
The WEB System of Structured Documentation

by

Donald E. Knuth

Department of Computer Science

Stanford University

Stanford, CA 94305

BaUNIS

The WEB System of Structured Documentation

by Donald E. Knuth

Stanford University

(Version 2.3, September, 1983)

A + 2.
iQ AEN —Es 2)

The preparation of this report was supported in part by the National Scicncc Foundation
under grants IST-82(11926 and MCS-8300084, and by the System Development Foundation.
“TX is a trademark of the American Mathematical Society.

WEB USER MANUAL l

The WEB System of Structured Documentation

This memo describes how to write programs in the WEB language; and it also includes the full WEB docu-

mentation for WEAVE and TANGLE, the programs that read WEB input and produce TEX and PASCAL output,

respectively. The philosophy behind WEB is that an experienced system programmer, who wants to provide

the best possible documentation of his or her software products, needs two things simultaneously: a language

like TEX for formatting, and a language like PASCAL for programming. Neither type of language can provide

the best documentation by itself; but when both are appropriately combined, we obtain a system that is

much more useful than either language separately.

The structure of a software program may be thought of as a “web” that is made up of many interconnected

pieces. To document such a program, we want to explain each individual part of the web and how it relates to

its neighbors. The typographic tools provided by TEX give us an opportunity to explain the local structure

of each part by making that structure visible, and the programming tools provided by PASCAL make it

possible for us to specify the algorithms formally and unambiguously. By combining the two, we can develop

a style of programming that maximizes our ability to perceive the structure of a complex piece of software,

and at the same time the documented programs can be mechanically translated into a working software

system that matches the documentation.

Since WEB is an experimental system developed for internal use within the TEX project at Stanford, this
report is rather terse, and it assumes that the reader is an experienced programmer who is highly motivated

to read a detailed description of WEB's rules. Furthermore, even if a less terse manual were to be written, the

reader would have to be warned in advance that WEB is not for beginners and it never will be: The user of

WEB must be familiar with both TEX and PASCAL. When one writes a WEB description of a software system,
it is possible to make mistakes by breaking the rules of WEB and/ or the rules of TEX and/ or the rules of
PASCAL. In practice, all three types of errors will occur, and you will get different error messages from the

different language processors. In compensation for the sophisticated expertise needed to cope with such a

variety of languages, however, experience has shown that reliable software can be created quite rapidly by

working entirely in WEB from the beginning; and the documentation of such programs seems to bc better

than the documentation obtained by any other known method. Thus, WEB users need to be highly qualified,

but they can get some satisfaction and perhaps even a special feeling of accomplishment when they have

successfully created a software system with this method.

To use WEB, you prcparc a file called COB. WEB (say), and then you apply a system program called WEAVE

to this file, obtaining an output file called COB .TEX. When TEX processes COB .TEX, your output will be
a “pretty printed” version of COB. WEB that takes appropriate care of typographic details like page layout

and the usc of indentation, italics, boldface, etc.; this output will contain extensive cross-index information

that is gathered automatically. You can also submit the same file COB. WEB to another system program

called TANGLE, which will produce a file COB. PAS that contains the PASCAL code of your COB program. The

PASCAL compiler will convert COB. PAS into machine-language instructions corresponding to the aleorithins

that were so nicely formatted by WEAVE and TRX. Finally, you can (and should) delete the files COB. TEX
and COB. PAS, because COB. WEB contains the definitive source code. Examples of the behavior of WEAVE and

TANGLE are appended to this manual.

Besides providing a documentation tool, WEB enhances the PASCAL language by providing a rudimentary

macro capability together with the ability to permute pieces of the program text, so that a large system can
bc understood entirely in terms of small modules and their local interrelationships. The TANGLE program is so

named because it takes a given web and moves the modules from their web structure into the order required

by PASCAL; the advantage of programming in WEB is that the algorithms can be expressed in “untangled”

form, with each module explained separately. The WEAVE program is so named because it takes a given web

and intertwines the Tj4X and PASCAL portions contained in each module. then it knits the whole fabric into
a structured document. (Get it? Wow.) Perhaps there is some deep connection here with the fact that the

German word for “weave” is “web”? and the corresponding Latin imperative is “teze”!

It is impossible to list all of the rclntcd work that has influenced the design of WEB, but the key contributions

should be mentioned here. (1) Myrtle Kellington, as executive editor for ACM publications, tlevcloped
excellent typographic standards for the typesetting of Algol programs during the 1960s, based on the original

2 WEB USER MANUAL

designs of Peter Naur; the subtlety and quality of this influential work can be appreciated only by people who

have seen what happens when other printers try to typeset Algol without the adviceofACM’s copy editors.

| (2) Bill McKeeman introduced a program intended to automate some of this task [Algorithm 268, “Algol 60

reference language editor,” CACM 8 (1965), 667-668]; and a considerable flowering of such programs has
occurred in recent years [see especially Derek Oppen, “Prettyprinting,” ACM TOPLAS 2 (1980), 465-483;
G. A. Rose and J. Welsh, “Formatted programming languages,” SOFTWARE Practice & Exper. 11 (1981),
651-669]. (3) The top-down style of exposition encouraged by WEB was of course chiefly influenced by Edsger
Dijkstra’s essays on structured programming in the late 1960s. The less well known work of Pierre-Arnoul

de Marneffe “Holon programming: A survey,” Univ. de Liege, Service Informatique, Liege, Belgium, 1973;

135 pp.] also had a significant influence on the author as WEB was being formulated. (4) Edwin Towster has

proposed a similar style of documentation in which the programmer is supposed to specify the relevant data

structure environment in the name of each submodule [“A convention for explicit declaration of environments

and top-down refinement of data,” IEEE Tram. on Software Eng. SE-5 (1979), 374-386]; this requirement
seems to make the documentation a bit too verbose, although experience with WEB has shown that any

unusual control structure or data structure should definitely be incorporated into the module names on

psychological grounds. (5) Discussions with Luis Trabb Pardo in the spring of 1979 were extremely helpful

for setting up a prototype version of WEB that was called DOC. (6) Ignacio Zabala’s extensive experience

with DOG, in which he created a full implementation of TEX in PASCAL that was successfully transported
to many different computers, was of immense value while WEB was taking its present form. (7) David R.

Fuchs made several crucial suggestions about how to make WEB more portable; he and Arthur L. Samuel

coordinated the initial installations of WEB on dozens of computer systems, making changes to the code so

that it would be acceptable to a wide variety of PASCAL compilers. (8) The name WEB itself was chosen in

honor of my wife’s mother, Wilda Ernestine Bates.

The appendices to this report contain complete WEB programs for the WEAVE and TANGLE processors. A

study of these examples, together with an attempt to write WEB programs by yourself, is the best way to

understand why WEB has come to be like it is.

General rules. A WEBfileis a long string of text that has been divided into individual lines. The exact
line boundaries are not terribly crucial, and a programmer can pretty much chop up the WEB file in whatever

way seems to look best as the file is being edited; but string constants and control texts must end on the

same line on which they begin, since this convention helps to keep errors from propagating. The end of a

line means the same thing as a blank space.

Two kinds of material go into WEB files: TX text and PASCAL text. A programmer writing in WEB should
be thinking both of the documentation and of the PASCAL program that he or she is creating; i.e., the
programmer should be instinctively aware of the different actions that WEAVE and TANGLE will perform on

the WEB file. TEX text is essentially copied without change by WEAVE, and it is entirely deleted by TANGLE,
since the TEX text is “pure documentation.” PASCAL text, on the other hand, is formatted by WEAVE and it

is shuffled around by TANGLE, according to rules that will become clear later. For now the important point

to keep in mind is that there are two kinds of text. Writing WEB programs is something like writing TX
documents, but with an additional “PASCAL mode” that is added to TgX’s horizontal mode, vertical mode,
and math mode.

A WEB file is built up from units called modules that are more or less self-contained. Each module has

three parts:

1) A TX part, containing explanatory material about what is going on in the module.
2) A definition part, containing macro definitions that serve as abbreviations for PASCAL constructions that

would be less comprehensible if written out in full each time.

3) A PASCAL part, containing a piece of the program that TANGLE will produce. This PASCAL code should

ideally be about a dozen lines long, so that it is easily comprehensible as a unit and so that its

structure is readily perceived.

The three parts of each module must appear in this order; i.e., the TEX commentary must come first, then

the definitions, and finally the PASCAL code. Any of the parts may be empty.

WEB USER MANUAL 3

A module begins with the pair of symbols ‘@_’ or ‘@*’, where ‘,” denotes a blank space. A module ends at

the beginning of the next module (i.e., at the next ‘@_’ or ‘@*’), or at the end of the file, whichever comes
first. The WEB file may also contain material that is not part of any module at all, namely the text (if any)

that occurs before the first module. Such text is said to be “in limbo”; it is ignored by TANGLE and copied

essentially verbatim by WEAVE, so its function is to provide any additional formatting instructions that may

be desired in the TX output. Indeed, it is customary to begin a WEB file with TEX code in limbo that loads
special fonts, defines special macros, changes the page sizes, and/ or produces a title page.

Modules are numbered consecutively, starting with 1; these numbers appear at the beginning of each

module of the TEX documentation, and they appear as bracketed comments at the beginning of the code
generated by that module in the PASCAL program.

Fortunately, you never mention these numbers yourself when you are writing in WEB. You just say ‘@,)’

or ‘@*’ at the beginning of each new module, and the numbers are supplied automatically by WEAVE and

TANGLE. As far as you are concerned, a module has a name instead of a number; such a name is specified by

writing ‘@<’ followed by TEX text followed by ‘@’. When WEAVE outputs a module name, it replaces the ‘@<’
and ‘@>’ by angle brackets and inserts the module number in small type. Thus, when you read the output

of WEAVE it is easy to locate any module that is referred to in another module.

For expository purposes, a module name should be a good description of the contents of that module, i.e.,

it should stand for the abstraction represented by the module; then the module can be “plugged into” one

or more other modules so that the unimportant details of its inner workings are suppressed. A module name

therefore ought to be long enough to convey the necessary meaning. Unfortunately, however, it is laborious

to type such long names over and over again, and it is also difficult to specify a long name twice in exactly

the same way so that WEAVE and TANGLE will be able to match the names to the modules. Therefore a module

name can be abbreviated after its first appearance in the WEB file, by typing ‘@<a. .. @>’, where « is any string

that is a prefix of exactly one module name that appears in the file. For example, ‘@<Clear the arrays@>’

can be abbreviated to ‘@<Clear.. . @>’ if no other module name begins with the five letters ‘Clear’. Module

names must otherwise match character for character, except that consecutive blank spaces and/ or tab marks

are treated as equivalent to single spaces, and such spaces are deleted at the beginning and end of the name.

Thus, ‘@< Clear the arrays @’ will also match the name in the previous example.

We have said that a module begins with ‘@_’ or ‘@*’, but we didn’t say how it gets divided up into a TX
part, a definition part, and a PASCAL part. The definition part begins with the first appearance of ‘@d’ or

‘@f’ in the module, and the PASCAL part begins with the first appearance of ‘@p’ or ‘@<’. The latter option
‘@<’ stands for the beginning of a module name, which is the name of the module itself. An equals sign
(=) must follow the ‘@’ at the end of this module name; you are saying, in effect, that the module name

stands for the PASCAL text that follows, so you say ‘(module name) = PASCAL text’. Alternatively, if

the PASCAL part begins with ‘@p’ instead of a module name, the current module is said to be unnamed.
Note that module names cannot appear in the definition part of a module, because the first ‘@<’ in a module
signals the beginning of its PASCAL part. Any number of module names might appear in the PASCAL part,

however, once it has started.

The general idea of TANGLE is to make a PASCAL program out of these modules in the following way:

First all the PASCAL parts of unnamed modules are copied down, in order; this constitutes the initial

approximation Ty to the text of the program. (There should be at least one unnamed module, otherwise

there will be no program.) Then all module names that appear in the initial text Ty are replaced by
the PASCAL parts of the corresponding modules, and this substitution process continues until no module

names remain. Then all defined macros arc replaced by their equivalents, according to certain rules that are
explained later. The resulting PASCAL code is “sanitized” so that it will be acceptable to an average garden-

variety PASCAL compiler; i.e., lowercase letters are converted to uppercase, long identifiers are chopped, and

the lines of the output file are constrained to be at most 72 characters long. All comments will have been

removed from this PASCAL program except for the mcta-comments delimited by ‘@{’ and ‘@}’, as explained

below, and except for the module-number comments that point to the source location where each piece of

the program text originated in the WEB file.

If the same name has been given to more than one module, the PASCAL text for that name is obtained by

putting together all of the PASCAL parts in the corresponding modules. This feature is useful, for example,

4 WEB USER MANUAL

in a module named ‘Global variables in the outer block’, since one can then declare global variables in

whatever modules those variables are introduced, When several modules have the same name, WEAVE assigns

the first module number as the number corresponding to that name, and it inserts a note at the bottom

of that module telling the reader to ‘See also sections so-and-so’; this footnote gives the numbers of all the

other modules having the same name as the present one. The PASCAL text corresponding to a module is

usually formatted by WEAVE so that the output has an equivalence sign in place of the equals sign in the

WEB file; i.e., the output says ‘(module name) = PASCAL text’. However, in the case of the second and

subsequent appearances of a module with the same name, this ‘=’sign is replaced by ‘+=’, as an indication

that the PASCAL text that follows is being appended to the PASCAL text of another module.

The general idea of WEAVE is to make a TEX file from the WEB file in the following way: The first line of the

TEX file will be ‘\input webmac’; this will cause TEX to read in the macros that define WEB’s documentation
conventions. The next lines of the file will be copied from whatever TEX text is in limbo before the first
module. Then comes the output for each module in turn, possibly interspersed with end-of-page marks

and the limbo material that precedes the next module after a page ends. Finally, WEAVE will generate a

cross-reference index that lists each module number in which each PASCAL identifier appears, and it will

also generate an alphabetized list of the module names, as well as a table of contents that shows the page
and module numbers for each “starred” module.

What is a “starred” module, you ask? A module that begins with ‘@+’ instead of ‘@’ is slightly special

in that it denotes a new major group of modules. The ‘@+’ should be followed by the title of this group,
followed by a period. Such modules will always start on a new page in the TEX output, and the group title
will appear as a running headline on all subsequent pages until the next starred module. The title will also

appear in the table of contents, and in boldface type at the beginning of its module. Caution: Do not use

TEX control sequences in such titles, unless you know that the webmac macros will do the right thing with
them. The reason is that these titles are converted to uppercase when they appear as running heads, and

they are converted to boldface when they appear at the beginning of their modules, and they are also written

out to a table-of-contents tie used for temporary storage while TEX is working; whatever control sequences
you use must be meaningful in all three of these modes.

The TEX output produced by WEAVE for each module consists of the following: First comes the module
number (e.g., ‘\M123.’ at the beginning of module 123, cxcept that ‘\N’ appears in place of ‘\M’ at the:

beginning of a starred module). Then comes the TEX part of the module, copied almost verbatim except as
noted below. Then comes the definition part and the PASCAL part, formatted so that there will be a little

extra space between them if both are nonempty. The definition and PASCAL parts are obtained by inserting

a bunch of funny looking TEX macros into the PASCAL program; these macros handle typographic details
about fonts and proper math spacing, as well as line breaks and indentation.

When you arc typing TX text, you will probably want to make frequent reference to variables and other
quantities in your PASCAL code, and you will want those variables to have the same typographic treatment

when they appear in your text as when they appear in your program. Therefore the WEB language allows

you to get the effect of PASCAL editing within TEX text, if you place ‘ I’ marks before and after the PASCAL
material. For example, suppose you want to say something like this:

The characters are placed into buffer , which is a packed array [1 .. n] of char.

The TEX text would look like this in your WEB file:

The characters are placed into |buffer|, which is a [packed array [1..n] of char!.

And WEAVE translates this into something you are glad you didn’t have to type:

The characters are placed into \\{buffer},

which is a \&{packed} \&{array} $ [1\to\|n]$ \&{of} \\{char}.

Incidentally, the cross-reforcnce index that WEAVE would make, in the presence of a comment like this, would

include the current module number as one of the index entries for buffer and char, even though buffer and

WEB USER MANUAL 5

char might not appear in the PASCAL part of this module. Thus, the index covers references to identifiers

in the explanatory comments as well as in the program itself, you will soon learn to ‘appreciate this feature.

However, the identifiers packed and array and n and of would not be indexed, because WEAVE does not

make index entries for reserved words or single-letter identifiers. Such identifiers are felt to be so ubiquitous

that it would be pointless to mention every place where they occur.

Speaking of identifiers, the author of WEB thinks that IdentifiersSeveral WordsLong look terribly ugly when

they mix uppercase and lowercase letters. He recommends that :tdentifiers_several_words_.long be written

with underline characters to get a much better effect. The actual identifiers sent to the PASCAL compiler by

TANGLE will have such underlines removed, and TANGLE will check to make sure that two different identifiers

do not become identical when this happens. (In fact, TANGLE even checks that the first seven characters of

identifiers are unique, when lowercase letters have been converted to uppercase; the number seven in this

constraint is more strict than PASCAL’s eight, and it can be changed if desired.) The WEAVE processor will

properly alphabetize identifiers that have embedded underlines when it makes the index.

Although a module begins with TEX text and ends with PASCAL text, we have noted that the dividing

line isn’t sharp, since PASCAL text can be included in TEX text if it is enclosed in ‘|... |’. Conversely,

TEX text also appears frequently within PASCAL text, because everything in comments (i.e., between left

and right braces) is treated as TEX text. Furthermore, a module name consists of TEX text; thus, a WEB file
typically involves constructions like ‘if x = 0 then @<Empty the | buffer | array @>’ where we go back and

forth between PASCAL and TEX conventions in a natural way.

Macros. A WEB programmer can define three kinds of macros to make the programs shorter and more
readable:

‘Q@d identifier =constant’defines a numeric macro, allowing TANGLE to do rudimentary arithmetic.

‘Qd identifier == PASCAL text’ defines a simple macro, where the identifier will be replaced by the PASCAL

text when TANGLE produces its output.

‘Qd identifier (#) == PASCAL text’ defines a parametric macro, where the identifier will be replaced by

the PASCAL text and where occurrences of #in that PASCAL text will be replaced by an argument.

In all three cases, the identifier must have length greater than one; it must not be a single letter. Furthermore,

the identifier must be making its first appearance in the WEB file; a macro must be defined before it is used.

Numeric macros are subject to the following restrictions: (1) The right-hand side of the numeric defini-

tion must be made entirely from integer constants, numeric macros, preprocessed strings (see below), and

plus signs or minus signs. No other operations or symbols are allowed, not even parentheses, except that

PASCAL-like comments (enclosed in braces) can appear. Indeed, comments are recommended, since it is

usually wise to give a brief explanation of the significance of each identifier as it is defined. (2) The numeric

value must be less than 2° = 32768 in absolute value. (For larger values, you can use ‘==’ in place of ‘=’,
thus making use of a simple macro instead of a numeric one. Note, however, that simple macros sometimes

have a different effect. For example, consider the three definitions ‘@d n1=2 @d n2=2+n1 @d n3==2+n1’;

then ‘x-n2’ will expand into ‘x-4’, while ‘x-n3’ will expand into x-2+2’ which is quite different! It is wise

to include parentheses in non-numeric macros, e.g., ‘@d n3==(2+n1)’, to avoid such errors.)

When constants are connected by plus signs or minus signs in a PASCAL program, TANGLE does the

<arithmetic before putting the constant into the output file. Therefore it is permissible to say, for example,

array [O.. size — 1)’ if size has been declared as a macro; note that PASCAL doesn’t allow this kind of
compile-time arithmetic if size is a constant quantity in the program. Another use of TANGLE’s arithmetic

is to make case statement labels such as ‘flag + 1’ legitimate. Of course, it is improper to change 2+2

into 4 without looking at the surrounding context; many counterexamples exist, such as the phrases ‘-2+2’,
‘x/ 2+2’, and ‘2+2Eb’. The program for TANGLE, in the appendix, gives precise details about this conversion,

which TANGLE does only when it is safe.

The right-hand sides of simple and parametric macros are required to have balanced parentheses, and the

PASCAL texts of modules must have balanced parentheses too. Therefore when the argument to a parametric

macro appears in parentheses, both parentheses will belong to the same PASCAL text.

The appendices to this report contain hundreds of typical examples of the usefulness of WEB macros, so

it is not necessary to dwell on the subject here. However, the reader should know that WEB’s apparently

6 WEB USER MANUAL |

primitive macro capabilities can actually do a lot of rather surprising things. Here is a construction that

sheds further light on what is possible: After making the definitions

@d two-cases (#)==case j of 1:#(1); 2:#(2); end
@d reset_file(#)==reset(input_fileQ&#)

one can write ‘two-cases (reset-file)’ and the resulting PASCAL output will be

case j of 1: reset (input-f ilel) ; 2: reset (input-f ile2) ; end

(but in uppercase letters. and with _’s removed). The ‘@&’ operation used here joins together two adjacent

tokens into a single token, as explained later; otherwise the PASCAL file would contain a space between

input-file and the digit that followed it. This trick can be used to provide the effect of an array of files,

if you are unfortunate enough to have a PASCAL compiler that doesn’t allow such arrays. Incidentally, the

cross-reference index made by WEAVE from this example would contain the identifier input-file but it would

not contain input_filel or input_file2. Furthermore, TANGLE would not catch the error that INPUTFILE1 and

INPUTFILE2 both begin with the same nine letters; one should be more careful when using ‘@&’! But such

aspects of the construction in this trick are peripheral to our main point, which is that a parametric macro

name without arguments can be used as an argument to another parametric macro.

Although WEB’s macros are allowed to have at most one parameter, the following example shows that this

is not as much of a restriction as it may seem at first. Let amac and bmac be any parametric macros, and

suppose that we want to get the effect of

Qd cmac(#1,#2) == amac (#1) bmac (#2)

which WEB doesn’t permit. The solution is to make the definitions

@d cmac (#) == amac(#) dmac

@d dmac (#) == bmac (#)

and then to say ‘cmac (x) (y)’.
There is one restriction in the generality of WEB’s parametric macros, however: the argument to a para-

metric macro must not come from the expansion of a macro that has not already been “started.” For

example, here is one of the things WEB cannot handle:

ed arg == (p)
@d identity(#) == #

Qp identity arg

In this case TANGLE will complain that the identity macro is not followed by an argument in parentheses.

The WEB language has another feature that is somewhat similar to a numeric macro. A preprocessed

string is a string that is like a PASCAL string but delimited by double-quote marks (") instead of single-
quotes. Double-quote marks inside of such strings are indicated by giving two double-quotes in a row. If

a preprocessed string is of length one (e.g., “A” or """"), it will be treated by TANGLE as equivalent to the
corresponding ASCII-code integer {e.g., 65 or 34). And if a preprocessed string is not of length one, it will be
converted into an integer equal to 128 or more. A string pool containing all such strings will be written out

by the TANGLE processor; this string pool file consists of string 128, then string 129, etc., where each string

is followed by an end-of-line and prefixed by two decimal digits that define its length. Thus, for example,

the empty string "" would be rcprecsented in the string pool file by a line containing the two charncters

‘00°, while the string “““String”“” would berepresented by ‘08"String"’. A given string appears at most
once in the string pool; the use of such a pool makes it easier to cope with PASCAL’s restrictions on string

manipulation. The string pool ends with ‘*nnnnnnnnn’, where nnnnnnnnn is a decimal number called the

string pool check sum. If any string changes, the check sum almost surely changes too; thus, the ‘@$’ feature

described bolow makes it possible for a program to assure itself that it is reading its own string pool.
Here is a simple example that combines numeric macros with preprocessed strings of length one:

@d upper-case-Y = "Yy"

@d case-difference = -"y"+upper_case_Y

The result is to define upper-case-Y = 89, case difference = -32.

WEB USER MANUAL 7

Control codes. We have seen several magic uses of ‘@’ signs in WEB files, and it is time to make a systematic
study of these special features. A WEB control code is a two-character combination of which the first is ‘@’.

Here is a complete list of the legal control codes. The letters L, IT, P, M, C, and/ or S following each,code

indicate whether or not that code is allowable in limbo, in TEX text, in PASCAL text, in module names, in

comments, and/ or in strings. A bar over such a letter means that the control code terminates the present

part of the WEB file; for example, L means that this control code ends a section that is in limbo and begins
non-L material.

Qe [C, L, M, P, S,T] A double @denotes the single character ‘@’. This is the only control code that is legal
in limbo, in comments, and in strings.

Q, |L,P,T] This denotes the beginning of a new (unstarred) module. A tab mark or end-of-line (carriage
return) is equivalent to a space when it follows an @ sign.

@* [L,P,T] This denotes the beginning of a new starred module, i.e., a module that begins a new major
group. The title of the new group should appear after the @*, followed by a period. As explained above,

TEX control sequences should be avoided in such titles unless they are quite simple. When WEAVE and
TANGLE read a @*,they print an asterisk followed by the current module number, so that the user can

see some indication of progress. The very first module should be starred.

@d [P, T] Macro definitions begin with @d (or aD), followed by the PASCAL text for one of the three kinds
of macros, as explained earlier.

of [P, T) Format definitions begin with @f (or @F); they cause WEAVE to treat identifiers in a special way
when they appear in PASCAL text. The general form of a format definition is ‘Qf [==’, followed by

an optional comment enclosed in braces, where 1 and r are identifiers; WEAVE will subsequently treat

identifier 1 as it currently treats r. This feature allows a WEB programmer to invent new reserved words

and/ or to unreserve some of PASCAL's reserved identifiers. The definition part of each module consists

of any number of macro definitions (beginning with Qd) and format definitions (beginning with of),
intermixed in any order.

6p [P, T] The PASCAL part of an unnamed module begins with @p (or @). This causes TANGLE to append
the following PASCAL code to the initial program text Tg as explained above. The WEAVE processor

does not cause a ‘@p’ to appear explicitly in the TEX output, so if you are creating a WEB file based on
a w-printed WEB documentation you have to remember to insert @p in the appropriate places of the
unnamed modules.

e< [P,T] A module name begins with @< followed by TEX text followed by @>; the TEX text should not
contain any WEB control sequences except @@, unless these control sequences appear in PASCAL text

that is delimited by I... |. The module name may be abbreviated, after its first appearance in a WEB
file, by giving any unique prefix followed by, where the three dots immediately precede the closing

@>. Module names may not appear in PASCAL text that is enclosed in |... |, nor may they appear in

the definition part of a module (since the appearance of a module name ends the definition part and

begins the PASCAL part).

@° [P, T| This denotes an octal constant, to be formed from the succeeding digits. For example, if the
WEB file contains ‘Q° 100’, the TANGLE processor will treat this an equivalent to 64"; the constant will

be formatted as “100” in the TX output produced via WEAVE. You should use octal notation only for

positive constants; don’t try to get, e.g., —1 by saying ‘Q“ 777777777777’.

Q" [P,T] A hexadecimal constant; ‘@"DODO’ tangles to 53456 and weaves to ‘“"DODO’.

@$ [P] This denotes the string pool check sum.

e{ [P] The beginning of a “meta comment,” i.e., a comment that is supposed to appear in the PASCAL
code, is indicated by @{ in the WEB file. Such delimiters can be used as isolated symbols in macros or
modules, but they should bc properly nested in the final PASCAL program. The TANGLE processor will

convert ‘@{’ into ‘{’ in the PASCAL output file, unless the output is already part of a meta-comment; in

the latter case ‘@{’ is converted into‘ [’, since PASCAL does not, allow nested comments. Incidentally,

module numbers are automatically inserted as meta-comnments into the PASCAL program, in order to
help correlate the outputs of WEAVE and TANGLE (see Appendix C). Mcta-comments can be used to

8 WEB USER MANUAL

put conditional text into a PASCAL program; this helps to overcome one of the limitations of WEB,

since the simple macro processing routines of TANGLE do not include the dynamic evaluation of boolean

expressions.

@} [P] The end of a “meta comment” is indicated by ‘@}’; this is converted either into ‘}’ or ‘]’ in the

PASCAL output, according to the conventions explained for @{ above.

Q@¢ P] The Q& operation causes whatever is on its left to be adjacent to whatever is on its right, in the

PASCAL output. No spaces or line breaks will separate these two items. However, the thing on the left

should not be a semicolon, since a line break might occur after a semicolon.

Qe" Pp, T) The “control text” that follows, up to the next ‘@>’, will be entered into the index together with
the identifiers of the PASCAL program; this text will appear in roman type. For example, to put the

phrase “system dependencies” into the index, you can type ‘Q-system dependencies@>’ in each module

that you want to index as system dependent. A control text, like a string, must end on the same line of

the WEB file as it began. Furthermore, no WEB control sequences are allowed in a control text, not even

@Q. (If you need an @ sign you can get around this restriction by typing ‘\AT!’.)

Q. [P, T] The “control text” that follows will be entered into the index in typewriter type; see the rules
for ‘Q@*’, which is analogous.

Q: [P,T) The “control text,, that follows will be entered into the index in a format controlled by the TEX
macro ‘\9’, which the user should define as desired; see the rules for ‘@~’, which is analogous.

@t [P] The “control text” that follows, up to the next ‘@’, will be put into a TEX \ hbox and formatted
along with the neighboring PASCAL program. This text is ignored by TANGLE, but it can be used for

various purposes within WEAVE. For example, you can make comments that mix PASCAL and classical

mathematics, as in ‘size < 2!%’, by typing ‘I size < @$2-{156}$@> 1’. A control text must end on the
same line of the WEB file as it began, and it may not contain any WEB control codes.

@= [P] The “control text” that follows, up to the next ‘@>’, will be passed verbatim to the PASCAL program.

Q\ [P] Force end-of-line here in the PASCAL program file.

@! [P,T] The module number in an index entry will be underlined if ‘@ ! ’ immediately precedes the identifier
or control text being indexed. This convention is used to distinguish the modules where an identifier

is defined, or where it is explained in some special way, from the modules where it is used. A reserved

word or an identifier of length one will not be indexed except for underlined entries. An ‘@!’ is implicitly

inserted by WEAVE just after the reserved words function, procedure, program, and var, and just after

@d and @f. But you should insert your own ‘@!’ before the definitions of types, constants, variables,

parameters, and components of records and enumerated types that are not covered by this implicit

convention, if you want to improve the quality of the index that you get.

Qe? [P, T] This cancels an implicit (or explicit) ‘@!’, so that the next index entry will not be underlined.

Q, [P] This control code inserts a thin space in WEAVE's output; it is ignored by TANGLE. Sometimes you
need this extra space if you arc using macros in an unusual way, e.g., if two identifiers arc adjacent.

@/ [P] This control code causes a line break to occur within a PASCAL program formatted by WEAVE; it

is ignored by TANGLE. Line breaks are ‘chosen automatically by TEX according to a scheme that works
99% of the time, but sometimes you will prefer to force a line break so that the program is segmented

according to logical rather than visual criteria. Caution: ‘@/’ should be used only after statements or

clauses, not in the middle of an expression; use @l in the middle of expressions, in order to keep WEAVE 's

" parser happy.

@| [P] This control code specifies an optional line break in the midst of an expression. For example, if you
have a long condition between if and then, or a long expression on the right-hand side of an assignment

statement, you can use ‘QI’ to specify breakpoints more logical than the ones that TizX might choose
on visual grounds.

@# [P] This control code forces a line break, like @/ does, and it also causes a little extra white space to

appear between the lines at this break. You might use it, for example, between procedure definitions or

between groups of macro definitions that are logically separate but within the same module,

WEB USER MANUAL 9

@+ [P] This control code cancels a line break that might otherwise be inserted by WEAVE, e.g., before the

word ‘else’, if you want to put a short if-then-else construction on a single line. It is ignored by TANGLE.

@; [P] This control code is treated like a semicolon, for formatting purposes, except that it is invisible.

You can use it, for example, after a module name when the PASCAL text represented by that module
name ends with a semicolon,

The last six control codes (namely ‘@,, ‘@/’,‘@| ¢ ‘@#’,‘@+’, and ‘@; ‘) have no effect on the PASCAL program

output by TANGLE; they merely help to improve the readability of the w-formatted PASCAL that is output

by WEAVE, in unusual circumstances. WEAVE 's built-in formatting method is fairly good, but it is incapable

of handling all possible cases, because it must deal with fragments of text involving macros and module

names; these fragments do not necessarily obey PASCAL’s syntax. Although WEB allows you to override the

automatic formatting, your best strategy is not to worry about such things until you have seen what WEAVE

produces automatically, since you will probably need to make only a few corrections when you are touching

up your documentation.

Because of the rules by which every module is broken into three parts, the control codes ‘@d’, ‘@f’, and

‘@p’ are not allowed to occur once the PASCAL part of a module has begun.

Additional features and caveats.

1. The character pairs ‘(*’, ‘*¥)’°, ¢(. ¢, and “.) are converted automatically in PASCAL text as though
they were ‘@{’,‘@}’,‘[’, and ‘]’, respectively, except of course in strings. Furthermore in certain installations
of WEB that have an extended character set, the characters ‘#’,¢<’, ‘2’, ‘> ‘=’ <x «y ‘9’ and ‘€’can be used

as abbreviations for ‘<>’, ‘<=’, >=", ‘ =’ ‘==’ ‘and’, ‘or’, ‘not’, and ‘in’, respectively. However, the latter
abbreviations are not used in the standard versions of WEAVE. WEB and TANGLE. WEB that are distributed to

people who are installing WEB on other computers, and the programs are designed to produce only standard

ASCII characters as output if the input consists entirely of ASCII characters.

2. If you have an extended character set, all of the characters listed in Appendix C of The TgXbook can

be used in strings. But you should stick to standard ASCII characters if you want to write programs that

will be useful to the all the poor souls out there who don’t have extended character sets.

3. The TEX file output by WEAVE is broken into lines having at most 80 characters each. The algorithm
that does this line breaking is unaware of TEX’s convention about comments following ‘4’ signs on a line.

When TEX text is being copied, the existing line breaks are copied as well, so there is no problem with ‘}’
signs unless the original WEB file contains a line more than eighty characters long or a line with PASCAL text

in |... |that expands to more than cighty characters long. Such lines should not have ‘}’ signs.

4. PASCAL text is translated by a “bottom up” procedure that identifies each token as a “part of speech”

and combines parts of speech into larger and larger phrases as much as possible according to a special

grammar that is explained in the documentation of WEAVE. It is easy to learn the translation scheme for

simple constructions like single identifiers and short expressions, just by looking at a few examples of what

WEAVE does, but the general mechanism is somewhat complex because it must handle much more than

PASCAL itself. Furthermore the output contains embedded codes that cause TEX to indent and break lines

as necessary, depending on the fonts used and the desired page width. For best results it is wise to adhere
to the following restrictions:

a) Comments in PASCAL text should appear only after statements or clauses; i.c., after semicolons, after

reserved words like then and do, or before reserved words like end and else. Otherwise WEAVE’s parsing

method may well get mixed up.

b) Don’t cm-lose long PASCAL texts in |... I, since the indentation and line breaking codes are omitted

when the |... | text is translated from PASCAL to TEX. Stick to simple expressions or statements.

5. Comments and module names are not permitted in |... | text. After a ‘|’ signals the change from

TEX text to PASCAL text, the next ‘|’ that is not part of a string or control text ends the PASCAL text.
6. A comment must have properly nested occurrences of left and right braces, otherwise WEAVE and TANGLE

will not know where the comment ends. However, the character pairs ‘\{’ and ‘\}’ do not count as left and

right braces in cominents, and the character pair ‘\|’ does not count as a delimiter that begins PASCAL text.

(The actual rule is that a character after ‘\’is ignored; hence in ‘\\{’ the left brace does count.) At present,

10 WEB USER MANUAL

TANGLE and WEAVE treat comments in slightly different ways, and it is necessary to satisfy both conventions:

TANGLE ignores ‘|’ characters entirely, while WEAVE uses them to switch between TX text and PASCAL text.
Therefore, a comment that includes a brace in a string in |... |—e.g., ‘{ look at this | "{" | }—will be
handled correctly by WEAVE, but TANGLE will think there is an unmatched left brace. In order to satisfy both

processors, one can write ‘{ look at this \lef tbrace\ }’, after setting up‘ def \leftbrace{ | "{"|}’.

7. Reserved words of PASCAL must appear entirely in lowercase letters in the WEB file; otherwise their

special nature will not be recognized by WEAVE. You could, for example, have a macro named END and it
would not be confused with PASCAL’ s end.

However, you may not want to capitalize macro names just to distinguish them from other identifiers.

Here is a way to unreserve PASCAL’ s reserved word type’ and to substitute another word ‘mtype’ in the
WEB file.

0d type(#) == mem[#] .t

@d mtype == t @& y Q& p Qk ¢

Qf mtype == type

Of type == true

In the output of TANGLE, the macro mtype now produces ‘TYPE’ and the macro type(x) now produces

‘MEM[X]. T. In the output of WEAVE, these same inputs produce mtype and type (x), respectively.
8. The @f feature allows you to define one identifier to act like another, and these format definitions are

carried out sequentially, as the example above indicates. However, a given identifier has only one printed

format throughout the entire document (and this format will even be used before the @f that defines it).

The reason is that WEAVE operates in two passes; it processes @f ’s and cross-references on the first pass and

does the output on the second.

9. You may want some @f formatting that doesn’t correspond to any existing reserved word. In that case,

WEAVE could be extended in a fairly obvious way to include new “reserved words” in its vocabulary. The

identifier ‘xclause’ has in fact been included already as a reserved word, so that it can be used to format

the loop’ macro, where ‘loop’ is defined to be equivalent to ‘while true do’.
10. Sometimes it is desirable to insert spacing into PASCAL code that is more general than the thin space

provided by ‘@,’. The @t feature can be used for this purpose; e.g., ‘@t\hskip 1in@>’ will leave one inch of
blank space. Furthermore, ‘@t\4@>’ can be used to backspace by onc unit of indentation, since the control

sequence \4 is defined in webmac to be such a backspace. (This control sequence is used, for example, at the

beginning of lines that contain labeled statements, so that the label will stick out a little at the left.)

11. WEAVE and TANGLE are designed to work with two input files, called web_file and change-file, where

change-file contains data that overrides sclecttd portions of web_file. The resulting merged text is actually

what has been called the WEB file elsewhere in this report.

Here’s how it works: The change file consists of zero or more “changes,” where a change has the form

‘@x (old lines)@y (new lines)@z’. The special control codes @x, @y, @z, which are allowed only in change files,
must appear at the beginning of a line; the remainder of such a line is ignored. The (old lines) represent

material that exactly matches consecutive lines of the web-file; the (new lines) represent zero or more lines

that arc supposed to replace the old. Whenever the first “old line” of a change is found to match a line in
the web_file, all the other lines in that change must match too.

Between changes, before the first change, and after the last change, the change file can have any number of

lines that do not begin with ‘@x’, ‘@y’, or ‘@z’. Such lines are bypassed and not used for matching purposes.
This dual-input feature is useful when working with a master WEB file that has been received from elsewhere

(e.g., TANGLE. WEB or WEAVE. WEB or TEX . WEB), when changes arc desirable to customize the program for your

local computer system. You will be able to debug your system-dependent changes without clobbering the
master web file; and once your changes arc working, you will be able to incorporate them readily into new

releases of the master web file that you might receive from time to time.

Appendices. The basic ideas of WEB can be understood most easily by looking at examples of “real”

programs. Appendix A shows the WEB input that generated modules 55 59 of the WEAVE program; Appendix B

shows the corresponding TEX code output by WEAVE: and Appendix C shows excerpts from the corresponding
PASCAL code output by TANGLE.

WEB USER MANUAL 11

The complete webs for WEAVE and TANGLE appear as the bulk of this report, in Appendices D and E. The

reader should first compare Appendix A to the corresponding portion of Appendix D; then the same material

should be compared to Appendices B and C. Finally, if time permits, the reader may enjoy, studying the

complete programs in Appendices D and E, since WEAVE and TANGLE contain several interesting aspects, and

since an attempt has been made in these appendices to evolve a style of programming that makes good use

of the WEB language.

Finally, Appendix F is the ‘webmac’ file that sets TJgX up to accept the output of WEAVE; Appendix G
discusses how to use some of its macros to vary the output formats; and Appendix H discusses what needs

to be done when WEAVE and TANGLE are installed in a new operating environment.

Performance statistics. The programs in Appendices D and E will optionally keep statistics on how

much memory they require. Here is what they printed out when processing themselves:

TANGLE applied to TANGLE (cpu time 15 sec)
Memory usage statistics:

456 names, 215 replacement texts;

3396+3361bytes, 6683+7314+5803 tokens.

TANGLE applied to WEAVE (cpu time 29 sec)
Memory usage statistics:

692 names, 339 replacement texts;

4576+4294bytes, 10181+9867+9141tokens.

WEAVE applied to TANGLE (cpu time 45sec)
Memory usage statistics: 478 names, 2044 cross references, 41568+3725 bytes;

parsing required 684 scraps, 1300 texts, 3766 tokens, 119 levels;

sorting required 34 levels.

WEAVE applied to WEAVE (cputime 64sec)
Memory usage statistics: 737 names, 3305 cross references, 4894+4958 bytes;

parsing required 684 scraps, 1300 texts, 3766 tokens, 119 levels;

sorting required 73 levels.

The cpu time for PASCAL to process TANGLE. PAS was approximately 13 seconds, and WEAVE. PAS took

approximately 26 seconds; thus the tangling time was slightly more than the compiling time. The cpu time

for TRX to process TANGLE. TEX was approximately 500 seconds, and WEAVE .TEX took approximately 750
seconds (1.e., about 7seconds per printed page, where these pages are substantially larger than the pages in

a normal book). All cpu times quoted are for a DECsystem-10.

The file TANGLE. WEB 1s about 125K characters long; TANGLE reduces it to a file TANGLE. PAS whose size 1s

about 42K characters, while WEAVE expands 1t to a file TANGLE. TEX of about 185K. The corresponding file

sizes for WEAVE. WEB, WEAVE.PAS, and WEAVE.TEX are 180K,89K, and 265K.
The much larger file TEX. WEB led to the following numbers:

TANGLE applied to TEX {cpu time 110 sec)
Memory usage statistics:

3752 names, 1768 replacement texts;

41766+41466bytes, 42445+45061+41039tokens.

WEAVE applied to TEX (cpu time 270 sec)
Memory usage statistics: 3410 names, 19699 cross references, 38899+39362 bytes;

parsing required 685 scraps, 1303 texts, 3784 tokens, 104 levels;

sorting required 52 levels.

PASCAL did TEX . PAS in about 75 seconds; TEX did TEX . TEX in about 3600.

0, what a tangled web we weave 0, what a tangled WEB we weave
When first we practise to deceive! When TeX we practise to conceive!

-SIR WALTER SCOTT, Marmion 6:17 (1808) -RICHARD PALAIS (1982)

12 APPENDIX A — WEB FILE FORMAT

Appendix A. This excerpt from WEAVE. WEB produced modules 55-59 in Appendix D. Note that some of

the lines are indented to show the program structure. The indentation is ignored by WEAVE and TANGLE, but

users find that WEB files are quite readable if they have some such indentation.

0* Searching for identifiers.

The hash table described above is updated by the |id_lookup| procedure,
which finds a given identifier and returns a pointer to Its index in

Ibyte_start|. The identifier is supposed to match character by character
and it is also supposed to have a given |ilk| code; the same name may be
present more than once if it is supposed to appear In the index with

different typesetting conventions.

If the identifier was not already present, it is inserted into the table.

Because of the way \.{WEAVE}'s scanning mechanism works, it {8 most convenient

to let |id_lookup| search for an identifier that is present in the buffer)
array. Two other global variables specify Its position in the buffer: the

first character is |buffer[id_first]|, and the last is |buffer [id_loc-1] |.

0<Glob...0>=

0!id_first:0..long_buf_size; {wh ere the current identifier begins in the buffer)
0!id_loc:0..long_buf_size; (just after the current Identifier in the buffer)
o#

O!hash:array [0..hash_size] of sixteen-bits; {heads of hash lists)

0 Initially all the hash lists are empty.

0<Local variables for init...0=

0'h:0..hash_size; (index Into hash-head array)

0 0<8et init...0>=

for h:=0 to hash size-1 do hash [h] :=0;

0 Acre now is the main procedure for finding Identifiers (and index

entries). The parameter |t|is set to the desired |11k| code. The
identifier must either have |ilk=t|, or we must have

jt=normal| and the identifier must be a reserved word.

¢p function id_lookup(0!t:eight_bits) :name_pointer; {finds current Identifier)
label found;

var 1:0..long_buf_size; {index into |buffer|}
Q'h:0..hash_size; {hash code)

0'k:0..max_bytes; (index into |byte_mem|}
0!w:0. .ww-1; <row of |byte_mem|}
0!1:0..1long_but_size; <length of the given identifier)

0!p:name_pointer; (where the identifier is being sought}
begin 1:=id_loc-id_first; {compute the length)

¢<Compute the hash code |h|€>;
0<Compute the name location [p|@>;
if p=name_ptr then Q<Enter a new name into the table at position |p|0>;
id_lookup:=p;
end ;

0 A simple hash code is used: If the sequence of

ASCII codes is $c_ic_2\1ldots ¢_m$, Its hash value will be

$$(2°{n-1}c_1+2"{n-2}c_2+\cdots+c_n)\,\bmod\,|hash_sizel|.$$

0<Compute the hash...@>=

h:=buffer([id_first}; 1i:=1d_first+i;
while 1<id_ loc do

begin h:=(h+h+buffer{i]) mod hash-size; incr(i);
end

APPENDIX B — TRANSLATION BY WEAVE 13

Appendix B. This excerpt from WEAVE. TEX corresponds to Appendix A.

\N66. Searching for identifiers.
The hash table described above is updated by the \\{id_lookup} procedure,
which finds a given identifier and returns a pointer to its Index in

\\{byte_start}. The identifier is supposed to match character by character

and It is also supposed to have a given \\{ilk} code; the same name may be
present more than once if it is supposed to appear In the index with

different typesetting conventions.

If the identifier was not already present, It is inserted into the table.

Because of the way \.{WEAVE}'s scanning mechanism works, it 18 most convenient

to let \\{1d_lookup} search for an identifier that is present in the %
\\{bufter}

array . Two other global variables specify Its position in the buffer: the

f irst character is $\\{buf £ er) [\\{id_f irst}] $, and the last is $\\{but ter}[}%
\\{1d_loc}-1]$.

\Y\P$\4\X9:Globals In the outer block\X\mathrel{+}\8$\6

\4\\{1d_first}: \37$0\to\\{long_buf_size}$;\C{where the current identifier
begins in the buffer}\6

\4\\{id_loc}: \37$0\to\\{long_buf_size}$;\C{just after the current
identifier in the buffer)\7

\4\\ {hash}: \37\&{array} $[0\to\\{hash_size}]$ \i\&{of}\5
'\\{sixteen_bits};\C{heads of hash 1lists}\2\par
\f1

\Mb6. Initially all the hash lists are empty.

\Y\P$\4\X16:Local variables for initialization\X\mathrel{+}\5$\6

\4\|h: \3780\to\\{hash_size}$;\C{index into hash-head array}\par
\11

\M67. \P$\X10:Set initial values\X\mathrel{+}\S5$\6

\&{for} $\|h\KO\mathrel{\&{to}}\\{hash_size}-1$ \1\&{do}\b

$\\{hash}[\|h]1\KO$;\2\par
\f1

\M68. Here now is the main procedure for finding identifiers (and index
entries). The parameter \|t is set to the desired \\{ilk} code. The
identifier must either have $\\{ilk}=\{t$, or we must have

$\it=\\{normal}$ and the Identifier must be a reserved word.

\YAP\4\&{function}\1\ \37$\\{id_lookup}(\it:\\{eight_bits})$: \37\\{name),
_pointer};\C{finds current identifier}\6
\4\&{1label} \37\\{found};\6

\d\&{var} \37\ 11: \3780\to\\{long_buf_size}$;\C{index in to \\{buffer}}\é
\lh: \3780\to\\{hash_size}$:\C{hash code}\6

Vk: \37¢0\to\\{max_bytes}$;\C{index into \\{byte_mem}}\6
Vw: \3780\to\\{ww}-1$;\C{row o f \\{byte_mem}}\6
Vil: \3780\to\\{long_buf_size}$;\C{length of the given identifier)}\6
\lp: \37\\{name_pointer};\C{where the identifier is being sought}\2\6
\&{begin} \37$\|1\K\\{4d_loc}-\\{id_first}$;\C{compute the length)\6

\X59:Compute the hash code \|h\X;\6

\X60:Compute the name location \|p\X;\6
\&{11} $\Ip=\\{name_ptr}$ \1\&{then}\5
\X62:Enter a new name into the table at position \{p\X;\2\8
$\\{1d\ _lookup}\K\|p$:\6
\&{end};\par
\f1

\M59. A simple hash code is used: If the sequence of

ASCII codes is $c_1c_2\1ldots c_m$, its hash value will be

$$(2"{n-1}c_1+2"{n-2}c_2+\cdots+c_n)\,\bmod\,\\{hash_size}.$$

\Y\P$\4\X59: Compute the hash code \}h\X\S$\6
$\ThAK\\ {buffer} {\\{1d_first}]$;\6

$\II\K\\{id_tirst}+1$;\6

\&{while} $\[i<\\{id_loc}$ \1\k{do}\6

\&{begin} \37$\|h\K(\[h+\|h+\\{buffer}[\[1])\mathbin{\&{mod}}\\{hash_size}$;\b
$\\{incr}(\|1)$;\6

\&{end}\2\par
\U section"68.\f1i

14 APPENDIX C — TRANSLATION BY TANGLE

Appendix C. The TANGLE processor converts WEAVE. WEB into a syntactically correct (but not very pretty)

i PASCAL program WEAVE. PAS. The first three and last two lines of output are shown here, together with the
lines of code generated by modules 55-62 and the environments of those lines. There are 1546 lines in all;

the notation *. ..’ stands for portions that are not shown.

Note that, for example, the code corresponding to module 55 begins with ‘{65: }’ and ends with ‘{: 66)";

the code from modules 59-62 has been tangled into the code from module 58.

{2:}{4:}{8C-A+ ,D-}{[$C+,D+]}{:4}

PROGRAMWEAVE (WEBFILE, CHANGEFILE, TEXFILE) ; LABELO999; CONST{8:}

JAXBYTES=45000; MAXNAMES=5000; MAXMODULES=2000; HASHSIZE=353 ; BUFSIZE=100;

TOKPTR:0. .MAXTOKS ; {MAXTOKPTR ,MAXTXTPTR:0. .MAXTOKS; }{:53}{65:}

IDFIRST:0O..LONGBUFSIZE;IDLOC:0O. .LONGBUFSIZE;

HASH:ARRAY{O. .HASHSIZE]OF SIXTEENBITS;{:55}{63:}CURNAME:NAMEPOINTER;

PROCEDURE INITIALIZE;VAR{16:}1:0..127;{:16}{40:}WI:0..1;{:40}{66:}

H:0. HASHSIZE;{:56}{247:}C:ASCIICODE; {:247}BEGIN{10:}YHISTORY:=0;{:10}

TOKPTR:=1;TEXTPTR:=1;TOKSTART[O] :=1; TOKSTART [1] :=1; {MAXTOKPTR:=1;

MAXTXTPTR:=1;}{:64}{67:}FOR H:=0 TO HASHSIZE- DO HASH[H] :=0;{:57}{94:}

SCANNINGHEX :=FALSE;{:94}{102:}MODTEXT[0] :=32;{:102}{124:}0UTPTR:=1;

IF R=0 THEN XREF [P] : =XREFPTR ELSE XMEM[R] . XLINKFIELD: =XREFPTR; END; {:561}

{68:}FUNCTION IDLOOKUP(T:EIGHTBITS):NAMEPOINTER;LABEL 31;

VAR I:0..LONGBUFSIZE;H:0..HASHSIZE;K:0..MAXBYTES;W:0..1;

L:0..LONGBUFSIZE;P:NAMEPOINTER;BEGIIL: =IDLOC-IDFIRST; {69:}

H:=BUFFER[IDFIRST]; I:=IDFIRST+1;

WHILE I<IDLOC DO BEGIN H:=(H+H+BUFFER[I])MOD HASHSIZE;I:=I+1;END{:59};
{60:}P:=HASH[H];

WHILE P<>0 DO BEGIN IF (BYTESTART [P+2] -BYTESTART [P]=L) AND ((ILK[P]}=T)OR((T

=0)AND (ILK[P]>3)))THEN{61:}BEGIN I-=IDFIRST;K:=BYTESTART[P] ;W:=P MOD 2;

WHILE (I<IDLOC)AND(BUFFER[I]=BYTEMEM[W,K])DOBEGINI:=I+1;K:=K+1;END;

IF I=IDLOC THEN GOTO 31;END{:61};P:=LINK[P] ;END;P:=NAMEPTR;

LINK[P] :=HASH[H] ;HASH[H] :=P;31:{:60};IFP=NAMEPTR THEN{62:}

BEGIN W:=NAMEPTR MOD 2;

IF BYTEPTR{W] +L>MAXBYTES THEN BEGIN WRITELN (TERMOUT) ;

WRITE (TERMOUT, '! Sorry, ’,’'byte memory’, capacity exceeded’); ERROR;
HISTORY: =3; JUMPOUT END;

IF NAMEPTR+2>MAXNAMES THEN BEGIN WRITELN(TERMOUT) ;

WRITE(TERMOUT, '! Sorry, ’,’name’,’ capacity exceeded’);ERROR;HISTORY:=3;
JUMPOUT ; END; I:=IDFIRST;K:=BYTEPTR[W];

WHILE I<IDLOC DO BEGIN BYTEMEM([W,K]:=BUFFER[I];K:=K+1;I:=I+1;END;

BYTEPTR [W] : =K; BYTESTART [NAMEPTR+2] : =K ; NAMEPTR : =NAMEPTR+1 ; ILK [P] : =T;

XREF[P] :=0;END{:62}; IDLOOKUP:=P;END;{:58}{66:}

FUNCTION MODLOOKUP (L:SIXTEENBITS) :NAMEPOINTER; LABEL 31;VAR C:0..4;

WRITE (TERMOUT, ' (That was afatal error, my friend.) ’) ;END;END{:263};
END.{:261}

Appendix D 15

The WEAVE processor

(Version 2.3)

Section Page

INtrodUCtON «vv tte ee eeeeo] 16

The character set iiii 1 19

Reportingerrors t0 the WSEI «« «vc evvn et ttnteenie. 29 25
DAtaStIUCIUTES «eevee eee eee ee eee eee eeeeee 30 27

Lexical SCANMINE ... o.ooee10 38
Inputtingthe Next tOKEN «ete s tome eee i eiiieeaaienan, 93 46
PhaseoneproCesSinE un nett ee eeeeeee 108 52
Low -1eveloutputroUtiNes «vv vvvvun eee e ett eee eeeieee 121 56

Parsing«oot19 62

Initializing the SCTAPS . o.oo. i 188 83
Output of tokensiii...0. 2000 90
PhasetWOPTOCESSIIE «vv vette ete eee eee eeeee 218 97
Phase three PrOCESSINE .. ov te et eee idee o, 239 104
DEBUGGING © ove e ee eee eeeee208 109
ThemMainPrOZIam «etree ete e ee eee eee eeeeee 200 TH
System-dependent Chan@es «o.oo, 204 112
Ind EX 265 113

| 16 INTRODUCTION WEAVE §1

| 1. Introduction. This program converts a WEB file to a TEX file. It was written by D. E. Knuth in
October, 1981; a somewhat similar SAIL program had been developed in March, 1979, although the earlier

program used a top-down parsing method that is quite different from the present scheme.

The code uses a few features of the local PASCAL compiler that may need to be changed in other
installations:

1) Case statements have a default.

2) Input-output routines may need to be adapted for use with a particular character set and/ or for printing

messages on the user’s terminal.

These features are also present in the PASCAL version of TEX, where they are used in a similar (but more

complex) way. System-dependent portions of WEAVE can be identified by looking at the entries for ‘system

dependencies’ in the index below.

The “banner line” defined here should be changed whenever WEAVE is modified.

define banner = “Thisis WEAVE, Version 2.3’

2. The program begins with a fairly normal header, made up of pieces that will mostly be filled in later.

The WEB input comes from files web_file and change-file, and the TEX output goes to file tez_file.
If it is necessary to abort the job because of a fatal error, the program calls the jump-out’ procedure,

which goes to the label end_of WEA VE.

define end_of- WEAVE = 9999 {go here to wrap it up }

(Compiler directives 4)

program WEAVE (web-file, change-file, tez_file);
label end-of- WEAVE; {go here to finish }
const (Constants in the outer block 8)

type (Types in the outer block 11)
var (Globals in the outer block 9)

(Error handling procedures 30)

procedure initialize ;

var (Local variables for initialization 16)
begin (Set initial values 10)

end;

3. Some of this code is optional for use when debugging only; such material is enclosed bctwcen the

delimiters debug and gubed. Other parts, delimited by stat and tats, are optionally included if statistics

about WEAVE’s memory usage arc desired.

define debug = @{ {change this to ‘debug =’ when debugging }
define gubed = @+ {change this to ‘gubed =’ when debugging }
format debug = begin

format gubed = end

define stat = @{ {change this to ‘stat =’ when gathering usage statistics }
define tats = @} { change this to ‘tats =’ when gathering usage statistics}
format star = begin

format tats = end

§4 WEAVE INTRODTJCTION 17

4. The PASCAL compiler used to develop this system has “compiler directives” that can appear in com-

ments whose first character is a dollar sign. In production versions of WEAVE these directives tell the compiler

that it is safe to avoid range checks and to leave out the extra code it inserts for the PASCAL debugger’s

benefit, although interrupts will occur if there is arithmetic overflow.

(Compiler directives 4) =

Q{0&$C—, A+ D—@} {no range check, catch arithmetic overflow, no debug overhead }
debug @{0&$C+, D+@} gubed {but, turn everything on when debugging }

This code is used in section 2.

5. Labels are given symbolic names by the following definitions. We insert the label ‘exit :’ just before

the ‘end’ of a procedure in which we have used the ‘return’ statement defined below; the label ‘restart’

is occasionally used at the very beginning of a procedure; and the label ‘reswitch’ is occasionally used just

prior to a case statement in which some cases change the conditions and we wish to branch to the newly

applicable case. Loops that are set up with the loop construction defined below are commonly exited by

going to ‘done’ or to ‘found’ or to ‘not-found’, and they are sometimes repeated by going to ‘continue’.

define exit = 10 {go here to leave a procedure }
define restart = 20 { go here to start a procedure again }
define reswitch = 21 {g0 here to start a case statement again}

define continue = 22 {go here to resume a loop }
define done = 30 { go here to exit a loop }
define found = 31 {go here when you've found it }
define not-found = 32 {go here when you've found something else}

6. Hcrc are some macros for common programming idioms.

define incr (#)=# « # + 1 {increase a variable by unity }
-define decr(#) =# — #—1 {decrease a variable by unity}
define loop = while true do {repeat over and over until a goto happens }
define do-nothing = {empty statement }
define return = goto exir {terminate a procedure call }
format return = nil

format loop = zclause

7. Wc assume that case statements may include a default case that applies if no matching label is found.

Thus, wc shall use constructions like

case x of

1: (code for x = 1);

3: (code for x = 3);

othercases {code for x # 1 and x # 3)
endcases

since most PASCAL compilers have plugged this hole in thr language by incorporating some sort of default

mechanism. For cxamplc, the compiler used to develop WEB and TEX allows ‘others :’ as a default label, and
other PASCALs allow syntaxes like ‘else’ or ‘otherwise’ or ‘otherwise:’, etc. The definitions of othercases

and endcases should be changed to agree with local conventions. (Of course, if no default mechanism is

available, the case statements of this program must be extended by listing all remaining cases.)

define othercases = others: {default for cases not listed explicitly }
define endcases = end {follows the default case in an extended case statement }
format, othercasea = else

format endcases = end

: 18 INTRODUCTION WEAVE §8

8. The following parameters are set big enough to handle TEX, so they should be sufficient for most

‘applications of WEAVE.

(Constants in the outer block 8 } =
: mm-bytes = 45000; { 1/ww times the number of bytes in identifiers, index entries, and module names;
3 must bc less than 65536)

] maz-names = 5000; { number of identifiers, index entries, and module names; must be less than 10240)
i maz_modules = 2000; { greater than the total number of modules}

hash-size = 353; {should be prime }
] buf-size = 100; {maximum length of input line }
1 longest-name = 400; {module names shouldn’t be longer than this }

long_buf_size = 500; { buf-size + longest-name }
line-length = 80; {lines of TEX output have at most this many characters, should be less than 256)

: maz._refs = 20000; {number of cross references; must be less than 65536 }
maz-toks = 20000; {number of symbols in PASCAL texts being parsed; must be less than 65536 }
maz_texts = 2000; {number of phrases in PASCAL texts being parsed; must be less than 10240 }
maz_scraps = 1000; {number of tokens in PASCAL texts being parsed }
stuck-size = 200; {number of simultaneous output levels }

This code is used in section 2.

9. A global variable called history will contain one of four values at the end of every run: spotless means that

no unusual messages were printed; harmless-message means that a message of possible interest was printed

but no serious errors were detected; error-message means that at least one error was found; faral-message

means that the program terminated abnormally. The value of history does not influence the behavior of the

program; it is simply computed for the convenience of systems that might want to use such information.

define spotless = 0 { history value for normal jobs}
define harmless-message = 1 {history value when non-serious info was printed}
define error-message = 2 { history value when an error was noted}
define fatal-message = 3 { history value when we had to stop prematurely}
define mark-harmless =

if history = spotless then history < harmless-message

define mark-error = history «- error-message

define mark-fatal = history «+ fatal-message

~ (Globals in the outer block 9) =
history: spotless . . fatal-message; {how bad was this run? }
See also sections 13, 20, 23, 25, 27, 29, 37, 39, 45, 48, 53, 55, 63, 65, 71, 73, 93, 108, 114, 118, 121, 129, 144, 177, 202, 219, 229,

234, 240, 242, 244, 246, and 258.

This code is used in section 2.

10. (Set initial values 10) =

history +— spotless;

Sce also sections 14, 17, 18, 21, 26, 41, 43, 49, 54, 57, 94, 102, 124, 126, 145, 203, 245, 248, and 259.

This code is used in scction 2.

§11 WEAVE THE CHARACTER SET 19

11. The character set. One of the main goals in the design of WEB has been to make it readily portable

between a wide variety of computers. Yet WEB by its very nature must use a greater variety of characters than

most computer programs deal with, and character encoding is one of the areas in which existing machines

differ most widely from each other.

To resolve this problem, all input to WEAVE and TANGLE is converted to an internal seven-bit code that is

essentially standard ASCII, the “American Standard Code for Information Interchange.” The conversion is

done immediately when each character is read in. Conversely, characters are converted from ASCII to the

user’s external representation just before they are output.

Such an internal code is relevant to users of WEB only because it is the code used for preprocessed constants

like "A". If you are writing a program in WEB that makes use of such one-character constants, you should

convert your input to ASCII form, like WEAVE and TANGLE do. Otherwise WEB 's internal coding scheme does

not affect you.
Here is a table of the standard visible ASCII codes:

0 I 2 9 4 5 6 7

(C10 IVI IT EE IE EO OC
sof CJ» | Loebb
oof o | + | 2 | 3 | 4 ps | 6 | 7
ool 8 | oo |: fos [<<] = [>] 7

UN ET IE IE ES A TE
EU I CT I EN I OT A

yo| + | a |b | ce | a |e | £ |g

mo x | oy [oa | CC] Jy | 7

(Actually, of course, code ‘040 is an invisible blank space.) Code ‘136 was once as an upward arrow (t),

and code ‘137 was once a left arrow (+), in olden times when the first draft of ASCII code was prepared; but
WEB works with today’s standard ASCII in which those codes represent circumflex and underline as shown.

(Types in the outer block 11) =
ASCll-code = 0 . . 127; {seven-bit numbers, a subrange of the integers }

See also sections 12, 36, 38, 47, 52, and 201.

This code is used in section 2.

| 20 THE CHARACTER SET WEAVE ~~ §12

12. The original PASCAL compiler was designed in the late 60s, when six-bit character sets were common,

: so it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital and

small letters in a convenient way, so WEB assumes that it is being used with a PASCAL whose character set

contains at least the characters of standard ASCII as listed above. Some PASCAL compilers use the original

name char for the data type associated with the characters in text files, while other PASCALS consider char

to be a 64-element subrange of a larger data type that has some other name.
In order to accommodate this difference, we shall use the name rext-char to stand for the data type of

the characters in the input and output files. We shall also assume that rext-char consists of the elements

chr (first-text-char) through chr (last-text-char), inclusive. The following definitions should be adjusted if

necessary.

define rext-char = char {the data type of characters in text files }
define first-text-char = 0 {ordinal number of the smallest element of rext-char}
define last_text_char = 127 {ordinal number of the largest element of rext-char}

(Types in the outer block 11) +=
text_file = packed file of text-char;

13. The WEAVE and TANGLE processors convert between ASCII code and the user’s external character set

by means of arrays xord and xchr that are analogous to PASCAL’s ord and chr functions.

(Globals in the outer block 9) +=

zord: array [text-char] of ASCII-code; {specifies conversion of input characters}
xchr : array [ASCII-code] of rext-char ; { specifies conversion of output characters }

§14 WEAVE THE CHARACTER SET I

14. If we assume that every system using WEB is able to read and write the visible characters of stan-

‘dard ASCII (although not necessarily using the ASCII codes to represent them), the following assignment

statements initialize most of the’xchr array properly, without needing any system-dependent changes. For

example, the statement xchr [@°101] :='A . that appears in the present WEB file might be encoded in, say,
EBCDIC code on the external medium on which it resides, but TANGLE will convert from this external code

to ASCII and back again. Therefore the assignment statement XCHR [65]: = ‘A’ will appear in the corre-

sponding PASCAL file, and PASCAL will compile this statement so that xchr [65] receives the character A in
the external (char) code. Note that it would be quite incorrect to say xchr [@ 101] :="A" because "A" is a

constant of type integer, not char, and because we have "A" = 65 regardless of the external character set.

(Set initial values 10) +=

zchr[’40] « "LU"; zchr[41] « “V7; zchr['42] « “"°; zchr[48] « “#7; zchr[}4] « “$7;
zehr[45] « “%"; zchr[46) « “&°; zehr [4T} « "7°75
zchr [50] « “(°; zche [51] « °) 5 zchr[58) « “+7; zchr [58] « “+5 x ch r['54]— 0d:
zchr['55) « =; zchr['56] «— °. *; zchr [57] « °/ 7;
xchr [60] — 0°; zchr| 61] t '1'; zchr [62] — "2" zchr [63] — 3 xchr [64] — 4’;
xchr[65] "67; zchr['66] + 6°; zchr[67] « ‘7;
xchr[“T0) «= 8°; zchr| 71] « "9°; zchr [72] « “: *; zchr [78] « "1"; xchr [Tf] « “<7;
sche 75) — "=" zchr[76] — ® >. zchr [77] 7°;
xchr [100] “Q" 5 xchr[101] «+ "A"; zchr|’102] t "B”; zchr|'108] + "C7; zehr [104] «— ‘D*;
xchr[‘105+ “E*; xchr [‘106 | t “F°; zchr['107]—® GC
xchr [110] + 'H'; xchr ‘111 + "1°; zchr(['112) t 'd’; zchr[118]— ® K’;zchr [114] L";
xchr[115} ‘WM’; xchr | "116 t® N’; xchr[117]e°07;
xchr [180] « “P75 xchr [181] « ® Q°; zchr| 122] t “R°; zchr['128]«Sache [124] T7;
xchr[185) « “U"; xchr | 126 | t “V°; xchr [127) — Ww 7;
xchr[180) “X*;xchr [181 t °Y *; xchr [132] « “Z°; zchr['188) « “75 xchr ['184] « "\";
zchr (185) « 1°; zchr['186| t “~";zchr [137] @®
zchr['140) « °° °; zchr[’141| t “a”; xchr[142] « "b"; zchr['1f3] « “c 7; xchr[144] ad";
zchr{'145] « “e’; zchr['146| t "f°; zchr[147]—® ¢
xchr[150) "hy xchr [151] t “i°; xchr [158] «"j ;zchr['158|—®@ x'; zchr['154]— '1';
zchr(155] « 'm"; zchr[156| « "n°; zchr[157] « "07;
zchr[160] — “p°; zchr[’161|t "q°; xchr [162] « ‘v7; zchr] 163] « "8°; xchr['164] « "t7;
zchr('165] « “u’; zchr['166| ® yvizchr[167)—w";
zchr[’170) ¢ “x”; zchr['171] ¢ “y*; zchr[172] « “z75 zchr [178] «— {5x c hr TY j="1"7;
zchr 175) « “} 7; 2zchr [176] « ~~;
zchr [0] « “7; xchr [177) « "1"; {these ASCII codes are not used }

15. Some of the ASCII codes below “0 have been given symbolic names in WEAVE and TANGLE because

they are used with a special meaning.

define and-aign = 4 {equivalent to 'and' }
define not-sign=‘5 {equivalent to ‘not’ }
define ser-element-sign = ‘6 {equivalent to ‘in’}
define tab-murk = ‘11 { ASCII code used as tab-skip}
define line-feed = ‘12 { ASCII code thrown away at end of line}
define form_feed = "14 { ASCII code used at end of page}
define curriage-return = ‘15 { ASCII code used at end of line}
define left_arrow = ‘80 {equivalentto‘:="}
define not-equal = 32 {equivalent to ‘<>’}
define less-or-equul = ‘34 {equivalent to ‘<=’}
define greater_or_equal = ‘35 {equivalent to >=}
define equivalence-sign = 36 { equivalent to ‘=="}
define or-sign = 37 {equivalent to ‘or’}

22 THE CHARACTER SET WEAVE 816

16. When we initialize the xord array and the remaining parts of xchr, it will be convenient to make use

of an index variable, s.

(Local variables for initialization 16) =
i: 0. . last-text-char;

See also sections 40, 56, and 247.

This code is used in section 2.

17. Here now is the system-dependent part of the character set. If WEB is being implemented on a garden-

variety PASCAL for which only standard ASCII codes will appear in the input and output files, you don’t

need to make any changes here. But at MIT, for example, the code in this module should be changed to

for i t+ 1 to 37 do zchr[i] « chr(i);

WEB's character set is essentially identical to MIT’s, even with respect to characters less than ‘40.

Changes to the present module will make WEB more friendly on computers that have an extended character

set, so that one can type things like # instead of <>. If you have an extended set of characters that are easily

incorporated into text files, you can assign codes arbitrarily here, giving an xchr equivalent to whatever

characters the users of WEB are allowed to have in their input files, provided that unsuitable characters do

not correspond to special codes like carriage-return that are listed above.

(The present file WEAVE. WEB does not contain any of the non-ASCII characters, because it is intended

to be used with all implementations of WEB. It was originally created on a Stanford system that has a

convenient extended character set, then “sanitized” by applying another program that transliterated all of

the non-standard characters into standard equivalents.)

(Set initial values 10 } +=
for i « 1 to 37 do zchr[i] t "L";

18. The following system-independent code makes the xord array contain a suitable inverse to the infor-
mation in xchr.

(Set initial values 10) +=

for i « first-text-char to last_tezt_char do zord[chr(t)] « 40;
for 1 «— 1 to 176 do zord|zchr [i]] t i;

§19 WEAVE INPUTANDOUTPUT 23

19. Input and output. The input conventions of this program are intended to be very much like those

of TEX (except, of course, that they are much simpler, because much less needs to be done). Furthermore
they are identical to those of TANGLE. Therefore people who need to make modifications to all three systems

should be able to do so without too many headaches.

We use the standard PASCAL input/ output procedures in several places that TEX cannot, since WEAVE

does not have to deal with files that are named dynamically by the user, and since there is no input from
the terminal.

20. Terminal output is done by writing on file term-out, which is assumed to consist of characters of type
text-char:

define print (#) = write (term-out, #) { print> means write on the terminal }
define print-ha(#) = write-In (term-out, #) {‘ptint "and then start new line }
define new-line = writeIn (term-out) { start new line }
define print-d (#) = { printin érmation starting on a new line }

begin new-line ; print (#),
end

(Globals in the outer block 9) +=
term-out : text-file ; { the terminal as an output file.}

21. Different systems have different ways of specifying that the output on a certain file will appear on

the user’s terminal. Here is one way to do this on the PASCAL system that was used in TANGLE's initial

development:

(Set initial values 10) +=

rewrite (term-out, "TTY:); { send term-out output to the terminal}

22. The update-terminal procedure is called when we want to make sure that everything we have output

to the terminal so far has actually left the computer’s internal buffers and been sent.

define update-terminal = break (term-out) {empty the terminal output buffer }

23. The main input comes from web-fife; this input may be overridden by changes in change-file. (If

change-file 1s empty, there are no changes.)

(Globals in the outer block 9) +=
we b_file :text-file; {primary input }
change-file : text_file ; {updates }

24. The following code opens the input files. Since these files were listed in the program header, we assume

that the PASCAL runtime system has already checked that suitable file names have been given; therefore

no additional error checking needs to be done. We will see below that WEAVE reads through the entire input
twice.

procedure open-input ; { prepare to read web_file and change-file }
begin reset (web-file); reset (change-file);

end;

25. The main output goes to tez_file.

(Globals in the outer block 9) +=
tex_file : text-file;

24 INPUT AND OUTPUT WEAVE §26

26. The following code opens tez_file. Since this file was listed in the program header, we assume that the

PASCAL runtime system has checked that a suitable external file name has been given.

(Set initial values 10) +=

rewrite (tez_file);

27. Input goes into an array called buffer.

(Globals in the outer block 9) +=
buffer: array [0 . . long-buf-size] of ASCIlI-code;

28. The input-h procedure brings the next line of input from the specified file into the buffer array and

returns the value rrue, unless the file has already been entirely read, in which case it returns false. The

conventions of TEX are followed; i.e., ASCII_code numbers representing the next line of the file are input

into buffer [0], buffer [1], .. ., buffer [limit — 1]; trailing blanks are ignored; and the global variable limit is set
to the length of the line. The value of limir must be strictly less than buf-size.

We assume that none of the ASCII-code values of buffer [7] for 0 < j < limit is equal to 0, ‘177, line-feed,
form-feed, or carriage-return. Since buf_sizeis strictly less than long_buf_size, some of WEAVE’s routines use

the fact that it is safe to refer to buffer [limit + 2] without overstepping the bounds of the array.

function input-h (var f : text_file): boolean; {inputs a line or returns false}
var final-limit : 0 . . buf-size ; { limit without trailing blanks}
begin limit t 0; final-limit t 0;

if eof (f) then input-h « false

else begin while —eoln (f) do

begin buffer[limit] «— zord(f1]; get(f); tner (Zimit);
if buffer [limit — 1] # "" then final-limit « limit ;
if limit = buf_size then

begin while —eoln(f) do get(f);
decr (limit); { keep buffer| buf-size] empty }
print-nl (*! Input,line too, long °); loc « 0; error;
end;

end;

read-h (f); limit « final-limit; input-h + true ;

end;

end;

I

§29 WEAVE REPORTING ERRORS TO THE USER 25

29. Reporting errors to the user. The WEAVE processor operates in three phases: first it inputs the
source file and stores cross-reference data, then it inputs the source once again and produces the TEX output

file, and finally it sorts and outputs the index.

The global variables phase_one and phase-three tell which Phase we are in.

(Globals in the outer block 9) +=
phase-one : boolean ; { true in Phase I, false in Phases II and III}
phase-three : boolean; { true in Phase III, false in Phases I and II}

30. If an error is detected while we are debugging, we usually want to look at the contents of memory. A

special procedure will be declared later for this purpose.

(Error handling procedures 30) =
debug procedure debug-help; forward, gubed

See also sections 31 and 33.

This code is used in section 2.

31. The command ‘err-print (*! Error message “)’ will report a syntax error to the user, by printing the
error message at the beginning of a new line and then giving an indication of where the errcr was spotted

in the source file. Note that no period follows the error message, since the error routine will automatically

supply a period.

The actual error indications are provided by a procedure called error. However, error messages are not

actually reported during phase one, since errors detected on the first pass will be detected again during the
second.

define err-print (#) =

begin if —phase_one then

begin new-line ; print (#); error ;
end;

end

(Error handling procedures 30) 4-=

procedure error; {prints ‘.’ and location of error message }
var k, 1: 0. . longbuf size; {indices into buffer }
begin (Print error location based on input buffer 32);

update-terminal; mark-error;

debug debug-skipped «+ debug-cycle; debug-help; gubed

end;

| 26 REPORTING ERRORS TO THE USER WEAVE §32

32. The error locations can be indicated by using the global variables loc, line, and changing, which tell

respectively the first unlooked-at position in buffer , the current line number, and whether or not the current

line is from change-file or web_file. This routine should be modified on systems whose standard text editor

has special line-numbering conventions.

(Print error location based on input buffer 32) =

begin if changing then print (*. | (change file ‘) else print (7. ‘);
print_in (‘1.7, line : 1, *) °);
if loc > limit then | « limit

else | + loc;
for k «<1 to 1 do

if buffer [k — 1] = tab-mark then print (* °)
else print (zchr [buffer [k — 1}]); { print the characters already read }

new -line |;

for k «1 to 1 do print (°°); {space out the next line }
for k « 1 + 1 to limit do print(zchr|buffer(k — 1]]}; {print the part not yet read}
if buffer [limit] = "| * then print (zchr [" I”]); {end of PASCAL text in module names }
print("L); {t Is space separates the message from future asterisks }
end

This code is used in section 31.

33. The jump-out procedure just cuts across all active procedure levels and jumps out of the program.

This is the only non-local goto statement in WEAVE. It is used when no recovery from a particular error has

been provided.

Some PASCAL compilers do not implement non-local goto statements. In such cases the code that

appears at label end-of- WEAVE should be copied into the jump-out procedure, followed by a call to a

system procedure that terminates the program.

define fatal-error (#) =
begin new_hne ; print (#); error; mark_fatal; jump-out ;
end

(Error handling procedures 30) +=

procedure jump-out;

begin goto end-of- WEAVE;
end;

34. Sometimes the program’s behavior is far different from what it should be, and WEAVE prints an error

message that is really for the WEAVE maintenance person, not the user. In such cases the program says

confusion (“indication ofwherewe are’).

define confusion (# = fatal_error (©! This can‘ t_happen, (",#,)")

35. Anoverflow stop occurs if WEAVE tables aren’t large enough.

define overflow (#) = fatal_error ("! Sorry, °,#," capacity _exceeded)

§36 WEAVE DATA STRUCTURES 27

36. Data structures. During the first phase of its processing, WEAVE puts identifier names, index entries,

and module names into the large byte-mem array, which is packed with seven-bit integers. Allocation is

sequential, since names are never deleted.

An auxiliary array byre-start is used as a directory for byre-mem, and the fink, ilk, and zref arrays give
further information about names. These auxiliary arrays consist of sixteen-bit items.

(Types in the outer block 11} +=
eight-bits = 0 . . 255; {unsigned one-byte quantity}
sizteen-bits = 0 .. 65535; {unsigned two-byte quantity}

37. WEAVE has been designed to avoid the need for indices that are more than sixteen bits wide, so that it

can be used on most computers. But there arc programs that need more than 65536 bytes; TEX is one of
these. To get around this problem, a slight complication has been added to the data structures: byte-mem 1s

a two-dimensional array, whose first index is either 0 or 1. (For generality, the first index is actually allowed

to run between 0 and ww — 1, where ww is defined to be 2; the program will work for any positive value of

ww, and it can be simplified in obvious ways if ww = 1.)

define ww = 2 {we multiply the byte capacity by approximately this amount }

(Globals in the outer block 9) +=
byte-mem: packed array [0 .. ww — 1,0 . . maz_ bytes] of ASCII-code; { characters of names}
byte-start: array [0 . . maz-names] of sizteen-bits; { directory into byte_mem}
link: array [0 . . maz-names] of sizteen_ bits; {hash table or tree links }
ilk: array [0 . . maz_names] of sizteen-bits ; {type codes or tree links }
ref : array [0 .. maz_names] of sisteen-6its ; {heads of cross-reference lists}

38. The names of identifiers are found by computing a hash address 4 and then looking at strings of

bytes signified by hash[h] link[hash[h]], link[link[hash([h]]], . . . , until either finding the desired name or
encountering a zero.

A ‘name_pownter ’ variable, which signifies a name, is an index into byre-start. The actual sequence of

characters in the name pointed to by p appears in positions byte-sturt [p] to byte-start [p + ww] — 1, inclusive,

in the segment of byre-mem whose first index is p mod ww. Thus, when ww = 2 the even-numbered name

bytes appear in byte_mem|0, *| and the odd-numbered ones appear in byte_mem]|l, «|. The pointer 0 is used
for undefined module names; we don’t want to USC it for the names of identifiers, since 0 stands for a null

pointer in a linked list.

Wc usually have byte-start [name-ptr + w] = byte-ptr [(name-ptr + w) mod ww] for 0 < w < ww, since
these arc the starting positions for the next ww names to be stored in byte-mem.

define length (#) = byte-start [4 + ww | — byte-start [#] { the length of a name }

(Types in the outer block 11). +=
name-pointer = 0 . . maz_names; {identifies a name}

39. (Globals in the outer block 9) +=
name _ptr: name-pointer ; {first unused position in byte-start }
byte-ptr: array [0 . . ww — 1] of 0 . . muz-bytes; { first unused position in byte-mem }

40. (Local variables for initialization 1S) +=

wi: 0..ww-1; {to initialize the byte-mem indices }

41. (Set initial values 10) +=

for wi «0to ww — 1 do

begin byte-start [wi] + 0; byte-ptr [wi] +- 0;

end;

byte-sturt [ww] « 0; { this makes name 0 of length zero}
name-ptr + 1;

28 DATA STRUCTURES WEAVE §42

42. Several types of identifiers are distinguished by their lk:

normal identifiers are part of the PASCAL program and will appear in italic type:

roman identifiers are index entries that appear after @ in the WEB file.

wildcard identifiers are index entries that appear after @: in the WEB file.

typewriter identifiers are index entries that appear after @. in the WEB file.

array-like, begin-like, . . . , war-like identifiers are PASCAL reserved words whose ilk explains how they are

to be treated when PASCAL code is being formatted.

Finally, if ¢ is an ASCII code, an ilk equal to char-like + c¢ denotes a reserved word that will be converted
to character c.

define normal = 0 {ordinary identifiers have normal ilk }
define roman = 1 {normal index entries have roman ilk }
define wildcard = 2 {user-formatted index entries have wildcard ilk }
define typewriter = 3 { ‘typewriter type’ entries have typewriter ilk }
define reserved (#) = (ilk[#] > typewriter) {tells if a name is a reserved word}
define array-like = 4 {array, file, set }
define begin-like = 5 { begin }
define case-like = 6 {case}
define const-like = 7 { const, label, type }
define div-like = 8 { div, mod }
define do-like = 9 { do, of, then}
define else-like = 10 {else}
define end-like = 11 {end }
define for-like = 12 { for, while, with}
define goto-like = 13 { goto, packed}
define if-like = 14 {if}
define in-like = 15 {in}
define nil-like = 16 {nil}
define proc-like = 17 { function, procedure, program}
define record-like = 18 { record }
define repeat-like = 19 { repeat }
define ro-like = 20 { downto, to}
define until-like = 21 {until}

define vnr-like = 22 {var }
define loop-like = 23 {loop, xclause }
define char-like = 24 {and, or, not, in }

43. The names of modules are stored in byte-mem together with the identifier names, but a hash table is

not used for them because WEAVE needs to bc able to recognize a module name when given a prefix of that

name. A conventional binary seach tree is used to retrieve module names, with fields called link and rlink

in place of link and ilk. The root of this tree is rlink[0].

define llink = link {left link in binary scarch tree for module names }
define rlink = ilk {right link in binary scarch tree for module names }
define roor = rlink[0] {the root of the binary search tree for module names }

(Set initial values 10) + =
root « 0; {the binary search tree starts out with nothing in it }

§44 WEAVE DATA STRUCTURES 29

44. Here is a little procedure that prints the text of a given name on the user’s terminal.

procedure print-id (p : name-pointer); {print identifier or module name }
var k: 0. . maz_bytes; {index into byte-mem }
w: 0.. ww — 1; frow of byte-mem }

begin if p > name-ptr then print (IMPOSSIBLE)

else begin w « p mod ww;

for k «— byte-start [p] to byte-start [p + ww] —1 do print (zchr| byte-mem [w, k]]);
end;

end;

45. We keep track of the current module number in module_count, which is the total number of modules

that have started. Modules which have been altered by a change file entry have their changed-module flag

turned on during the first phase.

(Globals in the outer block 9) +=
module-count: 0 . . max-modules; {the current module number }
changed-module: packed array [0 . . maz_modules]| of boolean; {is it changed?}
change-exists : boolean; {has any module changed?}

46. The other large memory area in WEAVE keeps the cross-reference data. All uses of the name p are

recorded in a linked list beginning at zref [p], which points into the xmem array. Entries in xmem consist of

two sixteen-bit items per word, called the num and xlink fields. If x is an index into xmem, reached from

name p, the value of num(z) is either a module number where p is used, or it is def flag plus a module
number where p is defined; and zlink(z) points to the next such cross reference for p, if any. This list of
cross references is in decreasing order by module number. The current number of cross references is xref-ptr.

The global variable zref_switch is set either to def flag or to zero, depending on whether the next cross

reference to an identifier is to be underlined or not in the index. This switch is set to def _flug when Q!

or @d or @f is scanned, and it is cleared to zero when the next identifier or index entry cross reference has

been made. Similarly, the global variable mod-xref-switch is either def_flag or zero, depending on whether a

module name is being defined or used.

define num (#) = zmem|[#].num_field
define xlink (#) = zmem [#].zlink_field
define def flag = 10240 {must be strictly larger than max-modules }

47. (Types in the outer block 11) +=
zref_ number = 0. . maz_refs;

48. (Globals in the outer block 9) +=
xmem: array [xref-number] of packed record

num_field : sixteen-bits ; { module number plus zero or def flag}
xlink-field: sixteen bits; { pointer to the previous cross reference }
end;

zref ptr : zref number; { the largest occupied position in xmem }
zref switch, mod_zref switch: 0 . . def flag; { either zero or def flag }

49. (Set initial values 10) +=

xref-ptr +— 0; zref_switch «+ 0; mod-xref-switch «— 0; num (0) « 0; zref [0] «+ 0;

{ cross references to undefined modules }

30 DATA STRUCTURES WEAVE §50

50. A new cross reference for an identifier is formed by calling new._zref , which discards duplicate entries
‘and ignores non-underlined references to one-letter identifiers or PASCAL’s reserved words.

define append-xref (#) =

if zref-ptr = maz_refs then overflow (“cross, ref erence °)
else begin incr (zref-ptr); num (zref ptr) «— #;
end

procedure new-xref (p : name-pointer);

label exit;

var g: zref number ; {pointer to previous cross reference }
m, nm: sixteen-bits; { new and previous cross-reference value }

begin if (reserved(p) V (byte-start ip] + 1 = byte-start [p + Ww])) A (xref-switch = 0) then return;
m +— module-count + xref-switch; zref switch — 0; q « zref Ip];
if ¢ > 0 then

begin n « num (gq);

if (n =m) Vv (n =m + def flag) then return
else if m = n + dej-jlag then

begin num(q) « m; return;
end;

end;

append-zref (m); xlink (xref-ptr) + q; xref [p] « zref ptr ;
exit: end;

51. The cross reference lists for module names are slightly different. Suppose that a module name is

defined in modules my,..., my and used in modules ny,..., n;. Then its list will contain my + def-flag,

my + def flag, . .., mq + def flag, ny, . . . , ny, in this order. After Phase II, however, the order will be

my + def-flag, . . ., mg ++ def-flag, ny, . . ., Ny.

procedure new-mod-xref (p : name-pointer);

var gq, r: xref-number ; {pointers to previous cross references }
begin q « zref [p|; r — 0;
if ¢ > 0 then

begin if mod-xref-switch = 0 then

while num(q) > def flag do
begin r + gq; q « xlink (q);
end

else if num(q) > def-flag then
begin r « gq; gq « xlink (q);

end;

end;

append-xref (module-count + mod-xref-switch); xlink (xref-ptr) +— gq; mod_zref switch « 0;

if r = 0 then zref p] t zref-ptr
else xlink (r) « xref-ptr ;

end;

52.. A third large area of memory is used for sixteen-bit ‘tokens’, which appear in short lists similar to

the strings of characters in byte-mem. Token lists arc used to contain the result of PASCAL code translated

into TEX form; further details about them will be explained later. A text-pointer variable is an index into
tok-start .

(Types in the outer block 11) +=
text pointer = 0 . . maz_texts; {identifies a token list }

§53 WEAVE DATA STRUCTURES 31

83. The first position of tok-mem that is unoccupied by replacement text is called rok-ptr, and the first

unused location of rok-srarr is called text-ptr. Thus, we usually have rok-start [text ptr] = tok-ptr.

(Globals in the outer block 9) +=
rok-mem: packed array [0 . . max-toks] of sixteen-bits; { tokens}
tok-start : array [text-pointer] of sixteen-bits; { directory into tok-mem }
text-ptr : text-pointer ; {fist unused position in rok-start }
tok-ptr: 0 . . max-toks; { first unused position in rok-mem }
stat max-tok-ptr , maz_trt_ptr : 0 . . max-toks ; {largest values occurring }
tats

54. (Set initial values 10) +=

tok-ptr «— 1; text-ptr « 1; tok_start|[0] «— 1; tok_start[1] « 1;
stat max-tok-ptr «— 1; max-txt-ptr « 1; tats

: 32 SEARCHING FOR IDENTIFIERS WEAVE $55

65. Searching for identifiers. The hash table described above is updated by the id-lookup procedure,

which finds a given identifier and returns a pointer to its index in byte-start. The identifier is supposed

to match character by character and it. is also supposed to have a given ilk code; the same name may be

present more than once if it is supposed to appear in the index with different typesetting conventions. If the

identifier was not already present, it is inserted into the table.

Because of the way WEAVE’ scanning mechanism works, it is most convenient to let id-lookup search for

an identifier that is present in the buffer array. Two other global variables specify its position in the buffer:

the first character is buffer [id_first], and the last is buffer [id_loc — 1].

(Globals in the outer block 9) +=
id-first: 0 . . long_buf_size; { where the current identifier begins in the buffer }
sd_loc: 0 . . long-buf-size; {just after the current identifier in the buffer }

hash: array (0.. hash-size] of sizteen_bits; {heads of hash lists}

56. Initially all the hash lists are empty.

(Local variables for initialization 16) +=
h: 0. . hash-site ; {index into hash-head array }

57. (Set initial values 10) +=

for h «+ 0 to hash-size ~ 1 do hash[h| — 0;

58. Here now is the main procedure for finding identifiers (and index entries). The parameter tis set to

the desired ilk code. The identifier must either have ilk = t, or we must have t= normal and the identifier

must be a reserved word.

function id-lookup (t : eight-bits): name-pointer; {finds current identifier }
label found;

. vari: O.. long-buj-sixe ; [index into buffer}
h: 0 . . hash-size; {hash code}
k: 0.. max-bytes; {index into byre-mem }
w: 0..ww—1; {row of byte-mem }
1: 0. . long-buf-size ; {length of the given identifier }
p: name-pointer; {where the identifier is being sought }

begin | « id-lot — id_first; {compute the length}
(Compute the hash code & 59);
(Compute the name location p GO);

if p = name-ptr then (Enter a new name into the table at position p 62);
id-lookup +- p;

end;

59. A simple hash code is used: If the sequence of ASCII codes is ¢y€2. . . Cm, its hash value will be

(2" ley +27 “2¢0 +++. + ¢,) mod hash_size.

(Compute the hash code h 59)=
h — buffer[id first]; i « id-first + 1;
while i < id-lot do

begin nt (h + h + buffer [¢]) mod hash_size; ner (i):
end

This code is used in section 58.

§60 WEAVE SEARCHING FOR IDENTIFIERS 33

60. If the identifier is new, it will be placed in position p = name-ptr, otherwise p will point to its existing
' location.

(Compute the name location p 60) =
p « hash[h];
while p # 0 do

begin if (length(p) = [) A ((ilk [p] = t) V ((t = normal) A reserved(p))) then
(Compare name p with current identifier, goto found if equal 61);

p + link [p];

end;

p + name-ptr; {the current identifier is new }
link [p] + hash [h]; hash[h] « p; {insert p at beginning of hash list }

found:

This code is used in section 58.

61. (Compare name p with current identifier, goto found if equal 61) =
begin t « td_first ; k « byte-start [p/; w «— p mod ww ;

while (i < id-Zoc) 4 (buffer [i] = byte-mem[w, k]) do
begin incr (i); ner (k);

end;

if i = id-Zoc then goto found; {all characters agree}
end

This code is used in section 60.

62. When we begin the following segment of the program, p = name-ptr.

(Enter a new name into the table at position p 62) =

begin w « name-ptr mod w;

if byte-ptr [W] + | > maz_bytes then overflow (“byte memory °);
if name-ptr + ww > maz_names then overflow (‘name °);
i « id-first; k « byte-ptr [w]; { getready to move the identifier into byre-mem }
while i < id-Zoc do

begin byte-mem [w, k] « buffer [i]; tner (k); iner (i);
end;

byte-ptr [w] « k; byte-start [name-ptr + ww] + k; incr (name-ptr); ilk [p] « t; sref [p] — 0
end

This code is used in section 58.

34 INITIALIZING THE TABLE OF RESERVED WORDS WEAVE §63

63. Initializing the table of reserved words. We have to get PASCAL’s reserved words into the hash

table, and the simplest way to do this is to insert them every time WEAVE is run. A few macros permit us to

do the initialization with a compact program.

define s1d9 (#) = buffer 19] — #; cur-name + id-lookup
define sid8 (#) = buffer [8] — #; sid9
define s:d7(#) = buffer [7] «— #; sid8
define sid6 (#) = buffer [6] — #; aid7
define sid5 (#) = buffer [5] «— #; sid6
define sid4 (#) = buffer [4] «— #; sid5
define sid$ (#) = buffer [3] t #; std4
define sid2 (#) = buffer [2] — #; s1d3
define sid (#) = buffer [1] « #; sid?
define id2 = id-first «+ 8; std8

define id3 = idfirst « 7; sid7
define 1df = id-first « 6; 81db
define id5 = id-first + 5; std

define id6 = id-first «— 4; sid}

define id7 = id-first «— 3; s1d$

define id8 = id-first + 2; aid2

define id9 = id-first « 1; sidl

(Globals in the outer block 9) +=
cur-name : name-pointer ; { points to the identifier just inserted}

§64 WEAVE INITIALIZING THE TABLE OF RESERVED WORDS 35

64. The intended use of the macros above might not bc immediately obvious, but the riddle is answered

by the following:

(Store all the reserved words 64) =

wd_loc « 10;

id3 (“a”)(tnt) (man) (char-like + and-sign);

id ("a")("r")("c")(a")("y") (array bike);
id5 ("bp") ("e")("g")("i")("n")(begin_kke);
idf ("c")}("a"}("s")("e")(case like);
1d5 ("c")("o"){"n")(8" }("t")(const like);
id3 ("a") (mim) ("v)(div_like);
1d2 ("d") ("0") (do-like);
dG ("d")("o")("w")("n")("t") ("0") {to kike);
idf ("e")("17)("s")("e")(else like);
1d3("e")("n"}{"a")(end_kke);
id4 ("£r}("i")("1")("e")(array_like);
id ("£")("o")("r")(for like);

dd ("£")("u")("n") ("ec)(" tm) ("im)("o")("n")(proc_like);
idf ("g")("o")("t")("o")(goto like);
id2 ("1)("£7)(if like);
id2 ("i") "nt (char-like + set-element-sign);
id5 ("1")("a")("b")("e") ("1") (const like);
id ("m")("o")("d")(div like); |
id ("nt") ("1") ("1") (nil like);
id3 ("n") (or) ("t ") (char-Zike + not-sign);
id2 ("o")("£")(do_like);

2d? ("o")("rt (char-like + or-sign);

id ("p") ("a)("em)("k")("e")("d")(goto like);
wd ("p)("r") (Mom) (Me)("en)("d")("u")("r")("e") (proc_tike);
td7("p")("r")("o")("g")("r"} ("a") ("mn") (proc like);
id6 ("xm ("e") (men) (mom) (Men) ("a") (record like);
dG {"r")("e")("p") ("em }("am)("t")(repeat_ like);
id3 ("s")(ten)(SA array-like);
vd 4 ("t")("h"){"e")("n")(do like);
wd2("t")("o")(to like);
sdf (£7) (ry) ("p") ("en) (const like);
td 5 (Mu) ("mn") ("te") ("i") ("1") {until like); '
id3 ("v")(“a”)("r")(var like);
id ("wt)("h) (mir) (1) ("ee) (for like);
id ("w)("i")("6")("ho (for like);
wd7 ("x") ("ec") ("1") ("am){"u")("s")("e") (loop like);

This code 13 used in section 261.

36 SEARCHING FOR MODULE NAMES WEAVE §65

65. Searching for module names. The mod-lookup procedure finds the module name mod-text [1 . . {]
“in the search tree, after inserting it if necessary, and returns a pointer to where it was found.

(Globals in the outer block 9) +=
mod-text: array [0 . . longest-name] of ASCII-code ; {name being sought for}

66. According to the rules of WEB, no module name should be a proper prefix of another, so a “clean”

comparison should occur between any two names. The result of mod-lookup 1s O if this prefix condition is

violated. An error message is printed when such violations are detected during phase two of WEAVE.

define less = 0 {the first name is lexicographically less than the second }
define equal = 1 {the first name is equal to the second }
define greater = 2 {the first name is lexicographically greater than the second}
define prefix = 3 {the first name is a proper prefix of the second }
define extension = 4 {the first name is a proper extension of the second}

function mod-lookup (I : sixteen-bits): name-pointer ; { finds module name}
label found;

var c: less . . extension; { comparison between two names }
ji 0.. longest-name ; {index into mod-text }
k: 0 . . mux-bytes; {index into byre-mem }
w:0.. ww — 1; {row of byte-mem }
p: name-pointer ; {current node of the search tree }
g: name-pointer ; {father of node p}

begin c¢ + greater; q¢ «+ 0; p «- root;

while p # 0 do

begin (Set c to the result of comparing the given name to name p 68);
q <P;

if ¢ = less then p « llink|q]
else if ¢ = greater then p + rlink[q]

else goto found;

end;

(Enter a new module name into the tree 67);

found: if C # equal then

begin err-print (!_ Incompatible section names); ptoO;
end;

mod-lookup +— p;

end;

67. (Enter a new module name into the tree 67) =
w — nnme-ptr mod ww; k « byte-ptr [w];

if k +1 > maz.bytes then overflow(“byte memory °);
if name-ptr > maz_names — ww then overflow (‘name °);
p name-ptr;

if ¢ = less then llink[q] « p
else rlink[q] « p;
link [p] « O; rlink [p] t 0; xref [p]t 0; ¢c + equal;
for j « 1 to! do byte-mem [w, k + j — 1] — mod-text [j];
byte-ptr [w] «— k + l; byte-start [name-ptr + ww | — k + Ul; tner (name-ptr);

This code 1s used in section 66.

§68 WEAVE SEARCHING FOR MODULE NAMES 37

68. (Set c to the result of comparing the given name to name p 68) =

begin k « byte-start [p]; w «— p mod Ww; ¢ « equal;j «+ 1;

while (k < byte-start [p + ww]) A (j <1) a (mod-text [j] = byte-mem [w, k]) do
begin incr (k); ner (j);
end;

if k = byte-start [p + ww] then

if 7 > [then ¢ « equal
else c¢ «— extension

else ifj > | then ¢ + prefix

else if mod-text [j] < byte-mem fw, k] then c « less
else c¢ + greater;

end

This code is used in sections 66 and 69.

69. The prefiz_lookup procedure is supposed to find exactly one module name that has mod-rext [1 . . {]
as a prefix. Actually the algorithm silently accepts also the situation that some module name is a prefix of

mod-text [1 . 1], because the user who painstakingly typed in more than necessary probably doesn’t want to
be told about the wasted effort.

Recall that error messages are not printed during phase one. It is possible that the prefiz_lookup procedure
will fail on the first pass, because there is no match, yet the second pass might detect no error if a matching

module name has occurred after the offending prefix. In such a case the cross-reference information will be
incorrect and WEAVE will report no error. However, such a mistake will be detected by the TANGLE processor.

function prefiz_lookup(l : sixteen-bits): name-pointer; {finds name extension}
var c: less . . extension; {comparison between two names}

count: 0.. maz_names; {the number of hits }
j: 0. . longest-name; {index Into mod-text }
k: 0.. maz bytes; {index into byte.mem } |
w:0.. ww — I; [row of byte-mem }
p: name-pointer ; {current node of the search tree }
g: name-pointer { another place to resume the search after one branch is done}
rT: name-pointer, { extension found }

begin q « 0; p « root; count + 0; r «— 0; { begin search at root of tree}
while p # 0 do

begin (Set c to the result of comparing the given name to name p 68);

if ¢ = less then p « llink|p]
else if ¢ = greater then p « rlink [p]

else begin r « p; iner (count); ¢ — rhink[p); p « lhink[p];
end;

if p = 0 then

begin p «~~ gq; qt 0;

end;

end;

if count # 1 then

if count = 0 then err-print (*! Name does notmatch’)
else err-print (*!_Ambiguouspref ix °);

prefix-lookup + 7; { the result will be 0 if there was no match}
end;

3§ LEXICAL SCANNING WEAVE §70

70. Lexical scanning. Let us now consider the subroutines that read the WEB source file and break it

into meaningful units. There are four such procedures: One simply skips to the next ‘Q,,’ or ‘@+’ that begins

a module; another passes over the TEX text at the beginning of a module; the third passes over the TEX text
in a PASCAL comment; and the last, which is the most interesting, gets the next token of a PASCAL text.

71. But first we need to consider the low-level routine gez-line that takes care of merging change-file into

web-file. The get-line procedure also updates the line numbers for error messages.

(Globals in the outer block 9) +=

line : integer ; {the number of the current line in the current file}
other-line : integer ; {the number of the current line in the input file that is not currently being read }
temp-line : integer ; {used when interchanging line with other-line}
limit : 0. . long-buj-size ; {the last character position occupied in the buffer }
loc: 0. . long_buf size; {the next character position to be read from the buffer }
input-has-ended: boolean; {if true, there is no more input }
changing : boolean ; {if true, the current line is from change-file }

72. As we change changing from true to false and back again, we must remember to swap the values of
line and other-line so that the err-print routine will be sure to report the correct line number.

define change-changing = changing + —changing; temp-line « other-line; other-line + line;

line « temp-line { line « other-line }

73. When changing is false, the next line of change-file is kept in change buffer [0 . . change-limit], for

purposes of comparison with the next line of web-file. After the change file has been completely input, we
set change-limit «+ 0, so that no further matches will be made.

(Globals in the outer block 9) +=

change_buffer: array [0 . . buj-size] of ASCII. code;

change-limit: 0 . . buj-size; {the last position occupied in chunge buffer }

74. Here’s a simple function that checks if the two buffers are different.

function lines-dent-match: boolean;

label exit;

var k: 0 . . buj-size; {index into the buffers }
begin lines-dent-match « true;

if change-limit # limit then return;
if limit > 0 then

for k «+ 0 to limit — 1 do

if change buffer [k] # buffer[k] then return;
lines-dont-match <«— false

exit: end:

§75 WEAVE LEXICAL SCANNING 39

75. Procedure prime-the-change-bufler sets change buffer in preparation for the next matching operation.

* Since blank lines in the change file are not used for matching, we have (change-limit = 0) A ~changing if

and only if the change file is exhausted. This procedure is called only when changing is true; hence error

messages will be reported correctly.

procedure prime-the-change-bufler,

label continue, done, exit;

var k: 0. . buf_size; {index into the buffers }
begin change-limit + 0; {this value will be used if the change file ends}
(Skip over comment lines in the change file; return if end of file 76);
(Skip to the next nonblank line; return if end of file 7);
(Move buffer and limit to change-bufler and change-limit 78);

exit: end;

76. While looking for a line that begins with @x in the change file, we allow lines that begin with @, as

long as they don’t begin with @y or @z (which would probably indicate that the change file is fouled up).

(Skip over comment lines in the change file; return if end of file 76) =
loop begin ner (line);

if —input_In (change-file) then return;
if limir < 2 then goto continue;

if buffer [0] # "@" then goto continue;
if (buffer [1] > "X") A (buffer [1] <"Z") then buffer [1] « buffer [1] + "z" —"Z"; { lowercasify }
if buffer [1] = "x" then goto done;
if (buffer [1]'= y”) Vv (buffer [1] = “2”) then

begin loc « 2; err-print (.Y_ Where is thematching@x7?°};
end;

continue : end;

done:

This code is used in section 75.

77. Here we are looking at lines following the @x.

(Skip to the next nonblank line; return if end of file 77) =
repeat ner (line);

if inputln (change.&) then

begin err-print (*! Change file ended after 0x’); return;
end;

until limit > 0;

This code is used in section 75.

78. (Move buffer and limit to change buffer and change-limit 78) =
begin change-limit + limit,

for k « 0 to limit do change buffer [k] « buffer [k];
end

This code is used in sections 75 and 79.

40 LEXICAL SCANNING WEAVE §79

79. The following procedure i8 used to see if the next change entry should go into effect; it is called only

when changing is false. The idea is to test whether or not the current contents of buffer matches the current

: contents of change _buffer . If not, there’s nothing more to do; but if so, a change is called for: All of the

text down to the @y is supposed to match. An error message is issued if any discrepancy is found. Then the

procedure prepares to read the next line from change-file.

procedure check-change; { switches to change-file if the buffers match}
label ext;

var n: integer; {the number of discrepancies found }
k: 0. . buf size; {index into the buffers }

begin if lines-dont-match then return;

n + 0;

loop begin change-changing; {now it’s true }
incr (line);

if ~input_ln (change-file) then

begin err-print (° ! Changef ileendedbef ore Qy °); changelimit + 0; change-changing;
{false again}

return;

end;

(If the current line starts with Qy, report any discrepancies’and return 80);

(Move buffer and limit to change buffer and change_limit 78);

change-c hanging ; {now it’s false }
incr (line);

if —input_In (web-fife) then

begin err-print (© 1 _WEB_f ile_ended during a change °);input-has-ended+ true ; return;
end;

if lines_dont_.match then sncr (n);

end;

exit: end;

80. (If the current line starts with Qy, report any discrepancies and return 80) =
if limir > 1 then

if buffer[0] = "@" then
begin if (buffer [1} > "X"*} A (buffer [1] <"Z") then buffer[l] «— buffer [1] + "z" — "2";

{ lowercasify}
if (buffer{l] = "x") v (buffer [1] = "2") then
begin loc « 2; err-print (“' Where is thematchingQy?"});
end

else if buffer [1] = "y" then
begin if n > 0 then

begin loc « 2;

err-print(“VY Hmm. . ..",n : 1, "of the preceding lines failed to match’);
end;

return;

end;

. end

This code is used in section 79.

§81 WEAVE LEXICAL SCANNING 41

81. The reset-input procedure, which gets WEAVE ready to read the user’s WEB input, is used at the beginning

of phases one and two.

procedure reset-input;

begin open-input; line + 0; other-line + 0;

changing «— true ;, prime-the-change-bufler |; change-changing;

limit «— 0; loc «— 1; buffer [0] « "_"; input-has-ended + false;

end;

82. The get-line procedure is called when loe > limit, it puts the next line of merged input into the buffer

and updates the other variables appropriately. A space is placed at the right end of the line.

procedure get-line ; {inputs the next line }
label restart;

begin restart: if changing then changed-moduZe[module-count] + true

else (Read from web-file and maybe turn on changing 83);
if changing then

begin (Read from change-file and maybe turn off changing 84);

if =changing then

begin changed-module [module-count] + true; goto restart;

end;

end;

loc « 0; buffer [limit] « "_";

end;

83. (Read from web-file and maybe turn on changing 83) =

begin ner (line);

. if —input_In (web-file) then input-has-ended <— true

else if limit = change-limit then

if buffer(0] = change _buffer[0] then
if change-limit > 0 then check-change;

end

This code is used in section 82.

84. (Read from change-file and maybo turn off changing 84) =
begin incr (line);
if inputIn (change-file) then

begin err-print (*! [Changef ile endedwithout_Qz °); buffer [0] « "@"; buffer [1] « "2"; limit « 2;
end;

if limit > 1 then {check if the change has ended }
if buffer{0] = "@" then
begin if (buffer [1] > "X") A (buffer [I] <"Z") then buffer [I] « buffer [1] + "2" — "Z";

{ lowercasify }
if (buffer[l] = "x") v (buffer [1] = "y") then

begin loc « 2; err-print (| Where _is_the matching @z7°);
end

else if buffer [1] = "2" then
begin prime _the_change_ buffer; change-changing;
end;

end;

end

This code is used in section 82.

42 LEXICAL SCANNING WEAVE ~~ §8)

85. At the end of the program, we will tell the user if the change file had a line that didn’t match any

‘relevant line in web-file.

(Check that all changes have been read 85) =

if change-limit # 0 then { changing 1s false}
begin for loc « 0 to change-limit do buffer [loc] «— change buffer [loc];
limit + change-limit; changing + true; line «+ other-fine; loc + change-limit;

err-print (*! Changef ile entry, did notmatch’);
end

This code is used in section 261.

86. Control codes in WEB, which begin with ‘@’, are converted into a numeric code designed to simplify
WEAVE’s logic; for example, larger numbers are given to the control codes that denote more significant

milestones, and the code of new-module should be the largest of all. Some of these numeric control codes

take the place of ASCII control codes that will not otherwise appear in the output of the scanning routines.

define ignore = 0 { control code of no interest to WEAVE}
define verbatim = 2 {extended ASCII alpha will not appear }
define force-line = ‘3 {extended ASCII beta will not appear}

define begincomment = ‘11 { ASCII tab mark will not appear }
define end-comment = ‘12 (ASCII line feed will not appear }
define octal = ‘14 {ASCII form feed will not appear}
define her = ‘15 { ASCII carriage return will not appear}
define double-dot = ‘40 { ASCII space will not appear except in strings}
define no-underline = “175 {this code will be intercepted without confusion }
define underline = ‘176 { this code will be intercepted without confusion}
define param = ‘177 { ASCII delete will not appear }
define rref-roman = 203 {control code for ‘@~’}
define zref wildcard = ‘204 {control code for ‘Q:’}
define zref_typewriter = 205 {control code for ‘Q.’}
define TeX-string = 206 {control code for ‘Qt’}
define check-sum = 207 {control code for ‘@$’}
define join = 210 {control code for ‘Q&’}
define thin-space = 211 {control code for ‘@,’}
define math-break = 212 {control code for ‘@|’}
define line-break = 213 {control code for ‘@/’}
define big-fine-break = ‘214 { control code for ‘Q#’}
define no-line-break = 215 {control code for ‘@+’}
define pseudo-semi = ‘216 {control code for ‘@;’}
define format = 217 {control code for ‘Of}
define definition = ‘220 (control code for ‘@d’}
define begin_pascal = 221 { control code for ‘Qp’}
define module-name = 222 {control code for ‘@<’}
define new-module = 223 {control code for ‘@,’ and ‘@*’}

887 WEAVE LEXICAL SCANNING 43

87. Control codes are converted from ASCII to WEAVE’ internal representation by the c¢ontrol_coderoutine.

function control.code(c : ASCII code): eight-birs; {convert c after @}
begin case c¢ of

"@": control-code — "@"; { ‘quoted’ at sign}
"MM. control-code + octal; {precedes octal constant }
"On control-code + hex; {precedes hexadecimal constant}
"": control-code « check-sum; { precedes check sum constant }
"_", tab-mark, "*": control-code + new-module ; {beginning of a new module}
"=": control-code + verbatim,

"\": control-code « force-line ;

"DM, "d": control-code + definition, {macro definition }
"Er "f ": control-code +— format; { format definition }
"{": control-code « begin-comment ; { begin-comment delimiter }
"IN: control-code «— end-comment; {end-comment delimiter}
"PM. "p": control-code + begin_pascal; {PASCAL text in unnamed module }
"&": control-code + join; {concatenate two tokens }
"<M: control-code «— module-name ; {beginning ofamodule name }
">": begin err-print (©! _Extra_@> °); control-code « ignore;

end; {end ofmolud name should not be discovered in this way}
"TM, "t”: control-code <— TeX-string; { TrX box within PASCAL}
"1": control-code «— underline ; { set definition flag}
"PM: control-code + no-underline ; {reset definition flag}
"te control-code + xref-roman; {index entry to be typeset normally }
" .": control-code + xrej-wildcard; {index entry to be in user format }
" ": control-code + xrej-typewriter ; {index entry to bc in typewriter type}
Mo": control-code «— thin-space ; {puts extra space in PASCAL format }
"Iv. control-code +— math-break; {allows a break in a formula }
"/M. control-code + line-break; { forces end-of-line in PASCAL format }
"gM": control-code + big-line-break; {forces end-of-line and some space besides }
"+4": control-code + no-line-break; {cancels end-of-line down to single space}

".": control-code + pseudo-semi; { acts like a semicolon, but is invisible }
(Special control codes allowed only when debugging 88)

othercases begin err-print (' Unknown control code); control-code «— ignore;
end

endcases;

end;

88. If WEAVE is compiled with debugging commands, one can write @2,@1, and @0 to turn tracing fully on,

partly on, and off, respectively.

(Special control codes allowed only when debugging 88) =
debug

"or, Min, "2": begin tracing + c¢ — "OM"; control-code t ignore;
end;

gubed

This code is used in section 87.

44 LEXICAL SCANNING WEAVE 889

89. The skip-limbo routine is used on the first pass to skip through portions of the input that are not

in any modules, i.e., that precede the first module. After this procedure has been called, the value of

input-has-ended will tell whether or not a new module has actually been found.

procedure skip-limbo; {skip to next module}

label exit ;

var c: ASCII-code; {character following @}
begin loop

if loc > limit then

begin get-fine;

if input-has-ended then return;
end

else begin buffer[limit + 1] « "@";
while buffer [loc] # "@" do incr (loc);
if loc < limit then

begin loc « loc + 2; ¢ « buffer [loc — 1};
if (¢c =",") V (c = tab-mark) Vv (c = "*") then return
end;

end;

exit: end;

90. The skip-TeX routine is used on the first pass to skip through the TEX code at the beginning of a

module. It returns the next control code or ‘|’ found in the input. A new_module is assumed to exist at the

very end of the file.

function skip- TeX : eight bits; {skip past pure TEX code }
label done;

_ var ec: eight-bits; {control code found}
begin loop

begin if loc > limit then

begin get-line |

if tnput_has_ended then

begin ¢ « new-module; goto done;

end;

end;

buffer [limir + 1] — "Qn;
repeat ¢ « buffer [loc]; tner (Zoe);

if ¢ = “I” then gotO done;

until ¢ = "@";

if loc < limit then

begin ¢ t control-code (buffer [loc]); incr (loc); goto done;
end;

end;

done: skip_TeX « ¢;

end;

§91 WEAVE LEXICAL SCANNING 45

: 91. The skip-comment routine is used on the first pass to skip through TEX code in PASCAL comments.

il ' The bal parameter tells how many left braces are assumed to have been scanned when this routine is called,

and the procedure returns a corresponding value of bal at the point that scanning has stopped. Scanning stops

either at a |’ that introduces PASCAL text, in which case the returned value is positive, or it stops at the end

= of the comment, in which case the returned value is zero. The scanning also stops in anomalous situations
when the comment doesn’t end or when it contains an illegal use of @. One should call skip_comment(1)
when beginning to scan a comment.

function skip-comment (bal : eight-bits): eight_bits; {skips TEX code in comments}
label done;

var c¢: ASCII.code; {the current character }
| begin loop

begin if loc > limit then

begin get-line ;

if input-has-ended then

begin bal + 0; goto done;

end; {an error message will occur in phase two }
end;

c¢ « buffer [loc]; tner (loc);
if c="1" then goto done,

(Do special things when c¢ = "@", "\", "{", "}"; goto done at end 92);
end;

done: skip-comment ¢— bal;

end;

92. (Do special things when c¢ ="¢", "\", "{", "}"; goto done at end 92) =
if ¢ = "@" then

begin ¢ « buffer [loc];
if (c £".") 4 (c # tab-mark) A (c # "*") then tner (loc)
else begin decr(loc); bal t 0; goto done;

end {an error message will occur in phase two }
end

else if (c = "\") a (buffer [loc] # "@") then incr (loc)
else if ¢ = "{" then tner (bal)

else if ¢ = "}" then

begin decr (bal);
if bal = 0 then goto done;
end

This code is used in section 91.

46 INPUTTING THE NEXT TOKEN WEAVE §93

93. Inputting the next token. As stated above, WEAVE's most interesting lexical scanning routine is

the ger-next function that inputs the next token of PASCAL input. However, ger-next is not especially

complicated.

The result of ger-next is either an ASCII code for some special character, or it is a special code representing

a pair of characters (e.g., ‘:=" or ‘..’), or it is the numeric value computed by the control-code procedure,
or it is one of the following special codes:

ezponent: The E' in a real constant.

identifier: In this case the global variables id-first and td_loc will have been set to the appropriate values
needed by the id-lookup routine.

string: In this case the global variables id-first and id-Zoc will have been set to the beginning and ending-

plus-one locations in the buffer. The string ends with the first reappearance of its initial delimiter;

thus, for example,

‘This isn”t a single string’

will be treated as two consecutive strings, the first being ‘This isn “.

Furthermore, some of the control codes cause ger-nexr to take additional actions:

xref-roman , zref wildcard, rreftypewriter , TeX string: The values of id-first and id_loc will be set so that

the string in question appears in buffer [id-first . . (id-loc — 1)].

module-name: In this case the global variable cur-module will point ro the byre-start entry for the module

name that has just been scanned.

If get-next sees ‘QV’ or ‘@?’, it sets xref-switch to def flag or zero and goes on to the next token.

A global variable called scanning-hex is set true during the time that the letters A through F should be

treated as if they were digits.

define exponent = 200 {E or e following a digit }
define srring= ‘201 {PASCAL string or WEB precomputed string }
define identifier = ‘202 {PASCAL identifier or reserved word} .

(Globals in the outer block 0) +=
cur-module : name-pointer ; {name of module just scanned }
scanning-hex: boolean; {are we scanning a hexadecimal constant? }

94. (Set initial values 10) +=

scanning-hex « false;

§95 WEAVE INPUTTING THE NEXT TOKEN 47

95. As one might expect, get-nezt consists mostly ofa big switch that branches to the various special cases
that can arise.

define up_to(#)=# — 24,4 — 23,# —22,#—21,# —20,# — 19,# — 18,# — 17,# — 16,# — 15,# — 14,# — 13,
#—-12, #—~11,#—-10,#-9, #8, #—-7 #—6,#—-5 84-4, #-3,#-2,#-1,%

function get-nezt : eight-bits; {produces the next input token }
label restart, done, found;

var c: eight-bits; {the current character }
d: eight-bits; { the next character }
i, k: 0, . longest_.name; {indices into mod-rext }

begin restart: if loc > limit then

begin get-line ;

if input-has-ended then

begin c¢ ¢ new-module; goto found;

end;

end;

c¢ + buffer [loc]; incr (loc);
if scanning-hez then (Go to found if ¢ is a hexadecimal digit, otherwise set scanning-hex + false 06);
case c¢ of

"A" up-to ("Z"),"a", up-to ("2"): (Get an identifier 98);
wen nnnn. (Get a string 99);
"@": (Get control code and possible module name 100);

(Compress two-symbol combinations like *: =’ 07)
" ". tab-mark: goto restart ; {ignore spaces and tabs }
othercases do-nothing

endcases;

found: debug if trouble_shooting then debug-help; gubed
gelt-next — Cc;

end;

96. (Go to found if c¢ is a hexadecimal digit, otherwise set scanning-hex t false 06) =
if (c>"0")A (c <"9"))V ((c >"A") A (c <"F")) then goto found
else scanning-hex + false

This code is used in section 95.

48 INPUTTING THE NEXT TOKEN WEAVE §97

97. Note that the following code substitutes @{ and @} for the respective combinations * (*’ and ‘*)’,

| Explicit braces should be used for TEX comments in PASCAL text.

define compress (#) =

if loe < limit then

| begin c « #; incr (loc);
end

| (Compress two-symbol combinations like ‘: ="97) =
". "if buffer [loc] =" _ "then compress (double-dot)

else if buffer [Zoc] =") " then compress ("1");
| "oo if buffer [loc] = "=" then compress (left-arrow);

n=t. if buffer [oc] = "=" then compress (equivalence-sign);
">®. if buffer [Zoc] = "=" then compress (greater-or-equal);

"<: if buffer[loc] = "=" then compress (less-or-equal)
| else if buffer Hoc] = ">" then compress(not-equal);

(if buffer Hoc] = "*" then compress (begin-comment)
else if buffer [loc] =". " then compress(" [");

| "xt if buffer [loc] = ") " then compress(end-comment);
This code is used in section 95.

| 98. (Get an identifier 98) =

| begin if ((c = “E”) v (c = "e")) A (loc > 1) then
if (buffer [loc — 2] < mgm) A (buffer [lac — 2| > "o") then c¢ « exponent;

if ¢ # exponent then

begin decr (loc); id-first « loc;
| repeat incr (Zoc); d «— buffer [loc];
: until ((d < "o") V ((d > ng") A (d < “A”)) V ((d > nz") A(d < "a")) V (d > nz") A (d + nn);

c + identifier; td loc + loc;

end;

: end

This code is used in section 95.

99. A string that starts and ends with single or double quote marks is scanned by the following piece of

; the program,

(Get a string 99) =
: begin id-first « loc — 1;

; repeat d « buffer [loc]; incr (loc);
if loc > limit then

| begin err-print (°! String constant didn’ “tuend”); loc — limit; d « ¢;
end;

; until d = c;
wd loc « loc; ¢ « string;
end

i This code is used in section 95.

§100 WEAVE INPUTTING THE'NEXT TOKEN 49

100. After an @ sign has been scanned, the next character tells us whether there is more work to do.

(Get control code and possible module name 100) =
begin c¢ « control-code (buffer [loc}); tncr (Zoc);
if ¢ = underline then

begin zref_switc h «— def_flag ; goto restart ;
end

else if ¢ = no-underline then

begin zref_switch «— 0; gotQ restart;
end

else if (¢ < TeX_string) A (c > zref.roman) then (Scan to the next @> 106)
else if ¢ = hex then scanning-hex + true

else if ¢ = module-name then (Scan the module name and make cur-module point to it 101)
else if ¢ = verbatim then (Scan a verbatim string 107);

end

This code is used in section 95.

101. (Scan the module name and make cur-module point to it 101) =

begin (Put module name into mod-text [1 . . k| 103);
if £k > 3 then

begin if (mod-rext [k] =".") A (mod-text [k — 1] =". "} A (mod-text [k — 2] =".") then
cur-module + prefiz_lookup (k - 3)

else cur-module +— mod-lookup(k);

end

else cur-module «— mod-lookup (k);
end

This code is used in section 100.

102. Module names are placed into the mod-text array with consecutive spaces, tabs, and carriage-returns

replaced by single spaces. There will be no spaces at the beginning or the end. (We set mod-text [0] « "_"
to facilitate this, since the mod-lookup routine uses mod-text [I] as the first character of the name.)

(Set initial values 10) +=

mod-text [0] «— "";

50 INPUTTING THE NEXT TOKEN WEAVE $103

103. (Put module name into mod-tezt [1 . . k] 103) =
Cok 0

loop begin if loc > limit then

begin get-line;

if input-has-ended then

begin err-print (*! Input ended insectionname °}; loc «+ 1; goto done,
end;

end;

d « buffer [loc]; (If end of name, goto done 104);
incr (loc);
if k < longest-name — 1 then ner (k);

if (d = "") V (d = tab-mark) then
begin d « " ";

if mod_text [k — 1] = "," then decr (k);
end;

mod_text [k] « d;

end;

done : (Check for overlong name 105 };
if (mod-tezt [kK] ="_") A (k > 0) then decr (k)

This code is used in section 101.

104. (If end of name, goto done 104) =
if d = "Q" then

begin d « buffer [loc + 1];
if d = ">" then

begin loc «+ loc + 2; goto done;

end;

if (d =".")V (d = tub-murk) Vv (d = "%"} then
begin err-print (“Y_ Section name didn’t end’); goto done;
end;

incr (k); mod-tezt [k] « "@"; incr (Zoc); (now d = buffer [loc] again }
end

This code is used in section 103.

105. (Check for overlong name 105)=
if k 2 longest-name — 2 then

begin print_nl(*!Sectionname too long: °);
for 7 « 1 to 25 do print (zchr [mod-tezt 7);
print”... *); mark-harmless;
end

This code is used in section 103.

§106 WEAVE INPUTTING THE NEXT TOKEN 5

106. (Scan to the next @108) =
begin id-first « loc; buffer [limit + 1] « "@";
while buffer [loc] # "@" do incr (Zoc);
id-lot + loc;
if loc > limit then

begin err-print (.! Controltext didn * “t_end °);loc« limit;
end

else begin loc « loc + 2;

if buffer [Zoc — 1] # ">" then err-print (* ! Control codes are forbidden, in, control text’);
end;

end

This code is used in section 100.

107. A verbatim PASCAL string will be treated like ordinary strings, but with no surrounding delimiters.

At the present point in the program we have buffer [loc —1] = verbatim; we must ser td_first to the beginning
of the string itself, and id-lor to its ending-plus-one location in the buffer. We also set Zoc to the position

just after the ending delimiter.

(Scan a verbatim string 107) = :
begin id-first « Zoc; incr (loc); buffer [limit + 1] « "@"; buffer [limit + 2] ">";
while (buffer [loc] # "@") v (buffer [Zoc + 1] # ">") do incr (Zoc);
ifZoc> limit then err-print (© ! Verbatim string didn ° “tend *);
vd loc « loc; loc + loc + 2;
end

This code is used in section 100.

52 PHASE ONE PROCESSING WEAVE $108

108. Phase one processing. We now have accumulated enough subroutines to make it possible to

carry out WEAVE's first pass over the source file. If everything works right, both phase one and phase two of

WEAVE will assign the same numbers to modules, and these numbers will agree with what TANGLE does.

The global variable next-control often contains the most recent output of ger-next; in interesting cases,

this will be the control code that ended a module or part of a module.

(Globals in the outer block 9) +=

next-control: eight-bits ; {control code waiting to be acting upon }

109. The overall processing strategy in phase one has the following straightforward outline.

(Phase I: Read all the user’s text and store the cross references 109) =
phase-one + true; phase-three + false; reset-input; module-count + 0; skip-limbo;

change_exists «— false ;

while —input_has_ended do (Store cross reference data for the current module 110);

changed-module [module-count] « change-exists ; {the index changes if anything does }
phase-one «— false; {prepare for second phase }
(Print error messages about unused or undefined module names 120);

This code is used in section 261.

110. (Store cross reference data for the current module 110) =

begin ner (module-count);

if module-count = maz.modules then overflow (“section number’);
changed-module [module-count t false ; {it will become rrue if any line changes }
if buffer{loc — 1] = "*" then
begin print (“* *,module-count : 1); update-terminal; {print a progress report }
end;

. (Store cross references in the TEX part of a module 113 };
(Store cross references in the definition part of a module 115);
(Store cross references in the PASCAL part of a module 117);
if changed-module [module-count] then change-exists <— true;
end

This code is used in section 109.

§111 WEAVE PHASE ONE PROCESSING 53

111. The PASCAL-xref subroutine stores references to identifiers in PASCAL text material beginning with

‘the current value of next_control and continuing until next-control is ‘{’ or ‘1°, or until the next “milestone”
is passed (i.e., next-control 2 foimat). If next-control 2 format when PASCAL-xref is called, nothing will

happen; but if next-control = "|" upon entry, the procedure assumes that this is the ‘|’ preceding PASCAL

text that is to be processed.

The program uses the fact that our internal code numbers satisfy the relations zref_-roman = identifier +

roman and zref wildcard = identifier + wildcard and xref-typewriter = identifier + typewriter and normal =

0. An implied ‘@!’ is inserted after function, procedure, program, and var,

procedure PASCAL-xref; { makes cross references for PASCAL identifiers }
label exit,

var p: name-pointer ; {a referenced name}
begin while next-control < format do

begin if (next-control 2 identifier) A (next-control < xref-typewriter) then

begin p «+ id-lookup (next_control — identifier); new-xref (p);
if (ilk [p] = proc_like) v (ilk [p] = vat-like) then zref switch « def flag; {implied ‘@!’}
end;

next-control «— get-next ’

if (next-control =" | ") V (next-control = ni") then return;
end;

exit: end;

112. The outer-xref subroutine is like PASCAL-xref but it begins with next-control # "|" and ends with
next-control 2 format. Thus, it handles PASCAL text with embedded comments.

procedure outer-xref ; {extension of PASCAL _zref }
var bal: eight-bits ; {brace level in comment}

- begin while next-control < format do

if next-control # "{" then PASCAL-xref

else begin bal — skip-comment (1); next-control «+ "I";
- while bal > 0 do

begin PASCAL-xref ;

if next-control = "| " then bal « skip-comment (bal)

else bal «— 0; {an error will be reported in phase two }
end;

end;

end;

54 PHASE ONE PROCESSING WEAVE §113

113. Inthe TEX part of a module, cross reference entries are made only for the identifiers in PASCAL texts
‘enclosed in I... |, or for control texts enclosed in @*...@ or @....@o0rQ:...@.

(Store cross references in the TEX part of a module 113) ES
repeat next.control « skip_TeX,

case next-control of

underline: xref-switch «— def flag; .
no_underline : xref-switch « 0;

Wi": PASCA L-xref;

zref_roman, zref_ wildcard, xref-typewriter, module-name : begin loc « loc — 2; next-control + get-next

{ scan to @ }
if next-control # module-name then new-xref (id-lookup (next-control — identifier));

end;

othercases do-nothing

endcases;

until nezt_control > format

This code is used in section 110.

114. During the definition and PASCAL parts of a module, cross references are made for all identifiers

except reserved words; however, the identifiers in a format definition arc referenced even if they arc reserved.

The TEX code in comments is, of course, ignored, except for PASCAL portions enclosed in |... |; the text
of a module name is skipped entirely, even if it contains |. . . | constructions.

The variables [hs and rha point to the respective identifiers involved in a format definition.

(Globals in the outer block 9) +=
lha , ths : name-pointer ; { indices into byte-start for format identifiers }

115. When we get to the following code we have next-control 2 format.

(Store cross references in the definition part of a module 115) =
while next-control < definition do {format or definition }

begin xref-switch « def-flag { implied Q!}
if next_control = definition then next-control + get_next

else (Process a format definition 116);
outer-xref ;

end

This code is used in section 110.

§116 WEAVE PHASE ONE. PROCESSING 55

116. Error messages for improper format definitions will be issued in phase two. Our job in phase one is
to define the ilk of a properly formatted identifier, and to fool the new_zref routine into thinking that the

identifier on the right-hand side of the format definition is not a reserved word.

(Process a format definition 116) =
begin next-control + get next;

if next-control = identifier then

begin lhs « id-lookup (normal); ilk [hs] «- normal, new -xref (1h); next-control + get-next;
if next_control = equivalence-sign then

begin next-control + get-next,

if next_control = identifier then

begin rhs t id_lookup(normal); ilk [Ihs] « ilk: [rhs]; ilk [rhs] «— normal; new-xref (rhs);
ilk [ths} «ilk [Zhs]; next-control + get_nexzt ;
end;

end;

end;

end

This code is used in section 115.

117. Finally, when the TEX and definition parts have been treated, we have next-control > begin_pascal.

(Store cross references in the PASCAL part of a module 117) =
if next-control < module-name then { begin_pascal or module-name }.

begin if next-control = begin-pascal then mod-xref-switch « 0

else mod-xref-switc h «— def_flag ;

repent if next-control = module-name then new-mod-xref (cur-module);

next-control + get-next ; outer-xref|

until next-control > module-name ;

end |
This code is used in section 110.

118. After phase one has looked at everything, wC want to check that each module name was both defined

and used. The variable cur-xref will point to cross references for the current module name of interest.

(Globals in the outer block 9) +=
cur-xref : rref number ; {temporary cross reference pointer }

119. The following recursive procedure walks through the tree of module names and prints out anomalies.

procedure mod-check (p : name-pointer); {print anomalies in subtree p }
begin ifp > 0 then

begin mod-check(llink[p]);

cur-xref + xref [p];

if num(cur_zref) < def-flag then
begin print_.nl (°° ! | Never def ined : < *); print-id(p); print (“> ‘); mark-harmless;
end;

while num (cur-xref) 2 def flag do cur-xref « slink (cur-xref);
if cur-xref = 0 then

begin print_nl (° !'_Never used: < *); print-id(p); print (“> ‘); mark-harmless;
end;

mod-check (rlink [p]);

end;

end:

120. (Print crror messages about unused or undefined module names 120) = mod-check (root)
This code is used in scctinn 109.

56 LOW-LEVEL OUTPUT ROUTINES WEAVE $121

121. Low-level output routines. The TEX output is supposed to appear in lines at most line-length

characters long, so we place it into an output buffer. During the output process, out-line will hold the

current line number of the line about to be output.

(Globals in the outer block 9) +=
out-buf: array [0 . . line-length] of ASCII-code ; {assembled characters}
out-ptr: 0 . . line-length; {number of characters in our-buf}
out-line : integer ; { coordinates of next line to be output }

122. The flush buffer routine empties the buffer up to a given breakpoint, and moves any remaining

characters to the beginning’ of the next line. If the per-cent parameter is true, a "A" is appended to the line

that is being output; in this case the breakpoint b should be strictly less than line-length. If the per-cent

parameter is false, trailing blanks are suppressed. The characters emptied from the buffer form a new line

of output.

procedure flush_buffer (b : cight-bits; per-cent : boolean); {outputs out-buf [1 . . b],where b < out-prr}
label done ;

var j, k: 0 . . line-length;

begin j « b;

if ~per_cent then {remove trailing blanks }
loop begin ifj = 0 then goto done;

if our-buf [j] # "_" then goto done;
deer (j);

end;

done: for k « 1 toj do write (tex-file, xchr [out-buf ikl];
if per-cent then write (tex-file , xchr hm);
writeIn (tex file); incr (out-line);
if b < out-ptr then

for k t b + 1 to out-ptr do out-buf ik — b] « out-buf (kl;
out-ptr « out_ptr — b;

end;

123. When we are copying TJiX source material, we retain line breaks that occur in the input, except that

an empty line is not output when the TEX source line was noncmpty. For example, a line of the TX file
that contains only an index cross-reference entry will not be copied. The finish_line routine is called just

before get. line inputs a new line, and just after a line break token has been emitted during the output of
translated PASCAL text.

procedure finish-line ; {do this at the end of a line }
label exit;

var k: 0. . buf size; {index into buffer}
begin if out-ptr > 0 then flush_buffer (out-ptr, false)

else begin for k « 0 to limit do

if (buffer [k] #".") a (buffer [k] # tab_mark) then return;
Slush buffer (0, false);
end;

exit : end;

124. In particular, the finish-line procedure is called near the very beginning of phase two. WC initialize

the output variables in a slightly tricky way so that the first line of the output file will be ‘\input webmac’.

(Set initial values 10) +=
out ptr t 1; out line t I; out buf [1] « "c"; write (tex-file, “\input_webma °);

$125 WEAVE LOW-LEVEL OUTPUT ROUTINES 57

125. When we wish to append the character ¢ to the output buffer, we write ‘out(c); this will cause the

buffer to be emptied if it was already full. Similarly, ‘out2(cy)(c2)’ appends a pair of characters. A line
break will occur at a space or after a single-nonletter TiX control sequence.

define oot(#) =
if out-ptr = line-length then break-out;

incr (out-ptr); out buf [out_ptr| #;
define ootl (#) = oot (#) end
define oot? (#) = oot (#) oot!
define ootd (#) = oot (#) oot2
define oot4 (#) = oot (#) oot3
define oot5 (#) = oot (#) oot4
define out = begin ootl

define out2 = begin oot2

define out3 = begin ootd

define out4 = begin oot4

define out5 = begin ooth

126. The break-out routine is called just before the output buffer is about to overflow. To make this

routine a little faster, we initialize position 0 of the output buffer to ‘\’; this character isn’t really output.

(Set initial values 10) +=

out_buf [0] «— "\";

127. A long line is broken at a blank space or just before a backslash that isn’t preceded by another

backslash. In the latter case: a "%" is output at the break.

procedure break-out ; {finds a way to break the output line}
label exit;

var k: 0 . . fine-length; {index into out-buf }
¢, d: ASCII-code ; {characters from the buffer }

begin k « out-ptr,

loop begin if k = 0 then (Print warning message, break the Line, return 128);

d «— out_buf [k];

if d ="_" then

begin flush buffer (k, false); return;
end;

if (d = "\") A (out_buf [k — 1] # "\") then {in this case k > 1}
begin flush buffer (k — 1, true); return;
end;

decr (k);

end;

exit: end:

128. We get to this module only in unusual cases that the entire output line consists of a string of

backslashes followed by a string of nonblank non-backslashes. In such cases it is almost always safe to break

the line by putting a "%" just before the last character.

(Print warning message, break the line, return 128) =

begin print_nl (*! Line _had_to_be broken (output l. ’, out-line : 1); print-ln(*):);
for k « 1 to out-ptr — 1 do print (zchr [out-buf 1k]]);
new_ line; mark_harmless; flush buffer (out-ptr — 1, true); return;
end

This code is used in section 127.

58 LOW-LEVEL OUTPUT ROIJTINES WEAVE $129

129. Here is a procedure that outputs A module number in decimal notation.

(Globals in the outer block 9) +=
dig: array [0 . . 4] of 0 ..9; {digits to output }

130. The number to be converted by out-mod is known to be less than def flag, so it cannot have more

than five decimal digits. If the module is changed, we output ‘*’ just after the number.

procedure out.mod(m : integer); {output a module number }
var k: 0. . 5; {index into dig }

a: integer ; { accumulator }
begin k «— 0; ar m;

repeat dig [k] « a mod 10; a « a div 10; incr (k);
until a = 0;

repeat decr (k); out (dig [k] + "0");
until k = 0;

if changed-module [m] then out2 ("\")("*");
end;

131. The out-nume subroutine is used to output an identifier or index entry, enclosing it in braces.

procedure out-nume (p : name-pointer); { outputs a name }
var k: 0... maz_bytes; {index into byte_mem }
w:0.. ww —1. {row of byte-mem }

begin out ("{"); Ww « p mod ww;
for k « byte-start [p] to byte-start [p + ww] — 1 do

begin if byte.mem{w, kJ = "_" then our ("\");
out (byte-mem [w, kJ);

«end;

out ("3");
end;

$132 WEAVE ROUTINES THAT COPY TEX MATERIAL 59

132. Routines that copy TEX material. During phase two, we use the subroutines copy-limbo,
copy-TeX, and copy-comment in place of the analogous skip-limbo, skip. TeX, and skip-comment that were
used in phase one.

The copy-limbo routine, for example, takes TEX material that is not part of any module and transcribes

it almost verbatim to the output file. No ‘@’ signs should occur in such material except in ‘Q@’ pairs; such
pairs are replaced by singletons.

procedure copy-limbo; {copy TEX code until the next module begins }
label exit ;

var c¢: ASCII-code; {character following @ sign }
begin loop

if loc > limit then

begin finish-line; get-line;

if input-has-ended then return;
end

else begin buffer [limit + 1] «— "Q@"; (Copy up to control code, return if finished 133);
end;

exit: end;

133. (copy up to control code, return if finished 133) =
while buffer [loc] # "@" do

begin out (buffer [loc]); iner (loc);
end;

if loc < limit then

begin loc « loc + 2; c « buffer [loc — 1|;
if (¢c ="u")V (c = tab-mark) Vv (c = "*") then return;
if (c #"z") A (c #"Z") then

begin out ("Q");
if ¢ # "@" then err-print (*!' Double @ required outside ofsections’);
end;

end

This code is used in section 132.

134. The copy_-TeX routine processes the TEX code at the beginning of a module; for example, the words
you are now reading were copied in this way. It returns the next control code or ‘1’ found in the input.

function copy-TeX: eight-bits; {copy pure TEX material}
label done;

var c: eight-bits; {control code found}
begin loop

begin if loc > limit then

begin finish-line ; get-line;

if input-has-ended then

begin ¢ « new-module; goto done;

end;

end;

buffer [limit + 1] « "@"; (Copy up to ‘|’ or control code, goto done if finished 135);
end;

done: copy.TeX « c;
end;

60 ROUTINES THAT COPY TEX MATERIAL WEAVE $135

135. We don’t copy spaces or tab marks into the beginning of a line. This makes the test for empty lines

In finish-line work.

(Copy up to ‘|’ or control code, goto done if finished 135) =
repeat ¢ « buffer [loc]; tner (Zoc);

if c="1"then goto done;

if ¢ # "Q@" then
begin out (c);

if (out_ptr = 1) A ((c = "u") V (c = tab.mark)) then decr(out_ptr);
end;

until ¢ = "@";

if loc < limit then

begin ¢ « control-code (buffer [Zoc]); mer (Zoc); goto done;
end

This code is used in section 134.

136. The copy-comment uses and returns a brace-balance value, following the conventions of skip-comment

above. Instead of copying the TX material into the output buffer, this procedure copies it into the token
memory. The abbreviation app-tok (t) is used to append token ¢ to the current token list, and it also makes

sure that it is possible to append at least one further token without overflow.

define app-rok (#) =

begin if tok-ptr + 2 > maz-toks then overflow (‘token’);

tok-mem | tok-ptr] — #; mcr (tok-ptr);
end

function copy-comment (bal : eight-bits): eight-bits; { copies TEX code in comments }
label done;

var c¢: ASCII-code; { current character being copied}
begin loop

begin if Zoc > limit then

begin get-line ;

if input-has-ended then

begin err-print (*!_ Input ended, inmid-comment °); Zoc « I; (Clear bal and goto done 138)
end;

end;

¢ « buffer [loc]; incr (Zoc);
if c ="1" then goto done;

app-tok(c); (Copy special things when c = "@","\" "{" "}": goto done at end 137);
end;

done: copy-comment + bal;

end;

$137 WEAVE ROUTINES THAT COPY TEX MATERIAL 61

137. (Copy special things when ¢ = "@", "\", "{", "}"; goto done at end 137) =
if ¢ = "@" then

begin incr (Zoc),

if buffer [Zoc— 1] # "@" then
begin err-print (“!' Illegaluse of @ incomment); Zoc «— Zoc — 2; decr (tok_ptr);
(Clear bal and goto done 138);
end;

end

else if (c = "\") A (buffer [Zoc] # "@") then
begin upp-tok (buffer [Zoc]); tner (Zoc);
end

else if ¢ = "{" then tncr (bal)
else if ¢ = "}" then

begin decr (bal);
if bal = 0 then goto done;
end

This code is used in section 136.

138. When the comment has terminated abruptly due to an error, we output enough right braces to keep
TEX happy.

(Clear bal and goto done 138) =

upp-tok ("u"); {this is done in case the previous character was ‘\’}
repeat upp-tok ("}"); decr (bal);
until bal = 0;

goto done;

This code is used in sections 136 and 137.

62 PARSING WEAVE $139

139. Parsing. The most intricate part of WEAVE is its mechanism for converting PASCAL-like’code into

‘TEX code, and we might as well plunge into this aspect of the program now. A “bottom up” approach is
used to parse the PASCAL-like material, since WEAVE must deal with fragmentary constructions whose overall

“part of speech” is not known.

At the lowest level, the input is represented as a sequence of entities that we shall call scraps, where each

scrap of information consists of two parts, its category and its translation. The category is essentially a

syntactic class, and the translation is a token list that represents TEX code. Rules of syntax and semantics

tell us how to combine adjacent scraps into larger ones, and if we are lucky an entire PASCAL text that starts

out as hundreds of small scraps will join together into one gigantic scrap whose translation is the desired

TEX code. If we are unlucky, we will be left with several scraps that don’t combine; their translations will
simply be output, one by one.

The combination rules are given as context-sensitive productions that are applied from left to right.

Suppose that we are currently working on the sequence of scraps 31385... 8,. We try first to find the longest

production that applies to an initial substring 818g. . .;but if no such productions exist, we find to find the
longest production applicable to the next substring 89 83. . .; and if that fails, we try to match sg 384... , etc.

A production applies if the category codes have a given pattern. For example, one of the productions is

open math semi — open math

and it means that three consecutive scraps whose respective categories are open, muth, and semi are con-

verted to two scraps whose categories are open and math. This production also has an associated rule that

tells how to combine the translation parts:

Oq= 0,

M, =M,S\, opt 6

This means that the open scrap has not changed, while the new math scrap has a translation Ms composed
of the translation M; of the original math scrap followed by the translation S of the semi scrap followed

by ‘\,’ followed by ‘opr’ followed by ‘5’. (In the TiX file, this will specify an additional thin space after the
semicolon, followed by an optional line break with penalty 50.) Translation rules use subscripts to distinguish

between translations of scraps whose categories have the same initial letter; these subscripts arc assigned

from left to right.

WEAVE also has the production rule
semi — terminator

(meaning that a semicolon can terminate a PASCAL statement). Since productions arc applied from left to

right, this rule will be activated only if the semi is not preceded by scraps that match other productions; in

particular, a semi that is preceded by ‘open math’ will have disappeared because of the production above,

and such semicolons do not act as statement terminators. This incidentally is how WEAVE is able to treat

semicolons in two distinctly different ways, the first of which is intended for semicolons in the parameter list

of a procedure declaration.

The translation rule corresponding to semi — terminator is

Tr =3S§

but we shall not mention translation rules in the common case that the translation of the new scrap on the

right-hand side is simply the concatenation of the disappearing scraps on the left-hand side.

§140 WEAVE | PARSING 63

140. Here is a list of the category codes that scraps can have.

define simp = 1 {the translation can be used both in horizontal mode and in math mode of TEX }
define math = 2 {the translation should be used only in TEX math mode}
define intro = 3 {a statement is expected to follow this, after a space and an optional break }
define open = 4 {denotes an incomplete parenthesized quantity to be used in math mode}
define beginning = 5 {denotes an incomplete compound statement to be used in horizontal mode}

define close = 6 {ends a parenthesis or compound statement }
define alpha = 7 {denotes the beginning of a clause}
define omega = 8 {denotes the ending of a clause and possible comment following}
define semi = 9 {denotes a semicolon and possible comment following it }
define terminator = 10 {something that ends a statement or declaration }
define sms = 11 {denotes a statement or declaration including its terminator }
define cond = 12 {precedes an if clause that might have a matching else }
define clause = 13 {precedes a statement after which indentation ends }
define colon = 14 {denotes a colon}
define ezp = 15 {stands for the E in a floating point constant }
define proc = 16 {denotes a procedure or program or function heading }
define case-head = 17 {denotes a case statement or record, heading }
define record-head = 18 {denotes a record heading without indentation }
define var-head = 19 {denotes a variable declaration heading }
define elste = 20 { else}
define casey = 21 {case }
define mod-scrap = 22 {denotes a module name}

debug procedure print-cut (c : eight-bits); { symbolic printout ofa category}
begin case c¢ of

simp : print (* simp *);
math: print (‘math ’);
intro : print (° intro “);
open: print (‘open’);

beginning : print (beginning’);

close : print (‘close ‘);
alpha : print (‘alpha);
omega : print (“omega *);
semi : print (‘semi “);
terminator: print (‘terminator °);
stmt : print (‘stmt);
cond: print (“cond”);
clause : print (‘clause °);
colon : print ('colon');

exp : print (“exp “);
proc : print (“proc °);
case_head: print (‘casehead °);
record-head: print (‘recordhead °);
var_head: print (‘varhead’);

elaie: print (‘elsie’);

casey: print (‘Casey’);

mod-scrap : print (‘module *);
othercases print ("UNKNOWN °)
endcases;

end;

gubed

64 PARSING WEAVE §141

141. The token lists for translated TEX output contain some special control symbols as well as ordinary

characters. These control symbols are interpreted by WEAVE before they are written to the output file.

break-apace denotes an optional line break or an en space;

force denotes a line break;

big-force denotes a line break with additional vertical space;

opt denotes an optional line break (with the continuation line indented two ems with respect to the normal

starting position)-this code is followed by an integer n, and the break will occur with penalty 10n;

backup denotes a backspace of one em;

cancel obliterates any break-space or force or big-force tokens that immediately precede or follow it and

also cancels any backup tokens that follow it;

indent causes future lines to be indented one more em;

outdent causes future lines to be indented one less em.

All of these tokens are removed from the TEX output that comes from PASCAL text between I... I signs;
break-space and force and big-force become single spaces in this mode. The translation of other PASCAL

texts results in TEX control sequences \1, \2, \3, \4, \5, \6, \7 corresponding respectively to indent,
outdent, opt, backup, break-apace, force, and big-force. However, a sequence of consecutive °°, break-space,

force, and/or big-force tokens is first replaced by a single token (the maximum of the given ones).
The tokens math-rel, math-bin, math-op will be translated into \mathrel{, \mathbin{, and \mathop{,

respectively. Other control sequences in the TEX output will be ‘\\{. ..} surrounding identifiers, ‘\&{... }’
surrounding reserved words, ‘\ . { . . . }’ surrounding strings, ‘\C{...} force’ surrounding comments, and

“NXn:...\X’ surrounding module names, where n is the module number.

define math-bin = 203

define math-rel = 204

. define math-op = 205

define big-cancel = 206 {like cancel, also overrides spaces}
define cancel = 207 { overrides backup, break-space, force, big-force
define indent = cancel + 1 {one more tab (\1) }
define outdent = cancel + 2 {one less tab (\2)}
define opt = cancel + 3 { optional break in mid-statement (\3)}
define backup = cancel + 4 {stick out one unit to the left (\4)}
define break-space = cancel + 5 {optional break between statements (\5)}
define force = cancel + 6 {forcedbreak between statements (\6) }
define big-force = cancel + 7 {forced break with additional space (\7)}
define end-translation = big-force + 1 {special sentinel token at end of list }

§142 WEAVE PARSING 65

142. The raw input is converted into scraps according to the following table, which gives category codes

‘followed by the translations. Sometimes a single item of input produces more than one scrap. (The symbol

‘**’ stands for ‘\&{identifier}’, i.e., the identifier itself treated as a reserved word. In a few cases the category

is given as ‘comment ’; this is not an actual category code, it means that the translation will be treated as a

comment, as explained below.)

<> math: \'1

<= math: \ L

>= math: \G

= math; \ K

== math: \S

(* math: \ B

*) math: \'T

(. open: [
2) close:]

"string " simp :\ .{" modified string "}
‘string * simp : \. {\ * modified string \ “}
Q= string @> simp : \={ modified string }
math: \

$ math: \$

- math: _

% math: \%

° math: *

(open: (
) close:)

[open: [

] close:]

* math: \ast

math: , opt 9

. math: \ to

simp: .
colon: :

semi: ;

identifier simp : \\{ identifier }
E in constant, exp: \E{

digit d simp: d
other character ¢ math: ¢

and math: \ W

array alpha: **

begin beginning: force ** cancel intro :

case casey: alpha: force **

const intro: force backup **

div math: math-bin ** }

do omega: **

downto math: math-rel ** }

else terminator: elsie: force backup **

end terminator: close: force **
file alpha: *%

for alpha: force **

function proc: force backup ** cancel intro: indent \y

got0 intro: *%

if cond: alpha: force **
in math: \ in

66 PARSING WEAVE §142

label intro: force backup *%*

mod math: math-bin ** }

nil simp: **

not math: \R

of omega: **

or math: \V

packed intro: *%
procedure proc : force backup ** cancel intro: indent _

program proc: force backup ** cancel intro: indent _
record record-head: *%* intro :

repeat beginning: force indent ** cancel intro:

set alpha: #*%

then omega: *%

to math: math-rel ** }

type intro: force backup *%*

until terminator: close: force backup #*% clause:

var var-head: force backup ** cancel intro:

while alpha: force **

with alpha: force **

xclause alpha: force \~ omega: **

Q const simp : \0{const}

Q" const simp: \H{const}

Q, math: \,

Qt stuff @> stmp\hbox{ stuff)

@< module @> mod-scrap: \Xn : module \X

Q# comment: big-force

Q/ comment: force

Q| simp : opt 0

@+ comment: big-cancel \., big-cancel
Q; semi:

Q& math: \J

Q{ math: \B

Q} math: \T

When a string is output, certain characters are preceded by ¢\’ signs so that they will print properly.

A comment in the input will be combined with the preceding omega or semi scrap, or with the following

terminator scrap, if possible; otherwise it will be inserted as a separate terminator scrap. An additional

“comment” is effectively appended at the end of the PASCAL text, just before translation begins; this consists
ofacanceltoken in the case of PASCAL text in | . . . I, otherwise it consists of a force token.

From this table it is evident that WEAVE will parse a lot of non-PASCAL programs. For example, the

reserved words ‘for’ and ‘array’ are treated in an identical way by WEAVE from a syntactic standpoint, and

semantically they are equivalent except that a forced line break occurs just boforc ‘for’; PASCAL programimicrs

may well be surprised at this similarity. The idea is to keep WEAVE’ s rules as simple as possible, consistent

with doing a reasonable job on syntactically correct PASCAL programs. The production rules below have

becn formulated in the same spirit of “almost anything goes.”

§143 WEAVE PARSING 67

143. Here is a table of all the productions. The reader can best get a feel for how they work by trying

them out by hand on small examples; no amount of explanation willb e aseffective as watching the rules in

action. Parsing can also be watched by debugging with ‘@2’,

Production categories [translations] Remarks

1 alpha math colon — alpha math e.g., case v : boolean Of

2 alpha math omega — clause iC =A_ $M $y indent 0] e.g., while £ > 0 do
3 alpha omega — clause [C = A indent 0] e.g, file of
4 alpha simp — alpha math convert to math mode

5 beginning close (terminator Or stmt) => stmt compound statement ends

6 beginning stmt — beginning [B. = By break-apace S] compound statement grows
7 case-head casey clause — case-head [Cy = C1 outdent Cy Cs] variant records
8 case-head close terminator — stmt [S = Cy cancel outdent Cs T] end of case statement
9 case-head atmt — case-head [Ca = C force S] case statement grows

10 casey clause — case-head beginning of case statement

11 clause stmt — stmt IS, = C break_space Si cancel outdent force] end of controlled statement
12 cond clause stmt elsie — clause [Cs = Cy Ca break-space S E, cancel] complete conditional
18 cond clause armt — stmt

[Sa = Cy Cg break-space Sy cancel outdent force] incomplete conditional
14 elsie — intro unmatched else

15 exp math simp — math [M, =EM;s | signed exponent
16 exp samp — math [M = ES H | unsigned exponent
17 intro stmt — stmt [S =I, opt T cancel Si] labeled statement, etc.
18 math close — stmt close [S =$ M $] end offield list
19 math colon — intro [I = force backup $ M $ Cl compound label
20 math math — math simple concatenation

21 math ssmp — math simple concatenation
22 math stmt — atmt

[S;=%$ M $ indent break_space S; cancel outdent force] macro or type definition
23 math terminator — atmt IS =$M $7] statement involving math
24 mod-scrap (terminator or semi) — stmt 1S = MT force] module like a’ statement
25 mod-scrap — simp module unlike a statement

26 open case-head close — math [IM = 0 $ cancel C| cancel outdent $ Ce] casc in field list
27 open close — math IM =0\ , C} empty set []
28 open math case_head close — math

[My = 0 My $ cancel Cy cancel outdent $ C4] case in field list
29 open math close — math parenthesized group
30 open math colon — open math colon in parentheses

31 open math proc intro — open math [M. = My math-op cancel P }H procedure in parentheses
32 open math semi — open math [Ma = Mj s\ , opt 5] semicolon in parentheses
38 open math var-head intro — open math [AM = M| math_op cancel V } var in parentheses
34 open proc intro — open math IM = math-op cancel I | procedure in parentheses
J5 opensimp -— open math convert to math mode

36 open atmt close — math [apf = 0 $ cancel S cancel $ C] field list
37 open var-head intro — open math IM = math-op cancel V } var in parentheses
$8 yroc beginning close terminator — strnt IS = P cancel outdent B C T] end of procedure dcclarntion
39 proc stmt — proc [Py = Py break-space S| procedure declaration grows
40 record-head intro casey — casey [C2 = R I,, cancel Ci] record case . . .
41 record_head — case-head [C = indent R cancel] other record structures
42 semi — terminator semicolon after statement

48 simp close — stmt close end of field list

44 wirnp colon —> intro [1 = force backup S Cl simple label
45 simp math — rnath simple concatenation

68 PARSING WEAVE §143

4 6 simp mod-scrap — mod-scrap in emergencies ’

47 ssmp simp — simp simple concatenation

48 simp terminator — stmt simple statement

48 stmt stmt — stmt [Ss = 8S} break-space Sal adjacent statements
50 terminator — stmt empty statement

51 var-head beginning — stmt beginning. end of variable declarations

52 var-head math colon — var-head intro [I =$ M $ Cl variable declaration
58 var-head simp colon — var-head intro variable declaration

54 var-head stmt — var-head [Va = Vi break-space S] variable declarations grow

Translations are not specified here when they are simple concatenations of the scraps that change. For

example, the full translation of ‘open math colon — open math’ is Oy = Oy, My = MC.

9144 WEAVE IMPLEMENTING THE PRODUCTIONS 69

144. Implementing the productions. When PASCAL text is to be processed with the grammar above,

we put its initial scraps 8y... 8, Into two arrays cat | 1..nJand trans [1 ..n]. The value of cat [k] is simply
a category code from the list above; the value of trans [k] is a text pointer, i.e., an index into tok_start. Our
production rules have the nice property that the right-hand side is never longer than the left-hand side.

Therefore it is convenient to use sequential allocation for the current sequence of scraps. Five pointers are

used to manage the parsing:

pp (the parsing pointer) is such that we are trying to match the category codes cat [pp] cat [pp + 1] ... to
the left-hand sides of productions.

scrap-base, lo-ptr , hi-ptr , and scrap-ptr are such that the current sequence of scraps appears in positions

scrap-base through lo-ptr and hi-ptr through scrap-ptr, inclusive, in the cat and trans arrays. Scraps

located between scrap-base and lo-ptr have been examined, while those in positions 2 hi-ptr have

not yet been looked at by the parsing process.

Initially scrap-ptr is set to the position of the final scrap to be parsed, and it doesn’t change its value.

The parsing process makes sure that lo-ptr 2 pp + 3, since productions have as many as four terms, by

moving scraps from hi-ptr to lo-ptr. If there are fewer than pp + 3 scraps left, the positions up to pp + 3

are filled with blanks that will not match in any productions. Parsing stops when pp = lo-ptr + 1 and
hi-ptr = scrap-ptr + 1.

(Globals in the outer block 0) +=
cat: array [0 . . max-scraps] of eight-bits ; {category codes of scraps }
trans : array [0 . . mar-scraps] of text-pointer; { translation texts of scraps}
pp: 0.. max-scraps ; {current position for reducing productions }
scrap-base: 0 . . maz_scraps; {beginning of the current scrap sequence }
scrap-ptr : 0 . . max-scraps; {ending of the current scrap sequence }
lo-ptr : 0 . . max-scraps; {last scrap that has been examined }
hi-ptr : 0 . . max-scraps ; { first scrap that has not been examined}

stat maz_scr_ptr: 0 . . max-scraps; {largest value assumed by scrap-ptr}
tats

145. (Set initial values 10) +=

scrap-base «- 1; scrap-ptr + 0;

stat max-scr-ptr + 0; tats

4 70 IMPLEMENTING THE PRODUCTIONS WEAVE $146

146. Token lists in tok-mem are composed of the following kinds of items for TEX output.

oe ASCII codes and special codes like force and math-rel represent themselves;

| o td_flag + p represents \\{identifier p};
o res-flag + p represents \&{identifier p};

e mod_flag + p represents module name p;

o tok_flag + p represents token list number p;
o inner-tok-flag + p represents token list, number p, to be translated without line-break controls.

define id_flag = 10240 { signifies an identifier }
define res-flag = id_flag + id_flag { signifies a reserved word }
define mod-flag = res-flag + id-flag { signifies a module name}
define rok-flag = mod-flag + td_flag { signifies a token list, }
define tnner_tok_flag = tok_flag + id_flag {signifies a token listin ‘I...1"}

define Zbrace = xchr ["{"] {this avoids possible PASCAL compiler confusion }
define rbrace = zchr ["}"] { because these braces might occur within comments}

debug procedure print-text (p : text-pointer); {prints a token list }
var j: 0 . . max-toks; {index into rok-mem }

r: 0. . id-flag — 1; {remainder of token after the flag has been stripped off }
begin if p > text-ptr then print (‘BAD °)
else for § « tok-start [p] to tok-start [p + 1] — 1 do

begin r « tok.mem|j] mod id-flag;
case tok-mem [j] div id_flag of
1: begin print (“\\ *, Zbrace); print-id(r); print (rbrace);

end; {td flag}
2: begin print (‘\&°, Zbrace); print-id(r); print (rbrace);

end; { res-flag }
3: begin print (“< °); print-id(r); print (°> “);

end; { mod-flag }
4: print(“[(["yr:1 7117); {rok-flag}

; 5: print (’ | ({",r:1, 3]); { inner-tok-flag }
othercases (Print token r in symbolic form 147)

j endcases;

end;

end;

gubed

$147 WEAVE IMPLEMENTING THE PRODUCTIONS 71

147. (Print token rin symbolic form 147) =
‘ case r of

math-bin: print (*\mathbin’, brace);
math-rel: print (\ mathrel °, Zbrace);

math-op : print (“\mathop °, lbrace);
big-cancel: print (* [ccancel] °);
cancel: print (. [cancel] ’);
indent: print ([indent] ‘);
outdent: print (° [outdent] ‘)
backup : print (.[backup) ‘);
opt: print (. [opt] ‘);
break-space : print (© [break] ‘);
force : print (* [£ orcel °);
vigforce = print (° [£f f orcel);
end-translation : print (* [quit]);
othercases print (xchr [r])

endcases

This code is used in section 146.

4 72 IMPLEMENTING THE PRODUCTIONS WEAVE $148

148. The production rules listed above are embedded directly into the WEAVE program, since’ it is easier

to do this than to write an interpretive system that would handle production systems in general. Several

: macros are defined here so that the program for each production is fairly short.

f All of our productions conform to the general notion that some k consecutive scraps starting at some

1 position j are to be replaced by a single scrap of some category ¢c whose translations is composed from the
translations of the disappearing scraps. After this production has been applied, the production pointer pp

| should change by an amount d. Such a production can be represented by the quadruple (J, k, ¢, d). For
: example, the production ‘simp math — math’ would be represented by ‘pp, 2, math, -1)% in this case the

pointer pp should decrease by 1 after the production has been applied, because some productions with math

1 in their second positions might now match, but no productions have marh in the third or fourth position of
their left-hand sides. Note that the value of d is determined by the whole collection of productions, not by an

i individual one. Consider the further example ‘var-head math colon — var-head intro’, which is represented
: by ‘(pp + 1,2, intro, +1)’; the $1 here is deduced by looking at the grammar and seeing that no matches

could possibly occur at positions < pp after this production has been applied. The determination of d has

] been done by hand in each case, based on the full set of productions but not on the grammar of PASCAL or
on the rules for constructing the initial scraps.

1 We also attach a serial number of each production, so that additional information is available when
debugging. For example, the program below contains the statement ‘reduce (pp + 1,2, intro, +1)(52)’ when

3 it implements the production just mentioned.

J Before calling reduce, the program should have appended the tokens of the new translation ro the rok-mem

] array. We commonly want to append copies of several existing translations, and macros are defined to simplify

these common cases. For example, app2 (pp) will append the translations of two consecutive scraps, rrans [pp]

1 and trans [pp + 1}, to the current token list. If the entire new translation is formed in this way, we write
3 squash (J, k, ¢, d)’ instead of ‘reduce(j, k,c, d) For example, ‘squash (pp, 2, math, -1)’ is an abbreviation for
; ‘app2 (pp); reduce (pp, 2, math, -1)-

The code below is an exact translation of the production rules into PASCAL, using such macros, and

the reader should have no difficulty understanding the format by comparing the code with the symbolic

: productions as they were listed earlier.
} Caution: The macros app , appl , app2, and app8 are sequences of statements that are not enclosed with

begin and end, because such delimiters would make the PASCAL program much longer. This means that

1 it is necessary to write begin and end e&licitly when such a macro is used as a single statement. Several

mysterious bugs in the original programming of WEAVE were caused by a failure to remember this fact. Next

1 time the author will know better.

; define production (#) =
] debug prod (#)
i gubed;
] goto found
3 define reduce (#) = red (#); production
: define production_end (#) =

i debug prod (#)
: gubed;

got0 found;

1 end
define squash (#) =

§ begin sq (#)}; production-end
{ define app (#) = rok-mem [tok-ptr] « #; incr (tok-ptr)
i { this is like app_tok , but it doesn’t test for overflow }
3 define appl (#) = tok_mem [tok-ptr] «— tok_flag + trans [#]; incr (tok-ptr)
; define app? (#) = appl (#): appl (# + 1)
1 define appd (#) = app? (#); appl # + 2)

$149 WEAVE IMPLEMENTING THE PRODUCTIONS 73

149. Let us consider the big case statement for productions now, before looking at its context. We want

to design the program so that this case statement works, so WC might as well not keep ourselves in suspense

about exactly what code needs to be provided with a proper environment.

The code here is more complicated than it need be, since some popular PASCAL compilers are unable to

deal with procedures that contain a lot of program text. The translate procedure, which incorporates the

case statement here, would become too long for those compilers if WC did not do something to split the cases

into parts. Therefore a separate procedure called five-cases has been introduced. This auxiliary procedure

contains approximately half of the program text that rranslate would otherwise have had. There’s also a

procedure called alpha_cases, which turned out to be necessary because the best two-way split wasn’t good

enough. The procedure could be split further in an analogous manner, but the present scheme works on all

compilers known to the author.

(Match a production at pp, or increase pp if there is no match 149) =
if cat|pp| < alpha then

if cat [pp] < alpha then five-cases else alpha-cases
else begin case cat[pp]| of

case-head: (Cases for case-head 153);
casey : (Cases for casey 154);

clause: (Cases for clause 155);
cond: (Cases for cond 156);
else: (Cases for elste 157);

ezp: (Cases for exp 158);

mod-scrap: (Cases for mod-scrap 161);

proc: (Cases for proc 164);

record-head: (Cases for record-head 165);
semi: (Cases for semi 166);

stmt: (Cases for stmt 168);

terminator: (Cases for terminator 169);

uar-head: (Cases for war-head 170);
othercases do-nothing

endcases;

incr (pp); {if no match was found, wc move to the right }
found: end

This code is used in section 175.

74 IMPLEMENTING THE PRODUCTIONS WEAVE §150

150. Here are the procedures that need to be present for the reason just explained.

" (Declaration of subprocedures for translate 150) =
procedure five-cases ; { handles almost half of the syntax}

label found;

begin case cat [pp] of

beginning : (Cases for beginning 152)s
intro: (Cases for intro 159);

math: (Cases for math 160);
open: (Cases for open 162);
simp: (Cases for simp 167);
othercases do-nothing

endcases;

incr (pp); {ifno match was found, we move to the right }
found: end;

procedure alpha-cases;

label found;

begin (Cases for alpha 151);
incr (pp); {if no match was found, we move to the right }

found: end;

This code is used in section 179.

151. Now comes the code that tries to match each production that starts with a particular type of

scrap. Whenever a match is discovered, the squash or reduce macro will cause the appropriate action

to be performed, followed by goto found.

(Cases for alpha 151) =
if cur [pp + 1] = moth then

begin if cat [pp + 2] = colon then squash(pp + 1,2, math ,0)(1)
else if cut [pp + 2] = omega then

begin appl (pp); app(""); app ("$"); appl (pp + 1); app("$"); app("L"); app (indent);
appl (pp + 2); reduce(pp,3, clause, —2)(2);
end;

end

else if cut [pp + 1] = omega then
begin appl (pp); app("_"); app (indent); appl (pp + 1); reduce(pp,2, clause, —2)(3);
end

else if cat [pp + 1] = simp then squash(pp + 1,1, math, 0)(4)
This code is used in section 150.

152. (Cases for beginning 152) =

if cat [pp + 1] = close then
begin if (cut [pp + 2] = terminator) NV (cut (pp + 2] = stmt) then squash (pp, 3, stmt , —-2)(5);
end

else if cat [pp + 1] = stmt then
begin appl (pp); app (break-space); appl (pp + 1); reduce (pp, 2, beginning, —1)(6);
end

This code is used in section 150.

51353 WEAVE IMPLEMENTING THE PRODUCTIONS 73

153. (Cases for case-head 153) =

if cut [pp + 1] = casey then
begin if cur [pp + 2] = clause then

begin appl (pp); app (outdent); app2 (pp + 1); reduce (pp, 3, case-head, 0) (7);
end;

end

else if cat [pp + 1] = close then
begin if cut [pp + 2] = terminator then
begin appl (pp); app (cancel); app (outdent); app2 (pp + 1); reduce(pp, 3, armt , —2)(8);
end;

end

else if cur [pp + 1] = stmt then
begin appl (pp); app(force); appl (pp + 1); reduce(pp,2, case_head,0)(9);
end

This code is used in section 149.

154. (Cases for casey 154) =

if cat [pp + 1} =clauae then squash (pp, 2, case-head, 0)(10)
This code is used in section 149.

155. (Cases for clause 155) =

if cur [pp + 1] = stmt then
begin appl (pp); app (break-space); appl (pp + 1); app (cancel); app (outdent); app (force);
reduce (pp, 2, stmt, —2)(11);
end

This code is used in section 149.

156. (cases for cond 156) =

if (cut [pp + 1) =cluuse) a (cut [pp + 2] = atmt) then
if cat [pp + 3] = elsie then
begin app? (pp); app (break_space J, app2 (pp + 2); upp ("Lu"); upp (cancel);
reduce (pp, 4, clause, —2}{12};
end

else begin app? (pp); app (break-space); appl (pp + 2); app (cancel); app (outdent); app (force);
reduce (pp, 3, stmt, —2)(13);
end

This code is used in section 149.

157. (Cases for elsie 157) =

squash (pp , 1, intro, -3) (14)
This code is used in section 149.

158. (Cases for exp 158) =

if cut [pp + 1] = math then
begin if cut [pp + 2| = simp then
begin appd (pp); app ("}"); reduce (pp, 3, math, —1)(15);
end;

end

else if cut [pp + 1] = sirnp then
begin app2(pp); app ("}"); reduce (pp,2, murh, —1)(16);
end

This code is used in section 149.

; 76 IMPLEMENTING THE PRODUCTIONS WEAVE §159

: 159. (Cases for intro 159) =
if cat [pp + 1] = atmt then

| begin appl (pp); app("L"); app (opt); app ("7"); app (cancel); appl (pp + 1);
reduce (pp ,2, atmt , -2) (17);
end

This code is used in section 150.

160. (Cases for math 160) =

if cur [pp + 1] = close -then
begin app("$"); appl (pp); app("$"); reduce(pp, 1, arm: , —2)(18);
end

else if cut [pp + 1] = colon then
begin app (orce); app (backup); app("$"); appl (pp); app("$"); appl (PP + 1);
reduce (pp, 2, intro, =3){ 19);
end

else if cut [pp + 1] = marh then squash{pp,2, marh, —1)(20)
else if car [pp + 1] = simp then squash{pp, 2, marh, —1)(21)

else if cat [pp + 1] = armt then
begin app ("$"); appl (pp); app ("$"); app (indent); app (break_space); appl (pp + 1);
app (cancel); app (outdent); app (force); reduce (pp, 2, stmt —2)(22);
end

else if cur [pp + 1] = terminator then
begin app("$"); appl (pp); app("$"); app! (pp + 1); reduce(pp,2,stmt, —2)(23);
end

This code is used in section 150.

161. (Cases for mod-scrap 161) =

if (catlpp + 1] = terminator) V (cut [pp + 1] = semi) then
| begin app2(pp); app (force); reduce (pp, 2, stmt, —2)(24});
| end

| else squash (pp, 1, simp, —2)(25)
J This code is used in section 149.

$162 WEAVE IMPLEMENTING THE PRODUCTIONS 77

162. (Cases for open162)=
‘if (cat[pp +1] = case-head) A (cat [pp+ 2]= close) then

begin appl (pp); app("$"); “app (cancel); appl (pp + 1); app(cancel); app (outdent); app ("$");
appl (pp + 2); reduce(pp,3,math, —1)(26);
end

else if cat[pp + 1] = close then
begin appl (pp); app("\"); app("."); appl (pp + 1); reduce(pp,2, math,—1)(27);
end

else if cat[pp +1] = math then (Cases for open math 163)
else if cat|pp + 1} = proc then

begin if cat{pp + 2| = intro then
begin app (math_op); app (cancel); appl (pp + 1); app("}"); reduce(pp + 1,2, math,0)(34);
end;

end

else if car [pp + 1] = simp then squash (pp + 1, 1, math, 0)(35)
else if (cat [pp +1] = stmt) A (cat [pp + 2] = close) then

begin appl (pp); app ("$"); app (cancel); appl (pp + 1); app (cancel); app ("$");
appl (pp + 2); reduce(pp,3, math, —1)(36);
end

else if cat [pp + 1] = var_head then
begin if cat{pp + 2] = intro then
begin app (math-op); app (cancel); appl (pp + 1); app ("}");
reduce (pp + 1,2, math,0)(37);
end;

end

This code is used in section 150.

163. (Cases for open math 163) =
begin if (cat [pp + 2| = case-head) A (cat [pp + 3 = close) then
begin app? (pp); app ("$"); app (cancel); appl (pp + 2); app (cancel); app (outdent); app ("$");
appl (pp + 3). reduce(pp,4, math, —1)(28);
end

else if cat [pp + 2] =close then squash(pp,3, math, —1)(29)
else if cat [pp + 2] = colon then squash (pp + 1,2, math, 0)(30)

else if cat [pp + 2] = proc then
begin if car [pp + 3] = intro then
begin nppl (pp + 1); app(math-op); app (cancel); appl (pp + 2); app ("}");
reduce (pp + 1,3, marth, 0}(31);
end;

end

else if cat [pp + 2] = semi then
begin app2(pp + 1); app("\"); app("."}; app (opt); app ("5");
reduce (pp + 1,2, math, 0)(32);
end

else if cat [pp + 2] = uar-head then
begin if cut [pp + 3 = intro then
begin appl (pp + 1); app (math-op); app (cancel); appl (pp + 2); app ("}");
reduce (pp + 1,3, math, 0)(31);
end;

end;

end

This code is used in section 102.

b-

| 78 IMPLEMENTING THE PRODUCTIONS WEAVE $164

164. (Cases for proc 164) =

if cat[pp + 1] = beginning then
begin if (cut [pp + 2| = close) A (cat [pp + 3] = terminator) then
begin appl (pp); app (cancel); app(outdent); appi(pp + 1); reduce(pp,4,stmt, —2)(38);
end;

end

else if cat [pp + 1] = ‘atmr then
begin appl (pp); app (break_space); appl (pp + 1); reduce(pp,2,proc, —2)(39);
end

This code is used in section 149.

165. (Cases for record-head 165) =
if (cat [pp + 1] = intro) A (cat[pp + 2] = casey) then
begin app2(pp); app("L"); app (cancel); appl (pp + 2); reduce(pp ,3, casey, —2)(40);
end

else begin app (indent); appl (pp); app(cancel); reduce (pp, 1, case_head,0) (41);
end

This code is used in section 149.

166. (Cases for semi 166)=

squush (pp, 1, terminator, —3}(42)
This code is used in section 149.

167. (Cases for simp 167) =

if cut [pp + 1]= close then squash(pp,1, stmt, —2)(43)
else if cat [pp + 1] = colon then

begin upp (force); app (backup); app2 (pp); reduce (pp, 2, intro, —3)(44);
end

else if cat [pp +1] = math then squash(pp,2, math, —1)(45)
else if cur [pp + 1] = mod-scrap then squash (pp, 2, mod-scrap, 0)(46)

else if cur [pp + 1] = simp then squash(pp,2,simp, —2)(47)
else if cat [pp + 1] = terminator then squash (pp, 2, stmt , —2)(48)

This code is used in section 150.

168. (Cases for stmt 168) =

if cut [pp + 1] = stmt then
begin appl (pp); upp (break-apace); appl (pp + 1); reduce (pp, 2, stmt , —2)(49);
end

This code is used in section 149.

169. (Cases for terminator 169) =
squash (pp, 1, stmt, —2)(50)

This code is used in section 149.

§170 WEAVE IMPLEMENTING THE PRODUCTIONS 79

170. (Cases for var_head 170) =
if cat[pp + 1] = beginning then squash (pp, 1, atmt, —2)(51)
else if cat|pp + 1] = math then

begin if cat [pp + 2] = colon then
begin app("$"); appl (pp + 1); app("$"); appl (pp + 2); reduce(pp + 1,2, intro, +1)(52);
end;

end

else if cat{pp + 1] = simp then
begin if cat[pp- + 2] = colon then squash(pp + 1,2, intro, +1)(53);
end

else if cat[pp + 1] = stmt then
begin appl (pp); upp (break-space); appl (pp + 1); reduce (pp, 2, var_head, —2)(54);
end

This code is used in section 149.

171. The ‘freeze-tezt’ macro is used to give official status to a token list. Before saying freeze-ted, items

are appended to the current token list, and we know that the eventual number of this token list will be the

current value of rezt-ptr. But no list of that number really exists as yet, because no ending point for the

current list has been stored in the rok-start array. After saying freeze-tezt , the old current token list becomes

legitimate, and its number is the current value of tezt-pfir — 1 since tezt_ptr has been increased. The new

current token list is empty and ready to be appended to. Note that freeze-tezt does not check to see that

text_ptr hasn’t gotten too large, since it is assumed that this test was done beforehand.

define freeze-text = thcr (tezt-ptr); tok-start [tezt-ptr] «— tok-ptr

172. The ‘reduce’ macro used in our code for productions actually calls on a procedure named ‘ed’, which

makes the appropriate changes to the scrap list.

procedure red (7 : sixteen-bits; k : eight-bits; c¢ : eight-bits; d : integer);
var 1:0 .. maz_scraps; {index into scrap memory }
begin cut [J] « c; trans [j] « tezt_ptr ; freeze-tezt ;
if Kk > 1 then

begin for i « 3 + k to lo-ptr do

begin cat{i — k + 1] « cut [i]; transi —- k 1] « trans [¢];
end;

lo-ptr «— lo-ptr — k + 1;

end;

(Change pp to max(scrap_basepp +d) 173);
end;

173. (Change pp to max(scrap_base ,pp+d) 173) =
if pp + d > scrap_base then pp « pp + d

else pp « scrap_base
This code in used in sections 172 and 174.

i 80 IMPLEMENTING THE PRODUCTIONS WEAVE $174

| 174. Similarly, the ‘squash’ macro invokes a procedure called ‘aq’. This procedure takes advantage of the
| * simplification that occurs when k = 1.

procedure sg (7 : sixteen bits; k : eight-bits; ¢ : eight-bits; d : integer);
y var i: 0 .. mux-scraps ; {index into scrap memory }

begin if k=1 then

begin cat|j] «—c; (Change pp to max(scrap_base pp +d) 173);
: end

else begin fori «+ jto 3+ k—1do

1 begin appl (i);
i end;
: red (4, k, c,d);
: end;

4 end;

i 175. Here now is the code that applies productions as long as possible. It requires two local labels (found
: and done), as well as a local variable (1).

(Reduce the scraps using the productions until no more rules apply 175) =
1 loop begin (Make sure the entries cat [pp .. (pp + 3] are defined 176);
; if (tok-ptr + 8 > maz_toks) V (text-ptr + 4 > mux-texts) then
| begin stat if rok-ptr > maz_tok_ptr then mux-tok-ptr «— tok-ptr;

: if text-ptr > maz_tzt_ptr then maz_txt_plr « rext-ptr;
) tats

overflow (“token/ text °);
1 end;

if pp > lo-ptr then goto done;

(Match a production at pp, or increase pp if there is no match 149);
| end;

done:

1 This code is used in section 179.

j 176. If we get to the end of the scrap list, category codes equal to zero are stored, since zero does not
match anything in a production.

(Make sure the entries cut [pp .. (pp + 3)] are defined 176) =
J if lo-ptr < pp + 3 then

; begin repeat if hi-ptr < scrap-ptr then
: begin incr (lo-ptr);
J cut [lo-ptr] « cut [hi_ptr}; truns [lo-ptr «— truns [hi-ptr];
4 incr (hi-.ptr);

end:

until (hi-ptr > scrap-ptr) V (lo-ptr = pp + 3);

1 for i+ lo-ptr +1to pp +3 do cut [i] «0;
end

i This code is used in section 175.

177. 1f WEAVE is being run in debugging mode, the production numbers and current stack categories will

1 be printed out when tracing is set to 2; a sequence of two or more irreducible scraps will be primed out
when tracing is set to 1.

(Globals in the outer block 9) +=
1 debug tracing : 0. . 2; {can bc uscd to show parsing details }
1 gubed

§178 WEAVE IMPLEMENTING THE PRODUCTIONS 81

178. The prod procedure is called in debugging mode just after reduce or squash; its parameter is the

number of the production that has just been applied.

debug procedure prod (n : eight_bits); {shows current categories }
var k: 1 .. max-scraps; {index into cat}
begin if tracing = 2 then

begin printnl (nil, :°);
for k « scrap-base to lo-ptr do

begin if k = ppthen print (“*")else print (® uw’);
print-cat (cat [k]);

end;

if hi-ptr < scrap,ptr then print (Co.); {indicate that more is coming }
end;

end;

gubed

179. The translate function assumes that scraps have been stored in positions scrap-base through scrap-ptr

of cat and trans. It appends a terminator scrap and begins to apply productions as much as possible. The

result is a token list containing the translation of the given sequence of scraps.

After calling translate, we will have text-ptr + 3 < max-texts and tok-ptr + 6 < maz_toks, so it will be

possible to create up to three token lists with up to six tokens without checking for overflow. Before calling

translate, we should have text-ptr < max-texts and scrap-ptr < max-scraps, since translate might add a new

text and a new scrap before it checks for overflow.

(Declaration of subprocedures for translate 150)
function translate : text-pointer; { converts a sequence of scraps }

label done, found ;

var i: 1 ..max-scraps; {index into cat}
J: 0.. max-scraps; {runs through final scraps }
k: 0. . longbuf size; {index into buffer }

begin pp « scrap-base; lo-ptr «— pp — 15 hi-ptr « pp;

(If tracing, print an indication of where we are 182);
(Reduce the scraps using the productions until no more rules apply 175);
if (lo-ptr = scrap-base) A (cat [lo-ptr] # math) then translate + trans [lo_ptr]
else (Combine the irreducible scraps that remain 180);

end;

82 IMPLEMENTING THE PRODUCTIONS WEAVE $180

180. If the initial sequence of scraps does not reduce to a single scrap, we concatenate the translations

of all remaining scraps, separated by blank spaces, with dollar signs surrounding the translations of math

scraps.

(Combine the irreducible scraps that remain 180) =

begin (If semi-tracing, show the irreducible scraps 181);

for j « scrap-base to lo-ptr do

begin if j # scrap-base then

begin app ("u");
end;

if cat [j] = math then

begin app ("$");
end;

appl (5);
if cat [j] = math then

begin app ("$");
end;

if tok-ptr + 6 > max-toks then overflow (‘token’);

end;

freeze-text; translate + text-ptr — 1;

end

This code is used in section 179.

181. (If semi-tracing, show the irreducible scraps 181) =

debug if (loptr > scrap_base) a (tracing = 1) then
begin print_nl (“Irreduciblescrap sequence ing sectiony’, module-count : 1); printin(*:");
mark-harmless ;

for j « scrap-base to lo-ptr do

begin print (°y); print-cat (cat [j); |
end;

end;

gubed

This code is used in section 180.

182. (If tracing, print an indication of where we are 182) =
debug if tracing = 2 then

begin print-nZ(‘Tracing after l.’, line : 1, * :°); mark-harmless;
if loc > 50 then

begin print (°. .. ’);
for k « loc ~ 50 to loc do print (xchr [buffer [k — 1}]);
e n d

else for k « 1to loc do print (zchr [buffer [k — 1}]);
end

gubcd

This code is used in section 179.

§183 WEAVE INITIALIZING THE SCRAPS 83

183. Initializing the scraps. If wC are going to USC the powerful production mechanism just developed,

‘we must get the scraps set up in the first place, given a PASCAL text. A table of the initial scraps

corresponding to PASCAL tokens appeared above in the section on parsing; our goal now is to implement

that table. We shall do this by implementing a subroutine called PASCAL-parse that is analogous to the

PASCAL _zref routine used during phase one.

Like PASCAL-xref, the PASCAL-parse procedure starts with the current value of next-control and it uses

the operation next-control « get_next repeatedly to read PASCAL text until encountering the next ‘|’ or
‘{’, or until next-control 2 format. The scraps corresponding to what it reads are appended into the cat

and trans arrays, and scrap-ptr is advanced.

Like prod, this procedure has to split into pieces so that each part is short enough to be handled by

PASCAL compilers that discriminate against long subroutines. This time there are two split-off routines,

called easy-cases and sub-cases.

After studying PASCAL-parse, we will look at the sub-procedures app-comment , app-octal, and app-hex

that are used in some of its branches.

(Declaration of the app-comment procedure 195)
(Declaration of the app-octal and app-hex procedures 196)
(Declaration of the easy-cases procedure 186)

(Declaration of the sub-cases procedure 192)

procedure PASCAL-parse { creates scraps from PASCAL tokens }
label reswitch, exit;

var j: 0 .. long-buf-size; {index into buffer }
p: name-pointer ; {identifier designator }

begin while next-control < format do

begin (Append the scrap appropriate to next-control 185);
next-control + get-next;

if (next-control =" | ") V (next-control = "{") then return;
end;

exit: end;

184. The macros defined here are helpful abbreviations for the operations needed when generating the

scraps. A scrap of category ¢ whose translation has three tokens tit ¢,is generated by scd(ty)(t2){ts)(c),
etc.

define 30 (#) = incr (scrap-ptr); cat [scrap-ptr] « #; trons [scrap-ptr — text-ptr ; freeze-text;
end

define 81 (#) = app(#); s0
define s2 (#) = app(#); sl
define s& (#) = app (#); 82
define 84 (#) = app (#); 38
define sc4 = begin 34

define scf = begin 8d

define sc2 = begin 82

define scl = begin sl

define scO(#) =
begin incr (scrap-ptr); cut (scrap-ptr] « #; trans(scrap_ptr| « 0;
end

define comment-scrap (#) =

begin upp (#); app-comment ;
end

84 INITIALIZING THE SCRAPS WEAVE $185

185. (Append the scrap appropriate to next-control 185) =

| (Make sure that there is room for at least four more scraps, six more tokens, and four more texts 187);
reswitch: case next-control of

string, verbatim: (Append a string scrap 189);
identifier : (Append an identifier scrap 191);

TeX string: (Append a TEX string scrap 190);
othercases easy_cases
endcases

This code is used in section 183.

186. The easy-cases each result in straightforward scraps.

(Declaration of the easy-cases procedure 186) =

procedure easy-cases ; { a subprocedure of PASCAL-parse }
begin case next-control of

set-element-sign: s¢8("\")("i")("n")(math);
double-dot: sc8("\")("t")("o")(math);
ng nn, ALR "eu now. sc? ("\")(next-control)(math);
ignore, " |", zref_roman, xref wildcard, xref-typewriter : do-noth.ing;

n(n nv": scl (next _control)(open);
"ym, nv: scl (next-control)(close);

My tt. scd ("\")("a")("s")("t") (math);
non, scy (" : "}(opt)("9")(math);
" " on mn mon ng og npn ngn nn ngn ugh. scl (next_control) (simp);
"ose (";) (semi);
not oscl (":")(colon);
(Cases involving nonstandard ASCII characters 188)
exponent: sc8("\")("E")("{")(exp);
begin-comment: sc ("\")("B")(math);
end-comment : sc ("\")("T")(math);
octal: app-octal,;

hex :app-hex

check-sum: sc2("\")(")")(simp);
force-line: sc2("\")("] ")(simp);
thin-space: se2("\")(", m){ math);
math-break: sc2(opt)("0")(simp);
line-break: commentscrap (force),

big-line-break: comment-scrap (big-force);

no-line-break: begin app (big-cancel); app ("\"); app ("Lo"; comment _scrap big-cancel);
end;

pseudo-semi i sc0 (semi);

join : sc2("\")("J")(math);
othercases scl (next-control){ moth)

endcases;

end;

This code is used in section 183.

§187 WEAVE INITIALIZING THE SCRAPS 85

187. (Make sure that there is room for at least four more scraps, six more tokens, and four more
texts 187) =

if (scrap-ptr + 4 > maz_scraps) V (tok-ptr + 6 > maz_toks) V (text-ptr + 4 > max-texts) then

begin stat if scrap-ptr > maz_scr_ptr then maz_scr_ptr « scrap-ptr;

if tok-ptr > maz_tok_ptr then maz_tok_ptr «— tok-ptr;

if text-ptr > maz.dzri_plr then max-txt-ptr « text-ptr;
tats

overflow (‘scrap/token/ text °);
end

This code is used in section 185.

188. Some nonstandard ASCII characters may have entered WEAVE by means of standard ones. They are

converted to TEX control sequences so that it is possible to keep WEAVE from stepping beyond standard
ASCII.

(Cases involving nonstandard ASCII characters 188) =
not-equal: 8c2("\")("1")(math);
less-or-equal : sc ("\")("L")(math);
greater-or-equal: sc2("\")("G")(math);
equivalence-sign: 8c2("\")("S")(math);
and-sign : sc2 ("\")("W") (math);
or-sign: sc2("\")("V")(math);
no t-sign: sc2("\")("R")(math);
left-arrow : sc ("\"}{"K")(math);
This code is used in section 186.

189. The following code must use app-tok instead of app in order to protect against overflow. Note that

tok-ptr + 1 < maz_toks after app-tok has been used, so another app is legitimate before testing again.
Many of the special characters in a string must be prefixed by ‘\’ so that TEX will print them properly.

(Append a string scrap 189) =

begin app ("\");)
if next-control = verbatim then

begin app ("=");
end

else begin app (". ");
end;

app ("{"); j « id-first;
whilej < id-Zoc do

begin case buffer [j] of

LL "\", ng, AR "gn, nen n n "ne " n{", "Rn, nen ng", nu. begin app ("\");
end; |

"Q": if buffer [j + 1] = "@" then incr (j)
else err-print (| 'UDoubleUQ,shouldLbe,used,inUstrings’);

othercases do-nothing

endcases;

app_tok (buffer [j]); incr (j);
end;

sc1("}")(simp);
end

This rode is used in section 185.

86 INITIALIZING THE SCRAPS WEAVE $190

190. (Append a TEX string scrap 190) =
‘ begin app ("\"); app ("h"); app ("b"); app ("o"); app ("x"); app ("{");

for j « id-first to id-Zoc — 1 do app-tok (buffer 17D);
sc1("}")(simp);
end

This code is used in section 185.

191. (Append an identifier scrap 191) =
begin p « id-lookup (normal);

case tlk [p] of
normal, array-like, const-like, div_like| do-like, for-like, goto_like, nil-like, ro-like: sub_cases(p);
(Cases that generate more than one scrap 193)
othercases begin nezt_control «— ilk ip] — char-like; goto reswitch;
end {and, in, not, or}

endcases;

end

This code is used in section 185.

192. The sub_cases also result in straightforward scraps.

(Declaration of the sub_cases procedure 192) =

procedure sub_cases (p : name-pointer); { a subprocedure of PASCAL_ parse }
begin case tlk[p] of
normal: scl (id_flag + p)(simp); {not a reserved word }

| array-like : sc1(res_flag + p)(alpha); { array, Ale, set }
const-like : sc8 (force)(backup)(res-flag + p)(intro); { const, label, type }
div_like : sc8 (math-bin)(res_flag + p)("}")(math); { div, mod}

| do-like: sc1(res_flag + p){ omega); { do, of, then }
for-like : sc2 (force) (res flag + p)(alpha); { for, while, with }
goto_ like: scl (res_flag + p)(intro); {goto,packed }
nil-like : sc1(res_flag + p)(simp); {nil }
to-like: 8c8 (math-reZ)(res-flag + p)("}*)(math); { downto, to }

. end;

end;

This code is used in section 183.

§193 WEAVE INITIALIZING THE SCRAPS 87]

193. (Cases that generate more than one scrap 193) =
begin-like : begin 8c 3 (force) (res_flag + p) (cancel) (beginning); 8cQ (intro);

end; {begin }
case-like : begin sc0 (casey); sc2 (force){ res_flag + p)(alpha);

end; {case }
else-like: begin (Append terminator if not already present 104);

sc3(force)(backup)(res_flag + p)(elsie);
end; { else }

end-like: begin (Append terminator if not already present 104);
sc. (force)(res_flag + p)(close);
end; { end}

if-like: begin sc0 (cond); sc (force)(res-flag + p)(alpha);
end; {if }

loop-like : begin gcd (force)("\")(""")(alpha); scl (res_flag + P)(omegar
end; { xclause}

proc_like: begin scf (force)(backup)(resflag+p)(cancel)(proc); sc (indent)("\")(".")(intro);
end; { function, procedure, program}

record-like : begin scl (res_flag + p)(record-head); 8¢0 (intro);
end; {record }

repeat-like : begin 8c (force)(indent)(res_flag + p)(cancel)(beginning); sc (intro);
end; {repeat }

until-like: begin (Append terminator if not already present 104);

sc3 (force)(backup)(res_flag + p)(close); scO(clause);
end; {until}

var_ like : begin scf (force) (backup)(res_flag + p) (cancel)(var-head); 8c0 (intro);
end; { var}

This code is used in section 191.

194. If a comment or semicolon appears before the reserved words end, else, or until, the semi or

terminator scrap that is already present overrides the terminator scrap belonging to this reserved word.
(Append terminator if not already present 104) =

if (scrap-ptr < scrap-base) V ((cat[scrap_ptr]| # terminator) A (cat[scrap_ptr| # semi}) then
sc0 (terminator)

This code is used in sections 193, 193, and 193. .

195. A comment is incorporated into the previous scrap if that scrap is of type omega or semi or

terminator. (These three categories have consecutive category codes.) Otherwise the comment is entered as

a separate scrap of type terminator, and it will combine with a terminator scrap that immediately follows it.

The app-comment procedure takes care of placing a comment at the end of the current scrap list. When

app-comment is called, we assume that the current token list 1s the translation of the comment involved.

(Declaration of the app-comment procedure 195) =
procedure app-comment ; { append a comment to the scrap list }
begin freeze-text;

if (scrap-ptr < scrap-base) V (cat |scrap-ptr] < omega) V (cat [scrap-ptr] > terminator } then
scl (terminator)

else begin appl (scrap-ptr); { cat[scrap-ptr] iS omega Or 8€ML OF terminator }
end;

app (text_ptr — 1 + tok_flag); trans (scrap-ptr] «+ text-ptr; freeze-text;
end;

This code is used in section 183.

88 INITIALIZING THE SCRAPS WEAVE $196

196. We are now finished with PASCAL-parse, except for two relatively trivial subproccdures that convert
constants into tokens.

(Declaration of the app_octal and app_hex procedures 196) =
procedure upp-octal;

| begin app ("\"); upp (“0”); upp ("{");
while (buffer [loc] > “07) A (buffer [loc] < “7) do

begin app_tok (buffer [loc)); incr (loc);
end;

se1("}")(simp);
end;

procedure upp-hex;

: begin app ("\"): upp ("H"); upp ("{");
| while ((buffer [loc] >"0")A (buffer [loc] <9”) Vv ((buffer [loc] > “A”) A (buffer [loc] < "F")) do

begin upp-tok (buffer [loc]); incr (loc);
end;

sc1("}")(simp);
end;

This code is used in section 183.

197. When the ‘|’ that introduces PASCAL text is sensed, a call on PASCAL-translate will return a pointer

to the TRX translation of that text. If scraps exist in the cut and truns arrays, they are unaffected by this
translation process.

function PASCAL-translate: text-poinfer;

var p: text-pointer; { points to the translation }
save-base: 0 . . mux-scraps; { holds original value of scrap-buse }

. begin save_base « scrap-base; scrap-base «+ scrap-ptr + 1; PASCAL-purse; { get the scraps together }
if next-control # "|" then err_print{ ! Missing "|" after PASCAL_ text °);
upp-tok (cancel); app-comment; { place a cancel token as a final “comment” }

| p « translute; { make the translation }
| stat if scrap-ptr > mux-scr-ptr then mux-scr-ptr « scrap_ptr, tats

. scrap-ptr « scrap-base — 1; scrap-base + save-base; { scrap the scraps }
PASCAL translate «— p;

end;

$198 WEAVE INITIALIZING THE SCRAPS 89

198. The outer-purse routine is to PASCAL-purse as outer_zref is to PASCAL-xref: It constructs a

‘ sequence of scraps for PASCAL text until next-control > format. Thus, it takes care of embedded comments.

procedure outer-purse; {makes scraps from PASCAL tokens and comments }

var bal : eight-bits ; { brace level in comment }
Dp, q: text-pointer { partial comments }

begin while next-control < format do

if next-control # "{" then PASCAL-purse
else begin (Make sure that there is room for at least seven more tokens, three more texts, and one

more scrap 199);

upp ("\"); upp ("C"); upp ("{"); bal + copy-comment (1); next-control « "|";
while bal > 0 do

begin p + text-ptr ; freeze-text; q +— PASCAL-trunslute;

{ at this point we have tok-ptr + 6 < mux-toks }
upp (tok-flag + p); upp (inner-tok-flag + q);

if next-control =" |" then bal «— copy-comment (bal)
else bal « 0; {an error has been reported }
end;

upp (force); app.comment ; { the full comment becomes a scrap }
end;

end;

199. (Make sure that there is room for at least seven more tokens, three more texts, and one more

scrap 199) =
if (tok-ptr + 7 > mux-toks) v (text-ptr + 3 > maz _tezts) V (scrap-ptr 2 mux-scraps) then

begin stat if scrap-ptr > maz_scr_ptr then maz_scrpir « acrup-ptr,

if tok-ptr > maz_tok_ptr then maz_tok_ptr « tok-ptr;

if text-ptr > maz_txt_ptr then mux-txt-ptr «— text-ptr ,
tats

overflow (‘token/ text/ scrap’); .

end

This code is used in section 198.

90 OUTPUT OF TOKENS WEAVE §200

200. Output of tokens. So far our programs have only built up multi-layered token lists in WEAVE's

‘internal memory; we have to figure out how to get them into the desired final form. The job of converting

token lists to characters in the TEX output file is not difficult, although it is an implicitly recursive process.
Three main considerations had to be kept in mind when this part of WEAVE was designed: (a) There are two

modes of output, outer mode that translates tokens like force into line-breaking control sequences, and inner

mode that ignores them except that blank spaces take the place of line breaks. (b) The cancel instruction

applies to adjacent token or tokens that are output, and this cuts across levels of recursion since ‘cancel’

occurs at the beginning or end of a token list on one level. (¢) The TEX output file will be semi-readable if
line breaks are inserted after the result of tokens like break-space and force. (d) The final line break should

be suppressed, and there should be no force token output immediately after \ Y\ P’.

201. The output process uses a stack to keep track of what is going on at different “levels” as the token

lists arc being written out. Entries on this stack have three parts:

end-field 1s the tok-mem location where the token list of a particular level will end;

tok_field is the rok-mem location from which the next token on a particular level will be read;

mode-field is the current mode, either inner or outer.

The current values of these quantities are referred to quite frequently, so they are stored in a separate place

instead of in the stuck array. We call the current values cur-end, cur-tok, and cur-mode.

The global variable stuck-ptr tells how many levels of output are currently in progress. The end of output

occurs when an end-translation token is found, so the stack is never empty except when we first begin the

output process.

define inner = 0 {value of mode for PASCAL texts within TEX texts }
define outer = 1 { value of mode for PASCAL texts in modules }

(Types in the outer block 11) +=
mode = inner . . outer;

output-state = record end-field: sixteen-bits ; { ending location of token list }
tok-field: sixteen-bits; { present location within token list }
mode-field: mode; { interpretation of control tokens }
end;

202. define cur-end = cur-stute.end-field {current ending location in tok-mem }
define cur-rok = cur_state.tok_field { location of next output token in rok-mem }
define cur-mode = cur-state .modc-field { current mode of interpretation }
define init_stack = stack-ptr « 0; cur-mode « outer {do this to initialize the stack}

(Globals in the outer block 9) +=
cur_stale : output-state; { cur_end, cur-tok, cur-mode }
stack: array 1 . . Stack-size] of output-stute; { info for non-current levels }
stuck-ptr : 0. . stuck-size; { first unused location in the output state stack }

stat mux-stuck-ptr : 0 . . stack-size; {largest value assumed by stuck-ptr }
tats

203. (Set initial values 10) +=

stat mux-stuck-ptr «+ 0; tats

$204 ~~ WEAVE OUTPUT OF TOKENS 91

204. To insert token-list p into the output, the push-level subroutine is called; it saves the old level of

output and gets a new one going. The value of cur-mode is not changed.

procedure push-level (p : text-pointer); { suspends the current level }
begin if stack_ptr = stack-size then overflow (‘stack’)

else begin if stack-ptr > 0 then stack([stack_ptr| — cur-state; {save cur-end.. . cur-mode }
incr (stack-ptr);

stat if stack-ptr > max-stack-ptr then max-stack-ptr « stack-ptr jy tats

cur-tok + tok-start pl; cur-end « tok-start [p + 1];
end;

end;

205. Conversely, the pop-level routine restores the conditions that were in force when the current level was

begun. This subroutine will never be called when stack-ptr = 1. It is so simple, we declare it as a macro:

define pop-level =

begin decr (stack-ptr); cur-state + stack [stack-ptr];

end {do this when cur-tok reaches cur-end }

206. The get-output function returns the next byte of output that is not a reference to a token list. It

returns the values identifier or res_word or mod-name if the next token is to be an identifier (typeset in

italics), a reserved word (typeset in boldface) or a module name (typeset by a complex routine that might

generate additional levels of output). In these cases cur-name points to the identifier or module name in

question.

define res-word = ‘201 {returned by get-output for reserved words }
define mod-name = ‘200 {returned by ger-output for module names }

function get-output : eight-bits ; {returns the next token of output }
. label restart;

var a: sixteen-bits ; { current item read from tok-mem }
begin restart : while cur-tok = cur-end do pop-level;

a + tok-mem [cur-tok]; incr (cur-tok);

if a > 400 then

begin cur-name «— a mod d_flag;

case u div :d_flag of

2: a « res-word; {a = res flag + cur-name }
3: a «+ mod-name: {a = mod_flag + cur-name }
4: begin push-level (cur-name);, goto restart ; .

end; {a = tok flag + cur-nume }
5: begin push-level (cur-name); cur-mode + inner, goto restart;

end; {a = inner_tok_flag + cur-name }
othercascs a « identifier { a =1id.flag + cur-name }
cndcases;

end;

debug if trouble-+ilootitly then debug-help;

gubed

get-output «— a;

end;

92 OUTPUT OF TOKENS WEAVE §207

207. The real work associated with token output is done by make-output. This procedure appends an

‘end-translation token to the current token list, and then it repeatedly calls get-output and feeds characters

to the output buffer until reaching the end-translation sentinel. It is possible for make-output to be called

recursively, since a module name may include embedded PASCAL text; however, the depth of recursion never

exceeds one level, since module names cannot be inside of module names.

A procedure called output-PASCAL does the scanning, translation, and output of PASCAL text within

“|... |’ brackets, and this procedure uses make-output to output the current token list. Thus, the recursive

call of make-output actually occurs when make-output calls output-PASCAL while outputting the name of

a module.

procedure make-output; forward;

procedure output-PASCAL; {outputs the current token list }
var save-tok-ptr, save-text-ptr, save-next-control: sixteen-bits; { values to be restored }

p: text-pointer; { translation of the PASCAL text }
begin save-tok-ptr <— tok-ptr ; save-text-ptr «— text-ptr; save-next-control <— next-control;

next-control « "1"; p «— PASCAL-translate ; upp (p + inner_tok_flag); make-output | { output the list }
stat if text-ptr > max-txt-ptr then max-txt-ptr « text-ptr;

if tok-ptr > maz_tok_ptr then max-tok-ptr « tok-ptr ; tats

text-ptr «— save-text-ptr ; tok-ptr « save-tok-ptr ; {forget the tokens }
next-control <«— save-next-control; { restore next-control to original state }
end;

$208 WEAVE OUTPUT OF TOKENS 93

208. Here is WEAVE's major output handler.

procedure make-output; { outputs the equivalents of tokens }
label reawitch, exit , found;

var a: eight-bits; { current output byte }
b: eight-bits ; { next output byte }
k, k-limit : 0. . maz_bytes; {indices into byre-mem }
w: 0.. ww —=1; {row of byte-mem }
j: 0. . longbuf size; {index into buffer }
string-delimiter : ASCII-code ; { first and last character of string being copied }
save_loc, save-limit : 0. . long_buf_size; { Zoc and limit to be restored }
cur-mod-name : name-pointer; { name of module being output }
save-mode : mode; {value of cur-mode before a sequence of breaks }

begin app (end-translation); { append a sentinel }
freeze-text ; push_level (text-ptr — 1);

loop begin a «— get-output;
reawitch: case a of

end-translation: return;

identifier, res_word: (Output an identifier 209);
mod-name : (Output a module name 213);
math-bin, math-op, math_rel: (Output a \math operator 210);
cancel: begin repeat a «+ get-output;

until (a < backup) V (a > big-force);

goto reawitch;

end;

big-cancel: begin repeat a + get-output,

until ((a < backup) A (a #".")) V (a > big-force);
goto reawitch,

end;

indent, outdent, opt, backup, break_space, force, big_force: (Output a control, look ahead in case of line

breaks, possibly goto reswitch 211);
othercases out (a) {otherwise a 1s an ASCII character }
endcases; .

end;

exit: end;

209. An identifier of length one does not have to be enclosed in braces, and it looks slightly better if set
in a math-italic font instead of a (slightly narrower) text-italic font. Thus we output ‘\ I a’ but ‘\\{aa}’.

(Output an identifier 209) =

begin out ("\");
if a = identifier then

if length (cur-name) = 1 then out ("| ")
else our ("\")

else out ("&"); {a = res_word }
if length (cur-name) = | then out (byte-mem [cur-name mod WW| byte-start [cur-name]])

else out-name (cur-name);

end

This code is used in section 208.

94 ~~ OUTPUT OF TOKENS WEAVE ~~ §210

210. (Output a \math operator 210) =
begin outs ("\")("m")("a")("t")("h");
if a = math-bin then outd ("b")("i")("n")
else if a = math_rel then out3 ("r")(*e")("1")

else out2 ("o")("p");
out ("{");
end

This code is used in section 208.

211. The current mode does not affect the behavior of WEAVE’s output routine except when we are

outputting control tokens.

(Output a control, look ahead in case of line breaks, possibly goto reswitch 211) =
if a < break-space then

begin if cur-mode = outer then

begin out2("\")(a + -cancel + "0");
if a = opt then out (get-output) { opt is followed by a digit }
end

else if a = opt then b « get-output { ignore digit following opt }
end

else (Look ahead for strongest line break, goto reswitch 212)
This code is used in section 208.

212. If several of the tokens break-space, force, big-force occur in a row, possibly mixed with blank spaces

(which are ignored), the largest one is used. A line break also occurs in the output file, except at the very

end of the translation. The very first line break is suppressed (i.e., a line break that follows 4 Y\ P’).

(Look ahead for strongest line break, goto reswitch 212) =
begin b « a; save-mode «- cur-mode;

loop begin a « get-output;

if (a= cancel) V (a =big_cancel) then goto reawitch; { cancel overrides everything }
if (a #"_")A (a < break-space)) V (a > big-force) then
begin if save-mode = outer then

begin if out-ptr > 3 then

if (out_buf [out-ptr] = "P") A (out-buf [out-ptr — 1] = "\") A (out-buf [out-ptr — 2] =
"Y") A (outbuf [out_ptr — 3] = "\") then goto reawitch;

out2 ("\")(b ~ cancel + "0");
if a # end_translation then finish-line;
end

else if (a # end-translation) A (cur-mode = inner) then out ("L");
goto reswitch,

end;

ifa > b then b « a; {if a ="_" we have a < b}
end;

end

This code is used in sec tion 211.

$213 WEAVE OUTPUT OF TOKENS 95

213. The remaining part of make-output is somewhat more complicated. When we output a module

‘name, we may need to enter the parsing and translation routines, since the name may contain PASCAL code

embedded in | . . . | constructions. This PASCAL code is placed at the end of the active input buffer and the

translation process uses the end of the active tok-mem area.

(Output a module name 213) =
begin out2 ("\")("X"); cur-xref « xref [cur-name];
if num(cur-xref) > def flag then

begin out-mod (num (cur-xref) — def_flag);
if phase-three then

begin cur-xref « zhnk (cur-xref);

while num(cur-xref) 2 def_flag do
begin out2 (",")("u"); out-mod(num(cur-xref)— def flag }; cur-xref « zhink(cur-xref);
end;

end;

end

else out ("0"); { output the module number, or zero if it was undefined }
out (" : "); (Output the text of the module name 214);
out2 ("\")("X");
end

This code is used in section 208.

214. (Output the text of the module name 214) =

k « byte-start [cur-name]; w <— cur-name mod ww; k-limit « byte-start [cur-name + ww |;
cur-mod-name «— cur-name ;

while k < k-limit do

begin b « byte-mem[w, kj; incr (k);
if b = "@" then (Skip next character, give error if not ‘@ 215),

if b#"|"then out (b)

else begin (Copy the PASCAL text -into buffer [(limit + 1) . . 7] 216);
save-lot « loc; save-limit « limit; loc « limit + 2; limit t j + 1; buffer [limit] « " I ";
output-PASCAL; loc «— save-lot; limit « save-limit;

end;

end

This code is used in scction 213.

215. (Skip next character, give error if not ‘@ 215) =
begin if byte_mem|w, k} # "@" then

begin print_nl(‘!' Illegal control code in section name: °); print_.nl(<’);
print-id (cur-mod-name); print (Suh murk-error,
end;

incr (k);
end

This code is used in section 214.

96 OUTPUT OF TOKENS WEAVE §216

216. The PASCAL text enclosed in |... | should not contain ‘|’ characters, except within strings. We put

a ‘|’ at the front of the buffer, so that an error message that displays the whole buffer will look a little bit

sensible. The variable string-delimiter is zero outside of strings, otherwise it equals the delimiter that began

the string being copied.

(Copy the PASCAL text into buffer [(limit + 1). .]] 216) =

j + limit + 1; buffer [j] — "|"; string-delimiter « 0;

loop begin if kK > k-limit then

begin print-nZ(*'_PASCAL_textin section name didn’ t_end:); print_nl(°<°);
print-id (cur-mod-name); print (>U°); mark-error; goto found;
end;

b + byte-men? (w, kl; incr (k);
if b = "@" then (Copy a control code into the buffer 217)

else begin if (b="""")V (b=""") then
if string-delimiter = 0 then string-delimiter «= b

else if string-delimiter = b then string-delimiter «— 0;

if (b#"|")V (string-delimiter # 0) then
begin ifj > long_buf_size — 3 then overflow (‘buffer °);
incr (j); buffer [jf] — b;
end

else goto found;

end;

end;

found:

This code is used in section 214.

217. (Copy a control code into the buffer 217) =

begin ifj > longbuf size — 4 then overflow (‘buffer °);
buffer [j + 1] — "@"; buffer [j + 2] «— byte_mem|w, kJ;j — j + 2; incr (k);
end

This code is used in section 216. :

$218 WEAVE PHASE TWO PROCESSING 97

218. Phase two processing. We have assembled enough picces of the puzzle in order to be ready to

specify the processing in WEAVE’s main pass over the source file. Phase two is analogous to phase one, except

that more work is involved because we must actually output the TEX material instead of merely looking at
the WEB specifications.

(Phase II: Read all the text again and translate it to TEX form 218) =
reset-input; print_nl ‘Writingthe output file... “); module-count «— 0; copy-limbo; finish-line ;
flush_buffer (0, false); {insert a blank line, it looks nice }
while —input_has_ended do (Translate the current module 220)

This code is used in section 261.

219. The output file will contain the control sequence \'Y between non-null sections of a module, e.g.

between the TEX and definition parts if both are nonempty. This puts a little white space between the parts
when they are printed. However, we don’t want \ Y to occur between two definitions within a single module.

The variables out-line or out-ptr will change if a section is non-null, so the following macros ‘save-position’

and ‘emit-spuce-if-needed’ are able to handle the situation:

define save-position = save-line «— out-line; save-place «+ out-ptr

define emait_space_tf needed =

if (save-line # out-line) V (save-place # out-ptr) then out2{"\")("Y")

(Globals in the outer block 9) +=
save-line : integer; {former value of out-line }
save-place: sixteen-bits; {former value of out-ptr }

220. (Translate the current module 220) =
begin incr (module-count);
(Output the code for the beginning of a new module 221);

. save_position ;

(Translate the TEX part of the current module 222);
(Translate the definition part of the current module 225);
(Translate the PASCAL part of the current module 230);

(Show cross references to this module 233);

(Output the code for the end of a module 238);

end

This code is used in section 218.

221. Modules beginning with the WEB control sequence ‘@.," start in the output with the TREX control

sequence ‘\M’, followed by the module number. Similarly, ‘@*’ modules lead to the control sequence ‘\N’. If
this is a changed module, we put * just before the module number.

(Output the code for the beginning of a new module 221) =
out ("\"):
if buffer [loc — 1] # "+" then out ("M")
else begin out ("N"); print (* **,module-count : 1); update_terminal { print, a progress report }

end;

out-mod (module _count }; out.2(".")}("L")
This code is used in section 220.

98 PHASE TWO PROCESSING WEAVE §222

222. In the TEX part of a module, we simply copy the source text, except that index entries are not copied
‘and PASCAL text within |... |is translated.

(Translate the TX part of the current module 222) =
repeat next-control + copy-TeX;

case next-control of

"|": begin wnit_stack; output-PASCAL;

0 ["aq! L "Q");
octal: (Translate an octal constant appearing in TEX text 223);
her: (Translate a hexadecimal constant appearing in TEX text 224);
TeX string, zref_roman, xref wildcard, xref-typewriter,module-name : begin loc «— loc — 2;

next-control « get-next; { skip to @> }
if next-control = TeX-string then err-print (“t_ TeX string should be in PASCAL text only ~);
end;

begin-comment, end-comment, check-sum, thin-apace, math-break, line-break, big-line-break,

no-line-breuk,join,pseudo-semi: err-print (' You can’ "t do that in TeX text “);
othercases do-nothing

endcases;

until next-control > format

This code is used in section 220.

223. (Translate an octal constant appearing in TEX text 223) =
begin outd ("\")("0")("{");
while (buffer [loc] > "0") a (buffer [loc] <"7") do

begin out (buffer [Zoc]); incr (Zoc);

end; {since buffer [Zimit]="_", this loop will end }
out ("}");
end

This code is used in section 222.

224. (Translate a hexadecimal constant appearing in TEX text 224) =
begin out3 ("\")("Hn) nn);
while ((buffer[loc] >"0") A (buffer [loc] <"9")) V ((buffer [loc] > “A”) A (buffer[loc] <"F")) do

begin out (buffer [loc)); incr (Zoc);
end;

out ("}");
end

This code 18 used in section 222.

$225 ~~ WEAVE PHASE TWO PROCESSING 99

225. When we get to the following code we have next-control 2 format, and the token memory is in its

initial empty state.

(Translate the definition part of the current module 225) =
if next-control < definition then { definition part non-empty }
begin emit-space-if-needed; save-position;

end;

while next-control < definition do {format or definition }
begin init-stack ;

if next-control = definition then (Start a macro definition 227)

else (Start a format definition 228);

outer-parse ; fintsh_.PASCA L;
end

This code is used in section 220.

226. The finish-PASCAL procedure outputs the translation of the current scraps, preceded by the control

sequence \ P’ and followed by the control sequence ‘\ par’. It also restores the token and scrap memories to

their initial empty state.

A force token is appended to the current scraps before translation takes place, so that the translation

will normally end with \6 or \7 (the TEX macros for force and big-force). This \6 or \7 is renlaced by the
concluding \ par or by \Y\par.

procedure finish-PASCAL; { finishes a definition or a PASCAL part }
var p: text-pointer; { translation of the scraps }
begin out2 ("\"){ "P"); app-tok (force); app_comment ; p « translate ; app (p + tok flag); make-output

{ output the list }
if out-ptr > 1 then

if out-buf [out-ptr — 1] = "\" then
if out-buf [out-ptr] = "6" then out-ptr « out-ptr — 2

else if out-buf [out-ptr] = "T" then out-buf [out-ptr] « "Y";

out ("\")("p")("a")("xr"); finish-line;
stat if text..ptr > maz_tzt_ptr then max-txt-ptr « text-ptr;

if tok-ptr > mazx_tok_ptr then max-tok-ptr « tok-ptr;

if scrap-ptr > max-scr-ptr then max-scr-ptr «— scrap-ptr;

tats

tok-ptr « 1; text-ptr «— 1; scrap-ptr « 0; { forget the tokens and the scraps }
end;

227. (Start a macro definition 227) =
begin sc? ("\")("D")(intro); {this will produce ‘define ’ }
next-control « get-next;

if next-control # identifier then err-print (°!_Impropermacro definition’)
else scl (id flag + id-lookup (normal))(math),
next-control «- get-next

end

This code is used in section 225.

100 PHASE TWO PROCESSING WEAVE $228

228. (Start a format definition 228) =
B begin sc2 ("\")("F")(intro); { this will produce format ’}

next-control + get-next,

| if next-control = identifier then

begin scl (2d_flag + id-lookup (normal)) (math); next-control + get-next ;
if next-control = equivalence-sign then

begin sc2("\")("8")(math); {output an equivalence sign }
next-control « get-next;

if next-control = identifier then

begin scl (id-flag + id-lookup (normal) (math); 8cO (semi); { insert an invisible semicolon }
next-control «— get-nezt ;

end;

end;

end;

if scrap-ptr #5 then err-print (* !', Improperf ormat def inition’);
end

This code is used in section 225.

229. Finally, when the TEX and definition parts have been treated, we have next-control 2 begin_pascal
We will make the global variable this-module point to the current module name, if it has a name.

(Globals in the outer block 9) +=
this-module : name-pointer; { the current module name, or zero)

230. (Translate the PASCAL part of the current module 230) =

this-module «+ 0;

if next-control < module-name then

begin emit_space_if needed; tnit_stack ;

if next-control = begin_pascal then next-control «+ get-next

else begin this_module « cur-module; (Check that = or = follows this module name, and ecmit the

scraps to start the module definition 231);

end;

while next-control < module-name do

begin outer-purse; (Emit the scrap for a module name if present 232)

| end;

finish PASCAL;
| end

| This code is used in section 220.

$231 WEAVE PHASE TWO PROCESSING 101

231. (Check that = or = follows this module name, and emit the scraps to start the module

- definition 231) =

repeat nezt_control «— get-next ;

until next-control # "+"; {allow optional ‘+=’}
if (next-control # "=") A (next-control # equivalence _sign) then

err-print (“! You need an_=_sign after the section name ‘)
else next-control t get-next,

if out-ptr > 1 then

if (out-buf [out-ptr] ="Y") A (out-buf [out-ptr — 1] = "\") then
begin app (backup), { the module name will be flush left }
end;

scl (mod_flag + this-module) (mod-scrap); cur-xref «— xref [this-module];
if num (cur-xref) # module-count + def_flag then

begin scd(math_rel})("+")("}")(math); {module name is multiply defined }
this-module «— 0; {so we won't give cross-reference info here }
end;

sc ("\")("S")(math); { output an equivalence sign }
scl (force)(semi); { this forces a line break unless ‘@+’ follows }

This code is used in section 230.

232. (Emit the scrap for a module name if present 232) =

if next-control < module-name then

begin err-print (*! _Yougycan”® ‘t_do that, in PASCAL text); next-control + get-next ,
end

else if next-control = module-name then

begin scl (mod-flag + cur_module)(mod-scrap); next-control « get-next;
end

) This code is used in section 230.

233. Cross references relating to a named module are given after the module ends.

(Show cross references to this module 233) =
if this-module > 0 then

begin (Rearrange the list pointed to by cur-xref 235);

footnote (def flag); footnote (0);
end

This code is used in section 220.

234. To rearrange the order of the linked list of cross references, we need four more variables that point

to cross reference entries. We’ll end up with a list pointed to by cur-xref.

(Globals in the outer block 9) +=
next_zref| this_zref| first-xref , mid-xref : xref-number; {pointer variables for rearranging a list }

102 PHASE TWO PROCESSING WEAVE $235

235. We want to rearrange the cross reference list so that all the entries with def-flag come first, in

ascending order; then come all the other entries, in ascending order. There may be no entries in either one

or both of these categories.

(Rearrange the list pointed to by cur-xref 235) =

first-xref t xref [this-module]; this-xref t xlink (first-xref); { bypass current module number }
if num (this-xref) > def-flag then

begin mid-xref « this-xref ; cur-xref + 0; { this value doesn’t matter }
repeat next-xref t xlink (this-xref); xlink (this-xref) « cur-xref ; cur-xref «— this-xref ;

this-xref « next-xref;

until num (this-xref) < def-flag ;

zlink (first_zref) «— cur-xref ;
end

else mid-xref+ 0; { first list null }
cur-xref «— 0;

while this-xref # 0 do

begin next-xref t xlink (this-xref); xlink (this-xref) <— cur-xref ; cur-xref <— this-xref ;

this-xref «— next-xref ;

end;

if mid-xref > 0 then xlink (mid-xref) «— cur-xref

else xlink (first-xref) «— cur-xref;

cur-xref « xlink (first-xref)

This code is wed in section 233.

236. The footnote procedure gives cross reference information about multiply defined module names (if

the flag parameter is def-flag), or about the uses of a module name (if the flag parameter is zero). It

assumes that cur-xref points to the first cross-reference entry of interest, and it leaves cur-xref pointing

to the first element not printed. Typical outputs: ‘\A_section 101.% ‘\Ugusections 370 and 1009. ’
‘\ A,sections 8, 27*, and 64." |

procedure footnote (flag : Sixteen-bits); { outputs module cross-references }
label done, exit;

var q: zref number; { cross-reference pointer variable }
begin if num(cur-xref) < flag then return;

finwsh_ line; our ("\ ");
if flag = 0 then out ("U") else out ("A");
out 4 ("om (Ms) (em) ("ce"); outd ("te") ("i") ("o")("n");
(Output all the module numbers on the reference list cur-xref 237);
out (".");

exit: end;

|

§237 WEAVE PHASE TWO PROCESSING 103

237. The following code distinguishes three cases, according as the number of cross references is one, two,

or more than two. Variable ¢ points to the first cross reference, and the last link is a zero.

(Output all the module numbers on the reference list cur_zref 237) =

q + cur-xref ;

if num (zlink (q)) > flag then out (*s"); {plural}
out ("~");
loop begin out_mod(num (cur-xref) — flag); cur-zref « zhink (cur-xref);

{ point to the next cross reference to output }
if num (cur-xref)< flag then goto done;

if (num(zlink (cur-zref)) > flag) v (cur-xref # zhink (q)) then our (", "); {not the last of two }
out ("u");
if num (zlink(cur_zref)) < flag then out ("a")("n")("d")("™"); {the last }
end;

done:

This code is used in 8ec tion 230.

238. (Output the code for the end of a module 238) =
outd ("\")("£")("i"); finish-line; flush_buffer (0, false); (insert a blank line, it looks nice}

This code is used in section 220.

104 PHASE THREE PROCESSING WEAVE §239

239. Phase three processing. We are nearly finished! WEAVE’s only remaining task is to write out the

‘index, after sorting the identifiers and index entries.

(Phase III: Output the cross-reference index 239) =

phase-three « true; print_nl (‘Writingthe index... °);
if change-exists then

begin finish-line; (Tell about changed modules 241);

end;

finish-line; out4 ("\")("i")("n")("x"); finish-line; (Do the first pass of sorting 243);
(Sort and output the index 250);

outd ("\")("£")("i")("n"); finish-line; (Output all the module names 257)
outd ("\")("c")("o")("n"); finish-line; print(Done. °);

This code is used in section 261.

240. Just before the index comes a list of all the changed modules, including the index module itself.

(Globals in the outer block 9) +=
k-module: 0 . . maz_modules; { runs through the modules }

241. (Tell about changed modules 241) =

begin { remember that the index is already marked as changed }
k-module «— 1;

while = changed-module [k-module] do ner (k-module);
outd ("\")("c"}("h"){"_"); out-mod(k-module);
repeat repeat incr (k-module) until changed-module [k-module];

out? (",")("L"); out-mod (k-module);
until k-module = module-count,

out (" MY;
end

This code 18 used in section 239.

242. A left-to-right radix sorting method is used, since this makes it easy to adjust the collating sequence

. and since the running time will be at worst proportional to the total length of all entries in the index. We

put the identifiers into 102 different lists based on their first characters. (Uppercase letters are put into

the same list as the corresponding lowercase letters, since we want to have ¢ < TeX < to’) The list for

character ¢ begins at location bucket [c] and continues through the blink array.

(Globals in the outer block 9) +=

bucket: array [ASCIlI-code] of name-pointer;

next-name: name_pointer; { successor of cur-name when sorting }
c: ASCII-code ; { index into bucket }
h: 0. . hash-size; {index into hash }
blink: array [0 .. mar_names] of sixteen bits ; {links in the buckets }

$243 WEAVE PHASE THREE PROCESSING 105

243. To begin the sorting, we go through all the lash lists and put each entry having a nonempty cross-

reference list into the proper bucket.

(Do the first pass of sorting 243) a
for ¢c «0 to 127 do bucket [c] « O;

for h «- 0 to hash-size — 1 do

begin next-name « hush [h];

while next-name # 0 do

begin cur-name «- next-name ; next-nume + link [cur-name];

if zref [cur-name] # 0 then

begin ¢ « byte-mem [cur-name mod ww, byte-start [cur-nume||
if (c <"Z") A (c >"A") then c¢ « c + 40;
blink [cur-name | «— bucket |c]; bucket [c] + cur-nume;
end;

end;

end

This code is used in section 239.

244. During the sorting phase we shall usc the cut and trans. arrays from WEAVE's parsing algorithm and

rename them depth and head. They now represent a stack of identifier lists for all the index entries that

have not yet been output. The variable sort_ptr tells how many such lists are present; the lists are output

in reverse order (first sort_ptr, then sort_ptr — 1, etc.). The jth list starts at head|j], and if the first k
characters of all entries on this list arc known to be equal we have depth|j] = k.

define depth = cut { reclaims memory that is no longer needed for parsing }
define heud = truna { ditto }
define sort-ptr = scrap-ptr {ditto}

define mux-sorts = maz_scraps { ditto }

(Globals in the outer block 9) +=
cur-depth: eight-bits; { depth of current buckets}
cur-byte: 0 . . mux-bytes; {index into byte-mem }
cur-bank: 0... ww — 1; {row of byte-mem }
cur_val: sixteen-bits ; { current cross reference number }

stat maz_sort_ptr: 0 . . max_sorts; tats { largest value of sort-ptr }

245. (Set initial values 10) +=
stat maz_sort_ptr « 0; tats

246. The desired alphabetic order is specified by the collute array; namely, collate [0] < collute [1] <<
collate[100].

(Globals in the outer block 9) +=
collate: array (0 .. 100] of ASCII-code ; { collation order }

247. (Local variables for initialization 16) +=
c: ASClI-code ; { used to initialize collute }

106 PHASE THREE PROCESSING WEAVE $248

248. We use the order null < j < other characters <K_<A =a << -<Z=2<0<+::+<9,

(Set initial values 10) +=

collate [0] « O; collate 1] —"u";
for ct 1 to ","— 1 do collate [c + 1} « ¢;
for c «"_ "+1 to "0" —1 do collate |c] — cy
for ¢c «= "9" + 1 to "A" — 1 do collate[c — 10] « c;
force "Z"+1 to" "—=1 do collate|c — 36] — c:
collate["_" — 36] « "_" + 1;
for ¢c « "z" +1 to 126 do collate |[c — 63] — C;
collate 64] —n"_m
for ¢ « "a" to "z" do collate [c ~"a" + 65] « c;
for ¢ t "0" to "9" do collate [c — "0" + 91] « ¢;

249. Procedure unbucket goes through the buckets and adds nonempty lists to the stack, using the collating

sequence specified in the collate array. The parameter to unbucket tells the current depth in the buckets.

Any two sequences that agree in their first 255 character positions are regarded as identical.

define infinity = 255 { oo (approximately) }

procedure unbucket (d : eight-bits); { empties buckets having depth d }
var c¢: ASCIl-code; {index into bucket }
begin for ¢ « 100 downto 0 do

if bucket [collate]] > 0 then
begin if sort-ptr > mux-sorts then overflow (‘sorting’);

incr (sort-ptr);
stat if sort-ptr > mux-sort-ptr then mux-sort-ptr <— sort-ptr; tats

if c = 0 then depth{sort_ptr] « infinity
else depth[sort_ptr| — d;
head [sort-ptr] « bucket [collate [c]]; bucket [collate [c]] « 0;
end;

end;

250. (Sort and output the index 250) =

sort-ptr «— 0; unbucket (1);

while sort-ptr > 0 do

begin cur-depth « cut | sort-ptr IE
if (blink[head[sort_ptr]] = 0) V (cur-depth = infinity) then

(Output index entries for the list at sort-ptr 252)
else (Split the list at sort_ptr into further lists 251);
end

This code is used in section 239.

$251 WEAVE PHASE THREE PROCESSING 107

251. (Split the list at sort-ptr into further lists 251) =

begin nest-name « head[sort_ptr];
repeat cur-name t nezxt_name ; next_name «— blink [cur-name];

cur-byte «— byte-start cur-name] + cur_depth; cur-bank «— cur-name mod ww:

if cur-byte = byte_start [cur-name + ww] then c¢ « 0 {we hit the end of the name }
else begin ct byte-mem (cur-bank, cur-byte];

if (c <"Z")A (c >"A") then c +c + 40;
end;

blink [cur-name] +— bucket [ce]; bucket [c] «— cur-name;
until nezxt_name = 0; .

decr (sort&r); unbucket (cur-depth + 1);
end

This code is used in section 250.

252. (@ typ tindex entries for the list at sort-ptr 252) =
begin cur-name « head [sort_ptr |;
debug if trouble-shooting then debug-help; gubed

repeat out? ("\")(":"); (Output the name at cur-name 253);
(Output the cross-references at cur-name 254);
cur-name + blink [cur-name];

until cur-name = 0;

decr (sort-ptr);
end

This code is used in section 250.

253. (Output the name at cur-name 253) =
case ilk [cur-name] of

normal: if length(cur-name) = 1 then out2 ("\") ("1") else out2 ("\")}{"\");
roman: do-nothing;

wildcard: out2 ("\")("9");
typewriter: out2("\")(".");
othercases out2("\")("&")
endcases;

out-name (cur-name)

This code is used in section 252.

254. Section numbers that are to be underlined are enclosed in ‘\[...]".

(Output the cross-references at cur-name 254) =

(Invert, the cross-reference list at cur-name, making cur_zref the head 255)

repeat out2 (",")("L"); cur_val « num (cur-zref);
if cur-val < def_flag then out-mod (cur-val)

else begin out% ("\")(" ["); out_mod (cur_val — def flag); out ("1");
end;

cur_zref «— zhink (cur-zref);

until cur_zref = 0;

out (" : "); finish-line
This code is used in section 252.

108 PHASE THREE PROCESSING WEAVE $255

255. List inversion is best thought of as popping elements off one stack and pushing them onto another.

In this case cur-xref will be the head of the stack that we push things onto.

(Invert the cross-reference list at cur-name, making cur-xref the head 255) =

this-zref « xref [cur-name]; cur-xref + 0;

repeat next-xref « zlink (this-xref); xlink (this-xref) + cur-xref; cur-xref t this-xref ;
this-xref + next-xref ;

until this-xref = 0

This code is used in section 254.

256. The following recursive procedure walks through the tree of module names and prints them.

procedure mod-print (p : name-pointer); {print all module names in subtree p}
begin if p> 0 then

begin mod-print (link [p|);
out2 ("\")(" :");
tok_ptr t 1; text-ptr « 1; scrap-ptr <— 0; init-stack; app(p + mod-flag), make-output; footnote (0);

{ cur-xref was set by make-output }
finish-line ;

mod-print (rlink [p]);
end;

end;

257. (Output all the module names 257) = mod-print (root)

This code is used in section 239.

§258 WEAVE DEBUGGING 109

258. Debugging. The PASCAL debugger with which WEAVE was developed allows breakpoints to be

‘ set, and variables can be read and changed, but procedures cannot be executed. Therefore a ‘debug-help’

procedure has been inserted in the main loops of each phase of the program; when ddt and dd are set to

appropriate values, symbolic printouts of various tables will appear.

The idea is to set a breakpoint inside the debug-help routine, at the place of ‘breakpoint :’ below. Then

when debug-help is to be activated, set trouble-shooting equal to true. The debug-help routine will prompt

you for values of ddr and dd, discontinuing this when ddr < 0; thus you type 2n + 1 integers, ending with

zero or a negative number. Then control either passes to the breakpoint, allowing you to look at and/ or

change variables (if you typed zero), or you exit the routine (if you typed a negative value).

Another global variable,- debug-cycle, can be used to skip silently past calls on debug-help. If you set

debug-cycle > 1, the program stops only every debug-cycle times debug-help is called; however, any error

stop will set debug-cycle to zero.

(Globals in the outer block 0) +=
debug trouble-shooting: boolean; (is debug-help wanted? }

ddt : sixteen-bits; {operation code for the debug-help routine }
dd: sixteen-bits; { operand in procedures performed by debug-help }
debug-cycle : integer ; { threshold for de bug-help stopping }
debug-skipped: integer ; { we have skipped this many debug-help calls }
term-in: text file ; {the user’s terminal as an input file }
gubed

259. The debugging routine needs to read from the user’s terminal.

(Set initial values 10) +=

debug trouble-shooting t true; debug-cycle «- 1; debug-skipped «+ 0; tracing + 0;

trouble-shooting « false; debug-cycle «+ 99999; { use these when it almost works }
reset (term-in, "TTY: *, /I ‘); {open term-in as the terminal, don’t do a get }
gubed

110 DEBUGGING WEAVE §260

260. define breakpoint = 888 { place where a breakpoint is desirable }

debug procedure debug-help; {routine to display various things }
label breakpoint, exit;

var k: sixteen-bits ; {index into various arrays }
begin tncr (debug-skipped);

if debug-skipped < debug-cycle then return;

debug-skipped + 0;

loop begin write (term-out, “#°); update-terminal; { prompt }
read(term-in, ddt); {read a list of integers }
if ddt < 0 then return

else if ddt = 0 then

begin goto breakpoint; @\ {go to every label at least once }
breakpoint: ddt «+ 0; @\
end

else begin read (term-in, dd);
case ddt of

1: print-id (dd),

2: print-text (dd);

3: for k «1 to dd do print (xchr [buffer [k]]);
4: for k « 1 to dd do print(zchr [mod-text [k]]);
5:for k «+1 to out-ptr do print (xchr out-buf [Cc]]),

6: for k «1to dd do

begin print-cat (cat |k|); print (*L°);
end;

othercases print (°7°)
endcases;

end;

end;

exit: end;

gubed

§261 WEAVE THE MAIN PROGRAM 111

261. The main program. Let’s put it all together now: WEAVE starts and ends here.

The main procedure has been split into three sub-procedures in order to keep certain PASCAL compilers

from overflowing their capacity.

procedure Phase-l;

begin (Phase I: Read all the user’s text and store the cross references 109);
end;

procedure Phase-II;

begin (Phase II: Read all the text again and translate it to TEX form 218)
end;

begin initialize; {beginning of the main program }
print-Zn (banner); { print a “banner line” }
(Store all the reserved words 64);
Phase-1; Phase-11;

(Phase III: Output the cross-reference index 239);

(Check that all changes have been read 85);
end-of- WEAVE: stat (Print statistics about memory usage 262); tats
{ here files should be closed if the operating system requires it }

(Print the job history 263);

end..

262. (Print statistics about memory usage 262) =

print-nZ("Memory usagestatistics:, name-ptr: 1, "unames,°, xref-ptr : 1,
‘ucross ref erences , |", byte-ptr [0] : 1);

for cur-bank «1 to ww — 1 do print (+ °, byte-ptr [cur-bank] : 1);
print (“bytes;); print-nZ(“parsing required’, maz_scr_pir : 1, “scraps,”, maz_trt_ptr : 1,

‘texts, , maz_tok_ptr : 1, tokens,*, maz_stack_ptr : 1, "levels; ‘);
print_nl (‘sorting required’, maz_sort_ptr: 1,‘ levels.")

This code is used in section 261.

263. Some implementations may wish to pass the history value to the operating system so that it can be

used to govern whether or not other programs are started. Here we simply report the history to the user.

(Print the job history 263) =
case history of

spotless : print-d (* (No_errors were f ound.) ’);
harmless-message : print_nl (* (Did you see _the warning message above?) °);
error_message: print_nl (* (Pardon_me, but I think I spotted something wrong.) };
fatal_message: print_nl(° (That was_a_fatalerror , myfriend.) ’);
end {there are no other cases }

This code is used: in section 261.

112 SYSTEM-DEPENDENT CHANGES WEAVE §264

264. System-dependent changes. This module should be replaced, if necessary, by changes to the

program that are necessary to make WEAVE work at a particular installation. It is usually best to design

your change file so that all changes to previous modules preserve the module numbering; then everybody’s

version will bc consistent with the printed program. More extensive changes, which introduce new modules,

can be inserted here; then only the index itself will get a new module number.

$265 WEAVE INDEX 113

265. Index. If you have read and understood the code for Phase III above, you know what is in this index

‘and how it got here. All modules in which an identifier is used are listed with that identifier, except that

reserved words are indexed only ‘when they appear in format definitions, and the appearances of identifiers

in module names are not indexed. Underlined entries correspond to where the identifier was declared. Error

messages, control sequences put into the output, and a few other things like “recursion” are indexed here
too.

\): 186. \ T: 186.

\ #130. \ to: 186.

\.: 162, 163, 186. \ U: 236.

\.*. 189, 253. \ v: 188.

\ 252, 256. \W: 188.

\ = 189. \ X: 213.

\ [: 254. \Y: 212, 219, 226, 231.

\u: 186, 189, 193. \1: 211, 212.
\#: 186, 189. \2: 211, 212.

\$: 186, 189. \3: 211, 212.

\%: 186, 189. \4: 211, 212.

\&: 189, 209, 253. \6: 211, 212.

\ “tr 189. \6: 211, 212, 226.

\\: 189, 209, 253. \7: 211, 212, 226.

\ 7: 186, 189. \9: 253.

Mo: 189. Q1: 88, 177.
\{: 189. @2: 88, 177.

\}: 189. a: 130. 206.055 208
\ 7: 189, 193. alpha: 140, 142, 143, 149, 192, 193.

\]: 186. alpha-cases : 149, 150.
\I. 209, 253. Ambiguous prefix: 69.

_: 131, 189. and-sign : 15, 64, 188.

VA: 236. app : 148, 151, 152, 153, 155, 156, 158, 159,

\ ast: 186. 160, 161, 162, 163, 164, 165, 167, 168, 170,
\ B: 186. 180, 184, 186, 189, 190, 195, 196, 198, 207,

\C: 198. 208, 226, 231, 256.

\ con: 239. app_comment: 183, 184, 195, 197, 198, 226.

\D: 227. app-hex: 183, 186, 196.

\E: 186. app-octal: 183, 186, 196.

\F: 228. app-tok: 136, 137, 138, 148, 189, 190, 196,
\ f 1: 238. 197, 226.

\fin: 239. append xref : 50, 5 1.
\G: 188. appl: 148, 151, 152, 153, 155, 156, 159, 160, 162,
\H: 196, 224. 163, 164, 165, 168, 170, 174, 180, 195.

\ I: 188. app?: 148, 153, 156, 158, 161, 163, 165, 167.

\'in: 186. appd: 148, 158, 164.

\inx: 239. array-like: 42, 64, 191, 192.

\J: 186. ASCII code: 11, 8 6 .

\ K: 188. ASCll-code : 11, 13, 27, 28, 37, 65, 73, 87, 89, 91,

\ L: 188. 121, 127, 132, 136, 208, 242, 246, 247, 249.

\ M: 221. b: 122, 208.

\N: 221. backup: 141, 142, 143, 147. 160, 167, 192, 193,
\ o: 196, 223. 208, 231.

\P: 212, 226. bal: 91, 92, 112, 136, 137, 138, 198.

\ R: 188. banner: 1, 261.

\ S: 188, 228, 231. begin: 3.

114 INDEX WEAVE $265

begin-comment: 86, 87, 97, 186, 222. chr: 12, 13, 17, 18.

begin-like : 42, 64, 193. clause: 140, 142, 143, 149, 151, 153, 154, 156, 193.

begin-Pascal: 86, 87, 117, 229, 230. close: 140, 142, 143, 152, 153, 160, 162, 163,

beginning: 140, 142, 143, 150, 152, 164, 170, 193. 164, 167, 186, 193.

big-cancel: 141, 142, 147, 186, 208, 212. collate: 246, 247, 248, 249.

big-force : 141, 142, 147, 186, 208, 212, 226. colon: 140, 142, 143, 148, 151, 160, 163, 167,

big-line-break: 86, 87, 186, 222. 170, 186.

blink: 242, 243. 250, 251, 252. comment: 142.

boolean: 28, 29, 45, 71, 74, 93, 122, 143, 258. comment-scrap : 184, 186.

break: 22. compress: 97.

break-out: 125, 126, 1217. cond: 140, 142, 143, 149, 193.

break-space: 141, 143, 147, 152, 155, 156, 160, confusion: 34.
164, 168, 170, 200, 208, 211, 212. const_lhike: 42, 64, 191, 192.

breakpoint : 258, 260. continue : 9, 75, 76.

bucket: 242, 243, 249, 251. Control codes are forbidden...: 106.

buf size : 8, 28, 73, 74, 75, 79, 123. Control text didn’t end: 106.

buffer: 27, 28, 31, 32, 55, 58, 59, 61, 62,63, 74, 76, control-code: 87, 88, 90, 93, 100, 135.
78, 79, 80. 81, 82, 83, 84, 85, 89, 90, 91, 92, 93, copy.comment: 132, 136, 198.

95. 97, 98, 99, 100, 103. 104, 106, 107, 110, 123, copy-limbo: 132, 218.

132, 133. 134, 135, 136, 137: 179, 182, 183, 189, copy TeX: 132, 134, 222.

190, 196. 208, 214, 216, 217, 221, 223, 224, 260. count: QY.

byte-mem : 36, 37, 38, 39, 40, 43, 44, 52, 58, 61, cur-bank: 244, 251, 262.

62, 66, 67, 68, 69, 131, 208, 209, 214, 215, cur-byte : 244, 251.

216, 217, 243, 244, 251. cur-depth: 244, 250, 251.

byte-ptr : 38, 39, 41, 62, 67, 262. cur-end: 201, 202, 204, 205, 206.

byte-start: 306, 37, 38, 39, 41, 44, 50, 55, 61, 62, cur-mod-name: 208, 214, 215, 216.

67, 68, 93, 114. 131, 209, 214, 243, 251. cur-mode © 201, 202, 204, 206, 208, 211, 212.

c: Gh,0L,87.,89, 9, QL, 95, 127, 132, 134, 136, cur-module: 93, 101, 117, 230, 232.
140,172 0x3] dom 2m 3240m 2 + 4 247 2 249 cur-name: 63, 206, 209, 213, 214, 242, 243, 251,

cancel: 141, 142, 143, 147, 153, 155, 156, 159, 160, 252, 253, 255.

162, 163, 164, 165, 193, 197, 200, 208, 211, 212. cur-state: 202, 204, 205.
“carriage-return 15, 17, 28. cur-tok : 201, 202, 204, 205, 206.

case-head: 140, 143, 149, 153, 154, 162, 163, 165. cur-val: 244, 254.

caee-like: 42, 64. 193. cur_zref: 118, 119, 213, 231, 234, 235, 236, 237,
casey: 140. 142, 143, 149, 153: 165, 193. 254, 255, 256.

car : 144,149, 150. 151, 152, 153, 154, 155, 156, d: 9%, 127, 112, 174, 249.

158, 159, 160, 161, 162, 163, 164, 165, 167, 168, dd: 258, 260.

170, 172, 174, 176. 178, 179, 180, 181, 183, ddt: 258, 260.

184, 194, 195, 197. 244, 250, 260. debug: 3.,4.30.3L.88.95.140 146, 148,177.
Change file ended. . .: 77, 79, 84. 178 181, 182,206 252.258.7259. 2,60._

Change file entry did not match: 85. debug-cycle: 31, 258,259, 260.

change _buffer : 73, 74, 75, 78, 79, 83, 85. de bug-help: 30, 31, 95, 2006, 252, 258, 260.

change. changing: 72, 79, 81, 84. debug-skipped: 31, 258, 259, 260.
change_exists : 45, 109, 110, 239. decr: 6, 28, 92, 98, 103, 122, 127, 130, 135, 137,

change _file: 2, 23, 24, 32, 71, 73, 76, 77, 79, 84. 138, 205, 251, 252.

c¢ hnnge-limit : 73. 74, 75, 78, 79, 83, 85. def_flayg : 406, 48, 50, 51, 93, 100, 111, 113, 115,

changed_module + 45,. 82, 109, 110, 130, 241. 117, 119, 130, 213. 231, 233, 235, 236, 254.

changing : 32, 71, 72, 73, 75, 79, 81, 82, 85. defimition: 86, 87, 115, 225.

char: 12, 14. depth: 244, 249.

char_like : 42, 64, 191. dig: 129, 130.

check-change: 79, 83. div-like: 42, 64, 191, 192.

check-sum: 86, 87, 186, 222. do-like: 42, 64, 191, 192.

§265 WEAVE INDEX 115

do-nothing: 6, 95, 113, 149, 150, 186, 189, for-like: 42, 64, 191, 192.

222, 253, force: 141, 142, 143, 146, 147, 153, 155, 156,

done : 5,75, 76, 90, 91, 92, 95, 103, 104, 122, 134, 160, 161, 167, 186, 192, 193, 198, 200, 208,
135, 136, 137, 138, 175, 179, 236, 237. 212, 226, 231.

Double @ required. . . : 133. force-line : 86, 87, 186.

Double @ should be used. . . : 189. form-feed: 15, 28.

double-dot: 86, 97, 186. format: 86, 87, 111, 112, 113, 115, 183, 198,

easy-cases : 183, 185, 186. 222. 225.

eight-bits: 36, 58, 87, 90, 91, 95, 108, 112, 122, forward: 30, 207.

134, 136, 140, 144, 172, 174, 178, 198, 206, found: 5, 58, 60, 61, 66, 95, 96, 148, 149, 150,
208, 244, 249. 151, 175, 179, 208, 216.

else: 7. freeze-text: 171, 172, 180, 184, 195, 198, 208.

else-like: 42, 64, 193. get: 28, 259.

elsre: 140, 142, 143, 149, 156, 193. get-line: 71, 82, 89, 90, 91, 95, 103, 123, 132,
emit-space-if-needed: 219, 225, 230. 134, 136.
end: 3, 7. get-next: 93, 95, 108, 111, 113, 115, 116, 117, 183,
end-comment: 86, 87, 97, 186, 222. 222. 227. 228, 230, 231, 232.

end-field: 201, 202. get-output: 206, 207, 208, 211, 212.
end-like: 42, 64, 193. goto_like: 42, 64, 191, 192.
end_of. WEAVE: 2, 33, 261. greater: 66, 68, 69.
end-translation: 141, 147. 20 1. 207, 208, 212. greater-or-equal: 15, 97, 188.
endcases: 7. gubed: 3.
eof : 28. he 56,58, 242.
eoln: 2.8. harmless-message : 9, 263.
equal: 66, 67, 68. hash: 38, 55, 57, 60, 242, 243.
equivalence-sign: 15, 97, 116, 188, 228, 231. hash_size: 8, 55. 56, 57. 58, 59 242, 243.
err-print: 31, 66, 69, 72, 76, 77, 79, 80, 84, 85, head: 244, 249, 250, 251. 252.

87, 99, 103, 104, 106, 107, 133, 136, 137, 189, oo

197, 222, 227, 228, 231, 232. oo" oe oe ho
error: 28, 31, 33. history: 9, 10, 263.
CITOTmessage - 9, 263. Hmm... n of the preceding.. .: 80.
exit: 5,6, 50, 74, 75, 79, 89, 111, 123, 127, 132,

183, 208, 236, 260. 46, 28 L200.179.

cp: 140. 142. 143. 149. 186. fit 55. 58. 5 61, 62, 63, 93, 98, 99, 106,
ponent . oe to idflag: 146. 192. 206, 227, 228.
Extra @: 87 id-lot: 55, 58, 59, 61, 62, 64, 93, 98, 99, 106,
Los. 107, 189, 190. |
false: 28, 29, 72. 73, 74. 79: 81, 94, 96, 109, 110, id-lookup: 55, 58, 63, 93, 111, 113, 116, 191,

122, 123, 127, 218, 238. 259. 227, 228.
fatal error: 33, 34, 35. identifier : 93. 98, 111, 113, 116, 185, 206, 208,
fatal_message: 9, 263. 209, 227, 228.
final-limit: 28. 1d2: G3, 64.
finish-line© 123, 124, 132, 134, 135, 212, 218, 226, id3: 63, 64.

236, 238, 239, 254, 256. df: 63, 64.
finish. PASCAL: 225, 226, 230. ids>: 63, 64.
first-text-char: 12, 18. db: 63, 64.
first-xrej: 234, 235. wd7: 63, 6 4.
jive-case.9 : 149, 150. 1d: 6 3, 04.

flush buffer: 122, 123. 127, 128, 218, 238. ofhike: 42, 64, 193.
footnote: 233, 236, 256. ignore: 86, 87, 88, 186.

116 INDEX WEAVE $265

ilk: 36, 37, 42, 43, 55, 58, 60, 62, 111, 116, lines-dont-match: 74, 79.

191, 192, 253. link: 30, 37, 38, 43, 60, 243.

Illegal control code...: 215. link: 43, 66, 67, 69, 119, 256.

Illegal use of Q...: 137. lo-ptr: 144, 172, 175, 176, 178, 179, 180, 181.

Improper format definition: 228. loc: 28, 32, 71, 76, 80, 81, 82, 84, 85, 89, 90, 91,

Improper macro definition: 227. 92, 95, 97, 98, 99, 100, 103, 104, 106, 107, 110,

in-like : 42. 113, 132, 133, 134, 135, 136, 137, 182, 196,

Incompatible section names: 66. 208, 214, 221, 222, 223, 224.

ner: 0, 28, 50, 59, 61, 62, 67, 68, 69, 76, 77, longbuf size: 8, 27, 28, 31, 55, 58, 71, 179,

79, 83, 84, 89, 90, 91, 92, 95, 97, 98, 99, 100, 183, 208, 216, 217.

103, 104, 106, 107, 110, 122, 125, 130, 133, longest-name: 8, 65, 66, 69, 95, 103, 105.

135, 136, 137, 148, 149, 150, 171, 176, 184, loop: 6.

189, 196, 204, 206, 214, 215, 216, 217, 220, loop-like: 42, 64, 193.

223, 224, 241, 249, 260. m: 50, 130.

indent: MI, 142, 143, 147, 151, 160, 165,193, 208. make-output: 207, 208, 213, 226, 256.

infinity : 249, 250. mark-error : 9, 31, 215, 216.

init_stack: 202, 222, 225, 230, 256. mark-fatal: 9, 33.

initialize : 2, 261. mark-harmless: 9, 105, 119, 128, 181, 182.

inner: 200, 201, 206, 212. math : 139, 140, 142, 143, 148, 150, 151, 158,

inner_tok_flag: 146, 198, 206, 207. 160, 162, 163, 167, 170, 179, 180, 186, 188,

Input ended in mid-comment: 136. 192, 227, 228, 231.

Input ended in section name: 103. math-bin: 141, 142, 147, 192, 208, 210.

Input line too long: 28. math-break: 86, 87, 186, 222.

input-has-ended: 71, 79, 81, 83, 89, 90, 91, 95, mat h-op: 141, 143, 147, 162, 163, 208.

103, 109, 132, 134, 136, 218. math-rel: 141, 142) 146, 147, 192, 208, 210, 231.

input In: 28, 76, 77, 79, 83, 84. max-bytes : 8, 37, 39, 44, 58, 62, 66, 67, 69,

integer: 14, 71, 79, 121, 130, 172, 174, 219, 258. 131, 208, 244.

intro: 140, 142, 143, 148, 150, 157, 160, 162, 163, maz.modules: 8, 45, 46, 110, 240.

165, 167, 170, 192, 193, 227, 228. . max-names: 8, 37, 38, 62, G7, 69, 242.

ji: 66, 69 y Woy L224, AG, LI, UIA, LIQ, 183, 208. maz_refs: 8, 47) 50.

join: 86, 87, 186, 222. max-scr-ptr: 144, 145, 187, 197, 199, 226, 262.

‘jump-out: 2, 33. max-scraps: 8, 144, 172, 174, 178, 179, 187,

k: 31, 44,58 66 69 74 75 7Q,95 122.,12%.,127., 197, 199, 244.
130, 131, 172, 1.74, 178,179 208.260. max-sort-ptr: 244, 245, 249, 262.

k-limit: 208, 214, 216. max-sorts : 244, 249.

k-module: 240, 241. maz_stack_ptr: 202, 203, 204, 262.

[: 3-1) 58) 66, 69. max-texts: 8, 52, 175, 179, 187, 199.

last-text-char: 12, 16, 18. maz_tok_ptr: 53, 54, 175, 187, 199, 207, 226, 262.

lbrace: 146, 147. max-toks: 8, 53, 136, 146, 175, 179, 180, 187,

left_arrow : 15, 97) 188. 189, 198, 199.

length: 38, GO, 209, 253. maz. tzt_ptr: 53, 54, 175, 187, 199, 207, 226, 262.

less: 66, 67, 68, G9. mad_xref: 234, 235.

less-or-equal: 135, 97) 188. Missing "|". . .: 1977.
hs: 114, 116. mod-check: 119, 120.

limit: 28, 32, 11, 74, 76, 77, 78, 80, 81, 82, 83, 84, mod_flag: 146, 206, 23 1, 232, 256.

85, 89, 90, 91, 95, 97, 99, 103, 106, 107, 123, mod-lookup: 65) 66, 101, 102.

132, 133, 134, 135, 136, 208, 214, 216, 223. mod-name: 206, 208.

line: 32, 71, 72, 76, 77, 79, 81, 83, 84, 85, 182. mod-print: 256, 257.

Line had to be broken: 128. modscrap: 140, 142, 143, 149, 1G7, 231, 232.

line-break: 86, 87, 186, 222. mod-text: 65, GG, 67, 68, 69, 95, 101, 102, 103,

line-feed: 195, 28. 104, 105, 260.

line-length: 8, 121, 122, 125, 127. mod-xref-switch: 406, 48, 49, 51, 117.

$265 WEAVE INDEX 117

mode: 201, 208. out: 125,130, 131, 133, 135, 208, 209, 210,
mode-field: 201, 202. 211,212,213,214, 221,222,223, 224, 236,
module-count: 45, 50, 51, 82, 109, 110, 181, 218, 237,241, 254.

220, 221, 231, 241. out_buf: 121,122,124, 125, 126, 127, 128, 212,
module-name: 86,87, 93, 100, 113, 117, 222, 226, 231, 260.

230, 232. out-line: 121,122, 124, 128, 219.
n: 50, 79, 178. out-mod: 130,213,221, 237, 241, 254.
Name does not match: 69. out-name: 131,209, 253.

name-pointer: 38,39, 44, 50, 51, 58, 63, 66, 69, 93, out-ptr: 121,122, 123,124, 125, 127, 128, 135,
111, 114, 119, 131, 183, 192, 208, 229, 242, 256. 212,219, 226, 231, 260.

name-ptr: 38, 39, 41, 44, 58, 60, 62, 67, 262. outdent: 141,143, 147,153,155, 156, 160, 162,
Never defined: <section name>: 119. 163, 164,208.
Never used: <sect ion name>: 119. outer: 200, 201,202, 211, 212.
new -line: 20, 31, 32, 33. 128. outer-parse : 198,225, 230.
new-mod-xrej: 51, 117. outer-xref : 112,115, 117, 198.
new -module: 86,87, 90, 95, 134. output-PASCAL: 207, 214, 222.
new.gref: 50,111, 113, 116. output-state: 201,202.

= ’ out?: 125,130,210,211,212,213,219,221, 226,
next-control: 108,111,112, 113, 115, 116, 117, 241 237 753. 254. 256

183, 185, 186, 189, 191, 197, 198, 207, 222, ’ ’ ’ ’
225.227.228.229. 230, 231, 232. out3: 129,210, 223,224, 233.

tomame 242. 243, 551. ’ ’ out: 125,226,236,237, 239, 241.
next-xref : 234, 235 255. outs: 1295, 210.
hil 6. — ’ overion: oi OT 136, 175, 180, 187,
nil-like: 42,64, 191, 192. p44 50.5).58.66760,111.119, 134. 146, 183
no-line-break: 86,87, 186,222. 192 197, 198.204. 226.
no-underline © 86, 87, 100, 113. param: 86.

nonmal 42. 28 60, 111, 116, 191, 192; 227, PASCAL text. .. didn’t end: 216.
’ PASCAL-parse: 183,186,192,196,197, 198.

not-equal: 15,97) 188. PASCAL translate: 197,198, 207.
ror-Jound: 2 aq PASCAL aref: 111,112, 113, 183, 198.not-sign: 195, 64,]

num: 46, 49, 50, 51, 119, 213, 231, 235, 236, per een 21
237, 254. Phase-11: 261.

num. field: 4 6, 48. phase-one : 29) 31, 109.
octal: 86,87, 186, 222. phase-three : 29, 109, 213, 239.
omega : 140,142,143,151, 192,193, 195. pop-level: 205, 206.
oot: 123. pp: 144,148, 149) 150, 151, 152, 153, 154, 155,
ootl: 125. 156, 157, 158, 159, 160, 161, 162, 163, 1G4, 165,

oot? : 125. 166, 167, 168, 169, 170, 173, 175, 176, 178, 179.
ootd: 123. prefix: 66, 68.
ootf: 129. prefix-lookup: 69, 101.

oot: 125. prime_the_change_buffer : 75 81, 84.
open : 139, 140, 142, 143, 150, 186. print: 20,31, 32, 33,44) 105, 11.0, 119, 128,

open-input: 24,81. 140, 146, 147, 178, 181, 182, 215, 216, 221,

opt: 139, 141,142,143, 147, 159, 163, 186, 239, 260, 262.
208, 211. print-cat: 140,178, 181, 260.

or_sign: 15,64, 188. print-id: 44, 119, 146, 215, 216, 260.
ord: 13. print In: 20,32, 128, 181, 261.

other-line : 71,72, 81, 85. print_nl: 20,28, 105, 119, 128, 1.78, 181, 182,
othercases: T. 215, 216, 218, 239, 262,263.
others: 7. print-text: 144, 2GO.

118 INDEX WEAVE $265

proc : 140, 142, 143, 149, 162, 163, 164, 193. scd: 184,186, 192, 193, 231.

proc-like : 42, 64, 111, 193. sc4d: 184,186, 193.

prod: 148, 178, 183. Section name didn’t end: 104.
production : 148. Section name too long: 103.

production-end: 148. semi: 139, 140, 142, 143, 149, 161, 163, 186,

productions, table of: 143. 194, 195, 228, 231.
pseudo-semi : 86, 87, 186, 222. set-element-sign : 15, 64, 186.

push-level: 204, 206, 208. sidl : 63.

q: 50, 81, 66, 69, 198, -236. sid?: 63.

r. 51, 69, 146. s1dy: 63.

rbrace: 146. sid: 63.

read: 260. sid5: 63.

read-in: 28. sid6: 63.

record-head: 140, 142, 143, 149, 193. s1d7: 63.

record-like : 42, 64, 193. s1d8: 63.

recursion: 119, 207, 256. s1d9: 63.

red: 148, 172, 174. simp: 140,142,143, 148, 150,151, 158,160, 161,
reduce : 148, 151, 152, 153, 155, 156, 158, 159, 160, 162, 167, 170, 186, 189, 190, 192, 196.

161, 162, 163, 164, 165, 167, 168, 170, 172, 178. sixteen-bits: 36,37, 48, 50, 53, 55, 66, 69, 172,

repeat-like : 42, 64, 193. 174, 201, 206, 207, 219, 236, 242.244, 258, 260.

res-flag : 146, 192, 193, 206. skip-comment: 91,112, 132, 136.

res-word: 206, 208, 2009. skip-limbo: 89,109, 132.

reserved: 42, 50, 60. skip-TeX: 90, 113, 132.

reset: 24, 259. Sorry, X capacity exceeded: 35.

reset-input: 81, 109, 218. sort-ptr: 244,249,250, 251, 252.

restart: 5, 82, 95, 100, 206. special string characters: 189.

reswitch: 153, 185, 191, 208, 212. split procedures: 149, 183, 261.
return: 5, 6. spotless: 9,10, 263.

rewrite : 21, 26. sg: 1 4 8 , 174.

rhs : 114, 116. squash: 148,151,152, 154, 157,160,161, 162,

rlink : 43, 66, 67, 69, 119, 256. 163, 166, 1G7, 169,170, 174, 178.

“roman: 42,111, 253. stack : 201, 202, 204, 205.

root: 43,66, 69, 120, 257. stack-ptr: 201, 202,204, 205.

save-base : 197. stack-size: 8,202,204.

save-limit : 208, 214. stat: J.

save-line : 219. stmt: 140,143,149, 152, 153, 155, 156, 159, 160,

save-lot: 208, 214. 161, 162, 1G4, 167,168, 169, 170.

save-mode : 208, 212. string: 93,99, 185.

save-next-control: 207. String constant didn’t end: 99.

save-place : 219. string-delimiter: 208,216.

save-position: =..,219 220, 225. sub-cases: 183,191, 192.

save-text-ptr : 207. system dependencies: 1,2, 4,7,12,17, 20, 21, 22,

saveltok-ptr : 207. 24, 26,28, 32, 33, 259, 260, 261, 263, 264.
scanning-hex : 93, 94, 95, 96, 100. sO: 184.

scrap-base: 144, 145, 173, 178, 179, 180, 181, sl: 184.
194, 195, 197. s2. 184.

scrap-ptr : 144, 145, 176, 178, 179, 183, 184, 187, 8d: 184.
194.195, 197, 199, 226.228, 244, 25G. 34: 184.

sc: 184, 186, 193, 194, 195, 228. t: 98.

scl : 184, 186, 189, 190, 192, 193 196, 227, tab-mark: 15,32, 87, 89, 92, 95, 103, 104,

228,231, 232. 123, 133, 135.

sc?:. 184,186, 188, 1Y2, 193, 227, 228, 231. tats: 3.

$265 WEAVE INDEX 119

temp-line: 11, 72. write-ln: 20, 122.

term-in: 258, 259, 260. ww: 8,37, 38, 39,40,41, 44, 50, 58, 61,62, 66,67,

term-out: 20,21, 22, 260. 68, 69, 131, 208, 209, 214, 243, 244, 251, 262.

terrninator : 139, 140, 142, 143, 149, 152, 153, 160, xchr: 13,14,16,17,18, 32,44, 105, 122, 128,
161, 164, 166,167,179, 194, 195. 146, 147, 182, 260.

TeX string should be...: 222. xclause: 6 .

tex-file: 2,25,26,122, 124. xlink : 46,50,51, 119, 213,235,237, 254, 255.
TeX-string : 86,87, 93, 100, 185, 222. xlink-field: 46, 48.
text-char: 12,13, 20. xmem: 46, 48.
text-file: 12,20, 23, 25, 28, 258. xord: 13,16, 18, 28.
text-pointer: 52,53, 144, 146, 179, 197, 198, zref: 36, 37,46, 49, 50, 51,62, 67,119, 213,

204, 207, 226. 231, 235, 243, 255.
text-ptr: 53, 54, 146, 171, 172, 175, 179, 180, 184, xref-number1 47,48,50,51, 118, 234, 236.

187, 195, 198, 199, 207, 208, 226, 256. zref ptr: 46, 48,49, 50, 51, 262.

thin-space: 86, 87, 186, 222. zref roman: 86,87,93,100,111,113, 186, 222.
This can't happen: 34. zref switch: 46,48,49,50,93,100,111,113, 115.
this-module: 229,230, 231, 233, 235. xref-typewriter : 86, 87, 93, 111, 113, 186, 222.
this-xref: 234, 235, 255. xref-wildcard: 86,87,93, 111, 113, 186, 222.
to-like : 42,64, 191, 192. You can't do that...: 222, 232.
tok-field: 201, 202. You need an = sign...: 231.
tok_flag: 146, 148, 195, 198, 206, 226.

tok-mem: 53,136, 146,148,201, 202, 206, 213.

tok-ptr: 93,54,136,137, 148,171, 175,179, 180,

187,189,198, 199, 207, 226, 256.

tok-start: 52,53,54, 144,146,171, 204.

tracing : 88, 177,178, 181, 182, 259.

trans: 144,148, 172, 176, 179, 183. 184. 195,

197, 244.

translate: 149,179,180, 197, 226. |

trouble-shooting : 95,206, 252,258, 259.

true: 6,28 29, 71,72,74,79, 81, 82, 83, 85, 93,

100, 109, 110, 122, 127, 128, 239, 258, 259.

typewriter: 42,111,253.

unbucker : 249,250, 251.

underline: 86, 87, 100, 113.
Unknown control code: 87.

until-like: 42, 64, 193.

up-to: 99.

update-terminal: 22,31, 110, 221, 260.

var-head: 140,142, 143, 148, 149, 162, 163,

170, 193.

var-like: 42,64, 111, 193.

verbatim: 86, 87, 100, 107, 185, 189.

Verbatim string didn't end: 107.

wi 44,38, 648,00, 123L, 208.

WEAVE: 2.
WEB file ended...: 79.

we b-file: 2,23,24,32,71,73,79, 83, 85.

Where is the match...: 76, 80, 84.

wi: 40, 41.

wildcard: 42, 111, 253.

write: 20, 122, 124, 260.

120 NAMES OF THE SECTIONS WEAVE §2065

(Append a string scrap 189) Used in section 185.
(Append a TEX string scrap 190) Used in section 185.
(Append an identifier scrap 191) Used in section 185.

(Append the scrap appropriate to next-control 185) Used in section 183.

(Append terminator if not already present 194) Used in sections 193, 193, and 193.

(Cases for alpha 151) Used in section 150.
(Cases for beginning 152) Used in section 150.

(Cases for case-head 153) Used in section 149.
(Cases for casey 154) Used in section 149.

(Cases for clause 155) Used in section 149.

(Cases for cond 156) Used in section 149.

(Cases for elsie 157) Used in section 149.

(cases for exp 158) Used in section 149.
(Cases for intro 159) Used in section 150.

(Cases for math 160) Used in section 150.

(Cases for mod-scrap 161) Used in section 149.

(Cases for open math 163) Used in section 162.
(Cases for open 162) Used in section 150.
(cases for proc 164) Used in section 149.
(Cases for record-head 165) Used in section 149.

(Cases for semi 166 Used in section 149.

(cases for simp 167) Used in section 150.
(Cases for stmt 168) Used in section 149.
(Cases for terminator 169) Used in section 149.
(Cases for var_head 170) Used in section 149.

(Cases involving nonstandard ASCII characters 188) Used in section 186.

(Cases that generate more than one scrap 193) Used in section 191.
(Change pp to max (scrap-base ,pp +d) 173) Used in sections 172 and 174.
(Check for overlong name 105) Used in section 103.

(Check that all changes have been read 85) Used in section 261.

(Check that = or = follows this module name, and emit the scraps to start the module definition 231)
Used in section 230.

(Clear bal and goto done 138) Used in sections 136 and 137.
(Combine the irreducible scraps that remain 180) Used in section 179.

(Compare name p with current identifier, goto found if equal 61) Used in section 60.
(Compiler directives 4) Used in section 2.
(Compress two-symbol combinations like *: =’97) Used in section 95.

(Compute the hash code h 59) Used in section 58.
(Compute the name location p 60) Used in section 58.

(Constants in the outer block 8) Used in section 2.

(Copy a control code into the buffer 217) Used in section 216.
(Copy special things when ¢ = "@","\", "{", "}"; goto done at, end 137) Used in section 136.

(Copy the PASCAL text into buffer | (limit + 1) . . j] 216) Used in section 214.
(Copy up to ‘|’ or control code, goto done if finished 135) Used in section 134.

(Copy up to control code, return if finished 133) Used in section 132.

(Declaration of subprocedures for translate 150) Used in section 179.
(Declaration of the app-comment proccdurc 195) Used in section 183.
(Declaration of the app_octal and app_hez procedures 196) Used in section 183.

(Declaration of the easy-cases procedure 186) Used in section 183.
(Declaration of the sub-cases procedure 192) Used in section 183.
(Do special things when ¢ = "@", "\", "{", "}"; goto done at end 92) Used in section 91.

(Do the first pass of sorting 243) Used in section 239.

$265 WEAVE NAMES OF THE SECTIONS 121

(Emit the scrap for a module name if present 232) Used in section 230.
(Enter a new module name into the tree 67) Used in section 66.
(Enter a new name into the table at position p 62) Used in section 58.
(Error handling procedures 30, 31, 33) Used in section 2.
(Get a string 09) Used in section 95.
{ Get an identifier 98) Used in section 95.
(Get control code and possible module name 100) Used in section 95.
(Globals in the outer block 9, 13, 20, 23, 25, 27, 29, 37, 39, 45, 48, 53, 55, 63, 65, 71, 73, 93, 108, 114, 118, 121, 129, 144,

177, 202, 219, 229, 234,240, 242, 244, 246, 258) Used in section 2.

(Go to found if c¢ is a hexadecimal digit, otherwise set scanning-hex « false 96) Used in section 95.

(If end of name, goto done 104) Used in section 103.
(If semi-tracing, show the irreducible scraps 181) Used in section 180.

(If the current line starts with Qy, report any discrepancies and return 80) Used in section 79.

(If tracing, print an indication of where we are 182) Used in section 179.

(Invert the cross-reference list at CUr-RAME making cur_zref the head 255) Used in section 254.

(Local variables for initialization 16, 40, 56, 247) Used in section 2.
(Look ahead for strongest line break, goto reswitch 212) Used in section 211.
(Make sure that there is room for at least four more scraps, six more tokens, and four more texts 187)

Used in section 185.

(Make sure that there is room for at least seven more tokens, three more texts, and one more scrap 199

Used in section 198.

(Make sure the entries cat [pp .. (pp + 3)] are defined 176) Used in section 175.
(Match a production at pp, or increase pp if there is no match 149) Used in section 175.
(Move buffer and limit to change buffer and change-limit 78) Used in sections 75 and 79.

(Output a control, look ahead in case of line breaks, possibly goto reswirch 211) Used in section 208.

(Output a \math operator 210) Used in section 208.

(Output a module name 213) Used in section 208.

(Output all the module names 257) Used in section 239.
(output all the module numbers on the reference list cur-xref 237) Used in section 236.
(Output an identifier 209) Used in section 208.

(Output index entries for the list at sort -ptr 252) Used in section 250.
(Output the code for the beginning of a new module 221) Used in section 220.
(Output the code for the end of a module 238) Used in section 220.
(Output the cross-references at cur-name 254) Used in section 252.

(Output the name at cur-name 253) Used in section 252.

(Output the text of the module name 214) Used in ‘section 213.

(Phase I: Read all the user’s text and store the cross references 109) Used in section 261.

(Phase II: Read all the text again and translate it to TX form 218) Used in section 261.
(Phase III: Output the cross-reference index 239) Used in section 261.

(Print error location based on input buffer 32) Used in section 31.
(Print error messages about unused or undefined module names 120) Used in section 109.

(Print statistics about memory usage 262) Used in section 261.

(Print the job history 263) Used in section 261.
(Print token 7 in symbolic form 147) Used in section 146.

(Print warning message, break the line, return 128) Used in section 127.

(Process a format definition 116) Used in section 115..
(Put module name into mod-text [1 Co k] 103) Used in section 101.
(Read from change_file and maybe turn off changing 84) Used in section 82.
(Read from web-file and maybe turn on changing 83) Used in section 82.

(Rearrange the list pointed to by cur_zref 235) Used in section 233.

(Reduce the scraps using the productions until no more rules apply 175) Used in section 179.
(Scan a verbatim string 107) Used in section 100.

122 NAMES OF THE SECTIONS WEAVE ~~ $265

(Scan the module name and make cur-module point to it 101) Used in section 100.
"(Scan to the next @> 106) Used in section 100.

(Set initial values 10, 14, 17, 18, 21, 26, 41, 43, 49, 54, 57, 94, 102, 124, 126, 145, 203, 245, 248, 259) ~~ Used in section 2.
(Set c to the result of comparing the given name to name p 68) Used in sections 66 and 69.
(Show cross references to this module 233) Used in section 220.

(Skip next character, give error if not ‘Q’ 215) Used in section 214.

(Skip over comment lines in the change file; return if end of file 76) Used in section 75.

(Skip to the next nonblank line; return if end of file 77) Used in section 75.
(Sort and output the index 250) Used in section 239.

(Special control codes allowed only when debugging 88) Used in section 87.
(Split the list at sort_ptr into further lists 251) Used in section 250.

(Start a format definition 228 }) Used in section 225.
(Start a macro definition 227) Used in section 225.
(Store all the reserved words 64) Used in section 261.

(Store cross reference data for the current module 110) Used in section 109.
(Store cross references in the definition part of a module 115) Used in section 110.

(Store cross references in the PASCAL part of a module 117) Used in section 110.

(Store cross references in the TEX part of a module 113) Usedin section 110.
(Tell about changed modules 241) Used in section 239.

(Translate a hexadecimal constant appearing in TEX text 224) Used in section 222.
(Translate an octal constant appearing in TEX text 223) Used in section 222.
(Translate the current module 220) Used in section 218.

(Translate the definition part of the current module 225) Used in section 220.
(Translate the PASCAL part of the current module 230) Used in section 220.

(Translate the TEX part of the current module 222) Used in section 220.
(Types in the outer block 11, 12, 36, 38, 47, 52, 201) Used in section 2.

Appendix E 123

The TANGLE processor

(Version 2.0)

Section Page

TNEFOAUCHION + + «vee eee eee eee eee eee eeeo 124

TRhEChATACLETSEE «vote eee eee eee ee eeeee 128

REPOILINGSIFOrS 10 the USEF <7" 22 "222trrrassncoaaasrncoaaasrcecaasrncocaaosnceers 29 134
DataStU CUT ES ttt tt tt tt tt tt et ee et te tt ee ee ee eee 37 136

Searchingfor Identifiers «ccc «rte t rarertenet 50 139
Searchingfor Module MAIMEs © «© cc cfr rset me eseteet 65 144
LOK EMISot70 146

Stacks for output CT 149
ProducingtheoutputIII. 154
The bigoutpuUtSWItChoe112 161
Introduction to the INPUE Phase «cc cc cr rr errrmete 123 166
Inputting the next token 143 173

Scanninga Macro defiMition © «ccfcrete 163 180
Scanningamodulc ... 171 183
Deb U GING...ot 179 186
The main Pro@ram 182 188
System-depcndent changes LL 188 190
ELSST£10 191

124 INTRODUCTION TANGLE §1

1. Introduction. This program converts a WEB file to a PASCAL file. It was written by D. E. Knuth in
September, 1981; a somewhat similar SAIL program had been developed in March, 1979. Since this program

describes itself, a bootstrapping process involving hand-translation had to be used to get started.

For large WEB files one should have a large memory, since TANGLE keeps all the PASCAL text in memory

(in an abbreviated form). The program uses a few features of the local PASCAL compiler that may need to

be changed in other installations:

1) Case statements have a default.

2) Input-output, routines may need to be adapted for USC with a particular character set and/or for printing
messages on the user’s terminal.

These features are also present in the PASCAL version of TEX, where they are used in a similar (but more

complex) way. System-dependent portions of TANGLE can be identified by looking at the entries for ‘system

dependencies in the index below.

The “banner line” defined here should be changed whenever TANGLE is modified.

define banner = “This is TANGLE, Version 2.0’

2. The program begins with a fairly normal header, made up of pieces that will mostly be filled in later.

The WEB input comes from files web_file and change-file, the PASCAL output goes to file pascal_file, and the

string pool output goes to file pool.

If it is necessary to abort the job because of a fatal error, the program calls the fjump-out’ procedure,

which goes to the label end-of-TANGLE.

define end-of-TANGLE = 9999 { go here to wrap it up}

(Compiler directives 4)
program TANGLE (web_file,change-file, pascal-file, pool);

label end-of-TANGLE; {go here to finish}

const (Constants in the outer block 8)

type (Types in the outer block 1)
var (Globals in the outer block 9)

(Error handling procedures 30)
procedure initialize ;

var (Local variables for initialization 16)
begin (Set initial values 10)
end;

3. Some of this code is optional for use when debugging only; such material is enclosed between the

delimiters debug and gubed. Other parts, delimit&l by stat and tats, arc optionally mmcluded if statistics

about TANGLE 's mecinory usage are desired.

define debug = @{ {changetlis to ‘debug =’ when debugging }
define gubed = @} { change this to ‘gubed =’ when debugging }
format debug = begin

format gubed = end

define stat = @{ { change this to ‘star =’ when gathering usage statistics }
define tars = @} { change this to ‘tats = * when gathering usage statistics }
format stat = begin
format tats = end

84 TANGLE INTRODUCTION 125

4. The PASCAL compiler used to develop this system has “compiler directives” that can appear in com-

‘ments whose first character is a dollar sign. In production versions of TANGLE these directives tell the compiler

that it is safe to avoid range checks and to leave out the extra code it inserts for the PASCAL debugger’s

benefit, although interrupts will occur if there is arithmetic overflow.

(Compiler directives 4) =

Q{e&$C'—,A-t,D0} {no range check, catch arithmetic overflow, no debug overhead }
debug @{@&$C+, D+@} gubed {but turn everything on when debugging}

This code is used in section 2.

5. Labels are given symbolic names by the following definitions. We insert the label ‘ezit:’ just before

the ‘end’ of a procedure in which we have used the Teturn’ statement defined below; the label ‘restart’
is occasionally used at the very beginning of a procedure; and the label ‘reswitch’ is occasionally used just
prior to a case statement in which some cases change the conditions and we wish to branch to the newly

applicable case. Loops that are set up with the loop construction defined below are commonly exited by

going to ‘done’ or to ‘found’ or to ‘not-found ’, and they are sometimes repeated by going to ‘continue ’.

define exit = 10 { go here to leave a procedure }
define restart = 20 { go here to start a procedure again }
define reswitch = 21 { go here to start a case statement again }
define continue = 22 { go here to resume a loop }
define done = 30 { go here to exit a loop }
define found = 31 { go here when you've found it }
define not-found = 32 {go here when you’ve found something else }

6. Here are some macros for common programming idioms.

define incr (#) = # « # + 1 {increase a variable by unity }
define decr (#) = # « # — 1 {decrease a variable by unity }
define loop = while rrue do { repcat over and over until a goto happens }
define do_nothing = {empty statement }
define return = goto exit { terminate a procedure call }
format return = nil

format loop = zclause

126 ~~ INTRODUCTION TANGLE §7

7. WC assume that case statements may include a default case that applies if no matching label is found.

* Thus, we shall use constructions like

case z of

1: (code for x = 1);
3: (code for z = 3);

othercases (code for x # 1 and z # 3)
endcases

since most PASCAL compilers have plugged this hole in the language by incorporating some sort of default

mechanism. For example, the compiler used to develop WEB and TEX allows ‘others :” as a default label, and
other PASCALs allow syntaxes like ‘else’ or ‘otherwise’ or ‘otherwise: etc. The definitions of othercases

and endcases should be changed to agree with local conventions. (Of course, if no default mechanism is

available, the case statements of this program must be extended by listing all remaining cases. The author

would have taken the trouble to modify TANGLE so that such extensions were done automatically, if he had

not wanted to encourage PASCAL compiler writers to make this important change in PASCAL, where it

belongs.)

define othercasea = others: { default for cases not listed explicitly }
define endcaaea = end {follows the default case in an extended case statement }
format othercases = else

format endcaaea = end

8. The following parameters are set big enough to handle TEX, so they should be sufficient for most

applications of TANGLE.

(Constants in the outer block 8) =

buf_size = 100; { maximum length of input line }
maz_bytes = 45000; { 1/ ww times the number of bytes in identifiers, strings, and module names; must

be less than 65536)

maz_toks = 50000;

{ 1/22 times the number of bytes in compressed PASCAL code; must bc less than 65536)
maz_names = 4000; { number of identifiers, strings, module names; must be less than 10240)

‘maz.texts =2000; { number of replacement texts, must be less than 10240 }
haah-size = 353; {should be prime }
longest_name = 400; { module names shouldn’t be longer than this }
line-length = 72; { lines of PASCAL output have at most this many characters }
out buf size - 144; {length of output buffer, should be twice line-length }
stack_size = 50; { number of simultaneous levels of macro expansion }
mnz-id-length = 12; {long identifiers are chopped to this length, which must not exceed line-length }
unambig-length = 7; {identifiers must be unique if chopped to this length }

{note that 7 is more strict than PASCAL’ s 8, but this can be varied }
This code is used in section 2.

§9 TANGLE INTRODUCTION 127

9. A global variable called history will contain one of four values at the end of every run: spotless means that

no unusual messages were printed; harmless_message means that a message of possible interest was printed

but no serious errors were detected; error_message means that at least onc error was found; fatal.message

means that the program terminated abnormally. The value of history does not influence the behavior of the

program; it is simply computed for the convenience of systems that might want to use such information.

define spotless = 0 { history value for normal jobs }
define harmless_message = 1 { history value when non-serious info was printed }
define error-message = 2 { history value when an error was noted }
define fatal_message = 3 { history value when we had to stop prematurely }
define mark-harmless =

if history = spotless then history «< harmless-message

define mark-error = history + error-message

define mark_fatal = history «— fatal_message

(Globals in the outer block 9) =

history: spotless . . fatal_message; {how bad was this run? }
See also sections 13, 20, 23, 25, 27, 29, 38, 40, 44, 50, 65, 70, 79, 80, 82, 86, 94, 95, 100, 124, 126, 143, 156, 164, 171, 179,

and 185.

This code is used in section 2.

10. (Set initial values 10) =

history «- spotless;

See also sections 14, 17, 18, 21, 26, 42, 46, 48, 52, 71, 144, 152, and 180.

This code is used in section 2.

128 ~~ THE CHARACTER SET TANGLE §11

11. The character set. One of the main goals in the design of WEB has been to make it readily portable

‘between a wide variety of computers. Yet WEB by its very nature must use a greater variety of characters than

most computer programs deal with, and character encoding is one of the areas in which existing machines

differ most widely from each other.

To resolve this problem, all input to WEAVE and TANGLE is converted to an internal seven-bit code that is

essentially standard ASCII, the “American Standard Code for Information Interchange.” The conversion is

done immediately when each character is read in. Conversely, characters are converted from ASCII to the

user’s external representation just before they arc output.

Such an internal code is relevant to users of WEB only because it is the code used for preprocessed constants

like "A". If you are writing a program in WEB that makes use of such one-character constants, you should

convert your input to ASCII form, like WEAVE and TANGLE do. Otherwise WEB's internal coding scheme does

not affect you.
Here is a table of the standard visible ASCII codes:

0 1 2 4 4 5 6 7

222 VI TE EE ER EN I A
SC I SU EE EE I EN

ooo) o | t+ | 2 | 3 | 4 | 8 | 6 | 7
oo) 8 | oo | + | i |< f=} > |?

wo x | oY | oz |Cop|

(Actually, of course, code ‘040 is an invisible blank space.) Code ‘136 was once as an upward arrow (t),
and code ‘137 was once a left arrow (+), in olden times when the first draft of ASCII code was prepared; but
WEB works with today’s standard ASCII in which those codes represent circumflex and underline as shown.

(Types in the outer block 11) =
ASClII-code = 0 . . 127; { seven-bit numbers, a subrange of the integers }

Sec also sections 12, 37, 39, 43, and 78.

This code is used in section 2.

§12 TANGLE THE CHARACTER SET 129

12. The original PASCAL compiler was designed in the late 60s, when six-bit character sets were common,

so it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital and

small letters in a convenient way, so WEB assumes that it is being used with a PASCAL whose character set

contains at least the characters of standard ASCII as listed above Some PASCAL compilers use the original

name char for the data type (associated with the characters in text files, while other PASCALs consider char

to be a 64-element subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name text-char to stand for the data type of

the characters in the input and output files. We shall also assume that rexr-char consists of the elements

chr (first-text-chur) through chr (last_tezt_char), inclusive. The following definitions should be adjusted if
necessary.

define text-char = char { the data type of characters in text files }
define first-text-char = 0 {ordinal number of the smallest element of text-char }
define last-text-char = 127 {ordinal number of the largest element of text-char }

(Types in the outer block 11) +=
text-file = packed file of rext-char;

13. The WEAVE and TANGLE processors convert, between ASCII code and the user’s external character set

by means of arrays zord and xchr that are analogous to PASCAL’ s ord and chr functions.

(Globals in the outer block 9) +=
xord: array [text-char] of ASCII code; { specifies conversion of input characters }
xchr: array [ASCII-code] of text-char, { specifies conversion of output characters }

130 THE CHARACTER SET TANGLE §14

14, If we assume that every system using WEB is able to read and write the visible characters of stan-

dard ASCII (although not necessarily using the ASCII codes to represent them), the following assignment

statements initialize most of the xchr array properly, without needing any system-dependent changes. For

example, the statement xchr [@°101] : = "A" that appears in the present WEB file might be encoded in, say,
EBCDIC code on the external medium on which it resides, but TANGLE will convert from this external code

to ASCII and back again. Therefore the assignment statement XCHR [65]: = "A" will appear in the corre-

sponding PASCAL file, and PASCAL will compile this statement so that xchr [65] receives the character A in
the external (char) code. Note that it would be quite incorrect to say xchr [@ 101] : ="A", because “A” is a

constant of type integer ; not char, and because we have “A” = 65 regardless of the external character set.

(Set initial values 10) +=

xchr|40] « “0°; zehr[41) « “75 zchr [42] 1 "n°; zchr [48] « “#7; zchr[44] « "$7;
xchr| 45] t “Wh; Tchr 46] 1 &; zehr [47] — "7
xchr [50] « "(";xchr[51) « *) @ :zchr|['52]« "*";zchr [53] « “+7; zchr|'54] « ~. 7;
xchr|'55] t *=7; zchr[56] « ® 5 zchr['57] « °/ 7;
xchr 60) « “07; zchr['61] « "1"; zchr['62] « "27; xchr['68] « "3°; zchr['64] « 4;
xchr|'65) « “8°; xchr [66] « 6; xchr [67) — 7;
xchr [70] t 8°; zchr["71] « "9"; wchr{ 72] « "ts xchr[18] « "7; zchr| T4] + “<7;
xchr [75] « ="; zchr[76] « >"; zchr [77] « "27°;
xchr '100 | « “Q°; xchr 101] — ‘A’; xchr [102] — ‘B’; xchr| 103 | «—'C"; xchr|['104 «+ ® D*
xchr ['105] « “E*: xchr ['106] « ‘F’; zchr[107] « *G~;
xchr| 110] « H’; xchr| 111] « ‘T’; xchr['112) « J “5 xchr [118] « *K"; xchr|'114] + "L";
xchr|115] « "M": xchr[’116] « "N°; xchr 117] « “0;
xchr|120) + “Pj xchr{’121] « "Q"; xchr|['122] + R’; xchr[128] « “8°; xchr['124] « T
xchr|'125)« “U"; xchr|'126] « *V°; xchr 127] «— WT
xchr|'180) « *X°; xchr ["181] + "Y*; xchr [182] t “27; xchr [133] « * [7; xchr['1834] « "\";
xchr|’'185)t °°)"; xchr [136] — @ x xchr [137] « “_";
xchr|'140)t °* “5 zchr| 141] — *a'; zchr|['142] «— "b"; xchr] 143] — “cy xchr['144] + "d7;
xchr|'145] « “es zchr [146] +f “1 zchr [147] + ‘g’;
zchr[150) « “ho; xchr [151] « "i"; xchr|[158] « “j 7; wchr| 153] « "Kk"; xchr [154] "1";
xchr|'155) « "m"; zchr| ‘156 | «— "n°; xchr{'157] « “0°;
xchr| 160] « “p°; xchr | 161] « q°; xchr{'162] « ‘x "5 zchr | 163] « "8"; xchr [164 « "t~;

. xchr|['165)« u’;zchr| 166| «— "v°; xchr|['167] «— "w *;
zchr[170) « “x; zchr[171} « "y*; xchr[172] « “27; xchr [178} « {5 zchr [174] "1 7;
zchr['175) « *}i zchr [176] °°;
zchr{0] « “73 zchr [177] T { these ASCII codes arc not used }

15. Some of the ASCII codes below 40) have been given symbolic names in WEAVE and TANGLE because

they arc used with a special meaning.

define und-sign = ‘4 {equivalent to ‘and’ }
define not sign = 5 { equivalent to ‘not’}
define set-clement-sign = ‘6 {equivalent to ‘in'}
define tab. mark = 11 { ASCII code used as tab-skip }
define line_feed = ‘1% { ASCII code throwt1 away at end of linc }
define form feed = 14 { ASCII code used at end of page }
define carriage-return = ‘15 { ASCII code used at end of line }
define left_arrow = ‘80 {equivalentto ‘: ="}
define not-equal = 32 { equivalent wo ‘<>’}
define less_or_equal = "34 { equivalent to ‘<="}
define greater_or_equal = ‘35 {equivalent to ‘>="}
define equivalence-sign = 36 { equivalent to ‘=="}
define or sign = 37 { equivalent to ‘or’ }

§16 TANGLE THE CHARACTER SET 131

16. When we initialize the xord array and the remaining parts of xchr, it will be convenient to make use
of an index variable, 1.

(Local variables for initialization 18) =
i: 0. . last-text-char;

See also sections 41, 45, and 51.

This code is used in section 2.

17. Here now is the system-dependent part of the character set. If WEB is being implemented on a garden-

variety PASCAL for which only standard ASCII codes will appear in the input and output files, you don’t

need to make any changes here. But at MIT, for example, the code in this module should be changed to

for 1 « 1 to 37 do xchr [t] + chr (1);

WEB’s character set is essentially identical to MIT’s, even with respect to characters less than 40.

Changes to the present module will make WEB more friendly on computers that have an extended character

set, so that one can type things like # instead of <>. If you have an extended set of characters that are casily

incorporated into text files, you can assign codes arbitrarily here, giving an xchr equivalent to whatever

characters the users of WEB are allowed to have in their input files, provided that unsuitable characters do

not correspond to special codes like carriage-return that are listed above.

(The present file TANGLE. WEB does not contain any of the non-ASCII characters, because it is intended

to be used with all implementations of WEB. It was originally created on a Stanford system that has a

convenient extended character set, then “sanitized” by applying another program that transliterated all of

the non-standard characters into standard equivalents.)

(Set initial values 10) +=

for t 1 to ‘37 do zchrit]t “,°;

18. The following system-independent code makes the xord array contain a suitable inverse to the infor-
mation in xchr.

(Set initial values 10) +=

for & « first-ext_char to lust-text-char do zord[chr(i)] « 40;
for ¢ + 1 to 176 do zord|zchr[i]] « 1;

132 INPUT AND OILITPUT TANGLE §19

19. Input and output. The input conventions of this program are intended to be very much like those

of TEX (except,, of course, that they are much simpler, because much less needs to be done). Furthermore
they are identical to those of WEAVE. Therefore people who need to make modifications to all three systems

should be able to do so without too many headaches.

We use the standard PASCAL input/ output procedures in several places that TEX cannot, since TANGLE
does not have to deal with files that are named dynamically by the user, and since there is no input from
the terminal,

20. Terminal output is done by writing on file term-out, which is assumed to consist of characters of type

text-char:

define print (#) = write (term-out, #) { ‘print > means write on the terminal }
define print-172(#) = write_In (term-out, #) { ‘print’ and then start new line}
define new-line = write_In (term-out) { start new line }
define print_nl (#)= { print information starting on a new line }

begin new-line ; print (#);
end

(Globals in the outer block 9) +=
term-out: text-file; { the terminal as an output file }

21. Different systems have different ways of specifying that the output on a certain file will appear on

the user’s terminal. Here is one way to do this on the PASCAL system that was used in TANGLE’s initial

development:

(Set initial values 10) +=
rewrite (term-out, ‘TTY: *); { send term-out output to the terminal }

22. The update-terminal procedure is called when we want to make sure that everything we have output

to the terminal so far has actually left the computer’s internal buffers and been sent.

define update-terminal = breuk(term-out) {empty the terminal output buffer }

23. The main input comes from web-file; this input may be overridden by changes in change-file. (If

« change_file is empty, there are no changes.)

(Glohals in the outer block 9) +=
web_file : text-jile; { primary input }
change-file: text-jile; {updates}

24. The following code opens the input files. Since these files were listed in the program header, we assume

that the PASCAL runtime system has already checked that suitable file names have been given; therefore no

additional error chocking needs to be done.

procedure open_input ; { prepare to read web_file and change-file }
begin reset (web-file); reset (change-file);
end:

25. The main output goes to pascal_file, and string pool constants are written to the pool file.

(Globals in the outer block 9) +=
pascal_file : text file;

pool: text _file ;

§26 TANGLE INPUT AND OUTPUT 133

26. The following code opens pascal_file and pool. Since these files were listed in the program header, we
assume that the PASCAL runtime system has checked that suitable external file names have been given.

(Set initial values 10) +=
rew rite(pascal_file); rewrite (pool) ;

27. Input goes into an array called buffer.

(Globals in the outer block 9) +=

buffer: array [0 . . buf-size | of ASCII-code ;

28. The input-h procedure brings the next line of input from the specified file into the buffer array and

returns the value true, unless the file has already been entirely read, in which case it returns false. The

conventions of TEX are followed; i.e., ASCII.code numbers representing the next line of the file are input

into buffer [0], buffer [1], ..., buffer [limit — 1]; trailing blanks are ignored; and the global variable limir is set
to the length of the line. The value of limit must be strictly less than buf-size.

We assume that none of the ASCII-code values of buffer [j] for 0 <j < limit is equal to 0, ‘177, line-feed,

form-feed, or carriage-return.

function input-h (var f : text_file): boolean; {inputs a line or returns false }
var final-limit : 0. . buf-size ; { limit without trailing blanks }
begin limit « 0; final-limit « 0;

if eof (f) then input-h « false
else begin while —eoln (f) do

begin buffer [limit] — zord[f1); ger (f); incr (limit),
if buffer [limit — 1] # "_" then final-limit « limit;
if limit = buf-size then

begin while —eoln(f) do ger(f);
decr (limit); {keep buffer[buf size |empty }
print_nl("!Input,line tooy long’); loc « 0; error;
end;

end;

readIn ([); limit t final -limst ; input-h «— true ;
end;

end;

134 ~~ REPORTING ERRORS TO THE USER TANGLE ~~ §29

29. Reporting errors to the user. The TANGLE processor operates in two phases: first it inputs the

‘source file and stores a compressed representation of the program, then it produces the PASCAL output from

the compressed representation.

The global variable phase-one tells whether we are in Phase I or not.

(Globals in the outer block 9) +=

phase-one : boolean; {true in Phase I, false in Phase II }

30. If an error is detected while we are debugging, we usually want to look at the contents of memory. A

special procedure will be declared later for this purpose.

(Error handling procedures 30) =
debug procedure debug-help;, forward; gubed

See also sections 31 and 34.

This code is used in section 2.

31. During the first phase, syntax errors are reported to the user by saying

‘err-print (.! Error message)’,

followed by jump-out’ if no recovery from the error is provided. This will print the error message followed

by an indication of where the error was spotted in the sourcc file. Note that no period follows the error

message, since the error routine will automatically supply a period.

Errors that are noticed during the second phase are reported to the user in the same fashion, but the crror

message will be followed by an indication of where the error was spotted in the output file.

The actual error indications are provided by a procedure called error.

define err-print (#) =

begin new-line ; print (#); error ;
end

(Error handling procedures 30 } +=
procedure error; { prints ’.’ and location of error message }

var j: 0. . out-buf-size; {index into out-buf }
k,l: 0 .. buf size; {indices into buffer }

begin if phase_one then (Print error location based on input buffer 32)
else (Print error location based on output buffer 33);

update _termanal; mark-error;

debug debug-help; gubcd

end;

§32 TANGLE REPORTING ERRORS TO THE USER 135

32. The error locations during Phase I can bc indicated by using the global variables loc, line, and
changing, which tell respectively the first unlooked-at position in buffer, the current line number, and

whether or not the current line is from change-file or web-file. This routine should be modified on systems
whose standard text editor has special line-numbering conventions.

(Print error location based on input buffer 32) =

begin if changing then print (°. (change file") else print (*. y(");
print-In(‘1. *, line : 1, *) *);
if loc > limit then [| « limit

else | « loc;
for k «1 tol do

if buffer|k — 1} = tab-mark then print (*y°)
else print (zchr [buffer [k —1]]); {print the characters already read}

new -line

for k « 1 tol do print ("1"); { space out the next line }
for k «1 + 1 to limit do print (zchr [buffer [k —1]]); {print the part not yet read}
print (uo); {t Is space separates the message from future asterisks }
end

This code is used in scction 31.

33. The position of errors detected during the second phase can be indicated by outputting the partially-
filled output buffer, which contains out-ptr entries.

(Print error location based on output buffer 33) =
begin printin(. (1.7, line: 1, *));
for j « 1 to out-ptr do print (zchr | out-buf [j — 1]]}; { print current partial line }
print (*...."); {indicate that this information is partial }
end

This code is used in section 3I.

34. The jump-out procedure just cuts across all active procedure levels and jumps out of the program.

This is the only non-local goto statement in TANGLE. It is used when no recovery from a particular error
has been provided.

Some PASCAL compilers do not implement non-local goto statements. In such cases the code that

appears at label end_of TANGLE should be copied into the jump-out procedure, followed by a call to a

system procedure that terminates the program.

define faral-error (#) =

begin new-line ; print (#); error ; mark-fatal; jump-out ;
end

(Error handling procedures 30) +=
procedure jump-out;

begin goto end-of - TANGLE;

end;

35. Sometimes the program’s behavior is far different from what it should be, and TANGLE prints an Crror

message that is really for the TANGLE maintenance person, not the user. In such cases the program says

confuston (“indicationofwherewe are’).

define confusion(#) = fatal_error (*!_ This can’ t_ happen (-,#,7)")

36. An overflow stop occurs if TANGLE’s tables aren’t large enough.

define overflow (#) = fatal_error (*! Sorry, ,#, capacity _exceeded”)

136 DATASTRUCTURES TANGLE §37

37. Data structures. Most of the user's PASCAL code is packed into seven- or eight-bit integers in two

large arrays called byte-mem and tok-mem. The byte-mem array holds the names of identifiers, strings, and

modules; the tok_.mem array holds the replacement texts for macros and modules. Allocation is sequential,

since things are deleted only during Phase II, and only in a last-in-first-out manner.

Auxiliary arrays byte-stud and tok_start are used as directories to byte-mem and tok_mem, and the link,

ilk, equiv , and text-link arrays give further information about names. These auxiliary arrays consist of
sixteen-bit items.

(Types in the outer block 11) +=
eight-bits = 0 .. 255; { unsigned one-byte quantity }
sixteen-bits = 0. . 65535; { unsigned two-byte quantity }

38. TANGLE has been designed to avoid the need for indices that are more than sixteen bits wide, so that

it can be used on most computers. But there are programs that need more than 65536 tokens, and some

programs even need more than 65536 bytes; TEX is one of these. To get around this problem, a slight

complication has been added to the data structures: byte-mem and tok-mem are two-dimensional arrays,

whose first index is either 0 or 1. (For generality, the first index is actually allowed to run between 0 and

ww — lin byte-mem, or between 0 and zz — 1 in tok-mem, where ww and 22 are set to 2 and 3; the program

will work for any positive values of ww and zz, and it can be simplified in obvious ways if ww = 1 or 22 = 1.)

define ww =2 {we multiply the byte capacity by approximately this amount }
define zz = 3 {we multiply the token capacity by approximately this amount }

(Globals in the outer block 9) +=
byte-mem: packed array [0.. ww — 1,0 .. maz_bytes} of ASCII code; { characters of names }
tok-mem: packed array [0.. zz — 1,0 . . maz_toks] of eight-bits; {tokens }
byte-stud: array [0 . . mux-names] of sixteen-bits ; { directory into byte-mem }
tok-start: array [0 . . mux-texts] of sixteen-bits; { directory into tok-mem }
link: array (0.. mux-names] of sixteen-bits ; { hash table or trec links }
ilk: array 0 . . mux-numes] of sixteen-bits ; { type codes or tree links }
equiv: array [0 .. mux-names] of sixteen-bits ; {info corresponding to names }
text-link: array [0 . . maz_texts] of sixteen-bits ; { relates replacement texts }

39. The names of identifiers are found by computing a hash address h and then looking at strings of

bytes signified by hash[h], link[hash|h]], link [link[hash[h]]], . . . , until either finding the desired name or
encountering a zcro.

A ‘name_pointer’ variable, which signifies a name, is an index into byte-start. The actual sequence of

characters in the name pointed to by p appears in positions byte _start [p] to byte-stud [p + ww] — 1, inclusive,

in the segment of byte-mcm whose first index is p mod ww. Thus, when ww = 2 the even-numbered name

bytes appear in byte_mem|[0|and the odd-numbered ones appear in byte-mem/l, x]. The pointer O is used
for undefined module names; we don’t want to use it for the names of identifiers, since 0 stands for a null

pointer in a linked list.

Strings arc treated like identifiers; the first character (a double-quote) distinguishes a string from an

alphabetic name, but for TANGLE's purposes strings behave like numeric macros. (A ‘string’ here refers

to the strings delimited by double-quotes that TANGLE processes. PASCAL string constants delimited by

single-quote marks are not given such special treatment; they simply appear as sequences of characters in

the PASCAL texts.) The total number of strings in the string pool is called string-ptr , and the total number

of names in byte-mem is called name_ptr. The total number of bytes occupied in byte-mem[w, *] is called
byte_ptr{w].
We usually have byte-dart [name._ptr + w] = byte-ptr[(name-ptr + w) mod ww] for 0 < w < ww, since

these arc the starting positions for the next ww names to be stored in byte-men?.

define length (#) = byte-sttrrt [§ + ww] — byte-start [#] { the length of a name }

(Types in the outer block 11) +=
name -pointer = 0. . maz.names; {identifies a name }

§40 TANGLE DATA STRUCTURES 137

40. (Globals in the outer block 9) +=

] ‘‘name-ptr : name-pointer ; { first unused position in byte-start }
string-ptr : name-pointer ; {next number to be given to a string of length # 1}
byte-ptt: array [0 .. ww — 1] of 0 . . mar-bytes; {first unused position in byre-mem }

. pool-check-sum: integer ; { sort of a hash for the whole string pool }

41. (Local variables for initialization 16) +=
wi: 0.. ww — 1; {to initialize the byte-mem indices }

42. (Set initial values 10) +=
for wi— 0 to ww — 1 do

begin byte-start [wi] « 0; byte-ptr [wi] “— 0;
end;

byte_start[ww]«— 0; { this makes name 0 of length zero }
name-ptr t 1; string-ptr «— 128; pool-check-sum «+ 271828;

43. Replacement texts are stored in tok-mem, using similar conventions. A ‘text-pointer’ variable is an

index into tok-start, and the replacement text that corresponds to p runs from positions tok_start[p] to

tok-start [p + zz | — 1, inclusive, in the segment of tok-mem whose first index is p mod zz. Thus, when
zz = 2 the even-numbered replacement texts appear in tok-mem [O, x and the odd-numbered ones appear in
tok-mem [1, *|. Furthermore, text link[p] is used to connect pieces of text that have the same name, as we
shall see later. The pointer O is used for undefined replacement texts.

The first position of tok_mem]|z, %] that is unoccupied by replacement text is called tok-ptr [z] and the
first unused location of tok-start is called rext-ptrr. We usually have the identity tok_start|teztptr + z| =

. tok-ptr [(text-ptr + z) mod zz, for 0 < z < zz, since these are the starting positions for the next ww
replacement texts to be stored in tok-mem.

(Types in the outer block 11) +=
- text-pointer = 0 . . mux-texts, {identifies a replacement text }

44. Tt is convenient to maintain a variable z that is equal to fext-ptr mod zz, so that we always insert

tokens into segment 2 of tok-mem.

(Globals in the outer block 9) +=
text-ptr : text-pointer; {first unused position in tok-start }
tok-ptr: array [0 . . zz — 1] of 0.. mux-toks; {first unused position in a given segment of tok-mem }
z:0.. 22 — 1; { current segment of rok-mem }
stat maz_tok_ptr: array [0.. zz — 1] of 0. . max-toks; {largest values assumed by tok-ptr }
tats

45. (Local variables for initialization 16) +=
zi: 0..2z -1; {to initialize the tok-mem indices }

46. (Set initial values 10) +=
for zi «<0 to 2z2—=1 do

begin tok start |z1] — 0; tok_ptr [21] — 0;
end;

tok-start [22] «— 0; { this makes replacement text 0 of length zero }
text-ptr «— 1; 2 «— 1 mod zz;

138 DATA STRUCTURES TANGLE ~~ §47

47. Four types of identifiers are distinguished by their ilk :

normal identifiers will appear in the PASCAL program as ordinary identifiers since they have not been

defined to be macros; the corresponding value in the equiv array for such identifiers is a link in a

secondary hash table that is used to check whether any two of them agree in their first unambig-length

characters after underline symbols are removed and lowercase letters are changed to uppercase.

numeric identifiers have been defined to be numeric macros; their equiv value contains the corresponding

numeric value plus 35 Strings are treated as numeric macros.

simple identifiers have been defined to be simple macros; their equiv value points to the corresponding

replacement text.

parametric identifiers have been defined to be parametric macros; like simple identifiers, their equiw value

points to the replacement text.

define normal = 0 { ordinary identifiers have normal ilk }
define numeric = 1 { numeric macros and strings have numeric ilk }
define simple = 2 {simple macros have simple ilk }
define parametric = 3 { parametric macros have parametric ilk }

40. The names of modules are stored in byte-mem together with the identifier names, but a hash table is

not used for them because TANGLE needs to be able to recognize a module name when given a prefix of that

name. A conventional binary seach tree is used to retrieve module names, with fields called llink and rlink

in place of link and ilk. The root of this tree is rlink 0]. Ifp is a pointer to a module name, equiv [p] points
to its replacement text, just as in simple and parametric macros, unless this replacement text has not yet

been defined (in which case equiv [p] = 0).

define llink = link { left link in binary search tree for module names }
define rlink = ilk { right link in binary search tree for module names }

(Set initial values 10) +=
rlink[0] « 0; { the binary search tree starts out with nothing in it }
equiv [0] — 0; { the undefined module has no replacement text }

49. Here is a little procedure that prints the text of a given name.

procedure print-id(p : name_pointer); { print identifier or module name }
var k: 0 .. maz bytes; {index into byte-mem }
w: 0... ww—1; {segment of byte-mcm }

begin if p > name-ytr then print (‘IMPOSSIBLE’)

else begin w «+ p mod ww;

for k « byte-start [p| to byte-start [p + ww] ~ 1 do print (xchr *[byte-mem [w, k]});
end;

end;

§50 TANGLE SEARCHING FOR IDENTIFIERS 139

50. Searching for identifiers. The hash table described above is updated by the id-lookup procedure,

which finds a given identifier and returns a pointer to its index in byte-start. If the identifier was not already

present, it is inserted with a given ilk code; and an error message is printed if the identifier is being doubly

defined.

Because of the way TANGLE 's scanning mechanism works, it is most convenient to let id-lookup search for

an identifier that is present in the buffer array. Two other global variables specify its position in the buffer:

the first character is buffer [id-first], and the last is buffer [id_loc — 1]. Furthermore, if the identifier is really a
string, the global variable double-chars tells how many of the characters in the buffer appear twice (namely

@@ and ney, since this additional information makes it easy to calculate the true length of the string. The
final double-quote of the string is not included in its “identifier,” but the first one is, so the string length is

wd_loc — id-first — double-chars — 1.

We have mentioned that normal identifiers belong to two hash tables, one for their true names as they

appear in the WEB file and the other when they have been reduced to their first unurnbig-length characters.

The hash tables are kept by the method of simple chaining, where the heads of the individual lists appear

in the hash and chop-hash arrays. If h is a hash code, the primary hash table list starts at hash[h} and
proceeds through link pointers; the secondary hash table list starts at chop-hush[h] and proceeds through

equiv pointers. Of course, the same identifier will probably have two different values of &.

The id-lookup procedure uses an auxiliary array called chopped-id to contain up to unnmbig-length

characters of the current identifier, if it is necessary to compute the secondary hash code. (This array could

be declared local to id-lookup, but in general we are making all array declarations global in this program,

because some compilers and some machine architectures make dynamic array allocation inefficient.)

(Globals in the outer block 9) +=
id-first: 0 . . buf_stze; {where the current identifier begins in the buffer }
id loc : 0. . buf-size; {just after the current identifier in the buffer }
double-chars : 0. . buf_size; { correction to length in case of strings }

hush, chop-hash: array [0. . hash-size] of sixteen-bits; {heads of hash lists}

chopped-id: array (0 . . unambig_length| of ASCII-code; {chopped identifier }

51. Initially all the hash lists are empty.

(Local variables for initialization 16) +=

h: 0 . . hash-size; { index into hash-head arrays }

52. (Set initial values 10) +=

for h « 0 to hush-size — 1 do

begin hash|h| « 0; chop_hash|h] «— 0;
end;

140 SEARCHING FOR IDENTIFIERS TANGLE §53

53. Here now is the main procedure for finding identifiers (and strings). The parameter t is set to normal

‘ except when the identifier is a macro name that is just being defined; in the latter case, t will be numeric,

simple, or parametric.

function id-lookup (t : eight-bits): name-pointer ; { finds current identifier }
label found, not-found;

var c: eight-bits; { byte being chopped }
i:0.. buf size; {index into buffer }
h: 0. . hash-size; {hash code }
k: 0.. mas-bytes; {index into byte-mem }
w: 0... ww—1; {segment of byte-mem }
I: 0... buf-size; {length of the given identifier }
p, q: name-pointer ; { where the identifier is being sought }
3: 0.. unambig-length; { index into chopped-id }

begin I « td_loc — id-first; { compute the length }
(Compute the hash code h 54);

(Compute the name location p 55);
if (p = name-ptr) V {t # normal) then (Update the tables and check for possible errors 57)
id-lookup « p;

end;

54. A simple hash code is used: If the sequence of ASCII codes is ¢jce . . . ¢,, its hash value will be

(2%ey + 202cy +... + cn) mod hash-size.

(Compute the hash code h 54) =
h « buffer [id-first]; i « id-first + 1;
while i < id-lot do

begin h t (h + h + buffer [i]) mod hash-size; incr (i);
end

This code is used in section 53.

‘55. If the identifier is new, it will be placed in position p = name-prt, otherwise p will point to its existing
location.

(Compute the name location p 55) =
p + hash [h];

while p # 0 do

begin if length(p) = 1 then (Compare name p with current identifier, goto found if equal 56);

p « link |p};
end;

p — name-ptr, { the current identifier is new }
link{p] + hash[h]; hashih] « p; {insert p at beginning of hash list }

found:
This code is used in section 353.

56. (Compare name p with current identifier, goto found if equal 56) =
begin i « wdfirst ; k «— byte-start {p|; w t p mod ww;
while (i < id_loc) A (buffer [i] = byte-mem[w, k]) do
begin incr(t); incr (k);
end;

if i = id_loc then goto found; { all characters agree }
end

This code 18 used in section 55.

§57 TANGLE SEARCHING FOR IDENTIFIERS 141

57. (Update the tables and check for possible errors 57) =
begin if ((p # name-ptr) A (t # normal) A (ilk [p] = normal)) V ((p = name-ptr) A (t =

normal) A (buffer [id-first] # """")) then (Compute the secondary hash code h and put the first
characters into the auxiliary array chopped-id 58);

if p # name-ptr then (Give double-definition error and change p to type t 59)
else (Enter a new identifier into the table at position p 61);
end

This code is used in section 353.

58. The following routine, which is called into play when it is necessary to look at the secondary hash

table, computes the same hash function as before (but on the chopped data), and places a zero after the

chopped identifier in chopped-id to serve as a convenient sentinel.

(Compute the secondary hash code 4 and put the first characters into the auxiliary array chopped-id 58) =

begin 1 « id-first; 8 « 0; h « 0;

while (t < id-lot) A (8 < unambig-length) do
begin if buffer [i] # "_" then

begin if buffer [i] > "a" then chopped-id[s] « buffer [s] — "40
else chopped-id [s] « buffer [i];
h « (h + h + chopped-id [s]) mod hash-size ; incr (a);

end;

wncer (i);

end;

chopped-id [s] « 0;

end

This code is used in section 57.

59. If a macro has appeared before it was defined, TANGLE will still work all right; after all, such behavior

is typical of the replacement texts for modules, which act very much like macros. However, an undefined

numeric macro may not be used on the right-hand side of another numeric macro definition, so TANGLE finds

it simplest to make a blanket rule that macros should be defined before they are used. The following routine

gives an error message and also fixes up any damage that may have been caused.

(Give double-definition error and change p to type t¢ 59) =
{ now p # name-ptr and t # normal }

begin if ek{p] = normal then
begin err-print (! This identifier has already appeared’);
(Remove p from secondary hash table 60);
end

else err-print (*' Thisidentifier,was, defined before”)
ik p] — 1
end

This code is used in section 57.

60. When wc have to remove a secondary hash entry, because a normal identifier is changing to another

ilk, the hash code h and chopped identifier have alrcady been computed.

(Remove p from secondary hash table 60) =

q +— chop-hash [h];

if ¢ = p then chop-hash[h] « equiv|p]
else begin while equiv [q] # p do q « equiv(q];

cquiv [q]«— cquiv pl;
end

This code ix used in section 59.

142 SEARCHING FOR IDENTIFIERS TANGLE §61

61. The following routine could make good use of a gencralized pack procedure that puts items into just

part of a packed array instead of the whole thing.

(Enter a new identifier into the table at position p 61) =

begin if (t = normal) A (buffer{id_first] # """") then
(Check for ambiguity and update secondary hash 62) ;

w «— name-ptr mod ww; k «— byte_ptr|w);
if k +1>maz-bytes then overflow(‘byt e_memory ’);
if name-ptr > madknames — ww then overflow (‘name °);

I «— id-first; i to move the identifier into byte-mem }
while ¢ < id-Jot do

begin byte-mem [w, k] « buffer [i]; sncr (k); incr (i);
end;

byte-ptr [w] « k; byte-start (name-ptr + ww | — k; wner (name-ptr);
if buffer [id-first] # """" then ilk p] — t
else (Define and output a new string of the pool 64);
end

This code is used in section 57.

62. (Check for ambiguity and update secondary hash 62) =
begin gq « chop_hash[h];
while ¢ # 0 do

begin (Check if q conflicts with p 63) ;

q « equiv [g};
end;

equiv [p] « chop_hash[h]; chop_hash[h]| — p; { put p at front of secondary list }
end

This code is used in section 61.

63. (Check if q conflicts with p 63) =

begin k + byte-start [q]; 8 «— 0; w + q¢ mod Ww;
while (k < byte-sturt [q + ww|)a (a <unambig_length) do

begin ¢ « byte-mem [w, kJ;
if ¢ #"_" then

begin if ¢ > “a” then c « ¢ — 40; { convert to uppercase }
if chopped_id([s| # ¢ then goto not-found;
incr (a);

end;

ner (k);

end;

if (k =byte_start[q + ww]) a (choppedid[s] #0) then goto not_found;
print_nl(“! Identifier conflict, with’);
for k « byte_start [q] to byte start [q + ww] — 1 do print (zchr [byte mem [w, kl);
error; q «— 0; {only one conflict will be printed, since equiv [0]= 0}

not-found: end

This code is used in section 62.

|

§64 TANGLE SEARCHING FOR IDENTIFIERS 143

64. We compute the string pool check sum by working modulo a prime number that is large but not so
‘large that overflow might occur.

define check-sum-prime = 3777777671 { 229 _ 73 }

Define and output a new string of the pool 64) =

begin ilk |p} « numeric; { strings are like numeric macros }
if | — double-chars = 2 then (this &ring is for a single character }

equiv [p] — buffer [2dfirst + 1] + 100000
else begin equiv [p] « string-ptr + ‘100000; 1 + 1 — double-chars — 1;

if[> 99 then err-print (“!_Preprocessedstring, is_too long’);
incr (string-ptr); write (pool, zchr ["0O" + I div 10], zchr ["0" + I mod 10]); { output the length }
pool-check-sum <— pool-check-sum + pool-check-sum + I;

while pool-check-sum > check-sum-prime do pool-check-sum «+ pool-check-sum — check-sum-prime;

: — id-first + 1;
while t < id_loc do

begin write (pool, zchr [buffer [t]]}; { output characters of string }
pool-check-sum <«— pool-check-sum + pool-check-sum + buffer [4];
while pool-check-sum > check-sum-prime do pool-check-sum « pool-check-sum — check-sum-prime;

if (buffer 1] = nnn) y (buffer [i] ="@") then i «1+ 2
{ omit second appearance of doubled character }

else ner (i);

end;

write _In (pool) ;
e n d ;

end

This code is used in section 61.

144 ~~ SEARCHING FOR MODULE NAMES TANGLE §65

65. Searching for module names. The mod-lookup procedure finds the module name mod-text |1.. I]
in the search tree, after inserting it if necessary, and returns a pointer to where it was found.

(Globals in the outer block 9) +=
| mod-text: array (0 .. longest-name] of ASCII-code; {name being sought for }

66. According to the rules of WEB, no module name should be a proper prefix of another, so a “clean”

comparison should occur between any two names. The result of mod-lookup 1s 0 if this prefix condition is

violated. An error message is printed when such violations are detected during phase two of WEAVE.

define leas = 0 { the first name is lexicographically less than the second }
define equal = 1 { the first name is equal to the second }
define greater = 2 { the first name is lexicographically greater than the second }
define prefix = 3 { the first name is a proper prefix of the second }
define eztenaion = 4 { the first name is a proper extension of the second }

function mod-lookup (: Sixteen-bits): name-pointer ; { finds module name }
label found;

var C: leas . . extension; { comparison between two names }
j: 0. . longest-name; {index into mod_tezt }
k: 0 ..max-bytes; {index into byte-mem }
w: 0.. ww —1; {segment of byte-mem }
p: name-pointer ; { current node of the search tree }
q: name-pointer, { father of node p }

begin c¢ «— greater; q¢ « 0; p « rlink[0]; { rlink [0] is the root of the tree}
while p # 0 do

begin (Set c¢ to the result of comparing the given name to name p 68);

q « Dy

if ¢ = less then p « llink|q]
else if ¢ = greater then p « rlink|g}

else goto found;

end;

(Enter a new module name into the tree 67);
found: if ¢ # equal then

begin err-print (°'.Incompatiblesection names’); p « 0;
end;

mod_lookup + p;
end:

67. (Enter a new module name into the tree 67) =
w «— name-ptr mod ww; k « byte-ptr [w];

if k + | > maz_bytes then overflow (“byte memory °);
if name_ptr > mar_names — ww then overflow (‘name “);
p «— name_ptr,

if ¢ = less then lhink[q] « p
else rlink[q| « p;
link [p| — 0; rlink [p] « 0; c¢ t equal; equiv [p| «— 0;
for j « 1 tol do byte_mem|w, k + j — 1] « mod-text [j];
byte ptr [w] — k + I; byte-start [name-ptr + ww] « k + l; incr (name-ptr);

This code is used in section 66.

868 TANGLE SEARCHING FOR MODULE NAMES 145

68. (Set c to the result of comparing the given name to name P 68) =
begin k + byte-start [p]; w + p mod ww; ¢ « equal; jt 1;

while (k < byte_start [p + ww) A (j <1) a (mod-text [j] = byte-mem [w, k]) do
begin incr (k); ner (j);
end;

if k = byte-start [p + ww] then
ifj > [then c¢ « equal
else ¢ f- extension

else ifj > 1 then ¢ « prefix

else if mod-text [j] < byte_mem|w,k] then ¢ « less
else ¢ + greater;

end

This code is used in sections 66 and 69.

69. The prefix-lookup procedure is supposed to find exactly one module name that has mod-text 1 Co {]
as a prefix. Actually the algorithm silently accepts also the situation that some module name is a prefix of

mod-text 1. : l], because the user who painstakingly typed in more than necessary probably doesn’t want to
be told about the wasted effort.

function prefix-lookup (1 : Sixteen-bits): name-pointer; { finds name extension }
var c: less . . extension; { comparison between two names }

count: 0 . . max-names ; { the number of hits }
J: 0.. longest-name ; { index into mod-text }
k:0..max-bytes; {index into byte-mem }
w: 0..ww~—1; {segment of byte-mem }
p: name-pointer; { current node of the search tree }
q: name-pointer ; { another place to resume the search after one branch is done }
r: name-pointer; { extension found }

begin gq «+ 0; p « rlink{0]; count « 0; r — 0; {begin search at root of tree }
while p # 0 do

begin (Set c¢ to the result of comparing the given name to name p 68);
if ¢c = less then p « link |p)
else if ¢ = greater then p « rlink|p]

else begin r « p; incr (count); q t rlink|pl; p + link [p];
end;

if p= 0 then

begin p « gq; gq t 0;
end;

end;

if count # 1 then

if count = 0 then err-print (*}_Name_does_notmatch °)
else err-print (*! Ambiguous prefix’);

prefix-lookup «— r; { the result will be 0 if there was no match }
end;

146 TOKENS TANGLE §70

70. Tokens. Replacement texts, which represent PASCAL code in a compressed format, appear in

tok-mem as mentioned above. The codes in these texts are called ‘tokens’; some tokens occupy two

consecutive eight-bit byte positions, and the others take just onc byte.

If p> 0 points to a replacement text, trok-start [p] is the tok-mem position of the first eight-bit code of
that text. If text link[p] = 0, this is the replacement text for a macro, otherwise it is the replacement text
for a module. In the latter case text link[p] is either equal to module-flag, which means that there is no
further text for this module, or text link|p] points to a continuation of this replacement text; such links are
created when several modules have PASCAL texts with the same name, and they also tie together all the

PASCAL texts of unnamed modules. The replacement text pointer for the first unnamed module appears in

text-link [0], and the most recent such pointer is last-unnamed.

define module_flag = maz_texts {final link in module replacement texts }

(Globals in the outer block 9) +=
last-unnamed: text-pointer ; { most recent replacement text of unnamed module }

71. (Set initial values 10) +=

last-unnamed t 0; text link{0] « 0;

72. If the first byte of a token is less than “200, the token occupies a single byte. Otherwise we make a

sixteen-bit token by combining two consecutive bytes a and b. If "200 < a < ‘250, then (a — 200) x 2% + b
points to an identifier: if ‘250 < a < ‘320, then (a — 250) x 28 + b points to a module name; otherwise, i.e.,
if '320 < a < 400, then (a — '320) x 2% + b is the number of the module in which the current replacement
text appears.

Codes less than '200 are ‘I-bit ASCII codes that represent themselves. In particular, a single-character

identifier like ‘zc’ will be a one-byte token, while all longer identifiers will occupy two bytes.

Some of the 7-bit ASCII codes will not be prcscnt, however, so we can use them for special purposes. The

following symbolic names are used:

param denotes insertion of a parameter. This occurs only in the replacement texts of parametric macros,

outside of single-quoted strings in those texts.

begin-comment denotes @{, which will become either { or [.

end-comment denotes @}, which will become either } or].

octal denotes the @° that precedes an octal constant.

hex denotes the @" that precedes a hexadecimal constant.

check-sum denotes the @$ that denotes the string pool check sum.

join denotes the concatenation of adjacent items with no space or line breaks allowed between them (the

Q& operation of WEB).

double-dot denotes ‘. .’ in PASCAL.

verbatim denotes the @= that begins a verbatim PASCAL string. It is also used for the end of the string.

force-line denotes the @\ that forces a new line in the PASCAL output.

define param = 0 { ASCII null code will not appear}
define verbatim = ‘2 { extended ASCII alpha should not appear }
define force line = ‘3 { extended ASCII beta should not appear }
define begin-comment = ‘11 { ASCII tab mark will not appear }
define end-comment = "12 { ASCII line feed will not appear }
define octal = 14 {ASCII form feed will not appear}
define hex = ‘15 {ASCII carriage return will not appear }

define double-dot = "40 { ASCII space will not appear except in strings }
define check-sum = “175 {will not bc confused with right brace}
define join = 177 { ASCII delete will not appear }

§73 TANGLE | TOKENS 147

73. The following procedure is used to enter a two-byte value into tok-mem when a replacement text is

being generated.

procedure store-two-bytes (z : &teen-bits); { stores high byte, then low byte }
begin if tok-ptr [2] + 2 > maz_toks then overflow (‘token’);
tok-mem [z,tok-ptr [z]] « x div 400; { this could be done by a shift command }
tok_mem |z, tok-ptr El + 1] «— xmod ‘400; { this could be done by a logical and }
tok-ptr [2] «— tok-ptr [2] + 2;
end;

74. When TANGLE is being operated in debug mode, it has a procedure to display a replacement text in

symbolic form. This procedure has not been spruced up to generate a real great format, but at least the

results are not as bad as a memory dump.

debug procedure print_repl(p : text pointer);
var k: 0 . . maz_toks; {index into tok-mem }

a: sixteen-bits ; { current byte(s) }
zp: 0..2z — 1; { segment of tok-mem being accessed }

begin if p> text_ptr then print (‘BAD °)
else begin k « tok-start [p]; zp «+ pmod 22;

while k < tok-start [p + zz] do
begin a « tok.mem/zp, kJ;
if a > 200 then (Display two-byte token starting with a 75)
else (Display one-byte token a 76);

wer (k);

end;

end;

end;

gubed

75. (Display two-byte token starting with a 75) =

begin wncr (k);

if a < "250 then {identifier or string }
begin a « (a — 200) * "400 +t tok_mem|zp, kJ; print-id(u);
if byte-mem [a mod ww , byte-start [a] ="""" then print (eo 7°)
else print (°°);
end

else if a < 320 then { module name}
begin print (“@< °); printad((a — 250) * 400 + tok_mem[zp, kJ); pin (1@> 7);
end

else begin a tr (a — 320) x 400 + tok-mem 2p, k]: { module number }
print(“@", zchr{"{"],a : 1,°@",zchr["}"]); {can’t use right brace between debug and gubed }
end;

end

This code is used in section 74.

148 TOKENS TANGLE §76

76. (Display one-byte token a 76) =

case a of

begin-comment : print (“Q°, zchr ["{"]);
end-comment: print (“Q°, chr ["}"]); {can’t use right brace between debug and gubed }
octal: print(°Q° °°);
hex : print (*Q"*);
check-sum: print (‘Q$ ‘);
param: print (“#°);
"Q": print (“QQ °); :
verbatim: print (*@=");
force-line : print (“@\ °);
othercases print (zchr [a])
endcases

This code is used in section 74.

§77 TANGLE STACKS FOR OUTPUT 149

77. Stacks for output. Let’s make sure that our data structures contain enough information to produce

" the entire PASCAL program as desired, by working next on the algorithms that actually do produce that

program.

. 78. The output process uses a stack to keep track of what is going on at different “levels” as the macros

are being expanded. Entries on this stack have five parts:

end-field 1s the tok-mem location where the replacement text of a particular level will end;

byte-field is the tok-mem location from which the next token on a particular level will be read;

name-field points to the name corresponding to a particular level;

repl_field points to the replacement text currently being read at a particular level.

mod-field 1s the module number, or zero if this is a macro.

The current values of these five quantities are referred to quite frequently, so they are stored in a separate

place instead of in the stuck array. We call the current values cur-end, cur-byte, cur-name, cur-repl, and
cur-mod.

The global variable stack-ptr tells how many levels of output are currently in progress. The end of all

output occurs when the stack is empty, i.e., when stuck-ptr = O.

(Types in the outer block 11) +=
output-state = record end-field: sixteen-bits; { ending location of replacement text }

byte-field: sixteen-bits ; {present location within replacement text }
name-field: name-pointer ; { byte-start index for text being output }
repl_field: text-pointer ; { tok-start index for text being output }
mod-field: 0 . . 27777; { module number or zero if not a module }
end;

79. define cur-end = cur_state.endfield {current ending location in tok-mem }
define cur-byte = cur-state. byte-field {location of next output byte in tok-mem }
define cur-name = cur-stute.nume-field {pointer to current name being expanded}

define cur-repl = cur-state .repl_field { pointer to current replacement text }
define cur-mod = cur_state.mod_field {current module number being expanded }

(Globals in the outer block 9) +=
cur-state : output_state; { cur-end, cur-byte, cur_name, cur_repl }
stuck: array [1 . . stuck-size] of output-state; { info for non-current levels }
stuck-ptr: 0 . . stuck-size; { first unused location in the output state stack }

80. It is convenient to keep a global variable zo equal to cur-repl mod zz.

(Globals in the outer block 9). +=
20: 0..2z -1; { the segment of tok-mem from which output is coming }

81. Parameters must also be stacked. They arc placed in tok_mem just above the other replacement texts,

and dummy parameter ‘names’ are placed in byte_start just after the other names. The variables rext-ptr

and tok-ptr|z] essentially serve as paramcter stack pointers during the output phase, so there is no need for
a separate data structure to handle this prohlcm.

82. There is an implicit stack corresponding to meta-comments that are output via @{ and @}. But this

stack need not be represented in detail, because we only nced to know whether it is empty or not. A global

variable brace-level tells how many items would be on this stack if it were present.

(Globals in the outer block 9) +=
brute-level: eight-bits; { current depth of @{... @} nesting }

150 STACKS FOR OUTPUT TANGLE §83

83. To get the output process started, we will perform the following initialization steps. We may assume

that tezt_link [0] is nonzero, since it points to the PASCAL text in the first unnamed module that generates

code; if there are no such modules, there is nothing to output, and an error message will have been generated

before we do any of the initialization.

(Initialize the output stacks 83) =
stack-ptr « 1; brace-level « 0; cur-name « 0; cur_repl t text link[0]; z0 «— cur-repl mod zz;
cur-byte « tok-start [cur-repl]; cur-end <— tok-start [cur-repl + zz; cur-mod + 0;

This code is used in section 112.

84. When the replacement text for name p is to be inserted into the output, the following subroutine is

called to save the old level of output and get the new one going.

procedure push-level (p : name-pointer); { suspends the current level }
begin if stack-ptr = stack-size then overflow(stack’)
else begin stack [stack-ptr] « cur-state; { save cur-end, cur-byte, etc. }
ner (stack-ptr); cur-name <— p; cur-repl t equiv [p]; 20 « cur-repl mod 2z,

cur-byte « tok-start [cur-repl]; cur-end « tok-start [cur-repl + 22 |; cur-mod + 0;
end;

end;

85. When we come to the end of a replacement text, the pop-level subroutine does the right thing: It

either moves to the continuation of this replacement text or returns the state to the most recently stacked

level. Part of this subroutine: which updates the parameter stack, will be given later when we study the

parameter stack in more detail.

procedure pop-level; { do this when cur-byte reaches cur-end }
label exit;

begin if textlink[cur-repl] = 0 then {end of macro expansion }
begin if ilk [cur-name] = parametric then (Remove a parameter from the parameter stack 01);
end

else if text link [cur-repl] < module-flag then {link to a continuation }
begin cur-repl « text-link [cur_repl]; {we will stay on the same level }
20 + cur-repl mod zz; cur-byte « tok-start [cur-rep; cur-end <«— tok-start [cur-repl + zz |; return;
end;

decr (stack-ptr); {wc will go down to the previous level }
if stack-ptr > 0 then

begin cur-state «— stack [stack-ptr]; 20 «— cur-repl mod zz;

end;

exit: end;

86. The heart of the output procedure is the get-output routine, which produces the next token of output

that is not a reference to a macro. This procedure handles all the stacking and unstacking that is necessary.

It returns the value number if the next output has it numeric value (the value of a numeric macro or

string), in which case cur_val has been set to tho number in question. The procedure also returns the value
module-number if the next output begins or ends the replacement text of some module, in which case cur_val

is that module's number (if beginning) or the negative of that value (if ending). And it returns the value

identifier if the next output is an identifier of length two or more, in which case cur_val points to that
identifier name.

define number = ‘200 {code returned by get-output when next output is numeric }
define module_.number = 201 { code returned by get-output for module numbers }
define identifier = “202 {code returned by get_output for identifiers }

(Globals in the ou ter block 9) +=
cur val: integer; { additional information corresponding to output token }

§87 TANGLE STACKS FOR OUTPUT 151

87. Hf get-outpur finds that no more output remains, it returns the value zero.

function get-output: sixteen-bits; {returns next token after macro expansion }
label restart, done , found;

var a: sixteen-bits ; { value of current byte }
b: eight-bits; {byte being copied }
bal: aixt een-bits; { excess of(versus) while copying a parameter }
k: 0 .. max-bytes; {index into byte-mem }
w: 0.. ww —=1; {segment of byte-mem }

begin restart: if stack_ptr= 0 then

begin a « 0; goto found;

end;

if cur-byte = cur-end then

begin cur-val + -cur-mod; pop-level;

if cur-val = 0 then goto restart;

a + module-number;, goto found;

end;

a tok_mem|zo, cur-byte]; wner (cur-byte);
if a < 2200 then { one-byte token }

if a = param then (Start scanning current macro parameter, goto restart 92)
else goto found;

a «— (a — 200) * 400 + tok-mem|zo, cur-byte]; incr (cur-byte);
if a < 24000 then { 24000 = (250 — 200) * ‘400 }

(Expand macro a and goto found, or goto restart if no output found 80 };
if a < ‘50000 then { ‘50000 = (‘320 — 200) * ‘400 }
(Expand module a — "24000, goto restart ss);

cur-val «— a — 50000; a «— module-number; cur-mod «+ cur-val;

found: debug if trouble-shooting then debug-help; gubed
get-output + a;

end;

88. The user may have forgotten to give any PASCAL text for a module name, or the PASCAL text may

have been associated with a different name by mistake.

(Expand module a — 24/000, goto restart 88) =
begin a « a — "24000;

if equiv [a] # 0 then push-level(a)

else if a # 0 then

begin print_nl (*! Not present : <); print-id(u); print (*> ‘); error;
end;

got0 restart;

end

This code is used in section 87.

152 STACKS FOR OUTPUT TANGLE §89

89. (Expand macro a and goto found, or goto restart if no output found 89) =
"begin case tka] of

normal: begin cur-val «— a; a «+ identifier;

end;

numeric: begin cur_val «— equiv [a] — ‘100000; a « number;
end;

simple: begin push-level (a); goto restart .

end;

parametric: begin (Put a parameter on the parameter stack, or goto restart if error occurs 90);

push-level (a); gotO restart;

end;

othercases confusion (‘output °)
endcases;

goto found;
end

This code is used in section §7.

90. We come now to the interesting part, the job of putting a parameter on the parameter stack. First we

pop the stack if necessary until getting to a level that hasn’t ended. Then the next character must be a * (’;

and since parentheses are balanced on each level, the entire parameter must be present, so we can copy it

without difficulty.

(Put a parameter on the parameter stack, or goto restart if error occurs 90) =
while (cur-byte = cur-end) A (stack-ptr > 0) do pop-level,;

if (stack-ptr = 0) V (tok.mem|[zo, cur-byte] # "(") then
begin print.nl (*! _No_parameter_ given, f or,,*); print-id (a): error; BOO restart ;
end;

(Copy the parameter into tok-mem 93);

equiv [name-ptr] « text-ptr ; tlk [name _ptr | «— simple; Ww + name-ptr mod ww, k & byte-ptr [w];
debug if k = maz. bytes then overriow (“byte memory °);
byte-mem([w, k] t "#"; incr (k); byte_ptr|w] «— k;
gubed { this code has set the parameter identifier for debugging printouts }
if name-ptr > maz_names — ww then overflow (‘name);
bytestart [name-ptr + ww] « k; incr (name-ptr);

if text-ptr > maz_texts — zz then overflow (‘text);
text-link [text_ptr| « o; tok_start[text_ptr . zz] « tok_ptr[z|; incr (text-ptr); z « text-ptr mod 22

This code is used in section 89.

91. The pop-level routine undoes the effect of parameter-pushing when a parameter macro is finished:

(Remove a parameter from the parameter stack 91) =

begin decr (name_ptr): decr (text-ptr); z « text-ptr mod 22 ;
stat if tocprr [2] > maz_tokptr [z] then maz tok ptr [2] « tok-ptr [2];
tats { the maximum value of rok-ptr occurs just before parameter popping }
tok-ptr |z] « tok_start [text-ptr];
debug decr (byte-ptr [name-ptr mod ww]); gubed
end

This code is used in section 85.

§92 TANGLE STACKS FOR OUTPUT 153

92. When a parameter occurs in a replacement text, we treat it as a simple macro in position (name_ptr -1):

(Start scanning current macro parameter, goto restart 92) 3

begin push-level (name-ptr — 1); goto restart;
end

This code is used in section 87.

93. Similarly, a param token encountered as we copy a parameter is converted into a simple macro call for

name-ptr — 1. Some care is needed to handle cases like macro (#; print (“#) °)); the # token will have been
changed to param outside of strings, but we still must distinguish ‘real’ parentheses from those in strings.

define app_repl (#) =

begin if tok-ptr [2] = max-toks then overflow (‘token’);
tok-mem [z, tok-ptr [2] «— #; incr (tok-ptr [2]);
end

(Copy the parameter into tok-mem 93) =
bal — 1; incr (cur-byte); { skip the opening ‘(’}
loop begin b « tok-mem 20, cur-byte]; iner (cur-byte);

if b = param then store-two-bytes (name-ptr + 77777)

else begin if b > “200 then

begin app_repl(b); b « tok-mem [zo , cur-byte]; iner (cur-byte);
end

else case b of

"(": tner (bal);
") ": begin decr (bal);

if bal = 0 then goto done;
end;

men: repeat app-repl(b); b + tok-mem [zo, cur-byte]; ner (cur-byte);
until b =" *"; { copy string; don’t change bal } :

othercases do-nothing

endcases;

app-repl(b);
end;

end;

done:

This code is used in section 90.

154 PRODUCING THE OUTPUT TANGLE §94

94. Producing the output. The get.output routine above handles most of the complexity of output

generation, but there are two further considerations that have a nontrivial cffect on TANGLE’s (algorithms.

First, we want to make sure that the output is broken into lines not exceeding line-length characters per

line, where these breaks occur at valid places (e.g., not in the middle of a string or a constant or an identifier,

not between ‘<’ and ‘>’, not at a ‘Q&’ position where quantities arc being joined together). Therefore we

assemble the output into a buffer before deciding where the line breaks will appear. However, we make very

little attempt to make “logical” line breaks that would enhance the readability of the output; people are

supposed to read the input of TANGLE or the TXed output of WEAVE, but not the tangled-up output. The
only concession to readability is that a break after a semicolon will be made if possible, since commonly used

“pretty printing” routines give better results in such cases.

Second, we want to decimalize non-decimal constants, and to combine integer quantities that are added

or subtracted, because PASCAL doesn’t allow constant expressions in subrange types or in case labels. This |

means we want to have a procedure that treats a construction like (E-15+17) as equivalent to ‘(E+2)’, while

also leaving ‘(1E-15+17)’ and ‘(E-15+17*y)’ untouched. Consider also ‘~15+17.5’ versus ‘-15+17..5’. We
shall not combine integers preceding or following * /, div, mod, or @&. Note that if y has been defined to

equal -2, we must expand ‘x*y’ into ‘x* (-2)’; but ‘x-y’ can expand into ‘x+2’ and we can even change
‘x ~ y mod z’ to Xx + 2 mod 2’ because PASCAL has a nonstandard mod operation!

The following solution to these problems has becn adopted: An array out-buf contains characters that

have been generated but not yet output, and there are three pointers into this array. One of these, apr,

is the number of characters currently in the buffer, and we will have 1 < oul_ptr < line-length most of the

time. The second is break_ptr, which is the largest value < out_ptr such that we are definitely entitled to end

a line by outputting the characters out-buf 1 .. (break-ptr — 1)}; we will always have break-ptr < line-length.
Finally, semi-ptr is either zero or the largest known value of a legal break after a semicolon or comment on

the current line; we will always have semi-ptr < break-ptr .

(Globals in the outer block 9) +=
out-buf: array [0 . . out-buf-size] of ASCII code; { assembled characters }
out_ptr : 0. . out-buf-size ; { first available place in out_buf }
break-ptr: 0 .. out-buf-size; { last breaking place in out_buf }
semi-ptr: 0 . . out-buf-size; {last semicolon breaking place in out buf }

§95 TANGLE PRODUCING THE OUTPUT 155

95. Besides having those three pointers, the output process is in one of several states:

num-or-id means that the last item in the buffer is a number or identifier, hence a blank space or line

break must be inserted if the next item is also a number or identifier.

un breakable means that the last item in the buffer was followed by the @& operation that inhibits spaces
between it and the next item.

sign means that the last item in the buffer is to be followed by + or -, depending on whether out-app is

positive or negative.

sign_val means that the decimal equivalent of | out_val | should be appended to the buffer. If out-val < 0,
or if out-val = 0 and last-sign < 0, the number should be preceded by a minus sign. Otherwise it

should be preceded by the character out-sign unless out-sign = 0; the out-sign variable is either 0 or

MoI gp WetLJ ,

sign-val-sign is like sign-val, but also append + or = afterwards, depending on whether out-app 1s positive

or negative.

sign-val-val is like sign-val, but also append the decimal equivalent of out-app including its sign, using

last-sign in case out-app = 0.

misc means none of the above.

For example, the output buffer and output state run through the following sequence as we generate characters
from ‘(x-16+19-2)":

output out-buf out-state out-sign out_val out-app last-sign

| (misc
T (x num-or-id

— (x sign - 1 - 1

15 (x sign-val ay -15 -15

+ (x sign-val-sign "yn -15 +1 +1

19 (x sign _val_val nt -15 +19 +1
— (x sign-yal-sign nen +4 - 1 - 1

2 (x sign_val_val Hp +4 -2 -2
) (x+2) misc

At each stage WC have put as much into the buffer as possible without knowing what is coming next. Examples
like %-0.1’ indicate why last-sign is needed to associate the proper sign with an output of zero.

In states num-or-id, unbreakable, and rasc the last item in the buffer lies between break_ptr and out-ptr -1,

inclusive; in the other states we have break-ptr = out-ptr.

The numeric values assigned to num-or-id, etc., have been chosen to shorten some of the program logic;

for example, the program makes use of the fact that sign + 2 = sign-val-sign.

define misc = 0 { state associated with special characters }
define num-or-id = 1 { state associated with numbers and identifiers}
define sign = 2 {stato associated with pending + or - }
define sign-val = num .orad + 2 { state associated with pending sign and value }
define sign-val-sign = sign + 2 { sign-val followed by another pending sign }
define sign-val-val = sign_val + 2 { sign_val followed by another pending value }
define unbreakable = sign_val_val + 1 { state associated with Q& }

(Globals in the outer block 9) +=

out-state : eight-bits; {current status of partial output }
out_val, out-app : integer; { pending values }
out-sign : ASCII-code ; {sign to usc if appending out-val > 0}
last-sign: --1..+1; { sign to use if appending a zero }

156 PRODUCING THE OUTPUT TANGLE ~~ §96

96. During the output process, line will equal the number of the next line to be output.

"(Initialize the output buffer 96) =
out-state « misc; out-ptr + 0; break-ptr + 0; semi-ptr « 0; out_buf [0] « 0; line «— 1;

This code is used in section 112.

07. Here is a routine that is invoked when out-ptr > line-length or when it is time to flush out the final

line. The flush_buffer procedure often writes out the line up to the current break-ptr position, then moves

the remaining information to the front of out-buf . However, it prefers to write only up to semi-ptr , if the

residual line won’t be too long.

define check-break =

if out-ptr > line-length then flush_buffer

procedure flush_buffer ; {writes one line to output file }
var k: 0 . . out-buf-size; {index into out-buf}

b: 0. . out-buf-size; {value of break-ptr upon entry }
begin b « break-ptr;

if (semi-ptr # 0) A (out-ptr — semi-ptr < line-length) then break_ptr « semi-ptr;

for k « 1 to break-ptr do write (pascal_file, zchr[out_buf [k — 1]]);
write _In(pascal_file); ner (line);
if line mod 100 = O then

begin print (°. ‘);
if line mod 500 = 0 then print (line : 1);

update-terminal; { progress report }
end;

if break-ptr < out-ptr then

begin if out-buf | break-ptr] = "" then
begin wncr (break-ptr); { drop space at break }
if break-ptr > b then b « break-ptr;

end;

for k « break-ptr to out-ptr — 1 do out_buf [k — break_ptr| « out-buf [k];
end;

out-ptr «— out-ptr — break-ptr ; break-ptr «— b — break-ptr § semi-ptr + 0;

if out-ptr > line-length then

begin err-print (°! Long,linegmustbe truncated); out-ptr + line-length;
end;

end;

98. (Empty the last line from the buffer 98) =
breuk-ptr « out-ptr ; semi-ptr « 0; flush_buffer ;
if brace-level + 0 then err-print (“‘'_ Program_endedat brace level", brace-level : 1);

This code is used in section 112.

§09 TANGLE PRODUCING THE OUTPUT 157

99. Another simple and useful routine appends the decimal equivalent of a nonnegative integer to the

output buffer.

define app (#) =
begin out-buf [out-ptr] «— #; incr (out-ptr); {append a single character }
end

procedure app.val (v : integer); { puts v into buffer, assumes v > 0 }
var k: 0. . out-buf-size; { index into out_buf }
begin k <«— out-buf-size; { first we put the digits at the very end of out_buf }
repeat out-buf [k] + v’'mod 10; v « v div 10; deer (k);
until v = 0;

repeat ner (k); app (out-6uf [k] + no");
until k = out-buf-size ; { then we append them, most significant first }
end;

100. The output states are kept up to date by the output routines, which are called send-out, send_val,

and send-sign. The send-out procedure has two parameters: t tells the type of information being sent and

v contains the information proper. Some information may also be passed in the array out-contrib.

If £ = misc then v is a character to bc output.

Ift = str then v is the length of a string or something like ‘<>’ in out_contrib,

Ift = tdent then v is the length of an identifier in out-contrib.

Ift = frac then v is the length of a fraction and/ or exponent in out-contrib.

define str = 1 { send-out code for a string }
define ident = 2 { send-out code for an identifier}
define frac = 3 { send-out code for a fraction }

(Globals in the outer block 9) +=
dut-contrib: array [1 . . line-length] of ASCII-code ; {a contribution to out-buf }

101. A slightly subtle point in the following code is that the user may ask for a join operation (i.e.,

Qk) following whatever is being sent out. We will see later that join is implemented in part by calling
send-out (frac, 0).

procedure send-out (t : eight-bits; v : sixteen-bits); {outputs v of type }
label restart;

var k: 0 . . line-length; {index into out-contrib }
begin (Get the buffer rcady for appending the new information 102);
if + # masc then

for k « 1 to v do app(out_contrib|k])
else upp (v);

check-break,

if (¢t =misc)A (v="; ") V (v = "}")) then
begin semi-ptr + out-ptr; break_ptr «— out-ptr;
end;

if t > ident then out-state «+ num_orad {t = ident or frac }
else out-state « misc {t = str or misc }
end;

158 ~~ PRODTJCING THE OUTPUT TANGLE §102

102. Here is where the buffer states for signs and values collapse into simpler states, because we are about

‘to append something that doesn’t combine with the previous integer constants.

We use an ASClIl-code trick: Since "," — 1 = "+" and "+" + 1 = "-%", we have "," — c = sign of c, when
lc| = 1.

(Get the buffer ready for appending the new information 102) =
restart: case out-state of

num-or-id: if t # frac then

begin break-ptr « out-ptr ;

if t+ = tdent then app ("u");
end;

sign: begin app ("," — out-app),; check-break; break-ptr «< out-ptr ;

end;

sign-val, sign-val-sign : begin (Append out-vaf to buffer 103);
out-state t out-state — 2; gotQ restart,

end;

sign_val_val: (Reduce sign_val_val to sign-val and goto restart 104);
miac: if t # frac then break-ptr « out-ptr ;

othercases do-nothing { this is for unbreakable state }
endcases

This code is used in section 101.

103. (Append out-a to buffer 103) =
if (out-val < 0) v ((out-val = 0) A (lust-sign < 0)) then app ("-")
else if out-sign > 0 then app { out-sign),
app.-val (aba (out-val)); check-break;

This code is used in sections 102 and 104.

104. (Reduce sitgn_val_val to sign-val and goto restar: 104) =
begin if (t = fruc) V (Contribution is**or/ or DIV or MOD 105}) then

begin (Append out_val to buffer 103);
out-sign « "+": out_val «— out-app;
end

else out_val « out-val + out-app;

out-state «— sign-val; gotO restart;

end

This code is used in section 102.

105. (Contribution is * or/ or DIV or MOD 105) =
((t =ident) A (v =3) A(((out-contrib [1] ="D") A (out-contrib 12] ="I") A (out-contrib [3] =""))V

((out-contrib [1] = "M") A (out-contrib [2] = "0") A (out-contrib [3] = "D")))) Vv
((t = misc) A ((v ="*") Vv (v="/")))

This code is used in scction 104.

§106 TANGLE PRODUCING THE OUTPUT 159

106. The following routine is called with v = £1 when a plus or minus sign is appended to the output. It

extends PASCAL to allow repeated signs (e.g., ‘~~’ is equivalent to ‘+’), rather than to give an error message.
The signs following *E' in real constants are treated as part of a fraction, so they are not seen by this routine.

procedure send-sign (Vv : integer);

begin case out-state of

sign, sign-val-sign : out-app +— out-app * v;

sign-val: begin out-app « v; out-state < sign-val-sign,

end;

stgn_val_val: begin out_val « out val + out-app; out-app — v; out-state « sign-val-sign;
end;

othercases begin break-ptr <— out-ptr; out-app << Vv; out-state 4 sign;

end

endcases;

last-sign «— oul_app;

end;

107. When a (signed) integer value is to be output, we call send_val.

define bad-case = 666 { this is a label used below }

procedure send_val (v : integer); { output the (signed) value v}
label bad-case, { go here if we can’t keep v in the output state }

exit;

begin case out-state of

num_or_td: begin (If previous output was DIV or MOD, goto bad-case 110);

out-sign «— ""; out-state «— sign-val; out_val « v; break-ptr < out-ptr ; last-sign + +1;
end;

miac: begin (If previous output was * or /, goto bad-case 109);
out-sign <— 0; out-state « sign-vul;, out-val « v; break-ptr + out-ptr ; last-sign + +l;

end;

(Handle cases of send_val when out-state contains a sign 108)

othercases goto bad-case

endcases;

return;

bad-case : (Append the decimal value of v, with parentheses if negative 111);

erit: end;

108. (Handle cases of send_val when out-state contains a sign 108) =

sign: begin out-sign t "+"; oul_state « sign-vul; out-val <— out-app * v;

end;

stgn_val: begin out-state « sign-val-val; out-app + v;

err-print (*'_Two_numbersoccurredwithout_asign between them");
end;

stgn_val_sign: begin out_state «— sign_val_val; out-app «— out-app * v;
end:

sign-val-val: begin out-val « out-vnl + out-app; out-app + v;

err-print (*'_Two_numbersoccurred without a sign between them’);
end;

This code is used in section 107.

160 PRODUCING THE OUTPUT TANGLE §109

109. (If previous output was * or /, goto bad-case 109) =
if (out-ptr = break-ptr + 1) A ((out-buf [break-ptr] = "*") Vv (out-buf [break-ptr] = "/")) then
goto bad-case

| This code is used in section 107.

110. (If previous output was DIV or MOD, goto bad-case 110) =

if (out-ptr = break-ptr + 3) Vv ((out-ptr = break-ptr + 4) A (out-buf [break-ptr] = ""}) then
if ((out.buf [out-ptr — 3] ="D") A (out-buf [out-ptr — 2] ="I") A (out-buf [out-ptr — 1] ="V"}}V
((out-buf [out-ptr — 3] = "M") A (out-buf [out-ptr — 2] = "0") A (out-buf [out-ptr — I] = "D"}) then
goto bad-case

This code is used in section 107.

111. (Append the decimal value of v, with parentheses if negative 111) =

if v 2 0 then

begin if out-state = num-or-id then

begin break-ptr + out-ptr ; app ("ou";
end;

app-val (v); check-break; out-state «+ num-or-id;
end

else begin app (" ("); app ("-"); app-val(—v); app (") "); check-break; out-state + miac;
end

This code is used in section 107.

§112 TANGLE THE BIG OUTPUT SWITCH 161

112. The big output switch. To complete the output process, we need a routine that takes the results

‘ of get.output and feeds them to send-out, send.val, or send-sign. This procedure ‘send-the-output ’ will be
invoked just once, as follows:

(Phase II: Output the contents of the compressed tables 112) =
if text link[0] = 0 then

begin print_nl (|! Nooutputwas specif ied. ’); mark-harmleas;
end

else begin print-nZ(‘Writingthe output, f ile °); update terminal;
(Initialize the output stacks 83);

(Initialize the output buffer 96);
send-the-output;

(Empty the last line from the buffer 98);

print_nl(‘Done. *);
end

This code is used in section 182.

113. A many-way switch is used to send the output:

define get-fraction = 2 { this label is used below }

procedure send-the-output;

label get-fraction, { go here to finish scanning a real constant }
reaw itch , continue;

var cur-char : eight-bits ; { the latest character received }
k: 0. . line-length; {index into out-contrib }
j: 0.. max-bytes; {index into byte-mem }
w: 0... ww ~ 1; {segment of byte-mem }
n: integer | { number being scanned }

begin while stack-ptr > 0 do

begin cur-char + get-output;
reawitch: case cur-char of

0: do-nothing; { this case might arise if output ends unexpectedly }
(Cases related to identifiers 116)
(Cases related to constants, possibly leading to get&action or reawitch 119)

Tn n-n. send_sign("," — cur-char);
(Cases like <> and : = 114)

mW. (Send a string, goto reawitch 117);
(Otlier pin ta blc laracters 115): send-out (miac, cur-char);
(Cases involving @{ and @} 121)
join : begin send-out (frac, 0); out-state + unbreakable;

end;

verbatim: (Send verbatim string 118);

force-line: (Force a line break 122);

othcrcases err-print (° 'uCan’ “ty output ASCII code.’, cyr-char : 1)
endcases;

gotO continue ;

get-fraction: (Special code to finish real constants 120);
continue : end;

end;

162 THE BIG OUTPUT SWITCH TANGLE $114

114. (Cases like <> and := 114) =
and-sign: begin out-contrib [1) « “A”; out-contrib [2] « "N"; out-contrib [3] — "D"; -send_out (ident, 3);

end;

not-sign: begin out-contrib [1] « "N"; out-contrib [2] « "0"; out-contrib [3] « "T"; send-out (ident, 3);
end;

set-element-sign: begin out-contrib [1] "I"; out-contrib [2] « "N"; send-out (ident, 2);
end;

or-sign: begin out-contrib [1] « "0"; out-contrib [2] + "R"; send-out (ident, 2);
end;

left-arrow © begin out-contrib [1] — " :" out-contrib [2] — "=": send-out (ar ,2);
end;

not-equal: begin out-contrib [1] + "<"; out-contrib [2] «+ ">"; send-out (atr ,2);
end;

leas-or-equal: begin out-contrib [1] «+ "<"s out-contrib [2] «— "="; send-out (atr ,2);
end;

greater-or-equal: begin out_contrib [1] — ">": out-contrib 2] + "=": send-out (atr ,2);
end;

equivalence-sign: begin out-contrib [1] « "=" out-contrib [2] — "=" gend-out (atr y 2);
end;

double-dot : begin out-contrib [1] « "."; out-contrib [2] —" . "; send-out (atr ,2);
end;

This code is used in section 113.

115. Please don’t ask how all of the following characters can actually get through TANGLE outside of strings.

It seems that ""* "" and "{" cannot actually occur at this point of the program, but they have been included

just in case TANGLE changes.

If TANGLE is producing code for a PASCAL compiler that uses ‘*(.’ and ‘.)’ instead of square brackets

(e.g., on machines with EBCDIC code), onc should remove "[" and "]* from this list and put them into the

preceding module in the appropriate way. Similarly, some compilers want ‘*’ to be converted to ‘@’.

(Other printable characters 115) = :
"ny " Min n myn ngn, myn ng", n(n, ") " EL " , " FAS ". " 11: " nen EL nn non ng", 1] {", n\n", 1] 11, new
1 ne ", wiv, I I

This code is used in section 113.

[

$116 TANGLE THE BIG OUTPUT SWITCH 163

116. Single-character identifiers represent themselves, while longer ones appear in byte-mem. All must be

converted to uppercase, with underlines removed. Extremely long identifiers must be chopped.

(Some PASCAL compilers work with lowercase letters instead of uppercase. If this module of TANGLE is
changed, it’s also necessary to change from uppercase to lowercase in the modules that are listed in the index

under “uppercase” J)

define up-to (#) =# — 24, # —23, # — 22,# — 21, # —20,#— 19,#— 18,#— 17,# — 16,#— 15,#— 14,# — 13,

#—12,#—-11,#— 10,4 -9,# — 8, # —T,#—06,#—5,#—4,#-3,#-2,#—-1,#

(Cases related to identifiers 116) =

"A", up_to("2"): begin out_contrib|[1] + cur-char; send-out (ident, 1);
end;

"a" up-to ("z"): begin out-contrib [1] « cur-char = ‘40; send-out (ident, 1);
end;

identifier: begin k « 0;j « byte-start | cur_val]; w « cur_val mod ww;
while (k < max-id-length) A (j < byte-start [cur_val + ww]/) do

begin ner (k); out-contrib [k] + byte-mem |w, j]; ner (j);
if out-contrib[k] > "a" then out_contrib k] «— out-contrib(k] — “40
else if out-contrib [k] = "_* then decr (k);

end;

send-out (ident, k);
end;

This code is used in section 113.

117. After sending a string, we need to look ahead at the next character, in order to see if there were two

consecutive single-quote marks. Afterwards we go to reswitch to process the next character.

(Send a string, goto reswitch 117) =
. begin k « 1; out-contrib [1] « " *";
repeat if k < line-length then incr (k);

out-contrib [k] «— get-output;
until (out-contrib [k] = he) V (stuck-ptr = 0);
if k = line-length then err-print (f.String too long);
send-out (str, k); cur-char «— get-output,

if cur-char ="’" then out-state t unbreakable;

goto reswitch;
end

This code is used in section 113.

118. Sending a verbatim string is similar, hut wc don’t have to look ahcad.

(Send verbatim string 118) =

begin k « 0;

repeat if k < line-length then tncr{k);
out-contrib [k] «— get-output;

until (out-contrib [k] = verbatim) Vv (stack-ptr = 0);

if k = line-length then err_print{ *'Verbatimstring too long’);
send-out (str , k—1);
end

This code is used in section 113.

164 THE BIG OUTPUT SWITCH TANGLE $119

119. In order to encourage portable software, TANGLE complains if the constants get dangerously close to

‘ the largest value representable on a 32-bit computer (231 — 1).

define digits = no", myn, nan, ng "qn, ng", "6", YAR "gn, ng

(Cases related to constants, possibly leading to get-fraction or reswitch 119) =
digits: begin n « 0;

repeat cur-char « cur-chat — "0";

if n > 1463146314 then err_print(”! Constant too big")
else n « 10 * n + cur-char;

cur-char «— get-output,

until (cur-char > hg) V (cur-char < “07);
sendval (n); k « 0;
if cur-char = "e" then cur-char « "E";

if cur-char = “E’ then goto aet-fraction

else goto reswitch;

end;

check-sum: send_val (pool-check-sum);

octal: begin n « 0; cur-char t "0";

repeat cur-char « cur-char — "0";

if n > 2000000000 then errprint (°¥_ Constant,too big")
else n «~ 8 * n + cur-char;

cur-char «— get-output ;

until (cur-char > ny) V (cur-char < no");
send_val (n); goto reswitch;
end;

hez: begin n «+ 0; cur-char «- "0";

repeat if cur-char > “A” then cur-char < cur-char + 10 — “A”

else cur-char «+ cur-char — “07;

if m > “8000000 then err-print (“!_ Constant_toobig")
else n «— 16 * n + cur-char;

cur-char + get-output ;

until (cur-char > nF") V (cur-char < no") V ((cur-char > “9”) A (cur-char < “A”));
send_val(n); goto reswitch;
end;

number : send_val (cur_val);
"." begin k « 1; out-contrib [1] «— ".": cur-char « get-output;

if cur-char = "." then

begin out-contrib [2] — "." send-out (str ,2);
end

else if (cur-char > no") A (cur-char < ng") then goto get-rraction
else begin send-out (misc, ". "); goto reswitch;

end;

end;
This code is used in section 113.

$120 TANGLE THE BIG OUTPUT SWITCH 165

120. The following code appears at label <get-fraction', when we want to scan to the end ofa real constant.

The first k characters ofa fraction have already been placed in out-contrib , and cw-char is the next character.

(Special code to finish real constants 120) =
repeat if k < line-length then iner(k);

out-contrib [k] « cur-char § cur-char <— get-output;

if (out-contrib [k] = "E") A ((cur-char = nytt) V (cur-char = n-n}) then
begin if k < line-length then ncr (k),

out-contrib [k] «= cur-char; cur_char « get-output;
end

else if cur-char = "e" then cur-char «— "E"

until (cur-char # "E") A ((cur-char < "o") V (cur_char > "g"));
if k = line-length then err-print (. ‘Fractiontoo long °);
send-out (frac, k); goto reswitch

This code is used in section 113.

121. Some PASCAL compilers do not recognize comments in braces, so the comments must be delimited

by ‘ (*’ and ‘*) ’. In such cases the statement ‘send-out (misc, "{")’ that appears here should be replaced by
‘begin out_contrib{1] « "("; out_contrib[2] « "*"; send-out (str ,2); end’, and a similar change should be
made to ‘send-out (misc, "}")’.

(Cases involving @{ and @} 121) =
begin-comment : begin if brace-level = 0 then send-out (mise, n{")

else send-out (miac, "[");
wner (brace-level);

end;

end-comment: if brace-level > 0 then

begin decr (brace-level);

if brace-level = 0 then send-out (misc, "}")
else send-out (misc, "}");
end

else err-print (“| ExtraQ}); .
module-number: begin if brace-level = 0 then send-out (misc, n{")

else send-out (misc, "[");
if cur-ual < 0 then

begin send-out (misc," : "); send_val(— cur_val);
end

else begin send val (cur_val); send-out (misc, " : ");
end;

if brace-level = 0 then send-out (misc, niu)
else send-outr (misc ,"1");
end;

This code is used in section 113.

122. (Force a line break 122) =
begin while out-ptr > 0 do

begin if out-ptr < line-length then break-ptr « out-ptr;

flush_buffer;
end;

out-state +— misc;

end

This code is used in section 113.

166 INTRODUCTION TO THE INPUT PHASE TANGLE $123

123. Introduction to the input phase. We have now seen that TANGLE will be able to output the full

PASCAL program, if we can only get that program into the byte memory in the proper format. The input

process is something like the output process in reverse, since we compress the text as we read it in and we

expand it as we write it out.

There are three main input routines. The most interesting is the one that gets the next token of a PASCAL

text; the other two are used to scan rapidly past TEX text in the WEB source code. One of the latter routines

will jump to the next token that starts with ‘@’, and the other skips to the end of a PASCAL comment.

124. But first we need to consider the low-level routine get-line that takes care of merging change-file into

web-file. The get-line procedure also updates the line numbers for error messages.

(Globals in the outer block 0) +=
line : integer; {the number of the current line in the current file }
other-line : integer; { the number of the current line in the input file that is not currently being read }
temp-line : integer; {used when interchanging line with other-line }
limit: 0. . buf-size; { the last character position occupied in the buffer }
Zoc: 0. . buf-size; { the next character position to be read from the buffer }
input-has-ended: boolean ; { if true, there is no more input }
changing: boolean, { if true, the current line is from change-file }

125. As we change changing from true to false and back again, we must remember to swap the values of

line and other-line so that the err-print routine will be sure to report the correct line number.

define change-changing = changing + —changing; temp-line + other-line; other-line «+ line;

line «— temp-line { line « other-line }

126. When changing is false, the next line of change-file is kept in change buffer [0 . . change-limit], for

purposes of comparison with the next line of web-file. After the change file has been completely input, we
set change-limit «+ 0, so that no further matches will be made.

(Globals in the outer block 9) +=
change buffer: array [0 . . buf-size] of ASCII-code;

change limit : 0. . buf-size; { the last position occupied in change buffer }

127. Here’s a simple function that checks if the two buffers are different.

function lines_dont_match: boolean;

label exit;

var k: 0 . . buf-size; {index into the buffers }
begin lines-dont-match <« true;

if change_limit # limit then return;
if limit > 0 then

for k « 0 to limit — 1 do

if change buffer [k] # buffer [k] then return;
lines-dont-match « false;

exit : end;

§128 TANGLE INTRODUCTION TO THE INPUT PHASE 167

128. Procedure prime_the.changebuffer sets change buffer in preparation for the next matching operation.
* Since blank lines in the change file are not used for matching, we have (change limit = 0) A —changing if
and only if the change file is exhausted. This procedure is called only when changing is true; hence error

messages will be reported correctly.

procedure prime-the-change-bufer;

label continue, done, exit;

var k: 0 . . buj-size; {index into the buffers }
begin change-limit + 0; { this value will be used if the change file ends }
(Skip over comment lines in the change file; return if end of file 129);
(Skip to the next nonblank line; return if end of file 130);
(Move buffer and limit to change buffer and change-limit 131);

exit: end;

129. While looking for a line that begins with @x in the change file, we allow lines that begin with @, as

long as they don’t begin with @y or @z (which would probably indicate that the change file is fouled up).

(Skip over comment lines in the change file; return if end of file 129) =
loop begin ner (line);

if —input_In (change-file) then return;

if limit < 2 then goto continue;

if buffer{0] # "@" then goto continue;
if (buffer [1] > "X") a (buffer [1] < 2") then buffer [1] « buffer [1] + "z" — "2"; {lowercasify}
if buffer [1] = "x" then goto done;
if (buffer [1] ="y") Vv (buffer [1] = "2") then

begin loc « 2; err-print (°'_Where_is_the matching, 0x? ‘);
end;

continue :@ end;

done:

This code is used in section 128.

130. Here we are looking at lines following the @x.

(Skip to the next nomnblank line; return if end of file 130) =
repeat tncr (line);

if —input_In (change-file) then

begin err-print (.!'_Change_f ileendedaf ter 0x’); return;
end;

until limit > 0;

This code is used in section 128.

131. {Move buffer and limit to change-buffer and change-limit 131) =
begin change-limit « limit ;

for k «— 0 to limit do change_buffer [k] + buffer [k];
end

This code is used in sections 128 and 132.

168 INTRODUCTION TO THE INPUT PHASE TANGLE $132

132. The following procedure is used to see if the next change entry should go into effect; it is called only

when changing is false. The idea is to test whether or not the current contents of buffer matches the current

contents of change_buffer. If not, there’s nothing more to do; but if so, a change is called for: All of the

text down to the Qy is supposed to match. An error message 1s issued if any discrepancy is found. Then the

procedure prepares to read the next line from change-file.

procedure check-chunge ; { switches to change_file if the buffers match}
label exit;

var n: integer; { the number of discrepancies found }
k:0..buj-size; {index into the buffers }

begin if lines-dont-match then return;

n « 0;

loop begin change-changing; {now it’s true }
incr (line);
if ~anput_ln (change-file) then

begin err-print (° ' Changef ile_endedbef ore Qy ’}; changelimit «—0; change-changing;
{ false again }

return;

end;

(If the current line starts with @y, report any discrepancies and return 133);
(Move buffer and limit to change buffer and change-limit 131);
change-changing; { now it’s false}
incr (line);
if —wnput_ln (web-file) then

begin err-print (°! WEB_file ended during a change °); input-has-ended « true; return;
end;

if lines-dont-match then tncr (n);

end;

exit: end; |

133. (If the current line starts with @y, report any discrepancies and return 133) =
if limit > 1 then

if buffer[0] = "@" then
begin if (buffer[1] > "X") A (buffer[1] <"Z") then buffer[1] « buffer[1] + "2" — "Z";

{ lowercasify }
if (buffer[1] = "x") v (buffer[1] = "z") then

begin loc « 2; err-print (°‘'U_Where_is the matching Qy?°);
end

else if buffer{l] = "y" then
begin if n > 0 then

begin loc « 2;

err_print("!UHmm. . .,,*,n:1, "of the preceding lines failed to match);
end;

return;

end;

end

This code is used in section 132.

134. (Initialize the input system 134) =

open-input ; line « 0; other-line « 0;

changing «+ true ; prime_the_changebuffer ; change-changing;
limit « 0; loc « 1; buffer [0] — ",""; input-has-ended + [alse;

This code is used in section 182.

$135 TANGLE INTRODUCTION TO THE INPUT PHASE 169

135. The get-line procedure is called when loc > limit; it puts the next line of merged input into the
buffer and updates the other variables appropriately. A space is placed at the right end of the line.

procedure get-line ; { inputs the next line }
label restart;

begin restart: if changing then (Read from change-file and maybe turn off changing 137);
if —changing then

begin (Read from web_file and maybe turn on changing 136);

if changing then gOtO restart;

end;

loc «— 0; buffer [limit] « "_";

end;

136. (Read from web_file and maybe turn on changing 136) =

begin wncr (line);

if —input_In (web-file) then input-has-ended + true

else if limit = change-limit then

if buffer [0] = change buffer 0] then
if change-limit > 0 then check-change;

end

This code is used in section 135.

137. (Read from change-file and maybe turn off changing 137) =

begin incr (line);
if —wnput_In (change-file) then

begin err-print (* !'_ Changef ile ended without Qz); buffer [0] «+ "Q"; buffer [1] —"z": limit «+ 2;
end;

if limit > 1 then { check if the change has ended }
if buffer{0] = "@" then

begin if (buffer [1] > "X") A (buffer [1] < "Z") then buffer[1] « buffer [1] + "2" — "2";
{lowercasify }

if (buffer [1] = "x") v (buffer [1] = "y") then
begin loc « 2; err-print (*!_Where_is the matching @z7"});
end

else if buffer [1] = "z" then
begin prime_the_change buffer; change-changing;
end;

end;

end

This code is used in section 133.

138. At the end of the program, we will tell the user if the change file had a line that didn’t match any

relevant line in we b_file

(Check that all changes have been read 138) =
if change-limit # 0 then { changing is false}
begin for loc « 0 to change-limit do buffer [loc] — change buffer [loc};
limit « change-limit; changing « true; line «— other-line; loc «— change limit;
err-print (*!_Change_file_entry did not match’);
end

This code is used in section 183.

170 INTRODUCTION TO THE INPUT PHASE TANGLE ~~ $139

139. Important milestones are reached during the input phase when certain control codes are sensed.

‘Control codes in WEB begin with ‘@’, and the next character identifies the code. Some of these are of interest

only to WEAVE, so TANGLE ignores them; the others are converted by TANGLE into internal code numbers by

the control-code function below. The ordering of these internal code numbers has been chosen to simplify

the program logic; larger numbers are given to the control codes that denote more significant milestones.

define ignore = 0 {control code of no interest to TANGLE }
define control-tezt = 203 { control code for ‘Qt’ ‘@~’ etc. }
define format = ‘204 { control code for ‘@f * }
define definition = 205 {control code for ‘@d’ }
define begin_pascal = ‘206 {control code for ‘@p’ }
define module-nume = 207 { control code for ‘@<’ }
define new-module = 210 {control code for ‘@.’ and ‘@*’}

function control-code (c¢c : ASCIlI-code): eight-bits ; { convert c after @ }
begin case c of

"QQ": control-code «+ "@"; { ‘quoted’ at sign }
wn. control-code +— octal; {precedes octal constant }
nnn. control-code «— hez; {precedes hexadecimal constant }
"$M: control-code + check-sum; { string pool check sum }
mM tab-mark: control-code «— new-module ; {beginning of a new module }
"x": begin print ("* *,module-count + 1 : 1); update-terminal; {print a progress report }

control-code + new -module ; {beginning of a new module }
end;

"D", "dM": control-code t definition; {macro definition }
"pM fn control-code + format; { format definition }
"{": control-code + begin-comment; { begin-comment delimiter }
"In: control-code t end-comment; { end-comment delimiter}
"pu, "g! . control-code + begin-Pascal, { PASCAL text in unnamed module}
nll ng ll noun nh We control-code + control-text, { control text to be ignored }
ng: control_code t join; { concatenate two tokens }
"<M: control-code + module-name ; { beginning of a module name }
"=" control-code «— verbatim; { beginning of PASCAL verbatim mode }

: "\": control-code t force-line ; {force a new line in PASCAL output }
othercases control-code t ignore {ignore all other cases }
endcases;

end;

$140 TANGLE INTRODUCTION TO THE INPUT PHASE 171

140. The skip-ahead procedure reads through the input at fairly high speed until finding the next non-

ignorable control code, which it returns.

function skip-ahead: eight-bits; { skip to next control code }
label done ;

var c: eight-bits; { control code found }
begin loop

begin if Zoc > limit then

begin get-line ;

if input-has-ended then

begin ¢ + new-module; goto done;

end;

end;

buffer [limit + 1] « "@";
while buffer [loc] # "@" do iner (loc);
if loc < limit then

begin loc « loc + 2; ¢ t control-code (buffer [loc — 1});
if (c # ignore) v (buffer [Zoc — 1} = ">") then goto done;
end;

end;

done: skip-ahead + c;

end;

141. The skip-comment procedure reads through the input at somewhat high speed until finding the first

unmatched right brace or until coming to the end of the file. It ignores characters following ‘\’ characters,

since all braces that aren’t nested are supposed to be hidden in that way. For example, consider the process

of skipping the first comment below, where the string containing the right brace has been typed as *\ .\}~
in the WEB file.

procedure skip-comment; { skips to next unmatched ‘Y }
label exit ;

var bal: eight-bits ; { excess of left braces }
c: ASCII-code { current character }

begin bal « 0;

loop begin if loc > limit then

begin get-line ;

if input-has-ended then

begin err-print (°'_ Input ended inmid-comment °); return;
end;

end;

c « buffer [Zoc); kncr (Zoc); (Do special things when ¢ = "@", "\", "{" "}". return at end 142);
end;

exit: end;

172 INTRODUCTION TO THE INPUT PHASE TANGLE $142

142. (Do special things when ¢ = "@", "\", "{", "}"; return at end 142) =
if c= "@" then

begin c¢ « buffer [foe];

if (c#£"")A (c # tab_mark) A (c #"*") A (c #"2") A (c # "Z") then incr (loc)
else begin err-print (*' Section ended, inmid-comment); decr (loc); return;
end

end

else if (c = "\") A (buffer [loc] # "@") then incr (foe)
else if ¢ = "{" then tncr (bal)

else if ¢c = "}" then

begin if bal = 0 then return;

decr (bal);
end

This code is used in section 141.

9143 TANGLE INPUTTING THE NEXT TOKEN 173

143. Inputting the next token. As stated above, TANGLE's most interesting input procedure is the

‘ get-next routine that inputs the next token. However, the procedure isn’t especially difficult.

In most cases the tokens output by get-nezt have the form used in replacement texts, except that two-byte

tokens are not produced. An identifier that isn’t one letter long is represented by the output ‘identifier’

and in such a case the global variables id-first and td_loc will have been set to the appropriate values needed

by the id-lookup procedure. A string that begins with a double-quote is also considered an identifier, and

in such a case the global variable double-chars will also have been set appropriately. Control codes produce

the corresponding output of the control-code function above; and if that code is module_name, the value of

cur-module will point to the byte-start entry for that module name.

Another global variable, scanning-hex, is true during the time that the letters A through F should be

treated as if they were digits.

(Globals in the outer block 9) +=
cur-module: name-pointer; { name of module just scanned }
scanning-hex: boolean; { are we scanning a hexadecimal constant? }

144. (Set initial values 10) +=
scanning-hex + false ;

145. At the top level, get-next is a multi-way switch based on the next character in the input buffer. A

new -module code is inserted at the very end of the input file.

function ger-next: eight-bits; {produces the next input token }
label restart, done, found,

var c: eight-bits; { the current character }
d: eight-bits ; { the next character }
j. k: 0. . longest-name; {indices into mod-text }

begin restart: if loc > limit then

begin get-line ;

if input-has-ended then

begin ¢ « new-module; goto found;

end;

end;

c «— buffer [loc]; incr (loc);
if scanning-hez then (Go to found if ¢ is a hexadecimal digit, otherwise set scanning-hex + false 146);
case c of

"A", up_to("Z"),"a", up-to ("z"): (Get an identifier 148);
muni. (Get a preprocessed string 149);
"@": (Get control code and-possible module name 150);
(Compress two-symbol combinations like * : =’ 147)

"MN tab-murk: goto restart { ignore spaces and tabs }
"{". begin skip_comment ; got0 restnrt ;

end;

othercases do-nothing

endcases;

found: debug if trouble-shooting then debug-help; gubed

get-next « c;

end;

146. (Go to found if c is a hexadecimal digit, otherwise set scanning-hex «— false 146) =
if (c>"0"}A (< "9"}) v ((c > nA") A (c <"F")) then goto found
else scanning-hex «— false

This code in uscd in section 145.

174 INPUTTING THE NEXT TOKEN TANGLE $147

147. Note that the following code substitutes @{ and @} for the respective combinations ‘(*’ and ‘*) ’.

h Explicit braces should be used for TEX comments in PASCAL text.

define compress(#) =

begin c¢ « #; mcr (foe);
end

(Compress two-symbol combinations like © : = 147) =
"vif buffer([loc] =". " then compress (double-dot)

else if buffer [loc] =") " then compress ("1");
"oe if buffer [loc] = "=" then compress(left-arrow);
m=t: if buffer[loc] = "=" then compress (equivalence-sign);
">: if buffer [loc] = "=" then compress (greater-or-equal);
net: if buffer [loc] = "=" then compress (less-or-equal)

else if buffer [loc] = ">" then compress (not-equal);
"(": if buffer [loc] =" * "then compress (begin-comment)

else if buffer [foe] =". " then compress (" [");
"x": if buffer [loc] = ") " then compress (end-comment);
This code is used in section 143.

148. We have to look at the preceding character to make sure this isn’t part of a real constant, before

trying to find an identifier starting with ‘¢’ or ‘E’.

(Get an identifier 148) =

begin if ((c = "e") v (c = "E")) A (loc > 1) then
if (buffer [loc — 2] <"9"} A (buffer [foe — 2] > "O") then c « 0;

if ¢ # 0 then

begin decr (loc); id-first « loc;
repeat incr (loc); d « buffer [foe];
until ((d <"0") Vv ((d > "9") A (d <"A")) Vv ((d > "Z") A (d < "a")) Vv @ > "2z")) A (d #"_");
if loc > id-first + 1 then

begin ¢ « identifier ; id-lot « loc;
end;

end

else ¢ «— "E"; {exponent of a real constant }
end

This code is used in section 143.

$149 TANGLE INPUTTING THE NEXT TOKEN 175

149. A string that starts and ends with double-quote marks is converted into an identifier that behaves

: like a numeric macro by means of the following piece of the program.

) (Get a preprocessed string 149) =
begin double-chars «+ 0; id-first + loc — 1;

repeat d « buffer [loc]; tner (loc);
if (d = mann) Vv (d = "@") then

if buffer [loc] = d then
begin tncr (Zoc); d «— 0; incr (double-chars);
end

else begin if d="@" then err-print (° ! Double@ sign missing °)
end

else if Zoc > limit then

begin err-print (.!' String constant didn” ‘tuend”’); d « "nO;
end;

until d = ALLS
1d-Zoc + Zoc — 1; c + identifier;

end

This code is used in section 145.

150. After an @ sign has been scanned, the next character tells us whether there is more work to do.

(Get control code and possible module name 150) =

begin c¢ t control-code (buffer [loc]); incr (Zoc);
if ¢ = ignore then goto restart

else if ¢ = hex then scanning-hex + true

] else if ¢ = module-name then (Scan the module name and make cur-module point to it 151)
else if ¢ = control-text then

begin repeat c¢ + skip-uhead;

- until ¢ # "Q";

if buffer [Zoc — 1] #£ ">" then err-print (°'_Improper@ within control text ‘);
got0 restart ;

end;
end

This code is used in section 143.

151. (Scan the module name and make cur-module point to it 151) =
begin (Put module name into mod-text [1 . . k] 153);
if k > 3 then

begin if (mod-text[k]=".")A (mod-text [k—1] =".") A (mod-text [k—=2]=".") then
cur-module «+ prefix-lookup (k — 3)

else cur-module «— mod-lookup(k);

end

else cur_module — mod_ lookup (k);
end

This code is used in section 150.

152. Module names are placed into the mod-text array with consecutive spaces, tabs, and carriage-returns

replaced by single spaces. There will be no spaces at the beginning or the end. (We set mod-text [0] « "_"

to facilitate this, since the mod-lookup routine uses mod-text [1] as the first character of the name)

(Set initial values 10) +=

mod-text [0] «"";

178 SCANNING A NUMERIC DEFINITION TANGLE $158

158. (Set accumulator to the value of the right-hand side 158) =
accumulator « 0; next-sign +— +1;

loop begin next-control « get-next,

reswitch: case next-control of

digits: begin (Set val to value of decimal constant, and set next-control to the following token 160);

add-in (val); goto reswitch;
end;

octal: begin (Set val to value of octal constant, and set next-control to the following token 161);

add-in (val); goto reswitch;
end;

hex: begin (Set val to value of hexadecimal constant, and set next-control to the following token 162);
add-in (val); goto reswitch;
end;

identifier : begin q «+ id-lookup (normal);

if ilk|q] # numeric then
begin next-control « "*"; goto reswitch; {leads to error}
end;

add-in (equiv [gq] — 100000);
end;

"+": do-nothing;

"WW": next-sign «— -next-sign,

format, definition, module-name, begin-Pascal, new-module: goto done;

"om: erp-print (©), Omit semicolon, in numericdefinition’);
othercases (Signal error, flush rest of the definition 159)
endcases;

end;

done:

This code is used in section 157.

159. (Signal error, flush rest of the definition 159) =
begin err-print (‘Improper numeric definition, will be flushed’);
repeat next-control <— skip-ahead

until end_of_definttion (next-control);
if next-control = module-name then

begin {we want to scan the module name too }
Zoc + Zoc -- 2; next-control + get-next ;

end;

accumulator «— 0; goto done;
end

This code is used in section 158.

160.- (Set val to value of decimal constant, and set next-control to the following token 160) =
val « 0;

repeat val «— 10 * val + next-control — "0"; next-control « get-next,

until (next-control > “9”) Vv (next-control < no")
This code is used in section 158.

161. (Set wal to value of octal constant, and set next-control to the following token 161) =

val « 0; next-control + "0";

repeat val « 8 * val + next_control -- "0"! next-control + get-next;
until (next-control > nn) V (next-control < no")

This code is used in section 158.

$156 TANGLE SCANNING A NUMERIC DEFINITION 177

156. Scanning a numeric definition. When TANGLE looks at the PASCAL text following the ‘=’ of a

numeric macro definition, it calls on the precedure scan-numeric(p), where p points to the name that is to

be defined. This procedure evaluates the right-hand side, which must consist entirely of integer constants

and defined numeric macros connected with + and - signs (no parentheses). It also sets the global variable

next_control to the control code that terminated this definition.

A definition ends with the control codes definition, format, module-name, begin_pascal, and new-module,
all of which can be recognized by the fact that they are the largest values get_nezxt can return.

define end.of-definition(#) = (# > fotmur) {is # a control code ending a definition? }

(Globals in the outer block 9) +=
next-control: eight-bitts; {control code waiting to be acted upon }

157. The evaluation of a numeric expression makes use of two variables called the accumulator and the

next-sign. At the beginning, accumulator is zero and next-sign is +1. When a + or - is scanned, next-sign

is multiplied by the value of that sign. When a numeric value is scanned, it is multiplied by next-sign and

added to the accumulator, then next-aign is reset to +1.

define add-in (#) =

begin accumulator «= accumulator + next-sign * (#); next-sign + +1;
end

procedure scan-numeric (p : name_pointer); { defines numeric macros}
label resuntch, done;

var accumulator : integer ; { accumulates sums }
next-sign: -1 .. +1; sign to attach to next value }
q: name-pointer ; { points to identifiers being evaluated }
vul: integer; { constants being evaluated }

begin (Set accumulator to the value of the right-hand side 158);
if uba (accumulator) > 100000 then

begin err-print (“'Valuetoo big: , uccumulutor : 1); accumulator + 0;
end;

equiv P] «— accumulator + ‘100000; { name p now is defined to equal accumulator }
end;

176 ~~ INPUTTING THE NEXT TOKEN TANGLE $153

153. (Put module name into mod-text [1 . . k] 158) =
‘kk «0

loop begin if loc > limit then

begin get-line;

if input-has-ended then

begin err-print (- ' Input ended, in, section name °); goto done;
end;

end;

d + buffer [loc]; (If end of name, goto done 154);
ncr(Zoc);

if k < longest-name — 1 then ner (k);

if (d = "wo" V (d = tub-murk) then
begin d « "_";

if mod-text [k — 1] =" " then decr (k);
end;

mod-text [kK] +d;

end;

done : (Check for overlong name 15%);
if (mod-text [k] = "") A (k > 0) then decr (k);

This code is used in section 151.

154. (If end of name, goto done 154) =
if d = "@" then

begin d « buffer [loc + 1];
if d = ">" then

begin loc — loc + 2; goto done;

end;

if (d ="_")V (d = tab-murk) v (d = "*") then
begin err-print (° t Section, name, didn” “t_end’); goto done;
end;

incr (k); mod-text [k]t "@"; incr (Zoc); {now d = buffer Zoc] again }
end

This code is used in section 153.

155. (Check for overlong name 155) =
if k > longest_ name — 2 then

begin print_nl (° Sectionname too long:);
for jt 1 to 25 do print (xchr [mod-text [3];
print(°..."); murk-harmless;
end

This code is used in section 153.

$162 TANGLE SCANNING A NUMERIC DEFINITION 179

162. (Set val to value of hexadecimal constant, and set next-control to the following token 162) =
‘val « 0; next-control « "0";

repeat if next-control > "A" then next-control « next-control + "0" + 10 — "A";

val «— 16 x val + next-control ~ "0%; next_control «— get_next;

until (next-control > nF) V (nezt-control < no") V ((next-control > ng) A (next-control < "A"))
This code 1s used in section 158.

180 ~~ SCANNING A MACRO DEFINITION TANGLE §163

. 163. Scanning a macro definition. The rules for generating the replacement texts corresponding to

simple macros, parametric macros, and PASCAL texts of a module are almost identical, so a single procedure
is used for all three cases. The differences are that

a) The sign # denotes a parameter only when it appears outside of strings in a parametric macro; otherwise

it stands for the ASCII character #. (This is not used in standard PASCAL, but some PASCALS allow,

for example, ‘/#’ after a certain kind of file name.)

b) Module names are not allowed in simple macros or parametric macros; in fact, the appearance of a

module name terminates such macros and denotes the name of the current module.

c) The symbols @d and Of and @p are not allowed after module names, while they terminate macro
definitions.

164. Therefore there is a procedure scan_repl whose parameter t specifies either simple or parametric or

module-name. After scan_repl has acted, cur-repl-text will point to the replacement text just generated, and

next-control will contain the control code that terminated the activity.

(Globals in the outer block 9) +=

cur-repl-text : text-pointer; { replacement text formed by scan_repl }

165.

procedure scan_repl (t : eight-bits); { creates a replacement text }
label continue, done, found,

var a: sixteen-bits; { the current token }
b: ASCII-code ; { a character from the buffer }
bal: eight-bits ; { left parentheses minus right parentheses }

begin bal « 0;

loop begin continue: a <«— get-next,
case a of

"(": incr (bal);

"YM: if bul = O then err-print (.'yExtrag) °)
else decr (bal);

"(copy a string from the buffer-to tok-mem 168);

"#9": if t+ = parametric then a . param;

(In cases that a is a non-ASCII token (identifier, module-name, €tc.), either process it and change a to

a byte that should be stored, or goto continue if a should be ignored, or goto done if a signals

the end of this replacement text 167)
othercases do-nothing

endcases;

app_repl (a); (store a in tok-mem }
end;

done: next-control «+ a; (Make sure the parentheses balance 166);

if text-ptr > maz_texts — 2z then overflow (‘text ‘);
cur_repl_text «— text-ptr ; tok_start [text-ptr + 2z] « tok_ptr [z]; inet joxtqrr);
ifz = 2z — 1 then z « 0 else incr (2);
end:

$166 TANGLE SCANNING A MACRO DEFINITION 181

166. (Make sure the parentheses balance 168) =
if bal > 0 then

begin if bal = 1 then err_print("! Missing) °)
else err_print(“! Missing", ball,") “"8°);
while bal > 0 do

begin app_repl (") "); decr (bal);
end;

end

This code is used in section 165.

167. (In cases that a is a non-ASCII token (identifier, module-name, etc.), either process it and change a

to a byte that should be stored, or goto continue if a should be ignored, or goto done if a signals

the end of this replacement text 167 } =
identifier: begin a « id_lookup (normal); app_repl ((a div 400) + 200); a + a mod ‘400;

end;

module-name: if t # module-name then goto done

else begin app-repl ((cur-module div 400) + 250); a « cur-module mod ‘400;
end;

verbatim: (Copy verbatim string from the buffer to tok_-mem 169);
definition, format, begin_pascal: if t # module-name then goto done

else begin err-print (*! ,@", zchr[buffer {loc — 1], “Lisignoredin PASCAL text’); goto continue;
end;

new -module : goto done ;

This code is used in section 163.

168. (Copy a string from the buffer to tok-mem 168) =

. begin b « "°";

loop begin app_repl (b);
if b= "@" then

if buffer [Zoc] = "@" then incr (loc) { store only one @}
else err-print (*!_ You, should double @ signs in strings‘);

if loc = limit then

begin err-print (* ' String didn’tend"); buffer [loc] « ""; buffer[loc + 1] « 0;
end;

b — buffer [loc]; iner (loc);
if b=" "" then

begin if buffer(loc] # "“" then goto found
else begin incr (loc); app_repl("");

end;

end;

end;

found: end {now a holds the final " ** that will be stored }
This code 13 used in section 165.

182 SCANNING A MACRO DEFINITION TANGLE §169

169. (Copy verbatim string from the buffer to tok_-mem 169) =
‘begin app_repl{ verbatim); buffer [limit + I] — "@Q";

while buffer [loc] # "@" do
begin app-repl (buffer [loc)); incr (Zoc);
if loc < limit then

if (buffer [loc] = "@") A (buffer [loc + 1} = "@") then
begin app-repl("@"); loc « loc + 2;
end;

end;

ifloc> limit then err-print (© ! _Verbat im string, didn * “t end ‘)
else if buffer [loc + 1] # ">" then err-print (*!LYouy should double @ signs, in verbatim strings -);
loc — loc + 2;

end {another verbatim byte willbe stored, since a =verbatim }
This code is used in section 167.

170. The following procedure is used to define a simple or parametric macro, just after the ‘==’ of its
definition has been scanned.

procedure define-macro (t : eight-bits);

var p: name-pointer ; { the identifier being defined }
begin p « id-lookup (t); scan_repl (1);

equiv [p] + cur_repl_text ; text_link [cur_repl_tezt| — 0;
end;

$171 TANGLE SCANNING A MODULE 183

171. Scanning a module. The scan.module procedure starts when ‘@_ or ‘@*’ has been sensed in the

input, and it proceeds until the end of that module. It uses module-count to keep track of the current module

number; with luck, WEAVE and TANGLE will both assign the same numbers to modules.

(Globals in the outer block 9) +=
module-count : 0 . . 27777; { the current module number }

172. The top level of scan-module is trivial.

procedure scan-module;

label continue, done, exit;

var p: name-pointer ; { module name for the current module }
begin incr (module-count); (Scan the definition part of the current module 173);
(Scan the PASCAL part of the current module 175);

exit: end;

173. (Scan the definition part of the current module 173) =
nezt_control — 0;

loop begin continue: while next-control < format do
begin next-control + skip-ahead;

if next_control = module-name then

begin {we want to scan the module name too}

Zoc « Zoc — 2; next-control «— get-next;

end;

end;

if next-control # definition then goto done;

next-control «— get-next | { get identifier name }
if next-control # identifier then

begin err-print (°'_Definitionflushed, must start with’, ‘identifierof length > 1°);
goto continue ;

end;

next-control «— get-next; { get token after the identifier }
if next-control = "=" then

begin scan-numeric (id-lookup (numeric)); goto continue ;
end

else if next-control = equivalence-sign then

begin define-mucro (simple); goto continue ;
end

else (If the next text i8 ‘(#) =’, call define-macro and goto continue 174);
err_print(“' Definition flushed since it starts badly ‘);
end;

done:

This code is used in section 172.

184 ~~ SCANNINGA MODULE TANGLE 9174

174. (If the next text is ‘(%) E’, call define-macro and goto continue 174) =
if next-control =" (" then

begin next-control + get-next;

if next-control = "#" then

begin next-control « get-next;

if next-control = ")" then

begin next-control + get-next;

if next-control = "=" then

begin err-print (*! JUsey==_1% or macros’); next-control +— equivalence-sign;
end;

if next-control = equivalence-sign then

begin define-macro (parametric); goto continue;

end;

end;

end;

end;

This code is used in section 173.

175. (Scan the PASCAL part, of the current module 175) =
case next-control of

begin-Pascal: p + 0;

module_name: begin p « cur-module;

(Check that = or = follows this module name, otherwise return 176);

end;

othercases return

endcases;

" (Insert the module number into rok-mem 177);
scan-repl (module-name); { now cur_repl_tezt points to the replacement text }
(Update the data structure so that the replacement text is accessible 178);

This code is used in section 172.

176. (Check that = or = follows this module name, otherwise return 176) =
repeat next-control «— get-next;

until next-control # "+"; {allow optional ‘+="1
if (next-control # "=") A (next-control # equivalence-sign) then

begin err-print (°'_PASCAL_text,flushed, = sign is missing’);
repeat next-control + skip-ahead;

until next-control = new-module ;

return;

end

This code is used in section 175.

177. (Insert the module number into tok_mem 177) =

store_two _bytes(‘150000 + module-count); { ‘150000 = 320 * "400 }
This code is used in section 175.

§178 TANGLE SCANNING A MODULE 185

178. (Update the data structure so that the replacement text is accessible 178) =
‘if p = 0 then { unnamed module}

begin text-link [lust-unnamed] «+ cur-repl-text 5 lust-unnamed <— cur-repl-text

end

else if equiv [p] = 0 then equiu [p] + cur-repl-text { first module of this name }
else begin p « equiv [p];

while text-link [p] < module_flag do p « text-link [p]; {find end of list }
text-link [p] «+ cur-repl-text ;

end;

text-link [cur-repl-text] «— module-flag; { mark this replacement text as a nonmacro }
This code is used in section 175.

188 THE MAIN PROGRAM TANGLE $182

182. The main program. We have defined plenty of procedures, and it is time to put the last pieces

‘of the puzzle in place. Here is where TANGLE starts, and where it ends.

begin initialize; (Initialize the input system 134);
printIn (banner); { print a “banner line” }
(Phase I: Read all the user’s text and compress it into rok-mem 183);
stat for zo « 0 to zz — 1 do maz_tok_ptr [zo] « tok_ptr [70]:
tats

(Phase II: Output the contents of the compressed tables 112);

end_of TANGLE: if string-ptr > 128 then (Finish off the string pool file 184);
stat (Print statistics about memory usage 180); tats

{here files should be closed if the operating system requires it }
(Print the job history 187);
end.

183. (Phase I. Read all the user’s text and compress it into tok-mem 183) =
phase-one «— true; module-count + 0;

repeat next-control <+— skip-ahead;

until next-control = new-module;

while —input_has_ended do scan-module;

(Check that all changes have been read 138);
phase-one « false;

This code is used in section 182.

184. (Finish off the string pool file 184) =
begin print_nl (string-ptr — 128 : 1, ‘ustrings written to string, pool file. ‘); write (pool, “*);
for string-ptr «+ 1 to 9 do

begin out-buf [string-ptr] t pool-check-sum mod 10; pool-check-sum <« pool-check-sum div 10;

end;

for string-ptr t 9 downto 1 do write (pool, xchr [*o" + out-buf [string-ptr]]);
write-Zn(pool);

end

This code is used in section 182.

185. (Globals in the outer block 9) +=
stat wo: 0.. ww — 1; { segment of memory for which statistics are being printed }
tats

186. (Printsta 4s tics about memory usage 186) =

print-nZ("Memoryusage statistics:’);
prant_nl (name-ptr : 1, ‘_names ,,°, text-ptr : 1, ‘yreplacementtext s;); print_nl (byte-ptr [0] : 1);
for wo «— 1toww -- 1 do print (“+ ® | byteptriwo]: 1);
print (‘Lbytes yu, max-tok-ptr [0] : 1);
for zo «— 1to zz—1do print (“+ ® | max-tok-ptr [20] : 1);
print (“Ltokens.’);

This code is used in section 182.

§181 TANGLE . DEBUGGING 187

181. define breakpoint = 888 {place where a breakpoint is desirable }

debug procedure debug-help; {routine to display various things }
label breakpoint, exit;

var k: sixteen-bits ; {index into various arrays }
begin ner (debug-skipped);

if debug-skipped < debug-cycle then return;

debug-skipped + 0;

loop begin write (term-out, “#°); update-terminal,; { prompt }
read (term-in, ddt }; . {read a list of integers }
if ddt < 0 then return

else if ddt = 0 then

begin goto breakpoint; @\ { go to every label at least once }
breakpoint: ddt «— 0; @\
end

else begin read (term-in, dd);
case ddt of

1: print-id (dd);

2: print_repl (dd);

3: for k « 1 to dd do print (xchr [buffer [k]]);
4: for k « 1 to dd do print (xchr [mod-text [k]]);
5: for k « 1 to out-ptr do print (zchr{outbuf [k]|);
6: for k « 1 to dd do print (xchr [out-contrib [k]]);
othercases print (“7 °)
endcases;

end;

end;

exit: end;

gubed

186 ~~ DEBUGGING TANGLE §179

179. Debugging. The PASCAL debugger with which TANGLE was developed allows breakpoints to be

- set, and variables can be read and changed, but procedures cannot be executed. Therefore a ‘debug-help’

: procedure has been inserted in the main loops of each phase of the program; when ddr and .dd are set to
appropriate values, symbolic printouts of various tables will appear.

The idea is to set a breakpoint inside the debug-help routine, at the place of ‘breakpoint :’ below. Then

when debug-help is to be activated, set trouble-shooting equal to true. The debug-help routine will prompt

you for values of ddt and dd, discontinuing this when ddt < 0; thus you type 2n + 1 integers, ending with

zero or a negative number. Then control either passes to the breakpoint, allowing you to look at and/or

change variables (if you typed zero), or you exit the routine (if you typed a negative value).

Another global variable, debug-cycle, can be used to skip silently past calls on debug-help. If you set

debug-cycle > 1, the program stops only every debug-cycle times debug-help is called; however, any error

stop will set debug-cycle to zero.

(Globals in the outer block 9) +=
debug trouble-shooting: boolean ; {is de bug-help wanted? }

ddt : sixteen-bits; {operation code for the debug-help routine }
dd: sixteen-bits ; { operand in procedures performed by debug-help }
debug-cycle : integer ; { threshold for debug-help stopping }
debug-skipped: integer ; { we have skipped this many debug-help calls }
term-in: text_file ; { the user’s terminal as an input file }
gubed

180. The debugging routine needs to read from the user’s terminal.

(Set initial values 10)+=
debug trouble-shooting «— true ; debug-cycle «+ 1; debug-skipped + 0;

trouble-shooting « false; debug-cycle + 99999; { use these when it almost works }
reset (term-in, “TTY :7, </1); { open term-in as the terminal, don’t do a get }
gubed

$187 TANGLE THE MAIN PROGRAM 189

187. Some implementations may wish to pass the history value to the operating system so that it can be

used to govern whether or not other programs are started. Here we simply report the history to the user.

(Print the job history 187)=

case history of

spotless :print_.nl(* (No_errors_ were found.)’);
harmless-message : print_nl (. (Didyou_see_thewarning message above?) °);
error-message : print-d (. (Pardonme , but I think I, spotted something wrong.) ‘);
fatal-message : print_nl(’(That_ was a fatal error my friend.)‘);
end {thereareno other cases}

This code is used in section 182.

190 SYSTEM-DEPENDENT CHANGES TANGLE §188

188. System-dependent changes. This module should be replaced, if necessary, by changes to the

program that are necessary to make TANGLE work at a particular installation. It is usually best to design

your change file so that all changes to previous modules preserve the module numbering; then everybody’s

version will be consistent with the printed program. More extensive changes, which introduce new modules,

can be inserted here; then only the index itself will get a new module number.

$189 TANGLE INDEX 191

189. Index. Here is a cross-reference table for the TANGLE processor. All modules in which an identifier

is used are listed with that identifier, except that reserved words arc indexed only when they appear in

format definitions, and the appearances of identifiers in module names are not indexed. Underlined entries

correspond to where the identifier was declared. Error messages and a few other things like “ASCII code”
are indexed here too.

@d is ignored in PASCAL text: 167. change-file : 2, 23, 24, 32, 124, 126, 129, 130,

@f is ignored in PASCAL text: 167. 132, 137.

@ 1s ignored in PASCAL text: 167. change-limit : 126, 127, 128, 131, 132, 136, 138.

a: 74, 87, 163. changing: 32, 124, 125, 126, 128, 132, 134,

abs: 103, 157. 135, 138.

accumulator: 187, 158, 159. char: 12, 14.

addin: 157, 158. check-break: 97, 101, 102, 103, 111.

Ambiguous prefix: 69. check-change: 132, 136.

and-sign: 15, 114. check-sum: 72, 76, 119, 139.

app: 99, 101, 102, 103, 111. check-sum-prime: 04.

app_repl: 93, 165, 166, 167, 168, 169. chop-hash: 50, 52, 60, 62.

app-val: 99, 103, 111. chopped-id: 50, 53, 58, 63.

ASCII code: 11, 72. chr: 12, 13, 17, 18.

ASCll-code : 11, 13, 27, 28, 38, 50, 65, 94, 95, compress: 147.

100, 126, 139, 141, 165. confusion: 35, 89.

b: 87, 97, 163. Constant too big: 119.

bad-case : 107, 109, 110. continue : 5, 113, 128, 129, 165, 167, 172, 173, 174.

bal: 87, 93, M1, 142, 165, 166. control-code: 139, 140, 143, 150.

banner: 1, 182. control-text: 139, 150.

begin: 3. count: 69.

begin-comment: 72, 76, 121, 139, 147. cur-byte :-7 8, 79, 83, 84, 85, 87, 90, 93.

begin_pascal: 139, 156, 158, 167, 175. cur-char: 113, 116, 117, 119, 120.

boolean: 28, 29, 124, 127, 143, 179. cur-end: 78, 79, 83, 84, 85, 87, 90.

brace-level: 82, 83, 98, 121. cur-mod: 78, 79, 83, 84, 87.

break: 22. cur-module: 143, 151, 167, 175.

break-ptr: 94, 95, 96, 97, 98, 101, 102, 106, 107, cur-name: 78, 79, 83, 84, 85.

109. 110, 111, 122. cur-repl: 78, 719, 80, 83, 84, 85.

breakpoint: 179, 181. cur_repl_text: 164, 165, 170, 175, 178.

buf size: 8, 27, 28, 31, 50, 53, 124, 126, 127, cur_state: 79, 84, 85.

128, 132. cur-val: 86, 87, 89, 116, 119, 121.

buffer: 27, 28, 31, 32, 50, 53, 54, 56, 57, 58, 61, d : 145.

64, 127, 129, 131, 132, 133, 134, 135, 136, 137, dd: 179, 181.

138, 140, 141, 142, 145, 147, 148, 149, 150, ddr: 179, 181.

153, 154, 167, 168, 169, 181. debug: 3.,4.,30.,3)., 7A, &7,, A, ol, 145, 179,
byte-field: 78, 79. 180, 181.

byte-mem : 37, 38, 39, 40, 41, 48, 49, 53, 56, 61, debug-cycle : 179, 180, 181.

63, 66, 67. 68, G9, 75, 87, 90, 113, 116. de bug-help: 30, 31, 87, 145, 179, 181.

byte-ptr: 39, 40, 42, 61, 67, 90, 91, 186. debug-skipped: 179, 180, 181.

byte_start: 37, 38, 39, 40, 42, 49, 50, 56, 61, 63, decr: 6, 28, 85, 91, 93, 99, 116, 121, 142, 148,

67, 68, 75. 78, 81, 90, 116, 143. 153, 165, 166.

c¢. 53, 66, 69, 1.39, L40, LAL, 1.45. define-macro: 170, 173, 174.

Can’t output ASCII code n: 113. definition: 139, 156, 158, 167, 173.

carriage -return : 19, 17, 28. Definition flushed...: 173.

Change file ended. . . : 130, 132, 137. digits: 119, 158.

Change file entry did not match: 138. do-nothing; 06, 93, 102, 113, 145, 158, 165.

change _buffer: 1206, 127, 128, 131, 132, 136, 138. done: b, 87, 93, 128, 129, 140, 145, 153, 154, 157, |
change-changing: 129, 132, 134, 137. 158, 159, 165, 167, 172, 173.

192 INDEX TANGLE §189

Double @ sign missing: 149. gubed: 3.

double-chars: 50,64,143, 149. h: 51, 53.
double-dot: 72, 114, 147. harmless-message : 9, 187.

EBCDIC: 115. hash: 39, 50, 52, 55.

eight-bits: 37, 38.53.82,87,95, 101, 113, 139, hash-size: 8,50,51,52,53, 54, 58.

140,141,145.156,165,170. hex: 72,76, 119, 139, 150, 158.

else: 7. history: 9,10, 187.

end: 3, 7. Hmm... n of the preceding...: 133.

end-comment: 72,76, 121, 139, 147. i. 16, 53.

end-field: 18, 79. id-first: 50,53, 54,56, 57,58,61, 64, 143,148,149.

end-of-definition : 196,159. id-lot: 50, 53, 54,56, 58,61, 64, 143, 148, 149.

end_of TANGLE: 2, 34, 182. id-lookup: 50, 53, 143, 158, 167, 170, 173.
endcases: T. ident: 100,101,102,105,114,116.

eof: 28. identifier: 86, 89, 116, 143, 148, 149, 158, 167, 173.
eoln: 28. Identifier conflict...: 63.

equal: 66, 67, 68. ignore: 139,140,150.

equiv: 37,38,47,48,50,60,62,63,64,67, 84, ilk: 37,38,47,48,50,57,59, 60,61, 64, 85,
88, 89, 90, 157, 158, 170, 178. 89, 90,158.

equivalence-sign : 15,114, 147,173, 174, 176. Improper @ within control text: 150.

err-print: 31,59, 64, 66, 69,97,98, 108, 113,117, Improper numeric definition...: 159.

118, 119, 120, 121, 125, 129, 130, 132, 133, 137, Incompatible module names: 66.

138, 141, 142, 149, 150, 153, 154, 157, 158, 159, incr: 6,28 54, 56, 58, 61, 63, 64, 67,68,69,74, 75,

165,166, 167, 168, 169, 173, 174, 176. 84,87,90,93,97,99, 116, 117, 118, 120, 121,

error: 28,31,34,63, 88,90. 129, 130, 132, 136, 137, 140, 141, 142, 145, 147,

error-message : 9,187. 148, 149, 150, 153, 154, 165, 168, 169, 172, 181.

exit: 5,6,85,107, 127,128, 132, 141,172, 181. initialize: 2,182.

extension: 66, 68,69. Input ended in mid-comment: 141.

Extra): 165. Input ended in section name: 153.
Extra @}: 121. Input line too long: 28.

f: 28. input-has-ended: 124,132,134,136,140,141,
false: 28,29,125,126,127,132,134, 144, 145, 153, 183.

146, 180, 183. input In: 28,129,130,132,136,137.

fatal-error: 34, 35, 36. integer: 14, 40, 86, 95, 99, 106, 107, 113, 124,

fatal-message: 9,187. 132, 157, 179.

final-limit : 28. jr 31, 66,69,113,145.

first-text-char: 12, 18. join: 72, 101, 113, 139.

flush_buffer: 97, 98, 122. jump-out: 2, 31, 34.

force-line: 72,76, 113, 139. k: 31, 49.,53, aA.,69.74 .87.97.99 JO1., 113,
form-feed: 195, 28. 127 128 1.32 1.45 181,

format: 139,156,158,167,173. 1: 3J.,53.,6A,,69.
forward: 30. last-sign: 90,103,106,107.

found:5,5 3, 55, 56, 66, 87, 89, 145, 146, 165, 168. last-text-char: 12,16, 18.

jc: 100,101,102,104,113,120. last-unnamed: 70,71, 178.

Fraction too long: 120. left_arrow: 15,114,147.

get: 28, 180. length: 39, 55.

get_fraction: 113,119,120. less: 66, 67, 68, 69.

get-line: 124,135,140, 141,145,153.. less-or-equal: 19,114,147.

get-next: 143, 145,156, 158, 159, 160, 161, 162, limit : 28,32, 124, 127,129,130,131,133,134,135,
165, 173, 174, 176. 136, 137, 138, 140, 141, 145, 149, 153, 168, 169.

get-output: 86,87,94,112,113,117,118,119, 120. line: 32,33,96,97, 124,125,129, 130, 132,

greater . 66,68, 69. 134, 136, 137, 138.

greater or equal: 15,114,147. line-feed: 19, 28.

§189 ~~ TANGLE INDEX 193

line-length: 8,94,97,100,101,113,117,118, not-found: 9, 53, 63.

120, 122. not-sign: 15,114,

lines-dont-match: 127,132. num-or-id: 95, 101, 102, 107, 111.

link: 37, 38, 39, 48, 50, 55, 70. number: 86,89,119.

link: 48, 66, 67, 69. numeric : 47, 53, 64, 89, 158, 173.

loc: 28,32,124,129,133,134,135,137, 138, octal: 72,76, 119, 139, 158.

140, 141, 142, 145, 147, 148, 149, 150, 153, Omit semicolon in numeric def . . .: 158.

154, 159, 167, 168, 169, 173. open-input: 24, 134.

Long line must be truncated: 97. or-sign: 15, 114.

longest-name: 8,65, 66, 69, 145, 153, 155. ord: 13.

loop: 6. other-line : 124,125,134, 138.

mark-error: 9,31. othercases: 7.

mark-fatal: 9, 34. others: 7.

mark-harmless: 9, 112, 188. out-app:95 102, 104, 106, 108.

max-bytes: 8,38,40,49,53,61,66,67, 69, out-buf: 31,33,94,95,96,97,99,100, 109,

8§7,90,113. 110, 181, 184.

max-id-length: 8, 116. out-buf-size: 8,31,94,97,99.
max-names : 8,38,39,61,67,69, 90. out-contrib: 100,101, 105, 113,114,116, 117,

maz. texts: §,38,43,70,90, 165. 118, 119, 120, 121, 181.

max-tok-ptr: 44,91, 182, 186. out-ptr: 33,94,95,96,97,98,99, 101, 102, 106,

max-toks: 8,38,44,73,74,93, 107, 109, 110, 111, 122, 181.

misc: 95,96,100,101,102,105,107,111,113, out-sign: 95, 103, 104, 107, 108.

119, 121, 122. out-state: 95, 96, 101, 102, 104, 106, 107, 108,

Missing n): 166. 111, 113, 117, 122.

mod: 94. out-val:95,103,104, 106, 107, 108.

mod-field: 78, 79. output-state: 78, 79.

mod-lookup: 65, 66, 151, 152. overflow: 36,61, 67, 73, 84, 90, 93, 1635.

mod-text: 65, 66, 67, 68, 69, 145, 151, 152, 153, p: 49,53 66,69, 74,84, 157. 170, 172.

154, 155, 181. pack: 61.

module-count: 139,171,172,177,183. param: 72,76,87,93,1635.

module _flag: 70,85,178. parametric: 47,53, 85, 89, 164, 165, 174.

module-name: 139,143,150,156,158,159,164, PASCAL text flushed...: 176.

167, 173, 175. pascal-file: 2,25,26, 97.

module-number: 86, 87, 121. phase-one : 29, 31, 183.

n: 118 2 . pool: 2,25,26,64,184.

Name does not match: 69. pool-check_sum: 40, 42, 64, 119, 184.

name-field: 78, 79. pop-level: 85,87,90,91.

name-pointer: 39,40,49,53, 66, 69, 78, 84, prefiz: 66, 68.

143, 157, 170, 172. prefix-lookup: 69, 151.

name-ptr. 39,40, 42, 49, 53, 55, 57, 59, 61, 67, Preprocessed string is too long: 64.

90,91,92,93, 186. preprocessed strings: 64, 149.

new-line: 20,31,32, 34. prime _the_change_buffer: 128,134, 137.
new -module : 139,140,145, 156, 158,167,176, 183. print: 20,31,32,33,34,49,63,74,75,76, 88,

next-control: 156,158, 159, 160, 161, 162, 164, 93,97,139, 155,181,186.

165, 173, 174, 175, 176, 183. print-id: 49, 75, 88, 90, 181.

next-sign : 157,158. print-Iln: 20,32,33,182.

nil: 6. print-nl: 20, 28, 63, 88, 90,112,155, 184, 186,187.

No output was specified: 112. print-repl: 74, 181.

No parameter given for macro: 90. Program ended at brace level n: 98.

normal: 47,50,53,57,59.60. 61, 89, 158, 167. push-level: 84, 88, 89, 92.

Not present: <section name>: 88. q: 93, 66. 69.,15.7.
not-equal: 15,114,147. r. 69.

| [94 INDEX TANGLE §189

read: 181. tats: 3.

read In: 28. temp_line: 124, 125.

repl-field: 78, 79. term-in: 179,180,181.

reset: 24, 180. term-out: 20,21,22, 181,

restart: 95,87, 88,89,90,92,101,102, 104, text-char: 12,13, 20.

135, 145, 150. text-file: 12,20, 23,25, 28, 179.

reswitch: 5,113, 117, 119, 120, 157, 158. text-link:37, 38,43, 70,71, 83, 85,90, 112,

return: 5, 6. 170, 178.

rewrite: 21, 26. text-pointer: 43,44,70,74,78,164.

rlink: $8, 66, 67, 69. text-ptr: 43,44, 46, 74, 81, 90, 91, 165, 186.

8: 93. This can’t happen: 35.

scan-module: 171,172,183. This identifier has already.. .: 59.

scannumeric : 156,187,173. This identifier was defined...: 59.

scan-repl: 164,165,170,175. tok-mem: 37,38,43,44,45,70,73,74,75,78,

scanning-hex: 143,144,145,146,150. 79,80,81,87,90,93, 165.

Section ended in mid-comment: 142. tok_ptr: 43,44,46,73,81,90,91, 93, 165, 182.

Section name didn’t end: 154. tok-start: 37,38,43,44,46,70,74,78, 83, 84,

Section name too long: 153. 85,90,91, 165.

semi-ptr: 94,96,97,98,101. trouble-shooting: 87,145, 179,180.

send-out: 100,101,112, 113,114,116,117, true: 6, 28,29, 124,125,127, 132, 134, 136, 138,
118, 119, 120, 121. 143, 150, 179, 180, 183.

send-sign: 100, 106,112, 113. Two numbers occurred.. .; 108.

send-the-output: 112,113. unambig-length: 8§,47,50,53,58, 63.

send-val: 100, lo7, 112, 119, 121. unbreakable: 95, 102, 113, 117.

set-element-sign: 15,114. up-to: 116,145.

sign: 95,102,106, 108. update-terminal: 22,31,97, 112, 139, 181.

sign-val: 95,102, 104, 106, 107, 108. uppercase: 38, 63, 105, 110, 114, 116, 119, 120.

sign_val_sign: 95, 102, 106, 108. Use == for macros: 174.

sign_val_val: 95, 102, 106, 108. . v: 99,101, 106, 107.

simple: 47,53,89,90,164,173. val: 157,158,160,161,162.

sixteen-bits: 37, 38,50, 66,69, 73,74,78,87, Value too big: 1357.

101, 165, 179, 181. verbatim: 72,76, 113, 118, 139, 167, 169.

skip-ahead: 140,150,159,173,176,183. Verbatim string didn’t end: 169.

skip-comment: 141,145. Verbatim string too long: 118.

Sorry, Xx capacity exceeded: 36. w: 49. 53.660A09.87 113.

spotless: 9,10, 187. WEB file ended...: 132.

stack: 78,79, 84,835. web-file: 2,23,24,32,124,126, 132, 136, 138.

stack-ptr: 18, 79,83, 84,85, 87,90, 113,117, 118. Where is the match. . . : 129, 133, 137.

stack-size: 8,79, 84. wi: 41,42.

stat: 3. wo: 185,186.

store-two-bytes: 73,93,177. write: 20, 64, 97, 181, 184.

str: 100,101,114, 117,118,119,121. write_ln: 20,64,97,184.

String constant didn’t end: 149. ww: 8.38,39,40,41,42,43,49,53,56,61,63,66,

String didn’t end: 168. 67, 68,69,75,87,90,91, 113,116, 185, 186.

String too long: 117. zr. 13.

string-ptr: 39,40,42,64,182, 184. xchr: 13,14,16,17,18,32,33,49,63, 64,75,

system dependencies: 1,2,4,7,12,17, 20, 21, 76, 97, 155, 167, 181, 184.

22,24,26,28,32,34,115,116,121, 180, xclause: 6.

181, 182, 187, 188. xord: 13,16,18, 28.

t:53.101.16K,170. You should double @ signs: 168, 169.

tab-mark: 15,32, 139, 142, 145, 153, 154. Zz: 44,

TANGLE: 2. 2: 45,46.

§189 TANGLE INDEX 195

zo: 80,83,84,85,87,90,93,182,186.

zp: 14,75.
zz: 8,38,43,44,45,46,74,80,83,84, 85, 90,

91, 165, 182, 186.

196 NAMES OF THE SECTIONS TANGLE $189

(Append out-val to buffer 103) Usedin sections 102 and 104.
| (Append the decimal value of v, with parentheses if negative 111) Usedin section 107.

| (Cases involving @{ and @} 121) Used in section 113.
(Cases like <> and := 114) Used in section 113.

| (Cases related to constants, possibly leading to get-fraction or reswitch 119) Used in section 113.
(Cases related to identifiers 116) Used in section 113.

(Check for ambiguity and update secondary hash 62) Used in section 61.

(Check for overlong name 155) Used in section 153.

(Check if q conflicts with p 63) Used in section 62.
(Check that all changes have been read 138) Used in section 183.
(Check that = or = follows this module name, otherwise return 176) Used in section 175.

(Compare name p with current identifier, goto found if equal 56) Used in section 55.
(Compiler directives 4) Used in section 2.
(Compress two-symbol combinations like ©: =’ 147) Used in section 145.
(Compute the hash code h 54) Used in section 53.

(Compute the name location p 55) Used in section 53.

(Compute the secondary hash code 2 and put the first characters into the auxiliary array chopped-id 58)
Used in section 57.

(Constants in the outer block 8) Used in section 2.

(Contribution is * or / or DIV or MOD 105) Used in section 104.
(Copy a string from the buffer to rok-mem 168) Used in section 165.

(Copy the parameter into tok-mem 93) Used in section 90.
(Copy verbatim string from the buffer to tok-mem 169) Used in section 167.

(Define and output a new string of the pool 64) Used in section 61.

(Display one-byte token a 76) Used in section 74.

(Display two-byte token starting with a 75) Used in section 74.

(Do special things when ¢ = "@", "\", "{" "}". return at end 142) Used in section 141.

(Empty the last line from the buffer 98) Used in section 112.

(Enter a new identifier into the table at position p 61) Used in section 57.

(Enter a new module name into the tree 67) Used in section 66.

. (Error handling procedures 30, 31, 34) Used in section 2.
(Expand macro a and goto found, or goto restart if no output found 89) Used in section 87.

(Expand module a — 24000, goto restart 88) Used in section 87.
(Finish off the string pool file 184) Used in section 182.
(Force a line break 122) Used in section 113.
(Get a preprocessed string 149) Used in section 145.
(Get an identifier 148) Used in section 145.

(Get control code and possible module name 150) Used in section 145.

(Get the buffer ready for appending the new information 102) Used in section 101.

(Give double-definition error and change p to type £59) Used in section 57.
(Globals in the outer block 9, 13, 20, 23, 25, 27, 29, 38, 40, 44, 50, 65, 70, 79, 80, 82, 86, 94, 95, 100, 124, 126, 143, 156,

164,171,179, 185) Used in section 2.

(Go to found if c¢ is a hexadecimal digit, otherwise set scanning-hex + false 146) Used in section 145.

(Handle cases of send-val when out-state contains a sign 108) Used in section 107.
(If end of name, goto done 154) Used in section 153.
(If previous output was * or /, goto bad-case 109) Used in section 107.

(If previous output was DIV or MOD, goto bad-case 110) Used in section 107.

(If the current line starts with Qy, report any discrepancies and return 133) Used in section 132.
(If the next text is ‘(#) =’, call define-macro and goto continue 174) Used in section 173.
(In cases that a is a non-ASCII token (identifier, module-name, etc.), either process it and change a to a

byte that should be stored, or goto continue if a should be ignored, or goto done if a signals the end

of this replacement text 167) Used in section 165.

§180 TANGLE NAMES OF THE SECTIONS 197

(Initialize the input system 134) used in section 182.
(Initialize the output buffer 96) Used in section 112.
(Initialize the output stacks 83) Used in section 112.

(Insert the module number into tok_mem 177) Used in section 175.
(Local variables for initialization 16, 41, 45, 51) Used in section 2.

(Make sure the parentheses balance 166) Used in section 165.

(Move buffer and limit to change buffer and change-limit 131) Used in sections 128 and 132.

(Other printable characters 115) Used in section 113.
(Phase I: Read all the user’s text and compress it into tok-mem 183) Used in section 182.

(Phase II: Output the contents of the compressed tables 112) Used in section 182.

(Print error location based on input buffer 32 }) Used in section 31.
(Print error location based on output buffer 33) Used in section 31.
(Print statistics about memory usage 186) Used in section 182.

(Print the job history 187) Used in section 182.

(Put a parameter on the parameter stack, or goto restart if error occurs 00) Used in section 89.
(Put module name into mod-text [1 .. k| 153) Used in section 151.
(Read from change-file and maybe turn off changing 137) Used in section 135.

(Read from web_file and maybe turn on changing 136) Used in section 135.
(Reduce stgn_val_val to sign_val and goto restart 104) Used in section 102.

(Remove a parameter from the parameter stack 91) Used in section 85.

(Removep from secondary hash table 60) Used in section 59.
(Scan the definition part of the current module 173) Used in section 172.

(Scan the module name and make cur-module point to it 151) used in section 150.
(Scan the PASCAL part of the current module 175) Used in section 172.

(Send a string, goto reswitch 117) Used in section 113.

(Send verbatim string 118) Used in section 113.

(Set accumulator to the value of the right-hand side 158) Used in section 157.

(Set c¢ to the result of comparing the given name to name p 68) Used in sections 66 and 69.
(Set initial values 10, 14, 17, 18, 21, 26, 42, 46, 48, 52, 71, 144,152,180) Used in section 2.
(Set val to value of decimal constant, and set next-control to the following token 160) Used in section 158.

(Set val to value of hexadecimal constant, and set next-control to the following token 162) Used in
section 158.

(Set val to value of octal constant, and set next-control to the following token 161) Used in section 138.
(Signal error, flush rest of the definition 159) Used in section 158.
(Skip over comment lines in the change file; return if end of file 129) Used in section 128.
(Skip to the next nonblank line; return if end of file 130) Used in section 128.
(Special code to finish real constants 120) Used in section 113.
(Start scanning current macro parameter, goto restart 92) Used in section 87.
(Types in the outer block 11, 12, 37, 39, 43, 78 } Used in section 2.
{Update the data structure so that the replacement text is accessible 178) Used in section 175.

(Update the tables and check for possible eITors 57) Used in section 33.

APPENDIX F — MACROS FOR FORMATTING | 199

Appendix F: The webmac . tex file. This is the file that extends “plain TEX” format in order to support
the features needed by the output of WEAVE.

% standard macros for WEB listings (in addition to PLAIN.TEX)

\parskip Opt % no stretch between paragraphs

\parindent lem % for paragraphs and for the first line of PASCAL text

\font\eightrm=cmr8
\let\sc=\eightrm \let\mainfont=\tenrm
\font\titlefont=cmr7 scaled\magstep4 h title on the contents page
\font\ttitlefont=cmtt10 scaled\magstep2 | typewriter type in title
\font\tentex=cmtex10% TeX extended character set (used in strings)

\def\\#1{\hbox{\it#1\/\kern.0Obem}}} italic type for identifiers
\def\ |#1{\hbox{$#1$}} % one-letter identifiers look a bit better this way

\def\{\hbox{\bf#1\/}}i boldface type for reserved words

\def\.#1{\hbox{\tentex% typewriter type for strings

\1let\\=\BS % backslash in a string

\let\’=\RQ % right quote in a string

\let\‘=\LQ % left quote in astring

\let\{=\LB % left brace in a string

\let\}=\RB Y% right brace in a string

\let\"=\TL % tilde in a string

\let\ =\SP 1% space in a string
\let_=\UL % underline in astring

\let\&=\AM J, ampersand in astring
#1}

\def\#{\hbox{\tt\char‘\#}} parameter sign

\def\${\hbox{\tt\char‘\$}}/ dollar sign

\def\{\hbox{\tt\char‘\%}}§ percent sign

\def\“{\ifmmode\mathchar"222 \else\char‘" \fi} pointer or hat
Y circumflex accents can be obtained from \"“D instead of \°

\def\AT!'{@} ’ at sign for control text

\chardef\AM="\& % ampersand character in a string

\chardef\BS="\\ ’% backslash in a string

\chardef\LB=‘\{ % left brace in a string

\def\LQ{{\tt\char’22}} % left quote in a string

\chardef\RB=‘\}), right brace in a string

\def\RQ{{\tt\char’23}} i right quote in a string

\def\SP{{\tt\char‘\}} 4 (visible) space in a string

\chardef\TL=*\" ¥ tilde in a string

\chardef\UL=‘_% underline character in a string

\newbox\bak \setbox\bak=\hbox to -lem{} % backspace one em

\newbox\bakk\setbox\bakk=\hbox to -2em{} i backspace two ems

\newcount\ind % current indentation in ems

\def\l{\globalladvance\ind byl\hangindent\ind em) % indent one more notch
\def\2{\global\advance\ind by-1) % indent one less notch

\def\3#1{\hfil\penalty#10\hfilneg}), optional break within a statement
\def\4{\copy\bak} % backspace one notch

\def\6{\hfil\penalty-1\hfilneg\kern2.5em\copy\bakk\ignorespaces}ioptionalbreak

200 APPENDIX F — MACROS FOR FORMATTING

\def\6{\ifmmode\else\par} forced break
* \hangindent\ind em\noindent\kern\ind em\copy\bakk\ignorespaces\fi)

\def\7{\Y\6} % forced break'and a little extra space

\let\yskip=\smallskip

\def\to{\mathrel{.\,.}} % double dot, used only in math mode

\def\note#1#2.{\Y\noindent{\hangindent2em\baselineskip1Opt\eightrm#1 #2.\par}}
\def\lapstar{\rlap{*}}
\def\startsection{\Q\noindent{\let*=\lapstar\bf\modstar.\quad}}
\def\defin#1{\global\advance\indby 2 \1\&{#1}} % begin ‘define’ or ‘format’
\def\A{\note{See also)) cross-reference for multiply defined section names

\def\B{\mathopen{\.{@\{}}} 4 begin controlled comment
\def\C#1{\ifmmode\gdef\XX{\null$\null}\else\gdef\XX{}\fi % PASCAL comments
\XX\hfil\penalty-1\hfilneg\quad$\{\, $#1$\,\}$\XX}

\def\D{\defin{define}}, macro definition

\def\E{\cdot10~} % exponent in floating point constant

\def\F{\defin{format}}) format definition

\let\G=\ge}} greater than or equal sign
\def\H#1{\hbox{\rm\char"7D\tt#1}}) hexadecimal constant

\let\I=\ne % unequal sign

\def\J{\.{@\&}} i TANGLE's join operation

\let\K=\gets % left arrow

\let\L=\1le % less than or equal sign

\outer\def\M#1.{\MN#1.\ifon\vfil\penalty-100\vfilneg 4 beginning of section

\vskip12ptminus3pt\startsection\ignorespaces}
\outer\def\N#1.#2.{\MN#1.\vfil\eject % beginning of starred section

\def\rhead{\uppercase{\ignorespaces#2}} J, define running headline
\message{*\modno} , progress report
\edef\next{\write\cont{\Z{#2}{\modno}{\the\pageno}}}\next’to contents file
\ifon\startsection{\bf\ignorespaces#2.\quad}\ignorespaces}

\def\MN#1.{\par i common code for \M, \N
{\xdef\modstar{#1}\let*=\empty\xdef\modno{#1}}
\ifx\modno\modstar \onmaybe \else\ontrue \fi \mark{\modno}}

\def\0#1{\hbox{\rm\char’23\kern-.2em\it#1\/\kern.05em}}’,octal constant

\def\P{\rightskip=0pt plus 100pt minus 10pt % go into PASCAL mode
\sfcode* ;=3000

\pretolerance 10000

\hyphenpenalty 10000 \exhyphenpenalty 10000

\global\ind=2 \1\ \unskip}
\def\Q{\rightskip=0pt % get out of PASCAL mode

\sfcode' ;=1500 \pretolerance 200 \hyphenpenalty 50 \exhyphenpenalty 50 }

\let\R=\1lnot ¥% logical not

. \let\S=\equiv% equivalence sign
\def\T{\mathclose{\.{@\}}}}¥ terminate controlled comment

\def\U{\note{This code is used in)) % cross-reference for uses of sections

\let\V=\lor % logical or

\let\W=\1land% logical and

\def\X#1:#2\X{\ifmmode\gdef \XX{\null$\null}\else\gdef\XX{}\fi% section name
\XX$\langle\,$#2{\eightrm\kern.5em#1}$\,\rangle$\XX}

\def\Y{\par\yskip}
\let\Z=\1let %, now you can \send the control sequence \Z

\def\){\hbox{\.{@\$}}} ¥% sign for string pool check sum

APPENDIX F — MACROS FOR FORMATTING 201

\def\]{\hbox{\.{@\\}}} % sign for forced line break

\def\=#1{\kern2pt\hbox{\vrule\vtop{\vbox{\hrule
\hbox{\strut\kern2pt\.{#1}\kern2pt}}

\hrule}\vrule}\kern2pt} } verbatim string
\let\"=\ignorespaces
\let*=x

\def\onmaybe{\let\ifon=\maybe} \let\maybe=\iftrue
\newiflifon \newifl\iftitle \newif\ifpagesaved

\def\lheader{\mainfont\the\pageno\eightrm\qquad\rhead\hfill\title\qquad
\tensy x\mainfont\topmark} % top line on left-hand pages

\def\rheader{\tensy x\mainfont\topmark\eightrm\gquad\title\hfill\rhead
\gquad\mainfont\the\pageno} % top line on right-hand pages

\def\page{\box256 }
\def\normaloutput#1#2#3{\shipout\vbox{

\ifodd\pageno\hoffset=\pageshift\fi

\vbox to\fullpageheight{
\iftitle\global\titlefalse

\else\hboxt o\pagewidth{\vbox to10pt{}\ifodd\pageno #3\else#2\fi}\fi
\vfill#1}} % parameter #1 is the page itself

\global\advance\pageno byl}

\def\rhead{\.(WEB} OUTPUT} % this running head is reset by starred sections

\def\title{} Y, an optional title can be set by the user

\def\topofcontents{\centerline{\titlefont\title}
\vfill} % this material will start the table of contents page

\def\botofcontents (\vfill} % this material will end the table of contents page

\def\contentspagenumber{0}% default page number for table of contents
\newdimen\pagewidth \pagewidth=6.5in J the width of each page

\newdimen\pageheight \pageheight=8.7in } the height of each page
\newdimen\fullpageheight \fullpageheight=9in Y page height including headlines
\newdimen\pageshift \pageshift=0in % shift righthand pages wrt lefthand ones

\def\magnify#1{\mag=#1\pagewidth=6.6truein\pageheight=8.7truein
\fullpageheight=9truein}

\def\setpage{\hsize\pagewidth\vsize\pageheight} % use after changing page size
\def\contentsfile{CONTENTS}% file that gets table of contents info

\def\readcontents{\input CONTENTS}

\newwrite\cont

\output{\setbox0O=\page) the first page is garbage
\openout\cont=\contentsfile

\globalloutput{\normaloutput\page\lheader\rheader}}

\setpage

\vbox to \vsize{} % the first \topmark won't be null

\def\ch{\note{The following sections were changed by the change file:}

\let\#*=\relax}

\newbox\sbox ¥ saved box preceding the index

\newbox\1lbox % lefthand column in the index

\def\inx{\par\vskip6pt plus 1fil % we are beginning the index
\write\cont{} %, ensure that the contents file isn't empty

\closeout\contJ the contents information has been fully gathered

202 APPENDIX F — MACROS FOR FORMATTING

\output{\ifpagesaved\normaloutput{\box\sbox}\lheader\rheader\fi
\global\setbox\sbox=\page \globall\pagesavedtrue}

\pagesavedfalse \eject ¥ eject the page-so-far and predecessors
\setbox\sbox\vbox{\unvbox\sbox} %§ take it out of its box

\vsize=\pageheight \advance\vsize by -\ht\sbox % the remaining height

\hsize=.b5\pagewidth \advance\hsize by -10pt

% column width for the index (20pt between cols)
\parfillskip Opt plus .6\hsize } try to avoid almost empty lines

\def\1r{L} % this tells whether the left or right column is next

\output{\if L\1r\global\setbox\lbox=\page\gdef\1r{R}
\else\normaloutput{\vbox to\pageheight{\box\sbox\vss

\hboxto\pagewidth{\box\1lbox\hfil\page}}}\lheader\rheader
\global\vsize\pageheight\gdef\lr{L}\global\pagesavedfalse\fi}

\message{Index:}
\parskip Opt plus .bpt

\outer\def\:##1, {\par\hangindent2em\noindent##1:\kernlem} index entry
\def\ [##1]{$\underline{##1}$}% underlined index item

\rm \rightskipOpt plus 2.5em \tolerance 10000 \let*=\lapstar
\hyphenpenalty10000 \parindentOpt}

\def\fin{\par\vfillleject % this is done when we are ending the index
\ifpagesaved\null\vfill\eject\fi % output a null index column

\if L\lr\else\null\vfill\eject\fi ¥% finish the current page

\parfillskip Opt plus Ifil

\def\rhead{NAMES OF THE SECTIONS}

\message{Section names: }
\output {\normaloutput\page\lheader\rheader}

“-\setpage

\def\note##1##2.{\quad{\eightrm##tl ##2.}}
\def\U{\note{Used in}} % cross-reference for uses of sections

\def\:{\par\hangindent 2em}\let*=*}
\def\con{\par\vfill\eject§ finish the section names

\rightskip Opt \hyphenpenalty 50 \tolerance 200

\setpage

\output {\normaloutput\page\lheader\rheader}

\titletrue % prepare to output the table of contents

\pageno=\conten.tspagenumber \def\rhead{TABLE OF CONTENTS}

\message{Table of contents:}
\topofcontents

\line{\hfil Section\hbox to3em{\hss Page}}

\def\Z##1##2##3{\1ine{\ignorespaces##1
\leaders\hbox to .5em{.\hfil}\hfil\ ##2\hbox to3em{\hss##3}}}

\readcontents\relax % read the contents info

. \botofcontents \end} % print the contents page(s) and terminate

APPENDIXG-NOTES ONFORMATTING 203

Appendix G: How to use WEB macros. The macros in webmac make it possible to produce a variety

of formats without editing the output of WEAVE, and the purpose of this appendix is to explain some of the

possibilities.

I. Three fonts have been declared in addition to the standard fonts of PLAIN format: You can say

‘{f\sc stuff}’ to get srtuFrF in small caps; and you can select the largish fonts \titlefont and \ttitlefont

in the title of your document, where \ttitlefont is a typewriter style of type.

2. When you mention an identifier in TEX text, you normally call it ‘| identifier |’. But you can also
say ‘\\{identifier}’. The output will look the same in both cases, but the second alternative doesn’t put

identifier into the index, since it bypasses WEAVE’s translation from PASCAL mode.

3. To get typewriter-like type, as when referring to ‘WEB’, you can use the ‘\.’ macro (e.g., ‘\. (WEB) “).

In the argument to this macro you should insert an additional backslash before the symbols listed as ‘special

string characters’ in the index to WEAVE, i.e., before backslashes and dollar signs and the like. A ‘AL’ here will

result in the visible space symbol; to get an invisible space following a control sequence you can say ‘{u}’.

4, The three control sequences \ pagewidth, \ pageheight, and \ fullpageheight can be redefined in

the limbo section at the beginning of your WEB file, to change the dimensions of each page. The standard

settings

\pagewidth=6.5in
\pageheight=8.7in

\fullpageheight=9in

were used to prepare the present report; \ fullpageheight is \ pageheight plus room for the additional

heading and page numbers at the top of each page. If you change any of these quantities, you should call

the macro \ setpage immediately after making the change.

5. The \ pageshift macro defines an amount by which right-hand pages (i.e., odd-numbered pages) are

shifted right with respect to left-hand (even-numbered) ones. By adjusting this amount you may be able to

get two-sided output in which the page numbers line up on opposite sides of each sheet.

6. The \title macro will appear at the top of each page in small caps. For example, Appendix D was

produced after saying “\ def \ ti t 1e{WEAVE}".

7. The first page usually is number 1;if you want some other starting page, just set \ pageno to the desired

number. For example, the initial limbo section for Appendix D included the command ‘\pageno=16’.

8. The macro \if tit le will suppress the header line if it is defined by titletrue’. The normal value
is \titlefalse except for the table of contents; thus, the contents page is usually unnumbered. If your

program is so long that the table of contents doesn’t fit on a single page, or if you want a number to appear

on the contents page, you should reset \ pageno when you begin the table of contents.

Two macros are provided to give flexibility to the table of contents: \ topof content s is invoked just before

the contents info is read, and \ botof contents is invoked just after. For example, Appendix D was produced

with the following definitions:

\def\topofcontents{\null\vfill
\titlefalse % include headline on the contents page

\def\rheader{\mainfont Appendix D\hfil 156}

\centerline{\titlefont The {\ttitlefont WEAVE} processor}

\vskip 156pt \centerline{(Version 2)} \vfill}

Redefining \ rheader, which is the headline for right-hand pages, suffices in this case to put the desired

information at the top of the page.

9. Data for the table of contents is writien to a file that is read after the indexes have bctn TRXed;
there’s one line of data for every stnrred module. For example, when Appendix D was being generated, a
file CONTENTS. TEX containing

\Z { Introduction}{1}{16}

\Z { The character set}{11}{19}

204 APPENDIX G — NOTES ON FORMATTING

and similar lines was created. The \topof content s macro could redefine \ Z so that the information appears
| in another format.

10. Sometimes it is necessary or desirable to divide the output of WEAVE into subfiles that can be processed

separately. For example, the listing of TEX runs to more than 500 pages, and that is enough to exceed the

capacity of many printing devices andfor their software. When an extremely large job isn’t cut into smaller
pieces, the entire process might be spoiled by a single error of some sort, making it necessary to start

everything over.

Here’s a safe way to break a woven file into three parts: Say the pieces are «, B, and 7, where each piece

begins with a starred module. All macros should be defined in the opening limbo section of a, and copies of

this TEX code should be placed at the beginning of 8 and of 7. In order to process the parts separately, we

need to take care of two things: The starting page numbers of # and 7 need to be set up properly, and the
table of contents data from all three runs needs to be accumulated.

The webmac macros include two control sequences \content sf ile and \readcontents that facilitate the

necessary processing. We include ‘\def\contentsfile{CONT1}’ in the limbo section of a, and we include
\ def \ contentsf i1e{CONT2}’ in the limbo section of fF; this causes TEX to write the contents data for a
and into CONTI. TEX and CONT2. TEX. Now in 7 we say

\def\readcontents{\input CONT1 \input CONT2 \input CONTENTS);

this brings in the data from all three pieces, in the proper order.

However, we still need to solve the page-numbering problem. One way to do it is to include the following

in the limbo material for B:

\message{Please type the last page number of part 1: }
\read-1to\\ \ pageno=\\ \advance\ pageno by 1

Then you simply provide the necessary data when TEX requests it; a similar construction is used at the
beginning of 7.

This method can, of course, be used to divide a woven file into any number of pieces.

11. Sometimes it is nice to include things in the index that are typeset in a special way. For example,

we might want to have an index entry for “TRX’. WEAVE provides only two standard ways to typeset an index
entry (unless the entry is an identifier or a reserved word): ‘@”’ gives roman type, and ‘@.’ gives typewriter
type. But if we try to typeset ‘TEX’ in roman type by saying, e.g., ‘@"\TeX@>’, the backslash character gets
in the way, and this entry wouldn’t appear in the index with the T’s.

The solution is to use the ‘@:’ feature, declaring a macro that simply removes a sort key as follows:

\def\o#1{}

Now you can say, e.g., ‘Q: TeX}{\TeX@>’in your WEB file; WEAVE puts it into the index alphabetically, based on

the sort key, and produces the macro call ‘\9{TeX}{\TeX}’ which will ensure that the sort key isn’t printed.

A similar idea can be used to insert hidden material into module names so that they are alphabetized

in whatever way you might wish. Some people call these tricks “special refincients”; others call them

“kludges”.

12. The control sequence \ modno is set to the number of the module being typeset.

13. If you want to list only the modules that have changed, together with the index, put the command

‘Nlet\maybe=\1if f alse’ in the limbo section before the first module of your WEB file. It’s customary to make
this the first change in your change file.

: APPENDIXH-GETTINGSTARTED 205

1 Appendix H: Installing the WEB system. Suppose you want to use the WEB programs on your computer,
1 and suppose that you can’t simply borrow them from somebody else who has the same kind of machine.
i Here’s what to do:

3 (1) Get a tape that contains the files WEAVE .WEB, TANGLE.WEB, TANGLE. PAS, and WEBMAC .TEX. The tape
will probably also contain an example change file TANGLE. CH.

(2) Look at the sections of TANGLE that are listed under “system dependencies” in the index of Appendix E

above, and figure out what changes (if any) will be nceded for your system.

(3) Make a change file TANGLE. CH that contains the changes of (2); do not change your copy of TANGLE. WEB,

leave it intact. (The rules for change files are explained at the end of the manual just before the

appendices; you may want to look at the example change file that arrived with your copy of TANGLE. WEB.

It’s also a good idea to define all the “switches” like debug and gubed to be null in your first change

files; then you can sure that your compiler will handle all of the code.)

(4) Make th changes of (2) in your copy of TANGLE. PAS. (If these changes are extensive, you might be better
off finding some computer that that already has TANGLE running, and making the new TANGLE. PAS from

TANGLE. WEB and your TANGLE. CH.)

(5) Use your PASCAL compiler to convert your copy of TANGLE. PAS to a running program TANGLE.

(6) Check your changes as follows: Run TANGLE on TANGLE. WEB and your TANGLE. CH, yielding TANGLE. PAS’;

make a running program TANGLE' by applying PASCAL to TANGLE. PAS’; run TANGLE’ on TANGLE. WEB

and your TANGLE. CH, yielding TANGLE. PAS"; and check that TANGLE. PAS” is identical to TANGLE. PAS’.

Once this test has been passed, you have got a working TANGLE program.

(7) Make a change file WEAVE. CH analogous to (3), but this time consider the system-dependent parts of
WEAVE that are listed in the index to Appendix D.

(8) Run TANGLE on WEAVE. WEB and your WEAVE. CH, obtaining WEAVE. PAS.

(9) Use PASCAL on WEAVE.PAS to make a running WEAVE program.
(10) Run WEAVE on TANGLE. WEB and TANGLE. CH to produce TANGLE. TEX

(11) Run TEX on TANGLE .TEX, obtaining a listing analogous to Appendix KE. This listing will incorporate
your changes.

(12) Run WEAVE on WEAVE. WEB and your WEAVE. CH to produce WEAVE. TEX.
(13) Run TEX on WEAVE. TEX, obtaining a listing analogous to Appendix D that incorporates your changes.

This description assumes that you already have a working TEX82 system. But what if you don’t have T[pX827
Then you start with a tape that also contains TEX . WEB and plain. tex, and you refer to a hardcopy listing

of the TjtX82 program corresponding to TEX . WEB. Between steps (10) and (11) you do the following:

(10.1) Make a change file TEX. CH to fix the system dependent portions of TEX. WEB, in a manner analo-

gous to step (2). Since TEX is a much more complex program than WEAVE or TANGLE, there are

more system-dependent features to think about, but by now you will be good at making such

modifications. Do not make any changes to TEX . WEB.

(10.2) Make an almost-copy of your TEX. CH called INITEX. CH; this one will have the ‘init’ and ‘tini’

macros redefined in order to make the initialization version of TEX. It also might have smaller font

memory and dynamic memory areas, since INITEX doesn’t need as much memory for such things;

by setting the memory smaller in INITEX, you guarantee that the production system will have a
“cushion.”

(10.3) Run TANGLE on TEX. WEB and INITEX. CH, obtaining INITEX . PAS and TEX . POOL.

(10.4) Run PASCAL on INITEX. PAS, obtaining INITEX.

(10.5) Run INITEX on TEX. POOL, during which run you type ‘plain’ and ‘\dump’. This will produce a file

plain. fmt containing the data necded to initialize TX’s memory.

(10.6) Run TANGLE on TEX. WEB and the TEX. CH of (10.1), obtaining TEX. PAS.
(10.7) Run PASCAL on TEX. PAS, obtaining VIRTEX.

(10.8) If your operating system supports programs whose core images have been saved, run VIRTEX, type

‘&plain’, then save the core image and call it TEX. Otherwise, VIRTEX will be your TEX, and it will
read ‘plain. fmt’ (or some other fmt file) each time you run.

206 APPENDIX H ~ GETTING STARTED

This 21-step process may seem long, hut it is actually an oversimplification, since you also need fonts and

a way to print the device-independent files that TEX spews out. On the other hand, the total number of

steps is not quite so large when you consider that TANGLE-followed-by-PASCAL and WEAVE-followed-by-TpX
may be regarded as single operations.

If you have only the present report, not a tape, you will have to prepare files WEAVE. WEB and TANGLE. WEB

by hand, typing them into the computer by following Appendices D and E. Then you have to simulate the

behavior of TANGLE by converting TANGLE. WEB manually into TANGLE. PAS; with a good text editor this takes

about six hours. Then you have to correct errors that were made in all this hand work: but still the whole

project is not impossibly difficult, because in fact the entire development of WEAVE and TANGLE (including

the writing of the programs and the manual) took less than two months of work.

