­
ture change be 1000°C per minute. As the periodic measurements are 
carried out, the rate integrator will average itself to the proper instan­
taneous rate. It is required that this rate information be fed into the 
temperature integrator to provide, on a continuous basis, the instanta­
neous temperature of the reaction. 

Let fmax be equal to 1000 pulses per minute. Then, if the temperature 



OPERATIONAL DIGITAL TECHNIQUES 29-17 

reaction is changing at its maximum possible rate, the stored binary code 
for 1000 will be .11111, and all the 1000 pulses per minute will be gated 
out of the binary rate multiplier to increase the averaged and predicted 
temperature at the proper rate. 

Should the rate of reaction change so that the temperature is changing 
at half the rate of 500°C per minute, the binary rate code would then be 
.01111, and 500 ppm will be fed into the temperature-averaging inte­
grator. For any other rate of change of temperature a proportional 
pulse rate will be gated through the binary multiplier, and the numerical 
value of the temperature will be continuously predicted and extrapolated, 
as desired. 

Other Applications. This same technique has proved useful for a 
variety of position and velocity measurements, level and flow measure­
ments, and other processes where periodically obtained data samples 
must be averaged to obtain more accurate information and to predict 
the state of the variables at the time when, for one reason or another, no 
actual measurements 'can be made. 

4. INCREMENTAL COMPUTATION 

Definition and Application. The computer to be described is a 
hybrid computer. It is composed essentially of digital computer cir­
cuitry, and therefore achieves the high accuracy of a digital computer, 
and it operates in nearly real time, by means of incremental computation 
techniques, and therefore possesses one of the salient characteristics of 
the analog computer. 

The industries which potentially could derive the most benefit from 
application of hybrid system techniques are the process industries. 
These industries are characterized by having large numbers of parameters 
which must be monitored for proper control of the process and, further, 
by the existence of relatively large inertias on all the parameters being 
monitored. 

Automatic Data Acquisition and Process Control 

Requirements for Data Acquisition. The typical organization of 
an electronic data acquisition system makes use of a rather sophisticated 
device, namely, an analog-to-digital converter, and multiplexes this 
converter to the various inputs. Since it is generally required that the 
digital information prepared by the analog-to-digital converter be in 
engineering units compatible with the parameter being measured, various 
normalization circuits are customarily interposed between the multiplexer 
and the converter and are programmed in accordance with the type of 
transducer being monitored for a variety of scale factors, linearization 



29-18 UNUSUAL COMPUTER SYSTEMS 

constants, zero offset (or zero suppression) quantities, and square root. 
By whatever means the variations in normalization are achieved, the 
means to variability necessarily imply a device which is tantamount 
to storage. 

Storage Requirements. The normal operation of an analog-to­
digital converter involves a series of successive approximations toward 
a final measurement value and is performed much in the manner of the 
optimum program for weighing an object of completely unknown weight 
on a chemical balance. A distinguishing feature of the process industry 
systems is the fact that the parameters being monitored have large 
inertias. Therefore, a measurement of such a parameter is not in the 
category of the "unknown" weight, inasmuch as the measurement pro­
duced on an nth cycle of operation will be either equal to or have trivial 
deviation from the measurement on the n - 1 cycle. Such systems 
must contain some forms of storage, such as mechanical inertias and 
relays. It is reasonable to consider a system organization in which a 
single storage unit is used for all the required normalization constants, 
alarm limit values, and the value of measurement on the n - 1 cycle. 
Such a storage can be extremely simple in its organization inasmuch as 
the program sequence follows a well-ordered selection arrangement. Any 
storage device which presents information in a sequential fashion may 
be utilized without any requirement for complex storage selection cir­
cuitry or dead times imposed while waiting for a desired selection. 

Analog-to-Digital Converters for Incremental Systems. The analog­
to-digital converter is now called upon to make only one decision per 
measurement, namely, the determination of whether the parameter being 
measured is more or less than its last value. The output of the com­
parator of the converter, which was previously sensed on each of a suc­
cession of decision cycles, is now used to activate a simple incremental 
adder for the purpose of updating the stored measurement value. A 
systcm organizcd on this basis is inherently faster than its conventional 
counterpart and in many applications may result in significant economies. 

Control Applications. However, the present intent is not to show 
a better way of doing a conventional operation but, rather, to explore 
the possibilities of this approach to the construction of systems of much 
higher ability. The fundamental intent of any data monitoring system 
is the evolution of control information. Inasmuch as many process con­
trol variables are of small relative magnitude, repeated output of data 
on such channels is often extraneous. The important characteristics of 
a true information-gathering system are: 

1. The ability to distinguish information from redundancy. 
2. The inclusion of sufficient computing ability to interrelate monitored 



OPERATIONAL DIGITAL TECHNIQUES 29-19 

quantities in whatever manners are necessary to provide controlled in­
formation in a form suitable for immediate control action by the system 
operator or by the system itself. 

Many of the mathematical operations required in process control 
computations are surprisingly complex. But the same remarks which 
applied to the use of old measurement data in the simplification of a 
new measurement have equal significance to the solution of these equa­
tions. The precise solution of the control equations by conventional 
computing means is exactly analogous to conventional analog-to-digital 
converter operation. Where nothing is known about the values of the 
various operands until they appear on the scene from storage, complex 
computing circuitry must be employed and the evolution of the answer 
must await the many cycles required in their operation. In contrast, 
the process control situations frequently involve the repeated call for 
solution of equations where both the operands and the answer are 
predictable within close limits. The job of the incremental computer, 
therefore, is to update a last solution rather than to start fresh on the 
effectively blind solution of a "new" problem. 

Machine Organization 

Block Diagram. The computational unit shown in Fig. 12 com­
prises three adders, three incremental adders (±1), and three comple­
menters. This apparatus, when connected together, performs the arith­
metic given in eqs. (1), (2), and (3) of Table 1. On each storage cycle 
it receives operands S, R, V, and U from storage, operates on them in 
the manner indicated, and returns new values of R, V, and U to the 
corresponding storage positions. The quantities S are used as scaling 
factors and are never modified except by change of the computational 
program. The complete equations for the incremental computer are 
given in Table 1 and are grouped as follows: 

1-3 
4-12 

13-25 
26-32 
33-45 
46-59 
60-64 

Basic 
Addition and subtraction 
M ultiplica tion 
Division 
Square root 
Integration and differentiation 
Logarithm and exponential 

Control. Control of the basic equations to effect the desired opera­
tions of addition, multiplication, square root, etc., is done by properly 
combining (or disconnecting) the sensing lines from incremental storage, 
and by the choice of which one relates to the dependent variable. In 



29-20 UNUSUAL COMPUTER SYSTEMS 

most cases the dependent variable is not actually generated by the main 
storage cycle but, rather, information is placed in incremental storage 
which may be used to update the "result" in a separate storage cycle. 
In most cases the output increment of one program step will be applied 
directly as an input to a subsequent operation, and only the final solu­
tion will be generated for readout. 

flU 
.a Increment ------
:l storage U Main a. 

-= flip-flops storage 
flT 

flV ---------
V 

-----------
Sign of R R 

FIG. 12. Incremental computer block diagram. 

Thus, the increment storage is the means for communicating informa­
tion between parts of a problem solution, the mechanism for causing 
the basic machine algorism to do different sorts of arithmetic, and the 
channel for input information. 

Program. The program which accomplishes all this is stored in the 
main storage and is presented to the increment storage at each step of 
the storage cycle. Since the program command must be known in ad­
vance of the operands, the first bits read out from the four storages at 
the beginning of a cycle may be used for the program ,to control that 
cycle. The main storage may be a drum or an array of magnetic cores. 

Assume eight binary bits as sufficient for command; then the first two 
pulse positions on the R, S, V, and U output lines will contain this infor­
mation. A word length of thirty bits, plus one for sign, is probably 



OPERATIONAL DIGITAL TECHNIQUES 

TABLE 1. EQUATIONS FOR THE INCREMENTAL COl\IPUTER OF FIG. 12 

I Basic 111 achinc Equations 

(1) Uk = Uk - l + ~Uk 
(2) Vk=Vk-I+~Vk 

(3) Rk = Rk- l + Uk~Tk + Vk-l~TVI.; + ~Xk - S~Z/c 

II Addition and Subtraction 

(4) 

(5) 

(6) 

(7) 

A. Desired Output 

Z = X + U 0 T + V 0 TV 
S 

B. Initial Conditions 

AUk=~Vk=Ro=O 

SZo = Xo + UoTo + VolVo 

{
+lforRkPositiVe} . 

AZk+l = 1 f R . reversed for S negatIve 
- or k negative 

C. Proof 
Rk = Rk-l + UO~Tk + VO~Wk + ~Xk - S~Zk 

k=N k=N k=N k=N 

29-21 

(8) 

(9) 

(10) 

L (Rk - Rk- I ) = L Uo~Tk + L Vo~lVk + L~Xk - L SAZk 
k=O 1.:=0 1.;=0 1.;=0 

(11) SZN+ RN = UOTN + VolVN + X N 

(12) ZN + RN = X + UoTN + VolVN 
S S 

III 111ultiplication 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

A. Desired Output 

B. Initial Conditions 

~Tk = ~Vk 

A1Vk = ~Uk 

Ro = 0 

SZo = UoVo + Xo 

Z = UV + X 
S 

{
+ 1 for Rk positive} . AZk+l = R . reversed for S negatIve 
-1 for k negatlve 

C. Proof 

(19) RI.; = Rk- 1 + Uk~Vk + Vk-I~Uk + ~Xk - SAZk 



29-22 UNUSUAL COMPUTER SYSTEMS 

TABLE 1. EQUATIONS FOR THE INCREMENTAL COMPUTER OF FIG. 12 
(Contintted) 

(20) A(UkVk) = UkVk - Uk- 1 V k- 1 

= (Uk- 1 + AUk) (Vk-l + AVk) - U k- 1 Vk-l 

=..I1'J tl'k--r+ Uk-lAVk + Vk-lAUk + AUkAVk -Jh ll'k-l 
= Vk-lAUk + AVk(Uk- 1 + AUk) 

= Vk-lAUk + UkAVk 

(21) Rk - Rk-l = A(Uk V k) + AXk - SAZk 

k=N k=N k=N k=N 

(22) L (Rk - Rk-l) = L A(Uk Vk) + L AXk - L SAZk 
k=l / k=O k=O k=O 

(23) RN - jW'= UNVN -.lla-l1J+ XN - U- SZN + fi.ZO 
(24) SZN + RN = UNVN + XN 

(25) ZN'+ RSN = UNVN
S

+ X N 

IV Division 

(2q) 

(27) 

(28) 

(29) 

(30) 

(31) 

A. Desired Output 

U = SZ - X 
--V-

B. Initial Conditions 
ATk = AVk 

C. Proof 

AWk = AUk 

Ro = 0 

UoVo = SZo - Xo 

( + 1 for Rk positive and V k negative 

AU = 1+1 for Rk negative and V k positive 
k+1 -1 for Rk positive and V k positive 

-1 for Rk negative and V k negative 

(32) Solving eq. (24) for UN, 

V Square Root 

A. Desired Output 

UN = SZN + RN -XN 
VN 

(33) V = V SZ - X 

B. Initial Conditions 

(34) Vo = Uo 

(35) ATk = AWk = AVk = AUk 



(36) 

(37) 

(38) 

TABLE 1. 

C. Proof 

OPERATIONAL DIGITAL TECHNIQUES 

EQUATIONS FOR TIlE INCREMENTAL COMPUTER OF FIG. 12 
( ContimlCd) 

Ro = 0 

U02 = SZO - Xo 

I::.U _ {+ 1 for Rk negative 
k+l - -1 for Rk positive 

(3Q) Rk = Rk-l + Ukl::.Uk + Uk- 11::.Uk + I::.Xk - SI:lZk 

(40) AUk 2 = Uk2 - Uk_ 12 
= (Uk- 1 + I::.Uk )2 - Uk_ 12 

=~ + I::.UkUk- 1 + I::.UkUk- 1 + I::. Uk I::. Uk -~ 
= Uk-II::. Uk + I::.Uk(Uk- 1 + I::.Uk) 
= Uk-11:lUk + Ukl::.Uk 

(41) Rk - Rk- 1 = I::.(Uk2) + I::.Xk - SI::.Zk 

k=N k=N k=N k=N 

(42) L (Rk - Rk-l) = L I::.(U,,2) + L I::.Xk - S L I::.Zk 
k=O k=O k=O k=O 

(43) RN - U= UN2 - ~ + X N - ~- SZN +.8Z'O 
(44) RN = UN 2 + X N - SZN 

(45) UN = VSZN - X N + RN 

VI Integration 

A. Desired Output 

(46) Z = ~ J U dT 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

B. Initial Conditions 

C. Proof 

Vo = Uo 

I::.Vk=I::.Uk 

I::.Wk = I::.Tk 

Ro = X 0 = I::. X k = 0" 

Zo = desired value at T = To 

I::.Z
k 

= {+ 1 for Rk positive 
+1 -1 for Rk negative 

(54) Rk = Rk-l + Ukl::.Tk + Uk-11::.Tk - SI::.Zk 

29-23 



29-24 UNUSUAL COMPUTER SYSTEMS 

(55) 

(56) 

(p7) 

TABLE 1. EQUATiONS FOR THE INCREMENTAL COMPUTER OF FIG. 12' 
(Continu(;d) 

N N N 
2: (Rk - Rk- 1) = 2: (Uk - Uk-l)~Tk - 8 2: ~Zk 

'.=1 k=l 1.;=1 
N 

RN - ]k"= 2'2: !(Uk + Uk-l)~Tk - 8ZN + 8Zo 
k=l 

RN 2 N 
ZN + -8 = -8 2: !(Uk + U1.-1)~Tk + Zo 

1.;=1 

~~JUdT+Zo 
VII Differentiation 

(58) U ~ ~ ~~ (substituting ~U1.+1 for ~Z/~+l in .eq. 53) 

VII Reciprocal Integration 

(59) T ~ % J d~ (substituting ~Tk+1 for ~Zk+1 in eq. 53) 

VIII Natural Logarithms 

(60) 

(61) 

(62) 

(~3) 

(64) 

(65) 

(66) 

A. Desired Output 
2 
- T = In Z 
8 

n. Initial Conditions 
Z=U 

AZ = ~U 

Ro = Xo = ~Xk = 0 

AT _ {+1 for R1. positive 
1.+1 - -1 for Rk negative 

C. Proof 

Same as VII, since: 

8JdZ 8 T = "2 Z = "2 In Z, whence 

2 
- T = In Z 
S 

IX Exponential 

(67) Z = e2T / S (substituting ~Zk+1 for ~Tk+1 in eq. 64) 



OPERATIONAL DIGITAL TECHNIQUES 29-25 

sufficient for any application. The prototype will, therefore, be assumed 
to have a minor cycle length of thirty-three pulse times, and have a major 
cycle (complete storage cycle) which contains thirty-three (1092 + 33) 
possible program steps. This seems sufficient, inasmuch as considerable 
arithmetic may be accomplished in each step. For example, a complete 
summation of the displacements in the thirty monitored lines requires 
only fifteen cycles. 

Error Term. In all the machine operations the quantity R repre­
sents an error term which at any instant in a problem solution is either 
at its minimum possible value or is being reduced to that value at the 
maximum possible rate. The entire intent of the machine algorism is 
to reduce R on each cycle of computation. The sign of the error may 
therefore be used as an input to the incremental storage such that, by 
appropriate action of the program, the next solution for R on that pro­
gram step will either reverse its sign or reduce its magnitude. The incre­
ment storage flip-flop which, by program control, receives its information 
from the sign of R, is the dependent variable of a desired operation. 

Operations 

1. Addition and Subtraction. The computing unit is capable of 
continuously updating the sum of three quantities, according to eq. (4). 
The quantities X, T, and Ware presented to the arithmetic unit in the 
form of increments, and may be entirely derived from flip-flops which 
receive their information externally or come from a combination of such 
information with increments obtained from other computing processes. 
This mixed mode will become clearer in its operation as the description 
proceeds. 

No explicit storage for the quantity Z exists. The sequencing de­
scribed does not result in the production of an explicit quantity Z unless 
that is required by the program. Instead, the operation produces as an 
output information for updating a quantity Z by units of ± 1. These 
units may be used to modify either U or V in a subsequent cycle of 
operation to accumulate a quantity equal to Z, if that is desired. But if, 
for example, Z is to be further added to other quantities, and is not 
required as a result in its own right, then ~Z will be sensed in a subse­
quent solution of eq. (4) as being a quantity ~X, ~T, or ~ W. 

The quantity S is used in all the mathematical operations as a scaling 
factor. In addition and subtraction the quantities U and V are also 
available for scaling. However, the choice of S, U, and V must be made 
in accordance with the requirements of eq. (6), which represents an initial 
solution of the problem at the start of any computational run. The com­
putation proceeds as follows: 



29-26 UNUSUAL COMPUTER SYSTEMS 

a. Equations (5), (6), and (7) are the microprogramming for the 
initial solution. Equation (5) says, simply, that the quantities U and V 
remain invariant and that the initial value of R in the storage is zero. 
Equation (6) states certain necessary balances of the numbers in the 
storage at the start of the program sequence. 

b. Substituting the conditions of eq. (5) in eq. (3), leaves the modified 
arithmetic operation of eq. (8). 

c. Summing for N cycles eq. (9) leads to eq. (10). Subtracting out 
eq. (6), and the fact that R is equal to zero (eq. 5) gives us eq. (11). 

d. Equation (11) rewritten in eq. (12), is identical to eq. (4), except 
for the error term. 

e. It can be shown that the solution is at all times within ± 1 of its 
correct value or is approaching that value at the maximum possible rate. 

2. Multiplication. Multiplication is accomplished as follows. As 
before, the quantities which are independent variables (U, V, and X) are 
presented to the arithmetic unit in the form of increments. Unlike the 
previous example, two of the variables, U and V, are updated as a part of 
the operation, and could be called from the storage. The single opera­
tion thus provides a' means for updating information for a product 
quantity Z. The sequence is as follows. 

a. Equations (14) through (18) are the microprogramming equations 
which adapt the machine algorism for multiplication. Equations (16) 
through (18) resemble start conditions for the addition process, while 
eqs. (14) and (15) merely say that two increment storage flip-flops serve 
as the controlling devices for four operations. 

b. Substituting the initial conditions into eq. (3), yields eq. (19). 
c. This becomes eq. (21) following the arithmetic of eq. (20). 
d. Summing over N cycles and subtracting eqs. (16) and (17) leaves 

eq. (24). 
e. The rewritten form in eq. (25) is equivalent to eq. (13), except for 

the error function, and can be shown to be either equal to ± 1 of the 
correct value or be moving toward that value at the maximum machine 
rate. 

3. Division. The operation of division as expressed by eq. (26) is 
the same as that for multiplication except for the choice of dependent 
variable. With the exception of the rules given in eq. (31), all the micro­
programming for the two operations is identical. 

The solution of the machine equation for division follows the same 
lines as in multiplication to eq~ (24). Solving eq. (24) for UN yields the 
result, eq. (32). This is identical with eq. (26) except for the error term. 
It can be shown that the solution is within + 1 increment of the correct 
value or is approaching the correct value at the maximum machine rate. 



OPERATIONAL DIGITAL TECHNIQUES 29-27 

Division is the first of the machine operations thus far discussed which 
directly accumulates its result in the main storage. This property is 
true only for operations which use the quantity U or V as the dependent 
variable. 

4. Square Root. Square root, according to the relationship of eq. 
(33), is performed by the computer by imposing the restrictions of 
eqs. (34) through (38). Note that while all six increment control lines 
are active, four of them are derived from a single increment storage 
flip-flop. The procedure is: 

a. Substituting eqs. (34) and (35) into eq. (19) yields eq. (39). 
b. Equation (39), following the arithmetic of eq. (40), becomes eq. (41). 
c. Summing over N cycles and subtracting the initial conditions of 

eqs. (36) and (37) give eq. (44). 
d. Rewritten as eq. (45) it may be seen that this is identical with 

eq. (33) except for the error term. 
e. It may be shown that UN is within ± 1 increment of the correct 

solution or is approaching that value at the maximum machine rate. 
Because of the choice of U as dependent variable, the quotient is 

accumulated directly in the main storage. 
5. Integration and Differentiation. None of the arithmetic processes 

discussed in the preceding sections has involved approximations.{' The 
results in all cases have been exact and, presuming reasonable rat'es of 
change of the input variables, are at all times within ±1 of true value. 

The subject operations and those which follow are limited in their 
accuracy by certain approximations which have been required. The 
accuracy of the approximation depends on the behavior of the variables. 
In most cases the errors will be quite small. The procedure is: 

a. Integration according to the relationship shown in ,eq. (46) is per­
formed in the arithmetic unit by the trapezoidal approximation shown 
in eq. (47). 

b. The microprogramming for this operation is given in eqs. (48) 
through ( 53) . 

c. Substituting the initial conditions into eq. (3) yields eq. (54). 
d. The usual procedure of summing over N cycles and subtracting out 

initial conditions results in eq. (56). 
e. As rewritten in eq. (57), the result is equivalent to eq. (46), except 

for the error term and the approximation error of eq. (47). 
Given the ability to integrate, it follows that the arithmetic organ 

can also differentiate or perform reciprocal integrand integration 
as shown in eqs. (58) and (59). These, of course, have the same lim­
itations on accuracy as noted for the baE;ic integration and oper­
ation. 



29-28 UNUSUAL COMPUTER SYSTEMS 

These operations are handled identically with integration except for 
the choice of independent variables, as noted. 

6. Logarithm and Exponential. With the aforenoted cautions on 
accuracy, eq. (59) may be modified according to the conditions of 
eqs. (60) and (61) to effect natural logarithms according to eq. (62). 
Further manipulation leads to eq. (64) for exponential. 

Practical Considerations 

Transient Solutions. All the foregoing operations function to update 
their solutions on each cycle of the machine storage. At the beginning 
of machine operations these corrections are made from a trial solution 
stored in the machine storage. This solution mayor may not be a good 
approximation, but in any case serves to relate the scaling factors used 
in the problem solution properly. 

In a continuously operating system, where previous values of variables 
are not erased from the storage, there will never be a starting transient 
during which the "answers" differ appreciably from their true values. 
Readout may be initiated at any time and the solutions read out will rep­
resent the results of computation which has been performed on the very 
latest input data. 

Assume that it were necessary to clear the counters once every 24 
hours. If this method of operation were used with an incremental com­
puting system, there would be a short period of time at the beginning 
of each day's run (probably in the order of seconds) during which the 
machine's solutions would not be valid. However, it is probable that 
the clear operation would no longer be required once the computational 
ability is built into the system. 

Incremental System Benefits. The addition of incremental comput­
ing ability to a data gathering facility can provide a number of very 
important operating advantages. 

1. System cost should be very much less than that originally intended, 
presuming that at least part of the cost of a medium-sized drum computer 
must be added to the basic data gathering facility. 

2. System reliability should be greatly improved because no electro­
mechanical devices are involved in the computation itself, and only the 
desired end results need be communicated to the operator. 

3. System versatility offers numerous features not heretofore possible. 
One may, for example, have rate alarming at no additional cost other 
than the cost of the time for programming. 

4. Typeout of any or all of the final results is available at any time 
during the day, either on demand readout or by automatic initiation at 
specified intervals. 



OPERATIONAL DIGITAL TECHNIQUES 29-29 

5. The fact that most system inputs are analog in nature and that 
analog-to-digital conversion is required is no detriment whatsoever to 
the application of incremental techniques. Indeed, the analog-to-digital 
conversion process can be made very much easier by combining its oper­
ation with the computing unit. Analog-to-digital conversion as per­
formed in present systems makes no use whatever of previous input 
values and must, therefore, make all decisions required for the digital 
quantity over again on each cycle of operation. But when previous 
values are available from a storage, the last updated digital value may 
be read out into a digital-to-analog converter for a present status com­
parison. The results of this comparison, in the form of an increment 
( + 1) may then be used for further updating the digital quantity in the 
main storage. 

REFERENCES 

1. B. M. Gordon, Adapting digital techniques for automatic control. I, Elec. Mfg., 
136-144, Nov. 1954. 

2. B. M. Gordon, Adapting digital techniques for automatic control. II, Elec. 
Mfg., 120-126, Dec. 1954. 

3. C. T. Leondes and M. Nothman, Real time hybrid computers for control 
systems, Proc. Am. Inst. Elec. Engrs. Conference on Computers in Control Systems, 
Atlantic City, N. J., Oct. 16-18, 1957. 

4. R. Leger and J. Greenstein, Simulate digitally, or by combining analog and 
digital computing facilities, Control Eng., 3, 145-153 (1956). 

5. J. H. McLeod and R. M. Leger, Combined analog and digital systems-Why, 
when, and how, Instr. and Automation, 30, 1126-1130 (1957). 

6. B. K. Smith, Practical information theory aspects of high-speed data handling, 
Trans. I.R.E., Prof. Group on Information Theory, March 1958. 

7. B. Gordon and R. Niccola, Special purpose digital data processing computers, 
Proc. Assoc. Computing Machinery, 33-45, Pittsburgh, May 2-3, 1952. 





F UNUSUAL COMPUTER SYSTEMS 

Combined Analog-Digital 

Computing Systems 

I. Description and Applications 

2. System Components 

3. Control and Timing 

4. Modes of Operation 

References 

I. DESCRIPTION AND APPLICATIONS 

Chapter 30 

George P. West 

30-01 

30-02 

30-08 

30-13 

30-15 

A combined system consists of analog computation elements and a 
digital computer interconnected by transducers and simultaneously em­
ployed in computation. A typical combined system comprises: 

1. A general purpose digital computer of moderate to high computation 
speed. 

2. Electronic analog computing equipment of the low frequency, or 
nonrecursive type, in amounts which vary from a few elements to several 
racks of equipment. 

3. The transducers are usually electronic analog-to-digital and digital­
to-analog converters. 

A typical system is shown in block diagram form in Fig. 1. 
Note. Throughout this chapter the term bit will be used as an abbre­

viation for binary digit. 
System Applications. Combined systems are employed to solve 

systems of differential equations which possess one or more of the follow­
ing characteristics: 

30-01 



30-02 UNUSUAL COMPUTER SYSTEMS 

1. Exceed the capacity of the largest digital computers in that they 
require an excessive period of computation to produce results. 

2. Exceed the capacity of the analog computation facility usually by 
requiring more nonlinear elements than are available. 

3. Require greater accuracy than is obtainable by analog techniques. 
EXAMPLE. A system of ordinary differential equations of moderate 

order and containing many nonlinear coefficients will quite often require 
more nonlinear elements than are available in a large analog computer. 
If the system response contains both high- and low-frequency effects 

Analog 
computer 

Digital 
computer 

FIG. 1. Block diagram of a combined analog-digital computing facility. 

which are of interest, the problem may exceed the capacity of a high­
speed digital computer. For the digital computer must employ a com­
putation interval small enough to reproduce faithfully the high-frequency 
effects and at the same time carry the computation forward over many 
of these small intervals until the low-frequency effects can be observed. 

If additional computing capacity is sought by attempting to employ 
two digital computers simultaneously, the problems of coordinating the 
actions of the two computers, so that they do not interfere with one 
another while attempting to communicate results, is a difficult one. Fur­
thermore, programming the computation to keep both machines occupied 
is awkward. 'Although the combined analog-digital approach requires 
a radical change in the number representation for communication between 
the two computers, problems of mutual interference and of programming 
for effective utilization of both machines are much simpler. 

Problem Types. Table 1 contrasts problem types successfully em­
ploying analog, digital, and combined techniques for their solution. 

2. SYSTEM COMPONENTS 

Analog Computer. The low-frequency electronic analog computer 
performs all computations simultaneously so that, within the restrictions 



COMBINED ANALOG-DIGITAL COMPUTING SYSTEMS 30-03 

TABLE 1. COMPARISON OF PROBLEM TYPES FOR ANALOG, DIGITAL, 

AND COMBINED COMPUTERS 

Analog 
Linear and nonlinear 
ordinary differential 
equations of moderate 
order with simple non­
linear terms and with 
both high- and low­
frequency effects in 
response 

Continuous control sys­
tem studies requiring 
about 0.1 % accuracy in 
solution 

Computations requiring 
graphical input data 
and producing graphical 
results 

Digital 
Linear and nonlinear 
differential equations of 
moderate order with 
complex nonlinear 
coefficients and with 
either high- or low­
frequency response 
characteristic 

Continuous or discrete 
control system studies 
of moderate complexity 
requiring better than 
0.1 % accuracy in solu­
tion 

Computations requiring 
tabular input data and 
producing tabular or 
graphical results 

Combined 
Linear and nonlinear 
differential equations of 
high order with complex 
nonlinear coefficients 
and with both high­
and low-frequency 
effects in system 
response 

Highly complex control 
systems containing 
discrete as well as con­
tinuous elements and 
requmng accuracy of 
better than 0.1 % in 
solution 

Computations requiring 
graphical and tabular 
input data and pro­
ducing graphical and 
tabular results 

imposed by the number of computing elements available in the computer, 
problem complexity does not restrict solution time. These analog com­
puters can furnish solutions to about 0.1 per cent accuracy provided the 
response does not exceed about 20 cycles per second. Problem changes 
are easy to effect by plugboard changes or by resetting potentiometers. 
Input and output of graphical data is easy and straightforward. Output 
graphical data must be manually identified and scaled. 

Digital Computer. The high-speed digital computers perform compu­
tations sequentially so that computation time depends on the complexity 
of the problem. The computation time determines the highest sampling 
frequency possible and, therefore, the highest frequency of the system 
response which can be accommodated. A high-speed digital computer 
may well require 25 milliseconds to compute the sine or cosine of six 
angles so that a coordinate transformation exceeds the computer capac­
ity if 20-cycle variations in position occur. Digital computers handle 
logical decisions very effectively. They accept tabular data for input 
and produce tabular output as well as graphical output with identifica­
tion and scales. Graphical output requires special plotting symbols on 
the printer as well as the usual alphanumeric characters. 



30-04 UNUSUAL COMPUTER SYSTEMS 

Conversion Equipment 

Mechanical Analog-Digital Converters. There are many types of 
analog-digital conversion equipment in use (Refs. 1, 2). The mechanical 
converters are usually shaft position converters in which a servo positions 
a code wheel to establish the required digital code, or relay switching 
networks which switch increments of voltage until the input voltage is 
matched. Mechanical converters are normally too slow for use in a 
combined system. 

Electronic Analog-Digital Converters. The converters most used in 
combined systems employ vacuum tube or transistor switching circuits 
to switch increments of current into a ladder network which sums the 
voltage drops and adds to or subtracts current increments until the out­
put of the ladder network equals the input voltage (Refs. 3, 4). These 
converters are of two types; the free running or servo type, and the 
sampling type. Another type of electronic analog converter which has 
not been employed in combined systems is the pulse width system. 

1. Free Running. In this type, the current switches are controlled 
by the bits in an accumulating register. A least count is added to or 
subtracted from the register, depending on whether the ladder output is 
greater or less than the input, at equal intervals of time, until the register 
counts to a value corresponding to the input voltage. The accumulator 
then oscillates within plus or minus one least count of the input value. 
The maximum voltage change that the converter can follow is the voltage 
change produced by the least significa~t digit divided by the clock 
period between successive additions. The dynamic response can be im­
proved by sensing whether the comparator is out of balance by more 
than one voltage increment and when it is causing the bit to add in the 
next to least significant position. In this way, the converter follows twice 
as rapid a voltage change but to one-half accuracy. 

2. Sampling. Another type of electronic converter starts from zero 
and switches successively from the most significant bit to the least, each 
time comparing the input to the ladder output. In this way, the converter 
establishes a number which was equal to the input voltage at some time 
during the sampling interval. This value is held until the converter is 
commanded to sample again. By making the decision interval short, the 
input changes during sampling are made small. 

A variation of this converter employs a sample and hold circuit to 
clamp the input so that it is constant during conversion. The problems 
inherent in making a fast sample and hold circuit are nearly as great as 
in producing a fast converter; however, sample and hold devices can im­
prove the accuracy of this type of converter by at least a factor of 10. 



COMBINED ANALOG-DIGITAL COMPUTING SYSTEMS 30-05 

3. Pulse lVidth. The pulse width converter first transforms the analog 
voltage into a pulse with duration proportional to the analog voltage 
(Ref. 5). The pulse duration then gates a string of pulses into a counter 
where they arc counted to arrive at the digital value of the analog voltage. 
Even with high pulse rates (2 or 3 megacycles), the time required 
to count to 3-decimal digit accuracy (400 microseconds) is longer than 
for other electronic analog converters. The pulse width conver­
ter is slower than the electronic converters of the sampling or free 
running types. 

Digital-Analog Conversion. Conversion from digital to analog is 
much simpler than the corresponding conversion from analog to digital. 
The digital number is set up in a register. The bits in the register control 
the switching of current increments into a ladder network which sums 
the voltage drops to produce an output proportional to the number placed 
in the register. The digital-to-analog conversion does not require com­
parisons and decisions in order to set the current switches properly. In­
stead the switches are simply set to agree with the bits of the number 
in the register. Furthermore, the switches are set simultaneously rather 
than sequentially so that conversion is much faster digital to analog 
than it is analog to digital. 

Converter Buffering. The construction of electronic analog-digital 
and digital-analog converters is such that a buffering action is obtained 
at no extra cost. In the sampling type analog-digital converter, once the 
current switches are set, the number can be read out at any time between 
conversions. Since the current switch settings will remain constant until 
the next conversion, they may be sensed at any time for readout, and 
until sensed they will store the number. Buffering action of the free 
running converter is obtained by stopping the decision pulses so that the 
converter no longer follows the input. \Vhen the number has been trans­
ferred from the buffer, a subsequent conversion must be delayed until 
the free running converter has had time to catch up to the input voltage. 
In the same way, the digital-to-analog converter can accept a number 
at any time for conversion. Once the current switches are set, the analog 
output will hold constant while the register accepts another number for 
subsequent conversion. 

EXAMPLE. A typical electronic analog-to-digital converter will occupy 
from 6 to 28 inches of rack space, weigh from 50 to 200 pounds, and 
require from 25 to 500 watts of power. The converter can be obtained 
in sizes from 10 bits to 18 bits with options as to whether binary or 
coded decimal representation is preferred. The static accuracy is about 
0.1 per cent. The conversion speed will vary from 2 to 5 microseconds 
per bit. 



30-06 UNUSUAL COMPUTER SYSTEMS 

Converter Bandwidth. 

1. Free Running. The highest frequency a free-running converter can 
follow is that with a maximum slope of one least count in the time 
required to set a bit. 

EXAMPLE. If the bit setting time is 4 microseconds and the converter 
has a 10-bit register, the maximum slope would be one least count (2- 10 ) 

divided by the time to set the bit 4(10- 6 ), and this in turn must equal 
the maximum slope 27rfmax of the sine wave of maximum frequency. So 
that, 

2-10/4(10-6 ) 
f max = = 39 cycles per second. 

27r 

2. Sampling. The sampling converter must sample the voltage before 
it has changed appreciably. The sampling process takes a finite length 
of time. It is the speed of conversion, the time required to set the desired 
number of bits, which determines the converter bandwidth and not the 
number of sampling operations which can be performed in a given amount 
of time. Most converters recover very rapidly so that data can be sam­
pled at a very high rate. To obtain appreciable accuracy from any of 
the samples, the input must be of quite low frequency content so that 
the additional samples which could be taken would be redundant and 
of little value. 

EXAMPLE. What is the highest frequency that a converter with a speed 
of 4 microseconds per bit can sample to 10-bit accuracy? For 10-bit 
accuracy, the input must not change more than one bit in the least sig­
nificant place. The maximum change is then 2 -10. This change can 
occur in the length of time required to set 10 bits, or in 40 microseconds. 
The maximum slope 27rfmax of the sine wave of maximum frequency for 
10-bit conversion must equal the maximum allowed change during con­
version. So that, 

2-10/40(10-6 ) 
f max = = 3.9 cycles per second. 

27r 

Improving Bandwidth by Computation. 
1. Free Running. The example above showed that a 4-microsecond 

free-running converter could follow about 40-cycle data to full 10-bit 
accuracy. If data are transferred twice per cycle to the digital computer, 
then at 40 cycles per second, 2 sample~ per cycle, and 10 bits per sample, 
800 bits per second are transferred to the computer. The converter makes 
250,000 one-bit decisions each second in following the input, which re­
quires a single decision every 4 microseconds. 



COMBINED ANALOG-DIGITAL COMPUTING SYSTEMS 30-07 

The bandwidth can be increased somewhat by reading data which are 
only approximate from the converter and by using the digital computer 
program to recover the data from the noise introduced by conversion. 
It is not possible to increase the bandwidth of the free-running converter 
very much by these techniques since the converter is either following 
the input voltage or it is not. Consequently, there are 10 bits of infor­
mation in each sample, or none. The converter will catch up at the peak 
values and can provide accurate readings at the crests of the waveform 
even if it cannot keep up on the steep rise at either side. These peak 
values can be used to reconstruct the wave. The program can decide 
whether readings are meaningful or not by differencing to see if the 
converter was traversing at full speed or if it had settled down to follow­
ing the input. However, if the input is much above the 40-cycle limit in 
harmonic content, the converter will produce a triangular waveform 
intersecting the data waveform more or less randomly. Since the con­
verter is traversing at full speed at all times, it is difficult to determine 
the intersections with the data and hence the meaningful values. 

2. Sampling. The example above showed that a 10-bit sampling con­
verter with a conversion time of 40 microseconds has a bandwidth of 
about 4 cycles per second. If the converter can recover and be ready to 
sample within 100 microseconds (many sampling converters can), it would 
be possible to sample an input every 100 microseconds. Each such 
sample would require ten decisions in setting the bits for the conversion. 
In theory then, the converter is capable of making 100,000 decisions per 
second. However, in transferring 4-cycle data to a computer to 10-bit 
precision, it is in fact delivering only 80 bits per second, an even lower 
efficiency than that noted for the free-running converter. The sampling 
converter, however, can accept a much greater range of frequencies at 
its input before it reaches the point of delivering no information with 
each sample. Since the sampling converter sets the most significant digit 
first, the input can change very rapidly before the converter will fail to 
set the most significant bit correctly. For example, a 1000-cycle signal 
would cause at least 4 bits to be set properly. If the high-frequency 
input is sampled more than the ideal two samples per cycle and a least 
square fit is made to the data in the computer, it is possible to 
reconstitute very high-frequency data from its approximate sample 
values. Since the digital computer is often hard put to complete the 
required computations in the time available, there may be little time left 
for reconstituting the input data from its approximate samples. 

3. Pulse Width. The output of any converter can be considered as 
representing precisely the value which the input voltage assumed at 



30-08 UNUSUAL COMPUTER SYSTEMS 

some time in the sampling interval. Usually the exact time at which 
this coincidence occurred is not known. If the converter is fast enough, 
this timing uncertainty is not important. If the coincidence is assumed 
to occur at the start of the sampling interval, an amplitude error results 
which can be held to prescribed limits by restricting the bandwidth of 
the input voltage being converted. 

The pulse width converter has a relatively long conversion interval 
but its design is such that it is quite easy to compute the instant at 
which sampling occurred. If the perturbations of the nominal sampling 
interval are computed, the converter output can be accepted at full 
design accuracy. The counter in a pulse width converter is gated on as 
a standard ramp voltage crosses zero and off when the ramp reaches 
the input voltage level. 

The converter output is therefore proportional to the time from the 
start of the sampling interval until the coincidence with the input voltage 
occurred. This proportionality affords a simple method of computing 
the sampling instant. 

Converter Selection. In spite of the bandwidth advantage of the 
free-running converter, most combined systems use the sampling con­
verter. This is because the sampling converter recovers more rapidly 
after serving as a buffer than does the free-running converter which 
must have time to catch up to the input voltage. While this recovery 
time has little effect on the bandwidth of either converter, it provides 
a better buffering action for the sampling converter. The improved 
buffering action is important from the computer programming point 
of view. 

3. CONTROL AND TIMING 

Definitions. In combined systems, the digital computer accepts inputs 
from the analog computer and computes results which are transmitted 
back to the analog computer. The time interval between two successive 
transfers of the same output variable to the analog computer will be 
called the cycle time. The time interval between accepting data and 
delivering results will be called the delay time. 

ProgramControl. For many digital computers, the time required to 
complete a program will vary from computation to computation, since 
the execution time of operations such as multiply depends on the mag­
nitudes of the numbers being used in the computation. The variation in 
computation time for some digital computers could amount to ± 10 per 
cent or more. If all conversions from analog to digital or digital to analog 
were initiated under program control, these variations in program execu­
tion time would produce corresponding variations in the cycle times and 



COMBINED ANALOG-DIGITAL COMPUTING SYSTEMS 30-09 

delay times for each computation. For many system studies, variations 
in cycle time produce effects not present in the system under simulation 
and their net effect on the simulation is difficult to estimate in assessing 
the value of the simulation study. These uncertainties can be eliminated 
by reducing the simula.tion time scale by 10 per cent and inserting suffi­
cient idle time in the digital program to pad out each computation to a 
fixed length. In order to do this easily, the digital computer must provide 
interlocks with its input-output buffer. 

Re:ume enable 

Lock out enable 

r--- --------, 
I Write 
I Test lock I 
I out Read -+-----' 
I 
I 
I 
: Computer control 

L...---;'I ~ derived from 
I these pulses 
I 
I 

: Initiate lock out read -i-------' 

Wait read 
flip-flop 

Wait write 
flip-flop 

: Initiate lock out write -.;--------t-----4-----' 
L ___________ J 

Input pulse from 
converter when 
data have been 

placed in 
in-out register 

Resume pulse from 
converter after it 

has accepted 
data from 

in-out register 

FIG. 2. Block diagram of input-output buffer and interlocks. 

Input-Output Buffer and Interlocks. Many of the commercially 
available digital computers either provide or can be modified to provide 
an interlocked in-out register, such as that shown in Fig. 2. The inter­
locks halt the digital computer if it attempts to read data from the in-out 
register before the external equipment has placed the data in the register. 



30-10 UNUSUAL COMPUTER SYSTEMS 

The interlocks are released as soon as data have been placed in the 
register at which time computation resumes. 

Furthermore, the conversion equipment must be provided with a clock 
which can be manually set to control conversion at a fixed rate, inde­
pendent of the operation of the digital computer. With the conversion 
interval set slightly longer than the maximum execution time of the 
digital computer program, the interlocks will hold the digital computation 
waiting for the converter clock to transfer data and release the interlocks. 
In this way, each segment of computation is started in synchronism 
with the converter clock. Where different computations, each with its 
own cycle time, must be interleaved, the same techniques are available. 

Sequencing Computations. Suppose a computation X is to be per­
formed each conversion interval T, while a computation Y is to be 
performed once in each double interval, 2T. (See Fig. 3a, b.) Note that 
T is in seconds of problem time. This can be accomplished if the digital 
program is written to convert AID and D I A as follows: 

1. Read and convert data AID for the first computations Xl and Y 1• 

2. Compute Xl' 
3. Write Xl results to the converter buffer. 
4. Complete half of the Y 1 computation. 
5. Convert X 2 data AID and Xl results D I A. 
6. Read in data for computation X 2 • 

7. Write X 2 results to converter. 
S. Complete Y 1 computation. 
9. Write Y 1 results to converter. 

10. Convert Y 1 and X 2 D I A, Y 2 and X 3 AID, and repeat the cycle. 

This sequence completes two X calculations (Xl and X 2 ) and one Y 
calculation (Y 1) in the interval 2T. (See Fig. 3c.) 

The analog computer time scale is adjusted so that 2T seconds of 
problem time equal the nominal execution time of the entire digital com­
puter program. The digital computer program will control conversions 
and provide the computations X and Y with approximate cycle time of 
T and 2T seconds of problem time. These cycle times will not be exactly 
periodic as pointed out earlier. The cycle times can be made exactly 
periodic by setting the analog computer time scale so that the maximum 
execution time of one cycle of the digital program is equal to 2T seconds 
of problem time. The conversions must also be placed under the control 
of the external clock which is set to convert every T seconds. In this 
way, the interlocks on the input-output register insert sufficient idle 
time at each conversion to accommodate the uncertainty in execution time 
of the digital computer program. (See Fig. 3d.) Note that while the 



COMBINED ANALOG-DIGITAL COMPUTING SYSTEMS 30-11 

L-T~ J I-k.;----- 2 T ------' 

(a) 

(b) 

~> -<->- ~>- - ~ 

Timing uncertainties 
(c) 

r:I Idletime~~ 'd,etime,~~ 
fYJN ~Yl 10 ~Yl ·ILl 

~ ~ 

Timing uncertainties 
(d) 

R . d (Idle time 

~-pa-rt-o-f -Y-
1 
~[XZJ eo7~ S [3 

-Timing uncertainties 
(e) 

FIG. 3. Time sequencing of computations: (a) X computation time; (b) Y computation 
time; (c) combined X and Y computation; (d) combined computations with idle time; 

(e) combined computation with Y computation divided unequally. 

actual execution time of the program is longer, the analog computer's 
time scale has been adjusted so that the longer interval still equals T 
seconds of the problem time. 

A difficulty sometimes occurs in dividing the Y computation into equal 
parts. Frequently, a long operation such as a multiply or divide will 
occur at the point where the computation is to be split. In this case, it 
is necessary to rewrite the program by performing the arithmetic opera-



30-12 UNUSUAL COMPUTER SYSTEMS 

tions in a different order, or to split the program unequally. An unequal 
split of the program necessitates inserting more idle time into the program 
during the cycle than would otherwise be necessary. If there are several 
computations to be interleaved, the basic period of the digital program 
may be quite long, containing many short computation intervals so that 
additional idle time inserted to offset the program segmenting difficulties 
can mount up. 

Program Interrupt. A feature available on several of the current 
large-scale computers is useful in attacking this problem. The program 
interrupt feature provides an input for an interrupt pulse from the con­
verter clock. The interrupt pulse forces a jump in the digital computer 
program at the completion of the instruction currently being executed 
with provision for returning to the main program at the point where 
interrupted at a later time. With this feature, the interleaved X and Y 
computations would be programmed as two separate computations. The 
first computation is programmed to read data for the Y computation, 
compute Y, and write the results to the converter, with a jump back to 
the start. The second computation is programmed to read data for X, 
compute X, and write the results to the converter with a final jump to 
an unspecified location. The procedure is as follows. 

1. The program is started in the Y loop. 
2. The in-out interlocks halt the program immediately, since Y data 

have not been delivered by the converter. 
3. At the first clock pulse, data transfer into the in-out register and 

release the interlocks. 
4. At the same time, the program interrupt is initiated. 
5. At the end of one of the early Y computations, the interrupt becomes 

effective, forces a jump to the start of the X computation, and sets the 
address in the jump instruction at the end of the X computation to return 
to the Y computation at the point of interruption. 

6. In this way, the program executes one or two instructions of the Y 
loop, jumps out to the X computation, completes the X computation, and 
returns to the Y computation. It continues until the next converter clock 
pulse initiates data transfers between the two computers and interrupts 
the Y computation, forcing a jump which inserts the second X computation. 

7. The program then returns to the Y loop, which it completes. 
8. The program then jumps to the start of the Y computation, where 

the interlocks hold the program until new Y data are available from the 
converter. 



COMBINED ANALOG-DIGITAL COMPUTING SYSTEMS 30-13 

With this approach, the analog time scale is set so that the maximum 
execution time of one Y computation and two X computations is equal 
to 2T seconds. The converter clock is set to interrupt at T seconds. The 
in-out interlocks synchronize the start of the Y computation, while the 
program interrupt inserts X computations at the appropriate time. (See 
Fig. 3e.) 

Data Transfers. Cycle time limits the highest frequency component 
of the response which the digital computer program can faithfully repro­
duce. Delay time represents a transport lag in the loop through the 
digital computer. In general, such a lag has a destabilizing effect on the 
system. Both the cycle time and the delay time are determined by the 
execution time of the digital computer program. It is important to elim­
inate as many housekeeping, or nonarithmetic, instructions as possible 
from the computer program, so that cycle and delay times may be mini­
mized. For this reason, the conversion equipment should be designed to 
transfer data into the digital computer and accept results from the 
digital computer as rapidly as possible. The conversion equipment should 
be designed to require a minimum of control from the digital computer 
program. The control which the program must supply should be simple 
and direct so that valuable computer time is not lost in setting up data 
transfers (Ref. 7). 

4. MODES OF OPERATION 

Sampled Data. The combined system is particularly useful for the 
simulation of large and complicated control· systems, particularly if the 
system includes sampled or digital effects such as a radar which obtains 
information at discrete times or a digital guidance computer. The divi­
sion of the computational task between the two computers is somewhat 
arbitrary. The guiding principle is that high-accuracy computations 
must be performed digitally whereas low-accuracy computations may 
be performed by either analog or digital techniques. Furthermore, it is 
advisable, where possible, to place high-frequency effects on the analog 
computer and low-frequency effects on the digital computer. 

Computational Assists. The combined system is useful for the same 
class of problems that are normally placed on an. analog computer. The 
digital computer can very easily provide computational assistance in 
areas which are difficult for the analog computer. As an example, a 
simple time delay is difficult to simulate by analog techniques; the digital 
computer need only store sampled values for a specified time and then 
transmit a delayed value each time a new value is read in. A function 
of two variables is awkward for an analog computer to supply but easy 



30-14 UNUSUAL COMPUTER SYSTEMS 

for a digital computer. While these examples are almost trivial, a prop­
erly designed combined system can be efficiently used for applications 
as simple as this. 

Time-Sharing Modes. A properly designed combined system can, 
of course, operate as an independent analog computer and an independent 
digital computer. It could also act as an independent analog computer 
and an independent combined analog-digital computer, by splitting the 

+ 

Analog integration 

Digital integration 

I I 

Analog integrator 

Step function 
~-....., from converter 

AID converter 

Point slope 
digital 

integration + 

correction" 
term: 

+ 
Output 

FIG. 4. Combined analog-digital integration. 

analog equipment between the two computations. It is even possible by 
means of the program interrupt feature to time-share the digital computer 
so that an independent combined computation and an independent digital 
computation are performed simultaneously. In order to do this the digital 
computation system must reserve a block of cells for the analog compu­
tation so that the analog program can be in high-speed storage at all 
times. The program interrupt feature can then slip a small computation 
for the analog computer, such as a function of two variables, into the 
digital program I whenever the analog computer requires it, without ap­
preciably affecting the execution time of the digital computation that is 
being executed independently. 

Digital Monitoring. The combined system has interesting applica­
tions in addition to the more obvious ones, suggested above, in which 
the computational load is split between the two computers in such a way 



COMBINED ANALOG-DIGITAL COMPUTING SYSTEMS 30-15 

as to perform one part of the computation by analog techniques while 
the remainder is computed digitally. The more novel applications 
employ both analog and digital techniques for the same computational 
task. The analog computation is performed continuously with the peri­
odic digital computation used to check and modify the analog compu­
tation so that the values are correct at the sampling instants. 

Integrations. Greenstein (Ref. 8) has suggested a method of inte­
gration which employs both analog and digital techniques. The input is 
sampled and integrated digitally as shown in Fig. 4. The sampled values 
are subtracted from the input waveform in an analog circuit which gives 
the sampling error. The sampling error function is integrated in an 
analog circuit, sampled, and added as a correction to the results of the 
digital integration. The combined analog digital integration produces 
results which are more precise than an analog integration and more 
precise than an all digital integr~tion with the same step size and an 
integration formula of corresponding complexity. 

REFERENCES 

1. G. G. Bower, Analog-to-digital converters-What ones are available and how 
they are used, Control Eng., 4, 107-118 (1957). 

2. T. C. Fletcher and N. C. Walker, Analog measurement and conversion to 
digits, ISA Journal, 2,345 (1955). 

3. B. M. Gordon, High-speed reversible voltage-digital translators and their appli­
cations, 10th Annual Instrument-Automation Conference and Exhibit, Sept. 1955. 

4. M. Palevsky, Hybrid analog-digital computing systems, Instruments and Auto­
mation, 30, 1957, 1877-80 (1957) 

5. F. H. Blecker, Transistor circuitry for analog-to-digital conversion, WESCON, 
August 23, 1956, Los Angeles, Calif. 

6. H. Freeman, Cycle and delay time considerations in a real time digital com­
puter, Am. Inst. Elec. Engrs. General Meeting, CP 57-677, Montreal, June 24-28, 
1957. 

7. W. F. Bauer and G. P. West, A system for general purpose analog-digital compu­
tation, J. Assoc. Compo Mach., Jan. 1957 

8. J. L. Greenstein, Application of AD-DAverter system in combined analog 
digital computer operation, Am. Inst. Elec. Engrs. Pacific General Meeting, June 
1956. 

9. H. K. Skramstad, Combined analog digital simulation of sampled data systems, 
Am. Inst. Elec. Engrs. Summer General M eeling, Montreal, June 24-28, 1957. 

10. G. P. West, Combined analog and digital techniques, Proc. 4th Annual High­
Speed Computer Conference, Louisiana State University, March 5-8, 1957. 

Note. References 1 and 2 contain additional references. 





F UNUSUAL COMPUTER SYSTEMS Chapter 31 

Simple Turing Type Computers 

,. Basic Concepts 

2. Functional Requirements 

3. Machine Description 

4. Mechanization 

5. Programming 

6. Communication with no Auxiliary Storage 

7. Machine Comparisons 

References 

I. BASIC CONCEPTS 

Joseph O. Campeau 

31·01 

31·02 

31·03 

31·07 

31·01 

31·13 

31·15 

31·16 

Time sharing is a basic design feature of general purpose digital 
computers. For example, the typical digital computer operates by time­
sharing an arithmetic element among all the arithmetical computations 
(Ref. 1). The time sharing saves equipment and results in a slower 
computational rate than would otherwise be achieved with less time 
sharing, for example, as in an analog computer. 

A complete set of logical elements is required to design the arithmetic 
unit and other parts of a digital computer. (See Chap. 17). The complete 
set of Boolean elements that is usually used in the logical design of digital 
computers consists of and, or, and not elements. The Sheffer stroke and 
Pierce function each are complete and can be used to form all logical 
Boolean functions. 

The concept of time sharing can be carried one step further. Consider 
a digital system which will operate by time-sharing an and gate, an or 

31·01 



31-02 UNUSUAL COMPUTER SYSTEMS 

gate, and a not gate among all the required logical Boolean computations 
(and hence also among all the arithmetic computations). 

Turing first described a general class of machines (see Ref. 2) and 
pointed out that, by using a few simple operations of the proper type, any 
digital computation could be carried out. In this chapter, machines of 
the logically programmed type will be called Turing machines in spite of 
the fact that the machine has more than one "tape" and the tapes are 
finite. This name will be used, although it will be recognized that Turing 
did not in his paper suggest the use of logical operations but rather used 
arithmetical examples to illustrate his ideas. Such a machine can be used 
(a) for computation or (b) to imitate other digital systems. Recent work 
has been concerned with the design of Turing machines (see Refs. 3 and 4). 
Much has been written on the logical implications of machines of this type, 
for example see Ref. 5. 

2. FUNCTIONAL REQUIREMENTS 

In order that any Turing type machine be able to imitate any general 
purpose computer or be used for computation it must have at least the 
following three characteristics: 

(a) A storage equal in bit capacity to or greater than the machine it is 
to imitate. This can be satisfied many different ways, but one which 
requires a minimum amount of hardware is the use of a delay element with 
enough capacity to hold all the variables involved. This can be mechanized 
by using a circulating register on a magnetic drum, and will be called the 
main storage. 

(b) The communication ability to take any two bits located anywhere 
in the storage and pass them through a processing center and place the 
result anywhere in the storage. Information communication can be realized 
in one of two ways. The first technique is more direct and will be discussed 
at greater length. The second technique requires less equipment, but it is 
more complicated in its operation. 

(c) A processing center which can combine two bits of information to 
produce a third and or or function, be able to accept a single bit and produce 
its complement, and accept inputs to the Turing machine and produce 
outputs (or the equivalent of these operations). 

COllllllunication Techniques. The first technique, in its simplest 
form, utilizes an auxiliary storage S2 of a single bit capacity. When any 
particular bit is to be moved relative to all the other bits in the main 
storage Sl, it is transferred to S2. By then waiting the appropriate 
number of bit times until the second bit involved emerges from Sl, it is 
possible to present the two desired bits of information to the processing 
center at the same time. The output from the processing center can then 



SIMPLE TURING TYPE COMPUTERS 31-03 

be set into 82 and by again waiting the appropriate number of bit times 
this output can be placed anywhere in 8 1• 

In this form 82 could consist of a single flip-flop, for example. 
A less simple version of the 82 communication technique involves a 

multi bit delay 82. Provided that the lengths of 81 and 82 have no com­
mon multiples other than unity, it can be shown that any bit in 82 will 
eventually come next to any bit in 81. 

Thus whether 8 2 is of single or multibit capacity it still serves the same 
basic purpose of information communication, and allows any particular 
bit to be placed anywhere at all in 81. 

The multi bit delay can be mechanized by using a second circulating 
register on the drum. This communication technique allows the con~ 
struction of a Turing machine which will have no storage external to the 
surface of a drum. 

The second information communication technique does not require an 
8 2 but makes use of a tap on 81. This technique will be described in 
Sect. 6. 

3. MACHINE DESCRIPTION 

Operations. The following three operations will perform all the 
functions mentioned in the previous sections. Note. The main storage 81 
and auxiliary storage 82 systems are said to be synchronous when they 
operate on a common clock, asynchronous if they do not. 

(a) Do Nothing (DN). Circulate the main and auxiliary storages 
(81 and 8 2). 

(b) Combine (C). Combine the two bits coming from 81 and 82 in 
the operation if + B, i.e., the Sheffer stroke, AlB, (the Pierce function, 
ALB, will also work) and place the result in 8 2• Transfer the bit which 
came from 82 to 81. 

(c) Input-Output (I). (1) For synchronized systems, read the input 
bit into 8 2, read out the bit coming from 8 2 • (2) For asynchronous systems, 
read the two input bits into 8 1 and 8 2 and read out the two bits emerging 
from 8 1 and 8 2. 

Use of Operations. DN operation is used for communication. 
The machine will circulate 81 and 82 until the two desired bits emerge 
at the same time and then either the C or the I operations will be used. 
The C operation can be used to mechanize the and, or, and not operations, 
as well as provide communication between 81 and 82. The I operation is 
self-explanatory. 

Sheffer Stroke. In this chapter a machine will be developed by using 
the if + B function, although a similar treatment can be used for the 
A . B operation. The if + B operation is summarized in Table 1. 



31-04 UNUSUAL COMPUTER SYSTEMS 

TABLE 1. SHEFFER STROKE FUNCTION, 1 + 13 

A 

o 
o 
1 
1 

B 

o 
1 
o 
1 

1+13 
1 
1 
1 
o 

Notation. Assume a single bit S2. A three-row matrix is used: (a) 
the first row refers to information coming from 8 1 ; (b) the second row, 
for a given column, will specify the operation which combines the bits in 
the first and third rows, that is, C, I, or DN; (c) the third row will refer 
to information from 8 2 . 

And Function. The program which will form the and function for 
desired bits A and B in Sl and place the result back into Sl is shown in 
matrix form in Table 2. 

TABLE 2. PROGRAM FOR THE and FUNC'l'ION 

Main storage, 81 0 A 1 B 1 X 
Operation C DN C DN C DN C DN C DN C 
Auxiliarystorage,82 X 1 ... 11 ... 1 A ... A 1+13 1+13 AB ... AB 

Initially it is assumed that S2 is in some arbitrary state X, and that at 
least one 0 and two l's are available from known locations in Sl. The ... 
are used to indicate that a certain number of bit times must elapse before 
the required information is available. Recall that the C operation trans­
fers the variable that came from 8 2 to 8 1• The operation is then as follows. 

1. The C operation combines the 0 with X to produce 0 + X = 1 in S2. 
2. The DN operation is then used to hold the 1 in the S2 until A, the 

first bit, emerges from Sl. Then A coming from Sl is combined with the 
1 in S2 and I + A = A is set into S2. 

3. This is held in 82 by the DN operation until the 1 emerges from Sl. 
This is combined with the A from S2 and the result, I + A = A, is set 
into S2. 

4. This is held in 82 by the DN operation. When B, the bit to be com­
bined with A, comes from Sl, B is combined with A to produce A + B. 
This is set into S2. 

5. The DN operation is again used to hold A + B in S2. When the 
second 1 comes from Sl, A + B is combined with 1 and the result 

I + (A + B) = AB is set into 8 2• 

6. The operation DN is used to hold the desired and function, AB, in 
8 2 until the desired location (arbitrary state, X) in 8 1 emerges. At this 
time, in column eleven, the C operation is used to transfer AB from S2 to 8 1• 



SIMPLE TURING TYPE COMPUTERS 31-05 

COlllplelllent. The matrix form of the complement program is shown 
in Table 3. 

TABLE 3. PROGRAM FOR COMPLEMENT 

81 0 
Operation C DN 
82 X 1 ..• 

A 
C DN 
1 A ... 

X 
C 
A 

Or Function. The matrix form of the or function program is shown 
in Table 4. 

TABLE 4. PROGRAM FOR or FUNCTION 

81 0 A X 0 B A X 
Oper-

ation C DN C DN C DN C DN C DN C DN C 

S2 X 1 ... 1 A ... A X+A ... Xl ... 1 B ... B A+B ... A+B 

Notice that once A has been developed it is sent from 82 to 81 by the 
combine operation at the fifth column. At the eleventh column the A 
coming from the main memory is combined with the [j in 82 to give 
A + B. The X indicates an arbitrary value in 8 1 which will be replaced 
by A + B. 

Regeneration. The combine operation also requires that the bit 
emerging from 82 be set into 81. This means that whenever a bit from 
82 is combined, that bit will no longer be in 82. It will have been used 
up in the operation. It is therefore necessary to have a process which will 
generate extra quantities from a given quantity to replenish this variable 
as it is "used up" by the combine operation. 

Note. For clarity, the DN operations will be omitted from programs. 
The use of this operation for communication is indicated in Tables 2 to 4. 

To develop an extra A (where A is any Boolean variable) in 8 2, given 
a single A, four l's, and two O's on the drum, first develop A using the 
program of Table 5. This program generates an extra A needed in the 
process without using up an A, any l's or O's. 

TABLE 5. PROGRAM FOR GENERATING THE COMPLEMENT OF A VARIABLE A 

SI 
Operation 
S2 

o 
C 
X 

1 
C 
1 

X 
C 
o 

A 
C 
1 

1 
C 
A 

X 
C 
A 

This process uses up one 0, two l's, and an A. It produces one 0, 
two l's, an A and an A. Since the process ended with all the input quan­
tities plus the A, it is self-sustaining. 



31-06 UNUSUAL COMPUTER SYSTEMS 

Generating Extra Variables. Now given the A, the A, four l's, 
and two D's, an extra A can be generated by the program of Table 6. 

TABLE 6. PROGRAM FOR GENERATING AN EXTRA VARIABLE 

81 0 1 
Operation C C 
82 X 1 

X X 0 1 
C C C C 
o 1 j( 1 

X A 
C C 
o 1 

1 
C 
A 

1 
C 
A 

A 'X 
C C 
A A 

The inputs to this process were four l's, two D's, an A, and an A. The 
outputs were four l's, two D's, two A's, and two A's. Thus the program is 
self-sustaining and also produced the extra desired A. 

Generation of I's froIIl O's. Initially S1 will be set to all zeros or 
at least there will be two D's in known locations in S1. A 1 can be generated 
from zeros jn a self-sustaining manner. 

The program which does this is shown in Table 7: 

TABLE 7. PROGRAM FOR GENERATING l's FROM O's 

81 0 
Operation C 
82 X 

The steps are as follows: 

X 
C 
1 ... 

o 
C 
j( 

1 
C 
1 

X 
C 
o 

1 
C 
1 o 

1. The process starts with a 0 and produces a 1 in S2 by 0 + X = 1. 
2. The 1 in S2 is stored in S1 by X + I = X. 
3. A second 1 is then produced in 82 by repeating the first step on a 

second O. 
4. Combine the 1 from S1 with the 1 in S2 to form 0, I + I = O. Note 

that in this process the 1 in S1 has been replaced by the 1 from 82. 
5. The 0 in S2 is used to replace the original 0 in S 1 by 0 + X = 1 and 

at the same time starts the sequence again. 
Thus the process produces l's from D's and can regenerate D's. 
Self-Sustaining Quality. Even though the combine operation "uses 

up" the quantity coming from S1, given all D's initially in S1, l's can be 
generated and for each A at least two A's can be produced. By using 
these processes any desired number of l's, D's, and A's (any variable) can 
be generated, so that the machine as a whole is "self-sustaining." 

Adder Logic. As an example of the use of the DN and C operations, 
the sum and the carry logics will be generated. The sum and carry logics, 
given the previous carry K and the bits of the two binary numbers being 
added together, A and B, is: 

S = ABK + ABK + ABK + ABK 

K = AB + BK+AK 



SIMPLE TURING TYPE COMPUTERS 31-07 

where S is the sum and K is the new carry. The program to generate 
these two functions is given in Table 8. The C operation has been dropped 
out, since it is always implied. It is also understood that enough extra A's, 
B's, l's, O's, etc., will be generated using the processes described above to 
make this process self-sustaining. 

TABLE 8. SUM AND CARRY LOGICS FOR AN ADDER 

81 A 1 B 0 A E A+E K 0 
82 1 A A A+B 1 A A+B AB+AB K+AB+AB 
81 AB+AB K K+AB+AB 0 
82 1 AB+AB K+AB+AE 8 = AER+ABK+ABic+ABK 
81 B A K A+B 
82 1 B A+B K+AB K = AB+BK+KA 

Input-Output. With regard to the input-output operation for two 
synchronous systems, only a single bit need be transferred. The com­
munication for both inputs and outputs can be a train of O's until some 
information, (either a 1 or a 0) is to be transmitted. At this time first 
a 1 is transmitted followed immediately by the information bit. Thus to 
send 1 0 1 and then 1 1 after a slight delay, send the following sequence: 

o 0 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 o. 
In the case of two asynchronous systems, it is necessary to transmit 

two bits each for input and output. Assume that the duration of the trans­
mitted signal will always be at least one bit time long (receiver time). 
The information transmitted as (a) the information bit (either 1 or 0) 
and (b) the clocking bit. The information bit will be set and then the 
clocking bit will go from 0 to 1. The receiver samples the information 
line when the clocking line goes from 0 to 1. 

4. MECHANIZATION 

The specific Turing machine described above can be mechanized by 
using a drum storage. A single program register of length 2p bits with 
two read stations p bits apart will be required, where p » m and m is the 
length of the SI register. Assume asynchronous inputs and outputs. The 
order code for the machine is given below: 

PI P2 

Combine 0 0 

Do nothing { ~ 1 
0 

Input-output 1 1 

The logic for the machine using set-reset flip-flops (see Chap. 17) IS 

as follows: 



31-08 UNUSUAL COMPUTER SYSTEMS 

Auxiliary Storage (S2) Flip-Flop A 

SA = PI P2 if + PI P2 VI 

RA = PI P2 AR + PI P2 VI 

Main Storage (SI) Write Flip-Flop W 

8W = (P1P2 + P1P2)R + A P1P2 + P1P2V2 

RW= SW 

where R is the main storage (81) read flip-flop, and VI and V2 are the 
two input bits. 

Outputs 
VI = PI P2 A 
V2 = PI P2 R 

The computer block diagram is shown in Fig. 1. 

Inputs 
Processing 

center 
(no storage) 

82 

~ 81 

H PS PS 

Outputs 

I--

~ 
FIG. 1. Block diagram of Turing type computer: 8), main storage; 8 2, auxiliary 

storage; PS, program storage. 

Note that only one program storage (PS) with two reading heads on 
it was required. Since only three different operations are used rather than 
four, it is possible to use only one program register as follows. By making 
the order code for the DN operation either of the two codes 01 or 10, it 

..... :;.---...---'--___ 2_P_-_l ___ f§ of delays 

FIG. 2. Alternate form of program storage. 



SIMPLE TURING TYPE COMPUTERS 31-09 

is possible to make the machine operate satisfactorily even though the same 
bit of information will be used alternately for PI and P2. As a final 
point it is interesting to note that it is also possible to construct a program 
storage as in Fig. 2. 

In using this type storage it will always be necessary to place at least 
one DN operation between each C and I operation although any number 
of C or I operations can be placed adjacent to one another. . 

5. PROGRAMMING 

While the logic for the Turing machine as well as the information in 
the program channels is fixed, it is nevertheless possible to have this 
machine imitate any general purpose digital computer within the capacity 
of the program and main storages in all respects except speed of operation. 

Terlllinology. The actual physical logic for the Turing machine will 
be called the first level logic. The fixed program in the program memory 
will be called the first level program. The logic for the digital system that 
the Turing machine is imitating will be called the second level logic. Note 
that the Turing machine's first level program is used to imitate the second 
level logic. The second level machine will be the computer that the 
Turing machine is imitating. 

Finally it is instructive to note that the second level computer will 
have its own program. For example, the second level machine might be 
Frankel's computer (see Ref. 1), and this computer has a program. The 
program for the second level machine will be called the second level program. 
This program will be changeable and will be located physically in the main 
storage. It is instructive to note that while the first level program (located 
in the program channels) cannot be changed without the use of extern21 
filling equipment, the second level program can be altered without the 
addition of any extra physical equipment to the Turing machine. This is 
true since the Turing machine already contains within itself the ability 
to alter the contents of its own main storage. 

First Level Progralll Design Exalllple. In order to illustrate tl:e 
techniques involved in designing a first level program a simple digital 
system will now be considered. This digital system is to accept asyn­
chronous input pulses and count them. At every fourth pulse it is to 
reset the counter to zero and send out a counting pulse. 

The first step in the process is to write out a second level logic which 
will accomplish the desired task. This logic must be written in terms of 
delay elements each of which has one input and one output. The particular 
system under consideration will require two delay elements called Ql 
and Q2. The input pulse will be called U and the output pulse will be 
called V. The logic for the system is: 



31-10 UNUSUAL COMPUTER SYSTEMS 

Nl = Q2U + QIU 

N2 = QIU + Q2U 

U = UlnUln-l 

V = UlnUln_l QIQ2 

where Nl and N2 are the next states of Ql and Q2 and Ul n and Uln-l 
are the present and previous values of Ul input line. 

The counter QIQ2 counts the sequence shown in Table 9. It repeats its 

TABLE 9. COUNTER SEQUENCING 

Time Ql Q2 

1 0 0 
2 1 0 
3 1 1 
4 0 1 
5 0 0 

Generate all 

- required 1'5, 0'5 -
r-- Ql's, Q2's, etc. -

r--

L....-.. 
Generate Nl f-+-

~I-

~ 
Generate N2 ~-

~ 

If; 
Generate output 

Output V 

U 
In put Ul 

Generate U ~ -

FIG. 3. Sequence of operations to be performed. 



SIMPLE TURING TYPE COMPUTERS 31-11 

pattern every fourth count. The signal U1 n Ul n_ 1 = U occurs once each 
time the asynchronous input U1 goes high. Assume that contact bounce 
will not last for a complete circulation time of the main storage. There 
does exist a logic which will bring in three bits to the Turing machine as 
inputs. One can be the break and a second the make signal so that contact 
bounce difficulties can be eliminated entirely. 

First write in block diagram form a flow chart (see Fig. 3) to indicate 
the order in which the operations are to be performed. The first level 
programs are shown in Table 10. 

TABLE 10. FIRST LEVEL PROGRAMS 

a. Generate U 
Second level logic : U = Uln Uln- 1 
Program: 

X Uln--l 1 
ICC 
X Ul n U = Uln + Uln-l U = Uln Uln-l 

b. Generate V 

c. 

Second level logic : V = Ul n Uln-l QlQ2 = UQlQ2 
Auxiliary storage holds U from U generation 
Program: 

Ql 
C 
U 
Q2 1 

1 
C 

'fJ + Ql 

eel 
UQl U + Q2 + Ql V = QIQ2U 

Generate Nl 
Second level logic : Nl = Q2 U + Ql fj 
Program: 

0 Q2 U 0 U Ql ii + Q2 
C C C C C C C 

0 
C 

X 1 Q2 fT-t- Q2 1 U Ql + U Nl = Q2U + QIU 

d. Generate N2 

Second level logic: N2 = Ql U + Q2 fj 
Program: 

Ql 1 U 0 U Q2 Qi + U 
C C C C C C C 
1 Ql Ql Qi+U 1 U Q2 + U N2 = QIU + Q2U 

The total program must also regenerate used up quantities in order to 
be self-sustaining. 



31-12 UNUSUAL COMPUTER SYSTEMS 

TABLE 11. PROGRAM MATRIX 

A digital system that accepts asynchronous input pu]ses and counts them. At 
every fourth pulse the counter is reset to zero and sends out a counting pulse. 

c -
- c c -
- c c 
c - c -
- c c -
- c c -

- c c -
- c c -
- c c -
- c c -

- - c - - - c -
- - c - - - - C - -

- - c - - C -
- C - -

- c - c 

- c -
- - - - - - - - - - c -

- - - - - - - - - - - c - - C - - c 
- c - c - - C - - c -

c - -
- c c c - - - - - c - c c c c c - -
- c c - - - - - -
- - - c - - - - - c c - - - - - - -
- c c c - - c - - - c c c c - - - - -
- c c - - - - - - - - - - - - - - - - - - - -

- c -
- c c c -
- c c - - - - -

- c -

c 
- - c 

- - C C -

c - - C -
- C C - ICC C C - - - C -
- C C -

- - - - C - C - - C - - C - -
- C C C - C 
- C C -

- - C - - C - - C - C -
- C - C - C -

- C C - - C I--·--
- C C 

- C C -
- C C - - C - - C 
- C C - - - - - - - -
- C C - C - - C -
- C C 

Detailed ProgralD. The program itself can best be described using 
a matrix. For this particular problem a machine with a program 920 in­
structions long was used. The program channel was 1840 bits long. The 
main storage was 23 bits long. This means the program recirculates each 
40 circulations of the main storage, i.e., 23 X 40 = 920. The matrix 



SIMPLE TURING TYPE COMPUTERS 31-13 

mentioned above will give the instructions during the ith (i = 1, ... , 40) 
revolution of the main storage in row 4I-i. The matrix is 23 by 40 and 
if the program positions are numbered 1, ... , 920, then element Qii in 
the matrix will give the program operation which is to occur at program 
position 

23(40 - i) + j(i = 1, ... ,40; j = 1, ... , 23). 

The program matrix has been shown below in Table 11. C and I stand 
for combine and input-output, respectively. A blank space will stand for 
do nothing. 

Inputs ---------:l---i 
Processing 

center 

Main storage 

Program storage 

Program storage 

I--_----'~--- Outputs 

Mafn 

FIG. 4. Block diagram of a Turing type computer having one 
main storage with a tap. 

6. COMMUNICATION WITH NO AUXILIARY STORAGE 

The Turing machine described in this chapter made use of an auxiliary 
storage for information communication. It was shown that this could 
either be a single bit storage (a flip-flop) or a multi-bit storage (provided 
the main and auxiliary storages had no common multiple other than unity. 

There is a communication technique which does not require the use of 
an auxiliary storage but instead requires only a tap in the main storage. 
One structure a machine of this type can have is as shown in Fig. 4. 

The logic for the machine in terms of set-reset flip-flops is: 
Write flip-flop W: 

SW = PIP2R + PIRW + piWP2 + PI WU2 
R-rV = PIP2R + P2RW + PIP2UIW 

Outputs, VI and V2: 
VI = PIP2WR 
V2 = PIP2WR 



31-14 UNUSUAL COMPUTER SYSTEMS 

The program is on fixed channels on the drum and is not altered. The 
order code for the machine is: 

Operation P1 P2 
C, combine· (A + B) 0 0 
I, input-output 0 1 
E9, exclusive or (A E9 B) 1 0 
DN, do nothing 1 1 

The DN, C, and I operations are essentially the same as described 
earlier. The exclusive or operation, A E9 B (or AB + .irB) operates on 
the bits coming from the main storage as shown in Table 12. 

TABLE 12. 

A B Exclusive Or, A E9 B 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

The result is set into the main storage. Only the communication 
mechanism will be described for this particular machine. 

What must be shown is that any two bits in the storage can be brought 
adjacent to each other so that they can be operated on. Basically the 
problem is one of having to move a single bit of information "by" the 
other bits and next to the bit with which it is to be combined. 

First assume initially every other bit in the storage is a 0 and that the 
following sequence exists in the storage: 

A o B o F o D 

It is desired to move A past Band F so that A and D can be operated on. 
After such a move the storage sequence would then be: 

A o B o F A D 

The process which does this is shown in Table 13. The E9 is used for 
the exclusive or operation. 

Thus the final result was that A and D are adjacent and can be oper­
ated on. 

The communication technique described above made use of a single 
bit delay on the storage. It can also be shown that as long as the tap 
distance and the overall length of the main storage have no common 
multiples other than unity that this technique will also work. Thus again 
it is possible to build a machine with no logical flip-flop, i.e., all storage 
on the drum. 



SIMPLE TURING TYPE COMPUTERS 31-15 

TABLE 13. PROGRAM FOR SHIFTING VARIABLES TO MAKE THEM ADJACENT 

Read A 0 B 0 F 0 D 
Operation DN Ef:) DN Ef:) DN Ef:) DN 
Write A A B B F F D 

Read A A B B F F D 
Operation DN DN Ef:) Ef:) Ef:) Ef:) DN 
Write A A AEf:)B A AEf:)F A D 

Read A A AEf:)B A AEf:)F A D 
Operation DN DN DN DN Ef:) DN DN 
vVrite A A AEf:)B A F A D 

Read A A AEf:)B A F A D 
Operation DN DN DN Ef:) DN DN DN 
Write A A AEf:)B B F A D 

Read A A AEf:)B B F A D 
Operation DN DN Ef:) Ef:) DN DN DN 
Write A A B 0 F A D 

Read A A B 0 F A D 
Operation DN Ef:) DN DN DN DN DN 
Write A 0 B 0 F A D 

7. MACHINE COMPARISONS 

Definition of a Measure. One measure of performance of Turing 
type machines is the sum of the number of bits transferred to and from the 
processing center per bit time of computer-processing. Define number of 
bits as the logarithm to the base two of the total number of states repre­
sented. For example, two binary lines are required to represent three 
states, but the number of bits being transferred is log23 = 1.57. This 
measure (a) is not dependent on the clock frequency of the computer. 
In determining a all information transfers from the storage should be 
considered as well as all inputs and outputs to the computer. 

In considering information processing note that in certain instances 
such as circulating storage registers on drums and delay lines or composed 
of flip-flops there is a continuous transfer of information from one storage 
cell to the next. Even though there is movement of information, it will 
not be considered that information processing occurs, provided that the 
transfer always occurs. 

COIllparisons. For example, a circulating register on the drum closed 
on itself would have a = O. Thus, a = 0 means no processing of data is 
occurring, even though information is circulating. 

The first machine considered which made use of an auxiliary storage 



31-16 UNUSUAL COMPUTER SYSTEMS 

for communication has an a = 8 + log23 = 9.6. Four of the bits come 
from the input and output (assuming asynchronous inputs and outputs), 
2 come from the main storage, 2 from the auxiliary storage, and log2 3 come 
the program. 

The second machine considered which did not make use of an auxiliary 
storage for communication had a = 9. (4 for input-output, 2 for pro­
gram, and 3 for main storage.) 

Thus the second machine is seen to have a slightly smaller a measure 
than the first. 

A theoretical minimum a for a general purpose digital computer can be 
developed. For asynchronous inputs and outputs at least four lines are 
required. The processing center must have at least two inputs from the 
memory and one output to the memory. Thus a minimum possible value 
of a = 7 for asynchronous inputs and outputs is obtained although in this 
paper the minimum value machine presented had a = 9. 

The machine with a = 9 appears to be the Turing machine with the 
le3.st a which still can be a general purpose digital computer with asyn­
chronous inputs and outputs. 

REFERENCES 

1. S. P. Frankel, The logical design of a simple general purpose computer, I.R.E. 
Trans. Elec. Comp., March 1957. 

2. A. M. Turing, On computable numbers, with an application to the entschei­
dungsproblem, Proc. London Math. Soc., 42, 230-265 (1936). 

3. W. E. Smith, A digital system simulator, Proc. West. Jt. Compo Con/., Feb. 
26-28, 1957. 

4. J. Blankenbaker, Logically micro-programmed computers, I.R.E. Trans. Elec. 
Comp., 4, June 1958. 

5. C. E. Shannon and J. McCarthy, Editors, Automata Studies, Annals of Mathe­
matics Studies, No. 34, Princeton University Press, New Jersey (1956). 



INDEX 

AO, AI, A2, 2-158 
A3, Arithmatic, 2-158 
ABC, 2-158 
ABC I, 2-159 
Academy of Sciences of the Soviet Union, 

2-188 
Acceptance tests, simulation, 2-239 
Access requirements, files, 4-06 
Access time, magnetic drum, 19-05 

storage, (table) 4-13 
Accounting, casualty insurance, 8-08 

report preparation, 8-09 
data processing, 8-19 
dividend, 8-02 
inputs and outputs, 8-03, 8-09, 8-12, 8-15 
life insurance, 8-01 
processing steps, billing, 8-13 

casualty insurance, 8-10 
life insurance, data, 8-03 
payroll and salary distribution, 8-15 

quantity of data, 8-03, 8-10, 8-12, 8-15 
salary distribution, 8-15 
staff, 8-02, 8-09, 8-13, 8-16 

Accounting machine, line printers, 5-35 
Accuracies, analog computers, 22-37 

electrolytic tank, 25-11 
quarter square multiplier, 23-09 
resistance networks, 25-19 
resistance paper, 25-06, 25-07 
servo multiplier, 23-04 
time division multiplier, 23-07 

ACM, 1-02,2-186, 2-190, 2-261 
A-C network analyzers, 25-20 
ACOM, 2-156 
Acoustic delay line storage, 19-29 
A-C resolvers, 23-32 
Across-through relations, (table) 24-04 
Across variable, 24-03, 25-02 

Adams method, 2-229 
Adams and Milne method, 10-09 
Adders, binary, 18-08 

decimal, 18-27 
full, 18-09 
half, 15-22, 18-08 
incremental computation, 29-25 
Kirchhoff, 18-10 
mechanical, 27-02 
operational digital, 29-10 
parallel, 18-11 
symbols, 18-03, 18-10 
transistor, 16-11 
Turing computers, 31-06 

Addition, see Adders 
Addresses, 2-56 

degenerate, 12-28 
floating, 2-161 
indirect, 2-193 
modification methods, 2-60 
number per instruction, 12-27 
relative, present, 2-192 
sorting, 2-146 
symbolic, 2-160 
system, requirements, 2-56 

Addressing, 5-07 
Add-substract, 18-16 
ADES II, 2-157 
Adjoint system, 26-07 
AFAC, 2-156 
AlEE publications, 2-261 
Aircraft production, scheduling, 9-07 
ALGEBRAIC, 2-159 
Algebraic equations, simultaneous linear, 

10-02 
Algebraic language, 2-186 

Soviet compiler, 2-228 
Algorithms, 2-190 



2 INDEX 

Allison, G. M., 2-156, 2-157 
Allstate Insurance Company, 8-08 
Alphabetic information, 5-39 
Alphanumeric codes, 5-05 

Datatron 205, (table) 2-108 
AMA publications, 2-261 
Ambiguous-word logic, 2-54 
American Airlines, 9-01 
American Institute of Electrical Engi-

neers, 2-261 
American Management Association, 2-261 
AM-FM multiplier, 23-10 
Amplifiers, operational, 22-08, 22-16 

characteristics, 22-16 
chopper, 22-31 
design, 22-16 
drift, 22-17 
drift corrected, 22-30 
drift errors, 22-36 
errors, 22-33 
gain, 22-09, 22-16 
gain errors, 22-33 
integration, 22-09 
noise errors, 22-36 
sign inversion, 22-09 
summation, 22-09 
summing integrators, 22-09 
transfer impedance, (table) 22-18 

pulse, 14-21 
. torque, 27-04 

Amplitude scale factors, 22-10 
Analog computers; see also Analogs 

accuracy, 22-37 
A-C resolvers, 23-32 
amplifiers, 22-04 
analog-digital computing systems, see 

Analog-digital computing systems 
applications, 21-09 
classification, 21-02 
comparison with digital computers, 

(table) 21-02 
continuous, 21-04 
curve followers, 23-14 
diagrams, 22-03, 21-11 
differential analyzers, 21-04 
differential equation solution, 22-01 
differentiation, 22-03 
digital differential analyzers, 21-04, 28-

02; see also Digital differential 
analyzers 

Analog computers, digital operational 
computers, 28-11 

digital techniques, 28-01, 28-15, 29-01; 
see also Operational digital sys­
tems 

diode switching, 23-23 
direct, 21-03, 21-10 
discrete, 21-04 
discrete variable representation, 28-14 
division, 23-12 
electronic and mechanical, 27-02 
engineering problems, steps in the solu-

tion of, 21-06 
equations, solution, 27-09 
errors, 22-33 
field problems, 25-01; see also Field 

problems; Analogs 
function generators, 23-14; see also 

Function generators 
function mUltipliers, 23-01 
general purpose, 21-02 
hybrid systems, 29-01 
implicit computation, 23-32 
indirect, 21-04, 21-09 
initial conditions, 22-10 
input requirements, 21-05 
integration, 22-04, 22-07, 22-09, 23-13, 

23-25, 27-03 
limiters, 23-23 
linear elements, 22-01, 22-03 
long-time, 21-04 
mechanical, 27-01; see also Mechanical 

computers 
multiplication, 22-04, 23-01, 27-02 
noise, 26-01; see also Noise 
noise generators, 26-12; see also Noise 

generators 
nonlinear electronic elements, 23-01 
notation, 22-03 
operating frequencies, 22-12 
operational amplifiers, 22-08; see also 

Am pli fiers, operational 
operational digital techniques, 28-11, 

29-01; see also Operational digital 
techniques 

output requirements, 21-05 
parailel operation, 21-02 
passive computing elements, 22-04 
problem setup, 21-07, 22-12 
recorders, 23-34 



INDEX 3 

Analog computers, rectangular to polar 
transformations, 23-32 

relays, 23-23, 23-29 
sawtooth wave generation, 23-29 
scale factors, 21-07, 22-10, 27-14 
servodriven potentiometers, 23-31 
short-time, 21-04 
simulation, 23-25; see also Simulation 
special purpose, 21-02 
square wave generation, 23-29 
statistical problems, (table) 26-10 
statistical techniques, 26-01 
summers, 22-04, 22-09 
summing integrator, 22-04,22-09 
switching devices, 23-23 
symbols, (table) 21-10,22-03 
systems, 29-02 
time delays, 23-35 
transfer function representation, 22-13 
transfer impedance, short circuit, 

(table) 22-18 
trigonometric devices, 23-31 
variables, 22-02, 22-11 

Analog-digital computing systems, 30-01 
applications, 30-01, (table) 30-03 
buffers, 30-09 
control and timing, 30-08 
converters, 20-44, 30-04 
data transfer, 30-13 
digital monitoring, 30-14 
input-output buffer and interlock con-

trol, 30-09 
integration, 30-15 
interlocks, 30-09 
intelrupt feature, 30-12 
problem types, (table) 30-03 
sequencing, 30-10 
time sharing modes, 30-14 

Analog-digital converters, 20-44, 30-04 
applications, 20-44, (table) 20-45 
bandwidth, 30-06 
buffering action, 30-05 
codes,20-45, (table) 20-46 
code wheels, 20-52, (table) 20-56 
combined systems, 20-45, 30-04 
digital-analog, shaft position, 20-60 

time interval, 20-57 
voltage, 20-58 

digital codes, (table) 20-46 
electronic, 30-04 

Analog-digital converters, equipment, 
20-44, (table) 20-45 

feedback methods, 20-47, 20-60 
free running, 30-04,30-06 
frequency conversion, 20-48 
incremental pattern methods, 20-56 
incremental systems, 29-18 
indirect, 20-47, 20-57 
mechanical, 30-04 
plotters,20-63, (table) 20-65 
pulse width, 30-05, 30-07 
ramp method, 20-49 
RC networks, 20-60 
resistance networks, 20-58 
sampling, 30-04, 30-06 
shaft position, 20-51 

ambiguities, 20-52 
coded patterns, 20-51 
code wheel converters, 20-55, (table) 

20-56 
cyclic binary codes, 20-52 
digital-analog, 20-61 
dual brush method, 20-52 
incremental, 20-56 
indirect, 20-57 
mechanical brush, (table) 20-56 
multispeed coders, 20-55 
photoelectric, 20-56 
V brush method, 20-54 

specifications, 20-44 
successive approximation method, 20-63 
techniques, 20-44 
time interval, 20-47, 20-57 
voltage, 20-48, 20-58, 20-62 

cascaded stages, 20-50 
cathode ray tube, 20-48 
ramp method, 20-49 

Analogs, 24-01; see also Analog com-
puters 

across-through relations, (table) 24-04 
across variables, 24-03, 24-12 
conducting liquid, 25-06 
conducting sheet, 25-05, (table) 25-07 
continuous, 21-04 

electric, 25-05 
correspondences, (table) 24-09 
direct, transfer function representation, 

22-13 
discrete element electric, 25-11 
duality, 24-08 



4 INDEX 

Analogs, electrical analogy, 24-01 
electrolytic, 25-08 
electro-optical, 25-23 
elements, 24-04; see also Elements 
energy, 24-07 
fluid mappers, 25-22 
junction technique, 24-04, 24-05, 24-09 
nonelectric, 25-22 
path technique, 24-04, 24-06, 24-11 
quantities, (table) 24-09 
relation ,to duals, 24-10 
resistance paper, 25-05 
stretched membranes, 25-22 
symbols, 24-04 
terminology, 24-03 
through variables, 24-03, 24-12 

Analogy basis, discrete electric analogs, 
25-11 

Analyzers, digital differential, 12-12, 21-04, 
28-02, 29-13 

And circuits, 14-34, 17-04, 17-12 
magnetic cores, 15-17 
transistors, 16-10, 16-18 

AN /FSQ-7, 13-03 
Arithmetic, classification of subroutines, 

2-180 
incremental computation, 29-21 
instructions, see Instructions 
operations, 2-59 
operators, 2-229 
programming, 2-02 
programming boxes, 2-131 

Arithmetic checks, (table) 13-03, 13-06 
Arithmetic and control unit, 12-06, 18-01 

adder, 16-11, 18-08, 18-11; see also 
Adders 

adder-subtractor, 18-16 
binary counters, 18-04 
binary operations, 18-03 
checking, 18-32 
comparison, 18-31 
control unit design, 18-33, 18-35 
counting, 18-26 
decimal operations, 18-25 
design, 18-35 
division, 18-21 
equipment, 5-38 
external control, 18-34 
extract, 18-31 
fixed point, 18-32 

Arithmetic and control unit, flip-flop 
logic, 18-02 

floating point, 18-32 
logical design, 17-26 
logical transfer, 18-31 
magnetic cores, 15-22 
multiplication, 18-16, 18-27; see also 

Multiplication 
notation, 18-02 
number system conversion, 18-23 
programmed control, 18-34 
readin, 18-07 
shifting registers, 18:-05 
special operations, 18-30 
square root, 18-22 
subtractor, 18-14; see also Subtraction 
symbols, 18-02 
zero representation, 18-16 

Arrow, 2-111; see also Strela 
Assemblers, see Assembly programs 
Assembly programs, 2-161; see also SAP 

directory, 2-164 
IBM 704, Share assembly program 

(SAP), 2-164,2-165,2-167 
location counter, 2-164 
one-pass, 2-164 
PACT, 2-162 
pseudo instructions, 2-165 
symbolic addresses, 2-163 
two-pass, 2-164 
utility, 2-183 
X-I, 2-162 

Association for Computing Machinery, 
seeACM 

Asynchronous computers, 17-02, 17-05 
A T3, MA THMA TIC, 2-158 
Atomic Instrument Company, 20-18 
Auerbach Electronics Corporation, 16-30 
AUTOCODER, 2-156, 2-157 
Autocorrelation function, 26-05 
Automatic checks, 3-13 
Automatic coding systems, (table) 2-156; 

see also Automatic programming 
Automatic data acquisition, 29-17 
Automatic programming, 2-02, 2-12, 2-159 

algorithms, 2-190 
assembly programs, 2-163; see also 

Assembly programs 
business systems, 7-03 
combined systems, 2-163 



INDEX 5 

Automatic programming, compiler, So­
viet, 2-228; see also Operational 
programmin(J 

compilers, 2-160, 2-186; see also Com-
pilers; '1'ranslators 

control instructions, 2-160 
easy mistake discovery, 2-162 
elimination of repetitious coding, 2-161 
floating addresses, 2-161 
future trends, 2-189 
generators, 2-163; see also Subroutines, 

generatots 
input languages, 2-160 
integrated systems, 2-184; see also 

Integrated systems 
interpreters, 2-234; see also Interpreters 
IT translator, 2-200; see also 1'1' com-

piler-translator 
languages, 2-186; see also Languages 
logic machines, 11-08 
mnemonic codes, 2-160 
objectives, 2-159 
preset parameters, 2-161 
prevention of mistakes, 2-163 
program parameters, 2-161 
pseudo instructions, 2-162 
recursive languages, 2-244 
Soviet algebraic language compiler, 

2-228 
subroutine generators, 2-182 
subroutines, 2-161, 2-167; see also 

Subroutines 
symbolic addresses, 2-160 
synthetic instructions, 2-162 
systems, (table) 2-156 
translation, 2-160 
translator construction, 2-221; see also 

'1'ranslator construction 
translators, 2-186; see also '1'ran.~lators 

understandable language, 2-160 
unification of techniques, 2-163 
universal computer language, 2-163 
utility programs, 2-162, 2-183; see also 

Utility programs 
Auxiliary equipment, 7-08 

magnetic tape, 20-42 
punched card, 20-31 

Avidac, 12-09 

BO, FLOWMATIC, 2-158 

Babcock and Wilcox, 2-158 
BACAIC, 2-157 
Backlash, simulation of, 23-27 
BALIT AC, 2-157 
Bandwidth, analog-digital converters, 30-

06 
BAP, 2-156 
Base, 12-12 
BASE 00, 2-159 
Base counter, MIDAC, 2-118 
B box, see Index registers 
BELL Ll, L2, L3, 2-157 
Bell Telephone Laboratories, 2-157, 12-09, 

16-02, 16-15, 16-30 
relay calculator, 2-167, 12-09, 13-03 

Bendix Computer Division, 2-263, 12-09 
G-15,2-64 

Intercom system, 2-241 
BESM, 2-111, 2-188 
Biharmonic equation, 25-04, 25-19 
Biharmonic operator, 25-02 
Binary arithmetic processes, 12-21 

multiplication, 18-16 
Binary coded decimal, 5-05, 18-26 

counter, transistors, 16-28 
systems, 5-05, 12-18 

8421 system, 5-05, 20-46 
Binary coded number systems, 12-18 
Binary codes, 20-46 
Binary counters, 18-04 
Binary-decimal conversion, 2-20 
Binary digit, 3-06 
Binary number system, 5-05 
Binary rate multiplier, 29-05 
Binary scalers, 29-05 
Binary states, 17-02 
BIOR,2-158 
Biquinary code, (table) 12-21 
Bistable storage elements, 17-05 
Bizmac, 2-56 
B line, see Index registers 
Block diagrams, computer solution, 2-04 

logical design, 17-28 
storage, 19-02, 19-06, 19-17 

Blocking oscillators, 14-35 
Blotter type electrolytic models, 25-22 
Boeing, 2-156,2-157 
Boolean algebra, 17-10 

canonical form, 17-12 
equivalences, (table) 17-11 



6 INDEX 

Boolean algebra, normal form, 17-13 
Boolean functions, 31-01 
Booth method, 18-18 
Bound variables, 2-51 
Brain behavior, 11-01 
Branch instruction, 12-04, 17-26 
Breakpoint, diode characteristic, 

23-15 
programming notations, 2-61 

B registers, see Index registers 
Brush Electronics Company, 19-09 
Buffer storage, 17-25 

analog-digital converters, 30-05 
equipment, 5-23 
input-output, 20-03 

analog-digital computer systems, 
30-09 

perforated tape punch, 20-25 
Building blocks, preparation of problems, 

2-187 
Burroughs Corporation, 2-98,2-158, 2-239, 

2-263, 12-09, 16-30, 20-18; see also 
Datatron 

Datatron, see Datatron 
Datatron 201, 2-158 
Datatron 205, 2-158 
UDEC III, 2-158 

Business data manipulation, 3-06 
Business data processing, 8-01, 9-01; see 

also Accounting; Business systems; 
Data processing; Inventory; Res­
ervations; Scheduling 

Business systems, definition, 7-02, 7-04 
design for electronic data processing, 

7-01,7-03 
economic evaluation, 7-06,7-12 
equipment, 

auxiliary, 7-08 
communication, 7-06 
data conversion, 7-06 
input-output, 7-06 
programming, 7-08 
selection, 7-02, 7-04, 7-07 
storage, auxiliary, 7-05 

implementation, 7-03, 7-06 
information flow, 7-02 
integrated, 7-11 
payroll, 7-10 
rate of return, 7-12, (table) 7-13 
requirements, 7-01 

CAGE, 2-156 
Calculating punches, 20-32 
Call-in, 

momentary, 2-180 
permanent, 2-180 

Cambridge University, 2-160, 2-251 
Canonical form, 17-12 
Capacitor-diode storage, 19-32 
Capacitors, 14-49 

ceramic, 14-50 
electrolytic, 14-50 
mica, 14-49 
paper, 14-49 

Capacity, magnetic tape, 5-28 
Card punches,·5-15, 20-31 
Cards; see also Punched cards 

magnetic, 20-42 
punched, 20-30 

Carnegie Institute of Technology, 2-157, 
2-263 

Carry function, Veitch diagram, 17-22 
Casco de circuits, transistors, 14-39 
Case Institute, 2-158 
Casting out, 3-14, 13-03, 13-07 
Casualty insurance accounting, 8-08 
Cathode, followers, 14-29, 17-03 

temperature, 14-43 
Cathode ray tubes, analog-digital con-

version, 20-48 
display devices, 5-36,20-14 
shaped beam tube, 20-14 
storage, 19-31 
Typotron, 20-14 

Change of control operations, 2-60 
Change-on-one recording method, 20-39 
Characteristic roots and vectors, 10-04 
Character recognition, 5-19 
Charactron, 5-37,20-14, 20-16 
Checker game, 2-246 
Checking, 5-43, 13-02, 18-32 

arithmetic, (table) 13-03, 13-06 
automatic, 2-258, 3-13, 13-03 
casting out, 3-14, 13-03, 13-07 
data processing, 3-14 
data transfers, (table) 13-03,13-05 
diagnostic problems, 13-09 
error detecting-correcting codes, 13-03 
forbidden combinations, 13-03, 13-06 
input data, 3-13 
marginal, 13-09, 14-05, 14-07 



INDEX 7 

Checking, mathematical, 13-03, 13-05 
mod 11,3-14 
operating, (table) 13-03 
output data, 3-14 
parity, 13-03, 13-06, 19-03, 19-07, 19-21 
programmed, (table) 13-03, 13-04 
reasonableness, 13-03, 13-04 
self-checking codes, 13-03, 13-06 
sums, 13-03, 13-05 
weighted, 13-03, 13-06 

Checks, see Checking; Digital computers, 
reliability 

Chess, 2-246, 11-12 
CHIP, 2-158 
Chopper amplifier, 22-31 

operation, 22-32 
Circuit design, digital computers, 14-01, 

14-13; see also Components 
application notes, 14-44, 14-46, 14-53 
blocking oscillators, 14-35 
cascode, 14-39 
cathode followers, 14-29 
components, 14-03, 14-43: see also 

Components 
design criteria, 14-04 
design philosophy, 14-01 
diode gates, 14-29, 14-33 
flip-flops, 14-10, 14-15, 14-37; see also 

Flip-flops 
magnetic core storage, 19-18; see also 

Magnetic cores 
marginal checking, 14-05, 14-10 
pulse amplifiers, 14-21 
pulse source, 14-21 
reliability, 13-07, 14-01, 14-19 
safety margins, 14-04 
semiconductor diodes, 14-20 
tolerance plots, 14-06 
transistors, 14-36; see also Transistor 

circuits 
vacuum tube gates, 14-26 
vacuum tubes, 14-20 

Circulating loops, 2-58 
Clock pulse generator, 14-22 
Closed subroutines, 2-162, 2-169 
Code conversion, machine translation, 

11-13 
Coded patterns, analog-digital conver­

sion, 20-51 
Coders, 6-11; see also Programmers 

Codes, see also Instructions; Numbers 
2,4,2,1, 12-20 
8,4,2,1, 12-21,20-45,20-46 
alphanumeric, 5-05; see also Instruc-

tions 
binary, 12-17, (table) 20-46 
binary coded decimal, 18-25 
biquinary, 12-21 
cyclic, 12-17, 20-46, 20-52 
excess 3, 12-20 
Gray, 12-17,20-46 
Hollerith, 12-08, 12-10 
IBM,12-10 
nonweighted, 12-19 
one out of ten, 18-26 
parity check, 12-21 
punched cards, 12-10 
reflected, 12-17,20-46 
Remington-Rand, 12-08, 12~11 
self-complementing, 12-20 
weighted, 12-19 

Code wheel converters, 20-51 
typical, 20-55, (table) 20-56 

Coding, see Programming 
Coding systems, automatic, 2-155, (table) 

2-156 
Collating, 3-08 
Collation ratio, 4-06, 4-12 
Collators, 

magnetic cards, 20-43 
punched card, 20-32 

Combined systems, analog-digital com­
puting, 30-01 

automatic programming, 2-163 
Commercial Control Corporation, 20-10, 

20-21 
Common language medium, 5-10 
Communications equipment, 7-06 
Comparators, perforated tape, 20-29 
Comparison boxes, 2-132 
Comparison techniques, analog-digital 

conversion, 20-60 
Compiled logic, 17-40 
COMPILER I, 2-157 
Compilers, 2-186; see also Fortran; IT 

translator; Translators 
algorithms, 2-190 
automatic programming, 2-156 
building blocks, 2-187 
filing systems, 2-188 



8 INDEX 

Compilers, future trends, 2-189 
Generalized Programming, 2-189 
indirect addressing, 2-193 
instruction modification, automatic, 

2-190 
IT translator, 2-200 
list of, (table) 2-156 
representation, 2-221 
Soviet algebraic language, 2-228 
subroutine hierarchy counters, 2-196. 
theory of algorithms, 2-190 
USE, 2-164 
utility programs, 2-184 

Compiler-translator, see Compilers; 
Translators 

Complements, 2-22, 12-22, 17-03, 17-05; 
see also Number Systems, comple­
ments 

Completeness, 17-09 
Components, analog, test table, <table) 

24-05 
application notes, 14-44,14-46, 14-53 
capacitors, 14-11, 14-49; see also Ca-

pacitors 
characteristics, 14-43 
and circuit design, 14-03 
connectors, 14-46 
diodes, 14-45; see also Diodes 
failures, 14-03 
flip-flops, 14-10 
inductors, 14-50 
marginal checking, 14-05, 14-07; see 

also Marginal checking 
relays, 14-46 
and reliability, 14-02 
resistors, 14-11, 14-48; see also Resis-

tors 
transformers, 14-50 
transistors, 14-51; see also Transistors 
tubes, 14-43; see also Vacuum tubes 
variations, 13-07 
vulnerability, 14-04 

COMPREHENSIVE, 2-159; see also 
CSSR 

Comprehensive system of service rou­
tines, see CSSR 

Computation loop, 12-05 
Computer circuits, see Circuit design, 

digital computers 
Computer elements, analog, 22-03 

Computer elements, mechanical, 27-01 
passive, 22-04 

Computers, . see also Analog computers; 
Digital computers 

analog, terminology, 1-01 
analog-digital combined systems, 30-01 
construction, 12-07 
definitions, 1-02 
digital, terminology, 1-01 
equipment, 12-05 
interlocks, 30-09 
operating cost, 20-02 
reliability, control systems, 14-02 
terminology, 1-01 
Turing type, 31-01 

Conditional transfer of control instruc­
tions, 5-41, 12-04 

Conducting liquid analogs, 25-06 
Conducting sheet analogs, 25-05, (table) 

25-07 
Conductive ink, 5-20 
Conductive rubbers, 25-07 
Conjugate gradient method, 10-04 
Connectors, 14-46 
Consoles, 5-12, 5-40, 12-07 
Constancy interval, 2-51 
Continuous balance method, analog-

digital conversion, 20-62 
Control console, 5-12, 5-40 
Control elements, see Control unit 
Control Engineering, 2-260 
Control of a process, machine tool, 

29-14 
operational digital techniques, 29-16, 

29-17 
Control in programming, combinations, 

2-161,2-184 
function, 2-44 
instructions, 2-160; see also Instruc­

tions 
sequential and concurrent, 2-45 

Control systems, and digital computers, 
12-01 

Control and timing, analog-digital com­
puter systems, 30-08 

Control unit, 5-02, 12-02, 12-06, 18-01; 
see also Arithmetic and control 
unit 

external, 18-34 
function, 18-33 



INDEX 9 

Control unit, logical design, 17-26, 
18-35 

programmed, 18-34 
Convair, 2-158 
Conversion, coordinates, 25-03 

of data, 3-03; see also Translation, 
languages 

equipment, 5-23 
of numbers from one system to an­

other, 2-14; see also Number con­
version 

Converters, analog-digital, 20-44, 29-18, 
30-04 

Coordinate systems, field problems, 25-
02,25-10 

Corbie system, 2-185, 2-189 
Core circuits, magnetic, 15-01, 15-05 
Cores, see AI agnelic cores 
Corporation for Economic and Industry 

Research, 2-239 
Correlation analyses, multiple linear re­

gression and, 10-10 
Cost, analog-digital conversion, 20-56 

cathode ray tube display, 20-14 
code wheel converters, (table) 20-56 
computing system, 20-02 
electrophotography, 20-16 
hand-coded programs, 2-129 
input-output, 20-02 
magnetic tape transports, 20-40, (table) 

20-42 
mechanical printers, 20-06, (table) 

20-08 
perforated tape equipment, 20-20 
photoelectric tape readers, 20-20, (ta-

ble) 20-27 
plotters, 20-56 
printers, 20-08 
punched card machines, 20-30, 20-31 
tape punch, 20-20 
tape readers, 20-26 
typewriters, 20-10 

Coulomb friction, simulation, 23-27, 
23-29 

Counters, binary, 18-03 
logical design, 17-29, 17-32, 17-37 
magnetic cores, 15-23 
scale of 2, 17-07 
scale of 16, 18-04 
subroutine hierarchy, 2-195 

Counters, ten state, 17-32 
transistors, 16-28 

Crossed fields multiplier, 23-10 
Cryogenic films, 19-32 
CSSR, 2-21,2-159,2-184 
Curtiss-Wright, 2-157 
Curve followers, 23-14 

conducting ink type, 23-15 
manual,23-14 
photoelectric, 23-14 
potentiometer type, 23-14 

Customer billing, 8-11 
Cyclic number systems, 12-17; see also 

Gray Code 
binary codes, 20-46, 20-52 

Danielewsky's method, 10-04 
Data acquisition, operational digital, 29-

17 
DATACODE 1,2-158 
Data conversion equipment, 7-06 
Data handling systems, analog-digital 

conversion, 20-45 
Data logging, 20-45 
Datamatic 1000, 13-03 
Datamatic Corp., 2-159 
Data processing; see also Business sys-

tems; Data processors 
accounting, 8-01, 8-08 
accuracy control, 8-20 
billing, 8-13 
business data manipulation, 3-06 
characteristics, 5-04 
checking, 3-13, (table) 13-03 
collating, 3-08 
collation ratio, 4-06 
conversion, 3-03 
costs, 4-08 
data collection, 3-02 
editing, 3-07 
error rate, 4-07, 4-16 
files, 3-10, 4-06; see also Files 
information retrieval, see Information 

retrieval 
information units, business, 3-06 
input, 4-02, 4-05 
insurance, 8-01,8-08 
interrogation, 3-12 
language, 3-02 
medium, 3-02 



10 INDEX 

Data processing, merge-match, 3-08 
merging, 3-08 
off-line, 3.:.04 
on-line, 3-04 
output, 3-04, 4-02, 4-07, 4-14 
programming, 2-01, 8-14, 8-19 
real time, 3-05 
redundancy check methods, (table) 

4-15 
reliability, 4-16 
reservations, 9-01 
scanning, 3-09 

. scientific; 3-05 
sorting, 2-145,3-07 
staff, 6-10 
storage, 4-05, 4-09, 4-11, 4-12 

access time, <table) 4-13 
sub operations, 3-05 
systems analysis, 6-11 
time, 8-02, 8-09, 8-11, 8-13, <table) 8-19 
transcription, 3-03 
transfer checks, (table) 13-03, 13-05 
transmission, 4-09 

Data processors, 6-01; see also Data 
processing 

accessibility, 6-03 
central supply room, 6-04 
coders, 6-11 
control console placement, 6-03 
equipment, 4-04, (table) 4-14, 5-01, 

8-01, 8-08, 8-13, 8-16 
equipment manufacturers' services, 6-

02 
equipment room, 6-03 
facility requirements, 6-01 
installation, 6-01, 8-02, 8-08, 8-13 

floor loading, 6-09 
soundproofing, 6-09 

instructional staff, 6-12 
maintenance, 6-04, 6-13 
office space, 6-04 
operators, 6-12 
personnel requirements, 6-09 
physical layout, 6-02 
power requirements, 6-04, 6-05 
progranamers, 6-11 
refrigeration systems, 6-07 
tape reels, 6-03 
training, 6-10, 6-12 
visitor's area, 6-03, 6-05 

Data reduction, 20-45 
Data transfer, analog-digital computer 

systems, 30-13 
Data transmission, 20-45 
Datatron, 12-09 
Datatron 205, 2-26, 2-62, 2-64, 2-186, 2-190, 

2-191 
accounting applications, 8-08 
alphanumeric code, (table) 2-108 
B register instructions, 2-105 
characteristics, (table) 5-42 
instruction logic, 2-98 

Datatron 220, 2-62, 2-39 
D-C amplifier, auxiliary, 22-31 

drift, 22-17 
operational, 22-08 

DCTL, see Direct-coupled transistor 
logic 

DDA, see Digital differential analyzer 
Dead zone, simUlation, 23-25 
Debugging, computer systems, 7-08 
Decimal arithmetic, 18-27 
Decimal codes, 18-25 
Decimal-hexadecimal conversion, (table) 

2-42 
Decimal operations, 18-25 
DEC INPUT, 2-159 
Decision elements, 17-01, 17-02, (tables) 

17 -03, 17-04 
one input, (table) 17-03 
two inputs, <table) 17-04 

Decision machines, 11-05 
applications, 11-07 

Decision operations, 2-59 
alternative boxes, 2-49 

Decision procedures, 11-03 
mechanization, 11-05 

Decision process, used in translator con-
struction, 2-225 

Decoder, mechanical, 20-09 
Deductive procedures, 11-10 
Delay elements, 17.-05 
Delay line storage, 19-29 

mercury, 5-26 
de Morgan's theorems, 17-13 
Dennison punched price tags, 5-13 
Dependent variables, analog computers, 

22-10 
Design, see Circuit design; Logical de­

sign 



INDEX II 

Design factors, transistors, 16:"04 Digital computers, chess, 11-12 
Design philosophy, for reliability, 13-08 
Design techniques, reliability, 13-02 
Detroit Edison Company, 8-11 
Diagnostic problems, 13-09 
Diagram notation, analog computers, 21-

11 
Difference equation, time, 17-31 
Differential analyzers, digital, 12-12, 21-

04, 28-02, 29-13; see also Digital 
differential analyzers 

transfer function representation meth­
ods, 22-16 

Differential equations, 10-08, 22-02, 
22-13 

digital differential analyzer solution, 
28-03 

integration, 2-212 
nonlinear, 27-11 
ordinary, 10-08 
ordinary second order, 27-09 
partial, 10-10 

field problems, 25-01 
simultaneous, 27-11 

Differentiated output, 17-05 
Differentiation, incremental computation, 

29-27 
repeated, 22-03 

Diffusion equation, 25-04, 25-17 
Digital-analog conversion, 20-57, 30-05; 

see also Analog-digital con version 
shaft position, 20-61 
voltage, 20-58 

Digital analog mUltiplier, 28-16 
Digital computers; see also Data proc-

essing 
adders, 18-08 
addresses, 5-07, 12-27 
alphanumeric, 12-26 
analog-digital combined systems, 30-01 ; 

see also Analog-digital computing 
systems 

arithmetic, 12-09 
arithmetic and control unit, 18-01 
arithmetic and logic unit, 5-02, 5-38 
binary operations, 18-03 
brain behavior, simulation, 11-02 
business, 5-04, 7-05 
checking, 5-43; see also Checking; Re­

liability 

compared with analog computers 
(table), 21-02, 29-02 

consoles, 5-12 
control function, 2-44 
control unit, 5-02, 5-40, 12-28, 18-01; 

see also Arithmetic and control 
unit 

deductive procedures, 11-10 
design characteristics, 12-25 
engineering applications, 10-01 
equipment, 5-01, (table) 5-42 
externally programmed, 12-29 
fixed point, 2-23, 12-28 
fixed word length, 2-22 
floating point, 2-24, 12-28 
fundamentals, 12-01 
general purpose, 5-04, 12-25 
hybrid systems, 29-01 
incremental computation, 29-17 
information representation, 5-05 
input, 5-02, 5-09, 12-02; see also Input­

output equipment 
input-output equipment, 20-01; see 

also Input-output equipment 
instruction logic, 2-53, 2-63 
instruction types, 5-08, 5-41 
internally programmed, 12-29 
logical, 12-09; see also Logic, machines 
logical design, 17-01; see also Logical 

design 
magnetic core circuits, 15-01; see also 

Magnetic core circuits 
magnetic drum storage, see ]1.1 agnetic 

drums 
magnetic tapes, 5-18, 20-33 
mathematical representation, 2-08 
non-numerical problems, 11-01 
number triad, (table) 2-64 
numerical analysis, 10-01; see also 

Numerical analysis 
on-line, 12-29 
operating speeds, (table) 2-64, 5-07 
operational digital techniques, 29-01; 

see also Operational digital tech­
niques 

organization, 2-04 
output equipment, (table) 5-33 
parallel, 12-26 
point location, 2-23, 12-28 



12 INDEX 

Digital computers, processing unit, 5-02 
programming and coding, 2-01; see 

also Programming 
punched card equipment, 5-13, 20-30 
punched paper tape, 5-16, 20-19 
real time, 12-29 
reliability, 13-01; see also Checking; 

Reliability 
scientific, 5-04, 10-01 
serial, 12-26 
serial-parallel, 12-26 
special purpose, 5-04, 9-01, 12-09, 

12-25 
storage, 5-24, 19-01, 20-01; see also 

Storage 
and programming, 2-130 

stored program, 12-29 
techniques in analog computation, 28-

01 
transistorized, <table) 16-03 
Turing type, 31-01; see also Tming 

type computers 
types, 12-27 
typical parts, 12-02 
variable instruction, 2-54 
variable word length, 2-23, 12-27 
words, 5-06, 12-27 

Digital control systems, analog-digital 
conversion, 20-45 

Digital control techniques, 28-17 
Digital differential analyzers, 12-12,21-04, 

28-02,29-13 
integration, 28-02 
magnetic drum registers, 28-08 
mechanization, 28-11 
operational integrators, 28-03 
positive and negative increments, 

28-10 
scaling, 28-04, 28-06 
schematic, 28-09 
serial, 28-08 
solution of differential equations, 28-03 
symbols, 28-03 

Digital function generation, analog com­
puters, 28-15 

Digital logical operations, 2-59; see also 
Logical programming 

Digital numbers, 2-23 
Digital operational techniques, see Op­

erational digital systems 

Digital sorting, 2-146 
Diodes, 14-09, 14-20, 14-29, 14-45 

application notes, 14-46 
capacitor gates, 14-27, 14-29 
characteristics, 14-45 
contact potential, 23-23 
function generators, 23-15, 23-21 
gates, 14-27 
germanium, 14-11 
logic, 14-33 
magnetic core transfer loops, 15-09 
protection, 14-34 
types Wand Y, 14-11 

Diode switching, characteristic, thermi­
onic, 23-15 

function generators, 23-23 
Dipole recording method, 20-37 
Direct analog computers, 21-03 
Direct-coupled transistor logic, circuits, 

16-05 
Discrete analogs, 21-04 

electric, 25-11 
Discrete plotters, 20-64 
Discrete variable representation, 28-14 
Disjunctive form, 17-13 
Display, cathode ray tube, 5-37 
Dividend accounting, 8-02, 8-04, 8-06 
Divider, see Division 
Division, 18-21, 18-29 

analog computer, 23-12 
binary methods, 18-21 
decimal, 18-29 
incremental computation, 29-26 
inverse multiplication, 23-12 
operational digital, 28-13,29-11 

Document reading equipment, 5-19 
DOUGLAS, 2-156 
Douglas Aircraft Company, 2-156 
Dow Chemical, 2-158 
Down' time, 8-02, 8-09 
Drift, analysis, 22-17 

corrected amplifiers, 22-30 
d-c amplifier, 22-17 
errors, 22-36 

Drift free amplification, 22-31 
DRUCO I, 2-157 
DUAL,2-156 
Dual brush method, analog-digital con­

version, 20-52 
Duality, 21-03; see also Duals 



INDEX 13 

Duals, 24-08 
cons,truction, 24-09 
physical systems, 24-01 
relation to analogs, 24-10 

DUMBO, 2-158 
Duplication of the arithmetic section, 

13-03, 13-06 
Duplication checks, 13-03, 13-04 
DuPont, 20-33 
Dynamic stop, programs, 2-140 
Dynamic system, electric analogy of, 24-

01 
Dynamometer multiplier, 23-09 

EASE II, 2-157 
EASIAC, 2-63, 2-111, 2-159, 2-244 

characters, 2-123 
demonstration problem, 2-125 
error printout, 2-125 
instruction logic, 2-122 

Eastman Kodak Company, 2-156, 11-17, 
20-13 

EASY FOX, 2-159 
Eccles-Jordan circuit, 14-37, 16-26 
Eckert Mauchly Corporation, 2-83 
Economic evaluation, business systemti, 

7-06,7-12 
Editing, of data, 3-03, 3-07 
EDSAC, 2-168, 2-180, 2-260, 19-29 

instruction design, 2-62 
EDSAC II, 2-251 
EDVAC, 2-57 
EIA, 14-11 
Eigenvalues, 10-04 
Eigenvectors, 10-04 
Electric analogy of dynamic system, 24-

01 
Electric switching circuits and logic, 

11-05 
Electrodata, 2-98, 2-158, 2-263, 5-42; see 

also Burroughs Corporation; Data­
tron 

Electrofax, 20-17 
Electrography, 20-18 
Electrolyte, properties, 25-08 
Electrolytic models, blotter type, 25-22 
Electrolytic tanks, 25-08 

accuracy, 25-11 
double layer, 25-10 
field plotters, 25-09 

Electronic computers, history, 12-09 
Electronic dat.a processing, see Data 

processing; Digital computers 
Electronic digital equipment, organiza-

tion of, 5-01 
Electronic Industries Association, 14-11 
Electronic multipliers, 23-05 
Electronic printers, 5-36 
Electro-optical method, 25-23 
Electrophotography, 20-16 
Electrostatic storage, 5-26, 19-31 
Elements, analogs, 24-01 

electrical, 24-02 
mechanical, 24-01, 27-01 
test table, 24-05 

ELI, 2-156, 2-157 
Elimination method, Gaussian, 10-02, 10-

03,10-05 
Emitter follower, transistors, 16-24 
Encoding, problem, 2-10 

self, 2-11 
Energy analogy, 24-07 
Engineering problems, analog computers, 

21-06 
digital computers, 10-01 

Engineering Research Associates, 19-06; 
see also ERA 

Eniac, 12-09, 19-29 
Ensemble, average, 26-03 

mean square, 26-06, 26-09 
noise generators, 26-02 

Entry, subroutine, 2-140 
Environment and reliability, 13-08 
Equations, solution of, 27-09 
Equipment, accounting applications, 8-01, 

8-08, 8-13, 8-16 
acquisition, 7-07 
arithmetic and logic unit, 5-38 
data processing, (table) 4-04, 4-09, 

(table) 4-14 
electronic digital, 5-01 
input-output, 20-01 
manufacturers' services, 6-02 
reservations, 9-04 
selection for business systems, 7-02, 

7-04 
typical, (table) 5-42 

Equipotential lines, 25-02 
Equitable Life, 2-156, 2-157 
ERA 1101, drum, 19-07 



14 INDEX 

ERA 1103 and 1103A, see Sperry Rand 
Corporation; Univac 

magnetic heads, 19-08 
Ergodic processes, 26-03 
Error function, 26-05 
Errors, checking, (table) 4-15 

computing elements, 22-33 
detecting-correcting code, 13-03 
incremental computation, 29-24 
IT translator, 2-219 
printout, EASIAC, 2-125 
programming, 2-128 
and reliability, 4-07, 4-16 

ESCAPE, 2-157 
Euler process, 2-213 
Excess 3 code, (table) 12-20 
Exclusive or, 17-04,17-12 

magnetic cores, 15-18 
Veitch diagram, 17-14 

Exit, subroutine, 2-171 
Extension of the IT language, example, 

2-214 
External control, 18-34 
External storage requirements, input­

output, 20-05 
Extract, 18-31 

Facility requirements, 6-01 
Factor analysis, 10-11 
FAP, 2-157 
Feedback, analog-digital conversion, 20-

47,20-60 
control, 20-45 
d-c amplifier, 22-08 
impedance, 22-08 

Ferramics, 19-23 
Ferranti Ltd., 2-159, 20-28 

Mark I, 2-190 
Mercury, 2-186 

Ferrite, cores, 15-07, 19-23 
plates, 19-29 

Ferroelectric storage, 19-32 
Field, 3-06 
Field problems, 25-01 

across variable, 25-02 
analogs, 25-05 
coordinate systems, 25-02 
discrete element electric analogs, 25-11 
electronic, 25-21 
equations, 25-04, 25-16,25-18 

Field problems, finite difference expan-
sions, 25-11, (tables) 25-12, 25-14 

infinite fields, 25-10 . 
networks, 25-15 
nonelectric analogs, 25-22 
operators, 25-02 
plotters, 25-09 
through variable, 25-02 

Files, 3-07 
access requirements, 4-06 
flexible, 2-188 
magnetic cards, 20-43 
magnetic tape, 8-02 
maintenance, 3-09 
problem of, 2-03 
processing, 3-10 
size, 4-06 

Finite difference expansions, 25-11, 
(tables) 25-12 

Fixed point, 2-23, 12-28, 18-32 
scale factors, 2-24 

FLAC, 2-192 
FLAIR,2-157 
Flexowriter, 2-109, 20-10 
Flip-flops, 17-05 

component specifications, 14-11 
delay, 17-34, 18-02 
dynamic, 17-05 
high speed, 14-10, 14-15 

transistor, 14-37, 14-38 
indicators, 14-32 
J-IC, 17-08, 17-36 
logic, 18-02 
low speed, 14-28 
relation to outputs, (table) 17-06 
reliability, 14-17 
R-S, 17-08, 17-35, 18-02 
R-S-T, 17-08, 17-36 
saturation, 16-07 
set-reset, 18-02, 31-07 
states, 17-05 
symbols, 17-30, 18-03 
transistors, 16-26 
trigger, 17-07, 17-34, 18-02 
truth tables, 18-03 

FLIP /SPUR, 2-158 
Floating addresses, 2-161 
Floating points, 2-24, 12-28, 18-32 
Floating variables, 2-51, 2-168 
FLOP, 2-156 



INDEX 15 

Flow diagrams, 2-47 
boxes, 2-49 
compiler language, IT translator, 2-207 
operations, 2-49 
programming, 2-47 

FLOW-MATIC compiler, 2-259 
Fluid mappers, 25-22 
Fluorescent ink, 5-20 
Forbidden combinations, 13-03, 13-06 
FORC, 2-156 
Formula translator, see FORTRAN 
FORTRAN, 2-129, 2-156, 2-157, 2-186, 

2-187,2-190,2-228,2-260 
(650T),2-157 
characters, used with IT translator, 

2-202 
compiler, 2-259 

language, 2-245 
FOR TRANSIT, 2-157 
Four address codes, 2-56 
Fourier transforms, 26-05 
Four-quadrant multiplication, 23-01, 23-04 
Franklin Institute, 2-158 
Free derivation, 11-10 
Free variables, 2-50, 2-168 
Frequency doubling recording method, 

20-40 
Frequency response, analog-digital con-

version, 20-48 
function generator, 23-16 
quarter square multiplier, 23-08 
servo multiplier, 23-04 

Function generators, 23-14 
biased diode, 23-15 
digital, 28-15 
interpolation techniques, 23-20 
mechanical,27-05, (table) 27-06 
multiplication, 23-13 
photoformer, 23-19 
potentiometers, 23-17 
resistive materials, 23-21 
scaling, 23-19 
table, 28-16 
trigonometric, 23-21 
two variables, 23-20 
uses, 23-20 
variable-breakpoint diode, 23-15 
variable density film, 23-22 
variable reference diode, 23-21 
variations of diode techniques, 23-16 

G-15, see Bendix G-15 
Guin, errors, 22-33 

integrator, 22-07,22-10 
Game playing machines, 11-11 
Games, 11-11 

chess, 11-12 
and logic, 11-11 
machine solution, 11-11 

GAMM,2-186.\ 
Gamma 60, 2-56 
Gas discharge tube, 26-13 
Gates, combined, transistors, 16-11 

diode capacitor, 14-27,14-29 
intrinsic, 17-07 
pulse, high speed, 14-42 
symbols, 17-02 
transistors, 16-09, 16-18 
vacuum tube, 14-26 

Gaussian distribution, 26-04 
Gaussian elimination method, 10-02, 

10-05 
Gaussian noise generator, 26-11 
Gauss-Seidel method, 10-04 
Geiger-Mueller tube, 26-12, 26-13 
General Ceramics Corporation, 19-23 
General Dynamics Corporation, 20-14, 

20-16 
General Electric Company, 2-156, 2-157, 

20-17 
Generalized programming, see GP com­

piler 
Generalized programming extended 

(GPX), 2-156, 2-189 
General Motors Corporation, 2-157, 2-185, 

2-263 
General purpose computers, analog, 

21-02 
digital, 5-04, 12-25 

Generators; see also Subroutine, genera­
tors 

automatic programming, 2-163 
subroutine, 2-182 

German-Swiss Applied Mathematics 
Society, 2-186 

Gill method, 10-09 
Glossary of terminology, computers, 

1-02 
GP compiler, 2-158, 2-189, 2-190, 2-245, 

2-260 
GPX compiler, 2-189 



16 INDEX 

Gray code, 12-17, 18-24 
conversion, 18-24 

Greenstadt's method, 10-06 
Grid spacing, 14-43 
Guebhard's rings, 25-23 
Guide, 2-157 

Half adder, 15-22, 18-03,18-08 
transistors, 16-11 

Haloid Company, 20-16 
Hand programming, 2-02 

traditional,2-128 
Harvard University, 12-07, 12-09, 12-29 
Heads, design, 20-34 

magnetic drum, 19-07 
Heuristics, 11-10, 11-12 
Hexadecimal, decimal conversion, (table) 

2-42 
multiplication, (table) 2-44 

Hierarchy counter, permanent subrou-
tine, 2-195 

Hollerith code, 2-165, 12-08, 12-10 
Holloman Air Force Base, 2-157 
Hughes Aircraft Company, 20-14 
Hybrid systems, 28-11, 29-01, 29-04 

Ianov, string language, 2-230 
transformation rules, example, 2-233 

IBM, 2-156, 2-157, 2-160, 2-263, 12-07 
IBM 026 key punch, 2-201 
IBM 305 magnetic disk, 19-13 
IBM 407 printer, 2-201, 8-08 
IBM 528 reproducer, 8-08 
IBM 604, 16-20, 16-28 
IBM 608,16-03, 16-20 

characteristics, 16-23 
packaging, 16-28 
power supplies, 16-30 

IBM 650, 2-58, 2-64, 2-134, 2-136, 2-143, 
2-157, 2-186, 2-200, 2-219, 2-239, 
2-241, 13-03 

accounting applications, 8-13 
instruction logic, 2-93 
IT translator, 2-201 
magnetic drum, 19-05 
optimum programming, 8-14 
programming examples, 2-130 
scheduling, 9-12 
SOAP programs, 2-131 

multiway switch, 2-138 

IBM 650, SOAP programs, vector inner 
product, (table) 2-134 

sorting examples, 2-153 
IBM 700 series, 2-58, 12-09 
IBM 701, 2-156, 2-162, 2-186, 2-236, 2-239, 

2-250 
instructions, 2-62 

IBM 702,2-56,2-157 
accounting applications, 8-16, ('table) 

8-18 
IBM 704, 2-20, 2-27, 2-62, 2-63, (table) 

2-64, 2-156, 2-165, 2-186, 2-187, 
2-189, 2-191, 2-230, 2-239, 2-241, 
2-246 

instruction logic, 2-63 
logical programming, 2-248 
SAP program, 2-167 

IBM 705, 2-56, 2-64, 8-11 
characteristics, (table) 5-42 
magnetic core storage, 19-27 

IBM 709,2-62,2-157,2-186,2-193 
IBM card program calculator, 12-08, 

12-29 
IBM cards, 5-13,20-30,20-33 
IBM Programming Research, 2-239 
IBM punched cards, 5-13, 12-10,20-30 
IBM STRETCH, 2-56, 2-62, 2-191 
IBM typewriter action, 20-08 
ILLIAC, 2-21, 2-59, 2-159, 12-09 
Inclusive or, 17-12 
Incremental computation, 29-17 

arithmetic, 29-21 
control applications, 29-18 
digital differential analyzer, 28-10, 29-13 
machine organization, 29-19 
operations, 29-25 
program, 29-20 
storage requirements, 29-18 
transient solutions, 29-28 

Incremental methods, 10-09 
Incremental pattern methods, analog­

digital conversion, 20-56 
Index accumulators, see Index registers 
Indexing, operations, 2-60 

systems, 11-16 
Index registers, 2-55, 2-60, 2-190 

Intercom, 2-241 
MIDAC, 2-115 
programming, 2-136 

Indicial boxes, programming, 2-133 



INDEX 17 

Indicial instruction logic, 2-54 
Indirect addressing, 2-199 
Indirect analog, 21-03 
Indirect methods, analog-digital conver-

sion, 20-47, 20-57 
Inductance-capacitance network, 25-20 
Inductors, 14-50 
Inference rules, 11-10 
Infinite fields, simulation, 25-10 
Information, averaging, 29-15 

business units of, 3-06 
flow patterns, 7-02, 7-03 
retrieval, 

category search, 3-12 
externally controlled, 3-11 
internally controlled, 3-11 
interrogation, 3-12 

Inhibitor circuit, 16-18 
Initial conditions, analog computers, 

22-10 
Input impedances, 22-08 
Input programs, 2-183 
Input-output, instructions, see Instruc­

tions 
operations, 2-60 

Input-output equipment, 5-09, 7-06, 12-02, 
20-01 

analog-digital computer systems, 30-09 
analog-digital conversion, 20-44; see 

also Analog-digital conversion 
automatic control,20-03 
auxiliary, 5-22 
buffer storage, 5-23,17-25,20-03 
cathode ray tube display, 5-36, 20-14 
consoles, 5-12 
conversion, 5-23 
cost, 20-02 
document reading, 5-19 
electric typewriters, 5-12, 20-07 
electrography, 20-18 
external storage, 20-05 
general requirements, 20-03 
inquiry units, 5-13 
keyboards, 5-10, 20-06 
magnetic cards, 20-42 
magnetic tape, 5-18, 20-33 
magnetography, 20-17 
mechanical printers characteristics, 

20-06, (table) 20-08 
multiplexing, 5-23 

Input-output equipment, off-line equip-
ment, 20-04 

on-line equipment, 20-04 
page reading equipment, 20-06 
perforated tape, 5-16, 20-19; see also 

Perforated tape 
photoelectric readers, 20-20, 20-27 
photography, 20-14 
plotters, 20-63 
preparation, automatic, 5-11 

key-driven, 5-10 
print readers, 5-21 
printed page, 20-06 
printers, 20-06, 20-08; see also Printers 
punched card machines, 5-13, 20-30 
recording media, 5-09, 20-05 
typewriters, 20-07, (table) 20-08, 20-10 
verifiers, 5-12 
xerography, 20-16 

Inputs, analog computer, 21-05 
tables, 27-04 

data check, 3-13 
data processors, 4-02 
media,5-09, (table) 5-10,20-05 
simulated, 17-39 
time difference equations, 17-31 

Inquiry units, 5-13 
Installation, costs, 4-08 

data processors, 6-01 
time, 4-09 

Institute for Advanced Study, 2-47, 12-09 
Institute of Radio Engineers, see IRE 
Instruction counter, MIDAC, 2-117 
Instruction logic, ambiguous word, 2-54 

common computers, 2-63 
Datatron 205, 2-98 
EASIAC, 2-122 
IBM 650, 2-93 
IBM 704, 2-63 
indicial, 2-54 
Intercom, 2-241 
MIDAC, 2-115 
Royal-McBee LGP-30, 2-109 
Strela, 2-111 
TX-O, 2-252 
Univac II, 2-83 
Univac 1103A, 2-77 

Instruction modification, automatic, 
2-190 

digits, MIDAC, 2-116 



18 INDEX 

Instruction modification, types, 2-191 
Instructions; see also Instruction logic 

accounting, 8-14 
addresses, number, 2-56, 2-64, 5-07, 

12-27 
arithmetic, Datatron 205, 2-99 

IBM 650, 2-94, 2-96 
IBM 704, 2-66 
LGP-30, 2-110 
Univac II, 2-85 
Univac 1103A, 2-81 

arithmetic and logical, Strela, 2-111 
branching, IBM 650, 2-96 
breakpoint, Univac II, 2-91 
change control, Datatron 205, 2-103 

MIDAC, 2-120 
change of information, MIDAC, 2-119 
common computers, 2-63 
conditional jump, Univac 1103A, 2-80 
console, 12-05 
control, 2-160 

IBM 704, 2-71 
Strela, 2-112 
Univac II, 2-87 

control-record, Datatron 205, 2-104 
execution of, 12-04 
extract, Univac II, 2-87 
floating point, Univac 1103A, 2-82 
format, 12-03 
four address, 2-56 
indexing, IBM 704,2-74 
input-output, 12-05 

Datatron 205, 2-105 
IBM 650, 2-93 
Univac II, 2-89 
Univac 1103A, 2-81 

jump, Univac 1103A, 2-80 
logical, 12-05 

Datatron 205, 2-101 
IBM 704, 2-67 

and logical design, 17-26 
loop transfer, Datatron 205, 2-103 
one plus one addresses, 2-58, 2-130 
operation types, 2-59 
shift, Datatron 205, 2.;.101 

IBM 650, 2-97 
Univac II, 2-88 

single address, 2-58 
storage instructions, IBM 650, 2-95 
structure, 2-56 

Instructions, subroutine, Strela, 2-113 
three address, 2-57 
transfer, MIDAC, 2-120 

Strela, 2-112 
Univac II, 2-84, 2-89 
Univac 1103A, 2-79 

two address, 2-58 
types, 2-61, 5-08, 5-40, (table) 5-41, 

12-05 
variable, 2-54 

Integrated systems, 2-07, 2-184 
automatic features, 2-185 
interrupt features, 2-185 

Integration, analog, 22-04 
analog-digital computer systems, 30-15 
dependent variable, 23-13 
digital differential analyzer, 28-02, 

28-11 
digital operational, 28-14 
incremental computation, 29-27 
Kelvin disk, 27-03 
mechanical, 27-03 
network, 22-07 
repeated,22-02 
scaling, 28-06 

Integrators, 22-07, 22-09; see also Inte­
gration 

gain, 22-07,22-10 
time constants, 22-07, 22-10, 22-36 

Intercom system, 2-63, 2-241 
on the Bendix G-15, 2-241 
comparisons, 2-244 
instruction list, (table) 2-243 
language,' 2-242 ' 

Interlace, magnetic drum, 19-05 
Interlocks, analog-digital computer sys­

terns, 30-09 
Internal excitation, resistance networks 

with, 25-17 
Internal translator, see IT translator 
International Business Machines, see 

IBAf 
International Telemeter Corporation, 

19-27 
Interpolation techniques, function gener­

ator, 23-20 
Interpreters, 2-235 

acceptance tests, 2-239 
automatic programming, 2-160 
evaluation, 2-244 



INDEX 19 

Interpreters, Intercom, 2-241 
interpretation process, 2-236 
memory, 2-241 
punched card, 20-32 
routines, 2-235 
simulation of one computer by an-

other, 2-236, 2-239 
tracing programs, 2-240 
Turing machines, 2-235, 31-01 
utility programs, 2-184 

Interpretive programming language, 
2-245 

Interrogation, 3-12 
Inventory, applications, 9-01 
Inverters, 17-03 

transistors, 16-23 
IPL, 2-245 
IRE, 1-02, 14-54 
IT compiler-translator, 2-129, 2-156, 

2-157, 2-186, 2-187, 2-190, 2-200, 
2-244,2-245,2-259 

error cards, 2-219 
extension operands and statements, 

2-187 
flow diagrams in compiler language, 

2-207 
iteration statements, 2-206 
language, characters of, 2-202 

extension of, 2-214 
formal representation, 2-223 
rules, 2-201 
run request, 2-219 
statement forms, 2-205 

one-pass version, 2-201 
SOAP, 2-209, 2-214 
statements, 2-201 
subroutine, Runge-Kutta-Gill, 2-189 
subroutine library, 2-214 
two-pass version, 2-201 

Item, of information, 3-06 
Iteration loops, 2-45 
Iterative methods, matrix inversion, 

10-02 

Jacobi's method, 10-06 
JCS 13,2-156 
J-K flip-flops, 17-08, 17-36; see also 

Flip-flop, trigger 
J ohnniac, 12-09 

magnetic core storage, 19-27 

Joint Computer Conferences, 2-261 
Jordan method, 10-02, 10-03 
Jump instructi.ons, 12-04 
Junction method, 24-04, 24-05 

construction of duals, 24-09 
Junction transistors, 14-51, 14-52 

K5,2-158 
Kalin-Burkhart computer, 12-09 
Kelvin disk integrators, 27-03 
Kerr constant, 25-23 
Key, 3-06 
Keyboards, 5-10, 20-06 

byproducts, 5-11 
special, 5-13 
speed, 5-11 

Key punches, perforated tape, 20-29 
punched card, 20-31 

Kimball, punched price tags, 5-13 
Kirchhoff adder, 18-10 
Kirchhoff's laws, 24-04, 25-11 
KOMPILER 2,3, 2-156 

Languages, 2-186 
algebraic, Soviet compiler, 2-228 
automatic programming, 2-160, 2-186 
common, 5-13 
data processing, 3-02 
English, structural decomposition, 

2-259 
extensions, 2-187 
formal, programming, 2-05 
input, easy-to-correct and easy-to-use, 

2-160 
interpretive program, 2-245 
Intercom, 2-242 
machine level, 2-56 
machine translation, 11-13 
natural, programming with, 2-259 

commands, 2-259 
storage requirements, 2-259 

recursive, 2-244 
string, 2-190 
target, 2-186 
translation, 11-13 
universal computer, 2-163 
universal programming, 2-200 

Laplace's equation, 25-04,25-22 
Laplace transforms, 22-07 

solution, 25-05 



20 INDEX 

Laplacian operator, 25-02 
Larc, see Univac Larc 
Latch, 17-06 
LGP-30, see Royal McRee LGP-30 
Liapounov-Ianov string programming, 

2-230, 2-233 
Librascope, 2-109, 2-263, 12-09; see also 

Royal-M cRee 
Lichtenberger figures, 25-23 
Life insurance accounting, 8-01 
Limiting, 23-23 

computer representation, 23-23 
generalized, 23-24 
integrator outputs, 23-25 

Lincoln Laboratory, 2-252, 14-01, 14-02, 
19-29 

Linear computing elements, 22-01 
symbols, 22-04 

Linear interpolation, potentiometers, 
23-17 

Linearity, potentiomete'r, 22-04 
Linear matrix equation solver, 2-174 
Linear programming, 10-06 

simplex method, 10-07 
time for solution, 10-07, 10-08 
transportation problem, 10-08 

Linear systems, noise, 26-06 
Line-a-time printers, 5-33, 5-34, 20-08, 

20-10 
Linkage mechanisms, 27-01 
Literature searching, 11-16 
Load correction, potentiometer, 22-05 
Loading, errors, 22-33 

potentiometer, 22-04 
Location counter, 2-164 
Lockheed Aircraft Corporation, 2-156 

Missile Systems Division, 2-157 
Logarithmic multiplier, 23-09 
Logic; see also Logical programming 

circuits, 14-34 
connectives, 11-03, 11-04 
decision procedure, 11-03 
deductive procedures, 11-10 
on digital computer, 2-246, 11-02 
evaluation procedures, 11-03 
free derivation, 11-03, 11-10 
and games, 11-11 
inference rules, 11-10 
rnachines, 2-53, 11-02 

applications, 11-07 

Logic, machines, automatic program­
ming, 11-08 

limitations, 11-09 
and numbers, 2-12 
programming, 2-02 
proofs, 11-03, 11-10 
and switching circuits, 11-05 
tautological character of expressions, 

11-03 
truth tables, 11-04 

Logical design, 17-01, 17-30 
algebraic techniques, 17-10, 17-28, 

29-21 
arithmetic and control unit, 17-27 
block diagrams, 17-28 
Boolean algebra, equivalences, (table) 

17-11 
completeness, 17-09 
control unit, 18-35 
counter, 17-29,17-32 
decision elements, 17-02, (tables) 

17-03,17-04 
difference equations, 17-31 
elements, 17-01 

magnetic cores, 15-03, 15-16 
transistors, 16-28 

incremental computer, 29-21 
instructions, 17-26 
manual control, 17-27 
matching input and output, 17-25 
minterms, 17-12 
number representation, 17-26 
simplification, inspection, 17-15 

Quine method, 17-16 
simulation, 2-236, 2-239, 17-38, 17-40 
storage, 17-25 
switching functions, 17-10, 17-15 
symbols, (table) 17-02 
time difference equations, 17-31 
truth tables, 17-11 
Turing computers, 31-03 
Veitch diagrams, 17-13 

Logical gain, transistor circuits, 16-05, 
16-07 

Logical instructions, see Instructions 
Logical operators, 2-229 
Logical product, 17-12 
Logical programming, 2-246 

checkers, 2-246 
chess, 2-246 



INDEX 21 

Logical programming, IBM 701, 2-250 
IBM 704,2-248 
MIDAC, 2-250 
problem in the propositional calculus, 

2-246 
Univac 1103A, 2-247 

Logical simulation, 2-236,2-239, 17-38 
Logical sum, 17-12 
Logical transfer, 18-31 
Loop control, 2-46, 2-54 
Loops, iteration, 2-45 

magnetic core transfer, 15-09 
Los Alamos, 2-156 

Machine language programs, 2-131 
Machine tool control, 29-14 
Machine translation, code conversion, 

11-13 
languages, 11-13 
problems, 11-14, 11-15 

MAGIC, 2-20, 2-131, 2-159, 2-184, 2-186 
Magic number, in number conversion, 

2-18 
MAGIC program, dynamic stop, 2-140 

multiway switch, 2-139 
vector inner product, 2-136 

Magnacord, 20-43 
Magnavox Company, 20-43 
Magnetic card equipment, 20-43 
Magnetic coatings, (table) 19-09 
Magnetic cores, 5-26, 15-01, 19-13 

adder, 15-22 
ambient temperature, 19-26 
arithmetic, 15-22 
characteristics, (table) 19-23 
circuit design, 15-01, 15-05 
counters, 15-23 
current regUlation, 19-26 
cycle distributor, 15-21 
design, 19-21, (table) 19-23 
drivers, 15-23 
ferrite, 15-07 
films, 19-28 
half-select outputs, 19-24 
hysteresis loop, 15-02 
logic, 15-16 
metal-strip types, 15-04 
molded ferrites, 15-04 
multiaperture, 19-29 
multicoordinate, 19-15 

Magnetic cores, noise in bistable, 15-07 
nondestructive readout, 19-26 
nondigital applications, 15-23 
parameters, 15-07 
plane, 19-22 
plates, 19-29 
principles of operation, 19-13 
read circuits, 19-13, 19-20 
reliability, 14-03 
selection circuits, 15-19, 19-19 
selection systems, (table) 19-15 
sense windings, 19-25 
shift registers, 15-15, 15-19 
square ness ratio, 19-24 
stability, 19-26 
storage, 15-19, 19-13 
switches, 19-16 
switching time, 19-23 
switching voltages, 15-06 
symbols, 15-01, 15-03 
systems, 19-16, 19-26, (table) 19-27 
temperature stability, 15-09 
thin films, 19-28 
three-coordinate, 19-13 
timing control circuits, 15-21 
transfer loops, 15-09 
transistor mUltiplier, 29-08 
two-coordinate, 19-13 
waveforms, 15-03, 15-06 
wiring, 19-22 
writing, 19-15 

Magnetic disk storage, 5-32, 19-13 
Magnetic drums, 5-26, 5-32, 19-04 

access time, 19-05 
coatings, 19-07, (table) 19-09 
construction, 19-07 
digital differential analyzer, 28-08 
forced coding, 19-06 
heads, 19-07 
interlace, 19-05 
parity cheek, 19-07 
power loss, 19-11 
reading circuits, 19-11 
recording, 19-09; see also Magnetic 

tapes, recording 
Manchester, 19-10 
nonreturn to zero, invert (NRZI) , 

19-10, 19-13 
nonreturn to zero (NRZ), 19-09 
return to bias, 19-09 



22 INDEX 

Magnetic drums, recording, return to 
zero (RZ), 19-09 

reliability, 19-12 
typical operating systems (table) , 

19-07 
writing techniques, 19-09, 19-11 

Magnetic films, 19-28 
Magnetic heads, 20-33, (table) 20-34 

characteristics, (table) 20-34 
stack, (table) 20-34 

Magnetic ink, 5-20, 5-22 
Magnetic recording densities, 20-40 
Magnetic storage, other techniques, 

19-26 
Magnetic tapes, 5-25, 20-33 

equipment, 5-18, 20-33 
auxiliary, 20-42 

features, 5-27, 5-30 
head design, 20-33 
input units, 5-19 
master file, accounting, 8-02 
operation details, 5-27 
output equipment, 5-36 
plastic base, characteristics, 20-33, 

(table) 20-34 
preparation, 5-18 
random access, 5-32 
reading methods, 5-18, 20-35 
recording, 5-18, 5-25, 20-35; see also 

Magnetic drums, recording 
dipole, 20-37 
frequency doubling, 20-40 
heads,20-33, (table) 20-34 
Manchester, 20-39 
nonreturn to zero (NRZ), 20-38 
nonreturn to zero, invert (NRZI) , 

20-39 
phase modulation, 20-39 
polarized dipole, 20-34 
return to zero (RZ), 20-36 
waveforms, 20-36, 20-38, 20-40 

sorting, 2-152 
speeds, 5-19, 5-29 
storage capacity, 5-28 
time delay, 23-34 
transports, 5-29, 20-40, (table) 20-42 
units, 5-19 
writing currents, 20-40 

Magnetography, 20-17 
Magnetostrictive delay lines, 19-31 

Magnetronic Reservisor, 9-04 
Maintenance, 6-13, 13-08 

console, 13-09 
programs, 2-258 
scheduled, 13-08 
unscheduled, 13-08 

Manchester recording method, 19-10, 
20-39 

MANIAC, 2-62, 12-09 
Manpower forecasts, 9-07 
Manual control, logical design, 17-27 
Manuals, installation and specifica,tion, 

6-02 
Marginal checking, 13-09, 14-05, 14-07 

circuits, 14-10 
components, 14-07 
reliability data, 14-17 
transistors, 14-36 

Mark I, 12-07, 12-29 
Mark II, 12-09 
Mark sensing, 5-19 
Match-merge, 3-08 
Material equivalence function, 15-19 
Mathematical checks, 13-03, 13-05 
Math-Matic, 2-129, 2-186 
Matrix inversion, 10-02 

methods, 10-02, (table) 10-03 
storage requirements, 10-03 
time required, (table) 10-03 

MATRIX MATH, 2-158 
Matrix order, 10-03, 10-06 
Matrix printers, 20-08, 20-13 
Maximum storage, computers, (table) 

2-64 
Maxterms, 17-12 
Mean square ensemble output, 26-06, 

26-09 
Mean square value, determination of, 

26-20 
Mean value, determination of, 26-18 
Measures of performance, programming, 

2-05 
Mechanical computers, 27-01 

accuracy, 27-02 
addition and subtraction, 27-02 
digital, 12-07 
and electronic, 27-02 
function generation, 27-05, (table) 

27-06 
input tables, 27-04 



INDEX 23 

Mechanical computers, integration, 27-03 
multiplication by a constant, 27-02 
output tables, 27-04 
scale factors, 27-14 
schematics, 27-05 
solution of equations, 27-09 
symbols, 27-05 
torque amplifiers, 27-04 

Mechanical elements, 24-01, 24-09 
analog-digital converters, 30-04 

Mechanical perforated tape readers, 
20-26 

Mechanical printers, 20-06, (table) 20-08 
Mechanical translation, 2-259 
Mechanism, linkage, 27-01 
Mercury, 2-186 
Mercury delay line, 5-26, 19-30 
Merging, 2-145, 2-147, 3-08 
Michigan Digital Automatic Computer, 

2-115; see also MAGIC 
Microprogramming, 2-251 

example, 2-256 
macroinstructions and microinstruc­

tions, 2-254 
TX-O development, 2-252 

MIDAC, 2-20, 2-58, 2-64, 2-122, 2-159, 
2-171, 2-192, 2-244; see also 
MAGIC 

base counter, 2-118 
instruction logic, 2-115 
logical programming, 2-250 
modification digits, 2-116 
programming examples, 2-130 
subroutine library, 2-172 

Mid-square procedure, 2-145 
. Milne, Adams and, method, 10-09 
Minicard, 11-17 
Minimal latency, programming, 2-130 
Minnesota Mining and Manufacturing 

Company, 19-09 
Minterms, 17-12 
MISHAP, 2-157 
Mistake prevention, automatic program­

ming, 2-163 
M.LT., 2-21, 2-157, 2-159, 2-160, 2-184, 

2-251, 2-252, 2-263, 14-01, 19-06, 
19-27 

magnetic core unit, 19-19 
TX-2 core storage, (table) 19-27 
Whirlwind, 2-159 

MITILAC, 2-157 
MJS, 2-158 
Mnemonic codes, 2-160 
Mod 11 check, 3-14 
Modus ponens, 11-10 
Monitoring, digital, 30-14 
Monostable storage elements, 17-05 
Moore School, 2-159 
M-Q register, 12-06 
Multi-address codes, 2-56 
Multiaperture magnetic cores, 19-29 
Multicoordinate selection principles, 

magnetic cores, 19-15 
Multiple linear regression and correla­

tion analyses, 10-10 
MUltiplexing equipment, 5-23 
Multiplication, analog, 23-01 

accuracy, 23-04, 23-07,23-09 
AM..:FM, 23-19 
by constant, 22-04, 27-02 
crossed field, 23-10 
dynamometer, 23-09 
four quadrant, 23-02, 23-04 
logarithmic, 23-09 
mechanical, 27-02 
modification of quarter squares, 

23-09 
one-quadrant, 23-02 
probability, 23-10 
quarter squares, 23-08 
scaling, 23-11 
servo, 23-02 
step relay, 23-10 
time division electronic, 23-05 
two-quadrant, 23-02 

digital, 18-16, 18-27 
adding and shifting method, 18-28 
binary, 18-16 
Booth method, 18-18 
decimal, 18-27 
hexadecimal, (table) 2-44 
incremental computation, 29-26 
parallel, 18-19 
precision, 18-20 
roundoff, 18-29 
roundoff correction, 18-20 
Russian peasant method, 18-28 
serial, 18-19 
serial-parallel, 18-19 
Shaw method, 18-16 



24 INDEX 

Multiplic'ation, digital, stored multiples, 
18-28 

table, 18-29 
digital analog, 28-16 
digital operational, see operational 

digital 
operational digital, 28-11,29-05 

accuracy, 29-08 
binary rate, 29-05 
dynamic rate, 29-09 
magnetic core transistor, 29-08 
pulse rates, 29-10 

Multiplier, see Multiplication 
Multiprecision, 2-22 
Multispeed coders, 20-55 
Multivibrator, one-shot, 16-08 
Multiway switch, IBM 650 SOAP pro­

gram,2-138,2-139 
MIDAC MAGIC program, 2-139 

Munich Technische Hochschule, 2-191 
Mylar tape, 5-25, 20-33, 20-43 

N AA ASSEMBLY, 2-156 
National Advisory Committee on Aero­

nautics, 2-193 
,National Bureau of Standards, 2-115, 

2-159,2-185,2-189,2-240 
National Cash Register, 12-09 
Natural languages, programming, 

2-259 
Naval Ordnance Laboratories, 2-157, 

2-159 
Naval Ordnance Test Station, 2-156 
Negation, 17-03 

magnetic cores, 15-18 
Networks, a-c analyzers, 25-20 

four-terminal, 22-16 
ind uctance-ca paci tance, 25-20 
integrating, 22-07 
resistance, 25-15 
resistance-capacitance, 25-19 
R-L-:·C, 25-20 
short circuit impedance, (table) 

22-18 
summing, 22-05 
two-terminal, 22-15 

Newton's method, 2-212 
New York University, 2-158 
Nodal point location, finite difference ex­

pansions, (tables) 25-12 

Noise, 26-01; see also Noise generators 
adjoint systems, 26-07 
aerodynamic, 26-10 
aircraft systems, 26-10 
analog computers, 26-01 
contact, 26-01 
ensemble,26-06,26-09 

average, 26-03 
ergodic processes, 26-03 
errors, 22-36 
Gaussian distribution, 26-04 
generators, 26-12 
linear systems, 26-06 
magnetic cores, 15-07 
mean square value, 26-20 
mean value, 26-18 
missile systems, 26-10 
non-Gaussian, 26-18 
nonlinear systems, 26-09 
nonstationary, 26-18 
operational amplifier, 22-16 
radar, 26-10 
servos, 26-10 
sources, 26-12 
spectral density, 26-05, 26-14, 26-20 
standard deviation', 26-03 
stationary processes, 26-03 
thermal, 26-01 
transistors, 16-05 
variance, 26-03 
w hi te, 26-05 

Noise generators, 26-12 
characteristics, 26-12, 26-18 
demodulator type, 26-15 
gas discharge tube, 26-13 
gas tube, 26-14 
Gaussian, 26-11 
Geiger-Mueller tube, 26-13 
radioactive source, 26-12 
sampling type, 26-14 

Nondestructive readout, 19-26 
N ondigital applications, magnetic cores, 

15-23 
Nonelectric field analogs; 25-22 
Nonlinear differential equation, 27-11 
Nonlinear electronic computer elements, 

23-01 
Nonlinear potentiometers, 23-17 

servodriven, 23-31 
Nonlinear systems, noise, 26-09 



INDEX 25 

N on-numerical problems; see also Game 
playing machines; Logic machines j 
Al achine translation, languages 

characteristics, 11-01 
literature searching, 11-16; see also 

Retrieval systems 
N onreturn to zero invert recording, 

19-10, 19-13,20-39 
Nonreturn to zero recording, 19-09, 20-38 
NaRC, 2-58, 13-03 
NaRC COMPILER, 2-159 
Normal form, 17-13 
Normal random deviates, 2-173 
North American Aviation system, 2-156, 

2-185 
Not, 17-03 
Notation, arithmetic and control, 18-02 

computer diagrams, 22-03 
constants and variables, 2-50 
Turing computers, 31-04 

N-p-n transistors, see 1'ransi8tors, junc-
tion 

NRZ recording, 19-09, 20-38 
NRZI recording, 19-10, 19-13,20-39 
Number conversion, 2-14, 12-14, 18-23 

in arithmetic of original system, 2-14 
in arithmetic of second system, 2-17 
base R to decimal, 12-14 
binary to decimal, 2-20, 18-24 
binary to Gray code, 18-25 
binary powers of 2, (table) 2-43 
decimal to base R, 12-14 
decimal to binary, 18-23 
decimal-hexadecimal, (table) 2-42 
decimal-octal, (table) 2-28 
fractional numbers, 12-16 
Gray code to binary, 18-24 
hexarl.ecimal-decimal, (table) 2-42 
mixed numbers, 12-17 
octal-decimal, (table) 2-28 
roundoff in, 2-21 
with scale factors, 2-19 
trick method, 2-18 
whole numbers, 12-14 

Numbers, 2-12; see also Codes; Number 
systems 

codes, 12-12, 17-26, (table) 20-46 
"digital," 2-23 
as discrete electric signal, 5-07 
fixed point, 2-23 

Numbers, floating point, 2-24 
negative, 2-22, 12-22 
overflow, 12-25 
precision, 2-22 
representation, 12-12 
roundoff, 12-24 
sign digit, 12-25 
zero representation, 18-16 

Number systems, 2-13, 5-04, 12-12; see 
also Codes; Numbers 

base, 2-13, 12-12,12-17 
binary coded, 12-18 
binary coded decimal, 5-05 
comparison, (table) 12-13 
complements, 2-22, 12-22 

l's, 12-24 
lO's, 12-23 
negative, 12-22 
true, 12-23 

conversion, see Number conversion 
cyclic, 12-17 
hexadecimal multiplication, (table) 

2-44 
internal decimal scale factors, 2-21 
for machines, 12-18 
nonweighted code, 12-19 
powers of 2, (table) 2-43 
radix, 2-13, 2-23, 12-12 
reflected, 12-17 
representation, 12-12 
scale factors, 2-12, 2-24 
triad,2-24, (table) 2-64 
types, (table) 12-13 
weighted codes, 12-19 

Numerical analysis, 2-02, 2-181, 10-01 
characteristic roots, 10-04 
correlation, 10-10 
differential equations, ordinary, 10-08 

partial, 10-10 
time for solution, 10-10 

factors, 10-11 
incremental evaluation, 10-09 
integration, 10-09 
linear programming, 10-06 
multiple linear regression, 10-10 
solution time, eigenvalues, 10-06 

linear programming, 10-07 
matrix inversion, (table) 10-03 
simultaneous linear equations, 10-05 

statistical, 10-10 



26 INDEX 

Numerical analysis, storage requirements 
for matrix inversion, (table) 10-03 

Numerical expression, 12-12 
Numerical integration, 10-09 
NYAP, 2-156 
NYDPP, 2-156 
NYU, OMNIFAX, 2-158 

Octal-decimal conversion, (table) 2-28 
Office Management Association of Great 

Britain, 2-261 
Office of the Naval Research Symposia, 

2-261 
Off-line, data processing, 3-04, 20-04 
OMNICODE, 2-157 
One-pass assembly programs, 2-164 
One-pass translators, 2-186 
One-plus-one address codes, 2-58 
One-quadrant multipliers, 23-02 
One-shot multivibrator, transistors, 16-08 
On-the-fly printers, 20-08, 20-10 
On-line, data processing, 3-04 
On-line equipment, 20-04 
Open subroutines, 2-168 
Operating costs, 4-09 
Operating speed, computers, (table) 

2-64 
Operational amplifier, d-c, 22-08 

design, 22-16 
transfer function representation, 22-15 

Operational digital systems, 28-11, 29-01 
adder, 29-10 
analog-digital converters, 29-18 
applications, 29-14 
basic devices, 29-05 
control applications, 28-17 
data acquisition, 29-17 
digital differential analyzers, see Digital 

differential analyzers 
division, 28-13, 29-11 
function generators, 28-15 
incremental computation, 29-17 
information averaging, 29-15 
integration, 28-14 
machine organization, 29-19 
multiplication, 28-11, 28-16, 29-05, 

29-09 
process control, 29-17 
rate aiding, 29-15 
simulation, 28-14 

Operational digital systems, square roots, 
29-12 

subtractors, 29-10 
Operational programming, 2-229 

Ianov transformation rules, 2-233 
operators, 2-229 
Strela, 2-233 
string language of Liapounov-Ianov, 

2-230, 2-233 
transformation rules, 2-230 

Operations research, 26-10 
Or circuits, 14-34,17-04, 17-12 

magneti6' cores, 15-18 
transistors, 16-10, 16-18 
Turing computer program, 31-05 

Oracle, 12-09 
Ordinary differential equations, 10-08 

analog computer solution, 22-01 
Ordvac, 12-09 
Output, analog computer, 21-05 

tables, 27-04 
data, 4-02, 4-07 
data checks, 3-14 
drivers, transistors, 16-28 
time difference equations, 17-31 

Output equipment, 4-14, 5-02, (table) 
5-33, 20-01; see also Input-output 
equipment 

auxiliary, 5-38 
conversion, 5-38 
electric printers, 5-33, (table) 20-08 
low speed, 5-34 
machine readable, 5-34 
magnetic tape, 5-36, 20-33 
printers, 5-33, 20-06 

Overflow, 12-12 

Pacific Mills, 25-07 
Packaging, digital computers, 16-14, 

16-28 
PACT I, lA, 2-156 
PACT Group, 2-156 
PACT system, 2-25, 2-162 
Pade approximations, 23-36 
Page reading equipment, 20-06 
Paper tape, printed, 5-16 

punched, 5-16 j see also Perforated 
tape 

Paradigm dictionary, 11-14 
Parametron storage, 19-33 



INDEX 27 

Parity check, 4-15, 5-43, (table) 12-21, 
13-03, 13-06 

core storage, 19-21 
drum storage, 19-07 
storage reliability, 19-03 

Partial differential equations, 10-10, 
25-01 

field problems, 25-01, 25-11 
Passive computing elements, 22-04 
Path method, 24-04, 24-06 

construction of duals, 24-11 
Pattern Instrument Company, 20-11 
Pay checks, data processing, 8-17 
Payroll procedure, 7-10, 8-15 
Peirce function, 17-04,31-01,31-03 
Perforated tape, 5-16, 20-19 

auxiliary equipment, 20-29 
channels, number, 5-16, 20-19 
characteristics, (table) 20-20 
costs, (table) 5-10 
dimensions, 20-19 
drivers for photoelectric readers, 20-28 
equipment, (table) 20-20 
feed mechanisms, 20-23 
five-channel, 5-16 
input buffer, 20-25 
input units, 5-18 
mechanical readers, 20-26 
perforators, 5-10 
photoelectric tape readers, (table) 

20-27, 20-29 
preparation equipment, 5-16 
punches, 20-20 
readers, 5-17, 20-25, (table) 20-27 
speed, 5-10,5-17 
synchronization, 20-24 
timing, 20-24 

PERM, 2-186, 2-191, 2-192 
Permalloy, 19-07, 19-28 
Phase modulation recording, 20-39 
Phase shift, 22-11 

operational amplifier, 22-16 
Philco Corporation, 14-36, 16-02, 16-05, 

16-14, 16-30 
Photoelectric readers, cards, 5-15 

tapes,20-20, (table) 20-27,20-29 
Photoformer, 23-19 
Photography, 20-14 
Physical systems, analogs and duals, 

24-01 

. Physical systems, relation of across and 
through variables, (table) 24-12 

Piezoelectric delay lines, 19-31 
Plastic tape, 20-33, (table) 20-34 
Plotters, 20-63 

automatic field, 25-09 
characteristics, (table) 20-65 
continuous, 20-64 
discrete, 20-64 
operation, 20-65 

P-n-p transistors, see Transistors, junc-
tion 

Poisson distribution, 26-12 
Poisson's equation, 25-04, 25-17 
Polarized dipole method recording, 20-34 
Polarized light servo, 27-04 
Polarized relays, 23-29 
Polynomial evaluation program, 2-207 
Positional notation, 12-12 
Post mortems, 2-162 

selective, 2-183 
Potential function, 25-02 
Potentiometers, 22-04 

error3, 22-33 
linear, 23-02 
loading, 23-04 
multiplying, 23-03 
nonlinear, 23-17 
padder system, 23-17 
servodriven, 23-02, 23-31 

Potter Instrument Company, 20-11, 
20-28 

Power, requirements, 6-05 
Power dissipation, transistors, 16-05 
Power supplies, 12-07, 16-14, 16-20, 16-30 
Present address relative, 2-192 
Preset parameters, 2-161, 2-168 
Price tags, punched, 5-13 
Prime implicants, 17-16, (table) 17-18, 

17-19 
reduced table, 17-17,17-18,17-20 

Primitive, 17-12 
Princeton, 2-47, 12-09 

computers, 2-58 
instruction design, 2-62 

Principia M athematica, 2-245 
PRINT I, 2-156 
Printed page, 20-06 
Printers, 20-06 

electronic, 5-36 



28 INDEX 

Printers, high-speed, 5-35 
line, 5-33, 20-08, 20-10 
matrix, 5-36, 20-08,20-13 
mechanical, (table) 20-08 
nonmechanical, 20-13 
on-the-fly, 20-08, 20-10 
wheel, 5-36 

Print readers, 5-21, 20-06 
Probability density function, 26-02 
Probability distribution function, 26-03 

determination of, 26-18 
Probability logic, 11-09 
Probability multiplier, 23-11 
Probes, electrolytic tanks, 25-09 
Problem setup, analog computer, 21-07 
Problem solving, 11-01, 11-13 

brain behavior, 11-01 
Process control, operational digital, 

29-16,29-17 
Processing unit, 5-02 
Process limited problems, 2-63 
Production scheduling, see also Schedul-

ing 
aircraft, 9-07 
and management, 9-10 

Program address counter, 17-26 
Program control, analog-digital computer 

systems, 30-08 
Program interrupt, analog-digital com­

puter systems, 30-12 
Program matrix, Turing computers, 

31-12 
Programmed checks, 3-13, (table) 13-03, 

13-04 
Programmed control, 18-34, 20-45 
Programmers and coders, 6-11 
Programming, 2-01; see also Automatic 

programming; Instructions 
address modification methods, 2-60 
address sorting, 2-146 
ambiguous-word manipulations, 2-55 
art of, 2-09 
automatic, 2-02, 2-12, 2-155 
basic concepts, 2-03 
breakpoint notation, 2-61 
business systems, 7-08, 8-14 
cost, 2-129 
debugging, 7-08 
dynamic stop, 2-140 
elapsed time, 2-129 

Programming, encoding problem, 2-10 
errors, 2-128 
evaluation of a polynomial, 2-127 
examples, 2-130 
external, 12-29 
files, 2-03 
flow diagrams, 2-47 
games, 2-246, 11-11 
hand, 2-02, 2-128 
incremental computation, 29-20 
index registers, 2-55, 2-136 
instruction logic, see Instruction logic 
instructions, structure, 2-56, 12-03 

types, 2-61, 5-08 
integrated system, 2-07, 2-184 
internal, 12-29 
iteration loops, 2-45 
languages, 2-02, 2-05, 2-56, 2-186, 2-259; 

see also Languages 
limitations, 2-02 
logical, 2-246; see also Logical pro-

gramming 
loop control, 2-46, 2-54 
machine language, 2-131 
magnetic drum systems, 2-144 
maintenance of equipment, 2-258; see 

also Maintenance 
mathematical definition, 2-08 
measures of performance, 2-05 
methods, 2-128 
microprogramming, 2-251 ; see also 

Microprogram ming 
minimal latency, 2-130 
multiway switch, 2-138 
natural language, 2-259 
operations, 2-59; see also Instructions; 

Programming instructions 
optimum, 8-14 
random access storage, 2-144 
recursive languages, 2-244; see also 

Languages, recursive 
restrictions, 2-129 
scale factors, 2-12; see also Scale fac-

tors 
secondary storage, 2-144 
segmenting, 2-130 
self-improvement, 2-05 
sequencing analog-digital computer 

systems, 30-10 
simulation, 2-236, 2-239, 17-40 



INDEX 29 

Programming, sorting methods, 2-145, 
2-146 

staff, 6-11 
storage hierarchy, 2-130 
table look-up, 2-142 
time, 2-129 
traditional, 2-128 
Turing computers, 31-09 
universal language, 2-200 
variables, 2-50 
word length, 2-61 

Program parameters, 2-161, 2-168 
Program transfers, 17-26 
Propositional calculus, logical program-

ming, 2-246 
Pseudo instructions, 2-162 
Public utility, customer billing, 8-11 
Pulse amplifiers, 14-21, 14-23 

high power, 14-25 
transistor, 16-15 

Pulse gate, high-speed, 14-42 
Pulse source, 14-21, 14-22 
Pulse train, unitary weighted, 29-05 
Pulse width, analog-digital converters, 

30-05, 30-07 
Punched cards, 5-13, 12-10, 12-11, 20-30 

auxiliary equipment, 20-31 
codes, 12-08, 12-10 
costs, (table) 5-10, 20-30 
dimensions, 5-13, 20-30 
equipment, 5-13, 5-33, 12-08,20-30 
input units, 5-15 
punches, 5-15 
readers, 5-15,20-31 
sorters, 20-32 
speed, 5-10, 5-19 

Punched tape, see Perforated tape 
Punches, perforated tape, 20-20 

cards, 5-15 
Purdue University, 2-158 

Quadratic evaluation, SAP program, 
2-167 

Quarter squares multipliers, 23-08 
QUEASY, 2-156 
QUICK, 2-156 
Quine simplification, method, 17-16 

Veitch diagram, 17-22 

Radar, noise, 26-10, 26-11 

Radio Electronic Television Manufac-
turers Association, 14-11 

Radix, 2-13, 12-12 
RAMAC, 2-260 
Ramo-Wooldridge Corporation, 2-157. 

2-158,2-239,2-263 
one-pass assembler, see RA TVOOP 

Ramp method, analog-digital conversion, 
20-49 

Rand Corporation, 2-156, 2-159 
Random access storage, 4-12, 5-26, 5-32, 

19-03 
programming with, 2-144 

Randomization, 2-144 
Random variables, 26-02, 26-11 
Rate aiding, 29-15 
Rate multiplier, binary, 29-05 

dynamic, 29-09 
RAWOOP, 2-158, 2-164 
RA WOOP-SNAP, 2-157 
Raydac, 13-03, 19-29 
Rayleigh distribution, 26-18 
RCA, 20-17 
RC networks, digital-analog conversion, 

20-60 
Readers, magnetic drums, 19-11 

magnetic tape, 5-18, 20-35 
perforated tape, 5-17,20-25 
punched card, 5-15, 20-31 

Read in, instructions, 5-41 
Read in operation, 18-07 
Real time computers, 3-05, 12-29, 29-02 
Real time simulation, 28-14 
Reasonableness checks, 13-03, 13-04 
Recorders, 23-34 
Recording; see also Al agnetic drums, re-

cording ; Magnetic tapes, recording 
errors, 22-37 
magnetic drums, 5-18 
magnetic tapes, 20-36, 20-40 
media, 5-09, 20-05 
methods, 19-09,20-35 
selective, 3-10 

Records, 3-07 
Rectangular to polar transformation, 

23-32 
Recursive languages, 2-244 
Redstone Arsenal, 2-156, 2-157 
Red tape subroutines, 2-181 
Redundance, check, 4-15 



30 INDEX 

Reflected number systems, (table) 12-17, 
18-24, 20-46 

Refrigeration, closed-loop systems, 6-07 
open-ended systems, 6-08 
ton, 6-07 

REG-SYMBOLIC, 2-156 
RELATIVE, 2-157 
Relative address, 12-28 
Relay computer, 12-09 
Relays, 14-47 

analog computer, 23-23 
construction, 14-47 
drivers, transistors, 16-28 
enclosed, 14-47 
polarized, 23-29 
time delays, 14-47 

RELCODE, 2-158 
Reliability, circuit design, 13-07 

component variations, 13-07 
computer circuits, 14-01, 14-19 
control systems, 14-02 
data processors, 4-08 
design techniques, 13-02, (table) 13-03, 

13-05 
digital computers, 13-01 
duplication of arithmetic section, 

13-03, 13-06 
duplication of machine operation, 

13-03, 13-04 
environment, 13-08 
and errors, 4-07 
evaluation criteria, 13-02 
magnetic drums, 19-12 
maintenance, 13-08 
storage, 19-03 
transistors, 16-03, 16-04 
trouble detection and location, 13-09 

Remington Rand, 2-157, 2-158, 2-160; 
see also Sperry Rand; Univac 

409-2,12-08 
card, 20-30,20-33 
punched card, 5-13, 12-11,20-32 
Univac, 2-83, 2-239, 2-263 

Remote connection, 2-49 
Reproducers, perforated tape, 20-29 

punches, 20-32 
Reservations, data processing, 9-01 

equipment, 9-04 
storage requirements, 9-04 

Resistance-capacitance networks, 25-19 

Resistance networks, 25-15 
accuracies, 25-19 
applications; 25-17 
digital-analog conversion, 20-58 
equations, 25-16 
with internal excitation, 25-17 

Resistance paper, 25-05 
accuracy, 25-06 

Resistors, carbon, 14-48 
film, 14-48 
marginal checking, 14-07 
potentiometers, 14-49 
wire-wound,14-49 

Resolvers, a-c induction, 23-32 
d-c, 23-31 

RETMA, 14-11 
Retrieval systems, library problem, 11-16 

mechanized, 11-17 
semantic noise, 11-18 

Return to bias recording, 19-09 
Return on investment, business systems, 

7-12,7-13 
Return to zero recording, 19-09, 20-36 
R-L-C networks, 25-20 
Rollback, 2-184 
Root determination, 2-211 
Roundoff, 12-24, 18-29 

correction, 18-20 
in number conversion, 2-21 

Royal-McBee, 2-109, 5-42 
LGP-30, 2-64 

characteristics, (table) 5-42 
instruction logic, 2-109 

R-S flip-flops, 17-08, 17-35,18-02,31-07 
R-S-T flip-flops, 17-08, 17-36 
Runge-Kutta-Gill, IT subroutine, 2-189 

technique, 2-214 
Runge-Kutta method, 10-09 

extension, 2-188 
IT translator compiler, 2-215 
solution of differential equations, 2-214 

Run request, IT translator language, 
2-219 

Russian language, 11-14 
Russian peasant method, 18-28 
RW 300, 2-239 
RZ recording, 19-09, 20-36 

SAC, 2-158 
Sage, 13-03 



INDEX 31 

Sage, Air Defense Computers, 2-58 
SAIL, 2-158 
Salary distribution, 8-15 
Sampled data, analog-digital computer 

systems, 30-13 
Sampling, analog-digital converters, 

30-04, 30-06 
SAP, 2-156, 2-162, 2-164, 2-186, 2-187, 

2-239 
evaluation of quadratic form, 2-167 
pseudo instructions, 2-165 

Saturation flip-flop, 16-07 
Sawtooth waves, generation, 23-29 
SBT, see Transistors, surface barrier 

type 
Scale factors, 21-07, 22-10, 22-12, 27-14 

conversion of numbers with, 2-19 
digital differential analyzer, 28-04 
in fixed point computation, 2-24 
function generator, 23-19 
integrators, 28-06 
internal decimal, 2-21 
limitations on variables, 27-14 
multipliers, 23-11 

Scaler, binary, 29-05 
Scaling, see Scale factors 
Scanning, 3-09 
SCAT, 2-157 
Scheduled maintenance, 13-08 
Scheduling, aircraft production, 9-07 

computer flow diagram, 9-11 
equations, 9-09 

Scientific computers, 5-04 
applications, 10-01 
input-output, 20-02 

SCRIPT, 2-157 
SEAC, 2-57, 2-115,2-159, 19-29 
Segmenting, 2-130 
Selection circuits, magnetic cores, 

15-19 
Selective recording, 3-10 
Self-checking codes, 13-03, 13-06 
Self-complementing codes, 12-20 
Semantic ambiguity, 11-14, 11-15 
Semiconductor diodes, 14-45 

application notes, 14-46 
characteristics, 14-45 

Sense windings, 19-25 
Sentence decomposition, 2-259 
Sentential calculus, 11-03 

Sentential calculus, mechanization of 
decision procedures, 11-05 

Sequential access, 19-03 
Sequential storage, 4-12 
Service Bureau Corp., 2-156 
Servomechanisms, multipliers, 23-02, 

23-04 
polarized light, 27-04 
potentiometers, nonlinear, 23-31 

trigonometric functions, 23-32 
Set-reset flip-flop, 17-08, 18-02, 31-07 
SHACO, 2-156 
Shaft position, analog-digital conversion, 

20-51 
digital-analog conversion, 20-60 

Shaped beam tube, 5-37,20-14 
Share Assembly Program, see SAP 
Share Cooperative Programming Group, 

2-164 
Shaw method, 18-16 
Sheffer stroke function, 17-04, 31-01, 31-03 
Shift, 18-27 
Shifting register, 18-05 

magnetic cores, 15-15 
Short-circuit transfer impedance, 22-16, 

(table) 22-18 
SHORT CODE, 2-158 
Sign digit, 12-25 
Sign inversion, 22-09 
Simplex method, 10-07 
Simulation, 

absolute value, 23-27 
backlash, 23-27 
Coulomb friction, 23-27, 23-29 
dead zone, 23-25 
driver program, 17-41 
logical design, 17-38 
of one computer by another, 2-236, 

31-02 
output, 17-41 
programming, 17-40 
real time, 28-14 
switching devices, 23-25 
time delay, 23-34 
by Turing computer, 31-02 

Simultaneous linear equations, algebraic, 
10-02 

methods, (table) 10-05 
storage requirements, (table) 10-05 
time for solution, (table) 10-05 



32 INDEX 

Sines and cosines from implicit compu-
tation, 23-32 

Single address instructions, 2-58 
SIR, 2-157 
607,2-156 
SNAP, 2-158 
SO 2, 2-156 
SOAP, 2-186, 2-201, 2-214, 2-217 

dynamic stop, 2-140 
IT translator, 2-209, 2-214 
multiway switch, 2-138 
programming examples, 2-131 
subroutine entry, 2-141 

SOAP I, 2-157 
SOAP II, 2-157, 2-219 
SOHIO, 2-156 
Soroban Engineering, Inc., 20-22 
Sorters, punched cards, 20-32 
Sorting, 2-145, 2-146, 3-07 

address, 2-146 
digital, 2-146 
example, 2-153 
finding the smallest, 2-152 
interchanging pairs, 2-152 
by merging, 2-147 
number of comparisons, 2-153 
partial, 2-153 
sifting, 2-153 
use of main storage, 2-146 

Source data rate, (table) 4-04 
Soviet, algebraic language compiler, 

2-228 
computers, 2-60 
Strela, see Strela 
Union, see USSR 

Special purpose, analog computers, 
21-02 

digital computers, 5-04, 9-01, 12-09, 
12-25 

Spectral density, 26-05 
determination of, 26-20 
random telegraph signal, 26-14 

SPEED CODING, 2-156, 2-157 
Speeds, cathode ray tube display, 20-14 

code wheel converters, (table) 20-56 
computers, 5-42 
electrography, 20-18 
input media, 5-10 
keyboard, 5-11 
magnetic cards, 20-42 

Speeds, magnetic tape, (table) 20-42 
mechanical printers, (table) 20-08, 

20-10,20-12,20-13 
perforated tape equipment, (table) 

20-20 
photoelectric readers, 20-20, (table) 

20-27 
plotters, 20-65 
punched card equipment, 20-31, 20-32 
tape punches, 20-20, 20-21, 20-22, 20-23 
typewriters, 20-08, 20-10 

Sperry Rand Corporation, 2-83, 19-27 
1103,2-158 
1103A, 2-157 
File Computer, 2-158 
Larc,2-158 
Univac I, 2-158 
Univac II, 2-158 

Split winding transfer loop, 15-10 
SPUR, 2-157 
Squareness ratio, 19-24 
Square root, 18-22, 18-30 

decimal, 18-30 
incremental computation, 29-27 
methods, 18-23 
operational digital, 29-12 

Square waves, generation, 23-29 
Squaring circuits, biased diode, 23-08 

triode, 23-08 
Standard deviation, 26-03 
Standard Oil of Ohio, 2-156 
STAR,2-158 
Stationary processes, 26-03 
Statistical analysis, 10-10 
Statistical problems, (table) 26-10 
Statistical techniques, 26-01 
Steklov Mathematical Institute, 2-228 
Step relay multiplier, 23-10 
Storage, 5-02, 5-24, 12-02, 12-06, 19-01; 

see also Magnetic cores; Magnetic 
drums; Magnetic tape 

access methods, 4-12, 19-03 
access time, 5-24 
acoustic delay lines, 19-29 
auxiliary, 7-05 
buffer, 17-25,20-03 
capacitor-diode, 19-32 
characteristics, 5-24, 19-03 
cost, (table) 5-26 
cryogenic films, 19-32 



INDEX 33 

Storage, data processors, 4-11 
delay lines, 19-29 
electronic devices, 5-25, (table) 5-26 
electrostatic, 19-31 
external, 5-24 
ferrite plates, 19-29 
ferroelectric, 19-31 
hierarchies, 19-02 
logical elements, 17-01, 17-05 
magnetic cores, 14-03, 15-19, 19-13; see 

also Magnetic cores 
magnetic disks, 5-32, 19-13 
magnetic drums, 19-04; see also M ag-

netic drums 
magnetic films, 19-28 
mercury delay lines, 19-29 
multiaperture cores, 19-29 
operations, 2-60 
parametron, 19-33 
parity check, 19-03 
principle of operations, 5-25, (table) 

5-27, 19-02 
printouts, 2-183 
programming with secondary, 2-144 
random access, 5-32, 19-03 

programming with, 2-144 
and sorting, 3-08 

recording media, 5-09, 20-05 
reliability, 19-03 
sorting, 2-146 
speeds, 5-26 
transfer programs, 2-184 
transistor circuits, 16-20 
tubes, 19-31 
Turing computers, 31-02 
twister, 19-33 
types,5-24, (table) 5-26 
uses,5-25, (table) 5-27 

Stored program, 12-29 
Stream function, 25-02 
Streamlines, 25-02 
Strela, 2-60, (table) 2-64, 2-111, 2-186, 

2-188,2-228 
instruction logic, 2-111 
string programming, Liapounov-Ianov, 

2-233 
STRETCH, see IBM-STRETCH 
Stretched membranes, 25-22 
Stretched program, 2-182 
String language, 2-190 

String language, of lanov, 2-230 
notation of Liapounov, 2-233 

Stromberg-Carlson, 5-37, 20-14, 20-16 
Sub operations, 17-27 
Subroutine library, IT translator, 2-214 

MIDAC computer, 2-172 
Subroutines, 2-167; see also Integrated 

systems; Utility programs 
arithmetic classification, 2-180 
automatic exit, 2-169 
automatic programming, 2-161 
call-in methods, 2-180 
change of control, 2-169 
closed, 2-169 
conditional program, 2-171 
deferred preparation, 2-171 
entry, 2-140 
exit, 2-169 
floating variables, 2-168 
free variables, 2-168 
generators, differential, 2-182 

print, 2-182 
stretched program, 2-182 

hierarchy, 2-245 
counters, 2-195 

instructions, see Instructions 
linear matrix solver, 2-174 
momentary call-in, 2-180 
normall'andom deviates, 2-173 
numerical methods, 2-181 
open, 2-168 
packages, 2-219 
permanent call-in, 2-180 
preliminary preparation, 2-169 
program parameters, 2-168 
recursive use of, 2-244; see also Lan-

guages, recursive 
red tape, 2-181 
specification sheet, Univac 1103, 2-174 
specifications manual, 2-171 
structure, 2-168 
subprogram, 2-171 
synthetic instructions, 2-168 
transfer address, 2-171 
wired in, 2-188 

Subtraction, 18-14 
decimal, 18-27 
half, 18-14 
incremental computation, 29-25 
mechanical, 27-02 



34 INDEX 

Subtraction, operational digital, 29-10 
parallel, 18-15 
serial, 18-14 
using complements, 18-14 

Subtractor, see Subtraction 
Successive approximation method, ana­

log-digital conversion, 20-63 
Sum function, Veitch diagram, 17-07, 

17-22 
Summary punches, 20-32 
Summation, analog, 22-04, 22-09 
SUMMER SESSION, 2-159 
Summing amplifier, 22-09 
Summing network, 22-05 
Superconducting storage unit, 19-32 
Superposition, principle of, 26-06 
Surface barrier transistors, 16-06 
Switching characteristics, thermionic 

diode, 23-15 
transistors, 16-02 

Switching circuits, analog computers, 
23-22 

and logic, 11-05 
transistors, 16-02, 16-05 

Switching concepts, magnetic cores, 
15-01 

Switching functions, (table) 17-04, 17-10 
simplification, 17-15 

Switching speed, cores, 19-23 
transistors, 16-04, 16-07, 16-14 

SYMB. ASSEM., 2-156 
Symbolic addresses, 2-131, 2-160 

translated, 2-211 
Symbolic language, retranslation, 2-162 
Symbolic Optimal Assembly Program, 

see SOAP 
Symbols, adder, 18-03, 18-10 

analog computers, (table) 21-10, 
22-03 

analogs, 24-03 
arithmetic and control, 18-02 
computers, 1-01 
digital computers, 1-01 
digital differential analyzers, 28-03 
EASIAC, 2-123 
flip-flop, 17-30, 18-03 
logical design, (table) 17-02 
magnetic core circuits, 15-04 
mechanical computers, 27-05 
programming, 2-47 

Synchronization, tape punches, 20-25 
Synchronous computers, 17-05 
Syntactical transformation rules, 2-228 
Synthetic instructions, 2-161, 2-168 
Systems, linear, 26-06 

nonlinear, 26-09 
Systems planning staff, 6-11 

Table look-up, 2-142, 3-09 
Tables, 2-50 
Tabulators, punched card, 20-32 
Tape, see Magnetic tape; Perforated tape 
Tape limited problems, 2-63 
Tapped potentiometers, function gener­

ators, 23-17,23-20 
Taylor-McLaurin series, 2-181 
Tchebysheff, approximation, 2-182 

polynominals, 2-181 
Teledeltos paper, 20-18, 25-06, (table) 

25-07; see also Resistance paper 
Telegraph signal, random, 26-13 
Teleregister Corporation, 9-04 
Teletype Corporation, 20-21, 20-26 
Temperature stability, magnetic cores, 

15-09 
Terminology, computers, 1-02 
Terms of consensus, 17-17 
Thermal analyzers, 25-19 
Through variable, 24-03, 25-02 
Time average, ergodic process, 26-03 
Time cards, data processing, 8-17 
Time constants, 22-10 

divider, 28-13 
effecti on errors, 22-36 
integration, 22-07 
integrator, 22-36 

Time delays, approximations, 23-35 
digital storage, 23-35 
fourth-order approximations, 23-38 
magnetic tape, 23-34 
multiple lag approximations, 23-36 
Pade approximations, 23-36 
relays, 14-48 
simulators, 23-34 
Taylor series expansion, 23-35 
true, 23-34 
two-pen recorders, 23-34 

Time division, multipliers, 23-05 
Time interval, analog-digital conversion, 

20-47 



INDEX 35 

Time interval, digital-analog conversion, 
20-57 

Time scale factor, 22-11 
Time sharing, analog-digital computa­

tions, 30-10, 30-14 
computers, 31-01 

Time varying systems, 26-06 
Timing, tape punches, 20-24 
Timing control circuits, magnetic cores, 

15-21 
Timing diagram, binary rate multiplier, 

29-07 
Toggles, 17-05; see also Flip-flops 
Tolerance plots, 14-06 
Ton, of refrigeration, 6-07 
Torque amplifiers, 27-04 
Tracing programs, 2-183, 2-240 
Tradic computer, 16-02, 16-15 

power requirements, 16-20 
Traditional programming techniques, 

2-128 
Training courses, 6-10, 6-12 
Transac computer, 16-02, 16-05 

packaging, 16-14 
power requirements, 16-14 

TRANSCODE, 2-159 
Transcription, of data, 3-03 
Transfer characteristics, computer cir­

cuits, 14-21 
gate tube, 14-28 
pulse amplifier, 14-24, 14-26 

Transfer of control instructions, 5-41, 
12-04 

Transfer function representation, 22-13 
differential analyzer method, 22-16 
direct analog method, 22-14 
operational amplifier method, 22-15 

Transfer impedance, short circuit, 22-16, 
(table) 22-18 

Transfer instructions, see Instructions 
Transfer loops, magnetic cores, 15-09 
Transformers, 14-50 

coupling of transistors, 16-17 
Transistor circuits, 14-36, 16-01, 16-03 

adder, 16-11 
advantages, 16-01 
and gates, 16-10, 16-18 
combined gates, 16-11 
computers, (table) 16-03, 16-05, 16-15, 

16-20, 16-23 

Transistor circuits, counter, 16-28 
design considerations, 14-36, 16-04 
direct coupled, 16-05 
emitter follower, 16-24 
flip-flop, 16-07, 16-26 

high-speed, 14-37, 14-38 
gates, 16-09, 16-18 
inhibitor gates, 16-18 
inverters, 16-23 
logical gain, 16-04, 16-05, 16-07 
logic elements, 16-28 
magnetic core loops, 15-13 
magnetic core multiplier, 29-08 
marginal checking, 14-37 
noise immunity, 16-05 
one-shot multi vibrator, 16-08 
or gates, 16-10, 16-18 
output drivers, 16-28 
power dissipation, 16-05 
pulse amplifiers, 16-15, 16-17 
pulse gate, high speed, 14-42 
reliability, 16-04 
storage, 16-20 
switching speed, 16-02, 16-04, 16-07, 

16-14 
transformer coupling, 16-17 

Transistors, 14-51 
alloy junction type, 14-51 
construction, 14-51 
junction, 14-51, 14-52, 16-23 

application notes, 14-53 
point-contact characteristics, 16-16 
reliability, 16-03 
surface barrier type, 14-36, 14-41, 

16-06 
switching properties, 16-02 
types, 14-51, 16-02 

Translation, 2-183 
automatic programming, 2-160 

Translator construction, 2-221 
compiler representation, 2-221 
decision processes, 2-225 
permissible symbol pairs, (table) 

2-222 
rational procedure, 2-223 
symbol pair technique, 2-221 
syntactical transformation rules, 2-228 

Translators, 2-186; see also Compilers 
address relative, present, 2-192 
algorithms, 2-190 



36 INDEX 

Translators, automatic instruction modi-
fication, 2-190 

filing system, 2-188 
future trends, 2-189 
indirect addressing, 2-193, 2-199 
instruction modification types, 2-191 
IT translator, 2-187, 2-200; see also 

IT translator 
language extensions, 2-187 
languages, 2-186 
one-pass, 2-186 
preparation of problems in terms of 

building blocks, 2-187 
string language, 2-190 
subroutine hierarchy counter, 2-195 
two-pass, 2-186 

Transportation problem, 10-08 
TRANS-USE, 2-157 
Trapping mode, IBM-704, 2-65, 2-241 
Trigger flip-flop, 17-07, 17-34, 18-02 
Trigonometric devices, analog computer, 

23-31 
sines and cosines from implicit com-

putation, 23-32 
Trouble detection and location, 13-09 
Truth computer, 12-09 
Truth tables, 17-11 

adder, 18-10 
flip-flops, 18-03 
half adder, 18-08 
in logic, 11-04 
magnetic core circuits, 15-17 

Tubes, see Vacuum tubes 
Turing type computers, 31-01 

adder logic, 31-06 
auxiliary storage, 31-13 
communication technique, 31-02 
comparisons, 31-15 
input-output, 31-03, 31-07 
mechanization, 31-07 
operations, 31-03 
programming, 31-09, 31-12 
Sheffer stroke, 31-01, 31-03 
universal, 2-235 

Twister storage, 19-33 
Two-pass assemblers, 2-164 
Two-pass translators, 2-186 
Twu-quadrant multipliers, 23-02 
TX-O Development, microprogramming, 

2-252 

TX-2 core storage, 19-27 
Typewriters, 5-12, 20-07, 20-08 
Typotron, 20-14 

UDECIN-1, 2-158 
UDECOM-3, 2-158 
UGLIAC, 2-158 
Unconditional transfer of control in-

structions, 5-41, 12-04 
UNICODE, 2-157, 2-186, 2-245, 2-260 
Unitary weighted pulse trains, 29-05 
United Aircraft Corporation, 2-156, 2-164 
United Gas Corp., 2-158 
United States Army, 2-190 
Unit impulse response, 26-06 
Units of information, data processing, 

3-06 
Unityper, 8-02 
Univac, 2-162, 12-09, 13-03, 19-27, 19-29 
Univac I, 2-58, 2-130, 2-186, 2-239, 2-259 

accounting applications, 8-01 
Univac II, 2-58, 2-64, 2-186, 2-239, 2-259 

instruction logic, 2-83 
symbology, 2-84 

Univac 1103,2-58,2-176,2-186,2-193 
magnetic core storage, <table) 19-27 
subroutine, linear matrix solver, 2-174 

Univac 1103A, 2-55, 2-58, 2-64, 2-164, 
2-239, 2-241 

definitions and conventions, 2-77 
instruction logic, 2-77 
logical programming, 2-247 

Univac 1105, 2-58 
UNIV AC-LARC, 2-62, 2-189, 2-191 
Univac M-460, 2-191 
Univac Scientific, 12~09; see also Univac 

1103 and 1103A 
Univac Scientific Exchange, see USE 
UNIV. CODE, 2-159 
Universal computer language, automatic 

programming, 2-163 
Universal programming languages, 2-200 
Universal Turing Machine, 2-235 
University of California, 27-01 

Radiation Laboratories, 2-156, 2-157 
University of Illinois, 2-159 
University of Michigan, 2-122, 2-159, 

2-212,2-219,2-240,2-260,2-262 
Digital Computation Unit, 2-200 
IT Subroutine Library, 2-214 



INDEX 37 

University of Pennsylvania, 12-09 
University of Toronto, 2-159 
Unscheduled maintenance, 13-09 
Ural, 2-111 
USE, 2-157, 2-164 
U. S. Rubber Company, 25-07 
U.S.S.R., 2-186,2-190,2-228 

Academy of Sciences, 2-111 
Utility programs, 2-183 

assembly, 2-183 
automatic programming, 2-162 
compiler-translators, 2-184 
input, 2-183 
interpretive, 2-184 
selective post mortems, 2-183 
storage printouts, 2-183 

transfers, 2-184 
tracing, 2-183 

Vacuum tubes, 14-07, 14-20 
application notes, 14-44 
cathode temperature, 14-43 
characteristics, 14-43 
construction, 14-43 
gates, 14-26 
marginal checking, 14-07 
pentodes, 14-08 
triodes, 14-08 

Variables, across-through, 24-03 
analog computers, 22-02 
programming, 2-50 
relationships, (table) 24-04 
systems,24-09, (table) 24-12 

Variance, 26-03 
V brush method, analog-digital conver­

sion, 20-54 
Vector inner product, IBM 650 SOAP 

program, 2-135 
MIDAC MAGIC program, 2-136 

Vectors, characteristic roots and, 10-04 
Veitch diagrams, 17-13 

geometric relationships, 17-20 
Quine simplification, 17-22 
simplification, 17-20 

Verifiers, 5-12 
punched card, 20-31 

Voltage, analog-digital conversion, 20-48 
digital-analog conversion, 20-58 

von Neumann-Goldstine method, 10-02, 
10-03 

Wave equation, 25-04, 25-19 
Weighed check, 13-03, 13-06 
Weighted codes, 12-19 
Weighting function, 26-06 
Western Union, 20-18,25-07 
Wheeler entry, 2-141 
Wheeler method, subroutine exit, 2-170 
Whirlwind I, 2-159, 2-171, 19-06 

instructions, 2-62 
Library of Subroutines, 2-180 
maintenance of equipment programs, 

2-258 
Williams storage tube, 19-31 
Words, 2-22, 2-56, 5-06, 12-27 

instructions, 2-61, 2-63 
machine translation, 11-14 
size, (table) 2-64 

Wright Air Development Center, 2-158 
Write amplifiers, logical design, 18-38 
Write out instructions, 5-41 
Writing techniques, magnetic cores, 19-15 

magnetic drums, 19-09, 19-11 

X-I assembly system, 2-158, 2-162 
Xerography, 20-16 
Xerox, 20-16 
X-y plotters, 20-63 




