Stanford Artificial Intelligence Laboratory ~August 1977
Memo AIM-298 .

Computer Science Department
Report No. STAN-CS-77-6 11

THE LOGIC OF COMPUTER PROGRAMMING
by

ZOHAR MANNA and RICHARD WALDINGER

Research sponsored by
Office of Naval Research

National Science Foundation
and
Advanced Research Projects Agency

COMPUTER SCIENCE DEPARTMENT
Stanford University

Stanford Artificial Intelligence Laboratory August 1977
Memo AIM-298

Computer Science Department
. Report No. STAN-CS-77-611

THE LOGIC OF COMPUTER PROGRAMMING

ZOHAR MANNA RICHARD WALDINGER
Artificial Intelligence Lab Artificial Intelligence Center
Stanford University SRI International

Stanford, California Menlo Park, Calif ornla

Abstract:

Techniques derived from mathematical logic promise to provide an alternative to the
conventional methodology for constructing, debugging, and optimizing computer programs.
Ultimately, these techniques are intended to lead to the automation of many of the facets of the
programming process.

This paper provides a unified tutorial exposition of the logical techniques, illustrating each
with examples. The strengths and limitations of each technique as a practical programming
aid are assessed and attempts to implement these methods in experimental systems are discussed.

This research was supported in part by the Advanced Research Projects Agency of the
Department of Defense under Contract MDA903-76-C-0206, by the National Science
Foundation under Grant DCR'12-03731 AO01, by the Office of Naval Research under Contracts
NO00014-76-C-0687 and N00014-75-C-0816, and by a grant from the United States-Israel

Binational Science Foundation (BSF), Jerusalem, Israel.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of
Stanford University, Stanford Research Institute, or the VS. Government.

Copyright © 1977 by Zohar Manna and Richard Waldinger.

Manna & Waldinger The Logic of Computer Programming

Contents:
I YT o Y 18 L o) 5 2
l. Partial COrreCtNESS ««uurmurmareaaeeaaaeaaaeaaenaareaareaaaemaaenaarnnns 6
I, Terminationo.oniuiineiiii ittt 27
IV. Well-Founded Induction...............coovu0. e e 32
V. TOtal COITECINESS . & ccvrrecnaeeaaenaeea s e enarenarearenarnarenarennens 35
VI. Correctness of Recursive Programs..ovuieerenneeeennneeennnenns 40,
VIl. Program Transformationcoiiiiiiiiiiin ciiiiiiiiiiiiiiiiaa 50
VIIl. Program Development «......ceeeeeeeiiiisseeeennnnisessesesnnnnnssnsenens 61
[X, REfEIrENCES «:uuuirrriiiniiii it a st eenria s s ennnnaaaaaens ‘76

Manna & Waldinger The Logic of Computer Programming

. Introduction

In June 1962, the first American space probe to Venus (Mariner I) went off course and had to
be destroyed because of an error in one of the guidance programs in its onboard computer.
One statement of the program, though syntactically correct, had a meaning altogether different
from that intended by the programmer. Although few bugs have such spectacular effects,
errors in computer programs are frequent and influential. There has been substantial effort
recently to apply mathematical rigor to the programming process and to enable the accuracy of
the machine to compensate for the error-prone human mind.

In the late nineteenth and early twentieth century, mathematics underwent a process of
formalization and axiomatization, partially in an effort to escape from paradoxes and logical
errors encountered by previous generations of mathematicians. A similar process is underway
in the development of a logical theory of programs.” This theory has already made our
understanding of programs more precise and may soon facilitate our construction of computer
programs as well. Logical techniques are being developed to prove programs correct, to detect
programming errors, to improve the efficiency of program operation, to extend or modify
existing programs, and even to construct new programs satisfying a given specification; many of
these techniques have been implemented in experimental programming systems. In the last
decade, this field of research has been extremely active; it now has the potential to exert a deep
influence on the way computer programs are produced.

The available techniques are already described in the literature, but the relevant papers are
scattered through many technical journals and reports, are written in a variety of incompatible
notations, and are often unreadable without some background in mathematical logic. In this
paper, we attempt to present the principal methods within a unified framework, conveying the
intuition behind the methods by examples, and avoiding the formal apparatus of the logicians.

To facilitate a comparison between the various techniques, we use a number of different
algorithms for performing the same task: to compute the greatest common divisor of two
integers. These algorithms are simple enough to be readily understood, but subtle enough to

demonstrate typical difficulties. .

The greatest common divisor of two nonnegative integers ¥ and y , abbreviated as ged(x y), is
the largest integer that divides both x and y. For instance: ged(9 12) = 3, ged(12 25) = 1, and
ged(0 14) = 14. When x and y are both zero there is no greatest common divisor, because
every integer divides zero; on the other hand, when x or y is not zero, a greatest common

divisor must exist.

A naive algorithm to compute the ged of ¥ and 9 might behave as follows: Make lists of all
the divisors of 'x-and of all the divisors of y; then make a third list of all the numbers that

Manna & Waldinger The Logic of Computer Programming

appear in both lists (these are the common divisors of ¥ and ¥); finally, find the largest
number in the third list (this is the greatest common divisor of X and y). The cases in which
x or 7 is zero must be handled separately. This algorithm is straightforward but inefficient
because it requires an expensive operation, computing all the divisors of a given number, and
because it must remember three lists of intermediate numbers to compute a single number.

A more subtle but more efficient algorithm to compute the gcd of two numbers can be devised.
Until the first number is zero, repeat the following process: if the second number is greater
than or equal to the first, replace it by their difference -- otherwise interchange the two
numbers -- and continue. When the first number becomes zero, the answer is the second
number. This answer turns out to be the ged of the two original numbers. The new algorithm
is more efficient than the naive one, because it only needs to remember two numbers at any one
time and to perform the simple minus operation.

The above algorithm can be expressed as a stylized program:

Program A (the subtractive algorithm):
input(xg yo)
(x) « (xo o)
more: if x = O then goto enough
if y2x then 7 « y-x else (x y) «(yx)
goto more
enough: output(y).

The notation (x %) «(xg yo) means that the values of ¥ and § are simultaneously set to the
input values xq and yo. Thus, the statement (x §) «(yx) has the effect of interchanging the
values of x and y . This program causes the following sequence of values of x and y to be
generated in computing the gcd of the input values ¥g=6 and yo=3:

3
=6
3

QJQJQJ

-

Q.Qo-o.o-
e e e e

R X R R R
"
O W) W Lo DN

=0
3.

m

Thus, the output of the program is 3.

Although the earlier naive algorithm was obviously correct, because it closely followed the
definition of gcd, it is by no means evident that Program A computes the gcd function. First
of all, it is not clear that when X becomes zero, the value of % will be the g&éd of the inputs;
that this is so depends on properties of the gcd function. Furthermore, it is not obvious that x

Manna & Waldinger The Logic of Computer Programming

will ever become zero; we might repeatedfy execute the If-then-else statement forever. For
instance, consider the program A ’ obtained from A by replacing the conditional

if y2x then y« y-x else (x y) «(y x)

b .
g if y2 xthen y« y-x else x « x-y.

This program closely resembles Program A, and it actually does compute the ged of its inputs
when it happens to produce an output. However, it will run forever and never produce an
output for many possible input values; for instance, if %p#O0 and %o=0, or if xo= 0 and yo=x.
Thus, if xg=y9=3, the following sequence of successive values of x and y emerges:

"
WO LD LD LD

and 9y =3
and ¥y = 0,
and ¥y =0,
and y=0,. .. .

R XX
n

These programs are as simple as any we are likely to encounter, and yet their correctness is not
immediately clear. It is not surprising, therefore, that bugs occur in large software systems.
Although programs may be subjected to extensive testing, subtle bugs frequently survive the
testing process. An alternative approach is to prove mathematically that bugs cannot possibly
‘occur in the program. Although more difficult to apply than testing, such mathematical proofs
attempt to impart absolute certainty that the program is, indeed, correct.

Techniques derived from mathematical logic have been applied to many aspects of the
programming process, including:-

® correctness: proving that a given program produces the intended results.
e termination: proving that a given program will eventually stop.

e transformation: changing a given program into an equivalent one, often to improve its
efficiency (optimization).

® development: constructing a program to meet a given specification.

These techniques are intended to be applied by the programmer, usually with some degree of
computer assitance. Some of the techniques are fairly well understood and are already being
incorporated into experimental programming systems. Others are just beginning to be
formulated and are unlikely to be of practical value for some time.

Manna & Waldinger The Logic of Computer Programming

Our exposition is divided between a basic text, given in an ordinary type font
and secondary notes interspersed throughout the text in a smaller font. The
basic text presents the principal logical techniques as they would be applied
by hand; the secondary notes discuss subsidiary topics, report on
implementation efforts, and include bibliographical remarks. Only, a few
references are given for each topic, even though we are likely to lose some

good friends in this way. The hasty reader may skip all the secondary notes
without loss of continuity.

In the following pages, we will touch on each of these topics; we begin with correctness, the most
investigated and best understood of them all.

Manna & Waldinger The Logic of Computer Programming
Il. Partial Correctness

To determine whether a program is correct, we must have some way of specifying what it is
intended to do; we cannot speak of the correctness of a program in isolation, but only of its
correctness with respect to some specifications. After all, even an incorrect program performs
some computation correctly, but not the same computation that the programmer had in mind.

For instance, for the gcd program we can specify that when the program halts, the variable y is
intended to equal the greatest integer that divides both inputs ¥g and ¥g; in symbolic notation

y=max{u : ulxo and ulyp} .

(Here,” the expression {u : p(u)} stands for the set of all elements u such that p(x) holds, and the
expression ulv stands for "u divides v .") We call such a statement an output assertion, because
it is expected to be true only when the program halts. Output assertions are generally not
sufficient to state the purpose of a program; for example, in the case of the ged , we do not
expect the program to work for any xg and %o, but only for a restricted class. We express the
class of “legal inputs” of a program by an input assertion. For the subtractive gcd algorithm
(Program A), the input assertion is

x92 0 and 902 0 and (xg= O or yo=0).

We require that at least one of the inputs be nonzero, because otherwise the gcd does not exist.
We do not state explicitly that the inputs are integers, but we will assume throughout this paper
that variables always assume integer values.

We have expressed the specifications for Program A as a pair of input-output assertions. Our
task now is to show that if we execute Program A on any input satisfying the input assertion,
the program will halt with output satisfying the output assertion. If so, we say that Program A
is totally correct. It is sometimes convenient, however, to split the task of proving total
correctness of a program into two separate subtasks: showing partial correctness, that the
output assertion is satisfied for any legal input if the program halts; and showing termination,
that the program does indeed halt for all legal inputs.

The language in which we write the assertions is different from the programming language
itself. Because the statements of this assertion language are never executed, it may contain
much higher level constructs than the programming language. For instance, we have found the
set constructor {u :.. .} useful in describing the purpose of Program A, even though this
notation is not a construct of conventional programming languages. Written in such a high-
level language, the assertions are far more concise and naturally expressed than the program
itself.

Manna & Waidinger The Logic of Computer Programming

It will be convenient for us to ignore the problem of termination for a while and deal only with
partial correctness. In proving partial correctness, it helps to know more about the program
than just the input-output assertions. After all, these assertions only tell us what the program
is expected to achieve and give us no information on how it is to reach these goals. For
instance, in understanding Program A, it is helpful to know that whenever control passes
through the label more, the greatest common divisor of x and y is intended to be the same as
the greatest common divisor of the inputs xo and yo, even though x and y themselves may
have changed. Because this relationship is not stated explicitly in either the input-output
assertions or the program itself, we include it in the program as an intermediate arsertion,
expressed in the assertion language:

max{w : ulx and uly} = max{u : ufxo and ulye} .

Another intermediate assertion states that whenever we pass through more, the program
variables, x and y , obey the same restrictions as the input values ¥g and ¥g , i.€.,

x20 and 2 0 and (x» O or y=0).

We rewrite Program A below, annotated with its assertions (within braces, "{. . .}"). Note that
the assertions are not intended to be executed, but are merely comments expressing relationships
that we expect to hold whenever control passes through the corresponding points.

Program A (annotated):
input(xg yo)
{X02 0 and yp2 0 and (xg = 0 or yo= 0) }
(x 9) « (0 30)

more: {x20and y20and (x=0or y=0)
and max{u : ufx and uly} = max{ulxg and ulyo} }

if x = O then goto enough
if y2x then y« y-x else (x y) «(y x)
got0 more

enough: {y=max{u:ulxy and ulyp}}
output(y) .

Our goal is to prove that if the program is executed with input satisfying the input assertion,
and if the program halts, then the output assertion will hold when the program reaches enough.

For this-purpose, we will show that the intermediate assertion is true whenever control passes
through more; in other words, it is invariant at more. The proof is by mathematical induction on
the number of times we reach more. That is, we will start by showing that if the input assertion
is true when we begin execution, the intermediate assertion will be true the first time we reach .

Manna & Waidinger | The Logic of Computer Programming

more; we wilt then show that if the intermediate assertion holds when we pass through more,
then it wilt be true again if we travel around the loop and return to more; therefore, it must be
true every time we pass through more.

Finally, we will show that if the intermediate assertion holds at more, and if control happens to
pass to enough, then the output assertion will be true. This will establish the partial correctness
of the program with respect to the given input and output assertions.

Let us first assume that the input assertion is true when we begin execution, and show that the
intermediate assertion holds the first time we reach more. In other words, if

%920 and 9020 and (¥ e O or yo=0),
and we execute the assignment
(x 9) « (x0 30)

then
x>0 and y2 0 and (x= 0 or y= 0)
and max{u : ulx-and uly} = max{u : ujxo and ulyo} ,

f-or the new values of x and y .

Because the assignment statement sets X to ¥g and ¥y to Yo, we are led to prove the wverification

condition

(1) x020andyOZOand(xo-!OOryo#O)
=>%52 0 and y92 0 and (xgm O or yo= 0)
and max{u : ulxg and ulye} = max{u : ulxy and ulye} .

(Here the notation A => B means that the antecedent A implies the consequent B.) The
consequent was formed from the intermediate assertion by replacing x by ¥¢ and y by 9.

Next, assuming that the intermediate assertion is true at more and control passes around the
loop, we need to show that the assertion will still be true for the new values of x and y when we
return to more. In other words; If the intermediate assertion

x2 0 and 920 and (x» 0 or y= 0)
and max{u : ulx and uly} = max{u : ulxy and ulyo}

holds, if the exit text x = O is false (i.e., ¥ # 0) and if the conditional statement

Manna & Waldinger The Logic of Computer Programming
if y2x then y « y-x else (x y) «(y x)

is executed, then the intermediate assertion will again be true. To establish this, we distinguish
between two cases. If y2x , the assignment statement o e o+m is executed, and we therefore
must prove the verification condition

(2) x20and 92 0 and (x« O or p » 0) ‘
and max{u : ulx and uly}=max{u : uly and ulyo} ,
and x=0 :
and yzx
=>x2 0 and y-x2 0 and (x» 0 or p-x = 0)
and max{u : ujx and uly-x}=max{u : ujxo and ulye} .

The antecedent is composed of the intermediate assertion and the tests for traversing this path
around the loop. The consequent was formed from the intermediate assertion by replacing y by
p-X .

In the alternate case, in which y<¥, the consequent is formed by interchanging the values of X
and y. The corresponding verification condition is

(3) x20and y20and (x »Oory = 0)
and max{u : ulx and uly} = max{u : upxg and ulyo}
and x=0
and y < x
=>p20and x2 0 and (y= 0 or x= 0)
and max{u : uly and ulx} = max{u : ulxg and ulyo} .

To complete the proof we must also show that if the intermediate assertion holds at more and
control passes to enough, then the output assertion will hold. For this path, we need to establish
the verification condition

(4) x20andy20and(x xOory = 0)
and max{u : ulx and uly}=max{u : ulg and ulyo}
and x=0
 =>p =max{u : ulxo and ulyo} .

These verification conditions are lengthy formulas, but it is not difficult to prove that they are
ail true. -Conditions (1) and (3) are logical identities, which can be proved without any
knowledge of the integers. The proofs of Conditions (2) and (4) depend on three properties of
the integers:

Manna & Waidinger The Logic of Computer Programming

(a) wulx and uly <=>u¢ and uly-x

(the common divisors of ¥ and p-x are the same as those of x and y),
(b) wulo

(any integer divides zero), and
(c) max{u:uly}=yify>0

(any positive integer is its own greatest divisor).

To prove Property (a), assume ufx and #ly . Then, we must show that uly—x
as well. We know that x=k.u and y=/-u, for some integers k and ! . But
then y-x =(l-k): u, and hence uly-x, as we wanted to show. Similarly, if ujx
and uly-x, then x =m-+u and p-x =n-u for some integers m and n . But
then y = x+(y-x)=(m+n). u, and hence uly .

To prove Condition (2), letus consider the consequents one by one. That x20, y—x20, and (x= 0
or y-x = 0) are true follows directly from the antecedents %20, y2x and = 0, respectively. That

max{u : upe and uly-x} = max{u : ulxg and ulyo)
follows from the antecedent

max{u : ulx and uly} =max{u : ulxg and ulye}
and Property (a).
To prove Condition (4), first observe that the antecedents imply

9>0 . .

because x=0 and (x= 0 or y#0) imply y=0, but 9«0 and 20 imply 9>0 . Now, since x=0,
applying Property (b) to

max{u : ulx and uly} = max{u : ujxg and ulyo}
yields

max{u : uly} =max{u : ulxe and ulyo} .
Because y>0 , applying Property (c) yields

10

Manna & Waldinger The Logic of Computer Programming
9 =max{u:ulxg and ulyo} ,
the consequent of Condition (4).

This concludes the proof of the partial correctness of Program A. Note again that we have not
proved the termination of the program: we have proved merely that if it does terminate then
the output assertion is satisfied. A similar proof can be applied to Program A’ (the program
formed from Program A by replacing the statement (x y)«(y x) by x « x-p), even though that
program may loop indefinitely for some legal inputs, Program A’ is partially correct, though
not totally correct, because it does compute the ged of those inputs for which it happens to halt.

The proof of the partial correctness of Program A involved reasoning about four loop-free
program paths: one path from the input assertion to the intermediate assertion, two paths from
the intermediate assertion around the loop and back to the intermediate assertion, and one path
from the intermediate assertion to the output assertion. Had we not introduced the
intermediate assertion, we would have had to reason about an infinite number of possible
program paths between the input assertion and the output assertion corresponding to the
indefinite number of times the loop might be executed. Thus, the intermediate assertion is
essential for this proof method to succeed.

A lthough a program’s assertions may become true or false depending on the location of control
in . the program, the verification conditions are mathematical statements whose truth is
independent of the execution of the program. Given the appropriate assertions, if the program
is partially correct, then ail the verification conditions will be true; inversely, if the program is
not partially correct, at least one of the verification conditions wilt be false. ‘We have thus
transformed the problem of proving the partial correctness of programs to the problem of
proving the truth of several mathematical theorems.

The verification of a program with respect to given input-output assertions consists of three
phases: finding appropriate intermediate assertions, generating the corresponding verification
conditions, and proving that the verification conditions are true. Although generating the
verification conditions is a simple mechanical task, finding the intermediate assertions requires
a deep understanding of the principles behind the programs, and proving the verification
conditions may demand ingenuity and mathematical facility. Also, a knowledge of the subject
domain of the program (e.g., the properties of integers or the laws of physics) is required both
for finding the intermediate assertions and proving the verification conditions.

One way lo apply the above technique is to generate and prove verifiation conditions by hand.
However, in performing such a process we are subject to the same kinds of errors that
programmers commit when they construct a program in the first place. An alternate possibility
is to generate and prove the verification conditions automatically, by means of a verification

Manna & Waldinger The Logic of Computer Programming

system. Typically, such a system consists of a verification condition generator, which produces
the verification conditions, and a theorem prover, which attempts to prove them.

invariant assertions were ‘introduced by Floyd [1967] to prove partial
correctness of programs, although some traces of the idea appear earlier in
the literature. King [1969] implemented the first system that used invariant
assertions to prove the partial correctness of programs. Given a program, its
input-output assertions, and a set of proposed intermediate assertions, King's
system generated the verification conditions and attempted to prove them.
Some later systems (such as those of Deutsch [1973], Elspas, Levitt, and
Waldinger [1973], Good, London, and Bledsoe [1975), Igarashi, London, and
Luckham[1975], and Suzuki [1975)) adopted the same basic approach but
employed more powerful theorem provers to prove the verification conditions.
Therefore, they were able to prove the partial correctness of a wider class of
programs.

Although the above systems have advanced somewhat beyond King’s original
effort, they have two principal shortcomings. They require that the user
supply an appropriafe set of intermediate assertions, and their theorem
provers are not powerful enough to prove the verification conditions for most
of the programs that arise in practice. Let us consider each of these
difficulties separately.

® finding invariant assertions. Although the invariant assertions required to
perform , the verification are guaranteed to exist, to find them one must
understand the program thoroughly. Furthermore, even if we can discover
the program’s principal invariants (e.g., max{u :ulx and uly}=max{u : ulxq
and ulyp} above) we are likely to omit some subsidiary invariants (e.g., y20
above) that are still necessary to complete the proof.

Of course, it would be ideal for the programmer to supply only the program
and its input-output assertions and to rely on the verification system to
construct all the required intermediate assertions automatically. Much
research in this direction has already been done (see, for example, German
and Wegbreit [1975] and Katz and Manna [1976].) However, it is more difficult
for a computer system to find the appropriate assertions than for the
programmer to provide them, because the principles behind a program may
not be readily revealed by the program’s instructions. A less ambitious goal
is to require the programmer to supply the principal invariants and expect the
- system to fill in the remaining subsidiary assertions.

e proving verification conditions. \Verification conditions may be complex
formulas, but they are rarely subtle mathematical theorems. Current
verification systems can be quite effective if they are given strategies

Manna & Waldinger The Logic of Computer Programming

specifically tailored to the subject domain of the program. However, the
programs we use in everyday life rely on a large and varied body of subject
knowledge, and it is unusual that a system can verify a program in a new
subject domain without needing to be extended or adapted in some way (cf.
Waldinger and Levitt [1974]). Of course, some of this difficulty may be
remedied by future theorem proving research and by the development of
interactive verification systems.

The invariant assertions that we attach to intermediate points to prove partial correctness relate
the values of the program variables at the intermediate points to their initial values. For
instance, in Program A we asserted that

x> 0and y20and (x=0 or y=0)
and max{u : upc and uly} = max{u : ujxo and ulye}

at the label more. A more recent method, the subgoal-assertion method, employs subgoal
assertions that relate the intermediate values of the program variables with their ultimate
values when the program halts. For Program A the subgoal assertion at more would be

x20and 20 and (x® O or y= 0) => 9y =max{u : ulx and uly},

where y¢ denotes the final value of § at termination. This assertion expresses that whenever
eontrol passes through more with acceptable values for ¥ and ¥, the ged of the current values of
x and 9 will be the ultimate value of ¥.

We prove this- relationship by induction on the number of times we have yet to traverse the
loop before the program terminates. Whereas the induction for the invariant-assertion method
follows the direction of the computation, the induction for the subgoal-assertion method
proceeds in the opposite direction. Thus, we first show thatthe subgoal assertion holds the last
time control passes through more , when we are about to leave the loop. We then show that if
the subgoal assertion holds at more after traversing the loop, then it also holds before traversing
the loop. This implies that the subgoal assertion holds every time control passes through more.
Finally, we show that if the subgoal assertion is true the first time control passes through more,
the desired output assertion holds.

To apply this method to prove the partial correctness of Program A, we need to prove the
following verification conditions:

(n x=0
=>[x20and y2 0 and (x » O or y= 0) =>y = max{u : ulx and uly} J

(the subgoal assertion holds when we are about to leave the loop).

Manna & Waldinger The Logic of Computer Programming

(2) [x20and 3-x2 0 and (x» O or y-x= 0) => y¢=max{ulx and uly-x}]
and x= 0
and y2x
=[x20andy20and(xwOo0rym 0) =>y =max{u:ulx and uly}]

(the subgoal assertion after traversing the then path of ‘the loop
implies the subgoal assertion before traversing the path).

(3) (920 and x2 0 and (y= O or x= 0) => y¢=max{u : uly and ulx}]
and x= 0
and y < x
=>[x20and 2 0 and (x » 0 or y= 0) => ¢ =max{u : ulx and uly}]

(the subgoal assertion after traversing the else path of the loop
implies the subgoal assertion before traversing the path).

4) x02 0 and 992 0 and (xp = O or yo = 0)
and [x92 0 and 992 0 and (xg= O or yo= 0) => y¢=max{ulxy and ulyy}]
=> y¢ =max{u : ujxg and ulyo}

(the input assertion and the subgoal assertion the first time we enter
the loop imply the output assertion).

Each of these conditions can be easily proved. Conditions (1),(2), and (3) establish that our
intermediate assertion is indeed a subgoal assertion. Thus, whenever control reaches more the
assertion holds for the current values of the program variables x and y and the ultimate value
y¢ of . Condition (4) then ensures that the truth of the subgoal assertion the first time we
reach more is enough to establish the desired output assertion. Together, these conditions prove
the partial correctness of Program A.

From a theoretical point of view, the invariant-assertion method and the subgoal-assertion
method are equivalent in power, in that a proof of partial correctness by either of the methods
can immediately be rephrased as an equivalent proof by the other method. In practice,
however, for a given program the subgoal assertion may be simpler than the invariant
assertion, or vice versa. It is also quite possible to apply both methods together in verifying a
single program. Thus, the two methods may be regarded as complementary.)

The subgoal-assertion method was suggested by Manna [1971J and developed
by Morris and Wegbreit [1977]

In demonstrating the partial correctness of Program A, we employed rigorous but informal

14

Manna & Waidinger The Logic of Computer Programming

mathematical arguments. It is possible to formalize these arguments in a deductive system,
much in the same way that logicians formalize ordinary mathematical reasoning. To introduce
an invariant Reductive system for the invariant-assertion approach, we use the notation

(P}F ().

where P and Q are logical statements and F is a program segment (a sequence of program
instructions), to mean that if P holds before executing F, and if the execution terminates, then
O will hold afterwards. We call an expression of this form an invariant statement. For

Instance,

{x<y} (xpelx) {y<x]

is ‘a true invariant statement, because if the value of ¥ is less than the value of 9 before
interchanging those values, the value of y will be less than the value of x afterwards.

Using this notation, we can express the partial correctness of a program with respect to its input
and output assertions by the invariant statement

(input assertion} program {output assertion) .

This statement means that if the input assertion holds, and if the program terminates, then the
output assertion will hold; therefore, it adequately states the partial correctness of our program.

To prove such invariant statements we have a number of rules of inference, which express that
to infer a given invariant statement it suffices to prove several subgoals. These rules are
usually presented in the form

ApAg .. Ay
B
meaning that to infer the consequent B it suffices to prove the antecedents A y,Ap,A,.
Here B is an invariant statement, and each of A}, A, A, is either a logical statement or

another invariant statement. We have one rule corresponding to each statement in our
language.

o assignment rule. Corresponding to the assignment statement
(x‘xz. . .xn)(-(t] t?' . .tn),
which assigns the value of each term ¢; to its respective variable ¥; simultaneously, is

15

Manna & Waidinger The Logic of Computer Programming

P(x,xz . xn)=> Q‘tltz PR tn)
{Plxyxg. .. xp)} (xyxp . . xp) e (8t . 1) {Qhxy2p. . xp) } |
where P(x;xp . .. x;) and Qfx;x%; ... %) are arbitrary logical statements, and
Qfty tp . . . ty) is the result of simultaneously substituting ¢; for ¥; wherever it appears in
Q(xy x . . . xp). In other words, to infer the invariant statement
[Plejxg . . xp}(xyxp ... xp) e (8 tp ... 1) {Qfxy x5 ... xp) },

it suffices to prove the logical statement
P(xlxz .. xn)=> Q!tltz PN tn).

For example, to prove the invariant statement {x<y}(x 9) «(y x) {y<x}itis enough to
prove x<y=>x<9y.

This rule is valid because each x; has been assigned the value ?; by the assignment statement.
Thus, Q(xx,... x,) will hold after the assignment if Q{t,?5. . .¢,) held before. Because we

are assuming P(x;x, ... x,) held before the assignment, it is enough to show

P(xle e xn)=> thl t2 o tn).
o conditional rule. The rule for the statement “if R then F,else F," is

{P and R}F,{Q}, {P and -R}F2{Q}

{P} if R then F, else Fo{Q}

That is, to establish the consequent it suffices to prove the two antecedents {P and R} F{Q},
corresponding to the case that R is true, and {P and ~R}F{QJ}, corresponding to the case that
R is false.

To treat loops in this notation it is convenient to use the while statement instead of the goto.
The statement

while R do F

means that the program segment Fis to be executed repeatedly as long as the logical statement
R is true. In other words, this statement is equivalent to the program segment

16

Manna & Waidinger The Logic of Computer Programming

more: if nor R then goto enough
F
got0 more

enough:
The more concise structure of the while statement simplifies the formulation of its rule.
e while rule. Corresponding to the while statement we have the rule

P=>I, (I and R} F (I), I and -R=> Q

{P} while R do F {Q}

for any 1. Here, 1 plays the same role as the invariant assertion in our informal proof; the
condition "P=> I” states that the invariant I is true when we enter the loop; the condition
"{I and R} F {I}" conveys that if I is true before executing the loop body F, and if the execution
of F terminates, I will be true afterwards; then the condition “I and -R=>Q" ensures that if
control ever exits from the loop, then Q will be true.

To apply the while rule to infer the desired consequent, we need to find a logical statement I
satisfying the three antecedents.

® concatenation rule. This rule enables us to make inferences about the concatenation F;F, of

two program segments, F, and Fy:

{PYFi R}, {R}F2 {Q)
{P}F, F2 {Q}

for any R. The consequent follows from the antecedents. For suppose that P holds before
executing F F,, and that the execution terminates. Then R holds after executing Fy (by the

first antecedent), and therefore Qhoids after executing Fa (by the second antecedent).

These are ail the rules in our deductive system. Additional rules are necessary if we wish to
add new statements to our programming language.

To prove an invariant statement {P} F {Q}, we apply the appropriate inference rule, of the
form

ApnAg.. . A,

{P}F{QJ

Manna & Waidinger The Logic of Computer Programming

If A; is an invariant statement, then it is of form {P'} F’ {Q'}, where F’is a subsegment of F.
In this case, we repeat the process for this antecedent. On the other hand, if A; is a logical

statement, we prove it directly without using any of the rules of the invariant deductive system.
Eventually, all the subgoals are reduced to logical statements, which are proved to be true.

To establish the partial correctness of a program with respect to given input-output assertions,

we prove the invariant statement
(input assertion} program (output assertion) .

In this case, the logical statements produced in applying the above procedures are the program’s

verification conditions.

To show how this formalism applies to the partial correctness of the subtractive gcd algorithm
(Program A), we rewrite this program using a while statement instead of a goto:

Program A (with whiie statement):
input(xy %)
{xo2 0 and yo2 0 and (xg= O or yo = 0) }
(x y) « (xo o)
while x=0do
{ invariant(x y) }
if y2x then y« y-x else (x y) « (y x)
{» = max{u : ulxg and ulyo} }
output(y),

where invariant(x y) is taken to be the same invariant we used in our informal invariant-

assertion proof, i.e.,

x20andy20and (x=0ory=0)
and max{u : ulx and uly} = max{u : ulxy and uyo} .

This program has the form

input(xg o)

{x02 0 and y02 0 and (xg= O or yp= 0) }
Body A

{y = max{u : ulxy and ulyo}}

output(y),

and the invariant statement to be proved is

Manna & Waldinger - . The Logic of Computer Programming

Goal 1. {x520 and ¥ 2 0 and (xo= 0 or yo= 0) }
Body A
{ y=max{u : ulg and ulyo} }

Note that Body A is a concatenation of an assignment statement and a while statement; thus,
the concatenation rule tells us. that to establish Goal 1 it suffices to prove

Goal 2. {xp2 0 and yo2 0 and (xo= O or yo= 0) } (x ye(xo o) { R(x 9}
and
Goal 3. {R(xy)} while x»0do... {y=max{u:ulxy and ulyo}}

for some assertion R(x y). Here, R(x y) can be taken to be invariant(x y) itself. (If we make an
inappropriate choice for R(x y), we may be unable to complete the proof.)

To infer Goal 2, it suffices by the assignment rule to prove the logical statement
Goat 4. %52 0 and yp2 0 and (xg= 0 or yo= 0) => invariant(xg yo),
which is easily established, because invariant(xq yo) is simply

X020 and 992 0 and (xg= O or yo= 0)
and max{u : ulxy and ulyo} = max{u : ulxg and ulye}.

The while rule reduces Goal 3 to the trivial logical statement
invariant(x y) => invariant(x y),
and the two new subgoals
Goal 5. {invariant(xy) and x= 0 }if y2x then . . . else. . . {invariant(x y) }
and
Goal 6. invariani(x y) and x = 0 => y = max{u : ufxy and ulyo}.
The if-then-else rule reduces Goal 5 to
Goal 7, {invariant(x y) and x= 0 and y2 x/ y « y-x { invariant(x y) }
and
Goal 8. {invariant(x y) and x= 0 and y<x} (x y) «(yx) { invariant(x y) }.

19

Manna & Waidinger The Logic of Computer Programming
Applying the assignment rule to each of these goals yields

Goal 9. invariant(x y) and x= 0 and y2x=>invariant(x y-x)
and

Goal /0. invariant(x y) and x= 0 and y<x =>invariant(y x).

Now the remaining Coals 6, 9, and 10, like Goal 4, are all logical statements; these are the four
verification conditions of Program A. Each of these statements can be shown to be true, and

the partial correctness of Program A is thus established.

The above deduction can be summarized in the following “deduction tree”:

Conr)

concatenat io\
Vs

N\ e a0\
Goal 2 J Goal o J

assignment / while

Goal 4) < Goal S) C Goal 6 w

if-then—else \

e

Goal 8)

assignment

Goal 10 4:)

)

Goal 7 4:>

assignment

Goal 9 }

m

Manna & Waldinger The Logic of Computer Programming

The above invariant deductive system is essentially the same as the one
introduced by Hoare [1969).

Whenever a new deductive system is developed, it is natural to ask whether it
possesses certain desirable logical properties. The deductive system we have
presented has been proved (Cook [1976]) to have the following properties:

e soundness. If the verification conditions of a program are true, the
program is indeed partially correct.

® completeness. If the program is partially correct, its verification conditions
are true.

We have presented the inference rules for only a very simple programming
language. Such rules have also been formulated for goto’s , procedures, and
other common programming features (e.g., see Clint and Hoare[1972] and
Ashcroft, Clint, and Hoare[1976]). However, when more complex features are
introduced, finding sound and complete rules to describe them becomes a
serious challenge. It has actually been proven impossible to formulate
complete rules of inference for certain programming constructs (Clarke
[1977).

Part of the difficulty in formulating rules of inference for certain constructs
arises because, traditionally, programming languages have been designed
without considering how programs using their constructs are to be verified. It
has been argued that programming languages designed to allow easier
verification will also facilitate the construction of more comprehensible
programs. Some recent programming languages designed with such
considerations in mind are LUCID (Ashcroft and Wadge [1977]), EUCLID
(Lampson et al. [1977]), CLU (Liskov [1976]), and ALPHARD (Wulf, London, and
Shaw [1976])).

Our treatment of partial correctness has been rather idealized: our programming language
Includes only the simplest of features, and the program we considered was quite
straightforward. We have not discussed the more complex problems that occur in verifying the
kinds of programs that actually arise in practice.

Let us briefly mention a few of the trouble spéts in proving the correctness
of practical programs.

® computer ar ithmetic. We have assumed that the arithmetic operations
performed by the computer correspond precisely with the ideal operations of
the mathematician; in fact, the computer is limited in the precision to which a
real number can be represented. Consequently, our notion of correctness

21

Manna & Waldinger , The Logic of Computer Programming

should be modified to take into account thata computer program only
computes an approximation of the mathematical function it is intended to
compute (see, e.g., Hull, Enright, and Sedgwick [1972)).

® cleanness. A computer program may be incorrect not only because it fails
to satisfy its output specification, but also because of mishaps that occur
during the computation: it may generate a number larger or smaller than the
computer system can store (overflow or underflow), for instance, or it may
attempt to divide a number by zero or to find the square-root of a negative
number. It is possible to prove that a program is clean (i.e., that no such
accident can occur) by establishing an appropriate invariant before each
program statement that might cause offense (Sites [1974]). For example,
before a statement z«¥/y we can introduce the assertions thatyw» 0 and
that €<|x/y| < E, where € and E are the smallest and largest positive real
numbers, respectively, that the computer system can store.

® side-effects. Many programming constructs have indirect side-effects:
their execution can alter the properties of entities not explicitly mentioned by
the instructions themselves. For instance, suppose our programming language
allows assignment to the elements of an array. Then the instruction Ali]e t,
which assigns ¢ to the ith element of an array A, can alter the value of Alf] if
it happens that ¥ = j, even though Al[f] itself is not explicitly mentioned in
the instruction. To prove the correctness of programs employing such
constructs requires an alteration of the principles outlined here. For example,
one consequence of the assignment rule is the invariant statement

{P} x « t {P},

where the variable ¥ does not occur in P. If array assignments are admitted,
however, one instance of this statement is

{Aljl= 5) Ali] « 4 {Alj] = 5) .

This statement is false if i can equal j . (For a discussion of such problems,
see Oppen and Cook [1975].)

® intermediate behavior of programs. We have formulated the correctness of
a program by providing an output assertion that is intended to be satisfied
when the program terminates. However, there are many programs that are
not expected to terminate, such as airline reservation systems, operating
systems, and conversational language processors. The correctness of these
programs cannot be characterized by an output assertion (e.g., see Francez
and Pnueli [1975]). Moreover, certain properties of such programs are more
naturally expressed as a relation between events that occur while the
program is running. For instance, in specifying an operating system, we might

22

Manna & Waldinger The Logic of Computer Programming

want to state that if a job is submitted it will ultimately be executed. Even if
the operating system does terminate, this property cannot be expressed
conveniently as an output assertion. Similarly, in specifying the security
property of adata base system, to ensure that a user cannot access or alter
any file without the proper authorization, we are concerned with the
intermediate behavior of the system during execution, and not with any final
outcome.

® indeterminacy. Some programming languages have introduced control
features that allow the system to choose arbitrarily between several alternate
courses of action during execution. For example, the guarded command
construct (see' Dijkstra [1975]) allows one to express a program that
computes the gcd of two positive integers as follows:

input(xo o)

(x y) « (%o y0)

do x>y =>xe¢x-y

O x>y =>(x9) (@
O y9>x => yey-x

od

output(x).

This denotes that if x> %, we can execute either X « x-9y or (x y) « (y x),
while if >x we must execute y ¢ y-x. The statements within the do . . . od
construct are executed repeatedly until neither condition X> 9y or y>x
applies, i.e. until x=9.(The terminator “od” of the construct is merely “do”
backwards.) Although for a given input there are many ways of executing the
program, the ultimate output is always the ged of the inputs. Extensions of
our proof methodology exist to prove the correctness of such programs.

® parallelism. We have only considered programs that are executed
sequentially by a single computer processor, but some programs are intended
to be executed* by several processors #t the same time. Many different parts
of such a program might be running simultaneously, and the various
processors may cooperate in producing the ultimate output. Because the
various processors may interact with each other during the computation, new
obstacles arise in proving the correctness of a parallel program. For example,
it becomes desirable to show the absence of deadlock, a situation in which

- two processors each halt and wait for the other to conclude some portion of
the task, thus preventing the completion of the program’s execution. To
prove the correctness of parallel programs requires special techniques; this is
currently an active research area (cf. Ashcroft[1975), Hoare [1975], Owicki
and Gries [1976)).

23

Manna & Waidinger The Logic of Computer Programming

® very large programs. For the sake of clarity we have discussed only the
verification of small programs, but in practice it is the large and complex
systems that really require verification. As one would expect, the verification
of such programs is obstructed by the larger number and greater complexity
of the intermediate assertions and verification conditions. Furthermore, the
specifications of a large system are likely to be more difficult even to
formulate: one must detail all the situations a spacecraft guidance system is
expected to handle, for instance, or all the error messages a compiler is
expected to produce. Finally, in a larger system the specifications are likely
to be higher-level and more abstract, the discrepancy between the
specifications and the implementation will be greater, and the verification
conditions will be correspondingly more difficult to prove than we have found
so far.

It has been argued that such large programs cannot be verified unless they

are given a hierarchical structure that reduces their apparent complexity. A
hierarchically structured program will be decomposed into a few top-level
modules, each of which in turn will be decomposed into a few more detailed
modules at a lower level. The verificaton of a module at a given level thus
involves only a few lower-level modules, each of which may be regarded as a
primitive instruction. Therefore, the program becomes understandable, and its '
verification manageable. (Examples of hierarchical decomposition are given, '
e.g., in Parnas [1972] and Robinson et al. [1975])

One might hope that the above methods for proving the correctness of programs, suitably
extended and incorporated into verification systems, would enable us to guarantee that
programs are correct with absolute certainty. In the balance of this section we will discuss
certain theoretical and philosophical limitations that will prevent this goal ‘from ever being
reached. These limitations are inherent in the program verification process, and cannot be
surmounted by any technical innovations.

® We can never be sure that the specifications are correct.

In verifying a program the system assures us that the program satisfies the specifications we
have provided. It cannot determine, however, whether those specifications accurately reflect the
intentions of the programmer. The intentions, after all, exist only in the mind of the
programmer and are inaccessible to a program verification system. If he has made an error in
expressing them, the system has no way of detecting the discrepancy.

For example, in specifying a sort program one is likely to assert that the elements of the array
are to be in order when the program halts, but to neglect to assert that the array’s final contents
are some permutation of its original contents. In this event, a program that merely resets the
first element to I, the second to 2, and so on, may be verified as a correct $ort program.

24

R i

Manna & Waidinger The Logic of Computer Programming

However, no system will ever be able to detect the missing portion of the specification, because
it cannot read the mind of the programmer.

To some extent, these difficulties can be remedied by the use of a well-designed, high-level
assertion language. The programmer can express his intentions in such a language quite
naturally, and with little chance of error, presumably because he thinks about his problem in
the same terms as he expresses it.

® No verification system can verify every correct program.

For a system to verify a program, it must prove the appropriate verification conditions.
Typically, these conditions are logical statements about the numbers or other data structures.
Any system that attempts to prove such statements is subject to certain theoretical limitations,
no matter how powerful it may be. In particular, it is known to be impossible (as a consequence
of Godel’s Incompleteness Theorem) to construct a system capable of proving every true
statement about the numbers. Consequently, for any verification system there will be some
correct program that it cannot verify, even though its specifications are correct and complete.

This theoretical limitation does not preclude the construction of theorem provers useful for
program verification. After all, verification conditions are usually not deep mathematical
theorems, and it is entirely possible that a computer system will be developed that will be able
-to verify all the programs that arise in practice. But no matter how powerful a verification
system may be, when it fails to verify a program we can never rule out the possibility that the
failure is attributable to the weakness of its theorem prover, and not to an error in the
program.

® We can never be certain that a verification system is correct.

When a program has been verified, we must have confidence in the verification system before
we believe that the program is really correct. However, a program verifier, like any large
system, is subject to bugs, which may enable it to verify incorrect programs. One might
suppose that bugs in a verification system could be avoided by allowing the verifier to verify
itself. Do not be fooled: if the system does contain bugs, the bugs themselves may cause the
program to be verified as correct. As an extreme case, a verifier with a bug that allowed it to
verify any program, correct or incorrect, would certainly be able to verify itself.

This philosophical limitation does not imply that there is no use in developing verification
systems. Even if the system has bugs itself, it may be useful in finding other bugs in computer
programs. A large system (which presumably had some bug), written by a graduate student to
check mathematical proofs, was able to discover several errors in the Principia Mathematica of
Whitehead and Russell, a classical source in mathematical logic; a slightly incorrect program

25

Manna & Waidinger P The Logic of Computer Programming

verification system could be of comparable value. Moreover, once we have developed a
verification system we make it the focus of all our debugging efforts, instead of spreading our
attention over every program that we construct. In this way, although we can never hope to
achieve utter certainty that the system is correct, we can establish its correctness ‘“beyond
reasonable doubt.”

Gerhart and Yelowitz [1976] have presented a collection of programs whose
verifications were published in the literature but which contained bugs.
DeMillo, Lipton, and Perlis [1977) advance a philosophical and “sociological”
argument against the utility of verifying programs. Dijkstra [1977) expresses
pessimism about constructing a useful automatic verification system.

Critics of logical techniques for ensuring program correctness often
recommend the traditional approach to detecting bugs by program testing. In
this approach, the program is actually executed on various inputs, and the
resulting outputs are examined for some evidence of error. The sample
inputs are chosen with the intention of exercising all the program’s
components, so that any bug in the code will be revealed; however, subtle
bugs often escape the most thorough testing process. Some bugs may escape
because they occur only upon some legal input configuration that was not
anticipated, and therefore not tried, by the programmer. Other bugs may
actually occur during a test execution but escape observation because of
human carelessness. These problems are discussed in a special section of the
IEEE Transactions on Software Engineering, September 1976.

Some efforts have been made to apply logical techniques to systematize the
testing process. For instance, the SELECT system (Boyer, Elspas, and Levitt
[1975])) attempts to construct a sample input that will force a given path of
the program to be executed. The EFFIGY system (King [1976]) executes the
program on symbolic inputs rather than concrete numerical quantities, thereby
testing the program for an entire class of concrete inputs at once.

The techniques we have given in this section establish the partial correctness of a computer
program but not its termination. We now turn our attention to techniques for proving the
termination of programs.

26

Manna & Waidinger The Logic of Computer Programming
Wi, Termination

Proving the termination of programs can be as difficult as proving partial correctness. For
instance, consider the following program:

input(x)
while x=1 do

if even(x) then x «x/2 else x « 3x +1
output(x) .

This program is known to terminate for every positive integer less than 3.10% However, for
over a decade no researcher has succeeded in proving its termination for every positive integer,
nor in producing a positive integer for which it fails to terminate. Resolution of this question
could depend on some deep unknown property of the integers.

Let us examine the subtractive. gcd -algorithm (Program A) again to see informally why we
believe it terminates for every input satisfying the input assertion.

input(xq yo)
{x020 and Y02 0 and (xg= 0 or y = 0) }
(x 9) « (o o)
more: {x20and 92 0and (x»0or y=0)
and max{u : ujx and uly}=max{u : ulxg and ulyo}}
if x = 0 then goto enough
if y2x then y« y-x else (x y) «(y x)
got0 more
enough: {y =max{u: ulxg and ulyo}}
output(y).

Note that in showing the partial correctness of this program we have established as invariant
that x and y will always be nonnegative at more. Now, observe that every time we go around
the loop, either x is reduced, or ¥ is held fixed and ¥ is reduced. First, ¥ is reduced if ¥ and ¥
are interchanged, because ¥ is less than x in this case. On the other hand, if y is set to y-x,
then x is held fixed and y is reduced, because ¥ is positive when this assignment is executed.
The crux of the argument lies in observing that we cannot forever continue reducing ¥, or
holding x fixed and reducing 4, without eventually making one of them negative, contradicting
the invariant.

To make this argument more rigorous, we introduce the notion of the lexicographic ordering >
on pairs of nonnegative integers. We will say that

(%) 31) > (x2 %),

27

Manna & Waidinger . The Logic of Computer Prdgramming

i.e., (x;9) is greater than (x; y,) under the lexicographic ordering, if

Xy > Xy
or x| =% and ¥;> 9.

(Thus (2 2) > (1 100) and (14) > (1 3).) The set of pairs of nonnegative integers has the
special property that there exist no infinite decreasing sequences under this ordering; i.e., there
are no sequences such that

(xy 91) > (x392) > (x393) > ...

Proof: Suppose that (xy%;), (x5 ¥2),(x3 93), . . . is an infinite decreasing
sequence of pairs of nonnegative integers. The definition of the
lexicographic ordering then requires that x;2x,2x32 ..., but because
the nonnegative integers themselves admit no infinite decreasing sequences,
there must exist some n such that ¥,=%,,;=%,2= (Otherwise we
could extract an infinite decreasing subsequence from Xj,%¥p,%gz,....)
The definition of lexicographic ordering, again, implies that then Yp> yp,;
> Yn,2 > . - ., which violates the same property of the nonnegative integers.

In general, if a set is ordered in such a way that there exist no infinite decreasing sequences, we
say that the set is a well-founded set, and the ordering a well-founded ordering. Thus, the
lexicographic ordering is a well-founded ordering on the set of pairs of nonnegative integers, as
we showed above.

The nonnegative integers themselves are well-founded under the usual > ordering. However,
there exist other well-founded orderings over the nonnegative integers. For example, the
ordering defined so that x>y if y properly divides x, i.e.,

ylx and y=x,
is a well-founded ordering.

The well-founded set concept allows us to formulate a more rigorous proof of the termination
of Program A. To construct such a proof, we must find a set W with a well-founded ordering
>, and a termination expression E(xy), such that .whenever control passes through the label
more, the value of E(x y) belongs to W, and such that every time control passes around the loop,
the value of E(x y) is reduced under the ordering > This will establish’the termination of the
program, because if there were an infinite computation, control would pass through more an
infinite number of times; the corresponding sequence of values of E(x y) would constitute an
infinite decreasing sequence of elements of W, contradicting the well-foundedness of the set.

28

Manna & Waidinger The Logic of Computer Programming

To formulate *such a termination proof for Program A, we must prove the following three
termination conditions for some invariant assertion invariant(x y) at more:

(1) invariant(x y) => E(x y) ¢ W |

(the value of the expression belongs to W when control passes through
more)

(2) invariant(x y) and x= 0 and y2x => E(x y) > E(x y-x)

(the value of the expression is reduced if control passes through the
then branch of the loop), and

(3) invariant(x y) and x= 0 and y<x => E(x y) > E(y x)

(the value of the expression is reduced if control passes through the
else branch of the loop).

Because the invariant will be true every time control passes through more, the above conditions
suffice to establish termination.

Perhaps the most straightforward way to construct such a termination proof for Program A is
to follow our informal demonstration and to take W to be the set of pairs of nonnegative
integers, > to be the lexicographic ordering, and E(x) to be the pair (x y) itself. The invariant
assertion invariant(x y) can simply be taken to be x2 0 and 92 0. The termination conditions
are then

(1)x20andy20=> (xy)e (pairs of nonnegative integers],
(2)x20andy=0and xx0and y2x => (xy) > (x y—x), and
(3)x20andy20and x»0and y<x => (xy) > (yx).
We have already indicated in our informal argument the justification for these conditions.

A trickier termination proof may be constructed by taking W to be the nonnegative integers, >
to be the usual > ordering, and E(x y) to be the expression 2%t . The termination conditions
are then

(1)x20and y20 => 2x+y € (the nonnegative integers] ,

(2)x20andy>20and x#0and y2x => 2x + y > 2x + (y-x) , and

29

Manna & Waldinger The Logic of Computer Programming
(3)x20andy20and x#0and y<x =>2x+9>29+x.
These conditions can also.be easily established. |

The above description iflustrates how to prove the termination of a program with only a single
loop. If we want to apply the well-founded ordering method to show the termination of a
program with several loops, we must designate a particular loop label within each of the
program’s loops. We choose a single well-founded set and with each designated loop label we
associate an expression whose value belongs to the well-founded set. These expressions must
be chosen so that each time control passes from one designated loop label to another, the value
of the expression corresponding to the second label is smaller than the value of the expression
corresponding to the first label. Here, “smaller” means with respect to the ordering of the
chosen’ well-founded set. This method establishes the termination of the program, because if
there were an infinite computation of the program, control would pass through an infinite
sequence of designated labels; the corresponding sequence of values of the expressions would
constitute an infinite decreasing sequence of elements of the welt-founded set, contradicting the
well-foundedness of the set, as inthe one-loop case.

The well-founded set approach introduces machinery to prove termination completely different
from that required to prove partial correctness. There is an alternate approach which extends
the invariant-assertion method to prove termination as well as partial correctness. In this
approach we alter the program, associating with each loop a new variable called a counter. The
counter is initialized to 0 before entering the loop and incremented by ! within the loop body.
We must also supply a new intermediate assertion at a point inside the loop, expressing that the
corresponding counter does not exceed some fixed bound. In proving that the new assertion is
invariant, we show that the number of times the loop can be executed is bounded. (If for some
reason control never passes through the assertion, the number of times the loop can be executed
is certainly. bounded - by zero.) Once we have proved that each loop of the program can only
be executed a finite number of times, the program’s termination is established.

For instance, to prove that our subtractive gcd algorithm (Program A) terminates, we introduce
a counter i, and establish that the assertion

i€2% + Yo

is invariant at more. To show this, it is actually necessary to prove the stronger assertion
x20and y20 and 2x + y + i $2%p + Yo

is invariant at more. (The stronger assertion implies the weaker because if ¥2 0 and y2 O then

2x +920.)

30

Manna & Waldinger The Logic of Computer Programming

Augmented with the counter § and the new intermediate assertion, Program A appears a s
follows:

Program A (with counter):
input(xp yo)
{x%92 0 and 992 0 and (xp= 0 or yo=0)}
(x 9) « (x0 30)
it0

more: {x20 and y2 0 and 2x + y + i S 2% + Yo }

if x = 0 then goto enough
if y2x then y« y-x else (x y) «(y x)
i ei+l
got0 more

enough: output(y).

The new assertion is clearly true at more initially; it remains true after each execution of the
loop body, because each execution reduces the quantity 2x + y by at least I, and iis increased
by only I

The counter method yields more information than the well-founded set method, because it
enables us to establish a bound on the number of times each loop is executed and, hence, on
the running time of the program, while termination is being proved. By the same token,
however, the counter method is more difficult to apply, because it requires that suitable bounds
be known, and we often can prove that a program terminates without knowing such bounds.

Well-founded sets were first used to prove the termination of ‘programs by
Floyd [1967), in the same paper in which he introduced the invariant-
assertion method. The alternate approach, using counters, was suggested by
Knuth [1968] The program verifier ‘of Luckham and Suzuki [1977] proves
termination by this method.

31

Manna & Waldinger The Logic of Computer Programming

IV. Well-founded Induction

The well-founded sets that we have used to prove termination actually have a much broader
domain of application; they can serve as the basis for a proof by mathematical induction using
the following principle of well-founded induction:

Let W be a set with well-founded ordering > .

To prove P(w) holds fof every element w of W,
consider an arbitrary element w of W and prove that
P(w) holds under the assumption that
P(w) holds for every element w * of W such that w > w’.

In other words, in attempting to prove that every element of a well-founded set has a certain
property, we can choose an arbitrary element @ of the set, assume as our induction hypothesis
that every element less than w (in the well-founded ordering) has the property, and prove that
w has the property too. (In the special case that no element of W is less than @ , the inductive
assumption does not tell us anything, and is therefore of no help in proving that w has the

property.)

For example, suppose we want to show that every integer greater than or equal to 2 can be
expressed as a product of prime numbers. We can use the principle of well-founded induction,
taking W to be the set of integers greater than or equal to 2, and > to be the ordinary “greater-
than” ordering, which is a well-founded ordering of W. Thus, to prove the desired property,
we let w be any element of W, and show that w can be expressed as a product of prime
numbers using the induction hypothesis that every element of W less than ®w can be expressed
as a product of prime numbers. The proof distinguishes between two cases: if w is a prime,
the property holds, because the product of the single prime w is @ itself. On the other hand, if
w is not a prime, it is the product of two integers w; and wp, each smaller than w and greater
than or equal to 2. Because wy and wy are each members of W less than w under the ordering
>, our induction hypothesis implies that each of them is a product of primes, and hence w is
also a product of primes. We then conclude by well-founded induction that every member of
W can be expressed as a product of primes. (Alternatively, we could prove the same property
taking the well-founded ordering x>y to be the properly-divides relation defihed carlier, i.e.,
ylx and y= x. Clearly, if w is the product of wy and wp, then w > w and w > wp under this

ordering.)

The validity of the principle of well-founded induction is a direct consequence
of the definition of a well-founded set. For;’ suppose we have used the
induction hypothesis to prove that P(w) holds for an arbitrary w, but that
there actually exists some element w; of W such that =P(w;). Then for some

element wy such that wy > w,, -P(w;) holds as well; otherwise, our proof

32

Manna & Waldinger The Logic of Computer Programming

using the induction hypothesis would allow us to conclude P(w,), contrary to
our supposition. The same reasoning applied to Wz implies the existence of
an element wg such thatwy > wg and ~P(wg), and so on. In this way we can
construct an infinite descending sequence of elements W;,Wp,Wg,...o0f
W, such that w,>w, >wy > .. ., contradicting the well-foundedness of W.

Many of the proof techniques we have already introduced may be regarded as applications of

the principle of well-founded induction. In the remainder of this section we will look back on

the invariant-assertion method, the subgoal-assertion method, and the well-founded ordering
method, to see how each of them may be viewed as an instance of well-founded induction.

In . introducing the invariant-assertion method to prove the partial correctness of the subtractive
ged algorithm (Program A), we invoked ordinary mathematical induction on the number of
times control has passed through the loop label more since the beginning of the execution.
Alternatively, we can regard this method as an application of the principle of well-founded
induction, taking W to be the set of positive integers, and > to be the usual “greater-than”
ordering between them. The property we wish to prove is that, for every positive integer n,
the intermediate assertion will hold the nth time control passes through more.

To prove the desired property, we let n be any positive integer, and we show that the
intermediate assertion holds the nth time control reaches more, using the induction hypothesis
that the intermediate assertion holds the n’th time control reaches more, for every positive
integer n’ such that n > n’. The proof distinguishes between two cases: if n =1, then control
has reached more for the first time, and the induction hypothesis gives us no information; we
prove that the intermediate assertion holds as a direct consequence of the input assertion.
(This corresponds to the verification condition for the initial path from start to more.) On the
other hand, if n >1, control has passed through more previously; our induction hypothesis tells
us (taking n’ to be n-1) that the intermediate assertion held the previous time control passed
through more. We use this induction hypothesis to show that the intermediate assertion still
holds. (This corresponds to the verification conditions for the paths from more around the loop
and back to more.) We can then conclude by the principle of well-founded induction that the
intermediate assertion holds every time control passes through more, i.e., that it ‘is an invariant
assertion. The balance of the proof, that the output assertion holds when the program halts, is
concluded in the usual way (corresponding to the verification condition for the path from more
to enough.) This shows that the invariant-assertion method may be regarded as an application
of the principle of well-founded induction.

In applying the subgoal-assertion method, we remarked that the mathematical induction
employed is precisely the reverse of that used in the invariant-assertion method. In fact, we
could also regard the subgoal-assertion method as an application of the well-founded induction
principle, but instead of basing the induction on the number of time control has passed

33

Manna & Waldinger The Logic of Computer Programming

through more since the execution began, we would consider the number of times control will
pass through more before the execution terminates. (This is a finite number if we assume that

the program does terminate.)

The invariant-assertion and the subgoal-assertion methods prove partial correctness, but do not
establish termination. It is possible to use the principle of well-founded induction to prove
termination as well as partial correctness. In fact, the well-founded ordering method for
proving termination may be regarded as another application of well-founded induction. For
instance, recall that to apply the well-founded set method to prove the termination of Program
A, we need to find a well-founded set W ordered by the ordering > and a termination
expression E(x y) such that whenever control passes through more, the value of E(x y) belongs
to W, and such that whenever control passes around the loop, the value of E(x y) is reduced
under the ordering » . To phrase this method as a well-founded induction proof, we prove ‘the
property that if during a computation control passes through more, the computation will
terminate. The well-fownded set used as a basis for the induction is the set of pairs of

nonnegative integers, and the ordering »»> is defined by
(IUI 102) >> (w, ! le’) if E(w| ZUZ) > E(w" wZ’) .

We show that the property holds for arbitrary values (w;w,) of the pair (x §) at more, assuming
the induction hypothesis that the program will terminate if control passes through more with
values (w;"wy’) of (x §) such that (wywp) >>(w,” wp’),ie, such that E(w,wp) > E(w;’ w,").
Following the two well-founded sets in the termination proofs of the previous section, we can
either take E(xy) to by (x) itself, and > to be the lexicographic ordering between pairs of
nonnegative integers, or we can take E(x y) to be 2x+y, and > to be the usual greater-than
ordering between nonnegative integers. The details of the proof then correspond closely to the
steps in the well-founded set termination proof.

In proving partial correctness by the invariant-assertion and the subgoal-assertion methods, we
employed well-founded induction based on the number of steps in the computation; for this
reason they are classified as forms of computational induction. On the other hand, our proof
of termination employed an- induction independent of the computation; such proofs are
generally referred to as structural induction proofs. We have seen that both computational
induction and structural induction may be regarded as instances of well-founded induction. In
subsequent sections we will encounter this principle in many other guises.

34

Manna & Waidinger The Logic of Computer Programming
V. Total Correctness

So far we have considered correctness separately from termination; to prove that a program
halts and produces the desired result required two separate proofs. In this section we will
introduce a technique that establishes the total correctness of a program, i.e,, its termination and
correctness, with a single proof.

In our previous correctness proofs we attached assertions to points in the program, with the
intended meaning that the assertion is to be invariant, that is to hold ewvery time control passes
through the corresponding point. Conceivably, the assertion could be proved to be invariant
even though control never passes through the point in question. In particular, we can prove
that the output assertion is invariant even though the program never halts; thus, a separate
termination proof is required.

In the method we are about to introduce, we will also attach assertions to points in the program,
but with the intended meaning that sometime control will pass through the point and satisfy the
attached assertion. In other words, control may pass through the point many times without
satisfying the assertion, but control will pass through the point at least once with the assertion
satisfied; therefore, we call these assertions intermittent assertions. If we manage to prove that
the output assertion is an intermittent assertion at the program’s exit, we have simultaneously
shown that the program must halt and satisfy the output assertion. This establishes the
-program’s total correctness.

We will use the phrase
sometime Qat L

to denote that Q is an intermittent assertion at the label L, i.e., that sometime control will pass
through L with assertion Q satisfied. (Similarly, we could have used the phrase “always Q at
L" to indicate that Q is an invariant assertion at L.) If the entrance of a program is labelled
start and its exit is labelied enough, we can express the total correctness of the program with
respect to an input assertion P and output assertion R by

if sometime P at start
then sometime R at enough.

Generally, to prove this statement as a theorem, we must affix intermittent assertions to some of
the program’s intermediate points, and supply lemmas to relate these assertions. The proof of
these lemmas typically employs well-founded induction.

To illustrate this method we introduce a new program to compute the greatest-common divisor.

85

A —

Manna & Waidinger The Logic of Computer Programming

Program B(the symmetric algorithm):
input(xg o)
start: (x 9) « (xo %o)
more: if x = y then goto enough
reducex: if x>y then x « x-y
goto reducex
reducey: if y >x then y e« y-x
goto reducey
got0 more
enough: output(Y).

This program is only intended to be used for positive xg and yg9, whereas the previous Program

A can also be used when either Xp=0 or yo=0.
The intuitive basis for this program rests on the following three properties of the integers:

(a) ulx and uly <=> ulx~-y and uly
(the common divisors of x-y and ¥ are the same as those of ¥ and %),

(b) ulx and uly <=>ulx and uly-x
(the common divisors of x and y-x are the same as those of x and %), and

(c) max{u:up}=9ify> 0
(any positive integer is its own greatest divisor).

We would like to use the intermittent-assertion method to prove the total correctness of
Program B. The total correctness can be expressed as follows:

Theorem: if sometime x> 0 and yo > O at start
then sometime ¥y =max{u : ulxg and ulyo} at enough.

This theorem states the termination as well as the partial correctness of Program B, because it
asserts that control must eventually reach enough, the exit of the program, given that it begins
execution with positive ¥g and .

To prove this theorem we need a lemma that describes the internal behavior of this program:
Lemma: if sometime x =aand y=b and a, b> 0 at more
or sometime x =a and =5 and a, b> 0 at reducex

or sometime ¥ =a and 9 =6 and g, 6 > 0 at reducey
then sometime y =max{u : ula and ub} at enough.

36

Manna & Waldinger The Logic of Computer Programming

To show that the lemma implies the theorem, we assume that

sometime xg> 0 and yo> O at start .

Then control passes to more, with ¥ and ¥ set to Xg and %o respectively, so we have
sometime X=X and J =% and X, o > 0 at more.

But then the lemma implies that
sometime y =max{u : ulxg and ulyo} at enough,

which-is the desired conclusion’of the theorem.

It remains to prove the lemma. We assume

sometime x =a and y=b and a, b> 0 at more
or sometime ¥=a and y=b and a, b> 0 at reducex
or sometime x=a and y =band a, b> 0 at reducey

and show that
sometime y =max{u : ule and ul} at enough.

The proof employs well-founded induction on the set of pairs of nonnegative integers, under
the well-founded ordering > defined by

(a b) > (a b)) if a+b>a’+b’".

in other words, during the proof we will assume that the lemma holds whenever x=a’ and y=b ’
where a+b>a’+b’; i.e., we take as our induction hypothesis that

if sometime x=a’ and y=»4" and a’, "> 0 at more
or sometime x=a’ and y=5"and a’, "> 0 at reducex
or sometime x=2 and y=b’ and a’, b’ > 0 at teducey
then sometime y =max{u : ula’ and ufp’} at enough.

The proof distinguishes between three cases.

Case a =b: Regardless of whether control is at mote, reducex, or reducey, control passes to
enough with y=»5, so that '

sometime ¥ = b at enough.

37

Manna & Waldinger The Logic of Computer Programming

But in this case b=max{u : u(b) =max{u : ula and up}, by Property (c) above. Thus,
sometime y=max{u : uje and ulp} at enough,

which is the desired conclusion of the lemma.

Case a>b: Regardless of whether control is at more, reducex, or reducey, control reaches
reducex and passes around the top inner loop, resetting X to a-6, so that

sometime x = a-b and y=b at reducex.

For simplicity, let us denote a-6 by a” and b by b’. Note that

a, b >0,
a+b >a’+b’,and
max{u : ula’ and ulp’} =max{u : ula~b and ulp} = max{u:uja and ulp}.
This last condition follows from Property (a) above.
Because a’, b’>0and atb>a’ t b, the induction hypothesis implies that
sometime § =max{u : ula’ and up’} at enough;
i.e., by the third condition above,
sometime y = max{u : ula and ulb} at enough.
This is the desired conclusion of the lemma.

Case b> a: This case is disposed of in a manner symmetric to the previous case.

This concludes the proof of the lemma. The total correctness of Program B is thus established.

Let us see how we would prove the correctness and termination of Program B if we were using
the methods of the previous sections instead.

The partial correctness of Program B is straightforward to prove using the invariant-assertion
method introduced in Section II. The invariant-assertions at more, reducex and reducey, can all
be taken to be.

38

Manna & Waldinger The Logic of Computer Programming

x>0and y>0
and max{u : ulx and uly} = max{u : ulxg and ulyo)} ,

In contrast, it is awkward to prove the termination of this program by the well-founded

ordering approach we discussed in Section III; it is possible to pass from more to reducex, from

reducex to reducey, or from reducey to more without altering the value of any program variables.
Consequently, itis difficult to find expressions whose values are reduced whenever control

passes from one of these labels to the next. One possibility is to take the well-founded set to be

the pairs of nonnegative integers ordered by the lexicographical ordering; the expressions

corresponding to the loop labels are taken to be

(x+y 2) at more,
if x =y then (xty 1) else (x+y 4) at reducex, and
if x <y then (x+y 0) else (x+y 3) at reducey.

It can be shown that as control passes from one loop label to the next the values of the
cot-responding expressions decrease. Although this approach is effective, it is unduly

complicated.

The above example illustrates that the intermittent-assertion method may be more natural to
apply than one of the earlier methods. It can be shown that the reverse is not the case: a proof
of partial correctness by either of the methods of Section II or of termination by either of the
methods of Section III can be rephrased directly as a proof using intermittent assertions. In this
sense, the intermittent assertion method is more powerful than the others.

The intermittent-assertion method was first formulated by Burstall[1974] and
further developed by Manna and Waldinger [1976) Different approaches to
its formalization have been attempted, using predicate calculus (Schwarz
[1976)), a deductive system (Wang [1976]), and modal logic (Pratt [1976]).

39

Manna & Waldinger The Logic of Computer Programming

VI. Correctness of Recursive Programs

Sofar, we have indicated repeated operations by a particular kind of loop, the iterative loop, ,
which is expressed with the goto or while statement. We are about to introduce a new looping
construct that ‘is in some sense more powerful than the iterative loop. This construct, the

- recursive cull, allows a program to use itself as its own subprogram. A recursive call denotes a
repeated operation because the subprogram can then use itself again, and so on.

For instance, consider the following recursive version of our subtractive gcd aigorithm

(Program A):

Program A (a recursive version):
gedminus(x y) <=if x= 0
then y
else if y2x
then gedminus(x y-x)
else gedminus(y x) .

In other words, to compute the ged of inputs ¥ and ¥, test if x = 0; if so, return ¥ as the output;
otherwise test if y2 x; If so, return the value of a recursive call to this same program on inputs
x and y-x; if not, return the value of another recursive call, with inputs % and x. For example,
in computing the ged of 6 a.nd 3 we get the following sequence of recursive calls:

gedminus(6 3) <= gcdminus(3 6)<= gedminus(3 3) <= gcdminus(3 0) <= gedminus(0 3) <=3.

Thus, the value of gedminus(6-3) is 3. Although a recursive definition is apparently circular, it
represents a precise description of a computation. Note that gedminusis a “dummy” symbol
and, like a loop label, can be replaced by any other symbol without changing the meaning of

the program.

A recursive computation can be infinite if the execution of one recursive call leads to the
execution of another recursive call, and so on, without ever returning an output. For example,

the program

gednostop(x y) <= if x = 0
then y
else if y2x
then gcdnostop(x y-x)
else gednostop(x~y y),

which is obtained from Program A by altering the arguments of the second recursive call,

40

Manna & Waldinger The Logic of Computer Programming

computes the ged of those inputs for which it halts. However, this program will not terminate
for many inputs, e.g. if x# 0 and y = O or if x¥0 and y = x. Thus, for x= 3 and y = 3 we
obtain the infinite computation

gednostop(3 3) <= gednostop(3 0) <= gednostop(3 0) <= gednostop(3 0) <= . . .,

Our recursive version of ,Program A. describes essentially the same computation and produces
the same outputs as the iterative version. In fact, it is straightforward to transform any
iterative program into a recursive program that performs the same computation. The reverse
transformation, however, is not so straightforward; in translating a recursive program into a
corresponding iterative one, it is often necessary to introduce devices to simulate the recursion,
complicating the program considerably. Some computational problems can be solved quite
naturally by a recursive program for which there is no iterative equivalent of comparable
simplicity.

As a new specimen for our study of recursion we will introduce a recursive cousin of the
greatest common divisor algorithm of Euclid, which appeared in his Elements over 2200 years

ago.

Program C (the Euclidean algorithm):
gedrem(x y) <=if x = 0
theny
eise gcdrem(rem(y x) x).

Here rem(y x) indicates the remainder when y is divided by x. Program C, like Program A,
computes the ged of any nonnegative integers x and ¥, where ¥ and ¥ are not both zero. The
correctness of this ‘program will be seen to depend on the following properties of the Integers:

(@) wulx and uly <=>ulx and ufrem(y x) if x=0
(the common divisors of ¥ and y are the same as those of x and

rem(y x), if x = 0),

(b) ul0
(every integer divides 0),

() max{u:up}=yify>0
(every positive integer is its OWN greatest divisor), and

(d) x>rem(yx)20 ifx>0.

41

Manna & Waldinger The Logic of Computer Programming

The reader may be interested to see a proof of Property (a). Suppose that
ulx and uly and that x# 0. We need to show that ulrem(y x). We know that
x=k.u and y=10.u, for some integers k and 1. But rem(y x) is defined so
that y=gq-x+rem(y x), where ¢ is the quotient of and x. Therefore rem(y x)
=y—gx=0lu-gqgkou=u(-qk) so that ulrem(y x), as we intended to
prove. The proof in the opposite direction is similar.

We would like to introduce techniques for proving the correctness and termination of recursive
programs. In proving the properties of iterative programs, we often employed the principle of
well-founded induction. We distinguished between computational induction, which was based
on the number of steps in the computation, and structural induction, which was independent of
the computation. These versions of the induction principle have analogues for proving
properties of recursive programs. We will illustrate these techniques in proving the correctness
and termination of the above recursive Euclidean algorithm (Program C).

To apply computational induction to Program C, we perform induction on the number of
recursive calls in the computation of gedrem(x y). (This number is finite if we assume that the
computation terminates.) Thus, in proving that some property holds for gedrem(x y), we assume
inductively that the property holds for gedrem(x’y’), where %’ and 9’ are any nonnegative
integers such that the computation of gedrem(x’ y’) involves fewer recursive calls than the
computation of gedrem(x y). :

Now, let us use computational induction to show that Program C is partially correct with
respect to the input specification

x20and y20and (x=0or y=0),
and the output specification
gedrem(x y) = max{u : ulx and ul}.

Thus, we must prove the property that

For every input ¥ and y such that
x20andy20and (x«0or y«0),

if the computation of gedrem(x y) terminates, then
gedrem(x y) =max{u : ulx and uly}.

Therefore, we consider arbitrary nonnegative integers ¥ and y and attempt to prove that the
above property holds for these integers, assuming as our induction hypothesis that the property
holds for any nonnegative integers x’ and y’ such that the computation of gcdrem(x’ y’)
involves fewer recursive calls than the computation of gedrem(x y).

42

Manna & Waldinger The Logic of Computer Programming

Thus, we suppose that
x20andy20and (x=0and y=0),

and that the computation of gedrem(x y) terminates. We would like to show that
gedrem(x y) =max{u : ulx and ul}.

Following the definition of gedrem, we distinguish between two cases.

If x= 0, then Program C dictates that
gedrem(x y)= y.

But because we have assumed that x» O or y# O and that §2 0, we know that 9> 0. Therefore,
by Properties (b) and (c),

max{u : ulx and uly} =max{u :uly}=y .
Thus,
gedrem(x y) = y = max{u : ulx and uly),
"as we wanted to prove.
On the other hand, if x= 0, Program C dictates that
gedrem(x y) = gcdrem(rem(y x) x).

Because a recursive call to gedrem(rem(y x) x) occurs in the computation of gedrem(x y), the
computation of gedrem(rem(y x) x) involves fewer recursive calls than the compuation of

gedrem(x y).

Therefore we would like to apply the induction hypothesis, taking x’ to be rem(yx) and y’ to
be x. For this purpose, we attempt to prove the antecedent of the induction hypothesis, i.e.,

rem(y x) 2 0 and x 2 0 and (rem(y x)= O or x= 0)

and that the computation of gedrem(rem(y x) x) terminates. However, we know that rem(y x) 2 0
by Property (d), that x2 O by the input specification, and that x= 0 by our case assumption.
Furthermore, we know that the computation of gedrem(rem(y x) x) terminates, because it is part
of the computation of gedrem(x 9), which has been assumed to terminate. Our induction
hypothesis therefore allows us to conclude that

43

Manna & Waldinger The Logic of Computer Programming
gedrem(rem(y x) x) = max{u : ujrem(y x) and ulx} .

But, by Property (a),
max{u : ulrem(y x) and ulx} =max{u : ulx and uly},

and therefore
gedrem(x y) = max{u : upc and uly},

as desired. This concludes the proof of the partial correctness of Program C.

In the above computational-induction proof we were forced to assume that the computation
terminates. However, if we choose an appropriate well-founded ordering independent of the
computation, we can employ structural induction to prove termination as well as correctness.
For example, suppose we want to prove the termination of Program C for all inputs satisfying
the input specification; in other words,

For every input x and y such that
x20and y20and (x=0or y=0),
the computation of gedrem(x y) terminates.

The well-founded set which will serve as the basis for the structural induction is the set W of
all pairs (w wj) of nonnegative integers, under the ordering > defined by

(wy wy) > (w," wy") i fw>w’.
(Yes, the second component is ignored completely.)

To prove the termination property, we consider arbitrary nonnegative integers x and y and
attempt to prove that the property holds for these integers, assuming as our induction
hypothesis that the property holds for any nonnegative integers x’ and y’ such that
xy) > y),ie, x>x".

Thus, we suppose that
x20andy20and (x=0ory=0).

Following the definition of gedrem, we again distinguish between two cases. If x = 0, the
computation terminates immediately. On the other hand, if x= 0, the program returns as its
output the value of the recursive call gedrem(rem(y x) x). Because x >rem(yx), by Property (d),
we have

44

Manna & Waldinger The Logic of Computer Programming

(x 9) > (rem(y x) x),

and therefore we would like to apply the induction hypothesis, taking ¥’ to be rem(y x) and y’
to be x. For this purpose, we prove the antecedent of the induction hypothesis, that

rem(y x) 2 0 and x> 0 and (rem(y x) = O or x = 0),

using Property (d), the input specification, and the case assumption, respectively. The
consequent of the induction hypothesis tells us that the computation of gedrem(rem(y x) x), and
therefore of gcdrem(x y), terminates. This concludes the proof of the termination of Program C.

Of course, we could have used structural induction, with the same well-founded ordering, to
prove the total correctness of Program C. For this purpose we would prove the property that

For every input x and ¥ such that
x20and 2 0 and (x= 0 or y= 0),
the computation of gedrem(x y) terminates and
gedrem(x y) = max{u : ulx and uly}.

The proof would be similar to the above termination proof.

Euclid, himself, presented a “proof” of the properties of his ged algorithm. His
termination proof was an informal version of a well-founded ordering proof,
but his correctness. proof considered only two special cases, in which the
recursive call is executed precisely one or three times during the
computation. The principle of mathematical induction, which would have been
necessary to handle the general case, was unknown at the time.

The reader may have noticed that the proofs of correctness and termination for the recursive
program presented here did not require the invention of the intermediate assertions or lemmas
that our proofs for iterative programs demanded. He may have been led to conclude that
proofs of recursive programs are always simpler than proofs of the corresponding iterative
programs; in general, this is not the case. Often, in proving a property by the well-founded
induction principle, it is necessary to establish a more general property in order to have the
advantage of a stronger induction hypothesis. For example, suppose we wanted to prove that
Program C satis'fies the property that

_gedrem(x y)lx.

If 'we tried to apply an inductive proof directly, the induction hypothesis would yield merely
that

gedrem(rem(y x) x)irem(y x);

45

Manna & Waldinger The Logic of Computer Programming

this assumption is not strong enough to imply the desired property. To prove the property we
must instead prove a more general property, such as that

gedrem(x y)ix a n d gedrem(x).
The induction hypothesis would then yield that
gedrem(rem(y x) x)rem(y x) and gedrem(rem(y x) x)l,

which is enough to imply the more general result. It may require considerable ingenuity to find
the appropriate stronger property that will enable the inductive proof to go through.

We have used structural induction to show the termination of a program, and we have
indicated how it can be used to show the total correctness of a program. We will now show
how structural induction can be used to prove an entirely different property: the equivalence

of two programs.

We say that two programs are equivalent with respect to some input specification if they
terminate for precisely the same legal inputs, and if they produce the same outputs when they
do terminate. We will write flix)= g(x) if, either the computations of f{x) and g(x) both
terminate and yield the same output, or if they both fail to terminate. Then we can say thatf
is equivalent to g with respect to a given input specification if, for all x satisfying the input
specificaton, f{x)= g(x).

Let us see how structural induction can be applied to prove the equivalence of the subtractive
ged algorithm (Program A) and the Euclidean gcd algorithm (Program C) we have introduced
in this section. Recall that the Euclidean algorithm is

gedrem(x y) <= if x= 0
then ¥
else gedrem(rem(y x) x)

and the subtractive algorithm is

gedminus(x y) <=if x= 0
then y
eise if y > x
then gedminus(x ;-x)
else gedminus(y x) .

The remainder function rem can be defined by the recursive program

46

Manna & Waldinger The Logic of Computer Programming

rem(uv)<= ifu<v
then u
else rem(u-v v),

where v is assumed not to be zero.

To establish the equivalence of the two gcd programs, we need to prove that

if x 2 0and y2 0 and (x0 or y=0)
then gedrem(x y) = gedminus(x y).

The proof of this property is a straightforward application of structural induction, in which the
well-founded set is the set of pairs of nonnegative integers ordered by the lexicographic
ordering > We consider arbitrary nonnegative integers ¥ and § and attempt to prove that the
equivalence property holds for these integers, assuming as our induction hypothesis that the

property holds for any nonnegative integers ¥’ and ¥’ such that (x y) > (x" y").
Thus, we suppose that

x2 0 and y2 0 and (x=0.0r y=0)
and attempt to prove that

gedrem(x y) = gedminus(x y).

The proof distinguishes between several cases. If x = 0, both programs terminate and yield y as
their output. On the other hand, if ¥#0 and y<x, the Euclidean algorithm executes a

recursive call
gedrem(rem(y x) x),

or (by the definition of rem)
gedrem(y x).

In this case, the subtractive algorithm executes a recursive call
gedminus(y x).

Recall that x>, and therefore that (x y) > (y x). Thus, because y and % satisfy the input
specificaton

y20and x 2 0and (y=0 or x=0),

47

Manna & Waldinger The Logic of Computer Programming
our induction hypothesis yields that
gedrem(y x) = gedminus(y x),
i.e., (in this case)
gedrem(x y) = gedminus(x y).
Finally, if x= 0 but y 2x, the Euclidean algorithm executes a recursive call
gedrem(rem(y x) x), '
or (by the definition of rem)
gedrem(rem(y—x x) x),
or (by the definition of gcdrem)
gedrem(x y-x).
In this case, the subtractive algorithm executes arecursive call
gcdm,inu;(x y-x).

Note that x> 0, and therefore that (x §)> (% y-x). Thus, because here x and y—x satisfy the
input specification

x2 0 and y~x2 0 and (x= 0 or y-x=0),
the induction hypothesis yields that
gedrem(x y-x) = gedminus(x y-x),
i.e., (in this case)
gedrem(x y) = gedminus(x y).
This concludes the proof of the equivalence of the two gcd algorithms,

The two ged programs we have shown to be equivalent both happen to terminate for all legal
inputs. However, the same proof technique could be applied as well to show the equivalence of
two programs that do not always terminate, provided that they each fail to terminate for the
same inputs.

48

Manna & Waldinger The Logic of Computer Programming

In general, to solve a programming problem can require not one but a system of recursive
programs, each of which may call any of the others. Even our simple recursive Euclidean
algorithm can be regarded as a system of programs, because gcdrem calls the recursive
remainder program rem. Everything we have done in this section can be extended naturally to
treat such systems of programs.

Various forms of computational induction were applied to recursive programs
by deBakker and Scott [1969 }, Manna and Pnueli [1970 }, and Morris [197 13.
The structural induction method was first presented as a technique for
proving properties of recursive pograms by Burstall[1969] A verification
system employing this method was implemented by Boyer and Moore [1975].

49

Manna & Waidinger The Logic of Computer Programming

Vii. Program Transformation

Up to now we have been discussing ways of proving the correctness and termination of a given
program. We are about to consider logical techniques to transform and improve the given
program. These transformations may change the computation performed by the program
drastically, but they are guaranteed to produce a program equivalent to the original; we
therefore call them equivalence-preserving transformations. Usually, a sequence of such
transformations is applied to optimize the program, i.e., to make’it more economical in its use of

time or space.

Perhaps the simplest way of expressing a transformation 18 as a rule that slates that a program
segment of a certain form can be replaced by a program segment of another form.

For example, an assignment statement of form
xe flaa...a)

which contains several occurrences of a subexpression a, may be replaced by the program
segment

yea

xeflyy... 9,

where y is a new variable. This transformation often optimizes the program, because the
subexpression a will only be computed once by the latter segment. For instance, the assignment

x « (@) + 2a*)? + %a”)
may be replaced by the segment

yea

x 9% t 29% ¢ 3.
Such elimination of common subexpressions is performed routinely by optimizing compilers.

Another transformation: in a program segment of form

it p .
then a
else if p
then
else v

50

Manna & Waidinger The Logic of Computer Programming

the second test of p, if executed, will always yield false; the expression @ will never be
evaluated. Therefore, this segment can always be replaced by the equivalent segment of form

if p

then a
else 7.

Another example: a while loop of form
while p(x) and ¢(x y) do y « f(y),

where 9 does not occur in p(x), may be replaced by the equivalent statement of form
if p(x) then while ¢(x y) do y « f{y).

The former segment will test both p(x) and ¢(x y) and execute the assignment y« f(y)
repeatedly, even though the outcome of the test p(x) cannot be affected by the assignment
statement. The latter segment will test p(x) only once, and execute the while loop only if the
outcome is true. Therefore, this transformation optimizes the program to which it is applied.

An important class of program transformations are those that effect the removal of recursive
calls from the given program. Recursion can be an expensive convenience, because its
implementation generally requires much time and space. If we can replace a recursive call by
an equivalent iterative loop, we may have achieved a great savings.

One transformation for recursion removal states that a recursive program of form a:

Fu) <= if p(u)
then glu) - .
else F(h(u))

can be replaced by an equivalent iterative program of form @:

input(u)

more: if p(u) then output(g(u))
u e« h(u)
got0 more .

To see that the two progams are equivalent, suppose we apply each program
to an input a. First, if p{a) is true, each program produces output g(a).
Otherwise, if p(a) is false, the iterative program will replace u by h(a) and go
to more: thus, its output will be the same as if its input had been A(a). In this

51

Manna & Waidinger The Logic of Computer Programming

case, the recursive program will return F(A(@)); thus, its output, too, is the ,

same as if its input had been h(u).

For example, this transformation will enable us to replace our recursive Euclidean algorithm
(Program C)

gedrem(x y) <=if x =0
then y
else gedrem(rem(y x) x)

by the equivalent iterative program

input(x y)

more: if x= 0 then output(y)
(x 9) « (rem(y x) x)
got0 more .

For some forms of recursive programs, the corresponding iterative equivalent, is more complex.

For instance, a recursive program of form

F(u) <=if p(u)
then g(u)
else k(u) t F(A(u))

can be transformed into the iterative program of form

input(u)
2«0
more: if p(u)
then output(z+g(u))
else (u 2)« (h(u) z+k(u))
got0 more.

However, the iterative program requires the use of an additional variable z to maintain a
running subtotal. A more complex recursive program, such as one of form

F(u) <=if p(u)
then g(u)
else k(F(h (u)) F(hy(u)),

cannot be transformed into an equivalent iterative program at all without introducing

considerable intricacy.

52

Manna & Waldinger The Logic of Computer Programming

Although not every recursive program can be transformed readily into an equivalent iterative
program, an iterative program can always be transformed into an equivalent system of
recursive programs in a straightforward way. This transformation involves introducing a
recursive program corresponding to each label of the given iterative program. For example, if
the iterative program contains a segment of form

Ll: if p(x)
then output(&))
else x € h(x)
goto L2,

the corresponding recursive program will be

Li(x) <= if p(x)
then g(x)
else L2(A(x)).

The idea behind this transformation is that L1(a@) denotes the ultimate output of the given
iterative program if control passes through label L1 with ¥ = a. By this transformation we can
replace our symmetric ged algorithm (Program B) by an equivalent system of recursive

programs. The original program may be written as

input(x y) .
start:
more: if x = y then output@)
reducex: if x>y then xe x-y
goto reducex
reducey: if y>x then 9y« y-x
goto reducey
got0 more.

The equivalent system of recursive programs is

start(x y) <= more(x y)

more(x y) <= If x=y then y else reducex(x y)

reducex(x y) <= if x>y then reducex(x-y y) else reducey(x y)
reducey(x y) <= if y>x then reducey(x y-x) else more(x y).

The output of the system for inputs ¥ and y is the value of start(x y). This transformation
does not improve the efficiency of &he program, but the simplicity of transforming an iterative

53

Manna & Waidinger The Logic of Computer Programming

program into an equivalent recursive program, and the complexity of performing the opposite
transformation, substantiates the folklore that recursion is a more powerful programming

feature than iteration.

Paterson and Hewitt [1970] have studied the theoretical basis for the
difficulty of transforming recursive programs into equivalent iterative
programs. The reverse transformation, from iterative to recursive programs,
is due to McCarthy [1962]

Equivalence-preserving transformations have been studied extensively, and
some of these have been incorporated into optimizing compilers. The text of
Aho and Ullman[1973] on compilers contains a chapter on optimization.

Some more ambitious examples of equivalence-preserving program
transformations are discussed by Standish et al. [1976]. An experimental
system for performing such transformations was implemented by Darlington
a n d Burstall [1973]). . -

The above tansformations are all equivalence preserving: for a given input, the transformed

program will always produce the same output as the original program. However, we may be ,
satisfied to produce a program that computes a different output from the original, so long as it

still terminates and satisfies the same input-output assertions. For example, if we are

optimizing a program to compute the square-root of a given real number within a tolerance, we

will be satisfied if the transformed program produces any output within that range. In the

remainder of this section, we will discuss the correctness-preserving transformations; such a

transformation yields a program that is guaranteed to be correct, but that is not necessarily

equivalent to the original program.

Correctness-preserving transformations are applied to programs that have already been proved
to be correct; they use information gathered in constructing the proof as an aid in the
transformation process: In particular, suppose we have a partial-correctness proof that employs
an invariant assertion inveriant(x y) at some label L, and a well-founded-ordering termination
proof that employs a well-founded set W and an expression E(x y) at L. Then we can insert
after L any program segment F with the following characteristics:

(1) If invariant(x y) holds, then the execution of F terminates and fnvariant(x y) is
still true afterwards. (Thus, the altered program will still satisfy the original
in-put-output assertions.)

(2) Jf invariant(x y) holds, then the value of E(x y) in the well-founded set is
reduced or held constant by the execution of F. (Therefore, the altered
program will still terminate.)

54

Yat—

Manna & Waldinger The Logic of Computer Programming

For example, suppose that we have proved the partial correctness of a program by means of the
invariant assertion

L: {x> 0 and 92 0 and x-y =k}
and that we have proved its termination by means of the expression
E(x y) = x
over the nonnegative integers. Then we may insert the statement
if even(x) then (x y) «(x/22-9)
after L, without destroying the correctness of the program or its termination.

Note that the above transformation does not dictate what segment F is to be inserted, nor does
it guarantee that the altered program will be more efficient than the original. Furthermore,
even though it.-preserves the correctness of the transformed program, it may cause it to produce
a different output from the original program.

Let us now apply these techniques to transform our subtractive gcd algorithm (Program A) into
the so-called binary gcd algorithm. We reproduce Program A below, introducing a new
invariant assertion in the middle of the loop body:

input(xg yo)
{%02 0 and y92 0 and (xg= 0 or yom» 0) }
(x 9) « (xo 30)
more: {x20andy20and (xx0ory=0)
and ged(x y) = ged(xp o)}
if x= 0 then goto enough
{x>0and y 2 0 and ged(x y) = ged(xg yo) }
if y 2x then y « y-x else (x y) «(yx)
got0 more
enough: { y = ged(xg yo) }
output(y) .

The new assertion
x>0 and y 2 0 and ged(x y) = ged(xg yo)

is equivalent to our original loop assertion at more, and is included because we want to insert
new statements at this point. In formulating the invariant assertions for this program, we have
used the abbreviated notation gcd(x y) in place of the expression max{u : ulx and uly }.

55

Manna & Waidinger The Logic of Computer Programming

Recall that to prove the termination of this program by the well-founded ordering method, we
used the expression E(x y)=(x y) over the set of ail pairs of nonnegative integers, with the
lexicographic ordering.

Now, suppose that we know three additional properties of the ged:

(a) ged(x 9) = ged(x/2 y) if ¥ is even and ¥ is odd
(b) ged(x y) = ged(x y/2) if x is odd and y is even
(c) ged(x §) = 2. ged(x/2 yI2) if x and ¥ are both even.

Then we can use these properties and the above correctness-preserving transformation
. technique to introduce three new statements into the body of the program loop.

Property (a) will allow us to divide ¥ by 2 when ¥ is even and ¥ is odd, without changing the
value of ged(x y) and, hence, without affecting the truth of the new invariant

x> 0 and y2 0 and ged(x y) = ged(xg yo).

Furthermore, the value of the expression (x 9) used to prove termination is reduced in the
lexicographic ordering if ¥ is divided’ by 2. Similarly, Property (b) will allow us to do the same
for 9if y is even and x is odd. Consequently, we can apply the , correctness-preserving
-transformation to introduce the two new statements

if even(x) and odd(y) then x & x/2
if odd(x) and even(y) then y « /2

after the new invariant.

Property (c), on the other hand, cannot be applied so readily, because dividing both x and ¥ by
2 will divide ged(x y) by 2 and disturb the invariant. To restore the balance, let us generalize
ail the invariant assertions, replacing

ged(x y) = ged(xo yo)
by
2+ ged(x y) = ged(xg Yo),

where z is a new program variable. We can then preserve the truth of the invariant by
multiplying z by 2’ when we divide both ¥ and y by 2. Thus, we introduce the new statement

if even(x) and even(y) then (x y z) « (x/2 y/2 2. 2).

56

Manna & Waidinger The Logic of Computer Programming

The altered program will still terminate, because if x and y are even, the expression (x y) used
to prove termination will then be reduced in the lexicographic ordering.

To introduce the new variable z into the intermediate assertions, we must also adjust the initial
and final paths of our program. To ensure that the generalized assertion will hold when
control first enters the loop, z must be initialized to 1. Furthermore, when control ultimately
leaves the loop with ¥ = 0, the output returned by the program must be 2.3 rather than vy,
because then z.9=2z- gcd(0 y) = z+ ged(x y) = ged(xg yp). Therefore, we introduce the
assignment y«z-y into the final path of the program.

Our generalized program is then

input(xg %)
{x92 0 and 9 2 0 and (¥g= 0 or yo= 0) }
(x 3 2) « (x0 30 1)
more: {x2 (0 and y2 0 and (x= 0 or y» 0)
and z- ged(x y) = ged(xg yo) }
if x = 0 then goto enough
{x>0 and y2 0 and 2. ged(x y) = ged(xg yo) }

if even(x) and odd(y) then x «x/2 L oo, A1
if odd(x) and even(y) then yt9/2 ... (2)
if even(x) and even(y) then (x yz)e(x/29/22-2)... (3)

{x>0 and 92 0 and z- ged(x y) = ged(xg o) }
if 2% then y « y-x else (x y) «(yx)
got0 more
enough: ye2z2-y
{5 = gedlxo yo) }
output(p).

(The enumeration on the right is added for future reference.) The correctness-preserving
transformation does not ensure that this program will run faster than the original program, but
only that it satisfies the same input-output assertions and that it still terminates.

To improve our program further, we introduce another correctness-preserving transformation.
If x is even and y is odd, the assignment statement ¥ t /2 preserves the truth of the invariant
assertion

x>0 and 92 0 and ged(x y) = ged(xp %)
and, so long as x> 0, reduces the value of the expression (x y) used to prove termination.

Therefore, if ‘we replace the conditional statement

57

Manna & Waldinger The Logic of Computer Programming
if even(x) and odd(y) then x « x/2 (D
by the while statement
while eden(x) and odd(y) and x>0 do x t x/2, (1"

we have maintained the correctness and termination of the program. The assignment statement
will then be applied repeatedly until ¥1is odd.

Similarly, if x is odd, y is even, and > 0, the assignment y « 9/2 will preserve the invariant
assertion and reduce the termination expression; therefore, the conditional statement

if odd(x) and even(y) then y t §/2 [5))
can be replaced by the while statement

while odd(x) and even(y) and §> 0 do yt y/2. (29
In the same way, the conditional statement

if even(x) and even(y) then (x y 2) t (x/2 y/2 2.2) (3)
can be replaced by the while statement

while even(x) and even(y) and (x> 0 or y > 0) do (x y z) t (x/2 y/2 2. 2). (3)

The condition "x> 0 or > 0” guarantees that the assignment (x §2) « (x/2 9/2 2. z) reduces
the value of the expression (x §) in the lexicographic ordering.

In the while statement
while even(x) and odd(y) and ¥ > 0 do % t x/2, (1)

the truth of the test "odd(y) and x> 0" cannot be affected by the assignment statement X « %/2;
therefore, using an equivalence-preserving transformation we mentioned earlier, we can replace
the while statement by

if odd(y) and x> 0 then while even(x) do x t x/2. (1"")
The same transformation can be used to transform

while odd(x) and even(y) and y > 0 do y « $/2 2"
into

58

Manna & Waidinger The Logic of Computer Programming

if odd(x) and y > 0 then while even(y) do y « /2, 2"
and the statement

while even(x) and even(y) and (x >0 or y > 0) do (x y z) « (x/2 y/2 2. 2) (3"
into

if (x>0 or 9>0) then while even(x) and even(y) do (x y z) « (x/2 y/2 2.2). 3"

Because all of these statements preserve the truth of the invariant x> 0, the test x> 0 can be
dropped from (1 ’’), and the test (x> 0 or y > 0) can be dropped from (3”).

The final resulting program is then

Program D (the binary algorithm)
input(xy yo)
(xy2) e (x5 1)

more: if x= 0 then goto enough
if odd(y) then while even(x) do x ¢ x/2
if odd(x) and y > 0 then while even(y) do y « /2
while éven(x) and even(y) do (x y 2) t (x/2 9/22-2)
if 2 x then y « y-x else (x y) « (y x)
got0 more
enough: y «z.y.

output(y) .

Although the transformations we applied are not all guaranteed to produce optimizations, this
algorithm turns out to be significantly faster than the given subtractive algorithm If
implemented on a binary machine, where division and multiplication by 2 can be performed
quite quickly by shifting words to the right or left.

The binary ged algorithm is based on one discovered by Silver and Terzian
(see Knuth [1969]). An analysis of the running time of this algorithm has
been performed by Knuth and refined by Brent [1976].

The correctness-preserving transformations we used to produce the binary
- ged algorithm are in the spirit of Gerhart [1975] and Dijkstra [1976].

We have presented program transformations as a means of improving the efficiency of a given
program. In fact, the existence of such transformations may aid in ensuring the correctness of
programs as well. A programmer can safely ignore efficiency considerations for a while, and

59

Bty

Manna & Waldinger The Logic of Computer Programming

produce the simplest and clearest program possible for a given task; the program so produced is
more likely to be correct, and can be transformed to a more efficient, if less readable, program

at a later stage.

Program transformation as a method for achieving more reliable programming
has been advocated by Knuth [1974] and Burstall and Darlington [1977]. The
latter authors implemented an interactive system for the transformation of
recursive programs. Wegbreit [1975] illustrates how a transformation system
can be guided by on analysis of the efficiency of the program being
transformed, thus ensuring that the program I8 improved and not merely
transformed.

One area for which the application of program transformations has been
particularly well explored is the representation Of data structures: programs
written in terms of abstract data structures, such as sets or graphs, are
transformed to employ more concrete representations, such as arrays or bit
strings, instead. By delaying the choice of representation for the abstract

data structure until after the program is written, one can analyze the program

to ensure that an efficient representation is chosen. This process is
examined, for example, in Earley [197 1] and Hoare [1972). Experimental ,
implementations have been constructed by Low [1974), Schwartz [1974], and
Guttag et al. [1977] :

60

Manna & Waldinger The Logic of Computer Programming

Vil. Program Development

In the previous section we discussed logical techniques for transforming one program into
another that satisfies the same specifications. In this section we will go one step further and
introduce techniques for developing a program from the specifications themselves. These
techniques involve generalizing the notion of transformation to apply to specifications as well as
to programs. The programs produced in this way will be guaranteed to satisfy the given
specifications, and thus will require no separate verification phase.

To illustrate this process we will present the systematic development of a recursive and an

iterative program to compute the ged function. From each derivation we will extract some of
the principles frequently used in program development. We will then show how these

principles can be applied to extend a given program to achieve an additional task. In

particular, we will extend one of our gcd programs to compute the “least common, multiple” (lem)-
of two integers as well as their ged .

Let us first develop a recursive program for computing the ged. We require that the desired
program gcdgoal(x) satisfy the output specification

gedgoal(x y) = max{u : ulx and uly},
where x and 4 are integers satisfying the input specification
x20and 92 0 and (xw O or 3= 0).

The set constructor fu : ...} is admitted to our specification language’ but is not a primitive of
our programming language. We must find a sequence of transformations to produce an
equivalent description of the output that does not use the set constructor or any other
nonprimitive construct. This description will be the desired primitive program. In what
follows we will exhibit a successful sequence of transformations, without indicating how the
next transformation at a given stage is selected.

The transformations we employ for this example embody no knowledge of the ged function
itself, but some sophisticated knowledge about functions simpler than the gecd, such as the

following:

For any integers u, v, and w,

61

Manna & Waldinger The Logic of Computer Programming

(@ upe>.ii v = 0
(any integer divides zero),

(b) ujp and ujwe>ulp and ujw-v s
(the common divisors of v and w are the same as those of ¥ and w-v) ,

(c) max{u : up}e>v if v > 0
(any positive integer is its own greatest divisor).

In applying these transformations, we will produce a sequence of goals; the first will be derived
directly from the output specification, and the last will be the desired program itself. Our

initial goal is
Goal 1. Compute max{u : ulx and .uly},

for any x and ¥ satisfying the input specification. The transformation (b) above,
uly and ujwe> ufp and ulw-v

applies directly to a subexpression of Goal 1, yielding

Goal 2. Compute max{u : ulx and uly-x}.

Note that Goal 2 is an instance of our output specification, Goal I, but with ¥ and y-x in place
of the arguments ¥ and y. This suggests achieving Goal 2 with a recursive call to gedgoal(x y—
X), because the gedgoal program is intended to satisfy its output specification for any
arguments satisfying its input Specification.

To see that the input specification is indeed satisfied for the arguments x and y—x of the
proposed recursive call, we establish a subgoal to prove the input condition

Goal 3. Prove x2 0 and y-x2 0 and (x# 0 or y-x = 0).

This input condition is formed from the original input specification by substituting the
arguments x and y-x for the given arguments x and ¥ .

Furthermore, we must ensure that the proposed recursive call will terminate. For this purpose,
we will use the well-founded ordering method of Section IV; we establish a subgoal to achieve
the following termination condition

62

Manna & Waidinger The Logic of Computer Programming

Goal 4. Find a well-founded set W with ordering » such that
(x 9)eW and (x y-x) eW
and (x y) > (x y-r).

Let us consider the input condition (Coal 3) first. Because ¥ has been assumed nonnegative by
our original input specification, Goal 3 can be reduced to the two subgoals,

Goal 6. Prove y2x,
and

Goal 6. Prove (x= 0 or y=x).

We cannot prove or disprove Coal 5 -- it will be true for some inputs and false for others --
so we will consider separately the case for which this condition is false, i.e., y <x. This case
analysis will yield a conditional expression, testing if <%, in the final program.

Case y < x:

We cannot achieve Goal 5 in this case. In fact, the proposed recursive call does not satisfy its
input condition; therefore, we try to find some other way of achieving one of our higher goals.

Using the logical identity
P and Q <=> Qand P,

we see that Goal 1 is an instance of itself, with ¥ replaced by ¥ and’ ¥ by x. This suggests
achieving Goal 1 with the recursive call gedgoal(y x). For this purpose we must establish the
input condition

Goal 7.'y2 0 and x 2 0 and (y= 0 or x = 0)

and the termination condition

Goal 8. Find a well-founded set W with ordering > such that
(x) eW and (yx)eW
and (x y) > (y x).

Goal 7 is achieved at once; it is a simple reordering of our original input specification. We can
achieve Goal 8 by taking W to be the set of pairs of nonnegative integers, because x and y are
known to be nonnegative by our input specification. In this case y<x, so we take our well-
founded ordering > to be the usual > ordering applied to the first components of the pairs. (In

63

Manna & Waidinger - The Logic of Computer Programming

other words, (u;up) > (v,v,) if u)>9,.) Having established the input condition and the
termination condition, we are justified in returning the recursive call gedgoal(y x). Thus, the
partial program completed at this stage is

gedgoal(x y) <= if y<x
then gedgoal(y x)

else. ...

It remains to consider the alternate branch of the case amalysis, in which y2x. This case
corresponds to the else branch of the final program.

Case y2 x:

Here, we have established Goal 5, a subgoal of the input condition for the proposed recursive
call gedgoal(x y-x). It remains to prove the other subgoal of the input condition, Goal 6, that
x= (0 or y=x. Again, we cannot prove or disprove either disjunct of this goal because they
will be true for some inputs and false for others. Thus, we can make either x# QO or y=x a
basis for a case analysis; we choose the former disjunct and consider the case in which x =0 is

false.
Case x= 0:

We cannot achieve Goal 6 here, so we are prevented from introducing the recursive call
gedgoal(x y-x). We therefore again attempt to apply alternate transformations to the higher-
level goals. Because in this case ¥ = 0, Transformation (a),

ulp => true if ve0
applies to the subexpression ufx of Goal 1, yielding
Goal 9. Compute max{u : true and uly}.
Applying the logical transformation
true and P => P
produces
Goal 10. Compute max{u : uly}.

Because 92 0 and (x ».or y#..by our original input specification, and ¥= 0, by our case
condition, we know that y> O at this point; therefore, we can apply Transformation (c)

64

Manna & Wai_dinger The Logic of Computer Programming
max{u : upp}e> v if v » 0

yielding
Goal 11. Compute ¥ .

We have thus reduced the goal in this case to the task of computing ¥, which involves no
nonprimitive constructs. The desired program may simply output y. The partial program we

have constructed so far is

gedgoal(x 9) <= if y<x
then gedgoal(y x)
else if x=20
then y
else....

Finally, we consider the remaining branch in our case analysis.
Case xw» O:

Here, the input condition (Goal 3) for our proposed recursive call gcdgoal(x y-x) is satisfied; it
remains, therefore, to consider the termination condition (Goal 4):

Find a well-founded set W with ordering > such that
(x y)eW and (x y-x)eW
and (x y) > (x y-x).

For the previous recursive call, gedgoal(yx), we have taken W to be the set of pairs of
nonnegative integers, and > to be the usual > relation on the first components of the pairs. To
ensure the termination of the final program, it is necessary that W and > be the same for both
recursive calls. Unfortunately, the first argument of the proposed recursive call gedgoal(x y-x)
is x itself, and it is not so that (x y) > (¥ y-x) in the ordering > we have employed. We
therefore attempt to alter » to establish the termination conditions of both recursive calls

gedgoal(y x) and gedgoal(x y-x).

Because in this case It is known that ¥> O (Le., x# 0 and x2 0), we have that > 9y-x. We
therefore extend the ordering to examine the second components if it happens that the first
components are equal; in other words, we revise » to be the lexicographic ordering on the pairs
of nonnegative integers. With the new ordering >, both recursive calls can be shown to
terminate. We have thereby established Goal 4, and the program can output gedgoal(x y-x) In
this case.

Our final program is

65

Manna & Waldinger The Logic of Computer Programming

gedgoal(x y) <= if y<x
t h en gedgoal(y x)
else If x=0
then 9
else gedgoal(x y-x).

This program is similar to our subtractive ged algorithm (Program A), but its tests are
performed in the reverse order.

Note that in performing the above derivation, we have ensured that the derived program
terminates and satisfies the given specifications; thus, we have proved the total correctness of
the program in the course of its construction.

From the above example, we may extract some of the basic principles that are frequently used
in program development.

® transformation rules. The program is developed by applying successive
transformation rules to the given specifications. The rules preserve the
meaning of the specifications, but try to replace the nonprimitive
contructs of the specification language by primitive constructs of the
programming language.

® conditional introduction. Some transformation rules require that certain
conditions be true before the rules can be applied. When a
transformation requires a condition that we cannot prove or disprove,
we introduce a case analysis based on that condition, yielding a
conditional expression in the ultimate program.

® recursion introduction. When a subgoal is an instance of the top goal
(or any higher-level subgoal), a recursive call can be introduced,
provided that the input specification of the desired program is satisfied
by the new arguments, and the termination of the recursion can be
guaranteed.

The above example illustrated the construction of a recursive program from given
specifications. If we wish to contruct an iterative program instead, alternate techniques are
necessary. In our next example we will illustrate some of these techniques.

In constructing the recursive program we did not allow ourselves to use any of the properties
we know about the ged function itself, but only the properties of subsidiary functions such as

66

Manna & Waldinger The Logic of Computer Programming

division and subtraction. In constructing the iterative program, however, we facilitate the
process by admitting the use of several properties of the gcd function itself:

For any integers u and v
(a) gcd(u v)=v ifu=0andv>0
(b) gcd(u v)=ged(rem(v u) u) ifu>0and v 20,

where rem(v u) is the remainder of dividing v by u. We further simplify the task by assuming
the stronger input assertion

xo> 0 and yo> 0.
We write our goal directly in terms of the ged function

Goal 1. input(xy yo)
{xo> 0 and 30> 0}
achieve z = ged(xq yo)
{z = ged(xo 3o }
output(z) .

Here, to achieve a relation means to construct a program segment assigning values to the
program variables so that the relation holds. Note that we have annotated the goal with the
program’s input and output assertions.

It is understood that "ged” is part of the assertion language but not a primitive construct of our
programming language, so it does not suffice merely to set Z to be ged(xg yo); we are forced to

rephrase our goal in terms of more primitive constructs.

Because xg and y are input values, which we will want to refer to later, we introduce new
program variables x and § whose values can be manipulated. Consequently, the above goal is
replaced by the equivalent subgoal

Goal 2. input(xg o)
{x9>0 and 99> 0)
achieve z="ged(x y) and ged(x y) = ged(xg o)
{2 = ged(xo yo) }
output(z) .

Using Property (a), that '

67

Manna & Waldinger The Logic of Computer Programming
ged(uv) =v ifu=0andv>0,

we can reduce Goal 2 to the following goal,

Goal 3.input(xq yo)
{x0>0 and 99> 0}
achieve 2z -_5 and ged(x y) = ged(xo 9o) and ¥ = 0 and > 0
{ 2 = gedlxp o) }
output(z).

We can now achieve z =9 by setting z to be y before exiting from the program. We choose to
achieve the remaining conjunction by introducing a loop whose exit test is x = 0, and whose
invariant assertion is ged(x y) = ged(xg %) and y> 0. (To be certain that ged(x y) is defined, we
must add the invariant x 2 0, as well.) On exiting from such a loop, we can be sure that all the
con juncts are satisfied. The desired program will be of the form

Goal 4. Input(xg o)
{x9> 0 and y9> 0}
achieve ged(x y) = ged(xg 99) and x2 0 and y> 0
more: | ged(x 9) = ged(xg 9p) and x2 0 and ¥> 0 }
if x = 0 then goto enough
achieve ged(x y) = ged(xg yo) and ¥ 2 0 and y> 0
while guaranteeing termination
got0 more
enough: zey
{ 2 = ged(xp yo) }
output(z).

The variables x and y can be initialized to satisfy the invariant assertion easily enough by
setting x to xo and % to Jo. In constructing the loop body, we must ensure not only that the

invariant is maintained, but also that the values of the program variables x and y are altered so
that the program will ultimately terminate, i.e., so that eventually ¥ = 0. For this purpose, we
require that x be strictly reduced with each iteration.

v

To reduce x while maintaining the invariant assertion, we use the above Property (b) of the ged
function, that !

ged(u v) = ged(rem(v v) v) if u > 0 and v 2 0,
and the additional property of the remainder function, that
Osrem(u)<uifu>0and v20.

68

Manna & Waldinger The Logic of Computer Progrrmming

Because we know that ¥ and ¥ are positive (by the exit test and the invariant assertion), we can
achieve the requirements for ,the loop body by updating x and y to be rem(y x) and x,
respectively. The final program, complete with its annotations, is

input(x;y %o)
{x0>0 and 30> 0}
(x 9) « (xo yo)
more: { ged(x y) = ged(xg yo) and x2 0 and >0 }

if x = 0 then goto enough
(x y) « (rem(y x) x)
got0 more

enough: zey
{ z = ged(xo 30) }
output(z).

This is an iterative version of the Euclidean ged algorithm (Program C).
The above example allows us to extract some additional principles of program development:

® variable introduction. Introduce program variables that can be
manipulated in place of input values, and rewrite the goal in terms of the
program variables.

® iteration introduction. If a goal is expressed as a conjunction of several
conditions, attempt to introduce an iterative loop whose exit test 'is one of
the conditions and whose invariant assertion is the conjunction of the
others.

There are many other program development techniques besides those encountered in the two
examples above. Some of these are listed here:

® generalization. We have observed earlier that in proving a theorem by mathematical
induction, it is sometimes necessary to strengthen the theorem, so that a stronger induction
hypothesis can be used in the proof. By the same token, in deriving a recursive program it is
sometimes necessary to generalize the program’s specifications, so that a recursive call to the
program will satisfy < desired subgoal. Thus, inconstructing o program to sort an array with
elements Ag,Ay,.... A,,, we may be led to construct a more general program to sort an arbitrary

segment Ay Az 1, A]-. Similarly, in constructing an iterative program we may need to

generalize a proposed invariant assertion, much as we were forced to generalize the invariant

69

Manna & Waldinger The Logic of Computer Programming

assertion ged(x y) = ged(xg y0) to be z- ged(x y) = ged(xg yo) in developing the binary’ gecd
algorithm (Program D) in Section VII.

o simultaneous goals. Often we need to construct a program whose specifications involve
achieving a conjunction of two or more interdependent conditions at the same time. The
difficulty is that in the course of achieving the second condition we may undo the effects of
achieving the first, and so on. One approach to this problem is to construct a program to
achieve the first condition, and then extend that program to achieve the second condition as
well; in modifying the program we must protect the first condition so that it will still be
achieved by the altered program. For instance, a program to sort the values of three variables
x,y, and z must permute their values to achieve the output specification "¥<y and y <z."
To construct such a program, we may first construct a program to achieve ®¥< y and then
extend that program to achieve y €2z as well, while protecting ¥ <y.

o efficiency. To ensure that the program we contruct will be efficient, we must be able to
decide between alternate means of achieving a given subgoal. We must consider the effects of
the chosen transformations on the time and space requirements of the ultimate program. For
example, in constructing a gcd program, if we were given a variety of transformations based on
different properties of the ged function, we might need to decide between achieving the subgoal
“compute max{u : ulx and uly-¥}" and the subgoal “compute max{u:ulx and uky/2)}".

A discussion of generalization in program synthesis is found in Sikiossy
[1974]). An approach to the simultaneous goal problem appears in Waldinger
[1977) .

The systematic development of programs has been regarded from two points
of view: as a discipline to be adhered to by human programmers in order to
construct correct and transparent programs, and as a method by which
programs can be generated automatically by computer systems. The first
aspect, referred to as structured programming (see, for example, Dahl,
Dijksfra,' and Hoare [1972], Wirth [1974]), and Dijkstra {1976]), has been
advocated as a practical method for achieving reliability in large computer
programs. The second aspect of program development, called program
synthesis, is currently being pursued as a research activity (e.g., see
Buchanan and Luckham[1974], Manna and Waldinger [1975), and Darlington
[1975)).

. Although the techniques of structured programming are sufficiently well-
specified to serve as a guide to the human programmer, much needs to be
done before his performance can be imitated by an automatic system. For
instance, at each point in the development of a program, a synthesis system
must decide what portion of the specifications will be the next to be

70

Manna & Waldinger The Logic of Computer Programming

transformed andselect an appropriate transformation from many plausible
candidates. In Introducing a l0oop or recursive call It may need to find &
suitable generalization of the goal or the proposed invariant\ assertion.
Furthermore, a synthesis system must have access to knowledge of the
properties of the operations involved in the program being constructed and
be able to use this knowledge to reason about the program. To some extent’
these problems are shared by verification systems, but the synthesis task is
more difficult than verification, because it receives less help from the human
programmer and demands more from the computer system. Consequently,
automatic program synthesis is still in an experimental stage of development,
and does not seem likely to be applied to practical programming problems in
the near future.

In the examples of program development we have seen so far, we have used the given
specification as a basis for constructing a completely new program. We have introduced no
mechanisms for taking advantage of work we may have done previously in solving some
related problem. This situation conflicts sharply with ordinary programming practice, where
we are often altering or extending old programs to suit new purposes. In our next example we
will assume that we are given a program with its original specifications plus some additional
specifications; we will extend the program to satisfy the new specifications as well as the original
ones. Thus, although we may add new statements or change old ones in the existing program
to achieve the new goal, we will always be careful that the program still achieves the purpose
“for which it was originally intended. .

We suppose we are given a program to compute the ged of two positive integers, and we want
to extend it to compute their least common multiple as well. The least common multiple of x
and y, or lem(x y), is defined to be the smallest positive integer that is a multiple of both x
and y; for example, lem(12 18) = 36. Now, of course we could construct a completely separate
program to compute lem(x y), but in fact the ged and the lem are closely related by the identity

(a) ged(x y)-lem(x y) =x.y.

(For example, ged (1218):lem(12 18) =6+ 36 = 216 = 12:18.) We would like to take advantage
of the work being done in the gcd program by adding new statements that will enable it to
compute the lem at the same time.

Suppose the given ged program, annotated with its assertions, is as follows:

71

Manna & Waldinger The Logic of Computer Programming

input(x; %o)
{xo> 0 and 99> 0}
(x 9) « (x0 30)
more: { ged(x y) = ged(xg 90) and X2 0 and 9> 0}

if x = 0 then goto enough
it y>x then y « y-x eise x « x-y
got0 mote

enough: { y = ged(xg yo) }
output(y).

This is a version of our subtractive algorithm (Program A) for computing the ged of positive
integers only.

The extension task is to achieve the additional output assertion
x" = lem(xg yo)
as well as the original output assertion

y =ged(xg yo).

In the light of the identity (a) relating the ged and the lem, the most stralghtforward way to
achieve this new assertion is to assign

x" « (xo+ o)y

at the end of Program A. However, Program A itself computes the gecd without using
multiplication or division; let us see if we can extend the program to compute the lem using
only addition and subtraction.

One approach to program extension reflects a technique we already used in developing a new
program: we try to find an additional intermediate assertion for the program, usually involving
new variables, that will imply the new output assertion when the program halts. We then alter
the program by initializing the new variables so that the additional intermediate assertion will
be satisfied the first time we enter the loop, and by updating these variables in the loop body so
that the assertion will be maintained as an invariant every time we travel around the loop. As
in proving the correctness of a program, the choice of suitable intermediate assertion may
require some ingenuity.

For instance, it would suffice if we could extend the program by introducing the relation
x'+y = X0+ 30

72

Manna & Waldinger The Logic of Computer Programming
as a new intermediate assertion in addition to our original assertion
ged(x y) = ged(xg o) and x2 0 and §>0.

This relation implies the new output assertion, because when the program halts, y will be
ged(xg o), and therefore x” will be lem(xg y0). If we initialize x! to be xg, this relation will be
satisfied the first time we enter the loop, because y is initialized to yg- However, we still need
to update the value of x’ as we travel around the loop so that the relation is maintained; this
turns out to be a very difficult task.

A successful new intermediate assertion is the much less obvious choice
(b) x"+y t x-3" = x0:%0

where x” and " are both new variables. This relation does imply the output assertion, because
x = 0 and y = ged(xg 99) when the program halts. Furthermore, because ¥ is initialized to yo,
we can ensure that the relation will be true the first time we enter the loop by initially assigning

(x" 9") « (xg 0).

Finally, we can maintain the’ relation when control passes around the loop: Considering the
case in which y>x, let us rewrite the relation (b) as

x' ((y-x)+x) t x-9" = %9 99.
After y is reset to y-x, a new relation holds:
x’.(y+x) + X.7 =%o* Yo,
x'ey 4+ xe(y4x’) = 29 90.
Hence, to restore our intended invariant asserton, it is only necessary to assign
y't ylex’
in this branch of the loop body.

In considering the other branch, for which y < x, we merely reverse the roles of x and ¥, and
of x’ and y’; thus, we can restore our intended invariant by assigning '

x'tx’+ 9y
in this case.

73

Manna & Waldinger The Logic of Computer Programming

It is clear that the changes we have introduced do not affect the truth of the program’s original
assertions, because we have only altered the values of the new variables x’ and y', which do
not appear in those assertions. The complete program, which computes both the gcd and the
{cm at the same time, is

Program E (the extended algorithm):
input(xg yo)
{xo> 0 and 5 >0}
(xyx"y") e (xg 90 x0 0)

more: { ged(x y) = ged(xp yo) and x2 0 and ¥> 0
and x" ytx.y =x9:99} ’

if x = 0 then goto enough
if y > x then (y ') « (3-x y‘tx’) else (x X°) t (x-y x"+y")
got0 more

enough: {y=ged(xy o) and x" = lem(xg yo))
output(y X’).

This program computes the /{cm as a byproduct of computing the gcd, using only the addition
operation. Given the intermediate assertion (b), it is purely mechanical to extend Program A to
Program i.e., Choosing asuccessful intermediate assertion, however, is still a mysterious process.

In the above example, ‘we were careful that, the program being extended still achieved its
original purpose, computing the gcd of its arguments. It sometimes happens that we need to
adapt a program to perform a new but analogous task. For example, a program that computes
the square root of a number by the method of “successive approximations” might be adapted to
compute the quotient of two numbers by the same method. In adapting a program we want to
maintain as much as possible of its original structure, but we change as much as necessary of its
details to ensure that the altered program will satisfy the new specifications. If we have proved
the correctness of the original program, it is possible that we may also be able to adapt the
proof in the same way to show the correctness of the new program. Program debugging may be
considered as a special case of adaptation, in which we alter an incorrect program to conform
with its intended specifications.

Program adaptation has been studied by Moll, Soloway, and Ulrich [1977], and

an experimental program adaptation system has been produced by Dershowitz

and Manna [1977] Automatic debugging has been discussed by von Henke
“and Luckham[1975] and by Katz and Manna [1976]

In this section, we have discussed logical techniques for program development

from given input-output specifications. Other approaches to the construction
of programs, under the general rubric of automatic programming, have used

74

Manna & Waidinger The Logic of Computer programming

more informal methods of program specification and less systematic
techniques for program development; & survey of the entire field of automatic
programming is proyided by Biermann [1976] Alternate approaches to
automatic programming include '

® giving typical pairs of inputs andoutputsy @ g =y (B C)D)=>(D(BC)A)
suggests a program to reverse a list, A systemt h a t accepts s u c h
specifications must be able to generalize from examples (e.g., see Hardy
[1975] and Summers [1976]). Sample input-output pairs are natural and easy
to formulate, but they may yield ambiguities, even if several pairs are given.

® giving typical traces of the execution of the algorithm to be encoded; e.g.,
the trace (12 18)- (6 12) »(0 6) - 6 suggests that the Euclidean ged
algorithm is to be constructed (see Biermann and Krishnaswamy [1976]). To
formulate such a specification, we must have a particular algorithm in mind.

® engaging in a natural-language dialogue with the system. For instance, in
specifying an operating system or airline reservation system, we are unlikely
to formulate a complete and correct description all at once. In the course of
an extended dialogue, we may resolve inconsistencies and clarify details (see
Balzer [1972}, Green [1976)). The use of natural language avoids the
necessity to communicate through an artificial formalism, but requires the
existence of a system capable of understanding such dialogue.

® constructing a program that “almost” achieves the specifications, but is not
completely correct, and then debugging it (see Sussman [1975]). This
technique is similar to the way human programmers proceed and is
particularly appropriate in conjunction with the natural-dialogue approach, in
which the specifications themselves are likely to be incorrect at first.

Acknowledgement&

We would like to thank Jan Derksen, Nachum Dershowitz, Clarence Ellis, John Guttag, James
King, Donald Knuth, Derek Oppen, and Amir Pnueli for discussions helpful in preparing this
paper. We are also grateful to the following members of the Theory of Computing Panel of
the NSF Computer Science and Engineering Research Study (COSERS) -- Richard Karp,
Albert Meyer, John Reynolds, Robert Ritchie, Jeffrey Ullman, and Shmuel Winograd -- for
their critical comments on parts of the manuscript.

In our writing we have drawn on the wealth of material about the greatest common divisor and

75

Manna & Waldinger The Logie of Computer Programming

the algorithms that compute it included in Knuth [1969). Information about catastrophic bugs
in spacecraft guidance systems was provided by members of the staff of the Jet Propulsion
Laboratory, Pasadena, California.

References:

Many recent introductory programming texts touch upon the topics we have
discussed here; furthermore, there are several textbooks that are devoted
exclusively to these issues. Manna [1974], Greibach [1975]}, and Bird [1976]
all give a fairly theoretical treatment of the correctness and termination of
programs. Di jkstra [1976] emphasizes the development and optimization of
programs, in his own inimitable style.

Aho, A. B. and J.D. Ullman [1973], TAe theory of parsing, translation, and compiling, Vol.
2: Compiling, Prentice-Hall, Englewood Cliffs, N].

Ashcroft, E. A. [Feb. 1978), Proving assertions about parallel programs, JCSS, Vol. 10, No.
I, pp. 110-135.

Ashcroft, E. A., M. Clint, and C. A, R.Hoare [1978], Remarks on ‘Program proving: jumps
and functions by M.Clint and C. A. R. Hoare', Acta Informatica, Vol. 6, pp. 317-
318. '

Ashcroft, E. A. and W, Wadge [July 1877], Lucid, @ nonprocedural language with
iteration, CACM, Vol. 20, No. 7, pp. 519-526.

Balzer, R. M. [Sept. 1972], Automatic programming, technical report, Information Science
Institute, University of Southern California, Marina del Rey, CA.

Biermann, A. W, [1876], Approaches to automatic programming, in Advances in computers,
Vol. 15, Academic Press, New York, NY, pp. 1-63.

Biermann, A, W, and R. Krishnaswamy [Sept. 1978], Constructing programs from example
computations, |EEE Transactions on Software Engineering, Vol. 2, No. 3, pp. 14 I- 153.

Bird, R. [1976], Programs and machines = An introduction to the theory of computation, John
Wiley and Sons, London.

Manna & Waidinger The Logic of Computer Programming

Boyer, R. S., B. Eilspas, and K. N. Levitt [Apr. 1976], SELECT - A formal system for
testing and debugging programs by symbolic execution, Proceedings of the International
Conference on Reliable Software, Los Angeles, CA, pp. 234-245.

Boyer, R. S. and J S, Moore [Jan,1876], Proving theorems about LISP functions, JACM,
Vol. 22, No. I, pp.129-144."

Brent, R, P, [1976], Analysis of the binary euclidean algorithm, in New dfrcctfons and recent
results in algorithms and complexity (J.F. Traub, ed.), Academic Press, New York, NY.

Buchanan, J. R. and D. C, Luckham [May 1874]},0n automating the construction 0f
programs, technical report, Artificial Intelligence Laboratory, Stanford University,
Stanford, CA.

Burstall, R. M, [Feb. 1968], Proving properties of programs by structural induction,
Computing J., Vol. 12, No. 1, pp. 41-48.

Burstall, R. M. [Aug. 19T74], Program proving as hand simulation with a little induction,
Information Processing 1974, North-Holland, Amsterdam, pp. 308-312.

Burstall, R. M. and J. Darlington [Jan. 1977), A tranformation system for developing
recursive programs, JACM, Vol. 24, No. 1, pp. 44-67.

Chandra, A. K. and Z.Manna [Sept. 1976], On the power of programming features,
Computer ‘Languages, Vol. I, No. 3, pp. 2 19-232.

Clarke, E. M., Jr. [Jan. 1977], Programming language constructs for which it is impossible to
obtain good Hoare-like axiom systems, Proceedings of the Fourth Symposium on
Principles of Programming Languages, Los Angeles, CA, pp. 10-20.

Clint, M. and C. A. -R.Hoare[1972]), Program proving: jumps and functions, Acta
Informatica, Vol. 1, pp. 214-224.

Cook, 8. A. [June 1978}, Soundness and completeness of an axiom system for program
verification, technical report, University of Toronto, Toronto, Canada.

Dahl, 0. J., E. W. Dijkstra, and C. A. R. Hoare[1872], Structured programming, Academic
Press, New York, NY.

Darlington, J. [July 1976], Applications of program transformation to program synthesis,
Colloquet IRIA on Proving and Improving Programs, Arc-et-Senans, France, pp.
133-144.

77

Manna & Waidinger The Logic of Computer Programming

Darlington, J. and R, M. Burstaii [Aug. 1873], A system which automatically improves
programs, Proceedings of the Third International Joint Conference on Artificial
Intelligence, Stanford, CA, pp. 479-485.

DeBakker, J. W. and D. Scott [Aug. 1968], 4 theory Of programs, IBM Seminar, Vienna,
Austria, unpublished notes.

DeMillo, R. A, R. J. Lipton, and A. J. Periis [Jan. 1977], Social processes and proofs of
theorems and programs, Proceedings of the Fourth Symposium on Principles of
Programming Languages, Los Angeles, CA, pp. 206-2 14.

Dershowitr, N. and Z. Manna [Jan. 1877], The evolution of programs: A system for
automatic program modification, Conference record of the Fourth ACM Symposium
on Principles of Programming Languages, Los Angeles, CA, pp. 144-154.

Deutsch, L. P, [May 1873], An interactive program verifier, Ph.D. thesis, University of
California, Berkeley, CA.

Dijkstra, E. W. [Aug. 1976], Guarded commands, nondeterminacy and formal derivation,
CACM, Vol. 18, No. 8, pp- 453-457. .

Dijkstra, E. W. [1976], A discipline of programming, Prentice-Hall, Engiewood Cliffs, NJ.

Dijkstra, E.W. [1977], Programming: From craft to Scientific Discipline, International
Computing Symposium (E. Moriet and D. Ribbens, Eds.), North-Holland,
Amsterdam, pp. 23-80.

Eariey J. [Oct. 1971], Toward an understanding. of data structures, CACM, Vol. 14, No. 10,
pp. ‘6 17-627.

Eispas, B., K. N. Levitt, and R, J, Waidinger [Sept. 1973], An interactive system for the
verification of Computer programs, technical report, Stanford Research Institute, Menlo
Park, CA.

Floyd, R. W. [1987], Assigning meanings to programs, Proceedings of Symposium in Applied
Mathematics, Vol. t 9 (J.T. Schwartz, ed.), American Mathematical Society,
Providence, RIl, pp. 19-32.

Francez, N. and A, Pnueii [Nov. 1976], A proof method for cyclic programs, technical report,
Computer Science Dept., Tel-Aviv University, Tel-Aviv, Israel.

Gerhart, S. L. [Jan. 1976], *Correctness-preserving program transformations, Proceedings of

78

Manna & Waldinger The Logic of Computer Programming

the Second Symposium on Principles of Programming Languages, Palo Alto, CA, pp.
54-66.

Gerhart, S.L. and L. Yelowitz [Sept. 1976]), Observations of fallibility in applications of
modern programming methodologies, IEEE Transactions on Software Engineering, Vol.
2, No. 3, pp. 195-207.

German, S, M, and B, Wegbreit [Mar, 1978], Proving loop programs, IEEE Transactions
on Software Engineering, Vol. |, No. 1, pp. 68-75.

Good, D. I, R. L. London dnd’ W. W. Bledsoe [Mar, 1976], An interactive program
verification system, IEEE Transactions on Software Engineering, Vol. |, No. 1, pp.
59-67.

Green, C. [Oct. 1978], The design of PSI program synthesis system, Proceedings of Second
International Conference on Software Engineering, San Francisco, CA, pp. 4-18.

Greibach, S. A. [1976], Theory of program structures: schemes, semantics, verification,
Springer-Verlag, Berlin, Germany.

Guttag, J. V., E, Horowitz, and D.R. Musser [Aug. 1977]), Abstract data. types and
software validation, technical report, Information Sciences Institute, Marina del Rey,
CA.

Hardy, S. [Sept. 1976], Synthesis of LISP programs from examples, Proceedings of the
Fourth International Joint Conference on Atrtificial Intelligence, Tbilisi, Georgia,
USSR, pp. 240-245.

Hoare, C. A. R. [Oct. 1969], An axiomatic busts of computer programming, CACM, Vol. 12,
No. 10, pp. 576-580, 583.

Hoare, C. A. R. [1972], Proof of correctness of data representations, Acta Informatica, Vol. 1,
No. 4, pp. 27 1-28 1.

Hoare, C. A. R. [June 1978}, Parallel programming. an axiomatic approach, Computer
Languages, Vol. 1, No. 2, pp. 151-160.

Hull, T. E., W. H. Enright, and A. E. Sedgwick [Jan. 1972}, The correctness of numerical
algorithms, Proceedings of the Conference on Proving Assertions about Programs,
Las Cruces, NM, pp. 66-73.

Igarashi, S., R. L. London, and D. C. Luckham[1976], Auromatic program verification 1:
A logical basis and its implementation, Acta Informatica, Vol. 4, No. 2, pp. 145~ 182.

79

Manna & Waldinger The Logic of Computer Programming

Katz, S. M. and Z. Manna [Apr. 1976]}, Logical analysis of programs, CACM, Vol. 19, No. 4,
pp. 188-206.

King, J. C, [1969], A program verifier, Ph.D. thesis, Carnegie-Mellon University, Pittsburgh,
PA.

King, J. C. [July 1976], Syrriboltc execution and program testfng, CACM, Vol. 19, No. 7, pp.
385-391.

Knuth, D.E.[1968], The Art of Computer Programming, Volumel, Addison-Wesley,
Reading, MA, p. 19.

Knuth, D.l.e., [1969], The Art of Computer Programming, Volume 2, Addison-Wesley,
Reading, MA, pp. 293-338.

Knuth, D, E. [Dec. 1974], Structured programming with dgo to statements, Computing
Surveys, Vol. 6, No. 4, pp. 261-301.

Lampson, B. W., J. J. Horning, R. L. London, J. G. Mitchell, and G. J. Popek [Feb.
19761, Report on the programming language EUCLID, SIGPLAN Notices, Vol. 12,
No. 2.

Liskov, B. H.[1976], An introduction to CLV, in New Dfrectfons fn Algorithmic Languages (S.
A. Schuman, ed.), Institut de Recherche D'In formatiq ue et D’Automatique, pp. 139-

156.

Low, J. R. [1974], Automatic coding: choice of data structures, technical report, University of
Rochester, Rochester, NY.

Luckham,D.C. and N. Suzuki [1977], rroof of termination within a weak logic of programs,
Acta Informatica, Vol. 8, No. |, pp. 21-36.

Manna, Z. [June 197 1], Mathematical theory of partial correctness, JCSS, Vol. 5, No. 3, pp.
239-253.

Manna, Z.[1974]), M athematical theory of compututfon, McGraw-Hill, New York, NY,

Manna, Z. and A. Pnueli [July 1870], Formalization of properties of functional programs,
JACM, Vol. 17, No. 3, pp. 555-569.

Manna, Z. and R. Waldinger [Summer 1878], Knowledge and reasonfng in program
synthesis, Artificial Intelligence, Vol. 6, No. 2, pp. 175-208.

80

Manna & Waldinger The logic of Computer Programming

Manna, Z. and R. Waldinger [Oct. 19781,1s “sometime” sometimes better than “always”?
Intermittent assertions in proving program correctness, Proceedings of the Second
International Conference on Software Engineering, San Francisco, CA, pp. 32-39.

McCarthy, J. [1862], Towards a mathematical science of computation, in Information
processing, Proceedings of IFIP Congress 1962 (C.M. Poppiewell, ed.), North-
Holland, pp. 21-28. :

Moll, R., E. Soloway, and J. Ulrich [Aug. 1977}, Analogy in program synthests, Proceedings
of the SIGART-SIGPLAN Conference on Artificial Intelligence and Programming
Languages, Rochester, NY.

Morris, J. H. [May 197 1], Another recursion induction principle, CACM, Vol. 14, No. 5, pp.
‘351-354.

Morris, J. H, and B, Wegbreit [Apr. 1976], Subgoal! induction, CACM, Vol. 20, No. 4, pp.
209-222.

Oppen, D, C, and 8, A. Cook [May 1976], Proving assertions about programs that
manipulate data structures, Proceedings of the Seventh Annual Symposium on
Theory of Computing, Aibuquerque, NM, pp. 107-1 16.

Owicki, S. and D, Gries [May 19786], Verifying properties of parallel programs: an axiomatic
approach, CACM, Vol. 19, No. 5, pp. 279-285.

Parnas,D. L. [May 1972], A technique for software module spetification with examples,
CACM, Vol. 15, No. 5, pp. 330-336.

Paterson, M. S. and C. E, ‘Hewitt /[Dec. 1970}, Comparative schematology, in Record of
Project MAC Conference on Concurrent Systems and Parallel Computation, Association
for Computing Machinery, NY, pp. | 19-228.

Pratt, V. [Oct. 1978], Semantical considerations on Floyd-Hoare Logic, Proceedings of the '
17th ,An_nual Symposium on Foundations of Computer Science, Houston, TX, pp.
109-121.

Robinson, L., K. N, Levitt, P, G, Neumann, and A, R, Saxena [Apr. 1976],0n attaining
" reliable software for a secure operating system, Proceedings of the International
Conference on, Reliable Software, Los Angeles, CA, pp. 267-284.

Schwartz, J. T. [Mar. 1974], Automatic and semiautomatic optimization of SETL,

81

Manna & Waidinger The Logic of Computer Programming

Proceedings of the Symposium on Very High Level Languages, Santa Monica, CA,
pp- 43-49.

Schwarz, J. [July 1976], Event-based reasoning = a system for proving correct termination of
programs, Proceedings of the Third International Colloquium on Automata,
Languages and Programming, Edinburgh, Scotland, pp. 131- 146.

Siklossy, L. [1974], The synthesis of programs from their properties, and the insane heuristic,
Proceedings of the Third Texas Conference on Computing Systems, Austin, TX.

Sites, R. L. [May 1874], Proving that computer programs terminate cleanly, Ph.D. thesis,
Stanford University, Stanford, CA.

Standish, T. A., 0. C. Harriman, D. F. Kibler, and J. M. Neighbors [Feb. 1976],
Improving and refining programs by program manipulation, technical report,
University of California, Irvine, CA.

Summers, P. D. [Jan. 1878], A methodology for LISP program construction from examples,
Proceedings of the Third ACM Symposium on Principles of Programming
Languages, Atlanta, GA, pp. 68-76.

Sussman, G. J.[1976], A computer model of skill acquisition, American Eisevier, New York,
NY.

Suzuki, N. [Apr. 1978}, Verifying programs by algebraic and logical reduction, Proceedings of
‘the International Conference on Reliable Software, Los Angeles, CA, pp. 473-481.

von Henke, F. W, and D. C. Luckham [Apr. 1976]), A merhodology for verifying programs,
Proceedings of the International Conference on Reliable Software, Los Angeles, CA,
pp. 156-164.

Waldinger, R. J. [1977], Achieveing several goals simultaneously, in Machine Intelligence 8:
M achine Representations of Knowledge, (E. W. Elcock and D. Michie, ed.), Ellis
Horwood, Chinchester, England.

Waldinger, R. J. and K. N. Levitt [Fail 1974]), Reasoning about programs, Artificial
Intelligence, Vol. 5, No. 3, pp. 235-316.

Wang, A.[1978], An axiomatic basis for proving total correctness of goto-programs, BIT, Vol.
16, pp. 88-102.

Wegbreit, B. [Sept. 1976], Coal-directed program transformation, research report, Xerox
Research Center, Palo Alto, CA.

82

Manna & Waldinger The Logic of Computer Programming

Wirth, N, [Dec. 1 874], On the composition of well-structured programs, Computing Surveys,
Vol. 6, No. 4, pp. 247-259.

Wuif, W. A, R. L, London, and M. Shaw [Dec. 1976}, An introduction to the construction
and verification of ALPH A RD programs, |EEE Transactions on Software
Engineering, Vol. 2, No. 4, pp. 253-265.

83

