
An
Introduction

to the
980Series

Minicomputer

Tl-MIX

To the Reader -

·When i first became involved with the Tl 980 a few months ago, I decided to write a collection of notes
and code samples for my own use. The project eventually evolved into this manual which I hope will be of
use to new programmers. The pressures of time and other work caused the effort to be cut short, so many
oft.he code samples have not been tested, and certain statements may be in error. I would sincerely

. ~ppreciate it if those of you who find errors would assist me in correcting them by responding on the
tear-out sheet which is bound in this publication.

I acknowledge my indebtedness to you in advance in addition to those who have already contributed a
great deal. In particular, I would like to thank Jerry Junkins of the Equipment Group for supporting the
project, Floyd Burton of Tl-MIX for publishing the manual, Wilburn Jones <;>f the Services Group for
technical illustrations, Jim Simpfenderfer and Jon Jentink of the Equipment Group for reading sections of
the manuscript, and Fred Wedemeier of the Equipment Group for answering my incessant questions.

May our efforts be useful to you, the reader, in so.me way. ·

~o~l~.·~r~·
l!Jv~ . ~

S.N.S.

·About the Author -

Sue Nickerson Stidham has been involved with many aspects of computer technology. She holds a Ph.D .
. in physical chemistry from the University of Massachusetts (Amherst) and an A~B. in· chemistry and physics
from Sm.ith College. She was assistant professor of Computer Science at the University of Massachusetts,
an instructc;u· in physics at the University .at Bridgeport, Connecticut and at Mount Holyoke College. She . . ' .
held a P~troleu~ Research Fund·Fellow5hip for 2 years. , ·

Dr. Stidham was a National Science Foundation.stipend r:ecipient in ·1963 at the Winter Institute
in quantum chemistry and soHd-state physics; Gainesville, Florida, and in 1970 at CASSAO., (computer
assisted system simulation and desig".1), Houston, Texas. She joined Texas lnStruments in 1973.

TABLE OF CONTENTS

Section Page

1 INTRODUCTION TO ASSEMBLY LANGUAGE

2

3

1-1 Assembly Language Programming: What It Is And Why Learn It
1-2 Assembly Language vs. Machine Language
1-3 Organization of a Computer System . . .
1-4 Octal and Hexadecimal Number Systems
1-5 Hexadecimal Addressing Scheme

. 1-6 Memory Organization and the Program Counter
1-7 Pseudo-Operations and Assembly
1-8 The Role of the Accumulator in Execution
1-9 Assembling, Loading and Executing the Program
1-10 Finding the Answer . . • . . . •

MACHINE WORDS AND THE BINARY NUMBER SYSTEM
2-1 What's in a Word ·.
2-2 Number System Conversion Between Binary and Hexadecimal
2-3 Conversion to and from Decimal
2-3.1 Hexadecimal to Decimal
2-3.2 Decimal to Hexadecimal
2-3.3 Conversion of Fractions . . . • .
2-4 Number Conversion to and from Octal
2-4.1 Number Corwersion Between Binary and Octal
2-4.2 Conversions Between Octal and Hexadecimal
2-4.3 Octal to Decimal
2-4.4 Decimal to Octal • .
2-5 Conversions Between Binary and Decimal
2-6 Positive and Negative Data Values
2-6.1 The Sign Bit
2-6.2 Negative Numbers
2-6.3 Two's Complement Arithmetic

INTRODUCTION TO 980 ASSEMBLY LANGUAGE
3-1 Elementary Programming Considerations
3-2 The Instruction Format Skeleton
3-3 Data Declarations
3-4 Two Addressing Modes, P-Relative and Immediate
3-5 Transfer of Control: Branch and Skip
3-6 The Assembly Process and Some Assembler Directives
3-7 Register Organization and Definition
3-8 Notation Used in Describing Instructions
3-9 A Basic Group of Instructions
3-9.1 Idle Instruction (IDL)

iii

.. 1
... 3

. ... 4
.6

.. 7
......... 8

. ... 9
11
11
12

13
14
15
15
15
16

• . . • • . 17
17
17
18
18
19
19
19
19

. 21

.......... 23
. 24

. 25
.. 26
.. 28
. . 28
.. 30
.. 31
.. 32

. 32

Section

TAB LE OF CONTENTS (Co11tinued)

3-9.2 Register-To-Memory and Memory-To-Register Transfers
3-9.3 Register-To-Register Instructions
3-9.4 Unconditional Branch Instruction
3-9.5 Arithmetic Instructions
3-9.6 A Sample Program•..
3-9.7 IMO and DMT Instructions
3-10 Register Skips and Indexed Branch
3-10.1 Register Skips
3-10.2 Loops, Counters, and Indexed Branch
3-11 Sample Program
3-12 The Index Register and its Use
3-12.1 Handling an Array: A Typical Problem
3-12.2 The Index Register (X)
3-12.3 Setting up the Data for an Array Problem
3-12.3.1 Incrementing Index Techniques
3-12.3.2 Decrementing Index Technique
3-12.4 Address Arithmetic
3-13 The Bare Machine vs. the Basic Operating System
3-14 Use of the Basic Operating System

Page

. 32
... 33

34
... 34

. ... 35
.. 36

37
. . 37

40
.. 42

. 42
.... 42

.. 44

.. 44
. 44
. 46

.. 46

.. 47

. . 48

4 Tl MODEL 980 ADDRESSING MODES AND THE STATUS REGISTER
4-1 Summary of Model 980 Characteristics • . • . . . • . . • . . . 51

52
.. 53
. . 54

. 56
56
57

4-2 Effective Address •
4-3 Address Modes: Immediate; Indirect and Indexed P-Relative
4-4 Normal and Extended Format
4-5 The Base* Register•.........
4-5.1 Base Register Relative Assembly and Execution
4-5.2 Base Register Used at Execution Time Only
4-6 The Origin Directive
4-6.1 Reserving Storage
4-6.2 Data Declaration . .
4-6.3 Equate
4-6.4 Print Control Directives
4-7 The Status Register: Overflow, Carry, and Compare
4-7 .1 Carry and Overflow . . • • . . .
4-7 .2 Program to Test Carry and Overflow Behavior
4-7.3 The Overflow and Carry Tests
4-7 .4 The Compare Instructions
4-7.5 Testing the Compare Indicators

iv

............. 58
. 58

.. 59

.. 61

.. 61

.. 61
. 62

. . 63

.. 65

.. 65

.. 66

TABLE OF CONTENTS (Continued)

Section Page

5 REGISTER SHIFT AND DOUBLE-LENGTH
5-1 Single Register Shift Operation Format
5-2 Circular Shifts
5-3 Arithmetic Shifts
5-3.1 Arithmetic Right Shift
5-3.2 Arithmetic Left-Shift
5-4 Logical Shifts
5-5 Double Length Register Instructions
5-5.1 Multiply and Divide Instructions ..
5-5.2 The Moving Average Problem . . • . .
5-5.3 Shift Operations in a 32-Bit Register
5-5.4 Double-Length Shift in Preparation for Divide
5-5.5 Division by 2 or any of its Powers
5-6 Double Precision Arithmetic
5-7 Execution Times and the Space-Versus-Time Tradeoff

6 ARRAY TECHNIQUES: SORTS, SEARCHES, AND STACKS

7

6-1 Array Manipulation Through Indexing
6-2 Indexed B-Relative Mode . . •
6-3 Variable-Length Arrays
6-4 The Exchange Sort (Bubble Sort) Technique
6-5 Search Techniques
6-6 Sequential Search
6-7 Binary Search
6-8 Searches Using Hash Technique
6-9 Insertion and Deletion in a List
6-10 The Pushdown Stack
6-11 Indirect Addressing
6-12 Summary: Three Methods of Array Handling
6-12.1 Indexing Method
6-12.2 Self-Modifying Code ("Impure Procedure")

ASCII DATA, BUFFERS, AND 1/0 SERVICE CALLS
7-1 Introduction to Character Strings

.. 67
. 67

. . 68
...... 68

.. 69
. 69

....••. 69
. 69

. . 72

. . 75

.• 76
. 76
. 77
. 78

.. 83

. . 84

. . 84
. .. 86
.. 89
. . 91
. . 92
. . 93

. 93
...... 94

. . 99
100
101
102

7-2 Character Strings in 980AL: The ASCII Data Declaration
105
108
108
109
110
110
112
114

7-3 Non-Printing Characters
7-4 Buffers
7-5 Bytes and Byte Manipulation
7-5.1 Move Character String (MVC)
7-5.2 Generate Byte Address: The Byte Declaration
7-5.3 Compare Logical Characters (CLC)

v

· Section

TABLE OF CONTENTS (Continued)

7-6 Conversion From Internal to External Format: Integers
7-7 Hash Totals
7-8 1/0 Service Calls ..
7-8.1 Service Calls vs. The Bare Machine
7-8.2 1/0 and Program Termination Using Supervisor Service Calls
7-8.3 Definition of Service Calls With OPD
7-8.4 Program Skeleton: 1/0 and Program Termination Usi~g Supervisor Calls

8 SUBROUTINES

9

8-1 The Subroutine: A Labor-Saving Device
8-2 The Primitive Subroutine Linkage Problem . . .
8-3 Parameter Passing to a Primitive Subroutine ·
8-3.1 Parameter Passing via Registers (Call by Value)
8-3.2. In-Line Parameter List (Call by Address)
8-3.2.1 Fixed Number of List Entries·
8-3.2.2 Variable Number of List Entries
8-3.3 In-Line Address of Parameter List
8-4 Formal Structure of a Subroutine
8-5 Entry Points and External Symbols: DEF and REF · ••.
8-6 Parameter Passing and Common Storage ·
8-6.1 Common Storage .
8-6.2 Via Registers (Call by Value)
8-6.3 In-Line Parameter Lists (Call by Address)
8-6.4 Call by Name
8-7 Recursive Calls to a Primitive Subroutine
8-7.1 Recursion Using the X-Register
8-7.2 Recursion Using Indirect Addressing
8-7 .3 Example of a Recursive Subroutine

LOGICAL OPERATIONS, BIT MANIPULATION, MASKS, AND FLAGS
9-1 Truth Tables
9-2 Logical Operations
9-2.1 Memory-To-Register Logical Operations
9-2.2 Register-To-Register Operations
9-2.2.1 Complementing Operations
9-3 Bit Operations
9-4 Masking: One Practical Use of Logical Operations
9-5 The Search for a Byte String Delimiter
9-6 Tests for Ones and Zeros in the Accumulator

vi

Page

115
118
121
121
122
123
124

127
129
130
130
131
131
·132
133
133
134
135
135
136
136
136
138
139
139
140

143
144
144
144
146
146
147
149
151

TABLE OF CONTENTS (Continued)

Section Page

10 INPUT/OUTPUT ON THE BARE MACHINE
10-1 Instructions
10-2 Two 1/0 Techniques
10-2.1 1/0 by Polling . . .
10-2.2 1/0 by Interrupt
10-2.3 Double Buffering
10-3 Internal and External Addresses
10-4 Read or Write (Low-Speed Data Bus Device)
10-5 External Devices: Data, Status, Command Words
10-6 Card Reader
10-6.1 Reading a Card by Polling
10-6.2 Polling the Reader with Autoincrement
10-7 High-Speed Paper Tape Reader
10-8 High-Speed Paper Tape Punch
10-9 733 ASR/KSR Data Terminal
10-9.1 ROS Data Word
10-9.2 WDS Data Word
10-9.3 733 ASR Subcommands
10-9.4 Programming Examples ..
10-9.4.1 Write/Read KSR Example
10-9.4.2 ASR Subcommand Example
10-9.4.3 Write ASR Example
10-9.4.4 Read ASR Example
10-10 DMAC 1/0: The ATI Instruction
10-11 Single DMAC Device: Line Printer

11 THE INTERRUPT SYSTEM
11-1 Introduction to the Interrupt System
11-2 Internal Interrupts
11-3 Loading the Status Register
11-3.1 The LSB Instruction
11-3.2 Register or Instruction
11-4 Handling Internal Interrupts
11-5 Startup After Power Failure
11-6 Memory Protect/Privileged Instruction Feature (MP/Pl F)
11-6.1 Memory Protect
11-6.2 Privileged Instructions
11-7 Program Relocation Feature
11-8 Data Bus and DMAC Interrupts
11-9 DMAC Interrupt
11-9.1 Data Bus Interrupt

vii

153
153
153
154
154
154
156
158
158
158
159
160
161
162
162
163
164
166
167
168
168
169
170
170

173
175
175
175
176
176
179
180
180
181
182
182
182
183

TABLE OF CONTENTS (Continued)

Section

11-9.2 Competing Data Bus Devices
11-9.3 Vectored Priority Interrupt Option

APPENDIX
A 980AL EXECUTION TIMES

B 980 REGISTER DESIGNATIONS

C HEXADECIMAL ARITHMETIC

D STANDARD ADDRESS OF EXTERNAL REGISTERS

E SPECIALIZED LOW-ORDER MEMORY LOCATIONS

F BASIC SYSTEM MEMORY MAP

G SAP ERROR MESSAGES

H 980 OPERATING PROCEDURE

ASCII CHARACTERS BY NUMERICAL SEQUENCE

J OPERATION CODES - NUMERICAL ORDER REGISTER-MEMORY INSTRUCTIONS

K LOGICAL UNIT INPUT/OUTPUT FUNCTIONS

viii

Page

185
185

LIST OF ILLUSTRATIONS

Figure No. Page

1-1 Major Steps in Writint a Program . 2
1-2 Information Flow in •Simple Computer System 4
1-3 lnfonnation Flow ifti:~mputer System Equipped with DMAC 4
1-4 Typical Memory o,..!'ization for a Simple Program . 9

3-1 Adding a Number to,jletf (Multiplication) Flowchart•.... 37

4-1 Carry Md Owerftow .. Program . • 63

6-1 Exdwlge Sc.'t T~ . • • • . . • . • • . • • . • • • 87

10-1 Input/Output by Pollirig . 153
10-2 Four-Port Data Bus and 15 - Port Bus Expander Block Diagram 155
10-3 Data Bus/Device Interfaces, Showing External Registers 155
.10-4 ROS Data .Word . • . 162
10-5 WOS Data Word . • . . . 163
10-6 Statl.ls CharKter Bits • . • • . • • 165

11-1 The Status Register 174

ix

Table No.

1-1

2-1
2-2
2-3

3-1

4-1

5-1
5-2

7-1
7-2

8-1

9-1

10-1
10-2

11-1
11-2

LIST OF TABLES

Octal, Decimal, and Hexadecimal Number Systems

Comparison of Decimal, Oc~al, Binary, and Hexadecimal Number Systems
Integral Powers of 16 . . . ·
Negative Integral Powers of 16

Elementary Language

Page

... 6

13
15
17

. 23

980 AL Subset 52

Register Shift and Double-Length Instructions
Instruction Execution Times in Microseconds

Untitled
Selected ASC 11 Characters

Untitled

Untitled

Untitled
Remote Device Control Functions

Interrupt Instructions
Load/Store Status Block (LSB/SSB)

x

. 67
.. 79

105
107

127

144

153
165

173
178

SECTION 1

INTRODUCTION TO ASSEMBLY LANGUAGE

1-1 ASSEMBLY LANGUAGE PROGRAMMING: WHAT IS IT AND WHY LEARN IT?
Writing a program, whether in assembly language or a higher level language, actually begins when the pro
grammer devises some kind of abstract process (called an algorithm) to accomplish a computational task.

On~ realization of the abstract algorithm is a program, which is an ordered sequence of steps (instructions)
which tell a machine to do a given job. The nature of these instructions depends on the type of language be
ing used. Algebraic languages such as FORTRAN permit the user to transmit via a single statement a request
for a collection of machine activities; whereas use of assembly language requires the programmer to write a
separate instruction for each machine. activity. Compare the following program fragments: a FORTRAN
statement with its four-instruction counterpart in 980 series Assembly Language (980 AL).

FORTRAN

X=R+S-T

980AL

LOA R
ADD S
SUB T
STA X

The number of assembly language instructions seen above might lead us to suspect that coding a program in
980 AL will result in more work than doing the same job in FORTRAN: In general, that is correct. However,
since we have to pay such meticulous attention to detail, we will be in a position to exercise tighter control
over the entire process. The real programming world tends to choose a language more or less according to
the following rule of thumb:

If the primary objective of the computation is to obtain the numerical result of a
set of arithmetic operations, the appropriate choice is probably an algebraic lang
uage such as FORTRAN. On the other hand, if the computer is to be used to mon
itor or control some physical process (for example, a chemical plant or a time
sharing system), a strong case can be made for the use of assembly language. For
many types of problems, though, the choice may not be clear cut.

Another realization of the algorithm is a graphic representation (called a flowchart)
of the logic underlying the process. Ideally, a flowchart is no more than the logical
essence of the process; therefore, it is completely independent of (i.e. contains no
characteristics of) any programming language. One should be able to use the same
flowchart to code equivalent programs in numerous languages (see Figure 1-1).

1

--FO_R_T_R_A_N __ /

Program
(Concrete)

The Algorithm
(abstract)

Draw a picture of the
underlying logic

The Flowchart
(concrete, language-independent)

Code the program
"-. in a language

"--98-0_A_L __

Program
(Concrete)

Figure 1-1. Major Steps in Writing a Program

What we've discussed is an ideal situation: it's what we would like to have. In practice it works a little differ
ently.

From the very inception of the problem, the programmer will start to incorporate a language-oriented
bias- but hopefully as little as possible at each step of the way. A decision should be made very early
whether the job should be done in a higher level language (such as FORTRAN) or in an assembly language.
In real-world programming some awareness of the advantages and limitations of the language of intended
use will creep into the development of the problem solution - often as early as the abstract or algorithmic
stage_. While this state of affairs cannot be avoided completely, it is to the programmer's advantage to avoid
as much language dependence as possible until he comes to the last stage: writing the program.

Why computer people attach so much importance to flowcharts is often puzzling to the novice programmer.
The reasons for composing a logical picture of the process may be summerized as follows.

• A flowchart helps the programmer write a better program and helps him do it more efficiently.

• A flowchart helps other people who may have to understand the program, or interface it with other
programs, or write the same progr-&m for other machines.

• A flowchart makes possible the design and construction of large computer systems.

Knowledge of assembly language is a must for computer systems programmers. For others, concerned most
ly with user applications programming, the study of assembly language may prove useful for a number of
reasons; three of which come to mind easily: ·

1. With the spread of minicomputers and the increasing amount of automation of laboratory apparatus
in fields from physics to psychology, many people are discovering a need for assembly language pro-
gramming ability. ·

2

2. Many users of higher level languages find that a knowledge of assembly language programming is
uSeful in debugging programs when the language diagnostics fail to adequately indicate the source of
error;

3. Most importantly, assembly language programming reflects very accurately the machine's architec
ture and operation - thus it contributes heavily to a person's general underst~nding of how compu
ters really work.

1-2 ASSEMBL V LANGUAGE vs. MACHINE LANGUAGE.
When a computer is first designed and built, it is provided a rudimentary language in which the user may
talk to it; this is the so-called "machine language" associated with that particular model. The machine lang
uage is a numerical code to-·indicate to· the machine Which of its circuits should be activated in order to
accomplish the operation desired by the programmer. The program fragment on page 1 might look some
thing like the following when expressed in machine language:

Assembly language form

LOAR
ADDS
SUBT
STAX

Machine language form

0004
2~
28F5
80F7

As we will discuss later, the second line uses 20 as the machine language equivalent of an add operation, and
the quantity known as S is to be found in some location associated with the number 06.

Once upon a time, all programming was done in machine language, and the programmer had to .keep refer
ring to code-tables and memory maps in order to avoid burying himself in tons of numerical garbage. The
tedium of this constant look-up process led to the development of assembly language, in which the program
mer gave the machine a mnemonic operation code (op-code) such as ADD, and the machine used a special
translator program (known as an assembler) to look up the corresponding numerical code. (The translation
process became known as the assembly.) As computers evolved, the assemblers were given more and more of
the routine bookkeeping jobs necessary to writing a program. Ultimately, the assemblers were given addi
tional responsibilities, such as selecting and printing error messages designed to give an unlucky programmer
some clue why his program failed to assemble (i.e. why the translation process did not work). In general,
most current machines come equipped with more sophisticated assemblers; although a few, small, special
purpose computers still must be programmed in machine language.

What we as assembly language programmers will do is to enter our programs into the computer in assembly
language and then instruct the computer to translate (or assemble) the instructions into machine code.* The
time during which this translation process occurs is called assembly time. Just translating the program into
machine code is not enough: the machine code program then must be loaded into the computer to run
(execute). The period during which the program runs is called execution time.

*Just to add to the confusion of the newcomer, computer people are sometimes ambigious in their use of the term machine language; it usually
refers to the machine code discussed above, but it is sometimes used to refer to the assembly language, which is really only one small step away.

3

1-3 ORGANIZATION OF A COMPUTER SYSTEM.
The two parts essential to any computer system are a central processing unit (CPU) which handles arith
metic and control functions and a memory. In addition, some means must be available for the operator/pro
gra"!lmer to communicate with the machine. In a very crude system, communication can occur through a
set of switches and lights on the front panel of the CPU; however, usually at least one input/output (1/0)
device is present. The most economical device is often a tenninal which is actually two devices in one; the
keyboard serves as the input device and the printing mechanism serves as the output device. Characters en
tered through the keyboard are sent as a pulse train to the CPU, which (if the program has such a provision)
may be sent back ("echoed") to the printing mechanism with sufficient speed so that the terminal resem
bles a typewriter in its operation.

Actually, a number of 1/0 devices may be attached to the computer: a card reader or paper tape reader (or.
both) for input; and .a line printer, card punch, or paper tape punch for output. Other devices Hke ·magnetic
tape (reel or cassette) may serve for both input and output.

Figure 1-2 is a crude representation of the information flow.

~~ __ 0ev_l/~_ce ___ I .. ~~-------•• GJ
t

B
Figure 1-2. Information flow in a Simple Computer System.

A number of computers, like the Tl980 series, also have provisions for direct access by an 1/0 device to the
memory using a direct memory access channel (DMAC) as shown in Figure 1-3.

Low Speed
1/0 .

Device

High Speed
1/0

Device
DMAC

CPU

l
Memory

figure 1-3. Information Flow in a Computer System equipped with DMAC

4

For now we will ignore the DMAC capabilities of the 980 and consider the system as shown in Figure 1-2.

The memory, simply speaking, consists of an array of pigeon holes in which items of information can be
stored. In more formal parlance, these pigeon holes are called words or locations. For the machine's conven
ience in referencing a given location, the entire set is numbered, and the counting numbers associated with
these locations are called addresses. We could conceive of the memory as orgainzed as follows:

address

0
1
2
3

memory word

Not all computers are supplied with ·the same size memory; the amount varies, depending on the power re
sources and compactness of the chassis. Usually the smallest amount Sl:Jpplied is 4096 (or 114k ")words. De
pending upon the manufacturer of the unit, memory is commonly provided in incremental units of 4k or Bk.
The most commonly occurring configurations, in addition to 4k are -

4k
Bk

16k
24k
32k
64k

(4096 words)
(B192 words)
(16384 words)
(24576 words)
(32768 words)
(65536 words)

The limit to the amount of memory which can be attached to a computer is usually dictated by the size
(number of bits) of a machine word, since a word ultimately must have enough bits to contain a complete
address.

Each memory location has an address and is capable of containing either a machine language instruction or a
data number. One complexity confronting us in dealing with the 9BO computer (and with many other ma
chines, as well) is that we often find ourselves having to use th~ base 16 (or hexadecimal) number system.
The reason for the hexadecimal number system will become apparent later when we examine the detailed
bit (bit= ~inary digi!) structure of a computer word.

The 9BO Computer has other electronic pigeon holes that look quite a bit like memory words except:

• they are physically located in the CPU rather than in the '!'emory

• they are made of expensive high-speed circuitry

• they have names instead of hexadecimal addresses.

5

Such high-speed pigeon holes are called registers, and are used for special purposes which are discussed as
each register is introduced:

accumulator
program counter (PC or P-register)
extension arithmetic (E-register)
index register (X-register)
base register (B-register)
link register (L-register)
maintenance register (M-register)
storage register (S-register)
status register (ST).

1-4 OCTAL AND HEXADECIMAL NUMBER SYSTEMS.
Most assembly languages use either an octal (base 8) or a hexadecimal (base 16) number system to represent
instructions and data contained internally. The T1980, as well as a number of other machines, mainly uses
the hexadecimal system. However, the octal system is in common use,and occasional octal numbers are en
countered in programming the 980.

At first inspection, octal numbers look very similar to the familiar decimal numbers except for the fact that
the digits 8 and 9 never appear. The concepts eight and nine do exist, however, and somehow have to be re
presented. In contrast, hexadecimal numbers have not only 8 and 9, but six more digits as well. (Rather
than invent new digit symbols for the six additional, we use the letters A through F .)

In the decimal number system when we wish to count, we write down each of the decimal digits in order
0, 1, 2, 3, 4, 5, 6, 7, 8, 9; at which point we have used up all the single digits and need to have some way of
expressing the concept ten. We do this by starting over again with the first digit (0) and inscribe a 1 to its
left, giving us 10. Then we can run through all our digits again until reaching 19, when we once again run ou1
of digits. We start over again with 0 as the number on the left takes on its next value in the ordered digit
string (i.e., 2), giving us 20. The process continues until we run out of digits in both positions at the numbet
99; whereupon we start both positions over again at zero and inscribe a 111" to the left, giving us 100.

To build up numbers in, for example, the octal system, we do the very same thing except we never have the
digits 8 or 9 to work with. Table 1-1 shows what happens:

Table 1-1. Octal, Decimal, and Hexadecimal Number Systems

(decimal) octal decimal hexadecimal
concept representation representation representation

zero 0 0 0
one 1 1 1
two 2 2 2
three 3 3 3
four 4 4 4
five 5 5 5
six 6 6 6
seven 7 7 7
eight 10 8 8

6

Table 1-1. Octal, Decimal, and Hexadecimal Number Systems (continued)

(decimal)
concept

nine
ten
eleven
twelve
thirteen
fourteen
fifteen
sixteen
seventeen
eighteen
nineteen
twenty
twenty-one
twenty-two
twenty-three
twenty-four
twenty-five
twenty-six

four' thousand
ninety-five

four thousand
.ninety-six

octal
reeresentation

11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32

7777

10000

decimal hexadecimal
representation reeresentation

9 9
10 A
11 B
12 c
13 D
14 E
15 F
16 10
17 11
18 12
19 13
20 14
21 15
22 16
23 17
24 18
25 19
26 1A

4095 FFF

4096 1000

If we examine a number like 4096, we see immediately that it cannot be an octal number because it con
tains the digit 9; however, if we examine a number like 100, we have no way of knowing to what
number base it refers unless we are told explicitly or can decide from the context in which the number
appears. One way of indicating which number system is in use is to place a small subscript next to the num
ber. Thus 76510 (or just 765) is seven hundred sixty-five represented in the familiear decimal system; while
7658 is a representation of some-number-or-other in the octal system and 76515 is yet a different number in
the hexadecimal system. Fortunately, a straightforward technique for converting numbers back and forth
between number systems is available so we don't have to learn each octal or hexadecimal representation as
a special case. But for the time being, let's use numbers in our examples that are sufficiently small that we
can determine the hexadecimal representation simply by looking at Table 1-1.

1.5 HEXADECIMAL ADDRESSING SCHEME.
The Tl 980 computer uses the hexadecimal number system for internal representations of:

• the machine-language contents of all the memory words

• most of the numbers appearing in assembly language instructions

• the address of all the memory words.

Referring to item c. above, we can again draw a schematic diagram of the memory, this time showing how it
really looks to the user:

7

hexadecimal address
0
1
2
3
4
5
6
7
8
9
A

7FFE
7FFF

memory word

• • •

......

"low end of
memory''

f ~----] ''high end of

memory"

We are assuming the 32k words (actually 32768) are addressed from 0 (which is the same as 0000) to
3276710 (or 7FFF15). The significance of the addressing scheme is this: If we want to examine the con
tents of the word following location 9, we have to refer to it a's location "A" rather than "10". If we want
to put some information in the word following location 7FFF, we're out of luck because on a 32k system,
there are no more pigeon holes beyond the one at 7FFF.

1-6 MEMORY ORGANIZATION AND THE PROGRAM COUNTER.
Before the computer can be let loose to grind out the probl,em solution, certain information must appear in
the memory locations. This information consists of:

a. a collection of instructions (i.e., a program)for manipulation (or generation) of data (e.g., add, sub
tract, etc.)

b. the data numbers themselves.

Once this information is available, the computer can be told to execute the instructions; and the instructions
(if the programmer has written them correctly) will operate on the data.

For now we will consider only those cases in which each instruction of the. program and each data number
occupies a single word of memory. (Later, in more sophisticated problems these restrictions are relaxed.)

When we instruct the machine to execute the program, we want it to start in the first location containing a
program instruction (the entry point) and perform all the instructions up to and including some kind of
halt instruction. The halt instruction is the last instruction in the program; it keeps the execution from try
ing to proceed past the locations containing viable program instructions.

Within the machine is a register known as the program counter, often called the PC (or P
register), which always contains the address of the next instruction the machine is supposed to

8

execute. If the first program instruction is in location 12F7, *the PC will somehow have to have a 12F7
loaded into it at the beginning of execution. After that, the computer itself will undertake to keep the value
of the PC updated. The PC could be visualized as a sliding arrow (see Figure 1.4) that always points to the
next instruction to be executed, but in reality it is no such thing. The PC is a register that stays in a fixed
position in the CPU but does its "pointing" by holding the address of the next memory location to be ex
ecuted.

It is reasonable to ask at th·is point, "if the halt instruction separates the program from the block of data
values, how does the PC ever get to point to the data?" The answer is: "during normal program execution,
it doesn't."

When the machine needs a number which is stored in the data block, it has the happy capability to "look
ahead" and acquire a number out of the data block without ever needing the PC to point to the datum in
question. Although the job of updating the contents of the PC is handled by the computer most of the time,
there are occasions when we may wish to insert an address of our own choosing: why and how we'll do this
are discussed later.

1-7 PSEUDO-OPERATIONS AND ASSt:MBL Y.
In an earlier discussion, we saw one possible layout of the program instructions and the data values within
the computer memory. We, as programmers, can exercise control over which instructions appear in which
memory locations by giving the assembler a special assembly-time directive (or pseudo-op) with an
op-code of ORG (short for origin).

Adclress·---------------------------------.
0000 Unused Locations .,.__ "low end" of memory

T 12F7° Program instructions ~ first location of the
program

I PC >
_L I DL (halt instruction)

Data values

Unused locations

7 FF F ...,_ "high end" of memory

Figure 1-4. Typical Memory, Organization For a Simple Program

*The selection of 12F7 is arbitrary

9

Every time we include within the program an instruction of the form
ORG <address>

the very next instruction the machine finds will be placed in the location specified by <address>. For ex
ample, let's look at the program fragment we discussed earlier and convert it into a complete assembly lang
uage program which will direct the first instruction to be assembled into location 12F7 and which will place
the data numbers 7, 10, and 14 in locations 1300, 1301, and 1302, respectively. Note that the ORG pseudo
op does its job at assembly time; and since it is not needed at execution time, it never appears in the
machine-language memory listing.

Assembly-time
ORG > 12F7
LOA R
ADD S
SUB T

Assembly
Execution time

01000500
03000601
040005

12F7
12F8
12F9

We will use the data declaration (DATA) both to label the addresses with the names R, S, T, and X and to
place into those locations the appropriate hexadecimal values for 7, 10, and 14. We can either declare these
values to be hexadecimal numbers (by prefixing the number with the symbol >) or we can write them ~s
decimal numbers and let the machine perform the conversion for us. · '

Assembly-time* Execution time
IDT SAMPLE
ORG > 12F7

SAMPLE LOA R 0008 12F7
ADD s 2CJ08 12.fS
SUB T 2808 12F9
STA x 8008 12FA
IDL CEG0 12FB

12FC
12FD

ORG > 13tl0 12fE
12FF

R DATA 7 0007 1310
s DATA 10 0t>OA 13'1
T DATA 14 000E 1382
x DATA 0 00UG 1300

END SAMPLE

IDT is a pseudo-op which gives the program a name. END is a pseudo-op used to inform the assembler there
are no more instructions to be translated. Since END is not part of the executable instructions, it never ap
pears in the machine code listing.

The first two digits of an instruction represent the op-code, and the last two represent the displacement of
the location in which the operand (the data value, in this example) is to be found. The machine finds the
appropriate operand during execution by adding 08 (displacement) to the current value of the PC. The re
sult is the address where the appropriate number will be found.

*Note that the alphabet letter 0 is often differentiated from zero by writing a slash through the zero (0).

10

The fact that each instruction has the same displacement (CJS) arises from the fact that the values are used in
consecutive locations and declared in the same order in a block of consecutive locations which starts eight
addresses below the instruction block. (The data address increases by one for each successive location; but
then, so does the PC.) The reason the displacement is 08 instead of 09 is that the PC automatically incre
ments by one (i.e., points to the next instruction) before the operand address has been calculated. Thus, we
can always think of the PC as being one address higher than the instruction being executed.

1-8 THE ROLE OF THE ACCUMULATOR IN EXECUTION.
Once the program has been translated and properly loaded into the memory, it can be executed (i.e., the
instructions can be carried out). All arithmetic operations in 980 AL, and many oonarithmetic operations,
involve a very important register known as the accumulator (also called the A-register). Like memory words
the accumulator has room for four hexadecimal digits; but unlike memory, it is built of high-speed cireuitry
and is physically located inside the CPU. The accumulator behaves somewhat like a scratchpad for our cal
culations: ADD really means "add to the accumulato(' and SUB means "subtract from the accumulator".

When the sample program (Section 1-7) is executed, the first instruction encountered (location ·12F7) is the
machine-coded form of LOA R, an abbreviation for 'lP&d.'' the scumulator with (the contents of) the loca
tion labeled "R". The machine looks ahead to location R(1300) and dutifully copies the contents (in this
case, the number 7) into the accumulator. The progrwn counter is now pointing __ at ihe.initructlon in l~tion
12F8 (i.e., ADDS), so the machine adds the contents of location 1301 to the number already in the accum
ulator. The next instruction causes a subtraction of the contents of 1302 from what is in the accumulator.
Finally, the value in the accumulator is.saved by storing it in some unused memory location (we happened
to choose location 1303 and name it X: ST A means "1tore (the contents of) the .accumulator in location X'~
This last instruction frees the accumulator for possible future use; however, we do not use it again in this
program, since the next instruction encountered is the IDL (idle) instruction ~ich terminates ex~cution by
haJting the machine.*

We shall later discuss a way to examine the contents of location 1303 to discover what the answer is. (Re
member, it will be in hexl)

It is worth noting that both the load and the store are merely "copying" operations so that numerical values
may be copied back and forth between the accumulator and memory. As is the usual case with copying, the
original is not destroyed. When we do an LOA from R, the original value remains in Rand a copy of the
original is placed in the accumulator. Whatever was in the accumuJator before will, of course, be destroyed
in the process. The same thing is true of STA X: whatever was in location X will be destroyed when the ac
cumulator is copied into it, and the accumulator retains the original from which the copy was made. Loca-
tions Sand Twill remain unchanged, as well. ·

1-9 ASSEMBLING, LOADING AND EXEf.:UTING THE PROGRAM
Now that we've written a simple program, let's run it on the 980. These directions assume that we have a
980 with at least Bk of memory, a card readert a line printer and a console Silent 700 ASR Data Terminal
with a cassette. We'l I assume that the basic operating system has been loaded by the previous user and all
we have to do is ready all peripheral devices. The SAPG assembler and our program are both on punched
cards.

*If we run this program using the basic operating system, our use of the IDL instruction will be regarded as illegal. Execution will stop because
of the attempt to execute a privileged instruction and an error message will be printed out. We'll ignore the error for the time being .-1d • fer •
stopping goes- that is what we are trying to do.

11

1. Depress START switch on the 980 front panel.
The operating system will respond with "*READY*" printed out at the console.

2. Type in the following logical unit assignments, terminating each line with a carriage return:

//ASSIGN,4,KEY.
//ASSIGN,5,CR.
//ASSIGN,6,LP.
11ASSIGNI7,CS1.
//ASSIGN, 10,DUMMY.

3. Load the SAPG assembler into the card reader, and type:
//EXECUTE,CR.
The cards will be read and the system will respond with "READY SOURCE, HIT CR"

4. Put the source deck in the card reader and hit carriage return on the console for pass 1 of the
assembly.

5. Repeat step 4 for pass 2 of the assembly. The assembly listing should appear on the line printer, and
the object program will be written on cassette CS 1.

6. Place a /*card in the card reader and hit carriage return to write an end-of-fjJe in the object program
output and to take control away from the assembler and return it to the operating system.

7. Type on the console:
//EXECUTE,CS1.
//REWIND,7.

8. Your program has executed if you receive a privileged instruction message. To the untrained observer
it may appear that nothing has happened. The value of X does not appear either at the console or
the line printer, which should be no surprise because we haven't put any output instruction in the
program ..

1-10 FINDING THE ANSWER.
We know thatthe answer will be stored in location 1303, so we'll set up the address 1303 on the 980
switches: 0001 0011 0000 0011. We'll enter the address into the memory address (MA) register by setting
the MA switch to the up position. Now, we can display the contents of the location by setting the memory
data (MD) switch to the down (display) position. The contents (i.e., the answer) will be displayed by the
980 lamps. We should see the answer as a binary 3, namely:

0000 0000 0000 0011
The relationship between binary and hexadecimal is explored in the next section.

12

SECTION 2

MACHINE WORDS AND THE BINARY NUMBER SYSTEM

2-1 WHAT'S IN A WORD?
Now that we have gained some insight into the overall structure and operation of the 980 computer, we are
ready to consider some deeper questions, such as:

• Why is the hexadecimal number system so important?

• Is there a limit to the size of data numbers? ,

• How can a negative number be represented in the 980 memory?

To provide answers, we will have to think about some finer details relating to the structure of the machine.

By their very nature, electronic devices depend on circuit elements conducting at times and not conducting
at other times. Stated in the simplest terms this means that the computer "thinks" in an "on-off" type of
language. Some computer memories are made of tiny magnetic rings called cores, "remembering" informa
tion by magnetizing the cores in a pattern of positive and negative field directions. Other memories such as
the 980_ utilize MOS or solid-state devices which employ thousands of gates. Each gate, anarogous to a bit,
·either on or off as required for a particular word description.

Both the ON/OFF and PLUS/MINUS notation have something in common with the true/false notation so
favored for schoQI quizzes: all"these examples provide a binary (or two-state) choice. It's very convenient to
express any of these choice/pairs in a number system that has only two digits; therefore, we'll select the
binary (base 2) number system which uses only the digits 0 and 1.

As it turns out, the computer words we have described in terms of hexadecimal digits are actually composed
of 16 binary digits (or bits) of information. The ADD S instruction in our earlier example which we wrote:

2008
assumes a bit pattern of

10010 0000 0000 1000 I
inside the computer. We'll soon see that the two notations can be completely reconciled with each other:
the hexadecimal notation is used as a kind of shorthand to represent the more cumbersome binary represen
tation.

In the binary number system, all numbers are represented in terms of the digits 0 and 1. Using the same ar
guments used to develop the representation of quantities in the hexadecimal number system (Section 1-4)
we can write down a expanded table as shown in Table 2-1.

Table 2-1. Comparison of Decimal, Octal, Binary, and Hexadecimal Number Systems

Number Decimal Octal Binary Hexade~imal

zero 0 0 0 0
one 1 1 1 1
two 2 2 10 2

13

Table 2-1. Comparison of Decimal, Octal, Binary, and Hexadecimal Number Systems (continued)

Number Decimal ~ Binary H ~2Uld~~imal
three 3 3 11 3
four 4 4 100 4
five 5 5 101 5
six 6 6 110 6
seven 7 7 111 7
eight 8 10 1000 8
nine 9 11 1001 9
ten 10 12 1010 A
eleven 11 13 1011 B
twelve 12 14 1100 c
thirteen 13 15 1101 D
fourteen 14 16 1110 E
fifteen 15 17 1111 F
sixteen 16 20 10000 10

For easy reference the 16-bit positions in a computer word are individually numbered form left to right
as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

·I I
Occasionally, we need to refer to a specific bit position in a computer word; we can do so by specifying one
of these numbers.

2-2 NUMBER SYSTEM CONVERSION BETWEEN BINARY AND HEXADECIMAL
Inspection of Table 2-1 indicates that any hexadecimal digit we select can be represented by four binary
bits. In binary representation, as in decimal, leading zeros do not alter the value of a number: "one" can be
expressed as 1, 01, 001, 0001, and so forth.

We can express any collection of 16 bits as a string of four hexadecimal digits by grouping the bits in fours
(starting from the postion of the radix) or "binary" point on the right and writing the hexadecimal digit
representing each bit group. For example,

~ 1100 0111 01012

3 "C't']"' 5 16

It also words the other way around. Each hex digit can be "expanded" into its four-bit binary representa
tion.

Fractional numbers are converted the same way as integers except we start with the radix point on the left
when marking off the groups of four

.1101 0110 12 ..._.... ..._..... ~
.06815

14

to get the equivalent hexadecimal fraction. Note that an incomplete group of four may be filled out with
zeros following the least significant bit without altering the value of the fraction.

The ease of the binary-hexadecimal conversion arises from the fact that 16 (the base of the hex system) is
itself an integral power of 2 (the base of the binary system).

2-3 CONVERSION TO AND FROM DECIMAL.
Since 10 (the base of the decimal system) is not an integral power of 2 or 16, the conversion of decimal
numbers to and from their hetadecimal or binary representations are not as easy as the hex/binary conver
sion. Nonetheless, it is a job which has to be done. Frequently,wecan ask the computer to do it for us; but
we should know how to do it ourselves. If we want to convert from decimal to binary, we can do it directly;
but it is more convenient for us to convert decimal to hex and then hex to binary by expanding the hex
digits into their binary representations:

~ hexadecimal

decimr / (digit replacement)
~binary

Regardless of which route is taken, the results are the same if everything is done correctly.

2-3.1 HEXADECIMAL. TO DECIMAL. Just as each decimal place represents a power of 10, each hex
place represents a power of 16. Table 2-2 shows the first five powers of 16 for reference.

Table 2-2. Integral Powers of 16

160 = 1
161 = 16
162 = 256
163 = 4096
164 = 65536

We can convert the number 1A5915 to decimal by realizing that the number is merely the sum of

9 x 160 = 9 x (1) = 9
5 x 161 = 5 x (16) = 80
Ax 162= 10 x (256) = . 2560
1 x 163 = 1 x (4096) = .40&6.

674510

where all the arithmetic is in decimal. The qualitative reasonableness of the answer can be checked by noting
that the decimal representation is larger than the hex representation.

2-3.2 DECIMAL TO HEXADECIMAL. Probably the easiest way to convert decimal to hex is to perform
successive divisions by 16 and note the remainder each time. (This method permits all arithmetic to be done
in decimal.) The process is continued until a zero appears as the quotient. Let's convert the number we
just found back to hexadecimal.

15

16

16

16

16

421
~
.§!..__

34
~

25
1§.

9
26

/421
32. -101
B.6

5
1

rzr;-
1§_
10 (=A)
0
~

.JL
1

Remainder
(hex point)

9

5

A

1 t Read up to get 1 A59

2-3.3 CONVERSION OF FRACTIONS. Converting fractional numbers (for example, 0.88710) involves
multiplying by 16, stripping off the integer portion to serve as a digit of the converted fraction, and reading
down.

Carry
(hex point)

E = 14

3

1

2

0.887

x 16
3072

x 16
1152

x 16
~432

giving us (.E312 ...) 16 for as many places as we have the need or patience to carry out the conversion.
Note that there are many cases in which we could continue generating carry digits to infinitywithout ever
arriving at a zero multiplicand (the signal to stop). By stopping too soon we introduce a truncation error in
to the converted value of the number. The truncation error is a necessary consequence of the fact that com
puter words have a finite number of bits. We must learn how to minimize it, when to put up with it, and
always be aware that it may be present.

16

Conversion in the other direction is accomplished by multiplying by negative powers of 16 (see Table 2-3).

Table 2-3. Negative Integral Powers of 16

16-1 = 0.0625
16-2 = 0.0039062
16-3 = 0.0002441
15-4 = 0.0000152

2-4 NUMBER CONVERSIONS TO AND FROM OCTAL.
Many computer systems use the octal number system as their shorthand for binary, this system is one with
which every assembly language programmer should be conversant.

2-4.1 NUMBER CONVERSION BETWEEN BINARY AND OCTAL. Inspection of the first eight entries of
Table 2-1 indicate that _.., octal digit we select can be represented by three binary bits (instead of the four
we used for conversions to and from hex):

Octal Digit
0
1
2
3
4
5
6
7

Binary Representation
000
001
010
011
100
101
110
111

We can express any collection of bits as a string of octal digits by grouping the bits in threes (starting from
the position of the radix or binary point on the right), and writing the octal digit that represents each bit
group; for example,

.J lQ9, .t1Q. ..!Q!. .QQ.Q ~ Binary point

1 4 6 5 0 2

Note that the addition of two leading zeros does nothing to change the value expressed. Each octal digit
can be "expanded" into its three-bit binary representation.

2-4.2 CONVERSIONS BETWEEN OCTAL AND HEXADECIMAL. Probably the easiest way is to write out
the binary representation and regroup the digits

t14a502a

1 100 110 1Q1 000 0102 ..._.t --- -- ---
c D 4 216

17

2-4.3 OCTAL TO DECIMAL. Each octal place represents a power of 8. We can convert the number 15679
to decimal by realizing that the number is merely the sum of

7x ao
6 x 81
5x 82
1x83

= 7 x (1)
= 6 x (8)
= 5 x (64)
= 1 x (512)

where all the arithmetic has been done in decimal.

= 7
= 48
=320
=-512..

88710

Check the qualitative reasonableness of the answer by noting that the decimal representation is smaller than
the octal representation.

2-4.4 DECIMAL TO OCT AL. Perform successive divisions by 8 and note the remainder each time. (This
method permits doing all arithmetic in decimal.) The process is continued until a zero appears as the quo
tient.

Rem~inder octal point

110) atmr 7
13

srmr 6
1

:; 'O 5

1 1 Read up to get 1567.

Working with fractional numbers (for instance, 0.88710) involves multiplying by 8, remembering the carry,
and reading down.

down
read ! .887

x 8
7 4:----. 096

____£
0~768

____£
6~144

8
000

giving us (. 706 ...)9 for as many places as we have the need or patience to carry out the conversion.

18

2-5 . CONVERSIONS BETWEEN BINARY AND DECIMAL.
The general method from the previous two examples Should be clear enough that we need add only that the
divisor (or multiplier, depending on the direction of the conversion) is a 2 or one of its powers.

2-6 POSITIVE AND NEGATIVE DATA VALUES.
Since a 980 word is made up of 16 bits, it should be no great surprise that the size of a number that can be
stored in a word is limited. But we are able ~o represent all integers between -32768 and +32767

-32768,-32767, ... ,-1,0, 1, ... ,32766,32767

Since this is the first mention of negative numbers, let's see how the machine differentiates between posi
tive and negative numbers.

2-6.1 THE SIGN BIT .. The left most bit position (position O) in the word is treated as a sign bit. If this bit
is a O, the number is positive; if the bit is a 1, the number is regarded as negative. The largest positive
number that can be stored in a word is

sign bi~
01111111111111112 ..._........_........._......_...

or

7FFF

or

3276710

The reason we can safely claim this is the largest value is that if we tried to add 1 to this number, we'd get

sign bit~
1000000000000000

or

800015

which has a 1 in the sign bit position and is therefore a negative number. It is, of course, mathematical non
sense to claim that one can add two positive numbers and obtain a negative result: so the computer
will flag this situation for us (by the overflow bit in the status register).

2-6.2 NEGATIVE NUMBERS
Because of the arithmetic circuitry of the 980 computer, n~gative numbers have to be stored in a special
way called the two's complement form. Let's see how we go about representing the number -1810 in a
computer word.

19

First, we'll try to get the binary representation of the corresponding positive number, +18. Expressing the
number in hex gives us 1215; and this in turn gives the following 16-bit binary representation:

0000000000010010 ..._......._......._......_....

Next, we'll perform a binary subtraction of this number from a seventeen-bit number consisting of a 1
followed by 16 zeros.

1 0000 0000 0000 0000
0000 0000 0001 0010
1111 1111 1110 1110

This, now, is the bit pattern used to represent -181Q. Converting the bit pattern to hexadecimal shorthand:

F F E E

which is the value that will appear in an assembled listing of the data value. Note that the bit pattern con
tains a 1 in left most bit position as a negative number should.

After we become adept at hexadecimal addition and subtraction, we can discard the binary crutch and do it
this way -

10000
- 0012

Ff EE

where we make use of the addition tables for the hexadecimal number system - in particular
E + 2 = 10
E+1=F

and
F + 1=10.

Confronted with the number FFEE: we know it is negative, but we would like to know its magnitude (ab
solute value). This can be determined by finding the number that must be added to FFEE to make the sum
equal to 1000015. The number is, of course, 12.

Since positive numbers have a 0 in the left most bit position and negative numbers have a 1 in that position
any 4 digit numbers with a left most hex digit between 0 and 7 are positive. Those with 8 through F as their
left most hex digit are negative.

20

Integers in 16-bit, two's complement notation then range across the following limits

Decimal Hex
+32767 7FFF

+1 0001
0 0000

-1 FFFF
-2 FFFE

-32768 8000

2-6.3 TWO'S COMPLEMENT ARITHMETIC. Subtraction can always be accomplished by adding a comp
lement; for example,

Decimal

32767
2

32765

Hexadecimal

7FFF
-0002

7FFD

Using two's complement addition, the convention is to throw away the carry bit if one appears .

. 32767
+ (-2)
32765

21

7FFF
+FFFE
7FFD

SECTION 3

INTRODUCTION TO 980 ASSEMBLY LANGUAGE

3-1 ELEMENTARY PROGRAMMING CONSIDERATIONS.
Successful assembly language programs can be produced using a rather small subset of the complete ma
chine instruction set. Such a program is not necessarily the shortest possible in terms of the number of
memory locations used: nor does it necessarily execute with great efficiency. But it can be made to work.
One argument in f~vor of a large instruction set is that it often permits use of a single instruction to do
a job that might otherwise require a block of instructions.

The intent of th is section is to start the novice programmer with a small group of instructions and an assem
bly language which will prove useful in writing simple programs. Many of the instructions introduced in
Table 3-1 will ultimately prove more powerful than these examples indicate, so we will revisit this subset
in its full-blown form in Section 4.

Table 3-1. Elementary Language
Instructions:
LOA, LOE, LOX, LDM
ST A, STE, STX
ADD
SUB
IMO

.DMT
AMO
REX
RAD
RSB
RIN
ROE
RCO
BAU
BIX
SEV
SOD
SNZ
SZE
SMI
SPL

IDL

Assembler Directives:
IDT
END
DATA
ORG
EQU

Conditional skip
on register

23

Load from memory
Store to memory
Add
Subtract
Increment memory by one
Decrement memory and test
Register move
Register exchange
Register add
Register subtract
Register increment
Register decrement
Register two's complement
Branch unconditional
Branch on incremented index

even

Idle

odd
not zero
zero
minus
plus

Identification
End
Data declaration
Origin
Equate

., Table 3-1. Elementary Language (continued)
Addressing. Modes·
Immediate
P-relative
Indexed P-relative
Expressions - "address arithmetic"

The following restrictions apply to this section only, so the new programmer should be prepared to relax
them later:

• One assembly language instruction translates into one word of machine code.

• The only numbers we shal I use are the integers: positive, negative, and zero.

• ·Only two of the numerous modes of addressing are used; these are called immediate and program
counter relative (they will be discussed in another section).

• Programs are assembled and run under control of the basic operating system.

• We shall not try to perform any 1/0. All data needed by the machine will be predefined in the
program at assembly time, and all results will be found by operator examination of the appropriate
memory locations using the display lights on the 980 front panel.

• We shall assume that our source program is input from cards.

3-2 THE INSTRUCTION FORMAT SKELETON.

The formatting details of the various 980 instructions and assembler declaratives differ somewhat, but the
basic skeleton is. the same for all. The first six-column (field) constitute space reserved for a label (i.e., a
name we may wish to attach to a particular instruction or data value) and has the same function as the op
tional statement number in FORTRAN. A label must contain no more than six* characters, the first of
which must be alphabetic and must appear in column 1.

The other characters may be letters, digits, or selected special symbols. (Some symbols are illegal, namely
+, -, *, /, (,), <,and comma, so we'll restrict our labels to letters and digits only to .. avoid the inadvertent
use of a prohibited symbol.) The label is terminated by the first blank.

The next field is the operation field containing the mnemonic code or assembly directive. It must be separa
ted from its predecessor by a comma. The first blank encountered assumed to terminate the operand list.
Operands may actually be expressions; however, we shall restrict ourselves to single-element operands for
the time being.

*During assembly these labels are stored in the symbol table as variable length data. One or two character labeis require three words of memory
three or four character labels require four words, and five or six character labels require five words. Therefore, if symbol table overflow occurs,
labels should be shortened or omitted where possible.

24

Since the first blank* encountered after the beginning of the operand field signifies the end of the field, the
programmer may Include an optional comment on each line. This comment will be ignored by the assembler.

The skeletal format for an instruction is as follows:

<label> "f> <operation code> "f> <operand 1>, <operand2>, <operand3> 1) <comment>

Full-line comments may be includecfif the initial character is either a period (.) or an asterisk (*);both are
also ignored by the assembler. For example.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
·THIS IS A COMMMENT
*S 0 I S TH I S
LABEL1 LOA

RM 0
I D L

VALUE DATA

V A L U E
A I . x

"' 3 9

P U T
M 0 V E
HA L T

V A L U E
A T 0

I
x

N A

~ ~, __________ __
------------------~~~--------------label op code operands comments

3-3 DATA DECLARATIONS.
The.DATA declaration is actually an assembler-directive (pseudo-op) which instructs the assembler to do
two things:

· (1) Set aside a memory location and label it in accordance with the programmer's wishes.

(2) Prestore in that location whatever number the programmer specifies.
For example, a line reading

XYZ DATA 3

assembles into a single word containing bits which represent three. The word would be labelled during the
assembly process as XYZ so that we can refer to it by the name or symbol XYZ rather than by hexadecimal
address.

The data values can be expressed as octal, decimal, or hexadecimal numbers or as an ASCII (character) string.

The assembler distinguishes between the various data types in the following manner:

• A number in octal notation, denoted by at least one leading zero, is translated by the assembler into
the corresponding hexadecimal value.

• A number in decimal notation, denoted by a nonzero leacnng· digit,· is translated by the assembler into
hexadecimal.

• A number in hexadecimal notation is prefixed by the symbol>.

tA blank or "space" in this notation will be represented in th is notation as a "slash b": b.

25

Each field in the DAT A declaration is assembled into a consecutive word; for example,

DATA 13, >5AC, f)10, -2

will assemble into the four words

CJ00D
G5AC
0008
FFFE

Sometimes, the programmer, may wish to declare an 'ASCII character string as data. He could look up the
character codes and insert them as pairs of hexadecimal digits:

For example,

C = C3
A= C1
T = D4

DATA >C3C1,>D4A0

f) = A0

is a bit more trouble than necessary in most cases. The assembler would have produced the same result if we
had written the ASCII characters surrounded by single quote marks

.DATA . 'CATf)'

The ASCII string notation is fine for printed characters, but action (non-printed) characters such as carriage
return and line feed must be entered as the corresponding numeric values.

3-4 TWO ADDRESSING MODES, P-RELATIVE AND IMMEDIATE.
The two addressing modes we will probably use most frequently are program counter relative (P-relative)
and immediate.

When we use an instruction such as

ADD VALUE

we consult the symbol table to find the lopation of the quantity labeled VALUE. To provide program
relocatability (i.e., the ability to place the program in any set of memory locations which may prove con
venient without tying into one specific block of absolute addresses), the assembler computes the "dis
placement" of VALUE in the negative (backward) or positive (forward) direction from the value the PC has
at that instant during the executipn phase. (Displacement is simply a count of instructions indicating how
far away VALUE is defined and in what direction.) If VALUE is three instructions back from the PC,
displacement will be a -3 expressed in two-digit hex form (FD):

ADD VALUE

(PC-3) ~VALUE

PC-~
VALUE DATA >300fJ

26

whereas, if value is five instructions beyond the PC, the displacement will be expressed as a +5:

ADD VALUE 20: CJ6

•
•
•

VALUE'. DATA >3Clel 3000 (PC+ 5)

Note that the count can only be as great as two hexadecimal digits will denote - or from 7F in the positive
(higher address) direction to 80 in the negative direction. That is to say, we may count ahead 12710 or
back 12810.

Actually, the assembler does all the work for us, but we must be careful not to let the label referenced ex
ceed the range the assembler can handle. (If we ac:tually must put the label farther away, there is a means
of doing it involving an extended instruction, which is discussed later. For now, we'll observe the range re
striction.) PC relative addressing, then, tells the machine during execution:

1. Extract the displacement.

2. Add it to the program counter (adding a negative, of course, is equivalent to subtracting a positive)
to compute an address.

·3. Use the operand associated with that address (in case of an ADD instruction, the operand will be the
contents of that address).

We could use this form of addressing to cover a multitude of cases; however, 980 AL provides a shortcut
called an immediate address. For example, to ADD the value 2 to the accumulator, we write in P-relative
mode:

ADD VALUE

VALUE DATA 2

We could use the immediate mode (thereby saving the storage location containing VALUE) by writing

ADD =2

where the"=" means use the number itself rather than the contents of a location (omittinQ the equal sign
would have caused the machine to add the contents of location 2 rather than the number 2; we are essen
tially using an address itself as the item to be added rather than the contents of the address).

27

3-5 TRANSFER OF CONTROL: BRANCH AND SKIP.
Programs execute sequentially, with increasing PC, unless this order is interrupted by a transfer of control to
some instruction other than the next in sequence. This process is called branching and can be done uncon
ditionally (e.g., the GO TO statement of FORTRAN) or conditionally, as in the FORTRAN "IF" statement

There is one uncon~itional branch instruction in 980 AL: the BRU instruction, in which the address to
which branching occurs is assembled as a+ or - displacement; i.e., a P-relative mode. (Again the -128 to
+127 restriction holds.)

The 980 AL depends on skip. instructions for most of its conditional branching. For example, the instruction

SZEA

means skip-on-zero in the A-register; i.e., if the accumulator contains a zero, skip the next instruction; other
wise execute it. One will often see the skip instruction associated with a branch, as in the following example:

SZE A

A*O !
BRU LOOP A=O

+
<next instr>

in order to achieve a c9nditional split in the program flow.

3-6 THE ASSEMBL V PROCESS AND SOME ASSEMBLER DIRECTIVES.
Some operation codes do not really represent executable operations at all (hence the name pseudo-op), but
serve as instructions to control the course of the translation (or assembly) process. Since most pseudo-ops are
useful only during assembly, they need not appear in the object code; thus they are not translated and con
sume no space in the assembled program.

The first group of assembler directives we· shall consider are

END
EQU
IDT
ORG

Each program can be given a name, and this name is given· by the operand in the identify (I OT) directive,
which should appear as the first line of the program:

IDT <name>

where <name> represents a six-character label. If more than six characters are specified, only the first six
are used and the remainder discarded.

The END pseudo-op should be the last line of the input program; it indicates to the translator that no more
instructions are to be assembled.

28

Programs are assembled in two passes. During the first pass, the assembler seeks all symbols (labels) in the
program and builds a temporary table (the symbol table) which lists each symbol and the position in the
program where it is defined. After all program instructions have been examined once (pass 1) and all sym
bols found, the assembler examines all instructions again (pass 2), consults the symbol table to fine the
actual location of the operands, and writes the appropriate machine code (objec.t program) onto some out
put unit specified by the progr~mr:ner. At the end of the translation process, execution may be performed
by loading the object program into the machine, entering the address of the instruction where execution
is to begin (the "entry point"), and relinquishing control to the object program. The PC can be loaded in
two ways:

1. Manually by the operator, using the toggle switches on the CPU front panel

2. Automatically by the loader program, if the programmer has included in his END operation the
label which identifies the entry point.

We are now in a position to regard the executable program as the filling of a sandwich, with the I OT and
END pseudo-ops enclosing the filling. For example,

<entry>

IDT<name>
<data declarations, if any>
<first executable instruction>

IDLO
<data declarations, if any>
END <entry>

Often <name> and <entry> are seleeted to be the same label, but there is no real significance in doing so.

During the assembly process the assembler uses a pointer to the consecutive locations into which the object
program is being written. This pointer, called the location counter.can be thought of as an assembly-time
analog of the PC.

operates
during:

points to:

increments
sequentially
unless:

Location Counter

assembly

instruction being
assembled

altered by an
ORG pseudo-op

29

Program Counter

execution

next instruction to be
executed

altered by a branch or
skip instruction

The ORG (orgin) pseudo-op tells the assembler in which absolute memory location to place the next instruc
tion. Usually a program is assembled so as to be "relocatable" (i.e., it can execute in any block of memory
deemed convenient at load time); however, cases may arise in which the programmer wishes to face the pro
gram with a specified block of absolute locations.

The instruction

ORG <numeric address>

accomplishes this. This manual uses the ORG instruction in this manner in order to attach the program to
some absolute locations so that its structure can be discussed more easily. No other reason for its use, ex
ists, and ORG should usually be omitted in most programming applications. ORG does have one other use
in both relocatabl-e and absolute programming: skipping over a specified number of locati~ns which may be
used for storage later on. We could write ·

ORG $+500

where$ means the present value of the location counter, and the expression there increments the current
_location counter value by 500 words to find the cell into which the next instruction will be assembled.

The entry point designator can be inserted almost as an afterthought by the use of the EQU (equate)
pseudo-op. Instead of punching the entry point label on the card containing the first executable instruction,
we can write

<entry point> EQU $
<First executable instruction>

which is equivalent to writing:

<entry point> <First executable instruction>

It means equate the entry point label to the current value of the location counter, where $ once again
means "this location".

3-7 REGISTER ORGANIZATION AND DEFINITION.
The Tl 980 has nine 16-bit registers. All are under program control, and eight are directly addressable. Uses
of the registers are introduced in the forthcoming sample programs, but for the moment the following list
and a brief description will suffice:

Register
Number

0
1
2
3

4

Usual Program
Designation

A
E
x
M

s

30

Function

Primary arithmetic register (accumulator)
Auxiliary (extension) arithmetic register
Index register (address modification)
Maintenance register (temporary storage and

Basic Operating System 1/0)
Storage register (temporary storage)

status
block

Register
Number

5
6

{ :
Usual Program

Designation

L
B
p

status

Function

Link register (subroutine linkage)
Base register (base address for operands)
Program counter (PC, address of next

instruction)
Status register (program status and
interrupt enable/disable)

The program counter and status register comprise the status block, a register pair used extensively in pro
gramming interrupt service routines. The status register differs somewhat from the others in that our atten
tion will be directed toward the state of various bit positions rather than the numerical value the 16 bits
of the other registers usually represent.

When a register is exclusively affected by an instruction (LOA, or load accumulator for example), the alpha
betic register designator is often built into the instruction's mnemonic code. Other kinds of instructions per
mit us to operate on the contents of the register we specify as an operand (for example, SZE A or skip on
zero in register A). We may, of course, write SZE (J instead, but since we usually find it easier to think of
the accumulator as register A rather than register 0, we should make the register number, and the a.lphabe
tic designator equivalent for use in the program. We state this equivalence through use of the EQU
pseudo-op. Defining A to be the symbol for the accumulator (register (J) we write

A EQU 0

and so forth for the registers to which we wish to attach symbols. Note there is nothing magical about the
use of the letter "A". We could have written any legal label

A EQU
LOA
SZE

e
DATA
A

which will change all references to the accumulator when written as an operand. Of course, it will never
change the LOA mnemonic.)

3-8 NOTATION USED IN DESCRlfHNG INSTRUCTIONS.
The actions performed by machine instructions are traditionally depicted in shorthand form. When we
speak of a particular register, we refer to it by its "official" designator - the accumulator, for example, is
referred to as A, and in general the program counter is called PC or P. When we speak of a register in
general (i.e., we do not want to be specific about which one), we use a symbol which denotes the register's
role in the instruction. The register-to-register transfers include a source register (the one from which infor
mation is taken) and a destination register (the one to which information is transferred), referred to herein
ass and d, respectively. In a specific case, we might use A as the source and X as the destination, for ex
ample.

In speaking of the label of memory location, we usually refer tom. If we talk about the number stored at m,
we will write (m) ~i.e., "the contents of" m. [Similarly (A) would be "the contents of" A.] The ADD
instruction discussed in the next section, when written "ADD m" means: take the contents of location m
and add it to the present contents of the accumulator, leaving the resultant sum in the accumulator.
*We will use() to mean "the contents of" in this manual. However the .0 is never used in an assembly language statement.

31

Our notation to describe this operation would be

(m) + (A) --+ A

where the arrow shows where to find the result of the operation. The ST A m (store contents of accumulator
in the location lab~led m) instruction would be described as (A) --+ m.

One of the common confusions of the newcomer is to write (A)~(m) instead. This is yet another mode of
addressing called indirect addressing and is denoted by an asterisk (*) preceding the operand. In indirect ad
dressing the number contained in m, [i.e., (m)] is used as a pointer to another address where the contents
of A will actually be stored. Following is an illustration of the difference:

OAG 1000
PTA DATA 1003

STA PTR

STA *PTA

stores the contents of A into location 1000
(A)___. m

stores the contents of A into the address pointed
to by location 1000, namely into 1003

(A} _____. (m)

Indirect addressing also can be specified by writing a modifier4 in the second operand field:

STA PTA,4

Both instructions assemble identically.

3-9 A BASIC GROUP OF INSTRUCTIONS.
The following subsections introduce a basic group of instructions for use in writing simple assembly lang
uage programs. These instructions are introduced here in their simplest form and again in Section 4 in
their more general form.

3-9.1 IDLE INSTRUCTION (IDL). The I DL instruction is used in this manual whenever we need a program
executable instruction to direct the machine to halt._This instruction is privileged; i.e., a mode of computer
operation (with the memory protect/privileged instruction feature, MP/PIF, enabled) in which the IDL is an
illegal instruction. Since M~/PI F is enabled when the 980. computer is operating under the Basic Operating
System, these programs cannot be run in that environment without generating a fatal error and consequent
ly being thrown off the system. Encountering the I DL means program execution has ended arr.tway, so the
difference between our making a graceful exit and being thrown off is merely one of aesthetics at this point.
Later on we will use a supervisor service call alt in place of I DL to improve the aesthetics of the situation.

3-9.2 REGISTER-TO-MEMORY AND MEMORY-TO-REGISTER TRANSFERS. These transfer instruc
tions are essentially copying instructions in that they copy data from one place to another without des-·
troying the value from which the copy was made. The memory-to .. register direction is called a load and the
register-to-memory, a store.

Only four of the registers (A, E, X, and M) may be copied into with a load instruction, and only three of
them (A, E, and X) may be copied out of. The others must have values inserted some other way.

32

The simpf e sequence

A

NUMBER
COPY

EQU
LOA
STA
IDL
DATA
DATA

0
NUMBER
COPY

• >C3
0

MOVE (NUMBER) TO A
SAVE IN COPY
HALT

copies hexadecimal C3 into the accumulator, leaving the value in NUMBER unchanged. Then it stores the
value in the aceumulator into the location named COPY, thereby wiping out the zero value placed there by
the assembler during the translation process. The accumulator still contains the value C3 and continues to
do so .until we destroy it by inserting another value.

We can indicate in symbolic form wha~ happens by the following notation:*

LOA m (m)--+A

i.e., the contents of location m goes to the A-register and

STA m (A)--+m

i.e., the contents of A is transferred into location m.

The other load-and-store instructions work identically, except different registers are involved.

3-9.3 REGISTER-TO-REGISTER INSTRUCTIONS. Some registers have no load-and-store instructions,
yet we need to get information into and out of them. At other times we may already have in one register
the number we wish to copy into another, and it takes the machine less time to copy directly between re
gisters than to load a register from memory.

The register-to-register instructions have two operands: s, a source (the register copied from) and d, a des
tination (the register copied into). These instructions have the general format of

<register operation> s, d

The two specific examples considered in this section are

the register move RMO s~ d (s) --+ d
and the register exchange REX s, d · { (s) --+ d

(d) --+ s

where the RMO copies source into destination, leaving a copy in the source: and the REX exchanges the

*Later on we shall write this instruction and other memory referencing instructions in a more general form

LOA m, <inoo> (e.a.) --+ A

where the effective address, e.a., is obtained from modifying m with the <moct>.fietd. When ·the modifier field is absent, the
effective address is the same as m.

33

the contents of the two registers. The needs of a specific problem may indicate exactly which one of these
should be used; however, in one case the programmer can make an arbitrary choice. This case is one in
which, say, we wish to copy the X register into E and we no longer care what happens to X. Obviously we
could use either instruction

E
x

EQU
EQU
RMO

1
2
X, E

and we will most often choose Whichever instruction is faster for the machine, which turns out to be the
RMO instruction. ·

3-9.4 UNCONDITIONAL BRANCH INSTRUCTION. We may sometimes wish to alter the value in the .
program counter (P-register) in order to force resumption of execution in some location other than the next
sequential one (anal(>gous to the GO TO statements of higher level languages). SAL does this in
980 AL with the branch unconditional instruction

BRU y y --. PC

where y is the address (usually the label attached to the address) of the location containing the next instruc
tion to be executed. This instruction assembles with the address y converted to a positive or negative dis
placement from the present portion of the PC.

3-9.5 ARITHMETIC INSTRUCTIONS. There are four arithmetic operations discussed in this section. First
are ADD and SU Btract. Both use the contents of the accumulator as the implied operand. The contents of
the explicit operand' location are either· added. to. or subtracted from the accumulator:

ADD
SUB

m
m

(A) + (m)· --. A
(A) - (m) --. A

and the contents of m remai~s unchanged in the process. The other two are register-to-register (see Section
3-9.3) instructions which use source and destination register contents as the operands:

RAD
RSV

s, d (s) + (d) --. d
s, d (d) - (s) __., d

Register ADD
Register SUB

The contents of the source register are added to (subtracted from) the contents of the destination register
and the result placed in the destination register. The source register contents are unchanged by this opera
tion.

Registers may be incremented or decremented by 1 using the instructions:

RIN
ROE

s,d
s,d

(s)+1 --. d
(s)-1 --. d

where the source and destruction registers may be the same. For example,

RIN X,X

will increment the X register by one unit.

34

A number in a register will be replaced by its negative (two's complement) if the register complement
instruction

RCO s,d -(s)-.d

is used.

3-9.6 A SAMPLE PROGRAM. Let's put some of the operations encountered so far into a simple program
to evaluate the expression

w=x+y-z

Since adds and subtracts may be done in any order, it does not particularly matter how we write the code,·
except that we will store some of our data values before the first executable program statement to illustrate
better what happens during the assembly process:

A
w
z
EXPRSN

y
x

IDT
EQU
DATA
DATA
EQU
LOA
ADD
SUB
STA
mL
DATA
DATA
END

EXPRSN

• REGISTER DEFINITION

• >1A HEX VALUE
$
x EVALUATE EXPRESSION
y
z
w SAVE VALUE IN W

• HALT
-9 DECIMAL
.127 OCTAL VALUE
EXPRSN

If we had included on ORG 12F7 pseudo-op, this program would be assembled and loaded as follows:

Address Conte.nts·

12F7

12F8

12F9

12FA

12FB

12FC

12FD

12FE

12FF

ooaa
0G1A

0005
2003

28FC

S(JFA

CEC10

FFF7

0017

Explanation

value of W

value of Z

load from PC + 5

Add from PC + 3

sub from PC - 4

store in PC - 6

halt

hex value= -910 = y

hex value= 278 = x

35

3-9.7 IMO AND DMT INSTRUCTIONS. The increment-memory-by-one instruction

IMO m

adds 1 to the contents of the memory specified by m. It is equivalent to

LOA m
ADD =1
STA m

except that since it is one instruction instead of three, it executes faster and does not require use of the
accumulator.

The corresponding decrement-memory-by-one involves the same kind of process except that after decre
menting, it performs a test-for-zero in the memory cell. If a zero is found, the program skips the next
instruction; otherwise, it executes the next instruction.

These instructions are useful in dealing with loops, where the loop counter is stored in memory and must be
tested for the exit condition. Since zero triggers the skip, that is the value we shall select to indicate the ter
mination of looping.

Since we don't know how to multiply yet, we could simulate the process by adding a number to itself. Let's
assume we want to compute 4X where Xis a number stored in VALUE. A flowchart looks like Figure 3-1.

Since the accumulator is initialized with VALUE, we need only add it in three times. So we'll initialize the
counter at 3: · ·

START

LOOP

COUNT
VALUE
PRDCT

LOA
STA
LOA
ADD
DMT
BAU
STA
IDL
DATA
DATA
DATA
END

=3
COUNT
VALUE
VALUE
COUNT
LOOP
PRDCT
0
0
>3F
0
START

36

INITIALIZE COUNTER
GET VALUE
ADD VALUE
DONE?
NO, GO BACK
YES, SAVE PRODUCT
HALT

·no

Enter

Initialize
Counter

Value to
Accumulator

ADD value

Decrement
counter

Save
Product

. '

Figure 3-1. Adding a Number to Itself (Multiplication) Flowchart.

3-10 REGISTER SKIPS AND INDEXED BRANCH.

3-10.1 REGISTER SKIPS. A important part of any programming language is the capacity to test for the
presence of conditions and transfer control to whatever portion of the code is appropriate to the condition
at hand. The FORTRAN language does this with the logical IF statement; e.g., IF(A.EQ.3.) GO TO 55.
Assembly languages generally have several more specialized instructions for either branch-on-condition or
skip-on-condition. The 980 has only one branch-on-condition: the BIX instruction. All other conditionals

37

are the skip variety, in which a true outcome of a test causes the next instruction* to be skipped and false
causes it to be executed:

skip
on condition

l false

next
instruction

<(next + 1) instr>·

true

Sometimes it is sufficient to be able to execute only one instruction (i.e., the "next") before rejoining the
mainstream of the program flow. More often though, a programmer will need to execute a block ofjnstruc
tions rather than just one. In this event, it is necessary only to make the "next" instruction an uncondition
al branch to the desired code block:

skip.
on condition

l false

branch
to

code block

<(next + 1) instr>

true

*Beware! The assumption-here is that each location contains a single instruction. In some cases, two locations are needed to hold one instruction
(see Extended Format. Section 4-4). When such an extended format instruction is directly preceded by a skip, only the first word of the instruc
tion is skipped, thereby causing execution of data.

38

Register skips have a mnemonic indication of the test condition in the op-code field and therefore use the
name (or number) of the register being tested as the single operand. These· instructions are of the form:

<op code> <register>

where<register> can be a register name if the name has been EQU'd to the ar:)propriate number.

For example, if we wish to add the absolute value of the number labeled VALUE to a quantity named SUM,
we could do something like this

A EQU • LABEL ACCUMULATOR

LOA VALUE GET NUMBER INTO A.
SPL A IS IT POSITIVE?
[RCO A,A NO, CHANGE SIGN Of A.]
ADD SUM YES, ADD tN SUM
STA SOM AND SAVE.

A single instruction [RCO] to complement a register is available, but it is not part of the limited repertoire
at our disposal; or we could multiply VALUE by (-1) if we knew how to multiply. Given only the instruc
tions introduced so far, we are forced into the cumbersome alternative of subtracting the negative from zero
--~o convert it to positive:

A

JOIN

EQU
LOA
SPL
BAU
ADD
STA

• VALUE
A
NEGATE
SUM
SUM

in which NEGATE labels another code block:

NEGATE LOA
SUB
BAU

=•.
.VALUE
JOIN

39

GET NUMBER INTO A.
IS IT POSITlVE?
NO, GO TO SIGN CHANGER.
YES, ADD IN SUM
AND SAVE.

CLEAR A
SUBTRACT (VALUE)
B·RANCH BACK WITH PO.SITIVE NUMBER

3-10.2 LOOPS, COUNTERS, AND INDEXED BRANCH. Any instruction sequence which leads directly
into at least one repeat of itself is known as a loop. The last instruction in the sequence is some kind of
branch back to the ·beginning of the sequence:

SEQNC <first instruction of sequence>

<branch to SEQNC>

If no measures are taken to prevent it, the loop will go on repeating - theoretically forever; thus it is
known as an infinite loop. Not all infinite loops are truly infinite, since the instructions may involve opera
ting on data in such a way that an overflow error may ultimately terminate execution. Infinite loops have
their uses in writing real-time programs or in interrupt techniques. However, for now we'll regard infinite
loops as something to be strictly avoided.

To avoid infinite loops, we can build in two kinds of traps:

1. perform the loop a specified number of times, counting each pass and testing the counter between
passes to see if the limiting count has been reached.

2. perform the loop until some other program condition of interest occurs: for example, a series
approximation carried out term-by-term until the sum (or product) reaches a certain value (or falls
within an allowable tolerance). This kind of trap is a bit more dangerous to use than the counter
technique described in paragraph 1. above. Convergence may be very slow or (it can happenf) a pro
cess the programmer assumed to be convergent is actually divergent. Used with some caution though,
the technique is quite acceptable.

40

In this case the loop struction might resemble

SEQNC <first instruction of sequence>

<skip if condition met>
BRU SEQNC

Traps of the variety described in paragraph 1. above can be managed in two ways: one way involves using
the structure described in paragraph 2. above where the condition of the counter is the program condition
tested:

SEQNC
<initialize counter>
<first instruction of sequence>

~increment counter>
<skip if counter at final value>
. BRUSEQNC

There is no reason why the procesawill not work just as well if the counter is run backwards (i.e., initialized
at a larger value and decremented until it reaches a predetermined small final vaJue). ln fact, it will be more
efficient to run the counter backw.ds on the 980 since the DMT instruction is available. Let's assume that
the counter has been prestored in a memory location named COUNT and, provided there is no need to pre
serve the original value of COUNT, we can decrement the contents of that location with the DMT instruc
tion until it reaches zero and then execute a skip over the BAU.

COUNT

SEQNC

DATA <maximum passes through loop>

<first instruction of sequence>

DMT
BAU

COUNT
SEQNC
<next instruction>

DECREMENT TEST FOR ZERO
NO, BRANCH BACK
YES, CONTINUE

Another way to utilize loops involves using the index register to hold the count instead of a memory cell.

41

In array problems in which the loop counter and the array pointer assume the same value, the contents of
the X register are used for both. The BI X instruction increments the index register and branches upon
reaching a zero value. Thus, if this instruction is used, we initialize the X-register with the negative of the
desired count and then increase the count until it reaches zero. If we wish to execute a loop twenty times,
the structure looks like this:

SEQNC

3-11 SAMPLE PROGRAM.

LDX=-20

BIX SEQNC
<next instruction >

INITIALIZE COUNTER

INCREMENT AND TEST FOR ZERO
IF ZERO, CONTINUE

A sample program follows which involves adding the counting numbers from 1 to 100 and the result in SUM.
Count serves both as a counter and a number to be added.

COUNT
SUM
ADD EM
LOOP

IDT
DATA
DATA
LOA
ADD
DMT
BRU
STA
IDL
END

AD DEM
1N
0
=0
COUNT
COUNT
LOOP
SUM
0
ADDEM

3-12 THE INDEX REGISTER AND ITS USE.

INITIALIZE COUNT
INITIALIZE SUM
CLEAR ACCUMULATOR
ADD COUNTING NUMBER

. DECR. COUNT AND TEST. ZERO?
NO., GO BACK
YES, SAVE SUM
STOP

3-12.1 HANDLING AN ARRAY: A TYPICAL PROBLEM. Higher level algebraic languages provide stan
dard methods for handling arrays (or lists) of data words stored within the computer memory. The 980 AL
technique is basically the same: the address of the list (base address)* is used along with an incremental
pointer (index) to indicate which element of the list is to be used. A simple example of an array problem
(i.e., adding up all. the elements in an array) in two higher level languages provides an introduction to the
problem.

In FORTRAN we set aside storage for an array with a DIMENSION statement and then often use the
index of a DO loop as a pointer into the array:

DIMENSION T(6)

SUM=O
DO 50 I= 1, 6
SUM=SUM+T(I)

50 CONTINUE

*The term base address of an array as used here is not the same as the base (or B-) register discussed later. However, the base address may be
placed in the b-register for convenience in coding some programs. (See Section 4-5.)

42

where there is a base address (T) to which successive values of the pointer are added to give access to the
whole list:

(base address)

(T+1)
(T+2)
(T+3)
(T+4)
(T+5)
(T+6)

T
T(1)
T(2)
T(3)
T(4)
T(5)
T(6)

,...._ __ ..,. ~--- not used as part of array
in FORTRAN

six-element array T

The meaning of T(1) is actually address of T plus one.

The FORTRAN compiler accomplishes a number of housekeeping chores that are the responsibility of the
programmer in assembly language:

1. Sets up an array of the proper length in a set of memory words chosen so as not to interfere with
any other part of the program.

2. Sets up and manages a counter to count the number of passes through the loop and serves as a
pointer (or index) to the correct element in the list

3. Tests the counter against a predetermined limit with instructions to branch back to the beginning
of the loop if the limit has not yet been reached.

Another high level language named BASIC is ~imilar to FORTRAN in many aspects; two notable excep
tions are

a) BASIC permits the base address T to be used as an element of the array.

b) Indexed loops in BASIC may be incremented or decremented.

Six-element
array T

Incrementing Loop*

DIM T(5)

LET S = 0

T(0) 11-------t

T(1)
~-----1

T(2) .,__ _ __,..
T(3) ...,__----1
T(4) ..--------.
T(5) __ __

FOR I = 0 TO 5 STEP 1
LET S = S + T(I)
NEXT I

*Adds elements in the order T(CJ) first and T(5) last
tAdds elements in the order T(5) first andT(Q) last

43

base address = T

Decrementing LOOJ>t

DIM t (5)

LET S = 0
FOR I= 5 to 0 STEP-1
LET S=S+T(I)
NEXTI

We can write several slightly different 980 AL equivalents fo these fragments. All involve loading the index
(handled by the loop control statements in FORTRAN or BASIC) into the 980 index (X) register and
arranging in our 980 AL program to change its value at the proper time.

3-12.2 THE INDEX REGISTER (X). To add the contents of T + 4 into the accumulator, we have a 4 in
the index register

(X) 1=0004 I

and write

ADD T, X

where the name of the index register (X, if we have EQU'd it to register 2) is used in the second operand
(or "modifier") field.

This instruction assembles to

f 22dd I (dd are the displacement digits)

which instructs the computer to:

1. Examine the X-register to determine how big the index (or offset) is - in this case: 4.

2. Add the offset found to ~he operand (base) address - i.e., add PC to displacement digits (dd) - to
compute a quantity known as the effective address. In this case the effective address is the address
of cell T + 4.

3. Perform the operation; in this case, an ADD to the accumulator using the contents of the effective
address.

3-12.3 SETTING UP THE DATA FOR AN ARRAY PROBLEM. As was hinted at in Section 3-12.1, there
are a number of ways we could set up the array data, and how we manipulate the number in the index
register will be determined by the data set-up. Next we will look at a number of possible data setups and the
code that would be used to add the array numbers.

3-12.3.1 INCREMENTING INDEX TECHNIQUES. Given the array:
index

base address T 0

44

1
n3 2
n4 3
ns 4
ns 5

We could initialize X at zero, increment it, and test it for having reached 5:

A
x
M
T
ARRAY 1

LOOP

STOP
SUM

IDT
EOU
EQU
EQU
DATA
EQU
LOX
LOA
LDM
ADD
RSU
SNZ
BRU
RIN
BRU

STA
IDL
DATA
END

ARRAY 1
e
2
5
n1,n2,n3,n4,n5,n5,
$.

=• =0
=5
T,X
X,M
M
STOP
X,X
LOOP
SUM
0
0
ARRAY 1

This method is a bit long and cumbersome but does the job.

REGISTER DEFINITION
REGISTER DEFINITION
REGISTER DEFINITION

PROGRAM ENTRY POINT
INITIALIZE INDEX
INITIALIZE SUM
SET INDEX LIMIT
ADD NEXT ARRAY ELEMENT
TEST INDEX VALUE
IS IT EQUAL TO LIMIT?
YES, SAVE SUM
NO, INCREMENT INDEX
AND GO BACK

If we instead considered our effective base address to be cell T + 6 (i.e., the cell after the last data value), we
could put a negative index in the X-register and decrement it to zero, allowing us to use the BIX i_nstruction:

A
x
T
ARRAY 2

LOOP

SUM

IDT
EOU
EOU
DATA
EOU
LOX
LOA
ADD
BIX
STA
IDL
DATA

. END

ARRAY 2

• 2
n1,n2,n3,n4,n5,n5
$
=-6
=0
T+6,X
LOOP
SUM
0
0
AR·RAY2

INITIALIZE INDEX
INITIALIZE SUM
ADD NEXT ARRAY ELEMENT
IF NOT DONE, INCREMENT AND GO BACK
OTHERWISE, SAVE SUM

which is considerably shorter. We could avoid using address arithmetic (the expression T + 6) in the ADD
instruction if we observed that the location T + 6 is really the same as the location ARRAY2 (the LOX
instruction). Thus, the ADD instruction could have been written

LOOP ADD ARRAY 2,X

45

3-12.3.2 DECREMENTING INDEX TECHNIQUE. In some array problems (a simple addition problem is
not one of them) it may be necessary to work backwards through the array; we could do it in a way similar
to the first example;

A
x
T
ARR.AV 3

LOOP

STOP

SUM

IDT
EQU
EQU
DATA
LOX
LOA
ADD
SNZ
BRU
ROE
BAU
STA
IDL
DATA
END

ARRAY 3
0
2
n1, n2, n3, n4, n5
=5

=•
T,X
x
STOP
x,x
LOOP
SUM
0
0
ARRAY 3

These are, of course, not the only ways to do it.

INITIALIZE INDEX
INITIALIZE SUM.
ADD NEXT ARRAY ELEMENT.·
HAS X BECOME ZERO?
YES, SAVE SUM
NO, DECREMENT INDEX,
AND GO BACK.

3-12.4 ADDRESS ARITHMETIC. The 980 permits the programmer use of arithmetic expressions as
oprrands, pursuant to certain conditions. The four operators

+addition
- subtraction
*multiplication
I division

are permitted, but multiplication and division by a label are prohibited in relocatable (nonabsolute)*as
semblies. Expressions are evaluated (from left to right)usingnormal operator procedure(* and I on first
scan, +and - on second scan). All symbolic labels must, of course, be defined. Examples of address arith-
metic are ·

Address Expression

$+077
ARRAY-6
X+> 2A

JOE+ TOM *3/BOB

Meaning

779 cells below the present location
6 cells back from the cell named ARRAY
the absolute address 2C15 (if X EQU'd to 2)

3 x:::::::: :: ;g:; +<address of JOE>

Complicated expressions are seldom useful to the programmer.

*Absolute assemblies are those which include the ORG <.absolute address>directive.

46

One useful application involves having the assembler count the number of words appearing as DAT A:

NUMB RS
N
assembles as

DATA
DATA

>32, >377, -5, >47, >92,>CA
$-NUMB RS

NUMBRS

N

3-13 THE BARE MACHINE vs. THE BASIC OPERATING SYSTEM.
It seems to be true in life that any labor-saving device introduces some complexity into the environment in
which it is used. The device saves work in that it assumes tasks which must otherwise be done manually: but
in so doing, removes the operator to one level more remote than if he did the job himself. Although it is
not necessary that the operator understand intimate engineering details of the device, he should know

• In general how the device should perform

• How to make the device do the job he wants done.

A special purpose device (devoted to doing one job one way) can have a very simple communication proce
dure (i.e., throwing a switch to tum it on or off - causing the device to do its thing or stop doing it). A
multipurpose device must be told what job to do and be informed of the conditions associated with the
performance of the task. One caff immediately envision a number of tools or.appliances which illustrate
these facts.

The same sort of thing obtains in a computer environment. The operator can approach a bare machine and
tel I it how to do each job he wants done, or he can relegate some of the routine operations (such as perfor
ming an assembly or execution or causing 1/0 to happen) to a software utility program called an operating
system. He must be able to communicate with the operating system in order to tell it what job to do and
under what conditions. ·

~/G;J
Operating

System

--------~·
This is a very crude simplification, but it makes one think along the right lines.

Operating systems generally insist on their rights, too. It is as if the operating system said; "okay, user, you
want me to work for you, .but I'm going to do the job the way I was designed to do it and you're not going
to meddle. If you don't like that, do it yourself (on a bare machine)." Hence, we are led to the idea of
"privileged instructions", which are instructions prohi~ited to us if we use the operating system. If we try to
use them privileged instructions will lead to errors. In other words, we cannot both have our cake and eat
it too.

47

In the 980, instructions associated with 1/0, instructions which modify the status register, and the IDL
(idle) instruction are privileged when running under the control of the operating system. The operating sys
tem is given charge of 1/0 operations and maintenance of the status register. A program being executed is
not really allowed to throw the machine into the idle state when it is finished: it must return control to the
operating system which then informs the user, "I am through with that job. What shall I do next?"* Later
we will discuss how 1/0 and program halt are executed legally using a bare 980. We also will investigate
how to give these functions to the operating system and how to communicate with that system.

3-14 USE OF THE BASIC OPERATING SYSTEM.
If the basic operating system is resident, switching on power will initialize the system so that when START
is hi.t, the control keyboard/printer will output the message *READY*. The operator then makes the
assignments of logical-unit-numbers (luns)*to the peripheral units he intends to use. Luns are assigned to
devices through use of the //ASSIGN commands to the supervisor.

Let us assume a configuration comprising a 980, a card reader (CR), a line printer (LP), and a Silent 700
keyboard (KEY) device with two cassette units (CS1, CS2).

The SAPG assembler assumes the following lun assignment
lun 4: Operator communication device
lun 5: Source input device
lun 6: Source listing device

· lun 7: Device on ~hich object will be written
lun 10: Scratch

We type each of the following command lines, terminated by a ca~riage return.

//ASSIGN,4,KEY.
II ASSIGN ,5,CR.
//ASSIGN,6,LP.
11ASSIGN,7,CS2.
.//ASSIGN, 10,DUMMY.

//EXECUTE,CR.

(control from keyboard)
source input from card reader

·any listing on line printer
object written onto cassette 2
assign as dummy (DUMMY or OUM) or else assign
to rewindable device to use for interpass storage. We
can assign 10 to CS1 and only put the cards through
once, or we can use the dummy assignment and load
the cards twice.
to load assembler

The keyboard/printer responds with READY SOURCE, HIT CR. Make sure the source device is on-line,
loaded, and ready: then HIT CR.

After that pass the keyboard/printer types READY SOURCE, HIT CR. Make sure the source and
assembly listing devices are on-line, ready, and (in the case of the source) loaded: hit CR.

The assembly listing should appear on the high speed printer and the object should be written on the cas
sette tape. Run a/* card through (by pressing CR) to

1. Terminate assembly and return control to supervisor
2. Write an end-of-file and the entry point on the object file.

"The same thing happens in various versions of FORTRAN run under control of an operating system. Some versions of the IBM 7090 FORTRAN
prohibit use of the STOP statement. Instead one writes CALL EXIT in which the system subroutine named EXIT returns control to the opera
ting system. Other versions of FORTRAN allow the inclusion of the STOP instruction, but this in turn triggers a call to the EXIT routine.

*Logical-unit-numbers are sometimes abbreviated as LUNS

48

Assignments need not be changed (I ine may be reassigned to dummy if not used by the program, but may
be left; the object device is automatically rewound, if possible):

//EXECUTE,<name of object device>.*
(e.g.,//E XECUTE.,CS2.)

will cause the object program on CS2 to load and begin executing.)
//EXECUTE. will begin executing the last program loaded into memory

In this mode of operation, any 1/0 done by the program must be handled by service calls to the supervisor
(this is discussed in the next section). Control may be taken from the program and returned to the super
visor at any time by setting the following sequence of 5Witches on the 980 front panel:

HALT
RESET
RUN
START

Cold-start procedures are described in Appendix H.

*If the name of the object device is omitted:

//EXECUTE.
the object program already loaded into memory will execute.

49

SECTION 4

Tl MODEL 980 ADDRESSING MODES AND THE STATUS REGISTER

4-1 SUMMARY OF MODEL 980 CHARACTERISTICS.
The Tl980 is a general purpose minicomputer with the following characteristics:

Word length: 16 bits
Arithmetic mode: two's complement
Addresses and instructions: hexadecimal
Memory size:
Assembly language: 980 AL
Assembler: symbolic assembly program (SAPG)

Priority interrupt: optional

Internal· Timer; ·optional·

Peripherals: four low speed on data bus (optionally expandable to 256)
one high speed on DMAC (optionally expandable to eight)

Registers (nine): accumulator (A)
extension arithmetic (E)
index register (X)
maintenance (M}
storage (S)
link (L)
base· {B)
program counter (P) or (PC)
program status

Addressing modes:
absolute .
immediate
relative
indexed l either program counter (P)

relative or base register
(8-) relative

indirect
indexed/indirect
indirect/indexed

51

Table 4-1. 980 AL Subset

The instructions and addressing modes discussed in this section are listed in Table 4-1.

Instructions:

i~~ l Skip on status register

SNC

RCA Register compare - algebraic
RCL Register compare - logical

[

overflow
no overflow
carry
no carry

CPA Compare A with storage - algebraic
CPL Compare A with storage - logical

SLT
SLE
SEQ
SGE
SGT
SNE

Skip on status register

Extended format instructions

Assembler.Directives:

DATAJ r1epeat from Section 3
ORG

BSS
BES
BRS
BRR

HED
PEJ
LIS
UNL

Block starting symbol
Block ending symbol
Base register set
Base register reset

Page heading
Page eject
List
Un list

Addressing Modes:
Indirect.
B-Relative

4-2 EFFECTIVE ADDRESS.

less than
less than I equal
equal
greater than/equal
greater than
not equal

Memory-referencing instructions - load, store, ADD, SUB, IMO, DMT - actually use an effective addres.
(e.a.) which is computed from information contained in the operand and modifier fields:

<op code> m,<mod>

where the modifier can be X (for indexed) EQU'd to 2
BR (for base register relative) EQU'd to 1
XB for indexed, base register relative EQU'd to 3.

Of course, the digits themselves may be used in the <mod> field.

52

4-3 ADDRESS MODES: IMMEDIATE; INDIRECT AN~ INDEXED P-RELATIVE.
The following two address modes are indicated by prefixing a special symbol to the operand:

prefix
immediate =
indirect *

The other modes are indicated by use of the <mod>ifier field, as listed in Section 4-2. Here are some con
crete examples:

Mode
immediate

P-relative

P-relative,
indirect

POINTER
x
Immediate
P~relative, indexed

Example
LOA =-9

STA ANSWER

STA *POINTER

DATA MEMLOC
EQU ·2
LOX =3
LOA· BUF,X

Action
Places the hexadecimal equivalent
of - 91 o in the accumulator

Stores the contents of the accumulator
in the location labeled ANSWER
(effective address, location labeled ANSWER)

Stores the contents of the accumulator in the
effective address; i.e., the cell whose address
is the number found in POINTR. In this
case the effective address is ME M LOC.
Places value 3 in the index register, contents
of effective address, ·.BU F + 3 is placed in the
accumulator

Both indexed and indirect modes may be used together in a pre-indexed (indexed, then indirect) or
post-indexed (indirect, then indexed) form. The assembly language expression of these two forms is the
same; the order in which the two modes are applied depends on the setting of the index control bit (bit 10
of the status register). If that bit is 1, pre-indexing takes place (index before indirect); if the bit is 0,
post-indexing (index after indirect) occurs.This bit must be set by the programmer to indicate which order
is to be observed. ·

To pre-index program:
<set status10 to 1 >

X EQU 2
LOA *ALFA,X

Action:
1. compute the effective address of

ALFA+ (X).

2. LOA with the number pointed to,
i.e., (ALFA+ (X))

To .post-index program:
<set status10 to 0>
X EQU 2

Action:

53

LOA *ALFA,X

1. find the number pointed to by ALFA, i.e.,
(ALFA)

2. ADD (X) to get the effective address, i.e.,
(ALFA)+ (X)

All these instructions assemble with a positive or negative displacement relative to the PC and, therefore,
are regarded as P-relative modes. This means that within the machine word, the low order 8 bits represent
a count that must be added to the PC in order to find the address of the operand.

In Register-to-memory format instructions, the first 5 bits contain the operation code, and the following
3 bits must be set, depending upon the mode of the operand:

;r- Set to 1 for base relative,* BR= 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
r :oP~CQOEllfXIBI: : : : : : : I

_'--Set to 1 for indexed, X=2
· Set to 1 (by assembler) if "*"prefixed to operand

All immediate symbols{=) prefixed to the ooerand set all 3(1,X.,B) bits to 1.

~ NORMAL AND EXTENDED FORMAT.
If the B bit is not set, the assembler assumes that addressing is to be done relative to the program counter.
Bits 8 through 15 of the instruction contain the offset of the operand (the displacement) relative to the
current vlaue of the PC. (The PC points to the instruction following the instruction currently being exe
cuted.) Since this displacement field is only 8 bits long, the operand must fal~ within the range

(PC)+ 8016 <operand address< (PC) + 7F15

where 8015 (-12810) is the largest negative number which can be expressed, and 7F15 (+12710) is the
largest positive number;

One way to reference an operand outside th is range, is to use what is cal led ex tended format. The program
.mer must remain aware of this condition and prefix the operation code with the symbol@ when extended
format is to be used:

<label> @<op-code> <operand>, <modifier>

This prefix signals the assembler to translate the instruction into two words of machine code, where the dis
placement field contians zero and the next word contains the hexadecimal address of the operand relative
to the program origin:

0 4 5 6 7 8 15
label <o > I X B: 00

<address of operand>

In the example:
@LOA MATCH

>0121
(location 0121) MATCH

ORG
DATA <data value>

*We shall defer until later the discussion of the B-relative modes; e.g.,

LOX BETA, 1 or BR EQU 1
LOX BETA.BR

54

the @LOA MATCH instruction will be assembled as

~
and will execute by placing <data value> into the accumul~tor.

If we write

MATCH

this assembles as

@LOA

ORG
DATA

=MATCH

>121
<data value>

and will execute by placing 0121 into the accumulator. In this case, the machine sees a zero offset to the
PC and loads the contents of the second word; i.e., (PC) + 0.

In the earlier case, the indirect bit is set by the@ prefix and the execution proceeds by using the contents
of the PC as a pointer to the data value.

Since the combination of relative addressing and extended format actually leads to an execution which uses
an indirect address, the indirect bit is set by the assembler and, therefore, is not available to the programmer.
This means that the form

@LOA *MATCH

· is not available.

Extended format instructions may be used in conjunction with indexed operands; for example:

x

ARRAY

EQU
@LOA

ORG
DATA

2
ARRAY,X

>121
<data value>

assembles with both the indirect and index bits set:

~
~

and executes with the address at (PC) + 0 (i.e., the address 12110) used as the base address to which the in
dex register contents are added. Since the base address is obtained indirectly before the offset is added, the

55

post-indexing condition always applies, regardless of the setting of the index control bit (bit 1 O) of the
status register.

Since extended format instructions occupy two words, caution must be used when writing skip instructions
directly preceding them; the skip will skip only the first word rather than the entire instruction word-pair.

4-5 THE BASE* REGISTER.
The addressing modes considered so far (other than immediate) are

• P-relative -assembled displacement plus execution time value of the program counter give the
effective address

• Indexed P-relative - effective address computed from the P-relative operand address plus the con
tents of the index-register.

Since the maximum displacement size is 8 bits (including sign), P-relative addressing is restricted to cells
closer to the PC than 1281 o locations on the negative side and 12710 locations on the positive side.

This restriction can always be overcome by using extend.ed format instructions which reserve an extra word
each in order to hold the address; however, if memory space becomes a critical resource in a given problem,
the extended format solution may not be the best one. Using the Base register affords us another option.

4-5.1 BASE REGISTER RELATIVE ASSEMBLY AND EXECUTION. If the PC-relative displacement
computed by the assembler exceeds the allowable range, the assembler generates a field-size error message
unless the assembly is being performed under control of a Base register set directive:

BRS <address of new Base>

This directive continues in effect until cancelled by a Base register reset directive:

BRR

The operand in the B RS directive gives the value related to which the displacements will be computed.
These are 8-bit unsigned displacements which must range from 0 to 25510. The program must contain an
executable instruction for loading the Base register with the appropriate Base address at execution time.

Let's examine the specific problem of accessing values which exceed the allowable (positive) PC-displace
ment range. Field-size assembly errors are produced by the following fragment:

VALUE

LOA VALUE
ADD VALUE +1

ORG
DATA

$+300
n1,n2

*We have already discussed the base address of an array, which is distinct from the B- or base register. This distinction is maintained in the
text through the use of the lower~ase symbol "base" in reference to an array address and "Base" meaning the contents of the B-register.

56

unless the BAS option has been specified:

A
B

VALUE

EQU
EQU
BAS
@LOA
AMO

LOA

ADD

BRR
STA
ORG
DATA

0
6
VALUE
=VALUE
A,B

VALUE

VALUE +1

ALPHA
$+300
n1,n2

SPECIFY ASSEMBLY TIME
BASE REGISTER VALUE
SPECIFY EXECUTION TIME BASE VALUE
AND MOVE TO BASE

DISPLACEMENT 0, RELATIVE TO BE
=VALUE
DISPLACEMENT 1, RELATIVE TO B =VALUE

ALPHA MUST BE WITHIN PC RANGE

4-5.2 BASE .REGISTER USED AT EXECUTION TIME ONLY. The Base register is available for executing
programs or program fragments which have not been assembled under BAS control (i.e., normal assembly).
In this execution-only context, it is used by those instructions shown here with the letters "BR" in the
<mod> field. The first operand of these instructions must assemble to an 8-bit unsigned number between
0 and 25510 that will serve as a displacement relative to the execution time value in the B-register.

Recounting the previous example to show the format and context of the use of the B modifier:

BR

VALUE

EQU
@LOA

AMO

LOA
ADD

STA
ORG
DATA

1
=VALUE

A,B

0, BR
1, BR

ALPHA
$+300
n1,n2

GET ADDRESS OF EXECUTION TIME BASE
VALUE
MOVE TO BASE REGISTER

DISPLACEMENT 0, RELATIVE TO B =VALUE
DISPLACEMENT 1, RELATIVE TO B =VALUE

ALPHA IN PC RANGE

In this case the base address of the array VALUE is actually the value appearing in the Base register, and
the offset appears as. an absolute quantity in the operand field.

Although a mode of addressing is available that makes simultaneous use of the B-and X-registers (indexed
Base Relative), discussion of that mode is deferred until Section 6. If we want to handle an array problem
in pure B-relative mode, we can use an offset that is always 0 and increment (or decrement) the B-register
in order to access all the array members. For example, to add an array (ARRAY) of six numbers, assuming
that the index (X) register is not available:

57

KNTR
ARRAY

A
B
BR
DATA
DATA
@LOA
AMO
LOA
STA
LOA
ADD
RIN
DMT
BAU

EQU 0
EQU6
EQU 1
0
ni,n2,n3,n4,n5,n5
=ARRAY
A,B
=6
KNTR
=0
0,BR
B,B
KNTR
$-3

SET ADDRESS OF ARRAY
IN BASE REGISTER
SET COUNT
IN MEMORY
INITIALIZE SUM
ADD NEXT ARRAY ELEMENT
INCREMENT BASE VALUE
DONE?
NO, GO BACK

Here the base address of the array and the Base contained in the register are initially the same.

4-6 THE ORIGIN DIRECTIVE.
Although this pseudo-op was discussed previouily in Section 3-6, it is mentioned again here

ORG <expression>

where <expression> may be absolute;

e.g. ORG > 20<JG

in which case the assembler produces code tied to absolute machine addresses; or the expression may be
such that relocatable code results. A typical relocatable expression might be

ORG $+500

in which $ means the present location (i.e., pointed to by the location counter) so that the net result of the
above expression is to skip the next 500 words before continuing the assembly. This provides one means of
reserving storage areas.

U.1 RESERVING STORAGE. ln addition to the possible use of the ORG directive discussed above,
storage blocks may be reserved and labeled using the following:

<label>
Block Starting Symbol -
BSS <number>

which reserves a <number> long block of memory words and labels the first word with <label>.

<label>
Block Ending Symbol -
BES <number>

58

which reserves a <number> long block of memory and labels the word following the last word with
<label>. This declarative is particularly useful in reserving space for arrays which use negative offsets and
a BIX (see Section 3-10.2). For example:

BLOJ< BSS 5 BLOK BES 5
<next instruction> < next instruction>

BLOK) ')
1•

) 5 words } 5 words
It

')
.1

next instruction BLOK next instruction

~.2 DATA DECLARATION. A data list is assembled into consecutive words by the pseudo-op

<label> DATA <list>

where <list> contains expressions separated by commas. These expressions may be in decimal, hexadecimal
(shown by prefix~'>"), octal (shown by prefix of zero), or ASCII (shown by enclosure in single quote
marks). For example,

NUMB RS DATA

assembles as

NUMB RS FFFD
012D
01FF
C1C2
C3FF

-3,> 12D,0777,'ABC',ADDRES+1

note: a delete code is assembled to fill out the
odd-numbered string.

The last cell is an example of our ability to specify a label memory location and to have the assembler re
cord the actual address of that location. This facility is especially useful when we generate relocatable code
and do not wish to restrict ourselves to any particular set (actual or relative) of memory locations.

The example

HERE DATA HERE

takes whatever address appears in the location counter and stores it in the word.

59

For instance if we write

HERE
ORG
DATA

>1500
HERE

HERE is the label of cell 1500, and the assembler stores 1500 in the word, as well*

1500 8500
1501
1502

One useful application is that in which the assembler generates a word count so that the programmer need
not manually count (and therefore risk miscounting). Consider an array in which we have label the begin
ning and ending word

ARRAY DATA 3,4,5,~,7,8,9,-12,22

these assemble as

ARRAY 3 (1500)
4
5
6
7
8
9

-12
22

COUNT 9 (1509)

.. and we could count manually (there are nine) and store 9 in count as shown:

COUNT DATA 9

or, we can have the assembler calculate the co_unt for us:

ARRAY
COUNT

DATA
DATA

3,4,5,6, 7 ,8,9,-12,22
COUNT-ARRAY

If ARRAY is assigned to the locations starting at 1500 and COUNT follows (falling into 1509), we can
generate the count by subtracting the two addresses COUNT-AR RAY (=9) and store that value in the loca
tion named COUNT (1509).

*HERE DATA$ produces the same result

60

4-6.3 EQUATE. This declarative also was introduced earlier (Section 3-6).

<SYMBOL> EQU <addreS&>

permits use of a symbol interchangeably with a number equal to <address>. Instructions requiring the use
of a register as an operand (the skip-on-zero instruction, for example) may be written as

SZE

M EQU

SZE

3
or
3

M

SKIP IF (M) REGISTER (+)=ZERO

DEFINE REG 3 TO BE M }

SKIP IF (M) REGISTER= 0

Register definition is not the only use of EQU. Immediate data may be defined the same way - for example,
the hexadecimal code for a line-feed/carriage-return pair

LFCR EQU >0D(JA

which labels the existing hex address with the symbolic name. No memory space is used by the EQU. A
common technique for defining the program entry point involves the use of EQU:

<entry point name> EQU $

vvh ich labels the next machine word with the entry point name.

4-6.4 PRINT CONTROL DIRECTIVES. The directive

HED <string>

labels the top of each page with a header identical to <string>.

The directive

PEJ'

is a page-eject instruction.

The directives UNL and LIS suppress and restore, respectively, printout of the assembly listing.

4-7 THE STATUS REGISTER: OVERFLOW, CARRY, AND COMPARE.
The first 4 bits of the status register are set by the CPU to reflect certain conditions which arose during
the execution of instruction. These bits may be tested under program control for whatever conditions are
recorded. The first 2 bits are compare indicators which are set as the result of a compare instruction in the
program. The overflow bit is set by an overflow operation (e.g., an integer larger than 16 bits) and the carry
bit is set by an add or subtract instruction that results in a carry into the sign bit of a register.

61

Any instruction empowered to set the carry or overflow bits, should the condition arise, will clear the bit
(regardless of the present setting) if the condition does not arise.

In all cases, if the condition of the bit is of interest, it is wise to perform the test immediately and manda
tory to perform it before the next operation which could affect the setting of the bit:

0 1 2 3 10
...-.A.-- index control

I I I I I I
compare ~ Iii.. t.~-------- carry indicator

indicators '\.._ _____ overflow indicator

()()i:> less th an
01•equal. to
10-greater than
11·unused

status register

4-7.1 CARRY AND OVERFLOW. Now that we know what a 16-bit arithmetic quantity looks like, let's
discuss the meaning of the concepts of carry and overflow. For convenient discussion, and to make our
numbers more manageable, imagine for a moment we have a computer with a 4-bit word that uses two's
complement arithmetic. This would mean that we have 3. bits of significance and a sign bit

0 1 2 3
I ; I

sign bit __J ... _ -.~-'v-... "":::,,: __ 5ignificant bits

The largest positive number we could hold in this register* is +7 (=23-1):

I o 1 1 1

. and the largest negative number is -8:

I 1 o o o I
Adding (-1) + (-2) generates a carry:

(1) carry
1111 (-1)

+ 1110 (-2)
1101

It appears to become a negative number because we have a carry generated which, by all the rules of arith
metic, rightfully keeps propagating toward the left until it finds a suitable resting place. In this case, the
resting place happens to be the sign bit rather than a significant bit.

*The largest positive number is always given by 2n-1, where n is the number of bits of significance available (in th is case, 3); the largest

magnitude negative number in two's complement is -(2n).

62

Many computers, including the 980, have an indicator called the carry indicator which can be used to warm
the operator when this condition occurs. Thus, a carry condition arises form the carry of 1 into the sign
bit (i.e., from bit 1 into bit 0) as the result of an arithmetic operation.

The overflow condition occurs when the result of an operation (regardless of what happened to the sign bit)
has too great a magnitude to fit into the available word length. For example, let's add -8 and -8, which
should give the result -16.

1000
+1000

x ()()()()

In this case the overflow indicator is set, and the carry is clear.

4-7.2 PROGRAM TO TEST CARRY AND OVERFLOW BEHAVIOR. The program shown in the box in
Figure 4-1was used to test the carry and overflow behavior of the 980. The data NUM1 and NUM2 are added
and the overflow and carry indicators tested. If an overflow is found, a "1" is saved in location OVFLO; if a
carry is found, a "1" is stored in location CARRY. During the first run, the numbers added are 32767 and 1,
which produce both carry and overflow. The information outside the box was generated by the SAPG
assembler.

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
0008
000C
0000
000E

CARRY 0000
TSTCO 0000
0000 ERRORS

0000
0700
8008
8008
0F01
0006
2006
CFE0
8805
CDE0
8804
78FF
7FFF
0001
0000
0000
0000

0001
0102
0003

-0004
0805
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018

TSTCO

NUM1
NUM2
CARRY
OVFLO

NUM1 0008 NUM2 000C

IDT TSTCO
EQU $
LOA =0
STA CARRY
STA OVFLO
LOE =1
LOA NUM1
ADD NUM
SNC
STE CARRY
SNV
STE OVFLO
BRU $
DATA 32767
DATA 1
DATA 0
DATA 0
END TSTCO

OVFLO 000E

Figure 4-1. Carry and Overflow Test Program

63

SHEET0001

CLEAR CARRY AND
OVERFLOW FLAGS.
SET FLAG IN E
ADD THE TWO NUMBERS.

CARRY?
YES, SET CAR RY FLAG
OVERFLOW?
YES, SET OVERFLOW
FLAG.

SHEET 0002

At the end of execution, the program hangs at the BRU $instruction in location A. If the MODE switch is
set to HALT, memory locations containing the results can be examined:

To EXAMINE the contents of memory:

1. Enter address into memory address register (MAR):
set address 0(J(J D on switches
liftth.e MA switch.

2. Display contents of that memory cell:
depress MD* switch
and read contents from the lamps.

3. Display contents of the accumulator:
depress the A switch.

To DEPOSIT new numbers in memory:

1. Enter address into MAR:
address on switches
lift MA switch

2. Enter new contents of that eel I
new number on switches
lift MD* switch

To R"UN the program with the data just deposited:

1. Enter the entry point address (0000) into the PC:
address 0000 on switches
lift PC switCh.

2. Set the MODE switch RUN.

3. Depress the START switch.

MA (t)

MD(+)

A(+)

MA (t)

MD (t)

PC (t)

Here are some examples as handled in the 16-bit word of the 980.

7FFF (+32767) carry= set
+OOQJ +(+ 1) overflow = set

8000 (-32768)

7FFF (+32767) carry= set
~+7FFF +(+32767) overflow = set
'FFFE (-2)

*Depressing the MDI switch, instead, will display the contents and step the MAR by 1 so that successive locations may be examined.
*utting the MDI switch, instead, will enter the number set on the switches and step the MAR by 1 so that successive locations may be deposited
in memory.

64

8000
+ FFFF

7FFF

8000
+ 8000

0000

8000
+ 7FFF

Ff FF

8001
+1.E.E£

0000

Ff FF
+F.FFE

FFFD

(-32768)
+(-1)

(+32767)

(-32768)
(-32768)

(Q

(-32768)
+ {+32767)

(-1)

(-32767)
+ (+32761)

(O)

(-1)
+ (-2)

(-3)

carry = clear
overflow = set

carry = clear
overflow = set

carry = clear
overflow = set

carry= set
overflow = clear

carry = set
overflow = clear

4-7.3 THE OVERFLOW AND CARRY TESTS. These instructions always test the status register and do
not use an operand:

Overflow

Carry

SOV
SNV

soc
SNC

Skip if overflow
Skip if no overflow

Skip on Carry
Skip if no Carry

4-7.4 THE COMPARE INSTRUCTIONS. Before the compare indicators can be tested, they must be set.
The one job (and the only job) of the compare instructions to set these bits. Both logical and algebraic com
pares are available. Algebraic compares consist of considering the 16-bit comparands to be signed numbers
(15 significant bits plus sign). Logical compares regard the comparands as having 16-bits of significance and
as positive (i.e., unsigned). For example, the numbers 0001 and FFFF would be in the following relation:

algebraic
logical

0001> FFFF
FFFF > 0001

(+1>-1)
(65535 > 1)

The 980 permits the following comparisons:

a. Register with Register

• algebraic: RCA s,d (s) < (d) ~ set
(s) = (d) ~ set
(s) > (d) ~ set

65

"<"on compare indicators
"=" on comapre indicators
">"on compare indicators

• logical: RCL s,d same operation, except on 16-bit unsigned quantities

b. Memory with Accumulator

• algebraic: CPA m,<mod> (e.a.) <(A) ==>set
(e.a.) =(A) ==> set
(e.a.) >(A) ==> set

"<" on comapre indicators
"="on compare indicators
">" on compare indicators

If the <mod> bits are all ones (i.e., IXB = 7), the compare is immediate and uses the low-order 8 bits of the
CPA instruction sign extended in a 16-bit comparison with the accumulator. For example,

CPA=3

compar~ the imrne<fiate value fDl3 with the current contents of the accumulator.

• logical: CPL m,<mod> same operation except on unsigned numbers

If the <mod> bits are not all ones, the comparison uses all 16 bits of the comparands. If the <mod> bits
arw all ones (i.e., immediate operand), the comparison is between the low-order 8 bits only of the respec
tive comparands. For example,

CPL m,x

compares the 16 bits in m + (X) to the accumulator; whereas,

=-2
~·

....,.. the value FE with 'the tow-order 8 bits of the accumulator.

4:7.5 TESTING THE COMPARE INDICATORS. Several skip instructions are provided, requiring no oper
and~ which test the compare indicators and execute a skip exit if the condition tested for is met:

SL T Skip on less than
SLE Skip on less than or equal
SEQ Skip on equal
SGE Skip on greater than or equal
SGT Skip on greater than
SNE Skip on not equal

These mnemonics follow the conventions for the FORTRAN logical operators (.L T.,.LE., etc.) making them
easy for the FORTRAN programmer to remember.

66

SECTION 5

REGISTER SHIFT AND DOUBLE-LENGTH

5-1 SINGLE REGISTER SHIFT OPERATION FORMAT.
In some applications it is useful to be able to slide bits around within the A-or E-registers, or even back and
forth between registers. This capability is provided by a set of 19-shift instructions (listed in Table 5-1)
which cause the entire contents of a designated register to be shifted some specified number of bits to the
left or to the right as desired by the programmer. The format for all shift operations is identical:

<op-code>b <operand>

where the op code indicates which register is affected, the type of shift (arithmetic, logical, or circular), and
in which direction the shift is to occur; and the operand (which we shall call "y" instead of "m" when
writing a formal definition of the shift instructions) is the number of bit places ~hrough which the register
contents are to be shifted.

5-2 CIRCULAR SHIFTS~
The difference between circular shifts and the other varieties is in what becomes of bits that are pushed out
side the register boundaries during the shifting process, In circular (rotational or end-around) shifts, each bit
pushed out of the register is sent to the other end of the register to fill the bit position just vacated. Since a
circular shift of 15 bits to the right gives the same result as a circular shift of 1 bit to the left, instructions
both left and right circular shifts are unnecessary. 980 AL uses the right shift option and has one instruction
for each of the registers (except for the PC and the status register):

Instructions:

CAA
CRE
CRX
CAM
CRS
CRL
CAB

ARA] ALA
ARD
ALO

LRA] LLA
LRD
LLD
MPYl
DIV I

OLD] DST
DAD
DSB
NRM

Table 5-1. Register Shift and Double-Length Instructions

Circular Right Shifts of A-, E-, X-, M-, S-, L-, and 8-
Registers

Arithmetic Shifts, Right and Left,
Accumulator and Double Length

Logical Shifts, Right and Left, Accumulator
and Double Length

Multiply
Divide

Double Length Load, Store. Add, Subtract

Normalize

67

Table 5-1. Register Shift and Double-Length Instructions (continued)

Instructions:

CAA y A-register shift
CRE y E-register shift
CRX y X-register shift
CAM y M-register shift
CRS y S-register shift
CAL y L-register shift
CAB y 8-register shift

where y is a number or expression giving the shift count.

For example, CAA 3 shifts the register contents 3 bits to the right, 1 bit at a time:
0 15

before I 1 oooi 0000 i 0000 ; 1i100 I A I aooc I
~--------------~---c;~:o;~

after l 10010000 0000 000 11A

5-3 ARITHMETIC SHIFTS.
The arithmetic shift instructions are generally used in shifting signed numbers within the register. Thus, the
sign bit is of particular interest in the way these instructions work. The arithmetic shift instructions apply
only to the A-register, since there are no analogues instructions for the other registers.

5-3.1 ARITHMETIC RIGHT SHIFT. The ARA y (~rithmetic fiight shift,~ register) instruction produces
a rightward displacement of y bit positions. For example, ARA 8 produces the following result:

sign bit1 •
A loo011101h 11010111 before ARA 8

I
I

A I f1oo1110111101011 word shifted 8 bits
I

Now the bits that have been shifted off the right end are discarded (the right shift thus is spoken of as an
end-off shift), and the leftmost 8-bit positions in the A-register are fi I led with rep I icas of whatever sign bit
appeared in the leftmost position of the original contents of the accumulator - in this example: zero. Upon
completion of the ARA 8 operation, the accululator then contains

new sign bit original sign bit
~ ~

A 100000000 000111011 after ARA 8

eight rel icas
of original sign bit

This replication of the sign bit through the vacated bit positions is called sign extension, and occurs
automatically during the arithmetic right-shift process.

68

5-3.2 ARITHMETIC LEFT-SHIFT. In left-shift operations, the bits squeezed out at the left-hand bound
ary, are discarded, and the register is right-filled with zeros:

OVFLW
[Q]

.---- original sign bit
A I00011101fi 11010111

,new sign bit
00011101111101011!

OVFLW .-final sign bit

before ALA 8

word shifted 8 bits

[i] I 0110101 'EOOOOOOOQI after ALA 8
~

l right fill with zeros

Since this is an arithmetic shifts (meaning that the sign bit is of interest), attempting to change the sign bit
· from O to 1 activates the overflow indicator in the status word. The bit itself is not allowed to change and

so is forced to agree with the original sign bit.

5-4 LOGICAL SHIFTS.
The A-register (and no other) permits logical shifts to the left or right as well as the arithmetic shifts just
introduced. The logical shifts are end-off with the vacated bit positions all being filled with zeros. Since the
leftmost bit is not treated as a sign in logical operations, there is no sign ex tension or setting of the over
flow indicator as there is in the case of arithmetic shifts. These instructions are of the form:

LLA
LRA

y
y

logical left shift A
logical right shift A

6-5 DOUBLE LENGTH REGISTER INSTRUCTIONS.
Some operations affect the double length super-register which is formed by concatenating (linking together)
the A- and E-registers. These instructions include

• MultiPIY and DIVide operations

• Double register shifts (sometimes called long shifts)

• Double precision manipulations - load, store·, add, and subtract.

Discussion of the double precision operations is deferred until Section 5-6; the others are discussed below.

5-5.1 MULTIPLY AND DIVIDE INSTRUCTIONS. Both these instructions involve the accumulator but re
quire the assistance of the E-register (extension register).

The MPV instruction is written in the form:

MPV m,<mod>

and has the following effect. The contents fo the (16-bit) accumulator are multiplied by the contents of the
(16-bit) word m and the product so formed (regardless of its actual magnitude) is expressed as a 32-bit string.

69

The rightmost 15 significant bits appear in the E-register and the leftmost reside in the A-register, so it ap
pears that the right end of the A register has been linked to the left end of the E register to make a
super-register having 32 bits (including 2 sign bits):

sign bit sign bit

A '~1 _ ____..f 1,.___.__I E
logical hnk

This linking process is known as concatenation, and the double-length register so formed is abbreviated AE
since the juxtaposition of those letters reflects the relative positions* the two registers had with respect to
each other just as the logical link was forged. When multiplication is complete, the link dissolves. The sign
bit of the E register is forced to agree with that of the product. We can write a formal definition of the
MPV instruction, then, as fol lows:

MPV m,<mod> means (A) * (e.a.) ~AE

If mis immediate, the signed value of the operand field is used as the multiplier. If both operands are equal
to the smallest number that can be expressed by 16 bits (i.e., -2-15), the result is indeterminate, and the
overflow indicator is activated. An example of the use of the MPV instruction is given below.

A Random Number Generator
The best method of generating pseudorandom numbers is the mixed (additive and multiplicative)
congruence method in which a "seed" number is multiplied by an appropriately chosen factor, and a cons
tant is added to the product. The pseudorandom number thus produced serves as the seed for producing the
next number in the sequence. Although the numbers stream will ultimately repeat (cycle), the factors are
chosen such that the cycle time is large.

The foll~ing routine generates two streams of random numbers (between -32768 and +32767) and stores
them in arrays RAN 1 and RAN2, with the seeds for each stream initialized in the first array position

A
E
x
B
MULT
N
RANDOM

IDT
EQU
EQU
EQU
EQU
DATA
DATA
EQU
LOE
RMO
LOX
LOA
@MPV
REX
@ADD
STA

RANDOM
0
1
2
6
16385
100
$
N
E,B
=0
MULT
RAN1,X
A,E
=107
RAN1+1,X

SET INDEX LIMIT
IN B-REGISTER
INITIALIZE INDEX
GET MULTIPLIER
MULTIPLY BY SEED
LOW ORDER BITS TO A
ADDITIVE FACTOR
SAVE NUMBER IN STREAM 1.

*Beware of taking the word position too literally. The builders of the 980 know about the precise physical location of these registers within the
main frame, but we probably don't; nor do we care. The two registers could be located at opposite corners of the machine but still appear as
neighbors in the electrical circuitry.

70

LOA
@MPV
REX
@ADD
STA
RIN
RCA
SEQ
BAU
IDL

RAN1 DATA
BSS

RAN2 DATA
BSS
END

MULT
RAN2,X
A,E
=451
RAN2+1,X
X,X
X,B

LOOP
0
327
511
873
511
RANDOM

RETYPE FOR STREAM 2.

INCREMENT INDEX
TEST INDEX
REACHED LIMIT?
NO, GO BACK
YES, DONE.
SEED 1

SEED 2

The DIV instruction assumes that the dividend is resident in the 32-bit AE super-register. If the number to
be used as dividend was obtained from a previous multiply instruction, it is already 32-bits long and we're
ready to divide. However, if the dividend resides in a 16-bit memory location, it is necessary to load it into
the E-register and convert it into a 32-bit quantity by a process known as sign extension, which is just the
replication of the (zero or one) sign bit in the memory word all the way out to the left end sign bit of AE:

Al FFFF I FFF5 IE
._ ____ Lo_E_x ___ · ~ x

Into A must somehow be placed the number FFFF (all binary ones) so the two registers will be ready for
the concatenation that will automatically occur when the DIVide circuitry is activated.

· The m operand in the

DIV m

instruction contains the divisor and , upon completion of the division, the AE splits apart into its A and E
components, where A now contains the quotient having whatever sign is mathematicaily correct and Econ
tains the remainder which will have the same sign as the original dividend. Formally speaking,

DIV m,<mod> means (AE)/(m) ., A (quot!ent)
E (remamder)

where our formal notation seems to lack any indication concerning the sign of the remainder. In the case of
zero remainder, the sign is positive, since negative zero does not exist in two's complement arithmetic. If the
magnitude of the dividend is less than that of the divisor (i.e., the result of the operation would be a fraction
less than 1) no operation occur~, and the overflow indicator is activated. The sign can be extended in a num
ber of ways

• Multiplication by unity

71

• Loading the proper bits into the A-register directly

• Through special double-length register shift instructions (Section 5-4.2) which cause replicas of the
sign bit to be left in the position of a register vacated as a result of the shift operation.

5-5.2 THE MOVING AVERAGE PROBLEM. As an example of a program involving multiplication and
division, we can consider the moving average problem in which we have an array of N numbers in the loca
tions from LIST to LIST+ (N-1).

· LIST

LIST+ (N-1)

base + offset = location
0
1
2
3

N-1

Our present problem is to write a 980 AL program to compute a three-point moving average of all values
in the array. The moving average technique involves averaging each data value with its neighbors in order
to "smooth out" short-term fluctuations. For ~xample, if the data values were daily temperatures recorded
at noon through the month of October, a plot of the raw data might appear thus:

T

ay
whereas the moving average would appear as a smoother curve showing the same trend:

three point
moving average = T 3

day

yielding a clearer view of the overall temperature trend during the month, since the short term variations
are averaged out.

For the three-point moving average, we can write an algorithm:

av Qi = listi-1 + listi · + listi+1

3

where each of the averages is stored in an element of another array named AVG (note that the endpoints
have no corresponding average):

72

LIST 17 - AVG

64 {77+64+70}
3

70 t64+7o+71l
~

71 (7o+71+60)
3

66

LIST+ (N-1) - AVG+ (N-1)

We'll further assume that the number of elements of N is stored in a cell named N

NI ____ I· value of N

We'll design the program so that the index always points to the middle cell of a triad, and the neighboring
cells are accessed by address arithmetic:

Flowchart:

Stop

Program:
LOA N GET ITEM COUNT.
SUB 2 COMPUTE MAX INDEX (N-2)
RMO A,X PLACE IN X.

LOOP LOA LIST+1,X ADD ELEMENTS
ADD LIST,X
ADD LIST-1,X
MPY =1 SIGN EXTEND.
DIV =3 COMPUTE AVERAGE
STA AVG,X AND SAVE
ROE X,X DECREMENT INDEX
SZE x ZERO?
BRU LOOP NO, GO BACK.
IDL 0 YES, QUIT.

73

We could rewrite the program using a negative index which increments to zero (and, hence, the BIX instruc
tion for the test), but this is a bit awkward unless we know at assembly time the value of N and can work
from the top of the array using address arithmetic. A procedure for using the variable N is discussed in Sec
tion 6-3.

Consider the example where N = 6.

LIST

n1
n2
n3
n4
n5

LIST+5 n5

Flowchart·

Program:

LOOP
LOX
LOA
ADD
ADD
MPY
DIV
STA
BIX
IDL

Stop

74

-
a2
a3
a4
a5
-

=-4
LIST+4,X
LIST+5,X
LIST+6,X
=1
=3
AVG+5,X
LOOP
0

AVG

AVG+5

i=-4
i=-3
i=-2
i=-1

5-5.3 SHIFT OPERATIONS IN A 32-BIT REGISTER. The seven double-register shift instructions are often
called long shift operations because they produce shifts in the 32-bit (i.e. double-length AE register which
discussed in dealing with multiplication and division operations. The 32-bit concatenation is formed by
making a logical link between the A- and E-registers, that this time the A is on the left and E on the right:

A'-------~ _____ IE
AE

logical link

. Whenever we write a "double shift" instruction, the machine automatically concatenates the A- and
E-registers in this configuration before effecting the shift. At the end of the shift operation, the logical link
dissolves and the two registers resume their original identity.

As in single-length register shifts, there are three types of operations:

1. Double-length circular shifts. Unlike the single-length instruction group (in which circular shifts
are only performed to the right) these are l:ibth left and right double-length circular shifts; because
now that we are dealing with a long bit-string it is faster to use

CLO 1 ~ircular _beft shift (Qouble) 1 bit

then to use

CRD 31 ~ircular B_ight shift (Qouble) 31 bits

In this case, the bit that drops off the left end of the A-register attaches to the right end of the E-register
as each bit moves left one place:

A E
1 100011100110111111101101101101000 .\) ii

'·--· 2. Double length logical shifts. The logical shifts behave the same way, except they are end off rather
than end around and the vacated bit positions are filled with zeros, as in single-register logical shifts:

LRD
LLD

y
y

bogical B_ight shift Qouble
b(>gical beft shift Qouble

3. Double length arithmetic shifts. The arithmetic double-length shifts work the same way as their
single-length counterparts in that sign extension occurs on a right shift, and zero-fill occurs with a left shift.
The principal difference between these and the other long-shift instructions arises from the fact that the two
registers maintain the integrity of their sign bits:

Sign
! 1

Sign
15 ! 1 15

and a shift over the AE boundary will skip the E's sign bit which is forced to agree with A's sign bit. If we

75

attempt to change A's sign bit on a double-length left shift, the overflow indicator will activate. These in
structions are written

ARD
ALO

y
y

Arithmetic B.ight shift Double (sign extension).
~rithmetic heft shift _Qouble (zero fill).

The normalize instruction N RM is also a double-length arithmetic shift. This instruction shifts the AE regis
ter to the left until bit 0 of A is unequal to bit 1 of A. The operand field is not used.

Set equal

,.,,,_.,
unequal

NRM

5-5.4 DOUBLE-LENGTH SHIFT IN PREPARATION FOR DIVIDE. If the dividend is a 16-bit number, it
must be converted into a 32-bit number in the AE register prior to the issuance of the DIVide instruction;
i.e., it must be placed in the E-register with its sign extended through the bits of the A-register. We have
already examined one way to do this - namely, multiply the 16-bit dividend in A by unity, which places
the 32-bit result in AE. The number is now sign-extended and ready for division. Another way (one could
think of .several ways) is to load the accumulator with the 16-bit dividend (unless it happens to be there
anyway as the result of a previous operation) and do a long arithmetic shift into E, with the result that the
garbage in E is replaced by the dividend, and the sign extends through A.

LOA
ARD
DIV

DVDND
15
DVSR

GET 16 BIT DIVIDEND
SIGN EXTEND
DIVIDE

Pictorially, what happens is this. If (DVDND) = 21C

Instruction Result
LOA DVDND A E

I 0 2 1 cl I
ARD15 A

i
E

10 a a a 0 2 1

AE now ready for division

DIV=2 A E

?

c

....... k1_1 ____ a_E_I I a 0 0 0
Quotient Remainder

5-5.5 DIVISION BY 2 OR ANY OF ITS POWERS. Since multiplication/division by 10 merely involves
moving the decimal point, it follows that the same process can be used to multiply or divide by 2n where in
is any integer power.

76

If we assume that the right boundary of the accumulator represents the position of the binary point (which
it does in integer arithmetic), the arithmetic shift instructions can be used to perform the desired operation:

ALA
ARA

n
n

MULTIPLY BY 2n
DIVIDE BY 2n

The result is the shifted number in the accumulator and, in the case of division, the fractional portion is
expressed in the bits discarded by the end-off shifting process. If we were first to clear the E-register and
then perform a long shift by n, the fraction would show up in the E register, justified against the left bound
ary:

LOA
LOA
ARD
STA
STE

=0
DVND
<n>
INTEGR
FRAC

5-6 DOUBLE PRECISION ARITHMETIC.

CLEARE
GET DIVIDEND
DIVIDE BY 2n
SAVE INTEGER PORTION
SAVE FRACTION

In Add and Subtract operations we assemed that the operands and the result are all capable fitting into 15
bits of significance plus sign. Some of the world's numbe.rs do not cooperate with this restriction, and we

· must make provisions to handle them.

Given numbers larger than 16 bits, we would split them into pieces, each piece capable of fitting into 16 ·
bits and operate on them in a piecewise fachion. Consider, for example, the problem of adding a pair of
24-bit numbers.

First we would have to split the numbers into a low order segment Ueast significnat 15 bits+ sign) and a ·
high order segment (the remianing 9 bits with sign extended in another 16-bit word. The low arid high
order pairs can be added together, respectively, and the low order result tested to see if a carry is generated
that must be added to the high order pair.

The 980 has the following four additional double-length instructions which simplify double precision oper
ations:

OLD
DST

m,<mod>
m,<mod>

Qouble length loag_
Qouble length ~ore

which loads and stores the A-register from the effective address and the E-register from the effective address
+ 1. For example:

A E
!Most Significant I Least Significant I

OLD m

These instructions handle numbers consistently with the behavior one observes in the operation of the

17

double-length arithmetic instructions: the MPV and DIV already discussed and two additional ones

DAD
DSB

m,<mod>
m,<mod>

Double length ADd
Double length .§.u~tract

5-7 EXECUTION TIMES AND THE SPACE-VERSUS-TIME TRADEOFF.
Having discussed more than half the available 980 instructions, we are now in a position to code just about
any problem presented us, except those involving 1/0. About half the instrucitons we have not yet exam
ined are related to 1/0, and the other half represent specialized operations which we can.program our way
around using two (or perhaps more) of the instrucitons we have learned. The resulting code may be less

. efficient, but it can be made to work.

Even wit~out knowledge of the additional instructions, we often find several ways to do the same job
and should begin to wonder if there is some means of deciding which of several possibilities is best. To ad
dress this problem let's examine the two major resources available to us in order to run a program:

• Space within the memory

• Time required for the program to execute.

In most elementary training problems such a sufficient quantity of both resources is available, we seldom
will be forced to conserve them. In "real" problems, the situation is often very different. A long program
which depends on having large arrays of data stored in memory may require more space i'n the memory
than storage available. In such case anything the programmer can do to reduce the length of the program
may mea·n the difference between being abletosolve the problem on the available computer or having to
seek out a larger computer. Often the process of pruning the size of the program causes use of instructions
requiring a long time to execute so that the price of a shorter program may be a longer running time.

Conversely, if the resource more rapidly depleted is machine time and there is lots of space remaining, it
may be possible to rewrite the program in a more verbose fashion so as to gain faster execution. (Of course,
if both resources are used up, there is nothing left with which to barter for such an exchange).

If we are given no information concerning the relative speeds with which the operations are carried out
(some operations do take longer than others), then, of course, we have no way to judge the speed of the
various methods without actually writing them and observing the time used by each. If we were confronted
with a machine that demands the same length of execution time for each instruction in the repertoire and
do not consider loops, then the program with the largest number of instructions (i.e., taking up the largest
amount of space) will also take the longest time to execute - and we lose on both counts.

As a general rule, it is safe to say that - all other things being equal - the shorter program is the better one.
But wait! If we carry this principle to an extreme so that the code is written so "tight" as to make debugging
and revision a difficult job, we lose again in terms of the programmer time required to produce and main
tian the program. How to handle the space/time tradeoff in any given situation is one of the arts of pro
gramming.

Execution times for 980 instructions are given in Table 5-2.

78

TABLE 5-2. INSTRUCTION E·xeCUTION TIMES IN MICROSECONDS

REGISTER -MEMORY
M"nemonic l Name j Memorv Referencing* 1 Immediate Addressing

Alm" Add 1.75 0.75
AND And 1.75 0.75
BIX Branch on incremented index 1.25 1.25
BRL Branch and link 1.50 1.50
BRU Branch unconditional 1.25 1.00
CPA Compare algebraic 1.75 0.75
CPL Compare. logical 1.75 0.75
DAD Double add 2.75 1.0
DIV Divide 2.5 _. 7.75 1.50 _. 6.75
OLD Double load 2.75 1.0
DMT Decrement memory and test 2.75 2.75
DSB Double subtract 2.75 1.0
DST Double store 2.75 2.75
IMO. Increment memory by one 2.75 2.75
IOR Inclusive OR 1.75 0.75
LOA Load register-A 1.75 0.75
LOE Load register-E 1.75 0.75
LDM Load register-M 1.75 0.75
Lox· Load register-X

..

1.75 0.75
MPV Multiply 2.25 _. 6.25 1.25 _. 5.25
STA Store register-A 2.00 2.0
STE Store register-E 2.,00 2.0
STX Store register-X 2.00 2.0
SUB Subtract . 1.75 0.75

*Add the following to execution times, when applicable: 0.25 microseconds for indexing, 0.75 micro
seconds for indirect addressing, and 0.25 microseconds for DAD, OLD, DST, and DSB extended format.

Mnemonic

LTO
LTZ
RTO
RTZ

All other instructions**

Name

Left test for one
Left test for zero
Right test for one
Right test for zero

**Add 0.25 microseconds for ALO and ARD when shift count is zero.

79

SC
0.75+4

Mnemonic

RAN
RCA
RCL
RCO
ADE
REO
REX
RIN
RIV
AMO
ROA
RSU

Name
eg1ster d

Register AND
Register compare-algebraic
Register compare-logical
Register complement
Register decrement
Register exclusive 0 R
Register exchange
Register increment
Register invert
Register move
Register OR
Register subtract

SKIP

All instructions execute in 1.0 microsecond.

MISCELLANEOUS

Mnemonic I Name
API Aux ii iary processor initiate
ATI Automatic transfer instruction
CLC Compare logical character string
IDL Idle
LRF Load register file
LSB Load status block and branch
LSR Load status and reset interrupt
MVC Move character string
NAM Normalize
RDS Read direct single
SABO Set register-A bit to one

- SABZ Set reoister-A bit to zero

SMBO Set memory-bit to one
SMBZ Set memory bit to zero
SRF Store register file
SSB Store status block and branch
TABO Test register-A bit for one
TABZ Test register_-A bit for zero
TMBO Test memory bit for one
TMBZ Test memory bit for zero
WDS Write direct single

80

l

Time
1.25
1.25
1.25
1.25
1.00
1.00
1.25
1.50
1.00
1.00
1.00
1.25
1.25

Time
AP Controller Dependent
2.5
5.o+2.25/byte
1.0
7.0
3.25
3.25
4. 75+2. 75/byte
1.0-+8.75
3.00-+ 4.75
1.0
1.0
3.25
3.25
7.0
3.25
1.25
1.75
2.75
2.75
3.00-+ 5.0

~

Let's examine three simple code blocks which do the same job and try to evaluate them in terms of space
and time consumption. In all cases the job involves preparation of a dividend for division.

~
Block A) 1.75 LOE DVND GET DIVIDEND

2.50 l 1:~ LOA =0 CLEAR A
SPL E DIVIDEND POSITIVE?

.75 LOA =>FFFF NO, LOAD SIGN EXTENSION
2.5 _.7_75 DIV DVSR YES, DIVIDE

Block B) 1.75 LOA DVND GET DIVIDEND
1.25 ... 5.25 MPV =1 MULTIPLY TO EXTEND SIGN
2.5 _.7_75 DIV DVSR AND DIVIDE

Block C)
15

1.75 LOA DVND GET DIVIDEND

0. 75 + 4=4.50 ARD. 15 SHIFT TO EXTEND SIGN

2.5 _.7_75 DIV DVSR AND DIVIDE

The execution times in microseconds (taken from Table 5-2) are listed above to the left of the code. Ignor
ing the first and last instructions in each block (they are the same in all cases), we see in blocks A and Ca
classic example of the space/time tradeoff. The three instructions in block A execute in slightly over half
the time of the one instruction in block C.

We find in block B that a multiply (immediate) can consume from 1.25 to 5.25 microseconds. Since we
have no way to know how long this multiply will actually take (we'd suspect it to be on the low side be
cause of the simplicity of the multiply-by-one operation), we would probably consider it in terms of "best
case" and "worst case" situations. If the MPV is done in 1.25 microseconds, block B is obviously the best in
terms of the least space and the least time. In the worst case situation (5.25 microseconds) block A is fast
est (though longest) and block C is faster than block B (even though the blocks are the same size).

If space is the critical resource, take Block C (or gamble on block B); if time is the critical resource, take
block A (or gamble on block B):

81

.SECTION 6

ARRAY TECHNIQUES: SORTS, SEARCHES, AND STACKS

6-1 ARRAY MANIPULATION THROUGH INDEXING.
Use of the X-register to obtain an effective operand address (base+ offset) was introduced as the indexed
PC-relative mode in Section 3-12.3. A substitute form of indexing using the B-register was explored in
Section 4-5.2. In this chapter we discuss a combined addressing mode: indexed B-relative. Then with

. all these array handling techniques at our disposal, we proceed to some typical array problems encoun
tered in a programming environment.

Arrays can be stored from the base address forward in memory:

base
address

or from the base address backward in memory

base address ~

nl

n2

n3

n4

n5

n5

nl

n2

n3

n4

n5

n5

offset

0

1

2

3
4

5

offset

-6
-5
-4
-3
-2
-1

and indexing may proceed in an incrementing or decrementing fashion, dictated by the position of the
base address, the nature of the problem, and the wishes of the programmer. A base address at the top
of an array can be converted to an effective base address at the bottom of the array through use of
address arithmetic, provided that the precise size of the array is known at assembly time (see Section
3-12.3). Since the precise size of an array is not always known at assembly time (we may not use all
the cells for which we have reserved space), it is useful to have a means of coping with such a situation.
Indexed B-relative mode (discussed in the next paragraph) is used in the discussion of such variable
length arrays (Section 6-3).

83

6-2 INDEXED B-RELATIVE MODE.
Standard B-relative addressing, was discussed in Section 4-5, where it was pointed out that one advant
age of having a base register is to permit access to memory cells outside the allowable PC-relative range.
Normal indexing can occur in a program fragment which is assembled and executed as base register
relative (Section 4.5-1):

LOX
BRS
@LOA
RMO
LOA
ADD
BIX
BRR
STA

=-6
ARRAY
=ARRAY
A,B
=0
ARRAY+6, X
$-1

SUM

or using execution time B-relative technique:

LOX
@LOA
RMO
LOA
ADD
BIX
STA

=-6
=ARRAY
A,B .
=0
6,XB
$-1
SUM

6-3 VARIABLE-LENGTH ARRAYS.

INITIALIZE INDEX
DECLARE BASE TO ASSEMBLER
LOAD BASE
FOR EXECUTION
INITIALIZE SUM
ADD NEXT ARRAY ELEMENT

ASSEMBLE PC RELATIVE

SEE FOOTNOTE*

It is not always possible to know at assembly time the number of data values contained in an array
during execution time. FORTRAN copes by reserving space (DIMENSION) for some maximum number
of elements and then uses as much space as the data requires.

If the data is read in from an external device, the FORTRAN program does either of the following:

1. Requires a count of the actual number, n, of data values to be supplied as a header value
along with the data:

DIMENSION ARRAY (10fl)
READ,N
DO 10 I = 1, N
READ ARRAY (I)

10 CONTINUE

2. Counts the data as it comes in and tests it for a trailer value indicating the end of the input
sequence. Either a predetermined "ridiculous" value (possibly zero if appropriate to the
problem) or an end-of-file can be used:

DIMENSION ARRAY (100)
DO 10 I = 1, 100
READ ARRAY (I)
IF [ARRAY (l).E0.0] GO TO 20

10 CONTINUE.
20 N=l-1

*Evaluate by adding the offset (first operand) 6 to the number in B to get the address below the last array element, ARRAY+6. Applying
the first index value of -6 returns us to the base address of the array.

84

In either case - whether N is supplied or computed - its value is available to tell us how many cells in
the array contain significant information

The assembly language analog of the DI MENSI ON statement is the BSS pseudo-op:

DIMENSION ARRAY (100)

ARRAY (0)

ARRAY (1)

ARRAY (2)

ARRAY (3)

ARRAY (4) N 3

ARRAY BSS 100

ARRAY +O

ARRAY +1

ARRAY +2

ARRAY +3 (Array+ N)

ARRAY +4

Since the ARRAY (0) cell is not available in standard FORTRAN, ARRAY+ N represents the first un
used eel I in the assembly language analogy.

In the case of an N-element array, we would like to be able to write a standard PC-relative indexed loop
with a BIX in the spirit of the second example in Section 3-12.3.1, where we would like to make cell
ARRAY + N the address to which we apply the negative offset in the index register. We run into trouble
because N is a value which must be provided to the assembler, yet it will not be available until execution
time. lf we write

LOX
RCO
LOA
ADD

N
X,X
=0
ARRAY+N,X

GET COUNT
NEGATE TO FORM INDEX
INITIALIZE SUM
ADD ARRAY ELEMENT????

observe that the idea has gone sour, as the assembler adds the address of N, not it's value, to the base
address.

Use of the indexed B-relative mode provides us a clean way out of the dilenvna: we can calculate the
AR RAY + N address at execution time and place it in the B-register. Indexing then can be done using
that address as a base. The following code fragment sums the elements of an array of N values.

Execution Time (µsec)

1.50
1.75
1.25
1.00
1.00
0.75
2.00
1.25
2.00

12.50

@LOA
LOX
RAD
RMO
RCO
LOA
ADD
BIX
STA

=ARRAY
N
X,A
A,B
x,x
=0
ARRAY,XB
$-1
SUM

GET ADDRESS OF ARRAY
GET COUNT
COMPUTE ADDRESS OF ARRAY IN
AND PLACE IN B
NEGATE COUNT TO SERVE AS INDEX.
INITIALIZE SUM.
ADD NEXT ELEMENT
IF NOT DONE, GO BACK.
OTHERWISE, SAVE SUM.

The solution to avoid the use of indexed B-relative is to test the value of X after each pass through the
loop:

85

1.75
0.75
0.75
2.00
1.00
1.25
1.00
1.00
2.00

11.50 µsec

LDM
LOX
LOA
ADD
RIN
RCA
SGE
BRU
STA

N
=0
=0
ARRAY,X
X,X
X,M

$-4
SUM

GET ELEMENT COUNT
INITIALIZE INDEX
INITIALIZE SUM
ADD NEXT ARRAY ELEMENT
INCREMENT INDEX
TEST INDEX FOR WRT ELEMENT COUNT
INDEX AT LIMIT?
NO, GO BACK
YES, SAVE SUM

Execution times listed above for each instruction show in this example that the second option is
slightly faster.

6-4 THE EXCHANGE SORT (BUBBLE SORT) TECHNIQUE.
Given an array in the computer memory, it is sometimes necessary to rearrange the items into ascending
or descending numerical order or, in the case of alphabetic data, into alphabetical order. Alphabetic
sorts using the ASCII character set (introduced in Section 7) really prove to be a special case of a stan
dard numeric sorting problem.

.
Consider an array of N=5 numbers which must be sorted into ascending order. The technique illustrated
in Figure 6-1 is the exchange sort, in which a sequential pair of numbers is compared and an exchange
made if they are not in order. A number of passes through the list may be necessary before complete
order is created.

At the end of the pass consisting of N-1 = 4 possible exchanges, the largest number has "sunk" to the
bottom of the list. then, On the next pass from the top of die list,·then, only three comparisons are necessary.

When the last pass single comparison (and exchange, if necessary) is made, we are assured that the
numbers are in the proper order.

Pass 1 :
Pass 2 :
Pass 3 :
Pass 4 :

N-1 = 4 comparisons:
N-2 = 3 comparisons
N-3 = 2 comparisons
N-4 = 1 comparison

PROCESS COMPLETE

If the original list were in the worst possible order (perfectly descending), all N-1 passes would have
been necessary to order it. If the list were perfectly ordered, it is not affected at all by the process. A
partially ordered I ist may become perfectly ordered at some point before all N-1 passes are made. We
can save some processing time by testing to see if there is some pass which does not affect the list in
any way and quitting as soon as such a pass is made, even though we may not have reached the maximum
number of N-1. The test consists of clearing a flag at the beginning of a pass, setting it if an exchange
is made, and testing it upon completion of the pass.*

*See flow chart page 88

86

- 3 -. - 3 3 - 3 - 3
--.

5 0 0 5

0 l 0 5 2
::tt

2 2 l 2 5 en i en
<(

-15 -15 -15 -15 Q..

v 0

0 2 z

-15

5
z
0
(/)

- 3 --+ - 3 - 3 M - 3 cc
<(

0
__.

0 0 __.. 0 0 z.
0.
~
0

2

-15

5

2
.....

l
2

-15 -15

5 5

~ -1__5_

2

5

u

z
N 0
0

- 3 --+ - 3 z
(/)

cc
<(

0
--+

0 -15
Q..

~
0

M -15 -15 z 0
:ft- 0

u

en
2 2

CJ)
2 en a: <(

Q.. <(
5 5 0. 5 - :E

0 0
z u

- 3 -15

-15 z - 3
v 0
11: 0 en 0
en cc
en <(

2 <(2 Q..

a. ~

5 0 5 u

Figure 6-1. Exchange Sort Technique

87

Flowchart:

i~i+1

Set pass counter p to 1

Set comparison counter to
N~P

Clear exchange flag

Pair index: i = 1

Make comparison, pair

Yes

Exchange

Yes

No

Process Complete

88

Decrement pass counter
P~ P + 1

Since the number of comparisons is variable, decreasing from pass to pass, we will find useful the indexed
B-relative mode (Sections 6-2 and 6-3).

MORE

NOEXCH

QUIT

LOA
STA
LOA
SUB
RCO
@ADD
RMO
LOA
CPA
SGT
BRU
LOE
STE
STA
IMO
BIX
DMT
BRU
LOA
ROE
CPA
SNE
BRU
IMO
BRU
IDL

6-5 SEARCH TECHNIQUES.

=1
PASS
N
PASS
A,X
=LIST
A,B
LIST,XB
LIST+1,XB

NO EXCH
LIST+1,XB
LIST, SB
LIST+1,?<B
FLAG
MORE
FLAG
QUIT
N
A,A
PASS

QUIT
PASS
NXTP
0

INITIALIZE PASS COUNTER
AND SAVE.
GET ELEMENT COUNT.
GET N-PASS =COMPARISON COUNT
AND PLACE ITS NEGATIVE IN X.
COMPUTE LIST+ (N-PASS)
ADD PLACE IN BASE REGISTER.
MAKE COMPARISON
OF PAIR.
IN ORDER?
YES, NO EXCHANGE
NO, MAKE EXCHANGE

AND SET EXCHANGE FLAG.
IF PASS NOT DONE, GO BACK.
OTHERWISE, TEST FLAG.
IF FLAG IS ZERO, PROCESS COMPLETE;
OR IF PASS= N-1, PROCESS COMPLETE.

PROCESS COMPLETE
IF NOT, INCREMENT PASS COUNTER
AND GO BACK
OTHERWISE, IT'S DONE.

Given a reference item and a list, occasions will arise when we wish to search the list to find a match for the
reference item. If a match is found, we want to know its position in the list so that we may take some action
upon it. If no match is found, some other kind of action is almost always implied. The lists may be ordered
or random, depending on the specific requirements of the search technique used.

The meaning of match should be elaborated. Sometimes the match must be identical (in which case the pro
cess might be termed an equality search). That is a special case of the more general problem of finding the
list element which is closest to the reference element. For example, if we have a list containing azimuth
readings in degrees:

AZMTH 275

310

094

172

033

89

and a reference element REF I 090 I , visual inspection shows no exact match: the closest match
is the 094 entry in AZMTH + 2. We could instruct the computer to find that for us by a search for the
smallest difference between REF and the elements of AZMTH. We must take an initial value for the differ
ence (DIF) to be an unrealistically large value (such as 360).

Flowchart:

i+-i + 1

i+-0

Initialize DI F to 360

Compute absolute value
of difference:

DEL TA= I AZMTH2- DIF I

yes

DIF+-DELTA
POINTR+-i

Process complete

no

When this process is finished, the pointer will point to the list element closest to the value of REF. In case
of duplicate matches, it will point to the earliest one encountered. This same technique is useful for finding
the smallest (or largest) element in a list, except we would arbitrarily select the first element as the smallest
and then attempt to find one smaller.

90

Flowchart:

yes

6-6 SEQUENTIAL SEARCH.

i +-0
SMALL+- LISTj
POINTR +-i

i +- i + 1

SMALL+- LISTi
POINTR +-.i

Process complete

no

The sequential search is a simple technique most appropriately used for short lists. Longer lists are generally
better handled by more sophisticated methods. The sequential technique involves examining each list ele
ment In tum and Comparing it with the item sought. If the list item constitutes a match, the position of the
item in the list is saved, and the search may be continued if the list may contain multiple occurrences of the
item and we are interested in such occurrences. Here is a flowchart for finding a unique list item.

i +- i + 1

Initialize pointer to zero

yes

Initialize index:
i +- 1

Stop

yes

Save current index value

The index i also serves as a count of the number of matches found in the list. We could consider a list having
N elements. (N is an execution time variable (see Section 6-3) or a fixed value known at assembly time.) To
simplify the example, we'll use the latter option.

91

The code for N= 10 elements may be written:

Program:

SRCH

NOFIND
FOUND

LDA
STA
LDX
LDA
CPA
SNE
BRU
BIX
IDL
STX
IDL

6-7 BINARY SEARCH.

=0
POINTR
=-10
LIST+10,X
MODEL

FOUND
SRCH

POINTR

INITIALIZE POINTER INDEX

INITIALIZE INDEX
GET NEXT LIST ELEMENT
TEST FOR "MATCH"
FIND ONE?
YES, SAVE POINTER
NO. END OF LIST? NO, GO BACK.
QUIT
YES.

A list which is searched sequentially for a match to a reference element need not be in order. However, an
ordered list is inperative using the binary search technique. This technique involves examining the dividing
line between the upper half and the lower half of the list and deciding in which half the element of interest
would have to lie if it were present. This half is further subdivided into half and the process repeated until
isolation to a single element is obtained. Either the element constitutes a match or does not constitute a
match, and the process ends.

The binary search is most easily performed on a list of N elements where N = n2; i.e., some integral power
of two. It is useful to "pad" the list at the end until this condition is met. Take a list of 5 elements, for
example, the next higher power of 2 is 23, so we have an eight-element ordered list. Since one way of divi
ding the list into half each time involves dividing the index by 2, let's set up the list with a BES symbol and
use negative offsets:

LIST-8
LIST-7
LIST-6
LIST-5
LIST-4
LIST-3
LIST-2
LIST-1
LIST

If we are looking for the number:

REF

-20
- 3

2 8 elements
19

105
garbage
garbage
_g_arbaae

5

the process works something like the following, where i is the increment in list size and j is the midpoint of
the current list segment.

92

i +- -N/2

Initialize midpoint:
j +-i

Halve 1he increment size:

i +-i/2

yes

no

Select top half of list and
compute new midpoint:

j +-j + i

6-8 SEARCHES USING HASH TECHNIQUE.

no

Select bottom half of list and
compute new midpoint:

j+-j-i

Element not present

To use the hash technique list to be searched must be built in a special way, and the method used in build
ing the I ist is to find an item in it. The hash total of an item is the arithmetic sum of all characters consti
tuting the item and is most often used in building lists of alphanumeric characters (such as symbol tables).
Further discussion of the hash technique is deferred until character data is discussed in Section 7-7.

6-9 INSERTION AND DELETION IN A LIST.
Let us assume we have a program which is maintaining an ordered list, and we wish to write a code block to
insert a new value into the appropriate position in the list:

(before insertion)

LIST -15
-3

12

LIST+4

·'
3A

485
?
?

NEW
,----1 20 I
• • ,_ ...

~

(after insertion)

LIST -15
- 3

12
20
3A

LIST+5 485
?

We could do this by making a new copy of LIST, element by element, inserting NEW at the appropriate
time, and continuing to the end of LIST. It is more efficient (usually) to work entirely within the original
list, starting with the bottom value and moving it into the empty slot below, moving up to the next vaiue
and copying it one slot below, and so forth until the location is freed into which NEW should be copied. We
need to maintain a COUNT of the number of items currently in the list:

*The topmost element (LIST _N) is not accessible through values of j; if the increment size cannot be further divided, this is the only cell which
has not been tested. We must either perform the test on the cell or .make a test [i.e., is j = N-(n-i) 1 to determine if we should perform the test
on the cell. It is more efficient just to make the test in all cases whether appropriate to the data or not.

93

COUNT COUNT

I sl I sl
(before insertion) (after insertion)

A number of search techniques are available, varying from the simple sequential search to ever increasing
degrees of sophistication. Whichever technique we elect to use, however, we will expect from it a pointer
named HERE which gives us the value of the offset at which insertion is to take place. In our example,
HERE takes on the value of +3.

We must first move every item in the lower part of the list (including the original entry in LIST +3) down
one cell.

Flowchart:

Program:

·LOOP

INSERT

Initialize index to first
empty slot:

i +-i - j

LISTi+1 +- LISTi

LOX -
RMO
CPA
SNE
BRU
ROE
LOA
STA
BRU
LOA
STA
IMO
IDL

COUNT
X,A
HERE

INSERT
x,x

· LIST,X
LIST+1,X
LOOP
NEW
LIST,X
COUNT
0

yes

6-10 THE PUSHDOWN STACK.

LISTi +-NEW

COUNT+- COUNT+ 1

STOP

GET INDEX OF FIRST EMPTY CELL.
MOVE TO A FOR TEST
INSERT POINT?

YES, GO TO INSERTION
NO, DECREMENT INDEX.
MOVE ITEM
TO CELL BELOW
AND GO BACK

INSERT ITEM
INCREASE COUNT

In some computer problems it is convenient to store data values in the form of a pushdown stack. For ex
ample, given an array (STAK) of five numbers:

94

STAK 37
35
13
45
51
?
7

and NEW a new number to be added to the top of the list

NEW

~
push down each old number, starting with the bottom one, into the slot below and insert NEW number

STAK 37 ~ ..---·
35 Lru
·13

51

?

resulting in

STAK

Removal of items from the list consists of taking the item from the top of the stack and "popping up" the
items below to fill in the space thus vacated. Thus, the pushdown stack is a last in, first out (LIFO) structure.

We could interpret this problem as a list insertion (Section 6-9), in which the insertion always takes place at
the top of the list. However, moving array elements costs more in overhead than really necessary for most
problems requiring use of a stack. As an alternatjve to moving the items around, let us investigate the tech
nique of leaving the list fixed and moving only a pointer to the list. Given our SIX instruction, one conven
ient way to building the stack is to define a base address which one cell below the maximum stack address and
move a pointer PNTR backwards when adding something to the stack and forwards when popping an item
off the stack.

If we define a stack with a block ending symbol (BES) to contain 10 words, the BES identifier is attached to
the location following the tenth word:

95

PNTR 0

Decrementing
Stack

Pointer*

<next word above stack>
STAK BES 10

<next word below stack>
I

assembles to
+

<next word above stack>

<next word below stack> STAK

10
word
stack

When the stack is empty, the pointer index is= zero. Before adding a number to the stack, we decrement
the pointer and then store the stack entry in the cell indexed by adding the value of pointer (negative) to
the base address (STAK). Let us add to the stack the sequence PUSH= 11, 12, 13, 14 and see how the stack
and the stack pointer work; "14" will be the last in and thus, the first out:

*For neatness' sake, we could use location STAK itself as the cell we call PNTR.

96

decrement pointer then add first
PNTR I -l I- - item to STAK- - - 1

cell indexed
I
~-----1-1 __ ..,.

<next word>

decrement pointer

PNTR I -2 1- -
· then add next

-1

item to STAK ~ 12 ---------and so forth, until 11
!g!ext word>

decrement pointer

PNTR I -4 I- - then add the - - - I

STAK-1
STAK

STAK-2

STAK

next item to STAK-4 ~ 14
STAK 13

12
11

<next word> STAK

We know that in popping up the stack, the items must come off in reverse order; i.e., 14, 13, 12, 11. Item 14
is the item pointed to already; copy it .out into POPUP and increment the stack pointer:

PO PUP
14

PNTRI - _-_4 __ 1- - - -
14 STAK-4
13
12
11

next word belowsta~ STAK

Then increment the stack pointer:

14

11

STAK-3

PNTR _I __ -_3 __ 1- - -
13 - ~ .,._ ____ - - 12

next word below stak ST AK

Notice that 14 is still left as garbage in the STAK: it is the stack pointer that moves to define the next item
to be removed.

97

The coding used to control such a stack is somewhat dependent on how the stack items are to be used. If
we wish the emptying of a stack to trigger some kind of wrapup routine (named EMPTY), we code the stack
control this way:

Pushdown Process:

Popup Process:

CONTIN

LOX
ROE
LOA
STA
STX

LOX
LOA
STA
BIX

STX

PNTR
X,X
PUSH
STAK,X
PNTR

PNTR
STK,X
POP UP
CONT IN

PNTR

GET CURRENT STACK POINTER*
DECREMENT TO NEXT STACK CELL
GET NEW ITEM
STORE IN STACK
SAVE STACK POINTER

GET STACK POINTER*
GET ITEM TO BE REMOVED
SAVE ITEM
JUST REMOVED LAST ITEM?
YES, ENTER EMPTY ROUTINE
NO, SAVE POINTER

EMPTY <procea l•t POPUP value> NOTE THAT PNTR STILL CONTAINS THE VALUE - 1

Note the dangers involved:
1. Stack overflow will wipe out the code resident in locations STAK-11 and earlier; this situation can

be guarded against by enabling the memory protect (MP/PIF) feature discussed in Section 11-6.

· 2. Popping up an already empty stack will lead to the repeated use of STAK-1. If the first instruction
in EMPTY is STX, PNTR, popping an empty stack leads to the use of the next word and those cells
following as if they were stack items. The counter will take on increasing positive values +1, +2, .
+3, ... and will never read zero. This situation can be guarded against by writing a slightly longer
POPUP routine:

"Better" Popup Process

LOX
SNZ
BRU
LOA
STA
RIN
STX

PNTR
x
BARE
STAK,X
POP UP
X,X
PNTR

GET STACK POINTER
TEST FOR EMPTY
NOTHING THERE, GO TO BARE
OTHERWISE, CONTINUE
SAVE ITEM
INCREMENT STACK POINTER
AND SAVE

*These instructions are necessary only when the X-register is used for other purposes outside tttese code blocks.

98

As a general rule, it is better to program the extra instructions needed to avoid flirtation with dangerous
situations.

6-11 INDIRECT ADDRESSING.
Indirect addressing involves using contents of the cell specified as the address of (i.e., a pointer to) the cell
actually desired. When we write "load A from CELL" we mean "load A with the contents of CELL". If we
were to write "load A from CELL, indirect", we mean "load A with the contents of the contents of CELL.
We wou Id write it:

LOA *CELL

Assuming that CE LL is the name of location 24FC and contains the value 2500:

24FC
24FO
24FE
24FF
2500

CELL

the ins:truction LOA *CELL would put into the accumulator the contents of the address contained in CELL:

CELL contains 2500, and the contents of location 2500 is 23 which is the number entered into the accum
ulator:

A GG23

The LOA *CELL instruction is assembled with bit 5 (i.e., the "I" bit of the IXB modifier triad equal to 1):

0 ~ 8.
LOA

assembles to
100001o1l<pc rel. offset, CELL>.I

t
indirect bit

This mode of addressing is referred to as one-level indirect.

Some machines allow ·cas~aded indirect addressing, in which each cell encountered contains the address of
the next cell to be referenced until the choice finatly stops where the desired cell is found. •The 980 has pro
vision only for one level of indirect addressing.

Indirect addressing may seem frightening at first, but it's easy if you keep your wits about you. Here's a
"plain-language" example: you wish to talk with me at 10 a.m. tomorrow, and I'd be delighted to talk with
you. I'm not sure just where I'm going to be, but I know I won't be at my desk. I'll ask you to.come to
my desk anyway, so that you can find the note I'll leave there telling you where I am. If you go where the
note tells you and find me there, that's one-level indirect addressing. If, instead of finding me, you find a
second note that tells you where to look, that's two-levels indirect. In general, when you finally find me
(with murder in your eyel) at the end of a trail of N notes (a trail that began at my desk), this analogous
to N-level indirect addresshig. - ·

99

6-12 SUMMARY: THREE METHODS OF ARRAY HANDLING.
Digital computers on today's market range from the primitive to the sophisticated. One basis for rating
machines is the addressing modes available that can be used to handle array problems:

Sophisticated
Semi-sophisticated
Simple
Primitive

looexed
x
x

Modes Available
Indirect

x
x
x

impure procedures

Indexed/Indirect
x

The Tl 980 resides in the sophisticated class along with most of the large computers because of its ability
to handle both indirect and indexed modes in the same instruction. Many minicomputers fall into the
second class, in which both indexed and indirect modes are available (but not simultaneously) . .Simple
machines usually dispense with an index register and rely heavily on indirect addressing. Primitive machines,
lacking even the indirect capability, rely on real-time code modification ("impure procedures") to handle
arrays. To contrast the three basic methods of array handling (indexed, indirect, and impure procedures) we
will consider one problem - the simple case of adding an array of numbers - and program it in the three
modes.

In this problem we assume an array of< n> numbers and store the value of< n> in a location of the same
name. The array is labeled AR RAY and out of deference to the operation of BI X, we store it backwards
from ARRAY-1 to ARRAY-<n>

2500

2501

ARRAY <n>

<n> locations

100

ARRAY
ORG
BES
DATA

>25N
<n>
<n>

6-12.1 INDEXING METHOD.

Flowchart:

LOX
RCO
LOA
ADD
BIX
STA

ARRAY
x,x
=O
ARRAY,X
$-1
SUM

i +-N

Complement i to get negative

no

STOP

GET VALUE OF N AS: INDEX
CHANGE SIGN*
CLEAR A
ADD ELEMENT
IF MORE, GO BACK

OTHERWISE, SAVE SUM

A one-level indirect addressing scheme can be used to index through an array as an alternative to address
modification; this approach is essentially useful when dealing with a different machine - one which has no
index registers available. Let's think about how it midlt work:

.a. Establish a location named PNTR which will serve as a pointer into AR RAY

Flowchart:

~CO is a register complement operation:

RCO s,d (st x (-1) ~ d

Store zero to initi•lize sum

c.lwl•1-Mldrell of element.

ARRAY+N

Stol'I • p0in'9r, PNTR

Lo.cl Mldr-. pointed to
bv.PNTR

no

STOP

101

LOOP

LOA
STA
LOA
SUB
STA
LOA
ADD
STA
DMT
BRU

=0
SUM
=ARRAY
ARRAY
PNTR
*PNTR
SUM
SUM
ARRAY
LOOP

CLEAR A
AND INITIALIZE SUM.
GET BASE ADDRESS
SUBTRACT N TO GET ELEMENT ADDRESS
SAVE AS POINTER.
GET ELEMENT POINTED TO
ADD SUM
AND SAVE
SUBTRACT 1 FROM COUNT, EQUAL O?
NO, GO BACK
YES, GO ON

&12.2 SELF-MODIFYING CODE "(IMPURE PROCEDURE"). Basically, the computer cannot distinguish
between instructions and data (both are hex numbers). Any number it is told to execute, the computer will
treat as an instruction. Anynumberit is told to operate on the computer will treat as data. If we tell the com
puter to operate on an instruction, then, it will do to the instruction exactly what it would do to a data
numt;>er. Thus, we should be able to load an ADD <operand> instruction into the accumulator and increase
it by 1 to get an instruction·that means ADD <operand>+1. If we store that ADD instruction and loop back
to execute it again, we should once again perform the ADD but this time with the next operand in the..array.

Flowchart:

Program:
LOA
STA
LOA
ADD

=O
SUM

Store zero as.partial sum

Partial Sum -+ A

Execute ADD instruction

Store Partial Sum

Load ADD instruction into A

Store new ADD instruction in
place of old

no

STOP

CLEAR A
STORE WSUM

SUM
ARRAY-1

GET PARTIAL SUM
ADD IN ELEMENT

102

STA
LOA
SUB
STA
DMT
BAU

SUM
$-2
=1
$-4
ARRAY
LOOP

AND SAVE
GET ADD INSTRUCTION
SUBTRACT 1 FROM ADD INSTRUCTION
STORE NEW ADD IN PLACE OF OLD
DONE?
NO, BRANCH BACK
YES, GO ON

This is not the nicest way to write a program. Self-modifying code is often hard to follow and hard to debug
bec~use we always run the risk of modifying something a way in which we never intended and, therefore,
don't expect. The instructions that will be executed are those that actually appear, -regardless of whether
they were what we intended or not - and it's difficult to discover what a program is doing wrong if you.·
don't know what it is doing at all I

There are some jobs on some machines in which use of self-modifying code is the only reasonable approach,
but the rule of thumb is: AVOID THE USE OF SELF-MODIFYING CODE.

103

SECTION 7

ASCII DATA, BUFFERS, AND 1/0 SERVICE CALLS

7-1 INTRODUCTION TO CHARACTER STRINGS.
The instructions discussed in this section are shown in Table 7-1.

If you already know how alphabet characters are handled by FORTRAN, you can safely skip this section
and go on. But if you don't know, the confusing subject of character strings is best introduced in terms of
what happens in a higher level language.

In addition to handling numerical data, FORTRAN can be used to manipulate alphabetic (or character) data
as well - just so long as the characters occur in groups of six* or fewer. We could write in FORTRAN

N ="SALLY"

and if we could examine the contents of the variable N, we could think of it as looking like

N I SALLY t,f

where any of the six character positions we have not used (here, only the last one) are automatically filled
with blanks. We could go along very happily with this information alone, unless it occurs to us to wonder
how SALLY can possibly be "spelled" in the bina.rv bits (hex digits) that we now know constitutes a
computer word.

Instructions:

. MVC
CLC

Assembler Directives

BYTE
OPD

TABLE 7-1.

Move Character String
Compare Logical Character String

Generate Byte Address
Operation Define

*The Umit of six happens to be true for languages implemented on a 48-bit machine. When implemented on a machine having a 16-bit word

length (as the 980) the limit is two.

105

A glance at Table 7-2 shows that each character on a teleprinter (as well as some nonprinting activities such
as ringing the bell or returning the carriage) has a 2-hexadecimal-digit (8-binary-bit) representation in inter
nal code. Since our "FORTRAN machine"· has a word length of 48 bits, that means we can store six 8-bit
characters in one word. SALLY looks like this if we could see the binary bits:

1101 0011, 1100 0001, 1100 1100, 1100 1100, 1101 1001, 1010 ()()()(),

s A L L y

lD3 I C1 I cc I cc I 09 I A0l

Since SALLY uses fewer than the eight characters it is entitled to, the unused space (here, only 1 character
position) is automatically filled with blanks. (A blank has a hex shorthand of A0, whereas a zero has a
shorthand of B0.)

As far as the computer is concerned, bits are bits and the collection shown above might be some negative
number rather than someone's name. As programmers we know that in the context of the problem, the bit
collection is supposed to represent SA LL Y and not the number 03C1 CCCCD9A0, though the same bit
collection could be used to represent either one.

Let's see what happens if we try to add. SALLY to JACK:

SALLY= 03C1CCCCD9A0
JACK= CAC1C3CBA0A0

19E8390987 A40

It would overflow the word boundary because of the carry into the leftmost position. If we were to discard
the overflow bit, the remaining bits could be interpreted as either the number 9E8390987 A40 or, searching
the complete ASCII character table (see Appendix I), it could be translated into the characters:

<record separator> <end of text> <;:data link escape> <cancel> z @

This example makes it quite evident that we had best avoid use of character-words in arithmetic operations.*

Since it is possible for the machine to interpret a word as either a binary number or a collection of eight
characters, we must specify in the FORTRAN read or write statement how that word is to be regarded. The
machine will assume that the word has a numeric meaning unless we tell it otherwise by specifying alpha
betic (or "A") format.

For example,

N =''SALLY"
WRITE (6, 100) N
100 FORMAT (1X, A6)
END

*Remember what your third grade teacher said about adding apples to oranges!

106

TABLE 7-2. SELECTED ASCII CHARACTERS

Printed Character Internal Code External Representation
(after assembly) (before assembly)

(leftmost bit = 1) (leftmost bit = 0)

0 B0 30
1 B1 31
2 B2 32
3 B3 33
4 B4 34
5 B5 35
6 B6 36
7 B7 37
8 BB 38
9 B9 39
A C1 41
B C2 42
c C3 43
D C4 44
E C5 45
F C6 46
G C7 47
H ca 48
I C9 49
J CA 4A
K CB 4B
L cc 4C
M CD 4D
N CE 4E
0 CF 4F
p D0 50
Q D1 51
R D2 52
s D3 53
T D4 54
u D5 55
v D6 56
w D7 57
x DB 58
y D9 59
z DA 5A

blank A0 20
carriage return SD -

line feed BA - "action"
bell 87 --
+ AB 2B
- AD 2D

107

would cause the machine to print the character string

whereas the program

SALLY

N = "SALLY"
WRITE (6, 100) N
100 FORMAT (1X, 110)

would cause the machine to print whatever integer number the bits inside N represent.

The same holds true of input operations: READ, according to an A format, will cause the machine to
expect a character string rather than a numeric value.

7-2 CHARACTER STRINGS IN 980AL: THE ASCII OATA DECLARATION.
If we were to write in F 0 RT RAN

M=24

the ultimate effect would be the same as if we had written in 980AL

M DATA 24

.
namely, there would be a cell named M containing the numeric value of 2410. Let's see how we express in
980AL the equivalent of the FO~TRAN

N = "SALLY"

Since the 980 has only 16 bits per word, only two 8-bit characters can be packed into one memory location.
We will use single quotes to indicate ASCII data declaration and write

N DATA 'SALLY'

which would assemble into:

N SA N D 3 C 1

LL or rather cc cc

y D 9 F F

7-3 NON-PRINTING CHARACTERS.
There are a few cases in which this method of loading character strings will not work. Assume that we are
using a teleprinter as an input unit and we wish to have a character string input and then echoed back to
us, followed by a carriage return <CR> and line feed< LF> to restore the teleprinter carriage to the first
<CR> <LF> print position on the next line.

108

Our first inclination might be to type in

DATA 'SALLY<CR><LF>'

and let the assembler translate the depression of the carriage return and line feed keys into the appropriate
internal ASCII codes.

What happens, instead, is that when we depress the <CR> key, the computer assumes we have completed
the data line, it sees that we are missing a final quote mark, and gives us an error.

The only way to make the printer respond with a carriage return/line feed during output is to store the
· appropriate numeric values (0D0A) in the last word to be printed on the line. As the machine attempts to

print them, it will instead respond with the appropriate action. An example of this is found in the next
section.

7-4 BUFFERS.
When information is taken into the computer from an external input device, it must have some place to go.
The programmer is resp.onsible for providing that "some place" by setting aside a block of memory loca
tions known as an input buffer. Information sent to an external device for output first will be gathered into
a similar block of memory known as an output buffer.

Forgetting about input for a moment, let's consider a program whose sole job is to output message charac
ters, do a carriage return and line feed, and stop. We can predefine the contents of the output buffer using
the DATA declaration (since no computations are necessary in this example):

BU FOUT
IDT
DATA
<output instruction(s)> *
lDL
END

MESSAGE
'THE TIME IS NOW',>0D0A

The assembler would produce the following machine code from this program

BU FOUT D4 cs
C5 A0

D4 C9

CD C5

A0 C9

D3 A0

CE CF

D7 FF

0D 0A

<output
instructions>

CE00

*We'll defer discussion of the output instruction format to the next section.

109

Meaning

TH

Eb

Tl

ME

bl

Sb

NO

w
<CR> <LF>

<idle>

The output instruction(s) must specify what device is to be used for output, where the buffer is located in
the memory (BU FOUT), and how many words long it is (nine).

The entire contents of the buffer will be output as one line on the output device:

THE TIME IS NOW

7-5 BYTES AND BYTE MANIPULATION.
In the 980, it is possible to have individual addressing not only of words, but of half words (bytes) as well.
Since one byte is the proper size to h_old one ASCII character, the byte manipulation operations are rather
useful in processing character strings:

0

upper byte
(byte O)

15

lower byte
(byte 1)

WORD

When we wish to specify the location of a byte, we need to specify not only the word, but which half we
are talking about.

7-5.1 MOVE CHARACTER STRING (MVC). We can move a character string of some specified number
(m) of bytes from one starting location to another using the

<label> MVC

instruction. There is no operand in this instruction, and its use is predicated on the assumption that the A,
E, M, S, and X-registers contain information needed to execute the instruction.

Let us consider the example of moving a 12-character byte string from consecutive bytes, starting with the .
upper half (byte 0) of the word HERE, to a block of consecutive bytes, starting with the low order byte
(byte 1) of the word THERE.

HERE
N 0

THERE
N

w b 0 w

I s MVC -----___;~~ b I

b T s b

H E T H

b T E b

T

110

We do the following:

1. Load the byte count M = 1210 into the X-register. As the bytes are moved, this count is automati
cally decremented, reaching 0 when the transfer is complete.

2. Load the word address and byte position of the first source byte into the A- and E-registers accord
ing to the following pattern:

+.------- sign bits set to+ ------.. +
0 A 13 14 15 0 1 E . 14 15

~ 1~~0---------11

------------- f 16-bit word address of HERE

byte position
(upper 1 /2 = 0)

3. Load the word address and byte position of the destination block into the M- and S-registers:

o M 13 14 15 ... o __________ s ______ 1...,,4_......15

_.. 11 ___ ~~~11
~1 16-bit word address of THERE

byte position
(lower= 1)

(Notice that a sign bit (+) is inserted to indicate that the two upper address bits will spill over into
the left register.)

One means of achieving this configuration* is to load the A- and E-registers with data for THERE, long shift
to achieve the positioning of the bits, and do a Register Move to get the numbers from A and E into M and
S. Then we do the same with the data for HERE, leaving it in the A- and E-registers:

LOE
LOA
ARD
SABZ
DAD
RMO
AMO
LOE
LOA

*There is an easier wayl

=0
=THERE
14
0
=1
A,M
E,S
=0
=HERE

CLEARE
DESTINATION WORD ADDRESS TO A
ARITHMETIC SHIFT 14 BITS TOE
FORCE SIGN BITS TO ZERO
ADD 1 FOR INDEXING RIGHTMOST BYTE
SHIFT DESTINATION
TO MS REGISTER
CLEARE
SOURCE WORD ADDRESS TO A

111

ARD
SABZ
LDX
MVC

14
0
<byte count>

ARITHMETIC SHIFT 14 BITS TOE
FORCE SIGN BITS TO ZERO
SET BYTE COUNT AS INDEX
MOVE BYTE STRING

Beware of the pathological case in which the two blocks HERE and THERE overlap, since some bytes will
be replaced before they get the chance to be moved:

l
HERE T H

E b

THERE T T
...,_J

-
H E

b T

r-+ T H

E b

T T

7-5.2 GENERATE BYTE ADDRESS: THE BYTE DECLARATION. The byte manipulation instructions
MVC and CLC assume that byte addresses appear in AE and MS registers. The program fragment in the
previous subsection generated the proper byte addresses through a multiply-by-2 (left sjlift by 1 bit); gen
erate space for a sign (left shift by another bit); and add 1 for lower byte address, 0 for upper byte address.

The internal scheme for referencing bytes is to start counting using the upper byte of word zero as byte 0:

T
ByteO--+ t .,.__Byte 1 WordO

T
Byte2--. I ~ Byte3 Word 1

T
Byte4~ I .,.__ Byte5 Word 2

Thus we could reference any byte by specifying its byte address in those instructions (i.e., MVC, CLC) which
expect a byte address to be provided. Byte addresses are calculated from word addresses, and vice versa,
through the relation:

<upper byte address>= 2 *<word address>

<lower byte address>= 2 *<word address> +1

There is a BYTE declaration that works much the same way as the DAT A declaration (Section 4-6.2)
except that it generates the byte addresses for us. Each byte address is assembled into a word pair, with the

112

least significant bits in the second word and the label (if any) attached to the first word:

HERE BYTE

HERE

HERE

byte address
of HERE

The byte address is calculated by taking 2* operand, so if we had this declaration ORG'd so that HE RE is at
word address 1500 (hence HERE +1 is at 1501)

ORG > 1500
HERE BYTE HERE

BYTE HERE+1

we would obtain the assembled form:

(HERE) 1500 0000
byte address of HERE =

(HERE +1) 1501 3000 2X word address

1502 0000
byte address of HERE +1 =

1503 3002 2X word address

Notice this always gives us the leftmost (or "even") byte. To get the odd byte we add "1" to the byte
address, and this is designated by prefixing the expression with a colon; e.g.,

HERE

gives

. ORG >1500
BYTE
BYTE
BYTE

1500

1501

1502

1503

1504

1505

HERE
:HERE
:HERE+1

0000

3000

0000

3001

0000

3003

·"""'-....

--....-

--....-

113

byte address of HE RE =
2X word address

byte address of odd byte of HE RE =
2X word address +1

byte address= 2X (HE RE +1) plus 1
for odd (low order) byte of word
HERE +1.

The byte addresses are forced into being signed quantities, with the upper 2 bits of the original word address
being forced into the low order bit positions of the upper word in the word pair (c. f. the format of the AE
register discussed in Section 7-5.1). This forcing makes no difference to the example above, because the
upper 2-address bits are zero anyway. However, consider the example where the word address is FFFE:

LAST
ORG
BYTE

>FFFE
LAST

FFFE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

FFFF 0 1 1 1 F

igns

or, collecting all the bits into hex notation:

F c

~
ITE@]

byte address of FF EE = 2 X word address

FFFE
X2

1 FFFC

The BYTE directive does all this so that the byte addresses are ready for loading into the AE and MS
registers prior to a character operation:

ADDR1
ADDR2
<entry>

BYTE
BYTE
OLD
RMO
RMO
LOA
LOE
MVC

HERE
:THERE
ADDR2
0,3
1,4
ADOR1
ADDR1+1

(two words)
(tWo words)

7-5.3 COMPARE LOGICAL CHARACTERS (CLC). The CLC instruction requires a setup identical to that
for the MVC instruction (see Sections 7-5.1 and 7-5.2). CLC performs a byte-by-byte comparison of two
byte strings where the source string begins in the address found in the AE register, and the destination string
begins in the address found in the MS register. The bytes are treated as unsigned quantities in the compar-
ison.

The action of the instruction is to set the compare bits in the status register in the same manner as the other
compare instructions:

source < dest
source= dest
source > dest
(not allowed)

114

status code
00
01
10
11

The compare is terminated by the first nonequal comparison and the X-register contains the number of
bytes remaining in the string (i.e., bytes to go). If X is initially zero, no comparison is performed and the
outcome is set to the"=" code unconditionally.

7-6 CONVERSION FROM INTERNAL TO EXTERNAL FORMAT: INTEGERS.
When an output instruction is issued, the output buffer is regarded as a collection of ASCII characters and
is output accordingly. This condition applies regardless of whether the buffer contains a message; for
example:

OUT8UF DATA 'NOW IS THE TIME'

or a number.

Input numbers are converted for us automatically by the assembler during the translation process. For
example, if we declare the decimal number:

OUT8UF DATA -20272

the assembler will treat this as a negative decimal number and translate it to the corresponding hex value:

OUT8UF 8 0 D 0

If we now ask for an output of OUT8UF, the contents will be interpreted as the two characters 80 and D0
and the characters

0P

will appear on the output device. This is a far cry from the -20,272 we originally entered. We chall need
some kind of a conversion process into which we can feed the hexadecimal internal value of 80D0 and have
come out of the buffer the characters representing -20,272:

r:::::l HEX-TO-ASCII
~~--------------~~~~ __ R_o __ u_T_IN __ E ___ -------------~.....__A_D_0_2_,. -2

8082 02

8782 72

115

Since the comma is not part of the value of the number, it is not included. We could, of course, count the
output characters and move them apart to insert commas in the appropriate places if we desire.

Let us agree that our HEX-TO-ASCII routine will handle only positive numbers. A number to be converted
first will be tested for sign and the sign saved. If the number is negative, we will insert a minus character
(AD) as the least buffer element.

INPUT
NUMBER

COMPLEMENT
NUMBER

.NO

STORE A0AD IN
FIRST WORD OF
OUTPUT BUFFER

STORE A0A0 IN
FIRST WORD OF
OUTPUT BUFFER

OUTPUT BUFFER

A0 +- b OR -

Complementing the number B0D0 (two's complement) gives 4F30 as the absolute value to be converted; i.e.,
2027210· We'll use the conversion scheme discussed in Section 2; i.e., successive division by 1010 (=A16)
and collecting the digits of the successive remainder: The tables of hexadecimal arithmetic in Appendix C

· are useful.

7EB
A I 4F30

46
93
SC

70
6E

2 ------------ 2 First Division Remainder

CA
A I 7EB

78
6B
64
-=r -------~ 7 Second Division Remainder

116

14
A I CA

A
2A
28

2 --------2 Third Division Remainder

2
A I 14

14
0 -------~ CJ Fourth Division Remainder

0
A I 2

0
2 -------- 2 Fifth Division Remainder

The successive-division process stops when the quotient becomes zero. Since the digits 0 through 9 are
represented by the ASCII characters B0 through B9, all we need do is prefix a B to each digit (i.e., add B0
to the digit). As each digit is produced, it is stored in a pushdown stack, STAK. Upon encountering a zero
quotient the stack contents are popped up, and each pair of stack entries is packed into the next word of
the buffer. This process assumes that STAK has been initialized with blanks, in case of an odd number of
stack entries.

The packing process followed here involves shifting the first character of the pair into the left half of the A
register and performing an inclusive OR of the second character to the A register. The process could be done
by a series of shifts and long shifts, but that would consume twice the time.

STAK
PTA
ENTRY

LOOP

AGAIN

BES
DATA
LOX
LDM
LOA
MPV
DIV
RAD
ROE
STE
SZE
BAU
IMO
LOA
RIN
CAA
IOR
STA

10
OBUF
=0
=>80
INPT
=1
=10
M,E
X,X
STAK,X
A
LOOP
PTA
STAK,X
X,X
8
STAK,X
*PTA

INITIALIZE STACK POINTER
BLANK CHARACTER IN LOWER B
GET INPUT NO. (ABS. VAL.)
EXTEND SIGN (+)
DIVIDE BY 10
ADD B0 TO REMAINDER
DECREMENT STACK POINTER
AND SAVE DIGIT IN STACK.
ZERO QUOTIENT?
NO, GO BACK
YES, UPDATE BUFFER POINTER
POP FIRST CHARACTER OFF STACK
INDEX SECOND CHARACTER
SHIFT CHARACTER TO LEFT HALF
PACK SECOND CHARACTER ON RIGHT
AND SAVE IN OUTPUT BUFFER

117

RIN
SPL
BRU

X,X
x
AGAIN

END ENTRY

INDEX FIRST CHARACTER OF PAIR
STACK EMPTY?
NO, GO BACK·
YES, BUFFER READY FOR OUTPUT

In the case of -20,272, the buffer now appears as:

OBUF A0AD

B2B0

B2B7

B2A0

or

b-

20

27

which, when output on a single line, gives

b-20272b.

Problem: For practice, manipulate the output buffer to insert a comma to separate the hundreds from the
thousands column.

7-7 HASH TOTALS.
We briefly mentioned in Section 6-8 that one technique of building a list for easy searching, especially if the
list contains character data (ASCII, in the case of the 980), is the so-called hash technique. Using this tech
nique the hexadecimal codes of the character are added together and the result is used as the pointer to a
table. The same algorithm is used later in searching for the item in the table. Consider the four-character
word CATb. The ASCII code representation is two 16-bit words (see Appendix I for a complete ASCII
table):

C A

43 41

T b

54 20

118

and the hash total of CA Tb is the sum of the hexidecimal codes:

43
41

+ 54
20

t=8

The hash total FS is always obtained by adding the digits CATt>. We can place the item in a list, using FS as
the index:

LIST

LIST+ 1

•••
LIST+ FS

Since the 16-bit word can only contain two ASCII characters, we either have to use two consecutive words
in the same list in order to store the four characters (which will require us to double the size of the index:

LIST
Zeroth character string.

LIST+ 2
First character string

c A

T t>
l F8th Character string

LIST+ 2(F8)

or we have to use two lists, say LIST and LIST1, where LIST holds the first two characters and the corre
sponding item in LIST1 holds the last two:

LIST LIST1

- ------

LIST+FS LIST1+F8 T t>

119

If at some future time we wish to determine if CA Tb is in the list, .we add its characters, index the list, and
see if the characters we find there match the ones we are seeking.

If we put BA Tb in the list, the index assumes a different value.

B A 42

I or

41
42 41 + 54

. 20
T b F7

54 20

so that BA Th appears in the slot above CA Tb:

LIST LIST 1

--
LIST+F7 B A T t>

C A T t>

Everything is satisfactory (although the table may be sparsely filled) until we encounter a word that is dif
ferent, but which has the same has total as a word already in the list:

T A

54141
B t>·

42120
Slot number F7 is full, so we cannot store TABt> there.

54
41

+ 42
~

F7

There are various means to cope with this situation, but we won't concern ourselves with any but the
simplest; namely, if the cell we wish to use is already occupied by some other word, we start from that
word and perform a sequential search until we find the first empty cell and use that.

'120

LIST LIST1

-
LIST+F7 B A LIST1+F7 T b

c A T b

T A B b

-- -

To retrieve the word we simply follow the same process: compute the hash total and start searching the list
from the cell pointed to by the hash total. We will either find the word before we encounter the first blank,
or we can be sure the word is ab~nt. In some cases it may be expedient to scale the hash total before using
it as a pointer.

Even though this example is not the most efficient use of the hash technique, it represents an improvement
over a sequential search of the entire list starting at the top.

7-8 1/0 SERVICE CALLS.

7-8.1 SERVICE CALLS VS. THE BARE MACHINE. The Tl980 may be used as a bare machine under
direct control of the operator or u·nder the control of a supervisory operating system (or monitor). Wien a
number of different jobs are contained in the job stream, it is easier and more efficient to use the operating
system. The main differences in programming between the two is the way 1/0 and program termination is
handled.

The supervisor or operating system is itself a program resident in the memory. Since it consumes space, the
program and data must be small enough to fit the remaining space

-OR-

• Parts must be capable of being called in as needed from an external device to overlay existing
memory

-OR-

• The supervisor may be eliminated and the 980 used as a "bare machine".

Some special purpose programs, especially real-time systems, require that the computer be used as a bare
machine or under a special purpose operating system written by the user. For training purposes, though, we
should examine a method permitting us to at least get some programs up and running on the machine.

1/0 is almost invariably the most complex task a machine is called upon to perform, and this is true of the
980. The author recommends use of the operating system to the beginner, even though it may not be clear

121

at the outset just what is taking place in the system. The beginner who is unwilling to accept anything on
faith (even if temporarily) is ·certainly free to tackle 1/0 using the bare machine. The programmer should
ultimately, of course, learn both ways.

7-8.2 1/0 AND PROGRAM TERMINATION USING SUPERVISOR SERVICE CALLS. In order to avoid
changing the //ASSIGN commands, it makes sense to have the user program maintain the same lun (logical
unit) assignments used for the assembler. This assumes that the user data is in the same form of input as the
SAPG assembler; i.e., in this example, cards. Thus, read-user-data instructions are issued to lun 5, and print
user-results instructions are issued to lun 6.

Physical record blocks (PRB's) must be defined for every device operation: these are blocks of numbers
needed for the 1/0 operation, and the address of the block must appear in the M register at the time the
1/0 operation is requested.

1. A device must be "opened" before it is used through use of a physical record block

2. A read or a write is specified through use of a physical record block.

The format of a PRB is as follows

<label> DAT A <lun> ,<l.u.op> ,<character count> ,<buffer label> ,0

Since each device must be opened, we'll have two device opener blocks, one each for logical 5 and logical 6
input device.

Since <l.u.op> code = 7 for opening a device, these blocks are

PRBOP5
PRBOP6

DATA
DAT~

5,7,60,
6,7,130,

Opening the devices is not enough, so we also need a data block for use by the read/write. The read opera
tion uses one of two codes, depending on whether the input is in ASCII characters (operation code 0) or
binary object code (operation code 1). Similarly, the write operation uses operation 2 if ASCII code or
operation 3 if object code.

Since we wish to have the 1/0 in character (ASCII) mode, the two physical record blocks are:

for read:
for write:

PRBIN
PR BOUT

DATA
DATA

A table of logical unit operations is given in Appendix K.

5,0,60,IBUF,0
6,2, 130,0BU F ,0

Since the supervisor performs the actual 1/0 and program termination operations for us, we need some
means of, first, attracting its attention, and second, telling it what we want.

We attract its attention by trying to execute a special kind of "illegal instruction" known as a supervisor
service call. The supervisor interprets the particular type of instruction and relinquishes control to one of
its resident service programs.

122

The two service calls we are concerned with at the moment* are the instructions

>C380
>C381

(I /0 ·request)
(Program termination)

which are ofthe form C38<n>, where <n> : : = 0/1/2/3/4.

Since there is no difference, as we have seen, between instruction-numbers and data-numbers, we could
declare a data number

DATA> C380

to be in the location of the supervisor service call for 1/0, and

DATA> C381

in place of the I DL instruction. Or we could be a bit more sophisticated in our approach and define a gen
eralized operation which could be used for any type of service call, merely by changing the specific values
of the operands. This option is discussed in the next subsection.

7-8.3 DEFINITION OF SERVICE CALLS WITH OPD. One use of the multipurpose operation define (OPD)
pseudo-op permits us to define a whole family of illegal instructions that can be used as supervisor service
calls. It is written

<label> OPD <number>,<format>

where the <label> is chosen to be the same as the actual mnemonic op-code we want used in the executing
program. The <number> appearing in the definition is the hexadecimal value we wish to have as the "root"
of our family of operations. (Recall that this family is >C380, >C381, >C382, >C383, and >C384.) Thus,
the "root" will be >C380. The root value may be modified easily to produce any specific family member by
adding to it some digit between 0 and 4. We'll specify the digit as an argument of the <label> operation in
the executable program:

<label> <operand digit>

t
in op code field

The fate of the operand (i.e., how it is to be used in modifying the root) is determined by the <format> of
the instruction in the OPD definition.

*The others are

>C382 (set floating point package address)

>C383 (get memory limits)

>C384 (set control status flag).

123

To select a format it is necessary to know exactly what each instruction. type does with its operands at
execution time.*

It happens that <format> type-3 operations (register shift instructions) have their operand fields added to
their operation codes as a first step of execution. If we use an operand = 1, th is is adde9 to the basic C380
to get C381, signifying a return to the monitor. If we use an operand of 0, we get C380, signifying an 1/0
request. The type of request is identified as I or 0, data transfer or logical unit open/close, buffer to/from
which transfer will occur, and the number of characters, by inspecting the contents the cell pointed to by
the M register. The address of the physical record block must be loaded prior to the issuance of the calls by
using the sequence:

@LDM =<address of PRB>

A full illustration is given in the next subsection.

7-8.4 PROGRAM SKELETON: 1/0 AND PROGRAM TERMINATION USING SUPERVISOR CALLS.

nonexecutable
declarations !

SVC .
RDROPN
LPOPN
RDBLK
LPBLK

<entry point>

OPD
DATA
DATA
DATA
DATA

>C380,3
5,7 ,60,1 BUF ,0
6,7, 130,0BUF,0
5,0,60,IBUF ,0
6,2, 130,0BUF ,0

@LDM =RDROPN
SVC 0

*For reference, the format types are listed here:

<format> : := null
0
1
2
3
4
5
6

Type
Register to memory
Register to memory
Register to memory
Register to register
Register shift
Register skip
Status indicator skip and idles
Data bus 1/0

7 Sense switch skip and register bit
8 DMAC and auxiliary processor

124

DEFINE SUPERVISOR CALL
PRB FOR RDR OPEN
PRB FOR PRINTER OPEN
PRB FOR READ 60 ASCII
PRB FOR PRINT 130 ASCII

OPEN
CARD READER.

@LDM =LPOPN
SVC 0

OPEN
LINE PRINTER.

@LDM =RDBLK ISSUE
SVC 0 READ.

[60 characters are now available in I BUF]

@LDM =LPBLK ISSUE
SVC 0 WRITE.

[130 characters have now been sent from OBUF
to the line printer]

SVC 1
END

RETURN TO SUPERVISOR

The values in the physical record blocks may be changed under program control. For example, if the size of
an output record is to be changed, say to 25, then storing the value 25 in LPBLK+2 prior to the @LDM =
LPBLK instruction will do the job.

125

SECTION 8

SUBROUTINES

8-1 THE SUBROUTINE: A LABOR-SAVING DEVICE.
The instructions discussed in this section are shown in Table 8-1.

In some programming tasks, the same subtask must perform at a variety of points within the code stream. A
good example of this is the hexadecimal-to-ASCII conversion discussed in Section 7-6:

hex number to
be converted

HEX-TO-ASCII
CONVERSION

PROCESS

buffer containing ASCII
characters to be printed

If the overall program looked something like this.

Instruction

BRL

<calculate NUM 1>

CONVERT
NUM 1 TO ASCII

TABLE 8-1.

Branch and Link

Assembler Declaratives

DEF
REF
COMM

Define Entry Point
Reference External Symbol
Common

127

<calculate N UM2>

CONVERT
NUM2 TO ASCII

we would feel some justifiable reluctance to place the hex-to-ASCII conversion code in the main program
stream every time it is needed. It is more reasonable to code the process once and branch to it whenever the
need arises:

<calculate NUM 1>
<store NUM 1 in INPT>

CONVERT
INPT TO ASCII

<calculate NUM 2>
<store NUM 2 in INPT>

CONVERT
INPT TO ASCII

Once the value of NUM1 is stored in INPT, the program branches to the hex-to-ASCII code block and per
forms the conversion. At the end of the code block, a branch back (return) to the main code stream can be
performed only if the value of the PC has been saved before branching off to (calling) the conversion block.

128

The hex-to-ASCII code block described here is a primitive form of subroutine.*

8-2 THE PRIMITIVE SUBROUTINE LINKAGE PROBLEM.
When a program calls a subroutine, certain data must be recorded:

1. The PC must be given an address to which to go

2. The address to which to return after subroutine execution must be saved

3. If any data values are to be passed between the two programs, provision must be made for their
exchange.

Let us first consider the case in which no data exchange occurs. A practical example of such a routine is
one in which the time of day is· to be printed out. The routine needs access to the real-time clock, carries
out the appropriate operations, and prints the result. No data need be sent from the calling program or
returned to the calling program on completion of the routine. The skeleton structure is

and for the calling program:

<label> <first instruction of subroutine>

RMO L,P restore PC to return ADDA

IDT <name of main program>

HED <page heading>
<entry> <first instruction>

@ BRL <label>

value of
PC saved
in LINK

(control returns here after SBRT execution)·

Use of the BRL instruction assumes that the link (L) register is available since.the insertion of the present
PC contents is saved in the link register, and the entry point of the subroutine is entered into the PC. The
register-move (RMO) instruction as the last executable subroutine instruction restores the PC to the return
address. It also assumes that the subroutine need not make direct use of the link register during the
execution.

*The designation "primitive" is applied because of the assumption that the code block comprising the subroutine is assembled as part of the
main program. In Section 8-4 we'll examine a more refined form of subroutine; i.e., one which is assembled separately.

129

Let's assume that the subroutine must, in turn, issue another subroutine call. The link register will be
needed, so it must be freed for use. We can store the contents of the link register in memory, and in order
to return, do a branch indirect to that memory location

Subroutine 1 Subroutine 2

SAVE

AMO
STA

BRU
DATA

L,A
SAVE

SAVE RETURN RMO L,P RETURN TO CALLER
ADDRESS
JUMPTOSUB2
RETURN TO HERE FROM SUB2

*SAVE RETURN TO CALLER
<dummy value>

8-3 PARAMETE·R PASSING TO A PRIMITIVE SUBROUTlNE
The three commonest parameter passirig techniques may be classified as

• caH by name.
• call by address
• call by value

depending on what actually passes across the interface between the calling program and its subroutine.

If the actual value of the parameter (i.e., a copy of it) is sent across, it is a call by value technique. If it is
the address where the value is-to be found, the technique is calf by address. Call-by-address is inherently
dangerous since a subroutine can accidentially change a value in the main program becaUse it has access to
the actual storage l~ations (compare the discussion of COMMON in Section 8-6.1t In call-by-value the
subroutine is given only a copy of a number to work with and no way to locate the address of the original
value from which the copy was made.

8-3. t PARAMETER PASSING VIA REGISTERS (CALL BY VALUEi
The only register affected by a BRL subroutine call is the L-register (and, of course, the PC). The-other
registers may be filled with parameters just prior to the issuance of the call; the subroutine must be cogni
zant of· this fact and behave accordingly, either by using the parameters from the registers directly or
storing them for future use. Since the number of registers is limited, this technique will not serve in all
applications. Besides a certain amount of unavoidable overhead is involved in the lOAD/STORE operations
which must occur on both sides of the interface.

130

8-3.2 IN-LINE PARAMETER LIST (CALL BY ADDRESS). It is sometimes convenient for the parameter
list to be passed to a subroutine to appear in the main program immediately following the subroutine call:

Parameter
List

Main

@BAL SUB

Subroutine

SUB <first instruction>

<branch to end of parameter list+1>

At the time the BRL is executed, the link register will contain not the return address, but the address of the
first item in the parameter list.

The list may be constructed in one of three slightly different ways as follows. (We'll assume in all cases that
the E-register will not be needed during·the subroutine execution.)

8-3:2.1 Fixed Number of List Entries. The subroutine "knows" that there will be exactly, say, three items
in the parameter list and increments the return address accordingly before executing the actual return:

Main

L-regis_ter
@BAL SUB !addr. of A I

A DATA
B DATA
c DATA

<next instruction>

SUB

ADORA
ADD RB
ADD RC

131

Subroutine

RMO L,E
STE ADD RA
RIN E,E
STE ADD RB
RIN E,E
STE ADD RC

RIN E,P
DATA
DATA
DATA

MOVE ADDRESS TO E
SAVE AS ADDRESS OF A
GET NEXT ADDRESS
SAVE AS ADDA B
GET LAST ADDRESS
SAVE AS ADDA C

INCREMENT FOR RETURN

8-3.2.2 Variable Number of List Entries

a. Variable Length List with Header. In this case, the link address gives the number of data items in the
following list:

Main Subroutine

L-re ister
BRL SUB Addr of N

N DATA - n =no. of entries
DATA -
DATA -

<n> words DATA - SUB RMO L,E
STE ADORN

DATA - LOX *ADORN
<next instruction> MORE IMO ADORN

LOA *ADORN

BIX MORE
LOE ADORN
RIN E,P

ADORN DATA -

GET ADDRESS OF <n>
SAVE ADDRESS OF n
GET VALUE OF n AS INDEX
GET ADDR NEXT VALUE
GET NEXT VALUE

INCREMENT FOR RETURN

b. Variable Length List with Stopper Value. In this example, the last DATA value stored in the list is
a flag indicating there is no more data. We'll use 0 as an example here (note the E-register is freed
immediately):

Main Subroutine

L-register
BRL SUB addr. first SUB RMO L,E MOVE ADDRESS TOE FIRST

data no. (NEXT)
DATA - STE FRSTAD SAVE AS ADDR OF ITEM
DATA - NEXT LOA *FRSTAD GET Fl RST (NEXT) ITEM

Parameter DATA - IMO FRSTAD INCREMENT ADDRESS
list

132

DATA0
<next instruction>

SZE
BRU
LOE
RMO

A END OF LIST
NEXT NO
FRSTAD YES, GET RETURN ADDR
E,P AND TRANSFER TO PC.

FRSTAD DATA

8-3.3 IN-LINE ADDRESS OF PARAMETER LIST. It is possible to place the address of the data in the
location following the call:

LISTAD

LIST

Main

BRL
DATA

L
I addr of LIST AD I

SUB
LIST

<next instruction>

DATA
DATA
DATA
DATA

SUB

DB LOK
BB LOK

Subroutine
RMO L,E
STE DB LOK
LOA *DB LOK
STA BBLOK
LOA *BB LOK

LOE
RIN
DATA
DATA

DB LOK
E,PC

GET ADDRESS OF NEXT
SAVE ADDRESS OF LIST A
GET ADDRESS OF LIST
SAVE IN BBLOK
GET FIRST LIST ELEMENT

GET ADDR LISTAD
INCREMENT FOR RETURN

Note that we have programmed our way through two levels of indirection: DB LOK contains the address of
LISTAD. If we load (indirect) the value pointed to by LISTAD, we get the address of LIST, which we save
as BBLOK. (Thus LISTAD and BBLOK contain the same value; i.e., the address of LIST.) If we load (in
direct) the contents of BB LOK, we get the first item in the LIST. This list can be managed the same way as
an in-line list (Section 8-3.2) with either a fixed number of values or a header or stopper value.

8-4 FORMAL STRUCTURE OF A SUBROUTINE.
Subroutines are usually constructed as standalone programs, assembled separately from the calling program.
Although this kind of structure increases their versatility (i.e., the object code may be moved from one job
to another without reassembling), it complicates the problem of linkage and parameter passing.

In the "primitive" subroutines discussed in previous sections, linkage is done by the assembler at translation
time. In formal subroutines linkage must be done by the loader just prior to execution.

A separately assembled subroutine has its own IDT and END declaratives:

Main Subroutine
IDT MAIN IDT SUB
HED <page heading> HED <page heading>

133

END END

and in both the subroutine linking and the calling program there must be some kind of declaration to tell
the link editor where the interface points are, so that the linkage can be completed before load time. These
declarations are made with the DEF and REF pseudo-ops discussed in the next subsection.

8-5 ENTRY POINTS AND EXTERNAL SYMBOLS: DEF AND REF.
Any mnemonic labels used in a separately assembled routine are local to that routine (i.e., other routines
will _not be able to identify the label unless provision is made for them to do so). This request for communi
cation at load time is accomplished by using the DEF (define entry point) and REF (reference external
symbol) assembler declaratives. (An external symbol is a symbol defined in a different routine.)

DEF tells the link editor that the subroutine entry point name and address must be recorded, because some
external routine will be transferring control to that location in the form of a subroutine call. There may be
more than one entry point, in which case the entire list is declared:

IDT SUB
DEF <entry point1>, <entry pointy

<entry point1 >

<entry po_inty

<branch to address contained in link register>
END

When a subroutine entry point is called, the calling program will look for a local symbol having the name of
the entry point. In the case of a primitive subroutine, it finds one; but in the case of the standalone sub
routine, it does not: To tell the calling program to look elsewhere, we use a REF declarative:

IDT MAIN
REF <entry point1>,<entry pointy
DEF MAIN DEFINE MAIN PROGRAM ENTRY POINT*

*since the subroutine has no need to know the address of MAIN, we have not declared it as a subroutine reference.

134

@BR L <entry point1>

@BAL <entry point2>

END ~AIN"

Extended format is used so that the·l~ader wiH h'ave a cell in the calling program in which to place the
actual load address of the entry points.

8-6 PARAMETER PASSING AND COMMON STORAGE. ' '•

Now that the PC can find the subroutine and from there, find its way home after execution, there is the
associated proplem of how the main program and the subroutine pass parameters. The basic techniques
illustrated previously for primitive subroutine data lists (Section 8-3) continue to be valid, and there are
several additional methods.

8-6.1 COMMON STORAGE. Use of common storage may preclude the need to pass parameters at all.
Common storage is an area set aside at load time which may be accessed by separately assembled programs.

Each routine which accesses these locations should contain a common declarative:

<label> COMM <n = size of COMMON>

with an optional label. For example, in the following structure:

A

Main
IDT
COMM

@BAL

END

MAIN
·5

SENTRY

MAIN

Subroutine
IDT

B ·coMM

SENTRY

END

SUB
3

SENTRY

the loader will set aside five locations (maximum common size declared by any routine) in the common
area and allow the main program to reference them with respect to base address A and allow the sub
program to reference them with respect to the base address B.

135

A+O

A+1

A+2

A+3

A+4

A+5

B+O

8+1

8+2

These cells, though not explicitly
declared, are obviously still available
for usel

Both programs access the same memory locations although they may use different names to do so.

8-6.2 VIA REGISTERS (CALL BY VALUE). This ·technique is the same as that described in Section 8-3.2.

8-6.3 IN-LINE PARAMETER LISTS (CALL BY ADDRESS). This technique is the same as that described
in Section 8-3.3.

8-6.4 CALL BY NAME. In the call-by-name technique the name of the variable must be passed across the
program interface, and the system must have a way to locate the value corresponding to that label. The
routine using the name may address it indirectly through a local name, provided that

• It is declared as an external value with a REF pseudo-op

• Space is reserved for a copy of the address to be supplied by the link editor with a DAT A declaration
that links the local label with the external label.

For example, expanding on the skeletons presented in Section 8-5 to pass a parameter, PARAM1 from the
main program to the subroutine:

P1
P2
SUB1

SUB2

IDT
DEF
REF
DATA
DATA

SUB
SUB1
PARAM1
PARAM1
PARAM2

<first entry point>

LOA P1

<second entry point>

136

PARAM1

<branch to link address>
END

IDT
REF
DEF
DATA

MAIN
SUB1
PARAM1
<value of parameter>

@BAL SUB1

END

and further expanding the example to pass PARAM2 back from the subroutine to the main program:

P1
P2
SUB1

IDT
DEF
REF
DATA
DATA

SUB
SUB1
PARAM1, PARAM2
PARAM1
PARAM2

<first entry point>

LOA *P1

STA *P2
<branch to link address>
END

where the main program must now DE Fine PARAM2 as well as PARAM1. Alternatively, data may be
passed using the external name rather than the local name in conjunction with:

1. An extended format instruction using the external name, with the external name deelared in a REF
pseudo-op; and

2. A corresponding DEF pseudo-op in the program to which the name is local.

· 137

For example:

PARAM1
PARAM2
MAIN

Main
IDT
REF
DEF
DATA
DATA

···i.;;

MAIN
SUB1
PARAM1, PARAM2

. i' .• ~

@BRL SUB1

END

SUB1

8-7 RECURSIVE CALLS TO A PRIMITIVE SUBROUTINE.

Subroutine
IDT SUB
DEF SUB1
REF PARAM1, PARAM2
<first entry point>

@LOA PARAM1

@STA PARAM2
<branch to link address>
END

A subroutine which in the process of executing issues a call to itself, is called a recursive subroutine. A few
machines have a builtin stack feature in which the return pointer for a subroutine call is automatically saved
when a new subroutine call is issued. The 980 does not have the hardware feature, but it can be implemented
in software without great effort, using the pushdown stack technique discussed in Section 6-10. If we are
using the formal subroutine structure (Section 8-4) and wish to make it recursive, we will probably be most
successful if the pushdown stack is built.in COMMON.

If we try to make recursive calls with no stack. feature, as follows:

IDT SUB1
EN.PT1

CALL BR L ENPT1

RMO L,P RETURN

we can never return to the main program because the contents of the link register have been destroyed by
the BAL ENPT1 subroutine call. Thus, whenever we execute the return, we will always come back to
CALL +1, resulting in an endless loop.

Note that the return addresses (successive contents of the link register) are the items saved in the stack.

138

8-7.1 RECURSION USING THE X-REGISTER. This routine assumes the X-register is not needed except
to hold the current stack pointer:

Main Subroutine
EQU $ STAK BES 21

ENPT1 EQU $
RMO L,A SAVE RETURN ADDRESS .
ROE x,x

LOX =0 INITIALIZE SP STA STAK,X IN STAK.
CALL1 BAL ENPT1 CAL LR BAL ENPT1 RECURSIVE CALL.

RETURN TO HERE RTRN LOA STAK,X POP-UP ST ACK.
RIN x,x
AMO A,P RESTORE PC.
END

END

Each time the RTRN sequence is executed*, the appropriate return address is entered into the PC for the
pending call.

8-7.2 RECURSION USING INDIRECT ADDRESSING. If the X-register must be free for other uses during
the subroutine execution, a stack may be built using indirect addressing through the use of a stack pointer.
Since we want to use the IMO and DMT instructions, it will be convenient to build the stack from smaller to
larger memory addresses (i.e., opposite from the way we did it previously, to try to utilize the BIX instruc
tion).

We will use the base address (STAK+o) to contain the stack pointer and begin the actual stack at STAK+1.

STAK

STAK DATA
BSS

ENPT2 AMO
IMO
STA

n

r

STAK
<n>
L,A
STAK
*STAK

~ ~
stack pointer, initially
points to itself

..___most recent return address

INITIALIZE STACK POINTER
SAVE n STACK LOCATIONS
SAVE RETURN ADDRESS
IN NEXT
STACK LOCATION.

*Note: the instructions betvveen ENPT1 and CALLA must make some provision for a branch into the instructions below the CALLA
instruction, or none of these instructions will be executed.

·139

RTAN

BAL ENPT2

LOA
DMT
AMO
<error>

*STAK
STAK
A,P

GET RETURN ADDRESS FROM STAK
POP UP STACK
RESTORE PC
TEST FUNCTION NOT USED

Note that the DMT instruction is used only for decrementing, since the stack pointer moves only between
STAK+1 and STAK+<n>.

8-7.3 EXAMPLE OF A RECURSIVE SUBROUTINE. As a trivial example Qf hQw a recursive subroutine
can be written, let's consider the problem of evaluating a polynomial:

n n-1 n-2
an Y + an-1 Y + an-2 Y + · • · + ao

The most efficient algorithm evaluates the equivalent expression:

[(an * Y + an-1) * Y + an-21 * Y + · · ·

and the flovvchart looks something like this:

yes.

n ~ n-1

140

Encountering this situation in real life, we would probably write it as the simple loop shown a~ve, but we
will write it as a recursive subroutine as an illustration of the technique:

· Main Program Subroutine POLY

..... n-+- n-1

p+-p*y+8n

no
>---_. Call POLY

no
>--...... Cart POLY

yes yes

<next instruction> Return

We'll assume that all parameters are stored in COMMON - the coefficients:

A

the order of the polynomial: N (________ _

the value of y: y _J _______ _

and the value of P: P _I _______ _

We'll use the boilerplate of Section 8-7.2 to stack the subroutine calls, since the X-register is used by the
subroutine.

Main POLY Subroutine

LOX N GET ORDER
LOA A,X GET HIGHEST ORDER COEF. STAK DATA STAK THIS IS
STA p SAVE AS POLYNOMIAL BS:5 20
SZE x DONE? AMO L,A THE RETURN

141

BR L POLY NO, CALL POLY
YES, CONTINUE

IMO
STA

POLY ROE
LOA
MUL
ADD
SZE
BAL

RTRN LOA
DMT
AMO

STAK
*STAK
x,x
p
y
A,X
x
POLY
*STAK
STAK
A,P

<error>

ADDRESS
STACKER.
DECREMENT INDEX
GET ACCUMULATED VALUE
MULTIPLY AND
ADD NEXT COEF.
DONE?
NO, CALL POLY AGAIN
YES, EXECUTE RETURN

In this trivial example, eaeh return up to, but not including, the last is made to RTRN; the very last return
goes back to the main program.

142

SECTION 9

LOGICAL OPERATIONS, BIT MANIPULATION, MASKS, AND FLAGS

9-1 TRUTH TABLES.

Given two logical variables A and B, which may have the value 1(true) and 0 (false), the truth tables for the
AND, OR, XOR (exclusive OR) and NOT functions are as follows:

AND(·)

0 0
0 1
1 0
1 1

OR(+)

A B
0 0
0 1
1 0
1 1

XOR (e)

A B
0 0
0 1
1 0
1 1

NOT(-)

I f II

0
0
0
1

A+B
0
1
1
1

A ED B
0
1
1
0

1
0

Both A and B must be true for the result to be true.

Either A or B (or both) must be true for the result to be true.

Either A or B (but not both) must be true for the result to be true.

If A is true, A is false.

143

Instructions

AND
IOR
RAN
ROR
REO
RIV

SABO }
SABZ

SMBO }
SMBZ

TABO }
TABZ
TMBO }
TMBZ

LTO } RTO
LTZ
RTZ .

9-2 LOGICAL OPERATIONS.

TABLE 9-1

AND To accumulator
OR To accumulator
Register AND
Register OR
Register XOR
Register INVERT (one's complement)

Set accumulator bit to 1 or 0

Set memory bit to 1 or 0

Test accumulator bit for 1 or 0

Test memory bit for 1 or 0

Left and right tests for 1 or 0 in accumulator

It is useful to be able to apply logical operations to the bit patterns in memory words and registers. The 980
is capable of six such operations - two of which assume that one logical operand is in memory and one is in
a register, and four which assume that both operands are in registers.

9-2.1 MEMORY-TO-REGISTER LOGICAL OPERATIONS. These instructions have the form:

<label> <op-code> m, <mod> (e.a.) e (A) -+ A

where the symbol e represents a bitwise logical operation between the contents of the effective address and
the contents of the accumulator. The logical result is stored in the accumulator. The register/memory opera
tions are:

logical AND
AND m1, <mod>

logical Inclusive OR
IOR m1 <mod>

(e.a.) A (A) -+ A

(e.a.) V (A) -+ A

9-2.2 REGISTER-TO-REGISTER OPERATIONS. These instructions have the form:

<label> <op-code> s,d (s) e (d) -+ d

where the bitwise logical operation takes place between the source and destination registers, and the result
is stored in the destination.

144

The operations are
RAN logical AND
ROA logical OR
REO logical inclusive OR
RIV logical NOT, or complement*

Consider, for example, the instruction:
RAN A,E

(s) A (d) -+ d
(s) V (d) -+ d
(s) ~ (d) -+ d
,.., (s) -+ d

which means take the (bit-wise) logical produce of the number in the A-register (source) with the number in
the E-register (destination) and place the result in the E-register (destination).

The original contents of the A- and E-registers:

... 1110100111 A
+

A ..• 1011010001 E

new contents of E: RAN A,E

... 1010000001 E

while the contents of A remain unchanged.

When the operand sizes do not match, as when using an immediate operand:
IOR =>1A

the "missing" bits are treated as if they are zeros:

1100011011000100 A

+
I v ()()()()()()()(11010
I

IOR =>1A

1100011011011110 A

*This is one's complement (logical negation) as opposed to RCO which produces the two's complement (arithmetic negation).

145

9-2.2.1 Complementing Operations. There are two complementing operations. One gives the logical NOT
operation (one's complement):

RIV s,d (s) -+ d

and the other places the two's complement of the source into the destination, making it more useful for
algebraic calculations:

RCO s,d 0- (s) -+ d

For example,

0011100011011011 A

RIV _A,A

1100011100100100 A

9-3 BIT OPERATIONS.
Sometimes it may be useful to assign binary values to individual bits within the A-register or memory word.
We say that we set a bit when we give it a value of 1 and clear it when we give it a value of 0

The bits, as usual, are numbered from left to right starting with 0

1 2 3 4 5 6 7 8 9 10 11

I I I I I I
The bit settings instructions are

Accumulator
SABO n
SABZ n

Set accumulator bit <n> (i.e., set to 1)
Clear accumulator bit <n> (i.e., set to O)

Memory word, address m
SMBO n, m
SMBZ n, m

Set bit <n> in word <m>
Clear bit <n> in word <m>

12 13 14 15

I I I I I

Having the ability to set or clear bits infers we should also have the ability to test the bits and make decisions
based on the bit value.

The bit skips are of the same form as the set/clear operations:

Accumulator
TABZ n Test for zero in bit <n>
TABO n Test for one in bit <n>

146

Memory location, address m
TMBZ n, m Test for zero in bit <n> of word <m>
TMBO n, m Test for one in bit <n> of word <m>

If the condition tested for is true, the next instruction is skipped; if the condition is false, the next instruction
is executed.

Test for one Test for zero

bit= one?
bit I ::ro?

!no
Yes yes <next inst> <next inst>

<next +1> <next +1>

9-4 MASKING: ONE PRACTICAL USE OF LOGICAL OPERATIONS.
A mask is a collection of bits which can be used in conjunction with logical operations to test for the presence
of certain bit patterns the programmer may wish to detect as part of a scheme to solve a problem. We can
test for such conditions as:

• Even versus odd
• Positive versus negative
• All zeros
• All ones.

But we already have instructions in the instruction set that make these tests for us, so let's consider a
problem not easily solved by the application of an existing instruction.

The problem we'll consider is that of searching for a blank (hex A0) in the lower half of a word. (In Section
9-5 below, we'll use this technique to search for a blank as a byte string delimeter.

We'll use a mask containing the bit pattern we wish to see, and zeros everywhere else. If we take the logical
AND operation of this mask with some test word, we'll discover that every zero bit in the mask will cover
up (mask out) the corresponding bits in the test word. In the following example we'll load the mask into
M-register and the test word into A-register:

"blank", to

M 00 A0 I· Load mask into M-register
00 A0 MASK

A Cl I A0
,_.Load test word into A-register

Cl A0 WORD

! A 16
RAN M, A Oogical AND)

A 00 I A0

147

A blank was present in the appropriate position of the test word, so it "shovvs through" the mask. Consider
the case where a blank either is not present or is positioned incorrectly:

Ml 00 A0

~ B

A I A0 I C2 , .. A0 C2 WORD

! RAN M,A

00 I 80

There are two methods that could be used to find out whether or not a blank shone through the mask.

, Method 1 Subtract the mask from the accumulator and test the result: If the result is zero, a matching bit
pattern has been found. A nonzero result indicates the presence of a mismatch:

. RSU M,A SUBTRACT MASK FROM A
SNZ A WAS THERE A MATCH?
BAU ELSEWH YES, GO ELSEWHERE

<next> NO, PROCESS NO-MATCH CONDN

*How did we get 80 in the rightmost 8-bit positions? Watch I

A0= 1010 0000
C2 = 1100 0010 logical AND

1000 0000 = 80

148

Method 2 Take the logical exclusive-OR (REO) of the accumulator with the original mask and look for a
zero result. If we had obtained a matching character as a result of the first operation:

00 I A0 M (original mask)

00 I A0 A (matching character)

l REO M,A

00 00 A Character matches mask (zero result)

or, using a nonmatching character

00 A0 M

00 I 80 A

j REO M,A

*
00 I 20 A Character does not match (nonzero result)

9-5 THE SEARCH FOR A BYTE STRING DELIMITER.
Let's use the masking technique discussed in the last section in the larger context of searching a byte string
for a blank. (This application is useful in looking for a blank used as a delimiter in an input buffer.) We
cannot conveniently use the CLC (compare logical character) to compare the input string against a string
of blanks, because the CLC looks for the first mismatch.

*Get it now? A0 = 1010 0000

80 = 1000 0000

0010 0000

logical XOR

149

The following flowchart and code sequence shows how we could shift successive bytes into the low order
8 bits of a register, test them against the mask, and quit as soon as a match is found or the buffer is examined
completely:

FLAG +-1
(odd byte)

Initialize buffer count, N

Load mask into M

Initialize buffer pointer,
i +-0

FLAG+- 0 (even byte)

loadBUFi-. E

Long left shift (logical) of
one character into A

Logical ANO of character
with mask

logical XOR of that product
with mask

yes

yes

No blank found

Stop

150

Get address of word

Multiply by 2

Add FLAG to
get byte address

Save address

Stop

x EQU 2
A EQU 0
M EQU 3
BYTAD DATA 0
FLAG DATA 0
MASK DATA >A0
N DATA <buffer size>

LDM MASK
LOX =0,.

LOOP SMBZ 15,FLAG
LOE BUFFER,X

BACK LLD 8
RAN M,A
REO M,A
SNZ A
BAU FOUND
TMBZ 15,FLAG
BAU LOWER
RIN X,X
DMT N
BAU LOOP

EMPTY <buffer empty routine>

LOWER SMBO .
BAU

FOUND @LOA
RAD
ALA
LDM
RAD
STA

15,FLAG
BACK
=BUFFER
X,A
1
FLAG
M,A
BYTAD

BLANK

MASK TOM
INITIALIZE BUFFER INDEX
FLAG FOR HIGH ORDER CHARACTER
GET BUFFER WORD
SHIFT CHARACTER TO A
LOGICAL AND
LOGICAL XOR
MATCH
YES, BRANCH TO FOUND
NO, fiEADY FOR NEXT WORD?
NO, PROCESS LOWER HALF OF THIS WORD
YES. INCREMENT INDEX TO GET NEXT WORD
END OF BUFFER?
NO, GO BACK AND GET NEXT WORD
YES. PROCESS NO MATCH IN BUFFER

SET FLAG FOR LOWER HALF
AND GO BACK TO SHIFT AGAIN
GET ADDRESS OF BUFFER
AND ADD OFFSET TO GIVE WORD ADDRESS
MULTIPLY BY 2
GET BYTE OFFSET FLAG INTO REGISTER
ADD FLAG TO GET ODD OR EVEN
STORE A AS BYTE ADDRESS

9-6 TESTS FOR ONES AND ZEROS IN THE ACCUMULATOR.
There are four instructions that work similarly to test for set or cleared bits in the accumulator; two
instructions test for ones encountered in a left or right logical shift (L TO, RTO); and two instructions
test for zeros (L TZ, RTZ). The instruction format is

<op code> y (where y is the number of bits to be tested)
The vacated bits are filled with zeros.

151

Let's consider the Left Test for Ones instruction (LTO) which works as follows:

Initialize the shift counter:

n+-0

Shift A left by 1 bit

n +-n+1

no

Set A0 to 0

n-+ X

End of instruction

Uncondition811y
complement bit A0

End of instruction

y-+ x

These instructions are most useful in programming real-time control systems, especially when identifying
the source of interrupts (Section 11).

152

10-1 INSTRUCTIONS.

SECTION 10

INPUT/OUTPUT ON THE BARE MACHINE

The instructions discussed in this section are shown in Table 10-1.

10-2 TWO 1/0 TECHNIQUES.
Compared with the other operations carried out by a computer, 1/0 is slow because of the speed mismatch
of an 1/0 device (which is basically mechanical) and the CPU/memory combination (which is totally elec
tronic). This mismatch in speeds is handled two different ways: by polling or, if the computer in question
has an interrupt capability, by interrupt (if the interrupt system has been enabled by the programmer). The

),

differences are discussed below. ·

Instructions

RDS
WDS
ATI

Table 10-1

Read Direct Single
Write Direct Single
Automatic Transfer Initiate

10-2.1 1/0 BY POLLING. An order for the 1/0 is issued. Then the CPU (which contains a tight loop for the
purpose) keeps asking the dev.ice, uAre you done yet?" As soon as the device reports (usually by setting a
bit somewhere) that it is done, the CPU breaks out of the.loop and continues with the program.

The actual instructions used in the polling loop depends on whether we are executing 1/0 on a low-speed
device attached to the data bus or on a high-speed device connected to the direct memory access channel
(DMAC) which handles 1()6 words per second {see Figure 10-1).

-

_L_o_w_-_sP_E_E_o_ ____ ~. CPU
DEVICE ~

DATA
BUS

B DMAC HIGH-SPEED
MEMORY A 4 "

C DEVICE

Figure 10-1. Input/Output by Polling

153

10-2.2 1/0 BY INTERRUPT. The CPU issues an order for 1/0 and tells the device to transmit a signal
(interrupt) when it is finished. Meanwhile, the CPU continues with whatever other job it is assigned. If that
job depends on the outcome of the 1/0, obviously the CPU can't go on but must sit in an idle loop waiting
for the interrupt signal to come. In the latter case the CPU has nothing else it can do without waiting for the
results of the 1/0. There is really nothing to indicate that either 1/0 method should be chosen over the other.
However, if other useful work can be done while the 1/0 is going on, the interrupt method produces a
faster executing program.

A clever programming technique is sometimes available for use fn conjunction with the interrupt method;
that is the technique of double buffering.

10-2.3 DOUBLE BUFFERING. In this technique two buffer areas are defined (let's call them A and B).
· The computer fills ~uffer A and then issues a write instruction to transfer the contents of that buffer to
the output device. Meanwhile, it continues operation and fills buffer B while buffer A is being transferred.
If the interrupt signal comes before buffer B is full, it is not acted upon until buffer B is ready. If buffer B
is ready first, the CPU must wait until the transfer of buffer A is complete before issuing a write instruction

· for the transfer of buffer 8. While B is being transferred, the CPU works on filling A again. The process
alternates in this man~er until all desired output is transferred.

This example assumes that the contents of both buffers were sent to the same output device. If the contents
of A were going to .one device and the contents fo B to another device, this represents not double buffering,
but merely the case in which each device has its own internal buffer area.

10-3 INTERNAL AND EXTERNAL ADDRESSES.
The memory address pair at 0098 /0099 is devoted to interfacing a single high-speed DMAC device to the
980. If the DMAC expander option (extra hardware) is available, the address i:>'airs CJCJ9A - 00A 7 are used
to address up to seven other DMAC devices.

The other path for interfacing 1/0 devices is the data bus, which in the standard 980 configuration has four
ports. Each port may be used to connect one low-speed extemar device, or external expander hardware may
be used to connect 15 devices through each po.rt *(see Figure 10-2). Each of the 15 ports can be used to
plug in another level of external expander; however, we are limited to an addressing capability for only 256
external registers).

Part of the expander. logic is devoted to resolving which of the devices connected to the port is the one being
addressed. All 980 standard documentation assumes that each of the various devices has a specific address.
(These addresses can be changed by hardware strapping, if necessary, to suit the needs of a particular instal
lation.)

Part of the interface between the device and the port (or expander) is designed to hold numbers that are
being transmitted between the device and the CPU. Since such number-holders are traditionally called
registers and since these are associated with an external device (rather than being part of the standard com
plement of CPU/memory registers), they are called external registers.

*Limited internal expansion capability is available for connecting 1,1p to nine more devices.

154

CPU .,r-eus EXPANDER

1 2-L- --14 1s

DATA BUS~
/.

PORT ON DATA BUS

===-=tJOUJ
DEVICE

D

DEVICE
c

DEVICE
A

DEVICE
B

'C_PORT
DEVICE

A

Figure 10-2. Four-Port Data Bus and 15 - Port Bus Expander Block Diagram

The number of external registers for each device varies according to the requiremetns of the device. The card
reader, for example, uses only one external register, while the paper tape reader uses 2. The standard addresses
for these registers are shown iti Appendix D.

A standard four-port configuration (no expander logic) which we add a card reader and teleprinter, is shown
in Figure 10-3.

CARD
READER

CR
INTERFACE

COMMUNICATIONS
MODULE INTERFACE

Figure 10-3. Data Bus/Device Interfaces, Showing External Registers

155

1<>-4 READ OR WRITE (LOW-SPEED DATA BUS DEVICE).
Reading or writing a single word from an external device connected to the data bus is done using the
read-direct-single (RDS) or write-direct-single (WDS) instruction. The instruc~ion must be followed immed
iately by a DAT A word whose rightmost 3 bits specify the internal register to or from which the transfer is
to take place. The external register address is specified by the <device address> in the operand field of the
RDS/WDS instruction ..

RDS/WDS
DATA

<device address>
<operand>

The WDS instruction moves a word from the internal register to the device and the RDS moves a word from
the device to the internal register. Let's see what the assembler does to the word pair and what the various
fields of the assembled words mean:

RDS<WDS>word

DATA word
--

__ , nternal register interval

------ Register indirect bit

-------- ·Autoincrement bit

----------· Busy bit test
Let's examine each of these words in detail.

Word 1. Bits 0- 4
7-8

*Bits5, 6

contain the op-code for the direct single 1/0 instruction.

contain the group where the device is to be found.

Standard device addresses assume that we have only group zero; so we shall assume zeros in these bits.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

l11o11looool l1°I I
The remaining bits 9 and 11-15 contain the external register address.

Note that all our external addresses are such that bit1Q is unused, since the assembly process will set it to
zero or one depending on the direction of the transfer. So:

RDS > IF assembles as D81 F (bit 10 = 0)

whereas,

WDS > IF assembles as D83F (bit 10 = 1)

156

Word 2. unused in the 980. To ensure compatibility with earlier models of the 980 series,
place a one in bit 2. This configuration will translate into hex as

aa 980only
20 downward compatible

Bit 8 permits the programmer to specify a device busy test. If bit 8 is programmed one, and no data transfer
takes place, execution proceeds with the next instruction which is usually a BRU $-2 (or try again). If
bit 8 is programmed one, and there is a successful data transfer, the next instruction is skipped. If bit is pro
grammed zero, thedata lines are sampled for whatever information is on them(i.e., whether the device is
ready or not) and the execution proceeds sequentially.

Bit 10* Autoincrement
Bit 11
Bit 12~
Bits 13-15

Unused in the 980; used as an auto-decrement bit in earlier models.
Register indirect bit
I ntemal register to/from which a word is to be moved. The designators are the same .
as those used previously:

A= 000
E =·001
x = 010
M = 011
s = 100
L = 101
B = 110

PC = 111

To summarize the 1/0 word pair to date, let us assume the following conditions:

1. All transfers take place to and from the accumulator (register 0) directly: no indirect, no autoincre
ment.

2. Make compatible with earlier 980 models.

With device-busy test; "polling"
RDS/WDS <device addr> 1/0 TO A
DATA > 2080 DEVICE BUSY?
BAU $-2 YES, HANG TIL ROY.
<next instruction> NO, CONTINUE

Without device busy test
R DS/WDS <dev addr>
DATA > 2000
<next instruction>

l/OTOA
XFER WORD.
CONTINUE

*If the indirect bit is set, the autoincrement bit is consulted at the end of each transfer. If this bit is also set, the address containa:I in the register
is incremented; otherwise, it is decremented.

*If the register indirect bit iszerQ the register desingated in bits 13-15 contains the number. If the register indirect bit is one, bits 13-15 desig
nate a register which points to an internal memo'ry word that will be used instead. Following this transfer the address in the register is incremen
ted or decremented according to the setting of the autoincrement bit (see footnote above).

157

10.5 EXTERNAL DEVICES: DATA, STATUS, COMMAND WORDS.
External devices have from one and five external registers as part of their interfaces to the data bus. In gen
eral, three functi·ons are served by these registers; they may contain

• Data: the actual number to be transferred

• Status: the status of the device as reported to the CPU

• Command: control word sent from the CPU to the device.

A register may serve more than one function at different times, and the significance of the registers is differ
ent for each different device. Hence, we shall discuss the devices individually.

10-6 CARD READER.
The card reader has only one register, external address 1 F which suffices for all CPU/device communications.

1FI ______ _ card reader
<status/data> or <command>

It makes no sense to try to write on a card reader; so the device is designed so that any attempt to write on
it is interpreted as a command word from the CPU. When written into (and, therefore, viewed as a command
register) 1 F has the following configuration:

0 14 15

1 F (I <command>

I -- 1 FEED CARD
----- 1 SKIP TO END OF CARD

When read from, this register function as a combined status and data register, reading one column at a time.

Status ~Data: contents of card column just read
-----------....__ _ _........._ --._ bit 4 = bottom row (9 edge)
0 1 2 3 4 • 15 bit 15 = top row (12 edge)

1 F I ~ I ! I Whenever a hole is found,
....._ ~ the appropriate bit is set.

1 => Timing Error <status/data>
1 => End of card found

Some devices have .a bit which can be set in the command word to connect or disconnect their program con
trol and/or switch them off or on. No such capability exists for the card reader, for which these functions
are handled by the operator through switches on the card reader control panel.

10-6.1 READING A CARD BY POLLING. The first thing to do is feed a card. We'll use the WDS instruc
tion to send the appropriate command to the device

LOA
WDS
DATA
BRU

=1
>1F
>2080
$-2

<next instruction>

SET FEED ENABLE BIT
WRITE TO CR COMMAND REGISTER
FROM ACCUMULATOR. BUSY?
YES, TRY AGAIN
NO, CONTINUE

158

Now that the card is fed, we can read the first column.

READCD RDS > 1F
DATA 2080
BRU $-2
<next instruction>

INITIATE READ
TO A. BUSY?
YES, TRY AGAIN.
NO, CONTINUE

The A-register now contains the status and the data; we can separate the two via a long shift of the character
bits into E. A test of the remaining status bits will tell us if there was a timing error or if this is the end of
the card.

LRD 12
SZE A
BRU ERROR
<next instruction>

SHIFT CHARACTER TOE
ANY ERROR BITS SET?
YES, GO TO ERROR ROUTINE
NO, CONTINUE.

We can arrange to do this 60 times (for 60 columns of input on a card - or some other number of our
choosing), moving each character into a separate word of an input buffer:

READ

LOA
WDS
DATA
BRU
LOX
RDS
DATA
'BRU
LRD
SZE
BRU
LLD
STA
Brx

=1
> 1F
> 2080
$-2
=-60
> 1F
> 2080
$-2
12
A
ERROR
12
INBUF+60,X
READ

<next instruction>

FEED ENABLE
WRITE COMMAND
BUSY?
YES, TRY AGAIN
NO, SET INDEX FOR 60 CHARACTERS
INITIATE READ
BUSY?
YES, TRY AGAIN
NO, SHIFT CHARACTER TOE
ANY ERRORS?
YES, GO TO ERROR ROUTINE
NO RIGHT ADJUST DATA
AND SAVE IN BUFFER
GOT ALL 60? NO, GO BACK
YES, CONTINUE

10-6.2 POLLING THE READER WITH AUTOINCREMENT. We could use A as a pointer to the reception
area and save the labor of moving each character individually from A to IBUF by setting bits 10 and 12
of the. DAT A word to one.

0 1 2 3:4 5 6 7 8 9 10 11 12 13 14 15

111 ~ 1 I 000)DATAword

-------------- L_ A-register 2 :o 1 t t ~
Indirect bit
Au to increment

---------Busy

159

The hex value in this case is

DATA > 20A8

and the program is

READ

<enable
LOX
LOA

. RDS
DATA
BAU

BIX

feed>·
=-60
=INBUF
> 1F
>28A8
$-2

READ
<next instruction>

INITIALIZE INDEX
GET ADDRESS OF FIRST BUFFER WORD
READ TO ADDRESS POINTED TO BY
A AND INCREMENT. BUSY?
YES, TRY AGAIN

NO, GOT ALL 607 IF NOT, GO BACK.

10-7 HIGH-sPEED PAPER TAPE READER.
This device has two external registers: data and command/status:

10

1al_ ---~----'data
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LOA
WDS
DATA
BAU
LOX
RDS
DATA
BAU
STA

I It g I <command>

I t t ___ , __ 1 = READ FORWARD
_ - 1 = STOP READER

1 = ENABLE INTERRUPT
---------1 = DISCONNECT

, __
<status>

t t ________ 1 = INTERRUPT ENABLED

----------1 = INTERRUPT

=i
> 10
2880
S-.:2 ..
=-10.
> 18
> 2080
$-2
IN+10,X

ENABLE HSR
SEND TO READER
WITH BUSY BIT TEST
REPEAT UNTIL READER ON
INDEX 10 CHARACTERS
READ CHAR, RIGHT ADS
WITH BUSY BIT TEST
REPEAT IF NOT READY
SAVE CHARACTER

160

BIX
LOA
WDS
DATA

$-4
=4
> 10
2911

LOOP BACK
BIT 13 STOPS READER
OUT TO COMMAND REGISTER
NO B~YTEST

10-8 HIGH-SPEED PAPER TAPE PUNCH.
This device has two external registers: data and command/status:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
18 I I <data>

11

. 6 7

- I • <command>

tt--------- Enable interrupt
----------Disconnect punch

- OR -

<status>

!'--------....-- Interrupt enabled
------------ Interrupt ·

Except for the disconnect bit, these bits all pertain to use of the interrupt technique, discussed in Section
10-2.2.

This program punches a 12-inch blank leader (10 character 5 per inch): And 10 characters:

LOX
LOA
WDS
DATA
BAU
BIX
LOX
LOA
WDS
DATA
BAU
BIX

<next>

=-120
=0
>18
>2080
$-2
$-3
=-18
CUT+10,X
>18
>2080
$-2
$-4

SET UP.FOR 12 INCH
BLANK FRAMES LEADER
OUT TO HSP
WITH BUSY BIT TEST
HANG, IF BUSY
LEADER FINISHED? NO, GO BACK
SET UP FOR 10 CHAR.
GET (RIGHT ADJUSTED) CHAR.
OUT TO HSP
WITH BUSY BIT TEST
HANG, IF BUSY
MORE CHARACTERS, GO BACK
OTHERWISE, CONTINUE

Note: A blank trailer, similar to the leader, should be punched at the trailing end of the tape.

161

10-9 733ASR/KSR DATA TERMINAL.
The Texas Instrument a Model 733 ASR/KSR has one external register number >05 for all status/command
data transfer; and communicates on a character - by - character basis via the Full Duplex EIA Communica
tions Module.

Butt.
Status ----------0 1 2

o.m
Rmd Write Set
~ Rqst Status

,, a....

(Valid Only
When RREQ = 1)
Read E~r Detect

3 4 5

Read Read Read
Frme Time Prty
Err Err Err

RREO WREQ DSS RFE RTE RPE

6

Not
lJled

St8tus Data Shown Here2

------------...-.:..:....;-.~~~..------------7 8 9 10 11 12 13 14 15

Xmt Xmt Dmta

Buff Reg Not Not Not Not Not Set

L.09dld Loaded Ulld Ulld Ulld Ulld u.d Reedy.
(Z...0) (Zaro) (Zaro) (One) COnel On/Off 1 1

Line

XBL XBL DSR

If bit 0 (RREQ) •ONE, bits 8 tO 15 =ASCII chlncter I be I l>i I • I bs I b4 I "3 I ":! I b1 I
(MS8~ CLSB).

Figure .10-4. ROS Data Word

10-8.1 RDS DATA WORD.· The RDS instrucjtion is used to read one word of status information or one
word of both status/data. The 16-bit word input by an RDS instruction. is described below.

Bit Interpretation

0 Read Request (RREQ) zero: Bits 8-15 are status. ONE: A character has been transfered from
the tenninal to the interface (eq. the operator has hit a key) and is available to the computer
in bits a .. 15 of the data word. This bit, vvhen set by the interface, causes an interrupt if inter
rupts are enabled.

1 Write Reque$t (WR EQ). zero: The interface is not requesting a new character to be sent
(eq., the interface has not finished sending the previous character to the data terminal).
ONE: The transmit buffer is empty and ready to receive another character.

2 New Data Set Status (DSS). zero: No change in the data-set-ready (DSR) signc,11. ONE: A
change of state has occured on the DSR signal, (eq., the keyboard ON-LINE/LOCAL switch
has been repositioned).

3 Read Framing Error (RFE). zero: No error. ONE: Improper character framing (eq., wrong
baud rate or erroneous stop bit). To clear RFE, issue a CRR*, followed by the receipt of a
"proper" character.

4 Read Timing Error (RTE). zero: No error. ONE: Indicates that the communications module
(CM) interface received another character from the data terminal before the CPU read the
last one. Thus, one or more characters have been lost. Th is bit is cleared by issurance of a
CR R * followed by receipt of a "proper" character.

*See WDS Data Word Section 10-10.2 below.

162

Bit I nterpertation

5 Read Parity Error (RPE). zero: No error. ONE: Improper character parity genreation; to clear
bit 5, the programmer should issue a CRR* followed by the receipt of a "proper" character.

6-7 Not Used

If RREQ is a ONE, bits 8-15 are character data; if ZERO bits 8-15 contain the following information:

8 Transmit Buffer Loaded (XBL). ZERO: The character in the transmit buffer has been sent to
the transmit shift register to be sent to the 733 ASR/KSR. ONE: Buffer is loaded with
characters and data terminal unable to accept another

9 Transmit Shift Register Loaded (XRL). ZERO: Shift register empty. ONE: A character is
being serially transmitted to the data terminal.

10-14 Not Used.

15 Data Set Ready (DSR). ZERO: Data Termianl OFF-LINE. ONE: Data Terminal ON-LINE. ,
0 ', 1 1

,
2

{
Clear

~ Interface
, Flags
3 .. 5 6 -- Module Control ~egister Data Shown Here 1 •2

7 8 9 10 11 12 13 14 15

Cir Wriat Cir Cir Write Not Data Rqst Not Not Not
R•d Data New Write Not Con- lntp

Rqst Uted Term to Used Used Used
Aqst f'.ldy Status Req- Used trol Enbl Delay (Zero) Rely Send (Zero) (Zero) (Zero)

~

CRR WDA CNS CWR CON INT WAD DTR ATS

If bit 1 =ONE, bits 8 to 15 = ASCII character be b7 b6 b5 b4 b3 b2 b1

(J4S ..) (LSB)

Figure 10-5. WDS Data Word

· 10-9.2WDS DATA WORD •. The 16-bitWDS data word is used to isssue commands, subcommands (see
paragraph 10-10.3), and data: A description of the WDS data word bit functions follows.

Bit Interpretation

0 Clear Read Request (CRR). ZERO: No action. ONE: Clear read request and clear interrupt
(if any). The Read Request status bit is set by the EIA interface when it has a character
ready to send to the CPU (eq., the operator has pressed a key). This status line should be
cleared directly before the program reads the character.

2

Write Data Ready (WDR). ZERO: Notation. ONE: Loads the USASCI I character in bits 8-15
of the WDS data word into the interface transmit buffer and initiates transfer.

Clear New Status (CNS). ZERO: No action. ONE: Clears DSS flag.

163

Bit Interpretation

3 Clear Write Request (CWR). ZERO: No action. ONE: Clears WREQ and associated interrupt
(if enabled).

4-6 Not Used.

7 Control (CON). ZERO: No action. ONE: Bits 8, 9, 11, and 12 contain control information.

If bit 1 (WDR) of the WDS data word is set, bits 8-15 contain a character. If bit 7 (CON) is set, the following
controls are output to the data terminal.

8 Interrupt Enable (INT). ZERO: Inhibit interrupts. ONE: Enable interrupt on RREQ, WREQ,
or DSS.

9 Write Request Delay (WAD). ZERO: No transmission delay. ONE: Causes a 33 msec. delay
between character transmission to the printer position of the 733 ASR/KSR data terminal.
This is necessary for writing to the printer (300 baud) but not necessary for writing to the
cassettes (1200 baud).

10 Not Used.

11 Data Terminal Ready (OTA). ZERO: Maintains the DTR circuit int he OFF .cond.ition.
ONE: Maintains the OTA circuit in the ON condition which in effect, enables the transmit
and receive capabilities of the data terminal.

12 Request to Send (RTS) ZERO: Maintains RTS circuit in OFF condition. ONE: Maintains
·RTS circuit in ON condition which enables the data terminal to accept characters from the
CM interface.

13-15 Not Used.

10-9.3 733 ASR SUBCOMMANDS. The 733 ASA subcommands, or Remote Device Control (ADC) func
tions, each consist of a USASCI I character placed in the least significant half of the data word associated
with a WDS instruction. These control instructions are used by the programmer to perfrom such mechanical
tasks as rewind and load cassettes.

The R DC functions are basically divided into two categories: (1) those activated by receipt of a single
USASCI I control character and (2) those activated by receipt of the nonprintable OLE character, followed
by a second predetermined USASCI I character code. The first category is known as the Automatic Device
Control (ADC), or single-character subset; the second category is known as the OLE, or two-character sub
set. The two categories of ADC functions and their activation codes are listed in Table 10-1. It should be
noted that the RDC logic circuitry automatically disables the teleprinter portion of the 733 ASA from
printing the first character received after the OLE character code. This ensures that all two-character func
tions are, in effect, treated in the same manner as nay nonprintable USASCI I control character such as those
in the ADC (s ingle-character) category.

164

The command status character, shown in Figure 10-6; is transmitted by the 733 ASR Data Terminal to the
computer in response to the RDC request status command (command ">3C" of Table 10-1). The status
character bits, numbered form 7 (MSB) to 1 (LSB), correspond to bits 9 through15 at the computer inter
face.

Bits to Monitor

9 10 11 12 13 14

Cassette 2 Caaette 1

"1"
PRNTR RCRD On Clear On Clear PLYBK
ROY ADY Leader Leader ERR

(BDE02) (BOE02)

7 6 6 4 3 2

Figure 10-6. Status Character Bits

Table 10-2. Remote Device Control Functions

·Single-Character Functions (ADC)

Function

Playback On/Keyboard Off (No busy bit
necessary)

Record On/Printer Off
Playback Off/Keyboard On
Record Off /Printer On

Hex Code

> 11

> 12
> 13
> 14

Two-Character Functions ("OLE")

Function

Rewind Cassette 1
Rewind Cassette 2
Load Cassette 1
Load Cassette 2
Cassette 1 in Record, 2 In Playback
Cassette 2 in Record, 1 In Playback
Block Forward (1 Block = 86 characters)
Block Reverse
Printer On (Non-Operable)
Printer Off (Non-Operable)
Automatic Device Control (AUows ADC

Commands) On
Automatic Device Control (ADC Above)

Off
Request Status Information

165

Hex Code

> 31
> 32
> 33
>34
> 35
> 36
> 37
> 38
> 39
> 30
> 3A

> 3B

> 3C

15

PLYBK
ROY

1

USASCll
Character

DC1

DC2
oc3·
DC4

USASCll
Character

1
2
3
4
5
6
7
8
9
0

<

If bit 0 of the RDS data word (RREO) is a logic one, bits 8 through 15 contain a USASCll character with
bit 8 the MSB and bit 15 the LSB. If bit 0 of the RDS data word is a logic zero, the following status data is
returned to the computer:

• Transmit Buffer Register Loaded (XB L) - A logic one in bit 8 indicates that the communications
module transmit buffer register is presently loaded with a USASCI I character and unable to accept
another. A logic zero indicates that the USASCI I character has been transferred to the transmit
shift register and that the transmit buffer register is now ready to accept another USASCI I character.

• Transmit Shift Register Load (XR L) - A logic one in bit 9 indicates that the communications module
character is in process of being serially transmitted to the 733 ASR/KSR Data Terminal. A logic
zero indicates that the module transmit shift register is empty and that no serial transmission is pre-
sently in progress. ·

• Not Used - Bits 10 through 14 of the RDS status data word are not used by the 7333 ASR/KSR Data
Terminal. Bits 10, 11 and 12 are wired to logic zero's and bits 13 and 14 are wired to logic one's.

• Data Set Read ·(DSR) - A logic one in bit 15 indicates that the 733 ASR/KSR Data Terminal is
ON-LINE. This circuit is driven by the Data Terminal Ready ·output.line of the 733 ASR/KSR Data
Terminal and is ~aintained in the ON condition as long as the 733 ASR/KSR keyboard ON-LINE
switch is engaged and the ASA-to-computer connection is maintained.

10-9.4 PROGRAMMING EXAMPLES. The programming examples in the follo~ing paragraphs include
writing to both the teleprinter and cassette portions of the 733 ASR, reading from both the keyboard and
cassettes, and issuing subcommands. All of the examples address 1/0 data bus register 0515 in conjunction
with the 733 ASR/KSR Data Termianl.

The busy-bit test, associated with both WDS and RDS instructions, should not be used when writing a data
word consisting entirely of control data or reading a data word consisting entirely of status data. In addition,
the busy-bit test should not be used with the first WDS instruction in a program or when writing the DCI sub
command (playback on) to the terminal. These restrictions make it advantageous to make the first WDS
instruction one that writes all control data or issues the oc·1 subcommand. If this is not possible, the busy
bit test can be replaced with a check on the Write Request (WREO) flag to determine when the WDS data
word character bits have been accepted by the data terminal. The following example illustrates this alternate
method: ·

LOA =>12
@IOR =>5000
WDS 5
DATA 0
RDS 5
DATA 0
TABO 1
BRU $-3

SEND DC2 COMMAND (RECORD-ON CHARACTER
LOAD DATA, CLR WRITE REO
WRITE TO ASA FORM REG A
NO BUSY BIT (1ST WDS)
READ STATUS (BIT O=O)
REGISTER A
TEST BIT 1 (WRE0=17)
LOOP IF WREO = 0

166

In general, the guidelines listed below should be followed in programming the 733 ASR/KSR Data Terminal.

• If the ASR portion of the data terminal is the subject of the program, issue the appropriate subcom
mand(s) to ready the desired cassette for the 1/0 data transfer.

• If the busy-bit test is required on the first WDS instruction of the program, use the alternate method
shown in the example above:

• Before each WDS instruction to write an USASCI I character, clear the Write Request (WREQ) flag.
If the teleprinter is being written to, the Write Request Delay (WAD) bit should be set prior to any
character transmission to initialize the interface for 300 baud.

• Before each RDS instruction to read an USASCll character, clear the Read Request (RREQ) flag.

10-9.4.1 Write/Read KSR Example. *The following program writes 10 characters (each character is right
justified in a memory word) to the printer and then reads 10 characters form the keyboard. The data word
of 015815 associated with the first WDS instruction disables the 1/0 data bus interrupts form the data ter
minal, sets the transmission rate to 300 baud, and sets the Data Terminal Ready and Request to Send con
trol bits. Refer to the WDS and ROS data word formats for aid in following the example.

@LOA =>158 CONTROL DATA, 300 BAUD TE RMI NL ROY
wos 5 OUT TO INTERFACE
DATA. 0 NO BUSY BIT (NO CHARACTER)
LOX =-10

WRITE LOA OUT+10,X GET CHAR, RIGHT ADJUST
AND =>7F MASK OUT MSB .
@IOR =>5000 LOAD ASCII DATA, CLR WREQ
WDS 5 WRITE CHARACTER & CONTROL DATA
DATA > 2080 BUSY BIT
BAU $-2
BIX WRITE LOOP BACK
LOX =-10

READ @LOA =>8000 CLR READ REQUEST
WDS 5 OUT TO INTERFACE
DATA 0 NO BUSY BIT
RDS 5 READ CHARACTER
DATA > 2080 BUSY BIT
BAU $-2
AND =>7F SAVE 7-BIT LSB CHARACTER
IOR =>80 OR IN 8TH USASCll BIT (ONE), MARK PARITY
STA IN+10,X
BIX READ

OUT DATA 'C H A RACTERS'
IN BSS 10

*All examples are without interrupts

167

10-9.4.2 ASA Subcommand Example. The following program puts cassette 1 in the record mode (and
cassette 2 in the playback mode), loads cassette 1, and initiates the recording process. Note that the OLE
character code (001015), accompanies each of the two-character functions. The program assumes that a
WDS instruction has already been executed and that cassette 1 is positioned on the clear leader at the be
ginning of the tape.

LOA
@IOR
WDS
DATA
BAU
LOA
@IOR
WDS
DATA
BAU
LOA
@IOR
WDS
DATA
BAU
LOA
@IOR
WDS
DATA
BAU
LOA
@IOR
WDS
DATA
BAU

=>10
=>5000
5
>2080
$-2
=>35
=>5000
5

> 2080
$-2
=>10
=> 5000
5
> 2080
$-2
=>33
=>5000
5
> 2080
$-2
=> 12
=>5000
5
> 2080
$-2

OLE USASCll CODE
LOAD USASCll DATA, CLR WREQ
ASA
BUSY BIT
BRANCH IF NO DATA XFER
CASSETTE 1 TO RECORD MODE CODE
LOAD USASCll DATA, CLR WREQ
ASA
BUSY BIT
BRANCH IF NO XFER
OLE USASCI I CODE
LOAD USASCll DATA, CLEAR WREQ
ASA
BUSY BIT
BRANCH IF NO XFER
LOAD CASSETTE 1 CODE
LOAD USASCll DATA' CLAAR WREQ
ASA
BUSY BIT
BRANCH IF NO XFER
DC2, RECORD-ON CODE
LOAD USASCll DATA, CLAAR WREQ
ASA
BUSY BIT
BRANCH IF NO XFER

10-9.4.3 Write ASA Example. The following program initiates the cassette recording process, writes 10
USASCI I characters to the cassette, and terminates the cassette recording process. Note the alternate method
of the busy bit test associated with the first WDS instruction. This program does not use interrupts.

Replaces
Busy Bit

LOA
@IOR
WDS
DATA

l
RDS
DATA
TABO
BAU

=>12
=>5000
5
0
5
0
1
$-3

SEND DC2 (RECORD-ON)
LOAD USASCll DATA, CLR WREQ
TOASR
FROM REG A, NO BUSY BIT

168

LOX =-10
WRITE LOA OUT+10,X

AND =>7F MASK BITS O-T0-8 TO ZEROES
@IOR => 5000 LOAD USASCll DATA, CLR WREQ
WDS 5
DATA >2080
BAU $-2
BIX WRITE
LOA =>14 SEND DC4 (RECORD-OFF)
@IOR =>5000 LOAD USASCll DATA, CLR WREQ
WDS 5
DATA >2080
BAU $-2
LOA =>7F WRITE OVER RECORD-OFF CHARACTER (DELETE)
WDS 5
DATA >2080
BAU $-2

OUT DATA 'C H ·A RACTERS'

10-9.4.4. Read ASR Example. The following program reads 10 source records from a cassette, assuming
each source record is less than or equal to 200 bytes. Note that the count of source record is maintained by
keeping track of the number of DC3 characters (playback off) encountered. The DC3 character is used in
programs that run under a monitor (supervisor), where each source line is terminated by a carriage return,
line feed, DC3, and RUB OUT (delete). Standalone programs can use whatever conventions are necessary to
end source lines. This program does not use interrupts; a wait loop is entered prior to reading each character
from the cassette.

Designate Amt {LOA =10 AMT RECORDS TO READ
of Records to STA COUNT STORE AMT OF RECORDS
Read LOX =O CHARACTER STORAGE POINTER

START LOA =>11 PLAYBACK ON (DC1), BEGIN READING RECORD
@IOR =>0000 CLEAR RREQ & WREQ, WRITE CHARS

READ WDS 5 WRITE COMMAND & CHARACTER DATA
DATA 0 NO BUSY BIT (DC1 IS 1ST WDS)
RDS 5 READ DATA FROM ASA
DATA 2080 BUSY BIT, REGISTER A
BAU $-2

ro =>7F MASK OUT 9 MSB
End-of-Record CPL =>13 CHK IF DC3 (PLYBCK OFF) READ
Check SNE DC3 READ? SKIP NEXT IF NOT READ

BAU FINISH BRANCH IF DC3 READ
IOR =>80 7 BIT ASCII TO 8 BIT ASCII, MARK PARITY
STA TABLE,X STORE CHARACTER
RIN X,X INCREMENT X-REG
@LOA =>8000 SET CLR READ REQ (CAR)
BAU READ RESTART CHARACTER CYCLE

Count of FINISH{DMT COUNT DECREMENT COUNT, SKIP NEXT IF COUNT= 0
Records BAU START GO TO NEXT RECORD
Read COUNT IDL 1 IDLE WHEN COUNT= 0

TABLE DATA 0 CONTAINS AMT OF RECORDS
BSS 1000 STORAGE AREA

169

10-10 DAMC 1/0: THE ATI INSTRUCTION.

Without expansion hardware, we have room for only one DMAC device: the high-speed line printer, the
moving head disc or the magnetic tape transport. We won't discuss disc or tape operations herein, and con
sider the printer to be our only DMAC device. The instruction used for 1/0 to DMAC devices is an auto
matic transfer initiate (ATI) instruction rather than the RDS/WDS used for low-speed data bus devices. The
command function to the device is built into the ATI instruction at assembly time. There are one or two
status words (depending upon the device) and a list containing the buffer address, character count, disk ad
dress, and chaining information, as applicable.

10-11 SINGLE DMAC DEVICE: LINE PRINTER.
The status word is 0098* in the memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

G098 ~ I I

t f __ • ___ 1 =OPERATION COMPLETE
- 1 =PRINTER NOT READY

------------1=CONTROLLERBUSY

and these bits will. be set by the device.

*If a DMAC expander is used, the printer normally occupies expander position 5 and the status word occupies memory location 00A2.

170

The program must. in addition. define in memory a LIST, which for the line printer, consists of four words:

0 1 2 3 15
< data address>

< character count>

Bit 2 set to 1 = > chain

Bit 0 set to 1 = > issue interrupt

The data for the program is set up as follows:

STATUS

LIST

EQU

DATA
DATA

0098

<word 1 >

<word 2 >

<word 3 >

<word 4 >

< address of buffer> , < character count>
<interrupt/chain word>,< address of next list>

and the program itself sets the device status location to some illegal value, usually all zeros. After issuing
the ATI, the status is checked for an error during operation. The ATI specifies the port (in the case of a
single OMAC device, no expander, the port is 0).

LOA
STA
ATI

·oATA
LOA
SNZ
BAU
CPL
SEQ
BAU

=0
STATUS
0
LIST
STATUS
A
$-2
=1

ERROR
<next instruction>

ILLEGAL VALUE
TO BE STORED IN STATUS WORD 0098
ISSUE ATI TO PORT 0

GET STATUS
TEST FOR CHANGE
IF NONE, KEEP TESTJNG
TEST FOR OK STATUS (OPERATION COMPLETE)
CONTINUE IF OK
IF NOT, PROCESS ERROR

171

SECTION 11

THE INTERRUPT SYSTEM

Table 11-1. Interrupt Instructions

LOAD STATUS BLOCK
STORE STATUS BLOCK
LOAD REGISTER FILE
STORE REGISTER FILE

LSB
SSB
LRF
SRF
LSR LOAD STATUS BLOCK AND RESET INTERRUPT

11-1 INTRODUCTION TO THE INTERRUPT SYSTEM.
During execution of a computer job, conditions may arise in the system that require reasonably urgent
attention. The disasterous effects of a power failure, as an extreme example, might be averted if all
register contents could be saved until restoration of power. The program might b~ able to resume pro
cessing at the point of failure if the machine were restored to the condition it was in at the time.

Using the power fail warning (interrupt) whatever code is executing at the time is interrupted, and the
program branches to a special routine (interrupt service routine) provided by the programmer to tell the
machine what to do, when and if the condition arises. Not all cases of interruption are that urgent.
One way of performing 1/0 involves issuing a transfer command to an external device along with the
request that the device signal via interrupt when data transfer is complete. The CPU thus may proceed
with other tasks and not "wait" for the device to complete the transfer.

The Tl980 computer has interrupt capability in four levels of decreasing priority:

1. Internal interrupt (power fail, parity errors, etc.)

2. Priority interrupt option

3. DMAC interrupt

4. Data bus interrupt.

A look at the status register (Figure 11-1) reveals that each of the interrupt levels (except internal)
corresponds to a bit which may be set under program control to enable that level of interrupt (i.e., the
processor will allow interruptions) or disable the level (i.e., the processor will ignore the interrupt
conditions).

0 1 2 3 : 4 5 6 7 8 9 10 11 12 13 14 15
r---i---.... I :

I :
I :
I I
~---------------------_._ __ _._ __ ,..._ __________ ..._ __

: ' L, =- Enable DMAC interrupt
'-.. ~1 => Enable priority interrupt option

._ ___ , => Enable data bus interrupt

173

Status

Overflow
indicator

Carry Indicator

Compare Indicators:

status bits

01
()()

01
10
11

meaning

<
=
>

not allowed

1

_____ Index Control:

~ y-Unused

1 = PRE INDEXING
[(index then indirect) 1

1:a 91011 2131415

=

1 =

*1 =

*1 =
*1 =

*1 =

*1 =
1 =

1 =

*1 =

0 ="POST INDEXING"
[(indirect then index)]

Power fail ***
*** Memory parity error

** Enable DMAC interrupt
Enable interrupt for memory parity error
Enable the program relocation feature (PRF)

** Enable priority interrupt
** Enable data bus, interrupt

Violation: privileged instruction
*** (see bits 4 & 5 for type violation)

*** Violation: memory protect
** Enable MP/Pl F interrupt

(see bits 5 & 6 for type of violation causing interrupt)

Figure 11.1. The Status Register

When an interrupt condition arises, the CPU, knowing the level of the interrupt, looks at these status
register bits (interrupt mask) to determine whether the interrupt should be honored or not. The internal
interrupt level is always enabled and cannot be disabled by the programmer, although two of the specific
types of interrupt that occur at that level may be selectively disabled.

Note that the status register contains two kinds of bits:

1. Bits that are set by the programmer to enable or disable an interrupt feature.

2. Bits that are set by the machine to report a condition (or status). These bits may be interro
gated by the program as the basis for a decision.

*Bits marked by * are set by the programmer to call in the interrupt features he desires. The other bits are set by the machine in response
to encounter~g one of the interrupt conditions. ·

f Bits marked by f are unconditionally cleared by an LSB instruction.
**Bits marked ** are cleared after execution of the instruction in location GN2 (i.e., internal interrupt).

174

11-2 INTERNAL INTERRUPTS.
An internal interrupt (highest priority) is generated by one of the following conditions:

may not be disabled j
2
1.. Detection of imminent power failure

1 Detection of an undefined op-code

Enable interrupt

3. Detection of a memory parity error (disabled by setting bit 11 to zero);
a memory parity error causes the processor to set bit 14 to a one, but
no interrupt will be generated unless bit 11 is set to one (enable). Since
memory parity errors are undesirable and we should be informed when
they occur, this feature should normally be enabled

4. Violation of the memory-protect/privileged instruction (MP/Pl F)
feature* (disabled by setting bit 4 to zero): violations are reported in
status bits 5 and 6.

/ :4 5 6 z:a 9 10 ~1 ;12~14 15
1 =generate interrupt· ~!~l __ l_i ____ ! _~-...,...l_I Status report

if memory parity error occ7r·s· --....-- • • '-. ·
. "--1: A memory parity

1 = generate interrupt error has occured
if MP/Pl F violation occurs

~---1: A MP/PIF violation
has occured

11-3 LOADING THE STATUS REGISTER.
When loading the status register let's assume we disable all interrupts except the memory parity error
(which we generally prefer to keep enabled) and the power failure and illegal operation interrupts (which
we cannot disable even if we wanted to).

At the outset of processing, we should load the status register to reflect the conditions we want:

0 1 2 3 :4 5 6 7: 8 9 10 11 : 12 13 14 15

-.+1+1° I 1 l 0
-

' I •

The shaded bits are set by the processor anyway, so we'll assume 0 in those positions. Thus, the num
ber we wish to place in the status register is 0010. (Note that by setting bit 10 to zero, we get post
indexing: indirect followed by indexed in any operation involving both.)

11-3.1 THE LSB INSTRUCTION.
SB LOK DATA
STATUS DATA
ENTRY @LSB

*Discussed in Section 11-6.

ENTRY+2 l
>0010 ~
SB LOK

175

DEFINE STATUS BLOCK

LOAD STATUS BLOCK

The load-status block instruction (LSB) is written with an extension indicator (@) to indice1te that it
uses two words in the assembly listing. Its action is to load a status block consisting of two words
located at the SB LOK address:

<addr of next instruction>

<value of status register>

into the PC and status registers, respectively. The next instruction is taken as the one pointed to by the
PC, which should be at ENTRY +2, since the LSB in~ruction uses the two words ENTRY and ENTRY
+1. All interrupts (except for internal) are automatically disabled until the instruction pointed to by the
new PC is executed. This 'LSB instruction costs us a bit more effort than necessary. We could load the
status word into A and then move it into the status register:

ENTRY

STATRG
STATUS
LOA
AMO

EQU
DATA
STATUS
A,STATRG

>08
>0010

and thereby not have to replace the contents of the PC.

DEFINE STATUS REGISTER
INITIALIZE STATUS VALUE

PUT STATUS INTO STATUS REG.

The LSB instruction automatically clears the status bits 5, 6, 14, and 15 which indicate violations of
MP/Pl F, occurance of a memory parity error, or power failure, since these conditions have presumably
been tested for and handled in the program prior to the condition of LSB.

11-3.2 REGISTER OR INSTRUCTION. Another way to set individual bits in the status register is to
use the ROR instruction with the status register as the destination and the bits to be set appearing as
ones with zeros elsewhere:

LOA
ROR

MASK
A,STATRG

GET NEW BITS TO BE SET
OR TO STATUS

and, of course, bits may be selectively cleared by setting the corresponding bit positions in the mask to
zero (with ones elsewhere) and performing a logical AND instruction (RAN).

11-4 HANDLING INTERNAL INTERRUPTS.
When the interrupt comes, it will be servicedat the completion of the instruction currently executing.
The processor will always trap to location 0002 for an internal interrupt, and it is in this location where
some instruction will be found that tells the machine what to do next (see Appendix E for a list of trap
locations). Since the only space available is the word pair at 0002 and 0003, we have room for (at most)
a double-length instruction which usually is a store-status-block-and-branch (SSB).

The SSB instruction has an address as its operand, and it is at this address that the processor stores its
status block (PC and status register). Immediately following the locations reserved to hold the status block,
it will expect to find the appropriate interrupt service routine and will, therefore, commence execution
at that point (i.e., at the stored status block +2):

176

In Trap Location

ORG 0002
@SSB llHNDL

llHNDL EQU
BSS

In User Area

$
2 SAVE ROOM FORS. B.

<first executable instruction of
interrupt service routine>

@LSB llHNDL Return to
Interrupted Execution

The effect of the interrupt is really just a branch indirect through 0003 to the address llHNDL, followed
by a store of the status block at llHNDL and resumption of execution with (PC)= llHNDL+2.

Return from the interrupt service routine is commonly done by an LSB of the saved status block (which
contains the old PC value and the status; the machine settable bits are cleared - otherwise another inter
rupt corresponding to the one just serviced would occur immediately).

· This SSB instruction allows no interrupts until the instruction following the SSB has been executed (in
this case, it is the instruction at llHNDL+2).

What instruction should we put into the interrupt service routine starting at llHNDL+2? In the present
example, we have disabled all internal interrupts except power failure, illegal instruction, and memory
parity error. Therefore, the interrupt must have been caused by one of these three conditions.

Since we have 1 millisecond grace before the power fails, we should check that condition first:

REGSAV
NXTEST

TMBO
BRU
@SRF
IDL
BSS

15,llHNDL+1
NXTEST
REGSAV
CJ
7

TEST FOR POWER FAIL
NO, BRANCH TO NEXT TEST
YES, SAVE REGISTER FILE:A,E,X,M,L,S,B
WAIT FOR FAIL

If the power is okay, the next test will be for a memory parity error in bit 14. If not set, we have an
ii legal op code.

NXTEST

BAD OP

TMBO
BRU

IDL

IDL

14,llHNDL+1
BADOP

1

2

177

MEMORY PARITY ERROR?
NO, HANDLE ILLEGAL OPERATION
YES, PRINT ERROR MESSAGE

WAIT FOR OPERATOR INTERVENTION
BAD OPERATION CODE, MESSAGE

WAIT FOR OPERATOR INTERVENTION

These interrupts all indicate potentially serious problems; hence the ID L rather than an LSB to resume
the interrupted process. Other kinds of interrupts, which are of a routine nature (e.g., an interrupt
signalling completion of 1/0) and can be totally handled by the machine, use the LSB instruction at
this point.

A summary of LSB/SSB instruction behavior is found in Table 11-2.

Table 11-2. Load/Store Status Block (LSB/SSB)

NOTE

EN = ENABLE: set by programmer
ST = STATUS: set by CPU
X = Programmer assigned setting

Cleared after execution of instruction in trap
location 0002 (internal interrupt trap)

Until execution of one instruction past LSB,
only internal interrupts are enabled

After execution of one instruction past
LSB/SSB

Execution of LSB clears unconditionally:

LSB is illegal instructions if

178

w~ a:
~
:E
0
0

I
11
I

I 1
I

I 1
I
I

ST EN ST EN EN

I
Q.
::>
a:
a:
w
1-z
>-
1-
a:
<(
Q.

:E
w
:E
m
z
w

t:
::>
a:
a:
w
I-z
0
<(.
:E
0
m
z
w

12

EN

0
w
en
::>
z
::> -
13

a:
0
I-
<(
0
0
z a:
a: 0

I-a: <(
w 0
>- 0
t: z
a:
<(..J
Q. <(
>- LL
a: a:
0 w
:E 3: w 0 :E Q. -

14 15

ST

11-5 STARTUP AFTER POWER FAILURE.
Having made provision in the last sub-section for handling the power failure interrupt by storing the
register file, let's examine how we can restore the program when power is restored.

At powerup the PC is set to zero, and execution begins in the 0000 location. Thus, in that location we
could store a link to take the program to a register-restore routine. Since we will replace all register
contents, including the PC, execution can resume as if nothing happened. Thus, in location 0:

ORG 0 RESTOR

. rdummy status

DATA RESTOR+2,8 GETS, B, HAVING REG FILE LOAD
@LSB RESTOR @LRF REGSAV RELOAD REGISTERS

@LSB llHNDL GET SAVED STATUS & PC

where the first act of the LSB is to load the register. file restore instruction address into the PC and
load a dummy status into the status register. Then the status block containing the actual values of the
PC and status at the time are interrupted, and execution proceeds with the instruction pointed to by the
PC.

The same thing can be accomplished without using the dummy status by writing

ORG· 0 RESTOR @LRF REGSAV
BRU RESTO A @LSB llHNDL

thereby saving two memory locations.

Recall, in our use of the basic operating system, that powerup initializes the operating system so that
READY is printed at the console. We can do the same thing with our program (i.e., initiate· execu
tion by depressing the START switch) by making sure we deposit in the llHNDL status block: (1) a
PC value equal to the program entry point and (2) a status equal to the initial value of the status register

·just prior to termination of the program. The machine, unable to differentiate startup from restart after
power failure, will load the register file with garbage (Who cares? They will be initialized by the pro
gram anyway!) and place the entry point into the PC. So to include this automatic startup option, we
conclude our program with

LOA ·=ENTRY
STA llHNDL
LOA STATUS
STA llHNDL+1
IDL 0

SAVE ENTRY POINT

SAVE INITIAL STATUS
HALT

179

Following is the entire power fail protect and automatic startup routine.

ORG 0
@LSB
@SSB

RESTOR
SAVE

(RE)INITIALIZE

ENTRY ------------~PROGRAM ENTRY POINT

PROGRAM EXIT LOA
STA
LOA
STA
IDL

STATUS
SAVE

REGSAV
RESTOR

DATA
DATA
TMBO
BRU
@SRF
IDL
BSS
DATA
@LRF
@LSB
END

=ENTRY
SAVE
STATUS
SAVE+1
a

GET ENTRY POINT ADDRESS
SAVE FOR RESTART
GET INITIAL STATUS WORD SETTING
SAVE FOR RESTART

<appropriate hex number for initial status>
ENTRY, <initial status>
15,SAV_E TEST POWER FAIL
ERROR NO, BRANCH TO ERROR IDENTIFYING ROUTINE
REGSAV YES, SAVE REGISTER FILE
1 WAIT FOR FAIL
7 REGISTER FILE STORAGE A, E, X, M, S, L, B
RESTO R+2,0 dummy status
REGSAV RESTORE REGISTER FILE
SAVE RESTORE STATUS BLOCK

NOTES

1. LSB and SSB - turn off interrupts until one more instruction has executed.

2. LSB - loads status block, BR to (PC)

3. SSB - stores status block, continues executing with STATUC BLOCK+2 .

. 11-6. MEMORY PROTECT/PRIVILEGED INSTRUCTION FEATURE (MP/PIF).
When enabled through setting bit 4 of the status word, the MP/Pl F provides one or both of the follow
ing features.

11-6.1 MEMORY PROTECT. There are cases, as in the development of an operating system, that the
user is restricted to a certain area of memory. This sort of restriction is valuable in some circumstances
in that it protects the neophyte user from inadvertently trespassing the bounds of ·the operating system
and destroying part of it.

180

Consider the 980 basic operating system. This system sets the memory protect limits so that the user
cannot enter the operating system inadvertently, and in so doing the system preserves its own integrity.
Consider what decision you might make about memory protection. A user of your system who inadver
tently destroys it would be annoyed at you for not protecting it, and another user will be angry that
your system does not permit him the same privileges he has on a bare machine (he is perfectly happy to
suffer the consequences of his own actions.) Your decision of "to be or not to be" with regard to
memory protection cannot possibly please everyone. Your best decision with respect to building the
operating system is probably to protect it, but in such a way that a knowledgable user can bypass your
safeguards if he so wishes.

In the case of a time-sharing system, the ethical question is a bit different. There are potentially a
number of. users and the system should be designed to protect itself and its users from the misdeeds of
others. ·

11-6.2 PRIVILEGED INSTRUCTIONS. Hand-in-hand with the question of memory protection goes the
concept of privileged instructions. Certain instructions may do as much damage (albeit, a different kind)
as permitting unrestricted access to memory. These instructions include:

• Use of idle (IDL) instruction: If the casual or time-shared user wishes to halt, control should
return to the operating system.

• Changing the status register: A great deal of the behavior of the machine is determined by
the settings in the status register, and allowing casual or time-shared users access to it may
court disaster.

• Especially in a time-shared environment, free access to 1/0 capability can lead, among other
things, to the appearance of spurious data in some user files. Therefo~, 1/0 is best handled
by the supervisor through a request made to it by the program.

To summarize, when the MP/PIF is enabled (by setting bit 4 of the status word to one) - as it is while
operating in the environment of the 980 basic operating system - the user program is prevented from:

1. Read/write/branch into protected memory

2. Changing the status register

3. Performing 1/0

4. Bringing the computer to idle.

If a violation of any feature is detected (bits 5 or 6 of the status word) an internal interrupt is generated,
the user is informed of his transgression and control is taken away from the user program by the supen/f
sor program. Instructions which _are privileged belong to a certain class (see Appendix A); however, the
limits of memory protection must be set. Setting the limits is done by writing the lower bound to
external register WI and the upper bound to external register 01. The values written into these registers
will be stored by the co"!'puter in the low memory locations 0095 and 0094, respectively:

WDS external
memory

upper limit ~

11 <upper limit address> N94

WDS
<lower limit address.> IM95

lower limit ~ ..
181

where they will be used as soon as the MP/Pl F feature is enabled by setting bit 4 of the status register.

The memory limits may be reset under program control by writing the new limits out to the external
address registers. The need for such a scheme becomes apparent if we consider the case in which the
lower limit (location 0095) is set to, say, memory address 1102. This means that any reference to a
location lower than 1102 will result in an error. Thus, we are unable to succes5fully write a new limit
directly into 0195 because that cell is protected along with all the others between 0881 and 11 02.

U.;7 PROGRAM RELOCATION FEATURE.
When a user program has been assembled, the monitor may load it anywhere in memory. If the monitor
sets bit 9 just prior to transferring control to the user program, the program can be executed by having
the monitor place the actual load address minus 1 into the lower limit register and performs LSB to transfer
to program. LSB sets bit 9 of the status register and loads PC with absolute entry point:

RELOC DATA <absolute entry point> .

LSB RELOC

The program now will execute as if it were located in absolute entry point and lower limit +1.

·1·1-1 DATA BUS AND DMAC INTERRUPTS.
Used for 1/0 operations these interrupts are most useful in situations in which the CPU has other work
it could do while ·waiting for a device to become ready or while waiting for an autonomous 1/0 transfer

' to become complete. One salient example is encountered in keyboard input problems in which

1. It may be necessary for the operator to get control away from a program

-OR-

2. The program may wish to maintain an attentiveness to any activity at the keyboard without
spending a great deal of time polling the keyboard for inputs that may occur at random
intervals.

In the absence of expander logic, up to four data bus devices and only one DMAC device can be
connected to 980. Withthe single DMAC device there is no question of which device requires service;
however, if all data bus devices are capable of generating interrupts, some effort is necessary to resolve
which device origina~ed the. signal. (All the CPU knows to begin with is that an interrupt has been issued
by the data bus.)

11.-9 DMAC INTERRUPT.
If bit 12 of the status register is set (the DMAC interrupt enable bit), an interrupt from the DMAC device
will cause the program to trap to memory location 0004. We handle this trap with an SSB just as in
the case of data bus interrupts.

The SSB instruction clears status register bits 4, 5, 6, 7, 9, and 12, and the device status information
is stored in the appropriate status location(s).

182

11-9.1 DATA BUS INTERRUPT. If the CPU is to recognize data bus interrupts, the appropriate
enable bit (bit 7) of the status register must be set. We need to tell the devices at the other end of the
data bus which one (or more) is to generate these interrupts. Thus, for the interrupt scheme to work,
we must tell the appropriate devices to generate interrupts and also tell the CPU to recognize the
interrupts. For simplicity, let's consider a 980 with a teleprinter, a high-speed paper tape punch, a card
reader. In the following example, we will enable the teleprinter interrupt only (the data bus interrupt in the
CPU also must be enabled.)

Keyboard Interrupt Service Routine:

Enable data bus interrupt

Enable keyboard interrupt

CPU traps to MIS
to obtain address of

interrupt ser\fice routine

Save ~tat us Block

<next instruction>

NO

183

INTSER

Status Block

saved here

Disable interrupt

Clear request

Service Keyboard

Enable Interrupt

Load saved status

block to return

from interrupt

service routine

The first thing we need to worry about in the interrupt service routine is preventing further interrupts
from being serviced until we have finished servicing the current one. (If we were to allow the interrupt
service routine to be interrupted, the current stored status block would be overlaid with a new one, and
we could never find our way back through the nested interrupts.) We can disable the data bus interrupt
by:

1. Disabling the interrupt generation capability of all the devices on the bus

-OR-

2. Disabling the interrupt recognition capability of the mask in the status register.•

We will elect option 2. At least this way an interrupt generated during the period of "disablement" can
be "saved up" and honored as soon as the original mask is restored. We will have to clear the interrupt
condition· from the device.This is usually done automatically by a read of the device status word.· If the
interrupt request is not cleared, then, as soon as the interrupt has been serviced and the interrupt system
is enabled, the persisting request will appear to be a new interrupt.

An example showing the enabling of the keyboard interrupt and the corresponding interrupt service
routine is given below.

*ENABLE KEYBOARD AND INTERRUPT

STATUS EQU 8
ORG

DBTRAP @SSB KBHNDL

LOA =>58
WDS >A
DATA >2Q»G
LOA =>8
ROR A,STATUS

BRU $

*KEYBOARD INTERRUPT SERVICE ROUTINE

KBHNDL

LOC

ass
LOA
RDS
DATA
STA
LSB ·
DATA

2
LOC
>2
>20A8

· LOC
KBHNDL
INBUF

ENB KB & INT.-FULL DPLX,
AND SEND TO COMMAND REGISTER.

SET DATA BUS INT. ENB BIT AND
OR TO CURRENT STATUS

STOP

SAVE ROOM FOR STATUS BLOCK
GET ADDRESS OF NEXT ARRAY ELEMENT
READ A CHARACTER
TO THAT ADDRESS AND INCREMENT.
SAVE NEXT ADDRESS.
RETURN FROM INTERRUPT

*Done automatically by hardware at the trap location for data bus and DMAC interrupts.

184

11-9.2 COMPETING DATA BUS DEVICES. Let's consider the situation in which we would like one
data bus device capable of interrupting the servicing of another: for example, an interval timer interrupt
of a keyboard service routine. As long as we are willing for the keyboard service routine to finish before
processing the clock interrupt, we have no problem. If instead, we wish the clock interrupt to be serviced
immediately, we must set the interrupt enable bit, which gives us the nested interrupt problem. The way
around the problem is to use the vectored priority interrupt option, which we assume is installed on our
hypothetical machine.

11-9.3 VECTORED PRIORITY INTERRUPT OPTION. Using this option allows each device (or device
group if expander logic is used) - whether on the DMAC or data bus - to have its own trap location.
This arrangement has two advantages:

1. It eliminates the software overhead of deciding which of the devices issued the interrupt.

2. We may leave interrupts enabled - disabling only the device we are currently servicing.

This scheme allows one device to interrupt another with no possibility of destroying our return pathway
to the beginning of the interrupt chain. If one device is permitted to interrupt another, it must be assign
ed a higher priority. Appendix E shows the priority traps, located between locations 0008 and 0047.
An interrupt trapping to word pair 0008/0009 will interrupt any other interrupt currently being serviced
except an internal interrupt which has highest priority.

These vectored interrupts provide a range of decreasing priority that fits between internal interrupt and
standard (nonvectored) DMAC interrupts.

1. Internal" (highest priority of all)

2. Vectored interrupt option (data bus or DMAC):
0008 (highest priority)
000A

0046 (lowest priority)
(0048-0087 are unused)

3. Regular DMAC interrupts

4. Regular data bus interrupts (lowest priority of all).

We shall use an SSB in the trap location to branch to the appropriate service routine. At the conclusion
of the service routine is an LSR instruction (like an LSB, except that it resets the interrupt just serviced
before returning control to the interrupted program). Assume we use up one data port on the
vectored priority interrupt option. We would connect in a board giving us eight double-word trap loca
tions. If we had room for a second board, we could get a second block of eight, giving the sixteen traps
that comprise group 0: *

Operation

Set or Read Interrupts
Reset Interrupt
Mask or Read Mask
Unmask

External Register

>SA
> 58
> 58
> 59

Each of the 16 bits in these external registers corresponds to the state of one of the 16 priority inter
rupt locations (0008 - 0026).

*We may have up to three other groups of 16, totaling 64. The other groups each have their own unique set of four external register addresses.

185

We may perform the following operations on any or all of the 16 locations:

Inhibit Interrupts Write a mask word to external register >58:

(this word may also be read)

vector location 0008
0 15

I 1111 11111111 11 11 vector location 0026

1 => inhibit interrupt
0 => leave in current status

Allow Interrupts Write an unmask word to external register >59:

I 11111 II 111 I 11 I I I
1 => enable interrupt
0 => leave in current status

Create Interrupts Write the appropriate bit pattern into external register >5A: (this word may also be
read)

11111 111 11 1111 I I I
1 => create interrupt

Reset Interrupts Write appropriate bit pattern in external register >58:

I 1111 II 11 I I I I I I I I -
1 => reset interrupt

186

These 16 bits are keyed to the first 16 priority interrupt trap locations:

0008

000A

000C

000E

0010

0012

0014

0016

0018

001A

001C

· 001E

0020

0022

0024

0026

0028

•
•
•

0046 ~ ~

187

GROUP 0 PRIORITY
INTERRUPT TRAP LOCATIONS

GROUP 1 PRIORITY INTER
RUPT TRAP LOCATtONS

APPENDIXES

APPENDIX A

980AL EXECUTION TIMES

The following symbols are used in execution time lists.

m = memory address A
<mod> = modifier 'Y
e. a. = effective address
-+ = replaces s
() = contents of d
PC = program counter y

.AE = concatenated A and E registers n - = concatenation symbol f -v = logical "or" dev

INSTRUCTIONS
REGISTER/MEMORY TRANSFER

0000 LOA m,<mod> (e.a.) -+ A
0800 LbE m~ <mod> (e.a.) -+ E
1000. LOX m, <mod> (e.a.) -+ X
1800 LDM ill, <mod> (e.a.) -+ M
800Q STA m, <mod> (A) -+ e.a.
8800 STE m, <mod> (E) -+ e.a.
9000 STX m, <mod> (X) -+ e.a.

REG ISTE A/MEMORY TRANSFER (double-length)

8000 OLD

AOOO DST

Memort/Memo!}'

5000 IMO
4800 DMT

Arithmetic

2000 ADD
2800 SUB
6800 CPA

m, <mod> { (e.a.) -+ A
(e.a.)+1 -+ E

m, <mod> { (A) -+ e.a.
(E) -+ e.a.+1

m, <mod> (e.a.)+1 -+ e.a.
m, <mod> (e.a.)-1 -+ e.a.; then

(e.a.)=~ (PC)+1 -+ PC
(i.e., skip)

m, <mod> (e.a.)+(A) -+ A
m, <mod> (A) - (e.a.) -+ A
m, <mod> (e.a.) : (A) -+ Status

*Add 0.25 µsec for indexing, 0.75 µsec for indirect
:tAdd 0.25 µsec for extended format

A-1

= logical "and"
= logical "exclusive or"
= complement
= source register
= destination register
= immediate operand
= bit number
= flag
= device address

EXECUTION Tl ME (~sec~
MEM REF*

1.75
1.75
1.75
1.75
2.00
2.00
2.00

2.75t

2.75t

2.75

2.75

1.75
1.75
1.75

IMMED

0.75
0.75
0.75
0.75
2.00
2.00
2.00

1.0t

2.75t

2.75

2.75

0.75
0.75
0.75

EXECUTION TIME <itsecl
.Arithmetic (double lenQth) MEM REF* IMMED

9800 MPV m, <mod> (A)*(e.a.) ~ AE 2.25-6.25 1.25-5.25
5800 DIV m, <mod> { (AE)/(e.a.) + A 2.50-7.75 1.50-6.75

remainder ~ E
8800 DAD m, <mod> (AE)+(e.a., e.a.+1) AE 2.75t 1.0t
ABOO DSB m, <mod> (AE)-(e.a., e.a.+1) AE 2.75t 1.0t

Logical

3000 IOR m, <mod> (e.a.) (A)~ A 1.75 0.75
3800 AND m,<lll()d> (e.a.) (A)·~ A 1.75 0.75
6000 CPL m, <mod> (e~a.):A ~ Status 1.75 0.75

REGISTER/REGISTER** EXECUTION TIME i~secl

C500 AMO s~d .(s) ~ d 1.00
C780 REX s,d { (s) ~ d 1.50

(d) ~ s
C300 RIN s,d (s) +1 ~ d 1.00
C700 ROE s,d (s) -1 ~ d 1.00
C080 RAD s,d (s) +(d) ~ d 1.25
cooo RSU s,d (d) -(s) ~ d 1.25

.c100 RCO s,d 0 - (s) ~ d 1.00
C680 RAN s,d (s) A (d) ~ d 1.25
C480 ROR s,d (s) V (d) ~ d 1.25
C280 REO s,d (s) ¥ (d) ~ d 1.25
C200 RIV s,d - (s) ~ d 1.00
C400 RCA s,d (s) : (d) signed ~ Status 1.25
C600 RCL s,d (s) : (d) unsigned ~ Status 1.25

Cl RCULAR SHIFTS (single length) 75 +! • 4
CAOO CRA y
CA20 CRE y End around
CA40 CRX y Right shift, y bits
CA60 CRM y
CB20 CRS y
CB40 CRL y
CB60 CRB y

(double length) End around
CBSO CLO y Left Shift AE }

y bits
CBCO CRD y Right Shift AE

**Privileged if d =PC

A-2

LOGICAL SHIFTS (s~ngle length)

caco LLA v
C840 LRA y
(double length)
C8EO LLD y
C860 · LRD y

ARITHMETIC SHIFTS

(single length)
C880 ALA
caoo ARA
(double length)
C8AO ALO
C820 ARD
CA9F NRM

BRANCH

7800 BAU
4000 BIX

7000 BAL

MEMORY SKIP

4800 DMT

REGISTER SKIP

CCEO SPL
CC60 SMI
ccoo SZE
ccso SNZ
CCAO SNO
CC20 soo
CC40 SOD
ccoo SEV

STATUS SKIP
CD20 SEQ
CDAO SNE
CDOO SLT
coco SLE
COBO SGE
CD40 SGT

y
y

y
y

m, <mod>
m, <mod>

m, <mod>

m, <mod>

s
s
s
s
s
s
s
s

EXECUTION TIME (µsec)

A left shift, zero fill
A right shift, zero fill

AE Left Shift, zero fill
AE Right Shift, zero fill

A left shift y bits, zero fill
A right shift y bits, sign extend

0.75 + y/4

AE left shift zero fill, E1 -+ A15 { y = 0 1.00
AE right shift sign ext., A15 ·~ E1 y =I= 0 0.75 + y/4
AE left shift, zero fill E1 -+ A15 }
until Ao =I= A1; Ao-+ Eo, # Shifts -+ X 1 ·0 - 8. 75

MEM REF

e.a.-+ PC 1.25
(X)+1 -+ X, then
(X) 1 0 • e.a. -+ PC 1.25
(PC) -+ L 1.50
e.a.-+ PC

(e.a.) -1 -+ e.a. then
(e.a.) = 0 ~ (PC) +1 -+ PC 2.75

(s) ;;;is 0 • (PC) +1 -+ PC 1.0
(s) <; 0 • (PC) +1 -+ PC
(s) = 0 • (PC) +1 -+ PC
(s) =I= 0 • (PC) +1 -+ PC
(s) =I= FFFF • (PC) +1 -+ PC
(s) = FFFF • (PC) +1 -+ PC
(s) = odd • (PC) +1 : PC
(s) = even • (PC) +1 -+ PC

skip if status 1.0
=
=I=

<
<;
;;;is

>

A-3

IMMED

1.00

1.25
1.50

2.75

STATUS SKIP

CD60 SOV
CDEO SNV
CF60 SOC
CFEO SNC
CC10 SSE· SS

CC90 SSN SS

BIT OPERATIONS.

SET
DB40 SABZ n
DB70 SMBO n,m

CLEAR
0850 SABO n
DB60 SMBZ n,m

SKIP
DBOO TABZ n
0810 TABO n
DB20 .TABZ n,m
0830 TABO n,m

EXECUTION TIME (psec)

skip (PC +- PC +1) if status:

=overflow

1.0

#=overflow
= carry
#=carry
skip if ss switches all on 12 15 +- operand field

i ... -----,-, SS= 0, •. ~ ·15
skip if any ss switches off 1 2 3 4 +- switch #

An +- 1 1.0
mn +- 1 3.25

An+- 0 1.0
mn +- 0 3.25

An= 0 . ·=> (PC)+1 -+ PC 1.25
An= 1 => (PC)+1 -+ PC 1.25
mn = 0 => °(PC)+1 -+ PC 2.75
mn = 1 => (PC)+1 -+ PC 2.75

CHARACTER (BYTE). OPERATIONS

DFOO
Df 80

1/0 .
0800
0820
0900

MVC
CLC

RDS
WDS
ATI

dev·
dev
dev

Move byte string
Compare byte string

· Read from device elev
Write on device dev
Automatic Transfer/Initiate
to/from device dev .

4.75 + (2.75/byte)
5.00 + (2.25/byte)

3.00 - 4.75
3.00 - 5.00

2.5

STATUS BLOCK & REGISTER FILE

OSCO SSB m { (PC) -> m; 3.25
(Status) -+ m+1;
(m+2)-+ PC

0880 LSB m { (m)-+ PC; 3.25
(m+1) -+ status

0890 LSR m 3.25
D8AO LRF m (M), ... , (m+6)-+ A,E,X,M,L,S,B 7.0
D8EO SRF m (AEXM LSB) -+ m, ... , m+6 7.0

A-4

MISCELLANEOUS

CEOO IDL
C900 RTO
C940 RTZ
C980 LTO
C9CO LTZ
DDOO API

f f=O, ... ,> F
y
y
y
y
dev

A-5

EXECUTION TIME (µsec)

1.0
1.0 + y/4
1.0 + y/4
1.0 + y/4
1.0 + y/4
AP controller dependent

APPENDIX B

980 REGISTER DESIGNATIONS

REGISTER NUMBER

0

Status
Block

1
2
3
4
5
6

{ ~

B-1

USUAL PROGRAM DESIGNATION

A
E
x
M
s
L
B
p

ST (Status)

APPENDIX C

HEXADECIMAL ARITHMETIC

ADDITION TABLE

0 1 2 3 4 5 6 7 8 9 A B c D E F
1 02 03 04 05 06 07 08 09 OA OB QC OD OE OF 10
2 03 04 05 06 07 08 09 OA OB oc OD OE OF 10 11
3 04 05 06 07 08 09 OA OB oc OD OE OF 10 11 12
4 05 06 07 08 09 OA OB oc OD OE OF 10 11 12 13
5 06 07 08 09 OA OB. oc OD OE OF 10 11 12 13 14
6 07 08 09 OA OB oc OD OE OF 10 11 12 13 14 15
7 08 09 OA OB oc OD OE OF 10 11 12 13 14 15 16
8 09 OA OB oc OD OE OF 10 11 12 13 14 15 16 17
9 OA OB OC. OD OE OF 10 11 12 13 14 15 16 17 18
A OB oc OD OE OF 10 11 12 13 14 15 16 17 18 19
B oc OD OE OF 10 11 12 13 14 15 16 17 18 19 1A
c OD OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B
D OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C
E OF 10. 11 12 13 14 15 16 17 18 19 1A 1B 1C 10
F 10 11 12 13 14 15 16 17 1S 19 1A 1B 1C 10 1E

MULTIPLICATION TABLE

1 2 3. 4 5 6 7 s 9 A B c D E F
2 04 06 08 OA oc OE 10 12 14 16 18 1A 1C 1E
3 06 ()9. oc OF 12 15 1S 1B 1E 21 24 27 2A 2D
4 cm oc 10 14 1S 1C 20 24 28 2C 30 34 38 3C
5 OA OF 14 19 1E 23· 28 20 32 37 3C 41 46 4B
6 oc 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A
7 . OE 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69
s 10 18 20 28 30 38 40 48 50 58 60 68 70 7S
9 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87
A 13 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96
B 16 21 2C 37 42 4D 58 63 6E 79 84 SF 9A A5
c 18 24 30 3C 48 54 60 6C 7S 84 90 9C AS B4
D 1A 27 34 41 4E 5B 68 75 S2 SF 9C A9 B6 C3
E 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2
F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1

C-1

APPENDIX D

STANDARD ADDRESS OF EXTERNAL REGISTERS

EXTERNAL REGISTER NO.

00
01
02
05
0A
10
11
13
14
15
16
18
1F
40
58
59
5A
5B

TTY1 DATA
733 AS R/KS R 1
TTY1
PTR
PTP
Interrupt Expander
Parity
Parity
Parity
Paper Tape Data
CDR
CDP
Vect. Int. Expander

D-1

Read/Write

Timer Status/Lower Bound MP
_____ /Upper Bound MP
Read /Write
Status/Data/Command
Read Status I Write Command
Status/Command
Status/Command
RD lnterrupt'U.../ ____ _
Read/Write Even
_____ /Write Odd
Read Lock Switch / ____ _
Reader I Punch
Status, Data/Command
Status/Data, Command
Read Mask/Set Mask
____ I Unmask
Read INT/Set INT.
----~ Reset Int.

0000
0002
0004
0006
0008

0096
0098
009A
009C
009E
00Af)

00A2

00A4

00A6

APPENDIX E

SPECIALIZED LOW-ORDER MEMORY LOCATIONS

~

--
-

L----.

•
•
•

• • • - ..-/

-~~----• ... - ~

- -
___,.,....

~

•
•
~

•

4

}
4

•
•
•
•
•
4

•
•

POWER UP

INTERNAL INTERRUPT

DMAC INTERRUPT

DATA BUS INTERRUPT TRAP LOCATIONS

tlGHESTPRIORITY?
OPTIONAL INTERRUPT

32 PRIORITY }
INTERRUPT

{LOWEST PRIORITY

OPTIONAL INTERRUPT

UNUSED
I

TRANSFER AND LINK VE CT ORS

DMACINTERRUPTSTATU s
XPANDE.R) DMAC PORT 0 (NOE

DMAC PORT 1 (WIT H EXPANDER)

DMACPORT 2 II

DMAC PORT 3 II

DMAC PORT 4 II

DMAC PORT 5 II

DMAC PORTS

DMAC PORT 7 II

E-1

00A8

01D3

0FCB r

APPENDIX F

BASIC SYSTEM MEMORY MAP

Relocating Loader

Loader Device Drivers

1/0 Tables

Interrupt Processors

Device Service Routines

Message Writer

Operator Communication

User

*This address will vary from system to system. It can be found by examining the lower address limits (LL) register, 0095.

F-1

APPENDIXG

SAP ERROR MESSAGES

The various versions of the assembler may detect certain syntax errors in the source program. When this
occurs, a diagnostic message or corresponding message number is printed in the listing adjacent to the line
in question.

Message
Number Message

1 FIELD SZ

2 UNDF OP

3 LONG SYM

4 MPF O/F

5 FRM > 16

6 CAD> 10

7 UNDFSYM

8 MDFSYM

9 RELOC

10 SYM OVF

l1 BAD NUM

12 NO END

13 LN>64

14 IMP R/D

15 X RF USE

16 IXB ERR

17 OPD ERR

18 ADR MODE

Meaning (and Corrective Action)

Address beyond reach (use @ for extended format)

Undefined operation code (check list of valid op codes)

Symbol>6 characters

OPD or FRM multiply defined (rename label)

FR M fields contain more than 16 bits

Address expression has ·10 elements

Symbol not defined (label probably omitted)

·Symbol· multiply defined (rename labels)

A relocation error (use only one relocatable label in arithme
tic expression, or ORG statement can use only one relocatable
label)

Too many symbols have been defined (eliminate symbols or
divide program)

Numeric element not valid (properly define item in label or
address field)

No END assembler directive found (put in END card before
end of file)

Source line is too long (comment, label, and op code greater
than 64 characters)

A REF or DEF symbol used improperly (REF symbol defined
inside and outside the program, DEF symbol not defined in the
program)

A REF symbol appeared invalidly in an unrelocatable expres
sion

Address mode error (improper use of IXB field) (Table 3-1
in ALMI manual)

No such format number (OPD format numbers 0 to 8
explained in paragraph 2-4.17)

Illegal addressing mode (improperly written address)

G-1

APPENDIX H

980 OPERATING PROCEDURE

START

1)

2)
Turn on 980A and all peripherals. Connect peripherals to "ON LINE" position.

With the MODE switch in HALT position, set RESET switch (,i.) on 980A front panel.

If battery pack is installed skip to step (8); otherwise, load IDL (CE00) as follows:

3) Set 00CIF on switches and ENTER into PC: PC (t)

4) Set MODE switch to RUN position (t).

5) Set LOAD switch up (t).

6) Select any arbitrary memory location, and ENTER address into MA(t).

7) Display contents of that address MD (,i.) - should be CE00.

Load bootstrap and loader: (Assuming cassette input)

8) Set 8106 on switches and enter into PC: PC (t)

9) Ready ASR7~ loader cassette (REWIND'."LOAD) to READY

10) With mode switch set to RUN, set LOAD switch: LOAD (t). This should result in the reading of
the 733 loader.

11) Put memory limit in E (use 7FFF if machine has 32k memory).

12) Check display of A for 9240.

Lo.ad Operating System:

13) Ready 0. S. cassette

14) With machine in RUN mode, set START (t).

ASR733 responds: *READY*

ASSEMBLY UNDER THE OPERATING SYSTEM

For assembly, object on CS2:
1) SAPG in CR
2) II ASSIGN, 4, KEY. CIR* control
3) II ASSIGN, 5, CR. CIR source
4) II ASSIGN, 6, LP. CIR listing
5) II ASSIGN, 7, CS2 CIR object
8) II ASSIGN, 10, OUM. CIR
9) II EXECUTE, CR. CIR

*Cl R means Carriage Return

H-1

Machine response: Reads in assembler

10) Source in CR~

Machine response: READY SOURCE, HIT CR

. RUN

11> Hit C/R

12) Pass source thru again for second pass
If no/* card at end of S<>Urce deck on second pass, no entry point written on
cassette and no return to supervisor .

1) Ready data deck in card reader (if input data required)

2) II EXECUTE, CS2. CIR
To execute a program already loaded: II EXECUTE. C/R

H-2

APPENDIX I

ASCII CHARACTERS BY NUMERICAL SEQUENCE

0000 000 00 Null 0100 000 20 Space 1000 000 40 @ 1100 000 60

0000 001 01 Start reading 0100 001 21 I 1000 001 41 A 1100 001 61 a

0000 010 02 Start text 0100 010 22 1000 010 42 B 1100 010 62 b

0000 011 03 End text 0100 011 23 # 1000 011 43 c 1100 011 63 c

0000 100 04 End transmission 0100 100 24 $ 1000 100 44 D t100 100 64 d

0000 101 05 Enquiry 0100 101 25 % 1000 101 45 E 1100 101 66 e

0000 110 06 Acknowledge 0100 110 26 & 1000 110 46 F 1100 110 66 f

0000 111 07 Bell 0100 111 27 1000 111 47 G 1100 111 67 g

0001 000 08 Backspace 0101 000 28 (1001 000 48 H 1101 000 68 h
0001 001 09 Horizontal Tab 0101 001 29) 1001 001 49 I 1101 001 69
0001 010 QA Line Feed 0101 010 2A * 1001 010 4A J 1101 010 6A j

0001 011 OB Vertical tab 0101 011 2B + 1001 011 4B K 1101 011 6B k
0001 100 QC Form feed 0101 100 2C 1001 100 4C L 1101 100 6C I
0001 101 OD Carriage return 0101 101 2D 1001 101 4D M 1101 101 6D m
0001 110 OE Shift out 0101 110 2E 1001 110 4E N 1101 110 6E n
0001 111 OF Shift in 0101 111 2F I 1001111 4F 0 1101 111 6F 0

I -
0010 000 10 Data link escape 0110 000 30 0 1010 000 50 p 1110 000 70 p
0010 001 11 Device control 1 0110 001 31 1 1010 001 51 a 1110 001 71 q

0010 010 12 Device control 2 0110 010 32 2 1010 010 52 R 1110 010 72 r
0010 011 13 Device control 3 0110 011 33 3 1010 011 53 s 1110 011 73 s
0010 100 14 Device control 4 0110 100 34 4 1010 100 64 T 1110 100 74 t
0010 101 15 Negative Acknowledge 0110 101 35 5 1010'101 55 u 1110 101 75 u
0010 110 16 Synchronous idle 0110 110 36 6 1010 110 56 v 1110 110 76 v
0010 111 17 End transmission block 0110 111 37 7 1010111 57 w 1110 111 77 w
0001 000 18 Cancel 0111 000 38 8 1011000 58 x 1111 000 78 x
0011 001 19 End Medium 0111 001 39 9 1011 001 · 59 y 1111 001 79 y

0011 010 1A Substitute 0111 010 3A 1011 010 5A z 1111 010 7A z
0011 011 1B Escape 0111 011 3B 1011 011 5B [1111 011 78
0010 000 1C File separator 0111 100 3C < 1011 100 5C 1111 100 7C
0011 101 10 Group separator 0111 101 3D 1011 101 50 1111 101 7D
0011 110 1E Record separator 0111 110 3E > 1011110 5E or t 1111 110 7E
0011 111 1F Unit separator 0111 111 3F ? 1011 111 5F -or+- 1111 111 7F Delete

In the binary representation, the most significant bit is on the left, the least significant is on the right, and the space indicates the position of the sprocket hole
when the characters are punched into paper tape. The hexadecimal representation includes eight bits with the most significant bit set to zero.

NOTE: IN MEMORY, THE MOST SIGNIFICANT BIT IS UNDEFINED AND EITHER A ZERO OR A ONE IS ACCEPTABLE.

APPENDIX J

OPERATION CODES - NUMERICAL ORDER

REGISTER-MEMORY INSTRUCTIONS

Hexadecimal Code for
Address Mode Specified Mnemonic Name

p _JL_ .fK.. BX fl_ .fil_ PIX BIX
0000 0100 0200 0300 0400 0500 0600 0700 LOA Load Register A

0800 0900 OAOO OBOO ocoo ·oooo OEOO OFOO LOE Load Register E

1000 1100 1200 1300 1400 1500 1600 1700 LOX Load Register X

1800 1900 1AOO 1BOO. 1COO 1000 1EOO 1FOO LDM Load Register M

2000 2100 2200 2300 2400 2500 2600 2700 ADD Add to Register A

2800 2900 2AOO 2BOO 2COO 2000 2EOO 2FOO SUB Subtract from Register A

3000 3100 3200 3300 3400 3500 3600 3700 IOR Inclusive OR with A Register

3800 3900 3AOO 3800 3COO 3000 3EOO. 3FOO AND Logical AND with A Register

4000 4100 4200 4300 4400· 4500 4600 4700 BIX Branch or Incremented Index

4800 4900 4AOO 4BOO 4COO 4000 4EOO 4FOO DMT Decrement Memory and Test

5000 5100 5200 5300 5400 5500 5600 5700 IMO Increment Memory by One

5800 5900 5AOO 5BOO 5COO 5000 5EOO 5FOO DIV Divide

6000 6100 6200 6300 6400 6500 6600 6700 CPL Compare Logical to Register A

6800 6900 6AOO 6BOO 6COO 6000 6EOO 6FOO CPA Compare Algebraic to Register A

7000 7100 7200 7300 7400 7500 7600 7700 BRL Branch and Link

7800 7900 7AOO 7BOO 7COO 7000 7EOO 7FOO BRU Branch Unconditional

8000 8100 8200 8300 8400 8500 8600 8700 STA Store Register A

8800 8900 8AOO 8BOO 8COO 8000 8EOO 8FOO STE Store Register E

9000 9100 9200 9300 9400 9500 9600 9700 STX Store Register X

9800 9900 9AOO 9BOO 9COO 9000 9EOO 9FOO MPV Multiply

AOOO A100 A200 A300 A400 A500 A600 A700 DST Double Length Store

ASOO A900 AAOO ABOO ACOO ADOO AEOO AFOO DS8 Double Length Subtract

8000 8100 8200 8300 B400 8500 B600 B700 OLD Double Length Load

8800 8900 8AOO 8800 8COO 8000 8EOO 8FOO DAD Double Length Add

J-1

Hexadecimal

Code

C800

C820

C840

C860

C880

CSAO

ca co
C900

C940

C980

C9CO

CAOO

CA20

CA40

CASO

CB20

CB40

CB60

CBSO

CBCO

APPENDIX J (CON'T)

REGISTER SHIFT INSTRUCTIONS

Mnemonic Name

ARA Arithmetic Right Shift Register A

ARD Arithmetic "Right Shift Double Length

LRA Logical Right Shift Register A

LRD Logical Right Shift Double

ALA Arithmetic Left Shift Register A

LAD Arithmetic Left Shift Double

LLA Logical Left Shift Double

RTO Right Test for Ones

RTZ Right Test for Zeros

LTO Left Test for Ones

LTZ Left Test for Zeros

CRA Circular Right Shift Register A

CRE Circular Right Shift Register E

CRX Circular Right Shift Register X

CRM Circular Right Shift Register M

CRS Circular Right Shift Register S

CRL Circular Right Shift Register L

CRB Circular Right Shift Register B

CLO Circular Left Shift Double.

CRD Circular Right Shift Double

J-2

APPENDIX J (CON'T)

REGISTER TO REGISTER INSTRUCTIONS

Hexadecimal

Code Mnemonic Name

cooo RSU Register Subtract

coao RAD Register Add

C100 RCO Register Complement

C200 RIV Register Invert

C280 REO Register Exclusive OR

C300. RIN Register Increment

C400 RCA Register Compare Algebraic

C480 ROR Register Inclusive OR

C500 RMO Register Move

C600 RCL Register Compare Logical

C680 RAN Register AND

C700 ROE Register Decrement

C780 REX Register Exchange

SKIP INSTRUCTIONS

ccoo SZE Skip if Zero

CC10 SSE Skip if Sense Switch Equal

CC20 soo Skip if Ones

CC40 SOD Skip if Odd

CC60 SMI Skip if Minus

CC80 SNZ Skip if Not Zero

CC90 SSN Skip if Sense Switch Not Equal

CCAO SNO Skip if Not ones

cc co SEV Skip if Even

CCEO SPL Skip if Plus

CDOO SLT Skip if Less Than

CD20 SEQ Skip if Equal

CD40 SGT Skip if Greater Than

CD60 sov Skip if Overflow

COBO SGE Skip if Greater Than or Equal

CDAO SNE Skip if Not Equal

coco SLE Skip if Less Than or Equal

CDEO SNV Skip if No Overflow

Cf 60 soc Skip on Carry

CFEO SNC Skip on No Carry

J-3

Hexadecimal

Code Mnemonic

CA9F NRM

CEOO IOL

0800 RDS

·0820 wos
0880 LSB

0890 LSR

DBAO LRF

OSCO SSB

OSEO $RF

0900 ATI

DBOO TABZ

DB10 TABO

0820 TMBZ

0830 TMBO

0840 SABZ

DB50 SABO

0860 SMBA

OB70 SMBO

0000 API

OFOO MVC

OF80 CLC

APPENDIX J °(CQN'T)

MISCELLANEOUS

Name

Normalize

Idle

Read Direct Single

Write Direct Single

Load Status Block

Load Status Block and Reset Interrupt

Load Register File

Store Status Block

Store Register File

Automatic Transfer Instruction

Test Register A Bit for Zero

Test Register A Bit for One

Test Memory Bit for Zero

Test Memory Bit for One

Set Register A Bit to Zero

Set Register A Bit to One

Set Memory Bit to Zero

Set Memory Bit to One

Auxiliary Processor Initiate

Move Character String

Compare Logical Character String

J-4

Operation
Code

()()

01

02

03

04

05

06

07

APPENDIX K

LOGICAL UNIT INPUT/OUTPUT FUNCTIONS

Operation

Read ASCII

Read object

Write ASCII

Write object

Rewind

Backspace

-Forward Space

Open

Function Performed by Logical Unit

One ASCII record is read from the logical unit specified in the PRB,
and the data is stored in memory (two characters per word) at the
buffer address specified. The number of characters input is placed
in PRB Word 2.

One object record is read from the logical unit specified in the PRB,
and the data is stored in memory at the buffer address specified in
the PRB. The number of characters input is placed in PRB Word 2:

The data in memory at the address specified in the PR B is transfer
red to the logical unit specified. The number of characters trans
ferred is specified in the PRB, and the maximum number that can
be transferred is the number for which the logical unit was opened.

The data in memory is transferred to the logical unit as specified in
the PRB. In particular, the number of characters transferred is as
specified even though the standard object record length is 64.

This command is ignored and bit 3 of PRB word 0 is set to one,
unless the physical device can be rewound under program control.
After a successful rewind, the unit is positioned to read or write the
first data record.

The logical unit is backspaced one record.

The logical unit is spaced forward one record.

The maximum record size is specified in the PRB. The logical
and physical unit is initialized as required. The dictionary for a
named disc file is brought into memory.

K-1

Operation
Code

08

09

10

11

12

13-16

17

Operation

Open-rewind

Close

Close write
end of file

Unload

Read
dictionary

Read 733
status

Function Perfromed by Logical Unit

A logica~ unit open is performed, followed by a logical unit re
wind.

Logical unit and physical device termination procedures are per
formed. Dictionary information is transferred from memory to
the applicable disc.

The close process is performed and an end of file record is writ
ten. An end of file consists of one record in which the first two
characters are/* (except for magnetic tape in which hardware
recognizes an end of file).

Magnetic tape units are rewound and placed off - line; other
wise, the command is ignored.

The dictionary of the disc volume for the logical unit specified
in the PRB is transferred into memory at the address specified.
The dictionary is 5504 words long.

These operation codes are used for transfer of information be
tween the file management program and the operator communi
cation program.

Read status from the ASR733 status word returned in first word
of the buffer address as specified in the PRB:

Status Word Bit
10
11
13
14
15

K-2

Printer Ready
Record Ready
Cassette on Clear Leader
Playback Error
Playback Ready

INTRODUCTION TO 1HE 980 SERIES

TI-MIX MEMBER'S CRITIQUE

To make this manual more useful to you, we will appreciate your comments and recommendations on any improwements
to this manual you feel are needed. After using this manual, please take the first opportunity to complete this
questionnaire and return it, postpaid, to the TI-MIX staff where your comments will be giYen eyery consideration.

MANUAL ORGANIZATION

Were the manual sections well organized?
D Yes, D No D Comment _______________________ _

Are there enough examples
D Yes D No

D Comment _______________________ _

GRAPHICS

What is the quality of the illustration?
D Excellent D Satisfactory D Poor

Are there enough illustrations throughout the manual?

D Yes D No D Comment------------------------

Are the tables dear and easy to follow?
D Yes 0 No 0 Comment _______________________ _

TEXT
What is the quality of the technical writing?
D Excellent D Adequate D Poor

If there are particular paragraphs, instructions, etc., you feel need clarification or rewriting, please identify them and add
yourcomments. __________________________________ _

GENERALCOMMENfS---------------------------------

Respondent ________________ Title __________________ _

CompanY--------------------------------------
Address
City/State/Zip-----------------------------------

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
Please fold, tape, and mail

ATTENTION: Tl-MIX
M/S784

I aullNESS REPLY MAIL
No PQ11119 ,..._ ~ if mllilld in the Uni11d Stnes

P011119 will be pmid by

FIRITCLAIS
hnnitNo. 11•
HoultOft,T ...

TEXAS INSTRUMENTS INCORPORATED ----•
DIGITAL SYSTEMS DIVISION

P.O. BOX 1444 HOUSTON. TEXAS 77001

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	C-01
	D-01
	E-01
	F-01
	G-01
	H-01
	H-02
	I-01
	J-01
	J-02
	J-03
	J-04
	K-01
	K-02
	replyA
	replyB

