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FOREWORD

The proliferation of knowledge now makes it most difficult for scientists
or engineers to keep ahead of change even in their own fields, let alone
in contiguous fields. One of the fields where recent change has been most
noticeable, and in fact exponential, has been automatic control. This
three-volume Handbook will aid individuals in almost every branch of
technology who must constantly refresh their memories or refurbish their
knowledge about many aspects of their work.

Automation, computation, and control, as we know them, have been
evolving for centuries, but within the last generation their impact has
been felt in nearly every segment of human endeavor. Feedback prin-
ciples were exploited by Leonardo da Vinci and applied by James Watt.
Some of the early theoretical work of importance was contributed by
Lord Kelvin, who also, together with Charles Babbage, pointed the way
to the development of today’s giant computational aids. Since about the
turn of the present century, the works of men like Minorsky, Nyquist,
Wiener, Bush, Hazen, and von Neumann gave quantum jumps to compu-
tation and control. But it was during and immediately following World
War II that quantum jumps occurred in abundance. This was the period
when theories of control, new concepts of computation, new areas of
application, and a host of new devices appeared with great rapidity.
Technologists now find these fields charged with challenge, but at the
same time hard to encompass. From the activities of World War II
such terms as servomechanism, feedback control, digital and analog
computer, transducer, and system engineering reached maturity. More
recently the word automation has become deeply entrenched as meaning
something about the field on which no two people agree.

Philosophically minded technologists do not accept automation merely
as a third Industrial Revolution. They see it, as they stand about where
the editors of this Handbook stood when they projected this work, as a
manifestation of one of the greatest Intellectual Revolutions in Thinking
that has occurred for a long time. They see in automation the natural
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viii FOREWORD

consequence of man’s urge to exploit modern science on a wide front to
perform useful tasks in, for example, manufacturing, transportation,
business, physical science, social science, medicine, the military, and
government. They see that it has brought great change to our conven-
tional way of thinking about the human use of human beings, to quote
Norbert Wiener, and in turn about how our engineers will be trained to
solve tomorrow’s engineering problems. They even see that it has precipi-
tated some deep thinking on the part of our industrial and union leader-
ship about the organization of workers in order not to hold captive bodies
of workmen for jobs that automation, computation, and control have
swept or will soon sweep away.

Perhaps the important new face on today’s technological scene is the
degree to which the broad field needs codification and unification in order
that technologists can optimize their role to exploit it for the general
good. Onme of the early instances of organized academic instruction in
the field was at The Massachusetts Institute of Technology in the Elec-
trical Engineering Department in September 1939, as a course entitled
Theory and Application of Servomechanisms. I can well recollect
discussions around 1940 with the late Dr. Donald P. Campbell and
Dr. Harold L.--Hazen, which led temporarily to renaming the course
Dynamic Analysis of Automatic Control Systems because so few students
knew what “servomechanisms” were. But when the GI’s returned from
war everybody knew, and everyone wanted instruction. Since that time
engineering colleges throughout the land have elected to offer organized
instruction in a multitude of topics ranging from the most abstract
mathematical fundamentals to the most specific applications of hardware.
Textbooks are available on every subject along this broad spectrum.
But still the practicing control or computer technologist experiences
great difficulty keeping abreast of what he needs to know.

As organized instruction appeared in educational institutions, and as
industrial activity increased, professional societies organized groups in
the areas of control and computation to meet the needs of their members
to tell one another about technical advances. Within the past five years
several trade journals have undertaken to report regularly on develop-
ments in theory, components, and systems. The net effect of all this is
that the technologist is overwhelmed with fragmentary, sometimes con-
tradictory, redundant information that comes at him at random and in
many languages. The problem of assessing and codifying even a portion
of this avalanche of knowledge is beyond the capabilities of even the
most able technologist.

The editors of the Handbook have rlghtly concluded that what each
technologist needs for his long-term professional growth is to have a body
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of knowledge that is negotiable at par in any one of a number of related
fields for many years to come. It would bé ideal, of course, if a college
education could give a prospective technologist this kind of knowledge.
It is in the hope of doing this that engineering curricula are becoming
more broadly based in science and engineering science. But it is unlikely
that even this kind of college training will be adequate to cope with the
consequences of the rapid proliferation of technology as is manifest in
the area of automation, computation, and control. Hence, handbooks
are an essential component of the technical literature when they provide
the unity and continuity that are requisite.

I can think of no better way to deseribe this Handbook than to say
that the editors, in both their organization of material and selection of
substance, have given technologists a unified work of lasting value. It
truly represents today’s optimum package of that body of knowledge that
will be negotiable at par by technologists for many years to come in a
wide range of disciplines.

GORDON S. BROWN
Dean, School of Engineering
Massachusetts Institute of Technology






PREFACE

Accelerated advances in technology have brought a steady stream of
automatic machines to our factories, offices, and homes. The earliest
automation forms were concerned with doing work, followed by the con-
trolling function, and recently the big surge in automation has been
directed toward data handling functions. New devices ranging from
digital computers to satellites have resulted from military and other
government research and development programs. Such activity will
continue to have an important impact on automation progress.

One of the pressures for the development of automation has been the
growing complexity and speed of business and industrial operations.
But automation in turn accelerates the tempo of whatever it touches, so
that we can expect future systems to be even larger, faster, and more
complex. While a segment of engineering will continue to mastermind,
by rule of thumb procedures, the design and construction of automatic
equipment and systems, a growing percentage of engineering effort will
be devoted to activities that may be classified as problem solving. The
activities of the problem solver involve analysis of previous behavior
of systems and equipment, simulation of present situations, and predic-
tions about the future. In the past, problem solving has largely been
practiced by engineers and scientists, using slide rules and hand calcu-
lators, but with the advent of large-scale data processing systems,
the range of applications has been broadened considerably to include
economic, government, and social activities. Air traffic control, traffic
simulation, library searching, and language translation, are typical of
the problems that have been attacked.

This Handbook is directed toward the problem solvers—the engineers,
scientists, technicians, managers, and others from all walks of life who
are concerned with applying technology to the mushrooming develop-
ments in automatic equipment and systems. It is our purpose to gather
together in one place the available theory and information on general
mathematics, feedback control, computers, data processing, and systems

xi



xii PREFACE

design. The emphasis has been on practical methods of applying theory,
new techniques and components, and the ever broadening role of the
electronic computer. Each chapter starts with definitions and descrip-
tions aimed at providing perspective and moves on to more complicated
theory, analysis, and applications. In general, the Handbook assumes
some engineering training and will serve as an information source and
refresher for practicing engineers. For management, it will provide a
frame of reference and background material for understanding modern
techniques of importance to business and industry. To others engaged
in various ramifications of automation systems, the Handbook will pro-
vide a source of definitions and descriptive material about new areas of
technology.

It would be difficult for any one individual or small group of indi-
viduals to prepare a handbook of this type. A large number of contrib-
utors, each with a field of specialty, is required to provide the engineer
with the desired coverage. With such a broad field, it is difficult to
treat all material in a homogeneous manner. Topics in new fields are
given in more detail than the older, established ones since there is a need
for more background information on these new subjects. The organization
of the material is in three volumes as shown on the inside cover of the
Handbook. Volume 1 is on Control Fundamentals, Volume 2 is con-
cerned with Computers and Data Processing, and Volume 3 with Systems
and Components.

In keeping with the purpose of this Handbook, Volume 1 has a strong
treatment of general mathematics which includes chapters on subjects
not ordinarily found in engineering handbooks. These include sets
and relations, Boolean algebra, probability, and statistics. Additional
chapters are devoted to numerical analysis, operations research, and
information theory. Finally, the present status of feedback control
theory is summarized in eight chapters. Components have been placed
with systems in Volume 3 rather than with control theory in Volume 1,
although any discussion of feedback control must, of necessity, be con-
cerned with components.

The importance of computing in research, development, production,
real time process control, and business applications, has steadily increased.
Hence, Volume 2 is devoted entirely to the design and use of analog and
digital computers and data processors. In addition to covering the status
of knowledge today in these fields, there are chapters on unusual com-
puter systems, magnetic core and transistor circuits, and an advanced
treatment of programming. Volume 3 emphasizes systems engineering.
A part of the volume covers techniques used in important industrial
applications by examining typical systems. The treatment of components
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is largely concerned with how to select components among the various
alternates, their mathematical description and their integration into
systems. There is also a treatment of the design of components of
considerable importance today. These include magnetic amplifiers,
semiconductors, and gyroscopes.

We consider this Handbook a pioneering effort in a field that is
steadily pushing back frontiers. It is our hope that these volumes will
not only provide basic information on new fields, but also will inspire
work and further research and development in the fields of automatic
control. The editors are pleased to acknowledge the advice and assist-
ance of Dean Gordon 8. Brown and Professor Jerome B. Wiesner of the
Massachusetts Institute of Technology, and Dr. Brockway McMillan of
the Bell Telephone Laboratories, in organizing the subject matter. To
the contributors goes the major credit for providing clear, thorough
treatments of their subjects. The editors are deeply indebted to the
large number of specialists in the control field who have aided and
encouraged this undertaking by reviewing manuscripts and making
valuable suggestions. Many members of the technical staff and secre-
tarial staff of Thompson Ramo Wooldridge Inc. and the Ramo-
Wooldridge Division have been especially helpful in speeding the progress
of the Handbook.

EUGENE M. GRABBE

SIMON RAMO

DEAN E. WOOLDRIDGE
June 1959
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Computer Terminology
and Symbols
E. M. Grabbe

I. Standardization 1-01
2. Symbols 1-01
3. Glossary of Terminology 1-02

References 1-22

I. STANDARDIZATION

The growth of analog and digital computers as major components of
modern computing and control systems has done much to encourage
standardization of terminology and symbols. A sizable part of this
effort has been directed toward the terminology of digital computers.
Hence, the glossary of terminology given in Sect. 3 is largely concerned
with digital terms. No attempt has been made to define the terms asso-
ciated with computer usage in scientific computation, business data
processing, and control applications.

2. SYMBOLS

Diagram Symbols. Several sets of symbols for schematic and circuit
diagrams have been in use in the analog and digital fields. In Part E on
analog computers, one set of symbols has been chosen and used through-
out the chapters. The alternate notation is also listed for linear comput-
ing elements in Chap. 22 (see Table 1).

In the digital field, while terminology has been standardized to some
degree, the use of symbols has not. A variety of symbols is employed

1-01



1-02 ' COMPUTER TERMINOLOGY

for programming, logic, and circuit diagrams, depending on the author’s
preference and the type of diagram. Some symbols are easier to use for
some purposes than others. In all cases the symbols are clearly defined
and usage is unambiguous.

Since symbols are not standardized, no detailed list is given, but they
are described in the various chapters. The following is a list of the
chapters in the Handbook where tables of symbols may be found:

Symbols Chapters

Digital computer

Programming Chap. 2, Sect. 4

Logical design Chap. 17, Sect. 4

Logical operations Chap. 17, Sect. 1, Table 1

Magnetic cores Chap. 15, Sect. 1
Analog computer

Linear computing elements Chap. 22, Sect. 1

Nonlinear computing elements Chap. 23, Sect. 1

Mechanical computing elements ~ Chap. 27, Sect. 2

Analogs and duals Chap. 24, Sect. 2

Digital differential analyzers Chap. 28, Sect. 2

Letter Symbols. Letter symbols are standardized to some extent
in Part E, Design and Application of Analog Computers. (See Chap.
21, Sect. 1.) Elsewhere letter symbols are defined when they are used.

3. GLOSSARY OF TERMINOLOGY

Terminology from the Institute of Radio Engineers (Ref. 1) and the
Association for Computing Machinery (Ref. 2) has been compiled in a
glossary. The I.R.E. terminology is largely concerned with digital com-
puter design, although some analog terms are included. The A.C.M.
terminology is concerned with programming. Where an overlap exists,
the I.R.E. terminology has been selected since it represents the later
effort. For some terms, minor changes or additions have been made for
clarity and explanatory notes and examples have been added. Some
terms are included which have no official definition, and reference to the
chapters where they are described and defined is given. For terms not
listed in this glossary, please refer to the index.

Terminology is reproduced with the permission of the Institute of
Radio Engineers and the Association for Computing Machinery.

Glossary of Terminology

Access Time. A time interval which is characteristic of a storage
unit, and is essentially a measure of the time required to communicate
with that unit. Many definitions of the beginning and ending of this
interval are in common use.
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Accumulator. A device which stores a number and which, on receipt
of another number, adds it to the number already stored and stores the
sum. Note. The term is also applied to devices which funection as
described but which have other facilities also.

Accuracy. The quality of freedom from mistake or error, that is,
of conformity to truth or to a rule. Accuracy is distinguished from
precision. Example. A six-place table is more precise than a four-place
table. However, if there are errors in the six-place table, it may be either
more or less accurate than the four-place table.

Adder. A device which can form the sum of two or more numbers or
quantities.

Address. An expression, usually numerical, which designates a par-
ticular location in a storage or a memory device or other source or des-
tination of information. See also Instruction Code.

Absolute address, an address assigned by the machine designer
to a particular storage location.

Relative address, the address used to identify a word in a routine
or subroutine with respect to its position in that routine or subroutine.

Symbolic address (floating address), an address chosen to identify

a particular word, function, or other information in a routine, inde-

pendent of the location of the information within the routine. Some-

times called symbol or tag.

Address Part. In an instruction, any part that is usually an address.
See also Instruction Code.

Analog (in electronic computers). A physical system on which the
performance of measurements yields information concerning a class of
mathematical problems.

Analog Computer. A physical system together with means of control
for the performance of measurements (upon the system) which yield
information concerning a class of mathematical problems.

And Circuit. Synonym for and gate.

And Gate. A gate whose output is energized when and only when
every input is in its prescribed state. Thus, this gate performs the
function of the logical and.

Arithmetic Element. Synonym for arithmetic unit.

Arithmetic Unit. That part of a computer which performs arithmetic
and logical operations.

Assemble; Assembler, Assembly Routine; Assembly. See Routine.

Automatic Check. See Check, Automatic.

Band. A group of tracks on a magnetic drum.

Base. See Positional Notation.

Binary. See Positional Notation.
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Binary Cell. An elementary unit of storage which can be placed in
either of two stable states.

Binary-Coded-Decimal System. A system of number representation
in which each decimal digit is represented by a group of binary digits.
Note. TUsually refers to the four position binary codes 0000 to 1001
(decimal 1 to 9). Another example is the excess-three code.

Binary Number System. See Positional Notation.

Binary Point. See Pount.

Biquinary. See Positional Notation.

Bit. (1) An abbreviation of “binary digit.” (2) A single character
of a language employing exactly two distinet kinds of characters. (3)
A unit of information capacity of a storage device. The capacity in bits
is the logarithm to the base two of the number of possible states of the
device. See also Storage Capacity.

Block. A group of words considered as a unit.

Borrow. See Carry.

Branch. A synonym for conditional jump.

Break Point. A point in a routine at which a special instruction is
inserted which, if desired, will cause a digital computer to stop for a visual
check of progress.

Buffer. (1) An isolating circuit used to avoid reaction of a driven
circuit on the corresponding driving circuit. (2) A storage device used
to compensate for a difference in rate of flow of information or time
of occurrence of events when transmitting information from one device
to another. :

Bus. One or more conductors which are used as a path for trans-
mitting information from any of several sources to any of several
destinations.

Calculator. See Computer.

Carry. (1) A signal, or an expression, produced as a result of an
arithmetic operation on one digit place of two or more numbers expressed
in positional notation, and transferred to the next higher place for proc-
essing there. (2) Usually a signal, or an expression, as defined in (1)
which arises, in adding, when the sum of two digits in the same digit
place equals or exceeds the base of the number system in use. If a
carry into a digit place will result in a carry out of the same digit place,
and if the normal adding circuit is bypassed when generating this new
carry, it is called a standing-on-nines carry, or high-speed carry. If
the normal adding ecircuit is used in such a case, the carry is called a
cascaded carry. If a carry resulting from the addition of carries is not
allowed to propagate (e.g., when forming the partial product in one step
of a multiplication process), the process is called a partial carry. If it
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is allowed to propagate, the process is called a complete carry. If a
carry generated in the most significant digit place is sent directly to the
least significant digit place (e.g., when adding two negative numbers by
using nines complements) that carry is called an end-around carry.
(3) In direct subtraction, a signal or expression as defined in (1) which
arises when the difference between the digits is less than zero. Such a
carry is frequently called a borrow. (4) The action of forwarding a
carry. (5) The command requesting a carry to be forwarded.

Cascaded Carry. See Carry.

Cell. An elementary unit of storage (e.g., binary cell, decimal
cell).

Channel. That portion of a storage medium which is accessible to a
given reading station. See also Track. ‘

Character. One of a set of elementary marks or events which may
be combined to express information. Note. A ‘group of characters, in
one context, may be considered as a single character in another, as in the
binary-coded-decimal system.

Check. A process of partial or complete testing of (a) the correetness
of machine operations, (b) the existence of certain prescribed conditions
within the computer, or (¢) the correctness of the results produced by a
routine. A check of any of these conditions may be made automatically
by the equipment or may be programmed. See also Verification.

Check, Automatic. A check performed by equipment built into the
computer specifically for that purpose, and automatically accomplished

_each time the pertinent operation is performed. Sometimes referred to as
a built-in check. Machine check can refer to-an automatic check, or to
a programmed check of machine functions.

Check Digits. See Check, Forbidden Combination.

Check, Forbidden Combination. A check (usually an automatic
check) which tests for the occurrence of a nonpermissible code expres-
sion. A self-checking code (or error-detecting code) uses code expres-
sions such that one (or more) error(s) in a code expression produces a
forbidden combination. A parity check makes use of a self-checking
code employing binary digits in which the total number of 1’s (or 0’s)
in each permissible code expression is always odd or always even. A
check may be made for either even parity or odd parity. A redundancy
check employs a self-checking code which makes use of redundant digits
called check digits.

Check, Marginal. A preventive maintenance procedure in which

_ certain operating conditions, e.g., supply voltage or frequency, are varied
about their normal values in order to detect and locate incipient defec-
tive units.
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Check Problem. See Check, Programmed.

Check, Programmed. A check consisting of tests inserted into the
programmed statement of the problem and accomplished by appropriate
use of the machine’s instructions. A mathematical check (or control)
is a programmed check of a sequence of operations which makes use of
the mathematical properties of that sequence. A check routine or
check problem is a routine or problem which is designed primarily to
indicate whether a fault exists in the computer, without giving detailed
information on the location of the fault. See also Diagnostic Routine
and Test Routine under Routine.

Check Routine. See Check, Programmed

Check, Selection. A check (usually an automatic check) to verify
that the correct register, or other deVIce is selected in the performance
of an instruction.

Check, Transfer. A check (usually an automattc check) on the
accuracy of the transfer of a word.

Circulating Register (or Memory). A register (or memory) con-
sisting of a means for delaying information and a means of regenerating
and reinserting the information into the delaying means.

Clear. To restore a storage or memory device to a prescribed state,
usually that denoting zero.

Clock. A primary source of synchronizing signals.

Code. (1) A system of characters and rules for representing informa-
tion. (2) Loosely, the set of characters resulting from the use of a code.
(3) To prepare a routine in machine language for a specific computer.
(4) To encode, to express given information by means of a code. See
also Instruction Code, Language, Operation Code, and Pseudo-code.

Coding. The list, in computer code or in pseudo-code, of the succes-
sive computer operations required to solve a given problem.

Absolute, relative, or symbolic coding, coding in which one uses
absolute, relative, or symbolic addresses, respectively.

Automatic coding, any technique in which a computer is used to
help bridge the gap between some “easiest” form, intellectually and
manually, of describing the steps to be followed in solving a given
problem and some “most efficient” final coding of the same problem
for a given computer. Two basic forms, defined under Routine, are
compilation and interpretation.

Collate. To combine two or more similarly ordered sets of items
to produce another ordered set composed of information from the original
sets. Both the number of items and the size of the individual items in
the resulting set may differ from those of either of the original sets and
of their sums.
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Command. (1) One of a set of several signals (or groups of signals)
which occurs as a result of an instruction; the commands initiate the
individual steps which form the process of executing the instruction.
(2) Synonym for instruction.

Comparator. A device for comparing two different transcriptions of
the same information to verify the accuracy of transcription, especially
of one copy of tape from another. )

Compare. To examine the representation of a quantity for the pur-
pose of discovering its relationship to zero, or of two quantities for the
purpose of discovering identity or relative magnitude.

Comparison. The act of comparing and, usually, acting on the result
of the comparison.

Compile; Compiler, Compiling Routine; Compilation. See
Routine.

Complement. (1) A number whose representation is derived from
the finite positional notation of another by one of the following rules.
(@) True complement: subtract each digit from one less than the base;
then add 1 to the least significant digit and execute all carries required.
(b). Base minus one’s complement: subtract each digit from one less
than the base (e.g., “9’s complement” in the base 10 and “1’s comple-
ment” in the base 2). (2) To form the complement of a number. (a)
Complement on n: subtract each digit of the given quantity from n — 1,
add unity to the least significant digit, and perform all resultant carries.
For example, the two’s complement of binary 11010 is 00110; the ten’s
complement of decimal 456 is 544. (b) Complement on n — 1: sub-
tract each digit of the given quantity from n — 1. For example, the
one’s complement of binary 11010 is 00101; the nine’s complement
of decimal 456 is 543. Note. In many machines, a negative num-
ber is represented as the complement of the corresponding positive
number.

Complete Carry. See Carry.

Computer. (1) A machine for carrying out calculations. (2) By
extension, a machine for carrying out specified transformations on
information.

Conditional Jump. See Jump.

Conditional Transfer of Control. Synonym for conditional jump.

Control. (1) To exercise directing, guiding, or restraining power
over. (2) Power or authority to control. (3) Usually, those parts of
a digital computer which effect the carrying out of instructions in proper
sequence, the interpretation of each instruction, and the application of
the proper signals to the arithmetic unit and other parts in accordance
with this interpretation. (See Chap. 18.) (4) Frequently, one or more
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of the components in any mechanism responsible for interpreting and
carrying out manually initiated directions. Sometimes called manual
control. (5) In some business applications of mathematics, a mathe-
matical check.

Convert. See Routine.

Copy. To reproduce information in a new location by replacing
whatever was previously stored there and leaving the source of the
information unchanged. See also Transfer.

Correction. See Error.

Counter. (1) A device capable of changing from one to the next of a
sequence of distinguishable states upon each receipt of an input signal.
(2) Less frequently, an accumulator.

Counter, Ring. A loop of interconnected bistable elements such
that all but one are in their normal (or abnormal) state at any one
time, and so that, as input signals are counted, the position of the
one abnormal (normal) state moves in an ordered sequence around the
loop.

Cycle. (1) The sequence of events beginning with a particular event
and including intervening events leading up to a recurrence of the
original event. (2) The time interval which spans the sequence of
events of (1). See Loop, Major Cycle, Minor Cycle.

Cyclic Binary Code. See Chaps. 11 and 20.

Cyclic Shift. See Shuft.

Decimal Number System. See Posttional Notation.

Decimal Point. See Point.

Decoder. A network or system in which a combination of inputs is
excited at one time to produce a single output. Sometimes called matriz.

Delay Line. (1) Originally, a device utilizing wave propagation for
producing a time. displacement of a signal. (2) Commonly, any device
for producing a time displacement of a signal.

Delay-Line Memory. Synonym for delay-line storage.

Delay-Line Storage. A storage or memory device consisting of a
delay line and means for regenerating and reinserting information into
the delay line.

Diagnostic Routine. See Routine.

Differentiator. A device, usually of the analog type, whose output is
proportional to the derivative of an input signal

Digit. See Positional Notation.

Digital Computer. A computer which operates with information,
numerical or otherwise, represented in a digital form.

Double-Length Number, Double-Precision Number. See Number,
Double-Length.
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Edit. To rearrange information. Editing may involve the deletion
of unwanted data, the selection of pertinent data, the insertion of invari-
ant symbols such as page numbers and typewriter characters, and the
application of standard processes such as zero suppression.

Encoder. A network or system in which only one input is excited at a
time and each input produces a combination of outputs. Sometimes
called matriz.

End-Around Carry. See Carry.

Erase. To replace all the binary digits in a storage device by binary
zeros. In a binary computer, erasing is equivalent to clearing. While
in a coded decimal computer where the pulse code for decimal zero may
contain binary ones, clearing leaves decimal zero whereas erasing leaves
all-zero pulse codes. Erasing of magnetic tapes and drums may leave
all zeros or may remove all information, both ones and zeros.

Error. (1) In mathematics, the difference between the true value
and a calculated or observed value. A quantity (equal in absolute mag-
nitude to the error) added to a calculated or observed value to obtain
the true value is called a correction. (2) In a computer or data proc-
essing system, any incorrect step, process, or result. Strictly speaking,
“error” is a mathematical term, but in computer engineering the term
is also commonly used to refer to machine malfunctions as ‘“machine
errors” and to human mistakes as “human errors.” It is frequently
helpful to distinguish between these as follows: errors result from approx-
imations used in numerical methods, mistakes result from incorrect
programming, coding, data transcription, manual operation, etc.; mal-
functions result from failures in the operation of machine components
such as gates, flip-flops, and amplifiers.

Inherited error, the error in the initial values, especially the error
inherited from the previous steps in the step-by-step integration.

Rounding error, the error resulting from deleting the less signifi-
cant digits of a quantity and applying some rule of correction to the
part retained.

Truncation error, the error resulting from the use of only a finite
number of terms of an infinite series, or from the approximation of
operations in the infinitesimal calculus by operations in the calculus
of finite differences.

Error-Detecting Code. See Check, Forbidden Combination.

Excess-Three Code. A number code in which the decimal digit n
is represented by the four-bit binary equivalent of n + 3. See also
Binary-Coded-Dectmal System.

Extract. To form a new word by juxtaposing selected segments of
given words.
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Field. A set of one or more characters (not necessarily all lying in
the same word) which is treated as a whole; a unit of information. See
also Item; Key.

Card field, a set of visually consecutive card columns fixed as to
number and position into which the same unit of information is regu-
larly entered.

File. A sequential set of items (not necessarily all of the same size).

Fixed-Point System. See Point.

Flip-Flop. (1) A device having two stable states and two input ter-
minals (or types of input signals) each of which corresponds with one
of the two states. The circuit remains in either state until caused to
change to the other state by application of the corresponding signal.
(2) A similar bistable device with an input which allows it to act as a
single-stage binary counter.

Floating-Point System. See Point.

Flow Diagram. A graphic representation of a routine.

Forbidden Combination Cheeck. See Check, Forbidden Combination.

Four-Address Code. See Instruction Code.

Gate. A circuit having an output and a multiplicity of inputs so
designed that the output is energized when and only when certain input
conditions are met. See also And Gate; Or Gate.

Generate; Generator, Generative Routine; Generation. See
Routine.

Gray Code. See Chaps. 11 and 20.

Half Adder. A circuit having two input and two output channels
for binary signals (0, 1) and in which the output signals are related to
the input signals according to the following table:

Input to Output from

A B S c A— —> S
0 0 0 0 ’

0 1 1 0

1 0 1 0 B—> —>C
1 1 0 1

(So called because two half adders can be used in the construction
of one binary adder.)

Hexadecimal. See Positional Notation.

High-Speed Carry. Scc Carry.

Information. A set of symbols or an arrangement of hardware that
designates one out of a finite number of alternatives; an aggregation
of data which may or may not be organized.

Inhibiting Input. A gate input which, if in its prescribed state, pre-
vents any output which might otherwise occur.



COMPUTER TERMINOLOGY AND SYMBOLS I-11

Instruction. Sce Instruction Code.

Instruction Cede. An artificial language for describing or expressing
the instructions which can be carried out by a digital computer. In auto-
matically sequenced computers, the instruction code is used when describ-
ing or expressing sequences of instructions, and each instruction word
usually contains a part specifying the operation to be performed and one
or more addresses which identify a particular location in storage. Some-
times an address part of an instruction is not intended to specify a loca-
tion in storage but is used for some other purpose. If more than one
address is used, the code is called a multiple-address code. In a typical
instruction of a four-address code the addresses specify the location of
two operands, the destination of the result, and the location of the next
instruction in the sequence. In a typical three-address code, the fourth
address specifying the location of the next instruction is dispensed with
and the instructions are taken from storage in a preassigned order. In
a typical one-address or single-address code, the address may specify
either the location of an operand to be taken from storage, the destina-
tion of a previously prepared result, or the location of the next instrue-
tion. The arithmetic element usually contains at least two storage loca-
tions, one of which is an accumulator. For example, operations requiring
two operands may obtain one operand from the main storage and the
other from a storage location in the arithmetic element which is specified
by the operation part.

Breakpoint instruction, an instruction which, if some specified
switch is set, will cause the computer to stop, or proceed in a special
way.

Conditional breakpoint instruction, a conditional jump instruction
which, if some specified switch is set, will cause the computer to stop,
after which either the routine may be continued as coded or a jump
may be forced. _

One-plus-one, or three-plus-one address instruction, a two- or
four-address instruction, respectively, in which one of the addresses
always specifies the location of the next instruction to be performed.

Zero address instruction, an instruction specifying an operation in
which the location of the operands are defined by the computer
code, so that no address need be given explicitly.

Integrator. (1) A device whose output is proportional to the integral
of an input signal. (2) In certain digital machines, a device for numer-
ically accomplishing an approximation to the mathematical process of
integration.

Interlock. A device which prevents certain activities for the dura-
tion of certain other activities.
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Interpret, Interpreter, Interpretive Routine, Interpretation. See
Routine.

Item. A set of one or more fields containing related information;
a unit of correlated information relating to a single person or object.

Jump. To (conditionally or unconditionally) cause the next instruc-
tion to be selected from a specified storage location.

Conditional Jump. An instruction which will cause the proper
one of two (or more) addresses to be used in obtaining the next
instruction, depending upon some property of one or more numerical
expressions or other conditions.

Unconditional Jump. An instruction which interrupts the normal
process of obtaining instructions in an ordered sequence, and specifies
the address from which the next instruction must be taken.

Key. A set of characters, forming a field, used to identify an item.

Language. (1) A system consisting of (a) a well-defined, usually
finite, set of characters, (b) rules for combining characters with one
another to form words or other expressions, and (¢} a specific assign-
ment of meaning to some of the words or expressions, usually for com-
municating information or data among a group of people, machines,
ete. (2) A system similar to (1) but without any specific assignment
of meanings. Such systems may be distinguished from (1), when neces-
sary, by referring to them as formal or uninterpreted languages. Al-
though it is sometimes convenient to study a language independently of
any meanings, in all practical cases at least one set of meanings is
eventually assigned. See also Machine Language.

Library. An ordered set or collection of standard and proven routines
and subroutines by which problems and parts of problems may be
solved, usually stored in relative or symbolic coding. (A library may be
subdivided into various volumes, such as floating decimal, double-pre-
cision, or complex, according to the type of arithmetic employed by the
subroutines.)

Logic. See Logical Design.

Logical Design. (1) The planning of a computer or data processing
system prior to its detailed engineering design. (2) The synthesizing
of a network of logical elements to perform a specified function. (3)
The result of (1) and (2), frequently called the logic of the system,
machine, or network.

Logiecal Diagram. In logical design, a diagram representing the logical
elements and their interconnections without necessarily expressing con-
struction or engineering details.

Logical Element. In a computer or data processing system, the
smallest building blocks which can be represented by operators in an
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appropriate system of symbolic logic. Typical logical elements are the
and gate and the flip-flop which can be represented as operators in a
suitable symbolic logic.

Logical Operation. (1) Any nonarithmetical operation. Examples
are: extract, logical (bit-wise) multiplication, jump, and data transfer.
(2) Sometimes only those nonarithmetical operations which are express-
ible bit-wise in terms of the propositional calculus or a two-valued
Boolean algebra.

Logical Symbol. A symbol used to represent a logical element
graphically. :

Loop. The repetition of a group of instructions in a routine. See
also Cycle.

Machine Check. See Check, Automatic.

Machine Language. (1) A language, occurring within a machine,
ordinarily not perceptible or intelligible to people without special equip-
ment or training. (2) A translation or transliteration of (1) into more
conventional characters but frequently still requiring special training
to be intelligible.

Major Cycle. In a storage device which provides serial access to stor-
age positions, the time interval between successive appearances of a
given storage position.

Malfunction. See Error.

Manchester Recording. See Chap. 19, Sect. 2.

Marginal Checking. See Check, Marginal.

Marginal Testing. See Check, Marginal.

Master Routine. See Routine, Executive.

Mathematical Check. See Check, Programmed.

Matrix (Switch). (1) A network or system having a number of
inputs and outputs and so connected that signals representing informa-
tion expressed in a certain code, when applied to the inputs, cause output
signals to appear which are representations of the input information in a
different code. (2) A network or system in which a combination of
inputs is excited at one time to produce a single output. (3) A network
or system in which only one input is excited at a time and each input
produces a combination of outputs.

Memory. See Storage.

Merge. To produce a single sequence of items, ordered according to
some rule (i.e., arranged in some orderly sequence), from two or more
sequences previously ordered according to the same rule, without chang-
ing the items in size, structure, or total number. Merging is a special
case of collation.

Memory Capacity. Synonym for storage capactty.
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Minor Cycle. In a storage device which provides serial access to
storage positions, the time interval between the appearance of corre-
sponding parts of successive words.

Mistake. See Error.

Modified Binary Code. See Chaps. 11 and 20.

Modifier. A quantity, sometimes the cycle index, used to alter the
address of an operand.

Modify. (1) To alter in an instruction the address of the operand.
(2) To alter a subroutine according to a defined parameter.

Multiple-Address Code. See Instruction Code.

Multiplier. A device which has two or more inputs and whose output
is a representation of the product of the quantities represented by the
input signals. (See Chap. 18.)

NRZ, Non-Return to Zero Recording. See Chap. 19, Sect. 2.

NRZI, Non-Return to Zero, Invert Recording. See Chap. 19,
Sect. 2.

Number. (1) Formally, an abstract mathematical entity which is a
generalization of a concept used to indicate quantity, direction, ete. In
this sense a number is independent of the manner of its representation.
(2) Commonly, a representation of a number as defined above (e.g.,
the binary number “10110,” the decimal number “3695,” or a sequence
of pulses). (3) A word composed wholly or partly of digits, and per-
haps a sign, which does not necessarily represent the abstract entity
mentioned in the first meaning. Note. Whenever there is a possibility
of confusion between meaning (1) and meaning (2) or (3), it is usually
possible to make an unambiguous statement by using “number” for
meaning (1) and “numerical expression” for meaning (2) or (3). See
also Posttional Notation.

Number, Double-Length. A number having twice as many digits
as are ordinarily used in a particular computer.

Number System. Sce Posttional Notation.

Octal. See Positional Notation.

Octonary. See Postitional Notation.

One-Address Code. See Instruction Code.

On-Line Operations. See Real-Time Operation.

Operation Code. (1) The list of operation parts occurring in an
instruction code, together with the names of the corresponding opera-
tions (e.g., “add,” “unconditional transfer,” and “add and clear”). (2)
Synonym for operation part of an instruction.

Arithmetical operations, operations in which numerical quantities
form the elements of the calculation (e.g., addition, subtraction, mul-
tiplication, division).
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Complete operation, an operation which includes (a) obtaining
all operands from storage, (b) performing the operation, (c¢) returning
resulting operands to storage, and (d) obtaining the next instruction.

Computer operation, the electronic operation of hardware result-
ing from an instruction.

Logical operations, operations in which logical (yes-or-no) quan-
tities form the elements being operated on (e.g., comparison, extrac-
tion). A usual requirement is that the value appearing in a given
column of the result shall not depend on the values appearing in more
than one given column of each of the arguments.

Red tape operations, operations which do not directly contribute
to the result; i.e., arithmetical, logical, and transfer operations used
in modifying the address section of other instructions, in counting
cycles, and in rearranging data.

Transfer operations (storage operations), operations which move
information from one storage location or one storage medium to
another (e.g., read, record, copy, transmit, exchange). Transfer is
sometimes taken to refer specifically to movement between different
media; storage to movement within the same medium.

Although many operations fit the above definitions of two or more of
the terms arithmetical, logical, transfer, and red tape, these terms are
frequently used loosely to divide the operations of a given routine or of
a given instruction code into four mutually distinet classes depending on
the primary function intended for the given operation in the case at hand.

Operation Part. In an instruction, the part that usually specifies
the kind of operation to be performed, but not the location of the oper-
ands. See also Instruction Code.

Or Circuit. Synonym for or gate.

Order. (1) Synonym for instruction. (2) Synonym for command.
(3) Loosely, synonym for operation part. Note. The use of “order” in
the computer field as a synonym for terms similar to those above is
losing favor owing to the ambiguity between these meanings and the
more common meanings in mathematics and business.

Or Gate. A gate whose output is energized when any one or more
of the inputs is in its prescribed state. Thus, this gate performs the
function of the logical inclusive-or.

Overflow. (1) The condition which arises when the result of an
arithmetic operation exceeds the capacity of the number representation
in a digital computer. (2) The carry digit arising from this condition.

Parallel. Pertaining to simultaneous transmission of, storage of, or
logical operations on the parts of a word, character, or other subdivision
of a word, using separate facilities for the various parts.
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Parallel Digital Computer. One in which the digits are handled in
parallel. Mixed serial and parallel machines are frequently called serial
or parallel according to the way arithmetic processes are performed.
An example of a parallel digital computer is one which handles decimal
digits in parallel, although it might handle the bits which comprise a
digit either serially or in parallel.

Parity Check. See Check, Forbidden Combination.

Partial Carry. See Carry.

Place. In positional notation, a position corresponding to a given
power of the base. A digit located in any particular place is a coefficient
of a corresponding power of the base.

Point. In positional notation, the location or symbol which separates
the integral part of a numerical expression from its fractional part.
For example, it is called the binary point in binary notation and the
decimal point in decimal notation. If the location of the point is
assumed to remain fixed with respect to one end of the numerical ex-
pressions, a fixed-point system is being used. If the location of the
point does not remain fixed with respect to one end of the numerical
expressions, but is regularly recalculated, then a floating-point system
is being used. Note. A fixed-point system usually locates the point by
some convention, while the floating-point system usually locates the
point by expressing a power of the base.

Positional Notation. One of the schemes for representing numbers,
characterized by the arrangement of digits in sequence, with the under-
standing that successive digits are to be interpreted as coefficients of
successive powers of an integer called the base or radix of the number
system. In the binary number system the successive digits are inter-
preted as coefficients of the successive powers of the base two just as in
the decimal number system they relate to successive powers of the
base ten. In the ordinary number systems each digit is a character
which stands for zero or for a positive integer smaller than the base.
The names of the number systems with bases from 2 to 20 are: binary,
ternary, quaternary, quinary, senary, septenary, octonary (also octal),
novenary, decimal, unidecimal, duodecimal, terdenary, quaterdenary,
quindenary, sexadecimal (also hexadecimal), septendecimal, octodenary,
novendenary, and vicenary. The sexagenary number system has a base
of 60. The commonly used alternative of saying “base 3,” “base 4,” etc.,
in place of ternary, quaternary, etc., has the advantage of uniformity
and clarity. Note. In the most common form of positional notation the
expression

+a,a,-1 " a2a100.0-10_-2 * * * Q—p,
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is an abbreviation for the sum

n
= Z airi’

i=—m

where the point separates the positive powers from the negative powers,
the a; are integers (0 =a;=1r — 1) called “digits,” and r is an integer,
greater than one, called the base. Note 1. The base of a number is
usually indicated by a vertical line following the number with the base,
7, as a subscript. The decimal number 12 in octal and binary codes is
written 12|;9 = 14|g = 1100|5. Note 2. For some purposes special rules
are followed. In one such usage, the value of the base » is not constant.
In this case, the digits are coefficients of successive products of a non-
constant sequence of integers.

Precision. The quality of being exactly or sharply defined or stated.
A measure of the precision of a representation is the number of dis-
tinguishable alternatives from which it was selected, which is sometimes
indicated by the number of significant digits it contains. See also
Accuracy.

Program. (1) A plan for the solution of a problem. (2) Loosely,
a synonym for routine. (3) To prepare a program.

Automatic programming, any technique in which the computer is
used to help plan as well as to help code a problem. See Coding.
Optimum programming, improper terminology for minimal latency
= coding, i.e., for producing a minimal latency routine. See Routine.

Programmed Check. See Check, Programmed.

Pseudo-Code. An arbitrary code, independent of the hardware of
a computer, which must be translated into computer code if it is to
direct the computer.

Radix. See Positional Notation.

Random Acecess. Access to storage under conditions in which the next
position from which information is to be obtained is in no way dependent
on the previous one.

Read. To acquire information, usually by observing some form of
storage. Note. Usually a process which can be called reading can also
be called writing, depending on the point of view of the observer.

Real-Time Operation, On-Line Operation, Simulation. Processing
data in synchronism with a physical process in such a fashion that the
results of data processing are useful to the physical operation.

Redundancy Check. See Check, Forbidden Combination.

Reflected Binary Code. See Chaps. 11 and 20.



1-18 COMPUTER TERMINOLOGY

Regeneration. (1) In a storage device whose information storing
state may deteriorate, the process of restoring the device to its latest
undeteriorated state. (2) In a storage device whose information storing
state may be destroyed by a readout, the process of restoring the device
to its state prior to the readout. This process is commonly known as
rewrite (after destructive readout).

Register. A device capable of retaining information, often that con-
tained in a small subset (e.g., one word) of the aggregate information
in a digital computer. Example. A register in an arithmetic unit as
opposed to a cell in storage.

Register Length. The number of characters which a register can
store.

Reset. (1) To restore a storage device to a prescribed state. (2) To
place a binary cell in the initial or “zero” state. See also Clear.

Rewrite. See Regeneration.

Ring Counter. See Counter, Ring.

Routine. A set of instructions arranged in proper sequence to cause
a computer to perform a desired operation or series of operations, such
as the solution of a mathematical problem. i

Executive routine (master routine), a routine designed to process
and control other routines. A routine used in realizing “automatic
coding.”

Compiler (compiling routine), an executive routine which, before
the desired computation is started, translates a program expressed in
pseudo-code into machine code (or into another pseudo-code for
further translation by an interpreter). In accomplishing the trans-
lation, the compiler may be required to:

Decode, to ascertain the intended meaning of the individual
characters or groups of characters in the pseudo-coded program.

Convert, to change numerical information from one number base
to another (e.g., decimal to binary) and/or from some form of
fixed point to some form of floating-point representation, or vice
versa.

Select, to choose a needed subroutine from a file of subroutines.

Generate, to produce a needed subroutine from parameters and

skeletal coding.

"~ Allocate, to assign ‘storage locations to the main routines and
subroutines, thereby fixing the absolute values of any symbolic
addresses. In some cases allocation may require segmentation.

Assemble, to integrate the subroutines (supplied, selected, or
generated) into the main routine, i.e., to adapt, to specialize to the
task at hand by means of preset parameters; to orient, to change
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relative and symbolic addresses to absolute form; to incorporate,

to place in storage. '

Record, to produce a reference record.

Check Routine. Sece Check, Programmed.

Diagnostic Routine, a specific routine designed to locate either a
malfunction in the computer or a mistake in coding.

General routine, a routine expressed in computer coding designed
to solve a eclass of problems, specializing to a specific problem when
appropriate parametric values are supplied.

Interpreter (interpretive routine), an executive routine which,
as the computation progresses, translates a stored program expressed
in some machine-like pseudo-code into machine code and performs
the indicated operations, by means of subroutines, as they are trans-
lated. An interpretive routine is essentially a closed subroutine which
operates successively on an indefinitely long sequence of program
parameters (the pseudo-instructions and operands). It may usually
be entered as a closed subroutine and exited by a pseudo-code exit
Instruction.

Minimal latency routine, especially in reference to serial storage
systems, a routine so coded, by judicious arrangement of data and
instructions in storage, that the actual latency is appre(:lably léss
than the expected random access lateney.

Rerun routine (rollback routine), a routine designed to be used
in the wake of a computer malfunction or a coding or operating mis-
take to reconstitute a routine from the last previous rerun point,
which is that stage of a computer run at which all information per-
tinent to the running of the routine is available either to the routine
itself or to a rerun routine in order that a run may be reconstituted.

Service routine, a routine designed to assist in the actual operation
of the computer. Tape comparison, block location, certain post mor-
tems, and correction routines fall into this class. Also called operator
routine.

Specific routine, a routine expressed in specific computer coding
designed to solve a particular mathematical, logical, or data handhng
problem.

Subroutine. (1) In a .routine, a portion that causes a computer
to carry out a well-defined mathematical or logical operation. (2) A
routine which is arranged so that control may be transferred to it from
a master routine and so that, at the conclusion of the subroutine, con-
trol reverts to the master routine. Such a subroutine is usually called
a closed subroutine. A single routine may simultaneously be both a
subroutine with respect to another routine and a master routine with
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respect to a third. Usually control is transferred to a single subroutine

from more than one place in the master routine, and the reason for

using the subroutine is to avoid having to repeat the same sequence
of instructions in different places in the master routine.

Test routine, a routine designed to show that a computer is not
functioning properly.

RZ, Return to Zero Recording. See Chap. 19, Sect. 2.

Scale. To change the scale (i.e., the units) in which a variable is
expressed so as to bring it within the capacity of the machine or routine
at hand.

Selection Check. See Check, Selection.

Self-Checking Code. See Check, Forbidden Combination.

Serial. Pertaining to time-sequential transmission of, storage of, or
logical operations on the parts of a word, with the same facilities for
successive parts.

Serial Digital Computer. One in which the digits are handled
serially. Mixed serial and parallel machines are frequently called serial
or parallel according to the way arithmetic processes are performed.
An example of a serial digital computer is one which handles decimal
digits serially although it might handle the bits which comprise a digit
either serially or in parallel. Antonym: Parallel Digital Computer.

Set. (1) To place a storage device in a prescribed state. (2) To
place a binary cell in the “one” state.

Sexadecimal. See Positional Notation.

Shift. Displacement of an ordered set of characters one or more places
to the left or right. If the characters are the digits of a numerical
expression, a shift may be equivalent to a multiplication by a power of
the base.

Cyclic Shift. An operation which produces a word whose characters
are obtained by a eyclic permutation of the characters of a given word.
Sign Digit. A character used to designate the algebraic sign of a

number.

Simulation. See Real-Time Operation.

Single-Address Code. See Instruction Code.

Sort. To arrange items of information according to rules dependent
upon a key or field contained by the items.

Standing-on-Nines Carry. See Carry.

Storage. (1) The act of storing information. (See also Store.) (2)
Any device in which information can be stored, sometimes called a
memory device. (3) In a computer, a section used primarily for storing
information. Such a section is sometimes called a memory or a store
(British). Note. The physical means of storing information may be
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electrostatic, ferroelectric, magnetic, acoustic, optical, chemical, elec-
tronic, electrical, mechanical, ete., in nature.

Storage Capacity. The amount of information that can be simul-
taneously retained in a storage (or memory) device, often expressed
as the number of words that can be retained (given the number of
digits, and the base, of the standard word). When comparisons are made
among devices using different bases and word lengths, it is customary
to express the capacity in bits. This number is obtained by taking the
logarithm to the base 2 of the number of distinguishable states in which
the storage can exist. Note. The “storage (or memory) capacity of a
computer” usually refers only to the principal internal storage section.

Store. (1) To retain information in a device from which it can later
be extracted. (2) To introduce information into such a device. (3)
British synonym for storage (3).

Subroutine. See Routine.

Switch. A device for effectively making, breaking, or changing the
path of information flow. See also Matriz (Switch).

Ternary. See Posttional Notation.

Test Routine. See Routine.

Three-Address Code. See Instruction Code.

Track. That portion of a moving-type storage medium which is
accessible to a given reading station; e.g., as on film, drum, tapes, or
disks. See also Band.

Transcriber. Equipment associated with a computing machine
for the purpose of transferring input (or output) data from a record of
information in a given language to the medium and the language used
by a digital computing machine (or from a computing machine to a
record of information).

Transfer. (1) To transmit, or copy, information from one device
to another. (2) To transfer control. (3) The act of transferring,

Transfer Cheek. See Check, Transfer.

Transfer Control. Synonym for jump.

Translate. To change information (e.g., problem statements in
pseudo-code, data, or coding) from one language to another without
significantly affecting the meaning.

Translator. A network or system having a number of inputs and
outputs and so connected that signals representing information expressed
in a certain code, when applied to the inputs, cause output signals to
appear which are a representation of the input information in a different
code. Sometimes called matriz.

Trunk. A path over which information is transferred; a bus.

Unconditional Jump. See Jump.
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Unconditional Transfer of Control. Synonym for wunconditional
jump.

Unit. A portion or subassembly of a computer which constitutes the
means of accomplishing some inclusive operation or function, as arith-
metic unit.

Verification. The process of automatically checking the results of
one data recording process against the results of another data recording
process for the purpose of reducing the number of errors in data tran-
scription. See also Check.

Verifier. A device on which a manual transcription can be verified
by comparing a retranscription with it character by character as it is
being retranscribed.

Volatile. A term descriptive of a storage medium in which informa-
tion cannot be retained without continuous power dissipation. Note.
Storage devices or systems employing nonvolatile media may or may not
retain information in the event of planned or accidental power removal.

Williams Tube Storage. A type of electrostatic storage.

Word. An ordered set of symbols which is the normal unit in which
information may be stored, transmitted, or operated upon within the
computer.

Word Time. Synonym for minor cycle.

Write. To introduce information, usually into some form of storage.
See also Read.

Zero Suppression. The elimination of nonsignificant zeros to the
left of the integral part of a quantity before printing operations are
initiated; a part of editing.
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I. NATURE OF PROGRAMMING

Problem Solving

Characteristics of Problem Solving. Basically, the general problem
which the digital computer programmer must face is the solution of
2-01
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problems. The solution of problems with automatic information proc-
essing machines employs two tools:

1. Arithmetic (basically elementary descriptive number theory or the
manipulation of integers). The problem of evaluating and understanding
the arithmetic portion of the problem-solving job is numerical analysis
(see Yol. 1, Chap. 14).

2. Formal logic, or the making of decisions on the basis of elemental
pieces of basic information. In this chapter the emphasis will be placed
on the non-numerical portions of the problems.

Limitations. For each machine developed to solve problems, a new
problem will be found to strain its resources. Problems tend to outgrow
the ability of the present man-machine combinations to construct models
of the problem, within the computers, for solution. The important
limitations imposed by general purpose computers are:

1. Logical Portion of the Solution Process. Vast problems on classical
standards, describing the interaction of men, machines, and nature in a
generally unpredictable (except statistically) fashion, must be solved
by mapping their description into digital information machines.
Ezample. The problem of commercial or military aircraft traffic control.

2. Multidimensional Arithmetic Problems. Ezample. Multidimen-
sional problems in partial differential equations, as described by
numerical analysis.

3. Succession of Related or Even Nonrelated Problems. Many prob-
lems involve organizing the solution of not one problem (large or small),
but of a number of problems coming from different disciplines, so as to
make use of previous knowledge accumulated and stored in the auto-
matic digital computer.

4. Many Problems Are Not Well Defined. These experimentally and
theoretically undefined problems must nevertheless have solution proc-
esses developed for them. Ezamples. Air traffic control, the solution
of partial differential equations, and the control of management and
information functions in a large organization.

Approaches to Programming. The two approaches to problem
solving with machines can be divided into (1) hand programming, in
which programs are produced in detail by individual practitioners in
a manner that is more an art than a science, and (2) automatic pro-
gramming, with the machine taking over most of the routine de-
cisions.

Automatic Programming. This area encompasses two basic prob-
lems:

1. The Problem of Languages. If humans are to keep up with the
voracious input capacity of the digital computers, then languages built
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for the humans, and not the machines, must be developed and put into
operation. This involves the creation of translators, techniques for using
them, and, finally, a theory of such formal translators. Multimachine
installations, with each machine having a separate language of its own,
require a unified language for most efficient use. The development of
“automatic problem solution” requires formalism, interchangeability of
procedures, and compatibility of languages if it is to become a true
discipline in the scientific sense.

2. The Problem of Files. Each problem solved on a computer should
be considered as part of the structure of a generalized body of knowledge,
either in a certain domain, or in the overall domain of problem solving
itself. The body of knowledge about automatic problem solving so
laboriously collected by the users of these machines must be set up so
that each machine itself can store, generate, and accept problem pro-
cedures generated not only by human beings, but also by the machine
itself and by other machines. The final long-range goal in this problem
of files and information retrieval, in relationship to what is presently
known as ‘“‘computer programming,” is therefore not to generate programs
or algorithms for digital computers by human beings, but instead to
develop programs or algorithms for the generation, improvement, filing,
retrieval, and combination of other algorithms by the computers
themselves.

Basic Concepts of Programming

The process of preparing a program or set of coded instructions to
solve a problem on a high-speed electronic digital computer has been
more of an art than a science.

Programming Procedure. A programmer is called upon to map an
external problem from the field of science, engineering, business, or
other field of origin, into the logical structure of a general purpose digital
computer by preparing, or overseeing the preparation of, a list of instruc-
tions to be performed in sequence by the computer. He may do this
himself, step by step; but if he is able to take advantage of certain
procedures already set up, he may be aided in many cases by the use of
the machine itself. This allows incorporation of similar or associated
procedures that he or other persons have evolved previously.

The usual procedures for the programmer are:

1. Determine the problem, since usually it is posed in such an original
form that it is necessary to determine the actual statement of the prob-
lem before proceeding further.

2. Analyze the problem in whatever external language it has been
presented—algebra, pictorialized “road map,” handbook of organizational
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procedures, an actual physical or organizational structure, or perhaps
only inputs allowed and outputs required.

3. Break the problem down into logical “atomic fragments,” and
synthesize a resultant program or algorithm in terms of a different
language, that of the machine.

Basic Computer Organization. The heart of a scientific calculating
system is the large-scale general purpose, high-speed stored program
electronic digital computer (see Ref. 19). These computers are patterned
after the traditional sequential use of arithmetie, with internal decision
making based on partial results.

Block Diagram of Computer Solution. Figure 1 describes a flow
diagram which may be considered an example of a typical process of
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“measures of effectiveness”
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| |
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program
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Fra. 1. Block diagram of computer solution.

solution of a scientific, business, or real-time control problem. In Fig. 1
all the blocks within the dotted lines can be handled automatically by
a high-speed digital computer. Those blocks outside the dotted lines
have not yet been successfully attacked by machine techniques. They
require human intervention. Thus, any programming procedure ecmbeds
the electronic digital computer in a larger data processing system with
interplay between the automatic computer on the one hand and the
mathematician or engineer or business systems analyst on the other.
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Programming System. The programmer, whatever his region of
application, is faced with a classical problem, the same that faces either
the computer designer or any designer: the formal description of a process
or procedure. The steps are as follows:

1. Determination of a descriptive statement of the problem in a
formal language, symbolic or pictorial, mathematical or graphical.

2. Determination of a basic (canonical) set of structures or pieces
into which he will decompose his formal description. In computer pro-
gramming these are called instructions, or subroutines, or statements,
depending on the level of language involved.

3. Decomposition of the original problem into these basic pieces.

4. Optimization of the performance characteristics of the problem
under some measure of effectiveness: fastest program, smallest amount
of man and machine time, storage within some predetermined maxi-
mum.

5. Analysis of the performance. Determination of the behavior of the
final program for a “satisfactory” selection of input parameters.

Expansion of the Controlled System. At the present time, at most
the two boxes, “Translate program” and “Does program work,” shown
in Fig. 2, are being handled more or less automatically by the machines

Translate Does
program within program
framework work?

F1a. 2. Operations handled automatically by the machine.

themselves. The general trend of the discipline now being evolved is to
extend the areas of the dotted lines of Fig. 1 as far as possible.

Self-Improvement in Systems. An ultimate desire in a system is
that it be “self-improving.” A general large control system is shown in
Fig. 3a which is to improve its performance in time. Figure 3b shows an
information machine system having similar objectives. The development
of unified programming systems indicates recent trends toward complete
mechanization (Ref. 97). One system stores on magnetic tape all pro-
grams being written, corrected, and performed within the computer.

Measures of Performance. If one therefore considers computer
programming as embedded within a large structure, one can determine
several pertinent categories of measurement of the performance of pro-
grams prepared for use on a machine.

1. Degree of generalization and abstraction of the program. Within
bounds, a program that can handle a large variety of cases is much more
useful than one that solves only one specific case. Experience has shown
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F1a. 3. Computer system. Dotted lines indicate information flow is less heavy than
for solid lines. (a) Large control system. (b) Information machine system.

that existence of a sufficiently general computer program will generate
the solution of new cases not previously considered.

2. Addition to the body of knowledge of the system. A new computer
program is worth much more if it adds new techniques to an organized
laboratory programming system.

3. Standard conventions. By use of standard conventions the pro-
grammer can use the fruits of the labors of others who have obeyed the
same conventions.

4. Cost, elapsed time, human time, machine time. These are the
measures which are ordinarily uppermost in the computer user’s mind
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and on which many short-range decisions are based. In the long run,
the three previous criteria may prove much more important.

Characteristics of Modern Problem Solving

In using a general purpose digital computer there is a need for absolute
preciseness required in transcription of data, writing of detailed instruc-
tions, operation of the machines. These areas are important, but represent
the routine aspects of problem solving.

More fundamental are the characteristics of the formalized solution of
problems presently required by the information machines as follows:

1. Emphasis on structure rather than number. Portions of the problem
are arithmetic, but the most difficult part of the problem-solving pro-
cedure is the readying of the logical decision-making structure.

2. Difficulty in making intuitive decision processes precise.

3. Requirement of the problem-solving system to adapt to the changing
structure of the problem. Most problems of modern science and industrial
society are not static, but rather dynamic.

4. Extreme combinatorial complexity.

5. Importance of correct manipulation of data. Data processing
machines can perform a far greater number of operations between errors
than can a human being. This means that in smaller problems, many
of the customary checks required to guarantee accuracy of solution can
be ignored. However, since the size of problems has kept pace with the
mean free path between errors, the need of thorough error-detecting and
error-correcting procedures remains just as important on the larger
problems (see Chap. 13). Until such procedures can be included auto-
matically in an overall integrated system (as has been attempted, for
example, by Carr et al., Ref. 18), this property of machines of accuracy,
valid for smaller problems, must still be a responsibility of the human
programmer.

The Programmer and Machine Design. Onto the programmer falls
the responsibility of bridging the gap between human and machine per-
formance in the first three characteristics, as well as of taking advantage
of the machine’s penchant for spectacular performance in the last two
cases. New programming procedures, when successful, have been built
later into hardware. Ezamples are automatic indexing, automatic
number conversion, simplified input-output, simplified and extended
languages.

"The Structure of Machine Programming

It is important to understand just what is being done when a problem
is “put on” the machine. This description may be formulated in
mathematical terms,
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Mathematical Representation of the Machine. As a simplification,
consider first the electronic portion of the machine and assume a binary
machine. At the beginning of a problem, there is a certain “binary
function” stored in the machine, with each binary storage position con-
taining either a 0 or 1. At the end of the problem, the machine contains
a second binary function, which generally is not the same.

Thus, in mathematical language, one can consider the machine proper
as a method of forming correspondence between one machine function
and another (see also Chap. 17, Sect. 5). In mathematical notation label
the binary storage positions in the machine by some index and call the
total set of such positions X. If there are N storage positions in the ma-
chine, there are 2¥ possible “machine functions.”” One such machine
function will be called f(x). The set of all such machine functions will
be called F. (See Vol. 1, Chap. 1, Sets and Relations.) Then the elec-
tronic elements of the machine form an operator My over the set of all
functions f(x). Figure 4 shows a picture of the machine’s action.

X
X My

D

—

Fic. 4. Machine action in symbolic form.

The operator My can be extended to include the entire machine, with
its input and output equipment. Such a function will be called the
automatic machine or M operator, which transforms functions f(x).
The basic set X then includes not only all binary storage positions in the
machine, but also binary storage positions on the paper, magnetic tape,
and typewriters attached to it. The function space F now includes all
functions over the extended set.

Definition of Programming. Problems to be solved by the machine
must be similar in structure to the machine itself. Therefore, any prob-
lem to be solved on the machine must be in a sense “mathematically
similar” to the machine structure just outlined. A problem to be put on
the machine will be defined as some mapping or transformation or
operator. A similar picture to the above can be drawn (see Fig. 5).
Some set N with index £, a set of functions ¢ (£) over N, @, and a trans-
formation P, which makes a correspondence between the set of functions
® and another set @’

This “problem space” could be any type of function space. However,
only for certain problems (in fact a very small minority of possible ones)



PROGRAMMING AND CODING 2-09

F1c. 5. Problem in symbolic form.

can one hope to get an exact reproduction of this problem space in a
machine. This problem of the mapping of problems into a machine is
called programming.

The Art of Programming. This is the job of translating the set of
functions @ into F, the set of functions &’ into F”, and the problem operator
P into the machine operator M. This is shown in Fig. 6.

G BB BB £
Q My> - - My My M, . a

F1c. 6. Programming in symbolic form.

Programming a problem consists of forming a correspondence between
the original problem functions and the machine functions f(z), and
between the problem operator P and the machine operator M. The
mapping of functions is done by some prearranged convention, and
the mapping of the operator P into M is done “in the small” or piecemeal.
Thus the problem operator P is broken up into successive operators
Py, Py, Pg, - - - P,, as shown in Fig. 6.

In Fig. 6,
C = a conversion operator converting problem functions into machine
functions

P;= canonical components of the problem operator P

T = the operator transformation taking the P; into corresponding M;

R = a reconversion operator carrying machine functions back into
problem functions.

Usually the operator C will carry @ into F in a fashion that is not
1:1. This means that a function in F may correspond to many functions
in ®. Ezample. The mapping of irrational and rational numbers into
finite length machine numbers. All the numbers within a certain interval
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on the real line are made to correspond to one number in the machine.
This is where the celebrated roundoff problem arises.

Although the numbers or functions in F may have exact counterparts
in ®, the functions in @ under the mapping B—1 in most cases do not
have an exact counterpart in F’. Thus, except in special cases, the
reconversion operator R cannot be the inverse mapping of C, that is,

R£C—1.

This is due to the basiec nature of any machine operator M, which must
of necessity be restricted to a finite operator, while the problem operators
of mathematics of most scientific models generally operate on an infinity
of elements.

Problem Solution

In most high-speed computing machines, the machine operator M and
its canonical components M; are stored as functions over the machine
set X, and since they are therefore able to operate on each other, they
introduce a further complication. This signifies merely that one natural
canonical decomposition of M is into canonical operators where each is
now a function of the preceding M, j < i. Thus the state of the instruc-
tion portion of any program is a function of all the instruction program
at each preceding stage in the machine’s path of control.

The solution problem thus consists of a number of connected problems:
encoding, programming, conversion, and reconversion.

Encoding Problem. The decision of just what functions f(x) will
correspond to a given ¢(x) is called the encoding problem. Every
mathematical problem can be broken up into infinitesimal or basic logical
operations. The mathematics involved in encoding is essentially the
same as the problem of encoding mathematical objects from a given group
or algebraic structure over into binary form. Shannon, Wiener, and
others (Ref. 110), have applied this theory to certain communication
problems, but it has not been directly applied to machine problems.

There are two unsolved problems regarding encoding: minimization
and self-encoding.

Minvmization. TFor a given engineering criterion, can some function F
for encoding P; into M; be minimized (either uniquely or not); i.e., does
min F (I, T, T,, C, --*) exist, where

I = amount of binary information storage
T, = time required for encoding

T, = time required in program operation

C = variable including engineering cost
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It is very probable that there are some workable criteria that may
improve the present methods of encoding.

Self-Encoding. Can an algorithm, or regular process, be developed by
which one can arrive at even a near-minimal encoding system? If this
can be done, it is a basic step toward the automation of problem solving.
Once a proper algorithm is developed, it should be possible for the
machine to decide on its own machine code; i.e., just how many and
what combination of binary digits will give the most efficient machine
representation of a basic canonical operator P;. In other words (see
Fig. 6), the machine should be allowed to engineer its own construction,
once it knows what the decomposition of the operator P is to be in terms
of some basic set of P;’s.

Present machines are not self-encoding and can be called fixed code
machines.

If better fixed-code machines or self-encoding machines are to be
built, this is a combined engineering and logical problem, which has to do
with a decision as to what is the best representation in the machine for
the operators P;, that is, just what shall be the form of the M..

Programming. This is the job of making the canonical decomposi-
tion (P;) and then actually performing the translation operation 7. The
decomposition of P into canonical parts has so far been a hit-or-miss
proposition. There have been no overall logical studies of just how
operations P should be decomposed and in what language they should be
expressed, Mathematics has not so far been constructed for ease in
translation to the basic binary functions of high-speed machines. Hence,
programmers have turned to the much more easily translatable language
of logic for translation purposes, mainly because the translation operation
T has to be performed by human beings.

There is no reason why the machine cannot be “taught” to perform
the operation T. The first steps are the writing and testing of the
libraries of subroutines. However, it is apparent that since the structure
of the problem P is going to be similar to the structure M, the previously
mentioned theory of the best decomposition of M may turn out to be
intimately related to a quantitative information theory of operational
mathematies.

Conversion and Reconversion. The operations C and R are the
conversion and reconversion programs that translate the functions
¢ (€) into the functions f(x) of the machine. The operator C takes the
outside language and translates its basic elements into binary functions
inside the machine.

The operator R does the reverse job. If the translation C has been a
many-to-one process, where there is ambiguity outside but not inside
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the machine, the operator R will not be a true inverse. It is very prob-
able then, that C and B will be made to be approximately 1 to 1 operators,
the inverse of one another. In present machines, the beginnings of a
workable operator C are the conversion and translation read-in programs,
while the operator R is being approximated by the various print-out and
post-mortem programs.

Completely Automatic Programming. One can now outline just
what a completely automated machine will do when a particular problem
is presented to it. This machine will perhaps contain a very flexible
set of arithmetic and computational elements. It will contain stored
in it, in some form or another, a great many rules and algorithms by
which it is to perform the various operations. The following steps will
oceur.

1. It will be presented with a problem operator P, in some outside
language which has been previously decided upon.

2. It will then translate P into machine language and, by some
algorithm, decompose P into some predetermined set of P;.

3. It will enumerate each of the P; and determine what shall be the
best encoded form for the corresponding M.

4. It will then translate the P; into the M; it has decided upon, by
means of the operator 7.

5. Then by a given rule C, it will translate whatever functions ¢ (x)
are to be operated on over into the machine form.

6. It will then perform the basic machine operation and obtain the
corresponding functions f'(x), which will be reconverted by the operator
R into the “outside language” form.

Provided the proper rules of operation can be found, all this can be
completely automatic. The implications on construction of machines
themselves are the following:

1. The mathematical machine of the future may well be an even more
general purpose machine than now, with a very large amount of high-
speed storage and a very flexible set of arithmetical elements, which it
will control and combine itself. (This allows for self-correcting by a
machine.)

2. If the “programming” process is made nearly automatic, the largest
of bottlenecks may come in the final transition of output information
from the machine to the human.

2. NUMBERS AND SCALE FACTORS

Logic and Numbers. Mathematical logicians, such as Whitehead
and Russell (Ref. 105), have shown that the concept of numbers can be
built up from the fundamentals of logic. Turing (Ref. 101), a logician
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and early computing machine designer, showed that a very simple
machine, performing very clementary logical operations, can represent
every automatic computing device within a large class (see Chap. 31).
On the other hand, the relationship between the truth tables of the
propositional calculus and the binary number system and the mapping
of more advanced logical systems by Gédel and others into the integers
shows that the concept of number and logical process are closely inter-
related. .

Number Systems. Numbher systems and numerical notations used,
both by human beings and by general purpose digital computers, have
several basic properties fundamental to their use: (1) base or radix of
the system, (2) method of representation of negative numbers in the
system, (3) precision or amount of information available in the repre-
sentation of a number, and (4) range of application of the notation over
the range of real numbers.

Number System Base. The base or radiz of a number system is set
by the number of digits or markers in the representation. Most number
systems used by computers are of constant radix, such as the ordinary
decimal system, as compared with variable radix systems, such as the
Roman numeral notation. Each digit is a distinguishable symbol repre-
senting one of the first several consecutive integers or natural numbers,
starting at zero. The number of such markers in the numerical notation
gives the base or radix.

Most machines use number systems with base 2%, where k is most often
2, 3, 4, or 5, for ease in external or internal manipulation of numbers.
Such bases are the base 2 (binary), base 8 (octal or octenary), base 16
{hexadecimal or sexadecimal), and base 32 systems. Machines usually
use the binary notation as the fundamental internal number system, and
the secondary binary-like bases as shorthand notations for input and
output.

Notation. In any of these systems, digits appear in a series of con-
secutive positions or orders, which are usually presented on paper from
left to right, proceeding from the highest order digit down to the lowest.
Thus the notation for a number n expressed in the base r

1) 7. = api + air™ Ao+ o + ag® + a0 0+ awr™,
would be

a;q;—1°°*aA100 . A1 ** * Q—m,

where the a; could be any of the r digits or markers of the notation, and
the values of the integers j and m are dependent on the size of the num-
ber and the amount of information or precision it is to convey. The
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period or radix point inserted between the digits is a device for noting
the position of the a, and a_; markers.

Thus the integer representing the number of days in the year would
be written in the decimal notation as

n = 3651,
since n =3 X 102+ 6 X 10! 4+ 5 X 10°:
and in the binary notations as
n = 101101101]>
since

n—1><28+0><27+1><26+1><25+0><24+1><23
+1X2240X2'41X20

Conversion of Numbers from One System to Another

Need for Conversion. There is frequently a need to convert from
decimal language to binary, octal, or hexadecimal number systems. Two
conditions frequently encountered are: -

1. Conversion from a first number system to a second number system
by using the arithmetic of the first number system. Ezample. This
occurs on output when conversion must be made from the internal
machine number system to the external number system, with the machine
instructed to perform the conversion in the internal number system.

2. Conversion from a first number system to a second number system
by using the arithmetic of the second number system. Ezample. Com-
puter output may be in its internal language, and a human being must
convert to decimal. In this case the conversion must be performed in
the external language, generally the decimal number system.

Conversion in the Arithmetic of the Original System. The number
n = 0 is expressed in an original number system in the following form:

(2) n=y aré t="kk—1,---,1,0,—1, -2, ---
In the second number system
3) n=y awi, =k k—1,+-.-,1,0,—1,—-2---.

It is to be converted by using the arithmetic of the first number system.
To perform the conversion it is easiest to split the number given in
eq. (2) into two parts, an integer part N, and a fractional part F, each
one to be treated separately, i.e., n=N + F.

Working first on the integer part, one divides N by 7, in the arithmetic
of the first number system to obtain a’y in the following fashion:

(4) a'o = N — [N/ro]re,
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where [ ] indicates the “integral part of.” Then

&) N©® =N,
(6) a'; = N® — [N®/ro]rs,
(7) NGHD = [N(i)/r2]_

At each stage the reduced expression for the succeeding integer is given
by the integer part of the quotient obtained by division by the radix r.

In converting the fractional part F of the number, instead of division,
multiplication by the power of the radix r, is performed at each step, and
the integer part of the remainder yields the coefficient of the corresponding
term. The general formula for this process is as follows:

(8) FO =qa a7l +d'ore2+a'gra3+ -+,
9) a’s = [roF 9],
10) FGHD = pof (D — g/,

ExampLe 1. Conversion of a mixed number given in-the decimal
notation into the corresponding binary number by using decimal arith-
metic.

n = 97.975 = NO 4 FO,
where N = 97, F©O = (.975.

ay =97 —[97/2]2 = 1,
NO = [97/2] = 48,

a’y = 48 — [48/2]2 = 0,
N® = [48/2] = 24,

@'y = 24 — [24/2]2 = 0,
N® = [24/2] = 12,

'y = 12 — [12/2]2 = 0,
N® = [12/2] = 6,

a's =6 — [6/2]2 = 0,

N® = [6/2] = 3,
a's = 3 — [3/2]2 = 1,
N® = [3/2] = 1,
as=1—[1/2]2 = 1,

N® = [1/2] = 0.
Therefore
NO =1.2611.204+0-2¢4-0-2240-224+0-214+1-29,
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or as it is commonly written in the binary notation
N© = 1100001,
Similarly, '

FO = 0.975,
a1 = [2(0.975)] = 1,
FO =[2(0.975)] — 1 = 0.95,
a'_2 = [2(0.95)] = 1,

CF® =[2(0.95)] — 1 = 0.90,
a’_3 = [2(0.90)] = 1,
F® = [2(0.90)] — 1 = 0.80,
a'_s = [2(0.80)] = 1,
F® = [2(0.80)] — 1 = 0.60,
a’_s = [2(0.60)] = 1,
F® = [2(0.60)] — 1 = 0.20,
a5 = [2(0.20)] = 0,
F®© = [2(0.20)] — 0 = 0.40,
a'_7 = [2(0.40)] = 0,
F® = [2(0.40)] — 0 = 0.80.

At this point the computation can be terminated, since F) = F(7),
and the result is therefore a repeating binary fraction. Hence,

F=1-2141-2241-23841.2%41.-2540-2540-277..-,
The number n can therefore be written

n = 97.975|1 = 1100001.11111001111100- - - |2

ExampLE 2. Conversion of a binary number, the integer I, into a
decimal by using binary arithmetic inside a computer. The binary
numbers obtained that are equivalent to one of the ten decimal digits
0 through 9 upon completion must be printed out of the computer by
some procedure such as the use of binary-coded decimal through an
output typewriter device.

Given I = N =10110010101|», divide by 10|;o = 1010|5, succes-
sively, [ ] again mean the integral part of.

a’o = 10110010101 — [10110010101,/1010]1010
10110010101 — (10001110)(1010)
10012 = 9|10,

N® = [10110010101/1010] = 10001110,
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a’y = 10001110 — [10001110/1010]1010
= 10001110 — (1110)1010
= 0010‘2 = 2|10,
N® = [10001110/1010] = 1110,
a’s = 1110 — [1110/1010]1010
0100|2 = 4|1o,
N® =[1110/1010] = 1,
a’s =1 —[1/1010]1010
= 0001]2 = 1]0.
Therefore I = 10110010101|2 = 1429|4,.

Il

A similar example could be carried out for a binary fraction.

Conversion in the Arithmetic of the Second System. When = is
expressed in the form of eq. (1), perform the operations on the right-hand
side of the equation in the r, system. This can be done by two methods:
(a) simple multiplication of the powers which may be stored inside the
computing machine, followed by addition or (b) the synthetic division
or polynomial multiplication process which is given in the following form:

(11) N|,, = (- (a1 + as—1)r1 + as2)r1 + -+ - + ao) |,

or

(12)  p1 = a, pip1 = pir1 + Gr—i, prr1 = N (pi = successive iterants),
and

(13) F

= (- ((azi/r1+ a—)/r1+ an)/r1 + - - - a21) /71,

where the value j is picked at the beginning.
ExampLeE 1. Conversion of a number from binary to decimal by using
the decimal number system.

n = 10110010101 5.

(a) Adding successive powers of 2 in the decimal system, eq. (6),

n = 20 4 22 4 24 4. 27 4. 28 4 210
=144+ 16 + 128 + 256 + 1024 = 1429|10.

(b) Using the synthetic division process of eq. (7),
n=(((((((((1(2)+0)2+1)2+1)24-0)24-0)2+1)2+0)2+1)24+0)2+1,

with successive iterants p;
2, 5, 11, 22, 44, 89, 178, 357, 714, 1429, n = 1429|;,.
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In the first procedure, eq. (a), it was assumed that the numerical
equivalents of the power of 2 were stored in some fashion in the external
decimal system.

Examrre 2. For fractions, the two procedures are, for

n = 0.10111001|s:

(a) Adding successive powers,
n=1(2"1)40(2"2)+1(273)+1(27*)+1(275)+0(275)+0(277)+1(28)
=0.5 +0.125 +4-0.0625+0.03125 +000390625
=0.72265625| 10.

(b) Synthetic division,
n=(((((((L(271)40)2714+0)2"1+1)2714+1)2"1+1)271+0)271 +1)27},

which yields as iterants

0.5, 0.25, 0.125, 0.5625, 0.78125, 0.890625, 0.4453125, 0.72265625,
C o= 0.72265625) 10.

Note. For fractional numbers the second procedure of synthetic divi-
sion, necessitating successive divisions by powers of two, does not work
as well because of the difficulties of the fractions involved, and because
the procedure moves from the lowest power of the radix upward.

ExampLE 3. The same procedure can be used in the conversion of
decimal numbers to binary by using the binary system, as in the case
of conversion of straight binary-coded decimal numbers to binary inside
the machine. Convert n = 1429|,.

(a) Adding successive powers,

n=(1-10344-102+ 2-10L 4+ 9-10°)|:0
= 1(1111101000) + 100(1100100) + 10(1010) + 1001 (1)
= 10110010101 |2.

(b) Synthetic division,
((1(1010) + 100)1010 + 10)1010 + 1001
= 10110010101z

A Trick Method. A trick method of conversion can be used when
conversion is done in the system having the lower radix. The procedure
makes use of a “magic number” which is the difference between the two
bases, determined as follows:

1. If ry < ry, the magic number is 7o — r{, and conversion is in the r;
arithmetic.

Il

n
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2. If vy > ry, the magic number is ro — r; (in this case always nega-
tive) and conversion is in the r, arithmetic.

Octal to Decimal. Here ry < rq, i.e., 8 < 10. The rule in going from
an octal number to decimal is as follows. Use the magic number
2 =10 — 8, multiply it decimally by the first left-hand octal digit con-
sidered as a decimal, and subtract the resulting number decimally from
the first two left-hand octal digits, again considered as a decimal. The
procedure is then repeated by multiplying the first two digits of the
remainder and subtracting them again, again treating all numbers as
decimals. Repeat the process, multiplying by successively larger groups
of digits by 2 in each case and subtracting until the number in that
column vanishes. Repeat the same procedure in succeeding columns
until a group of k — 1 digits has been used, where & is the number of
digits in the original number.

Examrre. Convert 1077|g and 678|g to decimal

n = 1077|s n = 678]s
1077 678
-2 -12
—(2X1) =57 —2X6) =—=
—(2X8) _ 16 —(2 X 55) = —110
77 —_
—(2X71) = —142 n = 44810
n = 5750

Hezxadecimal to Dectmal. Here ro > 1y, i.€., 16 > 10. A similar pro-
cedure may be used for converting from hexadecimal to decimal via
decimal. Here the magic number is negative, —6 =10 — 16. The
procedure is given directly without any further explanation.

ExaMPLE.

n = 6A7|16 = 6 10 7|6
—(—=6X6) = + 3 .
10 67 (carry occurs at 16, i.e., 10 + 6)
~ (=6 X 106) = + 6 36
n = 17 0 3|1o

Conversion with Scale Factors. Decimal to Binary. In general,
when converting from arbitrary external numbers into an internal
machine language, scale factors may be introduced into the original
numbers to complicate the procedure. The procedure most often used
in the conversion of decimal numbers to binary by using binary arith-
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metic is that given by eqgs. (11) to (13). In the computer with internal
binary arithmetic the scale factors allowable will generally consist of a
decimal scale factor and a binary scale factor. In the MAGIC notation
for use with the MIDAC computer, and in similar notations for other
binary computers such as the IBM 704 and Univac Scientific, the follow-
ing is the standard form of a digital number as applied on input. In
many cases the binary and decimal scale factors will be zero so that the
number itself will be given by the fractional part.

n = 97.975 X 277,
n = 0.97975 X 277 X 102,
MAGIC form = 0.97975 — 7b + 2d.

The general procedure for conversion of these numbers is as follows.
The decimal digits themselves are input into the machine using binary-
coded decimal and shifted in the proper direction by binary shifts of
multiples of four, either left or right, depending upon the decimal scale
factor. The result is then split into integer and fractional parts. These
are then converted by the methods given by eqgs. (11) to (13) above.

When the resulting binary number is obtained, it is shifted finally by
the corresponding binary scale factor to give the internal machine result.

If the machine is translating digital numbers, that is, numbers with
absolute values less than one, it is required that the number itself, multi-
plied by its various scale factors, be less than one in absolute value.
In case the number is being translated into a floating point form with a
fractional part less than one in absolute value in binary and an accom-
panying cxponential part also given in binary, the number is stand-
ardized with its fractional part less than one in absolute value but greater
than one-half.

ExaMPLE. n =155 X275 x 101
becomes upon conversion

n=231/32 X 2—1,

In some cases in order to save space, the fractional part and exponent are
“packed” into one register or machine location with the binary fractional
part and the exponential integer part stored together.

Binary to Decimal Procedure. In the MAGIC system on MIDAC
the inverse procedure of binary to decimal conversion can also be applied,
although in most cases the decimal scale factor is not stored in the
machine, but instead only a binary scale factor is used. Output con-
version requires a fractional part in absolute value less than one, and a
corresponding binary scale factor to obtain a composite external decimal
number. The scale factor is used to shift the fraction either left or
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right depending upon the value of the binary scale factor, before
conversion of the corresponding binary integer and fraction, with a
method such as that given by eqs. (4) to (10). The resultant series
of binary-coded-decimal digits is then printed out of the machine by
using the binary-coded-decimal notation, or a “single character” notation
depending upon the particular type of printout being used.

Roundeff in Conversion. With such systems as the Michigan
MAGIC system or the MIT CSSR (Comprehensive System of Service
Routines) (Ref. 24) with their complete conversion of numbers from
binary to decimal and deeimal to binary handled automatically by the
machine itself, it is entirely possible for a binary machine to work
satisfactorily in the external decimal language, but there are still diffi-
culties involved. Exact binary numbers inside the machine will not he
translated in every case into exact decimal numbers. Unless special
provisions for a decimal type of roundoff are made, the user of a binary
machine will find that his decimal numbers are being output in an
incorrect form. Such an error can be corrected by performing the round-
off of numbers inside the machine in decimal rather than binary
arithmetic.

Internal Decimal Scale Factors. Because of the complexities of the
use of binary scale factors, some computer installations with binary
machines have nevertheless made use of internal decimal scale factors.
With this procedure the number conversion problem can be made much
easier; however, it does not take advantage of special operations in the
binary machines which allow the binary numbers to be shifted to the right
or left, meanwhile saving the number of shifts that have been accom-
plished, thus allowing automatic binary scaling. Use of internal decimal
scale factors also requires the storage of multiprecision constants in some
cases, if precision is to be retained. The Illinois computer (ILLIAC)
(Ref. 56), which makes use of decimal scale factoring in many of its
routines and in its floating decimal point interpretive program, in its
original mode of operation did not have a comprehensive system of
input-output and therefore did not have as easy a system of converting
by using a binary scale factor.

The effort that many mathematicians and programmers have expended
on the problems of converting from one number system into another has
convinced many of them that computers with internal decimal arithmetic
are more useful to the external user. Many of the commercial business-
oriented machines make use of some type of binary-coded-decimal
representation. Many of the users of binary machines have converted
them by internal programming into equivalent decimal machines on the
outside, This indicates a trend toward the use of decimal arithmetic
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inside the machine even though the actual circuitry may be of the binary
type and the storage may be of a binary-coded-decimal nature. The
IBM 709 design is an exception to this trend.

Representative of Negative Numbers

Since electronic adders and complementers are much easier to design
and require less hardware than subtractors, many digital computers make
use of the technique of complementation, by which negative numbers are
mapped into positive numbers outside of the usual range. Complemented
numbers, under the proper conventions, may be added to a second number
to yield the equivalent of the subtraction of the first number from the
second.

Complementation. Two basic complementation techniques, each
based on hardware considerations, must be kept in mind by the computer
programmer if the machine he is using should be designed to make use
of one or the other. These are (1) the “tens” (decimal), “twos” (binary),
or radiz complement; and (2) the “nines” (decimal), “ones” (binary), or
diminished radiz complement.

In the case of the radix complement, negative numbers less than one
in absolute value may often be stored inside the computer in the range
from 9 to 10 (for the tens complement) or one to two (for the ones com-
plement). The diminished radix complementation scheme performs a
similar mapping, with the added difficulty in the latter case that there
are two representations of zero (negative and positive zero) which often
must be treated as a special case. Problems arise with these complements
in the shifting of numbers (multiplication by powers of the base) and in
logical operations on stored negative numbers, since they do not follow
the usual conventions. However, on those machines which follow the
usual notation, of sign followed by absolute value, none of these difficulties
can arise.

Precision or Amount of Information Available

Fixed Word Length. Machines, called fixed-word-length computers,
have standardized the length of their numbers in the range from about
nine to twelve decimal digits, or 36 to 45 binary digits. The number of
digits used to represent a number gives an indication of the precision, or
amount of information that the number itself contains. Rather than
make only one number length available, several machines have offered
the user the alternative of (1) longer word lengths as listed above, or
(2) shorter numbers, for example, half the number of digits.

Multiprecision Operations. For machines with a fixed word length,
it is possible to obtain the equivalent of operating with longer numbers of
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twice or three times the number of digits by making use of multiprecision
types of operations, in which combinations of programmed instructions
perform the equivalent of an arithmetic unit handling numbers of higher
precision.

Variable Word Length. Computers developed particularly for busi-
ness applications have a variable word length which allows numbers and
groups of alphanumeric characters to be operated upon flexibly. With
such internal computer structures, numbers of almost any digit length
may be operated upon arithmetically, at a cost in time approximately
proportional to the number of digits in each operand.

Range of Numbers

Fixed Point Machines. A machine in which the arithmetic ecir-
cuitry is so designed that the decimal point for operands and result re-
mains in a corresponding fixed position, is called a fixed point computer.
The fixed point may be located so as to make the numbers involved
either fractions less than one in absolute value, integers, or mixed
numbers.

Location of Radix Point. In general, a digital computer in which the
radix point is located at the extreme left of the number deals with numbers
of absolute value less than one, ie., |n| < 1. Such numbers have been
called “digital” numbers (Ref. 19), and the term is used throughout this
chapter. The product of two such numbers gives as a result another
“digital” number, ie., [n’| <1. On the other hand, division, addition,
or subtraction of two “digital” numbers does not necessarily result in
another “digital” number, and the problem of overflow arises.

Any other position of fixing the radix point can be made equivalent to
fixing it at the extreme left by the use of appropriate scale factors. These
scale factors are usually powers of the base, with their main purpose to
keep partial results within the range of the computer and at the same time
prevent these results being crowded together into a small region of the
interval of the machine’s range of application. In the case of “digital”
numbers the latter interval would generally be close to zero, and numbers
there would be said to have lost significance, since they have few
information-containing digits.

The optional position for the radix point at the extreme right so as
to make numbers inside the computer all integers is somewhat less
satisfactory, since the product of two integers of n digits yields an integer
containing 2n significant digits. In this case scale factors are required
for every multiplication, and overflows occur as before in many cases
for addition, subtraction, and division. Placing of the radix point some-
where midway between these two extremes does not apparently gain any
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further advantage, since scale factors or equivalent multiplication by
powers of the base must be inserted after each multiplication.

Floating Point Machines. As an alternative to one or the other of
the above fixed point notations, machines have been built with a variable
radix point or, as it is better known, a floating point number system.
With such a scheme, numbers are represented by a fractional part or
mantissa, containing the significant digit portion of the number, and an
exponent representing the power of the base by which the fraction must
be multiplied in order to obtain the number itself. For example, one
standard notation for floating point numbers = is

n=7f-re,

where f is the fractional or significant part of the representation, with
|fl <1, and e is the power of the base r needed to bring f up or down to
the value of n.

Number System Triad. Floating point numbers are generally carried
inside a digital computer with m significant digits representing the frac-
tional part f, and n digits representing the exponent e (which may be
complemented to represent negative as well as positive integer exponents).
The integers m and n, along with a third integer p representing the number
of digits to the left of the radix point, may be combined in a number sys-
tem triad (m, n, p) indicating the number structure of a computer. Fixed
point machines have n = 0. Machines using “digital” numbers (absolute
value less than 1) have p = 0.

ExampLes. A (10, 0, 0) decimal computer would be one with 10 sig-
nificant decimal digits in the fractional part of a number, no digits in
the exponent, and no digits to the left of the decimal point. Numbers
in a (10, 0, 0) decimal computer, therefore, would be fixed point “digital”
numbers containing ten decimal digits, and with the decimal point there-
fore located at the extreme left. A (30, 6, 0) binary computer would
be one with 30 binary digits in the fractional part, and six in the exponent
part of a floating point number, and with the binary point at the extreme
left. Finally, a (10, 2, 10) decimal computer would be one with the
mantissa expressed in ten-decimal integers, and the exponential part of
the number given by two-decimal digits.

Scale Factors in Fixed Point Computations

The recent appearance of built-in floating point arithmetic on many
machines, as well as the use of standard translator-compilers which pro-
vide automatic floating point programming via subroutines has decreased
the need for emphasis on fixed point computation. However, as Burks,
von Neumann, and Goldstine (see Ref. 19) point out, computations with
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floating point can lead to violent arithmetic errors unless thoroughly
analyzed. Hence, fixed point computations will continue, either as part
of automatically scaled programs turned out by translators, or else as
hand-tailored programs written for fixed point computers.

Procedure. The easiest technique for introduction of scale factors
into a program is as follows.

1. Determine on the basis of values of input parameters, supposing
their range is known at the beginning of a problem, the desired scale
factor needed to bring each computed value down to absolute value less
than one.

2. Insert shift operations at each stage of the computation which will
guarantee that over the range of inputs the resulting numbers will remain
digital.

With the PACT system (see Ref. 71), the programmer performs step
1 and the assembler step 2. The latter can also be done by hand.

ExamprE. Suppose the problem to be calculated is as follows:

Compute the value of the polynomial

2.4223 4 10.0522 — 1024.1z — 20327

p(x)
for
z=-10,-9,---,0,1,---,9,10.
The computation used will be the nested sequence procedure
p(x) = ((2.42x 4 10.05)xz — 1024.1)x — 20327,
which may be decomposed into the following set of arithmetic operations

where bounds ¢n the absolute values of the partial result are also listed.
Arrows indicate transfer of information (storage).

1. ppe2.42 (|po| = 2.42, = < 10)
2. p1epox (Ip| < 25)

3. psp1+ 10.05 (|p2| < 35)

4. p3 < pox (|ps] < 350)

5. ps—p3 — 1024.1 (|pa] < 1400)

6. p5<— pax (|ps| < 15,000)

7. P ps — 20327 (|ps| < 36,000)

The bounds on these partial results could be improved by taking the
signs of the summands at each stage into consideration. From the list of
bounds, the scale factors required to bring the partial results into “digital”
number range are:

21072, po - 1071, p1 - 1072, p2 - 1072, p3 - 1073, ps - 1074, p5 - 10~3, pg - 102,
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Therefore, the sequence of arithmetic statements would be listed stepwise,
starting at the first, proceeding downwards, and inserting scale factors as
required:

1. (po-1071) « (2.42 - 10°1)
(p1-1072) < (po - 1071) (= - 10-2)(101)
(p2 - 1072) « (p1 - 1072) 4 (10.05 - 10—2)
(ps - 1073) — (pz - 1072) (x - 1072)(10")
(pa - 107%) « (p3 - 1073)(10~1) — (1024.1 - 10—4)
(ps - 107%) «— (ps - 107*) (z - 1072)(10")

7. (po-107%) « (ps-107%) — (20,237 - 1079)
There is a redundant left shift followed by a right shift in steps 4 and 5
that should be canceled for coding efficiency.

Computer Instructions. The translation from the latter sequence into
a sequence of fixed point arithmetic instructions for any computer should
now be a simple process. The program, as written for the Datatron 205,
(see Sect. 6) upon ignoring use of any special features, such as the index

registers and input-output, and coding only the arithmetic sequence,
would be, when z = —10:

AR

0. ca 0101 242 .10 —- ACC
1. mr 0100 - (2.42-1071)(x - 1072)
2. s10001 (2.42 - 10-1) (x - 10~2)(101) = p; - 1072
3. ad 0102 (p1+1072) + (10.05 - 10~2) = po - 1072
4. mr 0100 (p2 - 10-2) (z - 10~2) = pg - 104
5. ad 0103 (ps - 10~%) + (1024.1 - 10~%) = ps - 10
6. mr 0100 (ps - 1074) (z - 10~2)
7. 10001 (ps - 10~4) (z - 10~2) (101) = ps - 10-5
8. su 0104 (ps - 10-5) — (20237 - 10-5)
9. tmec 0105 (p(x) - 1075) — Location 105

100. —1000000000 (x-1072)

101. 2420000000 (2.42-1071)

102. 1005000000 (10.05 - 10—2)

103. 1024100000 (1024.1 - 107%)

‘104. 2023700000 (20237 - 107%)

105. (p(z) - 1075)

3. NUMBER CONVERSION TABLES

Most number conversion in binary computers is now done completely
by the machine itself. However, for completeness and easy access to the



PROGRAMMING AND CODING 2-27

programmer who from time to time has to check a number obtained from
lights on the console of the computer, or printed out in nonstandard nota-

tion, Tables 1 to 5 are included from Carr and Scott (Ref. 24) and the
IBM 704 manual (Ref. 54).

Table

Page
Table 1. Octal-Decimal Integer Conversion 2-28
Table 2. Octal-Decimal Fraction Conversion 2-36
Table 3. Hexadecimal-Decimal Conversion (Two-Way) 2-42
Table 4. Powers of 2 (Positive and Negative) Expressed in Decimal 2-43

Table 5. Hexadecimal Multiplication 2-44



0000 0000
to to
0777 0511
(Octal) | (Decimal)
Octal Decimal
10000 - 4096
20000 - 8192

30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

TaBLE 1. OctaLl-DzcmmMar INTEGER CONVERSION
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
0000 |0000 0001 0002 0003 0004 0005 0006 0007 0400 | 0256 0257 0258 0259 0260 0261 0262 0263
0010 {0008 0009 0010 0011 0012 0013 0014 0015 0410 [0264 0265 0266 0267 0268 0269 0270 0271
0020 {0016 0017. 0018 0019 0020 0021 0022 0023 0420 [0272 0273 0274 0275 0276 0277 0278 0279
0030 |0024 0025 0026 0027 0028 0029 0030 0031 0430 | 0280 0281 0282 0283 0284 0285 0286 0287
0040 (0032 0033 0034 0035 0036 0037 0038 0039 0440 [0288 0289 0290 0291 0292 0293 0294 0295
0050 [0040 0041 0042 0043 0044 0045 0046 0047 0450|0296 0297 0298 0299 0300 0301 0302 0303
0060 |0048 0049 0050 0051 0052 0053 0054 0055 0460|0304 0305 0306 0307 0308 0309 0310 0311
0070 |0056 0057 0058 0059 0060 0061 0062 0063 0470{0312 0313 0314 0315 0316 0317 0318 0319
0100 0064 0065 0066 0067 0068 0069 0070 0071 0500 {0320 0321 0322 0323 0324 0325 0326 0327
0110|0072 0073 0074 0075 0076 0077 0078 0079 05100328 0329 0330 0331 0332 0333 0334 0335
0120 | 0080 0081 0082 0083 0084 0085 0086 0087 0520 {0336 0337 0338 0339 0340 0341 0342 0343
0130|0088 0089 0090 0091 0092 0093 0094 0095 0530|0344 0345 0346 0347 0348 0349 0350 0351
0140|0096 0097 0098 0099 0100 0101 0102 0103 0540 {0352 0353 0354 0355 0356 0357 0358 0359
01500104 0105 0106 0107 0108 0109 0110 0111 0550 |0360 0361 0362 0363 0364 0365 0366 0367
0160|0112 0113 0114 0115 0116 0117 0118- 0119 0560 {0368 0369 0370 0371 0372 0373 0374 0375
0170|0120 0121 0122 0123 0124 0125 0126 0127, 0570 |0376 0377 0378 0379 0380 0381 0382 0383
0200|0128 0129 0130 0131 0132 0133 0134 0135 0600|0384 0385 0386 0387 0388 0389 0330 0391
0210|0136 0137 0138 0139 0140 0141 0142 0143 0610|0392 0393 0394 0395 0396 0397 0398 0399
0220|0144 0145 0146 0147 0148 0149 0150 0151 0620 | 0400 0401 0402 0403 0404 0405 0406 0407
0230|0152 0153 0154 0155 0156 0157 0158 0159 0630 {0408 0409 0410 0411 0412 0413 0414 0415
0240|0160 0161 0162 0163 0164 0165 0166 0167 06400416 0417 0418 0419 0420 0421 0422 0423
0250|0168 0169 0170 0171 0172 0173.0174 0175 0650]0424 0425 0426 0427 0428 0429 0430 0431
0260|0176 0177 0178 0179 0180 0181 0182 0183 0660|0432 0433 0434 0435 0436 0437 0438 0439
0270|0184 01850186 0187 0188 0189 0190 0191 0670|0440 0441 0442 0443 0444 0445 0446 0447
0300 {0192 0193 0194 0195 0196 0197 0198 0199 0700|0448 0449 0450 0451 0452 0453 0454 0455
0310|0200 0201 0202 0203 0204 0205 0206 0207 0710]{ 0456 0457 0458 0459 0460 0461 0462 0463
0320|0208 0209 0210 0211 0212 0213 0214 0215 0720|0464 0465 0466 0467 0468 0469 0470 0471
0330|0216 0217 0218 0219 0220 0221 0222 0223 0730) 0472 0473 0474 0475 0476 0477 0478 0479
0340 | 0224 0225 0226 0227 0228 0229 0230 0231 0740{0480 0481 0482 0483 0484 0485 0486 0487
0350|0232 0233 0234 0235 0236 0237 0238 0239 0750|0488 0489 0490 0491 0492 0493 0494 0495
0360|0240 0241 0242 0243 0244 0245 0246 0247 0760 0496 0497 0498 0499 0500 0501 0502 0503
0370|0248 0249 0250 0251 0252 0253 0254 0255 0770 0504 0505 0506 0507 0508 0509 0510 0511
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1000
to
1777
(Octal)

0512
to
1023
(Decimal)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
1000|0512 0513 0514 0515 0516 0517 0518 0519 14000768 0769 0770 0771 0772 0773 0774 0775
10100520 0521 0522 0523 0524 0525 0526 0527 1410|0776 0777 0778 0779 0780 0781 0782 0783
1020|0528 0529 0530 0531 0532 0533 0534 0535 14200784 0785 0786 0787 0788 0789 0790 0791
1030|0536 0537 0538 0539 0540 0541 0542 0543 14300792 0793 0794 0795 0796 0797 0798 0799
1040)| 0544 0545 0546 0547 0548 0549 0550 0551 1440|0800 0801 0802 0803 0804 0805 0806 0807
1050] 0552 0553 0554 0555 0556 0557 0558 0559 1450 {0808 0809 0810 0811 0812 0813 0814 0815
1060) 0560 0561 0562 0563 0564 0565 0566 0567 1460|0816 0817 0818 0819 0820 0821 0822 0823
1070] 0568 0569 0570 0571 0572 0573 0574 0575 1470|0824 0825 0826 0827 0828 0829 0830 0831
1100 0576 0577 0578 0579 0580 0581 0582 0583 1500|0832 0833 0834 0835 0836 0837 0838 0839
1110|0584 0585 0586 0587 0588 0589 0590 0591 1510|0840 0841 0842 0843 0844 0845 0846 0847
1120( 0592 0593 0594 0595 0596 0597 0598 0599 152010848 0849 0850 0851 0852 0853 0854 0855
1130{0600 0601 0602 0603 0604 0605 0606 0607 1530(0856 0857 0858 0859 0860 0861 0862 0863
1140|0608 0609 0610 0611 0612 0813 0614 0615 1540|0864 0865 0866 0867 0868 0869 0870 0871
11500616 0617 0618 0619 0620 0621 0622 0623 1550|0872 0873 0874 0875 0876 0877 0878 0879
116010624 0625 0626 0627 (628 0629 0630 0631 1560|0880 0881 0882 0883 0884 0885 0886 0887
1170|0632 0633 0634 0635 0636 0637 0638 0639 1570|0888 0889 0890 0891 0892 0893 0894 0895
1200|0640 0641 0642 0643 0644 0645 0646 0647 1600 {0896 0897 0898 0899 0900 0901 0902 0903
1210|0648 0649 0650 0651 0652 0653 0654 0655 1610 {0904 0905 0906 0907 0908 0909 0910 0911
1220]0656 0657 0658 0659 0660 0661 0662 0663 1620 {0912 0913 0914 0915 0916 0917 0918 0919
1230|0664 0665 0666 0667 0668 0669 0670 0671 1630 {0920 0921 0922 0923 0924 0925 0926 0927
1240|0672 0673 0674 0675 0676 0677 0678 0679 1640 {0928 0929 0930 0931 0932 0933 0934 0935
1250|0680 0681 0682 0683 0684 0685 0686 0687 1650 {0936 0937 0938 0939 0940 0941 0942 0943
1260|0688 0689 0690 0691 0692 0693 0694 0695 1660 |0944 0945 0946 0947 0948 0949 0950 0951
1270|0696 0697 0698 0699 0700 0701 0702 0703 1670 (0952 0953 0954 0955 0956 0957 0958 0959

11300|0704 0705 0706 0707 0708 0709 0710 0711 1700 (0960 0961 0962 0963 0964 0965 0966 0967
1310|0712 0713 0714 0715 0716 0717 0718 0719 1710 (0968 0969 0970 0971 0972 0973 0974 0975
13200720 0721 0722 0723 0724 0725 0726 0727 1720 {0976 0977 0978 0979 0980 0981 0982 0983
1330|0728 0729 0730 0731 0732 0733 0734 0735 1730 (0984 0985 0986 0987 0988 0989 0990 0991
1340|0736 0737 0738 0739 0740 0741 0742 0743 1740 (0992 0993 0994 0995 0996 0997 0998 0999
1350|0744 0745 0746 0747 0748 0749 0750 0751 1750 (1000 1001 1002 1003 1004 1005 1006 1007
1360|0752 0753 0754 0755 0756 0757 0758 0759 1760 (1008 1009 1010 1011 1012 1013 1014 1015
1370|0760 0761 0762 0763 0764 0765 0766 0767 1770|1016 1017 1018 1019 1020 1021 1022 1023
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2000 1024
to to
2777 1535

(Octal) | (Decimal)

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

TasLE 1.

Octar-DEciMAL INTEGER CoNVERSION (Continued)

0 1 2 3 4 5 6 1 0 1 2 3 4 5 6 7
200011024 1025 1026 1027 1028 1029 1030 1031 2400|1280 1281 1282 1283 1284 1285 1286 1287
2010{1032 1033 1034 1035 1036 1037 1038 1039 2410|1288 1289 1290 1291 1292 1293 1294 1295
2020 {1040 1041 1042 1043 1044 1045 1046 1047 2420|1296 1297 1298 1299 1300 1301 1302 1303
2030 (1048 1049 1050 1051 1052 1053 1054 1055 24301304 1305 1306 1307 1308 1309 1310 1311
2040|1056 1057 1058 1059 1060 1061 1062 1063 2440( 1312 1313 1314 1315 1316 1317 1318 1319
2050|1064 1065 1066 1067 1068 1069 1070 1071 2450( 1320 1321 1322 1323 1324 1325 1326 1327
2060|1072 1073 1074 1075 1076 1077 1078 1079 2460|1328 1329 1330 1331 1332 1333 1334 1335
20701080 1081 1082 1083 1084 1085 1086 1087 2470( 1336 1337 1338 1339 1340 1341 1342 1343
2100|1088 1089 1090 1091 1092 1093 1094 1095 2500{ 1344 1345 1346 1347 1348 1349 1350 1351
2110|1096 1097 1098 1099 1100 1101 1102 1103 2510|1352 1353 1354 1355 1356 1357 1358 1359
21201104 1105 1106 1107 1108 1109 1110 1111 2520( 1360 1361 1362 1363 1364 1365 1366 1367
2130(1112 1113 1114 1115 1116 1117 1118 1119 253011368 1369 1370 1371 1372 1373 1374 1375
214011120 1121 1122 1123 1124 1125 1126 1127 254071376 1377 1378 1379 1380 1381 1382 1383
2150 (1128 1129 1130 1131 1132 1133 1134 1135 2550{ 1384 1385 1386 1387 1388 1389 1390 1391
21601136 1137 1138 1139 1140 1141 1142 1143 2560( 1392 1393 1394 1395 1396 1397 1398 1399
21701144 1145 1146 1147 1148 1149 1150 1i51 2570|1400 1401 1402 1403 1404 1405 1406 1407
22001152 1153 1154 1155 1156 1157 1158 1159 2600) 1408 1409 1410 1411 1412 1413 1414 1415
22101160 1161 1162 1163 1164 1165 1166 1167 2610( 1416 1417 1418 1419 1420 1421 1422 1423
22201168 1169 1170 1171 1172 1173 1174 1175 2620|1424 1425 1426 1427 1428 1429 1430 1431
22301176 1177 1178 1179 1180 1181 1182 1183 2630|1432 1433 1434 1435 1436 1437 1438 1439
22401184 1185 1186 1187 1188 1189 1190 1191 2640 1440 1441 1442 1443 1444 1445 1446 1447
225011192 1193 1194 1195 1196 1197 1198 1199 2650] 1448 - 1449 1450 1451 1452 1453 1454 1455
22601200 1201 1202 1203 1204 1205 1206 1207 26601456 1457 1458 1459 1460 1461 1462 1463
2270|1208 1209 1210 1211 1212 1213 1214 1215 2670|1464 1465 1466 1467 1468 1469 1470 1471
23001216 1217 1218 1219 1220 1221 1222 1223 2700|1472 1473 1474 1475 1476 1477 1478- 1479
2310}1224 1225 1226 1227 1228 1229 1230 1231 2710( 1480 1481 1482 1483 1484 1485 1486 1487
23201232 1233 1234 1235 1236 1237 1238 1239 272011488 1489 1490-1491 1492 1493 1494 1495
2330(1240 1241 1242 1243 1244 1245 1246 1247 27301496 1497 1498 1499 1500 1501 1502 1503
2340(1248 1249 1250 1251 1252 1253 1254/ 1255 2740|1504 1505 1506 1507 1508 1509 1510 1511
235011256 1257 1258 1259 1260 1261 1262 1263 275011512 1513 1514 1515 1516 1517 1518 1519
2360)1264 1265 1266 1267 1268 1269 1270 1271 276011520 1521 1522 1523 1524 1525 1526 1527
2370|1272 1273 1274 1275 1276 1277 1278 1279 2770]1528 1529 1530 1531 1532 1533 1534 1535
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3000
to
3777
(Octal)

1536
to
2047
(Decimal)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
3000 {1536 1537 1538 1539 1540 1541 1542 1543 3400( 1792 1793 1794 1795 1796 1797 1798 1799
3010|1544 1545 1546 1547 1548 1549 1550 1551 3410|1800 1801 1802 1803 1804 1805 1806 1807
3020|1552 1553 1554 1555 1556 1557 1558 1559 3420|1808 1809 1810 1811 1812 1813 1814 1815
3030|1560 1561 1562 1563 1564 1565 1566 1567 3430(1816 1817 1818 1819 1820 1821 1822 1823
3040|1568 1569 1570 1571 1572 1573 1574 1575 3440|1824 1825 1826 1827 1828 1829 1830 1831
3050|1576 1577 1578 1579 1580 1581 1582 1583 345011832 1833 1834 1835 1836 1837 1838 1839
30601584 1585 1586 1587 1588 1589 1590 1591 3460|1840 1841 1842 1843 1844 1845 1846 1847
3070 (1592 1593 1594 1595 1596 1597 1598 1599 3470{1848 1849 1850 1851 1852 1853 1854 1855
31001600 1601 1602 1603 1604 1605 1606- 1607 3500|1856 1857 1858 1859 1860 1861 1862 1863
3110|1608 1609 1610 1611 1612 1613 1614 1615 3510|1864 1865 1866 1867 1868 1869 1870 1871
3120]1616 1617 1618 1619 1620 1621 1622 1623 3520(1872 1873 1874 1875 1876 1877 1878 1879
3130|1624 1625 1626 1627 1628 1629 1630 1631 35301880 1881 1882 1883 1884 1885 1886 1887
31401632 1633 1634 1635 1636 1637 1638 1639 3540|1888 1889 1890 1891 1892 1893 1894 1895
3150|1640 1641 1642 1643 1644 1645 1646 1647 3550|1896 1897 1898 1899 1900 1901 1902 1903
3160(1648 1649 1650 1651 1652 1653 1654 1655 356011904 1905 1906 1907 1908 1909 1910 1911
3170|1656 1657 1658 1659 1660 1661 1662 1663 3570{1912 1913 1914 1915 1916 1917 1918 1919
3200 (1664 1665 1666 1667 1668 1669 1670 1671 3600 (1920 1921 1922 1923 1924 1925 1926 1927
3210{1672 1673 1674 1675 1676 1677 1678 1679 36101928 1929 1930 1931 1932 1933 1934 1935
3220|1680 1681 1682 1683 1684 1685 1686 1687 36201936 1937 1938 1939 1940 1941 1942 1943
3230 (1688 1689 1690 1691 1692 1693 1694 1695 3630 (1944 1945 1946 1947 1948 1949 1950 1951
32401696 1697 1698 1699 1700 1701 1702 1703 3640(1952 1953 1954 1955 1956 1957 1958 1959
3250|1704 1705 1706 1707 1708 1709 1710 1711 36501960 1961 1962 1963 1964 1965 1966 1967
326011712 1713 1714 1715 1716 1717 1718 1719 366011968 1969 1970 1971 1972 1973 1974 1975
327011720 1721 1722 1723 1724 1725 1726 1727 36701976 1977 1978 1979 1980 1981 1982 1983
3300 (1728 1729 1730 1731 1732 1733 1734 1735 3700|1984 1985 1986 1987 1988 1989 1990 1991
3310|1736 1737 1738 1739 1740 1741 1742 1743 371011992 1993 1994 1995 1996 1997 1998 1999
3320(1744 1745 1746 1747 1748 1749 1750 1751 3720|2000 2001 2002 2003 2004 2005 2006 2007
33301752 1753 1754 1755 1756 1757 1758 1759 3730(2008 2009 2010 2011 2012 2013 2014 2015
3340(1760 1761 1762 1763 1764 1765 1766 1767 3740|2016 2017 2018 2019 2020 2021 2022 2623
3350(1768 1769 1770 1771 1772 1773 1774 1775 37502024 2025 2026 2027 2028 2029 2030 2031
3360(1776 1777 1778 1779 1780 1781 1782 1783 3760|2032 2033 2034 2035 2036 2037 2038 2039
33701784 1785 1786 1787 1788 1789 1790 1791 3770] 2040 2041 2042 2043 2044 2045 2046 2047
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4000 2048
to to
4777 2559

(Octal) | (Decimal)

Octal Decimal

10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

TaBLE 1. Ocrar-DeciMAL INTEGER CoNVERSION (Continued)
o 1 2 3 4 5 6 1 o 1 2 3 4 5 6 1
4000| 2048 2049 2050 2051 2052 2053 2054 2055 4400( 2304 2305 2306 2307 2308 2309 2310 2311
4010 2056 2057 2058 2059 2060 2061 2062 2063 4410|2312 2313 2314 2315 2316 2317 2318 2319
4020| 2064 2065 2066 2067 2068 2069 2070 2071 4420|2320 2321 2322 2323 2324 2325 2326 2327
4030[ 2072 2073 2074 2075 2076 2077 2078 2079 4430 2328 2329 2330 2331 2332 2333 2334 2335
4040| 2080 2081 2082 2083 2084 2085 2086 2087 4440|2336 2337 2338 2339 2340 2341 2342 2343
4050| 2088 2089 2090 2091 2092 2093 2094 2095 4450 2344 2345 2346 2347 2348 2349 2350 2351
4060{ 2096 2097 2098 2099 2100 2101 2102 2103 4460|2352 2353 2354 2355 2356 2357 2358 2359
4070} 2104 2105 2106 2107 2108 2109 2110 2111 4470|2360 2361 2362 2363 2364 2365 2366 2367
4100] 2112 2113 2114 2115 2116 2117 2118 2119 4500|2368 2369 2370 2371 2372 2373 2374 2375
4110{ 2120 2121 2122 2123 2124 2125 2126 2127 4510|2376 2377 2378 2379 2380 2381 2382 2383
4120] 2128 2129 2130 2131 2132 2133 2134 2135 4520|2384 2385 2386 2387 2388 2389 2390 2391
4130|2136 2137 2138 2139 2140 2141 2142 2143 4530|2392 2393 2394 2395 2396 2397 2398 2399
4140 2144 2145 2146 2147 2148 2149 2150 2151 45402400 2401 2402 2403 2404 2405 2406 2407
4150 2152 2153 2154 2155 2156 2157 2158 2159 4550|2408 2409 2410 2411 2412 2413 2414 2415
4160{ 2160 2161 2162 2163 2164 2165 2166 2167 4560|2416 2417 2418 2419 2420 2421 2422 2423
4170| 2168 2169 2170 2171 2172 2173 2174 2175 457012424 2425 2426 2427 2428 2429 2430 2431
4200/ 2176 2177 2178 2179 2180 2181 2182 2183 4600 | 2432 2433 2434 2435 2436 2437 2438 2439
4210| 2184 2185 2186 2187 2188 2189 2190 2191 4610 (2440 2441 2442 2443 2444 2445 2446 2447
4220 2192 2193 2194 2195 2196 2197 2198 2199 4620 (2448 2449 2450 2451 2452 2453 2454 2455
4230( 2200 2201 2202 2203 2204 2205 2206 2207 4630|2456 2457 2458 2459 2460 2461 2462 2463
4240| 2208 2209 2210 2211 2212 2213 2214 2215 4640 | 2464 2465 2466 2467 2468 2469 2470 2471
4250] 2216 2217 2218 2219 2220 2221 2222 2223 4650|2472 2473 2474 2475 2476 2477 2478 2479
4260] 2224 2225 2226 2227 2228 2229 2230 2231 4660|2480 2481 2482 2483 2484 2485 2486 2487
4270| 2232 2233 2234 2235 2236 2237 2238 2239 4670 (2488 2489 2490 2491 2492 2493 2494 2495
4300|2240 2241 2242 2243 2244 2245 2246 2247 4700|2496 2497 2498 2499 2500 2501 2502 2503
4310} 2248 2249 2250 2251 2252 2253 2254 2255 4710(2504 2505 2506 2507 2508 2509 2510 2511
4320| 2256 2257 2258 2259 2260 2261 2262 2263 4720|2512 2513 2514 2515 2516 2517 2518 2519
4330 2264 2265 2266 2267 2268 2269 2270 2271 4730(2520 2521 2522 2523 2524 2525 2526 2527
4340] 2272 2273 2274 2275 2276 2277 2278 2279 4740|2528 2529 2530 2531 2532 2533 2534 2535
4350 2280 2281 2282 2283 2284 2285 2286 2287 47502536 2537 2538 2539 2540 2541 2542 2543
43601 2288 2289 2290 2291 2292 2293 2294 2295 4760|2544 2545 2546 2547 2548 2549 2550 2551
4370 2206 2297 2298 2299 2300 2301 2302 2303 4770|2552 2553 2554 2555 2556 2557 2558 2559
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5000
to
5777
(Octal)

2560
to
3071
(Decimal)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
5000 (2560 2561 2562 2563 2564 2565 2566 2567 5400 (2816 2817 2818 2819 2820 2821 2822 2823
5010|2568 2569 2570 2571 2572 2573 2574 2575 5410|2824 2825 2826 2827 2828 2829 2830 2831
502012576 2577 2578 2579 2580 2581 2582 2583 5420]2832 2833 2834 2835 2836 2837 2838 2839
5030|2584 2585 2586 2587 2588 258Y 2590 2591 5430|2840 2841 2842 2843 2844 2845 2846 2847
5040 | 2592 2593 2594 2595 2596 2597 2598 2599 5440|2848 2849 2850 2851 2852 2853 2854 2855
5050|2600 2601 2602 2603 2604 2605 2606 2607 5450|2856 2857 2858 2859 2860 2861 2862 2863
5060|2608 2609 2610 2611 2612 2613 2614 2615 5460|2864 2865 2866 2867 2868 2869 2870 2871
5070|2616 2617 2618 2619 2620 2621 2622 2623 5470|2872 2873 2874 2875 2876 2877 2878 2879
5100|2624 2625 2626 2627 2628 2629 2630 2631 5500|2880 2881 2882 2883 2884 2885 2886 2887
511012632 2633 2634 2635 2636 2637 2638 2639 5510 (2888 2889 2890 2891 2892 2893 2894 2895
5120|2640 2641 2642 2643 2644 2645 2646 2647 5520 (2896 2897 2898 2899 2900 2901 2902 2903
5130|2648 2649 2650 2651 2652 2653 2654 2655 5530|2904 2905 2906 2907 2908 2909 2910 2911
5140|2656 2657 2658 2659 2660 2661 2662 2663 554012912 2913 2914 2915 2916 2917 2918 2919
5150 (2664 2665 2666 2667 2668 2669 2670 2671 5550|2920 2921 2922 2923 2924 2925 2926 2927
5160|2672 2673 2674 2675 2676 2677 2678 2679 5560 (2928 2929 2930 2931 2932 2933 2934 2935
51702680 2681 2682 2683 2684 2685 2686 2687 5570{2936 2937 2938 2939 2940 2941 2942 2943
5200 (2688 2689 2690 2691 2692 2693 2694 2695 5600 |2944 2945 2946 2947 2948 2949 2950 2951
5210 [2696 2697 2698 2699 2700 2701 2702 2703 5610 (2952 2953 2954 2955 2956 2957 2958 2959
5220 12704 2705 2706 2707 2708 2709 2710 2711 5620|2960 2961 2962 2963 2964 2965 2966 2967
5230|2712 2713 2714 2715 2716 2717 2718 2719 5630 [2968 2969 2970 2971 2972 2973 2974 2975
5240 (2720 2721 2722 2723 2724 2725 2726 2727 5640|2976 2977 2978 2979 2980 2981 2982 2983
5250 (2728 2729 2730 2731 2732 2733 2734 2735 5650|2984 2985 2986 2987 2988 2989 2990 2991
52602736 2737 2738 2739 2740 2741 2742 2743 56602992 2993 2994 2995 2996 2997 2998 2999
5270(2744 2745 2746 2747 2748 2749 2750 2751 56703000 3001 3002 3003 3004 3005 3006 3007
5300 [ 2752 2753 2754 2755 2756 2757 2758 2759 57003008 3009 3010 3011 3012 3013 3014 3015
5310|2760 2761 2762 2763 2764 2765 2766 2767 5710{3016 3017 3018 3019 3020 3021 3022 3023
5320 (2768 2769 2770 2771 2772 2773 2774 2775 5720|3024 3025 3026 3027 3028 3029 3030 3031
5330|2776 2777 2778 2779 2780 2781 2782 2783 57303032 3033 3034 3035 3036 3037 3038 3039
5340 2784 2785 2786 2787 2788 2789 2790 2791 57403040 3041 3042 3043 3044 3045 3046 3047
53502792 2793 2794 2795 2796 2797 2798 2799 5750|3048 3049 3050 3051 3052 3053 3054 3055
5360 2800 2801 2802 2803 2804 2805 2806 2807 5760|3056 3057 3058 3059 3060 3061 3062 3063
5370|2808 2809 2810 2811 2812 2813 2814 2815 5770|3064 3065 3066 3067 3068 3069 3070 3071
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6000 3072
to to
6777 3583
(Octal) | (Decimal)
Octal Decimal
10000 - 4096
20000 - 8192

30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

TasLe 1. OcrarL-DeEciMaL INTEGER CoNvVERsION (Continued)
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 1
6000 | 3072 3073 3074 3075 3076 3077 3078 3079 6400( 3328 3329 3330 3331 3332 3333 3334 3335
6010 (3080 3081 3082 3083 3084 3085 3086 3087 6410] 3336 3337 3338 3339 3340 3341 3342 3343
6020 13088 3089 3090 3091 3092 3093 3094 3095 6420{ 3344 3345 3346 3347 3348 3349 3350 3351
6030} 3096 3097 3098 3099 3100 3101 3102 3103 6430| 3352 3353 3354 3355 3356 3357 3358 3359
6040|3104 3105 3106 3107 3108 3109 3110 3111 6440} 3360. 3361 3362 3363 3364 3365 3366 3367
6050 (3112 3113 3114 3115 3116 3117 3118 3119 6450| 3368 3369 3370 3371 3372 3373 3374 3375
6060|3120 3121 3122 3123 3124 3125 3126 3127 6460! 3376 3377 3378 3379 3380 3381 3382 3383
60703128 3129 3130 3131 3132 3133 3134 3135 6470] 3384 3385 3386 3387 3388 3389 3390 3391
6100 [3136 3137 3138 3139 3140 3141 3142 3143 6500| 3392 3393 3394 3395 3396 3397 3398 3399
6110|3144 3145 3146 3147 3148 3149 3150 3151 6510| 3400 3401 3402 3403 3404 3405 3406 3407
612013152 3153 3154 3155 3156 3157 3158 3159 6520| 3408 3409 3410 3411 3412 3413 3414 3415
6130|3160 3161 3162 3163 3164 3165 3166 3167 6530| 3416 3417 3418 3419 3420 3421 3422 3423
6140 (3168 3169 3170 3171 3172 3173 3174 3175 6540| 3424 3425 3426 3427 3428 3429 3430 3431
61503176 3177 3178 3179 3180 3181 3182 3183 6550} 3432 3433 3434 3435 3436 3437 3438 3439
61603184 3185 3186 3187 3188 3189 3190 3191 6560| 3440 3441 3442 3443 3444 3445 3446 3447
6170|3192 3193 3194 3195 3196 3197 3198 3199 6570| 3448 3449 3450 3451 3452 3453 3454 3455
6200 [3200 3201 3202 3203 3204 3205 3206 3207 6600| 3456 3457 3458 3459 3460 3461 3462 3463
6210 (3208 3209 3210 3211 3212 3213 3214 3215 6610{ 3464 3465 3466 3467 3468 3469 3470 3471
6220 {3216 3217 3218 3219 3220 3221 3222 3223 6620] 3472 3473 3474 3475 3476 3477 3478 3479
6230 |3224 3225 3226 3227 3228 3229 3230 3231 6630| 3480 3481 3482 3483 3484 3485 3486 3487
6240 13232 3233 3234 3235 3236 3237 3238 3239 6640] 3488 3489 3490 3491 3492 3493 3494 3495
6250 (3240 3241 3242 3243 3244 3245 3246 3247 6650| 3496 3497 3498 3499 3500 3501 3502 3503
6260 (3248 3249 3250 3251 3252 3253 3254 3255 6660] 3504 3505 3506 3507 3508 3509 3510 3511
6270|3256 3257 3258 3259 3260 3261 3262 3263 6670( 3512 3513 3514 3515 3516 3517 3518 3519
6300 |3264 3265 3266 3267 3268 3269 3270 3271 6700 3520 3521 3522 3523 3524 3525 3526 3527
6310 {3272 3273 3274 3275 3276 3277 3278 3279 6710 3528 3529 3530 3531 3532 3533 3534 3535
6320 3280 3281 3282 3283 3284 3285 3286 3287 6720 3536 3537 3538 3539 3540 3541 3542 3543
6330|3288 3289 3290 3291 3292 3293 3294 3295 6730| 3544 3545 3546 3547 3548 3549 3550 3551
6340 | 3296 3297 3298 3299 3300 3301 3302 3303 6740 3552 3553 3554 3555 3556 3557 3558 3559
6350 [3304 3305 3306 3307 3308 3309 3310 3311 6750| 3560 3561 3562 3563 3564 3565 3566 3567
6360|3312 3313 3314 3315 3316 3317 3318 3319 6760 3568 3569 3570 3571 3572 3573 3574 3575
6370|3320 3321 3322 3323 3324 3325 3326 3327 6770] 3576 3577 3578 3579 3580 3581 3582 3583
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7000
to
7777
(Octal)

3584
to
4095
(Decimal)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 ki
7000| 3584 3585 3586 3587 3588 3589 3590 3591 7400} 3840 3841 3842 3843 3844 3845 3846 3847
7010] 3592 3593 3594 3595 3596 3597 3598 3599 7410| 3848 3849 3850 3851 3852 3853 3854 3855
7020| 3600 3601 3602 3603 3604 3605 3606 3607 7420| 3856 3857 3858 3859 3860 3861 3862 3863
7030] 3608 3609 3610 3611 3612 3613 3614 3615 7430 3864 3865 3866 3867 3868 3869 3870 3871
7040{ 3616 3617 3618 3619 3620 3621 3622 3623 7440| 3872 3873 3874 3875 3876 3877 3878 3879
7050| 3624 3625 3626 3627 3628 3629 3630 3631 7450| 3880 3881 3882 3883 3884 3885 3886 3887
7060| 3632 3633 3634 3635 3636 3637 3638 3639 | 7460| 3888 3889 3890 3891 3892 3893 3894 3895
7070| 3640 3641 3642 3643 3644 3645 3646 3647 7470| 3896 3897 3898 3899 3900 3901 3902 3903
7100] 3648 3649 3650 3651 3652 3653 3654 3655 7500|3904 3905 3906 3907 3908 3909 3910 3911
7110] 3656 3657 3658 3659 3660 3661 3662 3663 7510|3912 3913 3914 3915 3916 3917 3918 3919
71201 3664 3665 3666 3667 3668 3669 3670 3671 7520|3920 3921 3922 3923 3924 3925 3926 3927
7130] 3672 3673 3674 3675 3676 3677 3678 3679 7530 (3928 3929 3930 3931 3932 3933 3934 3935
7140| 3680 3681 3682 3683 3684 3685 3686 3687 75403936 3937 3938 3939 3940 3941 3942 3943
7150| 3688 3689 3690 3691 3692 3693 3694 3695 7550 | 3944 3945 3946 3947 3948 3949 3950 3951
7160| 3696 ‘3697 3698 3699 3700 3701 3702 3703 75603952 3953 3954 3955 3956 3957 3958 3959
7170| 3704 3705 3706 3707 3708 3709 3710 3711 7570|3960 3961 3962 3963 3964 3965 3966 3967
7200( 3712 3713 3714 3715 3716 3717 3718 3719 7600|3968 3969 3970 3971 3972 3973 3974 3975
7210 3720 3721 3722 3723 3724 3725 3726 3727 7610|3976 3977 3978 3979 3980 398r 3982 3983
7220| 3728 3729 3730 3731 3732 3733 3734 3735 7620|3984 3985 3986 3987 3988 3989 3990 3991
72301 3736 3737 3738 3739 3740 3741 3742 3743 7630|3992 3993 3994 3995 3996 3997 3998 3999
7240] 3744 3745 3746 3747 3748 3749 3750 3751 7640|4000 4001 4002 4003 4004 4005 4006 4007
7250} 3752 3753 3754 3755 3756 3757 3758 3759 7650 | 4008 4009 4010 4011 4012 4013 4014 4015
7260| 3760 3761 3762 3763 3764 3765 3766 3767 7660|4016 4017 4018 4019 4020 4021 4022 4023
7270} 3768 3769 3770 3771 3772 3773 3774 3715 7670 (4024 4025 4026 4027 4028 4029 4030 4031
7300] 3776 3777 3778 3779 3780 3781 3782 3783 7700 (4032 4033 4034 4035 4036 4037 4038 4039
7310] 3784 3785 3786 3787 3788 3789 3790 3791 7710|4040 4041 4042 4043 4044 4045 4046 4047
7320] 3792 3793 3794 3795 3796 3797 3798 3799 7720|4048 4049 4050 4051 4052 4053 4054 4055
7330] 2800 3801 3802 3803 3804 3805 3806 3807 7730 (4056 4057 4058 4059 4060 4061 4062 4063
7340| 3808 3809 3810 3811 3812 3813 3814 3815 7740 4064 4065 4066 4067 4068 4069 4070 4071
7350| 3816 3817 3818 3819 3820 3821 3822 3823 7750 {4072 4073 4074 4075 4076 4077 4078 4079
7360 3824 3825 3826 3827 3828 3829 3830 3831 7760 {4080 4081 4082 4083 4084 4085 4086 4087
7370| 3832 3833 3834 3835 3836 3837 3838 3839 7770|4088 4089 4090 4091 4092 4093 4094 4095
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TaBLE 2. OcraL-DEciMAL FracTiOoN CONVERSION
OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.
.000 . 000000 .100 . 125000 .200 . 250000 .300 .375000
.001 . 001953 .101 . 126953 .201 . 251953 .301 . 376953
.002 . 003906 .102 . 128906 .202 . 253906 .302 .378906
.003 . 005859 .103 . 130859 .203 . 255859 .303 .380859
.004 .007812 .104 .132812 .204 .257812 .304 .382812
.005 . 009765 .105 . 134765 .205 . 259765 .305 .384765
.006 .011718 .106 .136718 .206 .261718 .306.  ,386718
.007 .013671 .107 .138671 .207 . 263671 .307 .388671
.010 .015625 .110 . 140625 .210 . 265625 .310 .390625
.o11 .017578 A1 .142578 .211 . 267578 .311 .392578
012 .019531 .112 . 144531 1212 . 269531 .312 .394531
.013 . 021484 113 . 146484 .213° 271484 .313 .396484
.014 .023437 114 .148437 .214 .273437 .314 .398437
.015 .025390 .115 . 150390 .215 . 275390 .315 .400390
.016 .027343 .116 .152343 .216 . 271343 .316 .402343
.017 . 029296 117 . 154296 .217 . 279296 .817 .404296
.020 .031250 .120 . 156250 .220 . 281250 .320 . 406250
.021 . 033203 .121 .158203 .221 .283203 .821 .408203
.022 .035156 122 . 160156 .222 .285156 .322 .410156
.023 .037109 123 .162109 .223 .287109 .323 .412109
.024 .039062 124 . 164062 .224 . 289062 .324 . 414062
.025 .041015 125 . 166015 .225 .291015 .325 .416015
.026 . 042968 .126 .167968 .226 .292968 .326 .417968
.027 .044921 .127 .169921 .227 .294921 .327 ,419921
.030 . 046875 .130 . 171875 .230 . 296875 .330 .421875
.031 . 048828 .131 . 173828 .231 .298828 .331 .423828
.032 . 050781 .132 . 175781 .232 .300781 .332 .426781
.033 . 052734 .133 177734 .233 .302734 .333 .427734
.034 . 054687 ".134 . 179687 .234 . 304687 .334° 429687
.035 . 056640 .135 . 181640 .235 .306640 .335 .431640
.036  .058593 .136 .183593 .236 .308593 .336,  ,433593
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.037
. 040
. 041
. 042
.043
. 044
.045
. 046
. 047
.050
.051
.052
.053
.054
.055
.056
.057
.060
.061
.062
.063
.064
.065
.066
.067
.070
.071
.072
073
.074
..075
.076
.077

. 060546
. 062500
. 064453
. 066406
. 068359
.070312
. 072265
.074218
. 076171
,078125
. 080078
. 082031
. 083984
. 085937
. 087890
. 089843
. 091796
. 093750
. 095703
. 097656
, 099609
.101562
.103515
. 105468

. 107421

. 109375
. 111328
. 113281
. 115234
. 117187
.119140
.121093
. 123046

. 137
. 140
141
. 142
. 143
.144
. 145
. 146
. 147
.150
.151
.152
.153
. 154
. 165
. 156
. 157,
. 160
. 161
. 162
.163
.164
. 165
.166
.167
.170
171
.172
.173
.174

. 175

.176
177

', 185546
. 187500
. 189453
. 191406
. 193359
.195312
.197265
. 199218
L201171
.203125
. 205078
.207031
.208984
.210937
.212890
.214843
.216796
.218750
.220703
. 222656
. 224609
. 226562
.228515
.230468
. 232421
.234375
.236328
. 238281
.240234
.242187
1244140
.246093
248046

.237
.240
.241
. 242
.243
.244
.245
.246
.247
.250
.251
.252
.253
.254
. 255
.256
.257
.260
.261
.262
.263
. 264
.265
.266
. 267
.270
.271
.272
.273
.274
.275
. 276
277

.310546
. 312500
.314453
.316406
. 318359
.320312
. 322265
.324218
.326171
.328125
. 330078
.332031
.333984
. 335937
. 337890
. 339843
.341796
. 343750
.345703
.347656
.349609
.351562
.353515
.355468

.357421

. 359375
.361328
.363281
.365234
. 367187
.369140
. 371093
. 373046

.337
.340
.341
.342
.343
.344
.345
.346
.347
.350
.351
.352
.353
.354
.355
.356
.357
.360
.361
.362
.363
.364
.365
.366
.367
.370
.37
.372
.373
374
.375
.376
377

.435546
.437500
.439453
.441406
.443359
.445312
.447265
.449218
.451171
.453125
.455078
.457031
.458984
.460937
.462890
.464843
.466796
,468750
.470703
.472656
.474609
.476562
.478515
.480468
.482421
.484375
.486328
.488281
.490234
.492187
.494140
.496093
.498046
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TasLE 20 Ocrar-Deciman Fraction CoNvERsiON (Continued)

OCTAL DEC, OCTAL DEC. OCTAL DEC, OCTAL DEC.

.000000 .000000 .000100 . 000244 .000200 . 000488 .000300 .000732
.000001 .000003 .000101 .000247 .000201 . 000492 .000301 .000736
.000002 .000007 .000102 .000251 .000202 . 000495 .000302 .000740
.000003 .000011 .000103 . 000255 . 000203 . 000499 . 000303 .000743
.000004 . 000015 .000104 .000259 .000204 . 000503 .000304 .000747
. 000005 .000019 . 000105 .000263 . 000205 . 000507 . 000305 .000751
. 000006 . 000022 .000106 .000267 . 000206 .000511 .000306 . 000755
.000007 . 000026 .000107 .000270 . 000207 .000514 . 000307 .000759
. 000010 . 000030 .000110 . 000274 .000210 . 000518 .000310 . 000762
.000011 . 000034 .000111 . 000278 . 000211 . 000522 .000311 . 000766
,000012 . 000038 .000112 . 000282 . 000212 . 000526 .000312 . 000770
.000013 .000041 .000113 .000286 .000213 . 000530 .000313 .000774
.000014 .000045 .000114 . 000289 .000214 .000534 .000314 .000778
.000015 . 000049 .000115 . 000293 .000215 .000537 .000315 .000782
.000016 .000053 .000116 . 000297 . 000216 .000541 .000316 .000785
.000017 . 000057 .000117 .000301 . 000217 . 000545 .000317 .000789
. 000020 . 000061 .000120 .000305 . 000220 . 000549 .000320 . 000793
.000021 .000064 .000121 .000308 .000221 . 000553 .000321 . 000797
.000022 .000068 .000122 .000312 . 000222 . 000556 . 000322 . 000801
.000023 .000072 .000123 . 000316 . 000223 . 000560 .000323 . 000805
. 000024 . 000076 .000124 . 000320 .000224 . 000564 .000324 .000808
.000025 . 000080 .000125 .000324 . 000225 . 000568 .000325 . 000812
. 000026 .000083 .000126 .000328 . 000226 .000572 .000326 . 000816
. 000027 . 000087 .000127 .000331 . 000227 .000576 .000327 .000820
.000030 .000091 .000130 .000335 . 000230 .000579 .000330 . 000823
.000031 ,000095 .000131 .000339 . 000231 . 000583 .000331 . 000827
. 000032 .000099 . 000132 .000343 . 000232 . 000587 .000332 .000831
.000033 .000102 .000133 .000347 . 000233 .000591 .000333 .000835
000034 .000106 .000134 . 000350 .000234 . 000595 .000334 .000839
.000035 .000110 .000135 .000354 . 000235 . 000598 . 000335 . 000843
.000036 .000114 .000136 .000358 . 000236 . 000602 .000336 . 000846
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. 000037

. 000040
.000041
.000042
. 000043
. 000044
. 000045
. 000046
.000047
. 000050
. 000051
. 000052
. 000053
, 000054
. 000055
. 000056
. 000057
.000060
. 000061
. 000062
. 000063
, 000064
. 000065
. 000066
. 000067
.000070
. 000071
.000072
.000073
. 000074
.000075
. 000076
,000077

000118
.000122
,000125
.000129
,000133
.000137
.000141
.000144
,000148
. 000152
, 000156
. 000160
. 000164
. 000167
. 000171
. 000175
000179
.000183
. 000186
, 000190
. 000194
. 000198
. 000202
. 000205
. 000209
. 000213
. 000217
.000221
. 000225
.000228
.000232
. 000236
. 000240

.000137
. 000140
. 000141
.000142
000143
. 000144
. 000145
,000146
. 000147
. 000150
.000151
.000152
.000153
. 000154
. 000155
.000156
.000157
,000160
,000161
.000162
.000163
000164
.000165
.000166
. 000167
. 000170
. 000171
.000172
,000173
.000174
000175
.000176
,000177

.000362
.000366
.000370
. 000373
. 000377
.000381
.000385
. 000389
.000392
. 000396
.000400
. 000404
. 000408
.000411
.000415
. 000419
. 000423
. 000427
.000431
.000434
.000438
. 000442
. 000446
.000450
.000453
. 000457
.000461
.000465
. 000469
.000473
. 000476
.000480
.000484

. 000237
. 000240
. 000241
. 000242
. 000243
. 000244
. 000245
. 000246
000247
. 000250
.000251
. 000252
.000253
. 000254
. 000255
. 000256
. 000257
. 000260
. 000261
. 000262
. 000263
. 000264
. 000265
. 000266
. 000267
. 000270
. 000271
. 000272
.000273
. 000274
. 000275
. 000276
. 000277

.000606
. 000610
. 000614
.000617
. 000621
000625
. 000629
000633
. 000637
. 000640
. 000644
. 000648
. 000652
. 000656
.000659
. 000663
. 000667
. 000671
. 000675
. 000679
. 000682
. 000686
. 000690
. 000694
. 000698
. 000701
. 000705
. 000709
. 000713
. 000717
. 000720
. 000724
.000728

.000337
.000340
.000341
.000342
.000343
,000344
.000345
. 000346
.000347
. 000350
.000351
.000352
.000353
.000354
.000355
.000356
. 000357
. 000360
.000361
.000362
.000363
. 000364
. 000365
.000366
. 000367
.000370
.000371
.000372
.000373
.000374
. 000375
.000376

'.000377

. 000850
.000854
.000858
.000862
. 000865
. 000869
,000873
,000877
,000881
. 000885
.000888
,000892
.000896
. 000900
.000904
.000907
.000911
.000915
.000919
.000923
.000926
. 000930
.000934
.000938
.000942
. 000946
. 000949
.000953
. 000957
.000961
. 000965
.000968
.000972
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TaABLE 2. OctAL-DEciMAL Fraction CoNvERrsioN (Continued)

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC,
. 000400 .000976 .000500 .001220 .000600 .001464 .000700 .001708
.000401 .000980 .000501 .00122¢ .000601 .001468 .000701 .001712
. 000402 . 000984 .000502 .001228 . 000602 . 001472 . 000702 .001716
.000403 .000988 .000503 .001232 . 000603 . 001476 .000703 .001720
. 000404 .000991 .000504 .001235 .000604 . 001480 .000704 .001724
.000405 . 000995 . 000505 .001239 .000605 .001483 .000705 .001728
.000406 .000999 .000506 .001243 .000606 ., 001487 .000706 .001731
.000407 .001003 . 000507 . 001247 .000607 .001491 . 000707 . 001735
.000410 .001007 .000510 .001251 .000610 .001495 .000710 .001739
.000411 .001010 .000511 .001255 '.000611 .001499 .000711 001743
.000412 .001014 .000512 .001258 .000612 . 001502 .000712 .001747
.000413 .001018 .000513 . 001262 .000613 .001506 .000713 . 001750
. 000414 .001022 .000514 . 001266 .000614 .001510 .000714 .001754
.000415 .001026 .000515 . 001270 . 000615 .001514 .000715 .001758
.000416 .001029 .000516 .001274 .000616 .001518 .000716 .001762
.000417 .001033 .000517 .001277 .000617 .001522 .000717 .001766
. 000420 .001037 .000520 .001281 . 000620 .001525 .000720 ,001770
. 000421 .001041 .000521 .001285 .000621 . 001529 .000721 .001773
. 000422 .001045 . 000522 .001289 .000622 . 001533 ,000722 .001777
, 000423 .001049 .000523 .001293 . 000623 .001537 .000723 .001781
. 000424 .001052 . 000524 .001296 . 000624 . 001541 .000724 .001785
.000425 ,001056 .000525 .001300 .000625 .001544 .000725 .001789
. 000426 . 001060 .000526 .001304 . 000626 .001548 .000726 .001792
. 000427 .001064 . 000527 ,001308 . 000627 . 031552 .000727 ,001796
.000430 .001068 .000530 .001312 .000630 ~ ,001556 .000730 .001800
.000431 .001071 .000531 .001316 .000631 .001560 .000731 .001804
. 000432 .001075 .000532 .001319 .000632 . 001564 .000732 .001808
,000433 .001079 .000533 .001323 .000633 ,001567 .000733 .001811
.000434 .001083 .000534 .001327 .000634 .001571 . 000734 .001815
', 000435 .001087 .000535 .001331 . 000635 . 001575 ,000735°  ,001819
.000436 .001091 .000536 .001335 000636 091572 . 000736 .001823
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.000437
,000440
. 000441
. 000442
. 000443
. 000444+
. 000445
. 000446
. 000447
. 000450
. 000451
. 000452
.000453
.000454
. 000455
. 000456
. 000457
. 000460
.000461
.000462
.000463
,000464
000465
.000466
. 000467
.000470
. 000471
. 000472
. 000473
.000474
000475
. 000476
. 000477

.001094
,001098
.001102
001106
.001110
.001113
.001117
,001121
.001125
.001129
.001132
,001136
.001140
.001144
,001148
,001152
,001155
.001159
.001163
.001167
,001171
.001174
.001178
,001182
.001186
001190
.001194
.001197
.001201
001205
,001209
.001213
.001216

.000537
.000540
. 000541
,000542
.000543
. 000544
.000545
.000546
.000547
.000550
.000551
.000552
.000553
.000554
. 000555
.000556
.000557
.000560
. 000561
.000562
.000563
.000564
. 000565
.000566
.000567
. 000570
.000571
.000572
.000573
.000574
.000575
.000576
. 000577

,001338
.001342
.001346
.001350
.001354
.001358
.001361
.001365
.001369
.001373
.001377
.001380
.001384
.001388
.001392
. 001396
.001399
.001403
.001407
.001411
.001415
.001419
.001422
.001426
.001430
.001434
.001438
. 001441
.001445
.001449
. 001453
.001457
.001461

. 000637
. 000640
. 000641
. 000642
. 000643
. 000644
. 000645
. 000646
. 000647
. 000650
. 000651
. 000652
. 000653
. 000654
. 000655
. 000656
. 000657
. 000660
. 000661
. 000662
. 000663
. 000664
. 000665
. 000666
.000667
.000670
. 000671
, 000672
. 000673
. 000674
. 000675
. 000676
. 000677

.001583
. 001586
. 001590
. 001594
.001598
,001602
.001605
,001609
.001613
. 001617
.001621
.001625
. 001628
.001632
. 001636
. 001640
.001644
.001647
.001651
. 001655
.001659
.001663
.001667
. 001670
.001674
. 001678
.001682
. 001686
.001689
.001693
.001697
.001701
.001705

. 000737
.000740
. 000741
.000742
.000743
.000744
.000745
.000746
.000747
.000750
. 000751
.000752
.000753
. 000754
.000755
.000756
.000757
. 000760
.000761
.000762
.000763
. 000764
. 000765
. 000766
.000767
,000770
. 000771
.000772
.000773
,000774
. 000775
, 000776
. 000777

.001827

.001831
.001834
,001838
,001842
.001846
,001850
.001853
.001857
.001861
.001865
.001869
,001873
.001876
.001880
.001884
,001888
.001892
,001895
,001899
.001903
.001907
,001911
.001914
.001918
,001922
.001926
.001930
.001934
.001937
.001941
,001945
.001949
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TasLeE 3. HexapEciMAL-DeciMAL CoNVERSION (Two-Way)

Deec. Hex. Dec.
100 1 16 X1 16
101 a 2 32
102 64 3 48
103 3e8 4 64
104 2710 5 80
105 186a0 6 96
106 14240 7 112
107 989680 8 128
108 5£5¢100 9 144
10° 3b9acal0 10 160
1010 2540be400 11 176
1011 1748762800 12 192
1012 e8d4a51000 13 208
14 224
15 240
16 256
Dec. Dec.
169 1 167 268435456
161 16 168 4294967296
162 . 256 169 68719476736
163 4096 1610 1099511627776
164 65536 1611 17592186044416

16% 1048576
166 16777216
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PROGRAMMING AND CODING 2-43
TasLE 4. Powgrs oF 2 (PosiTIVE AND NEGATIVE)
ExprESSED IN DECIMAL
2" n 2=
1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125
16 4 0.062 5
32 5 0.031 25
64 6 0.015 625
128 7 0.007 812 5
256 8 0.003 906 25
512 9 0.001 953 125
1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25
4 096 12 0.% 244 140 625
8 192 13 0. 122 070 312 5
16 384 14 0. 061 035 156 25
32 768 15 0. 030 517 578 125
65 536 16 0.2 015 258 789 062 5
131 072 17 0. 007 629 394 531 25
262 144 18 0. 003 814 697 265 625
524 288 19 0. 001 907 348 632 812 5
1 048 576 20 0.5 953 674 316 406 25
2 097 152 21 0. 476 837 158 203 125
4 194 304 22 0. 238 418 579 101 562 5
8 388 608 23 0. 119 209 289 550 781 25
16 777 216 24 0.% 059 604 644 775 390 625
33 554 432 25 0. 029 802 322 387 695 312 5
67 108 864 26 0. 014 901 161 193 847 656 25
134 217 728 27 0. 007 450 580 596 923 828 125
268 435 456 28 0.5 003 725 290 298 461 914 062 5
536 870 912 290 0. 001 862 645 149 230 957 031 25
1 073 741 824 30 0. 000 931 322 574 615 478 515 625
2 147 483 648 31 0. 000 465 661 287 307 739 257 812 5
4 294 967 296 32 0.9 232 830 643 653 869 628 906 25
8 589 934 592 33 0. 116 415 321 826 934 814 453 125
17 179 869 184 34 0. 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0. 029 103 830 456 733 703 613 281 25
68 719 476 736 36 0.9 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0. 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0. 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0. 001 818 989 403 545 856 475 830 078 125
1 099 511 627 776 40 0.2 909 494 701 772 928 237 915 039 062 5
2 199 023 255 552 41 0. 454 747 350 886 464 118 957 519 531 25
4 398 046 511 104 42 0. 227 373 675 443 232 059 478 759 765 625
8 796 093 022 208 43 0. 113 686 837 721 616 029 739 379 882 812 5
17 592 186 044 416 44 0.1%2 056 843 418 860 808 014 869 689 941 406 25
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TaBLE 5. HEexADECIMAL MULTIPLICATION

1 2 3 4 5 6 7 8 9 a b c d e f

2 4 6 8 a c e 10 12 14 16 18 1la 1lc 1le
3 9 ¢ f 12 15 18 1b 1le 21 24 27 2a 2d
4 10 14 18 1le 20 24 28 2¢ 30 34 38 3c
5 19 1le 23 28 2d 32 37 3¢ 41 46 4b
6 24 2a 30 36 3¢ 42 48 4e 54  ba
7 31 38 3 46 4d 54 5b 62 69
8 40 48 50 58 60 68 70 78
9 51 5a 63 6¢c 75 Te 87
a 64 6e 78 82 8 96
b 79 84 8 9a ab
[ 90 9¢ a8 b4
d a9 b6 3
e c4d d2
f el

4. PROGRAM STRUCTURE AND FLOW DIAGRAMS

Logical Structure of a Program

The general purpose stored program digital computer requires the prep-
aration of an external set of instructions which may be formulated in
terms of a language similar to the data language of the computer. For
example, the instructions may also be binary numbers if numbers are
operated on in the binary notation, decimal numbers if the internal
number structure is decimal, or alphanumeric characters if the basic
data language is alphanumeric. These instructions must be listed in de-
tail, one after another, to provide the procedure or algorithm by which the
machine is to perform the problem. Instructions must be exact; only a
few machines have even rudimentary built-in mistake detection circuits
by which programmer mistakes in the use of machine or instruction con-
ventions can be caught.

Control Function. That portion of the computer which automatically
executes the previously prepared program instructions, generally stored
before performance in the same storage locations as the numbers, is
called the control or control unit (see Chap. 18). In general, the sequence
of instruction through the program is called the path of control. It may
be considered a one-dimensional path, and it can often be represented on
paper in the form of a sequence or flow diagram, where the path of con-
trol is designated by a directional line.

The control serves as a sort of instructional interpreter, which selects
the pertinent instruction, decodes it into its fundamental components,
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which in general represent one or more operands and a particular opera-
tion, and then proceeds onto the next instruction, which may be located by
convention in the next machine position in sequence, or else may be given
by the previous instruction itself.

Sequential and Concurrent Control. In the simplest case, the con-
trol will decode and perform one instruction at a time. Such computer
operation is called sequential and is generally used in digital computers.
Concurrent computer operation is a more complex one in that two or
more different machine instructions, for example, reading and adding or
adding and multiplying, may be going on at the same time. Most
computers are either entirely sequential, or have only input-output opera-
tions performing at the same time as internal computational instructions.
The intermeshing of such input-output operations with calculations for
such computers can become an intricate part of the programming,.

Iteration Loops. The passage of control through the sequence of
instructions will not necessarily be a linear one, but will jump back and
forth among the instructions. Most problems are not expressed in a linear
fashion, but rather recursively, by the use of recursive functions or itera-
tion loops. An example is the addition of a column of numbers.

1. Group Summation. Addition directly by human beings generally
may be considered addition of all of a group of n numbers z; (z=1, 2,
+++, n) at once, since most persons add column by column. Such a pro-
cedure for obtaining the sum S may be written symbolically as

(14) S =3
i=1

where the D may be considered a simultaneous operator on all the ;.

2. Stepwise Addition. On the other hand, in using a desk calculator,
or an automatic stored program digital computer, the addition is done two
numbers at a time, and may be expressed thus symbolically:

(15a) 81 = x1,
(15b) Siy1 = 8 + Tip1 (l =12.--,n— 1)’
(15c) S = s,.

Since very few automatic calculators possess a summation instruction in
the sense of eq. (14), most additions of numbers are performed recursively,
as in eqs. (15), with an iteration loop technique.

3. Straight Line Coding. The sum of a sequence of numbers may be
obtained by a linear or sequential technique, which consists of ‘“unwind-
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ing” the iteration loop to produce a sequence of approximately n + 1
instructions. These may be given symbolically by

(16) 81 = X1
82 = 81+ X2

s3 = 82 + a3

Sp—1 = 8Sp—2 + Tn—1
Sn = Sp—1 + Tn
S = s,.

Comparison. The summation procedure requires only one high-
powered built-in machine instruction; the linear addition technique re-
quires one stored instruction per addition. The iteration loop procedure
occupies a compromise position between these two extremes. Actually,
of the three equations given in (15), (15a) and (15¢) are expressions
which indicate the start and finish of the overall procedure, and corre-
spond to the first and last equations of (16). The sequence of values
given for ¢ in the parentheses to the right of (15b) indicates that that
equation must be performed for each value of 7 from 1 through n — 1.
In the iteration loop procedure usually only one computer instruction is
stored to correspond to (15b), but it is considered a function of 7, and
modified to perform the addition over and over again the required number
of times. The machine must perform this modification of the addition
instruction and at the same time decide when it has performed the opera-
tion corresponding to (15b) the proper number of times.

Loop Control. Such behavior of a general purpose computer is
called loop control, and requires that the machine have three basic
properties. It should be able to (1) modify its own instructions by some
method, (2) change the sequence of the path of control through the
stored instructions, and (3) make decisions on the basis of its partial
results. In particular, in case of the iteration procedure given in egs.
(15), the computer must be able to decide when it has performed (15b)
n — 1 times. A diagram of the iterative procedure in (15) is given in Fig.
7. Theoretically, the third requirement is included in the other two.
Practical machines have all three requirements fulfilled.
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-sl<— Xy si+1=si+xi+1
-

Fre. 7. Diagram of iterative procedure.

No

Yes

Flow Diagrams

The diagram of Fig. 7 gives a geometric picture of the path of control
for eqgs. (15), represented by linear path, which in this case intersects
itself. The presence of a closed loop in the diagram indicates a recursion
or iteration. Such diagrams can be extremely helpful, as they have
previously been with chemical processes, analog computers, and business
procedures analyses, in presenting an overall picture of the structure
of the process described.

The flow diagram is an attempt at a graphical portrayal of the course
of the problem’s solution, later to be approximated by the path of the
machine’s control through the instruction information stored in the
machine during the course of solution. The flow diagram shall consist
of a sequence of directed line segments or curves, called the control
line, extending from one “box” or “block” on paper to the other boxes or
blocks. Each box shall indicate an arithmetic, instructional, or index
change, or an assertion about the status of the problem.

Notation for Flow Diagrams. Several different notations have been
devised for giving as exact a picture of the problem process as possible.
Such diagrams are called flow or sequence diagrams; the original notation
was introduced by Burks, Goldstine, and von Neumann (see Ref. 19),
and is particularly applicable to the computers with single-address logic
of the type first designed at the Institute for Advanced Study. The flow
diagram procedure developed by the Princeton group was adapted to
one particular machine; a generalized notation is shown in Table 6.
The notation of this table is aimed at providing a general language useful
for all machines. Individual users may change the notation given here
to suit particular machines for which they are preparing problems.

Advantages of a General Notation. The flow diagram is the closest
to a “universal machine language” that has been developed. Use of such
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TaBLe 6. ProgrammiNg FLow DiagraMm NOTATION

Box Notation
(a) Calculation —_ Z22= X22+ y22 e
(b) Indicial operations
No
() Alte_rnative
Yes

(d) Variable remote _>_’
connections

(¢) Equivalent fixed
remote connections

or

(f) Assertion or. —p| 7.2 = X2 +y12
information zZ>0
1

R

(g) Table of —_— —
variables . 1

>

2 2
o, +b" .

“i/ b

a;b.

l<

N
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a common language, not aimed at a particular machine, (1) in the forma-
tive stages of problem preparation delays narrowing down problem
expression to one particular machine to the later stages, allows ecasy use
of a particular flow diagram on any machine, and (2) permits easier
exchange of methods between users of different machines. The value of
the flow diagram is its use as a representation of a general solution of the
problem, not of any particular machine’s solution.

Structure of Flow Diagrams. The control line of the flow diagram
and its various parts may come together at any point, indicating that
two possible courses of the path of control through the instructional
machine information have formed a junction; one line segment may split
into two or more to form a disjunction or branch point. Every branch
point must be immediately preceded by a box or boxes indicating the
cause of the branching or the method by which control is to decide which
path to take.

A linear sequence of operations, with no decisions to be made by the
control, and therefore no branching, will consist of a continuous control
line interrupted only by boxes. In the case of iterative calculations or
data processing sequences in which operations will be performed in a
repetitive or near-repetitive fashion, loops will appear in the flow diagram.
Each such loop will consist of a curve equivalent to a circle, interrupted
by one or more boxes.

Ordinarily, most flow diagrams will be two dimensional, and can be
laid out on a two-dimensional surface without crossovers. However, it
is possible for problems to require flow diagrams with crossovers in the
control lines. For this reason, and for the purpose of providing un-
crowded layouts in two-dimensional problems, the flow diagram structure
can be broken up into a set of smaller diagrams, with particular notation
indicating the connections between the various diagrams.

Flow Diagram Boxes. There are two types of operation bozes, indicial
operations boxes, connected with the formation of indices and machine
addresses (“red tape’” boxes), and calculational operation boxes, represent-
ing actual numerical calculations as shown in Table 6a, b. Any operation
box of either type must have only one input and one output path.
Alternative boxes (see Table 6¢) usually ask questions, answered by a
“yes” or “no,” but they may often indicate other types of binary de-
cisions.

Remote Connections. Because a problem may require a multichoice
rather than binary disjunction or branching at a particular stage,
and since the machine, by assumption, has the property of modifying its
own sequence of instructions, a particular representation is needed for
multiple disjunctions. Such representation is given by a variable remote
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connection. This is represented by termination of the control line by
a circle marked with a Greek letter with a Roman letter subseript, indi-
cating a variable terminal. Alternative continuations from this circle will
be originated at other circles located at a distance, each marked with
the same Greek letter, properly indexed by successive integers. (See
Table 6d.)

In some cases, need of space on paper, or lack of two dimensionality in
the diagram may require a fized remote connection. Such a connection
shown in Table 6e consists of a terminating circle on the control line
followed by an originating circle some distance away, beginning a new
control line. Fixed remote connections will be denoted by Greek letters
without subseripts, indicating their nonchanging value. It is sometimes
helpful, because of the geometry of the diagram, to have two terminating
circles on a diagram referring to one originating circle, indicating the
equivalent of a junction preceding one terminating circle.

An assertion or information block (see Table 6f) contains no informa-
tion of operational significance, but it is only present in order to assert
the validity of certain relationships in the problems, during the course
of control, or to provide useful information for the formulator or reader.
Such boxes will be rectangles “hung” from the control line with the line
itself serving as one side of the rectangle and will contain one or more
equalities, inequalities, or similar relations, as in Table 6f.

A table of variables is purely an explanatory and storage device, simi-
lar to the assertion boxes. It can take two forms; an overall table,
giving sequential values of each floating variable as functions of the
bound variables for each constancy interval, and a running table, in
which portions of the overall table are stored directly adjacent to each
constancy interval. A combination of both may be used, if desired. The
running table of variables is usually attached by a dashed line to the
control line somewhere on the constancy interval, as in Table 6g.

In many practical cases, neither assertion boxes nor tables of variables
will be used by a problem formulator. Nevertheless, in the case of com-
plicated problems, their value cannot be overlooked.

Notation for Constants and Variables. Standard practice in label-
ing is as follows:

1. Constants and variables: Roman letters followed by decimal integer
subscripts.

2. Constants: ¢’s.

3. Arithmetic variables: end-of-the-alphabet letters such as w, z, vy, 2.

4. Indices: middle-alphabetical characters such as 1, j, k, [, m, and n.

The calculation variables are most often free wartables, able to be
changed at the beginning of a problem. In the sequence diagram lan-
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guage, free variables offer no difficulty; they belong to the same class
as constants as far as all except initial behavior is concerned, and are
generally changed by operation boxes. Floating variables are not assign-
able from the beginning. Once they are defined in terms of free or
previously defined floating variables, they have the same behavior. When
the values of the bound variables (usually indices) that assume a sequence
of different values during the course of a problem solution change, how-
ever, such variables are changed in actual, although not notational value.
By a change in such an index, therefore, no change is made in the flow
diagram notation, although the actual value of free or floating variables
will change.

A transition point is defined as a point on the control line where the
value or domain of variation of any bound variable changes. The interval
between two consecutive points along the control line will then be called
a constancy interval. A constancy interval will be marked by transition
points at its beginning and end (sometimes the same point) as in Fig 8.

,<— Constancy interval

Y

Yes

5= (- 1)°

No

I
\
|——Constancy interval

Fic. 8. Constancy intervals. Problem, form (z0)".

Floating variables within such an interval will remain unchanged, at
least when considered as direet, but not indirect, functions of the bound
variable in question.

By virtue of the more generalized definition given here, transition
points will occur at indicial operations boxes. Finally, constancy inter-
vals can be enumerated by a sequential decimal notation similar to the
standard library Dewey decimal system.

Contents of Boxes. The contents of the various operational boxes
shall in all cases express floating or bound variables in terms of other
such variables. Indicial operational boxes, which mark transition points,
if expressing a bound variable as a function of the same bound variable
(in a previous iteration), will use an arrow to indicate that a function of
the value held during the immediately preceding constancy interval for
purposes of caleulation is to replace the old value (see Table 6b). A
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calculational operational box will be a functional equality expressing the
new value as a function of the previous value of the variable being ob-
tained. No confusion will arise here, since floating variables will be direct
functions of indices, whenever they are functions also of themselves. In
such cases, the relationship will be expressed as an equation, with the
new variable to the left of the equality sign.

Examrie. A flow diagram, drawn with the above conventions, is
given for the multiplication of two matrices in Fig. 9.

The problem required is, given two matrices, each stored in a one-
dimensional sequence, to form their product and store it in a similar one-
dimensional storage. The product matrix

n—1
Cik=zaijbik (iyk=0)1)°",n—1)
=0

is to be formed so that each element ¢y is stored in a one-dimensional
position ¢, (¢, k). This is a practical problem in that all present-day stor-
age can be considered, for practical purposes, one dimensional.

Machine Application. As the drawing of Fig. 9 is shown it repre-
sents a formulation that may be translated in a static fashion into any
machine instructional code that obeys the assumptions of this chapter.
Certain difficulties will arise in performing such a translation to any one
particular machine, particularly if an attempt is made to make the coding
process most efficient time-wise or space-wise. For example, in order
to save space, more than one floating variable (temporary value) should
perhaps be stored in one storage position in the particular machine.
Moreover, since there are variants in the formulation of most problems
that will still give perfectly correct solutions, it is probable that some
variants will be particularly suited to direct static coding on one machine,
while other variants will be suitable for others. A programmer who has
gained e\xperience on one particular machine will soon learn to develop
those flow diagram formulation variants that will prove suited to the
particular code required by his machine.

5. MACHINE LOGIC

The modern electronic computer or information processor consists of
the following parts: the control, the storage, the arithmetic and logic
unit, and the input-output unit. The control unit is responsible for the
initiation and monitoring of all computer operations (see Chap. 18).
Instructions from the storage are translated or decoded in the control
unit and as a result the computer performs transfers, computing, logie,
and input-output operations. Hence, transfers into and out of the com-
puter, transfers between the various computer units, and appropriate
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processing of information is automatically carried out as a result of
instruction translation.

Internal Machine Structure

Loop Contrel. Digital computer programming, in the usual sense,
is the formalization of problem solution for general purpose stored pro-
gram electronic digital computers. Such machines are said to have
loop control if they have the following characteristics:

1. Numbers and instructions are physically indistinguishable as to
storage position and method of storage. The storage may be shared in
any ratio between numbers and instructions.

2. The ability to modify instructions in the computer’s arithmetic unit.
This enables the machine to modify its own syntazx, that is, change its
own logical structure.

3. The passage of control through the sequence of instructions can
be modified on the basis of the contents of one or more accessible posi-
tions inside the machine’s storage, arithmetie, or control units. Usually,
the only decision producing information is the sign of the number in a
specified location in the arithmetic unit (accumulator) or equivalently,
the relative size of two numbers in the storage. Other portions of com-
puters that have been used in the past for decision making are external
human-operated switches, electronic switches operated by other machines
(interrupt features), internal switches operated by overflow and other
error detection devices, cte.

Variable Instruction Computers. The presence of these loop control
features requires that a machine belong to the class of variable instruction
computers, in which instructions may be changed externally and are not
built into the hardware. This class may be divided into two types, de-
pending on how instructions are modified:

1. Indicial instruction logic, with a separate, special instruction arith-
metic element in addition to the standard arithmetic element for oper-
ating on both numbers and instructions.

2. Ambiguous-word logic, with both number and instruction words
sharing the same storage and handled only by the same (arithmetic)
processing element.

Indicial Instruction Machines. This design resulted from the need
for two levels of arithmetic, (a) the actual computations themselves and
(b) computations necessary to determine the values of indices and there-
fore addresses of data. Indices are always integers; numerical data will
be manipulated generally as fixed or floating point numbers with a much
larger number of significant figures. Index and address computations,
or “red tape” operations are performed on integers requiring far fewer
significant digits.
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Separate arithmetic elements for numbers and instructions work best
on computers with serial storage and transfer of information, since in such
machines arithmetic elements can be inserted in instruction-handling
paths without loss of operating time or large increase in cost. Many
computers with parallel storage and data transfer, however, now have
such separate arithmetic elements.

It should be noted that the computer with purely indicial instruction
logic is virtually nonexistent. Under the definitions given here, most
modern computers, especially those of general purpose, are variable in-
struction computers which are hybrids of the indicial instruction and
ambiguous-word types. Most have ambiguous-word logic and many of
these, in addition, have special capability such as the B box (see below)
which gives them an indicial instruction character.

B Box or Index Register. A B box or automatic instruction modifier
is an example of such a separate arithmetic unit. Many artificial instruc-
tion codes (abstractions) use such index registers to speed up hand
programming. A certain portion of every instruction word is used to
designate just how that particular instruction is to be modified with
respect to one or more such special locations, which have been filled with
specified values' of an index by previously performed instructions.
Usually the contents of such a special register is added to (or subtracted
from) the address(es) of the instruction. Loop control is obtained by
special instructions performing complex index comparisons combined
with control transfer. Often arithmetic operations themselves can be
performed on the (usually integer) numbers stored in the index registers,
by means of special operations. The proper use of index registers can
save both time and storage space over the methods required when they
are not available.

A rather exceptional case is the ‘“repeat instruction” of the Univac
Model 1103-A (see Sect. 6). This instruction specifies the number of
times the following instruction is to be repeated and how the addresses
are to be modified.

Ambiguous-Word Manipulations. In this case, instructions are
treated as numbers and operated upon in the common arithmetic unit.
Indices must be stored with the proper scale factors so that they can be
added directly to instructions. Comparisons are now made with respect
to certain comparison instructions which specify the state at the end of
an entire iteration process of an instruction being varied.

Relative Advantages. The use of separate indices and their separate
manipulation in index registers is mathematically more satisfying with
respect to hand programming. With respect to machine-composed pro-
grams, the optimum use of B registers may make the automatic program-
ming technique itself more complicated. For hand programming, the
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pedagogical difficulties inherent in considering numbers as instructions
and instructions as numbers can raise difficulties in the learning process.

Machine-Level Languages. The instruction code of a digital com-
puter is indeed a command language, obeying all the rules of formal
logical languages, and one that can be studied as such. Machine-level
languages were basically designed for two purposes: (1) to allow control
of machine performance by human beings and (2) to require as little
complex circuitry as possible for mechanizing this control.

The latter condition arose because the original computer designers
were more concerned with building operable machines than the ease of
operation by humans.

Basic Units. The basic unit in a digital computing machine is called
a word. Such a word is an informational unit of more than one digit,
which can be transported as a whole from one part of the machine to
another. Most storage systems, to be used most efficiently, require
manipulation of fixed length groups of digits at one time. Thus most
machines have fixed word lengths and fixed instruction formats. The
advent of variable word length data processing equipment (IBM 702 and
705, Bizmac) have shown designers that storage used ingeniously can
allow variable data groupings. Variable groupings of storage digits into
instructions is planned for new computers such as Stretch and Gamma 60.
In some machines instructions are multiples of one, two, or three standard
lengths.

Each word is given an address or location number. The instruction
words that the machine uses contain one or more addresses or datum
numbers, one or more operations, and numerous modifiers, which can
modify both the address and operation portions of such an instruction.
Machine languages have so far been positional, with location in the
instruction being the identifying tag as to the fashion in which an address
is to be interpreted.

Multi-Address Codes. The instructions with which machines are
supplied serve only to express manipulations on numbers (usually
arithmetic) or in some cases on instructions themselves. The most
general such instructions require a set of basic information:

1. The addresses of the operands or numbers to be operated on.

2. The location or address to which the result is to be sent.

3. The numerical (or logical) operation to be performed.

4. The location or address of the next instruction.

Figure 10 summarizes the structures of the various instruction types
discussed below.

Four-Address Codes. In the simpler arithmetic operations such as
addition, subtraction, multiplication, and division, there are only two
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. First Second Next
Ops(r)ztéon operand operand ar;zf:gs instruction
address address address
Four—address instruction
Operation o:ei:i d f;:g;% Result
code address address address
‘Three—address ihstruction
. First Second
Operation
code operand operand
address address
Two—address instruction
. Next
Operation Operand instruction
code address ‘address

One + one—address instruction

Operation
code

QOperand
address

One-—address instruction

F1c. 10. Instruction types.

operands and one result. Thus, including the location of the next
instruction as an additional address, the most general type of instruc-
tion for the elementary operations mentioned should contain four
addresses. Such a four-address code was originally devised for the
EDVAC and SEAC (Ref. 92). The fourth or subsequent instruction
address has the specific function of allowing minimal access machine
performance if the programmer so desires and it also simplifies changing
or correcting a program in machine language.

Three-Address Codes. With parallel machines, instructions are
normally assumed to be stored in sequential address positions. Random
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.access noncyclic storage machines, therefore, can without loss in efficiency
dispense with one of the four addresses, if provision is made for special
instructional operations to provide a change of control if desired. It is
therefore possible for a three-address code in such a machine to be highly
efficient. In addition, numerous cyclic machines have sacrificed the
subsequent address in their instruction codes to obtain simpler formats.
The NORC is a random-access three-address instruction parallel machine
(see Ref. 111); the MIDAC is a machine with cyclic storage and a
three-address instruction code with no subsequent address in its instruc-
tion (see Ref. 25).

Tweo-Address Codes. If again, by convention, some of the operand
or result addresses required by a three-address code are considered as
fixed locations, it is possible to eliminate one or two other addresses.
Several two-address machines have been designed. Such instruction
logic offers instructions with addresses of one operand and a result, or
an operand and a subsequent address, or combinations of the other
possible variants, with a standard location again being used. The Univac
1103, 1103A, and 1105 are two-address instruction machines (Ref. 103).

Single-Address Instructions. The standard location mentioned above
has most often been called an accumulator by the designers, after the
nomenclature of the ordinary desk calculator. In parallel machines,
it is usually a part of the adder and multiplier, and thus serves an opera-
tional as well as storage purpose. With such a storage position, the num-
ber of addresses required in an instruction can be cut to one. In such a
one-address or single-address code, in the simpler arithmetic orders one
operand is by convention in the accumulator, and the result is left in
the accumulator. Separate instructions are needed to store results ob-
tained in the accumulator, when desired.

The trend has been, on the grounds of machine simplicity and simplicity
of coding, toward single-address machines. Examples are the Univac I
and II, the SAGE System Air Defense Computers, the IBM 700 Serics,
and the “Princeton Class” of equipments.

Machines have even been proposed with no addresses, but rather
operands themselves, stored in the instructions.

One-Plus-One Address Codes. In the one-plus-one addressing pro-
cedure, each instruction has a basic single-address format, but also
includes a second address to be used to designate the location of the next
instruction to be performed. This allows minimal access programming
with the cyclic storage system on a magnetic drum. The IBM 650 is a
machine with such a structure (Ref. 102).

Circulating Loops. A method used with single-address magnetic
drum computers to provide efficiency comparable to the one-plus-one
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addressing system is the use of the circulating loop which provides a
smaller, more rapid access storage region where instructions may be
performed, and data stored and retrieved. The presence of such a smaller,
speedier storage system, surrounded by a larger, slower storage region,
provides an example of the storage hierarchy problem in programming.
(See Ref. 32))

A “Best” Addressing System. Programmers and designers have long
argued the merits of one or the other instruction format for programming
ease and ease of machine construction and design. A formal study was
made by Elgot (Ref. 33), who compared single-address versus three-
address codes with results interpretable in favor of either system depend-
ing upon the measures of effectiveness to be used. The advent of newer
storage systems and automatic programming techniques involving trans-
lation from extremely flexible external languages has generally eliminated
the controversy. Future designs will depend on: (1) ease of design
compatibility of instructions with hardware and (2) ease of machine
programming of itself (automatic programming, see Sects. 8 to 15) in
the most efficient manner, rather than the ease of human hand pro-
gramming. Experience with all systems of instruction logic would
indicate that extreme flexibility would probably be most compatible
with (2), if not with (1).

Operations. Usually, each instruction contains only one operation,
although attempts have been made on some machines (such as the
Illinois computer, ILLIAC) (Ref. 56), to systematize the instructions,
in that they are actually made up of a number of separate commands
which can be combined in a straightforward manner into one operation.
There are six different types of operations that are usually available, as
given below.

Operating Types.

1. Arithmetic Operations. These include the four basic operations of
addition, subtraction, multiplication, and division, with several variants;
scale-factoring or numerical normalization operations; number shifting
by multiplication by powers of the radix, and special purpose combina-
tions of all of these.

2. Digital Logical Operations. These operations include means of
replacing specific digits of one number by those of another, circular
shifting of numerical storage, and various operations to aid in the
modification of instructions, such as address substitution, and storage
of the present address of control for later use.

3. Decision Operations. Most computers make use of the sign of
numbers or a comparison with zero to effect assignment of the next step
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of control to one of two locations in the storage. Such assignment may
be made after forming differences of numbers or of the absolute values of
numbers in the multiaddress machines. Other instructions will cause
the machine to repeat subsequent instructions one or more times depend-
ent on contents of certain registers, ete.

4. Change of Control Operations. In addition to the conditional
change of control operations given under (3), it is usually useful to have
an unconditional change of control operation available to provide for
jumps in the instructional sequence. Even so, conditional change of
control operations can be used by means of forced comparisons to pro-
vide unconditional control transfers.

5. Storage and Input-Output Operations. In machines with accu-
mulators, it is usually necessary to provide operations permitting storage
of the accumulator contents, Similarly, with machines with more than
one (high-speed and medium-speed, for example) type of storage, instruc-
tions are required to transfer information back and forth. Access to
the external read and write devices must also be controlled by special
input-output operations.

6. Indexing Operations. These are used with the index registers to
alter, in the control unit, just prior to execution, the address or addresses
of the instruction to be performed. Generally the instruction in storage
itself is not changed. Indexing operations may be involved with de-
cisions (ending an iteration after a count down in an index register), and
with input-output (using the contents of an index register to specify
where the next input is to be stored, ete.). Included in this category are
operations specifically designed to alter instruction operands in machines
without index registers.

Complexity of Operations. Square roots and trigonometric functions
can be built in as operations in any machine, but this is not usually done.
An exception is the Soviet computer Strela, described in Sect. 6. Such
functions, and others like them, can be formed satisfactorily by purely
coded methods. The gain in shorter performance time and in decreased
instructional storage over coded methods for such built-in operations has
not overcome the increased cost of equipment.

Finally, the use of synthetic instructions as part of assembly programs
provides a method to effectively increase the computer’s repertoire of
instructions without the necessity of building in further machine “hard-
ware.” Such coded tools may tend to provide more operations in future
machines, without added machine cost.

Address Modification Methods. In the indicial instruction machines,
some of which also allow ambiguity in the words used, a special portion
of each instruction is used as an address modifier, to indicate whether
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or not an address or addresses are to be modified before the instruction
is performed. This modification usually consists of (a) addition or
subtraction of a B line, base counter, or index register to or from the
address before it is used to select a particular word, or (b) the use of
an index register to perform automatic counting for inductive loops, or
to store return addresses for use with side passages through subroutines
or precoded, pretested standard coded functional operations.

More than one index register may be included to allow numerous loop
paths of control. If only one is available, provisions are usually made
to exchange its contents with that of an address in the other available
storage. If considered in index notation, such B line devices provide an
easy means for almost direct static translation for the notation of
numerical analysis, without the intervention of a flow diagram.

Breakpoint Notations. Some machines provide breakpoint informa-
tion in an instruction. This usually consists of one binary digit or a
decimal digit value that can be used to indicate special action—usually
special printing of several of the significant pieces of information in a
particular instruction. The latter process, termed “automonitoring” by
some groups, and “mistake or error diagnosis,” or “checking” by others,
combined with the special breakpoint behavior provides useful running
information of a program’s progress. Most machines do not include this
feature built-in, but use programmed “trace” routines to provide a run-
ning account of the performance of the problem.

Word Length and Instruction Types. Most computers, especially
those for scientific and engineering calculations, have a word length which
depends on the number length desired for arithmetic operations. Usually
this is 10-13 decimal digits or 36-44 binary digits. With this requirement
met, instructions are fitted into the basic structure as appropriate.

The number of digits required to describe the operations and the
addresses in a single-address instruction of course depends on the number
of operations and addresses involved. In early single-address computers
two instructions were placed in one 36-bit word, 18 bits being sufficient
to describe, say, 128 operations (7 binary digits) and 2048 addresses (11
binary digits). When greater instruction repertories and greater storage
capacities become important, only one instruction per word could be
provided for in a 36-bit word. At the same time the need grew for other
binary digits in the word for address modification, breakpoint def-
inition, ete. Thus, the single-address instruction “grew into” the 36-bit
word.

Greater instruction flexibility and greater storage systems are placing
more pressure on increasing the word length of computers now under
design. These factors have now replaced the considerations of number
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size in arithmetic operations in providing the principal criterion for word
length.

Various instruction system formats are as follows:

1. The Princeton design (Ref. 19) places two instructions in one
word, leaving the number as the standard unit of information, and enu-
merating instructions by the word address plus a separate designator for
right- or left-hand instructional position. Such a scheme leads to un-
usual conventions to be used with instructions, such as requirements
that changes of control must be made to left-hand instructions only,
ete.

2. The EDSAC design (Ref. 108), later used on the IBM 701 (Refs.
71 and 87), treats the shorter single-address instruction as the basic
element with standard addresses, and may provide for two types of num-
bers, short and long, the first the length of the instruction, the second
twice as long. Here conventions are again necessary to meet the physical
nature of the structure; for example, long numbers must always have even
addresses. Type 701 machines using larger storage units must use an
even more complex address-instruetion-word numbering relationship.

3. The Whirlwind I design (Ref. 57) arbitrarily made the instruction
and number length the same, 16 binary (approximately 4 to 5 decimal)
digits. For useful computation it is necessary to combine two or more
words through programmed methods tc provide a satisfactory number
length. Only high speed, however, allows such programmed operation
without a disastrously low final speed.

4. Later designs, such as the IBM 704, 709, STRETCH, UNIVAC-
LARC, and Datatron 205-220 machines, have kept the single-address
structure in each instruction word, but have used the large number of
digits available to allow for larger amounts of storage to be addressed,
many index registers, access to more than one accumulator, and other
special control features.

Use of Instructions. Many problems solved on scientific calculators
make little use of other than the arithmetic operations.

Examples. (1) In a study of three typical small scientific problems
performed on the MANIAC (a Princeton type computer) at the Los
Alamos Scientific Laboratory of the Atomic Energy Commission, Herbst,
Metropolis, and Wells (Ref. 112) noted that no input-output transfer to
magnetic drums or magnetic tapes occurred. In a hydrodynamies prob-
lem (the numerical solution of a multidimensional partial differential
equation), almost 65% of the total computing time was devoted to
multiplication and division.

(2) In business data processing programs, about 60% of the time is
spent in data manipulation not involving arithmetic.
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Small scientific problems, termed process limited, or computer limited,
are limited by calculating speed and the effectiveness of arithmetic cod-
ing. As the size of the scientific problem increases relative to available
storage, the storage hierarchy problem enters in, and the quantity of
input-output instructions goes up. Such scientific problems like the
business data processing problems, called tape limited, or input-output
limited, are limited by the efficiency of the input-output devices and the
coding used in that area.

6. INSTRUCTION LOGIC OF COMMON COMPUTERS

This section describes the instruetion logic of some of the common com-
puters. The set of descriptions includes scientific and business machines of
both large and small scale. Table 7 shows some of the features of common
computers. The instruction logic is given for the following computers:

Computer Page

IBM 704 2-63

Univac Scientific 1103A 2-77

Univae I1 2-83

IBM 650 2-93

Datatron 205 2-98

Bendix G-15D See Intercom example,
Interpreters, Sect. 14

Royal-McBee LGP-30 2-109

Soviet Strela 2-111

MIDAC 2-115

EASIAC ' 2-122

MIDAC is included as an illustration of a three-address instruction
machine. EASIAC is an interpretive routine for MIDAC and is included
as an example of that form of programming,.

Instruction Logic of the IBM 704

The IBM 704 is a binary digital computer with fixed or floating point
arithmetic and either a (27,7,0) or (35,0, 0) “digital” (absolute value
less than one) number system. Numbers are stored in absolute value form.
There are available from 4096 to 32,768 locations of high-speed (magnetic
core) as well as up to 16,384 words of nonaddressable magnetic drum .
storage. Up to ten magnetic tape units with up to 900,000 machine words
(each of 36 bits) are available as secondary storage, which can be trans-
ferred in or out, after the tape is in motion, at the rate of 2500 words per
second.

Input-output is via 80-column punched cards either direct or through
peripheral equipment to and from magnetic tape. A high-speed printer and
a cathode ray tube display are also available for output.



Computer
IBM 704

IBM 705

Univae
1103A
Univae IT

IBM 650

Datatron 205

Bendix G-15

Royal McBee
LGP-30

Soviet Strela

MIDAC

Number
System,
Operation

Binary, parallel

Alphanumerie,
serial

Binary, parallel
Alphanumeric,

serial
Decimal, serial

Decimal, serial
Binary, serial

Binary, serial
Binary, parallel

Binary, serial

% Number triad (m, n, p):
m = significant digits representing the fractional part of a number, .
n = digits in the exponent of the number (n = 0 is a fixed point computer,n > 0is a
p = digits to the left of the radix point (p = 0 means all numbers have absolute value less than 1; such numbers are called

“digital” numbers).

TasLe 7. FraTurEs oF ComMMoN COMPUTERS

Word
Size

36 bits

Variable

36 bits

12 decimal
digits

10 decimal
digits

10 decimal
digits

29 bits

32 bits
43 bits

45 binary
digits

b One instruction per word unless noted. o
¢ For computers with circulating storage only the average access time is given.

Number
Triad
(m, n, p)*
(27,7, 0) or

(35,0,0)

(m, 0, 0)
m variable

(35,0, 0) or
(27, 8, 0)
(12, 0, 0)

(10, 0, 0)

(10, 0, 0)

(28, 0, 0)

(30, 0, 0)
(35, 6, 0)

(44, 0, 0)

Instructions®

Single address two per word;
86 operations,

index register

Single address,

35 operations

Two address,
50 operations

Single address, two per word;
63 operations

One-plus-one address,
70 operations,
1 to 3 index registers

Single address,
55 operations,
index register

Two-plus-one address
Single address
Three address

Three address, 19 operations,
index registers

Operating
Speed®
+: 84 usec
X200 usec

-+:200 usec
X : 2480 usec

Maximum Storage
Cores, 32,768 words,
drums, 16,384 words,
tapes, 10
Cores, 20,000 char-
acters,

(10 dig. dec. nos.) tapes, 10

+: 48 usec
X266 psec

-+ : 400 usec

X : 2100 usec
2.4 msec
average

access time

8.5 msec or

0.85 msec aver-
age access time
14.5 msec or
0.54 msec aver-
age access time
9 msec average
access time

220-500 usec

+:192 usec
X 12304 usec

Cores, 4096 words,
tapes, 10

Cores, 10,000 words,
tapes, 16

Drum, 2000 words,
tapes, 6

Drum, 4000 words,
tapes, 10

Drum, 2176 words,
tapes, 4

Drum, 4096 words

Cores, 2048 words
Drums, 5120 words

Acoustic, 512 words
Drum, 24,576 words

floating point machine),

9T
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Instruction Description. This machine has three index registers
and has only one single-address instruction stored per word. There are two
types of instructions, A and B. Type A instructions contain a fifteen-bit
address portion and a fifteen-bit “decrement” portion. (the latter for
index use in certain cases) as well as a three-bit operation portion and a
three-bit “‘tag.”” Type B instructions contain an eleven-bit operation
portion, a three-bit tag, and a fifteen-bit address portion.

Instructions are either indexable or nonindexable. Presence of one or
more of the three tag bits automatically adds in the contents of the corre-
sponding index registers into the instruction address. In certain type B
instructions this process will change the operation code as well.

There are two arithmetic elements, an accumulator (AC) of 37 bits plus
sign and a multiplier-quotient register (MQ) of 35 bits plus sign. The
two extra AC bits are for special overflow information. Instruction
sequencing is of the standard single-address type. The IBM 704 has a
special operational mode, the “Trapping Mode,” into which it may be
transferred by a special instruction. This allows machine tracing of
programs by observing the flow of control automatically without detailed
interpretation.

Type A instructions are written in the form:

TNX 02301 B 03449

where the three-letter code indicates the operation, the first five-digit
decimal code the decrement to be used with the index registers, the next
letter, one or more of the three index registers (A, B, or C), and the last
five-digit decimal code the address.

Type B instructions are written usually as

SLW C 2644

where the decrement field is now omitted. In some cases, type B in-
structions do not have tag locations.

The following list of instructions for the IBM 704 is taken from a “Man-
ual of Operation” (Ref. 54). Notation is standard, C(Y) indicating
contents of location Y, and subscripts corresponding to specific digits.
S, P, Q are the sign and two overflow digits of AC, respectively.

All instructions are indexable except those with an X in the operation
code, designating an index register. The four digits alongside each
mnemonic operation indicate the octal operation equivalent. In cases
where the operation code extends into the address, there may be more
than four digits. The first integer gives the number of cycles (each of
12 microseconds) for performance of the instruction. The detailed han-
dling of overflow and floating point zero is not included in this account, nor
is a complete account of the problems of normalization.
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Fixed Point Arithmetic Operations.

Clear and Add. 2 CLA Y +40500. The C(Y) replace the
C(AC)s,1-35. Positions Q and P of the AC are cleared. The C(Y) are
unchanged.

Add. 2 ADD Y +40400. This instruction algebraically adds
the C(Y) to the C(AC) and replaces the C(AC) with this sum. The C(Y)
are unchanged. AC overflow is possible.

Add Magnitude. 2 ADM Y +40401. This instruction alge-
braically adds the magnitude of the C(Y) to the C(AC) and replaces the
C(AC) with this sum. The C(Y) are unchanged. AC overflow is possible.

Clear and Subtract. 2 CLS Y 4-0502. The negative of the
C(Y) replaces the C(AC)g,1.35. Positions Q and P of the AC are cleared.
The C(Y) are unchanged.

Subtract. 2 SUB Y +40402. This instruction algebraically
subtracts the C(Y) from the C(AC) and replaces the C(AC) with this
difference. The C(Y) are unchanged. AC overflow is possible.

Subtract Magnitude. 2 SBM Y —0400. This instruction
algebraically subtracts the magnitude of the C(Y) from the C(AC) and
replaces the C(AC) with this difference. The C(Y) are unchanged. AC
overflow is possible.

Multiply. 20 MPY Y +0200. This instruction multiplies the
C(Y) by the C(MQ). The 35 most significant bits of the 70-bit product
replace the C(AC);.35 and the 35 least significant bits replace the
C(MQ)1.35. The Q and P bits are cleared. The sign of the AC is the
algebraic sign of the product. The sign of the MQ agrees with the sign
of the AC.

Multiply and Round. 20 MPR Y —0200. This instruction
executes a multiply followed by a round. (The latter operation is defined
below.) AC overflow is not possible.

Round. 2 RND 40760 - --010. If position 1 of the MQ con-
tains a 1, the magnitude of the C(AC) is increased by a 1 in position 35.
If position 1 of the MQ contains a zero, the C(AC) remain unchanged.
In either case, the C(MQ) are unchanged. AC overflow is possible.

Divide or Halt. 20 DVH Y +0220. This instruction treats
the C(AC)s,q.»,1-35 and the C(MQ)1.35 as a 72-bit dividend plus sign, and
the C(Y) as the divisor. If |C(Y)| > |C(AQ)|, division takes place, a
35-bit quotient plus sign replaces the C(MQ) and the remainder replaces
the C(AC)s,1-35. The sign of the remainder always agrees with the sign
of the dividend.

If |C(Y)| = |C(AQ)|, division does not take place and the calculator
stops with the divide-check indicator and light on. Consequently, if po-
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sition Q or P of the AC contains a 1, division does not take place since
|C(Y)| < |C(AC)|. The dividend remains unchanged in the AC.

Divide or Proceed. 20 DVP Y +0221. This instruction exe-
cutes a division (as defined above) if |[C(Y)| > |C(AC)|. If |C(Y)| =
|C(AC) l, division does not take place, the divide-check indicator and light
are turned on, and the calculator proceeds to the next instruction. The
dividend remains unchanged in the AC.

Load MQ. 2 LDQ Y +40560. The C(Y) replace the C(MQ).
The C(Y) are unchanged.

Store MQ. 2 STQ Y —0600. The C(MQ) replace the C(Y).
The C(MQ) are unchanged.

Store Left-Half MQ. 2 SLQ Y —0620. The C(MQ)s,1-17
replace the C(Y)s,1.17. The C(Y)is.35 and the C(MQ) are unchanged.

Store. 2 STO Y +40601. The C(AC)s,1.35 replace the
C(Y)s,1-35. The C(AC) are unchanged.

Store Zero. 2 STZ Y +40600. The C(Y) are replaced by
zeros and the sign of Y is made plus.

. Store Prefix. 2 STP Y +46630. The C(AC)p,1,2 replace the
C(Y)s,1,2. The C(Y)s.35 and the C(AC) are unchanged.

Store Decrement. 2 STD Y +40622. The C(AC)s.17 replace
the C(Y)s.17. The C(Y)s,1,2,18.35 and the C(AC) are unchanged.

Store Address. 2 STA Y +40621. The C(AC)2:.35 replace the
C(Y)21.35. The C(Y)s,1-20 and the C(AC) are unchanged.

Clear Magnitude. 2 CLM <0760 ---000. The C(AC)q,p,1-35
are cleared. The AC sign is unchanged.

Change Sign. 2 CHS +40760-.-002. If the AC sign bit is
negative, it is made positive, and vice versa. '

Set Sign Plus. 2 SSP 40760 - --003. A positive sign replaces
the C(AC)s.

Set Sign Minus. 2 SSM —0760---003. A negative sign
replaces the C(AC)s.

Logical Operations.

Clear and Add Logical Word. 2 CAL Y —0500. This in-
struction replaces the C(AC)p,1.35 with the C(Y). Thus the sign of the
C(Y) appears in position P of the AC, and the S and Q bits are cleared.
The C(Y) are unchanged.

Add and Carry Logical Word. 2 ACL Y +0361. This in-
struction adds the C(Y)s,1.35 to the C(AC)p,1.35, respectively, and re-
places the C(AC)p,1.35 with this sum (position S of register Y is treated as
a numerical bit, and the sign of the AC is ignored). A carry out of the P
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bit adds into position 35 of the AC, but does not add into Q. Q is not
changed. The C(Y) are unchanged. No overflow is possible.

Store Logical Word. 2 SLW Y +40602. The C(AC)p,i-35
replace the C(Y)s,1.35. The C(AC) are unchanged.

AND to Accumulator. 3 ANA Y —0320. Each bit of the
C(AC)p,1-35 is matched with the corresponding bit of the C(Y)s,1.35, the
C(AC)p being matched with the C(Y)s. When the corresponding bit of
both the AC and location Y is a one, a one replaces the contents of that
position in the AC. When the corresponding bit of either the AC or
location Y is a zero, a zero replaces the contents of that position in the AC.
The C(AC)s,q are cleared. The C(Y) are unchanged.

AND to Storage. 4 ANS Y +0320. Each bit of the
C(AC)p,1-35 is matched with the corresponding bit of the C(Y)s,1-35,
the C(AC)» being matched with the C(Y)s. When the corresponding bit
of both the AC and location Y is a one, a one replaces the contents of that
position in location Y. When the corresponding bit of either the AC or
location Y is a zero, a zero replaces the contents of that position in location
Y. The C(AC) are unchanged.

OR to Accumulator. 2 ORA Y —0501. Each bit of the
C(AC)p,1-35 is matehed with the corresponding bit of the C(Y)s,1.35, the
C(AC)p being matched with the C(Y)s. When the corresponding bit of
either the AC or location Y is a one, a one replaces the contents of that
position in the AC. When the corresponding bit of both the AC and
location Y is a zero, a zero replaces the contents of that position in the AC.
The C(Y) and the C(AC)g,q are unchanged.

OR toStorage. 2 ORS Y —0602. Each bit of the C(AC)p,1-35
is matched with the corresponding bit of the C(Y)s,1.35, the C(AC)p being
matched with the C(Y)s. When the corresponding bit of either the AC or
location Y is a one, a one replaces the contents of that position in location
Y. When the corresponding bit of both the AC and location Y is a zero,
a zero replaces the contents of that position in location Y. The C(AC)
are unchanged.

Complement Magnitude. 2 COM 40760 ---006. All ones
are replaced by zeros and all zeros are replaced by ones in the C(AC)q,p,1-35.
The AC sign is unchanged.

Shift Operations. Shift instructions are used to move the bits in a
word to the right or left of their original positions in the AC or M(Q register
or both, With the exception of the RQL instruction, zeros are automati-
cally introduced in the vacated positions of a register. Thus, a shift larger
than the bit capacities of the registers involved in the shifting will have no
significance after the capacities of the registers are exceeded. When an
instruction is interpreted as a shift instruction, the extent of the shift is
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determined by the least significant eight bits of the address of the in-
struction. Since the maximum possible shift is 255, a number larger than
255 in the address part of a shift instruction is interpreted modulo 256.

Accumulator Left Shift. 2-1 ALS Y -+0767. The C(AC)q,p,1-35
are shifted left Y modulo 256 places. If a nonzero bit is shifted into or
through position P, the AC overflow indicator and light are turned on.
Bits shifted past position Q are lost. Positions made vacant are filled in
with zeros.

Accumulator Right Shift. 2-1 ARS Y <+0771. The
C(AQC)q,p,1-35 are shifted right Y modulo 256 places. Bits shifted past
position 35 of the AC are lost. Positions made vacant are filled in with
Z€ros.

Long Left Shift. 2-1 LLS Y +0763. The C(AC)q,p,1-35 and
the C(MQ);.35 are shifted left Y modulo 256 places. Bits enter position
35 of the AC from position 1 of the MQ. If a nonzero bit is shifted into or
through position P, the AC overflow indicator and light are turned on.
Bits shifted past position Q are lost. Positions made vacant are filled in
with zeros. The sign of the AC is replaced by the same sign as that of
the MQ.

Long Right Shift. 2-1 LRS Y -40765. The C(AC)q,p,1-35
and the C(MQ)1.35 are shifted right Y modulo 256 places. Bits enter
position 1 of the MQ from position 35 of the AC. Bits shifted past position
35 of the MQ are lost. Positions made vacant are filled in with zeros.
The sign of the MQ is replaced by the same sign as that of the AC.

Logical Left. 2-1 LGL Y —0763. The C(AC)q,p,1-35 and the
C(MQ)s,1-35 are shifted left Y modulo 256 places. Bits enter position S
of the MQ from position 1 of the MQ, and enter position 35 of the AC from
position S of the MQ. If a nonzero bit is shifted into or through position P
of the AC, the AC overflow indicator and light are turned on. Bits shifted
past position Q are lost. Positions made vacant are filled in with zeros.
The sign of the AC is unchanged.

Rotate MQ Left. 2-1 RQL Y —0773. The C(MQ)s,1.35 are
rotated left Y modulo 256 places. The bits rotate from position 1 to
position S of the MQ, and from position S to position 35 of the MQ.

Floating Point Arithmetic Operations.

Floating ADD. 7-11 FAD Y +0300. The C(Y) are alge-
braically added to the C(AC), and this sum replaces the C(AC) and the
C(MQ). The C(Y) are unchanged. The fractional part of the product is
normalized to between 14 and 1 in absolute value.

During execution of a floating point addition, the AC or MQ overflow
indicator and the corresponding light on the operator’s consele are turned
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on by too large a characteristic or too small a characteristic in the AC or
the MQ, respectively.

Unnormalized Floating Add. 6-11 UFA Y —0300. Same
as floating add except the result is not normalized.

Floating Subtract. 7-11 FSB Y +40302. Same as floating
add except that the negative of the C(Y) is added.

Unnormalized Floating Subtract. 6-11 UFS Y —0302.
Same as floating subtract except that the result is unnormalized.

Floating Multiply. 17 FMP Y +40260. The C(Y) are multi-
plied by the C(MQ). The most significant part of the product appears in
the AC and the least significant part appears in the MQ.

The product of two floating point numbers is in normalized form if
the multiplier and multiplicand are in this form. If either the multiplier or
multiplicand is not in normalized form, the product is in normalized form
only if a shift of one place is sufficient to normalize it.

During execution of floating point multiplication, too large or too small
a characteristic in the AC or the MQ, respectively, turns on the AC or the
MQ overflow indicator and the corresponding light on the operator’s
console. .

Unnormalized Floating Multiply. 17 UFM Y —0260.
This operation is the same as floating multlply except that no shifting is
included.

Floating Divide or Halt. 18-IV FDH Y +0240. The C(AC)
are divided by the C(Y), the quotient appears in the MQ and the remainder
appears in the AC. The MQ is cleared before actual division takes place.

If positions Q or P of the AC are not zero, division may take place and
either or both of the AC and/or MQ overflow indicators may be turned on.
When division by zero is attempted, the divide-check indicator and light
are turned on and the calculator stops, and the dividend is left unchanged
in the AC. The quotient is in normalized form if both divisor and dividend
are in that form. If divisor or dividend or both are not in normalized form,
the quotient is in normalized form if

2|C(Y)o.35| > |C(AC)e.35| = *[C(Y)g 35|

During execution of a floating point division, t_he AC or MQ overflow
indicator and the corresponding light on the operator’s console are turned
on for too large or too small a characteristic in the AC or MQ ,respectively.

Floating Divide or Proceed. 18-V FDP Y +0241. This
operation is the same as floating divide or halt except for division by zero.

When division by zero is attempted, the divide-check indicator and light
are turned on, division does not take place and the calculator proceeds to
the next instruction. If the magnitude of the fraction in the AC is greater
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than (or equal to) twice the magnitude of the fraction in the SR, the divide-
check indicator and light are turned on, division does not take place and
the calculator proceeds to the next instruction. The dividend in the AC is
unchanged.

Control Operations.

No Operation. 2 NOP +0761. The calculator takes the next
instruction in sequence.

Halt and Proceed. 2 HPR +0420. This instruction causes the
calculator to stop. If the start key on the operator’s console is depressed,
the calculator proceeds to the next instruction in sequence.

Enter Trapping Mode. 2 ETM 4-0760---007. This instruc-
tion turns on the trapping indicator and also the trap light on the operator’s
console. The calculator operates in the trapping mode until a leave trap-
ping mode operation is executed or until either the clear or reset key is
pressed on the console.

Leave Trapping Mode. 2 LTM —0760---007. This instruc-
tion turns off the trapping indicator and the trap light on the operator’s
console. The calculator will not operate in the trapping mode until another
enter trapping mode operation is executed.

Note. When the calculator is operating in the trapping mode, the
location of every transfer instruction (except trap transfer instructions)
replaces the address part of location 0000, whether or not the conditions for
transfer of control are met. If the conditions are met, the calculator takes
the next instruction from location 0001 and proceeds from that point. The
location of each transfer instruction replaces the address part of location
0000.

Halt and Transfer. 2 HTR Y -+0000. This instruction stops
the calculator. When the start key on the operator’s console is depressed,
the calculator starts again, taking the next instruction from location Y
and proceeding from there.

Transfer. 2 TRA Y +40020. This instruction causes the cal-
culator to take its next instruction from location Y, and to proceed from
there.

Transfer on Zero. 2 TZE Y +40100. If the C(AC)qr,1.35
are zero, the calculator takes its next instruction from location Y and
proceeds from there. If they are not zero, the calculator proceeds to the
next instruction in sequence.

Transfer on No Zero. 2 TNZ Y —0100. If the C(AC)q»,1-35
are not zero, the calculator takes its next instruction from location Y and
proceeds from there. If they are zero, the calculator proceeds to the next
instruction in sequence.
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Transfer on Plus. 2 TPL Y +40120. If the sign bit of the AC
is positive, the calculator takes the next instruction from location Y and
proceeds from there. If the sign bit of the AC is negative, the calculator
proceeds to the next instruction in sequence.

Transfer on Minus. 2 TMI Y —0120. If the sign bit of the
AC is negative, the calculator takes the next instruection from location Y
and proceeds from there. If the sign bit of the AC is positive, the calculator
proceeds to the next instruction in sequence.

Transfer on Overflow. 2 TOV Y +40140. If the AC overflow
indicator and light are on as the result of a previous operation, the indicator
and light are turned off and the calculator takes the next instruction from
location Y and proceeds from there. If the indicator and light are off,
the calculator proceeds to the next instruction in sequence.

Transfer on No Overflow. 2 TNO Y —0140. If the AC over-
flow indicator and light are off, the calculator takes the next instruction
from location Y and proceeds from there. If the indicator and light are on,
the calculator proceeds to the next instruction in sequence after turning
off the indicator and light.

Transferon MQ Plus. 2 TQP Y +0162. If the sign bit of the
MQ is positive, the calculator takes the next instruction from location Y
and proceeds from there. If the sign bit of the MQ is negative, the cal-
culator proceeds to the next instruction in sequence. :

Transfer on MQ Overflow. 2 TQO Y -+0161. If the MQ
overflow indicator and light have been turned on by an overflow or under-
flow in the MQ characteristic during a previous floating point operation,
the indicator and light are turned off, the calculator takes the next instruc-
tion from location Y and proceeds from there. If the indicator and light
are not on, the calculator proceeds to the next instruction in sequence.

Transfer on Low MQ. 2 TLQ Y +0040. If the C(MQ) are
algebraically less than the C(AC), the calculator takes the next instruction
from location Y and proceeds from there. If the C(MQ) are algebraically
greater than or equal to the C(AC), the calculator proceeds to the next
instruction in sequence.

Transfer and Set Index. 2 TSX Y +40074. Not indexable.
This instruction places the 2’s complement of the location of this instruction
in the specified index register. The calculator takes the next instruction
from location Y and proceeds from there.

The 2’s complement is used in this instruction because 1ndex1ng is a
subtractive process on the IBM 704 and subtracting the 2’s complement of
a number is equivalent to adding the number.

Transfer with Index Incremented. 2 TXI Y +1000. Not
indexable. Contains a decrement part. This instruction adds the decre-
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ment to the number in the specified index register and replaces the num-
ber in the index register with this sum. The calculator takes the next
instruction from location Y and proceeds from there.

Transfer on Index High. 2 TXH Y +43000. Not indexable.
Contains a decrement part. If the number in the specified index register is
greater than the decrement, the calculator takes the next instruction from
location Y and proceeds from there.

If the number in the specified index register is less than or equal to the
decrement, the calculator proceeds to the next instruction in sequence.

Transfer on Index Low or Equal. 2 TXL Y —3000. Not
indexable. Contains a decrement part. If the number in the specified
index register is less than or equal to the decrement, the calculator takes
the next instruction from location Y and proceeds from there.

If the number in the specified index register is greater than the decrement,
the calculator proceeds to the next instruction in sequence.

Transfer on Index. 2 TIX Y +42000. Not indexable. Con-
tains a decrement part. If the number in the specified index register is
greater than the decrement, the number in the index register is reduced by
the amount of the decrement, and the calculator takes the next instruction
from location Y and proceeds from there.

If the number in the specified index register is equal to or less than the
decrement, the number in the index register is unchanged, and the calcu-
lator proceeds to the next instruction in sequence.

Transfer on No Index. 2 TNX Y —2000. Not indexable.
Contains a decrement part. If the number in the specified index register is
equal to or less than the decrement, the number in the index register is
unchanged, the calculator takes the next instruction from location Y and
proceeds from there,

If the number in the specified index register is greater than the decre-
ment, the number in the index register is reduced by the amount of
the decrement and the calculator proceeds to the next instruction in
sequence.

Trap Transfer. 2 TTR Y +0021. This instruction causes the
calculator to take its next instruction from location Y and to proceed from
there whether in the trapping mode or not. 'This makes it possible to have an
ordinary transfer even when in the trapping mode.

P Bit Test. 2 PBT —0760---001. If the C(AC)p is a one,
the calculator skips the next instruction and proceeds from there. If
position P contains a zero, the calculator takes the next instruction in
sequence.

Low Order Bit Test. 2 LBT 40760 --001. If the C(AC)ss
is a one, the calculator skips the next instruction and proceeds from there.
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If position 35 contains a zero, the calculator takes the next instruction in
sequence.

Divide Check Test. 2 DCT 40760 --012. If the divide-check
indicator and light are on, the indicator and light are turned off, and the
calculator takes the next instruction in sequence. If the indicator and light
are off, the calculator skips the next instruction and proceeds from there.

Redundancy Tape Test. 2 RTT —0760---012. If the tape-
check indicator and light are on, the indicator and light are turned off and
the calculator takes the next instruction in sequence. If the indicator and
light are off, the calculator skips the next instruction and proceeds from
there.

Compare Accumulator with Storage. 3 CAS Y --0340.
If the C(Y) are algebraically less than the C(AC), the calculator takes the
next instruction in sequence. If the C(Y) are algebraically equal to the
C(AC), the calculator skips the next instruction and proceeds from there.
If the C(Y) are algebraically greater than the C(AC), the calculator skips
the next two instructions and proceeds from there. Two numbers are
algebraically equal when the magnitude of the numbers and the sign are
both equal. A plus zero is algebraically larger than a minus zero.

Indexing Operations.

Load Index from Address. 2 LXA Y +40534. Notindexable.
The address part of the C(Y) replaces the number in the specified index
register. The C(Y) are unchanged.

Load Index from DPecrement. 2 LXD Y —0534. Not in-
dexable. The decrement part of the C(Y) replaces the number in the
specified index register. The C(Y) are unchanged.

Store Index in Decrement. 2 SXD Y —0634. Not index-
able. The C(Y)s.17 are cleared and the number in the specified index
register replaces the decrement part of the C(Y). The C(Y)s.1,2,18-35 are
unchanged. The contents of the index register are unchanged if one index
register is specified. If a multiple tag is specified, the logical or of the
contents of these index registers will replace the C(Y)s.17 and will also
replace the contents of the specified index registers.

Place Address in Index. 2 PAX +0734. Not indexable. The
address part of the C(AC) replaces the number in the specified index
register. The C(AC) are unchanged.

Place Decrement in Index. 2 PDX —0734. Not indexable.
The decrement part of the C(AC) replaces the number in the specified
index register. The C(AC) are unchanged.

Place Index in Dccrement. 2 PXD —0754. Not indexable.
The AC is cleared and the number in the specified index register is placed
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in the decrement part of the AC. The contents of the index register are
unchanged if one index register is specified. If a multiple tag is specified,
the logical or of the contents of these index registers will replace the C(AC)s.17
and will also replace the contents of the specified index registers.

Input-Output Operations. The identifying numbers for the various
input-output components appear in the address part of an instruction
whenever the programmer wants to operate one of these units. Whether
the address part of an instruction refers to a storage location or to one
of the components depends on the operation part of the instruction. Som=
operations make no sense if the address is interpreted as a location in
storage; other operations make no sense if the address is interpreted as a
component, identification. Thus, an address is automatically interpreted
by the calculator in the light of what it is asked to do by the operation
part of the instruction.

The addresses of the input-output units are given below.

Component Octal Decimal
Cathode ray tube 030 024
Tapes

Binary coded decimal 201-212 129-138

Binary 221-232 145-154
Drum 301-310 193-200
Card reader 321 209
Card punch 341 225
Printer 361 241

Read Select. 2-111 RDS Y +0762. This instruction causes
the caleulator to prepare to read one record of information from the
component specified by Y. If Y specifies a tape unit, the MQ is cleared by
this instruction.

Write Select. 2-111 WRS Y 4-0766. This instruction causes
the calculator to prepare to write one record of information on the com-
ponent specified by Y. WRS 3335 is used to delay the execution of any
instruction until the MQ is available for computing after reading informa-
tion from a tape.

Backspace Tape. 2-111 BST Y +0764. This instruction
causes the tape designated by Y to space one record in a backward di-
rection. If the tape designated by Y is positioned at the load point, the
BST Y instruction is interpreted as no operation.

Write End of File. 2-111 WEF Y -0770. This instruction
causes the tape unit designated by Y to leave an end-of-file space, an
end-of-file mark, and a redundancy character on its tape.

Rewind. 40ms-111 REW Y +0772. This instruction causes
the tape unit designated by Y to rewind its tape to the load point.
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End of Tape Test. 2 ETT —760---011. This instruction
must be given while the tape unit is selected (i.e., after a WRS or WEF
instruction and before the tape disconnects; no more than 744 microseconds
after the last CPY if WRS instruction; and any time up to 40 milliseconds,
if WEF). TFailure to program this instruction may cause the tape to be
pulled from its reel. If the tape indicator and the tape indicator light are
off, the calculator skips the instruction immediately following the ETT and
proceeds from that point. If the tape indicator and the tape indicator
light are on, they will be turned off and the calculator will take the next
instruction in sequence (no skip).

If tape instructions are given to a tape while the tape indicator is on,
they will operate normally.

Locate Drum Address. 2 LDA Y +40460. This instruction
follows a read select or write select instruction referring to a drum unit, and
the address part of the C(Y) specifies the first location of the record to be
read from or written on the drum. Not giving this instruction is equivalent
to giving the instruction with the address part of the C(Y) equal to zero.

Copy and Skip. —111 CPY Y +40700. This instruction is
used after an RDS, WRS, or another CPY instruction to transfer a word
of information between location Y in storage and an input-output com-
ponent specified by the address part of the preceding RDS or WRS in-
struction. When this instruction is executed, the 36-bit word is formed in
the MQ and then is transmitted to storage or to the component. If the
CPY instructions are not given within specific time ranges (found in the
descriptions of these components), the calculator stops, and a read-write
check light on the operator’s console is turned on.

If an additional CPY instruction is given after the last word of a unit
record has been copied from a card or a record of tape, the CPY is not
executed, and the calculator skips the two instructions immediately
following the CPY and proceeds from there. If an additional RDS in-
struction is given for which there is no corresponding record, the caleulator
sets up an end-of-file condition. The first CPY instruction given after this
RDS is not executed; instead, the calculator skips the instruction im-
mediately following the CPY and proceeds from there.

Plus Sense. 2 PSE Y +0760. This instruction provides a
means of testing the status of sense switches (and of turning on or off the
sense lights on the operator’s console), thus providing the programmer
with flexible means of altering the sequence of instructions being executed.
This instruction also permits the transmission of an impulse to or from the
exit or entry hubs on the printer or card punch.

The address part of this instruction determines whether a light, switch,
printer, or card punch is being sensed, and it further determines which light,
switch, or hub is being sensed. '
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Minus Sense. 2 MSE Y —0760. This instruction provides a
means of testing the status of sense lights on the operator’s console. The
addresses of the four sense lights are 141-144. If the corresponding sense
light is on, the light is turned off, the calculator skips the next instruction
and proceeds from there. If the light is off, the calculator takes the next
instruction in sequence.

Univace Scientific (1103A) Instruction Logic

The Univac Scientific computer is a (35,0, 0) binary machine, with
option of (27, 8, 0). The arithmetic unit contains two 36-bit X (exchange)
and Q (quotient) registers and one 72-bit A register (accumulator).
Negative numbers are represented in one’s complement notation.

Input-output is via high-speed paper tape reader and punch, direct card
reader and punch, and Uniservo magnetic tape units, which may be
connected to peripheral punched card readers and punches and a high-
speed printer. In addition, information may be recorded on magnetic
tape directly from keyboards by the use of Unitypers. Communication
with external equipment is via an 8-bit (IOA) register and a 36-bit (I0OB)
register. Information sent to these registers controls magnetic tapes as
well as other input-output equipment. The program address counter
(PAK) contains the present instruction address. Storage is in up to 12,288
locations of magnetic core storage, along with a directly addressable drum
of 16,384 locations. Instructions are of the two-address form, with six
bits for the operation code and two fifteen-bit addresses (u and v).

The following information is taken from a Univac Scientific Manual
(Ref. 103). - ‘

Definitions and Conventions.

Instruction Word

ocC u v
6 bits 15 bits 15 bits
las- - - log - - - Tog--- 1o

oc Operation code.
u First execution address.
v Second execution address.

For some of the instructions, the form jn or jk replaces the u address; for
others the form k replaces the v address.

j  One-digit octal number modifying the instruction.
n Four-digit octal number designating number of times instruction
is to be performed.
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k Seven-digit binary number designating the number of places the
word is to be shifted to the left.

Address Allocations (Octal)

00000-07777 4096,
MC 100000-17777 8192, or
00000-27777 12,288 36-bit words.
Q 31000-31777 1 36-bit word.
A 32000-37777 1 72-bit word.
MD  40000-77777 16,384 36-bit words.

Fixed Addresses
F; 00000 or 40001
F, 00001
Fs 00002
Fs 00003

Arithmetic Section Registers
A 72-bit accumulator with shifting properties.
Ar Right-hand 36 bits of A.
A;, Left-hand 36 bits of A.
Q  36-bit register with shifting properties.
X  36-bit exchange register.

Note. Parentheses denote contents of. For example, (A) means con-
tents of A (72-bit word in A); (Q) means contents of Q (36-bit word in Q).

Input-Output Registers
IOA  8-bit in-out register.
IOB  36-bit in-out register.
TWR 6-bit typewriter register.
HPR  7-bit high-speed punch register.

Word Extenston

D(u) 72-bit word whose right-hand 36 bits are the word at address u,
and whose left-hand 36 bits are the same as the leftmost bit of the word at u.

S(u) 72-bit word whose right-hand 36 bits are the word at address u,
and whose left-hand 36 bits are zero.

D(Q) 72-bit word—right-hand 36 bits are in register Q, left-hand
36 bits are same as leftmost bit in register Q.

S(Q) same as D(Q) except left 36 bits are zero.

D(ARr), S(Ar) are similarly defined.

L(Q)(u) 72-bit word—left-hand 36 bits are zero, right-hand 36 bits
are the bit-by-bit product of corresponding bits of (Q) and word at address
u.
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L(Q')(v) 72-bit word—left-hand 36 bits are zero, right-hand 36 bits
are the bit-by-bit product of corresponding bits of the complement of (Q)
and ‘word at address v.

Transmit Instructions.

11* Transmit Positive TPuv}: Replace (v) with (u).

13 Transmit Negative TNuv: Replace (v) with the comple-
ment of (u).

12 Transmit Magnitude TMuv: Replace (v) with the absolute
magnitude of (u).

15 Transmit U-address TUuv: Replace the 15 bits of (v) desig-
nated by vi; through vag, with the corresponding bits of (u), leaving the
remaining 21 bits of (v) undisturbed.

16 Transmit V-address TVuv: Replace the right-hand 15 bits
of (v) designated by vo through vis, with the corresponding bits of (u),
leaving the remaining 21 bits of (v) undisturbed.

35 Add and Transmit ATuv: Add D(u) to (A). Then replace
(v) with (Ar).

36 Subtract and Transmit STuv: Subtract D(u) from (A).
Then replace (v) with (Agr). i

22 Left Transmit LTjkv: Left circular shift (A) by k places.
If j = O replace (v) with (AL); if j = 1 replace (v) with (Ag).

Q-Controlled Instructions.

51 Q-controlled Transmit QTuv: Form in A the number
L(Q)(u). Then replace (v) by (Ar).

52 Q-controlled Add QAuv: Add to (A) the number L(Q)(u).
Then replace (v) by (Ar).

53 Q-controlled Substitute QSuv: Form in A the quantity
L(Q)(u) plus L(Q')(v). Then replace (v) with (Az). The effect is to
replace selected bits of (v) with the corresponding bits of (u) in those
places corresponding to 1’sin Q. The final (v) is the same as the final (Ar).

Replace Instructions.

21 Replace Add RAuv: Form in A the sum of D(u) and D(v).
Then replace (u) with (Ag).

23 Replace Subtract RSuv: Form in A the difference D(u)
minus D(v). Then replace (u) with (Ag).

27 Controlled Complement CCuv: Replace (Ar) with (u)
leaving (AL) undisturbed. Then complement those bits of (Agr) that
correspond to ones in (v). Then replace (u) with (Ag).

* Octal notation.
t Mnemonic notation,
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54 Left Shift in A LAuk: Replace (A) with D(u). Then left
circular shift (A) by k places. Then replace (u) with (Ag). If u = A,
the first step is omitted, so that the initial content of A is shifted.

55 Left Shift in Q LQuk: Replace (Q) with (u). Then left cir-
cular shift (Q) by k places. Then replace (u) with (Q).

Split Instructions.

31 Split Positive Entry SPuk: Form S(u)in A. Then left circular
shift (A) by k places.

33 Split Negative Entry SNuk: Form in A the complement of
S(u). Then left circular shift (A) by k places.

32 Split Add SAuk: Add S(u) to (A). Then left circular shift
(A) by k places. ,

34 Split Subtract SSuk: Subtract S(u) from (A). Then left
circular shift (A) by k places.

Two-Way Conditional Jump Instructions.

46 Sign Jump SJuv: If A;; =1, take (u) as NI. If A7 = 0,
take (v) as NI. (NI means next instruction.)

47 Zero Jump ZJuv: If (A) is not zero, take (u) as NI. If (A)
is zero, take (v) as NI.

44 Q-Jump QJuv: If Q35 = 1, take (u) as NI. If Qg5 = 0, take
(v) as NI. Then, in either case, left circular shift (Q) by one place.

One-Way Conditional Jump Instructions.

41 Index Jump IJuv: Form in A the difference D(u) minus 1.
Then if A7y = 1, continue the present sequence of instructions; if A7y = 0,
replace (u) with (Agr) and take (v) as NI.

42 Threshold Jump TJuv: If D(u) is greater than (A), take (v)
as NI; if not, continue the present sequence. In either case, leave (A) in
its initial state.

43 Equality Jump EJuav: If D(u) equals (A), take (v) as NI, if
not, continue the present sequence. In either case leave (A) in its initial
state.

One-Way Unconditional Jump Instructions.

45 Manually Selective Jump MJjv: If the number j is zero,
take (v) as NI. If jis 1, 2, or 3, and the correspondingly numbered MJ
selecting switch is set to “jump,” take (v) as NI, if this switch is not set to
“jump,” continue the present sequence.

37 Return Jump RJuv: Let y represent the address from which
CI was obtained. Replace the right-hand 15 bits of (u) with the quantity
y plus 1. Then take (v) as NI
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14 Interpret IP: Let y represent the address from which CI was
obtained. Replace the right-hand 15 bits of (F';) with the quantity y + 1.
Then take (Fs) as NI

Stop Instructions.

56 Manually Selective Stop MSjv: If j =0, stop computer
operation and provide suitable indication. If j = 1, 2, or 3 and the corre-
spondingly numbered MS selecting switch is set to “stop,” stop computer
operation and provide suitable indication. Whether or not a stop occurs,
(v) is NI.

57 Program Stop PS—Stop computer operations and provide
suitable indication. .

External Equipment Instructions.

17 External Function EF-v: Select a unit of external equipment
and perform the function designated by (v).

76 External Read ERjv: If j = 0, replace the right-hand 8 bits
of (v) with (I0A);if j = 1, replace (v) with (IOB).

77 External Write EWjv: If j = 0, replace (IOA) with the right-
hand 8 bits of (v);if j = 1, replace (IOB) with (v). Cause the previously
selected unit to respond to the information in IOA or IOB.

61 PRint PR-v: Replace (TWR) with the right-hand 6 bits of (v).
Cause the typewriter to print the character corresponding to the 6-bit code.

63 PUnch PUjv: Replace (HPR) with the right-hand 6 bits of (v).
Cause the punch to respond to (HPR). If j = 0, omit seventh level hole;
if j = 1, include seventh level hole.

Arithmetic Instructions.

71 Multiply MPuv: Form in A the 72-bit product of (u) and (v),
leaving in Q the multiplier (u).

72 Multiply Add MAuv: Add to (A) the 72-bit product of (u)
and (v), leaving in Q the multiplier (u).

73 Divide DVuv: Divide the 72-bit number (A) by (u), putting
the quotient in Q, and leaving in A a non-negative remainder R. Then
replace (v) by (Q). The quotient and remainder are defined by: (A); =
(W) - (Q) + R, where 0 <R < [(u)]. Here (A); denotes the initial
contents of A.

74 Scale Factor SFuv: Replace (A) with D(u). Then left cir-
cular shift (A) by 36 places. Then continue to shift (A) until Ags 5 Ags.
Then replace the right-hand 15 bits of (v) with the number of left circular
shifts, k, which would be necessary to return (A) to its original position.
If (A) is all ones or zeros, k = 37. If uis A, (A) is left unchanged in the
first step, instead of being replaced by D (Ag).
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Sequenced Instructions.

75 RePeat RPjnw: This instruction calls for the next instruction,
which will be called NIuv, to be executed n times, its u and v addresses
being modified or not according to the value of j. Afterwards the program
is continued by the execution of the instruction stored at a fixed address F;.
The exact steps carried out are:

(a) Replace the right-hand 15 bits of (F;) with the address w.

(b) Execute NTuv, the next instruction in the program, n times.

(¢) If j =0, do not change u and v.

If j = 1, add one to v after each execution.

If j = 2, add one to u after each execution.

If j = 3, add one to u and v after each execution.
The modification of the u address and v address is done in program control
registers. The original form of the instruction in storage is unaltered.

(d) On completing n executions, take (F), as the next in-
struction. F; normally contains a manually selective jump whereby the
computer is sent to w for the next instruction after the repeat.

(e) If the repeated instruction is a jump instruction, the
occurrence of a jump terminates the repetition. If the instruction is a
Threshold Jump or an Equality Jump, and the jump to address v occurs,
(Q) is replaced by the quantity j, (n — r), where r is the number of execu-
tions that have taken place.

Floating Point Instructions.

64 Add FAuv: Form in Q the normalized rounded packed floating
point sum (u) + (v). ,

65 Subtract FSuv: Form in Q the normalized rounded packed
floating point difference (u) — (v).

66 Multiply FMuy: Form in Q the normalized rounded packed
floating point product (u) - (v).

67 Divide FDuv: Form in @Q the normalized rounded packed
floating point quotient (u) = (v).

01 Polynomial Multiply FPuv: TFloating add (v) to the floating
product (Q);- (u), leaving the packed normalized rounded result in Q.

02 Inner Product FIuv: Floating add to (Q); the floating product
(u) - (v) and store the rounded normalized packed result in Q. This
instruction uses MC location Fy4 = 00003 for temporary storage, where
(Fy) ¢t = (Q);- The subscripts i and f represent ““initial” and “final.”

03 Unpack UPuv: Unpack (u), replacing (u) with (u)m and re-
placing (v)¢ with (u)g or its complement if (u) is negative. The charac-
teristic portion of (u); contains sign bits. The sign portion and mantissa



PROGRAMMING AND CODING 2-83

portion of (v); are set to zero. Nole. The subseripts M and C denote the
mantissa and characteristic portions.

04 Normalize Pack NPuv: Replace (u) with the normalized
rounded packed floating point number obtained from the possibly un-
normalized mantissa in (u); and the biased characteristic in (v),. Note.
It is assumed that (u); has the binary point between ug7 and usgg; that is,
that (u); is scaled by 227,

05 Normalize Exit NEj-: If j = 1 normalize without rounding
until a master clear or until the instruction is again executed with j = 0.

Univac II Instruction Logic

The Univac I and II are successive models of one of the earliest com-
puters produced successively by the Eckert-Mauchly Corporation and
later the Remington-Rand Univae Division of the Sperry-Rand Corpora-
tion. The latter machine is compatible with programs written for the
former. Univae II is a (12, 0, 0) decimal machine.

The basic storage of the Univac II is 2000 words on magnetic cores of
12 alphanumeric characters each. Larger memories up to 10,000 words
are available. The secondary storage is on magnetic tape units called
Uniservos. All input-output, except through a console keyboard, is via
the magnetic tape units, which may be loaded directly from typewriter
(Unityper) or from punched cards (card-to-tape converter) and unloaded
by typewriter, high-speed printer, or tape-to-card converter. The Univac
II has a “variable field length’’ property which is designed to be of use in
data processing. All arithmetic is in fixed point ‘“‘digital’”’ numbers (abso-
lute value less than one).

Registers. The following are the registers in the Univac II computer:

rA  Accumulator

rX X register

rL  Quotient register

rF Extraction register

rW 9-word transfer register
rZ 60-word transfer register
rl  60-word input register

NS o 0

The following Univac II instrumentation code is taken from a Univac II
manual (Ref. 34).

Conventions. In describing the actions caused by Univac II system
instructions, the phrase “transfer the contents of to " is taken
to mean: the information in the component following the “of”’ is duplicated
in the component following the “to.” The component {0 which information
is transferred is erased of its original contents just before the new informa-
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- tion is entered into it. Unless otherwise specified, the contents of the com-
ponent from which tnformation is transferred remains unaltered.
Symbology. A symbolic notation is used to designate the operations
caused by the execution of an instruction. This symbolic notation, as
described below, is shown for each instruction. In addition a verbal
description is given.

Symbol Meaning
— is transferred to
m a main storage location whose address is m
( ) the contents of the element within the parentheses. Thus,

(m) = the contents of a main storage location where address

ism

r register, the letter of the register follows the r. Thus, rA =
register A

X those characters of any element, X, which correspond to
character positions in rF containing extractors

X those characters of any element, X, which correspond to

character positions in rF containing nonextractors.

An instruction is symbolized by three characters—two characters specify
the operation code, the third character, always m, stands for the four-
digit address portion of the instruction.

One-Word Transfer Instructions.

BOm (m)—rA,rX. Transfer the contents of the storage location
specified by m to both register A and register X.

FOm (m)—rF. Transfer the contents of the storage location
specified by m to register F.

LOm (m) —rL,rX. Transfer the contents of the storage location
specified by m to both register L and register X.

HOm (rA) » m. Transfer the contents of register A to the storage
location specified by m.

COm (rA) — mj; 0 —rA. Transfer the contents of register A
to the storage location specified by m. Clear register A to a word of
decimal zeros.

GOm (rF) — m. Transfer the contents of register F to the storage
location specified by m.

IOm (rL) — m. Transfer the contents of register L to the storage
location specified by m.

JOm (xX) > m. Transfer the contents of register X to the
storage location specified by m.
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KOm (rA) — rL; 0 — rA. Transfer the contents of register A
to register L. Clear register A to a word of decimal zeros.

Arithmetic Instructions.

AOm (m)—rX; (xX) + (rA) - rA. Transfer the contents of
the storage location specified by m to register X. Then send the contents
of register X and register A to the Adder and add them. Return the sum
to register A.

AHm (m)—>rX; (X) 4+ (rA) —rA, m. Transfer the contents
of the storage location specified by m to register X. Then send the con-
tents of register X and register A to the Adder and add them. Return the
sum to both register A and the storage location specified by m.

XOm (&X) + (rA) > rA. Send the contents of register X and
register A to the Adder and add them. Return the sum to register A.

SOm — (m)—rX; (rX) + (rA) > rA. Transfer the contents
of the storage location specified by m to register X. In transit reverse the
sign of the word being transferred (from 0 to —, or from — to 0). Then
send the contents of register X and register A to the Adder and add them.
Return the sum to register A. (Note: plus signs are represented by 0.)

SHm — (m)—rX; (rX) + (rA) —rA, m. Transfer the con-
tents of the storage location specified by m to register X. In transit
reverse the sign of the word being transferred (from 0 to —, or from — to
0). Then send the contents of register X and register A to the Adder and
add them. Return the sum to both register A and the storage location
specified by m.

MOm (m)—rX; (L) X rX) - rA (rounded). Transfer the
contents of the storage location specified by m to register X. Then multiply
the contents of register L by the contents of register X. Return an 11-
digit product, with the least significant digit rounded, to register A. The
previous contents of rX and rF are destroyed.

NOm — (m)—rX; (rL) X (rX) —>rA (rounded). Transfer the
contents of the storage location specified by m to register X. In transit
reverse the sign of the word being transferred. Then multiply the contents
of register L by the contents of register X. Return an 11-digit product,
with the least significant digit rounded, to register A. The previous con-
tents of register X and register F are destroyed.

POm (m)—rX; (L) X (¢X) —»rA, rX (22 digits). Transfer
the contents of the storage location specified by m to register X. Then
multiply the contents of register L by the contents of register X. Return
the sign and first 11 digits of the product to register A. Return the sign
and second 11 digits of the product to register X. The previous contents
of register F are destroyed. ‘
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DOm (m) — rA; (rA) + (rL) — rA (rounded), — rX (un-
rounded). Transfer the contents of the storage location specified by m
to register A. Then divide the contents of register A by the contents of
register L. Return a rounded quotient to register A, and an unrounded
quotient to register X.

The Second-Digit Modifier F. The second-digit modifier F allows
the isolation and independent treatment of groups of characters, which are
stored as a part of a word. Two memory-to-register one-word transfer
instructions and six arithmetic instructions may be written with the second
instruction digit, F (instead of a zero as they have been shown). The
second instruction digit F modifies the instruction and causes it to be
operative on only a portion of the word. Those characters of the word
upon which it is desired to have the instruction operate are indicated to the
computer by an “‘extract pattern.”

The Extract Pattern. Each of the 63 Univac II system characters is
either an extractor or a nonextractor. Those characters whose seven-
place code representations have a binary zero in their rightmost bit posi-
tions are extractors; e.g., decimal 1. Those characters whose seven-place
Univac II system code representations have a binary one in their right-
most bit positions are nonextractors; e.g., decimal 0.

An extract pattern is a word so arranged that characters which are
extractors occupy the same character positions within the extract pattern
word as are occupied within their word by those characters that it is
desired to enter an operation. All other character positions in the extract
pattern are nonextractors. The extract pattern governing an operation
must be in register F at the time of execution of the operation. Extract
patterns are stored in the main storage and brought to register F (by an
FOm instruction) as needed.

The second instruction digit F can modify the BOm and LLOm one-word
transfer instructions. As modified by the second instruction digit ¥, the
BFm and LFm instructions direct the eentral computer to:

1. Transfer to corresponding character positions in the appropriate
registers (the same register affected by the unmodified instruction), only
those characters of the storage location specified by m whose positions in
the word in m correspond to positions in register F containing extractors.

2. Place zeros in those positions in the receiving registers which corre-
spond to nonextractors in register F. Thus,

BFm (ﬁ)ﬂﬁ,ﬁ;O—)rAA,ﬁ_.
LFm  (m)— 1L, rX; 0 > rL, rX.

The second instruction digit F can modify the AOm, SOm, MOm,
NOm, POm, and DOm arithmetic instructions. As modified by the I' the
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AFm, SFm, MFm, NFm, PFm, and DFm instructions direct the central
computer to:

1. Transfer to corresponding positions in the appropriate registers (the
same registers affected by the unmodified instruction) only those characters
in the storage location specified by m correspond to positions in register I¥
containing extractors.

2. Place zeros in those positions in the receiving registers which corre-
spond to nonextractors in register F.

3. Then perform the proper arithmetic function returning the complete
results to the appropriate registers. Thus,

AFm (M) >rX; 0—rX; @X)+ (rA) —rA.
SFm — (M) —rX; 0—rX; @©X) + (rA) —rA.
MFm (@) —rX; 0—rX; (rL) X (rX)— rA (rounded).
NFm — (@) —>rX; 0—rX; (rL) X (rX)—rA (rounded).

PFm (@) —rX; 0—rX; (@L) X (X)—rA,
rX (22 digits).

DFm (M) —>rA; 0—rA; (rA) + (rL) —rA (rounded),
— rX (unrounded).

Composite Extract Instructions.

EOm (m), (rA) —rA. Form a composite word in register A by
transferring to register A those characters of the contents of the storage
location specified by m, whose positions in m correspond to character
positions in register F' containing extractors. Do not alter those characters
in register A corresponding to character positions in register F containing
nonextractors. ‘

EFm (rA), (m) — m, rA. Form a composite word in both m and
register A by transferring to register A those characters of m whose posi-
tions in m correspond to character positions in register F containing
nonextractors. Do not alter those characters in m corresponding to
character positions in register F' containing extractors. Return the com-
posite word, thus formed, to m.

Control Instructions.

UOm Jump to m. Take next instruction word from the storage
location specified by m of right-hand instruction of the instruction word
containing the UOm instruction, rather than the next sequential storage
location. Then continue sequential operations from m. <

QOm If (rA) = (rL), Jump to m. Send the contents of both
register A and register L to the comparator, and compare them. If they
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are found to be equal take the next instruction word from the storage
location specified by m of the right-hand instruction of the instruction
word containing the QOm rather than the next sequential storage location.
Then continue sequential operation from m. If the contents of register A
do not equal the contents of register L continue on with uninterrupted se-
quential operations.

TOm If (rA) > (rL), Jump to m. Send the contents of both reg-
ister A and register L to the comparator, and compare them. If the contents
of register A are found to be algebraically greater than the contents of
register L, take the next instruction word from the storage location specified
by m of the right-hand instruction of the word containing the TOm instruc-
tion rather than the next sequential storage location. Then continue
sequential operation from m. If the contents of register A are not greater
than the contents of register L continue on with uninterrupted sequential
operations.

OOm SKIP. Proceed to the next instruction.

90m  STOP. Stop processing.

ROm 000000 U0 (c + 1) > m. Place in the storage location
specified by m the following word: 000000 UO (¢ + 1), where ¢ = the
storage location of the instruction word of which ROm order is a part.

Shift Instructions.

.nm  Shift (rA) right, with sign, n places.* Shift all twelve
characters of the word in register A the number of places specified by n to
the right. (The n least significant digits of the word are destroyed by this
shift.) Place zeros in the n left-hand character position of register A.

snm  Shift (rA) left, with sign, n places.* Shift all twelve
characters of the word in register A the number of places specified by n to
the left. (The n left-hand characters of the word are destroyed by this
shift.) Place zeros in the n-least significant digit positions of register A.

-nm  Shift (rA) right, excluding sign, n places.* Shift the
eleven significant digits (excluding sign) the number of places specified by
n to the right. (The n least significant digits of the word will be destroyed
by this shift.) Place zeros in the n-most significant digit positions exclud-
ing sign of register A.

Onm Shift (rA) left, excluding sign, n places.* Shift the
eleven significant digits (excluding sign) the number of places specified
by n to the left. (The n-most significant digit of the word will be destroyed
by this shift.) Place zeros in the n-least significant digit positions of
register A.

*n = may be any digit from 1 to 9.
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Multiword Transfer Insiructions.

Viom (m, m+41,--,m+4+n—1)—rW. If n=0, skip. If
n equals 0, treat this instruction as a skip instruction. If n equals any other
digit, transfer n consecutive words beginning with the word in m from the
main storage to register W.

Wom (@W)->m, m+1,---m+n—1. If n =0, skip. If
n equals 0, treat this instruction as a skip instruction. If n equals any other
digit, transfer n consecutive words from register W to n consecutive storage
locations in the main storage beginning with the storage location specified
by m.

Yom (mym+1,--- . m+10n—-1)—rZ. If n=0, 7, 8, 9,
skip. Ifn = 0,7, 8, 9 treat this instruction as a skip instruction. Ifn = 1,
2, 3, 4, 5, or 6, transfer 10n consecutive words beginning with the word in
storage location m from the main storage to register Z.

Zom (Z)-»m, m+1,---.m+10n—-1. Ifn=0,7 8 9,
skip. If n = 0, 7, 8, or 9 treat this instruction as a skip instruction. If n
equals 1, 2, 3, 4, 5, or 6, transfer 10n consecutive words from register Z to
10n consecutive storage locations in the main storage beginning with the
storage location specified by m.

Input-Output Instructions.

Inm 60 words from tape to rl, forward. Read the next block
from tape mounted on Uniservo n, with the tape moving in the forward
direction. Place the block as it is being read from tape, into register I.

2nm 60 words from tape to rl, backward. Read the next block
from the tape mounted on Uniservo n, with the tape moving in the back-
ward direction. Place the block, as it is being read from tape, into register
I in the same word order as it would have been placed in register I had it
been read with a forward read.

30m (I)>m, m+1,---,m -+ 59. Transfer the contents of
register I to 60 consecutive storage locations beginning with storage
location m. ‘

40m (rI)>m, m+1,---,m -+ 59. Same as 30m instruction,
above.

3nm (rI) >m, m+1,--,m + 59; 60 words from tape—
rl, forward. Transfer the contents of register I to 60 consecutive storage
locations beginning with storage location m. Then read the next block
from the tape mounted on Uniservo n, with the tape moving in the forward
direction. Place the block, as it is being read from tape, into register 1.

4dnm (rfI) >m,m +1,:---,m -+ 59; 60 words from tape to rl,
backward. Transfer the contents of register I to 60 consecutive storage
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locations beginning with storage location m. Then read the next block
from the tape mounted on Uniservo n with the tape moving in the back-
ward direction. Place the block, as it is being read from tape, into register I
in the same word order as it would have been placed in register I had it
been read with a forward read.

10m Supervisory Control Keyboard — m. Stop processing until
a word is typed on the supervisory control keyboard. When a word has

-been typed, and the word release key has been depressed, place the typed
word into storage location m.

Snm (m, m+1,---,m+ 59) - Tape, 250 characters per
inch. Transfer the contents of the 60 consecutive storage locations
beginning with storage location m to register O. Then write the contents of
register O onto the tape mounted on Uniservo n at a recording density of
250 characters per inch. '

om (m,m + 1, -, m 4+ 59) — Tape, 50 characters per inch.
Transfer the contents of the 60 consecutive storage locations beginning
with storage location m to register O. Then write the contents of register O
onto the tape mounted on Uniservo n at a recording density of 50 charac-
ters per inch.

50m (m)— S.C.P. Write the contents of storage location m on
the supervisory control printer. This instruction can be modified by a set
of buttons on the supervisory control panel to cause the contents of:

Register A. '
Register L.
Register X,
Register F.
The Control Counter, or
The Control Register.
Successive storage locations beginning with a specified storage
location to be printed on the supervisory control printer.
6nm Rewind tape. Rewind the tape mounted on Uniservo n.
8nm Rewind tape with interlock. Rewind the tape mounted on
Uniservon. Set an interlock on Uniservo n which will cause the computer
to stop if any other order is directed to that Uniservo.

The input-output instructions which direct Uniservo operations are
symbolized with a second instruction digit of n. The n specifies the
particular Uniservo to which the instruction is directed and is usually
writtenas1,2,3,4,5,6,7,8 9— A B,C,D, E,or F. It may, however, be
written as a delta (A). If it is written as a A, the Uniservo to which the
order is directed is determined by a set of 16 buttons (one for each Uni-
servo) on the supervisory control console. Only one of these buttons may
be depressed at any one time. The Uniservo corresponding to the de-
pressed button becomes Uniservo A.

N Tk W
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Breakpoint Instructions.

;m Breakpoint stop. If the comma breakpoint switch on the
supervisory control panel is in the breakpoint position, stop. If the
comma breakpoint switch is not in the breakpoint position, skip.

Qnm If the button in the breakpoint section of the supervisory
control panel corresponding to n is not depressed, treat as a OOm instruc-
tion. If the button in the breakpoint section of the supervisory control
panel corresponding to n is depressed, perform the comparison between the
contents of register A and register L, light a neon on the supervisory control
panel indicating whether or not a jump would normally take place, and
stop. The operator can then force a jump or no jump to take place and
continue processing.

Tnm If the button in the breakpoint section of the supervisory
control panel corresponding to n is not depressed, treat as a TOm instruc-
tion. If the button is depressed, perform the comparison between the
contents of register A and register L, light a neon on the supervisory
control panel indicating whether or not a jump would normally take place,
and stop. The operator can then force a jump or no jump to take place
and continue processing,.

Summary Table. A summary of the instructions for Univac II is
given in Table 8.

TaBLE 8. SUMMARY oF UNivac IT INSTRUCTIONS

Execution
Instrue- Time,*
tion microseconds Description
AOm 200 (m) > rX; @¢X) + (rA)—>rA
AFm 200 () = rX; 0—rX; rX) + (rA) —rA
AHm 240 (m)—rX; rX) + (rA) > rA—m
BOm 120 (m)—>rA, rX
BFm 120 (m) — rA, rX; 0 rA, rX
COm 120 (rA)— m; 0—rA
DOm (3700) (m)—rA; (rA) + (rL)—rA (rounded)
rX (unrounded)
EOm 120 (m) + A)—rA
EFm 200 (rA) + (m) > rA—m
FOm 120 (m)—rF
GOm 120 @xF)—m
HOm 120 (rA)—m
I0Om 120 @GL)—m
JOm 120 @EX)—m
KOm 120 (rA)y—rL; 0—rA
LOm 120 (m)—rL; rX

% Times shown in parentheses are statistical averages. The exact times for execution
depends upon the data upon which these orders are operating.



Instruc-

tion
LFm
MOm
MFm

NOm
NFm

POm
PFm
Qnm

ROm
SOm
SHm
SFm

Tnm

UOm
Vnm
Wnm
XOm
Ynm
Znm
OO0Om
nm
ynm
-nm
Onm
90m
,Om
Inm
2nm
30m
40m
3nm

4nm
5nm

6nm
Tnm

8nm

TasLe 8. Summary or Univac II InstrucTiONS (Continued)

Execution
Time,®

microseconds

120
(1900)
(1900)

(1900)
(1900)

(1900)
(1900)
200

120
200
280
200
200

- 120
80 + 40n
80 4 40n
120
80 + 405n
80 + 405n
120
80 4 40n
80 4 40n
80 + 40n
80 + 40n
120
120
(3500)
(3500)
2675
2675
3500

(3500)
(3500)

299
(3500)

200

Description

(m)— rL; 0—rL

(m)—rX; (rL) X (rX)— rA (rounded)
(m) = rX; 0—rX; (rL) X (rX)—rA
(rounded)

— (m)—rX; (rL) X (rX)—rA (rounded)

— (@) — 1X; 0—1X; (rL) X (X)) —rA
(rounded)

(m)—rX; (L) X X) —rA, rX (22 digits
unrounded)

(M) = rX; 0—rX; (rL) X (rX)—rA, rX

(22 digits unrounded)

If (rA) = (rL), jump to m; stop if breakpoint
n is selected

Record 000000 UO [¢c 4+ 1] in m

— (m)—=rX; (¢X) + rA)—rA

— (m)—rX; X)) + tA)—>rA—m

— @) > rX; 0—rX; @X) + (rA) > rA

If (rA) > (rL), jump to m; stop if breakpoint
n is selected

Jump to m

(m),(m+1),--,(m~+n —-1)—>rW

W) mym-+1:--m+n—1

X)) + rA)—rA

(m), m+1),-++, (m + 10n — 1) > rZ
rZ)—»m,m-+1,---,m+ 10n — 1

SKIP

Shift (rA) right, with sign, n places

Shift (rA) left, with sign, n places

Shift (rA) right, without sign, n places
Shift (rA) left, without sign, n places

STOP

Stop if comma breakpoint is selected

60 words from tape n to rl, forward

60 words from tape n to rlI backward
GD-m m+1,:---,m+ 59

Same as 30m, above

) >m,m+1,:--, m -+ 59; 60 words from
tape n to rl, forward

@) >m, m+ 1, -, m 4 59; 60 words from
tape n to rl, backward

(m), (m+1),---, (m + 59)— tape n, 250
characters/inch

Rewind tape n

m, (m+1),--, (m <+ 59) — tape n, 50 char-
acters/inch

Rewind tape n, with interlock

@ Times shown in parentheses are statistical averages. The exact times for execution
depends upon the data which these orders are operating.
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IBM 650 Instruction Logic

The basic IBM 650 is a magnetic drum (10, 0, 0) decimal computer with
one-plus-one address instruction logic. It has a storage of 1000 or 2000
10-digit words (plus sign) with addresses 0000-0999 or 0000-1999. More
extended versions of the equipment have built-in floating point arithmetic
and index accumulators, but the basic machine will be described here.
There are three arithmetic registers in addition to the standard program
register and program counter. All information from the drum to the
arithmetic unit passes through a signed 10-digit distributor. A twenty-
digit accumulator is divided into a lower and upper part, each of 10 digits
with sign. IEach of these is addressable (distributor 8001, lower accumu-
lator 8002, and upper accumulator 8003). Each accumulator may be
cleared to zero separately (in IBM 650 terminology, “reset’’). The entire
20-digit register can be considered as a unit, or each part separately (but
affecting the other in case of carries). The 10-digit instruction is broken
down into the following form:

10]9|8|7|6|5(4]213](1 0
Op. Data Next Instruction Si
Code Address Address en

One particular instruction, Table Look-Up, allows automatic table search
for one particular element in a table, which can be stored with a corre-
sponding functional value. Input-output is via 80-digit numerical punched
cards. An “alphabetic device” allows limited alphabetical entry on cards.
Only certain 10-word groups on the magnetic drum are available for input
and output. The following information is taken from an IBM 650 manual
(Ref. 102). Much of the input-output is handled via board wiring, which
is not described in detail below. The two-digit pair represents the machine
code. The BRD (Branch on Digit) operation is used with special board
wiring to tell when certain specific card punches exist,

Input-Output Instructions.

70 RD (Read). This operation code causes the machine to read
cards by a two-step process. First, the contents of the 10 words of read
buffer storage are automatically transferred to one of the 20 (or 40) possible
10-word groups of read general storage. The group selected is determined
by the D address of the Read instruction. Secondly, a card is moved under
the reading brushes, and the information read is entered into buffer storage
for the next Read instruction.
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71 PCH (Punch). This operation code causes card punching in
two steps. First the contents of one of the 20 (or 40) possible 10-word
groups of punch storage are transferred to punch buffer storage. The
group selected is specified by the D address of the Punch instruction.
Secondly, the card is punched with the information from buffer storage.

69 LD (Load Distributor). This operation code causes the con-
tents of the D address location of the instruction to be placed in the
distributor.

24 STD (Store Distributor). This operation code causes the
contents of the distributor with the distributor sign to be stored in the
location specified by the D address of the instruction. The contents of the
distributor remain undisturbed.

Addition and Subtraction Instructions.

10 AU (Add to Upper). This operation code causes the contents
of the D address location to be added to the contents of the upper half of
the accumulator. The lower half of the accumulator will remain unaffected
unless the addition causes the sign of the accumulator to change, in which
case the contents of the lower half of the accumulator will be complemented.
Also, the units position of the upper half of the accumulator will be reduced
by one.

15 AL (Add to Lower). This operation code causes the contents
of the D address location to be added to the contents of the lower half of
the accumulator. The contents of the upper half of the accumulator could
be affected by carries.

11 SU (Subtract from Upper). This operation code causes the
contents of the D address location to be subtracted from the contents of
the upper half of the accumulator. The contents of the lower half of the
accumulator will remain unaffected unless the subtraction causes a change
of sign in the accumulator, in which case the contents of the lower half of
the accumulator will be complemented. Also, the units position of the
upper half of the accumulator will be reduced by one.

16 SL (Subtract from Lower). This operation code causes the
contents of the D address location to be subtracted from the contents of
the lower half of the accumulator. The contents of the upper half of the
accumulator could be affected by carries.

60 RAU (Reset and Add into Upper). This operation code
resets the entire accumulator to plus zero and adds the contents of the D
address location into the upper half of the accumulator.

65 RAL (Reset and Add into Lower). This operation code
resets the entire accumulator to plus zero and adds the contents of the D
address location into the lower half of the accumulator.
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61 RSU (Resetand Subtractinto Upper). This operation code
resets the entire accumulator to plus zero and subtracts the contents of the
D address location into the upper half of the accumulator.

66 RSL (Resetand Subtractinto Lower). This operation code
resets the entire accumulator to plus zero and subtracts the contents of the
D address location into the lower half of the accumulator.

Accumulator Store Instructions.

20 STL (Store Lower in Memory). This operation code causes
the contents of the lower half of the accumulator with the accumulator
sign to be stored in the location specified by the D address of the
instruction. The contents of the lower half of the accumulator remain
.undisturbed.

It is important to remember that the D address for all store instructions
must be 0000-1999. An 8000 series D address will not be accepted as
valid by the machine on any of the store instructions.

21 STU (Store Upper in Memory). This operation code causes
the contents of the upper half of the accumulator with the accumulator
sign to be stored in the location specified by the D address of the instruc-
tion. If STU is performed after a division operation, and before another
division, multiplication, or reset operation takes place, the contents of the
upper accumulator will be stored with the sign of the remainder from the
divide operation (Op-Code 14). The contents of the upper half of the
accumulator remain undisturbed. .

22 STDA (Store Lower Data Address). This operation code
causes positions 8-5 of the distributor to be replaced by the contents of the
corresponding positions of the lower half of the accumulator. The modified
word in the distributor with the sign of the distributor is then stored in the
location specified by the D address of the instruction.

23 STIA (Store Lower Instruction Address). This operation
code causes positions 4-1 of the distributor to be replaced by the contents
of the corresponding positions of the lower half of the accumulator. The
modified word in the distributor with the sign of the distributor is then
stored in the location specified by the D address of the instruction. The
contents of the lower half of the accumulator remain unchanged, and the
sign of the accumulator is not transferred to the distributor. The modified
word remains in the distributor upon completion of the operation.

Absolute Value Instructions.

17 AABL (Add Absolute to Lower). This operation code
causes the contents of the D address location to be added to the contents
of the lower half of the accumulator as a positive factor regardless of the
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actual sign. When the operation is completed, the distributor will contain
the D address factor with its actual sign.

67 RAABL (Reset and Add Absolute into Lower). This
operation code resets the entire accumulator to zeros and adds the contents
of the D address location into the lower half of the accumulator as a
positive factor regardless of its actual sign. When the operation is com-
pleted, the distributor will contain the D address factor with its actual sign.

18 SABL (Subtract Absolute from Lower). This operation
code causes the contents of the D address location to be subtracted from
the contents of the lower half of the accumulator as a positive factor
regardless of the actual sign. When the operation is completed, the
distributor will contain the D address factor with its actual sign.

68 RSABL (Reset and Subtract Absolute into Lower). This
operation code resets the entire accumulator to plus zero and subtracts
the contents of the D address location into the lower half of the accumulator
as a positive factor, regardless of the actual sign. When the operation is com-
pleted, the distributor will contain the D address factor with its actual sign.

Multiplication and Division.

19 MULT (Multiply). This operation code causes the machine
to multiply. A 10-digit multiplicand may be multiplied by a 10-digit
multiplier to develop a 20-digit product. The multiplier must be placed
in the upper accumulator prior to multiplication. The location of the
multiplicand is specified by the D address of the instruction. The product
is developed in the accumulator beginning in the low-order position of the
lower half of the accumulator and extending to the left into the upper half
of the accumulator as required.

14 DIV (Divide). This operation code causes the machine to
divide without resetting the remainder. A 20-digit dividend may be di-
vided by a 10-digit divisor to produce a 10-digit quotient. In order to
remain within these limits, the absolute value of the divisor must be
greater than the absolute value of that portion of the dividend that is in the
upper half of the accumulator. The entire dividend is placed in the 20-
position accumulator. The location of the divisor is specified by the D
address of the divide instruction.

64 DIV RU (Divide and Reset Upper). This operation code
causes the machine to divide as explained under operation code 14 (DIV).
However, the upper half of the accumulator containing the remainder with
its sign is reset to zeros.

Branching Instructions (Decision Operations).

44 BRNZU (Branch on Non-Zero in Upper). This operation
code causes the contents of the upper half of the accumulator to be exam-
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ined for zero. If the contents of the upper half of the accumulator is
nonzero, the location of the next instruction to be executed is specified by
the D address. If the contents of the upper half of the accumulator is zero,
the location of the next instruction to be executed is specified by the I
address. The sign of the accumulator is ignored.

45 BRNZ (Branch on Non-Zero). This operation code causes
the contents of the entire accumulator to be examined for zero. If the
contents of the accumulator is nonzero, the location of the next instruction
to be executed is specified by the D address. If the contents of the ac-
cumulator is zero, the location of the next instruction to be executed is
specified by the I address. The sign of the accumulator is ignored.

46 BRMIN (Branch on Minus). This operation code causes
the sign of the accumulator to be examined for minus. If the sign of the
accumulator is minus, the location of the next instruction to be executed
is specified by the D address. If the sign of the accumulator is positive,
the location of the next instruction to be executed is specified by the I
address. The contents of the accumulator are ignored.

47 BROV (Branch on Overflow). This operation code causes
the overflow circuit to be examined to see whether it has been set. If the
overflow circuit is set, the location of the next instruction to be executed
is specified by the D address. If the overflow circuit is not set, the location
of the next instruction to be executed is specified by the I address.

90-99 BRD 1-10 (Branch on 8 in Distributor Position 1-10).
This operation code examines a particular digit position in the distributor
for the presence of an 8 or 9. Codes 91-99 test positions 1-9, respectively;
of the test word; code 90 tests position 10. If an 8 is present, the location
of the next instruction to be executed is specified by the D address. If a 9
is present, the location of the next instruction to be executed is specified by
the I address. The presence of other than an 8 or 9 will stop the machine.

Shift Instructions.

30 SRT (Shift Right). This operation code causes the contents
of the entire accumulator to be shifted right the number of places specified
by the units digit of the D address of the shift instruction. A maximum
shift of nine positions is possible. A data address with units digit of zero
will result in no shift. All numbers shifted off the right end of the ac-
cumulator are lost.

31 SRD (Shift Round). This operation causes the contents of
the entire accumulator to be shifted right the number of places specified
by the units digit of the D address of the instruction. A 5 is added (—5 if
the accumulator is negative) in the twenty-first (blind) position of the
amount in the accumulator. A data address units digit of zero will shift
10 places right with rounding.
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35 SLT (Shift Left). This operation code causes the contents of
the entire accumulator to be shifted left the number of places specified by
the units digit of the D address of the instruction. A maximum shift of
nine positions is possible. A data address with a units digit of zero will
result in no shift. All numbers shifted off the left end of the accumulator
are lost. However, the overflow circuit will not be turned on.

36 SCT (Shift Left and Count). This operation code causes
(1) the contents of the entire accumulator to be shifted to the left until a
nonzero digit is in the most significant place, (2) a count of the number of
places shifted to be inserted in the two low-order positions of the accumu-
lator. This instruction is to aid fixed-point scaling.

Table Look-Up Instructions.

84 TLU (Table Look-Up). This operation code performs an
automatic table look-up using the D address as the location of the first
table argument and the I address as the address of the next instruction to
be executed. The argument for which a search is to be made must be in
the distributor. The address of the table argument equal to, or higher
than (if no equal exists) the argument given is placed in positions 8-5 of the
lower accumulator. The search argument remains, unaltered, in the dis-
tributor.

Miscellaneous Instructions.

00 No-Op (No Operation). This code performs no operation.
The data address is bypassed, and the machine automatically refers to the
location specified by the instruction address of the No-Op instruction.

01 Stop. This operation code causes the program to stop provided
the programmed switch on the control console is in the stop position. When
the programmed switch is in the run position the 01 code will be ignored
and treated in the same manner as 00 (No-Op).

Datatron 205 Instruction Logic

A typical magnetic drum computer of the single-address type is the
Datatron 205 computer manufactured by the ElectroData Division of the
Burroughs Corporation. The following description of the machine is
obtained from a Datatron manual (Ref. 32). This computer, in its simplest
form, is a fixed point, decimal (10, 0, 0) computer. The numbers are
“digital” numbers, in absolute value less than one. Each instruction (and
number) occupies one machine word. The address part of an instruction
occupies the four least significant digits, with a two-digit operation code
immediately preceding.

Storage is on a magnetic drum with 4000 words capacity. A quick
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access storage (recirculating loop) has a capacity of 80 words in four
separate blocks of 20 words each. Addresses in the main storage range
from 0000 through 3999; addresses in the quick access storage are 4000,
5000, 6000, and 7000. Numbers block-transferred back and forth between
main and quick access storage can ordinarily be altered in one while
remaining unchanged in the other.

Registers.

A register. This register contains 11 decimal-digit positions. Ten
are for the number or instruction and one for the algebraic sign. This
register acts as an accumulator, and the results of most operations appear
here at the end of the operation.

R register. This register contains 10 decimal-digit positions (no
algebraic sign). In several operations, it serves as an extension of the A
register and holds the 10 least significant digits of the number contained
in the combined A and R registers.

B register. This register contains 4 decimal-digit positions, and
is used to facilitate the modification of commands and for tallying. As
each command is received from memory, it is checked to determine whether
its address part is to be modified or not. This is determined by a 1 or a 0
in the algebraic sign position. If the sign digit is 1, the four-digit number
contained in the B register is added absolutely to the four least significant
digits (the address part) of the command, and the command is then exe-
cuted as modified by the contents of the B register. It is important to note
that the commands with negative sign, as stored in the memory, are not
altered by the operation of this register; they are temporarily modified in
the electronic registers immediately before execution. Thus, the same
command may be executed many times during a computation, temporarily
modified each time by a different number in the B register.

The R register may be loaded from the drum by means of a right shift
through the A register. ,

" Information to be punched out on paper tape or printed on the type-
writer comes from the A register.

Arithmetic Instructions. In all arithmetic operations one operand is
stored in the A register, the other having been fetched from the storage
location specified in the address part of the command word. If the sign
digit of the command word is 1, the B register will be added to the address
before the command arrives at the C register. If on input the sign digit
of the command is 3, the B register will be added to the address before the
command reaches the drum; and the word will be stored with a 1 in the
sign digit, to produce B modification on execution. If on input the sign
digit of the command word is 2, the B register will be added to the address
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before the command reaches the drum and the word will be stored with a
0 in the sign digit. In the following description the alphanumeric codes and
two-digit numbers in parentheses after the name of the command are those
used on standard code sheets.

Addition.

ADD (ad x, 74). Add to the number in the A register the number in
storage location x. This command and associated add commands do not
affect the contents of the R register.

SUBTRACT (sux, 75). Subtract from the contents of the A register
the number in storage location x.

ADD ABSOLUTE VALUE (ada x, 76). Add to the A register the
number in storage location x with a positive sign attached.

SUBTRACT ABSOLUTE VALUE (sua x, 77). Subtract from the
number in the A register the value of the number in storage location x with
a positive sign attached.

CLEAR AND ADD (ca x, 64), CLEAR AND SUBTRACT (cs x, 65),
CLEAR AND ADD ABSOLUTE VALUE (caa x, 66), and CLEAR AND
SUBTRACT ABSOLUTE VALUE (csa x, 67). These commands clear
the A register before the operation, and then have the same effect as the
corresponding commands without the clearing.

Multiplication.

MULTIPLY AND HOLD (mh x, 60). Bring the number from
storage location x into the D register; multiply it by the number in the A
register; and hold the 20-digit product in the A and R registers. In the
MULTIPLY-HOLD command, R is considered to be an extension of A.
Before any multiplication command the R register is automatically cleared.

MULTIPLY AND ROUND OFF (mr x, 70). Bring the number
from storage location x into the D register; multiply it by the number in
the A register and round off. If the first digit of R is 5 or greater, increase
the absolute value of the number in the A register by 1071°. If the first
digit of R is less than 5, do not change A. In either case, the R register is
cleared after the command has been executed. There is no possibility of
overflow upon execution of a MULTIPLY AND ROUND OFF command.

ROUND OFF (ro, 23). If the first digit of R is 5 or greater, add
1010 to the absolute value of the number in the A register and clear R. If
the first digit of R is less than 5, clear R. Overflow is possible if A contains
all 9’s and the first digit of R is 5 or greater.

Division.
DIVIDE (div x, 61). Divide the number in the A and R registers by
the number in storage location x. In this case the R register is considered
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as an extension of A. If the number in A and R is less in absolute value
than the number in x, the division is performed; the A register will contain
the 10-digit quotient; and the R register will contain the true remainder
after the DIVIDE command has been executed. If, however, the number
in A and R is greater in absolute value or equal to the number in the D
register, the overflow toggle is set; and A and R are cleared.

CLEAR R (cl R, 33). Set all digits of the R register to zero.

Logical Instructions.
Unit Adjust.

UNIT ADJUST (ua, 06). Set the “1” toggle in the first position of
the A register. This command effectively increases an even digit in Al,
making it odd; and leaves an odd digit unchanged. This command is
normally used after a right shift to compensate for overflow on an addition.
It allows the coder to compensate for the overflow without testing for sign.

Al before ua Al after ua
0 1
1 1
2 3
3 3
4 5
5 5
6 7
7 7
8 9
9 9

Storage. The results of arithmetic operations are stored in the A
register. The transfer of these results to storage is effected by two com-
mands which do not affect the R register. They are:

TO MEMORY AND HOLD (tmh x, 12). Store the number in the
A register in storage location x, and retain the number in the A register.,

TO MEMORY AND CLEAR (tme x, 02). Store the number in the
A register in storage location x, and clear the A register, including the sign
position,

Shift.

SHIFT RIGHT (sr n, 13). Shift the number in the A and R regis-
ters, not including sign, n places to the right (n is interpreted modulo 20).
The n rightmost digits are lost. The n leftmost digits become zero. In this
command as well as the following command, the number of shifts (n) is
indicated by the address part of the command word.
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SHIFT LEFT (sl r, 14). Circulate the number in the A and R
registers, not including sign, n places to the left (n is interpreted modulo
20). The n leftmost digits in A become the n rightmost significant digits
in R.

LOGICAL CYCLE LEFT (lcl n, 01). Circulate the A register, in-
cluding the sign digit, n 4 1 places to the left (n is interpreted modulo 20).
The R register is not affected by this command.

SPECIAL LEFT SHIFT (sply, 15). If the number in the A register
is not zero, shift the A and R registers to the left until the first nonzero
digit in A is in the first position of the A register. Change of control does
not take place. If the A register contains zero, replace the contents of
the A register by the contents of the R register and change control to
storage location y.

This command normalizes the number in A and R and, therefore, is
frequently used in floating point operations.

Since it is important to know the number of shifts that occur as a result
of the SPECIAL LEFT SHIFT, a count of these shifts is stored in the
special counter.

Special Counter. The special counter is a four-toggle binary counter
recycling on 15 (1111). It is used in the machine for three purposes:

1. To count the shifts during multiplication.

2. To count the shifts during division.

3. To count the shifts necessary to normalize a number with a special
left. The number in the special counter after the completion of a MULTI-
PLY or DIVIDE command is 9 (except when division sets the overflow
toggle). After a SPECIAL LEFT (spl y) command the special counter:
shows the number of zeros that were to the left of the first nonzero digit
in A before the shift. In the case where A = 0, the special counter counts
to 10. The number in the special counter is retained until a multiply,
divide, or other special left has been executed. In all these cases it is
cleared before the new number is added to it. Information may be obtained
from the special counter by means of two commands.

ADD SPECIAL COUNTER (spc+, 16). Add (algebraically) the
number in the special counter scaled 10710 to the number in the A register.

SUBTRACT SPECIAL COUNTER (spc—, 17). Subtract (alge-
braically) the number in the special counter scaled 10-1°, from the number
in the A register.

As in the addition commands, there is a possibility of overflow. Also,
the special counter can contain a forbidden combination (when A =
0 before spl). In such a case, the execution of the special counter (either

add or subtract) command will signal the forbidden combination alarm,
and the computer halts.
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EXTRACT (ex x, 63). In normal operation, storage location x will
contain a combination of 0’s and 1’s. This number is referred to as an
extract combination. For the digits of the extract combination that are
zeros, replace the corresponding digits in the A register including the sign
by zeros. TFor the digits of the extract combination that are ones, leave
the corresponding digits in the A register, including the sign, unchanged.

Loop Transfer.

BLOCK TRANSFER INTO A LOOP (bl (4) < x, 34). Block trans-
fer into the 4000 loop the 20 words at storage location x through storage
location x 4 19, the main storage and loop addresses corresponding modulo
20. The commands bl(5) < x, bl(6) « x, bl(7) < x are executed in the
same way as the above command, the 20 words being blocked into the
5000, 6000, and 7000 loops respectively. Because it is not possible to block
transfer from one loop to another, all blocking commands are interpreted
modulo 4000. Information transferred from main storage into a high-
speed loop remains in main storage.

BLOCK TRANSFER INTO MAIN MEMORY (bl(4) — x, 24).
Block transfer into 20 main storage positions starting at storage location x
the words in the 4000 loop. The words will go into main storage locations
corresponding modulo 20 to their loop addresses. The bl(5) — x, bl(6) —
x, bl(7) — x commands are defined as above with the exception that 5000,
6000, and 7000, respectively, are substituted for 4000. After execution of
the command, the information is retained in the loop until new information
is written in.

Change Control.

UNCONDITIONAL CHANGE OF CONTROL (cu y, 20). Change
control unconditionally to storage location y. This command replaces the
contents of the control counter with the address part of the cu command.

CONDITIONAL CHANGE OF CONTROL (cc y, 28). If the
overflow toggle is set, change control to y and reset the overflow toggle to 0.
If the overflow toggle is not set, ignore this command.

Control Block Transfer. The two commands listed below and two
of the commands under Control-Record are a combination of change of
control commands and block transfer.

BLOCK AND UNCONDITIONAL CHANGE OF CONTROL
(cuby, 30). Block transfer into the 7000 loop the words at 20 consecutive
locations starting at main storage location y, and change control to the
image y in the 7000 loop; y is interpreted modulo 4000. It is important to
note that the words occupy locations in the 7000 loop which are congruent
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modulo 20 to their previous main storage addresses. Change of control is
effected by replacing the first two digits in the address part of the command
word by 70 and placing this in the control counter. This command, there-
fore, automatically changes control to the 7000 loop.

BLOCK AND CONDITIONAL TRANSFER OF CONTROL (ccb
y, 38). If the overflow toggle is set, this command acts in the same way
as the cub y command described in the previous paragraph. If the over-
flow toggle is not set, this command is ignored.

Since the control counter performs the operation of counting up one
only after the command word has been fetched, it can be seen readily that
the cub command must replace the first two digits by 70, not merely replace
the first digit by 7. If, say, a cub 2999 were executed and only the first
digit were replaced by 7, one command execution would cause a control
change from the 7000 loop into main storage.

Control-Record.

UNCONDITIONAL CHANGE OF CONTROL AND RECORD
(cuR y, 21). Clear the R register; replace its four most significant digits
with the contents of the control counter; and change control uncondition-
ally to storage location y. This command records the address from which a
departure into a subroutine has been made and makes it possible to provide
in advance for a control change to the next address in the main routine.

.CONDITIONAL CHANGE OF CONTROL AND RECORD (ccR
¥, 29). If the overflow toggle is set, clear the R register, replace its four
most significant digits with the contents of the control counter, and change
control to storage location y. If the overflow toggle is not set, ignore this
command.

BLOCK, UNCONDITIONAL CHANGE OF CONTROL AND
RECORD (cubR y, 31). Clear the R register and replace its four most
significant digits with the contents of the control counter; block transfer
the words in storage location y and the following 19 locations into the
7000 loop and change control unconditionally to the number corresponding
to y in the 7000 loop.

BLOCK, CONDITIONAL TRANSFER OF CONTROL AND
RECORD (cchR y, 39). If the overflow toggle is set, effect a cubR y
command. If the overflow toggle is not set, ignore this command.

All block transfer commands are interpreted modulo 4000. The y’s in
the commands that perform a blocking operation are interpreted modulo
4000, while those in other commands are interpreted modulo 8000. These
commands do not disturb the contents of any register.

ZERO CHECK (z y, 04). If the A register does not contain =40
before the execution of this command, change control to storage location
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y. If the A register contains =40, ignore this command (—0 is changed
to +0).

SIGN COMPARE (sgec x, 73). If the sign of the A register is the
same as the sign of the word in storage location x, do not set the overflow
toggle. If the sign of the A register is not the same as the sign of the word
in storage location x, set the overflow toggle.

The SIGN COMPARE command is usually followed by a cc, ccR, ccb,
or ccbR command. If it is not, the setting of the overflow toggle will cause
the machine to stop. It is only because of the sge x command that the
programmer need know the sign of zero.

B Register.

REPLACE B (B x, 72). Set the B register to the last four digits in
storage location x. The sign of the number in x has no bearing on the
setting of B.

INCREASE B (B, 32). Add 1 to the contents of the B register.
If the B register before the execution of a B+ command contains 9999,
it will contain 0000 after the execution of the command.

BTO A (B— A, 11). Clear the A register and then replace its four
rightmost digits with the contents of the B register. The B register is not
changed by this command.

DECREASE B (B— y, 22). If the B register before the execution
of this command did not contain zero, subtract 1 from the contents of the B
register and change control to storage location y. If the B register before
the execution of this command contained zero, do not change control. In
this case the command leaves the B register set to 9999.

STOP (s, 08). Halt the machine. The operator can continue his
program by pressing the CONTINUOUS button.

Input-Output Instructions.

Paper Tape and Keyboard Input. The INPUT SELECTOR switch
may be set to OPTICAL READER, MECHANICAL READER (on the
Flexowriter) or KEYBOARD.

INPUT (in x 00). Start reading the first word on the tape or received
from the keyboard into storage location x. Read following words into the
next, consecutive locations. (See Special Use of the Sign Column below.)

SINGLE DIGIT ADD INPUT (dA 10). Algebraically, add to the
contents of the A register in the A10 position the positive value of the
number punched on the keyboard or read by the mechanical reader or
photoelectric reader. When the command is executed, the machine will
stop until a digit has been entered, after which it resumes operation.

SPECIAL USE OF THE SIGN COLUMN. Words containing num-
bers other than 0 or 1 in the sign column are used for control of the input
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device and for B modification of words during input. A 2 or 3 placed in the
sign column will cause the address part of the word to be modified by the
B register as the word is read into storage. In storage, the word will have
a positive sign if there was a 2 in the sign column, a negative sign if there
was a 3 in the sign column. In both cases, the word will be stored with
the contents of the B register added to its address part. This is summarized
in Table 9.

TasLE 9. SpeciaL Usk or SigN Corumn, INpuTs 0 TO 3

Sign Column B Modification B Modification
on Input before Execution on Input Comments
0 No No }May be a command
1 Yes No or part of the data
2 No Yes Sign appears in
storage as 0
3 Yes Yes Sign appears in

storage as 1

An input sign 4 is used only to control input and causes the command
to be read directly into the C register. The effect of each of these numbers
with cu or STOP appears in Table 10.

TaBLE 10. SreciaL UsE or SigN CoLumn, INPuTs 4 TO 7

Tape Stops or

Sign Keyboard is B Modification
Column Deactivated before Execution
4 No No
5 No Yes
6% Yes No
7 Yes Yes

¢ With the IN command, a 6 or 7 in the sign column does not stop the input device.

The commands most often used with an input control digit in the sign
column are cu, cub, in, and stop. ’
Flexowriter and Paper Tape Output. There are two printout com-
mands. With either of them, the second digit of the address part is a coded
-format instruction to the Flexowriter, Flexowriter punch or console punch.
(The two punches carry along the format instruction as an information
digit for the typewriter control. It does not affect format until the printing
operation is carried out.) These instructions, which are sensed and carried
out before any other part of the command is executed, are as follows:
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Second Address Digit Instruction

0 None.

1 Feed out one character-space of blank tape (10 to the
inch). (This instruction has no effect on the Flexo-
writer.)

2 Print decimal point and suppress sign digit.

3 Suppress sign digit and substitute a space for sign digit
when the word is printed. ‘

4 Translate alphanumerically, two A register digits per

alphanumeric character.

Actuate carriage return.

Actuate tab key.

Stop printout. Idle the computer if any printout com-
mand comes up before the typewriter control RESET
is pressed.

8 Actuate space bar.

9 None.

N oo

PRINT OUT (po n, 03). This command prints out the sign and n
digits of the A register (unless the sign has been suppressed by a 2 or a 3
format instruetion), n being interpreted modulo 20. The R register is not
affected. The A register, including the sign, is circulated n 4 1 places left.
This operation differs from that of the shift commands in that they do not
shift the sign.

The format instruction digits make it possible to control format com-
pletely by proper construction of the computer command word. ,

PRINT OUT (po f, 07). The po f command carries out the format
instruction contained in the second address digit.

PUNCH OUT (po n, 03; po f,07). The console punch uses the same
two commands as the Flexowriter and typewriter control with the difference
that the OUTPUT SELECTOR is set to TAPE. The console punch has
no connection with the typewriter control except that its output tape may
be an input to various arrangments of the typewriter control patch panel.

ALPHANUMERIC CODE. Typewriter action corresponding to the
various two-digit combinations read out from the A register is given in
Table 11. Alphanumeric information comes out on the console punch as
pairs of decimal digits. The format instruction (4) accompanies the infor-
mation so that when the tape is read for printing later it will be translated
by the typewriter control into alphanumeric Flexowriter action.

Since it takes two digits to represent one alphabetic character, a po 04006,
written 0.0000030406, will print out three alphabetic characters from the
A register. Example. If (A) = 4.7065464646, and the command men-
tioned in the above paragraph is executed, the following characters will be
printed out: if6.
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TaBLE 11. TyPEWRITER AcTiON CORRESPONDING TO
Various Two-DiciT CopEs

Typewriter Action Typewriter Action

Alphanumeric Alphanumerie

L.C. U.C. Code L.C. U.C. Code
a A 20 0 ) 40
b B 61 1 /2 41
c C 62 2 & 42
d D 63 3 / 43
e E 64 4 $ 44
f F 65 5 % 45
g G 66 6 ? 26
h H 67 7 ! 47
i I 70 8 * 40
j J 71 9 ( 51
k K 72 -+ = 54
1 L 36 - - 25
m M 73 ; : 26
n N 74 ’ ’ 31
o 0] 75 . 32
p P 76 ! ’ 33
q Q 77 Lower case 27
r R 21 Upper case 30
s S 22 Space 34
t T 23 Color shift 35
u U 52 Ignore 00
\4 A% 53 Back space 01
w w 54 Tab 06
X X 55 Carriage return 05
y Y 56 Stop 07
z Z 57

Punched Card Input-Output.

CARD INPUT ([1000 — m] ci x, 44). Read in m cards, starting at
storage location x. The number of words per card, from 1 to 8, is sét on
a selector switch. The first three digits of the command word, excluding
sign, are 1000 — m. The x is interpreted as follows:

0000 = 0000 4000 = 0000 8000 = 4000
1000 = 1000 5000 = 1000 9000 = 4000
2000 = 2000 6000 = 2000
3000 = 3000 7000 = 3000

After the command, the storage cells which have received new information
are x through x + mk — 1 + (20 — k), where m is the number of cards
read, and k is the setting of the input WORDS PER CARD switch.
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CARD/TABULATOR OUTPUT ([1000 — m] co x, 54). Punch
out m cards, starting at storage location x. The number of words per card,
from 1 to 8, is set on a selector switch. The first three digits of the com-
mand word, excluding sign, are 1000 — m. The x is interpreted as for eard
input. After the command, the 4000 loop contains the words transferred
from x + mk — 1 + (20 — k) and the 19 preceding cells, where m is the
number of cards punched, and k is the setting of the output WORDS PER
CARD switch.

For tabulator output, the command is the same except that the words
“line” and “printed” are substituted for the words “card” and ‘“punched,”
respectively.

Magnetic Tape.

TAPE SEARCH (ts x, 42). In preparation for a TAPE READ or
WRITE command, search for block x on the tape unit designated by the
third digit of the command word. As with word addresses on the drum, x
is the last four digits of the command word. If a TAPE READ or WRITE
command is fetched before the addressed block is found, skip the EXE-
CUTE cycle of the tr or tw command and set the overflow toggle.

TAPE READ (tr x, 40). From the tape unit designed by the third
digit of the command word, read as many consecutive blocks of 20 words
each as are indicated by the first two digits of the command word. Write
these words in successive storage locations beginning with storage loca-
tion x.

TAPE WRITE (tw x, 50). On the tape unit designated by the third
digit of the command word, write as many consecutive blocks of 20 words
each as are indicated by the first two digits of the command word. These
words will be read from successive storage locations, beginning with
storage location x. '

REWIND (rw, 52). Rewind the tape in the tape unit, designated by
the third digit of the command word, to the 0000 end. If the rewind
switch on the designated tape unit is in the normal position upon com-
pletion of the rewind, the unit will be locked out of the system. If the
switch is in the rewind-ready position, the unit can again be called upon for
a subsequent search, read, or write operation.

Royal-McBee LGP-30 Instruction Logic

A typical small machine is the LGP-30, built by Librascope and mar-
keted by Royal-McBee. It is desk size, its input-output is a Flexowriter,
and it has a single-address instruction code with a 30 binary digit word
length using digital numbers (absolute value less than one). The instrue-
tion code for this magnetic drum (30, 0, 0) binary machine is exceedingly



2-110 DIGITAL COMPUTER PROGRAMMING

simple, lacking the complex optimization features of the “next instruction
address’ or the recirculating loop. There is only one input and one output
instruction. :

List of Instructions. The following list of commands is taken from
an LGP-30 instruction manual (Ref. 66).

Instruction® Effect

B m Bring. Clear the accumulator, and add the contents of m to it.

A  m Add contents of m to the contents of the accumulator, and retain

the result in the accumulator. _

Subtract the contents of m from the contents of the accumulator,

and retain the result in the accumulator.

m Multiply the number in the accumulator by the number in

memory location m, and terminate the result at 30 binary places.

m Multiply the number in the accumulator by the number in m,

and retain the least significant half of the product.

Divide the number in the accumulator by the number in memory

location m, and retain the rounded quotient in the accumulator.

m Hold. Store contents of the accumulator in m, and retain the

number in the accumulator.

m Clear. Store contents of the accumulator in m and clear the

accumulator.

m Store only the address part of the word in the accumulator in

memory location m, while leaving the rest of the word undis-

turbed in memory.

Return address. Add one.to the address held in the counter

register (C) and record in the address portion of the instruction

in memory location m. The counter register normally holds the

 address of the next instruction to be executed.

m  Extract, or logical product order, i.e., clear the contents of the

accumulator to zero in those bit positions occupied by zeros in m.

Transfer control to m unconditionally, i.e., get the next instruc-

tion from m, ‘

m Test, or conditional transfer. Transfer control to m only if the
number in the accumulator is negative.

0 Input. Fill the accumulator from the Flexowriter.

Print a Flexowriter symbol. The symbol is denoted by the track

number part of the address (x).

Z t Stop. Contingent on five switch (T;---Ts) settings on the

control panel. :

w
g

< o o= v oz Z
g

4 o = =
E 8

-
]

¢ The address part of the instruction is denoted by m when it refers to a memory .
Jocation,
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Instruction Logic of the Soviet Strela (Arrow)

A typical general purpose digital computer using three-address instruc-
tion logic is the Strela (Arrow) constructed in quantity under the leadership
of Tu. Ia. Basilewskii of the Soviet Academy of Sciences, and described in
detail by Kitov (Ref. 61). This computer uses a (35, 6, 0) binary floating
point number system. Its instruetion word, of 43 digits, contains a six-
digit operation code, and three 12-digit addresses, with one breakpoint bit.
In octal notation, two digits represent the operation, four each the ad-
dresses, and one bit the breakpoint. This machine operates with up to
2048 words of high-speed cathode ray tube storage.

Input-output is ordinarily via punched cards and punched paper tape.
A “standard program library” is attached to the computer as well as mag-
netic tape units (termed ‘“external accumulators” below). Note. This
computer is different from both the BESM described by Lebedev (Ref. 65)
and the Ural reported by Basilewskii (Ref. 7). Apparently, it is somewhat
lower in performance than BESM.

Since all arithmetic is ordinarily in floating point, ‘“special instructions”
perform fixed point computations for instruction modifications.

Ordinarily instructions are written in an octal notation, but external to
the machine operation symbols are written in a mnemonic code. The
notation used is similar to that described below for the EASIAC. The
two-digit numerals are the octal instruction equivalent.

Arithmetic and Logical Instructions.

0l. + a B y. Algebraic addition of (&) to (8) with result in .

02. +: a P +y. Special addition, used for increasing addresses
of instructions. The command («) or (8) is added to the number (8) or («)
and the result sent to the cell with address v. As a rule, the address of the
instruction being changed corresponds to the address .

03. — a B y. Subtraction with signed numbers. From the
number (a) is subtracted the number (8) and the result sent to +.

04. —; o P y. Difference of the absolute value of two numbers
[(e)] = [®)] = (). |

05. x o B y. Multiplication of two numbers («) and (8) with
result sent to v.

06 A a B y. Logical multiplication of two numbers in cells
a and B. This instruction is used for extraction from a given number or
instruction a part defined by the special number (3).

07. VvV a B y. Logical addition of two numbers («) and (8) and
sending the result to cell v. This instruction is used for forming numbers
and commands from parts.
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10. Sh o B y. Shift of the contents of cell « by the number of
steps equal to the exponent of the (8). If the exponent of the (8) is posi-
tive then the shift proceeds to the left, in the direction of increasing value;
if negative, then the shift is right. In addition, the sign of the number,
which is shifted out of the cell, is lost.

1. —2 a B y. Special subtraction, used for decreasing the
addresses of instructions. In the cell « is found the instruction to be trans-
formed, and in cell 8 the specially selected number. Ordinarily addresses
« and v are identical.

12 # a B y. Comparison of two numbers («) and (8) by
means of digital additions of the numbers being compared modulo two. In
the cell v is placed a number possessing ones in those digits in which in-
equivalence results in the numbers being compared.

Control Instructions.

13. € o« B 0000. Conditional transfer of control either to in-
struction (a) or to instruction (8), depending on the results of the preceding
operation. With the operations of addition, subtraction, and subtraction
of absolute values, it appraises the sign of the result: for a positive or zero
result it transfers control to the command (), for negative results to the
command (B). : '

The result of the operation of multiplication is dependent on the relation-
ship to unity. Transfer is made to the command («) in the case where the
result is greater than or equal to one, and to command (8), if it is smaller
than one.

For conditional transfer after the operation of comparison, transfer to
the instruction («) is made in the case of equality of binary digits, and to
(8) when there is any inequivalence.

After the operation A (logical sequential multiplication) the conditional
transfer command jumps to the instruction («) when the result is different
from zero, and to instruction (8) when it is equal to zero.

A forced comparison is given by

C a a 0000

The third address in this command is not used and in its place is put zero.
14. I-O a 0000 0000. This instruction is executed parallel
with the code of the other operations, and guarantees bringing into working
position in good time the zone of the external accumulator (magnetic tape
unit) with the address a.
15. H 0000 0000 0000. This instruction executes an absolute
halt. ‘
Group Transfer Instructions. Special instructions for group trans-
fer serve for the accomplishment of a transfer of numbers to and from the
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accumulators. In the second address in these instructions stands an integer,
designating the quantity of numbers in the group which must be trans-
ferred. Group trausfers always are produced in increasing sequence of
addresses of cells in the storage.

16. T; 0000 n +y. The instruction T; guarantees transfer from
a given input unit (with punched cards, perforated tape, etc.) into the
storage. In the third address v of the instruction is indicated the initial
address of the group of cells in the storage where numbers are to be written.
With punched paper tape or punched cards the variables are written in
sequence, beginning with the first line.

17. Tz 0000 n +y. The instruction Te guarantees transfer of a
group of n numbers from an input unit into the external accumulator in
Zone . :

20. T; o n +y. This instruction guarantees a line-by-line se-
quence of transfers of n numbers from zone « of the external accumulator
into the cells of the storage beginning with the cell with address v.

2. T4 a mn 0000. This instruction guarantees the transfer
to the input-output unit (to punched paper tape or punched cards) of a
group of n numbers from the storage, beginning with address «. The
record on punched paper tape or punched cards as a rule will begin with
the first line and therefore a positive indication of the addresses of the
record is not required.

22. Ts a n y. Instruction Ts guarantees transfer of a group
of n numbers from one place in the storage with initial address « into
another place in the storage with initial address 7.

23. T¢ o m vy. Instruction T guarantees transfer of a group
of n numbers from the storage with initial address « into the external
accumulator with address v.

24. T; a n 0000. Instruction T7; serves for transfer of n
numbers from the zone of the external accumulator with address « into
the input-output unit.

Instructions Te and T7 cannot be performed concurrently with other
machine operations.

Standard Subroutine Instructions. Certain instructions in the
Strela, although written as ordinary instructions are actually ‘“‘synthetic”
instructions which call on a subroutine for computation of the function
involved. The amount of machine time (number of basic instruction
cycles) for an iterative process depends on the required precision of the
computed function. The figures given below are based on approximately
ten-digit decimal numbers with desired precision one in the tenth place.

25. D a B y. This standard subroutine serves for execution
of the operation of division: The number («) is divided into the number
(8) and the quotient is sent to cell «.
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The actual operation of division is executed in two steps: the initial
obtaining of the value of the inverse of the divisor, by which the dividend
is then multiplied. The computation of the inverse is given by the usual
Newton formula, originally used with the EDSAC (Ref. 108).

Ynt1 = Ya(2 — ynZ).

For x = d - 27, where 3 < d < 1, the first approximation is taken as 277
The standard subroutine takes 8 to 10 instructions and can be executed in
18-20 machine cycles (execution time for one typical command).

26. v/ a 0000 y. This instruction guarantees obtaining the
value v/ from the value 2 = (a) and sending the result to cell y. Initially
1/4/z is computed by the iteration formula

Yny1 = %yn 3 - xyn2):
where the first approximation is taken as

yo = 2w/

the bracket indicating “integral part of.” After this the result is multiplied
by x to obtain v/z. This standard subroutine contains 14 instructions and
is executed in 40 cycles.

27. € a 0000 y. This instruction guarantees formation of
¢® for the value £ = («) and sending the result to cell v. The computation
is produced by means of expansion of ¢* in a power series. The standard
subroutine contains 20 instructions and is executed in 40 cycles.

30. Inx a 0000 y. This instruction guarantees formation of
the function In z for the value £ = («) and sending the result to location .
Computation is produced by expansion of In x in series. The subprogram
contains 15 instructions and is executed in 60 cycles.

3l. sinx a 0000 y. This instruction guarantees esecution of
the function sin z and sending the result to location v. The computation
is produced in two steps: initially the value of the argument is translated
into the first quadrant, then the value of the function is obtained by a
series expansion. The subroutine contains 18 instructions and is executed
in 25 cycles.

32. DB o n +y. This instruction performs conversion of a
group of n numbers, stored in locations «, « + 1, - - - from binary-coded
decimal into binary and sending of the result to locations v,y + 1,---.
The subroutine contains 14 instructions and is executed in 50 cycles (for
each number).

33. BD o n y. This instruction performs the conversion of a
group of n numbers stored in locations @, @ 4 1, - - - from the binary sys-
tem into binary-coded decimal and sends them to locations vy, v + 1, - -+ .
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The subroutine contains only 30 instructions and is executed with 100 cycles
(for each number). _

34. MS o n y. This is an instruction for storage summing.
This instruction produces the formal addition of numbers, stored in loca-
tions beginning with address «, and the result is sent to location v. Num-
bers and instructions are added in fixed point. This sum may be compared
with a previous sum for control of storage accuracy.

Instruction Logic of the MIDAC

The MIDAC, Michigan Digital Automatic Computer (Ref. 25), was
constructed on the basis of the design of the SEAC at the National Bureau
of Standards. Its instruction code is particularly of interest because it
incorporates the index register concept into a three-address binary instruc-
tion. Numbers in this machine are (44, 0, 0) fixed points. The word length
is 45 binary digits with serial operation.

Word Structure. The data or address positions of an instruction are
labeled the «, 8, and v positions. Each contains twelve binary digits
represented externally as three hexadecimal digits. Four binary digits, or
one hexadecimal digit, are used to convey the instruction modification or
relative addressing information. The next four binary digits or single
hexadecimal digit represents the operation portion of the instruction. The
final binary digit is the halt or breakpoint indicator for use with the in-
struction.

For example, the 45-binary-digit word,

000001100100000011001000000100101100000001011

considered as an instruction would be interpreted as

o 8 ¥ abed Op halt
000001100100 000011001000 000100101100 0000 0101 1

In external hexadecimal form this would be written
064 0c8 12¢ 0 5 —

The above binary word is the equivalent machine representation of the
following instruction: “Take the contents of hexadecimal address 064, add
to it the contents of hexadecimal address 0c8, and store the result in hexa-
decimal address 12c. There is no modification of the 12-binary-digit
address locations given by the instruction. Upon completion of the opera-
tion, stop the machine if the proper external switches are energized.” The
binary combination represented by 5 is the operation code for addition.
Data or Addresses. The addresses given by the twelve binary digits
in each of the three locations designate in the machine the individual
acoustic storage cells and blocks of eight magnetic drum storage cells. The
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addresses from 0 to 1023 (decimal) or 000 to 3FF (hexadecimal) correspond
to acoustic storage cells. The addresses from 1024 to 4095 (decimal) or
400 to FFF (hexadecimal) correspond to magnetic drum storage blocks. In
certain operations, however, the addresses 0 to 15 (decimal) or 0 to F
(hexadecimal) represent input-output stations rather than storage locations.

These twelve-binary-digit groups will in some cases be modified by the
machine in order to yield a final twelve-binary-digit address. The method
of processing will depend on the values of the instruction modification
digits. After modification, the final result will then be interpreted by the
control unit as a machine address.

In some instructions, namely those that perform change of control
operations, which involve cycling and counting rather than simple arith-
metic operations on numbers, the « and 8 positions in an instruction are
not considered as addresses. In those cases, they are used instead as
counters or tallies. In other instructions, which do not require three
addresses, but only one or two, the 8 position is not considered as an
address. In these cases, the oddness or evenness of the 8 address is used
to differentiate between two operations having the same operation code
digits. That is, the parity of binary digit P22 is used as an extra function
designator.

Instruction Modification Digits. The four binary digits P9-P6 are
used as instruction modification or relative addressing digits. Their normal
function is relatively simple; nevertheless, the possible exceptions to the
general rule can make their behavior complicated. These four digits are
labeled the a, b, ¢, and d digits. Ordinarily the a digit is associated with
the « position, the b digit with the g position, and the ¢ digit with the v
position in an instruction.

When binary digit P22 (or the 8 position) is used in an instruction to
represent extra operation information, the instruction modification digit b
isignored. In the case of input and output instructions, when the various
address positions represent machine address locations on the drum, input-
output stations, or block lengths, and modification of these addresses is not
desired in any case, the corresponding relative addressing digits are ignored.

The purpose of the instruction modification digits is to tell the machine
whether or not to modify the twelve binary digits making up the corre-
sponding address position in an instruction by addition of the contents of
one or the other of two counters. In the normal case, if the a, b, or ¢ digit
is a zero, the twelve binary digits in the corresponding position are inter-
preted, unchanged, as the binary representation of the machine address of
the number word to be processed by the instruction.

If one or more of the a, b, or ¢ digits is a one, the contents of one of two
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auxiliary address counters is added to the corresponding twelve binary
digits to yield a final address usually different from that given by the
original twelve-digit portion of the instruction word. The addresses are
then said to be relative to the counter.

The two counters involved in the address modification feature of the
MIDAC are known as the instruction counter and the base counter. In
the normal case, if the fourth instruction modification or d digit is a zero,
the contents of the instruction counter will be added to the contents of the
various twelve-digit addresses (dependent on the values of the a, b, and ¢
digits) before further processing of the instruction. If the a digit is one and
the d digit zero, the contents of the instruction counter will be added to the
a address; similarly for b and d digits and 8 address, ete.

If the d digit is a one, the contents of the base counter will be normally
added to the contents of the twelve digits in the «, 8, and v positions (again
dependent on the values of the a, b, and ¢ digits), before further processing
of the results. If the a digit is one and the d digit one, the contents of the
base counter will be added to the « address, etc.

The effect of the instruction modification digits may be summarized as
follows:

The contents of the two counters will be designated by Cq4 (d = 0, 1).

Co = contents of the instruction counter,

C1 = contents of the base counter.

Then the modified addresses o, 8’, and v’ are related to the «, 8, and v
addresses appearing in the instruction by the following:

o = a4+ aCq, g8 = B+ bCy, v =y+¢Cs (a,bye,d=0,1).

In certain instructions addresses relative to one of the two counters may
be prohibited. Thus, if in a particular instruction « may be relative only
to the instruction counter, then for that instruction

o =a+ aCo,

no matter whether the d digit isa 0 or a 1.

The notation («), (8), or (v") is used to indicate the word stored in the
location whose address is o/, 8/, or v’.

Instruction Counter. The instruction counter is a twelve-binary
digit (modulo 4096) counter which contains the binary representation of the
address of the instruction which the control unit is processing or is about to
process. In normal operation when no change of control operation is being
processed, the contents of the instruction counter is increased by one at
the completion of each instruction. Thus, normally the next instruction to



2-118 DIGITAL COMPUTER PROGRAMMING

be processed is stored in the acoustic storage cell immediately following the
cell which contains the present instruction.

A change of control operation is one which selects a next instruction not
stored in sequence in the acoustic storage. That is, at the completion of
such instructions the contents of the instruction counter is not increased by
one, but instead is changed entirely.

Base Counter. The base counter is a second twelve-binary-digit
counter (modulo 4096), physically identical to the instruction counter,
which contains the binary representation of a base number or tally. Unlike
the instruction counter, however, the base counter does not sequence
automatically, but remains unchanged until a change of base instruction is
processed. This counter serves two primary purposes, dependent on the
usage to which it is put:

1. It may contain the address of the initial word in a group, thus serving
as a base address to which integers representing the relative position of a
given word in the group of words may be added by using the address
modification digits.

2. It may contain a counter or tally which can be increased by a base
instruction. This instruction makes use of the address modification digits
to change the counter so as to count the number of traversals of a particular
eycle of instructions.

Instruction Types. Instructions used in MIDAC can be divided into
three categories: change of information, change of control, and transfer
of information. The first category can be further subdivided into arith-
metic and logical instructions. In the arithmetic instructions are included
addition, subtraction, division, various forms of multiplication; power
extraction, number shifting; and number conversion instructions. The
sole logical instruction is extract, which modifies information in a non-
arithmetie fashion.

The transfer of information or data transfer instructions include transfers
of individual words or blocks of words into and out of the acoustic storage
and drum and magnetic tape control.

The possible change of control instructions includes two comparisons
that provide different future sequences dependent on the differences of two
numbers. In the compare numbers or algebraic comparison, the difference
is an algebraie, signed one. In the compare magnitudes or absolute com-
parison, the difference is one between absolute values. Two other instruc-
tions, file and base, perform other tasks beside transferring control. The
file instruction transfers control unconditionally. The file instruction files
or stores the contents of the base or instruction counter in a specific address
position of a particular word in the storage. The base or tally instruction
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provides a method for referring addresses automatically relative to the
address given by the base counter, irrespective of its contents. The base
instruction also gives a conditional transfer of control.

The nineteen MIDAC instructions can be described functionally as
follows:

Change of Information.

1. Add. (') + (') is placed in v’. Result must be less than 1 in
absolute value.

2. Subtract. (o) — (8')is placed in 4’. Result must be less than
1 in absolute value.

3. Multiply, Low Order. The least significant 44 binary digits of
(@) X (B") are placed in v’.

4. Multiply, High Order. The most significant 44 binary digits of
(@) X (') are placed in v’

5. Multiply, Rounded. The most significant 44 binary digits of
(@) X (8) == 1215 are placed in 4’. The 1-2-45 is added if (') X (8')
is positive, and subtracted if (') X (8) is negative.

6. Divide. The most significant 44 binary digits of (8')/(a’) are
placed in /. (Note the inversion of order of « and 8.) Result must be
less than 1 in absolute value.

7. Power Extract. The number n-2-*4 is placed in v’ where n is
the number of binary 0’s to the left of the most significant binary 1 in ().
The b digit is ignored; 8 may be any even number. If (a) is all zeros, zero
is placed in v'.

8. Shift Number. The 44 binary digits immediately to the right
of the radix point in (') - 27 *2* are placed in 4. The result, in v/, is
the equivalent of shifting (o) n places, where n - 2=4¢ = (8’) and n positive
indicates a shift left, n negative a shift right. If |n| = 44, zero is placed
in 4.

9. Extract or Logical Transfer. Those binary digits in ('), in-
cluding the sign digit, whose positions correspond to 1’s in (8’) are replaced
by the digits in the corresponding positions of (a’).

10. Decimal to Binary Conversion. This operation may be in-
terpreted in two ways: (a) (') is considered as a binary-coded-decimal
integer times 244, It is converted to the equivalent binary integer times
237 and the result is placed in v/, or (b) (a’) is considered as a binary-
coded-decimal fraction, D. It is converted into an intermediate binary
fraction, B, such that B; = D X 10!! X 237 and the result placed in v'.
To obtain B, the true binary equivalent of D, B; must be multiplied by
(10-1t X 237), However, since this factor is greater than 1 and therefore
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cannot be represented in the machine, two operations must be performed.
For example,
B; X (10711 X 237 — 1) = B;,

B = B; + B;.

Here the b digit is ignored, and 8 may be any even number.

11. Binary-to-Decimal Conversion. (o), considered as a binary
fraction, is converted into the equivalent eleven-digit binary-coded-decimal
fraction. The result is placed in 4’. The b digit is ignored, and 8 may be
any odd number.

Change of Control.

12, Compare Numbers. v can be relative only to the instruction
counter. If (a’) = (8'), the contents of the instruction counter are in-
creased by one as is normally done at the end of each instruction. If
(@) < (8"), the contents of the instruction counter are set to v'.

13. Compare Magnitudes. v can be relative only to the instruc-
tion counter. If |(a’)| = |(8")], the contents of the instruction counter are
increased by one as is normally done at the end of each instruction. If
[(@)] < |(8)|, the contents of the instruction counter is set to v'.

14. Base or Tally. The d digit is ignored. « and 8 may be relative
only to the base counter, v only to the instruction counter. If o' = g’, the
contents of the base counter are set to zero and the contents of the instruc-
tion counter increased by one as usual. If o’ < g8/, the contents of the
base counter are set to o’ and the contents of the instruction counter to v’.
(Note. The comparisons made here are of addresses themselves, not their
contents.)

15. File. Bmay be any odd number. « and y may be relative only
to the instruction counter.

If d = 0, the contents of the instruction counter increased by one is
placed in the v position of ('), and the instruction counter is set to v’.

If d = 1, the contents of the base counter is placed in the « position of
(’), and the instruction counter is set to v’. In addition, if b = 1, the
contents of the base counter is set to zero;if b = 0, the contents of the
base counter is not changed.

Transfer of Information.

16. Read In. The a digit must be 0; the b digit is ignored. If 8is
in the range 0 to 7 (decimal) or 000 to 007 (hexadecimal) « words are read
into the acoustic storage from input-output station 8. The first word read
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in is placed in v/, the second in 4’ + 1, ete. If 8 is in the range 1024 to
1791 decimal (400 to 6FF hexadecimal), & words are read into the acoustic
storage from the drum starting with the first word in the drum block whose
address is 8. The first word is placed in 4’, the second in v’ + 1, ete.

17. Read Out. The a digit must be 0, the ¢ digit is ignored. Start-
ing with (8"), read out a consecutive words from the acoustic storage to
input-output station «, if v is in the range 0 to 7 decimal (000 to 007 hex-
adecimal), or to the drum starting at the beginning of the drum block whose
address is v, if v is in the range 1024 to 1791 decimal (400 to 6FF hex-
adecimal).

16. Alphanumeric Read In. The a digit must be 1; the b digit
isignored. If Bisin the range O to 7 (decimal) or 000 to 007 (hexadecimal)
a characters are read into the acoustic storage from input-output station g.
The first character read in is placed in v/, the second in v’ + 1, etc. Each
character occupies the six most significant digit positions of the register
into which it is read ; the other positions are set to zero. This operation may
not be used to read words from the drum into the acoustic storage.

17. Alphanumeric Read Qut. The a digit must be 1; the ¢ digit
is ignored. Starting with (8’), read out « consecutive characters from the
acoustic storage to input-output station v; v must be in the range 0 to 7
(decimal) or 000 to 007 (hexadecimal). This operation may not be used
to read words from the acoustic storage onto the drum.

18. Move Tape Forward. (a,b,c,and d digits areignored.) B may
be any even number; ¥ must be in the range 0 to 15 decimal (000 to 00F
hexadecimal). The magnetic tape at input-output station vy is moved
forward n blocks where

n = [a - 1] 1,

that is, one plus the integral part of « — §, or the number of blocks that
include o words.

19. Move Tape Backward. (a,b,c,and d digits are ignored.) B8
may be any odd number; v must be in the range 0 to 15 decimal (000 to
O0F hexadecimal). The magnetic tape at input-output station v is moved

backward n blocks where
a—1
n= I: 3 :I + 1,

that is, one plus the integral part of « — %, or the number of blocks that
include « words.
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EASIAC Instruction Logic

As an example of a typical three-address machine a description of the
EASTIAC (Easy Instruction Automatic Computer) is given here. This
machine, an abstraction, made use of the MIDAC (Michigan Digital
Automatic Computer) as the host computer. EASIAC is an interpretive
routine (see Sect. 13), and is included as an example of that form of auto-
matic programming. Its internal structure has been described thoroughly
by Perkins (Ref. 80). It performs its arithmetic operations on floating
point numbers (actually binary, but printed out in standard decimal form
with properly located decimal point. If any one of eight specific program-
ming errors occurs (given by the codes listed below under EASIAC Error
Printout), then a printout occurs automatically. Such errors as division
by zero, taking the square root of a negative number, or using an operand
of the wrong type of information (an instruction) are some of the causes of
such printouts. In addition the contents of seven index registers are
printed, along with a “jump table” listing the instructions where transfers
of control were made, and how many times each loop was performed.

The addresses in the three-address instruections are symbolic or floating
addresses. The first two digits in an address give the position in a region
for which the letter and last two digits are the name. This “computer”
was used for two years for undergraduate instruction purposes at the
University of Michigan without any kind of error diagnosis other than the
automatic printouts described.

The EASTAC reads all the alphabetical and numerical characters listed,
and, as noted in the Summary of Operations (see Table 12), contained very
thorough alphabetical input-output instructions with punched paper tape
high-speed input and typewriter and high-speed punch output.

A demonstration problem, calculation of a polynomial for a number of
values, is included. The notation “fa--a01” indicates that the given
instruction or number has been assigned the floating address “a01.”” The
signal “end”” notes the end of information to be read in. Index accumulator
(tally) modification is noted by the suffix (T;) added on to an address,
where i is the tally number.
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SYMBOLS.

R TV V A

less than

greater than

greater than or equal to

is not identical to

absolute value

the cell whose floating address appears in the first component of an
instruction

B the cell whose floating address appears in the second component
of an instruetion

0% the cell whose floating address appears in the third component of
an instruction

o the cell whose address is obtained by modifying the address of o
by the contents of the proper tally

g’ the cell whose address is obtained by modifying the address of 8 by
the contents of the proper tally

v the cell whose address is obtained by modifying the address of v
by the contents of the proper tally

(/)  the contents of o’

(8') the contents of 8’

() the contents of v/

— becomes the new contents of

C; instruction sequencer

Characters.

0 G g W w —
1 H h X x -
2 I 1 Y vy :
3 J Z =z ;
4 K k &
5 L 1 / 3
6 M m $ i
7 N n % 3
8 O o ? (Back space)
9 P p ! (Space)
A a Q g * (Upper case shift)
B b R r ( (Lower case shift)
C ¢ S s ) (Tab)
D d T ¢t ” (Carriage return)
E e U u ’ (Color shift)
F f V v ¢ (Back space)
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Operation

Code
add
sub
mul
div
xfr
cmp
cav

jmp
lev
ret
set-x

ndx-x
cye-x

fil-x
stp

pno

rno

pch

rch

sqr
s-c

atn

DIGITAL COMPUTER PROGRAMMING

Tasre 12. EASIAC, SuMMARY oF OPERATIONS

Operation
Add
Subtract
Multiply
Divide
Transfer
Compare

Compare absolute
values

Jump

Leave }

Return

Set tally x

Index tally x
Cyecle tally x

File tally x
Stop

Print out numbers

Read in numbers

Print out alphanumeric
characters

Read in alphanumeric
characters

Square root
Sine-cosine

Arctangent

Symbolic Notation
@)+ B)—7'
(@) — ®B)—7
@) X B)—~'
@)+ B)—7

@)y—y'

if @)z @): (C;)+1—C;
if (@) < (8'): v — C;
if (") % B: (C)) +1—C;
if [(@)] < B): 7' —Cs
v —C;

’Y'—’Ci

Address of order immediately following
last unpaired lev order — C;

(@) — Tx

@) + (Tx) = Ty

if (Te) +1 2 (8): 0— T,

C)) +1—C;

if (Te) +1<B): (Tx) +1— Ty,
v —C;

(Tx) — %'

Halt computer. Upon pushing start
button, process next instruction and
continue

Print (o’) numbers starting at 8’ with
(v') digits to the right of the decimal
point. Print carriage returns after
each number but the last

Read in («/) numbers from station (3")
and store, starting at v’

If (@) is a number, print (a’) characters
starting at v’

If (o’) is a character, print characters
lstarting at y” to, but not including, the
first occurrence of (a’)

If (') is a number, read in (a’) char-
acters from station (8’) and store,
starting at v’

If («’) is a character, read characters
from station (8”) and store, starting at
v’ to, and including, the first occur-
rence of (a)

V) -y
sin (o) = B, cos (@) — v’
(a,) ’

(BI
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EASIAC Error Printout.

Code No.

1
2.

S©®WNOS >

002a07

S OO OO N

000a00
001a00
000a07

Error

Trying to interpret a noninstruction

More than 5 unpaired lev instructions

A ret instruction with no unpaired lev preceding

In a simple loop more than 250 times

Attempt to jump to, or to obtain an instruction or operand
from a nonexistent cell (i.e., a cell before the first instruction
or more than 250 cells beyond the first)

Attempt to divide by 0, take the arctan of 0/0, or take the
square root of a negative number

Not used

Not used

Operand not right type of information

Operand not integer, or not in required range

Attempt to read, print, or generate a number too large

Attempt to put result or to read in to a cell already containing
an instruction

Address where computation stopped
Error code (see above)
Contents of: T

144 13 T2
143 113 T3
113 (13 T4
& 13 T5
143 113 'I“3
119 {3 71‘7

004200 1

000b21 14 Jump table

Demonstration Problem.

Problem. Evaluate f(x) = aox* + a12® + ae2? 4+ asz 4 a4 for z =

1:2’3)"

., 25,

After the 25 values of x have been evaluated, print out the 25 values of

f@).

The values of the coefficients are:

a0=1,

@ =15 a=002, a=-2 a=—"5.
f@) = z* + 1.523 + 0.0222 — 23z — 56,
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For easier computation let
f@) = {[(aox +. a1)x + a2z + as}x + as.

Analysts. For one value of x the problem would consist of:
Calculating aoz.

Calculating aor + a;.

Calculating (aox + a;)z.

Calculating (apxr + a1)x + as.

Calculating [(aox + a1)z + agz.

Calculating [(aoz + a1)x + aslr + as.

Calculating {[(aox + a1)x + az]z + as}z.

Calculate f(z) = {[(aox + a1)z + a2lz + as}z + aa.

Additional Steps.
9. Setting any tallies needed.
10. Reading in a new value of z for the iterative process.
11. Storing the value of f(z).
12. Counting the number of times an iteration takes place.
13. Printing out the 25 values of f(x).
14. Stopping the computer.
15. Writing all the constants and temporaries which will be needed
during computation.

PN o WD

Flow Diagram.

x=x; f(x)
@_ Set tally current x stored i+1—>T

Yes

x < 25? No Printout 25 |

values f(x) Stop
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Program ror EvALUATION OF A POLYNOMIAL

Instructions
fa--200 c02 0 0 set-1 | 0o T
fa--a01 c00*(T1) | c02 | dOO add z = z; current z
doo b00 | €00 mul aor
e00 1b00 | €00 add aor + a1
¢00 do0 | €00 mul (aox + a1)z
00 2b00 | €00 add (apx + a1)z + ag
e00 d00 | e00 mul [(aox + a1)z + aslz
€00 3b00 | €00 add [( )+ azx+ a3
e00 do0 | 00 mul {{ Iz + aslz
€00 4b00 | 00 add flx) = { jx + a4
e00 0 c01 *(Ty)| xfr f(z) — c00*(Ty)
1c02 0 0 ndx-1 |1+T;—-T,
doo 2c¢02 | a0l cmp z <257 Yes, to a0l; no, go on
2c¢02 c01 1¢02 pno Print out 25 values of f (x) begin-
ning with cell c01.
0 0 0 stp Stop computer
Numbers
fa~b00 1 ao
1.5 ax
.02 as coefficients
—23. as
—56, a4
fa--c00 1
g values of z
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 |
19
20
21
22
23
24
25
fa~cOl }Answers f(=z)
empty--24 25 temporaries
fa—c02 0 Constant 0
1 Constant 1
25 Constant 25
fa~-d00 Current x, empty cell
fa—deOO Partial answers, empty cell
en
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7. TRADITIONAL PROGRAMMING TECHNIQUES

Method. The traditional hand-programming method for a scientific or
engineering problem for a high-speed digital computer occurs in the fol-
lowing sequence:

1. Selection of a numerical method of solution, a priori appraisal of
errors, selection of finite difference step size, and decision as to digit length
of numbers (single or multiple precision).

2. Preparation of a flow diagram using the symbology of Sect. 4 or a
similar one.

3. Static translation from the flow diagram into a sequence of instruc-
tions and listing of the constants, both in the original language of the
machine (generally octal or hexadecimal notation for binary machines,
decimal or alphanumeric decimal for equipment using that machine
notation).

4. Entry into the machine of this sequence of information, now consid-
ered merely as a string of machine words, on punched cards or punched
paper tape.

5. Checking or debugging of the written procedure by comparison of
contents of the machine registers during and after performance of the
problem, with previously obtained partial results computed by hand.

6. Upon obtaining deviations between the hand-computed results and
those read out on lights or by printer from the machine, a complete search
of the pertinent portion of the program to determine the error or errors.

7. Correction of the errors by changing the set of coded instructions,
with or without the corresponding change in the flow diagram, and then a
return through steps 3 through 7 until all results check with the hand-
computed values. (Mistakes may occur in the hand computation.)

8. Upon complete satisfaction that the program performs as it should,
entry of supplementary parameters in machine language and performance
of all necessary cases.

Programming Errors. The above sequence is precisely that of Fig. 1,
Sect. 1. However, the repetition of steps 3 through 7 are the most routine,
detailed, and time-consuming part of the process. These steps are most
prone to error and at the same time require the lowest level of basic skills.
One minor mistake in transcription, hand conversion, or data punching,
if not caught, can cause major mistakes in output, or a frustrating search
requiring vast outlays of programmer and computer time.

Once a programming error is discovered, instructions must be changed,
and often inserted or deleted. In the latter case, succeeding instructions
will acquire new addresses, and any instructions referring to them must be
changed to refer to the new address. One minor error can therefore cause
a chain reaction of corrections. This may be avoided by patching or
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inserting transfer of control instructions to remote unused locations, where
insertions may be made without complete renumbering of addresses.
Similar insertions of transfer of control instructions can be used to accom-
plish deletions. These procedures tend to cause further programming
errors.

Physical Restrictions on Programming

One ever present set of restrictions on digital computer programming
is that set of measures of magnitude (human effort, elapsed time, computer
time, computer storage) that describe the programming process and its
relation to the external practical world. Unfortunately, evaluation of most
of these measures is mainly a matter of experience.

Human Time. No formulas are available that can predict the amount
of human time required to program a particular problem, given an original
general description of a problem. Experience indicates that such time
estimates are usually underestimated. The advent of automatic program-
ming has generally decreased the amount of programmer time needed.

If an estimate of the (static) number of instructions is available (this
may be obtained by comparison with previously written programs), then
an estimate of human cost (and therefore time) may be based on the
common estimate for cost of hand-coded programs of $5.00 per checked out
instruction. This figure compares very unfavorably, of course, with corre-
sponding programming costs using the translator-compilers of the IT,
Fortran, Math-matic types.

Elapsed Time. Overall elapsed time is a function of the previously
discussed variables and is particularly a function of the machine aids to the
programming process available. Regular routine program debugging
procedures, such as described by Pietrasanta (Ref. 82), can aid markedly
in decreasing elapsed time. Combined use of translators with hand-coded
insertions, if easily available (such as with the IT system, see Sect. 12),
may cut elapsed programming time markedly.

General discussions of the programming process from this point of view
are available, for scientific problems, in Carr (Ref. 20), and for data proc-
essing problems, in Gottlieb and Hume (Ref. 113).

Computer Time. The original estimate was made by Burks, Goldstine,
and von Neumann (Ref. 19) that in most scientific problems the multi-
plication time of a computer would be the dominant factor, and therefore
an estimate of the number of such operations, multiplied by the time per
multiplication, would give a reasonable time estimate. The most satis-
factory method of such estimations at present, however, is still an experi-
mental one for any particular problem.

Computer Storage. Sooner or later almost every computer will find
its primary storage completely saturated by a problem, which must then
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be broken up into component parts and fed into the main storage in smaller
blocks. If there is no secondary storage, this process is dependent on the
flexibility and speed of external input-output equipment, such as punched
cards or punched paper tape. If there is secondary internal storage, such
as magnetic drum storage or magnetic tape units, the amount of time that
a problem requires will depend very strongly on the method of division
of a problem into pieces, and the routing of these pieces in and out of main
working storage in the most efficient sequence. Some of the obvious
procedures possible are: ‘

1. Storage of data in main storage and bringing in programs in blocks
from secondary storage.

2. Storage of program in main storage and bringing in data in blocks
from secondary storage.

3. Mixture of (1) and (2).

A discussion of the third process, with the inclusion of built-in checks, is
given in Brown et al. (Ref. 18). The most experience with such hierarchy
transfer of information has been by users of the Univac I, which had a
relatively small main storage in the form of acoustic delay lines and a large
secondary storage in the form of magnetic tape units. A discussion of an
automatic system which faces the problem of segmenting a program, either
data or instructions, into pieces is given by this group (see Ref. 2). The
general conclusions of these and other workers is that while rules may be
set up to prescribe the storage hierarchy manipulation process so that a
computer may do it automatically, it is imperative that a programmer be
allowed to override any automatic segmenting and allocation system in
order to provide increased efficiency.

Minimal Latency Programming. For those computers with a one-
plus-one address instruction scheme, on the other hand, machine allocation
of storage seems satisfactory in a large majority of cases. Most work of
this type has been done for the IBM 650. Gordon (Ref. 41) first wrote
a program assigning next instruction addresses automatically by machine
for this computer; this was later incorporated into SOAP (Symbolic
Optimal Assembly Program) (Ref. 83). .

Examples of Computer Programming

The most straightforward way to describe the process of digital computer
programming is to give a sequence of equivalents for each type of element
in the flow diagram notation already discussed. Two ‘““target’”’ machine
languages will be described in the list of equivalents: a computer with a
single-address (actually “one-plus-one’’) instruction logic, the IBM 650;
and a computer with a three-address instruction logic, the MIDAC (Michi-
gan Digital Automatic Computer). (See Sect. 6.)
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In the examples that follow, the first few will be in the original languages
of these machines, so that the results will be the actual ones that might be
used. The later ones will use symbolic addresses in place of the usual
decimal or hexadecimal integer addresses. This allows much easier under-
standing of the routines. These symbolic addresses will generally use five
or fewer alphanumeric symbols, such as are used in the SOAP (Symbolic
Optimal Assembly Program) for the IBM 650. The MIDAC notation
used on that machine with the MAGIC system is somewhat simpler, but
comparable, and for uniformity the same addressing system will be used.
For the IBM 650, when the next instruction address (NI Add) is not written,
it means that the next instruction follows directly below in sequence. See
Sect. 6 for instruction codes of the IBM 650 and MIDAC computers.

Notation.
— “store”
Ay Upper accumulator
Ay Lower accumulator
C(n) Contents of location n

Loc(a) Address of the location containing a

Parentheses surrounding an address mean it is modified during the
program. Dotted lines drawn underneath instructions indicate conditional
transfer of control. Solid lines indicate unconditional transfer of control.

Arithmetic Boxes. A typical arithmetic box would be that of Fig. 11

—_— ] Ny + Y3 ) (s X ¥5) |——

Fia. 11. An arithmetic box.

where the values of y1, y2, - - -, ete., are “digital numbers.” The corre-
sponding sequence of IBM 650 instructions, using the SOAP assembly
language notation, is given in Table 13. It is assumed that numbers are so

TaBLe 13. IBM 650 PrograM rForR ProBLEM oF Fia. 11

Machine Language
SOAP Program

Symbolic Loca- Opera- Data NI

Program tion tion Address Address Explanation
RAU Y0004 0100 60 0204 0101 Ya— Ay
MPY Y0005 0101 15 0205 0102 C(Ay) Xys— AL
STU T0001 0102 21 0301 0103 ClAv)—t
RAU Y0002 0103 60 0202 0104 y2— Ay
AUP Y0003 0104 10 0203 0105  C(Av) +ys— Ay
DIV  To0001 0105 14 0301 0106 C(Av)/t1— AL

STL Y0001 0106 20 0201 0107 C(AL)—»n
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scaled so that overflow would not occur. The next instruction address of
the IBM 650 may be omitted in the SOAP program, since it is filled in
automatically. The translation of this program, with both data and next
instruction address included, is given alongside the original sequence, with
explanation at right. It is supposed that the followmg decimal address
storage assignments have been made:

Program: 100 (instructions follow in sequence)
Y0001: 201 (other Y’s follow in sequence)
T0001: 301 (other T’s follow in sequence)

(Generally, if minimum latency or optimal coding were used, the location
of successive instructions and the corresponding next instruction addresses
would not appear in sequence.)

On the MIDAC, the corresponding program in the MAGIC system
might be used (see Table 14). It is assumed that the same storage assign-

TasLe 14. MIDAC ProGraM ror ProsLEM oF Fia. 11

Machine Language Program

(Hexadecimal)
, Hexa- o B v . '
MAGIC Symbolic decimal Ad- Ad- Ad- Oper-
Program Location dress dress dress ation Explanation

Y04 Y05 TO01 MU 064 0CC 0OCD 12D 08 Y4 X ys— b
Y02 Y03 TO02 AD 065 OCA 0OCB 12E 05 y2 + ys—t2
T01 TO02 YO1 -DV 066 12E 12D 0C9 OB ta/t1— 11

ments hold as above. Note that a computer with a three-address instruc-
tion logic does not use an accumulator and does not need as many machine
words to perform the same problem in this case. (Hereafter, machine
language translations will be omitted.)

Comparison Boxes. The act of comparison can generally be accom-
plished by one instruction using either type of logic. A typical comparison
box would be that of Fig. 12. Now assign the same locations for y; and
program as before, and assume in addition that the number .15 is in
location £;. All numbers are ““digital.” The IBM 650 program is given in

F1a. 12, A typical comparison.
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Table 15. The MIDAC program is given in Table 16. The “base” in-
struction (BA) is a simple transfer of control instruction to 104, which
corresponds to the next address “0108”’ of instruction 0104 of the IBM 650
program above. In Table 16 C(y2) is assumed originally zero.

TaBLE 15. IBM 650 SOAP ProGram ror CoMPARISON OF FIa. 12

Next
Data Instruction
Location  Operation Address Address Explanation
0100 RAL Y0001 y1— Ar,
0101 SLO T0001 CAL) —t1i— Ay
0102 BMI 0105 C(Ap) < 0— NI Add = 105
0103 RAL Y0001 y1— Ap
0104 STL Y0002 0108 C(AL) — y2
0105 RAU Y0001 11— Ay
0106 MPY Y0001 C(Ayp) X y1— Ayg
0107 STU Y0002 C(Av) — y2

0108 (continue)

TasrLe 16. MIDAC MAGIC ProGram For CoMPARISON OF Fia, 12

@ B Y
Decimal Ad- Ad- Ad- Oper-

Location  dress dress dress ation Explanation
100 Y1 T1 103 CN y1 < {1— NI Add = 103 -
101 Y1 Y1 Y2 BEX y1—> Y2
102 000 001 104 BA 000 < 001 — NI Add = 104
103 Y1 Y1 Y2 MU y1 X y1—> Y2
104 (continue)

Indicial Boxes. Indicial boxes in a flow diagram are most often part of
a more elaborate loop or induction structure. Index modification is usually
accomplished in two ways: (1) in the arithmetic unit; (2) by means of an
index register.

Performance of an inductive process usually involves four separate
functions:

1. Initial setting of an index or counter to an initial value (often, but
not always, zero or one).

2. Modification of an address of arithmetic (or other) instruction as a
function of the index. '

3. Increasing the value of, or incrementing, the index (in some cases
this may be a decrementing process).
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4. Testing the value of the index to see if the induction has been com-
pleted.

An example of a process containing all four of these functions is the com-
n

putation of the vector inner product ¥ ab;. It is assumed that the
i=1

numbers are ‘‘digital” and that they are so scaled that no overflow will

occur. The flow diagram is as in Fig. 13.

Fra. 13. Vector inner product 2 a b

Programmers are generally advised, even if it costs more instructions, to
preset all counters, instructions, etc., to original conditions as is shown on
the flow diagram of Fig. 13 rather than afterwards, as could possibly be
done with “loops within loops.” It is possible to make use of input of

TasLe.17. IBM 650 SOAP PrograM For VEcTOR INNER PrODUCT, FIG. 13

Next
Loca- Oper- Data  Instruction
tion ation Address Address Explanation
0100 RAL T0000 0— A
0101 STL SIGMA CAL)— 2
0102 RAL TO0001 1X1076— Ay,
0103 STL 10000 C(AL)—1 X 10°°
r._>0104: RAL 0120 “RAU A0000” — Ay,
| 0105 ALO 10000 Form “RAU Loc (a;)”’
) 0106 STL 0110 C(AL) — 0110
10107 RAL 0121 “MPY B000” — Ay,
: 0108 ALO 10000 Form “MPY Loc (b;)”
;0109 STL 0111 C(Ap) — 0111
| 0110 RAU  (A0000) a;— Ay
} 0111 MPY  (B0000) C(Ay) X b;— Ay
;0112 ATUP SIGMA Z+ CAy)— Ay
| 0113 STU SIGMA CAy)— 2
1 0114 RAL 10000 1 X 1076— Ay,
l 0115 ALO  T0001 (1 X 107%) 4+ C(Ap)— Ay,
) 0116 STL 10000 @+1) xX106—7 x 10-6
0117 SLO N00o1 CAL) — (n+1) X 1076 — Ay,
! o118  BMI 0104 ) C(A) < 0— NI Add = 0104
0119 HLT 0000 Stop
0120 RAU A0000 Base instruction for a;

0121 MPY  B0000 Base instruction for b;
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information from outside the computer to do the initial setting. However,
in this case, one cannot start over at the initial internal instruction, but
must start over at the point of reading in of instructions. The process of
“resetting”’ counters to their original condition after the testing process
is completed should not be used unless one is willing to take the conse-
quences of possible improper runs upon starting over.

Note that a temporary location = (SIGMA) is used to hold the partial
sum. The coding for the IBM 650, using address modification in the
arithmetic unit, is given in Table 17. (It is assumed that location T0000
contains 0, T0001 contains 1 X 10-6, T0002 contains n X 1076 a; is in
A0001, as in A0002, b; in B0O0OL, bg in B0002, - - -, ete., and (n + 1) X 106
in location N00O1.) ‘

In this program (Table 17) locations 100-103 preset the initial conditions,
locations 104-109 modify the instruction addresses, locations 114-116
perform the incrementing, and locations 117-118 perform the comparison.
This program may be rewritten as in Table 18 to use the two instructions
being modified themselves as counters. (Hereafter symbolic addresses will
be used as instruction location addresses as well as data.) Note that now
the flow diagram of Fig. 13 is not followed precisely.

TasrLe 18. AvLteErNATE IBM 650 SOAP Procgran ror VEctor INNER PRODUCT

Loca- Oper- Data Next
tion ation Address Address TExplanation
BEGIN RAL T0000 1
. STL STGMA {0 -2
RAL INST1 .
RAL INST2
ST MULT2 {MPY B0000 — MULT?2
ENTRY RAL MULT1 - \
ALO T0001 }%‘X’ﬁriﬁb @
STL MULT1 J i
RAL MULT2 o
ALO T0001 15&‘}%“&0 -
Srl‘L MUL’FZ J1 T
SLO TEST1 .
_-BMI MULT! st =n+1?
/o e e
]
1 HLT 0000
MULTL  “RAU (A0000)  MULT2
MULT2 MPY (B0000)  NEXT T
NEXT AUP SIGMA Z+ (@ Xb)— 2
STU SIGMA  ENTRY-
INST1 RAU A0000 MULT2 Initial instruction
INST2 MPY B0000 NEXT Initial instruction

TEST1 MPY B(n +1) NEXT Test instruction
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In certain cases the latter technique may prove quicker or may require
less storage. (Above, the second technique requires twelve instead of
fifteen instructions in the loop itself.) Only the first procedure will be
coded for the MIDAC as shown in Table 19.

TasLe 19. MIDAC MAGIC Program FoR VEcTOrR INNER PrODUCT, FIa. 13

Loca- a B v Oper-
tion Address Address Address ation Explanation
'BEGIN INCRE T0000 I0000 AD 1—3
T0000 TO000 SIGMA AD 0—-Z2
INSTR  TO0000 MULT1 AD  Set instruction
r__,MULTl (A0000) (B0000) T0002 MU a; X b;—t2
| T0002 SIGMA SIGMA AD o+ Z2— 2
I' 10000 INCRE 10000 AD 114 1—>1%
I INCRE MULT1 MULT1. AD  Increase addresses

b e 10000 TESTT MULT1T CN <¢=a—>NI= MULT1
000 000 000 RI Stop
INCRE 001 001 000 00 Increment

INSTR (A0000) (B0000) T0002 MU  Base instruction
TEST1 (n+1) (n+1) 000 00 End of cycle test

Use of Index Registers. The augmented IBM 650, with index
registers, has three index registers, A, B, and C, of four decimal digits each.
Modification of an address at execution time by using an index register
will be indicated by one of these letters following the address in a ‘“tag”
position. The modified program for vector inner product given in Table 20
requires some new IBM 650 instructions not previously described, and
uses a value of n = 100. ,

RSA. Reset and subtract from index accumulator A. Index accumulator
A will be reset to zero and the data address will be subtracted from it.

AXA. Add to index accumulator A. Add the data address to index
accumulator A. "

NZA. Branch on nonzero index accumulator A. If the contents of the
index accumulator A is nonzero, take the next instruction from the data
address. Otherwise take the next instruction from the instruction address.

RAA. Reset and add to index accumulator A. Index accumulator A will
be reset to zero and the data address will be added to it.

Note that the program of Table 20 is much shorter when using the index
registers, but the flow diagram has been slightly altered so as to count down
from ¢ = —100 to ¢ = 0. The instructions in location ENTER and its
successor stiil perform their operations in an increasing sequence, however.

The MIDAC has one index register, the base counter, which is added to
any address in an instruction; at the time of execution, when that address
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TasLe 20. IBM 650 (AuamENTED) SOAP PROGRAM FOR
Vecror INNER PrRopucT wiTH INDEX REGISTERS

Next
Loca-~ Oper-  Data Instruction ‘
tion ation Address Tag Address Tag Explanation
RSA 0100 —100— <
RAL T0000 \
STL  SIGMA 0—2
~~ENTER RAU  A0101 A
J MPY B0101 A ;
! AUP  SIGMA Z4aXbi— 2
| STU SIGMA
! AXA 0001 i+1—%
b NZA ENTER NEXT 1> 0— NI = ENTER
NEXT  HLT 0000 Stop

is ‘“tagged’” with a negative sign. One operation, the base operation, is
used to set, increase and test the counter. The instruction

—a B % BA
performs all of the following operations in sequence:

C (Base Counter) + « — Base Counter;
if C (Base Counter) < 8 — Next Instruction Address equals v;
if C (Base Counter) = 8 — Next Instruction Address is in sequence,
and 0 — Base Counter.

Thus the base counter is ordinarily set to zero by an instruction
000 000 000 BA

The above vector inner product program for MIDAC would now be that
of Table 21.

TaBLE 21. MIDAC MAGIC PrograMm FoRrR VEC1ue INNER PRODUCT
WITH AN INDEX REGISTER

Loca- @ B 0% Oper-
tion Address Address Address ation ‘Explanation
‘BEGIN 000 000 000 BA Clear base counter

SIGMA SIGMA SIGMA SU 0— 2
~->ENTER —A0001 —B0001 'T0002 MU a; X by— e
i T0002 SIGMA SIGMA AD St
N —001 n ENTER BA) i< n— NI =ENTER

Stop
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Note that here the counter ¢ ranges from 0 to n — 1. The comparison
in efficiency between the IBM 650 and MIDAC is not a completely fair one,
since some of the features of the IBM 650 (performance of instructions frora
the accumulator, use of the distributor, etc.) have not been used. Never-
theless, these examples do show the marked advantage in this type of
cyclical problem of a three-address instruction logic with index register
over a comparable single-address instruction logic.

Multiway Switch. The flow diagram notation for the variable remote
connector, or multiway switch, provides another example of address modi-
fication. Such a multiway switch might be used with a table look-up
process, such as is required in many function evaluation processes, inter-
pretive programs, and other problems in which performance is dependent
upon a value of a function. The flow diagram is given in Fig. 14, where,

000

Frc. 14. A multiway switch.

dependent on the value of j, control jumps to one of n 4+ 1 remote con-
nections.

Four possible programs are described below, two for a single-address
(IBM 650) and two for a three-address (MIDAC) instruction logic, with
and without the use of index registers.

Exampre 1. IBM 650 SOAP program for multiway switch without use
of index accumulators. Note performance of an instruction from the
lower accumulator.

Loca-  Oper- Data Instruction )
tion ation  Address Address Explanation
BEGIN RAL JUMP \Set JUMP to .
ALO J0000 8002 [“NOP 0000 (ALPHA -I_-j])”
r--JUMP NoP 0000 (ALPHA)  Jump to aj(performed in Ar)
i
: J0000 00 0000 J
1 ALPHA
LA \
:é’/ -7 Locations ayg, a1,
s . e, Oy
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Examrie 2. MIDAC MAGIC program for multiway switch without
use of base counter, see Table 23.

Loca- a B8 v Oper-
tion Address Address Address  ation Explanation
Set JUMP to
BEGIN J0000 JUMP JUMP AD <{“000000 (ALPHA + j)

BA)’

r~-JUMP 000 000 (ALPHA) BA Jump to «;

i J0000 000 000 j 00

| ALPHA

LA e Locations ag, a1,

L/:’/ ) *y Q&

\\*:

ExampLe 3. IBM 650 (Augmented) SOAP program for multiway
switch with index register. Note that for the special case where the
address of the RAA instruction is greater than 7999, the index register A
is loaded directly.

Loca-  Oper-  Data Instruction
tion- ation Address Tag  Address Tag Explanation
BEGIN RAL J0000 J— Index Acc A;
RAA 8002 ALPHA A [ jump to e;
J0000 00 0000 J
ALPHA

Locations ay,
ay, e, an

‘Exampre 4. MIDAC MAGIC program for multiway switch with an
index register. Again in this case the use of the base counter is hindered
because there is no direct way to store an integer in it.

Loca- @ B v Oper-
tion  Address Address Address ation " Explanation
BEGIN 000 - 000 000 BA  Clear base counter
’ Joooo JUMP1L JUMP2 AD Storej in o of JUMP2
r--JUMP2  (000) 999 —ALPHA BA  j— base counter,
| jump to e;
! J0000 J 000 000 00
| JUMP1 000 999 —ALPHA BA
: , ALPHA
' —’r: Locations ag, a1,
4:: . cee L

~

\*.
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Dynamic Stop. It is possible to code a transfer to the same instruction
to give a tight loop that accomplishes the equivalent of stopping the machine
but allows it to run on at high speed. For computers with electrostatic
storage, where the “read-around’ or “consultation ratio’” is important, this
is definitely not recommended. It has mainly been used on computers
without built-in halt instructions. On the two machines being used in
examples, the following would constitute “dynamic stops.”

Exampie 1. IBM 650 SOAP program for dynamic stop.

Loca- Oper- Data Instruction
tion ation Address Address Explanation
LoopP NOP 0000 Loop NI Add = LOOP

Exampie 2. MIDAC MAGIC program for dynamic stop.

Loca- « B8 v Oper-
tion Address Address Address ation Explanation
LOOP 000 001 Loor BA NI Add = LOOP

Subroutine Linkages. Entry to subroutines must accomplish the
following:

1. Store the address of the next word (which may contain the next main
program address, or else a program parameter to be used in the subroutine).

2. Transfer control to the first address of the subroutine.

This is given by the flow diagram of Fig. 15.

0 B0 0=

@——-)— Subroutine —)—@

Fig. 15. Two main program entries to the same subroutine.

On the IBM 650, the transfer of information about the position to which
control is to be returned in the main program in one technique makes use
of the one-plus-one address features of the computer. The next instruction
to which control is to be returned in the main program is loaded in an
available machine register (the distributor) and then, after transfer to the
subroutine, the latter stores the next-instruction in an exit-instruction
location (Table 22). Note that the exit instruction originally is loaded with
a halt instruction, so that if control should be transferred improperly to the
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TasLE 22. IBM 650 SOAP ProGrAM FOR SUBROUTINE ENTRY

Next
Loca-  Oper- Data  Instruction
tion ation  Address  Address Explanation

-

.

. “RAL A0000” to
LDD RJUMP SUBRN Distr., jump to
subroutine

RJUMP RAL  A0000 NEXT

NEXT
SUBRN STD EXIT . {Store next instr. in
: \EXIT
Sub-
routine .
EXIT (HLT 0000 0000) EXIT instruction

subroutine, the computer would stop. Such safeguards are sometimes
useful in debugging programs.

If the IBM 650 did not have a next instruction address and no special
subroutine entry instruction were available, the following so-called Wheeler
entry (Ref. 108) could be used. The instruction JMP is not an actual
IBM 650 instruction.

Next
Loca- Oper- Data Instruction
~ tion ation  Address  Address Explanation
SELF RAL SELF “RAL SELF” — A;, '
ALO THREE “RAL (SELF + 3)" — Ay,
JMP SUBRN : Jump to subroutine
© RAL  A0000 - Next instruction
: SUBRN SDA EXIT ‘ "~ Store NIAdd in EXIT
Sub- )
routine .
EXIT JMP  (0000) , This becomes

“JMP (SELF + 3)”

THRERE 00 0003 0000
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With an index accumulator, the following subroutine sequence could be
used to provide a return jump from a subroutine on the IBM 650.

Next
Loca- Oper- Data Instruction
tion ation Address Tag Address Tag Explanation
JUMP RAA  NEXT SUBRN “NEXT” —
’ LAA.; jump
: to subroutine
NEXT  RAL  A0000 ’
SUBRN (Now Irrelevant)
Sub-
routine . ‘ Return to the
EXIT XXX XXXXX 0000 A {address given by
CI.AA)

(Here the sequences of x’s indicate the operation and data address can be
anything. I.A.A. stands for index accumulator A.)

‘In the MIDAC's typical three-address instruction logic, one instruction,
the “file” (FI) operation, performs the same function as the instruction
labeled JUMP for the modified IBM 650.

Loca- o B ¥ Oper-
tion  Address Address Address ation Explanation
JUMP EXIT 001 SUBRN FI “(JUMP + 1)” to v position
of EXIT, jump to SUBRN

A0000 B000O C0000 AD

SUBRN (Irrelevant)

EXIT 000 001 (000) BA

Note. If program parameters (variables needed in the subroutine) are
required, they are generally stored in (1) the accumulator and other
positions, except in the Wheeler entry method, and (2) registers following
the JUMP instruction in the main program. In the latter case, the sub-
routine entries or the subroutines themselves must be altered in an obvious
fashion.

Table Look-Up. In many cases, it is desired to find the value of a
function stored in a table. Since the process of finding an inner product
described above obviously requires looking up a; (and b;) in a table with
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argument ¢, a similar procedure can also be used, as long as the arguments

occur at equal intervals. The flow diagram for one approach is shown in
Fiz. 16; no actual coding is included. Here the argument is z at equal

@+ i< [x/Ax] > <% | END

F1c. 16. Table look-up of y = f(z).

intervals Az, and the function values are y;. Again [- + -] means “integral
part of.” The result will be the value in the table corresponding to [z].

The table look-up instruction on the IBM 650 (see Sect. 6) provides a
similar technique using only one instruction on the IBM 650. Several
hardware restrictions render this instruction less useful, but it is still a
very powerful device.

A binary table look-up procedure may often prove most efficient when
an equal interval table or table look-up operation is not available. Suppose
there exist 16 arguments, o, « - -, 15 in a table. A value of z is given, and
it is desired again to find the approximation y = f(z) from a table of
yi(t =0,---15). The flow diagram is shown in Fig. 17. Again, no
coding is included.

This process may obviously be recorded in a recursive (loop) structure.
The number of comparisons in this process is C(N) = loge N, where N is
the number of elements in the table.

|

(Portion of
diagram omitted)

=
Ty <€

|Yes

F1e. 17. Binary table look-up procedure.
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Programming with Secondary Storage

Since secondary storage varies from digital computer to computer, it is
difficult to give specific rules for its usage. The various devices which have
been attached to general purpose computers as secondary storage include:
(1) magnetic drums, (2) magnetic tape units, and (3) large-scale random
access devices (bin type magnetic tape units, magnetic disks, large-size
drums).

All these devices employ magnetic methods of recording, and are there-
fore storage of a general nonvolatile nature. They nevertheless have the
capacity for malfunctions; dust on a magnetic surface, improper relay
closure, ete., may cause an incorrectly read or written digit. It is therefore
necessary, if satisfactory reliability or built-in checks are not available, to
include programmed checks, usually by using storage-summing techniques,
to guarantee proper performance. These techniques are described below
under Integrated Systems (see Sect. 10).

Some magnetic drum systems are integrated into the high-speed storage
unit; here the only programming requirement is to provide economy of
performance either by minimal latency programming or an interlace
feature. (See Ref. 103.) Use of magnetic drums in this fashion causes no
basic problems. Drum equipment used as a secondary storage, however,
entails a scheduling problem that generally can be solved exactly only by a
computer itself, a procedure which has not been followed. Simpler methods
of approximate solution are needed. Programs for such hierarchy transfer
are discussed in Sect. 11.

The use of magnetic tape units is very dependent on the presence or
absence of built-in checking, ability to read both forward and backward,
presence of fixed or variable block length. The reader is urged to consult
Sect. 6, and then the various manufacturer’s operation manuals or reports
(see Refs. 34, 50, 54, 93, 103, and 148) for a fuller discussion of the instruc-
tions that govern magnetic tape equipment.

Large-scale, so-called random access storage, as embodied in tape bin
storage (see Ref. 119) and magnetic disk storage (see Ref. 118) basically
require methods of mapping call words of long digit length (for example,
inventory parts numbers) into a smaller number of digits giving the address
in the random access storage. A parts number, ten digits in length, may
correspond to a five-digit address in a random access unit. How can a
unique correspondence be made? Certainly if there are more than 100,000
different parts, this is impossible; but if there are fewer than that, some
method of randomization may allow an almost one-to-one mapping from
the set of parts numbers (scattered thinly throughout the entire ten-digit
range) into the set of storage addresses (most of which would be used).
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One popular technique is a variation of the so-called mid-square procedure
(see Ref. 74), to produce (in this case) the desired five-digit address.

ExampLE. Suppose an inventory parts number were 1122305151. The
twenty-digit product of the number with itself is:

12595688518611232801
[

If one uses digits 8 through 12 to provide a five-digit address, one obtains
85,186. With high probability, out of a group of 100,000 parts numbers
each with ten digits, no two of them will have the same set of five mid-
square digits. If more than one number does have a duplicate address
under this mapping, the address can be tagged as an “exception’’ and either
a second mid-square process based on the center ten digits of the resultant
square, or another group of five digits in the square, may be used to gener-
ate a new address, which again can be tested for duplications, ete.

Sorting and Merging. One primary problem that involves the use of
secondary storage is the problem of rearrangement of input data in an
ordered fashion. This problem can occur on one hand in assembly pro-
grams where symbolic addresses are to be arranged in an easily entered,
ordered list or, on the other hand, in any sort of business file maintenance
problem where inquiries or changes that are not externally ordered in
sequence are to be compared with a main file. Goldstine and von Neumann
(see Ref. 19, Part IT, Vol. II) developed the first theoretical analysis of two
of the main methods of information rearrangement and compared the use
of a general purpose digital computer for these purposes with standard
punched card equipment, with some advantage in favor of the former.
Later studies, as listed in Seward’s dissertation (Ref. 140), produce a better
“informational advantage” as far as use of a general purpose digital com-
puter is concerned, but still indicate that this present machine structure is
far from dominant in such performance.

There are two general classes of information rearrangement:

1. Merging. The act of taking two (or more) previously numerically
increasing (or decreasing) ordered sequences of numerical information
and combining them in one numerically increasing (or decreasing) se-
quence.

2. Sorting. The act of taking an arbitrarily ordered sequence of (nu-
merical) information and arranging it in a numerically increasing (or de-
creasing) sequence. Since alphabetical information in a computer is most
often encoded in some numerical form that is ordered analogous to the
position in the alphabet, these definitions also cover merging and sorting of
alphabetical and other nonnumerical information.

Such blocks of information (called items) are usually sorted with respect
to a key, a sequence of one or more symbols (digits) which are pertinent to
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the position of the information in the sequence. In this discussion, it will
be assumed, without loss of generality, that the key is numeric and the
ordering desired is generally increasing.

Use of Main Storage in Sorting. If the blocks of information to be
sorted each contain few enough computer words, many of them may be
stored in the high-speed storage of a computer. During the sorting process,
the relative values of the keys (usually located at the beginning of a block)
may be used to exchange entire blocks. A simpler and often more efficient
process, however, is to move only the addresses of the blocks rather than the
blocks themselves after a comparison of the keys has been made. Thus, if
n blocks of m words are to be sorted, to be stored in nm positions, space
must be also left for » addresses, which will be shuffled into an order corre-
sponding to the order into which the blocks should be moved. After this
process of rearranging the n addresses is completed, the corresponding
blocks may then be read out onto secondary storage in the proper sorted
order. This technique may obviously be extended to use of magnetic
drums as well, since they in general have a relatively small access time.

Sorting Methods

There are two main types of sorting: (1) digital sorting and (2) merge
sorting.

Digital Sorting. This method uses successive digits (or groups of
digits) in the key to arrange the sequence being sorted into an ascending
order. This is the method usually used on punched card equipment, where
the information is passed through the sorter one time for each digit in the
key, and the cards are collected in one of a number of output units (10 in a
decimal sorter) at the end of each pass. If one starts at the least significant
digit and proceeds upward in sequence, ordering the entire stack by digits
after each pass, the entire process requires d passes, where d is the number
of digits in the key.

The logical extreme of the digital sort technique is the so-called address-
sorting technique on a stored-program computer. If, for example, in a
decimal computer single words are to be sorted on a two-digit key, each
value of which is to appear only once, this key may be used as an index to
modify a storage address for each word in turn. Thus, if the resultant
storage block for ordered information is in locations 1900 to 1999, and if
the two-digit key is 65, the machine word corresponding should be sent to
location 1965. Even if the information being sorted is in larger blocks, if
the keys are unique and occur densely within the entire possible range of
key values, a similar technique may be used, either with the blocks them-
selves or with their addresses. Duplicate keys, if very few occur, may be
handled by signals designating an exceptional case.
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With magnetic tape units, (decimal) digital sorting may be achieved by
reading from one tape and storing the output on one of ten tapes, each
corresponding to a possible digit of the key. With two banks of ten-tape
units, the previous output can be used as the next input, with the next
successive significant digit being sorted on in order.

The time required for such a digital sort is

T =1tXmn,

where T is total time, ¢ is time for one passage of the entire information
through the storage, and n the number of digits, or as Seward (Ref. 140)
has noted, approximately

T = NAllog, R]

where N is the number of items being sorted, 4 the access time to read or
write items in the storage, the range of the key is from 0 to R, and r is the
base or radix used in representing the key.

Sorting by Merging. Thistechnique isthat recommended by Goldstine
and von Neumann for internal sorting. Sorting by merging consists in
taking two or more ordered groups of items and merging them into one
ordered group (usually called a siring). Figure 18 shows an example of
such a merging process.

Goldstine and von Neumann (Ref. 19) have discussed merging in detail
in the case where information is stored in the main storage. The flow
diagram is shown in Fig. 19. In this case, an item X* consists of a one-word

Merged

Ordered String

Ordered
String

Fra. 18. Example of sorting by merging.
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key X' followed by p other words (p is the order of the item). A string S
will consist of n items, where n is the length of the string. A string would
then contain n(p + 1) words. The flow diagram describes the merging of
two strings S = (X1, X2, ... X*) (of nitems) and T' = (Y, Y2, ..., ¥Y™)
(of m items) to produce an ordered string R = (Z!, Z2, Z8, - - ., Z»*t™)
where each Z'is one of the previous X’s or Y’s such that the keys z¢ and
y* are now arranged in increasing order. The string X would be given
by Xi= @@ wb -, Y' by ¥i= (y,ui 0,7, and Zi by
Zi = (& wry - -, wpt).

In the general case of merging two strings from two tapes into a third
string on a third tape, there would need to be further storage boxes in-
cluded in the flow diagram.

Sorting of an arbitrarily ordered string of length N can now be accom-
plished by successive merging. This can be accomplished as follows:

1. Each pair of items in sequence is merged by considering each a string
of length one to form a string of length two.

2. Each pair in sequence of strings of length 2*(» = 1, - - -) is merged,
using the merging process described above, to yield a merged string of
length 2+1,

3. When 2"*1 = N and there is only one string, the process is complete.

The fact that N is not exactly equal to 2” can be disregarded by con-
sidering the remaining r, = N — 2’ elements as a separate string which
may or may not be merged at each stage of the process.

An example of the merge-sort process is given for a general string of 35
items (here merely keys) in Fig. 20.

A nonordered string of items {A!, A2 A3, .- A¥}, each of order p, to
be sorted may be manipulated by the flow diagram of Fig. 21. Here the
merge routine of Fig., 19, with parameters m and =, is the heart of the
process. There will be two indices involved, », indicating the number of
overall mergings that have been completed, and w, the number of mergings
of strings of length 2 that have been completed for this value of v. To use
the subroutine, the main program furnishes values m, and n,, which are
used as m and n in the merge routine, and the addresses of X1, ¥1, and Z1.
The resulting merged sequence {Z*} is stored beginning at the address of
X1!. (The manipulation of these addresses is not included in the merge
routine, for the sake of simplicity, but it is an obvious extension of the
flow diagram of Fig. 21.)

For the worst possible case, when the keys are present in exactly the
reverse order, the number of comparisons required for sorting n items,
C (N ), which may be considered a measure of the amount of effort needed to
sort using this method, can be shown to be bounded from above:

C(N) £ Nloga N
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Initial  Sequences Sequences Sequences Sequences Sequences  Sequences

String of 2 of 4 of 8 of 16 of 32 of 64 (or less)

50 27} 2 2 ) 2 ) 2 2
27 50 27 20 3 3 3
39 2 } 39 21 5 4 4
2 39 | 50 27 | 11 5 5
21 21 } 20 39 15 9 9
46 46 21 | 46 16 11 11
65 20 } 46 50 20 12 12
20 65 65 65 ) 21 | 15 15
3 3 3 3 27 16 16
5 5 } 5 5 29 17 17
61 29 } 29 11 31 18 18
29 61 61 15 39 19 19
16 16 } 11 16 46 20 20
31 31 15 29 50 21 21
15 11 } 16 31 61 25 25
11 15 31 61 65 ) 26 26
48 28 } 4 4 ) 4 27 27
28 48 28 | 17 9 28 28
4 4 } 44 28 12 29 29
44 44 48 44 | 17 31 31
49 17 } 17 48 18 33 33
17 49 49 49 19 39 39
62 55 } 55 55 25 43 42
55 62 62 62 26 | 44 43
18 18 } 9 9 28 46 44
43 43 18 12 33 48 46
9 9 } 25 18 43 49 48
25 25 43 19 | 44 50 49
33 12 } 12 25 48 55 50
12 33 19 26 49 61 55
26 19 26 33 55 62 56
19 26} 33 43 62 65 ) 61
56 56 } 42 42 42 42 62
63 63 56 56 56 » 56 63
42 42} 63 63 63 63 65

F1a. 20. An example of merge-sorting by pairs.

(It can be easily shown where N = 27, » an integer, that:
C(N)=NlogaN—N+1N =2)
and the bound can be extended by somewhat more complicated analysis.)

For the most favorable case, when the items are already sorted by key,
the number of comparisons can be made as low as

C(N) £ N.
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This requires that the merging routine of Fig. 21 be reprogrammed in a
more complicated fashion to take advantage of the possibility of an original
string that is almost ordered.

For sorting external to a high-speed storage, where the number of com-
parisons is no longer dominant, but rather the amount of input and output,
a similar process can be used, but here the strings resulting at the various
stages of the merging process would be divided approximately equally on
two (or more) output tapes. Upon passage through the entire data, the
tape units being used for the output strings could now be rewound, and
their information considered the input for a new merging process. If one
item is read in successively from each tape, keys compared, and the item
with the smaller key sent to one of several output tapes, successively
larger strings can be built up as with the internal storage procedure. If
there are 2° tape units available, the number of passages through the entire
information will be

log, N,

where b units are used for input and b for output. The detailed procedure
in this case depends upon how many items can be held in the internal
storage at one time. In general, it is best to perform internal sorts when-
ever possible and in as large a string as possible. If it is possible to hold
only two items in the internal storage at once, it may pay to modify the
von Neumann-Goldstine procedure to allow merging to continue to produce
a string as long as a sequence of keys is monotone. This string would be
read out on one of the output tapes. The next string, of arbitrary length
depending on the sequence of keys read in, would be put out on another
tape, cte. Upon exhaustion of the input information, the role of input and
output tapes would be reversed.

Other Internal Sorting Methods

Seward (Ref. 140) has collected statistics for various other methods of
internal sorting:

Finding the Smallest. Find the smallest of a group N, and store it.
Find the smallest of the group N — 1, and store it. Continue the process
until the group is exhausted. The number of comparisons is

NN —-1)

CaV) = =

Interchanging Pairs. Compare, and interchange if necessary, the
pairs beginning with an odd-numbered item (1, 3,5, - -+, N). Repeat for
the pairs beginning with even-numbered items. Alternate this process
until no interchanges occur. The number of comparisons in the worst
possible case is

C(N) = N2/2.
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Sorting by Sifting. Compare items in sequence, moving them for-
ward in the list until an item with smaller key is reached. When the last
item is “sifted’”” the items are ordered. The number of comparisons in the
worst case is

NN -1
C(N) = _(__) .
2
Partial Sorting. Items 1 and 2, 2 and 3,---,7 and 7+ 1,-- -, are
compared, interchanging where necessary. The process is repeated until
no interchanges occur. Again ‘

NN -1
C(N) = _(—) .
2
It is apparent from a more detailed study that the bounds on number
of comparisons given by digital sorting or sorting by merging with

C(N) = Nlogas N

are by far the best. Except in rare cases where much information is known
about the a priori sequence of the items, only these two methods should be
used.

A Practical Example

As a practical example of a process in use with magnetic tape units on
an actual equipment, the following procedure taken from a description of
the use of magnetic tapes on the IBM 650 is given. (See Ref. 148.) A
tape record on this machine (block stored on or read from tape) ranges
from 1 to 60 words. It is assumed first that one item may be stored in a
record. In this procedure:

1. The original sequence of items (here written on two tapes) is processed
and written on two output tapes.

2. The two output tapes, considered as new input tapes, are merged
to write two other output tapes. The process is repeated until completion.

At each step, two new records are compared with each other and with
the last output record written out. If either one of these is in proper
sequence with the last output record written out, it is written out on that
tape. If not, a new sequence is started on the second tape using the item
with the smallest key. The process is shown by an example, and in the flow
diagram of IMig. 22. When no new sequence has been set up during a
merging pass, @ = 0, and the entire process is complete. In the case below,
strings are separated by vertical lines.
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ExaMPLE.

First Pass
Initial Tape 1 23, 13, 11, 18, 29, 4, 5, 30, 15, 10
Initial Tape 2 16, 6, 24, 2, 17, 22, 33, 9, 7, 28
Output Tape 3 16, 23 | 2, 11, 17, 18, 22, 29, 33 | 7, 15, 28
Output Tape 4 6,13, 24[4,5,9,30] 10
These tapes now become input tapes 1 and 2.

Second Pass .
Output Tape 3 6, 13, 16, 23, 24 | 7, 10, 15, 28
Output Tape 4 2,4, 5,9, 11, 17, 18, 22, 29, 30, 33 |
These tapes now become input tapes 1 and 2.

Third Pass
Output Tape 3 2,4,5,6,9, 11, 13, 16, 17, 18, 22, 23, 24, 29, 30, 33
Output Tape 4 7, 10, 15, 28
These tapes now become input tapes 1 and 2.

Fourth Pass
Output Tape 3 2,4,5,6,7,9,10, 11, 13, 15, 16, 17, 18, 22, 23, 24, 28,
29, 30, 33
Output Tape 4

8. AUTOMATIC PROGRAMMING: DEVELOPMENT AND OBJECTIVES

Definition. Automatic programming can be defined as all those methods
which attempt to shift the burden of formulation and programming of
problems for automatic computers onto the machines themselves.

Automatic Coding Systems. Bemer (Ref. 141) has collected a list
of various automatic coding systems for computers which is reproduced in
Table 23. This list shows that:

1. The amount of effort put into automatic coding systems has been
large.

Note. Fig. 22 explanation.

Given four tape units numbered 1, 2, 3, 4:
Let m, m 4+ 1 be the numbers of the input tape units,

n, p be the numbers of the output tape units,
) be the index on tape m,
j be the index on tape m + 1,
k be the index on tape n,
l be the index on tape p.
Let I,,,; be the ith item on tape m, ete.,
k(A) be the key for item A, ete.,
1o be the number of items on tape m,

10 be the number of items on tape m 4+ 1.



Computer
IBM 704

IBM 701

IBM 705-1,2

System Name
or Acronym

AFAC

CAGE

FORC
FORTRAN=
NYAP

PACT IAe
REG-SYMBOLIC
SAPs

NYDPP
KOMPILER 3

ACOM
BACAIC

BAP

DOUGLAS
DUAL

607

FLOP

JCS 13
KOMPILER 2
NAA ASSEMBLY
PACT I°
QUEASY

QUICK

SHACO

S0 2
SPEEDCODING

ACOM
AUTOCODER®
ELI

FAIR

PRINT I«
SYMB. ASSEM.
SOHIO
FORTRAN

IT

AFAC

TaBLE 23. Avutomatic Coping SysTEMS ((ReF. 141)

Developed by

Allison G.M.
General Electric
Redstone Arsenal
IBM

IBM

Pact Group®

Los Alamos
United Aircraft
Serv. Bur. Corp.
UCRL Livermore

Allison G.M.
Boeing Seattle

Univ. of Calif., Berk.

Douglas SM

Los Alamos

Los Alamos
Lockheed Calif.
Rand Corp.
UCRL Livermore
N. Am. Aviation
Pact Group®
NOTS Inyokern
Douglas ES

Los Alamos
IBM ’
IBM

Allison G. M.
IBM

Equitable Life
Eastman Kodak
IBM

IBM

Std. Oil of Ohio
IBM-Guide

Std. Oil of Ohio
Allison G.M. -

Code

C

R

B Q

< axwa w®

Qx>

Assem.

X

iala PP M [olala Bl

>

Islale

P A

Mo

MMM MM M M

olalal

Oper.

Date
Sept. 57
Nov. 55
June 57
Jan. 57
Jan., 56
Jan, 57
Nov. 55
Apr. 56
Sept. 57

March 58

Dec. 54
July 55
May 57
May 53

March 53

Sept. 53

March 53

Dec. 53
Oct. 55

June 55
Jan. 55
June 53
Apr. 53
Apr. 53
Apr. 53

Apr. 57
Dec. 56
May 57
Jan. 57
Oct. 56
Jan. 56
May 56
Nov. 58

Index-

ing
M2

S2
S1
52

S2
52°

[ | @] 0| nw gmpRRERRRR I3

e e = B e S B B R DD B RO B b

RN -=NDOONO r—ln—-ﬂ—‘OI s

Algeb.

X

X
X

alale
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Computer
IBM 705-3

IBM 702

IBM 709

IBM 650

Sperry Rand
1103A

System Name
or Acronym

FORTRAN
AUTOCODER

AUTOCODER
ASSEMBLY
SCRIPT®

FORTRAN
SCAT

ADES IT
BACAIC
BALITAC
BELL Lle
BELL L2, L3
DRUCO I

EASE I

ELI

ESCAPE
FLAIR

FOR TRANSITa
ITe

MITILAC
OMNICODE
RELATIVE

SIR

SOAPI

SOAP II¢
SPEED CODING
SPUR
FORTRAN (650T)

COMPILER I
FAP

MISHAP
RAWOOP-SNAP
TRANS-USE
USEe

IT
UNICODE

- Developed by
IBM-Guide
IBM

IBM
IBM
G. E. Hanford

IBM
IBM-Share

Naval Ord. Lab
Boeing Seattle
M.LT.

Bell Tel. Labs

Bell Tel. Labs

IBM

Allison G.M.
Equitable Life
Curtiss-Wright
Lockheed MSD, Ga.

IBM—Carnegie Tech.

Carnegie Tech.
M.LT. .

G. E. Hanford
Allison G.M. ..
IBM

IBM

IBM

Redstone Arsenal
Boeing Wichita
IBM

Boeing Seattle
Lockheed MSD
Lockheed MSD
Ramo-Wooldridge
Holloman A.F.B.
Ramo-Wooldridge
Carn. Tech.-R-W
R Rand St. Paul

Code
A
A

<

Qx>

cax

M.L.

leialal

Pa b4

Assem.

M MM

isla

e

PAMMI M M P M

Inter.

PABADAPA A M

MMM

b b

Comp.

MM M M M M

T B

>

PB4

Oper.
Date
Dec. 58
Sept. 58

Apr. 55
June 54
July 55

Jan. 59
Nov. 58

Feb. 56
Aug. 56
Jan. 56
Aug. 55
Sept. 55
Sept. 54
Sept. 56
May 57
Jan. 57
Feb. 55
Qct. 57
Feb. 57
July 55
Dec. 56
Aug. 55
May 56
Nov. 55
Nov. 56
Sept. 55
Aug. 56
Jan. 59

May 57
Oct. 56
Oct. 56
June 57
Nov. 56
Feb. 57
Dec. 57
Jan. 59

Index-
ing
M2

Fl
Pt
M

= =

Symb.

ORI O NHONNNHNO RN ONONOOON i RN = N

Algeb.
X

alal

P

[ala]

ONIJOD ANV ONINNVY90Ud

LS1-T



Computer
Bperry Rand
1103

Hperry Rand
Univac
Tand IT

Sperry Rand

File Comp.

Sperry Rand
Lare

Burroughs
Datatron
201. 205

Burroughs
UDEC III

System Name
or Acronym
CHIP
FLIP/SPUR
RAWOOP
SNAP

A3, ARITHMATICe
AT3, MATHMATIC®

B0, FLOWMATIC®
BIOR

GP

MJS (UNIVAC I)
NYU, OMNIFAX
RELCODE
SHORT CODE

X-1

IT
MATRIX MATH

ABC

K5
SAIL

DATACODE I
DUMBO

ITe

SAC

UGLIAC

STAR

UDECIN-L
UDECOM-3

Developed by
Wright A.D.C.
Convair San Diego
Ramo-Wooldridge
Ramo-Wooldridge

Remington Rand
Remington Rand
Remington Rand
Remington Rand
Remington Rand
Remington Rand
Remington Rand
Remington Rand
UCRL Livermore
New York Univ.
Remington Rand
Remington Rand
Remington Rand
Case Institute
Franklin Inst.

R Rand St. Paul

UCRL Livermore
UCRL Livermore

Burroughs

Babcock and Wilcox

Purdue Univ.
Electrodata
United Gas Corp.
Dow Chemical
Electrodata

Burroughs
Burroughs

Code

=" ele! j==}--]

aQQ

M.L.

X
X

PAPA PP A

Assem.

AP A M

b

Inter.

X
X

X

ala]

Comp.

ala sl lalalalalatala

alalet

TaBLE 23. Avutomatic Coping SysteEMs (REr. 141) (Continued)

Oper.

Date
Feb. 56
June 55
March 55
Aug. 55

May 52
Jan. 53
Aug. 53
Apr. 56
June 56
Dec. 56
Apr. 55
Jan. 57
June 56
Feb. 54
Apr. 56
Feb. 51
Jan. 56

Jan. 58

June 58

Aug. 57

July 57
Aug. 56
Dec. 56

57
57

M2
M2

MS1
52

M/S
M

=

Pt

wgm @ Zg

Symb.

—_—_-—0 o

el L

Algeb.

851-C
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System Name Oper. Index- Fl

Computer or Acronym Developed by Code M.L. Assem. Inter. Comp. Date ing Pt  Symb. Algeb.
M.LT. ALGEBRAIC M.LT. R . X 52 S 1 X
Whirlwind COMPREHENSIVE M.LT. X X X Nov. 52 S1 S 1
SUMMER SESSION M.LT. ‘ X June 53 S1 S 1
Midac EASIAC Univ. of Michigan X X Aug. 54 S1 S 1
MAGIC Univ. of Michigan X X X Jan. 54 S1 S 1
Datamatic ABC1I Datamatic Corp. X
Ferranti TRANSCODE " Univ. of Toronto R X X X Aug. 54 M1 S 1
lliac DEC INPUT Univ. of Illinois R X Sept. 52 S1 S 1
Johnniac EASY FOX Rand Corp. R X Qct. 55 — S 1
Nore NORC COMPILER Naval Ord. Lab X X  Aug 85 M2 M 1
Seac BASE 00 Natl. Bur. Stds. X X
UNIV. CODE Moore School X Apr. 5

@ Indicates present heavy usage.
b Pact group contains Douglas SM, ES, LB, Lockheed, NOTS, N. Am., Rand.

Chart Symbols
Code R = Recommended for this computer, sometimes only for heavy usage.
C = Common language for more than one computer.
A = System is both recommended and has common language.
Indexing M = Actual Index registers or B boxes in machine hardware.
S = Index registers simulated in synthetic language of system.
1 = Limited form of indexing, either stopped undirectionally or by one word only, or having certain registers applicable to only certain variables,
or not compound (by combination of contents of registers).
2 = General form, any variable may be indexed by any one or combination of registers which may be freely incremented or decremented by
any amount.
Floating point M = Inherent in machine hardware.
S = Simulated in language.
Symbolism 0 = None.
1 = Limited, either regional, relative or exactly computable.
2 = Fully descriptive English word or symbol combination which is descriptive of the variable or the assigned storage.

Algebraic A single continuous algebraic formula statement may be made. Processor has mechanisms for applying associative and commutative laws to
: form operative program.

M.L. = Machine language.

Assem. = Assemblers.

Inter. = Interpreters.

Compl. = Compilers.

ONIJOD ANV ONINAVYD0Ud
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2. Most early efforts were in the direction of interpreters, but most
efforts now are in the design of compiler-translators.
3. Many systems have been replaced by newer, more efficient languages.

Development

Some of the most important steps in development of automatic pro-
gramming are listed below. The ideas listed here were proposed by many
persons; among those particularly to be mentioned are M. V. Wilkes,
D. J. Wheeler, and S. Gill of Cambridge University, C. W. Adams of M.I.T.,
Grace Hopper of Remington Rand, and N. Rochester of IBM.

1. Understandable Language. Translation, Mnemonic Codes,
Compiling, and Interpretation. The ambiguity of instructions and
numbers inside machines makes instruetions appear only as numerical
sequences.

(a) Programs were devised which automatically translated both num-
bers and instructions from an external decimal language (more useful to
human beings) into an internal binary language (more useful to the
machine). The important step was the recognition of the principle of a
dual language system and a programmed translation between the two
languages, with the computer to perform the translation.

(b) Along with the numerical translations came the use of “mnemonic”
—easy to remember—instruction operations, such as standard algebraic
notations, or abbreviations of the corresponding English words.

These are now known as “input translation programs.” The general
idea of translation leads to two basic techniques: pretranslation or com-
piling, and running translation or interpretation.

(¢) Compiling requires a large amount of medium access storage
(generally magnetic tape). The compiling process usually occurs only once.

(d) Interpretation is the only feasible translation method in machines
with small amounts of storage; this process is less efficient since the same
translation may occur over and over again during performance of a
problem.

The first attempts to improve the procedures of coding in machine
language resulted in a set of input orders that changed alphanumerical
sequences representing instructions on teletype tape over into internal
binary machine notation. (Ref. 108.) Today, most of the automatic
programming schemes make use of the pretranslation idea.

2. Easy-to-Correct and Easy-to-Use Input Languages. Sym-
bolic Addresses and Control Instructions. The use of external
languages that were easily understandable, such as mnemonic codes, does
not prevent arithmetic, logical, or clerical programming mistakes. The
translation process, developed to handle the requirement of an under-
standable input language, can also be applied to the use of so-called sym-
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bolic or floating addresses, which have no permanent absolute machine
internal counterparts. With these addresses, which are almost com-
pletely equivalent to an algebraic notation, assignment of addresses can be
made completely automatic by the computers themselves.

The use of such automatic address assignment, it turns out, requires
two “passes” or traverses through the input information in order (1) to
find out what algebraic addresses are present and what their internal
equivalent absolute addresses are, and (2) to assign these absolute ad-
dresses wherever the floating addresses occur (Ref. 21). (D. J. Wheeler
has shown, for the EDSAC II, that two passes are not always necessary.)
The assignment of absolute addresses cannot take place until all algebraic
addresses are known. The existence of these two passes through informa-
tion immediately presents opportunities to perform all sorts of other
transformations on the input information. From this grew the concept of
floating or symbolic address (Ref. 106). A similar system was developed
shortly thereafter for the IBM 701 (Ref. 87), using a Dewey decimal type
of symbolic addressing system.

In order to control the processes of correction, reassignment, and deletion,
and to handle the process of translation, a new kind of instruction is re-
quired. So-called control combinations, which tell the translation program,
rather than the computer hardware, what is to be done, give another
dimension of latitude of expression between the programmer and machine.
These new “tag words” allow the instruction process on input to expand
indefinitely.

3. Elimination of Repetitious Coding. Subroutines, Assembly
Programs, and Synthetic Instructions. To eliminate duplication of
effort that occurs when similar problems are repeated often, routines were
developed which performed standard operations. Such routines could be
called on by any programmer without the necessity of being rewritten
from the beginning. To make the most of such routines, complete gener-
ality was required. The floating addresses developed for correction
purposes helped provide this feature; similar so-called preset and program
parameters were devised to make such routines flexible. Such assembly
programs alleviated much of the effort in making corrections to instruc-
tions by insertion or deletion. Because of the “floating” nature of the
symbolic addresses which were retranslated at each new machine input,
insertions and deletions caused no further requirements for changing other
instruction addresses. With the advent of secondary storage in the form of
magnetic drums and magnetic tape, the need for two inputs of the program
punched tape or cards was eliminated; the two passes could be made
completely inside the machine.

The combination of these standard subroutines (see Subroutines below),
as they came to be called, with the input translation (compiling) techniques
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brought forth the concept of automatic assembly of programs. Here code
words called pseudo instructions or synthetic instructions are used to call in
and store precoded subroutines in a main program. Such open subroutines,
without automatic entry and exit, worked best with compiling techniques;
closed subroutines, which act in the same unitized manner as an ordinary
instruction, fitted most easily into the interpretive schemes. '

Extension of assembly programs to the use of pseudo instructions that
replaced one line of coding external to the machine by more than one
inside, allowed an increase in the number and variety of instructions
available to the programmer. Such efforts probably reached their peak
in the PACT system (Ref. 6) developed for the IBM 701 by a group of
Los Angeles users of that equipment. This system included automatic
insertion of scaling instructions for fixed-point computations as well as a
long list of pseudo instructions.. A more recent example of such an assem-
bly is the Share Assembly Program (SAP), and the X-1 assembly system
for Univac (Ref. 100). Details of SAP are given in Sect. 9.

4. Easy Mistake Discovery. Utility Programs. Relatively straight-
forward methods of correcting mistakes did not speed up program checkout
as much as would be expected, since before programming mistakes can be
corrected, they must be found. Unless complete retranslation of stored
information is made available to a programmer, he is forced to know and
use both external and internal languages, which nullifies some of the ad-
vantages discussed under 1 above. Such retranslation adds to the complex-
ity of the translation procedure, as well as causing possible ambiguities
because of many-to-one input translations. Nevertheless, such retrans-
lation can contribute to aiding the discovery of human programming
mistakes.

However, there are many difficulties attendant with a retranslation to
symbolic language in mistake diagnosis. One of these difficulties is that
a complete directory or dictionary must be retained in the machine and
consulted. Often, retranslation becomes difficult because a machine cell is
not uniquely identifiable with a symboliec address, These difficulties have
led, in many cases, to performing diagnosis in machine language. Unfor-
tunately, this often leads the programmer to another difficulty: making
corrections in machine language. ~

Diagnostic procedures fall into two categories: static or dynamic. Static
procedures give results only at specific points during solution of a problem,
usually only at the beginning, end, or both. ‘Sieved” or “changed-word
post-mortems,”” or storage printouts, have proved a welcome use of the
principle of machine screening of unnecessary information.

Dynamic mistake diagnosis, on the other hand, has often suffered from
the fact that it has of necessity been interpretive and, hence, machine-
time consuming, or else that it has put out information in an unretranslated
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form. A new concept in dynamic procedures, which give results as the
problem is being performed, combines built-in automatic switching with
programmed retranslation to speed up this process and make it com-
petitive in time. This is discussed in Sect. 10 under Utility Programs.

5. Prevention of Mistakes before They Occur. Generators. The
widespread use of precoded subroutines, which had been checked thoroughly
for both arithmetic, logical, and clerical mistakes, is an example of a
preventative technique. Instead of storing complete programs, however,
a more efficient method appears to store programs called generators that
can generate large classes of programs. If a correct algorithm can be de-
veloped by which a computer can generate a general class of small problems,
mistake-free codes can be produced directly. Similarly, automatic assem-
bly and automatic subroutine call-in techniques, if correct themselves,
will generate mistake-free programs,

6. Unification of Techniques. Combined Systems. Systems using
portions of the techniques listed above have been developed (Ref. 8).
Certain of the categories are directly opposed. Hence, the useful combi-
nations are employed with the objective of a self-sufficient method of
machine operation that requires a minimum of human intervention.

7. Universal Computer Language. The progress through the steps
listed above leads, of necessity, toward some sort of standardization of the
basic input language of all computers, as it looks to the users, before the
computer matches the internal language to the external human language.
Present day lack of compatibility between algorithms or programs devel-
oped on one computer and another is causing as much undue duplication
of effort in space as occurred in time before the advent of subroutines.
Universal languages, more or less standardized, exist for certain types
of problems, for example, those that can be expressed entirely alge-
braically.

9. AUTOMATIC PROGRAMMING: ASSEMBLY PROGRAMS

Structure and Objectives

Basically an assembly program accommodates programs written in
machine language. However, it allows the programs to be written with
certain flexibilities and conveniences not available in pure computer
language. The assembly program usually provides for the following:

1. Specification of all numerical constants in convenient decimal form.
(Provision is usually made, however, to allow the writing of binary num-
bers in appropriate cases.)

2. The use of symbolic addresses, addresses with mnemonic content.

3. The use of mnemonic two- or three-letter pairs to describe machine
instructions.
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4. The use of free addresses for instructions to allow the arbitrary
naming of an instruction without stating its location in the storage.

5. The automatic assembly of precoded programs (subroutines) into the
program, often by the use of pseudo instructions.

Two kinds of assembly programs are possible:

1. One-pass assemblers, where the computer, in translation, makes one
pass through the data to perform the required translation.

2. Two-pass assemblers, where the computer, in translation, first makes
a pass through the data to discover all symbolic addresses and to determine
subroutines to be used. The symbolic addresses are assigned machine
addresses, and the subroutines are included in the second pass.

If symbolic addresses are used, and they are in almost every assembly
program, a directory must precede the data in the case of a one-pass com-
piler. This directory is simply a list of symbolic addresses with corre-
sponding machine addresses; the directory tells the assembly program how
to assign the machine addresses. The directory is developed during the
first pass through the data, through the technique involving the use of a
location counter (see Assembly Procedure, below).

The difference between an assembly program and a compiler, discussed
in following sections, is tenuous. A compiler is considered to allow more
complex operations. It usually expands a convenient problem-oriented
language (such as algebraic formulas) into machine language. However,
the difficulty in terminology arises when the assembly program allows
many powerful pseudo operations which result in appropriate subroutines
included into the program. The compiler, in its truest sense, usually makes
no provision for machine instructions, or at lease deemphasizes them,
while the assembly program, as the name implies, assembles pieces of
machine instruction programming.

Two assemblers are prominent; the USE Compiler (Ref. 152) prepared
for the Univac Scientific Exchange (USE) for the Univac 1103A by The
Ramo-Wooldridge Corporation; and SAP, Share Assembly Program,
prepared for the Share Cooperative Programming Group for the IBM 704
by the United Aircraft Corporation. Both these compilers are of the two-
pass type, as are nearly all modern assembly programs. An assembly pro-
gram of the one-pass variety was RAWOOP (Ramo-Wooldridge One-Pass)
assembler (Ref. 8). The SAP program is described in some detail below.

Assembly Procedure

The procedure of assembly is in two parts:

1. Examination of the program to be assembled in order to define each
symbol used in writing the program. A location counter L is used to specify
the absolute location of each word (number or instruction) in the program.
L is set initially to an integer common to all programs, or in exceptional
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cases, supplied to the assembly program by the program being assembled.
Thereafter, each new instruction input increases the contents of L by one.
Simultaneously a table or directory is constructed. KEach directory entry
gives an equivalence relationship between a symbolic address S and the
corresponding absolute machine address Lg assigned by the counter at the
time of input. IEntries in the table may also be made by means of certain
pseudo operations. The order of the absolute instructions produced by the
assembly program is governed only by the order in which information is
input.

2. During the second assembly pass, the value of the counter L is com-
puted in the same manner as on the first pass. In addition, replacements
are made for symbolic addresses by integers stored in the directory as a
result of the first pass.

Share Assembly Program (SAP)

This assembly program was written for the IBM 704 computer (Ref. 143).
Instructions for this system are written with addresses expressed as com-
binations of symbols and decimal integers. A typical IBM 704 instruction
has operation, address, and a tag and decrement to be used with that
machine’s index registers. In addition to instructions, data in decimal,
octal (the IBM 704 is a binary machine internally), or Hollerith alpha-
numeric code may be read from punched cards. Previously coded library
routines may be conveniently inserted into a program whenever desired.

A number of pseudo operations which help carry out the assembly
process are as follows:

1. Origin specification (ORG). The location counter L is set to the
value of the expression (previously defined symbol) in the address portion
of the instruction. (This allows gaps in the sequence of input assignment
at any stage.)

2. Equality (EQU). The symbol appearing to the left of the operation
code is assigned the integer value given by the previously defined expression
in the address portion of the instruction. (This allows programmer
assignment of preset parameters.)

3. Synonym (SYN). The symbol appearing to the left of the oper-
ation code is assigned the integer value given by the previously defined
expression in the address portion of the instruction. (This allows pro-
grammer assignment of blocks of storage.)

4. Decimal data (DEC). The decimal data following are to be con-
verted to binary and assigned to consecutive locations L, L 4+ 1,---.
Successive words of data on a card are separated by commas. Depending
on whether or not each number contains an exponent or not, it will be
translated into a floating point, or scaled fixed point number, or fixed
point integer.



2-166 DIGITAL COMPUTER PROGRAMMING -

5. Octal data (OCT). The octal data following are to be converted
to binary integer form, and assigned to consecutive storage locations,
LL+1,.--.

6. Hollerith data (BCD). The 10 six-character words of Hollerith
(binary-coded-decimal) information are read and assigned to locations L,
L+1,---.

7. Block started by symbol (BSS). The block of storage from L to
L + N — 1, where N is the value of the expression following the operation,
is reserved, and any symbol preceding the operation is assigned the
value L.

8. Block ended by symbol (BES). Similar to BSS, except any
symbol preceding this operation is assigned the value L + N.

9. Repeat (REP). Two expressions, separated by a command, follow-
ing this operation, define integers M and N such that the block of instruc-
tions or data preceding the REP operation in locations L, L + 1, - - -, L +
M — 1 is repeated N times, stored in locations L + M, L + M + 1,
«++, L4+ (MN) — 1.

10. Library search (LIB). The library routine of k words, identified
by the symbol preceding the operation, is obtained from a library tape and
inserted in the program being assembled at locations L, L + 1, - -
L + k — 1. Any symbols appearing in the library routine are entered in
the directory and properly defined.

11. Heading (HED). If two or more programs use the same symbolic
addresses, they may be combined with this heading pseudo instruction
which prefixes each symbol used in the following program by the single
character given in the usual address position. Thus nonunique designa-
tions are made unique.

12. Define (DEF). This pseudo instruction assigns the value of the
expression in the address position to any subsequent undefined symbols
in successive integer order. )

13. Remarks (REM). Any Hollerith (alphanumeric) char