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ABSTRACT 

The nonlinear feedback shift register is a very useful digital 

sequence generator. Even though the design of this network has been 

unnecessarily difficult and unsystematic, the network is often used for 

code generation, sequence generation, and counting. The development of 

an efficient synthesis procedure in this report allows the potential of 

this important class of digital networks to be more fully utilized. 

Two domains that describe the behavior of a feedback shift register 

have been developed. These are the sequence and polynomial domains and 

they are analogous to the frequency and time domains in the description 

of continuous systems. The domains are related by an expansion of 

orthogonal functions. 

The synthesis procedure developed in the polynomial domain consists 

of four steps: (1) Constructing a finite field with the necessary prop­

erties; (2) finding the polynomials that correspond to the desired out­

put sequences; (3) obtaining the polynomial that describes the shift 

register as a product of the polynomials that represent the desired 

output sequence; and (4) obtaining the feedback network from the poly­

nomial that describes the shift register. In the procedure, the output 

sequences are mapped to the roots of irreducible polynomials, thereby 

providing an algebraic description of the register's behavior. 

To synthesize the shift register in the sequence domain, several 

properties of the output sequences are needed. The class of sequences 

and state graphs corresponding to shift-register behavior is established. 

The cycles and output sequences of a simple, circulating shift register 

are used to synthesize an arbitrary feedback shift register. The pro­

cedure has two steps. First, the specification is expressed in terms 

of the joining and removing of cycles of a circulating register. Second, 

the feedback network and output sequences are found from a knowledge of 

these operations. 

- iii - SEL-63-118 



CONTENTS 

I. INTRODUCTION.. 

A. Motivation 

B. 

C. 

Some Linear Relationships 

Nonlinear Results 

D. Organization. . . 

• • • I! • 

II. NONLINEAR SHIFT -REGISTER SYNTHE:SIS BASED ON IRREDUC IBLE 

Page 

1 

1 

3 
4 

6 

POLYNOMIALS . • • • . . • • • • • • . 1 

A. Background. 

B. Properties of Associated Polynomials 

C. Properties of Polynomials Required to Describe 
Nonlinear Behavior • • • . . • • . 

D. The Synthesis Procedure 

E. Generation of .Nonlinear Terms 

F. A Test for Realizability ••••• 

G. Alternate Network Realization Methods 

III. SOME PROPERTIES OF SHIFT-REGISTER SEQUENCES 

A. Sequence Properties 

B. State-Graph Relationships 

C. Sequence Theorems 

D. Methods of Representing Adjacencies 

E. Construction Conventions for Adjacency Diagrams 

F. Properties of Adjacency Diagrams ••••.• 

IV. SHIFT-REGISTER SYNTEESIS IN TEE SEQUENCE DOMAIN 

A. Summary of General Approach 

B. Sequence Joining . 

C • An Example • • • 

D. JOining Longer Cycles 

E. Some Maximal Sequences . 

F. Removing a Contained Cycle 

G. Generality of Decomposition Process 

SEL-63-ll8 - iv -

1 
8 

11 

19 
19 
22 

23 

24 

24 

21 
33 

34 

35 

36 

51 

51 

53 

58 

58 

60 

63 

10 



v. 

H. 

I. 

Decomposition Tables • 

Network Relations 

J. Standard Removal Tables 

CONCLUSIONS 

A. General Comments . 

B. Summary of Results 

C. Recommendations for Future Study .• 

REFERENCES • • • • . • • • . • . • 

- v -

72 

75 
81 

86 

86 
86 
88 

89 

SEL-63-118 



ILLUSTRATIONS 

Figure 

1. Some sequential networks • . • 

2. An exhaustive analysis of some shift registers • 

3. 
4. 
5. 
6. 

7· 
8. 

A multiplier • . • • . 

A three-stage nonlinear shift register . 

Example of cycles generated by a sequence 

An adjacency pattern . • 

A state graph containing only two cycles 

A modification to produce an appendage 

. 

9. Producing a maximal cycle from a cycle with an appendage 

10. 

11. 

Producing a maximal cycle from a cycle with two appendages 

Producing a maximal cycle from an arbitrary state graph 

12. Adjacent states defined by an adjacency sequence. 

13. Adjacency diagrams 

14. A contained cycle 

15. Joined cycles 

16. 

17. 
18. 

19. 
20. 

21 .. 

The span of sequences on joined cycles 

An example of sequence joining . . 
A maximal cycle produced by joining 

A maximal cycle produced by joining 

A removed cycle . . . . . 
Adjacencies between cycles of C 

n 

. . . 
cycles 

cycles 

. .. . . 
of 

of 

22. A shift register which realizes a maximal cycle 

23. A nonsingular feedback shift register 

24. A five-stage shift register 

C
3 

C4 . 

25. 
26. 

27. 

State diagram for example of decomposition process 

Location of contained cycles 

Summarizing graph 

SEL-63-118 - vi -

. . 

. 

Page 

2 

5 
20 

21 

26 

27 
28 

28 

29 
30 

31 

36 

38 

40 
54 

55 

59 
60 
61 

63 

71 

77 
79 
81 

82 

83 

87 



ACKl'iJOWLEDGMENT 

The author wishes to thank Professor Donald L. Epley for his 

assistance and direction of the work described in this report. Valuable 

discussions with Drs. B. Elspas, W. Kautz, and R. Edwards are greatly 

appreciated. The author also wishes to thank Professor R. L. Mattson 

for his assistance in the organization of this report. 

- vii - SEL-63-118 





I. INTRODUCTION 

A. MOTIVATION 

The feedback shift register is a type of digital oscillator. In 

recent years it has found wide usage in sequence or code generation, 

counting, and sequence recognition or decoding [Refs. 1, 2, 3]. Even 

though it is the simplest type of digital sequential network, no general 

systematic design procedure exists for the nonlinear register. A great 

deal has been done, however, to give aids to design [Ref. 41, and design 

procedures have been given for the linear register [Ref. 51. The prop­

erties of the sequences produced by the nonlinear shift register have 

been studied, and methods of modifying a linear register to produce 

several interesting nonlinear shift-register sequences have been 

developed [Ref. 6J. 
The topology of the general sequential network is shown in Fig. lao 

The unit delays can be physical delay elements or clocked storage ele­

ments. When the system is clocked, a signal can propagate through the 

delays only at the clocking intervals. The network delays are assumed 

to be of sufficient duration to prevent loop propagation during the clock 

pulse. In unclocked networks the operation may be a function of the order 

of switching of the various elements. When this possibility exists, the 

network is said to have a race condition. The networks studied here are 

clocked, so race conditions do not exist. 

The shift register is obtained from the general seC't,uential network 

by making the logic for n - 1 of the state variable a straight-through 

connection, as indicated in Fig. lao The network is redrawn in Fig. Ib 

in the form of a feedback shift register. The networks considered here 

will have no inputs or outputs. It is assumed that the state variables 

themselves are the outputs or that the output is obtained from the state 

variables by combinatorial logic. For a large number of applications 

the loss of inputs is a serious one. However, the author hopes that the 

theory presented here can be extended to include the case with inputs in 

a manner similar to that done by Srinivasan for the linear networks 

[Ref. 7]. 

- 1- SEL-63-118 
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a. A general sequential network. (Dotted lines 
indicate shift-register connections) 

.... 

b. A feedback shift register. 

FIG. 1. SOME SEQUENTIAL NETWORKS. 
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B. SOME LINEAR RELATIONSHIPS 

The use of the term "nonlinear" in digital networks is a little 

different than in analog networks. A linear digital network is one 

which consists entirely of modular adders, the modulus being 2 for the 

binary case. If the logic in Fig. la consists entirely of modulo 2 

adders, the outputs can be written as a linear function of the inputs. 

x 
n 

+ a
n2

x
2 

+ ... 

The operation + is defined as follows: 

or, in matrix notation, XI 

T 

~
l 

001 

110 

TX, where 

a 
nn 

a x 
nn n 

The characteristic polynomial of the T matrix is defined as the 

determinant of the matrix obtained by subtracting x from the diagonal 

elements of T. 

¢(x) IT - xl I 
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Since the networks being considered have no inputs, a description of 

the cyclic behavior is sufficient to characterize the network. Zierler 

[Ref. 8J and Elspas [Ref. 5J have developed a method to determine the 

cycle lengths of the register in terms of the properties of its charac­

teristic polynomial. Elspas also develops a synthesis procedure in terms 

of the characteristic polynomial. Thus, for the linear register, both 

the analysis and synthesis depend on properties of the characteristic 

polynomial. The polynomial also provides an algebraic description of the 

register. In Chapter II, the author develops an algebraic description 

and synthesis in terms of a different polynomial. 

C. NONLINEAR RESULTS 

When the logic consists of arbitrary elements, the linear theory 

fails since the eQuations describing the next state in terms of the 

present state are not linear. Attempts have been made to extend the 

linear theory to include the nonlinear behavior by increasing the size 

of the matrix [Ref. 9J or increasing the degree of the characteristic 

polynomial [Refs. 10, llJ. The polynomial approach will be described 

in more detail in Chapter II. 

A great deal of work has been done to provide tools which are useful' 

in the design of the nonlinear register. Several relations between the 

state-graph structure and the feedback logic have been given [Ref. 11]. 

An exhaustive analysis has been carried out for short registers and a 

generalized state graph drawn for each length [Ref. 12]. For a small 

number of variables, the cycles can be found by inspecting this graph, 

called Good's diagram [Ref. 13]. Good's diagrams for n = 2, 3, and 4 
are given in Fig. 2. The solid lines in these diagrams indicate the 

cycles of a circulating shift register. A circulating register is a 

feedback shift register whose feedback network consists of a connection 

from the output of the last delay element to the input of the first. 

The states on a cycle of a circulating register are obtained from a 

representative state by cyclically permuting its digits. 

The main difference between the research presented in this report 

and the work described in the above references is that the nonlinear 

SEL-63-118 - 4 -



a. Good's diagrams for n = 2, 3, 4. 

C ... J 
b. Circulating shift register. 

FIG. 2. AN EXHAUSTIVE ANALYSIS OF SOME SHIFT REGISTERS. 
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registers are studied directly rather than modifying linear registers to 

make them nonlinear. This approach is very satisfying since the linear 

behavior is realized as a special case of the nonliDear behavior. Even 

though it is more general, the approach presented here is much simpler 

than the linear theory in many cases. 

D. ORGANIZATION 

The nonlinear theory is presented in two different domains and a 

correspondence between the two domains is given. These are called the 

sequence domain and the polynomial domain and are analogous to the time 

and frequency domains in continuous systems. 

In Chapter II the correspondence between the two domains is described 

and the polynomial-domain approach is presented. In Chapter III the 

sequence domain is introduced and several properties of shift-register 

sequences are developed. Chapter IV attacks the problem of decomposing 

the prescribed cycle set in terms of operations on the cycles of a cir­

culating register. This chapter also shows the correspondence between 

the operations on circulating-register cycles and the feedback-network 

specification, as well as a design example. Chapter V gives some con­

cluding remarks and reconlmendations for future study. 

Chapters II - IV provide a general solution to the characterization 

and synthesis of the nonlinear shift register. An algebraic description 

of the register a.nd its output sequences is given in the polynomial 

domain. A synthesis procedure is given in both domains, and a connection 

between the two domains is developed. The polynomial gives a concise 

method of describing the network behavior and is conceptually simpler. 

As a practical design tool, the sequence-domain synthesis procedure is 

simpler and does not depend upon the existence of tables of polynomials. 

While the procedure itself is simple, the development of the procedure is 

not. 

SEL-63-118 - 6 -



A. BACKGROUND 

II. NONLINEAR SHIFT -REGISTER SYNTHESIS 
BASED ON IRREDUCIBLE POLYNOMIALS 

There is an interesting analogy between digital systems and continuous 

systems. The autonomous feedback shift register in digital systems corre­

sponds to an oscillator in continuous systems. In the digital oscillator 

several different cycles may be generated depending on its starting state; 

in the analog oscillator several different frequencies may be generated 

depending on the starting conditions. 

In describing the behavior of both classes of systems, there are two 

corresponding domains that can be used. For analog oscillators, one may 

use either the frequency or time ·domain. Some operations are more con­

venient in the frequency domain, while others are easier in the time 

domain. In digital systems, there are also two domains for describing 

the behavior. These are the sequence domain and the polynomial domain. 

The analogy between the sequence domain in digital systems and the time 

domain in analog systems is a very natural one, since both describe the 

output as a function of time. Perhaps the correspondence between the 

polynomial domain and the frequency domain may seem a little strange, 

but it will be shown to be very natural also. As will be seen, there is 

a similar connection between the two domains for both the digital and 

analog oscillators in the form of an expansion of orthogonal functions. 

Kautz, Elspas, and Stone [Refs. 10, 11] have observed some inter­

esting properties of what they call the "associated polynomial." This 

is the polynomial obtained from the normal characteristic polynomial of 
. 2i 

the linear network by replacing Xl by x 

If ¢(X) = characteristic polynomial of the network 

described in Chapter I 

i=O 

- 7 - SEL-63-118 



then A(X) = associated polynomial 

i=O 

2i 
a.X where the 

J. 
a. 

]. 
are the same as above. 

The associated polynomial can be modified to describe the behavior 

of a nonlinear register since some terms of the general polynomial of 

degree 2n are missing in the description of a linear register. This 

will be shown in the following sections. Those terms not in a linear 

register (~i) will be called nonlinear terms, and it is to be expected 

that they will playa key role in describing the behavior of a nonlinear 

shift register. Since the subject of this chapter is the design of non­

linear registers) the polynomial for an n-stage register will have degree 

2n and will be expected to degenerate to the associated polynomial when 

the register is linear. 

B. PROPERTIES OF ASSOCIATED POLYNOMIALS 

The properties of the associated polynomial established from linear 

theory in Refs. 10 and 11 are summarized below; 

1. For an n-stage register) A(X) has degree 2n. 

2. 

3· 

4. 

5. 

i All terms are of the form X) i $ n. 

The term a = 0 or 1) depending on whether the register is singular 
or nonsingu~ar. 

The degree of each of the irreducible factors of A(X) is equal to 
a cycle length in the cycle set. There is a one-to-one correspond­
ence between cycles and irreducible factors of A(X). 

There exists a linear mapping of the roots of A(X) to the states 
of the register. Each state is a binary n-tuple which is an element 
of an n-dimensional vector space. Successive states on a cycle are 
mapped to a root and its square. 

Each digit of the binary sequence representing the states is either 

zero or one. These scalars) together with the following operations) 

define a two-element field) F. 

SEL-"63-118 - 8 -



F {O,l} + 

o 
1 

o 1 

o 1 

1 0 

o 
1 

o 1 

o 0 

o 1 

A linear vector space over the field F can be obtained by con­

sidering the space of all binary n-tuples X = xl x2 •.• xn of elements 

x. in F. The vector addition and scalar multiplication are defined as 
1 

follows: 

For c in F, 

cX = 

... , x 
n 

for X, Y in F
n 

The unit vector is the all-one vector, III ••. 1. As an example of 

applying the associated-polynomial theory to the linear register, con­

sider the following network: 

¢ = x3 + x
2 

+ x + 1 
8 4 2 

A(x) = x + x + x + x 

x(x + 1)(x
2 

+ x + 
4 1) (x + x + 1) 

- 9 - SEL-63-118 



The characteristic polynomial ¢(x) is found using the method described 

in Chapter I, and from it the associated polynomial A(x) is found. The 

state graph, obtained by analysis of the register, is seen to be: 

Using the relation that successive states on a cycle are mapped to a 

root and its square if A = 100, then A2 = 110, A4 = 011, A
8 = 001; 

if B = 010, B2 = 101. 
4 

In the equation x + x + 1, let x ~ A = 100: 

A 
4 

+ A + 111 = 011 + 100 + 111 = 0 

Also in 2 
x + x + 1, let x ~ B = 010: 

B2 + B + 111 = 101 + 010 + III = a 
4 The states of the 4 cycle are seen to be roots of x + x + 1, those 

2 of the 2 cycle are roots of x + x + 1, while the two states on the 

1 cycles are roots of x and x + 1 respectively. 

The above example is unusual in that all the factors of the associated 

polynomial contain only linear terms. This fact allows the determination 

of the roots without defining a multiplication operation since only the 

squaring and addition operations are used. 

There are three irreducible polynomials of degree four. The corre­

spondence between one polynomial and one output sequence is established. 

The remaining two irreducible polynomials of degree four and output 

sequences with period four are: 

SEL-63-118 - 10 -
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From linear considerations, there is no way to decide which sequence 

should correspond to each polynomial. Since one sequence never occurs 

without the other in a linear network, this presents no difficulty for 

the linear theory; however, this ambiguity must be resolved to extend the 

theory to include the nonlinear register. The ambiguity is recognized in 

Refs. 10 and 11, but no solution is given. The solution obtained by the 

author is given in the following section. 

C. PROPERTIES OF POLYNOMIALS REQUIRED TO DESCRIBE NONLINEAR BEHAVIOR 

To extend the theory to include the nonlinear behavior it is first 

necessary to define a multiplication operation to produce the nonlinear 

terms of the polynomial. Having done this, the ambiguity mentioned above 

regarding the sequence-polynomial correspondence will be resolved. The 

network required to realize the multiplication operation will then be 

determined. Finally, a test of realizability will be developed to deter­

mine which polynomials can be realized with a register of a given length. 

The multiplication operation must be defined such that the properties 

of the polynomial will be similar to those for the associated polynomial 

for the linear register. The polynomial which describes the feedback 

rule for the nonlinear register will be called the describing polynomial, 

denoted by D(x), and will have the following properties: 

1. For an n-stage register, D(x) has degree 2n. 

2. The degree of the irreducible factors of D(x) is equal to the 
cycle lengths in the cycle set. There is a one-to-one correspond­
ence between cycles of the register and irreducible factors of 
D(x). 

3. There is a mapping of the roots of D(x) to the output sequences 
of the register. The output sequence for each cycle is mapped to 
a root of the factor of D(x) corresponding to that cycle. The 
various roots of the irreducible factor of D(x) are the various 
phases of the output sequence. The sequences are elements of a k-

dimensional vector space (Fk), where k is the least common 
multiple of the cycle lengths. The operations of scalar addition, 
scalar multiplication, vector addition, and vector multiplication 

k by a scalar are the same as for F described above. 

- 11 - SEL-63-ll8 



These properties are very similar to the corresponding properties of 

the associated polynomial. The primary difference is in the correspond­

ence between the roots of the polynomial and the behavior of the register. 

The roots of the associated polynomial are mapped to the states of the 

register, while the roots of the describing polynomial are mapped to the 

output sequences of the register. 

The sequence that represents each cycle of a shift register can be 

represented as a binary L-tuple, where L is the length of the cycle: 

X::: xl x2 •.• ~; ~ is the output after the first unit in time; ~-l 

is the output after the second; etc. The states of the register which 

are placed on a particular cycle are obtained by considering the first 

n digits of the above sequence, where n is the number of delay elements 

in the register. As the digits of the output sequence are cyclically 

permuted, the first n digits of the resulting sequences give the binary 

representation of the states on that cycle. For example in a three-stage 

register, states 000, 100, 010, 001 are on the cycle represented by the 

sequence 0001. 

Define 5 as a mapping from Fn onto Fn such that for any X 

in Fn : 

X ::: x
l

x2 ... x 
n 

5X ::: x
n

x
1

x2 • 0 • x 
n-l 

::: X2 

5(5X) ::: 52X ::: xn_lxnxlx2 ... x 
n-2 

::: X4 

Let ill be the vector in Fk defined as follows: 

ill::: 1100 ... OJ 
k digits 

SEL-63-118 - 12 -



then 

Oro = 0100 0 2 ro 

2 4 
Bro= 0010 0 ro 

ok-lro = 00 01 
2k- l 

ro 

k 
o ro = 100... 0 ro 

The n vectors 

for the vector space 

written as: 

where i = 0, 1, 2, ... , k - 1, form a basis 

defined above. Any vector (X) in Fk can be 

k-l ;L i 
X a.o ill 

1 

i=O 

The application of the mapping 0 to a sequence is equivalent to ob­

serving the output s'equence of the register one clock time later. Thus 

if the content of the register is state 8
i 

s
l

s2 ... sn' the i th 

state on a cycle generated by the sequence X x
l

x2 ..• xn ~,then 

the first n digits of OX = ~xlx2 , .. xn_lxn ... ~-l will be the 

(1' + l)th t t th 1 8 s a e on e cyc e, i+l = ~sls2 ..• sn_l' 

Another interpretation of the mapping 5 is the relationship between 

the output and input of a delay element. If X = x
l

x2 ..• ~ is the 

sequence at the output of a delay element, then OX = ~xlx2 ... ~-l 

is the sequence at the input of that delay element. 

Edwards uses a finite field with a normal basis in the algebraic 

synthesis of some switching circuits [Ref. 14]. This method of field 

construction is also useful in the design of shift registers. The finite 

field is constructed with elements of Fn. The operation of vector 

addition is the addition operation of the field. The multiplication 
k . 

operation is obtained by considering the basis elements of F, (Olill) , 

as roots of an irreducible polynomial of degree k. These roots are 

linearly independent, so the polynomial chosen to correspond with them 

- 13 -



must have linearly independent roots. Every element in the field must 

be a linear combination of the basis elements and hence equivalent to 

the basis element raised to some power. Thus, the roots of the poly­

nomial chosen are to be primitive elements in the field. A polynomial 

whose roots are primitive is called a primitive polynomial. A field 

formed by taking polynOmials over a field F modulo an irreducible 

polynomial of degree n is called an extension field of degree n over 

F. The polynomial whose roots are the basis elements of the space Fn 

is then primitive, with linearly independent roots. The method of con­

structing the field is most easily shown by giving several examples which 

will be useful when the synthesis procedure is given. 

Example 1: Construct the Galois field of 22 elements, GF(22), 
2 formed as a field of polynomial$ over F modulo x + x + 1. Let m 

2 be a root of x + x + 1. 

0 
10 o m = m = 

Om = 
2 

01 m == 

2 
1 0 m + m+ = 

m3 2 11 m +m= 

then 

x 00 is a root of x 

X = 01, 10 are roots of x2 + x + 1 

x = 11 is a root of x + 1 

Example 2: Construct the Galois field of 23 elements formed as a 

field of polynomials over F modulo x3 + x2 
+ 1. Let m be a root of 

x3 + x
2 

+ 1. 

SEL-63-118 

m = 100 

2 
m = 010 

m3 + m
2 

+ 1 = 0 

m3 = m 
4 

+ m 
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ill3 = 101 ill5 4 2 = ill + ill 

4 
001 

6 2 
ill = ill = ill + ill 

ill5 = 011 ill7 = 4 2 
ill + ill + (l) + 1 

6 110 8 
ill = ill = ill 

ill7 = 111 

With this algebra, the binary sequence corresponding to roots of the 

third-degree irreducible polynomials are: 

001, 010, 100 

110, 011, 101 

Example 3: Construct GF(26 ) where ill = 100000 is a root of 

x6 + x5 + 1. A few of the elements of GF(26 ) are given below. (These 

will be used in a later example.) Rather than write the symbol ill in 

the equations, for convenience only the exponents will be used. For 

example: ill5 = ill4 + ~6 + (l)32 will be written 5 = 4 + 16 + 32. 

5 = 4 + 16 + 32 001011 

9 = 1 + 4+8+ 32 101101 

10 = 1 + 8 + 32 100101 

18 = 1 + 2 + 8 + 16 110110 

20 = 1 + 2 + 16 110010 

21 = 2 + 8 + 32 010101 

25 = 1 + 2 + 8 + 32 110101 

29 = 1 + 2 + 4 + 8 + 16 111110 

30 = 1 + 2 + 16 + 32 110011 

31 = 8 + 16 000110 

33 = 2 + 16 + 32 010011 

45 = 1 + 8 100100 

48= 1 + 8+ 16 100110 

54 = 4 + 32 001001 
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57 = 1 + 2 + 4 + 8 

60 = 1 + 2 + 4 + 32 

62 = 16 + 32 

111100 

111001 

000011 

With this algebra, the roots of some of the sixth-degree irreducible 

polynomials are 

6 
x + 1 0)31 

= 000110 x + 

6 
x5 + 

4 2 
+ 1 0)5 001011 x + x + x = 

6 
x5 + 

4 2 
+ 1 

24 
001101 x + x + x 0) = 

Note: 

0) 45 
100100 is a root of x3 + x 2 

+ 1 

18 
110110 is a root of x3 + 1 (l) x + 

21 010101 is a root of 2 1 (l) x + x + 

which agrees with the above. 

The mapping between the elements of the finite field (O)i) and the 

output sequence can be interpreted as an expansion of the sequence in 

terms of orthogonal functions. The method of obtaining this expansion 

is identical to that normally used in expanding a continuous function in 

terms of orthogonal functions. This is outlined below. 

An inner or dot product of two vectors, X and Y, denoted 

II(X)(Y), is: 

x 
n 

Y = YlY2 Yn 

rr(x)(y) = x1Yl + x2Y2 •.• + x n 
.y 

n 

The basis vectors are orthogonal with respect to II: 

SEL-63-118 

1 if i = j 

= 0 otherwise 
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Also, the following properties of the inner product will be used: 

TI (X) (cY) = cTI (X) (Y) 

TI (X) (Y + z) = II (X) (Y) + TI (X) (Z) 

Any sequence of length p, where p divides n, can be written 

as a linear sum of the basis elements. The property of orthogonality 

with respect to TI is used to obtain the expansion of the sequence in 

terms of the basis elements. 

Let X be any vector in Fn. Then 

a. 
l 

i=O 

o when i I j 

a. when i = j 
l 

This method of constructing the finite field, together with the 

following theorem from finite-field theory, allows the construction of 

the mapping of the roots of the polynomials to the sequences with the 

desired properties. 

Theorem: If A is a root of an irreducible polynomial IX) OT 2 
2 degree k in an extension field over F, then the other roots a~2 A , 

23 2k 
A , .00, A • 
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The proof of this theorem is given in Ref. 3, Theorem 6.26. The 

following corollaries are a direct consequence of this theorem: 

Corollary 1: If A and B are roots of the same irreducible poly­

nomial, then A and B are mapped to sequences Sa and Sb which 

generate the same cycle. 

Proof: Since A and B are roots of the same irreducible polynomial, 

A = 
2i 

for some i, then by definition of 5, S 5i S and S is B a b a 
the same output sequence as Sb shifted i units in time. Thus S a 
and Sb generate the same cycle. 

Corollary 2: If k is the length of the cycle which the sequence 

S generates, then S is mapped to the root (A) of an irreducible poly­

nomial of degree k. 
2 K Proof: The sequences S, 58, 5 S ... 5 S are mapped to distinct 

2 2k 
elements (A, A , ... , A ) which are roots of some polynomial of the 

field; 5K+l S is not a new sequence and hence must be mapped to one of 

the previous roots, 

fo:;r i < K 

If we have 
2K+1- i 

A = A, which cannot be true since all 

the roots are distinct. Hence i = 0 and the polynomial has degree K. 

90rollary 3: The product of the irreducible polynomial whose roots 

describe the cycles of a nonsingular register of length n is of degree 

2n. This polynomial is the describing polynomial for the register 

(D(x)). 

Proof: There are 2
n states in the register, all of which are the 

first n digits of a sequence which is mapped to some root of a factor 

of D(x). Thus, the sum of the degrees of the factors of D(x) is 2n 

so the degree of D(x) is 

These corollaries establish the three properties of D(x) required 

for the synthesis procedure described below. 
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D. TEE SYNTHESIS PROCEDURE 

The design of a nonlinear shift register based on irreducible poly­

nomials is summarized in the following steps: 

1. Select an irreducible polynomial of degree such that it is divisib::_~ 
by all the desired cycle lengths and which is primitive with linearly 
independent roots. (If the specification is in terms of polynomials, 
choose the degree such that it is divisible by all the degrees of 
the specified polynomials.) See Ref. 3 for a table of irreducible 
polynomials. 

2. Construct a finite field based on this irreducible polynomial. 
This can be done once for each degree and tabulated for future 
reference. 

3. Choose an irreducible polynomial for each desired cycle with degree 
equal to the cycle length. The polynomial chosen will determine 
the sequence which is produced, and in some cases the number of 
delay elements required in the register. (This step is omitted if 
the specification is in terms of polynomials.) 

4. Multiply the polynomials together to obtain the polynomial to 
associate with the register. 

5. Determine the logic required for the nonlinear terms in the 
polynomial. 

6. Obtain the feedback network by connecting all the terms of the 
polynomial as inputs to a modulo 2 adder. 

E. GENERATION OF NONLINEAR TERMS 

Th t th t d t Xi, where e erms a correspon 0 for j an integer, 

are called the nonlinear terms of the polynomial since they are not 

present in the polynomials that describe a linear register. 

A multiplication is defined by the finite field and this is used to 

obtain the nonlinear terms of the polynomial. This multiplication cannot 

be performed on the serial sequences one bit at a time as the operation 

of squaring can, and hence in general some storage is required. In some 

cases, the proper sequence can be obtained without storage, as will be 

seen in the following section. These are the sequences which can be 

generated by a register of minimum length. A diagram of a multiplier is 

shown in Fig. 3. 
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X 
CODER 
X ~ u.;i 

(,vi + j 

• DECODER XY 

CODER 
Y 

Y -+ wi 

FIG. 3. A MULTIPLIER. 

The following example will illustrate the procedure: 

Example: The desired cycle set is (12,6). 

Since all cycle lengths divide 6, a sixth-degree polynomial will be 

used to define the multipli.cative group in the Galois field. Choose 

m = 100000 as a root of x
6 + x5 + 1, which is primitive and has linearly 

independent roots. Example 3 in Sec. C above gives the algebra based on 

this polynomial. 

The polynomials corresponding to the two 1 cycles are x and x + 1. 

We see that there are several sixth-degree polynomials that are irre­

ducible. Suppose we choose x6 + x5 + x4 + x + 1 to obtain the 6 cycle. 

The polynomial of the register (¢) is: 

¢ = (x) (x + 1) (x6 
+ x5 + x4 + x + 1) 

We see that b = (l) 
4 16 

+ m32 is a root of 6 
+ x5 + 

4 
x + 1. +m x x + 

From example 3, 

b = o::? 

b3 15 8 16 
+ m32 

= m = m+m +m 

b5 25 2 8 
+ m32 

= m = m+m +m 

The logic to obtain b3 and b5 is given in Fig. 4. 
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YI Y2 

I I 

0 I 

0 0 

I 0 

0 1 

I 0 

0 0 

I I 

Y3 b3 

0 I 

I 0 

I 0 

0 I 

0 I 

I 1 

0 0 

I I 

b5 

I 

I 

0 

I 

0 

I 

0 

I 

b3 = YI V Y2Y3 

b5 
c: YI V Y2 Y3 

a. Truth Table 

b. Register 

c. State Graph 

FIG. 4. A THREE-STAGE NONLINEAR SHIFT REGISTER. 
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F. A TEST FOR REALIZABILITY 

It was pointed out earlier that not every irreducible polynomial of 

degree k will be realizable by an n-stage register (k ~ 2n) without 

requiring storage in the feedback network. A simple test to determine 

which polynomials are realizable can be given in terms of the roots of 

the polynomial. The particular polynomial chosen to construct the multi­

plica.tive group of the finite field will determine the roots of the re­

maining polynomials, so the realizability of a given polynomial depends 

upon the algebra chosen. 

of 

Theorem 1: Let S be the binary sequence that represents a root 
a 

p(x) an irreducible polynomial of degree k. Then S a 
is realizable 

as an output sequence of an n-stage register if and only if the sequence 

S' obtained from S defined below contains each n-digit word only once. a a 

Proof: Each n-digit word represents a state of the shift register 

that is on the cycle which produces the output sequence S. Suppose a 
a 

given n-digit word exists twice on the sequence. Then the cycle length 

is less than k, which contradicts corollary 2 above. 

If each n-digit word in 

distinct states on the cycle. 

S' occurs only once, then there are k a. 
There exists a combinatorial network 

which can produce an arbitrary output for each distinct input; so a 

shift register exists which produces the sequence 

sequence. 

S as an output 
a 

Corollary: If the sequence 

once, then the vectors Ai for 

Sf contains each n-digit work only 
a 

i any integer less than 2n can be 

formed as a function of the n digits in a network without storage. 

Proof: Since each n-digit word occurs only once as the cycle of 

length k is traversed, there exists a combinatorial network which can 

produce any k-digit sequence and hence the sequence representing Ai. 
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G. ALTERNATE NETWORK REALIZATION METHODS 

Although the above procedure gives a method of realizing the pre­

scribed behavior, the realization of the feedback is unnecessarily 

complex. A more straightforward procedure is given in Chapter IV in 

terms of the se~uences which are the roots of the polynomials. The 

usefulness of the polynomial approach is in obtaining an algebraic 

description (the polynomial) for the shift register with nonlinear 

logic, and an algebraic description for the se~uences which it produces. 

Each se~uence which is produced by the register is a root of the poly­

nomial describing the register. Each irreducible factor of the 

describing polynomial is associated with one and only one output 

sequence. 
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III. SOME PROPERTIES OF SHIFT-REGISTER SEQUENCES 

A. SEQUENCE PROPERTIES 

This chapter establishes some useful properties of shift-register 

output sequences and state graphs. The relationship between ttle state 

graph and the output sequence is pointed out. Chapter IV develops a 

design method based on these properties. 

Several obvious properties of the state graph can be deduced from 

Good's diagrams given in Chapter I. See Fig. 2 for the following 

properties: 

1. Each state has two possible predecessors and two possible 
successors. 

2. There are only two 1 cycles. These give the output sequences 
000 ••• 0 and 111 ..• 1. 

3. There is only one 2 cycle which has the output sequence 0101 ... 01. 

4. The graph has a total of 2n states. 

Before proceeding to study shift-register sequences, several defi­

nitions will be given. Following the definitions one comprehensive 

example is given to illustrate their meaning. 

1. A sequence (s) is said to be recursive of degree n if any n 

* successive digits of' the sequence occur at most once. 

2. A sequence (S = s l s2 sL) is cyclic with length L and degree n 

if the generator sequence S' of S of length L + n - 1 defined 

sn_l is recursive of degree n. 

3. A state of degree n on a sequence is any successive n digits on 

the sequence. For convenience, the octal equivalent to the binary 

number represented by the n digits with the least significant 

binary digit on the left will be used to refer to the state. When 

speaking of the sequences generated by n-element shift registers, 

*The degree of the sequence is the number of delay elements required in 
a shift register to generate the sequence. This corresponds to the 
degree of the polynomial associated with the sequence. Some authors 
have used the term "order" to mean the number of delay elements in a 
sequential network. 
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the degree of recursiveness will be the same as the number of 

shift-register elements unless otherwise stated. 

4. The cycle of degree n generated by a cyclic sequence S is the 

connected graph of states of degree n contained on the generator 

sequence of S. The states on the graph occur in the order that 

they appear on the generator sequence from right to left. 

5. The span from state a to state b on sequence S is the number 

of digits on S from the beginning of a to the beginning of b. 

6. State a is called adjacent to state b if a has a span of 

one to b on a sequence. 

7. The (n - I)-digit word that is common to two adjacent states is 

called an adjacency sequence. The adjacency sequence will be given 

in the octal representation of the sequence, with the least sig­

nificant binary digit on the left. 

8. The states spanned from a to b are the states contained on the 

sequence connecting a to b. 

9. A nonsingular state graph contains cycles only. If the state graph 

has one or more states which are not on a cycle, it is called 

singular. 

10. A cycle is said to have an appendage of length L if L states 

are contained on a single sequence of states leading into the 

cycle. 

11. The measure of a state is equal to the number of ones in the binary 

representation of the state. 

Example: 

The sequence 00010111 is recursive of degree 3. The sequence is 

cyclic with length 8 and degree 3. The states of degree 4 contained on 

the sequence are 10, 4, 12, 15, and 16. The span from 16 to 4 is 3, and 

states 12 and 15 are spanned from 16 to 4; state 12 is adjacent to state 

15. The cycles of degree 3 and 4 generated by the sequence are given in 

Fig. 5. 
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S = 00010 III 

FIG. S. EXAMPLE OF CYCLES GENERATED BY A SEQUENCE. 

Theorem 2: Two states of a feedback shift register with one common 

successor have both successors in common. 

Proof: Let Si have two successor states, 

have two successor states, Ya and Yb . 

S. 
1 

s , 
n 

If and Y. have one common successor, say S = Y , 
1 a a 

Now 

:But 
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Since sa = Ya ' sb = Yb = sa; hence, Sb 

shown in Fig. 6 must always exist. 

Y
b

. Note that the pattern 

FIG. 6. AN ADJACENCY PATTERN. 

The two adjacencies in this pattern have the same adjacency sequence. 

Further, these four states are the only states in the state graph for the 

register that contain this adjacency sequence. The term "adjacency 

quadruple" will refer to the four states containing an adjacency sequence. 

B. STATE-GRAPH RELATIONSHIPS 

Using Theorem 2, several properties of the state graph of a feedback 

shift register can be obtained. These properties are useful in deter­

mining the type of sequences which can be generated by a shift register. 

Only state graphs of feedback shift registers will be considered. 

Property 1: A nonsingular state graph with only two cycles (C
l 

and 

C2) can always be modified by changing the successors of two states to 

produce a maximal cycle. A state on C
l

, Sa' is found that is adjacent 

to some state on C2, Y
i 

(see Fig. 7). By choosing the alternate suc­

cessors for S. (the state preceding S ) and for Y., the maximal cycle 
l a l 

is produced. 
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---,../ 

FIG. 7. A STATE GRAPH CONTAINING ONLY TWO CYCLES. 

Some state Sa on C
l 

must be a possible successor of a state 

on C2, since if this is not so, there can be no maximal cycles. 

DeBruijn [Ref. 15J and Golomb and Welch [Ref. 12] have shown that there 

2n - l _n 
are 2 maximal cycles possible in a shift register of length n. 

Y. 
l 

The state preceding S 
a 

on 

C2, which is the successor of 

successors for Y. and S. 
l l 

C
l

, Si has as the other successor Yb 
Y .• Then by choosing the appropriate 

l 

the maximal cycle is obtained. 

Property 2: A nonsingular state graph containing only two cycles 

on 

Cl and C2 of length Ll and L2 can be modified (Fig. 8) to give 

a single cycle of length Ll with an appendage of length L2 • 

FIG. 8. A MODIFICATION TO PRODUCE AN APPENDAGE. 
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The same argument as used above can be applied with the choice of the 

alternate successor for Y. only. 
l 

Property 3: A singular state graph with only one appendage and one 

cycle can be modified by changing the successor of one state to give a 

maximal cycle (see Fig. 9). 

FIG. 9. PRODUCING A MAXIMAL CYCLE FROM A CYCLE WITH AN APPENDAGE. 

Consider the state 8. which is the junction of the cycle and the 
J 

appendage. Its two predecessors are specified, one on the appendage (8 ) 
a 

and one on the cycle (8). 8ince 8 and 8 have one possible suc-c c a 
cessor in common, by Theorem 2 they must have another. Let 8 denote x 
the second common sucessor of Sand 8. 

a c 

I 

----G 
Every state, except the last state on the appendage, has one of its 

predecessors specified and therefore these states cannot be 

only possible state that can have as its predecessor both S 
a 

8 . x 
and 

The 

8 
c 

is the last state on the appendage. Hence S x 
is the end of the 

appendage and the modification is possible. 
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Property 4: A singular state graph with only one cycle and t 

appendages can be modified to give a maximal cycle by changing the suc­

cessors of t states (see Fig. 10). 

FIG. 10. PRODUCING A MAXIMAL CYCLE FROM A CYCLE WITH TWO APPENDAGES. 

By the preceding argument, 8 must have as one of its successors 
c

l 
either S or 8 

xl x2 
is the possible successor of 

modification (1) in Fig. 10 is made, leaving a single cycle and a single 

appendage. If S is the possible successor of 8 , modification 
x

2 
c

l 
(2) is made which again leaves a single cycle and a single appendage. 

Next, modification (3) is made to produce the maximal cycle. 

Property 5: An arbitrary graph can be modified to give a maximal 

cycle, as shown in Fig. 11. 

For each appendage there is at most one modification required, and 

for each pair of cycles joined there is one modification required. The 

maximum number of modifications needed to produce a maximal cycle is: 
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where 

C = number of cycles in the graph 

t = number of appendages in the graph 

M = number of modifications required to obtain a maximal cycle 

o 66 =} 66 =} 6 =} 0 
60~OO=}O 
Jt 
6=>O 

FIG. 11. PRODUCING A MAXIMAL CYCLE FROM AN ARBITRARY STATE GRAPH. 

It is interesting to compare the number of maximal linear cycles 

with the number of maximal nonlinear cycles. There are ¢(2n - l)/n 

maximal linear cycles possiple (where ¢ (x) is the Euler ¢ function, 

which is the number of integers less than x that are relatively prime 

to x). The number of maximal cycles in a nonlinear shift register is 

2n-l 
-n [ 2 Refs. 5 and 12] . Table 1 gives the value of these functions 

for shift registers of length 10 or less. 

The cycle set of an n-stage circulating register (see Fig. 2c) will 

be denoted as follows: 

The C. 
1 

are representative states of each cycle of the reg~ster. 

The binary sequence which represents the given state generates the cycle 

containing that state. The representative states will be given as octal 

numbers with the least significant digit on the left. For convenience, 
the representative state will be chosen to be that state which has the 

smallest number. 
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II 

2 

3 
4 

5 
6 

7 

8 

9 

10 

TABLE 1. NUMBER OF MAXIMAL CYCLES POSSIBLE WITH A 
FEEDBACK SHIFT REGISTER 

2n- l 
2 -ll ¢ (2ll_1) 

II 

1 1 

2 2 

16 2 

2048 6 

25, 165, 951 6 

2 x 1016 
18 

19.4 x 1034 16 

4 x 1073 48 

32 x 10149 60 _.-

I 
I 
! 

I 

Example: The cycles of a four-stage circulating register are: 

CLj.:= {O,I,3,5,?,I?} 
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All states on the same cycle of C have the same measure since all 
n 

the states are obtained from a representative state by permuting its 

digits. 

C • SEQUENCE THEOREMS 

Theorem 3: Two cyclic sequences that are identical for at least 

Ll + L2 digits (where Ll and L2 are the lengths of the respective 

cycles) are identical for all time. 

Proof: Let the sequences be: 

where L2 is the longest cycle. By hypothesis the first Ll + L2 digits 

are identical. Let Xk be the first digit of Sl that can be different 

from the corresponding digit in S2" 

L
l

: 

Since S 
1 

is cyclic with length 

The first Ll + L2 digits of Sl are cyclic with length L2 so: 

By an identical argument, ~ = xl" The same argument is repeated for 

the (k + 1, k + 2, ..• ) digits to show that the sequences are identical 

for all timee 
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Theorem 4: Two cyclic sequences C
I 

and C2 representing different 

cycles of 

Proof: 

C whose lengths are less than n cannot have adjacent states. 
n 
Since the cycle length of each sequence is less than n 

(n is the degree of the states on the cycle), it must be a divisor of 

n. The longest such sequence has length L = n/2. To have adjacent 

states the sequences must be identical for n - I digits. If LI I L2 

by Theorem 3, the sequences are identical for all time and cannot repre-

sent different cycles of 

following form.: 

C . 
n 

the sequences have the 

~-l ••• ~ 

To be states on different cycles of Cn' ~ I~. Then the first 

n - I digits of C
I 

are not the same as the corresponding digits of 

C2' so the cycles have no adjacent states. 

In the next chapter a method of obtaining the output sequences 

producible with a feedback shift register is given. Two operations are 

defined in terms of the adjacencies between the cycles of a particular 

shift register, which describe the modifications necessary to produce 

the output sequences for an arbitrary specification. 

Definition: Two cyclic sequences are said to be joined if a 

sequence is obtained which is cyclic and contains all states that were 

contained on the original two sequences and no others. The length of 

the joined sequence must be the sum of the lengths of the two sequences 

to be jOined. 

D. METHODS OF REPRESENTING ADJACENCIES 

In the next chapter it is shown that a necessary and sufficient 

condition for joining two cycles together is that they possess adjacent 

states. To accomplish the cycle joining, the adjacent states need to be 
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known. A knowledge of the adjacencies between cycles and their location 

is sufficient to describe the entire cyclic behavior possible in the 

register. The cycle structure for a very simple configuration--the 

circulating register--and the adjacencies between cycles will be de­

scribed. A similar description can be given for any nonsingular register 

and its cycles used to generate an arbitrarily specified behavior. The 

circulating register is chosen because of its simple logic and well under­

stood cycle structure. 

Once the adjacencies between cycles have been found, they can be 

recorded for future reference. A convenient method for recording the 

adjacencies is necessary. Lists or tables can be used for such purposes, 

but at least for n ~ 8, a diagram which shows the cycles and their 

adjacencies is more useful. Several properties of the adjacencies be­

tween cycles of ' the circulating register are deduced by considerations 

based on these diagrams. As n becomes large, the value of the diagrams 

decreases and tables of adjacencies are more desirable. Many of the 

properties of the adjacencies deduced from the diagram will be useful for 

constructing tables for larger values of n. 

E. CONSTRUCTION CONVENTIONS FOR ADJACENCY DIAGRAMS 

Some restrictions on the cycles that can have adjacencies will aid 

in constructing adjacency diagrams. Whenever a circulating-register 

cycle is not followed, the measure of the adjacent states must differ 

by one. Thus, one need only look for adjacencies between cycles whose 

measure differs by one. Theorem 4 establishes that two cycles of C 
n 

whose length is less than n do not have adjacencies. Theorem 2 indi-

cates that the adjacencies occur in pairs, so that any two cycles with 

adjacency connection between two corresponding states also have the 

reverse adjacency connection. As indicated in the proof of Theorem 2, 

both adjacencies and all four adjacent states are defined by a common 

(n - i)-digit sequence. Thus, in the construction of the diagram, it 

is necessary to include the common (n - i)-digit sequence only once to 
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define the adjacency quadruple. Each different {n - I)-digit word 

defines a different adjacency quadruple. The convention used to indi­

cate the adjacency quadruple is shown in Fig. 12. 

FIG. 12. ADJACENT STATES DEFINED BY AN ADJACENCY SEQUENCE. 

S = xl x2x
3 

x 1 n 

S2 xnx
l
x2 

x 
n-~ 

S3 = xn
x

l
x

2 x 
n-l 

S4 = xl x2 ..• xn_l xn 

A = adjacency sequence 

x x2 ..• x 1 
1 n-

The adjacency diagram is constructed by ordering the cycles of C 
n 

according to their measure. Each node in the diagram contains the 

representative state of the cycle and the length of the cycle. Each 

branch is labeled with the numbers giving the octal representation of 

the {n - I)-digit words describing the adjacencies between the cycles 

represented by the nodes at the ends of the branch. Adjacency diagrams 

for n ~ 8 are given in Fig. 13 on pages 38 and 39. 

F. PROPERTIES OF ADJACENCY DIAGRAMS 

Before observing several interesting properties of these diagrams, 

the following definitions will be useful: 
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1. A cycle is said. to be contained between two cycles (C
l 

and C
2

) 

if it has fewer states than the sum of the number of states on 

and contains only states that are on and 

2. A cycle has an n intersection with another cycle if it has n 

states in common with the other cycle. 

3. An adjacency diagram for an n-stage circulating shift register 

(A) is a diagram showing all the adjacencies between cycles 
n 

representing transitivity sets. Since the adjacencies occur in 

pairs (Theorem 2) only one member from each pair is shown on the 

diagram. 

4. An adjacency sequence is an (n - l)-digit sequence which defines 

an adjacency quadl~ple between two cycles. 

5. The inverse of a sequence is the sequence which is obtained from 

the given sequence by inverting the order of occurrence of the 

digits. For example: 

S x 
n 

inverse of S 

A study of the adjacency diagrams for n < 8 given in Fig. 13 

reveals the following facts: 

1. There are at most two adjacencies between any two cycles of C . 
n 

2. If there are two adjacencies, their adjacency sequences are 
related by inversion. (Note: This is not true in general for 
n > 8.) 

3. The number of adjacencies between two levels of An is equal to 
the number of (n - l)-digit words whose measure is equal to that 
of the lowest measure level. 

4. If there are two adjacencies between two cycles, there is a cycle 
of length less than n contained between the two cycles of Cn -

5. Adjacencies occur only between cycles whose measure differs by 
one. 

6. There are no adjacencies between two cycles of Cn whose length 
is less than n. 
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FIG. 13. ADJACENCY DIAGRAMS. 
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These observations lead to the following theorems: 

Theorem 5: When one cycle (Cl ) is contained between two cycles 

(Ca and Cb ), the remaining states are on another cycle contained between 

Ca and Cb (see Fig. 14). 

FIG. 14. A CONTAINED CYCLE. 

Proof: This follows directly from Theorem 2. If there is a cycle 

contained between two cycles, then there are two different adjacency 

sequences. The dotted connections from Sb to S~t and from Sa to 

S;t result from application of Theorem 2. Thus the states of Ca and 

Cb that are not on C
1 

are on an additional cycle which is contained 

between Ca and Cb • 

Theorem 6: Only one cycle with length less than n is contained 

between two cycles of 

SEL-63-ll8 
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Proof: If only two adjacencies exist between the two cycles of C, 
n 

then there are two cycles contained between the cycles of C. Only one 
n 

of them can have length less than n since the sum of the two must have 

length 2n. 

If three or more adjacencies exist, then there may be three or more 

cycles contained between the cycles of C. Two of these cycles must 
n 

have length less than n while only one cycle can have length longer 

than n. Call the two short cycles A and B and let C be the cycle 

whose length can be longer than n. If there are more than three cycles, 

let B be the shortest cycle that is adjacent to A. (Note: If A is 

shorter than n, B must be also since there are 2n states to be 

divided into three or more cycles.) It will be shown that if both A 

and B are shorter than n, C
1 

cannot be a cycle of Cn and hence 

there cannot be two or more cycles shorter than n contained between 

two cycles of C . n 
Let Sb be the first state on B which is on 

be the first state on A which is on Cl • Let SB 
which generates the cycle B, and SA the sequence 

cycle A. The sequences are written with S and 
a 

digits of their corresponding sequence. 

There are three different cases to consider. 

Case I: L<E: 
2 

C2' and let S a 
be the sequence 

that generates the 

as the first n 

where L = length of A and P 

sequences is: 

l~ngth of B. The general form of the 

.. 41 -
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n 

x 
n 
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Case II: L>E: 
2 

The general form of the sequences is: 

Case III: L>E: 
2 

p>E: 
2 

The general form of the sequences is: 

x 
n 

For all cases, the first state on each sequence (S and Sb) has an 
a 

(n - I)-digit terminal word in common. This occurs because Sb is 

obtained from S by reversing one 
a 

along the adjacency connecting C2 
inserting xl as the first digit. 

A proof will be given for each case. 

state on C
I 

and then proceeding 

and C
l 

by shifting the digits and 

x 
n 
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Case I: x 
n 

S 
a 

x 
n ... ~ 

SB = l'-x_l_x2 ____ x_n_--~-· _._._._~_x_l_· _. _. _~ __ . _. _. _~ __ . _. _. xn I··· xp 

Sb 

The two sequences are identical for a time that is equal to or longer 

than twtce their period (x2 .•. xn); hence they must be identical for all 

time and therefore xl on SA cannot equal xl on SB (Theorem 4). 
Case II: Suppose the lengths of A and B are equal, then SA 

and SJ3 will have the followi:Q.g form: 

•• e, 

Then Sl is not the same as 

adjacent states. 

x 
n 

S,1, 
..... 

S1 
1 

x 
n 

x 
n 

... ~ 

so the two sequences do not contain 

Now consider the case where the length of A is not equal to that 

of B. Let A be the shorter cycle. Then the form of the sequences 

representing the cycles will be determined as follows. 

First, since the sequences are 'cyclic with lengths Land P, they 

must have the following general form: 

and 

S 
a 
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S = x
l
x

2 :xpxl x2 
x x. .. ' . :xp B n 1 , I 

Sb 

The digit x. in SA following x must be different from the cor-
1 n 

responding digit in SB or the two cycles will contain a common state. 

Next, since the two states Sa and Sb have a common {n - I)-digit 

terminal word, additional structure of the two sequences is specified: 

x x .••. x..-
n 1 L 

x x .••• x..... 
n 1 1:' 

The first occurrence of the sequence xl x2 ..• ~ in SA is dif­

ferent from the second. Since SA is cyclic with length L, the 

sequence xl ••• ~xl .•. xnx
i 

must appear in the first L digits as 

well as in the second L digits. Also, SB must be cyclic with length 

P so the first and second P-digit sequences must be identical. Im­

posing these conditions, the structure of the sequence becomes as follows: 

SB = xlx2···xnxi···xpxl···xnxi···~xl···xnxi···xpxl···xnxi···~xi ... xnxi •.• ~ ..• 

I , L--J L---J L----1 L--J L--..J L...-.J L-..-J L----' L--.J 

81 L 82 81 8~1 81 82 81 82 81 84 

~---------------------p ----------~~ 

~--------------------------- n------------~ 
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Represent the sequence SB as a series of subsequences as defined above: 

l~ Sf 
b 

The measure of Sb and Sb is the same since they contain the 

same subsequences. Since Sb is the first state on B that is on C2 
and since S" is also on 

b 
on C2 . The measure of Sf 

b 

C2, all states between Sb and Sb 

is different from the measure of 

it contains the same subsequences except for the replacement of 

Si whose measure differs from that of Sl. Since Sb and Sb 

on the cycle cannot be a cycle of C . 
n 

are also 

Sb since 

Sl with 

are both 

Case III: The sequences will have a slightly different structure 

when P > 2L than when P < 2L. These two possibilities will be con­

sidered separately. The sequences have the form: 

(a) P > 2L 

s = 
B 
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The state 

l 

Sf 
b 

J 
Sb f Sb L J 

Sf 
b 

S" b 

has measure of one different from Sb since it con-

tains the same subsequences as Sb except Sl is replaced by Sio Since 

all states of 

measure; so Sf 
b 

Sb is the first 

Sf 
b but preceding 

are on the same cycle of C, they have the same 
n 

cannot be on C2 and thus must be on Cl - The state 

state on C2 which is 

Sb must be on Clo 

on B, 

Now it 

so all the states following 

is seen that S" which is 
b 

on C1 
has measure different from Sb' so C

1 
cannot be a cycle of C ° n 

(b) P < 2L 

SB = xl··oxnxi···~xl···~xl···xnxi···~xl···xnxi···~xl···~xl· .. xnxi···~xl···xnxi 
L-...JL.......JL.......JL-JL-.JL-JL-.JL--.JL-...JL-..JL-J 
1~1 82 83 81 82 8i

n 

82 83 81 82 83 

SEL-63-118 
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~. • Sb 
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b 
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The state 8b has measure different than 8b and as before must be 

on CI , as are all states following 8b and preceding 8
b

o If C
I 

con­

tains a state of measure different than 8b, it cannot be a cycle of 

C. 8uch a state is 8" whose measure is different than 8 f ° so C
I n b b' 

cannot represent a cycle of C ° 
n 

Theorem 7: There are at most two adjacency pairs between two dif-

ferent cycles of C ° 
n 

Proof: Let there 

cycles (CI and C2 ) of 

be two adjacency pairs (AI and A2) between two 

C j there are three ways by which it might be 
n 

possible to draw a third (A
3
): 

The first two possibilities are not really different except for a 

relabeling. They both violate the previous theorem and hence cannot 

exist. The third possibility is different from the first two since if 

all three adjacency pairs are used, the two cycles are joined to form a 

single cycle. This third possibility is similar to the first two in that 

three cycles are formed, but two of them have 5 overlap, where 5 is 

the number of states on the sequence from 8 to 8b o c 
Let 8 be the first state on C

I 
preceding Al that is adjacent c 

to some state on C2 • Let 8 
a 

be the first state on C
I 

preceding 

8 that is adjacent to some state on C2 ° 8b is the state following c 
the state on C2 which is adjacent to the state preceding 8 • a 

- 47 - 8EL-63-118 



~ ~~ __ ------------------------- n --------------------------~.~I 
8
A 

= Xl ••• X X .••• X.x •.• ~xl ••• x X .••. X.x .•. ~x .... x X .•.• X.x •.• x-xl .•• x X .... X.x .•• n ~ J K L n ~ J K ~ ~ n ~ J K L n ~ J K 

8B = Xl···Xnxi···Xj~ .•• ~Xl···XnXi···Xj~ .•• ~Xi···XnXi···Xj~' .• ~xl···xnxi···xi~··· 
L--.JL-.JL--JL--JL-...JL-JL--JL--J~L-JL--J 

8
1 

82 8
3 

8
1 

82 84 S{ 82 8
3 

81 82 

I. L ~I 

Two slightly different cycle structures are possible: 

1. A and B are equal in length. 

But x. 
J 

in 

x 
n 

x 
n 

x.x 
l n ... ~ 

in 

Now sl in A is not equal to xl in B, and ~ in A is not 

equal to ~ in B, so the sequence cannot represent different 

cycles. 

2. A and B are unequal in length; let A be the longer cycle. 
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l I 

S a 
S 

c 
S' ex 

s" 
ex 

States Sa and Sc are both on CI ; so all states on SA between 

them are also on CI • State S~ contains the same subsequences as does 

state Sa except with Sl replaced with 81 which has different measure. 

Thus the cycle C
l 

has states with different measure and cannot be a 

cycle of C. This completes the proof of the theorem. 
n 

This theorem can be stated in several equivalent ways: 

1. Two cycles of degree n generated by sequences representing cycles 
of Cn+l can have at most a double intersection in graph Gn - (Gn 
is the Good diagram for an n-digit register.) 

2. Two cycles of Cn can have at most two common (n - l)-digit words. 

Conjecture: When there are two adjacencies between two cycles of 

C , the second adjacency sequence is related to the first by inversion n 
when nand n - P (p equals the length of the shortest cycle con-

tained between the two cycles) are relatively prime. 

This conjecture has not as yet been proved, but in all examples 

studied for n as large as 30 it has been found to be true. It is 

known to be true for n < 8 by exhaustive analysis. The reasons for 

posing the conjecture follow from the process of removing a contained 

cycle, given in Chapter IV. 

The use of the conjecture simplifies the construction of the adjacency 

diagram since specification of some adjacencies determines others. Also, 

the removal of contained cycles as indicated in Chapter IV, is an aid in 

locating the cycles of C that have two adjacencies. These aids make 
n 

the construction of diagrams for small n very simple. For n > 10, an 

adjacency table rather than a diagram is more useful. The process of 

searching for adjacencies for longer registers subject to the above­

mentioned restrictions should be accomplished easily with a computer. 
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With the aid of an adjacency diagram, it is easy to see which cycles 

of C can be joined and which adjacency sequence is required for this 
n 

joining operation. Using the method developed, one can then determine 

the output sequence which corresponds to this joined pair of cycles. The 

network specification which realizes the joined cycles will be determined 

from the knowledge of the adjacency used. 
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IV • SHIFT-REGISTER SYNTHESIS IN THE SEQUENCE DOMAIN 

A. SUMMARY OF GENERAL APPROJ.\.CH 

The previous chapter gives several useful properties of shift-register 

sequences. The purpose of this chapter is to use these properties to 

develop a synthesis procedure. First, the realizable output sequences 

are obtained by operating on the output sequences of a circulating shift 

register. Then the feedback network specification is determined from 

the output sequences. Finally, a method is given for finding the feed­

back network directly from a knowledge of the operations used on the 

cycles of C . 
n 

Two operations on the cycles of C are developed. A joining opera­
n 

tion is used to find the output sequence generated by the cycle containing 

the states on two or more cycles of C. A removal operation is used to 
n 

find the shorter output sequences contained between two cycles of C. A 
n 

proof is given which establishes the generality of these operations; that 

is, any output sequence which is producible by a shift register can be 

expressed in terms of these operations on C. If the synthesis procedure 
n 

fails at some point, the specification cannot be realized by a shift 

register. Thus, the synthesis procedure is a realizability test, 

although a rather awkward one. 

When the specification of the register is in terms of a cycle set, 

it is first determined if the specification can be achieved by several 

isolated registers. This is done by factoring the cycle set in a manner 

similar to that of Elspas [Ref. 5]. This factoring is not essential in 

some cases, but it will simplify the remaining decomposition problem. 

In general, if the number of k cycles is equal to or less than I(k) 

(the number of irreducible polynomials of degree k) for all k in the 

prescribed cycle set, a single register may possibly be obtained. If 

k is greater than I(k), then factorization is necessary. 

After the factoring has been completed, or if the original specifica­

tion does not include more than I(k) cycles for any k, the cycles are 

decomposed in terms of C • n Let n be the smallest integer such that 

P 
2

n -> "k h L.J ., were 
i=l l 

kl k2 ••. kp are the cycle lengths in the specification. 
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Then the register needs to contain at least n stages. In the synthesis 

procedure the prescribed cycles must be expressed in terms of C n such 

that they are obtained by either joining two cycles or removing a cycle 

which is contained between two or more cycles. The cycles that can be 

expressed in terms of the joining operation can be decomposed as follows: 

A cycle 

Let the prescribed cycle set be: 

k. 
J 

is expressible in terms of C n if: 

where the a. are integers and the m. divide n. 
l l 

Any cycle in the prescribed set not expressible in the above form 

must be obtained by removing a cycle from between two or more cycles of 

C. It may be necessary to first join two pairs of cycles together and 
n 

then remove the cycle from between the two longer cycles. 

A generating function is used to express the cycle set in terms of 

joining and removing operations on C. A simple relation between the 
n 

generating function and the feedback network allows the number of the 

feedback network to be written by inspection. The generating function 

determines the cyclic behavior of the register. Thus, for the nonsingular 

shift registers, the function completely determines the register's 

behavior. When the behavior of the register is not completely specified, 

the generating function will not completely determine the characteristic 

number of the feedback network. The unspecified entries of the charac­

teristic number are treated as Don't Cares in the realization of the 

combinational network. 

A convenient method of keeping track of the cycles of C 
n which 

have been used in a particular realization is given in terms of a table 

similar to the prime implement table used in the minimization of switch­

ing functions. In general, there will be more than one generating 

function that will give a particular cyclic behavior. In such cases 

there will be more than one function that will cover the table of cycles 
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of C. 
n 

The particular generating function that leads to the simplest 

combinational network must be determined by additional considerations. 

The function used depends on the network configuration and type of logic, 

such as AND-OR logic or threshold logic. This is a separate problem and 

is not considered here. 

The joining operation is a little simpler to use and in some cases 

leads to a simpler networkj thus, it is used whenever possible. This 

policy forces the coding of the cycles to be as close to that of C 
n 

possible. The method which is given for removing a cycle from between 

as 

cycles of C is systematic and fairly easy to follow. It is used only 
n 

when the prescribed behavior is not obtainable by simply joining cycles 

of C_ 
n 

B. SEQUENCE JOINING 

Two sequences, Sl and S2 cyclic with degree n of length Ll 

and L2 respectively, each representing a cycle of Cn' can be joined 

if the sequences have at least one pair of adjacent states. Let A be 

the adjacency sequence which defines the adjacency between a state on 

Sl and a state on S2- The joined sequence will be denoted SlJAS2 • 

If the sequences have more than one pair of adjacent states, a different 

joined sequence can be obtained for each pair of adjacent states. 

Joining Procedure: The process of joining two sequences produces a 

sequence representing the cycle containing all the states of the original 

sequences. This process is defined as follows: Let sl be the state 

on Sl adjacent to state s2 on S2 (see Fig. 15) . Let be 

obtained by reversing the cycle which S2 generates (C2 ) and proceeding 

backward Ll + L2 - (n + 1) 
overlap of 2n - (Ll + L2 ) 

obtained by juxtaposing sl 

lapping digits removed_ 

states on the cycle. State has an 

digits with sl- The joined sequence is 

and s3 with s3 on the right, with over-
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FIG. 15. JOINED CYCLES. 

Proof of Joining Procedure: First, it is necessary to show that 

states s3 and sl have an overlap of 2n - (Ll + L2 ) so that the 

is adjacent to sl' it has an joining process is possible. Since s2 
n - 1 overlap with sl· 

To be adjacent, an = bn_2 

Let denote the overlap of state with state Proceeding 

on C2 in the r~versed direction from s2' each succeeding state has an 

overlap with sl which is one less than its predecessor. Thus, after 

proceeding backward Ll + L2 - (n + 1) states on the cycle, the overlap 

has been reduced to: 

rS3 n - 1 - Ll + L2 - (n + 1) 

= 2n - (Ll + L2 ) 
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The juxtaposed sequence has length Ll + L2 , so if it is cyclic and 

contains all states of Cl and C2 it satisfies the definition of a 

joined sequence. According to Theorem 2, the state preceding sl (s4) 

is adjacent to the state following s2 (s5). The operation of pro ceding 

in the reversed direction on 8
2 

to obtain s3 and juxtaposing insures 

that the states spanned from s3 

the juxtaposed sequence. 

to sl are on the cycle generated by 

The span from to is shown in Fig. 16. 

L I + L2 - (n + I) 

C3 = ,r--------.I 
a I a2 ••• an_p an b I b2 ••• bp I I 

FIG. 16. THE SPAN OF SEQUENCES ON JOINED CYCLES. 

Let C
3 

be the cycle generated by the juxtaposed sequence: 

The length of C
3 
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Let Ll ,3 span from sl to s3 

L3,2 span from s3 to s2 

Ll + L2 - (n + 1) (by construction) 

L2 1 1 , 

Ll ,3 L -
3 

[L
32 

+ L21 ] 

Ll + L2 - [Ll + L2 - (n + 1) + 1] 

n 

To see which n states are spanned on the sequence, start with the 

two states known to have an overlap, s4 and s5° 

Let 

'rhe states s4 and 8
5 

forward direction along 

a b 
n n 

have an 

to 

s 5 = b n a2 o. • an 

n - 1 overlap. Each shift in the 

s3 reduces this overlap by one, so 

state has an overlap of n - 1 - (n - Ll ) = Ll - 1. Proceeding in 

the reversed direction on Cl from s4' each shift again reduces the 

overlap by one so the first state on C
l 

that has zero overlap with 

s3 is sl' which is L - 1 states from s4 on the reversed cycle. 

State sl has an overlap of n - L 1 with s4 and hence an overlap 

n - L 1 - 1 with s5" 
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The states on the cycle of degree n generated by C
3 

are on the 
1 following sequence (C
3

): 

Cl sl Yl =, a'b 'b
Pt 

a
l 

a
2 

i 
3 a

l
a

2 
a a 

n-l I n-P n 1 
s3 

Let xl be the state on C
l following sl 

x
2 

be the state on C
l 

following xl 

~ be the state on Cl following ~-l 

and let Yl 
be the state on C

3 
following 81 

Y2 be the state on C
3 

following Yl 

Yk 
be the state on C

3 
following Yk- l 

then 

xl cl al a2 ••• a
n

_
l 

x2 c2c
l

a
l

a2 ••• a 
n-2 

Since xl has a one overlap with s3' cl = bp • 

Since x2 has a two overlap with s3' c2 = bp_l • 

- 57 -



By inspecting are seen to be: 

So C~ contains the states on Cl and C2 • 

Theorem 4 insures that two cycles of C whose lengths are less n 
than n cannot have adjacent states. Thus the distance from state S2 

to S3 in the above procedure (Ll + L2 - n - 1) will always be a 

positive integer less than n. If, however, the cycles to be joined are 

not cycles of C, care must be taken to insure that their cycle lengths n 
are not too short. 

C. AN EXAMPLE 

Consider for example the joining of two cycles of C4: C
l 

= 0001 

and C
5 

= 0101. First, notice that state 4 on C
l 

is adjacent to state 

12 on C
5

. C
l 

and C
5 

are cyclic with lengths 4 and 2 respectively. 

State 5 is obtained from state 12 by proceeding Ll + L2 - (n + 1) = 1 

state on the reversed cycle generated by C
5

. Justaposing state 5 on 

the left of state 4 with the 2n - (L
l 

+ L2 ) = 2 overlapping digits 

removed produces 001010 as the joined se~uence. The cycle generated by 

the joined se~uence is illustrated in Fig. 17. 

D. JOINING LONGER CYCLES 

A joining procedure for longer cycles can be obtained by placing a 

restriction on the se~uence length. As was seen in Theorem 4, two cycles 

of C with length less than n cannot have adjacent states. In order n 
to join two cyclic se~uences having adjacent states in the manner 
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CI ::: 0001 C5 = 0101 

FIG. 17. AN EXAMPLE OF SEQUENCE JOINING. 

described above, the sum of their cycle lengths must be equal to or 

greater than the degree of their states_ Moreover, the rule for deter­

mining the overlap and the juxtaposing order must be modified to allow 

the sequence length to be longer than the degree of the states_ 

Let the sequences to be joined be Sa and Sb of length La and 

L respectively; and let s be the state on S that is adjacent o a a 
to state sb on Sb- The rule for determining the overlap and the 

justaposing order follows: 

Let P L if L <n n = degree of the states a a a 

= n if L > n a-

Pb = 10 if 10 <n 

n if 10 2: n 

Let state Sc be obtained by proceeding backward Pa + Pb - (n + 1) 

states on the cycle generated by Sb- Then Sc will have an overlap of 

2n - (Pa + Pb ) digits with sao The joined sequence is obtained by 

cyclically permuting the digits of S to obtain s on the right and 
a a 

cyclically permuting the digits of Sb to obtain Sc on the left and 

then juxtaposing the two sequences with Sb on the right with the over­

lapping digits removed from sb- The proof of this procedure is identi-

cal to that of the joining procedure for cycles of 
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Pb replacing Ll and L2, and the restriction that Ll + L2 > n 

replacing the use of Theorem 4 in the proof. 

As an example of this procedure, consider the two sequences to be 

joined, Sa = 0001, Sb = 0111 with the degree of states equal to three. 

We notice that state 4 on Sa is adjacent to state 6 on Sb. State 3 

is obtained from state 6 by reversing the cycle generated by Sb and 

proceeding Pa + Pb - (n + 1) = 2 states. The joined sequence is 

00011101 and the cycle generated by this sequence is shown in Fig. 18. 

Sa = 0001 

FIG. 18. A MAXIMAL CYCLE PRODUCED BY JOINING CYCLES OF C3 . 

E. SOME MAXIMAL SEQUENCES 

As another example of the application of the joining procedure, the 

sequences representing maximal cycles of degree four are obtained. The 

cycles of C4 are: 

7 17 
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Joining sequences 0 and 1 gives OJOl = 00001. Notice that state 10 

of the joined sequence is adjacent to state 14 on sequence 3 (see the 

adjacency diagram A4 in Fig. 13). Proceeding n - 1 states on the 

reversed cycle generated by sequence 3 to obtain state 9 and justaposing, 

OJoIJ43 = 000011001 is obtained. 

Next notice that state 14 on the joined sequence is adjacent to state 

16 on sequence 7. Again proceeding three states on the reversed cycle 

generated by sequence 7 to obtain state 15 and juxtaposing to the joined 

sequence with state 14 on the right, OJOIJ43J67 = 0010000111011 is 

obtained. By using the adjacency of state 13 to state 5 to join sequence 

5 to the above sequence and the adjacency of state 16 to 17 to join 

sequence 4 to the resulting sequence, OJOIJ43J67J717 = 0101100100001111 

is obtained. The cycle generated by this sequence is shown in Fig. 19. 

FIG. 19. A MAXIMAL CYCLE PRODUCED BY JOINING CYCLES OF c4 . 

By using other adjacencies or joining the sequences in another 

order, different maximal sequences are produced. Table 2 gives the 

maximal cycles produced by the other choices of adjacencies and joining 

order. 
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TABLE 2. MAXIMAL CYCLES PRODUCED BY 
JOINING SEQUENCES REPRESENTING CYCLES OF C4 

Joining Operation Sequence 

OJOIJ13J37J25J715 0000101001101111 

OJOIJ13J37J55J715 0000100110101111 

OJOIJ13J67J27J715 0000101001111011 

OJOIJ13J67J55J715 0000100111101011 

OJoIJ43J37J25J715 0000110111100101 

OJOIJ43J37J55J715 0000110101111001 

OJOIJ43J67J24J715 0000111101100101 

OJoIJ43J67J55J715 0000111101011001 

OJOIJ43J25J57J715 0000110010111101 

OJOIJ13J25J57J715 0000101111010011 

OJOIJ25J57J33J715 0000101111001101 

OJOIJ25J57J63J715 0000101100111101 

Only 12 of the 16 possible maximal sequences are obtained in this 

manner. The remaining maximal sequences are: 

SEL-63-118 

0000110100101111 

0000111101001011 

0000101101001111 

0000111100101101 
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These sequences cannot be expressed in terms of the joining cycles 

of C. They are obtained by joining cycles of C and removed cycles 
n n 

that are contained between cycles of C. 
n 

F. REMOVING A CONTAINED CYClE 

When two cycles (Ca and Cb in Fig. 20) contain a cycle (Cl ) 

between them, they will have two adjacencies connecting them. Let Al 

and A2 be the sequence defining the "adjacencies. Call the first state 

common to 

C ," s'. aa 

C 
a 

Let 

and Cl ' sa; and call the last state common to 

q be the number of states on Cl that are on 

and 

and 

let p be the length of Call the last state that is common to 

Cb and Cl ' sb; and call the first state common to Cl and Cb ' 

-(q-l) 
sb • 

~ ----

FIG. 20. A REMOVED CYCLE. 

Let C
l 

be the cycle whose length is less than n, While 

C2 is the cycle whose length is greater than n. 

By definition, s is periodic with period p, p < n, 
a 

A different representation of sa is obtained by proceeding back­

wards around Cl - First, sb is obtained from s by cyclically per­

muting the digits of sa and complementing ~. aSecondly, ~-(q-l) is 

obtained from sb by permuting the digits of ~ cyclically q - 1 times_ 
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Next, s r 
a 

plementing 

digits of 

is obtained by permuting the digits of 

x 
q 

while com-

x 1. Finally, s is obtained by cyclically permuting the q+ a 
s' p-q-2 times. 

a 

Sa = xl ••• x xl x2 n-p x x q q+l 

xx 
q q+l 

x 
p 

The two adjacency sequences are obtained by observing the (n - l)-digit 
-(q-l) words common to Sa and Sb' and to S~ and Sb • 

x n-p 

x 
q 

Since the two representations of 

their digits are equated. The first 

S must describe the same state, 
a 

n - p equations give no informa-

tion, but the last p equations determine the restrictions for 

be the first state on the cycle Cle 

x = x p 2p-n 
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x n-p 

x 2p-n+l 

x q+l 

x 
p 

Then, 

x. = x. if i = j modulo p or if i = j modulo n - p 
~ J 

or q + 1 

x. = x. if j = 1 or q + 1 modulo p or n - p 
~ J 

The following examples illustrate the removal process: 

Example 1: Let n = 13, p = 9, and q = 6. 

.. 65 -

and j 1= 1 
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If x = 1, 
1 

SEL-63-118 

S = 1100010001100 
a 

Sb = 1000100011001 

A1 = 100010001100 

A2 = 001100010001 
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If xl = 0, 

S = 0011101110011 
a 

Sb = 0111011100110 

Al = 011101110011 

A2 = 110011101110 

Example 2: Let n = 9, p = 6, q = 3. 

-
Sb = x2x3x4x5x6xlx2x3xl 
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There are three independent choices: xl' x2 ' and x
3

; a few are 

given below: 

Let 

Let 

Let 

S 00100000 a 

Sb = 00100001 

S a 001101001 

011010011 

S 010110001 
a 

Sb 101100011 

x 
1 

S 101001101 a 

Sb = 010011011 

Al 01101001 

A2 = 01001101 

1 

01101001 

01001101 

1 

Al 10110001 

A2 = 10010110 

Al = 01001101 

A2 = 01101001 

The above examples illustrate several interesting points. The 

adjacency se~uence A2 in example 1 can be obtained from Al by 

inverting the order of the digits. This can be done for all the cycles 

contained between the cycles of C for n ~ 8, as can be seen by 
n 

looking at the adjacency diagrams (Fig. 13). The inversion relationship 

holds whenever n - p and p are relatively prime in the examples with 

larger n that have been investigated, but a general proof has not been 
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obtained. The adjacency sequences of the second example are not related 

in this manner since 3 and 6 are not relatively prime. Notice that all 

the different combinations of xl x2X
3 

in example 2 do not give different 

cycles since for xl = x2 = 0, X3 = 1 and for xl = X3 = 1, x2 = 0, the 

same adjacencies are used. 

When n - p and p are not relatively prime, q divides n - p. If 

q does not divide n - p in example 2, say q = 4, then the system of 

equations becomes: 

X4 xl (1) 

x5 x
2 

(2) 

x6 x3 (3) 

xl = x4 ( 4.) 

x = 2 x5 (5) 

x3 = x6 (6) 

There is a contradiction between Eqs. (1) and (4); and Eqs. (2) and (5). 

This leads to the following theorem. 

Theorem 8: If p and n - p are not relatively prime, then q ° 
modulo the greatest corrunon divisor of p and n - p (P2n - p). 

Proof: Consider the digit subscripts in the system of equations 

obtained by the removal process. Tw'o digits are equal if their subscripts 

are equivalent modulo p or modulo n - p. First reduce the integers 

modulo p and then reduce this set of integers modulo n - p. 

Let r be the greatest corrunon divisor of p and n - p 

i = j + kp (7) 
i, j, k are integers 

i = j + kp + L(n - p) (8) 
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Let mr p in E~. (7) and sr = m - p in E~. (8). 

i = j + krm + Lrs 

= j + r(km + Ls) 

then i = j modulo r. 

Two digits are in the same e~uivalence. class if their subscripts 

are e~uivalent modulo r. Since xl and x~+l are the only digits 

which appear complemented in the system of e~uations, they must be in 

the same class or a contradictory set of e~uations will result. Thus, 

I = ~ + I modulo r, so ~ = 0 modulo r. 

Theorem 8 simplifies the search for all cycles of a given length 

contained between the cycles of C. If n - p 
n 

prime, ~ can have any value from 2 to n - 2. 

relatively prime, ~ = 0 modulo r and therefore 

any integer such that 2 S kr S p - 2. 

G. GENERALITY OF DECOMPOSITION PROCESS 

and p are relatively 

When n - p and pare 

~ = kr, where k is 

The ~uestion now arises of how many of the realizable cycles can be 

expressed as a function of cycles of C in terms of joining removal 
n 

operations. The following two theorems show that any realizable cycle 

set can be decomposed in terms of these two operations. If the decom­

position process fails at some point, the prescribed cycle set cannot 

be realized by a minimal length shift register. Thus, the decomposition 

is a test for realizability, but it may be ~uite laborious. 

Theorem 9: The operations of J and R allow the adjacencies in 

* the adjacency diagram to be used independently. 

* When a cycle is used with two different removal operations, care must 
be taken to insure that the resulting cycles do not intersect. When 
a removed cycle is joined to another cycle, the cycles must contain an 
adjacent state. 
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Proof: For two cycles connected by only one adjacency, the two 

cycles can be joined or not, independently of the remaining adjacencies. 

If the two cycles are connected by two adjacencies, the adjacencies can 

be used one at a time by joint operations or together by a removal opera­

tion. If three cycles are connected by adjacencies as shown in Fig. 2lb, 

they are considered two at a time and the argument for two cycles is 

used to show that the adjacencies can be used independently_ The cycles 

C2 and C
3 

cannot have adjacent states since they must either have the 

same measure or their measure must differ by two. 

FIG. 21. ADJACENCIES BETWEEN CYCLES OF Cn • 

The same argument is applied for an arbitrary number of cycles; 

first the cycles are considered in pairs and the argument for two cycles 

is used. If the number of cycles is odd, the remaining three cycles are 

considered using the argument given above for three cycles. The cycles 

obtained by operating on pairs of cycles are again considered in pairs 

and the process repeated until only two cycles remain. Here again the 

argument for two cycles is applied. Thus for an arbitrary number of 

cycles the adjacencies may be chosen independently. 
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Theorem 10: Any cycle set that is realizable in a nonsingular feed-

back shi·ft register can be expressed in terms of the cycles of 

the operations of J and R. 

C n 

Proof: Theorem 9 shows that all the adjacencies in C 
n 

can be 

There is an 

and 

expressed independently as a function of J and R. 

adjacency for each (n - l)-digit word, hence there are n-l 2 different 

adjacencies. Since these adjacencies can be chosen independently, there 
n-l 

are 22 different nonsingular shift registers that can be obtained by 

the different choices of the adjacencies. Golomb and Welsh [Ref. l2J 
n-l 

have shown that there are exactly 22 different nonsingular shift 

registers, and hence all the possible different shift registers can be 

expressed as a function of C 
n 

in terms of J and R. 

While Theorem 10 above insures that any realizable cycle set can be 

decomposed in terms of J and R, it does not specify a procedure. The 

problem that remains is the development of a systematic method of 

exhausting the cycles of C while obtaining the specified cyclic 
n 

behavior. This problem is met by constructing a series of decomposition 

tables. 

Ho DECOMPOSITION TABI~S 

Since the cycles to be removed are contained between particular 

cycles of C , they will be removed first and the discarded cycles added 
n 

to the table of available cycles before the joined cycles are formed. 

Only the cycles with length < n will be removed first, since the longer 

cycles are more numerous and may be the discarded cycles after the 

removal of a shorter cycle. A table of removal possibilities is con­

structed as follows: 
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1. 

2. 

Sl 

Al ,A2 

A
5

,A6 

~,A3 

Al ,A2 

The 

FIRST REMOVAL TABIE 

82 S3 • • • Sk· • • 

Al ,A2 

A
3

,A4 

A
5

,A6 

A
7

,A
3 

A. A. A. A. 
l J l J 

Al ,A2 

S. 
l 

are cycles of C • 
n 

S Prescribed 
n Cycle 

Cl 

A3A4 C
2 

C
3 

C. 
J 

C 
m 

The C. are the prescribed cycle lengths requiring a 
l 

removal operation. 

3. The pairs 

C .• 

(A.A. ) 
l J 

give the adjacencies needed to realize 

J 

Using the table, a nonintersecting set of operations is chosen. The 

table is first inspected for rows with a single entry_ If two or more 

of these entries are in the same column, then only one of the cycles 

can be removed from C n· The remaining cycles are set aside and. will 

enter the table that is constructed for C2n - For the cycles that are 

removed, the row corresponding to those cycles and the two columns cor-

responding to the members of C used are deleted from the table. The 
n 

operation which is used is listed for inclusion later in the generating 

function. This process is repeated until all the columns which have 

entries are deleted. The discarded cycles are then added to the list of 

cycles of 

deleted. 

C , with those cycles used in the first removal operation 
n 
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SECOND REMOVAL TABLE 

Sl 8
2 • • • Sk· • • S D j ••• Dk 

D 
Prescribed 

n m Cycle 

\A2 AIA2 C
l 

.-
A3A4 A3A4 C2 

A.A. A.A. C
k l J l J 

AsAt As At C p 

If the second removal table, when used in the same manner as the 

first table, allows a complete realization of the cycles requiring 

removal, then the removal process terminates, and the remaining behavior 

is realized by the joining operation. If not, the third removal table 

is constructed which considers removal from C2n; the fourth table from 

C4n ••• Cin; and the ith table from Cin' where i is an integer such 

that i. n < 2n. 

JOINING TABLES 

8
1 

82 S D. D 
Prescribed -- Cycle 3 l u 

Al Al C
l 

A2 A2 C2 

· · · A. A. C. 
J J J 

· · · Ak Ak C n 

The remaining cycles are obtained by joining the cycles of C 
n 

that 

were not used in the removal process and those cycles discarded from the 

removal process. If the process fails, then the prescribed behavior is 
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not realizable by a single minimal-length feedback shift register, since 

it was shown that any cycle in such a register can be expressed in terms 

of J and R. 

I. NETWORK RELATIONS 

The cycle set is expressed by the generating function denoted by 

G(C
l

C
2 

••• Ck ), where the C
i 

are the cycles in the prescribed cycle set. 

The generating function is simply a list of the operations performed in 

the decomposition process. 

C R .. C; 
a l,J n DdR C j e,m e 

The operations on the cycles of C allow the determination of the 
n 

output sequences which correspond to cycles with the specified length. 

Having obtained the operations required, the feedback network for the 

register must be obtained. Two methods are presented; method one uses 

the output sequences and method two uses the generating functions. 

A convenient method for specifying the switching function of a com­

bination network is to specify its characteristic number. The charac­

teristic number t = t l t 2 ••• t
2n 

is a sequence of zeros and ones that 

describe the truth table of the network. Each entry in the characteris­

tic number, t., corresponds to the output of the network for the combi-
l 

nation of inputs that form the binary number, i. By arranging the input 

variables in the truth table in the same order as the outputs in the 

shift register, the subscripts of the characteristic number are made to 

correspond to the octal representation of the states. Thus the value of 

t. is the output desired from the combination network when the ith 
l 

state is in the register. 

a. MethoQ. One 

The output sequenc~ corresponding to each cycle is found by 

performing the operations indicated by the generating function. The 

first n digits of the output sequence determine a state on the cycle, 

while the last digit is the output of the combinatorial network for that 
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state. The L digits in the sequence determine L of the 2n 

components of the characteristic number of the feedback network. The 

characteristic number is obtained by letting the first n digits deter­

mine the subscript of each component, while the last digit determines 

the value of that component. By cyclically permuting the digits in the 

sequence, the L components of the characteristic number are in turn 

determined. 

As an example of this process, the characteristic number T for 

the network will be found which produces the maximal cycle generated by 

the sequence 0101100100001111. 

0101100100001111 t12 = 1 

1010110010000111 ts 1 

1101011001000011 t13 1 

1110101100100001 t7 = 1 

1111010110010000 t17 = 0 

0111101011001000 t 16 0 

0011110101100100 t14 = 0 

0001111010110010 t 10 = 0 

0000111101011001 to = 1 

1000011110101100 tl 0 

0100001111010110 t2 0 

0010000111101011 t4 1 

1001000011110101 tIl = 1 

1100100001111010 t3 0 

0110010000111101 t6 = 1 

1011001000011110 tIS = 0 

T = 1000111101110000 
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To determine the feedback network, a map of this function is 

drawn: 

~. 00 10 11 01 
x

1
x2 

00 1 1 0 0 

10 0 1 0 1 

11 0 1 0 1 

01 0 1 0 1 

The network is shown in Fig. 22. 

x~ 

FIG. 22. A SHIFT REGISTER WHICH REALIZES A MAXIMAL CYCLE. 

While the above procedure gives a method of obtaining the charac­

teristic number for the feedback network from the sequences themselves, 

in many cases it will be easier to obtain the feedback network from a 

knowledge of the sequences that have been joined and the adjacencies that 

have been used. When the sequences are obtained as roots of polynomial~ 

the joining operations that produce these sequences will not be known, 
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and the above procedure will be the most convenient method of determining 

the feedback network. 

b. Method Two 

The generating function completely describes the behavior of 

the shift register and contains all the information re~uired to determine 

the feedback network directly. The generating function of C G(C) = 0, 
n n 

indicates that none of the adjacencies are being used. In this case the 

feedback formula is f(xl x2 ••• xn ) = xn • For each adjacency that is used, 

the feedback formula is modified whenever the (n I)-digit word that 
th describes the adjacency occurs independently of the n digit. Thus 

the feedback formula is 

where AI is the Boolean function described by the adjacency sequence 
i 

A .. Since the AI are independent of x the feedback formula can be 
lin 

written 

where g(xl x2 •.• xn_l ) = Ai + A2 + •.. + Ak. This describes a network 

of the form shown in Fig. 23. Then A. determines the ith digit in 
l 

the characteristic number representing g(xl x2 ••• xn_
I

). Let 

T = t1t2ocot be the characteristic number of g(x
l

x2 ••• x
n

_
I

); then 
2n- 1 

t. = ° l 
if A. is not used in the generating function, and t. = I if 

l l 

A. 
l 

appears as a subscript of some operation in the generating function. 

Thus T can be written by inspection of G( cs). 

The decomposition process described above is primarily useful 

as a design tool, but in some cases it can be useful in the analysis of 

a register. Given T, to find the behavior of the register one can 

write the C matrix and then draw the state graph. In some cases it 

is easier to analyze the register by observing the generating function 

that uses the adjacencies specified by T. This allows the cycle length 

to be determined without actually drawing the state graph. 
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FIG. 23. A NONSINGULAR FEEDBACK SHIFT REGISTER. 

The decomposition process and network correspondence are 

illustrated by the following example: 

x
2 

x3 

x4 

xl 

Let n = 5, then there are 25 

Let the cycle set be 102 4
3

-

s' xI x1x2x3x4 a 

q = 1 q = 2 

xl x2 xl x3 

= x2 x4 x3 x
2 

x3 x4 = x3 

= x4 x3 xl = x4 

32 states. 

9....=..J. 

x2 xl = x3 

x3 x
2 

x4 x3 

-
xl = x4 

x4 
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C
1 

C
2 

x = 0 1 
x - 0 1 -

S = 01000 J S = OllOO a 

• sa = llOOl Sb = 10001 . b 

Al = 1000 
C

3 
l~=llOO 

A2 = 0001 A2 = 0011 

x = 1 1 x = 1 1 

S = 10111 S = 10011 a a 

Sb = 01110 Sb = 00110 l Al = Olll 
Al = 0011 

A2 = 1110 A2 = 1100 

FIRST REMOVAL TABLE 

1(5) 3(5) 7(5) 15(5) 

(1,8) (7,14) (7,14) 
(1,8) (3,12) (3,12) 

(1,8 ) (1,8) (7,14) (7,14) 
(3,12) (3,12 ) 

(1,8) (1,8) (7,14) (7,14) 
(3,12) (3,12) (7,14) 

x - 0 1 -

Sa = 01110 

Sb = 11101 

Al = 1110 

A2 = 0111 

x = 1 1 

S = 10001 a 

Sb = 00010 

~ = 0001 

A2 = 1000 

Prescribed 
Cycle 

4 

4 

4 

1) lR(1,8)3 

2 ) 3R( 3, 12) 7 

3) 7R( 7, 14) 15 

Note: Since 3 and 7 are used with two different 
removal operations a check was made to see 
that the removed cycles do not intersect. 
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JOINING TABLE 

0(1) 5(5) 11(5) 31(1) D135 Prescribed 
Cycle 

(0,15) 10 10 (0,15) (0,15) 10 

(0,15) 10 10 (0,15) (0,15) 10 

The operation OJOD135J1531, gives one 10 cycle and 5Jl0ll 

gives the other. The generating function is: 

The feedback function is: 

g 1101000110101011 

The shift register is shown in Fig. 24. 

T = 1101000110101011 

FIG. 24. A FIVE-STAGE SHIFT REGISTER. 

As a check of the above design the register is analyzed using the 

C matrix [Ref. 4] to determine the state graph. The analysis can also 

be done by inspecting the generating function. The cycles of C and 
n 

the operation used are indicated in the state diagram of Fig. 25. 

J. STANDARD REMOVAL TABLES 

Once the operation of removing a contained cycle of a given length 

from the cycles of 

future reference. 

C is completed, the results can be tabulated for 
n 

Standard removal tables can be constructed and used 

directly to find the removal operations required to realize a specified 
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FIG. 25. STATE DIAGRAM FOR EXAMPLE OF DECOMPOSITION PROCESS. 

cyclic behavior. For values of n ~ 8 the removal tables for Care 
n 

given. These tables allow at least one cycle of arbitrary length to be 

realized since the operations required to obtain cycles of all lengths 

less than n are given. One of these short cycles can then be joined 

to the desired nwnber of n cycles to obtain the prescribed cycle 

length. 

Notice that each contained cycle can be located on the adjacency 

diagram by observing which cycles of C are connected by two adjacency 
n 

sequences. The ordering of the nodes of any given column in the diagram 

was done to roughly minimize the average length of the connecting lines. 

It is interesting to note the effect this policy had on the location of 

the contained cycles of a given length. Figure 26 gives a skeleton 

adjacency diagram for n = 7, with the length of the contained cycles 

indicated on the connecting branches. 

The location of the longer contained cycles near the top of the 

diagram occurs in all the other adjacency diagrams given. This fact 
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allows the operations required to produce these cycles to be determined 

by inspection of the adjacency diagram. 

FIG. 26. LOCATION OF CONTAINED CYCLES. 
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REMOVAL TABLES 

n = 3 

GENERATING SEQUENCE DISCARDED 
1 3 DISCARDED CYCLE CYCLE LENGTH CYCLE LENGTH 

1.2 1.2 3 2 4 

n - 4 -

GENERATING SEQUENCE DISCARDED 
1 3 7 DISCARDED CYCLE CYCLE LENGTH CYCLE LENGTH 

1,4 1, 4 3 3 5 
3 6 3 6 7 

n-5 --

GENERA TlNG SEQUENCE DISCARDED 

1 3 5 17 13 17 DISCARDED CYCLE CYCLE LENGTH CYCLE LENGTH 

12, 5 12, 5 113 2 8 

2 4* 2 4 5 3 7 
13 15 13 15* 57 

1 10* 1 10 1 

7 16 7 16* 27 4 6 

3 14 3 14 7 

n-6 -

GENERA TING SEQUENCE DISCARDED 
1 3 5 11 7 17 27 37 DISCARDED CYCLE CYCLE LENGTH CYCLE LENGTH 

10, 2* 10,2 5 4 8 
27 35 27 35* 137 

1 20* 1 20 3 

17,36 17, 36* 37 

3 30 3,30 7 5 7 

7 34 7,34 17 
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GENERATING SEQUENCE DISCARDED 
1 3 5 11 7 17 25 37 53 57 67 77 23 33 DISCARDED CYCLE CYCLE LENGTH CYCLE LENGTH 

25, 52 25, 52 2453 2 12 

11 44 11,44 423 3 11 
66,33 66,33 1467 

4 10* 4 10 11 

7,73 67, 73* 677 4 10 

31 46 31 46 233 

53,65 53 65 253 

12 24 12 24 25 5 9 
2 20* 2 20 5 

57 75 57 75* 277 

40. 1* 40, 1 101 

37,76 37, 76* 77 

3 60 3,60 7 6 8 

7,70 7, 70 17 

17,74 17,74 37 

n '.08 

GENERATING SEQUENCE DISCARDED 
1 3 5 11 7 25 45 17 37 127 133 113 77 137 157 167 177 DISCARDED CYCLE CYCLE LENGTH CYCLE LENGTH 

133,155 133,155 6557 3 13 
22,44 22,44 2045 

45 122 45 122 513 

55,132 55,132 1133 5 11 

4,20* 4,20 11 

157,173 157,173 1577 

2,40* 2,40 5 

127,167 127,167 537 6 10 
12 50 12,50 25 

137,175 137,175* 1177 

1 100* 1,100 3 

77,176 77, 176* 177 

3,140 3,140 7 
7 9 

37,174 37,174 77 

7,160 7,160 17 

17,176 17,176 37 

* THE CYCLES OBTAINED WITH THAT OPERATION INTERSECT. 



v. CONCLUSIONS 

A. GENERAL COMMENTS 

The usefulness of the nonlinear shift register has been limited 

because its design was unnecessarily laborious and unsystematic. Even 

so, it has found wide usage in recent years. The design procedure pre­

sented in this report provides an easier and more systematic method of 

design for this important type of sequential network. 

The design of an arbitrary sequential network with inputs and outputs 

is at present very unsystematic. The linear sequential networks are well 

understood, but nonlinear networks are not. The author hopes that this 

work will provide a starting point for the development of a theory that 

can be applied to a more general class of networks. The behavior of the 

network without inputs is, in a sense, the natural behavior of the net­

work. As in analog networks, the natural behavior is expected to play 

an important role in the characterization of the complete behavior. 

An analogy with analog networks has been useful in the development of 

the linear series expansion of a sequence in the polynomial domain. The 

close resemblance betvleen much of the digital and analog theory has been 

pointed out in the hope that by continuing the analogy much of the work 

in analog theory can serve as a guide to develop additional results in 

digital theory .. 

The correspondence between the polynomial and sequence domains 

provides the link necessary to apply the results of the sequence domain 

work to the polynomial domain. This correspondence allows one to work 

in the domain which is most convenient and then to translate the results 

to the domain that is desired. 

B. SUMMARY OF RESULTS 

The graph shown in Fig. 27 summarizes the results described in this 

report. The specification of the register can be in terms of the 

sequences to be produced, the cycle set, or the polynomial that describes 
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CYCI,.E SET NETWORK 

FIG. 27. SUMMARIZING GRAPH. 

SEQUENCE 
DOMAIN POLYNOMIAL 

DOMAIN 

the sequences to be produced. This is indicated by inputs at these nodes 

of the graph. Methods of conversion from anyone node to another are 

given in this report. The branches are labeled by the numbers of the 

chapters containing the corresponding conversion method. 

The upper half of the diagram illustrates the sequence-domain 

synthesis. The study of shift-register sequences provides a method for 

selecting the specification when there is some freedom. The correspond­

ence between these sequences and the cyclic behavior aids in the specifi­

cation of the cycle set to be realized. The synthesis procedure allows 

the determination of the network directly from either specification. 

The lower half of the diagram illustrates the polynomial-domain 

synthesis. The synthesis procedure allows the feedback network to be 

determined directly from a specification of the polynomials describing 

the output sequences. In addition, the polynomial gives an algebraic 

description of the network and its output sequences. 

A more systematic method for describing the behavior of a sequential 

network is needed. Such a method will allow system design to be broken 

down in smaller blocks and the behavior of the individual blocks specified. 

The networks considered in this report have no inputs, so the behavior is 

conveniently specified in terms of a cycle set. The cycle-set specifi­

cation, however, does not give any information regarding the coding that 

has been realized. This information is conveniently expressed by the 
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generating function of the cycle set. An algebraic description is given 

by the defining polynomial of the register. Each additional class of 

networks whose behavior can be conveniently specified leads one step 

closer to the general solution of the specification problem. 

C. RECOMMENDATIONS FOR FUTURE STUDY 

Some of the results which were obtained in the sequence domain may 

have important algebraic significance when translated to the polynomial 

domain. The fact that two cycles of C have no more than two adja-
n 

cencies implies relationships among the roots of their corresponding 

polynomials. The operation of joining two cycles together implies a 

corresponding operation with two irreducible polynomials of degree n 

to produce an irreducible polynomial of degree 2n. Continued investi­

gation of the correspondence between the two domains may lead to many 

useful polynomial relationships. 
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