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FOREWORD

The Handbook of Artificial Intelligence was conceived in 1975 by Professor
Edward A. Feigenbaum as a compendium of knowledge of Al and its ap-
plications. In the ensuing years, students and Al researchers at Stanford's
Department of Computer Science, a major center for Al rescarch, and at
universitics and laboratories across the natiou have contributed to the project.

The scope of the work is broad: About 200 short articles covermostof the im-
portant ideas, techniques, and systems developed during 25 years of research
in Al.

Overview articles in cach chapter describe the basic issues, alternative
approaches, and unsolved problems that characterize arcas of Al; they are
the best critical discussions anywhere of activity in the ficld. These, as well
as the more technical articles, are carefully cdited to remove confusing and
uncseential jargon, key concepts are introduced with thorough explanations
(usually in the overview articles), and the three volumes are completely in-
dexed and cross-referenced to make it clear how the important ideas of Al

relate lo cach other. Finally, the Jendbook ia organised hicrarchically, so
that readers can choose how deeply into the detailof each chapterthey wish
to penetrate.

This technical report is reproduced from Chapter XI, “Models of Cogni-

tion,” of the Handbook (Vol. Mi, edited by Paul R. Cohen and Edward A.
Feigenbaum). This chapler, written by Paul R. Cohen, discussesAl models
of human memory, belicf, sad planning and problem solviag. Thess pro-
grams werc among the earliest developed in Al and give some insight into the
powerful influence of the computer in the development of Al and cognitive .
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4 Models of Cognition XI

with precision their similarities and, more importantly for the development of
the theory, their differences. Computer programs are precise descriptions of
behavior and so are the results of experiments with humans; by using each to
complement the other, a theory of behavicr develops quickly.

Thisapproachto psychological research is called information-processing
psychology and, more recently, cognitive science. The theoriesthat are devel-
oped—computer models of human thinking—are called models of cognition.
The central ideaof information-processing psychologyis to bring precision to
the seductive comparison between human and artificial intelligunce, to benefit
our understanding of human cognition. In the next section, we present a
historical background to information-processing psychology.

: A History of Al and Information Processing

Information-processing psychology has played an important part in the
developmentof American psychology since 1950. It has helped to reinstate
the concept of mind, which had been abolished by behavioral psychologists
because it was unobservable exceptby introspection. Methodological behav-
torism condemned introspectionas a psychological method because there wes
no guarsntee that the words used by one person to describe his (or her) mental
events would mean the same thing to another person. For example,if a person
says, ‘1 can’t quite think of the word—it is on the tip of my tongue,” you
may think yon know what be is thinking and feeling, but, in fact, regardless
of the detail with which he describes his state, you cannot guarantee that
your knowledge of his state is completely accurate. A stronger position on
introspection is taken by redical behswiorism, which holds that knowledge
obtained by introspection not only cannot be accurately communicated, but
is not even accurately perceived by the introspector: “An organism behaves as
it doss because of its current structure, but most of this is out of the reach of

introspection” (Skinner, 1978,p. 19). Mental events are viewed as side effects
of the interaction betwesn an organiem and its environment, not causes and
thus not explanstionsof behavior.

These positions—radical and methodological behevioriem—wereobjective
but resuited in a psychology thet did »-.t admit the mind. Theoretically,it
was possible to explain behavior in terms of stimulus-response peirs, denying
any mediating mental structures or processes:

A person is changed by the contingsncies of reinforcament under which he
behaves; he dos not stare the contingencies. In particular, he dass not store
copies of the stimuli which have played a port in the contingencies. There
are 0 “iconic representations” in his mind; there are no “data structures
stored in his memory”; he has no “cognitive map” of the world in which
be hes Nved. Fk has simply been changed in such a way that stimuli mow
control particule kindsof perceptual behavior. (Skinner, 1976, pp. 83-94)
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In contrast, all the research described in the Handbook is concerned
with structures and processes that mediate intelligent responses to stimuli.
This fundamental change in theoretical positions took place between 1950
and 1960, during which time behaviorism was largely displaced by cognitive
psychology. The key to the change was the concept of information. Following
the publication, in 1949,ofShannonand Weaver's “The Mathematical Theory
of Communication,” ir.formation became a concrete, measurable quantity (see
Shannon and Weaver, 1963). Initially, the strict mathematical conception of
informationwas explored; theoriststried to fit many aspects of human com-
munication into the general model proposed by Shannon and Weaver (see. e.g.,
Cherry. 1970). But the model was best suited to communication over electrical
channels, and so, by the mid-1950s, a more relaxed, and more appropriate,
conception of information was emerging.

An influentialpaper was “The MagicalNumber Seven..." in which Miller
(1958) proposed that the information capacity of mental processes, particularly
short-term memory, is best measured in terms of semantic chunks—mesningful
units of information—notabstract bits. For example, words from a sentence
and nonsense syllables are considered to be chunks of information and put

: approximately equal demands on memory, despite the fact that the words
contain more information, in the mathematical sense, than the syllables. In
the vears following Miller's payer, information structures such as discrimine-
tion nets, associative semantic nets, and frames were developed to reprasent

. the informationused in cognition. The original, mathematical formulation of
information has been largely abandoned:

The problem was that the bit gave a very poerly articulated characterisation
of the information. . . . As descriptions of the information heve become more

articulated, the theories composed out of them have becorne more successful.
(Andersonsnd Bower, 1973,p. 138)

The incressing sophistication of computers snd coumnputer science was the
most important factor in the development of information-processingides.
During the late 1950s, there was the realisation in information-processiag
psychology that the computer was not simply 8 devics for shifting bits or
“crunching sumbers,” but was more generally capable of any kind of symbol
manipulation,of any kiad of information precess:

: stems from the fact that 5 computer is a device for manipulating symbols
of any kind, net just sumerieal symbols. Thus 3 computerbecomes 3 way
of specifying arbitrary symbolie processes. Theories of this type, which can

be called informetion processing thesries, are essentially scaquastitstive
(they may involve a0 numbers st all), although neither less precies nor less
rigorous than clessical mathematical theories. (Newel and Simon, 1903,
p- 308)
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A Overview 7

In other words, Al does not require that an intelligent program demonstrate
human intelligence, but information-processing psychologists insist that the
correspondence be proved.

This overview is almost current; we have discussed the common roots of |
Al, information-processingpsychology, and cognitive psychology, and we have
discussed the points st which they part company. However,we should note
that we have presented the strongest version of the information-processing
approach, that advocated by Newell and Simon. Their position is so strong
that it defines information-processing psychology almost by exclusion: It is
the field that uses methods alien to cognitive psycholog- to explore questions
alien0 Al. This is an exaggeration, but it serves to illustrate why there
are thousands of cognitive psychologists, and hundreds of Al researchers, and
very few information-processing psychologists. Recently, the strong position
has been relaxed to admit research that does not necessarily prove the cor-

respondence between programs and human behavior but that has some svowed
concern for understanding human behavior. This research is called cognitive
science by its practitioners.

The articles in this chapter discuss models of cognition that have, for
the most part, been the historical shoulders on which cognitive science now

: stands. Of the eight articles, five are devoted to models of human memory,
two to problem-solving,and one to belief systems. The emphasison memory
has two causes, one historical and one artifactual. Historically, cognitive
peychology has concerned itself almost exclusively with memory, so it is not
surprising that it should be 3 major topic in information-processingpeychol-
ogy. However, the proportion of articles would have been different had we
included discussions of other cognitive science ressarch in this chapter, rather
than elsewhere in the Hendboob—for example, ressarch on spesch under-
standing (Chap. V); on natural-language understanding, especially the work
of Schank snd his colleagues (Chap. IV); on planning (Chap. XV), and on
learning (Chap. XaV).

The first model discussed in this chapter is, appropristely, Newell sad
Simon's General Problem Sclver program (GPS; Article X15). I is some
of the earliest resserch in information-processicgpaychology. The program
introduced mesns-ends enslyeis, which constrains a problem solver to the task
of reducing the differences between the current state of a problem and the
goal state, or solutien. The preblum selver often cannct derive a solution
immediately from the problem, 0 it is necessary to trassform the problem
inte some intermediate state, frem which the solution might be derived. GPS
was tasted extensively as a theory of humea problem-solving.

The next article (Article X1.C) is also about preblem solving: it discusses
s model of sppertunistic planning designed by Heges-Roth and Heyee-Roth
(1978). Their model is an interesting contrast to those discussed in Chapter XV
on planaing. Opportunistic processing involves a fSexible control strategy
(implemented with a deckioard control structure) that permits planning
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10 Models of Cognition XxX]

several interesting papers on the developing topic of knowledge representation.
Norman and Rumelhart (1975) discuss their MEMOD system in detail—it is
interesting to contrast this book with a “standard” text on memory
(e.g., Crowder, 1976) to see what a difference the information-processing per-
spective can make. Schank and Abelson (1977) discuss their theory of knowl-
edge representation—a theory that is currently very popular. Finally, there
is a journal called Cognitive Science that publishes curreat research.



B. GENERAL PROBLEM SOLVER

HUMAN PROBLEM-SOLVING has received intensive examination by Allen
Newell. Herbert A. Simon, and their colleagues and students at Carnegie
Nellon University. In their book Human Problem Solving (1972), Newell and
Simon present thorough analyses of problem solvingin three task domains—
crvptarithmetic, logic, and chess—and they present and evaluate information-
processing systems that accurately simulate human thought in these domains.

There is not the space here to summarise all the work in human problem-
solving. In fact, the only system we examine is the General Problem Solver
program (GPS); and the only task domain, logic problems. However, the
information-processing system that Newell and Simon develop is certainly
general enough to provide a framework for problem solving in several other
task domains. GPS is not just a logic problem-soiver.

Problem soi.ing. and most other intellectual activity. involves general
kaowledge that applies to many problems and very specific knowledge that
is special 10 a particularproblem. For example, a general rule, or Asuristsc,
is “If vou can’t solve the whole problem, try to solve part of k." A specific
piece of knowledge that may be useful for solving some word problems is,
for example, that a mile is 1,700 yards. The distinctionbetween general and
task-specific knowledge is made in CPS, and it was for just this reason that

GPS obtained the name “general problem solver” because it was the first
problem solving program to separste ia & clean way & task-independent part
of the system containing general preblem selving mechanisms from a pert
of the system containing knowledge of the task euvireament. (Nowell and
Siena,1972, p. 414)

Accordingly, our discussion of GPS moves from general to specific: Firstbs
as simplified discussion of the information-processingsystem ea which GPS
is constructed, them s presentation of general preblom-sciving methods, and
finally consideration of methods specific to the task demands of logic problems.

The Information-precessingSystem

Everything that tale place ia GPS is an information process, snd ths
envireament in w Jich GPS selves probleme is called an informetion-precessing
system (IPS). A contral concept is thet of a stete—a momentary snapshot
containing whet the IPS knows st the time. The knowledgeimplicit in a state
is representedby symbol structures.

11
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B General Problem Solver 13

1. Designation of symbol structures. It must be possible to designate various
parts of any symbol structure and obtain the designation of any part of
any symbol structure.

5. Input ond output. The IPS must be able to read and write symbol strue-
tures internally and externally.

6. Storing of symbol structures. It must be possible to store a symbol structure
and retrieve it by means of another symbol structure that designates it.

The Problem Space

Newell and Simon define the taskenvironment,or problem space, of GPS
to be the formal specificationof the set of symbol structures through which
GPS searches for a solution. This may suggest that GPS has a collectionof
states available to search for a goal state. In fact. search in GPS means that
GPS generates states by applying operators, first to the starting state (which
it is given), then to states it derives from the starting state, and so on. GPS
generates states in its problem spece as it solves a problem.

The problem space used by GPS varies with the problem. It is a formal
specification of the knowledge needed to solve a problem. Consider. for

- example. the famous cryptarithmetic problem

1GERALD
ROBERT Given Dw=§

where the object is 0 amign digits to letters so that the sum of the numbers
denoted by DONALD and GFRALD equals the number denoted by ROBERT.
A problem space for this example is:

(better) == AIBIDIEIGILINICIRIT
(digit) = Oj1]2|8}4iS|0{7I810
(expression) mn (latter) hao-value (digit)

(knowledge state) :== (exioression) | (expression) & (knowledge state)

(operater) m= Agsert((expeession)).

Al kaowiedge about this problem is mede up of espressions of the form
| leticr hoo-value digit. The initial knowledge state is the singles sxprewion D

Aas-velue5. Subsequent knowledge states sre conjunctions of expressions.
The single operator required to solve the problem is to assert that a letter
het a particular value, thet is, to assign it the value. This problemspace is
completes in the sense thet application of the operator is enough to generate
all the expressionsnesded for a solution.

In addition to the problem space, the IPS needs a program, cr set of
| instructions, to dictate Aow digits are to be assigned to letters and to test if
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a solution has been found. This will be discussed further for the domain of

logic problems.
A distinction must be made between search sn the problem space and the

search epace. The former refers to all the solutions and paths leading to them
that the problem solver actually generates, while the latter refers to all the
solutions and paths that exist. For problems of any complexity, it is necessary
to keep the problem space smaller than the search space. To rephrase a
point made in Chapter II: Search in the problem space involves generating
just enough of the search space to find a solution to the problem. In GPS,
two methods are used to accomplish this. One is a general heuristic called
means-ends analysis, and the other is a form of planning. We will not consider
planning here; the interested reader should see pages 429-435 of Newell and
Simon (1972) and Article XV.A in the Handbook.

General Provlem-solving Methods: Means-ends Analysis

Problem solving in GPS is a matter of transforming the start state into a
goal state. Thus. at any point during problem solving. GPS has two goals:

1. Transform state 1 to state 2 by the application of operators.

2. Apply some operator to state 1 (or some intermediatestate).

These goals do not specify which operator should be applied to any object.
There are numerous strategies for deciding this. One is 10 apply ell legal
operators to the first object, then apply all legal operators to all the results
of the first application,and so on. This method, called ezheustivesenrch,
generatesthe entire search space. It is guaranteed to find a solution eventually
but ismuch too costlyto be used for problemsof any complexity. Means-ends
analysis is a powerful heuristic that constrains search by anchoring paths in
the search space to the current state and the desired state; it implies 2 third

3. Reducethe difference botween state 1 and state 2 by modifying state 1.

This rules out directionless expansion of possible solutions:

— By taking account of the characteristics of the goal object it is seeking to
reach, the problem solver extracts from the situation an enormous amount
of information sbout the direction in which it should explore, and almost
immediately rules out of bounds all but a tiny portion of the problem specs.
(Newell and Simon, 1972, p. 498)

Means-ends analysis is incorporated into GPS as follows:

1. J the current state is not the desired one, differencesbetween it and the
desired state will be detected.
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2. Operators can be classified according to the differences they eliminate.

3. It may be necessary to modify the current state to make it compatible
with a desired operator.

4. “Difficult” differences between states might be simplifiedby transforming
the current state, e/en if this results in more, though simpler, differences. |

The IPS, problem space, search, and means-ends analysis are domain-
independent ideas. The GPS program was designed to separate them from
any given problem-solving task. In the next section, we look at an example
of GPS in the task-domain of logic problems.

Task Demands of Logic in GPS

Symbolic logic problems provide an ideal situation to study problem
solving because one can describe the task environment of these problems in
great detail. One such problem is:

Translatethe expression RE (-P —-Q) into (PVQ)ER.

It is unimportant what the connectivesymbols (—, =, &, Vv) mean. (In fact,
the human problem-solvers who provided data for Newell and Simon were
told nothing about them except that they were a set of transformations fcr :
turning one expression into another.) Each transformation reduces a difference
betweentwo expressions. The problem is to use these transformationsto turn

the first expression, R & (=P — Q), into the second one, (PV Q) £ R. The
available transformations were the following (in which “:™ means “translates
to” and A and B are arbitrary expressions):

-~A: A A&A:A

AEB: A A&B :B

AVA: A AsadB: ARB

A&B: BRA AvB:BvA

AVE: ~{~A&-B) A—=B:-~AVS

A= DB: aB=—-A A~=BaadA:B

: Av(BvC): (AVvB)VC A&(B&C): (A&B)RC

Av(BRC): (AVB)R(AVCO) A&(BVC): (ARB)V(ARC)

A=DBead B—C: AC A: AVX (X is any expression)

| Consider how these rules can be used to translate from the original to the
goal expression:
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Expression Transformat.on

R&(-P —Q) A&B: B&A

yields(~P — Q)& R

(~-P—-Q&R (A—-B): (~AV B)
appliedto left part yields

(~PVQ)&R

applied to left part yields

(PVQY&R

(PV Q)& R is the goal expression. Q.E.D.

One can now see how GPS works in the task environment of logic prob-
lems. Exhaustive search would eventuslly generate the goal state but is
wasteful here because it ignores the information provided by the goal state.
Means-ends analysis directs GPS to reduce the difference between the starting
state and the goal state. For example, comparing the start state to the goal
state, it ir immediately obvious that the former needs to be turned around:

R must appear on the right of the parentheses instead of on the left. Thisis
a difference between the two states; it can be reduced by the transformation
A&B:B& A Instead of applying all applicable transformationsto the
starting state, GPS might simply apply this one, which will yield the state
(~P-Q)&ER.

Continuing this reasoning, one might try to reduce the differences between
(~P — Q) and (P Vv Q). There are two differences: P has a “~" prefix in
one case but not the other, and the connective between P and Q is “—" in
one case and “Vv” in the other. One transformationwill reduce the latter

difference,namely, A — B : ~A Vv B. Applicationof this transformation
yields(—P Vv Q)& R.

The final problem is to get rid of the “~~” prefixing P. One transforme-
tion is available to do this, ~—A : A, which yields the goalstate (PVQ)E&R
when it is applied.

(The reader who wants a “real life” example of problem solving with
means-ends analysis is encouraged to read Article XV.B on the STRIPS planner,
in the Hendbook.)

The reasoning of the last paragraphs is a simplified version of the opera-
tionof GPS. Means-ends analysis is demonstrated here in its simplest form:
At each step in solving the problem, a transformation is chosen that will
reduce one diflerence between the current state and the goal state. GPSis
able to do this because sach of the transformations it uses in a task domain

is classified according to the differences it reduces. For the logic task domain,
there are six differences that can be reduced by transformations. In GPS these

aresummarizedin a difference table. Three of the reducible differencesare:
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1. A difference in position of components of the expression. Several trans-
formations will eliminate this difference:

AVB: BVA A&EB:B&EA A—B:-B—-A ect.

2, A differencein the symbol that appears between letters. Transformations
to eliminate this difference are:

AvB:~~A&~B), A—-B:-AVS,

Av(B&C): (AVvB)& (AVC), ete

3. A difference in the numberof “~" prefixesof a letter. Several transfor-
mations change the number of prefixes:

A:A A—B:-~AVB, A—B:~B—=-A et

To solve the problem above, GPS determines the differences between the
starting state and the goal state and then applies transformations that reduce
them. However, the problems solved by GPS are rarely so simple; several
complications must be considered. First, if several transformations are appli-
cable to a state, CPS must choose between them. To do so, it consultsa
ranking of differences that tells it which differencesto reduce first.

: Another complication arises when GPS cannot find an operator to reduce
a particular difference. In this case, it must transform the current state into
an intermediate state from which it ean reduce the difference. For example,
consider adding the transformation rule A+ B : A V ~B and solving the
problem defined by the starting stte R » (=P — Q) and the goal state
(~P & -Q) V R. In this case, GPS sets up the goal of moving R to the
other side of the expression, ss it did in the last problem, but it has no
transformations available to accomplish this. Instesd, it must defer this goal
and transform the starting state into a state from which it can accomplish the
goal. To do this, it transforms Rs (~P — Q) into R V ~(~P — Q) and then
into ~(~P — Q) V R. Thus, GPS has the ability to set up ne: ‘ed sudgosls.

The design of GP5 is dictated by the heuristic of means-ends analysis and
by the task demands. The general part of GPS is means-ends snslysis and
the information-processingsystem in which it operates. The remainderof the
system follows from the task of solving logic problems. Thereare a limited
number of difierences possible and a Limited number of operations to reduce
them.

BwmpiricelTests of GPS

GPS was proposed as a psychological theory of human problem-solving. |
In this section we give evidence for the theory. Recall that the most general
aspect of GPS is means-ends analysis, which is used to guide the generation
of states in the problemspace. Some general behaviors are a natural conse-
quence of means-ends analysis; for example, GPS works forward from the
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current state to the goal state, as opposed to working backward from the
goal. Another general characteristic of GPS is the repeated application of
transformations to states. This refers to the situation in which GPS finds a

transformation it wants to use, but the currentstate is not. in a form that will
accept the transformation; the state must be altered and the transformation
reapplied.

If GPS is a theory of human problem-solving, one would expect humans
to use means-ends analysis and exhibit the behaviors that derive from it in

situations where GPS exhibits these behaviors. In the case of logic problems,
thie is easily tested. Task demands are equated by ensuring that GPS and the
human subjects have the same transformations to work with and the same
problems to solve. GPS is programmed to print out its goals as it tries to
solve the problem, and the humans are instructed to talk out loud as they
solve the problem. The subjects’ comments are recorded and the resulting
record is called a protocol, which is broken down into phrases:

“I'm looking at reversing these two thingsnow.”

“Then I'd have a similar group at the beginning...”

“I could easily leave something like that ‘til the end.”

These are classified as evidence of goals and applications of transformations.
Breaking down the protocols is a painstaking process, but it is expedited

by a structure called the problem behc..or graph, a graphic display of the
problem solver’s progress. The nodes of the graph represtnt the knowledge
of the problem solver at a given point in time, and the arcs represent the
transformationsthat lead to new nodes (states). There is also provisionfor
returning to parta of the problem that were left dormant while a particular
line of ressoningwas being explored. The protocol of er~a subject is mapped
cnto a problem behaviorgraph. Newell and Simon do not expect that any
problem behavior graph will precisely match the output of GPS on a problem.
Their claim is, rather, that patterns of behavior will be common to GPS and

| all \heir subjects. The problem bebavior graph provides an explicit record of
the behavior, from which patterns can be abstracted if they exist.

The following is a summary of an analysis of the problem-solving behavior
of seven humen subjects on a single problem. Newell and Simon classify the
behavior of both GPS and their subjects into patterns and compere them for
overiep. (This analysis is taken from pp. 480-502 of Newell and Simon, 1972.)
Mnemonics for theses patterns and the percentage of their occurrence in the
protocols of each subject are shown in Table B-1. Total percentages are shown
for the pooled sum of utterances in all seven protocols.TableB-1 has three
horisontal divisions, or tiers, representing (a) petierns exhibited by both GPS
and the subjects, (b) patterns exhibited by the subjects and not by GPS, and
(¢) uninterpretablebehavior on the part of the subjects.
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TABLE B-1

Percentages of Particular Problem-solving Patterns
in Protocols of Individual Subjects

——— A— ee ee  —

Subjeet

A B C D E F G TOTALS
A—

Tier 1. Behavior exhibited by subjects and by GPS
J——

\eans-ends analysis 37 47 48 38 52 50 4% 39

(toward goal object;
operator applicability)
Working forward 17 0 13 14 2 1 9 7]
Repeated application 46 44 37 39 30 44 42 38
(after subgoal:
implementation)

Subtotal 84

—_——

Tier 2. Behavior exhibited by subjects and absent in GPS
ee——————————————————————————————————————————————

\eans-ends analysis 0 0 0 <1 (Ii 5 7 >3
(consequence avoidance)

Working backward 0 2 0 0 0 oO © <]
Repeated application 0 0 $ 18 8 8 9 7
(review)

Subtotal 11
— ee ———ee

Ther 3. Uninterpretable behavior

oOo 3 2 ® 7 8&5 4 3
ee——— ee——————————————————————————————

TOTAL 100

In the first tier of the table, means-ends analysis has two manifestationsin
which states are transformed to achieve the goal expression or are transformed
into a form compatible with a desired transformation. A second pettern of
behavior is working forward, that is, searching through transformations for

. one that will apply to the current stats. A third pattem is repeated application
of a transformationon the same state. This event arises mostly when a desired

transformationis incompatible with a state. A goal is set up to transform the
state, and the original transformation is then successfully reapplied. Another
type of reapplication found here is to try out consequences of a transformation
beforecommittingthe system to it. Table B-1 shows clearly that the great
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majority of the utterances of the seven subjects conform to these patterns of
behavior—84%¢, in fact.

Tier 2 represents human behaviors that were not implemented in GPS
st the time. The grestest percentages were obtained for the reapplication

of transformations for the sake of review (refreshing the memory). Working
backward from the goal was another behavior that had not been implemented
in GPS. A third is a complex behavior in which a transformation is applied
before the application of the desired transformation, because the latter has
undesirable consequences (as well as the desired ones) if applied before the
intermediate transformation. These behaviors constitute 7%, 1%, and 3% of
the protocols, respectively.

Tier 3 of the table accounts for 5% of the subjects’ protocols and rep-
resents uninterpretable behavior that could not be assigned to any pattern.
These behaviors include grunts and yawns, and unfinished and ambiguous
phrases such as Well, this looks like, uh ... I dunno.

Conclusion

From this and other analyses, Newell and Simon conclude that GPS

is an explicit. operational, and sufficient model of some human problem-
solving. In GPS. a separation is maintained between geners! components,
such as ‘he information-processing system and means-ends analysis, and task-
specific components, such as details of the problem space. Newell and Simon

. claim that the general components apply in a wide range of task domains.
Chess and eryptarithmetic were examined in addition tf logic problems, and

these analyses certainly support Newell and Simon's ar jument of generality.
Moreover, since GPS, means-ends analysis has been ised in severalother
problem-solving programs (see Article XV.A).

Some problems are not solved efficiently with means-ends analysis. For
example, the heuristic can lead one down a long path of problem-solving
operators that dead-ends, forcing the problem solver 10 back up to a previous
decision point and try a different path. Also,means-endsanalysis may con-
struct a series of problem-solvingoperators that wiil, in fact, solve the prob-
lem, but that is much longer than necessary. Lastly, means-endsanalysis can
be inefficicnt when there are interacting subgoals to be achieved; if sccom-
plishing one subgoal prevents accomplishing anot'rer, the problem-solver can
do no more than return to the beginnirg of the problem to try the subgoals in
a different order (sea Article XV.A for a detailed discussionof this problem).

However, the efficiency of problem-solvingis a big concern for computers,
but perhaps not a serious concern for humans. The fact that means-ends
analysis can be inefficient does not detract from the empirical fact of its
generalityin human problem-solving. This is not to say that means-ends
analysis is the only problem-solving strategy used by humans; the following
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article (Article X1.C) will discuss a planning problem that is best solved by a
process called opportunistic planning.

References

The most comprehensive and exhaustive information-processing analysis
of human problem-solving is Newell and Simon (1972).



C. OPPORTUNISTIC PROBLEM SOLVING

THIS ARTICLE discusses a theory of planning developed by Barbara Hayes-
Roth and Frederick Hayes-Roth (1976; B. Hayes-Roth, 1980). The theory is
specifically of human planning, and the authors and their colleagues have run
several experiments to test it. For this reason, the theory is discussed here
rather than in Chapter XV, on planning.

Hayves-Roth and Hayes-Roth have implemented their theory in a model
that. due to its complexity, will be sketched later in this article but not
presented in detail. The first part of the article discusses an exploratory
experiment with human planners in which subjects were required to think out
loud while planning. This technique is familiar from the work of Newell and
Simon (Article X1.B). A transcript, or protocol, is broken down into phrases
that are interpreted as evidence of particular planning or problem-solving
operations.

In the planning experiment (Hayes-Roth and Hayes-Roth, 1978), subjects
were given a map of a small town marked with points of interest such as movie
theaters. the veterinarian. stores, and restaurants. They were asked to plan

a day's activity that included 10 errands. such a# Get medicine from the vet
and Buy fresh vegetables at the grocery. A couple of errands’ included explicit
constraints. such as the showtimes of movies. Constraints about other errands

were implied; for example, {resh vegetables should probably be purchased in
the evening. rather than leavingthem in a car all day.

With the map and list of errands in hand, subjects talked about their
developingplans for the day. What they said was recorded and transcribed;
Table C-1 shuws samples of one subject's comments as he planned his activi-
ties. These paragraphs are excerpted from a longer protocol of 47 such pars-
graphs; the numbersin parenthesesindicate the position of each paragraph in
the protocol. The paragraphs illustrate a number of important charac. wisties
of human planning. In the first, the subject wees his knowledge (0 assign
importance to each errand and, thus, to order them. World knowledgeis aleo
weed Lo order plan steps in the later paragraphs, in which the subject tris to
schedule the purchase of groceries to avoid spoilage.

The second and third peragraphs illustrate two styles of control of plea-
ning. In the second paragraph the subject is motivated by a number of indi-
vidual goals; his thinking is bottom-up, or driven by what he perceives to
be the immediately attainable goals of the problem. In the third paragraph,
however, he starts planning st a different level of sbetraction. Fromthe goals
previously articulated, he abstracts a higher level goal, to do the errands in the
southeast corner. For three more paragraphs in the protocol (not excerpted
here). the subject tries to fit errands into the general plan of heading southeast.

22
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TABLE C-1

Excerpts from a Planning Protocol (from Haves-Roth and Hayes-Roth. 1978)

1. (1) Let's go back down the errand list. Pick up medicinefor the dog
at the veterinary supplies. That's definitely a primary, anything taking
care of health... . Buy a toy for the dog at the store. If you pess it, sure.
If not. the dog can play with somethingelse.

2. (7) The appliance store is a few blocks away. The medicine for the
dog ...isn't too far sway. Movie thesters—let's hold off on that for a
little while. Pick up the watch. That's all the way across town. Special-
ordera book at the bookstore.

3. (8! Probably it would be best if we started in a southeasterly direc.
tion. ...1 can see ister on there are a million things | want to do in that

partof town.

4. 123) Third item will be the newsstand since we are heading in that
direction. Often | like to do that. I know buving a gardening magazine
it hardly a primary thing to do. but since i m hesding that way. it's only

going wo take a second...

3. 131)1 would like to planit 50 | can see the movie. pick up the vegetables,
pick up my car. and then go home. Vegetables would rot. :

6. (35) Now we do heave a problem. It's 2:00 and all we have left t0 do ie
see 2 movie and get the vegetables. And that's where I think I've blown
this plan. I've got an hour left thers before the riovie. . .

7. (40) If 1 go get the groceries now, it's not really going to be consistent
with the plane throughout the day because I've besa holdiag off on the
groceriesfor rotting. If 1 tale them to the movie... vegetables don’t

When immediately stisinsble errands are pointed out to the subject, he says,
1 cen still do that end still head in the general direction. In comtrastto
the earlier mode of planaiag, driven bottom-up by immediate goals, he now
sttempts to incorporate thane goals inte an abstract plan. This illustratesthe
sbility of humana planners to ressen at meay levels of abstraction and to move

processing.
The fourth paragraph illustrates cas of the most interesting snd fun-

damental characteristics of plansing, and indeed of other aspects of cognition:
It is opportunistic. The subject realised thet he could fulfill one of his obligs-
tions “for free,” and promptly did so. Goals thet fit into a developingplan are
integrated, and goals that belong together are clustered into subplans, often
without regard for how the subplans will integrate with the overall plan. For
example. early on in the protocol (not shown above), the subject plans to
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end his day at the movie and then walk to a parking lot where his car is
parked. This subplan is constructed when the subject notices the proximity
of the movie and parking lot. There is a strong parallel between this process
and island driving. in which a problem solver finds part of a solution that he
thinks is correct—an island—and extends the solution from there. possibly
toward another island. Subplans can be regarded as islands that are linked
by sequencer of planning actions. (For a detailed discussion of island driving
in speech understanding. see Article V.C1, in Vol. 1.)

The fifth and sixth paragraphs of the protocol show the subject sum-
marizing his current state and realizing that the plan is flawed because he has
too much time for what he has to do. At this point. he relaxes one of his
requirements. that he purchase vegetables after the movie, to fill in the hour
before the movie.

Opportunistic. multidirectional planning is very different from that prae-
ticed by the planners discussed in Chapter X\'; human planning can be sig-
nificantly more complex than that of current Al planners. Before we discuss
the Haves-Roths’ model. we consider some of these differences.

Opportunistic processing has a bottom-up component; planning processes
are instigated by something the problem solver notices about the state of
the world. In human planning. steps are introduced into a plan whenever
the opportunity arises to do 50. This contrasts with the least-commstment

strategies in NOAH and MOLGEN (see Articles XV.D1 and XV.D2), in which
planning steps are refined only when there is evidence that they will not :
bave to be abandonedlater. In human planning, the carefully controlled
introduction of plan steps implicit in NOAH and MOLGEN is abandoned for

the advantage of introducing steps in a plan wherever they are convenient.
A closely related issue is that human planning is multidirectional: that is. |

it takes place at several levels of abstraction simultaneously. This contrasts
with the Aiersrchical planners (discussed in Articles XV.B, XV.D1, and XV D3),
which develop detailed plane from abstract plans in a purely top-down fashios.
NOAH and MOLGEN do not include detailed steps in a plan unless they have
been refined from mote abstract ones. This strategy helped them © avoid

rising the implications of refining an sbetract plan step for other perts of the
plan, and NOAH used critics to check for inmeractions between plan steps as

| its plan developed. Both approaches rely oa developing ebstrect plans into
detailed ones in a top-down manner.

| The major advantage of the least-commitment strategy of hierarchical
planning is that it allows the planner to svoid subgoal interactions and,
‘thus, plan constructively with a minimum of backtracking. Opportunistic
planning leaves the planner susceplible to these interactions; an opportunistic,

multidirectional! planner is more likely to need to rewrite parts of its plan or
change its goals than is a hierarchical planner. In fact, Table C-1 showed the

| planner committing himeeif to a plan that does not fulfill ail his goale—he is



C Opportunistic Problem Solving 25

left with too much free time. However, instead of backtracking to a previous

point in the plan and replanning. the planner instead relaxes one of his goals
nd decides to buy groceries before the movie.

Haves-Roth and Hayes-Roth argue that opportunistic, multidirectional
planning is more efficient than hierarchical planning when the problem to
be solved is very complex. They say that hierarchical planning restricts
the problem solver and does not permit organizing parts of a plan around
interesting possibilities that emerge bottom-up (ss can be done in island
driving).

The relative efficiencies and advantages of hierarchical, least-commitment
planning and multidirectional, opportunistic planning are issues for Al. How-
ever. our chief concern in this article is not with efficiency but, rather, with
how human planners plan. The remainder of the article summarizes the
Haves-Roths' model.

The Control of Planning

HaveeRoth and Hayes-Roth propose a Nackbeerd model to represent
‘he complex control structure of human planning. Blackboards have been
ased primarily to facilitate interpretation of noisy signals suchas speech (see
discussion in Article \'.C1. in Vol. 1) and data from sensors (see Article VILCI,
in Vol. 0. on CRYSALIS: aleo, Nii and Feigenbaum, 1978). A blackboard
mode! for signal interpretation typically has a number of specialist programe
that produce hypothesesabout aspects of the signal. For example,a speech-
understanding program has specialists for dividing the spesch signal imo
phonetic units. for guessing the symtax of the spoken message, for predicting
the next word given those that have besn spoken already, and so on. The
hypotheses produced by each specialist are sccessible to all, since they are
postedon a central Neckieard Hypothises posted by ome specialist are data
for others: for example, if the syntactic specialist posts the hypothesisthat the
net word is 8 verb, the lexical specialiet can wie this information to narrow
the search for the exact word.

Theoretically, the control of processing ia a blackboard model is espn-
chronousand opportunistic: Specialistspost hypothesesin no particular order,
and they wes hypotheses pasted by other specialists whenever thay appesr
helpful. Although bumen pleasing, involves generating behavior rather thea
interpreting it, it doss seem to be an asynchronous, opportunistic process.
Plans are not developed all of & pisces, but, instead, clusters or islands of
planning actions are constructed, and they are linked to other clusters when
an opportunity arises.

The Haves-Rothe” planning model involves a blackboard withfive planes
of planning decisions and many specialists the’. generate tentative decisions
and record them on the blackboard. Planes are organised to reflect charae-
teristic processesin planning. One is the plen plane, a plane of operations.
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Decisione to execute the processes discussed in the protocol—going to the
veterinarian. seeing « movie. and so on—are recorded in the plan plane. More
general goals and general plans to accomplish them are also recorded in the
plan plane.

At the level of the meta-plan plane, the planner makes decisions about
how to solve the problem at hand. As we note in the discussion of MOLGEN
(Article X\'.D2). a planner can do a lot of reasoning about a problem before
proposing 0 much as a single action to solve it. Decisions recorded on the
meta-plan plane capture some of this reasoning. For example. the planner
must represent the problem to itself and decide what type of problem it is. s0
that it ean pick out a problem-solving model. or strategy. The way a problem
is represented by the problem solver can affect the ease with which it is solved
(Amare). 1988): thus. identifying a problem and finding an approach to solving .
it are two very important decisions. Most planning programs have a single
representation of a problem and a single. implicit strategy for solving it; for
example. some nonhierarchical planners (discussed in Article X\'.C) represent
problems as a collection of propositions to be made true, and they solve the
problems by pattern-directed invocation of procedures with backtracking. It
is possible. even likely, that a human planner might sdopt means-ends analysis
with backtracking as a method: the choice between this and other possibilities
is recorded on the meta plan plane.

involves the policies followed by the problem solver:What constitutesa good
solution? Is it to be quick and dirty or psinstaking and elegant? Again,
most Al planning programs do not make such decisions, which obviouslylend
power and flexibility to human problem-solving. We can usually decide when
a solution is good enough (what Simon. 1900. calle satisficing);those who are
never satisfied and those who are 100 easily satisfied—thecompulsive and the
siob—are often inefficient problem solvers.

The meta-plan plane records global decisions about how to approach a

Hayes-Rothsplace the plan-ebetraction plane.Decisionsrecorded st this plane
motivate aperstions recorded on the plan: plans. For example.the decision to
do all of the “primary” errands fist is & formulation of an sbetrect plan; it
motivates the decision—recordeden the plan plene—to divide errands into
“primary” and “sscondary” groups.

A fourth plane in the Hayes-Rothe’ model contains world knowledge.
For the errand-planning task, the knowledge-base plone includes 3 list of the
errands and a representationof the map. A poiat made easlior—thatthe
represemation of the problem affects the efficiency with which it is solved—
holds also for the representation of knowledge pertinent to the problem. The
Hayes-Rothe reprerent the map in several ways to enhance problem-solving
efficiency. At one level. the map is representedas sectors. for example, the
southeast corner: at another level, neighbors are recorded, for example, a
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movie house neighbors on a parking lot. A third level of information about
the map represents routes between points of interest. This knowledge base
would. of course, change for another kind of problem.

The fifth plane. the ezecutive plane, schedules the planning decisions
made by specialists that are 1ecorded on other planes of the blackboard. We
have characterized the kinds of decisions that are found in human planning,
for example, decisions about specific planning actions, about approaches to
a problem, and about abstractionsof planning actions. The decisionsare
tentatively proposed and recorded on the appropriate plane of the blackboard

by specialist programs that are sensitive to perticular kinds of decisions.
For example. a proximity detector specialist would note when two points of

interest are nearby on the map; it would record pairs of neighbors on the
knowledge-base plane of the blackboard. Specialists operate independently

and asynchronously, as mentioned above. Consequently, a scheduler is needed
10 decide on a sequential order (since most present-day computers are sequen-
tial machines) for all the actions of specialists. Scheduling might be queue
oriented. that is, first come first served, but, in general, humans do not
schedule actions this way. Instead they schedule them according to their
perceived efficiency. productivity, and the like.

Conclusion

Hayes-Roth and Hayes-Roth present a detailed example explaining how
their model accounts for the protocol of a subject planninga day's activities
(excerpted above). Rather than discuss the model in detail, we have presented
its planes and specialists in quite general terms, attempting to charac "ise the
types and levels of decisions that are necessary for planning. One generalcon-
clusion of this article is that human planners are much more sophisticated than
any of the programs discussed in Chapter XV on planning. Multidirectional,
asynchronous, and opportunistic processing is proposed to model this sophis-
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D. EPAM

EPAM (Elementary Perceiver and Memorizer) was developed in the period
1956-1964 by Edward Feigenbaum and Herbert Simon. This program was
the first information-processing model of a number of well-known human
verbal-learning behaviors. Though it sounds simple, rote learning of nonsense
material has provided much evidence about the characteristics of short-term
and long-term memory. Nonsense material is useful in that it avoids the
effect of the meaning of a stimulus on how well it is learned; for example,
familiar stimuli or stimuli that “fit in” with previously learned material are

} relatively easy to learn. When Ebbinghaus first used nonsense syllables in the
1870s. these factors were not understood. His method limited their eflects,

which, he felt. obscured the fundamental characteristics of memory. (An
interesting sidelight on the topic of nonsense syllables is that Anderson and
Bower. whose work is discussed in Article X1.E2, used meaningful sentences for

their experiments on strategy-free memory because they felt that their subjects
were likely to employ mnemonic strategies to remember nonsense stimuli.)
EPAM provides an explanation of some of these characteristics. among them
oscillation and retroactive inhibition, forgetting, and stimulus and response

generalization.

Verbal Learning Behavior

To simplify the study of human verbal learning, psychologists have devel
oped a number of experimental! techniques (for a survey. see Baddeley, 1976).
Most are based on the following procedure: The subject (whether human or

EPAM)is required to memorize nonsense syllables in serial lists or associate
pairs. The syllables are typically comprised of three letters, beginning and
ending with a consonant, and are supposed to be meaningless for most sub-
jects (e.g., XUM, JUR, FAZ). In paired-associate learning experiments, the first |
syllable of a pair is called the stimulus and the second is called the response.

EPAM was designed for paired-sssociste and serial learning, but in this
articlewe will consideronly the former. In a typical experiment,2 set of
nonsense syllable pairs is used. For each pair in the set, the stimulus syllable
is displayed to a subject. who then attempts to say the associated response.
Any errors made by the subject are recorded. The response syllable is then
shown, so that both stimulus and response are in view, and the subject is able
to refresh his (or her) memory of the association (or learn it, if this is the first
presentation). After a few seconds, the next pair of syllables is displayed. This
continues until all of the pairs have been displayed. The entire sequence is

28
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~alled a trial. Trials are repeated until the subject is able to give the correct

response for each stimulus. This is called learning to criterion. There is a
relatively short period of time between trials. and the sequence of pairs is
randomized from trial to trial.

A number of behaviors are typical in a paired-associate verbal-learning

experiment:

1. Stimulus and response generalization. Overt errors in recall are often attrib-
utable to confusion by the subject between similar stimuli or similar

responses. When similar stimuli are confused. their responses may become
interchanged: when two responses are similar, the wrong one may be

given to a stimulus.

2. Oscillation. Associations that are recalled correctly over several trials are
sometimes forgotten only to reappear and then later disappear again.

3. Retroactive inhibition \Vhen the paired-associate task is modified to
include an intervening learning task, so that one list of syllables is learned
and then another, and the retention of the original list is tested, the

subject's ability to give correct responses is reduced by the intervening
learning. Moreover. overt errors in recall are usually intrusions from
the second list. The phenomenon disappears rapidly. however, and the
subject's memory of the first list is refreshed during the next trial.

The EPAM Afodel

The EPAM program was written in IPL-V, one of the first list-processing
languages. EPAM is a two-part system, with performanee and learning com-
ponents. In the performance mode, EPAM attempts to produce responses to
stimulus syllables. In the learning mode, EPAM learns to discriminate and
associate stimuli and responses. The modelis easier to understand if the
performance mode is discussed first.

The Performance System

After EPAM has learned a set of stimulus-rermonse pairs, it is tested in
a standard paired-associate task. The test, which is identical to that given
to a human, involves presenting stimulus syllables to EPAM, which then must

produce the associated response syllables. The performance system proceeds
as follows. A stimulus syllable is encoded into an input code that directs the
search of EPAM’s memory, called a discriminationnet. This searchleads to
a node in the net that contains a cue. Cues are informationwith which to

search for a response syllable. Using the cue, EPAM searchesthe net again
for a node containing the response, called a response image. The cue does not
always hold enough information to find the response syllable. If it does, the
response is given: otherwise, EPAM makes an error.
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EPAM codes each stimulus syllable into an internal representation called

the .nput code. This is based on certain features of the input characters. such
as the “openness” of a letter (e.g., C versus O) and whether the letter contains
croseed straight lines (e.g., X). Different sets of features have been used, but
in all cases they must satisfy two criteria: They must be related in some way
to features of letters, and they must be highly redundant (having many more
features than are required to distinguish letters).

For the remainder of this discussion, to simplify the examples, we will
assume that letters themselves and not features of letters are used as input
codes. Thus, when EPAM is tested with the stimulus MUR, features of the

letters MM. U, and R are actually used as the input code, but for simplicity we
assume here that the input code is MUR.

The primary memory structure of EPAM is the discrimination net. It is
constructed during EPAM’s learning mode and searched during the response
mode. The input code it used to traverse the discrimination net, which
normally contains a dozen or more pairs. The net is simply a binary search
tree, with internal nodes representing tests of features of stimuli. The leaf
nodes represent either cues or response images. A diagram of a discrimination
net that has been constructed in response to the associate pairs DAX-JIR,
PIB-JUK is shown in Figure D-1. )

An example. Imagine that the input code to EPAM is the syllable PIB.
EPAM will sort down the tree until it gets to the node representing PIB. It
does this by going left or right at each internal node contingent on the results
of the test at that node. At the PIB node it will find a cue, J-K, which will

be used to traverse the tree again, from the root node down the right branch
to the next node, then down the left branch to the JUK node. At this point,
it will respond with the syllable JUK. Note that it is only necessary to store

(> J

P 0 x A

P o] [ux] [um

CJUK cuel-K> <JIR cueJ-->

Figure D-1. A discrimination net for the associate pairs
DAX-JIR, PIB-JUK.
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encuch features of the cue to direct EPAM to the response syllable at the time
the ue is created. The method of construeting cues will be discussed later.

We have scen how EPAM performs when it give: correct responses 0
stimuli in the paired-associate task. To understand how EPAM fails at the
task in wavs that are characteristic of human memory, we will consider how
it lear.s.

The Learning System

The discrimination learning system operates by constructing a discrimina-
tion net from a set of stimulus-response pairs. Initially the net is empty. and
only a set of simple processes for growing nets and storing images at leaf nodes
ie available.

Suppore that the first stimulus-response pair ist DAX-JIR and has already
been learned. The discrimination net at this point is shown in Figure D-2.

The full response image must be stored in order to produce the response.
but only partial stimulus-image information need be stored to recognize the
stimulus. In this simple net. a single letter is enough to discriminate between
the two syllables: therefore. the test at the root node is on a single letter and

: no other tests are necessary. Moreover. the cue to find the response need be
only a single letter. The amount of information that needs to be stored at
internal and leaf nodes is determined by the program as the net grows.

Suppose the second syllable pair to be learned is PIB-JUK; see Figure D-3.
The net. as it stands, does not know about PIB; therefore, another test must
be added to discriminate between the input codes for DAX and PIB. This new
test is placed at the point in the net where there is a failure to discriminate.

Let us assume that the test is placed 20 as to discriminate between PIB and
DAX. as shown earlier in Figure D-2. (The test could have been between PIB
and JIR; EPAM is able to determine where the failure to discriminate occurs.)

Figure D-3 does not include a response image for the second syllable, JUK,
or 8 cue at the leafof the PIB branch to help EPAM find JUK later. The input
code JUK is used to traverse the net until a discrimination failure occurs. In

D J

o] [sm

<JR cue: J-->

. Figure D-2. Discrimination net for the associate
pair DAX-JIR.

/
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o/ J

P )

Flo)

<JIR cue: J-->

Figure D-3. Discrimination net for the associate pair DAX-
JIR, which also discriminates PIB from DAX but

does not include a cue or response image for the
: PIB-JUK association.

this case, the D:J test takes the J-branch and again a new discrimination must
be added to distinguish JUK and JIR. Human subjects generally consider final
letters before middle letters and EPAM does the same: It notes that the last

letters of JUK and JIR differ, and a test is added to reflect this.

A cue to lead from the end of the PIB branch to the JUK response image
is still lacking. It is constructed by trial and error. Each time a letter is added
to the potential cue, it is used to traverse the net; see Figure D—4. Information

is added to the cue as necessary until it leads to the correct response image.

to find the appropriate response image at the time of memorization.
It is now possible to see EPAM'’s source of errors on the paired-associate

task: Cues are constructed to guarantee correct retrieval of the appropriate
response image at the time the association is formed. If at some later time the
net incorporatesother images and cues, the cue might no longer be sufficient to
performthat task. Thus, responsesare forgotten temporarily. No information
is destroyed, but some becomes inaccessible. This can be seen by comparing
FiguresD-2 and D4. When the DAX-JIR association was first constructed
(Fig. D-2), the cue for JIR, J--, was sufficient to find the response to DAX. |
However, when JUK was added 0 the net (Fig. D-4), J-- became inadequate
to discriminate between JIR and JUK.

The DAX-JIR association is not necessarily lost forever. If the association
" is repeated (typically during a later trial), it will be reconstructedin the net
with the information necessary to maintain the association at thet time.

There is another aspect of the cue-construction method that results in
inadequate cues. This has nothing to do with the diecriminabilityof a cue
changing due to the expansion of the net; rather, it derives from a single
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<JUK cue:d-K> <JIR cus:d-->

~ Figure D-4. Final discrimination net for the associate
pairs DAX-JIR, PIB-JUK.

random decision made ty EPAM while it is constructing a cue. For example.
if J- - is proposed as a cue for JUK, when the cue is tested, it will lead to a
branch in the tree that has JUK on its left branch and JIR on its right. At

this point, EPAM chooses one of the branches at random. If it goes left, it
will find JUK and conclude that the cue is sufficient to find JUK in future,

when in fact, this is not so.

EPAM’s Verbal-learning Behavior

. EPAM behaved very much like a human subject in classical rote-learning
experiments. It provided s parsimonious explanation of rote-learning behav-
jor. since retrcactive inhibition, oecillation, stimulus and response general-
ization, and forgetting can all be seen to stem from a single mechanism.
As items are learned, the discrimination net grows to accommodatenew
stimulus-response pairs. However, the cues that associate the stimuli with
their responses guarantee correct response retrieval just at the time of the
association. A cue that leads to the appropriate response image can fail to do
00 at a later time.

The oscillatory behavior exhibited by EPAM serves as a basis for an alter-
native explanationof forgetting. The usual explanationis that the informa-
tion is destroyedover time, typicallyby overwriting or decay. Forgetting
in EPAM occurs not because the information is physically destroyed but
because it becomes inaccessible in the growing network of new associations.
Furthermore, forgetting in EPAM is only temporary: Lost associstionscan
be recoviredby updating the appropriatecue with more information during
another trial.

This process accounts for the fact that more than one trial is usually
required to leern to criterion, that is, to give the correct response to esch
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stimulus. During the first trial, each cue is constructed with enough infor-
mation to find the correct response at the time it is stored: a subsequent
stimulus-response pair may be added such that the original cue can now no

longer discriminate between its correct response and the new one. This was
shown in Figure D—4: The J-- cue was sufficient to produce a response when
DAX-JIR were the only elements in the net, but as soon as PIB-JUK were
added. J-- was ambiguous with respect to JIR and JUK. Thus, on the next
trial. EPAM might respond to DAX with JUK; this would be incorrect and an
example of response generalization. However, the correct association is always
thown ahter a stimulus-response test. so EPAM has the opportunity to update
the J- - cue to make it discriminate JIR and JUK. On the next trial. it will not

confuse the two. Thus, in the course of a number of trials, EPAM gradually
learns to discriminate all stimuli and their responses.

If etimuli and their responses were initially very discriminable, EPAM

would require less time to learn them. This is because there is lest chance
of response generalization. Operationally, this means that when EPAM con-
structs a cue with the minimum information needed to find a response image,
it ie Jess likely that a subsequent stimulus-response pair will render the original

rue ambiguous.
If the same discrimination net is used for two trials, that is, two different

sets of stimulus-response pairs, the diserimination net that was sufficient to

respond correctly to all stimuli during the first trial may now be unable to
discriminate between responses for trial 1 and responses for trial 2. This
produces thc phenomenon of retroactive snhibition, which is the deleterious
effect of learning an intermediate list on recall of the original list. It also
predicts the result that errors are likely to be snfrustons from the second list,
rather than confusions between responses in the first list.

One problem with EPAM was that it had no mechanism to model proactive
tnhibition. the situation in which learning one list of stimuli interferes with the
learning of the next list. Typically, when a subject is tested on the second list,
intrusions from the first result. Both proactive and retroactive inhibition are
evident in verbal-learning experiments, but EPAM exhibited only the latter.
EPAM has since been extendedto deal with proactive inhibition by Hintaman
(1968) in his SAL (Stimulus and Association Learner) program. This was
accomplished by having a push-down stack at each leaf node in the discrimins-
tion net. Instead of a single image and cue at a leaf node during an experi-
ment, the associations from multiple experiments were allowed to accumulate
by being pushed onto the appropriste stacks. Thus, the most recently learned
association would be on the top of each of the stacks. If the stackswere ran-
domly disrupted, the responses that “spontaneously rise” to the top of the
stacks might be responses from previous experiments. Ancther accounting
of proactive inhibition given by Anderson and Bower (1973, pp. 74-73) in
their review of EPAM is that instead of a stacklike structure, a list of cues is
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kept. and the ordering of elements in the lists gets reshuffled. possibly as a
consequence of the subject thinking about the material he has Jearned.
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E. SEMANTIC NETWORK MODELS OF MEMORY

El. Quillian’s Semantic Memory System

THERE are numerous intelligent behaviors of computers that depend on
knowing the meanings of words. for example. machine translation, summa-
rizing text. and speech understanding. The semantic net formalism developed
by Ross Quillian was the first attempt to provide an operational representation
of word meaning. The basis for Quillian’s model is remarkably simple. namely.
that the meaning of a word can be expressed by relating it to other words.
This leads to the concept of word senses—a word may have many meanings
that depend on the context in which it is used.

Quillian found that w recognize the meanings of words it is adequate to
find the relations between them. However. for another task this conception

of meaning might be lest appropriate. For example, in the game “Twenty
Questions” one may know many things about a word-—that it denotes a
common household item. the item is wooden, and 30 on. One may know
everything about a word that would go into defining its meaning but still be
unableto guess what it is, thatis, to recall it. Quillianmakes the distinction
between recognition memory and recall memory for the meaning of words.
His model is concerned with the former; recall memory is not considered.

The tasks Quillian chose to implement using semantic memory were com-

parisonof word meaningsand expression of the comparisonsin English. Both
were motivated by linguistic theory contemporary with Quillian's research,
which subordinated meaning to syntax in searcn of rules to produce “all and
only" grammatical ventences. In contrast, Quillian regarded semantic memory
as primary to language production and syntax as secondary. Thus,he chose
tasks to show that this new conception of language production could, in fact,
both produce language and understand it.

The Associative Structure of Quillian’s Semantic Network

Quillian's model is an associative network of nodes that represent concepts
and arcs that represent relations between the concepts. Whenone is asked
to say all one knows about a concept, for example, machine,a string of
associations cften results: A machine does work, has moving parts, is usedto
convert energy, and0 on. Machine is associated with energyvia the concept
convert.

Word definitions have an associative structure. The set of associations

and concepts that make up a definition is called a plane (see Fig. E1-1). The

: 36
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Figure E1-1. [Illustration of planes for Machine, Steam-shovel,
Convert, and Energy, showing type-tokex links.

concept being defined,called the type node, appears at the top, and the starred
words beneath it are called token rodes. They are instancesof the type nodes
of other planes that are connected to their type nodes by ares. (In Fig. E1-1,
these arce are not filled in for all token nodes. steam shove! is 3 subclass of

mechine. smachine is an instance of machine, and «convert and =energy are
instances of their associated tvpe nodes.) Every plane contains only a single
type node and enough token nodes to define the concept it names. Every
plane represents a new concept defined by associstions to those previously
defined. Planes are linked together, type node to token node, throughoutthe
associative memory.

The utility of the type-token distinction is that it saves space in computer
memory. Imagine the sise of a memory in which every definition of a particular
machine included the entire plane for mechine, and the planes of its other
defining concepts, withinits own. A more efficient organizationis to have a
single plane define mechine and to connect it to token nodes in all the planes
that include machine as part of their definition.

Quillian believes that semantic memory should have a large enough selec-
tion of arcs to represent the richness of relations between concepts in English,
but not so many that the mechanisms required to process the arcs are very
complicated. Six kinds of arcs were used, representing the following relations:
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1. Subclass superclass,

2. Modification (adverb, adjective).

3. Conjunctive (a and b and ¢),

4. Disjunctive (a or b or ¢),

5. 6. Two other relations representing unspecified binary predicates.

Other, more complex schemes for associating nodes have been proposed
(see Article X1.E4). In a later publication, Collins and Quillian (1973) describe
several other kinds of arcs, representing proximity (or adjacence), conse-
quence, precedence, and similarity.

AMeaning-dependent Tasks in the Model

One important contribution of Quillian's work was providing a simple
model of semantic ambiguity. There are two sources of semantic ambiguity:
A word may have different meanings (e.g., the noun and the verb forms of
plant). and it may have different senses depending on context (e.g., animal in
the context of species or animal in the context of untamed). Quillian’s model
is able to find many of the senses of words.

When the model is presented with two words to compare, it startsto
search outward from the planes representing the words in its memory. The
type nodes of the planes are called the patrierch nodes. The program alter-
nately examines nodes emanating from each patriarch. Each node is tagged
with a double label, one part containing the name of the patriarch and the
other the name of the last node examined (the immediate ancestor). Searching
continues until the path from one patriarch “bumps into” a node labeledwith
the name of the other patriarch. At that point, a path from one patriarch
to the other has been completed. Its nodes represent the concepts that relate
the two patriarch concepts, the raw material of a comparison. A program
tha’. expresses this conceptual pathway in English is summoned and produces
s crudely expressed comparison.

It is likely that there is more than one path between two words. In fact,
Quilkan estimates that in a network of the $50 words of basic English, at least
10 nontrivialpaths could be found relstingany pele. Each of these constitutes
a sense in which ons word is used in the context of another. For example,the :

: Mal io pereen, and
Business cua be activity which person must do work.

Also. the program discovers the generic sense of men:

Men2 io man ash grewp. and

Business is quastion fer atteatisa of grewp.
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Thus. man used in the context of business has two meanings. In the context
ol live. another sense emerges:

Man is animal, and

To live 4s to have existence 807 animal.

Also:

Man is a live*being2.

Although this version of the model contains less than 60 definitions. it still
oroduces interesting comparisons.

Quillian notes that the breadth-first search (Article 1.C1, in Vol. 1) between
ncdee it a form of inference. The relations between nodes uithin a plane are

stored by the coder who defines it. In constructing a definition. the coder
makes pairwise associations between a plane and (through type-token links)
-he other planes that define it. Any path between planes that encompasses
more than a singlk type-token pair is a novel cunceptual link discovered by
the modei:

While a path lying completely within ome plane (except for its terminal
points) amounts only to a representation of some piece of the information
pul into memory. a “plane-hopping”path represents an ides that was |
implied by. but by no means directly expressed in, the data that were input. _
(Quiliian, 1908, p. 240)

Empiricel Tests of Quillien’s Model

Inference was an importaat concapt to Collins and Quillian (1960) in their
researchon the prvehologicalvalidity of the semantic network model. They
sought to prove that human memory. like their semantic memory, obeyed the

| organizational principles of hierarchy and ecomomy. Figure E1-2 represests
» hierarchical tree of information about animals. The lowes nodes constitute |

proper subsets of upper nodes; this is the principle of hierarchy. Note that
properties of nodes are ast repeated at each mode at which they apply but st
the highest possible node above all the subsets to which the property applies.
The properties of subsets ase then inferred from the superordinets nodes at
which they sre stored. This is the principle of economy.

| For example, although 8 canery is feathered. this information is stored
with the ancestor of the set of feathered things, the concept bird Higher mill,
stored with the concept enimel, is the information thet 8 canery is ambulatory.
The knowledge thet a canary is ambulatory is achieved by inference:A canary

| is & bird; a bird is an snimel; saimals are ambulatory; thus, by inference,

Coline and Quillian reasoned that predictions can be made Lo test whether
the principles of hierarchy and economy hold for human memory. The first of
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Figure E1-2. A hierarchical memory structure (from Collins and
Quillian, 1989).

these concerns the hierarchy principle: Since it requires more inferential steps
to confirm s proposition like A cenary is en enimal than a tautology like A
canary © a canary, humans should require more time to confirm the former

| thanthe latter. They should need intermediate amounts of time to confirm
propositions requiring intermediate-length chains of reasoning, such as A berd
12 an enimal or A salmon 0 a fish. In fact, resction-timedats support this

Proposition Time to confirm (in seconds)

A canary is 8 canary. 1.0
A comary is a bird. 1.17

: A canary is an animal. 1.25

| These reaction times have besa replicated for similar tesks (Conrad, 1972)
sad support the hypothesis that semantic memory is organised hierarchically.

Collins and Quillisn weed a similer experiment to test the economy prin-
| ciple. They predicted that A conery can sing should require less time to verify

| time.They found:

| Proposition © Time to confem (in ssconds)

A canary can ring. 1.31
A canary can fly. 1.58
A canary hes skin. 1.47
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They presented this evidence in support of the economy principle. The alter-
nate hypothesis. that a property common (0 a superset is stored with each
member of each subset. is ruled out by the reaction-time data: If a super-
ordinate property, like having skin, is stored with each subordinate node. for
example. canary. it should take no longer to verify that a canary has skin
than that it can sing.

Although Collins and Quillian’s data support the economy principle, there
is evidence that the increasing reaction times can be explained in other ways.
Conrad (1972) found that the time required to verify a property was propor.
tional to its familiarity. not to the hierarchical distance between a property
and the noun it is associated with in a proposition. An alternative to the |
economy principle is that “properties are stored in memory with every word
which they define and can be retrieved directly rather than through a process
of inference” (p. 134). Conrad explains the differences in reaction time az a
function of the familiarity of the words. When familiarity was controlled, and
the experiment run again, no differences in reaction time as a function of the
presumed hierarchical placement of the property could be found. However,
the effect of position in hierarchy for superset-subset sentences was replicated.

The status of the economy principle is unsure. The hierarchy principle has
| more support, but Collins and Quillian's model of sentence verification leaves

a number of phenomena unexplained. For example, it does not account for
how false sentences (Fish can play hopecoteh) are disconfirmed. Unfortunately,
the reaction times obtained for disconfirming negative sentences are difficult
to interpret. It is difficult to tell whether this is because of a failing in the
model or because reaction time is an inappropriate tool for examining this
kind of model.

: Conclusion

Since Quillian’s pioneering work, semantic nets and other associative rep-
resentations (e.g., frames) have becomepart of the languageof Al. Although
Quillian developed his model as a representation of linguistic knowledge and
was motivated largely by issues in linguistics, semantic nets have been general-
ized to represemtationsof maay other kinds of knowledge. Several issues
raised by Quillian have been examined in detail in Al. The issuesof modes
of inference, inheritance of properties, snd the numercsity and semantics of
arcs are discussed in the domain of knowledge representation (see Chap. m,
in Vol. 1: also, Brachman, 1978). In psychology, the model was subjected to
empirical analysis and several other associative models were developed. Three
will be discussed in the suceseding articles.

References
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| IN THEIR BOOK Human Associative Memory (1973), psychologists John
Anderson and Gordon Bower present an associationist theory of human
long-term memory (LTM). Aspects of their theory have been implemented in
a computer simulation called HAM that parses simple propositional sentences
and stores the parsed sentences in its memory. HAM also answers simple
questions. Its abilities are limited. but intentionally so, in that Anderson and
Bower have eliminated the mnemonic strategies and tricks that result in smart
memory performance in humans. Their goal was to model the strategy-free
component of human long-term memory and to explain the vast experimental
data on the subject. With respect to this goal they write:

Why not add some more inferential routines to increase the intelligence
with which it (HAM) answers questions? We started dowr this enticing.
seductive path; but we slowly came to the realization that this was no way
for experimental psychologists to proceed....The end product of such an
enterprise would appear 10 be thousands of lines ofprogram that described
the countless heuristics, procedures, tricks, and rules that the human has
learned in his lifetime. We would have translated one incomprehensible
mass of particulars, the human mind, into another incomprehensible mass,
a computer program. But the task of science ic surely to reduce particulars
to general laws rather than translate particulars from one idiom to another.
(p. 143)

Anderson and Bower assume that long-term memory is strategy invariant;
the strategies that are obviously used to remember things are, they assume,
imposed by an erecutive componentof cognition. LTM is thoughtto be
much simpler than the experiments! literature suggests, because much of
the literature does not separate out the effects of mnemcnic strategies on
memory performance. Memory experiments that use single words or nonsense
material as stimuli are considered especially likely to have their results compli-
cated by mnemonic strategies, because these materials are more easily remem-
bered with some strategy than without. Consequently, most of Andersonand
Bower's research concerns memory for sentences or phrases that sre appar
ently less likely to evoke mnemonic strategies.

Anderson and Bower chose question-answering ss the task environment
for HAM. This may be the simplest task on which toexaminea memory model,
since it requires only storage, retrieval, and rudimentary parsing functions.

HAM accepts two kinds of inputs, facts and questions, which it parses
into input structures (described below). To facilitate parsing, inputs are made
only in a naturalsubset of English. We will not considerHAM's parser in this
article other than to say that it is a top-down, left-to-right, predictive parser;

12
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we refer the reader to Chapter 8 of Anderson and Bower's book (1973) for
more details.

The parameters of memory that interest Anderson and Bower are:

1. The set of possible memory structures,

2. The set of possible inputs to memory,

3. The set of possible outputs from memory in response to probes,

4. The set of possible probes,

5. The encoding process by which the structure of memory is modified to
record new information,

6. The decoding function by which the structure of memory is probed to
determine what is recorded there.

Some assumptions sre made about these parameters. First, the only
allowable input structures sre facts and questions. The latter are called
probes. It i: assumed that probes are always parsed into the same input
structure. that the encoding function always matches the input structure to
memory in the same way, and that the same output will be generated to o
probe.

Representation of Knowledge tn HAM

All knowledge in HAM is represented as propositions, encoded in binary
trees. For example, the structure of In e park a hippie touched a debutante is
shown in Figure E2-1. Thenumbersidentify nodes in memory; the labelsare
interpreted as follows:

Label Interpretation

C Context in which Fact is true
F Fect

L Location

T Time

S Subject

P Predieats

R Relation

oO Object
| E Set membership

A proposition tres may alec consist of a fact without a context. In this
case, it always has the subject-predicate form; sometimes the predicate is just
a single concept (see Fig. E2-2).

The relation-object pair is used to express implicit or explicit causality,
among other things. Cause is illustratedas a relation in Figure E3-3. This
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Figure E2-1. HAM structure for Ir a park a hippie touched
a debutante.

structure represents the sentence John opened the door with the key. It
includes an implicit cause, namely. turning the key caused the door to open.
This tree is more abstract than the one shown in Figure E2-1, because it does
not show the terminal quantifiers leading to the terminal nodes of the tree. Set
membership, labeled “E” above, is one of three terminal quantifiers. It is used
when the terminal concept is a member of a set, such as the set of debutantes.
A generic link is used when the terminal node denotes all members of a set,
for example, the entire class of dogs in All dogs chase some cats. A subeet link
is used to indicate that the terminal node denotes neither an entire class nor

a single member, but a subsetof a class. Cats in the previous sentence takes
: a subset link. These links give HAM the representational power of second-

order predicate calculus (Anderson and Bower, 1973, pp. 167-169; however,
the resder is referred to Anderson, 1976, pp. 185-." for a criticismand

| reworking of the terminal quantifications of HAM).

Properties of HAM's Knowledge Representation

Anderson and Bowes (1973) specify the properties of their memory struc-
ture as a set of postulates:

Symmetry: If an associative link ests between two nodes, then an inverse
link also exists. Concretely, if one knows a relation between two objects.
one also knows the inverse of that relation.

No-forpetting: Once a structure is incorporated into memory, it cannot dis-
appearfrom memory. Therefore, forgetting must occur by loging eccess wo
the information in the structure, not the information itself. (For more on

this view, see Article X1.D.)
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The debutante is tall ———  §/ \r
debutante tall

Figure E2-2. Simple subject-predicate structure.

First Empiricist Postulate: There is no innate knowledge in the form of asso-
ciations between memory nodes. All associations are formed in response to
inputs.

Second Empiricist Postulate: Concepts (nodes) similarly are acquired only
through inputs. However. this can lead to the idea that HAM is initially
empty. which Anderson snd Bower explicitly reject. They postulate a base
set of simple ideas that are present in HAM at its birth and upon which more
complex ideas are built.

An Example of HAM in Operation

HAM accepts input sentences (indicated by = below), builds associative
structures of them in memory, and answers questions about them:

es In a park a hippie touched a dedutante.

HAM responds by buniding and printing the structure (shown ia Fig. E2-4)
that correspondsto thee sssertion. RR is the seme structure os shown Mm
Figure E2-1.

*s Who was touched dy the tall hippie?

The tall hippie~--which cae?

R/ 0JOMN .
CAUSE .

R \O 8/ \r
TURN KEY DOOR OPEN

Figure E2-3. Implicit cause in the sentence John opened
the door with the key.



46 Models of Cognition X1

HAM does not know of any tall hippies. It is told that the current hippie
ae tall

es The hippie was tall.

HAM incorporates this new knowledge and prints out its structure. The
nev knowledge structure is lustrated in Figure E2-5; for clarity, we have
shoun it connected to the structure from Figure E£-{, although HAM
would not print all these nodes, but only the new nodes—45, 46, {7, 48,
and 32—and the arsociative links between them.

se Who was touched by tde tall hippie?

HAM con now answer the question.

The debutante.

This example illustrates HAM’s operation. When input sentences are
tvped in, they are parsed into tree structures. If the input material is an
assertion like The hippie was tall. HAM incorporates it into memory by finding
and merging common nodes in memory and in the input. In this case, part of
the input structure matches node 32 of HAM's memory, corresponding to the
hippie concept. HAM incorporates the input structure into memory by joining
it to node 32, as shown in Figure E2-5. Thus, HAM learns by associating new
knowledge in the form of input trees with old knowledge already in memory.

If the input sentence is a question, the parser generates an input tree that
may be missinga part. This kind of tree is called a probe. For example,the
question Who was touched by the tell hippie? is parsed into a probe of the
form The [blank] was touched by the tall hippie; see Figure E2-8. To answer
questions, HAM quite literally fills in the blanks. It searchesits memory for a
structure like the probe that has a node instead of a blank. Thisnode is the
answerto the question. In this case, the probe in Figure E2-8 matches the
memory structurein Figure E2-5, and the node correspondingto the blank
is debutente.

37
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31 PAST 22 8
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Figure E2-4. HAM structure for In ¢ park a hippie
touched a debutante.
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Figure E2-5. Tlustration of how HAM incorporates the fact The
hippie wae tall into ite memory.

HAM matches input trees to extant memory structures 10 associate new
information with old and to answer questions. Its operation becomes more
complicated when partial matches are involved. The 1973 version of HAM
was run in two modes. The mode illustrated in Figures E2-4 and E2-3 has
HAM not accepting a partial match in the case of the tall hippie. The pro-
gram wants to be told explicitly that the tall hippie in the input tree and the
hippie in memory are the same hippie. In the other mode, HAM accepts par-
tial matches. For example, it would answer the question Who was touched dy
the tall hippie? by matching the probe tree in Figure E2-8 to the memory

/ No

ENAPAST |e
y ‘“ » TALL

ArHIPPIE

t) |E
TOUCH BLANK

Figure E2-6. Probe tree for Who was touchedby
| the tall hippief
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structure in Figure E2-4. It would not be necessary to spell out that the
hippie was tall, as in Figure E2-5. (Partial matching is discussed further in
Anderson and Bower, 1973, pp. 242-246.)

From these examples, one can see that the matching process, MATCH, is
fundamental to HAM’'s operation. MATCH is simple in conception. First it
finds nodes in memory that correspond to the terminal nodes of an input
structure, and then it attempts to find links in memory that correspond to
the links in the input structure. In other words, MATCH finds paths between
input terminal nodes that correspond to paths in memory. A memory path
and an input structure path are considered equivalent if they have the same
number of links and the same sequence of relations labeling the links.

HAM searches for paths in memory from all of the input terminal nodes
in parallel. For example, after matching the terminal nodes of the probe
(Fig. E2-8) wo nodes in the memory structure (Fig. E2-5), MATCH would

"search from each of the nodes (past, touch, hippie, past, tall). in parallel, to
determine whether the paths that connect them are identical in memory and
in the probe. However, if a node has more than one path emanating from
it (hippie has two), they are searched sequentially. Consequently, the time

required to establish that a node falls on a path is proportional to the number
of associations it has—the number of paths it belongs to. This is called the

Jun effect.
HAM knows many facts, and a given terminal node like hippie is likely

to be part of several trees. In this case, Aippie is associatedto nodes 38 and
47 in memory by means of a subject link. The nodes associatedwith each
node by a link are stored in a GET-kst for the node and link. The Asppie
node in Figure E2-5 would have a single GET-list with two members for the
subject relation. One can imagine other associations made with other links
(e.g., object) resulting in other GET-lists. To reduce search, MATCH follows
only the links from a node in memory that have the same label as the links
from the correspondingnode in the input tree. If the Aippienode in memory
were connected to other structutesby an obyect link, MATCH would not search
them, since the input structure it is matching to memory has only subject
links emanating from hppse.

Search is further speeded by using recency information. The membersof
the GET-lst are examined in the order of most recent mention. Moreover,

HAM will not necessarily search all members of 8 GET-list; it may be too long.
This leads to the sole mechanism of forgetting in HAM: An association between
two nodes that has not been mentioned in a long time will drop farther and
farther down the GET-lists for both nodes, thereby increasing the probability
that HAM terminates its search from one of the nodes without finding the
association with the other.

Search can be speeded to some extent by these methods, but a node may
still be a member of many paths. Hippie could be the subject of dozens of
sentences, and MATCH would have to check each, serially, to see if an input
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structure corresponds to one of them. The number of associations a node has
je called its fan-out; since fanning nodes are searched sequentially. the fan-
out contributes to the amount of time required to answer a questicn. This

property is the basis for reaction-time experiments with human subjects. HAM
predicts that it should take humans longer to process memory concepts with
a high fan-out than those with a low one. See the following article on ACT
for an explanation of the Sternberg effect in terms of the fan effect.

To summarize, MATCH associates terminal nodes in the input structure

with corresponding nodes in memory and then starts a parallel search from
thece nodes for paths between them that are equivalent to the paths between
the terminal nodes of the input structure. To do this. it examines the label
of each link emanating from a node in the input structure and searches the

appropriate GET-list associated with the corresponding node in memory. The
GET-list may not be searched completely and thus associations between nodes
may appear to be lost, which accounts for forgetting in HAM. The position of
a node on the GET-list is a function of how recently it was mentioned, so that

old associations are more likely 10 appear to be forgotten than recent ones.
Lastly, the nodes on a GET-list are searched serially. so that a large GET-list
can take a long time to search.

Conclusion

Anderson and Bower have a strong commitment to empirical data about
human memory. The HAM model was designed as a parsimonious and opers-
tional explanation of a wide range of results. It also made a number of predic-
tions that were tested with the standard experimental methods of cognitive
psychology. The individual results are voluminous and of interest primarily
to cognitive psychologists; none of the particulars is presented here. However,
the general result is especially important: A wide range of memory tasks
can be modeled by a strategy-free process. Although humans use sophisti
cated strategies to remember difficult (often :necningless) material, the study
of long-term memory is simplified by assuming that the strategies overlay
a relatively simple mechanism common to all memory performance. The
MATCH process is such 3 mechanism, and in experiments in which the utility of
mnemonic strategies is reduced, it predicts many interesting empirical results.

"References

Anderson and Bower's 1973 book Humen Associative Memory provides

a detailed account of the HAM model and of empirical tests of the model. :
The first four chaptersof the book are interesting reading. although they are
background to HAM, not a discussion of HAM itself. They discuss philosophi-
cal approaches to the study of memory, linguistic theory, and other models of
memory.
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THE ACT system was built by John Anderson following his work on HAM
(see Article X1.E2). There are many points of overlap between HAM and ACT,
but there are also fundamental differences. Most significantly, ACT is intended
as a general model of cognition, while HAM is a model of human memory. HAM
answers questions and learns new information; ACT does more, in that it can
be programmed to perform a wide variety of cognitive tasks. In addition to its
long-term memory, ACT has a short-term working memory of active concepts
and a programmable production system that brings about changes in working
and long-term memories. Common to HAM and ACT are certain features
of long-term memory; for example, strategy invariance has been carried over
to ACT. and so has the propositional representation of knowledge, although
modified in some details.

Overview ofACT

ACT has 2 long-term memory component anda user-programmable pro-
cedura! component. The memory is a propositional associative network made
up of nodes representing concepts and arcs representing relations between
the concepts. ACT's memory is not very different from HAM's (discuseed in
Article X1.E2), #9 it will not be described in detail here.

An important feature of ACT's memory is that only parts of it are active
at any time. Activation can spread through the network as nodes activate
adjacent nodes. The time required to activate the neighbors of an active node
‘depends on its fan-out, that is, the number of nodes connected to it. ACT
attends to a limited number of active nodes. Those that are not marked for

attention are eventuallymade inactive; those that are marked for attention
are put in a first-in, firs*~out buffer called the ALIST. They may displaceolder
nodes, because the ALIST has 8 capacity of just 10 items. In this article,the
ALIST will be called the working memory.

The programmable, procedural component of ACT is 2 production system.
Each production has a condition part ss well as an action part that is invoked
if the conditionis true. In ACT, all conditions test for a conjunction of festures
of memory, and all action parts specify s change to be made to memory. The
conditions of productions can examine only the active part of memory. A
number of productions may be activated by the state of memory, in which
case each of them has a probability of being executed.

An Ezample ofACT

Anderson shows how ACT can be programmed to perform the Sternberg
memory-scanningtask (Sternberg, 1969). In this task, subjects are presented

50 .
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with 8 list of numbers. for example. 4 9 1 3. and a probe number, which may

or may not be on the list. Sternberg’s result is that, if the probe nuniber
ic in the list. then the amount of time required to confirm it increases. by
038 seconds, for each number on the list. Curiously, the serial position of
the matching digit is irrelevant; the time required to confirm the presence of

a probe in a list of numbers is independent of where the probe occurs in the
list. Sternberg originally explained this effect in terms of a serial exhaustive
scanning model, in which the list is kept in working memory and a comparator
compares the probe digit to each list element. The comparison process was
thought to be exhaustive. meaning that all list elements are scanned, even if
a match to the probe ha already been found. (This paradigm is discussed in

detail in Crowder. 1976. pp. 354-366.)
Anderson offers a different explanation in terms of ACT. When the list of

numbers is presented. a structure is built in memory to represent it. In the
case of the list 49 1 3, a node called LIST is connected to four nodes. 4. 9. 1.

and 3. by the relation CONTAINS, as shown in Figure E3-1. In ACT's memory,
the LIST node is connected to four others and ultimately to four numbers by
the relation CONTAINS. The LIST node has a fan-out of four, since four links

emanate from it.

: The first production for the Sternberg task is:

Pl. State = Ready — State and List. .

It says that if ACT is in the ready state, the next step is Lo rehearse the state
andthe list. In the context of memory, rehearsal means repeating something
over and over to keep it in memory, much as we do with telephone numbers.
Production P1 brings about rehearsal behavior by the simple device of put-
tingon the ALIST the condition to satisfy P1 again. Production P1 is satisfied
whenever state == ready; when it is executed, it sets the stateto ready and

* comme §

/A

(4 9 "
PeJA

UsT® —EN n * CONTAINS
g o—1 [ $: Subject

. P. Predicate

\A R: Relation
bend | A: Attribute

Figure E3-1. ACT memory structure for a list of numbers.
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puts the LIST ncde on the ALIST again. This potentially infinite iteration
continues until another production is satisfied.

The second production, P2, tests whether a probe digit has been given. If
it has not. then P2 cannot have any effect and ACT will continue to rehearse.
If it has. then P2 changes the value of the state variable from ready to test
and puts the probe digit on the ALIST with the state variable:

P2. State = Ready and Probe given
— State = Test and Probe digit.

The third and fourth productions check for the presence of the probe
digit in the list and signal their findings. They then reset the state variable
to ready for the next problem:

P3. State == Test and List contains Probe

— Signal “Found it” and Stats = Ready.

P4. State = Test and List does not contain Probe

— Signal “Not there” and State =» Ready.

This simple production system and the idea of spreading activation in
memory account for the Sternberg result that reaction time to identify a digit
increases with the number of digits in the list. At the beginning of a trial, ACT
has encoded the list inmemory as described above. and the LIST node is put
into working memory (see Fig. E3-2). It is active, but the nodes emanating
from it are not; they must be activated by following links from the LIST node
in working memory into long-term memory.

With working memory in the state shown in Figure E3-2, productioa P1
applies. It will rehearse the contents of working memory until a probe digit is
given. When this happens, the valve of the state variable is changedto test,

ALIST or

working Memory Long-term memory

| State « Ready Memory Structuretrom Figure E31.

Figure E3-2. Qlustration of working memory, showing links
into long-term memory.
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The first method, designation, is the simplest meansof adding informa-
tionto ACT. It is the method that was used in HAM. The second method,

generalizationof productions, works by replacing conscant terms in the con-
ditions of two productions by variables. To avoid creating terms that are too
general to be interesting, ACT will not replace more than one-half of the con-

produces two or more productions from one with too many variables in its
condition. It does s0 by instantisting the variables. Discrimination applies
whenever ACT gets feedback that a production is too general.

Generalizations and discriminations of productions do not replace the
original rules: rather, they exist with them. A generalization will apply
whenever eitherof its original productions applies but will have the same effect

| ss both. However, ACT has a conflict-resolution strategy that favors executing
specific rules before more general ones, 30 discriminations of general rules, or
the rules from which a generalization has been formed, have precedence over
generalizations.

Associated with each production is a strength that is used to resolve
conflicts when several productions are applicable. Strengthening,the last of
the four learning methods, reinforces productions by increasing or decreas-
ing their strength. If a production is found to be dpplicable, its strength is
increasedby a constant number. However, its strength is decreased by 25%
if its execution leads to 3 mistaken conclusion. Negative strengthening is
therefore more effective than positive. Strengtheningalso applies to produc
tions that are consistent with other applicable or misapplied productions. (A
production is consistent with another if is condition is more or less general
but its action is the same.)

Conciusion

ACT is a general framework in which cognitive performance is simu
lated. Rt is not custom-built to perform a particular task, unlike most of the
systems dissusssdin this chapter. (MIDM0D, another general system, is dis-
cussed in Article X1.E4.) Anderesn ssasiders ACT's design to be paycholog-
ically plamsibie; he goss to lengths to present the “predispesing bissss” thet
motivated design decisions in termes of the paycholegical literature. Moreover,
ACT mains ressonsbie predictions sbeut human beherior ia experimental
situations. ACT can be considered & theory, in the ssass that it mealies predic-
tions, and a programming ieaguege, or package, in the sense that it provides
an environment for building peycholegicalmodels.

Anderson has published a lengthy book on the ACT system (1878) that
includes chapters on the structure and behavior of ACT, spreading activation
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in memory. learning, and language comprehension. It is an exhaustive treat-
ment. in which Anderson presents not only the ACT system but also the
theoretical motivations for it. The book is reviewed by Wexler (1978). and a

reply to the review can be found in Anderson (1980). The review and reply
sre worthwhile reading for those interested in cognitive science, since they are
two different positions on how a science of mind should proceed.



E4. MEMOD

THE LNR research group, named for Peter Lindsay, Donald Norman, and
David Rumelhart, is engaged in the ongoing development of a general model
of human long-term memory called MEMOD. Of the five memory models
discussed in this chapter, MEMOD may be the most ambitious (ACT, discussed
in Article XI.E3, is the other candidate) because of its scope and because of
LNR’s basic tenet that a single system accounts for cognition:

One system has to be capable of handling the representation and processing
issues in syntactic and semantic analysis of language, in memory, perception,
problem solving, reasoning, question answering, and in the acquisition of

knowledge. (Norman, Rumelhart, and the LNR Research Group, 1975,
p. 160)

It is a major goal of the LNR group that the MEMOD system should be a
general knowledge-representation system, that is, one that can represent any
kind of knowledge. Until quite recently, however, it was used primarily to
represent linguistic knowledge. Accordingly, the MEMOD system has three
main components: a parser, which is based on an augmented transition net-
work (ATN: see Article IV.D3, in Vol. 1); a node space, which is a semantic-net
representation of world knowledge; and an interpreter, which performs opers-
tions on the node space. The node space represents both declerstive and
procedural knowledge; node-specs structures represent facts about the world
and also specifications of operations to be performed in the node space by the
interpreter. Because it is not a passive repositucy of knowledge but contains
procedures that manipulate knowledge, the node space is called the ective
structural network, or ASN.

In this article, the design of the active structural network is sketched
briefly, followed by a more formal discussion of how concepts and events are
represented. Here, the role of the interpreter will be mare obvious. We will
not consider the parser at all, since ATN parsers and cass grammars are dealt
with in Chapter IV (in Vol. 1) on understanding natural language.

The Active Structural Network

The design of the active structural sstwork was constrained by a sumber
of goals arising directly from the natural-langusge applications intended for
the MEMOD model. Briefly, these were:

1. Completeness. The model must be abls to represent eny knowledge of
any type, including noalinguisticknowledge.

30
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2. Ertendebihity. The model must be extendable whenever new information
is available. If, for example, the mode! learns that to saunter is not
merely to walk but is to exhibit some degree of indolence, it must be
able to incorporate this information.

3. Invarianceunder paraphrase. Expressionsthat have the same meaning
should have the same underlying representation in the ASN regardless
of how they are stated at a surface level.

4. Preservationof overlep in mesning. The representationof words and larger
units ofmeaningin the ASN should reflect the possibilities of synonymy,
partial overlap, and no overlap in meaning. Meanings that overlap,
such as stroll and saunter. should have common components in their

representations. Unrelated words should not.

5. Continuity. In a psychological model of knowledge, words with similar

meanings should have similar structures, and a small change in mean-
ing should not cause 3s major change in its representation. Similarly,
concepts that have very different meanings should have very different
representations.

Semantic Decomposition and Case Structure of Predicates

The technique employ od by the LNR group to satisfy these goals is seman-
tic decomposition of words (or more generally, concepts) into primitive
clements called predicates (see Article ILCs, in Vol. I, for 3 detailed discus-
sion of semantic decomposition). For example, they identify four classes of
predicates—stative, change, causative, and actional—that can be combined to

Stative predicates. The stative component of 3 verb indicates that a
state of the world holds over some time period. One of the stative predicates
in the MEMOD system is LOC. It takes four arguments, the last two of which
are optional:

LOC{object, at-loc, (trom-time), (to-time)) .

A semantic-net representation of the LOC predicste shows the LOC nede
linked to four argument nodes, as shown in Figure E4-1. Here,a network
structure is shown to represent the sentence A stedium wes located in the
park from 1058 to 1983. In addition to the LOC node, this figure also shows
nodes representing the concepts of stadium, perk, 1856, and 1863. A point
of notation is that the angle brackets and parentheses in this diagram denote
tokens—or copies—of concepts and predicates, respectively. A token repre-
“emis a concept in some context; a dictionary of iype, or original, nodes is
also maintained, snd token nodes are linked to them; ses Article XA.E1 for a
discussion of the type-token distinction.

Change predicates. A verb Eke move can be represented ss 8 CHANGE
predicate taking two LOC predicates as arguments, as shown in Figure E4-2,
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<stadium> «2200 ogee <park> |

from-time/ \e
<195%8> <1983>

Figure E4-1. The LOC component of the verb located in
the sentence A stadium was located in the

park from 1956 to 1968.

which represents the sentence The team moved from the stadium to the train-
tng camp sn May.

Causative predicates. One can imagine how another verb, say, push,
might he represented by a structure like the one shown in Figure E4-2, but
predicated with a causative; that is, to push is to CAUSE to move from one
location to another. Figure E4-3 represents the concept of a person causing
an unspecified object to move from one unspecified place to another at an
unspecified time. It is the skeleton of a cause-to-change-location verb; the

reader can think of numerous verbs that have this general structure.
Actional predicates. Consider this example in the context of the design

goals discussed earlier. Semantic decomposition is a representational wol
that guarantees that similar meanings have similar structures. The structure
above is common to several verbs with overlapping meanings: push, shove,
carry, pull, transport,and so on. The sectional predicate is instrumentalin
making finer distinctionsin meaning; however, LNR has done little work with
actionals, and generally the primitive predicate DO is used.

(CHANGE)

at

Coadum> 4——-(LOC) eo <May> <— (LOG) —————s= Ctraining camp >

=.=time whe

<toom)

object object

Figure E4-2. AMeowe consists of CHANGE and LOC predicates; it is a CHANGE
in LOCation—asin The team moved from the stadium to the
training camp in May.
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(CAUSE)

event/ er
< Person > agee—mm (D0) (CHANGE)

agent
trom- tostate/ \

——(LOC) {LOC) —nr

/ IN /1\

Figure E4-3. Skeleton of a verb with CAUSE, CHANGE, and
LOC predicates organized to represent the
concept of causing a change in location, as
in push, pull, and carry.

Once sa word is defined, it is stored in MEMOD's dictionary as a type node
and can be used in more complex structures, as in:

<1iop> + (CARRIED) + <antelope>

A final point, before proceeding to a more formal description of knowledge
representation in MEMOD, is that predicates have a case structure (discussed
in Article IV.C4. in Vol. 1). For example, LOC has two necessary and two
optional arguments:

LOC(cbject, at-loe, (frem-time)., (te-time)) .

This facilitates parsing. When the parser recognizes a predicate or a verb, it
can make predictions about what kinds of words to expect next on the basis
of knowing the verb's arguments.

Encoding Concepts, Events, end Epssodes

In a 1972 paper, Rumelhart, Lindsay, and Norman specified four catego-
ries of rules for constructing complex knowledge structures from the simple
ones we have already considered:

1. Rules of formation for concepts,

2. Rules of formation for relations,

3. Rules of formation for propositions,

4. Rules of formation for operators.

Conceptsare objects, for example, lon and stadium. Relationsare the
names of associationsthat may hold among concepts, for example, HIT|actor,

object, instrument). Propositions are instantiations of relations, for example,
HIT John, ball, bat]. Operators, the last group, are of two varieties,
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prepositional and relational. The former modifies concepts of time or location
to generate new concepts:

befora(noon) or under(water) .

The latter modifies relations:

slovly(walk) or very(dbig) .

| LNR gives five rules for forming concepts. First, an existing concept
can be qualified. This corresponds most closely to the action of adjectives.
A qualified concept has a node of its own; for example, the node lamb is
defined as young(sheep). Second, quantification of concepts can yield new
concepts. as when crowd is defined to be many(persons). Third, new concepts
of location and time can be derived from prepositional operators. Fourth,
concepts can be conjoined to form new concepts: for example, and(dog, cat)
denotes the concept of the class of dogs and cats. Finally, concepts can denote
propositions. For example, in the proposition HIT(JoAn, ball, bat), there is a
concept Ait, which corresponds to an instance of the general relation HIT in
the context of John and his ball and bat.

There are three ways to generate new relations from old. The first is
to modify the relation, as with an adverb. For example, the relation stroll
is defined as slowly(walk). Another method is to modify one or more of the
arguments of the relation. For example, if the relation of walking is defined
as:

WALK [actor, path, time] ,

then 8 new relation, CLIMB, could be derived by specifying that the path
shouldbe uphill. Finally, new relations can be generated by conjoining old
ones with special conjunctions. BECAUSE is one such conjunction:

FLEE (acter. object, time] is defined as

quickly( G0(actor, frem(object), time))
CAVES

FRM (acter, object, tame) .

Propositions are formed by instantiating a relation with concepts. For
example, the arguments of FLEE might be (Derothy, lions, always). The other
method for obtaining propositions is to conjoia them with conjunctions Lie
BECAUSE and AND.

Operators are constructed in some of the same ways. New qualifiersare
generated from old by applying relational operators to them; for example, tiny

: is wery(small). Relational operators also apply to each other; for example,
partlyis not(completely).

Sentences that describe events, such as The lion chased Adery, can be
encodedin MEMOD. Conjoining events by using conjunctions like BECAUSE,
AND, THEN, and WHILE allows one to represent complex episodes. Graphically,
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(growl) (hear) (raise)

(>4———A D> pl >——__p <Tille>
object then object

actor | “\| ye
<lion> < big-game hunter >

Figure E4-4. A representation of the episode The big-game
hunter heard the lion grou! and raised his gun.

an episode is simply a sequence of event nodes connected by conjunctions. An
example of a graphical representation of an episode in which a big-game hunter
hears a lion growl and raises hie gun is shown in Figure E4-4. (The empty
nodes represent tokens of the three events, hearing. growling, and raising.)

A simple propositional sentence can be broken down into a relation and a

set of concept arguments. A relation can be broken down further into primi-
tive predicates by semantic decomposition. Rules were discussed here that

conjoin and modify concepts, relations, propositions, and operators and that
create more complex structuressuch as episodes. These rules give MEMOD the
power to represent episodes of varying complexity. The next section outlines :
the interactions between these representations and the interpreter.

The Interpreter

Knowledge is supplied to MEMOD in the form of sentences. After these

are parsed, the interpreter makes the appropriate changes to the ASN by
eecuting the program associated with each relation in the input sentence.
For example, a basic relation built into MEMOD is CONNECT. Thereis a type
node for CONNECT that is linked to a computer program that joins nodes
together in the ASN, as shown in Figure E4-8.

If the interpreter encounters a parsed version of the sentence Connect dog
to animal with faa, it will look up the word connect; find that it denotes a
built-in program that takes three arguments; bind the arguments dog, enimal,
and tsa to the variables X, Y, and Z; and execute the program. The result
is 8 network structure:
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’ X .

se object (the computer program
) connect ———Pn- that links nodes

varisble Y together in the ASN)

isa to
4

188 with

Figure E4-5. Representation of the relation CONNECT.

The CONNECT program was built into MEMOD from the outset. However,
it is possible to define words by associating programs with them. For example,
the LNR group gives the following definition for the word son.

Define son as predicate.
the definition frame for son is: X isson of Y

Connect X to male with sex.

If age of X is less than 18, then
connect X to child with isa.

connect Y to X with psrent-of.
he

(This representsan interaction with the MEMODsystem. The text in ordinary
type is entered by the user; MEMOD's replies are in italics.)

The relation DEFINE is itself a built-in procedure that builds structures
in the ASN. For example, defining son yields a structure that is something
like the one shown in Figure E4-8 (which is not exact, since all of the arrows
pointing to the node CONNECT wouid be pointing to the same type node in
the ASN).

som)— ret (Jft
(connect) conditions!) (connect)
/ | \ / \ / | \
X male sex Qe then Y X perentof

(connect)

/ | \
X child iss

Figure E4-0. Representation of the definition of son.
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The important thing about this structure is that it invokes changes to the
ASN when interpreted. Although its representation is uniform with declar-
sive network structures, it is a representation of a procedure. When the
interpreter is given the sentence Oedipus is the son of Jocasta, it will create
a structure in the ASN representing the {acts that Jocasta is the parent of
Oedipus and that Oedipus is male. The distinction between procedural and
declarative knowledge in MEMOD is obscured by the uniform representation
used for both. It appears that there are two kinds of procedural knowledge,
built-in programs like CONNECT and definitions that are formally very similar
to episodes except for an ISWHEN link. ISWHEN links a node with its definition,
and interpreting the definition results in changes to the ASN.

A word like son. when defined in MEMOD, carries with it the procedures
necessary 10 make inferences about what it means to be a son; for example,

one can infer that a son is male because part of the definition of son is a
procedure that makes that connection in the ASN. Because definitions carry
implicit inferences about what it means to be something, MEMOD can answer
many questions. For example. given an appropriate definition, it can say
vhat it means to be a sandwich. Here is one definition from the Kitchenworld

implementation of MEMOD:

Define randwich as recipe.
the definition frame for sandvich us: (subject)sandwich X.
the definition is:

Place a slice of bread on the counter.

Spread preferred spread of X on the bread.
Place each ingredient of X on the bread.

| Place a second piece of bread on the bread.
ol

This definition has a network structure similar to those shown above.

It is composed of nodes representing simple actions like place, which are
composed of simpler predicates like CONNECT. To answer questions such as
"What containers vould be left on the counter after 1 made a sandwich? the

interpreter executes the sandwich recipe in the ASN. This results in changes
to the ASN. For example, containers that were previously associated with
refrigerator by an IN link may subsequently be linked to counter by ON.

Conelusion

MEMOD implements 3 number of powerful ideas, which were reviewed
“here. Semantic decomposition, for one, ensures that concepts with similar
meaningshave similar structures. This was illustrated by a general structure
Jor verbs that mean to cause a change in location. InMEMOD,the meaning
of a conceptis reflected in its structure, its composition of simpler units of
meaning.
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Verbs and other structures in MEMOD have a case structure, which means

that MEMOD knows how many arguments a verb takes and what kinds of
arguments they are. There is a grammar for building structures in MEMOD,
and rules for building concepts, relations, propositions, and operators were
discussed.

Events in MEMOD can be linked by conjunctions. The THEN conjunction

is particularly important because it orders events of an episode in time and
for the interpreter. Another important link is ISWHEN. It links words to their
definitions, which are episode-like procedures for building structures in the
ASN.

| References

The LNR research group wrote a book called Erplorations in Cognition
(1975). It is a collection of articles by Norman, Rumelhart, and their graduate
students on experiments with the MEMCD system and is the most complete
and recent review of MEMOD.



F. BELIEF SYSTEMS

IMAGINE a conversation with a person who speaks only facts, the kind of

conversation you might have with an official who refuses to give a personal

opinion or make a prediction about the future or guess at an explanation for
a past event. Or consider the testimony of police officers; they say things like
“We were called to the scene at 12:07 A.M. and found the suspect holding two

hostages. \Ve succeeded in disarming the suspect without injury. The suspect
is now undergoing psychological evaluation.” What they do not say is that
thev believe the suspect ie guilty. that they believe he is a doped-up crazy,
that they were scared stiff while disarming him, that they sincerely hope he
gets the maximum sentence, that helding an old lady hostage is a miserable
act of terrorism, and so on. Police officers rightly stick to the facts. At least,

they do while on duty. Afterwards, we assume they are as full of opinion,
pelief. innuendo. prejudice. and emotion as the rest of us.

In this example, the distinction between fact and belief has been amplified
to emphasize that much human discourse is in beliefs, speculations. predic-
tions. desires. and so on. The research discussed in this article is concerned

with the structure of beliefs, how we reason with beliefs, how beliefs function

as prejudices to influence interpretation, and how emotions affect reasoning.
These questions, and the computational systems that have been implemented
to explore them, fall in the domain of belief systems.

Abelson (1979) has outlined a number of peculiarities that set beliefs apart
from facts und that distinguish belief systems from other systems in Al:

1. Belief systemsare not consenswel Different beliefs may result in different

interpretationsof the same phenomena. For example, depending on
one's beliefs. the “generationgap” results from insensitiveand restrie-
tive parents or from ungrateful and immoral children. One's beliefs
can influence interpretationof relatively sure facts; for example, some
smokers refuse to believe that smoking causes cancer, and some people
insist that concentration camps never existed but are the erestion of
propagandists.

2. Beliefs deal with conceptuel entities such as the generstion gap, the
supernatural, snd extrasensory perception. Thus, an entity thet exists
in one belief system may be absent in another.

3. Sometimes belief systems represent siternative “worlds,” typically, “the
world as itshouldbe.” Ideclogies often have implicit alternative worlds.

i. Beliefs have an evelustiveor gffective component. Eventstend to be good
or bed, to evoke pleasure or displeasure. Abelson . :tinguishes between
two aspectsof affect. One involves the world divided up into good and

. 8S
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bad things (or into as many categories as there are affects). From this
categorization one can infer the goodness or badness of events or objects.
For example. if X is bad. and Y helps X, then Y must be bad also.
Much of Abelson’s early research was devoted to this kind of reasoning.
A second aspect of affect is how it influences the operation of a system;
for example, Faught (1975) characterizes emotions as leading Lo motives,
and Bower (1981) discusses the effects of emotion on memory.

5. Beliefs may be based on subjective experiences or episodes. Logical,
rational deductions may be based on a subjective event. For example, an
elaborate theory may be constructed around an event that was believed
to occur but that actually did not. An interesting historical example
is the mass hallucination of French physicists in the “N-Ray Affair”
(Klotz. 1980). It was believed that N-rays could be detected by their
eflects on the brightness of an electric light-bulb, and for many years,
French physicists published reports of the curious properties of N-rays.
This research continued (though at a lesser pace) even after it was
demonstrated that perceived Buctuations in brightness were entirely
illusory. N-rays do not exist and the physics that had been developed
to explain them was founded on a hallucination.

6. One does not know. a priori, what krowledge is relevant to a belief.
The knowledge pertinent to diagnosis of glaucoma, for example,can be
circumscribed relatively easily. It is less easy to decide what is irrelevant
to conceptual entities such as the ssual promiscusty of today’s pouth.

7. Credibility and emotion interact in evalusticn. One may believesome-
thing is true, passionately; or there may be no emotional investment in a
belief. For example, it may be ‘rus that one brand of pein reliever con-
tains more sepiria than another, but it is herd to achieve the enthusissms
necessary to value one more highly.

belief more complicated than ressoning from facts or measurable uncertainties.
This is for several ressons, all related to v-hat the belief system knows. First,

the nonconsensuality argument is that different belief systems house different
bodies of knowledge; thus, it may be dificult for one system to explsia or
predict the behaviorof aacther. For axsmaple, it is & difficult task for the
BUGGY system (sss Article IX.C?, in Vol. H) to derive the inferancs rules
applied by its students in working arithmetic problems. The students make
assumptions about arithmetic thet are not consensual with the sssumptions
of the adult community; consequently, they make errors.BUGGY™s task is to
explain the errors by inferring the students’ mistaken assumptions. Another
example from the ICAI literature (ses Chap. IX, in Vol. I) illustrates the power
of assuming consensuality: Several ICAI systems insintain a student model—e
representation of what the student knows—to facilitate teaching.

Just ss nonconsensuslity is a problem, s0 are existence and openness,
and for much the same reason. The existence problem is that reasoning in
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one system may be predicated on premises that do not exist in another: for
example. one can do little to mollify a person who believes that his (or her) bad
rortune is preordained. The belief in preordination is so central to his belief
svitem (though alien to one’s own) that he accepts misfortune with resignation
and will do nothing to improve his lot. The openness problem is concerned
with the relevanceof the knowledge used for reasoning;in one system a fact
may be central to an argument, while in anotherit is tangential. For example,
one person may attribute the declineof our society to the availability of drugs.
while another may believe the cause is inflation and a third may insist that
impiety is responsible. The first person constructs the causal argument that
society is being destroved by drugs. He holds this argument with a conviction
‘hat is lacking in the second person, who views drugs ss a symptom of an
inflated economy. not as a symptom of impiety or as a causeof society's ills.

Two other aspects of belief make reasoning difficult. One is the role of
affect. or emotion, and the other is the role of confidence, or certitude. It is
tempting to makea dichotomy between rations! and irretionel thought and
10 assign emotion to the latter category and ignore it. But thereis strong
evidence that emotion has powerful effects on human cognition. In a recent
znd extensive series of experiments, Bower (1981) and his colleagues have
shown that emotion influences what we learn, what we remember, and bow we
make a variety of judgments. Our evaluations of ourselves and others and of
events are subtly but strongly biased by what we sre feeling. Bower's results
suggest that emotion cannot be ignored as a factor in human cognition and

that it is at least one factor that argues against a strong rstional-irrstionsl

The problem of confidence, or certitude, is that much of the information
used in reasoning is not true or false, but somewhere in between, and that one's
confidence in the information affects one's ressoning. One attemptto capture
this aspect of reasoning is found in MYCIN (see Article VEILBY, in Vol. 8),
which attaches certainty (or confidence) factors (CFs) to its cmelusions. The
initial CFs are supplied to the MYCIN system with its heuristic rules by expert
diagnosticians. Then, as MYCIN ressoms, it combines the CPs sssocieted
with the rules to produce a CF for its conclusion. The CF mechaniomis
quite crude, however, aad very ad hoc. Clearly, MYCIN does not embody a
theory of humen ressoning wader uncertainty. More succesfulare Tversky
and Kahneman (1074), who have identified a number of factors that influence
judgmentsunder uncertaiaty.

Even though reasoning with belislh involves certain sophistications over
reasoning with facts, the two hove besa modeled in much the same way.
Belief systems are formally similar 10 some of the knowledge-based systems
in the Hendiook For example, the belief thet J A kbes B, then A will help
H can be phrased ss a production from which the conclusion A will Aelp
H follows logically from the premise A hikes B. This deductionis logically
and peychologicallyvalid. Other conclusions may meintain a formal logical
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validity but be psychologically odd: for example. If you are suffering, then
you have found true happiness. It is useful to distinguish the formal logical
structure of a belief svsiem from the psychological conclusions that arise from
it. The remainderof this articleit concerned with both of these factors—with

formal representations that facilitate psychological, not necessarily logical,
behavior.

Implicational Molecules

Abelson and Reich (1969) described a system based on implicational mole-
cules. that is. sets of clauses related by psychological implication. For example:

(A does X, X causes Y, A wants Y)

or

[A 1ikes B, A helps B)

Just as a premise impliesa conclusion, so does one part of an implicational
molecule imply another. Thus, implications! molecules can predict or explain
events:

If A went: Y. it is plausible to prediet A does X. A does X becauseX causes
YondA wenls V.

Abelson snd Reich used implicational molecules in a system thst sime-
lated the extreme right-wing viewpoint of a eold-war ideologue. The system
used stereotyped concepts such ss Western-governments, situations-halpfel-
to-the-Communists,and prevent, promete, and control. These were com-
bined to form generic ssatences such as Liberals control Western-governments.
Generic sentences were then combined into ' mplicational molecules that defias
the conclusions that are reasonable in the system:

[(Vestorn-governnaats primste
sivustisns-helntul ~0-the~-Comnists,

Ssndiag-wp-to~-Gaunmistos prevests
citusticns-belplul ~to-the-Coummni ste.

Liberals csatrel Uestera-goveranests,
Liberals fear stendisg-wp-te-Conmmista) .

A higher order structure wes the mester script, which spelledout several
general contingencies for the [ste of the free world. Part of the seript says
thet the Communists west to dominate the world aad wiil do so unless the
free world exercises its powes, in which case the fires world will surely prevail.
Generic events were considered instances | very general master-ecript events.

The system could judges the erodibility of events; bad events were stirid-
uted to the Communists, good to the free world, and never the other way
around. It could also predict events and say what should be done if and
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when they happened. This was accomplished by associating an event with

one on the master script and following it to a conclusion. For example, an
event interpreted 2¢ Communist domination was predicted to result in world
iakeover unless the free world flexed its muscles.

The system answered specific questions about real people, not just abstract

questions about Zeneric sentences. It did so by instantiating generic sen-
tences with more concrete concepts. For example, Liberals control Western-

governments might be instantiated in the belief that LBJ controls the United
States.

One characteristic of belief systems in general is that they perform well
| with stereotyped beliefs. They reflect what we suspect to be true—that little

knowledge is required to hold an oversimplified, dogmatic opinion. (\Why let
facts interfere with what one knows is right?) Abelson’s Cold War Ideclogue
was not very knowledgeable; it could easily conclude that the Berlin Wall was
built by the Red Chinese, since it is just the sort of miserable thing that
Communists do. Ideological oversimplification seems to provide a counter-
example to the pervasive idea that knowledge is power. To achieve strong
dogmas. one must ignore the evidence, counterexamples, and qualifications
that compromise a position.

The Structure of Behief Systems

Abelson (1973) later developed a hierarchical formalism for beliefs, based
on conceptual dependency enaiysis (see Articles I.Cs and IV FS, in Vol.I).

states. Purposes encode the wants or desires of actors; for example, Mery
rents John to do his shere of housework. Actions are the things that the
actors want to do. and states are the situations that they want to bring about.
The next level of Abelson’s hierarchy combines these atoms into molecules;
these are similar to the implicational molecules described earlier.

: Molecules represent actions undertaken by actors to produce outcome
states. In their simplest form they are (Purpose, Action, State) triples, but
larger chains and networks are also possible. Among the larger structures
are plans, themes, and scripts. Plans represent action-state sequences, where
each state enchies a subsequentaction until a final goal state is obtained. The
structure of plans reflects that a sst of sequential or parallel actions is usually
required(0 achieve a goal. By sssumption, plans are always related directly
to the purposesof a main actor. If other actors are involved, they are simple
agents or instruments with no autonomy; they cannot enhance or frustrate
the plans of the main actor.

While plans represent the purposes of a single actor, interactions of the
purposes and plans of autonomous actors are represented in themes Abelson
formed a taxonomy of themes based on the possible interactions of two actors
(see Table F-1).
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TABLE F-1

A Taxonomy of Themes (from Abelson. 1973)

Influence of Actors

Sentiments Neither One Both
toward Other influences Other influences Other influence Other

Some positive, Admiration Devotion Cooperation
DO negative Appreciation Love

One actor Alienation Betrayal Rebellion
negative (also Freedom) Victory

Dominance

Both actors Mutual Antagonism Oppression Conflict

Mutual antagonism, for example, refers to agents who are negative wo
each other, but powerlessto inflict harm. Whenone actor is able to harm the
other, oppression results; when each can influence the other, conflict results.

Scripts are sequences of themes that follow each other in some psychologi-
cally plausible fashion. (The reader should be aware that this is an earlier
and different interpretation of the roles of themes and scripts than ia found
inAbelson’sresearch with Schank, 1977; see Schank and Abelson, 197°, and
Article IV Fs, in Vol. 1.) Simple scripts involving two actors are, for example,

of Admiration, Cooperation, Devotion,or Apprecistion, and souring relation-
ships. which happen when Love is complicated by Rebellion and, subsequently,
Mutual Conflict.

Differences between individual belief systems are manifest primarily at
the theme and script ‘evels. Thess constructs provide for alternative views
of the same events; for example, a relationship might be viewed as alienstion
by one ator and os mutual antagoniem by the other. One may feel he in
not at fauit for a deteriorating relationship; the other may feel that hostility
is involved. The greatest idisayncrasy of belief is found st the script level,
where the repericire of scripts maintained by an individual defines his ideslogy
(recallthe master-script that defined the beliefs of the cold-war ideologue).

We now turn from Abslson'sdesigns for general belief systems10 a specific
kindof belief, namely, parancid belief.

PARRY

PARRY was one of the earliest and most ambitious simulations of the role

of beliefs and affects in cognition. It is » model of what its designers call
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:he paranoid mode. a pattern of behavior motivated by paranoid beliefs and
intentions. PARRYs original designer, Kenneth Colby. is a psychiatrist, and
PARRY embodies his theory of paranoid behavior. We will discuss this theory
shortly. but first we consider the characteristics of paranoia.

Paranoids are suspicious; they think that other people intend to harm
them. They believe they are the target of conspiracies. They have a great
concern with “evidence,” and are likely to treat a random event as significant
and intentional (the intentions are held by “them” —those malevolent others).
Paranoids are also hypersensitive to criticism:

References 10 the self are misconstrued as slurs. snubs, slights, or unfair

judgements. He may feel he is being watched or stared at. He is excessively
concerned about his visibility to eves that threaten 10 see concealed inade-

quacies. expose and censure them. Cameras, telescopes. ete. that may be
directed his way unnerve him. He may feel mysteriously influenced through
electricity. radio waves. or (more contemporaneously) by emanations from
computers. He is hypersensitive to criticism. In crowds he believes he is
intentionally bumped. Driving on the highway he feels repeatedly followed
100 closely by the car behind. Badgered and bombarded without relief by
this streamof wrongs, he becomes hyperirritable, querulous,and quarrel-
some. (Colby. 1973, p. 4).

Two other characteristics of paranoia are fearfulness and hostility. One
can see howboth might arise from the conviction that the self is in a hostile
and intentionally malevolent world. A last characteristic, which Colby says
makes parancia very difficult to treat, is rigidity and abeolute conviction.
Oncea paranoid is convinced, for example, that his doctor is in collaboration
with “them,” it becomes extremely dificult to resstablish rapport becaue» the
natient will not compromise his beliefs.

The characteristics of parancia are so clear-cut that it is possible to
simulatethe paranoid mode. PARRY was and is an ambitious project because
it involves integrating beliefs, intentions, and affects with more “rational”
cognition. The manner in which theses components interact is dictated by
Colby’s theory of paranocis.

Paranoid behavior arises, according to Colly, from attempts to avoid
bhumilistion. In the PARRY simulation, humiliation arises, and is intently
svoided, during sn interview with a doctor. (PARRY has a nstural-languege
front-end, but it is not very sophisticated and we will not be concerned
withit here.) Briefly, the parancid (and PARRY) is hypersensitive 10 any
comment that can be interpreted ss reflecting his own isadequacy. Any |
such comment increases shame and humilistion. (Intense parancia involves
interpreting virtually ell interactionsin this way.) The perancidseeks to avoid
humilistion and shame, sines it is intensely painful, so whenever he detects

+ situation in which the doctor might be meking s humiliating comment.
la takes three defensive actions: One is to change his opinion of the doctor

| 'e.4.. Anyone who thinks /'m cresy must be really incompetent); another is to
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decrease his level of shame, since he has concluded that the doctor, and not

he himself. is at fault; and the third is to take som: action, which may be
hostile.

To achieve this behavior, PARRY has a number of beliefs, a number of

common inferences. and several processes that we will describe briefly. Beliefs
include The doctor is crazy or The doctor is friendly. PARRY also has four
beliefs that reflect humiliation: PARRY 1s stupid, PARRY is dishonest, PARRY

ts crazy. and PARRY ts worthless. PARRY must avoid concluding that any of
these are true, since these conclusions cause pain. Unfortunately, PARRY is
always trying to find evidence for them in its interactions with the doctor.
This is the problem: To avoid humiliation, the paranoid must constantly

| search for it: he must catch the insult and deflect it before it harms him.

PARRY has a set of inferences that alert it to insults, and its hypersen-
sitivity arises from these inferences. For example, if the doctor says, “You
didn’t answer my question,” PARRY infers that the doctor thinks he is stupid;
this statementcan also be taken as evidencethat the doctor thinks PARRY

is not telling the truth—is dishonest. Whenever the doctor says anything,
PARRY makes whatever inferences it can, and if the inferences support any
of the four Aumiliation beliefs that we just mentioned, then PARRY incresses
ite level of shame.

Thus, one of PARRYs processes is to search for evidence of humiliation in
the doctor's communications. When this process finds evidence, another gffect
process increasesPARRY'’s shame; if the level of shame crosses a threshold,
PARRY launches into characteristic hostile paranoid behavior. This involves a
third process dealing with intentions. PARRY has three emotions—fear, anger,
and shame—each of which plays a role in PARRY’s intentions. When anger is
high, PARRY intsnds to attack the doctor; when fear is high, PARRY intends
to alter the interview situation so that the outcome it fears—humiliation—is
less likely. And when shame is high, PARRY doss three things: It defends
itself by throwing out the belief that led to humiliation and replacing it with
another one, usually a revised snd uncomplimentary belief about the doctor
(e.g., The doctoris crasy); it reduces its shame, since the belief that caused
shame has been exorcised; and it intends a strong action, usually based on its
new helief about the doctor. It may intend to sttack, lis, or withdraw.

We have discussed how PARRY integrates inferences with affects and
intentions to produce parsacid behavior; we conclude with the following brief
example of a dialogue with PARRY. Initially, the doctor asks a lot of innocuous
questions, from which PARRY concludes that the doctor is friendly, wants to
help, and can help. For example: |

Doctor: What é0 you do fer a liviag?

PARRY: I werk at Sears.

But the doctor is sure to stumble onto a topic that PARRY finds sensitive, at
which point PARRY will experience an increase in shame:
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Doctor: How much do you get paid an hour?

PARRY: My salary is sone of your business.

In thie interaction. PARRY concluded that the doctor was implying that
PARRY had no money—was worthless. Although shame was not elevated to
the point that PARRY’ enters paranoid moda, it does provoke an angry attack.
PARRY can be mollified if the doctor goes back to asking innocuous questions,
or compliments PARRY, or apologizes.

At a later point in the interview, PARRY introduces its main concern—
that bookies and the Mafia are out to get him. At this point, the doctor
must tread very carefully. If the doctor expresses any skepticism about
PARRY't delusions. shame will increase markedly, and PARRY will become

uncooperative. As long as the doctor asks simple questions, PARRY will
answer them:

Doctor: What about bookies?

PARRY: A bookie dida’t pay we off omce.

Doctor: And then what happened?

PARRY: I bad an argument with the bookie who did not pay off.
Later on I remembered be bad friends ia the waderworld

and I thought he would use them tO got even With Be.

Incidentally, PARRY has an elaboratestory aboutthe bookies, rather like
Abeleon’s master-script. One of PARRY’s goals for the interview is to tell the
whole story. The last interchange was, therefore, quite successful. However,
relling the whole story makes PARRY vulnerable and sensitive, eo that when
the doctor says:

Doctor: 1 fiad you imterestiag.

PARRY thinks it is an insult and responds angrily: |
PARRY: Are you tryiag to say sonethiag?

The doctor then asks several questions that are inflammatory and that elevate
PARRY's affects. The doctor finally says:

Doctor: You appear to be very sick.

This is intolerableto PARRY. It increaseshis fear, anger, snd shame markedly.
From this point om, the interview deteriorates. PARRY Hes:

Doctor: New do you feel right see?

PARRY: I sm.pertectly fime.

And withdraws:

Doctor: Do you need te have psychiatrictreatasat?
PARRY: I doa’t want to talk about it.
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PARRY substitutes uncomplimentary beliefs about the doctor for shame-
ful beliefs about himself. concluding that all doctors are bad and that this one
is sbnormal. These beliefs allow PARRY to reduce shame and drop out of the

paranoid mode into being merely angry, so that when the doctor concludes
the interview and thanks PARRY for his cooperation, PARRY bluntly tells him
not to come back.

Conclusion

The study of belief systems is challenging because, unlike “facts,” beliefs
are nonconsensual, have associated affects. and have associated confidences

or credibilities. Even the basic problem of how confidences in beliefs are
adjusted by evidence has no general solution, and the more difficult problems
(e.g., the effects of emotion on cognition) are barely formulated, much less
solved. Despite these difficulties, the researchers surveyed here are convinced
of the importance of belief systems, since humans clearly do not reason entirely
from facts with consistent inference rules, but instead, prejudices, bisses,

episodic memory, confidences, and emotional states are neatly integrated into
“rational” reasoning.
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