!ﬁ'{ BOPY Part Number 800-1191-02
‘-.' Revision: 1 of 20 October 1986

Engineering Manual
for the

Sun Graphics Processor

Sun Microsystems, Inc.,
2550 Garcia Avenue,
Mountain View,
California 94043
(415) 960-1300

SUN PROPRIETARY



Credits and Trademarks

Multibus is a trademark of Intel Corporation.

Sun Microsystems and Sun Workstation are registered trademarks of Sun Microsystems, Incorporated.
Sun-2, Sun2, Sun-2/xxx, Deskside, SunStation, SunCore, SunWindows, and DVMA are trademarks of
Sun Microsystems, Incorporated.

UNIX is a trademark of AT&T Bell Laboratories.

This equipment generates, uscs, and can radiate radio frequency encrgy and if not installed and used in
accordance with the instructions manual, may cause interference to radio communications. It has been
tested and found to comply with the limits for a Class A computing device pursuant to Subpart J of Part 15
of FCC Rules, which are designed to provide reasonable protection against such interference when
operated in a commercial environment. Operation of this equipment in a residential area is likely to cause
interference in which case the user at his own expense will be required to take whatever measures may be
required to correct the interference.

Copyright © 1986 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publica-
tion may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or
by any means manual, electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise,
without prior explicit written permission from Sun Microsystems.

SUN PROPRIETARY

—11—



Contents

PIEface ....orerercesreessesssenssees . Xiii
Chapter 1 INTOGUCTON ... 3
Chapter 2 OVEIVIEW ...t ssees s 7
2.1. Clock and Reset CirCUits (PAZES 4-5) . eeeeeeeeeeeeeeeersereeeeeseseeveereressas 10
2.2. VME Interface (pages 6-7, 31) ..o 10
2.3, MICTOSIOTE (PAGES E-T2) oot res st st sessesees s s nssssson 10
2.4. Shared-Memory (PAges 13-14) ... 10
2.5. Viewing ProcesSOor (PAQes 15-17) ..o 10
2.6. Floating Point (pages 18-22) ... 11
2.7. VP Miscellaneous Logic (PAe 23) ... 11
2.8. First In First Out (FIFO) Buffer (page 24) ..., 11
2.9. Painting ProCessOr (DAQES 25-27) ... 11
2.10. Scratchpad MemoOTy (PAZE 28) ... ssneess oo 12
2.11. PP Miscellaneous LOGIC (PAZE 30) ... 12
2.12. Graphics Buffer Board ... snmsees s 12
Destination Decode (page 4) . .12
Graphics Buffer (pages 5-11) : 12

Integer Multiplier (pages 12-13) ... 13

Chapter 3 Connectors, Connection Restrictions (schematics
PAZES 1,2,ANA 3) ... 1T

3.1. Title Page (page 1) ' .17
3.2. Board/Backplane P-Connectors (Page 2) ... 17

SUN PROPRIETARY

— i -



Contents — Continued

Connection RESIICHONS ..o 17
Graphics Buffer Ground ... 17

3.3, CaPACIHOTS (PAGE 3) ...coooeeeereooeeeeo e eeess oo seeeessssssessss s s 17
Chapter 4 Clock and Reset Circuits (pages 4 and 5) ... 21
4.1, CIOCK CATCUIL .......oooooeeeeeeeeeee e eeeseseeee e e 21
B2, RESCIS ......oooooeereeeereeeieessesssssssse s sssss s s s s s s e 23
Chapter 5 VME Interface (pages 6-8, 13,29-31) .o, 29
5.1. VME Interface: AN OVEIVIEW ... eseseessscseessssesss oo 29
5.2, VME TTANSCEIVETS .......ooooccooooeooeeeeceeeeecceveeeessssss oo ssss e s sssse s ssss oo smsssesess 29
VME Control TranSCeIVETS ... eeeeesseseese e, 30

VME Address TTanSCEIVETS .............occovvvoeeoersseesssses s ssssesonsen 31

VME Data Transceivers ...... e tes e s e s 31

T TI 741% | SANY E: X7 6002014 {¢) OO 32
Slave Address Decode ... 33

S1ave SYNCHIOTUZET ... sessseseere oo 34

Slave Control LAtChes ... e 36

Slave Control State Machine 37

Bus Error ' e AR 1R e e 49
WE GALE ... sases s e s s 50
5.4, VME S1ave REGISIETS ......oooo.ovooceerssssere s eess s sssnssssesssessssssssessess s s 50
BOGIA ID ..o s s s sssssss s s 50
GP Status/Control REGISIET ... seses st 51
Microstore VME Address Counter and Data Transceiver ................. 51
Shared Memory VME Address Pointer and Data Registers .............. 53
5.5. VME MaSter CONLIOL ............ooooioimeersseeresessssesesssssssssesssssssssss s s 54
Control Signal SYNCRIOMIZET ..................ooceeeessoireessiessesissresssseesssns 55
VME Bus Requester ........ VO
Data Transfer Controller . ...............oemoiveneens 59
Timeout Counter and Miscellaneous Logic ... 61
VME BUS INEITUPLET .........oooooooooeeveeeeeesee s sssinssre s sssessssssssrssssssssesesses 63

SUN PROPRIETARY

.—iv_



Contents — Continued

PP VME INEITACE ........ooooooiee oo eere s 65
Chapter 6 Microstore (pages 9-12) .71
Chapter 7 Shared Memory (pages 13-14) ..o 77
Chapter 8 Viewing Processor (pages 15-17) ... 85

8.1. INStruCtion REGISIET ...........ooooeeoeeccmeece oo eess s s ssmes e sees s 85
8.2. General Field 85
8.3. VPBUS Source/Destination Decode ... 85
8.4, MICTOSEQUEIICET ...oocccccoeeee e eseseeeeees oo seere s ssesesssesesreeseeseeesssneee 88
8.5, MICTOPIOCESSOT .....ooooooooveeecesesee oo sseseessseeee s sesesees e sesssereseeseesesseseesessee 90
8.6. VP Miscellaneous CONLIOIS ..o seesseesssesseeesseeessn 92

Chapter 9 Floating Point (pages 18-22) ..., 97

9.1. OVerview ... et e e e e e 97
9.2. Detailed Description of the Floating Point Circuitry ... 98
Floating Point Addressing: Set A O, 98
Floating Point Registers: Set A ... 99
Floating Point Addressing: Set B ... 100
Floating Point Registers: SetB ... 100

Floating Point Chips, Status and Result Registers ... 100

Chapter 10 VP Miscellaneous Logic (page 23) . 105
10.1. VPPROM oo sssssessssssses s s s e e 105
10.2. VP RUREGISIET ........oooooeeeeeeeeee e ssesesssssee s ssssessssssse s s s 105
10.3. INterproCesSOr FIAZS #1 ..o smesmeeeeeeessesssmenee e 105
10.4. VP Status Register 106

Chapter 11 FIFO (page 24) 109

Chapter 12 Painting Processor (pages 25-27) 125
12.1. INStruction REGISIET ........ocoooeverevrreerecssee s ssssess e 125
12.2. GENETALFRENA .........occoe s s ssss s 125

SUN PROPRIETARY



Contents — Continued

12.3. PPBUS Source/Destination Decode
12.4. PP Microsequencer

12.5. Microprocessor

12.6. Miscellaneous Controls

Chapter 13 Scratchpad Memory (page 28)

Chapter 14 PP Miscellaneous Logic (page 30)

14.1. PP n Register

14.2. Interprocessor Flags #2
14.3. PP Status Register
14.4. PP Bus Extension

Chapter 15 Graphics Buffer Board
15.1. Connectors and Miscellaneous

15.2. Destination Decode
15.3. G Buffer Memory Registers
15.4. Graphics Buffer Memory ...

15.5. Graphics Buffer Memory Control ...

Graphics Buffer/GP Interface Signals ...

Graphics Buffer Control State Machine
RAS and CAS Generation
Row/Column Address Multiplexer ...

Refresh Timer and Refresh Address Counter .

15.6. Integer MUMtPLIET ...

Appendix A State Diagrams, PAL listings, and Schematics

SUN PROPRIETARY

_vi_.

147
149
149
150
151
152
153
156
169
171
172
173



Tables

Table 1 Component DeSIZNAtIONS ...............covovorooeeoresooeereseesresesssesssesssereersresesesere XV
Table Z Sun DOCUMENTALION .. ......ooovoooeeeeee oo eeeeeeeereseseeseeereeees e sressssesseesesemereseenen Xvii
Table 3 Vendor DOCUMENLALION .........o.coocooeeevevee oo eesnesesesssesseessesassesssesssssssnssessssesnseees Xvii
Table 4-1 Run/Halt Operations 25
Table 5-1 Decode of the Microstore Registers ... 33
Table 8-1 VP Bus Sources and Their Enables ..., 86
Table 8-2 VPBUS Destinations and Their COntrols ... 87
Table 8-3 Condition COde LOZIC ..o ssseseess s 89
Table 8-4 Miscellaneous CONLTOLS ................cccccoooeeeeeoeeeeeeeerseessesesesesssssssssasesoessssssrese 92
Table 12-1 PP Bus Sources and Their Enables ..., 126
Table 12-2 PPBUS Destinations and Their COntrols ..o, 126
Table 12-3 Condition €Code LOZIC .........o..oeeerreeeresserecsssenes e essenssomenee 128
Table 12-4 PP Miscellaneous Controls 132
Table 15-1 Mode Register Bits e ‘ 173

SUN PROPRIETARY

- vii—






Figures

Figure 2-1 Sun-2/160 Color Workstation: System-Level View ...
Figure 2-2 Block Diagram of the Graphics Processor ...

Figure 4-1 Clocks Timing Diagram .21
Figure 4-2 Clock Run Timing Diagram 26
Figure 4-3 Clock Halt Timing Diagram ...........oooeoveooeorsorsceeeeseeeeeessssesesne 26
Figure 5-1 Slave Synchronizer Timing Diagram ..., 35
Figure 5-2 Slave Writc Control Timing Diagram ... 39
Figure 5-3 Slave Write Control Timing Diagram . 41
Figure 54 Slave Write Control Timing Diagram ... 42
Figure 5-5 Slave Write Control Timing Diagram ... 43
Figure 5-6 Slave Write Control Timing Diagram ..., 44
Figure 5-7 Slave Read Control Timing Diagram e 46
Figure 5-8 Slave Read Control Timing Diagram 47
Figure 5-9 Slave Read Control Timing Diagram 48
Figure 7-1 Shared Memory Read Timing ... — 78
Figure 7-2 Shared Memory Write Timing 5 19
Figure 8-1 Viewing Processor Destination Load Timing Diagram .............. 87
Figure 8-2 Am29116 Double Address Timing Diagram .......... .9
Figure 8-3 Am29116 DLE Timing Diagram i .9l
Figure 11-1 FIFO Write Timing Diagram— VPO PP ... 112

SUN PROPRIETARY

—-1X -



Figures — Continued

Figure 11-2 FIFO Write Timing Diagram— VPO PP ...
Figure 11-3 FIFO Write Timing Diagram—PPto VP ...,
Figure 114 FIFO Read Timing Diagram—VPOPP ...
Figure 11-5 FIFO Read Timing Diagram—PPto VP ...
Figure 11-6 FIFO Read Timing Diagram—PPto VP ...
Figure 11-7 FIFO Read Timing Diagram—PP to VP

Figure 12-1 Painting Processor Destination Load Timing Diagram ...
Figure 12-2 Am29116 Double Address Timing Diagram ...
Figure 12-3 Am29116 DLE Timing Diagram ...

Figure 13-1 PP Scratchpad Memory Write Timing Diagram

Figure 15-1 Graphics Buffer Block Diagram
Figure 15-2 Graphics Buffer RMW Mode Read Start Timing Diagram
Figure 15-3 Graphics Buffer Normal Mode Read Timing Diagram

Figure 154 Graphics Buffer Normal Mode Write Timing Diagram ...........

Figure 15-5 Graphics Buffer Normal Mode Read or Write Timing
Diagram ettt

Figure 15-6 Graphics Buffer RMW Mode Read Timing Diagram ...
Figure 15-7 Graphics Buffer RMW Mode Write Timing Diagram ...
Figure 15-8 Graphics Buffer Normal Mode Refresh Timing Diagram .........
Figure 15-9 Graphics Buffer RMW Mode Refresh Timing Diagram ...........

Figure 15-10 Graphics Buffer RAS/CAS Access Detailed Timing
| DE:T04 ¢ 1 (KOO

SUN PROPRIETARY

-X -

114
117
118
119
120

127
131
131

138

148
155
158
159



Summary of Contents

Chapter 1

Chapter 2

Chapters 3-14

Chapter 15

Appendix A

Glossary

Preface

Welcome to the Sun Graphics Processor. This manual presents an engineering
and hardware description of the Graphics Processor and Graphics Buffer boards.

This manual has fifteen chapters and an appendix:

Introduction — contains a basic overview of the the Graphics Processor, its posi-
tion in the Sun architecture, and associated Graphics Buffer board.

Overview — presents a simplified block diagram of the Graphics Processor and
Graphics Buffer boards.

Graphics Processor Board Circuitry — gives a detailed description of the circui-
try on the Graphics Processor (GP) board.

Graphics Buffer Board — gives a detailed description of the circuitry on the
Graphics Buffer (GB) board.

State Diagrams, PAL listings, and Schematics — contains the state diagrams
referred to in this manual, along with the PAL listings and schematics.

Finally, to help us maintain the currency and accuracy of this material we have
supplied a reader comment sheet at the end of this guide. Please use the com-
ment sheet to list errors and omissions. Your responses will help a great deal in
our efforts to keep our documentation up to date.

A few terms are used throughout this document which, without explanation, may
seem confusing. : S

o Positive Logic — positive logic means that the asserted level (see below) of
asignal is a logic 1 (see below also), 2.8 to 4.5 volts for a TTL gate.

o Asserted — when we say that a signal is *‘asserted,”” we mean that it is in its
active, or true, state. In positive logic this means that a signal like READ,
when asserted, is equal to its most positive state. When a signal like
WRITE*, WRITE-, or WRITEN\ (the three are synonymous) is asserted it is
equal to its most negative state.

SUN PROPRIETARY

_xi_



Preface — Continued

Schematic Conventions

o Activated — means the same as ‘‘asserted.”’

o Logic 1 — in positive logic, alogic 1 stands for the more positive of the two
voltage levels. A logic 1in negative logic stands for the more negative of
the two voltage levels.

o Logic 0 — in positive logic, a logic O stands for the morc ncgative of the
two voltage levels. A logic O in negative logic stands for the more positive
of the two voltage levels.

o  Set — means the same as logical 1.
o  Clear — means the same as a logical 0.

o ON — when it refers to a switch (or switch section) setting, is synonymous
with CLOSED. This means that the signal at the input of the switch (or
switch section) is shorted to its output.

o OFF — when it refers to a switch (or switch section) setting, is synonymous
with OPEN. This means that the signal at the input of the switch (switch
section) is NOT SHORTED (signal is not passed) to its output.

o CLOSED — when it refers to a switch (or switch section) setting, is
synonymous with ON. This means that the signal at the input of the switch
(switch section) is shorted to its output.

o OPEN — when it refers to a switch (or switch section) setting, is
synonymous with OFF. This means that the signal at the input of the switch
(switch section) is NOT SHORTED (signal is not passed) to its output.

o DIP — stands for Dual In-line Package, and refers to the physical geometry
of the chip (rectangular, with pins on the two longer sides).

o DIP Switch — a multi-sectioned switch which has DIP geometry.

o Switch — a device for making or breaking an electrical circuit. A switch
may have one or more sections, each of which may control a circuit.

o Ox — hexadecimal prefix; the number following this prefix is in hexade-
cimal.

o PCB — printed circuit board

o  TTL — transistor-to-transistor logic

The following conventions are used in this document and on the schematics.

On the schematics, numbers in parenthesis near signal names refer to the
schematic page where a source signal originates or a destination of the signal
exists. The source and destination of a bus is the point the designers believed to
be the “‘major’’ source; for example, the AM29116 on the VPBUS and PPBUS.

The components on the schematic are identified by a component name (for exam-
ple, F74), component designation (for example, UA13) and values if necessary
(for example, 1K).

SUN PROPRIETARY

- xil —



Preface — Continued

Table 1

Understanding The State
Diagrams

The component designations provide a unique reference name for each device.
This unique designator consists of a letter followed by two to four other charac-
ters. The first letter of the designation indicates the type of component and is one
of;

Component Designations
Letter Component Type
C Capacitor
D Diode or LED
J Jumper
P Connector
R Resistor
U Integrated Circuit

The other characters of the component designation tell the grid location of the
component on the PCB. For example, UR12 is the IC located at the PCB grid
location R-12; RCS is the resistor located on PCB grid location C-5. Note how-
ever that capacitors, jumpers, and connectors do not have a grid location but
instead are given sequential numbers without regard to their location on the PCB
(e.g.J1,12,]3, etc.). Invery few instances, the PCB grid was not fine enough to
uniquely identify components and in those cases a letter A or B was appended to
the end of the designations (for example, RM22A and RM22B define the two
resistors at grid location M-22). This occurs a total of 5 times on both boards.

An asterisk after a signal name is used to indicate the signal is active low or to
distinguish a signal from its complement. Signals of the form Pn.NAME indi-
cate that the signal is part of the Pn connector. For example, P1.AS* is an active
low signal attached to the P1 connector.

Pull-up signals are designated by PUn and pull-down signals are designated by
PDn. For automatic testing, different pull-up signals are used on the unused
asynchronous set and reset inputs of a flip-flop. Also, inputs are not tied directly
to ground so that these signals can be toggled and individual components
checked even when installed in the circuit.

In this document, a grid location (from the schematic) is used to reference a logic
element or signal on a schematic. For example, on schematic sheet 4, the oscilla-
tor is located at schematic grid location B8. In this text, these grid locations are
in parentheses after the logic element or signal name.

All input signals to PALs are shown on the left side of the device and all the out-
puts from the PALs are shown on the right side of the device.

The state machines used on the GP and the Graphics Buffer boards are all syn-
chronous sequential state machines implemented in PALs. Each state machine
has an associated state diagram. There is a sample figure in the appendix
(labelled ‘‘Appendix A, Figure 1°") which shows an example of a state machine
and will be used to explain the nomenclature and standards used in the state
diagrams.

SUN PROPRIETARY



Preface — Continued

The sample state machine has four states, as shown by the large circles. The
states are labelled (for reference only) A, B, C, and D. In addition, a state assign-
ment chart is shown which assigns a unique encoding of the two state flip/flops to
each of the four states.

The state machine shown has four input signals, three output signals, and two
state signals (state flip/flops). The input signals are named RESET, I1, 12, and
I3. The output signals are named OUT1, OUT2, and OUT3. OUT1 and OUT?2
are registered outputs from the PAL and OUT3 is a combinatorial output from
the PAL. The state signals are named FF1 and FFO and are registered outputs
from the PAL. Additionally, there is another signal to the PAL, a clock. The
clock signal is used to clock all the flip/flops (registered outputs). The state
machine makes a transition on every clock period (although the transition may be
to the same state machine state, state A to state A, for example).

The state transitions are shown by the arrows. The input signals which caused
the transitions, along with the outputs which will result from the transition, are
shown next to the arrows within the brackets. The horizontal line separates the
inputs and the outputs; the inputs are shown on the top and the outputs are shown
on the bottom.

A brief description of the example diagram follows.

The arrow in state A with the signal RESET above it means that when the signal
RESET is active—regardless of any other previous conditions—the state
machine will go to state A with none of the outputs activated. This is what will
occur after a power on reset or a manual reset.

Once in state A, the state machine has two paths which it can follow. IfI1 is
active, the state machine will go to state B and activate the output OUT1. Notice
that the output OUT1 will become active on the rising edge of the clock which
puts the state flip/flops to state B (OUT1 will be active during the clock period
where the state machine is in state B). The outputs next to the arrows become
valid after the state transition is true for all registered outputs (after going from
the state A to state B, the registered output OUT1 will become active while in
state B). If I1 is not active (shown by /I1), the state machine will stay in state A
and none of the outputs will be activated, shown by 0------ 0. The notation 0-----
-0 means that none of the outputs will be activated for this state transition.

When in state B the state machine has two possible state transitions. IfI1 is
active AND 12 is not active, shown by (I11)(/I12), the state machine will go to state
C and activate the outputs OUT1 and OUT2, shown by OUT1,0UT2. IfI1 AND
12 AND I3 are all active, shown by (I11)(12)(13) the state machine will stay in
state B and activate OUT2. If I1 AND I2 are active AND I3 is not active, shown
by (11)(12)(/13), the state machine will stay in state B but this time will activate
the outputs OUT1 and OUT2.

From state C the state machine either stays in state C if I2 is not active (/I2) orit
goes to state D if 12 is active (I2). For either case none of the outputs are .
activated as indicated by 0------0.

From state D the state machine goes to state A right away regardless of any
inputs. This condition is shown by the input symbol X------X which means that

SUN PROPRIETARY



Preface — Continued

Applicable Documents

Table 2

Table 3

this transition will occur because all the inputs to the state machine are don’t
cares. When going from state D to A, the output OUT3 will be activated. Since
OUT3 is a combinatorial output from the PAL, it will be active when in state D
(in contrast to the registered outputs which, if activated here, would have been
active when in state A).

There will be two outputs from the PAL named FF1 and FFO which correspond
to the state assignment table shown. When FF1 is at alogic 1 and FFOis at a
logic 0, it indicates that the state machine is in state A (first line of the state
assignment table). If FF1 and FFO are at logic levels 1 and 1 the state machine is
in state B, if they are 0 and 1 the state machine is in state C, and when they are 0
and 0 the state machine is in state D.

We emphasize that this manual outlines rather than exhausts many of the topics
contained within. References to applicable documents supplied with your system
are given throughout; however, and we urge you to read these documents should
you need further information.

Sun Documentation

Sun Part Number Description
800-1190 Graphics Processor Hardware Reference Manual
Vendor Documentation
Description

AMD Bipolar Microprocessor Logic and Interface Data Book

AMD Bipolar/MOS Memory Data Book

Fairchild Advanced Schottky TTL (FAST) Data Book

| Texas Instruments ALS/AS Logic Circuits Data Book

Programmable Array Logic (PAL) Data Book

Weitek 1032/1033 floating-point processor data sheet

4501 FIFO data sheet

VMEbus Specification

SUN PROPRIETARY

- XV —






Introduction

Introduction

B .

SUN PROPRIETARY






Introduction

This document details the design of the Graphics Processor (GP), which includes
both the GP board and the optional Graphics Buffer board. The methodology is
io expiain each schematic page in order. A ‘‘higher-level’’ picture is given in the
Graphics Processor Hardware Reference Manual, Sun part number 800-1190. It
is assumed that the reader is familiar with the reference manual before using this
engineering manual.

The purpose of this document is to provide a low-level record of the hardware
design—something analogous to comments in software. It documents what was
done and why. It will assist engineers and technicians attempting to learn and
understand the hardware. In addition it is a source for generating installation and
maintenance manuals and other support documentation.

'SUN PROPRIETARY

é’%\% Ssun 3 Revision 1 of 20 October 1986

microsystems






Overview

OVEIVIEW oo

2.1.
22.
2.3.
2.4.
25.
2.6.
2.7.
2.8.
2.9.
2.10.

9
L.

2.

1
1

1

1
1.

2.

Clock and Reset Circuits (Pages 4-5) ..o
VME Interface (pages 6-7, 31) .o,
MICTOSIOTE (PAZES 8-12) ... e

Shared-MemoOTy (PAZES 13-14) ...
Viewing Processor (pages 15-1 7). ..........................................................................
Floating POInt (pages 18-22) .........oeeoooeeereeeeeseeeeesseees oo
VP Miscellaneous Logic (page 23) ...
First In First Out (FIFO) Buffer (page 24) ...
Painting Processor (PAes 25-27) ... eesssssesossa

Scratchpad Memory (page 28)

PP Miscellaneous LOEIC (Page 30 ...
Graphics BUSfer BOAKd ..o
Destination Decode (page 4) ...
Graphics Buffer (pages 5-11) ...
Integer Multiplier (pages 12-13)

SUN PROPRIETARY

10
10
10
10
10
11
11
11
11
12

12
12
12
13







Overview

The Graphics Processor (GP) is a two board set (including the Graphics buffer)
that presently installs in a Sun2/160. The GP resides logically between the host
processor and the frame buffer, receiving commands and generating pixcls. The
figure below illustrates a GP installation in the Sun2/160.

Figure 2-1  Sun-2/160 Color Workstation: System-Level View

Host Memo
Processor y
o VME Bus _
Slave Master
v ¥
Graphics Sun-2
Processor Color board
(Frame Buffer)
Graphics
Buffer
. Color
t
Option Monitor

SUN PROPRIETARY

f{?f Sun 7 Revision 1 of 20 October 1986

microsystems



Engineering Manual for the Sun Graphics Processor

The GP is functionally divided into two sections, the
o Viewing Processor (VP), and the
o Painting Processor (PP).

Much of the implementation of these two sections is similar, including the
AM?291 16 microprocessor, the AM2910A sequencer, the branch logic, and the
microcode memory interface. Differences are the subsections that attach to each
section’s bus. The VP contains the

o floating point, and

o shared-memory subsections.
The PP contains the

o  VMEbus master interface,

o  scratchpad memory,

o  Graphics buffer, and

o the integer multiplier.

NOTE  Following is a brief description of each GP subsection and a reference (in
parenthesis) to the schematic pages on which the logic appears. Refer to the
next figure (Graphics Processor block diagram) to see how these subsections
interconnect.

SUN PROPRIETARY

%%4 sun Revision 1 of 20 October 1986

microsystems



Chapter 2 — Overview 9

Figure 2-2  Block Diagram of the Graphics Processor

VME BUS
\
Micro- Microstore Micro-
sequencer 8K-by-56 sequencer
116 116
VME
Shared AM29116 AM29116
Memory . . Bus
Microprocessor Microprocessor Interf.
16K-by-16 - o terface
(Viewing (Painting
Processor) Processor)
[ o}
VPBUS \ FIF PPBUS
—+6 < - <> 16
1 ] ]
(—
Scratchpad
VP PROM 4K-by-16
16K-by-16 \
Optional
) G-Buffer
Floating (DRAM)
Point
2M-by-16 .
Registers Optional
2K-by-32 Integer
] Multiplier
and
PP PROM
Weitek
1032/1033
Floating
Point
Processor

SUN PROPRIETARY

Q@ sun Revision 1 of 20 October 1986

microsystems



10 Engineering Manual for the Sun Graphics Processor

2.1. Clock and Reset
Circuits (pages 4-5)

2.2. VME Interface (pages

6-7,31)

2.3. Microstore (pages 8-
12)

2.4. Shared-Memory (pages

13-14)

2.5. Viewing Processor
(pages 15-17)

@4

The GP uses an on-board, free-running oscillator for its basic timing source.
Under host program control, the GP clock can be halted (primarily for diagnos-
tics) or the GP can be reset.

The VME ixiterface consists of:

o registers accessible by the host processor (board id, control, status, micro-
store address, and microstore data),

o the logic to interface to the shared-memory,
o the logic to implement the VME protocol,
o the address/data transceivers, and

o the PP VME interface.

The GP is both a VME slave (VME registers and shared-memory) and a VME
master. The GP is also a VMEDbus interrupter. The slave control logic is pri-
marily on page 7 of the schematics and the master control logic is primarily on
page 31.

The microstore is the program memory for both the VP and the PP. By sharing
the available memory bandwidth, both processors access the same memory. The
memory is also accessible from the VMEbus (read and write) but only when the
two processors are halted. The size of the microstore is 8K-by-56-bits using 28
4K-by-4 chips.

Microstore timing is such that the Viewing Processor and the Painting Processor
can share the memory. For each processor, the first half of a cycle is used to
determine the address of the next microinstruction. The second half is used to
route this address to the microstore, access the memory, and load the fetched
instruction into the instruction register. The two processors run 180 degrees out
of phase so that the halves of the processor cycles mesh correctly.

The shared-memory is the vehicle for passing commands, parameters, and any
other information between the host processor and the GP. Its bandwidth is
shared by VME accesses and by the Viewing Processor; both are allocated
independent access (read or write) each VP cycle. The size of the shared
memory is 16K 16-bit words.

The Viewing Processor is implemented with the following:

o  56-bit instruction register (also called pipeline register),

o PALS for VPBUS source/destination encoding and miscellaneous controls,
o  AM29116—16-bit bipolar microprocessor,

o AM2910A—microcode sequencer with Bank Select PAL and condition code
status register, ‘

o 15-bit branch register, and

SUN PROPRIETARY

microsystems

Revision 1 of 20 October 1986



Chapter 2 — Overview 11

2.6. Floating Point (pages
18-22)

2.7. VP Miscellaneous
Logic (page 23)

2.8. First In First Out
(FIFO) Buffer (page
24)

2.9. Painting Processor
(pages 25-27)

@

o 16-bit geﬁeral field buffer.

The floating point section is built around the Weitek 1032/1033 chip set. It con-
sists of the:

o  Weitek chips,

o 2K 32-bit words of floating-point registers,

o pointers into these registers,

o buffers to match timing constraints, and

o the necessary control logic.

Also part of the floating point subsection is the VP PROM (page 23) which is
used to store constants necessary for arithmetic operations (such as ‘‘divide’’).

The floating point section can be viewed as an attached array processor. It does
32-bit floating-point operations at rates up to 4.16 Mflops. Graphical data (espe-
cially 3D) are often defined in floating-point coordinates, manipulated with
floating-point operations, and finally converted to integers for display on the
screen.

Miscellaneous components of the Viewing Processor are:

o VP PROM—described above in floating point section;

o VP N Register—allows runtime modification of those AM29116 instructions
which contain an ‘‘n’’ field;

o Interprocessor flag #1 Register—38 bits which can be written by the VP and
read by the PP along with three other flags;

o VP Status Register—4 bits which can be written by the VP and read via the

VMEbus. This register also controls four LEDs.

The FIFO provides an asynchronous interconnection between the VP and the PP
(although it is a synchronous implementation of the FIFO). 16-bit words can be
passed from the VP to the PP; or the FIFO can be reversed (under control of the
VP) and words passed from the PP to the VP.

The Painting Processor is implemented with the following (note its similarity
with the Viewing Processor):

o  56-bit instruction register (also called pipeline register),
o PALS for PPBUS source/destination encoding and miscellaneous controls,
o AM29116—16-bit bipolar microprocessor,

o AM2910A—microcode sequencer with Bank Select PAL and condition code
status register,

o  15-bit branch register, and

SUN PROPRIETARY

sSsun Revision 1 of 20 October 1986

microsystems



12 Engineering Manual for the Sun Graphics Processor

2.10. Scratchpad Memory
(page 28)

2.11. PP Miscellaneous
Logic (page 30)

2.12. Graphics Buffer
Board

Destination Decode (page 4)

Graphics Buffer (pages 5-11)

NOTE

@

o 16-bit general field buffer.

The scratchpad memory is general-purpose storage for the PP. The size of the
memory is 4K 16-bit words using 4K-by-4 chips.
The miscellaneous logic includes:

o PP N Register—allows runtime modification of AM29116 instructions
which contain an *‘n”’ field;

o Interprocessor Flag #2 Register—38 bits which can be written by the PP and
read by the VP along with three other flags;

o PP Status Register—4 bits which can be written by the PP and read via the
VME bus. This register also controls four LEDs.

o PP Bus extension—the logic necessary to extend the PP Bus to the Graphics
Buffer board containing the Graphics buffer memory, integer multiplier, and
PP PROM.

On the GP board, a PAL encodes the signals that select the possible sources and
destinations on the Graphics Buffer board. A PAL on the Graphics Buffer board
decodes the destination encodings into individual signals. The encoded destina-
tions are:

o no destination,

o Graphics buffer high address pointer,
o  Graphics buffer low address pointer,
o  Graphics buffer write data register,

o multiplier mode register,

o PP PROM pointer,

o multiplier X operand, and

o muldplier Y operand.

The Graphics buffer has two modes of operation:

o Normal mode, which allows for sequential reads or sequential writes. The
address pointer is automatically incremented after each access.

Normal mode has a sub-mode called fill mode. In fill mode, each write fills four
consecutive memory locations with specified data. Thus the entire memory could
be loaded (for instance, a clear memory operation) with the same value in one-

fourth the time. When in fill mode, the address pointer is automatically incre-
mented by four and reads are illegal.

o Read/modify/write mode, which allows for a read and then a possible write
to the same location before the address pointer is automatically incremented,

Su SUN PROPRIE TAvaision 1 of 20 October 1986

microsystems



Chapter 2 — Overview 13

Integer Multiplier (pages 12-
13)

@

this mode is especially useful for the hidden surface removal algorithm.

In both modes (normal and RMW) the actual memory access can be overlapped
with other PP activities if properly microcoded.

The integer multiplier accepts two 16-bit operands and produces a 32-bit result.

Rendering algorithms dealing in screen coordinates often require multiplications;
hence the inclusion of the integer multiplier. Also included is a PP PROM (simi-
1ar to the VP PROM) which is used to store constants used in various algorithms.

Notice that unlike the floating point subsection, the integer multiplier does not
have associated storage. Whereas the floating point subsection is like an attached
array processor, the integer multiplier is more like an integrated co-processor.

SUN PROPRIETARY

sun ' Revision 1 of 20 October 1986

microsystems






3.1. Title Page (page 1) .. 17

3.2. Board/Backplane P-Connectors (page 2) ... 17
Connection RESICHOMS ..o 17
Graphics Buffer Ground ... 17

3.3. Capacitors (PAZE 3) ..o 17

SUN PROPRIETARY







3.1. Title Page (page 1)

3.2. Board/Backplane P-
Connectors (page 2)

Connection Restrictions

Graphics Buffer Ground

3.3. Capacitors (page 3)

Connectors, Connection Restrictions
(schematics pages 1,2, and 3)

Page 1 of the schematics is the title page listing revisions, spares, PAL and
PROM part numbers cross-referenced to the IC designations on the schematic
and oiher noies.

Page 2 shows the three 96-pin connectors that interface the GP board into the
backplane. All three rows of P1 and row B of P2 make up the VME bus signals.
Row A of P2 is the private bus between the GP and the optional Graphics Buffer
board. Rows A and C of P3 are power inputs. Row C of P2 and row B of P3 are
unused.

The VME bus defines four bus grant signals. The GP only uses BG3. Therefore,
BGO, BG1, and BG2 are connected on the GP board, IN to OUT—that is, they
are shorted across the board.

There are restrictions which must be be understood before plugging the GP
board-set into the system backplane.

Signals on the private bus between the two boards reside on row A of the P2. If
the Graphics Buffer board is installed, the two-board combination must be in
slots which provide a dedicated P2-row A bus (since the GP drives some of the
signals on P2-row A). On Sun-2/160, this is to be slots 3 and 4. If the Graphics
Buffer board is not installed, the GP can be plugged into any slot where P2-row
A is not being used by some other board. In the Sun Model 160, this can be any
one of slots 5 through 12, or slots 3 or 4 if P2-row A of slots 3 and 4 are not
being used by some other board. )

The Graphics Buffer grounds shown on page 2 are used to minimize the noise
that may occur on the P2 bus signals between the GP and the Graphics Buffer.

The bulk and decoupling capacitors are shown on page 3. One decoupling cap is
used for (approximately) each pair of TTL chips (14-, 16-, or 20-pin); the actual
number is based on the printed circuit board layout. One cap per memory chip is
allocated, and one cap per >20-pin chip is provided.

The ground test points shown on page 3 are merely wire loops consisting of
jumpers spread out on the PC board to provide convenient ground connections
for a scope probe, etc.

SUN PROPRIETARY

sun 17 Revision 1 of 20 October 1986

microsystems






4.1, CIOCK CITCUIL ..o .21
4.2. Resets 23

SUN PROPRIETARY






4.1. Clock Circuit

Clock and Reset Circuits (pages 4 and

The Graphics Processor is a synchronous design and the master clock source is
the oscillator on page 4. All sections of the design, including the VME bus inter-
face and the graphics buffcr memory refresh timing, are dependent on this fre-
quency.

To provide a 120 nanosecond cycle, a 33.333 MHz oscillator is used. The output
is routed through jumper J14 (for test engineering—it provides a simple connec-
tion for a faster or slower clock) and to two JK flip-flops to divide the frequency
by two and four. The basic clocks generated are:

o 2XCLK — 60 nsec period, free-running;

o  VPCLK — 120 nsec period, used to drive the Viewing Processor;

o PPCLK — 120 nsec period, used to drive the Painting Processor.

The phase relationships of these signals are shown in the following figure. Note

the following:
1. Arsing edge of 2XCLK triggers a change in state of both VPCLK and
PPCLK.

2. VPCLK and PPCLK are 180 degrees out of phase; thus the first half of a VP
cycle is the second half of a PP cycle and vice versa.

Figure 4-1  Clocks Timing Diagram

Phase relationship of the GP clocks:
2XCLK | | | I | | I |
VPCLK __| | ! I

PPCLK | | | |

SUN PROPRIETARY

4y sun 2

Revision 1 of 20 October 1986



22

Engineering Manual for the Sun Graphics Processor

@s

The clock signals and their usage is as follows:
o 2XCLKZB — 2XCLK for use on the Graphics Buffer board;

o 2XCLK1, 2XCLK2, 2XCLK1* — used for state machine timing and to gen-
erate 30 nsec load pulses;

o PPCLK — a free running, ‘‘early’’ PPCLK, see page 25;

o  VPCLK — a free running, ‘‘early’’ VPCLK, see page 15;

o VPCLK* — free running VPCLK complement, needed for timing on page
22,

o VPCLKFR — free running VPCLK;

o PPCLKFR — free running PPCLK;

o  VPCLKO, VPCLKI1, VPCLK2, VPCLK3, VPCLK4, VPCLK1*, VPCLK3*,
VPCLK4* — VPCLKs which can be halted;

o PPCLKO, PPCLK1, PPCLK2, PPCLKZB, PPCLK1* — PPCLKs which can
be halted.

The basis of synchronous design is having all components use a common clock.
Loading constraints prohibited the use of a single clock on the GP, which is why
there are the number of clock signals above. Ideally, all clocks would be identi-
cal but practically this is impossible since different paths have different delays.
The task then is to minimize the skew between clock edges. The following
actions were taken to minimize this skew:

o clocks which are used in the same subsection are routed through the same
F240;

o anequal number of gate delays are used wherever possible;

o loads are balanced on the F240’s to prevent all inputs switching to the same
logic state at the same time (thus preventing ground shifts);

o careful timing analysis using min/max skews was done.

The F240 family of chips are used as the clock drivers because of their high drive
current.

Also on page 4 are control circuits which halt the clocks. This is a diagnostic
function allowing observation of the GP in a steady state. The clocks which can
be halted and their halted states are:

o  VPCLKO, VPCLK]1, VPCLK2, VPCLK3, VPCLK4 — halted in the logic 1
(high) state;
o VPCLKI1¥, VPCLK3*, VPCLK4* — halted in the logic 0 (low) state;

o PPCLKO, PPCLK]1, PPCLK2, PPCLKZB — halted in the logic 1 (high)
state; :

o PPCLK1* — halted in the logic O (low) state.

UN PROPRIETARY

microsystems

Revision 1 of 20 October 1986



Chapter 4 — Clock and Reset Circuits (pages4 and S) 23

4.2. Resets

NOTE

The 3-input AND and NAND gates perform the halt function. The halt imple-
mcntation for VPCLEKA4 is described below, all others being analogous.

VPCLK4 can be halted either via the VME bus (see page S) or via a connection
to the Hilevel PROM Emulator. Inputs to the 3-input AND gate (D7) on page 4
are the free-running clock PPCLK (the complement of free-running VPCLK), the
control line VPHALT* from page 5, and the halt control from the Hilevel test
gear. Both of the halt controls can become asserted only when PPCLK is low;
therefore the AND gate output will not glitch when a halt control is asserted. If
neither halt control is asserted, the output of the AND gate is PPCLK which is
inverted through the F240 to become VPCLK4. If either of the halt controls is
asserted, the AND output is low and VPCLK4 is halted in the high state.

The Hilevel PROM Emulator plugs into the microstore sockets on the GP board
and provides an alternate, known-working method for loading and executing
microcode. It also provides trace, breakpoint, and single-step capabilitics to
assist the debug of hardware and microcode. To enable these capabilities, the GP
clock must be routed to the Hilevel which retumns a halt control during the proper
phase of the clock. These connections are shown on page 4 at grid locations D2,
A4, and A3. Wire loop connections consisting of jumpers are provided to attach
the Hilevel probes (note that a trace has been placed through these jumpers so
that headers and jumpers are not necessary if the Hilevel interface is not going to
be used). The S04 inverters provide isolation between the GP and the test gear.
The pull-up and pull-down resistors condition the input for use on the GP. Two
sets of connections to the Hilevel are provided on the GP board—one for the
Viewing Processor and one for the Painting Processor. This means that only one
processor can have trace, breakpoint, and single-step capabilities at a time (unless
two Hilevel emulators are used). Both processors can execute out of common
Hilevel memory, but only one will have these other capabilities.

Page § contains the reset circuitry, the pull-ups and puli-downs, the halt control
accessed via the VME bus, and a flip-flop to prevent the GP from starting an
erroneous VME operation after a reset.

Three reset methods are provided.

1. A manual reset (primarily for lab debug) is activated by grounding the input
to the ALS00 at D7. A wire loop consisting of a jumper (J13) is provided so
that the Hilevel reset line or a switch can be easily attached.

A trace has been placed in this jumper so that a header and jumper will not be
necessary if Hilevel interface is not going to be used.

2. Also input to this ALSOQ is the VME reset signal SYSRESET* directly
from the P1 connector. As specified in the VME specification, this signal is
activated on power-up and can be asserted under software control (resetting -
all VME devices). These two reset sources are ORed together to generate
the power-on reset signal: POR*.

3. The third reset method is a software reset for the GP board only. Viathe
VME bus, the host processor software creates a positive-going pulse on
VMERST (C8). This signal is ORed with the power-on reset to generate the

é&\% "S‘OB“!"SUN PROPRIETARY;M 1 of 20 October 1986



24 Engineering Manual for the Sun Graphics Processor

general reset signals RSTO*, RST1*, and RST.
The destinations of the reset signals are listed below.

POR*
VME bus slave control state machine
REQUEST flip-flop
WEGATE flip-flop
WORDXFER flip-flop
IFLAG flip-flop
VME bus interrupter state machine
VME bus master data transfer state machine
VMERDY flip-flop
VME bus requester state machine

RSTO*
VPJZ flip-flop
VPHLT flip-flop
PPJZ flip-flop
PPHLT flip-flop
Interrupt Enable flip-flop
VP destination (PAL), inhibits loads
FPFLAG flip-flop
PPTOVP flip-flop
PP status register

RST1*
VP status register
FIFOs (2)
FIFO write control state machine
FIFO read control state machine
SFIFOMT flip-flop
SFIFOFULL flip-flop
PP destination (2 PALs), inhibits loads
ENSTRTVME flip-flop

RST
ZBUFRDY* flip-flop

The pull-ups and pull-downs are shown in the lower left comer of page 5. The
pull-downs are implemented with an ALS240 for drive capability and because its
outputs can be tri-stated allowing test engineering equipment to have control
over the pull-downs. If a chip has an input tied directly to ground, this input can
not be tested; using the ALS240 allows these inputs to be tested.

The ENSTRTVME flip-flop is used to disable any VME transactions from being
started by the GP on the first PP processor clock after a reset. This is necessary
because after a reset the contents of the PP instruction register are undefined and
may in fact contain the instruction to start a VME transaction on the first rising
edge of PPCLK. To prevent this occurrence, this flip-flop is cleared by RST1*
and gates the STRTVME signal (from the PAL on page 27, section D1) so that

vSll

@ 3SUN PROPRIETARY

&evmon 1 of 20 October 1986



Chapter 4 — Clock and Reset Circuits (pages4 and S) 25

NOTE

Table 4-1

L

the VMERDY flip-flop (page 31, section B7) can not be activated on the first
PPCLK rising edge. The first rising edge of PPCLK sets the ENSTRTVME sig-
nal logic high and also loads valid data into the PP instruction register.

The rest of page S shows the halt control circuits for the clock. As can be seen,
the VP and the PP have independent halt control circuits. Since the VP and PP
run/halt circuits are identical, only operation of the VP run/halt circuit will be
described.

The ALS175 (D4 & C4) samples the two control inputs from the GP control
register (page 6). To put the VP into run-state, the software sets the VPCONT
signal. The ALS175 is configured as a differentiator and will detect the rising
edge of the VPCONT and a one-clock-period-wide pulse will be generated by the
AND gate at D3. This input is then used to set the VPRUN flip-flop; this JK*
flip-flop will remain set until a VPHLT signal is received. If VPSTRO is set
coincident with VPCONT, then the VPIZ flip-fiop (D1) is set at the same time as
the run flip-flop, causing the Viewing Processor to begin execution at microcode
location zero. Since the VPJZ flip-flop is a D-type, the VPJZ signal will be
asserted for only one clock.

VPRUN is the same as VPHALT*. It has been given two names for clarity of dis-
cussion.

To halt the VP, the software sets the VPHLT sfgnal. Similar to above, a one-
clock-period-wide pulse is generated which is routed to the K* input of the JK*
flip-flop thus resetting the run/halt state.

A table listing the run/halt operations is below. The figure following shows a
simple timing diagram displaying the operation of this circuitry.

Run/Halt Operations
Operation When Running When Halted

VPCONT no effect starts VP at location
where last halted

VPCONTwith VPSTRO continue running  starts VP at location O

at location 0

VPHLT halts VP no effect

VPHLT with VPSTRO halts VP no effect

VPSTRO no effect no effect

VPCONT halts VP starts VP at location

and VPHLT where last halted

VPCONT halis VP starts VP at location 0

and VPHLT

with VPSTRO

SUN PROPRIETARY

sun Revision 1 of 20 October 1986

microsystems



26 Engineering Manual for the Sun Graphics Processor

Figure 4-2  Clock Run Timing Diagram

START FROM 0

VPCLKFR | | | ! | 1 | ! n |

VPCONT |

J input f !

VPRUN I

VPSTRO |

D input | I

VPJZ ! |

Figure 4-3  Clock Halt Timing Diagram

HALT

VPCLKFR | L | | | | ! |

VPHLT |

K* input | _

VPRUN |

SUN PROPRIETARY

@ sun Revision 1 of 20 October 1986

microsystems



VME Interface (pages 6-8, 13, 29-31)

VME Interface (pages 6-8, 13,29-31) 29
5.1. VME Interface: AN OVEIVIEW ... | 29
5.2, VME TINSCEIVETS ..ooocooooeesecoeesoece s mssssss s oo ses e seeessee 29

VME Control Transceivers 30
VME Address Transceivers . 31
VME Data TIaNSCEIVETS ...........oocoooooseoemsosssesosss oo sessesses e 31
5.3. VME Slave Control ... S ¥
Slave Address DECOAE ... 33
S1aVe SYNCHIOMUZET ..............cccooiimereeeeoee e 34
Slave Control LAtChes ... 36
Slave Control State Machine ..............ocooeoeoemossces oo 37
DTACK ..o sess s s ssees e 49
1T 22 o (o) S 49
WE Gate . 50
5.4. VME Slave ReZISIETS ..o 50
BoardID ... et e s s 50
GP Status/Control Register 51
Microstore VME Address Counter and Data Transceiver ... 51
Shared Memory VME Address Pointer and Data Registers ... 53
5.5. VME Master Control e ses s iR s e s s 54
Control Signal Synchronizer 55
VME Bus Requester ... 56

Data Transfer Controlier

SUN PROPRIETARY




Timeout Counter and Miscellaneous LOZIC ..., 61
VME Bus INEITUPLET | oo 63
PP VME INETTACE ...t sessesmmsesneesessss s 65

SUN PROPRIETARY



5.1. VME Interface: An
Overview

5.2. VME Transceivers

SUN PROPRIETQ

VME Interface (pages 6-8, 13, 29-31)

The VME interface allows the GP to communicate with the other system com-
ponents in the Sun workstation. The GP contains both a slave and a master VME"
interface, as defined in the VME specification, along with a VME intcrrupicr.

o The slave interface allows masters on the VME bus to access certain
resources of the GP.

o The master interface allows the GP to access resources of slaves on the VME
bus.

o The interrupter allows the GP to cause exception processing by the host pro-
Cessor.

The following discussion will detail the implementation of the VME interface of
the GP in detail.

Page 6 of the schematics contains the VME address and data and control tran-
sceivers, and also some of the GP VME slave registers. The VME slave interface
control is on page 7. The VME master interface control and the VME interrupter
control is on page 31. Page 8 coniains ihe componenis necessary to impiement
the slave interface to the microstore. Page 29 and part of page 30 contains the
components necessary to implement the VME master and the VME interrupter.
Part of page 13 contains the components necessary to access shared memory

from the VME.

The control, address, and data transceivers for the VME bus are shown on page 6
of the schematics. The address, data, and the control modifiers are buffered by
F245-type devices. Some of the control lines also on this page are buffered by
F244-type devices. These F-type devices were chosen because they satisfy the
current-drive requirements of the VME bus.

The VME transceivers are used to provide isolation between the VME bus sig-
nals and their corresponding GP internal signals. The GP intemnal bus
corresponding to the VME address bus (P1.A23-P1.A01) is called VMEA<23>-
VMEA<01>. The GP intemal bus corresponding to the VME data bus (P1.D15-
P1.D00) is called VMED<15>-VMED<00>. The GP internal bus corresponding
to the VME address modifiers (P1.AM5-P1.AMO) is called AM<5>-AM-<0>.
The GP internal signals corresponding to the VME bus control signals

P1. WRITE* (read/write indicator), P1.AS* (address strobe), P1.DS1* (data

Sun 2 Revision 1 of 20 October 1986

mncrosyslems



30 Engineering Manual for the Sun Graphics Processor

VME Control Transceivers

@

strobe 1), P1.DSO* (data strobe 0), and P1.LWORD* (long word transfer indica-
tor) are, respectively, VMEWRITE*, VMEAS*, VMEDS1*, VMEDSO*, and
VMELWORD*,

P1.A23-P1.A01 isinternally named VMEA<23>-VMEA<(01l>
P1.D15-P1.D0O0 isinternally named VMED<15>-VMED<00>
P1.AM5-P1.AMO isinternally named AM<5>-AM-<0>
P1.WRITE* isinternally named VMEWRITE*

P1.AS* isinternally named VMEAS*

P1.DS1* isinternally named VMEDS1*

P1.DSO* isinternally named VMEDSOQ*

P1.LWORD* isinternally named VMELWORD *

The control transceivers are implemented with one F245- and one F244-type
device. The F245 buffers the VME address modifiers, P1.AM5-P1.AM0, and
also the P1.WRITE* and P1.LWORD* signals. The outputs of the F245 are
always enabled and only the direction pin is controlled (with signal
GPHASVME).

o When GPHASVME is active, indicating that the GP is the VME bus master,
the GP internal signals drive the VME bus.

o When GPHASVME is not active, the VME bus signals drive the internal GP
signals.

The input corresponding to P1.LWORD* is just a pull-up resistor. When the GP
is the bus master, P1.LWORD* is driven high because the GP does not do long
word transfers.

The F244 is used to drive the signals P1.DS1*, P1.DS0*, P1.AS*, PL.LWORD*,
and the GP intemnal signal VMEWRITE*. One section of the F244 always
buffers the VME bus signals P1.DS1*, P1.DS0*, P1.AS*, and P1.LWORD* to
(respectively) their GP internal versions VMEDS1*, VMEDSO0*, VMEAS*, and
VMELWORD*. The other section of the F244 enables the GP to drive the VME
bus signals P1.AS*, P1.DS1*, and P1.DS0* when it becomes the VME bus mas-
ter (indicated by the signal GPHASVME* being active). The GP VME master
logic (discussed in the section on the VME Master) outputs the signals
MASTERAS*, MASTERDS 1*, MASTERDSO*, and MASTERWRT* which are
driven to the VME bus by this F244. The signal VMEWRITE* is driven by the
signal MASTERWRT* when the GP is VME bus master and by the VME bus

signal R1.WRITE* when.the GR.is-not the-VME bus mastes:-

SUN PROPRIETARY

S ll n Revision 1 of 20 October 1986

microsystems




Chapter 5 — VME Interface (pages 6-8, 13,29-31) 31

VME Address Transceivers The address transceivers are implemented with three F245 devices. The B side
of the devices are connected directly to the VME P1 bus with the signals named
P1.A23-P1.AQ01. The A side is the GP internal VME address bus and is named
VMEA<23>-VMEA<QO1>. The outputs of the transceivers are always enabled
and only the direction pin is controlled. The direction pin is controlled with the
signal GPHASVME (GP has control of the VME bus as a master). When
GPHASVME is active the GP drives the VME address bus and when
GPHASVME is not active the GP is a receiver on the VME address bus.

The address transceivers also drive the signal P1.IACK* (interrupt acknowledge)
when the GP is the bus master. The input to this signal is just a pull up resistor
because when the GP is the bus master it will not do an interrupt acknowledge
and so P1.IACK* is driven high.

VME Data Transceivers The data transceivers are implemented with two F245 devices. The B side of the
devices are connected directly to the VME P1 data bus with the signals named
P1.D15-P1.D00. The A side is the GP internal VME data bus and is named
VMED<15>-VMED<00>. The outputs of the transceivers are always enabled
and only the direction pin is controlled. The direction pin is controlled with the
logic implemented using the F10, FO8, S04, and the two FOO gates.

The data transceivers are normally, as a default condition, receivers on the VME
data bus (the direction pin is a logic low). Under three conditions the tran-
sceivers are turmed to drive the VME data bus.

1. The first of these conditions is when the GP has become the bus master and
is doing a write operation to a slave on the bus. This condition is decoded
by the first FOO which ANDs the signals GPHASVME (when active this sig-
nal indicates the GP is VME bus master) and VMEREAD* (when not
active—logic high—this signal indicates a write operation on the VME
bus).

2. The next two conditions in which the data transceivers drive the VME data
bus are when either the GP slave is being read by a VME master (indicated
by LSLAVEADR* being active) or the GP VME interrupt ID is driven to
the VME bus during an interrupt acknowledge cycle (indicated by ENIN-
TID* being active). These conditions are decoded by the FO8 gate which
ORs the LSLAVEADR* and ENINTID*. The resulting signal is then
inverted by the S04 and input to the F10 gate.

The F10 gate does an AND operation on this signal and VMEWRITE* (when not
active, indicating a read operation on the VME bus) and DS (when active, indi-
cating that one of the two VME data strobe signals, DSO* and DS1%, is active).
The DS signal is used to ensure that the GP does not drive the VME data bus
until the data strobe(s) are active and to quit driving the data bus in as little time
as possible after the data strobes become inactive. The three conditions decoded
are then ORed by the second FOO gate which drives the direction pin of the tran-
sceivers.

SUN PROPRIETARY

’%24 sun Revision 1 of 20 October 1986

microsystems



32 Engineering Manual for the Sun Graphics Processor

5.3. VME Slave Control

®

The slave control logic is on page 7 of the schematics. The slave logic decodes
the address from the VME address bus and, if a GP slave port is being addressed,
latches that address and activates the signal SREQ which indicates that the VME
bus master requests to do a transaction with a GP slave port. The slave control
state machine senses this request and issues the appropriate control signals to
complete the transaction requested by the VME bus master.

The GP shared memory can accommodate byte or word accesses but the micro-
store registers can only accommodate word accesses. Longword or 32-bit
transfers are not allowed and result in the GP slave control activating P1.BERR*
(VME bus error) signal indicating an improper access to the VME bus master.
Requests for 8-bit (byte) transfers to the microstore registers are handled as if
they were 16-bit transfers. In other words, the GP slave will read and write 16-
bit data even though the VME bus master is requesting an 8-bit data transfer.
Byte transfers will complete without an error condition being signalled to the
VME master.

The GP slave occupies a 64 Kbyte region within the VME standard address space
and the starting location of this 64 Kbyte block is selected by setting a hardware
DIP switch on the GP. Therefore, the slave can be addressed from the VME bus
by having the VME address modifiers equal to 3D hex (0x3D) or 39 hex (0x39)
and setting the high eight bits of the VME address equal to the hardware switch
on the GP.

The GP slave 64 Kbyte space is divided into two halves; the Microstore registers
occupy the first half and shared memory occupies the second half. VME address
bit 15, VMEA<15>, selects the Microstore registers when it is a logic low and it
selects the shared memory when it is a logic high.

When VMEA<15> = 1
then Shared Memory is selected.

When VMEA<15> = 0
then Microstore registers are selected.

When VMEA<15> is a logic low the particular Microstore register is selected by
the two least significant bits (LSBs) of the VME address.

When the first half of the slave space is addressed, the two LSBs of address are
used to select one of the four microstore registers. The microstore register
addresses are repeated 8K times in the first half of the slave address space
because only the two LSBs of address are used. The microstore registers are
decoded as follows:

+You may wish to refer to the GP Hardware Reference Manual to get a clearer picture of the organization
of the GPslgyg addressspace:

B e

SUN PROPRIETARY

Sun Revision 1 of 20 October 1986

microsystems




Chapter 5 — VME Interface (pages 6-8, 13,29-31) 33

Slave Address Decode

Decode of the Microstore Registers

VME address
VMEA<02> VMEA<O1> . Microstore register addressed
0 0 Board Identification
0 1 GP control/status register
1 0 Microstore address register
1 1 Microstore data register

The slave address decode is implemented with two F521 type 8-bit comparators
shown on the lower left of schematic page 7. They compare the value of the 8-
bit hardware DIP switch against VME address bits, VMEA<23>-VMEA<16>,
and the value of the VME address modifiers, AMS5-AMO, against the value of
0x39 or 0x3D, and the value of P1.IACK* (interrupt acknowledge) against a
logic high. The output of the comparators is controlled by their enable input. If
the enable is not active, then their output can not be activated. The enable input
to the comparators is an effective AND function of VMEAS* (address strobe),
DS (either data strobe, DS1 or DSO, active), DTACK (data transfer ack-
nowledge), and BERR (bus error). The enable is activated if the VME address
strobe, VMEAS*, and one of the data strobes (VMEDS 1* or VMEDS0*) is
active and neither DTACK nor BERR is active. This AND function is done with
the four sections of the F32 gate in the lower left of page 7. The F32 is also used
to delay the VMEAS* signal appropriately to ensure that the compare inputs to
the FS521s are stable before the enable input to them is activated. Because the
enable input to the comparators gates the output, these outputs are ensured not to
glitch. The outputs of the two comparators are ANDed together by an FO2 gate
and the resulting signal is called SLAVEADR (slave is being addressed).

If ‘J

so ants

A<15> is low while SLAVEADR is acti Ve, then the two LSBs of the
VME address, VMEA<02> and VMEA<Q1>, must be decoded to determine
which of the four GP slave microstore registers is being accessed. This is done
by the F139 2-to-4 decoder in section D6 of page 7. The F139 is enabled by the
F32 gate next to the F139 enable input pin. The output of the F32 is active if the
signal SLAVEADR is active and VMEA<15> is a logic low. The outputs of the
F139 are the four signals that enable the GP ports to be accessed by the VME
master. These signals are:

o MSDATA* (microstore data access),

o  MSADR* (microstore address access),

o GPCONREG* (GP control/status register access),
o and BRDID* (board identification is being read).

If VMEA<15> is a logic high while SLAVEADR is active, this means that the
VME master is accessing shared memory. This condition is decoded by the FOO
gate, in section C6 of page 7. The output of this FOO becomes active if the input
signal to it (SLAVEADR) is active and the other input to it VMEA<15> is a
logic high. The output of the F0O is the signal SHRDMEM* (shared memory is

> 1 of 20 October 1986
@2SUN PROPRIETARY"



34 Engineering Manual for the Sun Graphics Processor

Slave Synchronizer

being accessed).

When the signal SLAVEADR becomes active, indicating that the GP slave is
being addressed, it must be synchronized to the clock used by the GP control
logic—2XCLKO.

This synchronization is necessary because VME bus accesses are asynchronous
to the GP slave control logic. The slave synchronizer, in the lower right of page
7, synchronizes the signal SLAVEADR to the clock 2XCLKO.

The slave synchronizer is implemented with 1 1/2 sections of an F74 D-type
flip-flop. The first flip-flop, in section A3 of the schematic, is clocked by the ris-
ing edge of SLAVEADR. As stated in previous paragraphs, SLAVEADR will
not glitch and it will have one rising edge for every VME access to the GP slave.
The output of this F74 is the signal REQUEST. REQUEST is then input to an
F11 AND gate whose output is fed into the clock input of the next F74. The
function of the F11 will be discussed below, but for right now assume that the
other two inputs of this AND gate are both at a logic high so that REQUEST
causes a rising edge on its output and clocks the F74. The output of this flip-flop
is the signal BUSY (also called CLKVMEAD, clock VME address and data).
BUSY is then fed into the D input of the next F74 which synchronizes it to the
GP intemal clock 2XCLKO. The output of the slave synchronizer is the output
from this last flip-flop, the signal SREQ (synchronized VME request).

The three synchronization flip-flops, REQUEST, BUSY, and SREQ are set and
reset with different conditions. The REQUEST flip-flop is set by the rising edge
of SLAVEADR. When REQUEST is set there is the possibility of two condi-
tions:

1. the BUSY flagis activé, indicating that a previous VME access to the slave
is still being serviced by the GP, or

2. the BUSY flag is not active, indicating that the GP has serviced all previous
GP slave accesses and is ready to service another.

Under condition 2, all three inputs to the F11 gate, at the clock input to the
BUSY flip-flop, will be at a logic high and the BUSY signal will be activated by
REQUEST being activated.

Soon after the BUSY flag becomes active, the REQUEST flip-flop will be deac-
tivated through the two FOO gates on its asynchronous clear input. The first of

these FOO gates (page 7) outputs the signal SLVASYNDT™* (slave asynchronous
DTACK) which will be discussed further in the document. Notice that the clear

~ signal into the REQUEST flip-flop’s asynchronous clear input is only a pulse and

not a level. The length of this pulse is determined by the delays introduced by the
complement of the BUSY flip-flop going through the two F04 gates and the F11
gate back to the FOO which produces SLVASYNDT*. While BUSY is active, it
prevents the REQUEST signal from clocking the BUSY flip-flop because it -
keeps the output of the F11 gate at a logic low.

Condition 1 may occur because the GP slave provides an acknowledge to the
VME master to complete the VME transaction as soon as possible and (when
doing a write to shared memory) before it has actually completed the transaction.

sun

"'”'“"'mSUN PROPRIET ARv?Y’aonlofzoocwber 1986



Chapter S — VME Interface (pages 6-8, 13,29-31) 35

This presents the case where overlapped VME transfers may occur. That is why
the BUSY flag, when active, prevents any more REQUEST signals from clock-
ing the BUSY flip-flop. When the GP is completely done with the requested
transaction, it activates one of the two signals SLVBERR* (slave bus error) or
RSTBUSY* (reset busy). RSTBUSY* and SLVBERR* are ORed together by
the F11 gate in section A3 of page 7, and cause the BUSY and the SREQ flags to
be deactivated through the asynchronous clear inputs of their respective flip-
flops.

The REQUEST signal is activated by a rising edge on SLAVEADR and is deac-
tivated by the first rising edge on BUSY. If BUSY is not active, it is activated by
arising edge on REQUEST. If BUSY is active, it is deactivated by an active
level on either SLVBERR* or RSTBUSY*. If REQUEST is active when
SLVBERR* or RSTBUSY* is active, then BUSY will be deactivated for a short
time and will immediately be activated by the rising edge of SLVBERR* or
RSTBUSY*. If REQUEST is not active when SLVBERR* or RSTBUSY* is
deactivating BUSY, then BUSY will be activated by the first rising edge on
REQUEST. SREQ is activated by a high logic level on BUSY and it is deac-
tivated by an active level on either SLVBERR* or RSTBUSY*. The figure
below shows the timing diagram depicting these different conditions.

Figure 5-1  Slave Synchronizer Timing Diagram

Condition 2: REQUEST occurs while BUSY is not active

2XCLKO l ! l ! [ ! | ! I I |

SLAVEADR

REQUEST !

BUSY | [

SREQ | I

SLVBERRY¥*
or | |
RSTBUSY*

SUN PROPRIETARY

Q?’ sun Revision 1 of 20 October 1986

microsystemns



36 Engineering Manual for the Sun Graphics Processor

Condition 1): REQUEST occurs while BUSY is active

2XCLKO | ! I ! | | | |

SLAVERDR |

REQUEST | !

BUSY I |

SREQ ! |

SLVBERR*
or | |
RSTBUSY*

Slave Control Latches There is a latch, F373, in section D4 of page 7. This latch is used to hold the oui
put from the slave address decode and slave control register decode during the
VME access. The inputs to the latch are:

o the signal which indicates that the GP slave is being accessed, and

o the five signals which indicate which of the GP slave ports are being
accessed: MSDATA*, MSADR*, GPCONREG*, BRDID*, and
SHRDMEM*.

The output signals from the latch are given the same name as the input signals
but with a prefix of ‘*‘L’’ (latched). For example, the input signal MSDATA*
(microstore data) becomes the output signal LMSDATA®* (latched microstore
data). The output from this latch is used primarily during VME reads of the GP
slave to hold the GP slave data on the VME data bus. When the VME addresses
the GP slave for a read, the GP decodes the VME address, routes the appropriate
data onto the VME data bus, and issues DTACK* to the VME master indicating
that the data requested is on the data bus. After DTACK* is issued, the VME
master may remove the VME addresses. However, the data must stay on the bus
until the VME data strobes are deactivated. Therefore, this component is used to
latch the decoded control signals from the slave address decode from the time
when DTACK* is activated until it is deactivated (DTACK* is activated by the
GP slave control state machine and is deactivated when both data strobes,
VMEDS1* and VMEDSO*, are deactivated). ‘

The F374-type register in section C4 of the schematic is used to hold the decode
control lines from the slave address decode and the VME control lines '

Y S
%S mmmm Q_TT‘T n“A““Tr‘TAﬁe?nIOMOOcmber 1986



Chapter S — VME Interface (pages 6-8, 13,29-31) 37

Slave Control State Machine

@

VMEWRITE*, VMEDS1*, and VMEDSO¥*, during the VME access. The out-
puts of this register are used by the siave control state machine to determine what
kind of transaction is required over the VME bus. The signals MSDATA* and
SHRDMEM* are clocked into the register and become the output signals MSAC-
CESS* (microstore access) and SMACCESS* (shared memory access). The
VME control signals VMEWRITE*, VMEDSO0*, and VMEDS1#¥, are input into
the register and become SLVWRITE* (slave write), DSO*, and DS1*, respec-
tively, at its output. The inputs to the register are clocked in by a complemented
and delayed version of the REQUEST signal discussed above. The falling edge
of REQUEST (when it is going inactive from the active state) clocks the inputs
into the F374. The two F32 gates on the clock input provide a minimum delay
required to meet worst case timing of the F374 (setup time Dn to CP). The out-
puts from the latch are valid until the next falling edge of REQUEST.

The slave control state machine is the center of the GP slave control function and
is implemented with a 16R6A type PAL (programmable array logic) shown on
the top right of page 7. The state diagram for the state machine is shown in the
appendix (labelled ‘‘Figure 6. GP Slave Control State Machine.’’). This is a syn-
chronous state machine and is clocked by the signal 2XCLKO.

There are five outputs from the slave control state machine:
o RSTBUSY* (reset busy flip-flop),

o SLVBERR* (slave bus error),

o SLVDTACK* (slave data transfer acknowledge),

o ENWRT* (enable write), and

o DENWRT* (delayed enable write).

RSTBUSY* is used to reset the flip-flops BUSY and SREQ in the slave syn-
chronizer. SLVBERR* is used to activate the P1.BERR* (VME bus error) signal
by resetting an F109 J-K flip-flop. SLVDTACK* is used to activate
P1.DTACK* (VME data transfer acknowledge) by resetting an F109 J-K flip-
flop. ENWRT* is used to clock in the data from shared memory to the shared
memory VME-data-out register. DENWRT* is a combinational output from the
PAL and is just a delayed version of ENWRT* with the addition of being
qualified with the SLVWRITE* signal (DENWRT* is active whenever
ENWRT* and SLVWRITE* are active). It is used as the D input of an F74-type
flip-flop whose output WEGATE (write enable gate) is used to control the write
enable pulse into the shared memory and the microstore.

The slave control state machine has four states labelled A, B, C, and D, as shown
on the state diagram. These four states are indicated by bits SFF0 and SFF1 from
the state machine.

On power up, the signal POR* causes the state machine to go to state A. The
machine stays in state A waiting for the GP slave to be accessed. States B and C
are traversed when the VME does a write access to the GP slave. State D is
traversed when the VME does a read access to the GP slave.

sun

sun SUN p R OP R IE TA RReva;lon 1 of 20 October 1986



38

Engineering Manual for the Sun Graphics Processor

When the GP board is powered on, the signal POR* (power on reset) becomes
active and causes the state machine to go to state A. As long as the GP slave is
not accessed by the VME master, the machine stays in state A. When the signal
SREQ (synchronous VME request) becomes active, indicating that the VME
master wants to access the GP slave, the state machine looks at the signals
VMELWORD*, BRDID*, and SLVWRITE* to determine whether to go to state
B or state D or to stay in state A.

If VMELWORD* is active when SREQ becomes active, it indicates that the
VME master wants to do a long word transfer to the GP slave which is an illegal
operation (the GP slave cannot do 32-bit data transfers). For this case, the state
machine outputs the signal SLVBERR*, (which activates P1.BERR*), and stays
in state A. P1.BERR* will end the transaction and will also indicate to the VME
master that an error condition has occurred. The figure below shows the timing
diagram for this condition.

If VMELWORD#* is not active when SREQ becomes active in state A, and
SLVWRITE* and BRDID* are both active, then the state machine stays in state
A and outputs SLVBERR*. This corresponds to the VME master doing a write
to the GP board identification, which is a read only port, resulting in a bus error
(P1.BERR* activated). The following figure shows the timing diagram for this
condition.

SUN PROPRIETARY

| %V sun Revision 1 of 20 October 1986

MICrosystems



Chapter 5 — VME Interface (pages 6-8, 13, 29-31) 39

Figure 5-2

Slave Write Control Timing Diagram

Longword Transfer or Write to the Board ID Register

STATE MACHINE

STATE

VPCLKFR

BUSY

SREQ

ENWRT*

DENWRT*

WEGATE*

SLVDTACK*

SLVBERR¥*

RSTBUSY*

P1.DTACK¥*

P1.BERR*

DS

VMELWORD* is active or .
VMELWORD* is not active while BRDID* and SLVWRITE* are active

U U U U U T
e e e R e
T
0
| |
|
SUN PROPRIETARY
@?a "Smls}ml"l‘s Revision 1 of 20 October 1986



40

Engineering Manual for the Sun Graphics Processor

@

The following four figures show the timing diagram for GP slave write accesses.
When

o SREQ becomes active in state A, and

o  VMELWORD* and BRDID* are not active, and

o SLVWRITE* is active,

then the VME master has requested a write to a GP slave port and the state
machine goes to state B. The GP slave port that is being written-to determines
which output signals are activated when going from state A to B.

1. If microstore data is being written—indicated by MSACCESS* being
active—then the signal ENWRT* is activated.

2. If the microstore address or the GP control register is being written-to—
indicated by MSACCESS* and SMACCESS* both being inactive—then the
output signals SLVDTACK* and RSTBUSY* are activated.

3. If the shared memory is being written-to—indicated by SMACCESS* being
active—the phase of VPCLKFR (free running VPCLK) determines the out-
put.

SUN PROPRIETARY

Ssun ' Revision 1 of 20 October 1986

microsystems.



Chapter 5 — VME Interface (pages 6-8, 13,29-31) 41

Figure 5-3  Slave Write Control Timing Diagram

Microstore Address Write or GP Control Register Write
VMELWORD*, BRDID*, SMACCESS*, and MSACCESS* are inactive,
SLVWRITE* is active

STATE MACHINE
STATE A A B A A A A A A A A
2XCLKO SRS TR U T U I U S S B DU AN U A NN N RN N TR R RN B A

VPCLKFR | | ! ! [ [ I l [ ! I |

BUSY | !

SREQ |

ENWRT*

DENWRT*

WEGATE*

SLVDTACK* |

SLVBERR*

RSTBUSY* I

P1.DTACK* | f

P1l.BERR*

DS !

SUN PROPRIETARY

| é%% sun Revision 1 of 20 October 1986

miCrosystems



42  Engineering Manual for the Sun Graphics Processor

Figure 54  Slave Write Control Timing Diagram

Microstore Data Write
VMELWORD*, BRDID*, and SMACCESS* are inactive,
MSACCESS* and SLVWRITE* are active

STATE MACHINE :
STATE A A B A A A A A A A A
2XCLKO SV R R A S NN DR S VU S VRN IR U R NS SR SRS SR SN SN DU SR SN

VPCLKFR | | | | ! ! | ! ! !

BUSY I I

SREQ !

ENWRT * | I

DENWRT * I

WEGATE* |

SLVDTACK* I |

SLVBERR*

RSTBUSY* I I

P1.DTACK* ! !

P1.BERR*

DS I

SUN PROPRIETARY

@?& sSsun Revision 1 of 20 October 1986

microsystems



Chapter 5 — VME Interface (pages 6-8, 13,29-31) 43

Figure 5-5  Slave Write Control Timing Diagram

Shared Memory Writes (extra synchronization period in state B)
VMELWORD* and BRDID* are inactive,
SLVWRITE* and SMACCESS* are active
STATE MACHINE
STATE A A B B C A A A A A A

2XCLKO JENNE A R R RN A AN N VR E U A NN A NN HRR NS AN SRR AN DR B B

VPCLKFR | ! | ! ! ! ! ! ! ! ! !

BUSY 1 |

SREQ |

ENWRT* l

DENWRT * |

WEGATE*

SLVDTACK*

SLVBERR¥*

RSTBUSY* I |

P1.DTACK* l |

P1.BERR*

DS !

SUN PROPRIETARY

Q}; sun Revision 1 of 20 October 1986

microsystems



44  Engineering Manual for the Sun Graphics Processor

Figure 5-6  Slave Write Control Timing Diagram

Shared Memory Writes (no extra synchronization period in state B)
VMELWORD* and BRDID* are inactive,
SLVWRITE* and SMACCESS* are active
STATE MACHINE
STATE A A B C A A A A A A A

2XCLKO JEED TR U R S N TUE SRS T NN PR N U I PR TR VU A DR SR D S N

VPCLKFR | | | | | | | |

BUSY [ ‘

SREQ : |

ENWRT * 7 l I

DENWRT* | |

WEGATE* I I

SLVDTACK*

SLVBERR*

RSTBUSY* | |

P1.DTACK* ! |

Pl .BERRX*

DS I

SUN PROPRIETARY

%@ sun Revision 1 of 20 October 1986

microsystems



Chapter 5 — VME Interface (pages 6-8, 13,29-31) 45

Because the VME only has access to shared memory during the second half of
ihe VPCLK period (when it is a logic low), the write enable signal from the slave
control state machine, ENWRT*, must be synchronized accordingly. Since
2XCLKO is twice the frequency of VPCLKFR, VPCLKEFR is going to be either
in its logic high or logic low state between any state transitions. Therefore, if
VPCLKFR is low when transitioning from state A to B, the output signal
ENWRT* is activated. If VPCLKFR is high, no output will be generated when
going from state A to B.

When in state B and the access is to shared memory, the state machine either:

o stays in state B for one extra clock outputting ENWRT*, (if ENWRT* was
not active the previous cycle), or

o goes to state C with no output generated, (if ENWRT* was active the previ-
ous cycle).

The state machine stays in state C for one period and then goes to state A while
outputting RSTBUSY*. When in state B and the access is not to shared memory,
the state machine goes back to state A. While going back to state A and the
access is to the microstore, the outputs SLVDTACK* and RSTBUSY* are
activated. If the access is not to the microstore, then no output is generated while
going from state B to A.

The following three figures show the timing diagram for the GP slave read
accesses.

Revision 1 of 20 October 1986



46 Engineering Manual for the Sun Graphics Processor

Figure 5-7  Slave Read Control Timing Diagram

Microstore Address or Data Read, GP Status Register Read, Board ID Read
VMELWORD*, SLVWRITE* and SMACCESS* are inactive

STATE MACHINE
STATE A A D A A A A A A A A

2XCLKO SR A N R U S (USRS AR TS A VU S S IR U A U R R R SN BN N

VPCLKFR  __ | i i i i i i i i | ] !

BUSY I f

SREQ I |

ENWRT*

DENWRT*

WEGATE*

SLVDTACK* ! |

SLVBERR¥*

RSTBUSY* ] |

P1.DTACK* ] !

P1.BERR*

DS I

SUN PROPRIETARY

Revision 1 of 20 October 1986



Chapter 5 — VME Interface (pages 6-8, 13,29-31) 47

Figure 5-8  Slave Read Control Timing Diagram

Shared Memory Read (no extra synchronization period in state D)
VMELWORD* and SLVWRITE* are inactive
SMACCESS* is active
STATE MACHINE
STATE A A D D A A A A A A A

2XCLKO [NV N RN (N U A U N SR E U EN NN A NN AU RS A SRS AN SN B N

VPCLKFR | | | | l | | | | | ! !

BUSY | |

SREQ ! |

ENWRT* ! [

DENWRT*

WEGATE*

SLVDTACK* J I

SLVBERR*

RSTBUSY* ! !

P1.DTACK* | i

P1.BERR¥*

DS [

ROPRICTARY

7 S n Revision 1 of 20 October 1986
mic!

X4
s
-
%
byl
rﬁﬁ
B



48

Engineering Manual for the Sun Graphics Processor

Figure 5-9  Slave Read Control Timing Diagram

Shared Memory Read (extra synchronization period in state D)
VMELWORD* and SLVWRITE* are inactive
SMACCESS* is active

STATE MACHINE
STATE A A D D D A A A A

2XCLKO JAUNY RN S N U N N A DU K U SO N N PR RN N R

VPCLKFR | | ! | |

BUSY

SREQ

ENWRT* . | |

DENWRT*

WEGATE*

SLVDTACK* ' | |

SLVBERR*

RSTBUSY* | |

P1.DTACK* | |

P1l.BERR*

DS

45, OUN PROPRIETARY.
%z sun

microsystems

Revision 1 of 20 October 1986



Chapter 5 — VME Interface (pages 6-8, 13,29-31) 49

DTACK

Bus Error

@

o When SREQ becomes active in state A, and VMELWORD*, BRDID*, and
SLVWRITE* are not active, then the VME master has requested a read from
a GP slave port, whereupon the state machine goes to state D with no out-
puts activated.

o If the slave port being read is not shared memory, then the state machine
goes back to state A while activating SLVDTACK* and RSTBUSY*.

o If the slave port being read is shared memory then the state machine will
stay in state D two or three periods, synchronizing the output of ENWRT*
with VPCLKFR. After ENWRT* is output the state machine goes to state A
while activating SLVDTACK* and RSTBUSY*.

The GP slave control logic activates P1.DTACK* to indicate to the VME bus
master that the transaction requested has been completed. P1.DTACK* is output
from the 7438 open collector gate, as required by the VME specification, driven
by the F109 J-K type flip-flop shown in section B2 of page 7. P1.DTACK* is
activated for shared memory write accesses by the SSI gates through the asyn-
chronous clear input and for all other GP slave accesses by the SLVDTACK*
signal through the K input. P1.DTACK* is also activated by INTDTACK*
(interrupt data transfer acknowledge) through the K input. SLVDTACK* and
INTDTACK* are ORed by the FOO gate and input to the K input of the flip-flop.
The signal INTDTACK* is activated by the GP master interrupt requester and
the signal SLVDTACKF¥ is activated by the GP slave control state machine.
Both INTDTACK* and SLVDTACK* are one 2XCLK period-long signals and
either one being active causes P1.DTACK* to be activated.

The logic to drive the asynchronous clear input is done using the F11, FO4, and
the F32 gates. The activation of P1.DTACK* through the asynchronous clear
input is related with generating P1.DTACK* as soon as possible when shared
memory is written to. When the VME master does a write operation to the
shared memory, P1.DTACK* is generated before the actual write operation is
done. The VME cycle is, therefore, completed very fast. The address and data
for the write to shared memory is clocked into registers before the P1.DTACK*
is generated so that the operation can be completed without any problems.
P1.DTACK* is activated for writes to shared memory by the signal
SLVASYNDT* (slave asynchronous data transfer acknowledge), which is gen-
erated by the rising edge of BUSY in the slave synchronizer, and the signals
VMEREAD*, VMELWORD*, and VMEA<15> being inactive (that is, the con-
dition of shared memory writes that are not long word transfers). P1.DTACK* is
deactivated by the condition of both VMEDS0* and VMEDS1* being inactive
(that is, P1.DTACK* is deactivated when both of the VME data strobes are deac-
tivated).

When an illegal operation is being requested by the VME master to the GP slave,
the GP slave control logic generates the signal PI.BERR*. This signal indicates
to the VME master that the transaction requested has not been completed satis-
factorily.

The GP slave signals a bus error when a

BN PROPRIETARY

microsystems

Revision 1 of 20 October 1986



50  Engineering Manual for the Sun Graphics Processor

WE Gate

5.4. VME Slave Registers

Board ID

o 32-bit data transfer is requested, or when a
o write of the board ID is requested by the VME bus master.

The P1.BERR* signal is output from a 7438 open collector gate, as required by
the VME specification, driven by the F109 J-K type flip-flop shown in section C2
of page 7. P1.BERR* is activated by the signal SLVBERR* generated by the
slave control state machine. P1.BERR* is deactivated by the condition of both
VMEDSO* and VMEDS1* being inactive (that is, PI.BERR* is deactivated
when both of the VME data strobes are deactivated).

The F74-type flip-flop in section D1 of page 7 just delays the signal DENWRT*,
generated from the slave control state machine, by one 2XCLK period and out-
puts the signal WEGATE and its complement WEGATE* (write enable gate).
WEGATE and WEGATE* are the signals used to control the write enable pulse
into the VME side of both shared memory and the microstore. The actual use of
this flip-flop is to synchronize the rising and falling edges of the write enable
pulse to the 2XCLK edges; the direct output of DENWRT* from the slave con-
trol state machine PAL had too much delay.

The regi;ters used when the GP is a VME slave include the:
o board ID,

oGP status/control register,

o microstore address counter,

0 microstore data transceiver,

o shared memory VME address pointer,

o shared memory VME data in register, and the

o  shared memory VME data out register.

These components serve the purpose of routing and holding data between the
VME bus and the GP intemnal devices. They are controlled by the various signals
generated from the VME slave control logic.

The board ID (identification) is simply a unique 8-bit binary value set by jumpers
which can be routed to the VME bus when it is addressed by the VME bus mas-
ter. Itis shown in the top left comer of schematic page 6. The binary value set
by the jumpers distinguishes or identifies the GP board on the VME bus back-
plane. The value set by the jumpers is isolated from the GP intemal VME data
bus, VMED<15..00>, by ALS244 buffers. When the GP slave board ID port is
read by the VME bus master, the signal LBRDID* becomes active and drives the
VMED<15..00> 16-bit data bus—although only the lower byte
(VMED<07..00>) is valid. The operation of writing to the GP slave board ID is
not allowed and results in the slave control logic asserting bus error. -

SUN PROPRIETARY

sun Revision 1 of 20 October 1986
mic



Chapter 5 — VME Interface (pages 6-8, 13,29-31) 51

GP Status/Control Register

NOTE

Microstore VME Address
Counter and Data Transceiver

The GP status register is shown on left side of page 6 and the GP control register
is in the middle of the same page . Both the status and the control registers
occupy the same address location on the GP slave address space. When a read of
this location is requested the status register is implied and when this location is
written the control register is implied. The control register holds various flags
which are written by the host processor to control the operation of the GP. The
status register holds various flags which are read by the host processor to deter-
mine the operating status of the GP.

See the GP Hardware Reference Manual (Sun part number 800-1190) for the bit
definitions of these registers and see the appropriate sections of this document
for the discussion of the function of each signal.

The control register is implemented using an F109 J-K flip-flop and an ALS374
octal D-type register.

The GP control register clocks in the contents of the VMED bus when the VME
bus master does a write access to the GP slave status/control register. This con-

-dition is decoded by the two F32 gates and the FO4 gate shown in sections A6

and A7 of page 6. The signal GPCONREGH* is output from the slave control
register decode; the signal VMEWRITE* comes from the VME control tran-
sceiver; the signal SLVDTACK* is output from the slave control state machine.
Both GPCONREG* and VMEWRITE* occur early in the access cycle and there-
fore the clock input signal to the ALS374 and the F109 just follows the
SLVDTACK* signal (SLVDTACK* is an active low pulse of approximately one
2XCLK period). So the clock line of the Control Register looks like an active
high pulse of approximately one 2XCLK period duration. The F109 flip-flop is
needed because two of the bits of the Control Register need to be controlled in a
certain way. The CLRINTFLG needs to be cleared asynchronously by the
IFLAG signal and the INTEN flag is set, reset, and unchanged according to an
encoding of two bits of the data bus.

The status register is implemented with two F373-types of octal latches. The
outputs of the F373 devices are normally tri-stated, and it is in the flow-through
mode. When the VME bus master does a read access of the GP slave
status/control register the inputs are latched and the outputs are enabled onto the
VMED bus. The condition of the status/control register being read is decoded by
the F32 gate in section A8 of page 6. The inputs to this F32 are the signals
VMEREAD* (a complemented version of the VMEWRITE* signal from VME
control transceiver), and LGPCONREG?#*, also from the slave control latches.
The F373 devices stay in this condition until the VME master deasserts the data
strobes which deactivate LGPCONREG*. ‘

The microstore VME interface includes the address counter and and the data
transceivers on page 8 of the schematics.

The microstore VME address counter is implemented with five F163-type syn-
chronous counters. The counter can be loaded or counted by doing a VME
access, or its contents can be read by a VME access. The data inputs to the
counter are the GP internal VME data bus signals, VMED<15..0>. The outputs
of the counter are the Microstore VME address bits VMEMSA<15..0> and also

f{% iryym!ﬁ‘lSUN PROPRIETARYM 1 of 20 October 1986



52

Engineering Manual for the Sun Graphics Processor

two other bits (LSBs of the counter) which are used to decode the microstore
columns (discussed in the Microstore section of this document).

The counter is loaded when the VME bus master does a write access to the GP
slave Microstore Address Register. The counter is enabled to count (once) every
time the VME bus master does a read or a write access to the GP slave Micro-
store Data Register. Both the load and the count operations are done similarly.
The load enable or the count enable pin of the F163s are activated and a low-
going pulse is applied to the clock input. The following rising edge of this pulse
causes load or count to occur.

The logic to control the loading and the counting of the address counter is on the
lower left comer of page 8. It consists of F32-, FO2-, and FO4-types of gates.
The load enable input is activated with an output from an F32 gate with inputs
SLVWRITE*, from the slave control latches, and MSADR*, from the slave con-
trol register decode. When both these signals are active the load enable input
becomes active. The load enable input signal also acts as one input to the FO2
gate, with the other input being SLVDTACK*. When both become active the
output of this FO2 becomes a logic high and causes the clock input of the F163s
to be pulled to a logic low through another F02 gate. SLVDTACK* is a signal
which is active for approximately one 2XCLK period. When SLVDTACK*
becomes inactive, the clock input to the F163s accordingly goes back to a logic
high. Since the load enable was active, the rising edge on the clock input loads
the counter with the data on its the D inputs. The count enable input to the
counters is the signal LMSDATA*, from the slave control latches, delayed by
two F32 gates and an FO4 gate. LMSDATA®* is active when the VME master is
accessing the microstore data register. LMSDATA* also activates one input of
an FO2 with the other input being DS*. DS* will already be active when
LMSDATA* becomes active so that the clock input to the F163s will be pulled
to a logic low through another FO2 gate. When DS* goes inactive, the clock
input to the counters will, accordingly, go to a logic high. Since the count enable
input was already active, the rising edge on the clock will increment the counter.

The contents of the microstore address counter can be read by the VME master
by doing a read access to the GP slave microstore address register. This is imple-
mented with two ALS244 buffers shown on the left of page 8. The buffers iso-
late the outputs of the counter, VMEMSA<15..00>, from the GP intemnal data
bus, VMED<15..00>. The output of the buffers are normally tri-stated. When
the signals VMEREAD*, from the VME control transceiver, and LMSADR¥*,
from the slave register decode, become active the outputs of the buffer are

- enabled. The outputs will be enabled until the LMSADR?* becomes inactive.

@

The microstore data transceivers are implemented with ALS245 devices and are
shown on the right of page 8. The microstore is divided into four columns as
seen from the VME side (see the Microstore section in this document for a more
thorough discussion of this division). The four columns are addressed by the two
LSBs of the microstore address counter VMED<00> and VMED<01>, from
which are derived VMEMSACO and VMEMSACI. These two LSBs (VMEM-
SACO and VMEMSACT1) are input to the microstore column select which is an
F139 decoder shown in section A5 of page 8. This decoder is enabled only when
the signal LMSDATA* is active (that is, when the VME bus master is accessing

sion 1 of 20 October 1986

*SUN PROPRIETARY



Chapter 5 — VME Interface (pages 6-8, 13,29-31) 53

Shared Memory VME
Address Pointer and Data
Registers

the microstore data). The output from this decoder is the four column enable sig-
nais MSCOL3* (column 3), MSCOL2*, MSCOL1*, and MSCOLO*. These
column enable signals are used to select the appropriate data transceiver to turn
on and the correct write enable to activate. Only one of the column enable sig-

nals are active at any one time.

The direction of the microstore data transceivers is controlled by the signal
VMEWRITE* and their output enables are controlled with the outputs from an
F157 multiplexer. The multiplexer select line is also controlled with the signal
VMEWRITE*. The ALS24S transceiver outputs are controlled by one of two
signals, depending on whether the VME master is doing a read or a write.

o When the VME master is doing a write, the transceiver outputs are con-
trolled by the write enable signals of the microstore,
MSC3WE*. MSCOWE* (microstore column n write enable).

o When the VME master is doing a read, the transceivers are controlled by the
column select signals, MSCOL3..0*, from the column select decoder. '

When the VME master is doing a read of the microstore, the signal
VMEWRITE* is a logic high (deasserted) which allows the transceivers to
transmit the microstore data signals, MSTRSS5..MSTROQ, to the VMED bus.
Also, the F157 multiplexer selects the column enable outputs from the F139
column select decoder. When the LMSDATA* signal becomes active, one of the
four column enable signals, MSCOL3..0*, is activated and passes through the
F157 to enable the output of the appropriate transceiver. The transceiver drives
the VMED bus until LMSDATA* becomes inactive causing the column enable
signals to become inactive.

When the VME master is doing a write, the signal VMEWRITE* is a logic low.
This allows the VMED bus to drive the microstore data signals, MSTRSS..
MSTROO. The F157 multiplexer selects the microstore write enable signals,
MSC3WE* . MSCOWE*. The microstore write enable signals are generated by
the four F32 gates in section C8 of schematic page 11. One of the write enable
signals is activated if its corresponding column enable signal is active and the
signal WEGATE*, from the slave control logic on page 6, is active. The
WEGATE* signal is an active low pulse of approximately one 2XCLK period
duration. Because the column select signals, MSCOL3*,. MSCOLO*, completely
overlap WEGATE®*, the write enable signals, MSC3WE*..MSCOWE*, will be
low-going pulses of approximately one 2XCLK period duration. When one of
the write enable signals becomes active, it will pass through the F157 mux and
enable the appropriate data transceiver to drive the microstore data lines. The
transceiver will drive the data lines until the write enable line is deactivated by
WEGATE* going inactive, passing through the F157, and tri-stating the tran-
sceiver output.

The shared memory is interfaced to the VME bus with the support of three regis-
ters:

o the address pointer,

Su §UN PROPRIETAR{;;W 1 of 20 October 1986

microsystems



54  Engineering Manual for the Sun Graphics Processor

5.5. VME Master Control

@ sunSUN PROPRIETARY

o the data in register, and
o the data out register.
These registers are shown on page 13 of the schematics.

Shared memory is accessed by the VME master when it addresses the second
half of the GP slave address space. When the shared memory is accessed, the
VME address is loaded into the address pointer.

If the VME access is a read access, then the shared memory contents
(corresponding to the address in the address pointer) are loaded into the data out
register. These contents are then enabled onto the VME data bus.

If the VME access is a write access, then the contents of the VME data bus are
loaded into the data in register. These contents are then loaded into the location
in shared memory which corresponds to the address in the address pointer.

The address pointer is shown section A6 of page 13. The address pointer is
implemented using F374 devices. The contents of the GP internal address bus,
VMEA<16..01>, are clocked into the register on the rising edge of the signal
CLKVMEAD (clock VME address and data). CLKVMEAD is the same signal
as BUSY in the slave synchronizer on page 7. (BUSY was changed to
CLKVMEAD to give it a name more fitting its application here.) The output
enable control of the F374 devices will be discussed in the shared memory sec-

tion in this document.

The data out register is shown in the top right of page 13. It is also implemented
with F374 devices. The output data from the shared memory, SMDO<15..00>
(shared memory data out), is clocked into the register with the F32 gate. The
inputs to the F32 gate are 2XCLK1 and ENWRT*. ENWRT* is an output from
the slave control state machine and is a low going pulse of one 2XCLK period
duration. When ENWRT* is active (logic low), the second half of the 2XCLK1
period (when it is also low) causes the clock input of the F374s to become a logic
low. When 2XCLK1 goes high the clock input of the F374s goes high causing
the data to be loaded into the register. The data from the register is output to the
VMED bus when the signals LSHRDMEM?*, from the slave control latches, and
VMEREAD*, from the VME control transceivers, are both active. The data is
output until LSHRDMEM* goes inactive (when the VME data strobes are
removed).

The VME master control allows the GP to obtain the VME bus as a bus master,
supervise data transfers as a bus master, and cause an interrupt over the VME
bus. The logical blocks of the GP VME master control are the:

o control signal synchronizer,
o bus requester,
o bus interrupter,

o bus master data transfer controller,

evision 1 of 20 October 1986

microsystems.



Chapter 5 — VME Interface (pages 6-8, 13,29-31) 55

Control Signal Synchronizer

@

o timeout counter,
o miscellaneous master logic, and the
o PP VME interface.

The PP signals to the GP VME master controller that it wants to use the VME
bus by activating the signal VMEBUSY* (VME master is busy). VMEBUSY*
is output from the F109 flip-flop in section B6 of page 31. VMEBUSY* is
activated by the signal STRTVME* (start VME transfer) from the PP miscellane-
ous controls. VMEBUSY™* is deactivated (and its complement, VMERDY,
asserted) by the signal RSTVMEBSY from the Master Data Transfer Controller
when the VME transfer has been completed. VMEBUSY* is activated once for
every VME transfer that is done by the GP VME master.

While activating VMEBUSY*, the PP processor also updates the signal
MASTERWRT* (GP VME master write). This signal indicates to the Data
Transfer Controller whether to do a read or a write access over the VME bus. It
is output from the F109 flip-flop shown in section C3 of page 31. The
MASTERWRT™* signal is activated by the signal VMEWR* (write to the VME
bus) from the PP miscellaneous controls. MASTERWRT* is deactivated by the
signal RSTVMEBSY from the data transfer controller when the VME transfer
has been completed.

The control signal synchronizer takes asynchronous VME bus control signals and
synchronizes them to 2XCLK, which is used by the GP VME master control
logic. The synchronizer is an F374 device which is shown in section AS of
schematic page 6. Clocked by 2XCLKO, the F374 synchronizes the following
signals:

o PLIACKIN* (interrupt acknowledge in),

o P1.BG3IN* (bus grant 3 in),

o VMEAS* (address strobe),

o P1.DTACK* (data transfer acknowledge),

o P1.BERR* (bus error),

o  VMEDSO* (data strobe 0), and

o an OR of the four bus request signals, P1.BR3*..P1.BRO*.

The output signals are named similarly, with a prefix of "S":

o SIACKIN*,
o  SBGIN¥*,

o SAS¥,

o SDTACK*,
o SBERR¥,

o SDS0*, and

surSUN PROPRIETARY

Revision 1 of 20 October 1986

microsystems



56  Engineering Manual for the Sun Graphics Processor

VME Bus Requester

o SBR.

The bus requester senses a request from the PP processor to use the VME bus and
sends a request to the VME bus arbiter to obtain the bus. When the VME bus is
obtained, the bus requester signals the GP master data transfer controller to carry
out the VME bus transfer requested by the PP. The GP bus requester operates on
level three and is an ROR (release on request) requester. The bus requester is
shown in the lower left of schematic page 31. It is implemented with a state
machine and logic in a 16R4A PAL, delay lines, and an F74 type flip-flop.

The state machine is the central control of the bus requester. Figure 9 in the
appendix shows the state diagram of the bus requester. There are four states in
the state machine.

o State A implies that the GP does not have control of the VME bus and does
not require it.

o State B means that the GP wants to acquire control of the VME bus but does
not yet have it.

o  The state machine goes to state C when it has control of the VME bus. It
stays there until the VME transaction requested by the PP is completed by
the master data transfer controller.

o If the state machine is in state D it implies that the transaction requested by
the PP has been completed, but, since no other device has requested it, the
GP still has control of the VME bus.

When the GP is powered up, the signal POR* becomes active and resets the state
machine to state A (signalling the GP does not have control of the VME bus).
The state machine stays in state A as long as VMEBUSY* is not active. When
the PP processor requests a VME transfer, it activates VMEBUSY* and the state
machine goes to state B. When in state B, the signal BR* (bus request) is
activated. BR* is inverted and input to a 7438 open collector gate which drives
the VME bus request signal P1.BR3*. The state machine keeps asserting BR*
and stays in state B until the bus is acquired and the previous controller of the
bus completes its last transaction. The VME bus is acquired when the bus grant
daisy chain signal P1.BG3IN* reaches the GP board. The last transaction of the
previous controller may still be active when the bus is’acquired because the bus
arbitration can occur while a VME data transaction is active.

Upon sensing the P1.BR3* signal, the bus arbiter will start the bus grant daisy
chain. If no other boards between the GP and the bus arbiter have requested the
bus, the daisy chain signal P1.BG3IN* will arrive at the GP board. When
P1.BG3IN* arrives, a decision must be made by the GP to

1. pass the bus grant out, by activating P1.BG30UT*, or

2. not to pass it and activate BBSY* indicating that the GP has taken over con-
trol of the bus.

In order to make this decision, the VMEBUSY * signal is sampled when the
P1.BG3IN* signal arrives at the GP. If VMEBUSY* is active at sample time
then the GP will acquire the bus; if it is not active then the GP will propagate the

ns‘cgml}s SUI\J PROPRIETARYO" 1 of 20 October 1986



Chapter 5 — VME Interface (pages 6-8, 13,29-31) 57

daisy chain by activating P1.BG30UT*. VMEBUSY* is sampled by using an
inverted version P1.BG3IN* to clock an F74 flip-fiop which has VMEBUSY* as
the D input. The output of this F74 is the signal SBUSY* (synchronized VME
busy). P1.BG3IN* is also routed through a 50 ns delay line to become BGIN
(bus grant in).. The 50 ns delay occurs in parallel with the clocking of the F74,
and the metastable output of the F74 will stabilize in 50 ns (metastability may
occur because P1.BG3IN* and VMEBUSY* are asynchronous to each other).
The two signals SBUSY* and BGIN are all that is necessary to decide whether or
not to pass the bus grant out. The bus grant daisy chain is propagated (that is,
P1.BG30UT* activated) if SBUSY* is not active (the sampling did not catch
VMEBUSY* as active) and BGIN is active. This is the equation used in the
PAL for generating P1.BG30UT* with the supplanting of BBSY* signal not
being active (GP does not control the bus) and the POR* signal not being active
(reset deactivates P1.BG30UT*). -

While in state B, the state machine uses SBGIN*, from the control signal syn-
chronizer, to sense that the bus grant daisy chain has propagated to the GP. If
SBUSY* is also active, indicating that the daisy chain was not propagated, then
the state machine determines that the GP can acquire the bus. The only other
condition that must be satisfied before the bus can be controlled is that the previ-
ous bus controller must have completed its last transaction. This is determined
by sensing the signals SAS*, SDTACK*, and SBERR*. If all three of those sig-
nals are inactive it means that the bus is inactive and another transaction can be
started. Therefore, when in state B, the bus request signal, BR*, is activated until
SBGIN and SBUSY signals are active and SDTACK*, SAS*, and SBERR* sig-
nals are inactive. When that occurs the state machine activates the signal BBSY*
(bus busy) indicating that the GP has control of the VME bus (GP has become
the bus master). BBSY* is inverted and input to a 7438 open collector gate
which drives the VME bus busy signal P1.BBSY*.

The state machine activates the signal BBSY* when in state B and stays in state
B one more cycle and then goes to state C. It stays in state B this one extra cycle
to ensure that BBSY * signal is active for at least two clock periods (it is possible
for BBSY* to be deactivated as soon as the state machine goes to state C). This
guarantees that BBSY* signal pulse width is greater than 90 ns as required by the
VME specification.

When BBSY* is activated, it clears an F74 flip-flop that asserts the signal
DISSBUSY* (disable SBUSY*). This F74 is shown in section B7 of page 31.
DISSBUSY* in turn deactivates SBUSY*. This is necessary because VME-
BUSY* signal will stay active while the GP master data transfer controller is car-
rying out the VME transfer. During this time it may be necessary to release the
bus to another bus requester. If some other board requests the bus, the signal
SBR, which is a synchronized version of the OR of the four signals

P1.BR3*. P1.BRO* will be activated. The state machine will then deactivate
BBSY* which will prompt the bus arbiter to start the bus grant daisy chain. If
the daisy chain reaches the GP in this state, the daisy chain should be propagated.
The daisy chain input signal, P1.BG3IN*, will be sampling the VMEBUSY*
signal—which was already sampled when the bus was being acquired for the GP.
This sampling must not be allowed because it would keep the GP from

@?f Su §UN PROPRIETARg\mm 1 of 20 October 1986

miCiosySiams



58  Engineering Manual for the Sun Graphics Processor

propagating the daisy chain. Therefore DISSBUSY* keeps the sampling F74
output at a logic high, which allows the daisy chain to be propagated.
DISSBUSY* was activated by BBSY* going active; it is deactivated by a
delayed version of VMEBUSY* going inactive. This delay is SO ns and is neces-
sary in casc BBSY* and VMEBUSY* are deactivated at the same clock edge.
The delay line provides enough margin to guarantee deactivation.

After acquiring the bus, the state machine goes to state C and stays there until the
GP master data transfer controller completes the transaction requested by the PP.
While in state C, the BBSY* signal is activated—unless SBR* (from the control
signal synchronizer) is activated. If SBR* is activated it means that some other
board is requesting to become bus master, whereupon the GP will deactivate
BBSY* to let the VME bus arbiter start the arbitration. It is also possible that
SBGIN is still active in three cases—from the time the GP obtained the bus,
some other board requested the bus, or the GP VME transaction had been com-
pleted. For this case, the state machine stays in state C until SBGIN is deac-
tivated.

State C conditions can be described as follows:

1. IfBBSY and VMEBUSY are active and SBR is not active, stay in state state
C and keep asserting BBSY (the GP VME transaction has not been com-
pleted).

2. IfBBSY, VMEBUSY, SBR, and SBGIN are active, stay in state C and keep
asserting BBSY (the GP VME transaction has not been completed, SBGIN
has not been deactivated yet from the time that the GP obtained the bus).

3. IfBBSY, VMEBUSY, and SBR are active and SBGIN is not active, stay in
state C and deactivate BBSY (the GP VME transaction has not been com-
pleted, some other board has requested the bus and SBGIN has been deac-
tivated from the time when the GP obtained the bus).

4. If BBSY and SBGIN are active and VMEBUSY is not active, stay in state C
and keep asserting BBSY (the GP VME transaction has been completed, no
bus requests arrived during the transaction so the GP still has the bus,
SBGIN has not been deactivated yet from the time that the GP obtained the
bus, so keep the bus until SBGIN is removed).

5. If VMEBUSY is active and BBSY is not active, stay in state C but don’t
assert BBSY (BBSY has been deasserted before because of a bus request,
the GP VME transaction has not been completed).

~ 6. If BBSY is active and VMEBUSY, SBR, and SBGIN are not active, go to

{

state D and keep asserting BBSY (the GP VME transaction has been com-
pleted, no bus requests have arrived or are currently pending, SBGIN has
been deactivated from the time when the GP obtained the bus, the GP still
has the bus).

7. IfBBSY and SBR are active and VMEBUSY and SBGIN are not active, go
to state A and deassert BBSY (the GP VME transaction is ending at the
same time that a bus request arrives, SBGIN has been deactivated from the
time when the GP obtained the bus, so give up bus ownership).

%“ESIIN PROPRIETAR?EM 1 of 20 October 1986



Chapter 5 — VME Interface (pages 6-8, 13,29-31) 59

NOTE

Data Transfer Controller

@

8. IfBBSY and VMEBUSY are not active, go to state A and don’t assert
BBSY (bus ownership has been given away previously, the GP VME tran-
saction is completing).

Condition 6 causes the state machine to go to state D. The state machine stays in
state D waiting for either a bus request from another board, (indicated by the
SBR* signal being activated), or the PP to start another VME transaction, (indi-
cated by the VMEBUSY* signal being activated).

o Ifneither VMEBUSY* or SBR* are asserted, the state machine stays in state
D and keeps the bus by asserting BBSY*.

o If SBR* becomes active when VMEBUSY* is not active, then the bus is
given up by deasserting BBSY* and going to state A.

o If VMEBUSY* becomes active, then bus ownership is kept (that is, BBSY* ~
is kept activated) and the state machine goes to state B. Ii goes io state B in
this case to guarantee that BBSY* is kept active for at least two periods after
VMEBUSY* is activated (the state machine will stay in state B for one
period and then go to state C).

The GP keeps ownership of the bus if, while in state D, both VMEBUSY* and
SBR become active at the same time.

The data transfer controller carries out the VME transfer that is requested from
the PP. When it receives the request to do a transfer (indicated by VMEBUSY *
becoming active), and the GP bus requester has obtained the VME bus, the data
transfer controller assumes the role of the VME bus master and completes the
transaction requested. The data transfer controller is implemented as a state
machine and logic contained in a 16R6A PAL shown in the top right of page 31.

There are four outputs from the state machine. The signal RSTVMEBSY* is
activated to indicate to the PP and the bus requester that the transfer has been
completed. RSTVMEBSY* is used to reset several control flags. Additionally,
the state machine outputs the signals MASTERAS* (VME master address
strobe), MASTERDS1*, and MASTERDSO* (VME master data strobe 1 and 0).
MASTERAS*, MASTERDS 1¥, and MASTERDSO* are input to the VME con-
trol transceivers (page 6) and, when the GP is the VME bus master, are used to
drive the VME bus control signals P1.AS*, P1.DS1*, and P1.DSO*, respectively.

The data transfer controller state machine state diagram is shown in Figure 10 of
the appendix.

The state machine has four states.
o  State A implies that there are no transfer requests.

o Instate B, the state machine has started to process a‘transfer request and may
possibly wait until the previous VME slave addressed has removed its con-
trol signals. State B is also used to allow a delay to set up the address and
data before issuing address and data strobes.

o Instate C, the address and data strobes have been issued and the state
machine waits for the VME slave being addressed to issue a DTACK or a

"SmgﬂESUN PROPRZE TAR(Y{&B 1 of 20 October 1986



60

Engineering Manual for the Sun Graphics Processor

@

BERR, or for the GP VME bus timeout counter to count down.

o  When the transaction is complete the state machine goes to state D and stays
there as long as the VME bus is not given up by the bus requester.

When the GP is powered up, the signal POR* becomes active and causes the
state machine to go to state A. The state machine stays in state A as long as the
signal BBSY* is not active. BBSY* is activated by the GP bus requester when
the PP requests a VME transaction and the VME bus is obtained.. When BBSY*
becomes active the state machine goes to state B.

In state B, the state machine may possibly wait for the VME slave from the pre-
vious transaction to deactivate its control signals P1.DTACK* and P1.BERR*.
The two control signals are input to the state machine after they are synchronized
by the control signal synchronizer. If the slave control signals are inactive then
the state machine goes to state C.

While going from state B to state C, the state machine looks at the signals
WORDXFER (word transfer) and VMEAQOQ to determine what particular type of
a transaction has been requested by the PP.

WORDXEFER is a bit that is output from the VME control register on page 29 of
the schematics (discussed later in this document). If WORDXFER is active, it
indicates that the PP wants to do a 16-bit data transfer. When doing 16-bit
transfers the state machine activates both MASTERDS1* and MASTERDSO*. If
WORDXFER is not active, it means that the transfer requested is an 8-bit (a
byte) data transfer.

If the transfer is a byte transfer, then it could be an upper or lower byte transfer.
Upper or lower byte transfers are determined by signal VMEAQ0O. VMEAQQ is
the LSB of the VME master address register on page 30 of the schematics.

o If VMEAOQ is a logic low, the data is transferred on VME data bus bits 15 to
8 while asserting MASTERDS1*,

o If VMEAOQO is a logic high, the data is transferred on VME data bus bits 7 to
0 while asserting MASTERDSO*.

Regardless of whether it is a byte or a word transfer, MASTERAS* is always
asserted when the state machine goes from state B to state C.

In state C, the state machine outputs MASTERAS* and the appropriate data
strobe signals and waits for

1. an acknowledge from the VME slave being addressed, or
2. for the timeout counter to count down.

The VME slave acknowledge signals are synchronized and input as SBERR* and
SDTACK*. The timeout counter output is the signal TIMEOUT*. When any
one of SBERR*, SDTACK*, or TIMEOUT™* is activated, the state machine deac-
tivates the address and data strobes, and activates RSTVMEBSY*. The state
machine may stay in state C one more period and then go to state D while
activating RSTVMEBSY*. It may stay in state C one more cycle to synchronize
RSTVMEBSY* to the correct phase of PPCLK2. RSTVMEBSY* has to be

"Swmum!surq PROPRIETAR?SM 1 of 20 October 1986



Chapter 5 — VME Interface (pages 6-8, 13,29-31) 61

Timeout Counter and
Miscellaneous Logic

W
©iUISUN PROPRIETARY

active for a rising edge of PPCLK2 because it is used to reset the VMEBUSY*

The state machine stays in state D as long as there are no requests from the PP
and the GP stays as owner of the VME bus (VMEBUSY* not active and BBSY*
active). If the bus requester gives up ownership of the bus (BBSY* not active)
the state machine goes to state A. If another request from the PP processor
comes in while the GP still has control of the VME bus (VMEBUSY* and
BBSY* both active), the state machine goes to state B to service the request.

The timeout counter is used to limit the amount of time the GP will wait for a
slave to respond when the GP is doing a transaction as the VME bus master.
This prevents the VME bus from being locked up by an incorrect VME access.
An incorrect VME access may be a wrong address output by the GP or it may be
the slave being addressed has an error. (Of course the possible conditions are not
just these two conditions.) The timeout counter limits the VME transaction to
less than 5.4 microseconds.

The timeout counter is implemented with a 6-bit down counter programmed in a
16R8A PAL shown in section B3 of page 31. The counter is controlled by the
signal MASTERDS* which is an OR of MASTERDS1* or MASTERDSO*
(MASTERDS* is active if any one of the two data strobes are active). When
MASTERDS* is not active, the counter keeps loading its initial count value.
When MASTERDS* becomes active, the counter begins to count down. If
MASTERDS* does not become deactivated by the time the counter counts down
to zero, the signal TIMEOUT* is activated inside the PAL. TIMEOUT* is
latched and kept in this active state as long as MASTERDS* is active or
RSTVMEBSY* is active, because the data transfer controller must sense
TIMEOUT¥, deactivate MASTERDS*, and activate RSTVMEBSY* before
TIMEOUT* is deactivated. TIMEQOUT™* is deactivated when both
RSTVMEBSY* and MASTERDS* are inactive. Therefore, every time the Data
Transfer Controller starts a transaction, the timeout counter is loaded with its ini-
tial value and continues to count down during the transaction.

The miscellaneous logic generates six signals that are used for controlling the GP
VME master data transfers. It is implemented with a 16L8A PAL and an F74
flip-fiop shown on the right of page 31. The signals generated by the miscellane-
ous logic are:

o ILLACCESS* (illegal access),

o  GPHASVME* (GP has control of the VME bus as bus master),
o SWRDBYTE* (switch read byte),

o SWWRTBYTE* (switch write byte),

o  VMEWRTDOE* (VME master write data output enable), and
o  WRTHBYTE* (write high byte).

GPHASVME* is used to control the VME address, data, and control transceivers
and also to enable the outputs of the master address register. The PAL equation
for GPHASVME is:

Revision 1 of 20 October 1986



62

Engineering Manual for the Sun Graphics Processor

@

GPHASVME = BBSY
+ GPHASVME*/RSTVMEBSY*DVMEBSY

GPHASVME®* is aclivated whenever BBSY* is active— whenever the GP has
control of the VME bus. When BBSY* is deactivated by the bus requester while
the GP data transfer controller is still carrying out the VME transfer,
GPHASVMEX* is kept active until RSTVMEBUSY becomes active. RSTVME-
BUSY signals the end of the VME transaction and is shown in the second equa-
tion above.

DVMEBSY (VMEBUSY* delayed by one 2XCLK period) is used to deactivate
GPHASVME*. It comes into use in the particular case where the VME transac-
tion is completed and VMEBUSY* has been deactivated (at the end of the tran-
saction) and, because there have been no further bus requests, BBSY* is still
acdve. In this state, if a bus request arrives at the bus requester at the same time
that the PP processor is trying to start another VME transaction (by activating
STRTVME*), BBSY* will be deactivated and VMEBUSY* will be activated on
the same clock edge. The bus requester state machine will go to state A, where
the VME bus is no longer controlled by the GP, and the data transfer controller
will go into state A, because BBSY* will not be active. As a result, the bus
requester will try to reacquire the VME bus and, until the VME bus is acquired,
the transaction requested by the PP cannot take place. Therefore, in the situation
where BBSY* is deactivated and VMEBUSY* is simultaneously activated,
GPHASVME* must be deactivated.

All the other signals from the miscellaneous control PAL have the
GPHASVME* signal in them—which means they only become active when
GPHASVMEH* is active.

o ILLACCESS* becomes active when a word operation is done with VME
address bit 0 (VMEAOQO) equal to a logic high. It is sent back to the PP as a
bit in the VME status register.

o VMEWRTDOE* is active whenever a write operation is being done. Itis
used to enable the lower 8 bits of data from the master data out register to
the internal VME data bus bits VMED<(07..00>. *

o  WRTHBYTE* is active whenever a word write operation is being done. It
is used to enable the upper 8 bits of data from the master data out register to
the internal VME data bus bits VMED<15..08>.

o  SWWRTBYTE* is only active when a byte write operation is being done.
The PP always writes the byte data to be sent out to the VME bus in the
lower 8 bits of the master data out register. However address bit 0
(VMEAOQ0) determines whether the byte of data should be sent on the lower
or upper 8 data bus bits. This signal routes the lower 8 bits of the master
data out register to the upper 8 bits of the internal VME data bus bits
VMED<15..00>. Thus when byte write operations are done, the byte of data
is duplicated on both the upper and lower bytes of the VME data bus.

sun Revision 1 of 20 October 1986

~r~SUN PROPRIETARY



Chapter 5 — VME Interface (pages 6-8, 13,29-31) 63

VME Bus Interrupter

o SWRDBYTE* is active when a byte read operation is being done from the
high 8 bits of the VME data bus, VMED<15..08>. The PP always expects
the byte data read from the VME bus to be in the lower 8 bits of the master
data in register. However address bit 0 (VMEAOQO) determines whether the
byte of data will be in the lower or the upper byte of the VME data bus.
This signal routes the upper 8 bits of the VME data bus VMED<15..00> to
the lower 8 bits of the master data in register.

The bus interrupter is used to raise an interrupt over the VME bus when so
requested by the PP. After receiving an interrupt request from the PP, the GP
interrupt is initiated by activating the open collector interrupt request line
P1.IRQ4* (interrupt request level 4).

When the VME bus interrupt handler senses the request, it starts the interrupt
acknowledge daisy chain. P1.IACKIN* (interrupt acknowledge in) and
PL.IACKOUT* (interrupt acknowledge out). The interrupt handler also starts a
data transfer cycle with P1.IACK* (interrupt acknowledge) activated and the first
three LSBs of the VME address bus pointing to the interrupt level being serviced.
When the GP receives the interrupt acknowledge daisy chain signal
P1.IACKIN¥*, and the interrupt level being serviced is level 4, it outputs on the
VME data bus an 8-bit interrupt identification value and asserts PI. DTACK* to
complete the interrupt cycle.

The bus interrupter is controlled by a state machine and logic contained in a
16R4A PAL, an F109 and an F74 flip-flops and a delay line, all shown in the top
left of page 31.

Interrupts by the GP are always initiated by the PP activating the signal IFLAG,
output from an F109 flip-flop. IFLAG is activated by the signal LDIIDL* (load
interrupt identification). LDIIDL* is an active low signal which will be asserted
whenever the interrupt ID register (page 29) is loaded, and comes from the PP
destination logic on page 25. When IFLAG becomes active it clocks an F74
flip-flop with a logic high activating the signal IREQ* (interrupt request).
IREQ* is input to the state machine to start an interrupt request cycle. IREQ* is
deactivated by the signal HWCLRIFLG* (hardware clear interrupt flag) from the
state machine. IFLAG is deactivated with the CLRINTFLG signal under host
software control.

The GP can be set up by the host processor to raise an interrupt over the VME
bus or it may be set up for polled interrupts. If the GP is not in the polled inter-
rupt mode it will raise an interrupt over the VME bus every time IFLAG is
asserted. The GP is put into polled interrupt mode by the signal INTEN (inter-
rupt enable) from the GP control register on page 6. If INTEN is active, it keeps
IREQ* from becoming active, thus preventing the state machine from starting an
interrupt cycle over the VME bus. IFLAG is an input to the GP status register
which can be read by the host processor at its convenience to sense an interrupt
from the GP. After sensing the GP interrupt request, the host processor will clear
IFLAG by activating CLRINTFLG (clear interrupt flag) from the GP control
register. CLRINTFLG will deactivate IFLAG and, in tum, deassertion of IFLAG
will deactivate CLRINTFLG.

sun Revision 1 of 20 October 1986

~-~SUN PROPRIETARV



64

Engineering Manual for the Sun Graphics Processor

s

The bus interrupter state machine controls the interrupts over the VME bus. The
state diagram for the bus interrupter state machine is shown in the appendix,
labelled *‘Figure 11.”

The VME interrupter state machine has four states.

o When the state machine is in state A, it implies that there is no interrupt
request (IREQ*) pending. When IREQ* becomes active, the state machine
goes to state B.

o Instate B, the signal IRQ (interrupt request) is activated. IRQ is put through
a 7438 open collector gate which drives the VME interrupt request line
P1.IRQ4*. The state machine stays in state B until the VME interrupt
handler acknowledges the interrupt.

o When the interrupt is acknowledged, the state machine goes to state C and
waits until SDS0*, the synchronized version of VMEDSO*, is deactivated.

o  The state machine goes to state D and then to state A while activating
HWCLRIFLG* signal. HWCLRIFLG* signal deactivates the interrupt
request signal IREQ*, completing the interrupt cycle.

The state machine stays in state B, activating IRQ and waiting for either
1. the VME interrupt handler to acknowledge the interrupt or
2. the interrupt request signal IREQ* to be deactivated.

If IREQ* is deactivated while in state B, the state machine goes to state D and
then to A, ending the interrupt sequence (for the condition when host software
deactivates the GP interrupt request over the VME before the interrupt is ack-
nowledged over the VME).

The interrupt is acknowledged when the signal P1.IACKIN* becomes active and
the three LSBs of the VME address, VMEA<03..01>, are encoded to be a 4
(interrupt acknowledge on level 4). P1.IACKIN* is synchronized by the control
signal synchronizer (on page 6) to be SIACKIN*. P1.IACKIN* is also used to
clock an F74 (section C6 of page 31) which samples IREQ*. IREQ* must be
sampled in order to continue the daisy chain to the next board by activating
P1.IACKOUT* if the GP is not causing the interrupt (if IREQ* is not active).

The output of this flip-flop is the signal SIREQ* (synchronized interrupt request).
SIREQ* can be metastable because IREQ* and P1.IACKIN* are asynchronous.
Therefore P1.IACKIN* is put through a 50 ns delay (becoming IACKIN*).
SIREQ* is only valid into the PAL if IACKIN* is also active. Additionally, the

- synchronized data and address strobes, SDS0* and SAS*, must be active for the

statc machine to determine that the interrupt is being acknowledged. Therefore,
when all the signals SAS*, SDS0*, IACKIN*, SIREQ*, and SIACKIN* are
active and the address lines VMEA<03..01> are equal to decimal 4 (binary 100),
the state machine determines that the GP interrupt has been acknowledged and
outputs INTDTACK* (interrupt data transfer acknowledge) while going to state
C. INTDTACK* is used on page 29 to clear a flip-flop which results in putting
the contents of the interrupt ID register on the VME data bus. INTDTACK* is
also used (page 7) to activate P1.DTACK*, acknowledging that the interrupt ID

Revision 1 of 20 October 1986 v

~~SUN PROPRIETARY



Chapter 5 — VME Interface (pages 6-8, 13,29-31) 65

PP VME Interface

NOTE

@s

is on the data bus to be read.

After going to state C, the state machine waits for SDSO* to be deactivated
before going to state D and then to state A (while activating HWCLRIFLG*).
HWCLRIFLG* resets IREQ* and IFLAG indicating to the PP processor that the
interrupt is complete and another can take place. This wait for SDSO* to become
inactive is to ensure that the PP does not write to the interrupt ID register until
the previous interrupt has completed use of its contents.

HWCLRIFLG* is encoded as being in state D. When the state machine is in
state D, the state flip-flops, INFFI and INFFG, are equal to 00, which is decoded
by an F32 gate to produce HWCLRIFLG*.

The signal IACKOUT™ is an output from the PAL which is passed through two

F32 gates (page 31) to produce the interrupt daisy chain output signal
P1.IACKOUT*. IACKOUT* is activated when

1. the signals IACKIN* and VMEAS* are active and the address bits
VMEA<03..01> are not equal to decimal 4 (binary 100), or

2. the signals IACKIN* and VMEAS* are active and the address bits
VMEA<03..01> are equal to decimal 4 (binary 100) but SIREQ* is not
active.

IACKOUT* is gated with signals DVMEAS* (delayed VMEAS*) and
P1.IACKIN* by two F32 gates before becoming the signal P1.IACKOUT*.
DVMEAS* signal is used to prevent glitches on PLIACKOUT* when it is going
active (that is, IACKOUT* becomes active before DVMEAS*). P1.IACKIN*
deactivates P1.IACKOUT* one F32 gate delay from when it becomes deac-
tivated.

The PP VME interface consists of the registers and associated logic which per-
mits the PP to make an access onio the VME bus. These registers include:

o the interrupt id register,

o the data in and data out registers,
o the address register,

o the VME control register, and

o the VME status register.

With this logic, any VME address in 16 or 24-bit address space can be accessed
from the PP, however accesses are primarily made to the color frame buffer.

The VME master address register is shown on the left of page 30. It consists of a
counter and a register. The counter is implemented with F169-type up/down
counters and the register is implemented with ALS374-type devices. The
counter is a 24-bit counter corresponding to 24-bit VME addresses, and is
preloaded with values from the PPBUS. Since PPBUS is only 16 bits, the 24-bit
counter must be loaded in two instructions. The low 16 bits of the counter are
loaded when the signal LDVMELADR* (load VME low address) is active; the
upper 8 bits are loaded when the signal LDVMEHADR* (load VME high

Revxslon 1 of 20 October 1986

~-SUN PROPRIE‘TA



66

Engineering Manual for the Sun Graphics Processor

@4

address) is active.

The counter begins counting when the signal CNTVME* (count the VME
address) goes active; the signal DNVME* (count down the address) determines
whether the counter increments or decrements. When DNVME* is a logic low
the counter decrements.

The contents of the counter are loaded into the ALLS374 devices on the rising
edge of the signal VMEBSY. VMEBSY is just the complemented version of
VMEBUSY* which is activated every time the PP requests a VME transaction.

The outputs of the ALS374s are enabled onto the GP internal VME address bus,
VMEA<23..01>, whenever the signal GPHASVME*, from the VME miscellane-
ous logic, is active.

The VME data in register (page 29) is used to hold the data obtained from the
VME bus transaction for the PP to read. Itis implemented with ALS374-type of
devices and is shown in the lower left of page 29.

When a byte access is done, the PP expects data from the VME bus to be in the
lower eight bits of the register regardless of which byte, upper or lower, it is
transferred on over the VME bus. To accommodate this there are two F241 dev-
ices, which function as multiplexers. The F241s multiplex the upper or lower
byte of the VMED bus into the lower eight bits of the register.

The signal SWRDBYTE* (switch read byte) determines whether the upper or
lower byte is input to the low byte of the register. When SWRDBYTE* is
active, the bits VMED«]15..08> are input to the low byte of the register, and
when SWRDBYTE* is not active VMED<07..00> is input to the low byte of the
register. The input to the upper byte of the register is always the bits
VMED<15..08>. The data is loaded into the register on the rising edge of
VMERDCLK (VME read clock).

VMERDCLK goes to a logic low everytime a read transaction is requested by the
PP and one of the data strobes from the master, MASTERDSO* or
MASTERDS1#*, is active. When the data strobes are deactivated at the end of
the transaction, VMERDCLK goes to a logic high and stays at a logic high until
the next read transaction is started. Output from the register is enabled onto the
PPBUS when the signal RDVMED* (read VME data) from the PP source logic
is active.

The VME data out register (page 29) is used to hold the data that is output when
a write access is done by the GP as a VME bus master. It is implemented with
ALS374 devices and is shown in the top left of page 29. This register is loaded
with data from the PPBUS by the signal LDVMED* (load VME data) from the
PP destination logic. The contents of the upper byte of the register are output to
the bits VMED<15..08> whenever the signal WRTHBYTE* (write high byte) is
active. The lower byte of the register is output to the bits VMED<07..00> when-
ever the signal VMEWRTDOE* (VME write data output enable). When a byte
access is done, the PP loads the byte to be output in the lower eight bits of the
register. However, whether the byte should be output on the upper or lower byte
of the VME data bus depends upon the address in the address register. The F244
devices are used to enable the lower eight bits of the register into the upper eight

SUNSUN PROPRIETARY ™



Chapter 5 — VME Interface (pages 6-8, 13,29-31) 67

bits of the VMED bus. This is accomplished whenever the signal
SWWRTBYTE* (swiich write byte), from the miscellaneous logic, is active.

The interrupt ID register (page 29) is used to hold the interrupt identification
value that is output to the VME bus whenever the GP interrupts over the VME
bus. It is implemented with one ALS374 device and one F74 flip-flop. The
interrupt ID register is loaded with the data from the PPBUS by the signal
LDIID* (load interrupt identification) from the PP destination logic. The con-
tents of the register are enabled to the VME data bus by ENINTID* when the
F74 flip-flop is cleared by the signal INTDTACK*. The outputs are enabled
until the signal DS (data strobe) becomes inactive (which corresponds to both the
data strobes on the VME data bus being inactive).

The VME control register (page 29) is used to hold the address modifier and the
flag indicating the type of transfer (byte or word) to be done for the GP VME
master interface. The VME control register is implemented with an AL.S374 and
an F74 shown on the lower right of page 29. The register is loaded with data
from the PPBUS by the signal LDVMEC* (load VME control) from the PP des-
tination logic. The address modifier bits are loaded into the ALS374 and output
to the GP intemnal address modifier bus, AM<S5..0>, when the signal
GPHASVME* is active. The signal WORDXFER (word transfer) is held in the
F74 instead of the ALS374 because its value must be known to the VME master
control logic before the ALS374 outputs are enabled.

The VME status register (page 29) is used to report the status of the VME master
interface to the PP. Itis implemented with a 16R8A PAL and an F374 shown on
the right of page 29. The PAL is used to latch the flags at the appropriate times
using 2XCLK1. The outputs from the PAL are then input to the F374 which
clocks them in and outputs them to the PPBUS when the PP requests it.

The F374 was used because the status flags are clocked into the PAL using
2XCLK, which has a rising edge a little sooner than PPCLK (see the section on
clock and resets). This means that when the status flags are read there is the pos-
sibility of them changing at the PPCLK edge as they are clocked into their desti-
nations. To mitigate this, the PAL outputs are clocked into the F374 on the ris-
ing edge of PPCLK1*, which means they will be steady on every subsequent ris-
ing edge of PPCLK. Because the PAL is clocked with 2XCLK, the outputs must
be synchronized to the correct phase of PPCLK. That is why PPCLK1* is input
to the PAL. The status flags are only updated or changed when PPCLK is low
(PPCLK1* high). Thus all the flags are synchronous with PPCLK.

All the flags held in the PAL are updated each time a GP VME transfer com-
pletes (indicated by the RSTVMEBSY* signal from the data transfer controller).
Additionally each flag has an accrued version of the transfer. The flags indicate
the status of the last VME transaction while their accrued versions indicate the
status of not only the last but all the VME transactions since the last status read
by the PP.

The PP reads the flags by activating the signal RDVMES* (read VME status)
from the PP source logic. RDVMES* also causes the accrued flags to be cleared
to their inactive state. In the case where RSTVMEBSY * and RDVMES* are
activated at the same time, the accrued part of the flags are cleared, while the

Revision 1 of 20 October 1986

S, I _
VM SUN PROPRIETARY



68 Engineering Manual for the Sun Graphics Processor

@

current transaction status is simultaneously latched into them. The flags are
described below.

a

[m}

The TO* (timeout) flag indicates that no slave responded to the transaction
within the timeout period.

The ATO* (accrued timeout) indicates the timeout status of not only the last
VME transaction but all the VME transactions since the last status read by
the PP. TIMEOUT* activates TO* and ATO*.

The ERR* (bus error) flag indicates that a bus error acknowledge occurred
on the last VME transaction.

The AERR* (accrued bus error) signal indicates the error status of not only
the last VME transaction but all the VME transactions since the last status
read by the PP.

SBERR* (synchronous bus error) is delayed by one clock period to become
DSBERR* (delayed synchronous bus error), and is used to activatc ERR*
and AERR*. This delayed version of SBERR* is used to line up or shift it
so that it is valid when RSTVMEBSY* signal is valid.

The AILLACCESS* (accrued illegal access) flag indicates that a VME tran-
saction had an addressing error caused by the GP itself. This error is caused
by executing a word operation with the VME address bit 0 (VMEAOQO) equal
to a logic high. The input signal ILLACCES* is delayed by one clock to
become DILLACC* and one more clock to become 2DILLACC*. 2DIL-
LACC* is then used to update AILLACCESS*. The delays are necessary to
shift ILLACCES* so that it is valid when RSTVMEBSY* is active.

The VME Status Register additionally reports the state of the IFLAG* signal
to the PP processor by clocking it into the F374.

SUN PROPRIETARY

sun Revision 1 of 20 October 1986

microsystems



Microstore (pages 9-12)

Microstore (pages 9-12) ... 71

SUN PROPRIETARY






NOTE

8

S

Microstore (pages 9-12)

The microstore consists of two banks, each made up of fourteen 4K-by-4
memory chips. Each bank is thus 4K of 56-bit words for a maximum of 8K
words.

Pages 9 and 10 contain the buffers to multiplex and drive the address lines to the
two banks of microstore memory chips. Page 9 is the bank 0 address buffers and
page 10 is for bank 1.

There are three sources of microstore address:

1. the Viewing Processor,

2.  the Painting Processor, and

3. the VME bus.

For the VP, the address lines are as follows:

o VPMSAOO to VPMSA11 — selects word location within a 4K range;

o VPMSAI2 and VPMSA13 — not used, would be used if the RAM array is
expanded to use 16K-by-4 chips;

o VPENBLO* — enables bank 0;
o  VPENBLI1* — enables bank 1.

The two VPENBL lines are based on address bit 12. (Address bit 14 would be
used if the RAM array was expanded to use 16K-by-4 chips.)

For the PP, the lines are similar except their names are prefixed by a PP instead
of a VP.

For VME accesses, the address comes from the microstore VME address counter,
page 8. These lines are as follows:

o VMEMSA<00>to VMEMSA<11> — selects word location within a 4K
range;

o VMEMSA<I12> and VMEMSA<13> — not used, would be used if the
RAM array is expanded to use 16K-by-4 chips;

o VMEENBLI1* - selects bank 1.

UN PROPRIETARY
Sin o

microsystems

Revision 1 of 20 October 1986



72

Engineering Manual for the Sun Graphics Processor

NOTE

@

VMEMSA<12> selects bank 0. VMEMSA<12> is complemented to become
VMEENBLI* and enable bank 1.

Because VME accesses to the microstore are 16 bits wide, the 56-bit microstore
word must be broken up into four 16-bit columns. Two hidden bits—the two
least significant bits of the microstore address counter—select one of these four
columns when a VME access is madce to the microstore.

The column select lines (as generated by the F139 decoder on the bottom of page
8) are MSCOLO* (microstore column 0), MSCOL1*, MSCOL2*,and MSCOL3*,
MSCOL3* selects the microstore data bits MSTR15..00, MSCOL2* selects
MSTR31..16, MSCOL1* selects MSTR47..32, and MSCOLO* selects the data
bits MSTRS55..48. Notice that MSCOLO* only selects 8 bits (the VME will only
get 8 valid data bits for accesses to this column). See the VME Interface section
of this document for further discussion of VME accesses to the microstore.

The F244 and ALS244 buffer/drivers on pages 9 and 10 perform two functions:
1. provide the capability to drive 14 memory chips, and

2. multiplex the three possible address sources onto two buses: MSA00Q to
MSAO013 for bank 0, and MSA100 to MSA113 for bank 1.

The clocks control the multiplexing.

o If VPCLKO is not halted, then during the second half of a VP cycle (when
VPCLKO is low and PPCLKO is high), the VP address is routed to the
microstore.

o If PPCLKO is not halted, then during the second half of a PP cycle (when
PPCLKO is low and VPCLKO is high), the PP address is routed to the micro-
store.

Thus half the bandwidth is allocated to the VP and half to the PP. In this way,
the two processors share the microstore.

The VME can access the microstore only when both VPCLKO and PPCLKO are
halted—in which case both signals are high. (No hardware is provided to enforce
this restriction, therefore the software must ensure this happens.) When a VME
read or write access is made to the microstore, LMSDATA* is asserted, and the
VME address is routed to the microstore. ALS drivers can be used because of
the less stringent timing requirements needed by VME accesses. :

Pages 11 and 12 are microstore bank 0 and bank 1, respectively. For each bank
the address bus is routed through 33 ohm series resistors (to dampen ringing) and
to the 14 chips of each bank. The data pins on the 2169 memory chips are
bidirectional. As an output, the 56-bit microinstruction goes to both the VP and
PP instruction registers. These 1/O (input/output) pins are also routed through 33
ohm series resistors and to the VME bus transceivers (page 8) for read/write
access via the VME bus.

1F drivers are needed on these paths because of the tight timing in allowing for clock skew (3 nsec),
routing the address to the microstore (10 nsec including the delay through a resistor), accessing the desired
location (40 nsec), and meeting the set-up time on the instruction register (2 nsec) for a total of 55 nsec—
which is 5 nsec less than the 60 nsec allotted.

S ,ES,D‘SUN PROPR IET ARI'{Y&»M 1 of 20 October 1986



Chapter 6 — Microstore (pages 9-12) 73

NOTE

@

The data pins of the two banks of memory are wired in parallel to take advantage
of the tri-state capability of the chips.

Also shown on page 11 are the microstore write control gates, four AND func-
tions. Four write signals are required to write the 56-bit microstore word.

1. MSCOWE* - writes microinstruction bits 48 to 55 (column Q)

2. MSCI1WE* - writes microinstruction bits 32 to 47 (column 1)

3.  MSC2WE* - writes microinstruction bits 16 to 31 (column 2)

4. MSC3WE* - writes microinstruction bits 0 to 15 (column 3)

These write enables are routed to both banks of microstore; the chip enables
determine which bank is actually written. The signals WEGATE* and
MSCOL3* . .MSCOLO* generate the write enables. WEGATE* signifies that a
VME write to the GP board is active. The MSCOL signals indicate that the write
is to the microstore and which column within the microstore is to be written
(column designations are defined above).

The write enable signals and the chip enables are also routed through 33 ohm
series resistors for signal conditioning.

SUM PROPRIETARY

sun Revision 1 of 20 October 1986

microsystems






Shared Memory (pages 13-14)

Shared Memory (pages 13-14) 77







Shared Memory (pages 13-14)

The shared memory is a 16K-by-16-bit static RAM array which is used to pass
commands, parameters, and data between the host processor and the VP proces- .
sor. The registers and control for it are on page 13 and the actual RAM array is
on page 14.

The RAM array consists of 2167-45 (16K-by- 1-bit) static RAM devices. The
array is configured as two 8-bit (byte) banks. The two banks are only necessary
for VME slave byte accesses, since the VP processor always makes word
accesses to shared memory. Address into the RAM is the shared memory
address bus, SMA<13..00>; data into the RAM is the shared memory data in bus,
SMDI<15..00>; data out of the RAM is the shared memory data out bus,
SMDO0<15..00>.

The shared memory is accessed twice every VPCLK period, once for the VP and
once for the VME slave interface. The VP has access to the memory in the first
half of the VPCLK cycle (when VPCLK is a logic high) and the VME has access
to the memory during the second half of the VPCLK cycle (when it is a logic
low). See the two figures below for a timing diagram of read and write accesses
to the shared memory.

SUN PROPRIETARY

% S u n Revision 1 of 20 October 1986

microsystems



78 Engineering Manual for the Sun Graphics Processor

Figure 7-1  Shared Memory Read Timing

| VP ACCESS | VME ACCESS

2XCLKO | I | |

VPCLKFR |

PPCLKFR |

DELLDSMD

WEGATE

SMA 15-0 XXKXXXXX XXXXXXX

XXXXXXX

. . .

SMDO 15-0 0,9:9.0.9:6.0.9.9.9.0.9.9.9.9.9.9.0.9.9.9.9.0.9.4 .0.9:0.0.0.0.0.0.9.0.0.0.0.0.9,0.0.0.0.0.9.0.9.4

. . . .

SUK PROPRIETARY

4 sun

XXXXX

Revision 1 of 20 October 1986



Chapter 7 — Shared Memory (pages 13-14)

79

2XCLKO

VPCLKFR

PPCLKFR

DELLDSMD

WEGATE

ioure 7-2 hared Memary Write Timino
rgure /-2 SAgreg Memory write 1iming
(Assume that SMACCESS*, DS1*, and DSO0* are all active)

VP ACCESS | VME ACCESS |

SMA 15-0 XXXKXXX

SMDI 15-0 XXXXX-

XXXXXXX XXXXXXX

XXXXX XXXXX

SMWE *

SUN PROPRIETARY"

4rsun

microsystems

Revision 1 of 20 October 1986



80

Engineering Manual for the Sun Graphics Processor

@

o The address and data from the VP and the VME are output to the shared
memory address and input data buses, SMADR 14..00 and SMDIN15..00,
respectively, every half VPCLK period.

o  The VP addresses are held and driven by the VP address pointer and the
VME addresses are held and driven by the VME address pointer.

o The VP input data is held and driven by the VP data in register and the VME
input data is held and driven by the VME data in register.

o When the VP is driving the buses the VME registers are tri-stated and when
the VME is driving the busses the VP registers are tri-stated.

o The output enable of the VP and the VME registers are controlled by the sig-
nals PPCLKFR (PP clock free running) and VPCLKFR, respectively.
PPCLKEFR is the complement of VPCLKFR so that when one is a logic high
the other is a logic low.

The free running clocks are used here instead of VPCLK and PPCLK because
PPCLK and VPCLK may be halted. When PPCLK and VPCLK are halted VME
accesses can still occur. There is also the possibility that the VP is halted on an
instruction which writes to shared memory; in this case the location in the VP
address pointer will be written over and over while the VPCLK is halted. For
these reasons the free running clocks are used to keep accessing shared memory
regardless of the halt state of the processors.

The address, (from the VP address pointer and the VME address pointer), and t]
input data, (from the VP data in register and the VME data in register), are put
through series termination resistors before they drive the actual inputs of the
RAM array. The address output from the pointers, SMADR15..0, becomes
SMA<15..00> after passing through the series resistors.

The data output from the data in registers, SMDIN15..00, becomes
SMDI<15..00> after going through the series resistors. SMA<15..00> and
SMDI<15..00> drive the RAM address and data inputs directly.{

Loading of data into the VME address pointer and VME data in register, and
reading of the data in the VME data out register is covered in the VME Interface
section of this document. Refer to that section for information regarding how
these registers are loaded and read from the VME: Data from the VME address
pointer is enabled to the memories when the signal VPCLKFR is a logic low in
the second half of the VPCLK period (page 13). The data from the VME data in
register is enabled to the memories when the signal DVPCLK (delayed VPCLK)
is a logic low in the second half of the VPCLK period (page 13). DVPCLK is
just a delayed version of the VPCLKFR signal—delayed by the F32 gate shown
on the top left of page 13. This delay is necessary to enable the data to mect the
write cycle data hold time requirements of the memories. '

The VP address pointer is implemented as a 16-bit up/down counter with F569
devices (page 13). The counter is loaded with data from the VPBUS. The load

+SMA<15> and SMA<14> are for expansion purposes, and will be used if the RAM array is changed to
64K-by-1 bit devices. '

SUN PROPRIETARY

microsystems

Revision 1 of 20 October 1986



Chapter 7 — Shared Memory (pages 13-14) 81

enable is controlled with the signal LDSMP* (load shared memory pointer) from
the VP destination logic. The counter can be cleared by the signal CLRSMP*
(clear shared memory pointer) from the VP miscellaneous controls. The counter
is enabled to count by the signal 2CNTSMP* (second cycle count shared
memory pointer). The direction of counting is controlled by the 2DNSMP*
(second cycle count down the shared memory pointer). When 2DNSMP* is a
logic low, the counter will count down. 2CNTSMP* and 2DNSMP* also come

from the VP miscellaneous controls logic.

When a shared memory data write is commanded by the VP, the actual write
occurs in the next VPCLK cycle. If the data write command is coincident with
the command to count the pointer, the data should be written and the pointer
counted after the write is completed (that is, write to the present location in the
pointer and then increment the pointer). If the command to count the pointer
occurs without the command to write data, then the pointer can be incremented
immediately. The logic in the VP miscellaneous control logic implements this to
generate the 2CNTSMP* and the 2DNSMP* signals. Data from the counter is
enabled to the memories when the signal PPCLKFR is a logic low (first half of

the VPCLK period).

The VP data in register is implemented with two F374 devices (page 13). The
F374 devices are loaded every VPCLK period with the data from the VPBUS.
The data is then loaded into the memories when the write enable is activated
(shared memory write control is discussed below). The data from the data in
register is enabled to the memories when the signal DVPCLK* (delayed
VPCLK) is a logic low (first half of the VPCLK period). DVPCLK* is just a
delayed version of the PPCLKFR signal—delayed by the F32 gate shown on the
top left of page 13. The delayed version of PPCLKFR signal is necessary to
meet the write cycle data hold time requirements of the memories.

The VP data out register (page 13) is used to hold and enable data from the
shared memory onto the VPBUS to be read by the VP. It is implemented with
two F374 devices. The data output from the memories, SMDO<15..00> (shared
memory data out), is loaded into this register every VPCLK period by the rising
edge of VPCLK1* (end of the first half cycle of the VPCLK period). The data
from the register is output to the VPBUS when the signal RDSM* (read shared
memory), from the VP source logic, is active.

The write enable into shared memory is controlled by the two F64 devices shown
on the bottom right of page 13. There are two write enable pulses—SMWEQ*
and SMWE1*—one for each bank of the RAM. This allows the VME to execute
byte-sized writes to shared memory; the VP always accesses both banks.

The basic write enable pulse shape is determined by the four delay lines shown
next to the F64 devices. There are two 17 ns and two 50 ns delay lines. One pair
of 17 and 50 ns delay lines combine to produce the write enable pulse for the VP
accesses and the other pair of 17 and 50 ns delay lines produce the write enable
pulse for the VME accesses. The two F86 gates on the output of the 17 ns delay
lines are used as inverters with one of their inputs tied to a pull up resistor.

The VP write enable pulse shape is formed by the PPCLKFR signal going to the
top 17 and the 50 ns delay lines. Generation of the VP write enable is started by

%%f ,_Sun o Revision'1 of 20 October 1986
QIIN DRADNPITTRNY




82

Engineering Manual for the Sun Graphics Processor

the PPCLKFR becoming a logic low. 17 ns later the output of the first delay line
becomes a logic low and is inverted to be a logic high going into the F64. The
output of the other delay line is a logic high since the 50 ns delay has not com-
pleted. If the DELLDSMD (delayed load shared memory data), from the VP
miscellaneous controls logic, is also a logic high then the three input AND gate
in the F64 will be activated and accordingly the output of thc F64 will goto a
logic low activating the SMWE* (shared memory write enable) signal. This con-
dition will be maintained until the output of the 50 ns delay goes to a logic low
deactivating the AND gate in the F64 and thereby deactivating SMWE*. So the
write enable pulse is active from 17 to 50 ns in the second half of the PPCLKFR
cycle (the first half of the VPCLKFR cycle) if the DELLDSM signal is active.

The VME write enable pulses are shaped in a similar way but with the signal
VPCLKFR as the input to the delay lines. The delay lines activate the input to
the F64 between 17 and 50 ns of the second half of the VPCLKFR cycle. If dur-
ing this time the signals SMACCESS*, WEGATE, and the appropriate data
strobe, DSO* or DS1*, signals are all active then the write enable to the RAM is
activated. If the VME access is a word access then both data strobes will be
active and if it is a byte access then only one of them will be active. The output
of the F64 devices are put through a series termination resistors before the RAM
to dampen the write enable signal.

SUN PROPRIETARY

Q?ﬁ sun ’ Revision 1 of 20 October 1986

microsystems



Viewing Processor (pages 15-17)

8.1.
8.2.
8.3.
8.4.
8.5.

Viewing Processor (Pages 15-17) ..o 85
INStrUCHON REGISIET | ..o 85
GenEral FICld ............oooooocoe e 85
VPBUS Source/Destination Decode ... 85
MICIOSEQUENCET ...............oooeooeeeeeemeeeeseeseeee oo ssseesseessssosssoeesnns 88
MICTOPTOCESSOT ... 90
VP Miscellaneous CONIOIS ... 92

8.6.

PRTETARY







8.1. Instruction Register

8.2. General Field

8.3. VPBUS
Source/Destination
Decode

4rsun

Viewing Processor (pages 15-17)

These three pages contain the basic elements of the Viewing Processor:
o the microprocessor,

o the microsequencer,

o the instruction register, and

o the VPBUS source/destination decode.

When reading the following section, it will be necessary to refer to the GP
Hardware Reference Manual, especially the section which describes the microin-
struction format. Also note, in the schematics, the great similarity of pages 15-17
with pages 25-27.

The instruction register (referred to as the *‘pipeline register’” in the AMD litera-
ture) is a 56-bit register holding the microinstruction currently being executed.
Almost everything that happens in this cycle is controlled by the contents of this
register. As shown on page 15, the instruction register is implemented with
seven F374 8-bit registers.

The instruction register input comes directly from the microstore. The output
bits are labeled VPIRS5S..VPIR0O. The register is loaded on each rising edge of
VPCLKO. This edge thus defines the end of one cycle and the beginning of the

next.

Bits VPIR00-VPIR1S5 are called the general field. With this field it is possible to
put assembly-time constants onto the VPBUS and route it to a selected VPBUS
destination. The ALS244 buffers (page 15) are used to perform this function.
VPIR00-VPIR1S are routed to VPBUS00-VPBUS1S (via the ALS244 buffers) if
enabled by the control signal VPRDGF*, a VPBUS source control signal.

The VPBUS source/destination combination is chosen by bits VPIR44-VPIR49.
These bits are decoded by the PALs on page 15 to generate control signals that
are routed to each source and destination. When a VPBUS source is enabled, the
selected subsection places its data word on the VPBUS. Then the selected
VPBUS destination strobes this data word into its subsection at the end of the
current cycle with the rising edge of VPCLK. The timing constraint is that for
each allowable source/destination combination, the source must place the data
word on the VPBUS early enough to meet the set-up time of the destination, and

Revision 1 of 20 October 1986

"“SUN PROPRIFTEDV



86

Engineering Manual for the Sun Graphics Processor

Table 8-1

@f

keep the data on the VPBUS long enough to meet the hold time. This constraint
is further complicated by the time variability of the rising edge of the
destination’s load strobe.

The VPBUS sources are decoded by the 16L.8 PALs at D2 and C3. These are
combinatorial PALs that merely decode the source/destination select bits. The
possible sources and the enables are listed below.

VP Bus Sources and Their Enables

Source Enable

General Field VPRDGF*
Interprocessor flags VPRDFLG*

(PP-t0-VP)
FIFO (PP-to-VP) VPRDFIFO*
Shared memory RDSM*
Floating-point status RDFPS*
VP PROM RDVPPM*
Floating-point data

register set A RDFPDA*

register set B RDFPDB*
Am29116 microprocessor  VPRD116*

Only the floating-point data is not a simple decoding of the instruction register
source/destination select bits. In this case a mode flag, FPFLAG, selects whether
register set A or B is to be enabled onto the VPBUS. The microinstruction to
fetch either register is the same; the microcoder has pre-defined the FPFLAG to
select the set. FPFLAG is stored in the JK* flip-flop at D3 of page 15.
FPFLAG=1 (reset state) selects register set A, and FPFLAG=0 selects register set
B. Note that bit 14 of the VPBUS is inverted before being input to the JK* flip-
flop so that flip-flop works like a standard JK.

The VPBUS destinations are decoded by the PAL at C3, and two F138s (3-to-8
demultiplexers). The PAL translates the instruction register encodings into
another encoding used by the F138s to generate the individual destination select
lines. There are two types of destination control signals, loads and load enables.

o Loads are ANDed with a clock and used directly to strobe the VPBUS into
the selected destination (for example, 374 registers).

o Load enables are not ANDed with a clock; their destinations have a direct
clock input plus the load enable (for example, 163 counters).

The VPBUS destinations and their controls are listed below. The figure follow-
ing shows the timing relationship of the destination controls.

SUN PROPRIETARY

sun Revision 1 of 20 October 1986

rmicroeystems



Chapter 8 — Viewing Processor (pages 15-17) 87

Table 8-2  VPBUS Destinations and Their Controls
Destination Control
Loads .
Am29116 microprocessor VPDLE
VP branch register VPLDBR*
FIFO (VP-to-PP) VPLDFIFO*
VP PROM pointer LDVPPM*
Interprocessor flags VPLDFLG*
(VP-to-PP)
VP status register VPLDSTAT*
Load enables
Shared-memory data LDSMD*
Shared-memory pointer LDSMP*
FIFO (VP-t0-PP) - VPLDFIFOL*
Floating-point pointers
source A pointer LDFPSA*
source B pointer LDFPSB*
destination LDFPDE*
Floating-point data LDFPDR*
VP n register VPLDN*
VP status register VPLDSTL*
Figure 8-1  Viewing Processor Destination Load Timing Diagram
Destination load signals
2XCLK1 | L |
VPCLK1* | I -
LOAD _ _
ENABLE* | I
LOAD* | |
NOTE  Skew delays not shown.
Some destinations have both a load and a load enable control—for example, the
VP status register. The load (VPLDSTAT™) is used as the clock signal to the
JK* flip-flop on page 15. The load enable (VPLDSTL*) is used as the load
enable to the ALS163 register (actually a counter used as a register) on page 23.
Thus, when the VP status register is chosen as the VPBUS destination, both the
ﬁ% sun Revision 1 of 20 October 1986

& e SUN PROPRIETARY'



88 Engineering Manual for the Sun Graphics Processor

8.4. Microsequencer

JK* flip-flop and the ALS163 register are updated.

RSTO* is input to the destination-generating PAL (at C3) and is used to inhibit
the generation of load signals while it is active.

FIFO1NFL* is also input to this PAL because the load FIFO signals,
VPLDFIFO* and VPLDFIFOL* should not be generated if the FIFO is alrcady
full.

As shown on page 16 of the schematics, the microsequencer is based on the
Am2910A microprogram controller. Inputs to this chip include a 4-bit instruc-
tion, a 12-bit data word, condition code control, and a clock. Output is a 12-bit
address used to fetch the next microinstruction. Further information on the
microsequencer may be found in the AMD data book.

The Am2910A instruction normally comes from bits VPIR40-VPIR43. The only
exception is when the VP is forced to begin execution at microstore location
zero. (The VP can be forced to begin execution at location zero with a write to
the GP control register via the VME bus.) The four AND gates on page 16 per-
form this function. If VPJZ* is inactive, VPIR40-VPIR43 are routed to the
Am?2910A instruction inputs. If VPJZ* s asserted, a binary zero (0000) is routed

to the Am2910A and a jump zero instruction (which also resets the Am2910A) is
executed.

Two possible sources can be routed to the Am2910A “‘D’’ inputs:
1. the VP branch register, or
2. the VP general field.

The general field provides assembly time constants while the branch register pro-
vides runtime values. If bit VPIRS54 is a 0, the general field is enabled. If
VPIRS54 is a 1, the branch register is enabled. The Am2910A uses this input as a
possible next microstore address or for internal use.

The branch register (upper left of page 16) is implemented with two F374 regis-
ters. It isloaded when it is chosen as the VPBUS destination by the VPLDBR*

signal. The general field comes directly from the VP instruction register and the
F244 buffers route VPIR00-VPIR11 to the Am2910A when enabled by VPIRS54.

The condition code logic selects a condition to test and determine whether or not
a jump condition passes or fails. Eight condition code flags are implemented.

5, SUN PROPRIETARY

S un Revision 1 of 20 Oclober 1986

microsystems



Chapter 8 — Viewing Processor (pages 15-17) 89

Tabie 8-3  Condition Code Logic

Condition Flag
Logic 1 (used for unconditional branches) PU2
Floating-point result negative FPNEG
FIFO (PP-to-VP) not empty FIFO2NMT
FiFO (VP-to-PP) not full FIFOINFL
Am?29116 result overflow VPOVR
Am29116 result carry VPCAR
Am?29116 result negative VPNEG
Am?29116 result zero VPZERO

The four Am29116 status flags are stored in the F163 register (the count capabil- -
ity is not used) at AS of page 16. If sc enabled by VPIRS2, the Am29116 status
for the current cycle is stored in this status register for use in a subsequent cycle.

One of the eight conditions is selected by the F151 multiplexer (B4 of page 16)
controlled by bits VPIR36-VPIR38. Either polarity of the test condition is then
generated by the XOR gate (VPIR39 selects the polarity) and routed to the CC*
input of the Am2910A. :

NOTE  CCEN* is not used on the Am2910A.

As explained earlier in the description of the microstore, the basic cycle is split
into two halves.

1. The first half is used to compute the address of the next microinstruction.
2. The second half is used to access the memory.

Thus the microsequencer has one half-cycle (60 nsec) to compute the next
address. The worst case path is the CC path: 3 nsec for clock skew, 10 nscc for
valid VPIR bits, 9 nsec S to Y* through the F151, 8 nsec through the XOR gate,
and 30 nsec CC* to Y in the Am2910A for a total of 60 nsec.t

The Am2910A provides 12-bit addresses (VPMSAQO-VPMSA11) and thus can
access 4K words of microinstructions. This was judged not to be enough, so a
bank switch capability augments this address space. The PAL at D2 is used to
implement this feature.

Inputs to the PAL include a clock, the 4-bit Am2910A instruction, and three
high-order ‘‘D’’ bits to provide the larger address from either the branch register
or the general field. If the Am2910A instruction is a jump zero, the PAL outputs
bank 0. If the Am2910A instruction is a jump map, the PAL outputs the bank
selected by the high-order ‘D’ bits. For these two cases, the new bank is
updated in the PAL and is used as the selected bank until the next jump zero or
jump map instruction. Otherwise, there is no change to the bank selected by the
PAL.

t Whew! That's tight!

SUN PROPRIETARY

/{% sun Revision 1 of 20 October 1986
microsystems



90 Engineering Manual for the Sun Graphics Processor

8.5. Microprocessor

On page 17 is the microprocessor, the Am29116. The Am29116 inputs include a
clock, a 16-bit instruction, a 16-bit (bidirectional) data bus, and three control sig-
nals (OEY*, DLE, and IEN*). Output are a 16-bit (bidirectional) data bus, and
four status flags (zero, carry, negative, and overflow). Refer to the AMD litera-
ture for further details.

The Am?29116 instruction comes from bits VPIR16-VPIR31. However, two
fields can be modified at runtime—the n field and the RAM field.

o The n field selects a bit position in a bit-oriented instruction or defines a shift
count in a shift instruction.

o The RAM field selects one of 32 on-board registers.

The n field value can be chosen at assembly time or at run time. If VPIR52is 0
then VPIR25-VPIR28 (assembly time value) is routed to the Am29116 instruc-
tion bits 9 to 12. If VPIR52 is a 1, then the n register value (run time value) is
routed to the Am29116 instruction. The F241 at D7 performs this multiplexing.

The RAM address field is modified to provide double address accesses—RAM
source and RAM destination can be different.

o If not doing a double address access, VPIRS1 is high and bits VPIR16-
VPIR 19 are routed to the Am29116 instruction bits 0-3 through the entire
cycle.

o If VPIRS1 is low, then VPIR16-VPIR19 are routed to the Am29116 for the
first half of the cycle and VPIR32-VPIR35 are routed to the Am29116 for
the second half. The F241 at B7 is used for this multiplexing. Because only
four of the five RAM address bits are modified, the RAM source and desti-
nation must be in the same group of 16, 0to 15 or 16 to 31.

To provide double address accesses, the IEN* line must be managed. If not
doing a double address access, VPIRS1 is high and the F74 at A7 is hcld clear so
that IEN* is low throughout the cycle. If a double address access is active, then
IEN* is as shown in the following two figures. The F32 at A8 sets the [IEN* D
flip-flop and the proper 2XCLK1* edge resets the signal.

SUN PROPRIETARY

sSun Revision 1 of 20 October 1986

microsystems



Chapter 8 — Viewing Processor (pages 15-17) 91

Figure 8-3

NOTE

@

2XCLK1* | I | ! !

VPCLK2 _| | |

VPCLK1* | | |

VPIR51 XXX X

IEN* | |

24ns 98ns

24 nsec easily meets the rising edge spec. 98 nsec exactly meets the worst casc
falling edge spec. ‘

Am29116 DLE Timing Diagram

VPCLK | |

VPCLK2 I |

VPDLEENBL* | |

VPDLE | |
98-122 nsec

The rising edge easily meets specifications. The falling edge can occur anywhere
in the above interval so that data must be valid at 88 (1o meet set-up time) and
stay until 128 (to meet hold time).

All times are referenced to VPCLK2.

The other two Am29116 control lines involve VPBUS activities. If the
Am29116 is chosen as the VPBUS source, VPRD116* is asserted enabling the
Am?29116 intemal Y bus onto the VPBUS. If the Am29116 is to be the destina-
tion of a VPBUS transaction, VPDLE is asserted and the VPBUS data is latched

sun Revision 1 of 20 October 1986

microsystems



92 Engineering Manual for the Sun Graphics Processor

8.6. VP Miscellaneous

Controls

Table 8§84

in the Am29116 internal D latch. The preceding figure shows the timing of
VPDLE. Note that VPDLE occurs early enough so that the Am29116 intemal D
latch can be considered transparent, and thus the VPBUS data can be used in the
current Am29116 cycle except when the Am29116 Y bus or the interprocessor
flag register (PP-to-VP) is the VPBUS source.

Also on page 17 arc the VPBUS pull-up resistors. They improve the rise times
of the VPBUS signals.

The miscellaneous controls (page 17) are a collection of unrelated commands.
They are controlled by VPIR32-VPIR3S and are enabled only if VPIRS]1 is high
(no double address access). These instruction bits are decoded by the PALS at
C1 and D1 to generate various command signals. A complication arises because
some of the commands are specified in the current cycle but must executed in a
subsequent cycle. The various commands and the control lines are as follows.

Miscellaneous Controls

Command Control Line
Clear shared-memory pointer CLRSMP*
Count shared-memory pointer 2CNTSMP*
direction control (up or down) 2DNSMP*
Count up floating-point pointers

source A UPFPSA*
source B UPFPSB*
destination 2UPFPDE*

The ALS374 register holds the bits that indicate that a command in this cycle
affects a future cycle. These include the following:

o  Load shared-memory — shared-memory write to be done in next cycle;
LDSMD is the current cycle signal;
DELLDSMD is the next cycle signal.

o Count shared-memory pointer — count to be done in next cycle if coincident
with a load shared-memory;

DNSMP* and CNTSMP* are the current cycle signals;
2DNSMP* and 2CNTSMP* are the current or next cycle signals.

o  Load floating-point data — floating-point data write to be done in next
cycle;

LDFPDR* is the current cycle signal,
DELLDFP is the next cycle signal.

o Count up floating-point destination pointer — count up to be done in next
cycle if coincident with a load floating-point data;

UPFPDE* is the current cycle signal;

SUHSUN PROPRIETARégmmfzoocmber 1986

microsystems



Chapter 8 — Viewing Processor (pages 15-17) 93

L

2UPFPDE* is the current or next cycle signal.

o  Floating-point high/low bit — least significant floating-point register address
bit must be remembered for one cycle if coincident with a load floating-point
data;

VPIRS0 is the current cycle signal;
DVPIRSO0 is the next cycle signal.
o Unload floating-point result — an unload most significant half of Weitek

result command, data will be valid in two cycles;
UNLOAD* is the current cycle signal;
UNLD2DEL* is the 2-cycles hence signal.

The commands CLRSMP*, UPFPSA*, and UPFPSB* are executed in the same
cycle they appear. Thus the PALSs decode the proper VPIR32-VPIR3S and
VPIR51 combinations to generate these control signals. The commands
2CNTSMP*, 2DNSMP*, and 2UPFPDE* may be executed in the current cycle
or the next cycle. The corresponding signals CNTSMP*, DNSMP*, and
UPFPDE* are decoded in the current cycle and will generate the 2CNTSMP*,
2DNSMP*, and 2UPFPDE* signals, respectively, in the current cycle if there is
no concurrent write or in the next cycle if there is a concurrent write.

The PAL outputs LDSMD and DELLDFP are merely inverted from the
corresponding inputs. Using these otherwise unused PAL paths saves inverter
gates.

The timing constraints on these signals are to meet the set-up times of the count
and direction enables. These constraints are easily met.

SUN PROPRIETARY

sun Revision 1 of 20 October 1986

microsystems






Floating Point (pages 18-22)

Floating POIN (DAGES 18-22) .o e 97
9.1 OVEIVIEW e 97
9.2. Detailed Description of the Floating Point Circuitry ... 08

Floating Point Addressing: Set A ... 98
Floating Point Registers: Set A ... ses, 99
Floating Point Addressing: SEtB ........eeeeesessreee. 100
Floating Point Registers: St B ... 100
Floating Point Chips, Status and Result Registers ... 100

SUN PROPRIETARY







9.1. Overview

Floating Point (pages 18-22)

Pages 18-22 contain the floating-point subsection. Pages 18 and 19 show register
set A with pointers, and pages 20 and 21 show register set B. (Note the similar-
ity between these two sets of pages.) Page 22 contains the Weitek floating-peint
chips, the 1032 and 1033.

The floating-point subsection operates in parallel with the Am29116. The gen-
eral field (VPIROO-VPIR09), VPIRS0, and VPIRSS are used to specify the float-
ing point operation. These operations are listed below.

1. Start a floating point operation

fp_register(source A) OP fp register(source B)

fp result OP fp register(source B)

fp _register(source A) OP Weitek internal B register
fp_result OP Weitek internal B register

. OP fp_register(source A)

. OP fp_result

2. fp_result --> fp register(destination)

H O QOO0 w

The floating-point subsection can be involved in a VPBUS transaction. The per-

tinent operations are listed below.

3. VPBUS --> source A pointer

4. VPBUS --> source B pointer

5. VPBUS --> destination pointer

6. fp_register --> VPBUS
a. fp register(source A) --> VPBUS
b. fp_register(source B) --> VPBUS

7. VPBUS --> fp register(destination)
8. Floating-point status register --> VPBUS

The fp_register(pointer) is the contents of the floating-point register addressed by
the indicated pointer and fp_result is the Weitek chip result.

It is possible to do operations 1, 2, and one of operations 3 to 7 in the same cycle.
However, 2 and 7 must not be executed together (two sets of drivers would be
driving the inputs to the floating-point registers simultaneously). Also, the com-
bination of 1 and 6 is unlikely since both use the same pointer.

tFor further information, please see the Weitek literature for OP selection.

S lﬁ;JN PROPB IE TARYRevision 1 of 20 October 1986

microsystems



98 Engineering Manual for the Sun Graphics Processor

9.2. Detailed Description of
the Floating Point
Circuitry

Floating Point Addressing: Set
A

@

Two sets of floating-point registers are provided, each implemented with four
4K-by-4 chips. The sets are duplicates and the same data are written into both;
the only time they will be different is on power-up, when their contents will be
indeterminate.

Four 4K-by-4 chips provide 4K 16-bit words and all accesses are 16-bits wide.
However floating-point numbers are 32 bits wide, so access to a floating-point
number requires two accesses to the floating-point registers. The three
pointers—source A, source B, and destination—point to a floating-point number.
Thus another bit is needed to reference each 16-bit half of the floating-point
number. This bit is VPIRSO0, the high/low bit. The high/low bit must be
specified for all of the above listed operations.

All floating-point operations use the floating-point registers. The Weitek chip
operands come from these registers and Weitek chip results are (eventually)
routed back to the registers. And the other VP components (the Am29116
microprocessor, the shared-memory, the FIFO, etc.) access these registers, since
the Weitek chips are not directly accessible via the VPBUS.

During each cycle, three accesses are made to the floating-point registers—two
reads and an optional write.

During the first half of a cycle, the source A pointer is enabled to floating-point
registers set A and the source B pointer is enabled to set B, and the two reads are
executed. The fetched values are latched and are available for routing onto the
VPBUS or to the Weitek chips during the second half of the cycle. If VPBUS
source is the floating-point data register, the FPFLAG (see page 15) determines
whether set A or set B will be used as the data source. The Weitek chips typi-
cally use two operands, hence the need for floating-point register set A and set B.

During the second half of a cycle, allocation is provided for a write to the
floating-point registers. The destination pointer is routed to both set A and set B
and the same write enable is used for both sets. Thus the sets are duplicates.
Source of the data to be written is either the Weitek result or the VPBUS. If the
Weitek chips are the source, the write is done in the current cycle. If the VPBUS
is the source, the data word is first latched and then written into the register sets
on the next cycle. This is required because the VPBUS-sourced data arrive t0o
late to meet the set-up time of the 4K-by-4 memory chips.

Page 18 contains the source A and destination pointers. (There are two destina-
tion pointers, one for register set A and one for set B. But the same data, load,
and count contro!l signals are used on both pointers so that they are duplicates.
Replicates of the circuits are necessary because the set A and set B address buses
cannot be tied together.)

F569s—4-bit counters with tri-state outputs—are used to implement the pointers.
VPBUS00-VPBUSI11 are the data inputs, providing 2K address space; (FPAA11
is not used; VPIRS50 is the 12th address bit to the 4K memory chips). LDFPSA*
is used to load the source A pointer and UPFPSA* is used to count the pointer.
LDFPDE* is used to load the destination pointer and 2UPFPDE* is used to count
the pointer. Both counters are hardwired to count only up. During the first half

Revision 1 of 20 October 1986

==SUN PROPRIETARY



Chapter 9 — Floating Point (pages 18-22) 99

Floating Point Registers: Set

A

CAUTION

@

of each cycle, VPCLK3* is used to enable the source A pointer to FPAA—the

address bus to floating-point register set A. During the second haif of each cycie,
VPCLK3 is used to route the destination pointer to FPAA.

Floating-point data register set A is shown on page 19. Four 2169 memory
chips, each 4K-by-4, are used to build the 4K-by-16 memory. Eleven of the
twelve address lines come from the source A and destination pointers and the
least significant address bit, FPALSB, is generated by the F64 at D1. (This sig-
nal will be described more fully later.)

The F374s on this page provide temporary data storage to meet timing con-
straints. The F374s at C7 and C4 are the VPBUS data-in registers. On every
cycle, the contents of the VPBUS are strobed into these registers for (possible)
subsequent write into the floating-point registers. VPCLK3 delayed by a F32
gate becomes FPDCLK to load these registers. The delay is necessary to ensure
that the contents of the these F374s do not change too soon and violate the hold
time to the 2169 chips. (It also means that each VPBUS source must hold the
data on the VPBUS a little longer.) FPLDENBL* enables these F374s to the
2169s during a write (see page 22 of the schematics).

The F374s at A7 and A4 are used to hold the Weitek result. They are loaded on
every VPCLK3* even if there is no valid result, but the F374 output is routed to
the 2169s (enabled by FPSTENBL* from page 22) only if a write is active.

The F374s at CS and C2 and the F374s at AS and A2 are loaded with the data
read from floating-point register set A in the first half of each cycle; VPCLK3* is
the load strobe. The floating-point data out register A (C5 and C2) is connected
to the VPBUS for possible use as a VPBUS source (selected by the signal
RDFPDA* from page 15). The A operand register (A5 and A2) is a possible
source of the Weitek chip A operand (the current Weitek result is the other possi-
ble source) and is selected by the NOCHAIN* signal from page 22.

The F64 at D1 is used to generate the least significant address bit, FPALSB, to
both set A and set B of the floating-point registers. During the first half of each
cycle, VPCLKA4 is logic 1 so that VPIRS50 is selected as the FPALSB. During the
second half of each cycle, VPCLK3* is logic 1 so that either VPIRS0 or
DVPIRS0 (VPIRS50 from the previous cycle) is selected as FPALSB. DVPIRS0
is selected if the floating-point registers were selected as the VPBUS destination
in the previous cycle (DELLDFP is logic 1), and VPIRSO0 is selected otherwise.
This complication is necessary because when the floating-point registers are
chosen as the VPBUS destination, the actual write is done in the next cycle so
that VPIRSO0 (the high/low select bit) must be remembered and used in the next
cycle.

The microcoder must realize this occurs and not attempt to write the Weitek
result into the floating-point registers in the cycle immediately after the
floating-point registers are chosen as the VPBUS destination.

SUN PROPRIETARY

sun vision 1 of 20 October 1986

microsystems



100  Engineering Manual for the Sun Graphics Processor

Floating Point Addressing: Set
B

Floating Point Registers: Set
B

Floating Point Chips, Status
and Result Registers

Page 20 contains the source B and destination pointers. They are similar to those
of set A, on page 18.

F569s—4-bit counters with tri-state outputs—are used to implement the pointers.
VPBUSOO-VPBUSI11 are the data inputs, providing 2K address space; (FPBA11
is not used; VPIRS0 is the 12th address bit to the 4K memory chips). LDFPSB*
is used 10 load the source B pointer and UPFPSB* is used 1o count the pointer.
LDFPDE* is used to load the destination pointer and 2UPFPDE* is used to count
the pointer. Both counters are hardwired to count only up. During the first half
of each cycle, VPCLK4* is used to enable the source B pointer to FPBA, the
address bus to floating-point register set B. During the second half, VPCLK3 is
used to route the destination pointer to FPBA.

Floating-point data register set B is shown on page 21 (note the similarity
between pages 19 and 21). Four 2169 memory chips, each 4K-by-4, are used to
build the 4K-by-16 memory. Eleven of the twelve address lines come from the
source B and destination pointers and the least significant address bit, FPALSB,
is generated on page 19.

The F374s on this page provide temporary data storage to meet timing con-
straints. The F374s at C7 and C4 are the VPBUS data-in registers. On every
cycle, the contents of the VPBUS are strobed into these registers for possible
subsequent write into the floating-point registers. FPDCLK (page 19) is used to
load these registers. The delay is necessary to ensure that the contents of these
F374s do not change too soon and violate the hold time to the 2169 chips. (It
also means that each VPBUS source must hold the data on the VPBUS alittle
longer.) FPLDENBL* enables these F374s to the 2169s during a write (see page
22).

The F374s at A7 and A4 are used to hold the Weitek result. They are loaded on
every VPCLK4* even if there is no valid result, but the F374 output is routed to
the 2169s (enabled by FPSTENBL* from page 22) only if a write is active.

The F374s at CS and C2 and the F374s at AS and A2 are loaded with the data
read from floating-point register set B in the first half of each cycle; VPCLK4* is
the load strobe. The floating-point data out register B (C5 and C2) is connected
to the VPBUS for possible use as a VPBUS source (selected by the signal ‘
RDFPDB* from page 15). The B operand register (AS and A2) is a possible
source of the Weitek chip B operand (the internal Weitek B register is the other
source) but is always enabled.

. Page 22 contains the Weitek floating-point chips, the 1032 Multiplier and 1033

ALU. (See the manufacturer’s literature for details.) The two chips are basically
wired in paralle! and thus can be viewed as a single entity. The exceptions arc
UIMULT* and U1ALU* which select which chip will enable its output, and F3
and F2 on the multiplier which must be O (except on a load mode operation) or it
will enter a diagnostic state.

The buses connected to the Weitek chips are as follows:

o  WTKAOO0 to WTKA15 — A operand bus from Weitek result or A operand
register;

ﬁ% gg“S!SUN PROPRTETAR?M 1 of 20 October 1986



Chapter 9 — Floating Point (pages 18-22) 101

@

o WTKBO0O to WTKB15 — B operand bus from B operand register;
o WTKCO00 to WTKC15 — C (result) bus to the 3 Weitek result registers.

The F374s at D2 and C2 store the Weitek result for possible routing back to the
Weitek chips as the A operand. This Weitek A operand source is enabled by a
chain operation (CHAIN* asserted), which is generated by the PAL at A8.

Th: 16R6A PALs at B2 and A2 are used to decode the Weitek status bits
(82..80), store this status, and make the bits available when the floating-point
status is chosen as VPBUS source. The B2 PAL is for the non-accrued status and
the A2 PAL is for accrued status.

Floating-point status is updated each time the most significant half (so that the
sign bit is valid) of the Weitek result is read. This occurs two cycles (because of
the Weitek pipelining) after an ‘‘unload the most significant word of the result’’ -
command. Such a command is decoded from VPIRO1, VPIR0Z, and VPIRSS by
the PAL at A8 (signal UNLOAD¥*). The unload is remembered for two cycles on
page 17, is retumned as the signal UNLD2DEL*, and is input to the floating-point
status PALs to enable the update. The signal RDFPS* enables the floating-point
status onto the VPBUS and also clears the accrued status (hence RDFPS* is both
an input and an enable on the A2 PAL). Since the PAL outputs are active low,
the complement of the floating-point status is placed onto the VPBUS (and is
easily inverted in the Am29116).

The F163 at A3 is used to hold the sign bit of the last Weitek result. It is routed
to the condition code logic thus allowing the microcoder to test on the sign of the
floating-point result. This status bit is updated at the same time as the floating-
point status PALSs; that is, when enabled by the signal UNLD2DEL*.

The PAL at A8 and the F64 at A6 are the control logic for the floating-point sub-
section. The PAL generates the following signals from the indicated VP instruc-
tion register bits.

o WTKL1 — Weitek L1 load command

o  WTKLO — Weitek L0 load command

o  MULTF3 — Weitek multiplier F3 function code

o MULTF2 — Weitek multiplier F2 function code

o UNLOAD* — High-order Weitek result will be available in 2 cycles

o CHAIN* — The Weitek A operand is to come from the current Weitek
result '

o NOCHAIN* — The Weitek A operand is to come from floating-point regis-
ter set A

o FPSTORE — The Weitek result should be written into floating-point regis-
ter sets A and B

The F64 and associated F32s generate the write enable to the 2169s
(FPREGWR*) and the data enables to the F374s (FPLDENBL* and
FPSTENBL*) which select and enable the data to be written to the 2169s.

Revision 1 of 20 October 1986

sun g
==SUN PROPRIFTA DY



102

Engineering Manual for the Sun Graphics Processor

4¥sun

VPCLK* goes to a logic 1 early in the second half of each cycle. FPDCLK is
inverted by the FO4 at A7 and goes to a logic 0 just before the end of a cycle.
Therefore ANDing these two signals generates a pulse during the second half of a
cycle; the F64 performs this AND. Actually this 2-way AND is two 3-way
ANDs. FPSTORE, VPCLK*, and FPDCLK inverted are ANDed signifying that
the Weitek result is to be written into the floating-point registers, and DELLDFP,
VPCLK*, and FPDCLK inverted are ANDed signifying that VPBUS data should
be written. In the F64 these two 3-way ANDs are ORed to generate
FPREGWR¥*. The series resistor minimizes ringing on this critical signal.
FPREGWR* is then used to generate the data enables selected by which opera-
tion is active; DELLDFP* selects FPLDENBL* and FPSTORE inverted selects
FPSTENBL*.

SUM PRODRIETA DY

"% ‘Revision 1 of 20 October 1986

rosystems



VP Miscellaneous Logic (page 23)

VP Miscellaneous LOZIC (PALZE 23) .o 105
101, VPPROM oo sesssssess s s eresesesssersees s 105
102, VP IUREZISIET oot sosesmsses s 105
10.3. InterproCesSOr FIaZS #1 . . oo sseseneesesesesesenee 105
10.4. VP Status ReZISIET ... oo seesseee s 106

SUN PROPRIETARY







10.1. VP PROM

10.2. VP n Register

10.3. Interprocessor Flags
#1

@

VP Miscellaneous Logic (page 23)

The Viewing Processor miscellaneous logic includes:
o the VP PROM,

o the VP nregister,

o the interprocessor flags #1 (VP-to-PP),

o and VP status register.

The Viewing Processor PROM (an identical configuration exists as the PP
PROM on the Graphics Buffer board) is shown on page 23. The VP PROM
pointer is loaded when chosen as the VPBUS destination. LDVPPM* strobes the
VPBUS into the F374s which hold the PROM pointer. The output of this regis-
ter is routed to the PROM, and after an access time delay, the PROM data word
is valid and routed to the ALS244 buffers. (ALS244 buffers are needed because
of the long chip enable time of MOS PROMS.) This data word is routed onto the
VPBUS when enabled by RDVPPM*.

On the GP board, two 28-pin sockets are provided for the PROMs. 27128
PROMs are being used to provide 16K words.

The n register is implemented with a F163 counter (page 23) but the count func-
tions are not used. VPBUS00-VPBUSO3 bits are loaded into the counter on the
rising edge of VPCLK2 (end of a cycle) if selected as the VPBUS destination by
VPLDN*. The n register is multiplexed into the Am29116 instruction stream on
page 17.

This register passes eight flags from the VP to the PP along with three other
flags. An ALS374 (page 23) is used to hold the eight flags that are written by the
VP. The register is loaded from the VPBUS00-VPBUSO7 bus by VPLDFLG*.

There are three other flags which can be read by the PP through an ALS244 (C2
on page 23) device.

o PPTOVP comes from the FIFO direction flip-flop (page 24) and it indicates
the direction of FIFO data flow. When PPTOVP is a logic high the FIFO is

The actual time depends on type of PROM used; the microcoder must acoount for this time by delaying
the proper number of cycles before choosing the VP PROM as the VPBUS source.

nSUN’ PRQOIS’RIETARY

Revision 1 of 20 October 1986

Ssu

microsystems



106  Engineering Manual for the Sun Graphics Processor

10.4. VP Status Register

@

passing data from the PP to the VP.

o SFIFOMT* signal comes from the FIFO (page 24) and, when active, indi-
cates that all the words from the actual FIFO devices have been read. Note
however that this does not necessarily mean that the processor receiving the
FIFO data has read all the data. It is possible for the last FIFO data to be
read out and be available on the output of the FIFO devices waiting for the
processor to read it. For that situation the SFIFOMT* signal will be active
while the data is waiting to be read by the processor.

o The last flag on the ALS244 is always loaded as 1—PUQ. This allows the
PP microcode to read this register and, seeing the logic 1 in the ninth
(PPBUSOS) bit position, determine that this is the PP,

These 11 flags are enabled onto the PPBUS with PPRDFLG*.

The VP status register is implemented with an ALLS163 counter but the count
functions are not used. VPBUS00-VPBUSO03 are loaded into the counter on the
rising edge of VPCLK2 (end of a cycle) if selected as the VPBUS destination
(VPLDSTL¥*). The 4 outputs are routed to the GP status register (page 6), acces-
sible via the VME bus, and to 4 LEDs. Note that the LEDs are configured so that
if a counter bit is O (for example, after a reset), the corresponding LED is ON.

SunSUN PROPRIETAR:

microsystems

ssion 1 of 20 October 1986



FIFO (page 24)

FIFO (page 24) 109

SUN PROPRIETARY






- FIFO (page 24)

The FIFO is a 512-by-16-bit buffer used to pass information bidirectionally
between the PP and the VP. The FIFO and its associated circuitry is shown on
page 24 of the schematic.

The actual FIFO is implemented using 4501—512-by-9 FIFO—devices. The
two FIFO devices are hooked up for width expansion to provide a 512-by-18-bit
FIFO. Notice that two of the 18 bits are not used because both the VP and the PP
have 16-bit data buses. The 4501 devices are cleared through their RS/ pins by
the signal RST1* (reset 1) from the reset circuit on page 5. This will deactivate
the two outputs from the devices: EF/ (empty flag) and FF/ (full flag).

The direction of the FIFO is controlled by a signal called PPTOVP (FIFO is
passing data from the PP to the VP) and its complement VPTOPP (FIFO is pass-
ing data from the VP to the PP.

There are two write registers: one for the VP, and one for the PP. The processors
write the data destined for the FIFO into these write registers. The data is then
written from the registers to the FIFO devices under control of the FIFO write
control. The write registers are implemented with ALS374 devices. The output
enables of the two registers are controlled by the signals PPTOVP (and its com-
plement VPTOPP) so that only the output of one of them at a time is enabled
onto the FIFO data in bus, FIFOD15..00. When VPTOPP is active (PPTOVP is
inactive) the VP write register drives the FIFOD bus. When PPTOVP is active
(VPTOPP is inactive) the PP write register drives the FIFOD bus. The VP write
register is loaded with the data on the VP bus when the signal VPLDFIFO* from
the VP destination logic is activated. The PP write register is loaded with the
data on the PP bus when the signal PPLDFIFO* from the PP destination logic is
activated.

The direction flag, PPTOVP, is held in an F109 flip-flop which is controlled by
the VP. The flip-flop is set or reset when the destination of the VP bus cycle is
the VP flag register, indicated by the signal VPLDFLG* being active. When
VPLDFLG* is active, PPTOVP (and VPTOPP) is set, reset, or left unchanged—
as determined by the VPBUS bits 15 and 14.

There are two FIFO read buffers, one for the VP and one for the PP, that are used
to route the data output from the FIFO to the respective processor’s data bus.
The data output from the FIFO devices is named FIFOQ15..00 and is input to
both the read buffers. The read buffers are implemented with ALS244 devices.
The FIFO data output is enabled from the input of the VP read buffer to the

%@ S un 109 Revision 1 of 20 October 1986

microsystems

a"" L o LW N N o



110

Engineering Manual for the Sun Graphics Processor

@su

VPBUS when the signal VPRDFIFO* from the VP source logic is activated. The
FIFO data output is enabled from the input of the PP read buffer to the PPBUS
when the signal PPRDFIFO* from the PP source logic is activated.

The FIFO has two output flags which are used by the FIFO control logic.
o EF/(empty flag). when active, indicates that there is no data in the FIFO.
o FF/ (full lag), when active, indicates that the FIFO is full.

When data is written into the FIFO, the FF/ flag may become active in the
amount of time noted in the specification of the 4501 device. Similarly, when
data is read from the FIFO, the EF/ flag may become active in the amount of time
noted in the specification of the 4501 device. These two flags are seen as asyn-
chronous signals to the FIFO read and write control logic, which works synchro-
nously with 2XCLK. Both of these flags are, therefore, synchronized to 2XCLK,
using an F74 shown in section A4 of page 24, before being input to the FIFO
control logic. The synchronized version of FF/ and EF/ are SFIFOFULL (syn-
chronized FIFO full) and SFIFOMT (synchronized FIFO empty), respectively.

FIFO write control senses when one of the processors has loaded data into the
write register, generates the write pulse (WR*) to the FIFO, and controls the sig-
nals that are sent back to the processor to indicate the status of the FIFO. The
FIFO write control is implemented with a state machine and logic contained in a
16R4A PAL and an F74 shown in the lower left of page 24. The write control
looks at the signal VPTOPP to determine which of the processors can write to the
FIFO. When the processor writes data to the FIFO write register, the synchron-
ized full flag, SFIFOFULL, is inspected to determine whether the data can be
written to the FIFO devices. If the FIFO is not full then the data is written
immediately; if it is full the control logic waits until it is not full and then writes
data to the FIFO devices. When the processor writes data to the FIFO write regis-
ter, the FIFO write control deactivates the FIFO not full flag until the data is writ-
ten to the FIFO devices.

There are two flags, one for the VP and one for the PP, that are used by the pro-
cessors as status flags when doing writes to the FIFO. The signal FIFOINFL
(FIFO 1 not full) is used by the VP processsor when doing writes to the FIFO.
The signal FIFO2NFL (FIFO 2 not full) is used by the PP processor when doing
writes to the FIFO. Only one of the processors— VP or PP—can write to the
FIFO at any one time.

When one of the processors is writing to the FIFO its appropriate signal
(FIFOINFL or FIFO2NFL) is valid; the signal for the other processor is kept in a
constant state in which it signals that the FIFO is not full, as in the following:

o when going from VP to PP the signal PPTOVP keeps FIFO2NFL in its
active state;

o  when going from PP to VP the signal VPTOPP keeps FIFOINFL inits
active state.

By keeping FIFONFL flag in its active state when the FIFO is tumed the other
way, the software is kept from hanging if an erroneous write to the FIFO is exe-
cuted. FIFOINFL and FIFO2NFL, when they are valid, are controlled by the

Revision 1 of 20 October 1986

~~SUN PROPRIETARY



Chapter 11 — FIFO (page 24) 111

@

signal FULL from the write control state machine in the PAL on page 24.

The state machine has four staies. The staie machine is in state A when the wriie
data register is empty and, therefore, there is no data to write into the FIFO.
When data is written to the write data register, the state machine goes to state B
and may possibly wait there if the FIFO is full and the data can not be written to
the FIFO devices. If the FIFO is not full (or becomes not full) the state machine
goes to state C and then D activating the write enable signal to the FIFO, WR*.
The state machine goes from state D back to state A which completes the write

cycle.

The state diagram for the FIFO write state machine is shown in Figure 15 in the
appendix.

In the text below are three timing diagrams for writes to the FIFO.

SUN PROPRIETARY

Ssun Revision 1 of 20 October 1986

microsystems



112 Engineering Manual for the Sun Graphics Processor

Figure 11-1  FIFO Write Timing Diagram— VP to PP

FIFO passing data from the VP to PP, consecutive writes with
SFIFOFULL never becoming active.

STATE MACHINE
STATE A A B C D A B C D A B
2XCLK1 [ U U U U R U A U R SO A U B S R S

VPCLK1 I ! I I I | I | ! I | !

PPCLK1 I | | I I ! ! | !

VPTOPP

VPLDFIFOL* | l I I 1

PPLDFIFOL*

SFIFOFULL

FULL | | | |

WR* I I | I [

FIFOINFL I | I | |

FIFO2NFL

SUN PROPRIETARY

f{% sun : Revision 1 of 20 October 1986

microsystems



Chapter 11 — FIFO (page 24)

113

Figure 11-2  FIFQ Write Timin

FIFO passing data from the VP to PP, consecutive writes with
SFIFOFULL active for a time during the first write.

STATE MACHINE
STATE a A B B B B B c D A B
2XCLK1 AN N VU M S R NS R VU T S RS TS E DRSS U S S R S

VPCLK1 | I | | | I I I

PPCLK1 | ! I ! I | I I | I !

VPTOPP

VPLDFIFOL* | | f

PPLDFIFOL*

SFIFOFULL

FULL | |

WR* | |

FIFOINFL | | |

FIFO2NFL

SUN PROPRIETARY

Q@ §c un Revision 1 of 20 October 1986

r08Y516mMS



114 Engineering Manual for the Sun Graphics Processor

Figure 11-3  FIFO Write Timing Diagram—PP to VP

STATE MACHINE
STATE A A B C D A B C D A B

2XCLK1 SR N U N U Y U NN NN A FUUN SN NN SRS SR S SN N NN

VPCLK1 | | | ! I I ! ! I l

PPCLK1 | l | | | | | |

VPTOPP

VPLDFIFOL*

PPLDFIFOL* | | | | | |

SFIFOFULL

FULL ! | [

WR* T I I |

FIFOINFL

FIFO2NFL | ! | ] |

SUN PROPRIETARY

f{% Ssun Revision 1 of 20 October 1986

microsystems



_Chapter 11 — FIFO (page 24) 115

@

When the signal RST1* (reset) becomes active the FIFO write state machine
goes 10 staie A, waiting for one of the processors to write data to the FIFO write
register. The signal VPTOPP is input to the state machine for determining which
of the processors can write to the FIFO.

o If VPTOPP is active (FIFO data is going from the VP to the PP), the signal
VPLDFIFOL* (VP load FIFO, level) is sampled to determine when the
FIFO write register has data in it.

o If VPTOPP is not active (FIFO data is going from the PP to VP), the signal
PPLDFIFOL* (PP load FIFO, level) is sampled 1o determine when the FIFO
write register has data in it.

VPLDFIFOL* and PPLDFIFOL* are signals that are active for a whole PPCLK
or VPCLK period. Because the data from the VP or the PP bus is not going to be
written until the end of the PPCLK or the VPCLK period, the state machine
(which operates with 2XCLK) must synchronize its operation to the correct
phase of PPCLK or VPCLK. So when PPLDFIFOL* or VPLDFIFOL* becomes
active and VPCLK or PPCLK are a logic high, the state machine will stay in
state A one more 2XCLK cycle then go to state B.

When going from state A to B, the state machine will activate the signal FULL,
which deactivates one of the FIFONFL signals—depending on which processor
is writing. Deactivating the FIFONFL signal notifies the processor that a write
operation is in process and that it should not try to do any more writes until this
one is complete. When going from state A to B the signal WR* may also be
activated depending on SFIFOFULL.

o If SFIFOFULL is not active, indicating that the FIFO has room in it to write
data, then the WR* signal will be activated.

o If SFIFOFULL is active, indicating that the FIFO is full, the state machine
will not activate WR*

If SFIFOFULL is active the state machine will stay in state B, asserting FULL,
until SFIFOFULL becomes inactive. When SFIFOFULL is deactivated, the state
machine will synchronize to the correct phase of VPCLK or PPCLK and then
activate WR*, VPCLK/PPCLK are synchronized so that the FULL signal is
deactivated at the correct time with respect to PPCLK and VPCLK.

When WR* becomes active in state B the state machine goes to state C, and then
to state D, while activating WR* for one last 2XCLK period. From state D the
state machine goes directly to state A. The extra 2XCLK period delay caused by
going through state D to state A is used synchronize the state machine to either
PPCLK or VPCLK so that if it should get to state A and find another write opera-
tion pending, it can go immediately to state B, starting another write operation.

When data is available from the FIFO, the FIFO read control reads the data out
of the FIFO by activating the signal RD (from the PAL at A2 on page 24) then
signals the processors that FIFO data is available. It is implemented with a state
machine and logic contained in a 16R4A PAL and an F74 shown in the bottom
right of page 24. The FIFO read control senses that there is data available from
the FIFO when the signal SFIFOMT goes inactive. When RD is activated, data at

m,.(!ms UN P R OPRIE T ARYision 1 of 20 October 1986



116

Engineering Manual for the Sun Graphics Processor

the top of the FIFO is available at the FIFOQ bus. At this time one of the two
flags, FIFOINMT (FIFO 1 not empty) or FIFO2NMT (FIFO 2 not empty), is
activated. The FIFONMT signal is sensed by the processor which reads the data
through its read buffer. When the processor reads the data, the state machine
activates the appropriate FIFONMT signal (saying that the FIFO does not have
any data available now) until it reads more data from the FIFO when it is avail-
able.

The two signals FIFOINMT and FIFO2NMT are used by the PP and the VP,
respectively, as indication that data is available to be read from the FIFO. Only
one of them is valid at a time, determined by which way the FIFO is turned,
while the other one is kept in its active state (indicating that the FIFO is not
empty so that the software will not hang in the case of an incorrect read).

o If VPTOPP is active (FIFO is from VP to PP), then FIFOINMT is valid
while FIFO2NMT is kept in its active state.

If PPTOVP is active (FIFO is from PP to VP), then FIFO2NMT is valid
while FIFOINMT is kept in its active state.

a

These two signals are kept in their active state (indicating that there is data avail-
able from the FIFO) when not valid so that the software will not hang if the pro-
cessor that should be writing to the FIFO erroneously tries to read from the FIFO.
When valid, the FIFONMT signals are controlled by the signal EMPTY from the
read control state machine.

The state diagram for the FIFO read control state machine is shown in Figure 17
of the appendix.

In the text below are four FIFO read timing diagrams.

SUN PROPRIETARY

”(}?/ §cll n Revision 1 of 20 October 1986
Tosystems

yst



Chapter 11 -— FIFO (page 24)

117

Figure 114 FIFO Read Timing Diagram—VP 10 PP

FIFO passing data from the VP to PP, consecutive reads with
SFIFOMT never becoming active.

STATE MACHINE
STATE A A B C D E F F B c D E F F B C D

2XCLK1 TN T T e Y U T O Y O Y T Y T O B T A

VPCLK1 I ! I ! | | I ! ! I I [ | I I I I

PPCLK1 [ | ! | 1 | [ | I [ | | 1

VPTOPP

VPRDFIFO*

PPRDFIFO* | | | |

SFIFOMT |

EMPTY [ ] ! ! ]

FIFO1NMT

FIFO2NMT I | | | |

SUN PROPRIETARY

f(ﬁ% sun Revision 1 of 20 October 1986

microsystems



118 Engineering Manual for the Sun Graphics Processor

Figure 11-5  FIFO Read Timing Diagram—PP to VP

FIFO passing data from the PP to VP, consecutive reads with
SFIFCMT never becoming active.

STATE MACHINE
STATE A A B C D E F F B C D E F F B C D
2XCLK1 [ U U T O O T S Y U O U O T DO B

VPCLK1 ! | | | ! ! i ! I

PPCLK1 | f ! [ I ! I I ! I I | | ! I

VPRDFIFO* | | | | !

PPRDEIFO*

SFIFOMT

EMPTY ] f ! ] l

FIFO1NMT : I | | ! l

FIFOZNMT

SUN PROPRIETARY

/{% sun : Revision 1 of 20 October 1986

microsystems



Chapter 11 — FIFO (page 24) 119

STATE MACHINE
STATE

2XCLK1 |

FIFO passing data from the PP to VP, data from FIFO is available
but processor does not read it immediately.

VPCLK1 |

PPCLK1

VPTOPP

VPRDFIFO*

PPRDFIFO*

SFIFOMT |

EMPTY

FIFO1INMT

FIFO2NMT

SUN PROPRIETARY

4 sun

microsystems

Revision 1 of 20 October 1986



120  Engineering Manual for the Sun Graphics Processor

Figure 11-7  FIFO Read Timing Diagram—PP to VP

FIFO passing data from the PP to VP, data from FIFO is read
causing SFIFOMT to become active, processor reads data, delay
until SFIFOMT becomes inactive.

STATE MACHINE

STATE A A B C D E F A A A A A A A B C D
2XCLK1 (N T U T T e T T e T T Y T Y Y Y U O N A
VPCLK1 | | | | | | | I I | |

PPCLK1 { | | | I | I | | | I | !

VPTOPP

VPRDFIFO* I [

PPRDFIFO*

SFIFOMT | I I

EMPTY | | |

FIFOLNMT [ | |

FIFOZ2NMT

SUN PROPRIETARY

Q\% Ssun Revision 1 of 20 October 1986

microsystems



_Chapter 11 — FIFO (page 24) 121

The signal VPTOPP dctermines whether to look at the input signals from the VP

or the PP.

o When VPTOPP is active only the read signal PPRDFIFO* and PPCLK from
the PP is valid, while VPRDFIFO* and VPCLK are ignored.

o When VPTOPP is not active only the read signal VPRDFIFO* and VPCLK
from the VP is valid while PPRDFIFO* and PPCLK are ignored.

The state machine stays in state A if the FIFO is empty while asserting the
EMPTY signal. When the FIFO has data in it, then the signal RD is activated and
the state machine goes to state B and then C. In state C, EMPTY is deactivatcd
because the data from the FIFO is available at its output to be read by the proces-
sor. The state machine keeps RD activated and goes to state D and then E. It
waits in state E for the processor to read the data. When the processor reads the
data, it goes to state F. If the FIFO has more data in it, the state machine goes 1o
state B from F to start another read cycle. If the FIFO is empty the state machine
goes to state A from F.

A sample process goes something like this:

1. when the signal RST1* (reset) is activated, the state machine goes to state
A.

2. The state machine stays in state A as long as the FIFO is empty—keeping
EMPTY activated. SFIFOMT, when active, indicates that the FIFO is

empty.

3. When SFIFOMT becomes deactivated, the state machine synchronizes to
the correct phase of VPCLK or PPCLK—determined by VPTOPP—and
activates RD. (This synchronization ensures that EMPTY is deactivated on
the correct phase of PPCLK or VPCLK when going from state Cto D.)

. . . ~
When RD is activated, the state machine goes to state B and then to state C.

N

From state C the state machine goes to state D while deactivating EMPTY.
In state E it waits for the processor to read the data.

The processor reads the data by activating VPRDFIFO* if VPTOPP is inac-
tive, or PPRDFIFO* if VPTOPP is active.

8. The state machine synchronizes to the correct phase of VPCLK or PPCLK
and goes to state F while activating EMPTY again.

9. When in state F, the signal SFIFOMT is again sampled to see if the FIFO
has more data to be read.

10. If SFIFOMT is active, it indicates that there is no more data in the FIFO at
this time and the state machine goes to state A.

11. If SFIFOMT is not active, indicating that there is more data in the FIFO to
be read, the state machine activates RD and stays in state F one more clock
cycle and then goes to state B starting another read cycle.

N o »

f{?f SUHSUN PROPRIETARXmIonOOcmMI%QS

microsystems



Painting Processor (pages 25-27)

12.1.
12.2.
12.3.

Painting ProCesSOr (DAGES 25-27) ...
INStUCHON REZISIET .....oooooooooeeee e st ese e sees e
General Field .. . ... e mer e eeeseeasesssanne
PPBUS Source/Destination DeCOAe ..o,
PP MICTOSEQUENCET ..o eesmeess e sore s

12.4.
12.5.
12.6.

MICTOPTOCESSOT ..o s

Miscellaneous Controls

SUN PROPRIETARY







12.1. Instruction Register

12.2. General Field

12.3. PPBUS
Source/Destination
Decode

Painting Processor (pages 25-27)

Pages 25-27 contain the basic elements of the Painting Processor—the micropro-
cessor, the microsequencer, the instruction register, and the PPBUS
source/destination decode. When reading the following section, it will be neces-
sary to refer to the GP Hardware Reference Manual, especially the section that
describes the microinstruction format. Also note the great similarity of schemat-
ics pages 15-17 with pages 25-27.

The instruction register (referred to as the pipcline register in the AMD literature)
is a 56-bit register holding the microinstruction currently being executed.

Almost everything that happens in this cycle is controlled by the contents of this
register.

As shown on page 25, the instruction register is implemented with seven F374
8-bit registers. The instruction register input comes directly from the microstore.
The output bits are referred to as PPIR0OO to PPIRSS. The register is loaded on
each rising edge of PPCLKO. This edge thus defines the end of one cycle and the
beginning of the next.

Bits PPIR00O-PPIR15 are called the general field. With this field it is possible to
put assembly time constants onto the PPBUS and route it to a selected PPBUS
destination. The ALS244 buffers are used to perform this function. Bits
PPIR0O0-PPIR 15 are routed to PPBUSO0-PPBUSIS if enabled by the control sig-
nal PPRDGF*, a PPBUS source control signal.

The PPBUS source/destination combination is chosen by PPIR44-PPIR50.
These bits are decoded by the PALs on page 25 to generate the control signals
that are routed to each source and destination. When a PPBUS source is enabled,
the selected subsection places its data word on the PPBUS. Then the selected
PPBUS destination strobes this data word into its subsection at the end of the
current cycle (rising edge of PPCLK). The timing constraint is that for each
allowable source/destination combination, the source must place the data word
on the PPBUS early enough to meet the set-up time of the destination, and keep
the data on the PPBUS long enough to meet the hold time. This constraint is
further complicated by the time variability of the rising edge of the destination’s
load strobe.

The PPBUS sources are decoded by the 16L8 PAL at D2. This is a combina-
torial PAL that decodes the source/destination sefect bits. The possible sources

- e —— . —— et —— - e

ﬁ» sun——"" N Revision 1 of 20 October 1986

"‘”"’"‘""‘SUN PROPRIETARY



126

Engineering Manual for the Sun Graphics Processor

Table 12-1

Table 12-2

@

and the enables are listed below.

PP Bus Sources and Their Enables

Source Enable
Am29116 microprocessor PPRD116*
Interprocessor flags PPRDFLG*

(VP-10-PP)
General Field PPRDGF*
FIFO (VP-to-PP) PPRDFIFQ*
Scratchpad memory RDSPAD*
VME status register RDVMES*
VME data register RDVMED*

There are other PPBUS sources on the Graphics Buffer beard and they arc
decoded by the PAL on page 30.

The PPBUS destinations are decoded by the PALs at C3 and B3 and the F138, a
3-10-8 demultiplexer. There are two types of destination control signals—loads,

and load enables.

o

Loads are ANDed with a clock and are used directly to strobe the PPBUS
into the selected destination (for example, 374 registers).

The load enables are not ANDed with a clock; these destinations have a
direct clock input plus the load enable (for example, 163 counters).

The PPBUS destinations and their controls are listed below.

PPBUS Destinations and Their Controls

~ Destination Control

Loads

Am29116 microprocessor PPDLE

FIFO (PP-to-VP) PPLDFIFO*

PP branch register PPLDBR*

Interprocessor flags PPLDFLG*

(PP-to-VP)

VME data register LDVMED*

VME interrupt id register LDIID*

VME control register LDVMEC*
Load enables -

Scratchpad memory pointer LDSPPTR*

Scratchpad memory (data) LDSPAD*

VME high address register ~LDVMEHADR*

VME low address register LDVMELADR*

PP status register PPLDSTAT*

PP n register PPLDN*

FIFO (PP-to-VP) PPLDFIFOL*

VME interrupt id register LDIIDL*

SUISUK PROPRIETARY

ion 1 of 20 October 1986



Chapter 12 — Painting Processor (pages 25-27) 127

Figure 12-1

NOTE

Other destinations, corresponding to the Graphics Buffer board, are decoded by
the PAL on page 30.

Some destinations have both a load and a load enable control—for example, the
VME interrupt identification register. The signal LDIID* loads the ALS374 that
is used as the VME interrupt vector (page 29), while the signal LDIIDL* enables
the setting of a flip-flop on the rising edge of PPCLK2. This flip-flop is used to
initiate the VME interrupt cycle (page 31).

RST1* is input to the PALSs (at page 25 location B3 and C3) io prevent the gen-
eration of load enables when RST1* is active.

Other signals are input to the B3 PAL to prevent overwrites and other such
hardware faults:

o VMEBUSY* is used to inhibit writes to the VME data register or VME con-
trol register when the VME subsection is still busy with the previous opera-
tion;

o FIFO2NFL* is used to prevent writes to the FIFO when it is full.

o The signal ZBUFRDY* is used to inhibit the SETZBBSY * signal.
SETZBBSY* is generated if the graphics buffer is the PPBUS destination
(encodings of the PPIR PPBUS source/destination bits). This signal is used
to set the ZBUFRDY signal signifying that the graphics buffer is busy and
another operation should not be initiated until the active one completes
(page 30 of the schematics).

The.F138 (at A2 of page 25) is used to generate the load-type destination signals.
2XCLK1 and PPCLK1* create the properly-shaped load pulse as shown in the
figure below. The PPIR bits are translated into another encoding of the PPBUS
destinations by the PAL at B3. Then these signals, PPDESTO* to PPDEST2*,
are routed to and decoded by the F138 to generate the load signals.

Painting Processor Destination Load Timing Diagram

Destination load signals

2XCLK1 | i I !

PPCLK1* | | |

LOAD —

ENABLE* | |

LOAD* I !

Skew delays not shown.

SUN PROPRIETARY

Revision 1 of 20 October 1986



128  Engineering Manual for the Sun Graphics Processor

12.4. PP Microsequencer

As shown on page 26 of the schematics, the PP microsequencer is based on the

Am?2010A microprogram controller. Inputs to this chip include a 4-bit instruc-

tion, a 12-bit data word, condition code control, and a clock. Output is a 12-bit
address used to fetch the next microinstruction.

The Am2910A instruction normally comes from bits PPIR40-PPIR43. The only
exception is when the PP is forced to begin execution at microstore location zero.
(The PP can be forced to begin execution at location zero with a write to the GP
control register via the VME bus.) The four AND gates on page 26 perform this
function.

o Ifno PPJZ* is active, PPIR40-PPIR43 are routed to the Am2910A instruc-
tion.

o IfPPJZ* is asserted, zero is routed to the Am2910A and a jump zero instruc-
tion (which also resets the Am2910A) is executed.

Two possible sources can be routed to the Am2910A ‘‘D’’ (data) inputs—the PP
branch register or the PP general field. The general field provides assembly time
constants while the branch register provides runtime values. If PPIR54 is a 0, the
general field is enabled. If PPIR54 is a 1, the branch register is enabled. (See
also the 3-way branch described below.) The Am2910A uses this input as a pos-
sible next microstore address or for internal use.

o  The branch register is implemented with two F374 registers. It is loaded
when it is chosen as the PPBUS destination by the PPLDBR* signal and is
routed to the Am2910A by PPENBR*.

o The general field comes directly from the PP instruction register and the
F244 buffers route PPIR0OO to PPIR11 to the Am2910A when enabled by
PPENGF*.

The condition code logic selects a condition to test and determine whether or not
a jump condition passes or fails. Eight condition code fiags are impiemented.

Table 12-3  Condition Code Logic
Condition Flag
VME ready VMERDY
Graphics buffer ready ZBUFRDY
FIFO (VP-to-PP) not empty  FIFOINMT
FIFO (PP-to-VP) not full FIFO2NFL
Am?29116 result overflow PPOVR
Am29116 result carry PPCAR
Am?29116 result negative PPNEG
Am29116 result zero PPZERO
The four Am29116 status flags are stored in the F163 register (whose count capa-
bility is not used) at AS. If so enabled by PPIRS3, the Am29116 status for the
current cycle is stored in this status register for use in a subsequent cycle.
One of the eight conditions is selected by the F151 multiplexer controlled by
PPIR36 to PPIR38. Either polarity of the test condition is then generated by the
%\% Su Revision 1 of 20 October 1986

~~SUN PROPRIETARY



Chapter 12 — Painting Processor (pages 25-27) 129

XOR gate (PPIR39 selects the polarity) and routed to the CC/ input of the
Am2910A.

Notice that unlike the VP, there is no logic 1 as one of the branch conditions.
However, unconditional branches are still necessary. PPIRSS is used as the
Am2910A CCEN* bit. If PPIR55=1, the Am2910A executes the pass condition.
If PPIR55=0, the selected condition code determines the pass/fail condition of
the Am2910A.

Another difference between the VP and PP is the 3-way branch ability. If a 3-
way branch is enabled, the hardware first determines if the VME section is busy;
if so, it jumps to the location specified in the general field (usually the current
instruction). If the hardware determines that the VME is not busy, it executes the
‘‘normal’” Am2910A instruction. If this ‘*‘normal’’ instruction is a 2-way
branch, then effectively the hardware has executed a 3-way branch.

3-way branch works as follows. The microinstruction must conform to:

PPIR55 = 0
PPIR54 =1
PPIRS1 =1

PPIR33 to PPIR35 = 111

If the VME is busy (VMEBSY=1), then the AS30 at A2 is asserted (output is
equal to zero) and this causes:

1. PPCCEN 1o be high, and the Am2910A executes a pass,
2. PPENBR* not to be asserted, and
3. PPENGF* to be asserted enabling the PP general field to the Am2910A.

If an Am2910A conditional jump instruction, for example, is being executed, the
condition passes and the PP will jump to the address contained in the general
field.

If the VME is not busy (VMEBSY=0), then the AS30 is not asserted (output is
equal to one) and this causes:

1.  PPCCEN to be low (since PPIR55=0) and the Am2910A will pass or fail
based on the selected condition code,

2. PPENBR* to be enabled (since PPIR54=1) and the branch register is routed
to the Am2910A, and

3.  PPENGF* not to be asserted.

If an Am2910A conditional jump instruction, for example, is being executed, the
selected condition code will determine the pass/fail state and the PP will either
jump to the address contained in the branch register or continue with the next
sequential instruction.

As explained earlier in the microstore description, the basic cycle is split into two
halves. The first half is used to compute the address of the next microinstruction,
and the second half is used to access the memory. Thus the microsequencer hay
one half-cycle (60 nsec) to compute the next address. The worst case path is the



130 Engineering Manual for the Sun Graphics Processor

12.5. Microprocessor

4rsun

CC path: 3 nsec for clock skew, 10 nsec for valid PPIR bits, 9 nsec Sto Y*

through the F151, 8 nsec through the XOR gate, and 30 nsec CC* 10 Y in ihe

Am?2910A for a total of 60 nsec.

The Am2910A provides 12-bit addresses PPMSAQO-PPMSA11) and thus can
access 4K words of microinstructions. This was judged not to be enough, so a
bank switch capability augments this address space. The PAL at D2 on page 26
is used to implement this feature.

The inputs to the PAL include a clock, the Am2910A instruction, and three
high-order ‘‘D’’ bits to provide the larger address from either the branch register
or the general field.

o Ifthe Am2910A instruction is a jump zero, the PAL outputs bank 0.

o Ifthe Am2910A instruction is a jump map, the PAL outputs the bank
selected by the high-order *‘D’’ bits.

For these two cases, the new bank is updated in the PAL and is used as the
selected bank until the next jump zero or jump map instruction. Otherwise, there
is no change to the bank selected by the PAL.

On page 27 is the microprocessor, the Am29116. The Am29116 inputs include:
o aclock,

o a 16-bit instruction,

o a 16-bit (bidirectional) data bus, and

o three control signals (OEY*, DLE, and IEN*).

Output are

o a 16-bit (bidirectional) data bus, and

o four status flags (zero, carry, negative, and overflow).

The Am29116 instruction comes from PPIR16-PPIR31. However, two fields can
be modified at runtime—the n field and the RAM field. The n field selects a bit
position in a bit-oriented instruction or defines a shift count in a shift instruction.
The RAM field selects one of 32 on-board registers.

The n field value can be chosen at assembly time or at run time.

o IfPPIRS2 is O then PPIR25-PPIR28 (assembly time value) is routed to
Am?29116 instruction bits 9-12.

o IfPPIRS2 is a 1, then the n register value (run time value) is routed to the
Am?29116 instruction.

The F241 at D7 of page 27 performs this multiplexing.

The RAM address field is modified to provide double address accesses; that is,
the RAM source and destination can be different. If not doing a double address
access, PPIRS1 is high and bits PPIR16-PPIR 19 are routed to the Am29116
instruction bits 0-3 through the entire cycle. If PPIRS1 is low, then PPIR16-
PPIR 19 are routed to the Am29116 for the first half of the cycle and PPIR32-

Rev1s1on 1 of 20 October 1986

¥ e SUN PROPPIFTA



Chapter 12 — Painting Processor (pages 25-27) 131

Figure 12-2

Figure 12-3

@

PPIR3S5 are routed to the Am29116 for the second half. Because only four of the
five RAM address bits are modified, the RAM source and destination must be in
the same group of 16, 0-15 or 16-31. The F241 at B7 of page 27 is used for this

multiplexing.

To provide double address accesses, the IEN* line must be managed. If not
doing a double address access, PPIRS1 is high and the F74 at A7 is held clear so
that IEN* is low throughout the cycle. If a double address access is active, then
IEN* is as shown in the figure below. The F32 at A8 sets the IEN* D flip-flop
and the proper 2XCLK1* edge resets the signal.

Am29116 Double Address Timing Diagram

2XCLK1* | | | | |

PPCLK1 _| l l

PPCLK1* | i |

PPIRS1 XXX X

IEN* ! |
24ns 98ns

24 nsec easily meets the rising edge spec. 98 nsec exactly meets the
worst case falling edge spec.

Am29116 DLE Timing Diagram
Am29116 DLE timing

PPCLK | | j

PPCLK1 | ] |

PPDLEENBL* | I

PPDLE I I

98-122 nsec

JIN¥ PROPRIETARY

microsystiems

Revision 1 of 20 October 1986



132 Engineering Manua! for the Sun Graphics Processor

12.6. Miscellaneous
Controls

The rising edge easily meets specifications. The falling edge can occur anywhere
thna tnemral o ‘3 . O

in the above interval so that data must be valid ai 88 (io meet set-up time) and
stay until 128 (to meet hold time).

NOTE  All times are referenced to PPCLK .

The other two Am29116 control lines involve PPBUS activities. If the Am29116
is choscn as the PPBUS source, PPRD116* is asserted enabling the Am29116
internal Y bus onto the PPBUS. If the Am29116 is to be the destination of a
PPBUS transaction, PPDLE is asserted and the PPBUS data is latched in the
Am29116 internal D latch. The figure above shows the timing of PPDLE. Note
that PPDLE occurs early enough so that the Am29116 intermal D latch can be
considered transparent, and thus the PPBUS data can be used in the current
Am?29116 cycle except when the Am29116 Y bus or the interprocessor flag regis-
ter (VP-to-PP) is the PPBUS source. ‘

Also on page 27 are the PPBUS pull-up resistors. They improve the rise times of
the PPBUS signals. '

The miscellaneous controls are a collection of unrelated commands. They are
controlled by PPIR32-PPIR35 and are enabled only if PPIR51 is high (no double
address access). These instruction bits are decoded by the PAL at D2 of page 27
to generate various command signals. A complication arises because some of the
commands are specified in the current cycle but must executed in a subsequent
cycle. The various commands and the control lines are as follows:

Table 12-4 PP Miscellaneous Controls

Command Control Line
Count VME address registers CNTVME*
direction control (up or down) - DNVME*
Clear scraichpad-memory pointer CLRSPDP*
Count up scratchpad-memory pointer 2CNTSPDP
Start VME read or write operation STRTVME
select write VMEWR*
Start graphics buffer read ZBFSTRTRD*

The F374 register holds the bits that indicate that a control in this cycle affects a
future cycle. These include the following:

o Load scratchpad-memory — scratchpad-memory write to be done in next
cycle; '

LDSPAD* is the current cycle signal;
DELLDSPAD* is the next cycle signal.

o Count scratchpad-memory pointer — count to be done in next cycle if coin-
cident with a load scratchpad-memory;

CNTSPDP* is the current cycle signal;

SUN PROTRIZTARY

R‘ei\ﬁsion 1 of 20 October 1986



Chapter 12 — Painting Processor (pages 25-27) 133

A\

f\% S

2CNTSPDP is the current or next cycle signal.

The commands CNTVME*, DNVME*, CLRSPDP*, STRTVME, VMEWR*,
and ZBFSTRTRD* are executed in the same cycle in which they appear. The
PAL decodes the proper PPIR32-PPIR3S and PPIRS1 combinations to generate
these control signals. The command 2CNTSPDP may be executed in the current
cycle or the next cycle. The corresponding signal CNTSPDP* is decoded in the
current cycle and will enable 2CNTSPDP in the current cycle if there is no con-
current write or in the next cycle if there is a concurrent write.

The signal VMEBUSY* is used to inhibit the initiating of a VME operation, read
or write, if a VME operation is already active. The signal ZBUFRDY* is used to
inhibit the start graphics buffer read if the graphics buffer is already busy.

The signal ZBFSTRTRD* is used to initiate a graphics buffer read and set the .
graphics buffer flag to busy (see page 30). The signal is routed to the Graphics
Buffer board through the P2 connector row A.

The timing constraints on these signals are to meet the set-up times of the count
and direction enables. These constraints are easily met.

Su[,{N PROPRIETARY

Revision 1 of 20 October 1986

microsystems






Scratchpad Memory (page 28)

Scratchpad Memory (page 28) ... 137

SUN PROPRIETARY






Scratchpad Memory (page 28)

On page 28 of the schematics are the scratchpad pointer, the scratchpad-memory,
and the registers necessary to meet the timing constraints of the PPBUS and the
2169 memory chips. Using 4K-by-4 memory chips, the size of the scratchpad is
4K-by-16 (4 Kwords).

The scratchpad pointer is implemented with four F163 counters. The PPBUS is
the input to these counter chips and they are clocked on the rising edge of
PPCLK1 (end of a cycle) if load-enabled by LDSPPTR*. The counters are incre-
mented on the rising edge of PPCLK1 if 2CNTSPDP is asserted and cleared on
the rising edge of PPCLK1 if CLRSPDP* is asserted. The counter outputs arc
routed to the 2169 memory chips.

During the first half of a cycle (except cycles where a write is active—see
below), the scratchpad memory is read and the fetched data word is loaded into
the scratchpad data out register, implemented with two F374s at A4 and A2.
These registers are loaded on the rising edge of PPCLK1* (the middle of every
cycle) and are routed onto the PPBUS if enabled by RDSPAD*.

At the end of every cycle, the contents of the PPBUS are loaded into the
scratchpad data in register, implemented with two ALS374s at AS and A3. If the
current cycle selected the scratchpad as the PPBUS destination, then the write is
executed in the next cycle. During the next cycle, DELLDSPAD* will be
asserted and this signal will set the flip-flop at A7 and trigger the write enable.
This write enable is also used to enable the data in register onto the memory chip
data bus. Thus the data word captured in the previous cycle is written into the
scratchpad. The figure below illustrates the write timing.

SUN PROPRIETARY

sun 137 Revision 1 of 20 October 1986

microsystems



138 Engineering Manual for the Sun Graphics Processor

1V 4

Figure 13-1 PP Scraichpad Memory Write Timing Diagram

2XCL¥1 | | ! | f

2XCLK1* I ! | | |

PPCLK1 r ! |

PPCLK1* | ! |

DELLDSPAD¥* XXX X

WRITE ENBL* | |

NOTE  Clock skews not accurately shown.

The scratchpad write cannot be executed in the same cycle the data word is on
the PPBUS because PPBUS data cannot meet the set-up times required by the
2169 chips.

CAUTION  Garbage is loaded into the scratchpad data out register during write cycles
so that the microcoder should not execute a scratchpad read in the cycle
immediately following a scratchipad write.

SUN PROPRIETARY

D
%@ S u n Revision 1 of 20 October 1986

MICtosystems



T

PP Miscellaneous Logic (page 30)

PP Miscellaneous LOZIC (PAGE 30) ... seeseressesesseen 141
14.1. PP n Register et e AR AR R e s st 141
14.2. Interprocessor FIags #2 ..o R 141
14.3. PP Status REZISIET ... ..o sssss s 142
14.4. PP BUS EXIETISION _....ooocoooooooovovove e sesssss oo sssss s 142

SUN PROPRIETARY






NOTE

14.1. PP n Register

14.2. Interprocessor Flags
#2

PP Miscellaneous Logic (page 30)

In the remaining sections, the terms ‘‘Graphics Buffer’’ and ‘'G Buffer’’ are
synonymous.

The Painting Processor miscellaneous logic includes:
o the PP n register,

o the interprocessor flags #2 (PP-t0-VP),

o the PP status register, and

o the PP bus extension logic.

The n register is implemented with a F163 counter but the count functions are
suppressed. PPBUS00-PPBUSO03 are loaded into the counter on the rising edgé
of PPCLK2 (end of a cycle) if selected as the PPBUS destination (signal
PPLDN*). The n register is multiplexed into the Am29116 instruction stream on
page 27.

This register passes eight flags from the PP (along with three other flags) to the
VP. An ALS374 is used to hold the eight flags that are written by the PP. The
register is loaded from PPBUSO0-PPBUS(Q7 when the signal PPLDFLG* is
asserted. There are three other flags which can be read by the VP thmugh the
AL.S244 device.

o PPTOVP comes from the FIFO direction flip-flop (page 24) and indicates
the direction of FIFO data flow. When PPTOVP is a logic high the FIFO is
passing data from the PP to the VP.

o  SFIFOMT* signal comes from the FIFO (page 24) and, when active, it indi-
cates that all the words from the FIFO devices have been read. Note how-
ever that this does not necessarily mean that the processor receiving the
FIFO data has read all the data. It is possible for the last FIFO data to be
read out, and be available on the output of the FIFO devices waiting for the
processor to read it. In this case the SFIFOMT* signal will be active while
the data is waiting to be read by the processor.

o  The last flag on the ALS244 is always loaded as 0. This allows the VP
microcode to read this register and, seeing the logic 0 in the ninth bit posi-
tion, determine that this is the VP.

SUN PROPRIETARY

S. u n Revision 1 of 20 October 1986



142 Engineering Manual for the Sun Graphics Processor

These 11 flags are enabled onto the VPBUS with VPRDFLG*.

14.3. PP Status Register The PP status register is implemented with an ALS163 counter but the count
functions are not used. PPBUS00-PPBUSO3 are loaded into the counter on the
rising edge of PPCLK2 (end of a cycle) if selected as the PPBUS destination (by
PPLDSTAT*). The 4 outputs are routed to the GP status register (page 6), acces-
sible via the VME bus, and to 4 LEDs. Note that the LEDs are configured so that
if a counter bit is O (for example, after a reset), the corresponding LED is on.

14.4. PP Bus Extension The PP bus extension contains the logic necessary to extend the PP bus to the
Graphics Buffer. This allows the PP to access the resources of the Graphics
Buffer which includes the G buffer memory, integer multiplier, and the PP
PROM. The PP bus extension logic includes the G buffer flag, the PP bus exten-
sion decode, and the PP bus extension transceivers.

The PP bus extension consists of the PP data bus, some control signals, and the

clock signals PPCLKZB and 2XCLKZB. These signals are put through the P2

connector to the Graphics Buffer board and provide the communication channel
between the PP and the Graphics Buffer.

The G buffer flag, ZBUFRDY (and its complement ZBUFRDY*), is simply a
handshake signal between the PP and the G buffer memory. ZBUFRDY is held
in an F109 device shown in the top right of page 30. ZBUFRDY is deactivated,
through the J input of the F109, whenever the PP requests an operation to be
done to the G buffer memory. ZBUFRDY is deactivated when the signal
ZBFSTRTRD*, from the PP miscellaneous controls, or the signal SETZBBSY*,
from the PP destination logic, become active. The PP processor looks at
ZBUFRDY signal through its condition code logic to determine if the G buffer
has completed the present transaction (ZBUFRDY inactive means the G buffer is
still busy with the transaction).

When the G buffer memory completes the requested transaction, it activates the
signal STZBUFRDY* which activates the ZBUFRDY. Additionally, if the G
buffer board is not installed, jumper J7 on page 6 section C8 is not installed, and
ZBRDENBL* is a logic high. ZBRDENBL* being a logic high keeps
ZBUFRDY always active (this keeps any erroneous accesses to the G buffer
memory when the Graphics Buffer board is not installed from hanging the
software).

The PP bus extension transceivers are used to buffer PP bus data sent to and
received from the Graphics Buffer over the P2 connector. The extension of the
PP bus data bits PPBUS15-00 going to the Graphics Buffer is named ZBUS15-
00. The F245 devices are used to implement the transceiver. The outputs of the
F245s are disabled by keeping the enable pin at a logic high when ZBRDENBL*
is at a logic high. This prevents the GP from driving the P2 connector if the
Graphics Buffer is not installed. The direction of the transceivers is controlled
by the signal ZBRDIR* from the PP bus extension decode PAL. When
ZBRDIR* is active the ZBUS is driving the PPBUS.

The PP bus extension decode is implemented with a 16L8A PAL shown in the
bottom right of page 30. It decodes the source/destination of the PP bus if it

» | isi f 20 October 1986
©2MSUN PROPRIETARY ™"



Chapter 14 — PP Miscellaneous Logic (page 30) 143

applies to an access to the Graphics Buffer. If the signal ZBRDENBL*, from th.
jumper J7 on page 6, is not active (that is, jumper is not installed, therefore the
Graphics Buffer board is not installed), then the destination signals going to the
P2 connector are tri-stated. This prevents the GP from mistakenly driving the P2
connector when the Graphics Buffer is not installed.

The PAL decodes the PPIR source destination field to produce the following
Graphics Buffer destination signals.

o ZBRDIR* is used to control the PP bus extension transceivers direction.

o The signal RDMP* (read multiplier) enables the result from the Integer Mul-
tiplier onto the ZBUS.

o RDPPPM* (read PP PROM) signal is used to enable the data from the PP
PROM onto the ZBUS.

o RDZBUF* (read G buffer) is used to enable the data from the G buffer
memory read data register onto the ZBUS.

o The signals ZDEST2* (G buffer destination 2), ZDEST1*, and ZDESTO0*
are an encoding of the possible destinations of the ZBUS. The ZDEST sig-
nals are encoded as follows:

ZDEST

210 DESTINATION

6 oo no destination

001 G buffer high address pointer
010 G buffer low address pointer
011 multiplier mode register
100 G buffer write data register
101 PP PROM pointer

110 multiplier x operand

111 multiplier y operand

The signals ZDEST2*, ZDEST1*, ZDEST0* and RDZBUF* can only be active
if the ZBUFRDY signal is active. This prevents the G buffer from loading the
data from the ZBUS or starting another G buffer memory operation until the
current one is complete.

SUN PROPRIETARY

/{?f sun Revision 1 (;f 20 October 1986

microsystems






Graphics Buffer Board

Graphics Buffer Board ... 147
15.1. Connectors and MiSCELlangous ..............co.ermermsrnscenserses e 149
15.2. Destination DECOUE ............ccmeoeneeorsernssnsonssssmsss s 149
15.3. G Buffer Memory Registers 150
15.4. Graphics Buffer MEMOTY ..o eseess s sssss s 151
15.5. Graphics Buffer Memory Control I & )

Graphics Buffer/GP Interface Signals ..., 153
Graphics Buffer Control State Machine ..o, 156
RAS and CAS GENETatioN ... 169
Row/Column Address MUlipleXer ..., 171
Refresh Timer and Refresh Address Counter ..., 172
15.6. INMEZET MUIIPIICT ..o seeeese e seeeesesssseressessessnesseesse 173

SUN PROPRIETARY







Graphics Buffer Board

The Graphics Buffer communicates with the GP through signals on the P2 con-
nector. The Graphics Buffer includes the destination decode, G buffer memory
registers, G buffer memory, G buffer memory control, integer multiplier, and the
PP PROM. The figure below shows the block diagram of the Graphics Buffer
board. The following section discusses the Graphics Buffer board and accord-
ingly all the schematic page references apply to the Graphics Buffer schematic.

SUN PROPRIETARY

%@ S u n 147 Revision 1 of 20 October 1986

microsysterms



148  Engineering Manual for the Sun Graphics Processor

Figure 15-1  Graphics Buffer Block Diagram

N

G Bufier
STZBUFRDY* Timing G Buffer
and 2M-by-16
Control DRAM
Destnation Select | Destination
Decode —— D1 16 N6
Source Select
PPCLKZB Adt:lress g:l: Read
PP BUS Pointer Reg. Data Reg
Extension
(PZ) 2XCLKZB
5 16 6 116
Data L
p 16 16 41 6 14 A6
Y X PROM PROM
Operand Operand Pointer Buffer
Reg. Res. Result
Mode Reg. 8 eg Buffer
f1a 16
16 A6
5 16 PROM
16K-by-16
Tnteger Multiplier Y
J&vb sun Revision 1 of 20 October 1986
microsystems

CTITT DDAADDITT X D>




Chapter 15 — Graphics Buffer Board 149

15.1. Connectors and
Miscellaneous

15.2. Destination Decode

¢

Page 1 is the title page, listing revisions, spares, PAL and PROM part numbers
cross referenced to the IC designations on the schematic and other notes.

Page 2 shows the three 96-pin connectors that interface the Graphics Buffer
board to the backplane. The Graphics Buffer uses rows A and C of the P3 con-
nector for power input and uses row A of the P2 connector as the private bus
between itself and the GP.

The Graphics Buffer does not use the VME bus and therefore the four bus grant
daisy chain lines (BG0-BG3) are merely bused across the Graphics Buffer board.
The interrupt acknowledge daisy chain line (IACK) is similarly bused in order
not to break the daisy chain.

The bulk and decoupling capacitors are shown on page 3. One decoupling cap is
used for approximately each pair of TTL chips (14-, 16-, or 20-pin); the actual
number is based on the printed circuit board layout. One cap per memory chip is
allocated, and one cap per >20-pin chip is provided.

The ground test points are merely wire loops consisting of jumpers spread out on
the PC board to allow for convenient ground connections for a scope probe, etc.
Page 4 of the Graphics Buffer schematic contains the:

o destination decode,

o reset,

o pull-up and pull-down resistors, and the

o free-running PPCLK.

The destination decode is implemented with an F138, 3-t0-8 decoder. The desti-
nation signals ZDEST2*, ZDEST1*, and ZDESTO* are input to the select lines
of the decoder while the enable lines are controlled by PPCLKZB and
2XCLKZB. The decoded outputs are active in the second half of the PPCLKZB
cycle when 2XCLKZB is a logic low similar to the load signals in the GP desti-
nation logic. The signals that are output from the destination decode are:

LDZPNTRE* Load G buffer high pointer (MSBs)
LDZPNTRL* Load G buffer low pointer (LSBs)

LDMMREG* Load multiplier mode register
LDZBUF * Load G buffer write data register
LDPPPROM* Load PP PROM

LDMXOP * * Load multiplier X operand

LDMYOP * Load multiplier Y operand

The reset for the Graphics Buffer is activated from two sources, the VME bus
signal P1.SYSRESET* (system reset) and a jumper tied to a pull-up for a manual
reset. Note that a trace has been routed through this jumper so that a header and
a jumper is not necessary. The reset circuit is in the top left comer of page 4 and
produces the signal RST*.

Su §UN PROPE&IE TARKViSiOﬂ 1 of 20 October 1986

microsystems



150 Engineering Manual for the Sun Graphics Processor

The Graphics Buffer uses pull-up and pull-down signals (in place of direct con-
nection to +5 and ground) to facilitate ATE testing. The pull-up and pull-downs
are shown in the lower left comer of page 4.

A free-running clock is produced on the Graphics Buffer for refresh of the G
buffer memory (which is composed of dynamic memory devices). The free-
running clock (FRCLK) is generated by dividing the 2XCLKZB signal in two
with an F109 flip-flop. FRCLK is the same frequency as PPCLKZB but it may
have a 180 degree phase difference from it. Additionally, as the name implies,
FRCLK is never halted (unlike PPCLKZB).

15.3. G Buffer Memory The G buffer memory registers include:
Registers o the write data register,

o the read data register, and

o the G buffer pointer.

These registers are used to interface the G buffer data with the ZBUS.

The G buffer write data register is shown on the top right of page 6 and is imple-
mented with ALS374 devices. The contents of ZBUS is loaded into the register
when the signal LDZBUF*, from the destination decode, becomes active. The
output of the register is always enabled and goes through a series termination
resistor to become the G buffer memory data in bus ZD15..ZD00.

The G buffer read data register is shown on the bottom right of page 6 and is
implemented with F374 devices. The input to the register is the G buffer
memory data out bus ZQ15..00. The contents of ZQ bus is loaded into the regis-
ter by the rising cdge of the signal LDRDREG* (load read register).
LDRDREGH* is actually delayed by an F32 gate to meet the set up time of the
F374 for worst case timing analysis. The contents of the register are enabled
onto the ZBUS when the signal RDZBUF*, from the GP PP bus extension
decode, becomes active.

The G buffer address pointer is a 21-bit up counter implemented with F163 dev-
ices. The G pointer is shown on the left and top of page 7. Because the 21-bit
counter must be loaded from the 16-bit ZBUS, it is broken into two parts, the G
buffer low and the G buffer high address pointer. The G buffer low address
pointer has the 16 LSBs while the high address pointer has the 5§ MSBs of the
counter. The low address pointer is loaded by the signal LDZPNTRL* (load G
pointer low) and the high address pointer is loaded by the signal LDZPNTRH*
(load G pointer high). The G pointer is incremented when the signal
ZPNTRCNT™* (G pointer count) is activated.

The counter may be incremented by one or by four depending on the state of the
signal FILL (fill mode active). In order to implement this counting by four, one
extra F163 device was necessary (the 21-bit counter is implemented with seven

F163 devices). When the signal FILL is active the G pointer increments by four
counts instead of by one count. The first two LSBs of the counter, ZADROO and
ZADROLI, are kept in the first F163 device separate from the next high order bits
in the next device. If FILL is not active, then ZADROO and ZADRO1 both have

V

& sun gy PROPRIET ARV cssonens o



Chapter 15 — Graphics Buffer Board 151

15.4. Graphics Buffer
Memory

’432%

to be a logic high for the next device to be enabled to count when ZPNTRCNT
is activated. If FILL is active, then the next device is enabled to count every
time ZPNTRCNT* is activated. This bypassing of the carry out from the two
LSBs, ZADROO and ZADRO1, is done by the FOO and the F32 gates next to the
LSB device.

The carry out from the low pointer to the high pointer is generated by two FOO
gates because the last device on the low address pointer only has two valid bits.

The outputs of the G address pointer are input to the row/column address multi-
plexer and also used to decode the bank of RAM being selected in the RAS and
CAS generation logic.

o The MSB of the counter is put through a jumper and becomes ZADR20.
ZADR20 selects the upper 4 banks (banks 4, S, 6, or 7) when it is a logic -
high and the lower four banks (banks 0, 1, 2, or 3) when it is a logic low.
The jumper allows ZADR20 to be tied to a logic low if the upper 4 four
banks of RAM are not installed.

o The two LSBs of the pointer, ZADROO and ZADRO], select one of the four
banks selected by ZADR20. The two LSBs were chosen to differentiate
between the banks so that adjacent address locations would be in different
banks. This helps in meeting the RAM address precharge time.

The G buffer memory array is shown in pages 10 and 11 of the schematics; they
consists of 8 banks of dynamic RAM. Each bank is composed of 256K-by-16
bits, implemented with 256 Kbit memory devices, to yield a total memory of 4
Mbytes. Banks 0, 1, 2, and 3 are on page 10 while banks 4, S, 6, and 7 are on
page 11.

Data in and data out of the memory is common to all banks.

o Datain to the memories comes from the G buffer write data register through
the series termination resistors and is called ZD15..00.

Data out from the memory is called ZQ15..00 and goes to the G buffer read
data register.

The address, RAS*, CAS*, and the WE* lines to the memory array come from
the buffers on pages 8 and 9. The buffers are implemented with ALS244 dev-
ices. Output from the buffers go through series termination resistors before they
reach the memory devices. Each bank has its own address, WE*, RAS* and
CAS* signal. ZAn0..ZAn8 represent the address lines, ZWEn* represent the
write enables, RASn* and CASn* represent the control lines—all to the nth bank
of RAM. The RAS* and CAS* signals are input to the buffers from the RAS and
CAS generation circuit; the address is input from the row/column multiplexer,
and the WE* signal is from the G buffer control state machine.

SUN PROPRIETARY

sun Revision 1 of 20 October 1986

microsystems



152 Engineering Manual for the Sun Graphics Processor

15.5. Graphics Buffer
Memory Control

NOTE

@

The G buffer memory control is on pages 5, 6, and 7 of the schematic.
The G buffer memory control includes:

o the G Buffer/GP interface signals,

o the G buffer control state machine,

o the RAS and CAS generation,

o the row/column address multiplexer,

o the refresh timer, and

o the refresh address counter.

G buffer access is started by the PP issuing a read or a write through the
ZBFSTRTRD* (G buffer start read) signal and the destination signals
ZDEST2*..ZDEST(0*. Whenever the PP requests an access to the G buffer, it
also deactivates the ZBFRDY (G buffer ready) flag on the GP (GP page 30).
ZBFRDY being inactive tells the GP software that the G buffer access is not
complete.

The PP requesting a G buffer access then activates one of either RD* (read) or
WR* (write) signals which is sensed by the G buffer control state machine. The
state machine does the required access and then signals the PP by activating
STZBUFRDY* (set G buffer ready) which activates the ZBFRDY signal on the
GP.

Although memory refresh is transparent to the PP, it may cause an access to take
longer than normal. Refresh thus makes the time of G buffer access non-constant.
To alleviate this inconstancy in the access time of the G buffer, the ZBFRDY sig-
nal is used as a handshake between PP and G bufcr memory accesses.

The G buffer memory has two modes of operation:
1. normal, and
2. read-modify-write (RMW).

In the normal mode the control lines to the memory array—RAS* and CAS*—
are left in their inactive state after the access is completed. For RMW mode, the
control lines are left in their active state after the access. For example, when a
read access is requested, the contents of the memory location are placed into the
G buffer read data register and the ZBFRDY flag is activated which completes
the read transaction. However, because the control lines are not returned to their
inactive state, that same location will continue to be accessed. At some time
(within 10 psec) the PP processor will signal that it wants to write to that same
location or that it wants to access the next location.

If the PP wants to access another location, the RMW cycle is completed and
another one is started with the new address. If it wants to write that same location
then the data is written to the memory by activating the WE* signal but without
incurring the delay associated with the strobing of the address into the memory
devices. The obvious advantage of course is that writes are done much faster.
After the write is completed, the address is incremented and another RMW cycle

S Revision 1 of 20 October 1986
miCi

= SUN PROPRIETARY



Chapter 15 — Graphics Buffer Board 153

Graphics Buffer/GP Interface

Signals

NOTE

is started with the new address.

The G buffer mode is determined by the signal NORMAL and its complement
NORMAL*. When NORMAL is active the G buffer is in the normal mode. The
NORMAL signal is kept in an F109 shown in section B8 of page 5. It is set,
reset, or left unchanged as encoded by ZBUS15 and ZBUS 14 whenever
LDZPNTRH* becomes active. LDZPNTRH* becomes active whenever the G
buffer high pointer is being loaded.

The G buffer memory can be operated in fill mode. In fill mode, each write to the
memory actually writes to four consecutive locations. This allows for the
memory to be rapidly cleared or set to a particular value. The value written to
the four locations is the contents of the G buffer write data register.

Fill mode is only valid for doing writes while in the normal mode. If this condi-
tion is not met when a fill mode access is done, the contents of the memory will
not be disturbed, however the value of the address pointer is indeterminate after
such an access.

Fill mode is determined by the signal FILL, from an F109 flip-flop in the lower
left comer of page 5. This flip-flop is set, reset, or left unchanged as encoded by
ZBUS13 and ZBUS12 whenever LDZPNTRH* becomes active.

The FILL signal is used to generate two other signals FILLENH* (fill enable
high) and FILLENL* (fill enable low). FILLENL* enables the generation of
RAS and CAS for the four lower banks of RAM (banks 0, 1, 2, and 3) simultang-
ously. FILLENH* enables the generation of RAS and CAS for the four upper
banks of RAM (banks 4, 5, 6, and 7) simultaneously. If neither FILLENL* or
FILLENH* are active only one of the RAS or CAS lines will be activated for a
PP access to the G buffer. FILLENL* and FILLENH* are gencrated by the FOO
and the F74 devices shown in the bottom of page 5. The logic activates one of
FILLENL* or FILLENH* whenever a write access is done while being in both
the normal and the fill modes. When this condition occurs the MSB of the G
buffer address pointer, ZADR20, chooses whether FILLENL* or FILLENH* is
activated. If ZADR20 is a logic low, FILLENL* is activated, and when
ZADR20 is a logic high, FILLENH* is activated.

The G buffer/GP interface signals are used as the control interface between the G
buffer and the GP. When the PP processor issues a request for a G buffer memory
access, it is decoded and one of RD* or WR* signals is activated. This is done
by a 16R4A PAL device shown on the top left comer of page 5.

The encoded destination signals (ZDEST2*, ZDEST1*, ZDEST0*) and the
ZBFSTRTRD* signal are used to determine the type of access requested by the
PP. The RD* and WR* signals are input to the G buffer control state machine
which accomplishes the access. RD* signal causes the state machine to do a read
access while the WR* signal causes the state machine to do a write access.

o The WR* signal is activated when the ZDEST signals indicate a load of the
G buffer write data register (load G buffer). WR* is deactivated when
STZBUFRDY* signal becomes active after the access is completed.

SUN PROPRIETARY

Q@ S u n Revision 1 of 20 October 1986
THCTos!

ystems



154

Engineering Manual for the Sun Graphics Processor

RD* signal is activated when ZBFSTRTRD* is active while the ZDEST sig-
nals do not indicate a wriie 10 the G bufier wnite data register (start a read
while not starting a write). RD* is deactivated when STZBUFRDY * signal
becomes active after the access is completed.

There are three other signals from this PAL, ZPNTRCNT* (G pointer count),
RMWRDCNT* (read-modify-write read count), and RMWRDD1* (read-
modify-write read delay 1).

0

RMWRDD1* is activated when in RMW mode, when ZBFSTRTRD* is
active in the second half of the PPCLKZB period, and while the ZDEST sig-
nals do not indicate a load of the G buffer low address pointer or a load of
the G buffer write data register. It is used to delay incrementing of the G
buffer address pointer by one 2XCLKZB period when in RMW mode.

RMWRDCNT* is used to generate ZPNTRCNT*, which is a combinatorial
output from the PAL. RMWRDCNT* is generated whenever the signal input
signal SMINCADR* (state machine increment address) is active or when in
the RMW mode and RMWRDD1* is active during the first half of the
PPCLKZB period. RMWRDCNT* is output from the PAL to an F74 which
delays it by one 2XCLKZB period and is input back into the PAL as the sig-
nal DRMWRDCNT* (delayed RMW read count). This delay of one period
(along with one period delay from RMWRDD1*) is necessary to prevent
rampant RAS and CAS pulses from occurring because the address in the G
buffer address pointer changes too early.

ZPNTRCNT* is used to enable the incrementing of the G buffer address
pointer. ZPNTRCNT* is a combinatorial output from the PAL and is
activated when the signal DRMWRDCNT is active or when in the normal
mode and ZBFSTRTRD* is active while the ZDEST signals do not indicate
a load of the G buffer low address pointer or the G buffer write data register.

The following timing diagram shows the relationship of RMWRDD1*,
RMWRDCNT*, and ZPNTRCNT*,

4 sun SUN PROPRIETARY... .z ocomc s



Chapter 15 — Graphics Buffer Board 155

STATE MACHINE
STATE

2XCLKZB |
PPCLKZB  __|

ZBFSTRTRD* |

ZDEST2-0 XX}

Figure 15-2

Graphics Buffer RMW Mode Read Start Timing Diagram

RMW cyle is ended by a read command (RMW ended without doing a write),
and this is followed by another read command (two consecutive reads).

| XXX XXX XXX XXX XX XXX XXXKXKXXXXXX XXX X XXX |

RMWRDD1*

RMWRDCNT*

. .

DRMWRDCNT*

ZPNTRCNT*

RD*

RAS*

CAS*

ASTZBUFRDY

DSTZBUFRDY* |

STZBUFRDY*

ZBUFRDY

4%%?’5;[1]1” TEEE e e o

mmmnwmﬁu\hélnh

o

'gL‘fx

— e

'-L SR

[
i‘

paly

[

Revision 1 of 20 October 1986

R

(-3 ¥ U r



156 Engineering Manual for the Sun Graphics Processor

Graphics Buffer Control State
Machine

s

See the chart in the G buffer section of the GP Hardware Reference manual for a
better understanding of the above.

The G buffer/GP interface signals PAL also has another output from it called
MCHANGE (mode change). MCHANGE* is activated whenever the high por-
tion of the G buffer address pointer is loaded when in the normal mode. When
loading the high portion of the address pointer (both in the normal and the RMW
modes,, there is the possibility that the mode is changed from normal to RMW or
vice-versa. The G buffer control state machine must know when the mode is
changed from the normal to RMW and this signal provides that information.
MCHANGE* is deactivated by the first active ZBFSTRTRD* signal after the
high address pointer is loaded. The discussion below on refresh explains the use
of the MCHANGE* signal.

The G buffer control state machine is the central control element of the G buffer
memory. Itis implemented in a 16R6A PAL shown in section DS of page 5.

The 16R4A PAL in section D3 is called G buffer control signals and is an exten-
sion of the state machine in that it holds some of the outputs which did not fit in
the other PAL. The state diagram for the G buffer control state machine is

shown in Figure 23, contained in the appendix.

The following outputs from the state machines enable the various operations to
occur when accessing the G buffer memory.

o RAS* and CAS* are output to the RAS and CAS generation logic on page 6
and are used in the generation of RAS and CAS to the memory array.

o  WE* (write enable) is output directly to the memory buffers on pages 8 and
9 and becomes the write enable into the memory array.

o SMINCADR* (state machine increment address) is input to the G buffer/GP
interface signals PAL and is used to activate ZPNTRCNT™* signal which
enables the G buffer address pointer to increment. SMINCADR* is
activated by the state machine after each write into the memory (whether in
the normal or the RMW mode), which facilitates sequential writes without
software having to increment the address.

o LDDOUT* (load data out) is used to clock in the data from the memory
array into the G buffer read data register (after it is delayed and becomes
LDRDREG* signal).

o REFREQ* (refresh request) is implemented as an S-R flip-flop in the PAL.
REFREQ* indicates to the state machine that the refresh timer has reached
its terminal count and a refresh should be done. REFREQ* is activated by
the signal RTIMERCO* (refresh timer carry out) becoming active and is
reset when the REFRESH* signal becomes active.

o REFRESH* is activated by the state machine when it is actually doing a
refresh access cycle to the memory array.

o Another output from the state machine is the signal STZBUFRDY* (set G
buffer ready). STZBUFRDY* is activated by the state machine when it
completes the access requested by the PP. It activates the signal ZBFRDY

Revision 1 of 20 October 1986

-~SUN PROPRIETARY



Chapter 15 — Graphics Buffer Board 157

on the GP. STZBUFRDY* is output from the F109 device in section D1 @
page 5. There are two signals from the G buffer control signals PAL which
activate and deactivate STZBUFRDY*, ASTZBUFRDY (activate
STZBUFRDY*) and DSTZBUFRDY* (deactivate STZBUFRDY*), respec-
tively. ASTZBUFRDY is activated when the state machine is in state G and
the operation being done is not a refresh. DSTZBUFRDY* is activated
every time DPPCLKZB is a logic low.

o DPPCLKZB is just the signal PPCLKZB delayed by one 2XCLKZB period.
This allows for STZBUFRDY* to stay active during one-—and exactly
one—rising edge on PPCLKZB (even when PPCLKZB is halted).

The state machine has 9 states labelled A through I. The state machine opera-
tion, for the sake of discussion, can be separated into three operating modes: nor-
mal mode, RMW mode (not normal), and refresh. Upon power up or reset the
active RST* signal into the state machine causes it to go to state A. State A is
labelled as the idle state because if there are no refresh requests or no requests
from the PP, the state machine stays in state A.

When in the normal mode of operation, the state machine stays in state A waiting
for an access request indicated by RD* or WR* going active. While in state A
waiting for RD* or WR* activate, none of the outputs are activated. The figure
below shows the timing diagrams for a read, write, and a read or write access
with PPCLKZB halted for the normal mode of operation.

SUN PROPRIETARY

@ sun Revision 1 of 20 October 1986

microsystems



158 Engineering Manual for the Sun Graphics Processor

STATE MACHINE
STATE

2XCLKZB |

PPCLKZB |

] o 7, s NGNS 5 17 P g
rraphics Buffer Normal Mode Read Timing Diagram

WR*

REFREQ*

RAS*

CAS*

WE*

LDDOUT*

SMINCADR¥*

ASTZBUFRDY

DSTZBUFRDY* |

.

STZBUFRDY*

ZBUFRDY

@ SUIEUR PROPRIETARWon o0



Chapter 15 — Graphics Buffer Board 159

Figure 154  Graphics Buffer Normal Mode Write Timing Diagram

(Two consecutive write operations)

STATE MACHINE
STATE A F G H A A A F G

2XCLKZB | | | | | | | I I | | I I ! I |

PPCLKZB | I | | [ | ] | |

WR* | |

REFREQ*

RAS* | | I

CAS* I !

LDDOUT*

SMINCADR* | I

ASTZBUFRDY | | !

DSTZBUFRDY* | | | [ | [ |

STZBUFRDY* ] !

2BUFRDY | | !

& suSUN PROPRIETAR

microsystems

Révision 1 of 20 October 1986



160  Engineering Manual for the Sun Graphics Processor

Figure 15-5  Graphics Buffer Normal Mode Read or Write Timing Diagram

(PPCLKZB HALTED DURING ACCESS)

STATE MACHINE
STATE A F G H I I I I A A A

2XCLKZB | __ b bbb T e e

PPCLKZB | ! ! [ I I

RD* or WR* | ' |

REFREQ*

RAS* |

CasSx* | |

LDDOUT* !

SMINCADR¥* | i

ASTZBUFRDY |

DSTZBUFRDY* | | | I ! I

STZBUFRDY* | I

ZBUFRDY I

SUK PROPRIETARY

/{% sun Revision 1 of 20 October 1986

microsystems



Chapter 15 — Graphics Buffer Board 161

When the RD* becomes active (while in state A) the state machine goes to stat
F, then G, H, then back to state A. RAS* is activated between states A and F,
both RAS* and CAS* are activated between states F and G, and RAS*, CAS*,
LDDOUT*, and ASTZBUFRDY are activated between states G and H.  From
state H the state machine (in nommal circumstances where PPCLKZB is not
halted) goes back to state A with none of the outputs activated.

If the WR* signal becomes active when in state A, the state machine goes to state
F, G, and H, then back to state A (the same path followed as the read access).
From state H the state machine, in normal circumstances where PPCLKZB is not
halted, goes back to state A with none of the outputs activated.

For both read and write accesses in normal mode, there is the possibility that
PPCLKZB will be halted while an access is being done. If so, PPCLKZB will be
halted when the state machine is between states A and H. PPCLKZB is known
to be halted if it is not a logic low when the state machine gets to state H; if such
is the case (PPCLKZB is halted), the state machine will go to state I. It will stay
in state I until PPCLKZB is started again (indicated by a logic low on
PPCLKZB), then go to state A.

Once in state 1, it is possible that a refresh request might occur. In this case the
state machine will execute a refresh cycie (by traversing states D, E, F, G, and H)
then proceed to state I again. Notice that state I will only be reached when in the
normal mode because PPCLKZB should only be halted in the normal mode (in
other words, PPCLLKZB can not be halted in the RMW mode).

For the RMW mode, the state machine stays in state A waiting for either RD* 0¥
WR* to become active. Two conditions may occur while the state machine is
waiting for RD* or WR* in state A—RAS* and CAS* will be activated or they
will not be activated. The G buffer is reset to normal mode and can only be set
to the RMW mode by the PP software. When the PP software changes the modc
of the G buffer from normal to RMW, the state machine will be in state A.

When the mode is initially switched to RMW, the state machine will stay in statc
A and RAS and CAS will not be asserted. From this condition the software will
issue a read access request which will start the first RMW access. Other than this
initial switch to the RMW mode, the state machine, when in state A, is in the
middle of the RMW access (after the read is done) and therefore both RAS* and
CAS* will be activated while waiting for RD* or WR* to become active. When
RD* becomes active in state A, the current RMW cycle will be completed
(without the write being done) and another RMW cycle will be started by the
state machine which will proceed to state A after the read portion of this latest
cycle is done. When WR* becomes active in state A, the write corresponding to
the current RMW cycle will be done and another RMW cycle will be started by
the state machine which will proceed to state A after the read portion of that
cycle is done.

The two figures below show the timing diagrams for read and write accesses
while in the RMW mode of operation. When the RD* signal becomes active in
state A, the state machine ends the current RMW cycle and starts another RMW
access by going to state D and deasserting RAS* and CAS*. From state D, the
state machine traverses states E, F, G, H, and then back to A, in sequence. This

,ﬁ,}sﬁ,ﬂ SUI‘ PR OPR IE TARRevm; 1 of 20 October 1986



162  Engineering Manual for the Sun Graphics Processor

accomplishes the read portion of the RMW cycle. The outputs that are activated
while going from state io staie are:

o RAS* betweenE and F,

o RAS* and CAS* between F and G,

o RAS*, CAS*, LDDOUT*, and ASTZBUFRDY between G and H, and
o RAS* and CAS* between H and A.

/%% S utn | Revision 1 of 20 October 1986
STIN PRADRITTRDY



Chapter 15 — Graphics Buffer Board 163

Figure 15-6  Graphics Buffer RMW Mode Read Timing Diagram

RMW cyle is ended by a read command (RMW ended without doing a write),
and this is followed by another read command (two consecutive reads).

STATE MACHINE

STATE A D E F G H A A A D E

2XCLKZB N U T U R S R U R SN T SN A (RSN AR S R DU R S R N

PPCLKZB | | ! | ! [ | ! | | !

REFREQ*

RAS* | [ !

CAS* |

WE *

LDDOUT* | ]

SMINCADR*

ASTZBUFRDY | |

DSTZBUFRDY* | | | | | 1 | [ | | | |

. . . . . . . . . - . .

STZBUFRDY* ! |

ZBUFRDY - I

4 su

microsyst% UI\I‘E PROPRIETAR$MOTX 1 of 20 October 1986



164  Engineering Manual for the Sun Graphics Processor

; . 7 ite Tirming Dicoram
Figure 15-7 Graphics Buffer RMW Mode Write Timing Diagram

RMW cyle is ended by a write command and is followed by the
read access of the next RMW cycle.

STATE MACHINE
STATE A B C D E F G H A A A

2XCLKZB N U KR RS S U D RN R U A SO A NS A SN A S R S B

PPCLKZB | | ] | I I ! | I ! l |

REFREQ*

RAS* { |

CAS* I |

WE * | |

LDDQUT* | |

SMINCADR* | |

ASTZBUFRDY | |

DSTZBUFRDY* | I I ! I I | | I ! I

STZBUFRDY* |

ZBUFRDY | !

f{% "Sw!;!smlﬂl‘s Revision 1 of 20 October 1986
SUN PROPRITTRDV



Chapter 15 — Graphics Buffer Board 165

When WR* becomes active in state A, the state machine will begin the write po1
tion of the RMW cycle by going to state B with RAS*, CAS*, and WE* active.
The state machine will then go to state C with RAS*, CAS* and WE* asserted.
From state C the state machine will go to state D with none of the outputs
activated which effectively ends the RMW cycle. From state D, the cycle is
identical to the read access described above, traversing states E, F, G, H, and A
with the outputs being asserted also identical to what is stated above. So it can
be said that the read portion of the RMW cycle is done by traversing states D, E,
F, G, H, and getting back to state A while the write portion of the RMW is done
by traversing states B and C.

Refresh on the G buffer memory array is started by the G buffer control state
machine. Normal mode refresh is started differently than the RMW mode. How-
ever, although the refresh period is started differently, the basic refresh cycle
(activation of RAS) is the same for all cases. The state machine senscs that a
refresh is necessary when the signal REFREQ* becomes active. When the state
machine is doing a refresh cycle, it activates the REFRESH* signal. The two
figures below show the timing diagrams for normal and RMW refresh cycles.

f(?{? S u n Revision 1 of 20 October 1986

~"SUN PROPRIETARY



166 Engineering Manual for the Sun Graphics Processor

STATE MACHINE
STATE

o)
lw)
t
"
(9]
s
-
[
>
w
>

WR*

REFREQ* ! !

RAS* | J

CAS*

WE*

REFRESH* | |

LDDOUT*

SMINCADR¥*

ASTZBUFRDY

DSTZBUFRDY* | | | [ | | I I I | !

STZBUFRDY*

ZBUFRDY

&%}4 Su nS Uzg PROPRIH TARXmon 1 of 20 October 1986

microsystems



Chapter 15 — Graphics Buffer Board

167

Figure 15-9  Graphics Buffer RMW Mode Refresh Timing Diagram

STATE MACHINE
STATE A D E F G H C D E F G H A A A A A

2XCLKZB A T T T T O T O T O O O T O O P OO A OO B

PPCLKZB [ ! I I | ! | [ I | I I | | | | |

WR*

REFREQ* | !

RAS* | I | {

CAS* I |

REFRESH* ! |

LDDOUT* | |

SMINCADR*

ASTZBUFRDY I

DSTZBUFRDY* | | | | 1| 11 1 & 11 11 11

STZBUFRDY* | |

ZBUFRDY |

T T e ————

S;ii%igé;:::ﬁééj__""““'1,,
@sun | TEOPRIETARY,

microsystems

ision 1 of 20 October 1986



168  Engineering Manual for the Sun Graphics Processor

In normal mode, REFREQ* is sensed when in state A. If REFREQ¥* occurs

when in state A, the state machine goes to staic D while asseriing REFRESH*.

NOTE  If REFREQ* occurs simultaneously with a RD* or WR*, then the refresh cycle
will be done before the read or write access.

REFRESH* deactivates REFREQ* and also signals to other G buffer logic that a
refresh operation is being done (as opposed to a regular read or write access).
From state D the state machine goes in sequence to states E, F, G, and H while
REFRESH* is continuously asserted. RAS* is also activated between states E
and F, states F and G, and states G and H. From state H, the statc machine goes
to state I. It will stay in state I for one more cycle and then retumn to state A if
PPCLKZB is not halted. If PPCLKZB is halted, the state machine will stay in
state I until PPCLKZB is started again or another REFREQ* occurs. If
PPCLKZB is started, the state machine will retumn to state A. ‘

If REFREQ* becomes active in state 1, the state machine starts a refresh cycle by
going to state D and asserting REFRESH. From state D the state machine fol-
lows the same path as a regular refresh described above. In fact, it can be stated
that the refresh cycle is started by going to state D while REFRESH* is activated
(from states A, C, and I) and the refresh cycle is done by traversing states D, E,
F, G, and H with REFRESH* activated.

One final case: if mode is changed to RMW while a refresh operation is occur-
ring in normal mode, the signal MCHANGE* will become active. This situation
is sensed in state H when the refresh cycle is completing (after traversing states
D, E, F, and G). If REFRESH is active in state H, MCHANGE* is active, and
NORMAL* is not active, the state machine recognizes that the mode has been
changed to RMW and goes to state A with none of the outputs activated. This
was necessary to guard against RAS or CAS signals being inappropriately
activated to a bank of RAM when changing from normal to RMW modes (as a
new address was loaded in to the address ponter). Note that MCHANGE* will
be deactivated by the first read command (ZBFSTRTRD*) of the RMW mode so
that this case only occurs when changing modes.

When in RMW mode, the refresh is done in between the RMW cycles (that is,
after one cycle ends and the next one is started). In particular, this means that
refresh is started when going from state A to D when a RD* causes the RMW
cycle to be ended without doing the write, or when going from state C to D,
when a write operation has been done to complete the RMW cycle. In either
case the refresh is done, the read portion of the next RMW cycle is done, and the
state machine is returned to state A.

The refresh cycle is identical to the refresh cycle described above for normal
mode, traversing states D, E, F, G, and H while activating the outputs the same as
normal mode. However, when state H is reached after the refresh cycle is com-
pleted, the state machine deactivates REFRESH* and goes to state C (provided
that MCHANGE* is not active, indicating the mode has been changed from nor-
mal to RMW). From state C the read portion of the next RMW cycle is done by
traversing the states D, E, F, G, and H and then back to state A. Thus, for the
RMW mode, the time between two RMW cycles may be prolonged by a refresh
cycle.

Q@ grgﬁgSUIE PROPRIETAWOH 1 of 20 October 1986



Chapter 15 — Graphics Buffer Board 169

RAS and CAS Generation The RAS and CAS generation circuit is shown on the left of page 6. This logic
selects the bank(s) of RAM that is (are) being accessed by activating the RAS
and CAS signals to the particular bank(s) of RAM. In addition to selecting the
particular bank(s) of RAM, RAS* and CAS* output pulse shapes are determined
by this logic. There are eight RAS and eight CAS signals—one for each bank of
RAM. The RAS output signals are named RASBANKO* to RASBANK7* and
the CAS output signals are named CASBANKO* to CASBANK7*, The outputs
from the RAS and CAS generation logic are input to the RAM buffers on pages 8§
and 9 which output them directly to the corresponding bank of RAM. The figure
below shows the RAS and CAS access timing of the RAM array.

SUN PROPRIETARY

f{% sun Revision 1 of 20 October 1986

microsystems



170

Engineering Manual for the Sun Graphics Processor

Figure 15-10  Graphics Buffer RAS/CAS Access Detailed Timing Diagram
STATE MACHINE
STATE A F G B A
2XCLKZB _| 1 [ | ! ! |
[ [ !
PPCLKZB _|_| il 11 il I
! | !
WR* !
1
FILLENH* _
cr FILLENLY*
i<=25->4 j{m=————— 79.6===—>| !
[ I | <===49===>| ! [<=26->"
ZAxXx jiiiil VALID ROW ADDRESS|||{I|{|i VALID COLUMN ADDRESS [RREEEE!
ARREN NRRRRENN ERIRER
[<==40==> [<===40-->|
1161 i 16! i
RASX* [ [ 1 (
j<====57.6--=>| |<====46-~->]
[<==42.5=->1 | f<19>1 i
ROW/COL I i !
|<mmmmmmmmm 117.5mmmmmmemmm > I<===-58---mn >
[<mm=m=—= 92.5-~-—=--~ > i |<==32->] i
CASx* i i |
| Cmmmmm e 85-=mmmmm > 1<25> |
|<====70.5-==~= > 1201 |
ZWEx* | Pl
[<mmmmmmmm e 202.5-======-=-mmmmmmmooe >
[<mmmmmmmmmmmme 177.5-====mmmmmmmmmmeee > !
20xx F1ITH]] VALID
ARARRR
[€mmmmmmmmmmmem e 219.5-mm e >
[ €mmmmmm e eem 206.5-—==~—=mmmmmmmmmeae >
READ REG* (1 [
CLOCK
STZBUFRDY* !
ZBUFRDY

SUN PROPRIETARY

Revision 1 of 20 October 1986



Chapter 15 — Graphics Buffer Board 171

Row/Column Address
Multiplexer

The pulse shape of the RAS outputs RASBANKO* to RASBANKT7* are deter-
mined by the RAS* signal from the G buffer control state machine. There are
three cases to be considered when generating the RAS signals, regular accesses
(normal or RMW), fill mode accesses, and refresh accesses. The eight F11 gates
on page 6 enable whichever of the three cases is active to drive the RASBANK*
output signals.

o For regular accesses, only one of the banks of RAM is activated at a time as
selected by the ZADR20, ZADRO0O, and ZADROI signals through an F138
device. The F138 outputs are enabled by RAS* from the state machine.

o  For the fill mode accesses, four banks of RAM are activated at the same
time. One of the signals FILLENH* or FILLENL* will be active for this
mode to select the upper four banks or the lower four banks of RAM, respec-
tively. The RAS* signal is ANDed with the FILLEN* signals to generate
the RASBANK* outputs for this case.

o  For the refresh accesses, all eight banks of RAM will have their RAS signals
activated. The RAS* signal is ANDed with the REFRESH* signal to
activate the RASBANK?* outputs for all the banks. REFRESH* is passed
through a 17 ns delay before going through the F32 gate (section A6-A7 of
page 6) to guard against a possible race conditon—RAS* deactivated at the
‘same time REFRESH* is activated.

The pulse shape of the CAS outputs CASBANKO* to CASBANKT7* are deter-
mined by the CAS* signal from the G buffer control state machine after it is
delayed 17 ns for timing purposes. There are two cases to be considered when
generating the CAS signals, regular accesses and fill mode accesses. The eight
FO8 gates enable whichever of the two cases that is active to drive the CAS-
BANK* output signals.

o  For regular accesses, only one of the banks of RAM is activated at a time as
selected by the ZADR20, ZADROO, and ZADRO1 signals through an F138
device. The F138 outputs are enabled by the delayed version of the CAS*
signal.

o  Forthe fill mode accesses, four banks of RAM are activated at the same
time. One of the signals FILLENH* or FILLENL* will be active for this
mode to select the upper four banks or the lower four banks of RAM, respec-
tively. The delayed version of the CAS* signal is ANDed with the FIL-
LEN* signals to generate the RASBANK* outputs for this case.

The row/column address multiplexer is necessary to input the row and the
column addresses into the RAM devices which correspond to the RAS and the
CAS signals. It is implemented with F153 devices shown on the right of page 7.
The F153s multiplex onto the RC8 to RCO (row/column 8 through 0) signal
lines, the row and column addresses from the G buffer address pointer and also
the refresh row address from the refresh address counter. When REFRESH* sig-
nal is active the refresh address counter is selected and put on the RC signal
lines. If REFRESH* is not active, then the ROW/COL (row/column) signal
determines which of the G buffer address pointer bits get routed onto the RC sig
nal lines. When ROW/COL is a logic high, it corresponds to an active RAS

f\?f ﬁgﬂgSUp‘g P QPREETARYonlofzoocmmwse



172 Engineering Manual for the Sun Graphics Processor

Refresh Timer and Refresh
Address Counter

signal or the row addresses being presented to the RAM devices. The
ROW/COL signal is generated by the RAS* signal being input to a chain of
delay lines at the bottom of page 6.

The RAS* signal is delayed by 34 ns (typical) and then put through an F32 gate
to generate the ROW/COL signal. The F32 gate allows the ROW/COL signal to
become a logic high as soon as RAS* becomes deactivated. Thus, ROW/COL is
a logic high for 34 ns after RAS* goes active and then becomes a logic low until
RAS* becomes inactive.

The refresh counter and the refresh address counter are shown on the bottom
right of page 5. The refresh timer is used to signal the G buffer control state
machine when a refresh on the RAM array is necessary. The refresh address
counter keeps track of the RAM row addresses that should be refreshed. When
the refresh counter signals the G buffer control state machine to do a refresh, the
state machine, when appropriate, starts the refresh operation by activating
REFRESH* signal and the contents of the refresh address counter are presented
to the RAM while RAS is also activated to refresh the particular row. A refresh
is requested approximately every 15 psec. The refresh is done by a RAS-only
refresh cycle on the RAM array.

The refresh timer is implemented as an 8-bit up counter with F163 devices. The
counter is loaded with a constant value and counts up from that value until it gets
a carry out of the MSB. This carry out is the signal RTIMERCO (refresh timer
carry out) and its complement, RTIMERCO*, RTIMERCO* is input to the G
buffer control signal PAL where it activates the REFREQ signal. RTIMERCO*
also goes to the load enable of the refresh timer so that the constant value is
loaded back into the counter. In addition, RTIMERCO is input to the count
enable of the refresh address counter, and every time it is active it enables the
refresh address counter to increment. Notice that since REFREQ is activated the
refresh timer can be loaded to count the next refresh period without waiting 10
ensure that the current refresh request is carried out. The G buffer control state
machine is guaranteed to do the refresh before the refresh counter counts down.

The value loaded into the refresh counter is the binary "1000xxxx" where xxxx
represents a variable as set by the jumpers to the left of the counter. The value
loaded into the counter is therefore between "10000000" and "10001111". When
FRCLK has a period of 120 ns, this translates to a refresh request between 13.4
psec and 15.2 psec. The jumper was put in to provide some flexibility in speci-
fying the refresh request period. The jumpers are hardwired, however, to pull-
downs so that no shunts are necessary on them and the value loaded into them is
1000 0000'* which corresponds to a refresh period of 15.2 psec.

The refresh address counter is just an 8-bit up counter implemented with F163
devices. The contents of this counter represents the row of the RAM devices that
is being refreshed. The eight bits are just enough for 256K RAM devices which
have 256 rows. The refresh address counter is incremented every time that the
RTIMERCO signal becomes active. When it reaches its terminal count (255), it
rolls over to 0 and starts counting up from there. The output from the counter is
the eight bits RA7 to RAO (row address 7 to 0) which is presented to the
row/column address multiplexer.

2BASTIT PROPRIETARY o™



Chapter 15 — Graphics Buffer Board 173

15.6. Integer Multiplier The integer multiplier consists of a 16-by-16 multiplier, associated registers an¢
buffers, and the PP PROM.

The integer multiplier used is the Am29517 (or equivalent) on page 12. Inputs
include the 16-bit X operand, the 16-bit Y operand, mode bits, clock, clock
enables, and output control bits. The output is the 32-bit result, read as two 16-
bit words.

The mode register, the ALS374 at D6 of page 12, contains the mode bits which
are routed to the multiplier. ZBUSOO to ZBUS04 are loaded into this register by
the signal LDMMREG*. The mode bits are:

Table 15-1  Mode Register Bits

Bit Meaning
0 round control
1 format adjust
2 Y mode control
3 X mode control
4  MPSCN—MPSEL* control (see below)

The X and Y operands are latched in ALS374s and routed to the Am29517. The
reason for this buffering is that the PPBUS/ZBUS cannot meet the Am29517
set-up times. The ZBUS bits are loaded into the X register with the control
LDMXOP* and into the Y operand with the control signal LDMYOP*,

The Am29517 is configured in flow-through mode because ENX and ENY are
pulled down. This means that after the X and Y operands are valid, the multiply
result is valid some fixed time later. This time is dependent on the type of
integer multiplier used and the microcoder must delay the proper number of
cycles to guarantee valid results. The minimum delay is one cycle (load X, load
Y, delay, read result, read result) for a bipolar multiplier and three delays for a
CMOS multiplier.

Since the multiplier has a 16-bit output bus, two reads are necessary to fetch the
32-bit result. If MPSEL* (input to the multiplier from the F74 at AS) is low, the
most significant half is read, and if MPSEL¥ is high, the least significant half is
read. The multiplier output is routed through the ALS244s (needed to meet
current drive requirements and timing requirements due to the slow MPSEL*-
to-output valid time) and onto the ZBUS when enabled by RDMP*.

Rather than have two PPBUS sources to read the most and least significant
halves, the integer multiplier has only one PPBUS source—selected by RDMP*,
The flip-flop at AS (MPSEL¥) toggles on each read of the multiplier result to
enable the reading of the other half. Each time either the X or Y operand is
loaded, the output of the OR gate at A6 is asserted. This line will asynchro-
nously set or reset MPSEL* based on the MPSCN mode bit, thus selecting either
the most or least significant half on the next integer multiplier read. At the end
of the read, RDMP* (ANDed with PPCLKZB to prevent glitching) will toggle
MPSEL* enabling the other half on the next read command.

& suSUN PROPRIETARY,

evision 1 of 20 October 1986

microsystems



174

Engineering Manual for the Sun Graphics Processor

an

A typical procedure is described bel
X

1
11

ow. It assumes that MPSCN=0 and the X
operand is 1oaded first, although d Y can be loaded in eiiher order.

1. Load the X operand — (LDMXOP* causes MPSEL* to be set to 0);

2. Load the Y operand — (LDXYOP* causes MPSEL* to be set to 0 again);
3. Delay — depends on the flow-through time of the multiplier;

4

Read the multiplier result — the most significant half is enabled, and after
the read the trailing edge of RDMP* will toggle MPSEL*;

5. Read the multiplier result — the least significant half is enabled, and after
the read the trailing edge of RDMP* will toggle MPSEL*.

The same multiplier result can be read as many times as desired as long as the X
and Y operand registers are not altered. (The delay, of course, only needs to be
accounted for once.) The reads will continue to toggle between the two halves,

The Painting Processor PROM (an identical configuration exists as the VP
PROM on the GP board) is shown on page 13. The PP PROM pointer is loaded
when chosen as the PPBUS/ZBUS destination. LDPPPROM?* strobes the ZBUS
into the F374s which hold the PROM pointer. The output of this register is
routed to the PROM, and after an access time delay (actual time depends on type
of PROM used; the microcoder must account for this time by delaying the proper
number of cycles before choosing the PP PROM as the PPBUS/ZBUS source),
the PROM data word is valid and routed to the ALS244 buffers (these buffers are
needed because of the long chip enable time of MOS PROMS). This data word
is routed onto the ZBUS when enabled by RDPPPM*,

On the Graphics Buffer board, two 28-pin sockets are provided for the PROMs.
Currently 27128 types of devices are being used to provide 16K words.

SUN PROPRIETARY

/%24 sun Revision 1 of 20 October 1986

microsystems



State Diagrams, PAL listings, and
Schematics

This section contains the state diagrams referred to in this engineering manual.

Since PAL listings and schematics are fairly volatile, they have been ‘‘unbun-

dled’’ from this manual. They may be obtained separately through Document
Control.

SUN PROPRIETARY

I(}?/ sun 177 Revision 1 of 20 October 1986

microsysiems






Index

0

Ox, xi

A
applicable documents, xv
asserted, xi

B
BG3, 17
bulk and decoupling capacitors, 17
bus error, 49

C

clear, xi
clock circuit, 10
clock signals, 22
clocks
basis of synchronous design, 22
control circuits, 22
phase relationships, 21
use with Hilevel PROM Emulator, 23
CLOSED, xi
connector pinouts, 17
cross-referenced IC designations, 17

D
destination decode, 12
DIP, xi

switch, xi
DTACK, 49

F
FIFO, 11, 109
control logic, 110
output flags, 110
read buffers, 109
state machine, 115
write control, 110
write registers, 109
write status flags, 110
floating point, 11, 97
addressing: set A, 98
addressing: set B, 100
operations, 97
overview, 97
registers, 97

floating point, continued
registers: set A, 99
registers: set B, 100
result registers, 100
status registers, 100
timing cycle, 98
Weitek FP chips, 100
functionality
Painting Processor (PP), 8
Viewing Processor (VP), 8

G
GB ground, 17
glossary
Ox, xi
asserted, xi
clear, xi
CLOSED, xi
DIP, xi
OFF, xi
ON, xi
OPEN, xi
- positive logic, xi
set, xi
switch, xi
switch section, xi
GP connection restrictions, 17
GP control register, 51
GP ID register, 50
GP slave control latches, 36
GP slave control state machine, 37
GP slave synchronizer, 34
GP status register, 51
Graphics Buffer, 12
Graphics Buffer board, 147
address pointer, 150
bus grant signals, 149
connectors, 149
control state machine, 156
destination decode, 149
fill mode, 153
ground test points, 149
integer multiplier, 173
interface signals, 153
memory array, 151
memory control, 152
memory registers, 150
normal mode, 152

SUN PROPRIETARY



Index — Continued

Graphics Buffer board, continued
PP PROM, 174
RAS and CAS, 169
read data register, 150
refresh address counter, 172
refresh circuitry, 150
refresh cycle, 167
refresh timer, 172
reset, 149
RMW mode, 152
row/column address mux, 171
write data register, 150

H

halt control circuitry, 23

I
integer multiplier, 13
interprocessor flags #1, 105
interrupt ID register, 67
introduction, 3

M

microstore, 10, 71

microstore register decode, 32
microstore VME address counter, 51
microstore VME data transceivers, 51
miscellaneous logic, 61

0]
OFF, xi
ON, xi
OPEN, xi
overview of the Graphics Processor, 7

P

P1 connector, 17

P1.BERR¥, 49

P1]IACK, 63

P2 connector, 17

P3 connector, 17

page 1,17

painting processor, 11
general field, 125
instruction register, 125
microprocessor, 130
microsequencer, 128
miscellaneous controls, 132

PPBUS source/destination decode, 125

painting processor (PP), 125

PALs, 17

part numbers, 17

positive logic, xi

PP miscellaneous logic, 141
interprocessor flags #2, 141
PP bus extension, 142
PP n register, 141
PP status register, 142

PP miscellaneouse logic, 12

PP VME interface, 65

PP VME interface, continued
address register, 65
control register, 65
data in registers, 65
data out registers, 65
interrupt id register, 65
status register, 65

PROMs, 17

pull-downs, 23

pull-ups, 23

purpose of this document, 3

R

reset circuit, 10
reset circuitry, 23

Run/Halt Operations, 25
S

schematics title page, 17
scratchpad memory, 12, 137
scratchpad pointer, 137
write timing, 137
set, xi
shared
memory"”, 77
shared memory
address, 80
clocks, 80
data, 80
VME address pointer, 80
VME data in register, 80
VP address pointer, 80
VP data in register, 81
VP data out register, 81
VP data write, 81
write enable, 81
shared memory VME address pointer, 53
shared memory VME data registers, 53
shared-memory, 10
slave address decode, 33
spares, 17
state machines
how to read the diagrams, xiii
switch, xi
switch section, xi

T
terms
asserted, xi
clear, xi
CLOSED, xi
DIP, xi
OFF, xi
ON, xi
OPEN, xi
positive logic, xi
set, xi
swilch, xi
switch section, xi
timeout counter, 61

g

[ L SR
o7 e T ; TN

i k’.;.,. Jn

E. 1 e -Q‘ff.,«.'.wi- i By K3
S P

-180-

r o ADTIT

4

L
[ e
|



Index — Continued

V
viewing processor, 10, 85
VME address transceivers, 31
VME bus grant signals, 17
VME bus interrupter, 63
VME bus requester, 56
VME control register, 67
VME control signal synchronizer, 55
VME control transceivers, 30
VME data in register, 66
VME dat= out register, 66
VME data transceivers, 31
VME data transfer controller, 59
VME interface, 10, 29
interrupter, 29
master interface, 29
overview, 29
slave interface, 29
VME master address register, 65
VME master control, 54
VME slave control, 32
VME slave registers, S0
VME status register, 67
VME transceivers, 29
VP Am29116, 90
VP branch register, 88
VP General Field, 85
VP instruction register, 85
VP microprocessor, 90
VP microsequencer, 88
VP miscellaneous controls, 92
VP miscellaneous logic, 11, 105
VP n register, 105
VP PROM, 105
VP status register, 106
VPBUS source/destination decode, 85

w

write enable gate, SO

- 181~



Revision History

Revision Date Comments
50 1 July 1985 First release of this Engineering Manual.
A-01 2 February 1986 Added PAL listings and schematics to
appendix, made various small revisions.
1-02 1 of 20 October 1986 | Changed revision number to comply

with Doc Control’s new numbering
scheme.

S

UN PROPRIETARY

- xvii ~




SN PROPRIETLRY

K
[ I 122D ]
ouit
[ BIEXSRIYPZED ] s12
_~(x‘lfi,~[51”ﬁlé“h B-—————| )

(I1res12) i
ouf i, oava . l

RLSET

X==mman x .
[_.Oma ._-.] . STATE NS5 TGNFENT
A state | Fr Fro
A 1 )

8 1 1
[ !l‘__.] c e 1
B------ b [s] [ -]
| APPENDIX A
FIGURE 1

TITLE: DATE:

STATE MACHINE EXAMPLE JANUARY 190
ENCTHER: NGL:

SERDAR ERGFNE 1 oF 1

v l 7 [’ v ] i- ‘ l a | ) ] 2 l 1




)

DPRODER

IR SR N S

ETARY

5 [ . | I 1 2 |

[’,

(/R b8 peny ZMORMAL Y (/RAS) |

[W

[wm_-

SUIE ALLIGRENT

HrRea
REERLSH
R it S /REFREQ
/NORMAL [nns, CAS, WL, smmcn(x:] /NORMAL. [ oo ::,0] DELAY 1
WRITE 1 WRITE 2

/PPCLKZB [:/pcrpgo. »
o-——-o

[~

)

(UR? l/fl()l"‘“.)
TRAS, CAL, WE

SREFREO) (RN (/NORMAL )
RE P RLSH

[« /REFREQ)Y (RD) ¢ /HORMAL n]
8----—-@

¢ REFREQ) ENORMAL )
REFRESH

[mcrm:o, (PPCLKZB)
REFRESH .
REFRESH .
[ KEFRESH !

/REFQLSH
]

/REFRESH
TTRAS

R HE 4
REFHLSH, RNS

IDLE READ
WRITE
@ (/REFREQ) ¢RD) «NORMAL)
RAS
¢ /REFREQ) (WR) ¢ NORMAL )
TRAS

ZCHED ZCFFQ 2CFHL 2CHE

L N - L

RAS, cns

REFRESH
RAS, narm:sn

] [( /REFRESH) «mom 3|

READ
WRITE 2

@

€¢/REFRESH) (NORMAL ) ( /HR)
RAS, CAS, LODOUT, ASTZBUF RDY

[ ¢/REFRESH) (NORMAL ) (WR) ]

[um:rm'-»n monmu/mr] [

AS, CAS, WE, SMINCADI, ASTZBUF RDY
SH> (/NORMALY
DLDOUT, ASTZBUF RDY

REFRESH
RAS, REH RESH

[«ncrncsm € /NOHMAL ) € /MCHANGE »]

[unu FRESH) C/NORMA s]

PPCLK

ldn;. s’
CHUF RESHD) C/ZNORTYY ) CHMCHNNIGE Y (ﬂfr“{ 5"! (m“_ﬂi‘:v)
o 0----- o T - T e
)] [um:rnc.»nmoun\ nPI’ClKZUx]
L )
)
FIGURE 23
TINE: eatt
Vo Z BUFFLR CONTROL blﬂlL‘ﬁJlNl AGUST 1
CTFITTE: A Trv ra———
, et SEME L10 EY PR o

PPCLKZBY

SYNCH TO

s | a ] 3 | 2 |




SIT PROFRIETARY

FIHO 1S DATA [3“.’_:.‘?,"5] [PR—,
T RUTERPTY ["'_Rﬁ'—"]
READ 1 READ 2 /

®) ©)

RN
l'un,’t ru!?i]
) \ [ RD ]
RO, LHOTY

FIFO DATA HAS
BLEN RLAD BY THE
PROCESSOR
START NHNOTHER READ

Fifo IS trPTY
WALT LURTIL
1T IS NO LONGER

HAS BIEN RCAD
RNO IS AVAILABLE

YO THE PROCESSCR

R5TE £nery AND WAIT UNTIL THE
GYNCIHEIONT ZE 1IF 1140 IS NOT y -
- €/UPTOPP) (UPRDF IFO) ¢ /AUPCLKL D
10 TH€ cLock [i:n’::’r'ﬂ ) enpTY [ §FBTY ] PROCESSOR READS 17
[wprowmwgwxrouzwaxn ]
SSFIFOMT C/UPTOPP) ( Z7UPRDF 11 0) (/UPCLKI
[ PTORI)Y (wn_xuu.rxromnmnj ROTEROTY RO
RO, EHTY ’ [uwtoupuwa.x]
[( SURTORP) (/UPCLKE ) ¢ /RD)] RO
EHETY CUPTOPP) ( /PIPRDF IFC) ( /PPCLKL )
/BTOPS) (S IFONT ) ¢ /RDY RO
EEOTY (UPTONP ) (PPCLKIL Y
[(vpu.nv_nppumnzbl 1IFOMT ) (/RD) ] T T—
HU, Ere:Ty STAIL ASSIGNMENT
[wmo_@»g_m_»qxnuum ]
tnery STATE | FRFF2 FRFF1  FRFFQ
[(UP!U-‘P)(S! 1ONT) (/RD) ]
LBV A 1 1 1
] 1 [} ]
c s ) 1
D 0 ® 1 FIGURE 17
t o ! 3 THLG DATE:
F 1 1 a GP FIFO READ STATE MACHINC MAY 19684
ERGTHCTR: R . PAGL:
SERDNR ERGENC 1 of 1§

| 7 T 6 | 5 | p T B) I " !




SUN Frop

T

ra

RTARY

R

uv l 7 | 6 l 5

[i/ymonm C/HRD C5F TFOFLLL Y € /PPCLKL n]
FULT

[< SADTOPP) a/uﬂ)(/'jrl!'O"uLb(/PPCLKl]

L, P

(/UPTODP) ¢ AR (PPCLKIL )]
fulL

1S flaL

Full

B

DATA IN REGISTER

WALT IF F1FO IS

[wpropm €80 (SFIFOFLL L)Y (/UPCLKI D ]

ATy
[«umomu/un (/SFIFOFULL ) (/UPCLKI )]
W, FULL

[«vmonp) (AR (UPCLKL)
FOLL

[t ]

WRITING FROM THE
DATA IN REGISTLR
T0 THE F1FO

WRITE 3

N
[(VPIOPPM\J’LD‘IFOLNNPCLKR u/snromv_u] '
W, FLAL
[«wvoum«munrouuvpcmx YISFIFOFLLL)Y ]
FuLe
{/upromn «<PPLDF IFOL ) ¢ /PPCLK1 .usrxroru.u]
WA, FLL
[ (/UPTOPP) (PPLDFIFOL ) (/PPCLK L) «srxrorux_u]
rul
FIFO DATA IN
REGISTER 1S £rPTY
. HAIT UNTIL THE
Bsrt PROCESSOR FILLS IT
CUPTOPR ) (AUCLKL)
0
l o )(/U’QKI]
A— - 8---==-p
[(/M’_YOHP;_(M'CA K1y
EIW'O"PH/L’E‘[W 1F01 > (/PP xn] .
n__:“.: h"‘—‘”“"“"‘”‘ )

)(—-—-——x]
2]
{ WRITE 2
STATE ASSIGNMLNT
STATE FRFFL FWIFD
A 3 [+]
B 1 1
[+ e 1
D ] []
FIGURE 15 -~
TITLL: [$ 214 R
GP FIFO WRITE STATE MACH. € MAY 19t
ERGT ; 5 ONBD EoeeeeT nots




- e . ———

[«rn:mcsns.unz»] [’un(ousns»mn]

1ua 1140
[uu(o»«:;ns:um_n] [«mmuy\s»u.mzo»]
110 me— T
[:wrou.,ns»:/mcxlm] [umonm u/_.mcoqm]
TTTIHG ma
(llaton/'",nb) CIRE QY (/5050
e R N

INTFRRUPT REQUESTED
WAIT T 1T

' ['( IREQ)Y ¢5N5) CIACKINY (A3) (/A2 (/AL (BTACKTNY (5"2[07(5050]
IS ACKNOWLLDOGED

INTDITCK

MY XNTERﬂLPTc 15

NO INTERRUPT

—————— x
[. HRCLRIY L(,]

JACKOUT a /POR«INCKINSMENSHt /NN eNT )
4+ /PO IACKINSIENG (Ao Qe /AL )e/SIALA

~_s5050
e—1
RESEY IFLAG
[T_STATC ASSTGNRENT .
STAIE | INFI  INFFD
A 1 °
|} 1 1
c ° 1
/] ] ]
FIGURE 11
OATL:

TIne: Gp
UME BUS INTERRURPTER MAY 1984




i

SUN PROTPIETARY

2 | '

(/SOTACK) (/SDERR)Y ¢ HORDXFER) ( AMEABD )
PALTERAS, MASTEINST
(/SOTACK) (/SUERAY C/HORNMER) CUMEABD) ]

RCOUCST PENDING

HASTLRAS, MASTERDLE
€ /30TACK) ¢ /SHLRR) CHIOROXFER) -

[ PAS TERAS, RASTCRLS T, ARYTERDSD

]

HWAIT ONE CLOOCK
FOR SU1P ON
As & DS

NO UME REGUEST

I’wrtuur:,nmusv )]
TTTe=-EE= [}

| 3 |
[« /RSTUNEBLIBY ) ( /T INEOUT ) (/SBLRAY (/30TACK) (/MASTERDSE) (MASTEADSE .]
PASTLRNS, FASTERDSD
[« ZRSTUMEBUSY ) ( /T IMEOUT» (/SBERR) ( /SOTACK > (MASTERDSL) ¢ mnsmnusm]
AAGTERAS, HASTERDS1 .
[«msrwtawnunn:ou‘n C/SBERRD C/SDTACK) (MASTERDSE ) (MSTERDSA) ]
WS TERAS, S TERDS T, PASTLERDSD
[ (/RSTUMEBUSY ) ¢ SBERR) ]
RSTOREBUSY
[ C/RITUMEBUSY ) (SOTACK) ]
RSTURE BUSY
C/RITUMEBUSY) (TINCOUT) ]
, [ RSTUFEBUS Y
(RSTUME BUSY ) (PPCLK2) ]

[

R3TVNEDUSY

(RITUNEBUIY) ( /PPOLX2)Y
[ RS TLNCBUSY ]

ANOTHER  TRANSACTION
15 REOUESTED WHILE

BUS IS ACOUIRED
OR
BU3 18 RELINQUISHED

[ CLECBUAY) masn]

WAIT UNTIL REOUEST

AND TrE BUS IS
ACOUIRCD [ SBDSY
2o

®

?_[ﬁ £ ASSIGNMENT
stare | nerea_oorre
n o 1
L] 1 ]
c | o o FIGURE 10
A~ TINLC: 6P UME MNSTER onre:
DATA TRANSFER CONTR#g | MAY 1004
LITETR: :
. : o SCRDAR ERGENE P oF 1
" T - T . T - T .




PR T T R e Lol LA LR el LT

s asevacne.

SUN PROFRIETARY

7 l 8 [ 5 l 4

FoR DON' T HAVE BUS

[ uw(uusvusum]
SUMEBUSY
———@

[uuusvusucmu mr,nusn.n(/.mmcxuzsmnm]
DOSY
[(/Bll'_;n (SOGINY (snum]
['])

[(/nusn (SUGIN) (5AS5) ]

ur

[ unu)nuucm»:smncm]
[( /BBSY) (SBGIN) uswsn]

BR

[(/nnsn usacm»]
BR

[ posy ]
BULY

DON' T HAVE BUS
GET IT &

ASLERT BUSY

[« BBSY ) CUMEBUSY) (SBR) (/SBGINY

' C/BBSY) (/ IEBUSY)
o--———b

T bosy ]

]

BGIOUT = /PORe/S5BUSY#»BGINe/BDSY

[ ¢BBSY) ( AMEBUSY) csacm:]

BBSY -
[caasruwcmsvnssnusawcrm ]
(%37

[ (BBSY) (UMEBUSY ) ussm]
BBSY
[« BBSY) (UHMEBUSY ) (SPA) usnclm]

] [
[ (/BBSY) (UMEBUSY) ]
@ —--—D
)

FINISH TRANSFER
THCN RELEARSE BUS
1F RCOUCSTED

©

(BBSY) ¢ ANMEBUSY ) ¢ /SBR) (/SBGIN))
BBSY

STATE ASSIGNMENT
STAIE BRSFT L BRSFFO
A 1 1
] [ ] I3
[ 1 []
D [.] [.]
[«_M.'_f;-_iﬁu::zﬂ&]
busY
FIGURE 9
T1T0LCL: . DATE:
GP UME BUS REQUESTER | MAY 1984
T SERNAR FRGENE |l OF 1




akod o) [T

SUN PROPPRIITARY

"

[( SHACCESS) (/ENHRT )]
TTTTTEnRT

SLAVE 19 BEING
WRITTEN TO
SYNCHRONIZE ACCESSES
l TO THE SHAREUD MEMORY

®

S

N

ONE EXTRA STATE
\[ FOR SHARED MEMC]Y
WRITES

[( SMACCESS) CENRT )]
a--———8

f/smcccss» < znwcrssl]

B-=—=== ) Koo e
(SRCO) ¢ AMELRORD) ¢ SLUIRTTE ) ¢ SMACCESS) (UPCLKFR [ C/7SMACCESS) (MSACCE 55)] [W]
0- -8 v’
[(SREOHN’(LNOQDHSLWQ!YC) (SMACCESS) ¢ /UPCLKFR) SLUNTACK, RSTBUSY * * )
AT . ’
(SREQ) ( AUMEL WORD) ¢ SLWIRITE ) (MSACCESS)
ENRT ]
fsa:oumuuonnnsc_wan:» C/MSACCESS) ( /SMACCESS) (/DRDID)
SLUDTACK, RSTBUSY
i
SLAVE HAS NOT
BEEN ACCESSED [:sszco»uvmuonm ‘:/swmnc)] SLAVE 13 BEING
IF ACCESSED WITH @------ o READ
POR AN ERROR CONDITION SYNCHRONIZE ACCESSES
- ASSERT BUS ERROR 10 THE SHARED MEMORY
~N
» [£SHACCESS) (ENIRT ) ]
SLUDTACK, RSTBUSY .
_../snAccess __.]
SLUDTHCK, RSTBUSY [(smcassu/qu(rmucmnn ]
®-——0
STATE ASSIGNMENT [«smcccss»«vpcwrnn/tmnn
B SFFT SFFd | ENHRT
B 1 1
] [} 3
c o ) /SREQ
S LA [o22]
[( LREOY UNMEL uonni‘
SLUUBE R FIGURE 6
. (SREO) ¢ /ANNELHORID (SLWIRITE ) (BRDID H 1
M.' [ L N TG Gi> SLAVE CONTROL L VG v 1004
3 SLVBERR STATE MACHINE
. ENGIRETR: . PACES
SERDAR ERCENE 1 Of

Y RS




	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	177
	178
	179
	180
	181
	182
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08



