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; - \s Abstract L

| The numerical solution of discrete approximations to the first bi-

harmonic boundary value problem in rectangular domains is studied. Several

finite difference schemes are compared and a family of new fast algorithms

4 - for the solution of the discrete systems is developed. These methods

8 are optimal, having a theoretical computational complexity of O(N?)
arithmetic operations and requiring NE+O(N) storage locations when
solving the problem on an N by N grid. Several practical computer

- implementations of the algorithm are discussed and compared. These im-

] plementations require aN’ + bN10gN arithmetic operations with b<«a.

The algorithms take full advantage of vector or parallel computers and
4

| can also be used to solve a sequence of problems efficiently. A new |

fast direct method for the biharmonic problem on a disk is also developed. |

3 It is shown how the new method of solution is related to the associated |

j eigenvalue problem. The results of extensive numerical tests and com-

$ parisons are included throughout the dissertation.
4

1 It is believed that the material presented provides a good founda-

tion for practical computer implementations and that the numerical solu-

tion of the biharmonic equation in rectangular domains from now on, will

be considered no more difficult than Poisson's equation
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CHAPTER I

| THE_CONTINUOUS PROBLEM |

Let Q be an open set in R with boundary oR. Consider the

following problem:

22u(x,y) = f(x,y) (x,y) € Q ]

u(x,y) = g(x,y) (x,y) € 39 (1.1) i

u, (x,y) = h(x,y) (x,y) e 39 §

where ug, denotes the exterior normal derivative on 3Q. |
This thesis will develop efficient numerical methods for the above :

problem when Q is a rectangle or a circular disk. The algorithms are

optimal, requiring 0(N°) arithmetic operations and 0(N%) storage |
locations for computing an approximate solution at N° discrete grid-

points.

In this Chapter some physical problems that lead to equations like

(1.1) will be described together with a few mathematical properties rele-

| vant for the construction of numerical methods. Discrete approximations ;
to (1.1) are discussed in Chapter II, and the theory behind the numerical

} algorithm for the rectangular domain is developed in Chapter III. Chap- |

ter IV discusses the implementation of numerical algorithms and the de- |

- sign of computer programs. Some numerical results for a few applications

of the algorithms to some difficult problems are presented in Chapter V. |

Equation (1.1) is called the (first) Dirichlet boundary value pro- J

: blem for the biharmonic operator

4 4 4

ER Ae sw Aw (1.2)
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and this problem arises in several fields of applied mathematics. Clas-

| sical examples occur in elasticity theory and in the theory of fluid |
| mechanics.

In linear elasticity u(x,y) can represent the Airy stress function |

or as in the theory of thin plates, the vertical displacement due to an |

external force. In the latter case equation (1.1) represents a "clamped
plate" where f is the external load. Another closely related case is

| | that of a "supported plate" where the boundary conditions in (1.1) are
: replaced by

; u(x,y) = g(x,y) (x,y) € 3Q
| (1.3) |

| obu(x,y) + (1-o)u (x,y) = h(x,y) (x,y) € 3 |

where wu is the second normal derivative and o¢ 1s a material constant

| called Poisson's ratio. |
| when § is a polygon, this is equivalent to a problem (with data

| depending on o) of the form: |

- Av =f in Q |
| V=-nh on 3Q

2 (1.4)
-Au= v in

u= g on a9 |

where v = - Au has been introduced. The original fourth order equation |
| has been split into two Poisson problems. There exist many reliable com- |

= puter programs that can be used to solve (1.4) in an efficient way both

Bu for special geometries (Swarztrauber and Sweet [1979] ), and in more general |
| domains (Proskurowski [1978]). [t is important to notice that the only |

difference between (1.1) and (1.4) is that different boundary data have |



|

|

been specified.

u The theory of thin plates allowing large vertical displacements, |
1 leads to a coupled pair of nonlinear equations known as von Kdrmdns equa-

] tions:

aly = [uv] + f in Q
u = 9g on 99 |

u, = hy on 39

ply = - [uu] in Q (1-5)
: v=4, on af

v, = h, on JQ

where

ax dy dy 9X

i Here u represents the vertical displacement of the plate, v is the

: Airy stress function and f is the external force on the plate. An

| efficient method for solving linear problems involving the biharmonic

. operator (with the appropriate boundary conditions) can be very valuable

B in iterative methods for solving more difficult problems of this type.

References describing equations involving the biharmonic operator

| in elasticity include Landau and Lifchitz [1970] s Muskhelishvili [1963] ’
Sokolnikoff [1946], kupradze [1965] and Kalandiya [1975]. More recent
texts on finite elements methods, Strang and Fix [1973], Lienkiewicz

- [1977] and Ciarlet (1978) provide additional information.
In fluid mechanics, equation (1.1) describes the streamfunction

i u(x,y) of an incompressible two-dimensional creeping flow (Reynolds
number zero). Efficient numerical methods for this problem can also be
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| used when trying to solve the nonlinear Navier Stokes equation describing

incompressible flow at nonzero Reynolds number. The biharmonic operator | |

i appears linearly in this equation when using the streamfunction formula-

tion. For more details on fluid mechanics applications see Landau and

Lifchitz [1959] and Temam [1977] .
The remaining part of this Chapter will summarize various mathema-

i tical results for the biharmonic operator I and equation (1.1). :
| i) Variational forms. | |

: Two distinct bilinear forms can be associated with problem (1.1)

(Agmon [1965, p. 150] ): |

ay (u,v) = [ a Av dx dy
Q

| 2 2 2 2 2 2 i
- dU OJ Uy V JV ou dv |dx dy .| su) = [1 - 9G - LP) +8 pi2 AG: ay’ axe ay? 2d ae]

] The weak form of (1.1) corresponding to the clamped plate problem in

| elasticity is

: az(u,v)= Fv) ¥v e Hi(a)
3 where |

a, (u,v) = 1 , (u,v) + 1-5 4 (u,v)31) = 777 3 uv) + = als

representing the strain energy of the plate, and

fo) = [fax ay . Y
¥ 9)

| For additional material see Ciarlet [1977] .
ii) Existence and Uniqueness.

FE If fe L2(), gc 3/230), h 1/2 (30) and 30 is sufficiently

3 smooth, then there exists a unique (weak) solution u ¢ He (Q) of |

7 |
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problem (1.1). (Lions and Magenes [1972].) gy
; iii) Simplification of equation (1.1). |

| Assuming that (1.4) can be solved, there is no loss of generality

; | to take f = g = 0 when discussing equation (1.1). This follows by i
: letting u = Uy + u, where Uy solves (1.4). The equation for u, is |

then of the desired form. 1 |

| iv) The biharmonic operator under a conformal coordinate transformation.

Assume that s : C > C maps a region Q, in the z-plane confor- | i
mally onto a region Q, in the w-plane, and let a, and A, denote |

| the Laplace operators in the two regions. Then |

p2u(z) = Is'(2)12 8, (1s (s 2) 12 aust). (1.6) |

This transformation is useful when the map s from a simple (computa- :

tional) domain Q, to the (physical) domain Q, is known or can be com- |
| puted. References using conformal mapping and complex variable techni-

ques include Muskhelishvili [1953] and Kantorovich and Krylov [1958]. x
| v) Biharmonic functions. |

Any function u(x,y) satisfying equation (1.1) with f = 0 is

1 called biharmonic. Any biharmonic function u can be written  ]

) u(z) = Re[Z ¢ (2) + x(2)) | |
where ¢ and x are analytic functions. Conversely, given ¢ and |

analytic, the above expression defines a biharmonic function wu. This |

=u representation is due to Goursat [1898]. If Q is starshaped and u
is biharmonic, then l

w= rl +m (1.7) 1

tn
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| where v and w are harmonic functions and rl = NC + Ve. (Tychonoff
3 and Samarski [1959, P. 388) , see also Kalandiya [1975].)

vi) Explicit solution of (1.1) in a disk.

Assume that f = 0 in (1.1) and that @ is a disk of radius R. |

Then |

| I | 2 2,2 2m g(R,a)(R-rcos{a=6)) |
u(r,6) = z= (R"-r") [ R2r2-2Rrcos (2-0)? do ;

ip [r Ra)i); 0 R+r"-2Rrcos(a-6) |

(Tychonoff and Samarski [1959, p. 389] .) |
vii) Majorization of biharmonic functions in terms of the boundary data.

Despite the close connection between harmonic and biharmonic func- |

tions there is no maximum principle for biharmonic functions. The fol- |
lowing result is due to Miranda 1948) . | |

Assume f =g =0 in (1.1), if the boundary 59 is sufficiently

smooth and u has continuous first partials in Q, then |

{ lu(x,y)] < (26(x.3) Snax h(x.) |
x where Ap = -1 in Q, ¢ = 0 on 3Q .
[ Extensions of this result to the case where g 1s nonzero are given

: by Rosser [1980] for circular and rectangular domains.
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; Another type of a priori inequality is given by

[2 dxdy < aq [ (62u2axy +a, [ uds tag / ulds + op | ila .| Q Q Q Q Q |

: Here u, is the tangential derivative and Uys Ops Og and a, are (in
; principle) computable constants depending on the domain. This inequality

holds for any sufficiently smooth function. (Sigillioto [1976]).
viii) The coupled equation approach.

a Consider the following algorithm for solving (1.1). Let AY = 0,
: then for n = 0,1,2,..

- -A" =f in Q

yh o= an on af

- ad = in Q

i uy" = g on 3Q

| n+l n au"
3 AUT = AT + plz +h) 0< p< 2/u

| where

" y= max [ E oof v1 dxdy .: n

¢ ) — 2
3 veH™ (92) CY Hy (2) |
V v0

) For sufficiently smooth data it can be proved that

3 lim{u",v"} = {u, - Au} ’
: , n + © |

see MacLaurin [1974] or Glowinski-Lions-Tremolieres [1976, Chap. 4].
i ix) Relation between u and Au on 3.

Let v =-au and assume that XA = v|,, is known. Equation (1.1) |

Se ee Ee : EB I E——— RCLD OE



can then be solved as two decoupled problems. Let A denote the linear !

| operator mapping XA to up, Glowinski and Pironneau [1979] proved that )
A is a symmetric, strongly elliptic operator mapping H™%(30) to H2(oq). .

: This is the basis for the mixed finite element method they propose for

| problem (1.1).

:

t -

!
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3 CHAPTER II

! THE DISCRETE APPROXIMATION |

This Chapter will discuss discrete approximations to the continuous

biharmonic problem. The Chapter consists of four sections. First, a few |

possible finite difference schemes will be introduced. Necessary modifi-

| cations at gridpoints near the boundary are discussed and some properties
of the resulting linear systems of equations are mentioned.

BB The second part summarizes known theoretical results on the conver-

gence of the finite difference solution to that of the continuous problem. |

Several conflicting results can be found in the literature and the re- ;
view of this material is intended to clarify the knowledge of this sub- ¥
ject.

| The algorithms proposed in this thesis make it feasible to solve :

discrete approximations on much finer grids than previous methods could

| handle using limited computer resources. This made it possible to perform |
fairly extensive tests, solving a class of test problems over a wide range

3 of grids in order to numerically test the theoretical convergence rates §

and compare soue of the proposed approximations. The third section of the x

. Chapter contains a summary of the calculations performed and some of the 3
1 resulting conclusions. 3
3 The last section contains a short discussion of previously proposed |

methods for solving discrete approximations to the biharmonic equation. |

2.1 Finite difference schemes.

3 Most finite difference schemes proposed for the biharmonic equation

EB have only been applied to regions made up of unions of rectangles. For

more general regions Bramble [1966] proposed an elegant scheme which i
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employs the 13-point stencil. However, due to the difficulties in hand- |

| ling the difference approximation close to a curved boundary, more general :

! domains should usually be treated within the framework of the finite k
element method. The study of finite difference schemes and the efficient 2

] numerical solution of the resulting equations derived from regular geo- B
metries is still useful for at least two reasons. There are several im- |

portant problems where the geometry is regular or where it is convenient

to make a coordinate transformation from the physical region to a compu- k

tational domain with a simple geometry. In addition, efficient numerical

methods for regular grids can contribute to the development of fast methods

= for solving finite element equations resulting from triangulations that

are regular in the interior of a more general region. This line of de- i

; velopment is already very evident in the work of Proskurowski and Widlund

| [1976], [1980] on second order elliptic equations. |
The following discussion will be restricted to a rectangular region |

R. Let R be covered by a uniform grid such that the boundary of R

falls on gridlines. This is illustrated in Figure 2.1, which also de-

8 fines three disjoint sets of gridpoints, Rys Ry and Ry : |

a * % * * * |

| * + + + *

| * + + + * |

. |
1 * + + + * {

” % %* * * *
| h |

ni

Figure 2.1. The uniform discretization of R.

| §
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Ry = {+} , the set of all gridpoints having only interior points as neigh-

| bors. '
*

} R= {*} , the set of all interior gridpoints having at least one neigh-

bor on the boundary,

R, = {+} the set of boundary gridpoints. :

The finite difference approximations are most conveniently described us- g

; ing stencils. For example,

; _1 _ he, 4 4 8
| Bu ='7 1 -4 1 | u-=Au-+ 13101 + D,)u + 0(h’) (2.1)

| 1

3 defines the usual 5-point approximation to the Laplace operator and shows

1 that this approximation has a local truncation error of order he.

= (D; = EA ,» 1 =1or 2). The classical 13-point approximation for the
: i |

: biharmonic operator is most easily derived by applying the above 5-point

: | operator twice: |

§ 1
1 |
. | 2 -8 2 |

a2 u = Ac(Agu) = 1 1 -8 20 -8 1 u = |
| 137 = %6%6° © 4

| 2 -8 2

4 . |

2, he, 6, 42. 24. 6 4 |
Au + 50g + 0,05 + 0,0, + D5)u + 0(h’) . (2.2)

| (The operator Ag(Ag u) is formed by first forming Ag(A u) and
. then substituting for Au using 2.1). Unlike the discrete Laplace opera-

| tor which can be applied to all interior gridpoints P ¢ R, URL, this

{
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operator is only well defined on the points P ¢ Rp Two alternative

¥ approximations of 8%u (P) will be considered for P ¢ R, © a k2 3

i) Quadratic extrapolation.

Use the normal derivative boundary condition at the point Qe R, R

nearest P ¢ Ry to formally get a local 0(h%) accurate extrapolated .
| value at the "missing" (exterior) point in the stencil. This results in |
1

| a stencil of the form |

2 -8 2

pqu(P) ==g | |-8 21-8 1 | wu(P)+ 2hu (Q)|=a%(P) + 0(h™")
q h n

2 -8 2

a 1 (2.3)

| when applied to a point P ¢ Ry near the left boundary. Notice that u, :
| always denotes the exterior normal derivative evaluated at the boundary.

A similar procedure (eliminating two exterior points) when P ¢ Ry is |
a cornerpoint results in a weight of 22 at the center point of the sten- :

cil.

ii) Cubic extrapolation.

Using the same approach as in i), but performing a cubic line-extra-

{ polation results in an o(h*) accurate approximation of the "missing" |
point. The discrete biharmonic operator becomes

2 -8 2

a2u(P) = 4 -8 23 -8.5 11 u(P) + 3hu (Q) - Ju] = a%u(P)+0(1)
| 2 -8 2

3 1 (2.4) |
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at a point P ¢ Ry near the left boundary. Notice that this leads to an
! unsymmetric coefficient matrix.

Gupta [1975] considered two families of boundary approximations of
the above form, but depending on integer parameters indicating which in- |

terior points to use in the extrapolation. His iterative method converged

faster if points further away from the boundary were chosen. This clearly

results in larger truncation errors. Since the algorithms in this thesis |

can handle the approximations that furnish the smallest truncation errors, »

only these two choices will be considered. (The quadratic and cubic ex- a

trapolation near the boundary is equivalent to the schemes p =1 and |

p=2, q=1 respectively in the notation of the above author.)

Glowinski [1973] made the observation that the 13-point finite dif-
ference scheme combined with quadratic extrapolation near the boundary

is equivalent to solving the biharmonic equation using a mixed finite |

element method and piecewise linear elements in the triangulation shown

in Figure 2.2.

SON
NON
NON| |

Figure 2.2. Finite element triangulation corresponding

to the 13-point difference stencil.
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There are many alternative finite difference approximations that can |

| be derived for the biharmonic operator. By rotating the coordinate sys- aE

tem w/4 the approximation

1 1 . |
I | _ h™,.4 22 4 4

Au =z oz ~4 u = Au + 15(0g + 60,0, + D,)u + 0(h") (2.5)
1 1 3

to the Laplace operator follows from the 5-point stencil given earlier. :

| From this operator an alternative 13-point approximation is obtained:

1 2 1 :

-8 -8
2  _ _ 1 _ 2 :

Au = 8, (8 u) = od 2 20 2 | u= Au
-8 -8

i 2 1 |

+ n 8 + 70% p2 + 702 0% + D®)u + orn?) (2.6) |6 ‘1 1-2 172 “2 :

This stencil is not as convenient since it depends on twice as many points 1

at a distance 2h from the center point. Combining the two approxima-

tions to the Laplacian results in a 17-point approximation.

| 1 4 2 -4 1 |

By = 8, (8gu) = ag(au) = pn -2 16 2 u (2.7)
1 1 |

y

2 he, 6 4 2 24. 6 2 |
= A u + z=(Dy + 4 0,05 + 4 Dj, + D,)u + O(h") :

By taking suitable linear combinations of the above stencils for the bi-

harmonic operator it is possible to derive approximations that can be

To3 ¥
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used to construct higher order schemes. For example §
| | 2 | |

Gad, +Ea2u=2 us nd uromt) (2.8)

Combining this with the idea of also forming differences on the right |

hand side of the equation (Mehrstellenverfahren, Collatz [1958] ) yields
a locally fourth order accurate approximation that has been studied by

Zurmih] [1957] : i

1 1 1

1 =-2  -10 <2 1 1

oli 2 a0 e201 1
1 1 1

Zurmuhl derives rather complicated stencils that can be applied to points |

Pe R having local truncation error o(h3). Based on the material in ]
this Chapter (Section 2.2 and 2.3) it is likely that less accurate approxi-

mations near the boundary would be sufficient.

It should be noticed that all the linear systems of equations de-

rived from the above stencils (ignoring the irregularity caused by the |

! special boundary approximations) can be efficiently solved using for ex-
ample the fast Fourier transform (Henrici 1979).

2 The systems of linear equations derived from the finite difference

| approximations discussed so far, are all positive definite with a condi- |

tion number proportional to 4. Due to the special approximations used 3

: for the points P ¢ RS the matrices are often not symmetric, but they
can usually be considered as perturbed symmetric matrices.

| The matrices do not possess property A (Young [1972]). Finite dif-
ference approximations of the biharmonic operator that lead to linear
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systems having property A have been considered by Tee [1963] and Tang
[1964 for rectangular and hexagonal meshes respectively. Proper treat-
ment of the points near the boundary remains a serious problem with these |

schemes since inaccurate boundary approximations must be used in order |

not to destroy the matrix structure. (These matrices have interesting

block properties; see Parter [1959], Chapter 14 of Young [1972], Buzbee,
Golub and Howell [1977] .)

2.2 Discretization error estimates.

There exist very few papers in the literature discussing the global :

discretization errors of the finite difference schemes presented in the

previous section. This is in contrast to the case of second order ellip-

tic problems where the theory is well understood. The main reason for |

this is probably the fact that there is no maximum principle for higher

order equations, while the maximum principle valid both in the continu-

ous and discrete case for second order problems provides an important tool

for the analysis.

The first results proving that the 13-point approximation (2.2) con-

verges to the solution of the continuous problem, was given by Courant, |

| Friedrichs and Lewy [1928]. The main references for this section are ]
H Bramble [1966] and Zldmal (1967) . The more recent analysis by Gupta [1075]

is based on the above paper by Z1&mal, but some of the discretization

error estimates given can be improved.

Let v denote a function defined on each gridpoint P{x,y) ¢ R :
| (R = Ry U Ry UR) and extended by the value zero outside R. The fol- :

lowing norms and notation will be used in this section: i

|

IC
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Vv. (xy) = Hv (x thy) = vixy)) |
a (2.10)

= 1 .
: Voy (XY) = =v, (x,y) = v, (x h,y))

imilarly f d {

and similarly for vy an Vy 5

IV IIE = he 2 w(p)? -
PeR Lo

2 _ 2 2 2 EB

Ivily = dlvillg + div, dig + Hiv,1G (2.11)
2 2 2 2

| vily = divilg + liv Ip + liv IIT

The norms of the restriction of v to points Pe Ry or Pe Ry are |
def ined by:

| IV]I2 ox = hz v(P) |; 0.Ry PeR¥ |
h (2.12)

2 _ 2

| IVIg g = hos v(P)*
>“h PeR

h .

The norms containing the discrete derivatives are defined in a similar |

| way as above, |

3 The following lemma holds for any mesh function v vanishing out- |

3 side R.
: Lemma 2.1 (Discrete a priori inequalities.) -

(1) Ivilg < cllivy lig + liv, lig)?
| . -1.% 2 2.% |
| (11) max VPI < cfTog h[2(1lv, 1g + liv, lig)

Ces ~1 2 g |

(iii) |v 14 < c(h vio, + 1875 “llo,r,)
] for some constant c¢ independent of h,.

| This is proved in Bramble [1966], an alternative proof of (iii) is |
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given by Kuttler [1971]. |

| I
[ Lemma 2.2 (Extrapolation near the boundary). |

Let v be any mesh function vanishing outside R. If the approxi- |
mation defined by (2.2) and (2.3) is used, the following estimates hold: |

| 3/2 3/2,,5/2 |, 42 2 |
i) Iv lg, + 0 Iv lig < e n/2m*2 ag vilggr + lags vigg |

5.0.2 12 2 2k

ii) lv IP < c(h [184 v o,r¥ + 11415 v lo,r, ) |

i for some constant c¢ independent of h.

Inequality i) can be found in Kuttler [1971], ii) is proved by Z1amal
| [1067]. Inequality ii) also holds if 45 is replaced by 4% (2.4), it

can therefore be used to analyze the case where cubic extrapolation is |

used near the boundary.

Let up denote the solution to a finite difference approximation of

the first biharmonic boundary value problem using one of the discretizations

defined in the previous section. Let wu be the continuous solution of :

i the problem and assume that u € c(6) (Ry. Lerma 2.1 and 2.2 can now be
3 used to estimate the global discretization error.

5 Theorem 2.1

4 Assume the 13-point operator az, is used on R and let c¢ de-
| note some constant independent of h. Then

i) max |u, (P) - u(P)|< c|log nl)’ he
y PeR

i) lap(P) = u(P) Ils < ch

3 i) lu,(P) = u(P) II, < ¢ h*/2

1
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iv) lup(P) = u(PNg ge <
| if the quadratic extrapolation scheme % is used on RS and

v) max Ju(P) = u(P)| < c h°
PeR

vi) max(|(uy (P) = u(P)),] + I(up(P) = uP)|) <c |log hl[% 25 PeR

| vii) lu, (PY = u(P) II, < c h?

“if the cubic extrapolation scheme 2 is used on R, .
| Proof:

The local truncation error of Ads is 0(h%), while % has local
truncation error o(h~L) and 2? is 0(l) (see section 2.1). Using
this and i) of Lemma 2.2 gives iv). Combining this with ii) and iii) in

| Lemma 2.1 gives i) and ji). Statement iii) and vii) follows from ii) of
Lemma 2.2. Using vii) and ii) of Lemma 2.1 gives vi). Finally, the dis-

| crete Sobolev inequality (Sobolev [1940]) applied to vii) proves v).:
Remarks:

i) The above results i) - iv) still hold in a more general region with

3 curved boundary using a suitable generalization of the quadratic extra-

). polation scheme. (Bramble [1966], Z1amal [1967]).
3 ii) It is unsatisfactory that Lemma 2.1 and 2.2 involve specific dis-

cretizations. More general proofs would make it possible to estimate the

global discretization error of a given finite difference scheme from the

Tocal truncation errors. Both theoretical and computational evidence make

it reasonable to believe that the lemmas hold for a wider class of approx-

imations.

|
Cmeae arm———



| 20

| iii) Notice that the error near the boundary estimated in iv), is o(h°),
| an order of magnitude smaller than the overall error despite a local trun-

cation error of o(h 1) when using 5 u(P) for PER. . Strang and Fix
1973, Pp. 202] discusses a similar phenomenon for second order equations.
iv) The only important difference between quadratic and cubic boundary

approximation is the estimates for the discrete second derivatives (iii)

and (vii). This can be significant in several applications where A u

: represents an essential physical quantity. (See also section 2.3).

v) Gupta [1975] used the discrete Sobolev inequality on iii) and obtain-
ed the weaker result o(h3/?) instead of i).

vi) Some of theestimatesin Theorem 2.1 do not seem to be sharp, see the

1 numerical evidence in section 2.3.

vii) If uk) is an eigenvector of the discrete biharmonic operator de-
fined using quadratic extrapolation near the boundary, and A) is the
corresponding eigenvalue, then

1 max|u{k)(p) - a (kD) < c|log lk hl |
PeR

: NOIR IPI:
provided the exact eigenfunction ok) € c{6) This result is due to

, Kuttler [1971].
2.3 Numerical study of discretization errors.

| In this section the results of numerical calculations using the
z finite difference methods from 2.1, are compared with the theoretical
3 results of 2.2. The new fast computer algorithms developed in Chapter

| III and described in more detail in Chapter IV, make it possible to solve

| problems for a wide range of grids. The asymptotic behavior of the
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discretization error as h tends to zero can then be investigated. The

} 10 testproblems listed in Appendix III were used. Scattered results for

{ several of these problems on coarse grids can be found in the literature

! | (see Appendix III). Each problem was solved in the unit square |
] 0 < x,y <1, using a uniform grid. The results will be presented in

tables like the one below.

Solution First derivative Second derivative |

i hy/hy

where h; and h, specifies two different grids, and

1 max |u(P) - up (P)]

ig max|u(P) - up (P)|
] R. = PeR 2

1 = »
h

1 log(z—

| If the discretization error behaves like

| a a,
R max|u(P) - up (P)}~ cq h = +c, h “+... (a, > ay)a eR

then Ry will represent a computed approximation to aq (assuming
3 a a

c,h 1 >> c,h 2). Define e(P) = u(P) - u(P) for P eR.
Ri, 1 =2,3,4,5,6 is then defined in the same way as R; using the fol- |

lowing norms: |
L

R, : hl: er)??] 2 LE |
R : ma P)| , P| 3 nax( le, (P)] [ey(P)

— fini- - i aid - w - IS TIAL od me in tf 2 nor RS BT er ern _ ’ cs=Ps. © id g
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[| Ry ne (e(P)° + e, (P)9)]*eR

Re :max|le. (P)| , |e  (P)] , |5 nax(| Ps Te, (PY Je,(P)]] |
2 2 2\1%

: P)~ + P)~ + P .| Rg h[ I(ex(P)” + ey (PY + 2 e, (P))]

Note that the discrete derivatives of the error e(P);

| | e,(P), e(P), e,(P), e(P) and e (P)

i have been formed using centered (0(h%) accurate) differences. The same

: norms willbe used when considering the boundary layer P ¢ R except that
| the factor h is replaced by h® in R,, R,, and Rg.
} Remark.

The discrete derivatives formed by centered differences of the com-

j puted pointwise error in the solution have been computed. An alternative

} would be to compare the finite difference approximations obtained from the

computed solution with the exact derivatives. The two methods give the ’

same information as long as R; < 2. Since the discretization error due
|

to the finite difference approximation of the continuous problem is best

- studied using the first method, only these results are presented.

: First, the 13-point formula combined with quadratic extrapolation will

: be considered. Problem 1 is solved exactly by the method, results for

| problems 2, 7 and 10 are given in Figure 2.3.

¥

!
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Solution First derivative Second derivative |

0.1 / 0.05 1.96 1.97 1.37 1. 7k 1.09 1.58 | |
0.05 / 0.025 1.8 1.99] 1.71 1.87 1.02 1.72 I
0.025 / 0.0125 | 2.00 2.00 1.85 1.9% 1.00 1.80 -

0.0125 / 0.00625| 2.00 2.00 | 1.92 1.97 1.00 1.84

| Problem 7
0.1 / 0.05 1.95 1.95 | 1.25 1.69 0.95 1.45 ,

| 0.05 / 0.025 1.98 1.99{ 1.61 1.85 0.97 1.64 |
| | 0.025 / 0.0125 | 2.00 2.00] 1.77 1.92 0.98 1.7% |
| 0.0125 / 0.00625 2.00 2.00] 1.86 1.96 0.99 1.80 |

Problem 10 | |
0.1 / 0.05 1.95 1.97 { 1.38 1.7h 1.02 1.56 |

| 0.05 / 0.025 1.99 2.00 | 1.70 1.87 | 0.99 1.70 | |
0.025 / 0.0125 | 2.00 2.00 | 1.83 1.93 0.99 1.78 |

0.0125 / 0.00625 2.00 2.00 1.89 1.97 1.00 1.83 .

Figure 2.3. Computed discretization error estimates for

problem 2, 7 and 10 using the quadratic

i boundary approximation. |
} ’ :

? |
1

3 None of the other test problems had convergence rates significantly

) slower than the ones listed above. Improved rates were observed for

problems 4, 5 and 9 where R. x Ro = 2. Figure 2.4 gives the rate of |
* '

convergence of the solution at the points P ¢ Rp, for problem 7. |

; |
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Problem 7 Solution First derivative Second derivative |
: 0.1 / 0.05 2.56 2.53 1.25 1.40 0.95 1.11 |

| 0.05 / 0.025 2.76 2.74 1.61 1.63 0.97 1.32 |

0.025 / 0.0125 2.85 2.85 1.77 1.78 0.98 1.40 |
0.0125 / 0.00625 | 2.91 2.9% 1.86 1.87 0.99 1.45 |

| Figure 2.4 Problem 7. Convergence of boundary

| layer Ry using the quadratic boundary i
approximation. |

Improved convergence at the points Pe R™ was again observed for

problems 4 (Rg = Rc = 2), 5and 9, where Ry = R, = 4, Ry = Ry = 3,
and R; = Rg = 2. |

Based on the numerical evidence, the discretization error estimates |

given in Figure 2.5 are believed to be correct for smooth functions.

H Solution First derivatives Second derivatives

Figure 2.5 Asymptotic behavior of discretization errors. :
d

- The entries in Figure 2.5 marked with a star correspond to estimates i

that are sharp in Theorem 2.1. In addition, the estimate for the maximum J

error in the solution over R is almost sharp. A specific numerical

—— ET EN rr ——— i
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| calculation strongly suggested that the factor |log ak in Theorem
A 2.1 can be removed.

The discretization error in the second derivatives is of particular |
; interest. The second derivatives represent important physical quantities

| both in the theory of elasticity and in fluid applications. The calcu-
lations clearly indicate that the maximum error is proportional to h.

| Theorem 2.1 states that the L, error is bounded by h3/2, and Zlamal E
| [1967] suggests that this is in fact sharp. However, the numerical re- |

sults indicate that the rate is V3.5 . A possible explanation of this
rate would be a boundary layer of thickness o(h~1/2) with errors of

- o(h%/2) and interior errors of 0(h?). A special calculation showed
that the error in the interior indeed behaved 1ike 0(h?). The value of

Re is 1.86, 1.86 and 1.84 for problems 2, 7 and 10 when using |
hy = 555 and h, = siz consistent with the value V3.5= 1.8708. (Con- :

1 vergence is slow since the next term in the error expansion (ch?) is |
| only slightly smaller.) |

The very regular behavior of the truncation error when using qua-

| dratic extrapolation near the boundary suggests that Richardson extrapo- {

: lation will be quite effective. Figure 2.6 displays the corresponding
! results of problem 7 after one Richardson extrapolation. (Using h and

4 h/2).
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a

Problem 7 Solution First derivative | Second derivative |

I EN
| 0.1 / 0.05 3.02 3.79 | 1.9 2.90 0.97 1.96

0.05 / 0.025 2.99 3.82 | 1.98 2.9 0.99 1.97

0.025 / 0.0125 ' 3.99 3.94 1.99 2.97 1.00 1.99

Pe RY | |

: 0.1 / 0.05 3.02 3.48 | 1.90 2.45 0.97 1.47

: 0.05 / 0.025 | 2.99 3.47 | 1.98 2.47 10.99 1.47
0.025 / 0.0125 | 2.89 3.48 | 1.99 2.48 | 1.00 1.49

Figure 2.6 Problem 7. One Richardson extrapolation.

It should be pointed out that a precise knowledge of the asymptotic dis- |

cretization error is vital when doing Richardson extrapolation. Gupta y

[1979] reports that the maximum error in the solution of problem 5 de-

| creases from 0.07 with h = 0.05 to 0.05 when extrapolating using :
3 h=0.1 and h = 0.05. His extrapolation was based on an expansion with
ih :

$ a leading term 3/2 if the correct extrapolation is performed the er-
5 ror decreases from 0.07 to 0.002. |

3 Next, consider the discretization errors when using the 13-point
formula in combination with cubic extrapolation near the boundary. Pro- ;

blems 1 and 3 are solved exactly by this approximation. Figure 2.7 shows |

: the results for problems 2, 7 and 10, while Figure 2.8 shows the rate of

convergence near the boundary for problem 7. ;

:
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Solution First derivative Second derivative :

|

0.1 / 0.05 3,06 3.13 | 2.k2 2.85 2.02 2.56
0.05 / 0.025 3.17 3.31 | 2.69 2.99 2.03 2.68 |

0.025 / 0.0125 | 3.23 3.45 | 2.58 2.90 1.82 2.59 |

Problem

0.1 / 0.05 2.7% 2.27 | 2.14 2.07 1.61 2.03 |
0.05 / 0.025 1.b1 1.46 | 1.94 1.76 1.92 2.12

0.025 / 0.0125 | 1.7% 1.72 1.8L 1.80 2.08 2.07

Problem 10

0.1 / 0.05 2.59 2.47 | 2.24 2.21 2.02 2.23

0.05 / 0.025 1.54 1.60 | 2.25 1.90 2.02 2.20

0.025 / 0.0125 | 1.79 1.75 | 1.93 1.87 | 2.01 2.10 |

Figure 2.7 Computed discretization error estimates

for problems 2, 7 and 10 using the cubic

boundary approximation.

Problem 7 Solution First derivative Second derivative

*

0.1/0.05 3.28 3.34 2.14 2.20 1.61 1.69

0.05/0.025 3.55 3.63 2.24 2.45 1.92 1.93

0.025/0.0125 3.66 3.75 2.47 2.61 2.08 2.00
1

, N

Figure 2.8 Problem 7. Boundary layer Ry using |
cubic boundary approximation.

The behavior is not as consistent as in the previous case, making

Richardson extrapolation less attractive. Notice that the error in the 1

second derivative near the boundary, is converging at a much better rate

] than in the first case. The theory in section 2.2 indicates that this

method should be 0(h%) in both solution, first and second derivative. |
*

The rate of convergence of the solution at the boundary Rh would be
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| 3.5 if Lemma 2.2 applied. |
| The 4th order approximation (2.9) with boundary formulas taken from

Zurmiihl [1957] was tried with h = 15 » Ir and Ls. Again problems 1 and |
3 are solved exactly by the approximation. Results for problem 7 are

given in Figure 2.9.

Problem 7 Solution First derivative Second derivative

0.10/0.0667 5.41 5.58 4.41 5.00 4.03 4.61

0.0667/0.05 6.05 6.13 4.87 5.02 4.29 4.43 ;

Figure 2.9 Problem 7. A 4th order accurate method.

Despite fairly large variations in the computed rates of convergence,

all errors are reduced by a factor of four or more indicating that the

method is fourth order accurate. If Lemma 2.1 and 2.2 were valid in this |

case, then the results for the boundary layer Ry would be 5.5. Per-

: haps more important, the complicated approximation formulas used near the |
boundary may not be necessary. An approximation of O0(h) would probably

suffice in order to get accurate function values, while 0(h?) may be |
necessary to get o(h*) accuracy also for the second derivatives.

The results given above reflect the strong smoothing properties of |
; the biharmonic operator. The errors in the interior behave nicely even i

for higher discrete derivatives. Close to the boundary the situation is 1

| much more complex, a boundary approximation which is 3 orders less accu-

rate than the interior approximation is sufficient in order to obtain i
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| good convergence for the solution and the first derivative, if the approxi-

| mation is 2 orders less accurate, then the second derivatives also con-
verge at an optimal rate. :

| In order to compare the relative accuracy of the four schemes dis- :

| cussed in this section, Figure 2.10 displays the actual error (and the |

various centered differences of the error) for problem 7. |

Figure 2.10 indicates that: |
1) The cubic boundary extrapolation produces more accurate

results than the quadratic approximation on a given grid.

ii) Richardson extrapolation is very effective when using the |

quadratic boundary approximation.

iii) On smooth problems like the ones considered here, the

fourth order method produces excellent results.

Before closing this section, the importance of a good set of test |

problems should be mentioned. This study revealed many cases where one 1

or more terms in the (unknown) error expansions dropped out for a given

| problem. In particular problems 4, 5 and 9 are rather special and give :

: atypical results. (These problems have been considered by several authors |
! in the past.) In many applications the problems will be less smooth than

the above test problems. In such cases a fine grid calculation with a |

8 second order accurate method is likely to be more satisfactory than a

high order, coarse grid calculation. |

¥
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] 2.4 A brief survey of other methods. Lo

A large number of papers proposing numerical algorithms for the ap- |

proximate solution of the continuous problem (1.1) have appeared in the

literature. The rapid development of increasingly faster computers in the

! last two decades has made it feasible to actually solve finite difference |

: approximations to the biharmonic equation proposed and theoretically in-

vestigated as early as 1928 in the important paper by Courant, Friedrichs

and Lewy.

| Today, there is a considerable interest not only in the various dis-
crete approximations of a given continuous problem, but also in the com-

: putational complexity of the discrete problem itself. The solution of

the discrete Poisson equation is a good illustration. In the last fifteen

years many efficient numerical methods have been developed. (Hockney J

[1965], Buneman [1969], Buzbee, Golub and Nielson [1970]. Bank and Rose |
[1977] and Schroder, Trottenberg and Witsch [1978] .) When solving the

| problem on an N by N grid O(N?) arithmetic operations and 0(N°)

storage is needed. A method having this complexity is said to be opti-

mal. (Actual computer implementations often make use of the fast Fourier |

: transform or the idea of cyclic reduction resulting in nearly optimal |

methods having an operation count of 0(N%TogN).) These methods can all

be viewed as efficient computer implementations of the separation of |
variables technique. |

However, separation of variables cannot be applied to the biharmonic |

| problem (1.1). The methods proposed in earlier papers, for the solution

- of the discrete problem that arises when using the 13-point stencil have not

been optimal. The main result of the next chapter is to show that a

numerical method of optimal complexity does exist, even though the matrix
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corresponds to a nonseparable problem. (It seems however, that optimal

numerical methods for this type of problems do require the use of an

iterative process.)

The methods that have been proposed, for solving the linear system

: of equations

Ax = b

derived from the 13-point stencil can roughly be classified as follows:

| i) Iterative methods working on the matrix A.

ii) Direct methods working on the matrix A.

| iii) Iterative methods based on reducing the biharmonic problem |

to a coupled system of two second order equations involving

| the Laplace operator. |
iv) Direct methods taking advantage of the fact that A can be

split into L2 + V, where L is the discrete Laplace operator |

and V has low rank.

The first approach i) can be found in many early papers on the sub-

% ject; Parter [1959] and Conte and Dames [1960]. A more recent paper using
} a strongly implicit scheme is Jacobs [1973]. The main disadvantage of |

approach i) is related to the fact that A has condition number propor- |
’ tional to NG resulting in slow convergence of the iterative techniques.

(Munksgaard [1980] reports that more than 500 conjugate gradient itera- |!
| tions are required already for N = 32.)

| Approach ii) has recently received more attention due to a better |

- understanding of sparse methods for Gauss elimination. "The theoretical |
complexity of a direct method using nested dissection is o(N3) arith- a

metic operations and 0(N%1ogN) storage locations. Nested dissection



-33-

and other sparse matrix methods for the problem were studied by Sherman

: | 1975]. His results indicate that the constants in the above estimates
| are quite large and that a regular band solver (o(N*) work, O(N) |

| storage) is competitive even when the number of unknowns approach one

thousand. Bauer and Reiss [1972] proposed a block elimination scheme,
while Gupta and Manohar [1979] used a band solver. Both these methods
require a prohibitive amount of storage if N is large and they have a

| typical running time proportional to NG, unacceptable for fine grid cal- |
culations.

The third and fourth approach are essentially two different ways of

looking at the same underlying problem. A method based on iii) above was |

| introduced by Smith [1968]. It had a running time of oN’). This was
later improved to O(N°/2) by Smith [1970], [1973], Ehrlich [1971]. (See
also Ehrlich and Gupta [1975].) A drawback is the need to estimate itera-

1 tion parameters. Recently Vajter¥ic [1979] presented a more efficient
| implementation of these ideas, but the complexity of the method remained

o(N>/?).

| The last appraoch iv) was pioneered by Golub [1971] and a refined
a implementation is given by Buzbee and Dorr [1974]. This implementation,

| which is a direct method, requires o(N°) arithmetic operations. Des-
- pite being an (N°) method it proved very competitive with the o(N°/2)

methods on realistic problems because those methods have an actual cost of

c NZ with ¢ substantially larger than the constant in the o(N?) :
2 estimates.

Based on the above results Sameh, Chen and Kuck [1976] concluded that
| the solution of the first biharmonic problem was an order or magnitude |

more difficult than the solution of Poisson's equation even on parallel |

| I Ee —— — or — em nora EIT
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computers. The results of this thesis show that the problems have the

same complexity.

] There are many alternative ways, not using finite differences, for

obtaining an approximate solution to the biharmonic equation. A few will

| be mentioned here.

3 i) Finite element methods.

: An extensive literature exists. The methods of solution are most |

often sparse Gaussian elimination. Recent contributions proposing

] alternative ways of solving the resulting linear equations include

Axelsson and Munksgaard 1979] and Glowinski and Pironneau 1979].
ii) Least squares methods.

Methods of this type are often called "point matching methods" in

the engineering literature while the name "method of particular

solutions" sometimes is used by numerical analysts. This approach

can be very effective for special problems. References include |

McLaurin 1968], Sigillito [1976] and Rektorys fLo79] |
1 iii) Integral equation methods.

§ A large number of papers have appeared and the theoretical founda-

: tion is well understood. (See the references given in Chapter I).

A few recent papers are Katsikadelis [1077], Richter [1977] and
' Cristiansen and Hougaard 1978).
| iv) Methods using Fourier series expansions.

A few papers construct the solution of the first biharmonic pro-

a blem in a rectangular region using infinite Fourier expansions.

References to work in this direction include Aronszajn, Brown and

- Butcher [1973], Vaughan [1974] and Rahman and Usmani [1977 .

oe - = pr me fe Ee SEdd
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v) Methods using mathematical programming.
|

| Linear programming techniques have been used by Cannon and Cecchi

[1966]. [1967] and Desi and Manca [1076] while Distéfano [2071]
| reports on the use of a continuous dynamic programming technique.
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: CHAPTER [11

| AN O(N?) METHOD FOR THE SOLUTION OF THE
; FIRST BIHARMONIC PROBLEM

Consider the Dirichlet problem for the biharmonic operator in a

J rectangle R.

2%u(x,y) = f(x,y) (x,y) eR |

= u(x,y) = g(x,y) (x,y) € oR (3.1)

un (x,y) = hix,y) (x,y) € oR

| Here up denotes the normal derivative of u with respect to the ex-
terior normal.

A new and more efficient solution technique will be described for the

a case whenthe above system is discretized using the standard 13-point

stencil combined with quadratic extrapolation at the boundary. It will

be shown that by using this method, the solution of the discrete problem

1 on an N by N grid can be computed in O(N?) arithmetic operations.

3 This is an order of magnitude faster than earlier methods. In addition,

: the storage requirement is also significantly reduced compared to pre-
3 viously published algorithms.

r The theory in this chapter does not uniquely define a numerical al-
gorithm. In fact, it will become clear that there are several ways of

implementing 0(N%10gN) methods as well as an even faster direct

8 0(N°1ogN) method requiring (N°) operations in a preprocessing stage.
It should be pointed out that the 1logN term only arises when doing a

- fast Fourier transform that can be associated with solving Poisson's :

equation on the given grid. Several methods for solving Poisson's
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| equation in only 0(N%) operations are known. Work in this direction

N has been reported by Banks [197] and Detyna [1979], while Swarztrauber
| [1077] gives an 0(N%10g10gN) method.
| It is possible to use one of these methods as a subprogram in the

algorithms described in this chapter, and this would result in a fast bi-

harmonic solver requiring only O(N?) arithmetic operations to achieve |
a prescribed accuracy.

There are at least four reasons for keeping the discrete Fourier |

transform (and therefore the logN term) in this description of the new

method. 2

| i) The theory becomes clearer and more coherent. a
| ii) The 0(N°) methods for Poisson's equation are still research |
| codes of limited availability and several have problems with |

| numerical instabilities. |
iii) The fast Fourier transform is a more widely used computa-

| tional tool. Very erficient codes already exist and hard- |

ware implementations are likely to exist on many computer |

B systems in the future. The constant in front of the N21ogN
term is also quite small compared to the constant in front |

1 of the N° term. Under these circumstances the 1logN

; penalty may be of little significance in actual computation.
iv) The fast Fourier transform is used anyway in a different part

of the algorithm. (It only makes an O(NlogN) contribution |

: to the operation count in this part, so a slow Fourier trans-

form would not change the asymptotic efficiency).

- A more detailed analysis of several variants of the algorithm with |
| precise descriptions of actual computer implementations including storage

]

. essTevstanEmeens UB



| —————

~38-

requirements and operation counts is given in Chapter IV.

In this section the structure and properties of the discrete matrix |

problem corresponding to (3.1) will be analyzed. Since the basic method |
of solution is closely related to this structure, the analysis will be

carried out as a constructive derivation of the algorithm, |
Assume that the rectangle R is discretized using a grid with M

: uniformly spaced interior gridpoints in the x-direction and similarly N ;
points in the y-direction. The resulting linear system of MN equations |

is

Au, = b |

| with (up)yjo i=1,2,...M, j=1,2,...N denoting the discrete approxi- |
mation to the continuous solution u(x,y) at the coordinate (iAx, jay). |

| The vector b is given by

b.. = (ay)* Flinx, jay) + ©. . }
J 1) |

where the sparse vector £ is a linear combination of the boundary data |

g corresponding to the quadratic boundary approximation discussed in Chap- oo
] ter II. | a
! In order to discuss the efficient numerical solution of this system

some notation is needed. |

Let |

8 = Ay/ Ax

| and define the two matrices |

g oR

{

I
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-1 2. 0 O

: . 2 -1 O 0
12 LJ nn

| Let Iy denote an N x N identity matrix. The matrix A can be writ- |
i ten as

| _ 1:2 2 4A = [6 (1,BR) + (R,®1,)] +21 QI) + 26 (I,@T,) (3.2)

Standard tensor product notation is used, i.e.

C = (0, Ey)

denotes the block NM x NM matrix (with blocksize M)

dy, E «ee dy \E

[|] d,oE »

dE. . dy

J M N= nex |

| Note that the matrix !

2

¥ L = 8°(1,QRy) + (Ry BI) (3.3)

Pp is nothing but the matrix that results when solving Poissons equation on

the same grid using the standard 5-point difference approximation to the

Laplace operator.
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i Consider the N x N symmetric matrix|
_ =/2 . ijn || Qy = {a;;} LZ sin ro (3.4)

i

It is easy to show that the vectors a; i=1,2...N are the normalized

eigenvectors of Ry and that

ORO = Ay |

_ T _ -1 .

N= = Oy (3.5)
| Ay = diag(};)

:

- = - JT 1 =

Notice that the operation of computing vy = Qp x for a given vector x |

| of length N is just a real sine-transform of x. It can therefore be
carried out in O(NlogN) arithmetic operations using the fast Fourier

|

transform. For this discussion the MN x MN permutation matrix |

P, pp = I defined by the relation |

T |

P(Dy@EYP = (Ey, QD) |

- is also needed. If P acts on the vector up it will reorder the un- |
] knowns by columns (vertically), instead of by rows (horizontally). It |
} is clear that this involves no arithmetic operations. |

The matrix Ty, is of rank 2 and it can be written
i
i

4 _ T {

Tn = UnUy |where |

1 0 |

0 1 Nx2 . -
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| Def ine

and -

Ky = Quy ‘ |
Now consider |

Sa nal _ 4,2 2 2
| PQAQP =8 (AI) + (I,QRy) + 2 6°(A,@R,) |

T 4, .T :
| + 2(1y Uy) +2 8 (Kyky@1) (3.6) J

I. 4, 1
=S+238 (Kyky& Ip) . ]

This defines the block diagonal matrix |

> O |

S = y

O
N= Nmxivm |

4 Explicitly written out, block number k of S has the following penta- |
diagonal structure:

¥ 74482) +602, 4-252) 1 i
K k? k ’

2 2 4,2 ] i
-4-28\, , BH88°N 487A, i

Si = 1 i . . i (3.7)
a * . - ’ 1

. 2 4,2 2
6+46 AHS Aes =4-287A

2 NN. |
1 -4-28 A , 7+48 TAL Me |

NxN y

N ) LL . ne . MENS JTSEE——
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After these transformations the problem is reduced to |

| [5+ 26*(kfm@ 1) v = © (3.8) |

where the transformed variables v = PQu, and c = PQb have been intro-

duced. It is important to notice that the matrix (Kykyy ®1) has rank
2N only. i

The following generalization of the Sherman-Morrison formula is well 1

known (Dahlquist and Bjorck, [1974]). |

Let E ¢ R”" be nonsingular, Ve RMP, and Ww ¢ RP. Then

e+ wh =e Coetlyr + wetlyy ytd (3.9)

provided that the pxp matrix (I + WELy) is nonsingular,

Applying this formula to equation (3.8) makes it possible to write |

down an explicit expression for the solution up (returning to the ori- :

ginal variables). |

- T 42-1 -1,.T e-1

up = (I, @Q,)P [1-25 ST (Ky @1,)8 (ky ®1))]S P(I,@Q)b (3.10) |

| where B is the 2N x 2N matrix i

B=1+% 26% (kK! R1,,) $71 (k I.) (3.11)
' M N MD N ) )
f By looking at the different matrices in (3.10), performing the op- |

erations from right to left it is clear that:

i) (I, @ay) requires O(NMlogM) (N fast Fourier transforms :
operations. of length M). 1

ii) P requires no operations. (A permutation only).

iii) 5-1 requires O(NM) opera- (M pentadiagonal systems of
| tions. size N). |

!
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. T . T .

iv) (Ky RI) requires O(NM) (ky@® 1, has sparse simple
| operations. structure). y

| v) gt requires ? operations. (B has not been analyzed yet). | |

In this way, the design of an efficient method has been reduced to

the fast solution of a linear system with coefficient matrix B. In the

following a careful study of the matrix B is made and a method of solving

such linear systems in no more than O(NM) arithmetic operations is ob-

tained.

In order to do this, taking advantage of the structure in B, the

matrix can be written:

_ 4, T ~-1
B=1+ 25 (Ky @1y) S (Ky QI) |

571 Qqq] Oya] |
1 11°N IM™N

o| f12tn coe Gln |
= [+25 ' . . E

min ooo Iumln i" |
MJ Lamy 9wmly |

M M | 1
2 -1 -1 |

LoS 0 I 9% |
4 k=1 k=1 |

= J+2§ (3.12)
. M M 5
by -1 2 -1 3

| el U1%mk 21 TMK
¥ 2Nx2N ‘ |

: Now
= / 2 . km

U1 “VW SM WoT

k+ |

Gr = (1 ay |
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Def ine M :
| . 2 km e=1

S = z sin” gS (3.13)
odd k=1,3,5.. M+l “k j

" |
. 2 km -1

S = ) Sin ==S . (3.14)
even 5 4.5.. M+l “k |

Therefore

ast Sodd * Seven Sodd ~ Seven 1

Sodd = Seven Sodd * Seven :
| ZNx2N )

Xq dy
Consider solving a linear system Bx = d. Partition x = (, Ys d= (4 )

| into subvectors of length N consistent with the partitioning of B.

By adding and subtracting equations this system splits into two linear sys-

| tems each of size N x N: ]

3s? :
| (1 WT S0dd) (x; + x5) =d; +d, (3.16)

(I + ge! S )(x, = x,) = dy - d (3.17) |M+1l “even’‘"1 2 1 2 : |

It will later be shown that these problems can be split further into |

! four symmetric positive definite matrix problems each of size N/2. (N/2

| will be used to denote both (N+1)/2 and (N-1)/2 if N is odd, the

1 actual value being clear from context.) However, since all known practi- J

cal direct methods for solving a general dense linear system of equations

of order N require o(N%) arithmetic operations, it is natural to study

| possible iterative methods. (There exist certain direct methods for very ]

| special classes of matrices, for example Toeplitz matrices, with a lower

3 operation count, but the matrices under consideration do not seem to belong | |

to any such class). Notice also that the matrices Sodd and Seven are |
| |
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defined by rather complicated relations. In fact, it would require 0(NM)

| arithmetic operations to generate all the explicit matrix elements. Since

all the pentadiagonal blocks Sy of S are symmetric and positive defi-

nite, it follows that both Sodd and Seven have the same properties.

A very attractive iterative scheme for the solution of a symmetric

positive definite linear system

| Ax = b |

is the conjugate gradient method. From an arbitrary initial vector Xg

the method generates a sequence of approximations {x} to the solution

| x defined by |

rst)
Xob1 = X3 FP apP > Qn = Testyn+l n nn n Ap sP, |

| _ + _ Fel n+l) (3.18) |Pratl © "ntl 7 BP oo By T NG
where ros b - Ax and Po = To

The method is due to Hestenes and Stiefel [1952]. A good description of
. the method and some of its properties can be found in Luenberger [1973].
. The iteration does not require knowledge of the matrix elements, since

only matrix vector products are needed. It is clear from the structure of |

Sodg 2nd Seven (3.13, 3.14) that a matrix vector product can be com |
puted by solving M/2 of the pentadiagonal systems Si- The cost of a

a matrix vector product is therefore O(NM) arithmetic operations. The |

i number of iterations required to achieve a given accuracy when solving a |

symmetric positive definite system of linear equations Ax = b using con-

jugate gradients, is in general proportional to (Max Hmin! where Cl
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| wt is the spectrum of A. It should be pointed out that special dis-
| tributions, in particular clusters of eigenvalues, will lead to a consi-

| derably Faster rate of convergence. (Kaniel [1966], Stewart [1975], Cline
[1976], Jennings [1977], and Greenbaum 11979].) |

} It can be shown using the results of Appendix II that the largest |
eigenvalues of the matrices given in (3.16, 3.17) both are proportional to

: M. A direct application of conjugate gradients to those linear systems |
| will therefore require at most o(nm3/2) arithmetic operations. This is
1 of the same order of magnitude as the method known in the literature as

"The coupled equation approach" described and studied by Smith (1968, 1970, |
1973], Ehrlich (1071, 1972, 1973], Greenspan and Schultz [1972], McLaurin |

| [1974] and Gupta [1975].
The iterative techniques proposed in these papers all require vari-

ous acceleration parameters to be estimated. In addition, each iteration

amounts to solving two full Poisson problems. The actual use of these

methods have been restricted to rectangular regions since the handling of

the boundary and the need to compute normal derivatives there, is quite |
| complicated for more general domains. |3 The use of a conjugate gradient iteration has several advantages |
Y over the iterative methods proposed earlier. The method requires no

- estimation of iteration parameters and it takes advantage of the spectral |
| distribution of the linear operator in an optimal way. Thus a more care- |

ful study of the spectrum (see Appendix II) reveals that it clusters |
| around 1 and that the large eigenvalues behave like cM/i, i = 1,2,.. .

i» It can be shown that the conjugate gradient method converges in o(M/3y | |
} iterations if the arithmetic is exact. Unfortunately inexact arithmetic |

makes the actual number of iterations (using 3.18) behave more like om’? |

!
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| The use of a few quasi-Newton updates (see Chapter IV) or selective ortho- |

gonalization (Parlett [1980] ) as part of the conjugate gradient procedure, |
| | provides a remedy for this problem. |

With an operation count of o(nm*/3y, this algorithm is faster than

those mentioned above. In practice, even with a standard conjugate gra-

dient implementation, the method is substantially faster than previous |

| algorithms.

i The main purpose of this chapter is however, to show that linear -

| systems defined by the matrix B (3.11) can be solved using only O(NM) |
| arithmetic operations. |

Suppose, instead of applying the conjugate gradient method directly

to a linear system Tx = b, that it is possible to split T such that

| T =T-R

where T is symmetric positive definite. Assume in addition that it is |

easy to solve linear systems with the matrix T. In such a case, the con-

jugate gradient method can be used with a preconditioning matrix T cor- i

responding to the above splitting of T. This can equivalently be viewed |

as applying ordinary conjugate gradient iteration to the transformed system

7 T Ts y=¢

but working with the original variables x = 7 y and b = 7? c. The

number of iterations needed in order to achieve a given accuracy is there-

| fore in general again proportional to the ratio bray Min) 2s but
(ui ie are now the eigenvalues of the matrix

| K=T1tr=1-7%r .
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Cl (K is of course similar to the symmetric matrix TT: 7 17% given above). |

A good analysis of this technique, including numerical algorithms, -

| is given in Concus, Golub and O'Leary [1976]. If 1-1 is an approxi-
mate inverse of T then the convergence rate will be much improved. Two |

different effects can contribute in this process.

i) The ratio as is often substantially reduced when
4 considering K instead of the original matrix T. :

ii) Equally important is the fact that K often will have

clusters of eigenvalues. Typically, K will have only

| p << N eigenvalues appreciably different from 1. The
i number of iterations required for convergence will then |

1 be similar to the number required for a problem of di- :

i mension p with the corresponding spectrum.

The next few pages will describe how to find a splitting of the present |
| problem (3.16, 3.17) that has both of the above properties. | |

Write N

3 S, = 5, + 2uUy |
5 | (3.20)

: = 5, + 2e,e] + 2eyey : |
| Comparing with (3.5) and (3.7) it is clear that

; 5, = (65a,Iy + Ry)° (3.21)

| and therefore all the matrices St » k =1,2,...M have the same set of

3 eigenvectors represented by the matrix Q (3.4).
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8 Quo,Qy = ¥

Y= diag(¥,,) (3.22)
_ 4.2 2  . _

i 3 = (8 Acts) 9 J = 1,2,...N

(Recall that Ay is defined in (3.5) and that this definition depends

| implicitly on the range k is running over.)

In the following, let

: 4 M
1 = 86 . 2 km =l _

LF = (I Wl ny Sin wT Sk ) i1=1,2 (3.23)
; k=1,1i+2,..

represent the matrix in both linear systems (3.16) and (3.17). The nota-
| M

] tion z indicates that the summation extends over odd or even k

] k=1,i+2

| (depending on i) up to M. Let T; represent the matrix
- a M .

84 2 km o-1 |
T. = (I + = ) sin S,7) i1=1,2 (3.24)

BL ei ie, LK

: where Sot has replaced 5! in (3.23). T, and T. can both be viewed
2 as discrete approximations to certain boundary integral operators relating
8

1 the solution of (3.1) to the solution of the separable problem where au

! is specified on two opposite parts of the boundary instead of Up In par-

d ticular, T, corresponds to a separable operator. There is a close cor-
y respondence between these operators (in the rectangular case) and the in-

tegral operator A defined in Glowinski-Pironneau [1979].
» When using conjugate gradients to solve a linear system involving

the matrix Tso consider a preconditioning corresponding to the following

splitting: |

— _ ad - hh a MR ENETET em " TEa
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| Observe that " B- 4 .
i i 85 2 kn -1 R

: To = Ql + m7 Rn sin” m1Yi IQ (3.26) 3

The matrix D. defined in (3.26) is diagonal and can be computed in

i O(NM) operations. The solution of linear systems involving T. can

therefore be performed in O(NlogN) operations once the matrix 0D; has

3 been computed and stored.

Lemma 3.1

} The matrices Tss T; and Ts - T, are symmetric, T, and T,

positive definite and T; - T, positive semi-definite. |
| Proof:

The statement about LF and T, follows trivially from the defi- |

= nitions (3.5), (3.7), (3.23) and (3.24).

i | Consider the matrix T, - T.
| 4 M

x _ 8 . 2 kn o=1 -1

' T= Ti THT Zo singy (S77 - 5)4 k=1,1+2..

: But, using (3.20) and the Sherman-Morrison formula results in
| -1 _ 2-1 Te=1,, +-1 TT 2-1

St = Si (I-2 Uy (1, + 2Up Sy Uy) Uy Sy )

g Thus

| 2 SCS BE Te-1,, y-1,Tz-1

| This matrix is clearly positive semi-definite. [7]
Lemma 3.2

| N
Let K; =T.,” T., and let id= be the spectrum of Ki» then



-51-

| 0 < Mik <1l,1<k<N,i1i=1,2,
a Proof:

] It follows from Lemma 3.1 and the fact that 77! T, is similar to
| % + 1%

T, T, T, that Hip > 0.

] Let x be any vector, XV x = 1. Using Lemma 3.1 it follows that |

T +-% - +-%

E which implies |
T3% + 3k '

3 X T Ts T. x <1
and

My £1, k=1,2,0.N i=1,2 . ] |

1 In order to prove that the preconditioned conjugate gradient method |

proposed above converges at a rate independent of N, a theorem giving |

more precise knowledge than Lemma 3.2 about the spectrum of Ks is needed.

| The next theorem describing a matrix decomposition of Ts leads to |
| new variants of the algorithm as well as better knowledge about the eigen-

! values {u,} oq - i
' Theorem 3.1
1 - 1 i=) B
 ! For ie {1,2,3,...} , define i_=2i -6,, 8.. = . |

8, = 88/(W1) and gy = 8/(N+1) |
and 1

S :
B rs . 2 jm -1

a” =1+ 8B z sin TS) Yoo. §k 5 jer,r+2,.. stl) kJ 1

| Let P, be the permutation matrix that permutes a vector x e RY odd- |
even, i.e., if x has components SITET STREET OP then Px has
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components (x5 XgseeX) os Xoo XgseeoXy) Then oo

! ~3g 35 T - - i =
Py D; Qy T, Q D, Py = Iy | | i=1,2

NxN

where C'° is the M/2 by N/2 matrix with components

| 1m J.T .
rs VByBM STN FET SIN FT s = 1,2

Co C.: = _ |

| 1 Volt Ni v. | i =1,2,...02, 25220 if M odd: r Js Trdg

| i= 1,2,...n/2, X5225 5 Nog :

| Proof:

See Appendix I. [J

- First observe that the two matrix problems associated with T.(i=1,2) |

1 have been split into a total of four smaller problems. This reduces the

required computer storage, but this fact is even more important in the de-

i sign of a direct method. The reduction into four subproblems is a direct

3 consequence of the symmetry of the biharmonic operator on the rectangle R.

$ A second important observation is that the elements cis can be easily
! computed after some initial computation of the quantities that appear in

’ the above formula. This requires only O(NM) operations and O(N) + O(M) |

1 storage and provides an alternative to the implicit definition of Ts |
given in (3.23).

a It is now possible to prove a stronger result than Lemma 3.2. Let

3 CEA be the singular values of cH, and Tet (us Hae be the eigen- :
g values of Ks = rl T,. Clearly, from Theorem 3.1, there is a one to one |
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correspondence between u and o given by i

2 we=l-d° (3.27)

| where the subscripts and superscripts have been dropped for notational :
| convenience.

First consider the case where M=N and 6 = 1. In this case cil

and c2? are square and symmetric, while cl? = (c?HT is almost square. i

This case is slightly simpler to analyze and will be considered first. :
| Theorem 3.2

| Assume N =M and &§ = 1. Let CAME; be the singular values of |
| one of the matrices C'> defined in Theorem 3.1. Then

0 < 0; < 0.8

| independent of N.

| Proof: 1

| See Appendix II. Explicit expressions for the matrix elements IF :
3 are derived in the limiting case N +> «, A simple Gershgorin estimate can ]
3 be applied in this case to give an upper bound for the largest singular i

} value oj The largest singular value oF and the actual computed upper
{ bound are shown in Figure 3.1 for N ranging from 1 to 2047, |

3 Computations show that Tmax always belong to cll, A block Lanzcos
s code written by Underwood [1975] was used to compute the eigenvalues in |

Figure 3.1. The theoretical Gershgorin bound when N tends to infinity j

is also indicated. Although sufficient for this theory, the figure indi- i

cates that the bounds are not very sharp for realistic values of N. Co]

:

¥
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| .8 3

61

| Lb |

; y~

1 2 3 4 5 6 71 8 9 10 1 Log, wl)

| Figure 3.1. The largest singular value as a function .
of logo(N+l) (below), compared with the

| corresponding Gershgorin bound (above). |

1 Theorem 3.2 shows that 0 < o; < 0.8, the next theorem implies that the |

singular values o, cluster at zero.

| Theorem 3.3
) N/2

I 0; < In N if 0; belong to cll or c2? |
i=1 |

: N/2 |
i oo <InN if o. belong to C'2or ct

: in]

8 Proof:

B | See Appendix II. [J )

t
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E Remark: The weaker statement when of belong to cl? or c?l is stated
| because the proof technique becomes simpler. See the comments in Appendix

| } II. Notice that Theorem 3.3 implies that only O(logN) of the 5's are |
3 outside any given neighborhood of zero. With this information about the ;

] CAME it is possible to give some estimates of the rate of convergence i
i of the proposed conjugate gradient iteration. |

Theorem 3.4

| If the conjugate gradient algorithm is used to solve the linear sys- X

tem T.x = b with the splitting T. =T. - (T. - T.), then the initial i

error will be reduced by a factor ¢ after at most li

| k = In(£) |

iterations. i 1

3 | Proof: |

Let wy <u <... <u. It is well known from the standard theory f
: of the conjugate gradient method that ;

3 | UNH] |
k oY 4 |

| where T, is the k'th Chebychev polynomial of the first kind. |

Ty (x) = cosh(k cosh” 2x) for x > 1. Therefore

] K < cosh” (1/¢) |
| = TT! ’

cosh”! (A)
N 1

Using “cosh” (4) < 1n(£) s Hy >1 = 8% = ,36 , and

g cosh™! (12:32) > 1 gives the desired result. []
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This theorem establishes convergence to any prescribed accuracy in |

| a constant number of iterations independent of N. Since each iteration i

takes 0(N%) arithmetic operations the description of an 0(N°10gN) al- |
gorithm for the first biharmonic problem is complete. If the accuracy is Co

required to increase with increasing N as NP for a fixed p, then l
O(logN) iterations are required and the overall asymptotic operation count a

remains unchanged. (In order to be consistent with a decreasing trunca-

tion error p = 2). |

However, under the above assumptions the use of an 0(N%) Poisson

solver will not make the overall algorithm any faster if the solution on

the final grid is computed directly. In order to have an O(N) method

under these assumptions, it is necessary to compute the solution on a

sequence of grids, reducing the error by a fixed amount on each grid. |

(The total work on all the coarser grids will only be 0(N%).)

For practical computations (N < 2047) the use of the computed spec- :

: tral radius op = .6343 for N = 2047 (See Figure 3.1) strengthens the | |

: above theorem to |

3 k <3 In (=) |
, As an illustration taking ¢ = 10719, this estimate gives k <12. |

The above theorems show that the conjugate gradient iteration con- |

verges at a very fast linear rate. The next theorem complements this by

| showing that asymptotically the rate of convergence is in fact superlinear.

gy A sequence {e J =0 converges R~superlinearly to zero if and only

| if Him sup |g) +X = 0. An excellent reference discussing the conver- |
) gence of iterative processes is Ortega and Reinboldt [1970]. |

|
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- Theorem 3.5 |
!

The conjugate gradient method defined in Theorem 3.4 has a R-super- /

linear rate of convergence, |
Proof: i

Using the optimality property of the conjugate gradient iteration |

} ” k p.-p {
ell = (c) llegll < max 1 |= [le] a

we{u;diog J=1 J Dd

where lle, | is the error in the appropriate norm at iteration k. Let i

| the set {uit be ordered such that wu, < u,., Vy 1. Then |
| lel <n a |

SSUI A = AEli jake jar My 0
| :
| Kk 02g" :

Imax Rl 5 lle,
oe{os ioe 371 1-0;

,
K oy

| j=1 1-0; 1
i J
8

| Using the arithmetic-geometric mean inequality, Theorem 3.3 and the fact

? that o; <1 yj gives |k
2

5 K Og
1 4

lll < [x 2. —5 | lkgll

: |
In N

3 | | =] leg | |
This inequality shows that the constant
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1 InN |

i | “x “X12 1
1 1 4

tends to zero as k increases for fixed N.

; However, since the concept of R-superlinear convergence is most mean j

ingful in the case of an infinite number of iterations and the conjugate

gradient method has finite termination on finite dimensional problems, con-

sider the limiting case as N +  . Theorem 3.3 implies that B

limo, = 0 :
k-><0

| and therefore :
2 |

k 0%

Tim C, = Tim : z — = 0 . [] 3

Finally, consider the case where N # M. Without loss of generality |

| assume §& = (M+1)/(N+1). (86 was defined to be Ay/ax). This restriction | |

: corresponds to a linear scaling of one of the independent variables in the |

differential equation. Let Cron denote the M/2 by N/2 matrix C ° i
3 derived from an MxN grid. The following relations hold: ;

| 11 _ 11,7 i
{ Cote = (Cpt) |

4 12 _ 21 \T

22 _ 22 \T
Ci = (Cpym)

[ as can be seen from the definition of C'° in Theorem 3.1. |

Using the same technique as in Appendix II, this time working with )

the singular values of all four matrices, it can be shown that the largest

singular value is smaller than what it is in the case of a square grid with

-— " o I — SEL TL
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max(N,M) gridpoints in each coordinate direction. (An alternative approach |

| is to show that each element cis decreases if Mor N 1s reduced. The |

; spectral radius of a non-negative matrix is at least as large as that of |
a principal minor, and it increases if an element of the matrix increases. |

This, together with the claim about the element ci; above, leads to the |
3 desired conclusion.) (3.28) shows that M and N enter the problem in a

| completely symmetric way and it is sufficient to consider the case N <M,

(This choice saves both storage and arithmetic operations in the conjugate |

| gradient iteration.) The largest singular value will again belong to the |

| matrix cil, Figure 3.2 shows the computed value of Omax [OF various |
values of N < M. The corresponding Gershgorin bounds obtained using

r L |

Omax < (IIe 114 IIc >)? are shown in the same figure for N > M (the |
case N =M is in Figure 3.1). Finally, in Figure 3.3, the largest sin- |

| gular value in each of the four different matrices ¢’> are computed for

a few values of M and N.

k It is felt that the computed spectral data combined with the theory

in this chapter provide a good foundation for using the proposed conjugate

gradient iteration in practical computer codes for the biharmonic equation.

| GERSHGORIN BOUND

: m\Y 3 Ts 31 63 127 255 |

, SI BEL .55 { .55 | .55 | .56 i

2 1) ae | 53 | uss | er | er | 67 | 67 |
> 15 L811 .55 | 58 | L72 | Te | 73 | .T3

5 31 48 .55 59 | 60 | .Th 75 75
2 63 48 .56 .59 61 61 75 .T5 ]
2127 48 .56 .59 £1 62 62 .76

g 2 255] 8 56] 59 | | ee | Le

| Figure 3.2. Max singular value and Gershgorin bound.
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| N 3 7 | 1s] 31 63 | 127 | 255 |

C 41] 53] .58{ .60 | .61 | .62 | .63 |
men (ct? | 18 | 32 | .e1 | .48| .52 | .55 | .56 |
s<s1 (ct | as | 32 | 41 | a8 | .52 | .55 | .56

| | a1 | 27 | 39 | .46| .51 | .54 | .56 B
ct! | a6 | 551 59} 61 | .62 | .62

Mantel | ci? | 23 | .36 | .44 | 49 | .53 | .55 |

s=2 | ct | 22 | .35 | .48 | .49 | .53 | .55 |

| 2 | a7] 31 | a1 | 48 | .52 | .55 |]
cll | 48 | .55 | .50 | .61 | .62 g

| Mean+3 | ci? | 25 | .37 | .48 | .50 | .53 |
2 s=a |c® | 2a | .36 | .45 | .50 | .52 |

| 18 | .33 | .42 | .48 | .48 | |

- Figure 3.3. Max singular value for each matrix c's.

y

;
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3 COMPUTER ALGORITHMS y

This chapter will describe a few computer algorithms implementing |
| the ideas in the previous chapter. The more general equation

Au (x,y) +a A u(x,y) + 8 u(x,y) = f(x,y) (x,y)eR |
| 0(6¥) = guy) (Ly)eR (4.1) :
| u(x.) = h(x,y)  (x,y)edR |

will be considered. Efficient methods for solving a sequence of such pro- ]
blems, as well as the performance of the proposed algorithms on vector 2
and parallel computers will be described. Numerical results showing the |

stability of the numerical process with respect to roundoff errors can be |
found in section 4.6. Section 4.7 discusses how to solve the discrete .

approximation when the cubic extrapolation defined in (2.4), is used near

| the boundary. An efficient numerical method for the solution of the first |
biharmonic boundary value problem in a circular disk is given in section i

a 4.8, while section 4.9 indicates how problems in different geometries may | |
| be handled using conformal mapping.

: 4.1 An algorithm using Fourier transform and penta-diagonal linear systems. I
1 All the algorithms to be presented here are based on the theory | 4

developed in Chapter III. Quite a few arithmetic operations as well as

storage locations, can be saved by paying close attention to the way

| various expressions are related. Although these aspects are important in |
Er order to produce an efficient code, some details are omitted in this pre- ;

sentation. The algorithms are stated in a form closely corresponding to

| actual computer programs. It is convenient (but not necessary) to assume
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: that both N and M are odd. |

A few definitions are needed before the algorithms can be stated: | ||

a = (Ay) | |
8 = (ay) 8 |

1 - on 2. km _

! Qy = V8 (N+1) Qn |

S, = Pentadiag [1a = 2u,,2 + 8 + uy (n=a),0 = 2m,1] + Ty !

| The notation (aside from new definitions) is consistent with the notation

1 introduced in the beginning of Chapter III. The unnormalized transform

i Qy is used in order to conform with the fast Fourier transform package
j written by Swarztrauber (1078 ] and used in the computation reported in this
i thesis. |

Let the vector Fi (i =1,2,...M, j =1,2,..N) represent the dis- |
] crete right hand side function in (4.1) and let the sparse vector 2:3 | |

contain the contribution from the boundary data g and h to the right |
hand side of the discrete linear system. The subvector (fio Figo Fin)

3 will be written fie while SEFDLPYTRRRLIY is written fos: Also |

: let x,y,z, and p represent five (work) vectors each of length N.
¥ Algorithm 4.1

) 1. For j=1,2,..N :
. oo 4

fej : = Qu fej .

i 2. x :=0 .

; | | veel



«63~ |3. For 1i=1,3,5,...M : !

4 | yr =585 fo,

XxX : =x + Sin ig )y
(M+1)2 M+T

oo .
| je * ~ gM Y

4, Solve a linear system of equations Cy = x using conjugate gradients

preconditioned by the matrix H. |

A. A matrix multiply p : =(Cs is defined by:

i Pp: =5

For i=1,3,5,...M :

| |
Zz = 3; S

4 .
| 8 . 2

Pp: = p+ (eT sin oT) z |

: B. A preconditioning step p : = Hs is defined by:

Pp: = Qs

3 |

| p:=D"p

t p : = QP .

The diagonal matrix D has (precomputed) elements defined by:

2 im
4 M Sin" == |

848 M+1
2 d. = 8(N+1)(1 + Sy 2 —— 3 3)J Mel so hE i IT 4. |

i=1,3,..(4sin" % NF * ug 2)(4sin % NTT + ug 2-0) +8 |
i

|

3

Be 1
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i 5. For i=1,3,5,...M :

| | .
| X : = 3, y

. = {ein JT .
fio : fie (sin WT) X .

6. Repeat steps 2,3,4 and 5 with i running over even integers

; instead of odd. (i=2,4,6,...M everywhere.)

7. For j=1,2,...N :

fej 1 = Qu fej .

8. Stop. The discrete solution of equation (4.1) is now stored

in the vector Fis

| Remark.

Trigonometric functions needed in the above algorithm should

: be precomputed and saved in an array of size 2(N+M). The i

3 two diagonal matrices D used in 4, must also be precomputed ]

: requiring an additional 2N storage locations. Notice that

only a few vectors of length N are needed in step 4; the
|

| big vector Fi; iS never accessed.

The conjugate gradient iteration will converge in a small number of

; iterations as long as the corresponding linear system is positive definite.

| That is certainly the case as long as ao < 0 and g > 0. If the system

is indefinite a routine like SYMMLQ by Paige and Saunders [2975] can be
substituted. (Alternatives are a least squares formulation or the al-

- gorithm given in section 4.3.) .

The performance of algorithm 4.1 depends on an efficient solution of

1 : :
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the pentadiagonal linear systems S:Y = x. Consider first the case where |

Ny | 3; is positive definite. Taking advantage of the special structure, the
factorization of this matrix requires 3N operations (2N multiplications

and N divides plus 3N adds) and 2N words of storage. (The combina-

: tion of a multiplication/addition or a divide/addition will be considered
| one arithmetic operation.) The solution process after the factorization i

| has been completed, takes 4N operations. (4N mult/add only.) One pos-

| sibility is to save all the factorizations when they are computed the

first time. This would apparently require 0(N%) storage. However, a

much better alternative is to observe that the matrix elements in the fac- |

tored form of S. converge. The rate of convergence increases with in- |
creasing i. This process can be analyzed and the final

(converged) values of the elements can be computed directly from the |

| matrix Si. Figure 4.1 illustrates the savings obtained when the factori- |
| zation is computed with an accuracy of 10716, (The gain is larger if a

less accurate factorization is acceptable.) The current computer implemen-

| tation therefore recomputes this factorization every time it is needed.

3 Alternatively the necessary information could be stored, requiring much |

: less storage than what is often used in similar codes today. This techni- |
{ que can also be used advantageously in fast Poisson solvers. |

N 50 100 200 400 800 1600

EEE BPfactorization. (= 3n2/1000)| 7.5! 30 | 120 | 480 | 1920 | 7680

SR sow | 36] 06 | 00 | use | uns [nrconvergence. (= p/1000) 3.6 20.0 | 45.2 | 100.6 { 220.7

| Figure 4.1. The total factorization cost of all the matrices
5;(i=1,2,...N) for the case a = Bg = 0.
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| If 3; is indefinite and « or B is zero, then 3; can be written

S.=RIR;+2T, (Ty = ee] + eyey)

where R. is tridiagonal. RY is positive definite while RS can be : -
viewed as representing a two term recursion with characteristic roots in-

| side the unit disk. Linear systems involving RS can therefore be solved
| in a stable way by using a marching procedure. Combining this with the

= Sherman-Morrison formula, results in a stable algorithm requiring ON°

| operations and 2N storage locations in order to solve N indefinite sys-

| tems each of size N. Frequently, only a few systems are indefinite, re-

sulting in an operation count between aN? and oN‘.

[f S. is indefinite with both a and 8 nonzero then band Gauss

- elimination can be used, but it is likely that algorithm 4.2 or 4.3 would

: be a better choice in this case.

1 The sine-transform (represented by the matrix ay) can be computed
using a complex fast Fourier transform of length N/2. The operation count

3 depends on the prime factors of N. A complex fast Fourier transform of

: length N can be computed using Nlog,N complex multiplications if
; N = ok and with no more than N 3 (n;-1) complex multiplications if |
) N = 1 n, (Henrici [1979]). =s i=]

] Assume for simplicity that the number of real operations required to

form y = QyX LES N1og,N. This corresponds to the multiplications required

, when N = ok.1, see Temperton [1979], [1980] for more detailed operation
counts. With these assumptions, the total operation count for algorithm

: 4.1 (ignoring lower order terms) is i
| NM(210g,M + 5k + 12) (4.2) _

I
|
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| where k is the average number of conjugate gradient iterations for the |
| two linear systems in step 4.

| Figure 4.2 shows the execution time of this algorithm on an IBM |
370/168 using the FORTRAN H (Opt = 3) compiler. What is important is of

| course the general behavior of the algorithm rather than the specific times.
: Average running times based on problems 2,3 and 7 on five different grids,

| are given. The conjugate gradient iteration in step 4 was stopped when the
| 2-norm of the residual fell below the specified tolerance TOL. This re-

sults roughly in a comparable accuracy of the final solution to the dis- |

1 crete problem. The numbers include all preprocessing and do not represent ;
a fully optimized code. The execution times have been split into the time |

required by the Fourier transform in step l and 7 (FFT) and the remainder |

(SOLV). The gridsizes N = 121 and N = 243 result in an unfavorable |

prime factor of 61 when doing the Fourier transform. The execution time '

| increases somewhat slower with N than indicated by (4.2), reflecting |
| lower order contributions omitted in (4.2). I

N 63 | 121 | 127 | 243 | 255 i
|

Figure 4.2 Execution time in milliseconds for
algorithm 4.1.

The average number of conjugate gradient iterations is given in Figure 4.3.
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! N 63 | 121 | 127 | 243 | 255 |

5 Figure 4.3 Average number of conjugate gradient |

iterations required. (Problems 2,3 & 7) |

4.2 An algorithm based on fourier transformations. Cd

i The complete decomposition of the discrete problem into four subpro- .
B

B blems as described in Chapter III, becomes clearer if sine-transforms are

1 applied in both coordinate directions. In this case it is necessary to 8

a solve linear systems of the form: §

Qu S; Qu x =v (4.3) |

It follows from Theorem 3.1 that this system decouples (odd-even) into two }
systems of half the size. The subalgorithm PENTF (i,r,y,x) solves the any

| odd-numbered equations if r =1 and the even-numbered if r = 2. Here i

| y and x are unscaled vectors of length N/2 containing the appropriate |

3 components from (4.3). (For simplicity both N and M are assumed odd,

(N+1}/2 and (N-1)/2 are both written N/2, the actual value being clear {

3 from the context.)

This algorithm can be derived from the decomposition given in Chap- |

: ter III. In the following description define k z2j ~-1 if r =1 and ;

3 k =2j if r= 2.

|

3 = : |
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Subalgorithm PENTF (i,r,y,x).

| 1. Define a (work) vector w of length N/2 by: g

W, : = —_—
| J 2 _ km 2, km ~ ~

(4sin 3 NT + u;=2)(4sin 3 N+1 + u;=2-a) + 8
;

: 2. Let

N/2
+ = 8 ; km| ©1 °F WT LL STN NT

8 LN
2 TWAT LE YM;

J=1 |

a Cy !
: I+c, :

3. The solution is now given by: ]

» X5 : = (—d— - aw, . t
| S10 N3T t

Remark. :

| The quantity Cy can be precomputed at the expense of |

¥ of 2M storage locations. Also the divide in step 3 can be |
" changed into a multiply by storing 1/sin kn. |
3 The full algorithm can now be st. '. Let x,y,z,s and p be five |

J (work) vectors of length N/2 ar= .av.. k as above. |
Algorithm 4.2

! {

| 1. For j=1,2,...N :

7 £m(by)? Fa t+ Lys
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For i=1,2,...M :

| .

| 2. ket x :=0,r:=1 B

3 3. For 1i=1,3,5,...M : |

TEER (3=1,2,...N/2) |
f

PENTF (i,r,z,2) |
| 4 )

} XxX : =X + (———m sin —)z
i 8(N+1) (M+1)° M+ ;

| f., = L 74 (j=1,2 N/2) |
3 ik © = GA(N+T)(M+1) “Jj 2E2 ee

; 4. Solve a linear system of equations Cy = x using conjugate

] gradients preconditioned by the matrix pL.

i A. A matrix-vector multiply p : = Cs is defined by

| p:=s |

: For 1i=1,3,...M : :

PENTF (i,r,s,2) a
{ 4

3 p:=p+ (81 sin oT) 2 .

| B. A preconditioning step p : = ps is defined by:
y . -1 _ J

i Pj dy S 3 (j=1,2,...N/2) |

3 where the diagonal matrix D0 is defined in algorithm
4.1 step 4. (Note that the summation in that definition |
extends over odd or even i.) :

- 5. For 1=1,3,5,...M .

PENTF(i,r,y,x)

- _ I = .
fae 0 = Fix = STN WRT%; (i=1,2,...N/2)
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6. Repeat steps 2,3,4 and 5 with i running over even integers &

ol instead of odd. (i = 2,4,6,...M everywhere). {

| 7. Let x :=0,r : =2 , repeat steps 3,4,5 and 6. He
| 8. For i=1,2,...M:

fs. : = Qn fs. .

| For j=1,2,...N:
| f.:=2Q,fF . .

9. Stop. The discrete solution of equation (4.1) is now stored

in the vector Fie |
Remark:

This algorithm has no restrictions on the parameters a and |

8, but rapid convergence of the conjugate gradient algorithm i

is only guaranteed when the corresponding linear systems are :

| definite. (See the discussion in section 4.1). N

Algorithm PENTF(i,j,x,y) requires 5N operations if x and y are J

| N-vectors. Using the same assumptions as in section 4.1, the (asymptotic) :

1 operation count for algorithm 4.2 is:

| NM(210g,NM + 6k + 14) (4.4) |
4 where k is the average number of conjugate gradient iterations for the

¢ four systems. Results for this algorithm corresponding to figure 4.2 are

givenin figure 4.4, and the average number of conjugate gradient itera- |

tions is given in figure 4.5. :

k a ee mmm pew Ram arian
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| N 63) 121 | 127 | 283 255 |

Trout (oie) | os | oe | as | ao | ve
| Figure 4.4 Execution time in milliseconds for

algorithm 4.2.

| N 63 121 127 243 255 |

ECRECRAN CH SC NC BC
: Figure 4.5 Average number of conjugate gradient

iterations required. (Problems 2,3 & 7) |

Algorithm 4.2 is a very good alternative to algorithm 4.1, in parti- ]
cular if a sequence of problems are being solved and it is possible to

| work with Fourier transformed variables. If this is the case the cost of

3 the Fourier transforms may be ignored. This is certainly the case when |
computing discrete approximations to the eigenvalues and eigenfunctions

{ of the continuous problem. It should also be pointed out that symmetries |

4 in a given problem may greatly reduce the computational work, since the

vector x in step 4 then often will be zero. (Resulting in a trivial

problem.) In this respect the numerical algorithm can be viewed as an

- efficient numerical implementation of the decomposition of the space of

solutions to the first biharmonic problem into four orthogonal subspaces.

3 (See Aronszajn, Brown and Butcher [1973], Vaughan [1974] and Fichera [1966]). i
2 This property is further discussed in the beginning of Chapter V.

) hoff HNC _ EE —— EESTI
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4.3 An efficient direct method.

Algorithm 4.2 can also serve as a basis for a direct method. In-

| stead of using conjugate gradients to solve the four linear systems of

| order N/2, in step 4, the systems can be solved by using symmetric Gauss

| elimination. If an indefinite symmetric solver is used, (Aasen [1971],
Bunch and Parlett [1971]) then all nonsingular discrete analogs of (4.1)
can be solved.

Algorithm 4.3

This algorithm is identical to algorithm 4.2 except for step 4.

4. A. Generate the elements of the matrix C.

B. Factor the matrix C using a symmetric factorization.

| C. Solve the linear system Cy = x using the computed
factorization of C.

If a sequence of problems with the same parameters a and B, are

solved on the same grid then steps 4A and 4B need not be repeated. The

computer implementation of this algorithm uses the routines DPPFA and

| DPPSL or DSPFA and DSPSL from LINPACK (Dongarra, Bunch, Moler and Stewart

5 [1979)).
| There remains to show how to generate the matrix elements. The

, columns of CC are determined by repeated use of step 4A in algorithm 4.2,

choosing the vectors s as the columns of the identity matrix. Exploit-

ing symmetry and the fact that s is sparse, all four matrices can be

generated using MN%/4 + O(MN) arithmetic operations. The same opera-

. tioncount results if the matrices C'° given in theorem 3.1, are gener-

ated and then multiplied together. In fact, the two processes are equiva-

lent. The factorization cost in step 4B, for all four matrices is

3 ||
RF

Raa. mm nm rmene oll
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| N3/12 + 0(N?). The extra storage needed in order to save all four fac-
torizations, in steps 4A and 4B, is only N2/2. The leading term in the :

operationcount for algorithm 4.3 is

 NM(N + 3 N°/M + Blog NM) + O(NM) (4.5) i

for the first right hand side, and

NM(2Tog,NM + N/M + 14) + O(N) + O(M) (4.6) |

for additional right hand sides. Figure 4.6 gives the execution time for

this algorithm on a VAX-11/780 computer. In order to make comparisons

with the previous algorithms easier, the first row in the table has been

compared with the corresponding row in figure 4.4 and all other entries |

are given in approximate IBM 370/168 time using this normalization,

N 63 127 255 |

VAX FFT 2672 | 11426 | 49840

SOLV (4.5) 1592 | 9707

| SOLV (4.6) 1616 |

Total (4.6) 1432 | 5932 |

: Figure 4.6 Normalized execution time in milliseconds

for algorithm 4.3, |

Remarks. i

i) The algorithms presented in sections 4.1, 4.2 and 4.3 i.

have been stated in order to show the structure and sim- |

plicity of a possible computer implementation reflecting
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| the structure and simplicity of the underlying theory
developed in Chapter III,

ii) The algorithms can be improved upon when solving spe-

cial cases of (4.1). For example, an even better pre-

conditioning matrix can be constructed when ao = 8 = 0,

by incorporating the knowledge from Lemma A2.2. Recall

however, that such improvements although important in some

: applications, only reduces the constant in the operation-

| count, The complexity of algorithms 4.1 and 4.2 using an

] 0(N°) Poisson solver, is 0(N%) and this result is op-

timal.

111) Algorithms 4.1 and 4.2 will execute faster if it is ac-

| ceptable to use more storage for intermediate results.

| If the vector w in subalgorithm PENTF is precomputed and

stored (requiring O(NM) storage), then the operation-

| count of this important subroutine is reduced from SN to :

3N.
iv) A direct method based on algorithm 4.1 has an operation-

¥ count of

q NM(2Tog,M + N/M + 12) (4.7)

This is somewhat faster than (4.6), but the algorithm is not as general.

| 4.4 The solution of several problems on the same grid using conjugate

: gradients. x
In this section it is shown that a small modification of algorithms 3

| 4.1 and 4.2 can reduce the computational cost when solving a sequence of

|

hp Et 2 >
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problems on the same grid. There are several situations where this can

be of interest. When solving very large systems the 0(N°M) preprocess-

1 ing cost of algorithm 4.3 may be unacceptable. Perhaps more important,

; the technique described in this section can be used when solving a se-

quence of problems of the form (4.1), allowing not only f,g, and h, but

: also the parameters ao and 8 to change.

Consider the following algorithm for solving a symmetric, positive

definite linear system Ax = b. Given x, and H, Tet:
H .r ,r
n-1'n’n

: X =x_ tap , OL = Lisn+l n nn n Ap sp,

Hr r
n ntl’ n+l)

p = Hr +B8Pp,s B = RE (4.8)n+1 n n+l n"n n Hoc1"n"n

i Hn+1 il Pn ¥ Upp sApy» Hp) |

where ry = b= Ax, py =Hyrgand Ho = Hy

If Hy =] and U = 0 this is the conjugate gradient method (3.18). |

If Hy #1 and U = 0 it is preconditioned conjugate gradients with a |

| preconditioning matrix Hg If U = U (ssy,H) is any member of the
yl Broyden [1970] g=-class of quasi-Newton updates, then in exact arithmetic,
d this algorithm generates the same sequence {x} as when U = 0. |
3 (Nazareth [1979]). In finite precision calculations, the choice |

U = Uy (s5¥sH) results in a more stable algorithm when solving problems
| similar to (3.16) or (3.17) avoiding the characteristic loss of ortho-

gonality (Parlett [1980]), that can affect the rate of convergence of the |
conjugate gradient method. The process (4.8) can be viewed as a conjugate i

gradient method with a variable preconditioning matrix (a variable metric) |
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making the matrix He A He increasingly more well conditioned. This
a observation shows that a sequence of problems can be solved more efficient-

ly provided that the information stored in H, from a previous iteration,

is saved.

| Since all the updates Ug(ssy,H) are equivalent in exact arithme-
| tic, the symmetric rank one update given by

.

Usp (Ss¥sH) = Es) : (4.9)
. RE (s-Hy)'y |

| seems to be best suited in this particular situation. At every iteration |

| only one new vector Vo = (s, =H Yn) must be stored. This is an N-vector |

in algorithm 4.1 and a vector of length N/2 in algorithm 4.2. Algorithm |

| 4.4 outlines how this technique can be used when 2K vectors of length |
| N are available. |
i Algorithm 4.4. |

A. For each new probicm apply algorithm 4.1 or 4.2, but use version |
(4.8) of the conjugate gradient method in step 4. Initially the i

: matrix-vector product p : = HgS is defined in step 4B, but at

step n, nc K it will be given by {

| where Ys is the scaling factor from (4.9) and the vector Vv, is i
a stored update. |.

B. When a total of K conjugate gradient iterations have been performed,

(possibly after solving more than one of the problems in the sequence) {

1 continue with U = 0 and use |
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g pi = Hys + RAVI? (4.11) |
| in step 48.

Only a few updates are needed in order to achieve convergence in

one or two iterations and the cost of this procedure does not add to the

leading terms in the operationcounts of algorithms 4.1 and 4.2. Algorithm

4.4 can be useu advantageously even when the parameters ao and 8g in

(4.1) are changing. However, in this case it may sometimes be necessary .

: | to restart with Ho as defined in step 4B of algorithms 4.1 and 4.2. |
| If the BFGS update Upree is used, then Nocedal [1979] showed that an

interesting, alternative updating strategy is possible. |

| Algorithm 4.4 in combination with both 4.1 and 4.2, was tried taking i
; K=5., All 10 test problems were solved on an IBM 370/168 with a stop- |

ping tolerance TOL = 107°. The average time per problem and the average

| number of conjugate gradient steps needed are given in figures 4.7 and

| 4.8. For comparison, the same sequence of problems were solved (on a |
p VAX-11/780) using algorithm 4.3. The normalized IBM times are given in | |
= figure 4.9. |

9 | N 63 127 255 |

| Figure 4.7 Average execution time (ms) per problem

| when solving 10 problems with algorithm |
. 4.4/4.1.

K
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|

N 63 127 | 255 |
SOLV 201| 1055 | 4037 |

| TOTAL 2089 | 8345

| Figure 4.8 Average execution time (ms) per problem .
| when solving 10 problems with algorithm |

4.4/4.2.

{ N 65 127 255

vax FFT | 2672 | 11426 | 49840
| YA TT] €9/c | 22340

| TOTAL 1555 | 6729 :

| Figure 4.9 Normalized execution time (ms) per problem |
| when solving 10 problems with algorithm 4.3.

| Figure 4.7 and 4.8 show that the number of conjugate gradient itera-

) tions decreases significantly. Figure 4.9 and 4.6 show that the prepro-

' cessing cost of algorithm 4.3 is also quite acceptable for this problem.
3 It should be noted that the total cost when solving 10 problems using the

; three different methods are almost equal. In fact, comparing expressions

(4.5) and (4.6) with (4.4) indicate that the two methods are equally y

= efficient when

i.
. i
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problems are being solved. In (4.12) k is the average number of conju-

| gate gradient iterations required per problem. Taking N = 255 and

k = 1.7, the two methods should be equally efficient when solving 8 pro- |
: blems and this corresponds well with the computational results. |

4.5 Algorithms for vector and parallel computers. |

i Sameh, Chen and Kuck [1976] considered algorithms for Poisson's equa- |
] tion and the biharmonic equation under the assumptions of an "idealized |
| parallel computer" having NZ or NS processors. They concluded that the |

biharmonic equation was an order of magnitude more difficult than Poisson's |

| equation. This section gives new and improved results, as well as more |
| practical results for the case when a fixed number of processors and/or a |

] vector computer is available. Without loss of generality, the discussion }

| is limited to algorithm 4.2 with N = M.
| While truly parallel computers having p independent processors with

unrestricted communication, exist mostly as theoretical models, vector com-

| puters capable of performing arithmetic operations on vector registers, |
3 play an increasingly more important role in current large scale scientific

; computations. An algorithm for the biharmonic equation on such a computer
4 will therefore be considered first. The following simplifying assumptions

are made: |

§ i) There are p processors available. |
ii) The four arithmetic operations +, -,* and / can be per-

formed by these processors working on vector registers.

: iii) An operation (or a timestep) will consist of an addition

 - or subtraction and a multiplication or a divide performed _

| componentwise on vectors of length at most p.

! i
|
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Cl iv) Startup costs including memory and/or data alignment I

times are ignored. |
| These assumptions are naturally not fully realistic, but different machine }

architectures make it difficult to use a more complicated model. An al-

gorithm that. performs well under the above assumptions is likely to also :
| be very efficient on pipelined vector-computers like the CRAY-1. Despite a

having only one processor, this computer performs vectoroperations so B
| efficiently that the model can be used with an effective p larger than Cl

| one. Alternatively, the cost of a vector operation can be measured as .

S+Rp where S is a startup time and R is the vector-rate. It will | |
be clear from the discussion that a more detailed analysis for a specific | |

computer can be carried out.

| Consider an algorithm where the vectorization is performed on the |
: inner loops of algorithm 4.2 whenever possible, resulting in an algorithm i.

closely related to the sequential method. Assume that p < N processors E

Y are available. The description references the steps of algorithm 4.2. |

: Algorithm 4.5. :

1 Steps 1 and 8.
j a) The setup time scaling the right hand side, takes N2/p |

| timesteps using p < N processors. |
b) The remainder of step 1 and all of step 8 is computed by

using a sequential fast Fourier transform algorithm on : |

3 p independent vectors in parallel. The total time for
: this is an%10gN/p using p < N processors.
- Steps 3 and 5.

a) The subalgorithm PENTF (i,r,y,x) as stated in section |

| 4.2, consists of two vector operations forming w, two 4

i
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vector innerproducts when computing Cy and ¢,, and

| finally two vector operations when calculating x. All
vectors in this subroutine have length N/2. Assuming

that an innerproduct between two vectors of length N

requires N/p + logp vector operations, the cost of

: PENTF (i,r,y,x) is:

] i) 3N/p + 2logp if no preprocessing is done.

ii} SN2p + logp if c; fis precomputed. |

=u iii) 3N/2p + logp if ¢, and w are precomputed.
Notice that these results are valid for p < N/2.

b) Therefore, assuming (as in section 4.2) that only < |
is precomputed, steps 3 and 5 require approximately

N(13N/p + 4logp) timesteps with p < N.

Step 4. :

a) Using the same assumptions, a matrix-vector product takes ]

R(6N/p + 2logp) timesteps using p < N/2 processors. | |
b) All other operations in the conjugate gradient iteration,

3 including the preconditioning step, can be performed in

1 O(N/p) + 0(logp) timesteps per iteration. Since only k |
; iterations are needed, k independent of N, the cost

3 of step 4 solving all four linear systems, is approxi- |

: mately kN(6N/p + 2logp) with p < N. The total time
| required for this algorithm is therefore

. NS 2
a o(2100N + 6k + 14) + 2N(k+2)logp (4.13)

3 Notice that the first term in this expression is (4.4) divided by p.

s For large N and p << N the speedup is very close to p. If p = N .

i [ESN
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| the operation count becomes B

| N(2(k+4)1ogN + 4k + 10) , (4.14)

| since the logp term arising from inner products of vectors of length 1

| N/2, never exceeds 1og(N/2)}. In this case the speedup is proportional ]
| to N/k. I

E As an illustration, a computer implementation of algorithm 4.2 was {|

| | tried on an IBM 370/168 and also on the CRAY-1 computer. Figure 4.10 dis- |

i plays some timing results. | ]

IBM 370/168 |

|

| | Figure 4.10 Time in milliseconds to solve the |
biharmonic equation on an N by N grid.

3 Remarks.
| i) The total solution time is the sum of the time spent in oo
: a fast Fourier transform routine (FFT) and in the re- .

4 mainder of the code (SOLV).

i ii) The FORTRAN H(OPT=3) compiler was used on the 168, i

| while the CFT compiler on the CRAY-1 was used with and {1
| without the vectorization option. (ON =v and OFF = v). |i

iii) The same FORTRAN source code was used in all three cases 1)

| with the single exception that a special vector inner pro- '

duct routine written by Oscar Buneman [1980], was used in hi
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| the vectorized run. :

¥ iv) The iterative part of the algorithm was terminated when : s
the 2-norm of the r2sidual fell below the tolerance |

ToL = 1070, | |
v) No attempt was made to optimize the code by avoiding nonvec- |

torizable O(N) contributions to the execution time. In 3
particular, the Fourier transform part of the code was not |

] implemented as in algorithm 4.5, and therefore executes

slowly. i

| vi) Notice the substantially improved execution time for the 3
SOLV-part when vectorization is turned on. The speedup H

| compared with scalar processing, is between seven and eight, 3
i while the Fourier transform routine only gains a factor 3
| 1.6. The algorithm is sufficiently parallel in its struc- A

ture that a FORTRAN program written for a sequential com-

puter, immediately speeds up when given to the CFT-compiler | .
| on the CRAY-1. ]

An alternative to algorithm 4.5 is to perform all the vectorizations y

on the outer loops. The resulting code will differ more from a sequen-

i tial implementation, but it avoids the difficulty with the vector inner- .

3 products in algorithm 4.5. The following is a brief description again Cd

refering to algorithm 4.2. Stepsl and 8 will be as in algorithm 4.5,

In steps 3 and 5 the vectorization must be performed on the index i, §

2 resulting in a cost of 1382 /p timesteps. Similarly in step 4, the cost .
of a matrix-vector product becomes IN°/2p timesteps using p < N/2. The Ny

3 cost of solving all four systems is therefore 6kN/p resulting in a |

3 total cost of

i ;
|

a — _ pe Bn i rie duce il
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» NZ 2
| p(210gN + 6k + 14) . (4.15) |

Comparing this with (4.4) shows that an optimal speedup of p has been |

achieved.

i Finally, consider the case where a parallel computer with Ne pro- |
| cessors, as described in Sameh, Chen and Kuck 1976], is being used. Us-
1 ing their results on computing the fast Fourier transform, and a combination |

| of the two algorithms outlined in this section, it can be shown that a

method based on algorithm 4.2 can be executed in O(logN) timesteps. This

is an order of magnitude faster than results of Sameh, Chen and Kuck and |

! its complexity is the same as that of a Poisson solver under similar assump-

| tions.

Remark. |
The main purpose of this sect’on is to outline results when using mul-

tiprocessor computers. These results can also be useful when considering |

algorithms for vector computers. The particular operation counts are of

| the right order of magnitude, but the constants can certainly be improved |

| by departing in certain respects from the particular underlying sequential
: algorithm 4.2. |

J 4.6 Roundoff errors. |
The numerical algorithms proposed in this Chapter, are all solving a

linear system of equations with coefficient matrix A given by (3.2).

| The condition number of this matrix is proportional to Ne Classical 1

theory for linear equations (Wilkinson [1965]), shows that there exist a |
i right hand side and a perturbation of this vector, that result in errors

| in the solution proportional to the condition number times the original |
!
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| perturbation. A numerical method for this problem is said to be stable |

| when the error due to roundoff is bounded by a constant times the condi- |
tion number. Several authors (Strang and Fix [1973], Schroder, Trotten- |

1 berg and Witsch [2978] have pointed out that in the case of discrete sys- !
{ tems derived from certain differential equations, even more stable numeri-

cal methods are conceivable.

| log, 4(error)

1

_3 | N

| . — |
_ x - - oh 5 |
-5 Camm mm

| a a XX - 1
-6 2 - °

{ 7 : |

3 |)

i 8 |
& -9

!

:

# 2 3 4 5 6 7 8

10g, (N+1)

Figure 4.11 Maximum roundoff error for problems

= 1 through 5 as a function of N. |
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These questions have not received much attention, mainly because the

a truncation error usually is more important as long as the numerical method
is stable. With the development of fast methods, in particular for fourth

order problems, this is no longer necessarily true.

in order to study the roundoff error, algorithm 4.3 was tried in both

single and double precision. The difference between the two results were

computed for the five first test problems. The maximum roundoff error on

the grid, propagating from the inexact representation of the right hand

} side in single precision is shown in figure 4.11. The computer used was

a VAX-11/780 with single precision machine epsilon of 3.1078,

Lines indicating growth in errors proportional to ng and N° are

indicated as references. The figure shows a difference between highly

symmetric problems (1, 4 and 5) and more general problems like 2 and 3.

The analysis of this difference will not be pursued here, but it seems

clear that it is related to the fact that most of the linear systems in

| step 4 of algorithm 4.2 are essentially trivial in the symmetric cases.

| The figure indicates that the roundoff error stays well below the Nd

g reference lines in all cases.
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4.7 Efficient solution of the discrete system when the cubic extrapolation

1 scheme is used near the boundary.

The stencil (2.4) employing cubic extrapolation near the boundary,

j leads to a nonsymmetric linear system of equations with a slightly more com- |

plicated structure than (3.2). The two finite difference schemes are of

5 the same order of accuracy when computing the discrete solution u, but

| as shown in Chapter II, there are cases when the cubic extrapolation pro-

cedure is preferable.

It has been claimed (Gupta [1979], that fast methods for the classi- |
cal approximation using quadratic extrapolation, cannot be used and that

| more general, but expensive methods are necessary when the cubic extrapola-

tion is used. The present section outlines two new fast methods based on

i the algorithm developed in Chapter III. |

First, consider the possibility of deriving a numerical method using |

: the same ideas as in Chapter III. Without loss of generality it is assumed
|

that N = M. The coefficient matrix A can be written as

| A = [1® R) + RA) + (TQ + (1QT,) (4.16) |
a where

| } T T T T |

i T. = dese) +e) - (ee, + een.1) (4.17)

: Let

| _ T
Te = UV |

j!
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j where

a | 8 -1 0 0 1 000

01 00

; U= 0 » V = 0 .

| 0 01 0

0 0-1 8/y.a 0 0 0 1/44

] Proceeding as in Chapter III,

8 PIR AIR AP = 5 + xQN(YQ1)! (4.18)

| where X=QU and Y =QV .

S is blockdiagonal and each block has a pentadiagonal slightly nonsymme-

tric structure. This poses no real difficulty and fast methods for solv-

ing linear systems involving S can be devised. The matrix B (3.11),

| now takes the form

_ T 2-1
| B=1+ (Y@I) ST(x@I) . (4.19)

This matrix has a 4 x 4 blockstructure with blocksize N. By going

through the same calculations that led to (3.16) and (3.17), this matrix

decouples into two 2 x 2 block matrices. The systems can be further re-

| duced by one step of block Gaussian elimination. The resulting N x N

4 matrices can be generated and then factored using the LU - decomposition.

J Another, perhaps more interesting idea is to solve these systems using an

iterative method. As an example, one of the linear systems that must be

a solved has the following structure

1 16 N . 2 km o-1
” | (1 * NT z sin” TT Si Jx =b , (4.20)

k=1,3,5..
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i where Si is the k-th block of S.

| Proceeding as in Chapter III, a good preconditioning matrix will be
i obtained by replacing 7! by 51 Since the problem is nonsymmetric, the

conjugate gradient method cannot be used in the same way as before. The

! normal equations can always be used in combination with the conjugate gra-

dient method, but such an approach is unnecessarily expensive when dealing |
with this problem. Various extensions of the conjugate gradient method |

have been considered, see Kincaid and Young [1980] and others. Theoreti-
! cal understanding of these methods is not complete.

i Consider the class of quasi-Newton updates proposed by Broyden [1965],
| for solving systems of nonlinear equations. Given a nonsingular nxn matrix :

Hp» an initial guess x, and ro = Axg = b, for k =0,1,2... Tet |
SC

2 Xeel = Xe tS | |
i Ye = As, , (4.21) |

fel Tk Ye ©

Het = He * (SH vs

: where Vi Ye = 1 and vi He! 5, 70. i

} Gay [1979] has shown that this process converges in at most 2n steps to
J the solution of the linear system. Moreover, computational experience |

4 indicates that convergence often is very rapid when the spectrum of AH, is |
clustered. The symmetric rank one update discussed in section 4.4, is ob- i

3 tained by setting v = (5-H )/y" (5-H) and this method was tried when |
g solving nonsymmetric systems like (4.20). When using the proper precondi- |

i tioning matrix Hgs convergence is very rapid. This is plausible since the
algorithm converges in at most 2p steps if AH, has only p distinct eigenvalues.



| -91-

4 A limited storage version of (4.21) can be implemented requiring only

| the two matrix-vector products y = As and v = Hy in addition to a few
| vector operations per iteration. The required storage is only three vec-

| tors in addition to K (K > 1) vectors for the updates. This also suggests ;

: an alternative way of solving the original discrete problem by applying al-

: gorithm (4.21) directly, defining Hg by one of the fast algorithms dis-

| cussed in the beginning of this Chapter. This technique was used when pro- |

| ducing the results in Chapter II. Figure 4.12 shows the number of iterations
required to solve problems 1 and 2 on four different grids.

i Only 5 updates and a total storage requirement of NG was used. The

iteration was stopped when [1Ax=b |}, < (N+1)TOL. |

| N © 115 | 31 | 63 |127 | |
rove too? [5] e [+] 3 I
rovers, 0 [0 | 9 [9] 7 :
CEC I IN EN

3 Figure 4.12 Number of iterations required :

1 when using Broyden's method.

3 After 5 iterations the method was restarted with He = Ho: Experiments |
", show that this is more efficient than using H ,, = H for k > 5. No-

4 tice that the number of iterations tend to decrease with increasing N.

The required work to solve this problem is therefore of the same order as |

5 in the case when a quadratic boundary extrapolation is used. |

] Remarks.

i) Both Hy and A are discrete approximations to the bihar-
monic operator, but the approximations are different and not
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necessarily very accurate ((2.3) and (2.4)) near the boundary.

| ii) Broyden's method used in this manner promises to be ad-

i vantageous in other similar situations as well. i

iii) The use of Broyden's method to solve large nonsymmetric |

J systems of linear equations appears to be new. The symme- |

tric rank one update is of particular interest in this con- |

text, since it also belongs to the Broyden g-class and

| therefore is related to the conjugate gradient method in the |

: symmetric case. The method behaves very similar to the con- 3

jugate gradient method, but can be used to handle a larger

= class of problems.

The symmetric rank one update has some theoretical difficulties since

: s-Hy and y can become orthogonal. This never caused any problems in the |

= applications tried here, but a study of theoretical aspects using one of

| Broydens single rank updates, when solving large linear systems is plan-
| ned for the near future.

5 4.8 Efficient solution of the biharmonic equation in a disk.
ou

: 1 Consider the biharmonic Dirichlet problem on a disk of radius R,

{ au =f r<R

3 u=g r=R (4.22)

3 u. = h r=R . |

2 In polar coordinates the biharmonic operator takes the form

2 1 |
bp g = p(3p(ra.) + L 22) La (ra) + 1 28) (4.23) |

x Glowinski and Pironneau [1979] remarked that a discrete form of this

{ RR
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| problem derived from a finite difference grid based on polar coordinates, i

| can be solved by using the "coupled equation approach". (See Chapter I,
1 section viii).) The present section describes an algorithm which is an

; order of magnitude faster. Taking advantage of the explicit formula (1.8) |

valid whem f = 0, makes it possible to design a direct method for (4.22). |

Let B

: First solve FS

| awy =f r <R i.
(4.24) +]

and then

Auy = W r <R 3

1M (4.25) |
Uy = g r = R

| The problem for u, becomes J
| ru, = 0 r < R }

(4.26)

| u, = 0 r = R |

(u)), =h - (ug), r =R
Now write

x _ 2 2

! u, = - (R®-r Vy +,

. and require that vy and Vo be harmonic (see 1.7). Since Vy vanishes |
I at the boundary, it follows that it is identically zero. Now

] 5 |
2

(—=) = 2Rv, ,
4 “pap : i

and therefore |

| bv, = 0 r <R
(4.27)

1
| = 2a = |

| Yi = 5) (Ua) r =R .

1 1
; } f



| In this way the numerical solution of (4.22) has been reduced to the solu-

| tion of three Poisson equations on the same grid. The derivative (Uy). |
which is needed in (4.26) must be computed with sufficient accuracy from

the solution of (4.25). If a second order method is used for solving Pois-

son's equation then the discrete value of (ugly should also be second |
order accurate. A second order accurate numerical solution to the original

(smooth) problem (4.22) can then be obtained. |

| A computer implementation using the subroutine PWSPLR (Swarztrauber

and Sweet [1975]) for Poisson's equation, has been written. The algorithm
has an operation count of O(NMlogN) when a discretization with N points

| in the g-direction and M points in the r - direction is used. A some-

what faster code requiring less storage, could be implemented by taking i

advantage of the zero right hand side in (4.27). Figure 4.13 displays the  ]

| results from a test using an IBM 370/168 computer. The problem was solved |

in the unit disk and the exact solution is given by u = e"S"9, a |

M N TIME (MS) | MAX ERROR :

E32 EN IC ET
J ww | aw [rant
3

Figure 4.13 Execution time and discretization |

error when solving the biharmonic |

equation in a disk. {|

It is easily seen that the discrete solution is second order accurate.
;

y
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4.9 Conformal mapping and the solution of the biharmonic equation on

| more general domains.

Given a domain Qe Cc RZ, with boundary CIO consider the biharmonic
Dirichlet problem,

A =f in 2
~~ u=g on aN, (4.28)

up, = h on ox .

Assume that it is possible to map the unit disk conformally to 2p i.e.

the mapping function or a sufficiently accurate approximation is known or |

efficiently computable. This is indeed the case for all polygons, since |

the map in this case called the Schwarz-Christoffel transformation, has a |
simple form and can be accurately computed. (Trefethen (1980]). There are |
also methods for computing the map to more general domains, see for ex- |

ample Gaier [1964]. Symm [1966], Chakravarthy and Anderson [1979], Gutknecht
[1980], Fornberg [1980]. This section outlines how it is possible to Co
solve (4.28) taking advantage of fast solution techniques developed for a

| rectangular region. (The conformal map between a rectangle and the disk

is an easy problem). The advantage of this approach is having a fixed

| computational domain where highly specialized numerical methods can be |

used. However, the necessary calculation of the map can often be diffi- |
cult and dominate the computational cost. In some applications this can

be considered as preprocessing if many problems of the form (4.28) | |

are solved for a fixed domain. |

Assume in what follows that s(z) maps the given rectangle confor-

mally to the domain Q,- For any function f(w) we Dp Tet £(s)(2) |
denote the function such that £(8) (7) = f(s(z)). First write equation

| me Cee=



-96- |

(4.28) as two coupled second order equations,

-A u=v in Q |
-A v=Ff in Q |

W w (4.29)
u =4g on x, |

u, = h on xR, .

The equivalent problem in the computational domain is |

A u(S) 2 fer a112 o(s)
A, u = [s'(2)|° v in R, |

a, v8) = 512)2 £8) dn wr |
| (4.30)

a8) = g(s) on 3R,
(s) = jer (s)
u>’ = s'(z)|h on aR, . |

This problem can be discretized using the standard stencils discussed in

Chapter II. Let S be the positive diagonal matrix containing the dis- Co

crete values of |[s'(z)| on the gridpoints. If the quadratic extrapola- |

| tion scheme is used near the boundary the discrete matrix problem represent-

ing (4.30) is

| -
(Ls72L+wTul) = nts? els) ay (4.31)

where L is the discrete Laplacian, U is an N° x 4(N-1) matrix and 2 :

1sa sparse vector. Notice that this problem has the same structure as the Co

problem discussed in Chapter III except that the diagonal matrix S has

been introduced. The 4(N-1) x 4(N-1) matrix

B=(r+u Lls2 ly (4.32) .

can be generated and factored in o(N) operations. The linear system ©

I———- i i a TR TOE r= vp ge ” i iota doinoli ead
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| can also be solved using conjugate gradients. The preconditioning techni- :
que employed in Chapter III cannot be used in this case. There remains to  §

investigate possible alternatives. When S = 1 the eigenvalues of B 1

| approximately equals ¢N/i for 1 =1,2,3.. . The conjugate gradient B

| method requires o(N/3) arithmetic operations to solve (4.31) for a pro- :
]

| blem with such a spectrum. {

Finally it should be mentioned that this technique can be used in com-
|]

bination with a Lanczos eigenvalue routine when solving the eigenvalue ;

| problem associated with (4.28). : :

H ]

rE

b |
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| CHAPTER V |

| | APPLICATIONS |

The existence of an efficient numerical method for solving the gen- |
3 eralized biharmonic equation (4.1) makes it a useful computational tool 1

1 in the construction of numerical methods for more complicated fourth or- |
der problems much in the same way as fast Poisson solvers have been used |

| in the past ten years. |

| Problems where this numerical method may prove useful include von
| K&rmdn's equation (1.5) and the streamfunction formulation of Navier |

Stokes equation for incompressible flow (Temam [1977]). A class of |
1 problems closely related to (4.1), including physical examples, is dis- |

cussed by A. and M.B. Banerjee, Roy and Gupta [1978]. In some of these
| applications a nonuniform (graded) mesh may be advantageous. Extension |

| of the numerical method to more general fourth order equations having sep-
arable lower order terms, is not difficult and this makes it possible to

| handle certain coordinate transformations introducing such meshes.

| Two applications using the numerical methods for equation (4.1) will J

: be briefly discussed in the remainder of this Chapter.

1 5.1 The eigenvalue problem for the biharmonic operator. |
. Consider the eigenvalue problem

| 2% = Au in R

| u=0 on oR (5.1)

u, = 0 on 3R , i

in a rectangle R. This problem defines the natural frequencies and the j

natural modes of vibration of a clamped elastic plate. Formulation (4.1)
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| | can be used with o = 0, in a Rayleigh quotient iteration when computing
| approximations to the lowest modes. Due to the cubic rate of convergence,

this method is more efficient than some of the previous methods that have

been tried. (Bauer and Reiss [1972]. A modified form of algorithm 4.3
| was used when solving the resulting sequence of indefinite problems. |

The Fourier transforms in the algorithm can be omitted when doing this

| iteration. After the transformed eigenvectors have converged, they may
be Fourier transformed in a postprocessing stage resulting in a substan- |

i tial savings in computational work. i
This section briefly describes the relationship between the numerical

method and the space of eigenfunctions. In addition, the behavior of the |

| first eigenfunction near a corner is studied. |
A particular eigenfunction is generated by only one (or in the de- |

generate case by two) of the matrices ce given in theorem 3.1. The no-

| tation (r,s) r,s = 1,2, will be used to indicate which of the four pro- i

| blems in step 4 of algorithm 4.3 that must be solved for a given eigen-

value. This results in additional computational savings and also pro- |

| vides a more systematic way of studying the eigenfunctions. Figure 5.1
3 lists the five first distinct eigenvalues obtained by extrapolating from

solutions using N = 63 and N = 127. More accurate calculations can

i easily be performed by going to finer grids or even better, by using the

matrices given in lemma A2.2. Good upper and Tower bounds have been

published by Fichera [1966] and they are included in figure 5.1.
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Lower bound Estimate Upper bound

3

Figure 5.1 The first five distinct eigenvalues

J computed using N=63 and N=127 com-

] pared with lower and upper bounds.

In these calculations R was taken to be the unit square and X is de-

fined by (5.1). In order to relate the decomposition of the eigenspace

1 to the symmetries of the eigenfunctions and the previous work of Fichera,

let (x,y) be a point in the first quadrangle of the square with x > y. |

Consider the eight points p. = {(x,y), (¥,x), (-¥.x), (-x,¥), (-x,-¥), |
(-ys=x), (y,-x)}, i =1,2,...8 defining the possible symmetries of a

: solution defined on R. The following relationships hold:

8 i) The eigenfunctions with total symmetry, u(p.) = u(p; )
"l for 1 =2,3..8, are generated by cll this group

: corresponds to (0000) in Fichera's notation.

1 i1) The eigenfunctions symmetric around the coordinates axis,

| but antisymmetric around the diagonals, u(p,) = u(py)

i=4,5 and 8, u(p;) = - u(pq)s i=2,3,6 and 7, are

= also generated by cll, this group corresponds to

1 (0011) in Fichera's notation. |

1 3]
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iii) The eigenfunctions which are antisymmetric under a rotation

of m, u(p;4) = - u(p;), i=1,2,3 and 4, are generated

| by the two matrices cl? and cel, This is a degenerate |
| case and for each eigenvalue in this group there are two

eigenfunctions. The two eigenfunctions have the same shape,

but one is rotated mn/2 compared to the other. Fichera |

calls this case (01-10). |

iv) A total antisymmetric eigenfunction, UPi4q) = - u(p,),
i=1,2,3...8 is generated by 22, corresponding to

(1111) in Fichera's notation.

v) An eigenfunction symmetric around the diagonals, but anti-

2 symmetric around the coordinate axis, u(p;) = u(pq)s
i=2,5and 6, ups) = up, i=3,4,7 and 8, is also

| generated by c22, this group is called (1100) by |
Fichera.

These results are important in order to understand which of the linear sys- :

tems in step 4 of algorithm 4.2 that are nontrivial for a problem with a

given symmetry. (See Appendix III.) The results also indicate that it

2 may be possible to refine the decomposition given in theorem 3.1, by fur-
! ther splitting the matrices crs,

Next, consider the shape of the first eigenfunction in the neighbor-

,- hood of a corner. Bauer and Reiss [1972] reported the existence of nodal
| lines in the vicinity of corners, but their numerical method severely

limited a detailed study. Other researchers noticed that the nodal line

3 moved towards the corner as the grid was refined, and questioned its ex-

istence in the limit. Theoretically this had been an open question for

| | quite some time. (Very recently, after this investigation was completed,
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Coffman [1980] informed the author that he had proved the existence of
| nodal lines.) |

The fine grids permitted by the new numerical method made it possible

to study this question numerically. The theory in Chapter III and Appen-
J

| dix II may also be used to investigate this phenomenon in the continuous |
case. Figures 5.2 and 5.3 show contour plots of the first eigenfunction near ]

a corner of the unit square based on calculations using N=127 and N=255.
i Figure 5.4 shows a surface plot of the same area based on the finest grid.

| Finally, after normalizing the eigenfunction such that its maximum value |

is 1, the extrapolated values based on the two grids, are shown in

figure 5.5.

1 0.382 \ NNL
| RN 2.201

{ (AN 9.222%

* 0.90%:

; \ ied? mn<.2:2073SJ AN. .s
-.38i073 |

P . o. = oasis
| a. 0.832)

N = 127 : .

R Figure 5.2 Contour plots of the first biharmonic
eigenfunction near a corner. :
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NN

Figure 5,3 Contour plots of the first biharmonic

1 eigenfunction near a corner.

SKK /eS CO
SSNs
SAN

: [=

| Figure g 4 Surface plot of the first biharmonic
eigenfunction near a corner.
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| y LL LL

: 5/128 ~4.74 -6.56 +8. 64 +50.37 +124.71 |

| (x=1/128 x=2/128 x=3/128 x=4/128 x=5/128 ¢ :

; Figure 5.5 Extrapolated values of the eigenfunction |

| near a corner. The numbers are scaled

up by a factor 10°.

5.2 Navier Stokes equation. |

] As an illustration of a problem where a numerical method for (4.1) |

with nonzero parameter o can be used, consider the driven cavity model

problem for the nonlinear, time dependent Navier Stokes equation. In-

troducing a stream function ¥ in the usual way, the equation was solved |

using the following scheme: |

2 2%, - RAY = R(Y AY, - ¥ AY) - RaY, : (5.2)x y X XY

1 Here k denotes the current time level and At the time discretization
; step. The equation was discretized in space using second order accurate

centered differences and the 13-point approximation with quadratic boun-

dary extrapolation was used to approximate the biharmonic operator. No-

tice that this is a special case of (4.1) with nonzero ao and Bg = O.

; The problem was solved in a square region with Reynold's number R = 200
} and boundary conditions VY = 0 and Y = 0 except at the side y =1 .
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| where

Ny | -sint 0<t<n/2 |
| v= |

- 1 m2 <t<5

i This corresponds to an acceleration of the moving wall up to the standard

velocity used in stationary calculations. A 31 + 31 grid was used and
|

500 timesteps each of length 0.01 was taken. (This is smaller than re- |

quired for stability with this Reynold's number.) The execution time |

oo for this problem was approximately one minute on an IBM 370/168. The

velocity fields are shown in figures 5.6 and 5.7 at two different times. |

- 1.0 |

* / \ ! . - - - 1 LY ' ? 4 / / /
Le PE I I A J 4 l/ 1
\ \ NON ~ - -— es op ” / 7 I 4 ! :

Cy \ \ NN wm == - ” ’ /’ I 4 4 ¢

' 1 \ \ - ~- - - - - ” Fd F 4 ’ ]

. y 1Y - - - -» - - - ” ’ F 4 ¥ J []

3 . . . . . - - - - » ’ » ’ ’ . |
k » ry . - - - - - - - » ’ » Fa . A
| ee ee ee ee eee eee

0.0

| 0.0 1.0

Velocity field t = 1.5

. Figure 5.6 Discrete solution of the time dependent
. Navier Stokes equation at Reynold's number 200.
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The corresponding streamfunctions are contour plotted in figures 5.8 and

| 5.9. The flow is not stationary at time 5, but changes very slowly into |
{ a final state after a time equal 20 with a main vortex center ¥ = 0.105 )
| at coordinates x = 0.41, y = 0.66 in good agreement with stationary

: calculations with this grid. |

n | 1.0 Lo i

|  - = — ~~ NN NAV oro |

: \ [ oS SN Nv aor |
\ \ AEA A A ANE A] - ec 2 7 72 7 rr 1 ot 1 a

| \ \ \ A FEA SE A SY EY SE }

\ \ \, Ne -— oo JF / / 4 4 ), ]
-. \ \ \ NS —y wn ” ’ Fd ’ ! ? ' |

. \ NON mm se ss ’ ’ .

| . ET J I SER 1

| 0.0 |
0.0 1.0

Velocity field t = 5.0 |

] Figure 5.7 Discrete solution of the time dependent Navier |
. Stokes equation at Reynold's number 200.

y |



| -107-

| 1.0 ———)); |
| | | 8

| |
]

1 |

Stream function t = 1.5 |

) Figure 5.8 Discrete solution of the time dependent Navier )
i Stokes equation at Reynold's number 200.

3 |

;
3 {

! §
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3.3% :

I|
|

| |
] |

;
i

. o. : |
0.C 1.C 1

J Stream function t = 5.0 |

Figure 5.9 Discrete solution of the time dependent Navier

| Stokes equation at Reynold's number 200. | |

] It should be mentioned that the difference scheme (5.2) is unsatisfactory
for large Reynold's number, due to the fact that the nonlinear term is

| handled in a fully explicit way. Computational experience indicates that

the numerical methods developed in this thesis, for the biharmonic equa-

| tion, can be used as a part of more sophisticated methods when solving

the stationary driven cavity problem at large Reynold's number.

——— arree— SO Mia ln i
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APPENDIX I

| : Proof of Theorem 3.1 ]
The notation used is consistent with the notation in Chapter III.  B

The development in this section is very similar to the derivation of {|

(3.16) and (3.17), but individual components are defined instead of sub- a

matrices. An explicit representation for the quantity Qy Ts Qu in
Theorem 3.1 is needed.

OTQu =I +8, 1 sin? Ko slo isl,
NEON ON TM ee, MT SN Ck ON

_ -1

| T ,-1 -1,T,-1

= ¥ (Ty = Ky (I, + 2 Ky we” Ke) 7 Ky $0) |

where Ky = Qy Uy . |

Define the 2 x 2 matrix

_ T,-1 :
B, = 1, + 2 Kn Y Ky

IN |
| 3B thy

) where
{ a, =%8 k sin iy |

‘ \ Jj=1,3,5,.. N+ kJ

| and |

. 2 a yl :b, = % 8 z sin Lo
Kk "ON je2,8,6,.. MLK

| It is clear that any 2 x 2 linear system :

oo CI i

! Rp



-110- ;

can be solved in exactly the same way as described in Chapter III for the |

| block case. Recalling the definition of Hi in Theorem 3.1, this
leads to .

- IN
2) + 25 = (rrp)oy

i 2N |
2, = 2, © (ry=ry)/ay .

Let ej be the j'th unit vector of dimension N and consider the j'th |
column as of A Observe that

T,-1 ~12 jn ,-1,1 ce.Ky Y, e; A sin Tl ¥ei1) if j is odd :
[2 jm .=1, 1 cos

“WT sin BT Yi (LD) if j is even . |
Also |

| Co

. 2,2 i

> 1 72 1
Kn WT 21%2; to

O . Nm 'sin . |

{

: Using the above expressions in the definition of A gives the following 1

| expressions for element as ;
|

d k - -1 - + in . Eis IN +
| 353 = Yi JE By SIN wa SN Pr oy Yi i Yes) i,j both odd or :

i,j both even.

al =0 . i odd, j even, or |
i even, Jj odd. :

Therefore

Fe 0
: T _ -1 .7T

Pn A PhS Pye Py By ©
0 Fo

k {
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where Fr has elements of the form |

| sin r” sin or
' (F') Le = J NTC NH r = 1,2 .

) k’1) al vo.
: k ki. kJ. |

| This finally gives

pp 4 pT _ | |
| N Di” Qy Ty Qy Dy" Py

| " Fi 0 i
Cd | = . 2 km ST.

D-ByByPy0i" Py 2 sin ger Pn Di" Py i=L.2. j
k=1,1+2,.. 2| 0 F

k |

Comparing this expression componentwise with the matrix

1-c™MTc¢" i=1,2 r=1,2

| in Theorem 3.1 concludes the proof. []

5

|
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| APPENDIX II

Proof of Theorem 3.2 and Theorem 3.3. | |
Lemma A2.1 : ;

: N sin’ Jr |
If SN = I3 B>1

j=1 (B-cos or)
|

| then 3

S = 2(N+1) 4 2r - 0)’ 2001) 1+a°| N 1-2 1-(a"* ) 1-(a" 6 1-22
;

where a =8- VB2-1 . 0<ac<l B - VeZ.1

| Proof:

2 sin X
Define f(x) = 4 a —5 . |

(1+a"~2a cos x) |

Fettis [1979] pointed out that the application of Poisson's summation
| formula to this function gives the relation |

KF(0) + f(xlr) + FETT) + i f(m) = BL [r v2 IFN+I [3 Tm LO =] 2K(N+1)
where

| Fo f f(x) cos mx dx J

is a cosine transform of f(x) (Magnus and Oberhettinger [19¢8, p. 217].
| Integration by parts yields

; |

Fz | —— 2 —— . sin x cos mx dx |0 (1+a"-2a cos x) |

m Hi

Cd

C4

er a. . on PIETERNA
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These integrals are well known and can be found in Gradshteyn and Ryzhik

(1965, p. 366-367).

[ COS X ma 2—dx =— a- <1 m=0
0 (1+a%-2a cos x) 1-a

{ |

m COS X COS mx mT m-1 1+a° 2 3
| — dx = 5 a — a- <1 m=1,2,3 r ]0 (l+a"-2a cos x) 1-a

;

: "sin x sin mx mT _m-1 2

J! Sin xsinm oq . 2, a <1  m=1,2,3 .| 0 (1+a"-2a cos x)

Therefore |
J 0 1-2 |

F =1 lie, - d m=1,2,3m 1-22 9L gees s-a

and

S, = 2(N+1) a k N Ls’ r (a2 (NF1)yk onal) 1-2 CRIN
p 2 N+1,2 2 |

- a a 2(N+1 1+a201) [£5 - Liss i - Lay) -| 1-a 1-(a” *)° 1-(a *) l-a
4

: Remark:
2

_ a 2(N+1)

Sy = 2(N+1) 2° O(a )| -a

8 = (N+1) (=SB=. 1) + o(a(N*1),
Ve2-1 |

| This is the approximation obtained if SN is approximated by

i
-
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ou Sy 2 ef f(x)dx .Tm “0 |

| All the error terms in the Euler-McLaurin formula (Dahlquist and Bjorck

1974, P. 297) are zero in this case, since £(k} 0) = £(k) = 0 for
k odd. This much simpler expression is always an upper bound for Sn

i
: since | i

| 2{N+1) 1+a° > 0 a3 - 7 ll . jo
1-a N+ 1-a Lo

| Now consider :

N sin Tr
Saven = I — 3 B>1, Nodd. Co

j=2,8,6 (B - cos 377)

| Claim:

| S = (N+1) at av N+1 _ 1+? Co
even 1-3° 1-a'"*1 1-4] 1-a%

1 Proof : i

Replace N+1 by Ral in the proof of Lemma A2.1. It is easily |
¥ seen that the proof still holds. []
p

3 The sum over only odd Jj can now be found as the difference between |

i The above derivation furnishes a closed form expression for the

quantity ap defined in Theorem 3.1 and therefore closed form expres-
| sions for the individual matrix elements ci also given in Theorem !
a 3.1.

» An upper bound for the largest singular value a1 of the matrices

x c"S will be derived. The following well known inequality will be used:

op < CIE™S)T CS 11% < (HE [1 NES) 0% = [max £ <[$max 1 fH) }® 1 ow CEETRAR MA IAN J
since all matrix elements are positive. |
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For fixed i and j an element oF increases with the dimension N of
] the matrix. The interesting case to consider is the limiting behavior x

| | as N becomes large. The following important Lemma gives the precise

form of the limit matrix. Po
Lemma A2.2 The matrix C'°> defined in Theorem 3.1 has elements: |

3 A rs _sr _
rs. 8 1d Vid, a,” a; oy 1 \ r=1,2 oo
J on (i, 23 2)2 B'S SF (N+1)° s=1,2 |

S i J

1 where ay” and b> are exponentially close to 1 in j and given by
rs Kps _=3pT |

a; = (1+(-1) e )

k -J.m =2j.n ks |
| b> = (142(-1) "SS jme " -e 7)

J r
| and

Kng =0 if r=s=1 or r=2,s-=1 |
i |

Keg =] if r=s=2 or r=1, s=2

1 j.=2i-1 if r=1

$ Jo = 2] if r=2 |

Proof:

: Derive Taylor expansions for each element cis in the variable
or around zero. This is rather tedious to do by hand and the symbolic
manipulation program MACSYMA [1977] was used when deriving the above
expressions. 0

The 3 by 3 leading principal minors of the (infinite) limit matrix

cS are compared with the corresponding minors of Ce3 for N=63 in
Figure A2.1. It is interesting to observe that the approximation is quite
good already for this value of N.
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| .545 .122 .038 546.122 .039 | :

: Ces = 122.209 .125 ct = 122.212 .128
.038 .125 .123 039 .128 .127

.319 .078 .030 .320 .079 .031

| cs = |-28 167 0% 2 = |.219 .169 .09
8 093 .132 .108 095 .135 .112

| 305 14k .065 325 .146 .067
22 _ - 22 _ -Coz = JL L156 L107 =< = JAk6 L159 L111

= L065 .107 .101 067 .111 .106

Figure A2.1. Leading principal minors of Cy for N = 63 and N = «=,
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In order to obtain upper bounds for the row and column sums of crs the

a following Lemma is needed:

| Lemma A2.3

‘ © iJ 1 j| Let st = rir Vrs r=1 or 2 |
i TT 0.2 |

j=1 (i. + je)

i for some given ie (1,2,3...).

Then

] 3/4 3/4

V2 125 3 r alk2,12536 "7325 55:76 732

for all i and r=1 or 2.

1 Proof: |
© .3/2 .3/2 0 .,:13/2

sp =r dL UA
: BE SS 3hb RN SO EG VAD

Let

3/2

| | f(x) = Xo
| (1+x~)

3/4
cn 3 = 28 3 .Fax = a 6H Oxxz= .

3 | f(x)dx = 221 0

[ Clearly

: Tim s+ | Flx)ax = 22 :joo 0

By considering the discrete sum for finite i it follows that

| V2 1 V2 , 1
. 8 Tmax £31 2738 * 7 Tax

| Doing the same analysis for the even sum Seven
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3 1 :13/2 |

| s =1 3 A)53
even 1 j=p.4,.. (1+j/1)°) |

] results in

16 ~ T Imax < Seven = 716 TT Imax |

] where the appropriate function is

V7 32 = |2 2

| g(x) = x, 5 yl g(x)dx = V2EF (144 x“) 0 |

{ and

= a(\/3 ) =f |3 Smax 20 max ° |

| Combining these two results proves the Lemma. []

| It is now easy to prove Theorem 3.2. As can be easily verified, the -

B row sum

: oo =o
z Cl} < .75853 |

| is larger than any other bound that can be obtained for small i (say ]

i < 20). Lemma A2.3 shows that this value certainly cannot be exceeded |

with any larger i. (The factors as and b:® are exponentially small |
in i and Jj and present no difficulties. J

Remark:

Computations confirm that the maximum singular value belongs to cil, |

| The upper bound using the matrix c21 or cl? is
- - |

[(max r C32) (max T 53)? < L743 |
i i og=1 i el |

3 The bound for the matrix c° is given by

§ max I 32 <3V2 (corresponds to i= in Lemma A2.3).
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Note that the resulting theory also provides lower bounds for the largest |

singular values. Since the matrices are positive, the smallest row or

column sum will be such a bound. (Varga [1962, Pp. 31). In particular,
| computations indicate that Imax .706.
i The analysis gives an explicit representation for the continuous

biharmonic operator in a rectangular region. This representation can be

used to study properties of the biharmonic operator in the given geometry.

| Finally consider Theorem 3.3. An upper bound for the sum of the

singular values of the matrices C"® is needed. Consider the matrix cil

Since cll is symmetric it is sufficient to look at its trace.

4 11

| z Ci ) : EN n° SHY Fn N+ 5+ 0)
= where Y is Euler's constant, y = .5772... and § is the contribution

from the small term ai /b3t. Letting N + «, this shows that the con-
stant in front of the In N term in Theorem 3.3 (taken equal to 1 there)

b | tends to Las N becomes large. A similar argument gives the same re-
3 sult for €%2. It is an obvious conjecture that this result is true also |
3 for cl?, but since it is of little importance in this context the weaker
; statement in Theorem 3.3 is given instead. This can be proved by consi-

| dering v (¢33)2 (the Frobenius norm of cl?y, 1]
i Figure A2.2 shows the computed sum of the singular values normalized

] by the factor NPR for the three cases of interest, (cel = (clyTy,

I
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N/2 N/2 N/2

| mw I Chi ru 0, (c*) 25 I Ci |
N i=1 i=1 i=1l 4

3 32 .50 1.22 |

] 15 . 60 NY . 995 |

31 NY .T3 . 985
= 63 72 TT . 98U |

1 255 .T9 .83 . 986

j 511 .81 - - BT
1023 .83 - . 988 i

| 20UT .85 - . 969 |

) | Figure A2.2. Normalized sum of singular values.

} N
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APPENDIX 111

| | Test problems used in the examples.
| The following list defines the test problems refered to by number

* in the main body of this dissertation. The solution y (x,y) is given.

In addition, the subproblems in step 4 of algorithm 4.2, that are nontri-

: vial when solving these problems on the square 0 <x,y <1 are listed,
using the notation from section 5.1. This is of importance when consi-

dering the results of section 2.3. It also determines the work required

| to find the solution. |

| 1. u = xy{l-x)(1l-y) | |
Subproblem: (1,1). i

Comments: This problem is frequently used since the |

truncation error is zero. |
2 . This problem has also been used by Ehrlich :

; and Gupta [1975]. A

2. u=x2 + yl <x eX cosy

2 Subproblems: (1,1), (1,2), (2,1) and (2,2)

H Comments: This problem was considered by Gupta and
1 Manohar [1979], and in a slightly modified |
] form by Ehrlich and Gupta [rors].

\ 3. u = 2xy + x3 - 3y° i
3 Subproblems: (1,1), (1,2), (2,1) and (2,2). |

| Comments: The problem has zero truncation error if

’ the cubic boundary approximation is used.

E It has been considered by Greenspan and |
| Schultz [1972] and by Gupta and Manohar [1079].

¥
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|! 4. u = x2y%(1-x)%(1-y)° gf

| Subproblem: (1,1). i
Comments: This solution is simply problem 1 squared. :

4 it was used by Bauer and Reiss [1972] and | |
by Gupta and Manohar [1979]. |

5. u = (l-cos 2mx)(1-cos 2my) |
a Subproblem: (1,1) |

1 Comments: Another symmetric problem considered by |
: Bauer and Reiss [1972] and by Gupta and |

Manohar | 1979]. |

| 6. u =e” sinx + eYcosy

= Subproblems: (1,1), (1,2) and (2,1).

] Comments: This solution is the sum of two functions af

| each depending on only one variable. No- |

tice that only three subproblems are needed. |
|
: 7. u = xlog(l4y) + y/(14x)

3 Subproblems: (1,1), (1,2), (2,1) and (2,2). |

; Comments: This is a good general problem.

3 8. i =e") ginny |

Subproblems: (1,1) and (2,1). J
Comments: This problem falls in between the highly

| symmetric and the general problems. :

9. U = COSTX COSTY

Subproblems: (2,2). '

| Comments: A highly symmetric problem.
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8 8-p _ |
| 10. w= 1 plat |

| p=l g=1

Subproblems: (1,1), (1,2), (2,1) and (2,2). §

Comments: This problem is constructed in order to have i

a problem where all Taylor coefficients are 8

nonzero up to a total degree of seven. y |
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