COMPREHENSIVE EXAMINATIONS IN
' COMPUTER SCIENCE
1872 - 1978

edited by

Frank M. Liang

STAN-CS-78-677
NOVEMBER 1978
(Second Printing, August 1979)

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

COMPUTER SCIENCE
COMPREHENSIVE EXAMINATIONS
1972 - 1978

by
the faculty and students of the
Stanford University
Computer Science Department

edited by
Frank M. Liang

Abstract

Since Spring 1972, the Stanford Computer Science Department has periodically given a
"comprehensive examination” as one of the qualifying exams for graduate students. Such exams
generally have consisted of a six-hour written test followed by a several-day programming problem.
Their intent is to make it possible to assess whether a student is sufficiently prepared in all the
important aspects of computer science. This report presents the examination questions from thirteen
comprehensive examinations, along with their solutions.

T he preparation of this repor't has been supported in part by NSF grant MCS 77-23738 and in part
by IBM Corporation.

i

&
- N
;3

Foreword

This report probably contains as much concentrated computer science per page as any

document in existence — it is the result of thousands of person-hours of creative work by the entire
staff of Stanford’s Computer Science Department, together with dozens of highly-talented students
who also helped to compose the questions. Many of these questions have never before been
published. Thus I think every person interested in computer science will find it stimulating and
helpful to study these pages.

Of course, the material is so concentrated it is best not taken in one gulp; perhaps the wisest
policy would be to keep a copy on hand in the bathroom at all times, for those occasional moments
when inspirational reading is desirable.

By publishing these examinations we aim to help future students prepare for future exams,
‘and to provide a resource for anyone who wishes to make up similar test questions. Furthermore, I
think this is an important historical document, showing what at least one faculty has perceived to be
the core of Computer Science during the 1970s.

Speaking of history, I should say a few words about the development of Stanford’s
Comprehensive Exams. Our department originally gave specialized qualifying examinations in
different areas; by the late 1960s there were five such official areas (Artificial Intelligence,
Hardware, Mathematical Theory of Computation, Numerical Analysis, and Programming
Languages and Systems), each of which was intended to assess a student’s qualifications for research
work in that area. A student was required to pass the Programming Languages and Systems qual,
plus two of the other four quals. Unforunately from the students’ standpoint (but fortunately from
the standpoint of our discipline), computer science was growing by leaps and bounds, so that every
year it took longer and longer to learn everything necessary for one particular qual. As a result it
became humanly impossible for a student to pass three quals without almost totally ignoring the
subject matter of the other two quals not being taken; our students were being forced into an
overly-specialized educational pattern.

A major reform was therefore adopted, beginning in the spring of 1972: Instead of three
specialized “area quals," we switched to a system that would provide both breadth and depth. Each
graduate student was now to pass a new exam called the comprehensive qual, after which he or she
was to pass just one of the area quals (in the intended thesis area). The purpose of the
comprehensive qual was to define and enforce the minimum standard of competence, in all areas of
computer science, that we wished each graduate student to have.

Our original intention was to include only "interdisciplinary” questions in the comprehensive
exams, questions that couldn’t be asked in ordinary courses or in the previous area quals because
the answer required knowledge from more than one subject area. Unfortunately, when the first
comprehensive qual committee met in 1972, we realized that such notions were too idealistic; almost
every interdisciplinary question we could think of was either trivial or an unsolved research
problem! Even worse, only the student members of the committee were able to understand questions
in more than about two of the subareas of computer science; the faculty couldn’t keep up with all the
exploding knowledge any better than the students. Nevertheless, we did come up with a few
interesting questions that span two or more subareas, and through the years such questions continue
to appear. The comprehensive exams began to be subdivided into named areas in 1974, so that a
student’s weakness in a particular area could be more easily identified by the grading committee.
This of course had the unfortunate corollary that interdisciplinary questions became rarer, but the
programming problems tend to ameliorate this defect.

It is perhaps necessary to point out that students were never expected to get perfect scores on
these exams. In recent years the criterion of "passing” the written test has been to require roughly
1/3 of the points in each area and 2/3 of the total points summed over all areas.

A reading list was given each time to help students prepare for the exam. The cumulative

iv FOREWORD

reading list appears at the end of the report, together with dates indicating when each publication
was inserted into or deleted from the list. All exams were “open book”.

Frank Liang deserves an enormous vote of thanks for undertaking to collect and edit the
examinations into publishable form.

D. E. Knuth
June 1978

Syllabus

The Comprehensive Exam is meant generally to cover the material from the following courses
(given by Stanford University’s Computer Science Department): CS$ 111 (assembly language); 112
(hardware); 137A (numerical analysis); 140A, 140B, and 246 (systems); 144A (data structures);, 156
(theory of computation); and 224 (artificial intelligence). Since the precise content of these courses
varies somewhat, the actual scope of the exam will be determined by the references given in the
reading list. Please note that the reading list includes some material involving structured
programming as well as the history and culture of Computer Science even though it does not
correspond to any particular course.

The exam also assumes a certain mathematical sophistication and a knowledge of programming.
The mathematical sophistication required includes knowledge of techniques such as induction,
recursion, "divide and conquer” (e.g., techniques in sorting algorithms, case arguments, etc.), and will
be at the level of an upper division undergraduate in the mathematical sciences. The programming
knowledge required will be an ALGOL-like language (e.g, ALGOL W or SAIL), the basic elements
of LISP, and possibly some assembly language.

Table of Contents

COMPUTER SCIENCE COMPREHENSIVE EXAMS

Spring 1972

Karnaugh mapping, Algol W program, history, logic minimization, applications of
trees, context-free grammar, resolution, floating-point arithmetic, buffers, linked
list, numerical integration .

Winter 1973

hashing, floating-point number system, "lock” word, NIL, Aitken extrapolation,
resolution proof procedure, number representations, twenty questions, Soma cube
puzzle

Spring 1973

T flip-flop, language classification, parsing, paging vs. segmentation, machine
architecture, GPS solves the monkey-ape-bananas problem, Algol W programs,
error function, simulation of a multiprogramming operating system

Winter 1974

tree traversal, Chebyshev approximation, ternary operations, iteration, Algac 60,
language classification, alpha-beta pruning, base 7 adder, name vs. value
parameters, predicate calculus, quickie questions, semigroup multiplication tables

Spring 1974

(7,3)-counter, trigger, software factory, virtual addreésing, circular lists, block
structure, Euler’s method, search, AL trends, Turing machine implementation,
propositional calculus, Gray code

Winter 1975

counter circuit, prime number circuit, precedence grammar, parameter passing,
error handler, storage reclamation, breakpoints, order of convergence,
predlctor—corrector, representation, combinatorial explosnon merging, grammar
with a’s and b’s, scene recognition system

Spring 1975

deadlock, LISP and systems, paging concepts, compiler quickies, process
synchronization, combinational circuit problem, J-K flip-flop, binary counter,
architecture concepts, diagonalization problem, finite automata, context-free
language quickies, Algol 60 problem, tree traversal, sparse matrix, banded linear
systems, arithmetic and error analysis, the rank problem, Newton’s method,
"understanding systems”, A.I. concepts, A.I quickies, simulation of a
packet-switching network

Page

11

19

27

33

43

vi

TABLE OF CONTENTS

Winter 1976

assembler, operating system, interrupts, linker vs. loader, re-entrance vs. recursion,
multiprogramming vs. multiprocessing, paging vs. segmentation, cooperating
process synchronization, interpreters vs. compilers, numerical arithmetic, systems of
equations, formal systems, deductive systems, priority queues, deques and lists,

. data structures, algorithm analysis, haiting problem, language classification, true

or false or unknown, BCD to XS3 notation, JK ripple counter, hardware
definitions, pattern transformation compiler

Spring 1976

regular sets, bad function, quadratic roots, floating-point sums, storage aliocation,
microcode usage, memory mapping, implementation of structures, S, tree checker,
shift registers, number representations, resolution proof, tower of Hanoi, solution
of sparse linear equations

Winter 1977

systems quickies, compiler issues, polyalgorithms for nonlinear equations,
nonlinear equation solvers, influence of arithmetic on algorithms, sparse linear
systems, A.L terms, English to logic, blocks, wffs vs. clauses, semantic information
processing, binary search trees, worst case cost, unification, three three machines,
context-free grammars, hardware definitions, -BCD-to-7-segment decoder,
multi-phase clock design, medical history system

Spring 1977

threaded binary trees, NR(k)-CNF satisfiability, system integration in A.L
programs, applicability of A.L techniques, architecture, combinatorial circuits,
sequential circuits, excess-3 adder, solution of linear systems, condition of linear
systems, polynomial interpolation/approximation, non-linear equations, periodic
splines, storage management, structured programming, fragmentation, parsing of
expressions, exponential service time, deadlock, error recovery, inductive assertion,
decidability true/false, monotone machines, context-free grammar,
(r,b)-constrained coloring

Winter 1978

sorting, RB trees, vision, AL terms, robotics (of sorts), hardware short-answer

questions, digital lock, numerical analysis — general principles, iterative
approximation, linear systems, compilation, short systems questions, parallel
processing, linking, proof of a program, NP-completeness, warehouse location
problem

Spring 1978

bin packing, maximum flow, data structures, formal representation, A.L systems,
natural language, alpha-beta search, 6-phase clock, control word design, iteration,
minimax approximation, linear systems, arithmetic and error analysis,
LR(k)-grammars, symbol table, optimization, register allocation, protection, linking
loaders, regular languages, true or false, logic, verification, production system
interpreter '

57

69

78

92

108

126

TABLE OF CONTENTS vii

ANSWERS

Spring 1972 143
Winter 1973 : ' 146
Spring 1973 150
Winter 1974 153
Spring 1974 ' 158
Winter 1975 163
Spring 1975 168
Winter 1976 | 175
Spring 1976 183
Winter 1977 | 190
Spring 1977 . 198
Winter 1978 : 209
Spring 1978 . 219

READING LIST 229

o

ki

i

opring 1972 Comprehensive Exam

Problem 1. (5 points)

Fill in the Karnaugh map shown below for the function realized by the following logic network.

T
x2 —————r e .
Xz :
b

*
X1X2
00 01 11 10
00
01
¥
10

Problem 2. (5 points)

Complete the following ALGOL W program by inserting a single assignment statement in the box
shown. Your program, when executed, should write the value "1" and nothing else (not "0") !

BEGIN COMMENT A STRANGE PROGRAM;
INTEGER ARRAY A(0::0);
INTEGER PROCEDURE I;

BEGIN

0
END I;
PROCEDURE WRITEZERQ(INTEGER X);
BEGIN
X:=0;
WRITE(X)
END WRITEZERO;
WRITEZERO(A(I))
END.

2 | | COMPUTER SCIENCE COMPREHENSIVE EXAM

Problem 3. (20 points)

Discuss the historical development of general-purpose digital computers up to 1950. Mention the
names of the principal contributors and the places they worked, and give some noteworthy
characteristics of the machines.

Problem 4. (I5 points)

Using AND-gates and OR-gates, draw a two-stage logic circuit to realize the function
f = E]szq + X1XoXgq + x‘xziq + x|§2x3x4

with the minimal number of logic gates and literals (a literal is either an occurrence of a variable or
an occurrence of the complement of a variable). Assume that each input variable and its
complement are available to your circuit. If a literal appears as input to more than one gate, each
appearance counts.

Problem 5. (20 points)

Describe, in general terms, the uses of tree data structures in

(a) artificial intelligence applications
(b) system programming applications
(c) numerical analysis applications
(d) hardware applications.

Give as many different kinds of uses as you can.

Problem 6. (60 points)

Consider the following context-free grammar:

Start symbol A

Nonterminal symbols 4 B C

Terminal symbols a b ¢

Productions A=a B-b C~e
A-aBC B-bCA C-cAB

(a) (10 points) Show that this grammar is ambiguous, by constructing two different parse trees
for the terminal string abcabcabe. '

(b) (20 points) Prove that if x;...x, is any string of a’s, b's, and ¢'s, for n21, the string
(abc)3"'x,...x, is in the language defined by the above grammar. Hint: Show that the
following are true:

SPRING 1972 3

A-* abcAb

A-* abcAc

A-* abcabcA
A-* abcababcAa

(c) (20 points) Consider the following ALGOL W program, which is a "top-down analyzer"
based on the above grammar:

BEGIN INTEGER P; STRING(150) S;
LOGICAL PROCEDURE MATCH((STRING(1) VALUE X);
BEGIN LOGICAL L;
IF S(P{1)=X THEN BEGIN P:=P+1; L:=TRUE END ELSE L:=FALSE;
L
END MATCH; ,
LOGICAL PROCEDURE A;
. BEGIN INTEGER Q; LOGICAL L;

Q:=P;
IF ‘MATCH("A") AND B AND C THEN L:=TRUE
ELSE BEGIN P:=Q; L:=MATCH("A") END;

L END A; ‘
LOGICAL PROCEDURE B; ... (analogous to A, by symmetry)
LOGICAL PROCEDURE C; ... (analogous to A, by symmetry)
READCARD(S); :

P:=0;
IF A AND MATCH(".") THEN WRITE("ACCEPT")
ELSE WRITE("REJECT")
END.

Suppose that an input card containing the string "ABCABABCABCAC." is punched. Explain
what the program does, giving evidence to the grader that you understand the recursive
sequence of calculations. Why does the program print "REJECT", even though the
corresponding string abcababcabeac is in the language defined by the grammar?

(d) (IO points) Find a string x;...x, of a’s, b’s, and ¢’s (n < 71) which is not in the above language
but for which the above program will write "ACCEPT" when x,...x, is punched on the input
card. Or, give an informal but convincing proof that no such string exists.

Problem 7. (20 points)

Prove by resolution (or by "iterative consensus”) that the following set of clauses is unsatisfiable:

pv~g, quavr, rynp, pyqur, Npvaguer.
Try to use the minimum number of resolutions necessary, and give an informal proof that your
method uses the minimum number.

4 COMPUTER SCIENCE COMPREHENSIVE EXAM

Problem 8. (I5 points)

A certain computer has "ideal” 8-digit floating-point decimal arithmetic, in the sense that the resuilt
of floating-point addition or subtraction is the true sum or difference of the operands, rounded to 8
digits. Formally,

floatingadd(a,b) = round{a+b)
floatingsubtract(a,b) = round{a-b)

where
0, ifx=0
round(x) = { 10} [10kx+ 5], if 107 < 10kx < 108
-round{-x) , ifx<O.
Here | x| denotes the greatest integer < x.
(a) What is the smallest value of a floating-point number € such that floatingadd(l,e) > 1?

(b) What is the smallest value of a floating-point number € such that floatingsubtract(l,e) < 1 ?

(For the purposes of this problem, assume that the range of exponents in these floating-point
numbers is unlimited.)

Problem 9. (15 points)

The concept of a buffer is central to both logic design and programming.
{(a) What is a buffer?

(b) Give an example to illustrate the use of buffers in logic design.

(c) Give an example to illustrate the use of buffers in systems programming.

Problem 10. (25 points)

A linked list of n elements has been stored in locations x{1] through x[n], with the links in locations
- pl1] through pln). The first element of the list is x[f], the next is x[p(f]], the third is x[p[plf1]], etc.
The link plpl...plf1...]] (iterated n times) is 0.

The following algorithm rearranges the list, putting the first element in x[1], the second in x[2], '
.., the last in x[n]. (You need not prove that the algorithm works, but it will be helpful if you
understand in your head how and why it works.)

SPRING 1972 . 5

for k := | step 1 until n do begin
while f < k do f:= plf];
t = x[k) x[k] := xlf); x[f]:=¢;
q := plf); plf) = plk); plk]) := £
f=q

end

(Here ¢t is an auxiliary variable having the same type as x, and ¢ is an auxiliary integer variable.)

Suppose that the final contents of the arrays, after this algorithm has been performed, are as follows
(n=8):

J =12345678
x[j]=RNMOEGVC
p[j]=676856288

“(If you understand the algorithm, you will know the final value of f.)

What were their initial contents, just before the algorithm was performed, and what was the initial
value of f?

12345678

T X
-H o G G
S e
nnun

PROGRAMMING PROBLEM

This programming problem is designed to emphasize topics in hardware design and the creation of
nontrivial programs, as well as numerical analysis. :

The problem is to determine the value of
!
fo Vierx® dx
in decimal notation, correct to 18 decimal places.

Hint: It may be helpful to first transform the integral before blindly applying a fdrmula for
numerical integration.

All programming should be done in either ALGOL W or SAIL. You should not use any
subroutines not written by yourself, except for fundamental routines such as input/output or square
root. Thus, you will probably have to write some extended-precision arithmetic subroutines.

Your grade will be based on (1) clarity of the program and its documentation, (2) how close you are
to getting the correct 18-digit answer, and (3) running time of the program.

Winter 1973 Comprehensive Exam

Problem 1.

A hash table of size N contains K items. Collisions are resolved with random or linear quotient
probing. There is a probability P that the items for which searches are conducted are in the table.
What is the expected number of probes necessary to search for one of these items?

Problem 2.

Consider a three-digit chopped decimal floating-point number system F, with numbers
x = +.d,dpdz x 107,

with 100 < ¢ < 100, and 0 < d; < 9. Let F be normalized (ie. x» 0> d; # 0). The number zero is

contained in F and has the unique representation: +.000 x 107199,

We denote by @ the operation of floating-point addition. For all x and y in F, the value of x @ y is
defined as the floating-point number closest to x+y whose magnitude is less than or equal to the
magnitude of x+y We denote by ® the operation of floating-point multiplication. For all x and %
in F, the value of x ® y is defined as the floating-point number closest to ¥ xy whose magnitude is
less than or equal to the magnitude of x xy.

(a) How many different real numbers can be exactly represented by F ?

(b) Find examples of x, 9, z € F to show that the following statements are not generally true:
() (x®y)B®z=x(y®2)
2 EDYNDz=xS(HS2)

(¢) Find an examplé where (x @ y) ® z has a relative error of at least 50% .

Problem 3.

Several processors must each be able to access a critical data base. Since any of them may alter it,
they must not access the data base simultaneously. Each processor may run at a different speed.
The following mechanism is proposed to accomplish this:

Each processor before accessing the data base will check a special "lock" word in memory. The lock
contains a 1 if any other processor is accessing the data base, and a 0 if not.

Will the following instruction sequence executed by each processor accomplish the goal of shared
but not simultaneous access? Explain your answer.

TEST LDA lock (load accumulator from lock)
BRP TEST (branch if accumulator > 0 to TEST)
SET lock (set lock to 1)

access data base

WINTER 1873 : ‘ 7

enci access ‘
CLR Tock (zero lock)

Can you improve on this program? You may rearrange the given instructions, delete some, and/or
add other reasonably implementable instructions.

Problem 4.

You have been hired to design a syntax-checker for Stanford’s new, optimal programming language,
NIL.

The language is as follows: A program consists of a series of statements, each of which is one word.
A program must begin with BEGIN and end with END. The "initial segment” of a program, following
BEGIN, may have as many ADD1 statements as you wish, possibly none, but each ADD1 statement must
be immediately followed by a SUBTRACT1 statement. (This is the only place a SUBTRACTL statement
can occur.) After the "initial segment” comes a "final segment” which consists of a non-zero number
of "nochange" statements. Each "nochange" statement may be either an ADD® or a TIMES1 statement.

(a) Describe the syntax of NIL by a regular expression. Design a syntax checker which may be
either a transition graph or a finite automaton (designate which) that accepts exactly the
programs of this language.

(b) You were successful and now the user community has demanded a more flexible language.
Accordingly, the language is revised so that in the initial segment of the program the ADD1
and SUBTRACT1 statements can occur in any order. Of course the program can still only
compute the same value (using the obvious meaning of the statements). Give a formal
grammar of the syntax of this initial segment. Will a regular language suffice? Why or why
not? Will a context-free language suffice? Why or why not?

Problem 5.
Consider a sequence gi (k = 0, 1, ...) which satisfies the relationship

gk-c—$k+ZapA;
1

where ¢, s, and {a/,, A/,}I;‘;’,, are unknown constants with prl < | and lebl p IA;M].

(a) Given numerical values go, gi, g2, ga Show how to use Aitken-extrapolation to determine
an approximate value of .

(b) Under what circumstances will your algori‘thm yield the exact value of s when go, &1, &2, &3
are given?

3 : COMPUTER SCIENCE COMPREHENSIVE EXAM

(c) Perform the calculation to determine s, given the following values for g:

go=-2.5, g1 =14.5, go=4.5, gg=8.

Problem 6.

Consider a complete resolution proof procedure that will find all possible resolvents (and factors) of
a set of clauses, all resolvents (and factors) of those, etc. The procedure terminates on the empty
clause or in the absence of further distinct resolvents. For each of the sets of clauses given below,
determine: (1) Does the procedure terminate? (2) Is the set satisfiable? Explain.

(a) {~plx) v p(fle)}
{pla)}
{g(a)}
{gla) v ~q(b)}

(b) {p(x)) v ~glx)}
{~plglad}
{g(a) v r(a)}
{~r(x) v ~q(x)}

(© {p(x) v q(x)}
{~p(a) v r(a)}
{~q(y) v (3}
{~r(a) v pa)}
{~p(2) v ~r(2)}

(Here a, b are constants; x, y, z are variables; p, ¢, r are predicates; and f, g are functions.)

Problem 7.

Show that for each of the three common fixed point binary number representations (signed
magnitude, ones’ complement, two’s complement), there is a reasonable floating point number
representation such that the same comparison instruction can be used (1) to test whether one fixed

point number is greater than another and (2) to test whether one normalized floating point number
is greater than another.

Problem 8.

TWENTY QUESTIONS

1. Which machine is faster? (a) IBM 360/65; (b) CDC 6600.
2. that is the main innovation of the IBM 360/85?

3. Which of the following are stack machines?

WINTER 1973 | ' g

10.

1L

12.

13.

14.

15.

16.

17.

18.
19.

20.

(a) PDP-10

(b) B 5500
(c) 360/65

Which language is designed especially for string processing?

(a) ALGOLW

(b) SNOBOL

(c) LISP

What is the fastest general-purpose digital computer?

What is the cheapest general-purpose digital computer?

Are there any general-purpose 20 ns cycle time computers? If yes, give name.

What is the essential difference between combinational and sequential hardware circuits?

How many switching functions of 3 variables are there?

How fast can sorting be done on a single sequential machine?

Let fix) = (x—-a)?, and assume that x, is close enough to a. What is the rate of convergence for
the iteration x,,; = %, = flx,))f"(x,)), n=0,1,...7

Let f{x) = cos x . For a given accuracy, which method requires fewer operations for finding a
zero of f{x): Newton’s method or the method of regula falsi? Why?

Approximately how long is one nanesecond?
(a) one millimeter; (b) oneinch; (c) one foot; (d) one kilometer.

Name two reasonable algorithms that might be used to determine which page to replace when
a new page is brought into main memory in a paging memory system. :

What switching function does the following logic diagram implement? Describe in simple
form. A—

B

w B

Consider 1’s complement versus 2’s complement representation of integers. From a hardware
standpoint, in which system is it easier to implement the complement operation? Why?

What information must be saved for later restoration when an interrupt is received and
serviced? ‘

Is a queue or a stack the more common data structure in parsing? In I/O routines?
Give a good candidate for the smartest AL program. -

Write down at least one "computer science joke.”

10 COMPUTER SCIENCE COMPREHENSIVE EXAM

PROGRAMMING PROBLEM

You are given the six distinct ob jects that can be made from four unit cubes placed face to face so
that none of them is a rectangular parallelpiped, and the one object that can be made from three
unit cubes with the same restrictions.

The problem is to write a program that will determine all of the distinct ways in which these seven
ob jects can be assembled into a 3x3x3 cube. This is the classical SOMA cube puzzle. It is
well-known that there are 240 solutions. Since this problem is classical, you are expected to do it
entirely on your own. It is not open book, except for programming reference manuals. You may use
or build a version of the puzzle to experiment with while working on the problem.

All programming should be done in either ALGOL W or SAIL. The grade will be based on (1)
clarity of program documentation, (2) structure and elegance of the program, and (3) running time of
program. Partial credit will be given for incomplete answers. Note: your program will take at least
a minute or so to run.

Problem 1. (I5 points)

(a)

(b)

Spring 1973 Comprehensive Exam

A T flip-flop is shown schematically as

1l +———

g }—

There is a single input, and the state of the flip-flop changes with each pulse on the input
line. Show how a T flip-flop could be made from a single S-R (set-reset) flip-flop, OR gates,
and AND gates.

The circuit shown below contains one T flip-flop and one S-R flip-flop. There is a single
clock input, ¢, and two outputs, z; and z,. Assume that initially z, = 0 and z, = 0. Fill in the

table below to show the values of the indicated variables after the arrival of each clock pulse.

A4

R

—D—T
kY
__D___S i Yy
T R [7

Yy

W

Y

Yo

Zy

Z

Initial state

After
After
After
After
After
After

arrival
arrival
arrival
arrival
arrival
arrival

{no clock pulse present)
of 1lst clock pulse
of 2nd clock pulse
of 3rd clock pulse
of 4th clock pulse
of 5th clock pulse
of 6th clock pulse

bl

12 COMPUTER SCIENCE COMPREHENSIVE EXAM

Problem 2. (15 points)

For each of the languages given below, decide whethet the language is regular, context-free and not
regular, or recursive and not context-free. Explain your decision in some convincing (not necessarily
formal) manner.

In the following, assume that i, f are positive integers and that n is a fixed positive integer.

(d) {abl|j=n-i}

(b) {albi|j=n+i}

© {alb|j=nxi}

(d) { a‘:bJ: | j=mnli} (" interpreted as integer division)
() {a'®|j=i"}

Problem 3. (30 points)
Let G be the grammar whose productions are given below. Capitals (4, B, ...) denote nonterminal
symbols, lower case letters (a,b,c,...) denote terminals, and € denotes the empty string. The
nonterminal § is the start symbol.

S - AC

A->CB|aB

B-C|Ab

Coc

(a) Is the grammar left-recursive?r That is, could a top-down recognizer loop forever when
g P g P
parsing sentences with this grammar? Why or why not?

(b) Find the precedence table for t.his grammar and determine if it is a (1,1) precedence grammar.
For parts (c), (d) and (e), use the grammar above and add the production C - e.

(c) Determine which nonterminals produce the empty string.

(d) Answer part (a) for the modified grammar.

(e) . Answer part (b) for the inodified grammar.

SPRING 1973 13

Problem 4. (30 points)

Distinguish between paging and variable length segmentation (without paging) with respect to:

(a) memory utilization

(b) memory allocation problems

(c) ease of program sharing

(d) implementation of virtual memory.

Note: typical machines
paging: (360/67, XDS Sigma 7, Honeywell 6180)
segmentation: (B6700, Honeywell 6180)

Problem 5. (15 points)
Architecture Problem (systems)

What machine architecture features are needed (or are useful) to accomplish:

(a) looping

(b) dynamic program relocation

(c) recursion

(d) input/output

(e) implementation of P and V mutual exclusion primitives
(f) debugging at machine/assembly language level.

Problem 6. (45 points)

GPS SOLVES THE MONKEY, APE AND BANANAS PROBLEM

Problem: A room contains a monkey, an ape, a box, and some bananas which are hanging frorﬁ the

ceiling. The monkey wants to eat the bananas, but he cannot reach them unless he is standing on
the box, when it is under the bananas. The ape is willing and able to help the monkey. How can
the monkey get the bananas?

GPS task formuiation and task environment:

initial state: monkey’s place = placel
box’s place = place2
ape’s place = place3
contents-of-monkey’s-hand = empty
contents-of-ape’s-hand = empty

goal state: contents-of-monkey’s-hand = bananas

places: placel, place?, place3, under-bananas

animals: monkey, ape

14

operators:

CLIMB:

WALK:

MOVE-BOX:

GET-BANANAS:

differences:

difference ordering:

table of connections:

input-
action-

input-
action-
input-
actions-

input-

action-

COMPUTER SCIENCE COMPREHENSIVE EXAM

monkey’s place = box’s place
monkey’s place becomes on-box

x is in the set of places, ¢ is in set of animals
a’s place becomes x

x is in the set of places
ape’s place is in set of places
ape’s place = box’s place
ape’s place becomes ¥

box’s place becomes x

box’s place = under-bananas

a is in set of animals

a@’s place = on-box
contents-of-a’s~-hand becomes bananas

DO = (monkey's place)

D1 = (ape’s place)

D2 = (box’s place)

D3 = (contents-of-monkey's-hand)

(D3, D2, D1, DO)

consider all operators relevant to all differences

Write out the trace of the GPS solution to this problem. GPS is to be taken to mean the problem
solving system described in chapter 8 of Newell and Simon, Human Problem Solving, particularly as
summarized by Figure 8.7. Your answer should be laid out in goal-subgoal structure, indicating
differences found, operators applied, and intermediate states achieved. A model for your answer is
Fig. 8.10 in HPS, although your trace does not have to be quite as thorough and detailed as that

one.

Problem 7. (15 points)

BEGIN
REAL A;

REAL. PROCEDURE P; A+l

A e« 0;
BEGIN
REAL A;

PROCEDURE Q(REAL PROCEDURE R); WRITE(R);

A«~1;

Q(P);

END
END.

SPRING 1973 15

BEGIN
REAL A;
REAL PROCEDURE P(REAL A); A+l;

Ae«0;
BEGIN
REAL A;
PROCEDURE Q(REAL PROCEDURE R); WRITE(R(A));

A« 1;

Q(P);

END
END.

(a) What will each of these two ALGOL W programs print?

(b) What issue in language design is illustrated by this example? Name a language which does
this differently from ALGOL. What are the arguments for each side?

Problem 8. (30 points)

You are on duty as a consultant for a computer center and you have just been asked to provide
subroutines to compute the error function and the inverse error function. Neither of these is in your
library, but you do have access to an otherwise well-equipped library of general numerical
mathematics subroutines. Your visitor needs immediate answers to his programming problem
because he has planned on using these functions later this morning. However, he is interested in
computing only a few numbers with these subroutines (at unknown points) and great accuracy is not
important. Neither are speed or elegance, but inputting tables will not solve his problem (or yours).

(a) Provide ‘algorithms using only general library subroutines to compute the error function,
defined by

x _y2
erf(x)=—g-—f e tdt,
Vi V0
and the inverse error function, defined by
inverf(z) = x o erf(x) = z
You need only outline your solution, but you must give a brief description of any library
subroutines you would use. Pay particular attention to what information or parameters would

be necessary or useful. For some representative values of these parameters, give an estimate of
the accuracy you would expect your algorithms to achieve.

(b) Briefly comment on the efficiency of your solution and suggest alternative approaches you
might try if you wanted to add these functions to your library (and had a week to do so).

16 COMPUTER SCIENCE COMPREHENSIVE EXAM

PROGRAMMING PROBLEM

You have been asked by a local computer system manufacturer to simulate the design of a
multiprogramming operating system. You are seeking to find out, for example, at what rate tasks
can be processed (throughput), to what extent memory is utilized, and how task priority and
processing time requirements affect the turnaround time for a particular task. The basic system
model is shown below.

tasks requiring further processing

l

———

|

arrivals system of CPU departures
queues server

Tasks arrive at Poisson intervals and bring with them certain demands for systems resources. Call
these demands d;, where i runs from 1 to n. When a task arrives, we could form a demand vector, d
= (d;, dy, ..., dy), which represents that task’s resource requirements. We will assume that these
demands remain fixed for the life of the task. Examples of possible demands include CPU time,
main memory, disk memory, peripheral equipment, priority, or special data bases.

With respect to the problem of scheduling tasks to be run, we first observe that no task will be put
in "ready to run" status until it is possible to allocate to that task all resources which the task has
demanded. In the case of CPU time demand, this philosophy is tempered by the multiprogramming
notion to the extent that each task which is ready to run will ultimately be given a quantum of time,
g seconds, during which the CPU is devoted to running that task. If the task requires further
processing when the ¢ seconds are up, then it will be returned to the ready to run queue. Otherwise,
it will depart from the system.

~ The system you will model has four resources to allocate:

1. CPU computation time
2. Main memory

3. Disk memory

4. Priority

The first and fourth of these resources are limited in the sense that no CPU time demand may
exceed some limit, L, and no priority may fall outside the range 1 < priority < L,. The second and
third resources are limited in the sense that no more than L, words of main memory and L disk
tracks can be allocated at one time. The implication is that some arriving tasks may have to wait
until other tasks depaft before they may be initiated.

Since we are simulating the real world, we must find a way to generate task arrivals and task
resource demands. We do this by drawing demands and arrival times from suitably distributed
random variables.

Arrival of a new task occurs at intervals which are distributed exponentially, with mean / (mean
interarrival time). Upon arrival, a task is assigned a demand vector ¢, with d;, d,, d3 (CPU time
in units of ¢ seconds, main memory in words, and disk memory in tracks, respectively) chosen from
exponentially distributed random variables whose means are m;, my, and mg respectively. The
priority of the task, dg, is given an integer value between 1 and Lg, using a uniform distribution.
The farger the value of dy, the higher the priority of the task.

SPRING 1973 17

By now it should be apparent that the system of queues that must be maintained is split into two
parts:

(1) Tasks, ordered by priority, which are awaiting initiation because there were insufficient
resources available when the task first arrived.

(2) Tasks, ordered by priority, which have been initiated (i.e. allocated necessary resources) and
are ready to run, but which are queued up waiting to get a quantum of time on the CPU.

The scheduler is run each time a task’s quantum runs out. The scheduler first attempts to move
tasks from the queue of tasks awaiting initiation to the queue of tasks which are awaiting CPU
access, and then the scheduler attempts to start up the highest priority task which is ready to run.

An arriving task will be given a demand vector and will be queued at the rear of the tasks in its
priority awaiting initiation. Ultimately (we hope), it will be placed in the ready queue by the

scheduler.

The figure below shows the queueing system in more detail.

ready task queue

[| —| cpu >
departing
T 1) tasks
e ————————— . o
arriving tasks awaiting
tasks initiation

Given the following parameters, run your simulation until 1000 tasks have been completed. Note
that it may be necessary to initiate more than 1000 tasks. Collect statistics as described below.

Parameters:

! = mean interarrival time = 30 seconds

my; = mean CPU time required = 20 q units

my = mean main memory required = 200 K bytes

mg = mean disk space required = 20 tracks
Ly = maximum CPU time allowed = 240 ¢ units

L, = maximum memory available = 2000 K bytes
Lg = maximum disk space available = 200 tracks
Ly = number of priority levels = 4

quantum time = 0.5 seconds

ey
f

Note that the total CPU times of all tasks waiting for initiation or in the ready queue may exceed
240 g, but no single task may have a CPU demand in excess of 240 q. Furthermore, when a task
departs, it returns all disk and main memory that it demanded.

Statistics:

Define T to be the total time the system is in operation, ie. T is the difference between the time at
which the 1000th task departs from the system and the time at which the first task enters the
waiting queue.

18

(D
(2)

(3)

(4
(5)

COMPUTER SCIENCE COMPREHENSIVE EXAM

total number of priority i tasks run
T

The mean and variance of queue lengths in both waiting and ready queues, broken down by
priority. Collect these statistics incrementally each time the scheduler is run.

Average throughput (broken down by priority) =

Memory utilization. Let ¢; be the interval of time from the moment task i first enters the
ready queue to the time task i departs from the system. Let dy(i) be the memory demand
assigned to task i when it enters the system. Then memory utilization is defined as:

1000

(Z t; % dz(i))/(Lz xT)
i=1
where i runs over all tasks which have been completed, and T is as defined earlier.
Disk utilization. (Same as (3), except replace dy(i) by ds(i) and L, by Lj)

For each priority class, prepare a scatter plot of the total time a task is in the system against
the CPU time demand the task makes. Note that this "total task time" is not the same as the
t; in (3).

Winter 1974 Comprehensive Exam

Problem 1.
Consider the foliowing seven steps which are executed (recursively) in some binary tree traversal
algorithms:

1. Visit the root

2. Visit the left successor of the root

3. Traverse the left subtree of the left successor of the root

1. Traverse the right subtree of the left successor of the root

b Visit the right successor of the root

6 Traverse the left subtree of the right successor of the root

7. Traverse the right subtree of the right successor of the root

(To be completely precise, steps 2, 3, and 4 should be preceded by the phrase "If the root has a left
successor”; and steps 5, 6, and 7 should be preceded by the phrase "If the root has a right successor".)

(a)

(b)

(C)

(d)

Express the standard traversal algorithms of preorder, inorder, and postorder in terms of the
above steps.

Consider the following tree; call it S.

(R)
(8 Q)
@ €)

CORO

(1) Let the "inside out” algorithm be defined by executing the steps in the order 46 372 5
1. Apply this algorithm to tree S. In what order are the nodes visited?

(2) Which of the algorithms, when applied to tree §, visit the nodes in the order IH F C B
GEAD?

(8) Give a permutation of (A B C D E F G H I) which cannot represent the order in
which the nodes of S are visited by one of the 7! algorithms which can be defined in

terms of the steps above. Prove your answer.

Suppose all 7! algorithms which can be defined in terms of the steps above are run on some

arbitrary (but fixed) tree T, resulting in 7! permutations of the nodes of T. How many of
these permutations are distinct?

Given an algorithm A, consider the algorithm AR defined by reversing the order of the seven
steps. (Eg. if Ais4 52316 7then ARis7613254) Are the nodes of all trees traversed
by AR in the opposite order to the order they are traversed by 4? Prove your answer.

19

20 COMPUTER SCIENCE COMPREHENSIVE EXAM

Problem 2.

(a) How would you recognize that you have obtained the nth degree polynomial P(x) that is the
minimax (Chebyshev) approximation to a function f{x} in Cla, 5]

(b) Use your answer to (a) to find the straight line that is the best Chebyshev approxxmatxon to
the quadratic ax? + bx + ¢ in [-1, l]

(c) Find the answer to the problem in (b) by exp.anding the quadratic in a series of Chebyshev
polynomials To(x) = 1, Ti(x) = x, Ty(x) = 9x%-1. State the general theorem you are using.

(d) Suppose the interval in (b) is changed to [0,1). Explain how you would apply the methods of.
(b) and (c), but do not carry out the details.

(e) Provethat .

flx) = (x—x;)(x—x—z) (x—xy) , .

where the x; are at your disposal, is minimized with respect to the maximum norm in [-1,1] by
choosing x; = cos[(2i-1)n/2n].

Problem 3.

Ternary operations

Dr. Art D. Ware once had the marvelous idea of using ternary logic for improving the speed of
. computer hardware. He uses "trits” instead of bits, and the following functions:

4 -1 0 +1 ' -1 0 +1 - ' -1 0 +1
] B d#) T N :
-1y -1 -1 0 -11 -1 0 0 -1l -1 +1-
. 6l -1 0 +0 0f 6 0 © 0 +1

+1 0 +1 +1 +1 0 0 +1 + +1 +1 +}

-1 0 +1 -1 0 +1
#1 -1 0 +1 € -1

ot D et
OO

» ,
There are three binary operators, And (), Or (&), and Sup (@); and two unary operators,

Rot(@

) and Neg (¢). Use these components to build a half-adder and then a full adder. To

help you get started we give below the construction of a multiplier modulo three.

™~ . .
=

B________~._____l

WINTER 1974 21

Mul(a,b) = And(Sup(Or{a,b),Neg(Or(a,h)))Neg(Sup(Or{a,Neg(h)),Or(Neg(a).b)))).

Your end result should have a similar form.

Problem 4.

Consider the polynomial fx) = x® + 3x% + 2x - 1.

(a) Show that there is a positive zero « and find an interval of length 1 (i.e. an interval of the
form [a,a+1]) which contains «.
{b) Consider the iterative method . .
Xpa1 = %p — mfo(xy) ,
where xg € [a, a+1] and

ﬂa), x<a
Solx) = fx), asx<a+l
fa+l), atl <x

Find a value of m for which this method converges to o for any xq € [a, a+1). Show that for
your value of m the sequence x, does converge to o . Discuss what happens if xg is an
arbitrary real number, considering convergence or non-convergence, and if convergent, the
speed of convergence.

{c) Consider the iterative method
i . 1
xn‘,=§(l-—x,3,,—3‘x,zl), xo=a+"2'.
Is this method convergent? Explain.
(d) Consider Newton's method

Xpal = Xp _f(xn)/f'(xn) y Xp=a+ 1.

Discuss the convergence or non-convergence.

Problem b.

The Algac 60 executes Algol 60 programs directly except for input/output. It reads a number by a
statement x := read and writes by a procedure write(x). It has a clock interrupt to a statement
labelled foo every aigosecond. The procedure return is used to return from the interrupt. Write the
program at foo and establish conventions for communicating with it so as to read and write arrays
of numbers. ' :

22 COMPUTER SCIENCE COMPREHENSIVE EXAM

Problem 6.
Prove or disprove each of the following four statements.

(a) L(G) is regular, where G is the grammar ({S, 4, B, C, D}, {0, 1}, P, §) and the productions P

are: .

S - AB
A - CCC
B - DDD
cCD - DC
DC -CD
CDC - DCD
DCD - CDC
C |

D >0

(b) {ww® : win {a, b}*} is linear context free.

R

(c) {fwew™ : w in {a, b}*} is regular.

(d) {a™"c™: n 2 1} is context free.

Problem 7.

Consider a game playing program for a game in which there are always exactly two moves to
consider, A and B. The program expiores the game tree to a fixed depth D, and uses an evaluation
function that assigns a different value to each bottom position (the positions at depth D from the
starting position). The program always considers the moves in a fixed order (A then B) because it
is difficult to tell a priori which of the two moves is likely to be preferred. In order to reduce the
size of the game tree considered, the program uses a restricted "alpha-beta” pruning procedure
which only does one level cutoffs. (In Nilsson’s terminology: when deciding whether search should
be discontinued below a given node, its provisional backed-up value is compared with the
provisional backed-up value of its parent node only.) Thus there are no deep cutoffs.

What is the expected number of bottom positions this game playing program will consider as a
function of D?

Problem 8.
Base 7 adder
Design, as efficiently as you can, using And (@), Or (d;b), and Neg (C:)) functions, a three-bit,

base seven full adder. The input is seven bits, including the carry. The output is three bits and a
carry. Say why you think that your design is good. :

WINTER 1974 23

Problem 9.

The actual parameters of an ALGOL 60 procedure may be called by name or by value. Explain
clearly the difference between these two mechanisms, and say which you would choose in a situation
where either could be used. In what circumstances is it essential to call parameters by name?

The following procedure prints a table of values of the function
J"(x)=ax2+bx+dforx=2,3,..., 10;

the method used is unusual.

procedure David (a, b, ¢);
real a, b, c; value a, b, ¢;
begin
integer i; real y;
y =2
for i := 1 step | until 9 do begin
print (axyxy + bxy +c);
c:=c+ b+ a

b:= b + 2xa;
end
end David,

Trace the action of this procedure when activated by the program segment
p =0 9= goi
David (p + q, p,)

and deduce the values of f{2) and f{3) computed

.(a) with the procedure as given;
(b) if the part value @, b, ¢; is omitted.

Note that the action of this procedure is the same in ALGOL W as in ALGOL 60, Ohly the
notation of the procedure heading is different in the two languages.

Problem 10.

A cubical barrel contains 27 identical spherical apples in a regular 3x3x3 array. A worm is to start
at an outside apple and eat his way from apple to apple visiting each apple once and going to a
touching apple. Write a sentence of predicate calculus with equality whose satisfiability expresses
the possibility of the worm doing this and ending up in the center. It is not necessary to determine
whether the worm can do it in order to write the sentence.

(a) How might you quibble about this problem?
(b) Solve it without quibbling.

24 COMPUTER SCIENCE COMPREHENSIVE EXAM

Problem 11.
QUICKIE QUESTIONS
(a) What is Professor Knuth’s middle name?

(b) Perform the following 9-bit ones complement addition:

1118681181
+111816818
+1181888281

(c) Compute 9—1+2+3+4x.

(d) What is the importance of g, in connection with the heuristic power of A, especially
considering the admissibility and optimality of 4*?

() Is ALGOL W a context-free language?

(f) Apply Warshall’s algorithm to the following binary matrix:
1188
8618
18091
6 6868

(g) What data structure would you use to represent a 100 x 100 array which you know will
always have less than five non-zero elements?

(h) What is a nybble?

(i) Prove, in any way you can, 3xVy (FxoFy).

(j) What is the biggest architectural flaw of the IBM $/860?
(k) What is strength reduction?

(1) . Alphabet soup: expand the following abbreviations:

APL
BNF
COBOL
AVYL
CCwW

(m) For integration of a first order differential equation with initial condition, multistep methods
such as Adams’ method are generally more efficient than the Runge-Kutta method. Under
what circumstances or in what portion of the calculations would the Runge-Kutta method be
preferred? '

WINTER 1974 ' 25

(n)

(o)

(<))

(@)

100000 1

LetS]= Z —l- and Sz‘—’ Z *15
n=1 n'2 n=100000 T

If these sums are computed on a finite precision computer of the usual type, which one would
you expect to have the smaller round-off error and hence give a better approximation to

w©

> Lo
n=1 n?

Why?

How would you calculate (x) = x ~ Vx-a correctly to the number of digits used in x when x
is very large compared to o?

In a few words what is the most important property of a spline function approximation which
makes it better than a polynomial approximation for interpolating a given function at a given
set of points?

What is the biggest architectural flaw of the PDP-10?

26 COMPUTER SCIENCE COMPREHENSIVE EXAM

PROGRAMMING PROBLEM

A semigroup is a set of objects S together with a binary operation % such that (xxy)xz = xx(yxz) for
all x, 9, z in S. To define a semigroup on the four objects A, B, C, D, we must specify a
multiplication table for the operation %, namely a 16-tuple

(AxA, A%B, AxC, AxD, BxA, .., DxD)
which satisfies the 64 relations

(AxAA = Ax(AxA)
(AxA)B = Ax(AxB)

(D*D)*D = Dx(DxD)

Two semigroups defined by multiplication tables x and %’ are isomorphic if there is a permutation p
of (A B C D) such that p(xxy) = p(x)x p(y) for all x, y e S.

You are to write a program which prints out all such semigroup multiplication tables in
lexicographic (i.e. dictionary) order, except that you shoulid list only the lexicographically first table
from each class of isomorphic semigroups. In other words, you are to find all the nonisomorphic
semigroups on four ob jects.

Example: For two ob jects, the answer would be
AAAA, AAAB, AABB, ABAB, ABBA;
since the set of all semigroup multiplication tables is

AAAA, AAAB, AABB, ABAB, ABBA, ABBB, BAAB, BBBB;
1 2 3 4 5 6 7 8

and the pairs (1,8), (2,6), (5,7) are isomorphic.

This is intended as a programming problem and not as a problem in group theory. The problem is
classical, but you are expected to do it entirely on your own; the definitions above should be
sufficient. It is not open book, except for programming reference manuals.

As your program generates solutions, have it print out the elapsed time, along with any other
measures of performance you think important. Your grade will be based on the structure and
elegance of your program and the clarity of your documentation, as well as its performance.

You may find the following facts helpful:

(1) There are less than 10,000 semigroups on four ob jects.
(2) Less than 1000 of these are isomorphically distinct.
(3) The grader’s program took less than ninety seconds to run.

Spring 1974 Comprehensive Exam
HARDWARE

1. (7.3)~counter. (20 boint:-)

A (7,3)-counter is a combinational circuit with 7 inputs and 3 outputs, in which the 3-bit output is
the binary representation of the number of 1's present on the inputs. Assuming that a (7,3)-counter
costs $1 and a one-bit fuli adder costs 82, design a combinational network of (7,3)-counters and full
. adders to calculate the sum of fourteen 10-bit unsigned integers. Give a strategy for the design and
state the number of each building block needed, making the cost of your design as low as possible.

2. | Trigger. (IO points)

The following circuit might be called the "poor man’s trigger”. Sketch the behavior of the output
signal when the circuit is presented with the following input signal:

: . 1 (true) ’)
input (1) . Y 4
0 . (false)

sunelye time

Po—[>o —

Explain briefly the reasons for the behavior observed.

SYSTEMS

3. Software factory.

You are the director of a large software consulting company. The XYZ company has just given you
a fixed price contract to supply ail the software for its new machine which it will market in two
years. The system should sell for about $300K to small universities. The contract allows you the
normal outrageous profit if you can produce the software with less than ten- man-years of effort.
Assume that you have available whatever software talent is needed. Lay out a software
development schedule in some detail — show what software is to be developed, when development
starts and stops, and some indication as to the way in which major packages would be implemented.
Explain clearly any additional assumptions you are forced to make in order to make the question
more well-defined,

27

28 ' COMPUTER SCIENCE COMPREHENSIVE EXAM

1. Operating systems/architecture. (20 points)

A systems designer at Veeblefetzer and Beebleberry has noticed that machines which use base and
bound registers to implement virtual addressing must still use physical memory addresses for I/O,
while using virtual addresses for program references in the CPU. This is because the
transformation from virtual to real addresses is done by the CPU.

The CPU address calculation logic (eg. indexing, indirect addressing) produces a virtual address.
This value is added to the contents of the current base register producing the correct physical
memory address.

The designer decides to make things more symmetric by building the virtual-to-real mapping into
the memory. This way, he reasons, programs can issue 1/O requests referring to virtual buffer
addresses and these can be used in the various I/O devices since the virtual addresses will be
transformed to physical ones at the memory. He also hopes to permit dynamic program relocation
even during I/O, since ail addresses entering the memory request queue will be virtual. Evaluate
this strategy, pointing out as many flaws or weaknesses as you can.

5. Circular lists. (10 points)

A programmer has designed a circular list format as follows:

empty list: HEAD = @

non-empty list: HEAD —— l——-> DATA POINTER

or HEAD —— L DATA POINTER DATA POINTER |

He writes the foliowing routine to insert a new data element DNEW into the list. FREE is the index of
an available node in PointerArray.

IF HEAD = 8 THEN BEGIN
Pointer[FREE] « FREE;
HEAD « FREE
END
ELSE BEGIN
Pointer[FREE] « Pointer[HEAD];
Pointer[HEAD] « FREE
END; '
Data[FREE] « DNEW;'’

Specify a change to the data structure which will allow you to simplify the insertion routine by
eliminating the conditional. The change should preserve the circularity property. Rewrite the
insertion routine for the modified data structure.

SPRING 1974 | 29

6. Block structure. (20 points)

Implementation of certain features for block structured languages can cause some serious difficulties.
Write a short paragraph or two in response to each of the following questions:

(a) Algol W implements records and references but places only references on the stack, while
records are kept in separate storage not a part of the stack. Why is this?

(b) It is unusual to find an interactive Algol system which allows a user to modify his program
incrementally, that is, adding and deleting text at will, recompiling as little of the program as

possible. Why is it so difficuit to build such a system? Cite several specific problems that you
can think of. '

NUMERICAL ANALYSIS

7. Euler’s method. (30 points)

Consider the ordinary differential equation

(—12 = =
= Ay, 20, 50) = yo.

(a) Define Euler’s method for this equation.

(b) Let v, = oty), ty=nk, n=0,1,..., k>0, be the approximation to y(¢,). Solve the Euler
difference equation and show that v, = yoexp(nak - nA%k%/2 + O(k3)). Hint: in(l+x) = x -
22+ 233 - ..., ~l<xs L

() Using the expression obtained in (b), compute an expression for |v, — %t,)l What can you
conclude from this? :

(d) Let A =X, + ixp i = V=1,2; and X real, A; < 0. Then |y(t)| < |99} Derive a relation for &
which is both necessary and sufficient so that |v, | < |90}

(e) Discuss the usefulness of Euler's method for integrations over long t-intervals if A; = 0. What

if A | is very much smaller than MZIZ? Are these conclusions valid if one is only interested
in the solution over a very short ¢-interval?

30 COMPUTER SCIENCE COMPREHENSIVE EXAM
ARTIFICIAL INTELLIGENCE

8. Search. (15 points)
The U. S. Postal Service has developed a simple model to help speed the mail. The model deals

with 7 cities and the bi-directional mail shipment between them. The following graph represents
the model: '

Do) -
)

_(.(\b) O

®
_ 6Qu)

The number on an arc is the actual transit time of mail traveling that route. The number in
parentheses at each city is an estimate of the transit time from that city to city B.

(a) Use the 4* algorithm (Nilsson) to "search” for the apparent shortest path from 4 to B. Use
the estimates at the cities for the heuristic estimate of distance to the goal. Illustrate your
application of the algorithm so that the grader can understand it.

(b) Does A* find the actual shortest path? If not, why not?

9, Trends. (15 points)

Nilsson’s survey article on artificial intelligence suggests that a major and fundamental shift in
approach to the AT core problem areas has occurred in recent years. Describe and discuss this shift,
giving examples from the Al "application” areas if you wish.

SPRING 1974 31

THEORY OF COMPUTATION

10. Turing machine implementation. (20 points)
(a) Describe the finite control for a Turing machine that recognizes

" an.b(Zn) "
given these constraints:
1 The alphabet of the machine is {", a, b, x}.
2 The symbol x will never appear on the input a.
3. The contents of the tape at completion may be anything.
4
5

The head begins on the lefthand «.
n20.

First explain how your implementation works, in English. Then give a precise description of
the machine, using some Turing machine formalism (e.g. quadruples or flow graphs). Be sure
to mention how the TM indicates success or failure..

(b) Can a NDPDA (non-deterministic push down automaton) recognize this language? Why or
why not? '

(c) Is this language context sensitive?

11. Propositional calculus. ' (10 points)

The following formula in the propositional calculus is either a tautology, satisfiable but not a
tautology, or unsatisfiable. Determine which and prove your answer.

{[{a=b) > (c=d)] v [(~bo~a) > ((vevvd)n(evd)]} A [(ceb) v [d = (bvaa)]]

32 " COMPUTER SCIENCE COMPREHENSIVE EXAM

PROGRAMMING PROBLEM

A "generalized Gray code” of degree 4 is a cyclic permutation (pg, py, ..., pis) of the sixteen 4-bit
words 0000, 0001, ..., 1111 such that p; and p,1) mog 16 differ in only one bit position for all i.
For example, one such code is

(0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000).

Two Gray codes are considered equivalent if one is obtainable from the other by combining any of
the following four operations:

(a) Reversal, i.e. (pg, p1, ..., pis)is equivalent to (py5, P1a, ---» Po)

(b). A cyclic shift, ie. (po, 1, ..., pys)is equivalent to (pp, Pryy, ---» Phy)-

(¢) Complementation of any set of bit positions, i.e. (po, py, ..., pys) is equivalent to (po®x,
p1®x, ..., p5®x), where x is any bit pattern and @ denotes exclusive or.

(d) Permutation of bit positions, using the same permutation on each of the p’s.

As an example of operations (c) and (d), we can replace each bit pattern abed by cadb @ 0110 = cadb
in the generalized Gray code shown above, obtaining

(0110, 0100, 1100, 1110, 1111, 1101, 0101, 0111, 0011, 0001, 1001, 1011, 1010, 1000, 0000, 0010).

Write a well-structured computer program which lists all of the distinct generalized Gray codes of
degree 4, giving for each equivalence class the code which is first in lexicographic order.

For example, it is not difficult to work out the case of degree 3 by hand, obtaining
(000, 001, 011, 010, 110, 111, 101, 100)

as the unique answer!

For degree 4, there are 9 solutions, and they can be found in McCluskey, Introduction to Logic
Design and Switching Theory, 1965, page 62. This information will help you determine whether
your program is correct; obviously it is not sufficient for you to simply list the solutions. You should
try to make your algorithm as efficient as possible, making use of symmetry and other work-saving
ideas.

All programs must be written in ALGOL W or SAIL. You will be given an account with $100.
Programs will be evaluated according to the criteria of efficiency, clarity, documentation, correctness
of results, structure, and the algorithm used in the program. Include the program run-time in your
documentation.

Winter 1975 Comprehensive Exam

HARDWARE
1. Counter circuit. (20 points)

The four binary outputs of a circuit at time ¢ represent the binary encoding of an integer ¢(¢) in the
range [0,15] . The circuit has a single binary input. On receipt of an input signal, the circuit
generates

gt + dt) = 3 x g{t) + 1 (mod 16)

where X and + imply multiplication and addition over the integers. The initial state is ¢(0) = 0 .

Design such a circuit using not more than three memory elements. Include brief descriptions of the
actions of any circuit elements you employ.

2. Prime number circuit. (20 points)

(a) Given four binary signals which encode the numbers 0 through 15 in an 8-4-2-1 code,
construct a circuit whose output is 1 if and only if the number represented is prime. (The
integer 1 is not prime.) Assume that AND gates, OR gates, and inverters are available. The
circuit should require a minimal number of gates.

(b) Pick one of the leads to one of the gates. Assume that this lead breaks in such a way that the
gate thinks the corresponding input is always a 1. What is the behavior of the circuit now?

Give a systematic procedure for detecting which gate is involved, under the restriction that
you can only look at the final output of the circuit.

PROGRAMMING LANGUAGES

3, Precedence grammar. (10 points)

Show that the grammar

<S> u= a<A>d | b<A>d
<A> u=¢ | c<A>

is an operator precedence but not a simple precedence grammar. Suggest a change to the grammar
which leaves the strings generated by § unchanged but gives the grammar the simple precedence

property.

33

34

4. Parameter passing. (15 points)

COMPUTER SCIENCE COMPREHENSIVE EXAM

Consider an imaginary language in which calls can be by value, reference, or name, as specified in
the procedure definition. Simulate the output of the following program. Assume the obvious
conventions for print format, etc. (e.g. your simulation should begin:

1 X=4 W=225
2 X=4 W=229)

BEGIN

INTEGER X, INTEGER W, INTEGER I

MACRO SPEAK
BEGIN
I = I+l
PRINT (I, "X= ", X,
END

PROCEDURE ONE (W INTEGER VALUE)

BEGIN
INTEGER X
X =7
SPEAK
W iz X + W
X 1= W
SPEAK
END

PROCEDURE TWO (W INTEGER REFERENCE)

BEGIN
INTEGER X
X = 7
SPEAK
Wiz X + W
X 1= W
SPEAK

END

PROCEDURE THREE (W INTEGER NAME)

BEGIN
INTEGER X
X 1= 7
SPEAK
W= X+ W
X 1= W
SPEAK

END

g
4
225

>

SPEAK
Wiz X+ W
SPEAK
ONE(X)
SPEAK
TWO(X)
SPEAK
THREE(X)
SPEAK

END

WINTER 1575 35

5. Error handler. (20 points)

You are maintaining an implementation of a compiled high-level block-structured programming
Janguage in which the blocks have names. (SAIL is an example where the names are optional.) It
has been decided that the run-time error handler should print out the names of the blocks which
constitute the lexical (static) scope of the statement in which an error occurs. The only information
immediately available to the error handler is the value of the program counter at the place where
the error occurred. ‘

(a) What additional information must the compiler make available to the error handler?
(b) Design a suitable data structure for the storage of the information.
(¢) Give an algorithm for the error handler to use for printing the block names.

Example:

BEGIN "problem"™ COMMENT block names in quotes;
PROCEDURE FIRST (REAL VALUE X; INTEGER VALUE I0);
BEGIN "part 1"

BEGIN "case 16a" INTEGER I,J,K;
WHILE TRUE DO
IF SQRT(X) > 16 THEN ...
END "case 1l6a";...
END "part 1%;
PROCEDURE SUPERVISE; BEGIN "supe"
FIRST (-15.,26);...

END "supe";
SUPERVISE;
END "problem";
The error message should include SQRT: negative argument
Block structure is problem
part 1
case l6a
SYSTEMS
8. Storage reclamation. (10 points)

Briefly describe the advantages and disadvantages of the following two schemes for storage
reclamation:

(a) garbage collection
(b) reference counts.

Assume the following: the data structures involved are large and cannot be wholly contained in
core; a virtual store is provided by a paging system; core space is at a premium; disk accesses are
expensive, but computational power is fairly cheap; the storage reclamation problem arises in the
context of a LISP system which normally includes only a small number of self-referential structures.

36 COMPUTER SCIENCE COMPREHENSIVE EXAM

7. Breakpoints. (20 points)

The documentation below describes the memory reference instructions of a minicomputer (the Data
General Nova).

Describe the design of a mechanism for inserting breakpoints in programs in such a machine. What
are the key issues? What must the code that is executed when a breakpoint is encountered do?
How about the code that executes the return from a breakpoint?

2.1 MEMORY REFERENCE INSTRUCTIONS
™ __Bi:s. 5-15 havc the s2me fermat in evéry memory rcference instruction whether the cffective 2d@se js
uscd for storage or sctricval of an operand or to alter program flow, Bit 5 is the indirect bii, bits 6 and 7 2éc the

.

Ll x 1., .2 1

3 7 [) ? ' 10 33 32 13 ‘34 [

jndex bits, and bits 8-15 arc the displacenient. The effective 2ddress E of the instruction depends on the values
of J, X, and D. I X is 00, D addrcsses enc of the first 256 memory locations, ie D is a mc"nor} address I the
vange 00000-00377. This group of locations is referted to as page zéro.

If X-is nonzero, D js a displacement that is used to produce a memory aldress by addmg it to the contents
of the register specified by X. The displacement is a signed binary integer in twos complement notation. Bit 8
is the sign (0 positive, 1 nagative), and the integer is in the octal range —200 to +177 (decimal —128 1o
+127). I X is 01, the instruction addresses a location relative to its own pésition, ie D is added to the address
ia PC, which is the address of the instruction being exceuted. This is referred 1o as relative addressing. If X is
10 or 31 respectively, it selects AC2 or AC3 as a base register to which D is added.

X) Derivation of address

00 Page zero eddressing. 2 is an 2ddress in
the range 00000-00377.
o1 ' Relative addressing. D is a signed disgplace-
ment {(—~200to +177) thatis added io the
. address in PC.
10 Base register addressing. Dis asign ,d dis-
) placement {— 200 to +177) that is added
to the address in AC2,
- 11 ~ Base register addressing. Dis a signed dis-
placement (—20010 + 177) thatizadded
to the address in AC3.

M I'is 0, addressing is dircet, and the address already dctermined from X and D is the cflective cddress
used in the execution of the instruction. Thus a memery veference instruction can directly address 1024 Yecas
tions: 256 in puge zero, and three sets of 256 in the octal renge 200 less than to 177 greater than the 2ddress in

PC. AC2 and AC3. If 2 is 1, addressing is monrcct,'nnd the processor retricves another 2ddress from the locnilon
(7] 4 |
o 8) . 1

s;-cc.iﬁcd by the address already determined. In this new word bit 0 is the indirect bit: bits1-15are the cfTec-
tive zddress i bit 0 is 0; etherwise they specify a location for yet andther level ol address setriovel. This
process contizues vntil somce referenced Jecation is found with a 0 in bit 0; bits 115 of this Tocation erg the
ciocive address K,

WINTER 1975 ' 37

Move Daix Instructions ..

Thesc two instructions move data botween memory and the aceumulators. In the descriptions of alt
memery seference instiuctions, E sepresents the cffective address. ’

LbA Lead Accum_u!u:nt ,
T D)

[0 o [« 7 1 ., ., 2 . , -, |
’ e ' 3 2 ERE] 5 6 ¥ 3 3 9 ' 10 1 32 13 13 . 15,

Load the contents of location £ into accumulator A. The contents of E are unafected, the original contents

of A arc lost.

STA Stare Accumulatar

LD . 1 1 0 [jl‘ [! ' % I 1 -1 [} ll) (] 2 1 j

© } 1 2 ERMEN s 6 ' 7 s 9 ¥ 10 [T 12 ' 13 14 15

Store the contents of accumulator A in location E. The contents of A are unaffected, the original contents
of E asc lost.

Modify Memory Instructions

These two instructions altec’a memory location and test the result for a skip. They are used to count
loop itcrations or successively modify a word for a scries of operations.

152 Increment znd Skip if Zero
e o, 0 v ol x T . ., 2]
ot 3 2 3 T a s & ' 7 3 9 ‘10 EERE PR | [E] 15

Add 1 to the cantents of location E and place the result back in E. Skip the next instruction in sequence if
the result is zero.

0szZ Decrement and Skip if Zero . Co
[0 0 o 1 1 7] x] ~ D
1 ! 3 1
o T 2 3 Vs s, 621 ziezloLn.u%ulnl:sJ
Subtract 1 from the contents of Tocation E and place the result back in E. Skip the next instruction in sequence .

if the result is zera.
Jump Instructions

These two justructions allow the programmer to alter the normat program sequence by jumping to an
arbitrary location. They arc especially useful for calling =nd returning from subrontines,

P Juep : ') .
le,o, 0,0, 007 X [. "]
o ' 1 2 3 T4 s 6 V'3 s . 9 V10 1. 12 '3 14 15

Load E into PC. Take the next instruction from location E and continue sequential operationt from there.

JSR Jump to Subrgutine ’
[0 3 0)] 0 2 0 1 l l] X l A L . 2 ? : L] 1]
o ' 2 3 Vg s 6 ' 3 [9 ' 10 1 12 Vs 14 18

Load an 2ddress onc greater than that in PC into AC3 (hence AC3 receives the address of the location fol-
lowing the JSR instruction). Lead E into PC. Take the next instruction from Jocation E and continue scquen-
tial operation from there. The original contents of AC3 are lost,

Nore: The effective address calculation is completed before PC+1 is loaded into AC3. Thus a JSR

that specifies AC3 as a base register docs exceute properly; ie the previous contents of AC3 are used in the
address calculation,

38 COMPUTER SCIENCE COMPREHENSIVE EXAM

NUMERICAL ANALYSIS

8. Order of convergence. (15 points)

We wish to solve the equation

fx)=0

by the following iteration formula:

Sfey) +0 (f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>