
(

I

TEXAS INSTRUMENTS

Improving Man's Effectiveness Through Electronics

DX980
General Purpose Operating System

Programmer's Guide

MANUAL NO. 943005-9701
ORIGINAL ISSUE 1 OCTOBER 1974

REVISED AND REISSUED 15 MAY 1975

Digital Systems Division

1

I

I

© Texas Instruments Incorporated 1975
All Rights Reserved

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos
ing or employing the materials. methods. techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

No disclosure of the information or drawings shall be made to any other person or
organization without the pri~r consent of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST OF EFFECTIVE PACES Note: The portion of the text affected by the changes is
indicated by a vertical bar 1n the outer margins of
the page.

DX980 General Purpose Operating System Programmer's
Guide (943005-9701)

Original Issue. · · · · · · · · · · 1 October 1974
Revised and Reissued. · · · · · · · · · 15 May 1975 (ECN 388288)

Change 1 . · · · · · · · · · · · · 1 August 1975 (ECN 402621)

Total number of page"s in this pUblication is 287 consisting of the following:

PAGE CHANGE PAGE CHANGE PAGE CHANGE
NO. NO. NO. NO. NO. NO.

Cover · · · · · · · 1 6-3 · · · · · · · · · 0 8-77 - 8-82B. · · 1
Eff. Pages · · · · 1 6-4 . · · · · · · · · 1 8-83 · · · · . · · · 0-

v - xiv. · · · · · 1 6 - 5 - 6 -8 . · · · · 0 8-84 · · · · · · . · 1
1-1 -1-10 · · · · 0 7-1 - 7-16 · · · · 1 App. A Div. · · · 0
2-1 - 2-21 · · · · 0 8-1 - 8-3 · · · · . 1 A-I · · · · · . · 1
2-22 - 2-34 · · · 1 8-4 - 8-8 . · · · . 0 A-2 - A-4 · · · · 0
3-1 - 3-17 · · · · 0 8-9 • · . · · · · · . 1 App. B Div. · · · 0
3-18 - 3-36 · · · 1 8-10-8-11 · · · 0 B-1 - B-5 · · · · 0
4-1 - 4-3 · · · · · 0 8-12 · . · · · · · · 1 B-6. · · · · . · · · 1
4-4 - 4-5 · · · · 1 8-13 · · · · · · · · 0 B-7-B-I0. · . · 0
4-6 - 4-12 · · · · 0 8-14 · · · . · · · · 1 B-ll · · · · . · · · 1
4-13 -4-14 · · · 1 8-15 · · · · · · · · 0 B-12 - B-18 . · · 0
4-15 - 4-22 · · · 0 8-16 · · · · · · · . 1 App. C Div. · . · 0
5-1 - 5-2 · · · · · 0 8-17 · · · . · · · · 0 C-l - C-20. · · · 0
5-3 · · · · · · · . · 1 8-18 - 8-20 · · . 1 App. D Div. · · · 0
5-4 - 5-10 · · · · 0 8-21 · · · . · · · · 0 D-l - D-72. · · · 0
5-11 - 5-18 · · · 1 8-22 · · · . · · · · 1 D-73 · · · · · · · · 1

5-19 - 5-24 · · · 0 8-23 - 8-64 · · · 0 D-74 - D-76 · · · 0
5-25 - 5-33B · · 1 8-65 - 8-66 · · · 1 Alphabetical
5-34 - 5-38 · · · 0 8-67 - 8-69 · · · 0 Index Div • · · · 0

6-1 · · · · · · · · · 0 8-70 · · · · · · · · 1 Index-l · · · · · · 0
6-2 · · · · · · · · · 1 8-71 - 8-76 · · · 0 Index-2 · · · · 1

A

LIST OF EFFECTIVE PAGES
INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

Note; The portion of the text affected by the changes is
indicated by a vertical bar in the outer margins of
the page.

Total num.ber of pages in this publication is consisting of the following:

PAGE CHANGE PAGE CHANGE PAGE CHANGE
NO. NO. NO. NO. NO. NO.

Index-3 0
Index-4 1
Index-5 0
Index-6 1

.1.

Index-7 0
Index-8 1
User's Resp . 1
Bus. Reply. 0
Cover Blank. 0
Back Cover 1

BIC

~-------~ 943005-9701

PREFACE

This manual provides inform.ation concerning the Texas Instruments DX980
General Purpose Operating System. for use by programm.ing personnel work
ing with the system. The information is divided into eight sections and four
appendixes as foll'ows:

I~ INTRODUCTION - This section describes the operating system and
its components to provide an overview of its capabili~ies.

II. JOB CONTROL LANGUAGE - This section introduces the Job Con
trol Language used in the system and details the required parameters
and formats of JCL commands.

III. INPUT /OUTPUT STRUCTURE - This section explains the organiza
tion of I/O handling routines and lists the I/O Supervisor Calls.

IV. DISC FILE MANAGEMENT - This section describes the storage of
data in disc files and how the operating system controls that opera
tiona

V. SUPERVISOR CALLS - This section lists and describes the super
visor calls available for programmer use.

component subsystems that handle batch processing for the system.

VII. INTERACTIVE TERMINAL SUBSYSTEM - This section describes
the operation of the subsystem that provides interactive communica
tion between the terminal users and the operating system.

VIII. UTILITIES - This section describes the characteristics of the
utility programs available for use with the operating system.

A. ERROR MESSAGES - This appendix lists DX980 error messages
and definitions.

B. RECOMMENDED JCL SEQUENCES - This appendix provides sample
listings of JCL sequences for the operating system.

C. ADDING TO ITS - This appendix provides detailed descriptions of
the Interactive Terminal Subsystem as an aid to adding new applica
tion programs to run under the subsystem.

D. ADDING NON-STANDARD DEVICES TO DX980 - This appendix de
scribes the procedure for designing a device service routine to ser
vice a device not normally supplied with the operating system.

iii Digital Systems Division

~-------~ 943005-9701

An alphabetical index of key phrases also appears at the back of this manual.
In addition to this manual the user should also have access to the following
manuals that are referenced as applicable within the text of this manual:

DX980 General Purpose Operating System, System Operator's Guide,
Part Number 943004- 970 1

Model 980 Computer, Basic System Use and Operation, Part Number
961961- 9710

Model 980 Computer, Terminal User's Guide, Engineering Data, Part
Number 943010- 970 1

Model 980 Computer, Terminal User's Guide, Model 733 ASR/KSR Data
Terminal, Part Number 943009- 970 1

Model 980 Computer, Terminal User's Guide, Model 912 Video Display
Terminal, Part Number 943014- 970 1

Model 960 Computer and Model 980 Computer Debug User's Guide and
Operating Instructions, Part Number 942760- 970.1

Model 980 Com.puter FORTRAN, Part Number 944800-9701

Model 980 Computer Assembly Language Input/Output, Part Number
961961-9734

Model 980 Computer Assembly Language Programmer's Reference
Manual, Part Number 943013-9701

iv Digital Systems Division

~--------~ 943005-9701

Paragraph

1 . 1
1.2
1.3
1.4
1.4. 1
1.4.2
1.4.3
1.5
1. 6
1.7
1 . 7. 1
1.7.2
1. 8
1.8.1
1. 8.2
, Q '2
.L • u • .J

2.1
2.2
2.3
2.3. 1
2.3.2
2.3.3
2.3.4
2.4
2.4.1
2.4.2
2.5
2.5. 1
2.5.2
2.5.3
2.5.4
2.5.5
2.6

Change1

TABLE OF CONTENTS

Title

SECTION I. INTRODUCTION

General
Hardware Requirenl.ents
Hardware Expansion.
System Structure

Nucleus .•.......
Interactive Terminal Subsystem (ITS)
Batch Processing Subsystem (BPS) .

Input/Output Management
Memory Management
Program Handling

Jobs ..
Tasks

File s
File Organization ..
File Handling .
'T'~p~~ ... ~f: L;":'~ ...
.J.. y pc;;:) U 1. .J.." 1..1.c;;:) • • • • •

SECTION II. JOB CONTROL LANGUAGE

General
Job Control Language Structure
JCL Processing

Expanded JCL .. .
Abbreviated JCL ..•..
JCL Translator ..
DX980 Subsystems

Job Submittal
JOB Command (JOB)
RUN Command (RUN)

Expanded JCL Specification ..
JCL Translator Input Format ..
Control Commands ..•.
Execute Command
As signment Command
Job Continuation/Termination

Format Summary

v

. '.

Page

1-1
, ,
J.-J.

1-2
1-2
1-3
1-4
1-5
1-5
1-6
1-6
1-6
1--7
1-7
1-7
1-8
1-9

2-1
2-1
2-1
2-2
2-2
2-3
2-3
2-3
2-4
2-6
2-8
2-8
2-10
2-10
2-17
2-30
2-30

Digital Systems Division

I

~-------~ 943005-9701

Paragraph

3. 1
3.2
3.3
3.3. 1
3.3.2
3.3.3
3.3.4
3.3.5
3.4
3.5
3.6
3.7
3.7. 1
3.7.2
3.7.3
3.8
3. 8. 1
3.8.2
3.8.3
3.8.4
3.8.5
3.8.6
3.8.7
3.8. 8
3.8.9
3.8.10

4.1
4.2
4.2.1
4.2.2
4.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.5

Change 1

TABLE OF CONTENTS (Continued)

Title Page

SECTION III. INPUT /OUTPUT STRUCTURE

General
I/O Supervisor Calls ..
Physical Record Block

Word O ••
Word 1 .
Word 2 ..
Word 3 .
Word 4 ..

Function of Specific OP Codes
Initiate and Execute I/O Calls
Standard USASCII Records.
I/O Errors

Logical Errors
Severe Errors.
Fatal Errors

Individual Device Characteristic s
Data Terminal and CRT Device s .
Model 733 ASR Cas sette ..
Paper Tape Readers
Paper Tape Punch Devices .•..
DMAC and I/O Bus Line Printer s
Card Reader
Dummy Device•.••..
16 Input/16 Output Data Module .•...
AD/DA Devices
Magnetic Tape

SECTION IV. DISC FILE MANAGEMENT

File Structures ·
File Handling ·

Memory Allocation ..
File Integrity ...

Disc Organization
File Types

Linked Sequential Files.
Relative Record File s ..
Key Indexed File s . .
File Errors ·

Physical Record Block

vi

3-1
3-1
3-3
3-3
3-5
3-7
3-8

. 3-9

. 3-9
3-14
3-15
3-16
3-16
3-17
3-17
3-18
3-18
3-26
3-28
3-29
3-30
3-31
3-31
3-32
3-33
3-33

4-1
4-1
4-1
4-2
4-2
4-3
4-3
4-6
4-6
4-13
4-13

Digital Systems Division

~ '':''':'''---=--~----~ ~43005-9701

Paragraph

5. 1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.9. 1
5.9.2
5.9.3
5.10
5. 11
5.12
5.12.1
5.12.2
5.13
5.14

5.15
5.15.1
5.15.2
5. i6
5.17
5.18
5.19
5.20

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.3
6.3.1
6.3.2
6.3.3
6.3.4

Change 1

TABLE OF CONTENTS (Continued)

Title

SECTION V. SUPERVISOR CALLS

General
Input/Output - SVC Number O •••
Terminate Job - SVC :Number 1
Set Floating Point Address - SVC Number 2
Get Memory Limits - SVC Num.ber 3
Terminate Job Abnormally - SVC Number 4
Terminate Task - SVC Number 5
Delete Task(s) - SVC Number 6
Suspend Task (Wait for Event) - SVC Number 7 .

Wait Criteria List (WCL)
System- Wide Events
Job Oriented Events

Post An Event - SVC Number 8
Get Time and Date - SVC Number 29 ..
Create Task - SVC Number 30

Optional Arguments•
Create Task Examples

Load Memory Image Phase - SVC Number 37
Load and Relocate Memory Image Phase -

SVC Number 38•..........
Command Scanner Module - SVC Number 41 ..

External Interface
SVC 41 Example•......

Wait for I/O - SVC Number 43
Allocate Resource - SVC Number 49
Deallocate Resource - SVC Number 51
Get Program Limits - SVC Number 98
User Start Job - SVC Number 129

SECTION VI. BATCH PROCESSING SUBSYSTEMS

General
Batch Input Reader (BIR) .

Job Command
Run Command
Data Control Command
End of Job Command .

Batch Input Spooler (BIS) .
Job Command
Run Command
Data Control Command
End of Job Command .

Page

5-1
5-8
£::. Q
..J-U

5-8
5-9
5-9
5-10
5-10
5-11
5-11
5-12
5-15
5-15
5-16
5-17
5-18
5-18
5-24

5-25
5-25
5-26
5-32
5-33A
5-34
5-36
5-37
5-37

h-1
h-l
h-l
h-2
6-2
6-3
6-3
6-3
h-3
6-3
I r-
0-:)

vii Digital Systems Division

I

I

~-------"i::(943005-9701

Paragraph

6.4
6.5
6.6

TABLE OF CONTENTS (Continued)

Title

Batch Output Spooler (BOS)
BIR and BIS Example s
BIS Example

SECTION VII. INTERACTIVE TERMINAL SUBSYSTEM

7.1 Overview
CRT Displays
Teleprinters ..

Page

6-6
6-6
6-8

I
7. 1. 1
7.1.2
7. 1. 3
7.1.4
7.1.5
7. 1. 6
7. 1. 7
7.2
7.2. 1
7.2.2
7.2.3
7.3

ITS Terminal As signments
ITS Memory Requirements ..
Remote Terminals.
Logon
Other ITS Commands

7-1
7-1
7-2
7-2
7-3
7-3
7-3
7-3
7-4
7-6
7-7

I

7 .3. 1
7.3.2
7.4
7.5

8. 1
8.2
8.2. 1
Q ., .,
u.w.w

8.2.3
8.2.4
8.2.5
8.2.6
8.3
8.3. 1
8.3.2
8.3.3
8.3.4
8.3.5
8.4
8.4.1
8.4.2

Change 1

Interactive File Editor
File Command s
Edit Commands
State Transition Commands

Remote Job Entry
Job Command
Run Command

Computer Status Display ..
ITS Error Messages ..•••

SECTION VIII. UTILITY PROGRAMS

Gene ral•
JCL Translator (JCLTRN) .

Standard JCL Procedure

LUN Assignments
Operation .. .
Error Code s
Sample Input

Master File Directory Editor (CATLOG)
Standard JCL Procedure
Memory Partition Requirements.
LUN Assignments
Operation
Error Codes

List User File Directory (CATFIL) .
Standard JCL Procedure•.
Memory Partition Requirements.

viii

·7-12
7-13
7-13
7-13
7-14
7-14

8-1
8-1
8-1
Q .,
u-'"
8-2
8-2
8-2
8-2
8-2
8-3
8-3
8-3
8-3
8-7
8-8
8-8
8-8

Digital Systems Division

~.---------~ 943005-9701

Paragraph

8.4.3
8.4.4
8.4.5
8.5
8.5. 1
8.5.2
8.5.3
8.5.4
8.5.5
8.5.6
8.5.7
8.6
8.6. 1
8.6.2
8.6.3
8.6.4
8.6.5
8.6.6
8.7
8.7.1
8.7.2
8.7.3
8.7.4
8.7.5
8.8
8.8. 1
8.8.2
8.8.3
8.8.4
8. 8.5
8.8.6
8.8.7
8.9
8.9. 1
8.9.2
8.9.3
8.9.4
8.9.5
8.9.6
8.9.7
8.10
8.10.1

TABLE OF CONTENTS (Continued)

Title

LUN Assignments
Operation
Error Code s

DX980 Overlay Link Editor (DXOLE) .
Standard JCL Procedure;; ;; ;; ;; ;; ;;
Memory Partition Requirements.
LUN Assignments
Operation ..•.
Error Code s
Input Format
DXOLE Output Formats

Library Builder (LIBBLD) .
Standard JCL Procedure
Memory Partition Requirements.
LUN As signrn.ents .•...
Operation
Error Code s
Sample Output .. .

File Copy Utility (DXCOPY) .
Standard JCL Procedure
Memory Partition Requirements .. .
L UN As signments.
Operation .•........
Error Code s .•....•.

Program Debug (DEB980)
Standard JCL Procedure
Memory Partition Requirements.
LUN Assignments
Operation ..
Error Codes .
Sample Input ..
Sample Output.

Symbolic Assembler (SAPG)
Standard JCL Procedure ..
Memory Partition Requirements ...
LUN Assignments
Operation ..
Error Code s ..
Sample Input ..
Sample Output .

FOR TRAN IV Compiler.
Standard JCL Procedure

ix

Page

8-9
8-9
8-10
8-11
8-12
8-12
8-13
8-13
8-22
8-23
8-28
8-31
8-31
8-32
8-32
8-32
8-32
8-32
8-33
8-33
8-33
8-34
8-35
8-37
8-38
8-39
8-39
8-40
8-40
8-40
8-40
8-41
8-41
8-41
8-42
8-43
8-44
8-46
8-46
8-46
8-46
8-46

Digital Systems Division

~-------~ 943005-9701

Paragraph

8.10.2
8.10.3
8.10.4
8.10.5
8.10.6
8.10.7
8. 11
8.11.1
8.11.2
8.11.3
8.11.4
8.11.5
8.12
8.12.1
8.12.2
8.12.3
8.12.4
8.12.5
8.12.6
8.13
8.13.1
8.13.2
8.13.3
8.13.4
8.13.5

I 8.14
8.14.1
8.14.2
8.14.3

I 8.14.4

I 8.14.5
8.15
8.15.1
8.15.2

I 8.15.3
8.15.4
8.15.5
8. 16
8.16. I

I 8.16.2
8.16.3
8.16.4
8.16.5

Change 1

TABLE OF CONTENTS (Continued)

Title

Memory Partition Requirements.
LUN Assignments
Operation ..
Error Code s .
Sample Input ..
Sample Output

Load Module Update (LMUPD T)
Standard JCL Procedure
Memory Partition Requirements ..
LUN Assignments
Operation
Sample Input

Source Maintenance Routine (SMR)
Standard JCL Procedure
Memory Partition Requirements ..
LUN Assignments
Operation
Error Codes
Sample Output .. .

Linkable Parts File Build Utility (LPFBLD)
Standard JCL Procedure
Memory Partition Requirements
LUN Assignments
Operation
Error Codes

Build Edit File Utility (BLDEDT)
Standard JCL Procedure
Memory Partition Requirements.
LUN Assignments
Operation
Error Code s

List Edit Files Utility (LSTEDT)
Standard JCL Procedure
Memory Partition Requirements.
LUN Assignments

Page

Operation.

8-50
8-51
8-51
8-53
8-56
8-57
8-57
8-58
8-58
8-58
8~59

8-59
8-59
8-60
8-60
8-60
8-60
8-71
8-71
8-77
8-77
8-78
8-78
8-78
8-79
8-80
8-80
8-80
8-80
8-81
8-81
8-81
8-81
8-81
8-82
8-82
8-82
8-82
8-82
8-82A
8-82A
8-83
8-b-4

Error Code s
Create, Delete, or Replace File (FILMGR).

Standard JCL Procedure .•....•.
Memory Partition Requirements ..•
LUN Assignments ..••••
Operation .••
Error Codes .••••

x Digital Systems Division

~----------~ 943005-9701

Appendix'

A
B
c
D

Figure

1-1
1-2

2-1

3-1
3-2
3-3
3-4

4-1
4-2
4-3

5-1
5-2
5-3
5-4
5-5
5-6

6-1
6-2

7-1

8-1
8-2
8-3
8-4
8-5

Change 1

TABLE OF CONTENTS (Continued)

APPENDIXES

Title

Error Me s sage s •..•
Sample JCL Sequence s
Adding to ITS e e e • e •

Adding Non-Standard Device s to DX980

ALPHABETICAL INDEX

LIST OF ILLUSTRATIONS

Title

DX980 Gene ral Structure .•
Organization of Data File s within a Disc Drive

JC L Translator Formatting Summary

Physical Record Block (PRB) Format
Data Module PRB ••••••..•.•.
Analog-to-Digital Converter PRB •
Digital-to-Analog Converter. PRB •

Linked Sequential File Parameters
Relative Record File Transfers
Key Index File Parameters •....

Event De scriptor Block Organization.
WCL with Multiple EDB •....•...
Sample TSTK Contents at Task Activation ••
Format of Key Array After Return from SVC41 ..
Templates for Descriptors in KEY Array.
Resulting Contents of KEY and PAKSTR ..

BIR Input De ck Structure •••••••
BIS Input De ck Structure ••••...

Inte ractive File Editor Transitions.

Control Card Formats .••.•.•..
Ove rlay Structure and Control De ck ••.
Object Records • Q •••••••••••••

DX980 Load Module Re cords •.•.•.
Memory Image Format for File s Othe r than

Re lative Re cord•............

Page

A-I
B-1

D-l

Page

1-3
1-8

2-31

3-4
3-34
3-35
3-35

4-5
4-7
4-10

5-11
5-13
5-19
5-32
5-31
5-33

6-2
6-4

7-5

8-16
8-18
8-26
8-29

8-36

xi Digital Systems Division

I

I

I

I

I
I

~-------~ 943005-9701

Figure

8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20

8-21
8-22

Table

2-1
2-2
2-3
2-4
2-5

2-6

2-7

3-1
3-2
3-3

3-4
3-5
3-6

Change 1

LIST OF ILLUSTRATIONS (Continued)

Title

Saved File Format.
SAPG Assembler Functional Diagram ••.
Assembly Language Source Input to SAPG .•
Obje ct Module Output from SAPG•.
FOR TRAN Exe cution Functional Diagram.
FOR TRAN Source Input to FORTRAN Compile r ••
Obje ct Module Output from FOR TRAN Compile r
SMR Batch Input to Create a New Library •.
Index of NEW LIB ...•...........•••
Sequenced Listing Commands and Listing ••
Input Stre am to Add Two Module s ••.
Index of NEWLIB with Added Modules
Input Stre am to Modify a Module •.••
Index of Modified Module •....•...
Sequenced Listing of Modified Module -

Input Command s and Listing •...•...
Input Stre am to De Ie te a Module
Index of NEWLIB without Deleted Module

LIST OF TABLES

Title

JCL Operand Defaults •••••••.••••.•••••• .
Suggested Device Names
File Integrity Code s .•••..••••.
DS330 Disc Formatting .••••..•.
Maximum <prwds> Physical Record

Lengths for Disc Files .••••••..••••.
Job Control Sequence (JCS) for R VN

Command Example .••.•••..••
Parameter Keynames and Defaults for

JCS Example ...••.•.•••••.•.

USASCII Format Control Word ••••..•...
PRB Word 2 •. '.' ••.•..•.••..•......
Device Attributes Word after Execution of an

Open Call ••.....•
Input/Output Opcode s .•......•........
I/O Errors
Device Response to Sequential I/O Commands ••.

Page

8-36
8-45
8-49
8-49
8-52
8-56
8-57
8-72
8-72
8-73
8-74
8-75
8-75
8-75

8-76
8-76

. 8-76

Page

2-10
2-18
2-22
2-25

2-28

2-33

2-33

3-6
3-8

3-9
3-10
3-16
3-19

xii Digital Systems Division

~--------~ 943005-9701

Table

3-7
3-8
3-9

3-10

3-11

4-1
4-2
4-3

5-1
5-2
5-3
5-4
5-5

5-6
5-7
5-8

8-1
8-2
8-3
8-4
8-5
8=6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21

Change 1

LIST OF TABLES (Continued)

Title

USASCII Control Characters
Binary Internal Code to Paper Tape Binary Code ...
USASCII Character Internal Code to Hollerith

Code Conversion •••••.•••••••••••••.•
Binary Characte r Inte rnal Code to Binary Card

Code Conversion ••••••••••
16 I/O Data Module Instructions ••

Summary of DX980 File Fe ature s
File Error s •••.......•••.••
Relative Re cord and Key Indexed File Management

Opcode s

DX980 Use r Supe rvisor Calls •••.
DX980 Supe rvisor Call De scription •.
User Accessible System-Wide Events
Job-Oriented Events •••....•....•
Description of Command Language (Backus-Naur

Format) ••.•....... . . .' .
Error Code s : : = • : = = • = ••••• : = = •••••

Resource Assignment Block (JLDT) Format ..
Job Structure Block (JSB) Preamble Format ••

JCLTRN Logical Unit Assignm"ents .•••••
CATLOG Logical Unit Assignments .••••
CATLOG User Interaction •.
Use r ID Inte grity Code s ."
CATLOG Error Messages ••.•.•.•....
CA TFIL Logical Unit As signments .•••••.•..
CATFIL Termination Messages ••••..••••.•
DXOLE Logical Unit Ass ignment .••..•••.•.
DXOLE Control Card Sequence and Options.
DXOLE Error Me ssage s ..••
Text Re cord Paramete r s •........
Load Module Field Definitions ••.•.
LIBBLD Logical Unit Assignments
DXCOPY Logical Unit Assignments ••
DXCOPY Error Messages .••••.••••••••••••
DEB980 Logical Unit Assignments •••....•
Symbol Table Memory Allocation ••.........
SAPG Assembler Logical Unit Assignments ••
SAPG Error Messages •••.••.••••••••••
FORTRAN Compiler Phase 1 LUN Assignments ••
FORTRAN Compiler Phase 2 LUN Assignments.

Page

3-21
3-29

3-32

3-33
3-34

4-4
4-14

4-15

5-2
5-3
5-14
5-15

5-27

5-35
5-38

8-2
8-3
8-5
8-6
8-7
8-9
8-11
8-14
8-17
8-22
8-28
8-30
8-32
8-35
8-38
8-41
8-43
8-44
8-48
8-51
8-51

xiii Digital Systems Division

I
I

I
I

I

I

I

~-------~ 943005-9701

LIST OF TABLES (Continued)

Table Title Page

8-22 FORTRAN Compiler Phase 1 Error Messages ••• 8 .. 53
8-23 FORTRAN Compiler Phase 2 Error /Termination

Me s sage s • • • • • • • • • • • • • • • • • • • . • • • • • • 8 .. 55
8-24 Runtime Error Me s sage s ••.•.•... 8-55
8-25 LMUPDT Logical Unit As signments ••••.••••• 8-59
8-26 SMR Logical Unit As signments ••.•.•.••••..•. 8-61

I
8-27 LPFBLD Logical Unit Assignments .. 8-79
8-28 BLDEDT Logical Unit Assignments .• 8-81
8-29 LSTEDT Logical Unit As signments 8-82
8-30 FILMGR Logical Unit Assignments .• 8-82A

Change 1 xiv Digital Systems Division

Jd7~ ______ _ ~ 943005-9701

SECTION I

INTRODUCTION

1.1 GENERAL

DX980 is a general purpose operating system that supports the Texas Instru
ments 980 Series minicomputers with major features that include the follow-
ing:

•
•

•
•
•
•
•

Interrupt driven device handlers

Multiprogramming with biased addressing and protected memory
bounds

Flexible job management with complete resource allocation

Comprehensive data management

DynaITlic memory nl.anagement

Priority scheduling of jobs and of tasks within jobs

Subsystems to support batch and interactive terminal processing

The se system attribute s augment computer performance for application in the
following areas:

• Interactive information management systems that allow terminal
devices to enter, retrieve and display data stored in an online disc
information base.

• High speed, real-time computing systems that provide both analog
and digital data acquisition, and that include control loops that re
quire the computational capacity of a 980 computer.

• Batch processing environments for program development, scientific
data proce s sing and busine s s applications.

• Combinations of the above systems for specialized applic ations.

1 . 2 HARDWARE REQUIREMENTS

The operating system nucleus occupies approximately 24, 000 words of main
memory and require s the following additional system hardware:

• Additional memory for support of subsystems, language processors,
and application prograITls.

• Either a moving head disc or a DS330 disc system.

• Magnetic tape drive to initially load the disc, to allow a dump of the
disc contents for reloading, and to provide offline storage.

1 -1 Digital Systems Division

~-------~ 943005-9701

•

•
1. 3

Operator console for system interaction with the user.
(Model 733 ASR terminal or equivalent)

Interval timer.

HARDWARE EXPANSION

In addition to the required hardware for operation of the system, DX980 sup
ports a full 64K word memory computer system. The modular construction
of the system allows easy addition of new peripheral devices and their re
lated service routines. Standard device service routines include support for
one or more of each of the following peripherals:

• Texas Instruments Model 733 ASR Terminal, Part Number
966645-0003

• Texas Instruments Model 733 KSR Terminal, TI Part Number
966671-0003

• Teletype Model 33 ASR Teletypewriter, TI Part Number
973346-0001

• Texas Instruments Model 912 CRT display unit, TI Part Number
973306-0012

• High Speed Paper Tape Reader /Punch Combination, TI Part
Number 973526-0003

• High'Speed Paper Tape Reader, TI Part Number 965946-0003

• 132 Column I/O Bus Line Printer, TI Part Numbers 966792-0001
and 966792-0011

• 80 Column DMAC Line Printer, TI Part Number 217065-0001

• Card Reader, TI Part Number 966323-0003

• Analog-to-digital and digita1-to-ana1og conversion equipment

• DS330 Disc Controller and Disc Drive System, TI Part Numbers
942541-0002, 942541-0003, 942541-0004, 942541-0005, and
942541-0006.

• Moving Head Disc, TI Part Number 955157-0001

• Texas Instruments Model 979 Tape Transport, TI Part Number
217536-0001

1.4 SYSTEM STRUCTURE

The operating system is divided into a nucleus for executive functions common
to most operations, and several subsystems that perform specific functions.
In addition to the nucleus, two subsystem modules are supplied with the
standard operating system: the Interactive Terminal Subsystem (ITS) and the
Batch Processing Subsystem (BPS). Figure 1-1 illustrates the relationship

1-2 Digital Systems Division

~-------~ 943005-9701

(A)129477

I
INTERACTIVE

TERMINAL SU8SYS I EM
(ITS)

DX980
NUCLEUS

I
I

BATCH
PROCESSING

II ..,..r:-S 8SYS I M
(BPS)

Figure 1-1. DX980 General Structure

of these subsystems to the nucleus. Other subsystems may also be added to
perform functions suited to special applications. The following paragraphs
describe the characteristics of the standard system components.

1.4.1 NUCLEUS

The nucleus is the portion of the operating system that define s the system
parameters, handles input and output servicing, and provides real time
reaction to the subsystems. The nucleus is divided into four main parts: the
system table, the memory resident code, the procedure pool or system over
lay area, and a Dynamic System Control Area (DSCA). The real time fea
tures of the operating system are integrated into the se areas and do not form
a separate subsystem as do the Interactive Terminal Subsystem and the
Batch Processing Subsystem. Real time features include rollin and rollout,
task synchronization supervisor calls, dynamic device allocation, the ability
to start other jobs via a supervisor call, and a method for controlling file up
dating with 'multiple online users. Most of the code for these features oc
cupies main memory only when in direct use and runs in the procedure pool.

1.4. 1. 1 SYSTEM TABLE. The System Table describes the operating
parameters of the system including: system job parameters, system wide
control blocks, and pointer s to system queue s, the DSCA, procedure pool
and free area. The table is created during system generation.

1.4.1.2. MEMORY RESIDENT CODE. Memory resident code is that portion
of the operating system that is always in main memory. This code performs
the following functions in the DX980 system: interrupt processing, system
disc device handling, task management, preliminary supervisor call proce s s
ing' memory management, overlay management, and commonly used lower
level system subroutine s.

1.4.1.3 PROCEDURE POOL. The procedure pool is a dynamically allo
cated memory area used for system overlays. Approximately 80% of the sys
tem routines run in this area. These routines include: device service rou
tine s not handled by the memory re sident code , job management, file

1-3 Digital Systems Division

~-------~ 943005-9701

management, operator communications, and modules of rollin and rollout.
The user can select the size of the procedure pool to adapt the amount of
memory available to the operating speed required.

1.4.1.4 DYNAMIC SYSTEM CONTROL AREA (DSCA). The DSCA is a
volatile memory pool that is used by the procedure pool routines.
the se routines are written in reentrant code. The DSCA provide s
nated work area for each task executing a procedure pool routine.
can select the size of the DSCA.

1.4.2 INTERACTIVE TERMINAL SUBSYSTEM (ITS)

Most of
a desig

The user

The Interactive Terminal Subsystem (ITS) provides simplified concurrent
communications with several terminals. Included in ITS is the ITS Super
visor (ITSUPV) and the Interactive File Editor (IFE). ITSUPV m.anages the
terminals, and provides LOGON and LOGOFF functions plus the required
housekeeping functions for multi-terminal usage. ITSUPV interfaces easily
with user written application programs. IFE provides interactive generation
and editing of disc files containing source text.

The ITS Supervisor initially checks the system's logical and physical device
tables to derive a list of the terminals with which it can communicate (polling
list). This list is based on the logical units assigned to the ITS at job start
up time. The ITS then assigns to each of the terminals on the list:

• A buffer for data exchange with the terminal

• A User Control Block

The User Control Block contains pointers, flags, and a scratch pad memory
space for use by application programs operating under ITS. One key param
eter in the control block indicates which body of code, or application pro
gram, is currently attached to the terminal. A single Command Table is
available to ITSUPV for all terminals. The Command Table contains the
name s and entry points of the programs that c an be run under ITS. After
logging on, the terminal operator, through the ITS Supervisor, can select
one of the programs in the Command Table for execution. Similarly, after
completion of that program the operator can select another program.

The ITS uses a Branch and Link command to pass the data exchange buffer
to the selected application program. That program then processes the input
and place s any re sponse to the terminal in the data exchange buffer. When
the application program returns control to the ITS, the program may instruct
the ITS to do any of the following operations:

• Write the contents of the data exchange buffer on the carre sponding
terminal and return to the application program for more proces sing.

• Write the contents of the data exchange buffer on the· carre sponding
terminal, acquire a re sponse from the terminal, and return for more
processing.

1-4 Digital Systems Division

~~------------------~ 943005-9701

•
•

•

Read input from the terminal and return for more proc e s sing.

Return for m.ore proce s sing as titne beco1TI.e s available without
intervening I/O operations.

Discontinue use of this application program by the terminal and
indicate readiness for the operator to select a new application pro
gram.

1.4.3 BATCH PROCESSING SUBSYSTEM (BPS)

The Batch Processing Subsystem (BPS) consists of three data handling sub
systems that allow convenient batch input and output for the operating sys
tem. The three data handling subsystem.s are Batch Input Reader (BIR),
Batch Input Spooler (BIS) and Batch Output Spooler (BOS). Any of these sub
systems can be activated from the system console by addressing a RUN com
mand to the proper subsystem.

1.4. 3. 1 BA TCH INPUT READER (BIR). Specifying BIR causes the oper
ating system to activate the assigned card reader and read input directly
from that device.

1.4. 3.2 BA TCH INPUT SPOOLER (BIS). Specifying BIS instructs the op
erating systeITl to activate the assigned card reader, read input continuously
from. that deviCe, and copy the input data to a disc file (spooling). Process-
ing can then proceed via the disc file (SYSIN) in paral1el with the input oper
ation to increase throughput.

1.4.3.3 BATCH OUTPUT SPOOLER (BOS). Specifying BOS instructs the
operating system to access from the disc al1 data assigned to unit SYSOUT.
The data is read from the disc and printed on the system output device
(usually a line printer). This feature allows data to be spooled on the disc
during execution of a job by specifying the output unit as SYSOUT. When the
output device becomes available, the operator can then activate BOS to dump
the spooled data on that device. Use of BOS in this manner significantly in
crease s throughput.

1 . 5 INPUT /OUTPUT MANAGEMENT

User programs running under DX980 select I/O devices with a logical unit
nUrrlber (LUN) rather than a physical device nUrrlber. A staterrlent within
the JCL input for the job equates the LUN to a physical device narrle, while
a physical device table for the operating system specifies an actual I/O de
vice to respond to the physical device name. This arrangement allows the
I/O device as signments within the operating system and the logical unit num
bers within the user program to remain constant. A simple change to the
JCL input allows the user to change the I/O medium. The operating system
includes a Device Service Routine (DSR) for each I/O device supported by the

1-5 Digital Systems Division

~-------~ 943005-9701

TIlonitor. Each DSR translates the COTIlTIlon prograTIl I/O interface to the
unique I/O interface required by its type of I/O device. The physical device
table tie s a particular I/O device to the DSR that service s it. Additional
DSRs can be added to the systeTIl to support new I/O devices without serious
change to the systeTIl.

1.6 MEMORY MANAGEMENT

All of TIleTIlory that is not occupied by the resident operating systeTIl, systeTIl
tables, and the procedure pool is designated as a free area. The operating
systeTIl dynaTIlically allocates this area to subsysteTIls and to user jobs. When
a prograTIl is loaded into TIleTIlory, the operating systeTIl stores it in contig
uous loc ations in a single partition within TIleTIlory. It then loads the upper
and lower bounds of that partition into the hardware TIleTIlory protect address
registers of the TIleTIlory controller, and enables the hardware Priviledged
Instruction Feature. All prograTIl paraTIleters can then be referenced with a
relative address with respect to the lower bound of the TIleTIlory partition
since the hardware autoTIlatically biases the addresses with the lower bound
addre s s. The operating systeTIl alloc ate s TIleTIlory partitions to partic ular
job s on a be st fit basis.

1 . 7 PROGRAM HANDLING

PrograTIls run under DX980 are perforTIled as jobs; each job is further
divided into tasks. The following paragraphs explain these concepts with
re spect to the operating systeTIl.

1.7. 1 JOBS

A job is a unit of work in the DX980 systeTIl. A job consists of a set of user
tasks to be executed and the control inforTIlation to cOTIlTIlunicate resource
requireTIlents to the systeTIl. The systeTIl runs each job when all required
resources becoTIle available. When a job is cOTIlplete, all allocated resources
are returned to the systeTIl. They TIlay then be alloc ated to another job as
necessary. If the systeTIl has adequate resources, TIlore than one job can be
active at one instant. Each job cOTIlpetes for execution tiTIle on a priority
basis.

Jobs can be subTIlitted to DX980 through the Batch Processing SubsysteTIl
(BPS), the Interactive TerTIlinal SubsysteTIl (ITS), the system console, or
froTIl another user job. The job subTIlission procedure is the saTIle regard
Ie s s of source.

Once DX980 accepts the control inforTIlation required to start a job, it places
the inforTIlation in a priority queue, called the job queue. Part of the job
queue resides in TIlain TIleTIlory and part resides in a randoTIl access file on
the systeTIl disc. As resources becoTIle available froTIl jobs currently in
execution, either through job terTIlination or a specific request to release
one or TIlore resources, DX980 deterTIlines whether the additional resources

1-6 Digital Systems Division

~~------------------~ 943005-9701

are sufficient to execute one of the jobs in the job queue. If so, the system
changes that job's state from Ready to Running and starts the job.

Each job in DX980 is requested with Job Control Language (JCL), and com
municates with the operating system using supervisor calls. A series of
jobs may be combined into related job steps to perform a larger function,

such as Compile, Link and Execute. In addition, a job may subdivide itself
into two or more concurrently resident tasks. All user jobs run in protected
mode and must remain within the memory bounds defined for that job.

1.7.2 TASKS

A task is a currently active program that coexists in memory with other con
current tasks, all of which may be in various stage s of completion. One or
more tasks combine to form a job. Tasks within a job may execute concur
rently and share the same reentrant body of code though each task is in a
different state of execution. All jobs initiate as a single task. The initial
task then issues supervisor calls to activate other tasks within its job area.
Each separate task has its exec ution environment (register contents) and re
ceives a relative priority rank with other concurrent tasks.

1.8 FILES

A file is an organized collection of information. The file is divided into rec-
0rds that may be held in main mem.ory \vhile being used, but are stored on a
disc when not being used. The following paragraphs describe the organiza
tion of file s, the types of file s available with the operating system, and the
file handling features of the operating system.

1.8.1 FILE ORGANIZATION

Figure 1-2 illustrates the organization of files \,vithin a single disc unit for
the DX980 operating system. The system locates a specific file with a three
parameter entry supplied by the user. The < volume> parameter specifies the
disc drive unit that contains the file, and allows the system to access the
Master File Directory for that disc unit. The !\1aster File Directory lists
all of the User Directorie s that are stored on that disc unit, and the physical
disc addresses used to locate each directory. A second parameter, < fileid>,
tells the operating system which of the User Directories contains the file.
The system then calls up the proper User Directory, which lists all of the
files on the disc unit for that user, and their location on the disc. A third
parameter, < filnam>, tells the operating system which of these files to ac
cess for the required information.

Volume number 1 is always the system disc unit containing all of the oper
ating system files. Therefore, systems with only one disc unit must label
that disc as volume 1. Within the Master File Directory for the system disc
is an entry for the SYSTEM User Directory. This directory lists all of the
files that are part of the operating system. One of these files, SJCBFL,

contains the Job Control Language (output of the JCL Translator program) for
the systern. Another file, JCLSRC, is the JCL source file.

1-7 Digital Systems Division

~-------~ 943005-9701

<FILNAM>

< FILEID> - USER 1

I - FILE 1

USER • - DIRECTORY • - 1 •
I USER 1 - FILE kl -

- USER 2

I
FILE 1

USER • - DIRECTORY - 2 • •
<VOUJME> I USER 2

r--- • ..
FILE k2 -

MASTER
FILE • DIRECTORY

r-- • - USERn-l

I - FILE 1

USER • - DIRECTORY - n -1 •

I
•

- USER n-l - FILE kn-l

- USER n

I - FILE 1

USER • - DIRECTORY - n • •
I .. USER n - FILE kn

(A)129478

Figure 1-2. Organization of Data Files within a Disc Drive

1.8.2 FILE HANDLING

The operating systeIll provides the user with the following features when
working with file s:

• File protection through both creator access and password entry;
for either type of protection the user can specify whether it will be
applicable for reading, writing or deleting, or any cOIllbination of
those functions.

• Maintenance of several User Directories, so that files can be
segregated in a Illulti-user environIllent.

1-8 Digital Systems Division

~ 943005-9701

• File mapping performed by the system can also be assisted by a
user request for a specific physical location to store a file.

• Specification of exclusive files for use by one job only, or of shared
access files for concurrent. use by more than one job.

• Momentary cooperative locking of shared file s during update to pre
vent degradation; this feature prevents one job from de stroying a
file update made by another job within an interactive information
management system.

• Blocking of multiple logical records into physical records for data
transfer and storage; these blocked records are built and disas
sembled in buffer areas within the job extension area of main mem
ory.

1.8.3 TYPES OF FILES

The operating system supports three type s of file s as outlined in the follow
ing statements:

• Linked Sequential File - The records of this file are scattered
throughout the storage medium, but are chained together by pointers
within the file. This arrangement requires that the record be ac
cessed in sequential order, but also allows the file to grow dynam
ically like a magnetic tape file.

• Relative Record File - This type of file contains records of a speci
fied length that can be accessed randomly within the file by their
relative position to the beginning of the file. Records are allocated
in contiguous storage space.

• Key Indexed File - This type of file asslgns a key to each record
that is to be accessed in a random fashion, and sorts the keys in a
tree structure for efficient location of each record. The keyed
records can then be stored in non-contiguous areas, allowing the
file to grow dynamically. A key indexed file may also include non
keyed records that are acces sed sequentially with keyed records.

1-9/1-10 Digital Systems Division

~-------~ 943005-9701

SECTION II

JOB CONTROL LANGUAGE

2.1 GENERAL

Job Control Language (JCL) specifies the structure and resource require
m.ents of jobs submitted to DX980. Other commands, used to request special
action from DX980, are described in the DX980 General Purpose Operating
System, System Operation Guide under the title of Operator Communications.

2.2 JOB CONTROL LANGUAGE STRUCTURE

Each job submitted to DX980 consists of one or more independent job steps
that are executed in the order in which they appear in the job stream. For
example, if two job steps are submitted, they will be executed in the order
of step one and then step two. If any step aborts because of an error condi
tion, all subsequent steps will not be executed.

Job steps would normally be combined in such a way that the successful exe
cution of each step depends on the succes sful completion of all preceding
steps. A comITlon exaITlple is a sequence of four steps to compile (2 phases),
link and execute a FOR.TR.P ... N program. The link step \X/ould be started only
if the cOITlpilation was succes sful, and the execution step would be started
only if both the compilation and link were succe s sfu!'

Within the JCL statements for each step are assignment commands to asso
ciate Logical Unit Numbers (LUNs) specified in the user program with phy
sical devices or files. These commands allow the user to specify Input/
Output references logically vvhen a program is created and defer the actual
device assignments until the program is run (runtime). For most sequential
devices the assignment command merely links a LUN to the device. For a
disc file, however, the user must specify the type of file to be as signed,
whether the file is new, old or temporary, blocksize of the data records,
and disposition of the file after termination of the job step.

2.3 JCL PROCESSING

There are two forms of Job Control Language (JCL): expanded JCL and
abbreviated JCL.

NOTE

In the following discussion and throughout the man
ual, the term "card image" is equivalent to "source
line image II and is applicable to other input devices
as well as a card reader.

2-1 Digital Systems Division

Jd75\ _______ _ "i:Y' 943005-9701

2. 3. 1 EXPANDED JCL

Expanded JCL can specify the structure of individual job steps, the location
of the object program (load module) for each step, and the resources re
quired for each step. These specifications would normally be prepared once
for each type of job (e. g., FORTRAN compile, link, and execute) and saved
on a disc file for subsequent retrieval. Saving the JCL in card image form
requires reproces sing each time it is retrieved. To a void this reprocessing,
DX980 saves the JCL in a binary form by passing the card images through a
program that produces a savable binary image. Thereafter, the binary
images can be processed on subsequent retrievals. The utility program that
translates the card images to binary is called the JCL translator.

Expanded JCL is not recognizable to the DX980 operating system, but only to
the JCL translator program that runs as a job under DX980. Expanded JCL
is the input to the JCL translator.

2. 3. 2 ABBREVIA TED JCL

Abbreviated JCL, the mechanism for job submittal to DX980, is "cookbook,t
oriented. It allows a user to run a FORTRAN program by directing the op-
erating system to ItRUN FORTRANIt. The user does not have to specify the
detailed job step structure and resource assignments required to invoke the
two passes of the compiler, to activate the link editor and finally to execute
the program itself. This form must have a binary image of the expanded
JCL saved on a disc file under the appropriate name, i. e., ttFORTRAN't.
That is, the expanded JCL must be prepared and processed for the FORTRAN
example. However, this can be done by a systems programmer, leaving the
applications programmer to debug his FORTRAN program without having to
learn all ideosyncrasies of an expanded JCL.

In addition to invoking an existing JCL sequence (a sequence of expanded JCL
statements) by name only, abbreviated JCL allows modification of one or
more JCL specifications at runtime. For example, the original JCL speci
fications might have assumed that a FORTRAN source program would be sup
plied on cards when in fact the source for a particular program is stored on
a disc file. To satisfy this requirenlent, the user can specify at the time the
expanded JCL is prepared that any given JCL parameter is either:

(l) completely specified and cannot be modified at runtime,

(2) completely specified but can be modified at runtime, or

(3) not specified at all and must be supplied at runtime.

With this facility, the user of a JCL sequence can decide that the original
specifications or defaults are acceptable and invoke the sequence by name
only, or he can decide that modifications are required and can specify the
parameters to be modified. Abbreviated JCL is processed by the DX980 sub
systems or by the DX980 operator communications facility via the system
console.

2-2 Digital Systems Division

~~-----------------~ ~ 943005-9701

2.3.3 JCL TRANSLATOR

The JC L translator is a utility program that runs in user memory (as
opposed to running in memory that is allocated to the operating system).
This program translates expanded JCL statements into an internal binary
representation for later processinga Input to the translator can be supplied
from any of the standard 980 input devices (card reader, cas sette, magnetic
tape, disc files, etc.). Output from the translator can be stored on a disc
file for later submis sion. Since the translator is a utility program, it can
be invoked as any other user program by using abbreviated JCL form. The
saved JCL sequence for the translator is stored on the system disc together
with several other sequences that are supplied with each DX980 installation.

2.3.4 DX980 SUBSYSTEMS

In any particular DX980 installation one or more of the subsystems may be
active for submis sion of user jobs. For a system with a card reader the
Batch Processing Subsystem is active and user jobs can be submitted from
the card reader. For systems with several terminals attached, the Interac
tive Terminal Subsystem is normally active to allow jobs to be submitted
from any of the terminals. In any case, jobs can be submitted from the sys
tern console.

Job submission from each of these sources is consistent with the cookbook
Je L approach. The JC L sequence produced by the translator is retrieved
from a disc file, modified according to the user's specifications, and sub
mitted to the operating systern for execution.

2.4 JOB SUBMITTAL

Job subrnittal cornmands in DX980 are separated into two categories: JOB
cornrnands and RUN commands. The JOB command is required for a job sub
mis sian and identifies the user and the JCL sequence file to be used for that
particular job. The RUN cornmand represents abbreviated JCL and invokes
a particular JCL sequence from the JCL file specified in the JOB cornrnand.
When subrnitting a job via the system console or the Interactive Terrninal
Subsystem, only one JOB command is required. A job submitted for the
Batch Processing Subsystern requires a JOB comrnand for each RUN com
mand. The identifier, / /, must appear as the first two characters of a
source line image for both JOB and RUN comrnands. The systern console
supplies this identifier automatically; however, it rnust be specifically sup

plied when submitting jobs under the Batch Processing Subsystem. The Inter
active Terminal Subsystem does not require the double slash identifier. The
follo\ving conventions will be adhered to for all JCL descriptions throughout
this manual:

• Brackets [] enclose optional fields.

• Operands may be separated by either blank{s) or a single comma
with or without intervening blanks. Succes sive commas may be

2-3 Digital Systems Division

~-------~ 943005-9701

used to indicate a null operand. Both com.m.a (,) and the sym.bol,
~, denote specified field separations.

• All num.erical value param.eters m.ust be either decim.al (base ten)
or hexadecim.al (base sixteen). A num.eric param.eter is assum.ed
to be base ten unless it is im.m.ediately preceded by a "greater than"
sym.bol (» to denote a hexadecim.al value.

• The first character of a keyword or operand m.ust be alphabetic and
the rem.aining characters m.ay be either alphabetic or num.eric char
acters interm.ixed in any order unless specifically noted otherwise.

• A period term.inates a job control com.m.and or expanded JCL speci
fication. Com.m.ents m.ay be written after the period. If no com.
m.ents are written, the period is optional.

• If the num.ber of operands in a com.m.and exceeds the lim.its of a
single record, the com.m.and operands can be continued in succeeding
records by term.inating each incom.plete record with a sem.i-colon
(;). Continuation records m.ust begin past the first two spaces of
the record, since the first two space s will be ignored by the com.-·
puter. If the input is on the system. console, the com.puter auto
m.atically fills the se two positions with two periods (..) following a
record term.inated with a sem.i-colon. Operands m.ay then be entered
im.m.ediately following the two periods. The num.ber of continuation
records is unlim.ited. This option can be used with both expanded
and abbreviated JCL com.m.ands.

• Item.s shown enclosed in angle brackets « » are variables that m.ust
be supplied by the user when subm.itting the com.m.and to DX980.

2.4.1 JOBCCMMAND(JOB)

All jobs subm.itted to DX980 m.ust be preceded by a JOB com.m.and. JOB iden
tifies the user subm.itting a job, the nam.e of the job, and the file where the
JCL sequence to be executed is located. Two acceptable form.s of JOB com.
m.ands are as follows:

/ / JOB \6 < j sname>\6<userid>

/ fJOB ~ <jsnam.e>16 <userid>~ FILE=kvolum.e>,<fileid>,<filnam.>[,<pswd>])

In the first exam.ple containing no FILE specification, DX980 defaults to the
System. JCS file [FILE=(l, SYSTEM, SJCBFL, AB).].

2.4.1.1 JOB KEYWORD. JOB is the keyword that identifies the rem.ainder
of a record as a JOB com.m.and. JOB m.ust appear in positions three through
six of the input record. Following the JOB keyword are the com.mand oper
ands. The se operands are position sensitive and m.ust be separated by one
or m.ore blanks, or by a single com.m.a with or without intervening blanks.

2-4 Digital Systems Division

JdlY\ ______ _ ~ 943005-9701

2.4.1.2 < jsname> OPERAND. The nomenclature, <jsname> refers to a
nam.e that is from one to six characters long. This name remains with the
job throughout execution and represents the job name.

2.4.1. 3 < userid> OPERAND. The nomenclature < userid> refers to a
name that is from one to six characters long and that identifies the user to
the DX980 system. The < userid > operand appears only in the JOB command.
This operand identifies the disc directory that points to the disc files owned
by the user. Each directory is itself a disc file that contains information
about each of the files that belong to it. A utility program, CATLOG, that
is described later in this manual, creates and destroys the directories.
When created, each directory is given a unique name, represented by the
term< fileid>. A file may also be assigned an access restriction at the time
it is first defined. If access to the file is restricted to only the originator
(CREATOR) of the file, then the < userid > in the JOB command must match
the < fileid> of the target file before access to the file is granted.

2.4.1.4 FILE SPEC IFICATION. FILE specification identifies the JC L se
quence (JCS) file for a particular job. Each DX980 installation is supplied
with one file of commonly used JCL sequences referred to as the system
JCS file. In addition, users may c reate their own JCS file s for particular
applications. In either case the FILE specification directs the system to the
appropriate file. If the FILE specific ation is not explicitly provided, the
FILE specification defaults to the system JCS file [FILE=(l, SYSTEM,
SJCBFL, AB)]. The following paragraphs explain the parameters of the FILE
specific ation.

< volume> Operand. The nomenclature < volume> represents an integer num
ber that specifies the disc unit containing the JCS file. The DX980 system
disc is always disc number 1, and ahvays contains the system JeS file. Addi
tional disc units are labeled 2 through n (n ~ 20), and can be specified at
Initial Program Loading (IPL).

<fileid> Operand. The nomenclature <fileid> refers to a name that is from
one to six characters long, and that specifies the file directory containing
the JCS file. For the system JCS file this operand should be specified as
SYSTEM. For a user JCS file this operand must correspond to the < fileid>

that was specified when the JCS file was created.

<filnam> Operand. The nomenclature <filnam> refers to a name that is from
one to six characters long and that designates the file within < fileid> where
the JCL sequences are stored. The file name for the system JCS file is
SJCBF L. For a user JCS file this operand must correspond to the < filnam>
that was specified when the file was created.

2-5 Digital Systems Division

~-------~ 943005-9701

<pswd> Operand. The nomenclature <pswd> represents a name that is from
one to four characters long and that is required only if the JCS file was desig
nated for password'protection when it was created. Normally JCS files
would not be protected from reading (the process of acquiring a JCL sequence
from a file is a read operation) and this operand is not required. However,
if the file is password protected from reading, this operand is required and
must match the pas sword that was specified when the file was created. The
file, SJC BFL, is not password protected from reading.

2. 4. 1. 5 JOB EXAMPLES. The following examples illustrate the use of
the JOB command.

(1) / / JOB NAMEI SYSTEM

(2) / / JOB NAME2 USEROI

The job with job name "NAMEl"
will be run under the use rid "SYS
TEM". Defaults on the three re
maining JOB parameters are "1"
for <volume>, "SYSTEM" for
<fileid> and "SJCBFL" (acronym
for System JC L File) for < filnam>.

The job with job name "NAME2"
will run under the userid "USEROl li

The three default parameters are
the same as example one.

(3) / /JOB NAME3 SYSTEM FILE=(l, USEROl, JCLFIL)

2.4.2 RUN COMMAND (RUN)

The job with job name I'NAME3 II
will be run unde r the us e rid
"SYSTEM". The JCL sequence
will be retrieved from the file
name "JCLFIL" under < fileid>
"USEROl" on disc number one.
JCLFIL must have been previously
created or the job will abort with
a JCL error.

The R UN command is the control statement interpreted by DX980 subsystems
and operator communications as a request to submit a job. This command
and its operands comprise the abbreviated JCL for DX980 and must be sup
plied for each job submission. Only one RUN command is permitted within
a JOB command. Thus each job submitted to DX980 requires a single JOB
command followed immediately by a RUN command.

The format of the RUN command is as follows:

2-6 Digital Systems Division

Jd7)\ ______ _ "i:Y 943005-9701

2.4.2.1 RUN KEYWORD. The RUN keyword, following the command de
iimiter (//), identifies the remainder of the record as a RUN command.
This format is consistent whether the job is submitted via the Batch Pro
cessing Subsystem (BPS), or the operators console. If submitted under the
Interactive Terminal Subsystem (ITS), the command delimiter does not pre
cede the RUN keyword.

2.4.2. 2 < jc snam > OPERAND. The nomenclature < jc snam > refer s to a
name that is from one to six characters long and that represents a JCL se
quence within the JCS file specified in the JOB command. This operand
allows several JCL sequences to be stored in the same file with a unique
name for each sequence. This operand is an extension of the FILE speci
fication on the JOB command in that the FILE specification directs the sys
tem to the appropriate JCS file and <jcsnam> specifies the JCL sequence to
be invoked.

2.4.2.3 USER DEFINED KEYWORDS (k1 , k2' ... , k n). The user defined
keywords in the RUN command permit modification of JCL parameters at
runtime. Changing parameters is frequently required when the default speci
fications for one or more resource assignments do not match the require
ments for a particular job submission. When expanded JCL is prepared for
input to the translator, the individual parameter specifications may include
a user defined keyword which allows those parameters to be overridden.
Selection of the keywords is at the discretion of the programmer preparing
the JC L sequence. For example, a user defined keyword for specifying the
master data file input to a payroll program might be specified as IfMASTF L!!
in one environment and as "PAYFIL" in another.

All user defined keywords supplied in the RUN command must match the
corresponding keywords in the expanded JCL. Unused keywords in the ex
panded JCL assume their default values. If no default was specified, a JCL
error results.

2.4.2.4 PARAMETERS FOR USER DEFINED KEYWORDS. The nomen
clature "p1 P2 ... Pn" represents either numeric or mnemonic values to be
substituted into the JCL sequence <jcsnam> that the system retrieves from
the < filnam> file. The size of the numeric values must fit within the limits
of the parameter being replaced. For example, if priority were the variable
being specified, lip II must be between 1 and 31.

2.4.2.5 RUN EXAMPLES. The following examples illustrate the use of the
RUN command to invoke the JCL translator. A list of the expanded JCL for
the translator is included in Appendix B of this manual.

(1) / /RUN JCL

2-7

!! JCLl! is the < j C snam> for the
JCL translator. This sequence is
stored in "SJCBFL" under the
fileid "SYSTEM!'. This example

Digital Systems Division

~-------"i:Y' 943005-9701

invokes the JCL translator with
standard default as signments for
input and output. The standard
defaults are listed in the JCLTRN
JCS in Appendix B of this manual.

(2) / /RUN JCL DSRC=CR2,. DERR=LPI, DLST=LPI

Run the JCL translator with over
ride parameter s "LPI" (line
pr inter number 1) for DERR (er
ror me s sage s) and for DLST
(JCL listing), and with "CR2"
(card reader number 2) for
DSRC (JCL source device).

(3) / /RUN JCL OBJ=(USEROl, JCL, RLK)

2.5 EXPANDED JCL SPECIFICATION

Run the JCL translator with de
fault parameters for DSRC, DERR
DERR and DLST; use override
parameters "JCL" for the file
name under fileid "USEROl"
with password "RLK".

The following sections describe the format of JCL translator input. A de
scription of the output is not appropriate at this point since it is onlyacces
sible to the DX980 subsystems. However, this information is available in
Section V within the description of the Start Job supervisor call.

2.5.1 JCL TRANSLATOR INPUT FORMAT

All input commands to the JCL Translator require a single / (slash) as the
first character of the source line image. This is followed by a legal com-

CREATE

REPLACE

DELETE

EXEC

ASSIGN

END

2-8 Digital Systems Division

Jd7)\ ______ _ ~ 943005-9701

These commands are explained later in this section. There are three accept
able formats for these input commands as follows:

(1) / COMMA ND < keyword> ••.

(2) /C01tfMAND < key-word>=<value > ...

(3) / COMMA ND < keyword>:=< la bel> ••.

2.5.1.1 FORM ONE. The nomenclature < keyword> represents a binary
condition that is either iitrue ii or iifalse ii. There is always one < keyword>
for the "true" condition and another for the "false" condition. If both
<keyword>s are specified for the same operand, the dual assignment will be
detected as a JCL error.

2.5.1.2 FORM TWO. The notation <keyword>=<value> assigns a value or
values to a particular <keyword> or <keyword>s respectively. This form
tnay be used in either of the two formats as follows:

a) <k1>=<P1>,<kZ>=<PZ>'·· .,<k~ =<Pri

b) <k>= kPl>'<PZ>'·· .'<Pn»

If the second format is used, a11 parameters are positional and must be sup
plied or replaced with successive commas.

2.5. 1. 3 FORM THREE. The notation <keyword>:=<label>, permits the
user to specify a label which becomes a <keyword> in the RUN command for
operand replacement at job submittal. The translator will accept a combina
tion of form three and either form one or form two for the same operand.
This combination creates an operand that may be submitted with an appro
priate default value if not overridden in the RUN command. Form three must
be used if the operand is to be supplied when the job is submitted.

2.5.1.4 DEFAULTS. Each operand in a given command must either be
supplied in one of the three forms or have an acceptable default value of
zero. When operands are required but not supplied, DX980 inserts zero for
the operands. If the default zero is not acceptable, omission of an operand
results in a JCL error. Table 2-1 lists the JCL operand defaults.

2-9 Digital Systems Division

~-------~ 943005-9701

Table 2-1. JCL Operand Defaults

Command Parameter Default Value

EXEC PROT/PRIV PROT

ASSIGN EXCLUSIVE/SHARE EXCLUSIVE

RELEASE / PASS RELEASE

OLD/NEW /REPLACE OLD

SAVE/DELETE SAVE

PASSWORD 0

2.5.2 CONTROL COMMANDS

The first input record to the JCL translator must be a CREATE, REPLACE
or DELETE command. The fo rmats for this command are as follows:

/CREATE <jcsnam>

/REPLACE <jcsnam>

/DELETE <jcsnam>

The CREATE command adds a new JCL sequence, the REPLACE command
replaces an existing sequence, and the DELETE command deletes an existing
sequence in the JCS file. 1£ CREATE or REPLACE is specified, additional
input is expected after the command to define a new sequence. If DELETE
is specified, no additional input is expected other than a /END command to
terminate the operation. The name of the JCL sequence is <jcsnam>. Sub
sequent RUN commands to invoke the sequence must specify the same
< jcsnam>.

2. 5. 3 EXECUTE COMMAND

Each job step defined for a sequence must begin with an Execute (EXEC)
command. This command contains information to set up the execution en
vironment for the program to be run. Input and output information is not in
cluded. If there are multiple steps in a sequence, each step must begin with
an Execute command. The Execute command supplies the following informa
tion about a program:

• object program

• memory usage

• priority

2-10 Digital Systems Division

~-------~ 943005-9701

• time limit

• execution mode

The format of the execute command is as follows:

/EXEC operands

The Execute operands may appear in any order following the com.m.and. The
following paragraphs explain each operand.

2.5.3. 1 OBJECT PROGRAM SPECIFICATION. The object program speci
fication operand supplies the location of the disc file that contains a binary
memory image of the object program. The object file to be used as input
must have been previously created by DXOLE. There are four parameters
required to access a unique object file. The format of these parameters is
as follows:

OBJV=<volume>

OBJN=<userid>

OB JF =<filnam>

OBJP=<pswd>

An optional form can also be used:

OBJ=«volume>, <userid>, <filnam>, <pswd»

The OBJ parameters can be interpreted in the same manner as the corres
ponding parameters in the JOB command. For example, <volume> is an
integer number from 1 to n that indicates a particular disc drive unit where
the object file is located. The other parameters are user assigned. The
<pswd> parameter is required only when the file is password protected for
the execute attribute.

2.5.3. 2 MEMORY USAGE SPECIFICATION. The memory usage specifica
tion refers to the runtime memory allocation for the object program, file/
device buffer s, and user control information. All memory specifications are
represented in units of memory words (16 bits per word). Three parameters
are required to completely specify user memory and are input in the follow
ing format:

MEMT=<stksiz>

MEMU=<jarea>

MEMJ =<je area>

or in the optional form:

MEM=«stksiz>, <jarea>, <jearea»

2-11 Digital Systems Division

~-------~ 943005-9701

The pararneter <stksiz> specifies the stack size supplied for the initial user
task created by DX980 when the job is started. This rnernory area is used
for ternporary storage whenever a Supervisor Call (SVC) is executed by the
user prograrn (the DX980 SVC s are discussed in Section V.) Since the
DX980 SVC s are generally reentrant, execution of an SVC require s a work
area for storage of local variable s. If several reentrant rnodules are exe
cuted to perforrn the SVC function, the work areas for each rnodule rnust be
stacked as the SVC is processed. This work area stack rnust be supplied
within the user prograrn's job extension area.

Although each DX980 SVC requires a different arnount of rnernory for the
work area stack, the I/O SVC s require the largest arnount. Thus, a < stksiz>
specification that satisifes I/O SVCs will also satisfy the rernaining SVCs.
The two types of I/O SVCs are I/O calls either to peripheral devices or to
disc. I/O to peripheral devices requires approxirnately 125 words of
<stksiz>, whereas disc file I/O calls can require up to 300 words. There
fore, specify 125 words if there are no disc files as signed and 300 words
otherwise. Either size will be sufficient to handle all other SVC s. This
<stksiz> specification applies only to the first task. Other tasks within the
job define their own stack allocation.

The pararneter < jarea > defines the prograrn job area for storage of the user's
object prograrn plus any work space required by that prograrn. The size of
an object prograrn can be deterrnined frorn the output of the DX980 Linkage
Editor DXOLE. If the prograrn was subjected to a pre -planned overlay when
input to the Linkage Editor, <jarea> rnust be large enough to accornrnodate
the longest or largest overlay segrnent plus three words per phase (including
the root phase) for overlay directory. This inforrnation is also available
frorn the Linkage Editor.

If the user requires a prograrn with a dynarnic work area that can be speci
fied at runtirne, <jarea> rnust specify sufficient rnernory for both the object
prograrn and the work space. The user program can then deterrnine avail
able mernory for the run through Get Mernory supervisor calls within the
prograrn logic. This concept 5 s particularly useful to allow the arnount of

• , - ," - --- _ _ !r! _.:I _L ~ •• _L=_~ _ ... 4-l-.,..,. ... 4-h.".., 'tTTha.., f-ho n ... r'\(",("'~'I"Y"I program. worKspace {;O De Opt::L:ll.lt::U cU. 1. U.Ul-LU . .LC .L a,,,J..L\....L ... J. u .. ~~'-' 1"'" ~b'" ~~~~

is com.piled.

The param.eter <jearea> defines the user prograrn job extension area and
refers to that portion of the user's rnem.ory region used for file or device
buffers and control inform.ation. This 'area, though not directly accessible
from. a user program., m.ust be supplied for execution of the program..

The determ.ination of the < je are a > size is rnuch m.ore diffic ult thah that of
<jarea> because the size of <jearea> is dependent on the logic of the user
program. and will vary throughout the cour se of program exec: utions. The

2-12 Digital Systems Division

J17.sl ______ _ ~ 943005-9701

fol1owing a1gorithrn, though not exact, provides a guideline for the specifica
tion of <jearea>:

{

NF NB

<jearea> = rnax ~ ~
i= 1 j= 1

(B5
i

+ 1) + 17"'NT + 7':'NL + 55 + 11 }

where
NF = Nurnber of files assigned to the job step

NB = Nurnber of buffers requested for each file

BS = Block size

NT = Nurnber of co-resident prograrn tasks

NL = Nurnber of logical units (LUNs) assigned concurrently to the job step

SS = Dynarnic T CB stack requirernents

Since the terms inside the braces vary as a function of the number of files or
devices that are open and of the number of concurrent tasks that exist, the
user must determine the maximum value of the expression to specify <jearea>
size.

The first term, disc file blocksize, is the sum of all blocking buffers that
coexist at any instant in time plus one word of overhead for each block.
Since memory is allocated to blocking buffers only when a file is open, this
term varies according to the disc file activity in the user program. If mul
tiple buffers are specified for a single disc file, each buffer m.ust be ac
counted for.

The second terrn encornpasses the rnernory requirernents for task control
blocks. Each task control block require s 1 7 words. Therefore, this term
can be determined by rnultiplying the number of tasks that exist at any instant
in time by 17. The operating systern creates one task for the user job when
the job is started. Therefore, there is always at least one task control block
in the job extension area. Any additional tasks are directly created by the
program using the Create Task supervisor call (Section V), or indirectly
created by the program using an Initiate I/O supervisor cal1 (Section III).

The third terrn provides space for Logical Device Tables (LDT). There is
one LDT for every file or device assigned to the job. Thus, this term can be
determined as the number of logic al units as signed multiplied by 7 (the size
of each LDT).

The fourth terrn, TCB stacksize, is a companion to the <stksiz> parameter.
The memory specified for < stksiz> is allocated from the job extension area
when the initial user task is created. If the user creates additional tasks
within the program, the < stksiz > specification for the additional tasks must
be supplied with the create task SVC. As each task is created, the memory
required by the accompanying < stksiz > is also allocated from the job exten
sion area. Thus the TC B stack size term must provide sufficient memory to
accommodate all concurrent tasks.

2-13 Digital Systems Division

~--~----~ 943005 -9701

The fifth term, a constant 11, is due to overhead required by the DX980
memory manager for control info,rmation, plus one extra LUN assignment
that is made by the operating system for every user program.

Examples:

(1) MEM=(l25, 2000, 152)

(2) MEM=(300, 4000, 91 7)

2-14

Allocate memory for a program
with a single task and two LUN
assignments to non-disc peri
pherals. The interpretation of
this specification is:

(1) <stksiz> of 125 words pro
vides a stack for I/O to non
disc peripherals

(2) <jarea> of 2000 words for the
object program. This num
ber is output from DXOLE.

(3) <jearea> of 152 words accounts
for one co -re sident prograrn
task (1 7 words, two LUNs
(l4 words), 125 words of TC B
stacksize, and 11 words of
overhead.

Allocate memory for a program
with two tasks, one system cre
ated task and one user created
task, and two LUN assignments
to disc files, each with a physical
record length of 128 words. The
interpretation of this specification
is:

(1) < s tksiz > of 300 words for file
I/O

(2) <jarea> of 4000 words as
specified on the DXOLE load
map

(3) <jearea> of 91 7 words accounts
for two co -re sident program
tasks (34 words), two LUNs
(14 words), two physical rec
ord buffers (258 words), 600
words of TC B stacksize (as
suming that the user created
task was also created with a
<stksiz> specification of 300
words for disc I/O), and 11
words overhead.

Digital Systems Division

~~------------------~ 943005-9701

2.5.3.3 PRIORITY SPECIFICATION. Priority specifies the priority of the
job step at execution, and the num.ber of unique priority levels needed within
the step. This inform.ation is input to the DX980 com.putations which provide
resources to the resultant program. during job subm.ission and program. exe
cution. When the job is subm.itted, this job step contends for system. re
sources such as m.em.ory and peripherals along with all other job steps wait
ing to be initiated. When the job is executed, scheduling of the CPU is also
determ.ined by priority. The required param.eters and appropriate m.nemonic

, I· (" ,.,

representanons are as IOllO\VS:

PR T L=<nprty>

PR TS=<j sprty>

or in the optional form:

PRTY=«nprty>, <jsprty»

The nomenclature <nprty> represents the number of task priority levels and
is greater than one only if the program uses the multi -tasking feature of
DX980. This number corresponds to the maxim.um num.ber of separate task
priority levels (not the number of separate tasks) that may be created within
the user program.. Several tasks may share a common priority level.

The notation < j sprty> repre sents the job step priority, \x!hich is the priority
as signed to the job step for scheduling pur po se s and to the initial task c re
ated by the operating system. The limits on <jsprty> are 1 to 31 where 1 is
the highest and 31 the lowest priority permissible to a user program. More
than one job may execute concurrently while sharing a common priority
level.

When a job step is subm.itted; DX980 checks the lim.its of the priority param.
eters as follows:

1 ~ <nprty> ~ 31

1 ~ <jsprty> ~ 31

1 ~ <nprty> + <jsprty> ~ 32

The limits on each' parameter are due to the priority lim.its in DX980. The
combined limit is due to the method of creating one task from. another in
DX980. If the user program create s additional tasks, the priority of each
created task is specified relative to the job· step priority (0, 1, 2, etc.),
where the relative numbers are always positive. Thus, a task cannot be
created from a user program with a higher priority than the job step priority.
However, tasks can be created with priority equal to or lower than job priority.

2-15 Digital Systems Division

~-------~ 943005-9701

If any task is created with a priority lower than 31, the creation will be rec-
0gnized as a fatal error and the job will be aborted. This criteria produce s
the combined < nprty> and <jsprty> limit.

Examples:

PRTY=(1,15)

PRTY=(2,1)

This job step contains only one
task priority level. Both the job
step and the task(s) created for
program execution are assigned
priority 15.

There are two task priority levels
-in this job step, levels 1 and 2.
The job step is assigned priority
1 .

2.5.3.4 TIME LIMIT SPECIFICATION. Time limit specifies the maximum
amount of time for execution to be allotted to a job step. The time monitored
represents actual time that the program has control of the CPU (rather than
wall-clock time). If the program has not terminated normally when the time
limit pas ses, the operating system abnormally terminates the program.
Time parameter format is as follows:

TIME= time limit in seconds

To instruct the translator and operating system to run a job with an infinite
time limit, set the time limit to a minus one: TIME= -1. This input is in
terpreted as a directive to ignore timeout checking completely.

2.5. 3. 5 EXECUTION MODE SPECIFICATION. Privileged or protected re
fers to the mode of the program during execution. Normally user programs
run in the protected mode so that they are prevented from damaging the op
erating system. System programs always run in the privileged mode, allow
ing them to move freely within available memory. The format of this param
eter is as follows:

PRIV

PROT

2. 5. 3.6 EXECUTE COMMAND EXAMPLE. The following input sample
illustrates the use of the EXEC command:

/EXEC OBJ=(l,SYSTEM,ASMBLR), MEM=(300, 5000, 1000), PRTY=(1, 15);

/TIME=-l MEM:=MEM, PRTY:=PRI, TIME:=TIM

2-16 Digital Systems Division

943005-9701 ~ ---
2. 5.4 ASSIGNMENT COMMAND

Each job step must define the logical units for I/O operations. I/O assign
ments are not carried forward from one job step to another. Therefore, an
as signment cOITlmand must be included for each Logical Unit Number (LUN)
referenced during execution of each job step, except when using the Execution
Time Allocate SVC (see Section V). An assignment command has a slash (/)
in column 1 and the keyword !!ASSIGN!! in columns 2-7. Following ASSIGN,
the as signrnent operands may be specified in the same three forrns as on the
execute command. For convenience, however, the logical unit number and
device name operands may be specified positionally, logical unit number first
and device name second, or with the < keyword>=<value> form. As \vith all
operands, the < keyword>:=<label> form can provide override capability when
the job is submitted.

Each assignment command in each job step must have the following minimal
information:

• LUN

• device name

• device sharability

• device disposition

If device name specifies a random access device (moving head disc),

then the following information m.ust be supplied also:

• file creation

• file identific ation

e file di spo sition

• number of file buffers (key indexed files only)

1£ file creation is specified as !!NEW1!, then the following must also be speci

fied:

• file type

• file integrity

• file allocation

• key length (key indexed file s only)

• logical record length (relative record files only)

Each operand, together with the operand limits and default value, if any, is

described in the following sections.

2-17 Digital Systems Division

~ ____ 9_4_3_0_0_5_-_97_0_1 __ __

2. 5.4.1 LUN OPERAND. LUNs provide a consistent method of communi
cation between a user program and the DX980 I/O system. All I/O requests
from a user program must be accompanied by a LUN. Each LUN must be
coupled to a physical device or file through the assignment command. This
feature allows I/O requests in a program to be device independent, and de
fers the actual device assignments until the program is submitted for execu
tion. The LUN operand can take either of the following forms:

LUNO= <lun>

or

/ASSIGN <lun>

The notation < lun > is a decimal number in the range of 0 to 250 (LUNs from
251 through 255 are reserved for operating system use), and must be unique
within a job step. Duplicate assignments of the same LUN within a job step
will be recognized as an error. However, the same L UN can be used by
more than one job, since each assignment applies only to a specific job.

2.5.4.2 DEVICE NAME. Device names refer to the mnemonics that rep
resent the physical devices attached to the computer. The translator accepts
any of the permissible device mnemonics that could exist for a DX980 instal
lation. If an as signed device does not actually exist, one of the subsystems
detects the error when the job is submitted and the job is aborted. The
DEVICE NAME operand can take the form of either of the following forms:

DEVICE=<devnam>

or

/ASSIGN <lun> <devnam>

The notation <devnam> represents a user supplied mnemonic that must be
selected from the list in table 2-2.

Mnemonic

DISCl-DISCn
n ~ 20

KEY1-KEYn

CRTl-CRTn

SC

Table 2-2. Suggested Device Names

Device Index
Range

1 - 20

21 - 30

Device Description

Disc (Moving head or DS330) 1 through
n, n ~ 20

Teleprinter keyboard (ASR/KSR 33, 730,
733, 735) 1 through n

Video display 1 through n

System console data term~nal (Tele
printer keyboard or video display)

2-18 Digital Systems Division.

~~------------------~ 943005-9701

I

Table 2-2. Suggested Device Names (Continued)

Mnemonic

MTI-MTn

LPI-LPn

CRI-CRn

PTRI-PTRn

PTPI-PTPn

DMI-DMn

ADDA 1 -ADDAn

CS 11 , CS 12, ... ,
CSnl, CSn2

DUMMY

SYSIN

SYSOUT

TERMIO

I

Device Index
Range

31 - 40

41 - 50

51 - 60

61 - 70

71 - 80

81 - 90

91 - 100

101 - 110

255

Device Description

Magnetic tape 1 through n

Line printer 1 through n
I

Card reader 1 through n

Paper tape reader 1 through n

Paper tape punch 1 through n

Data module interface devices 1
through n

Analog -to-digital/ digital-to-analog con- I
verter 1 through n

Cas sette 1 on teleprinter 1 through
cas sette 2 on teleprinter n

Dummy device - responds with an im
mediate end-of-file on input and with
no-op on output

System input spooler

System output spooler

Interactive terminal log on device

2.5.4.3 DEVICE SHARABILITY. A device or file can be designated as
either shared or exclusive. These attributes are specified by the binary rep
resentation of the keywords "SHARE" or "EXCLUSJVE". The default value is
exclusive. If a device or file is exclusively assigned to one job, then any
other job that is submitted with an assignment to that device or file, either
shared or exclusive, will not be started until the first job releases it. If a
device or file is selected as shared by all assigning programs, then all pro
grams may run concurrently.

2.5.4.4 DEVICE DISPOSITION. The device assignment may be kept or re
leased when the current job step is completed. This choice is specified by
the binary keywords "RELEASE" or "PASS". The default value is release.

Assignment passing in DX980 is extremely useful for multi-step jobs that re
quire the same file or device in more than one step. Further, passing a de
vice or linked sequential file will cause the physical position to be maintained

2-19 Digital Systems Division

~-------~ 943005-9701

between job steps (key indexed and relative record files do not hold position
between steps). Even though passed, a device must be assigned to a LUN
for the next job step.

The passing of only a portion of the required resources for a job string can
cause a resource deadlock. However, DX980 guards against any deadlock by
cancelling jobs that have passed resources from a previous job step and that
are also requiring-unavailable resources. Thus, to prevent a job cancella
tion caused by the running job environment, the user should specify that all
resources are passed from job step to job step.

2. 5.4. 5 FILE CREATION. A file may be either old, new, or a replace
ment. These attributes are specified by the binary representation of the key
words "OLD", "NEW" and "REPLACE" which are defined as follows:

• OLD: File already exists {default value}.

• NEW: Create a file. Error if file already exists.

• REPLACE: Replace file if it is there; create a file if it is not there.

2. 5.4.6 FILE IDENTIFICATION. A file is accessed via a file directory
{or dictionary} and file name, and can be protected by a password. The
directory, name and pas sword can be specified with either of the following
formats:

or

FILDIR=<fileid>

FILNAME=<filnam>

P ASSWORD=<pswd>

FILE=«fileid>, <filnam>, [<pswd>])

The <fileid> and <filnam> parameters are identical to the <fileid> and
<filnam> parameters in the JOB command. A special case of the <fileid>
parameter is provided for temporary files. The user can specify a file for
use only during a job string, by entering a <fileid> of !!TEMP". This file is
never entered into a User File Directory, but is totally unique to the job
string using it. The file creation parameter should be NEW for the first ref
erence to a temporary file, and OLD for subsequent references. All other
parameters are specified as usual. The file is deleted at the end of the job
string unles s deletion is specifically called for at the end of a job step by the
DELETE directive.

The notation <pswd> denotes a user supplied password that is used in con
junction with file integrity to control file access as described under !!File
Integrity" in this section. If this parameter is specified when a file is cre
ated, it will be required to access the file. Otherwise, <pswd> is ignored.

2-20 Digital Systems Division

~-------~ 943005-9701

2.5.4.7 FILE DISPOSITION. The user can choose to either delete or save
a file after a job step. These two alternatives are specified by the binary
keywords:

SAVE

DELETE

The default value is SA,VE. H the device disposition parameter was !'PASS!',
specifying !'DELETE" produces an error condition that is detected by the
operating system.

2. 5.4. 8 FILE BUFFERS. Linked sequential files always require one buf
fer. Relative record files require no buffers if the logical record length
equals the physical record length (unblocked), and require one buffer if the
logical record length is les s than the physical record length (blocked). These
specifications are fixed and are unaffected by user input in JCL. However,
file management supports a variable number of buffers for key indexed files.
For a sequential access of the data records within a key indexed file, only
one buffer is required. For keyed access, a minimum of two buffers is re
quired: one for key records and one for data records. Using more than two
buffers for these files reduces the amount of disc I/O required and increases
program speed. Therefore, the number of buffers as signed to a key indexed
file is controlled by the user through the Buffers specification.' The format
for this specification is:

BUFFERS=<nbufs>

2.5.4.9 FILE TYPES. A file may be either linked sequential, relative
record, or indexed. These attributes are specified by the binary representa
tion of the keywords "LINKSEQ", "RELREC", and "INDEXED'!. There is no
default for file type, so it must always be specified. See Section IV for a de
scription of the three file types.

2. 5.4.10 FILE INTEGRITY. Files can be accessed under DX980 for one
of four functions: read, write, delete, or execute. Data management pur
poses frequently require unlimited access to a file for one or more of these
function, but only limited access for others. Therefore, DX980 provides an
integrity mechanism for each of these functions. For example, DX980 can
be instructed to allow any user acces s to a file for reading but require a
password for access during writing or deleting. The format for supplying
integrity codes (only appropriate for newly created files) is either:

READCODE=<integ>

WRIT CODE=<integ>

2-21 Digital Systems Division

~-------~ 943005-9701

or

DELCODE=<integ>

EXECODE=<integ>

ACCESS= « integ>, <integ>, <integ>, <integ»

The notation < integ> represents the integrity code supplied for each function.
Select the code from the list of values in table 2-3.

Table 2-3. File Integrity Codes

Code Access Granted To

ANY

PSWD

All users for the specified function.

User with password only (those users
that specify a <pswd> parameter cor
responding to the < pswd> parameter
of the file).

I
CREAT Creator of the file only (the users that

specify a <pswd> parameter correspon
ding to the <pswd> parameter of the file
and whose <userid> in the JOB command
matches the <fileid> of the file).

I

NONE No one (no access allowed for the speci
fied function).

An "ANY" code specifies unlimited access, and allows a user to access the
file for any specified funct}on for which he knows the appropriate <fileid>
and < filnam>. In this case the < pswd> parameter is not required for file
specification.

A "PSWD" code specifies that access for the associated function is possible
only if the proper <pswd> parameter is supplied in file specification. When
a file is created with "PSWD" specified for a function, a <pswd> parameter
must also be supplied during file specification. Integrity code violations are
detected when the accessing program is running rather than when it is sub
mitted. For each I/O request DX980 verifies that the I/O opcode is valid for
the integrity code that was established when the file was created.

A "CREAT" code specifies that the <pswd> parameter must match the <pswd>
parameter of the file and that the <userid> parameter in the JOB command
must match the <fileid> parameter in the file specification operand for a user
to gain acces s for the as sociated function.

Change 1 2-22 Digital Systems Division

~-------~ 943005-9701

A !!NONE!! code specifies that access is prohibited for the associated function.
NorlTIally, the only function that has '!NONE I! specified for an integrity code
is "EXECODE!!; however, "DELCODE '! may also be specified as !'NONE".
The JC L translator ensures that '!NONE!! is not specified for READCODE or

WRITCODE, and flags such a specification as a JCL error. A "NONE!I code
is automatically specified for EXECODE in the case of linked sequential and
key indexed files since those file types are not compatible with the program
loader in DX980.

2. 5.4. 11 FILE ALLOCATION. File allocation refers to the allocation of
file space on a disc. This operand is pertinent only for files being newly
created (NEW or REPLACE). Under DX980 the user must specify the initial
and maximum space allocation, plus the physical record size of the file that
will occupy the space. The user can also indicate to DX980 where the file is
located on the disc. The format for supplying this information is one of the
following:

or

INITIAL=<itrks>

LOCN=<trknum>

PRECL=<prwrds>

lv1AXTRACK:::< n1.trks>

ALLOCATE= «itrks>,< trknum>,<prwrds>,< mtrks »

The nomenclature <itrks> represents the initial number of disc tracks that
are allocated to the file when the file is created. If the file type operand is
"R ELREC", the initial allocation is forced to match the maximum. allocation
because relative record files must be stored contiguously on the disc and
cannot grow. For the other file types, however, the file organizations are
noncontiguous and allow the file to grow beyond its initial allocation. The
default value for <itrks> is 1.

The nomenclature <trknum> represents the disc track where DX980 will start
searching for space to allocate to the file. The track allocation m.echanism.
in DX980 starts searching for the num.ber of tracks specified in <itrks> at
track number <trknum> and continues the search until it finds sufficient con
tiguous space to satisfy the request. Normally the search starts at track 0
and continues across the entire disc if necessary. Although disc tracks on a
m.oving head disc are not physically constructed in ascending order across
the disc, they are considered as such for the specification of <trknum>. In
general, specifying a nonzero <trknum> may be used to position the new file

close to another file.

Change 1 2-23 Digital Systems Division

I

~--------~ 943005-9701

I

I

This specification is useful only to reduce head movement on a moving head
disc drive when both files are accessed by a single program. This arrange
ment can result in a significant throughput increase for I/O bound programs
that access more than one disc file.

The notation <prwrds> designates the number of words in each physical rec
ord. Each physical record stored on the disc is preceded by a record
header. The moving head disc has a header at the beginning of each disc
sector regardless of physical record length and individual track formatting
is unnecessary. The DS330 disc system requires track formatting that in
volves writing record headers at theoeginning of each physical record across
the entire track. Various track formats are shown in table 2-4 for the DS330
dis c type. Maximum value s for <prwrds> are shown in table 2- 5. Formatting
time for DS330 is 80 ms/track and occurs when the tracks are allocated to
the file, either initially or when expanding to another track. Since the disc
systems supported by DX980 store data in blocks of 32 words, it is neces sary
to constrain <prwrds> to multiples of 32 words. Furthermore, since physical
record length is analogous to blocking buffer size, memory allocation for the
job extension area «jearea> in the JOB command) must comprehend the
physical record length of each file assigned to a program.

The parameter <mtrks> defines the maximum number of tracks that are allo
cated to a file that can grow, and in particular, to linked sequential and key
indexed files. The initial allocation «itrks» for these file types is m.ade
when the file is created. When an operation tries to add data after the ini
tial allocation is used up, the file grows one track at a time until either the
additions are completed or the number of tracks specified by <mtrks> is
reached. In the latter case, the offending program terminates abnormally
afte r file management allocate s one extra track to perform the w rite ope ra-

tion in progress.

Examples:

(1) A L LOCA T E = (1, 0, 32, 1)

(2) ALLOCATE=(5, 100,512,10)

Change 1 2-24

Alloc ate 1 initial track, starting
the search at track O. Format
each physical record into 32
words and allocate no more than
1 track regardless of program
activity.

Allocate 5 initial tracks, starting
the search at track 100. Format
each physical record into 512
words and allow the file to grow
to a maximum of 10 tracks.

Digital Systems Division

~-------~ 943005-9701

Table 2-4. DS330 Disc Form.atting

Records/Track Sectors /Record Word s / Record Useful Efficiency
<prwrd> Words /Track

88 1 32 2816 41.90

44 2 96 4224 62.86
I 29 ., 160 4640 69.05 :J

22 4 224 4928 73.33

17 5 288 4896 72.86

14 6 384 5376 80.00

12 7 448 5376 80.00

11 8 512 5632 83. 81

9 9 576 5184 I 77.14

8 10 672 5376 80.00

8 11 736 5888 87.62

I 7 12 I I

800 5600 I 83.33

6 13 864 5184 77.14

6 14 960 5760 85.71

5 15 1024 5120 76.19

5 16 1088 5440 80.95

5 17 1152 5760 I 85.71

4 18 1248 4992 74.29

4 19 1312 5248 78. 10

4 20 1376 5504 81. 90

4 21 1440 5760 85.71

4 22 1536 6144 91. 43

3 23 1600 4800 71.43

3 24 1664 4992 74.29

3 25 1728 5184 77.14

3 26 1824 5472 81.43

3 27 1888 5664 84.29

Change 1 2-25 Digital Systems Division

~)\-------~ 943005-9701

Table 2-4. DS330 Disc Forlllatting (Continued)

Records /Track Sectors /Record Words / Record Useful Efficiency
<prwrd> Words / Track

3 28 1952 5856 87.14

3 29 2016 6048 90.00

2 30 2112 4224 62.86

2 31 2176 4352 64.76

2 32 2240 4480 66.67

2 33 2304 4608 68.57

2 34 2400 4800 71.43

2 35 2464 4928 73.33

2 36 2528 5056 75.24

2 37 2592 5184 77.14

2 38 2688 5376 80.00

2 39 2752 5504 81:90

2 40 2816 5632 83. 81

2 41 2880 5760 85.71

2 42 2976 5952 88.57

2 43 3040 6080 90.48

2 44 3104 6208 92.38

1 45 3168 3168 47.14

1 46 3264 3264 48.57

1 A"7 "2"2?Q 3328 49.52 ":1:1 -'...J"-'IJ

1 48 3392 3392 50.48

1 49 3456 3456 51.43

1 50 3520 3520 52.38

1 51 3616 3616 53.81

1 52 3680 3680 54.76

1 53 3744 3744 55.71

1 54 3808 3808 56.67

Change 1 2-26 Digital Systems Division

J17~ ______ _ ~ 943005-9701

Table 2-4. DS330 Disc Form.atting (Continued)

Records/Track Sectors /Record Words /Record Useful Efficiency
<prwrd> Words/Track

1 55 3904 3904 58.10

1 56 3968 3968 59.05

1 r::.7
oJ I 4032 I

An')')
<±V:JL. I 60.00 I

1 58 4096 4096 60.95

1 59 4192 4192 62.38

1 60 4256 4256 63.33

1 61 4320 4320 64.29

1 62 4384 4384 65.24

1 63 4480 4480 I 66.67

1 64 4544 4544 67.62

1 65 4608 4608 68.57

1 66 4672 I 4672 i 69.52 , I
1 67 4768

I
4768 I 70.95

1 68 4832 4832
.

71.90 I I
1 69 4896 4896 72.86

1 70 4960 4960 73.81

1 71 5056

I
5056 I 75.24

1 72 5120 5120 I 76.19

I 1 73 5184 5184 77.14
•

1 74 5248 5248 I 78. 10

I I
1 75 5344 5344 I 79.52 !
1 76 5408 5408

j

I 80.48

1 77 5472 5472
I , 81.43

I I
1 78 5536 5536 ~ 82.38 I

i

1 79 5632

I
5632

I
83.81

1 80 5696 5696 84.76 e

1 81 5760 5760 85.71

Change 1 2-27 Digital Systems Division

Jd7s\,O ______ _ ~ 943005-9701

Table 2-4. DS330 Disc Formatting (Continued)

Records/Track Sectors /Record Words /Record Useful Efficiency

<prwrd> Words / Track

1 82 5824 5824 86.67

1 83 5920 5920 88. 10

1 84 5984 5984 89.05

1 85 6048 6048 90.00

1 86 6112 6112 90.95

1 87 6208 6208 92.38

1 88 6272 6272 93. 33

Table 2-5. Maximum <prwds> Physical Record Lengths
for Disc Files

File Type DIABLO Type Disc DS330 Type Disc

Relative Record 2816 (full track) 6272 (full track),

Linked Sequential 1408 (half track) 3104 (half track)

Key Indexed 2816 (full track) 6272 (full track)

2. 5.4. 12 KEY LENGTH. The length of keys for new indexed files can be
specified as in the following format:

KEYLEN=<klchar>

The notation <klchar> represents the number of characters in each key for a
key-indexed file and must be in the range of I to 30. The physical record
lpnO'th TYlIH~t hp. ;:thlp. to hold at least 2 keys nlus 14 words. ProvidinQ' a nhvs-
- - --0 --- --- - - - - - -_.- - - - - J' 1. '-' 1...1

ical record length that can hold 10 or m.ore keys increases search efficiency.
Section IV contains a detailed description of key index file directory form.ats.

2. 5. 4. 13 LOGICAL RECORD LENGTH. The logical record length for new,
relative record files can be specified in the following format:

LRECL=<lrchar>

The param.eter <lrchar> specifies the logicalrecord length in characters.
If the relative record file is blocked, then the logical record length must be
les s than or equal to the physical record length. If the file is unblocked, then
the logical record length m.ust be a m.ultiple of 32, and must be equal to the
physical record length. LREC L is not appropriate for linked sequential and
key indexed files since both allow variable length logical records.

Change 1 2-28 Digital Systems Division

~--~----~ 943005-9701

2.5.4. 14 ASSIGNMENT EXAMPLES. The following examples illustrate

possible uses of the ASSIGN parameters.

(1) /ASSIGN, 5, CRl, EXCLUSIVE, RELEASE.

(2)

Assign LUN 5 to the card reader (CR). The card reader is not
shared with any other user (EXCLUSIVE), and is released at the
completion of the job step (RELEASE). The period (.) indicates
the end of the as signment and allows addition of user comments.

/ASSIGN 5 CRl EXCLUSIVE RELEASE
This example is equivalent to example 1.
erands can be either blanks or commas.
the statement is optional.

Delim.iter s between op
The period at the end of

(3) IASSIGN 13 DISCI SHARE PASS OLD, FILE=(USRNAM, NAME)
Assign LUN 13 to disc 1. The disc file is shared (SHARE) and
pas sed to the next job step (PASS). Since a disc is specified, cer
tain file information must be given. The file is old (already exists),
and can be referenced by name NAME in directory USRNAM.

(4) /ASSIGN 250 DISCI SHARE PASS;
INEW, RELREC, FILE=(USRNAM, NAME), SAVE;

IACCESS=(ANY, CREAT, CREAT, PS'ND);
IALLOCATE=(l, 38, 64, 1), LRECL=40
A new file was specified so that more information is required in
addition to that specified in example 3. The new file can be read by
anyone (ANY), can only be written into or deleted by the creator of
the file (CREAT, CREAT), and requires a password to execute code
from the file (PSWD). The file is to have 1 track allocated and
the search for this track must start at track 38. Each physical
record is 64 words. Finally, the logical record length is 40 char
acters.

(5) j Ass-feiN 6 SYSOUT
SYSIN and SYSOUT are system spooling device s.

(6) IASSIGN DEVICE=SYSOUT, LUNO=6
An alternative form of example 5.

(7) IASSIGN 6 SYSOUT LUNO:=NEWLUN
This example has the same effect as examples 5 and 6 except that
the ~UN can be changed for this assignment by specifying
IIRUN ••• NEWLUN=7 ... when the job is submitt"ed.

Change 1 2-29 Digital Systems Division

4P 943005-9701

--

I

2.5.5 JOB CONTINUATION/TERMINATION

Either another /EXEC card to specify a new job step, or a /END card to
signify that all job steps for the job have been defined through the JCL Trans
lation phase m.ust follow the last assignm.ent of a job step. If the system. de
tects no errors in processing the sequence of job steps, it writes the infor
m.ation specifying the job in the as signed output file, and locates that file in a
position specified on either the CREATE or REPLACE control card.

2.6 FORMAT SUMMARY

Figure 2-1 sum.m.arizes the form.atting options and requirem.ents for job sub
subm.ittal com.m.ands and for extended JCL com.m.ands. The form.at for sub
m.ittal com.m.ands appears at the top of the figure. The JOB com.m.and form.at
is totally generalized; whereas the RUN com.m.and is an exam.ple that refer
ences an existing JCL procedure. The JCS for this existing procedure ap
pears in table 2-6. To clarify this exam.ple, table 2-7 lists the keynam.es

that appear in table 2-6 that the JCL Translator recognizes, together with the
default param.eters and the default override labels for each keynam.e. If both
a default value and an override label appear for the param.eter, then it can be
m.odified at runtim.e. If' no default value is listed, then the param.eter m.ust
be specified at runtim.e. If no override label is listed, then the parameter
cannot be m.odified at runtim.e. Following the subm.ittal com.m.ands in the fig
ure are the extended JCL com.m.ands. These com.m.ands constitute the input
to the JCL translator.

The figure displays, one above the other, all pos sible options for supplying
job step inform.ation to the JCL translator. Dotted lines illustrate the points
of convergence for the options. For exam.ple at the beginning of the line
labeled "New File Specification", the three pos sible m.eans for specifying file
types appear as follows:

/INDEXED, KEYLEN=<klchar ~30>.,
I

RELREC, LRECL=<lrchar>----;'
I

LINKSEQ -- - ---- --- ----- - ---'

This notation indicates that im.m.ediately following the slash (/) one of the
three form.s m.ust be used to designate the file type. The dotted line indicates
that all of the form.s m.ust be im.m.ediately followed by a com.m.a before enter
ing the next pa ram.ete r .

Change 1 2-30 Digital Systems Division

'Ut 943005-9701 ~
o

--

JOB SUBMITTAL COMMANDS

JOB
Command

2
RUN
Corrmand

I I JOB <j sname> <user; d> FILE= « vo 1 ume >,<fil ei d >,<fi 1 nam>,<pswd»
FILE= « vo 1 ume> ,<fi 1 ei d>,<fi 1 nam»

)l, [}>

IIRUN XJD, DSRC=<devnam>, FSRC= «fi 1 ei d>,<fi 1 nam>,<pswd» , DERR=<devnam>, L IST=<devnam>,DOBJ=DISC<n>, FOBJ= «vo 1 ume>,< fi 1 ei d>,<fi 1 nam» ,REP; - - - - - -I

)l [t> /)l [t> /)l it> /)l g> / ~ [3';> /)S 8> ~~~; ------J
L ___ ~ L _____________ ~ L ____ .,- L ____ _.._ L_~/ __ .,. tt I

I
r---LOBJ= «i trks>,<trknum>,<prwrds>,<mtrks» ,MEM=<stksi z><j area >,<jearea» !

I j). it> i
EXTENDED JCL COMMANDS (JCl TRANSLATOR INPUT)

Control
Commands

Execute
Command

ASSIGN
Command

New Fil e
Speci fi cat ion

End of job
Command

(B)129979

Change 1

B> IDElETE <jcsnam>
/REPLACE <jcsnam> -I

1

L _____________________________________ .J

ICREATE <jcsnam> --'
t4-----------.J
I

L-I EXEC OBJV=<vo 1 ume>,OBJN=<useri d>,OBJF=<fi 1 nam>, OBJP=<pswd> ,r1EMT=<stks i z>,MH~U=<jarea >,MEt-1J=<jearea>, PRTL=<nprty>, PRTS=<j sprty>, TIME=<seconds >, PRIV
OBJ= «vol ume>,< useri d>,<fi 1 nam>,<pswd»--- - -- - ' ME~l=«stks i z>,<jarea>,<jearea» -- - -...,' PRTY= « nprty>,<j sprty »....... <-1> PROT

. ~ ~~

IASSIGN LUNO=<lun>,DEVICE=<devnam>,EXCLUSIVE,RELEASE,FILDIR=<fileid>JFILNAME=<fi1nam>,PASSWORD=<pswd>,BUFFERS=<nbufs>,REPlACE;-i
<lun>,<devnam>------..-' SHARE--11 PASS--iFILDIR=TEr.1P,....... ,li1 ~ '[§> OLD; j

¥ ~ / ~ 16~/ FILE=«f~le~d>,<f!lnam>,<psv;d» __ -_---'::"_===-=7 L NEW;--- i

I LY / I l/j' FILE=«flleld>,<fllnam» -----------1 !
L __ ...I L __ ..1 FILE=(TEMp,<f~lnam>,<pswd»-- ---- --7/ ~ P 1

14--------- - - - - - - - _____ Fn.E=lli~1Pt0J.lnam.d~--=-=---_=_-=-=-=--==--~ --------- - - ~

L-{INDEXED'KEYLEN=<klchar~30>'READCODE=<~9>'WRITCODE=<integ>,DELCODE=<integ>,EXECODE;<integ>,DELETE,INITIAL=<itrks>,LOCN=<trknum>,PRECL=<prwrds>,MAXTRACK=<mtrks>
~i~~;~Q~~CL=<l~~~~-~_~.l ACCESS=(<integ>,<i nteg>,<integ>,<i nteg» - - - - - - - - - - - -~ ~~V!:JI ALLOCATE=« itrks>,<trknum>,<prwrds>,<mtrks»

lEND

NOTES:

[P [90»

Refer to section 2.4.1.5 for file default on JOB Command.

The RUN Command given here is an example. Refer to
table 2-5 for the referenced JCS

Refer to table 2-6 for defaults specified in the
referenced JCS

DELETE does not require further input.

-1 designates infinite run time.

Refer to table 2-6 for standard defaults.

[?>
@>
lJ>
~

No further input required for non file devices.

BUFFERS = 1 for RELREQ and LINKSEQ;:> 1 for INDEXED

~integ> must be one of following:
ANY,PSWD,CREAT,NONE.

PASS and DELETE cannot be specified simultaneously.

Figure 2-1. JCL Translator Form.atting
Summary

2 - 31 /2- 32 .. Digital Systems Division

~-------~ 943005-9701

Table 2-6. Job Control Sequence (JCS) for RUN Command Example

,- CREATE JCL ,COMMENT,"CREATE JCL PROCEDURE •
IREPLACE JCL . • CREATE JCL PROCEDURE ~
IEX!C·~BJ.(l,SVST£M,JCLTRN) MEM-(311.755I,le88) PRTV.tt,15),
I TIME.~t ~EM.-MEM PRTVi.PRI
IASSIGN i SC DEVICE.-OSRe FILEi-FSRC BUFFERs-t f !OURCE INPUT
IASSIGN 2 SC DEVICEt-OERR SHAREI-SERR • ERROR ~ESSAGE
IASSIGN 3 sc DEVICEt-OLST FILEi-FLsT SHAREt-SLST AUFFERS-t~SOURCE l.ISTING
IASSIGN 4 DISci DEVICEI~OOBJ FILE.CSVSTEM,SJCB~L.AB)J
I F!LE,-FOBJ REPLACE!_ROBJ BUffERSa2 INDEXED,
I ACCESS8CANY,ANY,ANy,ANV) ACCESS,8COBJI
I ALLOCATE-Cl,0,96,20) ALLOCArE.-LOBJ KEVLEN-6 • OBJECT OUT FILE
lEND

Table 2-7. Parameter Keynames and Defaults for JCS Example

Extended JCL Keyname

OBJ

MEM

PRTY

Default

(1, SYSTEM, JCLTRN)

(300, 7600, 800)

(1, IS)

TIME -1 ---
LUNO I 1

DEVICE SC

FILE

BUFFERS 2

Abbreviated JCL
Override Label

MEM

PRI
!

--- --- - ~ - --- --- __ I

I
DSRC I

FSRC

"~i~;~-- -------------------'----------~f----------j -----?~-~~-- ---__ I

I

I

DEVICE sc I DLST I
~--1-----------------1

LUNO 4

DEVICE DISCI DOBJ

FILE (SYSTEM, SJCBFL, AB) FOBJ

OLD /NEW /REPLACE OLD I -/NEW /REP I
LINKSEQ/RELREC/INDEXED INDEXED

I

-
I ACCESS (ANY, ANY, ANY, ANY) COBJ I

I
I

ALLOCATE - LOBJ !

KEYLEN 6 -

Change 1 2-33/2-34 Digital Systems Division

~~-------------------~ 943005-9701

SECTION III

INPUT /OUTPUT STRUCTURE

3.1 GENERAL

A user prograITl initiates input/output operations with an Input/Output Super
visor Call (I/O SVC). The SVC is an illegal ITlachine instruction that gener
ate s an internal interrupt. The internal interrupt decoder turns control
over to the SVC processor. After deterITlining that an I/O SVC has been
ITlade, the SVC processor gives control to the I/O ManageITlent portion of the
operating systeITl. A set of ITlodules, called Device Service Routines (DSRs),
handles the priITlary I/O workload.

A Device Service Routine contains several logical paths. When an I/O SVC
is ITlade, the systeITl follows the initial entry path. The initial entry path be
gins the I/O operation and ITlay or ITlay not cOITlplete it. I/O device interrupt
processing follows another path through the DSR. I/O interrupts can occur
froITl the I/O Bus or the Direct MeITlory Access Channel (DMAC) of the COITl
puter. They occur while an I/O operation is in progress or when it is finish
ed. Interrupts froITl the I/O Bus typically occur on a character-by-character
basis. Interrupts froITl DMAC devices occur only when the operation is COITl
plete. The systeITl also has a reset path through the DSR to stop uncoITlpleted
I/O and to initialize the device and DSR. Separate operating systeITl ITlodules,
working with a disc DSR, control file ITlanageITlent for the disc. Section IV of
this ITlanual describes DX980 file ITlanageITlent.

3.2 I/O SUPERVISOR CALLS

The I/O SVC is ITlade by atteITlpting to execute one of two illegal ITlachine
instructions: >C380 or >FHOO. The prograITlITler usually defines the I/O
SVC instruction word with a sYITlbolic naITle using the OPD (Operation Defini
tion) asseITlbler directive. To cOITlplete the call, the M-register ITlust con
tain the address of either a Physical Record Block (PRB) for the C380 in
struction, or an arguITlent list for the F800 instruction. The PRB is a list
of paraITleters describing the I/O operation that has been requested. For
exaITlple, if the prograITlITler defines the I/O SVC as IOC (using OPD), a
typical I/O call using the C380 ITlachine instruction would be coded as
shown on the following page.

3-1 Digital Systems Division

~~------------------~ 943005-9701

~H!!T QlOIAt

PlCUH TOT SAMI'L'
09'02 •
0~Qt3 •
0P0·A InC op" ~C3"".3 nf'I~E t"C
OH"0~ •
Qt~~~ •

lI'IVlPlOI 1@'0Cl1 0"''''' 'LOM .PRA PR8 AonR TO MR~G

P "CII~t ~0I0~

0~~' C:\8P ~CIIQt8 Joe 0 !4VC lNSTRueTTON
"~OI; •••
QtClllL'.: *

""'121:\ 0010~ ~tlll1 PRS nATA 0 nfFINE PRB
00112 •

0."'001 00113 fNO

The F800 instruction is a special form of the more general F8XX format.
The letters XX indicate the SVC number to be executed (Section V lists addi
tional SVC number s). U sing this format, the M-register must point to an
argument list with the following arrangement:

• Word 0 - This argument list word specifies the number of argu
ments in the list. Word 0 of an I/O SVC contains a 1. If the SVC
has no argument, word 0 contains a O.

• Word 1 - This argument list word contains a pointer to the first
argument. Word 1 of an I/O SVC points to the PRB.

• Word 2 through word n - These argument list words contain pointers
to arguments 2 through n, respectively. These arguments do not
apply to an I/O SVC since the PRB is the only argument.

SAP IH?LC

,...,."
1tJ1I1.,c;

"CIIP9~
QHlt04
1t1Q1~e
0(J1Qtfli

!H~£T

TOT SAMI'LF
." ~QU (!II
~u nE'IN! SV)(IV)((lpn .. '801Ot,e

• • LIST ,nOR TO MREr, flOM .ARGl~T

SV)(10 E)(FtuTF: CALL

• • * •••••••••••••••••••••••••••••••••••••••

0"'~7
O"'1'
0"'Qt~
mOIst
0P1t
Itlt~t~

* ARGLST OAT_ 1,PQB NUM ARGS,AnORS

0P11~ *
0Q1~~ ~P0Q1 0011~ PRA

Pl0I1!5 •
"~0P ~Qll~

nEFINE PRB

0~0I1

3-2 Digital Systems Division

Jd7.0)"\ ______ _ ~ 943005-9701

3.3 PHYSICAL RECORD BLOCK

The Physical Record Block (PRB) is the list of paraITleters necessary for
the supervisor to perform. an I/O operation. The PRB is either four or five
words long as shown in figure 3-1. The following paragraphs explain the use
of these param.eters. Variations of this PRB structure occur for non

standard I/O operations. Also, AD/DA and data m.odule devices use a slightly
different PRB form.at. Refer to the description of these device characteristics
later in this section.

3.3.1 WORD 0

PRB Word 0 contains flags that are controlled by the operating system. I/O
routines, and a logical unit num.ber specified by the calling program..

3.3.1.1 BIT 0 (BUSY BIT). Bit 0 applies only to Initiate I/O calls. This
bit is set during the I/O operation. When set, this bit indicate s that the pro
gram. should not disturb the PRB or referenced data buffer.

3.3.1.2 BIT 1 (ERROR BIT). Bit 1 sets if an unrecoverable I/O error
or a logical error (see bit 6) was detected in the last operation perform.ed
using this PRB. This bit re set s if no error was detected. If Return on I/O
Errors was not requested when the device was opened, the job aborts on an
unrecoverable I/O error. If this bit is set following a Return, then PRB
word 2 contains an error code greater than 200. Appendix A of this m.anual
defines these error codes.

3.3. 1 • 3 BIT 2 (END OF FILE BIT). Bit 2 sets if the last record read
with this PRB was an end of file. For m.ost m.edia an end of file is a record
whose first two characters are /~:<. End of File applies only to reading and
spacing opcodes. (Opcodes 00, 01, 05, 06, 14 and 15.)

3.3.1. 4 BIT 3 (OPCODE IGNORED BIT). Bit 3 sets if the last I/O opera
tion was ignored because of the physical lim.itations of the I/O device. For
exam.ple, an attem.pt to backspace a card reader sets this bit. Opcode Ig
nored is not necessarily an error condition.

3.3. 1 . 5 BIT 4 (END OF MEDIUM BIT). Bit 4 sets if the physical end of
the storage m.edium. was reached. Magnetic tape, cassette, and disc files
provide end of m.edium. detection.

3.3.1.6 BIT 5 (BEGINNING OF MEDIUM). Bit 5 sets if the physical be
ginning of the storage ITlediun1. ~.vas reached.

3-3 Digital Systems Division

WORD 0

WORD 1

WORD 2

WORD 3

WORD ..

(B)129983

WHEN SET AT

OPEN TIME

WHEN SET AT

RUNTIME

OP CODES 00-29)

WHEN SET AT

RUNTIME

(OP CODES

o

BUSY

INITIATE
I/O

INITIATE
I/O

INITIATE
I/O

ERROR

RETURN
SEVERE
ERRORS

OUTPUT
WITH
REP~

sptc~rlED

2 4

END OPER END BEG INN ING
OF IGNORED OF OF

FILE ME~UM ME~UM

FLAGS SET BY SYSTEM

RETURN
C:ORRECT-

ABLE
ERRORS

AUTO
G>

SUPPRESS FILE FORMAT
RECORD USASCII CR/LF WRITE

r'ERMdrAT ECHO® VERIFY
SUPPRESS

BELL

KEY RETURN FILE
I~ECOVERY RECORD WRITE
DESIRED SIZE VERIFY

ONLY

6 7 15

LOGICAL TE~~~~AL ERROR
LOGICAL UNIT NUMBER (LUN) BY

ESWPE

OPEN
FOR EX- f-CLUSIVE
ACCESS

e 15 ..
DEVICE DEVICE
UN~CK L~ r-- I/O OP CODE

re-

NOTES:

(!) MAGNETIC TAPE. CASSETTE AND DISC FILE ONLY

FILE FILE ® DATA TERMINAL ONLY
UNMCK L~K - ~ APPLIES TO PRINTING DEVICES ONLY

4 IF BOTH LOCK AND UNLOCK ARE SPECIFIED. THE

10(}-119) "~II-______ _ DEVICE FILE IS LOCKED FOR THE DURATION OF

FLAGS SET BY USER------------t~ ...

/
THE I/o OPERATION

I DATA RECORD LENGTH

DATA BUFFER ADDRESS/DEVICE ATTRIBUTES (OPEN CALL)

~ KEY ADDRESS (CERTAIN DISC FILES ONLY. SEE SECTION IV)

~--_____ ----J

Figure 3-1. Physical Record Block (PRB) ForITlat

-...D
~
W
o
o
U1
I

-...D
-J
o

~~------------------~ 943005-9701

3.3. 1. 7 BIT 6 (LOGICAL ERROR). Bit 6 sets to indicate than an error
oc curred that may have been a su~ce s sful reque st under other conditions.
A Logical Error applies only to file management. For example, a write
with key to a key indexed file when the specified key already exists. When
bit 6 is set, bit 1 is also set.

3.3.1.8 BIT 7 (OPERATION TERMINATION). Bit 7 sets when the escape
key (ESC) of any data terminal is pre s sed, terminating any input or output
record in progress \vithout completion. For read operations on key indexed
files, this bit indicates the return of a key value.

3.3.1. 9 BITS 8 - 15. This field contains the Logical Unit Number (LUN)
for the I/O Operation as specified by the calling program.

3.3.2 WORD 1

PRB Word 1 contains flags that are set by the user program, plus an opcode
for the I/O operation as specified by the user program. The opcode appears
in bits 8 through 15 of word 1. The flags appear in bits 0 through 7 of word
1. The function of these flag bits varies with the time that the bit is set and
the operation being executed. The following paragraphs de scribe the function
of the flags under the three possible circumstances.

3.3.2.1 OPEN TIME FLAGS. If the calling program sets a user flag in
word 1 when opening an I/O device or a file, the operating system assigns
the following definitions to the flags:

• Bit 0 - Initiate I/O: The calling program sets this bit to indicate
that it is making an Initiate I/O call. When clear, this bit indicates
that the prograiTl is rnaking an Execute I/O call.

• Bit 1 - Return on Uncorrectable Severe Errors: The calling pro
gram sets this bit to prevent the system from aborting the program
if an uncorrectable severe error occurs during an I/O operation
with the opened device. Instead, the system returns control to the
calling program to recover from the error.

• Bit 2 - Return on Correctable Error: The calling program sets this
bit to prevent the system from asking for operator as sistance if a
correctable severe error occurs during an I/O operation with the
opened device. Instead, the system returns control to the calling
program with bit 1 in word 0 set to recover from the error.

• Bits 3 through 6 - These flags are unused during an open call.

• Bit 7 - Open for Exclusive Access: The calling program sets this
bit to indicate that the file or device being opened by the call cannot
be shared, but must remain in exclusive control of the calling pro
gram until released.

3-5 Digital Systems Division

Jd7~ ______ _ ~ 943005-9701

3.3.2.2 RUNTIME I/O FLAGS. If the calling program sets a user flag in
word 1 at runtime when requesting an I/O operation (Opcodes 00 through 29),
the operating system assigns the following definitions to the flags:

• Bit 0 - Initiate 1/ 0: The calling program sets this bit to indicate
that it is making an Initiate I/O call. When clear, this bit indicates
that the program is making an Execute I/O call.

• Bit 1 - Output with Reply: If the calling program sets bit 1 and the
I/O device is a data terminal, the terminal performs an output,
usually a question, and waits for a reply. If m.ultiple programs
are using a data terminal, the reply is given to the correct pro
gram. If the I/O is assigned to a device other than a data terminal,
setting bit 1 produce s an input operation only.

• Bit 2 - Automatic Record Termination: When bit 2 is set, data ter
minal input is automatically terminated upon reaching the input
record length. Normal termination occurs when a carriage return
is pressed.

• Bit 3 - Formatted US.i\SCII Output or Suppre s s Bell on Input: When
set during an output call, this bit instructs printing device s to use
the first word of the output record as form control instead of data.

Table 3-1 lists these form control characters. This function applies
only to a Write USASCII output. When this bit is set during an input
call, it prevents the bell on the input terminal from sounding.

• Bit 4 - Suppre s s C R / LF Echo on Input: Setting bit 4 prevents the
data terminal from echoing an input of CR/LF.

• Bit 5 - File Write Verify: Setting this bit enables verification of
disc data after writing. Use of this bit is described in the File
Management Documentation in Section IV of this manual.

Table 3-1. USASCII Format Control Word

Bit (s) Definition

0-11 Reserved for future expansion. Should all be O.

12 0 - Format before record.
1 - Format after record.

13 0 - No carriage -return
1 - Carriage -return

14 0 - No line feed
1 - Line feed

15 0 - No form-feed or second line feed
1 - Form-feed or second line feed

(depending on Bit 14)

3-6 Digital Systems Division

U/ 943005-9701 ~
o

• Bit 6 - Device Unlock: Setting this bit allows other jobs to use a
shared device that has been previously locked to the calling program.

• Bit 7 - Device Lock: Setting this bit prevents other jobs that may be
sharing the device from using the device until the device is unlocked.
If both bit 6 and bit 7 are set concurrently, the device is locked until
the I/O operation is complete.

3.3.2.3 RUNTIME FILE FLAGS. If the calling program sets a user flag
in word 1 at runtime when requesting a file operation (opcode s 100 through
119), the operating system as signs the following definitions to the flags:

• Bit 1 - Initiate I/O: The calling program sets this bit to indicate
that it is making an Initiate I/O call. When clear, this bit indicates
that the program is making an Execute I/O call.

• Bit 1 - Key Specified: When set, this bit indicate s that the calling
program has specified a key to locate the desired file. The address
or that key is contained in word 4 of the PRB.

• Bit 2 - Key Re covery De sired: Setting this bit instructs the oper
ating system to recover a key and place it in the location spe cified
in word 4 of the PRB if the record accessed has a key and bit 1 of
PRB Word 1 (Key Specified) is not set.

• Bit 3 - Return Record Size Only: Setting this bit transfers the
length of the accessed record into the Data Record Length field of
the PRB (word 2). No data transfer occurs.

• Bit 4 - Unused for file management.

• Bit 5 - File Write Verify: Setting this bit enables verification of
disc data after writing. Use of this bit is described in the File
Management Documentation.

• Bit 6 - File Unlock: Setting this bit allows other jobs to use a
shared file that has been previously locked to the calling program.

• Bit 7 - File Lock: Setting this bit prevents other jobs that may be
sharing the file from using the file until the file is unlocked. If
both bit 6 and bit 7 are set concurrently, the file is locked until the
I/O operation is complete.

3.3.3 WORD2

'.rord 2 contains the data record length in characters for the I/O operation.
Depending upon the type of I/O call, this field has various interpretations.
For an open or change record length call (opcodes 7 and 12, respectively),
this word sets the input record length for the logical unit. This record length
limits the number of characters stored on subsequent input calls. For an in
put call, the I/O routines load this word with the number of characters actual
ly contained in the input record. For an output call, this word contains the

3-7 Digital Systems Division

Jd7S\ ______ _ ~ 943005-9701

actual output character count. For utility operations such as back space or
forward space, this word indicates the number of operations to perform. At
the ter:mination of these utility operations, the system returns the number of
operations that were not performed (that is, Word 2 contains "0" if the opera
tion was successfully completed, and a number greater than zero if the sys
tem encountered an EOF or BOF before reaching the prescribed number of
backspace or forward space operations). For operations on an AD/DA de
vice, this word is zero.

When a return on error is specified (Bit 1, Word a set) and an error does
occur during the specified operation, this word contains an error code great
er than 200 (Appendix A describes the error codes for the system). When
this occurs, the word :must be reset before issuing another I/O request using
this PRB. Table 3-2 surn:marizes the functions of PRB Word 2.

3.3.4 WORD3

Word 3 contains the data buffer address which is the starting address of the
logical data buffer for input and output operations.

An open call causes the device attributes word to be placed in word 3. There
fore, the data buffer address must be placed in word 3 following an open call.

Case

Open

Change record
length

Input

}
Output

Back/forward space

Return with error

Data Module

AD/DA Converter

Table 3-2. PRB Word 2

Word 2

Input record length specifica
tion (limit of number of char
acters transferred on subse
quent input calls)

Input record character count

Output record character count

Number of ope rations to per
form
Number of operations unper
formed

Unchanged if no error occurred
during ope ration
Error code> 200 if error oc
curred during operation

Output data

Zeros

3-8

User /System Set

User

System

User

User

System

System

User

User

Digital Systems Division

~~---~-------------~ 943005-9701

3.3. 5 WORD 4

Word 4 contains a key address that applies only to key indexed or relative
files. Section IV of this manual explains disc files.

3.4 FUNCTION OF SPECIFIC OP CODES

Before a program can perform an I/O operation to a device or file, the pro
gram must ope n the device or file. An open call prepare s the device or file
to do an I/O operation. After the program finishes with the device or file,
it should close the device or file. Closing a device or file does not unassign
it from the job; it can be re-opened later and used again. Closing does ini
tiate proper end-action for the device to ensure that no data is lost. Devices
are opened and closed using I/O supervisor calls.

When the program makes an open call, the I/O routines place the device
attributes word in PRB Word 3. Table 3-3 summarizes the device attributes
for standard 980 peripherals. Table 3-4 defines the function of I/O operation
codes (op codes).

Table 3-3. Device Attributes Word after Execution of an Open Call

Bits Value Device Attribute

a 1 System console

1 1 Dummy device

2 1 Can be rewound

3 1 Can be forward spaced

4 1 Can be back spaced

5 1 Printing device

I 6 1 Model 733 ASR cas sette

7 1 Data terminal or CRT

8 1 Disc

9 1 Input device

10 1 Output device

11 1 USASCII transmis sion

12 1 Binary transmission

13 1 Reserved

14-15 00 Peripheral device

14-15 01 Linked sequential file

14-15 10 Relative record file

14-15 11 Ke\T indexed file

3-9 Digital Systems Division

~~------------------~ 943005-9701

Decimal
Opcode

00

01

02

PRB
Words

4

4

4

Table 3 -4. Input/Output Opcodes

Operation

Read USASCII

Read Binary

Write USASCII

3-10

Function

One logical record is read from
the specified LUN and stored in
memory at the specified buffer
address. The characters are
packed two-per-word and the
maximum number stored does
not exceed the data record
length specified in the last open
or change record length call.
The actual number of characters
stored is returned in PRB Word
2, and may be less than or equal
to the requested input data rec
ord length. Any needed conver
sion to obtain internal USASCII
repre sentation of the data is
performed. An end of file rec
ord, when detected, will set the
EOF BIT. The most significant
bit of all USASCII characters is
equal to a 1 in memory.

One logical record is read from
the specified LUN and stored in
memory in a manner similar to
that described for Read USASCII.
A character in this case is an
8-bit byte, and any necessary
data conversion to obtain the
binary format is perforrrled.
End of file records are detected
and cause the EOF BIT to be set.

One logical record is transferred
from the specified buffer address
to the indicated LUN. The num
ber of characters transferred is
specified in PRB Word 2, and
the data is packed two characters
per-word. If the formatted
USASCII record bit (PRB Word 1
bit 3) is aI, the printing DSR I s

Digital Systems Division

~~------------------~ 943005-9701

Decimal
Opcode

02
(Cont'd)

03

04

05

06

Table 3-4. Input/Output Opcodes (Continued)

PRB
Words

4

z

3

3

Operation

Write Binary

Rewind

Back Space
Record

Forward Space
Record

3-11

Function

will interpret the first word in
the buffer as form control. Any
neces sary conversion from the
internal DS .. .£l .. SCII representation
to the medium storage format is
performed.

One binary record is transferred
from the specified buffer address
to the indicated logical unit. The
number of characters transmit
ted is taken from PRB Word 2.
Any necessary conversion from
binary to the medium storage
format is performed.

The physical device or sequential
disc file is positioned at the be-
ginning of the rnedi urn.

The number of logical records
specified in PRB Word Z are
skipped in the reverse direction.
When an end of file record or be
ginning of m.edium. status is de-
tected, the operation stops "tvvith
the appropriate PRB bit set and
the operation count decrem.ented.
If an end of file caused the stop,
the medium is positioned in
front of the end-of-file re cord.

The number of logical records
specified in PRB Word Z are
skipped in the forward direction.
When an end of file record or end
of m.edium. status is detected, the
operation stops with the appropri
ate PRB bit set and the operation
count decrem.ented. If an end of
file caused the stop, the m.edium.
is positioned to the beginning of
the record that follows the end of
file record.

Digital Systems Division

J2n)\ ______ _ ~ 943005-9701

Decim.al
Opcode

07

08

09

10

11

12

13

14

Table 3 -4. Input/Output Opcodes (Continued)

PRE
Words

4

4

2

2

2

3

3

3

Operation

Open

Open Rewind

Close

Close, Write
EOF

Write EOF

Change Re cord
Length

Read Device
Status

Eack Space File

3-12

Function

Initialize the logical and physical
devices. PRE Word 2 sets the
m.axim.um. input re cord length.
The device attribute s are re
turned in PRE Word 3.

The I/O device is opened and re
wound as previously described.

The necessary functions to ter
m.inate I/O to a device are per
form.ed.

An end of file record is written
and the device is closed.

An end of file record is written.

The m.axim.um. input record
length is changed as specified in
PRE Word 2.

The Device Status Word is placed
in PRE Word 2. The Device
Status Word is device dependent
and is individually described
with each DSR in this section.

The num.ber of file s (as delim.ited
by end of file records) specified
in PRE Word 2 are skipped in
the reverse direction. If the

_ L ___ 1. _ ~ L'_ _ __ _ _ _1! . _ __ _ .! _ _ ____ . __ _

:::j(~arL O.L LIle IIleUl.UIIl L::S encoun-

tered, the operation stops with
the beginning - of -m.edium. flag
set and the operation count de cre
m.ented. Otherwise, the end of
file bit is set. The m.edium. is
always positioned at the begin
ning of the fir st data re cord in
a file. A backspace of one file
rem.ains within the current file
so that if it is preceded by
another backspace file it doe s
nothing. A backspace two files

Digital Systems Division

)}7~ __________ _ ~ 943005-9701

DeciInal
Opcode

15

16

17-18

19/20

Table 3-4. Input/Output Opcodes (Continued)

PRB
Words

3

2

Operation

Forward Space
File

Unload

Reserved

Write /Read
Direct

3-13

Function

actually skips one file. A back
space record can be used to
cross an end of file record in the
reverse direction~

The specified number of end of
file records are skipped in the
forward direction. If the end of
the medium is encountered, the
operation stops with the end of
medium bit set and the operation
count decremented. Other'wise,
the end of file bit is set.

Magnetic tape and cas sette units
are rewound and unloaded. Mag
netic tape units are placed off
line.

Ignored by all DSR IS.

Device dependent calls supported
by some DSR I S for transfer with
out data conversion. Data formats
are described with individual DSR
description in this section.

Digital Systems Division

943005-9701 ~ --~--------------
3.5 INITIATE AND EXECUTE I/O CALLS

The calling program sets bit 0 in PRB Word 1 to signify Initiate I/O call and
clears bit 0 to indicate Execute I/O call. The Execute call suspends the
user program until the entire I/O operation is completed, making the I/O
appear to be a single, instantaneous operation of the calling program. In a
system with many programs executing, the Execute call does not degrade
total system efficiency since other programs are executed during the I/O
call processing time. When one or a small number of programs are running
in the system, the computer is substantially idle during the I/O transfers.

If the Initiate / Execute Bit is a 1, the system returns to the program for fur
ther execution immediately following an I/O SVC. A program that is fre
quently used and has high I/O activity can use the Initiate Call to increase
program throughput and attain maximum speed from I/O devices. The PRB
from which an initiate I/O call has been made and its associated data buffer
should not be modified until the I/O operation has been completed. The pro
gram can monitor the PRB Busy Bit (Word 0, bit 0) to detect completion of
the I/O (if the Busy Bit is a 1, I/O is not complete). Doing an Initiate I/O
call to a device while a previous call to the same device remains incomplete
suspends the job until the first call is complete.

If an Initiate I/O call has been issued and processing is complete to the point
that the I/O operation must be complete in order to continue, use the Wait
for I/O Complete supervisor call to suspend the program. This SVC converts
the Initiate call that shares the same PRB to an Execute call.

3-14 Digital Systems Division

~~------------------~ 943005-9701

A typical Wait for I/O may look as follows:

SAP R2LC

l-QtP
~0I0:!

Ff'2P

0~"H
0Q1()1~

~0I03

00104
0010~

09!0~

WAIT
SVC

• •

• •

rOT SA~lIlF

FOP ~2R
npn ~F8!'M0.8

.LnM .ARGL!T

svr WAIT

~Hf'E"

n~FIN~ SVC

LIST .nD~ TO M~f:G

F.)(FCIITE CALL

~~1~ ••

0"'~'
P 00'0.4

0~~~

0"'0~

""'Ql1
P IlU!08

""'~O
1(110"
k'~~A

0~eC

ilHl!~n

~!JI~'
~"'0~

",()2'
Q0I0?
0~0A

PI~~g

~910~

D~C'
C"O~
Cr:C~
AlfFF

0'" 1 t •
~"'1~ ARGLST nATA t,PRB NU~ ARr,S,A~DRS

(IIClI13
~l'It4

0f,111~

0t)11~

0 01 11
0"'18
0011;
~"'2V

•
PRB OATA ~0I~?2

* •

OATA .~1(~"'2

I')ATA 10
nATA BIIFFE~

RuFFER OATA >"'0~e,I~A~Pt E.'

PlCI!2t •

LUNO >22
w,~ FRMTTf) WR!TE
8 ~H~+FMT CNTRL
AonR OF nATA

""'(ttl" ~P22

3.6 STANDARD USASCII RECORDS

0""1

DX980 uses two types of USASCII records, formatted and unform.atted. An
unformatted record is a versatile record that is used to take advantage of
special characteristics of a device. Therefore, unformatted records are
usually installation and device dependent, whereas formatted records rely
on the DSR to allow for specific device characteristic s.

Formatted USASCII records use the first word of the record to control phy
sical device formatting on printing devices·. To output an 80-character rec
ord in the formatted USASCII mode, the program must make a call for 82-
characters. The extra two characters are the first word that contains format
control. Similarly, when an 80-character formatted record is read, the
program must make an input call for 82-characters to ensure that the entire
record is read. The program can ignore the first word.

To use the formatted USASCII mode, bit 3 of PRB Word 1 should be set to a
1. Bit 3 is meaningful only for a Write USASCII operation (Opcode 02) that
is directed to a printing device. Storage devices write the format control

3-15 Digital Systems Division

Jd7,5\ ______ _ ~ 943005-9701

character at the beginning of the data without m.odification. However, al
ways set bit 3 to ensure device independence if the designated output device
is changed.

The form.at control is not punched on paper tape, since that m.edium. assum.es
a one-record-per-line form.at regardless of the form.at specified.

3.7 I/O ERRORS

Three types of errors are possible when executing an I/O operation: logical
errors, severe errors, and fatal errors. Two of these types, logical and
fatal errors, result from. an error in the calling program.. The other type,
severe, results from. a m.alfunction of the I/O device. When severe and fatal
errors occur, the operating system. prints an error m.essage on the system.
console. This m.essage contains an error num.ber that identifies the type of
error and the reason for the error. Table 3-5 lists the error num.bers for
I/O errors, their level of severity, and the cause of the error m.essage.
The following paragraphs describe the three types of errors.

Table 3-5. I/O Errors

Error
Severity De scription

Num.ber

201 Severe Correctable Device Not Ready

202 Severe Uncorrectable Controller Error

203 Severe Correctable Data Error

204 Severe Uncorrectable Controller Busy Error

205 Severe Correctable Write Protect Error

206 Severe Uncorrectable End of Record Sequence
Error

207 Severe Uncorrectable Read-After - Write
Error

208 Severe Corre ctable Offline

209 Fatal Illegal I/O Opcode

3.7. 1 LOGICAL ERRORS

Logical errors occur only during file m.anagem.ent operations and are the
result of an error in the user call. For exam.ple, a user call to create a
record with key when the key already exists in the file. This type of error
is not catastrophic to execution of the program.. Therefore, when a logical
error occurs, the operating system. returns control to the calling program.
so that it can take an alternate course of action. When the system. returns

3-16 Digital Systems Division

~---~---~ 943005-9701

control to the program, it also sets the Logical Error and Error flags in the
PRB (word 0, bits 6 and 1), and places the error number of the error in the
Record Length field of the PRB (word 2).

3.7.2 SEVERE ERRORS

Severe errors occur during I/O operations and are the result of a status
condition of the peripheral device that prevents it from performing the re
quested I/O operation. The error condition may be correctable through
operator intervention, or it may be uncorrectable.

3.7.2.1 CORRECTABLE. A correctable severe error results from a
status condition of the I/O device that the operator can fix. For example, a
printer that is out of paper or a card reader offline causes a correctable
error if the system can detect the required status condition. When such an
error occurs, the system prints a message on the system. console asking the
operator to decide if he can correct the malfunction. The operator responds
either by correcting the condition and then entering the response YES, or by
entering the response NO. If the operator enters a NO response, the error
becomes uncorrectable. If the operator enters a YES response, the system
retrie s the operation.

The user can choose to bypass the operator notification step and return
directly to the calling program when a correctable error occurs. Setting
PRE word 1, bit 2 during the SVC that opens the IIO device selects this
option. If the site does not have a full time operator, this option allows the
user to select an alternate I/O device rather than wait for the operator to
correct the malfunction on the original device.

3.7.2.2 UNCORRECTABLE. A severe error becomes uncorrectable if the
operator enters a NO response to the system's request for a correctable
error, or if the faulty status indication from the device is the result of an
inherently uncorrectable error such as failed components in the peripheral
interface. Uncorrectable severe errors abort the associated program. How
ever, the user can choose to avoid this outcome by setting PRB word 1, bit
1, during the SVC that opens the I/O device. Setting this bit instructs the
operating system to return control to the user program if an uncorrectable
severe error occurs. When selecting this option, the user program must
allow for alternate devices or remedial routines to cope with severe errors.

3.7.3 FATAL ERRORS

Fatal errors are the result of errors in the user program that cannot be
reconciled by returning control to the program. For example, a call to read
information from a line printer is impossible to execute. Since the error is
part of the program or job control coding, the program is unable to adjust for
the error. Fatal errors abort the associated program. This outcome can
not be avoided.

3-17 Digital Systems Division

~-----------------------------~ 943005-9701

I

I

I
i ,
I
I

I

I
~

I

I

Change 1

Full Duplex
Opcode Operation Dummy

Terminal

00 Read USASCII Returns EOF Responds
(/;,< = EOF)

01 Read Binary Returns EOF Error

02 I Write USASCn I
I

Responds I Responds I

r 03 Write Binary

I
Error

I

[
I 04 Rewind

I
05 Back space record

I
06 I Forward

I I Error I space
record

f I I I !

I

I
07 Open

I

I I CR/LF output I
I CR I LF output I 08 Open-rewind i

I I I
I !

09 Close

I i
i Responds 1

I
1 I 10 I Clo se -write EOF LF 3 lines

!

I I I I
I
I , ,

LF 3 lines 11 . Write EOF I i i I

I
I
I 12 Change record Responds

length

13 Read device status Responds

14 Back space file

I
i Error

:t:l Forward space file Responds Error

I 16 Unload Ignores Ignores

17 Not assigned

I ! l
18 Not assigned Ignores Ignores

19 Write direct I Responds Responds ~ ! [> 20 Read direct ,I Responds Responds

NOTES: Ignores blank frames and delete (rubout) frames.

End of medium not detectable.

4

6

Reads specified number of frames and stores them
packed as received into user buffer.

DSR translates invalid columns to valid characters
without error indication.

Stores lZ-bit card image, right-justified within
words of user buffer. Character count = 160
for complete card.

End of medium = physical end; logical end not in
dicated.

Paper Tape
Reader

Responds [p>. r9
(/~:: = EOF)

Responds g::>
(/;,: = EOF)

Error

1

Error

Responds B>

Responds

I
Responds

Error

Error

Responds

Ignores

Error

Responds !P

Ignores

!
Ignores

Error

Responds rP

7

8

9

10

Response From Device

Paper Tape Card Magnetic
Punch Reader Tape

Error At least 1 Responds (Er- I card read ror if after

I
(/':< = EOF) 8> output) ~

Error At least 1 Responds (Er-
card read ror if after
(/* = EOF) B> output) ~ I

I Responds I Error I Responds I

(/* = EOF)

Responds
(/* = EOF)

Error

I Error Responds

I Error I Responds B> I Responds (Er- I ror if after

I output) ~ I

I Responds Responds Responds

I
I

1
Responds

I (Punches
leader) , I· !

I Responds Responds i i
I EOF Fol- i Error ! I I I lowed by I

I

I I I trailer

~ ;
i EOF Fol- Error !

I

I I I lowed by I
trailer I Ignores Responds

Ignores Responds ! IE,"",
I

Error

I
Responds

I Error Responds ~ Responds [9

I Ignores Ignores Responds

! t ! Ignores

Ignores I Ignores Ignores

Error I ' Error Error I I
~ Error

t
Responds Error I

End of medium = current position when op complete;
performance of op when not at EOM destroys data
from current position to EOM.

EOM status possible with decremented record count
returned.

If opened for exclusive access, position is retrieved
from disc when opened and stored on disc when
closed.

Line
Printer

Error

Error

Respond.s

Error

Generates
form feed

Error

Error

R,esponds

Generates
form feed

Responds

Generates
form feed

Generates
form feed

Ignores

Responds

Error

Error

Ignores

t
Ignores

Error

Error

The new record does not have an index key. A replace
operation occurs if not at end of medium and both the
old record and the index key (if any) are deleted.

I
I

j
I

I

I

I ,

I

I
11

12

13

Tape Sequential Relative Key-Index
Cassette File Record File File

(Error if after I (End of medium
I

Responds Responds D> I output)(f* =

I
if after output;

EOF) ~ ~
(Error if after (End of me- Responds Responds ~
output)U'i =

I
dium if after

EOF) ~ output) [t>
llesponds I Responds fl> I I

(/* = EOF) Acts as a Acts as a

replace / replace /

add add

~ Responds It> function function

I
Responds

I (/;" = EOF)

Responds Responds Responds Responds

Responds Responds Responds: EOF detection not
possible, since not allowed

Responds ~ I
Responds ~ I Responds: EOF detection not I

! I
possible, since not allowed §>

Responds I Responds ~ Responds Responds

r I I I Responds

r !
i

I
i Responds Responds

I I I Close, but does not write

I
i

I I EOF
I
I

!
!

I I I
Error , , Error , I

I
Responds Responds

Responds Responds

Responds

I
t

I
Response results in begin or

(Error if Responds
end of medium

after output)

~
Responds Ignores Ignores

Ignore s t 1
Ignores Ignores I Ignores

Error

I
Error

I
Error

Error Error Error

Options allow recovery of both data record and index
key. or functional deletion of hoth data record and
index key from file.

All characters are written (lirectly from the buffer;
cautIon should be ,'xerclsed when the dence has paper
tape or cas selle attached.

This operation cxpanrls the read ASCII key to include
a set of control characters.

Ignores

1
Ignores

Error

Error

Table 3 -6. Device Response to Sequen
tial I/O Com.mands

3-19/3-20

I

I

~ 943005-9701

3. B INDIVIDUAL DEVICE CHARACTERISTICS

All sequential I/O devices and sequential disc files restrict the operations
that can successfully be performed with them. For example, devices capable
of both reading and writing cannot arbitrarily switch between Read and·
Write mode s. Other re strictions vary from device to device. Do not clo se
and re -open a device to circumvent these restrictions since the results will
vary for each device. Table 3-6 catalogues responses to I/O commands, in
cluding read-after -write re strictions. Mo st device s repre sent an end of file
with a I':' record, but some devices do not. Because of this inconsistency,
always use the end of file command in lieu of a /~:, data record.

3.B.l DATA TERMINAL AND CRT DEVICES

The Data Terminal Device Service Routine (DSR) operates with any of several
devices interfaced using the CommunIcations Module (TI Part Number
966637). These devices include Texas Instruments Models 730 and 733 Data
Terminals, Model 912 CR T, teleprinter devices similar to the 33 ASR or 33
KSR, and the Hazeltine 2000 CRT. The DSR operates differently with each of
these devices to compensate for operating variations of the devices. The DSR
allows input to come from the paper tape reader device or the teleprinter type
device. The DSR echoes input characters to the terminal as they are entered.
For this reason the DSR does not use the term.inals in true full-duplex m.ode.
Performing a read direct operation with the full duplex terminal expands the
read USASCII capability to accept the control code defined in table 3-7.

Do not pre s s the keys on the keyboard during a data
transfer using either the tape cas sette of an ASR
733 or the paper tape of an ASR 33. The printer
will not respond during the data transfer, and press
ing the keys may result in loss of data.

3. B.l.l INPUT /OUTPUT OPERATION. The PRB of the calling program
_'.! ____ L _ _ ~ ___ L 1 __ L1 ___ '_L_ L ______ .! ___ , T~L' __ ~ _______ LL __ ' TTC'4AC"f~TT _____ '_! ______ !
UlreC'(;1:) Uu'(;pu'(; '(;U Ule aa'(;CL (;errnJ.nCLl. .ll I..He .lUrrIlCLl..l..eU U,::)..t-1J.:)V.l.l Inuue J.O ofJecJ.-

fied for output, the DSR adds carriage and form control as directed in the
first word of the record. An input call rings the terminal bell unless PRB
Word 1, bit 3 (Suppress Bell) is set. The DSR accepts input characters from
the keyboard until a carriage return is selected. A t that time the DSR echoe s
a carriage return - line feed to the printer. Regardless of how many charac
ters are typed, the number of characters stored is limited by the record
length supplied in the open SVC. Two variations of this input operation are
available with special PRB bits. If the Automatic Terminate Bit is set (PRB
word 1, bit 2), the input terminates on a carriage return or full buffer,
whichever occurs first. The second option suppresses echo of the carriage
return - line feed when the record is terminated. The user selects this op
tion by setting PRB word 1, bit 4. All input characters are then echoed to

Change 1 3-1B Digital Systems Division

~-------~ 943005-9701

Hexadecimal
Code

00

01

02

03

04

05

06

07

08

09

OA

OB

OC

OD

OE

f'\'L'
V.1.'

10

11

12

13

14

15

16

17

18

19

lA

Change 1

Table 3-7. USASCII Control Characters

Control
Function

NULL

SOH

I STX

I

ETX

EDT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

CT
U..L

DLE

DCl

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

Control
Character

Shift/CTRL/p

CTRL/a

CTRLjb

CTRL/c

CTRL/d

CTRL/e

CTRL/£
...,..,

/ Cl'RL g

CTRL/h

CTRL/i
! i CTRL/j

ICTRL/k

i CTRL/l

CTRL/m

CTRL/n

r"T'DT I~

I~;~~~;
CTRL/q

CTRL/r

CTRL/s

CTRL/t

CTRL/u

CTRL/v

CTRL/w

CTRL/x

CTRL/y

CTRL/z

3-21

Valid Character
on Read Direct

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Postable
System
Special

X

I X I I

X(on
output)

I
X

I I
X

X

x

X

X

X

X

v .or)"

X

I
I
I

I

I X

Digital Systems Division

~-------"ij/ 943005-9701

Table 3-7. USASCII Control Characters (Continued)

Hexadecimal Control Control Valid Character System
Code Function Character on Read Direct

Postable
Special

IB ESC Shift/CRTL/k X

IC FS Shift/CTRL/I X

ID GS Shift/CRTL/m X

IE RS Shift/CTRL/n X

IF US Shift/CTRL/o· X

the printer as they are received from. the keyboard until the buffer is filled.
Special characters are not placed in the buffer nor echoed to the printer.
Tab and Escape also term.inate an input record as described below.

3.8. 1. 2 LINE EDITING. The operating system. provides several online
editing features as follows:

• Delete Input Characters - Backspace (CTRL/H) and - (left arrow)
deletes one input character. On Silent 700's, the print head l;>ack
spaces and the DSR supplies a line feed when the first valid char
acter is entered. CRT's perform. a left-cursor. Teletype m.achines

type a backward slash (\).

• Delete Input Record - Rubout deletes an entire input record which
m.ay then be re -entered.

• List Input Record - CTRL/N lists the input record as currently
stored.

• Term.inate I/O - The escape key term.inates any active I/O opera
tion. The Term.inate -on-Es cape Bit in the PRB system. flag area
(Word 0, Bit 7) is set.

• Tab - Tab is a special character than can be detected by the user
program. during an input call. The input is im.mediately term.inated
and the tab is placed in the data buffer, but the input record length
in the PRB doe s not reflect its presence.

• System. Mode - If the data term.inal is the system. console, CTRL/O
puts the data term.inal in system. m.ode. When in system. mode, any
user output as signed to the terminal is held in a queue until the ter
minal returns to user mode.

• User Mode - If the data terminal is the system console, CTRL/U
puts the data term.inal in user mode. When in user m.ode, any sys
tem. output as signed to the term.inal is output without regard to m.ode.

Change 1 3-22 Digital Systems Division

~-------~ 943005-9701

•

•

•

•

NOTE

The following features insert or delete text within
a record and are convenient for use with a CRT
te rminal 0 nl y •

Increase Character Count - Line Feed or 1 (down cursor) increases
the input character count by the length of a line if it doe s not exceed
the record size specified in the open SVC. Line length is specified
in the Fnyslcal Device Table (PDT).

Decrease Character Count - t (up cursor) decreases the input char
acter count by the length of a line. Line length is specified in the
PDT.

- (right cursor) increases the input character count by 1 if the
input character size does not exceed the record size specified in
the open SVC.

Freeze the output - While the terminal is outputting, pressing the
control D key halts the current output. Pres sing any other key
while in this mode will reactivate the output.

3.8.1.3 INTERACTIVE EXTENSIONS. Four device -dependent features
are included in the DSR for data terminal input operations. They are ac
tivated by four separate flag bits in the PRB and may be used in several
combinations. These flags do not apply to, and are ignored by, other device
service routines. The features are:

• Do not ring bell on input call.

: Do not echo carriage return/line feed on input calL

• Output with reply operation.

• Terminate input automatically when the data record length is
reached.

3.8. 1.4 OUTPUT WITH REPLY. The Data Terminal DSR provide s a spe
cial output/input function for question and answer operations. Setting word
1, bit 1 (output with reply) in the input PRB directs the system to locate an
output PRB immediately following the input PRB. This bit should not be set
in the output PRB. The output (second) PRB is executed first. The respond
ing input is executed immediately, even if multiple programs are using the
same data terminal. If the I/O is assigned to a device other than a terminal,
it is considered an input operation only. All other DSR I S ignore the output
with reply PRB bit and execute only the first (input) PRB.

Change 1 3-23 Digital Systems Division

I

~-------~ 943005-9701

3.8.1.5 FORM FEED DETECTION. The data terminal DSR detects the
form feed function when it is issued by either a formatted output record or a
Form Feed Character in the output data stream. The terminal outputs six
blank lines when a form feed is detected unless the Home-on-Form-Feed
PDT Bit is set. In that case a horne cursor command is is sued.

3.8.1.6 OPEN/CLOSE OPERATIONS. An Open or Open-Rewind SVC
causes a CR/LF to be performed. A Close causes no special action, but a
CIa se - Write EOF write s three blank line s on the terminal. A Write End-of
File command also results in three blank lines.

3.8.1.7 AUTOMATIC LINE CONTINUATION. The DSR can print data
records up to twice the carriage size on consecutive lines and without data
loss. This feature is subject to two restrictions:

(1) The print head must be at the left margin when the record begins
to print

(2) Formatted output must. be used

3.8.1.8 FORMATTED OUTPUT. This DSR supports formatted USASCII
output. A form feed is defined as six blank lines unless the Horne -on-Form
Feed PDT Bit is set. If that bit is set a form feed is interpreted as a horne
cursor operation. Unformatt~d I/O is device dependent.

3.8.1.9 CARRIAGE RETURN DELAY. Each different terminal device re
quires from 1 to 5 null characters following carriage return commands to
allow for print head travel time. The DSR checks the Physical Device Table
(PDT) to determine the type of terminal so that it can generate the proper
number of null characters.

3.8.1.10 LINE FEED DELAY AND LINE CLEARING. A Clear to End-of-
Line code is sent following line feed operations. For a CRT, this clears the
display lines before output is done on a particular line. For other terminals
it provides a one character delay. This delay following line feeds is equiva
lent to a null character.

3.8.1.11 CHARACTER LOSS. Character loss does not occur if unformat
ted USASCII output with imbedded CR/LF's is used. For Silent 700's suffi
cient null characters are sent following a carriage return to avoid character
loss. For other devices a single null character follows each carriage return.
For all devices a clear end-of-line character is sent following a line feed.
Unless the device is a CRT, this character is equivalent to a null character.
Each line of a CRT is cleared before output is done on that line.

Change 1 3-24 Digital Systems Division

~-------"ij/ 943005-9701

3.8.1.12 REPEAT KEY. The repeat key may be used to transfer a charac- I
ter repeatedly. The number of characters read will be echoed and printed.

3.8.1.13 CTRL/H ON SILENT 700. The print head back spaces one posi
tion each time that the back space key is activated until the entire input rec
ord is deleted. The first new character echo following a sequence of back
spaces is preceded by a line feed.

3.8.1.14 CTRL/H ON CRT. The cursor m.oves left one position each
time that the back space or left cursor key is activated until the entire input
record is deleted.

3.8.1.15 CTRL/H ON ASR/KSR 33. A backward slash is typed each time
that the back space key is activ:ated until the entire input record is deleted.

3. 8. 1. 16 ERROR CONDITIONS. No task or system errors are generated by
the Device Service routine. Read operations with timeout specified may
cause data error indication in the PRB. (See paragraph 3. 8. 1. 19). For de
tectable input errors the DSR discards the characters, echoing a Bell to the
terminal. Opcode errors cause an abort condition.

3. 8.1 ~ 17 DEVICE STATUS WORD. A Read Device Status ca:ll reads the
status register of the Communications Module and transfers it to the calling
program. If bit 0 of the status word is aI, the status is not valid and must be

requested again. Bit 0 can only be set to a 1 if the Communications Module
receives a character between the time the DSR is entered for the read status
and when the status is actually read. This is an unlikely occurrence, since
the window for this to happen is less than 50 ~ s. Use of the status bits varies
with the type of terminal. Refer to the applicable Terminal User I s Guide
listed in the Preface of this m.anual for the specific use of each status bit.
The status word bits are assigned as follows:

• Bit 0 - Invalid status if set.

• Bits 1 through 10 - Always zero.

• Bit 11 - Ring indicator.

• Bit 12 - Reverse channel receive.

• Bit 13 - Data carrier detect.

• Bit 14 - Clear to send.

• Bit 15 - Data set ready.

Change 1 3-25 Digital Systems Division

~-------~ 943005-9701

3.8.1.18 PAPER TAPE INPUT. The paper tape reader on the teletype de
vices ITlay be used to input data as if the data was being typed froITl the key
board. The user ITlust ITloITlentarily set the start button for each record. Each
record ITlust be deliITlited by a carriage return (CR) and at least three !!don!t
care" characters. All rubout characters at the beginning of each record will
be ignored.

3.8.1.19 USER SPECIFIED TIMEOUT ON READ OPERATIONS. Read oper
ations ITlay be tiITled out by setting bit 5 of the user set flags or the read PRB.
If this bit is set, word 4 of the PRB is a pointer to a one -word field containing
a right justified, non-zero, 8-bit tiITleout value in seconds. A >FF specifies
no tiITleout.

The data terITlinal device ITlust be opened to return on correctable errors.
(See paragraph 3. 3.2. 1.) A tiITleout will be indicated if the error bit of the
systeITl set flag is set and the returned error code is a 210.

3.8.2 MODEL 733 ASR CASSETTE

The Device Service Routine for the 733 ASR cassette handles 1200 baud cas
sette units. Each cassette is treated as a separate physical device. The
DSR is functional only if the 733 ASR is operated in the line ITlode for USASCII
processing. The device rn.ust include 1200 baud and rern.ote device control
options. The 733 ASR rn.ust be interfaced to the corn.puter using the Cbrn.

rn.unications Module. The DSR supports reading USASCII records that have
been re corded in the continuous rn.ode.

3.8.2.1 TAPE RECORD FORMATS. Sorn.e data conversion is done prior
to the recording on tape. The conversions described in this section apply to
both Binary and USASCII records. These conversions are perforrn.ed after
initial conversions that vary between Binary and USASCII records.

An USASCII cassette tape record is defined as data followed by a carriage
return character. A record is rn.ore than one physical tape block long if it is
greater than 86-characters (including the CR). The record always begins on
a physical block boundry. All USASCII tape records require at least one 86-
character tape block for storage. Since a CR deterrn.ines the end of a physi
cal record, physical USASCII records rarely correspond exactly with logical
USASCII records that were output by the DSR. For exarn.ple, if an USASCII
record ends with a carriage return/line feed, the LF becorn.es the first char
acter of the next tape block following the rest of the record. Since the DSR
doe s not pas s the CR or the LF to the user when reading USASCII, this
arrangern.ent causes no problern.s.

All USASCII records require at least one tape block for storage. Short out
put logical records rn.ay tend to overrun the capacity or the 733 ASR recording
buffer in the device. For this reason the DSR adds delete characters to all
records as necessary so that any two consecutive tape blocks contain at least
60 characters.

Change 1 3-26 Digital Systems Division

~-------~ 943005-9701

3.8.2.2 USASCII RECORDS. To allow offline cassette preparation and
playback, cassettes are treated as printing devices instead of storage de
vices. Therefore, all form.atted write USASCII operations expand the for
m.at spe cification into form. control characters before writing on tape. For
m.atted expansion is identical to the data terminal DSR expansion.

Since a carriage return separate s records on tape, the DSR appends a CR to
the end of any USASCII write operation that does not have at least one CR in
the data to be written. The hexadecim.al characters 10 through 14 are re
served control characters and are not allowed in USASCII records. If one
of these characters is encountered, the DSR converts it to a delete charac
ter before transm.ission to the 733 ASR. A write direct operation is equiva
lent to a USASCII write operation and is, therefore, not supported. The m.ost
significant bit of an USASCII character is not written on the tape. To trans
fer m.em.ory im.age data to cas sette a write binary m.ust be used.

The USASCII read operation passes all recorded characters from. hexadeci
m.al 20 to SF to the caller. tfSASCII records are term.inated by a carriage
return on the tape, but the CR is not placed in the caller I s buffer. Read di
rect passes all recorded data, including delete and null characters. It is
also term.inated by a carriage return and the CR is pas sed to the caller.

3.8.2.3 BINARY RECORDS. Each word in m.em.ory for a binary record
is written on the tape as three 7-bit characters. For exam.ple~ the 16-bit
word:

ABCDEFGHIJKLMNOP

It is written on tape in three 7-bit characters as follows:

110ABCD

lEFGHIJ

lKLMNOP

3.8.2.4 END-OF -FILE RECORDS. An end-of-file in both binary and
USASC!! m.odes is a record with the first two characters being a (/~:<) com.bina
tion, followed by a carriage return, line feed, X-off, and m.ore than one delete
(rub-out) character. A write end of file com.rn.and writes a I, ~:<, carriage re
turn, line feed, X-off, and 256 delete characters.

3.8.2.5 OFFLINE PREPARATION AND PLAYBACK. USASCII records
can be prepared offline by typing with the recording cas sette in the Line
rn.ode (RECORD switch:jn the LINE position). Any cassette tape recorded
using the USASCII write operation can be listed offline. An offline end of
file is a "/"1.<" followed by a carriage return. Binary records cannot be pre
pared or li sted offline.

Change 1 3-27 Digital Systems Division

~-------~ 943005-9701

I

3.8.2.6 TAPE POSITIONING FUNCTIONS. Forward Space Record and
Forward Space File com.m.ands operate with the DSR reading the cassette at
its norm.al read rate. The Back Space Record com.m.and is not im.plem.ented.
For USASCII records less than 86 characters each, a Block Reverse (DLE,
8) operation is equivalent to a Back Space Record com.m.and. A Back Space
File com.m.and assum.es that the cassette was positioned at the beginning of
a file when it was opened. The tape then block-reverses to the open point
or to the last end of file read in the forward direction from. the open point.
The Backspace File opcode backspaces only one file. Unload rewinds the
tape and leaves the cassette positioned on the clear leader of the tape.

3.8.3 PAPER TAPE READERS

The paper tape readers read 8 -level paper tape in either an USASCII, Binary
or Direct mode. Support is provided for ASR33 type devices and high speed
paper tape readers.

3. 8. 3. I RECORD FORMA TS. USASCII records are read as one tape frame
per character. The most significant bit of each character is set to a binary
one regardless of its state on the paper tape. USASCII records may be delim
ited by either of the following sets of characters:

Reader Off (XOFF), delete, delete

Carriage Return (CR), Line Feed (LF), delete, delete

Records delimited by the second set of characters may have any set of char
acters between the CR and the LF, and anyone character between the LF and
the delete, a s follows:

CR, Xl' LF, X2 , delete, delete

where,

Xl is any set of characters not containing an LF

X2 is any character

Blank, punch on, punch off, and delete (rubout) fra.mes are ignored.

Binary records are read as four frames per word using the conversions
shown in table 3-8. Records are terminated by an X-off character.

Read direct (opcode 20) is implemented for the paper tape reader. It operates
the same as read USASCII except for the following characteristics:

• The entire 8-bit character is stored unmodified.

• No characters are ignored; deletes and null frames are stored.

• There is no end of record character.

• No end of file record is recognized.

• Read direct paper tape on an ASR33 type device does not always read
the number of characters for which the device was opened. The user
should depend on the returned (PRB word) character count.

Change 1 3-28 Digital Systems Division

~-------~ 943005-9701

3.8.3.2 ERROR DETECTION. The DSR detects invalid punches during a
read binary operation only~ An illegal operation aborts the job~

3.8.3.3 END OF FILE RECORDS. In USASCII and Binary m.odes any rec
ord beginning with a slash-asterisk (/~:~) is detected as an end of file record.
For Binary mode the Ill':'" record is not stored in memory.

3.8.4 PAPER TAPE PUNCH DEVICES

The paper tape punch devices punch data on 8=level paper tapes in an
USASCII, Binary, or Direct format. Support is provided for ASR33 type de
vices and high speed paper tape punches.

Table 3-8. Binary Internal Code to Paper Tape Binary Code

Internal Tape Code
Code Frames

a 00010 000

1 00000 001

I
2 00000 010

I
3 10000 all I

I 4 00000 100
I
I

I 5 00010 101

6 00010 110

7 10010 III

8 10011 000

9 00011 001

A 00011 010

B 10011 all

C 00011 100

D 10011 101

E 10011110

F 00011 III

Change 1 3-29 Digital Systems Division

I
•

~-------~ 943005-9701

I

3.8.4.1 RECORD FORMATS. USASCII records are written as one frame
per character. Data is punched directly from the data buffer with no conver
sions. Each record is terminated with a Carriage Return (CR), Line Feed
(LF), reader-off character (X-off), and two delete (rubout) characters, and
a punch-off character if the device is a Model 33 ASR. Binary records are
punched as four frames per word. The end-of-record indicator is the same
as for the USASCII write operation, without the carriage return and line feed.
Write Direct punches data directly from memory as in a USASCII write oper
ation, but no end-of- record indicator is added to the punched data. Write
Direct is not supported on Model 33 ASR paper tape punche s.

3.8.4.2 ERROR DETECTION. The punch does not detect punch errors.

3.8.4.3 END OF FILE RECORDS. An end of file record is defined for
both Binary and USASCII modes as a record beginning with 11/*". A write end
of file punches a "/*" followed by CR, LF, X-off and two delete characters,
then a 10 inch blank tape trailer.

3.8.4.4 OTHER OPERATIONS. Open-rewind punches 10 inches of leader

on the paper tape punch.

3.8.5 DMAC AND I/O BUS LINE PRINTERS

Characters are printed directly from the user1s data buffer. If the formatted
USASCII bit in the PRB is set, the first word of the data buffer is used for

format control.

3.8.5.1 STATUS. If the printer is in a Not Ready condition (as opposed
to offline), the DSR prints a Printer Not Ready message on the system con
sole terminal. Offline status is not detectable.

3.8.5.2 ERRORS. The calling program aborts on illegal operations. If
the device is not ready, the DSR generates retry errors.

3. 8. 5. 3 I/O B US PRINT ER. A car riage return precede s any form feed
operation. Bold letter records may be output by setting bit 1 in the user set
flags of the PRB. Bit 1 instructs the line printer to overprint the line with

redundant text.

3.8.5.4 OTHER FUNCTIONS. The page moves to top of form when the

following operations are done:

• Rewind

• Open Rewind

• Clo se and Write EOF

• Write EOF

Change 1 3-30 Digital Systems Division

~-------~ 943005-9701

The printer performs a carriage return and a line feed when it receives an
Open comm.and.

3.8.6 CARD READER

For handling formatted I/O records, cards are considered as a hard-copy
medium rather than a storage medium. Therefore, do not punch the format
control characters when preparing the input deck. In addition the deck ITlust
follow an iITlplied one-record-per-card structure. The following restric
tions are im.posed upon cards as a storage medium:

• An iITlplied CR/ LF on every record

• Each blank line is indicated by a blank card

• A form-feed cannot be stored

• A ITlaxiITluITl liITlit of 80 -characters per record.

3.8.6.1 RECORD FORMATS. USASCII records actually appear as Holler
ith punches on the cards. An USASCII read operation causes the DSR to con-
vert the Hollerith characters to USASCII characters. Table 3- 9 lists the I
characters and their Hollerith and USASCII codes. Binary records are
punched two characters per card column as shown in Table 3-10. I

Read Direct (opcode 20) reads a card without any data conversion. The data
is stored in memory as one card coiurnn per 'Word. ".lne worn 18 right
justified with bits 0 through 3 equal to o. The least significant bit in ITleITlory
represents card row 12 (top of card). The input record length ITlust be given
in characters, or 8-bit bytes, and requires a character count of twice the
number of coluITlns to be stored. If the character count is odd, only one byte
of the last coluITln is stored. That byte is stored in the ITlost significant half
of the buffer word:

3.8.6.2 ERROR DETECTION. The DSR detects errors for tiITling and in
valid punches. A timing error occurs when either an interrupt for one card
column is not serviced before the next is read, or when the punches in the
card are out of alignITlent. Not all ITlispunched card coluITlns are detectable.
The DSR detects all invalid binary punches. Mispunched USASeII characters
that are not detected as errors are converted to valid USASCII characters.

3.8.6.3 END OF FILE RECORDS. A card with a slash-asterisk (/~:<) in
the first two columns represents an end of file record in both Binary and
USASCII ITlode s.

3.8.7 DUMMY DEVICE

The dUITlmy device handles all possible operations. All necessary system
set flags are returned. For example, read operations set the end of file bit.

Change 1 3-31 Digital Systems Division

~-------~ 943005-9701

I

USASCII
Code

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

Table 3-9. USASCII Character Internal Code
to Hollerith Code Conversion

Hollerith
Character

USASCII Hollerith
Code Code Code

. No Punches SP 40 8~4

12·8·7 ! 41 12·1
8·7 11 42 12.2
8·3 # 43 12.3
11·8·3 $ 44 12.4
0·8·4 % 45 12.5
12 & 46 12.6
8·5

,
47 12.7

12-8-5 (48 12.8
11·8·5) 49 12.9
11-8·4 * 4A 11 .1
12·8-6 + 4B 11 .2
0.8·3 , 4C 11 .3
11 4D 11 .4 -
12·8-3 . 4E 11 .5
o ·1 / 4F 11 .6
a a 50 11 .7
1 1 51 11 .8
2 2 52 11 .9
3 3 53 0.2
4 4 54 0.3
5 5 55 0.4
6 6 56 0.5
7 7 57 0.6
8 8 58 0.7
9 9 59 0.8
8·2 : 5A 0.9
11·8·6 ; 5B 12.8.2
12·8-4 < 5C 0.8.2
8·6 = 5D 11.8.2
0·8·6 > 5E 11.8.7
0·8'7 ? 5F 0.8.5

3.8.8 16 INPUT/16 OUTPUT DATA MODULE

Character

@

A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q

R
S
T
U
v
W
X
y

Z

[
\
J
1 -

This DSR does not support interrupt processing. The 16 I/O Data Module is
not compatible with any other I/O device, and has its own functions and op-

I codes. They are listed in table 3-11. 1 Figure 3-2 illustrates the Data Module
PRB.

Change 1 3-32 Digital Systems Division

~-------~ 943005-9701

Table 3-10. Binary Character Internal Code
to Binary Card Code Conversion

Internal Code Card Code Internal Code Card Code

Most Least
Significant Rows Significant Rows

Digit 12-11-0-9 Digit 8-1-2-3-4-5-6-7

0 Blank 0 blank
1 9 1 1
2 0 2 2
3 0-9 3 3
4 11 4 4
5 11-9 5 5
6 11-0 6 6
7 11-0-9 7 7
8 12 8 8

9 12-9 9 8-1
A 12-0 A 8-2
B 12-0-9 B 8-3
C 12-11 C 8-4
D 12-11-9 D 8.:.5
E 12-11-0 E 8-6
F 12-11-0-9 F 8-7

Exam.p1e: The binary card character for hexadecim.a1 CA is
12-11-8-2.

3.8.9 AD/DA DEVICES

J

Figures 3-3 and 3-4 illustrate the PRB for Analog-to-Digital converters and
Digital-to -Analog converters, respectively.

3.8. 10 MAGNETIC TAPE

The TI Model 979 Magnetic Tape Unit is a standard peripheral of the m.ini
m.um. DX980 hardware configuration.

This unit is a 1/2 inch, 9 track, IBM com.patible form.at, 800 bits per inch
tape drive. It uses an NRZI recording form.at with a standard fixed speed of
37 1/2 inches per second.

A detailed description of the unit is contained in the Model 979 Tape Trans
port Operators Manual, part num.ber 216316-9701.

Change 1 3-33 Digital Systems Division

I

~--------~ 943005-9701

I

Op Code

30

31

32

33

34

35

7

9

Change 1

Table 3-11. 16 I/O Data Module Instructions

Function

Reset - Initialize Data Module logic.

Output Word - Transfers a word from. com.puter to Data
Module.

Output Bit - Transfers a single bit from. com.puter to a
specified bit of the Data Module.

Read Status - Transfers current Data Module status to
com.puter.

Read Data - Transfers a word from. Data Module input
lines to com.puter.

Read Output Register - Transfers the contents of the
Data Module Output lines to'the corn.puter.

Open - Initialize the Data Module and set-up PRB.

Close - Terrn.inate I/O operations.

o 7 8 1 5

WORD 0 SYSTEM SET FLAGS UJN

WORD 1 USER SET FLAGS OP CODE

WORD 2 OUTPUT DATA

(A)129984

Figure 3 -2. Data Module PRB

3-34 Digital Systems Division

~-------~ 943005-9701

o 7 8 15

WORD 0 SYSTEM SET FLAGS LUN

WORD 1 USER SET FLAGS OP CODEG)

WORD 2

WORD 3

WORD 0

WORD 1

WORD 2

(A)129985

WORD 0

WORD 1

WORD 2

WORD 3

WORD 0

WORD 1

WORD 2

(A) 129986

Change 1

ZEROS

OPERATION DEFINITION
TABLE (ODT) ADDRESS

~

ODT FOR AID 15

DEVICE ADDRESS 0

NOTES:

G) OPERATION CODES.

14'6= AID CONVERSION
14 REQUESTED

07 ,6= OPEN

09'6=CLOSE

® THE DEVICE ADDRESS RANGE
IS 0-63 AND IS SELECTED BY
SWITCHES INS IDE THE A/D
CONVERTER ASSEMBLY.

® GAIN ONLY APPLIES TO 7480/20
OR 7480/22

CHANNEL I GAIN@

o

o

RETURNED CONVERTER INPUT

Figure 3-3. Analog-to-Digital Converter PRE·

7 8

SYSTEM SET FLAGS LUN

USER SET FLAGS OP CODEG)

ZEROS

OPERATION DEFINITION
TABLE (ODT) ADDRESS

ODT FOR D/A

DEVICE ADDRESS

DATA OUTPUT WORD

CHANNEL

15

15

NOTES:

G). OPERATION CODES:

'3 ,6=D/A OPERATION
13 REQUESTED

07 ,6= OPEN

09 ,6= CLOSE

Figure 3-4. Digital-to-Analog Converter PRB

3-35/3-36 Digital Systems Division

~.;~------------------~ 943005-9701

SECTION IV

DISC FILE MANAGEMENT

4. 1 FILE STRUCTURES

A DX980 file is a logical collection of related data stored on a random access
device. A file consists of a number of logical records each containing a col
lection of related data items that the program treats as a unit. Logical rec-
o rds may also combine to fo rm a physical reco rd. A physical reco rd is a
collection of data items that the operating system treats as a unit when trans
ferring data between main memory and the random access device. DX980
supports two types of record transfers: blocked and unblocked. An unblocked
file exists if each physical record in the file consists of a single logical rec
ord. If the physical records contain more than one logical record, the file
is described as blocked.

4. 2 FILE HANDLJNG

When the program issues an I/O call for· a file transfer, the file management
system intercepts the call. For output operations, the logical record indi
cated by the Physical Record Block (PRB) is transferred to a physical rec
ord bu1!er. If the logical record transfer completes the physical record, the
physical record is transferred to the random access device. Similarly for
input operations, a physical record may be transferre:i from the device to
the buffer. The buffer then supplies logical records to the program until all
logical records are used. At that time a new physical record is retrieved
from the device. Thus, several logical re cord transfer s can be made at
memory speed before a single transfer at peripheral speed. This arrange
ment can minimize transfer time in programs with a high degree of I/O ac
tivity.

4.2.1 MEMOR~ ALLOCATION

The operating system allocates memory space for physical record buffers
from the user program's job extension area « jearea» when the user opens
a file. The memory space is released when the user closes the file. The
Job Control Language (JCL) tells the system that a file is blocked and the
number of physical record buffe rs to be allocated. The jo b area «jarea»
for the user program provides memory space for logical record buffers.
The user can provide this space explicitly by using a Block Starting with
Symbol (BSS) directive in an assembly language prograrn or im.plicitly with
in the Fortran Input/Output package when the program is run.

Digital Systems Division

943005-9701 ~ ---
4. Z. 2 FILE INTEGRITY

DX980 maintains file integrity through acces s restriction and through file
locking. When the file is defined or assigned, the user specifies access re.
strictions for operations on the file of reading, writing, executing and de
leting the file. He can restrict access completely for any of the operations
(NONE), he can allow access to anyone (ANY), or he can selectively restrict
access to either the creator of the file (CREAT) or to those having the proper
pas sword (PSWD). Following this initial definition of acce s s re strictions,
DX980 enforces them for each type of file operation.

In addition, DX980 provide s three levels of file locking:

1. Assigned exclusive

2. Assigned shared - open exclusive

3. Assigned shared - open shared, then lock

The first type provides an exclusive access to the file until the file is deas
signed through job step termination if the file is not being pas sed, or through
job string termination if the file is pas sed from one step to another. Ex
clusive access can also be removed through runtime resource deallocation.
The second type of file locking provides exclusive access to the file until the
file is closed. The third type of file lock secures the file on an operation by
operation basis. The file is locked by setting a bit in the User Set Flag area
of the PRB for that operation. This type of lock secure s the entire file
rather than a single record. Also, the user is not locked out unless he spe
cifie s the lock by setting the bit in the PRB.

4.3 DISC ORGANIZATION

The operating system allocates file space and maintains disc directories to
support both DS330 and moving head discs. DX980 uses two levels of direc
tories:

• one master file directory for each disc pack «volume»

• a user file directory for each user «fileid» on each disc

The se directories are standard indexed files with a physical record size of
96 words. For a single master file directory, this indexed file contains
keyed entrie s consisting of file control blocks for each user file directory.
The file control blocks are keyed on each valid user <fileid> in the system.
A particular user file directory contains keyed entries consisting of file con
trol blocks for each file defined under the user. The file control blocks are
keyed on the file name < filenam>.

Each user file directory identifies files by file name «filnam». Thus, a
user can have several files under a particular user file directory on each
disc volume. If an installation has a single disc drive, all packs to be
mounted on that drive must also contain the operating system. Fo r multiple

Digital Systems Division

~-------~ 943005-9701

drive installations one drive, designated as the system. disc, supplies the op
erating system. plus user files. The rem.aining drives are dedicated com.plete
ly to user files. The selection of the drive or volum.e for file storage is a
JC L as signment param.eter.

The operating system. em.ploys two techniques for file allocation: contiguous
allocation and noncontiguous allocation. Contiguous allocation places the en
tire file on consecutive disc tracks (disc tracks are numbered consecutively
from 0 through the total number of tracks on the disc; the last track on one
disc cylinder and the first track on the next cylinder are numbered consecu
tively on a moving head disc). Noncontiguous allocation is accomplished
dynamically as the file grows on a track-by-track basis. The initial alloca
tion for noncontiguous files is specified as a JCL parameter and may be any
number of tracks. The entire initial allocation is assigned to consecutive
tracks. As I/O operations add records to the file and the initial allocation
is used up, additional tracks are allocated one at a time from. any available
disc space. As each additional track is used up, another is added until the
final allocation limit, specified in JC L as < mtrks >, is reached. The file
management system can also start searching for the initial allocation quan
tity (or total quantity for contiguous allocation) at a particular track
<trknum>. This user option minimizes head movement by grouping together
files to be processed by a program.

4. 4 FILE TYPES

DX980 supports three types of files: linked sequential, relative record and
key indexed files. The following paragraphs explain each of these file types.

Table 4-1 sum.m.arizes the features of each file type.

4 .. 4. 1

Linked sequential files are files whose records can only be reached through
sequential access. File allocation is noncontiguous. The operations sup
ported on a Linked Sequential File are identical to those outlined in Section
III fo r I/O to sequential devices. A linked sequential file supports an im
bedded end of file so that a single linked sequential file can replace a mUltiple

file stack on a sequential access device (for example an entire reel of mag
netic tape). The random access capabilities of the disc facilitate the search
file operations. A record cannot be inserted between two existing records.
Individual records cannot be deleted. An end of medium pointer always fol
lows the last write performed. This end of medium is equivalent to an end
of volume on a tape reel.

4-3 Digital Systems Division

~-------~ 943005-9701

I

I

I

Table 4-1. Summary of DX980 File Features

File Type

Parameter
Linked Relative

Sequential Record
Key Indexed

Access Sequential Sequential; Sequential;
Random Random

Allocation Noncontiguous Contiguous Noncontiguous

Logical Order Chronological Disc Address Keyed; alphabetic
Nonkeyed; Chron-
ological after key

Key None IS-bit Binary 1- 30 byte
record number

Transfer Blocked Direct (LR = PR) Blocked
Blocked (LR<PR)

Physical Record Multiple of 32 Multiple of 32 Multiple of 32
Length

Logical Re cord Variable Fixed Variable
Length

Logical/Physi- LR~ PR LR ~ PR LR ~ PR- 8 unkey-
cal Record Re- ed; LR ~ PR-8-
lationship KEY keyed where

KEY=key

Logic al Rec ord Yes No No
Split Over Phy-
sical Record
Boundary

Inter Job Last File Beginning of Beginning of
. File Position IPosition Medium Medium

The logical record length for linked sequential file s is always variable.
Therefore word 2 of the PRB specifies the record length of each individual
record when the record is written. When a record is read, the actual record
length is returned in word 2 of the PRB subject to the maximum record length
specified when the file was opened. Insofar as the I/O program is concerned,
the physical record length of records stored on disc is transparent. If the
physical record length is greater than logical record length, the number of
actual disc transfers is less than the number of I/O calls. If the physical
record length is less than the logical record length, the number of disc trans
fers will be greater than the number of I/O calls. Figure 4-1 illustrates the
compo sition of a linked sequential file.

Change 1 4-4 Digital Systems Division

~-------~ 943005-9701

LINK SEQ. BUFFER

WRITE
FLAG

:BUFFER FULL F~G

\

WRITE VERIFY
FLAG

UNUSED

LOGICAL RECORD STRUCTURE

DATA/EOF
FLAG READ DISC ADDRESS ")

OF PHYS. REC. I

. FORWARD TRACK
POINTER

NO. OF DATA
BYTES='"

____________ INDEX TO END +1
OF LAST RECORD

~ __ ~IN~BU~F~F_E~R~ __ ~

nDATA BYTES

CONTIGUOUS
FLAG

-----------I
NOT SPLIT ACROSS SPLIT ACROSS

PHYSICAL RECORD BOUNDARY PHYSICAL RECORD BOUNDARY

I
o 0 n

o l' I n-x

n-x
DATA BYTES

o I 0 I n-X

>' ~
nDATA BYTES

LR
(LOGICAL RECORD)

LR

LR

LR

PARTIAL LR

. PHYSICAL RECORD

o I 0 I X
BOUNDARY

X DATA BYTES

X

EO1=' RECORD STRUCTURE

'1 0 I C

- rb'~'b:~R~~1~1~'}-

BACK EOF INDEX

FORWARD EOF
i- POINTER -

(0 FOR LAST EOF)

FORWARD EOF INDEX

,1 0 1 C

,

(A)130321A
16 BITS

I

J

PHYS ICAL RECORD
(DATA TRANSFER
TO/FROM STORAGE
SE~VICE)
(SIZE= (PRWRDS) WORDS)

Figure 4-1. Linked Sequential File Param.eters

Change 1 Digital Systems Division

I

~ 943005-9701

4.4. 2 RE LA TIVE RECORD FILES

A relative record file allows random access in addition to sequential access
for locating records within the file. The random access method uses a num
ber to directly specify the numerical position of the record within the file.
The first record is designated as record number O. Records may be added
to the file using either access method. Existing records in the file may be
changed or read using either access method. A record cannot be inserted
between two existing records. Single records cannot be deleted. The oper
ating system does not support an end of file interior to the file.

File allocation for a relative record file is contiguous so that the size of the
file must be specified when the file is defined. The entire contiguous data
area assigned to the file is partitioned into fixed length logical records. If
blocking is specified, the blocking buffer length (physical record length)
must be larger than the logical record length. In either case acces s to a
record does not require a directory search. A maximum of one disc access
is required to fetch a record by either m.ethod and may be none if the record
is within a blocked physical record that is in the buffer.

A relative record file is unblocked if the logical record length is equal to
physical record length. For unblocked files the file management system does
not create an intermediate buffer in the job extension area. Instead, it trans
fers the data directly to or from the logical record buffer specified by'the
PRB. This direct transfer requires a disc transfer for each I/O call, and
increases the running time of the accessing program, but reduces the mem
ory requirements due to a smaller job extension area. Figure 4-2 illustrates
both blocked and unblocked transfers.

The operating system supports the following random access functions:

• Write/Replace using key - Data record with same numeric key to be
replaced with new data record.

• Replace using key - same as Write/Replace using key.

• Read using key - Read the logical record as specified by the key.

t\ny access to a record in the file (read or write, random or sequential meth
od) establishes a logical position that follows the record previously acces sed.
This logical position has no effect on a subsequent random access operation,
but defines the location for a subsequent sequential operation.

4. 4. 3 KEY INDEXED FILES

A key indexed file allows random access in addition to sequential access for
locating records within the file. The operations allowed for both random and
sequential access methods are considerably more powerful than those allowed
for either linked sequential or relative record files. Key indexed files are
noncontiguous.

4-6 Digital Systems Division

J2n~ ______ _ ~ 943005-9701

I

DIRECT (UNBLOCKED) TRANSFER

USER BUFFER

-- -- -
I I

7

1
BLOCKED TRANSFER

.,
•

BLOCKING BUFFER
(! N JEAREA)

(
USER BUFFER LR

LR "- - LRn+1 ~ -n+l r - - -
7 • '1 ., • 4 • 4 4

LR 2n-1

(A) 130320

FILE (ON DISC)

(LR=PR)0

(LR=PR),

• • •

FILE (ON DISC)

LRO

LR,

• • • •
LRn-l

= BLOCK I NG FACTOR)

LR

LRn+1

• • ~ •
LR 2n - 1

• • •

I
I

~

•

1
~ PHYSICAL I RECORD

J

Figure 4-2. Relative Record File Transfers

4-7 Digital Systems Division

)}J5\ ______ _ ~ 943005-9701

The key for random access within a key indexed file is an n-byte name
(n~30 USASCII bytes or binary bytes). The number of bytes in the key is
fixed for all keyed records in the file when the file is defined. However, dif
ferent key indexed files may have different key sizes. Keyed records are
added by setting a bit in the PRB (random access method). Records without
a key are added sequentially to the file. Records that are placed sequentially
in the file without a key can only be retrieved with the sequential access meth
od. No two records may have the same key (name). Most of the sequential
access capabilities of key indexed files are identical to those described in
Section III for sequential I/O devices. Insertion of a nonkeyed record is also
allowed.

4.4. 3. 1 RANDOM ACCESS FUNCTIONS. The operating system. supports
the following random access functions:

• Read using key - With option to delete record and key.

• Write insert using key - Presence of same key considered error.

• Write replace/add using key - Data record with same key to be
replaced with new data record.

• Delete at record level - keyed and non-keyed records.

• Read next higher or lower key.

4.4. 3. 2 SEQUENTIAL ACCESS FUNCTIONS. When performing a sequen
tial access read within a key indexed file, logical records are retrieved in
increasing order of key with the key treated as an unsigned integer (the order
is alphabetical if the key is USASCII bytes). Unnamed records are positioned
in the file as sequential records following either a keyed record or the be
ginning of file. Any access to a record in the file (read or write, random
or sequential method) establishes a logical position that follows the accessed
rec ord. This logical position has no effect on a subsequent random acces s
operation, but defines the location for a subsequent sequential access opera
tion.

4.4.3.3 LIBRARY MAN AGEMENT. Libraries consisting of groups of log
ical records identified with a common name are easily maintained through a
combination of keyed and nonkeyed records in the same file. For example,
a source program library could be written with a keyed record for the first
source record. The remaining records in the program would be nonkeyed,
sequential records. To retrieve a program., the system. first perform.s a read
using key to locate the start of the program. Subsequent sequential read op
erations retrieve the remaining records. The Key Recovery Desired bit in
the PRB (word 1, bit 2) must be set during this operation so that the first
time a key is returned, the system recognizes the corresponding record as
the first record of the next program. This indication can be treated as an
end-of -file if only one program is desired. If the program is the last in the
file, the EOF flag (PRB word 0, bit 2) denotes end-of-file.

Digital Systems Division

J2n5\ ______ _ ~ 943005-9701

4.4. 3.4 MULTIPLE RECORDS WITH THE SAME KEY. If the operating
system. detects an existing identical key within the file while performing a
write using key operation, it returns a logical error indication to PRB word
0, bit 6. The user can still make an entry using that key, however. By per
forming a read using key operation to locate the key within the file, and then
performing a sequential write without key at that location, the new record
can be inserted at the beginning of a sequential string following the record
with the target key. This operation generates a string of records for each
key that operates so that the last record inserted will become the first reC-
ord obtained sequentially following the keyed record itself.

4.4.3.5 BUFFER MAN AGEMENT. A system wide buffering scheme pro
vides buffer management for key indexed files. A major factor in gaining
access to a key-controlled data record is the number of disc accesses re
quired to search through the key structure. To minimize the number of ac
cesses and reduce search time, DX980 allows multiple memory buffers for
storing keyed records. The minimum number of buffers per job for key
indexed files is two: one buffer for keys and another for data. The operat
ing system provides two mechanisms for acquiring multiple buffers. The
"BUFFERS=" parameter in the assignment com.m.and specifies the nUITlber
of buffers to be allocated in the accessing program's job extension area.

In addition if multiple programs are sharing a key indexed file, the buffers
from all sharing programs are grouped together for searching purposes.
The user should specify a sufficient number of buffers in his job extension
area to achieve the acces s time required for the appli~ation. If the file is
being shared, the access time will be less than anticipated.

4.4.3.6 BUFFER SIZE. Buffer size .selection for key indexed files is
based on the length of each key, the number of keyed records in the file, and
the desired data access time. Access time for data records is approximately
equal to the number of disc accesses required to find and retrieve the record,
times the average seek time for the disc drive. The number of disc accesses
to get a data record is approximately equal to logmnt1, where n is the num-

ber of data records in the file and m is the number of keys in each physical
record. The number of keys per physical record is equal to the physical
record length minus four divided by the effective length of each key. The
effective key length, including pointer s and information about the data record,
is five words plus the key length in words. Since key length is specified in
characters in the JCL, the key length in words is the JCL specification di
vided by two and rounded up. The minimum buffer size specification must
provide for t\vo keys and at least one logical record: 14 "'Nords + 2~:~ (key
length/2). In addition the buffer size must be a multiple of 32 words.

Figure 4- 3 illustrate s the file structure for key indexed file s. The te rms
used in the figure are defined in the following paragraphs. The structure is
handled by DX980 rather than the user. The information is supplied for in
creased comprehension only.

4-9 Digital Systems Division

Jd7~ ______ _ ~ 943005-9701

LOGICAL

RECORD

CONTROL

FIELD

LOGICAL RECORD

(SIZE :::><lrchar>CHARACTERS)

FPA

FORWARD LOGICAL POINTER

FPI OP<DEX\

-BPA

BACKWARD LOGICAL POINTER

BPI (INDEX)

KEY I DELETED I NJMBER
FLAG FLAG OF TEXT

BYTES

KEY
IF KEy FLAG= I

..

I
I
I

I
I
I
I
I

VIRTUAL BUFFERS IN MEMORY

(NU"'BER~<nbufs»

POINTER TO PARTICULAR
USER'S ASSIGNED BUFFERS

FORWARD POINTER
(VIR11JAL MEMORY BUFFERS

BACKWARD I'OINTER
(VIR11JAL MEMORY BUFFERS)

WRITE I,WRITE I
FLAG VERIFY BUSY COUNT

FLAG

RDA

(REAL DISC ADDR OF
PHYSICAL RECORD)

FORWARD TRACK PO INTER

LR

VIRTUAL

BUFFER

INFORMA TION

I
I
I
I

PHYSICAL RECORD (DATA TRANSFER TO

•• ~. STORAGE DEVICE)

(LOGICAL RECORD)

TEXT ~ LR

(51 ZE=:><prwrds > WORDS)

NON BOTTOM LEVEL NODE

KEY PACKAGE

8 BITS

~:'T ~'""~ __ \
--- DATA

POINTER
124 BITS' __ _

INDEX
{16 BITS 1

N-BYTE KEY
-- (TO WORD

BOUNDARY 1

-- /
'--_____ ..1

(C)\29987

NON I NJMBER OF
BOTTOM KEY ENTRIES

FLAG
(LOWER LEVEL

P POINTER)
0

KO
~~i.AGE)

PI -

K,

~ P 2

K2

~ P3 -

K3

f-- P 4 -

• • •
BOTTON! LEVEL NODE

BOTTOM I
FLAG

NUMII£R OF
KEY ENTRIES

KO

KI

• • •

~~~~AGE) 

1\ 

Figure 4- 3. 

I 
I 

I 
I 
I 
I 
I 
I 

LR 

DA TA PACKAGE BUFFER 

• 
• 
• 

KEY DIRECTORY BUFFER 

POINTER TO PARTICULAR 
USER'S ASSIGNED BUFFERS 

FORWARD POINTER 
(VIRTUAL MEMORY BUFFERS) 

BACKWARD POINTER 
(VIR11JAL MEMORY BUFFERS) 

WRITE 1 WRITE I' FLAG VERIFY BUSY COUNT 
FLAG 

f--RDA 

(REAL DISC ADDR OF 
PHYSICAL RECORD) 

FORWARD TRACK PO INTER 

"B" 

TREE 

NODES 

PERIPHERAL STORAGE DEVICE 

VIRTUAL 

BUFFER 

INFOR

MATION 

1 
BLOCt< SIZE =!> 
<bschar> 
CHARACTERS 
(RESTRICTED BY 
NATURE OF 
DEVICE 

PHYSICAL RECORD (DATA TRANSFER TO 

I STORAGE DEVICE) 

I (SIZE :><prwrds> WORDS) 

I 
I 
I 
I 
I 
I 
I 
I 
I 

Key Index File Parameters 

4-10 Digital Systems Division 



J2nS\ ______ _ ~ 943005-9701 

4.4.3.7 LOGICAL RECORD. The logical records include both data and 
control fields for operating systeITl use. The control area of the record is 
comprised of the following fields: 

• Forward Pointer Address (FPA) - This two word space in each log
ical record contains the disc address of the physical record contain
ing the next logical record in a linked file. 

• Forward Pointer Index (FPI) - This one word area in the logical rec
ord designates the relative position of the next logical record within 
the physical record specified by FPA. 

• Backward Pointer Address (BPA) - This two word space in each log
ical record contains the disc addres s of the physical record contain
ing the previous logical record in a linked file. 

• Backward Pointer Index (BPI) - This one word area in the logical 
record designates the position of the next logical record within the 
physical record specified by BPA. 

• Key Flag - The operating system sets this bit to indicate that the 
logical record has a key associated with it. 

• Delete Flag - The operating system sets this bit to indicate that 
the logical record has been deleted from the file. 

• Text Count - This field indicates the nUITlber of byteS contained 
in the data (text) field of the logical record. 

• Key - If the Key Flag is set, this field contains the key for the log
ical record. 

4.4.3.8 DATA PACKAGE BUFFER. The data package buffer contains log-
ical records and a track pointer that cOITlprise the physical record stored on 
the disc, plus control information used by the operating system. The num
ber of buffers allocated in a particular job is specified by the user through 
the <nbufs> parameter in JCL. 

Track Pointer. The track pointer become s part of the physical record on 
the disc. If the record is the last record on a track, it points to the address 
of the track containing the next physic al record of the file. F or the fir st 
physical record on a track, this field is used for a pointer to the previous 
track of the file. For interim records on a track, this field is not used. 

Data Package Control. 
the following fields: 

The control area of the buffer is cornprised of 

• Use r Buffe r Pointe r - Thi s field contain s the main memo ry addr e s s 
of the first buffer assigned to the current user of the buffer. 

4-11 Digital Systems Division 



~ 943005-9701 
-------------------------------------------------------------------------------

• Forward Pointer (FP) - This one word field contains the main mem
ory address of the next buffer in a series of buffers assigned to a 
job. 

• Backward Pointer (BP) - This one word field contains the main mem
ory address of the previous buffer in a series of buffers assigned to a 
job. 

• Write Flag - When a user alters the information contained in a file 
buffer, the Write Flag sets. When set, this flag indicates to the op
erating system that the physical record must be written back to the 
disc before it is discarded after being used. This flag ensures that 
the changed data will be recorded in place of the old data on the disc. 

• Write Verify Flag - When set, this flag indicates that the operating 
system must read data back from the disc following a write to ensure 
that the record was stored accurately. 

• Busy Count - This field contains the number of users that are cur
rently using the buffer. When the count equals zero, the system can 
replace the buffer contents with new information. 

• Real Disc Address (RDA) - This two word field contains the disc ad
dres s of the physical record currently in the buffer. 

4.4. 3. 9 KEY DIRECTORY BUFFER. The key directory buffer is identical 
to the data package buffer, except that the logical record fields of the data 
package buffer are replaced with nodes of the sorting tree used to locate a 
particular key. Each node contains one control word that specifies if the 
node is a bottom node or an intermediate node, and that also indicates the 
number of keys contained in the node. The remainder of the node contains 
key packages, and if it is an intermediate node, pointers to the next lower 
level node in the sorting tree. 

Lower Level Pointers. If the desired key is not contained in a current node, 
the operating system must access another block of keys (node) to locate the 
key. The system searches the current node until it finds the first key that 
is logically greater than (alphabetically past) the desired key. Associated 
with each key is a two word pointer. The pointer is the disc address of the 
node that contains keys in the level of the sorting tree below the associated 
key. The operating system uses that pointer to access the next node for the 
search. All of the keys in next lower level node are sorted and are alpha
betically between the surrounding keys at the higher level. 

Key Package. The key package consists of the following fields: 

• Delete Flag - The operating system sets this bit to indicate that the 
key and its associated logical record have been delet"ed from the file. 

4-12 Digital Systems Division 



~ 943005-9701 
------------------------------------------------------------------------

• Data Pointer - This 24-bit field contains the disc address of the 
physical record that contains the logical record associated with the 
key. 

• Index - This one-word field designates the position of the correct 
logical record within the physical record indicated by the data 
pointer. 

• Key - This field contains a narn.e that is from 1 to 30 byte s long and 
that identifies the logical record within the file. This key is re ~ 
peated in the control field of the logical record as sociated 
wi th the key. 

4. 4. 4 FILE ERRORS 

As with I/O devices, three levels of errors can result from a SVC to per
form file I/O. The conventions described in Section III for I/O errors apply 
to file errors also. Table 4- 2 lists the possible file errors together with 
their associated severity and error num.ber. 

4. 5 PHYSICAL RECORD BLOCK 

The Physical Record Block (PRB) for file I/O is similar to that for device 
I/O as outlined in Section III except for the key address field (~ord 4). The 
PRB is four words in length unless bit 1 of word 2 is seL That bit indicates 
the presence of the key address in a fifth word. Key address is used by key 
indexed or relative record files. The field points to the memory address in 
the user program where the key can be located. For relative record files the 
indicated key contains a IS-bit binary value within the range of 0 to 32, 767. I 
Bit 0 of this word must be zero and bits 1 through 15 contain the record 
number. This number indicates· the logical record number within the partic-
ular relative record file. For key indexed files the key contains a block of 
from 1 to IS· words (1 to 30 bytes) that functions as an alphanumeric byte 
string or a binary number. The length of this block (key) is specified with 
JCL. The key constitutes the name of the referenced logical record. Keyed 
reads and writes require both a key and a logical data record pointer. Table 
3-4 outlines the opcodes that are applicable to I/O for relative record and key 
indexed files. Linked Sequential Files are accessed with I/O calls as de-
scribed in Section III. 

Change 1 4-13 Digital Systems Division 



~-------~ 943005-9701 

I 

Error 
Number 

233 

234 

Severity 

Severe 

Severe 

Table 4-2. File Errors 

Description 

No space available on disc volume 

File full. File status: can only be accessed for 
reading. No additional records can be written into I 
the file, not even following a rewind operation. To 
reuse the disc space the file must be replaced. 

235 Logical Attempted write, logical record greater than 
physical record 

236 Severe Hardware failure on disc volume 

237 Logical Key indexed file - replace attempted on non
existent key 

238 Logical Key indexed file - write attempted on existing key 

239 Logical Key indexed file - write/replace (op code 101) 
attempted without specifying key. 

240 Logical Key indexed file - replace (op code 102) attempted 
on a keyed record without specifying key. 

241 Logical Key indexed file - replace (op code 102) attempted 
, when file was positioned at EOF. 

243 Logical Key indexed and relative record files - no key 
rna tch in the file 

250 Severe InsuffiCient tracks available for allocation 

251 Severe Insufficient contiguous tracks left for allocation 

252 Severe Allocation exceeds disc volume capacity 

254 Severe Unable to allocate buffers, job extension area too 
small 

256 Severe Insufficient number of buffers for attempted oper
ation 

257 

258 

Change 1 

Fatal 

Severe 

Opcode is either non-existent or illegal 

Access violation for integrity code 

4-14 Digital Systems Division 



~ 
I 
....... 
V1 

--

I/O 
Code 

100 

101 

Table 4-3. Relative Record and Key Indexed File Management Opcodes _._-
Operation 

File 
Type 

- r-

Write R.R. 

K. I. 

Write/ R.R. 
Replace 

K. I. 

Function 

Fatal error - Must use Replace (102) or Write/Replace (101) 

Write a logical record from the user's buffer to disc. 

1) Key specified: 

2) 

a) If the specified key already exists in the file, do not write 
the logical record to disc. Return logical error status to 
the user, and do not reposition file pointer. 

b) If the specified key does not exist, make a key-directory 
entry for the key and write the logical record to disc under 
the new key entry. Position file pointer beyond completed 
write. 

Key not specified: Insert the nonkeyed record where the file 
pointer is po sitioned; advance pointer. 

Perform a replace operation. 

1) Key Specified: Replace the logical record of the specified key 
with the logical record fron1. the user's buffer. Position file 
pointer for next sequential record. 

2) Key not specified: Replace the record where the file pointer is 
positioned and advance the file pointer. 

Unconditionally write the logical record from the user's buffer to the 
disc" 

1) Key specified: 

a) If the specified key exists in the key-directory, replace the 
logical record associated with the key with the logical rec
ord from the user's buffer. Position file pointer to next 
sequential record. 

----_.------_. __ ._---, 



I/O 
Code 

101 
(Cont) 

102 

103 

Table 4-3. Relative Record and Key Indexed File Management Opcodes (Continued) 

Operation 

Replace 

Read 

File 
Type 

R.R. 

Function 

b) If the specified key does not exist, make a key-directory 
entry for it, and write the logical record to disc under the 
new key entry. Position file pointer to next sequential rec
ord. 

2) Key not specified: Return an error status (number 239) to the 
user. Do not reposition file pointer. 

Replace the logical record on the disc with the logical record from 
the user's buffer. 

1) Key specified: Replace the record specified by the key and posi
tion file pointer to next sequential records. 

2) Key not specified: Replace record where the file pointer is 
positioned and advance the pointer. 

K. I. Replace the logical record on the disc with the logical record from 
the user's buffer. 

R.R. 

1) Key specified: Replace the record specified by the key and posi
tion file pointer to next sequential record. If key does not exist, 
return error and do not reposition file pointer. 

2) Key not specified: Replace record indicated by file pointer and 
advance pointer. If record to be replaced has a key, then return 
a logical error (number 240 or 241). Do not reposition file pointer. 

Read the logical record from the disc into the buffer specified by the 
user. 

l) Key Specified: Transfer logical record associated with specified 
key and position pointer to next sequential record. 



~ 
I 
...... 
-J 

I/O 
Code 

103 
(Cont) 

Table 4-3. Relative Record and Key Indexed File Managem.ent Opcodes (Continued) 

Operation 
File 

Type 

K.I. 

2) 

Function 

JKey not specified: Read record indicated by the file pointer and 
advance pointe r. 

Read the logical record from. the disc into the user's buffer. 

1) JKey Specified: 

2) 

a) Read the logical record as specified by the key from. the 
disc into the user' s buffer~ Position file pointer to next 
sequential record. 

b) If the specified key is not in the key-directory, return an 
error status to the user. Do not change file pointer. 

Key not specified: 

a) Read the record indicated by the file pointe r and advance 
pointer. 

b) If a keyed record is encountered and the PRB specifies that 
key recovery is desired, return the key to the user in the 
area allocated for the key. If key recovery is not desired, 
do noe return the key. 

3) J\To data desired: By setting the "return record size only'! bit in -
the PRB a user can issue a Read and no logical record data is 
transferred. The size of the logical record is returned in the 
Data Reco rd Length field of the PRB. Function s land 2 above 
apply . 

. _-



0 
C§: 
~ 
en 
~ 
CD 
3 en 
0 
~. 

(j)" 
cr 
::l 

I/O 
Code 

104 

Table 4- 3. Relative Record and Key Indexed File Management Opcodes (Continued) 

Operation 

Read High 

File 
Type 

R.R. 

K. I. 

Function 

Fatal error 

Read the logical record from the disc into the user's buffer. 

1) Key Specified: 

a) If the exact specified key exists in the key-directory, read 
the logical record associated with it. Position pointer to 
next sequential record. 

b) If the specified key does not exist, find the next algebraically 
higher key in the key-directory and read the logical record 
as sociated with it. Return the key that was actually found to 
the key field addressed by word 4 of the PRB. Position the 
pointer to next sequential record beyond retrieved record. 

c) If the specified key does not exist and no algebraically higher 
key exists in the key-directory, return an error status (end 

of medium) to the user. Do not reposition pointer. 

2) Key not specified: Use the forward sequential-access method to 
find the next key in the key-directory beyond the record indicated 
by the file pointer. 

a) 

b) 

Return the key to the user if a keyed record is found and if 
the key recovery bit is set in the PRB. Put the associated 
logical record in the user's buffer. Position file pointer to 
next sequential record. 

If no keyed record is found, return an error status (end of 
medium) to the user. Position pointer past last data record 
in file. 



I/O 
Code 

105 

Table 4-3. Realtive Record and Key Indexed File Managen'lent Opcodes (Continued) 

Operation 
File 
Type 

Read Low R.R. 

K. I. 

Function 

Fatal error 

Read the logical rec ' ord from the disc into the user's buffer. 

1 ) 

2) 

Key Specified: 

:3. ) 

b) 

c) 

If the spec 
logical rec 
sequential 

ified key exists in the key-directory, rea.d the 
ord associated with it. Position pointer to next 
record. 

If the spec· ified key does not exist, find the next algebrai-
cally lowel 
record ass 

~ key in the key·-directory and read the logical 
ociated with it. Return the key that was actually 

found to th, e key field addressed by word 4 of the PRB. Posi
r to next sequential record. tion pointe 

If the spec·. ific key does not exist, and no algebraically 
entries are in the key-directory, return an error 
of medium) status to the user. Do not change 

lower key I 

(beginning 
.file pointel 

Key not s t;>ecific ~d: Use the sequential access rnethod to find the 
key-directory going backwards from the current 
ition. 

next key in the 
file pointe r po s 

a) If a keyed: 
key recove 
logical rec 
ferred). 

record is found, return the key to the user (if the 
ry bit is set in the PRB) and put: the as sociated 
ord in the user's buffer (if dat a is to be trans
)osition file pointer to record following the record F 

used. 

---



~ 
I 

N 
o 

I/O 
Code 

105 
(Cont) 

106 

107 

Table 4- 3. Relative Record and Key Indexed File Management Opcodes (Continued) 

Operation 

Read 
Delete 

Delete 

File 
Type 

R.R. 

K. I. 

R.R. 

K. I. 

Function 

b) If no keyed record is found, return an error (beginning of 
medium) status to the user. Position file pointer to be
ginning of file. 

Fatal error 

Read the logical record associated with the specified key into the 
user's buffer. Then mark both the key entry in the key-directory 
and its associated logical record as deleted. Same rules apply as 
for Read (I/O code 103) plus Delete (I/O code 107) for K.I. files. 

Fatal error 

Mark the indicated record as deleted. 

1) Key specified: 

a) If the key exists, mark the specified key entry in the key
directory and its associated logical record as deleted. Any 
sequentially linked record(s) that exist for the specified key 
remain, but the associated key and its record are specif
ically marked as deleted. Position pointer to next record. 

b) If the specified key entry does not exist in the key-directory, 
return an error status to the user. Do not change file 
pointer. 

2) Key not specified: 

a) Mark the logical record at the current file pointer position 
as deleted. Increment the pointer to the next logical rec
o rd. If the deleted reco rd has a key, delete that key from 
the key - di recto ry. 



~ 
I 

N 
I--' 

I/O 
Code 

107 
(Cont) 

108 

Table 4- 3. Relative Record and Key Indexed File Management Opcodes (Continued) 

Operation 

Delete 
Sequentially 

File 
Type 

R. R. 

K. I. 

Function 

b) If the key recovery bit is set in the PRB and the next logi
cal record contains a key, then return the deleted key to the 
user in the key field of the PRB. 

c:) When the last logical record is deleted, the file pointer is 
incremented to point at the end of medium. Therefore, the 
appropriate status is returned to the user. 

Fatal error 

Mark the specified key entry, its associated logical record(s), and 
any sequentially linked 10 gical reco rd (s) up to, but not including, the 
next algebraically succes sive key entry as deleted. 

1 ) Key Specified: 

a) If the key entry exists in the key-directory,. mark it and any 
sequentially linked logical reco rd( s) as deleted. If the key 
recovery bit is set, the next successive key is returned to 
the key field of the PRB. Position file pointer beyond de
leted reco rds. 

b) If the key entry does not exist in the key-directory, return 
an error status to the user. Do not change file pointer. 

2) Key not specified: 

a) Begin at the current file pointer position and mark the se
quentially linked logical record(s) up to, but not including, 
the next successive key entry as deleted. Position the 
file pointer beyond deleted records. 



~ 
I 
N 
N 

I/O 
Code 

108 
(Cant) 

109 

Table 4- 3. Relative Record and Key Indexed File ManageITlent Opcodes (Continued) 

Operation 

Delete 
All 

File 
Type 

RoR. 

K.!. 

Function 

b) If the key recovery bit is set, return the next successive key 
to the user in the key field addressed by PRB Word 4. 

c) If an end of ITlediuITl is detected, return the appropriate sta
tus to the user. 

Fatal error 

Mark all key-directory entries (key and non-key) and all logical data 
records in the file as deleted (delete all data contents of file to create 
an eITlpty file). File allocation reITlains the saITle. 



~~------------------~ 943005-9701 

SECTION V 

SUPERVISOR CALLS 

5.1 GENERAL 

DX980 supervisor calls (SVC) are requests to the operating system to per
form a service for the user. This request is the only communication between 
a user program. and the operating system.. The com.puter interprets an SVC 
as an illegal machine instruction. When the computer encounters an illegal 
instruction, it automatically branches (traps) to the internal interrupt entry 
address. The operating system examines all instructions that cause a trap 
to determine if they are SVC opcodes. If not, the instruction actually is 
illegal and the system aborts the offending program. If the instruction is an 
SVC, the operating system decodes the remainder of the instruction and calls 
the appropriate sy stem service routine to pro ce s s the SV C. 

For compatibility with the Basic Monitor System, DX980 recognizes two SVC 
instruction formats: C380 and F800. The C380 SVCs conform to SVCs for 
the Basic Monitor. However, the Basic Monitor call Set Control Status Flag 
(C384) is not recognized by DX980. The Basic System Use and Operation 
manual referenced in the preface to this manual explains Basic Monito r SVCs. 

(XX corresponds to the hexadecimal equivalent of the SVC number as de
scribed in this manual). To issue an F8XX SVC, construct an argument list 
that contains a word identifying the number of arguments described by the 
list, followed by successive words containing the addresses of each argu
ment. Then set the M register to the address of the list and allow the pro
gram to execute the SVC. For example, a Wait for I/O SVC is implemented 
as follows: 

@LDM = ARGLST 

DATA >F82B 

ARGLST DATA 1, PRE 

(2B 16 = 43 10 , Specifies SVC 43) 

De signate s 1 A rgument at Addre s s PRB. 

Supervisor calls can be specified in decimal form if the OPD (Operation De
finition) as sembler directive is first used to define a new instruction mne
monic, SVC, that maps the decimal number to its hexadecimal equivalent. 
Then the statements: 

SVC 43 
and 

DATA >F82B 

are equivalent. 

5-1 Digital Systems Division 



)}J)\ ______ _ ~ 943005-9701 

Table 5-1 summarizes the DX980 SVC. Table 5-2 lists and describes each 
SVC. The remaining paragraphs in this section provide examples of param
eter setup and calling sequences for each SVC, plus a rnore detailed descrip
tion. 

Table 5-1. 

Base Ten 
SVC Number 

o 
1 

2 

3 

4 

5 

6 

7 

8 

29 

30 

37 

38 

41 

43 

49 

51 

98 

129 

DX980 User Supervisor Calls 

Function 

Input /Output 

Terminate Job 

Set Floating Point Addres s 

Get Memory Limits 

Terminate Job Abnormally 

Terminate Task 

Delete Task 

Suspend Task 

Post Event 

Get Time and Date 

Create Task 

Load 

Load and Relocate 

Command Scanner 

Wait for Input/Output 

Allocate Resource 

Deallocate Resource 

Get Program Limits 

Start Job 

5-2 Digital Systems Division 



U1 
I 

VJ 

Base Ten 
SVC Number 

0 

1 

2 

3 

4 

5 

6 

7 

8 

Table 5-2. DX980 Supervisor Call Description 

Function 

I/O 

Terminate Job 

Set Floating Point 
Address 

Get Memory Limits 

Terminate Job 
Abnormally 

Terminate Task 

Delete Task 

Suspend Task 

Post Event 

Number of 
Arguments, 

Name{s) 

1, PRB 

0 

1, FLT980 

I, ARRAY 

1/2, ERRCOD, 
ERRID 

o 
1, TASKID 

1/2, WCL, 
RETEDB 

1, EDB 
.-----.-.. --.... _._---_._---_._--",---, ..... ,_.-.. __ . 

• 1 ____ -

De scription 

Performs all I/O for the user as specified by 
the PRB. 

Normal Job Te rmination 

Set floating point add re s s to trap to for any 
floating point instructions. 

Get memory limits of user partition from job 
partition and return values in the supplied 
array. 

Abnormal Job Termination. Number of argu
ments is either 1 or 2. First argument is 
ERR COD, an error code supplied by the user 
(should be 1000 or greater). Second optional 
argulnent is ERRID, the address of a 6 char
acter identifier that the user supplie s to identi
fy which error the ERRCOD applies to. 

Normal Termination of the Running Task. 

Delete all tasks under the user job having the 
s arne name as T ASKID. 

Suspend the running task under the user job 
waiting for event{s) as specified by the Wait 
Criteria List (WCL). RETEDB is optional; if 
specified, the ta sk returns to the last matched 
Event Description Block (EDB) on which the 
match occurred. 



o 
C§: -Q) -

Base Ten 
SVC Number 

29 

30 

Table 5-2. DX980 Supervisor Call Description (Continued) 

Function 

Get Time & Date 

Create Task 

Number of 
Arguments, Description 

Name(s) 

4, BTIM, BDAT, Return the System Time and date in the follow-
CTIM, CDAT ing parameters: 

Variable 

BTIM = System Time in Binary (2 words, 
milliseconds since midnight) 

BDAT = System Date in Binary (2 words, 
year & day) 

CTIM = System Time in Characters (3 
words, HH:MM:SS) 

CDAT = System Date in Character (3 words, 
MM:DD:YY) 

The format of the date is year followed by day 
of the year (instead of the month). 

Create a task under the user job as specified 
by the following parameters: 

1) TPRI 
2) TID 

- Relative Task Priority 
- Task identifier (user specified 

binary number). 
3) TSTART - Starting location of first instruc

tion task is to execute. 
4) TREG Pointer to a register file. If the 

pointer is -1, the register file 
for the new task is to be the same 
as the creating task. If not -1, 
the parameter is a pointer to the 
register file containing values to 
be passed to the new task. 



U1 
I 

U1 

.............. ---.---- - ..... ~"""--."" .- -~......,.....,-.--

Base Ten 
SVC Number 

30 
(Cont) 

Table 5-2. DX980 Supervisor Call Description (Continued) 
,.~" .. -,"'~- ,- "" .. _, .. ". "---"- --,,----,_. --- --

Number of 
Function Arguments, 

Name(s) 

----.~ .. --.. ~-~-.. ---

5) TSS -

6) TWCL -

Descripti( 

TCB STACK S IZE; number of 
located in the words to be al 

auxiliary stac k attached to the 
TCB. 
Wait Criteria List - A linear ar

rnore words. If the 
'his parameter is 

ray of one or 
fir st word of t 
zero, the tas 
the Ready sta 

k is to be created in 
te. If the fir st word 
:he parameter is the 
List and the task is 
Dormant state. 

is non-zero, t 
Wait Criteria 
created in the 

The following input paramet ers are to be in-
a for task c re ation 
plied stack area 
neter list ends 

cluded only if the stack are 
is required. If no user sup~ 
setup is required, the paral 
here. 

7) TSTK -

8) TWRK -

Pointer to use r supplied stack. 
ithin the user par
.ired if the reen-

This stack, w' 
tition, is requ 
trant task to b e created requires 
work space. 
Work Area fla .g. If zero, no 

oequired. If non-work area is 1. 

zero, a pointe 
within the use: 

r to the work area 
r supplied stack 

area is to be supplied. 



Ul 
I 

0" 

Base Ten 
SVC Number 

30 
(Cont) 

37 

38 

41 

43 

Table 5-2. DX980 Supervisor Call Description (Continued) 

Function 

Load 

Load and Relocate· 

Command Scanner 

Wait (Suspend) 
for I/O 

Number of 
Arguments, Description 

Name(s} 

3, MIP#, 
LOADR, 
EPA 

3, MlP#, 
LOADR, 
EPA 

5, CMDSTR, 
KEY, CTRL, 
PAKSTR, 
RESLAB 

1, PRB 

9) TF LAG - Argument flag word - i. e., if 

10) ARGl 
ARG2 
ARGN 

any arguments are supplied, each 
bit of this word corresponds to an 
argument and specifie s whether 
(= l) or not (= 0) to move the first 
word of the argument list to the 
TCB. 

- Argument 1 address 
- Argument 2 addre s s 
- Argument N address 

Load MIP# (Memory Image Phase Number), at 
LOADR (a specified load address) and return 
the addre s s to give control at EPA (Entry 
Point Address). 

Same as SVC # 37 (LOAD) but perform the 
necessary relocation. 

A free format input record - Descriptor array 
for output string - Controls SVC4l processing -
Packed output string - Reserved labels for 
command operator 

Suspend execution of this user program until 
the I/O (specified by the PRB) completes. 



U1 
I 
-.] 

Base Ten 
SVC Num.ber 

49 

51 

98 

129 

---------

Table 5-2. DX980 Supervisor Call Description (Continued) 

Num.ber of 
Function Argum.ents, 

Nam.e{s) 
----..---

Allocate Resource 2" JERR, 
JLDT 

De- allocate 2, JERR, 
Resource JLUNO 

Get Program. 1, ARRAY 
lim.its 

Start Job 1, JSB 

-------.. 

De scription 

---_.- ._--------_._-----1 

Allocat e Resource at runtirne. 
JERR -

JLDT -

Error / Availability Code returned to 
caller. 
o m.eans allocation made 
- 5 m.eans device offline 
-4 m.eans device already assigned (un-
available) 
- 3 m.eans device already com.n1.itted 
(unavailable) 
> 0 an error encountered during assign
m.ent. 
A user supplied "assign-tim.e" LDT 
from. which the Ilrun ._ tim.e II LDT is 
built. 

De- all 0 cate re source at run-, tim.e. 
JERR - error code returned to caller. 
JLUNO - LUN num.ber under users job of the 

resource to be de-allocated. 

Get pro gram. lim.its of Job partition and return 
n the user supplied array. values i 

Starts a 
JSB {JO 
block, f 

n "independent" job from. the user job. 
B STAR T BLOCK) - a user supplied 
or starting a job. Includes any re

quired JLDTI s. 
-_._--_.----



4P 943005-9701 
----------------------------------------------------------------------------

5.2 INPUT/OUTPUT - SVC NUMBER 0 

@LDM =ARGLST 

SVC o 

ARGLST DA TA 1 

DATA PRB 

Set M-Register to List Address 

Execute Call 

1 Argument 

Physical Record Block 

This I/O call requests the operating system to perform input/output or file 
management action. Sections III and IV of this manual explain the system 
services available in response to this call. 

5.3 TERMINATE JOB - SVC NUMBER 1 

@LDM =ARGLST 

SVC 1 

ARGLST DATA o 

Set M-Register to List Address 

Execute Call 

No Arguments 

This SVC terminates the job issuing the SVC. The Job Management system 
performs job termination, closes any files left open by the user, releases 
the files, devices and memory used by the job step, and prints a job step 
termination message on the system console. If the calling job step is the 
last or only step within a job, a job string termination message is also 
printed. 

SVC 1 is the standard terminating method for jobs that have reached a nor
mal conclusion. Although programs normally close all files and devices 
befo re te rmination, the operating system can also perfo rm this function. 
Any incomplete input/ output operation may be prematurely terminated. 

5.4 SET FLOATING POINT ADDRESS - SVC NUMBER 2 

@LDM =ARGLST 

SVC 

ARGLST DATA 

DATA 

2 

1 

FLT980 

Set M-Register to List Address 

Execute Call 

1 Argument 

Package Entry Addre s s 

This call supplies the operating system with the address of the floating point 
package within the user's program. The Set Floating Point Address call 
(SVC 2) must be issued before performing any floating point operation. The 

5-8 Digital Systems Division 



Jd7~ ______ _ ~ 943005-9701 

Floating Point Package in the FORTRAN Subroutine Library must have been 
previously combined with the user program by the link editor. The argu
ment is the entry point addres s of the package. 

5.5 GET MEMORY LIMITS - SVC NUMBER 3 

@LDM =ARGLST 

SVC 

ARGLST DATA 

DATA 

LIMITS BSS 

3 

1 

LIMITS 

2 

Set M-Register to List Address 

Execute Call 

1 Argument 

Limits Depository Address 

Lower and Upper 

SVC 3 returns the memory limits of a user job area in the LIMITS argument 
of the SVC. Memory limits correspond to the lower and upper limit regis
ters that surround a user's addressable memory area. LIMITS is a two ele
ment vector that contains the lower limit in LIMITS (0) and the upper limit 
in LIMITS (1) when control returns to the user program. During program 
execution, this SVC can determine the job area size «jarea» that was spec
ified when the job was submitted. Since job area size varies with each job 
submission, this information tells a program the amount of memory supplied 
for a given submission. The lower limit is invariably returned as the value 
zero for protected programs. When using SVC 3, the following formula 
yields available memory for workspace: 

Workspace = Supplied Memory Size - Program Residence Requirements 
~-- ~---
Upper Limit minus Last Program Addres s minus 

Lower Limit First Program Address 

SVC 98 performs a similar function and is simpler to use in certain cases. 

5.6 TERMINATE JOB ABNORMALLY - SVC NUMBER 4 

@LDM =ARGLST 

SVC 4 

ARGLST DA TA 1 or 2 

DATA ERRCOD 

DATA ERRID 

ERRCOD DATA value 

ERRID DATA 'ABCDEF' 

5-9 

Set M-Reg"ister to List Address 

Execute Call 

2 if Optional Argument Used 

Address of Binary Error Code 

Optional, Address of 6-character ID 

System Console Prints Value + 1000 

Systetn Console Prints ABCDEF 

Digital Systems Division 



~~------------------~ 943005-9701 

The operating system terminates a job abnormally because of a fatal program 
error. Similarly, the program can terminate itself abnormally because of 
an abortive error made by the user. Since the termination message and 
error code are displayed on the system console, a user can notify the con
sole operator of an abortive condition without as signing the system console 
to his program. To avoid confusion between user generated and system gen
erated termination codes, the system adds 10,00010 to ERRCOD before 
printing. ERRCOD is a 16-bit number. 

5.7 TERMINATE TASK - SVC NUMBER 5 

@LDM =ARGLST 

SVC 5 

ARGLST DATA ° 

Set M-Register to List Address 

Exe cute Call 

No Arguments 

SVC 5 invokes normal task termination. If the subject task is the last or 
only task for a job, the job also terminates normally. 

5. 8 DELETE TASK(S) - SVC NUMBER 6 

@LDM =ARGLST 

SVC 

ARGLST DATA 

DATA 

TASKID DATA 

6 

1 

TASKID 

value 

Set M-Register to List Address 

Execute Call 

1 Argument 

Address of Task Number 

16-bit Value for TASKID 

This call deletes all tasks within the job whose identifying number corre
sponds to that given in TASKID. TASKID is a 16-bit binary number that 
must correspond to the TASKID supplied when the subject task(s) was created. 
SVC 6 can delete more than one task at a time if they have the same task 
identification (T ASKID). If several tasks are created to perform a similar 
function, the user can thereby cancel them all at once. This SVC is used by 
one task to delete another. Thus, a supervisory routine can maintain control 
by creating and deleting tasks as dictated by the environment. 

5-10 Digital Systems Division 



~-------~ 943005-9701 

5.9 SUSPEND TASK (WAIT FOR EVENT) - SVC NUMBER 7 

@LDM = ARGLST Set M-Register to List Address 

SVC 7 Execute Call 

ARGLST n Number of Arguments 

DATA WCL Address of Wait Criteria List (WCL) 
r - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -. 
: DA TA RET EDB Addre s s of a structure containing the : 
: returned event de scriptor block (EDB) I 
I I 

I optional : 
'--- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -.- - - - - - --~ 

WCL DATA 

DATA 

RETEDB DATA 

value 

value 

$-$ 

DATA $-$ 

A List of Events 

De s c ri pto r s 

This field will contain upon activation 
the EDB on which the last matched 
occurred. It must be the size of the 
largest EDB identified in the WCL. 

SVC 7 suspends the calling task until the occurence of the selected combina
tion of events as described in the Wait Criteria List (WCL). The Suspend 
Task (SVC 7) and Post Event (SVC 8) calls are extremely useful in multitask 
environments. Together these two SVC s coordinate the activities of several 
tasks that are running asynchronously. The calls cooperate within a single 
job or between separate jobs. The suspend task SVC can also be used inde
pendently to wait for specified system events, such as time of day. A task 
may be suspended to wait for a single event or for several events to occur. 
Upon reactivation a user may determine on which EDB the last match oc
curred. 

Change 1 5-11 Digital Systems Division 



~-------~ 943005-9701 

I 
The returned event descriptor block argument is optional and, if specified, 
this argument is a pointer to a structure large enough to contain the largest 
EDB specified 'in the WCL. Upon reactivation of the task, this structure will 
contain the EDB on which the last match occurred. 

5. 9. I WAIT CRITERIA LIST (WCL) 

I The Wait Criteria List is the only required argument for the Suspend Task 
SVC. A WCL contains one or more Event Descriptor Blocks (EDB) that de
fine the parameters that must be satisfied before the task can resume execu
tion. Figure 5-1 illustrates the components of an EDB. The Event Index 
(Word 1) is a numerical value that identifies .the event t~ the operating system. 
These index values are given in the descriptions of system-wide and job
oriented event types later in this section. The index may require 0, 1 or 2 
I. D. words within the EDB. The number and meaning of the I. Do words is 
diffe rent fo r each index. 

A WCL containing only one EDB requires no further information. If the WCL 
contains more than one EDB, the EDBs must be preceded in the WCL by two 
words that prescribe: 

1. The two's complement of the number of EDBs in the WCL 

2. How many of the events must be satisfied before the task is activated. 

Figure 5-2 illustrates a WCL containing multiple EDBs. 

5.9.2 SYSTEM-WIDE EVENTS 

A system-wide event is an event that is beyond the scope of a single jo b. 
'Nhen tasks are suspended to wait for a system-wide event, the operating 
system places the associated EDB' s in the job extension area, and links 
them together in separate lists for each event index. Each event index list 
may contain EDBs from several concurrent jobs. All system-wide events 
can be specified in an SVC 7 call as an event to reactivate a task. Some 
system-wide events can be specified in an SVC 8 call, while others can be 
posted only by the operating system. Those system-wide events that allow 
an SVC 8 call (user posting) provide the capability for synchronizing tasks 

WORD 1 EVENT INDEX 

WORD 2 EVENT 1.0. WORD 1 

WORD 3 EVENT 1.0. WORD 2 

(A)129480 

Figure 5-1. Event Descriptor Block Organization 

Change I 5-12 Digital Systems Division 



~-------------~ 943005-9701 

WORD 1 

WORD 2 

WORDS 3-5 

WORDS 6-8 

• • • 
WORDS N-N+2 

(A)129381 

...... ,
I 

TWO'S COMPLEMENT OF NUMBER OF EVENTS 

NUMBER OF EVENTS TO ACTIVATE TASK 

EDB 1 

EDB 2 

EDB n 

Figure 5 -2. WCL With Multiple EDB 

IN WCL 

...-
f 
I 

across job boundaries. Table 5-3 lists the system-wide events and their 
attributes. The following paragraphs define the column headings of that 
table. 

5.9.2. I USER WAITABLE. This column indicates whether the event can 
be the 0 bject of an SVC 7 call (user wait) from a user program. 

5. 9.2.2 USER POSTABLE. This column indicates whether the event can 
be posted by the user with an SVC 8 call. User postable system-wide events 
are not remembered for matching with subsequent SVC 7 calls. Therefore 
the SVC 7 suspend must precede the SVC 8 po st. 

5.9.2.3 SINGLE OR MULTIPLE MATCH. When an event is posted, the 
operating system scans all the EDBs linked with the posted event index to 
determine if the posted event releases any of the waiting tasks. Similarly 
(but only for savable job-oriented events), when a task is suspended, the 
operating system examines previous postings to determine if the event spec
ified in the Suspend Task call has already happened. User postable system
wide events are not remembered beyond a single scan. Therefore, a Suspend 
Task call awaiting a previously user-posted system-wide event must wait for 
the next posting to be released. The single or multiple match column spec
ifies how far the operating system will search following the posting of an 
event. If the table indicates a single match, then the operating system scans 
waiting EDBs until it finds only one task to release. If the table indicates a 
multiple match, the operating system scans all waiting EDBs in the list and 
releases all tasks that are waiting for that event. When multiple tasks are 
released, processing will proceed in priority order. Tasks are released if 
the event I. D. words of both the SVC 7 and SVC 8 match as specified by the 
Relational Operator. 

Change 1 5-13 Digital Systems Division 



~-------~ 943005-9701 

I 

Table 5.3. User Accessible System-Wide Events 

Index User User 
Single or 

Relational Number Event 
Number Waitable Po stable 

Multiple 
Operator I. D. Words Description 

Match 

22 Yes No Multiple ~ 2 Time-of-day (double 
prec. word in milli-
seconds) 

23 Yes No Multiple ~ 2 Delta time (double 
prec. word in milli-
seconds; 100 ms min) 

24 Yes No Multiple = a Any job step termi-
nation 

25 Yes No Multiple = 1 Particular job string 
termination (bits 0-
11 = job string no. ) 

29 Yes No !Multiple =(]) 1 (2) 

35 Yes Yes Single = 1 Open to user 

36 Yes Yes . Single = 1 Open to user 

37 Yes Yes Multiple = 1 Open to user 

38 Yes Yes Multiple = 1 Open to user 

39 Yes Yes Multiple = I Open to user 

NOTES: 

(]) If Bits 0-7 of the event 1. D. are not all one's, then the com
pare relation operator "= I! is done on all of the event 1. D. ; 
otherwise, it is only done on Bits 8-15 of the event 1. D. 

(l) The event I. D. is a 16-bit composite of an internal de-

o 

vice 1. D. and a control character. as follows: 

7 8 15 

DEVICE 1.0. CONTROL CHARACTER 

The internal device 1. D. is an 8-bit field. that identifies 
the data terminal where the control character is gener
ated. This field is set to a >FF if the match is to be 
made on any data terminal generating the control char
acter. The control character is a 7-bit pattern gener
ated on the data terminal. Refer to the table of USASCII 
Control Characters in Section III to determine which 
control characters .are postable. 

5. 9.2.4 RELATIONAL OPERATOR. This column lists the criteria for 
determining if the 1. D. words of a posted event match the 1. D. words of 
a waiting task. The task is released if the 1. D. words are equal (=), or 
if the 1. D. words of the posted event are greater than or equal to (~) the 
waiting task's I. D. words. 

Change 1 5-14 Digital Systems Division 



~-------~ 943005-9701 

5. 9. 2. 5 NUMBER I. D. WORDS. This column lists the number of I. D 
words that must be included in the EDB of an SVC 7 call that specifies the 
assocaited event index number. 

5. 9. 3 JOB ORIENTED EVENTS 

Job oriented events synchronize tasks within a single job. All job oriented 
events are User Postable and have a Relational Operator of "=11. A jo b ori
ented event may be posted by a task even though no other task is currently 
waiting for that event. If the event is specified as savable, the post is pre
served until a corresponding wait is issued, or until the job terminates. 
Once saved, the post is not retained past the first match. Table 5 ... 4 lists 
the job oriented events and their attributes. Each job defines the functions 
of the events that it uses. 

Table 5-4. Job-Oriented Events 

Single or 
Index Number 

Number 
Savable Multiple 

I. D. Words 
Match 

40 Yes I Single 1 

.Ii 1 v"""~ I Single 1 -z .L .&. .... "" 

I 42 Yes Single 2 

43 No Single 1 

44 No Single 1 

45 No Single 2 

I 46 No Multiple 1 

47 No Multiple 1 

48 No Multiple 2 

49 No Multiple 1 

5. 10 POST AN EVENT - SVC NUMBER 8 

@LDM = ARGLST 
SVC 8 

ARGLST DATA 
DATA 

1 
EDB 

Set M-Register to List Address 
Execute Call 

1 Argument Address 
Address of Event Descriptor Block 

EDB DATA Event index Event Descriptor Block 
DA TA I. D. Word 1 
DA TA I. D. Word 2 

Change 1 5-15 Digital Systems Division 



~-------~ 943005-9701 

The Post Event SVC notifies the system that the specified event has occurred. 
The system then performs the necessary processing to either activate waiting 
tasks or queue the event posting. Queueing occurs only for savable job
oriented events that have no tasks waiting for them at the time of the posting 
call. System-wide events are posted according to the attributes defined for 
the corresponding event index. These postings may affect tasks throughout 
the system. Job oriented events are posted according to the corresponding 
job oriented event index. These postings can only affect tasks within the 
same job. 

The Post Event SVC contains only one argument: an Event Descriptor Block 
(EDB). The format of the EDB for SVC 8 is the same as that for SVC 7. 

5. 11 GET TIME AND DATE - SVC NUMBER 29 

@LDM =ARGLST 

SVC 

ARGLST DATA 

BTIM 

BDAT 

CTIM 

CDAT 

DATA 

DATA 

DATA 

DATA 

BSS 

BSS 

BSS 

BSS 

29 

4 

BTIM 

BDAT 

CTIM 

CDAT 

2 

2 

3 

3 

Set M-Register to List Address 

Execute Call 

4 Arguments 

Addres s fo r Binary Time (Milliseconds) 

Addres s for Binary Date (Yea r, pay) 

Address for Character Time (Hours, 
Minutes, Seconds) 

Addres s for Character Date (Month, 
Day, Year) 

Binary Milliseconds Since Midnight 

Binary Year, Binary Day in Year 

HHMMSS in USASCII 

MMDDYY in USASCII 

This call gets the current time and date from the system. The operator 
supplies the system with time and date at IPL time and may change it from 
the operator's console while DX980 is running. An interval timer main
tains the time for the system. There are 86,400,000 milliseconds in a day. 
The double length time word accomodates 1,073, 741,823 milliseconds. 
Therefore, the timer does not overflow during a day. The interval timer 
for most installations interrupts each 100 milliseconds so that B TIM is 
truncated to the nearest 100 milliseconds. 

Change 1 5-16 Digital Systems Division 



~ 943005-9701 

-------------------------------------------------------------------------

I 

5. 12 CREA TE TASK - SVC NUMBER 30 

@LDM =ARGLST 
SVC 30 

ARGLST DATA n 
DATA TPRI 
DATA TID 
DATA TSTART 
DATA TREG 
DATA TSS 
DATA TWCL 

Set M-Register to List Address 
Execute Call 

Num.ber of Argum.ents 
Address of Task Relative Priority 
Address of Task Identifier 
... .!\ddre s s of Task Entry Point 
Address of Starting Register Values 
Addre s s of Task System. Stack Size 
'Addres s of Task Wait Criteria List 

------------------------------------------------------~ 

DATA TSTK Address of User Stack Address 
DATA TWRKA A..ddre s s of Flag fo r Wo rk Area 
DATA TFLAG Address of Argument Flags 
DATA ARGI User Argum.ent Address 1 
DATA ARG2 User Argum.ent Address 2 

: optional L _____________________________________________________ ~ 

TPRI DATA 
TID DATA 

REF TSTART 
TREG DATA 

TSS DATA 

TWCL DATA 

TSTK DA TA AREA 
AREA BSS size 

TWRKA DATA 0, 

TFLAG DATA 0 

Priority Relative to Job 
Arbitrary 16-Bit Task I. D. 
Ta sk Entry Point 
-I = Undefined Register Values, Otherwise, 

Points to Starting Values for A,E,X,M, 
S,L and B. 

System. Stack Size, for New Task 

Zero, or Wait Criteria List if the Task 
begins Suspended While Awaiting for 
a Posted Event (See SVC 7). 

Address of Stack Area 
Stack Area for Building Call Argum.ents 

for Task 
If Not Zero, a flag indicating User Work 

Area in AREA 

Bits that Equal 1 to Indicate Argum.ents 
Transcribed into AREA 

Once a job is running with the single task created by the system., additional 
tasks can be created from. the user program. with the SVC 30 call. The 
created tasks can have an equal or lower priority (high num.erically) than 
the job under which the task runs. The priority for a new Task, TPRI, is 

Change 1 5-17 Digital Systems Division 



}}7S\ ______ _ ~ 943005-9701 

stated relative to the basic job step priority specified in JCL «jsprty». 
TID supplies an identifier for the new task. The identifier may be refer
enced in a subsequent SVC 6. The starting address for program execution 
within the task is supplied as TSTAR T. TREG is a pointer to a set of values 
for the register file. If the pointer is to a -1, the register file values for 
the new task are undefined. If the location does not contain -1, the param
eter points to values to be passed to the new task in A~ E, X, M, S, L, and 
B registers. The new task requires allocation in the job extension area mem
ory for system temporary storage (see Section II, < stksize». TSS specifies 
this allocation. The argument TWCL, if zero, indicates that the new task is 
to be created active. If the first word of TWCL is not zero, then it and sub
sequent memory words constitute a wait criteria list as defined under SVC 7 
and the task is created in a suspended state. The wait criteria list defines 
the event(s) that activate the new task. 

5. 12. I OPTIONAL ARGUMENTS 

The call arguments TSTK, TWRKA, TF LAG, and ARGi are optional. If none 
of these are furnished, the new task receives a value defined by TREG in 
the M-Register. If these arguments are supplied, the M-Register points to 
AREA as specified by TSTK in the call. The operating system establishes 
the first word of AREA to specify the number of address arguments to be 
placed in AREA. Any address arguments that the operating system tran
scribes into AREA before activating the task appear in the following order: 

I. The address of work space within AREA 

2. ARGI 

3. ARG2 

Each bit in the TFLAG argument corresponds to one of the supplied argument 
addresses; bit 0 represents the first address, bit 1 represents the second ad
dress, etc., to a maximum of 16 addresses. If the bit is a zero, the oper
ating system transcribes the argument address (ARGi) into AREA. If the bit 
is a one, the operating system transcribes the argument value into AREA 
immediately following the argument addresses, and alters the corresponding 
argument address in AREA to point to the location in AREA containing the 
argument value. Figure 5-3 illustrates possible contents of AREA when the 
task is activated. 

5. 12.2 CREA TE TASK EXAMPLES 

The following paragraphs illustrate some uses of the Create Task SVC. 

Change 1 5-18 D;gital Systems Division 



~o. UI 943005-9701 
-----------------------------------------------------------------------------

M-REGISTER 
POINTS TO ---I"'~ AREA 

OR 

M-REGISTER ---i-'~ AREA-_ 
POINTS TO - -

OR 

M-REGISTER 
POINTS TO' .---1 ...... AREA 

TWRKA 

(AJ129482 

NO ADDRESSES GIVEN 
IN CALL 

o 

USER ARGUMENTS 
SUPPLIED 

r. 

USER ARG 1 
ADDRESS 

USER ARG2 
ADDRESS 

• • 
USER ARGn 

ADDRESS 

NUMBER OF ARGUMENTS IN AREA 

USER ARGUMENT ADDRESSES 

NO USER ARGUMENTS. 
BUT SCRATCH WORK 

AREA SUPPLIED 

TWRKA 

SCRATCH 
WORK AREA 

ADDRESS OF WORK AREA 

OR 
BOTH SCRATCH WORK 

AREA AND USER 
ARGUMENTS 

M-REGISTER 
PO INTS TO ---I~~ AREA n+l NUMBER OF ARGUMENTS +1 

M-REGISTER 
POINTS TO 

TWRKA ADDRESS OF WORK AREA 

USER ARGl 
ADDRESS 

USER ARG2 
ADDRESS 

USER ARGUMENT ADDRESSES 

• • USER ARGrl 
ADDRESS 

'WRKA SCRATCH 
WORK AREA 

-

TFLAG:::: 4000t6 

(,TRANSCRIBE ARGUMENT 2) 

---I ...... AREA 

NEW2 

TWRKA 

4 

TWRKA ADDRESS OF WORK AREA 

USER ARG 1 
ADDRESS 

NEW2 NEW ADDRESS FOR ARG2 

USER ARG3 
ADDRESS 

NEW COpy OF 
USER ARG2 

SCRATCH 
WORK AREA 

~ -

Figurl' 5-3. Sample TSTK Contents 
At Task Activation 

5-19/5-20 Digital Systems Division 



J2n5\ ______ _ ~ 943005-9701 

5.12.2. 1 NO ARGUMENTS. The following sample call creates a task that 
activates a non-reentrant subroutine, NEWTSK, with no arguments. 
NEWSTK performs non-file I/O, thus requiring a TCB stack of 110 words. 

@LDM =LIST Set List Address 
SVC 30 Create Task 
BRU NEXT Computation continues'': 

LIST DATA L Six Argulllents in List u 

DATA ZERO New Task Priority Same as Jo b Prio rHy 
DATA TASKID Numeric Task Identifier 
DATA NEWTSK Pointer to NEWTSK 
DATA MINUSl No Register Arguments 
DATA TCBSTK TCB Stack of 110 Words 
DATA ZERO Create Active Task 

Constants, Arguments, etc. 

ZERO DATA 0 
TASKID DATA 1 
MINUS 1 DATA -1 
TCBSTK DATA 110 

REF NEWTSK 

5. 12.2.2 DORMANT TASK. The following example creates a dormant task 
that activates in 10 seconds and then activates a non-reentrant subroutine, 
NEWTSK, with no arguments. NEWTSK performs non-file I/O, thus requir
ing a TeB stack of 110 words. 

@LDM =LIST Set List Address 
SVC 30 Create Task 
BRU NEXT Computation Continue s 

LIST DATA 6 Six Arguments in List 
DATA ONE New Task Priority One Lower Than 

Job Priority 
DATA TASKID Numeric Task Identifier 
DATA NEWTSK Pointer to NEWTSK 
DATA MINUSI No Register Arguments 
DATA TCBSTK TCBSTK of 110 Words 
DATA WCL Pointer to Wait Criteria List 

(listing continued on next text page) 

5-21 Digital Systems Division 



~~------------------~ 943005-9701 

(listing continued from preceding text page) 

Constants, Argurnents, etc. 

ONE DATA 1 
TASKID DATA 0 
MINUS 1 DATA -1 
TCBSTK DATA 110 
WCL DATA 23 

DATA 0 
DATA 10000 
REF NEWTSK 

5. 12.2.3 ARGUMENTS IN A AND X. The following example creates a task 
that activates a non-reentrant subroutine, NEWTSK, with one argument in 
the A register and one argument in the X register. NEWTSK performs non
file I/O, thus requiring a TCB stack of 110 words. 

LIST 

TREG 
ZERO 
TASKID 
RFILE 

TCBSTK 

I 

@LDM 
SVC 
BRU 

DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

DATA 
DATA 
DATA 
DATA 
BSS 
DATA 
BSS 
BSS 
DATA 
REF 
BSS 

=LIST 
30 
NEXT 

6 
ZERO 
TASKID 
NEWTSK 
TREG 
TCBSTK 
ZERO 

RFILE 
0 
1 
I 
1 
10 
1 
3 
110 
NEWTSK 
100 

Set List Address 
Create Task 
Computation Continues 

Six Arguments in List 
New Task Priority Same as Job Priority 
Numeric Task Identifier 
Pointer to Newtsk 
Pointer to Register File 
TCB Stack of 110 Words 
Create Active Task 

Constants, Arguments, etc. 

A Register - Address of I 
E Register - DUtnnly 
X Register - Index of 10 
M Register - Not Specifiable 
S, L, B - Dutnnly 

Data Array 

5-22 Digital Systems Division 



~~------------------~ 943005-9701 

5. 12.2.4 TWO ARGUMENTS. The following example creates a task that 
activates a non-reentrant subroutine, NEV1TSK, with two argwnents, ARG 1 
and ARG2. NEWTSK performs non-file I/O thus requiring a TCB stack of 
110 words. 

LDM =LIST Set List Address 
SVC 30 Create Task 
BRU NEXT Computation Continues 

LIST DATA 11 Eleven Arguments in List 
DATA ZERO New Task Priority Same as Job Priority 
DATA TASKID T ASKID of One 
DATA NEWTSK Pointer to NEWTSK 
DATA MINUSl No Register Arguments 
DATA TCBSTK TCB Stack of 110 Words 
DATA ZERO Create Active Task 
DATA STKPTR Stack for ArguITlent List 
DATA ZERO No Work Space 
DATA ZERO No Volatile Arguments 
DATA ARGI Pointer to First ArguITlent 
DATA ARG2 Pointer to Second Argument 

Constants, A rgu:rnents, etc. 

ZERO DATA 0 
TASKID DATA 1 
MINUSI DATA -1 
TCBSTK DATA 110 
STKPTR DATA $+1 

"D cc '2 
.lJIJIJ J 

ARGI DATA X,Y,Z 
ARG2 DATA I, J 

REG NEWTSK 

5. 12.2.4 TWO ARGUMENTS AND WORKSPACE. The following example 
creates a task that activates a reentrant subroutine, RSUB, with two argu
ments, ARGI and ARG2. RSUB performs file I/O, thus requiring 300 words 
of TCB stack. In addition, RSUB requires 10 words of remote data area for 
workspace. 

@LDM =LIST 
SVC 30 
BRU NEXT 

Set List Addre s s 
Create Task 
Computation Continues 

(listing continued on next text page) 

5-23 Digital Systems Division 



~~-------------------~ 943005-9701 

LIST 

ZERO 
TASKID 
lv11NUS 1 
TCBSTK 
STKPTR 

ARGl 
ARG2 

(listing continued from preceding text page) 

DATA 11 Eleven Arguments in List 
DATA ZERO New Task Priority Same as Job Priority 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

DATA 
DATA 
DATA 
DATA 
DATA 
BSS 
DATA 
DATA 
REF 

TASKID 
RSUB 
MINUSl 
TCBSTK 
ZERO 
STKPTR 
MINUSl 
ZERO 
ARGl 
ARG2 

0 
2 
-1 
300 
$+ 1 
14 
X,Y,Z 
I, J 
RSUB 

TASKID of Two 
Pointe r to RSUB 
No Register Arguments 
TCB Stack of 300 Words 
Create Active Task 
Stack for Argument List and Work Area 
Nonzero Signifies Work Area Supplied 
No Volatile Arguments 
Pointer to First Argument 
Pointer to Second Argument 

Constants, Argurn.ents, etc. 

5.13 LOAD MEMORY IMAGE PHASE - SVC NUMBER 37 

ARGLST 

NOTE 

SVC 37 is not normally used directly by a user pro
gram. Normally the overlay manager calls SVC 37 
for the user as described in Section VIII for DXOLE. 

@LDM 
SVC 

DATA 
DATA 
DATA 
DATA 

=ARGLST 
37 

3 
MIPNUM 
LOADR 
EPA 

Set M-Register to List Address 
Execute Call 

3 Arguments 
Address of Memory Image Phase Number 
Address at Which to Load 
Entry Point Addre s s 

MIPNUM DATA n Memory Image Phase Number per DXOLE 
Load Map 

MODULE BSS. k Overlay Area 
LOADR DATA MODULE 
EPA BSS 1 Start Address for Execution 

5-24 Digital Systems Division 



~-------~ 943005-9701 

SVC 37 loads memory image phases directly from the load module file as
signed to the running job. A memory image phase is a separate program 
segment that was produced by the DX980 Linkage Editor (DXOLE). DXOLE 
as signs a number to each memory image phase and outputs that number as 
part of the DXOLE load map. Refer to the DXOLE description in Section VIII 
of this manual for further details on load modules and memory image phases. 
The SVC 37 call applies to preplanned overlays. This means that the link 
editor must establish the load address relative to the main program (root). 
The overlay may only be loaded at that one relative address.. On return 
from SVC 37 EPA contains the entry point address of the loaded phase. 

5. 14 LOAD AND RELOCA TE MEMORY IMAGE PHASE - SVC NUMBER 38 

@LDM 
SVC 

=ARGLST 
38 

A.RGLST DATA 3 
DATA :tvlIPNUM 

DA.TA LOADR 
DA.TA EPA 

MIPNUM DATA 

-
MODULE BSS 
LOADR DATA 
EPA BSS 

n 

k 
MODULE 
I· 

Set M-Register to List Addres s 
Exe cute Call 

3 A.rguments 
A..ddress of Memory Image Phase Num

ber 
A.ddress at Which to Load 
Entry Point Address 

Memory Image Phase per DXOLE Load 
Map 

Overlay Area 

Start A.ddress for Execution 

SVG 38 transfers memory image phases to memory and relocates them with
in memory. The relocation map for the memory image phases is brought in
to the job extension area at the same time that a memory image phase is 
brought into the job area. The relocation map must, therefore, be consi
dered when determining the size of the job extension area. The size of the 
relocation map can be determined by dividing the number of words in the 
memory image phase by sixteen (one map bit per phase word). This ca11 ap
plie s to overlays that are not preplanned. Therefore, the link editor did not 
assign a fixed address to the overlay relative to the main program (root). 
The LOADR cell holds the load address of the module. This address may be 
determined dynamically. On return from SVC 38 EPA contains the entry 
point address of the loaded phase. 

Change 1 5-25 Digital Systems Division 



~ 943005-9701 

------------------------------------------------------------------------------------
5. 15 COMMAND SCANNER MODULE - SVC NUMBER 41 

CLDM = ARGLST Set M-Register to List Address 

SVC 41 Execute Call 

ARGLST DATA n number of arguments 

DATA CMDSTR command string 

DATA KEY key word area 

DATA CTRL control information 

DATA PAKSTR packed string 

DATA RESLAB reserved labels 
r-------------------- --- - -------- --------, 
I DATA MAXCH nurn.ber of characters to scan : 
I I 
I 
I optional I L.. - ___________________________________ J 

The Command Scanner SVC is a DX980 nucleus module that can be acc~ssed 
through SVC 41. SVC 41 accepts free format command records and pro-
duce s fixed format arrays. Table 5- 5 de scribe s the language syntax accepted 
by the command scanner. 

5.15.1 EXTERNAL INTERF ACE 

The linking to SVC 41 is identical to the linkage for other SVC' s. The M reg
ister points to an argument list. The first word of the list contains the num
ber of arguments. Subsequent words contain the argument addresses. 

5.15.1.1 INPUT. All arguments, except PAKSTR, must be initialized by 
the calling routine before issuing the SVC. The following parameters are 
necessary as input: 

CMDSTR. The command string may be a variable length input record. 
If the MAXCH argument is specified, then the size of the command is 
specified via this argument; otherwise, the command string is assumed 
to be an 80 character input record, in which case if the actual string 
is less than 80 characters long, it should end with a period or semi
colon, or have the re~aining characters filled with blanks. 

KEY. KEY is an array that holds the descriptors for the corn.mand plus 
all argurn.ents in CMDSTR. The calling routine rn.ust zero the first word 

of the KEY array before invoking the SVC. If the Corn.mand Scanner 
later reque sts continuation records for a command, the first word con
tains a non- zero value. This value should not be changed until the calling 
routine wants to start a new command. 

Change 1 5-26 Digital Systems Division 



~-------~ 943005-9701 

Table 5-5. Description of Com.mand Language (Backus-Naur Form.at) 

< command> : : = < command string>. 

<command string> ::= <command identifier> I 

<command identifier> <delimiter> <operand string> 

<command identifier> ::= <label>1 <blanks> <label> 

<operand string> ::= <operand> 

I <operand string> <delimiter> <operand> 

<delimiter> ::=,IV5 V5 <delimiter> I <delimiter> 1,61; 

<blanks> : :=1,6 <blanks> I V5 I (no characters) 

A command can extend over several input records. The first 
characters on the record will be ignored if CTRL word 5 is 
appropriately set. If a com.m.and extends to the next record, 
then the rightmost delimiter on the current record should be 
a semi-colon. If neither a period nor a semi-colon is pres
ent at the end of a record, then a period is assumed. Com
ments may appear between the period or semi-colon and the 
end of the record. The command identifier is compared 
against the labels in the Reserved Labels table. If the com
mand identifier is found in the table, the identifier is treated 
as a Reserved Label; otherwise, the conunand identifier is 
treated as a label. Only the leftmost eight characters of the 
command identifier are significant. 

<operand> ::= <label> I <number> I <expres sions> I <range> 

1 <empty operand> 

I <string> I <as signment> 

<label>::= <letter> I < label> <letter> I <label><decimal digit> 

<letter> ::= AlBI clnlEIFIGIHlrlJIKILIMINIOlplQlRlSlTlulVIWIXlylZ 

The length of labels is not restricted. 

<number> ::= <sign><decimal integer>l<decimal integer>l<hex integer> 

<decimal integer> ::= <decimal digit> I <decimal integer> <decimal digit> 

<decimal digit> ::= 0111213141516171819 

<sign> ::=+1-

<hex integer> ::=><hex digit>l<hex integer> <hex digit> 

Change 1 5-27 Digital Systems Division 



~-------~ 943005-9701 

Table 5- 5. Description of Com.m.and Language 
(Backus-Naur Form.at) (Continued) 

Decimal integers must be in the range of -32768 to 32767. 
Hex integers must not contain more than four hex digits. 
Numbers larger than four hex digits must be described by 
strings. 

<expressions> ::= <label> + <right side> 

I <label> «subscripts> )= <right side> 

<right side> ::= <number> I <label> I <string> ) « subscripts> ) I<range> 

<subscripts> ::= <subscripts> , <script> J <script> 

<script>::= <number> I <label> 

The number of subscripts allowed is not restricted. 

<empty operand> ::= {the empty set} 

An empty operand is generated for every occurrence of 
one of the following conditions: 

• A pair of commas separated by no other characters 
or only by blanks. 

• A comma and a period separated by no other char
acte r s or only by blanks. 

• A comma and a semi-colon separated by no other 
character or only by blanks. 

<subscripted expression> ::=<iabel> « subscripts»= <right side> 

<subscripts> ::= <subscripts>, <script» <script> 

<script>::= <number>1 < labels> 

The number of subscripts allowed is not restricted. 

<string> ::= I <substring» 

<substring> ::=<character>1 < substring> <character> 

<character> ::= Any USASCII character. If a JlI" is to appear in a 

<substring>, then JIll JI should appear in the input to the scanner .. 

The length of the strings is not restricted. 

<assignment> ::= <label> : = <label> 

<range> ::= <number>: <number> 

Change 1 5-28 Digital Systems Division 



~-------~ 943005-9701 

CTRL. CTRL is a six word array, that must be initialized as follows: 

• Word 0 - Number of Characters Reserved for PAKSTR 

• Word 1 - Num.ber of Words Reserved for KEY 

• Word 2 - Not Initialized by the Calling Routine. Used by 
Command Scanner for Workspace 

• Word 3 - Not Initialized by the Calling Routine. Used by 
Command Scanner for Workspace 

• Word 4 - Number of Labels in RESLAB 

• Word 5 - The Colunm Number in CMDSTR Where Scanning is 
to Start; the First Column in CMDSTR is Column 
Zero. 

MAXCH. MAXCH is a one-word field containing the number of char- I 
acters to scan. This argument is optional and if not specified the com-
m.and string size is assum.ed to be 80 characters. 

5.15.1.2 
workspace. 
guments. 

OUTPUT. SVC 41 changes PAKSTR and KEY, plus two words of 
The following paragraphs describe the effects on these two ar-

PAKSTR. PAKSTR is used for storage of alphanumeric fields that were 
retrieved from CMDSTR. The fields are packed together under control 
of the KEY array. 

KEY. The first word of KEY contains a completion code. The remain
ing words contain a translation of the command string. The value of the 
completion code indicates one of the following conditions: 

• Normal End of Scan - A complete command has been success
fully decoded. 

• Continuation Requested - The command extends across more 
than one record. The value of the completion code minus one 
is the number of continuation records previously read. KEY 
array contains descriptors for all fields of CMDSTR that have 
been scanned. 

• Error - Scanning of CMDSTR is terminated. The value of the 
completion code indicates which error has occurred. Table 
5-6 describes the error numbers. The KEY array contains 
descriptors for all fields of CMDSTR that have been scanned. 
However, the last descriptor may be incomplete or erroneous. 

Change 1 5-29 Digital Systems Division 



AJ.5\ ______ _ ~ 943005-9701 

Table 5-6. Error Codes 

Code Explanation 

401 Overflow of the keyword area. 

402 Overflow of packed strings character string. 

403 The right-hand side of an expression or range is missing. 

404 Unrecognizable or illegal subscript. 

405 Missing delimiter after command identifier. 

406 Number is larger than 16 bits. 

407 Operand starts with illegal character. 

408 Illegal digit in number. 

409 Missing delimiter after operand. 

410 Missing delimiter after subscript. 

411 Illegal character precede s command. 

412 ITS Run command does not contain a label or an expression. 

413 Missing equal sign following colon in as signment. 

414 The right-hand side of an assignment is missing. 

415 Too many equal signs in expression. 

416 Negative number of characters specified for PAKSTR by 
CTRL word O. 

417 Non-positive num.ber of words specified for KEY by CTRL 
word 1. 

418 Non-positive num.ber of labels specified for reserved 
labels list (RESLAB) by CTRL word 4. 

419 The starting column for the scan, specified by CTRL 
word 5, does not fall into the range of zero to seventy-nine. 

Following the completion code is a description of the translation of CMDSTR. 
The second word of KEY contains the number of operands detected in 
CMDSTR. The remainder, of KEY contains descriptors for the operands. 
The form.at for KEY is illustrated in figure 5-4. The operand descriptors 
are described in figure 5- 5. The eight possible descriptor types are: 
Label, Num.ber, Expression, Range, Reserved Label, Empty Operand, 
String, and As signment. 

Change 1 5-30 Digital Systems Division 



~-------~ 943005-9701 

LABEL DESCRIPTOR 

o 

NUMBER OF CHARACTERS 
IN LABEL 

POINTER TO START OF 
LABEL IN PAKSTR 

NUMBER DESCRIPTOR 

VALUE OF NUMBER 

ASSIGNMENT DESCRIPTOR 

2 

NUMBER OF CHARACTERS 
IN LABEL 

PO!NTER TO START OF 
LABEL IN PAKSTR 

NUMBER OF CHARACTERS 
IN LABEL 

POINTER TO START OF 
LABEL IN PAKSTR 

RANGE DESCRIPTOR 

3 

VALUE OF 1ST NUMBER 

VALUE OF 2ND NUMBER 

RESERVED LABEL DESCRIPTOR 

4 

POINTER INTO RESLAB 

(A)130126A 

Figure 5- 5. 

Change 11 

1 LEFT 5 IDE OF 
ASSIGNMENT 

RIGHT SIDE OF 
ASSIGNMENT 

EMPTY OPERAND DESCRIPTOR 

5 

SUBSCRIPTED EXPRESSION DESCRIPTOR 

6 

NUMBER OF CHARACTERS 
IN LABEL 

POINTER TO START OF 
LABEL IN PAKSTR 

NUMBER OF SUBSCRIPTS ON 
LEFT SIDE 

DESCRIPTORS FOR LEFT SIDE 
SUBSCRIPTS (NO DESCRIPTORS 
IF NUMBER SUBSCRIPTS = 0) 

NUMBER OF SUBSCRIPTS 
ON RIGHT 

DESCRIPTORS FOR RIGHT SIDE 
SUBSCRIPTS (MUST BE AT 

LEAST ONE) 
'---________ ..1' J 

STRING DESCRIPTOR 

7 

NUMBER OF CHARACTERS 
IN STRING 

POINTER TO START OF 
STRING IN PAKSTR 

DESCRIPTION OF 
LABEL ON LEFT SIDE 

DESCRIPTORS FOR 
LEFT SIDE SUB
SCRIPTS 

DESCRIPTORS FOR 
RIGHT SIDE SU B
SCRIPTS 

Templates for Descriptors in KEY Array 

5-31 Digital Systems Division 

I 

I 



~-------~ 943005-9701 

I 

WORD 0 

WORD 1 

WORD 2 

WORDn 

(A)130120 

KEY ARRAY IN MEMORY 

COM PLETION CODE 

NUMBER OF DESCRIPTORS 

• • • 

-

[~ 
DESCRIPTOR FOR 
EACH OPERAND 

Figure 5-4. Form.at of Key Array After Return from. SVC 41 

5.15.2 SVC 41 EXAMPLE 

The ITS Supervisor uses SVC 41 to decode com.m.ands from each terminal. 
The arguments could be declared as follows: 

CMDSTR 

KEY 

CTRL 

PAKSTR 

RESLAB 

BSS 

BSS 

80 

50 

DATA 80 

DATA 50 

BSS 2 

DATA 12 

DATA 0 

BSS 80 

DATA 'LOGON ' 

DATA 'LOGOFF' 

DATA 'RUN 

DATA'STATS 

DATA 'EDIT 

DATA 'ENTER I 

Terminal com.m.and line 

Key array 

Num.ber of characters in PAKSTR 

Num.ber of words in KEY 

Workspace for SVC 41 

Twelve valid com.m.ands 

START SCAN at 0 

Packed string 

Reserved labels 

(Listing continued on next text page) 

Change 1 5-32 Digital Systems Division 



~-------~ 943005-9701 

(Listing continued from preceding text page) 

DATA 'JOB 

DATA 'DELETE' 

DATA 'Fl 

DATA'F2 

DATA 'AI 

DATA 'A2 

If a terminal user enters the following command: 

EDIT FILE=(I, USEROI, MVFILE). 

The corn.rn.and is stored in CMDSTR by an ITS I/O routine. The ITS super
visor issues SVC 41 with the standard argument linkage for SVC's. After 
control returns from the corn.rn.and scanner, PAKSTR and KEY contain the 
values illustrated in figure 5- 6. 

KEY 

0 

5 

4 

4 

6 

4 

0 

0 

3 

t 

1 

0 

6 

4 

0 

6 

10 

(A)130122 

Figure 5-6. 

Change 1 

SCAN COM PLETE 

5 DESCR I PTORS 

COMMAND 

L,~;- SIDE OF EXPRESSIO:/ 

NO SUBSCRIPTS ON L,~;r'" SIDE 

3 SUBSCRIPTS ON ftlGHT SIDE 

FIRST ARGUMENT 

SECOND ARGUMENT 

THIRD ARGUM ENT 

,'" 

i 

z 

-4 
I 

,5 
/ 
~ 

I 

f 
oC! 

\\ 

""~;r 

...,' 

.J 

--

PAKSTR 

F 

, 
L 

E 

LJ 

S 

E 

R 

0 

1 

M 

Y 

F 

I 

L 

E 

Resulting Contents of KEY and PAKSTR 

5-33 Digital Systems Division 



~ 943005-9701 

------------------------------------------------------------------------------------------------------------

5.16 WAIT FOR I/O - SVC NUMBER 43 

@LDM =ARGLST Set M-Register to List Address 
SVC 43 Execute Call 

ARGLST DATA 
DATA 

I 
PRB 

I Argum.ent 
Address of PRB Used for Initiate Call 

The Wait for I/O SVC is used in conjunction with an Initiate I/O data transfer 
(see Section III) or with a m.ultitasking program. that requires synchronization 
of I/O and processing tasks. For Initiate I/O calls the calling program. con
tinues execution during the actual I/O transfer. If proces sing m.ust be dis
continued at som.e point in the program. until a requested I/O transfer is com.
plete, the Wait for I/O SVC is issued. Program. execution is then suspended 
until the I/O transfer is com.plete. If the I/O is already com.p1ete, process
ing proceeds without suspension. 

The procedure is sim.ilar fo r m.ultitasking program.s except that a separate 
task is sues an Execute I/O rather than an Initiate I/O call. Other tasks 
issue a Wait for I/O SVC to synchronize the I/O with processing portions of 
their program.. 

Change 1 5-33A/5-33B Digital Systems Division 



Jd7S\ ______ _ ~ 943005-9701 

5. 1 7 ~LLOC ~TE RESOURCE - SVC NUMBER 49 

@LDM 
SVC 

ARGLST DATA 
DATA 
DATA 

JERR BSS 

JLDT BSS 

=ARGLST 
49 

2 
JERR 
JLDT 

1 

20 

Set M-Register to List Address 
Execute Call 

2 Arguments 
Address or Return of Error Code 
Address or Resource Assignment Block 

0= Ok, 39= Device Offline, 88= Device Un
available, > 0= Error 

Assignment Block 

The Allocate Resource SVC as signs a logical unit to a device or file from 
within user code at runtime. This feature permits extension of the job as
signments that were made with JCL (refer to Section II for a discussion of 
JCL assignments). In response to SVC 49, the operating system checks the 
availability of the requested resource. If the resource is available, the op
erating system assigns that resource to the specified user job LUN. If the 
specified LUN matches a previous user LUN, the new assignment super
cedes the old assignment. 

When using SVC 49 with a high priority program, 
ensure that lower priority programs have not re
se rved the requested resource. Failure to 0 bserve 
this precaution may deadlock the system until the 
lower priority program releases the device. 

Input parameters for SVC 49 are one word for error code return, plus 
another word group for the resource assignment block. The error code re
turned in the first parameter is one of the following quantities: 

• 0 = Allocation Made 

• 39 = Device Offline 

• 88 = Device Already Assigned/Committed 

• other (See Appendix A for error codes) 

The resource assignment block (JLDT) describes the file or device to be 
as signed. The length of this block varies. It is four words long for a de
vice assignment, 13 words long for an old file assignment, and 20 words 
long to define a new file or replace an old file. Table 5- 7 lists the word and 
bit assignments for all fields of the resource assignment. Unused fields 
should contain zeros for compatability with future use s. 

5-34 Digital Systems Division 



~~---------:...-----~ 943005-9701 

Word 

0 

I 

1 

z 

Table 5- 7. Re source As signITlent Block (JLDT) ForITlat 

Bit Field Description 

I 
I Flag Word I 

0 
I 

Not used 
1 I Device(O)/file(l) flag 
Z I Not used 
3 I Exclushre (0 Ish I \ ) I a red(l) access fla \ I g 

4-5 I Not used(OO)z 
6 i No pass(O)/pass(l) resources flag 

-------J------------------------------- ______________ -______ _ 
I I ReITlainder of bits applicable to file assignITlents only: 

7 I 
8-9 I 

10-11 

lZ 
13-15 

I 
j 

No delete(O)/delete(l) file flag 
Disposition flag: 

OOZ = As sign old file 
o lZ = Define new file 
10Z = Replace old file 
lIZ = Illegal disposition 

File type flag 
OOZ = Illegal type 
01Z = Linked sequential 
lOZ = Relative record 
lIZ = Key indexed 

Perm.anent(O) /teITlporary(l) file flag· 
Not used (OOO)Z 

Not used 0-7 
8-15 Logical unit num.ber (LUN) I 

Device index (decim.al l-Z56 corresponding to device re- I 

quired). Actual device indexes for the physical devices 1 

can be obtained through the List Device (LD) command 
I 

t--~-----------
during IP L. I 

_ ~~ ~~~~~~ :~~ _f~~~~~ _ ~~~ ______________________________ I 
Rem.ainder of words applicable to file assignments only: 

Number of buffers to be used for file I/O 

I. 

5-7 
8-10 

1
11 - 12 

File owner user ID (6 USASCIl alphanum.eric characters) 
File nam.e (6 USASCII alphanum.eric characters) 
File pas sword (4 U SASeII alphanum.eric characters) 

5-35 Digital Systems Division 



J2r7)\ ______ _ ~ 943005-9701 

Table 5-7. Resource Assignment Block (JLDT) Format (Continued) 

Word 

13 

Bit 

3-5 
6-8 
9-11 

Field Description 

Remainder of word s applicable to file define / replace 
only: 

Integrity code 
Read code 

100Z = Creator only 
110Z = Password owner 
l11Z = Any user 

12-15 

Write code- same options as read code 
Delete code- same options as read code 
Execute code- same options as read code 
Not used 

14 Initial file size (in tracks) 
15 First disc address for allocation (in tracks) 
16 Physical record length (in words) 
1 7 Maximum file size (in tracks) 
18 Logical record length (in characters) for relative rec-

ord file s only 
19 Key length (in characters) for key indexed files only 

5.18 DEALLOCATE RESOURCE - SVC NUMBER 51 

@LDM =ARGLST Set M-Register to List Address 
SVC 51 Execute Call 

ARGLST DATA 2 2 Arguments 
DATA JERR Address for Return of Error Code 
DATA JLUNO Address for Logical Unit Number 

JERR BSS 1 O=Ok, > O=error 
JLUNO DATA n Logical Unit for Released Resource 

The Deallocate Resource SVC removes an assignment of a device or file from 
a user program at runtime. The released resource may have been allocated 
to the job step initially by JCL or may have been allocated during runtime 
with a SVC 49 call. 

The input parameters consist of a word for return of error code from DX980 
(O=Ok, > O=improper LUN), plus a word containing the LUN(I-Z54) to be 
deallo c ated. 

5-36 Digital Systems Division 



~ 943005-9701 
----------------------------------------------------------------------------

5.19 GET PROGRAM LIMITS - SVC NUMBER 98 

@LDM =ARGLST Set M-Register to List Address 
SVC 98 Exe cute call 

ARGLST DATA 1 1 Argument 
DATA LIMITS Addres s for Limits Depository 

LIMITS BSS 2 Lower and Upper 

SVC 98 is identical to SVC 3 (Get Memory Limits) except that the memory 
limits returned in LIMITS correspond to the area between the last word of 
the user program and the end of the job area. This SVC determines the 
amount of memory remaining for work area beyond the actual program code. 
When using this SVC in conjunction with preplanned overlays, LIMIT (0) 
contains the first word beyond the longest overlay; when used with non
preplanned overlays, LIMIT (0) contains the first word beyond the root seg
ment. 

5-20 USER STAR T JOB - SVC NUMBER 129 

@LDM 
SVC 

ARGLST DATA 
DATA 

=ARGLST 
129 

1 
JSB 

Set M-Register to List Address 
Execute call 

1 Argument 
Address for Job Structure Block 

The User Start Job SVC presents independent job steps to the system for exe
cution. The input to this SVC consists of a Job Structure Block (JSB). To 
initiate a rrlultistep job string .. the user must issue a separate User Start 
Job SVC for each job step of the string. The JSB for a single job step con
sists of a 26 word preamble plus one resource assignment block (JLDT) for 
each resource to be initially as signed to the job step. Refer to the Allocate 
Resource call (SVC 49) for a description of the JLDT. Table 5-8 lists the 
word and bit assignments for the JSB preamble. Jobs may be started from 
the system console or via batch or interactive input through the subsystems. 
All of these methods utilize JCL. Jobs should be initiated in those ways 
rather than through SVC 129. User Start Job should be used only when other 
alternatives are unsatisfactory. If the system detects an error in the struc
ture of a job being submitted, it dismisses all previous job steps and aborts 
the job. 

5-37 Digital Systems Division 



J2~ ______ _ ~ 943005- 9701 

Table 5-8. Job Structure Block (JSB) Preamble Format 

'Word Bit 

o 

o 

1 

2-15 

2-4 

5-7 

8 

Q 

10 

1 1 

12 

13 

14 

15-16 

17 

18 

} 19 
20 

21 } 
22 
23 

24 } 
25 

26 

Field Description 

Total length of JSB (for one job step, including all 
JLDT's\ 

Flagword 
Last job step in sequence of steps within a job 

0=:1'\0 (l\10re SVC 129' s are forth coming in this 
job) 

I=Yes (This is the last SVC 129 for this job) 
Privileged mode 

O=Unprivileged mode < PROT> 
1 = Privileged mode < PRIV > 

:'\ot used 

User 1.D. -<userid> (6 alphanumerics in USASCII) 

Job name - <jsname> (6 alphanume,rics in USASCII) 

Job step number within job string (1 to 15) 

Job priority - <jsprty> (1 to 31) 

'I'\umber of task priority levels within the job - < nprty> 
(1 to 31) 

User partition size - <jarea> (load module + user buffer) 

Job size - <jearea> (I/O buffers + job internal system 
control area) 

Stack size of initial task TC B and default size for sub
sequent tasks - <stksiz> 

Time limit for job step (in seconds); -1 indicates no 
time limit 

Two words, initially zero, for use by DX980 

Load module volume ID - < volume> 

Load module user 1. D. (6 alphanumerics USASCII) -
< fileid > 

Load module file name (6 alphanumerics in USASCII) -
< filnam> 

Load module password (4 alphanumerics in USASCII) -
<pswd> 

JLDT's 

5-38 Digital Systems Division 



~-------~ 943005-9701 

SECTION VI 

BA TCH PROCESSING SUBSYSTEMS 

6.1 GENERAL 

Three separate subsystems provide batch processing capabilities to the 
DX980 user. These subsystems are Batch Input Reader (BIR) , Batch Input 
Spooler (BIS), and Batch Output Spooler (BOS).. The two input subsystems 

allow submission of user programs through a card reader. These subsys
tems accept a data stream of intermixed data and control cards. However, 
the BIS subsystem stores the input information on disc prior to activation of 
the job, whereas the BIR subsystem allows the executing program to read 
directly from the input peripheral device. Similarly, the BOS subsystem 
reads program output from a disc and transfers it to a low speed output de
vice such as a line printer. The subsystems may run concurrently as long 
as they each have separate peripheral devices. Normally, the operatdr 
starts one subsystem and allows it to run continuously. Any of the subsys
tems, however, may be stopped at any time. 

The subsystems are structured and invoked in the same manner as a job. 
Each subsystem requires a JCS that identifies the peripheral devices and the 
load module file.. The operator activates the subsystem with JCL Job and 
D •• _ ~,... __ ........ ..:I~ + ........ _ .... \..,.. ~'P~"""'_ ~ ..................... 1,.. 'T"\" .... + ..... 11 ........ ! ___ ........ __ ... _\.. .... ..:1 .............. :1.-.. .... 
.1.'-U.I..1. \..V.I..I.J..I..I..I.Q,.I..I.\.I.i:I .1..1.V.I..I..1. I..U.C i:lYi:)I.C.I..I..1. \..V.I..I.i:lV.1.C ..... .I..I.C LV.1..1.VWL.I..I.0 pQ..LQ.O.LQ.pl.l.i:I \.I.Ci:ll,;.LLUC 

the operation of each subsystem. and provide examples of batch processing 
sequences. 

6.2 BATCH INPUT READER (BIR) 

The BIR subsystem. functions as a single program input stream. That is, 
the program reads any required input data directly from the input deviCe. 
Therefore, the batch input device may be unavailable to other users until 
that program. terminates. The BIR subsystem does, however, decrease the 
I/O overhead associated with spooling. Figure 6 -1 illustrates a typical deck 
structure for BIR input. The following control commands govern BIR pro
ces sing: 

IIJOB 
IIRUN 
IIDATA 
1$ 

JCL Job command 
JCL Run command 
BIR Data Control com.m.and 
BIR End of Job command 

6.2. 1 JOB COMMAND 

The Job command used with BIR is identical to the JCL Job command and 
defines the start of the job. This command is described in Section II of this 
manual. 

6- 1 Digital Systems Division 



~-------~ 943005-9701 

I 

I 
(B)I30751 

ENTER VIA CONSOL.E 

/I JOB BIR SYSTEM 

1/ RUN BIR 

FORTRAN COMPL.IER DEL.IMITER 

II RUN FTNL.GO DSRC=CRI 

FORTRAN PROGRAM DEL.IMITER 

FORTRAN COMPILER DELIMITER 

NOTE. I. SIR REQUIRES A CARD READER FOR INPUT 

Figure 6- 1. BIR Input Deck Structure 

6.2.2 RUN COMMAND 

The Run command used with BIR is identical to the JCL Run command and 
defines the JCS that loads and executes the requested job. This command is 
described in Section II of this manual. 

6.2.3 DATA CONTROL COMMAND 

The Data command (//DATA) identifies the start of the user data input. This 
command must be included following the Run command and before the data 
stream whenever data appears in the job input to BIR. The Data command 
for BIR contains only the six character symbol, I IDA TA. Other information 
may be included, but BIR ignores that input. Only one DATA command is 
allowed in a BIR job. The data deck must be organized in the order expected 
by the us er program. The data deck cannot contain intermixed control cards. 

6.2.3. 1 SYSIN ASSIGNMENT. If the JCS identified in the Run command 
contains an assignment to the generic device, SYSIN (/ ASSIGN 6 SYSIN.), 
then the input jo b must con.tain a Data command. When BIR reads the Data 
command, it deallocates the input device and suspends operation until the 
user program terminates. The user program then executes and is assigned 
the same input device. The program acquires all data from this peripheral 
as it is needed until processing terminates. At that point, BIR reactivates 
and scans the input from the peripheral device for a new Job command. 

Change 1 6-2 Digital Systems Division 



~-------~ 943005-9701 

6.2.3.2 DEVICE ASSIGNMENT. If the user job contains an assigrunent to 
the same I/O device that BIR is using, BIR again deallocates that device and 
suspends processing until the user job com.pletes. For example, if device 
CR 1 is assigned as the input device for BIR and a user job desires input 
from that device, then the user job input must also contain a Data command 
following the Run command, plus the as sociated input data. BIR then pro
cesses the input as if the JCS for the job had assigned the input to SYSIN. 
The JCS may contain many assignments to either SYSIN or the BIR input de
vic e. .All such as sigrnnents designate the same devie e. 

6.2.4 END OF JOB COMMAND 

The End of Job command (/$) follows the last data input of the user program 
and precedes the next Job command in the input stream. This command re
sets BIR for the next job and signals the end of the current job. 

6.3 BATCH INPUT SPOOLER (BIS) 

The BIS subsystem receives input from the assigned peripheral device and 
stores that input on a disc prior to the start of the related program. This 
operation is called spooling. When the program starts, it can access data 
from the high speed disc, rather than from the low speed input peripheral. 

This systeITl allows shorter program execution time and submis sion of other 
jobs while the first job is executing. Figure 6-2 illustrates a typical deck 
structure for BIS input. The following control commands govern BIS pro
cessing: 

/IJOB 
IIRUN 
IIDATA 
1$ 

JCL Job command 
JCL Run command 
BIS Data Control command 
BIS End of Job command· 

6.3. 1 JOB COMMAND 

The Job command used with BIS is identical to the JCL Job command and de
fines the start of the job. This command is described in Section II of this 
manual. 

6.3.2 RUN COMMAND 

The Run command us ed with BIS is identical to the JCL Run command and 
defines the JCS that loads and executes the requested job. This command is 
described in Section II of this manual. 

6 •. 3.3 DATA CONTROL COM1v1AND 

The Data command (//DATA) identifies the start of the user data input. This 
command must be included following the Run command and before the data 

6-3 Digital Systems Division 



SrM ______ _ ~ 943005-9701 

• 

• 

I 

ENTER VIA CONSOLE 

IIJOB BIS SYSTEM 

II RUN BIS 

II JOB - -

(B)130752 

Change 1 

~BIS JOB DELIMITER 

~FORTRAN PROGRAM DELIMITER 

'i""-IDENTIFIES DECK FOLLOWING AS DEV5 FOR COMPILER JCL 

~ FORTRAN COMPILER DELIMITER 

~IDENTI'FIES DECK FOLLOWING AS DSRC FOR COMPILER JCL 

~ IIRUN FTNLGO DSRC=SYSIN DEV5=SYSIN 

NOTES. 1. BASED ON A MINIMUM CONFIGURATION AND SUPPLIED FTNLGO SEQUENCE 
2. BIS REQU IRES CARD READER FOR INPUT 

Figure 6- 2. BIS Input Deck Structure 

6-4 Digital Systems Division 



~-----,---~ 943005-9701 

streaITl whenever data appears in the job input to BIS. More than one Data 
cOITlITland ITlay appear in the input to BIS. Each Data com .. rnand is in the 
fo rITl: 

6.3.3. 1 PARAMETER <p 1>. ParaITleter <p 1> is optional. If supplied, 
this field contains the letter J. If BIS detects the letter J in this field, it 
spools all cards following the Data cOITlITland onto the disc including any sub
sequent Data cornrnands. In this mode the End of Job COH1Il1.and (/$) is the 
only jo b deliITliter. If the letter J is not supplied in this field, BIS interprets 
subsequent Data cOITlITlands as well as End of Job cOlTIITlands as data deck 
deliITliters. This allows the data input to be subdivided for use by different 
portions of the prograITl. If the Data cOITlITland contains a J entry, it ITlust 
be the last Data cOITlITland in the input streaITl since the reITlaining cards are 
not interpreted. 

6.3.3. Z PARAMETER <P
Z

>. ParaITleter <PZ> specifies the type of data 
conversion to be used during spooling. Three entries are possible for this 
paraITleter: 

• A 

B 

• D 

The letter A specifies conversion of the input data to USASCII 
before storing the data on disc. 

The letter B specifies conversion of the input data to binary 
before storing the data on disc. 

The letter D specifies storing the data directly on disc as it is 
read froITl the input device. 

If this paraITleter is not included, BIS defaults -to converting the input data 
to USASCII code for storage on the disc. 

6.3.3.3 ASSIGNMENTS. All assigllITlents for input data under BIS ITlust 
be ITlade to SYSIN. BIS does not allow an assigllITlent to the device that it is 
using. PrograITls ITlay have ITlore than one assigllITlent to SYSIN. Each as
sigllITlent to SYSIN ITlust have' a separate data deck preceded by a Data COITl
lTIand. The input data sets lTIust be organized in the salTIe order as their 
respective assiglllTIents. The first assignment to SYSIN in the JCS reads 
the first data set, the second assiglllTIent reads the second data set, etc. 

6.3.4 END OF JOB COMMAND 

The End of Job command (/$) follows the last data input of the user program 
and precedes the next Job cornrnand in the input strearn. This command re
sets BIS for the next job and signals the end of the current job. If a / /DATA 
J. Data command occurred in the job, the End of Job cOlTImand is the only 
cOlTImand that terminates data input. 

6- 5 Digital Systems Division 



Jd7)\ ______ _ ~ 943005-9701 

6.4 BA TCH OUTPUT SPOOLER (BOS) 

The BOS subsysteITl allows the user prograITl to store output data on a high 
speed disc file during prograITl execution. The subsysteITl then retrieves 
the data froITl the disc when the prograITl is cOITlplete and writes the data on 
the designated output device. This output spooling feature can be used only 
if a SysteITl Output Queue (SOQ) file is installed on the systeITl disc. The 
operating systeITl verifies the existence of SOQ at each initial prograITl load
ing (IPL). If SOQ is available, then any job ITlay use the output spooling 
feature by assigning the output LUN to SYSOUT. All data written to 
SYSOUT is stored on the disc until the job string terITlinates. At that tiITle 
if BOS is running and not busy, it begins to output the data to the as signed 
device. If BOS is not running, it will print out the data as soon as it is ac
tivated with the Job and Run cOITlITlands. 

A job step may assign up to 26 LUNs to SYSOUT; however, the total number 
of LUNs assigned to SYSOUT in a job string is also limited to 26. When the 
data is spooled, it is separated on the disc according to LUN. Therefore, 
when the data is printed out following completion of the job, all data written 
to one LUN will be printed before any data is printed that was as signed to a 
different LUN. This system provide s a degree of organization to the output 
data that cannot be achieved by assigning multiple LUNs to the same output 
device directly. In that case the data is printed chronologically as produced 
by the program. When the data is spooled, it can be divided into functional 
groups. 

6.5 BIR AND BIS EXAMPLES 

1. I I JOB 

IIRUN 

1$ 

JBNAME 

JSBKEY 

USEROI 

The JOB cOITlITland specifies a user job with jobnaITle JBNAME under userid 
USERO 1. The JSB file defaults to the standard systeITl JSB file under DX980. 

The RUN cOITlITland directs the systeITl to retrieve the JSB with the naITle 
JSBKEY froITl the systeITl JSB. 

2. IIJOB 

IIRUN 

1$ 

JBNAME 

JSBKEY 

USEROI FILE=( 1, USER2, FILEX) 

This exaITlple is identical to the previous exaITlple except that the JSB file is 
on disc unit nUITlber one with userid USER2 and filenaITle ·FILEX. 

3. IIJOB 

IIRUN 

JBNAME 

JSBKEY 

USERO 1 

INPUT=CR2 

6- 6 

FILE=(USER3, FILE2) 

Digital Systems Division 



~-------..;..--------------------~ 943005-9701 

The keyword INPUT, established at JCL translation tim.e, is overridden 
with device assigrHnent CR2 representing card reader nUInber two. CR2 is 
not the batch input peripheral. Keyword FILE is overridden to specify a 
specific disc file. 

4. / /JOB 

/IRUN 

JBNAME 

JSBKEY 

IIDATA A 

1* 

1$ 

data 

USEROI 

INI?UT=SYSIN 

Input is from the device assigned to the batch subsystem. If executed under 
BIS, data is converted to USASCII before spooling. BIR ignores the letter A 
in the Data command. 

5. IIJOB 

IIRUN 

JBNAME 

JSBKEY 

IIDATA " A 

data 

1* 

/$ 

USEROI 

INPUT=CRI 

If CR 1 is the system. input device, BIS will not recognize this job. BIR ig
nores the letter A in the Data cornm.and. 

6. IIJOB 

IIRUN 

IIDATA 

data 

1* 

/IDATA 

JBNAME 

JSBOO2 

J, A 

B 

USEROI 

INPUT=SYSIN 

(listing continued on next text page) 

6-7 Digital Systems Division 



~-------~ 943005-9701 

data 

1 ,,~ 'I' 

1$ 

For BIS the IIDATA B card is spooled to disc as data because of the IJI on 
the first IIDATA card. BIR also ignores the IIDATA B card, because the 
first Data command suspended the system to wait for job termination (/$). 

6.6 BIS EXAMPLE 

IIJOB JBNAME USERO 1 

IIRUN JSBOO 1 INPUT l=SYSIN INPUT2=SYSIN 

IIDATA A 

data (a) 

1 ,,~ ',' 

IIDATA B 

data (b) 

1$ 

Data (a) will be with INPUT 1 and data (b) will be with INPUT 2. 

6-8 Digital Systems Division 



~-------~ 943005-9701 

SECTION VII 

INTERACTIVE TERMINAL SUBSYSTEM 

7. 1 OVERVIEW 

The Interactive Terminal Subsystem (ITS) is that portion of DX980 that sup
ports interactive peripherals such as teleprinters and full duplex CRTs. In 
particular, a single version of ITS allows intermixing in any configuration of 
the following terminals: 

• Model 733 ASR 

• Model 733 KSR 

• Model 33 ASR 

• Full duplex 912 CRT 

The ITS and the terminal user communicate with input co.mmands and output 
data or messages. The primary difference in the type of terminal, from the 
terminal user's viewpoint, is the amount of information that can be displayed. 
Teleprinters provide a single display line whereas CR Ts provide up to 24 
display lines • 

.., , , ron IT' T"\TCT'")T I\. ~TC 
f. ~. ~ vL\..1. LJ.LU..L.J....j,Cl..L 0 

Under ITS a full duplex CRT may be supported either as a single line or a 
multi-line device. Single line or multi-line support is determined when 
building the PDT for the CRT at IPL time. If single line mode is selected, 
the CRT functions exactly as a teleprinter. If multi-line support is specified, 
on- screen editing allows convenient operations not possible with a teleprint
er. In this section references to a CRT applies specifically to a CRT oper
ating in multi-line mode. The CRT should be regarded as a teleprinter if 
single line mode is to be used. 

The ITS and the terminal user com.m.unicate using input commands and output 
data or messages. The first line of a CRT screen is dedicated to commands 
and error messages. The remainder of the screen displays data. The 
operator must enter requests to ITS in line 1. Each request (command) to ITS 
must be followed by a period or have blanks (spaces) for all remaining posi
tions in line 1. Depending on the type of request, the operator may also 
enter lines of data prior to notifying ITS that the screen is ready for process
ing. The operator can modify data on the screen with the cursor positioning 
keys in conjunction with the data keys. Any data change is echoed to the 
screen and stored simultaneously in the CRT buffer in the main memory. 
The effective screen size for on-screen editing can be specified within a 
range of 2 to 24 line s. The size impacts the amount of main memo ry re
quired to support the terminal since each terminal must have a main memory 
buffer of 40 words per display line. When the operator has completed the 

Change 1 7-1 Digital Systems Division 



~-------~ 943005-9701 

m.es sage on the screen, he transm.its the m.es sage to the system. by pres sing 
carriage return (CR). 

7. 1.2 TELEPRINTERS 

Conununication between the ITS and a teleprinter is in a one-line format. 
Each input line must be entered com.pletely before notifying ITS to accept 
the input. ITS responds with data one line at a time. The operator keys in 
a request to ITS at the terminal and terminates it by depressing carriage re
turn (CR). If terminal data is required to complete the request, ITS returns 
control to the term.inal and rings the bell. At that time the user enters a 
data line and presses CR. This procedure continues until the request is sat
isfied. Mistakes m.ade during com.m.and or data entry can be corrected by 
pressing CRTL H repeatedly to backspace until the carriage is positioned 
over the character in error. Starting at that point, the rem.ainder of the line 
can be reentered correctly. When the operator presses the first reentry key, 
the DX980 term.inal handler issues a line feed before echoing the character. 
Thus, the corrected data appears immediately below the original data. If 
this technique is employed several times, the data line resembles a stair
case. Pressing CTRL N displays the entire data line on a single line. If the 
line is uncorrectable, the terminal user can start over by pressing RUBOUT 
and reentering the line. 

7. 1.3 ITS TERMINAL ASSIGNMENTS 

ITS runs as a privileged program and can be activated via the RUN command 
from the system console. (The sy stem console can be any data terminal de
vice.) The terminal assignments for ITS are normally incorporated into the 
JCL sequence for ITS, but can be overridden in the Run command at submis
sion time by specification of Ti=<devnam>. For this notation, i is in the 
range of 1 through the number.of terminals at the installation and <devnam> 
is the mnemonic representation for the subject terminal. Assignments may 
be made to the system console (SC) and to the dummy device (DUMMY). Any 
program, including ITS, can as sign the system console as one of its devices. 
Thus it can serve a dual purpose both as a system console and as a user ter
m.inal. When assigned to a program, the console displays the message 
USER MODE to notify the operator that the console has switched modes. At 
that time the operator can use the console as any other terminal. Pres sing 
CTRL 0 switches the console back to system mode. After completion of the 
system duties, the console can be switched back to user mode with CTRL U. 
Assigning a terminal to DUMMY is a useful technique for starting ITS when 
one of the normally active terminals is inoperative. This assignment affect
ively deletes the corresponding assignment in the original JCL sequence. 
The following sample entries illustrate initiation of ITS from the System Con
sole: 

(1) / /RUN ITS 

Change 1 

Start ITS with default assignments. The 
"/ /" is displayed in response to pressing 
the escape key (ESC). 

7-2 Digital Systems Division 



~-------~ 943005-9701 

(2) IIRUN ITS T I=SC 

(3) IIRUN ITS T I=SC, 
T3=DUMlvlY 

Start ITS with an as signment to the sys
tem console in addition to the default as
signments to other terminals. T 1 could 
have been given a default assignment of 
DUMMY in the expanded JCS which would 
require positive action for assignment to 
the system console. 

Same as example (2) except that the ter
minal normally assigned to T3 is inop
erative. 

7. 1. 4 ITS MEMORY REQUIREMENTS 

The memory requirements of ITS vary depending upon the number of termi
nals, the type of terminals, and whether the terminals are going to use the 
Remote Job Entry capability of ITS. ITS requires approximately 6000 words 
of JAREA, plus 125 words of JAREA per (one-line) terminal and 150 words 
of JEA per terminal. If the terminal is a multi-line CRT, then 40 words per 
display line must be added to the JAREA. If the terminal is going to use the 
Remote Job Entry capability, then 500 words must be added to the JAREA 
and 350 words must be added to the JEA. 

7.1.5 REMOTE TERMINALS 

After ITS is activated, a read is issued to each assigned terminal. This 
command rings the terminal bell and activates the terminal for input. If the 
assigned terminal is connected through a telephone data set, the data set is 
conditioned so that the terminal is inunediately activated when the telephone 
connection is made. The procedure for establishing conununications between 
a telephone dataset and a terminal equipped with an acoustic coupler is as 
follows: 

1) Dial the assigned number and wait for the data set tone (a high pitch 
squeal) • 

2) Plug the hands et into the acoustic coupler (the acoustic coupler 
must have the Mode switch set on "Full Duplexll; the terminal Mode 
switch must be set to IILine"). 

3) Terminal is ready for use. 

7.1.6 LOGON 

When communication is established between ITS and a terminal, the termi
nal user must enter a Logon command to gain access to ITS facilities. The 
format of the Logon command is as follows: 

LOGON <userid> <acctno> 

Change 1 7-3 Digital Systems Division 

I 



~-------~ 943005-9701 

The Logon command converts a terminal from the inactive state to the ready 
state. When the terminal is in the ready state, all the services of ITS be;" 
corne available to the user. The notation <;userid> and <acctno> correspond 
to user identification and account number respectively. Depending on the 
installation, a future enhancement to ITS will use three parameters for val
idation against a file of acceptable combinations and recording along with the 
elapsed time of an ITS session for accounting purposes. The present version 
of ITS requires them for syntactic validation. The <userid> field is limited 
to six characters, the first of which must be alphabetic. The <acctno> field 
is a positive integer that must be less than 32, 768. All ITS command op
erands may be separated by a single comma, one or more blanks, or a 
comma and one or more blanks. 

I 7. 1. 7 OTHER ITS COMMANDS 

After the Logon command has been validated, the mes sage 'READY' is di~
played on the terminal. At this point the following commands are valid 
(brackets denote optional fields): 

• LOGOFF 

• EDIT FILE=«volurne>, < fileid>, < filnam> [,< pswd>]) 
[LRECL=<lrchar> ] 

• ENTER FILE=«volurne>, <fileid>, <filnam>[,<pswd>]) 
[LRECL=<lrchar>] [EXTEND] 

• JOB <jsname> <userid> [FILE=«volume>, <fHeid>, <filnam:::;.[,< pswd>])] 

• RUN <jcsnam> ••• 

• STATUS [<jobnum>] 

• DELETE FILE = «volume>, < fileid>, < filnam>[,<pswd>]) 

The Edit and Enter commands gain access to the Interactive File Editor 
(IFE). The Job and Run commands enter the Remote Job' Entry (RJE) facility. 
The Stat command accesses the Computer Status Display (CSD) facility. The 
Logoff command returns the terminal to the inactive state. 

7.2 INTERACTIVE FILE EDITOR 

The Interactive File Editor (IFE) is an integral part of the Interactive Ter
minal Subsystem (ITS). It supports teleprinters and full duplex CR Ts. IFE 
allows the user to display, insert, delete or replace records from the file, 
as well as create an entirely new file from the editing terminal. Two utility 
programs, BLDEDT and DXCOPY, construct the file for editing, and trans
fer the edited file back to the user file. Two editing commands, ENTER and 
EDIT, add or delete records from the file. Figure 7-1 illustrates the data 
transitions that may occur within the scope of file editing. IFE operates 
only on key indexed files. The file must be constructed such that the keys are 

Change 1 7-4 Digital Systems Division 



~--------~. 943005-9701 

CASSETTE OR 
CARD INPUT 

DATA 

BLDEDT 
(UTILITY) 

DXCOPV 

(UTILITY) 

BLDEDT 

KEY INDEXED 
FILE WITH CON
SECUTIVE AND 
CONTIGUOUS EDIT 
KEYS FILE 

(UTILITY) 

BLDEDT 

(UTILITY) 

EDIT 

(COMMAND) 

ENTER 
(COMMAND) 

(A)130103 

DXCOPV 
(UTILITY 

USER 
FILE 

LINKED SEQU ENTIAL 
FILE (NO KEYS) 

DXCOPY 
(UTILITY) 

EDIT 
FILE 

KEY INDEXED FILE 
WITH NONCONTIGUOUS 
KEYS AND UNLABELED 
RECORDS 

Figure 7- 1. Interactive File Editor Transitions 

the record numbers and the data is the source text. The first record must 
have ~ key of 11111, the second record "2 11

, etc.. Either of two methods can 
create a file in this form. The first method is a utility program name 
BLDEDT. BLDEDT accepts input from a sequential access source and 
copies the input data into a key indexed file suitable for use by IFE. The 
second method is to use IFE to create a suitable edit file. The Enter com
mand causes IFE to create a new key indexed file and accept the new text 
from the user terminal record by record. ..4..dding EXTEND to the Enter 
command causes IFE to add new input to an existing edit file. Once a suit
able edit file is created, IFE may be used to modify it by inserting, replac
ing, or deleting specified records. This is accomplished with an Edit com
mand. While editing, the record number keys in the Edit file become 
nonconsecutive due to del~tions and record insertions without keys. The 
keys (or record numbers) may be cleaned up by recopying the file using the 

Change 1 7-5 Digital Systems Division 



~-------~ 943005-9701 

BLDEDT utility. When editing is complete, the us er may employ the 
I DXCOPY utility with the "NOKEYS" option to transcribe the key indexed file 

into a linked sequential file. However, in most cases the edited material may 
be left in the key indexed file. The Assembler, the Compiler and other pro
grams accept input from a key indexed file resulting from IFE. 

When using IFE the escape key (ESC) stops input, output, or processing and 
returns control to the terminal. 

The IFE command set can be separated into three basic catagories: file 
commands, edit commands, and state transition commands. Each command 
is independent of the type of terminal (teleprinter or CR T) that originated 
the comm.and. Special exceptions are noted as they are encountered in the 
following command descriptions. 

7.2. 1 FILE COMMANDS 

The IF E File commands assign, create or extend files for use by the IFE. 

7.2. 1. 1 EDIT FILE. The Edit File command (EDIT FILE) di r ec ts IF E to 
assign an edit file to the requesting terminal for interactive file editing. 
The file must have been previously created by the Build Edit File (BLDEDT) 
program or by an Enter File command. The Edit File command is per-
mis sable only when the terminal is in the Ready state. The format fO,r the 
Edit File command is as follows. The interpretation of ~ach parameter is 
identical to that specified in the JCL description in Section II of this manual. 
The default value for LRECL is 80 characters. 

EDIT FILE=«volu.m.e>, <fileid>, <filnam> [, <pswd>]) [LRECL=<lrchar>] 

After IFE has proces sed the Edit File command, it converts the terminal to 
the Edit state and returns the first record(s) in the file to the terminal. At 
this point, the user may enter, edit commands or state transition commands 
to control further processing. 

7.2.1.2 ENTER FILE. The Enter File command directs IFE to create a new 
file or extend an existing file using data from the terminal. The file is a key 
indexed file. If the file is being created by the Enter File command (EXTEND 
option not specified), then the maximum number of tracks allowed for the 
file is 25 which accommodates about 1200 lines of text. The access codes of a 
file created with the Enter File command are (Any, Any, Any, None) unless 
a password is specified in the command in which case the access codes are 
(Any, Pswd, Pswd, None). As each record is entere-Ci into the file, IFE as
signs a record number to it that can be used in subsequent editing sessions. 
Enter File generally used for manual entry of data as with key-to-dis'c sys
tems. Operation with this command is identical when using either a tele
printer or CRT as a terminal. Control returns to the terminal after each 
record is processed and awaits entry of the next record. For this command 
line 1 of a CRT contains data rather than commands. 

Change 1 7-6 Digital Systems Division 



~-------~ 943005-9701 

The format for the Enter File command is as follows. The < fileid> param
eter must have been previously defined via the CATLOG utility from the sys
tem console. The < filnam> parameter may be new if the command creates a 
new file. Default value for LRECL is 80 characters and defines the line
width for the terminal. 

ENTER FILE=«volume>, <fileid>, <filnam> [, <pswd>]) 
[LRECL=<lrchar>] [EXTEND] 

The Extend param.eter of the Enter File com.m.and extends' previously created 
files by adding records to the end. As each record is added, IFE assigns the 
next consecutive record number to it as with newly created files. 

After IFE has processed an Enter command, it returns to the user and 
awaits entry of data records. The length of each input record, keyed in at 
the terminal, is controlled by the carriage return (CR) on a teleprinter or 
number of characters per line on a CRT. The record is padded out with 
blanks if the record length is les s than LRECL, and is truncated if record 
length is greater than LRECL. A zero length record (CR only) causes IFE to 
stop accepting records to put in the file, and IFE returns to the Ready state. 

7.2. 1. 3 DELETE FILE. The Delete File corn.rn.and directs IFE to delete a 
file. The file is deleted if the integrity code which ITS is running under 
allows the deletion. 

7.2.2 EDIT COMMANDS 

The basic format for all Edit commands plus the first two operands is as 
follows: 

{command} [RN=][ ±]M [, N] 

The braces,{ }, indicate a mandatory field containing the command or opera
tor. The brackets, [ ], indicate options. The parameter, M, is either an 
absolute or relative record number depending upon the presence or absence 
of a preceeding [RN=] field. The absolute record number indicator, [RN=], 
directs IFE to select record number M from the record numbers that were 
originally recorded in the edit file. Since the record numbers start at 1 and 
are all positive, a minus sign for M does not have a general interpretation 
for absolute record numbers. However, two special cases exist for starting 
in front of the first record in the file (Beginning of File or BOF), or after the 
last record (End of File or EO F) • The two cases are: 

RN=O 

RN=-l 

Positions file at BOF 

Positions file at EOF 

Any other absolute record number for M must correspond to a record num
ber that exists in the file. If not, the message If RECORD NOT FOUNDII is 
displayed following the command. 

Change 1 7-7 Digital Systems Division 



~-------~ 943005-9701 

I 

If the [RN=] field is not used, then M specifies a relative record position. 
That is, it uses the current record position as a point of reference within 
the edit file to access other records. The current record is the first data 
line displayed on a CRT or the last data line that was printed on a teleprinter. 
Specification of relative record position within a corrunand directs IFE to 
move forward (+) or backward (-) M records. If the sign field is not present, 
+ is assumed. The current record is defined as relative record number 1, 
the next record is record 2, etc. If the sign field specifies.,a minus number, 
-1 refers to the record immediately preceeding the current record, -2 to the 
record preceeding -1, etc. If 0 is specified as a relative record number, 
IFE converts it to + 1. The one exception to this rule is for the Insert Record 
command for CRTs. See examples for that command. The parameter [N] 
specifies the number of records to be processed. Processing occurs after 
the new file position has been established. If not specified, rNl defaults to 1. 
The following examples illustrate the use of the M parameter and its associ
a ted fields: 

• 
• 

• 

• 
• 

• 
• 

• 

RN=1 

RN=~3 

+1 

1 

-3 

RN=5, 2 

3, 1 

3 

Position at record number 1 in the edit file 

Error: An edit file cannot contain a record number 

of -3 

Position at the current record: On a teleprinter this 
specifies the last record printed. On a CRT it speci
fies the fir st data line displayed (the first data'line is 
actually line 2 on the screen, since line 1 is reserved 
fo r commands) 

Same as +1 

Position at the record that is three records before 
the current record. 

Positio'n at record number 5, the~ process two records. 

Position at the record that is two records beyond the 
current record, then process one record 

Same as 3, 1 

7.2.2.1 FIND RECORD: F[RN=][±]M. This command establishes a new 
cur rent record and displays it at the terminal. If the terminal is a CRT, it 
fills the screen with records from the file starting at the new current record. 

7.2.2.2 REPLACE RECORD: R{RN=][±]M[, N]. This command establishes 
a new current record and' replaces N records in the file with new records 
entered from the terminal. If the new replacement record has a pound sign 
(#) in column 1, it deletes the corresponding file record but does not re
place it with a new record. This character allows simultaneous deleting and 
modifying of replacement reco rds. Afte r the replacement pro ce s sis com
plete, the record immediately following the last record replaced become s the 
current record. 

Change 1 7-8 Digital Systems Division 



~-------~ 943005-9701 

When this command is entered from a teleprinter, IFE returns control to the 
keyboard to accept N records (one at a time). Each time a record is entered, 
IFE deletes the corresponding record from the file and, unless a # is in 
column 1, replaces the old record with the new replacement record, as en
tered. If a null length record is transmitted (user enters only a carriage re
turn), then IFE terminates the replacement process and returns control to 
the keyboard to accept a new command. The Replace command has a slightly 
different interpretation when entered from a CRT. The records displayed on 
the screen become the replacement records even if they originally came from 
the file. This feature allows multiline editing from a CRT. The records 
displayed on the screen by any previous command can be modified on the 
screen and then used as replacements for the corresponding records in the 
file. Since the new replacement records come from the screen,image, this 
command should not be used immediately following a List command which 
displays information other than just the records from the file. 

The absolute record number option, [RN=], is not valid from a CRT. 

The following examples illustrate the use of this command: 

• R 1,3 

• R RN=l, 3 

• R 5,4 

Replace the current record and the two successive 
records. When entered from a CRT, the replacement 
records come from data lines 1, 2, and 3; when entered 
from a teleprinter, control returns to the terminal 
three times to accept three replaceme:qt records. On 
any type of terminal, a replacement record with # in 
column 1 deletes the corresponding file record and 
does not add the replacement record. 

Same as R 1,3 except that the records are the filerec
ord with record number 1 and the two successive file 
records. This command is not valid from a CRT. 

Replace the file record which is 4 records beyond the 
current record and the three following records. When 
entered from a CRT, the replacement records come 
from data lines 5, 6, 7, and 8; when entered from a 
teleprinter, control returns to the terminal four times 
to accept four replacement records. 

7.2.2.3 INSERT RECORD: I [RN=][ ±]M [, N]. This command establishes 
a new position and inserts N records following the new current record. The 
ins ertions can be terminated short of N records from a teleprinter by trans
mitting a null line. After processing is complete for the Insert Records 
com.m.and, control returns to a teleprinter with the print head in position one 
and the bell rings. When executed on a CRT, the displayed data opens at the I 
insertion point to make room for inserting records. A # appears in column 

Change 1 7-9 Digital Systems Division 



ScM ______ _ ~ 943005-9701 

one of each insertion record and the remainder of the record contains blanks. 
Insertion of records from a CRT is accomplished with a user entered 
Replace Record com.m.and after the new records have been keyed into the data 
lines that were opened for insertion. Each # must be eliminated before exe
cuting the Replace Record command, or the record will not be inserted. 
The absolute record number option is not valid from a CRT. The following 
examples illustrate the use of this command: 

• I 1, 3 

• IRN=5,3 

• I RN=O, 2 

Insert three records after the current record. When 
entered from a CRT, the current record is maintained 
on data line l;' data lines 2, 3, and 4 are blanked out 
except for a # in column 1. The record that was pre
viously displayed on data line 2 is in data line 5, data 
line 3 moves to data line. 6, etc. The user-entered Re
place Record command that would normally follow this 
command is R 2, 3. This accomplis~~s the actual in
sertion of the records (that the user has keyed into data 
lines 2, 3, and 4) over the top of the lines which IFE dis
played with the # in column 1. When entered from a 
teleprinter, IFE returns control to the terminal three 
times to accept three insertion records. If the user 
enters a null line (enters only a carriage return), then 
the insertion process is terminated and IFE requests a 
new command. 

Insert three records after record number 5. Not valid 
from a CRT. 

Insert two records before the first record in the file. 
Not valid from a CRT. 

• I 0,2 Insert two records after the current record. If entered 
from a CRT, data lines 1 and 2 are-,blanked out except 
for a # in column 1; and if the normal Replace Record 
command of R 1,2 is then entered, the records actually 
get inserted before the record that is considered the 
current record at the time this I 0, 2 command is en
tered. In this way, records may be inserted before the 
first record in the file. 

• 

Change 1 

I-l,4 Insert four records after the reco,rd which precedes the 
current record. Not valid from a CRT . 

NOTE 

Since, on a CRT, this command is normally followed 
by a Replace Record command (which gets replacement 
records from the lines on the CRT exactly as they are 
displayed), the Insert Record command should not be 
used immediately following a List Record command. 

7-10 Digital Systems Division 



~-------~ 943005-9701 

7.2.2.4 DELETE RECORD: D[RN=][±]M[, N]. This command finds a new 
current record and deletes N records starting with the new current record. 
After the appropriate records are deleted, the current record is then changed 
to be the record which follows the last deleted record. If records are deleted 
from a CRT screen, the displayed data closes to reflect the new contents of 
the edit file. The following examples illustrate the use of this command. 

• 

• 
• 

D 1,2 

D RN=5, 3 

D RN=O, 4 

Delete the current record and the record which follows 
it. When complete, display the new current record. 

Delete record number 5 and the following two records. 

Delete the first four records of the file. 

7.2.2. 5 FIND STRING: FS [RN=][ ±]M,[, N][C1: C2] /STRING /. This com
mand finds a new current record and searches N records for the subject 
string. The search for the string occurs between record columns C 1 and 
C2. A slash within a string is denoted by a double slash, i. e. / /=/. The 
Find String command is used in the same manner as Find Record except that 
IFE searches for an occurrence of the specified string within the record 
limits specified. If C 1 and C2 are not specified, IFE searches each record 
between column 1 and LRECL. The limits C land C2 restrict the search to 
fewer than LRECL characters to eliminate unwanted matches and to decrease 
the search time. The following examples illustrate the use of this cornmand: 

• 'r." C""' on"1'l.T 1 1 f'\ I 1\ "D r I 
.ruL\..L .... =.L, .LV /.n..uV/ 

• FS RN=10, 50 1:10 /XY/ /Z/ 

Search through ten records starting 
with record number 1 for the string 
ABC. Establish the record contain
ing ABC as the new current record. 
If the string is not found, display 
"STRING NOT FOUND" message and 
maintain the original current record. 

Search through fifty records starting 
with record number 10 for the string 
XY / Z. Limit the search to record 
columns one through ten. 

7.2.2.6 REPLACE STRING: RS [RN=][±]M [, N][C1:C2]/STRING1 / 
/ STRING2 / • The Replac e String command is identical to Find String exc ept 
that STRING2 replaces the first occurrence of STRING 1. If the lengths of 
STRINGI and STRING2 are different, the insertion is made and the record 
length is adjusted accordingly. If the adjusted record length is greater than 
LRECL, the record is truncated to LRECL. If the new record length is 
shorter than LRECL, the record closes and fills with blanks fronl the right. 
The use of consecutive slashes for STRING2 denotes a null string and deletes 

Change 1 7-11 Digital Systems Division 



~-------~ 943005-9701 

STRINGI from the record. The following examples illustrate the use of this 
command: 

• RS 1,10 1:20 IABCI IDEFI 

• RS RN=I, 10 IABCI II 

Search through 10 records starting 
with the current record for the 
string ABC. If ABC is found, sub
stitute the string DEF, otherwise 
display the mes sage: tI STRING NOT 
FOUND". Limit the search to col
umns 1 through 20. 

Search through 10 records starting 
with record number 1 for the string 
ABC. If ABC is found, substitute 
a null string, close up the record 
and fill with blanks from the right. 
Otherwise, display the message 
tI STRING NOT FOUND". 

7.2.2.7 REPLACE ALL STRINGS: RA [RN=][±]M [, N][Cl:C2]/STRINGl / 
ISTRING2/. Replace All Strings is identical to Replace String except that 
STRING2 replaces every occurrence of STRING 1 in the subject records. The 
current line is relocated to the record which follows the N lines searched. 

7.2. 2. 8 LIST RECORD: L [RN=][ :I:]M[, N]. This command establishes a new 
current record and lists N records starting at that point. When the listing is 
complete, the current record remains at the first of the N records listed. 
The format of the listed records is as follows: 

1. If the record has a record number associated with it (the record was 
not inserted with an Insert Record command since the last time the 
file was built), then the record number (maximum of four digits) 
followed by a separator blank and the record are displayed. The rec
ord is truncated on the right to fit the display line. 

2. If the record has no associated record number, then five blanks and 
the record are displayed. Again, the record is truncated on the right 
to fit the display line. 

The List Record command is intended for low volume listing and is, there
fore, a relatively slow operation. For high volume listing, use the LSTEDT 
utility. 

7. 2. 3 STA T E TRANSITION COMMANDS 

The state transition commands permissable in the edit state are Stop and 
Logoff. Stop returns the terminal to the ready state. Logoff returns the 
terminal to the inactive state. No state transition commands are permis sible 
from the enter state. The only option available to change states is a null 
transmission which switches the state from enter to ready. 

Change 1 7-12 Digital Systems Division 



943005-9701 ~ ---------------------------------------------------------------------------------------------------------------
7. 3 REMOTE JOB ENTRY 

The Remote Job Entry (RJE) facility in ITS provides interactive access to the 
job management system of DX980 through a user terminal. RJE accepts two 
basic commands: Job co.m.rnand and Run command. Both commands are 
valid from. the ready state only. 

7.3. 1 JOB COMMAND 

The Job command is optional when submitting a job via ITS. However, if it 
is specified, it must immediately precede a Run command. The format of 
the Job cOInInand from ITS is identical to that froIn any other systeIn source. 
If the Job cO!TIm.and is not supplied, the default values are as follows: 

• <jsnaIne> - <us erid> froIn Logon command 

• <userid> - <userid> from Logon command 

• <devnum> - 1, corresponds to DISC 1 

• <fileid> - SYSTEM 

• <filnaIn> - SJCBFL, the systeIn JCL file 

• <pswd> - none 

7.3.2 RUN COMMAND 

The Run cO!TIm.and is required to start a job froIn ITS. The forInat of the 
Run command is identical to that froIn any other source. One additional op
tion available to ITS users is the assignment of the user's terminal to the 
job being started. This can be very useful if the terIninal is located at a re
mote site. The user can assign the terminal through a device assignment of 
TERMIO. Expanded JCL sequences allow changing device assignments through 
the use of keywords. Any device keyword can- be assigned to the psuedo
physical device naIne, TERMIO. ITS substitutes the true device name for 
TERMIO before submitting the job. For example the expanded JCL may 
specify: DEVICE:=INDEV. In the Run cOInmand the user may state: 
INDEV=TERMIO. In this case ITS substitutes the true device name for 
TERMIO. That device name may be CRT3 or any other device previously 
assigned to TERMIO. The pseudo-physical device name, TERMIO, must be 
specified in the Run cOInmand. It may not be specified in the expanded JCL. 
As Inany device naInes as desired can be assigned to TERMIO and each naIne 
is converted to the subject terIninal. When the job is started, ITS releases 
the terminal until the job is cOInplete. At that time ITS reacquires the ter-

Change 1 7-13 Digital Systems Division 



~-------~ 943005-9701 

Ininal and activates it for further cOnlnlunication. The following exaInple 
illustrates the device as signInent option of the Run cOnlnland: 

RUN XA SRCDEV=DISC 1, SRCFIL=(USERO 1, MYPROG); 

LSTDEV=TERMIO, ERRDEV=TERMIO, OBJDEV=PTP 1 

Run the asseInbler with input froIn a 
file with file naIne "MYPROG" 
(possibly created and edited using 
IFE). Assign listings and error 
Inessages to my terminal (TERMIO) 
and as sign the 0 bject output to the 
paper tape punch. 

7.4 COMPUTER STATUS DISPLAY 

The Computer Status Display facility in ITS determines system status either 
before or after submitting a job through the RJE facility. Entering the fol
lowing com.m.and at the terminal displays the status of all programs in the 
system: 

STATUS' 

The statistics for all steps within a specific job can be displayed by entering 
the command in the following form: 

STATUS <jobnum> 

7.5 ITS ERROR MESSAGES. 

ITS error messages fall generally into three catagories. 

A. Me s sage s of the form: 

ERROR NNNN where NNNN is a four digit error number. These 
error messages are given only by the Remote Job Entry and Com
puter Status Display facilities. The error numbers are passed to 
ITS by DX980 and are documented in Appendix A. 

B. The message: 

Change 1 

INSUFFICIENT MEMORY, TRY AGAIN LATER 

This message is given only by the Remote Job Entry and Computer 
Status Display facilitie s and indicates that there is not enough avail
able memory in the ITS area to perform the request. If several 
terminals are currently using ITS, then more memory may be avail
able later as operations for other terminals are completed. 

7-14 Digital Systems Division 



~-------~ 943005-9701 

C. IFE Error Messages: 

(1) . INVALID COMMAND 
(2) .DISC OFFLINE 
(3) . INVALID FILE TYPE 
(4) . INVALID ARGUMENT 
(5) . ARG COUNT ERROR 
(6) .ARG RANGE ERROR 
(7) .RECORD NOT FOUND 
(8) . STRING NOT FOUND 
(9) . STRING TOO LONG 
(10) . INSUFFICIENT MEMORY 
(11) . FILE ASSIGN ERROR 
(12) . FILE BUSY 
(13) . FILE FULL 
(14) . FILE READ ERROR 
(15) . FILE OPEN ERROR 
(16) . FILE I/O ERROR 

In most cases the user can readily discover the problem causing the 
error and then reenter the command correctly to continue. However, 
messages (15) and (16) may be given in response to the user submis
sion of the EDIT or ENTER commands and if this occurs the user 
must enter STOP or LOGOFF before re-submitting the desired EDIT 
or ENTER command. 

Change 1 7-15/7-16 Digital Systems Division 



~-------"i::( 943005- 9701 

8.1 GENERAL 

SECTION VIII 

UTILITY PROGRAMS 

A comprehensive set of programming support language processors and utility 
programs is available for use with the operating system. Sequence s of ex- I 
panded JCL supplied with a systeITl reside on the system disc in the file ad
dressed as FILE=(l, SYSTEM, JCLSRC). Appendix B contains a sample listing 
of some expanded JCL sequences. When specified in a Run command, these 
standard JCL sequences perform the language processors and utilities. Some 
of these programs, such as the FORTRAN compiler, are not unique to the 
DX980 operating system. These programs are documented in separate man-
uals. This section provides information concerning the use of these programs 
as they apply to the DX980 operating system. 

8.2 JCL TRANSLATOR (JCLTRN) 

The JCL translator is a utility program that runs in user memory (as opposed 
to running in memory that is allocated to the operating system). This pro
gram translates expanded JCL statements into an internal binary representa
tion for later processing. Input to the translator can be supplied from any of 
the standard 980 input devices (card reader, cassette, magnetic tape, disc 
files, etc.). Output from the translator is stored on a disc file for later sub
mission. Since the translator is a utility program, it can be invoked as any 
other user program by using abbreviated JCL form. The saved JCL sequence 
for the translator is stored on the system disc together with several other se
quences that are supplied with each DX980 installation. The name assigned 
"-- .,.:t...,. "'.,.,....,""' ........ "'" +,..~ .f..'ho .f..~~.,..,C!,~.f..",. .; C! TrT. 
,,",y ..... J.J.1i;;;;; O~.'"1 u."""~.L"""'"' .a..v .... "' ....... "'" ""' .... ~4.L""'~~'""'-'4 ... ..., u....,_· 

8.2. 1 STANDARD JCL PROCEDURE 

The following JCL is a standard procedure for invoking the JCL translator 
(JCLTRN) • 

,- CREATE JCL ,COMMENT,-CREATE JCl PROCEDURE • 
IREPLACE JCL . • CREATE JCL PROCEDURE ~ 
IEXfC 'OBJa(l,aYaT!M,JtLTRN) MEMa(381.755I,1188) PRTV.fl,15), 
I TIMEawi MEM.aMEM PRTYiapRI ' 
IASSIGN 1 ac DEVICE,aDaRC FIlEi-FSRC BUFFERSa' f SOURCE INPUT 
IASSIGN ~ SC DEVICE'-OERR SHARE,aSERR • ERROR MESSAGE 
IASSIGN' 3 SC .. OEVICE.aOLST FILEi-FLST SHARE,aSLBT AUFFERS-t~SOURCE I.ISTING 
IASSIGN 4 DISC, DEVICE •• D08S FIlE-(SYSTEM,SJCB~L,AB)J 
I FILE,aFOBJ REPLACE._ROBJ BUFFERSa2 INDEXED, 
I ACCESS-CANY,ANy,ANy,ANY) ACCESS.aCOBJ, 
I ALLOCATEaCl,e,96,20) ALLOCArE.aLOBJ KEYLEN-6 • OBJECT OUT FILE 
lEND 

Change 1 8- 1 Digital Systems Division 

I -



~ 934005- 9701 
--------------------------------------------------------------------------

I 

8.2.2 MEMORY PARTITION REQUIREMENTS 

The memory allocation parameters for the JCL translator are: 

MEM=(300, 7550, 650) 

8.2.3 LUNASSIGNMENTS 

The LUN assignments required by the JCL translator are listed in table 8- 1. 

Table 8-1. JCLTRN Logical Unit Assignments 

LUN Description 

1 Expanded JCL input 

2 Error Message 

3 JCL echo print 

4 Binary Format JCL output 

8.2.4 OPERATION 

Comments 

Any sequential acces s input device 
file 

Normally assigned to DUMMY when 
input is from a Data Terminal; 
otherwise assigned to SYSOUT or 
LPI. 

Key indexed file with key length of 
6 characters and a physical record 
length of 96 words. 

Refer to Section II of this manual for a description of the JCL translator. 

8.2. 5 ERROR CODES 

Refer to Appendix A of this manual for JCL error codes. 

8. 2. 6 SAMPLE INPUT 

Refer to Section II and Appendix B of this manual for sample input sequences. 

8.3 MASTER FILE DIRECTORY EDITOR (CATLOG) 

The CATLOG utility allows the operator to list, create, or delete users in 
the Master File Directory of any specified disc volume. 

Change 1 8-2 Digital Systems Division 



943005- 970 1 ~ --------------------------------------------------------------------------
8.3. 1 STANDARD JCL PROCEDURE 

The following JCL is a standard procedure for the Master File Directory 
Editor, CATLOG: 

,- CREATE. CATLOG,COMMENT,-LIST, CREATE.OR DELETE UBERSR 
IREPLACE CATLOG • LIST, CREATE. OR DELETE USERS. 
IEXEC OBJ.Cl,SYSTEM,CATLOG) ME Ma C300.4000,610) PRTyaCt,5)J 
I PRIV TIMEa·l PRTycaPRI. 
IASSIGN I Sc OEVICE.aOCON SHARE,aSCON • CONTROL 
IASSIGN 6 SC OEVICE.aOLST FILE,aFLST SHARE,.SLBT BUFFERSat~USER LISTING 
lEND 

8.3.2 MEMORY PARTITION REQUIREMENTS 

The job area required to run CATLOG m.ust only be large enough to contain 
the load m.odule since CA TLOG requires no work space. Sufficient job area 
is 4000 words; sufficient job extension area is 670 words. 

8.3.3 LUN ASSIGNMENTS 

The logical unit assignm.ents needed for CATLOG are listed in table 8-2. 

Table 8-2. CATLOG Logical Unit Assignments 

LUN Description Com.m.ents 

0 Message Control Any input/output device 

6 Listing of Users Any printing devic e 

8.3.4 OPERATION 

The Master File Directory Editor, CATLOG, is a single task program. that 
runs under DX980 in the privileged m.ode. Since it accesses portions of the 
system. which are inaccessible to the user, the CATLOG m.odules m.ust be 
linked with the system. external definition file (SYSTEM, DXEXTD). 

The program, CATLOG, should be run from the system console only. It 

first types the message: 

ENTER COMMAND TYPE--LIST, CREATE, DELETE--

on the m.essage and control device (LUN 0) which is usually assigned to the 
system. console. The operator then responds by entering the first letter of 
any of the three com.m.ands (i. e. L, C or D), followed by a carriage return to 

select a list, create, or delete user operation, respectively. CATLOG then 
requests the disc volume identification by printin,g to LUN 0: 

DISC VOLUME ID = 

Change 1 8-3 Digital Systems Division 

I 



JiM ______ _ ~ 943005-9701 

The user responds by entering a number between 1 and 20 followed by a car
riage return. This number selects the disc pack contained in the disc drive 
with that number. The default for this input parameter is disc drive 1 and 
can be invoked by entering carriage return without selecting a number. 

Beyond this point, CATLOG's response is dependent on the function (list, 
create, or delete) selected. Table 8- 3 summarizes the input/output of 
CATLOG for the three functions. The three functions are described sep
arately in the next three paragraphs. 

8.3.4. 1 LIST. If the user responds with an L input to select the list users 
function, the utility prints on LUN 6 an alphabetically ordered list of all 
users on the disc volume selected. The utility also prints the date and time 
of request. 

CA TLOG provides the following information for each user: 

• User ID - the name of the user as sociated with the directory. 

• Integrity code - A three-position code that defines allowed operation 
to the user directory for three separate operations. The output 
format is X, X, X, for read, write, delete operations respectively. 
The letter X represents either N, C, or A (NONE, CREAT, ANY, 
the file level integrity codes used as input to the JCL translator/ 
interpreter). Table 8-4 provides an interpretation of the three 
integrity codes as a function of operation at the user level. 

• Current user directory size - the number of tracks currently as
signed to the user directory. 

• Maximum user directory size - the maximum number of tracks that 
can be as signed to the user directory. 

In addition to the above tabular data for each user on the disc volume, 
CA TLOG prints the following information for the entire disc volume. 

• Number of users 

• Num.ber of tracks available 

• Number of tracks used 

8-4 Digital Systems Division 



00 
I 
U1 

Table 8- 3. CATLOG User Interaction 

CONSOLE OUTPUT 

ENTER COMMAND TYPE--LIST, 

DISC VOLUME ID = 

USER ID = 

INTEGRITY CODE = 

MAXIMUM DIRECTORY SIZE = 

~:~N = None 
C = Creator 
P = Password 
A = Any 

CREATE, 

User Respol1 .se -t ___ C_R_E_~_T_E_ --_.-
LIST 

DELETE-- L 
---------.~ .... - ---

--
DELETE 

D 

a 

----.-.. ~ 1-------

____ ... _ .... t~" 

___ ._. ______ -r ___ ~ --

-,----,_ .... ,-'-----. 

ny disc drive nunrrbel 
(default = 

1 through 20 
1) 

I 

er A 1 to 6 charact 
nanrre of the us el 

alphanunrreric 
~ ID. 

rac-4 alphabetic cha 
ters, separated 
conrrnrras, design 
the acces s code~ 
read, write, del 
and exec ute ac c E 
ses (default = A, 

by 
ate 
; for 
ete 
~s-

A, 
A, A) ~:~ 

s to 
lunrr 

Nunrrber of track 
de s ignate nrraxirr. 
size of user dirE 
tory (default = 1 

~c-

} 
----

(no default) 

'-----._-----



~~------------------~ 943005- 9701 

Integrity 
Code 

N 
(NONE) 

C 
(CREAT) 

A 
(ANY) 

Table 8-4. User ID Integrity Codes 

Read 

N, X, X no 
one can access 
the files under 
the user ID 

C, C, C 
only the cre-
ator can ac
c e s s th e fil e s 
under the 
user ID 

A, X, X 
anyone can 
access the 
files under 
the use r ID 

Operation 

Write 

X, N, X no one can 
define new files 
under the user ID 

X, C, X 
only the creater 
can define new files 
under the us er ID 

X, A, X 
anyone can define 
new files under the 
user ID 

Delete 

X, X, N no one can de
lete or replace files 
under the user ID 

X, X, C 
only the creator can de
lete or replace files 
under the user ID 

X, X, A 
anyone can delete or 
replace files under the 
user ID 

0> Creator - that user whose < userid > parameter in the JOB 
command matches the <; userid> of the directory. 

8. 3.4.2 CREATE. If the user responds with a C input to select the create 
user function, the utility requests the following additional information (in 
addition to the disc volume ID): 

• User ID - A 1 to 6 character alphanumeric name of the user ID to 
be created, followed by a carriage return. 

• Integrity code - A 3-position code that defines allowed operation to 
the user directory for three separate operations. 
The input format is X, X, X for read, write, delete 
operations, respectively. The letter X is N, C, or 
A. See table 8-4 for an interpretation of the three 
integrity codes as a function of operation at the 
user level. The default for this input parameter is 
A, A, A for unlimited user operations. 

8- 6 Digital Systems Division 



~-------~ 943005-9701 

• Maximum user size - A decimal number that designates the maxi
mum number of tracks to be as signed to the 
us er directory. The default is 1 track. 

The program then creates the designated user by entering a user file direc
tory (UFD) keyed on the user ID into the master file directory. 

8.3.4. 3 DELETE. If the user responds with a D input to select the delete 
user function, CAT LOG checks for other jobs running in the system before 
continuing. If other jobs are running, an error message is printed to LUN 0 
and the CAT LOG job is terminated. If the job does not terminate at this 
point, the utility requests (in addition to the disc volume ID) only the user ID 
to be deleted. The utility then deletes the user file directory (UFD) from the 
master file directory as well as all files created under that user ID. The 
CA T LOG delete function should not be used to delete individual file s under a 
user, but only to delete an entire user directory, including all file s residing 
within that directory. The delete function of CATLOG may be used only when 
no other jobs are-in the system. 

8.3. 5 ERROR CODES 

Table 8-5 lists the possible error/termination message printed by CATLOG 
to LUN O. Those that are possible only when a specific function is requested 
are indicated accordingly in the table. 

Table 8-5. CATLOG Error Messages 

Message I Current I 
Function 

NORMAL TERMINATION 

ILLEGAL COMMAND 

TOO MANY JOBS IN THE SYSTEM D 

ILLEGAL INTEGRITY CODE C 

BAD DATA 

8-7 

Meaning 

Process performed cor
rectly no errors 

First character of Com
mand input not an L, C, 
or D. 

Delete command- cannot 
be run if there are other 
jo bs running under 

DX980. 

Create command-user 
integrity code is not of 
format X, X, X where X 
is A, C, N. 

Numerical input not a 
valid decimal integer. 

Digital Systems Division 



JdlS\ ______ _ ~ 943005-9701 

Table 8- 5. CATLOG Error Messages (Continued) 

Message 
Current 

Meaning 
Function 

ILLEGAL DEVICE ID Device ID not in the 
Physical Device Table 
chain. 

DISC OFFLINE Disc is not enabled. 

PREVo DEFINED USER ID C Create cornrnand-user 
ID already defined in 
the Master File Direc-
tory. 

ILLEGAL USER ID D Delete cornrnand-user 
ID not found in the 
Master File Directory. 

USER ID MISSING D Delete cornrnand-user 
directory file control 
block is not in the file. 

8.4 LIST USER FILE DIRECTOR Y (CATFIL) 

The CATFIL utility lists all files in the User File Directory for a specified 
<userid>. It also tabulates all pertinent inforrnation for each file. 

8.4. 1 STANDARD JCL PROCEDURE 

The following JCL is a standard procedure for List User File Directory 
CATFIL: 

.~ CREATE CATFIL,COMMENT,"LIST FILES UNDER A USER • 
IREPLACE CATFIL • LIST FILES UNDER A USER. 
IEXEC ORJ-Cl,SVSTEM,CATFIL) MEM-c300,la50,670) PRTV-Ct,5)' 
I PRIV TIME-.l PRTYI-PRI 
IASSIGN e SC DEVICEI-OCON SHAREs-SCON " CONTROL 
IASSIGN 6 SC OEVICEI-OLST FILfs-fLST SHAREI-Sl.ST RUFFERS-t.FILE LISTING 
lEND 

8.4. 2 MEMORY PARTITION REQUIREMENTS 

The job area required to run CATFIL rnust only be large enough to contain 
the load module since CATFIL requires no work space. Sufficient job area 
is 1850 words; sufficient job extension area is 670 words. 

8-8 Digital Systems Division 



~ 943005- 970 1 
--------------------------------------------------------------------------------------------

I 

8.4.3 LUNASSIGNMENTS 

The logical unit assignments needed for CATFIL are listed in table 8- 6. 

Table 8-6. CATFIL Logical Unit Assignm.ents 

LUN Description Comments 

0 Mes sage and control Any input/ output device 

6 Listing of files Any printing device or a file 

8.4.4 OPERATION 

CA TFIL is a single task program that runs under DX980 in the privileged 
mode. Since it accesses portions of the system that are user inaccessible, 
it is necessary to link the CATFIL modules with the system external defini
tion file (SYSTEM, DXEXTD). 

The program, CA TFIL, may be run from the system console or from the 
Batch Processing or Interactive Terminal Subsystems. When run from other 
than the system console the printout of the pas sword for each file is sup
pressed. CATFIL types the following request on the message and control 
device (LUN 0): . 

USERID = 
The user respo.nds with a 1 to 6 character identifier for the <userid> of the 
User File Directory to be listed. The utility then requests the volume num
ber (i. e. disc drive number) of the disc containing the User File Directory: 

DISC VOLUME ID = 
The user may respond by entering a specific integer value from 1 to 20 fol
lowed by a carriage return, or by invoking the default volume number of 1 
by selecting carriage return only. The utility then prints the date and time 
of request, and an alphabetically ordered list of all files within the selected 
User File Directory on LUN 6. The information provided by CA TFIL for 
each file is as follows: 

• File Name - 1 to 6 alphanumeric characters identifying the file. 

• Disc Addres s - hexadecimal track addres s of initial track allocated 
to the file. 

• Password - 0 to 4 alphanum.eric characters identifying the password 
for the file. If CA TFIL has been invoked from other than the sy s
tem console any passwords for files will be replaced with asterisks. 

Change 1 8-9 Digital Systems Division 

I 



4P 943005- 970 1 

----------------------------------------------------------------------------
• Integrity code - four alphabetic file access codes in the form X l' 

X
2

, X
3

, X
4 

where 

X 1 = read acc es s code 

X2 = write access code 

X3 = delete access code 

X4 = execute access code 

In general Xi can be: 

N = No one can acces s the file. 

C = The creator can acces s the file. 

P = The user having the correct password can access the file. 

A = Anyone can access the file. 

• Current File Size = Number of tracks currently allocated to the file. 
If the file is completely full, this current file size exceeds the rnaxi
mum file size by 1 track for linked sequential and key indexed files 
only. 

• Maximum File Size - Maximum number of tracks that may be allo
cated to the file. One additional track may be allocated to a file at 
the time the file becomes full. 

• File Type - Indicates the type of file from the three supported types; 
linked sequential, relative record, and key indexed. 

• Logical Record/Key Length - Number of characters in the fixed 
length logical record for relative record files. Number of charac
ter s in the key for ke'y indexed file s . 

• Physical Record Length - Number of words in the physical record 
for any type file. This establishes the length of the system acces
sible buffers used for input/output to the file. 

In addition to this tabular data for each file within the User File Directory, 
CA TFIL prints the following information for the specified User ID: 

• The number of files 

• The number of tracks allocated 

8.4. 5 ERROR CODES 

The possible error/termination messages printed by CATFIL to LUN 0 are 
listed in table 8- 7. 

8- 10 Digital Systems Division 



~-------~ 943005-9701 

Table 8-7. CATFIL Termination Messages 

Message Definition 

NORMAL TERMINATION Process executed correctly 

INVALID DEVICE ID Device ID is not in the Physical Device 
Table List 

ILLEGAL USER ID 

DISC OFF LINE 

BAD NUM 

UNDEFINED USER ID 

On INPUT from the CONSOLE- User ID is 
greater than 6 characters OR first charac~ 
ter is not a letter 

Input from the console - not a valid deci
mal integer 

User ID not found in the Master File Direc- I 
tory I 

8. 5 DX980 OVERLAY LINK EDITOR (DXOLE) 

The DX980 Overlay Link Editor (DXOLE) must be used to format input object 
records into a load module for execution under DX980. Three' program. 
structures are allowed: 

1. A memory resident program with no overlays 

2. An overlay structure defined at link edit time (preplanned overlay) 

3. An overlay structure that is dynamic and can change during execu
tion (unplanned overlay). 

DXOLE functions in three different modes to allow maximum flexibility to 
the user. These modes are: 

• Compact Mode - The Corr:pact mode combines object modules to 
create new object modul~s. All references for defined symbols be
tween the object modules are resolved. All references to entry 
points not found in the object modules are left unresolved. The ob
ject module produced is relinkable. The new object module defines 
all the entry points defined in the linked modules as entry points 
and contains references to the unresolved entry points. 

• Normal Mode - The Normal mode combines one or more object 
modules to create a load module for execution.. This mode is the 
default mode for the link editor. The load module created mayor 
may not contain an overlay structure, depending upon parameters 
supplied by the user. The Normal mode can produce an External 
Definition File. This file contains the symbol names and addresses 
of the entry points defined in the root segment of the created load 
module. 

8- 11 Digital Systems Division 



94300 5- 970 1 ~ ----------------------------------------------------------------------------------------------------------------
• Subsystem Mode - The Subsystem mode combines one or more ob

ject modules to create a load module containing a subsystem for 
execution. This load module may contain a preplanned overlay, but 
cannot contain an unplanned overlay. Subsystem.s execute as abso
lute programs. Therefore, they can address into the root segment 
of the operating system. In the Subsystem mode an External Defini
tion File produced during a previous Normal mode link of the oper
ating system resolves external references. 

8. 5. 1 STANDARD JCL PROCEDURE 

The following JCL listing is a standard procedure for DXOLE: 

IREPlACE DXOlE • LINK EOrTOR ~ 
IEXEC OBJ-(I,SYSTEM,DXOLE) MEMaCJee.12000.20IB) PRTV-tl.15" 
I 
IASSIGN 
IASSIGN 
IASSIGN 
IASSIGN 
IASS,GN 
IASSIGN 
I 
I 
I 
IASSIGN 
I 
IASSIGN 
I 
IASSIGN 
IASSIGN 
I 
I 
lEND 

8. 5.2 

TIME-·l MEMa-MEM PRTYI-PRI TIMEI-TIM 
1 DUMMY OEVICE.aOOBI FILE.afOBI BUFfERS-2 
2 DUMMY OEVICE.aOOB2 FILE.aFOB2 BUFfERSa2 
5 DISCt DEVICElaDIN FtLE •• FIN BUFfERSal 
6 SC DEVICE.-DLST 
7 DUMMY DEVICElaOOBJ FILElaFOBJ BUFFER~-l 
8 DISCI DEVICElaOLM fILElaFLM REPlACE.-RLH. 

BUFFERS., RELREC ACCESS.CANV.CREAT.CREAT.ANY', 
ACCESS.aClM ALLOCATE-CI.e.J2,l) ALLOCATElai.'LM' 
LRECL-64 

9 DISCI FtLE-CSYSTEH.USRfTN) DEVICfl-DLIB, 
'ILE •• 'LIB BUfFERS-2 _ . 

: AL! 1 OBJECT IN 
r ALl 2.QBJECT_IN 
, PRIMARV INPUT/CON 
, loiDM~~ LI~T~ERR 
• COMPACT OBJ OUT 

• LOAD MOD OUTPUT 

• LIBRARY trIlE 
I' DISCI FILEaCTEMP.SCRL) NEW BUfFERSa, lINKSFQ. 

ACCESSaCANY.ANV.ANY.ANV) ALLOCATE-C10,JII,?56,JB) , LINKSEQ SCRATCH 
II OI8CI FILEaCSYSTEH.DXEXTD) FtLt;.-FEXT '8UFF~RSal • SVS EXT DEF! OPT 
13 DISCI FILEaCTEMP.SCRR) NEW BUfFERS-! RElREC, 

ACCESSa(ANV,ANV,ANV,ANY) ALLOCATf.fli,JII.t28,tl)' 
LRECL-lle : RELREC SCRATCH 

MEMORY PARTITION REQUIREMENTS 

DXOLE memory requirements. for linking an average program are defined 
with the following expression: 

MEM=(300, 12000, 2000) 

DXOLE is an overlay program with variable memory requirements. 

DXOLE requires 7950 words of program space plus a 2000 word Job Exten
sion Area «jearea». A variable amount of table space is required depend
ing upon the number of references, definitions, overlays, and identifications 
in the input object decks. The memory requirements do not depend upon the 
size of the load module being produced. The following guidelines aid in de
termining the size of the variable tables: 

• 17 words per overlay to be generated 

• 12 words per DEF 

• 12 words for the first REF and 3 words for each subsequent REF 
to a label 

Change 1 8-12 Digital Systems Division 



943005- 970 1 4P -----------------------------------------------------------------------------------------------
• 9 words per common definition 

• 3 words per co:m.mon reference 

• 13 words per object module 

• 5 words per OBJNAM parameter (unplanned overlays) 

• 3 words per Library LUN specified 

8. 5. 3 LUl'"~ ASSIGl'"~lv1ENTS 

Table 8-8 provides a su:m.mary of the LUN assign:m.ent requirements for 
DXOLE as a function of :m.ode. As can be seen in the table, not all assign
ments are required for each :m.ode. In addition to these standard LUN's any 
other LUN's can be assigned to DXOLE and accessed by means of Include, 
Search, and Library com:m.ands. 

8.5.4 OPERATION 

DXOLE allows two different overlay structures, preplanned and unplanned. 
Each structure has advantages and the user should decide which, if any, 
overlay technique to use. The control cards describe the program structure 
to DXOLE. 

8. 5.4. 1 PREPLANNED OVERLAYS. A progra:m. that is link edited in the 
Normal mode or Subsyste:m. mode with the overlay (OVL Y) option is called a 
preplanned overlay. The progra:m.:m.er describes the overlay structures for 
the progra:m. with the Root and Seg:m.ent control cards. During execution of a 
preplanned overlay structure, a Runtime Overlay Manager (OLM$# $) loads 
all overlays into memory. The link editor includes the overlay :m.anager as 
part of the root segment. The Runtime Overlay Manager determines the re
lationships between overlay segments and the load addresses of the overlays 
by inspecting overlay transfer vectors built by the link editor. These run
time vectors, called the Overlay Segment Vector (OSV$#$) and Overlay 
Transfer Vector (OTV$#$), are also included in the root segment of the load 
module produced. 

The link editor uses the call- by-name technique for loading overlays in a 
preplanned overlay structure. The user program references the name of 
the definition resolved in the next level of the overlay. The overlay manager 
then loads the overlay and transfers control to the desired entry point. The 
overlay is only loaded when necessary. Following calls to the sa:m.e overlay 
will not reload the overlay unless it has been replaced in memory by another 
overlay at the same overlay level. The overlay manager uses the S and X 
registers and does not preserve their values. The calling program must 
save these registers if the contents should not be destroyed. On the pre
planned overlay load map all forward references in the overlay are identified 
by the message ">:~*OTV**". The address associated with the reference on 

8-13 Digital Systems Division 



00 
I 
...... 
~ 

Table 8- 8. DXOLE Logical U_nit Assignment 

Mode Requirement 
LUN Description Comments 

Compact Normal Subsystem 

5 Primary input Sequential input device/file with 80 X X X 
character record length. Input control 
commands and object modules may be 
intermixed. 

6 Diagnostics and Memory Maps Sequential output device/file with 80 X X X 
character record length. 

7 Object Module Output Sequential output device/file with 80 X 
character record length. 

8 Load Module Output File Relative record file with 64 character X X 
record length. 

9 Subroutine Library File Dununy or key indexed file with 80 X X X 
character record length and 8 character 
key length. This file should be built 
using the Library Builder (LIBBLD) 
utility. 

10 Intermediate Scratch File Rewindable device or linked sequential X X X 
file with 80 character record length • 

11 External Definition Input File Linked sequential file with 8 character X X 
record length. This file contains the 
external definition table for the cur-
rently running versions of the operating 
system produced under the Normal 
mode during a previous link edit of the 
operating system. 

12 External Definition Output File Linked sequential file with 8 character X [!> 
record length. 

13 Intermediate Scratch File Relative record file with 100 character X X X 
record length. 

any Alternate Input Accessed with Include control command X [P X (> X ~ unused 

any Alternate Library File Accessed with Library control command X [9 X B> X [?> 
unused 

NOTES: 

The External Definition Output File is not required for any mode, but is optional for the Normal mode. It is assigned 
only when an external definition table is to be produced. . 

2 Optional alternate LUN. 

- • • • 



~-------~ 943005-9701 

the load map points to a table entry that the O\Terlay Manager will use to load 
the overlay. External references in the overlays are resolved in the follow
ing manner. 

1) A reference to a label defined in the same overlay is resolved as the 
address of the label. 

2) A reference to a label defined in a lower level overlay which is in 
the path of this overlay is resolved as the address of the label. 

3) A reference to a label which is defined in the next overlay level is 
resolved as an address in the Overlay Transfer Vector. At runtime 
the entries in the Overlay Transfer Vector are managed by the 
Overlay Manager. When an overlay is currently in memory, the 
Overlay Transfer Vector causes control to pass directly to the over
lay. When an overlay is not in memory, the Overlay Transfer Vec
tor causes control to transfer to the Overlay Manager to load the 
overlay and then transfer control to the overlay. Forward data ref
erences may not be used. 

4) No forward references can be made to definitions more than one 
overlay level away. Any such reference is marked as undefined 
(ll**UN-DEF**" on the load map) and is assigned the absolute value 

FFFF 16-

8. 5.4.2 UNPLANNED OVERLAYS. An unplanned overlay is a program that 
is link edited in the Normal mode with the No Overlay (NOVLY) option and that 
defines overlays with Object control cards. The programmer describes the 
overlay structure with the Root and Object control cards. The overlay is 
called an unplanned overlay since the location of the overlay in memory is 
not specified when the link edit is performed. During execution the overlay 
is loaded using the load and relocate SVC. DXOLE does not include a Run
time Overlay Manager as part of the load module. The second parameter of 
the Object control card defines a name. This name can be an external ref
erence in the root or any overlay, and is resolved as the overlay number. 
The link editor does not resolve any other references between overlays. The 
order for resolving external references is: 

1) A reference to a label defined in the same overlay is resolved as 
the address of the label. 

2) A reference in an overlay to a label defined in the root is resolved 
as the address of the label. 

3) A reference having the same name as the second parameter of the 
Object control card is resolved as the overlay number. These items 
are identified on the load map by the me s sage, **MIP*~~. 

8-15 Digital Systems Division 



943005- 970 1 ~ ------------------------------------------------------------------------
4) No references can be m.ade to definitions in any overlay. Any such 

reference is unresolved and is flagged as 1f~~*UN-DEF~:<~:~1f on the load 
m.ap. Hexadecim.al FFFF is assigned as the value of the unresolved 
reference. 

8.5.4.3 CONTROL CARDS. Figure 8-1 illustrates the format of the three 
DXOLE control cards (Type I, Type II and Type III). Control cards must 
ha ve a blank in column one, a card name starting in column two and one or 
more blanks preceding the first argument. Commas separate each argument. 
The argument list cannot contain imbedded blanks. Arguments may be speci
fied up to and including column 72. Comments can be placed on the control 
cards following the first blank after the last argument specified. These con
trol cards relate three kinds of information to the link editor: 

• The m.ode of the link edit to produce either a relinkable object mod
ule or a load m.odule. 

• The relationship between the m.em.ory im.age phases in the load m.od
ule. 

• The input LUNs for the object mod~les to be incl~ded with each 
Type II control card. 

Table 8- 9 indicates the Type II and Type III cards that are valid for each 
Type I control card and its options. Figure 8-2 shows a sam.ple control deck 
and a block diagram. of the as sociated program.. 

TYPE I: 

a) COMPACT 

b) NORMAL 

c) SUBSYSTEM 

TYPE II:! 

OBJECT 

ROOT 

SEGMENT 

TYPE III: 

[PAGE (j) ] 
NO PAGE: 

[NEXTD <D] 
EXTD 

[NOVLY <D] 
,OVLY 

[NOVLY <D] [ MAXENT= OVLY , n 1 

IDTNAM, OBJNAM 

IDTNAM 

LEVEL 

[. MAXENT=n, CZl] 

0] [, MAXSEG=11z 

[, HEXCON) 

SEARCH 

INCLUDE 

LIBRARY 

I,Z(Keyl,Key2, ... ,KeYn),3 

I, 2(Keyl ,Key2, ... , Key n)' 3 

20,21,22 

<D Default option 

(Z) Default = 44 

~ Default = 22 

[ • MAXSEG=nz (j)] [PAGE <DJ 
NO PAGE 

~] WAGE mJ NO PAGE 

Figure 8- 1. Control Card Form.ats 

Change 1 8- 16 Digital Systems Division 



00 
I 
..... 
-J 

Table 8- 9. DXOLE Control Card Sequence and Options 
-

Valid Type II Cards Valid Type III Cards 
Type I 

Control Card Object 
Object Root SegITlent Deck Search Include Library 

.-. -
COITlpact X [!> X X X X 

NorITlal 
No Overlay X X X X X X 

NorITlal 
With Overlay X [!> X X X X X 

SubsysteITl 
No Overlay X [!> X X X X 

SubsysteITl 
With Overlay X [!> X X X X X 

- --"'-------- ---,,-"--, "--,,-"""-"".--"_ .. , '---_._-,- .. _------'---._------

Note: 

1. Required card 



~-------~ 943005-9701 

I 

ROOT SEGM ENT LEVEL 0 

LEVEL 1 

LEvEL 2 

(.11)130110 

CARD 
TYPE 

NORMAL OVLY , 
MAXSEG=10 

II ROOT IDT1 

{
'1700' IDT1 

III '17~6' OBJECT DECK 

INCLUDE 16(SO} 
LIBRARY 17,18 

II SEGMENT 1 

I:: ~~7;W~rfT 1 f(S 1 ) 

{
170, 0 IDTX 

III 
1706 

II ~~~1:'t.,! ~(KEY1) 
III INCLUDE 16(53) 
II SEGMENT 3 

{
17,00 

III 
1706 
LIBRARY 17 

II SEGMENT 2 
I:: ~~7;~~rfT1?(S5 ,54), 17(S$5} 

{
17,00 

III 
1706 

II SEGMENT 2 
III INCLUDE 18(57) 
II SEGMENT 3 

II: ~~7;~~.iT1ji(S8) 
III ~":::'i"i:::~E 19

7 
(QQCOSINE) 

II SEGMENT 2 

{

17,00 
III 

1706 

1* 

Figure 8-2. Overlay Structure and Control Deck 

Type I Control Cards. A Type I control card is optional. If present it must 
be the first control card. The Compact card directs DXOLE to link object 
decks together to create new relinkable object decks. The only valid para:m
eter for this :mode is to specify the load :map use page ejects or double spac
ing (PAGE and NOPAGE, respectively). This Normal control card direc.ts 
DXOLE to create a load :modul.e for execution. If no Type I card is specified, 
the Nor:mal :mode is the default Type I control card. Four optional para:me
ters :may be specified on this card. The NEXTD /EXTD para:meter specifies 
production (EXTD) or no production (NEXTD) of an External Definition File. 
The External Definition File is a sequential file that contains the na:mes and 
addresses of all the definition state:ments in the root seg:ment of the object 
to be linked. This file then links subsyste:ms to the operating syste:m root 
seg:ment. The NOVLY /OVLY para:meter specifies production (OVLY) or no 
production (NOVLY) of a preplanned overlay structure. If this para:meter is 
not present no overlay will be produced. The 1\t1AXENT and MAXSEG para:m
eters specify the :maxi:mu:m nu:mbers of forward references in the overlay 
structure and the :maximu~ number of overlays, respectively. The Subsys
tem control card also directs DXOLE to create a load module for execution. 
The arguments valid for Subsystem cards have the same meaning as for the 
Nor:mal card. The Normal and the Subsyste:m :modes handle the External 
Definition File differently. The Subsystem mode auto:matically references 
the EXTD and creates definition entries for all the names in the EXTD. This 
allows privileged programs to use subroutines that are part of the root of 
the operating system. 

Change I 8-18 Digital Systems Division 



~-------~ 943005-9701 

Type II Control Cards. A Type II control card is required unless the pro
gram to be linked is a nonoverlaid and nonprivileged prograITl. For this ex
ception, DXOLE will take the program entry point from the first object deck 
in the root segment. This default condition allows the control input of 
DXOLE (LUN 5) to be assigned directly to a linked sequential file output from. 
the 980 Assem.bler or FOR TRAN compiler. For all other DXOLE modes at 
least one control card is required. In the Compact mode an Object card is 
required. In the Normal and Subsystem modes a Root card is required. 
Segment cards can also be specified for the OVLY option and Object cards 
for the NOVLY option. 

A special comment is necessary to explain the specification of a FORTRAN 
main program as the entry point in the DXOLE output. DXOLE uses blanks 
as delimiter s between the control card type (i. e., Norm.al, Root, Include) 
and the arguments. This convention makes the specification of l})MAIN}), 
(The FOR TRAN main program IDT) irnpossible. Therefore, DXOLE handles 
the narne 'MAIN' as a reserved word. The IDT specification of 'MAIN' on 
either the Root card or the Object card as the object deck with the entry point 
is interpreted by DXOLE to be anyone of the following names: 

1. Y>MAIN}) - The FOR TRAN main program narne. 

3. IvlAIN. 

The default IDT name assigned to assernbler output 
decks 

The default IDT name assigned to an object deck by the 
PL/EXUS cornpiler. 

In the Cornpact mode the Object card has two arguments. The first argu
ment is IDTNAM. This argument is the name of the object deck which has 
an end vector to be used to define the control entry point of the linked object 
deck. The second parameter is OBJNAM. This argument is the name to 
assign to the new linked object deck. No other arguments are valid. 

Multiple compact mode object decks can be output by entering multiple object I 
control cards. The object decks are output to LUN 7 and terminated with a 
single end of file. 

In the Normal and Subsystem modes the Root card defines the memory resi
dent code. Segment and Object cards define preplanned and unplanned over
lays, respectively. The Root card has one argurnent, IDTNAM. This argu
ment specifies the name of the object deck which has an end vector to be used 
to define the control entry point in the root segrnent of the load module. The 
Segment card has 1 argument, the level nurnber. This argument defines the 
overlay's relationship to the other overlays and the root. The root is at 
level 0 of the overlay. The first level below the root is level 1, the next 
logical level is level 2 and so forth. Level numbers must be sequential. An 
Object card also defines an overlay. However, all Object overlays are at 
level 1. The Object card is valid only for the unplanned overlays (NOVLY 
option). The first pararneter of the card, IDTNAM, identifies the 0 bject 
deck which has an end vector to be used to define the control entry point for 

Change 1 8-19 Digital Systems Division 



~-------~ 943005-9701 

I 

this overlay. The second required parameter, OBJNAM, associates a 
name with the overlay being created. This parameter is entered in the 
symbol table of DXOLE with a value equal to the overlay number (i. e. 1 for 
the fir st, 2 for second, etc.). This entry name may be referenced from any 
other segment and is resolved by DXOLE as the overlay number. The third 
parameter, HEXCON, is optional. If specified, this parameter indicates the 
load address of the newly created overlay. 

Type III Control Cards. Type III control cards specify input LUNs. The 
link editor uses the LUNs to obtain the object programs to be included. Type 
III cards follow the Type II card defining the beginning of a root or overlay, 
and precede the Type II card that define s the beginning of the next overlay. 

The Search and Include cards have identical formats. Both have one or more 
parameters. Each parameter is either a LUN or a LUN followed by one or 
more indexed record keys grouped inside parentheses. Specified keys are 
evaluated as an USASCII string. Keys are limited to a maximum of 8 char
acters. Keys of less than 8 characters are extended on the right with blank 
characters. LUNs accessed with keys must be assigned to an indexed file. 
The Include card identi'fies particular object modules which DXOLE includes 
in the output phase being created. Search cards identify object modules to 
be searched for a definition that resolves an undefined reference in the same 
phase. Only those modules that resolve external references are included. 
Search and Include cards are processed when encountered in the input 'stream 
and are scanned from left to right. If the LUNs do not have keys, the link 
editor processes object modules until it finds an end of file. If a key is speci
fied, the link editor processes all object modules until it finds an end of file 
or another keyed record. DXOLE processes object modules in the input 
stream as if they were specified by an Include statement. The object module 
is included in the output phase regardless of whether it resolves external ref
erences. A keyname of 'lSMAIN)S' cannot be specified because DXOLE does 
not allow imbedded blanks within the list of keys. To include a FORTRAN 
main program, specify a keyname of 'MAIN'. 'MAIN' will be interpreted as 
'~MAINlb' for this program. 

The Library card can only specify LUNs. Each LUN must have been as
signed to an indexed file which has been formatted like the system li brary. 
The link editor does not search libraries until it processes all other Type 
III control cards. DXOLE then searches the indexed file(s) in the order 
specified by the Library card before searching the system library file. The 
system library, LUN9, is not accessed in the Compact mode unless explit
icly specified on a Library control card. 

8. 5.4.4 USING DXOLE WITH BA TCH INPUT READER. Executing DXOLE 
under Batch Input Reader (BIR) requires careful preparation of the input 
stream if LUNs other than LUN 5 are assigned to the card reader. When 
DXOLE processes an Include or Search card, the referenced LUN is opened 
and read until an end of file is found. The input stream for DXOLE must be 
structured as shown on the following page. 

Change 1 8-20 Digital Systems Division 



~-------------~ 943005- 970 1 

ROOT 
1700 

1706 
INCLUDE 
1700 

1706 
1700 

1706 

/* 
SEARCH 18 

/* 

IDTI 
IDTI 

17 
IDT2 

IDT3 

End of file for LUN 17 

End of file for input stream LUN 5 

The included file is physically defined inside the data for L UN 5. vVhen 
DXOLE encounters the Include for LUN 17, it opens and reads the file. 
When the end of file is found, L UN 1 7 is cIa s ed and the next control card is 
read from LUN 5: This structure also ,.vorks for the Batch Input Spooler 
(BIS). However, a more conventional input stream for BIS is as follows: 

/ /DATA 
ROOT 
1700 

5 
IDTI 
IDTI 

1706 
INCLUDE 17 
SEARCH 18 

/ >:~ 

/ /DATA 17 
1700 IDT2 

1706 
1700 

1706 
/ '1.~ 

End of file for LUN 5 

End of file for LUN 17 

8-21 Digital Systems Division 



~ 943005-9701 
---------------------------------------------------------------------------

I 

I 

8. 5. 5 ERROR CODES 

Table 8- 10 lists the error codes and their corresponding meanings for the 
DXOLE utility. 

Error Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
15 
16 
17 
21 
24 
25 
26 
27 
28 
30 
31 
32 
34 
35 
36 
37 
38 

39 
40 
41 

Change 1 

Table 8- 10. DXOLE Error Messages 

Message 

Missing Type 1 Control Card 
Im.proper Control Card Format 
Unidentifiable Control Card 
Maximum Number of Entries Exceeded 
Invalid Control Card Argument 
Unexpected End Of File On LUN 
Missing Type 2 Control Card 
Invalid Con trol Card For DXOLE Mode 
Multiply Defined Root Segment 
Mis sing Argument Following Delimeter 
Too Many Arguments 
Undefined Program Name 
Invalid Delimiter 
Invalid LUN 
Invalid Key 
Missing 1700 Object Record 
Level Number Not Sequential In Overlay 
Maximum Number Of Segments Exceeded 
Maxim.um Number Of Entries Too Large 
Invalid Number Specified 
Numeric Overflow> 16 Bit Signed Number 
Mis sing Root Segment 
Multiply Defined Name 
Invalid Level Number 
Table Requirem.ents Exceeded Available Memory 
Object Decks Must Be Relocatable 
Unidentifiable Object Record 
Checksum Error 
Missing 1706 Object Record 
Common or External Reference Not Defined 
Before Referenced 

File Organization Does Not Allow Keyed Access 
Library File Not Properly Structured 
Block Data STMTS Must Be In MIP Defining the 
Corn.rnon 

8-22 Digital Systems Division 



943005- 9701 ~ ----------------------------------------------------------------------------

8. 5. 6 INPUT FORMA T 

The following paragraphs describe the structure and format for input ac
cessed by DXOLE. Refer to the description of the JCL translator in this 
section of the manual for the structures of: 

• Library files 

• Data sets 

- Object records in the files 

8.5.6.1 DATA SET STRUCTURE FOR SEARCH AND INCLUDE. LUNs 
referenced by Search and Include commands can be accessed either sequen
tially or randomly. The user specifies the access method by supplying either 
a LUN only, or a LUN and a key. When supplied with a LUN only, DXOLE 
processes the LUN sequentially until it finds an end of file. Data sets or de
vices assigned to these LUN's must allow sequential access of data. All 
records read from that LUN must be in DXOLE input object form.at. By 
specifying a LUN number and the value of a key, the user can specify pro
cessing of any part of a k~y indexed file. (The LPFBLD utility can be used 
to build a key indexed file with keynames equal to the object deck IDTNi\.M.) 
The key is an index for positioning to the first record to be read. Process
ing is complete when DXOLE encounters either an end of file or another rec
ord with a key. The key lengths are restricted to eight characters.. If less 
than eight characters are specified, the editor adds USASCII blanks on the 
right of the key to make eight characters. The physical structure of the data 
set is as follows: 

Record 
Keys 

PGMOlb 

TABLE¥> 

Data As sociated with Key (Object Record) 

1700 PGMO 1 
1702 

1706 

1700 TABLE 

1706 

To include object modules from this data set, the programmer specifies the 
name of the program(s) to be accessed. For example: 

INCLUDE 1 (TABLE, PGMO 1) 

A key indexed file with this structure can also be accessed without specifying 
a key since DX980 file management allows sequential access of records for 
key indexed files. 

8-23 Digital Systems Division 



)}?)\--------~ 943005-9701 

8. 5. 6. 2 LIBRARY AND SYSTEM LIBRARY STRUCTURE. DXOLE as sumes 
that LUN 9 has been assigned to either a dummy file OT a key indexed file that 
was created with the DX980 library builder (LIBBLD) utility program. If as
signed to DUMMY, no processing other than syntax checking occurs. If as
signed to a library file, that file has the characteristics described in the fol
lowing paragraphs. 

Library files must reside on disc and must be in the following format: 

Record Key 

QQSINE 

SIND 
SINE 
ARCSIN 
QQCOSINE 

DCOS 
COSINE 
ARCCOS 

Data As sociated with Key 

1700 SINE 
1702 SIND 
1702 SINE 
1702 ARCSIN 

1706 
QQSINE 
QQSINE 
QQSINE 
1700 COSINE 
1702 DCOS 
1702 COSINE 
1702 ARCCOS 

1706 
QQCOSINE 
QQCOSINE 
QQCOSINE 

Records defining 
entry points. 

The 1700 object record of all programs in the library have a key equal to the 
characters 'QQ I concatenated with the identification name of the program. 
All other object records for this object deck are sequentially linked to the 
keyed 1700 record. The utility program that creates the library also makes 
a key equal to each entry point in the 0 bject module (i. e., SINE, SIND, 
ARCSIN for object deck SINE). The data associated with each key is another 
key that positions the file at the 1700 object record of the program defining 
the entry point. DXOLE accesses all library files in the following manner 
for each unresolved external reference: 

(1) The name of the symbol referenced is used as a key to read the 
library. 

(2) If the key does not exist, the symbol is not defined by any object 
module in the library. 

8-24 Digital Systems Division 



~-------~ 943005- 9701 

(3) If the key exists, the first 8 characters of the record returned are 
used as the key of a second read operation. 

(4) The data returned with the second read must be the 1700 object rec
ord of the module defining the external reference. Also, the second 
key must exist or the library is improperly structured. 

(5) Processing of the object module terminates with the 1706 record. 

Library files may also be referenced with Search and Include control cards 
by specifying the key that positions the file at the 1700 record. That is, the 
letters IQQ I followed by the identification name of the program to be ac-
ces sed: 

INCLUDE 9(QQSINE, QQCOSINE) 

A library file must have a key specified if accessed with an Include or Search 
card since some of the records contain keys rather than object records. 
Using an Include on a library might be necessary if the order of the object 
modules in the load module is important. Otherwise, normal library pro= 
cessing at the end of a program segment will include those program neces
sary to define external references. 

8. 5.6. 3 OBJECT RECORD FORMAT. DXOLE accepts object from linked 
sequential files, key indexed files, and devices. Several different data set 
organizatlons are allowed. The DXOLE control cards describe the organiza
tion of the data set and therefore the processing method used. All input data 
sets must define at least one 0 bject module. Seven standard 0 bj ect records 
are used by all object modules. These object records are illustrated in fig
ure 8- 3. Note that each record contains 32 words. All numbers are hexa
decimal, and the object recor ds are independent of the object media. The 
fir st word of each record specifies the record type (0- 6). The last word in 
each record is a checksum, which is the two I s complement of the sum of the 
first 31 words. 

Identification Record. The identification record contains the program name 
which may be specified, for example, in an IDT assembler directive. If the 
program name is greater than six characters, it is truncated; if it fs less 
than six characters, trailing blanks are inserted. Leading zeros are in
serted in the format code. 

Common Symbols. Each record of common symbols contains a maximum of 
seven symbols. Each symbol contains six characters, and trailing blanks 
are inserted as required. A stop code is required following the last symbol 
in each record. 

Entry Points. Each record of entry points contains a maximum of seven 
entries as indicated, for example, by a DEF assembler directive. 

8-25 Digital Systems Division 



~~------------------~ 943005-9701 

FORMAT CODES 

5:RELOCATABLE OBJECT 

PRNAME IS THE 
PROGRAM NAME 
IN ASCII CHARACTERS 

CHARACTERS 60 AND 61 
ARE RESERVED. 

UP TO SEVEN ENTRY POINT 
SYMBOLS ARE CONTAINED 
WITMIN A RECORD 

0 

2 

• 
15 

8 

10 

12 

I. 

18 

18 

flO 

Zl 

ENTRY POINTS 

17 1 02 

N J A 

M 
5 

E 

0 
7 1 

9 
ENTRY POINT ADDRESS 

N 
11 

A 

M 
13 

E 

0 
15 2 

11 
ENTRY POINT ADDRESS 

00 
,. 

JO 

2~ 

A STOP CODE OO3OU~ IS 
INSERTED FOLLOWING 
TME LAST ENTRY POINT 
ADDRESS TO INDICATE 
TME END OF DATA WITHIN 
A RECORD 

~ ::=...:::::: 
~.~ 

---~ 
CHARACTERS 60 AND 61 
ARE RESERVED. 

(A)130394 (1/2) 

Figure 8- 3. 

COMMON SYMBOLS 

\ 

ENTRY POINT 
SYMBOL~.1 

ENTRY POINT 
SYMBOL NO.2 

A STOP CODE 003016 IS 
INSERTED FOLLOWING 
THE LAST SYMBOL LENGTH 
TO INDICATE THE LAST 
COMMON SYMBOL ENTRY 
WITHIN A RECORD. 

CHARACTERS 60-61 
ARE RESERVED 

0 

2 

4 

6 

8 

10 

12 

I. 
16 

18 

20 

22 

24 

26 

28 

IXl 

32 

34 

36 

38 

40 

42 

fW 

fte 
I4B 
50 

152 

~ 

~ 

~ 

~ 

162 

Object Records (Sheet I of 2) 

8-26 

17 1 

N J 

M 5 

b 
7 

9 
LENGTH 

11 

13 

15 

17 
LENGTH 

19 

21 

23 

25 
LENGTH 

27 

29 

31 

33 
LENGTH 

35 

n 

:II 

141 
LENGTH 

f43 

f45 

147 

LEN~TH 
!!i ' 

153 

155 

LEN~~H 
00 f-'9 

161 

CHE&sUM 

01 

A 

E 

b 

) 

\ 

I 

30 

COMMON 
SYMBOL 
NO.1 

COMMON 
SYMBOL 
NO.2 

COMMON 
SYMBOL 
NO.3 

COMMON 
SYMBOL 
NO.4 

COMMON 
SYMBOL 
NO.5 

COMMON 
SYMBOL 
NO.6 

COMMON 
SYMBOL 
NO.7 

Digital Systems Division 



~ .~-----~ ~3005-9701 

EXTERNAL REFERENCES 

0 17 1 03 

2 N 3 A 

4 
M 

5 E 

6 0 
7 1 

8 00 
9 

00 

10 N 
11 A 

I I 

12 
M 

13 
E 

14 
0 

15 2 

18 
00 

17 00 

18 00 
19 30 

"20 

~ 
22 ~~~ 

~ 3 

BLOCK DATA 

17 06 

10 

\ 

I 

EXTERNAL 
REFERENCE 

. NO.1 

EXTERNAl 
REFERNANCE 
NO.2 

VARIABLE 

LENGTH DATA 

(ITEMS CAN BE 

1 TO 3 WORDSi. 

A STOP CODE 0030,6 IS 
INSERTED FOLLOWING 
THE LAST EXTERNAL 
REFERENCE TO INDICATE 
THE END OF DATA 
WITHIN A RECORD. 

UP TO SEVEN EXTERNAL 
REFERENCES CAN BE 
CONTAINED WITHIN A 
RECORD. 

CHARACTERS 60 AND 61 
ARE RESERVED. 

BLOCK DATA RECORDS 
ARE OUTPUT BY THE 
FORTRAN COMPILER. 

I
, VARIABLE LENGTH, " .. 

DATA WORDS IMAY NOT. 
EXTEND BEYOND THE END 

~1--2----+:::-----t OF THE RECORDI 

~1--4----~~~------' 

A MINUS ONE IS INSERTED 
b---"';';';';';';';:;';~;""-::" TO INDICATE THE END OF 

DATA WITHIN A RECORD. 

(A)130394 (2/2) 

TE,(T 

0 17 1 04 

2 
!6UNT ITEM 

4 S 
RELOCATION MAP I 

6 
LOAD lJDRESS } ADDRESS OF FIRST ITE 

ITJM 1 

RELOCA 

I f 
M AFTER THIS WORD. 

l ,----I ---+------I 

I 

END 

17 06 

\ 
D 
t 

I 

o 0 0 WORO. ABSOLUTE 
00 1 WORD. COMMON 
o 1 0 WORD. RELOCATABLE 
Oil WORD. EXT. REFERENCE 
1 0 0 BYTE. ABSOLUTE 
1 0 1 BYTE. COMMON 
1 1 0 BYTE, RELOCATABLE 
1 1 1 BYTE. EXT. RfFERENCE 

L 1= LOAD ADDRESS INCLUDEO 

LOAD AODRESS 1 
ITEM n I 

~ NO LOAD ADDRESS 

ITEM n 

XaO FOR NO "ECTOR 
'-~-~-+:--------'1 X-I USE ENTRY ADDRESS 

AS END VECTOR. 

Figure 8- 3. Object Records (Sheet 2 of 2) 

8-27 Digital Systems Division 



J}n5\ ______ _ ~ 943005-9701 

External Reference Points. Each record of external reference points con-
tains a ITlaxiITluITl of seven references as specified, for exaITlple, by a REF 
ass eITl bl e r d ire c t i ve • 

Text Records. All text records include an iteITl count between 1 and 22 for 
the current record. Each iteITl is between one and three words long, and all 
\vords in an iteITl are contained within one text record. The nUITlber of object 
record \vords per iteITl in ITleITlory, and the relocation character printed in 
the first coluITln of an asseITlbly listing appear in table 8-11. The final relo
cation ITlap in each record applies or~y to iteITls within the current record, 
not to any iteITls in the next record. 

Table 8- 11. Text Record ParaITleters 

As seITlbly Words per \Vords per 
IteITl Type in Relocation Map Listing IteITl in IteITl in 

Character MeITlory Text Record 

000 - Absolute word (Blank) 1 1 

00 1 - COITlITlon word C 1 2 

010 - Relocatable word P 1 1 

all - External reference word X 1 2 

100 - Absolute byte (Blank) 2 2 

10 1 - COITlmon byte C 2 3 
110 - Relocatable byte P 2 2 

III - External reference byte X 2 3 

Block Data. The block data records contain COITlITlon numbers which are 
used to order the sYITlbols in the common symbols records for easy refer
ence. For exaITlple, COITlmon number one refers to the com.mon names in 
the first entry of the first COITlITlon symbols record. Relative location refers 
to the start of the appropriate com.mon, and data count is the number of 
\vords, not iteITls, in the specified com.m.on. 

End Record. The end record indicates the end of the object program., and 
contains the program length in words. 

8.5.7 DXOLE OUTPUT FORMATS 

DXOLE has two output forITlats: object ITlodules and load ITlodules. Object 
modules, output by the COITlpact ITlode, have the sam.e record formats as 
previously described for object records. The form.at of a load module is 
shown in figure 8-4. Table 8- 12 describes the fields of the load m.odule. All 
prograITls submitted for execution under DX980 must be in load module for
ITlat; object modules cannot be executed directly. 

8-28 Digital Systems Division 



~~------------------~ 943005-9701 

ROOT PHASE (MEMORY iMAGE PHASE 0) 

\ 

3N WORDS 
RELAT! VEWORD 1\ 
RECORD NO. ,0 /~------2-----3-----4----5-----6----~ ~----------------------------~\ 

I T 
o N ••• 

2 

K 
o 

RR 

• • • 
RR +K 

1 

RR 
N 

• • • 

RR +K 
N N 

(A)130395 

8A 
o 

MEMORY IMAGE PHASE 1 (1 ST OVERLAY) 

IW

01 

: : IELI I EPA, I 

leA, I B I R 
1 11 

CODE FOR ROOT 

••• 

R 
Ll 

MEMORY IMAGE PHASE N (LAST OVERLAY) 

WON I I 

EPA1 

••• 

••• 

Figure 8-4.. DX980 Load Module Records 

w 
00 

E 
LN 

8-29 Digital Systems Division 



~~------------------~ 943005-9701 

Table 8- 12. Load Module Field Definitions 

Field Definition 

N 

L 1· 1 

L2. 
1 

LP 

ERC 

WOi 

ELi 

EPAi 

Ki 

NUIT1ber of overlays. 

Relative record nUIT1ber of the first word of overlay. The rela
tive record nUIT1ber of the root phase (RRO) is always O. 

NUIT1ber of words in the code portion of the overlay including 
the entry point \vord. The length of the root phase (L 10) is in 
the File Control Block (FCB) of the load IT1<.?dule file and is not 
part of the load ITlodule proper. L 10 include s the length of the 
overhead words for the root segIT1ent (3n +3 words long). 

Length of the relocation IT1ap in words. L20 is in the FCB of 
the load IT10dule and is not part of the load IT10dule proper. 

The address of the first word beyond the longest overlay path. 
On the IT1emory iIT1age phase file, this word is numerically equal 
to the nUIT1ber of words used by the longest overlay path. The 
word is IT1arked for relocation in the relocate flag table. If the 
load module is executed in the unprivileged mode, no relocation 
will be perforIT1ed. If the load IT10dule is executed in the privi
leged mode, a relocation constant equal to the absolute address 
of WOO will be added. In either case the value in meIT10ry is 
the address of the first word beyond the longest overlay path in 
the address space of the executing Job. 

In the meIT10ry iIT1age phase file this word is nUIT1erically equal 
to 3~:~N+3 and is IT1arked for no relocation in the relocate flag 
table. The correct value is error checked on the load of the 
root phase. After the root phase has been loaded the cell in 
meIT10ry is changed to have the absolute address of N. 

Word 0 of the code for overlay i. 

Last word of code for overlay i. 

Entry point address for overlay i. 

Number of sectors required to hold the code portion of overlay 
i. Ki IT1ay be calculated froIT1 L Ii or, 

K. = ((Lli+31)/32)~:~32, 
1 

using integer ari thIT1etic. 

8-30 Digital Systems Division 



Jd7)\ ______ _ ~ 943005- 970 1 

Table 8- 12. Load Module Field Definitions (Continued) 

Field Definition 

BAi BA is a value set by DXOLE to calculate the relocation bias to 
be applied to all relocatable words in the code area from the 
formula, 

BIAS = FWLA-BA, 

where 

FWLA = The address of the first word loaded 
(ADDR(N) if i = 0 or ADDR(W Oi). if i 1:. 0). 

For the root segment BAO is set to - (3*N+3) so the bias will 

evaluate to the address of WOO when loading a privileged 
program. For preplanned overlays, BA is set to the pre
planned address relative to WOO. For unplanned overlays, 
BA is' set to 0,. 

Bi Number of byte relocatable items in the code portion of the 
overlay. 

Rli First word of the relocation bits. There is 1 bit for each 
word in the overlay.. In the root, the fir st relocation bit cor
responds to the N, the number of secondary overlays. A 1 in
dicates a relocatable item. 

RLi Last word of the relocation bits. Includes a bit for EPAi. 

BTAil Address of first byte relocatable item in this overlay. 

BTAiBi Address of last byte relocatable item in this overlay. 

8.6 LIBRARY BUILDER (LIBBLD) 

The LIBBLD utility program builds library files for use by the DX980 Over
lay Link Editor (DXOLE). 

8.6. 1 STANDARD JCL PROCEDURE 

The following listing is a standard procedure for LIBBLD: 

.- CREATE LIBSLD,COMMENT,"BUILD LIBRARy FILE " 
IREPLACE lIBBlO • BUILD LIBRARY FILE • 
IEXEC OBJaCl,SYSTEM,LIB8LD) ME Ma C3B0,2eB0,lB0B) PRTY.(l.l!), 
I TIMEa~l MEM,aHEM PRTV,apRI rIME,aTIM 
IASSIGN 5 MTt DEVICE,aDOBJ FILEiaFOBJ BUFFERSal ~ OBJECT INPUT 
IASSIGN 6 SC DEVICE,aOLST FILE,aFLST SHARE,aSLST RUffERSat.TDT/OEF l.ISTING 
IASSIGN 9 DISCI DEVICE,aOLIB fILf.aFLIB REPLACf,aRlIAJ 
I BUFFERSa2 INDExED ACCESsaCANv,ANY,ANV,ANY), 
I ACCEsS.aCLIB ALLOCATfaCl,0,128,20) ALlOCATE,allIS, 
I KEYLEN a8 • OUTPUT I.IB fILE 
IENO 

8- 31 Digital Systems Division 



VI 943005- 970 1 ~
o 

-----------------------------------------------------------------------------

8.6. 2 MEMORY PARTITION REQUIREMENTS 

Memory requirements of LIBBLD are: 

MEM = (300,2000, 1000) 

8.6. 3 LUN ASSIGNMENTS 

The LIBBLD utility uses three LUN assignments. Table 8-13 outlines the 
functions of each unit. 

Table 8-13. LIBBLD Logical Unit Assignments 

LUN Description 

5 Provides object input for addition to the 
library file. The LIBBLD utility termi-
nates when it finds an end of file in this 
input. 

6 Provides a hard copy listing of the mod-
ule s (IDT names) and of the defined entry 
points within each module in the library. 

9 As signed to a key indexed file with a key 
length of 8. This unit contains the 
library file to which the object modules 
will be added. 

8.6.4 OPERATION 

When using LIBBLD, all names must be unique. No two definitions and no 
two IDT names can be the same. The object modules in the library can all 
be added at one time or by several executions of LIBBLD. No object mod
ules can be replaced. LIBBLD checks for duplicate IDT names and duplicate 
entry point names. To redefine an object module in the library, the library 
must be entirely rebuilt. 

8. 6. 5 ERROR CODES 

LIBBLD error messages are literal and self-explanatory. These messages 
are as follows: 

DUPLICATE DEF NAME, FIRST DEF USED <def name> 

DUPLICATE KEY GENERATED FOR IDT 

LIBRAR Y IS FULL. NO MORE RECORDS CAN BE ADDED. 

8-32 Digital Systems Division 



~-------~ 943005-9701 

8.6.6 SAMPLE OUTPUT 

The resulting library file is an indexed data set that has the following logical 
organization of keys and as sociated data: 

QQIDT 1 1700 
1702 

DEFl 
DEF2 
QQIDT2 

DEF3 

1706 

QQIDTI 
QQIDT1 
1700 
1702 

1706 

QQIDT2 

IDTI 
DEFI DEF2 

IDT2 
DEF3 

8. 7 FILE COPY UTILITY (DXCOPY) 

The DXCOPY utility copies and saves data froITl any type of file or device to 
any other type of file or device. In addition DXCOPY can list the contents of 
a file on a printer. Control paraITleters for the utility specify or override 
optional functions of the utility. All of these paraITleters ITlay be oITlitted to 
specify their default values. DXCOPY also generates keys for key indexed 
files. 

8. 7. 1 STANDARD JCL PROCEDURE 

The following listing is a standard procedure for DXCOPY: 

,. CREATE DXCOPY.CO~MENT,wGENERAL PURPOSE COpy • 
IREPLACE OXCOPY • GENERAL PURPOSE COpy ~ 
IEXEC ORJaCl,SYSTEM,OXCOPY) ME Ma C3e0.370e.2000) PRTY-C!.15), 
I TIME-.! ~EM.-MEM PRTy.-PRI TIMEI-TIM 
IASSiGN 5 DUMMY DEVICEa-OCON f CONTROL/MESSAGE 
IASSIGN 6 DUMMY DEVICEI-OLST fILE.-FLST BUFFERS-! • LISTING 
IASSIGN 7 DISCI DEVICEr-OOUT FILE.-FOUT REPLACEr-ROUT, 
I BUfFERS-2 BUFFERS.-BOUT LINKSEQI-LIN RELRECI-REL' 
I INDEXEO.-IND ACCESS-CANY,ANy,ANY.ANYl ACCESS.-COUT, 
I ALLOCATE-Cl.0.128,t0) ALLOCATE.-LOUT KEYLENa&, 
I KEYL~NI-KOUT LRECL-64 LRECL.-GOUT f OUTPUT 
IASSIGN 8 DISCI DEVICE.-OIN FILEt_FIN OELETEt-TIN BUFFERS-! • INPUT 
lEND 

8.7. 2 MEMORY PARTITION REQUIREMENTS 

The job area consists of space for the DXCOPY load ITlodule. Since DXCOPY 
is an overlaid prograITl, this space contains the root segITlent plus the longest 

8- 33 Digital Systems Division 



J}7S\ ______ _ ~ 943005- 9701 

overlay. If there is no listing (i. e. LUN 6 is assigned to DUMMY), the job 
area size ITlay be specified as 2400. If listings are possible (i. e. LUN 6 as
signed to a printing device or file), then the job area size ITlust be specified 
as 3700. 

The job extension area can be calculated according to the following forITlula: 

NF NB 
<jearea> = L L (BSi+j) + 17(NT) + 7(NL) + SS + 11 

i = 1 j = 1 

where 

NF = NUITlber of files assigned (O<;NF~3) 

NB = NUITlber of buffers per file (1 NB~x depending on amount of 
blocking) 

BS = Physical record length in words of the individual files 

NT = 2 co- resident tasks if the listing LUN (6) is assigned to DUMlvIY; 
3 co- resident tasks if the listing LUN (6) is assigned a printing 
devic e 0 r file 

NL = 4 LUNs assigned 

SS = 600 for dynaITlic TeB stack requireITlent if LUN 6 is assigned to 
DUMMY; 900 if LUN6 is assigned to a printing device or file 

Therefore, 

<jearea> = 673 + BB if LUN 6 assigned to DUMMY or, 
<jearea> = 990 + BB otherwise 

where: 

BB = total blocking buffer requirements for all files. 

A default of MEM= (300,3700,2000) has been used in the standard procedure 
which allows the listing option and 1000 words of file buffer space. 

8.7.3 LUN ASSIGNMENTS 

The utility program uses four logical unit number (LUN) assignments, as de
scribed in table 8-14. 

8-34 Digital Systems Division 



~-------~ 943005-9701 

Table 8- 14. DXCOPY Logical Unit As signments 

LUN Description 

5 Control input 

6 Listing output 

7 Data output 

8 Data input 

8.7.4 OPERATION 

The DXCOPY utility is a multitask program that runs under DX980 in the 
protected mode. A minimum of two tasks run concurrently. A third task is 
created if a listing is possible (i. e. LUN 6 is assigned to other than DUMMY). 

The user enters any of the control parameters on LUN 5. The entry is in 
free format with one or more blanks between each parameter. All param
eters must be within the same record. For many cases, however, the de
fault values of the parameters produce the desired results so that none of the 
parameters need to be specified. If all of the control characters are entered, 
the input record is of the following form: 

< type>, <key specification>, <definItion>, <rewind option>, TRIM, <list>. 

The following paragraphs describe each of these parameters and their default 
val ues. 

8.7.4. 1 DATA TYPES AND CONVERSIONS. DXCOPY performs the re
quired file conversion and copying according to the type of input and output 
files without the data type «type» being given explicitly. However, certain 
types of copies do require explicit definition in order to perform the desired 
conversion. Data type specifies the format of the input. The output file data 
is dictated by the input data type and what kind of files are being used (key 
indexed, relative record, linked sequential, or other device). The follovving 
file types may be used for the < type> control parameter: 

• SOURCE: Source files may exist on any file type. This data type 
is the default value for linked sequential files and non-disc devices. 

• DA TA: Data is the defa.ult data type when the input file is key in
dexed. The Data parameter must be stated if the input or output 
media is binary format paper tape, card, or cassette in order to 
obtain correct input conversion. 

• RELOBJ: Relocatable object is never the default data type. This 
parameter must be specified to verify checksum, or if the input or 
output media is cards, paper tape, or cas sette. 

8-35 Digital Systems Division 



~-------~ 943005-9701 

• ~1E~n: ?vlemory image is the default data type if either the input file 
or output file is a relative record file. Memory image files exist in 
relative records files as two header words in the File Control Block 
and a group of 32 word records. \Vhen DXCOPY transfers the file 
to any other media, it generates a header record followed by data 
records and an end of file. Figure 8- 5 illustrates the final format. 
The user must specify either Data or Source for copying relative 
record files that are not load module files. 

• SAVED: Saved data is created by copying a (key indexed) file to a 
file that is not a key indexed file. SAVED is the default data type 
'.vhen the input file is indexed and the output file is not indexed. A 
key specification input of I'\OKEYS overrides the creation of Saved 
files. Saved files consist of physical records of 72 characters or 
less. This organization allows large logical records to be trans
mitted on card ITledia. (Figure 8-6 illustrates the format of a 
Saved file. 

8.7. -1:. 2 KEY SP EClFlCA TlO:L\S. Key specification parameters allow the 
user to set the characteristics of the keys or to delete input keys in the out
put file. DXCOPY accepts the following words for key specification inputs: 

• KEYLE1\=<nchar>: This paralTIeter specifie s the length of key s in 
characters. Default length key is 30 characters. 

HEADER 
RECORD 

~ 

,800 ,6 !'UMBER OF 
DATA 

RECORD 

HEADER HEADER CHECKSUM 
WORD 1 WORD 2 

10 CHARACTERS ~ 

DATAl RECORD 180 ',6 32 DATA 47 WORD 
CHECKSUM I 

~ 68 CHARACTERS ~ 
THE DATA RECORD CHECKSUM IS THE SUM OF ALL DATA WORDS. THE 
HEADER WORD (,80',6) AND THE DATA RECORD NUMBER. 

(A)130104 
Figure 8-5. MelTIory llTIage ForlTIat for Files 

Other than Relative Record 

SINGLE 
LOGICAL 
INDEXED 
RECORD 

(A)13010S 

IS 
ECOR 6 

RE
CORDS 

2-n 

fWORD BOUNDARY 

KEY DATA 
,8,0 ,6 KEYLENGTH o TO 30 1 TO 66 

DATALENGTH CHARACTERS CHARACTERS 
(IF ANY) 

,WORD BOUNDARY 

18" ,6 
DATA CHECKSUM 

1 TO 68 
CHARACTERS 

.. l._-------- CHARl~TERS -------... d .. 
,.. MAX. ~ 

Figure 8- 6. Saved File ForlTIat 

8-36 

CHECKSUM 

Digital Systems Division 



~-------~ 943005-9701 

• 

• 

KEYPOS=<mchar>: This parameter specifies that a key should be 
generated for each record of input, starting at the character number 
gi ven to the right of the equal sign «mchar». 

NOKEYS: This parameter specifies that any keys found in the input 
file should not be transferred to the output file. This parameter 
overrides "the Saved data specification. 

8.7.4. 3 DEFINITION. The user can enter: 

FILES=<nfiles> 

to specify copying more than one set of data (delimited by an end of file) to 
the output file. The argument, <nfiles>, is either a number specifying how 
many data sets to copy, or an asterisk (*) to specify copy,ing all data sets 
until an end of media is detected. All end of files are transmitted to the out
put file unless the output file is a key indexed or relative record file. These 
output file types cause DXCOPY to declare an error and abort when more 
than one file is transferred. 

8. 7.4.4 REWIND OPTIONS. DXCOPY normally rewinds the input and out
put files before beginning the copy. However, the user can prevent rewinding 
the input file by specifying NOINREW. Similarly, entering NOOUTREW pre
vents rewinding of the output file. 

8.7.4.5 TRIM OPTION. If the user enters TRIM for a control input, 
DXCOPY trims trailing blanks before copying to the output file. 

8.7.4.6 LISTING OPTIONS. If LUN 6 is not assigned to Durn.rn.y, DXCOPY 
generates two types of listings by default. The utility produces a source list 
if the data type is Source, or an identification listing if the data type is relo
eatable object (RELOBJ);j In addition j the user can enter the following param
eters to s elect printing of optional data: 

• RECNO: This parameter specifies printing of record numbers. 

• KEYS: This parameter causes the keys to be listed.. The key is 
assumed to be valid USASCII. This listing is printed in hexadecimal 
if the HEX parameter is also specified. 

• HEX: This parameter results in a hexadecimal listing. 

• ASCII: This parameter instructs DXCOPY to print the USASCII 
equivalent to the right o"f the hexadecimal listing. 

• WIDE: This parameter specifies that a 132 column printer is avail
able on LUN 6 instead of an 80 column printer. Hexadecimal dumps 
are then printed at 16 words per line instead of 8 words per line. 

8.7. 5 ERROR CODES 

When an error occurs during processing, DXCOPY prints an error code on 
the terminal. Table 8-15. defines the error codes. 

8-37 Digital Systems Division . 



J}nS\ ______ _ ~ 943005-9701 

Table 8-15. DXCOPY Error Messages 

Code Definition 

11001 

11002 

11003 

11004 

11005 

11006 

11007 

11008 

11009 

11010 

110 11 

11012 

110 13 

11014 

11016 

Unrecognizable parameter specified 

Invalid number 

More than 0 ne data specification 

Key length not ~ 1 and ~ 32 

Invalid key po sition specified 

Trim cannot be specified with given (or default) data type 

When copying memory image data from a non- relative rec
ord file, the first record was not the expected header 
record, 

When copying memory image data from a non-relative rec
ord file, a non-memory image data record was detected 

When copying saved data, a record was found that was not 
an 1810 record when an 1810 was expected 

When copying saved data, a record was found that was not 
an 1811 record when an 1811 record was expected 

An unexpected end of file was detected 

An end of file was not found when an end of file was expected 

A logical error was detected when writing to an indexed file 

An embedded end of file was detected, but the output file is 
either relati ve record or indexed 

Checksum error 

8.8 PROGRAM DEBUG (DEB980) 

DEB980 is a standalone utility package that aids in debugging user programs 
without endangering system operation. The package includes commands that 
permit the user to modify or display contents of memory and registers, and 
control execution of the program being debugged. Control of execution may 
be either interactive or batch, and includes loading, setting of breakpoints, 
and specifying traces. Program instructions may be executed one at a time 

8-38 Digital Systems Division 



~-------~ 943005-9701 

to allow examination of results following each instruction. DEB980 is de
signed for debugging single tasking jobs and does not support the follo\ving 
SVCs: 

• 6 - Delete Task 

• 7 - Suspend Task 

• 8 - Post Event 

• 30 - Create Task 

• 37 - Load 

• 38 - Load and Relocate 

• 49 - Allocate Resource 

• 51 - De-allocate Resource 

• 129 - Start Job 

This program is completely documented in a separate manual: Model 960 
Computer and Model 980 Computer Debug User's Guide and Operating In
structions, Part Number 942760-9701. 

8.8. 1 STANDARD JCL PROCEDURE 

The following listing is a standard procedure for DEB980: 

.- CREATEDEB980,COHMENT,-PROGRAM DEeUG AID W 

IREPLACE DEB981 • PROGRAM DEeUG AID • 
IEXEC OBJ-CI,SYST£M,DEB98el MEH-Clla.alll,5Ie, PRTY-Cl,15), 
I TIME-.l MEHa-MEM PRTYi~PRI TIMEa-TIM 
IASSIGN ,F8 se DEVICE.-DCIN 
IASSIGN ,Fl se DEVICE,8DMSG 
IASSIGN #'2 DUMMY DEVICEa.DCLST 
IASSIGN ~f3 se _ DEVICE •• DUHP FILE,8FUMP BUf;ERS-. 
IASSIGN #FA DISCI DEVICEa-DOBJ FrLEa.'OBJ BUffERS-' 
IASSIGN e DUMMY DEVICE,8DEV0 
IASSIGN A DUMMy DEVICE,8DEV4 FILEt-'ILA BUffERS-' 
IASSIGN 5 DUMMY DEVrCE,8DEV5 FILEI.'ILS BUffERS-' 
IASSIGN 5 DUMMY OEVICE.-DEVa FILE.-fILe BUffERS-' 
IASSIGN 7 DUMMY DEVICE.-OEY7 
IASSIGN a DUMMy LUNOa 8LUNa DEVICEI-OEva 
lEND 

8. 8.2 MEMORY PARTITION REQUIREMENTS 

I" CONTROL INPUT 
!' SYSTEM MESSAGE 
, CONTROL LISTING 
f MEMORY DUMP 
• RELOC OBJECT IN , 
, USER PROG LUN e 
, USER PROG LUN • 
f USER PROG LUN 5 
f USER PROG LUN 6 
f 'USER PROG LUN 1 
• USER PROG LUN 8 

The job area consists of space for the DEB980 load module plus space de
pendent on the program being de~ugged. The following formula specifies the 
job area size requirements: 

<jarea> = 3000 + PS + WA + ST 

where 

3000 = DEB980 load module size 
PS = Size of user program object module being debugged 
WA = Work area for program being debugged 
ST = Storage for symbol table and commands 

8-39 Digital Systems Division 



~-------~ 943005-9701 

The job extension area can be calculated according to the following formula: 

NB NF 
< jearea> = L L: (BSi+ 1) + 17(NT) + 7(NL) + SS + 11 

i = 1 j = 1 

where 

NF = Number of files as signed 

NB = Number of buffers per file (1 ::; NB ::; x depending on amount of 
blocking) 

BS = Physical record length in words of the individual files 

NT = 1 co- resident task 

NL = 5 + number of user program LUNs 

SS = 300 for dynamic TCB stack requirement 

Therefore 

<jearea> = 363 + 5(UL) + BB 

where UL = Number of user program LUN' s; BB = total blocking buffer re
quirements for all files. 

A default of MEM=(300, 6000, 600) has been used in the standard procedure. 

8.8. 3 LUN ASSIGNMENTS 

NOTE 

Unlike most utility programs, DEB980 LUN assign
ments are hexadecimal numbers. 

Table 8-16 lists the logical unit (LUN) assignments for the DEB980 program. 
In addition, all LUN assignments used in the user program being tested must 
also be assigned to the DEB980 program. 

8. 8.4 OPERA TION 

Refer to the Debug User's Guide for a description of program operation. 

8. 8. 5 ERROR CODES 

Refer to Section VI of the Debug User's Guide for a description of error 
codes and messages generated by DEB980. 

8.8.6 SAMPLE INPUT 

Refer to the Debug User's Guide for samp'le input format. 

8-40 Digital Systems Division 



~-------~ 943005- 970 1 

Table 8-16. DEB980 Logical Unit Assignments 

LUN Function Description 

F0 16 Control input Inputs debug com.m.ands 

F 116 Control log Displays operation m.es sages, error m.es-

I 
sages, sim.ulation term.ination m.essages, 
and com.m.and requests 

I 

Input log Lists com.m.ands entered on control input 
device 

Dum.p and 
trace output 

Prints dum.p and trac e m.e s sage s 

Program. input Inputs object program being debugged. 
This file must be direct output either from 
the as s embler or from DXOLE in the Com
pact mode. 

8. 8. 7 SAMPLE OUTPUT 

Refer to the De bug User I s Guide for sam.ple output form.at. 

8. 9 SY:rv1BOLIC ~A .. SSE}v1BLER (SAPG) 

The general assem.bler, SAPG, translates 980 sym.bolic assem.bly language 
into object language acceptable to the Model 980 Com.puter. SAPG is a two 
pass assem.bler. During Pass 1, a sym.bol table is generated as the source 
program. is read. Pass 2 generates the object output and program. listing 
using both the source program. and the generated sym.bol table. More de
tailed characteristics of the 980 assembler are described in the Model 980 
Com.puter Assem.bly Language Prograrnm.er I s Reference Manual, Part Num.
ber 943013-9701. 

8. 9. 1 STANDARD JCL PROCEDURE 

Standard JCL procedures are listed below for the single job step assem.bly 
job and for the 3- step assem.ble, link and go job sequence • 
• - CREATE ASMBLR,CO"MENT,"ASSEM8LE 
IREPLACE ASMBLR • ASSEMBLE • 
IEXEC OBJa(I,SYSTEM,ASMBLR) "E"a(310.589B,1088) PRTyaCI,15), 
I TIMEa.l MEM,aMEM PRTYaaPRI TIME,aTIM 
IASSIGN 8 DUMMY DEVICE,aDMSG SHARE 
IASSIGN 4 DUMMY DEVICE.aDCON SHARE.aSCON 
IASSIGN 5 DISCI OEVICE.aOSRC FILE,aFSRC BUFfERS-! 
IASSIGN 6 ac DEVICE.-OLST FILE.aFLST SHAREsaSLST 
IASSIGN 7 DISCI DEVICE.aDOBJ FILE.aFOBJ NEW,aNOBJ, 
I REPLACE.aROBJ BUFFERSa' LINKSEQ, 
I ACCEssa(ANy,ANV,ANV,ANV) ACCESS.aCOBJ, 
I ALLO~ATEa(I,I,84,IB) ALLOCArE'!LOBJ 

~ SYSTEM MESSAGE 
~ CONTROL/MESSAGE 
• SOURCE INPUT 

AUFFERSat~SOURCE l.IST/ERROR 

• OBJECT OUTPUT 
IASSIGN 18 DISCI fIlEa(TEMP,SCRL) NEW BUffERSa! LINKS[Q, 
I ACCEssa(ANy,ANY,ANV,'NY) ALLOCAT!aC!0,380,256,30) • SOURCE SCRATCH 
lEND 
(Continued on next text page) 

Digital Systems Division 



J}7)\ ______ _ ~ 943005-9701 

(Continued froITl previous text page) 

.* CREATE ASMLGO,COMMENT,wASSEMBLE. LINK, AND GO W 

IREPLACE ASMLGO • ASSEMBLE, LINK, AND GO • 
IEXEC OBJ-Cl,SYSTEM,ASMBLR) MEM-CJ8e,5800,1800) PRTYarl,15), 
I TIMEa.l MEMI-MEMA 
IASSIGN e DUMMY DEVICEs-DMSG SHARE 
IASSIGN 4 DUMMY DEVICEs-DCON SHARES-SCON 
IASSIGN 5 DISCi DEVICE.-DSRC FILEs-fSRC BUffERs-t 
IASSIGN 6 SC DEVICEs-OlSTA FIlEI-fLSTA BUffERS-I 

,. SYSTEM MESSAGE 
f CONTROL/MESSAGE 
r SOURCE INPUT 
• SOURCE I.IST/ERROR 

IASSIGN 7 DISCI FILE-CTEMP,OBJECT) NEw BUfFERS-1 LINKSEQ, 
I ACCESS-CANY,ANy,ANy,ANY) ALLOCATE-C10,J00,64,10) • OBJECT OUTPUT 
IASSIGN 16 DISci fIlE-CTEMP,SCRL) NEW BUFfERS-1 LINKSEQ' 
I ACCESS-CANy,ANy,ANY,ANY) ALLOCATf-C18,Je8,~56,30) • SOURCE SCRATCH 
IEXEC OBJ-(I,SYSTEM,DXOLE) MEM-(309,12999,30S8) PRTY-(t,l5), 
I TIME-.l MEM,-MEML 
IASSIGN 5 DISCI fILE-CTEMP,08JECT) DELETE BUfFERS-1 • PRIMARY INPUT/CON 
/ASSIGN 6 Sc DEVICES-DLSTL FtLEs-FLSTL BUfFERS-! • LOADMAP LIST/ERR 
IASSIGN 8 DISCI fILEaCTEMP,LM) NEW BUFFERS-1 RELREC lRECL- 64 1 
I ACCESS-CANY,ANy,ANy,ANY) AlLOCATE-C19,JS0,32,10) f LOAD MOD OUTPUT 
IASSIGN 9 DUMMY f LIBRARY FILE 
IASSIGN 18 DIsci fIlE-CTEMP,SCRL) DELETE BUFFERS-. • LINKSEQ SCRATCH 
/ASSIGN 13 DISci FILE-CTEMP,SCRR) NEW DELETE BUFFERS-! RELREC, 
I ACCESs-CANy,ANY,ANy,ANY) ALLOCATE-C10,JS0,t28,10), 
I LRECL~i00 ~ RELREC SCRATCH 
IEXEC OBJ-Cl,TEMP,LM) HEM-(JeS,4e08,18e0) PRTY-Cl,15), 
I TIME~100 MEH'-MEMG TIME.-TIMG 
IASSIGN 4 DUMMY DEVICE,-DEV4 FILE,-FIL4 BUfFERS-2 
IASSIGN 5 SC DEVICEI-DEV~ FILEi-FIL5 BUFFERS-2 
IASSIGN 6 SC OEVICEI-OEV6 FILEi-fIL6 BUFFERS-2 
IASSIGN 7 DUMMY DEVICE,-OEV7 
lEND 

8. 9.2 MEMORY PARTITION REQUIREMENTS 

r USER PROG LUN 4 
, USER PROG LUN 5 
• USER PROG LUN 6 
: USER PROG LUN 7 

The job area consists of space for the load .module of the asseITlbler and any 
work space required by the asseITlbler for sYITlbol table storage. The nUITlber 
of words required for a single sYITlbol table entry is a function of the nUITlber 
of characters in the sYITlbol as shown in table 8-17. The job area require
ITlent ITlay be calculated using the following forITlula: 

<jarea> = 3650 + 3(S12) + 4(S34) + 5(S56) 

where: 

3650 = SAPG load ITlodule size 
S12 = NUITlber of sYITlbols in table with a 1 or 2 character length 
S34 = NUITlber of sYITlbols in table with a 3 or 4 character length 
S56 = NUITlber of sYITlbols in table with a 5 or 6 character length 

A job area size of 5000 words will allow the asseITlbly of a prograITl with as 
ITlany as 270 sYITlbols. 

8-42 Digital Systems Division 



~-------~ 943005-9701 

Table 8-17. Symbol Table Memory Allocation 

Symbol Length 
in Characters 

1-2 

3-4 

5-6 

Words Required 
in Symbol Table 

3 

4 

5 

The job extension area can be calculated according to the following formula: 

NB NF 
<jearea> = I: I: (BSi+ 1) + 17(NT) + 7(NL) + SS + 11 

i = 1 j = 1 

where 

NF = Number of fi1e~ as signed (0 s NF s 3) 

NB = Number of buffer s per file (1 S NB s x, depending on amount of 
blocking) 

BS = Physical record length in words of the individual files 

NT :::: 

NL = 6 LUNs assigned 

SS = 300 for Dynamic TCB stack requirement 

Therefore, 

<jearea> = 370 + BB 

where BB is the total blocking buffer requirements for all files. 

To as semble a program using the standard JCL procedure provided previously 
in this section using input and output files having physical record lengths of 
256 words or less, a job extension area of 1000 words is adequate. 

8. 9. 3 LUN ASSIGNMENTS 

Table 8-18 lists the logical unit as signments for the as sembler. 

8-43 Digital Systems Division 



J17~ ______ _ ~ 943005-9701 

LUN 

o 
4 

5 

6 

7 

16 

Table 8-18. SAPG As sembler Logical Unit As signments 

Description 

System er ror mes sages 

Mes sages and control 

Source input 

Output li sting and 
error messages 

Relocatable object output 

Temporary storage of 
source input 

Comments 

Any printing devic e 

Any input/ output device 

Any input device/file. If not re
windable, LUN 16 must be assigned 
to a rewindable device/file, or in
put must be manually input twice. 

Any printing device/file 

Output device/file 

Any input device/file. If rewind
able, it is used as input to Pass 2; 
if not rewindable, LUN 5 provides 
input to Pas s 2. 

8.9.4 OPERATION 

The SAPG assembler is a single-task program that runs under DX980 in the 
protected mode. Figure 8-7 illustrates the operation and LUN assignments 
for SAPG. The assembler first determines if the source input (LUN 5) is re
windable. If it is not rewindable, SAPG prints the message: 

READY SOURCE, HIT C/R 

on LUN 4. When this message appears, the operator should ready the source 
device, if necessary, and then select a carriage return on LUN 4. This con
trol interaction can be eliminated by assigning the message and control (LUN 
4) to DUMMY. Pas s 1 reads the source from LUN 5 until it reads a record 
containing an END directive. After the END is processed, Pass 1 terminates 
and Pas s 2 begins. 

Pass 2 obtains the source input from one of two sources: 

1) If LUN 16 has been assigned to a rewindable device or to a file, 
Pass 1 copies the source input to LUN 16 and Pass 2 uses LUN 16 
for its input. 

2) If LUN 16 has been assigned to a non-rewindable device, Pass 2 
uses the primary source input, (LUN 5) for input. If LUN 5 is as
signed to a rewindable device or to a file, Pas s 2 automatically re
winds LUN 5. If LUN 5 is not rewindable, the source input control 
message: 

READY SOURCE, HIT C/R . 

is again printed to LUN 4. After repositioning the source in LUN 5, 
select carriage return. 

8-44 Digital Systems Division 



~-------~ 943005-9701 

/ 7 
I SYSTEM / 

~---:l~ __ LU_ER_~_O_R_~ __ ~ 
PASS 1 

BUILD TABLES 

J I 
/ SOURCE INPUT/ 

'-UN' 5 / 

r-- -----___ --1 

·1 
I 

PASS 2 

1. PROCESS FIELDS. 
2. OUTPUT MACHINE 

LANGUAGE EQUIVALENT.~_-+I 
3. LIST ERRORS. 

NOTE; SOME FUNCT IONAL BLOCKS INDICATE THAT 
A REWIND IS REQUIRED BEFORE PROCESSING 
MAY CONTINUE. THE REWIND CAPABILITY R 
IS DEFINED AS FOLLOWS. 

___ ..... 1 

(A) 130097 

AUTOMATIC REWIND 

~-.t:;\ 
~ C.L. 

MANUAL REWIND 

~c:= } {-CAR----IDS 

Figure 8-7. SAPG Assembler Functional Diagram 

8-45 Digital Systems Division 



~-------~ 943005-9701 

Pass 2 produces a listing and the bulk of the object output, and terll1inates 
processing when it encounters an END directive. At that till1e Pass 1 re
starts. The SAPG assell1bler continues to process source inputs terll1inated 
by an END directive and generates corresponding output object ll10dules until 
it reads an End of File (EOF) record (/~:<) to terll1inate the assell1bly. It then 
outputs an EOF record and trailer at the end of the object output to indicate 
assell1bler terll1ination. To execute any object prograll1 under DX980, the 
ll10dule ll1ust be linked using the link editor, DXOLE. 

8. 9. 5 ERROR CODES 

When SAPG reads the source prograll1, it ll1ay detect forll1at errors. Detec
tion of an error prints a diagnostic ll1essage on LUN 6. If the error is de
tected in Pass 1, the ll1essage appears before the listing. If the error is de
tected in Pass 2, the ll1essage is printed adjacent to the source line in question. 
A total nUll1ber of errors encountered in the assell1bly is given at the end of 
the listing. Table 8-19 lists the possible error ll1essages printed by SAPG. 

8. 9. 6 SAMPLE INPUT 

Figure 8- 8 illustrates the source input to the SAPG assell1bler. 

8. 9. 7 SAMPLE OUTPUT 

Figure 8- 9 illustrates the object ll10dule output froll1 the SAPG assell1bler. 

8.10 FORTRAN IV COMPILER 

The FORTRAN cOll1piler furnished with the DX980 operating systell1 exceeds 
the specifications set forth in the All1erican National Standards Institute pub
lication nUll1ber USAS X3. 9- 1966. The FORTRAN cOll1piler is a I-pass, 2-
phase cOll1piler that outputs an interll1ediate pseudo object of tables and link
age inforll1ation at the end of Phase 1. Using the ll1ass storage capability of 
the DX980 systell1, the operator need not handle the pseudo object output. 
More detailed characteristics of this com.piler are described in the FORTRAN 
manual referenced in the Preface to this manual. 

8.10.1 STANDARD JCL PROCEDURE 

Standard JCL procedures are listed below for the 2-step FORTRAN compile 
job sequence (Phase 1 and Phase 2) and for the 4-step FORTRAN compile, 
link and go job sequence. This proced~re does not permit searching of any 
alternate, user-supplied libraries other than the standard FORTRAN library. 
To enable additional searches, a separate JCL procedure must be written 
with modifications to the job step portion of DXOLE. These modifications in
clude assignment of the object module (TEMP, OBJECT) to an unused LUN, 
assignment of the alternate library file to another unused LUN, and assign
ment of the required DXOLE control commands (either in a file or from an 
input device) to LUN 5. 

8-46 Digital Systems Division 



Jd7~ ______ _ ~ 943005-9701 

•• CREATE_FTNPsi,cOMMENT,"FORTRAN PHASE 1 COMPILE I 

IREPLACE fTNPSl • fORTRAN PHASE 1 COMPILE • 
IEXEC OBJ-(I,SYSTEM,fTN) MEMa(3BB.S090.1008) PRTY-(1,t5)' 
I TIMEa.1 MEMI-MEM PRTYz-PRI TIMElaTIM 
IASSIGN 8 DUMMV DEVICE.80MSG SHARE : SYSTEM MESSAGE 
IASSIGN 5 DISCt DEVICElaDSRC FILf,-FSRC BUFFERSa! • SOURCE INPUT 
IASSIGN 6 Sc OEVICEI-OLST FILf.-FLST SHARE.aSLST RUFFERS-t.SOURCE l.IST/ERROR 
IASSIGN 7 DISCI DEVICE.-OINT FILElaFINT BUFFERSa! LINKSEa, 
I ACCESs-(ANV,ANV,ANy,ANY) ALLOCATEaC1,B,64,J0)' ~ SOURCE SCRATCH 
I NEWI-NINT REPLACE.-RINT ACCESSI~CINT ALLOCATElaLINT 
lEND 
.~ CREATE FTNP52,COMMENT,~FORTRAN PHASE 2 COMPILE ~ 
IREPLACE FTNPS2 • FORTRAN Pt~ASE 2 COMPILE • 
IEXEC OBJ-CI,SVSTEM,FTNPS2) MEM-CJ00,8BS0,1000) PRTV-CI,15), 
I TIME-.I MEM.-MEM PRTY.apRI TIME.aTIM 
IASSIGN 0 DUMMV DEVICE.-OMSG SHARE ~ SYSTE~ MESSAGE 
IASSIGN 6 SC DEVICE.aDlST FIlEI-FLST SHAR£.-SLST AUFFERS-l.ERROR MMSSG&5 
IASSIGN 7 DISCI DEVICE,a008J FILE.-FOBJ BUFfERSa! LIN~SEQ, 
I ACCEssaCANV,ANV,ANY,ANV) ALlOCATEaCl,0,64,t0), • OBJECT OUTPUT 
I NEW.aNOBJ REPLACE.aROBJ ACCESS.aCOBJ ALLOCATE.alOBJ 
IASSIGN 8 DISCI DEVICEs-DINT FILElaFINT BUfFERS-1 ~ INTERMED ORJECT 
lEND 

•• CREATE FTNLGO,COMMENT,~FORTRAN COMPILE. LINK,AND GO· 
IREPLACE FTNLGO • FORTRAN COMPILE, LINK. ANO GO • 
IEXEC OBJa(l,SYSTEM,fTN) MEM a C30e.10S8e,1000) PRTY-Cl,15)1 
I TIME-.I, HEH.-HEMC 
IASSIGN 8 DUMMV DEVICElaOMSG SHARE 
IASSIGN 5 DISCI DEVICEI-OSRC FILE.-FSRC BUFFERSa! 
IASSIGN 6 se DEVICElaOLST1 fIlElaFLST BUffERS-1 
IASSIGN 7 DISci FILEa!TEMP~PH.SE1' NEw BUFFERSa! LINKSEQI 
I ACCESS-(ANY,ANY,ANV,ANY) ALLOCATEa(10,J00,64,30) 
IEXEC OAJ-CI,SYSTEM,FTNPS2) MEM-cJ0~,8000,1000) pRTV-fl,15), 
I TIMEa.1 MEM.-MEMC 
IASSIGN 0 DUMMV 
IASSIGN 6 SC OEVICE.aOLST2 

• SYSTEM MESSAGE 
~ SOURCE INPUT 
,. SOURCE l.IST/fRROR 
: INTERMED ORJECT 
• SOURCE SCRATCH 

f SYSTEM MESSAGE 
• ERROR MESSAGE 

IASSIGN 7 DISCI FILE-(TEMP,OBJECT) NEW BUFFERSat LINKSEQI 
I ACCEssaCANV,ANV,ANy,ANY) ALLOCATEa(10,J00,64,10) r OBJECT OUTPUT 
IASSIGN 8 DISCI FILEa CTEMP,PHASE1) BUFFERSa1 • JNTERMED OBJECT 
IEXEC OBJsCl,SYSTEM,DXOLE) MEMaCl00.12000,l000) PRTVa(I,15), 
I TIME-.l MEMI-M[ML 
IASSIGN 5 DISCI FILEaCTEMP,OBJECT) OELETE BUFfERSa 1 
'ASSIGN 6 Sc DEVICE.aOLSTL FILElaFLST BUFfERS-1 
IASSIGN 8 DISCI FtLEaCTEMP,LM) NEW SUFFERS-. RELRECI 

r PRIMARV INPUT/CON 
• LOADMAP l.IST/ERR 

I ACCESS-(ANY,ANY,ANy,ANV) ALLOCATfaC10,JBe,J2,10" • LOAD MOO OUTPUT 
I LRECl-64 
IASSIGN 9 DISCI FILEa(SYSTEH,USRFTN) BUFFERS-2 r LIBRARV 
IASSIGN 18 DISci FILfa(TEMP,PHASE1) DELETE BUFFERSa1 • lINKSEQ SCRATCH 
IASSIGN 13 DISCI FILEa(TEMP,SCRR, NEW DELETE BUFfERSa, RELREC. 
I ACCEssa(ANY,ANY,ANV,ANV) ALLOCATEaC10,J0~,t28,t0"~ RELRfC SCRATCH 
I LRECL-100 
IEXEC OBJ-Cl,TEMP,LM) MEM-CJ00,8000,1000) PRTV-(1,15), 
, TIMEal00 HEMlaMEMG TIME.arIMG 
IASSIGN 0 SC DEVICE.-OMSG 
IASSIGN ~80 SC OEVICE.aDEV0 
IASSIGN ~81 DUM~V DEVICElaDEVl 
IASSIGN ~85 SC DEVICE.-OEV5 FILEt aF IL5 BUfF[RS-2 
,ASSIGN ~86 SC OEVICEI-OEV6 fILElaFIL6 BUffERS-2 
IASSIGN ~B8 DISCI FILEaCTEMp,SCRL) NEW BUFFERS-' LINKSEQ, 

r ~YSTEM MESSAGE 
,. USER lUN " 
r USER LUN 1 
r USER LUN 5alNPUT 
• USER LUN 6-0UTPUT 

I ACCESSaCANY,ANY,ANY,ANV) ALLOCATE-(tB,J0B.32,10) • USER SCRATCH fILE 
lEND 

8-47 Digital Systems Division 



~~------------------~ 943005-9701 

Message 
Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Table 8-19. SAPG Error Messages 

Mes sage 

FIELD SZ 

UNDF OP 

LONG SYM 

MDF OfF 

FRM> 16 

CAD> 10 

UNDF SYM 

MDF SYM 

RELOC 

SYM OVF 

BAD NUM 

IMP R/D 

X RF USE 

IXB ERR 

OPD ERR 

ADR MODE 

Meaning (and Corrective Action) 

Address beyond reach (use @ for extended 
format) 

Undefined operation code (check list of valid op 
codes) 

Symbol> 6 characters 

OPD or FRM multiply defined (rename label) 

FRM fields contain more than 16 bits 

Address expression> 10 elements 

Symbol not defined (label probably omitted) 

Symbol multiply defined (rename labels) 

A relocation error (use only relocatable label in 
arithmetic expres sion, or ORG statement can 
use only one relocatable label) 

Too many symbols have been defined (cut out 
symbols or divide program) 

Numeric element not valid (properly define 
item in label or address field) 

A REF or DEF symbol has been used improperly 
(REF symbol defined inside and outside the pro
gram; DEF symbol not defined in the program) 

A REF symbol has appeared invalidly in an un
reloca table expre s sion 

Address mode error (improper use of IXB field) 

No such OPD format number 

Illegal addressing mode (improperly written ad
dress) 

8-48 Digital Systems Division 



~-------~ 943005-9701 

(A)130396 

Figure 8- 8. As sem.bly Language Source Input to SAPG 

(A)130397 

lOT 
(1700 RECORD) 

E:J • • 
,,.._~_~_7._0 6 ___ ...,. I 
r "U' JJ 

Figure 8- 9. Object Module Output from. SAPG 

8-49 Digital Systems Division 



~~------------------~ 943005- 970 1 

8.10.2 MEMORY PARTITION REQUIREMENTS 

The job area required to run Phase 1 and Phase 2 of the FORTRAN com.piler 
consists of space for the load m.odules as well as dynam.ic workspace. For 
Phase 1, this job area is defined by the equation: 

<jarea>l = LMI + WSI 

where 

LMI = 6650 (Phase 1 com.piler load module size) 

WSI = workspace required (program. size dependent) 

A job area size of 8000 words for the Phase 1 compilation job step allows for 
compiling a sm.all FORTRAN program.. For Phase 2, the job area size is 
defined by the equation: 

<jarea>2 = LM2 + WS2 
where 

<jarea>2 = job area size for Phase 2 

= 2800 (Phase 2 compiler load module size) LM2 

WS2 = workspace required (program size dependent) 

A job area size of 8000 words for the Phase 2 com.pilation job step allows 
for compiling a small FORTRAN program. 

The jo b extension area can be calculated according to the following formula: 

NF 

< jearea> = L: 
i = 1 

where 

NB 

L: (BS. + 1) + 17(NT) + 7(NL) + SS + 11 
1 

j = 1 

NF = Num.ber of file s as signed to the job step (0 $ NF ~ 3) 

NB = Num.ber of buffers per file (0 $ NB ~ x, depending upon amount of 
blocking) 

BS = Physical record length in words of the individual files assigned to 
the job step 

NT = 1 co- resident task 

NL = 4 LUNs assigned to the com.piler 

SS = Dynamic TeB stack requirement (300 for com.piler) 

Therefore, 

<jearea> = 356 + BB 

8 - 50 Digital Systems Division 



~-------~ 943005-9701 

where BB is the total blocking buffer requirem.ents for all files assigned to 
the job step. For compiling the previously listed standard JCL procedure 
using input and output files having physical record lengths of 256 words or 
less, a job extension area of 1000 words is adequate. For Phase 2, the re
quired jearea is also 1000. 

8. 10.3 LUN ASSIGNMENTS 

Tables 8-20 and 8-21 list the logical unit assignrnents for the Phase 1 and 
Phase 2 FORTRAN com.piler job steps, respectively. 

Table 8-20. FORTRAN Com.piler Phase 1 LUN Assignments 

LUN Description Com.m.ents 

0 System. error m.es sages Any input/output printing device 

I 5 Sourc e input I Any input device/ file 

I 
6 Output 1i sting and Any printing device/file I 

I error m.essages 

I 7 Output to Phas e 2 Output device/file 

Table 8-21. FOR TR.LA~N Com.piler Phase 2 LUN ... ~ssig.rHnents 

LUN Description Com.m.ents 

0 System. error m.es sages Any input/output printing device 

6 Output listing and Any printing device/file 
-,..,..""" ..... ~.o~~~I""t.o.~ 

I 
C;.1..1.U.1. l.l..1.vOOU,5'-'O 

7 Relocatable object out- Output device/file 
put 

8 Input from. Pha s e 1 Any input device/file 

8. 10.4 OPERATION 

The FOR TRAN com.piler is a single-task program. that runs under DX980 in 
the protected m.ode. The com.pilation of a FORTRAN program. consists of a 
2-step job: Phase 1 and Phase i com.pilations. Figure 8-10 provides a func
tional diagram. of the FORTRAN com.piler, including LUN assignments. 

The FOR TRAN Phase 1 com.piler first determ.ines if the source input (LUN 5) 
is rewindab1e. If it is not rewindable, the com.piler prints the m.essage: 

READY INPUT, HIT C/R 

8- 51 Digital Systems Division 



~~-~~-------------~ 943005-9701 

~ORTRAN PHASE 1 

1. SYNTAX SCAN 

2. BUILD SYMBOL 

TABLES 

3. ALLOCATE MEMORY 

4. SOURCE LIST WITH 

ERROR MESSAGES 

5. OUTPUT PSEUDO

OBJECT 

I 
I 

,-------- _____ --1 

(A)130 1 06 

FORTRAN PHASE 2 

1. CREATE BASE PAGE 

CONSTANTS 

2. CREATE PAGING 

CONSTANTS 

3. OVERFLOW CHECK 

4. OUTPUT LINKABLE 

OBJECT 

NOTE: 

SYSTEM LOGICAL UNITS CORRESPONDING TO 

FORTRAN UNITS THAT HAVE BEEN USED IN A 

FORTRAN PROGRAM MUST BE ASSIGNED TO 

APPLICABLE PHYSICAL DEVICES BEFORE THE 

FORTRAN PROGRAM IS RUN. THESE SYSTEM 

RUN-TIME UNITS ARE LISTED IN THE FOLLOWING 
TABLE: 

FORTRAN RUN-TIME LOGICAL UNITS 

FORTRAN UNIT SYSTEM UNIT 

o TO 9 BO TO B9 

10 TO 15 BA TO BF 

16 TO 25 CO TO C9 

26 TO 31 CA TO CF 

Figure 8- 10. FOR TRAN Execution Functional Diagram 

on LUN O. When this message appears, the operator should ready the source 
device and then select a carriage return on LUN O. Phase 1 then reads the 
source input and outputs an intermediate pseudo-object of tables and linkage 
information to LUN 7. If after the END statement of a subprogram Phase 1 
encounters a record containing two asterisks (~:~*) as the first two characters, 
it produces delimiting characters for Phase 2 and restarts itself to process 
an additional subprogram. This procedure compiles several subprograms 
with a single application of the compiler. Once Phase 1 encounters an End 
of File (EOF) record (minimally a /*), Phase 1 terminates and Phase 2 be
gins. 

The FOR TRAN compiler Phase 2 determines if the intermediate object input 
is rewindable. If the input is not rewindable, the compiler prints the mes
sage: 

READY INPUT, HIT C/R 

on LUN O. When this message appears, the operator should ready the input 
device (LUN 8) if necessary, and then select a carriage return on LUN O. 

Phase 2 then reads the intermediate object and completes the compilation 
process. If no errors occur in this process, Phase 2 prints the ITlessage: 

COMPILA TION COMPLETE 

on LUN 6. 

8- 52 Digital Systems Division 



~----.--------~ 943005-9701 

The object code produced by 980 FOR TRAN is in relocatable format suitable 
for input to the link editor, DXOLE.. The program ID ror the object mod-
ule is taken from the name of the function or subroutine subprogram. The 
name cannot exceed six characters in length. If it is less than six charac
ters, the name field is right filled with blanks. Those programs that are 
not identified as functions or subroutines are automatically named Y>MAINY>. 
DXOLE does not recognize an IDT name beginning with Y> (blank space) within 
an Include control record. Therefore, DXOLE cannot access a main pro
gram produced by the FORTRAN compiler from within an indexed file by using 
the ..keyname. 

The object output from Phase 2 is ready for linkage editing with the FOR TRAN 
library to acquire any library modules referenced in the program. The 
FOR TRAN library contains a collection of commonly used subprograms typi
cally referenced by programs generated by the FORTRAN compiler. The 
library is provided to DX980 user s in the form of a key indexed library file 
identified as (SYSTEM, USRFT!\T). Assign this library file to LUN 9 of the 
DXOLE job step for most efficient linking. The output load moduie from 
DXOLE may then be executed. The FORTRAN runtime package adds a value 
of B016 to the LUN of all user I/O requests. For example, if a user pro
gram specifies an output for LUN 6, the JCL needed to execute the load ITlod
ule must assign LUN B616 to the program. FORTRAN runtime error mes
sages (explained in paragraph 8.10.5) are printed on LUN O. Therefore, the 
JCL procedure for executing any FOH.TR.~~ ... N program must also assign LUN O. 
The standard JCL procedures provided in paragraph 8.10. 1, illustrate the 
assignment of LUN 0 for these error messages. 

8. 10. 5 ERROR CODES 

Error messages may originate from several sources in the FORTRAN com
pile, lln..K and go sequence. Table 8-22 lists the error codes generated by the 
FORTRAN compiler Phase 1. Table 8-23 lists the error codes generated by 
the FORTRAN compiler Phase 2. Table 8-24 lists the error codes generated 
by the FORTRAN runtime library. These codes can be produced during the 
actual execution of the load module. 

Table 8-22. FORTRAN Compiler Phase 1 Error Messages 

Comment Meaning 

Line- by- Line Mes sages 

SYNTAX Erroneous punctuation or illegally con-
structed arithmetic expres sion. 

NUMBER A constant or label is too large or is in-
correctly constructed. 

8- 53 Digital Systems Division 



~-------~ 943005-9701 

Table 8-22. FORTRAN Compiler Phase 1 Error Messages (Continued) 

Comment 

ID CONFLICT 

TYPE CONFLICT 

MODE 

SUBSCRIPTS 

ALLOCATION 

ORDER 

MISSING LABEL 

DATA COUNT 

BLOCK DATA 

OVERFLOW 

Meaning 

The identifier marked is being used in a 
context which contradicts a previous ex
plicit or implicit declaration. 

The identifier or expres sion marked is in 
conflict with another identifier or ex
pression. 

The identifier or expres sion marked has a 
type in conflict with the context. 

The number of subscript expressions used 
in an array does not equal the number de
clared for the array. 

A non-dummy variable has been given as an 
adjustable dimension, or a variable has 
been placed in COMMON more than once, 
or a dummy variable appears in a 
COMMON or EQUIVALENCE statement. 

The statement appears in the program at a 
point in violation to the stated rules govern
ing the order of appearance of statements in 
the program. 

The statement must have a label in order to 
be reached or referenced. 

The number of items in the data list of a 
DA TA statement is not equal to the number 
of items in the variable list. 

An executable statement appears in a 
BLOCK DATA subprogram. 

The statement caused the compiler capacity 
to be exceeded. Compilation does not con
tinue. 

End- of- Compilation Mes sages 

LABEL ERRORS 

ALLOCATION ERRORS 

Labeling a Do loop structure errors. The 
message is followed by a list of statement 
numbers. 

Memory allocation errors. The message 
is followed by a li st of identifier s to which 
memory cannot be allocated, due to pro
gramming errors. 

8-54 Digital Systems Division 



~-------~ 943005-9701 

Table 8-23. FORTRAN COITlpiler Phase 2 Error/TerITlination Messages 

ComITlent 

INCORRECT FORMAT 

PROGRM OVER 

BSPAGE OVER 

INVALID CODE 

FIELD SIZE ERROR 

COMPILA TION ABOR TED -
PASS 1 ERROR 

ERRORS - COMPILA TION 
ABORTED 

Meaning 

The Phase 1 output contains a format error 

The program exceeds Phase 2 capacity 

The base page exceeds the capacity allotted 

The Phas e 1 output contains a code not 
recognized by Phase 2 

The IAL statement on the indicated line 
referenced a location that is not directly 
addres sable. 

Error encountered in intermediate object 
input from Phase 1 

Errors encountered in Phase 2. 

PROGRAM END Phase 1 output successfully input to Phase 
2. 

COMPILATION COMPLETE No errors encountered in either phase 

Table 8-24. Runtime Error Messages 

Message Meaning 

NOTE 

The user prograITl is terminated in all cases except 
the ~:o:'W ARNING~~* condition. 

ILLEGAL FORMA T 
CHARACTER 

ILLEGAL INPUT 
CHARACTER 

FORMAT PARENTHESIS 
ERROR 

UNDER/OVER FLOW 

Illegal character encountered in runtime 
format stateITlent. 

Illegal character encountered in input 
stream during READ execution. 

Runtime format statement contains un
balanced set of parenthesis. 

Real number in input stream or result of a 
floating point operation is outside range of 
numbers allowed. 

8-55 Digital Systems Division 



J2n.5\ ______ _ ~ 943005-9701 

Table 8-24. Runtime Error Messages (Continued) 

Mes sage Meaning 

~:~~:~WARNING~:o:~ RECORD User program attempting to input or out-
SIZE ERROR put record containing greater than 132 char

acters. 

INPUT (OUTPUT, REWIND, 
BACKSP, ENDFILE) UNIT 
LIMIT ERROR 

OUT OF DATA 

ERR, OR WR TBIN 
(WRTBCD, REDBCD, 
REDBIN, ENDFIL, REWIND, 
BACKSP) COMM IGND ON 
UNIT BO (1, 2, ••• , 7) JOB 
ABORTED 

DIVIDE CHECK 

8.10.6 SAMPLE INPUT 

I/O was attempted on a FORTRAN unit 
greater than 7. 

End- of- file encountered during a READ op
eration. 

Hardware error, or attempted operation is 
illegal on device specified, i. e., rewind 
card punch is illegal. 

An attempt was made to perform a floating
point division by zero. 

Figure 8- 11 illustrates input format for the FORTRAN compiler. 

(A)130399 

Figure 8- II. FOR TRAN Source Input to FOR TRAN Compiler 

8- 56 Digital Systems Division 



~-------------~ 943005- 970 1 

8.10.7 SAMPLE OUTPUT 

Figure 8- 12 illustrates output format from the FORTRAN Compiler. 

(A) 130400 

(1701-1705 
RECORDS) 

lOT wMAINw 
(170'6 RECbRD) 

(1701-1705 
RECORDS) 

I*(EOF) 

• . '--...... • 

Figure 8- 12. Object Module Output from FORTRAN Compiler 

8.11 LOAD MODULE UPDATE (LMUPDT) 

This utility updates an unplanned overlay on a load module file. The new 
overlay must have been link edited as a subsystem using DXOLE. The rela
tive record file of the new overlay must contain a directory entry for the 
overlay, a dummy root phase, and the new overlay. Use the following con
trol cards for DXOLE: 

¥> SUBSYSTEM OVL Y 

¥> ROOT MAIN. 

¥> SEGMENT 1 

Object Deck 

h SEGMENT I 

Object Deck 

Subsystem Mode, Overlay 

Dummy Root Phase 

Level 1 Overlay 

Overlay 1 

Level 1 Overlay 

Overlay 2 

(listing continued on next text page) 

8-57 Digital Systems Division 



Jd75\ ______ _ ~ 943005-9701 

(listing continued froITl previous text page) 

¥> SEGMENT 1 Level 1 Overlay 

Object Deck Overlay n (n Load Modules to be Updated) 

End of File Terminates DXOLE Input 

8. 11. 1 STANDARD JCL PROCEDURE 

The following listing is a standard procedure for LMUPDT: 

,. CREATE ~MUPDT,COMMENT,ftlOAD MODULE uPD~TE " 
IREP~ACE LMUPDT • lOAQ MODULE UPDATE • 
IEXEC OBJ-Cl,SYSTEM,lMUPDT) HEM-C380.3808,508) PRTY-C',l), 
I TIME-.l MEMI-MEM PRTYi-PRI TIMEI-TIM 
IASSIGN 4 SC DEVICElsOMSG 
/ASSIGN 5 SC OEVICE.-DCON ~ILElaFCON BUFfERS-' 
IASSIGN ~ OISCI DEVICElaOlM fIlEa-FlM BUFfERS-' 
IASSIGN 7 DISci DEVICEtsOUPO FILEi-fUPO BUFfERs-t 
lEND 

.N CREATE ~INKUP,COMMENT,"~INK MOD AND UPDATE L M fILE" 

,. SYSTEM MESSAGE 
f CONTROL INPUT 
f LOAD MODULE INPUT 
• UPDATE FILE 

IREPlACE LINKUP • LINK MODULE AND UPDATE LOAD MODULE FILE • 
IEXEC OBJ-Cl,SYSTEM,DXOLE) MEM-C300,t2g08.3000) PRTYst1,1), 
I TIMEs.l MEHISMEML 
IASSIGN 1 DUMMV DEVICElsOOBJ FILEIsr08J BUFfERS-2 : SECONDARY OBJ IN 
IASSIGN 5 DISci OEYICElsOIN FILEssFIN BUFFERSS! , PRIMARV INPUT/CON 
IASSIGN 6 SC OEVICElsD~ST FILEssrLsT BUFFERSs! • lOADMAP LIST/ERR 
IASSIGN 8 DISCI fIlEaCTEMP,lM) NEW BUFFERS-t RELREC LRECLa64, 
I ACCEsSaCANY,ANY,ANV,ANY) ALLOCATEsC10,J80,32,10) : LOAD MOD OUTPUT 
IASSIGN 9 DISci OEVICE.aOPLX FIlEa(SYSTEM.USRPLX) FILEzarPLx. 
I BUFFERSa2 • PLEXUS l.IBRARY 
IASSIGN 18 DIsci FILEsCTEMP,SCRL) NEW DELETE BUFFERS-I' 
I LINKSEQ ACCESSa(ANY,ANV.ANY.ANY1J • lINKSEQ SCRATC~ 
I ALLOCATEaC10,J80,256,l0) 
IASSIGN 11 DISci DEVICE.-OEXT FILEaCSYSTEM.DXEXTDl FILE.aFEXT, 
I BUFFfRSat ~ SYSTEM EXT OEFS 
IASSIGN 13 DISCI FILEaCTEMP,SCRR) NEW DELETE BUFFERSat RELREC, 
I ACCESS-(ANY,ANY,ANV,ANY) ALLOCATEaC10,30B,t28,10), 
I ~RECLaI0~ • RELREC SCRATCH 
IEXEC OBJ-C1,SYSTEM,LMUPDT) MEM-C300.J900.500) PRTY-Ct,!), 
I TIME-.1 ~EMlaMEMU 
/ASSIGN 4 Sc OEVICElaOMSG 
IASSIGN 5 SC DEYICEtaOCON SHAREraSCON 
IASSIGN 6 DISCI fILE-(TEMP.lM) 8UFFERS-1 
IASSIGN 7 DISCI DEYICEa-OUPD FILEaafUPO BUFFERs-t 
lEND 

8.11.2 MEMORY PARTITION REQUIREMENTS 

The m.eITlory requireITlents for the update utility are: 

MEM=(500, 12000,4000). 

8. 11. 3 LUN ASSIGNMENTS 

LUN assignITlents for LMUPDT are given in table 8-25. 

8-58 

f SYSTEM MESSAGE 
._ CONTROL INPUT 
r LOAD MODULE INPUT 
• UPDATE FILE 

Digital Systems Division 



~-------~ 943005- 970 1 

Table 8-25. LMUPDT Logical Unit Assi~nments 

LUN 

4 

5 

6 

7 

8.11.4 OPERATION 

Description 

Error messages 

Control record input 

Load module input file 

Load module file to be updated 

One control record must be input for each load module to be updated. The 
control record contains only a base 10 value of the Memory Image Phase 
(MIP) to be updated. The value is obtained from the DX980 system link load 
map listing. To find this value, scan the load map listing for the IDT name 
of the module to be updated. The base 10 value of the MIP number for this 
overlay is entered, left justified, on the control record as the base ID. 
After the updates have been made, perform the Initial Program Loading (IPL) 
procedure to bring the modified l~ad module dictionary into memory. This 
procedure is descri bed in the DX980 System Operation Guide, Part Number 
943004- 970 1. 

8. 11. 5 SAMPLE INPUT 

A typical format for input on LUN 5 is as follows: 

Control Record for Overlay 1 

Control Record for Overlay 2 

Control Record for Overlay n 

1* Terminates Control Record Input 

8.12 SOURCE MAINTENANCE ROUTINE (SMR) 

The DX980 Source Maintenance Routine (SMR) maintains source libraries for 
large software projects. The SMR keeps a history of changes made to a 
source library by recording the change level for each record within a pro
gram in the library, for each program in the library, and for the library it
self. The SMR can access any version (through all change levels) of any pro
gram in the library. It can be used for either batch or interactive applica
tions, and has commands that create a new program on the library, modify 
an existing program in the library, and that delete, list or extract programs 
in the library. The SMR can also produce an index of all the programs in the 
library. 

8-59 Digital Systems Division 



)2175\ ______ _ ~ 943005-9701 

8. 12. 1 STANDARD JCL PROCEDURE 

The following listing is a standard procedure for SMR: 

.- CREATE SMR ,COMMENT,"SOURCE MAINTENANCE ROUTINE " 
IREPLACE SMR • SOURCE MAINTENANCE ROUTINE • 
IEXEC OBJ-(1,SYSTEM,SMR) ~EM_(J00,115e0,5000) PRTY-C1.15), 
I TIMEa-1 HEMeaMEM 
IASSIGN 0 SC OEVICEa-OMSG 
IASSIGN 4 se DEVICEa-OCON FILEI-FCON BUfFERS-1 
IASSIGN 6 DUM~Y OEVICE.-DLST FILE.-FLST BUffERS-! 
IASSIGN ~15 MTt DEVICE,-DOLD FILEI_FOLD BUffERS-1 LINKSEQ 
IASSIGN ~22 DUMMY OEVICE.-OCOM FILE.-FCOM REPLACEs-RCOM, 
I BUFFERS-1 LINKSEQ ACCESS-CANV.ANY,ANV,ANV', 
I ALLOCATEI-LeOH 
IASSIGN ~25 DUMMY DEVICE.-ONEW FILEI-FNEW REPLACE.-RNEWJ 
I BUFFERS-1 LINKSEQ ACCESS-CANY.ANY,ANY,ANV), 
I ALLOCATE.aLNEW 
IASSIGN ~26 DUMMY 
IASSIGN ~J5 DUMMY DEVICEI-DEVJ5 FILE.-FILJ5 BUFFERS-2 
IASSIGN ~45 DUMMY DEVICEI-DEV45 FILE.aFIL45 BUfFERS-2 
lEND 

8.12.2 MEMORY PARTITION REQUIREMENTS 

, ERROR/USER MSG 
.. CO~ITROL 
,. LISTING 
• OLD LIBRARY FILL 

• COMPILE OUT FILL 

f NEW LIBRARY FILL 
,. JCL UPDAT CON OUT 
,. INCLUDE l.UN OPT t 
• INCLUDE t.UN OPT 2 

SMR memory requirements are defaulted in the standard procedure to the 
following: 

MEM=(300, 11500, 2000) 

8. 12. 3 LUN ASSIGNMENTS 

The logical unit numbers that must be assigned for SMR are provided in 
table 8-26. In addition to these standard required LUNs, any other LUNs 
can be assigned to SMR and accessed by the include option. 

NOTE 

All LUN assignments for SMR, unlike most utilities, 
are hexadecimal numbers. 

8.12.4 OPERATION 

SMR executes in either an interactive or a batch manner depending on the type 
of device us ed for command input. No special command is required since 
SMR determines the manner of processing from the attributes of the command 
LUN. Error processing is the main difference between the two operational 
types. When executing interactively almost no errors are fatal. The error 
message is output to the interactive device (in addition to the listing device), 
and the user can re-enter the command. When batch processing, however, 
some errors are fatal and some are logical. Logical errors allow recovery. 
See section 8.12.5 for a description of SMR error codes. 

8-60 Digital Systems Division 



~--------~ 943005-9701 

LUN 

0 

4 

I I 

6 

I 
I I 
I I I 
I I 

I I 
~ I 

Table 8-26. SMR Logical Unit Assignments 

Description 

Operator Console 
Messages 

Command Input 
(Logical/ fatal 
error m.essages 
if interactive de-
vice) 

Listing 

Old Library File 

Compile Output 
File 

New Library File 

i 

Comments 

Used only as explained in discussion of 
!I. #PAUSEI! command. 

If assigned to an input/output device cap-
able of printing, SMR executes in an inter-
acti va manner; if as signed to an input- I 

only device/ file, SMR executes in a batch 
manner. If assigned to DUMMY, the SMR 
as surnes that the first command is 
11.# UPDATE *COPYLIB II

• (See discus-
sion of UPDATE mode command.) 

Any sequential device/file. SMR uses 
this LUN to list all submitted commands, I 
for messages, and for listings of programs I 
and indexes of the library as described in I 
discussion of II. # LIST", ". # LSTALL 'I , 

and II. # INDEX" commands. If LUN 4 is 
assigned to an interactive device and LUN 

6 i~ .~ssig~ed. to DU~~Y, .. t~:~.:-':l .. message~ 
and. tne output caused. by ". ff Llb'!" ", 

". # LSTALL, and II. # INDEX" com.m.ands 
are written to LUN 4. Therefore, LUN 6 
may be assigned to DUMMY unless a hard 
copy of the proces sing performed is de
sired. 

Any rewindable sequential device/file. 
Must be assigned to DUMMY if OLDLIB 
is not being used. 

Any sequential device/file. This file is 
the output L UN for all ". # COMPILE" 
commands and for II. # MODIFY" com
mands if in EXTRACT mode (as discussed 
later) • 

. Any rewindable sequential device/ file. If 
running SMR in EXTRACT mode (as dis
cus sed later), this L UN is not used and 
may be assigned to DUMMY. Otherwise 
this file is the 0 utput LUN when any change 
are made to a program on OLDLIB; all un
modified programs are copied unchanged. 

8-61 Digital Systems Division 



~-------~ 943005-9701 

Table 8-26. SMR Logical Unit Assignments (Continued) 

LUN Description Comments 

26 16 Scratch File Used in JCL installation procedure only. 
LUN 26 must be assigned to DUMMY for 
general use of SMR. 

All modules that comprise a project reside in a source library (OLD LIB) • 
OLDLIB is a sequential data set with rewind capability, either a linked se
quential file or a magnetic tape. The directory entry for each program in 
the library contains such information as module name, revision level, a 
descriptive title, a general comment field for any other'information the user 
may desire to include, and the language in which the module is written (e. g. 
PLEXUS, SAP, FORTRAN, etc). All SMR commands that reference existing 
library programs read from OLDLIB, the input source library. Whenever 
a library program is to be modified or a library program added, a new 
source library data set (NEWLIB) is created. OLDLIB is not modified. 
NEWLIB is a copy of OLDLIB except for the modifications made via SMR 
commands. NEWLIB has a revision level one greater than OLDLIB and all 
programs modified have as a latest change level the revision level of NEWLIB. 

Source programs can also be copied from OLDLIB to a compile file; that is, 
a sequential file suitable for input to a compiler or assembler. The compile 
file is useful when a copy of a program is desired but no perITlanent changes 
are being made. 

Functionally, SMR can be operated in three modes: Extract, Update and 
Verify. The mode to be used is determined when the first command is read 
and cannot be changed after that point. The following paragraphs describe 
each of the modes. 

8. 12.4. 1 UPDATE MODE. In Update mode, SMR assumes that no output is 
to be made to the compile file. SMR reads from OLDLIB and writes to 
NEWLIB. If OLDLIB does not exist (a new library is being built), then the 
logical unit for OLDLIB (LUN 15 16) must be assigned to DUMMY. When in 
Update mode, SMR requires that the programs in the library be in alphabeti
cal order. Whenever it adds a new program to a library, it first copies any 
existing programs from OLDLIB that alphabetically precede the new program 
(sorted by the name assigned to the program when it was created in the li
brary). Furthermore, all SMR commands that reference programs in 
OLDLIB must reference those programs in alphabetical order. Any pro
grams in OLDLIB that are not specifically referenced in the command are 
copied to NEWLIB unaltered. If a program is referenced out of order, SMR 
will search to the end of OLDLIB without finding the program and will not 
rewind OLDLIB to find the program (rewinding OLDLIB would create multi
ple copies of programs from OLDLIB in NEWLIB). 

8-62 Digital Systems Division 



~-------~ 943005-9701 

8. 12.4.2 VERIFY MODE. When operating in Verify mode, SMR assumes 
that no output is to be made to the compile file. NEWLIB may not be as
signed to DUMMY. This mode verifies that a new library (NEWLIB) was 
generated without I/O errors. SMR commands operate the same in this 
1l10de as in Update mode, except that SMR does not write to the output li
brary, NEW LIB. Instead, SMR reads NEWLIB and compares it to verify the 
contents of the record. 

8. 12.4. 3 EXTRACT MODE. In Extract mode, SMR assumes that no new 
library is being created. All commands, except. # CREATE and 
.# DELETE, have meaning as discussed later in this description. Refer
ences to programs in OLDLIB do not need to be in alphabetical order since 
SMR rewinds OLDLIB to search for the programs when in Extract mode. 
However, SMR is more efficient if references are alphabetically ordered. 

8. 12.4.4 SPECIFYING UPDATE MODE. To use the Update mode, the 
first cOll1mand to SMR must be one of the three following cOll1mands: 

.#UPDATE 

.#UPDATE ':~COPYLIB 

.#UPDATE ':~DH'~'<rl>'. 

The first com.mand (. # UPDATE) activates the Update mode as previously 
described with no modifications. 

The second command (. # UPDAT E ':~COPYLIB) instructs SMR to copy 
OLDLIB without changes to NEWLIB. Specifying this option prevents SMR 
from increm.enting the library revision level, and produces an exact dupli
cate of OLDLIB in NEWLIB. This option replaces the DXCOPY utility for 
copying SMR libraries since DXCOPY cannot handle the large size logical 
records (up to 3600 characters) that SMR writes. If the com.rnand input de
vice (LUN 4) is assigned to DUMMY, then SMR assum.es that the first input 
command is • # UPDATE ':~COPYLIB. If the '~COPYLIB option is specified, 
SMR does not request further input. 

The third command (. #UPDATE ':~DH':<'<rl>'.) instructs SMR to Destroy 
History. The sym.hol < rl > represents a 2- character code supplied by the 
user for a revision level indication. The com.m.and must appear exactly as 
it is shown to correctly specify the Destroy History option. When SMR re
ceives this command, it does not write any record onto NEWLIB that was 
deleted previous to the specified 'revision level «rl». Refer to the discus
sion of • #MODIFY and. #DELETE commands for an explanation of the de
leted records. 

8-63 Digital Systems Division 



~-------~ 943005-9701 

8. 12.4. 5 SPECIFYING VERIFY MODE. To use the Verify m.ode, the first 
com.m.and to SMR m.ust be one of the three following comm.ands: 

• # VERIFY 

• # VERIFY ~~COPYLIB 

· # VERIFY ~:~DH~:~'<rl>'. 

The options in the above com.m.ands are the sam.e as those previously de
scribed for the. #UPDATE com.m.and. To run SMR in the Verify m.ode, use 
one of the. # VERIFY com.m.ands as the first com.m.and. Any options used in 
this com.m.and m.ust be the sam.e options as specified in the. # UPDATE com.
m.and used to create the NEWLIB that the com.m.and is verifying. Following 
the initial com.m.and should be the sam.e sequence of com.m.ands that followed 
the. #UPDATE com.m.and (excluding the. # UPDATE com.m.and). Sim.ilarly, 
the LUN assignm.ents for OLDLIB and NEWLIB should be exactly the sam.e 
as those used to create the NEWLIB. 

8. 12.4. 6 SPECIFYING EXTRACT MODE. To specify Extract m.ode, the 
first com.m.and m.ay be any valid. # xxxx com.m.and except those com.m.ands 
used to specify the Update and Verify m.odes. The following two com.m.ands 
specifically designate the Extract m.ode: 

• # EXTRACT 

• # EXTRACT ~:~SEQ 

The term., ~~SEQ, specifies a sequencing option used with the. #LIST, 
. # LSTALL, and. # MODIFY com.m.ands. Refer to the discussion of the 
.# LIST com.m.and for a description of this option. 

8. 12.4.7 CREATING A NEW MODULE ON NEWLIB. The com.m.and to 
create a new m.odule on the new library tape is: 

• # CREATE<nam.e>, <language>, <title>, <com.m.ent>. 

The user specified fields are defined as follows: 

• <nam.e> - nam.e to be assigned to the m.odule. This is the nam.e used 
to reference the m.odule in any other command. Limited to 9 char
acters. 

• <language> - source language of the module. 
Languages recognized include:-

a) SAL - 960 Assembly Language Source. 
b) SAP - 980 Assembly Langl:lage Source 
c) OBJECT - Object Decks 
d) FORTRAN 

8-64 Digital Systems Division 



~ _____ 94_3_0_0_5_-_9_7_0_1 ________________________________________________ ___ 

e) FORT - Alternate Identifier for FORTRAN 
f) COBOL 
g) XPL 
h) PLEXUS - Specifies PLEXUS language 
i) PL1 - Specifies PL/I language 
j) ASM - S/360 Assembly Language Source 
k) ALGOL 
1) COMMENT - module containing USASCII source records for 

comment only. 

• < title> - a quoted string, limited to 36 characters, that provides a 
more descriptive title than the 9-character name. 

• < comment> - a quoted string, limited to 20 characters, that can 
hold any additional information such as programmer, author, pro
ject name, etc. 

When the CREATE corr..rnand is invoked, all programs in OLDLIB (if any) 
that alphabetically precede the current program are first copied to NEWLIB. 
If a program with the specified name already exists in OLDLIB an error is 
declared. The commands that follow this command normally define the de
sired contents of the new module. Two different commands can follow a 
• # CREATE. They are: 

1) • /INCLUDE <lun>,<lun>, ••• 

Includes 80 character records (64 if the specified language name is 
OBJECT) from the specified <lun> until an end-of-file is read. 
The<lun>is not rewound before input. A .#REWIND cornmand 
should be used to rewind the < lun> if desired. More than one 
• /INCLUDE command may be used. The <lun> may be a decimal 
nurnber, or a hexadecimal number prefixed by a ">" (greater than) 
or a "#" (pound sign). Any number of < luns> may be specified. If 
the language name is OBJECT, the contents of the module must be 
inserted using. /INCLUDE commands since no object records n1ay 
be encountered in the command input strearn. 

2) Any record from the command input stream that does not have a 
'. # I or '. / I in column 1 and 2 is interpreted as part of the module 
definition. The definition is completed with either another. # com
mand or an end of file in the command input. 

8. 12.4.8 MODIFYING A PROGRAM ON OLDLIB. The command to begin 
modification of a program on OLDLIB is: 

• # MODIFY <name>. 

or 

• # MODIFY < name>,< language>, < title>, < comment>. 

Change 1 8-65 Digital Systems Division 

I 



~-------~ 943005-9701 

The <name> field represents the name of the program to be modified. If the 
program is not defined on OLDLIB, an error conditio!! exists and the com
mand is terminated. The <language>,< title>, and <comment> fields are op
tional. They need only be supplied to change those fields on the program 
header record that SMR maintains for the program and that are displayed 
for each program when a • #INDEX command is processed. If anyone of 

• these three fields is specified, then the field (or fields) preceding it must 
also be specified. For example, to change the title, the. #MODIFY com
mand must specify the name, the language and then the title. 

If in Update mode, then the resulting program image is written on NEWLIB. 
If in Extract mode, the resulting program image is written to the compile 
file. When the. # MODIFY command is invoked in Update mode, all pro
grams in OLDLIB that alphabetically precede the specified program are first 
copied to NEWLIB. More commands are then input to define the new pro-

I gram contents. Four different commands can follow a • #MODIFY com
are: 

1) @NNNNN. 

This command is the Insert After command. This command copies 
from OLDLIB all records in the program up'to and including record 
number NNNNN. The number, NNNNN, should be a decimal num
ber (leading zeroes not required). (The. # LIST command descrip
tion discusses sequenced listings of a program in OLDLIB. The 
sequence numbers given by such a listing are the appropriate num
bers to use for NNNNN.) When the records have been copied (to 
NEWLIB if in Update mode or to the Com.pile File if in Extract mode) 
then a new command is read to continue defining the new program 
contents. 

2) @NNNNN, MMMMM. 

This command is the Delete Records command. T;his command per
forms the following functions: 

• Copies all records of the program from OLDLIB up to and in
cluding record number NNNNN-l. 

• If in Extract mode, it reads and discards all records up to and 
including record number MMMMM from OLDLIB. 

• If in Update mode, it reads and marks as deleted (at the revision 
level of NEWLIB) all records up to and including record number 
MMMMM and then writes the records to NEWLIB. SMR does 

Change 1 

not delete the.se records; it only marks them 'deleted'. In this 
way SMR can reproduce the image of a program in the library 
exactly as it appeared at any previous revision. 

8- 66 Digital Systems Division 



~-------~ 943005- 970 1 

3) • /INCLUDE <lun>,<lun>, ••• 

This command -operates the same as explained in the discussion of 
the. #CREATE command. 

4) Module Definition. 

Any record from the command input stream that does not have an 
"@" in column 1, or a 1'. # II or ". /11 in columns 1 and 2 is inter
preted as part of the module definition. It is inserted into the com
pile file or NEWLIB immediately. The rnodule definition is COITl

pleted when either a ".# II command or an End-of-file is encountered 
in the command input stream. 

If an !1@NNNNN. II corrunand is encountered after record NNNNN+ 1 has been 
read 'from OLDLIB, then an error mes sage is output and the command is ig
nored. Similiarly, if a "@NNNNN, MMMMM. II command is encountered after 
record NNNNN has been read from OLDLIB, then an error message is given 
and the command is ignored. 

If in Extract mode and the IJ~~SEQ" option was specified in the ". # EXTRACT" 
command, then columns 73 through 80 of the record are modified before being 
placed in the Compile File. The modification is as follows: 

1) If the record was not previously in OLDLIB (inserted into the com
mand stream or via a II. /INCLUDE '1 command), then columns 73 
through 80 are blanked. 

2) If the record was in OLDLIB previously, then columns 73 and 76 
are blanked, columns 74 and 75 contain the 2-character revision 
level that represents the revision level of the library when the rec
ord was added, and columns 76 through 80 contain a 4-digit (decimal) 
sequence number. 

8. 12.4.9 COMPILE. The format of this command is: 

• # COMPILE 

This command moves records to the compile file when no editing is required. 
Only one of the three options may be specified. If not in Extract mode, then 
use of the II /~~II option causes the command to be ignored and use of either 
<name >or * options produces a 1.ogical error message output and the com
mand is then ignored. 

The user supplied parameters are interpreted as follows: 

• <name> - Name of a module to be copied from OLDLIB to the com
pile file. 

8-67 Digital Systems Division 



~-------~ 943005-9701 

• ~:~ - Records are to be copied directly frolTI the cOlTIlTIand input into 
the cOlTIpile file until a ". # 11 cOlTIlTIand or an end of file is encountered. 

• /~:~ - Write an end of file in the cOlTIpile file. An end of file is auto
lTIatically written on the cOlTIpile file when SMR terlTIinates. This 
cOlTIlTIand perlTIits the user to build cOlTIpile files with lTIore than 
one end of file. 

To obtain a copy of a lTIodule in OLDLIB as it was at a revision previous to 
the current revision of the lTIodule, a second option lTIay be added to the 
< nalTIe > option as follows: 

• # COMPILE < nalTIe>, ~!<'< rl>'. 

The notation < nalTIe > is the nalTIe of the lTIodule and < rl > represents a 2-
character revision code for the desired revision level. The allowed revision 
character codes with interpretation are: 

~!<Z = 26 

AA = 27 

AZ = 52 

ZZ = 702 

The ~~ and quote lTIarks are required to correctly specify the revision level 
option. 

8. 12.4. 10 DELETE. The cOlTIlTIand for designating lTIodules as deleted 
frolTI the library is: 

• # DELETE < nalTIe>, < nalTIe>, ••• 

If in Extract lTIode, this cOlTIlTIand is ignored. Otherwise, each lTIodule 
nalTIed is located in OLDLIB and then the header record is lTIarked "deleted". 
After lTIarking the header record, SMR marks all previously non-deleted rec-
0rds as being "deleted" at the revision level of NEWLIB. All records (in
cluding the header record) are copied to NEWLIB. This "deletion" prevents 
the lTIodule nalTIe frolTI appearing when an Index (as discus sed later) is done. 
All subsequent references to the lTIodule nalTIe result in an error unless the 
cOlTIlTIand that references the lTIodule nalTIe also contains the necessary op
tions to specify that the revision level desired is previous to the "deletion" 

8-68 Digital Systems Division 



~-------~ 943005- 970 1 

of this module. However, if a • # CREA TE command is later used and the 
nam.e given matches the name of a previously deleted module, then the header 
record and module name are reactivated, all the previously deleted records 
are copied, unaltered, to NEWLIB, and then the next cornmand is read to 
start defining the module's contents. The source language of the new module 
must be OBJECT if and only if the source language of the old module was 
OBJECT. 

8. 12.4. 11 LIST. The command for listing a library module is: 

• # LIST < name >, < name>, ••• 

This command lists the source records in the modules specified. The mod
ules referenced must always be on OLDLIB. If in Extract mode and the 
"~:~SEQ" option was given on the II. # EXTRACTII command, then columns 73 
and 76 are blanked, columns 74 and 75 have the 2-character code for the 
revision level of the module when the record was created, and columns 77 
through 80 contain a 4-digit (decimal) sequence number. 

To get listings of certain modules as they appeared at a revision previous to 
their latest revision, the revision level may be specified as in the following 
example: 

This exarnple generates a listing of: 

1) Module NAMEl as it appeared at revision ~:~A 

2) Module NAME2 as it appears at the current revision 

3) Module NAME3 at revision BZ 

4) Module NAME4 at revision ~~~:~ (when the library was first created. 

8. 12.4. 12 LIST ALL. The command for listing all modules in OLDLIB 
(except those with source language OBJECT) is: 

• #LSTALL. 

This command is invalid unless in Extract mode. Every non-OBJECT mod
ule in OLDLIB will be listed on LUN 6. However, if LUN 4 is assigned to an 
interactive device and LUN 6 is assigned to DUMMY, the listing appears on 
LUN 4. The *SEQ option on the. # EXTRACT command has the same effect 
when the • # LSTALL command is used as for the. #LIST command. 

8.12.4.13 REWIND LUN. The command to rewind one or more logical 
units is: 

• # REWIND < lun>, < lun>, - - -. 

8-69 Digital Systems Division 



~-------~ 943005-9701 

I 

The notation m.ay be a decim.al num.ber, or a hexadecim.al num.ber prefixed by 
a I>' or a '#'. This com.m.and can be used to rewind a< lun > referenced in a 
• /INCL UDE com.m.and. 

8. 12.4. 14 INDEX. The com.m.and for listing a library index is: 

• #INDEX 

The. # INDEX com.m.and lists on LUN 6 a catalog of all the m.odules on the 
library tape. However, if LUN 4 is assigned to an interactive device and 
LUN 6 is assigned to DUMMY, the listing appears on LUN 4. If the 
• # INDEX com.m.and is input after records are written to NEWLIB, then 
the new library will be indexed when the. # ENDALL com.m.and is entered to 
term.inate SMR. Two possible options m.ay be specified with the. # INDEX 
com.m.and (but only one at a tim.e). The first: 

• #INDEX ~~'<rl>' 

causes SMR to produce an index of the li brary as it appeared at the reVISIon. 
specified by the 2- character revision code represented in the exam.ple by <rl>. 

The second: 

• # INDEX ;~TH (Note the lack of quotes) 

causes SMR to produce a listing of the library header records for all pre
vious revisions of the library (beginning with the m.ost recent and going back
wards). This option is useful if the library header inform.ation has been 
changed in previous revisions via the. # TAPE com.m.and. 

8. 12.4. 15 TAPE. The com.m.and for creating a library header record is: 

• #TAPE ~<title>', '<part number>', '<date>', ~:d<revision level>'. 

The user specified fields are defined as follows: 

• < title> - a quoted string, lim.ited to 26 characters, that is the name 
of the sourc e Ii brary. 

• <part number> - a quoted string, lim.ited to 12 characters, to be 
used to document the part number the source library was released 
under. 

• <date '> - a quoted string, limited to eight characters, used to docu
m.ent the date the source library was generated. 

• <revision level> - a quoted 2-character string indicating the revision 
level of NEW LIB •. If not specified, NEWLIB will have a revision 
level which will be the next sequential alphabet character; i. e. ~:~B if 
OLDLIB was *A. 

The. # TAPE com.m.and is optional and need only be specified the first tim.e 
that a new library is generated or to change the title, part number, or date on 
the library header record for the next revision of the library. This command, 

Change 1 8-70 Digital Systems Division 



~.o ______ _ ~ 943005-9701 

if used, may be preceded only by • #PAUSE, • # INDEX, • # UPDATE, and 
• # VERIFY cOlTIlTIands" 

8.12.4.16 PAUSE. The command to write a message to the operator's 
console is: 

• #PAUSE'<message>'. 

This comrnand writes the quoted string on LUN O. Processing is continued 
\x/hen a response (carriage return or end of file) is entered on LUN 0" 

8.12.4. 17 ENDALL. The cornrnand for terminating SMR is: 

.#ENDALL 

An end of file on LUN 4 also terrninates SMR. If a · #INDEX of NEWLIB has 
been specified, it is processed when the copy frorn OLDLIB to NEWLIB is 
cornpleted. 

8. l2. 5 ERRORCODES 

Error codes for SMR are output to the listing device (LUN 6) and in the inter
active rnode, to the interactive cornrnand device (LUN 4) as well. In the in
teractive rnode, only two errors are considered fatal. Unlirnited user retry 
is norrnally allowed= In the batch rnode, errors are classified as fatal, (i. e" 
abortive to the job) or logical (i. e. program recoverable). Logical errors 
fa r ba tc h rnode include invalid L UN, rni s sing ar gurnents, unrna tched quota
tion rnark, etc. In these cases the field is either skipped, assurned to be a 
blank, or as surned to be terrninated by quotation rnark in colurnn 81. 

The two fatal errors for both SMR batch and interactive rnodes are: 

• Specifying Update or Verify rnode with NEWLIB assigned to 
DUMMY. 

• Specifying (or defaulting to) Extract rnode with OLDLIB as signed to 
DUMMY. 

The two fatal errors for SMR batch rnode are: 

• Referencing a file narne that does not exist in the old source library 

• Exceeding 100 logical errors. 

8. 12. 6 SAMPLE OUTPUT 

The following paragraphs contain exarnples of the use of SMR. 

8-71 Digital Systems Division 



~ _____ 94 __ 30_0_5_-_9_7_0_1 ________________________________________________ ___ 

8.12.6.1 CREATING A NEW LIBRARY TAPE IN BATCH MODE. The JOB 
and RUN com.m.ands for this execution are: 

/ JOB S SYSTEM 

/RUN SMR DOLD=DUMMY DNEW=MTl DCON=CR1; 

/DMSG=SC DLST=LP 1 DCOM=DUMMY. 

The control cards and statem.ents defining the m.odules are shown in figure 
8- 13. Figure 8- 14 shows the index of NEWLIB at the term.ination of SMR. 

SOURCF ~AINTENANCE ROUTINE 

,.UPDATE 
,.TAPE 'SMR [XAMPlES,,'1234~6.78001.'e4110175t,*t**' 
,t¥CREATE EFFJJ",FORTrtAN, 'COMPUT£: D~3Je DISC EFF'IC!ENCY'~ 

WRITE(6,J0iD 
JeIFORMAT(lHl,3X,lJHRECOROS/TRAr.~,.X,14HSECTORS/RECORD, 

! 2X,12HWORDS/RECORD,2X,leHU~EFUl WCROS/TRACK, 
2 2X,10HEFfICIENCY) 

DO leO IStCR • 1,88 
we • (tSECR*1221.e.077.e).32.el/(34.e*16.1) 
I"'ROR • ~C/32 
I~HOR • lWRDR*32 
IRECT ~ 88/ISECR 
IUSWT • IRECT*I~RDR 
EFF. (IUSWT*10~.~)/e720.0 

lee "'RITEC6,200)IRECT,ISECR,I\J;RD~,IUSWT,EF" 
aBe FORMAT(lH ,1,9x,I5,lex,Is,le~,Ie,tJ~,I5,9X,F8.2) 

SToP 
END 

•• CREAT~ SMREXAMPLE,COM~ENT,'SMP EXA~PLE • 2 ','NO CO~MENT' 
THIS ]S ORIGINAL RECORD * 1 
THIS 18 ORIGINAL RECORD. 2 
THIS 18 ORIGINAL RECORD * 3 
THIS 18 ORIGINAL RECORD. 4 
THIS 15 ORlwINAL RECORr. • 5 
THIS 18 ORIGINAL RECOR~ • 6 
THIS 18 ORIGINAL RECORr * , 
THIS 18 ORIGINAL RECORO * 8 
THIS 18 ORIGI~AL RECOR~ • 9 
THIS 18 ORIGINAL RECORD. 10 

,"INDEX. 
flAG SET TO INDEX NEN LIBRARY 
.t¥fNDALL. 

Figure 8- 13. SMR Batch Input to Create a New Library 

NAHl REV LANG TITI.E CO~ME~T 

EFF33~ ** FORTRA~ CO~PUTE D8J3~ DISC EFrICIENCY 
SMRlXAHP~ ** CO~MENT SMR EXA~PIE • 2 
2 FILfS ON NE~ LIBRARY 

Figure 8- 14. Index of NEWLIB 

8-72 Digital Systems Division 



Jdl)\ ______ _ 'i::( 943005- 970 I 

8.12.6.2 GETTING A SEQUENCED LISTING OF A MODULE. Figure 8-15 
shows the corrunands entered to get a sequenced listing of a m.odule in 
OLDLIB and the resulting list. The JCL to run SMR for this example is: 

/ JOB S SYSTElv1 

/RUN SMR DNEW=DUMMY DOLD=MT1 

/DCON=SC DLST=LPI DCOM=DUMMY 

PART NO •• 1234~6-7890 REV ••• D4TE.~4/t0/7~ TITLE-5MR EX~MPLES 

.*EXTRACT .SEQ 

.*LIST SMREXA~PlE • 

~M1E. HEV lANG TITI.E COt04MENT 

SMREXAMPL ** CUMMENT S~R fXA~'PLE "- 2 NO COM~ENT 

THIS 15 ORIGINAl. ~ECrRD * 1 
THIS 15 ORIGINAL. RECORe II 2 
THIS 15 ORIGINAL RECORD ., J 
THIS 18 ORIGINAL. RECORt' * 4 
THIS 18 ORIGINAL. RECORO II 5 
THIS 18 ORIGINAL. REC~RD #I 6 
THIS J8 ORIGINAL. RECORD " 7 
THIS 15 ORUHN"L. RECORD * e 
THIS 18 ORIGINAl. RECORD * 9 
THIS 18 ORIGINAL. REC ORl) " 10 

• t\JENDAL.L 

Figure 8- 15. Sequenced Listing Com.mands and Listing 

.l1li 1111"'''1 •• 001il2 
:;* 0"'·"3 
•• "",ril4 
•• "0e~ 
•• 0P06 
•• 0efl7 
•• 0P"8 
•• 0peg 
•• 0P10 

8. 12.6.3 ADDING A MODULE TO GET A NEW LIBRARY. Figure 8-16 
shows the command input stream used to add two modules to the library. 
Figure 8- 17 shows an index of the new library. Note that the modules have 
been inserted in alphabetical order. 

8. 12. 6.4 MODIFYING A MODULE. Figure 8- 18 shows the command input 
stream to modify a module in the library. Figure 8- 19 shows an Index of 
the new library generated. 

8. 12. 6.5 THE SEQUENCED LISTING OF THE MODIFIED MODULE. Fig
ure 8- 20 shows the command input stream used to get a sequenced listing of 
the module modified in example 8. 12.6.4, as well as the sequenced listing 
of that module. 

8-73 Digital Systems Division 



Jd7S\ ______ _ ~ 943005-9701 

PART NO. -1234e6.7890 REV- *. DATE-"'4/! "'75 T 1 TLo£ -SMR E X"Af!4PL.E S 

,.UPDATE 
,.CREATE 

EDITOR, 

• EDITOR,Pl.EXlIS,'CHARACTER '-[lITOR PROGRAM', '* Ie IS 'e SA *' EDITOR PROCEDURE CHARACTEq, 
(INSTRN,OTSTRN,NWSTR~) CHARACTERCII), 
I"4STRN • I I, 

DO WH]LE SUHSTR(I~STRN,1,') A_ 'IS"~ 
INSTRN • INPUT, 
NWSTRN. EDITOR(INSTRN,tJLO'.'JLX')' 
OUTPUT - f\JWSTRN, 
END, 

PROCEDURE (INSTRING,VICTI~,VICTOR)' 
DECLARE CINSTRING,RESULT) CHARACTER(80), 

(VICTI~,VICTCR) C~ARACTER, 
I FIXED(16)' 

RESULT • I~STRING, 

I • 0' DO wHtlE l~-(LENGTH(INSTRtNG' ~ LENGTHCVICTOR) I 
1~.CLE"4GTH(INSTRtNG' - LE~GTH(VICTI~» & 
(1 « Hie" 

If VICTI~ - SUBStRCTNSTRtNG,t,l+LENGTH(VICTI~» 
RESULT - SUBST~(I~STRING,m,I)'IVICTOR" 

SUBSTP(I~STAIN"l·LENGTH(VICTIM», 

I • I + l' 
END' 

RETURN RESULT, 
END EDITOR' 

EOf 
•• CREATE SEEK,SAP,'nS33~ I~DEPE~DE~T !EEK TfST'. 

tOT ISTEST 
HEO OS330 INOEPENTENT SEE~ TE!T 

sve OPO ~C380,3 
START EQU $ 
CKl EQU S 

CK2 

TMBZ BUSY,PRS1 
BRU CI<2 
BRlI RBUF1 
EQU • 
TMBZ BUSY,PRBa 
BRU Ct<l 
BRU RBUF2 

R!Url 5MBZ WR1TE,PRS1+1 
OL.O PRB1+'" 
DAD INC 
OST PRSt+ ... 
'LOM .,PRB1 
BRU GO 

Reur2 8~BZ WR1TE,PR~2+1 
OL.D PR82+4 

GO 

PRll 
WRITE 
BUSY 
INC 
PRI2 
BUI'1 
IU"2 

DAD INC 
OST PRS2+4 
'l.DM 'PRB2 
ave " 
BRlI CKI 
DATA e,.8"11,32,8Uf,,0~1 
EQlI 1!5 
EQU U 
DATA ",88 
DATA 6,)88t1,32,BUF2,0,88 
BSS ~2 
ess 32 
END START 

"lND~X • 
'lAG sET TO INDEX NEw l.IBRARY 
•• ENDALl 

Figure 8- 16. Input Stream to Add Two Modules 

THEN 

8-74 Digital Systems Division 



~------------~ 943005-9701 

En 1 T 11 q * ~ !) L ~ lC I : 5 C iooI u,' A r ff q F n t r (' r.' P ~"G ~ A ... 
E F f." 3"" * * F r1lJ T r- .HI en,., P II TEn ~ 3 ~ VI n T 5 r' r: F F t r TF ~ r' V 
~FEI( *6 C;AP DC;3~~ p'nFPFIIJI'r;"l ~FEIt TF~T 

S~j.(F lC A MPL .* r'(]l04~nJT St.eR E ~ 4M!), f ,. '2 
~ ~ T L f S n "I r-., F'" ! T f!' I~ .6 ~ V 

Figure 8- 17. Index of NEWLIB with Added Modules 

.-UPDATE 

.*MODIFV SMREXAI"tPlE 
THIS 18 NEw RECORD -1 

·e 
THIS 1S NEW RECORD ., e.-A 
THIS 18 NEW RECORD 

--
e .. e 

'7,9 
THIS JS ~JE\II RECORD '-A '.7FFF 
THIS IS THE NEW LAST RECO~f) 

.-INDEX 
FLAG sET TO INDEX NE~ LIBRARY 
.tENoAl.L 

Figure 8- 18. Input Stream to Modify a Module 

~nlTr.l~ •• PL~)(I:S r.I-4U:ArTF~ EntTn~ PR~GI:'A~ 

r:r:F',~'~ .* 'nUT!::"A~1 Cn"'PUTF I)~~~~ nT~r' FFFIr'tFNr'V 
S F ~ It .,. ~ A P n ~ 3 ,~ PI T.' n r: P f N n F , 1 ~ FE'" T E ~ T 
S~kF~A~Pl .Q rn~M~NT S~W FVAMPIF • ~ 

4 f T L F- ~ 0 ", ". r:. \1<1 IT!' I~ II R If 

Figure 8- 19. Index of Modified Module 

8. 12. 6. 6 DELETING A MODULE. Figure 8-21 shows the command input 
stream to delete a module. Figure 8-22 shows an index of the new library 
generated. This index was generated in a separate run of SMR. 

8-75 Digital Systems Division 



~-------~ 943005-9701 

PART ~O •• 123~56.7ege REV.*ij DATE.~'/l'I'e TITLE.SMR EXAMPLES 

.-EXTRACT *SEQ 

.-LIST SMREXAMPLE 

NAM~ REV LANG TITLE CO~H£NT 

S~REXA~PL *8 COMMENT Sp.tR EXAJIIPLE tV 2 ~O CC~fo1ENT 
TliIS 15 ~jEw RECORD " 1 
THIS 1S OHtciINAL RECORD - I 
THIS 15 ORIGINAL RECC'Rr " 2 
THIS JS ORIGIN~L RECORt " 3 
THIS 15 ORIGINAL RECORP -.. 
THIS 15 ORIGINAL RECORD " 5 
TlilS 15 NE~ RECORD - e.A 
THIS 15 NEW RECORD " e.a 
THIS 15 ORIGINAL ~EcrRD " 6 
THIS J5 ~JEW RECORD 7-A 
THIS 18 ORIGINAL ~EcrRr. " 10 
THIS 15 THE ~EW LAST RfCO~D 

Figure 8-20. Sequenced Listing of Modified Module -
Input Commands and Listing 

PART ~O •• 123~e6.78ge REV.*U rATE.~'/l'/75 TITLE.SMR EXAMPLES 

.-UPDATE 

.-DELETE EDITOR 

."Et..OALl 

Figure 8-21. Input Stream to Delete a Module 

TITLF 

E~F~J" •• FO~T~A~ Ct"I'4PI.ITf: n~3:.\'" nTsr F'FIrTf~r~ 
SFt~ ., ~'P O~J~~ t~OFPFN"F~T ,FEW T~~T 
SW~F~.~PL .~ ~O~MFNT S~R EVA~PLE • , 
.J F T L F S (H' t.. E.of , I p rH rn 

Figure 8-22. Index of NEWLIB without Deleted Module 

*8 0011 
.* 0012 
.* 0013 
.* 0PI. 
.* 0PIe 
*. 02'16 
.e IPI7 
*11 "0e8 
** 0PI9 
.8 0,,10 
.* 0"11 
.8 BP12 

8-76 Digital Systems Division 



943005-9701 ~ ----------------------------------------------------------------------------
8.13 LINKABLE PARTS FILE BUILD UTILITY (LPFBLD) 

The LPFBLD utility m.aintains a key indexed file of 980 object records. Each 
object deck in the file has a key equal to the IDT nam.e with all of the object 
records for that prograll1 sequentially linked to the key. LPFBLD can be used 
to modify, extract, or delete ll1ell1bers of a linkable parts file. LPFBLD cre
ates a key of the prograll1 if added to the file and replaces the old object if the 
IDT nall1e already exists as a key. 

LPFBLD is useful for building an object file for input to the DX980 link editor 
(DXOLE). To retrieve an object deck froITl the key indexed file, use the 
DXOLE include with key option (i. e. INCLUDE 20(IDTNAM)). Using DXOLE 
and LPFBLD together in this ITlanner allows easy m.anipulation of object files 
and easy retrieval for link editor input. 

8. 13. 1 STANDARD JCL PROCEDURE 

The following listings are standard procedures for LPFBLDa The first is for 
a single step job executing LPFBLD. The second is for a two step job per
forITling an asseITlbly of the ITlodule and including this asseITlbled ITlodule in 
the 1i brary file • 

• _ CR~'TE LPF~L~,CnM~£Nl,"llpnATE LtNKA~LE PARTS FILE " 
IR!PlACE LPFRLn • UPOATt LINkARLf PARTS FILE. 
IE~EC OaJ.(1,SVSTE~,LPFBLD1 MEM.(J~A,JJV~,1P~P) PRTYa(t,2', 
I TIMEa-1 n8JlanPJ ~E~taME~ 
IASSIGN p DlI~r'lV I)E.VrCElaOCO~ 

IASSIGN 5 n}!;Ct nEvICElaOORJ 
• CONTROL 

FlLE8(L'SfRP1,ASMOIJT) FILEI.FOBJI 
I HuFFERSal • OAJECTINPUT 
IASSIGN 6 SC OEvICEs.VLST • l YSTHJG 
I ASS I G N 7 111 j M ... If [) E V TeE S • (I f. x T F It f • a F EXT REP LAC E s a R F.)( T , 
I BIJFFfRSal LI~KSFQ U:CE5S.(ANV,CREAT,CREAT,CREAT), 
I ACCESS:.CfxT ALLOCATE.(1,~,t~A,2P1 ALLOCATE:aLEXT • EXTRACT fILE 
IASSH,~ 9 DISCi O~VICEI.nUprJ FILEI.FII~ln REPLACE:aRupn, 
I "'U"fE~S.2 INDExED ACCESSa(CRfAT,CREAT.CREAT,CREAT)J 
I ACCE 5S I-CUPO ALL UCATEa (t, Vi, 256, un AL.LOC" TE '.LUPO r 
I ~EVI.fN.6 

IENO 

I- CREATE ASHUP ,COMMENT,-ASSEHBLE MOD AND UPDATE LPF • 
IRf'LACE ASMUP • ASSEMBLE MODULE AND UPDATE LPF : 
IEXEC OBJaCl,SYSTEM,ASHBLR) "EHa(310.6880.2010) PRTY~(t.2). 
I TIMEa.1 HEMS-HEMA 
IASSIGN • DUMHY DEVICEsaDHSG 
IASSIGN 4 DUMMY DEVICE.aDCON 
IASSIGN 5 DISCt DEVICEI.DSRC FILElaFSRC BUFFERSa' 
IASSIGN 6 SC DEVICE.aDLSTA FILE.aFLST BUFfERS-I 
IASSIGN 1 DISCI 'ILEa(TEMP,ORJECT) NEW BUFFERSal LINKSEQ, 

ItPOATF FIt E 

. . 
f SYSTEM MESSAGE 
r CONTROL/MESSAGE 
I SOURCE INPUT. -
• SOURCE l.IST/[RROR 

I ACCESSa(ANy,ANy,ANy,A~Y) AlLOCATEaCI8,311.64.2e, • OBJECT OUTPUT 
IASSIGN '6 DISC! 'ILEa(TEMP.SCRL) NEW OELETE BUFFERSai. 
I LINKSEQ ACCESSaCANy,ANY,ANY.ANY)' 
I ALLOCATEaCt0,388.256,ll) 
IEXEC OBJaCI,SYSTEH,LPFBLO) HEHa(381,3318.1118) PRTY atl.2). 
I TIMEa.i MEMSaMEHU 
IASSIGN 1 DUMMY DEVICE.aDCON 
IASSIGN 5 DISCt FILEaCTEMP,OBJECi) BUFFERSa, 

• SOURCE SCRiTCH 

, CONTROL 
f OBJECT INPUT 
, LISTING IASSIGN 6 ac DEVICE.-DLSTU FILEsaFLST BUFfERsa, 

IASSIGN 9 DISCt DEVICE.aOUPD FILE.aFUPD REPLACE.aRUpn, 
I BUFFERS-2 INDEXED ACCEssaCCREAT.CREAT.CREAT.CREiT)l 
I ACCESSs-CUPD ALLOCATE.-LUPD KEYLENa6 • UPDATE FIL! 
lEND 

Change 1 8-77 Digital Systems Division 

I 



~-------~ 943005-9701 

I 

8.13.2 MEMORY PARTITION REQUIREMENTS 

The memory allocation parameter for LPFBLD should be: 

MEM=(300, 3300,1000). 

The job extension parameter is dependent upon the blocking factors and the 
number of buffers assigned for the LUNs, but 1000 words is adequate for 
most files. 

8. 13. 3 LUN ASSIGNMENTS 

The logical unit assignments for LPFBLD are given in table 8-27. Figure 
8-23 illustrates the linkable parts file (LPF) built on LUN 9. 

8.13.4 OPERATION 

LP FBLD first reads a control record from LUN O. The control record deter
mines the mode of execution. Mode 2 is the default LPFBLD mode of execu
tion. 

MODE 1: The control record of 'CR1616' implie s all of the old key s and data 
are deleted from the linkable parts file. Then processing continues 
the san1.e a s in Mode 2. 

MODE 2: The control record of 'MOD16' or an end of file (from DUMMY) mod
ifies only those modules input from LUN 5 either by replac'ing the 
old object, or by creating a new key and inserting the new object. 
The new object is reformatted and output to LUN 9. 

MODE 3: The control record of 'EX1616 , implies that the object for members 
of the linkable parts file assigned to LUN 9 is to be output to LUN 7 
as a sequential file. The names of the modules to extract should 
start in column 5 of the control command and be separated by com
mas. The first blank column terminates the scan for member 
name s . A control card cannot be continued but multiple control 
commands may be entered. An end of file or a control record 
other than 'EX1616' terminates LPFBLD in the EXTRACT mode. 
For example, 

EX A,B,C 
EX D 
/~~ 

would extract module s A, B, C, and D from LUN 9 and output the 
object to LUN 7. An end of file is written at the end of LUN 7 . 

MODE 4: The control record of 'DEL16 1 implies that the object for the mem
ber s of the linkable parts file that are named on the control card 
is to be deleted from LUN 9. The syntax of the DELETE (DEL) 
command is the same a s for the EXTRAC T command in mode 3. 
Multiple DEL commands may be entered if necessary. 

Change 1 8-78 Digital Systems Division 



~-------~ 943005"9701 

I 

I 

LUN 

o 

5 

6 

7 

9 

Table 8-27. LPFBLD Logical Unit Assignments 

Description 

Control Input 

Object Input 

Listing 

Extract Mode Output 

Update File 

Comments 

Control records are read to select the 
LPFBLD mode of execution. 

One or more object modules, input termi
nated by an EOF. This L UN is refer
enced for the 'CRT and 'MOD' m.odes. The 
LUN is rewound before any input is read. 

Listing of IDT names of all object mod
ules entered through LUN 5 a_nd error 
messages. 

Output LUN for the 'EX' mode. This 
LUN is rewound before any object is 
written and is terminated with an end of 
file. This LUN is processed as a link 
sequential file or a device that supports 
binary output. 

Key indexed linkable parts file built 
'\vith a key length of 6 characters and 
a logical record length of 80 charac
ters. 

I 
I 

8.13.5 ERROR CODES 

• "INDEX FILE FULL" 

This message indicates that the linkable parts file is full and no 
records can be added. The user must define a new file with a larger 
maximum allocation and then recreate the file or use the DXCOPY 
utility to copy the old file into the new file. 

• "INVALID MODE" 

Change 1 

The control record was invalid. Columns 1 through 4 of the control 
record must be 'CR~~', 'MOD~', 'EX~~', or 'DEL16' unless an end 
of file is input. 

"<name> IS NOT IN FILE" 

The number nam.e specified on the DEL or EXT control record doe s 
not exist on LUN 9. The processing does not terminate but just 
skips over the invalid name. 

8-79 Digital Systems Division 



~-------~ 943005-9701 

Record 
Key 

Data Associated with Key (OBJECT Record) 

PGM01¥> 

TABLE¥> 

1700 

1702 

1706 
1700 

1706 

PGM01 

TABLE 

Figure 8-23. Format of Linkable Parts File Built by LPFBLD 

8. 14 BUILD EDIT FILE UTILITY (BLDEDT) 

The build edit file utility, BLDEDT, constructs keyed indexed file s for edit
ing under the Interactive File Editor (IFE) of the Interactive Terminal Sub
system. Reference the Interactive File Editor description in Section VII of 
this manual for a discussion of the uses for BLDEDT. 

8. 14. 1 STANDARD JCL PROCEDURE 

The following listing is a standard procedure for BLDEDT: 

,_ CREATE BLDEDT.COMMENT,-BUILD EDIT FILE • 
IREPLACE BLDEDT • BUILD EDIT FILE • 
IEXEC OBJ-Cl,SYSTEH,BlDEDT) HE"-(380,550,2808' PRTY-Cl.15), 
I TIME-.l MEM.-MEM PRTYi-PRI TIHE.-TIM 
IASSIGN 11 DISCI DEVICE.-DIN FIlEt-FIN BUFfERS-, • SOURCE INPUT 
IASSIGN 21 DISCI DEVICE.-OOUT FILE.-FOUl REPLACE BUFFERS-2, 
I BUFFERS.-BOUT INDEXED ACCESS-CANY,ANV,ANY,ANV)' 
I ACCESSI-COUT ALLOCATE_Cl,8,256,100) ALLOCATEt-LOUT, 
I KEVLEN-2 '. SOURCE OUT FILE 
lEND 

8. 14.2 MEMORY PARTITION REQUIREMENTS 

The following are the memory requirements for BLDEDT utility: 

< stksiz> = 300 words 

<jarea> '= 550 words 

<jearea> = 2000 words 

8. 14. 3 LUN ASSIGNMENTS 

The LUN assignments for BLDEDT are given in table 8-28. 

Change 1 8-80 Digital Systems Division 



~------.--------~ 943005-9701 

8. 14.4 OPERATION 

The Build Edit File (BLDEDT) utility is a 2-task program operating under 
DX980. BLDEDT accepts input from a sequential access source (either de
vice or file) and builds the key indexed edit file such that the I-word keys 
are record numbers and the data is the source text. The first record has a 
key of "1", the second "2", etc. 

Table 8-28. BLDEDT Logical Unit Assignments 

LUN Description Comment 

10 Source Input Sequential device / file 

20 Source Output Key indexed file with key length of 2 charac- -. 
ters. 

8. 14. 5 ERROR CODES 

BLDEDT does not have any unique error codes. The system. detects any ab
normal condition. Refer to Appendix A for the error codes. 

8. 15 LIST EDIT FILES UTILITY (LSTEDT) 

The List Edit Files Utility (LSTEDT) lists an entire IFE File on a forr-uatt
able device. Although the List Record edit command of the Interactive File 
Editor lists selected records in an edit file, this utility program lists the en
tire edit file. This listing can be valuable for subsequent editing sessions 
since the record number for each record is displayed along with the record. 
The format of the listing is a four digit record number followed by a separator 
blank and the data record. 

8.15. 1 STANDARD JCL PROCEDURE 

The following listing is a standard procedure for LSTEDT: 

.- CREATE LSTfO~,COM"£NT,·LISt EDIT FILE • 
IRE~LACE LSTEDT • LIST EDIT FILE • 
IEXEC 08J8(I,SYST~M,LSTEDT) "EM8(318,1110,650) PRTyaCl,15), 
I TIMEa.1 MEHlaMEM PRTY~apRI TtMElaT1M 
IASSIGN 18 SC OEVICE.aOLST : SOURCE OUTPUT 
IASSIGN 28 DISci OEVICE.aDIN FILElaFIN SUFfERSat • SOURCE INPUT FILE 
lEND 

8. 15.2 MEMORY PARTITION REQUIREMENTS 

The following are the memory requirements for the LSTEDT utility: 

<stksiz>,= 300 words 

< jarea> = 1700 

<jearea> = 650 words 

Change 1 8-81 Digital Systems Division 

I 



~-------------~ 943005-9701 

I 

8. 15.3 LUN ASSIGNMENTS 

The required LUN assignments for the LSTEDT utility are given in table 
8-29. 

Table 8-29. LSTEDT Logical Unit Assignments 

LUN Description Comment 

10 Source Output Formattable device 

20 Sourc e Input Key indexed file with key length of 2 charac-
ters. 

8.15.4 OPERATION 

The LSTEDT utility is a single-task program that operates under DX980. 
No command input is required. The key indexed file assigned to LUN 20 is 
listed to the formattable device assigned to LUN 10. 

8.15. 5 ERROR CODES 

LSTEDT does not have any unique error codes. The system detects abnor
mal conditions. Refer to Appendix A for error codes. 

8. 16 CREATE, DELETE, OR REPLACE FILE (FILMGR) 

The File Manager Utility (FILMGR) creates, deletes or replaces a file. If 
the user specifies replacement and a file with the same name presently exists, 
FILMGR deletes the old file and creates a new file. 

8. 16. 1 STANDARD JCL PROCEDURE 

The following listing is a standard procedure for FILMGR: 

.- CREATE FILMGR,COMMENT,·FILE CREATE/DELETE CAPABILIY-
IREPLACE FILMGR • FILE CREATE/DELETE CAPABILITY • 
IEXEC OBJ-(I,SYSTEM,DXCOPY) HEH8(318.265I,858) PRTY-Ct,t5), 
I TIME~-l PRTY.-PRI TIME,_TIM 
IASSIGN I DISCI DEVICE,-DISC FILE,-FILE NEW.-NEW REPlACE.-REp, 
I DELETE.-DEL BUFFERS-, LINKSEQ.-LIN RELREC,-REL' • FILE TO BE 
I INDEXEO.-IND ACCESS-(ANY,A~y,ANY.ANY) ACCESS.-ACC'~ CREATED/DELETED 
I ALLOCATE.-ALL KEYLEN-6 KEyLEN.-KEY LRECL-64' 
I LRECL.-LRE 
IASSIGN 5 DUMMY 
IASSIGN 6 DUMMY 
IASSIGN 7 DUJI4HY 
IASSIGN 8 OUMMY 
lEND 

Change 1 8-82 Digital Systems Division 



~-------~ 943005-9701 

8. 16. 2 MEMORY PARTITION REQUIREMENTS 

The following m.em.ory param.eters are required for the FILMGR utility: 

< stksiz > = 300 

< jarea > = 2650 

< jearea>= 850 

8= 16 .. 3 LUN ASSIGNMENTS 

The required LUN assignm.ents for the FILMGR utility are given in table 
8-30. 

Table 8- 30. FILMGR Logical Unit As signm.ents 

LUN De scription Com.m.ent 

1 File to be created, deleted or replaced Any file type 

5 Not used Assign to DUMMY 

6 Not used Assign to DUMMY 

7 Not used Assign to DUMMY 

I 0 '\J,...4- "C"orl A ~ s ian to nTT1\Jf1\AY u 

Change 1 8-82A 18-82B Digital Systems Division 



~-------~ 943005-9701 

8.16.4 OPERATION 

The FILMGR utility executes the load module, DXCOPY. As signment of 
LUN 1 to the file being managed accomplishes the action specified in the job 
control when processed by DX980 job management. Parameters in the Run 
command indicate if the file is to be crea ted, deleted or replaced. Deleting 
a file need only specify the file name and password (if the file is password 
protected against deleting). Both the NEW and REPLACE specifications re
quire further statements to allocate new disc space, define the access code 
and state the type of file. 

8. 16.4. 1 DELETING FILES. The Run command required to delete a file 
is of the following form: 

IIRUN FILMGR DISC=<devnam> FILE=«fileid>, <filnam>,<pswd» DEL 

Section II of this manual (Job Control Language) describes the variable 
parameters. The password «pswd» may be omitted if the file is not pass
word protected against deleting. 

8. 16.4.2 CREATING A LINKED SEQUENTIAL FILE. The Run comm.and 
necessary to create a new linked sequential file is of the form: 

//RUN FILMGR DISC=<devnam> FILE=«fileid>,<filnam>,<pswd» !':JEW LIN; 
ACC=« integ>,< integ>, < integ>, < integ» ALL=«itrks>, <trknum>,< prwrds>,< mtrks » 

Section II of this manual describes the parameters in this statement. A 
sample Run command to create a 50-track, linked sequential file that anyone 
can access appears as follows: 

I IRUN FILMGR DISC=DISC 1 FILE=(USERO 1, FILE 1) NEW LIN; 
ACC=(ANY, ANY, ANY, ANY) ALL=(50, 0, 256,60). 

The file is created on DISCI, has no password, has a physical record length 
of 256 words and a maximum allocation of 60 tracks. The search for avail
able space starts with track zero. 

8.16.4.3 CREATING A RELATIVE RECORD FILE. The RUN command 
used to create a relative record file appears as: 

/IRUN FILMGR DISC=<devnam> FILE =«fileid>,<filnam>,<pswd» NEW REL; 
ACC=« integ>, < integ>, <integ>, < integ»; 
ALL= «itrks >, <trknum>, <prwrds >,< mtrks» LRECL=<lrchar> 

The allocation of a relative record file is similiar to a link sequential except 
that the logical record length, < lrchar>, must also be specified. A sample 
allocation of a relative record file with a physical record length of 256 words 
and a logical record length of 64 characters appears as follows: 

IIRUN FILMGR DISC=DISC I FILE=(USERO I, FILE2, ABC); 
NEW REL ACC=(ANY, PSWD, CREAT, CREAT); 
ALL=(50, 0, 256, 50} LRECL=64 

8-83 Digital Systems Division 



~-------~ 943005-9701 

I 

This file is created with a password of ABC. Note the initial and maximum 
track allocation rnust be the same since the relative record file is not ex
pandable. 

8. 16.4.4 CREATING A KEY INDEXED FILE. A key indexed file may be 
created with a Run command of the form: 

/ /RUN FILMGR DISC=<devnam> FILE=«fileid>,< filnam>, <pswd» NEW IND; 
ACC=« integ >, < integ>, < integ>, < integ»; 
ALL= « intrks>, < trknum>, < prwrds>, < mtrks » KEYLEN=<klchar> 

The parameter, <klchar>, specifies the key length in characters. The maxi
mum key length is 30 character s . To create a key indexed file with a key 
length of 6 characters, the following command may be used: 

/ /RUN FILMGR DISC=DISC2 FILE=(SYSTEM, FILE3); 
NEW IND ACC=(ANY, PSWD, CREAT, NONE); 
ALL=( la, 0, 128, 20) KEYLEN=6 

This file is created on DISC2 and has a physical record length of 128 words. 

8. 16.4. 5 REPLACING FILES. If the replace (REP) pararneter is specified 
instead of new (NEW), any file with the specified name is deleted before the 
new file is created. All inforrnation in the old file is destroyed. 

8. 16. 5 ERROR CODES 

Error messages for FILMGR are the sarne as those for DXCOPY. 

8-84 Digital Systems Division 



J}7~ ______ _ ~ 943005-9701 

APPENDIX A 

ERROR MESSAGES 

Digital Systems Division 



~------
OX'8e ERRO~ CODES 

AS Of 114/891'5 

1 -OUT gf PARTITION RfrEPENCE tMPLYED BY PARAMETERS 0' AN ave CALL 
2 -JOB EXTENSION AREA TOO S~ALL 
• ~NO SPACE I~ DSCA 
e -ILLEGAL NUMBER 0' PAR~METERS IN S~C LIST 
6 ~I/O ATTEMPTED ON NON.~SS'GN!D LUNO 
, . -I/O ATTEMPTED wITHOUT OP~N 
8 -DUPLJCATE OPEN C~ S.'4f L"NO 
9 .~A%T CONTROL LIST ERROR 'OU~D O~ USER SUSPEND 

10 .PRIORITY ERROR 
1t ~CPU TIHE EXCEEDED 
12 ~ILLE'AL US'R POST 
13 .1LLE~AL INSTRUCTION 
14 -A NON.EXISTENT sve ~A8 I~SUEO 
1e .USER HAS REQUeSTED ACCESS TO A PRIVILE;fD sve 
16 -ILLEGAL ave ARGUMENT .OUTSIDE USER PARTITION 
" ~PTR TO BVC ARG LIST O~TSTOE USER PARTITION 
18 -INVALID DEVICE 1 D 
19 -NO SPACE I~ ~CB 
20 .NO SYSTEM LUNO • 141 
21 ~US!R fILE DIRECTORY OVER'lO~ 
22 -MASTER FILE DIRECTORY OVFRFLOw 
23 -PREVIOUSLY DEflN~D USf.R '0 
24 -lLLE'AL USER 10 
2e -ATTEMPT TO DElET! SYSTEM DISC M'D 
2e ~INVALIg ABNOR~AL JOB TERuINATIO~ CODE a, -UNDEfINED 'ILE 
28 .UNDEfINED USER Ie 
29 -ATTEMPT TO REPLACf PREY ASSIGNEO FILE 
31 ~PREV10US~Y DEFINED FILE 
31 .INVALID 'ILE TYPE 
32 pINSUFFICIENT TRW SPACf o~ D!~!NE 
33 -INSU". CONTIS. TRK SPACr. ON DEFINE 
3A .Ex~EEDED DISC IIIE ON DE'INI 
3e ~ZERO KEY LENGTH 'OR D£'t~E 
36 .REAOY JSB 'ILE eAD 
J1 •• TT!MPT TO DELETE A S~ARfD 'ILE 
38 -INVALID rILE DISPOSITION CODE 
39 -DEVICE OF'LINE 
48 -ATTEMPT TO SHARE UNSH~RA~LE DEVICE 
41 -ATTEMPT TO SHARE BLOC~ED DEVICE 
42 ~ATTEMPT TO ASSIGN EXCL A SHARED ~ASSEO R~SOURCE 
43 .OPERATOR CANCELLATION 
44 .TOO MANY JUe ST£'I 
48 ~lNVAL!D JCB 
46 ~lNVAL%O IN'UT LDT 
41 ~JOB NO/STEP ~O. NOT I~ S¥ST!M 
48 -Joe NAME NOT IN 'YSTE~ 
49 -ATTEMPT TO ILLEGALLY ~CC!8S PILE 
51 ~POTENT%AL RESOURC~ DEADL~CK DUE TO I~COMPLETE PASSING 
5, ~INYALID JCH SIZE aPECI'I~O 
52 -ATTIMPT TO DEA.81GN U~A8SI;NED LUND 
53 .TOO MANY JO! STE'I (-SS) IN ONE JOB STRING 
54 ~PARENT JOB ENDeD SEFO~C '08 STRING STARTiD 
55 -LOAD MODULE TOO BIG 'OR SPECIFIED USER SPACE. 
56 .NO JOB INIT!ATION SYaTEM TASK 'OR JOB 
5' -LOAD MODULE LOAD NO GOOD 

Change I A-I Digital Systems Division 



~------
ee -ATTEMPT TO ASSIGN TO DISC DtRfCTL¥ 
59 .DEA8SI'N"E~T O~ OPEN DEV1CE/fILf 
oe SOQM-SYSTEH OUTPUT ;U!UE OVER'LO~ 
61 SOQM';"TOO MANY OUTPUT !'ILES 
02 -MEMORY PARtTY ERROR 
&3 ~HEMORV PROTECT ERROR ~ A~DR~SSl~G ERROR 
6~ -PRIVILEDGE INSTRUCTIO~ VTOLATtO~ 
o~ .RESOURCE STACK O~fRFLOW 
06 -BYTE R£LOCATION ADDR BAD IN LD ~OC 
61 -HIP NO BAD fOR LOAD OR L~AD~ 
69 -LOAD OR LOADR EXTENDS BEvOND USER ~EM 
10 BPS.CAN NOT ALLOCATE INPUT DFVICE (REASON-MEMORY OR DEVICE NOT AVAILABLf) 
11 BPS.READ ERROR ON INPUT DEVI~E 
126PSOC.ILLEGAL OR ~ISS~NG 'JOB' CO~M'NO 
'36PSOC.ILLEGAL RUN CO~~AND 
1~ 8PS.ILLE'AL DATA COMMAND 
1e BPS.TOO HANY INPUT DATA FILE 
16 BPS.NO 0' INPUT DATA FILES UM~ATCHE~ ~ITH NO OF ASSIGNED INPUT DATA '%L!S 
77 BPS.DATA COMMAND UN"'ATC~~EO ~!TH INPUT ASSIGNMENTS 
'8 BPS~OUTPUT QUEUE ERROR - REI~ITtAllZE QUEUE TO US! 80S 
80 ';"JOI/STEP NUT I~ ROLL FIL'- DIRECTORY 
81 -NO SPACE AVAILA8L! IN ROll 'ILE 
82 .INSUFFICIE~T ROLLABLE ME~ORV 
83 ~ROLL PE~fOA~ED NORMALLY 
8A -ROLL FILE CLOB~ERED 
a! BPS.OATA ERROR ON LINE PRINTPR 
86 BPS.END OF FILE ENCOUNTERfD WHILE S~lPPING RECORDS 
87 .REQUEST fOR MORE ME~ORY ~HA~ IN fREE ME~ORY 
88 -DEVICE FILE REQUESTED AT RU~T!ME NOT AVAILABLE 
89 .INVA~ID JOB STEP NU~BER TN JSB 
ge ~ILLE'AL Nu~eER INPUT 
el ~ILLE'AL COM~AND 
g2 ~TOO MANV JO~S IN THE eVSTE~ 
g3 -LUNO LDT NOT FOU~O 
g~ ~NOT A RR 'ILE 
ge JCL~USER~ID SPECI'lED FOR PR"CEDURf LtBRA~Y DOfS NOT EXIT 
g6 JCL.PROC£DUR~ LI8RARY DOE8 N"T EXIST UNDER S'ECI~I!D lJSE~.ID 
g, JCL.US£R CAN'T GAIN AC~Ese T~ PROCEDURE LIBRARY BECAUSE OF INTEGRITV CODE 
98 JCL.SPfCJ'IED PAOCEoURf DOES NOT EXIST IN PROCEDURE LIB~ARY 
99 JCL-HARDWARE ~AILURE WHILE ATT£M'T1N~ READ fROH S'!CIFIED PROCEOURE LIB

lie JM';"ATTEMPTED TO UIE FILE OF RESTRICTED USER to 
1'1 OC.H~ROWARE 1/0 ERROR IN OP. COM.U~ICATIONS 
112 OC~INVALIO MESSAGE 10 
183 OC-INVALID OPERAND IN OP~COMMUNICATIONS 
11~ OC-INVALID ARGUMENT LIST IN op.cnM~UNICATIONS 
lie OC-INVALID JOB NUM!ER PA88E~ IN OP.COM~UNICATIONS 
tl& OC.ATTEMPT TO OFFLINE SYITEw DISC OR SYSTEM CONSOLE 
111 OC~NO SPACE I~ DSCA OR JEA 
tl8 OC.INVALID OP.COMMUN!CATION~ COMMA~D 
1.9 OC~J08 NUMBER NOT fOUND 5V nP.COMMUNICATIONI 
111 OC.IN OJC8PR, INVALID 8ItE ~EQUIREO fOR 'IIJOB' JI! 
111 OC.INVA~ID NUMBER UIEO FOR !KIP eO~M~ND TO BATCH OUTPUT SPOOLER 
112 OC.UNDI'INED COM~AND GIVEN TO 8ATC~ OUTPUT SPOOLER 
211 IO~DEV!CE NOT READY 
212 IO.CONTROLLER ER~OR 
283 10.DATA ERROR 
21~ IO.CONTROLLER BUSY CRROR 
21e IO.WRITE PROTECT ERROR-
2.6 10~EOR ERROR . 
217 IO.READ-AFTERwhRITE ERROR 
211 IO.DEvteE O"LINE 
219 IO.ILLEr.AL OP.CODE 

A-2 Digital Systems Division 



~--~--------------
210 10.0EVtCE Tl~EOUT (OEVICE OTD ~OT RESPOND) 
233 F~.NO SPACE AVAILAB~E ~N DI~C vOLU~E 
234 ~M.FI~E FULL 1/0 ERROR 
235 FM-ATTEMPTED wRITE, ~OGICAL ~ECORD ~. PHYSICAL RECORD. OVERH!AD 
236 r~.HAROWARE FAILURE ON UISC VOLU~E 
231 F~-INOEX, REP~ACE ATTE~PTED ON NON~EXISTING KEY 
23e f~.EXISTING KEY FOUND ON 'W~IT!' OP-CODE --OPERATION ~OT PER'OR~'D 
239 fM.INOEX, ~RITE/REP~ACE ~TTFMPTED ON ~ON-KEYED RECORD 
240 FM-INDEX, RE~~ACE ATTE~PTED ON KEYED RECORD 
241 F~.INDEX, REPbACE ATTE~PTED O~ NULL DATA (NON-EXISTENT) 
243 fM~lNDEX, RELeREC, NO KEV A~TE~ SE.RC~ 
249 FM-INVALID FILE TyPE (~ON~EXISTENT' 
250 FM.INSUFFICIE~T TRACKS FOR ALLOCAT!ON 
251 f~.INSUF'ICIENT eONTIGUO~S TRACKS LEFT ON DISC VO~UME 
232 'M.AL~OCATION EXCEEDS Dlec VOLUME CAPACITY 
254 fM.UNABLE TO ALLOCATE AUfFEqS BECAVSE OF JOB EXTENSION SIZE 
236 f ~-l NSUf F Ie IE I\IT NU~BER Of B' IF FERS F OR ATTE~PTED OPERA Tl ON 
251 fH.OPCODE IS EITHER NO~.fXI~TE~T OR I~LEGAL 
238 FM.ACCESS VIO~ATION, INTEGRTTy ERROR 
401 ~SCN-OVtR'LOW OF KEY~ORD APEA 
412 eSCN.OVERfLOW OF PACK!D STPINr, STORAGE 
41213 tSCN-R.H.S. Of EXPRESSIO~ OR TERM MISSING 
4BA cSCN~lLLEGA~ EXPRESSION SUBSCRIPT 
.e~ CSCN~HISSJNG DELI~ETER AfTER eOMMAND 10 
406 eseN-NUMBER IS ~ARGfR THAN 16 BITS 
407 eseN-OPERAND STARTS WITH lLLE~AL CHARACTER 
4Be cSCN-IL~EGAL DIGIT IN DEel~AL NUMBER 
41219 cSCN';'MISS1NG DEL.I~TER BETwEEN OPERANDS 
4le tSC~.MISSJNG DELIMETER BET~EE~ SUBSCRIPTS 
41l eBCN-iLLEGAL CHARACTER PREtEEns COMMAND 
412 ITS.RUN COM~ANO DOES NOT CONTAIN A LAe~L OR AN EXPRESSION 
-13 cSCN-HISSiNG EQUAi. ;I;~~ IN A8~I'NMENT 
414 CSCN.RI~HT HANO SIDE OF ASSIG~~ENT ~ISSING 
41e cSCN.HORE THAN ONE ~ SIGN IN ~XPRESSIO~ 
416 eseN.SIZE OF PACKED STRl~G < ~ C~ARACTERS 
411 eSCN.UP~ER ~OUNO ON KEYWORD A~EA • 1 
418 CBCN.NUMBtR Of RESERVED LABEL~ • a 
419 cSCN~STARTING CULUMN POR SCAN NOT IN RANGE (0179) 
42e JCL~FOR A NE~ FILE, USER DIR~CTORY NA~! DIFFERS~FRO~ CURRE~l USER 
.21 JCL-JSB MUST CONTAIN D~VICE TNO!X, ~'aT THE fIIDT ADO~!SS 
422 JtL~DEvtrE INDiX MUST BE ~~ '55 
423 JCL-PHYS1CAL R.L. c K~Y·LENGT~ • t4 
4a~ JCL.FILE HAS BAD ACC~SS CODE VALUE 
4ae JCL-BOTH 'DELET!' • 'PASS' SPECIfIED 
426 JCL.LOGtCA~ R.L~ > PHYSIC~L ~.L. 
421 JCL~LO'ICA~ R.L. A MULTIPLE ~F 32 
428 JCL-OEVtr.E NOT SPECI~I!~ OR TNCORRECTLY SPECIfIED 
429 JCL.USER 10 NOT SPECIFIED 
4Je JCL.FILE NAME NOT SPEClflF-D 
433 JCL •• PRIORITY LEVELS> 31 O~ • 1 
434 JCL~J08 STEP PRIORITY > 31 o~ • 1 
4le JCL.OBJ. VOLUMN 10 IS > 20 O~ • 1 
436 JCL.TCB STACK SIZE c 1 ~ORD 
431 JC~-ILLE'AL cn~MANO AFTER 'D~LETE' 
43g JCL~TIME LIMIT c 1 SECO~O 
4'3 JCL •• PRIORITY LEVELS + JOB STEP PRIORITY IS ~ 31 OR c t 
4'4 JCL-JOB [XTENS%ON SIZE ., TCA STACK 8IZE • 15 WORDS 
446 JCL~VOL USER 10 NOT lNlTI"LI!EO 
441 JC~_VO~UMN FILE NOT INITIALI'EO 
448 JCL~VOL USER 10 OR FILE ~~ME ~ e CH.RS 
•• 9 JCL.VO~ PASSWORD ~ • CHARS 
430 JCL~wRONr.. OF OPEH.NDS ON THE RIGHT SIDE 0' AN !X~R!S'tOH 

Digital Systems Division 



~------
45& JC~.OPERAND IS NOT • LABEL O~ 4 SUBSCRIPTED EXPRESSION 
.52 JCL~OPERANO ON THE ~lGHT 810F IS NOT A LABEL OR A NU~B!R 
.53 JC~.BAO DEVICE NA~E 
45~ JC~.BLOCK SIZE < 1 
456 JCL-REDEFINITIQN O~ LUNO IN .'OBSTEP 
45' JCL~PASSwOHO > .. CHARACTE~S 
.58 JCL-USER ID OR FILE NAME • 6 CHARACTERS 
459 JCL.NUMBER BUFFERS < 1 
462 JCL.RE.tNITIALI%ATIO~ Of JSB ITEM 
.61 JCL-SAD LABEL FOR ACCESS CODF 
462 JCL-INITIAL TRAC~S c 1 
463 JCL.FIHST TRACK ADDRESS c e 
46. JCL.PHYSJCAl RECORD ~ENGTH < 32 
465 JCl.-PHYSJCAL R.l.. NOT MllLTIPIE OF 3~ 
.66 JCt..MAX TRACKS C CINITl~L OR 1) 
461 JCL-LOGlrAL RECORD LENGTH < , 
468 JCL-LUNO NUMBER NOT IN RANGE ~ TO 25 • 
• 69 JCL-KEY ~ENGTH NOT IN RANtE t TO 30 
410 JCL-OPERAND DOESN'T START WI T~I LABEL 
411 JCl..KEyNAHE ON THE LEFT SIDE OF A~ EXPRESSION IN NOT OEFl~EO 
475 JCL.OVERfLoW OF KEY-ENTPY TA"LE 
.76 JCL.OVERfLOW 0' KEY-REFERENC' TABLE 
.77 JC~.OVER'LO~ 0' KEY-CHARS TA~LE 
478 JCL~DISC ERROR ON LUNO 4 
.79 JCL.INOEX KEY ~A~E FOLLOwING 'CREATE' OR 'REPLACE' ~ 6 C~ARACT!RI 
480 JCL.GREATER 31 ASSIGN C~RDS TN THIS JOB STEP 
.81 JCL.ICREATE' OR 'REP~ACE' NOT FOLLO~EO BY INDEX K!Y ~AME 
490 JC~.DEV lNDEX c 21 OR FILf Y"l ~ 20 
.91 JCL-p~yaJCAL R.L. (CHAR) c (VEYLE~ • 2 • 14' 
.92 JCL-FILE TYPE ~OT SPECIFIFD WHEN NEfDED (DE'I~E, fTC.) 
ell JCL.KEYNAHE IS NOT I~ RESERY~p wORD LIST 
eee JC~~. 0' ENTRIES IN TABLE PA~S!D TO 'CRLOOK' IS NIGATIVE 
510 JCL.SUBSCRIPTS APPEAR ON tHS OF EQUAL SIGN 
511 JCL~TRIED TO ~ETCH NON_EXISTANT RHS SUBSCRIPT 
e12 JCL~TRIED TO 'fTC~ NON-EXISTANT OPERA~D 
ea8 JC~~1/0 [RROR ON LUNO • 2. tECHO PRl~T) 
521 JCL-EOF, [OM, OR 1/0 ERROR o~ LUNO • 1. (JCt. IN) 
ea2 JCL-HISStNG SLASH IN FIRST C"LU~N OF JCL 
523 JCL~OVERRIOING KEY WORD O~ RIIN CARD DOES NOT !XIST FOR THIS P~oCIDURE 
8ae JCL';'NlIHBtR 01' tCEY-ENTRIES IS NfC;ATIVE 
ea7 JC~.NUMBtR OF tCEY-ENTRIES • t9 
e28 JCL-NUMBIR 01' KEY-RE'ERENCES c ~ OR ~ 19 
529 JCL.NUMBER Of KEy-CHARACTERS NOT IN RANGE I TO la2 
e~8 JC~.KEY-ENTRY POINTS TO KEY ~EFERENCE W~lCH IS ~OT J~ITIALIZED 
53l JCL~KEY.ENTRY ~lAG I~DICATES THAT NEITHER JCB NOR LnT Is BEtNG INITJALt!ED 
e32 JCL~l.DT NUMBER REFERENCE BY ~EY~ENTRY IS NOT IN RANG! I TD 31 
533 JCL.PRODUCTtON NUMBER NOT IN PA~'E 3 TO 31 
53. JCL.JOB STEP Nu~SER NOT I~ RANG! 1 TO 15 
53A JCL.JOB STEP Nu~aER NOT I~ RANG! t TO Ie 
53! JCL-KEY-CHARS ~AS LESS TH~N ~ CHARACTERS 
e36 JCL~CHAR.CTER9 OVERFLOW KEY.CHAR STCIRAGE 

A-4 Digital Systems Division 



~~------------------~ 943005-9701 

APPENDIX B 

SAMPLE JCL SEQUENCES 

Digital Systems Division 



~~------------------~ 943005-9701 

APPENDIX B 

SAMPLE JCL SEQUENCES 

Job Control Sequence (JCS) for particular system installations are supplied 
on file JCLSRC contained on the disc image tape. List this file after com
pleting installation. 

This appendix contains sample listing s of SOUle sequence s. The se sample s 
are not necessarily the exact sequences supplied on the previously mentioned 
tape. 

B-1/B-2 Digital Systems Division 





Jd75\ ______ _ ~ 943005-9701 

._UPDATE 

.-TAPE 'DX980 JCL SQURCE FJLE~.~ 
• _ CREATE ASMBLR,CQMMENT,"ASSEMBL[ 
IREPLACE ASMBLR • ASSEMBLE • 

'.'05/15/75',*'*" • 
• 

IEXEC OBJ-(l,SYSTEM,ASMBLR) MEM-(3B0,5000,100~) PRTY-(1,15), 
I TIME-.l MEMS-MEM PRTYs-PRI TIMEs-TIM 
IASSIGN e DUMMY DEVICEs-OMSG SHARE 
IASSIGN 4 DUMMY DEVICES-OCON SHAREs-SCON 
,ASS1GN 5 DISCI DEVICEs~OSRC FILEs-FSRC BUFFERS-! 

.. SYSTEM MESSAGE 

.. CONTROL/MESSAGE 
• SOURCE INPUT 

IASSIGN 6 Sc DEVICEs-OLST FIlEsaFlST SHARE:.SLST RUffERSat.SOURCE I.IST/ERROR 
IASSIGN 7 DISCI DEVICEs-OOBJ FIlErcFOBJ NEw.-NOBJ, 
I REPlACEI-ROBJ BUFFERS-, LINKSEQ, 
I ACCESS-(ANY,ANY,ANy,ANY) ACCESSs-COBJ, 
I ALLOCATE-Cl,e,64,10) AlLOCATEI~LOBJ • OBJECT OUTPUT 
IASSIGN 16 DISCI FILE-CTEMP,SCRL) NEW BUFFERS-1 LINKSEQ, 
I ACCESS-CANY,ANY,ANy,ANY) ALLOCATE-C10,300,256,30) • SOURCE SCRATCH 
lEND 
._ CREATE ASMGO ,COMMENT,"EXECUTE ASM LANG GENED L M " 
IREPLACE ASMGO • EXECUTE ASSEMBLY LANGUAGE GENERATED LOAn 
IEXEC OBJ-Cl,USfR01,GO) MEM_C3B0,4900,1000) PRTY-Cl,15)J 
I TIME-100 OBJ,-OBJ MEM:_MEM PRTY.-PRI TIMEi-TIM 
/ASSIGN 4 DUMMY tUNO.-LUN4 OEVICEa-OEV4 ~ILEi-FIL4 BUFFERS.2~ 
IASSIGN 5 SC LUNOs-LUN5 DEVICEs-DEV5 ~lLEr-FIL5 BUFFERS-2~ 
IASSIGN 6 SC LUNO.-LUN6 DEVICEI-oEV6 fILEz-FIL6 BUFFERS-2~ 
IASSIGN 7 DUMMY LUNO.-LUN7 DEVICEs-DEV7 FILEs-FIL7 BUFFERS-2. 
IASSIGN 8 DUMMY LUNOI-LUN8 DEVIcEs-nEv8 FIlES-FIL8 BUFFERS-2. 
lEND 
,_ CREATE ASMLGO,COMMENT,"ASSEMBLE. LINK, AND GO " /REPLACE ASMlGO • ASSlMBLE, lINK, AND GO • 
IEXEC C8J=(l,SYSTEM,ASMSLR) MEM a C3e0.5e00.!000) PRTY-(!=15)J 
I TIME-.1 MEM.-MEMA 

MODULE . 
USEH PROG LU~ 

lJSER PRQG LUN 
USER PROG LUN 
USER PROG LUN 
USER PROG LU~ 

<4 

5 
6 
7 
8 

/ASSIGN 8 DUMMY DEVICE.-OMSG SHARE 
IASSIGN 4 DUMMY DEVICEI-OCON SHAREI-SCON 
IASSIGN 5 DISC! DEVICEs-OSRC FIlElaFSRC BUFFERS-1 
IASSIGN 6 SC OEVICEs-OLSTA FILEI-FlSTA BUfFERS-I 

,. SYSTEM MESSAGE 
.. CONTROL/MESSAGE 
r SOURCE INPUT 
• SOURCE LIST/ERROR 

/ASSIGN 7 DISCI FILE-CTEMP,OBJECT) NEw BUfFERS-! LINKSEQ' 
I ACCESS-CANY,ANy,ANy,ANY) ALLOCATE-C10,300,64.10) • OBJECT OUTPUT 
IASSIGN 16 DIsci FILE-CTEMP,SCRL) NEW BUFfERS-I LINKSEQ, 
I ACCEsseCANY,ANY,ANy,ANY) ALlOCATE-C1B,300,256,3B) • SOURCE SCRATCH 
/EXEC OBJe(I,SYSTEM,OXOLE) MEM-C300,12800,3000) PRTY-,t,t5), 
I TIME-.I MEM.-MEML 
IASSIGN 5 DISCI fILEaCTEMP,OBJEeT) oELETE BUFfERSeS • PRIMARY INPUT/CON 
IASSIGN 6 SC OEVICE •• OLSTL fILEI.FLSTL BUfFERS-! • LOAOMAP LIST/ERR 
IASSIGN 8 OISCt fILE-CTEMP,LM) NEW BUFFERS. 1 RELREe LRECL-64, 
I ACCESS-(ANY,ANY,ANY,ANY) AllOeATEe(Se,3Ie,32,10) • LOAD MOO OUTPuT 
IASSIGN 9 DUMMY ~ LIBRARY FILE 
IASSIGN II DIsci FILE-CTEMP,SCRL) DELETE BUfFERS. 1 • LINKSEQ SCRATCH 
/ASSIGN 13 DIsci FILE-CTEMP,SCRR) NEW DELETE BUFFERS-t RELREC, 
/ ACCESs.(ANY,ANY,ANy,ANY) ALLOCATEeCS0,3e0,t28,10)' 
I LRECL_10B • RELREC SCRATCH 
IEXEC OBJ-Cl,TEMP.LM) MEM-(310,4108.t0e0) PRTyeCl,15), 
I TIME-lee MEMleMEMG TIME •• rIMG 
/ASSIGN 4 DUMMY DEVICE •• DEV4 FILE •• FIL4 BUfFERS.2 
/ASSIGN 5 Sc DEVICE.-DEV~ FILE.-FILS BUFFERS-2 
IASSIGN 6 SC OEVICE.-OEV6 fILEI-fIl6 8UFFERS-2 
IASSIGN 7 DUMMY DEVICE •• OEv7 
lEND 

B-3 

r USER PROG LUN 4 
, USER PROG LUN 5 
t USER PROG LUN 6 
• USER PROG LUN 7 

Digital Systems Division 



JdJ)\ ______ _ ~ 943005-9701 

.- CREATE ASMLNK,COMMENT,wASSEMALE AND LINK 
/REPLACE ASMLNK . • ASSEMBLE AND LINK • 

Ie 

IEXEC OBJa(l,SYSTEM,ASMBLR) MEMaC388,5000,1000) PRTY-Cl,15), 
/ TIMEapl ME~laMEMA 

IASSIGN 1 DUMMY DEVICEt-OMSG SHARE 
IASSIGN 4 DUMMY DEVICEraDCON SHAREraSCON 
IASSIGN 5 DISCt DEVICEI-DSRC FILElaFSRC BUFfERSa! 
IASS1GN 6 SC DEVICEtaOLSTA fILflaFLSTA BUfFERSal 
IASSIGN 1 DISCI FILEaCTEMP,ORJECT) NEW BUFFERSal LINKSEQ, 

,. SYSTEM MESSAGE 
,. CONTROL/MESSAGE 
• SOURCE INPUT 
~ SOURCE 1.15T IERROR 

I ACCESS-C4NY,ANY,ANY,ANY) ALLOCATE-C10,300,64,le) • OBJECT OUTPUT 
IASSIGN 16 DISCt FIlEaCTEMp,SCRL) NEW BUF~ERSal LINKSEQ, 
I ACCEssaCANY,ANY,ANY,4NY) ALLOC~TEa(10,300,256,30' • SOURCE SCRATCH 
IEXEC ORJa(l,SYSTEM,DXOLE) MEMa(300,12000,3000) PRTY-ct,15), 
I TIMEa~1 MEM.aMEML 
IASSIGN 5 DISCI FILEaCTEMP,OBJECT) DELETE BUfFERSa1 
IASSIGN 6 SC DEVICEraOLSTL fILEtaFLSTL BUfFER9al 
IASSIGN 8 DISCt DEVICElaOLM FILE-CUSER01,GO) FILErafLM, 
I REPLACE.aRLM BUFFERSa 1 RELRECI 
/ ACCEssa(ANY,ANY,ANy,ANY) ACCESSraCLM, 

f PRIMARY INPUT/CON 
• LOA DMAP I. I ST IERR 

I AlLOCATEa(10,0,32,10) ALLOCATE.aLlM LRECL-64 , LOAD MOO OUTPUT 
/ASSIGN 9 DUMMY DEVICEr aDLI8 FILEI-FLIB BUFfERSat f LIARARY FILE 
IASSIGN 18 DISCI FILEaCTEMp,SCRL) DELETE BUFFERSa1 • LINKSEQ SCRATCH 
IASSIGN 13 DISC! fllEa(TEMP,SCRR) NEw DELETE BUFFERSat RELRECJ 
I ACCEssa(ANY,ANy,ANY,ANY) ALLOCATE-C10,300,128,10)' 
I LRECLal00 • RELREC SCRATCH 
/END 
._ CREATE ASMUP ,COMMENT,wASSEMBLE MOO AND UPDATE lPF • 
IREPlACE ASMUP • ASSEMBLE MODULE AND UPDATE lPF ~ 
IEXEC OBJa(l,SYSTEM,ASMBlR) MEMa(300,6000,2000) PRTYaCl,2', 
I TIMEa.1 HEMlaMEMA 
IASSIGN 8 DUMMY DEVICEI-DMSG 
IASSIGN 4 DUMMY DEVICEs-OCON 
IASSIGN 5 DISCt DEVICElaOSRC FILEI-FSRC BUFfERSal 
IASSIGN 6 se DEVICElaOlSTA FILElaFLST BUffERSal 
IASSIGN 1 DISci FIlE-CTEMP,OBJECT) NEw BUFFERS-' LINKSEQ, 

f SYSTEM MESSAGE 
f CONTROL/MESSAGE 
,. SOURCE INPUT 
• SOURCE l.IST/ERROR 

I AeCESSa(ANY,ANy,ANy,ANY) ALLoeATE-CIB,J00,64.20) • OBJECT OUTPUT 
IASSIGN 16 DISCt fIlE-CTEMP,SCRL) NEW DELETE BUFfERS-t, 
I LINKSEQ ACCESSs(ANy,ANY,ANY.ANY)' 
I AlLOCATEa(IB.300,256,l0) 
IEXEC OBJa(l,SYSTEM,LPFBLD) MEM-(300,600,1000) PRTya(t,2), 

• SOURCE SCRATCH 

I TIME-.l MEM.-MEMU 
IASSIGN I DUMMY DEVICE.aDCON , CONTROL 
IASSIGN 5 DISCt FILEaCTEMp,OBJECTl BU,FERS-l f OBJECT INPUT 
IASSIGN 6 SC DEVICE.aDLSTU FILE.-fLST BUFfERSa1 f LISTING 
IASSIGN 9 DISCI DEVICE.aDUPD fILEiafUPD REPLACE.aRUPD. • 
I BUFFERS-2 INDEXED ACC~SS-CCREAT,CREAT,CREAT.CREAT)1 
I ACCEss.aCUPD ALLOCATE.-LUPD KEYLEN-6 • UPDATE FILE 
lEND 
.N CREATE aIR ,COMHENT,"BATCH INPUT READER • 
IRE'LACE BIR • BATCH INPUT READER • 
IEXEC OBJa(l,SYSTEM.BIR) MEMaCJla,908,601) PRTY-(1,5), 
I PRIV TIME-.I PRTYI-PRI TIMEi-TIM 
IASSIGN II CRt DEVICE.-DIN • INPUT STREAM 
lEND 
._ CREATE BIS ,COMMENT,wBATCH INPUT SPOOLER 
IRE'LACE BIS • BATCH INPUT SPOOLER .• 

• 
IEXEC OBJaCl.SYSTEM,BIS) MEH_(30",28I ,811) PRTY-(I,S,. 
I PRIV TIME--I PRTYI-PRI TIME.-TIM MfM'8MEM 
IASSIGN 5 CRI DEvICE.aDIN • INPUT STREAM 
lEND 

B-4 Digital Systems Division 



~"------~ ~3005-9701 

" CREATE BLDEDT,COMM£NT,wSUILO EDIT FILE 
IREPLACE BLDEOT • 8UILD EDIT FILE • 
/EXEC OBJ.(I.SYSTEM,8LOEDT) MEMa C311.S51,2ael' PRTY-Ci,tS), 
I TIME-.l MfMI-MEM PRTyj-PRI TIMt,·TIH 
IASSIGN II DISCI OEYICE,-OIN fILEt-FIN BUffERS·t 
IASSIGN 28 DISci DEYICEt-DOUT FIlEi-FOUT REPLACE 8UfFERS-2, 

" 

• SOURCE INPUT 

I BUfFERS, aBOUT INDEXED AeCESS-(ANY,ANY,ANY,ANY)' 
I ACCESSt.COUT ALLOeATE-Cl,8,256.100) ALLOeATE.·LOUT, 
I KEYLEN-2 '. SOURCE OUT FILE 
lEND 
.' CREATE 80S .CO~MENT,·BATCH OUTPUT SPOOLER " IREPLACE 80S • BATCH OUTPUT SPOOLER • 
IEXEC 08J.(1,SYSTEM,BOS) MEM-ell •• stla.88e) pRTy-el,5), 
I PRIV TIME--l PRTYI-PRI TIME,-TIM 
IASSIGN S se DEVICE.aOOUT • OUTPUT I.ISTING 
IASSIGN 6 DUMMY OEVICE.-ONEW FIlE_eSYSTEM,NEWSl rILE.-FNEW' 
I SUFFERS-' 
lEND 
" CREATECATFIL,COMMENT,wLIST fILES UNDER A USER " 
IRE~LACE CATFIl • LIST FILES UNOER A USER • 
IEXEC OBJ-Cl,SYSTEM,CAT'IL) M£H-(311,185.,67I' PRTY·Ct,5), 
I PRIV TIME-.l PRTYI-PRI 
IASSIGN I ac DEVICE,aOCON SHAREr-SCON ~ CONTROL 
IASSIGN 6 St DEYICE.aDLST FIlE'arLST SHAREt-SLST BUFFERSat~FILE LISTING 
lEND 
.' CREATE, CATLOG,COMMENT,wLIST, CREATE,OR DELETE USERS· 
IREPLACE CATLOG • LIST, CREATE, OR DELETE USERS. 
IEXEC OBJaCI,SYSTEM,CATLOG) HEMa c311,4eee,671' PRTYaCI,5), 
I PRIY TIMEa-1 PRTYI-PRI 
IASSIGN • SC DEVICE •• OCON SHAREtaSCON ~ CONTROL 
IASSIGN 6 SC DEVrCE,-OLST ~IlElaFLST SHARE,aSLST 8UFFERS.t~USE~ LISTING 
lEND i- CREATEDE!9!0~COHHENT#·PRgGRAM D!BUG AID " IRE'LACE OEB988 • PROGRAM DEBUG AID • 
IEX!C 08JaCI,SYST£H,D(8981) MEMa(3e',6eel,611) PRTYaCI,t5), 
I TIMEa.1 MEMaaMEH PRTYiapRI TIMElaTIM 
IASSIGN #FI ae D£VICEt.DCIN 
IASSIGN #Fl SC DEVrCE.-DMSG 
IASSIGN ~F2 DUMMY DEVICE •• DCLST 
IASSIGN ~f3 SC DEVIC!laOUMP flLEtarUMp BUffERS. 1 
IASSIGN ~FC DISCI OEVICElaOOBJ FILEt.'OBJ BUffERSal 
IASSIGN 1 DUMMY D!VrC[.aDEVe 
IASSIGN 4 DUMMy DEVICEaaD£V. FILE.a'll4 BUffERSa l 
IASSIGN 5 DUMMY D£VICE.aDEV5 fILEI.'IL5 BUFfERSa l 
IASSIGN 6 DUMMY DEVICf •• DEV6 FILE.a'IL6 BUFfERsa! 
IASSIGN 7 DUMMY DEVICEt aDEV7 
IASSIGN a DUMMy LUNOt aLUN8 DEVICE.aDEV8 
lEND 
.' CREATE OUMPLP,COMMENT,·DUMP Lp, 'ROM DISC TO MT 
IRE'LAtE DU"PlP. • DUMP LPF FROM DIsC TO HAG TAPE, " 
'EXEC 08JaCl,SYSTEM,DXCOPY) HEMa(lll,CIII.31Ie) PRTYaCl,2), 
I TIM(a.l MfM.aMEM 
IASSIGN 5 DUMMY DEVICE.-DCON 
IASSIGN 0 ac, D[VICE,.DLST 'IL!,afLaT BUFfERS-I 
IASSIGN 1 MTI _ D£VICE,aOOUT 'IlEaa,OUT BU'f~RSa2 
IASSIGN 8 DISCI D!VICE •• DIN FIlEa(SYSTEH,LPf) FILEtaFIN' 
I BU'FERSa2 
lEND 

B-5 

~ CONTROL INPUT 
I. SYSTEM MESSAGE 
,. CONTROL LISTING 

M[MORY DUMP 
~ RELOC OBJECT IN 
f USER PROG LUN 0 
f USER PROG LUN • 
, USER PROG LUN 5 
, USER PROG LUN 6 
r USER PROG LUN , 
• USER PROG LUN 8 

f CONTROL/MESSAGE 
r LISTING 
,. OUTPUT 
• INPUT 

Digital Systems Division 



~-------~ 943005-9701 

.t CREATE DXCOPy,COM"ENT,wGENERAL PURPOSE COpy • 
IREPLACE DXCOPY • GENERAL PURPOSE COpy ~ 
IEXEC OBJa(I,SYSTEH,OXCOPV) HEM-(388,3188.2880) PRTY-(1,15" 
I TIME-.i ME"aaMEM PRTV.-PRI TIMEs-TIM 
IASSIGN 5 DUMMY DEVICE.-DCON f CONTROL/MESSAGE 
IASSIGN 6 DUMMY DEVICE.-DLST FILEi-FLST BUFFERS-1 • LISTING 
IASSIGN 1 DISCI DEVICE,aDOUT FILE.aFOUT REPLACEsaROUT, 
I BUFFERS.2 8U'FERSa-SOUT LINKSEQs-LIN RflRECI-REL, 
I INDEXED.-IND ACCESS.(ANY,ANV,ANY.ANY) ACCEss,-COUT, 
I ALLOCATE~(I,I,t28,11) ALLOCATE,aLOUT KEYLfN-&, 
I KEYL~NlaKOUT lRECL-6~ LRECLI-GOUT f OUTPUT 
IASSIGN 8 DISCI DEVICE.aDI~ FIlElaFIN DElETElarIN BUFFERSal • INPUT 
lEND 
.- CREATE DXlINK.COMMENT,·lINK DX980 OPERATING SYSTEM • 
IREPLACE OXLINK • LINK OX980 OPERATING SYSTEM • 
IEXEC OBJ-Cl,SVSTEM,DXOLE) MEM-(38I,31588,8080) PRTYa(l,2), 
I TIME-.i 
IASSIGN i DUMMY DEVICE,aDLPI 'ILEi-FLP1 BUFfERS-2 • ALT OBJECT IN 
IASSIGN 2 DISC! DEVICEI-DLP2 FILE-CSYSTEM,DXLPF) fILEt-FLP2, 
I BUFFERSa2 f ALT 2 OBJECT IN 
IASSIGN 3 DUMMY DEVICElaDLP3 FtLEi-FLPJ BUFfERSa2 • ALT 3 OBJECT IN 
IASSIGN 5 DISC! DEVICE,-DIN FILE_tUSER01,LINKDX) FILEt-FIN, 
I BUFFERS-I f PRIMARY INPUT/CON 
IASSIGN & Sc DEVICE'-DLST FILEi-FLST BUFFERS-l • lOAD~AP LIST/ERR 
IASSIGN 8 DISCt DEYICE'-DlM FILEaCUSER01,DXMIP) FILE,-FLM, 
/ REPLACE,aRLM BUFFERS-i RELREC' 
/ ACCESSaCANY,ANV,ANV,ANV), 
I ALLOCATE-C32,2~1,32,32) ALLOCATEI-LLM LRECla64 • LOAD ~OD OUTPUT 
/ASSIGN 9 DISCI DEYIC£,aDLIB FILEaCSVSTEM,USRPLX) FILE.-fLIB1 
I BUFFERS.2 • LIBRARY FILE 
IASSIGN 11 DISCI FILE-CTEMP,SCRL) NEW BUFfERSa1 LINKSEQ' 
I ACCESSa(ANY,ANV,ANV,ANY) ALLOCATEaC10,Jee,256,80) ~ LINKSEQ SCRATCH 
IASSIGN 12 DISct OEYICE,aDEXT FILE-CUSERI1,DXEXTO) FIlEI-FEXT, 
I REPLACE.-REXT BUFFERSal LINKSEQ, 
/ ACCESS-CANY,ANV,ANY,ANY) ACCfSS.aCEXT, 
I ALLOCATE.CI,I,128,t) _ • SYS EXT OEfS FILE 
IASSIGN 13 DISCI FILEaCTEMp,SCRR) NEW 8UFFERS.! RELREC' 
I ACCESS.CANY,ANY,ANY,ANY) ALLOCATEaC2.301,128,2), 
I LRfCL-I.. • RELREC SCRA TCH 
/END 

IREPLACE DXOLE • LINK EDITOR ~ 
IIX!COBJ.'I,IYIT!M,DXOLE) MEM.C3 ••• 12 •••• 2 ••• ) PRTva;s.15), 
I TIME •• i H(M.-MEM PRTya.PRI TIME'aTIM 
IASSIGN j DUMMY DEYICE •• 0081 'ILE •• 'OBt BUFfERS_2 
IASSIGN 2 DUMMY DEVICE,a0082 'ILf'.fOB2 BUFfER'-2 
IASSIGN 5 DISCI DEVICE •• DIN 'ILEa.FIN BUFFERS-! 
IASSIGN I IC DEYICE.-OLS' 
/ASSIGN 7 DUMMV DEYICE •• DOIJ 'IL!i-f08J BUFFERSa1 
IASSIGN 8 DISCI DEVICE.-OLM 'ILE.-'LM REPLAC£'.RLM, 
I BUffERS., RELREC itCf'I.(ANV.CREAT.C~E6T,ANV)1 
I ACCESSa.CLM ALLOCATE-CI ••• 32,S) ALLOCATf.-lLM, 
I LRECL.e. 
IASSIGN 9 DISCI 'IL£.CSYSTEM,USR'TN) D!VIC!a-DLIB, 
I 'ILEa.'LIB BU"ERI.a _ . 

: ~Lj 1 OBJ!CT IN 
~ ALl 2.0BJECT_IN 
, PRJHA~V IN~U!/CON 
, ~OADM,~ LI~T/[RR 
• COMPACT OBJ OUT 

IASSIGN II DISCI 'IL£.CTE"P.ICRL) N!".IU'FfJtS~l_LINKlrQJ _ 
I _ ACCEla.CANY,ANY,ANy,ANY) ALLOCATE.CS"3 •• , ,,I,38) LJ~Ka!; SC8ATCH_ 
IASSIGN II DISCI 'IL!-(SYIT~M,DX!XTO) fILC.-FEXT BU'ffRSat ~ IY! tXT OfF! OPT 
IASI,GN 13 DISCI 'ILle(TEMP,ICRR) N!"'U'flRI,l.R!LR[e. . 
I ACCESS.(ANY,ANY,ANY.ANV) ALLOCATE_Clt,3",t2e,lt), 
I LRECL.111 : RELR!C SCRATCH 
lEND 

Change 1 B-6 Digital Systems Division 



~.o ______ _ ~ 943005-9701 

._ CREATE DXOLEP,COMMENT,"lINK PLEXUS pROGRAMS 
IREPLACE DXOLEP ~ LINK PLEXUS PROGRAMS ~ " 
IEXEC OBJ-Cl,SYSTEM,DXOlEl MEM-C308,32e00,3000) PRTY-(l,2), 
I TIME-.l MEM,-MEM PRTY~-PRI TIMEt-TIM 
IASSIGN 1 DUMMY DEVICE.-DOBI FILE-CUSER01,ASMOUT) FILES-FOBt, 
I BUFFERS-2 : ALT 1 OBJECT IN 
IASSIGN 2 DUMMY DEVICES-DOB2 FILE,-FOa2 BUFFERS-2 : ALT 2 OBJECT IN 
IASSIGN 5 DISci DEVICEs-DIN FILEtaFIN BUfFERS-t ~ PRIMARY INPUT/CON 
IASSIGN 6 Sc DEVICEI-DLST FILEi-fLST BUFFERSal : LOAD~AP I.IST/ERR 
IASSIGN 7 DUMMY DEVICEI-008J FILE.-FOaJ BUFFERSa! e COMPACT OBJ OUT 
IASSIGN 8 DISci DEVICEsaDlM FILEz-FLM REPLACf.-RLM, 
I BUfFERSel RELREC ACCESS~(ANy:tRE.T~CREAT~ANY)' 
I ACCESSI-ClM ALLOCATE-cl,e,32,1) ALLOCATES-LLM, 
I LRECL-64 
IASSIGN 9 DISCI FILEaCSYSTEM,USRPLX) FIL~.aFLIB BUffERSa2 
IASSIGN 11 DISCt FILE-CTEMP,SCRL) NEW BUFFERS-l LINKSEQJ 

~ LOAD MOD OUTPUT 
e LIBRARY fILE 

I ACCESS-CANY,ANY,ANy,ANY) ALLOCATEaCl0,300,256,J0) : LINKSE~ SCRATCH 
IASSIGN 11 DISci FILE-CSYSTEM,DXEXTD) FIl~.-FEXT BUFFERSa1 e SYS EXT DEFS OPT 
IASSIGN 13 DISCI FILE-CTEMP,SCRR) NEW BUFfERSa' RELREC, 
I ACCEssaCANY,lNY,ANY,ANY) AlLOCATEaCl0,J00,128,10', 
I LRECL-10A. ~ RELRfC SCRATCH 
/END 
,N CREATE FILMGR,COMMENT,·FILE CREATE/DELETE CAPABILIYw 
IREPLACE FILMGR • FILE CREATE/DELETE CAPABILITY • 
IEXEC OBJ-C1,SYSTEM,DXCOPY) MEM-c3al,2650,851) PRTYa(t,t5), 
I TIMEa-1 PRTYC-PRI TI~EI_TIM 
IASSIGN DISCI DEVICE.aOISC FILEI-FILE NEWsaNEW REPlACE.-REP, 
I DELETEs-DEL BUFFERSal LINKSEQ.aLIN RELREC.aREl' ~ fILE TO BE 
I INOEXEDsaIND ACCESSaCANY,ANY,ANY,ANYl ACCESSlaACC'~ CREATED/DELETED 
I ALLOCATEt-ALL KEYLEN-6 KEYLENl aKEY LRECL-64J 
I LRECL.-LRE 
IASSIGN 5 DUMMY 
IASSIGN 6 DUMMY 
IASSIGN 7 DUMMY 
IASSIGN 8 DUMMY 
lEND 
._ C~EATE FTNCO ,COMMENT,"EXECUTE FORTRAN GENERATED LMw 
IREPLACE FTNGO • EXECUTE FORTRAN GENERATED LOAD MODULE • 
IEXEC OBJaCI,USER01,GO) MEM-C38B,12080,l00B) PRTYaCl,tS)' 
, TIMEall0 OBJ.-OBJ MEMsa~EM PRTYlaPRI TIMEt-TIM 
IASSIGN I SC DEVICEs-DMSG f SYSTEM MESSAGE 
IASSIGN ~Be ac LUNO.aLUNI DEVICE.-DEV0 , USER PROG LUN 0 
/ASSIGN ~Bl DUMMy LUNOt-LUN! DEVICEs-DEV! • USER PROG LUN 1 
IASSIGN ~B4 DUMMY LUNOS-LUN4 DEVICEs-DEV4 FILEtaFIl4 8UFFERSa2~USER PRQG LUN 4 
,ASSIGN 185· ac LUNOa-LUNS DEVICEsaDEV5 FILEtaFILS AUFFERS-2~USER PROG LUN e 
,ASSIGN ~86 SC LUNOs-LUN6 DEVtCEsaOEV6 FILEa-FIle BUFFERSa2.USER PROG LUN e 
IASSIGN ~88 DISCI LUNOaaLUN! FILEaCTEMp,SCRL) NEW BUFFERS-I' 
I LINKSEQ ACCESS-CANY,ANY,ANy,ANY), 
I ALLOCATEaCI,308,32,11) 'e USER seRA TCM FILE 
lEND 

B-7 Digital Systems Division 



Jd75\ __ -----~ 943005-9701 

._ CREATE FTNlGO,CO~MENT,wFORTRAN COMPILE, LINK.AND GO· 
IREPLACE fTNLGO • FORTRAN CO~PILE, LINK, ANO GO • 
IEXEC OBJ-(l,SYSTEM,fTN) ME~aC30e.10B0e,1~00) P~TY-(1,15)' 
, TI~E-.l, MEMlaMEMC 
'ASSIGN 8 DUMMV OEVICEI-OMSG SHARE 
IASSIGN 5 DISci OEVICEaaOSRC FILE.aFSRC BUFFERs-t 
IASSIGN 6 SC DEVICEaaOlST1 FrlElaFLST BUFfERSat 
IASSIGN 7 DISC! FILEa(TEMP,PHASE1) NEw BUFFERS-I lINKSEQ, 
I ACCESSaCANY,ANy,ANY,ANY) ALLOCATE-(10,300,e4,30) 
'EXEC OAJact,SYSTEM,FTNPS2) MF.M-(30~,8000.112!00) PRTya(l,l~Y' 
, TIMEa.1 MEM,aMEMC 
'ASSIGN B DUMMY 
IASSIGN 6 SC OEVICE.aOLST2 
,ASSIGN 7 DISCI FIlE-(TEMP,OBJECT) NEw BUFFERSa1 LINKSEQ' 

,. SYSTEM MESSAGE 
, SOURCE INPUT 
,. SOURCE t. I ST IfRROR 
: INTERMEO OAJECT 
• SOURCE SCRATCH 

f SYSTEM MESSAGE 
• ERUOR MESSAGE 

, ACCEssa(ANV,ANy,AUY,ANY) ALLOCATE-C10,300,64,10) r OBJECT OUTPUT 
'ASSIGN 8 DISCI FILE-(TEMP,PHASE1) BUFFERSa1 • TNTERMED OBJECT 
'EXEC OBJaCl,SYSTEM,OXOlE) MEMaC300,12e00.3000) pRTYa(l,15), 
, TIMEa.1 MEMla~[ML 

IASSIGN 5 DISCI FILEa(TEMP,OBJECT) DELETE BUFFERS-l 
'ASSIGN 6 Sc OEVICE.aOlSTL FILE.afLST BUFFERSa l 
IASSIGN 8 DISC! FILEa(TEMP,LM) NEW SUFFERSa1 RElRECI 

r PRIMARY INPUT/CON 
• LOAOMAP l.IST/ERR 

, ACCEssaCANY,ANV,ANY,ANY) ALLOCATF.a(10,300,32,l~)' • LOAD MOO OUTPUT 
I LRECL~64 

,ASSIGN 9 DISC! fILEaCSYSTEM,USRfTN) BUFfERSa2 r LIBR.RV 
,ASSIGN 10 DISCI FILEa(TEMP,PHASE1) DELETE BUFFERS-1 • LI~KSEQ SCRATCH 
IASSIGN 13 DISCI FILEa(TEMp,SCRR) NEW DELETE BUfFERSa, RELREC. 
, ACCEssa(ANy,ANy,ANY,ANY) ALLOCATE-(l0,30A,'28,le),~ RELREC SCRATCH 
, lRECLa100 
IEXEC OBJaCl,TEMP,LM) MEMa(J00,8000,1000) PRTVa(1,15), 
, TIMEa100 MEM.aMEMG TIME.-rIMG 
IASSIGN 121 SC DEVICElaDMSG 
IASSIGN ~B0 SC OEVICE.aOEVe 
,ASSIGN ~Bl OUM~Y DEVICE.aDEVI 
IASSIGN ~B5 SC DEVICE.aOEV5 FILE.aFIL5 BUfFERSa2 
'ASSIGN ~B6 SC OEVICE.aOEV6 FIlE.afIL6 BUFFERS-2 
,ASSIGN ~B8 DISCI FILEaCTEMP,SCRL) NEw BUfFfRsat lINKSEQ, 

f ~YSTEM ~ESSAGE 
,. USER LUN " 
,. USER LUN 1 
f USER LUN 5aINPUT 
• USER LUN 6-0UTPUT 

I ACCESS-CANY,ANY.ANY,ANV) ALLOCATE-(t0,30S.32,le) • USER SCRATCH FILE 
lEND 
._ CREATE FTNLNK,COMMENT,"FORTRAN COMPILE AND LJNK 
'REPLACE fTNLNK • FORTRAN COMPILE AND LIN~ ~ 

" 
'EXEC OBJ-Cl,SYSTEM,fTN) ~EMaC3ee.le000,1000) PRTY-Cl,15), 
, TIME-~l, MfH,aHEMC 
IASSIGN I OUMMY OEVICE.aOMSG SHARE 
IASSIGN 5 DISCI DEVICE.-DSRC FILEI-FSRC BUFFERS-1 
IASSIGN 6 Sc OEVICE,-OLSTI FILE._FLST BUffERS-1 
IASSIGN 7 DISCI FILE-CTEMP,PHAS(1) NEw BUffERSal LINKSEQ, 
I ACCESS-CANY,ANY,ANY,ANY) ALLOCATE-C10,310,64,30) 
IEXfC OBJ-CI,SYSTEM,FTNPS2) MEM-C30e.8000,1000) PRTY a tl,15), 
I TIME-.l MEM.-MEMC 
IASSIGN I DUMMY 
IASSIGN ~ Sc DEVICE,aOLST2 
IASSIGN 7 DISCI FILE-CTEMP,OBJECT) NEW BUFFERSat LINKSEQ, 

,. SYSTEM MESSAGE 
r SOURCE INPUT 
,. SOURCE l. I ST IERROR 
r INTERM!D OBJECT 
• SOURCE SCRATCH 

, SYSTEM MESSAGE 
• ERROR MESSAGE 

I ACCESS-CANy,ANy,ANy,ANY) ALLOCATEaC10,318,64.10) f OBJECT OUTPUT 
IASSIGN 8 DISci fILE-CTEMP,PHASE1) BUFFERS-l • INTERMEO OBJECT 
IEXEC OeJaCl,SYSTEM,DXOLE) MEM-C30e.12e0e,3000) PRTY-Cl,15), 
I TIME-.l MEMI-MEML 
IASSIGN S DISCI FILE-CTEMP,OBJECT) DELETE BUfFERS. 1 
IASSIGN 6 SC DEVICE •• OLSTL FILE.-FLST BUFfERS-I 
IASSIGN 8 DISCI DEVICE.-DLM FIL~-CUSERll,GO) FIlE.-FLM' 
I REPLACE,-Rl" BUFFERS-! RELREC, 
, ACCESS-(ANy,ANY,ANy,ANY) ACcES~.-CLH' 

, PRIMARY INPUT/CON 
• LOAD"'AP l.IST/ERR 

/ ALLOCATEaCII,I,32,ll) ALLoCATElaLLM LRfCLa64 f LOAD MOO OUTPUT 
/ASSIGN ~ DISCI FllEaCSYSTEM,USRFTN) BUffERS.2 , LIBRARY 
IASSIGN 1. 01$Cl FILE-CTEMP,PHASE1> DELETE BUffERS-. • LINKSEQ SCRATCH 
IASSIGN 13 DISCI FILEa(TEMp,SCRR) NEW DELETE BU'fERS-l RELREC1 
, ACCESS-(ANY,ANy,ANY,ANY) ALLOCATEaC11,310,l28,11)1. RELRfC SCRATCH 
I LRECL-110 
lEND 

B-8 Digital Systems Division 



~~------------------~ 943005~9701 

,. CREATE FTNPsi,cOMMENT,"FORTRAN PHASE 1 COMPILE 
IREPLACE fTNPSl • FORTRAN PHASE i COMPILE • " 
IEXEC OBJaCl,SYSTEM,FTN) MEMaC3Be.see0.1000) PRTyaCl,t5), 
I TIMEa.l MEM.aMEM PRTYsapRI TIME.aTtM 
IASSIGN e DUMMY OEVICElaOMSG SHARE ~ SYSTEM MESSAGE 
IASSIGN 5 DISCI DEVICEsaOSRC fILf.aFSRC BUFFERS-! • SOURCE INPUT 
IASSIGN 6 BC DEVICE,aOLST FILfsaFLST SHARE.-SLST RUFFERSa'.SOURCE l.IST/ERROR 
IASSIGN 7 DISCI DEVICEs-DINT FILEs-FINT BUFfERS-! LINKSEQ, 
I ACCESS-CANY,ANY,ANy,ANY) AlLOCATE-Cl.e,64,J01' • SOURCE SCRATCH 
I NEW,aNINT REPLACE.-RINT ACCESS.~CINT ALLOCATEs-LINT 
lEND 
,N CREATE FTNPS2.COMMENT,"FORTRAN PHASE 2 COMPILE " IREPLACE FTNPS2 • FORTRAN PHASE 2 COMPILE • 
IEXEC OBJ-Cl,SYSTEM,FTNPS2) MEMacJ00,8000,1000) PRTVa(I,15), 
I TIME-.I MEMsaHEM PRTYI-pRI TIMEsarIM 
IASSIGN 0 DUMMY DEVICE,-OMSG SHARE • SYSTE~ MESSAGE 
IASSIGN 6 SC DEVICE.-OLST fILElafLST SHAREI-SLST RUfFERSat.ERROR MMSSG&5 
IASSIGN 7 DISCI DEVICEr-OOBJ FILElaFOBJ BUFfERS-t LINKSEQ, 
I ACCEssa(ANY,ANV,ANy,ANY) AlLOCATE-Cl,0,64,t0), • OBJECT OUTPUT 
I NEW,aNOBJ REPLACEa-ROBJ ACCESSlaCOBJ ALLOCATEI-LOBJ 
IASSIGN 8 DISCI DEVICEs-DINT FILfC-FINT BUFFERs-t ~ INTERMED ORJECT 
lEND 
.N CREATE HELP ,COMMENT,wH-E-L-P OPERATOR 
IREPLACE HELP • H-E-L-P OPERATOR. 
IEXEC OBJ_Cl,SYSTEM,DXCOPY) MEM-CJe0,3100,150~) PRTV-CI,15), 
I TIME--l MEMC-~E~ PRTYI_PHI TIMEI.TI~ 
IASSIGN 5 DU~MY 
IASSIGN 6 Sc 
IASSIGN 7 DUto1MV 

DEVICEaaOLST 

IASSIGN 8 DISCi FILE-CSYSTEM,HELP) BUFFERS-l 
lEND 
.N CREATE IN1TSP,COMMENT,"INITIAL BATCH OUT SPOOL FILf" 
IREpLACE Hti'fSp • INiiiALIlf BATCH OUTPUT SPOOLER FILE. 
IEXEC OBJaCl,SYSTEM,INITSP) MEM-cJ00,J00,700) PRTY-Cl.5), 
I TIMEa.l PRTYlaPRI 
IASSIGN 6 DISci DEVICEI-OSOQ fJLEaCSYSTEM,SOQ) REPLACE' 
I BUFFERS-l RELREC ACCESSaCCREAT,CREAT,CREAT.CREAT)' 

~ CONTROL/MESSAGE 
l' LISTING 
,. OUTPUT 
• INPUT 

I ALLOCATE-Cl,0,32,l) LRECL-64 • SOQ FILE 
lEND 
,_ CREATE IPlINK,COMMENT,"LINK IPL PROG~AM " 
IREPLACE IPLINK • lINK IPL PROGRAM • 
IEXEC OBJ.(l:SYSTEM~DXOLE) MEMaC]0B~1500e.6000) PRTYa(l,2), 
I TIMEa.l MEMa-MEM 
IASSIGN 1 DISci OEVICE.-OIPl FIlE.(SYSTEM,OXLPF) fILE.-fIPl, 
I BUFfERS-] BUFfERS:-BlpL ~ IPL OBJECT !N 
IASSIGN 5 DISci DEVICE.aDIN FIlEa-FIN BUFfERS-I ~ PRIMARY IN'UT/CON 
IASSIGN 6 Sc DEVICEs-OLST FIlEiaFlST BUFFERS-I • LOADMAP I.IST/ERR 
IASSIGN 8 DISCI DEVICElaOlM fIlE.CUSER0l,IPL) FILE.afLM' 
I REPLACE.aRLM BUFFERS-i RELREC, 
I ACCESS-(ANY,ANy,ANy,ANY) ACCESS.-ClM, 
I ALlOCATE-C6,0,32,6) ALLOCATE •• LLM LRECla64 • IPL LOAD MOO OUT 
'ASSIGN 9 DISCI DEVIeEaaOlIB FIlEaCSYSTEM,USRPLX) ,rLE •• FlIBl 
I BUFFfRS-2 _ • LIBRARY FILE 
IASSIGN 11 DISCI FIlEaCTEMP,SCRL) NEW BUFFERSa! LINKSEQJ 
I ACCE5.S a CANY,ANY,ANY,ANY) AlLOCATE.(10,3IS,258,10) • LINKSEQ SCRATCH 
IASSIGN 11 DUMMY 
IASSIGN 12 DUMMY __ • SY! EXT OfF! OPT 
/ASSIGN 13 DISCI FILEaCTEMP,SCRR) NEW BUfFERS.S RELREel 
I ACCESS.CANY,ANY,ANY,ANY) AlLOCATE.C2.311,128,2), 
I LR[CL-l00 • RELREC SCRATCH 
/END 

B-9 Digital Systems Division 



~~------------------~ 943005-9701 

._ CREATE ITS ,COMMENT,"INTERACTIVE TERMINAL SUBSYS • 
IREPLACE ITS • INTERACTIVE TERMINAL SUBSYSTEM ~ 
IEXEC OBJa(I,SYSTEM,ITS) MEMa(30a.8000,2000) PRTya(2,1)' 
I PRIV TIMEa~1 OBJ.aOBJ MEM.aMEM PRTY.apRI PROTcaPRO 
IASSIGN • DUMMY DEVICE.aTI SHARElaSl ~ TERMINAL 1 
IASSIGN 3 DUMMY DEV ICE laT2 SHARE las2 ,. TERM I NAI. 2 
IASSIGN 5 DUMMY DEV ICE laT3 SHARf .-53 ,. TERM I NA I. 3 
IASSIGN 7 DUMMY DEVICE,aT4 SHARE,-S4 r TERMINAL 4 
IASSIGN ~ DUMMY DEVICEI-T5 SHAREs-55 ,. TERMINAl. 5 
IASSIGN 11 DUMMY DEVICE.-T6 SHAREI-se ,. TERMINAl. 6 
IASSIGN 1:J DUMMY DEVICE.-T7 ,. TERMINAL. 7 
IASSIGN 15 DUMMY DEVICE.aT8 .. TERMINAL 8 
IASSIGN 17 DUMMY DEVICE.-T9 f TERMINAL 9 
IASSIGN 19 DUMMY DEVICE.-TI0 • TERMINAL 10 
lEND 
._ CREATE JCL ,COMMENT,"CREATE JCl PROCEDURE " 'REPLACE JeL . • CREATE JCL PROCEDURE • 
IEXEC OBJaO,SYSTEM,JCLTRN) HEMa(3&".1550,1""0) PRTy.tt,15), 
I TIMEa~l MEM.-MEM PRTYlapRI 
IASSIGN 1 SC DEVICE.-DSRC FILEi-FSRC BUFFERS-! • SOURCE INPUT 
IASSIGN 2 se DEVICE.-DERR SHARE.aSERR ~ ERROR MESSAGE 
,ASSIGN J SC DEVICE.-DLST FILEiaFLST SHARE,aSLST AUFFERS-t~SOURCE I.ISTING 
IASSIGN 4 DISCJ DEVICEI.D08J FILEaCSYSTEM,SJCBFL,AB), 
I FILElaFOBJ REPLACEsaROBJ BUFFERS-2 INDEXED. 
I ACCESS-CANY,ANY,ANY,ANY) ACCESSI-COBJI 
I ALLOCATEaCI,0,96,20) ALLOCATEI-LOBJ KEYLENa6 
lEND 
._ CREATE JCLUP ,COMMENT,"UPDATE JCL SOURCE AND BINARY· 
IREPLACE Jet-up • UPDATE JCL SOURCE AND BINARY FILES • 
IEXEC OBJa(l,SYSTEM,JCLTRN) MEMa(300,1550,1000) PRTYa(I,15), 
I TIM£a~l MEH.aMEM 
'ASSIGN I DISCI FILEaCSYSTEM,JCWQRK) BUFFERSat 
IASSIGN 2 SC DEVIC£.-DERR 
IASSIGN 3 se DEVICEI-DLST 
IASSIGN 4 DISCI DEVICE,-OOBJ FILEaCSYSTEM,SJCBFL,AB), 
I fILElaFOBJ REPLACE.-ROBJ BufFERSa2 INDEXED' 
I ACeESSaCANY,ANY,ANY,ANy) ACCESS.·COBJ' 
, ALLOCATEa(I,0,ge,32) AlLoCATE~aLOBJ KEYLENa6 
IEXEC OBJa(l,SYSTEM,SMR) MEMaCl0a.11500,2000) PRTYaCl.15)' 
I TIMEa-l MEM.aMEM 
'ASSIGN 0 DUMMY 
IASSIGN 4 DISCI FILE.(SYSTEM,JCLCUP) DELETE BUF'ERS-! 
IASSIGN _6 DUMMY 
IASSIGN ~15 DISCI FILEaCSYSTEM,JClSRC) BUFFERS-, 
IASSIGN ~22 DUMMy 
IASSIGN ,25 DISCI FILE-CTEHP,JCLFIl) NEW LINKSEQ BUFFERS-I, 

• OBJECT OUT FILE 

t SOIJRCE INPUT 
, ERROR MESSAGE 
• SOURCE l.ISTING 

• OBJECT OUT FILE 

, ERROR/USER MSG 
r CONTROL 
, LISTING 
f OLD LIBRARY FILL 
• COMPILE OUT 'ILL 

I ACCESS-(ANY,ANY.ANY,ANy) ALLOCATE-(1,lI0,25e,31) r NEW LIBRARY 'ILL 
IASSIGN ,26 DUMMY , JeL UPDAT CON OUT 
IASSIGN ~35 DISCI FILE.CSYSTEM,JCWORK) BUFFERS.I • INCLUDE 
IEXEC OBJ-CI,SYSTEM,SMR) MEM-(301.1150a,2810) PRTY-Cl.15), 
I TIME-~l MEMlaMEM 
'ASSIGN I DUMMY 
IASSIGN 4 DUHMY 
IASSIGN 6 DUH~Y 
IASSIGN ~i5 DISCI F1LEaCTEMP,JCLfIl) BUFf!RS-t 
IASSIGN ~22 DUH~Y 
IASSIGN ~25 DISCI ,tLE-CSYST!M,JCLSRC) BUffERS-! 
IASSIGN ,26 DUMMy 
I(ND 

B-IO 

, ERROR/USER MSG 
f CONTROL 
, LISTING 
f OLD LIBRARY 'ILL 
, COMPILE OUT FILL 

NEW LIBRARY FILL 
: JCL UPDAT CON OUT 

Digital Systems Division 



~-------~ 943005-9701 

,f CREATE lIBBLO,COMMENT,"8UILD LI8RARy FILE " 
IREPlACE LIBBLD • BUILD LIBRARY FILE • 
IEXEC OBJaCt,SYSTEM,LI88l0) "EMa(310,2000.1000) PRTYs(I.15), 
I TIMEs.l MEMlsM[M PRTV.apRI rIME,aTIM 
IASSIGN 5 MT! OEVICElaOOBJ FILE~sF08J BUFFERSa1 • OBJECT INPUT 
IASSIGN 6 SC DEVICEI.OlST FIlE.-FlST SHAREa-SlST RUFFERS.t.YDT/DEF l.ISTING 
/ASSIGN 9 DISCI OEvICEI-OLIB fILE.-FLIB REPLACE,aRLIA, 
I BUFFERSa2 INDExED ACCESSaCANY,ANY,ANy,ANY), 
I ACCEss,aCLIB ALLOCATEaCl,0,128.20) AlLOCATE.-LLIB, 
I KEYLEN a8 • OUTPUT LIB fILE 
IENO 
._ CREATE LINKUP,COHMENT,"LINK MOO AND UPDATE L M fILE" 
IREJiLACE LINKUP • lINK MODULE AND UPDATE LOAD MOOtlLE fILE • 
IEXEC OBJaCl,SYSTEM,OXOL£) MEMaCl00,12ee0.3000) PRTVatl,I)I 
I _ TIM£a.i MEMlaMEMl 
IASSIGN 1 DUMMY OEVICEI.008J FILE.aFOSJ BUFfERSa2 : SECONDARY OBJ IN 
IASSIGN 5 DISci OEVICE.-OIN FILEI-FIN BUFFERS-' t PRIMARY INPUT/CON 
IASSIGN 6 SC DEVICE.aOlST FllEi-FLST BUFfERS-t • LOADMAP LIST/ERR 
/ASSIGN 8 DISCI FIlEaCTEMP.LM) NEw SUFFERS-! RELREC LRECL-64, 
I ACCESS-CANY,ANV,ANY,ANY) ALLOCATE-CI0,JI0,32,10) : LOAD Mno OUTPUT 
/ASSIGN 9 DISci OEVICE.-OPLX FILE_CSYSTEM,USRPLX) FILEI-FPLX, 
I BUFFERSa2 • PLEXUS I.IBRARY 
IASSIGN II DISCI FILEaCTE~p.SCRl) NEW DELETE BUFfERS-I' 
I lINKSEQ ACCESS-(ANy,ANY.ANY,ANY)' • LINKSEQ SCRATCH 
I AllOCATE.(10,301.256,31) 
IASSIGN II DISci OEVICf •• OEXT FILEaCSYSTE~,OXEXTD) FILE.-FEXT. 
I BUFFfRSat ~ SYSTEM EXT OEFS 
IASSIGN 13 DISCI FtlEaCTEMP,SCRR) NEW DELETE BUFfERSsl RELREC, 
I ACCESS.CANY,ANY,ANY,ANY) AlLOCATE-C10,300,t2!,10), 
I LRECLa10~ • RELREC SCRATCH 
IEXEC OBJaCl,SYSTEM,LMUPDT) MEM-cle8.3000,500) PRTYaCt,l)' 
I TIMEa.l MEMI-MEMU 
iASSIGN 4 at OEvifEjaOMSG 
IASSIGN 5 SC OEVICflaDCON SHAREr.SCON 
IASSIGN ~ DISCI ~IlEaCTEMP,LM) BUFFERS-I 
IASSIGN 7 OISC10EVtCEIaOUPO FILE,-,UPD BUFFERs-t 
lEND 
.- CREATE LMUPDT,COMMfNT,"LOAO MODULE uPDATE " IREPLACE lHU'POT • LOAr) MODULE UPDATE ~ 
IEXEC OBJ_(l,SYSTEM,LMUPOT) "EMa(310,318I,50e) PRTVa(1,t)J 
I TIMEa~l MEH,aMEM PRTV~-PRI TIM!,-'IM 
IlSSIGN 4 Sc OfVICE,aOMSG 
IASSIGN 5 SC. _ DEVICE,atiCON ~ILE~.FCON eUFfERs-t 
IASSIGN 0 DISCI DEVICfl.DLM flLElafLM SUffERSa! 
IASSIGN 7 DISC! DEVICEa-OUPO FIlE~aFUPO BUFfERSa1 
lEND 

I' CREATE lP'8l0,CO""!NT,·UPDATI LINKABLE PARTS 'llE " 
IREPlACE L~fBlD • U'OATE LINKABLE PARTS 'lLE • 
IEXEC OIJaCl,SVSTEM,L,'BLD, ME"a(3 •• ,33el,t~ •• , 'RTY~(t,2)' 

f SYSjEM MESSAGE 
._ CONTROL INPUT 
r LOAD MODULE INPUT 
• UPDATE FILE 

,. SYSTEM MESSAGE 
f CONTROL INPUT 
f LOAD MODULE INPUT 
• UPDATE FILE 

I TIMI-.l OIJ.-OBJ MEMI-MEM 
~ CONTROL. 

'ILE-(US£Rlt,AIMOUT) 'IL£,-'OIJ, 
IAISIGN e DUMMY D!YICEI-DCON 
IASSIGN 5 DISCt DIYICEI-DOBJ 

~ OIJ!CT ,INPUT I eU'FERS-l 
IASSIGN e IC O£VICEI.OLST • LIlTING 
IASSIGN 7 DUMMY DEVtC!'80IXT 'IL!,-'EXT R!~LAC!I'R!XT, 
I BUf'!RI-l LINKSEQ ACC£S,a(AN"CREAT,CR£AT,CR!AT', 
I ACCISSIICExT ALlOCATE-Ct,',tll,a., ALLOCAT!i'LEXT • EXTRACT 'IL! 
I'ISI'~ D OIsCt DEVICEI-OUPD 'ILEI.'UPD REPLACEI-RU'O, 
I BUffERI-! INDEXED ACC£I,aCCREAT,CREAT,CREAT,CREAT', 
I ACCESSI-CU,D ALLOCATE-Ct,I,ISS,!8' ALLOCATEI,LU'D, 
I K£vLEN.e • U'DAT! ~Ilf 
lEND ' 

Change 1 B-1l Digital Systems Division 



~-------~ 943005-9701 

,- CREATE LSTEOT,COMMENT,-LIST fOIT FILE • 
IRE'LACE LITEOT • LIST EDIT FILE • 
IEX!C 08J.(I,SYST~M,LSTEOT) "EMa(lI0,1711,651) PRTYaCt,t5), 
I TIHE •• 1 M[H,aMEM PRTYiapRI TIHE,arIM 
IASSIGN II se DEVICf,aOLST 
IASSIGN 21 DISci OEVIC[ •• OIN FILE,aFIN BUFfERsat 
lEND 
.- CREATE PIALGO,COMHENT,-PLEXUS COMP,ILT,ASM.LINK,GO • 

,. SOURCE OUTPUT 
• SOURCE INPUT FILE 

IREPLACE PIALGO • PLEXUS COMpILE, ILT. ASSEMBLE, LINK, ANO GO • 
IEXEC OBJa(l,SYSTEH,PLEXUS) HEMaClI0,>94C0,2798) PRTYaCt,2), 
I TIHEa7200 HEH,aHEM, 
IASSIGN 0 SC OEVICE,aOERR 
IASSIGN 5 DISCI OEVICE,aDSRC FILESaFsRe BUFf[RSal 
IASSIGN 6 SC DEVICEsaDLSTC 
IASSIGN ~22 DISCI FILEaCTEMP,OATA) NEW BUFFERSat LINKSEQ, 

,. ERROR MESSAGE 
t SOURCE INPUT 
• SOURCE I.ISTING 

I ACC~SSaCANY,ANY.ANY,ANY) ALLOCATEa(l0,J00.160,10)~ OATA OIV INT CODE 
IASSIGN ~2J DISCI FILEa(TE"p,PROc) NEW BUFFERSal LINKSEQ, 
I ACCESSaCANY,ANY.ANY,ANy) ALLOCATE.(10.J01.160.10)~ PROC OIV INT CODE 
IASSIGN ~25 DUMMY 
IEXEC OBJ.(I,SYSTEM,ILT980) HEMa(380,>94C0,2508) PRTYaCl,2), 
I TIMEa7200 MEH,aMEM 
IASSIGN 'SC DEVICE,aDERR 
IASSIGN 6 SC DEVrCE,aOLSTI 
IA$SIGN ~.2 DISCI 'ILEaCTEH',DATA) DELETE BUF~ERsal 
IASSIGN ~13 DISCI FILEaCTEMP,PROC) OELETE_BUFfERS.l 
IASSIGN ~1. DISCI FILEaCTEMP,SCRR) NEW 8UFF!RSat RELREC, 

I. ERROR MESSAGE 
f PRIfIITOUT 
• DATA orv INT CODE 
• PROt DIV INT CODE 

I ACCESSaCANY,ANY,ANY,ANy) ALLOCATEaC18,308.128,10)1 
I LRECL ae4 • REL REC SCRATCH 
IASSIGN ~23 DISCI FILE-CTEMP,ILTOUT) NEW BUFFERS.1 LINKSEQ, 
I ACCESS-CANy,ANY.ANY,ANy) ALLOCATEaC10,308.t28,30)~ ILT OUTPUT 
IASSIGN ~24 DISCI fILE-CTEHP,SCRR) BUFFERS-1 f REL REC SCR~TCH 
IASSIGN ~l' DrSCI FILEaCSYSTEM,MDEF) SHARE BUfFERS-1 • MACHINE OESCRIPT 
IEXEC OBJaCI.SYSTEM,ASMBLR) ME"-(310.28008.2808) PRTYa(t,2), 
I TtME_1888 
IASSIGN e DUMMY 
IASSIGN 4 DUHMY 
IASSIGN 5 DISCI fILE-CTEHP,JLTOUT) DELETE BUFFERSa. 
IASSIGN 6 SC DEVICE.-OlSTA 
IASSIGN 7 DISCI FILE-CTEMP,OBJECT) NEW BUffERSal LINKSEQ, 

, SYSTEM MESSAGE 
f CONTROL/MESSAGE 
,. ASSEMBl Y INPUT 
• ASSEMBLY LISTING 

I _ ACC~SSa(ANy,ANY,ANY'ANY) AlLO~ATE.(18.l'l.t28.2e)~ OBJECT OUTPUT 
IASSIGN 16 DISCI FILE-CTEMPfSCRL) NEW BUFFERS-1 LINKSEQ, • 
I ACCfSaaCANY,ANY,ANY,ANy) ALLOCATE-(18.381.256.38). ASSEMBLY SCRATCH 
IEXEC OBJ-(I,SYSTfM,DXOL[) M£Ma(31I,218.1.3811) PRTYaC1.2), 
I TIMe-t811 . 
IASSIGN 5 DISCI fILE-CTEHP,OBJECT) DELETE BUFFERS-I 
IASSIGN 6 St. DEVICE.aOLSTL 
IASSIGN 8 DISCI 'ILEa(TEMP,LH) NEW BUfF!RS-' RELREC, 

, PRIMARY INPUT/CON 
• LOADMAP I.IST/EPR 

I ACC~SSaCANY.ANY.ANY,ANY) ALLOCATEaCtl,J81.32,ll)'. 
I LRECL-'. _ f LOAD MOO OUTPUT 
IASSIGN _9 DISCI FILEaCSYSTEM,U.RPLX) 8UFf!R~-2 f LIBRARY 
IASSIGN ,I DISCI 'IL£a(TEMP,SCRl) DELETE BUFfERsa. , LINKSEQ SCRATCH 
IASSIGN 13 DtSCI fIL£-(TEMP,SCRR) DELETE 8UffE~S-1 • RELREC SCRATCH 
IEX!C OBJa(t,TEMP,LM) "£M-(3.8,2,1.I.l,I.) PRTY-(1,2), 
I TIMEatl'l 
IASSIGN • ac. OEVICE.-DERR 
IASSIGN 5 DISCI DEVICE.aDINI flLE,-flNt BUFFERS-. 
IASSIGN ,se DEVICE,-DOUTI 
/ASSIGN ~i2 DUMMy DEVIC!.-DI~~ 
IASSIGN ~22 OUMMY DEVICE.-DOUT2 
IASSIGN ~~. DUMMY DEVICE,-O'I 
IASSIGN ~3. DUMMY DEVICE,-O'1 
lEND 

fILf'-FIN2 BUfFERSa, 
fILE.-FOUTa BUFFERS-' 
FIL£,aFF. BU'FERSa. 
fILE'aFF. BUfFERSa. 

B-12 

I' ERROR MESSAGE 
I' PRIMARY INPUT 

PRIMARY OUTPUT 
~ SECONDARY INPUT 
f SECONDARY INPUT 
I' FILE " 
• trILE 1 

Digital Systems Division 



~~-----------------~ 943005-9701 

.~ CREATE PIALNK,COMMENT,"PLEXUS CO~P,IlT,ASM,AND LINKR 
/REPLACE PIALNK • PLEXUS COMpILE. ILl. ASSEMBLE, AND LINK. 
/EXEC OBJaCl,SYSTEM,PLEXUS) MEM a C3e0,>g4C0,2700l PRTY-CI,2), 
I TIMEa7200 MEMs-MEM 
IASSIGN 0 SC DEVICEs-DERR 
IASSIGN 5 DISCI DEVICEs-DSRe FILEsaPSRC BUfFERS-l 
IASSIGN 6 SC DEVICE.aDLSTC 
IASSIGN ~22 DISCI fILEaCTEMP,DATA) NEW BUFfERSa. LINKSEQ, 

," ERROR MESSAGE 
t SOURCE INPUT 
• SOURCE l.ISTING 

I ACCESSaCANV,ANY,ANY,ANy) ALLOCATEa(t0,300.160,10)~ DATA OIV INT CODE 
IASSIGN ~2J DISCI FtLEaCTEMP,PROc) NEW BUffERsa, lINKSEQ, 
I ACCEssa(ANY,ANY,ANY,ANy) ALLOCATEa(.0,J00.t60,10)~ PROC DIV INT CODE 
IASSIGN ~25 DUM~Y 
IEXEC OAJ.Cl,SYSTEM,ILT980) MEM a CJe0,>g4C0,2500' PRTY-(t,2)J 
/ TIMEa7200 MEMlaMEM 
IASSIGN 0 SC OEVICEsaOERR 
IASSIGN _6 SC DEVICEs-OlSTI 
IASSIGN ~12 DISCI FILE.(TEMP,DATA) DELETE BUffERS-! 
/ASSIGN ~lJ DISCI FILE.CTEMP,PROC) DELETE_BUffEPS.l 
IASSIGN ~14 DISCI fILEaCTEMP,SCRR) NEW BUfFERSal RELRECJ 

,. ER~OR MESSAGE 
r PRINTOUT 
, DATA OIV INT CODE 
.. PROC OIV INT CODE 

I ACCESS-(ANY,ANY,ANY,ANY) ALLOCATEa(fe,J00.128,10), 
I LRECl-64 • REL REC SCRATCH 
IASSIGN ~2J DISC! fILEaCTEMP,ILTOUT) NEW BUfFERs-t LINKSEQ, 
I ACCESS-CANY,ANY,ANY,ANy) ALLOCATE-(t0,J0e.128,30)~ ILT OUTPUT 
IASSIGN ~24 DISCI FILE.(TEMP,SCRR) BufFERS-t ~ ~EL REC SCRATCH 
IASSIGN ~J0 DISCI FILEaCSYSTEM,MOEF) SHARE BUFFfRS-l • ~AC~tNE DESCRIPT 
IEXEC OBJ-O,SYSTE;M,ASMBLR)' MEM·CJ00,20000,2000) PRTY-O,2)J 
I TIMEal80e 
IASSIGN "DUMMY f SYSTEM MESSAGE 
IASSIGN 4 DUMMY , CONTROL/MESSAGE 
IASSIGN 5 DISCI FILE-CTEMP,ILTOUT) DELETE BUFFERS-I ~ ASSEMBLY INPUT 
IASSIGN 6 SC DEVICE.-OLSTA • ASSEMBLY LISTING 
IASSIGN 7 DISCI FILEaCTEMP,08JECT) NEW BUFfERSat LINKSEQ, 
I ACCESS-CANy,ANY,ANY,ANy) .LLOtATE-(10,J0e.128,20)~ OBjECT OUTPUT 
IASSIGN 16 DISCI F!LE-CTEMP,SCRL) NEW BUFFERS-I LINKSEQ, 
I ACCESS-CANY,ANY,ANY,ANY) ALLOCATE-(t0,J0B.2~6,30)~ ASSEMBLY SCRATCH 
/EXEC OBJaCl,SYSTEM,DXOLEl ~EM-C]00,20000,3000) PRTY-tt,2), 
I TIME-1800 
IASSIGN 5 DISCI FILE-CTEMP,OBJECT) DELETE BUFFERS-l 
IASSIGN 6 SC DEVICEsaDLSTL 
IASSIGN 8 DISci DEVICEs-OLM FILE-CUSER01,GO) FILE •• FLM, 
I REPLACEs-RLM BUFFERS-i RELREC, 
I ACCE5S~(ANYiANYIANYIANY) ACCES~!.CLM! 
/ ALLOCATE.(l0,1,32,11).ALLOCATE,-LLM LRECL-&4 
/ASSIGN 9 DISCI FILE-CSYSTEM,USRPLX) eUFFERO-2 
IASSIGN 10 DISC! FILE.CTEMP,SCRL) DELETE BUFFERS-1 
IASSIGN l3 DISCI fILE-CTEMP,SCRR) DELETE BUfFERS.1 
lEND 
.~ CREATE PLEXGO,COMMENT,wEXECUTE PLEXUS GENERATED L MW 
IREPLACE PLEXGO • EXECUTE PLEXUS GENERATED LOAD MODULE • 
/EXEC OBJa(1,USER01,GO) MEM-(l0e,1208B,llaO) PRTy.C4,te), 
I TIME-1800 OBJ,-OBJ MEM,-MEM PRTy,-PRI TIME.-TIM 
IASSIGN e se DEVICE,-DERR 
/ASSIGN 5 DISCI DEVICE,.DINI FILEI-FINl BUFFERS-, 
/ASSIGN _6 SC DEVICE.-DOUT1 
IASSIGN ~12 DUMMY DEVICE,-DIN2 
IASSIGN ~lJ DUMMY DEVICEs-DINl 
IASSIGN ~22 DUMMY DEVICE.aDOUT2 
IASSIGN ~~J DUMMY DEVICE.-DOUT] 
IASSIGN ~~e DUMMY OEYICE.aOF0 
/ASSIGN ~l' DUMMY DEVICE,-DFl 
/END 

FILE.·FIN2 
FILE.-FIN] 
FILEs-FOUT2 
FILE'-FOUT3 
FILE'-FFIlI 
FILEI-FFS 

BUFfERS-l 
BUFFERS-! 
BUFFERS-S 
BUFFERS-S 
BUFFERS-! 
BUFFERS-! 

B-13 

: PRIMARY INPUT/CON 
• LOADMAP l.IST/ERR 

f LOAD MOD OUTPUT 
f LIBRARY 
r lINUSEQ SCRATCH 
.. RELREC SCRATCH 

I' ERROR MESSAGE 
r PRIMARY INPUT 
f PRIMARY OUTPUT 
r SECONDARY INPUT 
r TERTIARY INPUT 
f SECONDARY OUT~UT 
, TERTIARY OUTPUT 
r rILE 21 
.. FILE ! 

Digital Systems Division 



~r7s\ ______ _ ~ Q43005-9701 

.* CRE.TE PLEXIA.COMMENT,wPLEXUS COMPILE, ILT. AND ASM-
IREPLACE PLEXIA • PLEXUS COMPILE. ILT •. AND ASSEMBlE • 
,EXEC OBJa(I,SYSTEM,PLEXUS) MEMac300.>94C0.210S) PRTYaCl,2), 
I TIME.1200 MEMlaMEM TIMElarIM 
'ASSIGN 0 SC OEVICEsaOERR 
,ASSIGN 5 DISCI DEVICEsaDSRC FILE •• FSRC BUFfERsal 
,ASSIGN 6 SC DEVICE.aDLSTC FILEI.FLST BUFFERS-, 
,ASSIGN ~2? DISCI FILE.(TEMP,DATA) NEw BUfFERS-I LINKSEQ, 

,. rRROR MESSAGE 
," SOURCE INPUT 
.. SOURCE I.ISTING 

, ACCESS-(ANY,ANY.ANY,ANy) ALLOCATE-(t0,30e.160,1~)~ DATA DIY tNT CODE 
,ASSIGN ~23 DISCI FILE-(TF.MP,PROC) NEw BUffERS-' LINKSEQ, 
I ACCESS-(ANY,ANY,ANY,ANy) ALLOCATE.(t0,Je0.160.1A)~ PRot DIY INT CODE 
,ASSIGN ~25 DUMMY 
IEXEC OBJ-(I,SYSTEM,ILT980) MEM-cJS0,>94C0,2500' PRTY.Ct,2), 
I TIME-1200 MEMI-MEH TtMElaTIM 
IASSIGN 0 SC DEVICEI-DERR 
IASSIGN 6 SC DEVICE.-OLSTI FILE.·FLST BUffERS-t 
,ASSIGN ~12 DISCI FtLE-(TEMP,DATA) DELETE BUfFERS-' 
IASSIGN ~lJ DISCI ftLE-(TEMP,PROc) DELETE BUffERS-' 
,ASSIGN ~i4 DISCI FILE-(TEMP,SCRR) NEW BUffERS-' RELRECJ 

," ERROR MESSAGE 
,. PRINTUUT 
f DATA OIV INT CODE 
• PROC DIV INT CODE 

, ACCES!-CANY,ANY,ANY,ANy) ALLOCATE-(10.JeB.128,lA), 
, LRECL-64 : REL REC SCRATCH 
'ASSIGN ~2J DISCI FILE-(TEHP,ILTOUT) NEW BUFfERS-' LINKSEQ, 
I ACCESS-(ANY,ANY.ANY,ANy) ALLOCATE~(le,300.t28,30)~ ILT OUTPUT 
/ASSIGN ~24 DISCI fILf.(TEMP,SCRR) DELETE BUffERS-' ~ REL REC SCRATCH 
/ASSIGN ~3e DISCI FIL!-tSYSTEM,MOfF) SHARE BUffERS-1 • MACHINE DESCRIPT 
IEXEC OBJ-(1,SYSTEM,ASM8lR) MEM-C300,200B0.2000l PRTYaCl,2), 
, TIME·18~0 

IASSIGN 0 DUMMy f SYSTEM MESSAGE 
IASSIGN 4 DUMMY CONTROL/MESSAGE 
IASSIGN 5 DISCI FILE~(TEMP,rLTOUT) BUFFERS-, f ASSEMBLY INPUT 
,ASSIGN 6 BC. DEVICE.-OLSTA FILE.-FlST BUFFERS-1 ~ ASSE~BLY LISTING 
/ASSIGN 7 DISCI DEvrCE.-DOBJ fILE-CUSER01.ASHOUT) fILE.-fOBJ, 
/ REPLACE BUfFERS-, LIN~BEQ ACCESS.CANY,ANV.ANV,ANY,J 
, ACC~SS.-C08J ALLOCATE-C1.0.120,2e, AllOCATE.-lOBJ. OBJECT OUTPUT 
/ASSIGN 16 DISCI FIlE-CTEHP,SCRl) NEW BUfF!RS-t llNK9EQ, 
/ ACCESS-CANY,ANY.ANY,ANY) ALLOCATE-(10.308.256,30)~ ASSEMBLY SCRATCH 
lEND 

B-14 Digital Systems Division 



~-------~ 943005-9701 

,. CREATE PLEXUP,COMMENT,·PLEXUS G~NERATED UPDATE LPF W 

IREPLACE PLEXUP • PLEXUS COMpILE, ILT, ASSEMBLE MODULE ANn UPOATE l.PF • 
IEX~C OBJ-C1,SYSTEM,PLEXUS) HEM-C3B0,>94C0,2700) PRTY-Cl,2)J 
I TIMEa7200 MEM.-MEM TIMF.iaTIM 
IASSIGN 0 se DEVICE,-DERR 
,ASSIGN 5 DISCI DEVICE,aDSRC FIlEI-PSRC BUfFERS-' 
IASSIGN 6 SC DEVICE.-OlSTC FILEI-'lST BUFFERS-1 

,. ERROR MESSAGE 
,. SOURCE INPUT 
• SOURCE I.ISTING 

,ASSIGN ~22 DISCI FILEaCTEMP,OATA) ~EW BU~fERsal LINKSEQJ 
, ACCESSaCANY,ANY,ANY,ANy) AllOCATEaC10,300.t60,t0)~ DATA DIV INT CODE 
IASSIGN ~2J orsc! FILE-CTEMP,PROc) NEW BUFFERS-t lINKSEQ, 
I AeCESSaCANY,ANY,ANY,ANy) AlLOeATE-(t0,J00.t60,t~)~ PROC DIV INT CODE 
,ASSIGN ~25 DUMMY 
IEXEC OBJaCi,SYSTfM,ILf980j MEMa{300,>g4C0,2500) pRTYa(i,2)J 
I TIME-7200 MEMlaMEM TIMElarIM 
IASSIGN 0 se DEVICE,-DERR 
IASSIGN 6 SC DEVICE.aDLSTI FILE'-FLST BUFFERS-t 
IASSIGN ~1~ DISCI FIlE-CTEMP,DATA) DELETE BUFfEPS-1 
IASSIGN ~lJ DISCI fIlEaCTEMP,PROc) DELETE BUFfERS-! 
IASSIGN ~14 DISCI FILE-CTEMP,SCRR) NEw BUfFERsa! RELREC' 

,. ERROR "1ESSAGE 
,. PRINTOUT 
f nATA DIV INT CODE 
• PROC DIV INT CODE 

I ACCESSaCANY,ANY,A~Y,ANY) AlLOCATE-C10,J00.128,1~)' 
I LRECL-64 ~ REL REC SCRATCH 
IASSIGN ~2J DISCI FILE-CTEMP,ILTOUT) NEw BUFfERs-t LINKSEQ, 
I ACCESSaCANY,ANY,ANY,ANy) ALLOCATE-(t0,Je0.128,30)~ ILT OUTPUT 
IASSIGN ~24 DISCI FILEaCTEMP,SCRR) DELETE BUfFERS-I ~ REL REC SCRATCH 
IASSIGN ~30 DISCI FILEa(SYSTE~6~OEF) SHARE BUfffRS-l • MACHINE DESCRIPT 
IEXEC OBJ-Cl,SYSTEM,ASMBLR) MEMaCJee.200e0,200e) PRTYaCt,2), 
I TIMEaI8~0 
IASSIGN 0 DUMMY 
IASSIGN 4 DUMMY 
'ASSIGN 5 DISCI FILEa(TEMP,tLTOUT) DELETE BUFFERS-1 
IASSIGN 6 SC DEVICE.-OLSTA FILEI-FLST BUfFERS-t 

.. SYSTEM MESSAGE 
, CONTROL/~ESSAG[ 

.. ASSEMBLV INPUT 
• ASSEMBLV LISTING 

,ASSIGN 7 DISCI FILEa(TEMP,AS~OUT) NEW BUFFERS-! LINKSEG, 
I ACC~SSa(ANy,ANY,ANY'ANY) ALLOCATE-(10.Je0~128,2~)~ OBJECT OUTPUT 
IASSIGN 16 DISCI FILEaCTEMP,SCRL) NEW DELETE BUffERS-t, 
I LINKSEQ ACCESS-(ANY,ANY,ANy,ANY), 
, ALLOCATE-(10,JB0,256,30) e ASSE~BLY SCRATCH 
IEXEC OBJa(I,SYST~M,LPFBLD) MEM a C300,8B00.J000) PRTy a rt,2), 
I TIME--I 
IASSIGN 0 DUMMY , CONTROL 
IASSIGN 5 DISCI DEVICE.-OOBJ FILEaCTEMP,ASMOUT) BUFFERS-I f OBJECT INPUT 
IASSIGN 6 SC DEVICElaOlSTU FILEI-FLST BUfFERS-1 • tJPDATE l.ISTING 
IASSIGN 9 DISCI OEVICE.aDUPD FllE-CSYSTEH,DXLPf) FILE.-FUPDI 
I BUFFERSa2 • UPOATE FILE 
lEND 
._ CREATE RESTLP,COMMENT,wRESTORE LPF FROM MT TO OISC W 

IREPLACE RESTLP • RESTORE LPF FROM MAG TAPE TO DISC • 
IEXEC OBJaCI,SYSTEM,DXCOPY) HEHa(300.4080,3000) PRTY arl,2), 
I TIME-.l "fH.-MEM 
IASSIGN 5 DUMMY DEVICE.aDCON 
IASSIGN e SC OEVICE.-OLST FILElaFLST 8UFFERSat 
IASSIGN 7 DIsci OEVICEa-OOUT FllE-CSYSTEM,LPf) FILEI-FOUT, 
I REPLACE 8UPF£RSa2 8U~FERS'.BOUT INDEXED, 
I ACCE5Sa (ANY.ANV.ANV,ANY) ACCE8S.aCOUT, 
I ALLOCATEaC2,1.128,51) A~LOCATEi.LOUT KEYLENa6 
IASSIGN 8 MTI DEVICE.aOIN FILE,-FIN BUFFERSa2 
lEND 

B-15 

~ CONTROL/MESSAGE 
• LISTING 

f OUTPUT 
• INPUT 

Digital Systems Division 



~-------~ 943005-9701 

._ CREATE SMR ,COMMENT,·SOURCE MAINTENANCE ROUTINE • 
IRE PLACE SMR • SOURCE MAINTENANCE ROUTINE • 
IEXEC OBJaCI,SYSTEM,SMR) MEMaC308,1150B,5~00) P~TY.(1,15)' 
I TIMEa.! MEMlaMEM 
IASSIGN 0 SC OEVICElaOMSG f ERROR/USER M5G 
IASSIGN 4 SC DEVICEsaDeON FILE.afCON BUffE~Sa1 , CONTROL 
IASSIGN 6 DUMMY OEVICE,aDLST FILEt_fLST 8urfERS-1 , LISTING 
IASSIGN ~15 MTI DEVICE,-DOLD FILEtafOLD BUfFERS-l LINKSEQ • OLD LIBRARY fILL 
IASSIGN ~2? DUMMY DEVICEs-DCOM FILEtafCOM REPLACE,-RCOM' 
I BUFFERS-! LINKSEQ ACCESSa(ANY,ANY.A~Y,ANY), 
I AlLOCATEa-LCOM 
IASSIGN ~25 DUMMY DEVICE.aDNEW FILEtafNEW REPLACEtaRN[WJ 
I BUFFERS-I LINKSEQ ACCESSaCANY,ANY,ANy,ANYlJ 
I ALLOCATE,aLNEW 
IASSIGN ~26 DUMMY 
'ASSIGN ~35 DUMMY DEVICE1-DEV35 FILESaFIL35 BUfFERSa2 
,ASSIGN ~45 DUMMy DEVICE,-DEV45 FILE,aFIL45 BUfFERSa2 
lEND 
.* CREATE SMRASM,COMMENT,"SMR, ASM, AND U~OATf LPF 
IREPLACE SHRASM • SHR, ASH, UPDATE LPf • 

• 
IEXEC OBJ.(!,SYSTEM,SMR) MEMa(388,11500,5018) PPTYaCl.15), 
I TIMEa-1 
,ASSIGN 0 DUMMY 
IASSIGN 4 SC DEVICEs-OCON FILE,afCON BUffERS-t 
IASSIGN 6 DUMMY OEVICE.aOLST 
IASSIGN ~15 MTI DEVICE.aOOLO FILEtaFOLD BUf~£Rsal 
IASSIGN ~22 DISCI FILEa(TEMP,SMRWRK) NEW BUFfERSat LINKSEQ, 
I ACCESSaCANY,ANY.ANY,ANy) AtLOCATE a C,,380,128,20) 
IASSIGN ~25 DUMMY 
IASSIGN ~26 DUMMY 
IASSIGN ~35 DUMMY 
IASSIGN ~45 DUMMY 
IEXEC OBJaCI,SYSTEH,ASMALP) HEMa(300.21800.2000' ~RTY_(t,2)' 
I TIMEaI80~ 
IASSIGN B DUMHy 
/ASSIGN 4 DUMMY 
IASSIGN 5 DISCI fILEaCTEHP,SMRWRK) DELETE BUFFERS-l 
IASSIGN 6 se DEVIeE.aOLST 

• COMPILE OUT FILL 

f NEW LIBRARY FILL 
~ JCL UPDAT CON OUT 
f INCLUDE LUN OPT 1 
• INCLUDE l.UN OPT 2 

,. ERROR/USER MSG 
, CONTROL 
,. LISTING 
• OLD LIBRARY FILl 

,. COMPILE OUT FILL 
f NEW LIBRARY fILL 
f JCL CON OUT fILL 
,. INCLUDE LUN OPT 
• INCLUDE l.UN OPT 

I' SYSTEM MESSAGE 
~ CONTROL/MESSAGE 
,. ASSEMBLY INPUT 
• ASSEMBLY LISTING 

IASSIGN 7 DISCI FILE-CTEMP,ASMOUT) NEW surfERS-! LINKSEQ, 
/ ACCESS-(ANY,ANY.ANY,ANY) ALLOCATE-(11,318.128.3a)~ OBJECT OUTPUT 
/ASSIGN 16 DISCI FILE-(TEMP,SCRL) NEW DELETE BUffERS-I' 
I LINKSEQ ACCESSaCANY,ANy.ANy,ANY), 
/ ALLOCATEaCI8,JI8,256,31) • ASSEMBLY SCRATCH 
/EXEC OBJa(I.SYSTEM,LPF8LO) HEMaC310.8e80,3000} PRTYaCl,2), 
I TIME--l 
/ASSIGN 8 DUMMY 
/ASSIGN 5 DrSCI FILE~CTEMP,ASMOUT) 8UffERSat 

,. CONTROL 

/ASSIGN 6 SC DEVICEs-DL!T 
IASSIGN 'DISCI OEVICf.aOUPD 

,. OBJECT INPUT 
• UPDATE l.ISTING 

FILE-CSYSTEM.OXLPF) ,rLE.aFUPOI 
/ BUFFERSa2 • UPDATE FILE 
lEND 

B-16 Digital Systems Division 



~-----..------~ 943005-9701 

.- CREATE SMRPLX,COMMfNT,·SMR,PLEXUS.llT,ASM,UPDAT LPFR 
IREPLACE SHRP~X • SMR. PLEXUS. ILT. ASM, UPDATE LPF • 
IEXEC OBJ-(l,SYSTEM,SMR)MEM-CJ~9,1150B,5000) PRTYaCl.t5)I 
I TIME--l 
IASSIGN "DUMMY 
IASSIGN 4 SC DEVICE,-OCON fILEtaPCON BUFfERSa l 
IASSIGN 6 DUMMY DEVICE.-DLST 
IASSIGN ~15 MTl DEVICE,aDOLO fILEt.FOlD ~UFfERS-l 
I ASSI GN ~22 0 I SC 1, F ILEa (TEMP, SMRWRK) NEW BUFfERSal LI NI(SEIH 
, ACCESSa(ANY,ANY.ANY,ANy) ALLOCATEa("J~0,t28,30) 
IASSIGN ~25 DUMMY 
IASSIGN ~26 DUMMY 
IASSIG~ ~J5 DUMMY 
IASSIGN ~45 DUMMY 
IEXEC OBJ-(I,SYSTEM,PLEXUS) ~EM-(300,>94C0,2500l PRTY-Cl,2)1 
I TIME-7200 MEMa-MEM 
IASSIGN o DUMMY 
IASSIGN 5 DISCI fILE-(TE~P,SMRWRI() RUFFERS-l 
IASSIGN 6 SC DEVICEaaDLST 
IASSIGN ~22 DISCI FILE-CTEMP,DATA) NEW RUFFERS-t LINKSEQI 

• ERROR/USER MSG 
,. CONTROL 
• ll-ST I NG 
~ OLD LIBRARY FILl 

t COMPILE OUT FILL 
~ NEW LIBRARY FILL 
~ JCL CON OUT FILl 
.. INCLUDE tUN OPT 
• INCLUDE LUN OPT 

,. [RROR MESSAGE 
,. PRJ MARY INPUT 
• SOURCE l.ISTING 

I ACCESSaCANY,ANY.ANY,ANy) ALLOCA1E-C10,J0B.t60,1~)~ nATA OIV INT CODE 
IASSIGN ~2J DIS~l FILEaCTEMP,PROC) NEW BU~FERSat LINKSEQ, 
I ACCESS-CANY,ANY,ANY,ANy) ALLOCATE8(t",J0~.16",1~)~ PRot DIV I~Ji CODE 
IASSIGN ~25 DUMMY 
IEXEC ORJaCi,SYSTEM,ILT980) MEM a CJ0F.,>94C0,2500) PRTY-(i,2); 
I TIMEa12~0 MEMI-MEM 
IASSIGN 0 DUMMY 
IASS!GN 6 SC DEVICE.aDLST 
IASSIGN ,t2 DISCI FILEaCTEMP,DATA) DELETE BUFfERSa 1 
,ASSIGN '1] DISCI FILEa(TEMP,PROc) OELETEBUFFERsal 
IASSIGN '14 DISCI FILEaCT[MP,SCRR) NEW BUFFERS-t RELREC' 

f E~ROR MESSAGE 
~ PRINTOUT 
~ OATA DIV INT CODE 
• PROC DIV INT CODE 

I ACCESSw(ANY,ANY,ANY,ANy) ALLOCATEaCt0,J00.128,lA)1 
I LRECl-64 • REL REC SC~ATCH 
IASSIGN ~2J DISCI FILE-CTEMP,ILTOUT) NEW BUfFERSa1 LJNKSEQ, 
, ACC~SSa(ANY,ANY,ANY'A~Y) ALLOCATEa(t0,J0a.128.J0)~ ILT OUTPUT 
'ASSIGN ~24 DISCI FILEa(TEMP,SCRR) DELETE BUffERSal • PEL REC SCRATCH 
IASSIGN ~30 DISCI FILEa(SYSTEM,MOEF) BUFfERSat ~ MACHINE DESCRIPT 
'EXEC OBJa(l,SYSTEM,ASMBLR) MEMaC3a0,28000,2000l PRTY-Ct,2)1 
I TIMEa1800 
IASSIGN 0 DUMMY 
IASSIGN 4 DUMMY 
IASSIGN 5 DISCI fILEaCTEMP,JLTOUT) OELETE BUFFERS a1 
IASSIGN 6 SC DEVICE.aDLST 
IASSIGN _7 DISCI FILEaCTEMP,SMRWRK) BuFFERS-t 
IASSIGN 16 DISCI FILE-(TEMP,SCRL) NEW DELETE BUFrERS-I' 
I LINKSEQ ACCESS-CANY,ANY,ANy,ANY" 
I ALLOCATE-C10,300,256,30) 
IEXEC OeJaCl,SYST~M,LPF8LO) MEM a c3e0.8e08.3100) PRTY a tl,2), 
I TIMEa~l 

, SYSTEM MESSAGE 
~ CONTROL/MESSAGE 
,. ASSEMBLY INPUT 
~ ASSEMBLY LISTING 
• OBJECT OUTPUT 

• ASSEMBLY SCRATCH 

IASSIGN e DUMMY' r CONTROL 
IASSIGN 5 DISCI FILEaCTEMP,SMRWRK) BuFFERS.t , OBJECT INPUT 
IASSIGN 6 SC DEVICEsaOLST • UPDATE I.IITING 
IASSIGN 9 DISCI DEVICE.-OUPD FILEaCSYSTEM,DXLPF) FILE •• FUPDI 
I BUFFERsa2 • UPDATE FIL£ 
lEND 

B-17 Digital Systems Division 



~-------~ 943005-9701 

I_ CREATE YANK ,COMMENT,"FETCH JCL SEQUE~CE • 
IRE'LACE YANK • fETCH JCL SEQUENCe • 
IEXEC OAJa(I,SYSTEM,S~R) ~EMaCJ00.1150s,5B00) PRTY-(1.1!)' 
I TIMEa~t MEMlaMEM PRTYlaPRI TIMElaTIM 
IASSIGN 0 DUMMY 
IASSIGN ~ SC DEVICE.aOCON 
I ASSIGN 6 DUMMY OEvICEaaOLST 
IASSIGN ~i5 DISCI fILEaCSYSTEM,JCLSRC) BUffERS-t 
IASSIGN ~22 DISCI FILEaCT[MP,(OMPIL) NEW BUFfERSa1 LINKSEQ, 
I ACCESSa(ANY,ANY.ANY,ANy) ALLOCATEa(1,0,256,J) 
IASSIGN ~25 DUMMY 
IASSIGN ~26 DISCI FILEa(SYSTEM,JCLCllP) REPLACE BUfFERSaU 
I LINKSEQ ACCESSa(ANY,ANY.ANy,ANY), 
I ALLOCATEa(1,e.64,1) 
IEXEC OBJa(t,SYSTEM,BLOEOT) MEMa(Je0,5S0,2000) PRTY-Ct,t5), 
I TIME-~l MEMlaMEM PRTYlaPRI TIMElaTIM 
IASSIGN 10 DISCI FILEaCTEMP,COMpIL) BUFfERSal 
IASSIGN 20 DISCI FILEa(SYSTEM,JCWORK) REPLACE BurfERSa2, 
I INDEXED ACCESSaCANY,ANY,ANy,ANY), 
I ALLOCATEa(t.0.256,J) KEYLENa2 
IENI) 

B-18 

r ERROR/USER M~G 
r CONTROL 
,. LISTING 
• OLD LIBRARY FILt 

: COMPILE OUT FILt 
• NEW LIBRARY FILL 

• JCL UPOAT CON OUT 

• SOLIRCE INPUT 

• SOURCE OUT FILE 

Digital Systems Division 



J}7S\ ______ _ ~ 943005-9701 

APPENDIX C 

ADDING TO ITS 

Digital Systems Division 



~~------------------~ 943005-9701 

APPENDIX C 

ADDING TO ITS 

e.l ITS INTERNAL STRUCTURE 

NOTE 

The 1'1';:' design includes the ability to support a 
polled terminal for future expansion. This fea
ture does not apply to the hardware currently 
supported with DX980. 

Before modifying ITS or adding application programs to run under ITS, the 
programmer must understand the structure of the subsystem. The subsys
tem consists of four main parts: Terminal Process Monitor, Terminal I/O 
subroutines, Supervisor, and individual application programs" Figure C-l 
illustrates the interrelation of these components. The following paragraphs 
explain the operation of each component. 

I/O SUBROUTINES 

ITTPMN 
POST 

ITFDIO 

SVC 
TERMINAL --,- FULL 
PROCESS DUPLEX 
MONITOR I I/O 

I 
BRANCH AND I 

• 
LINK I n 

ITINIT ITSTBL ITSUPV 
I 

ITPSIO 
I 

STATE L_ POLLED ITS TABLES, r-- SUPERVISOR 
INITIALIZER ENTRY BUFFER 

TABLES I/O 

*BRANCH AND LINK , , , • ITIFE ITRJE ITSTAT 

INTERACTIVE REMOTE READ OTHER 
FILE JOB STATUS USER 
EDITOR ENTRY APPLICATION 

PROGRAMS 

v 

(A)130112 
APPLICATION PROGRAMS 

Figure C -1. ITS Components 

Digital Systems Division 



VI 943005-9701 ~
o 

------------------------------------------------------------------------------------------
C.l.l TERMINAL PROCESS MONITOR 

The Terminal Process Monitor (ITTPMN) is the main task for ITS and coor
dinates the operation of the other tasks in the subsystem. Figure C-2 pro
vides a conceptual flow chart for ITTPMN. The monitor calls two subrou
tines, scans the PRCESS flag for each of the terminals connected to it and 
activates the I/O subroutines. 

C. 1. 1 • 1 ITINIT. When ITS is first activated, the monitor calls the ITINIT 
subroutine. This subroutine examines the Logical Device Tables (LDT) for 
the job, to determine what terminals are under control of ITS, and the DX980 
Physical Device Table (PDT) for the assigned devices, to determine the 
characteristics of each terminal. (ITS uses a special SVC so that these func
tions can be performed while executing in the protected mode.) From this 
information the subroutine builds a terminal list in the ITS workspace area 
for each terminal assigned to ITS. The list contains the characteristics of 
the terminals. Table C -1 defines the information contained in a list entry 
for one of the terminals. 

In addition to building a terminal list, ITINIT allocates one I/O buffer for 
each full duplex terminal and a specified number of 1/ a bU£fe rs to support 
polled terminals. Each full duplex I/O buffer is permanently assigned to the 
full duplex terminal. The polled terminal I/O buffers are dynamically as
signed. ITINIT also allocates 'one Physical Record Block (PRB) and creates 
one I/O task for each I/O buffer. The I/O tasks for full duplex buffers use 
the reentrant procedure, ITFDIO. The I/O tasks for polled buffers use the 
reentrant procedure, ITPBIO. ITINIT sets the Read Terminal (RDTRM) flag 
for each of the terminals and starts them in their respective I/O task. When 
all I/O tasks are created, ITINIT returns control to ITTPMN. The I/O tasks 
are described later in this section. 

c. 1. 1. 2 TERMINAL LIST SCAN. When ITINIT returns to ITTPMN, the 
monitor starts scanning each entry in the Terminal List to determine if any 
PRCESS flags are set. The PRCESS flag indicates that the terminal operator 
has entered a complete record that is ready for processing by ITS. When 
ITTPMN encounters a terminal entry with a set PRCESS flag, it calls the 
Supervisor (ITSUPV) to service the request from the terminal. If ITTPMN 
scans the entire Terminal List without finding a set PRCESS flag, it suspends 
itself for one-half second. At the end of the delay period, ITTPMN reacti
vates and begins the table scan again. Each scan cycle after the delay period 
begins with the first entry in the list and continues sequentially through the 
list until it reaches the end or detects a PRCESS flag. When returning to the 
scan cycle after servicing a PRCESS flag, the scan starts at the terminal 
following the serviced term.inal in the list. ITTPMN does not take the one
half second delay at the end of a cycle if it has serviced a term.inal during that 
cycle. 

C-2 Digital Systems Division 



~~-----------------~ ~ 943005-9701 

(B)130113 

Figure C-2. 

( ITTPMN ) 

ITINIT 

BUILD 
TERMINAL 
LIST 

SET TERM INAL 
LIST POINTER. 
N=O 

YES 

SVC 8 
POST lTFDIO 

NO 

NO 

SVC 7 
SUSPEND FOR 
1/2 SECOND 

O-BUFFER 
AVAILABLE 

O-LINE 
AVAILABLE 

SVC 8 
POST ITPBIO 

N+I-N 

Terminal Process Monitor Conceptional Flow Chart 

C-3 Digital Systems Division 



~~-------------------~ 943005-9701 

Word Bit 

a a 

1 

2 

3 

4-7 

8-15 

1 0-15 

2 0-15 

3 0-15 

4 0-15 

Table C-l. ITS Terminal List Entry 

Field Name 

RDTRM 

TYPTRM 

PRCESS 

WRTTRM 

BFNUM 

LUN 

TRMTSK 

UCBPTR 

PRBPTR 

TRBFLN 

Definition 

Read Terminal Flag: Setting this flag in
structs the 1/ a task for the terminal to 
issue a Read Terminal I/O call. 

Terminal Type: If this bit is a 0, the cor
responding terminal is a full duplex termi
nal; if this bit is a 1, the terminal is a 
polled terminal. 

Process Flag: The terminal I/O task sets 
this flag to indicate to ITTPMN that data 
from the corresponding terminal is ready 
for proces sing. 

Write Terminal Flag: Setting this flag in
structs the 1/ a task for the terminal to 
issue a Write Terminal I/O call. 

Buffer Number: This number indicates 
which of the polling buffers has been dy
namically assigned to this terminal. This 
field is not used for full duplex terminals. 

Logical Unit Number: Indicates which 
LUN that the terminal responds to. 

Terminal Task: Task identification of the 
last I/O task that serviced this terminal. . 
This field is static for a full duplex termi
nal and dynamic for a polled mode terminal. 

User Control Block Pointer: The location 
of the user control block for the terminal. 

Physical Record Block Pointer: The loca
tion of the PRB for the terminal. This 
field is static for a full duplex terminal and 
dynamic for a polled mode terminal. 

Terminal Buffer Length: The number of 
characters that can be put into the buffer 
for the terminal. 

C-4 Digital Systems Division 



J2.r7 05\ ____ ~ _____ _ ~ 943005-9701 

C. 1. 1. 3 ITSUPV. ITTPMN calls the ITSUPV to service a term.inal whose 
PRCESS flag is set. ITSUPV is a rn.ajor part of ITS and is discussed in de
tail later in this section. During processing, ITSUPV resets the PRCESS 
flag so that it will not be recognized again during the next table scan. How
ever, application program.s called by ITSUPV m.ay set the PRCESS flag again 
if they do not com.plete processing. If ITSUPV requires additional input from. 
the term.inal, it sets the RDTRM flag before returning to ITTPMN; if data out
put to the term.inal is required, ITSUPV sets the WRTTRM flag before re
turning to ITTP:r-v1N .. 

C .1.1.4 TERMINAL I/O. If either the RDTRM or the WRTTRM flag is set 
when ITSUPV returns to ITTPMN, the m.onitor issues a POST to activate an 
I/O task. If the term.inal operates in full duplex m.ode, the m.onitor activates 
a task using the ITFDIO procedure; if the term.inal is a polled term.inal, the 
m.onitor a<;tivates a task using the ITPBIO procedure. Either of these tasks 
(initially created by ITINIT) transfers data to and from. the term.inal device 
by issuing I/O supervisor calls. 

C.l.2 FULL DUPLEX I/O TASK (ITFDIO) 

When building the Term.inal List, ITINIT determ.ines if a term.inal is operat
ing in full duplex m.ode. For full duplex term.inals, ITINIT allocates m.em.ory 
to supply a term.inal buffer (including one extra word for form.at control) and 
a Physical Record Block (PRB) for that term.inal. It also creates a task wltn 
pointers to the PRB and the Term.inal List as argulllents and places the task 
identification in word 1 of the Term.inal List entry for that term.inal. The 
task, the term.inal buffer and the PRB rem.ain as sociated with the term.inal. 
ITFDIO uses inform.ation in the term.inallist to direct I/O operations between 
the ITS and the full duplex term.inal. Figure C-3 illustrates the functions 
perform.ed by the subroutine. 

C. 1.201 TASK INITIATION. Before ITINIT creates a term.inal task for 
ITFDIO, it sets the RDTRM flag in the Term.inal List entry for that term.inal. 
Therefore, when ITFDIO begins execution, it issue s an I/O SVC to read data 
from. the term.inal. ITINIT starts tasks for each term.inal in the system in 
the sam.e m.anner, so that when ITINIT returns control to ITTPMN, all ter
m.inal tasks are waiting for input from. the corresponding term.inals. 

C.l. 2.2 PROCESS REQUEST. When the operator enters a complete rec
ord of data at the term.inal, the data term.inal Device Service Routine (DSR) 
returns control to ITFDIO. ITFDIO then resets the RDTRM flag to indicate 
the completion of a read operation, and sets the PRCESS flag to indicate that 
the data is in the input buffer and requires attention from. ITSUPV. ITFDIO 
then suspends processing to wait for either the RDTRM or the WRTTRM flag 
to set. 

Digital Systems Division 



~~------------------~ 943005-9701 

(A)130114 

ITFDIO 

NO 

svc 0 
READ DATA 
FROM TERM INAL 

O-RDTRM 
1-PRCESS 

SVC 7 
SUSPEND 
UNTIL POSTED 
BY ITTPMN 

YES 

NO 

svc 0 
WRITE I/O 
TO TERMINAL 

O-WRTTRM 

1-PRCESS 

Figure C _ 3. ITFDIO Conceptual Flow Chart 

C-6 Digital Systems Division 



~S\ __ ~ ________ _ ~ 943005-9701 

C. 1.2.3 RESPONSE TO TERMINAL. If ITSUPV, or a subordinate applica
tion subroutine; produces data in response to.a terminal request, it also sets 
the WR TTRM flag after filling the terminal buffe.r with data to be written to 
the terminal. This flag causes ITTPMN to post the ITFDIO task for that ter
minal and instructs that task to issue a Write Terminal I/O SVC. If more 
data is required, RDTRM is set. If both WR TTRM and RDTRM are set, the 
I/O is performed i"n the order of write and then read. Neither ITSUPV or the 
subordinate applic~tion~ issue I/O SVCs to communicate directly with the ter
minals. 

C. 1.2. 4 DISPLAY SIZE. During construction of the Terminal List, ITINIT 
determines the display size of the terTIlinal froTIl the PDT. The display size, 
plus the forTIlat control word, deterTIlines the allocated buffer size for the 
terTIlinal, and also specifies the length field in the PRB when the terTIlinal is 
opened. Buffer lengths for the terTIlinal devices are as follows: 

• Teleprinter - 82 characters 

• Teletype - 74 characters 

• CRT - variable up to 1922 characters 

If available TIleTIlory cannot support several terTIlinals with a 1922 character 
display, the PDT can be modified to reduce the display size. The display 
size for CRTs can be reduced to 80 characters so that the CRT responds as 
a teleprinte r. 

C.l.3 POLLED TERMINAL I/O TASK (ITPBIO) 

The polled I/O routine (ITPBIO) is a reentrant subroutine that, unlike 
ITFDIO, does not require a task for each terminal. Instead, ITINIT creates 
a task for each polling buffer. The nUTIlber of polling buffers can be signifi
cantly less than the nUTIlber of terminals. Figure C-4 illustrates the func
tions performed by the subroutine. 

C.l.3.1 TASK INITIATION. When ITINIT deterTIlines that there is one or 
TIlore polled terTIlinals assigned to ITS, TIleTIlory is allocated for a specified 
nUTIlber of polling buffers and PRBs. The nUTIlber of polling buffers specified 
for the standard ITS is two. Although this nUTIlber can be increased, two 
should be adequate for TIlost applications. Unlike full duplex terminals, a 
task is not created for ITPBIO when a polled terTIlinal is added to the terminal 
list. However, like full duplex terminals the RDTRM flag is set. After all 
terTIlinals have been added to the terminal list, ITINIT allocates memory for 
a buffer and PRB, and creates a task for each polling buffer. The first time 
through, ITPBIO does not issue a terTIlinal read since ITINIT does not specify 
which terTIlinals should be polled. Thus control goe s iTIlTIlediately to an SVC 
to suspend ITPBIO until posted by ITTPMN. 

Digital Systems Division 



~~-------------------~ 943005-9701 

N+I-N 

(B)I 301 15 

NO 

NO 

SET POLLING 
LIST 
POINTER N=O 

SVC 0 
READ DATA 
FROM 
TERMINAL 

O-RDTRM 
l-PRCESS 

I-LINE 
AVAILABLE 

SVC 7 
SUSPEND FOR 
ITTPMN POST 

YES 

YES 

SVC 0 
WRITE DATA 
TO TERM INAL 

O-WRTTRM 

l-PRCESS 

YES 

Figure C- 4. ITPBIO Conceptual Flow Chart 

I-BUFFER 
AVAIL 

Digital Systems Division 



~~------------------~ 943005-9701 

C.l. 3.2 PROCESS REQUEST. ITTPMN checks the status of the polling 
buffers and the polling lines (communication modules) if: 

1) a terminal is ready for processing and ITTPMN calls ITSUPV, or 

2) no terminal is ready for processing and ITTPMN suspends itself 
for one-half second. 

If both a polling buffer and a line are free, ITTPMN issues a post for the ap
propriate ITPBIO together with a pointer to the line to be polled. 

After receiving control, ITPBIO issues a read to each terminal on the polling 
line in succession. If a terminal user has pressed the transmit key prior to 
is suance of the read to his terminal, the screen data is transferred when the 
read is issued. If the transmit key has not been pressed, the terminal does 
not re spond and the DSR returns control to IT PBIO with a record length of 
zero. This record length is treated as a negative response and a read is 
issued to the next ter!TIinal on the line. The first positive response ter!TIin
ates the poll and the PRCESS flag is set for the corresponding terminal. 
ITPBIO then issues a suspend SVC to wait for another post. 

C. 1. 3. 3 RESPONSE TO TERMINAL. The WR TTRM flag can be set by 
·ITSUPV or a subordinate application subroutine. This causes a post to the 
appropriate ITPBIO task for data transfer~ After the data is transferred, 
T'T'TTDTr'\ ..l~4-~_~:_~~ ~~.l-.~4-l-.~_ DT"\""Dl\A"':~ ~,~~ ~~4- TC DT"\'T'Dl\A"':~ ~~4- T'T''LYDTr'\ 
J..1..L".lJJ.'-J Ut::I.t::l.l.l.l.l.l..Lt::i:) Wl..Lt::I..L.Lt::l. .L'-.lJ.1..L'-.LV.L l.i:) a..L~ i:)t::l. • .1...1. .L'-.lJ.1...1.'-.LV..1. l.i:) i:)t::l., ..1..1..L".lJ.1.'-J 

releases the buffer and issues a suspend SVC. If RDTRM is not set, ITPBIO 
sets PRCESS and does not release the buffer. This process allows a pro
gram to maintain a buffer throughout a series of data transfers to a terminal. 

C.l. 3. 4 DISPLAY SIZE. When ITINIT determines that polling buffers are 
required, it also determines the largest display size for the terminals to be 
polled. It then allocates memory to each buffer that corresponds to the maxi
mum size. 

C. 1.4 SUPERVISOR (ITSUPV) 

The ITS Supervisor (ITSUPV) is a combination state and table driven control
ler that acts as an intermediary between ITTP1.1N and the application pro
grams that run under ITS. When ITINIT initializes a terminal, it creates a 
table of parameters, called the User Control Block (UCB), that stays with the 
terminal as long as it is assigned to ITS. The information within the UCB 
varies with the user program that is currently using the terminal. Table C-2 
define s the information fields wi thin the UCB. When control transfer s to 
ITSUPV to service a particular terminal, it clears the Terminal List flags 
for that terminal and examines the state-field of the UCB to determine what 
type of servicing is required. Figure C _ 5 illustrates the logical sequence of 
events within ITSUPV. Table C - 3 defines the terminal states and the actions 
required of ITSUPV to service a terminal in that state. 

C-9 Digital Systems Division 



~ ____ q_/4_3_0_0_5_-_97_0_1 ________________________________________________ __ 

\Vord 

0-2 

3-4 

5 

6 

7 

8-9 

10-11 

12 

13 

14-49 

Table C-2. ITS TerITlinal User Control Block (UCB) 

Field NaITle 

USERID 

ACCTNO 

STATE 

TRMPTR 

OPTR 

TIMEON 

DATEON 

TRMLNS 

LINLEN 

Description 

User Identification: This field contains the 
<userid> that is entered at the terITlinal during a 
Logon operation. Not validated by current 
ITSUPV. Reserved for future accounting software. 

Account NUITlber: This field contains the < acctno> 
that is entered at the terITlinal during a Logon op
eration. Not validated by current ITSUPV. Re
served for future accounting software. 

TerITlinal State: This field contains a nUlnber that 
indicates to ITSUPV how to respond to a service 
request froITl the terITlinal. 

TerITlinal Pointer: This field contains the ITlem
ory addres s of a table of device characteristic s 
for the terITlinal. 

Operation Pointer: This field contains space for 
the application program to load a pointer for its 
use. 

Clock Time of Logon: This field is not used by 
the standard ITS. 

Calendar Date of Logon: This field is not used by 
the standard ITS. 

Terminal Lines: This field specifies the number 
of lines on the display unit. 

Line Length: This field specifie s the length of 
each di splay line. 

These fields provide intermediate storage of 
parameters for the application program currently 
using the terminal. 

C-IO Digital Systems Division 



~~------------------~ 943005-9701 

SVC 41 

NOT LOGGED 
ON 

CALL COMMAND 
SCANNER 

\IREADyll-
1/0 BUFFER 

1-WRTTRM 
1-RDTRM 
1-STATE 

(A)130 116 

SVC 41 

O-WRTTRM 
O-RDTRM 
O-PRCESS 

UCB STATE DECODE 

NOT IN 
APPLICATION 

20-29 30-39 ~40 

ITSTAT 

CALL COMMAND 
SCANNER 

iNTERACTIVE II 
FILE EDITOR 

READ 
STATUS 

BRANCH AND 
LINK TO 
APPLICATION 
PROGRAM 

ITRJE 

REMOTE 
JOB 
ENTRY 

USERAP* 

+ uSER PROGRAM AND OF CODE MUST 
BE ADDED TO TABLE OF RECOGNIZABLE 
CODE FOR ITSUPV. 

Figure C-5. ITSUPV Conceptual Flow Chart 

C-ll Digital Systems Division 



~ ____ 9_43_0_0_5_-_97_0_1 _____________________________________________ __ 

Table C - 3. User Control Block State Definitions 

State NUITlber TerITlinal Conditions /RequireITlents 

o 

1 

10-19 

20-29 

30-39 

~40 

Inactive: User has not entered a Logon cOITlITland to 
identify hiITlsel£. ITSUPV checks only for a Logon 
c oITlITland. 

Ready: User has logged-on, but has not as yet re
quested any application prograITl. 

Edit: User is currently running the Interactive File 
Editor (ITIFE) application prograITl. ITSUPV calls 
ITIFE to proces s request. 

ReITlote Job Entry: User is currently running the Re
ITlote Job Entry (ITRJE) application prograITl. ITSUPV 
calls ITRJE to process request. 

Status: User is currently running the Status Display 
(ITSTAT) application prograITl. ITSUPV calls ITSTAT 
to proces s request. 

User PrograITl: User is currently running an applica
tion prograITl not norITlally supplied with ITS. ITSUPV 
transfer s control to the user prograITl if the prograITl 
has been entered in the table of recognizable code for 
ITSUPV. 

C. 1. 4. 1 STATE O. If the UCB State field is zero, the user has not pre
viously entered data froITl the terITlinal. Therefore, the first cOITlITland froITl 
the terITlinal ITlust be a Logon cOITlITland to identify the user. In State 0 
ITSUPV calls the cOITlITland scanner to exaITline the input code. If the input 
code does not contain a Logon cOITlITland, ITSUPV returns control to ITTPMN 
without further processing. If the code contains a Logon cOITlITland, ITSUPV 
validates the syntax, transfer s the pertinent data to the UCB and places a 
Ready indication in the I/O buffer. It then sets the WRTTRM flag .to ensure 
that the Ready indication is sent to the terITlinal and sets the RDTRM flag to 
enable the user to respond by entering the next cOITlITland. ITSUPV then 
places a value of 1 in the State field of the UCB before returning control to 
ITTPMN. 

C. 1.4.2 STATE 1. If the UCB State field is one, the user has logged-on, 
but has not as yet indicated an application prograITl. ITSUPV then calls the 
cOITlITland scanner to exaITline the input code (see Section V for a de
scription of the cOITlITland scanner). The input cOITlITland ITlust be one of the 
cOITlITlands that ITSUPV can recognize. The standard ITS systeITl provides a 

C-12 Digital Systems Division 



~-------~ 943005-9701 

table of corrunands that allows ITSUPV to recognize the following input COIll

lTIands and their appropriate argulTIents: 

EDIT 

ENTER 

LOGOFF 

JOB 

RUN 

STATUS 

DELETE 

Any user program.s that are added to ITS m.ust also add at least one com.m.and 
to this list that will link ITSUPV to the user program.. ITSUPV processes the 
Logoff com.m.and. Application program.s proces s all other com.m.ands. If an 
application program. proces se s the com.m.and, ITSUPV transfers control to 
that program. with a Bra~ch and Link (BRL) instruction. Pointers to the ter
m.inal list entry and to the com.m.and scanner data arrays accom.pany the com.
m.and to the application program.. The application program., therefore) has 
acces s to all control blocks for the term.inal, plus the com.m.and and argu
m.ents that were entered at the term.inal. 

C.l. 4. 3 OTHER STATES. If the UCB State field is greater than one, 
ITSUPV transfers control directly to the application program.. Term.inals in 
this state have previously used an application program.. That program. set 
the state field to a value that returns control to the program. for further in
put, or that logs-off the user from. that program.. ITSUPV does not process 
com.rn.ands in these higher states. Therefore, the application program. m.ust 
decode any cOInInands froIn the tern1.inal. 

C. 1 • 5 APPLICATION PROGRAMS 

Application program.s that run under ITS are closed subroutines. The argu
m.ents that ITSUPV passes to the program. are pointers to the appropriate 
term.inal1ist entry and the com.rn.and scanner arrays. Figure C-6 shows the 
rela tionship between the control blocks and structure s. 

C.l.5.1 CONTROL TRANSITIONS. When control is passed to an applica
tion program., the RDTRM, WRTTRM, and PRCESS flags are all set to zero 
and the buffer pointer in the PRB points to the first data word in the term.inal 
buffer. If this is the initial entry into the subroutine, STATE is set to 1 and 
the key and packed arrays in the com.rn.and scanner structure contain the de
coded com.m.and line. Before the application program. returns control to 
ITSUPV, the program. sets RDTRM, WRTTRM, PRCESS, STATE, and the 
form.at control word according to the requirem.ents of the application. 

C-13 Digital Systems Division 



~~------------------~ 943005-9701 

TERM INAL 
LIST 

o 

2 

3 

4 

(A) 1301 17 

USER CONTROL 
BLOCK 

0-5 

6 

7 

8-49 

PHYSICAL RECORD 
BLOCK 

o 

2 

3 

NOTE: NUM BERS IN THE BLOCKS CORRESPOND 
TO WOR D NUM BER 

Figure C- 6. ITS Control Blocks 

TERM INAL 
CHARACTERISTICS 

o 

TERM INAL 
BUFFER 

• • 

tJ 
C.I. 5.2 SAMPLE APPLICATION TRANSFER. The following example 
from the file editor illustrates the strategy for perform.ing a function under 
ITS. The term.inal is in the Ready state, and the user wants to edit a file by 
changing the string ABC to XYZ everywhere that it appears. The file con
tains 50 records. The following sequence perform.s that operation: 

1. User keys EDIT FILE=(l, USEROI, MYFILE) and presses RETURN 
from a teleprinter; ITFDIO then sets the PRCESS flag. 

2. ITTPMN detects that processing was requested and calls ITSUPV. 
ITSUPV calls the comm.and scanner, determ.ines that the comm.and 
is to be processed by the file editor (ITIFE) and makes the call. 

C-14 Digital Systems Division 



~~-------------------'-V 943005-9701 

3. ITIFE calls a subroutine to as sign and open the file, and read the 
first file record into the terminal buffer~ ITIFE then sets the for
mat control word to 000E 16, RDTRM to 1, WRTTRM to I, and 
STA TE to 11, and returns control to ITSUPV. ITSUPV returns to 
ITTPMN to activate the I/O task for the user's terminal. 

4. ITFDIO writes the terminal buffer and issues a read to accept more 
input. 

5. Terminal user enters RA 1; 50 IABe! IXYZI to direct the file editor 
to replace all strings ABC with the string XYZ in the next 50 rec
ords of the file. 

6. ITTPMN detects that processing was requested and calls ITSUPV. 
ITSUPV determines that STATE is between 10 and 19 and calls 
ITIFE. ITIFE calls the command scanner, determines that the com
mand is a string operation, and calls a subroutine that processes all 
string cornrnands. The string processor reads 25 records, changing 
ABC to XYZ wherever found. After processing the 25 records, 
(the subroutine interrupts itself rather than being arbitrarily cutoff) 
the string processor changes STATE to 14, leaves RDTRM and 
WRTTRM reset, sets the PRCESS flag and returns control through 
ITIFE and ITSUPV to ITTPMN. ITTPMN does not post the I/O rou
tine because neither RDTRM or VfRTTRM are set. However, it 
doe s continue the terITlinal scan at the next entry. 

7. In time the terminal scan progresses to the same terminal. ITTPMN 
detects that processing was requested and passes control through to 
the string processor to process the last 25 records. After process
ing is complete, the string processor puts the last record processed 
in the terminal buffer, sets RDTRM and WRTTRM to 1, changes 
STP,,-TE back to 11 and returns. ITIFE sets the forITlat control word 
to 000E16 and returns through ITSUPV to ITTPMN to activate the 
appropriate I/O task. Control then returns to the user. The user 
can key in either more edit commands for further file processing, a 
Stop command to get back to the ready state, or a Logoff cOITlmand 
to exit the systeITl. 

C.2 DESIGN PRlNCIPLES 

Before adding a new application program to ITS, the user must understand 
the design features in the subsysteITl that provide the highest overall effi
ciency for the subsysteITl. Observance of these principles when iITlpleITlent
ing a new prograITl will enhance its perforITlance within the systeITl. 

C.2.1 DUAL MODE OPERATION 

ITS can run in either the protected or the privileged mode. The first DXOLE 
control card (see Section VIII) controls the mode of operation. 1£ the card 

C-15 Digital Systems Division 



~~-------------------~/ 943005-9701 

specifies SUBSYSTEM, the prograITl links for privileged operation; if the 
card specifies NORMAL, the prograITl links for protected operation. Privi
leged ITlode is slightly faster than protected ITlode since it perforITls less er
ror checking for privileged SVCs. In addition, a privileged ITlode prograITl 
can be sITlaller since it can acces s the runtiITle package that is linked into the 
ITleITlory resident portion of the operating systeITl. 

Protected ITlode siITlplifies debugging a new ITS application prograITl, and 
guarantees that an error in the new prograITl will not destroy the operating 
sy stern. When preparing the new prograITl, link it in the protected ITlode. 
Then check the prograITl by running a single terITlinal with the PROT paraITl
eter specified in the Execute cOITlITland (EXEC) to the JCL translatore. When 
the application is cOITlpletely checked in this ITlanner, it can be linked with the 
rest of ITS with SUBSYSTEM specified on the DXOLE control card. 

C. 2. 2 APPLICATIONS OVERLAY 

To attain ITlaxiITluITl ITleITlory efficiency, ITS application prograITls can be 
overlayed. The ITlajority of ITS is coded as reusable subroutines. This con
vention allows the overlays to be the siITlple, preplanned overlays supported 
by DXOLE. 

C. 2.3 PSEUDO TIME SLICING 

To avoid ITlonopolizing the systeITl for a single terITlinal application, all ap
plication prograITls ITlust return control to ITTPMN periodically. To ITlain
tain an average access tiITle of three seconds for any terITlinal and for a total 
of up to 30 terITlinals, the average processing tiITle for anyone terITlinal re-

quest ITltlst be liITlited to 100 ITlilliseconds. Many terITlinal requests require 
Ie s s than the 100 ITlillisecond average; long functions ITlay use up to a ITlaxi
ITluITl",of 200 ITlilliseconds. The actual interruption of the prograITl, however, 
is left to the prograITl itself. That is, either the prograITl cOITlpletes its pro
cess within the tiITle liITlit, or the prograITl interrupts its processing at a 
logical breakpoint to return to ITTPMN within the tiITle liITlit. If the prograITl 
interrupts itself, it returns to ITTPMN with'the PRCESS flag set, and with 
both RDTRM and WRTTRM flags clear. Thus, no I/O operations are initiated 
and ITTPMN returns to the prograITl during the next TerITlinal List scan. 
This proce s s of allowing the prograITl to liITlit its tiITle instead of being trun
cated after an arbitrary period is called pseudo tiITle slicing. 

Two functions in the standard ITS package, the RJE processor and the Display 
Status processor, do not follow the pseudo tiITle slicing guidelines. These 
processors both contain supervisor calls that take longer than 200 ITlil1isec
onds to perforITl (Start Job and Stat SVCs, respectively). Control does not 
return to the processor until the SVC is cOITlplete. For each of these proces
sors a sITlall reentrant ITlodule appears in the root segITlent of the ITS overlay. 
After the Job, Run and Stat cOITlITlands are syntactically validated, the pro
cessor creates a task that points to the reentrant ITlodule. The reentrant 

C-16 Digital Systems Division 



J2t5\ _--.-:... ____ _ ~ ~3005-9701 

ITlodule issues the SVC. The processor then resets PRCESS, RDTRM and 
WRTTRM flags and returns norITlally to ITTPMN. When the SVC returns, 
the reentrant ITlodule sets the PRCESS flag and issues a Delete Task SVC. 
During the next TerITlinal List scan cycle, ITTPMN detects the PRCESS flag 
and reactivates the processor. 

C. 3 MODIFYING ITS 

Calls from ITS to applications programs are driven by a set of tables in the 
module, ITSTBL. To add an application, the ITSTBL source module must 
be modified, assembled, and linked with ITS and with any new applications 
programs. Refer to figure C-7 for a listing of the components in the ITSTBL 
module. Two sets of tables must be modified to add an application: The 
State/Call Translation Tables and the Application Names/Initial Entry Tables. 

C. 3.1 STATE/CALL TRANSLATION TABLES 

The State/Call Translation Table, STATET j breaks all of the possible states 
into State Intervals. Once the interval is determined by ITSUPV, it is used 
as an index for an indirect branch through a table of application entry addres
ses (SCALLT). Note that on the standard table states 0 through 1 map into a 
call to ITCOM (ITS command decode), states 2 through 19 map to ITIFE (al
though only states 10 through 19 are used), states 20 through 29 map to 
ITRJE, and states 30 through 39 map to ITSTAT. To add an application that 
uses states 40 through 49, a" DA TA 49' statement must be inserted after the 
'DATA 39' statement in STATET, and a 'DATA application entry point' must 
be inserted after the 'DATA ITSTAT' statement in SCALLT. This will cause 
ITSUPV to call the given application for states 40 through 49. Note that a 
single application may have more than one state interval and entry address 
if desired. 

C.3.2 APPLICATION NAMES/INITIAL ENTRY TABLES 

This set of tables map application names to initial application entry ·points. 
The fir st ta ble, RESLAB, is a list of eight character application keywords. 
The second table, ICALLT, is a list of application entry points that corre
spond to the application names. New application names must be inserted 
after the DATA 'JOB', 'DELETE' statement in RESLAB, and new initial entry 
points must be inserted after the last 'DATA ITIFE' statement in ICALLT. 
The order of the standard eight commands may not be changed. 

C-17 Digital Systems Division 



~~------------------~ 943005- 970 1 

lOT ITSTt.H •••••••• * ••••••••••••••••••• * ••••••••••••••••••••••••••••••••••••••••••• 
• ABSTRACT • THIS TABLE CONTAINS THf lISER VARIABLE PARA~ETERS 
• FOR TI1E INTERACTIVE TERMtN~l. SYSTEM, AND DEFINES 
• THE APPLICATION ~A~FS AND ENTRY ADDRESSES. T~IS 
• MODULE. MlJST BE M(101'IED IN ORDER TO ADO .NY 
• "DDITIONAI. APPL ICATtON! ROI'TINES. 
• 
• ROIITINES 
• CALL.~D • LOGO~.LOGIJFF,ITRJE,TTSTAT,ITIFE,ITCO~ 
• 
• 

•••••••••••••••••••••••••••••••••••••••••••••••• * ••••• ** ••••• *** ••••••• 
~ED ITS COM~AND/ST'TE T"BL~ •••• * ••• * ••• ** •• *.* ••••• ** •••• ** •• * •••••••••••••••••• * •• * ••• 

• NOTE I • • THIS MODULE MlIST DE H CL"DED IN THE ROOT SEGMENT • 
**.**.*.* •••• * ••• *.* ••• * ••••• ** ••• ***.**** •• **** •••• *.*.* •• * 

DEF INFO,RESLA6,KEYA,PA~ST~,ICALL.SCALL,S3AT£T,POLTI~ 
REF I.O~ON,LOQOFF,ITRJE,ITSTAT,ITIFE,BADST,ITCOM 

A Er.1U" 
E EQU 1 
X EQU 2 
M EQU 3 
S EQU 4 
L. EQU e 
8 EQU e 
P EQU 7 
BP EQU 1 
ax EQU J 

PEJ 
• • • 

APPLICATION NA"'ES (RESLAB) 

RESl.AB 

• 
RESD 
N~fS 

• • • 
lCAl-I.T 

• 

EQU s 
DATA , LOGO~J 
DATA 'RUN 
DATA 'EDIT 
DATA 'JOB 

EQU I.RESLAB 
EQU RESD/4 

INITIAL ENTRY 

EQU • DATA LOr.ON 
DATA l.OGOFF 
DATA ITRJE 
DATA ITSTAT 
DATA IT1ft: 
DATA 1T1FE 
DATA ITRJE 
DATA IT1Ff 
PEJ 

, , '1.0GO~"F • * POSITION SENSITIV! 
','STATUS .* POSITION SENSITIVE 
','ENTER •• POSITION SENSITIVE 
','DEl.ETr •• POSITION SENSITIVE 

INSERT NEW APPLICATIONS ABOVE 
THIS L~BEL MUST FOLLOW LAST 

APPLIC~TION N~Mf 

ADDRESS TABl.E 

0 
1 
2 
J 

• e 
~ 

7 

•• .-•• •• 

Figure C:" 7. ITSTBL Listing (She"et 1 of 2) 

C-18 Digital Systems Division 



~ 943005- 970 1 

• STATE/CALL TRA~SLATI0N TABLFS 
• STATET EQU • DATA 1 STATF:! iB';'01 

DATA 19 1112;'1; 
DATA 29 2B';'2; 
DATA 39 3B-39 

* INSERT NEw STATES I-IERE 
DATA .. 1 AL'- OTHERS 

* 
* 
* -,.. '" ~ tI • .,A T"""U e2.02 CO~YA~D DECODE .... " ...... , ..... ,..·n • ,~.Ull 

DATA IT1P'E 10 .. 19 IFE 
DATA ITRJE 2e-2Q ~Jr 
DATA ITSTAT 30.39 STATUS 

• I~SERT NE~ CALLS HERE 
OATA BADST AI.L UN()EFTNEO ST~TES 

PEJ 
* * ROUTINE TO MA~E INITIAL CALL BV APPL. NAME 
* IC4Ll. E.Qu I 

R~O B,A SAVE BIISE 
RHO 1'1,8 GET SEC ON'" ARGU;-;ENT 
LOX *2,BR • 
RMO A,a RESTC'lRF BASE 
LOA ICAlL-T,X GET CALL ADDRESS 
RMO A,P CAl.L 

• • ROUTINE TO MAKE SUBSF.r;HlE~·T eALUI ACCCRDl~1i TO STAT! 
• SCAL!. EQU ! 

Rt10 8,A SAVE BASE 
RMO M,8 GET SECONI') ARG~ 
LOX *2,BR * 
RHO A,B REST~RF BASE 
LOA SCALLT,X GtT CALL ADDRESS 
RMO A,P C.lLL 
P£J 

* * CRSCAN 'CONTROL' ARRAV 
* INFO 

NPAI< 
NI<!\, 
ICEYA 
'.lKSTR 

HTR~S 
HLINEs 
M8Ufl 
TRHS 
aUFS 
LINS 
POLTlf04 

UCBSII 

EQU 
DATA 
DATA 
DATA 
DATA 
DATA 
EQU 
EQU 
BSS 
BSS 
OfF 
EQU 
EQU 
EQU 
BSS 
ass 
BSS 
DATA 
Dfr 
DATA 
END 

• NPAt< 
NKfY 
",0 
NR[8 
e 
•• 011 
NKEY 
NPAK/2 

NUMBER OF CHARS. IN 'PAKSTR' 
NUMBER Of ~ORDS IN 'KEVA' 
CRSC~N WO~~SPACE 
NUMBER OF LABELS 1~ 'RESLA!' 
STARTI~G ~CAN POSITION 
NO Of CHA~. IN P~KST~ 
NO OF ~ORns IN KEY .lRRAY 

TRMs,BUFa,L.I~S 
32 ~.X. NO. ~f TER~INALS 
e ~.X. Nr.. nr POLLING LINES 
e MAX. NO. MF POLL.ING BUFFERS 
6*MTR~S TfRHIN~L LIST 
~*MBUFe BUFF£R LI~T 
36*MLINE! LINE LIST 
8eu POLLING I~TERVAL (IN MILLISECONDS) 
UCB81Z 
15£1 USER CCNT~OL BLOCK SIZE 

Figure C-7. ITSTBL Listing (Sheet 2 of 2) 

C-19 Digital Systems Division 



)}r7~ ______ _ ~ 943005-9701 

C. 3. 3 CALLING CONVENTIONS 

Calls from ITSUPV follow the standard DX980 calling conventions and are 
as follows: 

• Initial Entry (via Applications Names/Initial Entry tables) 

@ LDM=ARGLST 
@ BRL APPLIC 

ARGLST DATA 2 

DATA TRMLST 
DATA keyno 

pointer to TRMLST entry 
pointer to Key Number index 

• Subsequent Entry (via State/Call Translation Tables) 

@ LDM=ARGLST 
@BRL APPLIC 

ARGLST DATA 2 

DATA TRMLST 
DATA STATI pointer to state interval 

C. 3.4 CRSCAN ARGUMENTS 

The calling argument, key array, and packed string for the command decode 
done in states 0 and 1 are in ITSTBL. 

C. 3. 5 TRMS 

All TRMLST entries are built in ITSTBL in the buffer 'TRMS'. The size of 
this area is controlled by the label, MTRMS. 

C. 3.6 POLLING PARAMETERS ' 

Several parameters may be adjusted to suit the requirements of the user. 
These parameters are: 

• POLTIM - Time interval for polling 

• MLINS - Maximum number of polling lines 

• MBUFS - Maximum number of polling buffers 

C. 3. 7 USER CONTROL BLOCK SIZE 

The user may alter the size of the USER CONTROL BLOCKS by adjusting the 
value of the statement: 

UCBSIZ DATA 50 

Note that the minimum UCB size for IFE is 50 words. 

C-20 Digital Systems Division 



~-------~ 943005-9701 

APPENDIX D 

ADDING NON-STANDARD DEVICES TO DX980 

Digital Systems Division 



~~-------~-------------~ 943005-9701 

APPENDIX D 

ADDING NON-STANDARD DEVICES TO DX980 

D.I GENERAL 

By using DX980 utilities, user supplied routines, and inform.ation about the 
I/O package, up to four non- standard devices m.ay be added to a DX980 con-
figuration. However, non-standard discs cannot be added. To support a 
new device, the us er m.ust design, code and install a device service routine in 
the system. In addition, he m.ust implement a utility to build and m.odify I/O 
associated tables. This appendix provides the necessary inform.ation and 
procedure to accom.plish these tasks. 

D.2 WRITING A DEVICE SERVICE ROUTINE 

Writing a new Device Service Routine (DSR) requires a knowledge of the 
DX980 input/ output structure, coding requirements for a DSR, plus an under
standing of the device cha'racteristics to be allowed for in the routine. The 
following paragraphs provide that background in addition to sam.ple DSR' s to 
be used as a guide. 

D.2.1 INPUT/OUTPUT STRUCTURE 

A program. initiates Input/Output operations by using an I/O supervisor call 
(SVC) and passing the required operation via a Physical Record Block (PRB). 
The SVC is actually an illegal instruction that generates an internal interrupt. 
The internal interrupt decod'er passes control to the SVC Processor •. After 
determining that an I/O SVC has been m.ade, the SVC Proces sor gives con
trol to the I/O Manager. Figure D-l illustrates the relationship of the I/O 
Manager within the I/O system. 

The I/O Manage'r performs the required housekeeping of the I/O as sociated 
tables, controls the available devices, sets up and controls DSR entry and 
exit, and performs all other common I/O SVC functions. The following are 
some of the pre - DSR device independent funct~ons perform.ed by the I/O 
Manager: 

• Control and '~ousekeeping of Open/ Close calls 

• Device as signment checks 

• L UN Open checks 

• Control of the share/exclusive capabilities 

• Data buffer boundary checks 

• Linking PRB's and Logical Device Tables (LDT' s) to the Physical 
Device Tables (PDT's) 

D-I Digital Systems Division 



A~ _________________ _ "V 943005-9701 

END 
TASK 

SAVE 
STATE 

(8)130247 

ACTIVATE 

CANCEL 

I/O MGMT CONTROL PATHS 

USER 
CODE 

SVC 
PROCESSOR 

I/O MANAGER 

EXECUTE 
PREPROCESSOR 

I/O CALL 
PROCESSOR 

NOT FINISHED 

~------------~ FINISHED 

DSR 

RESTORE 
STATE 

FILE 
PROCESSOR 

POST END 
ACTION 

Figure D-l. General I/O Flow 

D-2 

TASK 
DRIVEN 
PROCEDURE 

INTERRUPT 
DRIVEN 
PROCEDURE 

Digital Systems Division 



943005-9701 ~ ------------------~--~------------------------------------------------------
• Queuing operations when a device is busy 

• Monitoring system operatipns for initiate I/O SVC' s 

• Calling the correct DSR 

D. 2.2 DEVICE SERVICE ROUTINES (DSR's) 

DSR's provide the actual interface with the hardware. They check for illegal 
operations and for special device dependent and unique conditions not monitor-
ed by the I/O lvlanager" The DSR_! s have three standard entries; an initial 
entry, a reset or cancel entry and an interrupt entry. 

D. 2.2. 1 INITIAL AND CANCEL ENTRIES. For initial entry, the I/O M an
ager issues an SVC to begin an I/O operation. The I/O manager also controls 
the cancel or reset entry by is suing an SVC to the DSR when the system is try
ing to terminate an I/O operation in progress. The SVC is as follows: 

CALL SVC (DSR #, PDT @, TYPE) 

In this form, the term PDT @ represents a pointer to the PDT containing the 
I/O information. The term TYPE indicates that the call is either an initial 
or a cancel entry to the DSR. 

Since the I/O Manager calls DSR's with an SVC, the DSR can have only one 
entry point. For this reason and also to perform some common logic rou
tines, the DSR executes a system routine (ISDSRI) immediately when entered. 
This call must appear in all DSR's and has the following format: 

REF ISDSRI 
START EQU $ 

RMO L, A 1 st word of code 
@BRL ISDSRI 
DATA interrupt entry pointer 
DATA cancel entry pointer . 
(logic for initial entry) . 

The initial entry checks operation validity, starts the I/O operation and, if 
possible, completes the operation. The reset path terminates the I/O opera
tion by reseting the interrupt logic and, trying to halt the I/O device. 

D.2.2.2 INTERRUPT ENTRIES. I/O interrupts can occur during or at the 
end of an I/O operation from either an I/O Bus or a Direct Memory Access 
Channel (DMAC) device. I/O bus interrupts can occur following each char
acter transfer while DMAC devices usually interrupt when the operation is 
complete. The operations following an interrupt resemble the response to a 
supervisor call. However, the interrupt decoder coordinates the activity 

D-3 Digital Systems Division 



~~------------------~ 943005-9701 

instead of the SVC Processor. The interrupt decoder transfers control to 
the DSR through the interrupt entry. The interrupt entry either completes the 
operation or prepares for further interrupts. 

0.2.2.3 REGISTER INITIALIZATION. Regardless of the type of entry, 
when the DSR is entered from the entrance utility, the following register s are 
initialized: 

• Register E = 0 

• Registe r S = entry addres s of the uti liti e s 

• Register M = pointer to the PRB 

• Register B = pointer to the PDT 

I~ addition, if the entry was an initial entry, registers A and X contain the 
operation code. 

D. 2.2.4 EXITS. For any type of entry the DSR may take one of six possible 
exits (see the DSR EXIT utility). These may be classified into three groups. 
The ~ORM exit is the normal exit from the DSR when no abnormal conditions 
have been detected and the data transfer is not yet complete. The EOR exit 
indicates an End-of-Record exit when the requested data transfer is complete. 
Other types of exits are used to indicate that abnormal conditions were en
countered. 

D. 2. Z. 5 I/O ERRORS. Errors that occur during an I/O operation are 
described in Section III of this manual. The I/O Error numbers listed in 
Section III are in the range of 201 - 209. However, the I/O Manager adds 
200 to the error number returned by the DSR. Therefore, the DSR need 
only provide an error number from 1 - 9 to the I/O Manager. An additional 
error number, 10, is reserved for use by the I/O Manager. When an error 
occurs that require s return to system control, the DSR performs one of the 
standard exit utilitie s. 

D. 2. Z. 6 SYST EM ERRORS. Most I/O errors may require abortion of the 
user job requesting the I/O. Some types of I/O errors, however, are so 
severe that they endanger the integrity of the system. For these errors the 
DSR should halt the system so that the cause of the problem can be determined 
before the clues are destroyed. An available DSR routine, SCRASH, provides 
a standard method of bringing the system to a halt gracefully. This routine 
causes the CPU to IDLE. Information from the routine that called SCRASH 
may then be displayed. A sample calling sequence is shown below: 

REF SCRASH 

@ LDM = ERINFO 
@BRL SCRASH 

Load M Register with Address of Error Information 
Call SCRASH 

(Continued on next text page) 

D-4 Digital Systems Division 



J17S\ ______ _ ~ 943005-9701 

ERINFO DATA 1, BADERR Num.ber of Argum.ents, Address of Argum.ents 
BADERR DATA ERCODE Code that m.ay be displayed in the A Register 

at IDLE. 

If argum.ents other than an error code would provide helpful inform.ation, the 
num.ber of argum.ents m.ay be increased. At IDLE the M Reglster provides 
a pointer to this inform.ation. See the DX980 System. Operation Guide for the 
standard set of SCRASH codes. 

D. 2. 2.7 INFOR:rv1..A.. .. TION RETURNED BY THE DSR. The DSR only sets the 
Operation Ignored bit in the system. set flags (PRB word 0, bit 3) when an 
operation is not im.plem.ented. The I/O m.anager sets all other system. set 
flags. The DSR m.ay pass device dependent inform.ation to the caller through 
the non-dedicated bits of the PRB. When passing inform.ation that requires 
several words, the DSR m.ust use a buffer that is pointed to by the third word 
of the PRB. The operation code for this type of call is either 0,1,2,3,19, or 
20. The DSR does not need to set or reset any indicators for the I/O Manager. 
The type of exit taken indicates a course of action for the I/O Manager. 

D. 2.3 I/O UTILITY ROUTINES 

The I/O utility routines perform. com.m.on DSR functions with m.inim.al coding 
in the DSR itself. By using the utilities, the DS'R need never know the m.em.
ory locations of any PDT, PRB or LDT; furtherm.ore it does not need to m.on
itor character input and output buffer indexes. .1 ne l.J~.t<.s us e the exit utllltle s 
to ensure proper handling of interrupts and other types of exits. Failure to 
use the optional utilities creates increased DSR size, developm.ent tim.e, and 
m.aintenance requirem.ents. The I/O Utility Routines perform. services fre
quently required by Device Service Routine s (DSRs). The functions available 
are: 

PRB/PDT /LDT Bit Manipulation 

PRB/PDT/LDT Word Transfer (via register) 

PRB/PDT /LDT Conditional Skip on Bit 

READ/WRITE on I/O Bus (via register) 

PUT /GET Character from. Packed Buffer (via register) 

LINKAGE to DSR Exit Routine 

The routines generate no task or system. errors. All I/O interrupts m.ust be 
m.askerl and the B Register m.ust point to the PDT when using the routines. 

D. 2.3.1 UTILITY ROUTINE INTERFACE. The utility routines are serially 
re-usable. The DSR need not know the location of the utility routines in rnem.
ory. When the DSR is entered by the I/O call processor or Interrupt Decoder, 
the S- register contains the I/O utility entry point. The routines are entered 

D-S Digital Systems Division 



~~------------------~ 943005-9701 

by execution of an REX S, P instruction. To enhance DSR readability, the 
REX S, P instruction is defined as a new instruction, IOCOM, using the OPD 
as seITlbler directive: 

IOCOM OPD C7C7,5 

A two word calling sequence is required to use a utility function: 

IOCOM 

OPERATION OPRI, OPR2, ...• ,OPR(N) 

The I/O Utility ENTRY /EXIT Routine transfers control to the correct opcode 
processor. This processor decodes the operand(s) and perforITls the function. 
On return to the DSR, execution resu~es at the instruction following the oper
ation designator (unless a skip was executed. For skip instructions execution 
is resumed two instructions after the operation designator). No active regis
ters used by the DSR are changed by the common utility routines unless called 
for in the operation; however, the status register compare indicators are 
volatile. 

All general-purpose DSR's use the utility functions as much as possible, 
sometimes a special-purpose DSR cannot afford the added overhead of using 
the Common Utility Functions. To allow for in-line coding where necessary, 
the DSR is always en~ered with the PDT location in the B- register and the 
PRB location in the M- register. Additionally, the E- register is always 
zeroed when a DSR is entered. 

D. 2.3.2 SET /CLEAR PRB, PDT, OR LDT BIT. This routine allows the 
DSR to manipulate bits within the PRB, PDT or LDT. The machine instruc
tion appear s in the following format: 

o 4 5 6 7 

OP CODE 

1 O=SKIP ON ZERO 
1';=SK1P ON ONE 

00 =PRi3 
01 =PDT 
10=LDT 

WORD NUMBER 

1 1 12 t 5 

BIT NUMBER 

The assembler directives that define the instruction are as follows: 

BIT 
SET 
CLR 
PRB 
PDT 
LDT 

FRM 
EQU 
EQU 
EQU 
EQU 
EQU 

5,2,5,4 
1 
o 
o 
1 
2 

D-6 Digital Systems Division 



Jdl)\ _______ _ ~ .943005-9701 

Therefore, the general form of the instruction becomes: 

BIT {
SET} 
CLR ' 

LDT {
PRB'} 

, <word number>, <bit number> 
PDT 

For example, the expression: 

IOCOM 
BIT SET, PRB, 1, 5 

change s bit 5 of PRB Word 1 to a value of 1. Also, the expres sian: 

IOCOM 
BIT CLR, LDT, 0, 15 

changes bit 15 of LDT Word 0 to a value of O. 

The utility's execution time is between 26.00 to 29.50 microseconds. 

D. 2.3.3 CONDITIONAL INSTRUCTION SKIP FROM PRB, PDT OR LDT BIT. 
This routine allows the DSR to inspect a specific bit of either the PRB, the 
PDT or the LDT and either skip or not skip depending upon the state of that 
bit. The machine.instruction word appears as follows: 

o 

OP CODE 

1 =SET BIT 
O==CLR BIT 

4 5 6 7 

OO==PRB 
01 ==PDT 
to==LDT 

11 12 t 5 

WORD NUMBER BIT NUMBER 

The assembler directives that define the instruction are as follows: 

BIT FRM 5, 2, 5, 4 
SKIPO EQU 2 
SKIP1 EQU 3 

PRB EQU 0 
PDT EQU 1 
LDT EQU 2 

Therefore, the general form of the instruction is: 

BIT {
SKIPO} 
SKIP1 {

PRB} 
PDT 
LDT 

. , <word number>, < bit number> 

D-7 Digital Systems Division 



~~------------------~ 943005-9701 

For example, the expres sion: 

IOCOM 
BIT SKIPO, PRB, 3, 15 

indicates that if bit 15 of PRB word 3 is a zero, then the next instruction 
should be skipped. Similarly, the expression: 

IOCOM 
BIT SKIPl, LDT, 0, ° 

indicates that if bit ° of LDT word ° is a l, then the next instruction should 
be skipped. 

The execution time for this utility is between 27. 50 to 29.75 microseconds. 

D. 2.3.4 LOAD/STORE PRB, PDT OR LDT WORD TO/FROM REGISTER. 
The routine allows the PRB to transfer a word between a designated register 
and a specified word in either the PRB, PDT or LDT. The machine instruc
tion appears in the following format: 

o 4 5 678 9 10 11 15 

OP CODE 

v 

100=LOAD 
101=STORE 

REG 
NO. 

IL-0CA-
TION 

OO=PRB 
01==PDT 
10==LDT 

1-0 
OW WORD NUMBER 
z~ 

The assembler directives that define the instruction are as follows: 

REG FRM 5,3,2,6 
LOAD EQU 4 
STORE EQU 5 
PRB EQU 0 
PDT EQU 1 
LDT EQU 2 

The general form of the instruction is: 

REG { LOAD} , <register number>, 
STORE 

For example, the expre s sion: 

IOCOM 
REG STORE,A,PDT,6 

D-8 

{
PRB 1 
PDT , < word number> 
LDT 

Digital Systems Division 



~~------------------~ 943005-9701 

transfers the contents of the A Register to word 6 of the PDT. Similarly, 
the expres sion: 

IOCOM 
REG LOAD, M, LDT, 0 

transfers the contents of word 0 of the LDT to the M Register. 

The execution time for this utility is 20.25 to 23.25 microseconds. 

D. 2.3.5 READiv/RITE rio BUS TOiFROl\1 REGISTER. This routine al
lows the DSR to transfer the contents of a register to the I/O Bus, or to fill 
a particular register from the I/O Bus. The machine instruction appears in 
the following format: 

o 4 5 10 11 12 13 15 

OP CODE 

... 
110=REAO 
111=WRITE 

I NOT USED 
... 0 
OW 
ZUl 

::::l 

--.,..., 
O=DATA 

REGISTER 
NUMBER 

1 =COMMAND 

The as sembler directives that define the instruction are as follows: 

lOBUS 
READ 
WRITE 
DATA 
CMMD 

FRM 
EQU 
EQU 
EQU 
EQU 

5,7,4 
6 
7 
o 
1 

The general form of the instruction is: 

{
READ} 

lOBUS WRITE ' f DATA} 
l CMMD ,<register number> 

For example, the expression: 

10COM 
lOBUS READ, DATA, X 

transfers data from the I/O Bus to the X Register. Similarly, the expression: 

10COM 
lOBUS WRITE, CMMD, A 

transfers a command from the A Register to the I/O Bus. 

The execution time for this utility is 29. 00 to 40. 50 microseconds. 

D-9 Digital Systems Division 



~~------------------~ 943005-9701 

D. 2. 3. 6 EXIT DSR. This routine links the DSR to the proper routine to 
handle the conditions that exist when the DSR is completed. The machine 
instruction for this routine appears in the following format: 

o 

OP CODE 

010 OOOO==NORMAL 
010 0001 ",ABORT 
010 00 1 O~=RETRY 
010 001 1 =DTERR 
010 01 OO=EOR 

6 7 8 

1-0 
OW 
z(/) 

:J 

15 

ERROR NUM BER 
(SEE APPENDIX C) 

The assembler directives that define the instruction are as follows: 

EXIT FRM 7, 9 
NORM EQD 20 16 
ABORT EQD 21

16 
RETRY EQD 22

16 
DTERR EQD 23

16 
EOR EQD 24

16 
The general form of the instruction is 

EXIT {type} {error number} 

For example, the expression: 

IOCOM 
EXIT NORM, 0 

Error number is ignored for 
NORM and EOR exits. 

indicates a normal exit from the DSR. Also, the expression: 

IOCOM 
EXIT ABORT, 9 

indicates that the operation was aborted due to an attempt to execute an 
illegal I/O operation to the device (error code 9). 

D. 2.3.7 PDT /GET. This routine performs character transfer between a 
packed buffer and a specified register. The PDT routine transfers a charac
ter from the right half of the register to the packed buffer and increments the 
PRB character count. The routine may also set bit 0 of the register to indi
cate that storing that character filled the buffer space. If the buffer space is 
already full, the routine sets bit 1 of the register to indicate that the charac
ter was not stored. The GET routine transfers a character from the buffer 
to the right half of the specified register and increments the output count con
tained in the first word of the temporary storage area of the PDT. The rou
tine may also set bit 0 of the register to indicate that fetching the current 

D-lO Digital Systems Division 



~ry~-------~ 943005-9701 

character emptied the buffer. If the buffer is already empty, the routine 
sets bit 1 to indicate that no character is available. The machine instruction 
for this routine appears in the following format: 

o 

OP CODE 

... 
01010=PUT 
0101 1 =GET 

4 5 

NOT USED 

12 13 t 5 

IREGISTER 
NUMBER 

The assembler directives that define the instruction are as follows: 

CHAR 
PUT 
GET 

FRM 
EQU 
EQU 

The general form of the instruction is: 

{
PUT} . b CHAR GET ,<reglster num er> 

For example, the expression: 

CHAR PUT,M 

transfers a character from the M Register to a packed buffer. Similarly, 
the expres sion: 

IOCOM 
CHAR GET, E 

transfers a character from a packed buffer to the E Register. 

The execution time for the put and get utilitie s between 58. 25 to 67. 00 micro
seconds and 49.50 to 55.50 microseconds, respectively. 

D. 2. 4 PHYSICAL DEVICE TABLES 

A Physical Device Table (PDT) contains parameter s, such as device ad
dresses and special attributes, that are necessary for control and perfor
mance of an I/O operation. Figure D-2 illustrates the format for a standard 
PDT and Table D-l defines each- of the fields. Device Service Routines use 
the PDT I S for temporary data storage between inter rupts. Each device with
in a system has a PDT containing information exclusive to that device. How
ever, one common DSR may be used to coordinate I/O operations for a group 
of identical devices. 

D-ll Digital Systems Division 



Jd7~ ______ _ ~ 943005-9701 

WORD 

o NEXT PDT ADDRESS 

FLAGS 

2 INTERNAL DEVICE NUMBER COMM IT PRIOR ITY 

3 ASSIGN COUNT OPEN COUNT 

4 LOCK ING LOT POINTER 

5 ERROR CODE SVC INDEX 

6 DEVICE ATTRIBUTES 

7 
DEVICE 

8 
NAME 

9 

10 POINTER TO EXTENDED PDT OR EXTERNAL. REGISTER 

11 1/0 LOAD FACTOR TIMEOUT 

12 DSR INTERRUPT ENTRY 

13 PRB ADDRESS 

14 LOT ADDRESS 

15 1/0 DONE EVENT LINK 

16 DATA BUFFER ADDRESS 

17 UNSOLICITED INTERRUPT PROCESS ING 

18 OUTPUT CHARACTER COUNT 

DSR 
TEMPORARY STORAGE AREA 
(VAR I ES FOR EACH DEVICE) 

19 

1 
n 

(A)130248 

Figure D-2. Physical Device Table General Structure 

D-12 Digital Systems Division 



Jd7~ __ ~ ___ _ ~ 943005-9701 

Word 

a 

1 

Table D-l. Standard PDT Field Definitions 

Bits Definition 

0-15 PDT chain word, pointer to the next PDT. Zero in this 
word indicate s that thi s is the last PDT in the system. 

a Device Bqsy Flag - initially zero and set by I/O manager. 

- - .- -.~~-- .... ~.....-- .. . ~ .. 
l-l I .K.t...~.t...K y.t...lJ - Inltlally zero. 

3 Exclusive access/shared access flag set by assignment. 
Initially zero (shared access) by Job Manager. 

4 Exclusive access/shared access flag set at OPEN time 
by I/O Manager. Initially zero (shared access). 

5 Locked/not Locked flag. Initially zero (not locked) and 
set by I/O Manager. 

6 I ONLINE/OFFLINE status set by online processor. 

7 Not sharable/sharable attribute set at system generation. 

8 Extended PDT indicator. When set, word 10 contains 
pointer to an Extended PDT for a central controller. 

9 RESERVED - initially zero. 

1 10-11 System/user m ode indicator - used only for system con-

2 

3 

1 ") 1 c::. 
..LL.-..L...J 

0-7 

sole data terminal by I/O manager and DSR to determine 
whether device is in a system or user mode. Initially 
zero. 

DSR used flags; I/O }v1anager resets to zero at every 
initial DSR entry. 

Internal device identification nurnber - Each PDT has a 
unique number. Identification numbers 0-20, inclusive, 
are reserved and should not be used. All others are 
assigned according to table 2-2. 

8-15 Commit priority - initially zero. 

0-7 Assign count, initially zero. 

8-15 Open count, initially zero 

4 0-15 Locking LDT pointer, initially zero. 

5 0-7 This byte indicates the operation status upon completion; 
initially zero, it is controlled by the I/O manager and 
DSR exit utilitie s. 

D-13 Digital Systems Division 



JdlS\ ______ _ ~ 943005-9701 

Word 

5 
(conlt) 

6 

Table D-l. Standard PDT Field Definitions (Continued) 

Bit s Definition 

8-15 SVC index - Determ.ines which DSR is to be called. The 
value is determ.ined by the m.em.ory im.age phase (MIP) 
containing the DSR, as follows: 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14-15 

MIP SVC Index 

181 22 
182 23 
183 24 
184 25 

Device attributes. Returned in the PRB when the device 
is opened. 

System. console only 

Dum.m.y device only 

Rewindable 

Device can be fo rward spaced 

Device can be back spaced 

Printing Device 

ASR 733 cas sette 

Data Term.inal or CRT 

Disc 

Input 

Output 

USASCII Device 

Binary Device 

Polled CRT 

00 - Non- disc Device 
01 - Linked Sequential Disc File 
10 - Relative Record Disc File 
11 - Indexed Dis c File 

7 - 9 0-15 Device Nam.e - This m.ay be any valid USASCII 6 charac-
ter string which has not previously been used as a device 
nam.e. 

D-14 Digital Systems Division 



J175\ ______ _ ~ 943005-9701 

Word 

10 

11 

12 

Table D-1. Standard PDT Field Definitions (Continued) 

Bits Definition 

0-15 If the Extended PDT flag is set, then this word contains 
the addres s of the Extended PDT. If this is a data bus de
vice and the I/O utilities are to be used, this wo rd con
tains two possible device addresses. Refer to I/O Util-

I ities description in this section. Other"\.TJ"ise, this ~TJord 
is available for DSR use. 

0-7 I/O load factor. 

8-15 Device Tim.eout - can be selected by loading value les s 
than 255 into the tim.eout count byte of the PDT. Counting 
begins when an I/O Call is initially proces sed. If a de
vice is tim.ed out before the data transfer is com.plete, a 
correctable I/O error occurs. Each count corresponds to 
one second to allow a m.axim.um. tim.eout of 4 m.inutes and 
14 seconds. Som.e devices will require resetting the last 
record. 

0-15 

Keyboard type devices do not norm.ally have a tim.eout. 
The tim.eout in the PDT I s should be set to FF 16 to specify 

I 
no tim.eout. 

I DSR interrupt entry - Initially points to a set of code that 
I perform.s a required task when an I/O operation is not 

currently being done to this device. Norm.ally the only 
logic required clears the interrupt and returns control to 
the system.. This word is controlled by the entry and exit 
Utllltles. This code m.ay reside in the Extended PDT or 
telTIporary storage area. This entry norm.ally handle s 
unexpected hardware interrupts. 

13 0-15 PRB Pointer for the PRB currently being proces sed by a 
DSR. Initially zero. 

14 0-15 Logical Device Table (LDT) pointer for the LDT currently 
being processed by the DSR. Initially zero. 

15 0-15 I/O done event link controlled by the exit utilities and the 
system. task scheduler. Initially zero. 

16 0-15 If the operation currently being processed by a DSR is a 
Read Binary, Read USASCII, Write USASeI!, Write 
Binary, Write Direct, or Read Direct, then this word 
contains the data buffer address associated with the oper
ation. This word is initially zero. 

D-lS Digital Systems Division 



A~ _________________ _ ~ 943005-9701 

Word 

17 

18 

19 

Table D-l. Standard PDT Field Definitions (Continued) 

Bits 

0-15 

0-15 

Definition 

SaITle as word 12. 

Used by the utilities to ITlaintain an output character count. 
Should be set to zero by the DSR at the start of character 
retrievals froITl the data buffer. Otherwise, this word is 
available for DSR use. 

This area contains any teITlporary data or device dependent 
inforITlation required by the DSR. 

Controllers that handle ITlore than one identical device (ITloving head disc con
troller or ITlagnetic tape controller for exaITlple) are not cOITlpletely separate 
physical devices. Therefore, each ITlultiple unit controller has an Extended 
PDT in addition to the regular PDT's for the separate devices connected to 
the controller. Figure D-3 illustrates the format for an extended PDT. 
Table D-2 defines each of the fields. The Extended PDT helps the I/O Manag
er determine the busy status of the controller and its individual devices, and 
also indicates which of several PDT's associated with the bus address applies 
to a generated interrupt. When an I/O operation is initiated, the I/O Manager 
sets the PDT pointer into Word 1 of the Extended PDT. The PDT address 
table contains a pointer to the Extended PDT instead of the PDT itself. When 
an interrupt occurs from one of the controller's devices, the Interrupt De
coders check the PDT Address Table to determine the address of the Extended 
PDT. The decoders then use data in the temporary storage area of the Ex
tended PDT to determine which device PDT is as sociated with the interrupting 
device. 

WORD 

o FFFFl6 

ACTIVE PDT POINTER 

2 EXTERNAL REGISTER 

3 FLAG WORD 

4 DATA TERM INAL PDT POINTER 

5 0000 

6 

! VARIABLE DSR TEMPORARY STORAGE 

(A)l30249 n 

Figure D- 3. Extended PDT Gene ral Structure 

D-16 Digital Systems Division 



~. ---:----~~-----~ 943005-9701 

Table D ... 2. Extended PDT Field Definitions 

Word Definition 

o Must be FFFF 16 

1 Active PDT Pointer - controlled by I/O Manager if the Extended 
PDT bit is set in the device PDT (Word 1, Bit 8). 

2 External Register - used for com.m.a.nd or data register by 1/0 
bus device. Available for DSR use if device is on the DMAC. 

3 Bit 0 - set to indicate controller busy. 

Bit 1 - set to indicate a Silent 700 Series Data Terminal Extended 
PDT. Word should be initially set to zero. 

4 Pointer to Data Terminal PDT if Word 3, Bit 1 is set. Other
wise m.ay be used as temporary storage. 

S Mode control for 733 ASR Cassette if Word 3, Bit 1 is set. 
Otherwise may be used as temporary storage. Initially zero. 

Bit 8 of Word 1 in the device PDT indicates to the I/O Manager that an Ex
tended PDT exists for a central controller. If that bit is set, the I/O 1vlan
ager retrieve s the Extended PDT Pointe r from Word 10 of the device PDT 
to access the Extended PDT. It then examines Bit 0 of Word 3 of the Extended 
PDT to determine if the controller is busy. 

D. 2. 5 LOGICAL DEVICE TABLE 

The Logical Device Table (LDT) equates logical device numbers to physical 
devices or files. Figure D-4 illustrates the table format. Table D-3 pro
vides a detailed breakdown of the fields. Job Management creates and de
letes LDT' s. When an I/O call is made, the I/O Call Processor searches 
the linked LDT I S for a LUN definition. If it finds the LUN, it prepares 

WORD 

o FLAGS 

KEY LENGTH I LUN 

2 PDT /FCB POINTER 

3 . RECORD LENGTH 

4 NEXT LOT ADDRESS 

5 UTILITY POINTER 

(A 130250 

Figure D-4. DX980 Logical Device Table Format 

D-17 Digital Systems Division 



~~~----------------~ _ 943005-9701 

"\Nord

o

1

Bit

o
1

2

3

4

5

6

7

8

9

10

11

12

13

14-15

0-7

8-15

Table D- 3. LDT Field Definitions

Device open

File

Blocked

Reserved

Return on I/O Error

Busy

Pass LDT

Delete LDT

Return on Retry

Password - Owner

Pas swo rd Protected

Definition

No Password Protection

Tem.porary

User/Creator Access

Not Used

Key length - for files only

LUN

2 0-15· Pointer to PDT for devices. Pointer to File Control

3

4

5

0-15

0-15

Block for files.

Record length

Pointer to next LDT - zero if last LDT; Anchor is in Job
Control Block.

Pointer to Record Control Block for files.

for either a DSR or a File Managem.ent entry, and relinguishes control to the
correct DSR or File Managem.ent Routine. If it does not find a definition for
the LUN, an error condition exists and the I/O call cannot be executed.
Open and close cal1s change the LDT Flags and Pointers as necessary.

D-18 Digital Systems Division

Jd7.~ ______ _ ~ 943005-9701

D. 2.6 DEVICE TIMING FACTORS

Many I/O Bus interrupts are tim.e-critical, whereas Dlv1AC interrupts gener
ally are not. Two factors affect I/O Bus interrupt perforTIlance:

1. The· worst-case tiTIle to service the high-priority device,

2. The percentage of CPU tiTIle required to service interrupts ..

D. 2.5.1 WORST-CASE I/O BUS INTERRUPT LATENCY TIME. The worst-
case latency time to service high-priority ~/O Bus device is the sum of the
following:

Factor Maximum TiTIle Required

1. The longest code sequence when inter
rupts can be masked. This occur s iTIl
mediately after a previous interrupt has
been decoded and includes set-up for
DSR entry, DSR execution, DSR exit
and return to th~ correct machine state.

2. Interrupt execution time that is a hard
ware function and doe s not add to the
latency time.

3. Retaining the current state of the ma
chine and identifying the interrupt, plus
setting-up for DSR entry. These fac
tors are controlled by the I/O Bus Inter
rupt Decoder.

4. DSR execution to the internal point of
I/O is dependent upon the DSR being used.

Total worst case latency time to
honor a high priority I/O Bus
interrupt

400 microseconds

N/A

40 microseconds

60 microseconds

=505 TIlicroseconds

Table D-4 lists the character interval times of some standard I/O Bus
periphe ral devices.

D. 2.6.2 INTERRUPT HANDLING CAPACITY. The worst-case percentage
of CPU time required by a, I/O Bus device is calculated by:

WORST-CASE INTERRUPT SERVICE TIME X 100
TIME BETWEEN INTERRUPTS

The worst-case percentage of CPU time required by a DMAC device during
the actual tr ansfer is:

WORDS PER SECOND X O. 000075

D-19 Digital Systems Division

~~------------------~ 943005-9701

Table D-4. I/O Data Rates and CPU Loading

MaxiInum
Device Character Time System Load

(Worst Case)

9600 Baud Modern 1 040 ~S. 29.0 %

1200 Baud Modern 8333 ~S. 3.5 %

300 Baud Modern 33, 333 ~ S. .91 %

110 Baud Modern 100, 000 p.S. . 3 %

300 CP1.1 Card Reader 1760p.S. 17. %

Moving Head Disc (DMAC) 7.25%

Model 979 Tape Transport (DMAC) 1.25%

DS3 30 Disc System (DMAC) 36. %

High Speed Paper Tape Reader 3333 ~S. 9.1 %

High Speed Paper Tape Punch l3,333p.S. 2.3 %

2310 Line Printe r (DMAC) .02%

The worst-case I/O Bus interrupt service time is the sum of the worst cases
of:

1. Interrupt identification and DSR entry time (45 microseconds)

2. DSR execution tim e (350 microseconds)

3. DSR exit until interrupts are re-enabled (40 ~S. microseconds)

The total worst case time is 435 microseconds. The system can handle any
combination of devices concurrently until the available CPU time is exceeded.
The best performance occurs if the higher transfer rate devices are assigned
to the high prioritie s.

D. 2.6.3 SYSTEM OVERLOAD PREVENTION. The maximum system load
percentage for each device is represented in the individual Physical Device
Tables. The I/O Manager routines monitor the system I/O load at all times.
If an I/O call is made that causes the load to exceed 90%, the task is queued
until ll10re CPU till1e is available. Higher- speed DSR's are designed with
systell1 load in ll1ind and frequently show a significant ill1provell1ent over the
worst- case percentages.

D. 2.7 CONFIGURATION LIMITATIONS

The Model 980 COll1puter has four catagories of interrupts: Internal, Priority
Option, Direct Memory Access Channel (DMAC), and I/O Bus. Internal inter
rupts are not directly related to I/O transfers and are handled as a separate

D-20 Digital Systems Division

Jcl7~ ______ _ ~ 943005-9701

function. The I/O interrupt decoders assign the I/O Bus interrupts a higher
priority than DMAC inter rupts (this is different than the hardware priority
assignment). Within the I/O Bus and DMAC interrupt levels, there is also
a definite priority structure. I/O Bus interrupt handlirig has the greatest im
pact on overall system performance.

Versions of the I/O Bus interrupt decoder support the following I/O configur
ations:

I/O Configuration

Internal Only

1 Expander

2 Expanders

3 Expanders

4 Expanders

Maximum I/O Ports With (Without)
Inte rnal Expans ion

13 (4)

22 (13)

31 (22)

40 (31)

49 (40)

Figure D- 5 illustrates priority the structure for internal expansion only.
Figure D-6 illustrates the maximum I/O Bus configuration. The PDT pointer
tables list the location of the PDT or Extended PDT associated with that de
vice. If less than the maximum configuration is used, expanders should be
added in the numerical order indicated~ Internal expansion mayor m.ay not
be included. If an I/O expander is'not included, its internal port may be used
for an I/O device. Figure D-7 shows the DMAC expander table.

The following equation determines the maximum number of ports per hardware
configuration:

(# of expanders x 10) + (13 - # of expanders)

D. 2.8 DX980 CONVENTIONS

Some general rules apply to all sequential I/O devices as well as sequential
disc files. Devices capable of both reading and writing cannot arbitrarily
switch between Read/Write modes. The restrictions vary from device to
device. Do not close and re-open a device to circumvent these restrictions;
the results are unpredictable and different for each device. All DSR's should
ignore I/O opcode 17 and 18 to allow for expansion with new functions. Op
codes above 20 are generally in error, although some are legal for random
access to disc files and other device-dependent functions. For opcodes 0-3
and 19-20, the I/O Call Processor checks for allowable data buffers. Use
these opcodes for data transfer functions. Use opcodes above 29 for special
functions that do not directly involve a data transfer. The basic functions,
Open and Close are processed by all standard Device Service Routines. All
sequential writing DSR's provide a command to write an end-of-file. For
most devices this is a /~:~ record. The end-of-file command should always
be used in lieu of writing a /~:~ for that purpose.

D-21 Digital Systems Division

~~------------------~ 943005-9701

13 14 15

I I * 1* I
* =NOT USED

* 0 INDICATES NO
DEVICE WITH DESIGNATED
PRIORITY.

(A)130251

o

2

3

4

5

6

7

8

9

A

B

C

o

E

F

I/O BUS POINTER TABLE

0

PDT POINTER (OR O)*lST PRIORITY

PDT POINTER (OR 0)* 2ND PR lOR ITY

PDT POINTER (OR 0)* 3RD PRIORITY

PDT POINTER (OR ot 4TH PRIORITY

PDT PO INTER (OR ot 5TH PRIORITY

PDT POINTER (OR 0)* 6TH PRIORITY

PDT POINTER (OR 0)* 7TH PRIORITY

PDT POINTER (OR 0)*8TH PRIORITY

PDT POINTER (OR O) 9TH PRIORITY

PDT POINTER (OR ot 10TH PRIORITY

PDT POINTER (OR O) 11TH PRIORITY

* PDT POINTER (OR 0) 12TH PRIORITY

PDT POINTER (OR o t 13TH PRIORITY

0

0

0

Figure D-5. PDT Branch Table with Internal Expansion Only

D-22 Digital Systems Division

~~ ---~ ~43005-9701

(D)I30252

WORD

o

6

9

10

11

12

13

14

15

16

WORD

o

4

5

6

10

II

12

13

14

15

16

PORT I EXPANSION WORD

~ J - ~ ~
a '0 11 1::1 1-:t 1.4 Pi. - . - . - . -

10 1 0
\ 0 10 0\ I I I I I I I I I 1

0 J
PORT , PDT POINTER

TABLE • • •
NOT USED

BIT SET IN

EXPANSION WORD

NOT USED POINTS TO

NOT USED CORRESPONDING WORD

NOT USED
IN POINTER

TABLE*
NOT USED

PRIORITY 1 -- I
2 •
3

4 •
5

6 •
7

- I PRIORITY 10

NOT USED

NOT USED

PORT 3 EXPANSION WORD

o 2 3 4 6789101112131415

lolo iO\O oj J 1 I I I I I i \ loj
PORT 3 PDT • • • POINTER TABLE

NOT USED BIT SET IN

EXPANSION WORD
NOT USED

POINTS TO
NOT USED CORRESPONDING WORD

NOT USED IN POINTER

I TABLE*
NOT USED

PRIORITY 21 ---
22 •
23

24

I
25 •
26

27 •
28

29

PRIORITY 30

NOT USED

NOT USED

WORD

o

4

6

9

10

11

12

13

14

15

16

WORD

9

10

II

12

13

14

15

16

I/o BUS INTERNAL EXPANSION WORD

o 3 4

PORT 2 EXPANSION WORD

o 3 4 5 6 7 8 9 10 11 12 13 14 15

1
0

1
0

1
0

1
0

o I 1 I I I I I I I I 10 1
PORT 2 PDT

POINTER TABLE

NOT USED

NOT USED

NOT USED

NOT USED

NOT USED

PRIORITY 11 ~
'2

'3

14

15

16

17

18

19

~---P-R-10--R-I-T-Y--2-0--~~
NOT USED I
NOT USED

•

•

•

• • •

BIT SET IN

EXPANSION WORD

POINTS TO

CORRESPONDING WORD

IN POINTER

TABLE*

PORT 4 EXPANSION WORD

• • • POINTER TABLE

NOT USED

NOT USED BIT SET IN

EXPANSION WORD
NOT USED POINTS TO

NOT USED CORRESPONDING WORD

IN POINTER
NOT USED

TABLE·

PRIORITY 31 ---
32

33 •
34

35

36 •
37

38 •
39

PRlr~ITY 40

NOT USED

NOT USED

I
!
!
I
I
I
i

i
I

I

5 6 7 9 10 11 12 13 14 15

WORD

o

4

5

7

8

9

10

II

12

13

14

15

16

INTERNAL EXPANSION

PDT POINTER TABLE

NOT USED

NOT USED

NOT USED

NOT USED

PRIORITY 41

42

43

44

45

46

47

48

! PRIORITY 49

NOT USED

NOT USED

NOT USED

NOT USED

• NOTE: GENERAL FORM FOR PRIORITY

OF A PARTICULAR PDT IS

GIVEN BY:

10(n-1) + (W-4)

WHERE

n c-PORT NUMBER

W=POINTER TABLE WORD NUM BER

--- I • I

• I
• I

! - l

Figure D-6. Priority Scheme for Max:
imum I/O Expansion

D-23/0-24 Digital Systems Division

943005-9701 ~ ------------~---
D. 2.9 DSR WRITING PROCEDURE

The recommended method for writing a DSR use s a defined, consistent struc
ture. The approach breaks up the DSR into unique proces sing steps. Each
step is c~nfrolled by a branch vector, similar to the operation of a hardware
state controller. The branch vector serves as the next state identifier. This
technique is not suitable for all DSR's. DSR's that do not have several unique
proces sing steps are inappropriate for this convention.

D. 2 ii 9. 1 PREPAR-ATION. Before designing a DSR, understand corr-lpletely
how the hardware interface works. Research sufficient interface documenta
tion (usually available) to develop a familiarity with the interface. When de
veloping new hardware, design both the interface and DSR before constructing
either one. Very often, a simple hardware addition can save a considerable
amount of software, and vice-versa. In some cases, special features that
look desirable when only considering the hardware may actually make the
software more complicated and are best eliminated.

D. 2.9.2 REENTR ... 4..NT DSR'S. DX980 DSR's can service multiple identical
devices with one copy of the procedure. A data base consisting of several
I/O tables described earlier is required for each individual device. The
DSR's also appear to service multiple devices simultaneously because when
an I/O interrupt occurs, it is serviced very quickly for the interrupting de
vice. Once the interrupt service has begun, however, another interrupt can
not be serviced until the service for the current one has been completed.

All registers and DSR local storage are lost between interrupts for a device.
All data needed for a subsequent execution of a DSR is saved in a temporary
storage area of the device's Physical Device Table (PDT). This temporary
storage area is whatever size is needed by the DSR and begins at the end of
those entries required by the I/O Manager. Do n()t save data· ·l()callv in a
DSR even when only one device is serviced by it. If a second device is ever
added, the DSR will not work. Furtherm.ore, PDT storage usually takes the
same amount of code and memory as local DSR storage. Therefore, whether
or not the DSR's appear to be reentrant, code them as if they were; with all
data storage being done in the PDT.

D. 2.9.3 STRUCTURING THE DSR. First determine how many interrupt
entry points will be necessary. To do this requires breaking the I/O transfer
operation into its major components. This is not always an obvious decision.
H old the numbe r of state s to a rea sonable level.

For example, consider the high- speed paper tape punch interface. A write
operation involves sending the requested data on a character basis to the in
terface. The DSR is initially in an idle state that clears interrupts and re
turns control back to the system. When an output request is initiated by the
10 Manager, the DSR sends a character to the interfaces, sets its next state
to one that continues sending characters upon interrupt, and exits normally.

D-25 Digital Systems Division

~~------------------~ 943005-9701

(A)130253

o PDT POINTER

2

3

4

5

6

7 PDT POINTER

8

(OR 0 r 1 ST PRIORITY

2ND PRIORITY

3RD PRIORITY

4TH PRIORITY

5TH PRIORITY

6TH PRIORITY

7TH PRIORITY

(OR 0) 8TH PR IORI TY

0

*0 INDICATES NO
DEVICE WITH THIS
PRIORITY.

Figure D-7. DMAC Expansion Table PDT Pointer

When the DSR senses that it is about to send the last character, it changes
state to exit the DSR with an End-of-Record exit. When this state is exe
cuted, the state is again set to idle and the DSR is exited. This procedure
involves changing the state of the DSR several times. Upon an interrupt
entry, the DSR only needs to clear the interrupt and branch via the next state
vector.

Figure D- 8 and table D- 5 provide a flowchart and listing, respectively, of
the paper tape punch DSR. Following that, figure D-9 and table D-6 provide
a more cOITlplex example, the data terminal DSR.

D.2.9.4 CODING PDT BUILDER. When configuring the DX980 system at
Initial Program Load (IPL) time include all the hardware configuration that
is going to be used on the total system. This allows adding a device by
adding only the PDT pointer to PDT branch tables since these tables already
exist. The PDT Builder utility then has access to these tables using pointers
and labels defined in table D-7. Figure D-IO outlines the steps required to
add the new PDT using the PDT Builder utility. The remainder of this para
graph describes these events.

D-26 Digital Systems Division

~-------~ 943005-9701

01/1b174

CHART TITlE - PAPE~ TAPE PUNCH DEVICE SERVICE ROUTINE

IISPTP I ---------

! NOTE U.1 • * * ••••
.. IS T TwO ~J~DS OF ..
• D$K ARE ENTRY
• OI SPLACE04E,..TS FOR

I NTERRUPTS AND
C ANC EL S · · · · i·· · ·

I~ITIAL t'lr Y PCP,T

OZ

/ I
I ENAHLE I

I If<.TERRUPT I
/ C(j'lTROL I

I I

1 03 ---------------
I

I KEAD I
/STATUS-THIS IS /

/ A KLUG TO Cl EARl
/ THE INTERRUPT I

04

·~O
.. ----------------~ 1. 04*--)-

/

OPCDER I

/
I

/ III SCllf'<NECT
/ DEVICE

I 07

.. EX IT

I
I

Ob

/
/

/

U"4 OPE kAT I 0'1 COli':
eQRIH. WRI TE "'ESSAGE

AUTUFLOW CHART SET -

IGNOR

51.55*-->1
08 *-----------* I SET IGN~~BBIT I,.. I

PAGE 01

PUNCH LEADER/TRAILER
ROUT INE

------------------ 01.05--->.

ENTRV PO J <~~~---------------+ r~~~~~;~~h§R-TO--!r

;~;;ih~;;L-;,--;l I :::::::=L:=~;
L--~~!~~~I~~~~~~---i II L~;!~;~~Il-~~!~~u

• EX I T

ON CoMPLET I ON OF
OPEl' AT ION

I ClSWFF /

01.05·-->1
11 *-------------------*

I
SETuP TO CAll I

EGFEO~ ROUTINE TO I
ou TPUT A'I EOF AND

.-----~-~~~~~~~-----.
I

I NOTE 12
THIS ~OUTINE

OUTPUTS AN ~oF IF
REG X =7 AND AN
EOK IF)(=5.UPQ~
CUM~L[TION OF

PROCESS VECTOR 'IS
SET ACCORDING TO
THE VALU. IN KEG

E eN ENTRY •
02. 02---> I

~-~~~~~~-----------~ ;
J SAVtREGEAS I
! "EX\§n5V IED

,

:~~~~~~~~~[~~~~~~~~;
I SET I ~~f~~R TO I
·-~::~::--I--------~ :

/ /

/ OUTPUT NEXT I
/ (.rlARAC TEk FOR I

I 4'1 EOR/EoF I
/ /

!6 . .
• FI N I SHED • NO

OUTPUT OF .-+
.. ~OF/EoRl.. !

• ,YES • ··z·. • 12 •

EXTNR~

• _________________ 2!

I SET VECTOR AS I
SPECIFIED ON

ENTRY ·---------r::-----·
• EXIT

AWAIT ING FURTHER
INTERRUPT S

IVPTP2.. 21

I YES
+-----$

.. .
• FINISHED ..

OUT PUTT ING
•• BLANKS? •

r 22 ----------------
/

/ I
I PUNCrl A BLANr(i

I I
I I

I 23

• EXIT
AwAlT ING FUol.THER
II\jHR~UPTS ON THIS

PROCESS

I ulkECT I

01.05---> I 24

*------------------- * I Sq DIR~H WRITE I
* -------------------.
51.55--->/

WTASCI 25
------------------- I SET I ~~¥~~R TO I
·---------1--------::

I ZERO OUTPUT COUNT I

IVPTP3 I 27

L-,~'--,j~~::~l

.. ..
NO • IS TH IS • +-----. CHARACTER THE •

• LAST TO •
oUTPUT?

* *
·IYES

29 *-----------------.
L--~~~!~~!~~:-~~---l

+------CON'--> I 30

I I
I I

I OUTPUT I
I CHARAC T ER I

I I

I 31

• EXIT

AiiAI TlNG FURTHER
INTERRUPTS ON THIS

PROCESS

Figure D-8. Paper Tape Punch DSR (Sheet 1 of 2)

D-27 Digital Systems Division

J2r7, 05\ ______ _ ~ 943005-9701

Jl/lof74 AUTOFLOW CHART SET -

C-fA~T TITLE - PAPH TAPE PUNCH DoVICE SERVICE ROUTINE

I VPTP4 I I WTBINY I

ill

01005--->1
54 *-----------------*

I ZERO OUTPUT COUNT I
------------------- . .

o ~IRECT PUNCHi
IVPTPb 1 05 $-----------------.

I GET CHARACTER I

·---------r--::----*
I
N" F:T~;~:

SETEe" <-------sz---------j YES ~ * HAS THE * •
------------------ +-----* tiUFFER aE~N *
I PdTIATE I OEX.HALISTED.? *

1

kt~15TER5 TO CALL I
EOFEC'< FuR A" ~OK

A'<U TERMI",ATt:
uPEkATIO'<

- --------r--------

1013:

•• 0 E OfEO~

o

o - ~~ ~~ ~~--!-------- ~ ~

I ~H') STATUS - I
KlUG T'J CLEAR

I '>IT E ~RUPT
o---------r--------o

b~A~CH V [A VEC TO~

*1 NO

07 *------------------- • I SAVE C-f~;~CHR IN I
*---------,--------::
*------------------- •
I ~~~Eu~~E2H~~~h~~ I *---------,--------::
*--- - - --------------. I SETI~~~J~~ TO I
*------------------- •

+-----c:ONY7--> I 1(1
*------------------- •

I USING HAlF ilYTE I
AS INDE~ PICKUP

*--~~~~-~~I~~~ ~~~--~:

I I
I I

I OUTPUT 114 UF I
I BINAoIY "ORD I

I I

01.16---> I
E XT"~'" 12

• (X IT

A~A IT I r." FUR THE"
INTE~~UPTS

IVPTP5 I

PAGE 02

Figure D- 8. Paper Tape Punch DSR (Sheet 2 of 2)

D-28 Digital Systems Division

Jd7)l_~--::----__ _ ""V ~3005-9701
Table D- 5. ,Paper Tape Punch DSR Listing

SAP A'LC
PTP O~R • INITIAL !NT~Y

0~~~

~f.A~~

",.~.c
000!';

"'t)~"
0~01

0Q1~S

0~Q!9

0~tr

0D111
~"'t~
0~13
Q!~1(

~~t~

0011"
~f}ll1

~"'t8
ltl~lQ

I,H"2e"
~tJ21

QJ~2~

00'2~

0(12'
If"''' 2~
~"'2~
"~21
(i10'28
QI(',I2~

0Q13C'
"'0131

•
•

Q~311'

• TEXA~ T~ST~U~E~Ts,fNr.

•
* TOT T~PTP

.*.*** •••• ~**.* ••• * •• , •• * •••• * •••••• *.* •• ****.****.********
* •
*
* •
•
• •
•

TITL~

AUTHOR

SYSTEM

• HI~H SPEFO plPEH TAP~ PUNCH nEvICf SF~VI~E R
't~PTP'

• E R t,.' f S T 8 n "HI r; L I, ~ 1 /7 4

• A~STRACT THtS RnUTINF. PROVIf"\E! TH~ TNTEqFACF.:
* A E' T III F.' E ~ l H F PAP E ~ TAP F. P II N C H c: ,., N T FHI LI_ E R
* 4Nf"\ THF f"\~Q8~ SYSTEM.
• M ~ J n R F II NeT r 0 ~I S t , T H F H r r; t-i S PEE 0 P l P ~ R TAP F PUN C H
* ~S~ PU~CH!~ OATA ON A LEVEL PAPER
• TAPES TN A~ ASCIT. ATNARV, o~ nI~ECT

•
* •
*
*
*
*
*

.... Of"E.
~l ~CStT ~EcO~ns ARE WRtTTE~ AS nNE

FRAME PER ~HARACTER, TH! nATA
Pll~lc'"'e" nI~EeTI v FROM TME ,."T, BIIF
FE~ ~rTH Nn CO~VER~InN~.

" FACH ~F.cnRn rs TFRMINATEn WITH A
QEAnE~ OFF C~'~ACT"R (X.OFF~ ANO A
nElETF P~UAOIIT~ C~ARACTf'1S.

~H)l3~ • .. , D ,. .. , " 0 we., ~ '" e " • " I!!!l eo D I • 11.. ,. U ., " ". I:' f"ll 1 e
q I ~ A .~ .• "' " r I J ~ '.J 'J ~"r: r I J r .. \..,,., r-v _ "''') r 1...1 I'"

0"'3~ •
"'t'l3~ *
0V13~ *
111~3~ • E~RnR~
jdf.ll31 .,.

V!~3~

Vlt'!3':
~~.'r.

~0I.1

1i'f.A.~

Q1"'A~
QlI'lIAl
(,JIt'l4!r,

fliP."
~!'II47

Vlt'JI'8

"'Q1'~
0~Sn:
~1i'51

~~5~

1t1"'5~

* .,. lNPUT
*
* .,.
* .,.
*
* ..
*
*
*
*
* rlUTPllT
.,.

•

•

THF'

ALL

FRAMES P~R wnRr".
~l nN ~~ITE OJQ~CT Nn ENO nF ~F.CO~O

TNnYCATOP TS PtfNeHFO.
NO PIINCH ErH~nR~ lRF nFTEr:TA~LE

"P~R4TTO~ rO"E E~R"R! • ABnRT

FOLLnWYNG u~r;UMENT J! PASSfL:O

(I'"T-. l"-itTIAL/CANCEL CALL INOTCATnFn

I'HI~ "0 A CALL Tn I~D~RT TO ORTAIN T~F

'O'-Ln~TNr.SI
F • '" M • PR~ •
R • "DT •
" ,\Nr'I Y • npFRATtO~ eOf"lf
s • IITTLTTV FNTRV

ARlNr.H H·IT" TNTTTAl. n~ c A ~'efL FNTR

'J ONf'

D-29 Digital Systems Division

~~------------------~ 943005-9701

Table D- 5. Paper Tape Punch DSR Listing (Continued)

SAP ~'Lr
PTP i)~~ - I~IITIAL E~T~V

V\~el

~P!5-;

0"'~~
~!'!51

1ZI0I~8
~"'!5Q
~t'letr.

~Pt51

* ~OI.lTr~FS
• r.AlLFO • tin I\TrLTTTE~
•
• svr.S LJ5En • ~IO"'E

• •
•
••• *.*.*.***.**********.******** •• ***.************ •• *

D-30 Digital Systems Division

~ ____ 9_4_3_0_0_5_-9_7_0_1 ___ __

Table D-5. Paper Tape Punch DSR Listing (Continued)

SAP R'LC
PTP O~~ • Ip..;ITIAL ENTRV 8101!ET (I!I"'PI~

"(I!Ie~ PEJ
0~e~ REF ISDSRT
~O'tU f'lF.' I~PTP

00'ti~ ••
0P6" ..
0~e7 • 111" IITtLTTV F.QlIATE~

"'~e8 •
V't'l8Q ••
0P17t7: YOCOM npo ItC7C7.S

0~21 0"'71 AAORT ~QLJ It't
14"'00 0C1'7~ OPOFRR FOU ;

(lHA7~ AYT FR'" ~",~,a1
0 01 0' ~Pt'~ SET FQtI t
{I!~0r. "''''7~ CLEAR F~II 0

~P'" "''''7' pnl FQII 1
(11 \A0«' ~~71 PRe FQII IA
"'~~2 0(~7A L"T FQII ?
~CJlCII' 0C117; St(tP0 trQIt 2
0CJ1Vt~ ~CII8(11 S,I(IPt e: (J II :3

~1'lI8t RE'G FRM ~,3,2,e
~t'l0" "'(I!A~ LnAn FOil ..
p1I11I0~ "'OIR~ STO~E F~II 5

o f.!! SoC Ins!!s FR~ III 7,A u,,. ...
~~~~ ~QlA~ REA~ £QIJ 6 
",r~~7 0"'8" W~ITE F.QU '1 
~0I0'" 0In!87 OATA FQII 01 
~~Plt ~f'l88 C"'Mn FQIJ 1 

0GA8~ CH'" 'RM 5, 11 
ft1IDI~' 0".gl1 PIll FOil It" 
~POlP Plpg, f';F.T FQU .R 

~~g~ EXIT FR"" 7,g 
~~2'" ~rAg~ ..,nR~ FOIl .,~ 

~C't2A 0P1Q4 E'nR FQII It'. 

D-31 Digital Systems Division 



~~------------------~ 943005-9701 

Table D-5. Paper Tape Punch DSR Listing (Continued) 

SAP ~"L'" 
~TP '1~Q - PTTIAL ENTrotV 

~~~r 

~~ I',J ~ ,

,,~~ ~ ~

111~t-1~

~ ... ~~
rl!"'~~

(An"",r.

~r;-C4?

ill"'''''

~"9 -; PE.7
~~g~ •••
r;t~01 •

~P08 • oEGt5T~R ErUATFS
~r'AO~ •
\A 1 fA'l

1111 PI 1.
R\~~

~''''~
"'HII(
v),~!!:

~., , '" f,

0'011
" U~8
~tli'C
~, 1 (,.
~ 111

•••
A r;QU li1

f F[JI' 1
)(FI'JI~ 2
M ~ 011 J
5 FOU 4
L ,.·QII 5
~ FQ" ~
P FOil 7
A~ FQli 1

•••
•

~!1~ • PRF'
fA,t:', •
LA'1.! •••

V':.A~'" ~11~ PQRSFI. ~QII ~ -V~T'''' FL At; WORO
~, 1" •

~,,~'- ",.17 PP8FOF F. QI I 2 EOF SVSTE"'4 'LAG
vH~0~ ~1'" PQBnPt F. QII 3 nPfPATlnN rra~n':U~D FI U;

~ 1 t ~ •
~"'~, 012cr. p~Bnpr: Eat) t npF.RATJO'" ~O~E rRrr,~T HLAF'
~('II~~ ~'2t PP6nRL F.1l11 2 nATA titFcnRrI l E"'(;TH

~t2~ •••

0~1~

PI"'1'
~~13

~~1.1

"'t2~ •
~'2t • PnT
~12~

~ UU:
!lI'21
~128
012C:
"130'
""31
f1'3~
~'3~
~13~

~t3~
013~

~131

0131
~t3~

"'lAC':
01Al
Plt.~

~t.3
CIIl.4
~lA~

0\.r.
PI'A7

•
•••
Pf'TFLG ~al_1 1 FLAG IIInRf' ..
OTRCT~ F.:QIJ P5 nY~feT pu"'eH 8TT
•
O'JTCNT FQP til OIlTPIlT COU~IT U~f.n "V "TIlJTI~S
T~~P FtlU fA
TEMPt ~QII to
V~CT EQU 201 wRtT,. V!r.;T'H~ LJ~Fn "N t~TIr.RRlj"T £NT ...
•
• WRITE COMMANDS ~OQ PTP TNTE~FACf

• •••••••••••••••••• * ••••••••••• * ••••••••••••••••••• *.* ••••••
weOYSC ~QII >P201~ nISCf')NNEr.T D!'VTe'
weE ~ 1 ~ ~ Q II II '" t '" 01 ,. N A 8 L f r ~I T II' R ~ U P T ~

•••
•
.. CONT~nL FOR EnF~O~ 8U~RnUTI~E

• •• * ••••••••••••••
wTE'" EQll 1

D-32 Digital Systems Division

)}n~ ______ _ ~ 943005-9701

Table D-S. Paper Tape Punch DSR Listing (Continued)

SAP ~2Le
PTP D~~ • I~ITIAL !~TRV

"'~0e PI'.8 wT!nR !QII S
~1'Q ~En PTP OSR • INITIAL £NT~V

D-33 Digital Systems Division

~~------------------~ 943005-9701

Table D-5. Paper Tape Punch DSR Listing (Continued)

SAP _'Lr
PTP ~~p • t~rTI4L E~TRV

)(0~""
P ~~Q9~

P 00104
0P,~~

I6P0~

0~07

0~~1II

0~~Q

0~~'

6tlt'lot"
0otQtt:
0010n
"~Qlp.

0"'0'
P 0"'1'"
P ~"'tt
P 0011'
.. 0~13
.. 0D11A
P 0~1~
P e01~
fit eOt17
II rUll-
P 0D119
P l~lA
fit aClll~
p e~le

,. 01111"
P IDll!
P 11;111'
,. e~21;11

,. 01;1121
II 0"'22
.. 0023

~"''''~
C~5~

'4IAOI

"'1'0~
PI~",p

p"'e~
1;II~2~

lA0Ci'
~10'"
C1C'
3"13
eye7
30113
eFl~
ensOi
7"ln
,'I!
C~2'
CllCJl2R
0«"2e
",til,!
0P!e~
0Q12R

""'2'
QlPl2~

0""2~
0""~
(IlIDt2e
0~3t
0 C1t 31
0'2e
IPl2'
00128
0C1t2~

(11'2'
102'
ePl2'
101'"

(H 51 p~J

~'~t ••
~t5~ •
~t5~ • A •• ~FTE~MTN~ TF LFGAL opcnOF.TA~E E~RnR P'T~f IF NOT
~'5t • 8. • ~RANCH VIA B~A~C~ TA~L~ AcrORnTN~ TO OPC~O~

""~~
V1t!5'-
""51
0U58
ftlI1SQ

0!6C7:
0!fH
P16~

0U5~
~18.

Atee
0te~

GH81
01S.
IlIteQ
iH7(P!
0'7t
017:
"'73
01' •
"'7S
017~
0177
0178
0170
'H8t'!
0181
01S1
0113
11"
Itl!
IU 8e;
.,H87
0111
0tl0
IteV!
181'1
0te2

• ••
ISPTP FQU ,

~M("I L,A !'AvE svC ~~TIIR~ •
'8PL ISOSRt INITIALIZE SUA P~OGR4M

nATA INT~R~

DATA CANCEL
'LOM .""CF.NT~

YOCOM
rOAUS WRTTF,C~~D.M
tOCQ"'1
TOAU8 REAo,C~Mn,~
CPA .,;
SGf
r-RU
LOV
RHO
OATA
OATA
OAT.
"ATA
~ATA
nATA
OATA
nATA
nATA
OAT.
DATA
nATA
MATA
DATA
DATA
DATA
OATA
nATA
MATA
DATA
H!O

OPcnfR
S+2,X
x,P
opcnER
OPCO!R
WTASCY
WTBINV
oPcn!~
OPcnfR
OPC"!R
!XT!QR
LDRTRl
!XT!OR
CLSW!'
CLSW!'
EXT!OR
IGNOR
OPcnER
DileO!"
IGNOIII
IGNOIII
IGNOR
OIR!tT
PTP OS"

D-34

TNTERRlIPT P.'NTRV AonRp':SS
rA~C'L ENTRV AnnRESS
~NA8LE I~T!R~UPT C~NTROL

(II RfA" ASett
, R!An "I~ARY
'- W"IT! ASCII
3 WRIT! BINARY
A R!'WTNO
~ eACKSPAC! REcnRn
e FO_WARO SPAC! R!cnRn
, Oll!N
" OIl!N R!WINO
9 CLOSE
!A CL08f WRIT! En,
t 1 "'" I T! En,
12 CHANG! RECORO L!NGTH
13 ~!.n "EVIC! STATUS
14 8ACK SPAt! '!L!
IS 'ORWAIfD SIIAC! 'tL!
18 UNLnAD
17 UNAllrGN!D
'8 UNASlrGN!n
to W"IT! DIR!CT

Digital Systems Division

~~-------------------~ 943005-9701

Table D-5. Paper Tape Punch DSR Listing (Continued)

SAP R'Lr
PTP O~R !lMP.'!'T' ~!'l'0'

019~ PEJ
01"2A ",g~ ,It;NnR 'QII S

01-12.1 C1C7 ~t05 YOCOM 9ET Clpronf If;NnR BTT
0~2~ ~80~ 0tg~ AIT SFT.P~8,P~8!Fl.PRROPI

0C!2~ ftH01 CANCEL E:" II • . \II '- 1 OIl

~"'2~ 0198 E)tTF.O~ F.QII $

~'~2~ P'(lICII" f,H or; 'In, aFXTNRp.4
p ~~27 "'t'1!5

0~2A 8ttA 0'''V ~T~ VECT.FtR
0~2Q C7C1 0201 TOeO M F)tTT 0".1 rOMPLETT"N 0,.. ~EtHJEST
0 1"2A 48Q1t' 0?"'~ EXIT EO~,"

~~2!=1 0~0~ OPC"E~ FQII s
0~2~ ~"'''O' LlI'0l -LnA aWcnl~C

"'~2C ""0G1
~~2n C1C7 02Q1~ TOrOM
ei~2F 3"1~ ~~t1~ TOF4US WRTT'.r:M~O.A
4tJ1)l2' C1C7 0'0' lOra'"
ItI~J~ A'~O ~'Ql8 F.XTT ARO~T.OPOF.RR

0~3' ~,~~ CLSWEF FQtI S
0 i.ll3t 1707 ft1'~tr. l n)t aWTF.OF
l'~3' ~--tlIP ~'t' 'LI"E aLD~T~L

p i6"l~ "'4?
""1~ HE~ PTP nSR • WRITf £"F IErH~

D-35 Digital Systems Division

~~------------------~ 943005-9701

Table D-5. Paper Tape Punch DSR Listing (Continued)

SlP R'Lr
PTP n~q • wPITE EnF/E'OR

~'t~
~'t.(

0'1~
~'1~
~217

~~t~

""lQ
~'-2~

~'?1
0'2~

""23
022~

"~3. ~~2~
~~J4 801~ ""2~
0~3'5 0If7!0O' "'27

P 0~JfIi 0~3Q

0!~37 81 1.d ~'2fJ
0~3" SH l' 0'2~

""3f) 023t':
0t .. JQ 11 U» 0231
k\iA3A 0'3F 0~3~
~~3R C7C7 023l
0t'l3C 3"~0I 0'3"
0~3n AC>l? ""35
1lI~3E 7e3ft 0~3~
0013,.. 1 1 13 \!237
0~4~ 911" 0'38
0"'4\ 7~3~ 023e

0?4(',

~F.'J

•••
•
.!N~UT TS EmNF~T FNT~V vECTn~ A~OX.' TF EnR OR ~.4 IF EMF
• A. - ~ET vECTnR Tn TVPTPt
• B. - i,ET r.~AR~CTEQ
• C •• 15 IT LAST O~IE Tn PIJ'lC~? ES THEN Tn TO F
• D ... OUTP'JT CHArJArTF.R
• E •• FXTT NrH~r~AI LV
• F. - SET VEr.T~R Aq ~PFCTF1En nN E~TRV

* •••••••••••••••••• * ••••••••••••••••••••••••••••••••••••••
EOFFOQ EQP ~

STe' TFM"l,B~

'Ln •• YVPTPI

ST. vFCT,AR
ST~ TEMP,PR

IVPTP' EQII S
LO~ TEMP,"R
LOA EnF,)(
lOCOIl1
IOPUS wRtTF..nATA.A
~MT TEMP,AR
BRlI F.XTN~J14

LO~ TFMPt,8 R
5TX VECT,'-R
RRU E)(TtljR~

Hp.:n PTP O!'R '" P"NCW LEAnER/TRAIL!R ROIITtN!

D-36 Digital Systems Division

J17)\ ____ ~____....__ ~ 943005-9701

Table D- 5. Paper Tape Punch DSR Listing (Continued)

SAP ~:2U:
PTP ()~q • PI'~CH Lr.Af'\EP/TRAILf~ JHlllTINF

0"\ PEJ
ft1I'.~ •• * ••••••••••
0?3 •
~, .. ~ • A ... 5ET TNTE~RIIP,. vErT"R Tn FNTe:~ AT R
0?A~ .. g. .. r~ 0 t.. E r T t 1;11' TIM E s '1 ¥ F. S T Fl E ~! r. 0 T I) ,-

~P"~ • C •• PU~CH A RlANK
~'., • D ... FXTT ~nRM'LLV
0, .. 5 • E. - ~t~cnN~Er.T OFVTC' ANn F.~Tl EnR
1tI,4t:: •
vt'5rJ. •••

0~.' ~?51. LnRTRL fQtl S
V'!~ 4' ~(J ''-IP' fIl'5~ .l.flA -TVPTP2

P ~1"4~ vH' .7
'1 QI 4 ott 81 t 4! ""53 ~TA VFCT,~r:t

~r"4~ ~76t1 L,'5t LOA .'li.'h-\
Vl ~~ 41'\ 811 , ~~~~ ~TA TFp.1P,~R

V't-'" t1~51': IVPTP' FQII S
~.141 401' ~'~1 r1 M T T F M P , f\ R
~\ .• 4" 7~"" ~'5" RRtl 5+2
~f:'4Q i'~Dr ~'5t: RRl' CANCEl
ItH~4A C7C1 iII'f5(f. roco'"
~)411 3~~' vH)fIi 1 !ORUS wRTTF,n'TA,E
~i~ 4r i'~2~ ~,~~ ~~'I F."'T·"~H'

"'fj~ ~fn PTP nSQ .. wQTTF ASClt

D- 3 7 Digital Systems Division

~~------------------~ 943005-9701

Table D-5. Paper Tape Punch DSR Listing (Continued)

SAfJ ~"Lr
PT~ I)~~ .. W~ITE '~CTt

IA 26,(
~,~~

"'6'-
""61
~'ftS
@26~

~27'"
CA'71
~'7~
0'7~
1l1'7~

~C'l4r' 0?1~
0iA4~ 510' 0'7~

Vt~.F ~"1
V' I~ 4 ~ 0f1!O)(I! 0275

p ~r~4F ~(II!5'
1t1""~'04 A11A ,,?'C:
0~5' 801' 99'8'"

~"!5'- ""81
1oV'5' C7C7 ItH>82
~~~~ ~A"'''' ~'8~ 
1tI~~-1 OP1 P ~'8l 
~~~~ 7P'0I~ ~'8~ 
~"'!5t'i OII'QtO' L4,-'"

P "'fA!57 ","'5C
~~~A RQ1A 0281 

~I'~c) ~'88 
",('}I5C) C7C7 ~'8C 
0~5A 3'-~0I 0,O"l 
1tJ0I5A 7"'1e) ~?g1 

GIIPer 0,g~ 

0~!5r. AHB i1,g~ 

j(ll'Asn ()~0F 0?Q,c 
"'C'l5~ ,f'C7 ~P-ge 

tHieF 029! 
11105' l1P1~ PI?;1 
~P8~ Qlft(llOl rtt,98 

p ~"'e1 0"'2~ 
~~52 '''O! IdP-QQ 

0301. 

PfJ 
•• *.* ••••••• * ••••••••••••••••• *** ••••••••••••••••••• * •• 
• 
• A •• ~fT VEt.TnR 
• B. - 7EI'.lO prT ('lJlTPUT rlJIINT 
• c ... r.ET CHARACTEQ 
• O ... IS IT l'~T r.~'~ACTF~ Tn w~TT~ ? ~n TWf~ r,O Tn F 
• E. - ~ET vErTnR Tn TvPTP4 
• F. - t?)(TT "'''R~AI LV 
• 
••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
OtR~CT fQU , FNTRY FO~ nYRECT PIINr.H 

IMn P"TFL~,~Q ~!T nIRECT BtT FlA~ 
""TASCI EQII S 

--Lr'lA .YVPTP3 

5TA VECT,P~ 

STF OIlTCNT,F'R 
IVPTP3 F.QIJ S 

TOCOM 
("MAR GET,' 
TAPO 0 
PRII eONT 
'L~! .rVPTPA 

~T~ VF.CT,AR 
CONT 'Qll S 

Toeo'" 
TO~U! wRtTF.,nATA,A 
"'~I' EltTNRfIo1 

IVPTP4 FQII , 
L'" Pf'T'LG,AR 
TAAZ OIRCTP 
BRU fltT~nR ARANr!t-I I' "ntNt,; nI"!eT '"NeH 

S!T~O~ ,.QII S 
lOX .wTF.:O~ 

'lO! .FXT£nR 

r-IUI EOFP'OR 
HEn PTP nSR • tNT!~~UPT 'NTR¥ 

D-38 Digital Systems Division 



Jd7~ ______ _ ~ 943005-9701 

Table D- 5. Paper Tape Punch DSR Listing (Continued) 

SAP Ff2LC 
PTP n~R ~ I~T!R~urT ENTRV 

{"H~6~ 

~~6d 

0~8~ 

~~6~ 

C1C7 
3 ~ t t~ 
7nl~ 

0;'Al 
~~0=' 
~:5~~ 

"':\0" 
0~05 

0~PJ" 
~~"7 
03018 
f\30~ 

"";'1~ 
~~11 
~~1~ 

p~J 

*.*.* ••••• * ••••••••••••••••••••••••••••••••••••••••• ** 
* * ' •• CLEAR lNTE~RUPT 
• 8. - ~WANeH VrA V~eTOR 

• ••••••••••••••••••••••••••••••• *.**.* •• *.* ••••• ******. 
I'lTFRR F:QI.I S 

TOrO~ 
TO~US PEAn,cMMn,~ 

~RII *VEeT. Br:i 
HE" PTP ~S~ • wRTTF Rr~.~V 

D-39 Digital Systems Division 



J2n~ ______ _ ~ 943005-9701 

Table D- 5. Paper Tape Punch DSR Listing (Continued) 

~Afo' ~~Lr 

~T~ n~~ • ~~IT~ PTNARV 

~~, 1 '!, 
,A~1~ 

>:1~t~ 

LtI'1tr, 
"'\1 
,;,:-. t ~ 
£A',,; 
~'2~ 

~'2t 
~~2:' 

V!~2~ 

""2~ 
~'2~ 
~"'?(". 

VI'':''' ,. V'~21 
VI to» 6~ ROt? ~~2!l 

i/I~67 (Ii ~ ~lt;: 

v' i" ~ 1 C'C' vl~3r 

If':~ Ii ~ ~$4~r ~"1 
1/'11.--" !,) DRV'1 r~~~~ 

~ ... fIi" 7~Fi! VI'.' ~ 
W~6H F4, l' VI~~l 

V!?6r CA",. ~l'~~ 
~~, 6 r) IARVlV VI :\~!'; 

p I/'r~6F ,'1:1'77 
"'''bF ~'37 

V' f." F ~Qt~ ~"" 
~ r41." 3F V'F ~~3~ 

~L-'7' C~0? v\'47 
\lilA 7' ~'?~F [11'41 

"" ~~ 7 , C7C' ~1 '4~ 
~~1t1 3 R It"" ~'4!. 

vH" ~ ""4,( 
~~7!' \II~4~ 

~CA711i C7C7 ~'41': 
\fJ~1'i AOI~" 0I~41 

~~1" '~~48 
",r~77 ~, 1 ~ ~'4~ 

~"'1" ~R~~ ~,~~ 

P ~~1Q 0r61 
1/J~1A 7--FA 1t1~~t 

rJ,rJ1j ~~~~ 

~!""R PI~FF ~~~~ 

~~1r. V1~FF "':i~'( 
0rA1~ ~I'JIFF ~35~ 
~~~7F P~'F OI;'~~ 

~ '.~,. F ~"'93 ~~e1
0~8f.l1 ~tJlAA 0I~58

16"81 ~'AF ~~5~
I6r~8' ~~1~ 0~~1'
~~A~ ~f'II0t P1'et
00184 ~I'JIQI? ~~6~
~(lId~ ~~e3 ~'e~

p~ .J

•••
•
• A. - ~F.T rHAR4C'TE~ ~RnM ~IIFFF~
• R. • ~ A ~ ~ U F F ~ ~ R F E 'I F)(~ A liST F n ? Y F S r. n TnT v p 'T P 11
• C. - SAvE CHA~ArT~~ t~ POT
• o. - ~FT vErTnR Tn TVPTP, r~lAlFMF.NT r,~

• E. - ~UlPt'T n~JFr.T rHAR
• F. - neTT Nn~··AlLY
• G. - ~FT ~FVT nPJ~~T rHAQ Fn~~ pnT
• H. - ~FT VFrT~R Tn TVPTP~ (~TATFMFNT A~

• I. - r~ (1 r " F

• ••••••••••••••••••••••••••••••••••• * •••••••••••••••••
WTBT~V FQII ,

~ T ~ rHl T r: ~rT , ~ Q

tVPTP~ r;(JII \
TOrq~

rHA~ GFT,A
TAJ1Z 1
~RII ~FTr;np

~TA lFM~)"Rg

r~A 4
-LnF IITVPTP~

C('lNT7 Fi'Jll ,

IVPTP~

NIILL
xnFF

TAB

~Tr; VErT,8~

ANn -:.F
~"1('1 A,X
II)~ TAR,X
Torr')~

TOf~iJ~ l--<~rlF,nATA,A

F.GII S
Eqll S
Tort')~

~)(tT Nm~po,I,@

Fall ,

LnA TF"MP1,A~

'LnE 8TVPTP6

ARt' cnNT7
FQU S·1
r' A T A ~FF

nATA ~F~

nATA ~r:F

nATA ~FF

nATA ~93

nATA ~AA

f'lATA ~AF

nATA ~t0

nATA ~"'1
OATA ~(}I2

nATA .A3

D-40

O~LETE
)(.nFF

•
I

Digital Systems Division

~-------~ 943005-9701

Table D-5. Paper Tape Punch DSR Listing (Continued)

SAP ~'-Lr.
PTP r)~. • w~lTe BtN,RV 8HfET "'t'lt~

0C48~ 0P~. ~~f;~ nATA ~fA.

11)0187 ~(~ 15 W'\J6~ "ATA ~t5
~,~ is A ~Qllfi 035" O'TA ~1fl

0~"C) ~Ql97 ~3~7 raT A >~7
0t.1!dA Wli 91i ~:;6i n'T4 ,,06
"1i1 It ~ ~tI H~ 03~~ n'TA >t;
~~8r ~A1A ~:\7~ nATA ~1A

~~6D '" r:- 9.~ 0371 raTA ~~R

0"AF "''''te (.137~ ("lATA lIt1C

VI i" 8F W~gf"1 ~37~ "ATA .~n

o ['~" tAl1QF ~~7.c !"AT A lItOE
QI~91 ~('1 F L137~ nAT. lIt1F

~rA~(:,\ ~~7f' FNn 15PTP

D-41 DlgitBI Systems Division

4P 943005-9701

Table D-5. Paper Tape Punch DSR Listing (Continued)

SAP ~'Lr
"TF ,)~~ - w~ITE RTNA~Y ~~r:ET 0101104

• VI ,,~ ~ 'II ARQgT ~"21 ~ R "'",- RTT 8'5~A
BQ ~V~1 CU~~El. ~~2~ C~A~ .. ,UH}I Q CLfAR "~OI'"
CLSwF.F 1i'!!'31 C~Mn ~""'" cn"T ~~50 Cr'lNT7 ~"'eF
OATi ~P~rA DTRCTr ~~~F f'T~FCT l'JltA4n F 0fJ1rJ11
EnF 0f.A7' EI"FFO~ ~f1'3' ErH~ ~"'24 fVIT SUllO!
EYTFn~ (A"2~ F. Y T ~IR~ 0"'7~ G~T Q!OIPR It;NnR 0012<4
INTFRR ~P6~ 1"8 115 8A0~ IncnM C7C1 t8t')~Rt "~~,,.
ISPTP QIr! '" ~ R IVPTP ~"7"i IVPTP. ~0!3Q IVPTP2 0~47
IVPTP~ ~~5~ IVPTPA 0"'5C IvP"P~ QlC-77 tVPTP~ 0~f51

L ~H'\f1~ Lf\RTRL 0~4' R lnT "'''P? R LnA" 0I1'J1014
~ 0!1Vt3 N"R~ ~"'2~ R NULL (ll0I1F OPcnF.~ "''''2''
opnFR~ "'~00 QuTr:NT 0~t2 P l'It'lV7 R pnT

"'CII"" pnTFL(; 0I~0' PR8 (,1"''''''' R p~ArHH "''''P' R PPRF.nF "''''91'
~ p~~npr ~""VtI PRS"Pl 01"03 PRR~~L "'~~" ~ PIIT 0~OIA

H~An 0~PI~ A!G 84At}! ~ S "'''''''4 S~T QI"'~1
5~TFn~ 0015' R SKIP0 ~QlQJ2 A Sl<tPl ~t'l9I:5 R STn~F. 0"'0~
lAB 0~\8' TfMP 0P1' TF.MPl ~"'t~ VFC:T A~t~

wr.otsr "~~?I weE~ I ~1 ~u~O! WRITE 01"'0" WTASCT 0~4f
wT8T~V ~~6f5 WTE"F "~~7 WT!nR ""(.l\"~ ~ ~CltCII'-

" ~n'F ~"'7'

t4"'''~ FRQr1C~S

D-42 Digital Systems Division

~-------~ 943005-9701

01/11174

CHAKT TiTLE - DATA TERHlr;AL OSR - 9804

I (CENT I --------

32.16--)·

110 CAU ENTRY

i 01 -------
I I

I I
I INITIALIZE I

I INTERfACE I
I I

• YES
IS OPCOOE o-------------ul.O}O--)*

o .GT. 18 I 0

r Olt -------
I I

I I
I INlTlAlIlE I

I I NTERfACE I
I I --------

I 05 *---------.
! BRANCH USING I
---~---*

ROASCI 2.18
OPCOER 1.06
MTASC I 10.01

g~~g~= t:g~
OPCOER 1.0b
oPCOER 1.010
OPEN 2.0b
OPEN 2.0b
CLOSE 1.09
CLOSE 1.09
IIRTEOF 1.10
EXTEOR 2.08

I ROSTIoT 2.09 I OPCDER 1.0b
OPCOER 1.06

1 jg:g: i:&t I
--~~----~~~.

GPCJOE ERROR

o
I 06

• EX IT

EXIT WITH ABORT ERROR

AUTnFLCw CHAR T SET -

I (GNOR I

01.05*--)*

IGNORE OPERATI Otll

Er;D OF kECORD

I CLOSE I ---------

01.050--)*

CLOSE 110 CALL

09

END OF RECORD

"AGE 01

+-----------------)*
---------- I

I ISINT I READ INTERRUPT

I NTERRUPT ENTRY

i 12 --------------
I I

IREAD CHARACTER I
I AND/JR STATUS I

I I ----------------

r

I

I I

I f
f CLEAR STATUS f

I I NTERKUPT I
I I

o EXIT

* I 11 ---------
I I

I I
I CLEAR READ I

" INTERRUPT /

11

o *
• FRAMING * YES

ERROR OR *-+
* TIMING I

·ERROR., * • *

~ __ J~~':
I I IICCHARt ~

CH~~~RmH~L ~

·-:::::-f-----~

BRANCH VIA READ YECTOR

+-----------------)*
WRITE INTERRUPT . _____ L _______ ~~

I f
f I

f CLEAR IIRIfE I
, j "TERKUPT I

I I

~R.NCH VIA IIII.ITE YECTOR

Figure D- 9. Data Terminal DSR (Sheet 1 of 6)

D-43 Digital Systems Division

~-------~ 943005-9701

01117174

CHART TITLE - I)ATA TER~INAL I)SR - 980A

I I

* * * * * i *~~T; .Dl
* CANCEL (un. ~UST * FJLLJ'" REAL * VECTOR oKANe"

* * • • • i" ·
CANCEL 110 ENTkY

* ________ L _______ ~~
1

21 ISETil.IGJ ~
• READ VEC TOR Te H
2 1 GNOR H
5 H *--------r-------::

·1~i1 -I---~:-;~~~-~-- H~HH*
SENil CR/LF

:~~~=~~=I~~=~~~~;
L~~H;~r~:~~~:_J

I 05

o EXiT

END OF RECORD

I OPEN I ----------

01.05*->1
00

'fI------------- ---- --*

L~~~~~!:~:~~~:-l
I 07

iir~~~~~~]
01.05*--> I
EXTEO~ 08

• EX I T

I RDSTAT I

01.05-->1
09

I

I I
tREAD 'INTERFACE I

I STATUS I
I I

* :.(I T

Figure D- 9.

AliTuFLn", CHART SET -

*< ------------------ +

OUTPUT .lTH REPLY
ENTRY

* * ."AS UUTPUT * YES * ALR E ADY DONE *-----.
* ? •

I RU80UT t

o

·------::~!!!:1~ __ ___21

1.01 :

••• iOENT

EXECUTE THE OUTPUT PRB

1 ZERO PRB INPUT I
--~~~~~-:~~~~---*
03.27-->1

RNGBEl
o

0 20

YES 0 * +-----" SUPRESS BEll *
" ? *

NORHAl

I SfTRIG t

02.020-->*

SET READ VECTOR TO
I GNtJkE 1 NPUT

* I 25 *-----------------.
I SE~oRH~T~~~rOR I *---------,---------

RETURN

I SEnnG I

02.230-->"

SET ... ~ITE VECTOR TO
(uNORE INTERRUPTS

*-----____ L _______ ~~
I SE\~RI~h~E~~O~ I
---------1---------

RETURN

PAGE 02

Data Terminal DSR (Sheet 2 of 6)

D-44 Digital Systems Division

~.o ______ _ ~ 943005-9701

01/17174

CHART TITLE - OAU TE~MII>jAl DS~ - "BOA

AUTUFLClW CHAR T SET -

1 TIU<CHR 1

PROCESS READ
INTERRUPT

09
+----------------)*

* YES I GOTDCR 1 18
CAR;; IAGE *-----+ •

* ~ETURN 1 ••
YES • •

10

YES • •

+-----. SUPRESS CR/LF 0 I • • ECHO 7 • *

I • 'IN:

19

.<------------------------. BACK SPACE? •

ijI~~il"J BRANCH rlERE ON
BACKSPACE FROM
KEYBOARD

01

* * * IS INPUT 0 YES

- 1 •
.. BUFFER EMPTY --+,

,"';" .
• OB ,

EdNRM

02
* • IS *

YES -PRINT HEAO • .----0 BACK-SPACABLE •
.. 1 *

f"
.-----~-------~:
I CH~"'GE ~ACK SPAC E I

L--~~i~~~t::~~~~~~
I ~ I S~~§T~~U

1 SPACE OR BACK
__ 4 __ ~~~~t:t _____ ~

*--------L _____ ~~
L-~~:~;~~:~--l

I NOTE Db

: • ~~·I ~N:_:$=:n· * :
• AFTER -BAcKSPACE •
- 81 T SET ? 0

..... *.' -

07

SEE "I0TE
ABOVE '-r

'1 YES •• , 4' • • Jij ,

EX T NR~

. ----------------~~
I B~nR~ I ~[HbE~~T I ·---------1--------·

4.ud:

'" E XTNkM

EX I T DSR

Figure D- 9.

• *

RUB OUT ?

• 2.
• 17 •

*

*1"
RUBOuf

12

.
!T ~ TAe

? •

· "';'.
• 01 •

CKBUFF

16

.. *
OdS rlUFfER' vtS

• 7 • * ALo.EACY FULL *-+1

*1"'0 EXT~R':'

0------------- _____ ~ l

.";;'.
• 08 •

L~~~:~~~~~~~~:~~ __ l

I

+--:=~~~~~~=~L ______ ~2
ILl_~:::!~~~:::::_~

+----03,17*--) I
I CHKEOF * * * 21

I * • • -

I
• IS FIRST DATA __ ~,O

'W~RD A 1*.7*

I *IYES ,"Z', • 08 ,

EXTEOR

• 22

* * • I S INPUT • NO
* ;OUNT iGE. 2* *-j

f
*IYES • ··Z· • • 08 •

EXTEOR

*-----------------~:
! SET PRB I
-~~~:~~:~~~-::~~-* ,

2.08:

'" EXTEOR

EX IT OSR

+---- ------------>*
BRANCH HERE ON
LI "E-FEEu FROM
KE YBOARO

1---------------____ +

CHECK FOR E"O-OF-F I L E

;'" 2.20:

•• , RNGBEL

ACCEPT FURTHER I~PUT

Data Terminal DSR (Sheet 3 of 6)

D-45

PAGE 03

Digital Systems Division

J}7~ ______ _ ~ 943005-9701

J1I17I74 AUT lIFLOW CHA~ T SfT -

I CKSUFF I

JI

* * YES ' .. AS 8UFHII * +----* ALREADY FULL •
• ? *

i~)

1 J2

* * 'WAS BUFFE~ * YES
• ;0ST F lLLED ~ *------------------------).

0".09--)

*I"U

CH~LF5. * 03

* •
• • FEt6 ~mIRE * *~:~--+

• ECHO FLAG *
* ~ET ~ *

.~~~~~_J:~ __ ~~:
I B~~3~~ ~t~3 mg I

:~~~~~~~=[~~~~~~~;;
/

5/ (~"'TeHRI ~
• ,."40 L1"4E FeED H
o TO ~R INTE" H

.~---------------~
I 06

li[~~~~::::~
*_~:~~~~ _l~== =====~T-- +

1
"1 (wOTCrlR! ~

I .L ____ ~:::~~~~:: __ j
+---Ol.l~·-->I

E'XT;., M u9

* €X IT

EI\IT~Y FOR BUFFFR
EXACTLY FUll

09

'T~R~n~TEZ - *-r
'IYES ."4' • • 03 •

CHKLFB

*, ~--,-~::b;~~~i;}:::~E
2 INPUT H

.~ ---- -- ------------ ~

* _________ L _______ ~!
1

41 (Sr;DCHR) ~
• ECHO THE INPUT H
I CHARACTER H
2 H ·--------r-------·

3.21:

••• CHK EOF

CHEC~ fOk ENO-OF-F I L.

I SNDCMR I -----------
0 •• 11'--)"

~mR2N~M~~A~~~mh

" *-------!--------~~

I
SET IIR HE VEe TOR 1

TO RETURN TO
CALLER ON NEXT

*--~~!~:-!~~:~~~!--

I 13

*1 ::--I----~:~~::~----M~H-H
OUTPUT THE
CHARACTER

--------1---------

•• 08:

••• ExTNR'"

EXIT OSR

I wRTCMR I

02.21*--)-
SEND ONE CHAR ACTER.
RE TURN I"'''EO (ATEL Y

i lit ----------------
I I

I I
I OUTPUT THE I

I CHARACTER I
I I

RETURN

Figure D-9. Data Terminal DSR (Sheet 4 of 6)

D-46

PAGE Olt

Digital Systems Division

~-------:---------:---~ 943005-9701

01/1717'0 AUTOFlOW CrlAR T SET -

CHART TITLE - DATA TERMINAL 'DSR - 9804

I XMTCHR I

0".05->*

SEND ONE CHARACTER

CLlNVER T SPEC IAL
CHARACTERS, TO
E.!UIVUENT STRINGS

RETURN WHEN COMPLETE

01

* YES
CA~R I AGE .----------------_______).

* :E TURN ? • • __ ~~ ____ ! ________ ~~

·IYES S~~~~~:
010

I PO~~JD T~I~~RM I *----,-----.

, 05 . .
NLl '1 S HUME ON • +----. FORM FE Ell BIT.

• SE T? •

·IVES

00 $------------.
L ~~~Slu~~A~~nsf~!

+----NO;;C;'E->! 07

5.11:

••• XLI ST

SE~D T,",~ S!RING

!

I

I

I POINT l~S~ONG CR I
---------.'--------_.

09 . .
NO .15 ONE NULL. +----* 4F TER CR BIT.

- SE T? •

• • YES * ; NO OF LI S T ~ .-----i

+------------------ >*
XLF ! 15

* •
• IS LI ~E * YES

• FEED IGNO,U *----- ----------- _______)*

• ~ IT O~ 1. * ._~~~~~ ___ ! _______ ~~

.1
0

.------------------~ ~
I PO~~lD T~IUNE I .--------r--------.

,.ll:
••• XLI ~T

SEND TYE ST-I!IIG

L-:~!~~~~~:~~~~~J
+-----------E;;DLsr->' <------------------+

RtTJKN TO CALLE"

PAGE 05

I LSTL["4 I ----------
03.20*->"

LIST USER BUFFER ON
PR [NTER

05.24.-)*

-I-!:~I !:~~~--..!....---! H~~
(GETI
GET A

I CHARACTER ~

---------.'----------
20

YES - _
+----- BUFFER EMPTY *

* ? *

[5 - YES
CHARAC TER _-----+

-BETWEEN)10-
-A~D)1"-

iNO

I zz
-l-SETCHmcm-rc---, J

A NULL

~:::::-r==-2;- --+

-1-0~1-1---~~~~C~~~--~~:
CHARACTER

-------r-~~---

FORMATTED *-ZIU

- OUTPUT 7 .. - -
-IYES .··5·. • 19 •

LSLOOP

25 $-----------.

L~~~~~~t~~~~_j

1 20

- * .. [S OUTPUT * NO

* COUNT .EII. *-+,-- CARRIAGE _

*SFE Z *

iYES
: "~r:

. _________ L ____ ::::;p
1

51 (XMTCHR I ~
• SEND CARRIAGE H
o RETURN H

·~------1-~:----~
. ..

• [S NO LF ON. YE S * CARRIAGE S [IE *-+
.. -- BI T SET? I

• ""s" "
" 19 "

5.19:

""" LSLOOP

DO NEXT CHARACTER

Figure D- 9. Data Term.inal DSR (Sheet 5 of 6)

D-47 Digital Systems Division

Jd7~ ______ _ ~ 943005-9701

01/17174 AIlT lJFLOW CHAR T ;ET -

CHART TITLE - DATA TER'4INAL DSK - gaOA

I ~TASCI 1

J I. 0,---),

"RITE ASCII ENTRY . • _________ l ________ ~ 1
I ZERJ OUTPUT (aU"T I .--------1-::----*

.. ---~~. * FOR~ATTE:(J
• ~UTPUT ? > >

• ~ORMAT AFTER· *-~~-- ..
• :ECORO ? ..

> -> .. AS TtilS A - "J

•• REPlY 1 •• '
• OuTPUT wi TH --+,

-I YES ••• 2· • • O~ •

Edl~K

.----------------~;
L -~~~-:~~:~~~-~~--l

!
2.15:

••• (.H..,Tf!L

~L I 'H TO T~E I ~P'JT
A';G ExeCUTE

I FORMAT I

Jb.Ob--->*

FOR~ATTED OUTPUT
(t~~To{nL .
>--------- !--------~ ~
I FOK>I~9~fN~T wORn I
·---------r-~~----·

'IHS
12

jir~l:~~:~~:::::!
+------------) I

';OC" • 13

• ns
Fe EO 1 *------------------------>*

'l'lll 14' fr:~:i;~;i;~::~! . t--------l---------~
Ib

• • ¥OS NO .. •
•• FORI.I! FEE:D 1. *-----+ +-----. SECOND LINE ..

* • F fED 1 •

RtTURN

RETURN

PAGE Ob

I I -----------

1 NOTE 20
.. CHARACTER STRING ..
.. DATA TABLES .. _

(B~~C:R~A~~,LFI
(CR. LFI

CR
DATA LINK ESCAPE

ADC ON
DC It

(LINE FEEDI
LF

-----~~~~~-~~---.. *-------------------.
(FOR'" FEEDI

LF
LF
Lf

13 LINE fEEDSI
LF
Lf
LF

CLEAR EOL

j
:::7Z~:;7:~-~~~~::*j ..

CR
NULL
NULL

______ j~li ______ _
.-----------.-~-.

L~:-:~~~:~~~~ __ j
*--------------_.--.
I (HOME CURSOR I I

HOME

.-----:~~-~~~----..

Figure D- 9. 'Data Terminal DSR (Sheet 6 of 6)

D-48 Digital Systems Division

~-------~ 943005-9701

Table D-6. Data Terminal DSR Listing

SAP A2Lr.
9~0l OATA TFRMINAL nEvlCE S~RVYCE RnUTr~!

0~m1 ._CREATF. ronT,SAP,'nATA T'R~tNAL nSR'.
0.02 rOT InnT
~~~3 ~!D 98~A DATA TE~MTNAL O~VTC! ~!~VTCf ROUTtN! 
(tlII7IQt.c • 

0~0~ • TITL~.TOOT. gR0A nATA TE;~r~AL ns~ 
1i'~0~ • 
(.l) III Qj 1 • AUT ... n R • W A V tol e 0 C' H ~ , L 

0~0S '. 
0~0; * ~EVISlnNS.Nn RFvrSTONS 
0~1t'l • 
0~lt • COMPUT~R.980A.~AP 

0"'1: * 
0~1~ • ARSTRACT. THr~ IS THE DF.Vle~ 8ERVtCF- ROltTtN! PRnVT~TNr, 
~~1.c * THE N~C~SS'~V tNT!RFAC! Bf.TW! N THE DATA 
~~le • T!R~rNALS TtEn TO COM~U~lCATrnN MODULE 
0~1" • AND TH! nvg~~ SVSTE~. 
0~11 • 
~~18 • OFTAILEO nPF.RATtONAL nneU~ENTATTON T5 SFPARAT! 
0(111; • 
0~2'" • STATTSTICS.T"'! MAWlfI4l1M PAT~ wIT'" INT!RRUPTS MASK!O I~ 
0~21 • "'" 0". Pl.US TJ~E ~OR Tt-4E FOI.LowING UTILITV 
0qt2~ • FIINr.T TOII.'8 I 

H!n DATA TE~MTNAL DSR • GEN~RAL E~UAT!S 

D-49 Digital Systems Division 



)2175\ ______ _ '-ij/ 943005-9701 

Table D-6. Data Terrrlinal DSR Listing (Continued) 

SAP ~'LC 
nATA TE~MTN'L n~R ~ GF.N~RAL E~UAT~S 

~0I21 

~!?I28 

0"'2; 
P,"3~ 

0~Jl 

00!3~ 

0r?!3~ 

1II!iII3' 
..,~~~ 

itlrJI!' 
0"31 
"'0138 
~"'J~ 
"'0I4~ 
~1'lI41 

"'~4~ 
0C'!A3 
~C'!4'( 

~fA4~ 

~(~~ ! ~C'l4F. 

0~0P ~~41 

pi (A ~ 1 0"'48 
rt'~~'" ~"'4~ 
001~' ~0I~[1; 

Pt:'0' ",~et 

"~PI~ ~"'5: 
QJ"!5~ 

~~"'A ""5' 
"''''~!5 001!§~ 

001e~ 
w~~~ ~f.II~1 

~~0' QlOIe~ 

""'0'" 0015C: 
0tJ1er 

0~A' ~"'61 
~~0~ PI~e~ 

0"'&3 
~~2t" 001~.c 

~"'241 0"e~ 
0~2' PlQler. 

PE~J 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• fXTE~NAL REFFRfN~E~ ANn ~fFI~lTInNS 

• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 

• 

REF I~H)qRT 

"FF l~DT 
rJEF lrc~·u~ 

~~TRV "OINT 
r.O~·jTQOL CHARACTEr.? QOIJTtNF. 

••••••••••••• * ••••••••••••••••••••••••••••••••••••••••••••• 
• 
• TIn IITILTTV FQII'Te:~ 

• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• *. 
• IncnM 
BtT 
SFT 
CLEAR 
pnT 

npo 
FRM 
F~l.t 

~QI' 
FQII 

PR8 FrJl1 
LDT 'QU 
51(1P0 FQU 
S'<IPl FQll 

"C7C7,5 
!'5,2,~,A 

1 
P 
t 
~ 

2 
2 
J 

REG FR~ ~,3,2,e 
LnAn FQII A 
STO~E FQlI 5 
1(')8115 FRM 
R,rA" FQII 
WRITE FQII 
DATA FGlil 
CHAR FRM 
PlIT 
G,T 
EwrT 
N~RM 

EOR 
A80RT 

I!QII 
!rUI 
FRM 
FQtI 
EQI.I 
~QU 

,., 
iliA 
7,9 
,.:?'" III'. 
"21 

D-50 Digital Systems Division 



~~-----~ 943005-9701 

Table D-6. Data Terminal DSR Listing (Continued) 

SAP Q2LC 
nAT, TE~MTNAL D~~ ~ G!NFRAL ~OUATFS 

lA ~~ 0 ~ 
00'0\ 
~~0t 

~"QI? 
~"'03 

"'''''CJI' 
~~0~ 
",01"" 

0010' 
0rA"~ 
CJI~04 

~~e,3 

0~'" 
Vl~68 

~"6~ 

"''''7~ 
0~7t 

0""~ 
~"'7~ 

~«11' 
~QI'~ 
PI"'7~ 
0fA71 
~Cl!78 

1!ft)7~ 

~V'8~ 

~0I8' 

~"'8~ 
~rH\' 

0~8~ 

~r"A~ 

",0181 
V'~88 

~~8~ 

~0I9!r. 

~0!9t 

~/f\9~ 
tij~Q~. 

PEJ 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• PR~ wo~o EQUATfS 
• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
PRBSFL ~QU ~ 

PIllBIIFL FQII 1 
PRBnPC EQU 1 
pRsnRL EQII 2 
PR8r"~A Fau 3 

• 

PRR SY~T~M S~T FLAr.S 
"S~R S~T FLAGS 
Tin nprOOE (RIGHT HALF' 
nATA REcnRn LENGTH 
nAT. RFcnRn LENGTH 

••••••••••••••••••••••••••••••••••••••••••••••••••••• * •••• * 
• 
• ••••• * •••••• ** ••••••••••••••••••• * ••••••••••••••••••••••••• 
• 
PR8EOF ~all 2 

3 
1 
2 

PRBnPT F.QII 
PRBnwp fau 
PRBATM FQII 
PRBFAC FQII J 
PRB~CR fQU 4 
PRBSet EQII 3 
• 

D-Sl 

f'~n nF FTLE 
np'RATTON TGNOR!n 
nU'fpWf WiTt-i wEPLV 
AUTO RFCOAn TERMtNAT~ 
FO~MATTEn ASr.tl ,",UTPUT 
SUQPRESS AUTn ~R.ll" nN 
~1I0PDESS A'-'LL I1N t~PUT 

INPIIT 

Digital Systems Division 



~~------------------~ 943005-9701 

Table D-6. Data TerITlinal DSR Listing (Continued) 

SAP R'LC 
n.TA T~Q~TN~L n~Q • GFNFRAL E~UATFS 

~~(;II1 

~~~r 

,~r~ 1 f?'

~"1'
W~1A

"" tA 1 ~
~~1~

[..1f'117
;,iIrq~

v"~ 1 q
~rtlA

V. (II 1 ~

~"~(J

~"'0~
01')~~

W"~.d

"''''0~
~~~f"i 

QI~~7 

1I1I00~F 

~"~f 

II\pq~ 

1tI"9~ 
~t\Qf, 

~!Ag1 

(-)('-98 
~P;Qr: 

~ t ~tr 
~11,<11 

~'V'~ 
~1 1 ~~ 
~10!~ 

iJlt~~ 

r~ 1 ~" 
VI'~1 
lAU~8 

01 rAt.: 
~ 11 ~ 
V,1 1 1 
~ 11 ~ 
~~ 1 1 ~ 
V!11'( 
(;II' 1 ~ 

VI' 1 ~ 
"1'17 
~ 1 t 8 
Vl1 ! ~ 

t·" 2 tr 
~12t 

"'12~ 
~'2!!. 
(1112" 
Ir'. 2~ 
~'2~ 
~,'-, 

V1128 

PEJ 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• ~Dr wopn E~UAT~S 

• 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• pnTFLG FQli 
~I")TPRR FQII 

pnTI18A FOil 
pnT~CT FQli 
pnTt.Axn F.QII 

pnT~TA ~QI! 

pnTr;lVr EQII 

pnT<AlVr FOil 
TFMP\ FrJI 1 

TF.MP2 ~nll 

Tf='MP3 f~ll 

PI1TnEV FrJll 

FL~G~ 

~R~ AOORFS' 
nATA aIlFFE~ ADR 

nUTPIiT cnU~IT 

'(JI M ~X C"'A~ArTF.~ O'ITI'I1T IPErORD 
1NJTTAl ~TAT"S 
QEAn VFeTOIIi' 
ItJIli'TTE vErTOR 
T~~pn~~RY ~TnRAGF 

T!~pnRARV ~T~RAr.F 

TE~pnRARV ~TnR'GF 

nEvICf DFSCRTPTynN 

• 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• POT FLAG RIT EnUATFS 
• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
pnTRSv r:"QII '" "EVICE 8f1SY 
pnTLF~ ~ (JII 2 LF AFF"RE' FCHO AFTER R~ RIT 
pnTLFT FOil :3 TGt<'O~E NE)(T LINE FFEn --IT 
P!)TFFH F.'~II 45 "'O~E O~! FOR"" FF.:fn RtT 
PI"T1NL Fau 5 C'lNF NULL AFT~R CIIi' RIT 
pnT~CI< f (J II e AAeK SPAr.AF.lLF PRTNT HEAO RTT 
PI'\TLFA F Gil' 1 AUTO LF !"IN r.U~~IAGE SIZE RTT 
pnTLI"R F C;W lA LINE F~fl'\ J4F.FOR! ECHn ~IT 
pnTl"lwR F QII 1~ nUTPliT WTTH ~EPLV TN PIli'OGRF.S!I1 

D-52 Digital Systems Division 



~~------------------~ 943005-9701 

Table D-6. Data Terminal DSR Listing (Continued) 

SAP ~'LC 
nATA TE~MTN~L O!R • GF.NFRAL EQUATf.~ 

~~~f,. 

~H~l'I-'

~"'II.lI'
",!I'0:-'

"'~~~
0~~~

VlP~'
~P'0'

0"'1F
(AratA
0CJ0t)

"'~,,~
P""'7
L4\prJl~

~o0A

~P0r

0fA0f'
(,11"'10'
~rl"
0('71'
"'~3~
0~5r

0~5F

c"tA7F
",CA&O

AFAA

~'2~ PF.J
~t3~ .**.* •••• *~.*.* ••••• + ••••••••••••••••••• * •• * •••••••••
~131 •
~'3~
~,~~

~H 3t
013~
~t3~

~~37
1711311
0'3~
fA1A~

CH Ai

~'4~
Alc4:',

1!1'4~

•
••• •
A F:QU (I,

E F(~U i
~ F(~U 2
M ~Qtl :'S
L FOil !5
A FQ\I " P E(jtt 7
B~ ~QI'

•
~'4~ •••••••••• *** ••
(,lI,A(!: •
t~1 .11 •
111148 •
VI'4t:
i.H511'

••• •
C11~1
~,~~

~,~~

~!5'(

VI'5~
~'5~
{.1'~7
vw;58
Ql1~e

~t~OI

ftI'6t
V1'6~
et'~~
"'ttli.(
0tf\~
.,,, bl':

""~,
t}I,fiA

ClR J:QI! >IF
ell R Ii P F r~ t I > , A

NIILL FQII >~

HI')MF ~QI' >,
BFLL FQl' >f}f"
RAK5P FOil
IF FIJI.! >PA
FF F Qij >r
r.~ EQU >010
OLE FellI >10
OrA Fllll >1.1
CLRL It..J Fall >,.,
Rf"cnN F.'QU >~A
8I(SLS~ F~II >~C
BCK4RR ~Ql' >~F
RIIsnT E CIlJ >7F
TAe FQII >fag
ENOFIL ~ ~II >AFAA

D-53

CLFA~ tJtvE

Digital Systems Division

~~------------------~ 943005-9701

Table D-6. Data Term.inal DSR Listing (Continued)

SAP Q'Lr
~ATA TF~MTN~L OSR • GF~~RAL fQUAT~S

V1t"~ PEJ
0t'~ •• * ••••••••••

IJlC·'" F
~I'CJlF

VI'7~
0173
~\7.!

~17~

~'7f1:
~'71
V',78

I" 1 7~
~, JH"
(~ , 81
{.1tM~

tA'~!.

~1~t

lAtA·

v'" "~
V'tAJ

~,,~~ V',SA
~~"'Q (ilI,~e

• "UTPIIT FnR~AT r.O~T~OI Fl AG RTl fOUATF!

•
•••
•
pnSFR~ FQli

r.~F"'Rh1 ~f'JlI
LFFOR~ F("jll

FFFnRt.A Fnll

LF2FRM FrJtl

'OPMAT A~TFR REcnRn
r.A~RIAt;E RFTI'R~
lt~IE FF.:F.r'I
FOQM F~Er"

,~n L T "E FF:Fn

•
•••
•
• nT~~~ F(HIATE~

• •••
•
Lf"Tnp(EJJII 3
ILLr'lPr" fQII g TLLF.r.AL f'P'RATTnN

IoIFr'I DATA TF.~MT~AL nSR • 1/0 CALI. ~NTRV

D-54
Digital Systems Division

)2,])\ __ ---__ ~ 943005-9701

Table D-6. Data Terminal DSR Listing (Continued)

SAP ~'Lr.
OAT" Tfh'HYNAL DS~ - 1/0 CALI. FNTRV ~HFET QII"Pl7

~1Q~ PE .. T
~~~H-' (AtO~ T~nT f: fJ I! S 

~ :J!.,.,r~ C~5~~ ~1Qt Q~n L,A ~4Vf svr. RFTIIR'" -"'l1.;At 1A~Vi o '_9~ .R~L ISnS~T TNTTTALI7F 5"B PQO~RAM 
l1I?lI)rJl 

)( ~I?I{~' 0" ~ ~\ 
P ~~~~ lJI~3' ~'Qe "'ATA ISIhJT T t-! T E ~ R I , P T FNTRV 
P ~tl!~4 "1~ 4ft ~'91 nATA ISPST QESET ENTRV 

0~i~" ,",,? v11QS RRl SET~Ir; r",TTTAI. t7E RFAn vfCTrH~ Tn TG".I0Q 
'" ("VI ~ 1r-1~ ~1Qe ~~L SFTioJYr. TNTTTALI7E WRITF Vr:::CTO~ TO Ir;~nRF 

~H}I~' 1t'J'~(7' ynENT ~Q\j s ~TARTt'JG P/'H~T FOR Y/O CALLS 
"'\I'~' C1C1 ~'01 tnr:a~ r:fT tIn r'lpennE 
{t!"IA~ 2taliH ~?OI~ ~E:r, l(JAn,A,PR~,pR~npc 

!;A~V!~ 3FFF ~~"'~ AN,., .~FF 

0-"~A C~~, 02(Al ~~'" A,X 
""~~B ';Ft, ""~!I: CPA .18 
VI ~11 ~ r. e"8" ~2~' SGF t f r. AI. nprnnF ? 
~(A~n 1~1'- ill''''' ~RII npt:'1fR ~I ['I, FATAL ~R~O~ 
~IA~F. ~ 11 ~ A~"'R LD~ Pf'TSTA.PR ~ET TNTTTAt STATUS 
"''''I.4F t?C? 0'0I~ TOCOM T~TTTALI7F. t"T~RFAeE 
~./q r~ J~vH;\ ~'1~ TO~U~ wRtTF,I"IATA,A 
V i~ t 1 (~, t~ 1 ~?11 LOA ~+2,)C 

"~12 C!5()J1 ~'1~ RMn A,P aRANCIot YIA TABI E 
p itHA 1~ ~~69 e?l~ OATA ~nA'iCT "'P R~Af' ASr.YT 
p '" r .. t ., ~~2~ A"t I"IATA ()PCf'E~ Qlt RFAn ~INARY 
P ~~l~ (10136 ~'1~ r' AT A \IITASCT t'I, wRITE A5CTI 
p ~'Al~ "'"2" ~'1t'; nATA OPcnE~ 0'3 wRITE 8TNARV 
p ~ill? "'~2~ ~'11 ('AT A npcnE~ "'4 RF'~TNO 
P 0~1~ IM~2~ 0?18 nATA npCfJE~ "5 BACI( ~PAr.F. ~Er.ORO 
P "'Oil" ~P2~ ~'t~ f'ATA OPCI)EP ~~ FnRWAQn S"ACE ~F.cnR" 
p 0Q1\~ " ~,,- 5 1 0'2~ nATA OPEN rA7 OPEN 
p ~~ 111 ~r~~ 1 ~P2' nATA OPE!..! (.as OPE'" ~EwI"IO 
p .e~te r.-I"'~ ~'2~ PATA CLO~E rAg Cl O·~E 
p ~(lI1n w'2~ ~'2~ r'lATA CLO~E 1 v CLOSE ~~tTE ENn.nF",FILE 
p "'~lF ti'~2r~ V1'2l !"lATA wPTEO" , t WRITE E"'n 0' FILE 
P 0~lF ~"5~ Q!'2~ (,ATA E)CTEnR 1 ~ C~ANG~ RFCORO LF:'NGTH 
P "'~2r~ ~16J ""2~ ~ATA RnSTAT 1 3 R~An ~EV H~E STATUS 
pi 0(i'2! ~\~2~ 0~21 OATA OPcnE~ , 4 8ACl( !PAr.F FU.E 
p ~1?I2' ~C'2~ 0?28 "ATA npcnE~ H5 FnRwAQn SPAr.E FtLfI' 
p ~f)2~ r"V'2P 0'2~ nATA Jr;N"R !e U~LOAn 
p ~f)124 ~IA2P ~'3~ flAT A t~NnR , 7 
P 0012!1' ~"'2" ""3\ nATA IGNI"R , 8 

D-55 
Digital Systems Division 



~~------------------~ 943005-9701 

Table D-6. Data TerlTIinal DSR Listing (Continued) 

SAP ~'Lr: 
nATA TE~MT~Al O~k • YIO CALI. FNT~Y ~HFET At"C"A 

1(i'3~ PE.J 
w·~2f' ~,~~ OPC~E~ ~QII , FATAL F~QOQ F"JTPY 

1i;'t.a2A C1C7 ~"3~ tnro"" FATAL ~Ju~nq 

~r"21 4'iA~ ~'3~ F)(rT A Fl 0 ~ T , t I. L 1"\ P ~ 
~:~2R ~'31'; YGNnR F" r) t I 5 

OU2R C7C7 1.1'31 tnco~ ~fT p~~ Tr;'jn~E FI .. A~ 
v.J {~2Q t-~ p" ~ ~'~5 ~tT S~T,pt'B,pl'Ja~FI .p~~(1PI 

~:"'2 A 7R2A 1t'1' .,'= PRlt FVTFOQ 
VI ia 2 ~ ill'4r" CLOSE F- (lit , 

~I;.t t. crc, ~'41 SEV )( rLnSf '-JRTTE FOF ? 
~{"'2r 7~2~ vl'.~ P~I' E~Tf:'n~ "'('I 

~"'2~ Vi":', W~TFOF" f {JII , 
1l'421"1 c- (~(A tJ ~1'4 ( ·L~' -IF.lLtitT Yf' ~, 5~Nn ~ L t ~'E FFEI"S 

p w'I2 F' V,1 CO 
~(JI2F 7.20 ~'.d~ ~RL .)()(LT~T 

\{l -~ J (A 7A24 ~'-4t'; ~Rtl F.vTF,n~ 

~'41 * 
~'4S io4F~ OATh T~QMTi"AL n~R - I"TFRRUPT f'ITRy pnT~T 

D-56 Digital Systems Division 



~-------~ 943005-9701 

Table D-6. Data Terminal DSR Listing (Continued) 

SAP R'Lr. 
DATA Te:~MTNAL OSR • INTlrf~PUPT E~IT~Y Pl"I "IT ~"'FfT ftt}tOtQ 

~2'Q PEJ 
Vi~31 ~'-~U' ISI~T ~QII I TNTF.~RL'PT '-NTRY --nTNT 

..,r~J ! 1101 ~'5' LO)t ., TNTTTALIZ£ Tn r.LI!,1 TNTE~RIIPT 

t'lr~3' C7C7 ~?O~ YOrO ioi ;;EiD I~JT~Fi;;U~T I.n. 
0~3~' 3~~f1 C!1'5~ TOPd~ J;\IEAD,OATA,A 
~i~3A1 n~~('" ~,~t TA~Z (,1t ~EAO t"'tTF"~LlPT , 
1!11.43~ 1A~A ~?e't~ ~RII Rnt~T ve~ 

~1~3"; OR~ 1 . Q!'~~ TlAl , t-1PT T, TNTfGRIIPT , 
~ til J., 1~0I4S ~251 ~RII WRTfNT VE~ 

~'~J~ CA4~ ~'!58 rf()( :\ AS~UMF.: STATU" eHA~r;E INTFRRUPT 
\r11~J9 C1C7 ~'!5~ TnrOM 
~I~J i J""" ~,el7' TnPlIS t.4lHTTF,nlTA,lC 
VlI~ J P 1pe" ~?61 ~~!! E V T "tRtJ 

OIfA 3r lII'b~ w~TTN'T r: all St 
k:) r~ J r. CAA' V1'6~ r~x .- rLF'AQ I,jRTT' tNf!_R\i', 
It'l-'''''I r:1C" fd,el yor.n llo1 

~r~3F' 3"1t1' ~'8~ IOPU~ WRTTF.~'TA.t 
V\ \~ JF 1nl' ~,~fI; ~RH .POTwvr.,R~ ~F'ANr. ... VTA w"tTE v'r.:~O" 

VI~4~ ~'~1 Rn 1 ~IT ~all S 
~~4(A CA.' M'68 r.~y 1 r.L!AQ G!&n tNT!""lI'T 
~ ~'l4 t C1C1 v;'~Q IOtO~ 

'"~" 
.. ,.,... ... --..,. "rtlSl'. w~TTF,nA"A,~ ""'I/'l' .... " .' I I..' r'" \"·7 

~A"~ nRQI~ ~'71 T'~Z 3 Tf~T F"A~!NG ! .. "",, 
~ l~ 4.d '~5~ ""'7~ R~II E ~ T~Hh~ 
VI i. 4 ~ n~\1I..1 ~"~ TARZ .- Tf~T TTMTNr. ''''0'' "',,, 4" 1~~P ",,'7l RRII E)tT~JR·· 

V' t~ 47 ~F"F ~?1~ ANn •• 7' M'~I( STATI1S ~rTS 
0"4" 7d~V ~"r. ·~~L trc~'p e~F.:r.k ~PFr.TAl. e~.RACTf"S 

~~~, 

~ ~iA4Q tI!~~'"
10 ", 4 6 ,~t~ 1/1", ~RII *pnTRVc,RQ "JO, ARANCH T" l'An V,r.TOI

'1iI"~ •
Vt'''~ ~Ef' DATA TFI::l~Tr~'L n~~ ~ npE~' ANI" np,.N ", ... TNn

D-57 Digital Systems Division

~~------------------~ 943005-9701

Table D-6. Data Term.inal DSR Listing (Continued)

SAP ~~Lr

I)~TA TEI-i,...TNAL fJ~R - nPEI\) " N" nPFN ~F.wTNn ~HFET ~"'rA

L-'?Rt1 PF.J
~'-8' • NnTql T~R~T MIIST FOLLnw '~RI. TCr:~AR & A~ll *PDTRVC,~Q

I.At~ .~ ~,~~ t~R~T FQtl $ r.. t-'CFL tin f'''JT~V
~r. 4P 7C)2r ~'8~ ~RI SFTPI~ qFT ~fAO VFCTO~ Tn yr;NnRF
~~4r: lArA ~ ~ ~, .. .(tOA)c~RI(AR

V.lt~ 40 7-10~ ~'8~ ~'H .)()(Lr~T ~E~IO CO/I .. F
~ ~~. F' C7C:7 ~'8" TOrO'" rl~'Q l.1~F. FF.E~ TGMn~F ~TT
~\~4F f.A~a~ 1r'I~87 ~IT tl EAR, Pt'lT, P"'T r'lF. V ,POTLF T
"r~ !) ~ 7·~" ~'88 ~RII EXTFOQ FltTT '· ... E r"~U~

(,1'~«: •
"'~~, i.4'90' OPE~ F.alt s

0"51 C7C7 0,;t lnco,.. CLFASl tr;No~F LTNF.: FEFn FlA~
1&1(.45' P':38~ ""9~ ~IT C:I EAR,pnT.PI"ITnp:v,POTLFI
~!rA~' ~(A~:'-' ~pg~ I-OA)(ltCRLF
0'~~4 741~A ~'Q~ RRL .>tXLIST ~END CR/I.F

fII~~!' ",?g~ f~TF.O~ F. Qt I S
~~~5~ C7C7 0,g~ Tnco~ f'\!R f:Nn.nF.~F-C"Rn F.XTT 
~'''5~ .--0P (11';7 I=')CTT EnR.PI 

~'98 • 
~'QQ • 
Pl3~r1. • 

P ,,(.457 ~'8" ?t~~1 )(VCRLF nATA )(CRLF 

" (tJ~~-- "",er: ~3~~ )()CekA~ nATA )(RCI(A~ 

p ~~5Q ""0~ t4~0~ )(VLtST I:'ATA )(LI~T 

k1~0.c • 
A~~~ • 
""~9t HE" OAT& T!~MTNAL D~R • JU! A[) 'selT 

D-58 
Digital Systems Division 



~)\ ._-----~ ~300S-9701 

Table D-6. Data Terlllinal DSR Listing (Continued) 

SAP ~'Lr 
OAT' T~~~IN'L 05R • ~f.n ASCII 

~~01 PFJ 
""t"5 A ~~~~ OTWJ:\IEP EQII S 

~ ,~~ A C7C7 ~3"'Q TOr:'O~ ~fF. TF ALRF.AnV T ... RnUGH LnOp 
0U15A 2,tF QI~lt" RtT SKIP0,P~T,P~TFLG.PDTO~R 
~n5r:: 1~~F ~,. 4 

~- .... ~~LI D('l!NP Vf~; GF.T rlofP.' RFPLV 
~l'5n C1C7 ~31~ rocohil ~'O , SET nUTpliT WrT~ ~EPLY RIT 
iii t~ '} ~ VlA1F ~~t~ ~IT SfT,pnT,pnTFLG,POTOWR 
k)r~5F ~'~iJ (i!~t.c LOA aA 5ET lIP PPR RtA~ 

"'f,lIf5~ ~;:\1~ CHGT8L F.QIt ! SET IlP NFw PQB A'In OR A[i~S 
0(~6~ C"A8~ 0Jt~ ~A'" A,"" C;eT liP NFl-! PP8 AnnRF.'SS 
~"HS1 C~3t1 ~311 QM('I M,A 
0lH5' e1V1r ~~UI gTA pnTPfolR,f\~ ~AVE IN PDT 
0t~6~ t1C7 0~tC lOro~ r,fT 'lEw OATA RIIFFE~ AOf'RfSS 
~,~ 8 iJ 2Q1~~ "'~2t" PEG LnA~,A,PR~,PRpnRA 
V'Pl~~ 81 101 ~~21 STA pnTr,~A,RR ~.VF. 1\1 pnT 
~H't; ~ 1PA~ VI~2~ RRU l.nENT 

~~~, "'~2~ RIIB"UT Fflll $ FNTF.:~ WEQE IF "UROIIT I~IPUT 
~f~67 ~~F? ~32(LOA)()(AI(AQ

1tl''''6A 7 4Ft' ~~2~ ~RI *)(XI, I~T SF.~D SACK l~~O"', C~. l.F
vH'fjQ ~'2~ RnASeT Frlll " 0''160 t7C7 0~27 TnCOM "'lITPI'T ItITTIof RE"L¥ ?

1l!9'~A l~tl 11:1328 ~IT 51< IPQI, PQA, PP8!IFl ,pp~nw~
~rHSR 7 REF ""~~~ ~R" OTwQEP ¥f~

(;iIrAfir ~~3'" OnI'-Ip F (JIJ S
~r~t'Sr C1C1 ~'31 Toro~ lEPO T "'PIIT RFcnRn LE"IGTH
VI L~ IS n 2Q0~ ~~~~ Re:~ STO~E,f,PQ~,pPRn~L

0C"6F 0J3~ R~G~EL Fr.l1I S
~ l" tiF.. C1r:7 W1~3(TOrOM SL.PRFS' RFLL ?
~1~6F- lQ11~ ~33~ ~tT 51< IPtI!, PIOIR, P~R"Fl , "~~SRL
V. ~ 7:~ 7A~' 1.1331': ~1if'1 O('lN1'R~ YE~
~~11 ""IlI' (""31 tn. aRELL
~'.~7~ 7P7Q "'~38 ~~I ~PTr.HQ I&I~TTF THF rt-f'RACTF-R

VI?7=" !A~3~ nnNTRr; FQII •
W1t'7~ '" 01 ~ r" V13A!" -LnA aTAI(CHR ~FT liP RFAn VEeTnR

P ~~1-1 V'16P
~'~1~ f4'1~ Ci13.i1 ST. pf'lT~Vr,"p TO ArCF-PT ~IFXT CIof'~Ar:TER
I.:',~ 1 fII' 1 (f·l~.1 Vl3A~ ~R'- SF: T 1.1 T r.
~fJl77 7-2- "'~.~ ~R" E~T"If.l~

~~.(•
~~7" ~3A~ SFT~Ir, Frltl " ~1J1R l(}1(l1~ ""4(': Lny)(F")(~J R ~, ~F T ~e:An VFCTO~

~"1t) Q 1 t" "'~47 STY pnTQvr,QQ T(1 I~N"RF FLJ~TI-4EQ e~AR,c.TE'RS
~I~ 1 A C~~7 ~~4A ~Mn L,P

~~4~ *
1~~5!': *

V'0I7~ ~~5t S~ T '.t4 t r; FOil ,
~r"'/f1, ~"'~, V'~5=- L l) A)(F)("i~~ ~fT WQTTF VErT"R
~ r, 7 r. 81 t 7 ~35~ !;TA POTw'Jt,Rf,f T" 1r;~!'1F~F FIIQTHE~ TNTF:Q~"PTS
iii (~11' C~5' ~~5(QMn L,P

~~5!1; • p ~ (-1 F" ~~A::t ~~~t';)(e')(~I R,... r.ATA E Y. T ''I:~ r~
V'~57 I-4En n.T. n~R-CI.4A"ArTFR ThJTFR~IJPT INP"T • cnNTJ~UFn

D-S9
Digital Systems Division

~ ____ 9_4_3_0_05_-_9_7_0_1 __ ___

Table D-6. Data Term.inal DSR Listing (Continued)

CJAP "(?Lr

"". T. Ii ~ c.' - r: H H~ ACT E I\' PJ T E Q R I' P T' T '" P I J T , r" n "' T T ~ II E 1"\

~~!5~ p F..1
~H" 7F- V1:3~~ ~LRC;CFO' F- I? I' J.

~(.A1F 7 rJ tjr GilJ~~ r<.~l wRTC:"'1ot
~\l\d~ C1C7 lI\'HH rOr:t'M
~ t;~ tot 1 Vl"F V'~f\~ QIT CI EAR. P"'T. pr\TFl(;, POTLF8
0q~., 7 P E': V'~,;~ ~R" ~f"lA~r.:T

VI c~ 8~ V'!~6.c TAKCH1 ~rJ' I $

ItltA~~ ~~7F ~~6-: CPA -~U~OT I'UIR nUT ?
VI (~ Ii 4 CI"AVl \.t1~6~ SNF
~~~~ 7 RE1 ~~67 ~RI.I RIIB"UT VE'~ 
\c1!~ajll\ OP~" ~~~8 SA~O 8 ~ET MS'- OF r.HA~AeTER Tn 
0!"81 C7C7 "~6~ rorOM ~Tn~F TN U~E~'S RtJFFFR 
[jH~ 8" ~1~0t" ~3711' Ctof'R PIIT,A 
lillMJQ ,,'8Q 0I~7' rPL _TAA T~A ? 

""~8" Cn2t' 01:-7:- Sf'" 
0~8F1 7~07 0~7~ ~R" CI(f~IIFF '-iO 
01~ 8 r. DR~' ~~7.c TARZ t wAS ~U"FF.R ALREAny FlfLL 'P 
0r.,8n 7 R 14 037~ RRt.1 fXTI\lR"" VF.~, DON'T on ANVTf04ING 
~~8F C7R~ "~71': ~E)( M,S ~O, POYNT AA~! Tn PRII' 
~~8F .1c;h'l' ~377 nMT PPB"Rl,RR ~E'nUCE CtofA~AeT~R cnUNT AV 1 
Id r,. g (;II 7~0P 0~78 RRU 1+1 NECE5SARV "Jopt TN CAS" nF 51(IP 
0£'t9t C'8~ ~37!: QEX M,8 ~fSTnR~ 8ASF Tn POT 
~OIg2 1~lC "38tr. RRII CHKEOF r. ... FCK 'OP FNn.nF.FtLF. 

Plt"9~ 0381 t:1(811FF F.QU S 
0Q1g~ DAp!, A~8=, TAAZ 1 \rotA! AU'FFR ALR~Anv FUl.L 'P 
1d~94 7~0t) 038~ RRIJ EVTNR~ VE~, OnN'T nn ANYTHING 
"c,I!g~ O1i'0O! 038t TA~Z 0 "'In WE JUST FILL AIIFFE~ ., 
0~gf5 7·0'" 038~ SRII FULLS' Vf~ , SF! I' AUTO Tf!RMINATf. 

~OIg7 0381'; CHKLFA E'QU , 
0~g, C7C7 0~81 YOCOM ~!~ r, L' A!fI'O~E !r.Hn 
~~gA 1A1F "'388 E\IT SKI P1,pnT,pnT'Lr.,PDTL'8 
0(~9q 7A07 Pl380 ARt' S!:NnCI-I ~O, !CHO TH! CHARAeT!:R 
~~gA 811 P ~3;Q: STA TEMP1,8R SAVE Ttof! ECHI'l eH'RACTE~ 
~~9R C7C7 039t TOCOM r.:LF.'~ LF 8!fI'nR! !ctofn 'LAG 
~"'Qr. ~?1F 039~ RIT CLEAR,pnT,pnTFLr.,POTLFB 
0.AQn ~70A 1t13g~ LOA -LF 
0r~gr;: 7"5' ~30t ~RL )(MTCHR SE'IO THE L" 
ltIIr-q, 7~D" 039~ RRl Sf'T\ljIr. ~fT WRTTF vFeTnR Tn TGNOR! 
~QI' 'JI (,111 A "'39(1; LOA TFMPI,eR ~ESTnR' THP.: "CHO CtofARAeTFR 

D-60 
Digital Systems Division 



~~------------------~ 943005-9701 

Table D-6. Data Terminal DSR Listing (Continued) 

SAP R'Lr 
D.1. ns~.r.H.RACTEf'\ TNTERRUPT TNPUT , r.O'.JTtNJlEn ~HF-ET "'~13 

PJ3g1 PEJ 
V11.~A1 0~g8 SENnCI-4 EQII S 

k)1?I41 7~4A ~~9«: ~Rl '-iRTCH~ FCHO CI.fARA~TfI'R Tf'1 Tf~MrNAL 
0!?!A2 ?'Ar,,~ ."w .... ~ FOll • .1 y n', I .. 
~CJlA' ~"Pl1 IVRnT Fau $ 

~PA' ~A~: E)tT"IR~ E()U ~ 

~0A'- C7C7 "A0~ TOrO M NO~MAL OSR F.YIT 
0"'4~ AOIIAP 11140" F.XtT NnR~.p 

~""A.d rtl"0~ FIILLBF' E Qlt S COME "'F.R~ IF BlfFF!R JUST FIILL 
"'~411 C7C' 0.d0~ TOCOM AUTn.TFR,..t~ATE , 
~ (~A" tAt' 1A.d~7 ~IT SI(IP1,PR8,P~8I1FL,P~AATM 

~''''Af'i 7-F<? ~;t08 PRIJ CHKLFR NO 
0"A1 '~D" ~ .. ~': ~RL SF.T~Ir; nI~CAR" ffUQT~ER eHARACTERS 
~i~ A~ 7t)1Jr; 101411'1. ~RL SNDf'!HP FCHO THE C"'A~AeTfR 
0~AQ 7AQi3 041i "'Hi £:";O:OF C;"ECk FOQ F.'Nn.n'.PILF 

~"1~ * 
1114!~ * 
"'41.( * 

~rJlAA ~Al~ GrtTnCR F. QI.I S FNTER W!RE ON CR INPHT 
0 r"AA ~~Ar "'A'~ L r) A )ntC~LF 

~()!4R C7C' ~41' Tocn~ ~UPRFS~ CR/LF P.:CHO , 
~('AAr. ! ~ 1 " ~J!!! R!T ~It T" ~ _ CCA _ p~ RI,I'I _ CDA~"D .... .. •. • ~. . 'J.' _ ..... -.' 'f ...... • ... ' ............ 

k:\OI.n 7p'51" ""1<: PRL XlIST SEN!') C~/LF 

~VlAF 'If\CO 0A~'" ~~l SFTRlt': T G"JO~E FLJRTHFR I~PUT 
i"I.~ AF ~A21. C~!(FOF fal' S 

lA"AF ~~1f" 0-42~ LnA *POTnAA,RI:> I OO~ AT FIRST WO~O IN ~UFFt:R 
~j,Aij"" t)F\~p. ~42~ -CPA .FN:'F T l ENn""nF.FJLF , 
[deJR, AFAj 
~OI~? Cf'2~ ~42.( ~E~ 

~ -~~.' 7~A' ~.12~ ~RII E)(TEOR ~l f'\ , F)(TT n~R 

e~d.4 C7C7 ~42" Joro~ lonJ( AT TNPlIT r.OUNT 
~~d~ 2['~~ \ilA21 ~F.:r, LnAn,A,PRR,PR~OQl 

rb'~ R ~ fl;F~' ~4~S CPA .\ T5 IT AT L!'A~T 2 ., 
~ r~ ri 1 Cn'!lc:' ~A2~ ~LT 
~ -, ij J\ 7·9r. ~43~ ~RII EVTFO~ NO, F)(TT n~R 
~'~HO C7C7 111,431 Toro"" vES, SF.T EnF FLAG TN P~B 
V' ('H~ A ? .. ~,- (~'3~ ~IT 8FT, PJ;R, PQA_FI ,PR~fnF 
VI'~ 11 R 7Ag~ ~A3~ PRII fVTF.O~ F)tYT n~R 

D-61 
Digital Systems Division 



~~------------------~ 943005-9701 

Table D-6. Data TerTIlinal DSR Listing (Continued) 

SAfJ ~?Lr 

". T. !" S £: • ,.. H A R & C T E ~ TNT E Q R II ~ T T!iII P IJ T • ,.. 0 POI T T NilE" 

~ai3t p F.:~' 
~l'Br ~4~~ A~CI('SP FOil S F~TEQ '"4F.~E T' AACKSPACE TNPUT 

~~~r. ~C1C1 ~413(,: TOCO"'1 LOOK AT TNPIIT r.OIJNT 
Ct1?8'" 21~? VlA31 ~' Er, L~A~.F.PRQ,PRRO~L

~rJlPi~ r.r~' ~.13~ S~7 E T8 IT lE~O *1
~rJl~F 7~E' ii\.13t:: RRtl EXTi\l~'" VE~, EXIT ns~
((J ~ Cr" r.?C7 ~44(" Tornt.4 T5 P~II\JTFR RACK ~PACABLE ?
¥' r~ C , t~B~ ~A41 ~IT ~~IP"pnT,p~T~EV.POTPeK
~)rllC' ",,75r ~4'~ LDA .AK~L~t-I NO, II S'- PACt(SLASH INSTfAO
~I.AC' 7(12A ~ai'~ RRL StvnCt-fQ ~!~IO BACW SPACF. OR SI. ASf04
Ir1 (ACA 7(1B~ IAAA~ FlRL SET'MI~

~ til C" e?e? ~0<14~ 1nr:0"'1 I. ont(AT INPUT ~OUNT
~I7.C~ ~'''''' V'.14~ ~F.r.: LnAn.F.PRR,PR~npL

LA r' r:? C 71 1 ~'47 ~DF f,E ner.REM~NT CHARACTER rOUNT
~r)!cq r1e7 0.45 !()rO~ "lIT RACK It-.! PRR
(,14 C Q 2Q~' ~~4r: ~E~ STORF,f,PoB.PPRnRL
l'~CA e1C7 iA.1~~ T()r:O M ~EF: IF LF AFTEq RS
0~Cq l~B' ~~51 RJT SKIPt.p~T,prT~EV.POTLFE

~ '~C r. 7~~' V'.j!5~ ~RI' RACt<S1 I"H)~'T ~ET LF 8F,,. r"H~ ~CHO BTT
~ ,acr'l e7C7 ~.~:'I lOra"" SET LF B~Ct'H(' FC'"40 BtT
~(" C,.

'" A t F ft1d5'(RtT SfT.prT,pnT~Lr..POTLF8
~(1ICF ~.45~ RAC~:S1 FQll ~

VI r~ C,. r:rA' "'4~f ~NZ E
~ I~ f) t' 7 Ro, ~A~1 ~RII F~ 't T IJR ~
o r,~ ,) 1 C1C7 Cl!ai~~ Tnrn~ r~T?
V,I,~ I) ~ 1~B.d ~IIA5~ ~IT S~IP1.pnT,p~T~EV~P~TFF~
~rllll~ 7 R(':F ~.1f"1" ~Rtl f~TNR~ ~In

\(J 1.11 ,) -i (~1 1 ~ ~4~' I. Ii ~ pnTf'eV.QR
~(,~n~ 3R~f~ ~46~ .A~n :I > F':- "'A~I< wynTM
~ [~ r) f: 14? Fro
~"'1)1 2FVI~ IAA6~ ~IIFl 8>3
..., '--I) A t4..,~, IAA!'}~ STA S+3
V'~Oo Vl7~/> ~46~ l D A .V'

1(.1111) \ ~~"'(? ~.1h~ ·OTV .,.'.
VI;~ I") ~

" A ~ C"
~ :. {) r: cr~, 0A61 ~ZF F
til,!)!" 7 R CA ~A6A ~RII E'tT~IR~

k1:'I)F ~'1t ~46~ LDA .rurHIP
~.,,) ,. 7~C' "'47~ ~~I: SFNr'c~

~A71 •
~.17~ •

(II r, f ~ .JJai7~ LTNFE'" J=" fJ I' S Ft-.TEQ HEqF. IF LF INPUT
~ rl t:: ~ ~41~r ~47~ -Lf'lA 'ltX~K_R

P ~"E , W~~R

It ~~ E' 7"'2P ~A7~ nRI)(LI~T C; E ~J 0 fUCI< AP~OW, C~, LF
~ ~~ E,' Hen ~ 'i147f', c:TF Pr"tT r,c T , ~ ~ 7f~O f1IJTPIIT COIINT
~[,JF.-i 7~3' "'~77 FlRL L~TI I~ I I ~T T~E I~PIIT RF.cnRn
"':'E'" Ci'C? ~~7~ Tnra~ ~LF'~ LF a~FnpF: FCHO AtT
~1~ F. fI VI'tF VlA7C RYT CLfA~,pnT.pnTFLG,PDTL~8
~ [~F.1 7~8~ "'AAr RRII RNGqEI ACCEPT FIIRTHFR INPIIT

~A81 •
""AS:: •
Vl4S~ HE'" DATA TFgMTNAL nC;R .. CHA~.t:TfR TqANSMI~STf'N

D-62 Digital Systems Division

~~-------~ 943005-9701

Table D-6. Data Term.inal DSR Listing (Continued)

"p R'LC
nATA T!~MTNAL D~R • C~APAr.T~R TRANS~I~STON

t(lOlEfIl
It'9IEO
"OlEA
e~EP

t.t,..r!!",
VJ"'t;L

V\V1En
0~EF

~,I"EF

I09'F~

~~EIl

C!5~!

ROt'
71'1""
786~

G4~Er
~""I'"

OQ~1

(:1C7
J~"v,

C"!57

I!1A8(PfJ
0AA~ •••
0A8~ •
0.481
0488
0A8Q
~AO~

~A91

~A9~

~A9:5
~AQ'(

~4Q~
~.,gt';

0A97
~Ag"
~AQ~

"!'i~!l"
~,~~ ,
1"!5"'~
~~"'~
050,(

~~Qt~

"~t"1
~~Ql8

0~"'!:

'" Sii8ROiiriNF 'fa SFNfi FiN;1 eioi4wAeTEP jfiH'iM Tioif A.~FGfSfER.
• RFTIIRN IS ~HE"J rHARACTE~ TRAN~MTS~InN r~ ~OMPLETEn.

• •••
•
S~IO~HR Fall !;

r.l'Mn L,E
~TF p"'T"'vr,~R
RRI W~TCHf;I

~ R II E)t T ".1 R ~.

~'VE ~F.T"R'J TN W~ITE VFCTOQ
nUTPIIT THE r.HATAr.TF.'R

• •••
•
• Si'8~OlJTTNF TO SFNn nNF CHARACTEP 'R("lM TWF A.RFGTSTf~.
• RFTURN T5 I,.,MfOYATE.
• •••
W~TCH~ FQU $

~A~O

ror.n M

TO~U~ ~RTTf,nAT'.A

RMn L,P

D-63

~FT tNTfRFACF. T~ANSMTT BTT

Of TlHHJ

Digital Systems Division

~~------------------~ 943005-9701

Table D-6. Data Term.inal DSR Listing (Continued)

S4iJ w'Lr
!"') A TAT F ~ M T N ~ L I) ~ R - C 1-1 • Q A r. T ~ RTf? A t.J S f'1 I ~ S Tn'"

~~F'
~r!\F'
~}lF~

~ ~lI F" .4

tH"F"
~V'FjIO;

~IAF1

ltiJIFJol
CI,"'tF~

~!"F A

~'~FR

P ~'-~Fr

~iIIFr,

0~FF'

,,: 11PF
0tlAL'

0' !Ii 1

""~?
~ t c~ ~
~1~4

IfH"'~

l' 1 I.~ '"

P ~'V1'
~'~R
1t\1~C)

It-")1"

1r;11~F"

0tV1F
k'tl~

~, 11
~ 1 l'
~tl~

i"I(lF1

3F7F
6F~r

CnA('lI

7 12 1'
~~~" 
r: f'I A ~ 
7~t-1° 
~FlI1r 

r. n 2 r~ 
7 R Ef' 
~~~C' 

~tC"
C1C7
1~84

211..1
7F1'/1A
1A1~1

'" 1 1 ~
D~~~

71l1~

""~. 34
7R~~
.",~~

PlOIVlt"

VltD~

C1C7
l'B~

2'~'
~~ t pi ~

8' 1 ~
c~~,

SOIA
~U~F

"~lQ
nR01
,ntA
~, 10

7PO~

1AFA
"', 14
OR4~

811 ~
C"!57

~~t,., PEJ
~~11 ••
~.,~, ~

~~1~

""~1.(

~"1!':
V1~1!':

~,~ 17
"'~l~
V1~1~
~~ ~ 2 0-

~"21
~~2~
VJ~'-~
~~2'(

"'~2-;
Vt~2~

0~21
V1~2A

~~2t;

1tI~3t"

v111i~1

~~3~

VI~3~
Vl~3.c

it1~~~

VI~3f

"'111\;31
~~38

VI~3~
0!'4~

V1~41

(}I~4=-

~~A~
~~4t

""~A~
rJI!541';
!t1!541

""~48
k1~4C

VI~5~

0~!51

~~5~

~~5~
~~5t
0~~~

~~~I! 
1i1~~1 
~!'i~8 

~'\~O 

~~6t" 

• 
• S!18RnUTT"'~ Tn ~F~~ ~I~'GI E C"UPAr:TF~S. IISAGF' IS STMTL 4R 
.. Tn ~~f)C~R. F'lCr.Ef'T S"ErIAL CI4A~.r.TFR~ ARF r.Ot-JVERTE!"l Tr"! 
.. THt ~FC~SSAPY CHAQAtTFQ ST~T~~S. MAY ALSn RF ENTF~Fn AT 
• XLI~T T~ SENn A PQE-SPErIFTFO ST~tN~. 
• 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
)(MTr:M~ FijI! $ 

.\ "Jr· •• 7F 
CPA .r.R 
SNF 
FlRU XrR 
C:PA .tF 
~NF 

FlRII XI F 

C:Pj aFF 
Sft:l 
~Rl' SNOr.MQ 
.L~A .FfLST 

YES 
LINE FF.E~ ? 

Vf~ 

FOPM FF.E'~ ? 

TncoM ~E~ IF H~MF nN FnR~ FEF~ 

~lT S~IP0,pnT,p~T~~v,~DTFFM 

Aon .HMLST.FFLST ~~A~~e CI-IAOA~TFR LtST 'OR 
RRI.I XLI~T ~E'~jO FnR~ FFFD Ef'llltVALFNT 

XLF" FQII, 
LI)A P()T~EV,~R 

TA~Z pnTLFT ~Ef TF LF t~~nOE ATT SFT 
~ R " S I( P L F t G ~I 0 Q ELI ~ ~ F E F. 0 
,nA XI,FI.ST ~ENO LIN~ FF.FO EQlIIVALe'NT 
~~II xLlST 

Xr.R FrJl1 $ 

.LI"A .CR1L~T 

TOrQ~ ~FF T~ 
FlIT S~IP~,p"T,pnT~EV.p~TtNL 

ADO .CR'-L~T-Cqtl ST 
)(Ll~T FI".III , 

STA TFMP,,~g 

RMn L,E 
~TF TF~P3,Ag 

LSTl.UP ~rJII S 
LDA *TEMP,.q~ 

TA~Z 1 
~~'I 
IM~ 

RRI 
~QII 

FQII 
~AF'Z 

ST. 
PMn 

.TEMP~,~R 

TEMP2,BQ 
S"lnCH~ 

l.STLUP 
s 
pnTLFT 
p"Tf)e V, "'R 
L,P 

D-64 

~E~O T~E C~A~.r.T~R LIST 
!;AVE L T!T T~mE't 

"=fT A r:~UR'C:TEg 
ENn nF LTST , 
VF~, R'TtJRtt.I 
~O, TNCRFMENT TNnEW 
ANn 8E N n T~E CH'~'CT~R 
~O NF.WT CHARACTER 

gE~ET LF IGNnRF ~TT 

Digital Systems Division 



~~------------------~ 943005-9701 

Table D-6. Data Terminal DSR Listing (Continued) 

SAP R'LC 
OATA TEPMTNAL O~R - CH'~Ar.TFR T~ A ~'SM I ~S TOM ~HF.:ET ~"'17 

~H5e , PFJ 
~tl' ~~~2 L ~ TI~ I ~I FOU ! LI~T U8E~ FHIFFFR nN TER~TNAL 

~'17 C~5tA ~H5e3 ~Mn l , • 
!i'!1~ 8' ! ~ g!~et ~T' TEMP1,~R ~,vE Iii~TI!fHI 

0tlQ C1C7 0!56~ , TOCO'" r;ET A CHARACTER "',1 A !)R0P ~~tH~ , C,HAR GFT •• 
III 1 1 ~ DR01 "'~~1 TARl 1 ~UFFFR E"'PTV , 
~11r. ''''11' ~~68 ~RI! *"F.04P1,J.tR VFS, EVIT qOIlTTNF 
~ 1 1

'
) 3F1F ~~6~ ANn •• ,F 

~, 1 F 6F1P ~~7cr ' r.PA ." 1 ;:- TF TIo4E C~ARAr.TF.R t~ TN THF 
rc 1 1 F cncp Vl511 ~LF ~A~GF, "F >t~ Tn >104 
0t2C'! 7"0~ 1I\~7~ ~R" CHAQ(11( r.~AN~E IT TO A NIILL 
~121 fII'1ti iJ\~1~ CP • • >14 
Id12? Cr'!~t'A "'~7' SLT 
~t2~ ~1ep 0~7~ l ()& aN!!LL 

~t2" fII~7(!: C~'RO\( F(31! !! 
""24 1~Cr. QI!li71 FlRL XMTC:HQ ~:O , ~ E ~II) Tlo4f CIo4ARAr.TFR 
~t2!'1 C1C1 V!~78 TarO'" SEt TF FnR""ATTFD nllTPUT 
~12Ft lRt~ "'~7<: PIT SI<IP"P~f:4,P~HIIFl.P~RFAC 
~t27 7--F'1 ~!li8(f ~RU LSTL P,'., 
~t2~ ~, 1 ~ ~~Ml l D A pnTnF.V.RQ LonK AT re:VJr.E OFSCRTPTYI"IN 
~t2n O~4~ "'~A~ SAFIZ POTLFT CLF.AQ THF LF Ir.N"RF FLAG 
QI.2A 8' 1 ~ ~'~8~ gTA PnTl"lE v, RR 
1I112F' 3FFr: ~~84 ANn .~FF rHFCI< r.AORTAGE SYlF 
l/I12C l;C)t~ 0~8~ CPA p(,\Tnrr,~R E'QIIAL TO OIlTPUT COIINT 1 
~, 2 r, C"2~ "'!,,8~ ~E~ 
~12r: 7'lEA V'~~1 ~RIJ L'~Tl I~ ., ~(' 

012F (}I?(An it')~A8 LOA .r.P 
o , ~\ ,- ,. (.ACP ~~f'Q ~RI )CMTr.H~ ~Et-,ID CARPIAr,rr ~ETURN 
~'3t "'''A~' ~~9" LOA XLFLST Pr'lTNT TO LINF FEED LtST 
~q J, C1C7 rt!5Qt TOrOM nIl') nEvICE on TT~ nWN LF ? 
lr:'I!j~ l~R" ~5g~ ~IT SI<Ip""p~T,PnT"EV.PDTLF' 

~'3" 2'~' \1~Q~ Anf" ., vF.~, SiC!P THF LF 
~, ,3~ 1 P OiC fd~9~ F<~L XLI~T ~FNO LF nR LF/CLQ F.Ot. 
~1J~ C1C7 0~g~ YOCOM C\f.T THF LF IGNORE FLAG 
Vlt31 ~!a8~ "'5g~ AIT SF.T,PflT,pnTnEv.Pf)TLFI 
~'j'" 1~EQI 0~97 ~R!I L ~ Tt. IN.' (;0 on ~OPE 

~~QS * 
~~g~ * 

~ ~13Q ~'C~ ~t;0I" XL Fl. ST rATA LFLST 
~';!.1t * 
"',;"'~ jojEn O~T6. TEQMT~AL n~w !II WQITE A~C1I 

D-65 
Digital Systems Division 



~~------------------~ 943005-9701 

Table D- 6. Data TerITlinal DSR Listing (Continued) 

SAP ~='Lr 
r)~lA TE~MT~HL "'~R - wQtT~ ASCTI ~H~ET PlPIt~ 

~f'~~ FEJ 
r~ 1 3 A CHr;QI t WTASC! FQII I 

~ \.' h ~<)1~ 0~""~ ~TF" pnTnCT,AQ 7FPO ("lilT Pli T rOllNT 
~'.3H e1C1 ~~~~ IOrO~ FOCHHTTEn nUTPUT , 
\111 ,~r 1~1:" i,"'~~1 IlIT SI(IP1,P~R,P~B"'L,PR~FAC 
I(1t3n 7~r" 0~~5 ~R" SNOI. I '! "'J(\ FnR'-'ATTTNt; 
Vl1JJ:" ~, 1? ~~"'-; IMn pnTnCT.R~ T~r.RFMENT PA~T FnRMAT wo~r 

~, ,~F ~1t? ~~ te' T~n POT("IC:T,~R 

~14~ LA~l~ 011511 LOj *PDT('\RA,AQ LOrH( AT FrH~"'ATTI~G wr,,~n 

~t41 f'lp~r ~fI)l~ TA~Z POSFR~ POST FnRJIoIATTTNr, , 
/(1\4' ''''0.1 QI~t3 RRL LSTl I~' VE~. LIST THf.' QEcnlln 
~'4' 7r"l",., "',;tt t:lqL Fl"R~AT no FnRMATTT~r; 

~'441 0~1~ S~OL I ~I ~Qt! S 
~t4d '''n~ VHH! ~RL LSTLIN r"lU"'MV CAl L IF ALR!AOV nONE 
II''' 4~ ~'~1 P.I~l' t OA pnTFLG,RR LO"tc AT PDT 'LAG~ 
~'4~ D~lF PI~t8 TA~O pnT,.,.,g \/JAg TMrS A~ nllTPllT WYTH PE PL v 
ltI,41 '''2' ~~lQ ~R" F-XFOiolX NO, w! APE FTNTSHfn 
014~ ~.,"'r. 0f5~~ LOA -.4 ~E!Tn~~ ORtGINAI. P~8 A"H~ 
,H ~r:) 7C~P' PI~21 '8~U CjofGTBl DE!fT D,U\ ANn n8 A"R~ 

P ~t4' 0fJ1et" 
~~2~ * 
vU52~ H!O n~TA T~~MT~AL 08R • 'n;~ATT~n OUTPUT I ~f.An STA 

D-66 Digital Systems Division 



~~-------------------~ 943005-9701 

Table D-6. Data Terminal DSR Listing (Continued) 

SAP ~'LC 
nATA TERMINAL D~~ • FI'H~M'TTEO OUTPUT I ~e:AO STATU~ ~H'ET PI '" fC~ 

~~2" PEJ 
~1.~ ~fli2~ Fr'lFHUT E"QI' S 

~t4R C~~~ r;I~2" ~Mn L,A 
I~. A". 8 1 1" ~~27 ~TA T~MDt _D" "AVE ~I!:T!!~N t" 1 .. , , ~. •• ..., I_~'" 

1r'!!4r' [;.l~1V' "'~28 l DA *POTOflA,B~ LonK AT FORMAT WnRr, 
""4F. nRI0 ~~~!; TAPO C~Fi1R~ rA~RTAr,E RF.TIIR'J , 
1t114F 7--0' ~~JIr. RRI) ~H'lC R ~IO 

~,~~ Pl70r ~~31 LDA -CR \'E~ 

~'51 7?9F 0~3~ ~Rl )(MTr.HP \'F.~, SFNn TT aliT 
Vlt5' ("fIl3~ NOCR FQII S 

~t5' ~~1" OIfli3.c tnA *pnTo~.,R~ 1._ nnK AT FnRMAT wnRn A r; A I ~J 

1t1'~~ D~~f' fe163~ lARZ LFFnR~ LINE F~En , 
""~4 1fl~3 L-1~3r. ARll FMTLF VE!' 
1t1, !Ij~ DA0F (}I~31 TAflZ FFFfJRM FO~M F~En ? 
ltii5~ 7~~P ~~3S FlRIt FMTFF Vf~ 

~"t ~1 7"1~ ~~3~ ARII *TE~p'.~Q t.JOTi1TNG AT ALL, RF.TlHH-t 
w15~ "'~.(1: F~TLF F' Ql' S SENO .t LJ''JF FF!n 

lI'1 !S q "'7~~ 0~41 LOA aL F ~IO 

"'t50 1"-97 ~~.~ ~RL Xf04TrH~ ~f~'O T~! LINF F!Fn 
~'5A ~ ~ lfi' ~~.~ '- OA *PDTn~A.~~ lonK AT THE FO~MAT wrHu,\ 
~'5R nA1F ~~A~ TA~O LF2F~P" ~E~nNO LTNfL: "E~O '! 
0!~r 7"'1" VI~4~ RRII *TE'1P1,~Q ""10 ! ~ETU~N Tn CAllER 
01!5fl (4, QI. ~f\." LOA -tF VE~ 
V'! 5F 7t'g, ~~A" ~RI ~MTr: .. t'~ VE S. S~N" tT OIlT 
"'11 ~F 71"1~ ~~48 ~RU *TEMP,.QQ T~FN RFTI'RN 

r 1 6{~ OI';.~ F~TFF FellI , 
~ 1 e'.II ~1"'f" ~,;et': l 1:'1 A aFF 
~1 t 61 11118F ~~5t RRI )(MTCH~ SENO T"'E FnRM FEEn 
vl'~' 7nl- ~~5~ RRII *TE"'P1.~R 

~~5~ * 
V'I~~.! .. 

r1116~ ClI~~!5 RnSTAT FOil $ 

lA'4j~ 1:7(1 0"~~ Ioro~ QEAO INTFRFAeE STATUS i-IORi'J 
~te4 3"'~C' 0t\~7 TOF'US ~E40.0ATA •• 
~HS~ 3A0(:11 0";58 _,NO -,.8"'tF 
~tii~ S"lF 
~H5' C7C7 ~~~~ IOCO~ RETU~N t '., "RA 
~16· 2A0' ~~6t1. ~Er; STOQF.,.,PR8,P~A~~L 

~16Q 0~et EVEnRlC EQI' , 
0t6Q C1C7 ~f;e~ TarOM 
~.8A AA~~ ~H~6~ F.)(TT fr'lR.'" 

0~f5.c * 
~~fI}!5 Io4Er ·OAT4 TEoMtN1L O~R ... C~AQACTf.'R t'iTf!R~UPT INPIIT 

D-67 Digital Systems Division 



~~-~---------------~ 943005-9701 

Table D-6. Data TerITlinal DSR Listing (Continued) 

~AP ~'L" 
rIA T 4 TEIo.lMT~AL n~R - C~A~Ar.TF~ It-.JTFRQIJPT t ~jp" T ~HFfT ~~2r;t 

c.:HI\ tt" p~J 

~'6Q 1d~67 T AI<r~ H~ ~Qtt ! 
~l-;R "F 2~\ ",,.:t5~ CPA .,. 2 !~. 
Wl1~r. cn4~ "'~6e ~r;T 

~ 1/ij ~ 1r,H' ~"7" QRII *XTAl<rl-l 
It· 1 ~F C~0' "'''71 p,..,n A,X 
~'~F 1'1.-1' ~"'7': L r) X 1+2,V 
VI t 1:" CIIi?7 "'~7~ QMn X,P 

p ~'71 ~~A' "'~7l XF)(TNR "'ATA E'ltlI\lRM (1. NIIl L 
p Vl11' f,Ar'A' ~~7~ "'ATA ~YTI\jR"l "1 
P It1t1~ VI?A~ ~f57f'; nATA El(T~IR'" "2 H1"IJIolF. r.U,.SOR 
p l'111d ~OI'? 0~77 nATA E'YT"'IR"1 1'3 
P ~11'5 ""~A' ",.c7~ rATA EXT~~R~ ~. 

P Ie" 7~ ~~A~ ~~7~ ~ATA E)(TNR~ O'~ 
P ~177 Il'''''' 0~8~ nATA r:: '( T IIJRM ~~ 
P ~17" ~~A' ~"81 r'lATA E)(T"JR~ ~7 8flL 
p ~'7q 0~~r "'~8~ nATA BACItSP ~R 8ACI(SPAr.f Oq r,UQS"R IF,T 
p ~17A \!I~8~ 0~8~ I"IATA TAI(CHt ~Q MnRTZr'lNTAL TA~ 
p ~t1~ ~n gf' {)I~8t I")ATA DW~AR~ PA lTNF F!~n OR elJ"s",~ nnw~ 
p t4t7r. ~nlA' 0~8~ nATA E "'T ~·IR ~ "'A 
p ~t7n ~(AA' 0~8" nATA E '( T ""R~' litC FnR~ F!F.:O 
p "t7F "''''A 4 ~~8i' r,ATA GnTnc~ ~O CAR~IAGII! QETLJ"N 
P (;I"F ~~EP 0~"'8 "ATA LtNFEn tA~ l1ST TNPUT L T~I! 
p ~t~~ 0('1A2 0eJlt;: ~ATA EXTNR~ rJI, .. ~ Pt 1 0!'1A2 ~jlligC!. nATA EXT"'R~ ,,,. OLE 
FI ~18'- ~tJlA'- 0~g1 ('lATA EXT~R~ ! t 
FI ~'8~ 001A~ rtHli9~ nATA EXTNR~ 1P P"INT 
p 0184 0{.'J1A' "1Ii9~ OATA E)tT~R~ 13 
p ~t8~ 0~A2 It,,~g, OATA ExTNRtw' 1. oe. 
fa ~18~ P~A2 ~f'ge ~ATA ExTNRfoI \~ 
P 0t87 001A' 0";~ f'ATA E)(TNRft4 if' 
P 1r'1SA 0~A2 0f';7 nATA EXT~R~ 17 CL!AR END ", LINE 
P 018Q ""'A2 0~ga nATA ExTNRfoI 1.8 
p 0t8& OIli'A2 0~9Q DAT A ExT"IRM 1 0 
P "'t8A 01A" 070~ OATA lJPA~Rn , A CURSOR WI 
P ~ter. ~OIA2 0701 nATA !XTNRt-4 18 
fI rlItSO ~'91 Pl70: nATA RIGARR te CURSOR '1r.;.,.T 
fa 0t8! ~"'A2 07"3 nATA ExTN""" ,n 
p e'8' 001AQ 070' nATA ExT~RM ,! 
p "ty'" "017' 070e OATA ClRSCR l' Clf-Aff SCR'!N 

0t81 Pl708 RtGAR,. !~tI I 
0191 Cee? "7'" RMt'1 A,X 
0tg, r.7C7 070. 10CO~ 
~t~3 20102 "700 ~!G L~An,A,~,,~,PR~ORl 
0tO. C30l1! 071" RIN A,A 
"10~ '''0'' i4711 ~RIJ OWNARt 

~'8f11 "1711 OWNARR !QtI I 
"'18-' C!UJt 0'1~ RM" A,X 
IIt87 C7C7 071' IOeO'" 0tg.- 2'12 07t~ ~!G lOAn",~.~,'.~n.L 
"lg0 ., I 1 ~ 071e LOA "nTnEV,"'. 11gA 3111'" "'t7 .ANO .~" MASk "'tOT'" '11 g~ ,PI" 

D-68 Digital Systems Division 



J}7;\ ______ _ ~ 943005-9701 

Table D-6. Data Term.inal DSR Listing (Continued) 

SAP ~'Lr: 
,~TA T~PMIN'L 08R .. r."""'f":TFR I~TFRRLJPT t~P'IT 

IDt9r; 2'0' 0718 SUR ·.2 
~, ~H~ C~gP fil71~ RAn E,A 

~'9F 072UJ OWNAR1 ~QII S 
0,QF C7C7 ~721 TOCOM CRT? 
ftt t g.F tP84S '17~~ RtT SKIPt.pnT,PnTn£v,POT~FM 

01API 1r.D~ 0'2~ ~RtI ·)tE~T"IR 
~H A1 C7C7 072.( Ir'lCO'" 
0tA, 2183 0'2~ ~Er; LnAn,E,lnT,LOTQPC 
0!A~ (41(1' ~72" ~Cj E,A 
0144 Cf'l4(11 ~721 SGT 
01A~ 7r.CP ~'28 PAil *vf '(T"'A 

~'Afl ~72~ OlliNlR2 F.:QU s 
"'!.~ C7C7 Ql73r1 TOC-O M 

0147 2R0:? ~7~1 REG STOPE,A.PQ8,PQRnPL 
0tA~ C!52r ~'3~ PMn X,A 
~l'Q 7r0C' V173:', .~~u SFNnr.~ 

p rD1.AA r,,~A' 

~'AP ~73.( UPA~Rn FQLJ , 
0tAA C7C7 073~ TorOM CRT? 
0'Ar: lP84 ~'3" PIT S~IPt,pnT,p"'T"'EV,POTFFH 

~'Af'\ 7r:C~ ~73' R~II * YF.)( T ~IR "'10 
""AF. C7C7 ~'38 YOCOM 
\lJ1AF 2'0~ ~13~ QEr. Lnj~,F,~Q~,PR~nRL 

~ t 8:'-1 ~11R ~'4cr LOA pr"TnEv,RR 
~181 ~~0t~ ~74t .A~D .~FF J1ASK ~tOT~ 

ItH 13'- '3~FF' 

"'tt4~ ~,"0? ~74~ ~u~ ·>2 
~t!J4 CAl" ~7.3 RCA E,A 
"ttj~ C08,1; 014,( ~GF. 

Void" 7rSA 07A~ ~RII ·)tEYT~R 

~tK7 Cf"ICllt "'74" ~Sll A,E 
Ir1 Uil' C:'\1'" ~747 FiMn f,A 
kH8Q I'll ~7A8 ! OX .ClJlH.J~ 

1t11liJA 1~EP ~74~ RRII D~INA~' 

P kHSR V1()18~ f,175V, XTAt(C~ ~ATA TAKCH1 
~75t ~En nATA TFQMTNAL n~~ • SPE~TAL CWARAr,TFR LTSTS 

D-69 Digital Systems Division 



~~------------------~ 943005-9701 

Table D-6. Data Term.inal DSR Listing (Continued) 

~Af.J ~?Lr 

,,~lA TE~~T~AL n~1o/ - SPErtAL CI-'A~ArTF~ LTSTS 

L>1 t H'" 

~1tiF 

~11oiF 

V'tCf' 
III 1 C 1 
If'1C? 

~,c~ 

~'Cc1 
~1C" 

0'CQ 
~q CA 
"-"'C~ 
""Cr. 
~'cn 
V'1CF 
~1CJ: 

~11)~ 

rp 11) 1 
010? 
~ln:\ 

~1uc1 

01 f) ~ 
~'O-'i 

~1Rr 

V'~~F 

~HH' 
Vi~r/lr 

~r'~r 

V1ra~r 

~rJI~" 
~!?~(i" 

v,r:q 11 

V11C~ 
~ ,~"-" j 

"""'17 
.,rAV'C' 

~'C~ 

?'''~A 

~"'~A 
~ (~VI A 

~'CQ 
(Al"'~' 

VI~17 

~I',II~A 

~(~ 1 7 
~"'~A 

ptt?l17 
.,r~0'" 

It"D~ 

LA"~~ 

~CI"'OI 
~f}Plr.a 

t'!~QI(l 

~rw0P 

PI"QI~ 
4~0(? 

0'\0' 
,,1'lI"'r" 
"'01"''' 
.~IiI'" 
"'10A ",01", 
01:Al' 
4"'0P' 

[A'15~ P~.1 
~75~ ••••••••••••••• + •••••••••••••••• * •••••••••••••••••••••• 
vl7~t • 
\1175- • l T5T5 IJ~En ~y P~f XI letT SllfH~OIlTT'IF.. T~AN~MTSSlnN 
t-17~f • I~ TEhl~TN'TFr) RV f2 JT 4 nF TI.4E wn~,., FnLL"wTNr; T~r: LA~T 

~7~1 • C~A~.rTFR Tn qE S~~T ~ETN~ ~ET. 

1J175S • 
til7!'5~ 

~7f'):" 

(1\7,., 1 
V"6~ 

~7~~ 

~7b'( 

1;j'6~ 
~76rr. 

V'l7fi1 

"'7 totS 
i,.17,;t: 

VJ'7r 
~171 

"'77': 
fit '1, ~ 
rJJ771. 

VI' 7 '!. 
""7~ 
ilJ171 
1(1778 
Vl17~ 

V!'R~ 

"'7At 
\ii7A~ 

~'8~ 
1A7At 
~7~~ 

t'" ~ .. 
1ll78? 

""88 
078Q 
0' 5HT. 
~791 

0'O~ 
""g~ 
~,g.( 

~'9~ 
",7;' 
07;7 
V'7;S 
~,g,! 

0"P't" 
~"0\ 
"'~0~ 

•••••••••••••••••••••••••• * •••••••••••••••••••••••••••• 
• 
XACI(.~ F('JII $ 

f'\ATA R(I<ARQ 
xr:RLF FfJll , 

"'.TA C~ 
f'lATA NULL 
rIATA NtlLL 
I)ATA NIILL 
nATA t~lllI~ 

r"tATA OC4 
L F L ~ T fo" rJ II J 

nATA LF 
DAT6 r:L~LTN 

f"lATA >"P"'''' 
F F L ~ T ~ (~ II S 

nATA LF 
nATA IF 
nATA LF 

l F3LST Fr.l11 S 
nATA LF 
nATA CI.RLI~ 

r'lATA LF 
tiATA CLRLt~1 

nATA LF 
nATA CLRLI~ 

r) A T A > ., '" r. ~ 
C:~lLST FQlI , 

r'lATA CR 
rATA NtlLL 
I"ATA NIII.L 
"ATA NULL 
nATA NULL 
nATA NUI.L 
D A T A > .d 0 IA 121 

L~2LST E'f'HI S 
nATA CR 
nATA NIILL 
/')ATA ~.~rACII 

M~LST F~II S 
f"IATA HOMf 
"ATA CLRLIN 
nATA ~AQtQl~ 

~!n DATA TE~MtNAL O!R • AUTnFlOw ~o~~eE 

D-70 Digital Systems Division 



~~.------------------~ 943005-9701 

Table D-6. Data Terminal DSR Listing (Continued) 

SAP ~'LC 
nAT A TF.~MTN'L OSR .. A'JTnFl.OW ~OIlRrE 

PEJ 
FNf'I 180T 

D-71 Digital Systems Division 



~~------------------~ 943005-9701 

Table D-6. Data TerlTIinal DSR Listing (Continued) 

S A~' ~'Lr 
") A T A T':~MTN"L n~R - AIITnFLn~ ~aIJRrE qjojFET 0It'l2t1 

A ~v 1,1.' A~OgT 7Ir21 p "'~&III\ ':UCItS1 rtI?lr.F 
b ACIt ~f" 1J"!Ii'r.lr R RAl(,qp ~"(iil8 RI'"j(ARD ~9I~F BFLL 0l~~1 

6TT 8~·M~ RI(SISH ~(·5r. R~ ~ r." 011 CHAQ 8AI'lI~ 

CH .rJIlt< ~'2d rl1GTBL {iH~6(J C~I(FOF P1~AF C~~I(LF~ ~()Ig1 

Ci( ~IIFF l-)o-9~ CLEAR ~"II' (J! CLn~E C)I~~R ~ CLR 0011F 
CU~l T'J ~ "11 CLR5CR flJP'1F CR ~tAOIn C~qLST OItnt'! 
CI~'-LST ~ 1 1)1 C~FnR'" (}I r,' 01 '" CII~IIP f}lf!!1A nATl ~"""'t'I 
Dr4 ~!71d R nLE 0 01 \'" nnY"lp OI~~r nnNTRr': "0I7~ 
UIoi!'>.,lAQ1 ~'QF DWNAR, ~'A~ n~NAR~ OIHHi E 01"''''' EN[)Ftl. AF A1 FnR 0IV'212 E't~nRV CJltfiiQ E)ttT 8101"" 
e:)trFn~ ~~5~ ~)(T~RP.1 0I~42 FF OI~OIC FFFnR""I "'''''''F FFLST ~lCII\ FMTFF Qlt6t'1 F'-1TLF OI'~" FnR~AT ~'.A 
FIILl~F ~t'A4 GET ~OIOIR GnT"CD OIVAA Hp.AL~T 0l10A 
~W"'1F r.H/II!'- ICCIo4A~ f)lI'IfIlI1 lr,N"~ "'~2~ IlLnpn OI~"'Q 
InlillS 84~A IncnM C:7C7 InE"T ~"'~7 I~n~Rt 0f1101f:l1 
ISOT I~H,.It1~ t~PJT "'''31 I~R~T ~~4R R IVRnT 0~A? 

~ I v ..,r' T ~(I"2 L ~~~!'5 Lr)T OI"'~? LnTOpr ~~"'3 
LF "'~PlA LF2FRM 0~'iF LF3LST ~'rQ LFFnRM 0010~ 

'-FL~T Pl1C:5 LTNFEn tllti1EVI Lnu" "'0I~<4 L~TltN fl1.t1 
L~TLUP 01(t1F M t'l tJl 0:5 Nnc~ ~15~ NCIRM ~OI2C-

NIILL ~OIvH~ OPC"'E~ PlP2~ ODE~ ",C'I~t OT\II~E" QHIt~A 

P ~P07 POT ~Ql0' Pr)T,NI (:11"'015 POTAel( 0P1"'-' 
R pnT~Sv 0~"'~ POTnBA ~~ t·;II pnTr"!V ",011'- Pf'TFFH 0"''''. 

pnTFLI': 0ea"'t P~TLF' 'jH"~' pnTLFR PlI'AQlP' ~rTLFfI.: "''''(:112 
PDTLF} QlP03 R pnT~l(n ~flllA pnTnCT "'Pt' pnTnw~ A"'OIP:-
pnTPR~ 0(7",n pnT~Vr. "'(JI1~ pnT~T. PlOIt~ POTwVe 10117 
pnSF~M ~p~C PRB (ilf,l0~ PR8ATM AOIQI'- PR80B' 001f13 
PRtHH~L IlH~0? Pr.l8!OF "'~02 PRR'Ar "'l'I03 p~An~~ 0"'01 
PRi4npT 0"'03 "RBnWR 0"''''' p~e8Bt "'''''''3 P~ASC~ ~"'''. 
fi'~8~FL 0P0Q1 PRBIIFL 00'01 PIIT ",fJllQI' RnASe! "''''eo 

~ f(ncn~ 00'3' Rnl~T ~OI~'" RnSTAT ""83 R~An "'0118 
REG 8.11'" RIGARR '11;' RNG~EI At'le~ RUBOT 1801,1' 
RI18nUT P.I~e7 S!Nnc~ 0P1Al SI!T OtPl~t S!TRyr; lUI,,, 
S!TWIC; 0017-- Sl(IP0 ~Q!A2 SI(IPl "''''03 S·'L~ "'t14 
S~OC~u "'P!~ SNOLIN 011.' STORE "'~~~ TAR QlOI8Q 
TAICr.H\ QlPe~ T,I(r.H~ OIHSA T,.II4Pl PJ"'t-- T~MP2 ~OIIO 
TE/Io1 D3 "PIA UIIARRO 0tA~ "H~ t T! PlPPl1 W~TeHR ~Gt!e 
\ltQTF.OF ItJP2n W~TtNT QlPl3r. WT.~CT Ot'~' )t IGtfll 
)(~CI(AR ",ac XeR ~t~e X~~I.F PltBn )(!)tNRM ."".,p: 
XfflCTNR Plt7' XLF 0I1~t XL'LST 01\30 XLIST 0t~" 
Il~TC~R "'~Jft XTA!(Cjoj Pt18R X)(RIt'AR ",I:'Ie-- X'I(C~LF 0"'~' 
XWLTST ItH~~O 

~ 0I1r:! r~ ~R~(H~S 

D-72 Digital Systems Division 



~-------~ 943005-9701 

Table D-7. PDT Builder Required Definitions 

Label Definition 

ITDBTO 

ITDBTl 

ITDBT2 

ITDBT3 

ITDBT4 

ITDMT 

ITVECT 

ITPDTl 

SDMAEX 

SDBEXP 

SINTEX 

IDDMAC 

JDSCAA 

Pointer to the internal 10 expansion PDT branch table 

Pointer to the 1st 10 expansion PDT branch table 

Pointer to the 2nd 10 expansion PDT branch table 

Pointer to the 3 rd 10 expansion PDT branch table 

Pointer to the 4th 10 expansion PDT branch table 

Pointer to the DMAC expansion PDT branch table 

Label indicating the start of the vector interrupt PDT branch 
table 

Label indicating the start of the 1 st PDT in the system. 

Label on word containing the DMAC expansion flag: 
o - no expander 
1 - expander 

Label on word containing the num.ber of I/O bus external ex
pansions, value: 0-4 

Label on word indicating that there is internal I/O expansion 
o - no internal expansion 
1 - internal expansion 

Label indicating a word that returns control to the system. 
when no processing is required on an interrupt. This label 
m.ay be used in PDT words 12 and 177 or m.ay be branched to 
when the processing required to clear an unsolicited interrupt 
is cO!TIplete. 

Pointer to a system. m.em.ory m.anaged area. This pointer 
should be used by the PDT Builder program. when a block of 
mem.ory is required in the system.. 

The utility require s som.e m.em.ory allocated perm.antly for the PDT and any 
other structures required by the new device. This memory block should be 
at least 18 words (more if temporary storage is required). To allocate this 
mem.ory space, the utility has access to one of the system. mem.ory manager 
routines. The following is the calling sequence for the m.em.ory allocation 
(MRAL) routine: 

REF MRAL 
REF JDSCAA 

(listing continued on next text page) 

Change 1 D-73 Digital Systems Division 

I 



~-------~ 943005-9701 

ADD 
PDT 

GET MEMORY 
FOR PDT 
STRUCTURE 
( ~ 18 WORDS) 

CHA I N THROUGH 
PDT'S 
TO END OF 
CHAIN 

SET POSSIBLE 
DEVICE 10 
=254 

10=10-1 

(A) 130254 

/ 

NO 

USE MEMORY 
MANAGER 

ITPDT 1 :::LABEL 
FOR 15"!" PDT: 
LAST PDT HAS 
A ZERO IN POINT
ER TO NEXT PDT 

CHAIN THROUGH 
PDT'S TO 
DETERMINE 

SELECT 
RESULT AS 
NEW ID 
FOR PDT 

Figure D-l o. Addition of New PDT 

D-74 

LINK NEW 
PDT 
INTO CHAIN 

INITIALIZE 
1 ST 18 WORDS 
OF PDT 

ADD POINTER 
TO INTERRUPT 
BRANCH TABLES 

Digital Systems Division 



~-------~ 943005-9701 

@LDA JDSCAA 
STA ARGl+l 

@LDM =ARGI 
@BRL MRAL 

ARGI DATA 3 # of arguments 
DATA $-$ 
DATA BLKADR 
DATA BLKSIZ 

BLKSIZ DATA $ - $ 
BLKADR DATA 0 

Size of block needed 
Pointer to requested block 

Upon return from the MRAL routine, determine if the requested block 
was given to the PDT Builder utility. If the pointer t~ the requested block 
(BLKADR) is zero, then the memory was not available. 

The PDT Builder utility has access to a label indicating the start of the first 
PDT in the PDT chain. To deterITline a suitable device I. D. num.ber, select 
the largest, non-assigned device I. D. «255). Chain down through each PDT 
to deterITline if the selected I.D. is assigned. The last PDT on the chain is 
identified by a 0 in the Next PDT Pointer field (WORD 0). 

After assigning a device I.D., chain the PDT to the last PDT on the list and 
initialize the PDT according the description provided in figure D-2. Then 
place the PDT pointer in the appropriate PDT interrupt branch table as 
described earlier in this appendix. 

Once the PDT builder program is coded, assemble it using SAPG. Object 
output should be to the file (USEROl, ASMOUT). Then link it with the DX980 
operating system using DXOLE. The following job control is required to do 
this using the standard LINK procedure. Refer to Section VIII for a detailed 
description of the DXOLE utility. The following is a sample Link: 

/ /RUN DXOLEP DOBl=DISCl DIN=SC; 
•• FLM = (SYSTEM, UTLFIL) RLM LLM=(3, 0,32,3) 

The input would then be as follows: 

~SUBSYSTEM OVLY 
~ROOT MAIN. 
~SEGMENT 1 
~INCLUDE 1 

/ ',, 
',' 

Change 1 

object for PDT utility 

D-75 Digital Systems Division 

I 

I 



4r 943005-9701 
--------------------------------------------------------------------------

D. 3 ADDING THE NEW DEVICE SERVICE ROUTINE 

Every DX980 has a standard utility, LMUPDT, that updates a memory image 
phase (MIP) of a load module generated by the DXOLE utility. LMUPDT can 
replace any of four dummy memory image phases (MIP Nos. 181, 182, 183 
and 184) in the DX980 system load module. 

Perform the following procedure to update the DX980 load module: 

1. Reference the description of the load module update (LMUPDT) 
utility in Section VIII of this manual. 

2. Perform this update procedure using the <userid> of SYSTEM. 

3. Run the standard LMUPDT. Set LUN 5 to the record input device. 
This record should be the MIP number of the system load module 
MIP to be updated. Set L UN 7 to the relative record file of the 
DX980 system load module, (SYSTEM, SYSLD). The input is as 
follows: 

/ /RUN LMUPDT DCON=SC FLM=(SYSTEM, UTLFIL); 
FUPD= (SYSTEM, SYSLD) 

4. Once the phase has been replaced, reload the system via the IPL 
program. 

This utility does not replace an existing module. Instead, it adds a module 
to the end of the File and changes pointers from the old MIP to indicate the 
new MIP. Therefore, after replacing the MIP several times in the process 
of testing and debugging, LMUPDT may terminate with an error indication 
such as "file full". To prevent this problem, build a development system 
load file using the load module copy program (DXCOPY). The new file should 
be large enough to allow for expansion. Once the MIP has been tested, this 
file may be deleted. Then run. the update utility against the system file or 
disc. 

D-76 Digital Systems Division 



~~------------------~ 943005-9701 

ALPHABETICAL INDEX 

Digital Systems Division 



~-------~ 943005-9701 

ALPHABETIC.-\L INDEX 

INTRODUCTION 

The following index lists key words and concepts from the subject material 
of the manual together with the area(s) in the manual that supply major cov
erage of the listed concept. The Reference column of the listing contains 
references to the following manual areas: 

• Section's - References to Sections of the manual appear as "Section 
x" with the symbol x representing any numeric quantity. 

• Appendixes - References to Appendixes of the manual appear as 
"Appendix y" with the symbol y representing any capital letter. 

• Paragraphs - References to paragraphs of the manual appear as a 
series of alphanumeric or numeric characters punctuated with deci
mal points" Only the first character of the string may be a letter; 
all subsequent characters are numbers. The first character refers 
to the section or appendix of the manual in which the paragraph is 
found. 

• Tables - References to tables in the manual are repr~sented by the 
capital letter T followed immediately by another alphanumeric char
acter (representing the section or appendix of the manual containing 
the table). The second character is followed by a dash (-) and a 
number: 

Tx-yy 

• Figures - References to figures in the manual are represented by 
the capital letter F followed irrunediately by another alphanurneric 
character (representing the section or appendix of the manual con
taining the figure). The second character is followed by a dash (-) 
and a number: 

Fx-yy 

• Other entries in the Index - References to other entries in the index 
are preceded by the word "See" followed by the referenced entry. 

Index 1 Digital Systems Division 



~------------------~ 943005-9701 

I 
I 

Subject 

A rea, Job .Extension 
Assembler, Symbolic 
Assign Command 

Batch Input Reader 
Batch Input Spooler 
Batch Output Spooler 
Binary Code 
BIR 

BIS 

BLDEDT 
Block, Physical 

Record 
Blocking 

BOS 

BPS 

Buffer, Data 
Exchange 

Buffers 
Build Edit File 

Calls, Supervisor 
CATFIL 
CATFIL Error 

Messages 
CAT LOG 

CAT LOG Error 
Messages 

Clear LDT Bit 
Utility 

Clear PDT Bit 
Utility 

Clea r PRB Bit 
Utility 

Close 

Change 1 

ALPHABETICAL INDEX 

Reference 

1.8.2 
8.9 
2.5.4 

See BIR 
See BIS 
See BOS 
T3-9 
6. 1, 6. 2, 
1.4.3,1.4.3.1, 
8.5.4.4 
6.1,6.3, 
1.4.3, 1.4.3.2 
8.14 

D. 2.1 
4.1,1.8.2, 
4.4.2,2.5.3.2 
6.1,6.4, 
1.4.3, 1.4.3.3 
1.4,1.4.3, 
1.7.1,2.3.4 

1.4.2 
4.4.3.5 
8.14 

3. 1 
8.4 

T8-7 
8.3,2.4.1.3, 
7.2.1.2 

T8-S 

D.2.3.2 

D.2.3.2 

D.2.3.2 
3.4,3.8.1.6 

Subject 

Code, Memory 
Resident 

Code, Hollerith 
Code, USASCII 
Code, Binary 
Command Scanner 

Error Codes 
Command Scanner 
Command Table 
Compact Control 

Card 
Compact Mode 
Compiler, 

FORTRAN IV 
Conditional Instruc

tion Skip 
Create 

Create Task 
Creator 

CRT 

Data Command 

Debug, Program 
DEB980 
Delete 

Delete Record 
Device Service 

Routine 
Device Service 

Routine s, Reentrant 
Device Table, 

Physical 
Devnam 
Directory, Master 

File 

Reference 

1.4.1, 
1.4.1.2 
T3-8 
T3-7, T3-8 
T3-9 

TS-6 
5. 15 
1.4. 2 

8.5.4.3 
8.5 

8.10 

D.2.3.3 
2. S. 2, 
8.3.4.2 
5.12 
1.8.2, 
2.4.1.3, 
2.5.4.10 
7.1, 7.2 

6.2. 3, 
6.3.3 
8.8 
8.8 
2.5.2, 
2.5.4.7, 
8.3.4.3 
7.2.2.4 

D.l,D.2 

D.2.9.2 

1. 5 
2.5.4.2 

4.3, 
1.8. 1 

Index 2 Digital Systems Division 



~------~ ~ 943005-9701 

Subject 

Directory, User 

DSCA 

DSR 

DSR, Sample 

DXCOPY 
DXCOPY Error 

Messages 
DXOLE 
DXOLE Error 

Messages 

EDB 

Editing 

Editor, Master File 
Directory 

Editor, Overlay 
Link 

END 
Enter File 

ERRCOD 
Error, Fatal 
Error, Logical 

Error, Severe 

Error Codes, Com
mand Scanner 

Error Me s sage s 
Error Messages, 

CATLOG 
Error Messages, 

CATFIL 

ALPHABETICAL INDEX (Continued) 

Reference 

4. 3, 
1.8.1, 
1.8.2 
1.4.1, 
1.4.1.4 
1.5,3.1, 
3.8.1, 
3.8.2 
TD-S, TD-6 
FD-8, FD-9 
7. 2, 8. 7 

T8-1S 
8.5 

T8-10 

5.10,5.9.1, 
FS-1 
7 1 h ...... '-', 
7.2.1.1 
7. 2, 
3.8.1.2 

8.3 

8.5 
2.5.5 
7.1.6, 
7.2.1.2 
5.6 
3.7.3 
3.7.1, 
3.3.1.7 
3.7.2, 
3.3.2.1 

TS-6 
Appendix A 

T8-S 

T8-7 

Subject Reference 

Error Messages, 
DXCOPY T8-1S 

Error Messages, 
DXOLE T8-10 

Error Messages, 
SAPG T8- 19 

Error Messages 
Phase 1, FORTRAN T8-21 

Error Messages 
Phase 2, FORTRAN T8-22 

Error Messages 
Runtime, FORTRAN T8-23 

Errors 

Errors, I/O 
Event 

Event Index 
Exclusive 
Execute 
H"''V'Do,.."of-Do T I () 
J.-#J'lIrr,."""" '"'" ""'"""' .......... / '-' 

Exit DSR 
Extend 
Extended Physical 

Device Table 
Extract Mode (SMR). 

File 

File, Key Indexed 

File, Linked Se
quential 

3.7,4.4.4, 
3.3.1.2, 
3.8.S.2, 
3.8.6.2, 
3.8.1.16, 
T3-4, T3- S, 
T4-2 
D.2.2.S 
S.10, 5.9.2, 
S. 9. 3, TS-2 
S. 9. 1 
2.5.4.3 
2.S.3 
3.5,5,,16 
D.2.3.6 
7. 1. 6 

D. 2.4, FD- 3 
8.12.4.3, , 
8. 12.4. 6 

1.8,2.2, 
1.8.1, 
1.8.2, 
1.8.3, 
Section 4 
1.8.3, 
4.4.3, F4-3 

1.8.3, 
4.4.1, F4-1 

Index 3 Digital Systems Division 



~-------'i::( 943005-9701 

I 

Subject 

File, Relative 
Record 

File, Saved 
File Copy 
File Features 
File Integ rity 
File Manager 

Utility 
Fileid 

FILMGR 
Filnam 

Find Record 
Find String 
Flags 

Formatted Records 

FORTRAN 

FORTRAN Error 
Messages Phase 1 

FORTRAN Error 
Messages Phase 2 

FORTRAN Error 
Messages Runtime 

FORTRAN IV Com
piler 

Free Area 

GET Routine 

Hollerith Code 

Change 1 

ALPHABETICAL INDEX (Continued) 

Reference 

4.4. 2, 
1.8.3, 
2.5.4.9, F4-2 
F8-6 
8.7 
T4-1 
2.5.4.10 
See FILMGR 

1.8.1, 
2.4.1.3, 
2.4.1.4, 
2.5.4.6 
8. 16 
4.3,1.8.1, 
2.4.1.4, 
2.5.4.6 
7.2.2.1 
7.2.2.5 
3.3.2.1, 
3.3.2.2, 
3.3.2.3 
3.6, 
3.3.2.2, 
3.8.2.2, 
3.8.3.1, 
3.8.6.1 
2.2,2.3.1, 
2.3.2 

T8-21 

T8-22 

T8-23 

8.10 
1.6 

D.2.3.7 

T3-8 

Subject 

I/O Errors 
I/O Manager 
IFE 
Include Control Card 
Index, Event 
Initiate Ilo 
Insert Record 
Integrity, File 
Interactive File 

Editor 
Interactive Terminal 

Subsystem 
IOCOM 
ISDSRI 
ITFDIO 
ITINIT 
ITPBIO 
Itrks 
ITS 

ITSUPV 

Jarea 

JCL 

JCL Sequences, 
Sample 

JCL Translator 

JCLTRN 
Jcsnam 

Jearea 

JLDT 

Reference 

D.2.2.5 
D. 2. 1 
7.2,1.4.2 
8.5.4.3 
5. 9. 1 
3.5,5.16 
7.2.2.3 
2.5.4.10 

See IFE 

See ITS 
D.2.3~1 

D.2.2.I 
C.l.2, FC-3 
C.l.1.1 
C.l.·3, FC-4 
2.5.4.11 
1.4, 1.4.2, 
1.7.1,2.3.4, 
2.4.2.1, Section 
7, Appendix C 
C.l.4, 
1.4.2, 
C.1.1.2, 
C.1.1.3, 
FC-5 

4.2, 
2.5.3.2 
1.5,1.7.1, 
1.8.1, 
Section 2 

Appendix B 
8.2,2.3.1, 
2.3.3 
8.2 
2.4.2.2, 
2.4.2.4 
4.2, 
2.5.3.2 
5.17,5.20, 
T5-7 

Index 4 Digital Systems Division 



~-------~ 943005-9701 

ALPHABETICAL INDEX (Continued) 

Subject 

Job 

Job Com.m.and 

Job Extension Area 

Job Queue 
JSB 
J snaIlle 
Jsprty 

Key Indexed File 

Keylen 

Latency TiIlle 
LDT Bit Utility, 

Clear 
LDT Bit Utility, Set 
LDT Word froIll 

Register, Store 
LDT Word to Reg-

ister, Load 
LIBBLD 
Library 
Library Builder 
Library Control Card 
LiIllits 
Link Editor, Overlay 
Linkable Parts File 

Build 
Linked Sequential 

File 

Reference 

1.1$ 1.7, 
2.1,2.2, 
1 .. 7.1, 
1. 7. 2, 
2.4.1.5 
2.4,2.4.1, 
6.2.1, 
6.3.1, 
7.1.6, 
7.3.1, 
2.4.1.3 
4 .. 2,108.2 7 

4.4. 2, 
2.5.3.2 
1.7. 1 
5.9, T5-5, 
2.4.1.2 
2.5.3.3 

1.8.3, 
4.4.3, F4-3 
2.5.4.12 

D.2.5.l 

D.2.3.2 
D.2.3.2 

D.2.3.4 

D.2.3.4 
8.6 
4.4.3.3 
8.6 
8.5.4.3 
5.5 
8.5 

8.13 

1.8.3, 
4.4. 1, F4-1 

Index 5 

Subject 

List 
List Edit File s 
List Record 
List User File 

Directory 
LMUPDT 
Load LDT Word to 

Register 
Load Module 
Load Module Update 
Load PDT Word to 

Register 
Load PRB Word to 

Register 
Logical Device Table 

Logical Error 

Logical Record 

Logoff 
Logon 
LPFBLD 
Lrecl 
LSTEDT 
LUN 

Manager, I/O 
Master File 

Directory 
Master File 

Directory Editor 
Mem.o ry lm.age 
MeIllory IIllage 

Phase 
Mem.ory Resident 

Code 

Reference 

8.3.4.1 
8.15 
7.2.2.8 

Q A 
u. """I 

8.11,D.3 

D.2.3.4 
F8-4, T8-12 
8. 11 

D.2.3.4 

D.2.3.4 
D. 2. 5, 
C.l.l.l, 
TD-3, FD-4 
3.7.1, 
3.3.1.7 
4.1,4.2, 
4.4.3.7, 
2.5.4.13 
7.1.6 
7. 1. 5 
8.13 
2.S.4.i3 
8.15 
1.5,2.2, 
6.4, 
2.5.4.1, 
3.3.1.9 

D. 2.1 

4.3, 1.8.1 

8.3 
5.13, 5.14 

F8-4, F8-5 

1.4.1, 
1.4.1.2 

Digital Systems Division 



~-------~ 943005-9701 

I 

I 

ALPHABETICAL INDEX (Continued) 

Subject 

Module, Load 
MRAL Memory Allo

cation Routine 
Mtrks 

Nbufs 
NEW 
NEWLIB 
Normal Control Card 
Normal Mode 
NOVLY 
Nprty 
Nucleus 

Object Control Card 
OLD 
OLDLIB 
Opcodes 

OPD 
Open 

Overlay Link Editor 
Overlay Manager, 

Runtime 
Overlays, Pre-

planned 
Overlays, Unplanned 
Pass 
Password 
PDT Bit Utility, 

Clear 
PDT Bit Utility, Set 
PDT Builder Utility 
PDT Pointer Table 
PDT Word from 

Register, Store 
PDT Word to 

Regi ste r, Load 
Phase, Memory 

Image 

Change 1 

Reference 

F8-4, T8-l2 

D.2.9.4 
4.3, 
2.5.4.11 

2.5.4.8 
2.5.4.5 
8.12.4 
8.5.4.3 
8.5 
8.5.4.2 
2.5.3.3 
1.4,1.4.1 

8.5.4.3 
2.5.4.5 
8.12.4 
T4-3, T3-2, 
T3-5, T3-10 
3.2,5.1 
3.4, 
3.8.1.6 
8.5 

8.5.4.1 

8.5.4.1 
8.5.4.2 
2.5.4.4 
1.8.2 

D.2.3.2 
D.2.3.2 
D.2.9.4 
FD-6, FD-7 

D.2.3.4 

D.2.3.4 

F8-4, F8- 5 

Index 6 

Subject Reference 

Physical Device Table 1. 5, D. 2. 4 
C.l.l.l, 
TD-I, FD-2 

Physical Device 
Table, Extended 

Physical Record 

Physical Record 
Block 

Pool, Procedure 

PRB 

PRB Bit Utility, Set 
PRB Bit Utility, 

Clear 
PRB Word from 

Register, Store 
PRB Word to 

Register, Load 
Preplanned Ove rIa ys 
Procedure Pool 

Program Debug 
Prot 
Prty 
Prwds 
Pseudo Time Slicing 
Pswd 

PUT Routine 

Read IIO Bus to 
Register 

Read Operations 
Timeout 

Record 

FD-3, 
D. 2. 4 
4.1,4.2 
1.8.2 

See PRB 
1. 6, 
1.4.1.3 
3.2, 3.3, 
3. 5, 4. 2, 
4. 5, 
C.l.l.l, 
D.2.l, 
3.8.1.1, 
F3-3, F3-4 
D.2.3.2 

D.2.3.2 

D.2.3.4 

D.2.3.4 
8.5.4.1 
1. 6, 
1.4.1.3 
8.8 
2.5.3.5 
2.5.3.3 
2.5.4.11 
C. 2.3 
2.4.1.4, 
2.5.4.10 
D.2. 3. 7 

D.2.3.5 

3.8.1.19 
1.8 

Digital Systems Division 



~-------~ 943005-9701 

ALPHABETICAL INDEX (Continued) 

Subject 

Record, Formatted 

Record, Logical 

Record, Physical 

Record, Unformatted 
Reentrant Device 

Service Routines 
Relative Record File 

Release 
Rem.ote Job Entry 
Replace 

Replace Record 
Replace String 

RJE 
Root Control Card 
Routine, Device 

Service 
Run Com.m.and 

Runtim.e 
Runtim.e Overlay 

Manager 

SAPG 
SAPG Error 

Messages 
Save 
Saved File 

Reference 

3.3.2.2, 
3.6, 
3.8.2.2, 
3.8.3.1, 
3.8.6.1 
4.1, 4. 2, 
1. 8. 2, 
4.4.3.7, 
2.5.4.13 
4.1,4.2, 
1.8.2 
3.6 

D.2.9.2 
1.8.3, 
4.4.2, 
2.5.4.9, 
F4-2 

See RJE 
2. 5. 2, 
2.5.4.5 
7.2.2.2 
7.2.2.6, 
7.2.2.7 
7.3 
8.5.4.3 

D.1, D.2 
2.4,2.4.2, 
6.2. 2, 
6.3.2, 
7.1.6, 
7.3.2 
2.2,2.3.2 

8.5.4.1 

8.9 

T8-19 
2.5.4.7 
F8-6 

Subject 

Scanner, Conunand 
SCRASH 
Search Control Card 
Segm.ent Control 

Card 
Set LD T B it Utility 
Set PDT Bit Utility 
Set PRB Bit Utility 
Severe E.rror 

Share 
SJCBFL 

Skip, Conditional 
Instruction 

SMR 
Source Maintenance 

n_ ... L.! __ 
J:'-U UI.. L~~'I:; 

Spooling 

STATUS 
Status 

Step 

Stksiz 
Store LDT Word 

from. Register 
Store PDT Word 

from. Register 
Store PRB Word 

from. Register 
Subsystem. Control 

Card 
Subsystem. Mode 
Supervisor Calls 

Sym.bolic Assem.b1er 

Reference 

5.15 
D.2.2.6 
8.5.4.3 

8.5.4.3 
D.2.3.2 
D.2.3.2 
D.2.3.2 
3. 7. 2, 
3.3.2.1 
2.5.4.3 
1.8.1, 
2.4.1.4, 
2.4.1.5 

D.2.3.3 
8.12 

Q 1? u • .Lw 

6.2,6.3, 
6.4 
7.1.6, 7.4 
3.8.5.1, 
3.8.1.17 
2.2,2.3.1, 
2.3.2 
2.5.3.2 

D.2.3.4 

D.2.3.4 

D.2.3.4 

8.5.4.3 
8.5 
2.5,3.1, 
1.4.1, 
1.7.2, 
Section 5, 
T5-1, T5-2 
8.9 

Index 7 Digital Systems Division 



~-------~ 943005-9701 

I 

ALPHABETICAL INDEX (Continued) 

Subject 

SYSIN 

SYSOUT 
System Console 

System Disc 
System File 

System Output 
Queue 

System Table 

Table, Command 
Table, Extended 

Physical Device 
Table, Logical 

Device 

Table, PDT Pointer 
Table, Physical 

Device 

Table, System 
Task 

Task Control Block 
Taskid 
T elep rinte r 
Temp 
Time 
Time Slicing Pseudo 
Translator, JCL 

Trknum 

UCB 

Change 1 

Reference 

6.2.3.1, 
6.3.3.3 
6.4 
2.3. 2, 
2.3.4, 
7. 1. 3 
1. 8. 1 
1.8.1, 
2.4.1.4, 
2.4.1.5 

6.4 
1.4.1.1 

1.4. 2 

D. 2. 4, FD-3 

D.2.5, 
C.1.1.1, 
TD-3, FD-4 
FD-6, FD-7 

1.5, D.2.4, 
C.l.1.1, 
TD-l, FD-2 
1.4.1;1 
1.1,1.7, 
1.7.1, 
1.7.2 
2.5.3.2 
5.8 
7. 1. 2 
2.5.4.6 
2.5.3.4 
C. 2. 3 
2.3.1, 
2.3. 3 
4. 3, 
2.5.4.11 

C. 1.4, 
1.4.2, TC-2 

Subject 

Unformatted Records 
Unplanned Overlays 
Update Mode (SMR) 

USASCII Code 
Use r Control Block 
User Directory 

Userid 

Utilities 

Verify Mode (SMR) 

Volume 

Wait 
Wait Criteria List 
Wait for I/O 
WCL 

Write I/O Bus from 
Register 

Reference 

3.6 
8.5.4.2 

8.12.4.1, 
8.12.4.4 
T3-7, T3-8 
See UCB 
4.3,1.8.1, 
1. 8. 2 
7.1.5, 
2.4.1.3 
Section 8 

8. 12.4.2, 

8.12.4.5 

1.8.1, 
2.4.1.4 

3.5,5.9 
See WCL 
5. 16 
5.9.1, F5-1, 
F5-2 

D.2.3.5 

Index 8 Digital Systems Division 



USER'S RESPONSE SHEET 

Manual Title:DX980 General Purpose Operating System 

Prograrn.rn.er's Guide (943005-9701) 

Manual Date :1 Augus t 1 975 Date of This Letter: ______ _ 

User's Name: ______________ _ Telephone: _________ _ 

Company:---______________ _ Office/Department : _______ _ 

Street Address: ______________ ~ ____________ _ 

City/State/Zip Code: __________________________ _ 

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in 
the following space. If there are any other suggestions that you wish to make, feel free to 
include them. Thank you. 

Location in Manual Commen t/Suggestion 

NO POSTAGE NECESSARY IF MAILED IN U.S.A. 
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), STAPLE AND MAIL 



-----------

BUSINESS REPLY MAIL 
No Postage Necessary if Mailed in the United States 

Postage Will Be Paid by 

TEXAS INSTRUMENTS INCORPORATED 
DIGITAL SYSTEMS DIVISION 

P. O. BOX 2909 • AUSTI N J TEXAS 78767 

First Class 
PERMIT NO. 3135 

Austin. Texas 

Attn: TECHNICAL PUBLICATIONS, MS 2146 



980B 
SYSTEM 

DESCRIPTION 

943012·9101 

I 

FORTRAN 

944BOO·9101 

I 
OVERLAY 

LINK 
EDITOR 

961961·9114 

I 
SYSTEM/3XO 

SUPPORT 

961961·9712 

LANGUAGES 

I 
BASIC LANG 

INTERPRETER 
SYSTEM 

943002·9701 

980 COMPUTE R 
SYSTEM 

SOFTWARE 
MANUALS 

J 

TILT 

955382·9101 

PROGRAM DEVELOPMENT 

I I 
960/980 ASSY LANG 

PROGRAM PROGRAMMER'S 
DEBUG REFERENCE 

942760·9101 943013·9701 

I 
r I 

ASSY LANG PROGRAMMING 

INPUT IOUTPUT CARD 

961961·9134 943000·9101 

OPERATING SYSTEMS 

I I 
BASIC SYSTEM DX980 

USE AND PROGRAMMER'S 
OPERATION GUIDE 

961961·9710 943005·9101 

1 
I I 

DX980 DX980 SYSTEM 
SYSTEM OPERATION 

DOCUMENTATION GUIDE 

943015-9101 943004-9701 

TEXAS INSTRUMENTS 
INCORPORATED 
DIGITAL SVSTI:MS DIVISION 

POST OFFICE BOX 2909 • AUSTIN. TEXAS 78767 


	001
	002
	002a
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-33
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-33a
	5-34
	5-35
	5-36
	5-37
	5-38
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	8-43
	8-44
	8-45
	8-46
	8-47
	8-48
	8-49
	8-50
	8-51
	8-52
	8-53
	8-54
	8-55
	8-56
	8-57
	8-58
	8-59
	8-60
	8-61
	8-62
	8-63
	8-64
	8-65
	8-66
	8-67
	8-68
	8-69
	8-70
	8-71
	8-72
	8-73
	8-74
	8-75
	8-76
	8-77
	8-78
	8-79
	8-80
	8-81
	8-82
	8-82A
	8-83
	8-84
	A-00
	A-01
	A-02
	A-03
	A-04
	B-00
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	C-00
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	D-00
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-25
	D-26
	D-27
	D-28
	D-29
	D-30
	D-31
	D-32
	D-33
	D-34
	D-35
	D-36
	D-37
	D-38
	D-39
	D-40
	D-41
	D-42
	D-43
	D-44
	D-45
	D-46
	D-47
	D-48
	D-49
	D-50
	D-51
	D-52
	D-53
	D-54
	D-55
	D-56
	D-57
	D-58
	D-59
	D-60
	D-61
	D-62
	D-63
	D-64
	D-65
	D-66
	D-67
	D-68
	D-69
	D-70
	D-71
	D-72
	D-73
	D-74
	D-75
	D-76
	I-00
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	replyA
	replyB
	xBack

