Scptember 1983

The

Report No. STAN-CS-83-980

WEB System of Structured Documentation

by

Donald E. Knuth

Department of Computer Science

Stanford University
Stanford, CA 94305

o0 JUNIOL ™
7 P

\.

The WEB System of Structured Documentation

by Donald E. Knuth
Stanford University

(Version 2.3, September, 1983)

The preparation of this report was supported in part by the National Scicncc Foundation
under grants IST-82(11926 and MCS-8300084, and by the System Development Foundation.
“TEX’ is a trademark of the American Mathematical Society.

WEB USER MANUAL 1

The WEB System of Structured Documentation

This memo describes how to write programs in the WEB language; and it also includes the full WEB docu-
mentation for WEAVE and TANGLE, the programs that read WEB input and produce TEX and PASCAL output,
respectively. The philosophy behind WEB is that an experienced system programmer, who wants to provide
the best possible documentation of his or her software products, needs two things simultaneously: a language
like TEX for formatting, and a language like PASCAL for programming. Neither type of language can provide
the best documentation by itself; but when both are appropriately combined, we obtain a system that is
much more useful than either language separately.

The structure of a software program may be thought of as a “web” that is made up of many interconnected
pieces. To document such a program, we want to explain each individual part of the web and how it relates to
its neighbors. The typographic tools provided by TEX give us an opportunity to explain the local structure
of each part by making that structure visible, and the programming tools provided by PASCAL make it
possible for us to specify the algorithms formally and unambiguously. By combining the two, we can develop
a style of programming that maximizes our ability to perceive the structure of a complex piece of software,
and at the same time the documented programs can be mechanically translated into a working software
system that matches the documentation.

Since WEB is an experimental system developed for internal use within the TEX project at Stanford, this
report is rather terse, and it assumes that the reader is an experienced programmer who is highly motivated
to read a detailed description of WEB's rules. Furthermore, even if a less terse manual were to be written, the
reader would have to be warned in advance that WEB is not for beginners and it never will be: The user of
WEB must be familiar with both TEX and PASCAL. When one writes a WEB description of a software system,
it is possible to make mistakes by breaking the rules of WEB and/ or the rules of TEX and/ or the rules of
PASCAL. In practice, all three types of errors will occur, and you will get different error messages from the
different language processors. In compensation for the sophisticated expertise needed to cope with such a
variety of languages, however, experience has shown that reliable software can be created quite rapidly by
working entirely in WEB from the beginning; and the documentation of such programs seems to bc better
than the documentation obtained by any other known method. Thus, WEB users need to be highly qualified,
but they can get some satisfaction and perhaps even a special feeling of accomplishment when they have
successfully created a software system with this method.

To use WEB, you prcparc a file called COB. WEB (say), and then you apply a system program called WEAVE
to this file, obtaining an output file called COB .TEX. When TEX processes COB .TEX, your output will be
a “pretty printed” version of COB. WEB that takes appropriate care of typographic details like page layout
and the usc of indentation, italics, boldface, etc.; this output will contain extensive cross-index information
that is gathered automatically. You can also submit the same file COB. WEB to another system program
called TANGLE, which will produce a file COB. PAS that contains the PASCAL code of your COB program. The
PASCAL compiler will convert COB. PAS into machine-language instructions corresponding to the algorithins
that were so nicely formatted by WEAVE and TEX. Finally, you can (and should) delete the files COB. TEX
and COB. PAS, because COB. WEB contains the definitive source code. Examples of the behavior of WEAVE and
TANGLE are appended to this manual.

Besides providing a documentation tool, WEB enhances the PASCAL language by providing a rudimentary
macro capability together with the ability to permnute picces of the program text, so that a large system can
bc understood entirely in terms of small modules and their local interrelationships. The TANGLE program is so
named because it takes a given web and moves the modules from their web structure into the order required
by PASCAL; the advantage of programming in WEB is that the algorithms can be expressed in “untangled”
form, with each module explained separately. The WEAVE program is so named because it takes a given web
and intertwines the TX and PASCAL portions contained in cach module. then it kuits the whole fabric into
a structured document. (Get it? Wow.) Perhaps there is some deep connection here with the fact that the
German word for “wecave” is “web”? and the corresponding Latin imperative is “teze”!

It is impossible to list all of the rcinted work that has influenced the design of WEB, but the key coutributions
should be mentioned here. (1) Myrtle Kellington, as exccutive editor for ACM publications, tlcvcloped
excellent typographic standards for the typesetting of Algol programs during the 1960s, based on the original

2 WEB USER MANUAL

designs of Peter Naur; the subtlety and quality of this influential work can be appreciated only by people who
have seen what happens when other printers try to typeset Algol without the advice of ACM’s copy editors.
(2) Bill McKeeman introduced a program intended to automate some of this task [Algorithm 268, “Algol 60
reference language editor,” CACM 8 (1965), 667-668]; and a considerable flowering of such programs has
occurred in recent years [see especially Derek Oppen, “Prettyprinting,” ACM TOPLAS 2 (1980), 465-483;
G. A. Rose and J. Welsh, “Formatted programming languages,” SOFTWARE Practice & Exper. 11 (1981),
651-669]. (3) The top-down style of exposition encouraged by WEB was of course chiefly influenced by Edsger
Dijkstra’s essays on structured programming in the late 1960s. The less well known work of Pierre-Arnoul
de Marneffe [“Holon programming: A survey,” Univ. de Liege, Service Informatique, Liege, Belgium, 1973;
135 pp.] also had a significant influence on the author as WEB was being formulated. (4) Edwin Towster has
proposed a similar style of documentation in which the programmer is supposed to specify the relevant data
structure environment in the name of each submodule [“A convention for explicit declaration of environments
and top-down refinement of data,” IEEE Tram. on Software Eng. SE-5 (1979), 374-386]; this requirement
seems to make the documentation a bit too verbose, although experience with WEB has shown that any
unusual control structure or data structure should definitely be incorporated into the module names on
psychological grounds. (5) Discussions with Luis Trabb Pardo in the spring of 1979 were extremely helpful
for setting up a prototype version of WEB that was called DOC. (6) Ignacio Zabala’s extensive experience
with DOG, in which he created a full implementation of TEX in PASCAL that was successfully transported
to many different computers, was of immense value while WEB was taking its present form. (7) David R.
Fuchs made several crucial suggestions about how to make WEB more portable; he and Arthur L. Samuel
coordinated the initial installations of WEB on dozens of computer systems, making changes to the code so
that it would be acceptable to a wide variety of PASCAL compilers. (8) The name WEB itself was chosen in
honor of my wife’s mother, Wilda Ernestine Bates.

The appendices to this report contain complete WEB programs for the WEAVE and TANGLE processors. A
study of these examples, together with an attempt to write WEB programs by yourself, is the best way to
understand why WEB has come to be like it is.

General rules. A WEB fileis a long string of text that has been divided into individual lines. The exact
line boundaries are not terribly crucial, and a programmer can pretty much chop up the WEB file in whatever
way seems to look best as the file is being edited; but string constants and control texts must end on the
same line on which they begin, since this convention helps to keep errors from propagating. The end of a
line means the same thing as a blank space.

Two kinds of material go into WEB files: TEX text and PASCAL text. A programmer writing in WEB should
be thinking both of the documentation and of the PASCAL program that he or she is creating; i.e., the
programmer should be instinctively aware of the different actions that WEAVE and TANGLE will perform on
the WEB file. TgX text is essentially copied without change by WEAVE, and it is entirely deleted by TANGLE,
since the TEX text is “pure documentation.” PASCAL text, on the other hand, is formatted by WEAVE and it
is shuffled around by TANGLE, according to rules that will become clear later. For now the important point
to keep in mind is that there are two kinds of text. Writing WEB programs is something like writing TgX
documents, but with an additional “PASCAL mode” that is added to TgX’s horizontal mode, vertical mode,
and math mode.

A WEB file is built up from units called modules that are more or less self-contained. Each module has
three parts:

1) A TgX part, containing cxplanatory material about what is going on in the module.

2) A definition part, containing macro definitions that serve as abbreviations for PASCAL constructions that
would be less comprehensible if written out in full each time.

3) A PASCAL part, containing a piece of the program that TANGLE will produce. This PASCAL code should
ideally be about a dozen lines long, so that it is easily comprehensible as a unit and so that its
structure is rcadily perceived.

The three parts of each module must appear in this order; i.e., the TEX commentary must come first, then
the definitions, and finally the PASCAL code. Any of the parts may be empty.

WEB USER MANUAL 3

A module begins with the pair of symbols ‘@_’ or ‘@*’, where ‘)’ denotes a blank space. A module ends at

the beginning of the next module (i.e., at the next ‘@’ or ‘@*’), or at the end of the file, whichever comes
first. The WEB file may also contain material that is not part of any module at all, namely the text (if any)
that occurs before the first module. Such text is said to be “in limbo”; it is ignored by TANGLE and copied
essentially verbatim by WEAVE, so its function is to provide any additional formatting instructions that may
be desired in the TEX output. Indeed, it is customary to begin a WEB file with TX code in limbo that loads
special fonts, defines special macros, changes the page sizes, and/ or produces a title page.

Modules are numbered consecutively, starting with 1; these numbers appear at the beginning of each
module of the TEX documentation, and they appear as bracketed comments at the beginning of the code
generated by that module in the PASCAL program.

Fortunately, you never mention these numbers yourself when you are writing in WEB. You just say ‘@’
or ‘@*’ at the beginning of each new module, and the numbers are supplied automatically by WEAVE and
TANGLE. As far as you are concerned, a module has a name instead of a number; such a name is specified by
writing ‘@<’ followed by TEX text followed by ‘@’. When WEAVE outputs a module name, it replaces the ‘@<’
and ‘@’ by angle brackets and inserts the module number in small type. Thus, when you read the output
of WEAVE it is easy to locate any module that is referred to in another module.

For expository purposes, a module name should be a good description of the contents of that module, i.e.,
it should stand for the abstraction represented by the module; then the module can be “plugged into” one
or more other modules so that the unimportant details of its inner workings are suppressed. A module name
therefore ought to be long enough to convey the necessary meaning. Unfortunately, however, it is laborious
to type such long names over and over again, and it is also difficult to specify a long name twice in exactly
the same way so that WEAVE and TANGLE will be able to match the names to the modules. Therefore a module
name can be abbreviated after its first appearance in the WEB file, by typing ‘@<a. .. @>’, where o is any string
that is a prefix of exactly one module name that appears in the file. For example, ‘@<Clear the arrays@>’
can be abbreviated to ‘Q<Clear.. . @>'if no other module name begins with the five letters ‘Clear’. Module
names must otherwise match character for character, except that consecutive blank spaces and/ or tab marks
are treated as equivalent to single spaces, and such spaces are deleted at the beginning and end of the name.
Thus, ‘@< Clear the arrays @’ will also match the name in the previous example.

We have said that a module begins with ‘@, or ‘@+’, but we didn’t say how it gets divided up into a TpX'
part, a definition part, and a PASCAL part. The definition part begins with the first appearance of ‘@d’ or
‘@f’in the module, and the PASCAL part begins with the first appearance of ‘@’ or ‘@<’. The latter option
‘@<’ stands for the beginning of a module name, which is the name of the module itself. An equals sign
(=) must follow the ‘@’ at the end of this module name; you are saying, in effect, that the module name
stands for the PASCAL text that follows, so you say ‘(module name) = PASCAL text’. Alternatively, if
the PASCAL part begins with ‘@p’ instead of a module name, the current module is said to be unnamed.
Note that module names cannot appear in the definition part of a module, because the first ‘@<’ in a module
signals the beginning of its PASCAL part. Any number of module names might appear in the PASCAL part,
however, once it has started.

The general idea of TANGLE is to make a PASCAL program out of these modules in the following way:
First all the PASCAL parts of unnamed modules are copied down, in order; this constitutes the initial
approximation Tp to the text of the program. (There should be at least one unnamed module, otherwise
there will be no program.) Then all module names that appear in the initial text Ty are replaced by
the PASCAL parts of the corresponding modules, and this substitution process continues until no module
names remain. Then all defined macros arc replaced by their equivalents, according to certain rules that are
cxplained later. The resulting PASCAL code is “sanitized” so that it will be acceptable to an average garden-
variety PASCAL compiler; i.e., lowercase letters are converted to uppercase, long identifiers are chopped, and
the lines of the output file are constrained to be at most 72 characters long. All comments will have been
removed from this PASCAL program except for the mcta-comments delimited by ‘@{’ and ‘@}’, as explained
below, and except for the module-number comments that point to the source location where each piece of
the program text originated in the WEB file.

If the same name has been given to more than one module, the PASCAL text for that name is obtained by
putting together all of the PASCAL parts in the corresponding modules. This feature is useful, for example,

4 WEB USER MANUAL

in a module named ‘Global variables in the outer block’, since one can then declare global variables in
whatever modules those variables are introduced, When several modules have the same name, WEAVE assigns
the first module number as the number corresponding to that name, and it inserts a note at the bottom
of that module telling the reader to ‘See also sections so-and-so’; this footnote gives the numbers of all the
other modules having the same name as the present one. The PASCAL text corresponding to a module is
usually formatted by WEAVE so that the output has an equivalence sign in place of the equals sign in the
WEB file; i.e., the output says ‘(module name) = PASCAL text’. However, in the case of the second and
subsequent appearances of a module with the same name, this ‘=’sign is replaced by ‘+=’, as an indication
that the PASCAL text that follows is being appended to the PASCAL text of another module.

The general idea of WEAVE is to make a TEX file from the WEB file in the following way: The first line of the
TEX file will be ‘\input webmac’; this will cause TEX to read in the macros that define WEB’s documentation
conventions. The next lines of the file will be copied from whatever TEX text is in limbo before the first
module. Then comes the output for each module in turn, possibly interspersed with end-of-page marks
and the limbo material that precedes the next module after a page ends. Finally, WEAVE will generate a
cross-reference index that lists each module number in which each PASCAL identifier appears, and it will
also generate an alphabetized list of the module names, as well as a table of contents that shows the page
and module numbers for each “starred” module.

What is a “starred” module, you ask? A module that begins with ‘@+’ instead of ‘Q_’ is slightly special
in that it denotes a new major group of modules. The ‘@*’ should be followed by the title of this group,
followed by a period. Such modules will always start on a new page in the TEX output, and the group title
will appear as a running headline on all subsequent pages until the next starred module. The title will also
appear in the table of contents, and in boldface type at the beginning of its module. Caution: Do not use
TEX control sequences in such titles, unless you know that the webmac macros will do the right thing with
them. The reason is that these titles are converted to uppercase when they appear as running heads, and
they are converted to boldface when they appear at the beginning of their modules, and they are also written
out to a table-of-contents tie used for temporary storage while TEX is working; whatever control sequences
you use must be meaningful in all three of these modes.

The TEX output produced by WEAVE for each module consists of the following: First comes the module
number (e.g., ‘\M123.’ at the beginning of module 123, cxcept that ‘\N’ appears in place of ‘\M’ at the-
beginning of a starred module). Then comes the TEX part of the module, copicd almost verbatim except as
noted below. Then comes the definition part and the PASCAL part, formatted so that there will be a little
extra space between them if both are nonempty. The definition and PASCAL parts are obtained by inserting
a bunch of funny looking TEX macros into the PASCAL program; thesc macros handle typographic details
about fonts and proper math spacing, as well as line breaks and indentation.

When you arc typing TEX text, you will probably want to make frequent reference to variables and other
quantities in your PASCAL code, and you will want those variables to have the same typographic treatment
when they appear in your text as when they appear in your program. Therefore the WEB language allows
you to get the effect of PASCAL editing within TEX text, if you place ‘I’ marks before and after the PASCAL
material. For example, suppose you want to say something like this:

The characters are placed into buffer , which is a packed array [l .. n] of char.
The TEX text would look like this in your WEB file:
The characters are placed into |buffer|, which is a |packed array [1..n] of char{.
And WEAVE translates this into something you areglad you didn’t have to type:

The characters are placed into \\{buffer},
which is a \&{packed} \&{array} $ [1\to\In]$ \&{of} \\{char}.

Incidentally, the cross-reforcnce index that WEAVE would make, in the presence of a comment like this, would
include the current module number as one of the index entries for buffer and char, even though buffer and

WEB USER MANUAL 5

char might not appear in the PASCAL part of this module. Thus, the index covers references to identifiers
in the explanatory comments as well as in the program itself, you will soon learn to ‘appreciate this feature.
However, the identifiers packed and array and n and of would not be indexed, because WEAVE does not
make index entries for reserved words or single-letter identifiers. Such identifiers are felt to be so ubiquitous
that it would be pointless to mention every place where they occur.

Speaking of identifiers, the author of WEB thinks that IdentifiersSeveral WordsLong look terribly ugly when
they mix uppercase and lowercase letters. He recommends that identifiers_several_words.long be written
with underline characters to get a much better effect. The actual identifiers sent to the PASCAL compiler by
TANGLE will have such underlines removed, and TANGLE will check to make sure that two different identifiers
do not become identical when this happens. (In fact, TANGLE even checks that the first seven characters of
identifiers are unique, when lowercase letters have been converted to uppercase; the number seven in this
constraint is more strict than PASCAL’s eight, and it can be changed if desired.) The WEAVE processor will
properly alphabetize identifiers that have embedded underlines when it makes the index.

Although a module begins with TEX text and ends with PASCAL text, we have noted that the dividing
line isn’t sharp, since PASCAL text can be included in TEX text if it is enclosed in ‘| . . .|’. Conversely,
TEX text also appears frequently within PASCAL text, because everything in comments (i.e., between left
and right braces) is treated as TgX text. Furthermore, a module name consists of TEX text; thus, a WEB file
typically involves constructions like ‘if x = 0 then @<Empty the | buffer | array @’ where we go back and
forth between PASCAL and TEX conventions in a natural way.

Macros. A WEB programmer can define three kinds of macros to make the programs shorter and more
readable:
‘@d identifier =constant’defines a numeric macro, allowing TANGLE to do rudimentary arithmetic.

‘Qd identifier == PASCAL text’ defines a simple macro, where the identifier will be replaced by the PASCAL
text when TANGLE produces its output.

‘Qd identifier (#) == PASCAL text’ defines a parametric macro, where the identifier will be replaced by
the PASCAL text and where occurrences of # in that PASCAL text will be replaced by an argument.

In all three cases, the identifier must have length greater than one; it must not be a single letter. Furthermore,
the identifier must be making its first appearance in the WEB file; a macro must be defined before it is used.

Numeric macros are subject to the following restrictions: (1) The right-hand side of the numeric defini-
tion must be made entirely from integer constants, numeric macros, preprocessed strings (see below), and
plus signs or minus signs. No other operations or symbols are allowed, not even parentheses, except that
PASCAL-like comments (enclosed in braces) can appear. Indeed, comments are recommended, since it is
usually wise to give a brief explanation of the significance of each identifier as it is defined. (2) The numeric
value must be less than 2 = 32768 in absolute value. (For larger values, you can use ‘==’ in place of ‘=’,
thus making use of a simple macro instead of a numeric one. Note, however, that simple macros sometimes
have a different effect. For example, consider the three definitions ‘@d n1=2 @d n2=2+nl1 @d n3==2+n1’;
then ‘x-n2’ will expand into ‘x-4’, while ‘x-n3” will expand into ‘x-2+2’ which is quite different! It is wise
to include parentheses in non-numeric macros, e.g., ‘@d n3==(2+n1)’, to avoid such errors.)

When constants are connected by plus signs or minus signs in a PASCAL program, TANGLE does the
<arithmetic before putting the constant into the output file. Therefore it is permissible to say, for example,
array [O.. size — 1]’ if size has been declared as a macro; note that PASCAL doesn’t allow this kind of
compile-time arithmetic if size is a constant quantity in the program. Another use of TANGLE’s arithmetic
is to make case statement labels such as ‘flag + 1" legitimate. Of course, it is improper to change 2+2
into 4 without looking at the surrounding context; many counterexamples exist, such as the phrases ‘-2+2’,
x/ 2+42°, and ‘2+2E5’. The program for TANGLE, in the appendix, gives precise details about this conversion,
which TANGLE does only when it is safe.

The right-hand sides of simple and parametric macros are required to have balanced parentheses, and the
PASCAL texts of modules must have balanced parentheses too. Therefore when the argument to a parametric
macro appears in parentheses, both parentheses will belong to the same PASCAL text.

The appendices to this report contain hundreds of typical examples of the usefulness of WEB macros, so
it is not necessary to dwell on the subject here. However, the reader should know that WEB’s apparently

6 WEB USER MANUAL

primitive macro capabilities can actually do a lot of rather surprising things. Here is a construction that
sheds further light on what is possible: After making the definitions

@d two-cases (#)==case j of 1:#(1); 2:#(2); end
Qd reset_file(#)==reset(input_fileQ&#)

one can write ‘two-cases (reset-file)’ and the resulting PASCAL output will be
case j of 1: reset (input-f ilel) ; 2: reset (input-f ile2) ; end

(but in uppercase letters. and with _’s removed). The ‘@&’ operation used here joins together two adjacent
tokens into a single token, as explained later; otherwise the PASCAL file would contain a space between
input-file and the digit that followed it. This trick can be used to provide the effect of an array of files,
if you are unfortunate enough to have a PASCAL compiler that doesn’t allow such arrays. Incidentally, the
cross-reference index made by WEAVE from this example would contain the identifier input-file but it would
not contain tnput_filel or tnput_file2. Furthermore, TANGLE would not catch the error that INPUTFILE1 and
INPUTFILE2 both begin with the same nine letters; one should be more careful when using ‘@&’! But such
aspects of the construction in this trick are peripheral to our main point, which is that a parametric macro
name without arguments can be used as an argument to another parametric macro.

Although WEB’s macros are allowed to have at most one parameter, the following example shows that this
is not as much of a restriction as it may seem at first. Let amac and bmac be any parametric macros, and
suppose that we want to get the effect of

Qd cmac(#1,#2) == amac (#1) bmac(#2)
which WEB doesn’t permit. The solution is to make the definitions

@d cmac (#) == amac(#) dmac
@d dmac (#) == bmac (#)

and then to say ‘cmac (x) (y)’.

There is one restriction in the generality of WEB’s parametric macros, however: the argument to a para-
metric macro must not come from the expansion of a macro that has not already been “started.” For
example, here is one of the things WEB cannot handle:

@d arg == (p)
Qd identity(#) ==
Qp identity arg

In this case TANGLE will complain that the identity macro is not followed by an argument in parentheses.

The WEB language has another feature that is somewhat similar to a numeric macro. A preprocessed
string is a string that is like a PASCAL string but delimited by double-quote marks (") instead of single-
quotes. Double-quote marks inside of such strings are indicated by giving two double-quotes in a row. If
a preprocessed string is of length one (e.g., “A” or """"), it will be treated by TANGLE as equivalent to the
corresponding ASCII-code integer {e.g., 65 or 34). And if a preprocessed string is not of length one, it will be
converted into an integer equal to 128 or more. A string pool containing all such strings will be written out
by the TANGLE processor; this string pool file consists of string 128, then string 129, etc., where each string
is followed by an end-of-line and prefixed by two decimal digits that define its length. Thus, for example,
the empty string "" would be rcpresented in the string pool file by a line containing the two charncters
‘00, while the string “““String”*“” would herepresented by ‘08"String"’. A given string appears at most
once in the string pool; the use of such a pool makes it easier to cope with PASCAL’s restrictions on string
manipulation. The string pool ends with ‘*nnnnnnnnn’, where nnnnnnnnn is a decimal number called the
string pool check sum. If any string changes, the check sum almost surely changes too; thus, the ‘@$’ feature
described bolow makes it possible for a program to assure itself that it is reading its own string pool.

Here is a simple example that combines numeric macros with preprocessed strings of length one:

@d upper-case-Y = "Y"
@d case-difference = -"y"+upper_case_Y

The result is to define upper-case-Y = 89, case.difference = -32.

WEB USER MANUAL 7

Control codes. We have seen several magic uses of ‘@ signs in WEB files, and it is time to make a systematic
study of these special features. A WEB control code is a two-character combination of which the first is ‘@’.

Here is a complete list of the legal control codes. The letters L, T, P, M, C, and/ or S following each,code
indicate whether or not that code is allowable in limbo, in TEX text, in PASCAL text, in module names, in
comments, and/ or in strings. A bar over such a letter means that the control code terminates the present
part of the WEB file; for example, L means that this control code ends a section that is in limbo and begins
non-L material.

Qe [C, L, M, P, S, T] A double @denotes the single character ‘@”. This is the only control code that is legal
in limbo, in comments, and in strings.

Q. [Z,T’,T] This denotes the beginning of a new (unstarred) module. A tab mark or end-of-line (carriage
return) is equivalent to a space when it follows an @sign.

@* [L,P,T] This denotes the beginning of a new starred module, i.e., a module that begins a new major
group. The title of the new group should appear after the @*, followed by a period. As explained above,
TEX control sequences should be avoided in such titles unless they are quite simple. When WEAVE and
TANGLE read a @+, they print an asterisk followed by the current module number, so that the user can
see some indication of progress. The very first module should be starred.

@d [P, T] Macro definitions begin with @d (or (QD), followed by the PASCAL text for one of the three kinds
of macros, as explained earlier.

of [P, T] Format definitions begin with @ (or @F); they cause WEAVE to treat identifiers in a special way
when they appear in PASCAL text. The general form of a format definition is *Qf [==’ followed by
an optional comment enclosed in braces, where 1 and r are identifiers; WEAVE will subsequently treat
identifier 1 as it currently treats r. This feature allows a WEB programmer to invent new reserved words
and/ or to unreserve some of PASCAL's reserved identifiers. The definition part of each module consists
of any number of macro definitions (beginning with Qd) and format definitions (beginning with @f),
intermixed in any order.

6p [P, T The PASCAL part of an unnamed module begins with @p (or @P). This causes TANGLE to append
the following PASCAL code to the initial program text Tg as explained above. The WEAVE processor
does not cause a ‘@p’ to appear explicitly in the TEX output, so if you are creating a WEB file based on
a w-printed WEB documentation you have to remember to insert @p in the appropriate places of the
unnamed modules.

e< [P,T] A module name begins with @< followed by TEX text followed by @>; the TEX text should not
contain any WEB control sequences except @@, unless these control sequences appear in PASCAL text

that is delimited by I...|. The module name may be abbreviated, after its first appearance in a WEB
file, by giving any unique prefix followed by, where the three dots immediately precede the closing
@>.Module names may not appear in PASCAL text that is enclosed in | .. .|, nor may they appear in

the definition part of a module (since the appearance of a module name ends the definition part and
begins the PASCAL part).

Q" [P, T] This denotes an octal constant, to be formed from the succeeding digits. For example, if the
WEB file contains ‘@° 100°, the TANGLE processor will treat this an equivalent to *64'; the constant will
be formatted as “’100” in the TEX output produced via WEAVE. You should use octal notation only for
positive constants; don’t try to get, e.g., —1 by saying ‘@* 777777777777,

@" [P,T] A hexadecimal constant; ‘@"DODO’ tangles to 53456 and weaves to ‘"DODO’.

@$ [P] This denotes the string pool check sum.

@{ [P] The beginning of a “meta comment,” i.c., a comment that is supposed to appear in the PASCAL
code, is indicated by @{ in the WEB file. Such delimiters can be used as isolated symbols in macros or
modules, but they should bc properly nested in the final PASCAL program. The TANGLE processor will
convert ‘@{’into ‘{’ in the PASCAL output file, unless the output is already part of a meta-comment; in
the latter case ‘@{’ is converted into* [’, since PASCAL does not, allow nested comments. Incidentally,
module numnbers are automatically inserted as meta-comments into the PASCAL program, in order to
help correlate the outputs of WEAVE and TANGLE [see Appendix C). Mcta-comments can be used to

WEB USER MANUAL

put conditional text into a PASCAL program; this helps to overcome one of the limitations of WEB,
since the simple macro processing routines of TANGLE do not include the dynamic evaluation of boolean
expressions.

@} [P] The end of a “meta comment” is indicated by ‘@}’; this is converted either into ‘}’ or ‘]’ in the

&

0"

PASCAL output, according to the conventions explained for @{ above.

P] The Q& operation causes whatever is on its left to be adjacent to whatever is on its right, in the
PASCAL output. No spaces or line breaks will separate these two items. However, the thing on the left
should not be a semicolon, since a line break might occur after a semicolon.

P, T] The “control text” that follows, up to the next ‘@>’, will be entered into the index together with
the identifiers of the PASCAL program; this text will appear in roman type. For example, to put the
phrase “system dependencies” into the index, you can type ‘Q-system dependencies@>’ in each module
that you want to index as system dependent. A control text, like a string, must end on the same line of
the WEB file as it began. Furthermore, no WEB control sequences are allowed in a control text, not even
@@. (If you need an @ sign you can get around this restriction by typing ‘\AT! ’.)

e. [P, T] The “control text” that follows will be entered into the index in typewriter type; see the rules

Q:

Qt

(=]
1]

e\
Q!

@?

e/

for ‘@*’, which is analogous.

[P,T] The “control text,, that follows will be entered into the index in a format controlled by the TgX
macro ‘\9’, which the user should define as desired; see the rules for ‘@~’, which is analogous.

[P] The “control text” that follows, up to the next ‘@>’, will be put into a TEX \ hbox and formatted
along with the neighboring PASCAL program. This text is ignored by TANGLE, but it can be used for
various purposes within WEAVE. For example, you can make comments that mix PASCAL and classical
mathematics, as in ‘size < 2!5°, by typing ‘I size < @$2-{15}$@> I’. A control text must end on the
same line of the WEB file as it began, and it may not contain any WEB control codes.

[P] The “control text” that follows, up to the next ‘@>’, will be passed verbatim to the PASCAL program.
[P] Force end-of-line here in the PASCAL program file.

[P,T] The module number in an index entry will be underlined if ‘@ ! > immediately precedes the identifier
or control text being indexed. This convention is used to distinguish the modules where an identifier
is defined, or where it is explained in some special way, from the modules where it is used. A reserved
word or an identifier of length one will not be indexed except for underlined entries. An ‘@!’ is implicitly
inserted by WEAVE just after the reserved words function, procedure, program, and var, and just after
@d and @f. But you should insert your own ‘@!’ before the definitions of types, constants, variables,
parameters, and components of records and enumerated types that are not covered by this implicit
convention, if you want to improve the quality of the index that you get.

[P, T] This cancels an implicit (or explicit) ‘@!’, so that the next index entry will not be underlined.

[P] This control code inserts a thin space in WEAVE's output; it is ignored by TANGLE. Sometimes you
need this extra space if you arc using macros in an unusual way, e.g., if two identifiers arc adjacent.

[P] This control code causes a line break to occur within a PASCAL program formatted by WEAVE; it
is ignored by TANGLE. Line breaks are ‘chosen automatically by TEX according to a scheme that works
99% of the time, but sometimes you will prefer to force a line break so that the program is segmented
according to logical rather than visual criteria. Caution: ‘@/’ should be used only after statements or
clauses, not in the middle of an expression; use @ in the middle of expressions, in order to keep WEAVE's

" parser happy.

al

o#

[P] This control code specifies an optional line break in the midst of an expression. For example, if you
have a long condition between if and then, or a long expression on the right-hand side of an assignment
statement, you can use ‘@ I’ to specify breakpoints more logical than the ones that TgX might choose
on visual grounds.

[P] This control code forces a line break, like @/ does, and it also causes a little extra white space to
appear between the lines at this break. You might use it, for example, between procedure definitions or
between groups of macro definitions that are logically separate but within the same module,

WEB USER MANUAL 9

@+ [P] This control code cancels a line break that might otherwise be inserted by WEAVE, e.g., before the
word ‘else’, if you want to put a short if-then-else construction on a single line. It is ignored by TANGLE.

@; [P] This control code is treated like a semicolon, for formatting purposes, except that it is invisible.
You can use it, for example, after a module name when the PASCAL text represented by that module
name ends with a semicolon.

The last six control codes (namely ‘@,’, ‘@/’,‘@| -, ‘@#’, ‘@+’, and ‘@; ‘) have no effect on the PASCAL program
output by TANGLE; they merely help to improve the readability of the w-formatted PASCAL that is output
by WEAVE, in unusual circumstances. WEAVE's built-in formatting method is fairly good, but it is incapable
of handling all possible cases, because it must deal with fragments of text involving macros and module
names; these fragments do not necessarily obey PASCAL’s syntax. Although WEB allows you to override the
automatic formatting, your best strategy is not to worry about such things until you have seen what WEAVE
produces automatically, since you will probably need to make only a few corrections when you are touching
up your documentation.

Because of the rules by which every module is broken into three parts, the control codes ‘@d’, ‘@f’, and
‘@p’ are not allowed to occur once the PASCAL part of a module has begun.

Additional features and caveats.

1. The character pairs ‘(*’, ‘*)’, °(. < and ‘.) are converted automatically in PASCAL text as though
they were ‘@{’,‘@}’,‘[’, and ‘]’, respectively, except of course in strings. Furthermore in certain installations
of WEB that have an extended character set, the characters ‘#’,‘<’,‘2’) ‘=7, <& <y’ ‘<) and ‘€’ can be used
as abbreviations for ‘<>’, ‘<=’ ¢>=’ ‘. =’ ‘== ‘and’, ‘or’, ‘not’, and ‘in’, respectively. However, the latter
abbreviations are not used in the standard versions of WEAVE. WEB and TANGLE. WEB that are distributed to
people who are installing WEB on other computers, and the programs are designed to produce only standard
ASCII characters as output if the input consists entirely of ASCII characters.

2. If you have an extended character set, all of the characters listed in Appendix C of The TgXbook can
be used in strings. But you should stick to standard ASCII characters if you want to write programs that
will be useful to the all the poor souls out-there who don’t have extended character sets.

3. The TEX file output by WEAVE is broken into lines having at most 80 characters each. The algorithm
that does this line breaking is unaware of TEX’s convention about comments following ‘4’ signs on a line.
When TEX text is being copied, the existing line breaks are copied as well, so there is no problem with ‘%’
signs unless the original WEB file contains a line more than eighty characters long or a line with PASCAL text
in |...|that expands to more than cighty characters long. Such lines should not have ‘)’ signs.

4. PASCAL text is translated by a “bottom up” procedure that identifies each token as a “part of speech”
and combines parts of speech into larger and larger phrases as much as possible according to a special
grammar that is explained in the documentation of WEAVE . It is easy to learn the translation scheme for
simple constructions like single identifiers and short expressions, just by looking at a few examples of what
WEAVE does, but the general mechanism is somewhat complex because it must handle much more than
PASCAL itsclf. Furthermore the output contains embedded codes that cause TEX to indent and break lines
as necessary, depending on the fonts used and the desired page width. For best results it is wise to adhere
to the following restrictions:

a) Comments in PASCAL text should appear only after statements or clauses; i.c., after semicolons, after
reserved words like then and do, or before reserved words like end and else. Otherwise WEAVE’s parsing
method may well get mixed up.

b) Don’t cm-lose long PASCAL texts in | . . . I, since the indentation and line breaking codes are omitted
when the | ... | text is translated from PASCAL to TgX. Stick to simple expressions or statements.

5. Comments and module names are not permitted in | . . . | text. After a ‘|’ signals the change from
TEX text to PASCAL text, the next ‘|’ that is not part of a string or control text ends the PASCAL text.

6. A comment must have properly nested occurrences of left and right braces, otherwise WEAVE and TANGLE
will not know where the comment ends. However, the character pairs ‘\{’ and ‘\}’ do not count as left and
right braces in cominents, and the character pair ‘\|’ does not count as a delimiter that begins PASCAL text.
(The actual rule is that a character after *\’is ignored; hence in ‘\\{’ the left brace does count.) At present,

10 WEB USER MANUAL

TANGLE and WEAVE treat comments in slightly different ways, and it is necessary to satisfy both conventions:
TANGLE ignores ‘|’ characters entirely, while WEAVE uses them to switch between TEX text and PASCAL text.
Therefore, a comment that includes a brace in a string in | ... |—e.g., ‘{ look at this | "{" | }’—will be
handled correctly by WEAVE, but TANGLE will think there is an unmatched left brace. In order to satisfy both
processors, one can write ‘{ look at this \lef tbrace\ }’, after setting up‘\ def \leftbrace{ |"{" |}

7. Reserved words of PASCAL must appear entirely in lowercase letters in the WEB file; otherwise their
special nature will not be recognized by WEAVE. You could, for example, have a macro named END and it
would not be confused with PASCAL’ s end.

However, you may not want to capitalize macro names just to distinguish them from other identifiers.
Here is a way to unreserve PASCAL’ s reserved word ‘type’ and to substitute another word ‘mtype’in the

WEB file.
ed type(#) == mem[#] .t

Qd mtype ==t @& y Q& p Q& ¢
ef mtype == type
Of type == true

In the output of TANGLE, the macro mtype now produces TYPE’ and the macro type(x) now produces
‘MEM[X]. T". In the output of WEAVE, these same inputs produce mtype and type (z), respectively.

8. The @f feature allows you .to define one identifier to act like another, and these format definitions are
carried out sequentially, as the example above indicates. However, a given identifier has only one printed
format throughout the entire document (and this format will even be used before the @f that defines it).
The reason is that WEAVE operates in two passes; it processes @f’s and cross-references on the first pass and
does the output on the second.

9. You may want some @f formatting that doesn’t correspond to any existing reserved word. In that case,
WEAVE could be extended in a fairly obvious way to include new “reserved words” in its vocabulary. The
identifier ‘xclause’ has in fact been included already as a reserved word, so that it can be used to format
the loop’ macro, where loop’ is defined to be equivalent to ‘while true do’.

10. Sometimes it is desirable to insert spacing into PASCAL code that is more general than the thin space
provided by ‘@,’. The @t feature can be used for this purpose; e.g., ‘@t\hskip 1in@>’ will leave one inch of
blank space. Furthermore, ‘@t\4@>’ can be used to backspace by onc unit of indentation, since the control
sequence \4 is defined in webmac to be such a backspace. (This control sequence is used, for example, at the
beginning of lines that contain labeled statements, so that the label will stick out a little at the left.)

11. WEAVE and TANGLE are designed to work with two input files, called web_fileand change-file, where
change-file contains data that overrides sclecttd portions of web_file. The resulting merged text is actually
what has been called the WEB file elsewhere in this report.

Here’s how it works: The change file consists of zero or more “changes,” where a change has the form
‘@x(old lines)@y(new lines)@z’. The special control codes @x, @y, @z, which are allowed only in change files,
must appear at the beginning of a line; the remainder of such a line is ignored. The (old lines) represent
material that exactly matches consecutive lines of the web-file; the (new lines) represent zero or more lines
that arc supposed to replace the old. Whenever the first “old line” of a change is found to match a line in
the web_file, all the other lines in that change must match too.

Between changes, before the first change, and after the last change, the change file can have any number of
lines that do not begin with ‘@x’, ‘@y’, or ‘@z’. Such lines are bypassed and not used for matching purposes.

This dual-input feature is useful when working with a master WEB file that has been received from elsewhere
(e.g., TANGLE. WEB or WEAVE. WEB or TEX . WEB), when changes arc desirable to customize the program for your
local computer system. You will be able to debug your system-dependent changes without clobbering the
master web file; and once your changes arc working, you will be able to incorporate them readily into new
releases of the master web file that you might receive from time to time.

Appendices. The basic ideas of WEB can be understood most easily by looking at examples of “real”
programs. Appendix A shows the WEB input that generated modules 55 59 of the WEAVE program; Appendix B
shows the corresponding TEX code output by WEAVE: und Appendix C shows excerpts from the corresponding
PASCAL code output by TANGLE.

WEB USER MANUAL 11

The complete webs for WEAVE and TANGLE appear as the bulk of this report, in Appendices D and E. The
reader should first compare Appendix A to the corresponding portion of Appendix D; then the same material
should be compared to Appendices B and C. Finally, if time permits, the reader may enjoy, studying the
complete programs in Appendices D and E, since WEAVE and TANGLE contain several interesting aspects, and
since an attempt has been made in these appendices to evolve a style of programming that makes good use
of the WEB language.

Finally, Appendix F is the ‘webmac’ file that sets TEX up to accept the output of WEAVE; Appendix G
discusses how to use some of its macros to vary the output formats; and Appendix H discusses what needs
to be done when WEAVE and TANGLE are installed in a new operating environment.

Performance statistics. The programs in Appendices D and E will optionally keep statistics on how
much memory they require. Here is what they printed out when processing themselves:

TANGLE applied to TANGLE (cpu time 15 sec)
Memory usage statistics:
456 names, 215 replacement texts;
3396+3361bytes, 6683+7314+5803 tokens.

TANGLE applied to WEAVE (cpu time 29 sec)
Memory usage statistics:
692 names, 339 replacement texts;
4576+4294bytes, 10181+9867+9141tokens.

WEAVE applied to TANGLE (cpu time45sec)
Memory usage statistics: 478 names, 2044 cross references, 4158+3725 bytes;
parsing required 684 scraps, 1300 texts, 3766 tokens,119 levels;
sorting required 34 levels.

WEAVE applied to WEAVE (cputime 64sec)
Memory usage statistics: 737 names, 3305 cross references, 4894+4968 bytes;
parsing required 684 scraps, 1300 texts, 3766 tokens, 119 levels;
sorting required 73 levels.

The cpu time for PASCAL to process TANGLE. PAS was approximately 13 seconds, and WEAVE. PAS took
approximately 26 seconds; thus the tangling time was slightly more than the compiling time. The cpu time
for TRX to process TANGLE. TEX was approximately 500 seconds, and WEAVE .TEX took approximately 750
seconds (i.e., about 7seconds per printed page, where these pages are substantially larger than the pages in
a normal book). All cpu times quoted arefor a DECsystem-10.

The file TANGLE. WEB is about 125K characters long; TANGLE reduces it to a file TANGLE. PAS whose size is
about 42K characters, while WEAVE expands it to a file TANGLE. TEX of about 185K. The corresponding file
sizes for WEAVE. WEB, WEAVE.PAS, and WEAVE.TEX are _180K,89K, and 265K.

The much larger file TEX. WEB led to the following numbers:

TANGLE applied to TEX (cpu time 110 sec)
Memory usage statistics:
3752 names, 1768 replacement texts;
41766+41466bytes, 42445+45061+41039tokens.
WEAVE applied to TEX (cpu time 270 sec)
Memory usage statistics: 3410 names, 19699 cross references, 38899+39362 bytes;
parsing required 685 scraps, 1303 texts, 3784 tokens, 104 levels;
sorting required 52 levels.

PASCAL did TEX . PAS in about 75 seconds; TEX did TEX . TEX in about 3600.

0, what a tangled web we weave 0, what a tangled WEB we weave
When first we practise to deceive! When Tex we practise to conceive!

-SIR WALTER SCOTT, Marmion 6:17 (1808) -RICHARD PALAIS (1982)

12 APPENDIX A — WEB FILE FORMAT

Appendix A. This excerpt from WEAVE. WEB produced modules 55-59 in Appendix D. Note that some of
the lines are indented to show the program structure. The indentation is ignored by WEAVE and TANGLE, but
users find that WEB files are quite readable if they have some such indentation.

0+ Searching for identifiers.

The hash table described above is updated by the |id_lookup| procedure,
which finds a given identifier and returns a pointer to Its index in
|byte_start|. The identifier is supposed to match character by character
and it is also supposed to have a given |ilk| code; the same name may be
present more than once if it is supposed to appear In the index with
different typesetting conventions.

If the identifier was not already present, it is inserted into the table.

Because of the way \.{WEAVE}'s scanning mechanism works, it 18 most convenient
to let |1d_lookup| search for an identifier that is present in the |buffer]|
array. Two other global variables specify Its position in the buffer: the
first character is |buffer[id_first]|, and the last is |buffer [1d_loc-1]1!.

0<Glob...0>=

0!1d_first:0..long_buf_size; {vh ere the current identifier begins in the buffer)
0!id_loc:0..long_buf_size; (just after the current Identifier in the buffer)

o

O'hash:array [0..hash_size] of sixteen-bits; {heads of hash lists)

0 Initially all the hash lists are empty.

0<Local variables for init...@>=
0'h:0..hash_size; (index Into hash-head array)

0 ©0<Set init...0>=
for h:=0 to hash size-1 do hash [h] :=0;

0 Acre now is the main procedure for finding Identifiers (and index
entries). The parameter It|is set to the desired |ilk| code. The
identifier must either have |ilk=t|, or we must have

jt=normal| and the identifier must be a reserved word.

op function id_lookup(0'!'t:eight_bits):name_pointer; {finds current Identifier)
label found;

var 1:0..long_buf_size; {index into |buffer|}

Q'h:0..hash_size; {hash code)

0'k:0..max_bytes; (index into |byte_mem|}

0'w:0. .ww-1; <row of |byte_mem|}

0!1:0..1long_buf_size; <length of the given identifier)
0!p:name_pointer; (where the identifier is being sought}

begin 1:=1d_loc-id_first; {compute the length)

o<Compute the hash code |h|€>;

0<Compute the name location |[p|@>;

if p=name_ptr then Q<Enter a new name into the table at position [p|0>;
id_lookup:=p;

end ;

0 A simple hash code is8 used: If the sequence of
ASCII codes is $c_1c_2\1dots ¢_m$, Its hash value will be
$3(2-{n-1}c_1+2-{n-2}c_2+\cdots+c_n)\,\bmod\, |hash_size|.$$

0<Compute the hash...0>=

h:=buffer[id_first]; i:=id_first+i;

while i<id_loc do
begin h:=(h+h+buffer{i]) mod hash-size; iner(i);
end

APPENDIX B — TRANSLATION BY WEAVE

Appendix B. This excerpt from WEAVE. TEX corresponds to Appendix A.

\N66. Searching for identifiers.

The hash table described above is updated by the \\{id_lookup} procedure,
which finds a given identifier and returns a pointer to its Index in
\\{byte_start}. The identifier is supposed to match character by character
and It 18 also supposed to have a given \\{ilk} code; the same name may be
present more than once if it is supposed to appear In the index with
different typesetting conventions.

If the identifier was not already present, It is inserted into the table.

Because of the way \.{WEAVE}'s scanning mechanism works, it 18 most convenient
to let \\{1d_lookup} search for an identifier that 18 present in the %
\\{buffer}

array . Two other global variables specify Its position in the buffer: the

f irst character is $\\{but £ er) [\\{id_t irst}] $, and the last 1s $\\{but fer}[%
\\{id_loc}-1]$.

\Y\P$\4\X9:Globals In the outer block\X\mathrel{+}\8$\6

\4\\{id_first}: \3780\to\\{long_buf_size}$;\C{where the current identifier
begins in the buffer}\6

\4\\{id_loc}: \3780\to\\{long_buf_size}$;\C{just after the current
identifier in the buffer)\7

\4\\{hash}: \37\&{array} $[0\to\\{hash_size}]$ \1\&{of}\5
‘\\{sixteen_bits};\C{heads of hash lists}\2\par

\t4

\MB6. Initially all the hash lists are empty.

\Y\P$\4\X16:Local variables for initialization\X\mathrel{+}\8$\6
\4\|h: \37$0\to\\{hash_size}$;\C{index into hash-head array}\par
\fi

\M67. \P$\X10:Set initial values\X\mathrel{+}\S$\6

\&{for} $\|h\KO\mathrel{\&{to}}\\{hash_size}-1$ \1\&{do}\b
$\\{hash} [\ |h]\KO0$;\2\par

\fti

\M58., Here now is the main procedure for finding identifiers (and index
entries). The parameter \|t is set to the desired \\{ilk} code. The
identifier must either have $\\{i1k}=\|t$, or we must have
$\It=\\{normal}$ and the Identifier must be a reserved word.

\Y\P\4\&{tunction}\1\ \37$\\{id_lookup}(\|t:\\{eight_bits})$: \37\\{name}
_pointer};\C{finds current identifier}\6

\4\&{1abel} \37\\{found};\6

\4\&{var} \37\11: \37$0\to\\{long_buf_size}$;\C{index in t o \\{bufter}}\6
\lh: \3780\to\\{hash_size}$;\C{hash code}\6

\lk: \3780\to\\{max_bytes}$;\C{index i n t o \\{byte_mem}}\6

\lw: \3780\to\\{ww}-1$;\C{row o f \\{byte_mem}}\6

\1: \3780\to\\{long\ _buf_size}$;\C{length of the given identifier}\6
\lp: \37\\{name_pointer};\C{where the identifier is being sought}\2\6
\&{begin} \378\|1\K\\{1d_loc}-\\{1d_first}$;\C{compute the length)\6
\X59:Compute the hash code \|h\X;\6

\X60:Compute the name location \|p\X;\6

\&{it} $\|p=\\{name_ptr}$ \1\&{then}\s

\X62:Enter a new name into the table at position \|p\X;\2\8

$\\{1d\ _lookup}\K\|p$:\6

\&{end};\par

\14

\M59. A simple hash code is used: If the sequence of
ASCII codes is $c_1c_2\ldots c¢_m$, its hash value will be
$8(2°{n-1}c_1+2"{n-2}c_2+\cdots+c_n)\,\bmod\,\\{hash_size}.$$

\Y\P$\4\X569:Compute the hash code \|h\X\3$\6

$\1h\K\\{buffer} [\\{id_tirst}]1$;\6

$\TI\K\\{1d_first}+1$;\6

\&{while} $\[i<\\{1d\ _loc}$ \1\k{do}\6

\&{begin)} \37$\|h\K(\h+\|h+\\{buffer}[\[1])\mathbin{\&{mod}}\\{hash_size}$;\b
$\\{incr}(\l1)$;\6 '
\&{end}\2\par

\U section”68.\f1

14 APPENDIX C — TRANSLATION BY TANGLE

Appendix C. The TANGLE processor converts WEAVE. WEB into a syntactically correct (but not very pretty)
PASCAL program WEAVE. PAS. The first three and last two lines of output are shown here, together with the
lines of code generated by modules 55-62 and the environments of those lines. There are 1546 lines in all;
the notation ¢ . ..” stands for portions that are not shown.

Note that, for example, the code corresponding to module 55 begins with ‘{65 : }’ and ends with ‘{: 66)
the code from modules 59-62 has been tangled into the code from module 58.

{2:1{4:3{$C-,A+,D-}{[$C+,D+]}{: 4}
PROGRAMWEAVE (WEBF ILE, CHANGEFILE, TEXFILE) ; LABEL9999; CONST{8:}
HAXBYTES=46000; MAXNAMES=5000 ; MAXMODULES=2000 ; HASHSIZE=353 ; BUFSIZE=100;

TOKPTR:0..MAXTOKS ; {MAXTOKPTR ,MAXTXTPTR:0. . MAXTOKS; }{:63}{65:}
IDFIRST:0..LONGBUFSIZE; IDLOC:0. .LONGBUFSIZE;
HASH:ARRAY [0. .HASHSIZE]OF SIXTEENBITS;<{:55}{63:}CURNAME: NAMEPOINTER;

PROCEDURE INITIALIZE;VAR{16:}I:0..127;{:16}{40:}WI:0..1;{:40}{66:}
H:0. .HASHSIZE;{:56}{247:}C:ASCIICODE; {:247}BEGIN{10: }HISTORY:=0;{: 10}

TOKPTR:=1; TEXTPTR:=1; TOKSTART[0] :=1; TOKSTART[1] :=1; {MAXTOKPTR:=1;
MAXTXTPTR:=1;}{:54}{57:}FOR H:=0 TO HASHSIZE— DO HASH[H]:=0;{:57}{94:}
SCANNINGHEX :=FALSE; {:94}{102:}MODTEXT[0] :=32; {:102}{124: }OUTPTR: =1;

IF R=0 THEN XREF [P] : =XREFPTR ELSE XMEM[R] . XLINKFIELD:=XREFPTR;END;{:51}
{58:}FUNCTION IDLOOKUP(T:EIGHTBITS):NAMEPOINTER;LABEL 31;

VAR I:0..LONGBUFSIZE;H:0..HASHSIZE;K:0..MAXBYTES;W:0..1;
L:0..LONGBUFSIZE; P :NAMEPOINTER; BEGIM.:=IDLOC-IDFIRST; {69:}
H:=BUFFER[IDFIRST];I:=IDFIRST+1;

WHILE I<IDLOC DO BEGIN H:=(H+H+BUFFER[I])MOD HASHSIZE;I:=I+1;END{:59};
{60:}P:=HASH[H];

WHILE P<>0 DO BEGIN IF (BYTESTART [P+2] -BYTESTART [P]=L)AND((ILK[P]=T)OR((T
=0)AND(ILK[P]>3)))THEN{61:}BEGIN I-=IDFIRST;K:=BYTESTART[P];W:=P MOD 2;
WHILE (I<IDLOC)AND (BUFFER([I]=BYTEMEM[W,K])DOBEGINI:=I+1;K:=K+1;END;

IF I=IDLOC THEN GOTO 31;END{:61};P:=LINK[P];END;P:=NAMEPTR;

LINK([P] :=HASH[H] ; HASH{H] :=P;31:{:60}; IF P=NAMEPTR THEN{62:}

BEGIN W:=NAMEPTR MOD 2;

IF BYTEPTR{W]+L>MAXBYTES THEN BEGIN WRITELN (TERMOUT) ;

WRITE (TERMOUT, '! Sorry, ’,’byte memory’, capacity exceeded’) ;ERROR;
HISTORY:=3; JUMPOUT;END;

IF NAMEPTR+2>MAXNAMES THEN BEGIN WRITELN (TERMOUT) ;

WRITE(TERMOUT, 't Sorry, ', ’name’,’ capacity exceeded’);ERROR;HISTORY:=3;
JUMPOUT;END; I:=IDFIRST;K:=BYTEPTR[W];

WHILE I<IDLOC DO BEGIN BYTEMEM[W,K]:=BUFFER[I];K:=K+1;I:=I+1;END;
BYTEPTR [W] : =K ; BYTESTART [NAMEPTR+2] : =K ; NAMEPTR : =NAMEPTR+1 ; ILK [P] : =T;
XREF[P] :=0;END{:62};IDLOOKUP:=P;END;{:58}{66:}

FUNCTION MODLOOKUP (L:SIXTEENBITS) :NAMEPOINTER; LABEL 31;VAR C:0..4;

WRITE (TERMOUT, ' (That was afatal error, my friend.) ') ;END;END{:263};
END.{:261}

Appendix D

The WEAVE processor

(Version 2.3)

Section
IntroducCtion . ..o I
The character set 1
Input and OUEPUL - e e v et e e e e e et e 19
REPOItNG €IIOrS t0 thE WSEI vt vt v ettt ettt ettt e ettt e e e et 29
DatastIUCIUTES .ottt ettt e 36
Searching for identifiersoonue o 55
Initializing the table of reserved words -« v oo 63
Searching for MOdUlE MAMES - -+« v vvvve ettt et e et e 65
Lexical SCANMINGottt 70
Inputting the next token- P 93
PhaseOnePrOCESSIIE . v vttt ettt e e et e e e e e 108
LOW-1eVEIOULPULIOULIIES « « v e vttt ettt ettt et ettt et e e e e e e e e e et e e e 121
Routines that copy 'I‘Ex MAtErIA] « - v v r e e e 132
PaTSINE oo 139
Implementing the productions -v i 144
Initializing the SCTAPS\ttt 183
Output of FOKENS 200
PhasetWwoproCesSINg ... i 218
Phase three PrOCESSINEttt ettt et e e e e e e e e 239
DU i g o et 258
Themainprogram 261
System-dependent CRANEES ..o vt ettt ettt et et e e e e e 264

Index 265

Page
16
19
23
25
27
32
34
36
38
46
52
56
59
62
69
83
90
97
104
109
111
112
113

16 INTRODUCTION WEAVE §1

1. Introduction. This program converts a WEB file to a TEX file. It was written by D. E. Knuth in
October, 1981; a somewhat similar SAIL program had been developed in March, 1979, although the earlier
program used a top-down parsing method that is quite different from the present scheme.

The code uses a few features of the local PASCAL compiler that may need to be changed in other
installations:

1) Case statements have a default.
2) Input-output routines may need to be adapted for use with a particular character set and/ or for printing
messages on the user’s terminal.

These features are also present in the PASCAL version of TEX, where they are used in a similar (but more
complex) way. System-dependent portions of WEAVE can be identified by looking at the entries for ‘system
dependencies’ in the index below.

The “banner line” defined here should be changed whenever WEAVE is modified.

define banner = ‘This_is WEAVE, _Version 2.3 *

2. The program begins with a fairly normal header, made up of pieces that will mostly be filled in later.
The WEB input comes from files web_file and change-file, and the TEX output goes to file tez_file.

If it is necessary to abort the job because of a fatal error, the program calls the jump-out’ procedure,
which goes to the label end_of WEA VE.

define end.of. WEAVE = 9999 { go here to wrap it up }

(Compiler directives 4)
program WEAVE (web-file, change-file, tez_ﬁle);
label end-of- WEAVE; {go here to finish }
const (Constants in the outer block 8)
type (Types in the outer block 11}
var (Globals in the outer block 9)
(Error handling procedures 30)
procedure inirialize ;
var (Local variables for initialization 18)
begin (Set initial values 10)
end;

3. Some of this code is optional for use when debugging only; such material is enclosed bctwcen the
delimiters debug and gubed. Other parts, delimited by stat and tats, are optionally included if statistics
about WEAVE’s memory usage arc desired.

define debug = @{ {change this to ‘debug =’ when debugging }
define gubed = @} {change this to ‘gubed =’ when debugging }
format debug = begin

format gubed = end

define stat = @{ {change this to ‘stat
define tats = @} { change this to ‘tats
format stat = begin
format tats = end

>when gathering usage statistics }
> when gathering usage statistics}

§4 WEAVE INTRODTJICTION 17
4. The PASCAL compiler used to develop this system has “compiler directives” that can appear in com-
ments whose first character is a dollar sign. In production versions of WEAVE these directives tell the compiler
that it is safe to avoid range checks and to leave out the extra code it inserts for the PASCAL debugger’s
benefit, although interrupts will occur if there is arithmetic overflow.
(Compiler directives 4) =

e{e&$C—, A+, D—@} {no range check, catch arithmetic overflow, no debug overhead }

debug @{e&$C+, D+@} gubed {but, turn everything on when debugging }

This code is used in section 2.

5. Labels are given symbolic names by the following definitions. We insert the label ‘exit :’ just before
the ‘end’ of a procedure in which we have used the Treturn’ statement defined below; the label ‘restart’
is occasionally used at the very beginning of a procedure; and the label ‘reswirch’ is occasionally used just
prior to a case statement in which some cases change the conditions and we wish to branch to the newly
applicable case. Loops that are set up with the loop construction defined below are commonly exited by
going to ‘done’ or to ‘found’ or to ‘not-found’, and they are sometimes repeated by going to ‘continue’.

define exit = 10 { go here to leave a procedure }

define restart = 20 { go here to start a procedure again }

define reswitch = 21 {g0 here to start a case statement again}

define continue = 22 { go here to resume a loop }

define done = 30 { go here to exit a loop }

define found = 31 {go here when you’ve found it }

define not-found = 32 {go here when you’'ve found something else }

6. Hcrc are some macros for common programming idioms.

define incr (#) =# «— # + 1 {increase a variable by unity }
-define decr(#) =# — #—1 {decrease a variable by unity}
define loop = while rrue do {repeat over and over until a goto happens }
define do-nothing = {empty statement }
define return = goto exir {terminate a procedure call }
format return = nil
format loop = zclause

7. Wc assume that case statements may include a default case that applies if no matching label is found.
Thus, wc shall use constructions like

case x of

1: (code for x = 1);

3: (code for x = 3);

othercases (code for x # 1 and x # 3)
endcases

since most PASCAL compilers have plugged this hole in thr language by incorporating some sort of default
mechanism. For cxample, the compiler used to develop WEB and TX allows ‘others:’ as a default label, and
other PASCALs allow syntaxes like ‘else’ or ‘otherwise’ or ‘otherwisc:’, etc. The definitions of othercases
and endcases should be changed to agree with local conventions. (Of course, if no default mechanism is
available, the case statements of this program must be extended by listing all remaining cases.)

define othercases = others: {default for cases not listed explicitly }

define endcases = end {follows the default case in an extended case statement }
format, othercasea = else

format endcases = end

18 INTRODUCTION WEAVE §8

8. The following parameters are set big enough to handle TEX, so they should be sufficient for most
‘ applications of WEAVE.

(Constants in the outer block 8)E

mm-bytes = 45000; { l/ww times the number of bytes in identifiers, index entries, and module names;
must bc less than 65536)

maz-names = 5000; {number of identifiers, index entries, and module names; must be less than 10240)
maz_modules = 2000; { greater than the total number of modules}
hash-size = 353; {should be prime }
buf-size = 100; {maximum length of input line }
longest-name = 400; {module names shouldn’t be longer than this }
long-buf_size = 500; { buf-size + longest-name }
line-length = 80; {lines of TgX output have at most this many characters, should be less than 256)
maz.refs = 20000; {number of cross references; must be less than 65536 }
maz-toks = 20000; {number of symbols in PASCAL texts being parsed; must be less than 65536 }
maz_tezts = 2000; {number of phrases in PASCAL texts being parsed; must be less than 10240 }
maz_scraps = 1000; { number of tokens in PASCAL texts being parsed }
stuck-size = 200; { number of simultaneous output levels }

This code is used in section 2.

9. A global variable called history will contain one of four values at the end of every run: spotless means that
no unusual messages were printed; harmless-message means that a message of possible interest was printed
but no serious errors were detected; error-message means that at least one error was found; fatal-message
means that the program terminated abnormally. The value of history does not influence the behavior of the
program; it is simply computed for the convenience of systems that might want to use such information.

define spotless = 0 { history value for normal jobs}
define harmless-message = 1 { history value when non-serious info was printed }
define error-message = 2 { history value when an error was noted }
define fatal-message = 3 { history value when we had to stop prematurely}
define mark-harmless =

if history = spotless then history « harmless-message

define mark-error = history « error-message

define mark-fatal = history <+ fatal-message
(Globals in the outer block 9) =
history: spotless . . fatal-message; {hOW bad was this run?}

See also sections 13, 20, 23, 25, 27, 29, 37, 39, 45, 48, 53, 55, 63, 65, 71, 73, 93, 108, 114, 118, 121, 129, 144, 177, 202, 219, 229,
234, 240, 242, 244, 246, and 258.

This code is used in section 2.

10. (Set initial values 10) =
history < spotless;
Sce also sections 14, 17,18, 21, 26, 41, 43, 49, 54, 57, 94, 102, 124, 126, 145, 203, 245, 248, and 259.

This code is used in scction 2.

§11 WEAVE THE CHARACTER SET 19

11. The character set. One of the main goals in the design of WEB has been to make it readily portable
between a wide variety of computers. Yet WEB by its very nature must use a greater variety of characters than
most computer programs deal with, and character encoding is one of the areas in which existing machines
differ most widely from each other.

To resolve this problem, all input to WEAVE and TANGLE is converted to an internal seven-bit code that is
essentially standard ASCII, the “American Standard Code for Information Interchange.” The conversion is
done immediately when each character is read in. Conversely, characters are converted from ASCII to the
user’s external representation just before they are output.

Such an internal code is relevant to users of WEB only because it is the code used for preprocessed constants
like "A". If you are writing a program in WEB that makes use of such one-character constants, you should
convert your input to ASCII form, like WEAVE and TANGLE do. Otherwise WEB's internal coding scheme does
not affect you.

Here is a table of the standard visible ASCII codes:

0 1 2 9 4 5 7
(ZUN Y ! " # $ % & ’
050 () * + , - /
060 0 1 2 3 4 5 6 7
070 8 9 » < = > ?
100 Q A B C D E - F G
110 H I J K L M N 0
‘120 P Q R S T [V N W
130 X Y Z [\ 1) -
‘140 ¢ a b c d e f g
150 h i j: k 1 m n 0
160 p q I $ t U v w
‘170 x z { 1 } -

(Actually, of course, code ‘040 is an invisible blank space.) Code ‘136 was once as an upward arrow (t),
and code ‘137 was once a left arrow (+), in olden times when the first draft of ASCII code was prepared; but
WEB works with today’s standard ASCII in which those codes represent circumflex and underline as shown.
(Types in the outer block 11) =

ASCll-code = 0 . . 127; {seven-bit numbers, a subrange of the integers }
See also sections 12, 36, 38, 47, 52, and 201.

This code is used in section 2.

20 THE CHARACTER SET WEAVE §12

12. The original PASCAL compiler was designed in the late 60s, when six-bit character sets were common,
so it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital and
small letters in a convenient way, so WEB assumes that it is being used with a PASCAL whose character set
contains at least the characters of standard ASCII as listed above. Some PASCAL compilers use the original
name char for the data type associated with the characters in text files, while other PASCALs consider char
to be a 64-element subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name text-char to stand for the data type of
the characters in the input and output files. We shall also assume that rext-char consists of the elements
chr (first-text-char) through chr (last-text-char), inclusive. The following definitions should be adjusted if
necessary.

define rext-char = char { the data type of characters in text files }
define first-text-char = 0 {ordinal number of the smallest element of text-char }
define last_tezt_char = 127 f{ordinal number of the largest element of text-char }

(Types in the outer block 11) +=
text_file = packed file of text-chars

13. The WEAVE and TANGLE processors convert between ASCII code and the user’s external character set
by means of arrays xord and xchr that are analogous to PASCAL’s ord and chr functions.

(Globals in the outer block 9) +=

zord: array [rext-char] of ASClI-code; {specifies conversion of input characters }

xchr : array [ASCII-code] of text-char ; { specifies conversion of output characters }

§14 WEAVE THE CHARACTER SET 21

14. If we assume that every system using WEB is able to read and write the visible characters of stan-
*dard ASCII (although not necessarily using the ASCII codes to represent them), the following assignment
statements initialize most of the’xchr array properly, without needing any system-dependent changes. For
example, the statement xchr [€°101] :='A . that appears in the present WEB file might be encoded in, say,
EBCDIC code on the external medium on which it resides, but TANGLE will convert from this external code
to ASCII and back again. Therefore the assignment statement XCHR [65]: = ‘A’ will appear in the corre-
sponding PASCAL file, and PASCAL will compile this statement so that xchr [65] receives the character A in
the external (char) code. Note that it would be quite incorrect to say xchr [@°101] :="A",because "A" is a
constant of type integer, not char, and because we have "A" = 65 regardless of the external character set.

(Set initial values 10) +=
zehr[’40) « U5 zchr[§1] « “V°; zchr['42] — "5 zchr[48] « “#°; zchr[44] « $;
zchr["45] « %75 zchr[46] «— &5 zehe[47] — 75
zchr['50] « " (75 zchr['51] «) ; zehr[58] « %75 zchr 58] — "+ xchr (540 0

zchr['55] « *=°; zchr[56) « . 7 zehr['57] « °/°;

xchr ['60)«— "0°: zchr[61] t '1'; zchr[62] — '2'; :m:hr['63] — 3 xchr ['64] — “4;
xchr ['65) ¢ "6°; zchr['66] « <6'; zchr['67] — ‘7’;

xchr [70)« “87; zchr[T1] « "9°; zchr["72] « ": *; zchr 78] « “; "y xchr ["74] « <5
zchr[75) « =" zchr[76] — ® >;zchr[77] e 7";

xchr [100])« “Q@"; xchr [‘101 | — “A"; zchr[’102] t “B"; zchr|'108| « "C”; zchr[104] — "D*;

xchr ['105] —
xchr ['110] —
xchr ['115] —

‘E’; xchr [106
'H'; xchr [‘111
‘M’; xchr [‘116

t °F; zchr[107]4—. G’
— “1°; zchr['112]) £ '3'; zchr[118]<® K;zchr[114}< L";
t® N'; xchr[117]<"0";

xchr[’l?O]‘*— ‘P xchr{’l?l - ® Q; zchr[122] t ‘R .’Z:Chr[123]*-— S IChr[124]
xchr [185)— U5 xchr [‘126| t “V*; xchr [127 — W °
xchr [180}~ “X";xchr [181t °Y 75 xchr [132] « 'Z
zchr['185] « °1°; zchr['186| t *~ s zchr[197])— ® -
zchr['140) « ** 5 zchr|['141 ‘a’; xchr [142] «— ‘b"; zchr[143] —‘c xchr[144’]4— 'd';
zchr('145) « “e’; zchr['146| t "£ 5 zchr [147~ ®

xchr [150}« “h*; xchr[‘151|t “i°; xchr[158)«"j";zchr[153]—@® x';
zchr(155) « "m*; zchr['156 | « ‘n”; zchr['157] « “o°;

zchr["160] « “p°; zchr['161| 1 "q"; xchr ['162] « "r7; zchr| ‘163) — "85 xchr['164] « “t7;
zchr('165] « “u’; zchr['166 ¢ O uchr[167) w7

zchr[170] ¢ “x"; zchr[171] ¢ “y*; zchr[172]) — 275 zchr[(178] «— {5x ¢ h r 1T} e="17;
zchr(175) « *}*; zchr['176] « °
zchr[0] «— "7 xchr [17} — L7

°e zchr['133] — " [*; xchr ["134] — "\

zehr [154)— '17;

-~

{these ASCII codes are not used }

15. Some of the ASCII codes below 40 have becn given symbolic names in WEAVE and TANGLE because
they are used with a special meaning.
define and-aign 4
define not-sign =5

{ equivalent to 'and' }

{ equivalent to ‘not’ }

define ser-element-sign ‘6 {equivalent to ‘in’}

define rab-murk = ‘11 { ASCII code used as tab-skip}

define line-feed = ‘12 { ASCII code thrown away at end of line}
define form_feed = 14 { ASCII code used at end of page}
define curriage-return ‘15 {ASCII code used at end of line}
define left_arrow = ‘80 {equivalentto‘:="}

define not-equal = 32 {equivalent to ‘<>’}
define less-or-equul = ‘34 {equivalent to ‘<=’}
define greater_or_equal = ‘35 {equivalent to *>="}
define equivalence-sign = 36 { cquivalent to ‘=="}
define or-sign = ‘37 { equivalent to ‘or’ }

22 THE CHARACTER SET WEAVE 8§16

16. When we initialize the xord array and the remaining parts of xchr, it will be convenient to make use
of an index variable, §.

(Local variables for initialization 16) =
i 0 . . last-text-char;
See also sections 40, 56, and 247.

This code is used in section 2.

17. Here now is the system-dependent part of the character set. If WEB is being implemented on a garden-
variety PASCAL for which only standard ASCII codes will appear in the input and output files, you don’t
need to make any changes here. But at MIT, for example, the code in this module should be changed to

for i t 1 to 37 do zchr[i] « chr(3);

WEB's character set is essentially identical to MIT’s, even with respect to characters less than ‘40.

Changes to the present module will make WEB more friendly on computers that have an extended character
set, so that one can type things like # instead of <>.If you have an extended set of characters that are easily
incorporated into text files, you can assign codes arbitrarily here, giving an xchr equivalent to whatever
characters the users of WEB are allowed to have in their input files, provided that unsuitable characters do
not correspond to special codes like carriage-return that are listed above.

(The present file WEAVE. WEB does not contain any of the non-ASCII characters, because it is intended
to be used with all implementations of WEB. It was originally created on a Stanford system that has a
convenient extended character set, then “sanitized” by applying another program that transliterated all of
the non-standard characters into standard equivalents.)

(Set initial values 10) +=
for i « 1 to 37 do zehr[f] t "y";

18. The following system-independent code makes the xord array contain a suitable inverse to the infor-
mation in xchr.

(Set initial values 10) +=

for i « first-text-char to last_text_char do zord[chr(i)] — 40;
for 1 — 1 to 176 do zord[zchr [i]] t i;

§19 WEAVE INPUTANDOUTPUT 23

19. Input and output. The inputconventions of this program are intended to be very much like those
of TEX (except, of course, that they are much simpler, because much less needs to be done). Furthermore
they are identical to those of TANGLE. Therefore pcople who need to make modifications to all three systems
should be able to do so without too many hcadaches.

We use the standard PASCAL input/ output procedures in several places that TEX cannot, since WEAVE
does not have to deal with files that are named dynamically by the user, and since there is no input from
the terminal.

20. Terminal output is done by writing on file term-out, which is assumed to consist of characters of type
text-char:
define print (#) = write (term-our, #) { ‘print’ means write on the terminal }
define print-ha(#) = write-In (term-out, #) {‘print ’ and then start new line }
define new-line = write_In (term-our) {start new line }
define print-d (#) = { printin érmation starting on a new line }
begin new-line ; print (#);
end
(Globals in the outer block 9) +=
term-out : text-file ; {the terminal as an output file.}

21. Different systems have different ways of specifying that the output on a certain file will appear on
the user’s terminal. Here is one way to do this on the PASCAL system that was used in TANGLE's initial
development:
(Set initial values 10) +=

rewrite (term-out, 'TTY: *); { send rerm-out output to the terminal}

22. The update-terminal procedure is called when we want to make sure that everything we have output
to the terminal so far has actually left the computer’s internal buffers and been sent.

define update-terminal = break (term-out) {empty the terminal output buffer }

23. The main input comes from web-fife; this input may be overridden by changes in change-file. (If
change-file is empty, there are no changes.)

(Globals in the outer block 9) +=
we b_file :text-file; {primary input }
change-file : tezt_file; {updates }

24. Thefollowing code opens the input files. Since these files were listed in the program header, we assnme
that the PASCAL runtime system has already checked that suitable file names have been given; therefore
no additional error checking needs to be done. We will see below that WEAVE reads through the entire input
twice.

procedure open-inpur ; { prepare to read web_file and change-file }
begin reset (web-file); reset (change-file);
end;

25. The main output goes to tez_file.

(Globals in the outer block 9) +=
tex_file : text-file;

24 INPUT AND OUTPUT WEAVE §26

26. The following code opens tez_file. Since this file was listed in the program header, we assume that the
PASCAL runtime system has checked that a suitable external file name has been given.

(Set initial values 10) +=
rew rite (tez.ﬁle);

27. Input goes into an array called buffer.

(Globals in the outer block 9) +=
buffer: array [0 . . long-buf-size] of ASCII-code;

28. The input-h procedure brings the next line of input from the specified file into the buffer array and
returns the value true, unless the file has already been entirely read, in which case it returns false. The
conventions of TEX are followed; i.e., ASCII_code numbers representing the next line of the file are input
into buffer [0], buffer [1],. . ., buffer [limit — 1]; trailing blanks are ignored; and the global variable limit is set
to the length of the line. The value of limir must be strictly less than buf-size.

We assume that none of the ASCII-code values of buffer [5] for 0 < j < limir is equal to 0, ‘177, line-feed,
form-feed, or carriage-return. Since buf_sizeis strictly less than long_buf_size,some of WEAVE’s routines use
the fact that it is safe to refer to buffer [limir + 2] without overstepping the bounds of the array.

function inpur-h (var f : tezt_file): boolean; {inputs a line or returns false }
var final-limit : 0 . . buf-size ; { limit without trailing blanks}
begin limit t 0; final-limit t 0;
if eof (f) then input-h « false
else begin while —eoln (f) do
begin buffer[limit] — zord[f1]; get(f); incr (Zimit);
if buffer flimit — 1] # "™ then final-limit « limit ;
if limit = buf_size then
begin while —eoln(f) do ger(f);
decr (limit); { keep buffer [buf-size] empty }
print-nl (* ! _Input_line_too_long °); loc « 0; error;
end;
end;
read-h (f); limit « final-limit; input-h + true ;
end;
end;

§29 WEAVE REPORTING ERRORS TO THE USER 25

29. Reporting errors to the user. The WEAVE processor operates in three phases: first it inputs the
source file and stores cross-reference data, then it inputs the source once again and produces the TEX output
file, and finally it sorts and outputs the index.

The global variables phase_one and phase-three tell which Phase we are in.

(Globals in the outer block 9) +=
phase-one : boolean ; { true in Phase 1, false in Phases II and III}
phase-three : boolean; { true in Phase III, false in Phases I and II}

30. If an error is detected while we are debugging, we usually want to look at the contents of memory. A
special procedure will be declared later for this purpose.

(Error handling procedures 30)‘:.'-
debug procedure debug-help; forward; gubed
See also sections 31 and 33.

This code is used in section 2.

31. The command ‘err-print (*! _Error_message ")’ will report a syntax error to the user, by printing the
error message at the beginning of a new line and then giving an indication of where the errcr was spotted
in the source file. Note that no period follows the error message, since the error routine will automatically
supply a period.

The actual error indications are provided by a procedure called error. However, error messages are not
actually reported during phase one, since errors detected on the first pass will be detected again during the
second.

define err-print (#) =

begin if —phase_one then
begin new-line ; print (#); error ;
end;
end
(Error handling procedures 30) 4=
procedure error; {prints ‘.’ and location of error message }

var k, 1: 0 . . long_buf size; {indices into buffer }

begin (Print error location based on input buffer 32);

update-terminal; mark-error;

debug debug-skipped < debug-cycle; debug-help; gubed

end;

26 REPORTING ERRORS TO THE USER WEAVE §32

32. The error locations can be indicated by using the global variables loc, line, and changing, which tell
respectively the first unlooked-at position in buffer , the current line number, and whether or not the current
line is from change-file or web_file. This routine should be modified on systems whose standard text editor
has special line-numbering conventions.

(Print error location based on input buffer 32)=
begin if changing then print (*. (change f ile_ ") else print (*. ,(");
print_n (‘1., line : 1,));
if loc > limit then | « limit
else | « loc;
for k « 1 to 1 do
if buffer (k — 1] = tab-mark then print ("L ")
else print (zchr [buffer [k — 1]]}); { print the characters already read }
new -line |
for k1 to 1 do print (’u'); {space out the next line }
for k «— 1 + 110 limit do print(zchr{buffer{k — 1]]); {print the part not yet read}

if buffer [limir] = " | " then print (zchr {" I’]); {end of PASCAL text in module names }
print{ "°); {t is space separates the message from future asterisks }
end

This code is used in section 31.

33. The jump-out procedure just cuts across all active procedure levels and jumps out of the program.
This is the only non-local goto statement in WEAVE. It is used when no recovery from a particular error has
been provided.

Some PASCAL compilers do not implement non-local goto statements. In such cases the code that
appears at label end-of- WEAVE should be copied into the jump-our procedure, followed by a call to a
system procedure that terminates the program.

define fatal-error (#) =

begin new_line ; print (#); error; mark_fatal; jump-out ;
end
(Error handling procedures 30) +=
procedure jump-out;
begin goto end-of- WEAVE;
end;

34, Sometimes the program’s behavior is far different from what it should be, and WEAVE prints an error
message that is rcally for the WEAVE maintenance person, not the user. In such cases the program says
confusion (“indication_of _where we_ are’).

define confusion (# = fatal_error (*! _This_can ' t_happen, (", #,")")

35. Anoverflow stop occurs if WEAVE's tables aren’t large enough.

define overflow (#) = fatal_error ("' Sorry, °, #,° capacity_exceeded’)

§36 WEAVE DATA STRUCTURES 27

36. Data structures. During the first phase of its processing, WEAVE puts identifier names, index entries,
and module names into the large byre-mem array, which is packed with seven-bit integers. Allocation is
sequential, since names are never deleted.

An auxiliary array byte-start is used as a directory for byte-mem, and the fink, ilk, and zref arrays give
further information about names. These auxiliary arrays consist of sixteen-bit items.

(Types in the outer block 11) += ‘
eight-bits = 0 . . 255; {unsigned one-byte quantity }
sizteen-bits = 0 .. 65535, {unsigned two-byte quantity }

37. WEAVE has been designed to avoid the need for indices that are more than sixteen bits wide, so that it

can be used on most computers. But there arc programs that need more than 65536 bytes; TEX is one of
these. To get around this problem, a slight complication has been added to the data structures: byre-mem is

a two-dimensional array, whose first index is either O or 1. (For generality, the first index is actually allowed

to run between 0 and ww — 1, where ww is defined to be 2; the program will work for any positive value of
ww, and it can be simplified in obvious ways if ww = 1.)

define ww =2 {we multiply the byte capacity by approximately this amount }

(Globals in the outer block 9) +=

byte-mem: packed array [0 .. ww — 1,0 . . maz_bytes] of ASCII-code; {characters of names}
byte-start: array [0 . . maz-names] of sizteen-bits; { directory into byte.mem }

link: array [0 . . maz-names] of sizteen_bits; {hash table or tree links }

ilk: array [0 . . maz_names] of sizteen-bits ; {type codes or tree links }

zref : array [0 .. maz.names] of sisteen-6irs ; {heads of cross-reference lists }

38. The names of identifiers are found by computing a hash address & and then looking at strings of
bytes signified by hashih], link|hash[h]), link[link[hash[R]]], . . ., until either finding the desired name or
encountering a zero.

A ‘name_pointer ’ variable, which signifies a name, is an index into byte-start. The actual sequence of
characters in the name pointed to by p appears in positions byte-sturt [p] to byte-start [p + ww] — 1, inclusive,
in the segment of byre-mem whose first index is p mod ww. Thus, when ww = 2 the even-numbered name
bytes appear in byte_mem|0, *] and the odd-numbered ones appear in byte_mem|l, *]. The pointer 0 is used
for undefined module names; we don’t want to USC it for the names of identifiers, since 0 stands for a null
pointer in a linked list.

Wc usually have byte-start [name-ptr + w] = byte-ptr [(name-ptr + w) mod ww] for 0 < w < ww, since
these arc the starting positions for the next ww names to be stored in byte-mem.

define length (#) = byte-start [# + ww] — byte-start [#] {the length of a name }

(Types in the outer block 11). +=
name-pointer = 0 . . maz_names; {identifies a name }

39. (Globals in the outer block 9) +=
name_ptr: name-pointer ; { first unused position in byre-start }
byte-ptr : array [0 . . ww — 1] of O . . muz-bytes; { first unused position in byte-mem }

40. (Local variables for initialization 18) +=
wi: 0..ww-1; {to initialize the byte-mem indices }

41. (Set initial values 10) +=
for wi « 0to ww — 1 do
begin byte-start [wi] « 0; byte-ptr [wi] < 0;
end;
byte-sturt [ww] — 0; { this makes name 0 of length zero}
name-ptr +— 1;

28 DATA STRUCTURES WEAVE

42. Several types of identifiers are distinguished by their tlk:
normal identifiers are part of the PASCAL program and will appear in italic type:
roman identifiers are index entries that appear after @ in the WEB file.
wildcard identifiers are index entries that appear after @: in the WEB file.

typewriter identifiers are index entries that appear after @. in the WEB file.

§42

array-like, begin-like, . . . , war-like identifiers are PASCAL reserved words whose ilk explains how they are

to be treated when PASCAL code is being formatted.

Finally, if c is an ASCII code, an ilk equal to char-like + ¢ denotes a reserved word that will be converted

to character c.

define normal = 0 { ordinary identifiers have normal ilk }

define roman = 1 {normal index entries have roman ilk }

define wildeard = 2 {user-formatted index entries have wildcard ilk }
define typewriter = 3 { ‘typewriter type’ entries have rypewriter ilk }
define reserved (#) = (dlk[#] > typewriter) {tells if a name is a reserved word }
define array-like = 4 f{array, file, set }

define begin-like = 5 { begin }

define case-like = 6 {case }

define const-like = 7 { const, label, type }

define div-like = 8 { div, mod }

define do-like = 9 { do, of, then}

define else-like = 10 {else }

define end-like = 11 {end }

define for-like = 12 { for, while, with}

define goro-like = 13 { goto, packed}

define if-like = 14 {if }

define in-like = 15 {in }

define nil-like = 16 {nil }

define proc-like = 17 { function, procedure, program}

define record-like = 18 { record } -

define repeat-like = 19 { repeat }

define ro-like = 20 { downto, to}

define until-like = 21 {until}

define varlike = 22 {var}

define loop-like = 23 {loop, xclause }

define char-like = 24 {and, or, not, in }

43. The names of modules are stored in byre-mem together with the identifier names, but a hash table is
not used for them because WEAVE needs to be able to recognize a module name when given a prefix of that
name. A conventional binary seach tree is used to retrieve module names, with fields called ilink and rlink

in place of link and ilk. The root of this tree is rlink[0].

define Ilink = link {left link in binary scarch tree for module names }
define rlink = itk {right link in binary scarch tree for module names }

define roor = rlink[0] {the root of the binary search tree for module names }

(Set initial values 10)+ =
root « 0; {the binary search tree starts out with nothing in it }

§44 WEAVE D AT A STRUCTURES 29

44. Here is a little procedure that prints the text of a given name on the user’s terminal.

procedure print-id (p : name-pointer); {print identifier or module name }

var k: 0. . maz_bytes; f{index into byre-mem }
w: 0.. ww —1; frow of byte-mem }

begin if p > name-ptr then print (IMPOSSIBLE’)

else begin w « p mod ww;
for k « byte-start [p] to byte-start [p +ww] =1 do print (Ichr[byte-mem [w, k]]);
end;

end;

45. We keep track of the current module number in module_count, which is the total number of modules
that have started. Modules which have been altered by a change file entry have their changed-module flag
turned on during the first phase.

(Globals in the outer block 9) +=

module-count: 0 . . max-modules; {the current module number }

changed-module: packed array [0 . . maz-modules] of boolean; {is it changed? }
change-exists : boolean; {has any module changed?}

46. The other large memory area in WEAVE keeps the cross-reference data. All uses of the name p are
recorded in a linked list beginning at zref [p], which points into the xmem array. Entries in xmem consist of
two sixteen-bit items per word, called the num and xl/ink fields. If x is an index into xmem, reached from
name p, the value of num(z) is either a module number where p is used, or it is def_flag plus a module
number where p is defined; and zlink(z) points to the next such cross reference for p, if any. This list of
cross references is in decreasing order by module number. The current number of cross references is xref-ptr.

The global variable zref_switch is set either to def_flag or to zcro, depending on whether the next cross
reference to an identifier is to be underlined or not in the index. This switch is set to def flag when @!
or @d or @f is scanned, and it is cleared to zero when the next identifier or index entry cross reference has
been made. Similarly, the global variable mod-xref-switch is either def_flag or zero, depending on whether a
module name is being defined or used.

define num (#) = zmem(#].num_field
define xlink (#) = zmem/[#].zlink_field
define def_flag = 10240 {must be strictly larger than max-modules }

47. (Types in the outer block 11) +=
zref_number = 0 . . maz_refs;

48. (Globals in the outer block 9) +=

xmem: array [xref-number] of packed record
num_field : sixteen-bits ; { module number plus zero or def flag}
xlink-field: sizteen_bits; { pointer to the previous cross reference }
end;

zref_ptr : cref number; { the largest occupied position in xmem }

gref_switch, mod_zref_switch: 0 . . def_flag; { either zero or def flag}

49. (Set initial values 10) +=
xref-ptr +— 0; zref_switch «— 0; mod-xref-switch «— 0; num (0) « 0; zref [0] « 0;
{cross references to undefined modules }

30 DATA STRUCTURES WEAVE 8§50

50. A new cross reference for an identifier is formed by calling new_zref , which discards duplicate entries
* and ignores non-underlined references to one-letter identifiers or PASCAL’s reserved words.
define append-xref (#) =
if zref-ptr = maz_refs then overflow (“cross,_ref erence °)
else begin tncr (zref-ptr); num(zref_ptr) « #;
end
procedure new-xref (p : name-pointer);
label exit;
var g¢: zref_-number ; { pointer to previous cross reference }
m, m: sixteen-bits; { new and previous cross-reference value }
begin if (reserved(p) V (byte-start [p] + 1 = byte-start [p + WwW])) A (xref-switch = 0) then return;
m «— module-count + xref-switch; zref.switch «— 0; g « zref Ipl;
if ¢ > 0 then
begin n « num (q);
if (n =m) VvV (n =m+ def flag) then return
else if m = n + dej-jlag then
begin num{q) « m; return;
end;
end;
append-zref (m); xlink (xref-ptr) +— q; xref [p] — zref ptr .
exit: end;

51. The cross reference lists for module names are slightly different. Suppose that a module name is

defined in modules my,..., myand used in modules ny,..., n;. Then its list will contain my + def-flag,
my + def_flag, . . ., mg + def_flag,ny, . . ., ny, in this order. After Phase II, however, the order will be
my + def-flag, . . ., mg -+ def-flag, Ny, . .., Ny.

procedure new-mod-xref (p : name-pointer);
var g, r: xref-number ; {pointers to previous cross references }
begin q « zref [p|; r — 0
if ¢ > 0 then
begin if mod-xref-switch = 0 then
while num(q) > def_flag do
begin r « q; g « xlink (q);
end
else if num(q) > def-flag then
begin r « ¢; g « xlink (q);
end;
end;
append-xref (module-count + mod-xref-switch); xlink (xref-ptr) «— q; mod_zref switch «— 0;
if = 0 then zref [p] t zref-ptr
else xlink (r) « xref-ptr;
end;

52.. A third large area of memory is used for sixteen-bit ‘tokens’, which appear in short lists similar to
the strings of characters in byte-mem. Token lists arc used to contain the result of PASCAL code translated
into TEX form; further details about them will be explained later. A text-pointer variable is an index into
tok-start .

(Types in the outer block 11) +=
text_pointer = 0 . . maz_texts; {identifies a token list }

§53 WEAVE DATA STRUCTURES 31

53. The first position of rok-mem that is unoccupied by replacement text is called tok-ptr, and the first
unused location of tok-start is called text-ptr . Thus, we usually have rok-start [tezt_ptr] = tok-ptr.

(Globals in the outer block 9) +=

tok-mem: packed array [0 . . max-toks] of sixteen-bits; { tokens}
tok-start : array [text-pointer] of sixteen-bits; {directory into tok-mem }
text-ptr : text-pointer ; {fist unused position in tok-start }

tok-ptr: 0 . . max-toks; { first unused position in tok-mem }

stat max-tok-ptr , maz_tzt_ptr : 0 . . max-toks ; {largest values occurring }
tats

54. (Set initial values 10) +=

tok-ptr « 1; text-ptr « 1; tok_start[0] — 1; tok_start[1] « I;
stat max-tok-ptr + 1; max-txt-ptr « 1; tats

32 SEARCHING FOR IDENTIFIERS WEAVE $55

65. Searching for identifiers. The hash table described above is updated by the id-lookup procedure,
which finds a given identifier and returns a pointer to its index in byte-start. The identifier is supposed
to match character by character and it. is also supposed to have a given ilk code; the same name may be
present more than once if it is supposed to appear in the index with different typesetting conventions. If the
identifier was not already present, it is inserted into the table.

Because of the way WEAVE's scanning mechanism works, it is most convenient to let id-lookup search for
an identifier that is present in the buffer array. Two other global variables specify its position in the buffer:
the first character is buffer [id_first], and the last is buffer [id_loc — 1].

(Globals in the outer block 9) +=
id-first: 0 . . long_buf size; { where the current identifier begins in the buffer }
td_loc: 0 . . long-buf-size; {just after the current identifier in the buffer }

hash: array (0.. hash-size] of sizteen_bits; {heads of hash lists }

56. Initially all the hash lists are empty.

(Local variables for initialization 16) +=
h: 0. . hash-site ; {index into hash-head array }

57. (Set initial values 10) +=
for i + 0 to hash-size ~ 1 do hash[h] < o;

58. Here now is the main procedure for finding identifiers (and index entries). The parameter tis set to
the desired ilk code. The identifier must either have ilk = t, or we must have t = normal and the identifier
must be a reserved word.

function id-lookup (1 : eight-bits): name-pointer; {finds current identifier }
label found;
. vari: 0.. long-bujsixe ; {index into buffer }
h: 0 . . hash-size; {hash code }
k: 0.. max-bytes; {index into byte-mem }
w:0..ww—1; (frow of bytre-mem }
1: 0 . . long-buf-size ; {length of the given identifier }
p: name-pointer; {where the identifier is being sought }
begin | « id-lot — id_first; {compute the length }
(Compute the hash code & 59);
(Compute the name location p GO);
if p = name-prr then (Enter a new name into the table at position p 62);
id-lookup < p;
end;

59. A simple hash code is used: If the scquence of ASCII codes is ¢ycz . . .€m, its hash value will be

(2" ey + 2" %cp + . + ¢,) mod hash_size.

(Compute the hash code h 59) =
b+ buffer[id_first]; i « id-first + 1;
while i < id-lot do)
begin & ¢ (h + h + buffer [{]) mod hash_size; iner (i):
end

This code is used in section 58.

§60 WEAVE SEARCHING FOR IDENTIFIERS 33

60. If the identifier is new, it will be placed in position p = name-ptr, otherwise p will point to its existing
‘ location.

(Compute the name location p 60) =
p « hash[h];
while p # 0 do
begin if (length(p) = l) A ((ilk [p] = t) V ((t = normal) A reserved(p))) then
(Compare name p with current identifier, goto found if equal 61);
p + link [p];
end;
p « name-prr; {the current identifier is new }
link [p] < hash [h]; hash[h] «— p; {insert p at beginning of hash list }
found:

This code is used in section 58.

61. (Compare name p with current identifier, goto found if equal 81) =
begin t « id_first ; k « byte-start [p]; w «— p mod ww ;
while (i < id-Zoc) o (buffer [i] = byte-mem[w, kJ) do
begin incr (i); incr (k);
end;
if i = id-Zoc then goto found; f{all characters agree}
end

This code is used in section 60.

62. When we begin the following segment of the program, p = name-ptr.
(Enter a new name into the table at position p 62) =
begin w « name-ptr mod w;
if byre-ptr [w] + | > maz_bytes then overflow (“byte_memory °);
if name-ptr + ww > maz_names then overflow (‘name °);
i « id-first; k < byte-ptr [w]; { getready to move the identifier into byte-mem }
while i < id-Zoc do
begin byte-mem {w, k] « buffer [il; incr (k); incr (i);
end;
byte-ptr [w] « k; byte-start [name-ptr + ww] + k; incr (name-ptr); ilk [p] <« t; sref [p] — 0
end

This code is used in section 58.

34 INITIALIZING THE TABLE OF RESERVED WORDS WEAVE 863

63. Initializing the table of reserved words. We have to get PASCAL’s reserved words into the hash
table, and the simplest way to do this is to insert them every time WEAVE is run. A few macros permit us to
do the initialization with a compact program.

define sid9 (#) = buffer [9] — #; cur-name « id-lookup

define sid8 (#) = buffer [8] — #; std9
31d7 (#) = buffer [7] — #; std8

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

cur-name

sid6 (#
sid5 (#

et —

= buffer [6] « #; aid7
= buffer [5] « #; sid6

sid{ (#) = buffer [4] — #; sid5
sid$ (#) = buffer [3] t #; sidf
8id2 (#) = buffer [2] — #; s1d$
sidl (#) = buffer [1] « #; sid2

id2 =

id3 = id_first
tdf = id-first
id5 = id-first
id6 = id-first
id7 = id-first
id8 = id-first

id-first < 8; s1d8

— 7; sid7

—

—

—

—

—

6; stdf
5; std§
4; s1df
3; 81d3
2; aid2

id9 = id-first + 1; stdl
(Globals in the outer block 9) +=

: name-pointer ;

{ points to the identifier just inserted }

§64 WEAVE INITIALIZING THE TABLE OF RESERVED WORDS 35

64. The intended use of the macros above might not bc immediately obvious, but the riddle is answered
by the following:
(Store all the reserved words 64) =

1d_loc « 10;

id3 (“a”("n")("d")(char-like + and-sign);

an)(mr)("
id5 (vvbn)(uen)(ugn)(n u)(nnn)(bem"_hkc)’
id4(“ “)("a")("s")("e")(case_like)
id5(n n)(vvon)(nnn)(n)("t“)(const_hl:e)
id3 ("d")("im)("v")(div_like);
1d2("d") ("o") (do-like)
zd6'("d")("o")("w")("n")(" n)(n ")(to.ltke)
“U(nen)(n n)(n)(u “)(else hkc),
1d8("e")("n"){"d")(end like);
id4 (nfn)(uln)(uln)(u n)(array hkc)
id3 ("£")("o")("r")(for kike);
ulg(nfu)(uuu)(u ")("c")("t")("1")("o")("n")(proc_lzke)
zd4("g")("o")("t")("o")(goto hke),
wd2(mim)("£")(of -lke);
id2 ("1")("n")(char-like + set-element-sign);
id5(1111|)(v|a l)("bll)(" ")("1")(const_hke)
id3 ("m")("o")("dn)(div_ike); .
i3 ("n")("1)("1) (nil like);
id3 ("n") ("o")("t ") (char-Zike + not-sign)
id2 ("o")("£")(do_like);
td2 ("o")("r")(char-like + or-sign);
15(1()"(upn)(nan)(ncn)(nku)(et)("d")(goto hke)
z'dg("p")("r")("o")(" ')("e")("d")("u")("r")("e")(proc hke)
zd7("p")("r")("o")("g")("r")(" ")("m")(proc_hke)
t:dG("I‘)(nan)("C")(" n)(nrn)(udn (TCC()Td hke)
zdé'("r")("e")("p")(" u)(u ")("t")(rcpeat hke),
l:d3 ("s")("e")("t"){ array-like);
ld/{ ("t")('h")(" u) "n")(do_hke)
id2("t")("0")(to like);
idf (67)("y")("p)("e")(const_ike);
zd5("u")("n“)("t")(" ")("1")(untzl_hke],
id3 ("v")(“a”)("r")(var_lke);
id5("w")("h')(it)(Il")(ll ")(IDT hke)
wdf ("w{("im)("e")("h"){for like);

id7 (rx) () (1) ") (") ("5 ("e") (Loup _Like)

This code i3 used in section 261.

36 SEARCHING FOR MODULE NAMES WEAVE §65

65. Searching for module names. The mod-lookup procedure finds the module name mod-rext [1 . . l]
‘in the search tree, after inserting it if necessary, and returns a pointer to where it was found.

(Globals in the outer block 9) +=
mod-text: array [0 . . longest-name] of ASCII-code ; {name being sought for }

66. According to the rules of WEB, no module name should be a proper prefix of another, so a “clean”
comparison should occur between any two names. The result of mod-lookup is O if this prefix condition is
violated. An error message is printed when such violations are detected during phase two of WEAVE.

define less = 0 { the first name is lexicographically less than the second }
define equal = 1 {the first name is equal to the second }

define grearer = 2 { the first name is lexicographically greater than the second}
define prefix = 3 {the first name is a proper prefix of the second }

define exrension = 4 { the first name is a proper extension of the second }

function mod-lookup (I : sixteen-bits): name-pointer ; { finds module name }
label found;
var c: less . . extension; { comparison between two names }
j: 0.. longest-name ; {index into mod-text }
k: 0 . . mux-bytes; {index into byre-mem }
w:0..ww—1 {row of byte-mem }
p: name-pointer ; {current node of the search tree }
q: name-pointer ; {father of node p}
begin ¢ « greater; ¢ « 0; p « root;
while p # 0 do
begin (Set c to the result of comparing the given name to name p 88);
q < p;
if ¢ = less then p « llink[q]
else if ¢ = greater then p « rlink[q]
else goto jfound;
end;
(Enter a new module name into the tree 67);
found: if ¢ # equal then
begin err-print (*!_ Incompatible section names‘); p r 0 ;
end;
mod-lookup <+ p;
end;

67. (Enter a new module name into the tree 67)E
w <« nnme-ptr mod ww; k « byte-ptr [w];
if k +1 > maz_bytes then overflow(‘byte memory °);
if name-ptr > maz_names — ww then overflow (‘name °);
p — name-ptr;
if ¢ = less then llink[q] « p
else rlink[q] « p;
link [p] « 0; rlink[p] t 0; xref [p] t 0; ¢ «— equal;
for j « 1 to ! do byte-mem [w, k + j — 1] « mod-text [j];
byte-ptr [w] < k + l; byte-start [name-ptr + ww] — k + Iy tner (name-ptr);

This code is used in section 66.

§68 WEAVE SEARCHING FOR MODULE NAMES 37

68. (Set c to the result of comparing the given name to name p 68) =
begin k « byte-start [p]; w « p mod ww; ¢ « equal; j + 1;
while (k < byte-start [p + ww]) A (j < l) A (mod-text [j] = byte-mem [w, k]) do
begin tncr (k); tner (j);
end;
if k = byte-start /p + ww] then
if 3> 1 then ¢ « equal
else ¢ « extension
else if j > I then ¢ « prefix
else if mod-text [j] < byte-mem [w, k] then c « less
else ¢ « greater;
end

This code is used in sections 66 and 69.

69. The prefiz_lookup procedure is supposed to find exactly one module name that has mod-rext [1 . . I]

as a prefix. Actually the algorithm silently accepts also the situation that some module name is a prefix of

mod-text [1. . l], because the user who painstakingly typed in more than necessary probably doesn’t want to
be told about the wasted effort.

Recall that error messages are not printed during phase one. It is possible that the prefiz_lookup procedure
will fail on the first pass, because there is no match, yet the second pass might detect no error if a matching
module name has occurred after the offending prefix. In such a case the cross-reference information will be
incorrect and WEAVE will report no error. However, such a mistake will be detected by the TANGLE processor.

function prefiz_lookup(l : sixteen-bits): name-pointer; {finds name extension}
var c: less . . extension; {comparison between two names}
count: 0.. maz_names; {the number of hits }
j: 0. . longest-name; {index into mod-text }
k: 0.. maz_bytes; {index into byte.mem }
w:0..ww —1I; {row of byte-mem }
p: name-pointer ; {current node of the search tree }
q: name-pointer ; {another place to resume the search after one branch is done}
i name-pointer; {extension found }
begin g « 0; p + root; count + 0; r «— 0; { begin search at root of tree}
while p # 0 do
begin (Set c to the result of comparing the given name to name p 68);
if ¢ = less then p « llink|p]
else if ¢ = greater then p « rlink[p]
else begin r « p; incr (count); ¢ — rhink[p}; p « lhnk[p];
end;
if p = 0 then
begin p «~q;qt 0;
end;
end;
if count # 1 then
if count = 0 then err-print (!uNameudoesunotumatch’)
else err-print (*!_Ambiguous pref ix °);
prefix-lookup — r; { the result will be 0 if there was no match}
end;

38 LEXICAL SCANNING WEAVE §70

70. Lexical scanning. Let us now consider the subroutines that read the WEB source file and break it
into meaningful units. There are four such procedures: One simply skips to the next ‘@’ or ‘@+’ that begins
a module; another passes over the TEX text at the beginning of a module; the third passes over the TEX text
in a PASCAL comment; and the last, which is the most interesting, gets the next token of a PASCAL text.

71. But first we need to consider the low-level routine get-line that takes care of merging change-file into
web-file. The get-line procedure also updates the line numbers for error messages.

(Globals in the outer block 9) +=

line : integer ; {the number of the current line in the current file}

other-line : integer ; {the number of the current line in the input file that is not currently being read }
temp-line : integer ; {used when interchanging line with other-line }

limit : 0 . . long-buj-size ; {the last character position occupied in the buffer }

loc: 0 . . long_buf size; {the next character position to be read from the buffer }

input-has-ended: boolean; {if true, there is no more input }

changing : boolean ; {if true, the current line is from change-file }

72. As we change changing from true to false and back again, we must remember to swap the values of
line and other-line so that the err-print routine will be sure to report the correct line number.

define change-changing = changing + —changing; temp-line « other-line; other-line + line;
line «— temp-line { line « other-line }

73. When changing is false, the next line of change-file is kept in change_buffer [0 . . change-limit], for
purposes of comparison with the next line of web-file. After the change file has been completely input, we
set change-limit « 0, so that no further matches will be made.

(Globals in the outer block 9) +=
change_buffer: array [0 . . buj-size] of ASCII code;
change-limit: 0 . . buj-size; {the last position occupied in chunge_buffer }

74. Here’s a simple function that checks if the two buffers are different.

function lines-dent-match: boolean;
label exit;
var k: 0 . . buj-size; {index into the buffers }
begin lines-dent-match « rtrue;
if change-limit # limit then return;
if limir > 0 then
for k « 0 to limit — 1 do
if change buffer [k] # buffer (k] then return;
lines-dont-match « false
exit: end:

§75 WEAVE LEXICAL SCANNING 39

756. Procedure prime-the-change-bufler sets change_buffer in preparation for the next matching operation.
* Since blank lines in the change file are not used for matching, we have (change-limit = 0) A ~changing if
and only if the change file is exhausted. This procedure is called only when changing is true; hence error
messages will be reported correctly.

procedure prime-the-change-bufler;
label continue, done, exit;
var k: 0. . buf-size; {index into the buffers }
begin change-limit + 0; {this value will be used if the change file ends)
(Skip over comment lines in the change file; return if end of file 76 };
(Skip to the next nonblank line; return if end of file 77);
(Move buffer and limit to change-bufler and change-limit 78);
exit: end;

76. While looking for a line that begins with @x in the change file, we allow lines that begin with @, as
long as they don’t begin with @y or @z (which would probably indicate that the change file is fouled up).
(Skip over comment lines in the change file; return if end of file 78) =
loop begin incr (line);
if ~tnput_in (change-file) then return;
if limir < 2 then goto continue;
if buffer{0] # "@" then goto continue;
if (buffer [1] > "X") A (buffer [1] < "2") then buffer {1] «— buffer 1] + "z" ~ "Z"; { lowercasify }
if buffer [1] = "x" then goto done;
if (buffer [1]'= “y”) Vv (buffer [1] = “2”) then
begin loc « 2; err-print (.!_Where_is the matching @x?°);
end;
continue : end;
done:

This code is used in section 75.

77. Here we are looking at lines following the @x.

(Skip to the next nonblank line; return if end of file 77) =
repeat tncr (line);
if —inputln (change.&) then
begin err-print (“!_Change_file_ended after @x°); return;
end;
until limit > 0;

This code is used in section 75.

78. (Move buffer and limit to change_buffer and change-limit 78) =
begin change-limit « limit;
for k « 0 to limit do change buffer [k] « buffer[k];
end

This code is used in sections 75 and 79.

40 LEXICAL SCANNING WEAVE §79

79. The following procedure is used to see if the next change entry should go into effect; it is called only
when changing is false. The idea is to test whether or not the current contents of buffer matches the current
contents of change_buffer . If not, there’s nothing more to do; but if so, a change is called for: All of the
text down to the @y is supposed to match. An error message is issued if any discrepancy is found. Then the
procedure prepares to read the next line from change-file.

procedure check-change; { switches to change-file if the buffers match}
label exit;
var n: integer; { the number of discrepancies found }
k:0 .. buf size; {index into the buffers }
begin if lines-dont-match then return;
n «0;
loop begin change-changing; {now it’s true }
incr (line);
if —input_In (change-file) then
begin err-print (* ! Change_f ile_ended bef ore Qy '); changelimit «+— 0; change-changing;
{false again}
return;
end;
(If the current line starts with @y, report any discrepancies’and return 80);
(Move buffer and limit to change_buffer and change_limit 7g);
change-c hanging ; {now it’s false }
incr (line);
if —input_In (web-fife) then
begin err-print (*' _WEB_f ile_ended, during a change *); input-has-ended +— true ; return;
end;
if lines_dont.match then incr (n);
end;
extt: end;

80. (If the current line starts with Qy, report any discrepancies and return 80) =
if limit > 1 then
if buffer[0] = "@" then
begin if (buffer [1] > "X*) A (buffer [1] <"Z") then buffer(1] — buffer [1] + "z" — "Z";
{ lowercasify }
if (buffer{l] = "x") v (buffer [1] = "2z") then
begin loc « 2; err-print (“!_Where is_ the matching Qy?");
end
else if buffer [1] = "y" then
begin if n > 0 then
begin loc « 2;
err-print(* Y Hmm. . ., ,n : 1, “Lof _the preceding lines failed_to_match ');
end;
return;
end;
end

This code is used in section 79.

§81 WEAVE LEXICAL SCANNING 41

81. The reset-inpur procedure, which gets WEAVE ready to read the user’s WEB input, is used at the beginning
of phases one and two.

procedure reser-input;
begin open-input; line « 0; other-line + 0;
changing «- true ; prime-the-change-bufler ; change-changing;
limit + 0; loc « 1; buffer [0] « ""; input-has-ended «+ false;
end;

82. The get-line procedure is called when loc > limit; it puts the next line of merged input into the buffer
and updates the other variables appropriately. A space is placed at the right end of the line.

procedure ger-line ; {inputs the next line }
label restart;
begin restart: if changing then changed-moduZe[module-count] « true
else (Read from web-file and maybe turn on changing 83);
if changing then
begin (Read from change-file and maybe turn off changing 84);
if =changing then
begin changed-module [module-count] + true; goto restart;
end;
end;
loc « 0; buffer [limit] < "_";
end;

83. (Read from web-file and maybe turn on changing 83) =
begin incr (line);
. if —input_In (web-file) then input-has-ended «— true
else if limit = change-limit then
if buffer[0] = change_buffer[0] then
if change-limit > 0 then check-change;
end

This code is used in section 82.

84. (Read from change-file and maybo turn off changing 84) =
begin incr (line);
if ~input_In (change-file) then .
begin err-print (* ! _Change_ f ile ended without_Qz °);buffer (0] — "@";buffer [1] « "2z";limir « 2;
end;
if Zimir > 1 then {check if the change has ended }
if b11ﬂcr[0] = "Q" then
begin if (buffer (1] > "X") A (buffer [I] <"Z") then buffer [I] « buffer [1] + "z" —"Z";
{lowercasify }
if (buffer[1] = "x") v (buffer [1] = "y") then
begin loc « 2; err-print ('!uWhereuisl_theumatching._,@z?');
end
else if buffer [1] = "z" then
begin prime_the_change_buffer; change-changing;
end;
end;
end

This code is used in section 82.

42 LEXICAL SCANNING WEAVE §85

85. At the end of the program, we will tell the user if the change file had a line that didn’t match any
‘relevant line in web-file.

(Check that all changes have been read 85) =
if change-limit # 0 then { changing is false}
begin for loc « 0 to change-limit do buffer [loc] « change_buffer [loc];
limit < change-limit; changing < true; line +— other-fine; loc « change-limit;
err-print (*!_Change f ile entry, did, not match");
end

This code is used in section 261.

86. Control codes in WEB, which begin with ‘@, are converted into a numeric code designed to simplify
WEAVE’s logic; for example, larger numbers are given to the control codes that denote more significant
milestones, and the code of new-module should be the largest of all. Some of these numeric control codes
take the place of ASCII control codes that will not otherwise appear in the output of the scanning routines.

define ignore = 0 { control code of no interest to WEAVE}

define verbatim = 2 {extended ASCII alpha will not appear }

define force-line = 3 {extended ASCII beta will not appear}

define begincomment = ‘11 { ASCII tab mark will not appear }

define end-comment = ‘12 (ASCII line feed will not appear }

define octal = ‘14 {ASCII form feed will not appear }

define hex = ‘15 { ASCII carriage return will not appear}

define double-dot = 40 { ASCII space will not appear except in strings}
define no-underline = ‘175 {this code will be intercepted without confusion }
define wunderline = ‘176 { this code will be intercepted without confusion}
define param = ‘177 { ASCII delete will not appear }

define zref-roman = 203 {control code for ‘@~’}

define zref.wildcard = "204 { control code for ‘@:’}

define zref_typewriter = 205 {control code for ‘Q.’}

define TeX-string = 206 { control code for ‘@t’}

define check-sum = 207 {control code for ‘@$’}

define join = 210 { control code for ‘@&’ }

define thin-space = 211 { control code for ‘@,’}

define math-break = 212 {control code for ‘@|’}

define line-break = 213 { control code for ‘¢/’}

define big-fine-break = ‘214 { control code for ‘@4’ }

define no-line-break = 215 { control code for ‘@+’}

define pseudo-semi = 216 {control code for ‘@;’}

define formar = 217 { control code for ‘Of }

define definition = 220 (control code for ‘@d’ }

define begin_pascal = 221 { control code for ‘@p’ }

define module-name = 222 {control code for ‘@<’ }

define new-module = 223 {control code for ‘@, and ‘@*’}

887 WEAVE LEXICAL SCANNING 43

87. Control codes are converted from ASCII to WEAVE's internal representation by the control_coderoutine.

function control_code(c : ASCII code): eight-bits; {convert c after @}
begin case c of
"Q": control-code — "@"; { ‘quoted’ at sign}
" ‘" control-code « octal; {precedes octal constant }
"nnn: control-code + hex; {precedes hexadecimal constant }
"$": control-code « check-sum; { precedes check sum constant }
nn
.}

Myn,

, tab-mark, control-code + new-module ; {beginning of a new module }

"=" control-code «— verbatim;
"\": control-code « force-line ;
"D", "d": control-code +— definition; {macro definition}
MF, £ " control-code + format; {format definition }
"{": control-code «— begin-comment ; {begin-comment delimiter }
"} control-code «— end-comment; {end-comment delimiter}
"P" "p": control-code «— begin_pascal; {PASCAL text in unnamed module }
"&": control-code « join; {concatenate two tokens }
n<M: control-code «— module-name ; {beginning of a module name }
">": begin err-print (©! _Extra_@> '); control-code « ignore;
end; {end ofmolu d name should not be discovered in this way}
"TM M control-code « TeX-string; { TEX box within PASCAL}
" 1 " control-code + underline ; { set definition flag}
"?M: control-code + no-underline ; {reset definition flag }
"=t control-code + xref-roman; {index entry to be typeset normally }
" " control-code « xrej-wildcard; f{index entry to be in user format }
: control-code «— xrej-typewriter ; {index entry to bc in typewriter type}
"t control-code «— thin-space ; {puts extra space in PASCAL format }
"M control-code +— math-break; {allows a break in a formula }
"/": control-code + line-break; {forces end-of-line in PASCAL format }
"#M: control-code + big-line-break; {forces end-of-line and some space besides }
"+": control-code + no-line-break; {cancels end-of-line down to single space}
" " control-code +— pseudo-semi; {aCts like a semicolon, but is invisible }
(Special control codes allowed only when debugging 88)
othercases begin err-print (' ! Unknown_control code '); control-code +— ignore;
end
endcases;
end;

88. If WEAVE is compiled with debugging commands, one can write @2,@1,and @O to turn tracing fully on,
partly on, and off, respectively.

(Special control codes allowed only when debugging 88) =
debug

"ot M "2 begin tracing «— ¢ —~ "0"; control-code t ignore;
end;
gubed

This code is used in section 87.

44 LEXICAL SCANNING WEAVE §89

89. The skip-limbo routine is used on the first pass to skip through portions of the input that are not
in any modules, i.e., that precede the first module. After this procedure has been called, the value of
input-has-ended will tell whether or not a new module has actually been found.

procedure skip-limbo; {skip to next module}
label exit ;
var c: ASCli-code; {character following @}
begin loop
if loc > limit then
begin ger-fine;
if input-has-ended then return;
end
else begin buffer[limit + 1] — "@";
while buffer [loc] # "@" do incr (loc);
if loc < limit then
begin loc « loc + 2; ¢ « buffer[loc — 1J;
if (¢ =" ")V (c = tab-mark) v (c = "+") then return
end;
end;
exit: end;

90. The skip-TeX routine is used on the first pass to skip through the TEX code at the beginning of a
module. It returns the next control code or ‘|’ found in the input. A new_module is assumed to exist at the
very end of the file.

function skip- TeX : eight_bits ; {skip past pure TFX code }
label done;
_var ¢ eight-birs; {control code found }
begin loop
begin if loc > limit then
begin get-line ;
if tnput_has_ended then
begin ¢ « new-module; goto done;
end;
end;
buffer [limit + 1] « "Q";
repeat ¢ « buffer [loc]; incr (Zoc);
if ¢ = “I” then got0 done;
until ¢ = "Q";
if loc < limit then
begin ¢ t control-code (buffer [loc]); incr (loc); goto done;
end;
end;
done : skip_TeX « ¢;
end;

§91 WEAVE LEXICAL SCANNING 45

91. The skip-comment routine is used on the first pass to skip through TEX code in PASCAL comments.

* The bal parameter tells how many left braces are assumed to have been scanned when this routine is called,
and the procedure returns a corresponding value of bal at the point that scanning has stopped. Scanning stops
either at a *|”that introduces PASCAL text, in which case the returned value is positive, or it stops at the end
of the comment, in which case the returned value is zero. The scanning also stops in anomalous situations
when the comment doesn’t end or when it contains an illegal use of @. One should call skip_comment (1)
when beginning to scan a comment.

function skip-comment (bal : eight-birs): eight_bits; {skips TEX code in comments}
label done;
var ¢: ASCII.code; {the current character }
begin loop
begin if loc > limit then
begin ger-line ;
if input-has-ended then
begin bal « 0; goto done;
end; {an error message will occur in phase two }
end;
¢ « buffer [loc]; incr (loc);
if c ="1"then goto done;
(Do special things when ¢ = "@", "\" "{" "}". goto done at end 92);
end;
done: skip-comment ¢+ bal;
end;

92. (Do special things when ¢ ="€", "\", "{", "}"; goto done at end 92) =
if ¢ = "Q@" then
begin ¢ « buffer [loc];
if (¢ # "u") A (¢ # tab-mark) A (c # "*") then tncr (loc)
else begin decr(loc); bal t 0; goto done;
end {an error message will occur in phase two }
end
else if (c = "\") A (buffer [loc] # "@") then incr(loc)
else if ¢ = "{" then tner (bal)
else if ¢ = "}" then
begin decr (bal);
if bal = 0 then goto done;
end

This code is used in section 91.

46 INPUTTING THE NEXT TOKEN WEAVE §93

93. Inputting the next token. As stated above, WEAVE's most interesting lexical scanning routine is
the ger-next function that inputs the next token of PASCAL input. However, ger-next is not especially
complicated.

The result of ger-next is either an ASCII code for some special character, or it is a special code representing
a pair of characters (e.g., “:=" or *..’), or it is the numeric value computed by the control-code procedure,
or it is one of the following special codes:

ezponent: The E' in a real constant.

identifier: In this case the global variables id-first and td_loc will have been set to the appropriate values
needed by the id-lookup routine.
string: In this case the global variables id-first and id-Zoc will have been set to the beginning and ending-
plus-one locations in the buffer. The string ends with the first reappearance of its initial delimiter;
thus, for example,
‘This isn”t a single string’

.

will be treated as two consecutive strings, the first being ‘This isn
Furthermore, some of the control codes cause get-next to take additional actions:
xref-roman , zref_wildcard, zref typewriter , TeX _string: The values of id-first and td_loc will be set so that
the string in question appears in buffer fid-first . . (iddoc —1)].
module-name: In this case the global variable cur-module will point 7o the byre-start entry for the module
name that has just been scanned.
If get-next sees ‘@Y’ or ‘Q?’, it sets xref-switch to def_flag or zero and goes on to the next token.
A global variable called scanning-hex is set true during the time that the letters A through F should be
treated as if they were digits.
define exponent = 200 {E or e following a digit }
define string= ‘201 {PASCAL string or WEB precomputed string }
define identifier = ‘202 {PASCAL identifier or reserved word}
(Globals in the outer block 9) +=
cur-module : name-pointer ; {name of module just scanned }
scanning-hex: boolean; {are we scanning a hexadecimal constant? }

94. (Set initial values 10) +=
scanning-hex «— false;

§95 WEAVE INPUTTING THE NEXT TOKEN 47

95. Asone might expect, get-nezt consists mostly of a big switch that branches to the various special cases
that can arise.
define up.-to(#) =#—24,# —23,# —22,# —21,# —20,# — 10, # — 18,# — 17,# — 16,# — 15,# — 14,# - 13,
H#—12,#—~11,8—10,#—-9,#-8, #—-7,#—6,#—-5#—-4, #-3,#-2,#~1,#
function get-nezt : eight-bits; {produces the next input token }
label restart, done, found;
var c: <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>