
COMPUTER SYSTEMS LABORATORY 

STANFORD ELECTRONICS LABORATORIES 
DEPARTMENT OF ElECTRICAL ENGINEERING 

STANFORD UNIVERSITY· STANFORD. CA 94305 

SU-SEL 79-011 

A THEORY OF INTERPRETIVE 

ARCHITECTURES: 

IDEAL LANGUAGE MACHINES 

by 

Michael J. Flynn 

and 

Lee W. Hoevel 

February 1979 

TECHNICAL REPORT NO. 170 

The work described herein was supported in part by the 
Anny Research Office-Durham under contract no. 
DAAG29-78-G-0205, using laboratory facilities developed 
with the support of the Department of Energy under 
contract no. EY -7 6-S-03-03 26-PA 39. 

SU-326-P.39-31 



SU-SEL 79-011 SU-326-P.39-31 

A THEORY OF INTERPRETIVE ARCHITECTURES: 

IDEAL LANGUAGE MACHINES 

by 

Michael J. Flynn 

and 

Lee w. Hoeve1 

February 1979 

TECHNICAL REPORT NO. 170 

Computer Systems Laboratory 

Departments of Electrical Engineering and Computer Science 

Stanford University 

Stanford, CA 94305 

The work described herein was supported in part by the Army Research Office 
Durham under contract no. DAAG29-78-G-0205, using laboratory facilities 
developed with the support of the Department of Energy under contract no. 
EY-76-S-03-0326-PA 39. 



ABSTRACT 

This paper is a study in ideal computer architectures or program 

representations. An ideal architecture can be defined with respect to 

the representation that was used to originally describe a program, 

i.e. the higher level language. 

Traditional machine architectures name operations and objects 

which are presumed to be present in the host machine: a memory space 

of certain size, ALU operations, etc. An ideal machine framed about a 

·specific higher level language assumes operations present in that 

language and uses these operations to describe relationships between 

objects described in the source representation. 

Tne notion of ideal is carefully constrained. The object program 

representation must be easily decompilable, (i.e. the source is 

readily reconstructable). It is simply assumed that the source itself 

1S a good representation for the original problem, thus any nonassign­

ment operation present in the source program statement will appear as 

a single instruction (operation) in the ideal representation. All 

named objects are defined with respect to the natural scope of defini­

tion of the source program. For simplicity of discussion, statistical 

behavior of the program or the language is assumed to be unknown; that 

is, Huffman codes are not used. 

From the above, a canonic interpretive form (CIF) or measure of a 

higher level language program is developed. CIF measures both static 

space to represent the program and dynamic time measurements of the 

number of' instructions to be interpreted and the number of memory 

i 



references these instructions will require. The elF or ideal program 

representation is then compared using the Whetstone benchmark in its 

characteristics to several contemporary architectural approaches; IBM 

370, Honeywell Level 66, ~urroughs S~Language Fortr.;in and DELtran, a 

quasi-ideal Fortran architecture based on elF principl~s. 

~y WORDS 

architecture comparisons 

canonic interpretive form 

directly executed 

high level lang~age machines 

program represen~ation 

ii 



INTRODUCTION 

Obvious inadequacies of present machine architectures, both in 

program size and execution time pose the problem of representing pro­

grams for direct interpretation [1,3,11]. Secondary effects lead to 

complicated system structures and implementations, e.g. compilers, 

linkage editors, as well as difficulties in recognition and exploita­

tion of parallelism [13]. The traditional premise is that any execut­

able machine architecture must be a fixed and, hence, universal 

language. The premise of this paper is that this forces interpreta-

tion to occur at too Iowa level and places too great a burden on 

translation, limiting the efficiency of a system. 

Assume that programs are initially expressed in a higher level 

source language (HLL), catering to both the user and his problem. 

However, programs must ultimately be evaluated by a lo'tver level pro­

cessor the system's host machine. It is in the host machine that 

state transitions over HLL named resources actually occur. Once the 

source language has been selected the issue becomes one of determining 

the most suitable intermediate language (or instruction set) for the 

system called its directly executed language (DEL) and a suitable 

host machine for interpreting this DEL. It 1S important that this 

intermediate language preserve as much information concerning the user 

environment and original source program structure as is useful in 

realizing concise representation and expeditious interpretation (Fig­

ure 1). 

1 



Abstract Algorithm 

[User] 

Source Program (in HLL) 

[Compiler] 

Intermediate Surrogate (in DEL) 

[Interpreter] 

Individual DEL Instruction 

[Execution Semantics] 

Host State Transitions 

Figure 1: EVALUATION PROCESS 

TWO PHASED EVALUATION [7] 

The basic model used in this investigation is illustrated in Fig­

ure 2. Its most obvious characteristic is that program evaluation is 

assumed to take place in two distinct phases. First, a source program 

is converted into an equivalent executable program during an initial 

compilation phase. Users retain this executable program, which 

becomes a surrogate for the original source version. Iri the second 

phase this surrogate undergoes any number of subsequent interpreta­

tions. The user must visualize the effects of interpreting a DEL pro-

2 



gram in terms of the semantics associated with its original source 

level representation. 

Two phased-evaluation may be used as the basis for a design model. 

The principal components of a system in this model include: a source 

language selected for its representational capabilities; a host 

machine selected for its execution capabilities; a translator that 

takes a source program as input and produces a logically equivalent 

executa.ble program; and finally an interpreter that enables the host 

machine to implement the $tate transitions specified by the output of 

the translator. 

In a traditional design, the interface between the translator and 

interpreter (called the "machine language") is in fact a universal, 

host-oriented language. Its structure is largely defined by artifacts 

presumed to be in the host machine, i.e., a certain number of regis­

ters, memory cells, or arithmetic operations. The form of a tradi­

tional machine language corresponds closely to the form of the under­

lying host machine, so that interpretation of individual instructions 

requires a minimum number of state transitions in the host. This 

approach is limited since both the host and DEL are fixed and cannot 

adapt to specific requirements of the. source language and user 

environment. 

In practice, since many different user environments and 

corresponding source languages must use the same host/interpretation 

combination a good deal of complexity is forced upon a translator or 

compiler. The translator must produce a program representation in a 

3 



fixed, universal language -- regardless of various perturbations in 

the source language and corresponding environment. 

As an alternative, an execution architecture may be constructed to 

be an ideal representation with respect to the given source language 

and environment. The term "ideal" is used here to mean (1) tran­

sparency, i.e. translation is a simple process which preserves 

equivalent source information thus allowing a ready reconstruction of 

source contructs and (2) DEL optimality -- space to represent and time 

to compile and execute (interpret) are minimized. Since the DEL 

language will now differ as environments change, the interpreter and 

host machine must be more sophisticated. For example a host might be 

designed specifically as an efficient interpretive engine, rather than 

a general purpose computer. The advent of improved technology, espe­

cially fast read/write storage that can be used to contain the inter­

preter and its immediate execution environment, has enhanced the abil­

ity to construct adaptive, interpretively directed hosts, and forms a 

premise for this alternative design approach. 

Translation 

Translation is the process of converting a program 1n one language 

into an equivalent program in another language. Equivalence refers to 

similarity of transformation in the eyes of a user a program p in 

language P is equivalent to a program q in language Q if and only if 

users cannot distinguish between an exec~tion of p according to the 

semantics of P, and an execution of q according to the semantics of Q. 

4 



Figure 2: TWO PHASED EVALUATION 

HLL source program 

translation 

DEL: <lowest level of complete 
program translation 

i nterpreta ti on 

highest level 
interpreted during 
execution 

The virtue of compilers is that they translate a source language 

program into a form that can be interpreted more efficiently. This 

means that some sort of reduction in comput<ational complexity. takes 

place. In general, compilation can be viewed as a (partial) binding of 

operands to storage cells and operators to computational structures. 

The first binding is maintained in a symbol table, the second in a 

Program Tree -- Open Macro Definition (OMD) tree in the terminology of 

Elson and Rake [2]. 

5 



The symbol table maintains a mapping of the source name space into 

the DEL name space, while the program tree maintains the syntactic 

structure of the source program. The macros associated with the non­

terminal nodes of this tree are actually functions that generate short 

sequences of DEL instructions implementing the appropriate source 

operator. Auxiliary data structures may also have to be maintained 

during translation in order to produce minimal code sequences (i.e., 

perform optimization). 

Intuitively, by requiring a direct one for one mapping of HLL 

operations and identifiers into DEL instructions and operands and by 

assuming optimum HLL source form (no further optimization) the fastest 

possible compilation (exclusive of none at all) 1S realized. The 

triva1 case of direct interpretation of HLL source is known to be 

inadequate for for most environments because of the time consuming and 

redundant process of binding HLL identifiers to values. 

Interpretation 

Interpretation 1S the process of executing the actual computations 

defined by a program without further changes in its overall represen­

tation. Each DEL instruction defines a specific transformation to be 

applied to the current state image within the host machine. The 

interpreter implements this transformation and passes control to the 

next DEL instruction to be interpreted (Reigel [12]). 

The interpreter (Fig. 3a) may be visualized as consisting of a 

pr1mary control loop, a set of interface routines, and a set of seman­

tic routines. The primary control loop maintains the DEL instruction 

6 



,stream, and parses at least one subfield of each instruction. The 

encoded symbol in this sub field defines the layout of the rest of the 

instruction (the format for the immediately following bit stream), as 

well as what to do with these fields (the semantic structure of the 

instruction). The primary control loop then transfers control to the 

appropriate interface routine which actually parses any operand 

references within the instruction. 

Interface routines are responsible for creating a standard inter~ 

face that defines the location (and possibly the value) of each 

operand in an instruction., The interface routine then returns to a 

known point in the primary control loop, which transfers control to 

the semantic routine that actually implements the action rule defined 

by the instruction (Fig. 3b). It does this by transforming the values 

previously loaded into standard interface. Upon completion of all 

semantic processing, control returns to the top of the primary control 

loop, and another cycle of interpretation begins. Results may be 

stored by the semantic routine itself, or within the primary control 

loop. 

Within control loop, interface, or semantic processing, the state 

of the DEL data store and program state vector is, of course, tem­

porarily undefined. Definition occurs at the boundaries; the overall 

process will be correct if the DEL data store and program status vec­

tor agree with defined constructs whenever the last DEL instruction in 

the expansion for a source statement has been executed. Note that as 

in pipelined machines the interpreter need not process the DEL seri­

ally, even if the original source program is itself serial. 

7 



Parse 
format 

Interface 
routines 

(fetch operands) 

Fi gure: 3a 

8 

Fetch next 
DEL interpreter 

Semantic routines 
(execute ops) 



Figure 3b 

instruction being 
interpreted 

Interpreter 

which selectD 
i dent; fier 

or semantic 
routine 

which 
exits 

into primary 
control 
loop 

which establishes next 
field to be interpreted 

9 



FUNDAMENTAL CONCEPTS 

At this point, it is useful to examine a number of abstract con­

cepts related t~ the mechanistic model developed above. 

Identi fiers, Obj ec ts and Name Spaces 

Programs at any given level in an evaluation hierarchy use iden­

tifiers as surrogates for objects at that level. Objects -- arguments 

or results -- are only associated with values during execution, as 

defined by the states of a computation. In this sense, an identifier 

is only a specific instance of the abstract name for an object; the 

name exists independently of a language, while the identifier 1S 

closely tied to a particular syntax and semantics (Fig. 4). 

Typically, source level identifiers are mnemonically selected 

alphanumeric strings. DEL identifiers are usually one, two, or three 

dimensional binary codes (e.g. file, segment, offset). At the host 

level, identifiers are simply physical addresses. Typical source 

level objects are integer variables, program labels, and boolean 

flags; typical DEL level objects are words, bytes, and bits; and typi­

cal host level objects are registers, busses, and execution units. 

Classification 

Name spaces can be classified accord.ing to various abstract 

characteristics -- e.g., range, resolution, and homogenity. 

Range and resolution refer to the maximum number of objects tha.t 

can be specified in a name space and the minimum size of an object in 

that name space respectively. Traditionally, instruction resolution 

is no smaller than an 8 bit byte (frequently it is based on a 16 bit 

10 



Names 

. /0 
object /' 

0-- 0 
~O 

. ~o 
/ 

in different environments , 
different names arise 

cons f derati on 
in language 

identifier 
(coding of a name) 

Figure 4: OBJECTS, NAMES AND IDENTIFIERS 

-- or larger -- word), and range is defined as large as can be com-

fortably accomodated within a reasonable instruction and program size. 

Th h f 216 f .. 224 us, t e range 0 or m1n1computers to for System 360/370 

covers most common arrangements (Fig. 5). 

The range of the name space directly accessable to a host is 

necessarily bounded, and access to large data bases must be provided. 

Note that I/O is a general mechanism for attaching external objects to 

the DEL name space. Usually, archived data must be physically moved 

into the current access environment before it can be operated on by 

11 



range exte.nsion 

resolution: 

size of obj ect 

range: I:lumber of objects 

Figure 5: PROCESS NAME SPACE 

DEL instructions. Commands performing this data movement must be 

carefully synchronized in order to maintain data integrity and avoid 

exceeding various internal limits (e.g., overflowing a buffer). Using 

a distinct, interpretive sub-system to manage I/O activities is one 

way to factor external range and resolution constraints out of the 

primary instruction stream. Additional performance may also be 

obtained by aggregating conversion and formatting routines within a 

single locality. 

Name spaces may be partitioned in many different ways. Action 

rules do not generally treat all objects in the same way, and this in 

itself creates distinct classes registers, accumulators, and 

12 



generic memory cells. Action rules are often applied in a non-

symmetric manner: one argument must be a register, while the other 

may be either a register or a memory cell. The term homogeneity 

refers to partitions distinguished by the domain of the action rule. 

Partitioning is justified by performance the underlying assumption 

being that access to registers is faster tha.n access to memory. 

Many familiar machines have their name space partitioned into a 

register space and a memory space: e.g., the 360/370, PDP-ll, and 

NOVA architectures. As the partitioning of the name space increases, 

its homogeneity decreases. The undesirable effects of a fragmented 

name space are not always obvious, since the name space for most S1.m­

pIe examples i.e., small programs -- can be captured within the 

register set without great difficulty. It is only when the problems 

of automatic translation for large programs is considered that homo­

geneity becomes important, as in the specification of standard linkage 

and addr~ssing conventions. 

Scopes and Working Sets 

The scope of an identifier is the largest program fragment over 

which it has a consistent interpretation. These fragments are usually 

highly correlated; indeed, for most high level programming languages, 

the term scope of definition is used to refer to a given lexical block 

(procedure, subroutine, function, or begin-end segment) associated 

with a given level of declarations. 

At the machine level, however, the natural interpretation of a 

scope 1.S as a range of instructions over which indexing registers 

13 



remain effectively unmodified ~- so that a given operand identifier 

always refers to the same program object within a given scope. The 

term is often used imprecisely, however. The "scope of a procedure" 

may refer either to the set of statements outside the definition of a 

procedure in which its own name is a valid identifier, or to the set 

of statements immediately inside a procedure definition in which iden­

tifiers local to that procedure have consistent interpretations. 

Similarly, the working 8et of a process is normally defined to be 

the set of objects corresponding to the arguments' or results of action 

'functions applied over a relatively short span of state transitions in 

a computation. 

The correlation between the notion of scope and working set is 

clear enough. The working set represents a series of spatial locali­

ties that have been recently reference'd by a particular program .. 

These localities of data references must be contained in the scope of 

definition for the portion of a program currently being executed, how­

ever, and thus the current scope of definition logically subsumes the 

current working set. Intuitively, the difference between the scope of 

definition and working set 1.S small (there are few potentially 

referencable items that are not, in fact, actually referenced during 

execution). The working set is an implicit way of identifying data 

items, whereas scope is a logically explicit identification of 

(nearly) the same data items. 

14 



Level Mappings and Transparency 

Users relate the observable (but low level) effects of executing a 

program to source level semantics through an association established 

between the source level name space and the host name space. The com-

p1exity and accuracy -- of this mapping determines the ultimate 

transparency of the system. In general, there is always a map from 

any higher level L to the next lower level L-1 that defines the way in 

which level L is realized at level L-1. There is also a dual map from 

level L-1 to level L that defines how an execution of a level L-1 pro-

,gram is to be visualized in terms of level L semantics. In a tran-

sparent system these maps are mathematical inverses (Fig. 6). 

fell 4' l-l 

f-1(l-1) ..... l 

Figure 6: TRANSPARENCY BETWEEN A LEVEL REPRESENTATION AND A LEVEL L-1 

15 



CONVENTIONAL ARCHITECTURES 

Much research has been focused on whether the best program 

representations are based on a stack, single accumulator, two address, 

or three address organization. The premise is that a single, "best" 

execution architecture can be uncovered by exhaustive statistical 

analysis of benchmark experiments. Unfortunately, slightly different 

assumptions lead to radically different conclusions and in general 

this type of analysis suffers without a unifying, theoretical justifi-

.cation. Each of the instruction organizations mentioned above, as 

well as heretofore untried combinations, will have some advantages in 

specific situations. The problem lies in using a single organization 

as the basis for program representation 1n a universal environment. 

In order to quantify the degree of "overhead" forced into program 

representations in a universal environment, studies [3,9] have been 

made which attempt to separate instructions related directly to the 

original expression of an algorithm in the high level source language, 

and those which appear to have been introduced because of architec­

tural constraints within the DEL. For example, load or store instruc­

tions are almost always included because of requirements imposed by 

the execution architecture. These commands merely move items around 

in the DEL name space -- which is not, in general, partitioned accord­

ing to any sensible division of the name space for the original high 

level language representation of a program. This has led to the 

notion of three different generic classes of instructions: 

1) Functional type (F-type) instructions that actually 

16 



operate on and/or transform data values. It is assumed 

that these instructions actually correspond to operations 

in the higher level language representation of a program. 

2) Memory type (M-type) instructions that rearrange items 

without changing their value within a memory hierarchy. 

3) Procedural type (P-type) instructions (branch and compare) 

that alter the sequencing rule during interpretation, but 

do not change da.ta values. 

If we assume that only the functional instructions are absolutely 

necessary to a program representation and define ratios of M and P 

type to F type instructions we arrive at some interesting overall 

statistics for current machines (Table 1). From this table, it is 

evident that two or three memory type instructions are required for 

each functional instructio,n. Notice that the introduction of general 

purpose registers into the 360/370 architecture (as opposed to the 

single accumulator, multiple index register complement of the 

7090/7094) did not reduce this ratio, but rather these extra objects 

created more memory type instruction overhead. 

Processor "Ideal" 7090 360 PDP-IO [9] 

M-ratio 0.0 2.0 3.9 1.5 

P-ratio 0.0 0.8 2.5 1 . I 

NF-ratio 0.0 2.8 5.5 2.6 

Table 1: OVERHEAD RATIOS 

17 



IDEAL MACHINES 

An ideal program representation and corresponding machine uses 

minimum storage space and requires minimum compilation and interpreta­

tion time. This does not imply a linear tradeoff between space and 

time; relative weights can only be determined within a given user con­

text. 

The notion of environment, however, is fundamental to the discus­

sion of space time optima. Like many concepts dealing with computer 

systems, environment may be viewed as a hierarchial concept. The 

chosen higher level language itself represents the highest level, 

while a specific program would represent a lower level, and individual 

statements within a program would represent a still lower level. 

Environment includes all residual control information needed to inter­

pret objects; i.e., all information implicitly available to an inter­

preter, as distinct from information supplied directly and explicitly 

by the specific coding of a statement or instruction. Thus, the 

environment of a traditional machine language would include a program 

counter, address registers, interrupt status, etc. 

Associated with each level is a property of stability. Stability 

of environment at any level is probably best measured in terms of the 

number of statements or objects that must be interpreted before the 

environment is changed. A change of environment is caused by anything 

that disturbs the interpreter or prevents it from completing the 

interpretation of a program, statement, or operator. Instabilities 

18 



arise from one of two basic causes. First, exogenous events outside 

the current environment a time sharing system, for example, may 

time slice over short intervals, and each program switch would neces­

sitate a change in environment. Second, internal events associated 

with the nature of a program itself may cause a change in environment 

for example, a single user program may involve several languages, 

or may defer binding between names and values until very late (as in 

the binding of actual to formal parameters upon entry to a 

subroutine). In this case, the act of binding the interpreter to a 

given language, or of binding a name to a given value, will also cause 

a change of environment. 

For each level of environment there is an associated scope of 

definition. Syntax and semantics are the scope of definition for high 

level languages. The scope of definition of a program includes its 

various subroutines, variables, etc. The scope of definition of an 

individual statement consists of just those variables and operators 

involved in its evaluation. 

All objects within an environment have names, whether these 

objects are a language, a program, a statement, an operation, or an 

operand. The ideal machine model assumes t~at a compiler will make at 

least one pass over its input to identify these names, and associate 

them with some static interpretation. As much information about a 

source program as is easily available is to be extracted during this 

(and other) pass of the compiler, and may be used to optimize the pro­

gram at either the source or DEL level. 

19 



Aspects of Program Representation 

A program representation is in fact an abstract machine that usu­

ally corresponds to either higher level language (as in DELs) or to 

host machine (as in traditional instruction sets) entities. In 

attempting to define an ideal representation three criteria form the 

premises for our discussion: 

1. Transparency -- that the program representation correspond 

closely to the source representation. 

2. Size -- that the program be as concise as possible, i.e. a 

minimal encoding. 

3. Number of Required References -- that the program represen­

tation requires as few host machine state transitions as 

possible, both for its creation (another aspect of tran­

sparency) and for its interpretation. 

It is useful then to explore these criteria 1n a variety of 

environments. The distinction between traditional machine languages 

and the DEL approach will become clear by this examination. 

Within an environment the basic issue of definition is: to what 

do identifiers refer. In general they may refer to: 

1. objects in a particular program, 

2. objects in a higher level language, and 

3. resources or objects in a host machine. 

Clearly; when identifiers correspond to objects in a particular pro-

gram a very special purpose machine is defined. Identifiers 

corresponding to objects in a higher level language define a language 

20 



oriented machine and identifier corresponding to host machine entities 

define traditional machines. From our point of view it is clear that 

we wish to choose a correspondence as close as possible to higher 

level language objects in the specific programs. 

Correspondence Environments 

The transparency requirement defines two correspondence environ­

ments, one for operations and one for names. 

An "operation" in an executable program representation could be 

defined by (i.e. correspond to): 

(1) program 

(2) subrout ine 

(3) HLL operation 

(4) host operations. 

For higher level language oriented interpretive representation HLL 

operations are the most interesting correspondence environment. Note 

that traditional machines usually employ host operations as their 

correspondence environment, while special purpose machines select cer­

tain subroutines or even a program for their operation correspondence. 

Name Correspondence Environment 

To What should an operand or label id~ntifier correspond? The 

choice here is between HLL name objects and objects named in the host. 

Again, for an ideal HLL machine the name object should correspond to 

the objects named by the higher level language including an exact 

correspondence in data structure as well as occurrence. This also 

implies that instructions may not introduce additional name identif-

21 



iers to contain temporary values. This is an interesting restriction 

and will require a powerful format set for realization. 

Thus, an ideal HLL machine would have exactly one instruction 

(transparency requirement) for each nonassignment operation used in 

the HLL source. Associated with each operation would be no more name 

identifiers than those which were used in the HLL source. This intui­

tive notion will be refined later. 

Size Environment 

Conciseness of representation 1S important not only as a measure 

of the cost of storage for the representation but also a measure of 

secondary effects on time for interpretation or translation into a 

program representation. An ideal representation must be concise 1n 

its coding of identifiers yet not so conC1se that it exacerbates 

interpretation. The number of identifiers in a program representation 

is defined by the correspondence environments. Thus, the total pro­

gram size is in reality determined by the size selected for the three 

basic kinds of identifiers: 

(1) operators, 

(2) operands, 

(3) labels (the operator for ~ proced~ral operation). 

The issue of identifier size is the determination of the number of 

objects that must be distinguished by a particular identifier since 

[10~2 (number of objects)] determines the field size. This ignores 

variabil~ty since an identifier may be: 

(1) fixed in size across all or many environments, 

22 



(2) variable by environment, 

(3) variable by frequency within an environment. 

In this work we will not further consider frequency encoded iden­

tifiers since: 

(1) frequency statistics 'must be a priori available, 

(2) given such statistics the techniques for taking a nonfre­

quency encoded scheme and transforming it into a minimal 

encoding is straightforward and treated elsewhere [5,8], 

(3) minimal encodini by frequency requires serial inspection 

of the bits within a field, thus, increasing the complex­

ity of interpretation and, hence, the interpretation time. 

Further, while these disadvantages may in fact be outweighed by the 

advantages of more concise representation, the introduction of minimal 

encoding would needlessly complicate this discussion. There is really 

no distinction between fixed and variable approaches since a fixed 

identifier size implies merely that the environment is fixed . 

Again the environment may be determined by either the program, the 

HLL or the host. Thus, for each class of object (operation, operand, 

or label) any of the following may be used to define the number of 

entities which will determine the identifier size: 

(1) Operands and labels are not usually bounded in number by a 

language syntax in a meaningful way. However, the number 

of operations are usually a priori limited and the number 

of HLL objects allowed in the HLL definition as the 

23 



operation size is a possibility. 

(2) HLL Objects Used in a Program -- i.e., the total number of 

distinct operations, operand names or labels used in a 

program, could form the domain of an identifier defini­

tion. 

(3) HLL Objects Used in a Subroutine -- it is assumed here 

that a program consists of a number of subroutines. Each 

subroutine has its own scope of definition. Thus, this 

might be an interesting size environment for operand and 

label identifiers. 

(4) The HLL Statement -- The even lower level concept of a 

statement for an environment might also form the basis of 

a size environment. However, since entry into and exit 

from an environment requ1res interpretation time, the 

statement may be at too Iowa level to provide an optimum 

space time tradeoff. That is, at the level of the state­

ment the setup time required may not offer a worthwhile 

space time tradeoff since the size of the identifiers 

increase as a log function while the interpretation time 

is linear in the number of statements to be interpreted. 

Note that at the subroutine level the set up time can 

be regarded as being relatively small compared to the 

interpretation time for the overall subroutine while at 

the statement level this may not be true. 

24 



(5) All host objects may form the basis of the domain of the 

identifier environment. In fact, traditional machines 

commonly use this as their basis. Since this environment 

does not change, the identifier containers are also fixed. 

The identifier may be either one dimensional or mu1tidi-

mensiona1. In the one dimensional case all operations or 

operand names, etc. form the basis of the domain which 

will define the identifier field. This is most frequently 

true in identifying operations. In the multi-dimensional 

situation the identifier name is decomposed into several 

component identifiers, e.g. for an operand name index, 

base, and displacement and even for operations one might 

have format, function, data type. 

From the above, an ideal HLL language has a size environment whose 

domain is related to the number of HLL objects used in either the 

representation, the program, the subroutine or the statement. Because 

of implied interpretive overhead, the statement level does not seem to 

be a good choice and the entire HLL definition limitation seems 

equally inefficient in its lack of conciseness. Intuitively it 

appears that the subroutine level is a natural space time optimum. 

Referencing Environments 

While the effects of referencing activity on interpretation time 

are implied by the number of identifiers in the program representa­

tion, these effects should be considered in a more direct manner. 

References to a program name space arise from either an instruction or 

25 



a name reference. Accesses in the former case reference the instruc-

tion space while the latter reference the program name space. The 

reference environment corresponds to the definition objects or their 

characteristics which require an access to program space. Depending 

on the sophistication of the interpreter and homogeneity of this 

space, a number of sub-referencing environments may also be defined 

(e.g. references to register space) (Fig. 7). 

---·----II~t;~pr~~ look ahead Program 
Storage ,'_ -.,--------1 :Space 

allows overlap ~~ 

Host I :ce: w:n -1 r~Q:et I 
---a new target is -i W. Tar et I 

encountered I J 

(a) Instructions - DEL Oriented 

cache 

~-
~ --

(b) Instructions - Host Oriented 

Figure 7: REFERENCING ENVIRONMENTS 

26 



Instruction Referencing DEL Oriented 

(1) The Instruction Operation -- the most obvious environment 

would correspond to a reference per operation (op-code) 

interpreted. 

(2) Procedural Operations -- less obvious, though frequently 

used in an equivalent way, is a look-ahead mechanism of 

traditional machines which proceeds to fetch instructions 

in anticipation of their interpretation until a procedural 

operation is encountered. Under such a regime only pro­

cedural instructions force an unanticipated additional 

reference since all others lie in sequence and their 

reference ~s overlapped with the interpretation of the 

intervening instructions. 

(3) Destination Capture -- An extension of (2), the first 

incidence of a procedural instruction forces a reference; 

however, the target instruction of the branch is captured 

(i.e. stored) in a buffer for subsequent use, avoiding 

additional references to program storage. 

(4) The Subroutine -- allows one refe~ence per entry to or 

from a subrout ine. The subroutine represents a natural 

locality, and block transfer mechanism currently available 

with host oriented cache could be used to capture the pro­

gram representation for a subroutine. Since the program 

representation is presumed to be reentrant only one fetch 

27 



would be required presuming that the subroutines are some­

what restricted in size. 

(5) The program -- higher level referencing environments (such 

as physical access the whole program) do not seem to be 

meaningful in familipr terms. 

Instruction referencing - Host Oriented: 

(1) physical instruction word in the host frequently defines 

an instruction fetch in traditional machines. If the phy­

sical word is less than the instruction unit, mUltiple 

fetch~s may be required; if it exceeds the instruction, 

less than a single fetch is required per instruction. 

(2) since instruction prefetching can continue to a branch 

point, pre fetching is frequently employed in higher speed 

machines at least up to the point that a conditional 

branch is decoded. At that point some penalty is envoked 

akin to a reference to a program space. While a number of 

strategies have been discussed to minimize this penalty, 

they are not completely successful and beyond the scope of 

our treatment here. 

(3) branch target buffer - As in the DEL case the target of a 

branch instruction can be stored in an associative buffer 

(e.g. MU-5) avoiding additional referencing activity. 

(4) the program reference locality, when reference is made to 

28 



a location in program space in physical host oriented sys­

tem with a cache, the target instruction is fetched 

together with the block in which it is contained. This is 

similar to our subroutine referencing in HLL oriented 

representations. Clearly the ideal HLL machine should 

have a referencing environment related to the HLL. 

Depending upon the nature of the higher level language the 

-reasonable choice of ideal program representation would be 

based on either an allowance of a reference per procedural 

operation or per subroutine. 

In a DEL oriented ideal machine use of (2), procedural operations, as 

a referencing environment would correspond to assuming the capability 

of a simple host. A more sophisticated host could implement either 

(3) or (4); however, since (3) - destination capture - seems somewhat 

more modest in its host requirements, we will rather arbitrarily 

regard it as preferable. This strategy also avoids excessive transfer 

requirement from program store to interpreter store. 

Name Space Referencing Environment 

As before, referencing environment can be oriented toward the 

higher level language source representation of the resources of the 

host. 

Name Referencing DEL Oriented 

(1) One reference per unique identifier. If an identifier is 

used as both the source and the destination then a read 

29 



and write must be allowed into the program name space. 

Implied operands are assumed to be captured in a high 

speed (no acc~ss required) storage. 

(2) One reference per subroutine/scope. Just as in cache 

based traditional systems, locality is an important attri­

bute in HLL machines. If the entire name space of the 

subroutine can be captured in a high speed buffer storage 

. with a block oriented transfer mechanism then it seems 

reasonable that only an entry into the subroutine would 

require the overhead of a name space reference. An addi­

tional reference must be made to restore to the program 

name space. While this 1S conceivable for referencing 

names whose values are known on entry to the subroutine, 

it cannot be used to reference names whose values have not 

yet been computed and, an additional reference must be 

allowed to account for each computed name reference. 

Data Referencing ~- Host Oriented 

(1) Host physical word. An object in the representation may 

point to a physical memory as in traditional machine 

languages. An effective address defines an object whose 

contents is the value and the entire word is referenced 

for interpretation. 

(2) Host localities. Each access 1S to a block of data con­

taining the required object. The referenced block of data 

30 



consists of a number of physical words which are brought 

into a buffer, thus, minimizing the need for additional 

accesses to the much larger (and presumably much slower) 

program name space. As in the DEL case, computed names 

may cause additional references since these lie outside 

the selected blocks. 

In a DEL oriented ideal machine the second alternative seems 

preferable. This means that one reference is allowed per read, one 

read reference and one write reference is allowed per entry into a 

subroutine, and one additional reference is allowed per computed name. 

This corresponds to an idealization of the traditional cache used in 

conventional machines. 

Canonic Interpretive Forms 

The following is a proposed measure called the Canonic Interpre-

tive Form, or CIF. It is an attempt to define the behavior of an 

ideal, DEL oriented machine. The transparency requirement defines a 

correspondence property affecting both space and time. Program size 

is determied by transparency and environment. From the earlier dis­

cussion the subroutine or lexical scope is the most natural environ­

ment for this measure. Interpretation time depends both on the number 

of objects interpreted and the number of unanticipated references to 

program space. In selecting reference activity enviro'nments, the 

intent is to parallel the state of the art in traditional design. 

31 



1:1 CORRESPONDENCE PROPERTY 

Instructions -- one elF instruction is permitted for each func­

tional operator used in the source representation. 

Name Space distinct -- one elF identifier is permitted for each 

unique identifier used in a source statement. 

LOG
2 

SIZE PROPERTY 

Operators -- elF operator identifiers are of size r1og2 (F)l ' 

where F is the number of distinct operators used in the 

operator naming environment. The operator naming enviarn­

ment is taken to be the scope: i.e. the subroutine or 

function level. 

Operands elF operand identifiers are of size r10g2 (V)l, where 

V 1S the number of unique variables used in the operand 

naming environment. The operand naming environment is 

also taken as the lexical scope. 

REFERENCE ACTIVITY PROPERTY 

Instructions -- one CIF reference allowed for each program con­

trol (procedural) operator encountered during execution. 

Name Space -- one elF reference allowed per entry into and one 

reference per exit from a lexical scope; also one refer­

ence is allowed per computed name within the scope. 

32 



Space is measured by the number of bits needed to represent the 

static definition of a program; time by the number of instructions 

(operations) and references needed to interpret the program. Source 

programs to which these measures are applied should themselves be 

efficient expressions of an optimal abstract algorithm so as to 

eliminate the possible effects of algorithm optimization during trans-

lation -- such as changing "X = X/X" to "X = 1." 

Generating canonic program representations should be straight for-

.ward because of the 1:1 property. Traditional three-address architec-

tures also satisfy the first part of this criteria, but do not have 

the unique naming property. These instruction sets are of the form OP 

X Y Z -- where OP is an identifier for a (binary) operation; X the 

left argument; Y the right argument; and Z the result. 

For example, the statement A = A * A + A * A contains only one 

unique variable, and three functional operators (*,*,+). Hence, it 

can be represented by three ClF instructions consisting of only one 

operation identifier and one operand identifier. The three address 

representation of this statement also requires only three instruc-

tions, but it would consist of twelve identifiers rather than the six 

required by the ClF. 

There may be some confusion as to what is meant by an "operation". 

Functional operators (+, -, *, /, SQRT, etc.) are clear enough; how-

ever, allowance must also be made for selection operators that manipu-

late structured data (i.e. a name computation). For instance, one 

could view the array specification "A(l,J)" as a source level expres-

33 



sion involving one operator (two dimensional qualification) and as 

three operands (the array A, and its subscripts I and J). The canonic 

equivalent of "A(I,J) = A(I,J) + A(I,J)" would then require two 

instructions -- the first to compute the proper array element, and the 

second to compute the sum. Thus: 

Example 1: x x + X 

Example 2: A(I,J) ACI,J) + A(I,J) 

+ 

@ 

+ 

X 

A 

AIJ 

I J 

The operator "@" computes the address of the doubly indexed element 

"A(I,J)", and dynamically completes the definition of the local iden­

tifier "AIJ". This identifier is then used in the same manner as the 

identifier "X" in the first example. 

We count each source level procedural operator, such as IF or DO, 

as a single operator. The predicate expression of an IF must, of 

course, be evaluated independently if it 1S not a simple variable 

reference. Distinct labels are treated as distinct operands , so 

that: 

Example 3: IF (X-Y) 10,20,30 X 

IF 10 

The only references required 1n examples 1 and 

Y 

20 30 

3 are associated 

with subroutine entry and exit. Example 2 involves the computation of 

a name A(I,J) and, hence, a subsequent access reference. No refer-

34 



ences are needed for either example just to maintain the instruction 

stream, since the order of that such reference activity can be fully 

overlapped execution is entirely linear. The 1:1 property measures 

both space and time, while the log 2 property measures space alone, and 

the referencing property measures time alone. 

The 1:1 property defines transformational completeness -- a term 

Which we use to describe any intermediate language satisfying the 

first canonic measure. Translation of source programs into a 

transformationa1ly complete language should require neither the intro-

duction of synthetic variables, nor the insertion of non-functional 

memory oriented instructions. However, since the canonic measures 

described above make no allowance for distinguishing between different 

associations of identifiers to arguments and results, it is unlikely 

that any practical DEL will be able to fully satisfy the ClF space 

requirements. 

Comparison of ClF to Traditional Machine Architectures 

The following three line excerpt from a FORTRAN subroutine, taken 

from [4], illustrated the ClF. 

1 I = I + 1 
2 J = (J-l)*l 
3 K = (J-l)*(K-l) 

Assume that l, J, and K are fu11word (32 bit) integers whose initial 

values are stored in memory prior to entering the excerpt, and Whose 

final values must be stored in memory for later use. 

35 



CANONIC MEASURE OF THE FORTRAN FRAGMENT 

Instructions 

Statement 1 1 instruction (1 operator) 
Statement 2 2 instructions (2 operators) 
StC1tement 3 3 instructions (3 operators) 

- ........ - ... ----~ .. ---
Total 6 instructions (6 operators) 

Instruction Size ------------~ 
Identifier Size 

Operation identifier size = fiog 2 41 = 2 bits 
(operations are: +, -, *, =) 

Operand identifie~ size = fiOg2 41 = 2 bits 
(operands are: 1, I, J, K) 

Number of Identifiers 
Statement 1 3 identifiers (2 operand, 1 operator) 
Statement 2 -- 5 identi fiers (3 operand, 2 operator) 
Statement 3 -- 7 identifiers (4 operand, 3 operator) 

Total 15 identifiers (9 operand, 6 operator) 

Program Size 

6 operator identifiers x 2 bits 
9 operand identifiers x 2 bits 

Total 

References 

12 bits 
= 18 bits 

30 bits 

Instruction r~ferences -- 1 reference 

Operand references 
(i) Subroutine environment 1 

1 
0 

(ii) Identifier environment '9 
3 

36 

load 
store 
computed names 

loads 
stores 



The following listing was produced on an IBM System 370 using an 

optimizing compiler1 

1 L 10,112(0,13) 
L 11,80(0,13) 
LR 3,11 
A 3,0(0,10) 
ST 3,0(10) 

2 L 7,4(0,10) 
SR 7,11 
MR 6,3 
ST 7,4(0,10) 

3 LR ,4,7 
SR 4,3 
LCR 3,3 
A 3,8(0,10) 
MR 2,4 
ST 3,8(0,10) 

A total of 368 bits are required to contain this program body (we have 

excluded some 2000 bits of prologue/epilogue code required by the 370 

Operating System and FORTRAN linkage conventions) -- over 12 times the 

space indicated by the canonic measure. Computing reference activity 

in the same way as before, we find 20 accesses to the process name 

space are required to evaluate the 370 representation -- allowing one 

access for each 32 bit word in the instruction stream. 

The increase in program size, number of ,instructions, and number 

of memory references is a direct result of the partitioned name space, 

indirect operand identification, and restricted instruction formats of 

1FORTRAN IV level H, OPT = 2, run in a SOOK partition on a Model 168, 
June 1977. 

37 



the 370 architecture. 

The table below illustrates the use of ratios for the foregoing 

example. 

COMPARISON FOR THE EXAMPLE 

370 FORTRAN-IV 
(level H extended) elF 

optimized non optimized 

No. of Instructions 15 19 6 

M-type Instructions 9 13 0 

F .... type Instructions 6 6 6 

M-ratio 1.5 2.7 0 

Program Size 368 bits 604 bits 30 bits 

Memory References 20 36 3 or 13 (see below) 

Of memory References, 13 
operand reference environment 
env ironment. 

are required using "identifier" as 
while 3 are required for "subroutine" 

38 



CIF AND THE MEASUREMENT OF ARCHITECTURES 

Three important questions remain: (1) Are the statistics 

developed in the above example valid over a larger body of program 

material? (2) Is 370 a uniquely ill-suited architectural representa­

tion for programs and perhaps some other host oriented architectural 

representa.tions can provide a significant improvement? (3) Can we use 

the notion of a CIF as an ideal program representation form to actu­

ally create a useful architecture which will provide close to CIF 

·measures? 

This third question is by far the most complex and while the 

answer is positive we will defer its detailed discussion to a compan­

ion paper on the synthesis of directly executed languages (DELs). To 

address the first two questions we have selected a widely used bench­

mark called the Whetstone benchmark. This was selected on several 

bases: it is widely known and in a series at the Stanford Emulation 

Laboratory the Whetstone does not appear to generate profoundly dif­

ferent statistics than most other benchmark materials. 

We have measured the CIF on the Whetstone and then compared these 

measures to traditional architectures: IBM System 370 and Honeywell 

Level 66, and DEL architectures: Burroughs S-Fortran (B1700) and a CIF 

based "ideal" DEL called DELtran. This latter language is described 

in a companion paper [6]. 

It can be seen from the accompanying table that conventional 

architectures are not optimum program representations. Particularly 

impressive is the static program size especia.lly when compared to the 

39 



Static Size 

Instruments Executed 

Me~~ry References 

I • Branch Target Capture + 
o = scope environment 

t • no capture + 
o • name environr.ents 

WHETSTONE COMPARISON TABLE 

(0 = optimized ) 
Archjtecture No. noli optimized Comparison 

Source CIF 370-0 370-NO H65-0 

.4.26 16.75 12.83 7.53 

* 2.87 0.71 4.09 6.64 

.00024** t t t 

7.11 11.38 5.51 

* statements interpreted 

** relative to nUHber of instructio~s executed; 
corresponds to "perfect buffer" mi ss rate 

Burroughs 
H6o-NO S-FCRTRAN 

7.09 5.87 

3.00 3.50 

t 
6.13 3.80 

t typical cache miss rates .1 to .01 per instruction executed 
depending on cache size, block size. etc 

DELtran 

1.32 

1 

1.46 

original source program. Source names are mnemonic and could not be 

regarded as even attempting to provide an efficient representation yet 

most host oriented architectural representations significantly expand 

the amount of space required for program representation. Most 

attempts at specific language DELs also seem to miss the mark in terms 

of the efficiency of the program representation. Two great obstacles 

to achieving efficient representation seem to be the need for a 1:1 

instruction to source operation correspondence and a 10g2 container 

s1ze referenced to the scope of definition of the language. In our 

companion paper we will use these two observations to synthesize DELs 

40 



roughly corresponding to CIF measures. 

The accompanying table describes some of this in terms of overall 

architectural comparisons. The size comparisons are fairly straight­

forward. Neglected in the size comparisons are preamble and epilogue 

code for subroutine or function entry/exit. Only routine code bodies 

are compared in our analysis. Excluding this overhead the program size 

is limited by one:one, i.e. transparancy requirements, and information 

theoretic environmental naming limitations in the absence of frequency 

encoding. 

Analysis of interpretation time is necessarily more complex 

involving both the number of instructions to be interpreted and the 

amount of referencing activity: as to which of these in a practical 

host system will dominate the program interpretation time, the answer, 

of course, is host dependent. In systems that must make reference to 

program store for each instruction to be interpreted and reference to 

name space for each operand used the referencing activity will tend to 

dominate the total program interpretation. A host without a cache is 

largely memory limited. A host with a cache is largely interpretation 

time limited. The exact balance point depends a great deal on the 

physical parameters of a host and its memory access time. "Cache" per 

se is exactly what is not modelled by an ideal DEL with scope 

referencing enviornments. What is modelled is a logical locality not 

physical memory addressing space locality. All logically related 

predictable aspects of an environment are acquired on scope entry, 

each non predictable aspect requires an additional reference. It is 

41 



interesting to note that this type of logica.l "cache" has a very low 

miss rate. 

On the Whetstone, the referencing activity is almost completely 

captured by branch target capture for instruction and Scope capture 

for operands. The hit and miss ratios when compared to simple DEL 

instruction reference environments are: 

miss rate = references required to capture scope and target 

hit rate = .99976 

These rates represent a "perfect buffer n hit/miss rate and are signi­

ficantly better than conventional cache statistics. 

Note that this does not imply that total DEL program execution 

time could be correspondingly reduced. Rather as referencing activity 

is driven to a very small percentage of instruction interpretation 

activity, the instruction interpretation will necessarily dominate and 

the 1:1 (or transparency) requirement on HLL operations/instructions 

will become the program execution time limitation. 

CONCLUS IONS 

The traditional computer architectures (i.e. program representa­

tions) are created about objects, actions and/or capabilities presumed 

to be present in a physical host computer thus, simplifying the 

interpretation process. This is done, however, at the expense of com­

pilation, storage space requirement and number of items to be inter­

preted. 

An alternative is presented, created about the notion of a 

directly executed language (DEL); an architecture in close correspon-

42 



dance to the high level language that was used to originally represent 

the program. Various DEL possibilities have been considered with an 

"ideal" form defined as the Canonic Interpretive Form or CIF. The CIF 

is actually a measure against which architectures can be compared in 

their representation space requirements and interpretation time 

requirements. 

Traditional architectures are significantly inferior to CIF meas­

ures (by a factor of from 3 to 10), while DEL's specifically designed 

to retain the CIF measures are able to come rather close (within 1.3) 

to that indicated. 

43 



APPENDIX 

The Whetstone 

A derivative of the Whetstone benchmark is used as the basis for 

architectural comparison. Originally developed as a research tool at 

the :National Physical Laboratory, the Whetstone is now a well esta­

blished commercial standard; both Data General and Digital Equipment 

have conducted numerous evaluations of mini-computer FORTRAN systems 

in scientific environments using this benchmark. 

The traditional Whetstone contains twelve loops, three of which 

emphasize transcendental operations; these were deleted to avoid 

focusing on a few specific functions much to the advantage of the 

ideal form. Each of the remaining loops tests a different a~pect of 

the, FORTRAN language: 

Loop I: 

Loop 2: 

Loop 3: 

Loop 4: 

Loop 5~ 

Loop 6: 

Loop 7 : 

Loop 8: 

Loop 9: 

floating point arithmetic over scalar variables; 

the same operations over elements of linear arrays; 

again the same operations, but invoked as a subroutine; 

conditional branching; 

two-dimensional array manipulation; 

integer arithmetic on scalars and array subscripts; 

in-line polynominal evaluation; 

subroutinized polynomial evaluatiori; 

swapping array elements, as in a sort or shuffle. 

The number of iterations per loop is determined by mUltiplying a 

weighting factor by an overall repetition count. Weighting factors 

reflect the dynamic behavior of typical user programs; in prac tice, 

44 



they are adjusted based on installation specific trace-tape data. The 

benchmark is executed for two different repetition counts, and the 

difference in execution times taken to eliminate the effects of ini­

tialization, I/O operations, monitor functions, etc.--so that only the 

looping portions are significant. The average values of the weighting 

factors used by Data General and Digital Equipment were used to fix 

the number of loop iterations in the experiments described below, 

along with a repetition count difference of 100. 

The Measures 

The canonic measures are computed for each loop: size of represen­

tation (in bits); number of instructions (dynamic); and number of 

references (in main store accesses -- also dynamic). Some details 

concerning the way this is done may be of interest, since an attempt 

has been made to exclude everything not pertaining directly to execut­

able code bodies. 

First, with respect to space, only those sections of executable 

code that correspond to statements in the body of a source program are 

counted. 

imbedded 

Prologue/epilogue 

constants (usually 

linkage, 

address 

dynamic 

constants 

save/restore areas, 

and FIX/FLOAT data 

masks), and operating system or program ,library service routines 

(GET-MAIN, SIN, READ, etc.) are not included. This was done as it is 

difficult to apportion such spatial costs across the various Whetstone 

loops. Similarly, the interpretive store required to support the Bur­

roughs S-language (which includes the stack and descriptor tables) is 

also not included in the space measure. This type of overhead is gen-

45 



erally high for the 3·70 archi tecture; but the ratio of improvement may 

not be as high as it is within pure code segments for small programs 

with many variables. 

Secondly, with respect to time, the executable instructions in 

prologue/epilogue linkage as well as the instructions and refer-

ences needed to establish dynamic displays are counted. Only 

external library or system routines are excluded. Reference counts 

include the number of memory accesses needed to maintain the instruc­

tion stream itself, assuming each fetch brings ~n 32 bits. 2 Register 

accesses are not counted as references in the 370 architecture, and 

stack accesses are not counted as references in the Burroughs archi-

tectures. Accesses to either the program or data store are counted as 

references in all cases, however; i.e. the reference environment. For 

the elF, the reference activity is computed with both types of refer-

ence environment name space and scope. 

2The Honeywell Level 66 architecture is 36 bits wide, and the Bur­
roughs B1726 is only a 24 bit machine; such differences have been nor­
malized in this comparison. 

46 



ClF ARCHITECTURAL MEASURES 

Referenci ng * 
Size Instr Instr Data 

J.QQlU 216b 1,161 2 2 
60 1762 

l.QQ.2.1. 318b 16,245 2 6 
981 8414 

lQ.Q.Q...l 356b 17,081 4 4 
1260 23,242 

J.Q.Q.JL! 209b 17,253 5 2 
1726 13,800 

~ 294b 990 2 11 
141 1435 

~ 241 46,201 2 2 
2101 56,702 

1.Q.Q.2...l 110 2,561 2 2 
321 3842 

~ 144b 89,990 4 4 
35,960 161,822 

loop 9 135 55,441 4 7 
24,641 36,960 

2023 246,923 27 40 
67,199 307,981 

* For referencing instructions, the first entry corresponds 
to target compare: i.e. only the first incidence of 
branch incurs a reference/the second entry corresponds to 
a reference for each branch instruction. 
For data references, the first entry corresponds to scope 
as a referencing environment. Only scope entry/exit and 
computed names require a reference. The second entry 
corresponds to a reference per name. 

IBM System 370 Statistics 

Two different levels of optimization were employed using the stan-

dard IBM extended compiler for FORTRAN-IV. Compilations were per-

formed on a Model 168 in a 300K byte partition under the VS operating 

system in March, 1977. The results of a hand analysis of these compi-

47 



lations are shown below. 

Loop 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Totals: 

Bits 

2,096 

5,552 

5,232 

1,488 

4,708 

2,832 

1,072 

1,280 

1,696 

------

25,956 

Instructions 

3,193 

135,383 

127,123 

165,603 

20,863 

186,903 

9,923 

584,353 

406,563 

---------

1,639,907 

370 Performance (No Optimization) 

References 

6,306 

269,646 

255,646 

307,056 

40,326 

359,106 

19,526 

1,330,526 

917,846 

---------

3,505,984 

Average instruction size without optimization is 31 bits; average 

instruction size under full optimization is 30 bits. Clearly, the 

Whetstone does not defeat the optimization strategies employed by the 

IBM compiler -- indeed, a factor of 2 in space and 1.6 to 1.8 in time 

is observed. This raises the question of which level of optimization 

should be used as a standard of comparison. 

48 



Loop Bits Instructions Re ferences 

1 1,504 1,871 3,031 

2 1,968 26,905 48,626 

3 2,256 28,984 53,628 

4 1,024 31,062 48,323 

5 2,096 2,990 5,969 

6 1,728 115,508 197,414 

7 880 7,685 14,410 

8 1,120 512,437 1,159,724 

9 1,072 283,364 659,128 

------ --------- ---------

Totals: 13,648 1,010,806 2,190,253 

370 Performance (Full Optimization) 

Honeywell Statistics 

Compilation of the Whetstone into the Honeywell Level 66 architec­

ture was performed on a Honeywell Model 6680 (by Honeywell personnel) 

in January 1978. The small difference in performance between optimi­

zation levels is attributable to the straightforward nature of single 

accumulator code (in general). 

The anomalous behavior of loop 3, for Which optimization appears 

to degrade both execution time and space, is the result of a known 

compiler bug. Not all compilers are perfect, however, and this illus­

trates one of the inherent dangers of an execution architecture 

requiring non-trivial program conversions in order to achieve high 

49 



performance. 

Loop Bits Instructions References 

1 1,368 1,780 3,430 

2 2,124 37,803 76,866 

3 2,040 40,040 117,980 

4 1,224 55,203 89,704 

5 3,816 10,951 20,497 

6 1,944 109,202 327,604 

7 756 5,762 11,203 

8 1,136 306,667 791,120 

9 828 172,480 449,680 

------ ------- ---------

Totals: 15,236 739,888 1,888,084 

Honeywell Performance (No Optimization) 

50 



Loop Bits Instructions 

1 1,368 1,780 

2 2,088 37,383 

3 2,196 40,600 

4 1,188 44,853 

5 2,916 7,031 

6 1,908 111,300 

7 828 5,446 

8 1,136 306,667 

9 720 154,000 

------ -------

Totals: 14,348 709,060 

Honeywell Performance (Full Optimization) 

~-Language Statistics 

References 

3,430 

76,026 

119,000 

69,004 

12,657 

203,700 

9,612 

791,120 

412,720 

---------

1,697,269 

Wilner [15] observes a spatial improvement factor of two for the 

Burroughs S-Language for FORTRAN over 360 machine language. The same 

version of the Whetstone used to develop the 370 statistics presented 

in this section was also compiled into this language in .July 1977, 

using a B1726. 

The statistics corroborate the results of Wilner'·s experiments 

under the assumption that no optimization is employed during 370 com­

pilation. This indicates that OPT = 0 is the level of optimization 

that should be used When comparing different machine architectures. 

51 



Although disallowing optimization puts the 370 architecture (and 

indeed any traditional mono- format architecture) at a disadvantage, 

there are reasonable arguments for doing so. First, transparency is 

better preserved; second, there is usually little optimization per­

formed when compiling into higher level DELs (the only optimization in 

the Burroughs version of the Whetstone is substitution of non­

destructive stores for pop-push pairs), so that allowing optimization 

would tend to place these higher level DELs at a disadvantage (N.B. it 

"is a true disadvantage however). Third, disallowing most substantial 

optimization 'strategies tends to equalize the time and space require­

ments of compilation, thus, eliminating a troublesome variable in per-

formance comparisons. Fourth, prohibiting optimization tends to 

ensure that one compares two versions of the same algorithm -- if glo­

bal program transformations (especially strength reduction) are per­

mitted, it is possible to end up evaluating compiler performance 

rather than architecture performance. 

The Burroughs FORTRAN DEL is typical of several other stack 

oriented architectures--such as McClure's DEL for Basic FORTRAN [10], 

Weber's Euler [14], and Wortman's DEL for Student PL/l [16]. Indeed, 

the number of instructions and memory refe~ences required for execu­

tion should be the same for both the McClure architecture and FORTRAN 

versions of Weber's reverse polish string language and Wortman's high 

level intermediate language. The McClure and Weber machines are also 

roughly equivalent in space the average instruction size being 

about 28 bits for both architectures; Wortman's machine could require 

52 



up to 50% less space if "short addresses" (one byte identifiers) are 

used for most operands. 

Loop Bits Instructions References 

1 1,102 2,991 3,433 

2 2,392 62,021 100,103 

3 2,346 96,104 113,961 

4 755 62, 104 82,811 

5 1,919 9,101 15,963 

6 1,151 117,601 149,103 

7 524 8,321 10,243 

8 811 332,631 386,573 

9 880 172,481 308,003 

------ ------- ---------

Totals: 11,880 863,577 1,170,193 

~-Language Performance (Some Optimization) 

DELtran Statistics 

In the example cited in a companion pape.r we develop a language 

called DELtran [6] which is a elF derived DEL for the FORTRAN 

language. It largely achieves the elF size and measure achieving log2 

container size, however requiring an additional 5 bits per instruction 

for format information. Otherwise, the number of instructions inter­

preted corresponds to elF measures. The referencing environments in 

53 



DELtran are adjusted to the actual implementation of the DELtran 

interpreter which is developed on the Stanford Emulation Laboratory 

system, the EMMY. Since block access techniques on the EMMY system 

(from main memory to interpretive store) were not implemented at the 

time the DELtran language was developed, DELtran uses a 32 bit physi­

cal word as the referencing environment for both instructions and 

data. DELtran as a language will achieve the elF measures in 

. referencing environments in so far as the host allows it to, i.e. sup­

ports particular referencing strategies with respect to environments. 

Loop Bits Instruction References 

1 362 1,161 2,343 

2 458 16,24.5 32,770 

3 451 17,081 34,023 

4 214 17,253 31,053 

5 380 990 2,266 

6 348 46,201 79,803 

7 153 2,561 5,763 

8 165 89,990 161,823 

9 141 55,441 98,563 

------- -------

Totals: 2,672 246,923 448,407 

DELtran Performance (No Optimization) 

54 



REFERENCES 

[1] Chu, Yaohan (Ed.), High Level Language Computer Architecture, 
Academic Press, New York, New York, 1975. 

[2] Elson, M., and Rake, S. T., "Code-Generation Techniques for 
Large-Language Compilers," IBM Systems Journal, Vol. 9, No.3, 
1970, pp. 166-88. 

[3] Flynn, Michael J., "Trends and Problems in Computer Organiza­
tions," IFIPS Congress, Stockholm, Sweden, August 1974, North 
Holland Publishing Company, 1975, pp. 2-10. 

[4] Flynn, Michael J., "The Interpretive Interface: Resources and 
Program Representation in Computer Organization," Proceedings 
of the Symposium on High Speed Computers and Algorithm 
organIZation, University--Df Illinois, Champaign, Illinois, 
(Pub. Academic Press) April 1977. 

[5] Hehner, Eric C. R., "Information Content of Programs and 
Operation Encoding," Journal of the ACM, Vol. 24, No.2, April 
1977, pp. 290-97. 

[6] Hoevel, L. W. and Flynn, M. J., "A Theory of Interpretive 
Architectures: Some Notes on DEL Design", Technical Report No. 
171, Computer Systems Laboratory, Standford University, Stan­
ford, California, February 1979. 

[7] Hoevel, Lee W., and Flynn, Michael J., "The Structure of 
Directly Executed Languages: A New Theory of Interpretive 
System Support," Technical Report No. 130, Digital Systems 
Laboratory, Stanford University, Stanford, California, March 
1977. 

[8 ] Huffman, D. A., "A Method 
Redundancy Codes," IRE, 
pp. 1098-101. -

for the 
Vol. 40, 

Construction of Minimum 
No.9, September 1952, 

[9] Lunde, A., "Empirical Evaluation of Some Features of Instruc­
tion Set Processor Architectures," Communications of the ACM, 
Vol. 20, No.3, March 1977, pp. 143-52. 

[10] McClure, Robert M., "cuc Basic FORTRAN Description," private 
working notes, 1970. 

55 



[ 11 ] 

[12 ] 

[13] 

[14] 

.r 15] 

[ 16] 

McKeeman, W. M., "Language Directed Computer Design," 
Pr:oceedings ()f the Fall Joint Computer Conference, Vol. 31, 
Fall 1967, pp-. 413-17.--

Reigel, E. W., with Faber, U., and Fisher, D. A., "The Inter­
preter A Microprogrammable Building Block System," 
Proceedings of the Spring Joint Computer Conference, Vol. 40, 
Spring 1972,-Pp:-705-23. 

Sethi, Ravi, and Ullman, Jeffery D., "The Generation of 
Optimal Code for Arithmetic Expressions," Journal of the ACM, 
Vol. 17, No.4, October 1970, pp. 715-28. 

Weber, Helmut, "A Microprogrammed Implementation of EULER on 
IBM System/360 Model 30," Communications of the ACM, Vol. 10, 
No.9, September 1967, pp. 549-58 . 

Wilner, W. T., "Burroughs B1700 Memory Utilization," 
Proceedings of the Fall Joint Computer Conference, Fall 1972, 
pp. 579-86. 

Wortman, Daniel B., A Study of Language Directed Computer 
Design, Ph.D. Thesis, Stanfor~University, Stanford, Califor­
nia, 1973. 

56 


