ACTOR

Language Manual

Charles Duff

John Leah
William Bliss
Rich Kimmel

With: Mark Achler
Bruce Newburger
- Nick Howard

Copyright (C) 1987, The Whitewater Group, Inc. All rights reserved.

Copyright (c) 1987 by The Whitewater Group, Inc. All rights reserved. First Printing
February 1987.

Copying or duplicating this manual or any part thereof is a violation of United States
copyright law. No part of this manual may be reproduced or transmitted in any form or
- by any means, electronic or mechanical, including but not limited to photocopying,
without express written permission from The Whitewater Group, Inc.

The Whitewater Group, Inc.
Technology Innovation Center
906 University Place
Evanston, IL 60201

Appendices E and F reproduced from the Microsoft Windows Developer’s Toolkit
Manual, with permission from Microsoft. Portions Copyright Microsoft Corp., 1985. All
rights reserved. Microsoft Windows and Microsoft are trademarks of Microsoft
Corporation; Unix is a trademark of AT&T; Turbo Pascal and Sidekick are trademarks of
Borland International; Hercules is a trademark of Hercules Computer Products; IBM is a
trademark of International Business Machines Corp.

The Whitewater Group Support Policy

Because the needs of an ACTOR user vary with the complexity of the tasks that the
user aims to accomplish, The Whitewater Group has created a support plan to handle all
of our registered users’ needs. The Whitewater Group is committed to providing the
highest quality customer service we possibly can. After all, our success with Actor relies
on your success with Actor. The Whitewater Group will provide to all REGISTERED
users (to be a registered user you MUST send back your warranty card):

4

4

L 4

FREE access to The Whitewater Group Electronic Bulletin Board System
(BBS), which will allow our users to share applications, messages and files.
A special section for Technical Support is also on the bulletin board system
so that our users have access to our support staff.

The BBS phone number is 312-491-3873. The BBS operates 24 hours per day
(except for maintenance) and supports 300/1200/2400 baud. The
communication settings for the BBS are 8 data bits, no parity, and 1 stop bit
(8-N-1).

Three (3) FREE phone calls to The Whitewater Group Technical Support
Hotline at 312-491-3871.

All mailed inquiries will receive prompt service. Please remember to
document the problem in detail and submit a diskette with the information
whenever possible.

There never will be any penalty or charge for bug reports or fixes.

For those whose support needs are larger, The Whitewater Group has the Level One
Support Plan. For a $100 fee (renewable every 20 calls), a registered user can join this
plan. Level One Customers will receive:

L 4

L 2
4
4

Twenty (20) phone calls per annum to The Whitewater Group Technical
Support Hotline.

Discounts of up to 20% on future products and releases.

FREE access to maintenance releases and small system enhancements via a
special section on The Whitewater Group Electronic Bulletin Board System.
Up to three (3) representatives, all registered, who can share the benefits of
the Level One Support plan. (Note: the customer cannot register more
representatives than units purchased.)

There are users whose needs dictate an open line to our support staff. For these
customers, The Whitewater Group has the Level Two Support Plan. Ata $250
annually-renewable fee, the Level Two Support Plan is the ideal plan for all serious
users of ACTOR. The added benefits of the Level Two plan are:

¢ UNLIMITED phone support from The Whitewater Group Technical Support

Hotline.
¢ A Special Users Group conference on The Whitewater Group Electronic

Bulletin Board System where The Whitewater Group technical support staff
will maintain a developers workshop to help developers with questions

about their applications (specifically as they relate to ACTOR). As the need
arises, separate conferences will be added for all the various Special Interest

areas that our users have questions about.
¢ Up to five (5) representatives, all registered, who can share the benefits of the

Level Two Support Plan.

The Whitewater Group Technical Support Staff intends to increase the benefits that
our users receive as we grow. We welcome your comments.

The Whitewater Group also has a special support plan for academic sites. Please
contact us for further information.

Service & Support Registration Card

Name

Organization

Address

City State Zip

Country

Phone Number ()

Support plan: Level 1($100) Level 2($250)

Name of Product

Product Serial Number

Date of Purchase

Hardware Configuration

Visa or Mastercard Number

Exp. Date

Signature

Please send to: The Whitewater Group, Inc., Technology
Innovation Center, 906 University Place, Evanston, IL
60201

Replacement Order Form

Please use this form when ordering a replacement for a
defective diskette.

A. If ordering within thirty days of purchase:

If a diskette is reported defective within thirty days of
purchase, a replacement diskette will be provided free of charge.
This card must be totally filled out and accompanied by the
defective diskette(s) and a copy of the dated sales receipt. 1In
addition, please complete and return the Limited Warranty
Registration Card.

B. If ordering after thirty days of purchase but within one
year:

If a diskette is reported defective after thirty days but
within one year of purchase and the Warranty Registration Card
has been properly filed, a replacement diskette will be provided
to you for a nominal fee of $50 (send check only). This card
must be totally filled out and accompanied by the defective
disk (s) and a copy of the dated sales receipt and a $50 check
made payable to The Whitewater Group, Inc.

Name

Address

City ' State Zip

Country

Phone Number ()

Original Purchase Date

Please send all requests to: The Whitewater Group, Technology
Innovation Center, 906 University Place, Evanston, IL 60201.

Contents

GettingStarted. 0., xi
Chapter 1. Introducing Actor: ATutorial 1
Li1Starting Actor. v ittt i i i e e 2
12The ActorEnvironment. v i vttt anennsonens 2
121 MS-WindowsBasics. it ii i i i 3
122TheActorWorkspace. oo vttt vi i it nnnnsas 4
123TheActorDisplay.0ttt ittt et nnen s 6
13TurtleGraphics.ot ittt ittt ettt i e e i 7
1.4 Object-Oriented Programming v v v vt o v vt v v vt s nnsnns 9
14.10bject-OrientedLingo ot iioennnns 10
1.4.2 Inheritance: Ancestorsand Descendants 17
15Thelnspector. ittt ittt i eiiieeaeenas 18
1.6ProgramminginActor.0ttt ittt 24
161ActorMethods.c0i0iiiiinennnnnn 24
162TrueandFalse. ittt e 28
1.6.3 AssignmentStatements 0 i i a0 0. 28
164ControlStructureso ivi ettt 29
165Blocks. . . o v v v it i i i i e e 33
1.66 Actor Applications .,ttt 35
1L7TheBrowser. . . . v v v v i it v i it nnnonannsnnnsons 38
1.8 AnIntroductionto ActorClasses.ccvvvvn v eave s 58
18.1IndexedCollections. v v v v v v i it vt vt an 58
R R 60
183KeyedCollections. ¢ v v v v vt it i i i e it annaenald 61
184Windows., i ittt ittt it i i 62
Chapter 2. Guide to the ActorClasses. 75
2.1 Using the System-Wide Methods: The ObjectClass 75
21.1CategorizingObjects. vttt i e e 76
2.1.2 Boolean Qualitiesof Objectso v v i in v v 77
2.1.3 Basic Propertiesof Objects v v iv i, 79
214 DisplayingObjects v vttt vttt e 82
2.1.5 Error Handling Within ActorPrograms 84

216SystemMethods.ttt it e e 86

viii

\ Contents

2.1.7 Much Ado About Nothing: UsingNilClass 93
2.2 The MagnitudeClass. et N &
23UsmgCharacters'I‘heCharClass............. NS
2.4 Billionths and Billions: The NumberClasses e 98
25Usingthe AssociationClass. v v vt ittt i n e annn 104
2.6 Using Classes as Objects: 'I'heBehavnorClass e (1
2.7 Using Collections of Objects: The CollectionClass 112
2.7.1 Creating and Initializing New Collections112
2.7.2 The IndexedCollectionClass ceeeee e e a.. 118

2.7.3 Using the OrderedCollectionClass122
2.7.4 More Ordering: The SortedCollectionClass125
2.7.5 Collections of Strings: The TextCollectionClass.128
276 TheByteCollectionClasso e s v, . 132

2.7.7 Using Strings: TheString Class . . . v v o v v v v s v v oo v v uo . .132
278UsingtheSymbolClass . ,cvvvvv e, .139
2.7.9 Objects Meet the Real World: The StructClass 141
2.7.10 Intervals Of Numbers: The Interval Class |]
2.7.11 Intervals of Characters: The CharIntervalClass 148
2.7.12 Collections of Unique Elements: The SetClass 149
2.7.13 "Sets" With Multiple Occurrences: The Bag Class R 11|
2.7.14 Using the KeyedCollectionClasso ... 152
2.7.15 Using the DictionaryClass s o.. . 156
2.7.16 Equivalence Returns: Using the Methodectxonary Class « ... 160
2.8 Collections With a Position: The StreamClass «.. . 162
29 AccessingFilesinActor.cc00 00 B %)
2.10 Using Graphics Objects N [+
2.11 Working with Windows: The Window Classes . o o oo s eee . .179
2.11.1 Creating Windows in MS-Windows , e e 179
2.11.2 The Window Class: Creating Window Objects cee. 179
2.11.3 Clearing the Screen: The Display Context.183
2.11.4 Getting Messages fromMS-Windows c.. 184
2.11.5 Printing Text: The TextWindow Class e 188
2.11.6 Text Editing: The EditWindowClass.191
2.11.7 The PopupWindowClass et et e e 195
2118WindowStyles. it —
212TheControlClasses v v v v v v v e oot et enneennns. 198
2121 CreatingControls ., e e 198
2.12.2 Control Methods e ee e Ceeeae ceee .. 199
2123 The ListBoxClass. et et e 201
2124 TheScrollBarClass. v v v v v v et o v v veenne. . 204
2125TheButtonClass. ce e e e .. 0207
2126O0therControls e ... 209

2.13 The ModalDialogClass

Contents

Chapter 3. Advanced Topics 221
3.1 Memory ManagementinActor.cc0ti vt 221
3.1.1 Staticand DynamicMemory v i e il 221
3.1.2 What Makes an Object Accessible? 222
3.1.3 HowMuchMemorytoAllocate. 222
3.14 StaticGarbageCollection. v, 223
K B T . 223
32Calling Library Procedures cvv v innnnneen 224
33CallingMS-DOSttt ittt 226
34ActorandWindows. ittt i i e 227
35Parsingand Lexical Analysis 240
Chapter 4. Building Actor Applications 254
4.1 Designing the Application., 254
42 Writingthe Application. it 258
43 DebuggingTechniques .,t enann 268
4.4 Optimizing the Application. 273
4.5 Installing Your Actor Application, 277
Chapter5.ClassReference. 287
Chapter 6. Appendicies. 387
Appendix A: Actor Language Description., 0000 387
Allntroduction.ttt ittt innnenans 387
A20Dbjects. . . v vt i i it i s s s et e 387
A3CIassesS . . . v vttt ittt it a i s e e 387
AdMethods.ttt ittt nnennn 388
O 5 . 388
A6Messages. v v vttt ittt et i e 389
A7Syntax. . . v i ittt i i i it e e e 389
ABFormalGrammar.ot tivttoneennnanans 401
AppendixB:Glossaryof Terms ., 00t vt i i e v e v e e 406
Appendix C:ClassesbyMethod 413

Appendix D: Listof Global Variables 428

ix

X

Contents

Appendix E:WindowsFunctions 432
Appendix F: MS-Windows Messages e e e s e e e . 463
FlWindowMessages. . . .« v v v v v v o v enneeaansess.. 463
F2ControlMessages. v v v vt v vt v s s v st nneanaans 468
F.3 Window Message NumericList. R 4
AppendixG: ListofErrors ceseseseesaaan 472
G.1PrimitiveErrors. c e s e dace s s s s e 472
G2High-levelErrors.o vttt vttt et ennnnnnnn 473

Getting Started

1. Hardware Requirements

Actor is a Microsoft Windows (MS-Windows) application. As such, you can use
Actor on any computer which will run Microsoft Windows. This includes (but is not
limited to) an IBM PC, PC/XT, PC/ AT, or compatible. To use Actor, your computer
must have the following equipment:

Hard disk

640K RAM

Graphics display and adapter
Mouse (or other pointing device)

A printer is optional. All peripherals, including the mouse, graphics
display/adapter, and printer (if any) are supported via MS-Windows. This means that
if your peripheral is supported by MS-Windows, it will work with Actor. For example,
MS-Windows supports almost all the IBM graphics adapters, as well as many other
kinds. MS-Windows also supports a variety of mice and other pointing devices. The
complete list of supported devices is displayed when you run the MS-Windows Setup
program.

MS-Windows, and thus Actor, will work with MS-DOS versions 2.0 and above only.

2. Backing Up Your Actor Disks

Carefully read the Actor license agreement on the envelope containing the Actor
disks. If you agree to accept it, open the envelope and remove the disks.

Before you do anything else, you should back up these disks. Actor is not copy-
protected, and you can make up to two (2) copies of the disks for backup purposes. To
back up your Actor disks, you should use the MS-DOS DISKCOPY command. If you
have two floppy disk drives, place each original Actor disk in your A: drive and a blank
floppy in the B: drive. Then type:

DISKCOPY A: B:

(In upper or lower case; DOS is not case-sensitive.)

Xii

Getting Started

If you have one floppy drive, you can use the same command, but every so often
you will have to swap disks back and forth. Repeat this process for all seven disks, and
then place your backups in a safe place.

3. Runtime MS-Windows

Examine your seven disks. They will be numbered 1 of 7, 2 of 7, etc. Disks 1-3
contain the Actor system itself. Disks 4-7 contain a special version of MS-Windows,
which we usually refer to as "Runtime MS-Windows". It’s similar to the version of MS-
Windows you can buy commercially, except that it’s tailor made to run Actor and
doesn’t include most of the MS-Windows applications you receive with the commericial
version.

If you have already installed the commercial version of Microsoft Windows, then
you can continue to step 4, but do not lose disks 3-7, because they contain some files
which you may need later. If you purchased Microsoft Windows with Actor, please
open its box now and follow the installation instructions inside to install it. Then
continue with step 4.

If you are still with us at this point, then we will assume that you do not have a
commercial version of Microsoft Windows, and instead plan on using our special
Runtime version on disks 4-7.

Disks 4-7 are labeled Setup, Build, Utilities, and Fonts, respectively. Insert disk 4,
the MS-Windows Setup disk, into drive A:, close the drive door, and type

A:SETUP

The MS-Windows Setup program will load and start running. Follow the directions in
the Setup program and install the Runtime version of MS-Windows.

4. Installing Actor

Assuming that MS-Windows is now installed, either the commercial version or our
Runtime version, you are now ready to install Actor. Place disk 3, the one labelled
ACTORS, in drive A: or B: and close the drive door. Next, assuming you placed disk 3
in drive A:, type

A:INSTALL

(Type B:INSTALL instead if you want to install it from the B: drive.)

Gatting Started
The WIN.INI File

The Actor Install program will load and ask you, "Alter WIN.INI in which
directory?” WIN.INI is an ASCII text file containing initialization data for Microsoft
Windows, and it has to be altered for Actor. If WIN.INI is found either in the current
- directory or somewhere along the DOS path, then the name of the directory in which it
was found is displayed as the default. Otherwise, type in the name of the directory in
which your WIN.INI file is located. WIN.INI is always located in the same directory in
which MS-Windows is located. If you just installed the Runtime version of MS-
Windows, then type in the name of the directory you installed Runtime MS-Windows
in. (The reason that the Install program asks in the first place is that some people may
have more than one version of MS-Windows installed on their hard disk. Install can’t
assume that the first WIN.INI it finds is the one it should alter.)

Once you've chosen a directory, Install alters WIN.INI for Actor, renaming the old
WIN.INI to WININLBAK in the process. Next, Actor will ask you which disk drive will
contain the Actor system disks. Answer accordingly (most likely, you will want to place
them in drive A:).

Choosing The Actor Subdirectory

Next, Install will ask you which directory you want to be your Actor directory (the
default is \ACTOR). The Install program will copy its files to and make subdirectories
in this directory. If you have the commercial version of Microsoft Windows, you should
probably specify a different directory your MS-Windows directory so that you won't
clutter it up with all the Actor files. If you have our Runtime version instead, this
probably isn’t a concern.

However, in either event, please note that if you have Actor installed in a different
directory than MS-Windows (either the commercial or Runtime versions), you must
have the MS-Windows directory included in the DOS path. This is because you will
always be starting Actor from the Actor directory, and if the MS-Windows directory
isn’t included in the DOS path, then you will get a "Bad command or file name" message
when you try to load Actor. The Install program may have notified you of this fact
when it asked you in which directory to alter WIN.INI. If the directory in which
WIN.INI is located is not included in the current DOS path, you will get a message to
this effect. If this situation affects you, please consult your DOS manual to see how to
change the current path using the PATH command.

Whew! Now Install is ready to start creating the necessary subdirectories and
copying the files from your Actor system disks to your Actor directory. Follow the
directions that the Install program gives you and after a little while, Actor will be
completely installed. The Install program prints the name of the the file which is
currently being copied on your screen.

Xiii

xiv

Getting Started
5. Starting Actor

To start Actor, simply change to your Actor directory. Assuming you called it
\ACTOR, type

CD\ACTOR

and Actor should load. Turn to page 1 of the Actor Tutorial. It will repeat some of the
instructions you see here, and start explaining Actor. Even if you are an experienced
programmer, you should at least look at the Tutorial, skimming over the parts that are
review for you.

If Actor doesn’t load, the most likely reason is that you don’t have enough memory
to run Actor. You should get a message to that effect, and then read the list below for
possible solution(s).

1) Remove any memory resident programs you may have installed. For
instance, if Sidekick from Borland International is installed, then Actor won't
have enough memory. This sort of pop-up memory resident program
doesn’t work well, if at all, with MS-Windows anyway. Consult the
documentation of your memory resident program to find out how to remove
it from memory. If it doesn’t explicitly explain how to remove the program
from memory, you may have to reboot your computer.

2) You may have to remove device drivers, too. Check your CONFIG.SYS file—-
if you have RAM disks, enhanced memory (EMS or EEMS) drivers, network
drivers, etc., you may have to change your CONFIG.SYS file with a text
editor to remove the lines which say DEVICE=xxxx. Remember that any
changes you make to your CONFIG.SYS file won't take effect until you
reboot your computer.

Even if Actor does load, you may notice at some point later on that Actor slows
down to a crawl and every time you move the mouse your hard disk light flashes. This
is a signal that MS-Windows is running short of memory. To find out for sure, if you
have the commercial version of MS-Windows, select the disk icon of the MS-DOS
Executive with the mouse, press Alt-Spacebar to bring up the system menu, and select
the About... menu item. Windows will report how much memory it has left. If you
don’t have at least 10K, then Windows is running critically short of memory and could
crash. Look at steps 1) and 2) above for hints on getting more memory for Windows.
Unfortunately, if you have our Runtime version of MS-Windows, there’s no way at this
point to find out how much memory MS-Windows has.

Getting Started
6. Using Install to Alter WIN.INI

When you installed Actor, the Install program was also copied to your hard disk.
You can use it even after you install Actor to alter WINL.INI again.
Two of the lines which Install added to WIN.INI were

Static=x

Dynamic=y

where xxx and yyy are numbers. These two lines control how much memory MS-
Windows allocates to Actor for its static and dynamic memory (both terms are defined
in the Actor documentation). Later, you may wish to change these values to something
else. You can use a text editor and change WIN.INI manually, or you can use the Actor
Install program in Update mode. Make sure you are in the Actor directory, and then
type the following from the DOS command line:

INSTALL S=x D=y /U

The x and y represent numbers, the order of the three arguments is not important, and
you can use upper or lower case. If you leave out the S=x, then the line in WIN.INI will
be changed to the default static value (92). If you leave out D=y, then the default

- dynamic value will be used (52). If you leave out the /U, you will have to go through
the entire Install process, although you can press Ctrl-C to quit when it says you can.

7. Using the Control Panel

If you have the commercial version of MS-Windows, you can change the MS-
Windows defaults by running the CONTROL.EXE application directly from the MS-
DOS Executive. However, Runtime MS-Windows users don’t have the ability to run
any program other than ACTOR.EXE, so we have to fool MS-Windows slightly.

The file CONT.BAT, which was copied to your hard disk when you installed the
Runtime version of MS-Windows, will do the trick. When you want to change the
system defaults, type

CONT
from the DOS command line. CONT temporarily renames CONTROL.EXE and then

runs WIN.COM. Adust the controls the way you want them, and then close the Control
window. The files will be renamed to their old names, and you can start Actor again.

xv

1 Introducing Actor: A Tutorial

N

Get ready. You're about to learn how to use an entirely new kind of programming
system that just might be an easier and faster way to produce advanced applications for
personal computers than anything you’ve used before.

ACTOR™,

Actor is an object-oriented programming language. What this means is that instead
of separating the active programming instructions from the passive data, Actor
integrates the two into a unit called an object. An object can do things by itself because
the code to do things is part of the object. This arrangement allows the objects
themselves to become the active agents in the execution of the program.

There are many benefits to this approach, as you'll see, but mainly, object-oriented
programming makes it easier to develop, change, and debug advanced programs. And
it’s more fun, too.

Actor is also a complete programming environment. It uses all the power of
Microsoft Windows (MS-Windows) to help you organize and analyze your work. So
you can see all of your work at the same time and trace the influence of one part on

~ another as you make changes. This makes programming in Actor a fluid, natural
extension of the way you think--entirely unlike conventional programming.

Best of all, windows in Actor are objects, just like all other objects. You manipulate
them about as easily as you manipulate numbers. If you're an MS-Windows developer,
this is exactly what you need.

We developed a few conventions for this manual to keep it clear. Here's the list of
the conventions you need to know now:

1. There is a key on your keyboard called Carriage Return, Return, or Enter,
depending on who you ask. We'll use <CR>, for Carriage Return, to
symbolize this key and whenever you see <CR> in this manual, you should
press the Carriage Return/Return/Enter key.

2. Any time you see text which looks like this, we are referring to an
Actor object, an Actor method, or an Actor reserved word. You'll soon learn
what all these terms mean.

3. In Actor and MS-Windows, the left mouse button is the only button which
does anything. The right mouse button doesn’t do anything. The same goes
for the middle button, if you have a three button mouse. Unless we say
otherwise, when we say the mouse button, we mean the left mouse button.

2 Chapter 1: Introducing Actor: A Tutorial

4. The term parameter will be used interchangeably with the term argument. If
you don’t know what either term means, that’s OK--you’ll see them soon
enough.

1.1 Starting Actor

If you haven’t backed up your Actor disks yet or installed Actor, please do so before
you go on. Follow the directions in Getting Started.

First you should change subdirectories so that you are in the Actor subdirectory (the
subdirectory in which Actor is installed). Assuming you called your subdirectory
\ACTOR when you installed Actor, you would do this by typing:

CD \ACTOR <CR>

at the DOS prompt, in upper or lower case--DOS doesn’t care. Of course, if you called
your Actor subdirectory something else, you would change to that directory instead.
Once you are in the Actor subdirectory, you can start Actor by typing:

ACT <CR>

at the DOS prompt in upper or lower case. Alternatively, if you have the commercial
version of MS-Windows, you can load Actor by double clicking on the file ACTOR.IMA
from the MS-DOS Executive. After waiting for Actor to load, the two Actor windows
will appear, the Workspace and the Display. Also the Actor copyright box will appear,
which you can get rid of by pressing the space bar, <CR>, or clicking on OK inside the
copyright box, and then you're ready to go! The Actor Workspace will contain a few
lines of Actor code which you’ll learn about later, but before you do, let’s find out what
you're looking at.

1.2 The Actor Environment

If you're familar with MS-Windows, then what you see will be relatively familiar.
The Display window is a regular tiled window, so it can be made into an icon by
choosing Icon from its system menu. The Workspace is a popup window, which can be
resized or moved. You can skim over the next section if you want, or perhaps use it to
review some MS-Windows basics.

1.2: The Actor Environment

1.2.1 MS-Windows Basics

If you are not familiar with Windows, this is a brief introduction. Many times in the
text below you will be asked to do something by clicking or double clicking on something.
What does this mean? First, let’s see what it means to click on something. The

“'something" that you have to click on can be a number of different things--menu items,
-text, etc. However, the basic action remains the same. Maneuver the mouse pointer
until it is over whatever you are told to click on. Then click the left button, i.e. press the
button and release it once. As you might expect, double clicking on something is just
like single clicking except that you press the button twice in relatively rapid succession
(the time interval between the first and second click in a "double click" is adjustable
using the Control Panel application).

As we mentioned, the Display window is what Microsoft calls tiled, which is just a
fancy way of saying that it can’t overlap with other windows. To move a window
around, point with the mouse arrow, called the cursor, to the horizontal title bar at the
top of a window. Press the mouse button, and you'll see your cursor change into an
icon—the Actor icon, to be exact. If there is more than one tiled window on the screen,
you can move a tiled window around by moving its icon to an edge of your screen.

You can’t move the Display window around because it’s the only tiled window on
the screen. Later on, however, you'll be making other tiled windows, and you’ll be able
to experiment with some of the techniques described above. However, you can make

.any tiled window, including the Display, disappear temporarily by moving its icon to
he icon bar at bottom of the screen, and bring it back again by doing the reverse. Often

“you'll see this process referred to as making a window iconic. If you make the Display
iconic, the Workspace will disappear, too—you’ll see why below.

The Workspace window, on the other hand, is a popup window. A popup window is
a lot like a tiled window, except it doesn’t have an icon and it can overlay other
windows. If you click the mouse in the title bar area, instead of getting an icon, you get
an outline of the window, which you can then move around the screen. When you let
the mouse button up, the window will be moved to the new position. In addition, a
popup window is always attached to a parent window, whereas a tiled window can
stand all by itself. Because of this, any popup windows attached to a tiled window will
disappear temporarily if the tiled window is made iconic. Because the Workspace is
attached to the Display, it disappears if you make the Display iconic.

You may also notice that the cursor changes shape when you move the mouse
pointer into the bottom portion of the Workspace. That’s called an edit cursor, because
it’s easier to edit text with that shape of cursor instead of the arrow shape. Since this
kind of cursor is sort of shaped like the letter T, it’s called an I-beam cursor. You'll learn

“why the cursor changes from an arrow to an I-Beam later on in this tutorial.

The tiny box at the upper right hand corner of a window is called the size box. You
can use it to resize a window by clicking on it and holding the left mouse button down.
But before you can make a window smaller you first have to move the size box above
and/or to the right of its current position. If you do so, you'll notice the outline of your
new window appear so you can get an idea of how big it will be when you let the mouse
button up. Since the Display is the only tiled window on the screen, there’s no way to

3

4

Chapter 1: Introducing Actor: A Tutorial

move its size box above or to the right of it’s present position, so it’s useless unless you
have another tiled window on the screen. Try manipulating the size box of the
Workspace—it will respond quite nicely.

The other tiny box, at the upper left hand corner of a window, is called system menu
box, or sometimes just the system box. If you click on it, you get a menu which allows
you to do various things, including making the window iconic if it's a tiled window, and
closing the window. You can instantly close a window by double clicking on this box,
too. Closing either the Workspace or Display windows will quit Actor. In addition,
you’ll note that at the bottom of the system boxes for both windows is the option About
Actor. Selecting this will display the Actor copyright box you see every time you load
Actor.

You select, or activate, a particular window by clicking the mouse anywhere within
the window. Also, pressing Alt-Tab will select alternating windows. If you've been
experimenting, you may have noticed that the title bar of the currently selected window
looks a bit different from other title bars. (Exactly what "different" means is dependent
on your display, but it should be readily apparent which window is active.) We say that
when a window is selected, or active, that it has the input focus, or sometimes just the
focus.

When a window has the focus, you may notice a small flashing vertical bar, called
the caret. Not all windows you can make have carets, but both the Workspace and the
Display do. It is important to remember the difference between the caret and the cursor.
The cursor is the mouse pointer but the caret marks the place where text will appear if
you type something. In Actor terms, the caret marks the current text insertion point.

If you drag the mouse across editable text, it will turn a different color. We say that
it’s highlighted or selected, and any new text replaces the highlighted text.

1.2.2 The Actor Workspace

First, if it isn’t already selected, select the Actor Workspace window by clicking the
mouse anywhere in the window. In it will be six lines that won’t mean much to you
until you read further. For now, position the mouse to the end of the last line, hold
down the Control key and press <CR>. This will give you an empty line on which you
can enter the commands that we are about to describe. The other lines allow you to do
some useful things without having to type in the text, so keep them around.

The Workspace is a command environment; if you type something in it and then
press <CR>, you'll immediately get results. If you've ever used a BASIC interpreter,
then you’ve seen a command environment before. To see how the command
environment works, type this:

3*%4 <CR>
12

N -

1.2: The Actor Environment

This example shows another convention we have established: Any text not followed by
<CR> signifies what is returned by Actor (the 12 above, for instance). You shouldn’t
attempt to type anything in this manual that isn’t followed by <CR>.

You will note that the 12 is highlighted. This is true of anything that Actor returns—
it will always be highlighted. If something is highlighted, or selected, and you don’t

- want it to be, click anywhere with the mouse. The highlight will go away, and the caret

- will appear where you clicked.

You can also select text by moving the cursor to where you want to start and
pressing the mouse button. Then hold the mouse button down and move the mouse
around. You’'ll see the text appear highlighted as you move the mouse, which signifies
that the text is selected. Contunue to move the mouse until all the text you want is
highlighted, and then let the mouse button up. If you make a mistake, start over from
the beginning.

There are a few more text editing basics which you should get used to right away.
Whenever something is highlighted in the Workspace window, the Backspace key erases
it instantly. On the other hand, if nothing is highlighted, then Backspace backs up the
caret and erases one character at a time each time you press it. Incidentally, you do not
even have to press Backspace in order to erase highlighted text, because once
something’s selected, you can just start typing; what you type will replace it.

In addition, you can utilize the facilities of the Edit menu on the Workspace menu
bar. At the top, you see Undo, which does not do, or undo, anything in this release of
Actor. The next three items, Cut, Copy, and Paste, utilize the MS-Windows Clipboard, a

_ handy mechanism which holds data temporarily so that you can use it later in another

application. Cut erases the selected text and copies it the the Clipboard. Copy does the
same thing, except it doesn’t erase the selected text. Paste will return any text which is
currently in the Clipboard. Clear will clear any highlighted text.

On the Edit menu you will also see Ins, gray +, and Del. These are called accelerator
keys for their respective menu items—pressing those keys while in the Workspace is the
same as opening the Edit menu and selecting an option.

At the very bottom of the Edit menu is the Select All menu option. It simply selects
all the text in the window. Its accelerator key is Ctrl-A. Now you might want to practice
highlighting and deleting text and using the Clipboard before we go on.

Right now, you know that you can press <CR> to execute a command in the
Workspace. More correctly, if nothing is highlighted, then <CR> executes whatever line
the blinking caret is in. The caret needs not be at the end of the line, just in it
somewhere. But if something is highlighted, <CR> executes it. Another way to execute
something in the Workspace is to select the text using the mouse, and then click on Doit
in the menu bar at the top of the Workspace. When there is selected text, clicking Doit

~ does the same thing as <CR>. Try executing the following command by using the Doit
~ method and see what happens:

15+82

(You should get 97 back from Actor.)

6

Chapter 1: Introducing Actor: A Tutorial

If you simply want to start a new line, even for a single command that’s just too
long, don’t press <CR>, as you might on a typewriter, because that would execute
something in Actor. Instead, you have to position the caret at the end of a line, usually
the last one in the Workspace, and press Ctrl-<CR>. See what happens if you press Ctrl-
<CR> when the caret is in the middle of a line instead. Ctrl-<CR> acts like a carriage
return on a typewriter.

You may occasionally wind up with a command that’s split over two or more lines.
That's OK, because Actor doesn’t mind extra spaces or lines. Be sure to select the entire
statement, and nothing extraneous that might have been left over from something else,
before you press <CR> or click Doit. Otherwise, Actor will send you an error message.

You may find yourself with more lines in the Workspace than will fit in the window
at one time. If this happens, you can scroll the text up and down by clicking on the
appropriate arrows on the scrollbar on the right border of the Workspace. Alternatively,
you can scroll text with the little square box in the scrollbar by dragging the box--also
called a thumb--up or down.

If you do get an error message, it will be in the form of a dialog box, which you can
get rid of by pressing <CR> or by clicking on the OK button that you'll see. Dialog
boxes, or sometimes simply dialogs, are used everywhere in Actor system. A dialogisa
special kind of window that pops up to notify you of something, request confirmation
for an action, or get input data. You've already seen a dialog box--the Actor copyright
notice is a dialog. Don’t worry about anything else inside the error dialog for the time
being. After you get rid of the error box, you may see a highlighted error message stuck
in your work near the place where Actor figures the mistake probably is. You can get
rid of that with Backspace or Delete. Then you can figure out what you did wrong and
fix it.

Another Workspace menu option is Show Room!. Click on it and see what it gives
you. It’s the amount of static memory that you have left to work with. You’ll learn
more about static and dynamic memory later. For now, static memory is where
compiled Actor code resides.

1.2.3 The Actor Display

Until now, you haven’t seen too much action in the Display window. Now we will
see what it can do. While you’re in the Workspace, type the following:

print ("Hello") <CR>
Perhaps unexpectedly, "Hello" appears in the Display rather than in the
Workspace. That's one of the purposes of the Display window--it’s the default
destination of Actor output. You'll also see various kinds of messages from Actor. Try
printing a number:

print (14) <CR>

Actor Uorkspace

File Edit Doit! Brouwse! Inspect!
Show Room! Templates

|Load(Demos)

cleanup()

inspect(Actor)

load(Demos[#turtle])

koch(Sam, 30, 4)
load(Demos[#fileEditor])

Figure 1-1: The Actor Workspace window as it looks
when you start Actor.

Kitchen Floor

Figure 1-2: Turtle Graphics. Sam, the Turtle object (in

the center) has just drawn a Koch curve in the Kitchen
Floor window.

1.2: The Actor Environment

Note that the 14 appears on the same line as the first item you printed. That’s because
unless you tell it to, Actor will keep printing on the same line. To cause subsequent
output to appear on the next line, you can do this:

printLine(" ") <CR>

The Actor printLine statement is like a writeln statement in Pascal or a printf("\n")
statement in C.
Select the Display as the active window. Then try typing;:

15/3 <CR>

As you can see, you can type Actor commands in the Display, too. However, you can’t
use the mouse other than to select the window, and you can’t edit a line except to press
Backspace. You can’t edit a line at all after you have pressed <CR>, either. However, it
is nice sometimes to have the capability to enter simple commands in the Display and
not clutter up the Workspace.

Here’s something you may not have noticed yet. Whenever a dialog box or popup
window appears on top of text in the Display, the covered text will not regenerate itself
when whatever was obscuring it goes away. More sophisticated windows, however,

. will redraw themselves after they have been covered up. Later, you’ll find out why
_ other windows do redraw themselves but the Display doesn't.

1.3 Turtle Graphics

So far your experience with Actor has been rather dry. Let’s exploit your newfound
skills with something more interesting than arithmetic—turtle graphics. The name comes
from early experiments by Seymour Papert of MIT in using computers to teach children.
At that time he had a device that could roll around under computer control on a paper-
covered floor, with a pen that could be automatically lowered to leave a trail, or raised
to leave none. The device couldn’t do very much. It could turn left or right a specified
number of degrees, and it could move forward or back a specified distance. But with
that limited repertoire, it could draw the most intriguing patterns. And in the process, it
~ forced you to see geometry from a new point of view. The device was plain, just a
hemisphere on wheels. But it reminded people so much of a turtle, that's what they
called it.

8 Chapter 1: Introducing Actor: A Tutorial

Our turtle is even plainer than the original MIT version; he’s just a little triangle on
the screen. But he can turn left or right a specified number of degrees, and move
forward or backward a specified distance, just like MIT’s turtle. His pen is only
metaphorical, but it also can be "raised" or "lowered” on command. He'll even place
himself at specified coordinates, or turn to a specified heading if you like, which the
original turtle couldn’t do. And on command, he will make himself invisible.

To see the Actor turtle, you have to load the turtle graphics files. We have provided
some helpful lines of text in the Workspace that you can use to load the turtle demo by
highlighting them and selecting Doit!. Or, you can always type them in again:

load (Demos) <CR>
load (Demos [#turtle]) <CR>

in either the Display or the Workspace. Ignore anything that Actor returns. Actor is
case sensitive, which is why it is so picky about how you typed in the above line. If you
had typed demos or dEmOs, for example, then you would have seen an error message.
Note: Many Actor demonstration programs are loaded in the same manner, so this isn’t
the last you'll see of this technique.

Eventually, after compiling the turtle graphics source code, a popup window should
appear on your screen with the title Kitchen Floor. This is where the Actor turtle, Sam,
runs around. And there’s a little triangle representing Sam in the middle. The Kitchen
Floor window is now a full-fledged MS-Windows window, so you can change its size
and move it around the screen. But note that any tracks Sam has left will be erased if
you do so. In fact, you should probably move the Kitchen Floor window right away
because it’s lying partially on top of the Workspace, where you need to go next.

Now, get ready to type a new command. Select the Workspace window, where Sam
gets his instructions from your commands. Type x(120) <CR>, and Sam turns 120
degrees to the right. Type £ (15) <CR>, and he moves forward again, this time by 15
units, leaving a trail behind. If you don’t like the last line, you can typeb (15) <CR>,
and back up to where you were. Turn him left 90 degrees with 1 (90) <CR>.

After Actor executes each command, the highlighted phrase <A Turtle> appears.
That’s because everything executed in Actor returns something. In this case, the thing
returned was Sam, and Sam is, of course, <A Turtle>.

As you have noticed, when our turtle backs up, he erases. To back him up without
erasing, you have to turn him 180 degrees around--about face--and then move him
forward.

You can clear the screen, and put Sam back to the center by typing home (Sam)
<CR>. Then you can run him through his paces again by dragging across the statements
you want with the mouse and pressing <CR>. But be careful you don’t include any
messages returned by Actor that appeared earlier, because they aren’t executable
statements, and Actor will send you an error message.

To review: You make Sam move forward with £ (n) (where n is any number), turn
right with r (n), turn left with 1 (n), and back up withb (n). You erase everything and
bring hlm back to the center with home {(Sam).

1.3: Turtle Graphics

If you don’t want Sam to leave a trail as he moves around, you can raise his pen with
the instruction up (Sam) . Then he won’t draw anything while he moves. If you want to
start him drawing again, down (Sam) lowers the pen.

The statement hide (Sam) makes him invisible, and show (Sam) makes him
visible again.

Also, face (n) points Samin the specified direction, measured in degrees

~ clockwise from straight up (due north), and goTo (x,y) moves him directly to the
specified coordinates. You'll have to experiment to get a sense of scale. But we think
using these last two instructions is cheating. It seems more sporting to use the left, right,
forward, and back instructions.

And now, we have a special treat for you. Have you heard of fractal curves? If not,
don’t worry—you'll see one soon, because Sam knows how to draw a few of them. If you
type koch (Sam, size, n) <CR>, then Sam will draw an approximation of a specific
type of fractal curve called a Koch curve. Here, size is the size of the figure to be
drawn; we suggest around 20 or 30. Try it with n anywhere from 1 to 7, at which point
you may not see anything. If that happens, you will still have to wait until Actor returns
from the koch (Sam, size, n) statement. If you recall, one of the lines on the
Workspace when you start Actor is koch (Sam, 30, 4). If that line is still in the
WorkSpace, you can just click on the line and press <CR> and you'll see the Koch curve.

For a different kind of Koch curve, try sqkoch (Sam, size, n) <CR>, witha
size of about 35.

1.4 Object-Oriented Programming

OK, now that you’ve played around some, we're ready to find out what's really
going on. So far we’ve seen a little bit of arithmetic and some turtle graphics, but so
what? Anything we’ve done so far could just as easily been done in Pascal, C, or almost
any other computer language. In fact, for all you know, what you’ve seen so far could
have actually been Pascal or C, except for some of those cryptic things that Actor
returns, such as <A Turtle>, perhaps.

That’s intentional. Although on the surface Actor looks like a regular procedural
language with procedures, functions, and the like, actually something rather
revolutionary is going on. Behind the scenes there are thousands of objects sending
messages to each other. The messages are then matched up with methods, which are
then executed. Whew! What does all that gobbledygook mean, and why do we want to
mess with success? After all, a lot of neat things have been done with regular computer

_ languages. In this section, you’ll learn the answers to both questions.
At first, you may find the object-oriented philosophy a radical departure from the
- way you are used to thinking about programming. Later you will wonder how you ever
got by without it. Some things about object-oriented programming are very new and
different, while others will seem familiar, but with a new terminology. This section will

9

10

Chapter 1: Introducing Actor: A Tutorial

get you oriented in the world of objects. We'll start with an explanation of some of the
terms with which you will soon become intimately familiar. You may also wish to
consult Appendix B, a Glossary of Terms.

1.4.1 Object-Oriented Lingo

Some of the researchers on object-oriented languages noticed that their way of
approaching computer programming was not adequately described by existing
terminology. So they invented their own terminology, which has now become a
trademark of object-oriented languages.

1.4.1.1 Classes, Instances, and Instance Variables

We'll start with a familiar example. Consider an employee by the name of Joe
Smith. Besides his name, Joe Smith has other things about him which are important to
know, such as his address, his employee number, and his phone number, for example.
Of course, Joe Smith is just one particular employee. There could be other employees
too, each with a name, phone number, etc. All employees, then, are just examples of the
generic, abstract idea of the Employee.

Object-oriented programming isn’t too different. In object-oriented terms, we
would say that there is an abstract class of Employee. Each particular employee is an
instance of this abstract class. For example, the employee Joe Smith is an instance of the
class Employee. Each instance of Employee has information of its own, such as the
employee’s name, address, etc. This information is stored in instance variables which are
called that because every instance of the class has its own copy of them.

If you are familiar with Pascal and/or C, or other procedural languages, there is a
rough parallel you may relate to. (If you're not too familiar with either of them, you can
skip the rest of this paragraph.) A class is sort of like a Pascal record or a C struct when
itis declared; an instance of a class is a particular instance or example of the Pascal
record or C struct; and the instance variables correspond to the fields within the record
or struct. The record/struct analogy is nowhere near perfect, however, as you will soon
see.

Actor is called an object-oriented language because everything is an object.
Everything. And every object has a class, just as we promised above. The number 2, for
example, is an object. It is a particular instance of the class Int, which is short for
integer. The letter * ¢’ is an instance of class Char. Samis an instance of class Turtle.
The string object "Hello" is an instance of class String. And so on. Even complicated
objects, such as windows, are objects. The Actor Display is an instance of a class
WorkWindow, and even Actor itself is an instance of class ActoxApp. The programs
you create with Actor will be other instances of class ActoraApp.

The above paragraph ommitted any mention of instance variables on purpose. To
refresh your memory, instance variables are just packets of data that are carried around
with each instance of a particular class. Some objects have no instance variables because

| Two kinds of data I

NAMED: instance
variables
elements of

INDEXED: > a collection

y

Figure 1-3: On a physical level, objects may have
named data (instance variables) or indexed data,
or both, or neither.

1.4: Object-oriented Programming

they don’t need any. For example, take the number 15, an instance of class Int. What
else needs to be carried around with 15 to make it a full fledged integer? Nothing. Asa
result, instances of class Int have no instance variables. Neither do instances of class
Char. (By the way, can you now spot one of the flaws in the record/struct analogy?
There can be no records/structs without fields, but there can be instances of classes
without any instance variables.) However, more interesting objects such as windows
can have around 15 instance variables. And what are these instance variables? Why,
other objects, of course. The program you call Actor, as you now know, is an instance of
class ActorApp. It has two instance variables—can you guess what they are? The
Workspace and Display windows! The Workspace and Display are themselves
instances of classes, with their own instance variables.

Let’s bring this abstraction down to earth. Type the following code in the
Workspace and see what you get back. Try to predict what Actor will return before you
press <CR>. Note: omit the first example if you have quit Actor since you loaded the
turtle graphics program.

class (Sam) <CR>

class (14) <CR>

class ("Badford Falls") <CR>
class('h’) <CR>

class (Int) <CR>

Were you surprised by the last one? One thing that you'll learn about object-
oriented programming is that it’s irritatingly consistent. As a result, even classes are
objects. Int is an instance of IntClass—the only instance, to be exact. Likewise, Char
is an instance of CharClass, and so on. Even IntClass is an instance of a class too, as
is CharClass, but we won’t get into that here.

That explains the class business, but how do you get at an object’s instance
variables? It’s really pretty simple. You just specify the name of the object and the name
of its instance variable, separated by a period. But first we have to find an object with
instance variables, because as we mentioned above, the simplest ones don’t have to have
any. One of the simplest objects which does have instance variables is an instance of
class Point. There are many ways to create a Point object, but the easiest way is to
create a special kind of Point called a literal Point. Here's how to create a literal
Point:

34@67 <CR>

The Point created above has an x value of 34, and a y value of 67. This information
~ is kept in the instance variables of the Point object, in variables called x and y,
respectively. Now, we’re going to create a new variable called Pt. When you type in
the line, you will get a message from Actor telling you that Pt is undefined. That's OK,
just click on Yes in the dialog box that will appear (or hit space bar or <CR>) and Pt will
be made a global variable:

11

12 Chapter 1: Introducing Actor: A Tutorial

Pt := 34067 <CR>
Pt.x <CR>

34

Pt.y <CR>

67

Note that an Actor assignment statement uses the same format as Pascal’s, namely, :=.
Also note that from now on, if we ask you to create a variable and you get the
Undefined dialog box, it’s all right to click on OK to make it a global variable. We won’t
explicitly mention that dialog box again.

If an instance variable has instance variables of its own, you just continue with the
Object.instanceVariable technique. For example, the instance of class ActorApp
that you are working with now is an object called TheApp. Why don’t you try typing
this:

TheApp .workspace .workText <CR>

You should see the current text of the Workspace window! Here’s what happened
above. The object TheApp has an instance variable called workspace, which is a
window object in its own right. The workspace object has instance variables too, one of
which is workText, and you examined the contents of that object when you typed the
above line.

How does Actor know when an instance of a class has instance variables, and how
does it know how many of them there are and what their names are? Well, all that
information is stored in an object’s class. Remember when we said above that an
object’s class is an instance of a class, too? As such, then, it also can have instance
variables. One of the instance variables of an object that is a class is called variables:

Point.variables <CR>
Array (#x #y)

In this example, you see that the Point class is an object that has an instance variable
called variables. The contents of variables is Array (#x #y) --the list of instance
variables that any instance of Point will have. When a new Point is created, the class
knows that along with the Point object itself, two instance variables called xand y
have to be created too. Don’t worry about why the x and y have # signs in front of them
for the moment. '

What happens if instances of a class don’t have any instance variables? Let’s see:

Int.variables <CR>
nil

For now, you can think of nil meaning empty or none, but later on you’ll learn a lot
more about this nil object. Atany rate, here nil means that whenever an instance of
the Int class is created, no instance variables are created along with it.

| OBJECT .

Figure 1-4: Letter1 is an object of class Char with a
value of 'g." It is surrounded by some of its methods.

1.4: Object-oriented Programming

Hopefully you have some understanding about instances and instance variables.
Formally stated, it's like this: Most objects can have two kinds of data~named and
indexed. Some objects, such as Point objects, have only named data-—-the Point object’s
instance variables, xand y. Some objects, such as St xing objects, have only indexed
data. Some other kinds of objects can have both. Here's the rule: if an object has
indexed data, it’s considered a collection. If it only has instance variables, it’s considered
an atomic object. There are a few other kinds of atomic objects, such as instances of Int,
Char, and Real, but don’t worry about them now.

1.4.1.2 Methods and Messages

We now know that everything in Actor is an object. More accurately, we know that
every object is an instance of a class, and that instances of some classes carry around
with them some of their data in the form of their instance variables. No mention has
been made of how work actually gets done in an object-oriented language, however.
We know all about objects, but how do they interact and do useful things? The answer
to this question, and more, is found in this section.

Let’s say you have an number stored in a variable called x, and you want to
compute the square root of that number. In a procedural language such as Pascal,
Fortran, or C, you would send x to a routine, perhaps called sqrt. The sqrt function
"~ would compute the square root of x and then return it. Keep in mind that the data, x, is
always physically and conceptually separated from the code, sqrt, that will work on it.

The model is different for object-oriented languages such as Actor, because in an
object-oriented language, the data and the code that will work on it are kept together.
Code is executed by sending a message to an object. For our square root example above,
the task is accomplished, in effect, by saying, "Hey, x, do a square root on yourself!"
When x receives the message, it asks itself, "Do I know how to compute the square root
of myself?" If yes, the x object chugs through its own square root routine and returns
the answer. :

So, here’s what happens. When you want something done, you send a message to
an object. The object looks to see if it knows how to do what you’ve asked, and if it
does, it executes the the correct function or procedure. In Actor, however, we don’t call
them functions or procedures—we call them methods. More formally, then,
programming in Actor is a process of sending a message to an object. The message is
then matched up with a method, which is then executed.

How do you send a message? It’s so simple, it's almost a letdown. In fact, you've
.. been doing it all along. You simply state the name of the method you want executed,
followed by the object to which you are sending the message, surrounded by
* parentheses:

print ("Hello") ‘<CR>

13

14

Chapter 1: Introducing Actor: A Tutorial

Often you'll see other objects following the receiver, separated by commas. Those are
the arguments to the message. Obviously, the print message here doesn’t have any,
but you'll see some that will soon. It looks just like a procedure or function call in a
procedural language, doesn’t it? We made it look that way on purpose, to make Actor
easy to learn. However, we aren’t sending a parameter to a procedure at all-instead, we

_are sending a print message to "Hello",a String object. "Hello" looks to see if it

has a method defined by the name of print, and if it does, it executes that method. We
call the object that gets the message the receiver of the message.

One thing we would like to mention is Actor’s convention for upper and lower case:
Global variables, including class names and object names that you created, such as Sam,
begin with an upper case letter. Method names like print and instance variables like x
are lower case. Also, inside any name, the letter beginning a new English word is
capitalized—WorkWindow is one example. One exception to this convention is a group
of messages that are received from MS-Windows, where they are predefined to be
uppercase.

You should keep it clear in your mind the difference between messages and
methods. Often the terms are used interchangeably, but although they are intimately
related, they are two different concepts. Here’s why. Note the examples below:

print (15) <CR>
p;:int("liello") <CR>

In both cases, we are sending a print message to an object. What is different is that
in the first case, the receiver is 15, an instance of class Int. In the second case, the
receiver is "Hello", an instance of class String. Although we are sending the same
print message, different print methods will be executed in each case.

The fact that the same message can result in the execution of different methods,
depending on what the receiver is, is called polymorphism. It’s a very powerful concept,
because it more closely parallels the way we think. For instance, if someone walked up
to you with something in his hands and said "Invert this thing," what would you do?
Well, you would look at whatever the person gave you and figure out what invert
meant, based on what the object is. If it's a triangle, then invert probably means to
physically turn it upside down. If it’s a matrix, then invert probably means to do matrix
inversion on the object. (If you don’t know or don’t remember what matrix inversion is,
don’t worry. We'll never walk up to you and ask you to do one!). In a conventional
language, you would have to write InvertTriangle and InvertMatrix routines. In Actor,
you would just write two invert methods, then send the same invexrt message to
either type of object, and Actor would take care of the rest.

Now we are ready to state the two cardinal rules of programming in Actor. You
already know one of them, but it’s included here for the sake of completeness.

Whenever you find yourself confused about what'’s going on, remember these two rules,
and you'll hopefully get a clearer picture. Here they are:

1. EVERYTHING in Actor is an object. Numbers, characters, arrays, strings,
gpplications, windows, methods, and so on--all are objects.

IOb]ects have two parts I

Letter3

Letter2

Figure 1-5: Each object has two parts. One partis its
private value and the other is the list of methods shared
with other objects of the same class.

1.4: Object-oriented Programming 15

2. Every action which occurs in Actor (except for calling MS-Windows or MS-
DOS) is the result of sending a message to an object, which responds to it by
executing a method. There are no other exceptions besides those mentioned
above.

Because of rigid adherence to the above rules, we say that Actor is a pure object-
oriented language. There exist hybrid computer languages that don’t always follow
these two rules. The second statement may seem rather innocuous, but it actually
implies a great deal. For instance, consider the Actor statement:

4*8 <CR>

You may be surprised to learn that the * symbol is a message to an object, too. So are
/, =, +, =, >,and a few others. Yet they don’t follow the pattern we explained above,
with the method name followed by the receiver in parentheses. That’s because the *
message is specially handled so it works in what we call infix format. It turns out that in
the example above, 8 is the object receiving the * message, but that’s not too important
here. What is important, however, is that rule two above still holds. (You'll learn more
about infix messages later, in the Guide to the Actor Classes, chapter 2.)

' 1.4.1.3 What Else Do Classes Do?

We've told you already that classes themselves are objects in their own right. But so
far we haven't really given any concrete reasons why this is so. True, it provides a
degree of theoretical consistency, but you're a programmer, not a philosopher. Rest
assured, however, there are a number of very important roles that classes play in object-
oriented programming. This section will cover two of the major roles: creating new
instances and storing methods.

One thing you may have been wondering is how new objects are created. Some
objects are created quite simply. For example, you can type

3856 <CrR>

and instantly the Point object is created. You can also do the same thing for any object
which can be specified literally, such as Int, Char, and Stxing objects. However, that
. won’t cover all our bases. Sometimes we want to create a variable and we don’t know

- its value when we create it, so a literal form is useless. And some objects are too
- complicated to be specified literally. Whereas it’s easy to type:

"Hello" <CR>

and know that it is an instance of the Stxing class, how would you represent a literal
window object?

16

Chapter 1: Introducing Actor: A Tutorial

The answer to the question of how objects are created is that each class knows how
to make instances of itself. And because in Actor, all we do is send messages to objects,
we send the class a message saying, in effect, "Create an instance of yourself and return
it." The class, which in essence contains a mold used to shape instances of itself, will
create the new object with all the required instance variables, if any, initialize it, and
return it.

The message used to ask a class to create instances of itself is called new. For
example, another way to create a Point object is to send the Point class a new
message:

Pt := new(Point) <CR>
nil@énil

Creating new objects in Actor with the new method is somewhat like the situation in
traditional languages. In most modern languages, before using using a variable, you
must declare the type of variable as well as the name of the variable itself. It's much the
same in Actor, but since objects are the active agents in the program, you ask a class to
create an instance of itself.

We mentioned above that messages can have arguments specified after the receiver,
listed in the parentheses of a message statement. Here's the first example you’ll see of
this technique. Often a new message will take one or more arguments. Note that you'll
still be sending a new message to a class. As an example of a class’s new method
requiring an argument, creating an Array object with room for 15 elements would look
like this:

Sam := new(Array, 15) <CR>

With this example, you note that Sam can be anything you want it to be. Whereas Sam
used to be a Turtle, now it’s an Array. There’s nothing stopping you from now
saying Sam := 14, if you had a mind to.

That’s the first major responsibility of classes—to create new instances of themselves.
However, there’s one more which we are going to learn about next. As you probably
know quite well by now, object-oriented programming consists of instances of classes—
objects--being sent messages, which are matched up with methods, which are then
executed. Where exactly do those methods reside? One solution would be to have
every instance of a class carry around the parcel of methods that it can respond to. That
scheme might be made workable, but there are some big problems with it, too. First,
huge amounts of memory would be wasted because there would be duplicate methods
all over the place. Second, if you added, updated, or deleted a method that an instance
of a class could respond to, you would have to visit every instance of that class and
change its parcel of methods.

You may have already guessed the scheme Actor uses instead. We have already
noted that every object is an instance of a class, and that an object’s class contains the
mold for creating new instances of itself. What we didn’t mention is that after an object
is createq the class an object "belongs" to is easily determined. This means, for example,

l Inheritance '
Letter1
init(Letter1)

print(Letter1) between(Letter1,'d’,'m’)

Figure 1-6: Messages to object Letter1 of class Char
activate the first available method. Class Char inherits
all of the methods of its ancestor classes (Magnitude
and Object), but chooses to redefine some of them.

1.4: Object-oriented Programming

that every instance of the St ring class knows it's a String. So, it seems natural to use
the object’s class as the respository for a class’s methods because when we send a
message to an object, it can look in its class to find the appropriate method. This, in fact,
is exactly what Actor does.

‘ It shouldn’t be too surprising to learn where a class’s methods are kept—-in an
 instance variable of the class itself called methods. Take a look at the methods for class
Int:

Int .methods <CR>

The object that appears is called a method dictionary--an instance of a class called
MethodDictionary. It’s called a method dictionary because it’s a dictionary of
methods. Before we go on, why don’t you try looking at some other classes” method
dictionaries, such as Window, Real, Array, and Collection. Don’t be surprised if
you see some of the method dictionary listings cut short with "...". That’s just how Actor
signifies that there’s more stuff than there is room to show all of it.

1.4.2 Inheritance: Ancestors and Descendants

The sections above were an introduction to the basics of object-oriented
 programming. However, you’re probably not convinced that the object-oriented
approach is really anything special. If what you knew now was the whole story, you’'d
be right--after all, so far it just sounds like a different way of doing the same old thing.

What makes object-oriented programming special is a concept called inheritance.
You already are no doubt familiar with the concept of inheritance. After all, you are a
consequence of inheritance--your brown eyes, blonde hair, big nose, or whatever. Your
ancestors determine what you look like and in some cases what you are good at doing.
In like manner, your descendants will inherit (or have inherited) characteristics from
you and your ancestors.

Actor objects are not much different. The Actor classes are arranged in a
hierarchical fashion which we call the class tree. A class tree for the Actor classes is
Figure 2-1 in the Guide to the Actor Classes. The class hierarchy stems the properties
and characteristics of the classes. For example, integers and real numbers are both
special kinds of numbers. As a result, the Int and Real classes descend from a class
called Number. Number, on the other hand, is a descendant of a more general class,
Magnitude, and so on. For those who are familiar with Smalltalk, ancestor class means
.. the same thing as superclass; descendant class is synonomous with subclass.

, The inheritance analogy isn’t perfect, of course. A class doesn’t have to have a
spouse in order to have descendants, for example. And we don’t call classes with the
same parent brothers or sisters. We usually refer to them as peers or siblings. We don’t
try to assign labels to the relationship between classes with different parents, either. It's
meaningless to say that one class is a "cousin” of another class, for example.

Nonetheless, the family tree model gives us an easy way to represent the class hierarchy.

17

18

Chapter 1: Introducing Actor: A Tutorial

Note, however, that the class trees in this manual show only the predefined classes
that come with Actor-—-both standard classes and more specialized ones. But Actor’s
class "family" is dynamic. It’s still growing. Your function as a programmer is to foster
the growth of the class tree by defining new, more specialized classes.

At the top of the class tree is the most generic class, Object. The classes at the
bottom are the most specialized. The classes aren’t just ordered this way for
convenience’s sake, however. The real reason for the class hierarchy is that objects
inherit methods and instance variables from their ancestors. This means that when you
send a message to an object, if it can’t find a matching method in its class, it will look in
its class’s ancestor to see if it can find a match there. Only when a match cannot be
found in class Object does Actor give up and generate an error.

It also means that each instance of a class has all the instance variables of its class’s
ancestors, as well as the instance variables it obtained from its class directly. For
example, you might want to declare a class whose instances were three-dimensional
points. Such a class might be called Point 3D, and it would have to have three instance
variables—let’s call them x, y,and z. Asaresultof inheritance, however, all you
would have to do is define a class called Point3D as a descendant class of Point and
give it one more instance variable, z. Instances of Point 3D would get their first two
instance variables from Point. Later, in section 1.7.10, when you learn about the Actor
development tool called the Browser, you will create a Point 3D class.

So far, you haven’t seen much practical reinforcement of this abstract material. In
the next section, we'll take an aside from the theory to learn about the
debugging/learning/snooping tool named the Inspector. Inspectors let you peer into
some pretty complicated objects—-as well as the simpler kind--and see what makes them
tick. Using an Inspector gives you a very clear idea of how objects are put together, and
snooping can be more stimulating than just reading and typing. So get out your
magnifying glass, and let’s start inspecting.

1.5 The Inspector

An Actor Inspector is very easy to use. All you have to do is select any object in the
Workspace and click on Inspect! in the menu bar. Or, you can type
inspect (SomeObject) <CR>. Then a window will pop up with the title,
"Inspector:className,limit=n". Here, className will be the name of the class of the
object you want to inspect. The value for n will be the number of elements, if the object
is a collection like a 5-element array. Otherwise, the limit will be shown as zero.

Just as with any popup window, you can drag an Inspector window around the
screen by its title bar, change its size by dragging its size box, and close it by clicking
twice on its system box.

Try a few examples. As you might guess, one of the simplest Actor objects is an
integer. If you select the number 1 in the Workspace, and then click on lnspect' an
Inspector window will come up with the caption, "Inspector: Int,limit=0." Nothing is
presented in either of the two list boxes (explained below), because an Int object is

Point

Point3D

Figure 1-7: A class adds its own instance variables to those of its
ancestors.

1.5: The Inspector

nothing more than a value. If you want, you can close this Inspector window, or you
can keep it around for a while--you can have as many Inspectors active simultaneously
as memory will permit.
Now try inspecting a string, such as "This is a test." You have to select the
. entire string, including the quotes, before you click on Inspect!. Now you see numbers
~ in the upper-right list box, corresponding to the characters of the string. Then try
- inspecting a class, such as the Inspector class itself, the class whose instances are
Inspectors. Type in the word Inspectorz, select it, and then click on Inspect! to see
what happens. For each inspector, the object that you are inspecting is called the target
or target object. '

1.5.1 The Inspector's Windows

The Inspector lets you examine the target object in as much detail as possible, and
even lets you send messages to it or otherwise modify it. To review, every object
contains data in one form or another, depending on its class. Sometimes the data is in
the form of one or more named instance variables, specified by the class of the object
and/or one of its ancestor classes. Other times the object is a collection of some kind,
such as a string or dictionary, having one or more elements. Some objects have both
kinds of data.

~ An inspector window contains three smaller windows. In fact, these windows have

~ aspecial name, indicating their relationship to the inspector window: they are the child

windows, and the Inspector window is their parent window. One of the characteristics of
child windows is the way they move with the parent when you move it with the mouse.
You'll learn more about this child-parent window relationship when we talk more about
making window objects later on in this tutorial. The most important thing is that by
defining windows this way, it is easy to make a "manager” window such as the
Inspector and to create the windows inside it for it to manage.

But back to the issue at hand. The Inspector’s upper left window displays the target
object’s instance variable names, if any. This kind of child window is called a list box,
which is a scrollable list of names that allows selection of one or more of them using the
mouse pointer. The upper right window is another list box that displays something
special if the target class is a collection. Briefly, a collection is a group of elements that
are referred to by an index or key. These indicies or keys appear in the upper right list
box.

If you click on any of these items, its corresponding value in the collection will be

~ displayed in the bottom window, which is the Inspector’s edit window. In this way, the

" Inspector lets you check the values of any object’s variables or elements, as well as

~ identify its class, right in the middle of your work. You can inspect any kind of object,
including classes themselves.

20

Chapter 1: Introducing Actor: A Tu_torial
1.5.2 More About Instance Variables

If you inspect an object with several instance variables, you might wonder at the
order they are presented in the instance variable list box. As you know, the typical
object usually accumulates its set of instance variables from several classes, from its own
and all of its ancestor classes. In the Inspector’s variable list box, the instance variables
are listed in the order they are defined, starting from instance variables defined by the
"oldest" ancestor (the ancestor nearest to class Object in the class hierarchy). The list
ends with the instance variables defined by the target’s own class. The Object class
doesn’t happen to define any instance variables so there won’t be any contributed by
class Object.

For an example of this, let’s consider an object of the EditWindow class. The
ancestor of EditWindow is TextWindow, whose ancestor is Window, whose ancestor is
Object, and that’s as far as you can go. The first instance variable listed by the
Inspector for an EditWindow object is hWnd, which is the first defined by class Window.
Following hiWnd in the list are several more instance variables defined by Window, and
then come four or five more from TextWindow, and the rest are from EditWindow. If
you’d like to verify this, you need to make an instance of EditWindow, which is easily
done:

]
Sam := new(EditWindow, nil, "Sample") <CR>
<a EditWindow>

Remember, Actor doesn’t care that Sam used to be a Tuxtle object and a few other
kinds. Now you can inspect Sam and see what its instance variables are and in what
order they are listed. Then, inspect (in order) the classes Window, TextWindow, and
EditWindow to see what is contained in their respective variables instance variables.
You should see the same names in the same sequence. After you verify this, close all of
the Inspector windows.

We will cover the subject of window objects in more detail soon, but you probably
would like to see what you have just created. Well, you can see Sam by sending the
message show (Sam, 1). Do this now, in the Workspace, and then we can inspect Sam
a little more to see just what the Inspector can do.

After sending the show message, you will see a new tiled window on your screen,
with the name "Sample” in the caption bar. Now you can practice some of the
techniques of manipulating tiled windows, because there are two of them on the screen
now--the Sam window object and the Actor Display. Move Sam around to a new
position, if necessary, so that you can see it. Then click the mouse anywhere in the
window. You should see a blinking caret in the upper left corner, showing where text
will appear if you start to type. Type in anything you like, pressing <CR> after each line
if you want to enter several lines. Now go back to the Workspace, and start an inspector
on Sam, as you did before. This time, we’ll look at the contents of some of the instance
variables.

= Inspector: Int,limit=0 s
Edit Doit! Inspect
4+ 1
4

Figure 1-8: An Inspector window. Here, an Int object
is being inspected. The instance variable listbox is the
upper left corner, the key listbox is in the upper right,
and the bottom window is the Inspector’s edit window.

Inspector: Editlindow,linit=0
Edit Doit! Inspect

Proc ' i

e
aintStruct ' i
Menu

| 048]

Figure 1-9: Sam, an EditWindow object, is being
inspected. Its hWnd instance variable, representing

the MS-Windows handle to the window, is selected and

displayed.

1.5: The Inspector

You can click on any of the instance variables to see what they contain. If you select
the first one, hWnd, you will see displayed in the edit window the value of the handle to
the window Sam. As you’ll see when we talk more about windows, a window handle is
a number that MS-Windows provides us to refer to a particular window, once it is is
created. If you scroll down a little in the variable list box, you will see xPos and yPos.
Select these, one at a time, and see if you can tell what they are. They indicate the
current position of the caret for Sam. Wherever you stopped entering text, yPos will
hold the value of the line, counting from 0 being the first line, and xPos holds the
character position on that line.

Near the end of Sam’s instance variables, you'll see one called workText. Select
this, and you’ll see exactly what you entered in Sam reprinted right in the Inspector edit
window! The workText instance variable holds a collection of text strings that serves
as an "edit record" for an EditWindow object. Now you see again how instance
variables can hold any kind of Actor objects, from simple integers and points to text
collections like workText.

The Inspector is a tool that can reveal much about how Actor is put together, as this
exploration into instance variables clearly shows. The Inspector can shed light on many
other aspects of object-oriented programming in the same way. Itis also a very
powerful aid as you develop new methods and classes as part of a new application.

Try inspecting some of the objects that we discussed earlier:

34467
Int .methods

With the first example, you can visually see the instance variables of the Point object.
With the second, you get to see the Int class’s method dictionary.

1.5.3 Editing in the Inspector

The Inspector is a full editing window. Under the Edit pull-down menu are the
familiar Cut, Copy, Paste and Clear options. These allow passing information via the
Clipboard and are standard all edit windows in Actor. Edit windows have full editing
capabilities. You can issue Actor commands fromit. An Inspector edit window behaves
just like the Actor Workspace, so you can type a message and press <CR> to execute it.
And, as in the Workspace, if you want to skip to a new line without executing anything,
press Ctrl-<CR>.

~ 1.5.4 Inspecting More Deeply

Once you’ve opened an Inspector window, you can inspect still further. In an open
Inspector, click on any instance variable name, a key or index from the right listbox, or
select anything in the edit window pane. Then pull down the Inspect menu from the
menu bar, and choose Variable, Key, or Selection, respectively. Another inspector will

21

22 Qhaplar 1: Introducing Actor: A Tutorial

pop up over the first for the appropriate target. You can drag this one around on the
screen, change its size, and inspect objects in it, too.

We haven’t mentioned this yet, but there is an object called Actorx, too. It's the
system dictionary which holds all of Actor’s global variables such as the various classes.
To inspect this object, type Actox into the Workspace, select it with the mouse, and then
click on Inspect!. After a slight delay, owing to the large number of elements in Actor,
you'll see a popup window with the title "Inspector:Dictionary limit=245" (the number
shown may not be 245, however). And in the upper right list box will be the list of all
the keys to the global objects in the dictionary Actor. Incidentally, Actor is the first
keyed collection you’ve looked at so far. Choose one key, say, Compiler. You'll seein
the edit window that it’s a method dictionary. Pull down the Inspect menu and choose
Key. A new inspector opens up showing you the instance variables of Compiler.
Select them to see their values.

It also might interest you to inspect Sam the Turtle. Of course, for you to do this,
the turtle graphics routines must be loaded. If you've quit Actor or closed the Kitchen
Floor window since you’ve played with Sam the turtle, you'll have to load the turtle
programs again. Refer to the directions above in section 1.3 to see how to do this. At
any rate, after you’ve moved Sam around some, inspect him and his instance variables,
to see how they change. You might also inspect the Kitchen Window (one of the
instance variables of Sam) to see how its variables change as you move the window
around.

Another interesting exploration can begin by inspecting a class. Try inspecting class
Inspectoritself. The instance variables that show up include ancestor, variables,
and methods. As you know by now, this is the same for any class. If you select
ancestoxr, you learn that the Inspector class descends from ToolWindow, which has
its own ancestor, PopupWindow, and then back through the Window class and finally
Object. You can trace the lineage of any class in this manner, inspecting each ancestor
along the way.

If you look at a class’s variables instance variable, you can see what instance
variables an instance of the class will have. Of course, any instance of a class will also
have the instance variables defined by ancestor classes, too, but instance variables
defined by ancestors won’t appear when inspecting the object’s class. The methods
instance variable, if selected, will list the names of all the methods the class being
inspected defines for its objects. As was the case with variables, though, this is not
the complete list of methods that the object could respond to, because some are inherited
from the ancestor classes.

As another exercise, consider the example above when we asked you to type:

TheApp .workspace.workText <CR>

Now that you know about inspecting deeply into instance variables, why don’t you try
inspecting TheApp. Then, select the workspacae instance variable in the left listbox of
the Inspector window. Choose Inspect Variable from the menu bar, and then you can
see workText in the list of instance variables of the inspector window for workspace.

= Inspector: Dictionary,limit=512

Edit Doit! Inspect
tally

et
¥|Smalllnts

<a lurtle>

Figure 1-10: Inspecting the system Dictionary object, Actor. Note that the key Sam, a
Turtle, is selected.

1.5: The Inspector 23

By going through this process, you can see the relationship between the "dot technique”
of accessing an object’s instance variables and examining an object using Inspector
windows.

_ 1.5.5 The Use of "self" in an Inspector

When an Inspector first appears, the edit window will be empty. The caption bar
specifies the class and size of the target, but not the target itself. One reason is that some
objects, especially the collections, have such lengthy representations that they would
never fit into a caption bar, but the class names always will. If you want to deal with the
target directly as an object, you can refer to it as sel£ in an Inspector edit window.
Later, in section 1.6.1, you'll be learning the exact meaning of the word sel£. However,
for now just think of it as a special word that, when you’re in an Inspector window,
means the target object being inspected.

For example, if you want to see the target’s Actor representation, just type self£ in
the edit window and press <CR>. You can also send messages to the target in the edit
window. Try 1imit (self) and see that the value returned is the same as shown in the
caption bar.

The Inspector can take you one step further, by allowing you to actually change the
object. This would naturally happen by sending any message to sel£ that would
. change the data of the object in any way. For example, if you were inspecting a String
- object, you could execute erase (self£) in the Inspector edit window and fill the string
with blanks. The power to do this sort of thing makes the Inspector a potentially
dangerous tool, since you could easily send a message that would bring Actor to a
grinding halt. But you could do this in the Workspace just as easily.

The Inspector also lets you get access to and even change the objects contained in the
target’s instance variables. When we were inspecting Sam before, when it was an
instance of EditWindow, we saw that xPos and yPos held the location of the caret.
You could change the location by executing the following two assignment statements in
the Inspector edit window:

If you do this and then give Sam the input focus by clicking on the caption bar, you will

see the caret blinking on the first line, right after the first character. Clicking anywhere

__ else in S8am would reset xPos and yPos immediately to wherever you clicked, denying
~ you the fruits of your labors.

1.5.6 When an Error Occurs

When Actor pops up with an error window, there’s a list of statements, which, in
order from the bottom up, gives you a history of the activities (i.e. messages sent) that
led up to the error. When you know a little more about how Actor works, you'll be able
to use this window to do in-depth detective work and find the exact cause of your error.
For now, you can use this error dialog to see where in your application the error
occurred. In each line, you'll see the name of a method to the left of the arrow, and the
receiver to the right. The method is shown as className:methodName, the class being
the one that the method is defined in. When you’re done looking at the dialog, hit OK,
and Actor will stop what it’s doing and wait for your next command.

You'll find more complete information about errors and debugging in section 4.3.
Now, we’ll move on to some of the other tools that you have at your disposal, and show
you how to develop a small, but genuine, application.

1.6 Programming in Actor

Now that you’ve got some background in object-oriented programming, you're
going to learn what it’s really like to program in Actor. As you know, Actor programs
consist of objects sending messages to each other. Writing Actor programs is just a
matter of designing the layout of the objects and writing the methods that the objects
will execute.

This section will explain some of the basic details of Actor syntax, as well as
illustrate some examples of writing Actor methods. You may feel that some of the ways
we are telling you to do things are a bit awkward. But don’t worry too much about it
because the next section will teach you to use a tool we call the Browser, a specialized
text editor specially designed to write and maintain Actor source code. Atany rate, it’s
time to learn how to program in Actor, so let’s go!

1.6.1 Actor Methods

You've already seen a lot of examples of how to send messages to objects, but what
we haven’t shown you is the other side—-the methods that these messages are matched up
with during the course of running a program. That's what this section is for. You'll
learn the format of an Actor method, as well as write one of your own.

1.6: Programming in Actor 25

Every Actor method has the same general format:

/* Method comment */
Def methodName (self,argl,arg2,... | locl,loc2,...)
{ statementl; /* Comment */
statement2;
statement3; /* Comment */
statementN;
}

There’s a lot of information packed in those few lines, so let’s look at everything
very carefully, starting at the top. The line that reads /* Method comment */ is just
that--an optional, but highly recommended, piece of text that explains to anyone who
reads the code what the method is supposed to do. Those who know C will recognize
that the Actor way of delimiting comments is identical to C's. Anyway, anything
between the /* and the */ will be ignored by the compiler. You can be very free with
where you put comments—to illustrate, we have placed a few examples inside the text of
the above method format.

Below the comment is the method header. First, note the Actor keyword De£, which
prepares Actor to compile a method. Next is the name of the method. Although it is not
enforced, all methods begin with lower case letters by convention. Within the method
name, every English word after the first is captalized.

You've seen the word sel£ before when we were discussing the Inspector, although
we were vague about what it meant. Now you will learn the true meaning of this word
self. Itrefers to the receiver of the message. Because the receiver is not known when
the method is written, the word sel£ represents the object that will eventually be sent
the message. Thus when you use self£ as a variable inside the method, it will refer to
the receiver object. The first thing in a method header, after the method name and the
left parenthesis, is always the word sel£. If you forget, you will get a syntax error.

Following sel£, the items argl, arg2, etc. are the arguments, or parameters, if any,
which are sent along with the receiver. A method can have up to 8 arguments.
Admittedly, when you see a message like new (Array, 15), it’s tempting to think of
Array as the first argument and 15 as the second argument, especially if you are a
Pascal or C programmer. But Array is the receiver object, and 15 is the first, and only,
argument.

Following any arguments is the upright character. When it’s printed in this manual,
it looks like this: f On your keyboard or in the Actor source code it’s usually the shift-
backslash (\) character. After the upright character are the local variables of the
method, if any. You can have up to 8 of them, too. Now you should be able to see the
correspondence between a method header and a message. Except for the Def, the |
character, and any local variables, the method header defines what the message will
look like.

26

Chapter 1: Introducing Actor: A Tutorial

The left curly bracket, {, signifies the beginning of the method code. Next, Actor
statements comprise the guts of the method. Note that all statements are separated by
semicolons (;). You haven’t had to type the semicolon before because when you’re in
the Workspace, it’s been obvious to Actor when you were done with a statement--you
pressed <CR> or selected Doit! from the menu. Within a method, however, Actor
requires semicolons between statements. The semicolon after the last statement is
optional. And, as you probably guessed, the right curly bracket, }, marks the end of the
method.

We mentioned before that every method returns a value. Unless overridden, an
Actor method returns self (the receiver) as a value. That's why when you were
manipulating Sam, the Turtle, you saw <a Turtle> returned after a statement.

But returning self isn’t always sufficient. For example, a sqxt (sqare root) method
would be useless if it returned the number you sent it to, the receiver. Rather, it should
return the square root of the receiver. When an explicit value needs to be returned, we
use the # character, sometimes known as the caref character (not to be confused with the
caret for entering text in a window). Whenever Actor encounters a # in a method, it
immediately exits the method and returns whatever follows the # character. You can
have more than one * character inside a method-in fact, you can have as many as you
want. You'll see examples of this technique below. Until you learn the control
structures of Actor (if, etc.), it is hard to imagine having more than one 4 character in a
method. (C programmers might recognize the * technique, because it's quite similar to
the return statement in C. Although standard Pascal has nothing equivalent, you can do
the same sort of thing in Turbo Pascal 3.0 from Borland International by using the Exit
statement immediately after setting the function equal to something.)

There is only one more thing to know before you can write your first Actor method.
Remember that every class has a method dictionary which keeps that class’s repository
of methods. That’s important because when you compile a particular method, Actor
needs to know what class to put it in. Thus, before you compile an Actor method, you
need to use the now message. For example, before compiling methods for the String
class, you would send this message:

now (Stxring);

This method changes the value of curClass, an instance variable of Compiler, an
Actor object that compiles Actor code. The variable curClass specifies where to put
the method. Try inspecting the Compiler object to see what cuxClass is.

OK, now we're ready to write a simple method. It will be a method of class Int that
will return the square of the receiver. First, we have to use the now method:

now(Int) <CR>
Because our square method will return something other than the receiver, we use

the # character. What should follow the # character? Well, we want our square
method to return the receiver multiplied by itself. Keeping this in mind, why don’t you

1.6: Programming in Actor 27

try typing the lines below. Remember that in the Workspace, you have to press Ctrl-
<CR> to go to the next line without executing anything.

Def square(self)
{ *self*self
}

Highlight all three lines with the mouse and press <CR> or select Doit! from the
Workspace menu. If you get any errors, try again, but if you didn’t, you'll see a message
in the Display indicating that Actor is compiling your new method.

Once it's compiled, send square messages to Int objects, which now know what
square means. Send the following messages: square (14), square(-7),
square (25).

Before we go on, there are a few loose ends that we need to tie up. First, you are not
allowed to have sel£ alone on the left hand side of any expression. For example, this
statement would generate a syntax error:

self := 3; /* Invalid statement */

However, if self is a collection, such as an Array, String, etc., individual elements of
self may be changed. For example,

self[4] := 3

is a valid statement.

All arguments are passed by value only. This means that if you change the value of
an argument within a method, the original object passed in the message remains
unchanged. (For Pascal programmers, this means that there is no equivalent to a var
statement in front of a procedure/function parameter). Note above that if sel£ is a
collection, you can change the elements of sel£ within a method. You might be
tempted to think that self£ is a variable parameter (passed by reference rather than
value). But keep in mind that self is not an argument at all--it receives the message.

We have this restriction on sel£, because if you were in the middle of a String
method and you executed a statement like sel£ := 3, you would be executing a
String method on an Int object. On the other hand, altering an element of self, if
self is a collection, doesn’t change the class of sel€£, only its elements.

Pascal programmers are used to placing semicolons just about everywhere,
including after procedure/function headers and after the end statement of a procedure
or function. So that Pascal programmers won't get strange syntax errors, semicolons are
allowed in the equivalent places in Actor methods. You won’t see any of these extra
semicolons here or in the Actor system.

28 Chaplpr 1: Introducing Actor: A Tutorial

1.6.2 True and False

We are just about ready to explain the control structures that you can use in Actor
methods, such as if, if/else, etc. However, first you have to know about boolean
expressions. ‘

In section 1.4.1.1 we briefly introduced the object nil. We said then that it meant
empty, or none. And you also know that when an object is created, its instance variables
are initialized to ni1 (remember when we sent a naw message to the Point class?). But
nil also means a lot more. It is the only object in the Actor system that is logically false.
Everything else, even the number 0, is logically true. The nil object is itself an instance
of a class, NilClass. However, even NilClass is logically true.

Here’s a short quiz. If we executed the following statement:

Pt := new(Point) <CR>
nil@nil

Is Pt trueor false? The answer is that Pt is Ioglcally true. Why? Pt is not nil—it'san
instance of class Point. On the other hand, is Pt . x logically true? Or Pt.y? You
guessed right if you said no for both of them. Since both are equal tonil, Pt.xand
Pt .y are both logically false.

1.6.3 Assignment Statements
You've seen quite a few assignment statements already. For example,
Pt := new(Point);
is an assignment statement. Actor allows you to use it to set the value of more than one
variable at a time by chaining assignment statements. For example, the following
statement would assign the value zero to x and y:
x =y :=0;
There is no practical limit to the amount of objects you can initialize by chaining
assignment statements together in this manner.
Assignment statements also have a value. The rule is that an assignment
statement’s value is the same as the value of the object on the right of the assignment
statement. For example, the following statement would print the number 3 in the

display:

print(x :=y := 3);

1.6: Programming in Actor 29

Since an assignment statement has a value, it also has boolean significance, i.e. it is
true or false. This fact is often used to make assignment statements do double duty as
boolean expressions as well. You'll see an example of this technique below.

" 1.6.4 Control Structures

Every language has constructs that control the execution of the program. You're
probably familiar with most of them--if, if/else, repeat/until, and a few others. Actor
provides all these, plus an added control structure (actually, it's a message) that you'll
learn about in the next section.

All the Actor control structures are available to you under the Templates menu on
the Workspace, Browser, and Inspector menus. When you select one of the items on the
Templates menu, a generic version—a template—of the structure is inserted at the current
text insertion point (caret). You can then edit the template into the code you really need.
As you read through the following sections, select the control structure from the
Templates menu and alter it to match the examples.

The following sections will hopefully tell you all you need to know about the control
statements. Some of the more nitpicky details are in the formal Actor Language
Description, Appendix A.

1.6.4.1 Actor Conditional Statements

Every computer language has conditional statements. Sometimes they will be called
"if" statements or "if/then" statements instead. Actor has three kinds of conditional
statements, two of which are very similar. The first one is an 1£ statement, and its
general form looks like this:

if (cond)
then (stmtList);
endif;

In English, it reads like this: "If the expression, (cond), evaluates to true (not nil),
then the statement(s) between the then keyword and the endif keyword are executed.
Execution continues at the statement following the endif keyword. On the other hand,
if (cond) evaluates to false (ni1), then execution continues at the statement following
the endif keyword."

\ The general form of the second kind of conditional statement, which we will call
~ 1f/else for short, looks like this:

if (cond)

then (stmtList);
else (stmtlList):;
endif;

30

Chapter 1: Introducing Actor: A Tutorial

In English, it reads: "If the expression, (cond), evaluates to true, then the
statement(s) between the then keyword and the else keyword are executed.
Otherwise, the statements between the else keyword and endif keyword are
executed. Execution then continues after the endif£ keyword in either event."

C programmers may appreciate the fact that in both the if and if/else
conditional statements, the then keyword is optional. We will use it in all of our source
code. :

There are a few things you should know about the (cond) partand (stmtList)
part of the two conditional statements. The (cond) is just a boolean expression, such as
x > 3, etc. But what makes things interesting is the fact that every object in Actor has
boolean significance. For example, the following statement is perfectly valid:

if 3
then print("I'm true!");
endif;

Now, admittedly you would probably never do this. However, it's very common to
do something like the following, which initializes the two instance variables of a Point
object to zero:

Pt := new(Point);

if not(Pt.x) and not (Pt.y)
then Pt.x := Pt.y := 0;
endif;

Remember above where we said that assignment statements have boolean
significance? Here's an example of how you might exploit that fact:

if (a := b)

then (stmtList);

endif;
The list of statements in (stmtList) will be executed if b is anything but nil. This
has the added benefit of initializing a so that it can be used within (stmtList), too.
Note that we have placed parentheses around the assignment statement. While not
required, it is good programming practice, because

if a :=Db
looks a lot like

if a=Db

1.6: Programming in Actor 31

and you might not catch the fact that an assignment statement is going on rather than
just a simple comparison.

The last thing you need to know about an 1 £/else statement is that it has a value,
too. For example, the following code would return the minimum of a and b:

c := (if a<b
then a
else b
endif);

Note that only 1£/else statements have a value, not 1£ statements.

The third type of conditional statement allows conditional selection of one of several
cases, based on arbitrary boolean expressions. It’s similar, but not identical, to the case
statement in Pascal or the switch statement in C. Here’s the general form:

select
case (cond)
is (stmtList);
endCase
case (cond)
is (stmtlList);
endCase
default (stmtList);
endSelect;

Although here we show only two, you can have as many case/endCase pairs as
you need. So that you can get a sense of what the select statement does, here’s an
example that prints whether a number is positive, negative, or zero:

select
case num > 0
is print ("Positive");
endCase
case num < 0
is print ("Negative");
endCase
default print ("Zero"):
endSelect;

There are a number of things that you should note about the above example. First,
note that, unlike C or Pascal, you can have arbitrary boolean conditions after case--the
fact that we used num in both of our case statements above is purely coincidental.
Second, note that there is no need for a break statement like there is in C. If a condition

32 Chapter 1: Introducing Actor: A Tutorial

is true, then that case statement’s stmtList is executed and execution continues at the
statement that follows the endselect keyword.

Although the default clause is optional, it is highly recommended. If there isn’t
one, and none of the case conditions are true, then execution continues after the
endSelect. The is keyword is optional, and if you want to, you can place a semicolon
after an endCase keyword.

A select statement is equivalent to a series of nested 1 £ statements, so in certain
time-critical situations it may be wise to place the case/endCase most likely to be
executed nearest the top.

1.6.4.2 Indefinite Iteration

Many times you want to execute a series of statements only while a particular
condition is true. Pascal, for instance, allows you to do this two different ways. One
way, using Pascal’s repeat/until statements, allows you to repeat a statement until a
particular condition is true, but always at least once. Pascal’s while loop, on the other
hand, will execute only while a particular condition is true, and sometimes not at all.

Actor lets you do both with with one, flexible construct, the 1oop statement. Here’s
its general form:

loop (stmtListl);
while (cond)
begin (stthistZ).
endLoop;

If (stmtList1) is empty (i.e. no statements), then the effect is a while-type loop. If
(stmtList2) is empty, the effect is an until-type loop. You can have both
(stmtListl) and (stmtList2), and test for a condition in the middle. This is a

facility not provided in many languages. Note that if you do so, (stmtList1) is still
executed repeatedly until the (cond) is false.

If you are writing an until loop, i.e. if (stmtList2) is empty, then you may wish to
omit the begin keyword for clanty Use of it is always optional, but it can make your
code clearer when (stmtList2) is not empty.

Here are some examples of the above concepts. The following loops will all print
the numbers from 1 to 10, but each in a slightly different way:

1.6: Programming in Actor

i:=0;

loop i =41 + 1;
while i <= 10
begin print(i);
endLoop;

i:=0;

loop i =1 + 1;
print (1);

while 1 < 10

begin

endLoop;

i:=0;

loop

while 1 <= 10
1i:=1+1;
print (1);

endLoop;

1.6.5 Blocks

If you are an experienced programmer, you know that most loops are spent
traversing (stepping through) a data structure such as an array or string. In other
languages, you would use either of the two types of loops described above or a third
kind (a "for/next" loop) to traverse the data structure.

In Actor, almost all the traversals of data structures are handled by do methods.
However, understanding how a do method works means that you first have to know
what blocks are and how to use them.

The best way to think of a block is that it is a normal Actor method without a name.
Blocks are used in situations where we know in advance what the framework of a given
operation is, but need to tailor the specifics at a later time. For instance, in a sort routine,
the basic framework is the same whether we sort in ascending or descending order. A
block allows us to "plug in" the middle portion of the operation by sending the block as
an argument in a message. In the receiving method, we omit the middle portion of the
operation, and use whatever the caller provided in the block argument instead.

Blocks don’t have receivers—they only have arguments, which are called,
predictably, block arguments. Here's the format of a block:

33

34

Chapter 1: Introducing Actor: A Tutorial

{using(argl,arg2, ... | 11,12,13...) statementl;
statement2;
statement3;
statementN;

}

Since you already know about methods, describing a block isn’t too difficult. The
using(argl, ...) is the header for the block, and the statements are normal Actor
statements. If you use a # symbol to return a value, you will not only exit the block, but
also the method that the block is being located in, so be careful! A block returns the
value of the statement last executed in it, so the # is not usually necessary or desirable.
Just like methods, blocks can have anywhere from zero to eight arguments, although the
most common number is one or two. The block from the Templates menu is a one
argument block, for example. Blocks can also have up to eight local variables. Here are
some example blocks:

{using(i) print(i);
}

{using(a, b) a > b;
}

{using(x, y l z) z :=x + y;
sqrt (z);
}

Blocks are objects, too—-instances of class BlockContext, to be exact. However,
there’s only one BlockContext method that you'll ever have to use, called eval.
When a block is sent an eval message, it executes itself. You send an eval message to
a block object, along with the correct number of arguments. Here is an example

~ illustrating the use of eval:

eval({using(a,b) a > b;},3,4) <CR>
nil

What happened here was that 3 and 4 were substituted for arguments a and b,
respectively. Since the expression 3 > 4 is false, the eval method returned nil.
You'll rarely use eval in this manner. Most of the time you'll set a variable equal to a
block instead and send a message to the variable:

1.6: Programming in Actor

Blk := {using(a,b) a > b;} <CR>
eval (Blk, 3,4) <CR>

nil

eval(Blk,7,4) <CR>

0

Remember, 0 is logically true. Here’s another example:

Blk := {using(x, y | Z) z :=x +y;
sqrt(z);
} <CrR>
eval (Blk, 9,16) <CR>
5.0

Since blocks are objects just like anything else, they provide a great deal of
flexibility. As we mentioned, there are complex algorithms that only need to be altered
a little bit to do something completely different. Exploiting the power of blocks, you can
put that little bit into a block, leaving the rest in normal Actor code. In the sorting
example, the block describes the part that compares two objects together. Simply by
changing the block, you can change the sorting order at will. You'll see this exact
technique used with the Actor class SortedCollection, the class whose instances
. always maintain their elements in sorted order.

1.6.6 Actor Applications

By now, you hopefully have a pretty good idea of what little chunks of Actor code
look like. But what is an object-oriented program ?

In a well designed, modular program written in a traditional language, there is
usually a relatively short main module of code that oversees the process, and contains
the dominant algorithm. In Pascal, it's the code in between the very last begin and end
statements. In C, it’s in the main() procedure. The data has been declared, execution
begins at a specific spot, and the flow of execution from one procedure or function to
another is usually fairly clear.

In Actor the flow of control may not be quite as obvious. Objects tend to give
programming a different flavor because they "decentralize” the design—they delegate
responsibility. Each object is almost a small application in itself, and the overall
application results from the objects communicating with each other. Each object takes
" care of its own area of expertise. But what gets the ball rolling?

) As we have said before, objects are the active agents in the execution of an Actor
" program. So, the basic idea in producing an Actor application is to define a class whose
instances can utilize the methods you write to get the work done. Once you have

36

Chapter 1: Introducing Actor: A Tutorial

defined the class and methods, you simply create an instance of that class and then send
it messages. Many times you only have to send it one message and the object takes care
of itself. '

That one message is probably a good deal less complex than the C main procedure
that we compared it to. In fact, methods are almost always quite short as compared to
procedures in traditional languages. There are a couple of reasons for this. The object-
oriented model encourages short methods, and some significant benefits are the result.
In section 4.1, we'll go into these issues a lot more deeply. For now, the point is thata
single message starts everything off, and this can be thought of like a C main procedure.

1.6.6.1 An Actor File Editor

Clear as mud, right? To clarify things, we’ll take a look now at an object-oriented
implementation of a classic application-—a text editor. Since we said that objects are the
active agents in the execution of a program, the question becomes one of deciding which
object gets the honor of being the "centerpiece" that is sent all the messages.

A logical guess is to make the text the centerpiece and send all our messages to the
text. In Actor, a much better choice for "head object” is the window that the text is
displayed in. This approach is much more compatible with MS-Windows. Most of the
applications you will write will center around a particular window object, and running
your application will consist of sending messages to that object.

So, we have decided that our text editor will be a window. Where does the text
come in? That's easy too--we'll just make the text an instance variable of the window
object. (You’ve seen this technique before when you examined the instance variables of
TheApp.Workspace.)

Now that we’ve decided that a window, with some text as an instance variable, is
going to be our centerpiece, we need to come up with a class whose instances fit the bill-
-we'll call it the FileWindow class. Also, we need to write methods to support some
standard text editing operations, such as loading and saving files. What about things
like inserting and deleting lines, using the mouse, Cut, Copy, Paste, and all the rest?
Fortunately, we don’t have to worry about any of that.

The reason why we don't illustrates the true power of object-oriented programming.
In the Workspace, you’ve been able to Cut, Copy, and all the rest. That's because the
Workspace is an instance of the Workspace class, which descends from the WorkEdit
class, which descends from the EditWindow class. The EditWindow class provides the
support for inserting and deleting text, using the Clipboard, etc.

Now, all we have to do for our FileWindow class is have it descend from
EditWindow, add some file-handling methods, and that’s about it. Inheritance takes
care of all the rest! (Actually, instances of WorkEdit have the ability to execute Actor
source code via the Doit! menu item, which might be nice, so we’ll make FileWindow
descend from WorkEdit instead.)

The FileWindow class is not just a hypothetical example. It’s a real class, waiting
for you to use it. Remember the six lines of code in the Workspace when you first
started Actor? One of them is set up to load the the FileWindow mini-application. If

Editor: act\stars.act
File Edit Doit!
[how(Turtle);!!

/= Draws a five-pointed star with no intersecting lirn
Def stari(self,side | A,H,degs,a,b,c,d) i
{A:=position; G
H:=heading; ‘
degs:=Pi/180;

a:=side/(2*(1+sin(18xdegs)));

b:=axsin{18xdegs);

c:=b/tan(36xdegs);

d:=b/tan(18=degs);

up(self);

left(self, 36);

forward(self, b/sin(36x=deqgs));

Figure 1-11: A FileWindow object, used for editing text files from within
Actor. Here, we are editing the file STARS.ACT in the ACT directory,
the source code for the methods that tell a Turtle how to draw stars.

1.6: Programming in Actor

you have already executed the line below in the current session, do not type it again.
Otherwise, execute the following statement:

load (Demos) <CR>
" Now, execute the following line:
load (Demos [#£fileEditor]) <CR>

Wait while the methods compile. Now, select Edit... under the File menu on the
Workspace. An instance of FileWindow will appear, as well as a dialog box with a list
of possible filenames (if you have a lot of files on the current directory, the dialog may
take some time to come up). '

You can select a file from the list, or you can double click on any of the directory
names surrounded by square brackets, e.g. [ACT]. This will change directories and
display the files in the directory you have chosen. When you find the file you want to
edit, either click on the filename and click on the Open box, or double click on the
filename itself. The file will load and you'll be able to edit the file you have chosen. If
the file contains Actor source code, you'll be able to execute it by highlighting it and
selecting Doit!.

Although we didn’t explicitly plan it this way, you can have as many FileWindow

-, objects open as memory will allow. Each active FileWindow will just respond to the
/ messages it receives—it doesn’t know, or care, how many other instances of the
‘'FileWindow class are on the screen at the same time. This is another powerful and
welcome fringe-benefit of object-oriented programming. It required absolutely no extra
effort on our part.

1.6.6.2 .ACT Files

Very soon, you will read about the Browser, a specialized file editor that maintains
Actor source code. Most of the code used to write Actor is included in the CLASSES
directory created when you installed Actor. Each file in the CLASSES directory
corresponds to a predefined Actor class.

However, there is another directory called ACT which contains files ending in .ACT.
Most of these are demonstration programs used to illustrate programming in Actor.
There is no way to edit the .ACT files with the Browser, so you have to use some sort of
text editor. Since a FileWindow object has the ability to execute Actor code via Doit!,

\} it’s a natural choice. If you want, now might be a good time to look at some of the files

“ in the ACT directory using a FileWindow object. The turtle graphics files
(TURTNUM.ACT, TURTLE.ACT, KOCH.ACT, STARS.ACT) may be of particular
interest, since you've seen them work before.

38 Chapter 1: Introducing Actor: A Tutorial
1.7 The Browser

The Browser is one of Actor’s most useful and powerful tools. It's a viewing
mechanism for the entire system, including your own work--and you can even use it to
change the system.

The Browser allows you to examine, edit, and add to Actor source code, and in the
process, Actor is changed to reflect any changes in the code. The Browser is actually a
highly specialized file editor designed especially for manipulating the class source files.
These files include the 100 or so classes supplied with Actor and the ones you create as
you build your applications. Each class has its own source file containing the statements
that create the class and its methods. These statements are arranged in a way that the
Browser understands.

To open a Browser window, click once on Browse! in the Workspace menu bar. You
will see a window that greatly resembles the Inspector. This is no accident. Just as there
is a class called Inspector that produces inspector windows, there is a Browser class
for browser windows. Inspectoxr and Browser have the common ancestor,
ToolWindow, which produces popup-style window objects with the three-window
arrangement and behavior that browsers and inspectors each inherit.

The browser window that pops up can be moved around the screen like any popup
window; you drag it by its title bar with the mouse. You can also change its size with
the size box in its upper right hand corner. (The way the two list boxes and the edit
window resize themselves is governed by methods defined in ToolWindow.) And you
can close it by clicking twice on its system menu box, or selecting Close from its system
menu.

1.7.1 Selecting a Class in the Browser

The Browser’s upper left list box contains the names of the Actor classes. This is the
class list box, or class list, for short. You can scroll it like any list box, by clicking in the
scroll bar, clicking on the up or down arrows, or by dragging the elevator box.

The class list is initially presented in hierarchical order, so that the classes are
arranged in an way that corresponds to their ancestry. Object is at the top of the list,
left-justified, indicating its place at the top of the class tree. Classes that are indented
one space are immediate descendants of Object, and are listed in alphabetical order.
These can be thought of as "first generation" classes. Under some of these are names
that are indented two spaces, to show that they descend from the first generation classes.
The number of spaces before a class name shows how far it is descended in the class
hierarchy.

You can change the format by pulling down the Options menu and selecting
Alphabetical instead of Hierarchical. Notice that a checkmark indicates the current
choice. Then the class list is simply the list of all the classes in alphabetical order.
Sometimes this is an easier way to find a class if you don’t know where it fits in the
hierarchy.

Brouser: Char :

Accept! Edit Options Templates Doit!
[ns-ect!

Long

Figure 1-12: A Browser. Here, we have selected the Char
class. The class listbox is located at the upper left, the method
listbox is located at the upper right, and the edit window is
located at the bottom.

//

1.7: The Browser

Click on any class name in the class list to select it. The title bar at the top of the
Browser window now says "Browser:className" just as a reminder (className will be
the name of whatever class you select). After you select a class from the list, you can
switch from alphabetical to hierarchical mode (or vice-versa) to see its place in the class
tree. The selected class will be re-selected in the new list.

1.7.2 The Class Definition Dialog

Before we continue exploring the other two windows in the Browser, you should
learn one of the Browser’s most useful secrets. After selecting a class name from the list,
pull down the Options menu from the menu bar, and select the first entry, About the
Class. Immediately a new window pops up, called the "Class Definition."

The Class Definition Dialog gives you indispensable information about the class you
have selected in the Browser class list box. In the upper left corner is the class name
again, followed by the name of its immediate ancestor, which every class has except
Object. Below that is an indication of whether an object of this class holds pointers to
other objects or non-object binary data (as in descendants of ByteCollection). You can
find out more about this in the Advanced Topics section. Further down is an indication
of whether or not objects of this class have indexed elements (most collections do).

In the upper right box are the names of the instance variables defined by this class, if

. any, usually accompanied by explanatory comments. This information is read directly
_ from the class source file on the disk. And at the bottom is a class comment, also from

the disk, that describes the class structure and purpose.

You can change anything in the class dialog except the class name itself, although
this dialog is usually used to get information rather than change it. If you click on the
Accept button, your changes will be incorporated into the class definition in Actor, and
your changes will also be stored into the class source file on disk. It’s not such a good
idea to do that with built-in Actor classes. Itis possible to bring the system to a grinding
halt by changing the ancestor of Int to Window, for example. For the time being, click
on the Cancel button to erase the dialog after you have gotten the information you need
about a class. This will bring you back to the Browser itself, without making any
changes.

There are a number of classes in the Actor system for which we have not supplied
class source files. You will find this out if you select About the Class after selecting a
class such as IfNode. An error window will pop up indicating that the class source file
cannot be found. These classes, because they have to do with the Actor compiler and
related "behind the scenes” machinery, are proprietary and not of much interest or use
" while you are developing new programs.

39

40

Chapter 1: Introducing Actor: A Tutorial
1.7.3 Selecting a Method

Whenever you select a class, the upper right list box is immediately filled with
several names. This is the method list box, and it lists alphabetically the names of all of
the methods that instances of the selected class (and descendant classes) can use. For
example, if you select Rect in the class list box, then method names starting with
bottomand draw and on through width appear in the method list box.

For instance, if the global variable MyRect is an instance of class Rect, you can
send the messages bottom, draw and width to it, as well as any other messages whose
names are listed. For example, width (MyRect) will return the width, in pixels, of the
rectangle object MyRect. The Browser, among other things, provides this quick method
to learn what messages you can send to objects of any class. Of course, to get the
complete list, you need to browse all of the ancestors of the class, too.

You can select any method by clicking on its name with the mouse. There will be a
short pause, some disk access, and then the source code for the method will appear in
the bottom window. During the pause, Actor is finding the source code for the method
on disk, and then formatting it in a standard way.

This is the actual code that was compiled to generate the method in the selected
class. Try this with any class/method combination that looks interesting to you. You
will see a great variety of methods, from small to large, from very simple to more
complex. If you need to, feel free to change the size of the Browser so that you get a
good view.

Many of the methods contribute to the functionality of the Browser itself. Most of
this code is contained in class Browsex. If you select it in the class list and look at the
code for its methods, you are using the Browser to see the code that makes the Browser
work.

The code you’ll see most of the time, as it appears in the edit window, follows the
general format of a method:

/* Method comment */
Def methodName (self, argl,arg2,... | 11,12,...)
{ statementl;

statement2;

statementN;

}

Let’s review this basic method format. The first line is a comment for the method,
which can be several lines long. The word Def is used to define a regular Actor method.
The method name comes next, and self is indicated as the receiver. The incoming
arguments (argl, arg2, etc.) are listed next, and then after the vertical bar come the
local variables (11, 12, etc.). The body of the method follows, a series of Actor
statements contained within the curly brackets. This is the same form we used earlier in

Class Definition

E'"::::::Ed (Accept) (Cancel)

Name: Uariables:

IPoint | X /= ;hg x3§;1u7 of the Point, e.g.
*

ﬂncgstor: y /= Ih:ny value of the Point, e.g.

[0bject] 2 in 3@2 =/

-Format

OByte OUord @ Ptr

etc.

variables, x and y.
the Point, respectively.
Points are displayed in the form x@y, such as 44033, -23@2,

/= Point objects are atomic objects with two instance
They hold the x and y coordinates of

You can specify literal points this way, too. =/

Figure 1-13: About class dialog box. This dialog shows the class definition for the
Point class. The class comment is at the bottom, and the instance variable list is at the

upper right corner.

PN

1.7: The Browser

the Tutorial when we added some methods to Int and Real by typing them directly
into the Workspace, except that we didn’t bother with the comment. As you may
remember, text between the "/*" and "*/" symbols is always ignored by the compiler.

1.7.4 Primitive Methods

If you experiment a little, you will sooner or later notice something about the source
code for some of the methods that you select. Instead of the standard method format
shown above, you'll see something like this:

/* Primitive method comment */
Prim methodName (self,6argl,arg2, ...) :returnObject

This is a special form of method description that exists for documentation purposes
only. It describes what is called a primitive method, which has no high-level Actor
source code. Primitive methods (or primitives) are written in assembler, and perform
the most basic operations required by Actor objects. Although many primitive methods
could be implemented in the style of programming that you are now getting used to,
Actor would be much less efficient. We call high-level methods functions to distinguish
them from primitives.

As you see, for primitive methods, Pxim replaces the Def used to define normal
methods. Then the method name is shown, again with sel£ as the receiver, and the
incoming arguments (axg1l, arg2, etc.) follow. After the right parenthesis is a colon,
follwed by a description of the object returned by the method. This information,
together with the comment, is usually enough to know how to make use of the method.
Since the actual implementation is not shown, there is no need to show the local
variables. If more information is required for a primitive method, look in the Guide to
the Actor Classes.

You can use these primitive methods freely, just as you would a function. They
behave in the same way from a programming standpoint. Some classes, such as Stxing
or Int, have mostly primitive methods, while many, such as the window classes, have
none.

1.7.5 Class Methods and Object Methods

For every class, there are really fwo varieties of methods (primitives and functions
" are considered the same from this perspective). Under the Options pull-down menu are
- the two choices, Class Methods and Object Methods.

Sometimes it is hard to keep in mind that classes themselves are objects, because
they happen to be able to produce instances of themselves. But as objects, classes can be
sent messages too, just as you send messages

41

42 Chapter 1: Introducing Actor: A Tutorial

to the objects they make. The Class Methods/Object Methods "switch" under the
Options menu is how the Browser keeps track of which methods are for messages sent
to the class itself and which are for messages sent to the class’s instances.

If we stay with the Rect example a little longer, perhaps we can clarify this a little.
Select Rect in the class list if you haven’t already. Now see what happens to the
method list as you switch from Object Methods to Class Methods. There is one class
method for Rect, namely, new, and there are several object methods. We can send a
new message to Rect, and we can send a bottom or set Top message to an instance of
Rect. In fact, we have to send a new message to Rect to get such an object in the first
place. For example:

MyRect := new(Rect) <CR>
Rect (0L OL OL OL)

MyRect is an instance of class Rect. When it is first made by Rect, its four coordinates
are all set to 0. (The "L" after each zero means it is a long integer, which can be much
bigger than a regular integer.) Now that we have the object, we can send messages such
as bottom (MyRect) or top (MyRect). These you recognize as object method names
from the list when you have selected Object Methods.

This can be extremely confusing at first. To sort it out, remember that class methods
are invoked when the class itself (such as Rect) is the receiver of a message. Object
methods are invoked when an object created by the class (such as myRect :=
new (Ract)) is the receiver. Class methods are generally involved in the creation of
new objects. For example, class Intexval has several class methods that give it
different ways to create new Interval objects.

1.7.6 Class Source Files

When you installed Actor, the Actor installation program created three
subdirectories for the purpose of keeping track of Actor source code in the form of class
source files. Such a file contains the complete definition for an Actor class, including the
statement that creates the class and the statements that create all of the class’s methods,
both the Class Methods and Object Methods. The names of the subdirectories are
CLASSES, WORK, and BACKUP. As you use the Browser, it generally looks in the
CLASSES subdirectory for the class source file with the right class name,
<CLASSNAME>.CLS. All class source files have the .CLS extension.

In order for the Browser to be able to find what it needs, the class source files have a
special format. You can edit them with any text editor, including FileWindow, to see it,
but be careful not to change anything.

If you wish to do this now, here is what you’ll see: First, there is the class comment,
the same thing you see at the bottom of the Class Definition dialog. The second item is
an inherit statement, which, when executed, will create the class if it doesn’t already
exist in the specified form. The third item is a now message that tells the compiler that
the method definitions that follow, are the Class Methods for this class, if there are any.

Browser: Point

Accept! Edit Options Templates Doit!
Inspect!?

MisgNode 4[11ne 4
RetHNode =jlineTlo R
P 0 movelo

rimitive 1 1
Streanm 4%

/= Print the Point in x@y format onto the
specified stream. =/

Def printOn(self, aStrm)

{ printOn(x, aStrm);
nextPutAll(aStrm,"@");
printOn{y, aStrm);

Figure 1-14: A Browser. Here, we are examining the source
code for the printOn method of the Point class.

1.7: The Browser

After these method definitions, another now message tells the compiler that the rest of
the methods, if any, are the Object Methods for this class. The rest of the class source file
contains these object method definitions.

One of the important aspects of the class source file format is that it enables the file
to be loaded directly, using either a Load message or using the Load... choice under the
File pull-down menu in the Workspace. This is very useful. It means that you can
upgrade Actor very quickly by just loading new class source files, wherever you get
them. As new classes are developed by generous Actor users or by the Whitewater
Group, their class source files will be made available on the Whitewater Bulletin Board
System.

The details of the class source file format are hidden by the Browser, so that you
don’t have to think about them while you use Actor. This is especially convenient when
you use the Browser to make changes in the system, which we will explain how to do
shortly. First, however, we're going to take a little aside and talk about some memory
issues.

1.7.7 Static and Dynamic Memory and Garbage Collection

We've told you before that every method returns a value. Even something as trivial
as moving the mouse creates some objects, because the methods that handle that sort of

- thing return values, too. That’s not to mention all the temporary variables that you may

. create when you're inside a method. Well, all these objects are basically useless once the
method is done executing, but nevertheless many of the objects are still floating around
somewhere taking up space.

These objects which just sit around taking up space are called garbage. If this
garbage wasn’t handled somehow, then it would accumulate and rather soon you
would be out of memory. Actor constantly searches for this kind of garbage and collects
it whenever it can. All of this goes on behind the scenes, so you never have to worry
about it. In fact, Actor’s garbage collection scheme is so efficient that you'll hardly
notice it.

However, this is only half of the story. Actor’'s memory is actually divided into two
parts, static and dynamic. The dynamic memory space is what’s constantly skimmed for
garbage, because the dynamic portion is the memory that these temporary objects are
allocated from.

The other part of Actor’s memory is called static because it doesn’t change too
much, at least compared to the dynamic portion. Basically the static memory is used to
hold compiled Actor methods, and you can always tell how much you have left by
" selecting the Show Room! menu option from the Workspace. However, it can
' accumulate garbage, too. For example, when you re-compile a method, the old version
of that method is still sitting in the static space, unusable by anything. So that static
memory can be reclaimed, there is a method of class Object that does a static garbage
collection. Every so often, especially if you are compiling different versions of the same
method over and over again, you should do a static garbage collection. All you have to

do is type:

43

44

Chapter 1: Introducing Actor: A Tutorial

cleanup() <CR>

in the Workspace or Display. Wait a little while, and Actor will return, telling you how
much memory was reclaimed. You should always do a cleanup () before youdo a
Snapshot. (Note: you may be wondering what object the cleanup message is being
sent to. If you prefer, you can think of the cleanup message being sent to the Actor
system itself. There are a few other methods, all in class Object, for which the receiver
is irrelevant. Actor permits you to omit the receiver in these cases. We'll discuss these
in chapter 2.)

1.7.8 Snapshots and Images

Before we start using the Browser to make changes in Actor, we are going to digress
a bit to discuss the concept of an Actor "session.” You have been working with Actor for
a while now, trying different things: creating objects, sending messages, using the
Inspector, looking at source code with the Browser. In the process, you may have made
changes to the system. For example, if you have created some object, say an
EditWindow, and used the global variable Sam to hold the object, then Sam has become
a part of the system. If you now decide to have some lunch and exit the system by
closing either the Workspace or Display windows, you would lose S8am and any other
changes or additions you have made since starting Actor this time around.

This is often not desirable; you may find that each time you bring Actor up you have
to initialize it in some way so that you can continue with your work. For example, there
may be some constants that you always need, or objects such as the window Sam, or
even new classes and methods that are part of a developing application. -

This is why you take a snapshot every now and then. Doing so saves the system
exactly as it exists in memory, so that all of your changes can be saved. Each time you
bring up Actor, or in other words, start an Actor session, you are starting with the
system as it was saved at the last snapshot. If you change the system in a way that
seems to be an improvement, that’s a good time to take a snapshot. If things don’t go so
well, you can always start over by exiting Actor without taking a snapshot, and re-
starting.

It’s really easy to take a snapshot. Under the File menu of the Workspace is the
Snapshot menu option; all you have to do is click on that menu item. Doing so will take
a "snapshot” of Actor object memory at that point and write it to disk. The file that Actor
saves the snapshot in is called an image. The file that snapshot will use is keptin a
global variable called VImage. For example, you can look at VImage to see what file
name it’s attached to:

VIimage <CR>
File("ACTOR.IMA")

(

Brouser: Int :

Accept! Edit Options Templates Doit!
Inspect!

Number ¢[ToadString Y
7 1ow 888
on 3
Real Hmin
ModalDialog ¥{mod

FV* Return the maximum of two Ints. For
instance, max(3,4) returns 4. =/
Prim max(self, y):Int

Figure 1-15: A Browser. Here we have selected the max
method for the Int class. Since it is a primitive method, note its
special format.

1.7: The Browser

If you do a snapshot without changing VImage, Actor will overwrite the old
ACTOR.IMA file. If you don’t want to change ACTOR.IMA, then you can call the image
something else. You should always use a .IMA extension, however, because Actor will
not start up with any other extension. Here’s an example:

setName (VImage, "TEST.IMA") <CR>

When you next do a snapshot, the image will be saved in the file TEST.IMA. Loading
TEST.IMA instead of ACTOR.IMA is a simple matter of typing

WIN TEST.IMA

from the DOS command line instead of ACT like you’ve done before. (If you have the
MS-DOS Executive, you can double click on TEST.IMA instead.) When you load a
different image, VImage will be different, too; it always holds the name of the image that
was initially loaded, unless you change it by sending it a setName message. For
example, if you were in the middle of an Actor session using TEST.IMA instead of
ACTOR.IMA, you could type:

Vimage <CR>
File("TEST.IMA")

Note: there is no way to load a different image file from within Actor--you can only
specify which image file you want to work with when you start Actor.

Now we are about to use the Browser to make some changes. The major advantage
of using the Browser to make changes, rather than the Workspace, is that the Browser
works with the class source files. When you make a change, you not only have a
different system but you have the source code that produced the difference. As you will
see, the Browser has been designed to keep the image "in sync” with the Actor source
code in the class source files.

This synchronization is maintained whether or not you save the changes in a given
session with a snapshot. What is important is that before you exit Actor, you'll have to
decide whether you want to keep the system as it evolved during the session, or throw
the session changes away.

1.7.9 Editing Methods in the Browser

You could conceivably define new classes or at least new methods for existing
classes the way we did earlier, by typing everything into the Workspace. As we have
just said, the problem is that there is no permanent record of the code that effected the
changes. If you want to change the way a method works, for instance, you would have
to rewrite it from scratch, and this process would become very time-consuming and
error-prone.

45

46

Chapter 1: Introducing Actor: A Tutorial

The Browser solves this problem quite nicely. The reason why the bottom window
of the Browser is an edit window is so that you can edit methods in it. When you do,
and then compile the new or revised method by clicking on Accept! in the menu bar, the
method is added to Actor and the source code for the method is saved in the class source
file. This is the ideal situation, because if you later come back to look at the method in
the Browser, you will see the source code you typed in, since the Browser will be able to
read it back from the disk. Then you can refine the method a little more, Accept it, and
move along.

Let’s do something like we did earlier, when we added the squarxe method to the
Int class. Since that method may or may not be in your Actor system at this point,
depending on whether or not you took a snapshot, let’s add a completely new method,
cube. Since this is going to be an Object Method, make sure that you are in this mode
by checking under the Options pull-down menu.

Since we are going to add the method to Int, select this class in the Browser class
list. Of course, the method list will fill up with the methods for Int objects. Now, look
in the Templates pull-down menu. This is just like the menu by the same name in the
Workspace, but with an important addition: New method. Select this choice now, and
see what happens. A method template appears in the edit window, ready to be
tansformed by you into a useful method definition.

Using regular editing techniques, change the template into the following method
definition for cube:

/* Return the cube of an integer. */
Def cube(self)

{ *self*gself*self

}

When the text in the Browser edit window looks like what you see above, click on
Accept! in the Browser menu bar. You will see a message in the Display window,
announcing that Actor is compiling this method, and next you will see and/or hear
some disk activity while the Browser puts this method into the Int class source file. If
there have been no syntax errors, you will be ready to test the cube method. Go over to
the Workspace and try sending a message like cube (10) and see what you get! (You
can also send messages from within the Browser by highlighting it and selecting Doit!
from the Browser menu.)

1.7.10 Saving Your Work

You have just seen how easily you can add methods to Actor. We will soon take this
one step further and add a new class, but first we’ll talk a little bit about what happens
with the class source files so that you can make good descisions about how to save your
work.

1.7: The Browser 47

As we said before, the Browser generally looks in the CLASSES subdirectory to get
the source code for the methods you select in the method list. When you added the
cube method just a moment ago, this is what the Browser did after successfully
compiling the method: First, it found out whether or not the cube method already
- existed for the Int class. Since it didn’t exist, the proper thing to do is to add the cube

- method to the end of the Int class source file. Otherwise, we would want to replace the
old method with the new one. In either case, the Browser does not modify the Int class
source file in the CLASSES subdirectory. Instead, it makes a copy of it, with the new (or
revised) method in it, and puts the copy in the WORK subdirectory.

The reason this is done is that you may or may not want to have the method you
added be a permanent part of your Actor system. If you use the Browser to change any
class source files, as happens when you add a method, you will not be able to quit Actor
without choosing between (1) saving your work with a snapshot, (2) getting rid of your
work altogether, or (3) just saving (for future reference) the modified copies of class
source files that ended up in the WORK subdirectory. These choices are presented to
you in a popup window when you close the Workspace or Display windows.

Let’s discuss each choice as it would affect your new cube method. If you have use
for this method, you can make it a part of Actor from here on out, by electing to take a
snapshot of the system. Besides saving the image file, a snapshot will also cause Actor
to move the revised Int class source file from WORK into CLASSES, and save the old
Int file in the BACKUP directory for safety reasons. Since cube is part of the saved
. system, the Browser will expect to find its source code by looking in the CLASSES
- subdirectory, and now it will. As we have mentioned, the goal is to keep the image file
and the class source files in CLASSES in sync.

The second choice is the opposite of the first—-throw out everything you have done
in the current Actor session. A new image file will not be written to the hard disk, and
in addition, the modified class source file or files in WORK will be deleted. This is the
kind of choice you might make if you are just experimenting and not seriously building
anything as you add new methods and/or classes. This is probably the choice you will
make as you get started with Actor.

The third choice will not save a new image file, but it will not delete the revised class
source files in WORK either. If you feel that you might like to take a look at some of the
changes you made at a later date, this choice gives you that option. The files that remain
in WORK do not reflect the saved system in ACTOR.IMA, but you can manipulate them
using DOS, text editors, the 1load message, etc. To do this properly requires a good
understanding of the whole synchronization process, which is explained a little more
fully in the Advanced Topics section.

In this way, the Browser attempts to coordinate the Actor image and the class source

-code so that "what you see is what you get." This system can get pretty confusing if you
~ generate and keep several different images, which you can do by changing the name of
the image file from ACTOR.IMA to something else. In that case you have to maintain
corresponding CLASSES files for them, or your compiled code and corresponding
source code will get hopelessly out of sync. Again, the Advanced Topics section can
help you with this.

48

Chapter 1: Introducing Actor: A Tutorial

1.7.11 Creating a New Class with the Browser: Point3D

The Browser is really much more than a browsing window, as you can already tell.
It’s an editor that lets you change methods and create new ones. It also lets you do the
same with classes. Here follows an example of how you can use the Browser to make a
new class.

The new class will be a refinement of the Point class that already comes with Actor.
The objects that Point makes are two-dimensional, which is fine for most purposes.
Point objects have two instance variables, x and y, to hold any two objects, usually
numbers. Suppose, however, that you need objects that represent three-dimensional
points. How would you do it? By making a new class that could make such objects.
We'll call the new class Point3D.

The first question to ask when considering a new class is what the ancestor class
should be. In this case, the answer is easy, because all we really want to do is improve
on the Point class a little bit. It already has two-thirds of what we want. In other cases,
it might not be so obvious, and you would need to explore the Actor system carefully to
see if there is a class that already has some of the features you need that would make a
suitable ancestor.

The next question to ask is what instance variables are needed. This is another easy
one in this case, because Point suggests the answer with its two, xand y. We wanta
third dimension here, which is usually represented with a z, which will be our new
instance variable. Point3D objects will inherit the x and y from Point and havea z
from their own class.

That's all we need to know to make the new class using the Browser. It will take
care of the other details. So, the first thing to do is to select Point in the class list. Then
look at the Options pull-down menu once again. Right under the About the class choice
is Make descendant. Select it, and you will see a large popup window that looks very
much like the About Class Dialog. In fact, that’s what it really is, but here it's going to
be about Point 3D instead of Point. We use the dialog as a “fill-in-the-blanks" template
for defining our new class.

There is a blank space in the box labeled "Name" in the upper left corner. In this
space type the name of the class, "Point3D." Remember, Actor is case-sensitive. Notice
that the Point class is already indicated as the ancestor. Now use the tab key or the
mouse to switch the input focus to the larger box in the upper-right corner, labeled
"Variables." Here is where you indicate that you want a Point3D object to havea z
instance variable, in addition to the others it inherits from Point. Type in the "z" and
also put in a comment if you wish. You might try something like this:

z /* Third coordinate */

The comment is optional but strongly recommended. The comment also must be within
the "/*" and "™ /" symbols. Finally, move to the comment box at the bottom and ad-lib a
class description for Point 3D, such as “/* For 3-dimensional point objects. */* That’s all
you need to do to specify the new class. If you click on the Accept button, the new class

1.7: The Browser 49

will be created and a new class source file for Point 3D will be written into the WORK
subdirectory. The dialog window goes away and the Browser will automatically select
the newly created class, ready for you to add methods.

Before you do, you can check the new class with the About the class choice under
Options. Everything should look just as you typed it in when you were first defining
the class. The information is read back from the new class source file in WORK.

* Everything that we said in the above section concerning saving your work applies to
making a new class, too. If you take a snapshot now, Point 3D will be a permanent part
of your Actor system.

1.7.12 Adding a Method to Point3D

If Point 3D is the selected class for the Browser you are now working with, then
regardless of whether you are in the Class Methods or Object Methods mode, you will
not see any methods in the method list. At this point the only difference between a
Point object and a Point 3D object is the extra z instance variable that the latter will
have. If the class is going to be of any use, we have to add a few methods, and they will
naturally center on this new piece of data, =.

Let’s look a little more closely at Point to get an idea of what we might need. Select
Point in the class list, which is right above Point 3D. Notice that among its Object
. Methods are the methods x and y, which simply return the values of the instance
variables x and y. (There is no conflict if a class’s methods and instance variables have
the same names.) In order to be consistent, we should have a "z" method for Point3D
objects.

Let’s add it now, taking the easiest possible route: “"cloning” the x method from.
Point. Bring the source code for this method into the Browser edit window by clicking
on x in the method list. As you can see, it is a very simple definition. Select the entire
definition with the mouse, comment and all, so that it is entirely highlighted. (You can
also just type Ctrl-A, which you may recall is the accelerator key defined for this
purpose.) Then, select Copy under the Edit pull-down menu (or press the grey + key,
the accelerator for Copy). This copies the method into the Clipboard. Now select
Point3D in the class list, which you'll notice clears out the edit window--this is why we
have to use the Clipboard. If you now select Paste under the Edit menu, or press the Ins
key, the x method will be copied back into the edit window. Now all we have to do is
edit it slightly to turn it into the desired z method. Make the necessary changes until it
looks like this:

/* Return the z value of the point. */
Def z(self)
{ %=

}

50

Chapter 1: Introducing Actor: A Tutorial

All that is necessary to convert the method is to change the letter "x" to "z" in three
places, including the comment. When you have changed it to look like this, click
Accept! to compile the method and add it to the Point 3D class file in WORK. Now
you'll also see the name of the method in the method list. If you want to really make
sure that everything is working properly, select z in the method list and let the Browser
retrieve the source code from the disk. It should be identical to the one you just
compiled. :

1.7.13 Representing a Point3D Object

Let’s slow down a little and take care of some "dirty work." We have intentionally
gone ahead and added a method to our new class to show how easy it is, but we haven’t
even made an instance of the new class yet. How would we? Remember when we were
looking at Rect a little while ago, and we said that you can always send a new message
to a class in order to make an instance of it. In fact, we saw that new was defined as the
one and only class method for Rect. When we say new (Rect), the value that is
returned is a Rect object, which we usually just refer to as a rectangle.

You can easily check to see that there are no class methods for Point 3D--we haven't
defined any. However, it turns out we don’t need to, because the one we inherit from
Point will work just fine. This is an important concept: just as object methods are
inherited from ancestor classes, so are class methods. In a sense, there are two parallel
systems of methods at work, and the behavior is very similar, but one is dedicated to the
classes as objects, and the other is dedicated to the instances of the classes.

Anyway, let’s first look at how we make a Point object, which involves sending a
new message, as you have probably guessed:

Pl := new(Point) <CR>
nil@nil

The object P1 is an instance of Point. As such, it has two pieces of data, the x and y
instance variables. As you know, when P1 is newly created, x and y are initialized to
contain the object nil. The second line above shows how Actor represents a Point
object, by putting a "@" between the values of the instance variables. Let’s assign some
integer values to x and y so that we have a better looking point.

Pl.x := 10 <CR>
10
Pl.y := 20 <CR>
20

Pl <CR>
10020

1.7: The Browser 51

Now let’s try to repeat this for Point3D. We'll use P2 as the variable in this case.

Actor[#P2] := new(Point3D)
nil@nil

~ Before we go any further, we see a problem. The ni18nil representation for a
Point3D object is clearly not right, since it only shows two values, and P2 has three, x,
y, and z. We will have to fix this, but we can at least verify that P2 does have a z
instance variable.

P2.z := 30 <CR>
30

We would not have been able to assign the value if z were not an instance variable of
P2. (TryP2.a := 30 and you'll see why.) The only real problem is that Actor doesn’t
know how to print a 3-dimensional point. Look at this behavior: '

z (P2) <CR>
30

P2 <CR>
nil@nil

The reason we get ni1@nil rather than ni1@ni1@30 is that we are relying on a method
inherited from Point that is intended for two-dimensional points. The name of the
method is printon, and we have to "fix" it for Point 3D so that we will see something
like 10020830 for its objects.

1.7.14 Adding a printOn Method to Point3D

What does sending a printOn message do? Where has it been, all this time? Up
until this point in your introduction to Actor, it has been entirely hidden, unless you
happened to notice it in the method list in the Browser; many classes define the
printon method. However, its existence is very important to the behavior of Actor,
and you have seen the results of it many times by now.

As you know, there is a great variety of objects in Actor: strings, integers, windows,
_ rectangles, and so forth. You realize that each of these objects contains data in some
* form-—-sometimes just a numeric value, other times hundreds of other objects. Because
- Actor is an interactive system, using the Workspace to communicate, there has to be
some way to show all of these objects so that you can recognize them quickly. When
you send a message in the Workspace, and Actor returns with some highlighted text,
you are looking at Actor’s representation of some object. For example, we know that a
Point object looks like 10@20, and a Rect is Rect (10L 20L 30L 40L), and so on.

52 Chapter 1: Introducing Actor: A Tutorial

The printOn method does the job of representing an object as something
recognizable. If objects showed up as just a bunch of numeric values, which they
actually are, they would all look alike and be meaningless. The method name printoOn
will not have much meaning for you until you learn more about streams, another type of
object, which we discuss in detail in the Guide to the Actor Classes. For now, though,
we can still improve on the printOn method Point defines, and add it to Point 3D
very easily.

The first step is to get the source code for the Point version of printOn into the
Browser edit window; by now you should know how to do this. In case you don’t have
your computer with you, we’ll reprint it for you here:

/* Print the Point in x@y format
onto the specified stream. */

Def printOn(self, aStrm)

{ printOn(x, aStrm);
nextPutAll (aStrm, "@");
printOn(y, aStrm);

}

If you stare at this code for a little while, you may get a sense of what it does, keeping in
mind that the result is that a Point object looks like 1008200 in the Workspace.
Without understandmg it fully, we can make an educated guess at how to expand it for
the extra piece of data that Point 3D objects have.

First, as when we were defining the z method, you need to select the entire
printon method you see before you, and copy it to the Clipboard. Now, select
Point3D in the class list, and then paste the printOn method back into the edit
window. (This will soon become a familiar sequence to you.) Because we are simply
expanding this method a little for Point 3D, everything you have already stays the
same. You can take two different approaches to add to it. You can either type in the
extra two lines it needs, or use the mouse to "Cut and Paste” the two lines into place. In
either case, this is what you want when you are finished:

/* Print the Point3D in x@y@z format
onto the specified stream. */
Def printOn(self, aStrm)
{ printOn(x, aStrm);
nextPutAll (aStrm, "@%);
printOn(y, aStrm);
nextPutAll (aStrm, "@");
printOn(z, aStmm);
}

If you try the first approach, typing in the two lines, you’ll probably notice the auto-
indent feature of the Browser edit window. If you press <CR> at the end of a line in the
Browser, the new line will automatically indent the same number of spaces as the line

1.7: The Browser

before it. This is a convenience when you are working on a large method with a lot of
nested control structures.

If you try the "Cut and Paste" approach, you can make use of another feature of the
Browser: aufomatic method formatting. Every time you paste something into the Browser
window, you may or may not end up with a well-formatted piece of code. You can

~ always select Reformat under the Edit menu (or press Ctrl-R, which does the same

~ thing). The Browser will reformat the method text in a readable, consistent style. If you
would like to see how this works, then follow these steps, starting with the printon
method you copied from Point (the shorter of the two shown above):

1. Select the entire line nextPutAll (aStrm, "@"); with the mouse and
copy it to the clipboard.

2. Position the caret (with the mouse) at the end of the last line, printon (y,
asStrm) ;, right after the semicolon.

3. Choose Paste, which simply appends the line from the clipboard to the end

" of the last line.

4. Now select Reformat, under the Edit menu (or use Ctrl-R), and see the first
reformatting of the method take place. Now you have four lines in the

method.

5. Select the third line of the method, printOn(y, aStzrm);,and copy it to
the clipboard.

6. Position the caret at the end of the last line, nextPutAll (aStrm, "@%);,
right after the semicolon.

7. Choose Paste and then Reformat again, and see the final reformatting of the
method. Each statement has its own line, and the method is very easy to
read.

Following these steps, you have not yet needed to use the keyboard to repair the
printon method. There is one additional fix that is necessary, though. Can you figure
it out? You need to change the "y" in the last line to a "z", so that the method will show
us all three values of a Point 3D object. An easy way to change it is to select the "y" with
the mouse, and then just type a “z." Now you should have the expanded version of
printon shown above.

Next, click on Accept! to add the method to the class and the class source file. If
there is an error, you will see a notification of it right in the Browser edit window,
similar to the kind you have seen in the Workspace. Just fix the problem and try Accept!
again. The Browser will not change the Point 3D class source file until it is able to
~ compile the method successfully.

\ Incidentally, we could have made the printOn method a lot shorter by getting a little
~ fancier. Even though we redefined the printOn method in class Point, we can still use it.
All we have to do is send a message to self (in other words, to the same receiver), and
explicitly state the class that we want the method from:

54 Chapier 1: Introducing Actor: A Tutorial

/* Print the Point3D in x@y@z format
onto the specified stream. */

Def printOn(self, aStim)

{ printOn(self:Point, aStmm);
nextPutAll (aStrm, "@");
printOn(z, aStrim);

}

In the first line, we invoked Point’s version of the printon method (by sending a
printOn message to self :Point) to do the work of printing the first two coordinates.
Then, we only had to add the extra code for the z coordinate. You'll often find that in
redefining an ancestor’s method, you can invoke the old method to do some work, and
then add some custom code. Any time you see the form name : className, the code
actually is using a feature known as early binding. A deeper explanation of early binding
is in chapter 3.

1.7.15 Using Point3D

We now have two object methods in the class Point3D, z and pxintOn. If you
have been following this part of the Tutorial closely, and have not left Actor since you
made a Point 3D object and assigned it to P2, then you are in for a little surprise. Try
this:

P2 <CR>
nil@nil@3o

P2 now has "learned" how to show itself! It is the same object that we created before,
but now it has a new printon method that Actor uses to display it in the Workspace. It
is not necessary to create a new object to get this power. Any existing Point 3D objects
can immediately take advantage of our improvement the moment we add it. Thisisa
dramatic demonstration of the power of late binding.

You can set the values of the other instance variables of P2 if you like, in order to see
a typical 3-dimensional point representation. For example, you cansay P2.x := 50
and P2.y := 40, and then P2 looks like 50@40@30. You can use the x, y,and z
methods to retrieve these values:

x(P2) <CR>
50

y(P2) <CR>
40

z (P2) <CR>
30

1.7: The Browser = 55

Otherwise, there isn’t much else you can do with a Point3D object that you can’t do
with a Point object. The other object methods in Point communicate with MS-
Windows about placing and displaying points, and drawing lines between points, but
all of this is in two dimensions. If you have a scheme for displaying a point in 3
dimensions in a window, then you can define new draw, 1ine, and 1ineTo methods
for Point 3D that use it. That’s up to you.

We can make one final improvement, though. You have seen how cumbersome it is
to define a Point or Point3D object, and then assign the values of the coordinates.
Actually, there is a much easier way, at least for 2-D points:

Pl := point (5, 10) <CrR>
5010

The point message is sent to an integer object, 5. It has one argument, 10. If you check
in the Browser, you will see that Int does define a point method, although it happens
to be a primitive. However, you can see a similar definition by looking at the point
method in the Number class, the ancestor of Int. Here is a high level method that
shows you how to make convenient methods such as point that will do all of the work
for you. You can send a point message to any number (Int, Long, or Real), and it
will return a Point object with the two coordinates indicated. If you are interested in
keeping the Point 3D class around, then naturally you want the same convenience for
Point3D objects.

It is easily done. In fact, if you are looking at point for the Number class in the
Browser edit window, all you have to do is change a few things to get a new method,
point3D, that will let you send a message such as point3D (10, 20, 30) and get
back a ready-to-use 3-D point object. We will not go into great detail here, because it is
very straightforward, but we will outline what you have to do to the point method in
the edit window before you Accept it:

Change the name of the method from point to point3D.

Add a zVal incoming argument after yval.

Change Point to Point 3D (the receiver of the new message).

Add an assignment statement to set the value of z, similar to the one for y.
Edit the comment.

A wWN =

If you do all of these things, and then Accept the method, you will now have a
convenient way to produce Point 3D objects. In this case, the receiver of the point3D
message must of course be a number, i.e., an integer, real, or long, since that’s the class
we have added it to. But the 2 arguments can be any Actor objects, because the method
doesn’t care what they are, it just assigns them to the instance variables yand z. For
example, you can now say something like:

point3D (12, "Testing", Rect) <CR>
12@"Testing"@Rect

56

Chapter 1: Introducing Actor: A Tutorial

This characteristic increases your potential use for the class Point 3D, since its objects
can really hold any three objects together as a unit, and sometimes that's exactly what
you need.

1.7.16 The Browser Accelerators

We have mentioned that you can use accelerators for some of the editing steps while
working in the Browser. If you look at the Browser Edit pull-down menu, you will see
that five of the edit functions have accelerator key equivalents. Here is a summary of
these accelerator keys and their actions:

Key Function
Del Equivalent to Cut

gray + Equivalent to Copy
Ins Equivalent to Paste
Ctrl-A Select all of the text

Ctrl-R Reformat the method

1.7.17 Browser Summary

There are some additional things you should know about the Browser, but in
general, you have seen it do what it is designed to do. We'll now summarize some of
the things you have seen and also some of the things you have not.

1. The Browser is a very useful learning tool for Actor. You can see a great deal
of source code for the methods that come with the system while you send the
corresponding messages in the Workspace. You can find out more about a
class by selecting its name in the class list and then choosing About the class
under the Options menu.

2. Youcan add a method to a class by selecting the class in the class list,
choosing New method under Templates, editing the method template, and
then clicking on Accept!. The Browser will compile the method and add its
source code to the class source file.

P

1.7: The Browser

. You can edit any method by selecting its name in the method list, editing it
in the Browser edit window, and then Accepting it. Again, the Browser will
compile the method, which will then replace the old one in the system, and
the new source code for the method will replace the old in the class source
file.

. You can create a new class by selecting a class (in the class list) as the
ancestor, choosing Make descendant under Options, and filling in the
information in the dialog window that then appears. When you click on the
Accept button with the mouse, the class is added to Actor, and a new class
source file is created. You can then proceed with (2) and (3) above to add
and/or refine methods for the class.

. The Browser lets you look at both the class methods and object methods for a
particular class. If there are any class methods, there will often be only one: a
new method, for producing instances of the class. If there are none, it’s
because an ancestor class’s new method is sufficient.

. The Browser provides automatic formatting of methods so that they will be
readable and also fit nicely into the edit window regardless of the size you
have chosen for the Browser. Choose Reformat under the Edit pull-down
menu. If you are looking at very long methods, you may want to make the
Browser fairly wide so that you can see more of the method at once.

. The Browser will also let you remove a method or class from the system by
selecting the proper choice under the Edit menu. The class or method to be
removed must first be selected in the Browser. If you remove a method, its
source code will also be deleted from the class source file in the WORK
directory. However, if you delete a class, its source file will remain for future
use or reference. You can of course delete the class file itself using DOS (or
the MS-DOS Executive, if you have the commercial version of MS-Windows).
A class source file gets its name by taking the first eight letters of its name
and adding a .CLS extension to it.

. Anything you do with the Browser, that is, adding or changing methods
and/or classes, is done on a temporary basis. All changes are recorded in
copies of the affected class source files and stored in the WORK subdirectory.
If you want to save your work, you can take a snapshot of the system. This
action will write the entire system to the hard disk as a new image file with a
JIMA extension, and move all of the modified class source files from WORK
to CLASSES. The old class source files are first copied from CLASSES to
BACKUP for safety reasons. The goal is to keep the system that you work
with in sync with the source code you see in the Browser edit window.

57

58 Chapter 1: Introducing Actor: A Tutorial

9. After working with the Browser, it is a good idea to do a static garbage
collection, by sending the message cleanup (). This is especially important
if you re-compile any methods, since you will then want to reclaim the space
taken up by the old versions of re-compiled methods.

1.8 An Introduction to Actor Classes

In the next chapter of the manual, The Guide to the Actor Classes, there is an
extensive discussion of the wide variety of predefined classes and methods that come
with Actor. However, so that you'll get a sense of what Actor can do, this section will
illustrate the capabilities of a few of the Actor classes. At the end of this section, which
is also the end of this chapter, you can find out a bit about how Actor interacts with MS-
Windows. You'll even define a new window class and watch it in action.

181 Indgxed Collections

Although you may never have heard them referred to as such, you’re probably
already familiar with the concept of an indexed collection. An indexed collection is just
an object whose individual elements are accessed by specifying an integer subscript or
offset. The only kind of indexed collections that most languages define is the array. In
many languages, the individual element of an array is specified by saying the name of
the array, followed by an integer in square brackets. For example, in C, Pascal, Basic, or
Fortran you could have an array called Students, and you could access an element of
Students by saying Students{14].

Actor is not any different, because instances of the Array class behave much like
their counterparts in other languages. In addition, Actor also lets you specify literal
Array objects—-much like we specified literal Point objects earlier—as follows:

#(5 7 9 "Hello"™ 23) <CR>
Axrray(5 7 9 "Hello" 23)

However, Actor has more kinds of indexed collections than just arrays. There are
OrderedCollection objects, which maintain chronological ordering in their elements.
There also SortedCollection objects, which maintain all of their elements in some
kind of sorted order. String objects are indexed collections of characters, and you can
communicate with MS-DOS and other languages via an indexed collection of bytes
called a Struct.

1.8: An Introduction to Actor Classes

Each of them is alike in the fact that you specify the name of the object, followed by
an integer offset surrounded by square brackets, e.g. Sam[11]. For example:

Sam := #(10 9 7 "Joe") <CR>
Sam[0] <CR>
10

This example also illustrates another fact about indexed collections: All the indices start

at zero, as in C. The last element of Samin the example above is "Joe", located at
Sam[3].

: Some kinds of indexed collections respond to an add message. To see how add

works, first we must create a new OrxderedCollection object and specify how many

elements we need:

Sam := new(OrderedCollection,2) <CR>
OrderedCollection ()

Now we can send some add messages to Sam, telling it to add some things to itself:

add(Sam, 13) <CR>

OrderedCollection (13)

add(Sam, "I'm a string") <CR>
OrderedCollection(13 "I’'m a string")

add(Sam, #(1 2 5)) <CR>

OrderedCollection(13 "I’m a string" Array(l 2 5))

With the last add message, you should note a few things. First of all, we only
allocated space for two elements when we created Sam, yet Sam didn’t object when we
added the third element to it. That's because some kinds of collections will grow if you
try to add more elements than there are room for. Another thing you can note is that we
added an Array object to Sam. There’s nothing wrong with adding another collection to
Sam, because OrderedCollection objects, as well as other types of collections, can
have any kind of object as an element.

SortedCollection objects are also very handy. Let’s create one and add some
things to it:

Sam := new(SortedCollection, 5) <CR>
SortedCollection ()

add(Sam, 10) <CR>

SortedCollection (10)

add(sam, 25) <CR>
SortedCollection (10 25)

add(Sam, 4) <CR>

SortedCollection(4 10 25)

59

60 Chapter 1: Introducing Actor: A Tutorial

SortedCollection objects will also grow if they need to, although in the example
above, Sam didn’t need to. SoxrtedCollection objects have the requirement that their
elements are homogenous, i.e. either all numbers, all strings, etc. You couldn’t have a
SortedCollection with the same elements as the OrderedCollection we made
above, for example.

1.8.2 Sets

Remember the mathematical definition of a set? It’s a collection of items, all unique.
In the set of the months of the year, there aren’t two Decembers, for example. Atany
rate, the concept of a set is very powerful, but most programming languages, if they
implement sets at all, don’t really come close to the mathematical definition of a set.
Pascal sets, for example, can only contain a certain number of elements, and you're
restricted as to what they can contain.

Actor has a Set class, too, but it’s much more powerful and comes close to fulfilling
the mathematical definition of a set. An Actor Set is restricted only by available
memory and the maximum number of elements, 16K-1, allowed for any collection. For
example:

Sam := new(Set, 10) <CR>

Set ()

add(Sam, 38) <CR>

Set (38)

add(Sam, "Microsoft") <CR>

Set ("Microsoft" 38)

add(Sam, 38) <CR>

~Set ("Microsoft" 38)

add(Sam, #(3 4 "Joe")) <CR>

Set ("Microsoft" Array(3 4 "Joe") 38)

Note that you can’t add more than one of the same element to a Set, just as it should be.
Also, note that Set objects are inherently unordered, and if you try the above example,
you may very well get a different order of elements than you see above.

The major operation defined for Actor Set objects is the membership operation,
defined by the in method. It's a boolean method in infix format that returns logical true
if the specified element is a member of the Set (specifically, it returns the element back
again). Here are some examples:

1.8: An Introduction to Actor Classes 61

38 in Sam <CR>

38

"Curly" in Sam <CR>
nil

"Microsoft" in Sam <CR>
"Microsoft"

1.8.3 Keyed Collections

In an indexed collection, you access individual elements by specifying the name of a
collection and an integer offset. Keyed collections, on the other hand, are a bit more
general. They allow any kind of object, not just integers, to be a subscript, or key, to a
collection. For example, you might want to have a keyed collection called Nations
where the subscripts—keys—are the names of nations, and the values are the capital cities
of those countries.

You can do this easily with Actor keyed collections. Let’s create a specific type of
keyed collection called a Dictionary and add some things to it:

Nations := new(Dictionary, 10) <CR>
Dictionary()

Nations["France"] := "Paris™ <CR>
Dictionary("France")

Nations["USA"] := "Washington, D.C." <CR>
Dictionary("France" "USA")
Nations["USSR"] := "Moscow" <CR>
Dictionary("France" "USSR" "USA")

In each of these examples, the countries are the keys, e.g. "USSR" and "France", and
the values are the capitals of those countries.

Keyed collections are very powerful and used throughout the Actor system. In fact,
there is an object called Actor that you've been using all along, but you haven’t noticed
much. The object called Actor is aDictionary object, and contains all the global
variables—including the Actor classes—for the Actor system.

When you type something in the Workspace, and you see the dialog box that asks if
some symbol should be made into a global variable, it’s actually saying something else.
When you see the "Undefined name" dialog box, what it’s really asking is "should I

make <symbol> a key in the Dict ionary object called Actor?”
: For example, when you say

Test := 3 <CR>
and answer "Yes" to the dialog box’s question, what you are really saying is this:

Actor[#Test] := 3 <CR>

62 Chapter 1: Introducing Actor: A Tutorial

The # sign in front of Test is there because you are assigning a name to Test, and
whenever you explicitly refer to an object’s name rather than the object itself, you have
to use a # sign in front of it. You'll find out more about this topic in the next chapter of
the manual, but for now this explanation is sufficent.

The reason we bring up this Actox [#Test] business now is that hereafter in this
documentation, you'll see new objects created in the above manner, rather than the way
you've seen so far. If you prefer, you can keep on doing it the old way, answering the
dialog box occasionally. However, remember when you are doing so that actually you
are assigning a key to a value in the keyed collection Actor.

In the next section, we’ll discuss a subject you probably have been waiting for:
windows, and an introduction to using them in Actor.

1.8.4 Windows

When we talk about a window in Actor, we are, most importantly, talking about yet
another kind of object. In addition, we are talking about one of the great variety of
window types that Microsoft Windows (MS-Windows) provides. Thanks to object-
oriented programming, the two views can be considered as one and the same.

The underlying difference between window objects and most other objects, such as
integers, rectangles, and strings, is that the actual window as you see it on the screen is
‘owned"by MS-Windows. In other words, most of the data for the window, including
all of the graphical information it presents, is kept by MS-Windows, and usually not in
the data area of the Actor window object. The reason for this is efficiency—it would be
wasteful to keep two copies of the same thing, and MS-Windows already has one.
Regardless of which language you might use to program with MS-Windows, you would
take the same approach to managing windows as far as memory usage is concerned.

Since MS-Windows "owns the window," it provides us with a value, called a handle,
that we use to refer to it. This is the most important value that the window object
contains. It is kept in an instance variable of every Actor window object called hWnd,
which stands for "handle to the Window." It is literally a way for us to "get hold" of the
actual window in MS-Windows.

Having said this about handles and windows, we can add thaf you can treat
window objects as if they were the physical windows that you see on your screen. The
handle helps make managing the window object transparent. The methods that are part
of the window classes have been designed to maintain this "disguise,” and greatly ease
the process of creating and manipulating windows.

‘Windows naturally play a very important part in any application designed to run
under MS-Windows. The Actor programming environment itself is a very good
example. When Actor first starts, the most significant action that takes place is the
creation of the Display and Workspace windows. Once these two windows are created,
everything else is up to the user—you, the programmer. When you type in the
Workspace or start an inspector, you are communicating through MS-Windows to the

1.8: An Introduction to Actor Classes

Actor windows themselves, as regular Actor objects, and the windows respond. This is
generally the way all Actor applications will begin, by creating one or more windows
and presenting options to the user with menus and controls.

1.8.4.1 Creating Window Objects

There are several window classes in Actor, and the Window class is at the top of this
part of the class hierarchy. If you look at this class with the Browser, in hierarchical
mode, you will see how the other window classes are related. Naturally, as you descend
from Window, the classes produce more and more specialized windows until you come
to the Browser and Inspector classes, which are very specialized. Let’s start out with
the most basic kind of window you can make in Actor, an instance of Window itself.

You make such an object by sending a new message to Window. For example:

Actor[#Wind] := new(Window, nil, "Test Window") <CR>
<a Window>

Notice that in addition to Window as the receiver, this message includes two arguments.
The first one, nil in this case, could be the name of a menu if you want this window to
have one. If you don't, then nil indicates this. (For now, don’t specify anything but

- nil for the first parameter. MS-Windows isn’t very forgiving when you specify the
_ name of a nonexistent menu-it crashes.) The second parameter is a string that gives the
title (also called the caption) of the window, which will appear at the top of it in the
caption bar. Now that you have created Wind, all you have to do is show it:

show(Wind, 1) <CR>
<a Window>

Now you see how Wind, the newly made window object, displays itself, finding a
space on the screen along with the Actor Display window and any other "non-popup”
windows. In the terminology of MS-Windows, what you have created is a tiled window.
As you know, a tiled window, such as the Actor Display, looks and behaves differently
than popup windows, such as Browsers, Inspectors, and the Workspace. Instances of
Window are always tiled windows.

What can you do with Wind? Not a whole lot. You can’t type into it, or draw in it
with the mouse. You can use it to display graphics objects, as we’ll see a little later. And
you can move it around or make it iconic (change it into an icon) by pulling down its

system menu and choosing Icon.
g There are a couple of things you can find out about Wind by sending it some
messages. If you send clientRect (Wind) you will get back a Rect object that lets
you find out the size of the usable area, or client area, of Wind, or any other window
object you have. The client area is basically the part of the window that isn’t the caption

63

64

Chapter 1: Introducing Actor: A Tutorial

bar or menu. You can find out what the handle to Wind is with handle (Wind).

- Remember that this is the unique number we use to tell MS-Windows what window

we're talking about.

The Window class is just a starting point for windows in Actor. If you look at it with
the Browser, you'll see that it has a lot of methods, but they generally just provide a base
for its descendant classes, which add more power and let you make windows that can
be very useful. Let’s try some of these. (If you want, you can close Wind by double-
clicking on the system box in the upper left corner of the window.)

1.8.4.2 Making an EditWindow

The EditWindow class lets you make window objects that you can type into and
use the mouse to edit text. In the new message to EditWindow, we will include the
name of a menu so that the window will be more useful:

EW := new(EditWindow, "editmenu", "Sample EditWindow") <CR>

(Again, MS-Windows is very picky about menus. Be careful to type the first parameter
exactly as you see it above.) If you send the same kind of show message to EW that we
sent to Wind, namely show (EW, 1), you will see what EW looks like. Notice that it has a
menu bar, and that it contains a pull-down menu called Edit. If you have used mouse-
driven word processors like the MS-Windows Notepad or Windows Write, then you
have seen a menu like this before. If you activate EW by clicking the mouse in it
anywhere, then you can type into it from the keyboard. (The active window is the one
with the highlighted caption bar.) You can use the mouse to select some of the text that
you have entered, and then use the pull-down Edit menu to Cut, Copy, Paste, or Clear it.

When you enter text in an edit window, press <CR> to get to a new line. By now
you have gotten used to the fact that pressing <CR> in the Workspace window will
execute the line you are on. This is special behavior for that window, but EditWindow
objects just move to the next line, just like any text editor would do.

EditWindow objects use the Clipboard when you select Cut, Copy, or Paste, so that
you can pass information to other windows—not only those created in Actor, but even
other MS-Windows applications such as the Notepad window. Try this using EW and
the Workspace. If you select some text in EW, and then copy it to the Clipboard, you can
then activate the Workspace, and paste the text into it. And, of course, you can do the
same in the opposite direction, copying text from the Workspace into EW. Although our
sample edit menu doesn’t show it, you can also use certain accelerator keys with edit
windows. Specifically, you can use the Ins key to paste, the Del key to cut, the gray +
key to copy, and Ctrl-A to select all of the text. The Tab key will indent two spaces.

EditWindow objects (and therefore objects of descendant classes) contain a copy of
all of the text that you see displayed. It is stored in a kind of collection that is an
instance of the TextCollection class. This allows edit windows to redraw
themselves if they are moved, or made iconic and then redisplayed. Try making your
EW object iconic and then redisplay it to see how this works.

1.8: An Introduction to Actor Classes 65

You may have noticed that the Actor Display window can’t do this. It has no copy
of the information it displays in the window object itself. The reason? For one thing, the
Display window is an instance of the WorkWindow class. If you look at the class
hierarchy, you'll see that WorkWindow is not descended from EditWindow, so
. WorkWindow objects don’t inherit the ability to store their text.

f The practical reason why the Display window has no ability to redraw is that

" keeping all of its text around would be very costly in memory, and it would slow
printing down quite a bit. You could easily add to class WoxkWindow the ability to
redraw text, if you were willing to live with the consequences. For the current version of
Actor, we felt that not keeping text was an appropriate design decision.

Remember when we used the Inspector to look at an EditWindow object? During
these introductory remarks about windows, you may benefit from using the Inspector to
find out more about what windows are made of. Start an inspector on any window
object and look at its instance variables. If you try this with Wind, from the previous
section, you'll see that it has only a few instance variables, which is one reason why the
window is limited in its capability. If you send the message
inspect (TheApp .Workspace), you can inspect the Actor Workspace window, which
is far more complex.

1.8.4.3 MS-Windows Window Classes

, Something else may have caught your eye about edit windows. When you move the
~ mouse cursor over EW, it will change from the arrow pointer to the I-beam type, which is
better for working with text. You have already seen this for other windows ih Actor,
such as the Workspace or the edit windows of the Inspector and Browser. As it turns
out, objects of the EditWindow class or of any of its descendant classes (WorkEdit,
BrowEdit, Workspace) have the I-beam cursor. They actually inherit it, as a property
of the EditWindow class itself. But there is a subtle difference in the way this
inheritance actually works.

It so happens that MS-Windows has its own concept of window “classes” that
vaguely resembles the Actor object-oriented concept. This can be confusing, but most of
the time you only need to think about Actor’s window classes. In MS-Windows, a
window class specifies the default properties of a window, which include the window
cursor style and the window icon, among other things. When you create a window by
sending a new message to an Actor window class, the window actually comes into
being by asking MS-Windows to create it. In the request, a MS-Windows window class
name is specified, such as "ListBox." When MS-Windows creates the window, it looks in
" the window class for the window properties, and makes the window accordingly.

When Actor first starts up, before any windows are produced, it registers two new
window classes with MS-Windows, namely "ActorWindow" and "EditWindow" (which
is not the same as the Actor class EditWindow). At this time, the default properties for
the two classes are given to MS-Windows, which keeps track of them in its own
memory. This is where the two different cursor styles (pointer and I-beam) and the
Actor icon are specified. While you move the mouse around, one of the many things

66 Chapter 1: Introducing Actor: A Tutorial

that MS-Windows does is keep track of where the mouse cursor is, and when it moves
over a new window, the cursor style is changed to the one specified in the registered
window class for that window.

To find out which registered window class MS-Windows should use for creating a
window, a wndClass message is sent to the Actor window class that was sent the new
message. Look at these examples:

" wndClass (Window) <CR>
"ActorWindow"

wndClass (WorkWindow) <CR>
"ActorWindow"

wndClass (EditWindow) <CR>
"EditWindow"

wndClass (Workspace) <CR>
"EditWindow"

Classes that return "EditWindow" will produce windows that have the I-beam cursor.
This includes EditWindow and all window classes that descend from it. Every other
window in Actor will have the pointer cursor. (You can look at the class methods (as
opposed to object methods) of the window classes with the Browser, and see that only
two classes, Window and EditWindow, define the wndClass method. Inheritance takes
care of the rest.) If you want to use some other kind of cursor, or some special window
icon, you can register your own window class with MS-Windows in the same way that
Actor does. This process is explained in the Advanced Topics part of this manual.

1.8.4.4 Making a PopupWindow

A popup window, as you have seen, does not "tile" itself onto the screen the way the
previous examples do, but rather it lays on top of any other windows that may exist in
the system, including other popup windows. The active popup window will be the one
on top. The PopupWindow class lets us make one of these. Again, we send a new
message, but there are more arguments this time. We need a valid window object for
one of them--hopefully you still have EW on the screen, for the EditWindow example. If
not, make it again. Then we can send the following message:

PW := new(PopupWindow, EW, "editmenu", "Popup Example",
nil) <CrR>

There are two more parameters required for this style of window than for the tiled
kind. You'll notice that we supplied another window object, EW, as the first parameter in
the new message to PopupWindow. This is because of a restraint MS-Windows places
on popup windows: they must have a parent window. The parent window is a window
that exercises some special control over some other window or windows, each of which
is referred to as its child window.

= Popup Example ©

Edit

Figure 1-16: A PopupWindow object with an edit menu.

1.8: An Introduction to Actor Classes

A good example of a parent window is the Browser window. Its child windows
include the two list boxes and the edit window underneath. Notice how when you
move the Browser, the three child windows move with the parent window. This is just
one aspect of the child-parent window relationship. The Browser window, sinceitis a
popup window, also happens to have its own parent window, the Actor Display

window.

We have said that we are supplying EW as the parent parameter in the new message
we send to PopupWindow. A good way to see the result of doing this is to first show PW
in the usual way, with the message show (PW, 1). Now you should see it laying on top
of the other windows, including EW. Now make EW iconic, and notice what happens to
PW. When you make EW visible again, PW also reappears. This is simply because EW is
the parent window of PW.

After EWin the new message above, we have "editmenu", which is the name of our
sample Edit pull-down menu. In this example, manipulating the menu will not have
any effect, since a PopupWindow object does not have the technology to respond to
input. Then follows the name of the window, which as usual appears in the caption bar.
The last argument in this example is nil, but we could have substituted a Rect object
instead, to tell MS-Windows where to put the popup window. This information is
necessary, since popups can be anywhere on the screen and don’t follow a default tiling
pattern. When you supply nil instead of a rectangle, the new method for
PopupWindow figures out a reasonable size and location for the window, based on your
" screen resolution. This is what determines where the Browser window first appears.

Instead of ni1, we could have specified another location with a Rect object. There
are several ways to get such an object, as you probably know by now. The easiest is
with the rectangle literal form, using the symbol & followed by four numbers in
parentheses:

&(20, 50, 120, 120) <CrR>
Rect (20L 50L 120L 120L)

In this form, the four values must be numbers or constants. The numbers correspond to
the left, top, right and bottom coordinates of the rectangle. If we substitute this
rectangle literal for the nil in the new message to PopupWindow, the window would
appear at the screen location specified by the coordinates. If you would like to try this,
close PW and then create another popup window, using the same new statement except
for the rectangle literal replacing nil. When you send the show message, you'll see the
difference.

~ 1.8.4.5 Displaying Graphics Objects
Earlier we said that although objects of the Window class can’t do much, they can be

used to display graphics objects, such as rectangles. Any window can be used for this
purpose, but if that’s all you want to do, then Window objects are a good choice. They

67

68

Chapter 1: Introducing Actor: A Tutorial

are no bigger than they have to be (in terms of the number of instance variables), and the
Window class provides the necessary methods for this purpose.

The first thmg to do is to create a window object and show it. Remember the steps?
Here they are again:

Wind := new(Window,‘'nil, "Sample") <CR>
show(Wind, 1) <CR>

We also need a graphics object, such as a rectangle. We can do this most easily by using
the Rect literal form:

Rl := &(20, 30, 100, 120) <CR>

Before we can draw the rectangle, we need one more thing, called a display context that
we get from Wind with this statement:

DC := getContext (Wind) <CR>
Now we can display R1 in Wind, by sending the following message to R1:
draw(R1l, DC) <CR>

The only thing that is not straightfoward about this procedure is the part about the
display context (a feature of MS-Windows), which we have in the variable DC. Briefly,
you need to get a display context for any window that you draw something in, whether
it is text or graphics, before you can do the drawing. Among other things, a window’s
display context provides a way for MS-Windows to manage multiple applications’
access to the display screen. Once you have it, you can use the same one to draw as
many things as you want in the window. When you are finished drawing, you should
release the display context, because there is a limit to how many of them can be "checked
out” at one time. You can release the context DC with this message:

releaseContext (Wind, DC) <CR>

The display context has several other qualities and is actually a very powerful device
that facilitates the use of graphics in windows. We cover it in more detail in chapter 3,
Guide to the Actor Classes.

1.8.4.6 A Window’s Role in an Application

Earlier, we mentioned that when Actor starts up, the action that "gets the ball
rolling" is the creation of the two windows, the Display and Workspace. After that,
nothmg happens until you interact with the windows in some way. MS-Windows is an

‘event driven” environment that allows a great deal of ﬂexnblllty to the user and at the

1.8: An Introduction to Actor Classes 69

same time can simplify the design of an application. Actor, as an object-oriented
programming language, lets you make the most of this situation.

As you have seen, you can easily create a window object and then display it by
sending the show message to it. Once the window is displayed, you know that you can
send other messages to it, for example handle or clientRect. Well, MS-Windows
can send messages to it also! This is an extremely useful and convenient virtue of
* window objects.

As you look at the various window classes with the Browser, you will certainly
notice that some of the methods have unusual looking names. As you may have
noticed, the usual convention for naming methods in Actor is that they begin with a
lower-case letter. But many of the window classes have method names like WM_CHAR
and WM_CLOSE. Whenever you see a method with a name like this, starting withawM_,
you are lookmg at a method designed to respond to messages from MS-Windows.
There are great many of these (see Appendix F for a complete list), but the Actor
window classes only need to define the ones that are necessary for the window objects to
behave properly.

For example, the EditWindow class has a WM_CHAR method, because MS-Windows
sends a WM_CHAR message to an edit window ob]ect whenever the window has the input
focusand a key is pressed. (Actually, pressing a function key or an arrow key, for
example, will not generate a WM_CHAR message. Most other keys will, however.) Many
window classes define the WM_SIZE method, because MS-Windows sends this message

. to a window if its size has been changed. If a menu choice is made in a certain window,

~ aWM_COMMAND message is sent to the window. And so on.
) This is the way that MS-Windows informs the application that something is
happening with a window--it sends a message directly to the window. If the application
needs to respond, all you have to do is write the appropriate method. The Actor
window classes include many good examples, and you can learn a lot by looking at
these classes with the Browser. (We’ve simplified things a bit here. MS-Windows
actually places its WM __ type messages on something called the message queue, and then
Actor takes it from there. It’s all covered in the Guide to the Actor Classes, section
2.114.)

1.8.4.7 Creating a New Window Class: Scribble

In an effort to bring together several of the ideas that we have just presented about
windows, and to provide a showcase for the Browser as well, we would now like to
show you how to create a new window class, give it a few methods, and then have some

" fun with it. The name of the class will be Scribble, and it will be able to produce
~~ window objects that you can scribble in with the mouse. Considering the small amount
of effort it will require, the Scribble windows can be a lot of fun.

The first thing to do is open a Browser by selecting Browse! from the Workspace
menu. Once your Browser is up, select the Window class. We are going to make a
descendant class of Window, so choose Make descendant under the Options menu.
When you see the About Class Dialog, do the following three things:

70

Chapter 1: Introducing Actor: A Tutorial

1. Type the new class name Scribble in the blank box labeled "Name."

2. Click the mouse in the "Variables" box, and type the word dragDC in there.
This is the only additional instance variable we need.

3. Click the Accept button.

If everything goes OK, you should see the Browser window again, and the newly
created class, Scribble, should appear as the selected class. Before we add any
methods, we can make an instance of Scribble and display it. Execute these two lines
in the Workspace:

SC := new(Scribble, nil, "Scribble") <CR>
show(SC, 1) <CR>

If you hold the left mouse button down while you move the mouse around over the
newly displayed window, nothing will happen. We could just as well have made an
instance of Window. But when we add a few short methods to Scribble, we'll seea
difference. We'll just add them now, watch them work, and explain how they work
later.

The first method is beginDrag. With the Scxibble class selected in the Browser,
select New method under Templates, and then edit the text until it looks like this:

/* Initialize dragging. */

Def beginDrag(self, wP, point)

{ Call SetCapture (hWnd);
dragDC := getContext (self);
moveTo (point, dragDC);

}

When you are ready, click on Accept! to add the method to the class. If there is an error
in compilation, it will be detected and Actor will tell you what itis. Fix it and try again.
When you hear the disk access, that’s the signal that the method compiled safely. For
the next method, you can start from scratch, but it will be easier if you leave the text for
beginDrag in the edit window, and just change it so that it becomes the endDxrag

" method:

/* Stop dragging. */

Def endDrag(self, wP, point)

{ Call ReleaseCapture (hWnd) ;
releaseContext (self, dragDC);

}

Scribble UWindow

ctor ¥

Figure 1-17: A Scribble window.

1.8: An Introduction to Actor Classes

Accept this method too, and check to make sure that the method list box shows two
method names, beginDrag and endDrag. Finally, edit the method one more time to
produce the drag method:

/* Track the mouse. */
Def drag(self, wP, point)
{ lineTo(point, dragDC):;
}

Once you Accept! this final method, you can go back to the Scribble window and see
what happens as you move the mouse across it while holding down the left button.
Here is another example of how objects seem to "learn" how to do things when you add
methods to their classes.

1.8.4.8 Scribble Explained

How does it work? For the first clue, look at the Window class with the Browser,
and especially the three methods WM_LBUTTONDOWN, WM_MOUSEMOVE, and
WM_LBUTTONUP. These three methods respond to the messages of mouse achvxty sent
by MS-Windows to the window object where the activity takes place. The "L" in the first
" and last method names stands for Left, for the left mouse button. The three methods in
turn send, respectively, the beginDrag, drag and endDrag messages to the window
object. Notice that these three methods are also defined in the Window class, but they
are just "dummy" methods there. If they were not defined, then an error would occur as
you drag the mouse in a Window object, and you see an error message such as "A
Window does not understand beginDrag." Now we have redefined them to cause lines
to be drawn from point to point as you drag the mouse around the window.

When you first press the left mouse button, MS-Windows sends a
WM_LBUTTONDOWN message to SC, the Scribble object, which inherits the method by
that name from Window. This method then sends the beginDrag message to SC, and
the method we just defined handles it. The first statement in the method, Call
SetCapture (hWnd), tells MS-Windows that SC, the window whose handle is hWnd, is
going to receive all mouse messages until further notice. This lets you move the mouse
outside of the window boundaries without activating some other window. The Call
word is the way we tell MS-Windows to do something, and it is always followed by the
name of one of the MS-Windows "window functions.” There is list of these in the
Appendix F, and we talk more about calling window functions in the Guide to the

Actor Classes and the Advanced Topics sections.
) The second line in beginDrag gets a display context, and stores it in the instance
variable dragDC so that we will have it available for the duration of the mouse drag.
Let’s jump ahead for a moment and look at what happens when you release the left
mouse button.

71

72 Chapter 1: Introducing Actor: A Tutorial

First, MS-Windows sends a WM_LBUTTONUP message to the window, which then
sends an endDrag message to self. We can see that our endDrag method does the
inverse of the first two lines of beginDrag. Namely, it calls ReleaseCapture, letting
MS-Windows send mouse messages to any window again, and it releases the display
context, since for the time being we aren’t going to be drawing in the window. Now
we'll get back to the rest of the beginDrag method and the drag method, which is
actually the real workhorse.

MS-Windows passes two arguments in all of its window (WM_) messages to window
objects, and they are usually indicated by wP and 1P, which stand for "word parameter”
and "long parameter.” In the three mouse messages named above, the position of the
mouse cursor is passed in the 1P parameter. If you send an asPoint message to this
Long value, you get back a Point object. This point is passed with the drag messages
beginDrag, drag, and endDrag. We can then send the moveTo and 1ineTo messages
to it, since these are methods of the Point class.

In the beginDrag method, the moveTo message sets the current position of an
imaginary pen to the location determined by the point argument. This is an
initialization step, in preparation for receiving numerous drag messages as the mouse is
moved around. Did you notice that the WM_MOUSEMOVE message in Window sends the
drag message? Each time a drag message is received, the 1ineTo message is sent,
which draws a line from the current position up to, but not including, the new location
in the point receiver. Then the current position is reset to point, another drag
message is received, and so on.

1.8.4.9 A Finishing Touch

If you would like to play with the Scxibble window and not have any of the other
Actor windows around, you can make the Display window iconic, which makes all of
the other Actor popup windows invisible for the time being. This happens because the
Display is the parent window for all of these windows. However, your scribble
window, SC, has no parent, so it will remain visible and in fact takes up the entire screen
when you get rid of the other windows.

Now you have a big screen to play with, but there is a small problem. When you
want to erase the screen, your only recourse is to make the screen iconic and then visible
again. This can get a little tiresome after a few times, and it would be nice if we could
just press the right mouse button, for example, to erase the screen. No problem! Just
add the following method to the Scribble class, and you are in business.

/* Erase the screen when right mouse button
is pressed. */

Def WM RBUTTONDOWN (self, wP, 1P)

{ repaint (self);

}

1.8: An Introduction to Actor Classes 73

Now the client area of a scribble window will be cleared any time you press the right
mouse button, even in the middle of dragging. The repaint method, defined in the
Window class, causes the window to be erased and redrawn completely, according to the
behavior of the object’s paint method. Since a scribble object inherits the "dummy"
paint method from Window, the effect is to simply erase the client area.

As you might have guessed, writing an application under MS-Windows requires
some knowledge of what WM- messages are sent to your application and when. You
can learn a lot from studying our examples, but we would also recommend reading the
MS-Windows Programmer’s Reference and Programmers Guide, available from
Microsoft. Fortunately, Actor insulates you from a lot of the overhead that would
normally be required of a MS-Windows application.

1.8.4.10 Deleting the Scribble Class, Bringing it Back

" You have created a small window class that comprises a self-contained "micro-
application." If you create an instance of this class and show it, you have a window that
behaves in a special way. The Scribble window class is limited to providing mindless
entertainment, but the exercise of creating it is essentally no different from the process of
creating any other window class.

As you begin to develop all kinds of new classes as parts of your applications, it is
* important for you to realize what your options are once you have a new class written
and working well. We'll illustrate a typical approach with Scribble, assuming that
you have created it and succesfully compiled its four methods.

For starters, now is probably a good time to perform a static garbage collection. You
may have had to recompile a couple of methods, and by so doing there may have some
static memory that can be reclaimed. Even if you haven't, it’s harmless to do an
occasional static garbage collection, which you can do by sending the message
cleanup (). You'll see a message in the Actor Display reporting how many bytes of
static memory were reclaimed.

Next, take a snapshot. Now, as you realize, the Scribble class is a part of Actor, so
that when you bring it up, you can immediately create and use scribble windows.

Verify this if you'd like. The class source file for the class, named SCRIBBLE.CLS, is
located in the CLASSES subdirectory, ready to be examined by the Browser and
modified if changes are desired. If the Scribble class were a part of a developing
application, you could proceed to develop the next new class, perhaps a descendant of
String or Rect this time.
: In many case, you may have no immediate need for a class that you have created, or
at least you would like the option of having it in the system or not. You have this
~ option, provided by the Browser. Select Scribble in a Browser, and then under the
Edit menu select Delete class. A few moments pass while the class list is reloaded, and
the Scribble class is not listed! If you take another snapshot, you have saved a system
without the Scribble class. You should do a cleanup() beforehand, though, so that the
memory that Scribble was using can be reclaimed. Exit Actor and start it again, and
note that the word Scribble is undefined.

74

Chapter 1: Introducing Actor: A Tutorial

It’s not lost forever, though; it can be brought back into the system at any time.
Select Load under the File pull-down menu in the Workspace. Type the word "classes"
in the edit box, and press <CR> (or, equivalently, double click on the item in the list box
that says [CLASSES]). Now you are looking at a list of all the class source files in the
CLASSES subdirectory, and SCRIBBLE.CLS is still there, because deleting a class with
the Browser does nothing to the class source file. Select the Scribble class file, and
click on Open to load it.

Now once again you can create and use scribble windows, look at the source code
with the Browser, and change the class in any way you want to. In this way you can
build up a vast number of new class source files, while being selective about which
classes are part of the system at any one time.

1.8.4.11 Windows Summary

In this very brief introduction to windows, you have seen how easily a window can
be created, and a few of the things you can do with the window classes that Actor gives
you. You have seen how to create a new window class, delete it from the system, and
reload it. Most of the original Actor window classes were first created to support the
Actor programming environment, but many of these have general use, as with any good
object-oriented design.

In this windows section of the Tutorial, we have covered a variety of topics, but
admittedly in very little detail. There is much more information regarding window
classes and objects throughout this manual, however. The Guide to the Actor Classes
covers the existing window classes in detail, and in particular deals more extensively
with the interaction of MS-Windows and Actor window objects. In the Advanced
Topics section you can find out more about using the Call key word to call the MS-
Windows Window and GDI (Graphics Display Interface) functions. A summary of all of
these functions, and the windows messages as well, is provided in Appendix F. Finally,
the steps for assembling an Actor application are detailed in chapter 4 of this manual,
Building Actor Applications.

2 Guide to the Actor Classes

Remember when you were a child, and either you or a friend of yours had an
ErectorTM set? There were all those nifty pieces, and you could put them together in
different ways to make millions of new gadgets. In some ways, Actor is like an Erector
set because there are all sorts of ready-made pieces for you to put together any way you
wish. The ready-made pieces are called classes, and the true power of object-oriented
programming is realized when you learn how to use each class in the software
development process. This section of the manual, then, is like the instruction booklet for
the Erector set. It will tell you what each class is, how to use it, and when to use it. In
addition, you will get a feel for how and when to define new classes as descendants of
existing classes.

Most of the classes in the Actor system, such as Dictionary, are full of methods
and uses. However, other classes seem to not do much of anything, such as
ByteCollection. These classes really don’t do too much, but are actually "formal”
classes which do nothing but serve as the unifying class for their descendants. Perhaps
the best example of this is class Collect ion below--by itself, it's useless. However, not
only does it serve as the abstract, unifying class for its descendants, it also provides

- some methods which can be universally used by all collections.

Don’t worry too much yet about which classes are important and which are not; that
will become obvious as you read this section. Just remember that if you see a class
which doesn’t seem to do much, it is just another example of one of the "formal” classes
mentioned above. In addition, in the course of explaining some classes, we’ll have to
refer to classes that haven’t been explored yet. Nevertheless, the examples will be fairly
general and won’t rely on any specific facts that you haven’t learned yet.

Just like a lot of other things in the computer world, the Actor classes are arranged
in the form of a free. (See figure 2.1) At the top of the tree you see the class Object.
That's where everything started in Actor, so that’s where we’ll start too.

2.1 Using the System-Wide Methods: The Object Class

As you know, most everything in Actor is an object. That is, the units of data and
the code for processing it are kept together in a single packet called an object. However,
. there is also a class called Object. It basically serves as a starting point (the root) for the
, class tree. You won'’t ever work with objects of class Object, because instead you will
work with classes that are descendants of Object. That sounds somewhat confusing,
but it’s really pretty simple. The root directory of your hard disk is important because
that’s where all your subdirectories come from. However, you don’t spend most of your
time in the root directory because you're usually sitting in a subdirectory somewhere.

76

Chapter 2: Guide to the Actor Classes

While no one works directly with instances of class Object, Actor uses methods
from Object all the time. As you know, Actor features inheritance, which means if you
send a message to a class and it doesn’t recognize it, Actor will pass the message up the
class hierarchy until it finds a class which can respond to the message. The only time
you get an error is when Actor can’t find the method in class Object. Asyou would
expect, the methods which are valid for all classes are thus found in class Object. For
example, all classes respond to messages such as size, class, print, etc; if you
examine class Object with the Browser, for example, you’ll see these methods as well
as many others. In addition, much of the internal workings of Actor is also found in
class Object, such as inspect (activates the "Inspect” item on the Workspace menu
bar), compile (activates the compilation process), and much more. Some of Actor’s
error handling is also found here as well.

The fact that class Object is sort of a "catch-all" class might give you a few clues on
how to use it. If you have a method which you want all objects to be able to respond to,
then place it within Object. However, as a general rule you should consider carefully
what actually goes in Object. Why? As a consequence of inheritance, anything you
put in Object is then available to the whole system, and if you forget that it’s there,
then later on you might have a method working on data it’s not supposed to!

We mentioned above that your applications won’t directly use instances of class
Object. While that's true, you as a developer will use the methods from Object all the
time, although usually it won’t be readily obvious. That’s because many of the
messages that don’t seem to be "aimed" at a particular class are actually handled within
Object. In the sections that follow, we’ll explore some of the methods and concepts
which apply to all objects.

2.1.1 Categorizing Objects

The main goal of this section is to familiarize you with the various formal and
informal categories of objects. In so doing, you will be introduced to some important
concepts, and you will also find out why some classes are where they are on the class
tree.

There are three ways in which you can categorize Actor objects. The first relates to
whether or not the object is a collection, and the distinction is pretty simple. If an Actor
object is not a collection of objects, then it is called an atom. An Actor atom is similar to
nature’s atom in that it is an object which cannot be split and still be a valid object of the
original class (e.g. a Real). A collection can contain collections, and so on, but
eventually everything in Actor breaks down into atoms.

The second and third ways to categorize objects are closely related to each other.
The second is probably the most obvious, and that is that an object is categorized by the
physical location of its class on the class tree. As you know, this structure is a result of
more specialized classes inheriting methods and instance variables from their ancestors.
You might expect there to be a close correlation between classes’ physical location on the
class tree and the ways they are used. In other words, objects of one class should be
used for similar but more specialized purposes than their ancestors would. While this is

Collections and atoms

collection of collections

Figure 2-2: Some collections are made up of other collections,
and some collections are made up of atoms, which are not
collections.

2.1: Object Class 77

certainly a noble goal, and is usually the case, sometimes the circumstances dictate that a
class is used for totally different purposes than its position on the class tree might
indicate. When this is true, it might be more logical to categorize objects the third way--
based on their functional hierarchy.

: The most obvious example of this is class GraphicsObject. You might expect it to
. be grouped with class Point, for example, but instead it’s buried in the Collection

~ classes under ByteCollection, of all things. The reason for this is that MS-Windows
requires graphics objects to be in a data structure called St ruct (the parent of
GraphicsObject). This data structure is a collection of bytes, and hence the placement
among the collections. Just remember that if you see a class on the tree that doesn’t look
like it "fits in" with its neighbors, it’s because its functional hierarchy differs from its
physical hierarchy.

2.1.2 Boolean Qualities of Objects

In many computer languages, there is a specific mechanism to support the concept
of true and false. For example, Pascal has a special boolean data type for this purpose.
Other languages, such as C, have a more general custom that the number 0 (zero) is
considered logically false and every other number is considered logically true. Actor
takes that idea one step further because every object is either true or false. False is
- conveyed by means of a a class called NilClass, whose only instance is an object
- known asnil. The nil object has special status in Actor, because it is the only object
that is logically false. That means that any object, if it is not nil, is considered logically
true (even the number zero).

Therefore, in your Actor programs, you always use ni1l to signify false. To signify
true, you can use anything else. However, using numbers (especially zero) to signify
true can cause your code to appear confusing. To remedy this, there is a system-wide
constant named t rue which can be used anywhere. For example, you may wish to use
it to set a boolean flag named found:

found := true;

There is also a £alse, but it’s just a constant whose value is nil. Since the
possibility of confusion is much less, you probably will use nil itself rather than false.
However, if you are more comfortable with £alse, then by all means use it!

You can also make everyday assignment statements do double duty as boolean
values. For example, you might have a program which contains the following code:

val := someMethod (someReceiver);
if val

then print(val);

endif;

78

Chapter 2: Guide to the Actor Classes

This is perfectly valid Actor code. However, you can economize by doing the
following:

if (val := someMethod(someReceiver))
then print(val);
endif;

This is because an assignment statement does two things. First, the right hand side
of an assignment statement is computed and assigned to the left hand side. If the new
left hand side is anything besides nil, then the assignment statement is logically true.
The two approaches are completely equivalent, but the second way is a bit more
efficient. Note: the parentheses surrounding the assignment statement are completely
optional but strongly encouraged. Without them, it looks like a simple comparison
rather than an assignment statement.

Even if-then-else statements can have a value. If the then portion of an 1£-
then-else gets executed, then the 1£-then-else will have the result of what follows
the then statement as a value. Otherwise, the result of what follows the else statement
will be the result of the 1£-then-else statement. For instance, the following statement
will assign to Sam the maximum of a and b:

Sam := if a >= Db
then a
else b
endif;

The traditional boolean operators and, ox, and not are provided in Actor:
Actor([#Sam] := "Hello" <CR>.
Sam and nil <CR>
nil

Sam and "Volleyball" <CR>
0

Sam or nil <CR>

0 .

false or nil <CR>
nil

not (nil) <CR>
0

not (14) <CR>
nil

Object

ActorApp | Behavior File YaccMachine ParseNode Control Stream ModalDialog
Association —p Meta SourceFile ActorParser Emptytist ItemList Button UstBox ScrdiBar Analyzer [—{ ClassDialog
Collection
Actor-
BlockCont I ClassList Analyzer —4 DebugDialog
Indexed- Keyed-
Compi Collection Collection Set L | binycwo
Interval Arre B Dictionar SymboiTable
Context p—t i 9 4 ym —{ FileDialog
Ordered- Method-
Charlnterval Function i Frame ict Slot Window
Debugger f—i Y Coltection rem Dictionary © Lt InputDialog
Sorted- Text Identity- Popup-
N " " TextWindow
ErorBox Collection Collection Dictionary Window
Byte-
Collection l]
| ToolWindow SeanWind Editwind WorkWind
lbrary fee} []
String Struct r_—_L__—l
Magnitud
agnitude Browser Inspector WorkEdit
NilClass i I !
Graphics-
Symbol DosStruct Object Proc I l
ber Char
Num BrowEdit FileWindow WorkSpace
Point vy
Polygon Rect | l
int Long Real
Primitive
Ellipse RndRect

Figure 2-1: Actor class tree

Note that these operations do not provide bit manipulation on integers and long
integers. For this purpose, we have provided the methods bitAnd, bitOr, etc. Please
see section 2.4.5 for details.

Many other methods return boolean results as well. For example, > (greater than)
and < (less than) comparisons return boolean results, as do the various
* equality/equivalence methods (see below).

2.1.3 Basic Properties of Objects

There are a few basic properties of all objects which are important to remember. For
instance, it is important to know the difference between equivalence and equality in
Actor. There are also the concepts of an object’s class, species, size, and limit. This and
more will be covered in the sections below.

As an aside, some of the methods of class Object you will read about below cannot
be redefined. Usually you can redefine any method you want in Actor, but some are so
important that redefinition is prohibited. Among these methods are ==, class, and,
or, and not. You can examine the global dictionary EarlyMethods for a complete list
of these special method names.

2.1.3.1 Equality Versus Equivalence

Usually, the terms equal and equivalent are used synonymously. However, there is a
difference, and understanding this difference will enable you to write more efficient
programs. The concept of equal and not equal, represented by = and <>, respectively, is
the familiar one from everyday arithmetic. Two things are equal if their contents are

equal:

Actor([#Sam] := "Hello"™ <CR>
Actor([#Joe] := "Hello"™ <CR>
Joe = Sam <CR>

0

Joe <> Sam <CR>
nil

; However, the definitions of equivalent and not equivalent (== and ~=) are more
~ restrictive. Two objects that are equal are not neccessarily equivalent. For example, Joe
- and Samare equal - their contents are identical -- but they aren’t the same object:

Joe == Sam <CR>
nil

80

Chapter 2: Guide to the Actor Classes

An object is of course equivalent to itself, as this demonstrates:

Joe == Joe <CR>
0

This distinction between equality and equivalence would be nitpicky if it weren’t for
good reason. As you know from above, everything in Actor is maintained as an object
pointer which usually points to that object’s data or code. This fact might give you a
clue about what's going on. The == method compares two object pointers, and if they
are identical, then it returns logically true. This comparison of object pointers is
extremely fast, which is why the distinction is made.

We said "usually points to" above because an object pointer doesn’t always point to
something. Objects of class Chax and Int, for example, have their data embedded in
the object pointer itself. This means that when you are comparing instances of these
classes, you can use equivalence instead of equality to speed things up a bit:

Actor[#Sam] := 3 <CR>
Actor[#Joe] := 3 <CR>
Sam == Joe <CR>

0

Actor[#Sam] := ‘A’ <CR>
Actor(#iJoe] := A’ <CR>
Sam == Joe <CR>

0

Sam ~= Joe <CR>
nil

There is another case where equivalence is especially important. In any language,
you have to have unique symbols. For example, in the above examples, you don’t want
to have two different Sam objects floating around, each referring to different data. You
want to know that when you say Sam, you mean the one and only Sam.

The class for which this is all relevant is the Symbol class (section 2.7.8). A Symbol
looks exactly like a string except that it has no spaces. In addition, a Symbol will have a
"#" tacked onto the front of it when it is being explicitly represented as a Symbol, i.e.
when you refer to an object’s name rather than to the object itself (#Sam vs. Sam). Atany
rate, whenever you refer to an Actor symbol, you can be sure that Actor has checked to
see that it is unique. By definition, then, two different objects cannot have the same
name. Since this is true, you can compare two Symbol objects using equivalence, too.

Special tips on when to use equivalence instead of equality are found in the sections
on the relevant classes. For now, you can use equality if you prefer.

2.1: Object Class

2.1.3.2 Class and Species of an Object

There are other basic properties associated with all objects. For example, every
object has a class:

class (Actor) <CR>
Dictionary

because Actor is an instance of class Dictionary. Even a class has a class:

class (Dictionary) <CR>
DictionaryClass

because Dictionary is an instance of class DictionaryClass (the only instance, to
be exact).

" Closely related to the idea of an object’s class is an object’s species. Many times you
want to create an object of the same general type as another object. However, sometimes
you want to send messages to the new collection that you just can’t send to the old one.
In such cases, you can’t just create a new object of the same class. You have to "fudge” a
little, and that’s what species is for. In most cases, the species of an object is the same
as the class of the object. The only time you have to worry about the distinction is in

~some of the descendants of class Collection (see section 2.7). For now, you can think
~of it as another way of saying class.

2.1.3.3 Size and Limit of Objects

Every object also has a size associated with it. The size does not refer to the object’s
physical size but rather to the number of elements contained within the object. This is
obviously only useful for collections, where there are elements in the first place. For
example, when you type

size (Actor) <CR>

the system returns a count of the number of items in the main Actor dictionary. If you
pass a non-collection to size, then you will get "0" as a result.
Whereas size always returns the current number of elements in an object, there

_also is a method called 1imit which returns the maximum number of elements allowed

in that object. For some objects, 1imit will be a constant because instances of some
“classes have a fixed size (Array, for example). However, some objects have the ability

to grow and hence the limit may increase if you add more elements than you originally

allocated space for.

81

82 Chapter 2: Guide to the Actor Classes

2.1.3.4 Initializing Objects

In any computer program, initializing variables is one of the first things done. Actor
is no different, but a lot of the time you don’t have to worry about it because whenever
you define a new object, the new method itself does a lot of the work. By this we mean
that new sets all of an object’s data and instance variables to nil in the course of
creating the new object.

Initializing variables isn’t always a simple matter of setting everything tonil,
however. Sometimes, initializing a more complex object means much more, such as
setting the object’s instance variables a particular way. To handle these special cases,
there is a method called init which is executed automatically whenever a new object of
that class is created. If you have a class which has to be initialized in a special way, then
by all means define a new init method for that class. For a good example of an init
method of this type, see class SortedCollection in the Browser. For most classes,
however, init is meaningless. In fact, the default init in class Object does
absolutely nothing and is provided just so that any object can respond to an init
message.

The convention in Actor is that most init methods take no parameters. Be on the
lookout, though, for those objects for which init requires extra parameters. For
example, init for class Rect needs to know how big to make the rectangle, so it
requires four parameters to define the corners.

The init method is extremely important for collections because they are among the
most complex objects in Actor and may not behave correctly if not properly initialized.
As a result, there is an informal rule for collection objects that every init method for a
collection object takes no parameters. This may seem picky, but it enables you to send
an init message with no parameters to any collection. In fact, Actor automatically
sends an init message to any collection when it is created. Thus, you can use the init
method to specify the initial state of any collection object.

Note that this only applies to a "real” collections. By this we mean that although
class Rect, for instance, is technically a collection, functionally it’s not. As a result, the
init method for Rect objects takes parameters, as indeed it must (see above).

2.1.4 Displaying Objects

In most programming languages, you have almost as many output routines as you
do data types. However, in an object-oriented environment, you can have methods with
the same name do very different things because the system ensures that only the
appropriate methods work on the appropriate data. As a result, almost all of Actor’s
output is handled by only five methods: print, printLine, printOn, sysPrint,
and sysPrintOn.

" Central to understanding output in Actor is the concept of a stream. Streamisa
class in its own right and will be explained later (see section 2.8), but the concept is
relatively simple. A stream is just an arbitrary collection of objects with an associated
position. For example, a file is just a collection of bytes with an associated file pointer.

2.1: Object Class

Outputting information is a simple matter of taking the information, converting it to a
stream, and sending the collection part of the stream to the active output window.

The methods ending in "On" deal directly with streams. Both print and
sysPrint, however, first create streams on the spot, call printoOn and sysPxintOn,

_ respectively, and then send the collection to the current output window. In other words,
‘print and sysPrint are special cases of printOn and sysPrinton. The
“printLine method is identical to print except that any subsequent output starts at

the beginning of the next line. (I's equivalent to a writeln statement in Pascal or a
printf("...\n") statement in C.) The printLine method will not be included in the rest
of this discussion since it's only a special case of print.

OK, now we have a hazy idea of the difference between print and printoOn, but
what about their "sys" counterparts? It's easier to define the difference with the help of a
few examples first. For simplicity’s sake, we’'ll use print and sysPrint rather than
printOn and sysPrintOn because at the moment you don’t have to know how to
create a stream. Just remember that behind the scenes, everything is being done with
streams:

print ("Hello") <CR>
Hello

sysPrint ("Hello") <CR>
"Hello"

print (#(1 2 3 4)) <CR>
1234

sysPrint (#(1 2 3 4)) <CrR>
Array(l 2 3 4)

This should give you an idea of what's going on. While print outputs the contents
of whatever you give it, sysPrint outputs whatever you give it as the system "sees" it.
You also might think of sysPrint as printing the data as an object, rather than just the
contents of that object. You may notice that when Actor returns the result of a method
to the WorkSpace window, it does a sysPrint on that object to show you what the
method returned.

Sometimes, you'll find that print/printOn and sysPrint/sysPrintOn do
exactly the same thing. For example, both

print (Object .methods) ;
~and
sysPrint (Object .methods) ;

show the exact same thing, the Object class method dictionary. That's because
sometimes there is really no distinction between printing the contents of an object and
printing that object as the system sees it. These are usually cases where you wouldn’t

83

84

Chapter 2: Guide to the Actor Classes

want to view the contents anyway. In the example above, you really aren’t interested in
the contents of Object .methods (compiled code), but rather the method dictionary
itself with the names of all the methods.

However, there are cases where you do want to print the contents of an item but it
doesn’t seem to work. This will usually happen, in fact, when you create a new class
and then try to print an instance of that class. Instead of printing the contents of your
new object, Actor will default to class Object’s print instead. If you had an object of
class St ream, for instance, you might want to print its contents, i.e. the collection and
current position. However, if you try to print an instance of class St ream, instead you
will get:

<a Stream>

If you wanted to see what was inside a specific stream, all you would have to to is
write a new printOn method for class Stxeam. This goes for all new classes, as well.
The basic rule is that you redefine printon for the new class. When you do this, all the
other output methods send a message to the new printoOn routine. For example, if
there isn’t a sysPrintOn defined among the ancestors of the new class, the
sysPrintOn in class Object will send a message to the printOn in the new class.

2.1.5 Error Handling Within Actor Programs

One of the hardest jobs as a programmer is to foresee every possible situation that
can produce an error. While that job will remain tedious, Actor makes your job a bit
easier by providing a general and powerful way to handle errors. In fact, the error
handling for your programs is just a generalized way of "hooking" into the main Actor
compiler error handling mechanism. However, your error handling will have the
capability to be much more sophisticated.

The key to accessing Actor’s error handling routines is a method called,
appropriately enough, exrox:

error (someObject, stackTop () , #item) ;

The receiver, someObject, is the object most appropriate to handle the error. A lot of
the time someObject will be sel£, which means if you are executing a method in class
Char, then self will be a Char, etc. This approach implies that you put error handling
routines for characters within Char, and so on. However, it may be more appropriate to
send the error message to an object other than sel£. Actor, for example, sends all
syntax error messages to the parser object regardless of what class’s method the error
occurred in. The first parameter, stackTop (), is a method which returns a pointer to
the top of the Actor stack. This provides a way for you to reconstruct the events leading
to the error (although most of you won’t want to bother with this in your own routines).

2.1: Object Class

The only requirement for the second parameter, #item, is that it must be a valid Actor
symbol. The system first checks to see if there is a string in the dictionary at
ActorErrors[#item] (i.e. ActorErrors[#item] <> nil). Then, one of three
things will happen:

1. The system will first look for a method called item in the method dictionary
of someObject. If there is one, the string found above (if any) is passed to
itemas a parameter, and then itemis executed.

2. If no item method is found, but there was a string found, then the normal
Actor error window is placed on the screen with that string as the window’s
title.

3. Failing the above, the Actor error window will appear with Actox
error:itemasits title.

Of the three options, the first is preferable in most cases, because the other two place
the normal Actor error window on the screen. Although information about the runtime
stack is useful to you as a developer, in general you probably don’t want users of your
program to see it.

Here’s an example from the Actor system, normally activated when you try to index
an invalid element of a collection:

error (self, stackTop (), #rangeError) ;

In this case ActorErrors [#rangeError] containsa string which more
adequately explains the error ("index out of range").
You can also simulate an error very easily using the third alternative:

error (self, stackTop (), #fakeError) <CR>

This causes the usual Actor error box to appear with the window title Actox
error:fakeError.

We have cheated a little bit and implied that you can use the above system for all
Actor errors. That's not quite true, because only high level errors (which is to say, most
errors) can be handled this way. Very low level, primitive errors such as passing the
wrong number of arguments (parameters) to a method, have to be handled a bit less
elegantly. How to do this and a more in-depth discussion of the above is found in
section 4.2.5.

85

86

Chapter 2: Guide to the Actor Classes
2.1.6 System Methods

There are a few methods which don’t really fit into any of the above categories.
That's because they deal with "system" tasks such as copying objects and finding out
how much memory is left, etc. This section will explore these methods and give some
tips on how and when to use them. In some cases, the receiver of the method is
irrelevant. What’s important is the function performed, and there really isn’t any data
involved. An example of this is staticRoom(), which will be described below. If you
don’t specify a receiver, Actor will automatically insert a receiver of class Object to
satisfy the needs of the underlying code. This helps you unclutter your source a bit
when calling these methods.

2.1.6.1 Copying Objects

You might think that the concept of making a copy of something is quite
straightforward. Normally it is, but in computer languages which deal exclusively with
pointers, there are a few extra factors to consider. Actor is one of those languages (as are
Smalltalk and Lisp, among others), so it’s important to know what exactly is going on
when you make a "copy" of something. There are actually three ways to make a copy of
an object. The first two are implemented in Actor, and the third will simply be
discussed.

The first type of copy is known as a shallow copy, and happens when two different
objects refer to the same data. In Actor, a shallow copy happens via the normal
assignment operator, :=. In the example below, we create an Array, set it equal to Sam,
and then shallowly copy Sam to Joe:

Actorx[#Sam]
Actor[#Joe]

#(10 20 30 40) <CR>
Sam <CR>

What's important to realize here is that both Sam and Joe now share the same data,
namely Array (10 20 30 40). It's easy to understand this when you remember that
everything in Actor is handled via object pointers. This is just a case where two different
object pointers (the object pointers for Sam and Joe) point to the same thing. Thus, if
you change one object, you change the other object too:

Joe[l] := 25 <CR>
print (Sam) <CR>
Array (10 25 30 40)

As a rule, you should be careful when you use this method to copy an object. Whenever
you do use it, you run the risk of having two or more objects sharing the same data, each
of whom has full access to it. This phenomenon even has a special name, aligsing.

2.1: Object Class

Reading the above might lead you to think that any assignment statements could
cause aliasing. However, this doesn’t happen--let's see why. For example, let’s say you
have two numbers a and b.

You might expect the operations on b to affect a somehow, based on the above
discussion. However, the aliasing problem only crops up when an object has instance
variables or is a collection (or both) and numbers have neither. Your arithmetic
operations are safe! Operations with characters are safe, too.

The second type of copy is called a deep copy, and happens when a new variable does
not share the other’s data but rather has separate copies of the other’s instance variables
and data (if any). In Actor, a deep copy is implemented with the method copy. Note
that this time there is no shared data between the two objects:

Actorx([#Sam] := #(10 20 30 40) <CR>
Actor([#Joe] := copy(Sam) <CR>
Joe[l] := 25 <CR>

print (Sam) <CR>

Array (10 20 30 40)

print (Joe) <CR>
Array (10 25 30 40)

Although this method is slower than a shallow copy, there is much less risk of altering
some other object’s data accidentally. Note: in certain classes, copy takes more than one
parameter, but these exceptions will be explained in the relevant sections.

A deep copy works for relatively simple objects such as arrays of integers like the
one above or an atomic object such as a Point. However, what if an object’s elements
are collections themselves, or even if the collections contain collections, etc.? In those
cases, aliasing crops up again. Here’s an example. We are going to create an
OrderedCollection of Array objects called Sam. Then, we will copy it to a new
object, Joe. What we will find is that although Sam and Joe do not share data, their
elements do:

Actor([#Sam] := new(OrderedCollection,5) <CR>

add(Sam, #(1 1 1)) <CrR>

add(Sam, #(2 2 2)) <CR>

add(Sam, #(3 3 3)) <CrR>

Sam <CR>

OrderedCollection(Array(l 1 1) Array(2 2 2) Array(3 3 3))

87

88 Chapter 2: Guide to the Actor Classes

Actor[#Joe] := copy(Sam) <CR>

Joe[l] [2] := 3 <CR>

Sam <CR>

OrderedCollection(Array(l 1 1) Array(2 2 3) Array(3 3 3))

Joe[2] := #(4 4 4) <CR>
Sam <CR> .
OrderedCollection (Array(l 1 1) Array(2 2 3) Array(3 3 3))

Note that the first element of Sam was changed when we changed the second
element of the first element of Joe. However, if we totally change one element of Joe,
Sam remains unchanged. You can see from this that a deep copy only goes one level
further in copying one object to another. If an element of a collection is also a collection,
the aliasing problem will crop up again.

The third type of copy is not implemented in Actor (for performance reasons) but
would provide protection against aliasing. The problem with copy in the above
example is that it doesn’t check to see if the thing being copied is an atomic object or a
collection. Another copy which would physically copy all the way down until it knew
that atomic objects were being copied would do the trick. You might call something like
this an "atomic copy" or "deepest copy.” At any rate, the point of all this is to realize
when aliasing can occur and to give some insights as to how to avoid it.

2.1.6.2 Tuples

What if you wanted to print a whole group of dissimilar objects? For example, let’s
say you wanted to print a bunch of information about a person. You could do it like
this:

print ("Name: ");
printLine ("Mary Smith");
print ("Age: ")
printLine(33);

And so on, ad nauseum. A logical question to ask is why anyone would even try to
do it that way in the first place. After all, you could put everything in one statement
with other languages such as C or Pascal. The answer is that from a strict object oriented
perspective, you might think you don’t have a choice. What is happening in each of the
above statements is that you are telling each object ("Name: ", CR, 33, etc.) to print
itself. Every object does know how to print itself, but you can’t put everything together
in one statement because a St ring doesn’t know how to print an Integer or a Char,
an Integer can’t print a String or a Char, and so on.

What we need here is a way to put everything in a packet and process the packet
instead. Actor lets you do this with the tuple method, which creates an Array on the

spot:

2.1: Object Class

printline (tuple("Name: ", "Mary Smith")) <CR>
printLine (tuple("Age: ",33)) <CR>

Name: Mary Smith

Age: 33

- There is no practical limit to the number of objects you put into a tuple.

Although tuple provides an easy way to handle this problem, it can be used in all
sorts of other places, too. Specifically, as you may have noticed from the example above,
what tuple really lets you do is send a variable number of parameters to any method,
including print. To accomplish this, all you have to do is define the method in
question for the Array class (or an ancestor, if you want).

To see why this is true, examine the above example. What is really happening here
is that we are sending a print message to an Array object created by tuple. The
print in Array then sends a print message to all of its elements in order. You can see
the pattern, then. If you have a method defined for the elements of an Array, you just
write another method for the Array class (or, more generally, for class Collection) with
the same name and instantly you can, in effect, send a variable number of parameters to
the original method.

You may not have discovered this yet, but there’s no obvious way to send more than
one object back from a method. However, tuple lets you do this very easily:

“tuple (objectl,object2, ...):;

When you get this object back from the method, you can treat it as an Array to get
the values back again. For example, assume a method returns a two-element tuple.
Further, assume object1 was a temporary variable of the method called £ound and
object2 was a temporary variable called index. In other words, one of the lines of the
method looked like this:

“tuple (found, index) ;

Then, if a variable called newTuple is set equal to the result of this method, found
will be in newTuple [0] and index will be in newTuple[1].
" If someone else was reading your code and saw references to newTuple[0],
however, it wouldn’t be at all obvious what was going on. To remedy this problem, you
can use constants to index into the tuple:

#define FoundFlag 0;

90

Chapter 2: Guide to the Actor Classes

If you define such a constant, then newTuple [FoundFlag] will refer to the variable
you want. For more complex cases of returning multiple values, you might want to
define a new class whose instance variables incorporate all of the values into a single
object.

2.1.6.3 Sending an Arbitrary Message

Unless you explicitly override it, Actor is a late-binding language. In this context,
this means that the exact action which occurs in response to a message is undefined until
runtime. This contrasts with an early-bound language such as C or Pascal in which the
variables and functions which work on them are matched together, or bound, at compile
time.

Late binding lets a given message result in the execution of different methods based
on the class of the object, but thus far the particular message sent has always been fixed
at compile time. However, there is a way to send an arbitrary message, too, as long as
you know how many parameters the message should have at compile time. The method
to do this is called pexform, and used correctly can be extremely powerful. The general
syntax is as follows:

perform(receiver, parameterl, parameter?, ..., selector)

The receiver is the object which is to receive the message. The selectorisa
Symbol giving the name of the method which is to be executed.

When selector is a constant, pexformis just a variation on the normal way of
sending messages:

perform(“Hello", #iprint) <CR>
Hello

Actor[#Sam] := 16 <CR>
perform(Sam, #sqrt) <CR> /* Square root */
4

However, the real power of perform becomes evident when selectorisa
variable, too:

Actor[#Meth] := fisqrt <CR>
Sam := 16 <CR>
perform(Sam, Meth) <CR>

4

Meth := #print <CR>
perform(Sam,Meth) <CR>
16

2.1: Object Class

Sam := “"Hello" <CR>
perform(Sam,Meth) <CR>
Hello

So far you haven’t seen any complicated examples of pexform, such as when the

- selector method requires parameters. A hypothetical example in which perform might
be used in this manner is if you had a object named Robot. The Robot knows how to
do certain things, such as move a particular distance forward, backward, left, or
right. If the Robot was to respond to keyboard input, where a user types "forward,10"
or something similar, in most other languages you would have a big job on your hands.
First you would have to parse the input, and then you would have to have a large “case"
type statement to handle all the possible inputs:

case Action of
forward : ...
backward : ...

endcase;

What's worse is that if you added a new action which the Robot could respond to, you
would have to recompile the case statement, at the very least.

In Actor, however, this sort of thing is simple. If you had a string "forward,10" as
input, all you would have to do is strip off the "forward" part, convert it to a Symbol
(#£oxrward), and send a message to the Robot via pexrform:

inputStr := “"forward";
distance := 10;
perform(Robot, distance,asSymbol (inputStr));

And if you defined a new method for the Robot, that would work too because all
Actor cares about is that the method is defined at runtime.

As you learn the Actor system, you may think of a whole bunch of ways to exploit
perform. One possible use, in addition to the Robot type application described above,
is to have a collection of Symbol objects, and as long as each required the same number
of parameters, you could choose which Symbol to send as a message based on some
condition.

91

92

Chapier 2: Guide to the Actor Classes

2.1.6.4 Miscellaneous

As you have discovered, Actor’s Inspector is normally activated by highlighting
some text and then selecting "Inspect” from the Workspace menu. You can also activate

the Inspector by typing;:
inspect (item) ;

where itemis the object you want to inspect. For instance, if you have an object of class
SortedCollection which you wanted to look at, and the object is called Sam, you
could inspect it by typing

inspect (Sam) ;

When you installed Actor, the MS-Windows initialization file WIN.INI was changed
to add special information that Actor needs when it loads and initializes. One of the
parameters added was

Static=n

where n is the number of kilobytes to allocate for Actor’s static data area. Actor’s
dynamic data area is constantly "vacuumed" for garbage, so you generally don’t have to
worry about it. However, the static area is the place where your compiled code resides,
and the garbage collector doesn’t touch it. As a result, you might want to know how
much room is left in your static area. All you have to do is type

staticRoom() <CR>

and Actor will return how much many bytes you have left to play with (e.g. 10658L
bytes, where L signifies a long integer). Note that you can also obtain this information
by choosing the "Show Room!" option on the Workspace menu.

You can also run Actor’s static garbage collector by typing

cleanup () <CR>

This will reclaim the memory used by unneeded methods so that you can use it again.
However, remember that to do this, the static garbage collector has to copy all of static
memory over to dynamic memory. There is no way for it to tell before it tries that there
is enough dynamic memory to handle the transfer, and if there isn’t enough room, then
Actor will tell you so and exit. Make sure that you have saved your work before you try
sending this message.

2.1: Object Class 93
2.1.7 Much Ado About Nothing: Using NilClass

We spent quite a bit of time discussing the universal qualities of objects back in
section 2.1. It was there that you were introduced to the only object in the Actor system
which is logically false-nil. As we mentioned before, nil is the only instance of
NilClass. Since NilClass only has one instance, you might think it's a formal class
with little or no use.

However, it turns out that Ni1Class is quite important. An Actor program, as you
know, is just a sequence of messages sent from objects to other objects. An object
receives the message and will respond to it, if the class of the object or an ancestor has
the correct method in its method dictionary.

As you also know, every object when first created is initialized toni1, or if it is a
collection, its elements are initialized to ni1. With all this in mind, what would happen
if you tried to obtain the absolute value of an element of an Array object by doing the
following?

Actor[#Sam] := new(Array, 10) <CR>
abs (Sam[4]) <CR> /* absolute value */

You wouldn't get zero, as you might expect. You would get an error dialog box
saying "nil does not understand abs". That’s because although Sam[4] might at some
time be an Int, if you don’t initialize it, it's still nil. The method dictionary in
NilClass doesn’t have abs defined, and neither does class Object, the ancestor of .
NilClass, so you get the error dialog.

This will happen whenever an uninitialized object responds to a message. What can
you do about it? There are a couple of things, depending on the situation, but there are
no hard and fast rules. An obvious and recommended solution is to initialize objects
whenever appropriate. In other cases, however, nil is an acceptable value in an object,
so the best thing to do is to use an i £ statement to "protect” the message:

if (Sam)
then abs (Sam) ;
endif;

As a shortcut, you can define the method in NilClass, and then whenever nil is
sent a message it can respond to it. You can make the method for NilClass do
anything you want, but usually it will just do nothing—-a "dummy" method. There are a
number of examples of this in the Actor system, as you can verify by looking at the
methods of NilClass with the Browser. This technique can result in a considerable
code savings over using an 1if statement in many different places.

94

Chapter 2: Guide to the Actor Classes
2.2 The Magnitude Class

- Magnitude is a formal class, but nevertheless it serves a very important purpose in
that it unifies two major classes which otherwise would remain separate. Basically
Magnitude serves as the parent for any class whose objects have some sort of natural
order. If objects of a class have natural order, then it follows that each object has a
magnitude associated with it relative to others in its class.

That probably sounds a bit confusing, but it’s just a more formal way of stating a
concept you have been familiar with since childhood. For example, the number 5 has a
magnitude associated with it, as does the number 6. Intuitively you know that 5 is less
than 6, but why? It's simple--the magnitude of a 5 object is "less than" the magnitude of
6. Not surprisingly, then, the part of Actor which handles everything to do with
numbers is a descendant of Magnitude. Characters also have magnitude associated
with them, as a consequence of their ASCII values. For instance, ‘a’ is less than 'b’,
because ‘b’ has a greater magnitude.

Admittedly, the idea of magnitude may be a bit confusing, mostly because it’s
putting a name to something that is so intuitive. However, abstracting the idea of
magnitude from characters and numbers means that both Char and Numbex objects can
use the same methods from class Magnitude. ‘

For example, two of the most common procedures or functions defined by
programmers are max and min. Although simple to write, most systems leave them out.
Actor provides them, and even uses them extensively itself, especially in the text editing
methods. Here are some examples:

Actor[#Sam] := 14 <CR>
Actor[#iJoe] := -12 <CR>
max (Sam, Joe) <CR>

14

min (Sam, Joe) <CR>
-12

Sam := ‘a’ <CR>

Joe := 'h’ <CR>
max (Sam, Joe) <CR>
lhl

Another method defined in Magnitude is between. The between method takes
two arguments and if the receiver is in the range specified by the arguments (inclusive),
between returns logical true. Some examples:

Object

Number Char

Int Long Real

Figure 2-3: Magnitude Class Tree

2.2: Magnitude Class

between(3,0,100) <CR>
0

between(3,3,4) <CrR>

0

between (3,15,100) <CR>
nil

2.3 Using Characters: The Char Class

The first descendant of Magnitude we will discuss is the Chax class. As you may
know from programming in other languages, you don’t often use characters directly.
When you do use them, it’s usually in the context of an element of a St xing or other
collection. To distinguish Chax objects from String objects of length one, they have a
special notation. You can tell the difference because Char objects are surrounded by
single quotes, suchas 'A’, ’d’, ’ 4, etc. With this convention, you can tell the
difference easily, i.e. "A" <> ’'A’, "d" <> ’d’,and so on. However, when you study
class Stxing (section 2.7.7), remember that the methods below can be used by
individual elements of St xring objects.

2.3.1 Basic Properties

There are only a few things to remember about objects of class Char. The first is
almost trivial and concerns comparing two characters with each other. As you would
expect, comparisons are done on the basis of each character’s ASCII value:

A’ < 'a’ <CR>
0

‘a’ > ;c’ <CR>
nil

The second item to remember concerns the distinction between equality and
equivalence in Actor (section 2.1.3.1). If you recall, one of the classes where the
distinction made a difference was in class Char, because it’s one of the classes where the
data is actually embedded in an object pointer. Since this is true, you can use the faster
equivalence operator instead of the slower equality operator (==and =, respectively) to
compare two characters with each other:

Actor[#Sam]
Actorx[#Joe]
Sam = Joe <CR>
0

"H’ <CR>
‘H’ <CR>

o o
nn

95

96

Chapter 2: Guide to the Actor Classes

Sam == Joe <CR>
0

Note that this is another reason to distinguish between String objects of length one
and Char objects:

Actor([#Sam] := "H" <CR>
Actor[#Joe] := "H" <CR>
Sam == Joe <CR>

nil

2.3.2 Conversion Methods

There are times when you want to represent a character as an object of another class.
Actor provides three methods in the Char class for this purpose, asInt, asString, and
asSymbol. You can generally tell from their names what kinds of objects are returned.
Here are some examples: '

asInt ('’ ') <CR>
32

asString('A’) <CR>
|IA“

asSymbol(’a’) <CR>
#a

There is another handy method which doesn’t really belong with the above three
methods. It computes the decimal representation of a character, given an arbitrary base:

/* What number would the character 'F’ represent
in base 162 */

asDigit('F’,16) <CR>

15

asDigit (M’ ,27) <CR>
22

asDigit(’z’,36) <CR>
35 .

asDigit (‘F’,10) <CR>
nil

2.3: Char Class

Notice that the method is not case sensitive, and that you can use it for bases all the
way up to 36 (10 digits + 26 letters).

The last conversion method to discuss is the asUppexrCase method. It converts any
character in the range ‘a’ to ‘Z’, inclusive, to its upper case equivalent. Any other
character will be unaffected:

asUpperCase(’c’) <CR>
ICI
asUpperCase(’'&’) <CR>
’ &l
asUpperCase('C’) <CR>
’ cl

233 Grab Bag

There are a few methods which don’t fit into either of the above two categories.
Nonetheless, you may find them useful. The method isHexDigit, for instance, returns
logical true if the character you give it is a valid hexadecimal digit (i.e. in the range ‘a’-'f’
or'A’™“F):

isHexDigit (‘b’) <CR>
0

isHexDigit ('K’) <CR>
nil

Another handy method, stxingO£, generates a string containing num elements of
the Char you give it:

stringOf(‘a’,10) <CR>
"aaaaaaaaaa"

This is useful for, among other things, indenting text. For example, in the Actor
Browser, you notice that every class name is indented based on how far descended from
class Object it is. The Browser uses st ringO£ with spaces (" *) to properly indent each
class.

97

98

Chapter 2: Guide to the Actor Classes
2.4 Billionths and Billions: The Number Classes

This section will not only explain the three classes used to represent numbers and
their parent class, Number, but will also explain a bit about arithmetic operations in
Actor. We will start out by discussing the three classes which descend from Numbex:
Int, Long, and Real. Why do we bother with three of them? After all, the abstract
concept of a number is no doubt very familiar. However, just like other computer
languages, Actor needs to know what class a number is so that it can reserve the proper
amount of space for it. For example, an Int requires only 15 bits, while a Long requires
32 bits.

2.4.1 The Three Number Classes

This section will explain some of the relevant facts about each numeric class, and a
bit about how conflicts among them are resolved. The first descendant of Number is the
Int class. Any integer which can be represented in 15 bits can be represented as an
Int. Since this includes negative integers too, this means any integer in the range -214 to
214-1 inclusive (-16384 to 16383). The reason this range is somewhat smaller than what
you may be used to in other languages is that an Actor Int is maintained in the 16-bit
object pointer itself and only 15 bits are available for the integer data.

A Long is more flexible but obviously takes up more memory. You can tell you are
working with a long integer because it has an ‘L’ tacked onto the end of it (no spaces),
e.g. 3L, 438L, -3486L. When Actor sysPrints one, the ‘L’ will always be in upper case,
but when you are writing programs or communicating with Actor directly, it can be
either in upper or lower case. Since a Long has 32 bits to work with, it can represent
integers in the range -231 to -231-1 inclusive (-2,147,483,648 to 2,147,483,647).

Any large integer which isn’t explicitly represented as a Long will be automatically
converted:

21040 <CR>
21040L

Both Int and Long numbers may also be written in hexadecimal format. The way
to do this follows the C format where the digits of any hex number are preceeded by
"0x" (a zero followed by a lowercase letter x). A hexadecimal Long number is followed
by an’L’, as usual:

0xCF3

OxFFD89DL

A Real is designed for very large or very small numbers, or any number with a
fractional part. A Real number is always represented in scientific notation, such as
1.2847E+083, which means 1.2847 times 1083. If you don’t remember scientific notation,
it’s just a convention where every number is represented as a mantissa between 1.0 and

2.4: Number Classes

10.0 (including 1.0 but not 10.0) multiplied by a power of 10. Negative exponents
represent fractions; 0.243 would be 2.43E-001, for example. Actor represents its Real
numbers in 8 bytes, the same way that Microsoft C represents its double type. As such,
you can represent numbers from 1.7E-308 to 1.7E+308 (or their negatives) with Actor
Real objects. '

Class Number enables Actor to bend the rules a bit when doing arithmetic
operations. For example, an Int knows how to add itself to another Int. A Real
knows how to add itself to another Real. Neither knows how to add the other to itself,
however. This is unfortunate because mixed-mode arithmetic, as computer gurus call it, is
very common in everyday life. For instance, if you say 3 + 4.568, you want to get 7.568
back. However, technically you should have typed 3.0 + 4.568, although it is clear that's
what you meant. In addition, you want to say sin (4), although technically a sin
message is only defined for Real objects. Int/Long and Long/Real operations
should likewise be trouble-free.

~ This is not a problem unique to Actor; all programming languages have to devise
some conventions for resolving conflicts between data types. The difference is that in
most languages, the mechanism for resolving conflicts is hidden, whereas in Actor it’s
visible: the Numbex class. It exists to ensure that semantically correct arithmetic
operations proceed smoothly without nitpicky technicalities getting in the way. This
process of resolving conflicts in mixed-mode arithmetic is called coercion, and a section
below explains the process in a bit more detail.

2.4.2 Basic Operators

First and foremost, every number object can respond to the four universal arithmetic
operations: addition, subtraction, multiplication, and division. In Actor, these
operations are represented by the +, -, *, and / operators, respectively. What you
may not notice is that these seemingly innocuous operators are actually methods, too.
However, they don’t look like methods because of their infix format (a + b instead of
+(a,b)). The whole precedence and infix notation scheme will be discussed in the next
section. For now, just realize that each operator you will read about in this section is a
normal Actor method, although it may not look like one at first.

The meanings of +, -,and * should be obvious, but there could be some confusion
regarding division. Actor does integer division with integers; i.e. 5/3 is 1 (the
remainder is discarded). If either of the numbers is a Real, however, Actor treats
everything as a Real and the answer reflects that fact. Related to division is the
modulus operation, mod, which is only defined for integers. The answer to a mod b is
the remainder when a is divided by b. For example:

5 mod 3 <CR>
2 /* 5/3 is 1 with remainder 2 */

99

100

Chapter 2: Guide to the Actor Classes

2.4.3 Precedence and the InfixOps MethodDictionary

As you know, almost all Actor messages are set by specifying the method name,
followed by the receiver and any arguments in parentheses. However, many of the
arithmetic messages (and some others, too) are not sent that way at all. For instance, a
+ bis a valid message, but the + appears between the receiver and the argument (don't
worry about which is which for now). Such an operator or method is said to be in infix
format, and one of the beauties of Actor is that you can make ANY one-argument
method an infix method!

The heart of it all is a special MethodDictionary called InfixOps. You haven't
learned about MethodDict ionary objects yet, but there isn’t much you have to know,
at least for our purposes here. All you have to remember is that it’s a special kind of
collection where each element consists of a key and the object associated with that key.
InfixOps has method names as keys, just like almost all MethodDict ionary objects,
but its values contain something new. Each MethodDictionary entry contains the
precedence associated with that operator, a concept which you may recall from high
school arithmetic. Precedence just states the rules that specify which operations get
done before others. A higher precedence means the operation gets done before another
operation.

Without precedence rules, infix arithmetic expressions are ambiguous; for example,
is 3+5*6 equal to 48 or 33? If you do the addition first, it’s 48, otherwise it's 33.
(Incidentally, only infix expressions suffer from ambiguity without precedence rules.
The other two ways of representing expressions, prefix and postfix, do not. However,
infix expressions are much more intuitive to almost everyone, so it’s worth the extra
work.)

To eliminate ambiguity, we could put explicit parentheses around everything, but
that gets very tedious (some other object-oriented languages require this). The solution
is to assign precedence to operators so that the order of computation is clear. For
example, multiplication has a higher precedence than addition, so the multiplication is
done before the addition, and hence the right answer is 33 for the above example. Equal
precedence means that expressions are evaluated from right to left, and precedence is
ALWAYS overridden by explicit parentheses. For example, if we did want the above
expression to equal 48, we would say (3+5)*8.

Here's a list of the precedences for the operators (methods) in the Actor system:

Operator Precedence
and, or, xor

==, 5,~5,<>, £, >,<=,5=

bitAnd, bitOr, bitXor

+, -

in, /, *,mod

k%

=0 0 JONG

2.4: Number Classes 101

In addition, operators of equal precedence right-associate. In English this means that
the right part of an expression will be evaluated before the left, if the precedences of the
operators involved are all the same. For example,

a/b/c
will be evaluated as
a/(b/c)

Now, the neat thing is that all you have to do to make a method an infix method is
to add the name of the method to InfixOps, along with its precedence! For example,
let’s say you had a method which you wanted to call box, that is used as follows:

x box y = x*y*(xty)

Define the precedence of box to be the same as that for division and multiplication, 9.
Then, add the name of this (yet undefined) box method to InfixOps:

add (InfixOps, #box, 9) ;

From that point onward, any method by the name of box for any class will be
invoked in infix fashion (and only in infix). Of course, all you’ve done is assign a
precedence for box; you haven't actually defined the method. Now, though, that’s easy:

Def box(self, x)
{ *(x*self* (x+self));
}

Note that the object to the right of the infix method, y, is actually the object sent the
message. For a method such as box, this is irrelevant, because x box yis the same as y
box x. (Math fiends would say that box is a commutative operation.) However, for a
method such as / or mod where order is important, this fact is significant. For example,
if / wasn’t a primitive, its header would look like this:

Def /(self,a)

This would mean that if you say a/b, the / message is sent to b with a as an argument.

Now, to see how powerful this approach is, let’s look at a practical example. What if
you wanted to write a method which added two files together (concatenated one to
another)? In other languages, you would have to write a procedure called
FileConcatenate or some such. In Actor, you would call it +, which is what you really
mean in the first place. Then you could say £1 + £2 and the files would be

102

Chapter 2: Guide fo the Actor Classes

concatenated! Of course, this is a case where a+b is not the same as b+a, so you would
have to remember this when you wrote it. Nevertheless, this approach to operators
gives everything a certain elegance in Actor.

2.4.4 Other Arithmetic Methods

There are a whole bunch of miscellaneous methods which don’t exactly fit into
precise categories, so this section will serve as a "grab bag" of arithmetic methods.
The absolute value of a number is easily obtained with the abs method:

abs (-48) <CR>
48

abs (32L) <CR>
32L

Actor’s random number generator is accessed by sending an integer a random
message. When you send a random message to an integer n, Actor will return a
random integer in the range from 0 to n-1, inclusive:

random(13) <CR> /* Of course, you probably won’t get
8 the same result printed here. */

Actor provides the basic real number routines from which you can derive more
complicated routines if you desire. Here’s a list of the scientific Real methods which
are currently defined:

exp (x) /* Exponential of x, eX */
log(x) /* Natural logarithm of x (base e) */
pvwr(y, x) /* Bnother way of saying x**y */
sqrt (x) /* Square root of x */
cos (x) /* Cosine of x (x in radians) */
sin (x) /* Sine of x (x in radians) */
tan(x) /* Tangent of x (x in radians) */
arcTan (x) /* Arctangent, Tan~1 (x) */
degToRad(x) /* Converts degrees to radians */
radToDeg(x) /* Converts radians to degrees */

2.4.5 Manipulating Bits and Bytes

One of the advantages of using a high level language is that you don’t have to worry

much about bits and bytes. And no doubt you can be a successful Actor programmer
without ever dealing with the nitty-gritty details. However, when you need to access

2.4: Number Classes 103

things at that level, not being able to is crippling. As a result, Actor provides a host of
low-level methods designed to let you twiddle bits to your heart’s content.

One useful group of methods in this category is the bitwise logical operators. They
enable you to take two numbers and perform a given logical operation (and, or, or
exclusive or) on each bit of a number at a time. For instance, the decimal number 5 is
101 in binary, and 12 is 1100. Keeping that in mind, here’s some examples of bitAnd,
bitor, and bitXor in action:

5 bitAnd 12 <CR> /* 0101 AND 1100 is 0100 (4) */

4

5 bitOr 12 <CrR> /* 0101 OR 1100 is 1101 (13) */
13

5 bitXoxr 12 <CR> /* 0101 XOR 1100 is 1001 (9) */
9

" There are methods to manipulate things on the word (two bytes) level, too. For
example, Actor has two methods to manipulate Int and Long integers at this level.
Given an integer argument, high and low return the high and low order words of a
four byte integer, respectively. For an Int, low returns self, and high returns 0,
because there is no high order word of an Int. However, for a Long the results are a bit
more interesting, as you might expect. .

For one thing, don’t be surprised if when you send a 1ow or high message to a
Long and you get back a negative number. This is because the word is sign-extended to
create a new Long. If the high bit in the word happened to be 1, the result comes out
negative.

As we mentioned above, a Long can represent any integer which will fit in 32 bits.
Not entirely coincidentally, there is a very significant category of numbers which are
represented as 32 bit numbers: the addresses of the computer’s memory. To exploit this
fact, Actor provides the wordAt method which is similar to the peek statement in BASIC
or accessing the MemW array in Turbo Pascal. The high order two bytes of the Long
you send wordAt will be treated as the segment of the address, and the low order two
bytes will be the offset. Here are some examples (remember that the numbers that
wordAt returns will not be the same if you try this yourself):

wordAt (0x345FL) <CR> /* The word at 0000:345F */
34818L
asString (34818L,16) <CR> /* Convert to hex */
l088°2ll
wordAt (Oxffd3eL) <CR> /* The word at 000F:FD3E */
3643L /* E3B in hex */

Note the use of the asSt ring method. It will take any number and a base, and then
return that number represented as a St ring object in the given base.

104

Chapter 2: Guide to the Actor Classes

2.4.6 Mixed-Mode Arithmetic and Coercion

As we alluded to above, one of the main purposes of the Number class is to handle
the case when messages like 4.4-3 are sent. This type of thing is called mixed-mode
arithmetic, and as we mentioned above, it happens all the time. If you were doing the
above calculation yourself, you would mentally convert the 3 to 3.0 and then proceed
with the calculation.

In computing the answer to the above problem, most people would convert the 3 to
3.0 rather than convert the 4.4 to 4. That's because the latter process is a valid course of
action which would lead to a valid answer. The reason is that 4.4 holds more
information than 4, and if the decimal was dropped, information would be lost.

Actor formalizes the concept of "holds more information” by defining an object’s
generality. For example, we say that Real objects are more "general” than Long objects,
which are in turn more "general" than Int objects. (Generality is not related to the class
inheritance scheme.) Only certain kinds of numbers can be represented as Int objects.
Those numbers, and many others, can be represented as Long objects. Real objects can
represent any number that Int and Long objects can, plus a bunch more. Complex
numbers, which are not implemented in Actor, would have an even higher generality.
At any rate, you can see generality in action by typing the following;:

generality(5.4) <CR>

2

generality(5L) <CR>
1

generality(5) <CR>
0

All Real objects will respond the same way as 5. 4 did, and all Long and Int objects
will respond the way 5L and 5 did, respectively. To see why, examine the generality
methods for Real, Int, and Long.

Whenever Actor sees a mixed-mode arithmetic expression such as 4.4-3, it examines
both numbers to see which has the highest generality. The object with the lowest
generality (in this case, 3) is converted, or coerced, to an instance of the class with the
highest generality, and the arithmetic operation proceeds. Most of the methods in class
Number exist to handle the coercion required for mixed-mode arithmetic.

2.5 Using the Association Class

In high school algebra you may remember learning the concept of an "ordered
pair.” The idea is simple: there are two items, and the second one is always "associated
with" the first. Usually this concept was applied to ordered pairs of numbers, such as
(2,4) or (5,6). The notation is arbitrary; ordered pairs can also be expressed as 2->4 or 5-
>6.

2.5: Association Class 105

Although these ordered pairs were generally only explained in terms of numbers, of
course the concept is much more general. You can have an association between any two
things, such as a dog and his master:

Rover->Mr. Smith

In Actor, there is a special construct designed to implement this concept of an "ordered
pair,” and as you might guess by the section heading, this construct is known as an
Association. You can think of it like this:

Key->Value
key is the first item; value is the second item, the one "associated with" the first.

The nice thing about Association objects is that you can have any two objects
associated with each other. Of course you can have the dog->master example, but the
true power of Association objects is revealed when you want to associate two
complex objects. For example, you can have an association between a student’s name
and his test scores:

Mark->Array (80 80 75 90 44)
Since an object of class Association is just a relationship between two objects, you
can have just about any two things you want be associated with each other.
2.5.1 Accessing an Association

The init method is probably the only method you'll have to worry about when using
an object of class Association. The syntax is as follows:

init (associationObject, key, value)

For instance, the following code will make a new object called Sam representing the
ordered pair (3,5):

Actor[#Sam] := new(Association) <CR>
init (Sam,3,5) <CR>

print (Sam) <CR>

3->5

106 Chapter 2: Guide to the Actor Classes

For the more complicated example above, the code is basically the same:

Actor[#iStudent] := new(Association) <CR>
init (Student, #Mark, #(80 80 75 90 44)) <CR>
print (Student) <CR>

Mark->Array (80 80 75 90 44)

What if you tried the following code:

Actor[#Sam] := new(Association) <CR>
init (Sam, "Rover", "Mr. Smith") <CR>
init (Sam, "Rover”, "Mr. Jones") <CR>

What would happen? The answer is, not much. As you might expect, the only
result is that "Mr. Smith" is no longer associated with "Rover”. "Rover" is now associated
with "Mr. Jones," as if "Mr. Smith" had never been associated with "Rover" at all.

One final note: much of the time you won’t be working with instances of class
Association individually. Often you'll find them grouped together in a class called
Dictionary. However, all the collections will be discussed at length later on. Just
remember that this isn’t the last you’ll see of class Association!

2.6 Using Classes as Objects: The Behavior Class

Behavior is a high-level, abstract class which Actor uses behind the scenes a lot.
Basically, Behavior is the place where all methods that treat classes as objects are
placed. For example, to create a new object you usually say new (someClass). As
always, you are sending a message to an object, so you have to treat the class as an
object. The new method is located in class Behavioxr or one of its descendants,
executed, and an instance of someClass is created.

The Behavior class contains methods to implement class inheritance, too, as well
as some other miscellaneous tasks. Some of this is pretty metaphysical material, and
NOT IN ANY WAY necessary for understanding the rest of Actor. Nevertheless,
although you can probably safely ignore some of the theoretical material, you should
still study this section because there are some handy methods found here. In addition,
you may find some of the theory quite fascinating.

2.6.1 Comparing Classes With Each Other

If you look at the method dictionary for class Behavior, you will find the two
methods < (less than) and > (greater than). Since the idea of one class being greater or
less than another class could be interpreted a couple of different ways, this short section
will explain the Actor convention for comparison between classes.

2.6: Behavior Class 107

The convention is relatively simple. Class A is considered greater than class B if the
name of class A is alphabetically greater than the name of class B. In other words, it's a
simple alphabetical comparison between class names:

Association < Behavior <CR>
0

Association > Behavior <CR> .
nil

Collection < Association <CR>
nil

Collection > Association <CR>
0

In case you might be wondering why anyone would ever use these methods, they
are included because in the Browser and elsewhere we use an alphabetically sorted list
of classes. In general, any class whose instances might be placed in a
SortedCollection should either implement or inherit the methods >, <and =.-

2.6.2 Creating New Objects

There are three methods which know how to create objects in Actor. The first
method, inherit, is used to create a new class. The second method, new, is used to
create atomic objects (see section 2.1.3.3). The third method, variableNew, is used to
create objects which are collections of atoms. Since class inheritance is the key to object
oriented programming, we'll start with the method to create new classes, inherit. Its
syntax is straightforward:

inherit (ancestorClass,
#className,
#(ivarl ivar2 ...),
nil,
nil);

The receiver, ancestoxClass, is just the class you want your new class to directly -
descend from. The second parameter, #className, is the name of your new class. The
is required because the name of an object is actually a symbol, and what you are doing
here is giving it a name. Next, there is an array of instance variables unique to the new
class. There can be any number of them, and they can hold objects of arbitrary class.
Instance variables can hold objects of classes that haven’t even been defined yet; you can
even have an instance variable hold an object of the class you’re defining!

108 Chapter 2: Guide to the Actor Classes

The last two inherit arguments are always nil; the Browser uses those items
internally.

For a practical example, let's say we wanted a new class which represented a three-
dimensional point. Since we already have a Point class for two-dimensional points,
we'll make our new class descend from Point. Point already has two instance
variables, x and y. All we have to do is add another example variable for the third
coordinate, z. The inherit statement for this would be:

inherit (Point, #Point3D, #(z) ,nil, nil);

Most of the time, however, you won’t be creating new classes. Usually, you will be
creating other kinds of objects, namely instances of classes such as File, Window, and
so on. The method used for creating this sort of object is called new. It might seem odd
to see new in class Behavior, but it really does make sense. Consider the syntax of the
new method (for atomic objects only):

new (className) ;

You send a new message to a class (e.g. Point, Char, etc.), and a class itself is an
Object. Since Behavior is the place where messages to classes are located, that's
where the new method is found.

For non-atomic objects such as collections, new objects are actually created with
variableNew. This method differs from new in that it takes not only the class’ name,
but also the number of elements to allocate. You won’t find too many references to
variableNew per se because we have designed the new method for non-atomic objects
to use variableNew instead. As a result, the new method for collection objects will
take one argument. This means for all practical purposes you can forget that
variableNew exists because on the surface, it looks like non-atomic objects are created
with the same new as that for atomic objects, but with an added parameter. The thing to
know is that the task of creating non-atomic objects is actually done by variableNew in
disguise.

2.6.3 Traversing the Class Tree

So far we’ve mentioned the class tree and how important it is. The tree is nota
physical object, but rather a concept to convey the inheritance scheme. Nonetheless,
although the tree is not a physical object, Actor needs methods which know how to
exploit the class hierarchy, and this section explains these methods.

You already know that in object-oriented programming, you can make a new class
inherit methods and instance variables from its ancestors. Unfortunately, to those who
don’t know what’s going on, the whole inheritance scheme can seem like a bunch of
hocus-pocus.

2.6: Behavior Class 109

Of course, there’s nothing magic about it. If the class in question doesn’t have what
is needed, then the ancestor is searched, and so on up the family tree. Since this
traversing the class tree is so prevalent, Actor has a rich set of methods to utilize the
class tree. And since the objects on the class tree are classes, and class Behavioxr deals
with classes as objects, this is where you'll find them.

As you'’ve probably guessed, most of the traversals of the class tree are in the
"upward" direction. By "upward" we mean starting with the current class and visiting
the ancestors of that class, all the way to class Object if need be. As a result, there are
more methods which deal with a class’s ancestors than methods dealing with a class’s
descendants.

2.6.3.1 Exploring Ancestors of a Class

The simplest method in this category is isAncestor. It’s just a boolean method
which takes two class names and returns true if the parameter is an ancestor of the
receiver.

isAncestor (Object,Array) <CR>
nil

isAncestor (Array,Collection) <CR>
Collection

Note that 1sAncestox will return the second parameter if it is indeed an ancestor of the
first. In addition, from the second example you can see that isAncestox will work
even if the second parameter is not the immediate ancestor of the first.

If you want to simply find out who the ancestors of a given class are, in inheritance
order, you can use the method ancestoxrs:

ancestors (Behavior) <CR>
OrderedCollection (Behavior Object)

The method ancestors is basically a "front end" for another, more general method
called addAncestoxs. This more general method takes two parameters: a class and a
collection of some sort. It then travels up the class tree, adding the name of the class at
each level to the collection, until it reaches class Object. Although the type of
collection is mostly irrelevant, it must be able to respond to the add message with a
single parameter. The following code, for example, shows how to return a
SortedCollection of the ancestors of class Int, assuming the SortedCollection
object aCol1 has already been created:

addAncestors (Int,aColl) <CR>
SortedCollection (Int Magnitude Number Object)

110

Chapter 2: Guide to the Actor Classes

To see why ancestors is a "front end" for addAncestors, ook at the code for
ancestors in the Browser. You'll see that all ancestoxrs does is create an
OrderedCollection, call addAncestors to fill up the OrderedCollection, and
return it. Using addAncestors gives you the greater flexibility of using any collection
that responds to add rather than requiring an object of class OrderedCollection.

To retrieve a class’s instance variables, there is method similar to addAncestors
called addvariables. It travels up the class tree too, except it collects instance
variables rather than the names of ancestors. For instance, using the Point3D class
defined above, and assuming we have an object Sam of type OrderedCollection:

addvariables (Point3D, Sam) <CR>
OrderedCollection (#ix #y #z)

The z came from Point 3D itself; the x and y came from the immediate ancestor of
Point3D, Point.

2.6.3.2 Exploring Descendants of a Class

The main method used for traversing the descendants of a given class is called
descendantsDo. Its name is self-explanatory, because it provides a way to "do" over
the descendants of a class. The usual do method does not work within Behaviox (not
surprisingly, it is undefined to "traverse" a class) but this specialized do visits all the
descendants of a class. The syntax is as follows:

descendantsDo (aClass, aDictionary, twoArgBlock, level) ;

The receiver, aClass, is any class name, i.e. Object, Behavior, Collection, etc.
The first parameter is aDictionary, an object of class Dictionary whichisina
specialized format returned by a method called buildClassLists. Since we haven't
explained class Dict ionary yet, it's a bit premature to tell you the format of this
dictionary, so don’t worry about it just yet. The second parameter is a two argument
block, where the first argument holds the name of a class during execution of the block
and the second is for the current level (the same as the level in the main
descendantsDo block, explained next). The 1evel represents the number to start
countingat. If levelis 0, aClass will be atlevel 0; if levelis 1, aClass is assumed
to be at level 1. The loop traverses the class tree recursively, and each time the loop
visits a descendant of the class it’s currently on, level is incremented by one. In other
words, level will always represent how far the current class has descended from
aClass.

2.6: Behavior Ciass 111

The following code will print the names of all the classes descending from Window
including their level:

descendantsDo (Window,
buildClassLists (Actor),
{using(cls, lev)
printLine(tuple(cls,": ",lev));
},0) <CR> .
Window: 0

PopupWindow: 1
ToolWindow: 2
Browser: 3
Inspector: 3
TextWindow: 1
EditwWindow: 2
WorkEdit: 3
BrowEdit: 4
WorkSpace: 4
WorkWindow: 2

If you specify a 1evel of 1 instead, the counting will start at 1 instead of 0, and all the
numbers printed above would be one greater. Compare this to the class tree to see a
graphical representation of the same thing.

The descendants method is like the ancestors method above, except that it
returns an OrderedCollection of the descendants of a class. For example:

descendants (Number) <CR>
OrderedCollection (Number Int Long Real)

This message is particularly handy when you want to browse just a few classes
rather than all of the classes in the Actor system. For example, you can say

browse (descendants (Number)) <CR>
and a Browser with the above four classes would pop up. It loads quite a bit faster than
a Browser from the Workspace menu bar, because there are fewer classes. Making a

Browser by clicking on the menu bar is the same as typing:

browse (descendants (Object)) <CR>

112

Chapter 2: Guide to the Actor Classes
2.7 Using Collections of Objects: The Collection Class

Class Collection is probably the richest part of the class tree. Its descendants
comprise any data structure which contains a group of other objects (called elements of
the collection). The concept of Collection is almost too simple to explain in other
words because a Collection is just that: a collection of other objects. Mastering the
use of class Collection is half the battle of mastering Actor itself. The situation is the
same in learning a procedural language such as Pascal, although usually it’s not thought
of in those terms. Mastering the power of any language lies in mastering the data
structures that it provides for you, and Actor is no different!

As was the case with class Object, you won’t be working directly with objects of
class Collection. In fact, if you create an instance of class Collection, you won't
even be able to add anything to it. Its only purpose is to provide universal properties
and methods for all of its descendants. All the action occurs below, in the descendants
of Collection. For example, an Array in Actor is implemented as a descendant of
Collection, as are Dictionary objects, Set objects, and much more.

Although some descendants of Collection redefine behavior based on their own
unique properties, all of them respond to some basic methods. For example, all
collections know how to traverse themselves in order to alter and/or do things with
each element. Not all of the methods in this section are actually found in class
Collection, but every collection will respond to the methods explained in this section.

2.7.1 Creating and Initializing New Collections

With all of the classes you have studied thus far, creating a new object of that class
was a simple matter of saying

new (ClassName) ;

However, with Collection objects, you also have to tell Actor how many elements
you want:

new (CollectionType,n) ;

where n of course is the number of elements in the collection. (You might remember
from the discussion in class Behavioxr in section 2.6.2 that the new for Collection
objects is actually implemented using a different method, variableNew, although the
end result is the same.) The number of elements in a collection is not always set in
stone; many collections have the ability to grow if you tell them to store more than they
have room for. As a result, unless you are working with a collection of fixed size, you
don’t have to worry too much what number you choose. Be aware, nonetheless, that the
grow method takes some time. If you know in advance that you will need at least 100
elements, don’t tell Actor to only allocate space for 8!

Object

I
Collection
Keyed-
Collection Sel
L]
Indexed-
Collection Bag Dictionary SymbolTable
Method-
Interval Amay Frame Dictionary Slot
Ordered- Identity-
Charinterval Function Collection Dictionary
Sorted- Text-
‘\ ot i f\ Hacrd k
Byte-
Collection
String Struct
Graphics-
Symbol DosStruct Ol;:;u Proc

'

Polygon

Rect

——

Ellipse RndRect

Figure 2-4: Collection class tree

2.7: Collection Classes 113

' Whenever a new collection is created, an init message is also automatically sent to
the new collection by the class’s new method. Every init for a collection object follows
the convention that the init method takes no parameters (e.g. init (Sam), where Sam
is some collection). This is so that init can be used on any collection without getting an
error.

2.7.1.1 Accessing Elements of a Collection

All Collection objects have the universal property that you can access individual
elements by specifying the name of the collection, followed by an object enclosed in
brackets: .

aCollection|[someObject];

" When the compiler sees this pattern, it translates it into an at or a put message. An
at is generated if an element of the collection is being retrieved, while a put is
generated if the pattern occurs on the left side of an assignment. The following
illustrates how the above format would translate into an at or a put message:

aCollection[someObject] := 3;
put (aCollection, someObject, 3) ;

x := aCollection[someObject];
x := at (aCollection, someObject) ;

A collection’s class determines whether there might be any restrictions on the kind
of elements it can hold. For instance, objects of class Array or its descendants can hold
anything. However, a ByteCollection object, as you might guess from its name, can
only hold byte-sized data. Most collections have no restrictions on their elements.

Some collections have several different ways of getting at their elements. The first
major kind of at method is implemented in class Object. Object’s at method provides
access into a collection by index, or physical offset. This includes all the
IndexedCollection classes (hence the name), as well as some others. This restricts
the index to being an Int, e.g. aCollection[8]. Even classes that redefine at asa
different kind of access sometimes use Object : at to do the basic level of element
retrieval.

The at operation is redefined in many KeyedCollection classes as an associative
at. That is, the collection associates a value with the argument (or key), and at returns
the value. The precise method used to determine the physical location of key/value
pairs is irrelevant. Only the association of key with value is important. This allows a
much wider range of objects to be used as keys.

114

Chapter 2: Guide fo the Actor Classes

For example, you could have a keyed collection of the populations of some of the
various cities of the U.S. called us. Then, you could access the population of Chicago by
referring to US ["Chicago™]. The various KeyedCollection descendants have
unique restrictions as to the acceptable classes of their keys. We’ll cover this in more
detail a little later.

2.7.1.2 Enumeration Methods

The most important methods for collections have a special name, enumeration
methods. Webster’s defines enumerate as "to name one by one; to specify, as in a list."
That’s exactly what enumeration methods are for: they go through a collection, element
by element. You are probably already familiar with one of them, the do method. It's
similar to a "for" or a "while" loop in other languages, although much more powerful.
The other two, collect and extract, are specialized versions of do which enable you
to easily perform some quite complex tasks.

All of the enumeration methods have the same general syntax:

enumerationMethod (aCollection,aBlock);

The receiver, aCollection, is any collection object (that is, any object of a class
descended from class Collection). The first parameter, aBlock, is any one argument
block expression. You can think of a block as a normal Actor method without a specific
name.

To demonstrate each method, we will use a specific example. Let’s say you already
have an instance of class Set called workers. Each element in workexs is an object of
class Employee, which was intially defined thus:

inherit (Object, #Employee, # (name age),nil,nil);

Assume that we have already placed four Employees into workers. Also, assume
that currently the data for the employees is:

Name Age
"John Smith" 45
"Andrew Clark” 34
"Janet Abud" 34
"Betsy Ross" 27

Of the three enumeration methods, do is the most general and the one you are likely
to use the most. In fact, if you look at the code for the other two with the Browser (they
are found in class Collection itself) you'll see that both of them are implemented with
do.

2.7: Collection Classes

The hardest thing about learning to use do is that you're likely not to use it enough!
It's so powerful and so easy to use that for a while at least, you’ll forget that it’s there
and try to do things the hard way (so to speak). A sizable percentage of loops in any
program simply traverse a collection of elements (be it an array, a linked list, or
whatever). In most languages, however, you have to worry about where to start and
where to end; in Actor it’s all taken care of for you. All you have to do is send the
collection a do message and let it do all the work.

To understand what do does, we'll take a simple do message and analyze it.

do (aColl,)
{using(element) statementl;
statement2;
statementN;
1

The receiver, aColl, is any collection object (i.e. an instance of any of the
descendants of Collection). The block’s argument, element, is replaced by each
element as the collection is traversed. For example, this code will print each element of a
collection:

do(aColl,
{using (element) print (element);
1)

Remember also that the name of the block argument used inside the block is
arbitrary, as long as it is consistent within the block. To see this, let’s say we want to
print the names of all the people in our above workers example:

do (workers,
{using (emp) printLine (emp.name);
}) <CR>

John Smith

Andrew Clark

Janet Abud

Betsy Ross

The second enumeration method, collect, provides a way to map one collection to
another. First, collect creates a new collection of the receiver’s species (section
2.1.3.2). Initially, it's empty. Then collect evaluates its block expression once for each
element in the original collection. The result of this expression is added to the new
collection, and when the original collection has been traversed, the new collection is
returned. Note that by definition, the new collection will have the same number of
elements as the original.

115

116

Chapter 2: Guide to the Actor Classes

Using the example above, to construct a Set with only the employees’ ages:

collect (workers,
{using(empl) empl.age
}) <CR>

Set (45 34 34 27)

Last, but not least, there is ext ract. This method is similar to collect in that it
first creates a new collection of the same species as the one you give to it. Then,
extract traverses the collection and if an element satisfies the condition you specify,
that element is added to the newly created collection. The new collection is then
returned.

Consider the workers example above. Let’s say we want to write some code which
extracts those employees who are a certain age:

extract (workers,

{using (emp) emp.age = 34;
}) <CR>

Assuming the data above, this would return a Set containing two objects: the
Employee objects for "Andrew Clark” and "Janet Abud". If you wanted to retrieve
those employees whose age was not 34, then you would change the = to <> instead.
(Actually, if you knew that an employee’s age was always going to be an integer, you
could use == or ~= and extract would execute somewhat faster. Why? Refer to the
discussion of equality and equivalence in section 2.1.3.1 for details.)

When collect and extract receive a collection to work on, they create new
collections of the same species. In addition, both methods use add to place elements in
the new collection. However, not all collections respond to the add message, such as
Array. Since we would like all collections to be able to use collect and extract,
obviously the new collection that collect and extract creates must be able to
respond to add.

Remember in section 2.1.3.2 where we said that the class of an object is usually the
same as the species of an object? We said "usually" because the situation described
above requires an exception. If you look at the code for species in class Collection
and some of its descendants, you'll find that some collections will reply that Set is their
species. Since a Set object understands add, this lets a Dictionary, for example,
utilize ext ract and collect. This makes intuitive sense, as well; class Set is the
most general type of collection and comes closest to representing the intuitive concept of
a collection.

At any time, you can redefine what species a class is by either altering the species
method (if there is one) or adding one to that class’ methods.

2.7: Collection Classes
2.7.1.2.1 Making Other Messages Enumerative

There is an elegant and powerful technique that you can use to make any message
enumerate over collections. We’ll use an actual example to show you how it works.

At some point in our development of Actor, we got tired of typing in
load("filename") every time we wanted to reload one of a group of files. We
wanted to be able to say, load (tuple("filel", "file2", "file3")) and have
the 1load message sent to each of the strings in the tuple. All we had to do was define
the method load in class Collection as follows:

Def load(self)
{ do(self, {using(element)
load (element)
}):
}

In other words, Collection passes the message that it was sent along to each of its
elements. This allows a collection of objects to be used in place of any atomic object as
the receiver of that particular message.

We could have defined the 1oad message in class Array, since tuples are actually
arrays. Defining it in Collection gives it a rather amazing property. You can send
the load message to an arbitrarily complex tree of collections, and at each stage, the
collection will simply “pass the message along" to its elements. Ultimately, an atomic
object receives the message, and actually does something. For instance, you know that
you can load a group of files by saying 1oad (Demos [#groupName]). Well, because of
this property that we are discussing, you could also say 1oad (Demos) and cause all of
the demonstration files to be loaded. Demos is just a collection, albeit a rather
specialized one.

Thus, if you want to be able to send a message to a collection of objects, you can
cause it to enumerate by using the simple technique we have just described. In general,
Actor’s collection classes bring together such features as late-binding, enumeration and
inheritance in a very powerful and general way.

2.7.1.3 Conversion Methods

Since Collection is by definition the "lowest common denominator"” of all
collections, you should place in this class methods which you want all collections to be
able to use. A prime example of this besides the enumeration methods are the
conversion methods. It is extremely useful to be able to convert a collection of one class
into a collection of another.

All the conversion methods work the same way. You send a collection a message
with no parameters and it returns the original object as a collection of the new class. For
example:

117

118

Chapter 2: Guide to the Actor Classes

asSet (aColl);
/* returns aColl as a Set */

Some of the conversion methods included in addition to asSet are
asOrderedCollection, asSortedCollection, and asArray. Defininga
conversion method is a simple matter of making an empty collection of the class you
need, and sending a do message to the old class and telling it to add all the elements of
itself to the new collection.

2.7.2 The IndexedCollection Class

IndexedCollection is one of the formal classes we mentioned above. As such,
you will never use objects of class IndexedCollection; it merely serves as the
unifying class for Array and ByteCollection. Basically, an IndexedCollectionis
a collection of objects in which the individual elements are referenced by integer values.
In this sense they are sort of like arrays in other programming languages. However,
some of the classes which descend from IndexedCollection are much more
powerful than the simple array you may be used to. As a result, while
IndexedCollection objects may behave like traditional arrays, they can really do a
whole lot more.

Defined more formally, IndexedCollection objects access individual elements
by an integer subscript which represents the index or offset into the collection:

anIndexedCollection[someInteger]:;

Note that IndexedCollection objects are also distinguished by the fact that
elements are accessed by the at and put methods of class Object. Note also that the
indices of an IndexedCollection always start at 0 (zero). For example, if you have
an object of class Array named Joe, the first element is located at Joe [0].

2.7.2.1 Miscellaneous Methods For Indexed Collections

There are a few methods which can be used by all IndexedCollection objects,
i.e. any instance of a descendant of IndexedCollection. They are described below.

As we mentioned above, both collect and extract return collections which
respond to add. However, the map method is provided especially for indexed
collections, not all of whom respond to add. Basically, map returns an
IndexedCollection of the same class and size of the receiver. Each element in the
collection that it returns is the result of evaluating the one-argument block with the
receiver’s elements. For instance, the following message will return a String where all
the ’Y" characters in the receiver String have been converted to ‘@’ characters:

Object

Collection

Indexed-
Collection

Interval Array
Ordered-
Charinterval Function Collection
Byte- I I
Collection Sorted- Text-
I Collection Collection
String Struct
Graphics-
Symbol DosStruct Object Proc

e

Polygon

Rect

-

Ellipse

RndRect

Figure 2-5: IndexedCollection class tree

I An indexed collection I

collectionName

anObject

anObject

anObject

anObject

anObject

anObject

anObject

anObject

anObject

anObject

size - 1

Figure 2-6: On a logical level, descendants of -
IndexedCollection are accessed by element index.

2.7: Collection Classes 119

map (" !!'Hello, this is a test string!55",
{using(ch) if ch == /!’
then ’@’;
endif;
3
"@@Hello, this is a test string@55"

There might be times when you want to reverse an IndexedCollection. Thatis,
return the IndexedCollection with all of its elements in the reverse order. The
raverse method does the trick:

raverse ("ABCDEFG") <CR>
“"GFEDCBA"

Note that reverse directly alters the collection--it does not return a copy.

2.7.2.2 Using Arrays of Objects: The Array Class

The most generic type of indexed collection is the one most familiar to
programmers, the humble Array. Just as in most other programming languages, the
number of elements in an Axrray is fixed once you create one. For example, to create a
new Array with room for 11 elements:

Actor[#Sam] := new(Array,1l);

This new Axrray can never hold more than 11 objects.

Elements of an Array are always accessed by the array name, a left bracket, an
index, and then a right bracket, i.e. Sam[0], Sam[1], etc. In addition, you always add
or remove objects from the array by directly referring to these elements, such as Sam[0]
:= lorSam[0] := nil. Thisis one of the main differences between Array objects
and other collections. Array objects are distinguished by the fact that this is the only
way to access, add, and remove elements, whereas for other collections there are many
ways.

2.7.2.2.1 Creating Array Objects
The most obvious way to create an Array is demonstrated above with the new
method. However, there are a few others which come in handy, too. For instance, it is

easy to instantly create an Array if you know in advance what its contents are:

#(1 2 3 4) <CR>
Array(l 2 3 4)

120

Chapter 2: Guide to the Actor Classes

This kind of array is called a literal array because every element in the array has to be
defined at compile time. In English, this means that only literal constants, not variables,
may be in one of these instant Array objects. For example:

Actor[#Joe] := 1 <CR>
#(Joe 2 3 4) <CR>
Array(#Joe 2 3 4)

Notice that the symbol #Joe was placed in the new array rather than the current value
of Joe (1) because that’s what Joe, considered as a literal constant, actually is.

Remember in class Object when we told you about the tuple method? To refresh
your memory, tuple is an easy way to gather a bunch of objects together into a
collection. For all practical purposes, you can consider a tuple an Array. In fact,
creating a tuple returns an Array:

tuple(l 2 3 4 5) <CR>
Array(l 2 3 4 5)

In the above example we noted that creating a literal array meant that you couldn’t
specify that you wanted to use the value of an object. Instead, the object’s name was
taken as a literal constant. However, tuple has no such restriction because the Array
is generated at runtime. Thus, to generate an Array with the value of Joe as the zeroth
element: ‘

tuple(Joe, 2,3,4) <CR>
Array(1 2 3 4)

2.7.2.2.2 Miscellaneous Methods

There really aren’t a whole lot of methods to learn in the Array class. Of course, all
the enumeration methods work, but those were explained in the previous section. There
are a few handy ones, however. One which you may find useful is £411. It fills up an
array with the value you give it:

Actor[#Sam] := new(Array,4) <CR>
£ill(Sam,1l) <CR>
Array(l1 11 1)

Just so you can get a better idea of how to use enumeration methods, the above £111
message is equivalent to the following do loop:

Array class

Sam offset:
2 0
‘a’ 1
nil 2
2@3 3 ¢—— Sam|[3]:=2@3;
nil 4
nil 5
nit 6 — (;..ialm[(i];~ <CR>
"Whitewater" 7
nil 8
nil 9
777777777 7777777
fixed size

Figure 2-7: An object of Array class is an indexed
collection of fixed size. This Array has a size of 10
and is named Sam. When created, it is filled with nil.
Later, elements are accessed by their corresponding
index values. '

2.7: Collection Classes 121

do(size(Sam),
{using (i) sSam([i] := 1;
}) <CRrR>

Array(l 11 1)

The method copyFrom is a nice way to get back just part of an array. All you have
to do is tell it what index to start and end at, and it will return that portion of the array:

copyFrom(#(5 6 7 8 9),1,3) <CR>
Axray(6 7)

Note that the index you tell it to end at is actually one greater than what you might
expect. This is because copyFrom (arrayObject, start, stop) actually only returns
the elements from arrayObject [start] to arrayObject [stop-1]. This behavior
is consistent with similar methods found below in the Stxing class and also with the do
method for Intexrval objects.

Another method you might want to use, £ind, sequentially searches an array for a
given target and then reports back where in the array it is found. If it isn’t, the method
returns nil. For example:

£ind (#("Bill" “"Sandy" "Rich" "Lois"),"Rich") <CR>
2

£ind (# (*Bill" "Sandy” "Rich" "Lois"),"Ron") <CR>
nil

A related method, index0£, does the about the same thing as £ind except that it
uses equivalence for its comparisons rather than equality:

indexOf (# ("Bill" "Sandy" “"Rich" "Lois"),"Rich") <CR>
nil

indexOf(#(1 2 3 4),3) <CR>

2

2.7.3 Using the OrderedCollection Class

An Array object is used for purposes in which you want total control over where
new objects are placed. There are no restrictions or conventions on adding new
elements because you can put elements in at the beginning, the middle, or the end.
There are times, however, when you want to preserve the chronological order in which
items are added or removed. The most obvious case of this is in the case of a stack. A
stack, as you might know, is basically an array with the restriction that additions and
removals only take place on one end of the stack (usually called the top of the stack).

This sort of requirement is perfect for objects of the OrderedCollection class. In
some ways they are just fancy arrays in that you can randomly access elements like you
can with arrays. However, each element generally has a chronological order associated
with it, i.e. the second element was added after the first, and so on. You can defeat this
arrangement if you need to — there is a way to insert or remove somewhere in the
middle--but generally this ordermg is in effect.

OrderedCollection is also the first collection class in which an object’s instance
variables play a big role. Every OrderedCollection object has two instance
variables, £irstElement and lastElement. The convention is that if
firstElement = lastElement, the collection is considered to be empty. For
example, let’s say we have an OrderedCollection called oc. By definition, oc is
empty when oc.firstElement = oc.lastElement. When an object is-added to
the collection, it is placed at oc[oc.lastElement] and then oc.lastElement is
incremented by one. This in turn implies that oc [oc . 1astElement] is always
undefined.

Note that this does not imply that £irstElement is always equal to zero.
Although when an OrderedCollection is first created, it will be zero, later on it can
be anything, as long as it is less than or equal to 1astElement. This also means that
the number of elements in a collection is not simply the value of 1astElement, it is
actually calculated by subtracting £irstElement from lastElement.

2.7.3.1 Adding Elements

To preserve the chronological ordering of elements, additions to an
OrderedCollection are almost always done by sending it an add message. With
add, you tell the collection what to add to itself, and it places the new object on the end
(or top, if you prefer) of the OrderedCollection. For example:

l OrderedCollection class I

JastElement

NAMED:
firstElement

stack bottom

I___p 29 0 =«

INDEXED: "Hello" 1
— ‘a’ 2
nil 3 -
nil 4
stack top

Figure 2-8: The OrderedCollection class can be used to
represent a stack. It has two instance variables which

keep track of the collection start and end. OrderedCollection
Joe has a size limit of 5, but now holds only 3 elements.

2.7: Collection Classes

Actox[#Joe] := new(OrderedCollection,5) <CR>
add (Joe, 3) <CrR>

OrderedCollection (3)

add (Joe, "Hello") <CR>

OrderedCollection(3 “Hello")

add(Joe,’'a’) <CR>

OrderedCollection(3 "Hello” ’‘a’)

If you try to add more elements than the collection has room for, then the collection
will expand itself in order to accomodate the new objects.

There may be times in which you want to defeat the chronological ordering. For
these purposes, you can use the insert and insertAll methods. The first inserts one
object at the index you specify, and the second inserts an entire collection (any kind) into
the OrderedCollection at the index you specify. Both methods will generate an
error if you try to insert at an invalid index (i.e. index < firstElement or index >
lastElement). Note that insertAll of a collection at lastElement is functionally
equivalent to appending the collection to the OrderedCollection. Some examples:

insert (Joe, "World"”,2) <CR>
OrderedCollection (3 “Hello" "World" ‘a’)

insertAll (Joe, # (100 200 300),2) <CR>
OrderedCollection (3 “"Hello" Array(100 200 300) "World" ’a’)

We mentioned above that one of the possible uses of OxderedCollection objects
is to simulate a stack. There are two operations associated with stacks, and both of them
are also implemented as methods within OrderedCollection. The method which adds
something to a stack is called push. A push is identical in form and function to what
we call add, and in fact push is implemented with add. Which you use is up to you,
although push might convey more strongly the idea that you are simulating a stack.

2.7.3.2 Removing Elements

The counterpart of add used to remove the last element in an
OrderedCollectionis called removeLast. It removes the last element from the
collection and then returns that element:

removelast (Joe) <CR>
’ al

Its counterpart for the stack paradigm is the pop method, and again it is functionally
identical to and implemented with its Actor counterpart, removeLast. Both methods
will generate errors if you try to remove an item from an empty OrderedCollection.

123

124 Chapter 2: Guide to the Actor Classes

You can also remove an arbitrary element from a collection with the remove
method:

sysPrint (Joe) <CR>
OrderedCollection(3 "Hello" ’a’)
remove (Joe,1l) <CR>

"Hello"

sysPrint (Joe) <CR>
OrderedCollection(3 ’a’)

The remove method will generate an error if the index you pass it is invalid, which in
this case is if index < firstElement or index >= lastElement. Note that this is
not exactly the same as in insert above. This is due to the fact that you can insert at
lastElement (appending to an OrderedCollection) but you can’t delete because
the element there is undefined.

2.7.3.3 Accessing Elements

The easiest way to access the elements of an OxrderedCollection is the same as
that used for Axrray objects:

sysPrint (Joe) <CR>
OrderedCollection(3 "Hello" ’a’)
sysPrint (Joe[2]) <CR>

14 al

Note that this way of accessing objects does not protect you from accessing elements
that are undefined. For example, with the Joe object above, Joe [4] is undefined
(equal to nil), because 4 is greater than lastElement, which is currently 2. However,
you can use Joe [4] in an expression, and it won’t generate an error. Accessing
elements in this fashion, while not recommended, is certainly allowed and will not
generate an error unless the index is greater than or equal to the limit of the collection.

There are special methods for returning the first and last elements of an
OrderedCollection. Assuming the example immediately above:

first (Joe) <CR>
3

last (Joe) <CR>
4 a'

Both of these methods will generate errors if the collection is empty.

2.7: Collection Classes

2.7.4 More Ordering: The SortedCollection Class

In many cases, maintaining a chronologically ordered collection is not enough. For
example, if you have a collection of strings, you may want to keep them in either
ascending or descending alphabetical order, or you may have more complicated
elements for which the ordering is arbitrarily complex. In any event, you can use
SortedCollection objects and Actor will ensure that the elements are maintained in
the proper order.

A SortedCollection is a normal OrderedCollection except for whenever
you tell one to add an element to itself, it searches itself to find out where to add the new
element so as to maintain the sorted order. Just as with OrderedCollection objects,
if you try to add more elements than the collection has room for, it will expand itself. In
addition, you can re-sort the collection at any time in a different order by sending the
appropriate message to the it.

2.7.4.1 Adding and Removing Elements

You add to and remove elements from SortedCollection objects almost the
same way you did with OrderedCollection objects above, with the add and
remove methods. In fact, add is identical in usage to its OrderedCollection

counterpart:

Actorxr[#Sort] := new(SortedCollection,5) <CR>
add (Sort,20) <CR>

SortedCollection (20)

add (Sort,3) <CR>

SortedCollection (3 20)

add (Sort,200) <CR>

SortedCollection(3 20 200)

add (Sort, 99) <CR>

SortedCollection(3 20 99 200)

The remove method, however, is slightly different. With the remove of
OrderedCollection, you had to know what index the element was at. With
SortedCollection objects, however, all you have to know is what the object is and
the collection will figure out where it is and delete it:

remove (Sort, 99) <CR>
SortedCollection (3 20 200)

If you try to remove an object that is not in the collection, an error will be generated.

125

126

Chapter 2: Guide to the Actor Classes

2742 Determining the Order of Elements

Each SortedCollection object has an instance variable which determines the
order in which the elements will be sorted. The instance variable, compareBlock, isa
normal two-argument block initialized when you create a new SortedCollection.
As you may have noticed from the above example, by default a SortedCollection
will add elements to itself in ascending order, i.e. 1, 2, 3,... or‘A’,/B’,’C’,... The default
compareBlock looks like this (see the init method in the Browser):

{ using(iteml,item2) iteml < item2 };

When this compareBlock is evaluated, iteml will hold the object being searched for
(the target), and item2 will hold the element in the array the target is currently being
compared with.

By changing the compareBlock with the setCompareBlock method, you can
change the order of the elements. This method creates a new SortedCollection, sets
the new collection’s compareBlock to whatever you have passed it, and then adds all
of the old collection’s elements to the new collection using the new compareBlock.
From that point on, anything you add to the collection will be placed according to the
new compareBlock. Forexample, for the above Sort object, you might want to have
the elements sorted in descending order:

setCompareBlock (Sort, {using(eleml,elem2) eleml > elem2})
<CR>

SortedCollection (200 99 20 3)

add (sort,38) <CR>

SortedCollection (200 99 38 20 3)

So far we have seen only integer objects as elements in SortedCollection objects.
In fact, as long as both objects compared in the compareBlock respond to the < or >
messages, they can be elements. However, what if you had a bunch of Point objects,
for example, that you wanted to sort? Well, you wouldn’t have much luck because
Point objects cannot respond to < or > messages. However, a Point has two instance
variables, x and y, which can respond to <and >. As a result, you might decide to sort
the Point objects on the basis of ascending x value. In this case, you could specify a
new compare block: '

setCompareBlock (pointColl, {using(pl,p2) pl.x < p2.x});

Note that you cannot compare elements of two radically different classes. For
instance, you could not have a SortedCollection which contained both Int and
String objects. That's because although both classes have < and > methods defined,
they are different methods. Hence a Stxing doesn’t know how to compare itself to an
Int and vice versa. Of course, this isn’t a big restriction in the first place. How would
you define a String being "greater than" an Int anyway? This restriction does not

I SortedCollection class I

default value

NAMED: .compareBlock
3 0
20 1
INDEXED: 99 2
200 3
nil 4

Figure 2-9: The compareBlock instance variable defines
the sorting convention for the SortedCollection object
named Sort. In this example, the collection elements
are sorted in ascending order with the first, or lowest
element at the zero offset.

2.7: Collection Classes

mean that objects of two similar classes cannot be placed in a SortedCollection,
however. For example, you can combine Int and Long objects, or String and Symbol
objects.

You might think that a logical alternative would be to directly define < and > in the
required class. For example, in the Point class you might define a < method like this:

Def <(self,item)
{ self.x < item.x
}

If you implemented a > method in the same way, then you definitely could maintain a
sorted Point collection in ascending or descending x order (for ascending, you could
even use the default compareBlock). However, what if you decided to sort in
ascending or descending y value? You would have to use the Browser to edit the Point
class file, edit the method, recompile, save the class file, and then save the new image.

However, if you were defining things with compareBlock instead, all you would
have to do is send pointColl the following message:

setCompareBlock (pointColl, {using(pl,p2) pl.y > p2.y});

You could even sort elements based not on their contents per se, but based on some
other criterion. For instance, if you wanted to sort a collection of points based on the
descending value of sine of x rather than the x value itself, you could send the following
message to pointColl:

setCompareBlock (pointColl, {using(pl,p2) sin(pl.x) >
sin(p2.x)});

2.7.4.3 Locating Elements in a SortedCollection

Whenever you add or remove an element from a SortedCollection, the
collection has to search itself for whatever element you specify. This searching process
is implemented in the £indItemIndex method, and can be used in other places too.
The syntax is as follows:

findItemIndex (sortedColl, target);

The method returns two pieces of information in a tuple. The first is a boolean
variable that is true if the target is found and false if isn’t. The second variable is an
index into the collection, but its exact meaning is dependent on whether or not the target
was found. If it was found, the index is naturally where the target is located. If it
wasn’t, it is the index at which the target would be inserted. Obviously this last piece of
information is irrelevant if you are simply searching for the target, but if you are looking

127

128 Chapter 2: Guide to the Actor Classes

for the index at which to add the target to the collection, this information is crucial. An
example will help clarify things. We will use the above Sort example:

Sort <CR>

SortedCollection(3 20 99 200)
findItemIndex(Sort,20) <CR>
Array(0 1)

findItemIndex(Sort,50) <CR>
Array(nil 2)

In the first example, 20 is located at element 1. As a result, findItemIndex
reported that 20 was found by returning 0 (logical true) in the first element of the tuple,
and returning 1 in the second. In the second example, 50 is not in the collection at all. If
it was to be inserted, however, it would be at element 2.

Actually, if you think about it, this approach lets the second element in the tuple
represent where the target object would be inserted, whether the target is found or not.
This enables the add method to always insert the target at the index returned in the
second element of the tuple

There may be times in which you would not want duplicate elements ina
SortedCollection. If that is true, you may want to define a descendant of
SortedCollection which would be kind of like a sorted Set. Creating it would only
involve writing a new add method which doesn’t allow insertion of duplicate elements:

Def add(self,newElement | foundIdxTuple)

{ foundIdxTuple := findItemIndex(self, newElement) <CR>
if not (foundIdxTuple([0])
then insert (self, newElement, foundIdx'.l'uple[l]) ;
endif;

}

2.7.5 Collections of Strings: The TextCollection Class

It may seem sort of odd to introduce collections of strings before we have even
introduced the St ring class itself, but the idea of a string is familiar enough and this
class is simple enough so it won’t be too much of a problem. Basically this class is just a
collection of everyday strings with some special methods designed to exploit this fact.

The major use of objects of this class is for text editing. A text editor, from the object
oriented perspective, consists of several different parts, two of which are the text itself
and the window that processes the commands. So, one easy way to implement a text
editor in Actor is to define a window, one of whose instance variables is an object of

ITextCollection class I

Text
.JlastElement
NAMED:
firstElement
“This Is line 0" 0 =
INDEXED: "This is line 1" 1
"This is line 2" 2
“This Is line 3" 3
nil 4 <

Figure 2-10: The object Text is a TextCollection. Itis an
ordered collection that has strings as elements. In this
case, each line of text is one element. New text can be
added as a new element or inserted into an existing
element.

2.7: Collection Classes 129

class TextCollection. In fact, this is actually what's done in the Actor system. You
can verify this by inspecting TheApp . workspace . workText, the variable which
contains the text for the WorkSpace window.

The purpose of some of the methods in this class is related to the MS-Windows
Clipboard. With TextCollection objects, it is obvious where one line ends and
another begins because each element of the collection is a separate line of text.

. However, the MS-Windows Clipboard expects one giant string where each line is
separated by a carriage return and line feed (a two byte string constant represented in
Actor by CR_LF). At any rate, this class is responsible for translating between the two
formats.

2.7.5.1 Inserting Text

. The insertString method provides an easy way to insert text into an existing
TextCollection object. Here is its syntax:

insertString(textColl, aStr, line, pos);

where astz is the string to be inserted, and 1ine and pos represent the line and
position at which astx is to be inserted. It returns the string in the collection that was
altered. For instance, assume we have the following TextCollection named Text:

Actor[#iText] := new(TextCollection, 4) <CR>
add(Text,"This is line 0") <CR>
add(Text,"This is line 1") <CR>
add(Text,"This is line 2") <CR>
add (Text, "This is line 3") <CR>
Text <CR>
TextCollection("This is line 0"

"This is line 1"

“This is line 2"

“"This is line 3")

Let’s say we want to insert the string "*** The new string ***" at line 2, character 3
(remember all collections start at the zeroth element). We would send the following
message:

insertString(Text,"*** The new string *#**",2, 63) <CR>
"Thi*** The new string ***s is line 2"
Text <CR>
TextCollection("This is line 0"
“This is line 1"
"Thi*** The new string ***s is line 2"
"This is line 3%)

130

Chapter 2: Guide to the Actor Classes

The insertText method, on the other hand, is designed to convert from the
Clipboard format to the TextCollection format. In fact, insertText is very similar
to insertString except for the fact that astr is expected to be in the Clipboard
format and can handle multiple lines. In addition, it returns a Point object where the x
and y instance variables contain the character and line position, respectively, after the
insertion. Consider the original text example above. We will insert into text again at
line 2, character 3:

insertText (Text, "** New string one **" ¢

CR LF +

"** New string two **",6 2, 63) <CR>

20@e3
Text <CR>
TextCollection("This is line 0"

"This is line 1"

"Thi** New string one**"

"**% New string two **s is line 2"

"This is line 3")

Note that insertText returned the Point 20@3, which represents line 3, character 20
(the second ‘s’ in line 3). In case you are wondering what use this information is,
generally after inserting text in a text editor, the cursor is placed just after the inserted
text. The Point contains this information so you can easily update the cursor position.

2.7.5.2 Deleting Text

There are two methods used to delete from TextCollection objects. The first
deletes just a single character at a given line and position and returns the altered string.
For example, for the original text object, the following message would delete the first
character of the first line:

deleteChar(Text,0,0) <CR> .
"his is line 0"

The second method, deleteText, is much more powerful. You give it the starting
line and position, the ending line and position, and it will delete everything in between.
The syntax is:

deleteText (textColl, startLine, startChar, endLine, endChar)
<CR>

The last character, textColl [endLine] [endChar], will not be deleted, as the
following shows:

- 2.7: Collection Classes 131

deleteText (Text,1,3,3,5) <CR>
TextCollection ("This is line 0"
"Thiis line 3")

The last character, Text [3] [5] (an ‘'), was not deleted and eventually became the
second ‘i’ in "Thiis". While this convention may seem sort of strange, there is a good
reason. It turns out that when you are highlighting text, the cursor position at that point
is one greater than the position of the last character you have highlighted. With this
convention, you can just pass the current cursor position to deleteText and the correct
number of letters will be deleted.

There is one more thing to remember about deleteText. Even if you specify that
it should start deleting at position 0 in the starting line, it will never delete the starting
line itself. For example, deleteText (Text,1,0,2,1) would leave the empty string
(") as the first element of the collection. Among other things, this saves you from
testing for the special case of a line being ni1.

2.7.5.3 Miscellaneous Methods

There are times where you know you want to move forward in a TextCollection
a certain amount, but you aren’t exactly sure where you will end up. The advance
method does the work for you and takes a starting position and how far forward you
want to go:

advance (textColl, startline, startChar, incr);

It returns a Point where the x and y values represent the character and line values,
respectively. For instance, to find out where the character is that is located 15 characters
ahead of the the one at line 1, character 2:

advance (Text,1,2,15) <CR>
3482

The method makeString is provided to make one giant string out of all the strings
in a TextCollection object:

makeString (Text) <CR>
"This is line OThis is line 1This is line 2This is line3"

Last, but not least, is the method which converts TextCollection strings into
Clipboard format, subText. It basically returns all the lines you specify, with each line
separated by the required CR_LF string. Just as with many of the methods in this class,
you have to specify the starting and ending positions:

132

Chapter 2: Guide to the Actor Classes

subText (textColl, startLine, startChar, endLine, endChar} ;

Every character from textColl[startLine] [startChar] to
textColl [endLine] [endChar] inclusive is returned in one large string, ready to be
sent to the Clipboard.

2.7.6 The ByteCollection Class

As was mentioned above, ByteCollection is a formal class which exists only to
unify some of its descendants. One descendant class, St xing, has already been used
extensively, although only in general terms. The other major descendant, St ruct,
exists as a collection purely as a result of its physical structure. At any rate, as its name
suggests, every object whose class has descended from ByteCollectionisindeed a
collection of bytes and hence can be exploited as such.

2.7.7 Using Strings: The String Class

Just as in other programming languages, an Actor String is a collection of
characters. However, while other languages limit string length to 80 or 255 characters,
the limit to the number of characters in a St xing object is the maximum size of any
object, 16K-1 elements. That fact, combined with the powerful methods provided in this
class, makes St ring one of the most useful classes in the Actor system.

2.7.7.1 Basic Operations

All the basic operations you would expect for strings are available, including
equality (but not equivalence), greater than/less than string comparisons, and
concatenation. You have seen equality and comparisons before:

Actor[##Sam] := "Miami" <CR>
Actor[#iJoe] := "Miami" <CR>
Sam = Joe <CR>

0

"Alpha" < "Beta" <CR>

0

"Charlie" > "Zulu" <CR>
nil

The comparisons are strictly on the basis of the ASCII values of the individual
characters, and as a result are case sensitive.

Object

Collection

Indexed-
Collection

Byte-
Collection

String Struct
Symbol DosStruct g{;ﬂg{cs) Proc
Polygon Rect
I
Ellip[e RndRect

Figure 2-11: ByteCollection class tree

2.7: Collection Classes

Concatenation (combining two or more strings into one) is achieved via the addition
operator, +:

"Hello" + "World" <CR>

"HelloWorld"

"This" + " is" + " a" + " sentence." <CR>
"This is a sentence."

2.7.7.2 Conversion Methods

Since a Stxing is one of the most generic ways to represent data, there are a lot of
methods designed to convert Stxing objects to other types of objects. Some of them are
very straightforward, such as asReal and asSymbol:

asReal ("12345678901") <CR>
1.2345678901e+010

asSymbol ("aSymbol") <CR>
#aSymbol

On the other hand, the methods to convert from strings to Int and Long objects
need a bit more information. You have to tell them what numerical base the string is in.
The base can be any number from decimal 2 to 36:

asInt ("FF",16) <CR>
255

asInt ("3e6",16) <CR>
998

asInt ("56J",22) <CR>
2571

As you can tell, the method is not case sensitive. The counterpart for Long integers is
asLong, and behaves exactly the same.

Just as there was for characters, there is an asUpperCase method for String
objects, too. If any character in the string is in the range ‘a’ to ‘2’ inclusive, it will be
converted to its upper case equivalent. Note that this method directly alters the String
object which receives the message--it does not work on a copy. Here is an example:

asUpperCase ("abcD678$* () &eoutd") <CR>
"ABCD678$* () SEOUTD" '

133

134

Chapter 2: Guide to the Actor Classes

There are two methods which are primarily used in communicating with MS-
Windows. The first one, asHandle, first copies the receiver over to the MS-Windows
data area and then returns the handle to that St ring for future reference. Handles are
discussed more completely in section 2.11, but basically a handle is just an address-
independent key for data that belongs to MS-Windows. The second method, asciiz,
converts from Actor String format into the ASCIIZ string format used by MS-
Windows and other programming languages. The ASCIIZ format is simply a normal
String object with a null character (ASCII value zero) tacked onto the end.

asHandle ("Liberty") <CR>
418L

asciiz("Liberty") <CR>
"Libertyl"

The block character, W, is how Actor displays a character with an ASCII value of less
than 32, such as the null character.

We have mentioned the concept of a St ream a few times before, but to refresh your
memory, a St ream object is an object which consists of some collection and an
associated pointer into the collection. To attach a St ream to a String, you can use the
st reamOver method:

streamOver ("Liberty") <CR>
<a Stream>

The St xream object in this case has the string "Liberty" as its collection and its associated
pointer has been reset to zero.

Lastly, there is a conversion method that doesn’t do any conversion at all, but is
included for completeness’ sake. Other classes need to know how to convert instances
of themselves to String objects, so they contain asString methods. String also
contains an asSt ring method which simply returns itself.

2.7.7.3 String Manipulation Methods

All of the traditional string manipulation operations are implemented in Actor, such
as insertion, deletion, and returning part of a string. These methods will be explained
shortly, but first you should know one fact about most St ring methods: they usually
will not alter the data they are working on but rather work with copies instead. This
means, for example, that if you delete part of a string, the original will not be altered but
rather a copy with the requested deletions will be returned. This minimizes aliasing
problems (see section 2.1.6.1) that can occur when nultiple variables share a single copy
of an object.

Insertion of one string into another is accomplished via the insert method. Its
usage is relatively standard:

|Strlng manipulation I

Actor[#Sent]:="My name Is Mark" <CR>

M|y nja|mje l|s Mja|r |k

0 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

replace(Sent, "BIll", 0, size("BIll"), 11, slze(Sent)) <CR>

v v

M|y n|a|mje I |s M|a|r |k

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
- > :

result:

M|y nja|mje l|s

0 1+ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2-12: The replace method. First, the target range ("Mark")
is deleted. Then, the source range ("Bill") is inserted. The
result is a new string (the receiver is unaffected).

2.7: Collection Classes

insert (targetString, stringToInsert, indexToInsertAt);

An example:

Actor([#Str] := "Hello" <CR>
insert (Str,"* Hello *",2) <CR>
"Ha* Hello*llo"

Str <CR>

"Haello"

Note that as we said above, the original stx was not altered. If we did want to alter
Stx, we could use an assignment statement:

Actor[#str] := "Hello™ <CR>

Str := insert(Str,"* Hello *",2) <CR>
Str <CR>

"Ha* Hello*1llo"

Concatenation is just a special case of insertion at the end of a string. If we didn’t
have the + operator, we could define it easily:

Def +(self,newStr)
{ insert (self,newStr, size(self));
}

(Note: + will always be an infix operator, just like it is for 3+4, even though here we're
talking about strings instead of numbers. To find out why, see section 2.4.3).
Deletions are implemented with the delete method. Its syntax is as follows:

delete(targetString,beginIndex, endIndex) ;

One important thing to remember about delete is that endIndex is always one greater
than the last character you want to delete. In other words, delete actually deletes from

targetString[beginIndex] to targetString[endIndex-1]. For instance:

delete(Str,1,2) <CR>
"Hllou)

If you wanted to delete to the end of the string, including the last character, the easiest

way is to use the size method:

delete(Str,2,size(Str)) <CR>
llﬂell

135

136

Chapter 2: Guide to the Actor Classes

This works because size returns the number of elements in a collection, and in this case
Str contains 5 characters. You can use a number larger than size (Str), too—-delete
doesn’t care.

The method which returns part of a string is called subString. A subString
message looks like this:

subString (targetString, beginIndex, endIndex) ;

This looks a lot like delete, and in fact they are closely related. The subSt:i:ing
method returns the part of the string that delete would delete:

subString(Str,1,3) <CR>
"elil

delete(Str,1,3) <CR>
"Hlo"

You can return the whole string with the following message:

subString(Str,0,size(Str)) <CR>
"Hello"

Again, you can use a number larger than size (Str) if you want—-subString doesn’t
care either.

You may remember the copyFrom method from the Array class. In some ways, a
String is similar to an Array of Char objects, and you may wish to use copyFrom on
String objects too. As a result, we have implemented the copyFrom method in the
String class, too. Itis identical to subString in all respects except for its name.

The leftJustify method is a convenient way to trim the leading blanks (spaces)
from a string;

leftJustify (" This is a sentence.”) <CR>
"This is a sentence."

All of the above methods are actually implemented with one general method, an
assembly language primitive named replace. You may never need to use replace
directly, but if you ever need to manipulate a string in a unique way, replace can
probably handle it. The syntax is as follows:

replace (target, source,
sourceBegIdx, sourceEndIdx,
targetBegIdx, targetEndIdx) ;

2.7: Collection Classes

The actual replace algorithm is complicated and is best explained by example, but
you can think of replacae as deleting the target range (from targetBegIdx to
targetEndIdx-1) and then replacing it with the source range (from sourceBegIdx
to sourceEndIdx-1). Asaresult, if the source range is longer than the target range,
the string grows. If the source range is shorter, then the string shrinks.

For example, the delete (self, begIdx, endIdx) message is implemented with
this replace message:

replace(self,"",0,0,begIdx, endIdx) ;

Let’s sce what happens here. All the characters from self [begIdx] to
self [endIdx-1] are deleted. Then all the characters from *" [0] to "" [-1] (i.e. none
of them) are inserted. Since we are inserting an empty string into a string which has had
characters deleted, the net result is a deletion from self.

_ For another example, insert (self, astr, idx) is implemented like this:

replace(self, astr,0,size(aStr),idx, idx);

Here, all the characters from self [idx] to self [idx-1] (zero characters) are deleted
from self. Then, at idx, all the characters of aStr are inserted into self. The net result is
that astx is inserted into sel£, which is of course what we wanted in the first place.

With a little bit of thought, you can make replace do some pretty powerful things.
For instance, if you had the sentence "My name is Mark", you could change the "Mark"
to "Bill" with the following message:

Actor([#Sent] := "My name is Mark" <CR>
replace(Sent, "Bill",

0,8ize("Bill"),

11,size(Sent)) <CR>
"My name is Bill"

In the next section you will learn about the string search methods which would enable
you search for an index to start inserting at instead of knowing it in advance:

Actor[#iSent] := "My name is Mark" <CR>
replace(Sent, "Bill",
0,size ("Bill"),
f£ind(Sent, "Mark",0),
size(Sent)) <CR>
"My name is Bill"

137

138

Chapter 2: Guide to the Actor Classes

There are two methods which you may find useful but are not implemented with
replace and hence are not quite as general. The erase method, for example,
completely erases a string. The difference between erasing a string and deleting all of its
characters is that instead of deleting the characters, erase merely replaces them with
spaces.

erase (Str) <CR>

A related method, £411, replaces all the characters within a string with an arbitrary
character:

£ill(Str,’*’) <CR>
whkkkkn

You may notice that exase is just a £111 with spaces:

Def erase(Str)
{ £111(stx,’ ');
}

NOTE: Both £i11 and erase are exceptions to the rule of working only with copies
of the string. They alter it directly, mostly because it is very easy and very fast to change
individual characters in a string. However, it would be relatively trivial to implement a
more general £111 and/or erase with replace, in which case you would have control
over the range of £111/erase, too.

2.7.7.4 String Search Methods

One of the most common operations on a String is to search for something
contained within it. There are two methods provided for this purpose, index0f and
find. Of the two, £ind is much more general because it can search for an entire
substring within a string. In contrast, indexO£ searches for a single character. Both of
them take as a parameter the starting point for the search, so you can search repeatedly
for the same target string simply by incrementing the starting point. Both also return
nil if the target is not found. Here's the general syntax for the two methods:

indexOf (source, aChar, startIdx);
find(source, targetStr, startidx);

2.7: Collection Classes 139

Here are some examples:

indexOf ("Hello, Will",’1’,0) <CR>
2

indexOf ("Hello, Will",’1l’,5) <CR>
9

indexOf ("Hello, Will",’a’,3) <CR>
nil

find ("Fourscore and seven years ago", "ears",63);
21

£ind ("Fourscore and saven years ago","nose",3);
nil

2.7.8 Using the Symbol Class

Every so often in the preceding material you see what looks like an ordinary string
but with no spaces and a "#" in front of it. These are instances of the Symbol class, and
they have special status in the Actor system. The reason that there is a Symbol class in
the first place is because every global object in Actor has a name associated with its
object pointer. (Non-global objects do not have names, such as instance variables and
objects which exist only on the Actor stack.) While Actor deals exclusively with object
pointers, humans prefer symbolic names such as printOn, Actor, and Set. Objects of
the Symbo1 class basically provide an interface between the two.

In any programming language, you want symbols to be unique, because it would
wreak havoc if all of a sudden a symbol could refer to two or more different things at
the same time. For example, suppose we were using another, hypothetical computer
language where symbols were not unique. Further, suppose we had an object named
Sam in that language which referred to an integer and a string at the same time. This
language would be useless because we could never be sure whether we were referring
to Sam the string or Sam the integer. To avoid these problems, Actor ensures that a
Symbol objects are unique by forcing a Symbol to be associated with one and only one
object pointer at a time. As a result, each Symbol can refer to only one object at a time.
"An important benefit of enforced uniqueness means that you can use the faster
equivalence operator with symbols rather than equality. For example:

Actor[#isam] := #print <CR>
#print == Sam <CR>
0

OK, we may have explained why there are symbols in the first place, but a
legitimate question is "Why all this # business?" Why should you have to refer to #sam
sometimes rather than just Sam? The answer lies in the fact that there is a distinction

140 Chapter 2: Guide to the Actor Classes

between an object and its name. In most cases, when you refer to Sam, it is obvious that
you are not referring to the collection of letters ‘S’, ‘a’, and ‘m’. Rather, you are referring
to the object named Sam, whether it be a method, a class, a String object, or whatever.
Given that Actor ensures uniqueness of symbols, this convention works fine.

However, sometimes instead of referring to the object itself, you explicitly need to
refer to the object’s name. That's what the # sign in front means -- it signifies that you
are referring to the object’s name rather than the object itself. For instance, before you
create an object, it doesn’t have a name, so you have to give it one explicitly. That’s why
the inherit statement requires a # in front of the new class name, because you are
explicitly associating the new class with its name, a Symbol. In most of the examples
above, we created new objects by saying Actor[#Sam] := "Hello" or something
similar. In these cases, we are just explicitly associating the St ring "Hello" with the
name Sam in the main Actor dictionary. Along the way Actor made sure that even if
Sam previously referred to the number 8 or the letter "H’, it now only refers to the
String "Hello". »

There are other times in which you need to explicitly refer to an object’s name rather
than the object itself. Method dictionaries (section 2.7.16), for example, are full of
symbols because that’s one case where the object’s name is used to find the object itself.
As a result, methods which search for or look things up in method dictionaries, such as
senders and implementors, require Symbol arguments. These methods are
discussed in the section below.

2.7.8.1 Important Methods

Two methods which take Symbol arguments are closely related to each other,
senders and implementors. The senders method scans the Actor system and
returns the set of methods which send a particular message. If you wanted to know
which methods contained an insert message, for example, you could enter the
following:

senders (#insert) <CR>

Set (Window:getMenuString SortedCollection:add
OrderedCollection:insertAll WorkEdit:insertSelection
String:+ EditWindow:charInput
TextCollection:insertString TextCollection:insertText
Browser:accept)

This is obviously a great way to poke around in Actor because you can see which classes
use a method, and with this information you can use the Browser to find out how the
methods are used. (Note: senders (aSymbol) only finds the late-bound senders of a
message. Early-bound callers of a method with that name will not be found, since the
caller’s code has the object pointer of the called method itself, as opposed to a symbolid
name. You can use senders(aMethod) to find early-bound callers of the method.)

2.7: Collection Classes

The "inverse" of senders is implementoxs, because it enables you to see which
classes define a particular method rather than use it. For example, there are four classes
which implement a 1oad method. To find out what they are, you could enter:

implementors (#load) <CR>
Set (SourceFile String File Collection)

This information enables you to determine exactly which class responds to the message
you send to an object. If the method is not defined in the class of the object you are
sending it to, the message is obviously answered by an ancestor. All you have to do is
find the nearest ancestor of the object you are sending the message to in the set returned
by implementoxs. For instance, if you sent a 1oad message to an
OrderedCollection object, it would obviously be handled by class Collection,
because that is the nearest ancestor in which load is defined. This is especially useful
information for a method which is redefined often, such as printon.

2.7.9 Objects Meet the Real World: The Struct Class

We would like to think that everything in Actor is completely object-oriented.
Unfortunately, there are times when Actor has to communicate with the outside world.
This outside world deals in bytes, words, and segments rather than objects, classes and
inheritance, so there has to be a way to interface the two. That’s what the Stxuct class
does—it provides a way to represent bmary (non-object-pointer) data as Actor objects so
that the two worlds can meet.

A struct is simply a fixed-size, indexed collection of binary data. What would you
use one for? As we mentioned above, it’s the perfect way to communicate with non-
object-oriented languages and systems. If you want to use C or Pascal code in your
Actor programs, you would communicate with it via a Stxuct (or, more likely, a
descendant).

In particular, MS-Windows represents geometric objects as binary data where each
offset into the data represents something about the shape, such as size, color, location,
etc. of the object. Therefore, if you want to use geometric objects in Actor, you have to
do it the MS-Windows way, and that means using a St xuct object. There is no doubt
about it--St ruct complicates things. The fact that a Struct is best represented as a
Collection class and hence geometric objects are technically collections makes
matters worse. Logically, they should be in a class by themselves. Nonetheless,
although a St ruct may be "dirty"” from the object-oriented perspective, it provides an
easy, compact, and very efficient way to represent data in certain cases.

One thing you may notice about St xuct objects is that most instances of the
descendants of St ruct are fixed in size at compile time. This is because most St ruct
objects have a fixed size which is "hard-coded" into their class’s new method. For

. example, when you create a new Rect, although technically it’s a collection, you don’t
have specify how many elements it has because the new method for Rect says to

141

142 Chapter 2: Guide to the Actor Classes

allocate 8 bytes. This means that the new method for Rect does not take any
parameters, which incidentally is another reason why it is not really a collection.
Nonetheless, it is possible to define a St ruct which is more like an Array in that it has
a definite size only when you create it. Using the default new method for stxuct
objects enables you to do this, since it requires a parameter specifying the number of
bytes to allocate.

You will see some of the various descendants of St ruct and their methods in the
Advanced Topics (sections 3.2, 3.3). At any rate, there are only a few methods which
you should be concerned with at the moment, and each of them deals with getting
binary data in and out of Struct objects. Here’s the list:

longAt (aStruct,offSet) ; /* Returns a Long */
putLong (aStruct, of£Set, alLong) ;
wordAt (aStruct, offSet) ; /* Returns a word (Int) */

putWoxrd (aStruct, off£Set, aWord) ;

The next four methods deal with the Least Significant Byte (LSB) and the Most
Significant Byte (MSB) of a word in a Stxruct. The "at" methods return the MSB and
LSB of astruct [o££Set], respectively. The "put” methods place value into the MSB
and LSB of astruct [of£Set], respectively.

atMSB (aStruct, offSet);
putMsSB(aStruct, value, offSet):;
atLSB(aStruct, offSet);
putLSB(aStruct, value, offSet);

The of£Set of course starts at zero, just as everything else does in Actor. Note that
there is nothing to prevent you from treating a St ruct as a collection of words at one
point and long integers at another. This is because the of£Set in the methods for class
Struct is ALWAYS in terms of bytes. The methods don’t check to see that of£Set is
- valid, either. For example, longAt (aStruct, 3) will work, but the Long it will return
will actually be the last byte of one Long inside the St xruct and the first three bytes of
the next Long inside the Struct. Incidentally, you can use at and put to maintain
consistency with other collections, but they are implemented in St xruct as wordat and
wordPut, respectively, so you really aren’t gaining anything by doing so. This means,
for instance, that at (aStxruct, n) is the same as wordAt (aStruct,n).

2.7.10 Intervals Of Numbers: The Interval Class

As we mentioned above when we first discussed the enumeration methods, the sole
purpose of many definite iteration loops ("for" loops in other languages) is to traverse a
data structure. Definite iteration in Actor is usually a trivial matter of sending an object
- ado message. However, some loops don’t traverse a data structure at all but rather

2.7: Collection Classes

iterate a specified number of times. For example, if you wanted to print all the numbers
from 100 to 200, each on a separate line, it would be easy in most languages:

10 REM BASIC Example
20 FOR I =100 TO 200: PRINT I: NEXT I

{ Pascal example }
for i := 100 to 200 do writeln(i);

/* C example*/
for(i=100; i <= 200; i++) printf("%d\n",i);

It is not at all obvious how to do this type of thing "the Actor way" in a case like this
because there is no object to send a do message to. However, instead of thinking of the
above task as doing the same thing 100 times, think of it as enumerating over the
interval from 100 to 200. Once the problem is phrased in these terms, it is just a simple
matter of creating an object that defines a numeric interval and then sending a do
message to it.

2.7.10.1 Creating Intervals

The class which knows how to do all this is called the Interval class. Interval
objects are somewhat unusual in they are not often created with a new message. Of
course, there is a new method for Interval objects which actually does the creation,
and you can definitely use it, but Intexval objects are generally "created” by sending
an Int a message which then calls the new in Interval. The four methods, over,
overBy, inclusiveOver, and inclusiveOverBy, each return a different kind of
Interval. The differences among the four is best explained by example. For example,
the above example would be implemented using over like this:

do (over (100, 201),
{using (i) printLine(i);
N

To find out why the ending index is one greater than you might expect, see below.
When you want to create a new Interval object, you send one of the following
four messages: .

over (beginNumber, endNumber) ;

overBy (beginNumber, endNumber, step) ;
inclusiveOver (beginNumber, endNumber) ;
inclusiveOverBy (beginNumber, endNumber, step) ;

143

144

Chapter 2: Guide to the Actor Classes

Note that the two "over" methods are equivalent to the "overBy" methods with a step
size of 1. In fact, they are implemented as such, but Interval objects with a step size
of 1 are so common that a method is dedicated to creating them. Also note that
traversing a series "backwards" (i.e. 200,195,190,...) is a simple matter of making step
negative.

You already have seen an example of the first method, over. The second method,
overBy, is used in situations like when you have to print the numbers from 100 to 200
in increments of 5 (100, 105, 110,...,200). It is used almost exactly like over but takes a
second parameter which specifies the increment or step value:

do (overBy(100,201,5),
{using(i) printLine(i);
}):

The third and fourth messages will be explained shortly.

From the above examples, you might think that endNumber is always one greater
than the number you actually want to stop at. For instance, in the above examples we
really wanted to stop at 200 but we specified 201 for endNumber instead. This is only
true in the special case of over, where the step value is 1. The formal rule is as follows:
the last number in an Interval is actually the greatest integer multiple of step that is
less than endNumber. For example, in the second example, since endNumber was 201,
and 200 is the last integer multiple of 5 (the step value) which is less than 201, 200 was
the last number in the Interval. This implies, for example, that the following
Interval objects all define the same thing:

overBy (100,201, 5);
overBy(100,202,5);
overBy(100,203,5);
overBy(100,204,5);
overBy (100, 205,5) ;

OK, now that we know how overBy works, we can explain inclusiveOver and
inclusiveOverBy. First of all, note that inclusiveOver and inclusiveOverBy
are not loaded in the default image, ACTOR.IMA. If you want to use them, you have to
load them first ("INCLUSIV.ACT"). Basically, inclusiveOver creates an Interval
which includes endNumber:

do (inclusiveOver(0,5),
{ using(i) print(i);
}) <CR>

012345

(As you would expect, its counterpart, inclusiveOverBy, is identical except for being
able to specify an arbitrary step value.) Here’s how inclusiveOver works: An
Interval object has three instance variables, start, stop, and step. With the non-

2.7: Collection Classes

inclusive methods over/overBy, the three variables are equal to beginNumber, :
endNumber, and step, respectively. However, the inclusive methods set the stop
value equal to endNumbexr + step, which ensures that endNumber is included in the
Interval.

You may not have discovered this yet, but there is another easy way to perform
something a specific number of times. This is done by sending a do message to an
integer. For example, if you wanted to print the string "Hello" 200 times, you could say:

do (200,
{using (i) print("Hello")
)

Although sending a do message to an Int may not seem to relate to this subject, it
actually is very relevant. The above do method is implemented by creating and
enumerating over the Interval object ovex (0, num), where num is the integer
receiver. Note that we didn’t have to say 201 in this case because there are 200 numbers
in the Interval over (0, 200) since 0 is the starting point.

2.7.10.2 More About Interval Objects

It is possible to define an empty Intexrval. All you have to do is define the
endNumbaer to be less than beginNumber + step and the Intexrval will contain
nothing. This is easy to see; for instance, how many numbers are there from 10 to -5?
None, of course, although if you switched the two or made the step negative it would
be a different story. Just as with any collection, you can find out how big an Interval
is with the size method:

size (over(10,-5)) <CR>

0

size (overBy(10,-5,-1)) <CR>
15

size (overBy(5,24,3)) <CR>

7

At any rate, assuming that the interval is non-empty, the convention followed for
Interval objects is that the first number in the Interval is always beginNumber.
While this convention is simple and intuitive, unfortunately it means that two intervals
which look like they should be inverses of each other really aren’t:

do (overBy(0,5,2),
{using(i) print(i);
}) <CR>

024

145

146 =~ Chapter 2: Guide to the Actor Ciasses

do (overBy(5,0,-2),
{using(i) print(i):;
}) <CrR>

531

2.7.10.3 What Exactly Is an Interval?

One intuitive way of creating an Interval object might be to create an
OrderedCollection or Array, fill it with the numbers in the interval, and then
enumerate over that collection. However, this approach is wasteful of both space and
time. Fortunately, though, an Interval has a highly regular structure. Because of this,
an Interval doesn’t have to actually have any elements, although technically it is a
collection and behaves like one. An Interval, then, has no indexed data of its own but
only the three instance variables, start, stop, and step.

Knowing this, you can create an Interval object and then change its behavior by
changing its instance variables:

Actor[#Sam] := over(0,5) <CR>
do (Sam,

{using(i) print (i)

}) <CR>
01234

Sam.step := 2 <CR>
do(Sam,
{using (i) print (1)
}) <CR>
024

Sam.stop := 10 <CR>
do(Sam,
{using (i) print (i)
}) <CR>
02468

If you prefer, you can create an Interval object directly the way the four Int
methods do. This approach is slightly more time-efficient because it eliminates the
message send to an integer:

Sam := new(Interval, start, stop, step):

2.7: Collection Classes 147

2.7.10.4 More Uses For Interval Objects

One other way of looking at an Intexval is as an arithmetic series. As you might
remember from algebra, an arithmethic series is just a sequence of numbers froma to b,
where each number in the sequence is related to the one immediately before and
immediately after it by a constant. For example, one arithmethic series is (5,10,15,20,...).

" Of course, this is the definition of an Interval itself, so you could define an Interval
object and use it to represent an arithmetic series.

What are the sort of things you would do with an arithmetic series? Well, one might
be to generate the series itself. Examples of that are found above where each item in an
interval was printed. Another thing you could do is define a method for Interval
objects which returns the sum of all the terms in a series:

Def sum(aelf' tot)
{ tot := 0;
do(self,
{ using(i) tot := tot + i;
}):
“tot;
}

This is the brute force way of doing things. A more elegant way to find the sum of a
series is to add the first and last term in the series, divide by two, and multiply by the
number of terms.

Another common operation on an arithmetic series is to find out the nth term. For
instance, the 4th term of the series (5,10,15,...) is 20. However, remember that in Actor
the counting always starts at 0, so 20 would actually be the 3rd term in an Actor
Interval. The method which is used to determine the nth term in a series is the
familiar at method. For a large series, this method could come in handy:

at (overBy(15,3000,7),38) <CR>
281

If you try to find the nth term in an Interval, n must be less than the number of
numbers in the Intexval or else you will get an "out of range error.”

In some cases, it might be useful to treat an Interval as a set. You can do this by
using the in method. For example, if you want to print the value of a number x if it
was in the range 18 to 24, you would say:

if x in over(18,24)
then print (x); ’
endif;

148

Chapter 2: Guide to the Actor Classes

If you wanted to see if x was an even number in that range instead, you would just
change the message a bit to:

if x in overBy (18, 24,2)
then print (x);
endif;

2.7.11 Intervals of Characters: The CharInterval Class

There may be times in which you want to have an interval of characters instead of
integers, and that’s what this class is for. Although this class is not defined in any of the
images included with the Actor system, you can load its class file at any time
("CHARINTE.CLS") if you need it. However, if you want to create CharInterval
objects by sending messages to Char objects, you must load the "CHARINTE.ACT" file,
as well. Itincludes the method definitions for over, overBy, inclusiveOver, and
inclusiveOverBy. If you want to create CharInterval objects by using the new
message instead, then you don’t have to load the "CHARINTE.ACT file.

The CharInterval class is almost identical in form and function to its ancestor,
Intexrval except for the fact it deals with characters instead of numbers. However, you
might use inclusiveOver more often with CharInterval than you will with
Interval because it may be a less awkward. This is because CharInterval objects
are at heart regular Interval objects which use ASCII codes. This in turn implies that
if you want to include endChar (the analog of endNumber) in the CharInterval, you
have to know what character has an ASCII code one greater than that of endChaxr. For
example, if you wanted to print all the characters from ‘a’ to "z’ using over, you would
have to know which character is next in the ASCII sequence above ‘z’. It happens to be
the ‘(" character, but in general, unless you have memorized the ASCII table, this isn’t
known. Since inclusiveOver and inclusiveOverBy are more important for
CharInterval objects than they were for Interval objects, they are included in
"CHARINTE.CLS" rather than in a separate file.

An example will help clarify things:

do(over(’a’,’z’),
{using (i) print(i);
}) <CR>
abcdefghi jklmnopgrstuvwxy

do (inclusiveOver(’a’,’'z’),
{using(i) print(i);
}) <CR>
abcdefghijklmnopgrstuvwxyz

2.7: Collection Classes

If you want, you can skip letters by using overBy:

do (overBy(’a’,’'z’,5),
{using (i) print(i):
}) <CR>

afkpu

2.7.12 Collections of Unique Elements: The Set Class

The mathematical concept of a set is pretty simple. It’s just a collection of objects
where every object is unique, which means that you cannot have more than one instance
of the same object in the same set. The mathematical concept of a set has no restrictions
_ on the number of elements and no restrictions on the contents. Unfortunately, most
languages which implement sets restrict them so much as to be virtually useless. The
best known language of this type is Pascal; most implementations restrict the number of
elements to 256, and the elements are constrained to be scalar values such as characters.

Except for the global restriction of 16K-1 elements in any collection, an Actor Set
object conforms pretty well to the mathematical kind. In fact, you can even do things
with Set objects which you can’t do with the mathematical kind, like enumerate over
the elements. The cardinality of the set (the number of elements) is even defined--it’s in
the tally instance variable of every Set object.

Internally, Set objects are just like other collections--their elements are located at
physical offsets or indices. However, as you'll see below, the physical location of a Set
element, while important to Actor, is irrelevant to you.

2.7.12.1 Adding and Removing Elements From Set Objects

A set, like many other collections, implements the add message. Remember that if
you try to add an element to the set which already is a member, it will ignore the add
message:

Actor|[#mySet] := new(Set,10) <CR>
add (mySet, "Hello") <CR>

Set ("Hello")

add (mySet, 18) <CR>

Set (18 "Hello")

add (mySet, #(1 2 3)) <CR>

Set (18 Array(l 2 3) "Hello")

150

Chapter 2: Guide to the Actor Classes

add (mySet, "Hello") <CR> " /* Try to add duplicate */
Set (18 Array(l1 2 3) "Hello") /* Didn’t work */
add (mySet, copy (mySet)) <CR> /* Adding a Set to a Set */
Set (18 Set (18 Array(l 2 3) "Hello”) Array(l 2 3) "Hello")

Note: if you tried this code yourself, you will likely get a different order than that
shown here because ordering in a Set is undefined. In addition, note that while adding
a Set object to itself is allowed, you can’t print it once you do (try it and see). For
simplicity’s sake, we added a copy of mySet instead.

Removing objects from a Set is likewise straightforward, but if you try to remove
an object which is not an element of the Set, you will get an "Element not found" error
(see Appendix E). Here are some examples:

remove (mySet, 18) <CR>

Set (Set (18 Array(l 2 3) "Hello") Array(l 2 3) "Hello")
remove (mySet, "Goodbye") <CR>

/* Error message/dialog box */

2.7.12.2 Accessing Elements in a Set

Since a Set is a collection, you can access elements just like any other collection:

mySet ["Hello"] <CR>

"Hello"

mySet ["My name"] <CR>
nil

at (mySet, "Hello") <CR>
"Hello"

In addition, there is an in operator similar to Pascal’s which tests for Set

membership:

"Hello" in mySet <CR>
"Hello"

184 in mySet <CR>

nil

If you have to find out where a Set element is physically located in the collection,

you can use the £ind method for class Set:

£ind (mySet, 18) <CR>
2

2.7: Collection Classes 151

This means that the third cell in mySet is occupied by the number 18. However, since
ordering in a Set is undefined, two similar Set objects with 18 as an element will most
likely report two different physical locations for 18.

2.7.13 "Sets" With Multiple Occurrences: The Bag Class

Sets are wonderful and very useful tools, but one of their greatest features is also
one of their biggest limitations: the fact that they only can contain one of each element.
It would be nice if we had a set-like collection where we could have more than one of
any element, but still keep them together so that we know how many of each element
we had. .

It would be sort of like a row of bins; each element would have its own bin, and if a
new element came along it would get its own bin, but if one we already had came along
it would get placed in the same bin as others of its kind. The keyed collection which
implements this idea is called the Bag class, after the Smalltalk class by the same name.
Note: the Bag class is not loaded in the ACTOR.IMA file we have provided for you, so
you will have to load it first (BAG.CLS).

A perfect example of when you might want to use a Bag object is for a word
counting program. In this case, all you would have to do is add every word in a file to a
Bag object, and when you were done, each unique word would have its own bin. At
that point, counting the number of elements in the bin gives you the number of times
that word appeared in the file. Such a task in other languages would be not at all trivial,
but in Actor, it's a snap!

Another use for Bag objects is for gathering system statistics, e.g. profiling. For
instance, you could make a Bag where each element is a method, and for every time the
method was executed you could add the name of the method to the Bag. Then when
you were done, you could examine the Bag to see which method were executed the
most and therefore which methods need optimization. The file PROF.ACT contains an
actual use of class Bag in this way.

2.7.13.1 Using Bag Objects

As we said before, a Bag is like a Set with multiple occurrences. This means for the
most part, you can treat it as such:

Actor[#Sam] := new(Bag) <CR>
add (Sam, "Hello") <CR>

add (Sam, "Hello") <CR>

Bag ("Hello" "Hello")

152

Chapter 2: Guide to the Actor Classes

If you want, you can add the same element to a Bag more than once at the same
time with the addTimes method. For instance, instead of two separate add messages
like we had above, we could have used addTimes:

addTimes (Sam, "Hello", 2) ;

To find out how many occurrences there are of a particular element, you can use the
occurrences method:

occurrences (Sam, "Hello") <CR>
2

There is also a handy method which returns a SortedCollection of
Association objects where each key is a bag element and each value is the number of
occurrences of that element. For instance, if you sent a sorted message to a Bag which
contained the word counts for a file, it would return a sorted collection of
Association objects where each key would be the word and each value would be the
number of times the word occurred in the file. The associations would be sorted based
on the frequency of each word in the file.

2.7.13.2 What Exactly Is a Bag?

The most intuitive way to implement a Bag is to actually keep multiple copies of the
element and to count them when neccessary. However, that makes things more ‘
complicated than they need to be, and is also very inefficient in terms of space. Asa
result, a Bag only keeps one occurrence of an element, just like a Set object. However,
it also maintains a count of how many occurrences of each element there currently are.
That way, when you add an element it is just a matter of increasing the counter for that
element by one.

This scheme is implemented using an instance variable called contents, a
Dictionary object (see section 2.7.15). Each key in contents is the actual Bag
element, and each value in contents contains the current count for the Bag element.
In the example above, "Hello" is the key in contents, and 2 is the element of
contents corresponding to "Hello".

2.7.14 Using the KeyedCollection Class

So far we have only discussed indexed collections, such as Array and
SortedCollection objects. All these classes share the property that individual
elements are accessed by an integer subscript which serves as an index, or offset, into the
collection.

[|

actual representation:

.contents
logical
representation:
a dictionary Hello
bag element count "Hello"
"Hello" 3 <+—— "Hello"
Iw' 1 Owl
29 2 29
3@44 1 29
key value 3@44
instances
O O O
O O, O, O,
"Hello" ‘w' 29 3@44

Figure 2-13: A Bag object is a collection of elements
(which are also objects) which keeps a count for each
element. The elements are stored in the collection part
of the Bag and the count is kept in the instance variable
contents. This variable is a dictionary that has bag
elements for keys and the elements’ count for the values.
The elements are stored as the keys in the dictionary.

Object

Collection

Keyed-
Collection

Bag Dictionary
Method-
Fl’ame Dicﬁonary S'Ot
identity-
Dictionary

Figure 2-14: KeyedCollection class tree

2.7: Collection Classes 153

While this may be the most intuitive way of representing a collection, it is inherently
limited in the sense that it does not lend itself to rapid retrieval of specific elements. If
you want to look for an element of a collection, you basically have to sequentially search
for the element until you find it.

Granted, you can retrieve elements from a SortedCollection object rapidly
because the elements are sorted and thus you can use a binary search. String objects
have very efficient search methods, too. However, SortedCollection objects can
only hold objects for which < and > methods are defined, and even then can only hold
one general kind of object at one time. (Int and Long objects are technically instances
of different classes, but you can mix and match them in a SortedCollection because
they are the same kind of objects. You can’t, however, mix St ring objects with Int
objects in a SortedCollection.) And String objects by definition can only hold
characters. So, then, we have a problem. We want a way to have collections of objects
where we can simultaneously retrieve specific elements quickly but yet retain the
flexibility to mix and match elements of various classes.

The classes which implement this idea are the various KeyedCollection classes,
such asDictionary, Set, and MethodDictionary. Don’t worry too much about the
mechanics of this "instant retrieval" mechanism, because the details are mostly
irrelevant. (For those who are interested, the physical location of an element is
determined by something known as a hash function). At any rate, you should know that
KeyedCollection is a formal class, as is IndexedCollection, and as a result you
will never use an instance of class KeyedCollection. Don’t even try to create one--it will
be useless because KeyedCollection lacks some important methods. In the sections
that follow, the generic term "keyed collection" is meant to mean an instance of one of
the descendants of KeyedCollection.

Any keyed collection is internally just like any other collection--elements are located
at physical offsets within the collection—-but the way it accesses its elements is totally
different. If you had an indexed collection named Sam, the only way you can access
elements is by specifying an integer index:

x := Sam[someInt];

For example, using Sam[2] would set x equal to the third element of Sam (remember,
indices start at zero). However, if Sam was a keyed collection instead, you could say
something like:

Sam["Hello"] := 3;

In this case, the subscript "Hallo" obviously cannot serve as an index; after all,
what is meant by the "Hello"th item of a collection? Rather, Sam knows that it is
supposed to use the "Hello" object as a key and somehow find out where 3 is
supposed to go. You might remember that this has to do with whether an object uses
"Object at" (like indexed collections) or another kind of at. Keyed collections, as you
may have guessed, use the other kind of at.

154

Chapter 2: Guide to the Actor Classes

Note that this means while an integer can certainly still be a subscript in a keyed
collection, it won’t mean the same thing. For instance, if Sam is a keyed collection, a
reference such as:

Sam[14]

does not imply that we are dealing with the fifteenth element of Sam. Rather, we are are
dealing with whichever element the key, 14, corresponds to.

An example of when you might want to use a keyed collection is if you wanted to
keep track of the major cities in the states of the United States. You would have a keyed
collection (as it turns out, an instance of class Dictionary would be best) called
States. Each key in the collection would be a state, and each element of the collection
would be a SortedCollection of the major cities of that state. If we had sucha
collection, then we could do the following:

print (States["Washington"]) <CR>
SortedCollection ("Olympia™ "Seattle" "Spokane" "Tacoma")

Note: Frequently you will see the term value used almost interchangeably with the
term element. A value always refers to the object which corresponds to a particular key
in a keyed collection. Usually element means the same thing, but occasionally element
may mean both the key and the value together, considered as a unit. The exact meaning
of one of these terms should be clear by the context in which it is used.

2.7.14.1 More Facts About KeyedCollection Objects

Every instance of any class which descends from KeyedCollection inherits an
instance variable named tally which is defined in KeyedCollection. As the name
implies, tally always contains the current number of elements in the keyed collection.
This means that instead of using the size method, you can find out how many elements
one has directly:

print (Sam.tally);

As we have mentioned previously, whenever Actor sees something like Sam[3] or
Sam["Hello"] it generates an at or a put message. By default, the at and put
methods within the class of the object will respond to the messages. In the case of keyed
collections, the at and put methods will treat the subscript (or first parameter if
at/put are used directly) as something to be hashed. As was explained above,
however, the result of the hash function is used to determine the index at which the
element is located and then the at/put in class Object is used to access the element.

| KeyedCollection class '

Figure 2-15: A KeyedCollection object is a collection

of elements (depicted as steer) with no ordering convention.
Each element is accessed by its key, not by some ordering
offset.

2.7: Collection Classes 155

This sort of thing is accomplished by overriding the message send mechanism and
explicitly specifying which class is to receive the message. Here’s an example. Let’s say
we have a keyed collection of some sort called Sam. Assume further that we want to
know what the fourth element of the collection is. To explicitly specify Object at, we
would say this:

at (Sam:Object, 3) ;

2.7.14.2 A New Kind of Enumeration Method

Just as with any collection, you can enumerate over the elements of a keyed |
collection by sending one a do message. However, there may be times when we need to
enumerate over the subscripts of all the elements in a collection. When we were using
indexed collections, there was never any reason to enumerate over their indices because
they were just integers—we could do that anyway with Interval objects. However,
with keyed collections, anything can serve as a subscript--or key--to a collection. Asa
result, we occasionally have a need to enumerate over the keys of a collection, and for
this we use the keysDo method.

It works exactly like a normal do method:

keysDo (aKeyedCollection,
{using (aKey) /* statements */
1

The difference between keysDo and do is that inside the block, akey will hold a key
from the collection rather than the element itself.

2.7.14.3 Common Protocol for KeyedCollection Classes

Every keyed collection must know how to respond to certain messages. This set of
messages, or protocol, includes messages which tell a keyed collection to add or remove
something from itself, as well as some others. If you define a new collection, you should
make sure that the universal protocol for keyed collections is implemented correctly for
your new kind of keyed collection. To be sure, you may never define a new keyed
collection class, and even if you do, the methods that it inherits from its ancestors might
provide most of what your class needs to use. Nonetheless, this section will summarize
the common protocol for keyed collections just in case.

156 Chapter 2: Guide to the Actor Classes

Here is the list of messages and any required arguments:

add (aKeyedCollection, key, value);

put (aKeyedCollection, value, key):

remove (aKeyedCollection, key):;

find (aKeyedCollection, key):;

at (aKeyedCollection, key):

do (aKeyedCollection, oneArgumentBlock) ;
keysDo (aKeyedCollections, oneArgumentBlock);
£ixUp (aKeyedCollection) ;

The add and put methods do more or less the same thing—place an element into a
keyed collection—-but the order in which their arguments appear differs. You yourself
will probably use add most of the time; put is usually used by the Actor system. The
remove method removes whatever element is associated with the given key from the
collection. The £ind method returns the physical index (i.e. an integer offset) in the
collection where the specified key is located.

The at method returns the element assocated with the specified key. If there is no
element associated with that key, then nil is returned. The do method is the familiar
method which enumerates over the elements of the keyed collection, and you read about
the keysDo method above. A £ixup message is always sent after a remove. Since
keyed collections are based on a hashing scheme, £ixup basically re-hashes the
collection after a remove so that the correct order is maintained. If you think you may
need to re-define a £ixup method—an unlikely occurrence, unless you depart radically
from the keyed collections we have provided--you should look at the existing £ixup
methods in the Browser.

2.7.15 Using the Dictionary Class

You might think of Dictionary as the "typical” keyed collection class. In fact, it's
the only direct descendant of KeyedCollection in the Actor system, although there’s
no reason you can’t make others.

You may recall back in class Association (section 2.5) where we said that you
would see Association again in class Dictionary. Well, here we are, and
Association objects definitely play a big role in this class. A dictionary is essentially a
collection of Association objects, where the key portion of the association is the key of
the Dictionary element, and the value at that key is the value part of the
Association object.

What is unique about a Dictionary object? Aside from the fact that its elements
are Association objects, there are two major differences. First, a key (subscript) of a
Dictionary can be anything: a String, Array, another Dictionary, anything. The
second difference relates to the £ind method for class Object. You may recall that the
£ind method for each keyed collection uses the key itself to locate the physical index of
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>