
SU-326-P.39-29

DESIGN DESCRIPTION OF THE NOVA 3 CARTRIDGE DISK EMULATOR

ON THE STANFORD EMMY SYSTEM

by

Daniel R. Hafeman

June 1978

TECHNICAL NOTE NO. 140

Digital Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305

The work described herein was supported tn part by the Department of Energy
under Contract No. EY-76-S-03-0326-PA 39.

Digital Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, CA 94305

Technical Note No. 140

June 1978

DESIGN DESCRIPTION OF THE NOVA:3 CARTRIDGE DISK EMULATOR

ON THE STANFORD EMMY SYSTEM

by

Daniel R. Hafeman

ABSTRACT

This paper describes the emulation of a Nova 4047A Cartridge Disk System
on the Stanford Emmy. The Cartridge Disk Emulator (CDE) serves as a peripheral
to a Nova 3 processor emulator, also installed on the Emmy. With a disk system,
DG disk based' operating systems can be installed, allowing a wide range of
programs to be studied.

The Cartridge Disk Emulator uses the Mini UNIX system to provide I/O services
and manage the physical disk resources. COE transforms Nova I/O commands into
UNIX file access requests and processes all status resulting from those requests.

All other peripheral emulators currently installed on Novaem
programs that may easily be understood from ~he program listing.
in itself a very complex program. It is comparable in complexity
to the entire Nova Code Emulation Program. Therefore, a document
its description is required.

are small simple
CDE, however, is
and code space,
dedicated to

Appendix A of this document discusses how to add a new peripheral to NovaemU
and NovaemCD.

The work described herein was supported in part by the Department of Energy
under Contract No. EV-76-S-03-0326-PA 39.

1.0 INTRODUCTION

This pape~ describes the emulation of a Nova 4047A cartridge Disk
System on the Stanford Emmy. The cart~idge Disk Emulator (CDE) serves
as a peripheral to a Nova 3 processor emulator, also installed on the
Emmy. With a disk system, DG disk based operating systems can be
installed, allowing a wide range of programs to be studied.

The cartridge Disk Emulator uses the Mini UNIX system to provide I/O
services and manage the physical disk resources. CDE transforms Nova
I/O commands into UNIX file access requests and processes all status
resulting from those requests.

All other peripheral emulators currently installed on Novaem ace small
simple programs that may easily be understood from the program
listing. CDE, however, is in itself a very complex program. It is
comparable in complexity and code space, to the entire Nova Code
Emulation Program. Therefore, a document dedicated to its description
is required.

Appendix A of this document discusses how to add a new peripheral to
NovaemU and NovaemCD.

2.0 FUNCTIONAL DESCRIPTION OF eDE

eDE attempts a class A emulation of the DG 4047A cartridge disk
system. Obviously, complete emulation of a disk system is impossible
especially when dealing with timing and er~or processing functions.
It is hoped, however, that eDE presents an interface enough like a
real 4047A so that Disk operating system software will run without
modification. However, there are functional differences and these will
be discussed.

2.1 Capacity

CDE can support up to four drives with 1,247,232 word of storage per
drive. Each Drive corresponds to a UNIX device file as shown.

Drive 0
1
2
3

UNIX Device # 270
271
272
273

The ready status of each drive is maintained by UNIX via the device
ready and Device not ready commands. In UNIX, a device ready command
is issued to eDE whenever the user assigns a file to the device
number, and a device not ready command generated when the file is
closed. When CDE is first loaded, it presets Drive 0 ready and Drives
1-3 not ready. The ready bits are available to Nova code via RegA
status and thus can be (and probably i~) used by the Nova disk driver
to determine capacity of the system.

2.2 Functions

The DIA-DOC instructions are executed as described in the Peripherals
Reference Manual and need no further discussion here. These
instructions, with special function code zero, do not cause any
CDE-UNIX communication. They only update theA-C registers ..

The special functions, START, CLEAR, and rOPULSE originate all I/O and
accordingly affect CDE-UNIX communication.

START - (Read/Write Command). Using the sector and side information
in Rege, and the cylinder number from the specified drive status word,
a UNIX byte address is formed. This address calculation algorithm
assumes that the first word on sector zero~ side zero, cylinder zero
corresponds to the first word in t~e UNIX device file assigned to the
drive.

Next, a seek command is issued on the drive specified in RegC followed
by on or two read/write commands. Two commands are issued if the
read/write buffer in Nova memory overflows~ that is, if it wraps
around through zero. The first command processes the buffer from the
starting address to 77777 and the second processes the remainder of
the buffer starting at Nova address 0. This is required to emulate
the module 32K memory address counter in the 4047A.

~ read command is issued if the command field in RegA =2, a write
command if it =3, and a NOP results if it =0, or I (Note, the
Peripherals Reference Manual does not discuss the response of the
4~47A when a Nova Start Function is executed and the command field
specifies a seek).

All Status is updated as defined for the 4~47A.

When the command completes, the drivels Status word and Registers A-C
are updated to their final values as specified. Notice that the MAR
(RegB) and the sector count fields are updated in one step at
completion (In a real 4047 these fields are updated continuously
during the operation). A Nova interrupt is issued as specified.

IOPULSE - (Seek Command). Using the cylinder and command fields in
RegA, a UNIX byte address is calculated. If the command field does
not specifiy a seek or recalibt'ate command, then the IOPLSE is treated
as a NOP. Otherwise, a seek command is issued on the drive specified
in RegC. The drive ready flag is cleared, the seeking flag set, and
the cylinder field in the device status word updated from the
equivalent field in RagA.

At completion of the operation, the drive is returned to ready state
and the seeking flag cleared. A·Nova interrupt is issued as
specified.

Note: The IOPULSE function could have been handled as a NOP
since a UNIX seek command is required priot' to any
read/write operation. It was implemented, however, to
achieve timing characteristics at least similar to a real
disk system. Since the UNIX disk devices map onto a real
disk drive, then real time seek control might improve Nova
operating system performance.

CLEAR - (reset all CDE I/O). All disk operations are aborted using
the UNIX abort (device) command. When UNIX has acknowledged the abort,
CDE can safely initialize the drive status words and clear any Nova
interrupt.

2.3 Status

The real 4047A maintains a 7 bit status field for each drive. In
addition, the current cylinder is implicitly known by the position of
the head. CDE keeps equivalent information on a dri~e in the status
vector, CDS, (see Section 3, figure 3-1).

As stated earlier, the deive's cylinder number is preset to the value
specified in the last DOA instruction when a seek command (IOPULSE) is
performed. The cylinder number, unlike most other variables, is not
cleared during a reset command. It can only be modified by the
rOPULSE special function.

The 7 bit status field is now defined foc CDE. The names of the
indiviual bits are consistent with DG terminology.

Drive Ready (bit 9). At load time this bit is preset to 1 on drive
zero and to 0 for drives 1-3. Thereafter it is~cleared when:

1) A device not ready UNIX command specifying this drive is
received.

2) A Nova seek command (IOPLSE) is successfully issued on
this drive.

The bit is set (drive goes ready) when:

1) A device ready UNIX command specifying this drive is
received.

2) A Nova seek command completes for any reason (successful
or not).

CDE will not issue any command except abort(device) to UNIX on a drive
that is not ready.

Seek Error (bit 10). A seek error occurs when an out of bounds
cylinder number is specified in a Nova seek command, or when UNIX
returns an error on a seek finish.

End Error (bit 11). The error occurs when the sector count specifies
that a read/write operation should continue beyond the last surface of
the disk cartridge~ This errol' is actu~lly detected by COE when the
Nova read/write command is issued. CDE records the error, modifies
the calculated buffer length count, and then issues the correct
command to UNIX. Thus, the portion of the buffer on the valid
cylinder is processed as in the real 4047. When the read/write finish
command is received, CDE sets the end error in the Drive's Status
word.

The end error is also set if the sector number is out of bounds when
the command is issued. In this case, CDE aborts the instruction not
initiating any UNIX I/O. In a real 4047, an illegal sector causes an
infinite sector search that can be cleared only by an IORST. It was
just too painful to emulate such a bug.

Unsafe (Bit 12). It never happens in CDE.

Check Error (Bit 13). This bit is set when an unsuccessful read/write
finish command is received. Thus, any error that UNIX encounters in
processing a read/write command, causes a check error.

Data Late (Bit 14). It never happens in CDE.

Error (Bit 15). Error <- 1 whenever any of bits 10-14 are set or when
a read/write command is issued on a not ready drive. Note, the second
condition is not specified for a real 4047A. The DG documentation
doesn't define the results of such an access.

3.0 DATA STRUCTURE

CDE, like all other peripherals, uses the I/O table described in "The
Design of a Nova 3 Emulator On the Stanford Emmy", as the interface to
the code emulator and to the CDE u-interrupt handlers. In addition, a
four word drive status vector not in the I/O table, is allocated to
CDE. This vector is accessible only to CDE and maintained by the CDE
code emulator and u-interrupt handlers. Figure 3-1 defines these
variables and their bit assignments.

3.1 .Drive Status

Each of the four drives owns an entry in the four word drive status
vector (CDS) and indexes that word with its ordinal number. Complete
status on a drive, including any outstanding UNIX I/O activity,
resides in its status word. All status could have been compacted into
the I/O table, nice from an overal NovaemCD point of view, but
intolerable feom and accessiblity standpoint. The current structure
allows fast indexing of status. The CDE record in the I/O table
cannot be increased in size to include CDS as it would prohibit the
homogeneous treatment of I/O devices by Novaem when executing global
Nova I/O instructions, like IORST.

Referencing figure 3-1, bits 0-6 of the drive status word correspond
to the drive ercor bits ~efined in section 2. Bits 16-23 define the
current cylin~ec number. This field specifies the position of the
emulated head for the drive, and is used in UNIX seek address
calculation. The field is updated during execution of a Nova seek
command (IOPLSE).

Bit 26 is the seek flag, and is set by the Nova IOPLSE command. It is
cleared by the u-interrupt handler when the seek cornpletes,i.e. when
UNIX sends seek complete mail. The u-interrupt handler uses this bit
to determine the cause of a seek command. If the seek was issued
during execution of an IOPLSE, then the CDE seek done flag (see
section 3.2) is set and a Nova Interrupt issued. Otherwise, caused by
a Nova read/write command, only the drive status is updated. This
Seek complete is only the first of two or three UNIX responses that
must occur before the CDE Done flag can b~ set.

The seeking flag is al~o used by the seek clear routine, P24SKAB, to
determine if an outstanding UNIX seek command exists on the drive. If
one does then a UNIX abort command must be generated to clear the
seek.

Bit 27 is the read/write flag which is currently unused.

The no done flag, Bit 28, gets set whenever two UNIX read/write
commands are generated during the execution of the Nova START
function. Recall that two commands are required whenever the
Read/write data buffer overflows, modulo 32K, through zero. When
read/write finish mail is received from UNIX, the no done flag is
tested. If it =1, then the CDE done flag cannot be set since another
UNIX read/write finish response is required before the operation is

CDSn: 0< n <3

31 28 27 26 25 23 15 6 5 4 3 2 1

IIIII NDIIII S 1IIII Cylinder 1/111111 DRI SEI EEl 0 I CEI 0 I E I

Bits 0-6 define drive status:

E --Error.
CE --Check error; Set when UNIX has repocted a read/write ecror

on this device.
EE --End error; Set when the read/write buffer extends beyond

the last cylinder, or an illegal sector has been specified
in a readlwrite request.

SE --Seek error.
DR --Drive ready.

Cylinder --Defines the curcent position of the emulated head. It is
used to calculate UNIX byte addresses on a read/write
operation.

S --Seeking; A Seek is in progress on this drive. That is, a
UNIX seek command, issued by the IOPLSE special function,
hasn't completed yet.

NO --No Done; Two read/write UNIX commands ace outstanding on
this deive.

Deive Status Vector

FIGURE 3-1 CDE Data Structure (page 1 of 3)

IOTCOS:
31 25 23 15 14 10 6 o

REGA: 1111111 C I CYL I 0 I so SK 1111111111111

31 15 14 o

REGB: 111111111111111111111111111111 MAR

31 15 l~ 8 7 3

REGC: 11111111111111111111111111 ONIII/IIIIIIIIIIII SI SECTORI-SCNT I

31 15 14 10 6

TEMP: I I I FMAR I FSI FSECTOR I -FSCNT I FSTATUS

31 15 13 7 6 4 3 2 1

IOFR: OONEF I 0 I 0'33 1 I 01 ONI 01 AI BI DI II

RESET: M04CDC~

SK -~Seeking flags in 'OIA operand.

SD --Seek done flag in DIA operand.

D --Read/wri~e done flag in OIA opecand. It is a copy of D in
IOFR.

CYL --Cylinder field in DOA operand.

C --Command field in DOA operand.

MAR --Memory address register.

-SCNT --Sector count field in DIC/DOC operand.

SECTOR --Sector I in DIC/oOC operand.

S --Side I in DIC/oOC operand.

ON --Selected drive I in DIC/oOC operand.

lOT Record
Figure 3-1 CDE Oata Structure (page 2 of 3)

Register TEMP contains read/write completion values for all variables
in Reg B and Reg C along with final status for-the selected drive.

I --CDE Nova Interrupti When I = I CDE has set IR and
incremented ICNT.

D --Read/write Done.

B --Read/write BUSYi When B =1 a read or write operation is in
progress.

A --Aborti A=l when a UNIX abort(device) command is in progress
on one of the CDE devices.

DN --Ordinal number of drive last involved in a read oc write
operation.

DONEF --Nova I/O Bus done field. Bit 23 of DONEF (- I whenever any
of the seek done flags in Reg A or the read/weite done flag=l .

. It is clear ed, when all done flags = 0.

IoRSr ·

lOT Record
Figure 3-1 CDE Data Structure (Page 3 of 3)

complete. The no done flag is cleared. Otherwise, (no Done =0), the
mail indicates that the data transfer is complete and that the CDE
Done Flag should be set. In addition, the CDE busy flag is cleared
and a Nova Interrupt issued.

3.2 The CDE I/O Record

The cartridge disk device registers reside in the ficst three words of
CDE's I/O table record.

Registers B, and C are simple 16 bit bidicectional registers and their
bit assignments are consistent with the specification in the
Peripherals Reference Manual. Bits 16-31 of these registers are unused
and may assume any value.

Register A has a more complex representation for two reasons:

1) The format for RegA on a DOA (output) instruction differs
from that of the DIA (input) instruction.

2) Bits 0-6 of the DIA operand contain the status of the
selected drive: that drive defined in RegC.

For these reasons, the information stored in RegA does not match the
format defined by the DIA and DOA instructions, adding some
complication to the DIA and DOA execution routines.

Bits 0-6 of Reg A are unused. On a DIA instruction, bits 0-6 of the
operand are fetched from the selected drive's status word.

Bits 7-15 contain the seeking flags, the seek done flags, and the
read/write done flag. These are used in DIA operand formation. ~
seekin~ flag is set by the IOPLSE execution routine. It is cleaced
by the u-interrupt handlers and clear routines. A seek done flag is
set by the u-interrupt handler when seek complete mail is r.eceived on
a seek that was requested by the IOPLSE execution routine. It is
cleared by the DOA execution routine and the clear routines. The
read/write done flag is a copy of the CDE done flag in IOFR. It is
maintained by the Start, u-interrupt, and clear routines.

Bits 16-23 contain the cylinder field of the DOA operand. It is used
only by the IOPLSE execution unit to update the selected drive's
status word and to form the byte address parameter in the UNIX seek
command.

Bits 24 and 25 represent the command field of the last DOA operand,
and are used by the IOPLSE and START execution units.

Reg Temp provides temporary storage required by the execution of the
START command. The START execution unit, M04CD100, calculates final
values foe the read/write variables contained in Regs Band C, and
generates final drive status. This information is stored in Reg Temp
and remains there until the UNIX I/O completes, at which time the
read/write u-interrupt handler uses it to form the final parameters in
Registers Band C, and to form final drive status.

IOFR is identical to the Nova Bus status words of all other
peripherals. However, there are some unique characteristics:

1) Bits 5 and 6 of this word contain the ordinal number of
the drive last used in a read/write command. Thus, if a
read/write operation is in progress, bits 5-13 of IOFR will
define the UNIX device number involved. This infomation is
used by the read/write clear procedure, P2lRWC, to abort a
data transfer operation.

2) Unlike all other peripherals, a Nova interrupt request
(bit 23=1) may be pending, even though done =0. This is so
because the done flag in CDE represents only read/write done
status. There are, in addition, the four seek done flags
found in RegA. An interrupt request is generated whenever
any of the seek or read/write done flags =1, and the request
cleared only when they all =0.

The last word in CDE's record is a pointer to the CDE power on reset
procedure, M04CDCL, to pe used by the IORST execution coutine when
int.ializing CDE.

4.0 ROUTINES

Table 4-1 lists all routines used to implement the CDE interface. Like
other devices, the cartridge disk I/O instructions are parsed in two
steps.

1) The opcode field is decoded and all register transfers
performed.

2) If the opcode did not specifiy a skip, then the special
function field is decoded to determine what I/O, if any, is
to be performed. If the opcode specifies a skip, an exit to
the global skip routine, M04SKP, occurs.

The CDE u-interrupt handlers (I127), process all UNIX-to-Emmy mail
directed to the disk drives, devices 0'330'--0'333'.

CDE was designed with readability and reliability as the Key design
goals. Speed was hardly a consideration because the I/O instructions
should be executed relatively infrequently. Since CDE was designed to
incomplete documentation, some functional changes will probably be
required before a disk based operating system can be reliably
supported. Therefore, it is essential that CDE be well structured and
easy to understand. The author sincerely hopes that CDE has met its
design goals.

CDE uses 455 words of control store. This includes the CDE execution
routines and u-interrupt Handlers~

\\

NAME

M04CDS

M04CD20--70

M04CD10

M04CD100

M04CD200

M04CD300

M04CDCL

M04CDNR
M04CDEE
M04CDSE

I127CDS

ROUTINES

DESCRIPTION

CDE instruction decode routine.

DIA-DOC instruction execution routines.

COE special function decode routine.

START special function execution routine; initiates
UNIX read/w('iteand seek commands.

CLEAR special fqnction execution routine, issues
UNIX ahort(device) cOI'Jlmand.

IOPLSE special function e~ecution routine;
initiates UNIX seek command.

CDE clear procedure used by P04IORST.

Error exit routines used by M04C0100-300.

CDS u-intert'upt handlers.

Table 4-1. COE Rout ines and Pc ocedur es. /. ".:' . '"

\2

PROCEDURES

NAME DESCRIPTION

P2lRWC Clears any read/weite command currently in
execution on UNIX.

P22ICL Removes the COE intereupt ~equest from the Nova
I/O Bus.

P23MUL 32 bit multiply routine

P24SKABClears the specified drive's status woed and
aborts all UNIX I/O on the device. Issues
UNIX abort(device) command.

P25SKD Sets the specified seek done flag and issues
a Nova inteerupt.

P25RWD Sets the read/weite done flag and issues a
Nova Interrupt.

Table 4-1. CDE Routines and Procedures - Continued

(r: A.:;.r. "',1 ,:t ",:' 'J)) I '. :;.,~ , .J~.". ,...

.':1

5.0 STATUS OF THE PROJECT

Unfoctunately, time did not allow adequate verification of the storage
system. The NovaemCD Emulator, however, contains the complete CDE
device and interrupt routines, and simple Nova I/O programs have been
run to verify at least functional integrity.

Because CDE cannot perform real time emulation of the 4047A, Nova disk
diagnostic pcograms will probably not be usable~ This is only
conjecture, however, as no attempt has been made to run such programs.

,4

6.0 CONCLUSIONS

CDE turned out to be a very difficult program to develop, largely due
to the complexity of the 4047 hardware interface. It is clear that
the 4047A evolved under severe hardware and compatability constraints
resulting in a very unstructured and difficult to document interface.

~0% of the 4047A function could have been emulated with a much simpler
program. However, the value of such an emulator is questionable since
the disk driver in the operating system will have to be rewritten to
compensate for the other 10% of the function. But, if driver tewrite
is required, then a single disk I/O emulation package encompassing
both the driver and the disk system is a better solution. The new
driver for this system would contain a single currently undefined Nova
instruction which is recognized by the Emmy code emulator as a request
to execute the I/O emulator. Thus, the emulation interface resides at
the I/O driver call level instead of at the hardware level. But, this
level of interface, in a typical minicomputer op~rating system, is
even less well defined and documented, and may indeed be more complex,
requiring the emulator writer to have intimate knowledge of the
operating system primitives.

CDE attempts to perform non real time class A emulation of the
hardware interface with the goal of supporting any DG 4047A driver. If
sucessful, then any of Data General 1 s commercial systems can be easily
installed on NovaemCD.

APPENDIX A. INSTALLING A NOVA I/O HANDLER ON NOVAEMU OR NOVAEMCD

Installing a new I/O emulator and Novaem is a well defined task and
~equires only minor modification to the current code emulator. The new
device will contain two programs~ the device code emulator, and the
u-interrupt handler.

To install the device, the following modifications to Novaem must be
made:

1) The starting address of the code emulator must be entered in
the device code jump tables at M0lIO and at I100UNIX. Its
location, in the tables, is determined by its device code.

2) An I/O record must be created foe the device in the I/O table
(lOT). Its location in this table is arbitrary but must follow
IOTZERO and precede IOTCPU. The location determines its priority
on the emulated I/O Bus.

The I/O record must be six words in length. The first four are
totally specified by te I/O Emulator design. The fifth word
"IOFR" must adhere to the format defined in "The pesign of a Nova
3 Emulator on The Stanford Emmy" sinc~ it is used by the the
global I/O instructions. The sixth word must contain the address
of the new device's reset routine. If the device has a simple
I/O structure, then procedure P04CL can be used.

3) The number of devices variable, NUM OF DEV, must be
incremented to reflect the new entry. - -

4) Declarations defining the device code and mask should be
entered in the I/O device construction table.

The designer must strictly adhere to the busy/done protocols defined
for the emulated Nova I/O Bus. If the device is simple, then he may
use P0lCLEAR and P02DONE to assist in the management of the busy, .
done, and interrupt flags.

REFERENCES

1) GENACC P~ogram Listing
Digital Systems Lab, Stanford Electronics Lab
Stanford University, March 1978

2) Charles Neuhauser
"An Emmy Based PDPll/2~ Emulation"
Digital Systems Lab, Stanfo~d Electronics Lab
Stanford University, March 1977

3) Charles Neuhauser
"Emmy System P~ocessor -- principles of Operation"
Digital Systems Lap, Stanford Electronics Lab
Stanford University, May 1977

4) Lee W. Hoevel
"Deltran: principles of Operation. A directly Executed
Language Fo~ Fortran II"
Digital Systems Lab, Dept. of Electrical Engineering and Computer
Science
Stanford University, March 1977

5) Digital Equipment Corp
"PDPll/03 Processor Handbook"
Copyright 1975

6) Data General Corporation
"Progcammer's Reference Manual--Nova :J:.,ine Computers"
Doc i ~15-000023-04
Copyright August 1976

7) Data General Corporation
"programmer's Reference Manual--Peripheeals"
Doc # 015-000021-00 Rev. 00
Copyright November 1974

8) Data General Corporation
"Exerciser foe NOVA 3"
Doc # 096-000363-02
Copyright 1976

.1

