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Abstract

In the spring of 1978, Professors George Pélya and Robert Tarjan teamed up to teach CS
150—Introduction to Combinatorics. This report consists primarily of the class notes and other
handouts produced by the author as teaching assistant for the course.

Among the topics covered are elementary subjects such as combinations and permutations,
mathematical tools such as generating functions and Pélya’s Theory of Counting, and analyses of
specific problems such as Ramsey Theory, matchings, and Hamiltonian and Eulerian paths.

Publication of these notes was supported by a grant from IBM Corporation.
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1 Introduction

For the most part the notes that comprise this report differ only slightly from those provided to the
students during the course. The notes have been merged into a single paper, a few sections have
been made more detailed, and various corrigenda have been incorporated. The midterm and final
examinations are included in their proper chronological places within the text (sections 8 and 15),
together with the solutions. The only information omitted from this report is that regarding the
mechanics of the course-office hours, grading criteria, etc. Homework assignments are included, as
they often led to further discussion in the notes. Lecture dates are included to give a feel for the
pace at which material was covered, though it should be noted that much of the material in the
notes was not actually presented in the lectures, being instead drawn from notes provided by the
instructors or supplied by the author as the notes were written.

A brief word of explanation regarding the dual instructorship of the course: Professor Pélya
taught the first two-thirds of the course, reflected in sections 2 through 7 of this report. Professor
Tarjan taught the remainder of the course, as covered in sections 9 through 14.

Though there was no formal text for CS 150, a number of books were made available for
reference. These books, along with additional texts used by the author in preparing the notes, are
listed in the bibliography at the end of this report. The [bracketed] abbreviations given there will
be used when referring to one of Pélya's books; the other texts will be referred to by their authors.
Though all of the books contain relevant material, not all are specifically referenced in the notes. In
particular, all mentions of [Harary] refer to GraphT heory and not to A Seminar on Graph Theory.

The author would like to thank Christopher J. Van Wyk for supplying excellent proofreading
assistance, Donald E. Knuth for finding the funds to support publication of the notes and, of course,
Professors Pélya and Tarjan for providing ample source material.

Combinations and Permutations

January 5. This was an introductory lecture in which Pélya discussed in general terms just what
combinatorics is about: The study of counting various combinations or configurations. He started
with a problem based on the mystical sign known, appropriately, as an “abracadabra”.

The question is, how many different ways are there to spell out “abracadabra”, always going from
one letter to an adjacent letter? Due to the way some letters (especially C and D) are found only in
certain rows, it turns out the only ways to spell “abracadabra” start with the topmost ‘A’ and zig-zag
down to the bottommost ‘A’. If we think of the letters as points, then any spelling of “abracadabra”
specifies a sequence of points forming a crooked line from the top to the bottom. One such line is
shown on the following page.



You can also think of this problem in terms of a network of streets in a city where all blocks are the
same size. Then the problem becomes one of computing how many ways there are of getting from
the northern corner to the southern corner in the minimum number (}0) of blocks. (That 10 is the
minimum can be seen from the fact that each block, in addition to taking us either east or west,
takes us southward one-tenth the total southward distance between the two corners.)

X
>

It was decided empirically (i.e., by taking a vote) that there were more than 100 paths, but
there was disagreement over whether there were more than 1000, so Pélya proceeded to approach
the problem by more formal methods. He began by emphasising an important maxim which you
should always consider when working on any problem: “If you cannot solve the proposed problem,
solve first a suitable related problem!’ In this instance, the related problem is that of computing how
many different paths there are from the northern corner to various other corners, still travelling only
southeast and southwest. For starters, there is only one path to each of the corners on the northeast
edge, namely the path consisting of travelling always southeast and never southwest. Similarly,
there’s only one path to each of the corners on the northwest edge. We note these values by writing
them next to the corners involved.

Now what about the corner marked with a %? You could get there by going one block southeast
followed by one block southwest, or by going first southwest and then southeast. Similarly, to get to
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the corner marked %%, you could go southeast, then southwest twice, or you could go southwest, then
southeast, then southwest, or you could go southwest twice and then southeast. Moving down the
diagonal this way, and (by symmetry) the corresponding diagonal on the eastern side, we can fill in

some more values.

Had we tried to go much further like this, it would probably have gotten tiresome, so instead
we came up with a general observation regarding an arbitrary corner, such as the one marked 2
above. If we know that there are ¥ ways to get to the corner just northwest of 2, and ¥ ways to get
to the corner northeast of 2, then there are ¥+% ways to get to 2, since to get there we must first get to
either ¥ or §, after which there’s only one way to continue on to z. For instance, there are 3+3=6
paths to the corner marked %. This general rule provides us with an easy way to finish computing
the number of paths to the southern corner. The first homework assignment was to complete this
computation. Not surprisingly, everyone got it right. For the record, here it is.

The numbers we've been computing are known as binomial coefficients, for reasons we'll get
to eventually. The arrangement of numbers, when cut off by any horizontal line so as to form a
triangular pattern, is known as Pascal’s triangle. (Pascal referred to it as “the arithmetical triangle”.)
The numbers are uniquely defined by the boundary condition (the I's along the edges) together with
the recursion formula (each number not on the edge is the sum of the two above it). In addition to
this recursion formula, which defines each number in terms of earlier ones, there is another way to
look at the situation. Here’s a small chunk of the street network we've been working with:




Suppose we want to know the number of different paths (of minimum length) from the origin 0 to
the starred corner. Each such path must consist of 5 blocks, of which exactly 3 go to the right (as
seen from above). If we specify which 3 of the 5 blocks will go to the right, we uniquely specify the
path. For instance, if we choose the 1%, 4th, and 5th blocks, we get this path:

o

*
AN \

Conversely, each path from 0 to % specifies a unique set of 3 blocks that go to the right. So the
number of paths is the same as the number of ways of choosing 3 blocks out of the total 5. Euler’'s
. . . ) . n . .
notation for this sort of thing is (3) or, in general, (;), denoting the number of ways of choosing a
subset of size r from a set of size n. This is usually read “n-choose-r’. (Another name often heard
to describe this value, but now falling out of favor, is that due to Jacob Bernoulli: the combinations

of n elements taken r at a time.) Computing this value is the first problem of combinatorics.

Next we come to some basic rules for working with multiple sets. The rules are fairly simple
(as basic rules are wont to be), but are nevertheless very important (again as basic rules are wont to
be). First off, suppose that out of a set of possibilities, A, it is possible to choose any one of m
different elements. From another set, B, it is possible to choose any one of n elements. We wish to
select an element from either A or B; we don’t care which, Assuming A and B have no elements in
common, there are mtn possible choices.

Next, suppose the elements of A are @),8,,.. ., a,,, and the elements of B are b;,bo, ..., 6,
We wish to select a pair of elements, one from each set, in a specific order (say, first one from A and
then one from B). This operation is known as the Cartesian product of the two sets, due to its
relationship with the rectangular (Cartesian) coordinate system. For instance, if A has three elements
and B has two, there are six possible pairs: (&;,8)),(a;,b3), (a2,6), (a0,b5), (a2,8)), and (a&J. In
general, there are men possibilities.

Finally, take a more general case of the Cartesian product. Suppose that, having chosen @,,
we then have a choice among a set of elements by),by9, ..., bj,. If we start by choosing a@,, we then
have a choice from a different set: by, bag, ..., bon, and so on. In general, the possibilities for b
differ depending upon our choice for a, but there are always n of them. As long as the number of
possibilities for 6 is constant, the total number of pairs (a,.b}) is still msn. We’ll see an application of
this in a moment.

A permutation is an ordering of a set of objects. For instance, given the set of three numbers
{1.2,3}, we could order them in any of 6 different ways: {1,2,3},{1,3,2},{2,1,3},{2,3,1},{3,1,2}, or
{3,2,1}. The number of different permutations of n elements is denoted by P,. Hence Pg=6. We
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also see fairly easily that Py=1 and Pa= 2. At this point Pélya brought up another important
maxim: “The beginning of most discoveries is to recognise a pattern.” There is a pattern to the three
numbers we’'ve got so far; to make it more apparent, we can rewrite them as follows:

Pi=1l=1
Po=2=1+2
Py=6= |23

L7 B o

We conjecture that Pp,=1.2.3..... as This product is called n factorial and is usually written
“n!”. Now we need to prove our conjecture. Well, suppose it's true that P,= n!/. Then what would
Pps) be? It is the number of ways of ordering nt | objects. The n+1% object could be in any one of
n+ 1 positions. Whichever position we choose for it, the remaining n objects can be ordered in any
of P, ways. Using the generaiisation of the Cartesian product rule, we conclude that the total
number of ways we can order n+l objects is (n+1)*P,. Therefore, if Pp=1.2. 3. ...+ n, then
Pt =1 @ 273 . n.(n+l)=(n+1). But we know that Py= 3!, so taking n=3 we conclude that
P,=4! Knowing this, we can take n-4 and conclude that Py =5! and so on. For any finite n, we
can prove that P, = n! by starting at Ps and chugging away for a while. This method of proof,
which Poélya describes as “a diabolic way of proving things”, is called_mathematical induction. It is
extremely useful since it saves you from having to figure out the formula you're proving. If you can
make a “lucky guess” as to what the answer is, you may be able to prove it by induction.

January 10.Pélya began the lecture by reviewing the material from the previous lecture. In doing
so he brought out some points that hadn’'t been explicitly stated before. First, there’'s the formal
definition of the binomial coefficients:

Boundary condition: (5)=(7)=1

Recursion: (":') = (:,) + (:). [n and r integers, O<r<n+1]

Similarly, P, can be defined by boundary conditions and recursion:
Boundary condition: Pi =l =]
Recursion: Pn= n!/ =nP,,.
If we apply this recursion formula with n=1, we find that Pi =1*Py. Hence we define Po = Ol =1.

From here, we move on to look at something called a “variation”, a word you may immediately
forget. It is defined as follows. Given a set of n objects, we wish to choose .of them in some order.
That is, choosing the first object and then the second would be considered different from choosing
the second and then the first. How many such variations are there? One approach is to start by
" choosing some object to be the first one selected. There are n choices. For each choice, there are
n-l choices for the second object. Thus, by the product rule, there are n{n-1) choices for the first
two objects together. For each such pair, there are (11-2) objects remaining from which to choose the
third object. So there are n(n-1Xn-2) choices for the first three objects. Continuing in this manner,
we find that there are n(n- I)(n-2) . . . (n-r+1) variations.

We can often learn something by solving a problem in two different ways, so here’s a second
approach. We first choose the subset of r objects from among the m. We know there are (:) ways to
do this. We then choose the ordering for the r objects. We know how many ways there are to do
this, too; it's P,. So there are (:)'P, variations. But this answer must be the same as the one we got

the other way. Therefore (})*P, = n(n-1Xn-2) .. . (n-rtl). Thus we learn something new:



(n) _n(n=1}n-2) . . . (n-r+1)
r vI

_nn-)n-2) . . . (n-r+1)

1¢2¢8e. . 01

(Note that, in the second form, the sum of ‘corresponding’ terms in the numerator and denominator
is always n+ I; this is a useful mnemonic for remembering what the last term in the numerator is.)
For example, the number that we computed for the first homework assignment is (5 , which is
(10:9:8+76)/(1 @  2:3°4*5) =(]0+9+7+6)/(1+3¢5) = (29+746)/3=2+9+72= 252 It's always a good idea to
test out a formula on some special cases where we already know the answer, so let's look at (:) and

(8). We have

my_n(n-Hn-2) .. .1
) 1¢2¢3¢...en

which, since the numerator and denominator have all the same factors, albeit in different orders,
. n . .
indeed equals 1. (0), however, poses a bit of a problem, since the numerator has no factors. By

defining the product of zero factors to be equal to I (just as O! =1) we find that (3)-1 as expected.

Another way to get this explicit form for the binomial coefficients is by using mathematical
induction. We assume it's true for small n (we can check this by hand) and then show that, if it's
true for n, it's true for nt 1. The first problem on the second homework assignment was to carry out
this proof. Here it is: We assume that, for some value of n,

(") - n(n- Hn-2) ... (n-r+l1)
r 1 ¢2¢3 6., 0y

for all values of r. Substituting r-I for r, we find

_n(n-1}n-2) . . An-r+2)
1.2¢3¢.... ()

n
(.
By the definition of the binomial coefficients, we know that

MY+

_n-1Xn-2) . . . (n-rt2) . n(n-1)n-2)...(n-r+1)

1.2.3.. .00 1:2:3+. .. 47
_n(n-if(n-2) ... (nrt2) o v n(n-0)(n-2) . .. (n-r+l)
I @ 2¢3¢. . o(r-I)rr 1 @ 2434, .o

_nn-l(n-2) ... (n-r+2) . (r + n-r+1)
| A S 2 I 4

_ (n+ Dn(n-1)}n-2) . . . (n-rt2)
I e2¢30, o7

which is the formula we're trying to prove (with nt I substituted for n). Hence, if the formula is
true for n, it's true for nt 1. This, combined with the fact that it's true for n=1, means it is true for
all finite n. (Actually, there’s a minor flaw in this proof. To wit, the recursion formula cannot be
used to compute (;) or (8). since it would involve coefficients outside the range 0 S7< n. However,
we've already shown separately that these two special cases satisfy the formula, so we're all right.)

A more compact way to write the formula for the binomial coefficient can be derived by
multiplying both the numerator and denominator by the factors (n-r), (n-r-I), and so on down to 1.
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" n(n- n=-2) ... (n-r+ De(n-rfn-r=1). .. 2+l
L o280 o) (l 20, .. ¢ (n-r-1) *((n-1)
n!

r(n-r)

Notice that, by this formula, it is immediately apparent that (:)-(,:,)- This was to be expected,
since by the method of its construction Pascal’s triangle i§ clearly symmetric.

Next, we consider m houses. They are built identically, because it's easier that way. But then,
to make them look different, they are painted different colors: r of them are painted red, s of them
yellow, and the remaining ¢ of them green. In how many ways can we assign the colors to the
houses? We first choose which houses will be painted red; there are (:) ways to make this choice.
Whatever choice we make, there are n-r houses left, of which we choose § to be painted yellow; there
are (";r) ways to do this. At this point we have no choices left to make, since all the rest must be
green (that is, r+s+t=n). So what do we have? By the product rule, there are (:)(";') ways to paint
the houses, Using the formula we worked out a moment ago, we find

myM=Ty n! . (n-r)/
() M n-r)) s n-r-s)!.

But n-r-s-t, and the (n-r)! factors cancel, leaving us with

n!
st

which is, fortunately, symmetric with respect to 1,5, and «(The alternative to its being symmetric
would be for it to be wrong, since the original problem was symmetric.) This sort of formula is
called a multinomial coefficient.

l 3 l Generating Functions

Generating functions are a general mathematical tool developed by de Moivre, Stirling, and Euler in
the I8th century, and are used often in combinatorics. As usual, we start with a concrete example:
In how many ways can you change a dollar? We'll assume we’re dealing with only five types of
coins-pennies, nickels, dimes, quarters, and half dollars.

We first consider how many pennies to use. We could use one, or two, or three, etc., and of
course we could use none. We can show these choices pictorially:

o] O WO OO -

Similarly, we have an infinite number of choices as to how many nickels we use (although for almost
all such choices we’ll have more than a dollar already), and how many dimes, and so on:

] O OO OO -
] ® O BB -
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In giving change for a dollar, or for any other amount, we are effectively choosing exactly one ‘heap’
from each of the five rows. Within each row, we’ll represent the fact that we are choosing a single

element by writing the row as a summation:

]+ @+ QD+ DD+

Next, we represent the combining of the choices from the various rows by writing the product of the
rows (the reason for all this will be seen shortly):

[0+ 00+ OOD+ * ([1+@+ OO+ OOE +++)
([0 OD  OOD )« (110 OB OB+
(000 QDO -

Now, why did we do this? Well, if we look at the infinite product we've created, we find that each
term in the product is the product of five terms, one from each of the sums. Thus, each term of the
product corresponds to a different combination of coins, and if we look at all the terms of the
product, we'll find they include all such combinations.

But we don’t want all combinations; we just want the ones that add up to a dollar. Pélya
introduced the symbol x to represent 1¢. So, for example,

oooNT

- 55_ 10
05 50 XX x,and

Elwco-l.

Our product can now be written more mathematically as follows:

50, .7 100,150, )

0, x4 ) T TR T4

(Texextexs 042 %% O T Qa0 ™ ) (e
For example, one of the terms in the product will be x3°x5°xm'l°xm, which corresponds to the
combination of coins consisting of 3 pennies, | nickel, 2 dimes, no quarters, and 1 half dollar. When
the five terms, one from each infinite sum, are multiplied, the exponents add; this is just what we
waht, because it means the exponent (in our example it's 78) is the total value of the selected coins.
So for each combination of coins totailing one dollar, there will be a term in the product with an
exponent of 100. If we combine terms that have the same exponent, we get something of the form

00

ltE,x+E2x2ta..+me' t....

January 12. All we need to do is find the coefficient Ejgo. But how do we do that? We could try
multiplying out the infinite product, but this would probably take a while. Instead we use what we
know about series, and in particular about geometric series.

Consider a typical geometric series: ltxtx?exd. ... What does this series sum to?
Why, S, of course. Now take S times (i-x).

S(I-x) m 1 +x+ x4+ 2%+ ..
—x-xfoxtowt-
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So S=1/(I-x). Similarly, It®t %%+ x5t ...« 1/( I-x”). Our infinite product thus simplifies to
the somewhat more compact form

1
(1-x) ( 1=")( 1=3¢" O 125 1)’

which we can turn back into a series in powers of X, even though we don’t yet know the coefficients
numerically, as

2z E,x"
n=0

Such a summation, in either form, is called the generating function for the sequence EO,E|,E2,....

So far so good, but we don’t seem to be any closer to computing E;o than we were before.
Once again we’ll try first solving an easier related problem. In fact, we'll set up a sequence of
problems leading to the one we're interested in.

. § Apx"
(l-x) n=0 "
l [l

B

1
(1-x) ( 1=2")( 1-2'7)

0
=2 Cpx"
n=0

| 4 n
(1-x) ( 1=x2)( 1=x'") 1-x?°) Ea Dy

| a n
(1= )12 12 O 1 oK 1) nz-:o Enx

We already know that A, = I for all n 2 0. What about B,? We take the second equation above

and multiply both sides by 1-x> The left side becomes 1/(1-%), which is series A.

Ms

00
Ax" = (l—xs)(% B.x")
n-

n=0

"

(3 By - (3 B,a™"
= B X - n+
no " ) (n§I Bpx™)
What does it mean for these two sums to be equal? Since they must be equal for all values of X, it
means that the coefficients of x" must be equal for all n. On the left side the coefficient is simply
A,. On the right side, the first summation contributes a term of B,x", and the second summation
contributes -Bp.sx" (coming from multiplying (-%%) by B,_sx"3). Therefore

Ap=By-Bps

or, rearranging things,

Bp=Ap+ Bps.



- 10 -

By the same reasoning we can also find that

Cn = Bn + Cn-l(l
Dn =Cp+ Dn-25
Eﬂ = D" + En_so.

For boundary conditions, we know that none of the series has any terms with x" for n<0, and so
A,=B,=C,=D,=E, =0 for n<0.Also, we know that A,=1 for all n20. Armed with this information,
we can compute B, for n20 by using the recursion formula we’ve just worked out. For instance,
Bo=Ag+B_y=1+0=1, By=A +B_;=140=1,..., By=A+Bo=1+1=2, etc. Once we've worked out some of
the B’s, we can start computing C’s, and so on. Even so, working all the way out to Ejpo by hand
could be time-consuming, though it wouldn’t take long using a computer. But we can save a lot of
effort by observing that we don’t need all the intermediate numbers. To compute E;go we need to
know Eeg, and to compute that we need E,. We also need D g, Deo, and Do. To compute those, we
also need to know Dyg and Dog, and so on. So if we plan ahead a little bit, we can compute only
those elements we actually need,

Pélya demonstrated the process by beginning to fill in a table with n= 0, 10,20, ..., 100.
The second problem on the second homework assignment was to finish the computation and find
Ejno. (Pélya also provided as a hint that Es, happens to be 50.) He failed to point out that some
intermediate multiples of S-would also be necessary, but everyone seemed to figure that out anyway.
The following table shows the minimum number of entries that need to be filled in to get the final
answer of 292. (Some of the entries, such as Bgs, and Bgs, could be left out by observing (and
proving) some simple patterns, such as By=A,+By.s=A,+(A,5+B,_10) =2+B,_yo for n210, but
we’ll work them out anyway.)

n 0 10 15 20 2 30 3% 40 45 5 5 60 65 Y0 Y5 80 85 90 95 ]0O
B, | § 4 5 6 7 8 9 10 U 12 I3 14 15 16 17 18 19 20 2
Cn | 4 6 90 12 16 20 2B % % 42 49 5% 64 12 8 100 121
D, | I8 49 121 242
E | 50 202

3

Here is a summary of some of the more useful rules regarding generating functions. Suppose
we have two generating functions:

; g(x) =agtayxtawxit. .. .ax"... .
v mbg o+ byx o+ box? b
Then:
(1] g(x) = h(x) aa0=b0,a,=b,,a2-b2. etc.
2] glx)+h(x) = (ag+bo) t (@) +b)x +.. +(ap+by)x"t ..
[3] g(x)'h(x) - (aobo t aob,x t a0b2x2 IR

aybox t aybyx® t ajbox® . .
Aagbox® taosh; x% + agbox? +....

U
= (aobo) + (aobl +a, bo)x t (a0b2+a| 6, +02b0)x2 t.-.
g
=Cp . )X . CoX" t ot CpXT e,
where ¢y is defined as =agbyt @by +a2b,,_2 + ... tayb,.

January 17. Generating functions worked well on the problem of changing a dollar, so let’s try
applying them elsewhere. We'll start with something we already know about-binomial coefficients.
Suppose we have a set of 1 objects {¥,X9,¥s,,.,, X,}, and we wish to choose a subset of 7 objects.



We either choose x| or we don’t. As before, we’ll represent this choice by a sum of the possibilities,
(x,%x,"), or simply (14x,). Similarly we have (I+%o), (14xs), and $0 on. We again represent the
combination of choices by a product:

(T4 X Hexo)(14x3) . .. (14%,).

Each term of this product constitutes a selection of exactly one term from each of the n sums,
corresponding to a selection of some number (not necessarily 1) of objects from the original set. For
instance, if we choose the X; from the first sum and the | from each of the others, we get the term
X). The product comes out to

T+ + %+ x4+ %,
+ X Xo 4+ X Xq + XoXg . . L Xy Xy
. XypXoXg , X XoX4 4+ 0+ XpoXp 1 Xp

+ XyXoXg ... Xy
The number of ways of choosing, say, two ¥’s is the number of terms that contain exactly two x's.
So let all the ¥; be equal; that is, let X|=Xyo=Xg= . .-=X,=X. Then

() 1) Daxeg) . oo (L4xg) = (142)" = ap + @)% 402° + -+ 4 g

ag is clearly 1; what about @;? It is equal to the number of terms in the product that contain exactly
one %, which is therefore the number of different subsets of size I. Hence a,-(':). Similarly,

a,= the number of different subsets of size 2-(;). and so on. For that matter, a0=l-(8). We can
summarise all this in one handy equation:

(l+x)" = 3 Ot
k=0

This is called the “binomial formula” (because l+X is the “basic” polynomial of two terms); hence the
name “binomial coefficients”.

Pélya next brought up a third maxim: “If you have a general formula, try it out on some
special cases,” One special case is ¥= 1. This gives us

=@+ (N +Q+ -+ (),

which is the number of subsets of all sizes from a set of size n. This checks, since for each object
we have two choices-either it is in the subset or it isn’t. We have n such choices, and by the
. product rule the total number of possibilities is therefore the product of n 2’s.

Another interesting special case, which didn’t come up in the lecture, is that of ¥=-1:
n n n
0" = () - ()t Q)=+ t (-1)"Q).
That this sum should be zero is obvious when n is odd, due to the symmetry of Pascal’s triangle.
When n is even, however, the above result is less obvious, so this identity is worth noting. Note in

particular that, substituting the value n=0, we can deduce 0° must equal 1.

Next, let’'s consider the combinations of n objects_with repetition taken r at a time, which we’ll
denote by Rﬁ"). We can also think of it as having n kinds of objects, with an unlimited supply of
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each, from which we wish to select r objects. Let’s find the generating function for this.

Just as when we were looking at ways to break a dollar, we can have no ¥;’s, or one %, or
two, or three, etc., and we'll write this as the sum l+x;+%,%,+%;x%;+- . . , and similarly for each ¥ in
the set. We take the product,

(T2 420 42 X X+ 00 ) o (T4XoXpXo+XoXoXod ot ) o oo (14X, 42X X +X X Xt - <+ ),

so that, as usual, each term of the product corresponds to one of the possible selections. We're
interested in the selections that include exactly r x’s (not necessarily different x’s), and we don’t want
to distinguish among the x’s, so we let ¥;=Xo=-.. =X, =%, and get

(l+x+x24x™s - )™

Each term that selects exactly r¥'s contributes | to the coefficient of X', so that's the coefficient we
want. Well, we know what the geometric series sums to, so what we’'ve got is

(—1—1?)"-1+---+R$“)x'+-~.

Let us digress for a moment and examine a useful generalisation of binomial coefficients.
Newton defined ('f) for non-integer « as

(¢)=oc(06-1)<0£—2) . (et-r+ 1)
4 1 283, 07

and claimed that, if |x|<],
o]
(1+x)* = = (Pt
£-0

for all . Newton didn't actually prove this (rigorous proofs were not recognised as being necessary
in his day), but Gauss proved it in 1812. We won’t bother to show the proof here. Using this
result, we find

(1x)" = Z (M-t

k=0
Since Rg") is the coefficient of %" in this sum, we find
R = (T)(-1)"

RENCRVCE NG S23) P
I @ 223 ¥

Combining the r factors of -1 with the ¥ terms in the numerator, we get

R nwe D(+2) . . . (nr-1)
: I @ 23t

= ("7,

a perfectly ordinary binomial coefficient.

As usual, we'll try to confirm this by proving it another way. Suppose we have n kinds of
objects, ¥|,%g,...,%,. We select r objects, and set them down in order of increasing subscript, with



-13%-

“separation points” every time we come to a different kind of object, For example:
X)X X OXaXoXoXo O @ . . . Ox, X,

Even if we have no X; for some i, we’ll include the separation point:
00x,00x,x,® ... Ox, X, 0

Thus we always have r objects plus n-l separation points. Once we place the separation points,
we've completely determined the set being selected. Everything ahead of the first separation point
consists of ¥,'s, everything between the first and second points is Xp, and so forth. Thus there are as
many subsets of size r (with repetition) as there are ways of selecting n-|I separation points from
among r+n-1 possible positions (without repetition). This number is, of course,'mf), which by the

m . .
)) is equal to our earlier answer.

symmetry of binomial coefficients (i.e., (})=(,.,

At this point Pblya assigned as “non-obligatory homework” two observations that had nothing
at all to do with generating functions, but were simply things that people might find interesting to
investigate. Consider Pascal’s triangle, shown (in part) below.

9 36 84 126 126 84 36 9 1
1 16 45 120 218 252 210 128 45 10 1

(Please pardon us for not showing ail of Pascal’s triangle; infinite tables use up too much paper.)
The first observation was that, for certain values of n, all of the values in row n (remembering that
the top row is row 0) except the first and last elements are divisible by 7. For instance, in row 7, we
have 7, 21, and 35. Pélya pointed out that this happens whenever n is prime, and suggested it as a
topic for further thought. Well, let’s think about it.

Why should (%) be divisible by p whenever p is prime and O<r<p? For the answer, look at
the formula for (f).

¢ - plp-1Xp-2) . . . (p-r+1)
B 1«23, 07

Note the factor of p in the numerator. Since p is prime, it's not going to cancel out against anything
in the denominator unless it's another p. And the denominator won’t include a factor of # unless
r=p. (At the other end, if r= 0, the numerator has zero factors, so the factor of p never occurs at
all.) Hence for 0<r<p, the factor of p cannot be cancelled out, so the resulting value must still have
a factor of p. (This is somewhat informal, but a more rigorous proof would require a bit too much
number theory.)

An interesting corollary to this is that, for p prime, the sum of all the elements of row p must
be 2 greater than a multiple of p, since all the numbers except the two I's are multiples of . But
we already know what the sum is; it's 2%, So we've proven that
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2P-2 is a multiple of p for any prime p.

This happens to be a special case of Fermat's theorem (1640) which states that, if p is prime, then
al-ais a multiple of p for any integer a. The proof of this general theorem again requires more
number theory than we want to go into here, but the special case for @=2 can be derived directly
from combinatorics, as we’ve just seen.

The second aspect of Pascal’s triangle suggested for further study was the number of odd
numbers in each row. Starting at the top, we count 1,2 2, 4, 2 4, 4,8 2 4,4 ... odd numbers per
row. What is the pattern here? Several people observed that ail of these numbers are powers of
two. A few people even determined that the exponent is equal to the number of I's in the blnary
representation of the row number, n. That is, row n of the triangle contains exactly 2 ) odd’
numbers, where ¥(n) denotes the number of digits that are I's in the binary (base two) representation
of n. For instance, 9;9= 10015, which contains two I's, so row 9 should contain 2°= 4 odd numbers.

It does: 1,9, 9, and |.

Proving this is somewhat difficult, but for those people who are interested we shall attempt to

present a proof that does not make use of any non-obvious results from number theory. If you're

not interested, you can skip down to the discussion on polygon dissection (starting on page 17). If

you'd rather see a more formal treatment of the problem, try [Knuth], vol. I, section 1.2.6, exercise
10e (the answer is in the back of the book).

The proof starts by proving a more general result—a rule for determining whether (:) is odd
for any given n and r. First, we'll introduce the ndtation |x] to represent the largest integer less than
or equal to ¥. That is, if [%]= It, then k is the unique integer satisfying the condition kSx <k+1.
For example, [n]=3,[7]= 7, and [-n)= -4 (not -3)). (The notation [x] is also used, but [%]is
generally preferred these days as being somewhat more mnemonic, particularly when it's used in
conjunction with a related function denoted by l'x].) Next, we state without proof the following
lemma: If an integer k can be written in the form

a, 'dn KN ‘a[

k =
b| ‘bn'bq N ’

where ail the a’'s and b’s are integers, then: (l) If the u’s contain more factors of two than do the b’s
(this is not the same as the number of even numbers since, for example, 24 counts as 3 factors of
two), then & is even, since not ail of the twos in the numerator will be canceiled out. (2) If the u’s
and b’s contain the same number of factors of two, then % is odd, since ail of the twos will cancel,
leaving a product of odd numbers in the numerator divided by another product of odd numbers in
the denominator. (3) The b’s cannot contain more factors of two than do the u’s, since & could not
then be an integer. These assertions are, we hope, intuitively obvious; rigorous proofs require too
much number theory to be included here.

At this point we'’re ready to state the main theorem we need for thlls agIHIYSlS It is this: If n is
even and r is odd, then ( ) is even. Otherwise, ( ) is even if and only if (lrl"i is even.

To prove this, first consider the case where n is even and r is odd. We have
( ). n(n-l)(n-2) . .. (n-r+ 1)
1 +2. 3 LI 4
. (n-)(n-2) _(n-r+1)
rl o 2. 3'... o (r-1)

n -
- .r-(’:_
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(To justify this com';')letely we must observe that, since r is odd and 0sr<n, we know '0<r-l<n-l)
Now let @;=n,a9= (, }) and b;=r. Since n is even and r is odd, regardless of what (,_ ) is (it's an

integer; that’s all that counts), the lemma tells us that a,a2/b| (,) must be even.

Next we’ll consider the tricky case—n and r both even. We again start with

) - n(n- 1Yn-2) ... (n-r+1)
Y le2Z2e3e. . 0

We observe that the factors (n-l), (n-3), ., (nr+l) are all odd, as are 1,3,5,..., (r-1). By the
lemma, these factors can be |gnored so far as the even/oddness of (:) is concerned. This leaves rf2
terms in both the numerator and denominator, ail of them even:

n(n-2)(n-4) . . . (n-r+2)
QedgoeBe...0r

We divide each of the terms by two, which doesn’t affect the value of the number since there are
the same number of terms in the numerator as in the denominator, and are left with

m(in-1)(n-2) . . (n-br+])
1e2¢3e. . 0w -

All we've done is throw away some factors that were odd (and therefore contained no factors of two),
and divided out an equal number of twos from top and bottom, so by the lemma this new number is
even if and only if the original number, () was even. But this new number is simply (r/.,) Since,
for k even, | k/2])=(k/2), we have proven the theorem for n and r both even.

Next, suppose n and r are both odd. Then by our earlier reasoning we know
()= ( D.

Since n and r are both odd, the lemma tells us that () is even |f and only if ( ) is even. Bu't n-1
and r-1 are both even, so this is the case we've just shown: (r ,) is even if and only if ((: .);E)

even. Since, for k odd, | k/2]=((k-1)/2), we have proven the theorem for 1 and r both odd.

Finally, suppose n is odd and r is even. Then we know n ¥#r, so we can multiply (:) by
(n-1)/(n-7) to get
n_ . (n-1)}n-2).. .(n-r+1)}n-r)
n-r [-¢2-3e i 07

n m-l
E(')'

) =

-1
Since n is odd and n-r is odd, the lemma tells us that (:) is even if and only if (",. ) is even, and the
theorem quickly follows as in the other cases. We therefore have finished proving the theorem.

So much for the hard part. Now let’s use the theorem to get our final result. First, two
observations regarding the binary representation of a number n: (1) n is even if and only if the last
binary digit is a zero; (2) the binary representatlon of |_nl2_| is the same as that of n except the last
digit is removed. So by our theorem, () is even if the last binary digits of n and r are 0 and |,
respectively. |If thls |s not the case, then we look at |n/2] and |#/2). If their last digits are 0 and I,
respectively, then (r v/ ) s even, and hence () is also even. Otherwise we look at [({n/2])/2] and
L(Lr/2]/2), and so forth. But wait a moment; the last binary digits of |n/2] and |7/2} are simply the
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next-to-last digits of n and r, and the last digits of [{({n/2])/2] and [([7/2))/2] are the third-to-last
digits of n and r, and so on. So (:) is even if, in any digit position, the binary representations of n
and r contain a 0 and 1, respectively. And what if they don’t? Then we continue discarding digits
off the ends of the binary representations, and eventually are left with nothing but zeroes. Since
(g)=l. which is odd, (:) must also be odd.

For example, 45,9= 101 1015, and 20;9= 10100, Since the latter contains alin the"fsifth
digit from the right, whereas the corresponding digit in the first number is a 0, we know that (y) is
even. On the other hand, since 12)5= 1100y, which contains zeroes wherever 45 does, we know that

(?;) is odd. (Feel free to check these results; we did!)

Okay, we're almost done (finally!). How many numbers in row n of Pascal’s triangle are odd?
This is the same as asking how many numbers r between 0 and n (inclusive) have zeroes wherever
n has zeroes in binary notation. How many such r are there? Well, ’s binary representation must
have zeroes wherever n’s does. Wherever n contains a l, however, r can contain either a I or a 0.
We don’t have to worry about making r larger than n since, even if we put I's in all such positions,
all we get is n itself, and that’s the largest we can possibly make 7. So, letting ¥(n) represent the
number of I’s in the binary representation of n, there are exactly ¥n) binary digits in r that can be
either 0 or 1, and the rest of the digits must be 0. By the product rule we have 2'(") possible values
for r, and therefore there are exactly that many odd numbers in row n of the triangle.

There’s a completely different approach to this problem. It involves looking at the pattern of
even and odd numbers. If we represent an odd number by a e and an even number by a blank,
then the top 64 rows of the triangle look like this:

Notice that the pattern in the top 32 rows is duplicated on both sides in the next 32 rows, with
nothing but even numbers in between. You might like to give some thought to how you might go
about (a) proving this replication pattern in general and (b) using it to prove that row n contains
2" 5dd numbers .

Enough already about Pascal’s triangle! Let us proceed with the course notes.
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January 19. We wish to dissect a convex n-sided polygon into triangles by adding non-intersecting
diagonals. In how many ways can this be done? For example, a convex quadrilateral can be
dissected into triangles in either of two ways:

AYEA

A pentagon can be dissected in any of five ways:

We shall denote by D, the number of possible dissections of a convex n-sided polygon. We can
easily work out the first few values by hand: Da= 1, Dy= 2, Dg=5 Dg= 14. At about this point
it starts getting difficult, and there’s no obvious pattern yet. (If we could find a pattern we might be
able to prove it by induction.) Let’s see if we can find a recursion formula.

Take a polygon with n sides. Pick any side and call it the “base”. For instance, in the octagon
drawn below (left), we've chosen the thick edge as the base. Having selected a side to be the base,
there must be (for any given dissection) a unique triangle that includes the base (see below right).
This triangle divides the original polygon into two smaller polygons. Suppose the polygon to the left
of the triangle has k sides. Then the other polygon must have n+l-k sides, because the two together
include ail n of the original polygon’s sides, except for the base, and also the two dotted sides, for a

total of n+ | sides.

There are, by definition, D, ways to dissect the k-sided polygon. Each such dissection can be
combined with any of the D,,,., possible dissections of the right-hand polygon. So the original
polygon has D +D,, ., dissections that include this particular triangle at the base. Meanwhile, x can
take on various values, depending on what triangle actually includes the base. One particularly
strange case we'll have to watch out for is the one shown below where, once the triangle is removed,
we're left with only a single polygon of n-I sides.

There is, of course, a similar special case with the dotted diagonal going up to the right instead of
up to the left. By the rule of sums (way back on page 4 of these notes) we add the configurations
for each base triangle and get

Dy = Dp.; + DsDpy + D4Dps + ..+ DaDpagar+ ..o+ Dy.9Dg + Dn-
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This would be sufficient if ail we wanted to do was program a computer to evaluate D,, but
from an aesthetic standpoint it's not pleasing. Suppose we consider a single edge to be a polygon of
2 sides-up the edge and back along the same edge-and let Dy=1. Then our equation becomes
somewhat more regular.

D" = DQD,,_| + DgDn_z t D4D",3 t.. -t DEDVNI-l t..-t Dn-2D3 t Dn-lDZ (*)

Now then, this section is supposed to be about generating functions (in spite of ail that stuff
about Pascal’s triangle), so let's make use of them. We'll define

g(x)= Dox? + Dax® 4 - 4Dpxt 4 -,

(Pdlya describes this as “putting ail the D’s in a ‘bag’.”) Recalling the formula for products of
generating functions, we take a look at the square of g.

[g(x)lz = (?ﬁDkxk ) . (li‘oD,x' )

0

Dk Dl xk+l

n
Ms

-
{

I3

~

»

= DyDox* + (DoDy+DyDy)x® + - + + (DgDy  + DDy g+ Dy D™ 1
But from our recursion equation (%), we know

Dg = D';_»Dz
D.' = D2D3 + D3D2

D, = E)QD,,,_, + D3sDpo t ..o+ Dy Dy
and therefore
(g(x))* = Dyx? t Dyx®. ...t Dx™'t
. =-Dox* t Dox® t Dex? t Dyx® t .. t D™ t ..,
Since Dg= I, we arrive at
(g(x)? = —x* t xg(x).

Now to solve this quadratic equation. (We’ll write g instead of g(x) just to make things more
readable.) Pélya’s approach was to multiply through by 4, add x? to both sides, and move the xg
term over, with the following results.

4g% - dgxt x? = x? - 4x°
(2g-%)% = x*(1-4x)
2g -x= :t:c(l-‘iar:)’:T

o = hl15(1-4w)1)
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What sign do we want to choose for the #? If we choose ‘+', then we get into trouble, because the
binomial theorem tells us that

| -] o
(1+2)7 =1 L2 ("2,

so the leading term of g would be ix(l+ l) =X, But we know that g doesn’t have any terms ahead of
x%, s0 we choose =’ instead.

9 -ix[l-(l-ix)%]

Now let's take a moment to manipulate that square root some more.

(14 =1 ¢ 5 (et

o DU ekl o
s

) 2 OM=1X=93) . .. (1-2k+2) g by 1yt
A P T oy S A
SRR sd & & 0y,

k=2 1 ¢2¢836,.. 0k

oo & 26010 .. (4k-6)
b-2-2 itk

n

1-2x+

Hence
g =ixl2x 2 §2 [(2/2)(6/3X 10/4) . . . (4k-6)R)1x*)
If we let xt I-n,

g =1 3 [2126IN1014) . (4n-10)/(n- )"

Since Dy, is the coefficient of X" in g, we have
D, =(2/2)«(6/3)+(10/4)(14/5):... @  ((4n-10)/(n-1)),

from which we can easily compute Dy for any particular value of n. If we are computing several
consecutive Dy, we can take advantage of the observation that

-6
Dpsr = in Dm
n

and thus compute successive values in roughly constant time. [Note: This problem is in {(MPR],
vol. 1, page 102, ex. 7, 8, and 9.1

One student included on his homework paper a continuation of the above analysis. Rewriting
the formula as

_2:6:10. .. @ @ni)
2.3.4.@5@5@.(”']),

n
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he decided to look for a more compact equivalent formula. He started by extracting a factor of 2
from each of the terms in the numerator, while tossing a factor of i into the denominator.

sd A0 g

C 1. 2.38.4. ... (n)

Next he multiplied the numerator by the product 2 . 4¢6 . ... . (2n-4),andthe denominator by
02030 0 0w e s o 272 which is, of course, the same quantity.

43¢50 . o(20-5)e2"2 2446+, ., .(2n-4)
1.2.3040. .0 (nl) «1+2:30.. ¢(n-2)s2"2

D, =

The powers of two cancel, and by rearranging the terms in the numerator we can see that

(2n-4)
" (n D(n-2)
] (2n-3)
" 2n-8 (n- 1){n-2)

I 2n-3
- 2n-3 ° ‘>

Various other similar formulas are also possible, such as
D l 2n-4
n"* ( )
n-

This technique of multiplying by a factorial and a power of two in order to “fill in the gaps” in a
product of odd numbers is often useful in simplifying products, and is well worth remembering.

A summary of the problem-solving rules of thumb we have encountered so far:

(1] Start by working out the first few “smaii” cases, and look for a pattern. If you canguess the
answer, you may be able to prove it by induction.

(2] it you can’t spot the pattern, try for a recursion formula. That is, try to come up with a way of
solving any given instance of the problem by solving one or more smaller instances of the same

problem.

(3] if you've got a recursion formula but aren’t sure what to do with it, or if you’re unable to find a
recursion formula at ail, try introducing a generating function whose coefficients arethe values
you're interested in, and see whether you can manipulate it to your advantage.

With that, we’ll move on to the next section.

People who are interested in learning more about generating functions should read (Knuth],
. 1, section 1.2.9. Knuth gives additional rules for manipulating generating functions, andalso
dlscusses the question of convergence. For example, l+x+x% .. =1/( Ix) if and only if x}< 1. Two
remarks from Knuth are particularly worth noting: “... it often does not paytoworryabout
convergence of the series when we work with generating functions, since we are only exploring
possible approaches to the solution of some problem. When we discover the solution by any means,
however sloppy they might be, it may be possible to justify the solution independently” (for instance
by mathematical induction). “Furthermore it can be shown that most (if not all} of the operations we
do with generating functions can be rigorously justified without regard to the convergence of the
series.”
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4q Principle of Inclusion and Exclusion

Suppose we have a set of N objects that have various properties o,8,7,..., A Each of the objects
may have any or none of the properties. Let Ng be the number of objects that have property a.
Some of these objects may have other properties in addition to property &; that doesn’t matter. (In
fact, that’s the whole idea!) Similarly, let Np be the number of objects that have property B, and so
on. Let Ngog be the number of objects that have both property aand property ﬁ.Na-, the number.
that have properties a and 7, etc. Nggy )\ is the number of objects with all the properties. Given
ail this information, we wish to find Ny, the number of objects that have none of the properties.

The general formula for this is called the Principle of Inclusion and Exclusion (or sometimes
PIE for short), and is the following:

NO-N-NQ—NB-NA'-..“NA
B NaB B N“‘v B Nﬁa, . SN N“X
- Na61 - Naﬂs -

+ NaB‘y..)‘

We will eventually prove this (in two different ways, no less!), but first let's take a look at some
examples. After all, it looks as though we need to know a heck of a lot of information in order to
compute Ng; wouldn’t it be easier to compute it directly? As we'll see, it is sometimes much easier to
compute the various Ng than it is t0 compute Ng.

January 24. As our first example, suppose you've written 7 letters, and have addressed n envelopes
to go with them. At this point you leave the room, and someone who can’t read (e.g., a monkey)
wanders in and proceeds to put the letters into the envelopes at random, one letter per envelope. In
how many ways can this be done such that no letter is in the right envelope? Equivalently, we can
take the numbers 1,2, 3,..., n, and look at some permutation i,ép,is,...,¢,. How many such
permutations have iy # k for ail k?

To solve this using PIE, we let a be the property that i;= 1 (i.e., the first letter is in the first
envelope), B the property that lbo=2...,and A the property that in= 7. In the PIE formula, N is
the total number of permutations, which we know is nl. What about Ng? It is the number of
permutations with {; = I. Since {; must be i and the remaining n-/ elements can be in any order,
we are counting ail permutations of those n-lI elements, and there are (n-i)! of them. Similarly,
Ng =Ny =+ =Nx= (n-1)!. By the same reasoning Ngg counts permutations in which =1 and
ig= 2, with the remaining n-2 elements in any order, so we conclude that Nqg=(n-2)!, and likewise
Nay = Ngy == Ny = (n-2)!. Carrying on in this fashion, we determine that Nagy= (n-3)/,
Nafyb= (n-4)!, ..., and Nggy r= (n-n)! = O! =1.

So far so good, and these numbers are certainly a lot easier to compute than Ng. Now, how
many terms do we have that are equal to (n-2)! ? Well, each pair of properties { and 1 contribute a
term N;,,- (n-2)!; how many such pairs are there? There are n properties, so there are (g) pairs of
properties. Similarly, there are (g) subsets of three properties, each of which contributes a term of
(n-3)!, and so forth. The PIE formula gives us

No=n! - (Xn- )7 + (An=2) - (GXn-3) + ... (- "C)o!

! n! n! n_n!
n! - #__ﬁ(n-l)g t 2!(72?‘"'”’ - 3—!(72_—3)-!(71-3)! +. ..t (-1) WO!
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This should look familiar from calculus, whence we know that

2 .8
x XL XX
e l+“+2!+3!+

Our series isn’t infinite, but for n large, Nozn!e". The probability that none of the letters is in its
corresponding envelope is the number of such configurations divided by the number of possible
configurations (n/), so this probability is approximately e, which is 0.36787944 . . . , (Actually, n
doesn’t have to be very large for this to be quite accurate. When n = 9 it is already accurate to six
decimal places. This means the probability of getting ten letters each in a wrong envelope is not
significantly different from that for a thousand letters.)

Now let’s try a more complicated example. Suppose you want to know how many prime
numbers are less than 1,000,000. Nowadays you could grind it out on a computer by factoring every
number from I to 1,000,000, but there’s a method that requires much less computation. Let’s assume
you know (or can compute) the prime numbers up to 1000. Call them py,po,pa, ..., ;. Let a be
the property of being evenly divisible by pi, B the property of being divisible by pg, ..., and A the
property of being divisible by p,. Our set of size N will be the set of integers from I to N, with
N =1,000,000.In the general case, p; would be the largest prime less than or equal to vN. We'll
see later why this is so.

What is N,? That is to say, how many numbers from I to N are divisible by py? Let kp, be
the largest such number. Then (kt l)p, must be strictly greater than N, and we have

p], 2?], 3p|, ey kpl <N« (k"'I)PI
so Ng = x, where k is the unique integer such that

ks-li<k+l.
P

The notation for this, as was mentioned on page 14, is k=[N/p; ] where %] denotes the largest
integer less than or eq uai to x. So Ng=|[N/p, [Ng=[N/po), ..., and Nx=[N/p,]

’ Next we need to reaiise a fundamental property of prime numbers. If a number §f is divisible
by each of two distinct primes p, and p,, then f is divisible by the product p,ps. [Points to ponder:
Why is this so? Why is it not necessarily true if p, and p, are not both prime? Can you find pairs
of composite (non-prime) numbers for which it is true? What if p,=ps?] So Ngg=|[N/p,po ], and
SO on.

We now know enough to be able to compute Ng, but just what does that give us? Well, none
of the prime numbers >vN and < N will be divisible by any primes €vN, so they will be counted
in Ng. Ng will also count the number 1, since it is not divisible by any prime. It will nof count the
primes P|,PQ, ..., Pp» since each is divisible by itself and has thus been excluded. Most important,
Ng will not count any composite numbers. To see that this is so, consider any composite number 7,
and consider its smallest factor, p. We know p must be a prime, because otherwise it would have a
factor which would be a smaller factor of n. So n =pp, where p may or may not be prime. Since p
is the smallest factor of n, we know that p2p. Therefore n zpz, and thus p<v7n. Hence any
composite number n £ N must have at least one prime factor psﬁsm. This prime p, being
less than ¥N, must be one of the primes i P2 P .. -, Pi- Since ail multiples of these primes have

K
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been excluded from Ng, the composite number n will not be counted. And what is Nq? By the PIE,

No=N=-[N/p]-INipo]-. .- - |Nipi)
+ [N/pipa] + INIpip) + -+
- NIpipaps) - -

+(=1DANIp pops. . . i)

The first problem on the fourth homework assignment was to find the number of primes
between 10 and 100, first without using the above formula, then using it. Without it, it’s fairly
simple to tabulate the primes in an easy-to-read format:

11 31 41 61 71

13 23 43 53 73 83

17 37 47 67 97
19 29 59 79 89

and we see there are 21 such primes. Using the formula, we have I= 4 and p;= 2, po= 3, p3= 5,
and P4-7. Plugging these values in, we get

No = 100 - [ 100/2] - | 100/3]-[100/5)-| 100/7)
+ |100/6 ]+ [ 100/10| + [100/14] + | 100/15] + | 100/21 + | 100/35]
- [100/30] - | 100/42] - | 100/70) - | 1007105
+ [ 1007210}

= 100 - 50 - 33 -20 -~ 14
+ 16410+7+6+4+2
-3-2-1-0
+0

= 22.

We subtract 1 to account for the number 1 being included in Ng and conclude that there’ are 21
primes between 10 and 100. The answers match. It may seem that evaluating the PIE formula was
more work than creating the table, but that’s just because of the size of the example. Try it with
N= 1000 and see which way you think is easier! Note also that, as N increases, more and more
terms in the PIE formula will be zero, because the products of primes in the denominators wili

exceed N.

. An important variation on the preceding result can be found by taking N = n 22 and letting

Pis P2y Pa .. ., Py be, not all primes <V7, but just the distinct prime factors of n itself (some of
which may be >v7). Then N/p,N/ps, N/p,po, etc. are all integers, which means we can drop the
“L]" symbols and get

No=n-nipy - nlpy - - nlp,
+nlpipo+nlpips+ -
- nlpipaps -

+ (-Dfnlpipaps ...

| 1 I |
e n(l-——X1-—)1-—) . -,
i P»< Pm)( Ps) Al p;)
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This is the number of integers from 1 to n that are relatively prime to n, i.e., have no factors in
common with n. This is sometimes called the Euler-totient function, or simply the totient; Euler’s
notation for it was ¢(n). For example, the prime factors of 36 are 2 and 3, so

0(36) = 36(%3 = 12,
23

which tells us that there are 12 numbers between 1 and 36 that are relatively prime to 36. We can
check this: the numbers are 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, and 35.

Now that we've seen how PIE can be useful, how about a proof? We promised two proofs
eventually; here’s the first. Consider an object that has k of the properties. N counts it once.
Na+Ng+Ny+ - - . +N) counts it exactly x times. Ngg+Negay+:. .+Ng) counts it once for each way of
selecting two properties from among the k, which is just g.,) times. Nag.,+Na55+.- * counts it once
for each way of selecting three of the k properties, which is (g) times, and so on. Altogether the PIE
formula will count it 1 - k + (;)-(:) + t(:) times. But by the binomial theorem this is simply
(1-1)". which is zero if k 21. So any object with one or more properties is counted exactly zero
times in Ny, which is what we want. What if x =0, i.e., the object has none of the properties? In
that case, N counts it once, and none of the other terms counts it at all, so NO counts it exactly once.
That completes our proof.

The above proof is valid, but it's not aesthetically pleasing. The Principle of Inclusion and
Exclusion is an extremely important result in set theory; surely it deserves to be proved using set
theory instead of combinatorics! Very well, but first we must define a bit of formal logic.

January 26. Formal logic dates back to Aristotle, and is based on syllogisms. For instance, if we
accept the premises “if A then B” and “if B then C”, where A, B, and C represent assertions, then it
follows that “if A then C”. This line of reasoning is a syllogism. We can see it pictorially. First we
look at the set of objects for which A is true.

N

Now, “if A then B"” means that anything in the set A must also be in the set B, as shown below.

TR

Similarly, anything in the set B must also be in the set G:
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and it is immediately obvious that everything in set A is in set C. (As Polya put it, “If you listen to
the words, you will probably admit it, but if you look at the figures it becomes completely evident.”)

Next we consider the notion of a function. For example, f(x):xz- 1 is a function of %. Here
X is required to be a number; this need not always be the case. For instance, we could have let
f(x) = age of Xx. Here ¥ is anything that has an age, such as people, trees, stars, etc. Now we shall
apply some of this to set theory. We'll use U to represent the universe of discourse, i.e., the totality
of things in which we are interested. A, B, C, etc. will represent subsets of U, and X, ¥,%, etc. will be
individual objects in U. For any set A, we define the_characteristic function attached to A, written

A(x), as follows:

{ i if X belongs to A;

Alx) =
0 if ¥ does not belong to A.

For example, let U be the set {1,2,3,4,56} and let A be the set of divisors of 6. Then A( 1)=1, A(2)= |,
A(3)=1,A(4)=0,A(5)=0, and A(6)=1. Notice that U(x) = 1 for ail . The null (empty) set ¢ has the
characteristic function @{x)= 0 for all x.

The complement of A, which we'll denote by A, consists of exactly those objects that are not in
A. It therefore has the characteristic function A{x) =1~ A(x).

The intersection of two sets A and B, written AnB, consists of those objects that are included
in both A and B. If C=AnB, then C(x) = A(x)B(x).

The union of A and B, written AUB, consists of those objects that are in either A or B
(including objects that are in both). If D =AuUB, then the only objects not in D are those neither in
A nor in B; i.e., the complement of D is the intersection of the complements of A and B. We get
therefore that D(x) = 1 =(1-A(x)X1-B(x)) = A(x) + B(x) - A(x)B(x).

Finally, the number of elements in a set A is the summation of the characteristic function over
ail elements in U:

2 A(X).

xinU
Note: This operation works only if it is a finite_ sum, so U must be a finite set.
So we can now transform operations on sets into arithmetic operations. Let’s apply this to the
PIE. We'll let A be the set of objects with property a, B the set of objects with property 6,... , and
L the set of objects with property A. We let R be the set of objects with none of the properties
a,f, . .. ., A What is the characteristic function of N? Every element of R is in the complement of

each of the sets A, B, . . . , L. [Note: To simplify the equations that follow, we’ll use A as an
-abbreviation of A(x), except where it might be confused with the set A.1 So

R = (1-AX1-BX1-C) . . . (1-L).
The size of the set R is No, and is

EU (1-AX1-BX1-C) . . . (1-L)

x in
= > 01-A-B-C~--1L
xinU
+AB + AC+---+ KL
- ABC - -

+ ABC...L )
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=2 1 - X A - ¥ B ---

xint) xinU xinU
+ 2 AB +--

xIn_U
+ 2 ABC...L.
xinU

Since 'Eu AB, for example, is the size of the set AnB, which in turn is the set of objects with both
xin
properties a and B, this is the same as Nag in our earlier notation. So we find that

S RN(®) =Ng=N-Ng-Ng-Ny----Ny
xinU
+ Nap + Nay + Ngy . .. . Nir
-Napy - Nags - - -

ES Naﬂv).

That’s it for PIE. We'll be seeing more of it later on.

Stirling Numbers

We now come to a somewhat esoteric set of numbers called Stirling numbers (after mathematician,
James Stirling). There are two kinds of Stirling numbers; they are called, appropriately enough,
Stirling numbers of the first kind and Stirling numbers of the second kind. We’ll start with the

second kind.

We define S: to be the number of ways to divide a set of size n into kK non-overlapping,
non-empty subsets whose union is the whole set. Such a division is called a partition into k subsets.

Incidentally, you should be warned that there is no “standard” notation for Stirling numbers.
The notation we’ll be using is one of the more common ones, but if you read any texts on this
subject you should be prepared to see various other notations. Among the more common notations
are S, (confusing!) and {k}

Let’'s look at a few sample values to get a feel for these numbers. First we observe that S:= 0
unless 1 £ k< n. (Obviously, we cannot partition n objects into fewer than | set, nor can we form
more than n subsets and still have all the sets non-empty.) We also observe that, if x = 1, there’s
only one way to “divide” the set. The same is true if kK = n; each object must belong to a different
subset, and the order of the subsets is not being considered. So the first complicated value is S
The set {a.bc} can be divided into {a,b} and {c}, or {a,c} and {b}, or {b,c} and (a). So S = 3. What
about S ? If we are going to partition a set of 4 objects into 2 subsets, the subsets must be either of
sizes 3 and 1 or of sizes 2 and 2. In the first case, there are 4 choices for the element in the set of
size l. The second case is a bit tricky-we’re tempted to say that there are (n) 6 choices for the
pair of objects to be placed in the first subset, but this would be incorrect. Choosing {a,b} for the
first subset is equivalent to choosing {c,d}. since the order of the two subsets is irrelevant. The
correct way to count these partitions is to look at some element, say a. It must be in one or the other
subset, and it doesn’t matter which since the two are symmetrically equivalent. Whichever it's in,
there are 3 choices for the other element of that subset. Having made that choice, we've completely
determined the partition, since the other two elements must go in the other subset. So there are
three partitions of 4 objects into two subsets of size 2. Altogether then, Sé- 7"
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. . 4

For S;. the subsets must be of sizes 2, 1, and 1. There are (2)- 6 ways to choose the subset of

size 2, and each such choice completely determines the partition. (Note that, unlike the situation
encountered in the previous paragraph, all 6 cases are now different.) So S,- 6.

Pélya drew up a table showing these values, and assigned as homework the calculation of the
Bth and 6t rows of the table. (The values were then to be checked using the recursion formula
which we’ll get to next.) Here is the table, extended through row 10.

n

S.\\k

»\ k1 2 3 4 5 6 7 8 9 10
n

1 1 8 8 8 8 8 8 ] 8 8
2 1 1 ] 8 8 8 8 8 8 8
3 1 3 1 8 8 8 8 8 8 8
4 1 7 6 i 8 8 8 8 8 8
5 1 15 25 10 1 8 8 8 8 8
6 1 31 98 65 15 1 8 8 8 8
7 1 63 381 358 148 21 1 8 8 8
8 1 127 966 1701 1858 266 28 1 8 0
9 1 255 3825 7778 6951 2646 462 36 1 8
18 1 511 9338 34105 42525 22827 5888 758 45 1

A typical line of reasoning for computing one of the above values by inspection (as opposed to by

recursion) would be the following one for &,. The three subsets must be of sizes 3, 1, and 1, or of
sizes 2, 2, and L. In the first case, we have (,)=‘IO choices for the set of size 3, which completely
determines the partition. In the second case, we have 5 choices for the element in the set of size 1,
and the remaining 4 elements must be partitioned into two sets of size 2, which we know (from
having computed S ) can be done in any of 3 ways. So there are 3+6= 15 ways to partition 5
objects into sets of snzes 2, 2, and 1; together with the other 10 we have 25 partitions.

Generating this table by inspection would quickly become tedious after about the 6th or 7th
row, so let’s determine a recursion formula for these numbers. Consider the transition from n to
n+1. For example, suppose you step into a room with n other people. Ail n+l of you are to be
separated into k non-empty groups. By definition there are SM' ways this can be accomplished. By
approaching the situation from a different direction, however we can get another formula, which
must therefore be equal to S . There are two possibilities. First, you could be antisocial and form
a group all by yourself. The other n people would then have to form k-i groups. There are S:_I
ways for them to do this. Alternatively, you could decide you feel like having company. In this case
the other n people would form k groups, and you would then join one of their groups. There are k
choices for which group you decide to join, and S: ways for the other people to have formed the k

groups, for a total of kS: possibilities. Adding the antisocial case, we find
n+| n n
S, =8, +#kS,.

This formula can be checked using the first few rows of the table, which we have already computed
by inspection. (The remaining rows were, of course, computed using the recursion formula.)

A digression: If you want a bit of practice with mathematical induction and/or this recursion
formula, try using them to prove the following pair of hypotheses for n 2 1.

S; "'2"-' -1 and s:-l = (g)
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January 31. As an example, suppose we have k different colors of paint, and we wish to paint n
houses. (Each house is to be painted a single color.) In how many ways can we do this?

The first house can be painted in any of k different ways. Independent of the color we
choose for the first house, the second house can also be painted in any of k different ways, and so
on for each house. So there are k+kske. .. ® [k =k" ways. But this includes cases where not ail of the
k colors are used; e.g., all the houses might be painted blue. How many ways actually use all k

colors?

This looks like a job for PIE. Let a be the property that no house is painted with the Ist
color, B the property that no house is painted with the 2nd color, . . ., and A the property that no
house is painted with the kth color. We want the number of ways to paint the houses such that all
the colors are used, i.e., color assignments with none of the properties a, B,..., A\ We recall from

the previous section that

No=N=-Ng-Ng-Ny----Ny
+ Ngg + Nay + Ngoy + - -+ Ny
- Nagy = Nags - -+
£ Nafy.\

N we know is k" Ng is the number of ways to paint the houses without using color *1. Since each
house can be any of (k-I) colors, Ng= (k-)*. The same goes for Nﬁ, N,, etc., for a total of ksuch
terms. Similarly, N,,ﬁ- (k-2)~, since each house can be any of (k-2) colors. There are (2) such
terms. Carrying on in this fashion, we find

No = k" = (e(k=1)" 4 (Q)o(k=-2)" = (Qo(k=3)" + - - + (= 1)(})+O"

As usual, we’ll check this formula on a few special cases, just to see whether we've made any
obvious mistakes. For instance, if k = 1 and n 2 1, there should be only one way to paint the houses
using the single available color. The formula yields No=1"=(;)*0"= 1. It checks. How about
n=1and k227 There’s no way to paint one house so as to use two or more colors (since we're
restricting ourselves to a single color per house), so the formula should yield zero.

No = x = ()elk= 1)+ (o(k=2) = (De(k=3) + +.-+(=1(})+0
k-1
= 20 (- 1 )"(:)-(k-s) (the last term in the previous line = 0 and is omitted from the summation]
P

. SR (k-s) s
:z-;o s (k-s) =1

R R D)y
Eo st (h=s=1) =)

5 ey
$=0
kS Dy
$=0
- koo (1-1)

-k oot'l
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So if k2 2, this indeed comes out zero. Note that, if k= I, we once again find ourselves relying on
0° being equal to 1. As a final special case, consider n= 0. Since 00-1, the formula turns into

No=l=() 4@ -+ + (DY
= (I-1)",

which equals zero if k2 I. Since there is no way to paint zero houses so as to use one or more
colors, this checks. If k = 0, we find there is exactly one way to paint zero houses using zero colors,
which sounds reasonable, too.

Okay, so the formula looks good. Let’s approach the problem in a different way and see if we
can learn anything. When we paint the n houses, we could do it by first partitioning the houses
into k& sets-the set of houses painted the I3t color, the set painted the 2M color, etc. We require that
each of these sets be non-empty, since each color is to be used on at least one house. Therefore
there are S: ways to partition the houses. Having done so, we then have k! ways to assign the k
colors to the k sets, so there are S:'k! ways to paint the houses using ail %k colors. But this means
that

Spek!= B = (De(k=1)" + (3)e(k=2)" - ((k-3)" + . . . + (-DA()e0" (%)

(Checking this formula for n = 5 and 6 was assigned as homework. It is a fairly straightforward
. n . . . .
procedure given the table for S! which we produced earlier, so we won’t go into it here.)

For our next bit of fun, let’s try to turn this into a generating function. It turns out that a
generating function in which S: is the coefficient of 2" is awkward. This often happens when the
coefficients increase particularly rapidly; though we don’t normally need to worry about whether a
generating function converges, it helps if it converges for at least $omeé non-zero values of Z. If the
coefficients of the generating function are growing faster than the powers of z can shrink (for z<1),
then it will not converge (i.e., the sum will be infinite). When this sort of problem arises, it often
pays to divide the coefficients by something that itself grows very quickly, namely n/. So, given a
particular value of &, we let n vary and take the summation

n
n-k n!

k2)" k-1)z)" k-2)z)"
- Lo 8 (R )G-D0r, GRS

Since S:- 0 for 0 Sn<k and since the formula (%) holds there also, we can extend the summation
to start at zero instead of k.

§—*z L8 Gl 5 G-l 3 yGB ]

on k! n-0 n! n=0

Remembering that

00 n b4 3
o R R AAEEL T
we get
© s: n | k2 ky (k-1)2 ky (k-2)z Ay 0
Z, " 'E[" - (e 4 (e o = D]
ez_lh
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That’s enough for now with regard to Stirling numbers of the second kind. Let’s take a look
at the first kind. Those of the second kind were defined using partitions of a set; those of the first
kind are defined using cycles of a permutation. So it's time to define a few more terms.

Consider any permutation of n objects. We’'ve been thinking of it as an ordering of the
objects, one of n/ possible orderings. We can instead represent it by writing the numbers 1 through
n to denote the n objects, and writing below k the number of the k™ element of the ordering. For
instance, if the first element of the set is placed fifth in the particular permutation, then we write 1
below 5. The general notation for this will be

(12 n)

iy o iy 14
For example, for n = 6, one possible permutation is

(I23456)_
356421

Here’s the important concept: We can think of this as a function mapping the set {1,2,3,4,5,6}
onto itself. For this particular permutation, f{l)=3, (2 =5, ..., and f(6) = 1. This functional
interpretation of permutations will become more significant in the next section. For now, we're only
interested in the cycles of the function. These are easier to understand if we look at the function
graphically. Extending our earlier example, we can represent the function f by using arrows to
indicate the operation; e.g., 1 —> 3 indicates f{1)= 3

The graph becomes easier to read if we separate it into its independent parts.

Q{}@

Each of these parts is called a cycle. A cycle of 2 elements (also called a “cycle of order k") represents
a portion of the permutation that, if applied & times, restores the original ordering to those elements.
In our example, there is a cycle of order 3 containing the elements 1, 3, and 6. This tells us that
SAADN =1, A3 =3, and AAA6)) = 6. Similarly, fA2) =2, fAB) =5, and fl4)= 4. Note the
advantage of thinking of the permutation as a function, which permits us to perform it multiple
times, an operation that might be hard to visuaiise in terms of reordering elements of a set. (As we
mentioned before, we'll see more of this in the next section.)

A permutation can be completely specified by showing the cycles. The usual notation for this
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involves putting each cycle’s elements inside a set of parentheses; our example would be written as
(1 3 6)(2 5)4).

This represents the mapping
(1=-383—>866—>1)2—>55—>2 @4 — 4

Note that the cycle notation is not unique. The above permutation could also be written as, for
instance, (2 5)(4)X3 6 1). But (2 5X4X3 1 6) is a different permutation, since it implies 3 —> 1
instead of 1 — 3.

The number of permutations of n elements that consist of precisely k cycles is the Stirling
number of the first kind, which we’ll write as 5:. (Another common notation is [:]. Also, some
references use S for Stirling numbers of the first kind and B8 for those of the second kind, and other
references use ¢ or other esoteric characters. As Knuth puts it, “There is absolutely no agreement
today on notation for Stirling’s numbers.” Any good reference will therefore go to great pains to
describe the notation being used; look for this description any time you’re reading up on Stirling
numbers.)

To repeat then, we’ll be using ,8: for Stirling numbers of the first kind. Let’'s look at a few
examples. For instance, when n = 1, there is only one permutation, namely 1 —~ 1, and it has a
single cycle (of order one). Therefore ,8: = 1. When n= 2, there are two permutations. One of
them has 1 =1 and 2—> 2; in cycle notation this is (IX2). The other has 1 —> 2 and 2 —> 1,
which in cyglengtation is (1 2). So there is one permutation with one cycle and one with two cycles,
and thus 8, =4=1.

When n = 3 things begin to get more complicated. If k= 1, then ail 3 elements have to be in
a single cycle. There are only two possibilities, depending on whether the cycle goes ‘clockwise’ or
‘counterclockwise’:

2 3 2 N

e} 5]‘ = 2. Meanwhile, if k= 2, the two cycles must consist of one cycle of order ! and one of order
2, since together they must include ail three elements. There are three choices for the element that is
to be in the cycle of order 1; this choice having been made, there is only one way for the other two
“elements to go in the other cycle (remembering that (IX2 3) and (I1)3 2) are the same permutation),
so there are exactly 3 permutations of three elements with two cycles. Thus ,82 = 3. Finally, if k=3,
each of the cycles must be of order . Hence each element must map to itself, and we get the
“identity permutation” (1)}2X3). Thus'zgsl.

It was assigned as homework to calculate 8: forn= 4 and 5. As with S:. the calculation was
to be done first by inspection, and then using the recursion formula to be developed shortly. Pélya
made things a bit easier by pointing out a few special cases. First, whenever k= n, each of the
elements must be in a cycle by itself. There is only one such permutation-the identity permutation.
s 0 ,8:= 1 for ail integers n2 1. Second, whenever k= 1, ail n elements must be in a single cycle.
We can “rotate” the cycle (or, if you prefer to think of it this way, we can write down the cycle and
then turn the paper) to put some specific element, say n, at the top.
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Having established this fixed point of view, we can then place the remaining n-i elements in any
order. Each such cycle will be different from the others, so we find that 5’;= (n-)! for ail n 2 1.

The third and last ‘hint’ supplied to aid in doing the homework was that, if we count ail the
permutations with one cycle, and also those with two cycles, and those with three, four, etc., we end
up counting all permutations. But we know how many permutations there are altogether. Hence

L n
2 B8, =n
k=1

for ail positive integers n.

As before, we won’t go into ail the details here regarding the computation by inspection of ,6:
for n = 4 and 5. One typical value is ,8;, which we can compute as follows. The two cycles must
either be one of order 3 and one of order 2, or else one of order 4 and one of order 1. In the latter
case, there are 5 choices for the element in the order-l cycle, and for each choice there are (by our
earlier reasoning regarding 5 ){(4-1)) = 6 ways to arrange the order-4 cycle. In the other case, we
have( )= 10 choices for the order-2 cycle, and for each choice there are 2 ways to arrange the other
elements in the order-3 cycle. So 52 56 11042 = 50. The following table shows ,8‘ for n S 8.

8,

k 1 2 3 4 5 6 7 8

n-

1 1 8 8 8 8 8 8 8

2 1 1 8 I 8 8 8

3 2 3 1 8 8 8 @ 8
) 4 6 11 6 1 8 8 8 8

5 24 58 35 18 1 8 8 8

6 128 274 225 85 15 1 8 8

7 728 1764 1624 735 175 21 1 8

8 | 5848 13868 13132 6769 1968 322 28 1

Now let’s try to find a recursion formula for these numbers. Suppose you enter a room and
find n people already arranged in cycles. If you want to be alone, you can form a cycle by yourself.
If there are to be & cycles altogether, then the other n people must beink-1 cycles, and there are
,8:_, ways this can be done. But if you want to be sociable, you can join an existing cycle. In this
case there must be k cycles already formed, and there are 5: ways this can be done. For eachsuch
arrangement, how many ways are there for you to join one of the cycles? Well, for any particular
cycle, you could step between any adjacent pair of people, so there are as many ways for you to join
as there are people already in the cycle. So ail told there are n ways for you to join the other n
people. (Basically, you can step in front of any of the n people.) Adding the two cases, we get the
recursion formula
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ml
= 8. + 18,
Compare this to the recursion formula for S:
n+l n n
S;*' = S; | +kS].

Note the different coefficients on the second terms. You might also want to test out the formula for
B by using it to prove the special cases 5;'- (n-1)! and ,8:_,-(;).

February 2. We've looked at a generating function for Stirling numbers of the second kind. What
about those of the first kind? For any particular value of n, we’ll define

Enlx) = Bix + Bx®+ Boxt 4o 4 G

(Note that we're taking n as fixed this time instead of k. We could also let K be fixed and sum over
ail values of n, getting a very different generating function, but we won’'t go into that in these notes.)
We'll start by looking at the first few such functions and trying to spot a pattern.

gilx) =x
golx) = x + x?
galx) = 2X t 3x2 t x°

Hmm, not much of a pattern there, or iS there? Let's try factoring them.

g1(x) = x =x

gax) = x t x? = x(1+x)

ga(x) = 2% + 3x% t x% = x(1+x)2+%)
Ah, that’s much better! It looks as though

) = x(x+ 1Xx+2Xx+3) . . (x+n-1).

Let's see if we can prove this conjecture. Some parts of it we can check at once. The coefficient of
2" will always be 1, which is indeed 8. The coefficient of ¥ willbe | ®  23* ... +(n=1)= (n-1)!, which
is 87. So it looks good; how do we prove it in general? Well, it's correct for n = |, 2, and 3, so let's
try mathematical induction. We'll assume that gn(x)=x(x+1Xx+2)... (x+n-1) for some value of n,
and try to prove that gu,)(x)=x(x+1)x+2) . .. (x+n).

AXx+2) . . (x+n) = [g(x)]o(x+n)

- Bt Lt B e B!
+n8ix+ngxd 4 ngxt+ -+ nBx"

- nﬁ?x + (5'|'+n5;)x2 + (5;+n,8§)x’ +0 4 (,8:_,+n5:)x" + ,8:3(:’"'

Since n8’,‘=n-(n—l)!= n! -8',"', and &= 1 -5,”,, and (most importantly) 5, ,+'n5k 5"“by the
recursion formula, we find

n+ | n+| n+ | \ n+ | |
2+ 1Xx42) ... (xtn) = 87 x4 B % 4 87 o Bt g !

= gml(x)'
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This generating function is most often shown in a slightly different form, which we can derive
by substituting (~x) for ¥ and multiplying both sides by (-1):

I"8-x) t I BY=3)T e+ ()BT = (x) (x4 IN-%42) - (=xn=1)e(=1)"

FAPAS vl 2o (=)™ Bl = (- 1)(x-2) .. (x-n+ 1)
2 i !

Note that the right-hand side can be rewritten as (:)n!.

Let’'s go back for another look at S:. Suppose we’re painting n houses and have X colors
available. In how many ways can we do this, not necessarily using ail x colors? One way to look at
it is to say that there are x choices for the color of the first house, and independent of that there are
% choices for the color of the second, and so on for a total of x" possibilities. Another way to took at
it is to start by asking how many ways there are to paint the houses using exactly one color from
among the X colors available. Obviously there are X ways. How many ways use exactly two colors?
We first partition the houses into two subsets. We then choose any color (¥ possibilities) and paint
ail the houses in the first subset using that color. We then pick any other color (x-I possibilities)
and use it to paint the remaining houses. So there are ng(x-l) ways to paint the houses using

exactly two of the x colors. Similarly, we can deduce that there are S:x(x-l)(x-2) ways to paint them
using exactly three colors, and so forth. We conclude that:

" e Slx t Sox(x- 1) t Sax(x-1)x-2) t -« . t Sra(x-1)(x-2) . . . (x-n+ 1) |

Compare this formula with the previous one; the two are in some vague sense symmetric. The
first one represents numbers of the form (:)k! in terms of powers of ¥, whereas the second represents
powers of X in terms of numbers of the form (:)k!. It was in this form that Stirling originally
developed these numbers. The expressions (:)k! play a significant role in interpolation methods,
which is one reason why Stirling numbers are considered worth investigating.

That’s it for Stirling numbers, and section 5 of these notes. For more information on Stirling
numbers, you may refer to [P-Sz] vol. 1, pp. 42-45 and pp. 224-229. (The former pages contain
various exercises, while the latter discuss the solutions.)

I 6 l P6lya’s Theory of Counting

February 2. P6lya's title for this section was actually “Counting Configurations Non-Equivalent
with Respect to a Given Permutation Group”. Just about everybody else calls it "Pélya's Theory of
Counting”. This latter title is somewhat easier to remember, though not as indicative of the content.
We'll stick to the simpler title; for the content, read on!

Since we're going to be dealing in this section with permutation groups, we’ll start by covering
a bit of Group Theory. You’'ll recall from the previous section that we have ceased thinking of a
permutation as merely an ordering of nobjects It can be more generally thought of as a function, a
transformation_of n elements. For instance, (,',,:) is a function, call it f{x), such that f{ 1) =2, f(2)= 3,
and f(3) = 1. A second permutation, say (llw) represents another function, g{¥), such that g{1)= 1,
g(2) = 3, and g(3) = 2. We shall use the notation
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to represent g{f(x)); that is, the permutation on the right is done first. This is different from f{g(x)),
since flg( 1)) = f{ 1) = 2, whereas g{f{1))= g(2) = 3. Meanwhile, g{f{2))= 2 and g(f(3))= 1, so

o3yl og o/i28
(3o 22 =(59 (k)

Recalling our cycle notation, this can be stated as

(IX23X1 2 3) = (2)(13).

Since n is small, we can look at these permutations geometrically and thereby get a better feel
for what we’re doing. Taking the vertices of an equilateral triangle as the elements being permuted,
we find the permutation (2)X | 3) corresponds to “flipping” the triangle around an axis going through
vertex number 2 and through the center of the opposite edge:

| 3

Similarly, we find that the other two permutations correspond to these rotations:

| 8
123 ..
Gsy # ~ (ii)
2 3 i 2
I ]
123
(l 32) e > (iii)
2 3 3 2

So the equation (%) simply means that if we take an equilateral triangle and flip it, as in (i), we get
the same result as if we had rotated it as in (ii) and then flipped it as in (iif). The key fact is if we
do any two transformations like this we end up with a situation that we could have achieved with a

single motion.

A group is a set of operations (in this case, permutations) such that if you do one operation in
the group, followed by another operation in the group (or possibly the same operation a second
time), the combined operation is also in the group. In our example, having picked up the triangle,
there are six ways for us to put it down. We have three choices for the vertex to be placed at the
“top”, and for each such choice we can place the triangle either “face-up” or “face-down”. So there
are six operations in this particular group. This is called the_order of the group: the number of
operations. The degree of the group is the number of objects involved; in our example the degree
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is three.

Of the six operations in this particular group, one involves “standing still”:

123
(1] 2 3!) od i

2 3 2 L

Three operations involve holding a vertex fixed and interchanging the other two (as in (i) and (iii)
on the preceding page), and the remaining two operations involve rotation 120° in one direction or
the other about the center (as in (ii)). So we have one case of the form (a)(b)(c) in cycle notation,
three cases of the form (a)(b c), and two of the form (a b ¢). We shall represent a cycle of order k by
the variable f;. (Some texts use other notations.) A combination of cycles will be represented by a
product; hence (1X2 3) is denoted by fif; and ()@)@) by f;* Finally, we add together the products
corresponding to the various permutations, and divide by the total number of permutations in the
group. Since there is one permutation of the form f; 3 three of the form fifay and two of the form
Sf3, we come up with

L+ 3ife +2fs
6

This is called the cycle index of the permutation group. We’ll be defining this more precisely later
on. It is perhaps the most important single concept in this course.

February 7. As a somewhat more interesting example, consider the rotations of a regular hexagon.
A hexagon can be rotated in various ways such that it “coincides with itself”. By “coincides” we
mean that, if the hexagon is not iabeiied in some way, there is no way to distinguish the original
position from the rotated position. Thus, for example, we do not include the rotation

O

On the other hand, we can rotate the hexagon as indicated by the arrows (below left), or we can lift
it out of the plane and rotate it 180° about either of the axes shown in dotted lines (below center

and right).

)
\
" -~
|
~
~
\

We wish to find the cycle index for this group. Well, to begin with, how many operations are
in the group? That is, in how many different ways can we rotate a regular hexagon such that it
coincides with itself? We pick some vertex and rotate the hexagon to place that vertex in the
position of our choice; there are six possible positions. Having chosen where to place that vertex,
we still have a decision left to make-we can place the hexagon “face up” or “face down”. That is,
we could flip the hexagon over or we could choose not to. Hence the total number of positions for
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the hexagon is 6x2 = 12. This is the order of the group of rotations of the hexagon.

Let us represent a rotation of the hexagon by noting which vertices take the’ places of which
other vertices. For example, the rotation

6

would be represented by the permutation

(12 3456)
23456 1"

We could use other features of the hexagon instead of the vertices. If we used the midpoints of the
edges, we'd get the same cycle index, since these midpoints form the vertices of another regular
hexagon, so we are permuting the vertices of that hexagon in the same way we are permuting the
edges of the original hexagon. If we looked at the three main diagonals, on the other hand, we’d get

a different result. --For reasons which should become clear later, We'll stick with the vertices. There
are six vertices, so the degree of this permutation group is 6.

Let us now try to find ail the permutations corresponding to rotations of the hexagon. One
such, which we must be careful not to overlook, is the “rotation” consisting of no motion at ail-the
identity permutation.

| ]
? ° ? ° 123456
- o (123458) o (1XeX34X5KE)
3 L] 3 5

As can be seen from the cycle notation at the far right, this permutation has six cycles of order 1, so
it contributes to the cycle index the term f,s. Next let’s try rotation about the center. One such

rotation we've already looked at: a rotation of 60°(2n/6 radians).

| 6
2 6 | 5
> o (égigg?) e (123456)
3 5 2 1
4 3

There is one cycle of order 6, Meanwhile, there are two permutations of this form, because we could
rotate the hexagon either counterclockwise (as shown) or clockwise. Together, these permutations
contribute the term 2fe.

Moving on, we can rotate the hexagon 120°(2r/3 radians) about its center. This time the
transposition of vertices does not take place along edges of the hexagon, so we will introduce dotted
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lines to indicate where the vertices end up.

5

123456 135X246
N © Gise19 = (1290240

2
As before, we could perform this rotation either clockwise or counterclockwise, so we get the term

of <%

Finally, we could rotate the hexagon 180° In this case, there is no choice of clockwise versus
counterclockwise, since rotation in either of the two directions yields the same permutation.

| 4
2‘5 5@3
- “ (32159 © (o256
3 5 6 2
4 R I

Here we end up with three pairs of vertices being interchanged. Each such interchange isacycleof
order 2, so we get the term fzs.

So much for rotations about the center, We could also rotate the hexagon about an axis
drawn through two opposing vertices. In this case the rotation must be through 180°% otherwise the
hexagon will not end up in the same plane surface in which it started. (We could, of course, rotate
it 0° but this is the same as a 0° rotation about any other axis, so we've already counted that case.)

6 2
123456
- o (123456 o (1x26X3 5K

Ll

Here the axis was taken to be through the vertices iabeiied 1 and 4. We could just as easily have
chosen it to be through any other pair of opposing vertices. Since there are six vertices altogether,
there are three distinct pairs of opposing vertices. Each yields a permutation that, like the one
shown above, contains two cycles of order | and two of order 2. Hence we get the term 3f|2f22.

There’s one other type of axis to consider, one drawn through the midpoints of two Opposing
edges. Again we must rotate the hexagon through 180°

| 4

123456
» & (432165) e (14X2 3X56)

-l - -

-’
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Here the axis was taken to be through the edges iabeiied 2-3 and 5-6; we could have chosen any
pair of opposing edges. Since there are six edges, there are three distinct pairs of opposing edges.
Hence we get the term 3f23.

As a check, we add the coefficients of the terms we have generated for the cycle index. Since
l+2+2+1+3t3= 12, this accounts for ail-12 different rotations. Adding everything together
and dividing by 12 gives us the cycle index for this permutation group:

L8+ 20 + 207+ 25+ 3767 + 3f°
12

Note that the six operations involving rotation about the center also form a group, since any
combination of those rotations yields another such rotation. This group is called a subgroup of the
original group of 12 rotations. The group of order 12 is in turn a subgroup of the group that is
formed by taking ail &' permutations of 6 elements.

Now, lest anybody begin to suspect that none of this has any practical application, Pélya
described an example out of organic chemistry. There is a chemical structure known as “benzene”,
consisting of six carbon atoms and six hydrogen atoms (chemical formula CgHpg). Many different
organic chemicals can be formed by substituting other atoms for one or more of the hydrogen atoms.
In particular, consider the class of compounds called “twice-substituted benzene”, CgH4XY, where X
and Y represent the atoms that have taken the place of the two hydrogen atoms removed. As it
happens, when two of the hydrogen atoms are replaced in this manner, it is possible to come up
with any of three different compounds. These three compounds have identical chemical formulas
but different chemical properties. They are called isomerides or (the more common term today)
“isomers” of each other. Chemists wondered why there are only three such isomers for any given
atoms X and Y. They conjectured that it had something to do with the internal structure of the

moiecu le.

One possibility, suggested by August Kekule, was that the carbon atoms were arranged so as
to form the vertices of a regular hexagon. Another suggestion was that they formed the vertices of

an octahedron:

v

(You can visualise this figure in a number of ways. One way is to pretend the six vertices are
positioned at the centers of the six faces of a cube. Another is to treat the octahedron as two square
.pyramids glued together along their square faces.)

A third possibility, suggested by Albert Ladenburg, was that the carbon atoms formed the
vertices of a triangular right prism, i.e, a prism with its long faces perpendicular to the ends, and

with ends in the shape of equilateral triangles.

The basic principle underlying each of these conjectures was that each of the carbon atoms should
play the same rble as any other; the vertices should not be distinguishable in any way.
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How can we decide which model (if any) is right? We'll represent the X atom by a dark circle
(®) and Y by a light circle (0). How many different configurations are there? in each model, the
carbon atoms are indistinguishable, so it makes no difference where we attach the X atom. In how
‘many distinct ways can we attach the Y? For the hexagonal model, there are three ways.

The other two positions for the Y atom are the same as the first two, merely flipped over. The
octahedral model has only two ways to place the Y atom.

The other three positions are identical to the first, except rotated about a vertical axis.

The third model is a bit trickier. No two of the five possible positions for the Y atom can be
rotated into each other without moving the X atom to a different position, so all five cases are

The reason this case is tricky is that the last two cases are exact “mirror images” of the first two.
That is, if you reflect the last two in a mirror, they will come out looking exactly like the first two.
The question is, are mirror images chemically distinct? The answer is: they are. TWo chemicals
that are mirror images of each other will have slightly different chemical properties. (In fact, if your
body were reflected like this on the molecular level, your reflected body would not be capable of
digesting ordinary food! Your food would have to be specially prepared to consist of mirror—image
proteins and other reflected chemicals.)

So what have we established? If the carbon atoms were arranged as in an octahedron, there
would be only two possible isomers of CgH4XY. If they were arranged as in a triangular prism,
there would be five isomers. In reality, chemists were able to find only three; therefore these two
models are wrong. We haven’t actually proven that the hexagonal model is correct, but we have
circumstantial evidence in its favor. (Various other methods have backed this up, and modern
chemists are essentially certain that the carbon atoms of benzene do indeed form a regular hexagon,
at least insofar as chemical bonds maintain any rigid shape.)

This analysis, which enabled us to choose among the three available models, was fairly easy.
Suppose it had been CgHyXYZy, or some other exotic set of compounds? The intent of this section
1S to come up with a mathematical method for doing this sort of analysis.

The preceding computation by which we arrived at the cycle index for the rotations of the
regular hexagon, can be summarised by the following chart.
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Expected number of rotations: 6 x 2 = 12

Axis of rotation: any cen ter cen ter cen ter two edges two vertices
Degree of rotation: 0° £60° £120° 180" 180° 180°
Radians: 0 +2n/6 +2n/3 2n/2 2n/2 2n/2
Number of such axes: 1 1 1 1 3 3

Qe

[i° ¢ 2+ 2F 4 Y+ 3%+ 3%R°
12

Let H be any permutation group. Let A be the order of H (the number of permutations in H),
and let n be the degree of H {the number of objects being permuted). We shall define h;,tci_,"_t,, to be
the number of permutations with i, cycles of order k for ail kK between 1 and n. For example, if
nes then /12.0,|‘(p.0 would be the number of permutations in H with 2 cycles of order 1,1 cycle of
order 3, and no other cycles. Note that, since each element being permuted must occur in one and
only one cycle, we know that

Tei) + 20dp + .0 + noiy,
= total number of elements in ail cycles
=N

if A4,4014.4, iS non-zero. Now, each permutation with i; cycles of order I, {3 cycles of order 2, i3 of
order 3, and so on, contributes to the cycle index the term

fillflfl L fl
Therefore the cycle index of H is

zhi,tm“.t" ‘fiillezftzt3 - ~fnt"
h

where the summation is over ail combinations of non-negative integers iy,is,...,{, satisfying the
requirement lei; + 2+ip + -+ 4+ n*iy =n. Note, incidentally, that the total number of permutations is

Zhhtzia...tq =h.

As homework, Pélya assigned the problem of finding the cycle index of the right equilateral
triangular prism, where we are considering the permutations of the vertices under rotations of the
prism. He explicitly instructed that “mirror” reflections of the prism were not to be considered.
This was primarily because such reflections, combined with rotations, can yield some rather abstruse
permutations, and the exercise was not intended to be one in solid geometry! Excluding reflections,
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we deduce that the group should be of order six, since there are six possible orientations for the
prism. (We can choose any vertex to place at, say, the far left vertex of the upper face, and in so
choosing we establish the position of ail the other vertices as well. If mirror images were allowed, we
would still have the choice of whether or not to reflect the prism through a plane running through
the upper-left vertex and the middle of the opposing face, so there would be twelve permutations.)
There are two types of axes we need to worry about. One is the axis running vertically through the
centers of the two triangular faces. The others each run horizontally through the center of a vertical
edge and the center of the opposing face.
<)

There are three such axes. Without further ado, here is the calculation of the cycle index for
rotations of the prism.

Expected number of rotations: 6

Axis of rotation: any vertical edge/face
Degree of rotation: 0° £120° 180
Radians: 0 +2n/3 2n/2
Number of such axes: -- | 3

£ <A

+ 2f? + 3f°
6

Just to see what we mean by “abstruse” rotations, let's take a look at what happens if we include
reflect the prismions in the permutation group. We can reflect across a horizontal plane (below left)
or a vertical plane (below right). There are three such vertical planes, but only one permissible

<A

horizontal plane {if the horizontal plane isn’t exactly midway between the two triangular faces, the
reflection won’t cause the prism to coincide with itself), so we get four additional permutations. But’
this gives us a total of only ten permutations, and we have already observed that there should be
twelve. We cleverly deduce that we are missing two permutations, and after a bit of hunting we
find that we can combine a reflection with a rotation to yield a new permutation. Specifically, if we
reflect the prism through the horizontal plane, we can then rotate it about the vertical axis. This is
best observed by numbering the vertices and watching what happens to them.
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I 1 s
. . pd
_3_) TN 5 o (123456) & (153426)
564231
58 2 ] | 2

There are two such permutations, depending upon whether the rotation is performed clockwise or
counterclockwise, so this accounts for the two “missing” cases. The complete cycle index for the
prism, including reflections as well as rotations, is

S AR AR RS (VAR L.

12

It is interesting to note that this cycle index is the same as that for the rotations of a hexagon. Thi s
means that, if it were possible to reflect a prism, it would be in some sense indistinguishable from a
hexagon with respect to the number of ways of marking their respective vertices. That is, if there
are w distinct ways to mark the vertices of a hexagon under some criteria (e.g., there are 3 ways to
mark the vertices of a hexagon using one X atom and one Y atom), there must al so be w ways to
mark the vertices of a reflectable prism using the same criteria.

February 9. Moving on, it's finally time to see just why the cycle index is so important. (As Pélya
put it, “The cycle index knows many things.“) Suppose we have n “beads” (or colors of paint, or
atoms, or whatever), of which r are red, § are silver, and t are tan (r+s+1=n). We wish to place these
n beads at the vertices of some n-cornered figure, such as a regular n-sided polygon. We don’t want
to consider two arrangements as different if they can be transformed into one another by rotating
the figure. In how many different ways can the n beads be placed at the n vertices?

We first find the cycle index for the permutation group H that consists of the permutations
induced on the vertices by rotations of the figure. We then take the figure inventory X + ¥ +2, in
which x represents a red bead, ¥ a silver bead, and z a tan bead. Here comes the important step:
we substitute the figure inventory into the cycle index by replacing fy with x* + 9% +z*.  Note that
this is not the usual algebraic interpretation of “substitution”! Finally, we expand the cycle index in
powers of x,9 and z. (As we'll see, we don't necessarily need to compute all of the coefficients of
this expansion.) The coefficient of x’y’z' is the number of distinct ways of configuring r red, §
silver, and ¢ tan beads (with respect to the permutation group H).

Pélya did not take the time to prove that this indeed works, nor shall we do so in these notes.
The proof is quite complicated and beyond the scope of this course. As Pélya phrased it in class,
“The proof of the pudding is in the eating. You can’'t eat mathematics, but you can digest it.” So
let's “digest” this theorem by chewing on a few examples. For our first example we'll return to our
old friend, the regular hexagon. Suppose we wish to attach one white circle, one black circle, and
four gray circles to the vertices of the hexagon. If we think of the gray circles as being “invisible”,
we can see at once that this is the same situation we had earlier with the X and Y atoms. ‘Therefore
we know that there are exactly 3 distinct ways to attach the white and black circles (and in each case
the remaining four vertices must have the gray circles). Let’s check this using the cycle index.

We start with the cycle index from page 41. Previously we had deliberately refrained from
combining similar terms, in order to preserve the correspondence between terms of the cycle index
and rotations of the hexagon, but this time, to save computation, we’ll combine such terms.

[0+ 2 H UYL HAR+ 3\ 2fo°
12

Now we substitute the figure inventory ¥ + % +2 as instructed, and get
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(ety+2)® + 2060498428 + 2 +y™+z)t + 4(x%+y7+29) 4 Uwry+2) (x 497+ 2%)°
12

Expanding this expression into powers of x,%, and z is not a tempting prospect. Fortunately, we
needn’t expand very much of it. Instead we can take advantage of an extension of the Binomial
Theorem, to wit, the Muitinomiai Theorem (shown here for three variables-the generaiisation to
more than three variables should be obvious):

n oy
(x+y+2)" = T ——x"y'2".
y rassten risi! y

1
So, for example, the coefficient of xyz'in (x+y+2)®is —6'—-, which equals 30. 2(x®+y%+2%) has

no term of the form k-xyz", nor does the third term, nor the fourth. The last term is
3(x+y+2)7(x%+97+2%)? = 3(x%497+ 274 2y 2924+ 22N 4y e 24 207y 4 2924 22 %27).

The only xyz" term coming out of that comes from 2asy~z" which, multiplied by the outer coefficient
3, gives a coefficient of 6. So the coefficient of 92" in the expanded cycle index (with the figure
inventory substituted in) is just 30 + 6 = 36. We now divide by the 12 and get a final answer of 3,
which checks.

It was assigned as homework to use the cycle index of the prism to check the number of ways
of placing one X atom and one Y atom thereon. We already know that the answer should be 5.
Substituting the figure inventory into the cycle index shown on page 42, we get

(x+9+2)% + 20c%+9%+2Y)% + 3(x%49%429)°
6

Once again we're looking for the coefficient of x‘?z". The first term yields a coefficient of 30 as
before, and the other two expansions yield no Xyz2' terms. So the coefficient of xyz‘ in the expanded
cycle index is 30, which when divided by 6 gives the expected answer, 5.

Another example: suppose we have three colors of paint, and we wish to paint the corners of
an equilateral triangle. In how many ways can we do this? First, we find the cycle index. We,
computed this back on page 36, so we won't do it here. We substitute the figure inventory ¥ + % +2,
representing the three different colors of paint, into the cycle index to get

(x+9+2)% + 3(xapr)(xi4y+zD) + 2Axdepl+2d)
6

This time we haven’t specified which combination of colors we're interested in, so we’'d best
compute ail the coefficients in the expansion. Even so, it's not as difficult as it looks, because the
expression is symmetric with respect to X, %, and z. Thus it suffices to look at the coefficients of xs,
xzy, and xyz. Every other term is symmetrically equivalent to one of these; for instance, yzz has the
same coefficient as xzy. So we proceed to fill out a little table showing the coefficients of the three
different kinds of terms in each part of the expansion.

8 2

x x%y xyz
. 3! 3 3
(x+y+2) w0~ 270> T ®
(x+y+2)(x%+y*+27) 3 3 0

2xd+y*+2%) 2 0 0
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Adding up each column and dividing through by 6, we find that every coefficient is l. It's time for
another of Pélya’s maxims: "1 f you see afact, try to seeit as intuitively as possible.” Wnat does it
mean for every coefficient to be I? It means that each combination of colors can be applied in
exactly one way. We'll see later why this should be the case.

The n!/ possible permutations of 7 elements form a group, since if you reorder n objects once,
and then reorder them again, you get yet another ordering. This group has degree n and order n!,
and is called the symmetric group. We shall denote it by S,. Let's try to find the cycle index of this

group.

February 14. Consider any single permutation. Suppose it has {; cycles of order l,ip of order
2,...,and i, of order n. The total number of elements in these cycles, as we've observed before,

must be

leiy + 20ip + -+ noig=n .

What is Riigts. 1,7 (The following proof is due to Cauchy.) We consider any permutation, broken up
into its component cycles. First we show the cycles of order |, representing each by a square.

oao... 0

We then show the cycles of order 2, representing each by two squares.

We carry on in this fashion until we’ve shown all the cycles.

l:' ig l:g in (‘ 0 or l)

\ s r~

oo...0/l4Q...o/og...|...| Tooood

Having put the permutation into this form, we note that there must be exactly n squares
involved. So we proceed to write any permutation of the numlgerg‘lto n inside the squares. For

14, ¢ 7

instance, suppose n = 9, and start with the permutation 179126853+ In the cycle notation this is
(6)(14)X39X2785), so our “square” drawing looks like this:

0 DO I

We then take an arbitrary permutation of the numbers | through 9 and plunk the numbers into the
squares. For instance, let's use the permutation: 59 12 74368

(2]7) (4I3]6]8]

If we |nter7fret this as a collection of cycles, we get (5X91)(27)4 3 6 8), which can also be written as
(076'458"“) In other words, by taking various permutations of the integers | through n and
placmg them in the squares, we can obtain a mapping from those permutations onto the set of
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permutations with this particular cycle form. Of course, more than one permutation, when placed in
the squares, may yield the same result. For example, consider the permutation: 5 72918 4 3 6.
Placed in the squares, this produces

Iz B0 (EIAE[E

123456789 . . . .
which is again the permutation (;754:587264). Consider any permutation P with this cycle form. If

we plug each of the n/ permutations into the squares, how many times do we produce P? If P has i,
cycles of order 1, then in order to produce P the i} elements contained in those cycles must be placed
in the {; squares representing cycles of order 1. However, they can be placed in any order within
those squares, so there are i;! ways to do it. Meanwhile, if P has iy cycles of order 2, then to
produce P the i» pairs of elements in those cycles have to be placed in the i» pairs of squares
representing cycles of order 2. The pairs may be placed in any of i»! orders, and furthermore each
pair can be rotated; that is, the cycle (a b) can also be written (b a). Since there are is cycles, each of
which can be rotated into either of two forms, we get a factor of 22, |n general, suppose P has i
cycles of order k. Then these cycles can be arranged in any of iy! ways, and each cycle can be
rotated into any of k& forms, so we get a factor of i,'.* Altogether, therefore, there are

LR AL AL L A 1

permutations that, when placed in the squares, yield the cycles of P. If we plug every one of the n!
possible permutations into the squares, each permutation with this particular cycle form is generated
exactly that many times. But we “know” how many permutations have this form; at least, we've
given it a name. So we conclude that

. . 1ol , .
[P 111 LU AL N R T L |

and that the cycle index of the symmetric group S, is therefore

Zhiaes, * LIRS

n!

- (l,) z u 0 FINI % R

n i|”“ . ig!?lbz ¢ ig!gg v oo ly

Recall that this summation is over all values of the i’s such that l*; + 24y + ..- + nei, = n. There
is-a trick we can use to find all such values. We observe that

L iy

N loiy + 2004+ - tneipel+l+- - +1+2+2+ 424+,

In other words, each set of values for i; through i, corresponds to a unique way of representing the
number n as a sum of positive integers. So if we look at all sets of positive integers that sum to n,
we can compute from them all possible values for the i's.

Let’s see how this works by looking at the case n= 3. We can write 3 as l+1+1, which
corresponds to the case {;=3,i=0, i3 = 0. We can also write 3 as 1+2, or we could simply write it
as 3. These cases are tabulated on the following page.
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i io {s  cycle form  cycle index coefficient
Sml+1l+1 3 0 0 il -?-’%!-g- 1
3142 0 3
fife TGS
A
3=3 0 0 fs TiaT ™ 2

(We've omitted factors of 0'%° from the denominators in the last column.) So the cycle index of Sy is

b’+V¢:ﬁﬁ.
6

This should look familiar-it’'s the cycle index for rotations of a triangle. This explains why
there’s only one way to paint the vertices of a triangle with any given set of colors; if we try to apply
the same colors to the vertices in some other order, we can always permute the vertices back to the
first order, because no matter what the rotation is it must be in the symmetric group.

What about S4? Does its cycle index correspond to anything tangible, such as rotations of a
square or tetrahedron? Well, yes, but it's neither of those. The square has 8 rotations, while the
tetrahedron has 12. The symmetric group, on the other hand, has 4!'= 24 permutations, so it can't
correspond to either of those figures. Let's work it out and see what it looks like. We must first
find all possible ways of representing 4 as a sum of positive integers. If the positive integers include
a 1, then the remaining integers sum to 3, and we already know there are three cases. If the positive
integers do not include a 1, then we can have 2+2, or simply 4. Here we go then with another table:

i io iq iy cycle form cycle index coefficient
4!
d=l+1+14+1 4 0 0 0 it W:l
4=14142 2 | O . .
: 211112
4= x S
1+8 1 0 1 0 ff13 Tt 8
4=2+2 0 2 0 0 fo? eI
212¢
4=4 0 0 0 1 fa 4 6
114!

- As a check, the coefficients should sum to 4. 1+6+8 + 3 + 6 =24 =4!. So S4 has the cycle index

£ 802 1 8 fs + 367 1 6fy |
24

It turns out this is the cycle index for rotations of the diagonals of a cube, as was discovered
on the midterm. {We’'ll have more to say about this in the solution to the midterm, which is in

section 8.)

Now we come to the grand finale for this section, but don’t hold your breath-it's a long
finale! So far we've only considered figure inventories of a rather limited form: the sum of distinct
variables. When we had k possible choices from which to pick a “value” to be assigned to each of
the elements being permuted, we associated a unique variable with each choice and took the figure
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inventory to be the sum of those variables. For example, if we were coloring the vertices of the
triangle using three colors, we associated each color with a variable and took the sum: ¥ + y + z.
There is a more general form of the figure inventory, which we shall now examine.

The basic idea is that we associate with each choice a value that is not necessarily a unique
variable. One of the suggested references ([Liul, pages 145-146) has a good example that introduces
this concept; it is presented here with the permission of the author. Suppose you have three balls
you wish to paint. You have three types of paint available—a cheap red paint, an expensive red
paint, and a blue paint. In how many ways can you paint the balls? We wish to count as different
the cases where the same paints are used but in different orders; that is, the case where the first two
balls are painted blue and the last one cheap red is to be counted separately from the case where the
first ball is painted cheap red and the other two blue, and so forth. Hence we are not allowing any
permutations other than the identity permutation, and the cycle index is simply f ] 5

We can represent the three kinds of paint by three variables, r, (expensive red), ro (cheap
red), and b (blue). The figure inventory is r|t72+b. Substituting this into the cycle index yields

(riorg + 8 =¥ + 1% + 0% + 3 2317 1 81,2 4 31,7 £ 310 + 3rpb% + 6774

Thus, for instance, the term 37,722 means that there are three ways to paint the balls using the
expensive red paint on one ball and the cheap red paint on the other two. Suppose, however, that
we were to represent both the cheap red paint and the expensive red paint by the same variable, 7.
It is clear that the coefficient of, say, b, will be the sum of the coefficients of r|2b,r|72b, and 1'22b.
In other words, the coefficient of r°b will be the number of ways of painting the balls using any
combination of the red paints on two balls and blue paint on the remaining ball.

(r + 7 + 6 =(2r b) = 8r% 1 12r% t 6162 + b°

We observe, for example, that there are 8 ways to paint all three balls red. This makes sense, since
for each ball we can choose either of the two red paints.

Let’'s take a closer look at what we've just done. Instead of saying that we had three kinds of
paint, we said we had only two kinds, but that there were two paints of the first kind and one of the
second. If we had had five kinds of red paint, three kinds of blue paint, and two kinds of green
paint, we would have used the figure inventory 5rt3bt2g. We can generalise this still further.
Suppose we wish to place colored beads at the vertices of a regular hexagon. Each bead can be any
of three colors, but there are different kinds of beads for each color. For instance, there may be
round red beads, cubical red beads, and elongated red beads, and similarly let us suppose there are
three kinds of blue beads and three kinds of green beads. Then we would use the figure inventory
3r +3b + 3g. If we were to substitute this into the cycle index, the coefficient of r’b’g would be the
number of ways of placing i red beads, j blue beads, and k green beads on the vertices of the
hexagon, where two ways are considered different if they use differently shaped beads. This is
essentially the same sort of thing as what we did with the different kinds of paint in the previous
example. Now for that next step: Suppose, for simplicity, that there is only one shape for each color
of bead, but that we are placing clusters of beads at each vertex. We'll assume each cluster must be
one of a finite number of possibilities. For instance, we can place two red beads and a blue bead
together at a vertex, or we can place three green beads, or we can place a blue bead and a green
bead. No other combinations are allowed. Then we shall represent this by the figure inventory
72b+g3+bg. If we substitute this figure inventory into the cycle index, the resulting coefficient of
r‘b’g" is the number of distinct ways of placing clusters of beads such that exactly i red beads, J blue
beads, and k green beads are used.

The general form of the figure inventory is defined to be
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]
f(xiyoz) = 2 ar:txry,zt.
rs2=0

where @y, is the number of figures with ¥ “red beads”, § “silver beads”, and ¢ “tan beads”. Of
course, these various colors of beads can actually be any identifying characteristics. It should be
noted that the above definition is for the specific case of there being three different characteristics,
represented by ¥,9%, and 2. Observe also that, if the inventory contains exactly one figure that has
only a red bead, and one that has only a silver bead, and one that has only a tan bead, then the
above definition degenerates into the special case X + % +2, which is where we started.

To substitute this general figure inventory into the cycle index, we replacef. in the index by
L N I T
flxy2), fo by fx<y42°), and so on. In general, fy is replaced by

)
ﬂxk’yk.zk)‘ 2 amxkrytszu.
r3.0=0

When we perform this substitution, the cycle index becomes

b r. sl
Z A, x"y7,

r,s,t=0

where A, is the number of configurations, different with respect to the permutation group whose
cycle index we used, that have r “red beads”, § “silver beads”, and ¢ “tan beads”.

This is a fairly complex subject, so to illustrate it we have a fairly complex example. It is
drawn once again from organic chemistry. This time we are concerned with the class of compounds
known as “aliphatic alcohols”. Alcohols have the chemical formula CaHon,)OH, for various values
of M; the term “aliphatic” means that the carbon atoms do not form a closed loop, as they do In
benzene.

Knowing that a carbon atom has four valences and that the hydrogen atoms and the hydroxyl
group (OH) have one apiece, we can draw some of the simpler aliphatic alcohols. We will represent
a carbon atom by a diamond (), a hydrogen atom by a circle (0), and the hydroxyl group by an
arrow (]). lf n =1, we have only one molecule,

s

which happens to be methyl alcohol (also called methanol). If n = 2, we again have only one
molecule. This time it’s ethyl alcohol, which is the kind people drink. (Methanol, on the other
hand, is highly poisonous.)

ga

Note that this is indeed the same structure as

it
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even though the two may look slightly different. If we were to represent the molecular structures in
three dimensions, the equivalence would be more apparent. We have to go to n = 3 to find an
alcohol with two isomers.

irrad o

(The one on the left is called n-propyl alcohol; the one on the right is isopropyl alcohol. So much
for today’s lesson in organic chemistry.) The question to which we wish to address ourselves is, for
any given n, how many different aliphatic isomers are there of C,Hopn,iOH? We shall call this
number R,. The question may appear trivial at first glance, until we realise that the carbon atoms
need not always form a straight chain. The following randomly selected alcohol for which n= 8§
(2,4-dimethyl-2-hexanol, if you must know!) gives us some idea of the sort of complexity we're
dealing with.

February 16. How can we get a handle on this problem? For starters, we can simplify the diagrams
by omitting all the hydrogen atoms. For example, we’ll draw n-propyl alcohol this way:

atatad

We can get away with doing this because we can always reconstruct the original form by realising
that any unused “vertex” on a carbon atom must have a hydrogen atom attached.

This somewhat more compact form of the molecular structure can be thought of as a rooted
tree. Now we need to back off and define some terms in order to understand what a rooted tree is.
We'll start by defining a graph. A graph consists of a set of points, often called vertices, together
with a set of edges connecting pairs of vertices. For example, the following graph has seven vertices

(shown as dark circles) and five edges.

Note that not all of the vertices need be involved in edges. Note also that the crossed edges do not
imply the existence of a vertex at the intersection, If we do put a vertex there we get a different
graph, one with eight vertices and seven edges.
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A sequence of edges forming a closed loop, such as the triangle in the preceding graphs, is
called a circuit. A graph is said to be connected if it is possible to get from any vertex to every
other vertex by following the edges. Neither of the preceding graphs is connected, because there is
no way to get to the isolated vertex from any other vertex. A graph that is connected and that has’
no circuits is called a tree. Of the three graphs shown below, only the rightmost one is a tree. (The
leftmost one isn’'t connected, whereas the center one has a circuit.)

One noteworthy feature of trees, which you might try proving, is that in any tree the number
of vertices is one greater than the number of edges. In a tree, an “endpoint” (that is, a vertex with
only one edge) is called a leaf. In general, the number of edges entering a vertex is called the order
or degree of that vertex. Thus the tree shown above has one vertex of degree 3, four of degree 2,
and three of degree 1. (These last three are therefore leaves.) If one of the vertices in a tree is
distinguished from the others in some manner (e.g., by marking it with an arrow), that vertex is
called the root of thg tree, and the tree is called a rooted tree.

Now that we've defined what we mean by a rooted tree, let’'s get back to chemistry. In an
aliphatic alcohol, the carbon atoms must certainly be connected; otherwise we'd have two smaller
molecules.  Furthermore, by the definition of the term “aliphatic”, there can be no closed loops.
Hence the carbon atoms form a tree. We’ll let the carbon atom that is connected to the hydroxyl
group (OH) be the root of the tree. We observe that no carbon atom can be bonded to more than
four other carbon atoms (or four of any kind of atoms, for that matter), and that the root can be
connected to at most three other carbon atoms, since one of its valences is being used to bond with
the hydroxyl group. This means that the carbon atoms form a rooted tree in which each vertex has
degree £ 4 and the root has degree € 3. Conversely, any rooted tree meeting these criteria regarding
the degrees of the vertices corresponds to a unique aliphatic alcohol. We have therefore succeeded
in transforming our chemical problem into the mathematical one of determining the number of such
rooted trees with a given number of vertices.

Chemists solved this problem by trial and error for some small values of n. Our job is to
find the solution mathematically. As usual, we'll start by inspecting the simplest cases and looking
for a pattern. We can create all the trees with 1 vertices by taking each tree with n-/ vertices and
attaching another vertex in all possible ways. (Some n-vertex trees may be generated more than
once, in which case we'll eliminate the duplicates.)

n |

¢ séﬁ

R, 1 4

There’s no immediately obvious pattern. We might guess that R, is always a power of two, but we'd
be wrong. As it turns out, Ry d0¢s happen to be 8, but Rgis 17. Though it’s always a good idea to
look for a pattern, patterns can sometimes be deceiving!
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Our next approach is to attempt to apply recursion, Is there any way we can look at a rooted
tree as a combination of smaller rooted trees? Suppose we look at an arbitrary rooted tree.

We take the root and remove it from the graph. This breaks the tree into, in this particular case,
three smaller trees, called subtrees. We will consider the root of each subtree to be the vertex that
was connected to the root of the original graph.

<300

We can reconstruct the original tree by attaching each of the three roots to a new vertex, and
making that vertex be the new root.

O >

In the trees in which we're interested, the root can be adjacent to at most three other vertices.
Thus there are at most three subtrees. If the root is adjacent to fewer than three vertices, we can
still break the graph into three subtrees by using a “null tree”, i.e.,, one with no vertices.

B

The order of the subtrees is unimportant. That is, we get the same tree if we attach the subtrees in
some other order,

o an e o—o—m%«jw
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Therefore we consider trees resulting from such permutations of the subtrees to be identical. This
gives us the permutation group Ss, the symmetric group.

Now we're ready to apply Pélya’s Theory of Counting to this problem. We have only one
kind of “bead” this time, namely the carbon atoms (which correspond to vertices in the trees). We'll
represent a carbon atom by the variable x. Then a tree that has k carbon atoms is represented by

x*, Our figure inventory is

Hx) = R,x*
£-0

(since there are, by definition, Ry rooted trees with k vertices that satisfy the requirements regarding
the maximum degrees of vertices). We let Ro= 1 to account for the one form of null subtree. We

substitute the figure inventory into the cycle index for Sy and get

r(x)® . 3r(x)r(x?) + 2r(x%)
. .

The coefficient of x' in this formula is the number of ways, distinct under the permutation group Sa,
of choosing three subtrees to connect to the root of a new tree, such that the total number of carbon
atoms in the three subtrees is t. Each tree resulting from such a selection will actually have t+1
carbon atoms, the extra atom being the newly added root. So if we multiply the above formula by ¥,
the coefficient of ¥™*' will be the number of distinct rooted trees with t+1 vertices. But this is simply
r(x). Well, not quite. The coefficient of x™*! is the number of such trees only for £2 0. We need to
add the appropriate coefficient for x° explicitly. This coefficient is Ro= 1. Thus we conclude that

(). 3r(e)r(xd) + 2r(x%)
6

I +x( ) = 1{x).

We have derived a functional equation for vw).No one has ever managed to solve it to
produce an explicit formula for r(x), but it is nevertheless possible to use it to compute Ry by
expanding the formula in powers of ¥. Due to the factor of X on the left-hand side, the coefficient
of ¥" on the left can never involve any coefficients of x™ for m 2n. For example, we know that

)= I+ % + %2+ 2¢% 1 4% s Rgx®+ Rgx® 4 ...

Suppose we pretend that the “.-+ " isn’t there, i.e., that there are no further terms. Expanding the
left-hand side of the functional equation (credit is due to MIT's MACSYMA system for aid in
doing this expansion), we find

rix)m 1+ 2+ x% + 2%+ 4t t Rox® 4 Rgx®

r(x)? . Sr(x)r(x?) + 2r(x3))
6

el x+ 22+ 28 + 4+ BxS 4 (Ry+O® 4 (Rg+Ry+14)x” 4 (Rg+2R 5+ 1 7x®

2 "2 2
+ (2Rg+3R+25)x® + (3Rg+ TR +22)x'% 4+ -+ + R5R°2"R5R5‘ o+ Re *3125 +2Re 10

=1+ x(

Since for two power series to be equal they must have equal coefficients for corresponding terms, we
find that Rg= 8, and that Rg= Ryt 9= 17. Note that, in the expanded formula, the coefficient of
x® did not depend on Ry, and that the coefficient of *® did not depend on Rg. This continues to be
true for later terms. Thus the coefficient of X’ does not depend on the fact that our partial value
for r(x) had a zero coefficient for %', and we can conclude that Ry= 39. The remaining terms in the
expansion are of no use to us, since they do depend on the coefficient of x’ in 7{x). Indeed, if we
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were doing this by hand (MACSYMA, in case you don’t recoghise the name, is a computerised
system for doing sophisticated symbolic mathematical manipulations), we wouldn’t have bothered
computing any terms beyond x’. Having found Ry, Rg, and Ry, we could extend our partial power
series for r(x), re-expand the functional equation, and evaluate a few more coefficients.

That’s all we have to say about Pélya's Theory of Counting. For further reading, just about
any good book on combinatorics will suffice, though most make use of rather complex mathematical
notations. Chapter 5 of [Liu] is probably as good as any other. The analysis involving aliphatic
alcohols is included in the December, 1956, issue of the american M athematical M onthly. For the
avid reader, chapters 4 and 5 of [Balaban] discuss methods, including Pélya’s theory, for counting
various acyclic and cyclic chemical compounds, including unsubstituted alkanes(CnH;_»Mg as opposed
to CyHon,OH), stereo-isomers (in which mirror images are counted as distinct molecules), and other
complex structures.

7 Outlook

Everything we’ve been doing in the preceding sections has been counting combinatorics, that is,
combinatorics in which we compute the number of configurations meeting certain criteria. Such
problems make up one branch of combinatorics; there are two other classes of problems on which we
haven’t even touched. In this section we take a brief look at these other branches of combinatorics.
Some of the subjects introduced here will be covered in greater depth by Tarjan in later sections.

One of the other branches is existential combinatorics. In existential problems we no longer
wish to count anything; we just want to know whether any configuration exists meeting certain
criteria. For example, suppose there are n people at a party. We'll assume n is at least 2 (otherwise
it’'s not much of a party). Some people are acquainted with others, where “being acquainted” is a
mutual relationship. That is, if a person ¥ is acquainted with another person ¥, then ¥ is likewise
acquainted with x. Then we claim that sometwo people at the party have exactly the same number
of acquaintances at the party. We don’t know who the two people are; we don’t know how many
acquaintances they have; we don’t know whether there are more than two people with the same
number of acquaintances. But we claim that some two people have the same number. This sort of
claim is in the domain of existential combinatorics.

The preceding claim is easy enough to prove. Each person at the party has some number of
acquaintances. No person can have fewer than zero acquaintances, and no person can have more
than n-l acquaintances. (We're assuming the relationship of “acquaintance with” does not apply to
oneself. If we instead assume that everyone is acquainted with himself, it just adds | to each
person’s number of acquaintances, and so does not affect the result.) Therefore there are exactly n
possibilities for the number of acquaintances a person has. Suppose the claim is wrong; suppose no
two of the n people have the same number of acquaintances. Then there must be exactly one
person with no acquaintances, one with one acquaintance, one with two,. . . , and one with n-i
acquaintances. This person who has n-/ acquaintances must be acquainted with each of the other
n-l people. But one of those people is supposed to have no acquaintances. This is a contradiction;
hence the claim must be correct.

The third branch of combinatorics is called constructive combinatorics. This area deals with
problems where we don’t care how many configurations exist meeting some criterion, nor whether
they exist (usually it's obvious from the statement of the problem that some configuration exists), but
rather we wish to find one such configuration. For example, suppose you own a number of shops in
San Francisco. Each shop is run by one employee, who lives somewhere in the city. There are
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various bus routes running through the city, such that for each employee there are certain shops
that he or she can reach directly by bus. You wish to assign your employees to the shops in such a
way that as many of the employees as possible are able to go to work by buses. It may not be
possible to assign the shops such that ail the employees can use the buses, but it's clear that there
must be at least one assignment that achieves the maximum possible, so this isn't a question of
existential combinatorics. Similarly, we don’t care how many assignments there are that achieve the
maximum, so this isn’t “counting” combinatorics.. We just want to construct one solution.

In constructive combinatorics, the problem is usually one of finding a solution efficiently. In
the busing problem just discussed, we could obviously find a solution by looking at every one of the
possible assignments and computing for each the number of employees who are able to use buses.
On the other hand, since for n employees and n shops the number of possible assignments is n/, this
could take a while. In section 11 we'll look at a way of solving this problem using a reasonable
length of time.

February 21. Returning to existential combinatorics, Pélya next gave an example out of Ramsey
Theory. Consider a graph in which each edge has been colored using one of two colors. (Due to
the limitations of the photoreproductive process, we'll use solid and dotted lines to represent the two

colors in these notes.)

Having thus colored the edges, we find that the graph may or may not contain a triangle all three of
whose edges are the same color. Such a triangle is called a monochromatic triangle. The above
graph, when colored as shown, does happen to include a monochromatic triangle (in fact, it contains
two of them, both consisting of “solid” edges). This need not always be the case. For instance, the
following five-vertex graph contains no such triangle.

Note that this graph has an edge between every pair of vertices. Such a graph is called a
complete graph, and is denoted by K,, where n is the number of vertices. (Quick question: how
many edges are in K,?) Ramsey Theory tells us that, for any n 2 6, if we color the edges of Ky,
using two colors the resulting graph must contain a monochromatic triangle.

To prove this, we first observe that, if it's true for n = 6, it must be true for all n > 6. Given
K,, we can choose any 6 vertices. These vertices must be completely interconnected, so they form a
Kg. If this Kg contains a monochromatic triangle, then so does the larger graph. So how do we
show that Kg must contain such a triangle? We examine an arbitrary vertex in Kg. The vertex
must have five edges coming out of it, one leading to each of the remaining vertices. Of these five
edges, at least three must be the same color (as each other, that is). If this weren’t true, then there
could be at most two solid edges and at most two dotted edges. But this gives us at most four edges,
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and there are supposed to be five. So we have either three solid edges or three dotted edges. (We
could have more than three, but we don’t care about that.) Without loss of generality, let’'s assume
the three edges are all solid.

[ J

Now consider the three vertices at the “other ends” of those edges. There must be edges
between every pair of vertices, since this is a complete graph. If any two of these three vertices are
connected by a solid edge, we've got a solid triangle. If no two of the three are connected by a solid
edge, then they must be connected by dotted edges, and we've got a dotted triangle as shown below.

Notice that a triangle is simply a complete graph with three vertices. Suppose we wished to
prove that, for some sufficiently large n, K, cannot be colored with two colors without producing a
monochromatic K,4? It’s not too difficult to prove that, for any $, there is some number n sufficiently
large that K, must, if colored with two colors, contain a monochromatic K,. Unfortunately, no
general method is known for finding that number! We'll look at this and related problems in
section 9.

Existential combinatorics need not always deal with conclusions of the form, “Such-and-such
exists.” Sometimes the result can be probabilistic. For example, Erdds has proved several results
involving randomly-generated graphs. We won't attempt to prove any of these results here, but will
simply mention one such result as an example of this sort of problem. Suppose you generate a
graph by the following method. You start with n vertices and no edges. You then repeatedly pick
any two vertices that are not yet joined by an edge, and add that edge to the graph. Your selection
of which edge to add each time is completely random; any edge not yet in the graph is as likely to be
chosen as any other edge. Stop adding edges as soon as you add an edge that makes the graph
connected (as defined on page 51). How many edges are in the graph? Obviously, the number of
edges ‘will vary depending on the order in which you choose to add them to the graph; if you
happen never to choose an edge involving some particular vertex (until, of course, there are no
other edges from which to choose), then there will be many edges indeed. On the other hand, the
graph could be connected after as few as n-/ edges have been chosen (in which case the graph
would be a tree) ErdGs has proved that, for any constant &, the probability that the graph has
fewer than kn+*n|0g,n edges approaches €~ “asn goes to infinity.

This result may sound rather far-fetched, but it has some simple corollaries. For instance, if
you select a graph at random from among those with n vertices and n“’ edges, where n is fairly
large, the graph will almost certainly be connected. This is because n' is, for sufficiently large n,
greater than kn+mlog,n for any constant Ie So we can let k=100 (for instance) and deduce that the
probability is roughly e~ " 1 that 100n+§n10g,n edges are enough to connect the graph, and n 15
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edges are therefore many more than enough.

Incidentally, it should by no means be believed that we have exhausted the topics involving
“counting” combinatorics. There are all sorts of things we’'ve never even mentioned. Here, to close
out this section, are two of them.

Consider subsets of some given set §. Some of these subsets are in turn subsets of other
subsets of S. For instance, if S is the set {1,2,3,4,5,6}, then the set {1,3}, in addition to being a subset

of §, is also a subset of {1,3,4,5}, which is in turn a subset of S. We'll say two subsets are connected

if either is a subset of the other, and disconnected otherwise (even though they may have some
elements in common). Thus, for example, {},3} and {1,34,5} are connected, whereas {1,3,6} and
{1,3,4,5} are disconnected. (Note that this has nothing to do with the term “connected” as used with
respect to a graph.) How many mutually disconnected subsets can we find in a set of size n ?

For starters, we know that the (:) subsets of size & are all mutually disconnected, since no
subset of size & can possibly contain every element from some other subset of size k. For what value
of kis (:) the greatest? The answer is intuitively obvious from an examination of Pascal’s triangle,
but let’s prove it rigorously. We know that

( ) ! n‘k+1 . n./
R k)Y Tk (It- DY n-k+1)!
k41, n
_n k+ )

Hence ( ) will be greater than (k ) if n-k+ 1 is greater than k, which is the case only if k c 3(n-1).
So the maX|mum occurs when k = I_ﬂ(n 1)) if n is even, then, we let n = 2m and find that the
maximum |s( ™. n is odd, we let n = 2m+1, and find that the maximum occurs twice: ( *') and

Coot >

We’'ve found the maximum possible value for (:) but is it possible to find a larger collection
of disconnected subsets by letting them be of varying sizes? It turns out, though it’s difficult to
prove and we won’t attempt to do so here, that it's not. The maximum value for ( ) is indeed the
maximum number of mutually disconnected subsets.

Finally, let us consider the problem of counting all rooted trees that have n vertices. This is
similar to the problem with which we closed the previous section, but in this case we no longer wish
to place any restrictions on the degrees of the vertices. Because of this, we can no longer apply the
method used in section 6. We would need to know the permutation group for the subtrees, but there
can be any number of subtrees, Hence no symmetric group S, is good enough, since there could be
more than k subtrees. Instead, we’ll use an approach bearing a strong resemblance to a generating
function.

We wish to construct a rooted tree out of rooted subtrees. Which subtrees shall we use? Well,

there’s the subtree consisting of a single vertex. We could use it no times, or once, or twice, or thrice,
etc. We'll represent these choices by a sum, using “I” to represent the case of no such subtree.

B 222220

Similarly, we could have no subtrees with two vertices, or we could have one, or two, etc.
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We have similar choices for how many times to use each of the two subtrees with three vertices.

AL
ofofofobe

We do this for each of the infinity of possible subtrees. Then we take the product of all these sums.
Each term of the product will correspond to a selection of one term from each of the sums, and
hence to a unique rooted tree, namely the one that has the selected terms as its subtrees.

If we substitute x* in place of every tree of size k, we get

o) oL

(lexex®ex®e oo o (aaetea®s ) o (leadexBan® ) o (leaexBan® -

Each factor in this infinite product will have the form
(T+xt+x®aen®™ e,

Notice that the factor for & = 3 occurs twice-once for each of the two possible subtrees of size 3.
How many times does the factor for kB =§ occur? It occurs as many times as there are subtrees of
size §. Let’s call that number T,. Our infinite product of infinite sums is thus

6 )T_q

(leaax® )Tl LaxZexts ) T2 aaeabs Ry oo o)V aaa

oo oo (1 4xtex
= (1-x) T 1) o=y T, (1=t

. The coefficient of x' in this product is the number of ways to choose subtrees that have a total
of t vertices. Thus this coefficient is also the number of rooted trees that have ¢+1 vertices, since
any combination of subtrees totailing ¢ vertices can be put together to form a unique tree with t+i
vertices, the additional vertex being the new root. As in the aliphatic alcohol problem, we multiply

by ¥ and conclude

2(1-) T2 To(1-a™y T (ex®) T e Ty Tox® + Tax o+ Tk e L

(We could also add one to the left-hand side and add T, on the right, but that isn’t particularly
important.) As in the case of the aliphatic alcohols, we can now plug in the values of the first few
T’s, expand the left-hand side in powers of x, and thereby compute the next few T's. Plugging
them in, we can then re-expand the power series and compute a few more, and so forth.

Actually, there is nothing to prevent us from computing any (finite) number of additional
coefficients after each new expansion; we need only treat the unknown Ty as variables and solve for
them after the expansion. For example, we can let T through T4 be variables, pretending that Ty
is zero for all k> 4. We find that
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Since the coefficient of ¥ does not involve any T’s, we can deduce that T)= 1. From that we can
compute the coefficient of %% namely I, and then Toml4ttin 2 T4=(6+2+46+1+3+2)/6 = 4, and
(since we can show that the coefficient of x% is independent of our assumption that Ty was zero)
Ty =[24°4+24:2+12:(1+ 1414 1)+ 146+1146}/24= 9. For the curious, we turn once again to MIT's
MACSYMA and find that the first several terms of the expansion are

D+ o+ 262+ 4x® 4 9x* 4 20x° + 48x° + [15x7 + 286x% + 719x% + 1842x'O + 4766x'' + - - -,
where by comparison the generating function for the aliphatic alcohols begins
T+ x + 267 + 42 4 8x? 4 17%® + 30x% £ 89x7 + 211x® + 507x® + 1238x'® + 3057x'! + . .. .

So much for our “outlook”, and so much for Pélya’s portion of the course. Starting with
section 9 we will be discussing material presented by Tarjan.

8 Mid term Ex amination

This section contains the midterm exam and the solutions thereto. The exam was open book and
“take home”; students were given one week to work on it. They were advised they would find the
exam somewhat “open-ended”. They were not required to do problems I¢ and 2b, though they were
strongly encouraged to do so. It was stated that extra credit would be given to those who attempted
those problems.

At the time the midterm was presented, course notes had not yet been prepared for sections 6
and 7, though the material had been covered in class. The table on page 41, summarising the
computation of the cycle index for the hexagonal permutation group, was included in the midterm
handout for reference.

The following note by Pélya was included at the end of the instructions for the exam, and so
well epitomises what is desired from students taking any exam that we must include it here as well:

Good presentation counts! It should be correct, complete, concise, and clear.

Problem I(50 points total).

The rotations that transform a cube into itself form a group (usually called the octahedral
group; see below). The rotations of this group permute

(1) the vertices of the cube,

(2) the midpoints of the faces of the cube (vertices of an octahedron), and

(3) the diagonals of the cube,
and so generate three permutation groups, of degrees 8, 6, and 4, respectively. (Note: By “diagonal”
is meant a three-dimensional or “space” diagonal, which connects two opposite vertices. No single
face of the cube touches both endpoints of such a diagonal.)
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Part ‘a’ (30 points). Write down the cycle indices of the three permutation groups, combined with
further appropriate data (such as the axes and degrees of rotation) in a well-planned format so that
the relations of the three groups to each other and to the figure (faces, vertices, and edges of the
cube, or of the octahedron) are easily visible.

Part ‘b’ (20 points). “Substitute’ into the three cycle indices the “figure inventory”
X+y+12

(representing three beads of different colors) and verify some of the resulting combinatorial numbers
“by inspection”.

Part ‘c’ (extra credit, points awarded as warranted). Note any pertinent remarks (on the relations
displayed in (a), on matters treated -or not treated-during the course, observed patterns, guesses,

possibly proofs, etc.

Problem 2 (20 points total).

Part ‘a’ (20 points). Prove the useful formula,

S e e (e M (D= (),
k=0

Part ‘b’ (extra credit, points awardéd as warranted). Using (a), find a formula for

Rle O+ 17424 40l

M=

k=0

Your formula should be a polynomial in n, or perhaps the sum of ¢ such polynomials. (You may
already know the formulas for t=1 and ¢=2. The one for ¢{=3 is also worth noting.)

Problem 3 (30 points total).

Consider the decimal integers that have n digits, for n2 2. For example, for n= 3, the numbers are
100 through 999. (We are not allowing “leading zeroes”, as in 007) As a function of n, how many
such numbers have no two adjacent digits alike? /., we wish to include numbers like 747 but not
344. Prove your answer two ways-with and without using PIE.

SOLUTIONS

Problem 1 (50 points total).

Part ‘a’ (30 points). Regardless of what part of the cube we are looking at, be it the vertices, the
faces, or the diagonals, there are 24 possible positions for the cube and hence 24 permutations in the
group. We can see that there are 24 positions by observing that there are six faces, any of which
can be positioned at the top, and that for each choice there are then four faces any of which can be
positioned at the “front”. The 24 rotations involve three kinds of axes. The axis can go through
the centers of two opposing faces, or through the centers of two opposing edges, or through two
opposing vertices. (In this last case the axis is a diagonal of the cube.) We know that these are the
only axes we need to consider because the rotations about these axes yield 24 permutations, which
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are all we expected to find. Here is the table showing the derivation of the cycle indices of the three
groups. In the interests of legibility, only the vertices’ permutations are included in the diagrams.

Expected number of rotations: 6 x 4 = 24

Axis of rotation: any two faces two faces two edges diagonal
Degree of rotation: 0" +90° 180° 180 +120°
Radians: 0 +2n/4 2n/2 2n/2 +2n/3
Number of such axes: - 3 3 6 4

5
P S
Vertices’ cycle index: 6f4 + 8f,2:f32
Faces’ cycle index: Jis +  Bf\%fy 4+ 8f.%
Diagonals’ cycle index: _/’,4 t 6f4 + 3f22 + 6f,2f;‘. + 8f1fs

24

The cycle index for the vertices contains a pair of terms (the third and fourth) that could be
combined, but it’s probably better to leave them separate so we can observe the similarities (and
differences) among the three cycle indices. We can always combine the terms later when we are
ready to substitute the figure inventory into the cycle index.

Part ‘b’ (20 points). Substituting the figure inventory Xtytz into the three cycle indices yields the
three expressions,

(x4y+2)® t 60ct+9 422 t 39?2 t 6(x%+9 42! t Blx+y+2)X(x 4y +27)?
24
(ery+z)® t Be+prz) cteytez?) ¢ S(eayprn)i(x2y% 2D ¢ Bx+y +zY)t ¢ 8(xMyNe2Y? | and
24

(eay9+2)" t 60T +ytezY) t 349742 t 6(xay+2) (%4974 27) t B(x+yr2)x ey 2
24

It wasn't necessary on the exam to find the coefficients of all the terms in the power series
expansions of these expressions, though many people did so. Determining a few typical coefficients
and verifying them “by inspection” was considered sufficient. Here, however, we’ll look at them ail.
Let’'s take the expressions one at a time, starting with the one resulting from the vertex group. It
being symmetric in X,%, and 2, we needn’t evaluate every term. There are ten distinct types of terms,
each of which is evaluated below. There’s not enough room here for us to show how each term is
computed; most of them come directly from the multinomial formula. For example, the coefficient of
x*%% in the expansion of (x+y+2)% is 8Y/(3!312!), and the coefficient of x*%% in the expansion of
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(x> 22 is 4(21101),

xs x'ly x6y2 x5y8 x4y4 xeyz xby'zz x4y Sz x4y2z2 xSy 822
(xty +2)® 1 8 28 56 70 56 168 280 420 560
B(xtrytez!)’ 6:1 0 0 0 62 0 0 0 0 0
9(x"+y%42%)" 9.1 0 9.4 0 96 0 0 0 9-12 0
8(x+y+2)"(x +y%4+2%? 81 82 81 82 84 82 0 8+4 0 8+2
Total + 24: 1 1 3 3 7 3 7 13 22 24

We'll verify some of these values momentarily. First let’s expand the other two expressions. The
second expression yields seven distinct terms.

X6 x”y x4y2 xsya x'yz x %% x2y222
(x+y+2)8 1 6 15 20 30 60 90
B(x+y+2)*(x +ytezt) 61 62 61 0 6+2 0 0
8(x+y+2) (x*+9%4+2%)? 31 342 3+3 3e4 32 3+4 346
B6(x"+y"+27)} 61 0 6+3 0 0 0 66
8(x +yi+z%)’ 81 0 0 82 0 0 0
Total + 24: 1 1 2 2 2 3 6

The third expression contains only four distinct terms.

x! Yy x%y? x%yz
(xe+y+2)* 1 4 6 12
6(x+yt+z?) 61 0 0 0
3(x"+y%+2%)? 3¢] 0 342 0
B(x+y+2)"(x*+y%+27) 6°1 6+2 62 62
8(x+y+2)(x +y%+2%) 81 81 0 0
Total + 24: I 1 1 I

Now it’s time to verify a few of these numbers. Some of them are obviously correct. For
instance, if we use only one color “bead”, there is clearly only one way to put beads on the eight
vertices, so the coefficient of *8 in the first expression should indeed be l. Similarly, the coefficients
of x% and x' in the other two expressions should be 1. If we let exactly one of the beads be a
different color, there is still only one configuration, since the vertex (or face or diagonal) that has the
uniquely colored bead can be rotated into any position.

Let’s try a more complicated case. Consider the term 7x5y22. Are there indeed exactly 7 ways
to place one white bead, two black beads, and five “invisible” beads on the vertices of a cube? The
answer is, of course, yes, and here they are. (The two black beads may be separated by an edge, or
by a face diagonal, or by a space diagonal. The first two cases each have three distinct positions for
the white bead; the third case has only one.)

| QR
[
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What about, in the second expression, the term 2x4yz? If we paint one face white and one
face black (and leave the other four unpainted), there are indeed two distinct configurations. Either
the two faces touch along one edge, or they do not touch.

What can we say about the third expression? Each of the coefficients is I; does this make
sense? Notice that there are 24 ways we can rotate the cube, and that each rotation permutes the
diagonals in a different way. Since there are 4. diagonals, there are only 4!'= 24 different ways in
which they can be permuted. Therefore any permutation of the diagonals can be accomplished by
some rotation in the group, and so any given combination of colors can be applied in only one way.
Any other configuration using the same colors can be permuted into the first by one of the 24
rotations.

That's enough “inspection“. Let’s move on to the “open-ended” section.

Part ‘¢’ (extra credit, points awarded as warranted). One of the very first things we should notice
(though, disappointingly, few people did) is that the cycle index for the diagonals is the same as that
for the symmetric group Sy, and that therefore the diagonals’ permutation group must in fact be the
symmetric group. (In the second paragraph above we described the implications of this.) We could
double-check this using the formula for finding the cycle index of a symmetric group, but this
would essentially duplicate page 47 of the notes, so we won't bother.

Some observations that we can make, but from which it is difficult to deduce any general
principles, include the fact that the vertex group included two terms, generated by rotations about
different types of axes, that had the same cycle form, whereas this did not occur in the other two
groups. Also, each term in the vertex group yields the same coefficient for xsyg as for xr’yz. As we
said, it is not clear what the implications are of these similarities within the vertex group, but they
are certainly worth noting.

We have already pointed out that the number of rotations remains the same regardless of the
elements being permuted. We can extend this observation by noting that the number of rotations
about any given type of axis, or about any single specific axis, is invariant among the three groups.
This may appear to be a case of stating the obvious, but it is an important property nevertheless.

One person noted that the fact that the midpoints of the faces of a cube form the vertices of
an octahedron was merely a particular instance of a general useful phenomenon. When two sets
correspond to one another in this fashion, they will necessarily have the same cycle index under any
given form of permutation. Thus, for instance, if we were to work out the cycle index for the
permutations of the faces of a cube under both rotation and reflection, we would simultaneously
produce the cycle index for the vertices of an octahedron under rotation and reflection.

One very significant observation is the correlation between the degree of rotation (expressed
in radians) and the corresponding cycle index term. In every instance (at least, every instance in this
particular problem), a rotation of 2n/k radians yields a permutation whose largest cycle is of order k.
In fact, the permutation consists of one or more cycles of order k and perhaps some cycles of order 1,
and no others. It is clear why this should be the case. A cycle of order k indicates an operation
that, if performed k times, restores the original state. The operation of rotating an object through
an angle of 2n/k radians, if performed k times, does indeed restore the object to its original position.
Furthermore, repeating the operation fewer than k times will nof restore the original position, so
there should be no cycles of order k-l or smaller, except that a cycle can be of order 1, indicating an
element that is not affected at all by this particular rotation.

Having explained why a rotation through 2nr/k radians should always yield at least one cycle
of order k and no cycles of orders other than 1 and k, we should point out that this is not strictly
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true. For one thing, it's true only of physical rotations of physical objects whose shapes are not
subject to change, That is, if we rotate one part of the object 180° there mustn't be some other part
that changes position by only 120°. For another, there are times when a rotation of less than 360°
may restore the original position. For instance, if we were to consider the diagonals of a rotating
hexagon (considering only the three diagonals that join opposing pairs of vertices), we would find
that a 180° rotation causes ail three diagonals to land back in their original positions. This sort of
thing is probably a pathological case, however. In most cases the observation in the preceding
paragraph is a valid and useful one.

One person pointed out a useful special case of the general figure inventory. Specifically, let
the figure inventory be

0
ﬂx)=2(¢,z,x’= 3x.
Y=

Since there is only one variable, it means we are dealing with a single “property”, such as “any
color’. The coefficient, which could be any positive integer constant, is the number of variations on
the property, such as the number of different colors. Substituting this figure inventory into the cycle
index, we find that ail the terms involve xd, where d is the degree of the group. The coefficient of
x? is the number of distinct configurations in which each element being permuted has been assigned
one of the variations on the property. E.g., substituting this figure inventory into the cycle index for
the faces of the cube would result in the single term 57x6. indicating that there are 57 distinct ways
of painting the faces of a cube, where each face can be painted any of 3 available colors.

One brave soul attempted to present a rough idea of why substituting the figure inventory
into the cycle index works the way it does. He did a reasonable job, considering the difficulty of the
undertaking. Since he was moved to try explaining the theory behind all this, can we do less?
Probably. But let's see what we can do. We won’t try to prove anything here, but we’ll endeavor to
present some insights on what’s happening when the figure inventory is substituted into the cycle
index, and why it might be reasonable to expect it to yield the results it does. If this explanation is
too confusing, then skip it, but we feel it's worth the try.

Consider the cycle index for rotations of the vertices of a regular hexagon. As we saw in
section 6, this cycle index is

L0+ 2+ 207 1 £20 1 3 %07 + 3f°

) 12

We'll use the figure inventory x t vy, representing two types of object. We'll denote the two types in
the diagrams that follow by circling vertices of one type and leaving the others empty. Let’'s suppose
we want to find the number of configurations in which exactly two vertices are of type ¥ (circled).
We know there are three such configurations.

We don’t have any systematic formula that counts just these three configurations, so instead
we’ll count something similar, We'll count each configuration, rotated in every possible way. For
example, the center configuration on the preceding page can be rotated according to each of the 12
permutations in the group, yielding the 12 configurations shown below. The top left configuration
comes from the identity permutation, the other five in the top row come from rotations around the
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center, the leftmost three in the second row result from rotations about axes drawn through two
opposing vertices, and the remaining three result from axes drawn through two opposing edges.

As you can see, not all of these configurations “look” different. That is, different rotations can yield
the same configuration. (The actual rotations are not identical, however. it is only this particular
configuration that is indistinguishable under these rotations.) We wish to count ail 12 of these
configurations, even though some of them look identical to others. If we can count ail 12 of them
and likewise count all 12 rotations of each of the other configurations for two circles, we can then

divide by the total number of rotations and we will have the answer we wanted. So let's see how we
can go about counting these 12 configurations.

We start by separating the 12 configurations into two sets. The first set contains as many
configurations as possible such that no two of them “look” alike, and the second set contains the rest.
In this particular example, the first set could contain the top row of six configurations, and the
second set the second row. In general, however, the two sets need not be the same site. What does
it mean for a configuration to be in the second set? It means there is a configuration in the first set
that looks the same, i.e,, has the same vertices circled. This means there are two distinct rotations
that permute the “original” orientation (upper left corner of the twelve above) into this form. (We
can see that the two rotations are indeed distinct, and hence the resulting look-alike configurations
are in fact different, by numbering ail six vertices instead of merely circling two of them.) Since the
two rotations are distinct, there must be a rotation, nof the identity permutation, that maps the
configuration in the first set into that in the second set. For instance, the bottom left configuration
above, which resulted from a rotation about an axis drawn through the top and bottom vertices,
“looks” the same as one in the top row, which resulted from a 120° rotation counterclockwise about
the center. This latter configuration can be permuted into the former by rotating it about an axis
drawn through the upper left and lower right vertices, as shown below.

48 "
2 6 6 2 6 6 1 6 4 6 2
= = =
3 )} ; 3 3 Q! K 2
. 1 2 2 4

Each configuration in the second set, then, can be derived by taking a configuration in the
first set and applying a rotation that doesn‘t change the “appearance” of the configuration. When
we perform a rotation that interchanges the two circles, the appearance is unchanged even though
we have generated a different configuration. Furthermore, if we have any rotation that doesn‘t
change the appearance of some configuration, and the configuration is in the first set, we can apply
the rotation to that configuration and come up with another configuration, which must be in the
second set. Therefore we have established a one-to-one correspondence between the configurations
in the second set and rotations that do not change the appearance of some configuration.

r

w

Observe that, if we consider all distinct configurations (in this case there are 3 of them) and
look at all their rotations, the resulting set of configurations must include all possible combinations
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of two vertices selected from the six available. Hence if we combine ail the sets of configurations no
two of which look alike, we must end up with ail possible combinations, once each. We know how
many such combinations there are; in our particular example it's (;)-= 15. A ii we have to do now is
count how many configurations are in the “second sets”; that is, how many ways are there to take a
configuration and rotate it in such a way that it appears unchanged? This is where the cycle index
comes in.

Consider, for example, the term f,z »% which results from a rotation about an axis that goes
through two opposing vertices, as shown here for one particular case.

Replacing the exponents by repeated multiplication, and then substituting the figure inventory, we

get
(x+9) « (x+9) o (x*+97) « (x*+97).

The coefficient of xy in-this product is equal to the number of ways of selectmg one element from
each of the 4 factors such that the product of the selected tiements is xy For instance, we could
select the ¥ from the first factor, § from the second, x* from the third, and y from the fourth. But
let’s remember what these factors represent. A factor of the form (x +y ) mdncates that the rotation
yielding this particular term contains a cycle of order k. When we select the y out of such a factor,
it corresponds to a conflguratlon in which ail k& elements of that cycle are of type 9. Thus, in our
example, the selection of y'y~x -y corresponds to a configuration in which the two cycles of order |
both consist of “empty” vertices, as does the second of the two cycles of order 2, while the first cycle
of order 2 consists of two “circled” vertices. This situation is diagrammed below (left). Notice that
this rotation doesn’t change the appearance of this configuration. The other terms contributing to
the coefficient of xi"y"' are y'y-y2'x and x'x°y2'y2. which correspond to the other two configurations
shown below (center and right).

Let’s summarise what this means: the coefficient of 3523;4 in any given term of the cycle index
equals- the number of ways of placing two x’'s and four y's such that each cycle in the permutation
represented by that term contains only x’s or only y's That is, if we count the number of ways of
placing two x's and four ys such that no cycle in the particular term contains elements of both types,
we get the coefficient of xy Finally, we observe that it is exactly these situations that we wish to
count, since a permutation will change the appearance of a configuration if and only if one or more
of its cycles involves elements of two different types. (Such a cycle must of necessity permute at least
one element of type ¥ into a position formerly occupied by an element of type %, thereby changing
the appearance of the configuration.)

Now let’'s look at the cycle index in |Es entirety. The identity term, after substituting the figure
inventory, is (x+9)% The coefficient of ¥%y" in this term is (;), the number of different-looking
configurations, In each of the remaining terms of the cycle index, by the reasoning outlined above,
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the coefficient of x2y4 is equal to the number of ways in which the rotation corresponding to that
particular term can transform one of these (g) configurations into another configuration that looks
the same but is really a different permutation of the six vertices. When we sum over all the terms
in the cycle Index, the coefficient of xzy" thus comes out to be the number of_distinct configurations
(in our example, 3), multiplied by the number of rotations that can be applied to each of these
configurations (in our example, 12). We divide by the number of rotations and there’s our answer.

We hope the preceding discussion provides some faint illumination as to the inner workings
of Pélya’s Theory of Counting. This is really the sort of thing that should be discussed in much
greater detail, with much greater formality, and in the interactive setting of a classroom. Lacking
the time for this, however, we hope that this has given you at least some insight into the theory
underlying the method.

Problem 2 (20 points total).

Part ‘a’ (20 points). The identity to be proved in this problem is actually true only when m and n
are non-nega.tive integers. Fortunately, everybody seemed to reaiise this, so our failure to mention it
on the midterm handout didn’t lead to any difficulties. Three different forms of “proof” showed up
among the papers handed in. One of these methods is not quite valid, and a few points were
deducted for using-it. We'll present it here in order to be able to point out what’s wrong with it.

It typically ran something like this. We know, by the recursive definition of the binomial
coefficients, that

M=)+

for any integers n and r such that 0 <r< ntl. This equation continues to hold even if r2 n+l
(assuming nt 1>0), if we assume (:)= 0 whenever § and t are integers and 0 Ss<t. This is a
reasonable assumption to make, since after all there are zero ways to choose a subset of ¢ elements
from a set with fewer than ¢t elements. By repeated application of this formula, we deduce that

(o) = )+ (o)
=M+ ()
S R G I G T ey

c Y D D O 4 (0

0

ma]) Must be zero, so we find that

" Assuming m2 0, (

n
e =G+ G+ G+ e Q=2 ()
which is the desired identity. The problem with this “proof” is that it’s not really a formal proof,
since it involves an indefinite number of steps. The above argument would suffice in an informal
discussion, or perhaps as an answer to a request to “show” instead of “prove”, but in a proof you
should be a bit more cautious. One reason this was emphasised so much in grading the midterm is
that, if you're not careful, such an approach can result in “proving” things that are in fact false!
The problem can arise in two ways. You may fail to observe that one of the steps glossed over in
the “...”" is a special case for which the general equation doesn’t apply, or you might attempt to use
the “...” to represent an infinite sequence of steps. Mathematical induction, which is the formal
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representation for this sort of proof, proves things only for any finite number of repetitions of the
inductive step. It is not difficult to find statements that are true for any finite n, and can be proved

by induction, but are false if n is infinite.

Anyway, that’s enough about that. Here’s the formal proof using induction. We first consider
‘the case n = 0. In this case,

Ch e ) =0+ (0= =2
k-0

. 0 . . o
(since (,,,)= 0). So the formula is true for ail m when n = 0. Now we assume that it's true for all
non-negative integers n $s§ for some value 5. We need to show that the formula is then true for

n =s+l.

(o) = id) = (’:) £ () [by the recursion formula]
- (’;,') +~§I:0 (,:) [by the induction hypothesis1
LAY
= Eo ()

By induction, then, the formula is true for any finite integer n 2 0.

One never knows what interesting things will turn up on an examination paper. TWoO people
found a completely different way of approaching this problem. Their method is quite valid and ‘
reasonable, and it is interesting enough to warrant our reproducing it here. It uses generating
functions instead of induction. (These are, after ail, the two most common ways of dealing with an
arbitrarily large sequence of values.) We introduce the following generating function involving m as

the exponent:
0 n Iy
g) = T (2 Q) *"
m=0 k=0
We first interchange the order of the two summations.
n o Iy "
g =2 5 ()«
k=0 m<0

The terms for m > k are zero, so we can apply the binomial theorem and find
Z x
g(x) " 2 ( I+x) ,
k=0

which is simply a geometric series. We know what the sum of a geometric series is-we encountered
it in section 3 of the notes (pages 8-9). So

1 - (lex)™!

g) = I - (l+x)
. (l+x)™ - |

X
- L(E ) - 1)

In this new summation, the term for k = O is (";')xo- 1, so we can cancel this against the “-~1" that

follows the summation.
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g = x'(E (1) #)

n+l
- z n;l) xg-|

k-1
oonely a
‘E}o(ul)x

By equating this with our original definition of g(¥) and equating the coefficients of X¥™in the two
forms, we produce the desired identity.

Part ‘b’ (extra credit, points awarded as warranted). Since we're supposed to apply the identity from
part (a), we must somehow transform the summation of k' into a summation involving binomial
coefficients. This is easily done using one of the formulas derived in section 5 of the notes:

x" = STx t Shx(x- 1) t Syx(x-1Mx-2) + . . +Spx(x-1){x-2) . . . (x-n+ 1).

. (Actually, this formula is not quite correct, and ’\|Ne might as well take this opportunity to correct it.
The right-hand side should include the term So; otherwise the formula is invalid for n = 0. Since

Sg = | and Sg = 0 for n > 0, this additional term takes care of the case n = 0 without affecting the
other cases. Similarly, the other boxed formula on page 34 should include the term (-l)",&g.)

Using this formula, we find

k=0 m~

Sk e E S Cm
£-0 0
-3 (Si m! > ()
m=0 k=0

4 |
= mz-:o s:n m! (v:il)‘

]
Since (,',:,) is essentially a polynomial in n, this would be sufficient as an answer to the problem. (It
would be a good idea to check the answer for a few small values of {, of course.) A few people went
further by applying the “other” formula from the end of section 5:

- B+ BT (D B+ 1) = Gt

We have to start by backtracking a bit, lest we end up with a polynomial in terms of (n+ 1) instead
of n. We observe that

L n=)
Ek‘u ‘nt + 2 kt
k-0 £-0
-nt+ mz_;o St om! ()
oty s ogtonyimel)
mr mz.-;o S"' (mﬂ) m+ 1
a 1
=nf+ 3 S:n(mq-l)’l . ("‘z*: (_l)ml-r :rulnr).
m=0 r=0

Ntote that we have extended the summation on m so that it runs to infinity. This is valid
since Sm is zero for m >t. There are various ways we could go from here. One of the nicer ways
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(nicer since it eliminates that annoying n' term) starts by applying the recursion formula for Stirling
numbers of the second kind,

S;t' = 8], + kS

From this we find that S:,,=S' - (mt 1)S,,,, and thus

. -y -l, k'3 mel-r "l” ) - S o . ! _pymeler gmél Ly
Zh =nt e TS me ) (2 (1) ') - % S (EO( 1) " n ).
Since
2 8, (5 Cmg)
m=0 r=0
= £, S (o) (e

-(Zs () m)-sy Q0

t
=n'- 8§,

we can deduce that

Ek' — S € ZSM! (m_”)-l. ( "'23;(-1)“"-' :Mln' )

m+l
-8 Ssitmt o ( § g
ms= r

Since ,82," is zero for ail m 2 1, we can start the r-summation at I instead of 0. The two summations
combined are then a summation over all integers m and 7 such that | ST £ m. We therefore sum
the same terms if we let r range from I to infinity and let m range from ¥ to infinity.

: S k- zﬁs“—‘)m—'an
K-0 =1 m=y

. \ ) . ) . .
Knowing that S:: =0if m >1itl, we can stop the second summation at m =+1. Having done this,
we find that the summation becomes null if r>t+1, so we can stop the first summation at r=Z+1.

kz’::o kl - S(l) + :23: [n,. l+=l MI S 5 ]

We finally have a single polynomial in n. The coefficients are not particularly simple, but we
can quickly work them out for any given value of t. Let's check a few cases. if £= 0 we get

n n
Sk =3 | =n+l
k-0 0

The formula says that the sum should be

-1
Sg + n'S:(_ll) ,8:,
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which does indeed equal nt . For t=l we know that
n n |
ke B =
k-0 k=0 “
by using the formula from part (a). We expect this to equal
| 2 qf 2 92 162 o2
S, + n(S] 8, - 15,8, + n¥:8,8,)
=0 +in %

which again checks. The formulas for t=2 and ¢= 3 work out to be

n

k§0k2_0+2+7_1_2+n_3-71(n+l)(2n+l)623

3 q 6 2 n ')‘lQ T‘:" ul 2
and 2 k¥=0 1t 0m + -t 4 Za (2 )

k=0 4 2 4 k0

which also turn out to be correct.

One person computed some of the individual coefficients. The coefficient of nt! (which is
the highest power of n for which the coefficient is non-zero} is always 1/(t+1). More surprisingly,
for t> 0, the coefficient of n' is always %. independent of Z This person went on to comment, “It
turns out that following coefficients can be expressed in terms of Bernoulli numbers, but this is

probably beyond the scope of the midterm.” She was quite right-on both counts.

Problem 3 (30 points total).

Let us denote the n digits in any particular n-digit number by the variables d,,ds, . .., d,. How
many such numbers do not start with a zero and have no adjacent pairs of digits alike? Let us find

the answer first without using PIE.

The first digit (d;) can be any digit other than a zero. Thus it has 9 possible values. The
second digit, do, can be any digit different from @;. Thus, for each possible value of d},dy also has
9 possible values. Similarly, for any digit d; there are 9 possible values, regardless of the values of
the other digits. (The 9 possible values depend on the values of the other digits, but there are
always 9 of them.) By the product rule from way back in section 2, then, the total number of
combinations must be

n
II s,
i

which is simply 9”. That was easy; now for the hard part! (Even though this problem is easier to
solve without PIE than with it, we felt it was worth including on the midterm. It's not particularly
complicated even using PIE, and it lets you check your result using the non-PIE approach.)

Most people did fairly well applying PIE to this problem. Those who didn’t seemed confused
as to exactly how PIE works. Several people simply defined Ng, Np, etc., without specifying exactly
what a, B, etc., were. One particularly popular mistake was defining Ng to be the number of
n-digit numbers with at least one pair of adjacent digits alike, Ng the number of numbers with
some three adjacent digits alike, and so forth. This approach quickly runs into trouble when it
comes time to define Nap. People who somehow managed to hedge past this found that numbers
such as “3344", containing two different pairs of matching digits, were counted twice by Ng but not
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at all by Np. N,, etc., resulting in an answer that was too small for n 2 4.
Here are some rules of thumb to keep in mind any time you intend to use PIE:
(1] sStat by establishing exactly what you intend to have as the properties a, B, etc.

[2] The union of these properties (that is, the union of the sets of elements having each property)
must consist of precisely those elements that you’ do nof wish to count.

[3] Try to choose properties that are “interchangeable”. That is, try to arrange things so that
a=Ng=...=N), and Ngg=Ngy=Ngy=.--, and so forth. This sort of symmetry will
make the PIE formula much simpler to evaluate.

[4] Choose a,B, and the other properties such that the individual terms (Ngq,Ng, ..., Nag, etc.)
are easy to evaluate.

For this particular problem, we will let a; be the property that ds is the same as d,, ao the
property that dy is the same as ds, . . ., and in general a; the property that d;, is the same as d;.
There are a total of n-I such properties. This clearly follows rules [1] and [2] above; we'll soon see
that [3] and (4] are also met.

Consider any combination of k properties: Oy, Ay o .., Ay, How many n-digit numbers
have this particular set of properties? That is, what is N(ay,,a,,..a;)? (Pardon our not using
subscripts on the N, but subscripts on subscripts on subscripts are absolutely illegible!) The first
digit, @), can still be any digit other than zero. Each of the remaining n-/ digits can be any of the
ten decimal digits, except that exactly k of them are constrained to be the same as their immediatet
preceding digits. Thus there are 9¢10™'** such n- dng'[ numbers, and N(aj, ,&;,,.,0;,) =9 1om!-
Furthermore, since there are n-I properties, there are ( ) such terms. This formula is valid even
when k = 0; that is, there are a total of 9¢10™' n-digit numbers.

Applying the PIE formula, we find
No = 9010™" . (n=1)09010™2 4 ("5)+9e10™ - . . . & (71)+9+10°
-1
- 3 () 1 pomI
k=0
= .. (10-1!

by the binomial theorem. So Ng=9", as expected.

' 9 ’ Ramsey Theory

February 23. This was Tarjan's first lecture, and he started by announcing what he intended to
cover during his seven lectures. Specifically, he said he would be discussing miscellaneous problems
in existential and constructive combinatorics, with the emphasis being on the constructive side. This
section, on the other hand, deals almost entirely with existential combinatorics, although some of the
proofs are constructive.

We encountered Ramsey Theory briefly in section 7, where we looked at one of its simplest
cases. If there are six people at a party, either there are three people who know each other or there
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are three none of whom know each other. Tarjan went over the proof of this result. We won't take
the time to include it here; you're encouraged to refer to pages 55 and 56 if you wish to review that
discussion. As before, we’ll use solid and dotted lines to represent two different “colors” in these
notes.

One of the things we'd like to do is generalise this result to the case where there are n people
who all know each other or n none of whom know each other, for some arbitrary value of n. We'll
get to this in a moment, but first we want to look at a different question. Is there another graph
with the 3-people property? That is, is there some other graph besides Kg that, if its edges are
colored using two colors, must contain a monochromatic triangle? Clearly, any graph that “contains”
aKg (i.e., has six vertices each of which has an edge leading to each of the other five) will contain a
monochromatic triangle, since those six vertices must include one. Are there any graphs that do not
contain Kg but still must include a monochromatic triangle? In fact there are; one such graph is
shown below. It is created by taking a triangle and a pentagon and adding edges connecting every
vertex in the triangle to every vertex in the pentagon.

Tarjan left it as an exercise (as distinguished from a homework assignment) to prove that this
graph contains noKg. This is easy enough to do: any six vertices must include at least three from
the pentagon, and some two of those three must lack a mutual edge. To prove that this graph,
when two-colored, must include a monochromatic triangle, we start by looking at the three vertices
that make up the upper triangle. If the edges connecting these vertices are of a single color, we've
found a monochromatic triangle. Otherwise, there must be one edge of one color and two of the
other color. Since the three edges are symmetric with respect to the rest of the graph, and the two
colors are interchangeable, let's assume the graph looks like this (edges not shown haven’t been
assigned a color yet):

Consider the two vertices joined by the dotted edge. If either of these vertices has two solid edges
leading to adjacent vertices of the pentagon, we get the situation shown on the left at the top of
page 74. In this case, the two vertices in the pentagon must be joined by a dotted edge, lest we get a
solid triangle. They must also be joined to the topmost vertex of the triangle by dotted edges, for
the same reason. But this gives us a dotted triangle, as shown in the center diagram. On the other
hand, we can have two solid edges from a vertex in the triangle to E-adjacent vertices in the
pentagon (rightmost diagram). From either of the vertices on the dotted edge in the upper triangle,
there can be no more than two solid edges leading to vertices in the pentagon. (If there were three
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solid edges they would necessarily include two leading to adjacent vertices.) Thus each of these two
vertices in the triangle has at least three dotted edges leading to the pentagon. This makes a total of

six dotted edges, so at least two of them must go to the same vertex in the pentagon. These two
edges, together with the dotted edge in the upper triangle, form a.monochromatic triangle.

As homework, Tar jan asked for a proof that if the edges of Kg are two-colored there must be
at least two monochromatic triangles. The resulting homework papers included almost as many
different proofs as there were papers. Here is a typical proof. We start by taking advantage of the
fact that we already know there must be at least one such triangle. Let's assume it's solid, and draw
the graph with those three vertices at the top, as shown on the left below. Each vertex of the
triangle must have at least one additional solid edge. (Jf any vertex of the triangle has ail three
remaining edges dotted, we get the situation shown in the center diagram below, in which case either
the three bottom vertices are ail connected by solid edges, creating a second triangle, or some two of
them are connected by a dotted edge, creating a dotted triangle.) If any vertex in the first triangle
has more than one additional solid edge, we get the situation shown on the right below, in which we
either have a dotted triangle as shown, or one of the edges shown as dotted must instead be solid,
giving a solid triangle. Thus, for each of the points of the first triangle, the three remaining edges

must include exactly one solid edge and two dotted edges. In addition, each of the three additional
Solid edges (one from each vertex of the triangle) must go to a_different vertex, lest we get another
solid triangle (below left). Since the three lower vertices are indistinguishable at this point, we get
the situation shown in the center diagram below. If we are to avoid having another solid triangle,
certain edges must be dotted, as shown on the right below, But then, if we are to avoid getting a
dotted triangle, each edge connecting two of the three lower vertices must be solid. This gives us a
second solid monochromatic triangle. This construction also shows that it is possible to two-color a
Kg so as to have exactly two monochromatic triangles. It is not known, for general n, what the
minimum number of monochromatic triangles is in a two-colored K.

Getting back to the case of proving the existence of a single monochromatic triangle in Kg,
how can we generaiise this result and its proof? How large must a graph be so that when its edges
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are two-colored there is a complete monochromatic subgraph of k vertices? (A triangle, of course, is
a complete graph of 3 vertices.) This time it was Tarjan's turn to come up with a problem-solving
aphorism: “Sometimes to get a result you have to ask a more general question.” In order to prove that
a sufficiently large graph always exists, we must generaiise the problem still more.

We define R(m,n,2) to be the minimum integer such that, if N2 R(m,n,2) and each edge of
Ky is “colored” solid or dotted, then there is either a solid K,, or a dotted K,. (The “2” denotes
that we’re coloring edges, which correspond to p'airs of vertices. This will be important later.) Jt is
assumed that m and n are positive integers. We saw in section 7 that it is possible to two-color a Ky,
graph without getting any monochromatic triangles, and that a two-colored Kg always has such a
triangle, so we know that ¥(3,3,2) = 6. What other values of ® can we readily ascertain? Consider
R(m,2,2). If we have a K,,;,araph, we can color ail its edges solid, and we will have neither a solid
K,, nor a dotted K,. If we two-color the edges of K,, however, then either we have a dotted edge
(which would be a dotted Ky, since Kq is a single edge) or else ail the edges are solid, giving us a
solid K,,. Therefore R(m,22)= m. Similarly, ¥(2,n,2)= n. (In general, ¥(m,n,2) = R(n,m,2), since
the definition is symmetric with respect to m and n.)

We now come to Ramsey’s Theorem, version 1: For ail m and n 2 2, R(m,n,2) exists and
satisfies the relation

R(m,n,2) < R(m,n-1,2) + R(m-1,n,2)

for ail m and n 2 3.

The proof is by induction on the sum m+n. We know, when m and n are 2 3and m+n = 6,
that we must have m = n = 3, and that R(3,3,2)=6 <3 + 3 =%R(3,2,2) + R(2,3,2). So far so good.
Now suppose the theorem is true for mtn ct, and consider the case when min =t. Suppose that
N2 R(mn-1,2)t R(m-1,n,2) and that the edges of Ky are colored solid or dotted. Pick any vertex;
it is connected to every other vertex, and there are at least .‘R(m,n—l,?)tﬁ(m—l,n,?)— | of them. Of
these R(n,n-1,2)+ R(m-1,n2)-1 edges, either at least R(m,n-1,2) of them are dotted, or at least
R(m-1,n,2) of them are solid. Why is this? Well, if it weren’t so, then there would be at most
R(m,n-1,2)- | dotted edges, and at most R(m-1,n,2) - | solid edges. But this would give a total of
at most R(m,n-1,2)t R(m-1,n,2)-2 edges, and we've said there must be at least one more than that.
So suppose R(m-1,m,2) of the edges are solid. Consider the vertices at the “other ends” of these
edges. (Remember that ail these edges are coming from a single vertex.) According to our induction
hypothesis, these R(m-1,1,2) vertices and their interconnecting edges must include either a solid K,,_;
or a dotted K,. If the latter, we're done, since the original Ky contains this same K,. If there’s a
solid K,_y, then the original K contains a solid K,, consisting of these m-l vertices together with
the vertex we selected at the start, since that vertex is known to be connected by solid edges to each
of the m-1 vertices. The case when the vertex we start with has R{(m,n-1,2) dotted edges is handled
similarly, and is left as an exercise.

You should be sure you understand the above proof before proceeding; the same approach
will be used to prove the more general versions of Ramsey’s Theorem later on. Notice how this
proof generaiises the method used to determine ¥(3,3,2). Note also that the proof forces us to

consider R(m,n,2) for m #n.

Using this theorem, we can compute upper bounds on the values of the Ramsey numbers
R(m,n,2). Here's a table showing these bounds for the first few values of m and 7.
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V 2 3 4 5 6 7
m

3 4 5 6 7
6 18 15 21 28
18 28 35

15 35

2
3
4
5

b wnN

These values should look familiar-they are simply‘ the binomial coefficients. This isn’t terribly
surprising, since the upper bound given by the theorem is the same as the recursive definition of the
binomial coefficients. Ramsey’s Theorem (version 1) tells us that .‘R(m,n,2)s(’",f,f,"). On the other
hand, certain Ramsey numbers (not many) are known precisely. The following table, taken from
(Harary), shows all the values currently known (not counting cases where m or n = 2, and omitting

some values which are identical to others by symmetry).

R(m,n,2)

U’!wa%
nN
w
-
o
(=]
~

b wnn
SO o w
|
[e-]

Notice that the bound given by the theorem gets progressively worse. There is no general method
known for finding these (and hence additional) numbers. Computing a few more entries for the
above table is usually sufficient for a thesis; finding a general method would bring instant fame (at
-least within the world of mathematics).

How can we generaiise this idea still further? We've pointed out that, in coloring the edges,
we're actually assigning a color to each pair of vertices (where two pairs sharing a common vertex
does not imply that the two pairs must be assigned the same color; it is the pairings that are being
assigned colors, not the individual vertices). Suppose we instead assign a color to every possible
subset consisting of r vertices? We shall call such a set an r-subset.

We define R(m,n,r) to be the minimum integer such that, if each r-subset of a set containing
N 2 R(m,n,r) elements is colored either solid or dotted, then either there is an m-subset ail of whose
r-subsets are solid, or there is an n-subset ail of whose r-subsets are dotted. As an example, let r be
"3, and suppose we have a set of five elements, {ab,.d,e}. There are‘_(2)= 10 3-subsets. If we let the
six subsets {a,bc}, {a.b.d}, {a,c,d},{a,c.e},{a,d,e}, and {c,d,e} be “solid”, and the remaining four 3-subsets
“dotted”, then there is a 4-subset, {a,c,d,e}, such that ail 3-subsets of this 4-subset are solid. On the
other hand, it is certainly possible to assign “colors” to the 3-subsets in such a way that there is no
such 4-subset, so f(4,4,3) is not 5. (In fact, no one knows what the value of ¥¥4,4,3) is!)

Let’s look at some special cases for which the values of R(m,n,y) are known. For instance,
what about R(m,r,r)? We claim R(m,r,r)= m. (It is obvious that R{m,r,r) cannot be less than m.) If
we have a set of m (or more) elements, then either there is at least one dotted r-subset, in which case
those r elements form an r-subset “ail of whose r-subsets are dotted” (an r-subset has only one
r-subset, namely itself), or else ail of the r-subsets are solid, in which case we have m elements ail of
whose r-subsets are solid. Similarly, by symmetry, R(r,;n,r)= n. Suppose r=1? In this case we are
simply coloring each of the vertices individually. We claim R{(m,n,1)= m+n- 1 for ail m and n 2 1.
If a set has this many elements, and each is colored either solid or dotted, then we must have either
m solid or n dotted elements. If we didn’t, then we could have at most m-l solid and n-/ dotted
elements, which accounts for only mtn-2 of them. This special case of Ramsey’s Theorem (which
we're about to state in its general form) is called the pigeonhole principle: if we distribute m+n-1
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objects into two categories, either the first category contains m or more objects or else the second
category contains n or more objects. There’s another form of the pigeonhole principle; we'll come to
it eventually.

We're now ready to look at Ramsey’s Theorem, version 2: For ail m and n 2r 2| R(mn,r)
exists and satisfies the relation

R(m,n,r) € RIR(M,n-1,1),R(m-1,n,r)r= 1) + 1
for ail m and n >r> 1.

Before proving this theorem, let’s check it for the case *= 2. According to the theorem,
R(m,n,2) £ R(R(m,n-1,2),R(m-1,n,2),1) t 1 =[R(m,n-1,2)+R(m-1,n,2)-11t1 (according to our formula
for R(mn,1)), so this checks against the first version of the theorem. How can we prove this new
theorem in general?

Let p = R(m-1,n7) and ¢ = R(m,;n-1,7), and assume N 2R(p,g.r-1)+1. Suppose S is a set of N
elements, and that the r-subsets of S have been colored solid and dotted. Pick any element v in S
and consider the r-subsets that contain v. Each one corresponds to an (r-1)-subset of the N-I
elements that do not include v. (Let Sy represent the subset S-{v}, which is the same as S except that
v has been removed.) A coloring of the r-subsets of S that include v corresponds to a coloring of
the (r-1)-subsets of S, that do not include v. Since N-12R(p,¢.r-1), we know that there is either a
subset of p elements of Sy, ail of whose (Y-l)-subsets are solid, or there is a subset of g elements of
Sy, ail of whose (r-1)-subsets are dotted. The two cases are similar; consider the first. In this case
we have p=R(m-1,nr) elements, each of whose (r-l)-subsets is solid. This corresponds to the
coloring of the r-subsets of S in which each (r-l)-subset of the p elements, when taken together with
v, forms an r-subset that is solid. Meanwhile, by the definition of R(m-1,n,), there must be either
an (m~1)-subset of the p, ail of whose r-subsets are solid, or else an n-subset ail of whose r-subsets
are dotted. In the latter case, we're done. In the former case, we take the m-l elements together with
v, and thereby find an m-subset ail of whose r-subsets are solid.

Finally, let's generaiise to include the situation where there are more than two colors. We
define R(ny,ny, . . .,n,7r) to be the minimum integer such that, if each r-subset of a set containing
Nz.‘R(n,,ng, . ...n,,r) elements is colored with one of t colors, then there is some i such that some
g-subset has ail its r-subsets colored using the ith color.

One more time! This time it’s Ramsey’s Theorem, version 3: For ail my, N, . .., N 2721,
R(n,,ng, .. ,m,r) exists and satisfies the relation
Rnymo, .. ) SRR g, e DY)
-for t> 2.

To prove this, we group the colors into two categories. The first category contains the first t-I
colors and the second category the last color. Given a set of N 2 R(R(n,no,...,n.;,7)n,r) elements
whose r-subsets have been colored using ¢ colors, we take every r-subset that has been colored using
any of the first ¢-1 colors and color it “solid” instead. By the definition of the two-color case, we
know that either there is an g-subset ail of whose r-subsets are dotted, or else there is a subset of
R(n..ns. . .Mup,r) elements ail of whose r-subsets have been colored using only the first t-I colors.
The theorem follows by induction.

For instance, we can get the following bound on the value of %(3,3,3,2):
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$(3,3,3,2) s R(R(3,3,2),3.2) = N(6,3,2) = 18.

(The earlier versions of the theorem told us only that R(6,3,2) was € 21, but it has in fact been
found that it is 18, so we can get a slightly better bound on the value of ¥%(3,3,3,2).) The actual
value of 1(3,3,3,2) is known to be 17. There’ll be more to say about that on the final exam.

As a special case, we find R(222,...,2,1)=t+1 (where there are t colors). This is another
case of the pigeonhole principle: if we distribute it 1 objects into ¢ categories, some category must
contain two or more objects. Ramsey Theory is in a sense just a generaiisation of the pigeonhole
principle.

For people interested in further reading concerning Ramsey Theory, Tarjan suggested three
references: [Halll, pp. 54-57, [Ryser], pp. 38-46, and [Harary], pp. 15-17.

Before moving on to section 10, let’s look at some applications of Ramsey Theory. (This
material was not covered in the lecture. This section of the notes is based on some lecture notes

prepared by Tarjan that he never found time to present.)

A finite semigroup is a finite set on which a binary associative operation is defined. The
operation is referred to as “multiplication”, although in fact it may not be the ordinary arithmetic
multiplication operation. For instance, given any finite set S, we can take the collection of ail subsets
of S, together with the operation of set union, and that will form a finite semigroup. (We could also
use set intersection as the semigroup operation.) We will use “+" to denote the operation of the
semigroup. An idempotent is an element ¢ such that é+¢=e. It is claimed that any finite semigroup

must have an idempotent.

To prove this using Ramsey Theory, we let a be an arbitrary element of the Semigroup. Let n
be the size (also called the order) of the semigroup, i.e., the number of elements in the set, and let
N = R(3,3,3,. . .,3,2), where there are n %'s. Consider forming the product of N copies of a,

a*aca*as*ac...*aq,

\ /

N

which we shall denote by aV. (Similarly, a' is the product of ¢ copies of a, for any t.) We take the
complete graph K, and color the edges using n colors, where each color corresponds to a distinct
element of the semigroup. We color the edge linking vertices i and j (where i<f) using the color
corresponding to the element o According to Ramsey’s Theorem, there must be a monochromatic
trian %’ie, i.e., there must be some i, J, and k (i<j<k) such that ¢/ =a**=a*7. Define e =@ Since

atJealt = a"", we have é*€¢=e. Thus € is the desired idempotent.

‘For an alternate proof, we consider the powers of a. Since the semigroup is finite, we must
eventually find two powers that are the same element; that is, there must be some positive integers i
and f such that @' =a. This implies by induction that @**=d/ for ail positive k. Choose some k
such that kig . Then ki~f is positive, and thus we can muitipi?' both sides of the equation by akd,
We find that @***¥J = g™**J \which means a®* = a* and e=a* is an idempotent.

For another situation where Ramsey Theory can, rather unexpectedly, be applied, we turn to
plane geometry. A region in a plane is said to be convex if every straight line connecting two points
in the region lies entirely within the region. It is claimed that, for any n, there is a number N (n)
such that any planar set of N(n) points, no three in a straight line, contains a convex n-sided

polygon (n-gon).
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To prove this, we first prove two lemmas. Lemma 1 states that, given five points in the plane
that have no three in a line, some four of the five points must form a convex quadrilateral. To see
this, consider the convex hull of the five points. The convex hull of a set of points is defined to be
the smallest convex polygon that includes or contains ail the points. (Another way of looking at it is
to draw ail edges connecting pairs of points in the set; the convex hull is then the “outer face” of the
resulting graph.) If the convex hull contains 4 or 5 points, as shown in the first two diagrams
below, the lemma is clearly true. If it contains only 3 points, as shown on the right below, the other
two points are on the inside of the triangle. These two points determine a straight line, and since
none of the other points can be along this line there must be two of the triangle’s points on one side
of the line. These two points, together with the two interior points, determine the desired convex
quadrilateral.

The second lemma states that, given n points with no three in a line, if ail quadrilaterals
determined by subsets of 4 points are convex, then the n points determine a convex n-gon. Again
consider the convex hull of the n points. It is by definition a polygon; say it has g sides. We can
break it into q-2 triangles, as shown below. None of the 1 points can lie inside any of the triangles,
or there would be a concave quadrilateral determined by that point and the enclosing triangle. Nor
can there be any points outside the g-gon, by the definition of the convex hull. Hence ail n points
are included on the g-gon; i.e,, ¢ =n, and the n points therefore determine a convex n-gon as stated.

To prove the theorem, we pick N(n) = R(5n,4), where “solid” corresponds to “concave” and
“dotted” to “convex”. By the first lemma, no five points can have every 4-subset concave, so there
must be n points with every Q-subset convex, which by the second lemma implies that the n points
form a convex n-gon.

The preceding proof gives us an upper bound on N(n). For some values of 1, the minimum
values of N(n) are known. Specifically, N(3) =3 =2t |, N4) = 5=2%+1 (by the first lemma), and
N(5) =9=2% 1. (It is an interesting exercise to try to find 8 points that do not include a convex
pentagon.) It is unknown whether N(n) =2"%4 1 in general. Also unanswered is the following
question: given n, is there a large enough M (n) so that any planar set of M(n) points, no three in a
:line. must contain 7 points defining a convex n-gon with no other point inside? It is known that
M(4) = 5; the existence of M(n) has not been proven for n2 5.

1@' Matchings (Stable Marriages)

February 28. Given a set of men and a set of women, a matching is a set of pairs, each pair
containing one man and one woman, such that no person is in more than one pair. We shall be
interested in finding matchings satisfying various criteria. The first problem we’ll consider is called
the stable marriage problem. We assume that there are the same number of men as women, and
that each person ranks the people of the opposite sex in order of preference. A matching is stable if
there is no unmatched pair {a,b} such that both a and b prefer each other to their present partners.
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(If such a pair existed, they would run off together.) Although we speak of men and women, this is
actually a rather facetious viewpoint; this problem is more often applied to relationships somewhat
more pragmatic than marriage, such as roommate assignments, dormitory room assignhments, and
university admissions. Nevertheless, here we’ll discuss the problem in terms of marriages between

men and women.

For example, let’s designate the men with lower-case letters and the women with upper-case.
Suppose the preference lists are as follows:

a: ABC A:bac
b: BAC B: cba
c: ACB C: ach

Suppose we take the matching {@aBbC.cA4}. Is this stable? No, because a prefers A over B, and A
prefers a over ¢, so a and A will run off together. Is there a stable matching for these people? Yes;
here’s one: {aA4,bB,cC}. In this matching, a and b have their top choices and therefore will not want
to run off with anyone else; ¢ would prefer A, but A doesn’'t prefer c. This matching is therefore
stable. So is this one: {aC,bAcB]. It turns out that, no matter what the people’s preferences are,
there always exists at least one stable matching. We wish not only to prove this, but also to give a
method for finding one. (This is thus a case of constructive combinatorics.)

The method we’re about to present works something like this. The first man will propose to
the first woman on his list. She, having no better offer at this point, will accept. The second man
will then propose to his first choice, and so on. Eventually it may happen that a man proposes to a
woman who already has a partner. She will compare the new offer to her current partner and will
accept whoever is higher on her list. The man she rejects will then go back to his list and propose
to his second choice, third choice, and so forth until he comes to a woman who accepts his offer. (If
this woman already had a partner, then the old partner gets rejected and he in turn starts proposing
to women further down his list.) Eventually everything gets sorted out. Now let’'s make this a bit

more formal.
A lgorithm:

Each person starts out with no people “canceiled” from his or her list. People will be
cancelled from lists as the algorithm progresses.

For each man m, do propose(m), as defined below.

propose(m:

Let W be the first uncancelled woman on m's preference list.
Do: refuse(W,m), as defined below.

refuse(W m):
Let m’ be Ws current partner (if any).
If W prefers m’ tom, then she rejects m, in which case:
(1) cancel moff W's list and W off m’s list;
(2) do: propose(m). (Now m must propose to someone else.)
Otherwise, W accepts m as her new partner, in which case:
(1) cancel m’ off W's list and W off m"'s list;
(2) do: propose(m’). (Now m’ must propose to someone else.)

Let’s step through this algorithm using our earlier example. (This is the sort of thing best
done at a blackboard, but we'll see what we can do.) We first do propose(a). a’s top choice is A, so
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we do refuse(4,a). She has no current partner, so she accepts a. We proceed to the next man, b,
whose first choice is B. She too accepts. Finally, we do propose(c), which in turn causes us to do
refuse(A,c). Since A’s current partner is @, and she prefers a over ¢, she rejects ¢. We cross A off of
¢’s list, and cross ¢ off of A’s list, and do propose(c) again. This time, since A has been cancelled
from his list, he proposes to C, who accepts. We have found a matching, and we have seen already
that this particular matching is stable.

Let’s look at a slightly more complex example. Consider the following preference lists.

a: DACB Aracdb
b: ACDB B:dabe
c: CDBA C:cbda
d DACB D: bdca

Let’s step through the algorithm using these lists. First a proposes to D, who accepts. Then b
proposes to A, who accepts, and ¢ proposes to C, who accepts. Finally, @ proposes to D, and the fun
begins: D accepts d's proposal and rejects a; a then proposes to A, who accepts a and rejects &; b
proposes to C, but C is happy and rejects him, so b next proposes to D). Now D rejects d in favor of
b, so @ proposes to A. She rejects him, and he proposes to C, who also rejects him. Finally, d
proposes to B, who accepts. The final matching is: {a4,bD,cC,dB}. Note that someone can end up
with a despised partner (B was d's last choice) and the matching can still be stable. Note also that
the algorithm can be run “the other way”, with the women proposing to the men. If we were to do
that in this particular example, we'd get the same solution with much less work.

Now let's prove a few things about this algorithm. First of all, is it an algorithm? That is,
does it necessarily terminate? Yes it does, because no man ever proposes twice to the same woman.
Next, is a matching generated? Yes: once a woman has a partner, she always has one (she may
“trade” for a better one, but she’ll never be without one). If there is an unmatched man, there must
also be an unmatched woman. But an unmatched man will keep proposing until he has proposed to
every woman, so he must eventually propose to the unmatched woman, and she will accept. So
everyone ends up in the matching.

Now we come to the interesting part—is the matching stable? Well, suppose it isn't. Then
there’s some pair, say @B, who are not matched to each other, such that each prefers the other over
his or her current partner. Let’s assume a is paired with A and B with b. So a prefers B to A and B
prefers a to b. Since B appears ahead of A on a’s list, and a ended up proposing to A, we know that
a must have proposed to B at some point. So why did B reject a? The only reason for B to reject a
would be if she were paired at that point with someone she preferred over a. But if this were the
case, she couldn’t possibly have ended up with b as her partner, since each woman’s partner can only
improve.

Next, we wish to show that the solution found by the algorithm is male optimal, i.e., that no
man can do any better than he does in the matching found by the algorithm. Since each man ends
up matched with the first woman on his list who hasn’t been cancelled, this is the same as saying
that every time a woman W gets cancelled from a man m’s list, it implies that ho stable matching
includes the pair mW. Consider such a cancellation. W has proposals from m and m’, and she
rejects m. Suppose the pair mW occurs in some stable matching. In this matching, m’ is paired with
some other woman, W', If W precedes W’ in m"s list, then m’ and W prefer each other over their
assigned partners, and the matching isn't stable. Meanwhile, if W’ precedes W in m”’s list, then W'
was cancelled off m”s list by the algorithm, and so we have yet another cancellation that must be in
our hypothetical matching. Since each cancelled pair included in the matching implies that another
such pair must also be in the matching, we have by induction that there must be an arbitrarily large
number of pairs, cancelled by the algorithm, that are in this new matching. But that’s impossible,
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because there aren’t an arbitrarily large number of men and women in the sets. Hence our initial
assumption, that there was at least one cancelled pair mW that could occur in some stable matching,
must be wrong. Hence the matching found by the algorithm is male optimal.

Finally, we wish to show that the solution found by the algorithm is female pessimal, i.e., that
no woman does worse in any other stable matching. Suppose some woman W is paired, in some
stable matching S, with a man m’ whom she ranks lower than the partner m assigned to her by the
algorithm. Then W prefers m over m'. But, by male optimality, the man m prefers W to whomever
he gets in the matching S. Hence S is unstable.

Pélya raised the question of whether there were any sort of global criteria of “goodness” which
could be used to decide which of two matchings was “better”. Such a criterion would presumably
rate any stable matching as being better than any unstable one, and would rate stable matchings that
were female pessimal (or male pessimal) lower than stable matchings that were more “balanced”.
Such a measurement would indeed be nice to have, but none such seems to exist in general. We'll
get back to this issue later.

What about partial preference lists? That is, suppose that for each person there are some
people they dislike so intensely that they’d rather remain single than be paired with those people. In
this case there need not be a solution (obviously, since one person could refuse to marry anybody).
Given a collection of partial preference lists, we wish to determine whether there is in fact a stable
matching in which all the men and women are paired.

March 2. To solve this problem, we introduce one additional “dummy” man and one “dummy”
woman. We'll denote them by m and W, For each man, we add W at the end of his partial list,
followed by all the “real” women not already on his list. Similarly, we add m to each woman’s list,
followed by all real men not on the list. We also create preference lists for the two dummies. The
order of the real men and women on these two lists is irrelevant; the only important feature is that
W is m’s last choice, and mis W's last choice. For instance, given the partial lists

a: DA A: ac
b: ACD B:dab
c ¢ c c

d: DACB D:bdca

we would transform them into the following:

a: DAWBC A:acmbd
b:ACDWRB B:dabme
c: CWABD C:cmabd
d: DACBW D:bdcam
m ABCDW W-abcdm

By our earlier analysis we know that there must be a stable matching for this set of lists, since now.
everybody lists a complete set of preferences. However, this stable matching might have someone
matched to a person to whom he or she refuses to be married. We claim that there is a complete,
stable matching for the original problem if and only if there is a stable matching for the new
problem in which m is paired with W .

Suppose we have a stable matching that includes the pair mW. Removing m and W can’t
make the matching unstable, since doing so can only reduce the number of possible alternatives for
everyone. So all we need show is that no person prefers being single over being paired with his or
her partner. Suppose some man a prefers being single to being married to his partner, A. Then a
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prefers W over A. But W prefers a to m, so this wasn’t really a stable matching to begin with. The
same argument applies if there is some woman who would prefer being single. The “only if” part of
the claim is trivial and is left as an exercise.

We can go one step further and claim that, if some stable matching for the new problem
includes the pair mW, then they all do. This follows directly from the male optimal solution, which
we can find using our algorithm. If this solution_includes the pair mW, then all stable matchings do,
since m can't do any better, and W was his last choice. On the other hand, if the male optimal
solution doesn’t include mW, then no stable matching does, since this solution is female pessimal,
implying that W can’t do worse than whomever she’s got in this matching.

Finally, suppose each person ranks all the others? (This is the sort of thing that might arise
in, say, roommate assignments, since any person might be paired with any other.) For instance,
consider the following preferences:

A: BCD
B: ACD
C: ADB
D: CAB

which have the complete, stable matching: {4B,CD}. Unfortunately, most of the results that we
proved regarding the bipartite case (“bipartite” means that there were two independent sets, and
each pair included one element from each set) no longer apply. In particular, there need not be a
stable matching, and there is no efficient method known for finding one if it exists.

Tarjan assigned as homework the problem of finding a set of preference lists for four people
such that there was no stable matching. This isn’t too difficult to do. Some people even managed to
prove the uniqueness of the answer. Such a set of lists is the following:

A: BCD
B: CAD
C: ABD

D: (arbitrary)

Any set of lists of this form (that is, equivalent except for some interchanging of names) will have
no stable matching, and these are the only such lists for four people. (We won’t bother to prove that
here.) There are 48 “unstable” sets of lists, out of a total of (3!)1- 1296 possible sets.

1 1 Matchings (Maximum Matchings)

March 2. In the preceding section we mentioned the problem of coming up with a “global criterion”
for deciding whether one matching is better than another, We noted that no such criterion appears
to exist in general. Nevertheless, there are some cases where a reasonably simple criterion suffices.
For instance, if each possible pairing is either permitted or not permitted, with no other relative
preferences given, then we have no trouble. This is known as the maximum matching problem.

Stated precisely, the maximum matching problem is the following. (As in section 10, we’ll
discuss it in terms of men and women. A typical “real-life” application might involve assigning
people to jobs. See also the “busing problem” mentioned on page 55.) We are given a set M of men
and a set W of women. We are also given a set of “legal” pairs (a,b), where ais in M and b is in W.
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in this description, “legal” may be read “compatible”; i.e., the pairs indicate men and women who can
get along together. In the people/jobs situation, the legal pairs would be people a who are able to
do job b. We restrict our definition of matching from section 10 so that we consider only legal pairs:
A matching is a subset of the legal pairs such that each person is in_at most one pair. A_maximum
matching is a matching containing as many pairs as possible. We are interested in finding (i) the
size of (number of pairs in) this maximum matching, (ii) the matching itself, and (iii) as a special
case, a means of determining easily whether all the elements of the smaller set can be matched.

For example, suppose there are four men and five women. We’ll denote the men by the
symbols x) through x4 and the women by %, through %5, and we'll show the legal pairs by drawing a
graph in which an edge between x; and ¥y means (x,.y,) is a legal pair. Suppose the legal pairs are
as shown on the left below. We can obtain the matching indicated by the jagged edges in the
diagram on the right. Each jagged edge corresponds to selecting the pair consisting of the endpoints
of that edge. Thus the matching is {(x;yo)(x2 M{x2.94)(x4,95)}. This is obviously the maximum
possible, since all the men are matched. This maximum is not uhique; for instance, we could instead
have matched X4 with 9.

X) b] X) @@
250 gttt
X X ‘HNNM\"'\MW
2 Yo 2 @ )2
X x
3 Js 3 Oy, Js
Viay
A
Xy 94 2L L @ 94
g
Wiy,
Y A

This sort of graph is called a bipartite graph; the vertices of such a graph can be partitioned
into two sets such that no edge joins two vertices from the same set. We can see from the above
example that the problem of finding a maximum matching corresponds to the problem of finding a
maximum set of edges in a bipartite graph such that no two edges share a vertex. We can also
transform the maximum matching problem into one involving matrices. Given a matrix in which
each element is either 0 or 1, we wish to find a maximum number of I's with no two of them in a
single row or column. To transform a maximum matching problem into this form, we create the
matrix in which each row is associated with some ¥; and each column with some ¥, and let a lin
the matrix indicate that (x;,y,) is a legal pair. Our example yields the matrix shown’below, in which
the parentheses indicate the set of ones corresponding to the maximum matching selected by the
jagged edges in the earlier diagram.

N Y2 Js ¥4 s
o | v @ e | e | e |

X | (1 | 8 1 8 8

xs | 8 | 8 | 8 | (1| e

x, | @ 1 1 8 | (D

Yet another problem equivalent to the maximum matching problem is the following: given a
collection of subsets of some set, find a maximum set of distinct elements such that each is contained
in a different set. For example, let’'s look at the problem corresponding to our favorite example. We
let our collection of subsets include one subset for each ¥;, and the subset corresponding to any
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particular x; will consist of those 3 that form legal pairs with ¥;. Thus we have four subsets:
{1321 {9193} (94} and {y2.94,95}. The maximum matching we've been using as a solution in the
previous examples corresponds to selecting %o from the first set, ¥, from the second, %4 from the
third, and %, from the fourth. When, as in this case, the selected elements include one from each set
(as opposed to leaving some sets unrepresented), the set of elements selected is called a system of
distinct representatives. This is often abbreviated to SDR.

Since all of these classes of problems—maximum matching, disjoint edges, matrix element
selection, and SDR-are equivalent (we haven’t actually shown that, but the transformations just
described can obviously be performed in either direction), a method for solving any one of them can
be applied to get solutions to the others. So we’ll look at the problem of finding disjoint edges in a
bipartite graph. How do we go about finding the largest such set of edges? We start by defining a
few more terms. We'll use “matching” to refer t o theset of edges selected, since any such selection
corresponds to a matching in the original formulation of the problem.

A free vertex 1is one not contained in any edge of the matching. A path in a graph (we don’t
seem to have defined this term before) is a sequence of edges VVUs, Uo¥Ur, Urly, ..., U U;. (While
we're at it, we'll define acycle (alsocalledacircuit; we defined it informally on page 51) to be a path
in which the last vertex, vy, is the same as the first, ¥;, We'll be talking more about cycles later.) A
path is allowed to go through a vertex or vertices more than once; if it doesn’t it is called a simple
path. (Some texts use “path” and “walk” instead of “simple path” and “path”. We will occasionally
use “path” to refer to a simple path when the non-repetition of vertices is obvious or unimportant.)
Getting back to the problem at hand, we define an alternating path as a simple path consisting of
alternating matched and unmatched edges. |If an alternating path connects two free vertices, it is
called an augmenting path. If an augmenting path exists, the size of the matching can be increased
by one by switching the matched and unmatched edges along the path, as shown below. (As before,
jagged edges indicate edges in the matching.)

augmenting path increased matching
®*o—O "NNoO—@ N NeO—@ o N @ ——O N O——@ NP

Note that we needn’t have restricted ourselves to simple paths, but if any vertex were repeated in an
augmenting path we could remove the cycle thus formed and still have an augmenting path, so it's
easier t o consider only simple paths from the start.

This leads us to the following method for finding a maximum matching. This isn’t really an
algorithm, due to the vagueness of the second step.

Step |: Begin with any matching (e.g., the empty set).

Step 2: Look for an augmenting path. If one is found, increase the size of the matching
accordingly. Repeat this step until no augmenting path is found.

We’ll ignore for the moment the problem of finding augmenting paths. First let’'s prove that this
method does indeed yield the maximum possible matching. Suppose it doesn’t; suppose the real
maximum is larger. Let M be a matching generated by the above method, and let My be any
maximum matching. We'll denote the size of M (the number of edges in M) by IMI We want to
show that, if |M|<MOI, there must be an augmenting path in M.

We define M®M by

M®&Mg = (MuM,) - (MaM,)
= (M=Mg) U (Mo-M),
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where the notation X-Y signifies all elements contained in X but not in Y. Thus M®M, is all edges
that are in either M or M, but not both. Since, in a matching, each vertex is incident to at most
one edge, we know that each vertex is incident to at most two edges of M®M,. Hence the edges in
M@®&M, form only simple paths and cycles. Furthermore, if some vertex is incident to two edges, one
of the edges must be in M (and not in M) and the other must be in My and not in M. Thus the
paths and cycles in M®M are alternating paths and alternating cycles in M. (Edges are alternately
in M and not in M.) For any path or cycle, there are thus four possible forms, as shown below.
Each of these could be extended to any length, but the-basic forms would be the same: (I) a path
beginning and ending with edges in M, (2) a path beginning and ending with edges in Mg, (3) a
path beginning with an edge in M and ending with an edge in My (the inverse case is achieved by
following the path in the opposite direction), or (4) a cycle.
Mo M Ma M Mo

M Mo M My M 2 o 0O —e MrO—e
“) [ RV V.V, S - JVV.VY, S YVVVV ]

M, Mo
M My M My M Mo a ‘
(3) [ RVAVV, e RVVVY - 1 IV L J (4) 3
Ma im
1
h\h‘. Mo

We can partition the edges of M®M,, into simple paths and cycles of the above forms. We
make each path as long as possible; that is, we don’t break any path or cycle into two smaller paths.
Note that paths of type (1) have more edges in M than in M, and that paths of type (3) and cycles
of type (4) have exactly as many edges in M as in M. Only paths of type (2) have more edges in
M, than in M. But we're assuming M contains more edges than does M. Since MuM contains all
edges that are in either matching, it too contains more edges in My than it does edges in M. (It may
include, of course, some edges that are in both sets, and that therefore count toward both tallies.)
Meanwhile, MaM, contains only those edges that are in both sets, and therefore obviously includes
as many edges from M as from M,. Thus, when we remove these edges from MuM,, the resulting
set (which is M®M,) must still contain more edges from Mg than from M. Hence M®M, must
contain at least one path of type (2). This path is an augmenting path in M (the vertices at each
end must be free or the path would have been made longer).

As an illustration, suppose M 1is the three-edge matching shown on the left below, and My is
the maximum matching shown in the center (in which the edges included in the matching are
drawn as dotted, rather than jagged, so that the two types are distinguishable in the third diagram).
Then M@®M, is the graph shown on the right, and %;y9%4ys is seen to be a path of type (2) in
M®M, hence an augmenting path in M .
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March 7. Now that we’ve shown that the augmenting path method will indeed find maximum
matchings, let’s return to the question of how to find the augmenting paths. There is an algorithm
for doing this; it is called the labelling algorithm because it labels the men and women as they are
reached via alternating paths. The labels indicate not only that the people have been reached, but
also where the path came from that reached them. The rules for labelling vertices of the graph are
shown below. Labels are written inside brackets.

(i) Label any unlabelled free man with the label [-), indicating the beginning of an alternating
path.

(ii) 1f b is an unlabelled woman joined by an unmatched edge to a labelled man a, then label & with

[al

(i) If a is an unlabelled man joined by a matched edge to a labelled woman b, then label a with [b].

Notice that these rules take advantage of the bipartite nature of the graph. We’ll see later how the
problem becomes more difficult when the graph is not known to be bipartite. In the bipartite case,
the labelling algorithm for finding augmenting paths is:

Apply the above labelling rules repeatedly until either

(1) afree_woman is labelled, or

(2) nothing more can be labelled.
In case (l), an augmenting path has been found, and the number of edges in the matching
can be increased accordingly. (The path may be determined by tracing back through the
labels.) In case (2), there is no augmenting path and the matching is therefore maximum.

To see better how this algorithm works, let’s apply it to the non-maximum matching shown on the
left at the bottom of page 86. There is only one free man, namely X,;, which by rule (i) is labelled
(-] Rule (i) then permits us to label %; and %> with the label %] (see leftmost diagram below). By
rule (iii) we can then label ¥, with [9;] and x4 with [y,). At this point (center diagram below) we
could label ys with either [x] or [x4] using rule (ii), or we could label y5 with [x4). We choose to
label 95 with [x4]; having labelled a free woman, we are done (rightmost diagram). We can find the
augmenting path by starting at the labelled free woman, %s, and looking at her label, which is [x4].
We then look at ¥4's label, which is [y2]). The label on ¥ is [x}], and %,’s label is [-], indicating the
beginning of the path. The augmenting path is therefore Xx;y9%4Ys.

(-Jx, —renlxl  [-)x (-Jx,
!
yas
xo @ ~elx) [yl (yidxg
!
Xq .\\1“ l"l yﬁ 'lo\\,“‘L &r,ﬂ Q.\\,“\ lJ'lI’
X4 \\1\\«° Ya [yﬂ]x4 ‘ [y:_‘ ]x4

If we increase the matching using this augmenting path, we get the matching shown on the
left on the following page. This matching is maximum, and if we try applying the algorithm it halts
immediately, because there are no free men to be labelled using rule (i). We could also run the
algorithm “backwards”, treating the y’s as men and the x’s as women. In this case, we would label %5
with [-], and the algorithm would eventually finish with the graph labelled as shown on the right.
Since nothing more can be labelled, and no free ¥ has been labelled, the algorithm tells us the
matching is maximum.
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It should be obvious from the iabelling rules that, if the algorithm terminates by iabelling a
free woman, it has indeed found an augmenting path. To prove that the algorithm works, then, all
we need to show is that, if an augmenting path exists, the algorithm will find it. So suppose there is
an augmenting path joining some free man a with some free woman &, and that the algorithm
terminates due to case (2) (no more labelling possible) without having labelled b. We must have
labelled a by rule (i), so we know that at least one vertex along the augmenting path has been.
labelled. If we trace the edges of the augmenting path, we must eventually reach some vertex, say c,
that is the last iabelled vertex along the path. Regardless of whether ¢ is a woman or a man, it must
be possible to apply either rule (ii) or rule (iii) and label whatever vertex follows ¢ in the path.
Therefore the algorithm wouldn’t have halted at this point, so we have a contradiction. Hence if
the algorithm halts without having found an augmenting path, it is because none exists.

We shall now use the algorithm to prove a few interesting existential results. Suppose the
algorithm terminates without having found an augmenting path. We know that the matching is
maximum, but it is not necessarily true that all the men are matched. Let us assume that they are
not, {.e., that there is at least one unmatched man. Let F be the set of free (unmatched) men, X the
set of matched but labelled men, and Y the set of labelied women. We observe that, since no
augmenting path was found, only matched women can be labelled. Furthermore, the only way a
matched man can be labelled by the algorithm is for the woman to whom he is matched to be
labelled also; conversely, if a woman is labelied then the man to whom she is matched must be
labelled also. Hence we conclude that IXI-IYI. We also observe that IFIZI.

We define, for any set Z of men, the function B(Z) to be the set of women who are joined by
edges to one or more men in Z. For instance, in our favorite example, if Z is the set {X;,X~}, then
B(2) is the set {y),92,9:}. We claim that B(FuX)= Y. The justification for this is simple. Consider
any edge joining a man min FuX to some woman w; we wish to show that w must be in Y, i.e., that
she must be labelled. There are two cases to consider. |If the edge joining m and w is in the
matching, then m cannot be in F and must therefore be in X. Thus mis labelled but not free, and
the only way such a man can be labelied is by applying labelling rule (iii). Hence m must be joined
by a matched edge to a labelled woman. But there can be at most one matched edge for any given
man, so the edge leading to w is the only matched edge for m, and w must be labelled. On the other
hand, if the edge joining m and w is not in the matching, then since m is labelled we know by rule

(ii) thatw must be labelled.

One more observation, after which we’ll be ready to state a theorem. Since B(FuX)=Y, and
F and X are disjoint, and |F|21, we know that IB(FUX)I-IYI-[X|<IFUXI. Now for the theorem.
It is claimed that the men can be matched completely if and only if, for all sets Z of men, |z <|B(2Z)|.
The proof is simple. If there exists a set Z such that !Z|>|B(Z)l. then it is clearly impossible to
match all of the men in Z, since each must be matched to a different woman in B(Z). Conversely,
suppose it is not possible to match all of the men. The labelling algorithm then produces sets F, X,
and Y as defined above, and if we take Z to be FuX we know thj Z|>|B(Z)|. The theorem is thus

proved.

We next define the deficiency of a set Z of men to be IZHB(Z)I if this is greater than zero,
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and zero otherwise. The maximum deficiency is the maximum, taken over all sets Z of men, of the
deficiency of Z. We claim (here comes another theorem) that the size of a maximum matching
equals the number of men minus the maximum deficiency.

This theorem is obviously true if the maximum deficiency is zero, since in that case we know
from the previous theorem that we can get a complete matching. Also, since a set of men Z with a
positive deficiency |Z|-|B(Z)| cannot have more than |B(Z)| of its men matched in any matching, it is
clear that the size of a maximum matching must be less than or equal to the total number of men
minus the maximum deficiency. We need only show that the size of the matching is also greater
than or equal to the number of men minus the maximum deficiency; this will imply equality. From
our earlier analysis we know that, in any maximum matching, |FUX|—|B(F‘UX)|=(|F|+IX|)—|Y|=|F!.
Since the maximum deficiency is, by definition, at least as great as the deficiency of any particular
set, we know that it is greater than or equal to |FUX|—IB(FUX)](since this is simply the deficiency of
the set FuX). Hence the number of unmatched men (i.e., IFI) is less than or equal to the maximum
deficiency. The theorem follows.

A few pages back we defined what we meant by a system of distinct representatives (SDR).
Since finding an SDR is equivalent to finding a complete matching, it makes sense that there should
be for SDRs a parallel to the theorem regarding complete matchings. This parallel theorem is
known as Hall's Theorem, and it states that an SDR exists for a collection of subsets if and only if,
for every k any collection of k of the subsets contains at least k different elements. For example,
suppose we look at the SDR problem corresponding to the matching problem we've been using.
There are four subsets, each of which consists of the women who are joined to a given man. The
sets are therefore {y;92}, {319} {94} and {y292,95}. It is €asy to see that each set contains at least
one element, each pair of sets contains at least two different elements, and so on. Since the ith set is
equivalent to B({x,;}), it is clear that Hall’s Theorem is equivalent to the theorem we’ve already
proven, which stated that a complete matching exists if and only if IZISlB(Z)I for all sets of men Z

Continuing the process of referencing the second previous theorem, Tarjan next presented a
corollary to the theorem that related the size of a maximum matching to the maximum deficiency.
The corollary states that, if every man is joined to at least kK women, and every woman to at most k
men, then the men can be completely matched. To see this, we let Z be any set of men. Since each
man is joined to at least kK women, there must be at least k|Z| edges coming from men in Z. To how
many different women do these edges lead? Each woman can account for at most k edges, so there
must be at least (k|Z])+k women involved. Hence |B(Z)|2 k|Z|+k =|Z|.

From the preceding corollary we can derive another, which we shall state without proof. (The
proof is trivial and is left as an exercise.) If there are fewer men than women, and each man is
joined to the same number of women, and each woman is joined to the same number of men, then
the men can be completely matched.

We can use these results to prove Sperner’'s Theorem, which we encountered in section 7
(though we didn’t give it a name then). It concerned the problem of finding the largest collection of
subsets of a given set, subject to the condition that none of the subsets should be a subset of another
of the subsets. (In section 7 we used Pélya’s terminology and called such sets “disconnected”. Here,
to avoid possible conflict with the term as it applies to graphs, we’ll switch to Tarjan's terminology
and call the sets “incomparable”.) Sperner’s Theorem states that the maximum is achieved by taking
half the size of the original set and letting the collection consist of all subsets of that size. Thus
there are (ln72J) subsets in the collection. For instance, if the original set is {a,b,c,d}, it is not possible

to have more than (;)= 6 subsets without one of them being contained in another, and it is possible
to have exactly 6 such subsets, namely {ab}, {a.c}, {a.d}, {b.}, {b,d}, and {c,d}.

You wouldn’t expect maximum matchings to have any application to this problem, but it
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turns out we can use some of the results we’ve just proven to prove Sperner's Theorem. Though
this proof is non-trivial, it 1S considerably simpler than most (perhaps even all) other proofs of the
theorem. We shall consider any arbitrary collection of incomparable subsets and show that it can be
systematically modified, without decreasing its size (i.e.,, the number of subsets), until it contains only

subsets of size |n/2].

Let i be the size of the smallest subset, and let j» be that of the largest. There are three cases
(the first two are not mutually exclusive): (1) i <[n/2],(2)j>[n/2), or (3) i = j=[n/2) Suppose
i <[n/2]). We construct a matching problem in which the “men” are all possible subsets of size i, the
“women” are all possible subsets of size i+ I, and a set X of size i is joined by an edge to a set y of
size i+ 1if and only if x is a subset of 9. We will show that there is a complete matching for the sets
of size i; we can then replace each incomparable set of size i by its matching set of size i+ I. In so
doing, we cannot affect the incomparability of the sets, since we are only increasing the size of the
smallest sets. (That is, adding an element to a set cannot make it a subset of another set, and there
are no smaller sets which could be subsets of this one.) How do we know that a complete matching
exists? Each set x of size i 1S joined to n-i sets of size i+1 (one for each element not in x), while each
set y of size i+ is joined to it | sets of size i (one for each element in ¥). Since i <[n/2], which
implies i € (n- 1)/2, we know that n-i 2 (nt 1)/22 it ], so the first corollary from page 89 tells us that
a complete matching must exist. (The second corollary could also be applied.) The case j>|[n/2] is
handled similarly and is left as an exercise.

As homework, Tarjan assigned a problem involving what is called a system of simultaneous
representatives. Given a set § that has been partitioned into 7 subsets in two different ways, thus:

S = A'UA';‘OAQU tt UAn = B|UBQUB30 ce UB,,

(where “U"” denotes the union of disjoint sets), a system of simultaneous representatives (SSR) is a set
of n distinct elements ¥;,Xs,.. ., ¥, that contains one element from each of the A4; and also contains
one from each B,. That is, the n elements form an SDR for the 4;, and the same n elements form
an SDR for the B;. The assignment was to prove that the following is a necessary and sufficient
condition for the existence of an SSR: for every k from lto n, no union of k of the A; is contained
in the union of fewer than k of the B;. For example, suppose § is the set {a.bc,d,ef}, n = 3, the
A-sets are {a\b},{c,d}, and {¢f}, and the B-sets are {abc},{d,f}, and {e). There is an SSR, namely
{a,d,e}. But if instead the B-sets were {a,bc,d},{f}, and {e}, then there would be a union of two
A-sets, namely A4;UA,, that was contained in a single B-sef, namely B, so there would be no SSR.

This should have been a trivial assignment, but a remarkable number of students managed to
turn it into an extremely complicated task. The necessity of the condition is easy to prove using any
of a number of approaches, but proving sufficiency by, say, induction can be quite tricky. Few of
those who tried such an approach managed to come up with a valid proof. On the other hand,
haven’t these people ever heard of the idea of using one result to prove another? We've proven a
number of theorems already; why should we have to start from scratch every time we want to prove
another result? Clearly, we shouldn’t. To prove that the above condition is necessary and sufficient,
we construct a matching problem as follows. Let the “men” be the sets A4),4-, ..., A, and let the
“women” be the sets By, By, ., ., B,. Two sets 4; and B, are a legal pair if and only if their
intersection A,nBj is not empty; i.e., the two sets have at least one element in common. If a complete
matching exists, then we can use it to construct an SSR by taking, for each pair (A;,Bj) in the
matching, any element from A4;nB; and placing it in the SSR. Since each of the A-sets and each of
the B-sets occurs exactly once In a complete matching, this process yields n distinct elements forming
an SDR both for the A-sets and for the B-sets. Conversely, suppose an SSR exists; we can use it to
find a complete matching. By definition, the SSR is a set of elements x,,xo, ..., %, such that each
X, is contained in a different A; from the others, and is also contained in a diff'erentBj from the
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others. Thus we take the pair (Ai,Bj) to be in the matching; we know that no A-set or B-set can
occur twice, so the matching must be complete.

We have shown that an SSR exists if and only if there is a complete matching for the A-sets
and B-sets. By one of our earlier theorems, such a matching exists if and only if, for ail collections
Z of the A-sets, |Z|<|B(Z)] (Note that |Z| is the number of A-sets included in Z,not the number of
elements contained in those A-sets.) But B(Z) is_merely the collection of B-sets having any elements
in common with any of the A-sets in Z, and hence IB(Z)I is the minimum number of B-sets that
contain all of the A-sets in Z. So the necessary and sufficient condition of our earlier theorem is
equivalent to the condition we're supposed to prove regarding the SSR. Q.E.D.

March 9. If we look at the matrix equivalent of a maximum matching problem, we encounter
another theorem. This one is due to Konig and Egervary, and it states that, in a matrix of zeros
and ones, the maximum number of ones, no two in a line (row or column), equals the minimum
number of lines needed to cover ail the ones. Thus, taking our favorite example in its matrix form:

Yo Y2 Ya 74 Ps

5 | 1 W | 8 | 8 | 8

x | (0| 8 1 | 8 | o

x| 8 | 8 | 8 [ (0| @

%4 o | 1 1 8 | (D

The maximum number of ones, no two in a line, is four, as shown by the parentheses in the above
diagram. It is clearly possible to cover ail eight ones with four lines; just take the four rows. It is
also clear that at least four lines are required. It is obvious that the minimum number of lines must
be at least as great as the maximum number of pairwise noncollinear I's, since no line can cover
more than one of those I's. To prove equality, we shall first place ourselves back on familiar
ground by stating the equivalent theorem in terms of the disjoint edges problem on bipartite graphs.
For graphs, the theorem tells us that the size of a maximum matching equals the minimum number
of vertices needed to cover all the edges. (An edge is “covered” if either of its endpoints is among
the selected vertices; it is not necessary to have both its endpoints included.)

Let A and B be the sets being matched. (Each element of A corresponds to a row of the
matrix, and each element of B corresponds to a column.) Let m be the size of a maximum matching.
We wish to show that there must be a set C of m vertices covering ail the edges between A and B. If
‘m=|Al, the theorem is obvious (let C = A). Suppose m ¢ IAI Let Z be a set of men with maximum
‘deficiency. We know from our earlier theorems that

m = |A| - (z|-|B2).

Let C =(A-Z)UB(Z), i.e., the set of ail men not in Z plus ail women joined to men in Z. The size of
this set is, by the above formula, m. Now consider any edge X).If X is contained in A-Z, then this
edge is covered by C. Otherwise, ¥ must be in Z, and thus y is in B(Z), so the edge is still covered
by C. Thus C covers all the edges, and the theorem is proved.

Before moving on to the next section, let’s look briefly at the problem of finding a maximum
set of disjoint edges in a non-bipartite graph. Most of our results from the bipartite case do not
apply; however, it is still true that a matching (set of edges) is maximum if and only if there is no
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augmenting path. The problem is, how do we find augmenting paths? If we try using the iabelling
algorithm, we will run into trouble when we encounter odd cycles, that is, cycles containing an odd
number of edges. To see why this is so, consider the example below. The vertices have been
assigned letters so we can refer to them in the iabelling procedure. Suppose we start by iabeliing a
with [~] by rule (i). We can then label b with [a),¢ with [8], d with [c], and e with [d). At this point
(second diagram below), if we label 4 and i next, we're all set, because we can then label f with (i)
and have an augmenting path from a to j. On the other hand, we could just as well label fand g
instead (third diagram below). Having done this, we might then label i with [g], and now we cannot
label j with [i] because this would not be an alternating path.
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To handle the problems introduced by odd cycles, Tarjan presented what he called “Edmond’s
Incredible Shrinking Cycle Algorithm”. (Edmond, as you might have guessed, is the inventor of the
algorithm.) What this algorithm does is to apply the iabelling scheme essentially as before, but
whenever an odd cycle is detected it is replaced by a “super-vertex”, .6, a single vertex representing
all the vertices included in the cycle. Tarjan did not write the algorithm in detail, and instead
illustrated it by example. We’ll do our best to reproduce that example in these notes. Consider the
graph shown at the top of the following page, in which the jagged edges as usual represent edges
currently selected to be in the matching. This graph does contain an augmenting path, though it
may not be obvious at first glance. It is the path abcdkinmefgh. Let’s step through Edmond’s
algorithm (even though we haven’t described it in detail yet) and see how it manages to find this

augmenting path.
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We start at some free vertex, say a, and begin to trace an alternating path. Suppose we follow
the path abedkjic. Finding ourselves back at ¢, we check the length of the cycle thus found and
determine that it is an odd cycle. We reduce the vertices c, d,%, f, and i to a single vertex, getting
the diagram shown on the left below (the super-vertex has been assigned the letter u). Once again
we start from vertex a and follow any alternating path. Suppose we follow the path abuemnim.
We've found another odd cycle (mnlm), which we promptly replace by a single vertex v (below right).

Back to vertex a, and this time we might happen to follow the path abuevu. We reduce the
cycle uevu to a single vertex w, getting the diagram shown on the left below, and proceed. We
follow the path abwgfw, and reduce the odd cycle wgfw to form a single vertex ¥ (below right).
Now, starting once more from vertex a, we might find the even cycle bxpob, and the dead-end path
abxst, but eventually we'll find the augmenting path abxh.

LM’\
‘H,“ {
o

Having found this augmenting path in the reduced graph, we're still faced with the problem
of deriving the augmenting path in the original graph. This is not as difficult as it might first
appear. We trace along the augmenting path a@bx% until we come to a super-vertex. The only one
on the path is . We recall that X was formed by combining the three vertices w, g, andf. The
augmenting path enters this cluster of vertices via b on one side and # on the other. Thus we know
that the edges bfu and gh must be part of the path. Since w, g, and f form an odd cycle, it must be
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possible to follow the cycle in one direction or the other to “link up” the path. It turns out that the
direction to follow is viaf. So we have converted the path abx/ into the path abwfgh. We examine
this new path for super-vertices, and find w. We expand it to reintroduce the vertices u, ¢, and v,
and find that b enters this cluster via the edge bu while f enters via ef. Again, there must be one
direction around the cycle forming an alternating path; it’s the direction that goes through v. We
now have the path abuvefgh. Expanding u and v in similar fashion produces the augmenting path
we want.

12 | Network Flow

Network flow problems are usually stated in terms of directed graphs. A directed graph is the same
as the graphs we've been working with, except that each edge is assigned a direction. A nother
common way of stating the distinction is that, whereas in an undirected graph each edge is a pair of
vertices, in a directed graph each edge is an ordered pair of vertices.

In a network flow problem, each edge has a capacity, indicating the maximum quantity (of
whatever is flowing, such as oil or traffic) that can flow along that edge (in the direction of the
edge). For instance, consider the graph below (left). The dotted lines will be explained later. The
direction of the edges is indicated by arrows, and each edge is marked with its capacity. The vertex
marked s is called the Joutteeand the wvertex enaekedi! &5 the sinks u m e d t o h a v e
an infinite supply of whatever it is that is flowing, and the sink has an infinite capacity. (It is easy
to modify the graph (using additional vertices and edges) if we wish to impose limits on the source
and sink, or have multiple sources and sinks, etc.) The objective of the network flow problem is to
find the maximum flow from the source to the sink subject to the conditions that ({} flow through
an edge must not exceed its capacity and (ii) flow at each vertex (except 5 and ) is conserved. The
flow out of s is, of course, equal to the flow into f. Either of these flows is called the value of the
flow. In the example below, the maximum flow is 3 “units”, which can be achieved by letting the
flow through the various edges be as shown on the right.

A cut is a line or set of lines that completely severs ail connections between the source and the
sink. Each of the two dotted lines shown in the diagram on the left above indicates a possible cut in
this network. The capacity of a cut is the sum of the capacities of all edges crossing the cut from the
source’s side to the sink’s. Thus the capacities of the two cuts shown above are 4 (for the cut that
crosses only two edges) and 3 (for the other, which crosses three “forward” edges and one “backward”
edge; the backward edge is ignored). There is a classic theorem in network flow theory, which was
first formulated by Ford and Fuikerson. It is usually called the Max Flow Min Cut theorem, and it
states (appropriately enough) that the value of the maximum flow is equal to the capacity of the
minimum cut. As usual, we shall prove this theorem by constructing an algorithm, proving that it
works, and then using it to prove the theorem,

Once again we shall employ an augmenting scheme. Before describing it, let's look at some
examples to get an idea as to what the augmenting paths look like. Suppose, in the example we've
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just looked at, we started by finding an arbitrary simple path from $tot. In particular, suppose we
take the path shown on the left below, and let one uhit flow along this path from $to :+ We could
then apply either of the augmenting paths shown (center and right), among others. Note that the
path on the right does not involve the edge running “down the page” from the upper vertex to the
lower, but instead travels backwards along the upward edge. This is permitted because this edge
currently has a positive flow assigned to it; by traversing it in the direction opposite that of the flow,
we would decrease the flow assigned to that edge.

In general, an augmenting path from $to ! consists of a simple path from $to ¢ such that if
an edge appears in the forward direction it is unsaturated (i.e, the flow currently assigned to it is
less than its capacity) and if it appears in the backward direction it has some positive flow. Armed
with this definition of augmenting paths, we are ready to present an algorithm.

Step |: Start with zero flow in all edges.

Step 2: Look for an augmenting path. If one is found, increase the flow accordingly.
Repeat this step until no augmenting path is found.

As in the case of the algorithm for finding maximum matchings, we need to show that (i) if no
augmenting path exists, the flow must be maximum, and (ii) there is an efficient way to find an
augmenting path if one exists. We'll start with the latter. We'll use a labelling process; this time the
labels will consist of two parts. The first part of the label of a vertex v will be the vertex that
precedes v on the augmenting path that reaches v. The second part of the label will be the amount
of additional flow that can be shipped from §to v along that path (regardless of whether this flow

can reach all the way to ).

The labelling rules are as follows. (The notation min(a,b) denotes the smaller of the two
values a and b.)

({) Label the source [=»], indicating no predecessor and an infinite capacity.

(ii) If some vertex v is labelled [x,x] (% is arbitrary), and v=w is an unsaturated edge with
capacity ¢ and current flow f, and w is not yet labelled, then label w with {v,min(x,c-)].

(iii) If v is labelled [%,x] and w-v is an edge with positive flow f, and w is not yet labelled,
then label w with [v,min{xf)].

If we manage to label ¢, we have found an augmenting path from §to ! (which can be found by
retracing our steps through the predecessor halves of the labels) that permits us to increase the flow
by whatever amount constitutes the second half of t’s label.

We shall now try to kill three birds with one stone, by proving that the iabelling algorithm
will always find an augmenting path if one exists, and that if none exists the flow is maximum, and
that the value of the maximum flow equals the capacity of the minimum cut. It is clear from the
definition of the capacity of a cut that the maximum flow cannot be greater than the minimum cut.
The problem is proving equality. Suppose the labelling algorithm gets stuck; that is, it terminates
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without labelling t. Let X be the set of labelled vertices. Clearly s is in X and ¢ is not. For each
edge v=w such that v is in X and w is not in X, we know that the edge’s capacity must equal its
current flow. (The flow cannot exceed the capacity, and if it were less than the capacity we would
have labelled w using rule (ii).) Similarly, if w»v is an edge with v in X and w not in X, then the
flow through the edge must be zero (else w would have been labeiied using rule (iii).)

We now examine the cut that separates X from the rest of the network. By our preceding
observations, all edges crossing this cut toward ¢ are saturated, and all edges crossing into X have no
flow. Hence the current flow from X to the rest of the network, and thus the flow from Sto¢, is
equal to the capacity of this cut. Since the capacity of this cut is at least as great as that of the
minimum cut, and since the current flow cannot be greater than the maximum possible flow, we find
that the capacity of the minimum cut is less than or equal to the maximum flow. This proves the
Max Flow Min Cut theorem. Since we have found a cut with a capacity equal to the current flow,
we know that the maximum flow cannot be any larger than the one we've got, so there can be no
augmenting paths. Thus, if the labelling algorithm terminates without having found an augmenting
path, it is because no such path exists. Furthermore, if no augmenting path exists, the algorithm
must certainly terminate without finding one, and the cut described above proves that we have
found a maximum flow. In other words, if no augmenting path exists the flow is maximum, and if
an augmenting path does exist the labelling algorithm will find it.

Before moving on to section 13, we feel we should point out some of the limitations of the
algorithm just presented. First, it doesn’t necessarily work on networks in which the edges may have
irrational capacities. In such networks it is possible that the algorithm will find an infinity of
augmenting paths that increase the flow by ever-decreasing amounts, such that the maximum flow
is never achieved. In fact, one can construct networks in which the infinite sequence of ever-greater
flows approaches a limit that is less than the true maximum! (For an example of this, see page 21 in
[Ford-Fulkersonl.) Even when the capacities are rational, it can happen that the algorithm takes an
unduly long time to find the maximum flow. For example, consider the network shown on the left
below. The maximum flow is clearly 200000 units, and can be achieved by using a mere two
augmenting paths-one going across the top and one along the bottom. On the other hand, there is
no guarantee that the algorithm will find those particular augmenting paths. It could instead find
the path shown in the center diagram below, which would increase the flow by a single unit. The
algorithm might then find the path shown on the right, traversing the central edge in a backward
direction, thereby decreasing the flow in that edge to zero as the total flow is incremented by another
unit. By always finding one of these two paths (whichever applies), the algorithm would manage to
increase the flow by only one unit per path. It would eventually find the maximum flow, but it
would take it a while!

As it happens, there are refinements to the augmenting algorithm that guarantee it will always
find the maximum flow (even if there are irrational capacities) within a reasonable length of time.
(These refinements are among the topics discussed in one of Tarjan's more advanced courses.) For
additional information about network flow problems, see [Hall],{Harary], and [Ford-Fuikersonl.
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l 13 l Hamiltonian and Eulerian Paths

March I4. Hamiltonian and Eulerian paths and cycles fall under the general heading of “de Bruijn
sequences”. The specific terms “Hamiltonian” and “Eulerian” are somewhat better known; hence this
section has been named after them rather than de Bruijn.

Tarjan began the lecture by introducing two apparently unrelated problems. The first was
something he called a memory wheel. This is a directed cycle in which each vertex is marked either
‘0" or ‘I', which contains all 2* different sequences of length k. For example, shown below is a
memory wheel for the case k= 2. If we start at the left and (as indicated by the direction of the
edges) follow the circle clockwise, we get the sequence 00. If we start at the top, we get 01. Starting

0 1

\ 1/
at the right gives | i and at the bottom gives 10. The problem is to determine, for some arbitrary It,
the smallest memory wheel (i.e.,, the shortest cycle) containing all binary sequences of length k. (The
problem can also be extended to cases where more than two different digits are involved, but the
particular case of binary sequences is of great interest in information theory.) Obviously, since there
are 2* different sequences, there must be at least 2* different vertices in the cycle, since no vertex can
be the starting point of more than one sequence. It turns out (as we shall prove later in this section)

that it is always possible to finc‘i, ;& memory wheel with exactly 2’ vertices. In fact (though we won’t
prove this), there are exactly 2(‘ k) ditferent memory wheels with 2* vertices.

The second problem was a classical problem known as “The Seven Bridges of Konigsberg”.
The city of Konigsberg (since renamed Kaliningrad) has the Pregel river running through it, such
that the city occupies both sides of the river as well as two islands. The islands are connected to the
mainland (and to each other) by seven bridges, as shown in the somewhat stylised diagram below.

-
S

The question was, could a person leave home, take a walk, and return, crossing each bridge exactly
once? It turns out this is impossible, but coming up with a characterisation of wAy it is impossible
.was a problem that stymied mathematicians for a long time until Euler managed to find one.

We'll return to the Konigsberg problem eventually, but first let's examine the memory wheel
problem. It can be converted into a problem involving Hamiltonian cycles, which we shall now
define.

A Hamiltonian cycle within a graph is a cycle that passes through each vertex of the graph
exactly once. (The reason for the emphasis on “vertex” will become clear later.) The graph may or
may not have directed edges. For example, consider the undirected graph shown on the left on page
98, which is the graph formed by the vertices and edges of a regular dodecahedron (a regular solid
with twelve pentagonal faces), distorted to be drawn on the plane of the paper. Though it may not
be obvious at first glance, this graph has a Hamiltonian cycle, as shown in the diagram on the right.
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In general, it is obviously possible to determine whether an arbitrary graph contains a Hamiltonian
cycle; simply try all possible sequences of vertices. If there are n vertices, this entails checking a
mere n/ sequences. (Let us know when you're done.) No one knows an efficient way to determine
whether an arbitrary graph has a Hamiltonian cycle, (By “efficient” is meant any method taking
time proportional to some polynomial in n, where n is the number of vertices in the graph.) On the
other hand, no one has been able to prove that such an algorithm cannot exist. This is one of a
large class of diverse problems that have been proven to be “equally hard”, in the sense that if there
exists a polynomial-time algorithm for any one of these problems, there must be polynomial-time
algorithms for them all. Anyone who finds an efficient algorithm, or proves that no such algorithm
exists, for any of these problems, is guaranteed instant fame. But we digress.

In some cases, of course, it is possible to prove that a graph has no Hamiltonian cycle without
actually trying all possible sequences of vertices. However, no general method is known. Just to get
some idea of the sort of “ad hoc” arguments that are used, let’'s take a look at two examples. In the
graph shown on the left below, there are four vertices each of which is incident to only two edges.
Since the cycle must enter and leave each of these vertices, it must include both edges for each such
vertex. Thus the cycle must include all the edges shown as jagged lines in the diagram on the right.
Now we see that vertex e¢ cannot be connected to b, since b is already included in two edges of the
cycle, nor can e connect to d, since this would create a non-Hamiltonian cycle.

A more abstruse example is shown on the left below. It is formed by taking the graph shown
in the center diagram and replacing each of the triangular regions (marked “T”) with the subgraph
shown on the right. Each of the three triangular subgraphs is oriented such that the edge marked
‘%' is connected to the vertex at the center of the graph. Note that every vertex is of degree 3, so we

can’t use the approach that worked on the previous graph. A Hamiltonian cycle in the large graph
must enter and leave each triangular subgraph exactly once; furthermore, it must enter at one of the
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three corners of the triangle, follow a path involving each vertex of the subgraph exactly once, and
exit via another corner of the triangle. It turns out (you can satisfy yourself of this by inspection)
that any such path must either enter or leave via the edge marked "*’. Hence, ail three *-edges must
be included in the Hamiltonian cycle. Since these three edges meet at a common point, they cannot
ail be included in any cycle; hence no Hamiltonian cycle exists.

To convert the memory wheel problem (remember it?) to one of finding a Hamiltonian cycle,
we construct a directed graph in which each vertex corresponds to a sequence of length k and two
vertices v and w are joined by an edge v~»w if and only if the last K-l digits of the sequence
associated with v are the same as the first k-l digits of that associated with w. (This condition is
necessary and sufficient for w’s sequence being able to follow v’s in a memory wheel.) The graphs
corresponding to the memory wheel problems for k=2 and k = 3 are shown below.

This is all vé?‘y fine, but it's not particularly useful, since we've already noted that there is no
“easy” way to find Hamiltonian cycles. Fortunately, it is also possible to convert the memory wheel
problem into that of finding an Eulerian cycle. An Eulerian cycle, as you might guess, is a cycle (not
necessarily a simple cycle) that traverses each _edge of a graph exactly once. Again, the graph may
or may not have directed edges; if it does, each edge is required to be traversed in its designated
direction. As we shall see shortly, it is extremely easy to determine whether a graph has an Euierian
cycle and, if it does, to find one.

To convert the memory wheel problem into an Eulerian cycle problem, we construct a directed
graph in which each vertex corresponds to a sequence of length k-I (not k), and two vertices v and
w are joined by an edge v»w if and only if ¥'s sequence is didody ... dy. ) and W's is dody . .. dy_ dy.
That is, the last k-2 digits of v’'s sequence must be the same as the first k-2 of w's. The edge v-w
corresponds to the sequence dydods ... d;. dy. Thus an edge € can be followed in the cycle by
another edge f if and only if fs sequence can follow e's in the memory wheel. (The sequences
assigned to the edges have the same sort of “overlap” as did those assigned to .the vertices in the
Hamiltonian-cycle construction.) Shown below is the graph corresponding to the memory wheel
problem for K = 3. The edges’ sequences are shown in italics to distinguish them from the vertices’.

poo

There are two Euierian cycles in this gragh. depending on whether the edges 010 and 101 occur
after 001 or after /10. (Note that 2 = ok '3).) One cycle is 001, 0J0, 101, 011, 111, 110, 100, 000,

which gives the memory wheel sequence 001011 IO.



GG

- 100 -

Euler proved that, in an undirected graph, the following pair of conditions is necessary and
sufficient for the existence of an Eulerian cycle (though he probably didn’t use that term):

(i) the graph is connected, and
(ii) every vertex has even degree.

The first condition is obviously necessary. To see that the second is necessary, focus on a particular
vertex. Every time we enter it we must then leave it, so if we enter it k times it must be incident to
exactly 2k edges. The significance of Euler’'s contribution was that he proved the above conditions
are not only necessary but also sufficient.

Assume the conditions hold; we wish to prove the existence of an Eulerian cycle. We start at
any vertex and wander around the graph until we get stuck, i.e., until we find ourselves at a vertex
all of whose edges have already been traversed. Since each vertex has even degree, we cannot get
stuck at any vertex other than the one from which we started. At this point we have a cycle (not
necessarily Eulerian), as shown on the left below. For instance, we might have started at v, and
followed the cycle vabcdbefawy. Suppose some edge, such as the jagged edge in the diagram, is not
traversed by this cycle. Since the graph is connected, there must be a path connecting this edge to
the cycle, as indicated by the dotted lines in the diagram on the right. We then start at the vertex
where the path joins the cycle (vertex w in the diagram) and start wandering around the graph
some more, using only edges not included in the cycle. Since, even with the cycle edges removed
from consideration, every vertex has even degree, we cannot get stuck anywhere except at vertex w.
We then combine the two cycles into a single cycle that starts at w, traverses one cycle, and then
traverses the other. We look to see if there are any edges not included in this larger cycle, and if so
we extend the cycle again. We repeat this until all edges are included in the cycle. (This can be
formalised using induction, but we won’t take the time to do so here.)

v

- Applying Euler’s result to the bridges of Kijnigsberg, we let each land mass be a vertex and
each bridge connecting two land masses be an edge, as shown below. There are three vertices with
degree 3 and one with degree 5, so there cannot be a cycle that traverses each bridge exactly once.

In fact, as we'll see a bit later, it is impossible to find a path that traverses each bridge exactly once;
that is, it is impossible to get from anywhere in Kijnigsberg (or Kaliningrad) to anywhere else in the
city, crossing each bridge exactly once.

Now let’s consider directed graphs. We'll need to define a few more terms. A directed graph
is said to be strongly connected if there is a path from each vertex to every other vertex. (For
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instance, the sample networks we looked at in section 12 are not strongly connected, because there is
no path from ¢ to s. There are, of course, paths from § to ¢, but that’s not good enough.) The
number of edges entering a vertex (Le., for a vertex v, the number of directed edges u-v) is called
the in-degree of that vertex, and the number of edges leaving a vertex is called the out-degree.
Now we're ready to state the necessary and sufficient conditions for a directed graph having an
Eulerian cycle:

(i) the graph is strongly connected, and .
(i) the in-degree of each vertex equals its out-degree.

The proof is similar to that for undirected graphs and is left as an exercise. Condition (i) could be
replaced by

(i") the underlying graph is connected,

where the underlying graph of a directed graph is the undirected graph obtained by ignoring the
directions assigned to the edges. Clearly condition (i) implies condition (i’). Since condition (i’),
together with condition (ii), implies the existence of an Eulerian cycle, the two conditions together
imply strong connectivity (we can get from any vertex to any other by following the cycle). Hence
condition (i) is equivalent to condition (i) assuming condition (ii) holds.

Returning once more to the memory wheel, let’s look at the graph we constructed in which
finding an Eulerian cycle corresponded to finding a memory wheel. Recall that the edge labelied
with the sequence &,dadq ... dy_ d; leaves the vertex labeiled dydodsy ... d,_, and enters the vertex
labeiied dody . .. dy. d,. Since every possible binary sequence is assigned to exactly one edge, it is
clear that any particular vertex has exactly two edges entering it and two leaving. Hence each
vertex has in-degree = out-degree = 2. Thus we know that there must be an Eulerian cycle, and
that therefore a memory wheel of size 2° must exist for the binary sequences of length k. If we were
to formaiise the existence proof, we would be able to prove that there are exactly 2(2.""‘) different
Eulerian cycles in the graph, and hence the same number of minimum-size memory wheels.

There is an object lesson to be learned from the memory wheel problem, namely that it is
often possible to transform an easy problem into a hard one. We must always be careful not to
jump to the conclusion that, because we have found a hard way to solve a problem, there is no easy
way. The memory wheel problem can be solved by solving a Hamiltonian cycle problem, which is
hard, but it can also be solved by solving an Eulerian cycle problem, which is easy. In fact, here's
an exercise worth pondering: Given some graph G in which we wish to find an Eulerian cycle (if
one exists), how could we transform the graph into a second graph G’ such .that a Hamiltonian cycle
in G’ corresponds to an Eulerian cycle in G? Using such a transformation, we could solve the
Eulerian cycle problem for G by solving instead the Hamiltonian cycle problem for G’. Since the
Hamiltonian cycle problem is more difficult than the Eulerian cycle problem, this is obviously not a
worthwhile approach, but it is an interesting exercise. Note that, if you could come up with a
transformation for the opposite direction, you'd have found an easy way to solve the Hamiltonian
cycle problem!

A common variation on the problem of finding a Hamiltonian or Eulerian cycle is that of
finding Hamiltonian or Eulerian paths, i.e., paths that go through each vertex or edge exactly once,
but that need not end at the vertex from which they begin. The two graphs on page 98 that we
proved did not have Hamiltonian cycles, do have Hamiltonian paths, as shown on page 102. There
are graphs that do not have Hamiltonian paths; the problem of determining whether an arbitrary
graph has such a path is just as difficult as determining whether it has a Hamiltonian cycle.
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As for determining the existence of Eulerian paths, it is as easy as doing so for cycles. The
graph must still be connected, but condition (ii) is replaced by the condition that every vertex except
two have even degree. The remaining two vertices may be of either even or odd degree. (Note that
the sum of the degrees of all the vertices must be even, since it must equal twice the number of
edges.) That these modified conditions are necessary and sufficient for the existence of an Euierian
path can be proved either by a slight modification to the proof for Eulerian cycles, or by using a
construction in which the two vertices of odd degree (if they exist) are joined by a new edge, after
which an Eulerian cycle must exist (since all vertices are now of even degree). We can then remove
the added edge from the cycle and have an Eulerian path. (This proves sufficiency; necessity is, as
before, trivial.)

What about finding-Eulerian paths in directed graphs? We must be somewhat more careful
now, because it is no longer necessary that the graph be strongly connected, so we must use the
alternate form for the first condition. We state without proof that the following two conditions are
necessary and sufficient for the existence of an Eulerian path in a directed graph:

(§) the underlying graph is connected, and
(ii) for each vertex except two, the in-degree equals the out-degree; of the remaining
two vertices, either both have in-degree equal to the out-degree, or else one has

in-degree = out-degree + 1.

Note that the sum of the in-degrees of the vertices must equal the sum of the out-degrees, so if
condition (ii) is met and one vertex has in-degree = out-degree + |, there must be a vertex with
out-degree = in-degree t 1.

What about mixed graphs, i.e., graphs in which some (but not all) edges are directed? The
following conditions are necessary and sufficient for the existence of an Eulerian cycle (not path) in
such a graph:

(i) the underlying graph is connected, and
(ii) it is possible to assign directions to the undirected edges such that each vertex has

in-degree equal to out-degree.

To see that these conditions are necessary, we observe that if an Eulerian cycle exists, it tells us how
to direct the undirected edges; we simply orient them in the direction in which they are traversed by
the cycle. Hence it is impossible to have an Eulerian cycle without condition (ii) being met. To see
that the conditions are sufficient, we assume they hold. We then orient the undirected edges as
specified in condition (ii), after which we are able to find an Eulerian cycle in the directed graph.
This cycle is also an Eulerian cycle in the mixed graph.

For example, consider the mixed graph shown on the left on page 103. By directing some of
the undirected edges as shown on the right, we can produce a graph in which each vertex to have
in-degree = out-degree. (Note that we haven’t bothered to assign directions to all of the undirected
edges. The remaining undirected edges satisfy the conditions for the existence of an Eulerian cycle
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in an undirected graph, so we can clearly orient these edges such that the additional in-degree at
each vertex is equal to the additional out-degree.) We can then find an Eulerian cycle, such as
abfcbdaedca.

e f e Yi

How can we determine (easily) whether this most recent condition (ii) holds? We can use
networks! We create two new vertices (the source and sink) and connect them to the graph in the
following manner. For each vertex v having in-degree n greater than its out-degree, we add an
edge from the source to v with capacity n. For each vertex w having out-degree m greater than its
in-degree, we add an edge from w to the sink with capacity m. We then remove all directed edges,
and give ail undirected edges capacities of 1. (Note that, in a network flow problem, an undirected
edge is equivalent to two directed edges running in opposite directions.) In the diagram below, we
have performed this transformation on the example above. If we can find a flow in which the
edges leaving the source are saturated (and hence the edges entering the sink are also saturated,
since their total capacity must, by the construction, equal that of the edges leaving the source), the
flow through the undirected edges will indicate the directions that should be assigned to those edges

in order to “balance” the in-degrees and out-degrees at the hitherto unbalanced vertices. Using this
construction and the Max Flow Min Cut theorem from section 12, we can arrive at the following
alternative for condition (ii):

(ii’) for every subset § of vertices, if the number of directed edges leaving vertices in S
is n greater than the number of directed edges entering vertices in 8, then the
number of undirected edges joining § and V-S is at least n.

{V is the set of all vertices in the graph.) We won’t take the time to prove this result here. As we've
already stated, it follows fairly straightforwardly from the construction of the network and the Max
Flow Min Cut theorem.

To close out this section, here’s an interesting exercise compliments of Jean Pedersen (currently
at the University of Santa Clara). Prove that the graph shown below has no Hamiltonian cycle.
Hint: the graph is bipartite!
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14 Planarity and the Four-Color Theorem

March 16. A graph is said to be planar if it can be drawn in the plane with no crossing edges. A
classic problem based on planarity is the “utility problem”. Suppose there are three people- Jack,
Jill, and Judy-living in separate houses, and also three utilities-water, gas, and electricity-each
supplied by a different plant. We wish to connect each of the three houses to each of the three
plants, but we don’t want any of the nine connections to cross each other. (Perhaps all of the
utilities are supplied by cables or pipes buried just beneath the surface, and if two were to cross we
might damage one conduit while installing the other. Oh well, nobody ever said this problem was
practical, just that it was a classic.) We can easily make eight of the connections, but we run into
trouble with the ninth, as shown below (left). Struggle as we may, we will be unable to make all
nine connections. (We could cheat and run a conduit underneath one of the buildings, but this is
considered invalid.) This graph is non-planar. The graph is shown on the right below; it is the
complete bipartite graph on two sets of three vertices, meaning that it contains two sets of three

vertices along with all edges joining a vertex in one set with one in the other set. This graph is
usually denoted by Kajs.

Planar graphs have many interesting properties. Let’s look at some planar graphs and see
what we can observe. The graphs shown below are planar “projections” of a cube and tetrahedron.
(They are what we would see if we built the outlines of those figures (using wires for the edges, say)
and then looked at them from points very close to the center of one face.) We'll use ¥V to represent
the number of vertices in a graph, £ the number of edges, and F the number of faces, where a face
is aregion that is bounded by edges of the graph and contains no other edges of the graph. (For
example, the graph of the cube has one square face in the center, four trapezoidal faces surrounding
the square face, and one square “exterior” face, bounded by the four outer edges and consisting of
the infinite region “outside” the graph.) The cube has F=6 V=8, and E=12. The tetrahedron
has F=4,V =4, and E= 6. In both cases, we observe that ¥ + F=E 1+ 2. This equation is known
as Euler’s formula, and is asserted by the following theorem: Any connected planar graph has
V+F=E + 2. A planar graph that is not connected satisfies VtF=E +1+ C, where Cis the
number of connected components. (See page 113 for a formal definition of “connected components”.)

We'll first prove the theorem for disconnected graphs by using the connected case (which we’ll
prove later). Consider a planar graph with C 2 2. Let ¥;,F;, and E; be the number of vertices,
faces, and edges, respectively, of the &h component. Then we know (from our assumption that the
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theorem is true for connected graphs) that

Vi+ Fi=E; + 2
V2+F2=E2t2

VC+FC-E(;+2
and hence
(V|+V2+"‘+Vc)+ (F,+F2+"'+Fc)=(El+E2+"'+Ec)+ 2c.

Clearly, (V\+Vo+.. . +Vc)eV and (E\+Ex+:.. +E;)= E. When we sum the Fy, however, we count
each interior face exactly once, but we count the exterior face C times. (The exterior face of a
disconnected graph is an infinite region with two or more “holes” in it, one per component of the
graph.) Since F only counts this region once, we find that (F;+Fo+.--+Fg)=F+ (C-1). Thus

V+F + (Cl)=E +2C,
and the theorem follows.

Now we shall prove the theorem for connected graphs by induction on the number of edges.
We start the induction by considering the graph with one vertex and no edges. (We cannot have
more than one vertex and no edges, since the graph is supposed to be connected.) This graph has
one face, namely the exterior face. So V=1, F= 1, and £= 0. Since 1 + I= 0 + 2, the theorem
holds. Now we perform the induction by seeing what happens when an edge is added to the graph.
There are two cases: (1) the edge could lead to a vertex not previously included in the graph, or (2)
the edge could join two old vertices. (The new edge cannot join two vertices neither of which was
yet in the graph, because this would result in a disconnected graph.)

In case (l), the new edge (the dotted edge in the diagram on the left below) does not create any
new faces. (The new edge becomes part of an existing face, the border of which includes both
“sides” of the edge.) So if the graph prior to the addition of the dotted edge had ¥ vertices, F faces,
and E edges, then the graph including the dotted edge has ¥’ =V +1 vertices, F’ = F faces, and
E’ =E + | edges. By the induction hypothesis, we know that ¥ + F=E + 2; hence we conclude
Vi+ FelVi+l+FeE+2t1=E + 2 In case (2), the new edge divides an existing face into
exactly two faces, as shown in the center diagram below. (The new edge cannot divide more than
one face without crossing another edge, as in the diagram on the right, and this is forbidden since
the graph is planar.) Therefore ¥ =V, FP =F tl, and E’' =E +1, and we again find that the
induction hypothesis (¥ + F=E + 2) implies ¥ + F'=E’ t 2. The theorem is proved.

Note that, if we consider the boundaries of all the faces of a graph, each edge appears twice,
once for each “side” of the edge. In general each edge will appear in two different faces, but there
are exceptions. For example, consider the graph shown at the top of page 106. This graph has
three faces: there are two triangular faces—abca and defd—and an exterior face-acdefdcba-which
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traverses the edge cd in both directions. The general rule still holds:
Fy+2Fy + 3Fy+4F4 + bFg+.. = 2E, .

where F; is the number of faces with exactly i edges. Let’s assume there are no faces with fewer
than three edges. This is equivalent to saying that (1) there are no “self-loops” (edges joining a
vertex to itself, as shown on the left below), since this would result in a face bounded by a single
edge, (2) no two vertices are joined by more than one edge (as shown on the right below), since this

>

would result in a two-edged face, and (3) the graph does not consist of a single edge, since the
exterior face would then be bounded by the two sides of this edge. Under these restrictions, we can
conclude that

3F =3Fq+3F,+3F, + ...
<3Fy +4F4 + 5F¢y + -+ - = 2E,

What good is this result? Well, let's look at K¢, the complete graph on five vertices. If we
tried drawing it, we'd find ourselves unable to do so without at least one pair of edges crossing. You
guessed it—Ky is non-planar, and we can prove it. Since Ky has 5 vertices and 10 edges, Euler’s
formula tells us that, if it were planar, it would have 7 faces. But 3F would then be 21, and 2E is
20, which would violate the above result. So K¢ cannot be planar.

If we try applying the same proof to Kga, we have less luck. Since ¥ =6 and £= 9 for this
graph, Euler’s formula tells us that a planar representation of Kgs would have to have 5 faces.
Since 3:5<2+9, we haven’t proved anything. However, we can observe that, since the graph is
bipartite, it contains no triangles. Hence every face must include four or more edges. When Fg= 0,
we find that
) 4F='}F4+‘}F5+4F6+."

54F1 +5F5 +6F6+. ..=2E.

Since 4F = 20 and 2E = 18, I{43 cannot be planar.

We now come to one of the most important theorems dealing with planarity. It is important
not so much because it has useful applications, but rather because it was the first non-topological
characterisation of planar graphs. The theorem is due to Kuratowski and is, appropriately enough,
called Kuratowski's Theorem. We observe that any graph that contains K or Kqq as a subgraph
must be non-planar. Furthermore, placing additional vertices upon the edges of one of these graphs
cannot make it planar (assuming no vertex joins two hitherto disjoint edges). For instance, the
graphs shown at the top of the next page are non-planar, and so are any graphs that contain them
as subgraphs. A graph that is isomorphic to some graph G, aside from such additional vertices
along edges, is said to be a generalised graph of G. (Two graphs G and G’ are isomorphic if there
is a one-to-one correspondence of the vertices such that two vertices in G’ are joined by an edge if
and only if the corresponding vertices in G are.)
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Kuratowski’s Theorem states that every n&-planar graph contains either a generalised Ky or
a generalised Kg3 as a subgrap h. Generalised Ks's and K:t‘gls are often referred to as_Kuratowski
subgraphs. For example, consider the graph shown on the left below, which is known as “Petersen’s
graph”. This graph is non-planar, and so it must contain a Kuratowski subgraph. Indeed it does,
as indicated in the diagram on the right. The graph is a generalised Kqa; the two sets of vertices
forming the vertices of the bipartite graph are shown as dark and light circles, and the nine paths
forming the “edges” of the generalised graph are drawn solid (the remaining edges being dotted).

Unfortunately, the proof of Kuratowski’s Theorem is much too involved for us to attempt to
present in these notes. If you're interested, you can find proofs in [Liul, pp. 212-220, and [Harary],
pp. 109-1 12. The theorem is mathematically elegant but, as we have already noted, it is not very
useful in practice. The most efficient algorithms for testing whether graphs are planar involve
actually embedding the edges of the graphs in the plane. When such an algorithm determines that
a given graph is non-planar, it is not necessarily clear how to go about isolating a Kuratowski
subgraph within that graph, although one is known to exist.

Returning to our earlier results, we can manipulate the formulas involving ¥, F, and E to
come up with some additional theorems. For example, since ¥V + F= E + 2 and 3F <2E, we can
conclude that

E +2sV+2El3
and hence
E<3 - 6.

This means that, given the restriction against one- and two-sided faces,] no planar graph can have
‘more than 3¥ - 6 edges. Since, among V vertices, it is possible to have (:.,5‘= (V-1)I2 edges, this can
be interpreted as saying that planar graphs must have relatively few edges compared to most graphs.
Note that K¢ has £>3V - 6, so we have again verified its non-planarity. If we know there are no
triangular faces, the above result becomes £ <2V - 4, which verifies the non-planarity of Kagys.

We now look at a concept known as the_dual of a planar graph. The dual is a graph that
consists of one vertex for each face of the original graph, with edges connecting two vertices in the
dual if and only if the corresponding faces shared an edge in the original graph. The diagram on
the following page shows the graph of the cube (dark circles and solid lines) together with its dual
(white circles and dotted lines). Note that the dual is always itself planar, and that the dual of the
dual is the original graph. We can set up a one-to-one correspondence between features of the two
graphs; each face in the original graph corresponds to a unique vertex in the dual, and vice versa,
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and each edge in the dual crosses a unique edge in the original. Thus, if a graph has ¥ vertices,

~ .
[

F faces, and £ edges, and its dual has ¥’ vertices, F’ faces, and £’ edges, then we might assert that
VeF, F=V' and E=E’. We may therefore rephrase any of our earlier results relating ¥, F, and
E by applying them to the dual and using this correspondence. For example, since the dual must
have £’ <3V’ - 6, we can assert that any planar graph must have £< 3F - 6. We must not be too
hasty, however. Recall that we have been assuming there are no faces with fewer than three edges
in our planar graphs. If we apply these restrictions to the dual, what does it imply regarding the
original graph? A face in the dual corresponds to a vertex in the original graph. If the vertex in
the original graph has degree k, it means there are k& edges incident to that vertex. Each of these k
edges is crossed by an edge in the dual, resulting in a k-sided face. For instance, the vertex shown
on the left below has degree five; thus five faces of the original graph meet at the vertex. Each of
these faces corresponds to_a dual vertex, as shown in the center diagram. These dual vertices are
then connected by dual edges as shown on the right to form a dual face with five edges.

Thus, for the dual graph to have no faces with fewer than three edges, the original graph
must have no vertices of degree two or less. Interestingly, there are graphs satisfying this condition
yet having duals containing doubled edges or self-loops. For instance, consider the graph shown on
the left below. The face abehgda shares two edges (ab and gh) with the exterior face. Thus the dual
graph has a doubled edge. But the dual graph does nor have any faces with fewer than three edges!
The dual graph is shown on the right; the dotted edges in this diagram indicate the edges of the
graph on the left.

If we restrict ourselves to planar graphs in which all vertices are of degree three or greater, we
can derive some additional results. Since, in the dual graph, we know that £ <3V’ - 6, we know
that the original graph has £< 3F - 6. Hence

6F + 6F, + 6Fy + 6Fg + 6Fyt- = 6F 22E + I2.

If we also continue to assume that the graph has no self-loops or doubled edges, then we know that
there are no faces with fewer than three edges, so
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3Fy +4F4 + BFy+6F¢ + 1Fy + - - - = 2E.

Subtracting this equation from the preceding inequality, we find that
8Fe + 2F 4+ Fy-Fy-2Fg-3Fgq----2 12,

which can be rewritten as
8Fy + 2F 4+ Fo2 12t Fy+2Fg + 3Fg + -+ -2 12

This implies that any planar graph that (1) has no self-loops or doubled edges and (2) has no
vertex with degree less than three, must have at least four “small” faces, where a small face is
defined as being a triangle, quadrilateral, or pentagon, |If it has no triangles or quadrilaterals it
must have at least 12 pentagonal faces.

In solid geometry, a regular polyhedron is a solid of which all the faces are regular polygons
and are congruent to one another. Each vertex of a regular polyhedron is incident to the same
number of edges. It was well-known even to the ancient Greeks that there are exactly five regular
polyhedra. We can prove this using planar graphs. We start by observing that we can convert any
polyhedron into a planar graph by painting the vertices and edges of the polyhedron on some solid,
flexible object, such as an inflated balloon, and then cutting a hole inside one face and flattening
the balloon onto a plane surface. (We would probably want to deflate the balloon before cutting the
hole; it results in less noise.) If the polyhedron is regular, then in the resulting graph each vertex
will have the same degree and each face will have the same number of edges. How many such
graphs are there? We note that the vertices must be of degree three or more, since it requires the
intersection of three planes (each face of the polyhedron specifies a plane) to define a point (a vertex
of the polyhedron), and the intersection of each pair of planes defines an edge entering that vertex.
Hence we know the graph must include some small faces, and since all faces are identical there are
three cases: (l) all the faces are triangles, (2) all the faces are squares, or (3) all the faces are
pentagons. Furthermore, since all vertices are of the same degree, they cannot be of degree greater
than five. (If there are I vertices all of degree It, then there are k¥ “endpoints of edges” and hence
kV[2 edges. If k2 6, this violates the restriction that £ be no greater than 3 - 6.) We've already
noted that the vertices cannot be of degree less than three, so the vertices are of degree three, four,
or five. We have therefore nine cases.

If all the faces are triangular and the vertices are of degree three, we get the tetrahedron. The
octahedron, which we have encountered before, has eight triangular faces and six vertices of degree
four. The icosahedron has twenty triangular faces and twelve vertices of degree five. Moving on to
square faces, the hexahedron (more commonly referred to as a cube) has six such faces and eight
-vertices of degree three. When there are no triangular faces, we know that £<2V - 4 (see page
"107); hence we cannot let all the vertices be of degree greater than three. There is therefore no
other regular polyhedron with square faces. Similarly, there is only one regular polyhedron with
pentagonal faces—the dodecahedron, which has twelve such faces and twenty vertices of degree
three. (We saw the graph of the dodecahedron in section 13.) According to our results concerning
planar graphs, these are the only regular polyhedra possible. We observed on the midterm that the
cube and the octahedron are each other’s duals. The dodecahedron and icosahedron are also duals.
The tetrahedron is its own dual.

We close this section by examining a problem that was recently solved after withstanding the
efforts of mathematicians for over a century, to wit, finding a proof of the Four-Color Theorem.
This theorem states that the faces of any planar graph can be colored using four colors such that no
two adjacent faces have the same color. Two faces are considered to be adjacent only if they have
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an edge in common; two faces having one or more vertices in common without sharing an edge may
be given the same color. The diagram below shows one way of coloring the dodecahedral graph;
each face has been marked with a number from 1 to 4 indicating the color assigned to that face.

The four-color problem appears to have originated with Francis Guthrie in 1852. In 1879,
Kempe thought he had found a proof, but in 1890 Heawood discovered a flaw in Kempe’s work.
Heawood was able to show that any planar graph can be colored with five colors. Over the years
several mathematicians have thought they had proved the theorem, but it was only recently (1976)
that a proof was found that (at least to date) appears flawless. The proof was found by Haken and
Appel at the University of lllinois and involved using 1200 hours of computer time to perform an
extremely complex case analysis, resulting in a set of 1936 graphs. Haken and Appel claim that
every graph (aside from some trivial cases, such as the null graph, for which the theorem is clearly
true) must contain one of the 1936 graphs as a subgraph, and that each of these 1936 possible
subgraphs is “reducible”. A “reducible” subgraph R is a subgraph with the property that, for any
graph G containing R, one can produce a smaller graph G’ such that four-coloring G’ shows how to
four-color G. If any graph exists that cannot be colored using four colors, there must be a smallest
such graph G; since it must contain a reducible subgraph, we can construct a smaller graph G’ that,
being smaller than G, must be four-colorable. By the definition of a reducible subgraph, we must
therefore be able to four-color G, contradicting our original assumption. (At one point there was a
rumor that a 1937th case (fortunately also reducible) had later been found, but to our knowledge this
has never been confirmed. If true, it would cast a shadow on the whole proof.) People are still
searching for simpler proofs of the theorem; until one is found, it is obviously impractical for us to
present a proof of the Four-Color Theorem. We can, however, prove the Five-Color Theorem, and
we shall now do so.

- We start by assuming that all vertices are of degree three. |If there is a vertex of degree two,
as in the leftmost graph below, we can eliminate that vertex and combine its two edges into a single
edge, as shown in the second graph below. This obviously does not affect the colorability of the
graph. (You are encouraged to examine the diagrams to convince yourself of this.) If there is a
vertex -of degree k greater than three, as in the third graph below, we can replace it with a k-sided
polygon as shown in the rightmost diagram. If the new graph is four-colorable, then we can simply
ignore the color of the newly created face and thereby obtain a coloring for the original graph.
Hence, if we can prove the Five-Color Theorem for graphs in which all vertices have degree three,

we will have proved it in general.

A A T B

The proof is by induction on the number of faces. Clearly, if there are fewer than six faces,
five colors must be sufficient. We shall now show that, if it is possible to five-color all graphs with
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n faces, it is possible to five-color all graphs with n+l faces. Consider any graph with n+1 faces.
Since we are assuming all vertices are of degree three, we know that there must be a small face.
Suppose it is a triangle; the graph thus contains a subgraph of the form shown on the left below.
We replace this portion of the graph by the subgraph shown in the center diagram, condensing the
triangle to a single vertex. By the induction hypothesis we must be able to five-color this new
graph, since it has one fewer face than the one we started with. Suppose, in this coloring, the three
faces in the center diagram are assigned the colorsx, ¥, and z as shown. We can then color the
original graph as shown on the right, where w is some color other than ¥, %, and z. (We know there

X y x

™~ z\ ' e

are two such colors.) Meanwhile, suppose there are no triangles, but there is a quadrilateral face, as
shown on the left below. We have labelled the faces for reference. Suppose x is adjacent to x’, as
suggested by the dotted lines in the center diagram. If this is the case, then % cannot be ad jacent to
y’. Similarly, if y is adjacent to y', then ¥ cannot be adjacent to x’. The two cases are equivalent; we
shall assume x and x’ are adjacent. (If neither pair is adjacent the proof is even simpler, and is left
as an exercise.) We- remove two edges and four vertices so as to combine %,2, and %' into a single
region w, as shown on the right. By the induction hypothesis we can five-color the new graph. We
can then color the original graph by letting both % and y’ be colored using the color applied to w,

and coloring z with some color other than those used for x,x’, and w. So far everything we've done
would apply equally well to a proof of the Four-Color Theorem. (In fact, what we have shown is
that triangular and square faces are reducible subgraphs.) Kempe thought he had handled the
pentagonal case as well, but Heawood proved him wrong. Five colors, however, are enough to
handle this case. Suppose there are no triangles or quadrilaterals; there must be a pentagonal face,
as shown on the left below. We again assume that some two of the five regions surrounding 2,
though not sharing a vertex of the pentagon, are mutually adjacent; if this is not the case the proof
is simpler. Suppose ¥ and ¥’ are adjacent; this implies that Y and y' cannot be adjacent. We
therefore remove two edges and four of the five vertices as shown in the diagram on the right. We
know we can five-color this smaller graph. We then color the original graph by letting % and y’ be

colored using the color assigned to w, and using the fifth color (the one not used on any of X, x,g,
or w) to color 2. This concludes the proof of the Five-Color Theorem.
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If you want to read more about the Four-Color Problem, [Saaty—Kainen] includes just about
everything you might want to know, including a brief history of the problem, the theory underlying
the Haken-Appel proof, and a description of the various reformulations of the problem which have
been developed over the hundred-odd years of its existence.

l 15 Final Examination

Like the midterm, the final exam was open book and take home; students were given nine days to
work on it but in general required much less time than that. Course notes had been handed out
only through section 10 (the remaining notes were given out together with the graded exams), but
the material from the later sections was not required for the final.

As things turned out, the final was apparently too easy. With the exception of one person who
didn’t have time to finish, the lowest score was 90; nine people out of the 21 taking the exam scored

100.

Problem 1 (20 points).

This problem doesn’t directly involve anything we’ve covered in the course, but is instead an easy
problem taken out of graph theory. It is included on this exam because it demonstrates the sort of
constructions that arise in proving things about graphs and, as you have no doubt noticed, graphs
play a significant role in many areas of combinatorics.

In section 6 of the notes (pages 50 and51) we defined what we meant by a graph, and what it
meant for a graph to be connected. W e now define the complement of a graph. Given a graph G,
consisting of a set of vertices ¥ and a s e t of edges £, we define the complement G of G to be the
graph with the same set ¥V of vertices, but with edges E such that an edge is included in E it and
only if it is not included in £. The two graphs shown below are complements of each other.

Notice that the graph on the left is connected, but the one on the right is not. Prove that, if a graph
G is not connected, then G is. Is the converse true; that is, if G is connected, must G be disconnected?

Problem 2 (30 points).

Consider the complete graph on 17 vertices (Kn). Prove that, if the edges of Ky are colored using
three colors, there must be a monochromatic triangle. | s this sufficient to prove that $(3,3,3,2) = 17?

Explain.
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Problem 3 (30 points).

Given a collection of sets S |,8a,Ss, ..., Sy which are not necessarily disjoint, we define a system of

distinct_representatives (SDR) to be a set of n distinct elements {¥|XoXs,...,X,} such that X is in S
for each & from 1 to n. The ordering of the elements ¥, through X,iS considered significant. For
instance, if n= 3 and the three sets are {a\b},{a,}, and {b,c}, then there are 2 different SDRs:{a,c,b}

and {b,a,}.

Suppose the sets S;,S.,,.., S, contain respectively 2, 3, . . ., nt 1 elements. Show that there
must be at least 2" different SDRs. Exhibit such sets in which 2" is the exact number of SDRS.

Problem 4 (20 points).

Here’'s one for old times’ sake. Find the generating function
00 X o
kzo Ekx 'EO +E,x +E2x"t L

in which E,, is the number of ways of changing 7 cents using pennies, nickels, dimes, quarters, and
half dollars, using at_least one of each type of coin.

SOLUTIONS

Problem | (20 points).

A lot of what is about to follow could be omitted if we had formally established what is meant by
certain terms in graph theory, such as ‘“connected component”. (We used this term in an informal
sense in section 14.) Students who knew enough graph theory to be able to omit definitions of such
terms were permitted to. For completeness in this solution, however, we’'ll start with what we already

know.

If G is not connected, it means {by definition) that there are some two vertices, say $ and ¢,
such that there is no path in G from sto?. Let S be the set of vertices that do have paths between
themselves and 5. (The set S, together with all the edges between pairs of vertices in S, constitutes a
connected component of G) Let T be the set of all vertices in ¥ not contained in S. (T may consist
of more than one connected component; this doesn’t make any difference to our proof.) Note that §
isin Sand ?isin T, so neither set is empty. Note also that, for any vertices u in S and v in T, the
graph G cannot include the edge uv, since it would mean that there was a path from § to v via u,
and hence v would be in the set S. Thus, for all vertices u in S and v in T, the complement graph
G must include the edge uv.

We wish to show that G is connected. To do this we need only show that, for any two vertices
x and 9 in G, there is a path from x to 9. If ®x isin Sand yisin T, or vice versa, then they are
directly joined by an edge in G, and we are through. If both x and § are in S, then we pick any
vertex in T (recall there must be at least one such vertex), say t.G includes the edges Xt and 1Y, so X
and ¥ are joined by a path involving two edges. Similarly, if both ¥ and ¥ are in T, they are joined
by a path of two edges going through the vertex §. Hence every pair of vertices in G is connected
by a path, and thus by definition G is connected.

In fact, we have shown that if G is not connected it implies that every pair of vertices in G is
connected by a path of one or two edges. Thus, if G is connected but contains two vertices that are
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not joined by any path of fewer than three edges, G cannot be the complement of a disconnected

graph, and therefore G must also be connected. The following pair of graphs are complementary,
and are both connected. (In fact, this is an example of a graph that is isomorphic to its own

complement.)

Notice that these graphs contain pairs of vertices that are three edges apart. It is somewhat
trickier coming up with graphs in which all pairs of vertices are within two edges of each other, but
that have connected complements. A single vertex with no edges qualifies vacuously as such a
graph; the pentagon also works. (The pentagon is another case of a graph that is isomorphic to its
complement.) There are in fact an arbitrary number of such graphs; two examples are shown below.

Na

Consider an arbitrary vertex of K |y call it v. Since the graph is complete, v must have edges
joining it to each of the remaining 16 vertices. At least 6 of these edges must be colored using the
same color since, if each of the three colors is used no more than 5 times, this accounts for at most
B+b+5=15< 16 edges. So one color, call it ¢, must be used on at least 6 of these 16 edges. Let u,,
Us, ..., Ug be the vertices at the “other ends” of these six edges. Since the graph is complete, ail
pairs of vertices have edges joining them, so the six vertices u, through ug form a Kg. If any edge
of this Kg, say wu;, is assigned color ¢}, then there is a ¢; triangle: vu;uy. Otherwise, all of the
edges of the Kgmust be colored using the remaining two colors, and we already know that this must
result in a monochromatic triangle. Our proof is thus complete.

Problem 2 (30 points).

As an aside, recall that we actually showed that a two-colored Kg must contain at least two
monochromatic triangles. Does this imply that a three-colored K;y must also contain two such
triangles? Not quite. It is possible for the two triangles in a two-colored K¢ to share a common

edge (there is a unique coloring with this property); if this common edge is instead colored using
color ¢, then we get only a single triangle. On the other hand, there are ten other vertices to
contend with, and it’s not difficult to show that, in fact, there must be at least two monochromatic
triangles altogether. The actual minimum number of such triangles in a three-colored K,y is, to the
best of our knowledge, unknown.

Have we proven that $(3,3,32)= 17? The Ramsey number is defined to be the minimum
number such that, if N2%(3,3,3,2) and the edges of Ky are colored using three colors, there must
be a monochromatic triangle. The above proof is not sufficient to establish that 17 is the minimum;
ail we can assert is that $(3,3,3,2)< 17. It is in fact possible to three-color a K¢ without producing
a monochromatic triangle, but it's atedious process. If we were to do so, this would show that
(3,3,3,2)> 16, and this would complete the proof that R(3,3,3,2)=17.
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Problem 3 (30 points).

Some people approached this problem by first asserting something to the effect of, “The minimum
number of distinct SDRs is achieved when there is maximum containment among the sets, i.e., when
S;€8,e8,¢e.:-¢ S,."  These people then proceeded to show that, in this situation, there are
exactly 2"SDRs, and claimed that therefore there are always at least that many. This is going about
it backwards. How do we know that the minimum occurs when there is maximum containment? It
may be intuitively obvious, but that’'s not a prodf. In fact, the most reasonable way to prove it is to
show that maximum containment results in 2"SDRs and that there are always at least 2° SDRs, and
conclude that the minimum occurs when there is maximum containment. Just to claim that the
minimum occurs with maximum containment, and use this claim to conclude that there are always at
least 22 SDRs, is circular logic. So let's prove this the right way!

If n = I, then S; consists of two elements, ¥; and ¥, and there are obviously 2' = 2 possible
SDRs, namely {¥,} and {x3}. So the result is true for n =1. We'll use induction to prove it is true
for any finite n.

Suppose the result is true for n-l. That is, given n-/ sets containing respectively 2, 3,...,n
elements, there are at least 2"" different SDRs. Now consider the situation when another set, with
n+ | elements, is added to the collection. We know, by the induction hypothesis, that there are at
least 2™ ways to choose n-/ distinct elements, one from each of the first n-/ sets (where the order of
selection is considered to be significant). For each such choice, there are at least two choices for the
element to represent the last set. Why? The set contains n+! elements, and at most n-i of them can
be included among the elements already in the SDR. Therefore there are at least 2 elements that
have not yet been chosen and are therefore eligible to represent this set. Since there are at least on-!
ways to choose the first n-I elements and, for each choice, at least 2 ways to choose the last element,
there are at least 2+2"! =27 ways to choose the n elements of the SDR.

If S € 8- € 84 c ... c §,, then there are again exactly 2 SDRs for the single set S,. This
time, however, when ‘we add the nth set to the collection, there are, for each possible SDR for the
first n-l sets, exactly two choices for the element that will represent S,. This is because, no matter
which elements are chosen to represent the first n-I sets, these n-/ elements must be contained in Sy,
and thus exactly n-I of the ntl elements in S, are ineligible to represent it, leaving exactly two
choices. Thus, by induction, there are exactly 22 SDRs for these sets. One specific example of such
a case is the collection of sets {a,b},{ab.},{abcd}. There are exactly eight distinct SDRs for these
sets, namely {@bc} {a,bd}, {ach}, {acd}, {bac), {bad}, {beca}, and {bc,d}.

Problem 4 (20 points).

-The only real difficulty with this problem seemed to be some confusion over exactly what constitutes
‘a “generating function”. The summation

©
z Ekxk =Eq t E,x t E2x2 F
k-0

is a generating function for the sequence Eq, E|, Eo, etc., but is not very useful in this form. For
instance, in section 3 of the notes, we found a generating function that could be written in the above
form, where E, was the number of ways of changing n cents using five types of coins (without the
restriction that each type be used at least once). However, writing the function as a summation like
this is not useful, since it does not help us find the coefficients E,. On the other hand, the set of
recursion formulas that we proceeded to find for computing E, were not themselves a generating
function; they were simply a means for computing the coefficients of the generating function. The



- 116 -

function itself was

(1=2)( 1-2")( 12" O)( 1) 1-x™)

The whole idea of using a generating function is that we want to be able to deal with the infinite
sequence as a single unit; we want a finite form that “embodies” the infinite sequence. The infinite
summation tells us what the generating function “is”in the sense that it tells us what it represents.
The finite formula shown above tells us what the generating function “is” in the sense that it gives
us a mathematical means for expressrng it. Since the infinite summation is trivial to specify (and in
fact was given as part of the statement of the problem), it is obviously the finite formula that is

called for.

There are two “easy” ways to f'nd the desired function—using either the method or the result
from section 3 of the notes. Using the result is easier, so let’s do it that way first. We observe that
one way to provide change for n cents, using at least one of each type of coin, is to start by setting
aside the five required coins, after which we may use any combination of coins for the remaining
amount. The five required coins have a value of 1+5+10+25+50 = 91 cents. Thus, to change n
cents, we set aside 91 cents and then change n-91 cents using any coins we wish. Let E’, represent
the number of ways of changing n cents, without the restriction that at least one of each type of coin
be used. We know from section 3 that '

§ r Lk ] 1
k-0 Eyx (=) 1= 1x PO 1 -2=2)( -2

Meanwhile, we have just shown that E,=E’,q,. Hence

[ 00

> Ext= T EYgxt
Py k o k=91
§ ’ k
= ) T 4
2500 k-91

(since we know E’, = 0 for ail n< 0). We then let j= k-91 on the righthand side and find

0 00

kgo Ekxl - ’g' Eljxj')m
(2]
< = xm ¢ E E',x'
0

al, |
(1=x) 1-2")( -2 ) 1=K 1-x ™)

xﬂl

" (1=K 1= O 1=K 1= ™) !

which is the desired result.

Meanwhile, we could also have started from scratch and used the method described in section
3. We would find that we could use one penny, or two, or three, etc., but not zero, and would write
these choices as the infinite sum, xtx*tx%, ... Similarly, we could have one nickel, or two, or
three, etc., giving the sum rxPtxvt Continuing in this fashion, we would eventually
take the product of these sums, thus:

T T L T T e L R O e
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Each term of the product with an exponent of n corresponds to one way of selecting a term from
each sum such that the exponents sum to n. Now, since

x+x2+x3+---=x-(l+x+x2+~--)=x-—l—l—-
-x

(and similarly for the other sums), we would find that the desired generating function is

x x!v xIO x25 xSO

Iox + T-x® 1270 % + %D’

which is equivalent to our earlier answer.
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