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Abstract:

This report contains edited transcripts of the discussions held in Stanford's course CS 204, Problem
Seminar, during autumn quarter 19%. Since the topics span a large range of ideas in computer
science, and since most of the important research paradigms and programming paradigms came up
during the discussions, the notes may be of use to graduate students of computer science ,at other
universities, as welt as to their professors and to professional people in the “real world”.
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Preface

During the autumn quarter of 1976, | had the privilege of teaching Stanford’s seminar CS 204,
which brings together most of our incoming graduate students during their first quarter here. It
was a great pleasure to work with such a talented group of students, and it was an even greater
pleasure to have Mike Clancy as my teaching assistant, since he prepared such beautiful summaries
of what transpired during our classroom discussions. After reviewing his notes, it struck me that
they would probably be instructive reading foramuch wider audience; hence we have prepared this
booklet.

The purpose of CS 204 is to teach skills needed for research in computer science, as well as
programming skills. | assigned five programming problems drawn from different areas of computer
science; none of these problems was easy, but they were all intended to be sufficiently enjoyable that
the students would not mind working overtime. The programs were to be done in Sail, a local
language in use on our PDP-10 computers; readers unfamiliar with Sail should still be able to
understand most of what went on.

The five problems were based on:
1, map drawing (related to numerical analysis and computer graphics);
2. hatural-language numbers (related to linguistics, interaction, and error recovery);
3. list representation (related to data structures and algorithmic analysis);
4. network design (related to program structures, list processing, and combinatorial optimization);
. code generation (related to machine architecture and heuristic search techniques).
Incidentally, problem 3 was a research problem that | didn’t know how to solve when | assigned it,
although | had an idea that a solution would be possible. This added a touch of suspense as welt as
an air of authenticity to our discussions of how to do research.

| handed out all five assignments at the first class meeting, so that everybody would know what they
were in for, and so that the back of their minds could be working on problem 5 (say) while they
were mostly thinking about problem |. There also was a “warm-up” problem assignment about
program control structures, so that we would have something to talk about during the second class
meeting.

The reader can best put himself into the students’ shoes by beginning the course as they did,
reading the problem assignments first. Therefore all the problem statements appear immediately
after this preface, followed by the notes Mike has prepared based on the class discussions. Mike has

; also interposed useful comments about the solutions which the students actually turned in. | hope
these notes give pleasure to many people who study them.

D. E. Knuth

Stanford, California
March, 1977
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Problem 0 (warmup problem, to be discussed October 6)

The original Aigol 60 report concluded with the example procedure RK shown on the following
page. After fifteen years have gone by, we think we know a little more about control structure and
style.

Suppose Algol 60 has been extended to include the following new syntax
<basic statement> := <loop statement>
<loop statement> := loop <statement list> wh 1 1e <Boolean expression:

<statement list> repeat
<statement list> = <statement> | <statement list>; <statement>

and the semantics that, if I, and T, are statement lists and B is a Boolean expression, the loop
statement

loop TI, while B:T, repeat
is equivalent to

J
if B then

begin I',;
loop I', while B:T, repeat

end

Rewrite the RK procedure, using the new loop statement, in order to eliminate unnecessary go to
statements which tend to obscure the control structure of the program in its original form.

Important note: Large segments of the program have been marked 4, 8, ¥, etc. so that you need not
recopy them; simply give your answer in terms of these abbreviations, as “procedure RK a" etc.
You need not understand precisely what goes on inside those chunks of code in order to solve this
problem. Don’t make any changes to the actual sequence of computations, and don’t try to do any
tricky things like eliminating the Boolean variable out etc. Simply remove as many of the go to
statements and meaningless labels as you can by taking advantage of the new loop construct.
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-procedure Rilo KT. chosen aE. yE. J): vale 5, intager:
7Boolean fi; real x, eps, ctu, x E: array y, yE, procedure FKT; |

/ comment: KK integrates the system vy=fy(%, yy, ¥20.... Ya) (k =1,4, ...n)
of differential equationswith the method of Runge-Kutla with automatic search for |

appropriate Length of integration step. Parameters are: The initial values x and y [R]

for x and the unknown functions y, (x). The order n of the system. The procedurs

| FRKT(x,9,n, 2) which represenls the system to be sntegrated, i.e. the set of functions f,..T he tolerance vdues eps and eta which governs the accuracy of the numerical inlegra-

| lion. The end of tk integration inderval xE. The oulput parameter yE which re-
. presents the solution at x = xE. The Boolean variable fs, which must always be
| given the value true for an isolated or first entry into RK. If however the functions y
' wnust be available at several meshpoinis x,y, x, , . . ., X,, , them the procedure must becalied repeatedly (withx =x,, xE=1x,_,, for k=0,1, ..., n —1) and then the later |

calls may occur wiln fi = false which saves compuling time. The inpul parameters fo oCof FK T must be x,y, n, the output parameter z represents the set of derivativesz [R] = |
Ixlz, v[1], y[2], -... y[#]) for x and the actual y's. A procedure comp centers us a
non-local identifier;

begin | )
array z,yl, ¥2,y3{1:n]; real xl, x2, x3, H; Boolean out ;
integer 2,17; own real 5, Hs;

procedure RKIST(x,y, h, xe, ye) ; real x, hh, xe; array y, ve;

comment: RKIST integrates one single Runge-Kulta step -with tniltal

; values x, y[R] which yields the oulput parameters x8 = xh and ye[R],

| the latter being the solutionat xe.
\ Important: the parameters n, FKT, z enter RK1ST us non-local entiises;

\L begin |

. Gmitd) J\ ‘

“\_ RKIST;
~~. Ce —

Bzgin of rogram. eee rem

@jithen begin H: =xE— x; s:=0 end clse HimHs;Jont : = false; ne 2

AA ff (x 2.01 XH — xE>0) = (H>0) then

begin Hs: =H; out : = true; H : = (xE — x)/2 end if; YRRK15T(x,y,2xH, x1,y1); |

BB: RK15T (x,y, H, x2, y2); RKIST(x2,y2, H, x3, ye?);
for k:=1I1stepI untiin do

if comp {yI[R],y 3k], eta) > eps then go to CC ;

. comment: comp (a, b,c) is a function designator, the value of which is the |absolute value of the difference of the mantissae of a and b, after the exponenis Q
of these quantities have been made equal to the largest of the exponents of the

x :==x3; if out then go to DD;

(for bi=1 step Luntiln do yikli=y3Hl,  }————— §if 5 =35 then begins: =0; H:=2xH end if;

\s ms I;[z0 to AA;
CC: (TT==N5xH;ont: ==false; x1: =x2; ee

for& =I step | until ndo y172:=y2kH -
go to BB;

DD: (for ==] stop luntilndo vE2 : =v3Rr
ed RA



Problem 1, due October 14,1976

The column “Mathematical Games” by Martin Gardner in the November, 1975 issue of Scientific
American describes several classical projection techniques for making maps of the world.

The file WORLD.MAP[204,MJC]-see Appendix I-contains a sequence of ordered pairs (x,y), . . . .
(x,y, of integer numbers, specifying latitude and longitude values of points on the globe, where -90
S X, $ 90 and -180 sy, s 180. This list is such that you get a fair approximation to our earth’s
major land/sea boundaries if you draw polygons according to the following procedure:

«1;

Toop while j  n:
ie J+];
loop

Draw line from (x_,y,,) to (x,y);
while (X,Y) ‘ (x,y):

1 « i+];

repeat;
3 «1;

repeat;

In other words, go from (x.y, to (x,y,) to (x,y,) etc. until getting back to the starting point, then lift
the pen and start the same process at the next point, etc. Write a program or programs to draw the
following maps:
(a) stereographic projections of the Northern hemisphere and Southern hemisphere;
(b) Mercator projection, but using two points along the equator at 0° and 180° longitude in place

of the North and South Poles;

(c) two-point equidistant projection based on the two points New York (41,-74) and London
(51,0);

(d) another world map of your choice.

The Sail manual tells how you can read the (x,y) pairs (e.g. with the INTIN function), To draw
the maps, it Is suggested that you use system routines which display on a Data Disc screen (while
debugging), converting to the similar routines that output on the XGP (for the final run). All these
routines are explained in a separate handout.
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Problem 2, due October 28, 1976

Write an interactive Sail program that says “Give me a number:“, whereupon the user types the
English name of a positive integer less than one billion followed by a carriage return, and the
program says “Your number is n." where n is the decimal representation of the same number. Then
comes “Give me a humber:” etc. (If the given number is ungrammatical or out of the specified
range, the program should of course make some other appropriate response.)

Grammatical examples:
twenty-four
one hundred [and] eighty-three
hineteen

six hundred million two hundred [and] one
eighty-two million seven hundred [and] thirty-three thousand
hineteen hundred [and] seventy-six

Ungrammatical examples:
twenty four
four and twenty
twenty-ten
six hundred hundred

one half -

fourty
double-O seven

Your documentation should include a rigorous description of the syntax and semantics of what your
program considers to be grammatical.



BN

Problem 3, due November 11, 1B76

Design a data structure for storing a list of items, with operations of
(a) accessing the kth item,
(b) inserting a given item Just before the kth item,
(c) deleting the kth item,
given k. All three operations should take only O(log k) steps, regardless of the kngth of the list.

Give “clean” algorithms for these three operations, in an Algol-like language. .

5
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Problem 4, due November 283, 1976

(This problem is relevant to the design of networks in which remote sites are connected to a central
node; most computer reservation systems, banking systems, etc. seem to be of this type. The same
ideas have also been used in the design of offshore pipeline networks for natural gas, etc.) Consider
a network in which n+ I points v,, v,, .... v, are connected by n links e,, ....e,. (Thus it is a free tree,
and there is exactly one simple path from v, to v, for any given i and j) Let e, join v,;, to vy.

There are finitely many ways to construct each link physically, depending on how much we are
willing to pay to get a certain capacity for service; in other words, to get sufficiently reliable
transmission, several devices are available but it costs more to transmit more bits per second. In
practice we can use an estimate of the traffic across each link to convert transmission rates into delay
times, so we can represent the possible ways to build each link as a delay vs. cost tradeoff list L; this
is a list of the form

L= (dc), (d,c,), Cee (d,.c.)
where d, >d,>...>d, and c, <c,<...<c,. Here (d,c) means that the Jth option for implementing
the link has a cost of ¢, but introduces a delay of d,

The tradeoff lists for different links will in general be different (because of differences in distance
or traffic, or because telephone lines are more expensive in certain areas); all ‘of these awkward
nonlinear possibilities can be modelled by simply assuming that a tradeoff list L, is given for each
link e, in the network.

The problem is to design a minimum cost implementation of the given network subject to the
condition that the delay time from v, to v, is at most a given value D, for all j. (The delay time
from v, to v, is the sum of the delays along all links in the path from v, to v,; thus we assume zero
“forwarding” delay at the intermediate stations.)

For example, consider the network

°°
1 0 2 Cc

8en©

a b AN 4

With

L, = (1506), (139,9), (118,14), (87,21), (75,30);
L, = (67:6), (62,10), (52,15), (39,23)
L, = (120,13), (111,17),(9223), (66,29);

It turns out that the best implementations corresponding to this data can be described by the
tradeoff list

L = (187,33), (178,37), (173,41), (172,42), (161,43), (156,47), (154,51), (150,52), (146,55), (144,59),
(139,63), (133,68), (131,72), (125,78), (118,84), (105,99).

6
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For D 2 187 there is an implementation of cost 33; for 187 > D 2 178 the best is one of cost 37; and
so on. In particular, the best implementation for D = 145 has cost 59 and can be obtained by
choosing (139,9) for a, (52,15) for b, (92,23) for c, and (86,12) for d. This can be found by hand,
using a method that is much better than simply trying all 5+4-4+4= 320 possibilities!

Write a Sail program for this problem, testing it on the above sample data. Then run it on the
larger data set in TREE.NET([204,MJC] (see Appendix 2), using the statement counter system
described in Appendix F of the Sail manual. -.
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Problem 6, due December 9, 1976

The purpose of this problem is to obtain a general code-generation procedure for simple assignment
statements on a wide variety of machine architectures. You should write a program that inputs an
assignment statement and a machine description (in any format that is convenient for you to use),
and which outputs an optimum or near-optimum program to perform the given statement on the
given machine. (Here “optimum” means “fastest”.) In order to keep this task within manageable
size, you may assume that the assignment statement is--formed from distinct unsubscripted variables
(so that there are no common subexpressions or constants to worry about); it has the form v « £
where expression E uses only the binary operations +,-, ® , and /. The associative law for addition
and multiplication should not be used to rearrange the form of the expression; however, the
commutative law and laws of sighs should be exploited when possible. The machine description
need only be general enough to handle the two historical examples below and others of their ilk.
Actually it suffices for you to write two programs, one for each of the following two machines. (In
class we will try to discuss the removal of these restrictions.)

Example | (based on IBM 704-709-7090-7094 series).
There are two registers A and Q; the instructions are as follows, where M denotes a memory
location:

mnemonic(s) operation execution time
ST0,STQ MA M«Q 4.36 4S
CLA, CLS A-« M, A «-M 4.36 MS
LDQ QM 4.36 mS

FAD,FSB A «A+M, A + A-M 13.95 us
FMP A «QM and Q + lower half 25.29 us
FDP Q« A/M and A « remalnder 28.34 pS

XCA Ae» Q 2.18 pS
CHS A «=A 4.36 pus

Example 2 (suggested by CDC 6000).
There are three registers X 1, X2, and X3; the instructions are as follows:

instructions

Xle |l, x2 «HM 0.5 us
Xi « Xj, xi « -XJ (I £1,J 5 3) 0.3 us
XI « XjzXk (1 €£1,J,ks 3) 0.4 us
Xi + XJXk (1 $1,J,ks 3) 0.8 ns .

Xi oe X3/Xk (1 £1,3,ks 3) 0.9 us
M « X3 0.7 us :

Test your program on the following example statements:
'a « b-c-d

a « b/c +d-e

. a « (b/ctd)/e

a+ (b-c.d-e*f)/( g-h/l- j/k)
a+b - (c-d/(ef+g-h))/((1-J)(k+1)+m/n)

So as not to waste computer time, it would be best if your program has a running time linearly
proportional (say) to the length of the given assighment statement, for any fixed machine
description.

[For this problem we also referred students to the article “Optimal Code Generation for Expression
Trees” by Aho and Johnson in JACM (July 1976), pp. 488-501, and distributed a preprint of the
article “A Generalization of Dijkstra’s Algorithm,” by D.E. Knuth, Information Processing Letters
(1977), to appear. ]

8



Notes for October 6, 1976

Topics of today’s discussion:
1, solution of problem A (removing gotos from a procedure for Runge-Kutta integration);
2. mechanical goto elimination;

3. good programming style (and why problem A is a poor problem);
4. features of programming languages which could make good programming easier.

Several solutions were proposed to remove gotos from the Algol procedure RK in problem A (listed
in abbreviated form below).

procedure RK a; 8

AA: vs |
BB: RK1ST(X,Y,H,X2,Y2); RK1ST(X2,Y2,H,X3,Y3);

for K:=1 step 1 until N do
If COMP(Y1[K],Y3[K],ETA)> EPS then go to CC;

8;
X:2X3; If OUT then go to DD;
¢; g 0 to AA;

CC: £; 90 to BB;
DD: 9
end RK;

- Figure 1 — original program

One approach to solving the problem started with noticing that the code in section ¢ is self-
contained, since the statement preceding CC is a goto. Hence, without disturbing the sequence of
operations in RK, f may be moved-for example, to replace the oto CC in the For statement
following BB, since that goto is the only statement referencing CC. The code starting with BB and
ending just before § may then be turned into a 1oop...while...repeat loop. Subsequently the
entire procedure may be turned into another 1o0p...while... roca loOp to remove ali remaining
gotos. The result is listed below.

procedure RK a; #8
loop

4

loop
RK1ST(X,Y,H,X2,Y2); RK1ST(X2,Y2,H,X3,Y3); K:=0;
loo

P K:=K+1;
while (K $ N) and (COMP(Y1[K],Y3[K],ETA)< EPS): §;
repeat;

while K < N: p;
repeat;
X:=2X3;

while not OUT: «;
repeat;
9

end RK;

Figure 2 — goto-less version
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The top-down (“outside-in”) approach reverses the steps of the previous solution. It involves first
discovering the outer loop and where it exits, then noting the independence of the CC code,
resulting in the following:

procedure RK a; 8
loop

Ys

loop
RK1ST(X,Y,H,X2,¥2); RKIST(X2,Y2,H,X3,Y3); K:=0;

while {for some K, COMP(Y1[K],Y3[K],ETA)s EPS}: 8; ¢
repeat;
X:=X3;

while not OUT: ;
repeat;

ond RK;
Figure 3 — partially abstracted

The inner code may be replaced by a loop, resulting in the procedure of Figure 2, or by a Boolean
procedure. The latter is probably the cleanest solution, even though it requires the extra overhead
of the procedure calls.

A note about the procedure’s function: RK is a procedure for integration with automatic search for
the appropriate integration step size. The transfer to CC results from finding approximations (to
function values) which are too far apart-hence the step size for computing the approximations is
decreased to get more accuracy. It would be nice to have an instruction implemented in the
hardware which took the place of the COMP predicate and determined if two floating-point
numbers were suitably close together. Apparently APL has such a feature.

Many people have studied the question of mechanical goto elimination. Goros can always be
replaced by composition, iteration, or conditional operations. In general, however, auxiliary
variables and extra computation are introduced in the elimination process; there exist programs
which grow exponentially in space required when gotos are removed (see [2,4]).

Automatic goto-eliminating procedures, applied to a badly-structured program, cannot be expected
to improve the structure. For this reason problem A was a bad problem, in that one’s goal should
be to write a well-structured program in the first place, rather than to write a poorly structured
program and then patch it up. The top-down solution to problem A essentially took the program

apart and rewrote it, as if starting from scratch; for that reason the top-down approach was better.
(Since we got a chance to discuss this, it wasn’t such a bad problem after all. Anyway, one of the
paradigms of research is to criticize or change a problem.)

We have noted that use of a Boolean procedure would be a good way to implement the BB-CC
loop. . Examples are listed below. In the first example, the lack of advanced control structures in
pure Algol 60 forces the use of a goto. The second example is written in Sail. The third might
have been written by a Lisp programmer.

1 0
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Boolean procedure CLOSE(Y,YP,N,ETA,EPS); array Y,YN; Integer N; real ETA,EPS;
begin integer K;
CLOSE:=false;

for K:=1 step 1 until N do
If COMP(Y[K],YP[K],ETA)> EPS then go to DONE;

CLOSE :=true;
| DONE: end CLOSE ;

Boolean procedure CLOSE(real array Y,YP; integer N; real ETA,EPS);
begin integer K; :
for K:=2l step 1 until Ndo

If COMP(Y[K],YP[K],ETA)> EPS then return(falise);
return(true)
end;

Boolean procedure CLOSE(real array Y,YP; integer K,N; rca ETA,EPS);
if K> N then true

else if COMP(Y[K],YP[K],ETA)> EPS then false
else CLOSE(Y,YP,K+1,N,ETA,EPS);

Figure 4 — versions of the Boolean procedure CLOSE

The program of Figure 2 can be “optimized” by replacing "(KsN)" in the first while by "(KN)" and
then changing the second while test to "COMP(Y1[K],Y3[K]ETA) > EPS". If the loop doesn’t
terminate with K2N this avoids a redundant test. However, this optimization makes the program
less robust, as it no longer works when N-O. (One rarely does Runge-Kutta integration in
zero-dimensional space, but the point is that optimizations often do make programs behave
differently in unexpected ways.)

Gotos, of course, aren't all bad, and Knuth discusses this at length in his paper Cl]. For example, if
arrival at some labelled statement has an exact meaning, then a transfer to that statement via a goto

can often be justified. Usually this isn’t true of goros derived from flowcharts, and these are the
gotos that should be replaced by other control structures. Overall clarity of the program’s logic is
the main concern; just as a variable should have a meaningful name, a label should have a clear
purpose too, and if it does, then its use is quite reasonable.

If a nicer alternative to a goto exists, though, it should be used. What might alternative control
structures look like? Well, many languages contain a while or unt 17 (= while not) statement.
Others (Bliss, Sail) have facilities for exiting loops in a controlled way. The language Alphard [5]

. being developed at Carnegie-Mellon has a “first” construct for taking some action after the first
occurrence of an event in a loop. APL has aggregate operations which remove the need for many
loops. Knuth in [1] describes two other useful control structures: Dahl's Toop. . .while.. . repeat
construct, used in problem A; and Zahn’s event construct (later renamed the “situation” construct-see

_[3]), for which a list of events which terminate the loop is specified, somewhere in the loop each
- event is signaled, and processing after the loop’s termination depends on the event which caused
exit).

Evaluating the “niceness” of all these is difficult, since not much is known about the psychology of
computer programming. Do people really write worse programs, or find it harder to program, in
Fortran than Algol? Is a construct which puts the termination criteria in the iteration condition (as
in loop.. .while. ..repeat) better than one which has a trivial iteration condition—whi7e true

| do-and exits via event signalling? One might decide that having the word repeat delimit a loop
makes a program more readable, but how would he (or she) prove it? There are many such
unanswered questions, even at the most elementary levels.

11
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Notes for October 7, 1876

Topics of today’s discussion:
1, stereographic projections;
2. representation of data;
3. conformal projections;
4. Mercator projections;
B. modes of research; "
6. equidistant projections.

Problem I involves the programming of various projection techniques for making maps of the
world; formulas for producing the projections were discussed today.

The stereographic projection results from choosing a point A on the sphere and then projecting
each other point on the sphere’s surface to a plane tangent to the sphere at the point B opposite A.
(A and B are called antipodes.) The projection points to use for problem 1 are the North and
South Poles. To produce a stereographic projection, we need to choose a representation for the
map. The data consist of coordinates of latitude and longitude-spherical coordinates, essentially-so
a polar coordinate system seems appropriate to use for the map.

Let # be the longitude east of Greenwich, and ¢ be the latitude north of the equator. Polar
coordinates of theprojection from the South Pole can be easily expressed in terms of # and ¢. The
angle of rotation around the center is ¢ in both systems. The radius r on the map is determined as
follows: the angle of projection ¢ is half of 90-¢ and the radius s of the sphere is known, so r =
2p tan ¢ = 2p tan ((90-¢)/2) = 2p (sec ¢ - tan 4).

We might also use rectangular coordinate systems for both sphere and map, representing the earth
as a sphere with radius ! and origin (0,0,0); the North Pole is assumed to be (0,0,1), and the
Greenwich meridian intersects the quator at (1,0,0). The equation of this sphere is x*+y*+2*= 1, and
the rectangular coordinates x, y, and z may be determined from # and ¢ using the formulas x =
cos ¢ cos 4, y = cos ¢ sin 8,2 = sin ¢. The projection of a point (x,y,z) on tht sphere is the point at
which the line going through (0,0,-1) and (x,y,z) intersects the plane z= 1. The quation of the line
may be determined using a parameter t: a point on the line has coordinates of the form (0,0,-1) +
t(x-0,y-0,2-(-1)) = (tx ty,tz+t-1). This line intersects the plane z= 1 at t = 2/(z+ 1), so the projected
point is (2x/(z+ 1),2y/(z+1)).

- The main things we should consider when evaluating our solution method are its simplicity and its
generality. For instance, projecting onto a polar coordinate system was easy in our example, but a
projection point other than the North or South Pole would make things much more difficult (the 8
on the map would no longer be the same as the longitude, and r would be a function of both

. longitude and latitude). The use of rectangular coordinates, although it requires data conversion
+ effort, seems the nicer method of the two. The representation is symmetric in Xx, y, and z, which may
make it easier to work with. Also, we can determine stereographic projections from any point in the
same way as we did for the South Pole-finding the quations of the line of projection and the
plane tangent to the sphere at the antipode, and then intersecting them-with only a little more
effort.

There usually is no best way to solve a problem, so we optimize our solution for the particular
applications. But wt should look for simple solutions-easy to understand, easy to extend—
whenever possible.
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A useful property of projections is conformality, that is, preservation of angles between lines on the
globe. Stereographic projections are conformal. So are Mercator projections, which involve
projecting the sphere to a cylinder and then stretching the cylinder until the map is conformal. To

determine where a point (¢,0) is projected, consider two small vectors dp and dq emanating from
(¢.0) on the sphere such that dp points toward the North Pole and dq points east. If these vectors
are small enough, they are projected to vectors dX and dY on the map, and dp/dq=dY/dX by the
definition of conformality. Now dp is the same as d¢, assuming a unit sphere, since dp and d¢ are
both measured along a great circle. On the other hand, dq is measured along the circumference of
some parallel of latitude. The ratio of the circumference along this latitude to the circumference
along the equator is cos ¢, so dq =d¢# cos ¢, and we have dY/dX =1/cos ¢ . d¢/d¢. On the map, we
let X be ¢ (scaled by some appropriate amount) and Y be f(¢). Differentiating f with respect to ¢,
we have dY/dX =f’(¢) d¢/de; integrating gives f(¢) = In(sec ¢ + tan ¢). (Recall that the function
sec ¢ - tan ¢ came up in the stereographic projection. Is this just coincidence?) In Cartesian
coordinates, sec ¢ + tan ¢ is (1+z)/sqrt( |-2’).

Suppose we choose to work with Cartesian coordinates, and we want to develop the idea of
conformality from “first principles”. Let (x,y,z) be a point on the sphere, and consider a straight line
(x,y,z)+t(a,b,c) which is tangent to the sphere. “Tangent” means that for small t the line is as close to
the sphere as possible; thus we want (x+ta)*+(y+tb)*+(z+tc)* to be very near | when t is small. Well,
this is x?+2tax+t’a’+... = 142t(ax+by+cz)+O(t?), so the line will be tangent if ax+by+cz=0. In other
words, the dot product (a,bc)«(x,y,z) is 0, i.e., the vectors are perpendicular. (We knew this, but it is
perhaps interesting to derive it from the equation of the sphere.) We can normalize the line so that
a’+b’+c’= 1. If we have another line tangent to the sphere at (x,y,z), say the line (x,y,z)+t(a,8,y) Where
a’+f*+y%=1, the definition of conformality says that the image of this line should have the same
angle to the image of the other as the angle between (a,b,c) and (a,8,4). Here it helps to know about
the cross product of vectors: If we let (a,8,7) = (a,b,c)x(x,y,2) = (bz-cy,cx-az,ay-bx), it is easy to check
‘that a«*+8°+4*=1 and that (a,8,y)«(a,bc) = (a,8,4)«(x,y,2) = 0. Then the line defined by the vector
(a,b,c) cos ¥ + (a,8,y) Sin y makes an angle ¥ with the line defined by (a,b,c), and so we can check
conformality by seeing what happens to the lines (a,b,c) and (8,4) and linear combinations of them.

For example, to check the conformality of stereographic projection by this method, consider the
image of (x+at,y+at,z+at), namely

(a(x+at)/(z+ 1+ct), 20y+bt)(z+ 1 tct)) = (2x/(z+ 1), 2y/(z+ 1)) t 2t/(z+ 1)(cx+(z+ Da, cy+(z+ 1)b) + O(t?).
Similarly the image of (x+at,y+8t,2+4t), where (a,8,9) = (a,b,c)x(x,y,2) as above, turns out to be

(2x/(z+ 1), 2y/(z+ 1)) + 2t/(z+ 1)? (-cy-(zt 1)b, cx+(z+ })a) t O(t?),
so the image lines are defined by orthogonal vectors of the form (u,v) and (-v,u), where
u=2(cx+(z+ 1)a)/(z+ 1)? and v=2(cy+(z+ 1)b)/(2+1)* depend linearly on a, b, and c; the conformality
condition follows.

Similarly, for the Mercator case, let us try to find the image of (x+at,y+bt,z+ct) for small t. First we
define p and g by the conditions

x+at = cos(¢+pt) cos(f+qt) + O(t?)
y+bt = cos(¢+pt) sin(#+qt) + O(t?)
z+ct = sin(¢+pt) + O(t?).

Thus we get
a=-psin¢cosl-qcosé¢sint
b=-psin¢gsin®-qcosé¢cost
cC=pcost

from which it follows that ay-bx = -q cos’¢. If we map (x,y,z) into (.f(¢)), where f is chosen to
make this conformal, we find that (x+at,y+bt,z+ct) for small t goes into (8+qt, f(¢)+ptf'(¢)) + O(t?) =
(0.£(¢)) t t/cos’¢ (bx-ay, cf'(¢) cos ¢). The image of (x+at,y+pt,z+4t) similariy comes to (8,f(¢)) +
t/cos’e (Bx-ay, yf'(¢) cos ¢) = (0.1(¢)) t t/cos’¢ (c, f'(¢Xay-bx) cos ¢). Thus conformality requires
f'(¢) = 1/cos ¢, as before.
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This derivation involved more computation but less insight, since it sticks more closely to “first
principles”. However, it still is not simple enough to explain how Mercator came up with the idea,
since he lived from 1512 to 1594; that was not only before calculus, it was also before Descartes, so
he didn’t have Cartesian coordinates to work with either.

When doing research, it is instructive to not do an extensive literature search right away, but
instead to think beforehand about the problem and different ways of solving it. This approach
often gives us a better feel for the difficulty-we will encounter in solving the problem. Similarly,
when confronted by the opportunity to plug some numbers into a formula out of the CRC book, it’s
a better idea to try to understand how the formula was derived in the first place. Even when
reading somebody else’s contribution to a problem, we should constantly ask not what was done but
“how could | have thought of that?*“. This is perhaps the best way to develop research skills.
Another interesting kind of research is historical inquiry into what the original discoverer of an

idea had to say about it at the time; often the inventor had a better feel for the subject than many
of the people who followed, and a study of original source documents is usually very rewarding.
Thus it would be interesting to look up what Mercator said.

To produce the Mercator map with the usual north and south poles, we take (¢.#) into (I, In(sec ¢ +
tan ¢)) in spherical coordinates; Cartesian-wise this becomes (arctan(y/x), In((1+z)/sqrt(1-2%))), where
the arctan function has values between -90° and 90° when x>0, between 90° and 180° or between

-90° and - 180° when x <0, or 80°«sign(y) when x-0. The details are a bit messy, but it is easy to use
these formulas when the “north and south poles” change to the points (£1,0,0), by permuting the
coordinates. Alternatively we can stick to spherical coordinates if we rotate the sphere first; it is easy
to see that any rigid motion of the sphere about its center can be achieved by a rotation about the
earth’s axis followed by a rotation along, say, the Prime Meridian followed by another rotation

about the earth’s axis. The first and last are trivial to do directly in spherical coordinates.
Formulas for a rotation of the Prime Meridian can be obtained either by permuting the x,y,z
coordinate axes, then converting to spherical coordinates, rotating, and permuting back again; or by
using spherical trigonometry to find the other edges and angles of the triangle formed by the old
North Pole, the new pole, any arbitrary point, and the great circles connecting them. In the latter
case, it helps to know the law of cosines and the law of sines for spherical trigonometry:

cos a = cos b cos ¢ + sin b sinc cos A (a,b,c are sides; A ,B,C are angles)
sin A/ sina=sin B/ sin b = sin C/ sin c.

Hence a rotation of 90° gives cos ¢ cos ¢ = sin ¢' and sin # cos ¢ = sin ¢ cos ¢'.

A two-point quidistant map has the property that the distances between an arbitrary point X and
- two selected points A and B are always in true scale. A rectangular coordinate system seems easiest

for this projection. The distances between X and A and between X and B are found; they
determine two circles centered at A and B, which intersect in two points, one of which is the

projection of X. Which point it is can be determined as follows: Let (x_y,z,) be New York and
.(x,,y,,2,) be London, and let (x,y,.z,) = (New York)x(London) be a vector normal to the great circle
“of New York and London. The spherical distance of a point (x,y,z) to New York is #, where cos 8, =
(x,y,2)«(New York), and the distance to London is #, where cos ¢, = (x,y,z)«(London). We map (x,y,z)
into the upper point having these given distances if (x,y,z)«(x,y,2,)>0, and into the lower point if
(x,y,2)«(x,.y,2,)<0. In other words, the idea is to take three dot products to determine the image of
(x,y,z). The sphere is split along the great circle from (-New York) to (-London); that line maps into
an ellipse, since all points on that line have the property that the sum of their distances to New
York and to London is constant. Fortunately this great circle arc lies entirely in the ocean, so no
country is split by this process.
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Notes for October 12, 1976

Topics of today’s discussion:
1. drawing smooth curves through points on a plane;
2. splines;
3. zeroing in on a good curve-approximating procedure.

For problem 1, we wrote programs which read data representing the boundaries of continents of the
world, and produced maps on which the continents appeared as polygons. To make realistic-looking
maps, this method needs a lot of data points; today we discussed ways of interpolating smaller sets of
data to produce smooth curves which fit the data.

A simple solution to the problem is to connect successive points with straight lines, as we did for
problem 1. If there are enough points, this gives the desired result-a “smooth” curve-since sharp
points on the boundaries will be too small to show up on the map. In most cases, however, the set of
points will not be dense enough for this method to succeed. Another, better, solution is to connect
adjacent points with some more complicated curve, requiring in addition that consecutive curves
meet in a nice way, e.g. with equal slopes at the point of intersection.

The problem is an old one. Shipbuilders built a framework of beams, then overlaid it with strips of
wood to form the hull of the ship, effectively fitting a curve to the “data points” of the frame. A
strip of wood so used was called a spline. The word is now used mathematically to mean a function
which interpolates a list of points; between successive points the function is the same as some
polynomial, and derivatives of adjacent polynomial “pieces” are equal at certain points where the
pieces intersect. More information on splines may be found in [2].

For our first solution, the polynomial pieces were all linear, and probably none of the derivatives
matched up. A natural step forward would be to choose quadratic polynomials. Given a sequence

of data points (x,y,), we will find a sequence of functions f,, each of which is some quadratic
polynomial connecting (x,y, and (x,,,.y,,,) Actually f; is a function of a parameter t, say, which has
two components; it is convenient to consider f,(t) as a function from the interval [0,1] to the plane,
where f(0)=(x,y) and f(1)=(x,,..y,,,). In order to have a “smooth” curve, the derivatives should
match up, namely

(1) f'(1) =f, (0).
For simplicity let’s first consider only the y component; in a quadratic case we therefore can set ft)=
(1-t)y, + ty,, + t( 1-t)a, Note that (I-tly+ty,, is a function which has the correct values at the
endpoints of [0,1}-we've defined f(0)=y, and f(i)=y, ~and t( 1-t)a, is zero at the endpoints and
sufficiently general to include all quadratic functions. To determine the coefficients a,, we see that

f(t) = -y, +y,, + (1-2t)a; condition (1) results in the recurrence a, = -(y,,, - 2y,, + V,) - a,

Apparently quadratic splines give us one degree of freedom; we choose a,, and all the f, are
determined. @¥ What would the best choice of a, be? Well, each a, is the curvature of the

corresponding parabola, so the “best” spline might be the curve which minimizes all these curvatures

somehow, e.g., minimizes (a?). Unfortunately such a curve fitted to the data points of Figure 1 is a
very bad approximation to the best curve fitting only the middle points, ho matter what the choice

of a,, We might think of choosing another metric for examining the as, say Z(a’w)), in order to let
the curve settle down on “flat” areas and ignore or minimize gigantic curvature at one part of the

curve. No matter what our method for choosing a,, however, we cannot avoid the “globality”
inherent in quadratic splines. We choose one parameter, we get the whole curve, and sets of data
which vary widely in one place but are regular in others won't be adequately representable by a
quadratic spline. ’
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Figure 1 — points which a quadratic spline cannot adequately represent

We have several options. We can relax the condition that the curve hits all data points; much has
been written (check any numerical analysis book) on, for example, least-squares curve fitting. Or we
can abandon splines and try some other approximating curve. One method, called quadratic
blending (see [l]), would have a quadratic for each three successive points in the data list; the curve
constructed between ‘any two successive points is the average of the two parabolas over the
corresponding interval. This method avoids the main disadvantage of the quadratic spline, since it
does not allow local curvature to affect the whole curve.

Our third alternative is to approximate the pieces of the curve with higher-order polynomials.
We'll try cubics. As before, we’ll examine functions of one parameter variable on unit intervals: ft)
= ( 1-t)y, + ty, + t(1-tXa(1-t)+bt), such that f,(l) = f,,'(0). Differentiating f, and f,,, and evaluating
at | and 0 respectively yields the recurrence

(2) CA - “Yie2 + 2Y ius = Yi = b,
This recurrence gives us nh degrees of freedom for the spline, one for each point. Hence we can
choose the “right” derivative locally for each point, instead of trying to pick some global value; so we
have the smoothness of splines together with the important locality property of quadratic blending.

Before we choose the “best” slope at (x,y), we should decide what it is: perhaps the average of the
slopes from (x,y,,) and (x,,.y,.,) to (x,y), perhaps some combination of the corresponding vectors.
We find another desirable characteristic of the spline curve: besides being local, so the curvature of
one part won't affect another part, and having low degree, soit can be easily computed, the curve
should have physical meaning, in that rotation or dilation or translation of the data set should not
change the resultant curve. The average slope between two lines, for instance, doesn’t give the
average of the angles made by the lines; the latter would be invariant under rotation, while the

former would not. Suppose we treat the lines from (x_.y,,) to (x,y) and from (x,y) to (x,,,.y,.,) as
vectors, and pick a derivative at (x,y) corresponding to a vector which bisects the angle formed by

- the other two. It is convenient to use complex coordinates: letting z,~x;+iy, and substituting z, for y,
in formula (2), we have the situation pictured in Figure 2. The complex numbers z, can also be
described in polar coordinates (r#) such that z;-z,=r exp(i#). The vector represented in polar
cwrdinates by sqrt(r,r,, )exp(i(8,+8, )/2), i.e. the square root of the product of the two vectors z,_z,
and z;z,,,, is a vector which bisects the angles between the two vectors. Given this formula for the
derivative, the numbers .a, and b, are determined (as are the corresponding humbers for the x

component of f); it is perhaps most convenient to think of f, as a complex-valued function on [0,1].

>ea .

TT
2, | Zp |

Figure 2 — vectors to which we wish to fit a reasonable curve
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Some other mean between the two vectors might also be used to determine-the derivative at z,~the
sum of the vectors is computationally simpler, and someone suggested taking a sum using the inverse
of the lengths in order to weight short segments higher. If one of the vectors is small, however, the
resultant vector should probably be near zero, and neither vector sum has that property. One might
possibly consider what should happen when two long vectors have a short vector between them, and

how a contour that really does come to a point should be specified (e.g., by taking (x,,,.y,,,)=(x,y)).
In n dimensions a similar approach can be used; to get the desired tangent line at (x,y) one simply
works in the plane determined by (x,,.y,.,), (x,y), and (x,,,.y,,,)-

We can now step back and see how we came to this point. We proposed a very simple first solution
(drawing straight lines between the data points), and evaluated its deficiencies. We chose to
generalize an appropriate parameter of the solution (the degree of the approximating polynomial),
and evaluated the deficiencies of the result. Each evaluation after th¢ first yielded new features
desirable in the “ideal” solution (smoothness, locality, invariance under rotation). In this way we
homed in on our final answer. This method of research is a common one. In [3] are many
examples of sorting algorithms which evolved in much the same way as our spline algorithm, e.g.
Shellsort from straight insertion and Quicksort from bubble sort.

There are interesting unanswered questions in this area. Given a formula for producing a curve,
which are the “best” choices of points for that formula? Can we efficiently determine the least
number of points which define a given curve to within a specified tolerance?

References:

[1] Forrest, A., Curves and Surfacesfor Computer-aided Design, Cambridge, 1988.
[2] Forsythe, G.E., Malcolm, M.A., and Moler, C.B., Computer Methods for Mathematical

Computation: Notes for CS 135, Stanford C.S. Dept., 1975.
[3] Knuth, D.E., The Art of Computer Programming: Volume 3, Sorting and Searching,

Addison-Wesley, 1973. |
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Notes for October 14, 1976

Topics of today’s discussion:
1, curve-plotting algorithms for discrete graphics devices;
2. transformations to the algorithms to improve their performance.

Lines drawn on Data Disc screens, since they are raster-type devices, can only be approximated;
“dots” on the screen are lit up which are as near as possible to the actual path of the line. Lines
drawn using plotters are approximated in much the same way; normally a plotter pen can move in
directions which are multipks of 45 degrees, and lines are approximated by combinations of the
possible pen moves. We discussed algorithms for approximating lines and curves today.

We can take two approaches to studying such algorithms. One is to look up what’s been done—
systems for running plotters presumably include good ways of drawing lines-but some published
algorithms are almost comment-free and poorly explained. (They appear more scholarly that way.)
The other way is to solve the problem ourselves.

We can look for example at an 5x8 rectangle (see Figure 1), and try to draw a line from corner to
corner. The accurate line is y=5x/8. For each x we can represent the corresponding y value by
rounding to the nearest integer, finding y such that 5x/8-%< y < 5x/8+%; such ay is [5x/8-%}.

AE I ED DE A
1 I 1 1 Ixix}t |
FF xix 1 1 |
I Ixtx!t 1 1 1 1 I
xt Fr 1° + 1° 1 |

Figure | — trace of a line from (0,0) to (8,5)

For the general problem, an mxn rectangle, we need only look at those for which msn; a rectangle
for which m>n can be rotated, the trace constructed, and then the rectangle rotated back. The trace
may be viewed as a series of pen moves, and we can easily see that we need only two: up or right.
So the problem we’ll examine is the following: given an mxn rectangle for which msn, generate a
series of pen moves either to the right (0 degrees from horizontal) or. up and to the right (a 45
degree move), from the lower left corner to the upper right corner.

For each Xx, let the traced y value be f(x). An initial algorithm is then
for x«0 untll n do y[xJ-f(x);

: for x«1 until n do

if y[x])=y[x-1] then move-0 else move-45;
This algorithm wastes a lot of space and time. The y array is not necessary; each f(x) can be
computed incrementally, from f(x-I), instead of starting from scratch. So we need to tune it up.

Program tuneups aren’t much in style these days. Computers are so fast that program inefficiency
isn’t an important concern, and anyway, given a halfway-decent algorithm, a good compiler can
optimize out all the inefficiency-so say some experts. But optimizing compilers aren’t all that smart,
for one thing. Bob Sedgewick noted in [3] that the PL/1 optimizing compiler produced the worst
code of several processors (including Algol W and unoptimized Fortran H) run on versions of the
Quicksort algorithm. The attitude against nitty-gritty program improvement is perhaps a reaction
against the “hacker” image (see [4] for an entertaining description of hackers), and it’s certainly
harder to debug a program containing a lot of tricky optimizations before debugging the basic
underlying algorithms. Programming, however, should be a two-phase activity: the planning and
coding of the initial version of the program, and then the application of provably-correct
transformations which improve the program’s performance.

19 |



_

Back to the program at hand. Instead of using the array y, we can just use the function f and save
the previous value of f. Taking advantage of the fact that successive y values differ by either 0 or 1,
we have

Y «f(0); comment This is 0;

for x1 until n do comment At this point, y=f(x-1);
If f(x)=y then move-0
else begin

move-4 5 ; -
Y « y+l
end;

The inefficiency in this version occurs in the computation of f(x) =[mx/n-%] in each iteration of
the loop. All we really need to check is if f(x-1) is within the bounds defined by rounding f(x), that
is, if mx/n-% < y < mx/n+%, where y=f(x-1). We can compute the check for this condition more
efficiently by transforming it as follows:

2mx-n S$ 2ny < 2mx+n multiply through by 2n to eliminate fractions;
0 <2ny-2mx+n<n subtract 2mx-n from all terms to allow comparison with 0.

The condition "if f(x)=y" is thus equivalent to "if 0 < 2ny-2mx+n ¢ 2n". We can prove that
2ny-2mx+n < 2n for allowable values of x and y, so we have

Y «0;

for x1 until n do comment y = f{x-1);
if 0 <2ny-2mx+n then move-0
else begin
7 move-45;

Y + y+l
end;

Another optimization is called strength reduction, which replaces an operation such as multiplication
by an incremental operation which executes faster, such as addition. One example of its application
is the following:

tle0;
for i+1 until n do for i«1 until n do

begin =) begin

tle ink; tle-tlek;

end; end;
For our algorithm we could apply strength reduction for the operations involving either x or y; we
can do even better by having a variable R for the quantity 2ny-2mx+n and then ad&sting R
during each loop iteration. As x goes up by 1, R decreases by 2m; as y increases by 1, R goes up by
Zh. The addition of n can be absorbed in the initial value assignment to R. The result (with
variables C and D containing the constants 2n and 2m).

Ce2n; De2m; Ren;
for x«1 until n do

begin
ReR-D; comment Reflects x changing by 1;
if R2 0 then move-0

else begin
move-4 5 ;

R«R + C; comment Reflects y changing by I;
end ;

end;
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Is the counter x really necessary? Not always, if a test on R suffices to show whether or not the
upper-right corner of the rectangle has been reached. R is zero when the loop terminates, but in the
5x8 example R would have been zero when x was 4. Another refinement: if we halve the
quantities R, C, and D, where R starts at [n/2], it is not hard to verify that the loop is the same.
Now the counter isn’t necessary when m and n are relatively prime. (The probability of this is 6/2.)

Knuth estimates in [2] that 10-15% of all computing is spent on unconditional transfers to the
beginning of loops. Hence we could turn the for loop in our example into a while loop to put the
test at the start. Some computers have special loop-control instructions which reduce the need for
such an optimization.

The algorithm we have for drawing lines generalizes nicely for drawing circles and ellipses. If we
trace only 1/8 of a circle, we need once again only consider two moves: a move to the right (0

degrees) and a move down and to the right (-4¢5 degrees). The function f(x) = rounded sqrt(r*-x?)
specifies the position of the pen. During each iteration of the loop, we wish to test if y=f(x-1) is
between sqrt(r’-x*)-% and sqrt(r*-x*)+3%. The following inequalities are equivalent:

sqre(ri-x*)-4% s y < sqre(r’-x*)+%
y-% <sqrt(r’-x?) s y+% adding y-sqrt(r*-x?) to both sides,

then multiplying by -1;

y-y+% < r*-x? s yl-y+¥ squaring each term;
0 <ri-x*-y*+y-% s 2y subtracting y*-y+% from each term;

Hence the test which determines the direction of the pen move is 0 <r*-x*-y*+y-%<2y. The middle
term may be replaced by |r’-%-x*-y*+y (since for any Xx, if xsn, then |xJ<n). We can set R to this
quantity and maintain variables X =2x+1 and Y =2y-2 to keep track of the changes to R during
each iteration of the loop. The loop terminates when X2Y. What results is the following code,
very much like the routine for tracing lines.

Xx « 0; yelrf
R «|ri-%)-xt-y'+y; X « 2(x-1)+1; Y « 2(y+1)-2;
while X < Y do

begin
Xe X+ 2; ReR-X;
if R > 0 then move-0

else begin
YeVY-2; Re«R+Y
move-minus-45;
end

end;
A similar routine for cubic curves would make use of additional variables like X = 3x*+3x+1 and

dX = 6x+3, etc.

This problem was interesting in that it combined programming methodology with some mathematics.
It was also fairly easy. Practice with small problems, however, improves our ability to organize
solutions to bigger ones. Research is going on at Stanford and elsewhere on understanding and
automating the programming process; Cordell Green and Dave Barstow, for example (see [11]), have
attempted to codify the knowledge required to write a program to sort a list of keys. We understand
more about programming now than ever before. Still, as we learn more about old techniques, people
invent new ones, always staying a few jumps ahead.
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What about tracing general curves, that is, approximating the curve f(x,y)=0? We can assume a
“nice” function f, that is, one which is continuous and doesn’t curve tw abruptly. One way to
approximate f is to go from x to x+1 as before and find the corresponding approximate y value.
For thls method, however, we need some special information about f; a general curve may wind
around, and there may not be a unique y value for some x. Another way is to compute values of f
at points around the current pen position. Some of these values will be positive, some negative, and
maybe some zero. We can pick the place to move the pen either by inspection (taking the point
whose f value is closest to zero) or by interpolation, depending on the fineness of the set of points we
selected.

Yet another way, the most clever of the three, uses a triangular grid; each triangle on the grid
represents a region on the display which can be lit up, and each “corner” on the grid is a point at
which the function is evaluated. Any assignment of +s and -'s to the points of the graph defines a
set of contours on the display, which passes between points of different “parities”. Each contour
either winds around and intersects itself, or goes off the boundary of the display. This method also
can be implemented so as to rquire very little memory space.

References:

[1] Green, C.C. and Barstow, D.R., “Some Rules for the Automatic Synthesis of Programs”, Proc.
4th1JCAl, Sept. 1975

[2] Knuth, D.E.,, “Structured Program with ‘go to’ Statements,” Computing Surveys 6,4 (Dec 74),
PP- 260-301. --

[3] Sedgewick, R., Quicksort, appendix C, Ph.D. thesis (CS-492), Stanford University, May 1975
[4] Weizenbaum, J., Computer Power and Human Reason, W.H. Freeman, San Francisco, 1975
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Comments on solutions to problem 1

(Notes from the “show and tell” discussion of October 19, 1976 are also included here.)

I graded programs and writeups on several criteria:
(a) correctness (does the program work?);
(b) program organization (is the program well-written and efficient?);
(c) documentation and style (could | understand what was going on?); and
(d) generality/human engineering/originality (everything else).
Grades in the first three categories were A, B, C, D, or E, meaning excellent, good, mediocre, poor,
or terrible. My grading standards are not far from those of a typical comprehensive exam
committee; a listing of a good solution program is included in these notes. (The program is also a
good example of the use of records and record pointers.) Remember, by the way, that these grades
are for your own interest only; the course itself will be graded pass-fail, and most likely everyone
will pass.

I was disappointed at the number of programs handed in without sufficient comments. Few
programs are “self-documenting”, especially when they are as complicated as these were; people
programmed rotations, for instance, in several different ways. Comments in the following places are
especially useful: at the beginning of the program, where they outline the program’s flow of control;
at the head of each procedure, explaining the function of the procedure, what other procedures it
calls, and what external variables are referenced or changed; at any label, describing the conditions
which are true upon reaching the iabeiied statement; and at declarations of global variables,
explaining the purpose of the variable, what values it may take on, and where it is initialized and
updated.

The writeups should contain derivations if appropriate, or they should at least refer explicitly to
class notes which contain the derivations. Explanation of the program is helpful in a writeup, but
even more helpful in the code itself. The other part of your writeup for CS 204 problems should
describe your approach to solving the problem. (Few writeups did.) One of the goals of this course
is to teach you better methods of problem solving, and your explanations in the writeup enable us to
give you feedback on the ways you attacked the problem. Aiso, you may find that writing down the
processes you used to soive a problem may in itself help you understand those processes better.

Your programs should be clear and well-organized. Locality of effects is important; we comprehend
a program more easily if we don’t have to remember a lot of global state information to trace the

- program’s progress. Furthermore, our minds can oniy handle so much about a single procedure, so
break down your program into reasonably-sized chunks. Top-down problem-solving should lead
you to divide your program nicely into procedures. You should pick data structures which
maximize locality of data references. Be especially wary of global variabies; comment references to

- them profusely.

Gerald Weinberg, in the book The Psychology of Computer Programmfng (a great book, by the way),
notes the following: “Programming is, among other things, a kind of writing. One way to learn
writing is to write, but in ail other forms of writing, one also reads. We read examples-both good
and bad-to facilitate learning. But how many programmers learn to write programs by reading
programs? A few, but not many.” Weinberg goes on to say that a good way to set about studying
programming (the topic of his book) is to study programs. But studying programs, as he implies in
the above passage, is also a good way to make your own programs more clear and more organized.
Try to make a habit of having other people read your code, to get an idea of how it can be made
better (often they even spot your bugs). Also, please read (carefully) the accompanying solution to
problem 1.
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The maps you obtained for this problem were in many cases quite interesting. Some of you
beautified your maps by adding axes; others implemented various windowing or parameter-selection
features, or adjusted for the Data Disc’s aspect ratio. Most interesting were your selections for the
fourth map. These are listed below, but I'll describe a few of them in more detail. Frank Liang
produced a gnomonic projection onto a dodecahedron. Bengt Aspvall and Kevin Karplus produced
maps of arbitrary azimuthal (or perspective) projections; the stereographic and gnomonic projections
are special cases of the azimuthal projection. Mike Plass produced a sinusoidal map; this is a
special case of a conic projection, which projects the sphere onto one or more cones wrapped around
it. The sinusoidal map results from using a different cone for each parallel of latitude, chosen so
that areas are preserved. Andrew Robinson and Marsha Berger came up with a “North Pole
Expedition Map”, for which distances to the North Pole are ail in true scale; this seems to be a
refinement of the two-point equidistant map, where the two points are identical. Carolyn Taicott
produced the Werner heart map mentioned in the Scientific American article; the equations she
used to map (¢,9) into (x,y) are

X = (r sin |#’}) . sign(y coord of (¢,0))
y = -r cos &
where 8" =(8 cos ¢)/r and r =x/2 - é.

For another nice generalization, Alex Strong computed various projections by taking a point z (in
complex coordinates) mapped by the stereographic projection and mapping it to the point w =
(az+b)/(cz+d). This function is analytic and hence the resulting projections are conformal. He
observed that Mercator projection corresponds to the analytic function Log z, thus explaining why
that function sec ¢ + tan ¢ occurred twice in our previous class discussion.

At the boundaries of a map, where distortion often occurs, the straight-line approximation used for
the map turns out to be too crude. A common solution for this was simply to leave off ail straight
lines longer than a certain threshold. This was also a solution to plotting a line which crossed one
boundary of the map and continued on the other side (a better way of course was to draw both
segments of the line).

Feature list:

Cylindrical (Mercator without stretching): JED, MI, RXM, JRR
Gnomonic: AVG, BTH/REP, AZS, FML

Arbitrary azimuthal: BIA, K JK
Sinusoidal: MFP

North Pole Expedition: M JB/AMR
Rotated stereographic: TAZ

- Two-world on orthographic projection: WP/CGN
Complex conformal mapping: A RS
Werner heart: CLT

Intersections for two-point equidistant: DAN
User selection of parameters: BTH/REP (especially nice), K JK, BIA, JED
‘Axes: CLT, JRR, M JB, K JK, RXM, DAN, BIA

Reference:

[1] Weinberg, G.M., The Psychology of Computer Programming, Van Nostrand Reinhold, New
York, 1971.
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BEGIN "MRPS"

DEF INE 1= "COMMENT", TIL="STEP | UNTIL”, NONE= “NOT”, NO” “NOT”, STRRTLOOP= "WH ILE TRUE D0",
CRLF="(’158&"12)", PTR="RECORD_POINTER", NULLR="NULL_RECORD", n="3,14159";

| Organization of this program ("HARPS")

MAPS first calls GETWORLD, to sot up the data base of coordinate points. GETUORLO asks the user for
a file which wi | | contain lists of (latitude, longitude) coordinates which correspond to “land

bodies”, that is, continents or islands or inland seas. Each land body list starts and ends with
the same coordinate pair. GETUORLO assembles the (file into a linked data base consisting of al ist
of circular | ists representing a list of land bodies. A pointrr to this data base is stored in the
variable WORLD. GETUORLO uses thr subsidiary procedure GETLANDBODY to road in the coordinates for a
single land body and construct the corresponding circular list.

Once the data base is constructed, thr projections arc produced in turn. There are three

project ions: a steresographic projection of the Northern Hemisphere, a rotated Mercator projection
using (8,8) as the North Pole, and a tuo-point rquidistant projection with respect to points London

: and Now Vork. Each projection routine first initializes screen parameters (scaling is inciudsd
here), than loops through tho UORLO list to plot the points for each land body. Tho procedure
DRAUBODY, internal to each projection routine, loops through the circular list of points for the
body, transforming the points as required for the particular prejection and “moving ths pen” to draw

the map. When the UORLO list has been completely plottrd, thr map is dispiayod using the procedure
DISPLAYNRP.

The mathematics for thr projection transformations may be found for the most part in tho class
notes. There arespeciat considerations for the MERCATOR and EQUIDISTANT routines. In the Mercator

transformation, aline may cross the edge of thr map in connecting two points, one in each

hemisphere, and that iinr must be piottod in two pieces. In thr two-point sgquidistant

transformation, the projection coordinate values depsnd on eachother and so, to avoid unnecessary
calculation, they are computed together (and returned in REFERENCE parameters) instead of
separately.

Other procedures (NEW_HERDER, NEW_PO INT) exist to simplify thr creating of records. The procedure
PRINTL.ANDBODY, a | though not referenced in the program, was useful during tho debugging stages;

! Definitions for coordinate point record and list header record;
RECORD_CLASS POINT (RERL XX, VV, 22; PTR(POINT) NNEXT)
DEFINE 'Xs"POINT: XX", 1Ys"POINT: YY", 12 "POINT: 22", INEXT= "POINT NNEXT";
RECORD_CLASS HEADER (PTR (POINT) LLANDBODY; PTR (HEADER) RREST);
DEFINE !'LANDBODY="HERDER: LLANDBODY", IREST= "HERDER: RREST";

| UORLO contains pointer to a list of HERDER records. Ths !LANDBODY field of each HERDER record
points to “land bodies”, i.e., aircuiar lists of POINT records. Each POINT record contains thr
Cartssian coordinator of a point in the corresponding land body. UORLD is crea ted in GETUDRLD and
passed to t ho map draw ing procedures;

PTR (HERDER) WORLD;

. | Daciarations for e xitornal procedures;
REQUIRE "DDHDR.SRI [GRR, HPN] * SOURCE-FILE ;

| Definition of i/o record;
RECORD_CLASS JO(INTEGER CCHANNEL, BBREAKCHARACTER, EEOF);
DEFINE ICHAN="10:CCHANNEL", BRK="10:BBRERKCHRRACTER", IEOF="10:EEOF";

! Position of pen on screen. These are given vaiurs in HOVEPEN and read in MERCATOR;
REAL CURNTX,CURNTY;
DEFINE W]ITHPENUP="FRLSE"} | 1.8. pen not doun;
DEFINE W1THPENDONN="TRUE";

PROCEDURE MOVEPEN (RERL X,Y; BOOLEAN PENDOHN)

| Hove the pen to posit ion (X,Y). If PENOOUN, drau a linr while doing so. Update thr current pen
position and return. MOVEPEN is called by all the map drawing routines.MERCRTOR @® xpiicitiy
references (but door not change)the va lues of CURNTX and CURNTV;

BEGIN "MOVE PEN”

IF PENDOUN THEN L INE (CURNTX, CURNTY, X,Y); CURNTX«+X; CURNTY.Y
END "MOVE PEN”;
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PTR (HERDER) PROCEDURE NEW-HERDER (PTR (POINT) L4 PTR (HERDER) R (NULLR));
IL Is copied Into the |LANDBODY field of the new record, and R is copied Into the !REST field,
Note that R is assumed null If not specified;

BEGIN “NEW HERDER”

PTR (HERDER) $SNEW; | Pointer to be returnedi
$NEWNEN_RECORD (HERDER)
ILANDBODYISNENI«L; !Fill the f leids (too bad Sail doesn’t let us do this all at once);
IRESTISNEW]«R;
RETURN (SNEW)

END "NEW HERDER";

PTR (POINT) PROCEDURE NEN_POINT (INTEGER LAT,LONG;PTR (POINT) N (NULLR));
! LRT and LONG are converted to Carteelan coordlnatss with respect to an origin at ths center of the

o a0 th. The +x direct ion goes through Africa, the +y directton through the Indian Ocean, and the +2
direction through the North Pole. The coordinates arc coplsd into thr IX, IY, and !Z fields of the
new record. N Is copied Into thr INEXT field, and Is assumed null If not specitied;

BEGIN “NEW POINT”

REAL CDSLRT, SINLRT, CDSLDNG, SINLONG;
PTR (POINT) $NEW; | Pointer to be returned;
COSLATCOSD (LAT); SINLATSINO(LAT);
COSLONG-COSD(LONG); SINLONG«SIND (LONG);
SNEH«NEH_RECORD (POINT) ;

I X ISNEH) «COSLAT%COSLONG;
Y [$NEUW] «COSLAT=S INLONG;
IZISNEW) @  SINLRTI

INEXT [SNEN] «N;
RETURN (SNEW)

END “NEU POINT”;

PROCEDURE PRINTLANDBODY(PTR (HERDER) WORLD; INTEGER N)
| Prints the Nth land body In UDRLD. Useful for dsbugging GETNORLD using Bail;

BEGIN “PRINT LAND BODY”

INTEGER 1; PTR (POINT)Pg

FOR l«i TIL N-I DO IF 'RESTINORLD] THEN WORLD+!REST{HORLO}
1 {LANDBODY {WORLD) now points at the des iced land body;
IF P+ !LANDBODY (HORLD] THEN

DO PRINT (!XIP), YIP), 12(P],CRLF) UNTIL (P«INEXTIP))=1LANDBODY[HORLD}
END “PRINT LRND BODY”;

PROCEDURE DISPLAYMRP;

| Displays the contents of the display buffer on a free Data Disc channel. It waits for a tine to
be typed, and produces an Image of the display on the XCP If the [ine typed In starts mith “X”;
BEGIN "DISPLRY MRP"

INTEGER DCHRN, C;
DCHAN-GDDCHN(-1)
DPYUP (DCHAN);
SHOU (DCHAN);
IF (C«INCHUL)="X" OR C="x" THEN XGPUP (5);

SHOW (-1);
RDDCHN (DCHAN)

END "DISPLAY MAP",
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PTR (HERDER) PROCEDURE GETUORLD;

! This procedure inputs the date points in thr specified file and constructs a linked list, each
member of which corresponds to a “land body” (a set of data points from the file whose first point
is the same as Its last point). Each “land body” is a circular list of point records, each of which
contains the coordinates of the associated data point. A pointer to the entire | Inked | ist ls
re turned. Outside procedure calls: NEW_HERDER;

BEGIN “GET WORLD”

PTR (10) $IN; BOOLERN BRDLDDKUP;
PTR (HERDER) UORLD; PTR (POINT) BODY;

PTR (POINT) PROCEDURE GETLRNOBODY; CL
! This procedure constructs the circular list corresponding to the points for one "tand body”,
and returns a pointer to some point in the list. If no more input, the null pointer Is
returned. Outside procedure calls: NER_POINT;

BEGIN “GET LRND BODY”

INTEGER LRTITUDE, LONGITUDE, FIRSTLRT, FIRSTLONG; PTR(POINT) BODY, FIRSTPT;

! BODY wi!l be returned. PRs points come in, they will be added to the front of the land
body, and when the last point is hit the end of the body wilibelinked to its beginning;

FIRSTLAT<INTINCICHANISIN] ); FIRSTLONG+INTIN(!CHAN(SIN]);
IF 1EOF [$IN) THEN Assuming hero that ® of occurs only after a complete land body;

RETURN (NULLR);
BODY«F IRSTPT«NEW_POINT(FIRSTLAT, FIRSTLONG);

LATITUDE«INTINCICHANISINI); LONGITUDE«INTIN(ICHAN(SIN});
WHILE LATITUDE=F IRSTLRT OR LONG ITUDE=F IRSTLONG DO

BEG IN

BODY«NEW_POINT (LATITUDE, LONGITUDE, BODY);
LATITUDE INTINCICHANISIN] ); LONGITUDE«INTINC(ICHANISINY)
END}

INEXT(FIRSTPT] BODY;
RETURN (BODY)

END “GET LAND BODY”;

! Open a channel for Input, and connect It to the appropriate file;
$IN-NEW_RECORD (10);
ICHAN [SIN] «GE TCHAN;
OPEN (!CHANISIN), “DSK”, 1, 2 , 6, 1508, |BRKISIN), 1EOF ($IN]);
DO BEGIN

PRINT("File to be read =");

LOOKUP ({CHAN[SIN], INCHUL, BROLOOKUP);
END

UNTIL ND BRDLOOKUP;

| WORLD willbe returned as thr value of GETHORLD.Rs each land body comes along, rdd It to the
front of the list;

NORLD-NEH_HERDER (GETLANDBODY) ;
WHILE BODYGETLANDBODY DO HORLD«NEW_KERDER (BODY, WORLD);

CLOSE (ICHANISIN]);
RETURN (HORLD)

END “GET WORLD";
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PROCEDURE STEREOGRAPHIC (PTR (HERDER) NORLD)
! This procedure plots a stereographic projection of the Northern Hemisphere. UDRLD points to a

linked list whose format is described ® isewhors. The point (x,y,z) is mapped t 0 (2x/(z+1),2y/ (241),
as derived in the class notes of 18/7/78. Outside procedure cal is: DISPLAYNAP;

BEGIN "STEREOGRAPHIC"

| Coordinate transformations;

REAL PROCEDURE XTRRNS (PTR (POINT) P);
RETURN (22IXIP)/(12(P1+1));

RERL PROCEDURE YTRRNS (PTR(POINT) PI}
RETURN (2#1YIP}/7(12(P)41));, . :

PROCEDURE DRAHBODY (PTR (POINT) BODY);
| This procedure plots the land body pointed to by BODY. Firstthepenisiif ted a n d meved t ©

the first point of the land body, thrn each peint In the circular list is plotted. Outside
procrdurr calls: HOVEPEN, XTRANS, YTRANS;

BEGIN "DRR¥ BODY”

PTR(POINT) P; RERL X,Y;
P«BODY;
XeXTRANS(P); Y«YTRANS (P);
MOVEPEN (X,Y, RITHPENUP) ;
00 BEGIN

P+ INEXTIP];
XeXTRANS(P); Y+YTRANS (P)}
MOVEPEN (X,Y, NI THPENDOUN) ;
END

UNTIL P-BODY

END "DRRH BODY”;

Initialize the virtual display. The sap will be a circle with radius 2 (also derived In the
class notes), We wml! | construct the display with a border-—everything betusen the circle of the
map and the rectangle of thr screen nillbe "iightened”;

DDINIT;
SCREEN(-2,-2,2,2);
LITEN;

. RECTAN(-2,-2,2,2), 11 Ight up ths screen;
DRKEN;

ELLIPS(-2,-2,2,2)} | Darken where t h s map will be;
1 ITEN;

! Plot each land body;
WHILE UORLD DO

BEGIN

DRAWBODY (!LANDBODY IUDRLDI );
WORLD+! REST IUDRLDI

END;

D ISPLAYHRP

. END "STEREOGRAPHIC";
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PROCEDURE MERCATOR (PTR (HEADER) WORLD) ;

! WORLD is a pointer to a linked list of land bodies. Each land body is a circular list of points
(x,y,z)uhichspecify a continent or island or inland sea. This procedure plots a Hercator

. project ion of the rotated world whose North Pole is at (1,8,8). The rotatlon takes (x,y,z) into
(-z,y,x). The Hercator transformation maps (x,y,z) Into (arctan(y/x),In((1+2)/8qrt(1-212))) as
described in class notes for 18/7/76, so each point (x,y,z) from WORLD Is mapped to (arctan(y/-2z),
In( (lex) /sqrt(1-x12))). Outside procedure caller DISPLRYHRP;
BEGIN "MERCATOR"

RERL Z2FOR75, UPPERBOUND;

! Coordinate transformations; CL
RERL PROCEDURE XTRRNS (PTR(POINT) PI;

RTAN2(1YIP),-12(P));
RERL PROCEDURE YTRRNS (PTR(POINT)P);

LOG ((14+'X[P})/SQRT(1-1XIP}12));

PROCEDURE DRRUBODY (PTR(POINY) BODY);
! This procedure plots the land body pointed to by BODY. First the pen is lifted and moved to
the first point of the land body, then each point in the circular list Is plotted. Outside
procedure calls: HOVEPEN, XTRRNS, YTRRNS. Note also the reference to CURNTX and CURNTY;

BEGIN “DRAW BODY”

PTR (POINT)P; RERL X,Y,XOISPLACEMENT;
P«BODY,
XeXTRANS(P); Y«YTRANS (P);
MOVEPEN(X, Y,HITHPENUP);
DO BEGIN

P«INEXT IP)
XeXTRANS (P); Y«YTRANS (P);

[Check now for a move across thr edge of the map from one side to the other. Any pen
move over a distance iongrr than n (i.e. half the map) Is assumed to be such a move;

IF ABS (CURNTX-X)>n THEN

BEGIN

! Draw part of the line on the right side of the map and part on thr loft;
XDISPLACEMENT«IF CURNTX>8 THEN 2#n ELSE -2tnl

MOVEPEN (X+XDISPLACEMENT, Y, HITHPENDONN) 4

MOVEPEN (CURNTX-XDISPLRCEMENT,CURNTY,WH] THPENUP)
MOVEPEN(X,Y, NH] THPENDOKN)
END

ELSE MOVEPEN (X,Y, H]1THPENDONN)
END

UNTIL P=BODY

END “DRRU BODY” 4

! Initial ize the virtual display. The x axis ranges from =-n to +r, and longltudr intervais are
constant, The upper bounds of the screen will correspond to latltudes of 75 degrees;

DDINIT;

ZFOR75+5SIND (75);
UPPERBOUND«LOG ((1+2FOR75) /SQRT (1 -2FOR7512))
SCREEN (-n, -UPPERBOUND, n, UPPERBOUND) ;
LITEN;

Plot each land body;
WHILE UDRLD DO

BEGIN

DRAUBODY (1LANDBODY (WORLD) )
WORLD.! REST [HORLD)

END;

DISPLAYMAP

END "MERCATOR";
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PROCEDURE EQUIDISTANT (PTR (HERDER) HORLD) ;

| This procedure plots a two-point equidistant projection of the world with respect to the tuo
points New York (41 deglat, -74 deg long) and London (S1deglat,® dog long). The feature of such
a map is that thedistences betuern any point RA and either Neu York or London are true to scale.
The projection of a point A is found by taking dot products of R uith the vectors for Now York © nd
London as described in the notes of 18/7/76. Outside procedure calls: DISPLRYNAP;

BEGIN “EQUIDISTANT”

PTR (POINT) NEUYDRK, LONDON, NORMAL; RERL NEHYORK2LONDON, NEWYORK2LONDONSQ;

RERL PROCEDURE DOT (PTR (POINT) P,Q);
RETURNCIX IPI =IXIQ)+1YIPIx1Y(Q)+12(PI2121Q)) 4 N

REAL PROCEDURE DISTRNCE(PTR(POINT)P,Q); RETURN (RCOS(DOT(P,Q)));

PROCEDURE TRRNS (PTR(POINT)P; REFERENCE RERL X, Y )}
! Uo have a triangle for which we know the lengths of al | sides. Thistriangle Is formed by the
points N=(8,8), L, and the point Pueuish to plot. From tho Pythagorean relation we see thrt x12
4 yt2 nd(P,N)12, (d(N,L)=x)12 4 yt2 = d(P,L)12, Hence x = (d(P,N)T2+d(N,L)T2-d(P,L)*2)/2d(N,L).
Riso y ssqrt(d(P,L)12-(d(N,L)-x)12), with the sign posltivs iff dot{normal,p)>8 as specified In
the notes of 18/7/76. Outside procedure calls: DISTANCE, 007;
BEG IN “TRRNS”

RERL 0;
Xc (DISTANCE (P, NENYORK) t2+NEUYORK2L ONDONSQ- (D+DISTANCE (P, LONDON) 12) ) /2/NEWYORK2LONDON;
Y«SQRT (D- (NEHYORK2LONDON-X) 12) 3

IF DOT (P, NORMAL)<8 THEN Yc-Y
END “TRRNS” j

PROCEDURE DRRUBODY (PTR(POINT) BODY);
! This procedure plots the land body pointed to by BODY. First the pen Is | Ifted and moved to
the first point of the land body, then each point In the circutar list Is plotted. Outside
procedure cal ts: MOVEPEN, TRANS;

BEGIN “DRAW BODY”

PTR(POINT) P; RERL X, VY;
P-BODY; TRANS(P,X,Y);
MOVEPEN (X,Y, HITHPENUP) ;
00 BEGIN

P+ INEXTIP] ; TRANS (P,X,Y);
MOVEPEN (X,Y, HI THPENDOKN) ;
END

UNTIL P=BODY

END "DORAN BODY”;

NEHYORK-NEW_PO 1 NT(41,-74); LONDONNEH_POINT (51,8);
NEHYORK2LONDON«-DISTANCE (NEHYORK, LONDON) ; NEWYORK2LONDONSQ-NEWYORK2LONDONT2;
NORMAL «NEW_RECORD (POINT) ;
IX INORMAL) « | Y INEWYORK) »! 2 (LONDON) — { Y [LONDON] =! 2 INEUYORK]

|Y (NORMAL) « 1 2 INEHYORK] #! X [LONDON] - ! Z (LONDON) « t X INEWYORK) ;
12 (NORMAL) « | X INENYORK) #1 Y [LONDON] - | X TLONDON] #1Y INEHYORK]) 3

| Initial ize the virtual display. The map willbe Sol @® |llipss ui th major diameter 2n~d rnd minor
diameter sqrt ((2n-d)12-d12)/2, where d is the distance between Now York and London on the unit

sphere (it turns out to be .875). The ellipse representsthe line connocting the @® ntipodes of
New York and London--for every point R on it, d{R,New York) 4 d(R,London)= 2n-d. New York will
be mapped to (8,8) . Ue will construct the display with a border--everything between the circle
of the up and the rectangle of the screen wi! | be "lightened";

DDINIT;

SCREEN(-2.5,-3,3.5,3); | Scale It a bit

LITEN; RECTAN(-9,-9,9,9); ! light up the screeny
DRKEN; ELLIPS(-2.4,-2.7,3.2,2.7); ! Darken where the u p will bes
LITEN;

! Plot sach land body, then show the map;
UHILE UDRLD D0 BEGIN DRANBOOY( | LRNDBDDY (WORLD); WORLDe| REST (WORLD) END;
0D ISPLRYMRP

END "EQUIDISTANT";

| Ha in program;
WORLD~GE THORLD; MERCATOR (WORLD) ; STEREOGRAPHIC (WORLD) ; EQUIDISTANT (WORLD)
END "MRPS";

30



| | | |

: : aed phigees dak ad— Co EEE :

E iE ty , EE

A + Lo | a : od i YT
re HERI Xai [+1 FS =. LTT

3: SR TWEY oJ A Fro == py

a ayir HE i Br

| FE = - Lae = Wy©
| ne i St ee. ed Es b= Eg F

_ A WE IEE ye] = J Ld i
. is Fo. BP mz i gee3

a al hid: 25
a H IF

hi 4 ji pag

He . 2 £m

EEE yr -. aid | SELOR i 2 % Sis FEI: |

SR Fou 4 : Hi : : EE Rr:

ES Tic I HE ic Li

CE Fo

ol PPPJL SPR 3 NTP PETE Jur VHRR Sr TAFT TR Tr E

: iE A different view of world affairs b oC
vr : Lo

: rig Frank Liang : i

A ik stereographic projection b -. HY E = KE “ :

BE CI ESRI 2 1 Ea REE



a

Notes for October 21, 1976

Topics of today’s discussion:
1. languages, grammars, and representations of grammars;
2. a possible grammar for the language of problem 2.

The program for problem 2 may be viewed as a compiler which parses a sentence in a language (the
set of English numerals) into the “code” for the sentence (the number represented by the numeral).
As background for this problem, we discussed languages, the grammars defining them, and methods
for parsing sentences in a language given a grammar. We then discussed a possible grammar for
English numerals.

A language is a set of sentences, where each sentence is composed of tokens In some alphabet. One
example is English (a natural language), for which the alphabet is the set of words and the
sentences are English sentences. Another example is Algol; tokens are identifier names, reserved
words, and various symbols, and sentences in the language are valid Algol statements.

For a language to be interesting, it must have structure. The syntax of a language, specified by
rules of one kind or another, provides that structure, along with a first approximation to the
meaning of sentences of the language. Syntax rules define how sentences are constructed, often by
productions which specify the relations between syntactic categories (nonterminals) and the tokens of
the language (terminals). A sample production is <expression> - <term> + <term> which specifies
that a nonterminal <expression> may be written as some <term> followed by the terminal "+"
followed by another <term>. A grammar is defined by its productions, terminals, and nonterminals.
We generate sentences in a language by applying rules of the corresponding grammar to some initial
nhonterminal; we would parse a sentence by finding a sequence of applications of rules of the
grammar which would produce it.

Grammars fall into several types depending on how general their productions are. A grammar for
which every production has the form a + 8, where a is a single nonterminal and 8 is any nonempty
string, is called context-free. If every production of a grammar is of the form A » aB or A» a,
where A and B are nonterminals and a is a terminal, the grammar is called regular. (Every regular
grammar is obviously also context-free.) Computer languages are often defined by either
context-free or regular grammars.

There are several ways to represent the rules of a context-free grammar. One familiar notation is
Backus-Naur Form (BNF) used to describe Algol, in which the rule <a> := <b> <c>| <d> means
that an instance of <a> is either a <b> followed by a <c>, or a <d>. A simpler notation replaces ":="
by "+" and uses upper-case ktters for nonterminals; the above rule would be represented by the pair
of productions A +8 C and A + D, or by the single rule A +B C|D. The tatter seems nicer; one
of the intended features of BNF was the grouping of productions with the same left-hand side in
one rule. A notation might use abbreviations, e.g. A* to represent any number of A’s. Transition

nets are also sometimes used to represent context-free and regular grammars; these are directed
graphs which resemble flow charts in that each node represents a point in a parsing program, and

‘the edges are labelled with terminal symbols or nonterminal symbols (the latter representing a
subroutine call); the edges are sometimes also labelled with actions to be taken upon parsing the
symbol. Similar to transition nets are state diagrams (used mostly to describe regular grammars), in
which the nodes represent states of the parse and the edges are labelled with the next input
character and possibly with what to do when it's seen. A good representation for a problem will
stress the psychology of the situation and allow one to see patterns more easily (this Is why
if-and-only-if theorems are so popular in mathematics; scientific advances often come from viewing
old problems in new lights), and there are applications for which each of the above notations is

particularly valuable.
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Our parse of a language may be deterministic or nondeterministic, depending on whether or not it is
always clear what action to take next. A nondeterministic parse is usually implemented with a
backtracking algorithm. One technique for converting a nondeterministic (ND) parse to a
deterministic (D) one is to consider transitions between sets of states instead of single states; an ND
parser with n states can thus be converted to a D parser with 2" states. One of the outstanding
unsolved problems of complexity theory is whether the set of languages parsable in linear time by a
ND parser is the same as the set of languages parsable in linear time by a D parser.

We can try to represent the language of English numerals with a context-free grammar, one rule of
which might be <English nhumeral> + <million humeral> | <teen hundred numeral> | zero. The
word “zero” is used here as a terminal symbol, but we need to define our terms; is “zero” itself a
symbol, or is it four letters, or does it include surrounding blanks? A good solution is to use a
two-level system incorporating a lexical grammar or scanner to read tokens from the input. The
lexical grammar for this problem parses the input text into words. and hyphens, treating blanks as
delimiters; the next part of the program would then parse the resulting string of tokens into the

corresponding number. (Example: the string “one hundred fifty-two” would be parsed into s, s ,,
s,, 5. 5, 1.) Figure | shows a state diagram for the grammar. Each character gets read onty once.
With each transition an action is associated; typical actions are recording a character, analyzing a
word when a delimiter is hit, and moving on to the next processing stage when end-of-input is
encountered. (Alternatively the Sail SCAN function may be used to implement the lexical scanner
very easily.)

~ hyphen or blank

a...z

blank

a...2

end of end of

Input Input

[]—
Figure 1 ~ state diagram of lexical scanner

The following grammar for English numerals was proposed.
<English #> + <million #>| <teen hundred #> | zero

This rule essentially splits up numerals into the nice ones (the millions, thousands, and units) and

-the not-so-nice ones. We'll ignore the not-so-nice numerals for the time being.
<million #> + <hundred «> million <thousand #>|<thousand #>| <hundred #> million

“Million numerals” either specify some number of millions, or they specify some simpler number.
<thousand «> +» <hundred #> thousand <hundred >| <hundred #>| <hundred > thousand

“Thousand numerals” are broken down in the same way as millions. Note that “two thousand and
one” is not in this language, Stanley Kubrick notwithstanding.

<hundred «> - <digit> hundred <ten #> | <ten #>| <digit> hundred | <digit> hundred and <ten s>
<ten #> » <n-ty #> - <digit> | <n-ty #> | <teen o> | <digit>
<n-ty o> 3 twenty,. . . . ninety
<teen #> = fen, . . . . nineteen

<digit>+ one, . . . . nfne
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This grammar might be made more elegant by, for instance, allowing some of the above categories
to include the null string and then combining right-hand-sides. The empty string is harder to deal
with during parsing, but understanding how a parsing algorithm handles it is often very helpful for
understanding the performance of the algorithm as a whole. Also, inelegant exceptions in the
grammar are often more easily handled by accepting the corresponding strings and then disallowing
them later during semantic processing.

This brings us to the “bad numerals” which we left out of the above grammar. What are examples
of such numerals, and how do we handle them? Consider the following:

twenty-one hundred
twenty-one hundred thousand
two million twenty-one hundred
twenty-one hundred thousand twenty-one hundred
twenty-one hundred thirty thousand twenty-one hundred
twenty-one hundred thirty-one thousand twenty-one hundred

Are these proper English? How do we decide? The problem here is a common one for computer
language designers. [To be continued.
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Notes for October 26, 1976

Topics of today’s discussion:
1. defining a language (which constructs should be considered well-formed?);
2. top-down parsing;
3. semantics of a language.

Today we considered “bad” numerals, and discussed criteria for deciding which numerals should be
accepted by programs for problem 2. We also discussed methods of parsing a language, and ways to
assigh meaning to statements of a language.

Which of the following expressions, each of which can be unambiguously parsed, are legal in
English? More to the point, what output should the programs we write for problem 2 produce for
them? The class voted, yielding the results in parentheses (twenty-two thought “twenty-one
hundred” was well-formed, etc.); there were twenty-four students present, two of whom didn’t like
any numbers on the list.

twenty-one hundred (22)
twenty-one hundred thousand (16)
two million twenty-one hundred (15)
twenty-one hundred thousand twenty-one hundred (6)
twenty-one-hundred thirty thousand twenty-one hundred (6)
twenty-one hundred thirty-one thousand twenty-one hundred (4)

There were several opinions about which numerals should be allowed: (i) When there’s a choice,
the largest possible unit should be the only one allowed (“twenty-one hundred” should be “two

thousand one hundred”). (ii) "Decomma-izing" idioms may be allowed (“twenty-one hundred” is
okay, “twenty-one hundred thousand” isn’t because 2,100,000 is written with commas). (iii) Overlap
(e.g. “ten thousand twenty-one hundred”) should be illegal, but anything scannable left to right such
that only zeros are filled in should be allowed. (iv) Anything that can be parsed should be legal,
since a computer program is more useful if it doesn’t impose too many restrictions. These all sound
reasonable; how do we choose where to draw the line between meaningful and nonmeaningful
strings?

One idea is to parse the input if possible (no matter how strange it sounds), then return both the
expression’s value and its degree of grammaticality. Also, the motivation behind our application is
important. We're not trying to generate flawless English, just trying to recognize what comes in and
translate it into some number.

Syntax rules in our program specify which forms have structure and which do not; semantic rules
will assign the expression a meaning if possible. A well-structured program will probably separate
the syntax functions from the semantic. Since we want to differentiate somehow between

- meaningful and nonmeaningful input, it seems desirable to put the code that does this into the
- semantic phase of the program, and define the syntax rules to allow as much as we can, easily. In
the end, it comes down to programming considerations: the syntax should be as elegant and
permissive as possible, but it should also be easily implemented. There is no one best answer to this
dilemma; the differing points of view each have some validity. In most real-world applications we
are faced with such tradeoffs and the impossibility of finding a truly clean or optimum solution to a
given problem; the best we can do is understand the relevant criteria for such decision making.

We can now consider ways to implement syntactic analysis in a computer program. We'll use the
grammar discussed last class, listed (in abbreviated form, ignoring the “bad” numerals) in Figure I.
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E-> Mis, (E = English », M = million «)
Mo HS, 0000 KI KIH S$0000 (H = hundred s, K = thousand #)
K Hs, H| HH sy,
Hoods, T|T|ds, ds Sm (T = tens +, d = digit)
Tons d|njd]|a (n = n-ty », a = teen »)

Figure 1 — a grammar for English numerals

Parsing proceeds either in a “bottom-up” or a “top-down” fashion. Bottom-up parsing starts with a
sequence of terminal symbots and attempts to “reduce” it to the initial nonterminal symbol
(<English «> in problem 2); we defer that until next time. The top-down method works in just the
opposite way, starting with the initial nonterminal and applying productions to it which finally yield
the input string. Implementation of a top-down parser conceptually involves recursive subroutines,
which match the input to various patterns. Such a routine for our sample grammar is listed in
Figure 2.

Boolean procedure find_thousand#;
return (find_hundred#_followed_by_s,followed _by_hundred#

or find_hundred#
or find_hundred#_foliowed_by_s,,);

Figure 2 — procedure for matching a “thousand numeral”

Straightforward top-down parsing has several drawbacks. For one thing, it can’t be used with a
grammar which contains left-recursive rules, i.e., rules of the form A + AB, since the corresponding
procedure find_A would contain as its first instruction a call to itself, and an infinite loop would
result. A more subtle drawback is illustrated by the f ind_thousand# procedure. If the procedure
Find_hundred# always “finds” a nonnull string, there will be no way to recognize the string “two
hundred thousand” since the second alternative would find “two hundred” and never get a chance to
include “thousand” in the string being sought. In general, top-down algorithms don’t work on
grammars which require looking ahead in the source string.

Often, however, the grammar may be transformed so that a top-down algorithm may be used. If
the grammar is not self-imbedding (i.e. there is no X such that X »* « X 8 where a and 8 are
nonempty), then it may be transformed (by expanding the right-hand sides) to a regular grammar.
The result may be quite large, but, knowing that a regular grammar exists, we can usually start from
scratch to construct one with fewer rules. Another useful transformation on grammars is reordering
the_ right-hand sides of rules; for example, changing the “thousands” rule to K+ Hs HHS,
| H would have fixed the bug mentioned above. A third transformation on grammars is factoring,
which allows us to avoid backup during the parse. Factoring the rule X » ab] a, for instance,
results in the two rules X -aB and B » b|¢, where ¢ is the empty string. Factoring our English
numeral- grammar results in the grammar of Figure 3.

E-Mi|s, H-T |dH
M-HM H > H” |e

M' = K’ |$,,00000 M” H” »s,,, H”
M” > K|e HH” >T|H”” |¢

K-+HK’ H" 55,4, T
K' -» K” |¢ Tod |T
K ss, K” T-s>ajnT”
K” + Hie T” > T" | «

T 2s_d

Figure 3 — factored version of the grammar of Figure 1
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The factoring can be more compactly represented by using parentheses, as in Figure 4.

E> Mls, HoT [d(5,00 (TI530g T 16)]6)
M 5 H (K' | 5,000000 (K | ©) T->d|T
K-HK’ T»ain(s.de)

K as,,(HI¢)Ts

Figure 4 — compact representation of the grammar of Figure 3

For efficiency, we would like to avoid backup if possible. It is also the case that, although the
problem of deciding if top-down parsing will work on an arbitrary context-free grammar is
unsolvable, we can determine whether or not top-down parsing with no backing up will work.
Hence parsing without backup has theoretical as well as practical interest. Knuth shows in [2] (a
tutorial explanation of top-down syntactic analysis) that, for a grammar whose rules are all of the
form X =Y |...|Y,12Z ...2Z, for mn20, straightforward top-down parsing with no backup
may be used if and only if the following conditions hold:
(a) the grammar contains no left-recursive nonterminals; .
(b) the sets first(Y,),.... first(Y),first(Z ..Z ) have no letters in common;
(c) if Z,. . Z, can ultimately produce the empty string (or if n=0 so that it already is the empty

string), then first(Y), . . .. first(Y,) contain no letters in common with follow(X);
(d) Y,....Y, correspond to subroutines that are not “nonfalse”.
Here first(X) denotes the set of terminals that can be first in a string parsable as X, and follow(X)
denotes the set of terminals that can follow a string parsable as X in a string parsable as E-1. A
nonterminal is called nonfalse if the corresponding subroutine will never return the value false; for a
technical explanation of this condition, see [2].

The above factored grammar without parentheses has all productions in the desired form, and the
conditions hold (here 4 denotes the end of input) as shown in Figure 5. Therefore the grammar can
be used for top-down parsing.

X first(X) follow(X) nonfalse?
E a n ds, a no
M and . no

M 31000 S1000000 - no
M” and ~ yes

. K and - no
K’ S000 - yes
K” S000 a no
KK’ and . yes

H and $1000 Si000000 no
H Stoo $1000 Si000000 yes
H" S000 5,000 Si000000 no
H™ dan sg $1000 Siooce00 yes
H™"" Sand $1000 S1000000 a no

r dan $moo  Sieo0000 a no
T an $1000 S1000000 no
Li S. $1000 S1000000 a yes
La 5. $1000 S1000000 1 no

Figure 5 — characteristics of the factored numeral grammar
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Parsing is, of course, only part of the problem. To assign a meaning to the numeral (its value), we
will have a “meaning function’ m, and we will associate a semantic rule with each syntactic
production which will define m in the desired way. For example, for the production #+T,s 7,
we might have the semantic rule m(H) = m(T 100 + m(T,). A nonterminal symbol may be given
several attribute functions like m; for example, if we want to rate the grammaticalness of a number,
we can check for things like overlap or decommaizing by defining a “g” attribute. When a grammar
is transformed by factoring, the associated semantic rules may be likewise transformed; additional
attributes may be necessary, however, since the transformation “factors” the meaning of the rules.

For example, for the production M +H M, some information must be passed along telling what kind
of M’ was found, say, by a function b(M’) which says if M’ > 1,000,000. It is perhaps best to
reconstruct the parse tree corresponding to the unfactored grammar, then apply the original
unfactored semantic rules.

The function m is an example of a synthesized attribute, whose values are based on the attributes of
descendants in the derivation tree. Inherited attributes are based on attributes of ancestors in the

tree. Inherited attributes are useful wherever part of the meaning of some construct depends on the
context in which that construct appears (“block structure” in programming languages is such a
construct). Knuth explores the simultaneous use of synthesized and inherited semantic attributes in
[1].

References:

[1) Knuth, D.E., "Semantics of Context-Free Languages”, Mathematical Systems T heory 2,2, June
1968.

[2] Knuth, D.E., “Top-Down Syntax Analysis”, Acta Informatica |, pp. 79-110 (1971).
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Notes for October 28, 1976

Topics of today’s discussion:
1. parsing with an arbitrary context-free grammar;
2. finding all parses of a given string;
3. bottom-up parsing.

Although transformations (factoring, etc.) can sometimes be applied to allow straightforward
no-backup top-down parsing with a context-free grammar, this is not normally the case, so we
should look for some other way to remove the inefficiency in a backtracking top-down parsing
algorithm. Consider the main source of inefficiency. When the parser backtracks through the parse
tree, it throws away everything it's done between the point it failed and the point it makes another
choice; processing the second choice, however, may require duplicating much of the work it did the
first trip down the tree. A good algorithm should somehow save the results of its computations in
case they're needed later.

A highly useful technique based on this idea is dynamic programming. It is applicable to any
problem whose solution depends on solving subproblems, many of which are identical. In a
backtracking algorithm, results of subproblems are recomputed; in a dynamic programming
algorithm, they are saved in a table when computed the first time, and looked up thereafter. The

resulting speedup depends on how much duplication there is in the subproblems, but is often quite
large.

One problem to which dynamic programming may be advantageously applied is that of finding all
parses of a string with respect to a given context-free grammar. One might want to do this in a
natural language processor, in order to find the parse which was most appropriate for the given
context. One might also want to determine if all parses of a given construct were semantically
equivalent.

Take, for example, the grammar S » 5:5}x ; the strings produced by this grammar are Xx, x-x,
xe Xx, etc. The grammar is highly ambiguous; the number of parses of a string with n dots and
n+ 1 X’s is binomial(2n,n)-binomial(2n,n-1), the nth Catalan number, which is approximately equal
to 4"/vxn. We will use a dynamic programming approach to find all parses of a string-there are

exponentially many-in polynomial time. Supposing the input stream is aa,..a,, we will let table
entry S; tell us if a,..a; can be parsed as S, and if so how. Since a string in the language is produced
by concatenating two other strings, with a dot in between, each subproblem is derived by choosing a

) dot in the string, parsing the left part, then parsing the right part; hence each possible subproblem is
defined by i and j, the indices of the left and right x’s for the corresponding string. The table for
S, can be defined as follows:

S, = true if a, = "x", false otherwise;
S, = true if there is a k such that §,,| is true and a, ="+" and S,,,, false otherwise.

“(We're not worrying about empty strings here.) The above table merely lets us recognize legal
strings. If we wanted to parse a string-that is, give its derivation tree-we would let S,, be a list of

all essentially different ways that a,..a, could be parsed (a list of the k's would work).

For another example, consider the grammar whose rules are S+ST|xandT7T+T7T57T|yxS.

We keep two tables this time: §; tells if (and how) a,..a, is parsable as S, and T , tells if a,..a, is
parsable as T. The conditions on S,, and T; are the following:
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S,; = true if either i =j and a, ="Xx"
or there is a k such that S,,_, and T,,,, are true and a, ="",

false otherwise;

T, = wuweif either a, ="y" and a,, = "x" and §,,,; is true
or there are k and 1 for which T,, and §,_, and T,; are all true,

Pa 1se otherwise.

We can compute all S,, and T;; in increasing order of j-i: first we fill in S; and T,, then S;and T,,
etc. Finally we have evaluated S,, and T,,, after filling about 2(n*/2) table entries. Filling in S,
requires checking all k’s between i and j, in linear time; for T,, all pairs (k,l) between i and j, k<l,
must be checked, in O(n?) time. Hence the amount of work needed to recognize a string of length n
is Q(n*), while a backtracking algorithm would have taken exponential time. The algorithm can
still be asymptotically improved by reducing the O(n?) in the computation of T, to O(n); we add a
new nonterminal U, and replace theruleT +7 S Tl,x S by the two rules T+-TU|,x S
and U + ST. We then have an extra table to fill, but both the T and U tables can now be filled in

time O(n). The “improved” algorithm takes time O(n’) overall, although for reasonably sized n it
will be slower than the O(n‘) version.

We could use such an algorithm for the humeral grammar of problem 2, by keeping meaning
table E,, instead of a parse table. For instance, E,, could be the value of a,.a, if it were parsable as
E and - 1 if not.

The above procedure is, ofcourse, general; any context-free grammar can be parsed in O(n?) time.
This bound has been lowered still farther by Leslie Valiant; by showing (in [6]) that finding all
parses was equivalent to matrix multiplication, he lowered the bound to O(n?*), but his method is
not of practical importance. Unfortunately no one knows of any context-free language which
requires nonlinear time to parse-so there’s quite a gap, between O(n) and O{(n**). Sheila Greibach
[3] has found a particular context-free language L which is as hard as possible to parse: if her
language L can be parsed efficiently, so can all context-free languages. Incidentally, L is an easy
language to comprehend, but apparently hard to parse. The best general algorithm for parsing
context-free languages was devised by Jay Earley {2]. Its worst-case is O(n?); it runs in time O(n?)
on unambiguous grammars and in linear time for a large class of grammars.

An alternative to top-down parsing is bottom-up parsing, which is excellently explained by Terry
Winograd in [7]. Winograd also offers a clear description of the various types of grammars and
representations for grammars. There have also been many good papers describing the application
of parsing techniques to compiler writing: for instance, Melvin Conway’s use of transition nets in a
Cabol compiler [1], and any of the papers reprinted in part four of Saul Rosen’s book [5].

The top-down and bottom-up approaches may also be applied to problem solving. For example, in
proving a theorem, we might decompose it into lemmas which when proved would yield the final
result. -Or we might first start with all the given information and begin to prove everything that
follows ‘as “consequences”, dealing with the problem at “bit-level” in order to familiarize ourselves
with the domain. In most cases, we actually use a combination of the two approaches. When we
start solving a problem, we have some idea of easy subproblems, from which we advance in both
top-down and bottom-up ways. When we write a program, we often do the same thing.

A large portion of research in artificial intelligence and combinatorial algorithms concerns heuristic
search, ways to have a computer program move efficiently from problem statement to solution.
Search techniques proceed top-down, finding all possible subgoals that could lead to the desired
goal, or bottom-up from the problem statement, first finding lots of trivial things, then less trivial
ones, and so on. Ira Pohl [4], among others, has proposed methods of bidirectional search, in order
to reduce fan-out of the search trees by building them toward each other.
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Comments on solutions to problem 2 |

Programs and writeups were graded on the following criteria:

(a) correctness;
(b) niceness of the grammar;
(c) program organization; and
(d) documentation and style.

| was gratified to see more comments in your code.

Most solutions used the top-down technique of recursive descent; for each nonterminal U, the
program contains a procedure which parses phrases for U. (For an arbitrary context-free grammar,

these routines would contain recursive calls, but the simplicity of the numeral grammar made

recursive calls unnecessary.) With each such procedure is associated one or more semantic rules to

be applied when the parse succeeds (see notes of October 26); the rules define the “value” of the

numeral or numeral segment associated with the nonterminal being parsed, and in some cases kept

track of other information to aid error diagnosis.

Several of you factored the grammar (cf. October 26 notes), either explicitly or implicitly, i n order to

eliminate backup. If the parser doesn’t have to backtrack, it also doesn’t have to undo any of its

semantic processing (semantic backtracking can be expensive). Bengt Aspvall implemented the

parser described in the notes of October 28, which incorporated a dynamic programming algorithm

to build the parse tree. Others ignored the backup problem and either maintained a stack of

semantic information, or built a semantic tree to process later, or let Sail’s recursion do the

book keeping for them.

The vocabulary and grammar for numerals were simple enough that your routines could make tests
for most of the possible errors; some of you did this more cleanly than others. Since almost all of
you treated the hyphen as an operator, hyphen errors were easy to detect and diagnose as such.

Other diagnosable errors were too large a number and misplaced “and” or “zero”. Error correction

was harder to implement; Greg Nelson tried, producing error messages and computing the correct
results for the following:

thirty-zero THE "-ZERO” SHOULD BE OM TTED
one thousand hundred IT IS VERY UNUSUAL TO MODIFY “HUNDRED”

WITH A NUMBER EXCEEDING NINETY-NINE

fifty thousand duodecillion IT IS NOI' CUSTOMARY TO MODIFY “DUODECILLION”
BY A NUMBER EXCEEDING ONE THOUSAND

ninety hundred “NINETY HUNDRED” SOUNDS TERRIBLE.
) SAY "NINE THOUSAND' INSTEAD.

The representation Greg used may have made his error correction easier. He treated “million,

“thousand”, “hundred”, “hyphen”, and “and” as operators with precedence, and parsed the resulting
operator precedence grammar. (See [1] for a description of operator precedence grammars.)

An alternative to top-down parsing is bottom-up parsing, and several solutions used this method.

The numeral grammar may be transformed to a finite-state grammar, and a bottom-up recognizer
written to parse the numeral strings merely by stepping from transition to transition based on the
input. The Input may be parsed in either direction; the left-to-right method requires the
maintenance of extra semantic information, either explicitly keeping track of what’s been seen or

determining it from the values computed so far. The solution program uses the latter method.
Kevin Karplus generalized the transition net approach, writing a program to read i n an arbitrary

set of transitions and parse according to that set. Jim Davidson generalized the same approach a bit

more, programming a parser to handle arbitrary recursive transition network grammars [2].
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The compiling techniques mentioned above are described in better detail in several books on
compiling, e.g. [1].

Most programs had scanners to transform the input from strings to “tokens”. Scanning procedures
are usually useful because it’s easier to work with integers than with strings. Also those programs
which did not include a scanner had to be structured carefully to avoid treating, e.g., "eighteen" as
“eight”. Everyone but Bengt Aspvall used gigantic if statements or table lookup to scan symbols;
Bengt discovered the feature of Sail (the CVSI function) which uses an internal hash function to
associate item names with strings. Bugs in your programs included failure to catch misplaced “and”,
failure to reject “eleven hundred million” as too large, and scanner errors.

The sample solution contains a few interesting features. The approach 1s bottom-up; two
consecutive tokens, along with semantic information, are examined at each step. The scanner treats
a hyphenated numeral as a single token; Kevin Karplus was the only other person to do this. I
think I was able to code my parser more cleanly by making the scanner do more work; I also think
that “twenty-one” 1s just as much a “primitive” quantity as “twenty”, and they should be handled
equivalently.

Feature list:

recursive descent: MJB, AVG, RXM, MFP, WP, JRR, AMR, DAN, AZS, CLT, IAZ/M1

factored grammar (implicit or explicit): MJB, AVG, MFP, WP, JRR, AMR, CLT, IAZ/MI
bottom-up: MP,BTH/REP, KJK, ARS
operator precedence: CGN
right-to-left: 1AZ/M1, MP, K JK
table construction: BIA

arbitrary recursive transition network grammars: JED

References:

[1] Cries, D., Compiler Construction for Digital Campers, Wiley, New York, 1971, chapters 4-6.
(2) Woods, W.A., “Transition Network Grammars for Natural Language Processing,” Comm. ACM

132,10 (October 1970), pp. 59 1-606.
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BEGIN "NUMBER"

DEFINE !="COMMENT", TIL="STEP 1 UNTIL”, NONE=s"NOT", NO="NOT", STARTLOOP="WHILE TRUE DO",
TAB='11, CRLF="(’15&’12)"}

REQUIRE "eoco" DELINITERS;

INTEGER PRST_BLANKS, UP_TO_HYPHEN, UP_TO_BLANK;

PROCEDURE INITBREAKTABLES }
IInitiatizesome useful break tables. Ril tho variabirs are global;

BEGIN "INIT BREAK TABLES”

SETBREAK (PAST_BLANKS«GETBRERK," “& TAB, NULL, "XKR");

SETBRERK (UP_TO_HYPHEN«GETBRERK,"-" NULL, "IKS")}
SETBRERK (UP_TO_BLANK~GETBRERK,""8TAB, NULL, "IKS");
END"INIT BREAK TRBLES";

STRING PROCEDURE INPUTFROMUSER;
BEGIN "INPUTFROMUSER"

PRINT("Type anumeral foiiouod by «return», or just <return>if finished.” CRLF),
RETURN (INCHUHL)

END "INPUTFROMUSER";

STRING NUMERAL; | fhe string which the user submits;

! Explanation of thr program:

This parser recognizes and svaluates numerals formed b y the fol lowing syntax.

<0-999999999> + zero | <1-999> million (<1-8999985>} | c1-999999
<1-999999> <1-999> thousand 1<1-999>}| <1-9999>
<1-9999> » <teen> hundrrd {land} <1-89>} | <hyph> hundrrd | land} <1-88>] | <1-899>
<1-999> + <unit> hundred tiandl <1-99>} | <1~99>

<1-99> + <unit> | <teen> | «<nty> | <hyph>

‘He may expand tho above grammar to get thr following.

<B-999999999> + zero

| <1-999> million
| <1-999> mi | | ion «3-999> thousand
| <1-898> mil | ton «1-999» thousand «1-989»
| <1-999> mi I | ion d-99997
| <1-999> thousand
| «1-999» thousand «<1-899>
| d-99997

<1-9999>, <1-999>, <1-99> a s above.

While parsing, the program keeps track of srmant ic informat ion In the variables NUMBER and TEMP.
NUIiIBER contains the vaiur seen up through the iast “niiiion” or “thousand”, while TEMP contains the
yaiue tarn since the last “ml ii ion” or “thousand”, TEMP is formed uhiir parsing «1-89», «1-999», or
<1-8999>, and the value of TEMP indicator which of these has just been parsed (TEMP=8=> neither,
TENP>999 => <1-9999>, 180<TEMP<99% «> x 1-999 7, othernise <1-99>). If TENP21080, “hundred” has been
seen. 1 $(TEMP mod 100)w®, we’ve just scanned <1-88>. NUMBER=® If neither "million" nor “thousand”
has been seen, NUMBER210080868 if “million” has been seen, and (NUMBER mod 1088008)=8 if “thousand”
has been seen. This semantic information ® nabios us to drtrct t1tegally specified numerals a s
foi iows.

I. “million” must always be preceded by «1-999», and no other "mtliion” or “thousand” nny precedes
itinthe string. Hence 1STENPLY99 and NUMBER=8 for “million” to be legal.

2. “thousand” must also be prrcrdrd by «1-899», and no othrr “thousand” may precede It. Hence
1<TEMP<999 and (NUMBER mod 1800008)=8.

3. Only <teen> or <hyph> or <unit> may precedes "hundred". Hence 1STEMPSS9 and (TEMP mod 18)=0, R Iso,
if “thousand” has been seen, only <unit> may precede “hundrrd”, so |f(NUMBER mod 1088088)»8 than
1<TEMP<9.

4. Numbers loss than 188 cannot be adjacent. When <1-89> |t scanned, (TEMP m o d 188) =8.

Ftdditionai information is krpt in LRSTTYPE to ® nabio us to detect syntactic errors. LASTTYPE could
be used t0 detect some of the errors mentioned above (here se venture Into the murky land dividing
syntax and semantics);
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| GETNEXTTOKEN and token table definitions;

! Total number of tokens;
DEFI N E tN=32;

| Possible token types-nicar to refer to them symbol leallys
DEFINE !BEGINTYPE=O, {ENDTYPE=8,

IZEROTYPE=], IUNITTYPE=2, ITEENTYPE=3, INTYTYPE=4, IHYPHTYPEsS,
IHUNDTYPE=B, ITHOUTYPE.7, MILLTYPE=8, |ANDTYPE=Y, IERRORTYPE=10;

| Useful macro-somewhat Inefflclent but ¢lears

DEF INE RETURNTOKEN (TYPE,VAL) = ¢BEG IN TOKENTYPE«TYPE; TOKENVRL«VAL; RETURN END>;

PROCEDURE GETNEXTTOKEN (REFERENCE STRING INPUTSTRING; REFERENCE INTEGER TOKENTYPE TOKENVAL)
! This procedure roads the next symbol from the front of INPUTSTRING and looks It up In the symbol

table. The type and value of the symbol are returned In the TOKENTYPE and TOKENVRL variables. AT
types (including the error type, for when an unrecognized symbol Is scanned) are positive integers.
The value of “zero” 1s 8, and other values arepositive. Thr token may be a hyphenated numeral, in
uhlch case its value Is bull t from Its component numerals. If ther@ areno symbols lettin 9 zero
Is returned In both TOKENTYPE and TOKENVAL;

BEGIN “GET NEXT TOKEN’

INTEGER PROCEDURE INDEXOF (STRING 8; STRING ARRRY TABLE J);
| Returns the Index of tha glven string In the given array, or 8 If it’s not therm, The array Is
assumed to be single-dimensioned, Brn for n>@8 (note the crafty optimization);

BEGIN “INDEX OF

INTEGER 13
I1«ARRINFO (TABLE, 2) +1; ! For almost-com plete generality;
TABLE [0] «5; } Search whit always succeed)

DO leI-] UNTIL EQU(S, TRBLE[I]);
RETURN (I)

END “INDEX OF";

PRELOAD_HITH
NULL, “ZERO”, “ONE”, “TWO”, “THREE”, “FOUR”, “FIVE”, "SIX", “SEVEN”, “EIGHT”, “NINE”, “TEN”,
“ELEVEN”, “TWELVE”, “THIRTEEN”, “FOURTEEN”, “FIFTEEN”, “SIXTEEN”, “SEVENTEEN”, “EIGHTEEN”, “NINETEEN”,

“TWENTY”, “THIRTY”, “FORTY”, “FIFTY”, “SIXTY”, “SEVENTY”, “EIGHTY”, “NINETY”,

“HUNDRED”, *THOUSAND”, "MILLION", "AND";
OUN STRING RRRRY TOKENS (0:iN);

PRELOAD_HITH

IZEROTYPE,(9) IUNITTYPE, (183 ITEENTYPE, 181 INTYTYPE,
'THUNDTYPE, ITHOUTYPE, INILLTYPE, !ANDTYPE;

DUN INTEGER ARRRY TOKTYPES([1:!N);

PRELORD_M | TH

8 1, 2,3, 4, 9, 6, 7, 8, 9,18,11, 12, 13, 14,15, 16, 17, 18, 19,
28,38, 48, 58, 68, 78, 80, 98, 188, 10006, 1060000, 0

B OUN INTEGER RARRRY TOKVALSI 1 : IN);

STRING §, 813 INTEGER BRERKCHR, I, N1,N2;

SCAN (INPUTSTRING, PRST_BLANKS ,BRERKCHR) ; | Skipblanks, then read symboly
. S«SCAN (INPUTSTRING,UP_TO_BLRNK,BRERKCHR) ;

IF NO 9 THEN RETURNTOKEN(®,8); | There nas n o symbol}

1«INDEXOF(S, TOKENS) ;
IF | THEN RETURNTOKEN(TOKTYPES(I], TOKVALS(1}); | Found it;

S1+SCAN (S,UP_TO_HYPHEN,BRERKCHR) ;
IF NO BRERKCHR THEN RETURNTOKEN (!ERRORTYPE,8); | Not In table and not hyphenated

N1«-INDEXOF (S51, TOKENS); N2+-INDEXOF (S, TOKENS);
IF NO N1 OR NO N2 OR TOKTYPESIN1)w INTYTYPE OR TOKTYPESIN2} = IUNITTYPE THEN

RETURNTOKEN(! ERRORTYPE, 8) ! One of hyphenated parts Is bad;

RETURNTOKEN (!HYPHTYPE,TOKVALS IN1] +TOKVALS IN21) | legal hyphenated numeral;
END “GET NEXT TOKEN’;
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| Ma in program;

DEFINE ERROR (8) =cBEGINPRINT(S,CRLF); CONTINUE "NUMERAL LOOP” END>j

INITBRERKTRBLES;
WHILE NUMERAL «INPUTFROMUSER DO

BEG IN "NUMERAL LOOP”

INTEGER TOKENTYPE, TOKENVRL, LRSTTYPt, TEMP, NUMBER;
TEMP-NUMBER«8; TOKENTYPE-!BEGINTYPE;
STRRTLOOP

BEGIN “TOKEN LOOP”

LASTTYPE«TOKENTYPE;
GETNEXTTOKEN (NUMERAL , TOKENTYPE , TOKENVAL) 4
CASE TOKENTYPE OF

BEGIN “TOKEN CRSES’

['ERRORTYPE] ERROR ("Unrecognized symbol.");

[(!2EROTYPE) IF LASTTYPE=IBEGINTYPE THEN ERROR ("Misplaced ZERO. ")
ELSE BEG IN

GETNEXTTOKEN (NUMERAL , TOKENTYPE, TOKENVRL); ,
IF TOKENTYPE= |ENDTYPE THEN ERROR ("Misplaced ZER0O.") ELSE DONE
END;

[ENDTYPE) IF LASTTYPE=!ANDTYPE THEN ERROR ("Numeral cant end with RND.") ELSE OONE;

{!RNDTYPE] IF LASTTYPEwIHUNDTYPE THEN ERROR("AND must follow HWUNDRED.");

['THUNDTYPE]

{! THOUTYPEI

(IRILLTYPE) IF LASTTYPE=1ANDTYPE THEN ERROR("I1legally placed RAND. ")
ELSE CASE TOKENTYPE OF

BEGIN "HTM CRSES”

(YHUNDTYPE] IF TEMP=8 OR TEMP>99 THEN ERROR ("I | legal ly placed HUNDRED. ™)
ELSE IF (TEMP HOD 18)=80 THEN ERROR ("Numerals !ike twenty hundred not al lowed.")
ELSE IF (NUMBER HOD 1000080)=8 AND TEIP>9 THEN ERROR ("Hundreds over | ap thousands. ")
ELSE TEMP«TENP%100;

£! THOUTYPEI IF TEMP=® THEN ERROR ("Something must precede THOUSAND.")
ELSE IF TEMP>999 THEN ERROR ("Numerals!ike ¢leven hundred thousand not aliowed.")

ELSE IF (NUMBER MOD 108088080)x8 THEN ERROR ("Thousands of thousands not &llowed,")
ELSE BEGIN

NUMBER+NUMBER+TEMP21008;
TENP«8

END;

UINILLTYPE] IF TEMP=8 THEN ERROR ("Something must precede RILLION. *)
ELSE IF NUMBER THEN ERROR ("Too large.)

. ELSE IF TEMP>938 THEN ERROR("Too large. ")
ELSE BEG IN

NUMBER.TENP+10060600;
TENMP«®

END

END "HTH CRSES’!

[IUNITTYPE]

(| TEENTYPE)

[INTYTYPE)

[| HYPHTYPEI IF TEMP MOD 188 THEN ERROR(™I1 legal numeral.)
ELSE TEMP~TENP+TOKENVAL

END “TOKEN CRSES”

END “TOKEN LOOP";

NUMBER«NUMBER+TENP; | Finish off the number;
PRINT("Valiue | s ",NUMBER,".",CRLF)
END "NUMERAL LOOP”

END "NUMBER";
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Notes for November 2, 1976

Topics of today’s discussion:
I. preliminary approaches to problem 3;
2. height-balanced trees,

For problem 3, a data structure for a list of items must be designed sothat each of the following
three operations on the kth element will take only O(log k) steps: accessing the kth item, inserting a
given item just before the kth item; and deleting the kth item. We discussed possible data structures
today, concentrating on height-balanced trees, which seem particularly appropriate to the problem.

Problem 3 may require some adjustment in thinking for the typical computer science student. It’s a
purely theoretical problem, calling for a data structure which can be updated in time proportional to
log k; note that the data structure need not be simple or practical, and the constant multiplier for the .
log k need not be very small. (Of course everything can be tuned up later if possible.) Such
considerations are typical of research in complexity theory. Studies of an problem’s complexity find
asymptotic bounds on its running time or space; only when the lower bound is found to grow as fast
as the upper bound are the constant coefficients studied. The idea 1s to find the best way to solve a
class of problems as the size of those problems gets large, which involves first finding the order of
magnitude of an optimal solution. The practical value of complexity theory is that it helps us
discover bottlenecks in our algorithm; and it also makes us feel secure when we use a “best”
algorithm. Lower-bounds are determined in various ways, but upper bounds are usually found by
constructing a particular algorithm to solve the problem. That’s what we’re doing here; so the same
kind of thought processes that we ordinarily use for algorithm design are involved except that we
are “thinking big” (i.e. asymptotically) and at a somewhat more abstract level.

One way to start is to consider data structures which can be updated in O(log n) time, where n is
the size of the data structure. A tree would work, if 1t’s built right. We will speak of each of the
nodes (or records) of a tree as having several fields: x.info is the contents of the info or key field of
node Xx; x.L is the root of x’s left subtree; and x.R is the root of x’s right subtree. We wish the
ordering of the tree to give some indication of the relation between the various keys. One way 1s to
make sure that the key at the head of x’s left subtree is less than the key of x (vice versa for the
right subtree), but this 1s not enough; we must require ail the nodes in x’s left subtree to have keys
less than x.info, and all the keys in x’s right subtree exceed x.info. It’s easy to search for a key in
such a tree, and the algorithm in Figure 1 does so.

; if x is empty then return(false)
else if key = x.info then return(true)
else if key < x.info then set x to x.L and repeat
else +f key >x.info then set x to x.R and repeat;

Figure I — searching in a binary search tree

In order to be able to search the tree by rank, we must store the rank of each node somewhere mn the
node. We could explicitly store the rank, but that would require too much work when inserting (a
node inserted at the front of the list changes the rank of all the other nodes). Better is to store the
rank so that only the nodes on the path from the root to the point of insertion would be affected.
One way of doing this is to kt the rank field of x contain the number of nodes in the tree of which
x 1s the root; the position of x in the list 1s then the rank of the left subtree, plus 1. Even more
efficient 1s to let x.rank contain x’s rank restricted to its own subtree, nameiy 1 plus the size of its
left subtree.
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procedure INSERT{( integer POSITION; ptr(NODE) NEWNODE; reference ptr( node) TREE) ;
if TREE then

if POSITION <RANK[ TREE ] then

comment Update rank of current node to account for insertion in front of it, and
insert new node in left subtree;

begin
RANKL TREE] « RANK[ TREE] + 1 ;
INSERT( POSITION, NEWNODE, L[ TREE })
end i

else

comment Insert new node in right subtree, in position defined by position
relative to root of TREE;
INSERT(POSITION-RANK[ TREE J, NEWNODE, R[ TREE °J)

comment Otherwise we’ve reached a leaf and POSITION must be 1;
else TREE « NEWNODE;

Figure 2 — insertion into a tree by rank instead of by key

A Sail procedure for insertion of an element just before a given position in the list, using the data
structure we have just defined, 1s given in Figure 2. Note that insertions only take place at leaves of
the tree. Note also that this algorithm 1s recursive, as are many algorithms for processing trees, but
that it may be converted to an iterative algorithm by replacing the recursive calls by gotos to the
beginning of the procedure (at a cost of making the code less clean). It seems that the updating of
RANKITREE] should be interchangeable with the call to INSERT, and a good reason for having
it follow the INSERT call would be to make sure the insertion has been done before updating the
data base. However, were the two statements switched, the recursion-to-iteration optimization could
not be made. RANK need not be updated in INSERT at all; instead, a second phase could go
through the tree and update ail the affected nodes at once.

For random data, the INSERT algorithm will produce good search trees; a sequence of insertions at
the front of the list, however, would essentially reduce the case to that of a linear list. We might,
then, consider ways to keep the tree balanced, in order to keep the work we do for any one node
down to log n. A data structure which serves this purpose is a height-balanced tree (also called an
AVL tree for its originators, the two Russians Adel’son-Vel’skii and Landis). By the height of a tree
we mean the length of the longest path from the root to a leaf; in a height-balanced binary tree, the
heights of the left and right subtrees of any node differ by no more than one. (Knuth discusses
height-balanced trees in [3], calling them simply “balanced trees”.)

We would therefore like to show that the height of a height-balanced binary tree t with n nodes is
no more than O(1og n), that is, that there 1s a ¢ such that h(t) s c¢ log n. It’s sometimes better to turn
such a problem around: instead of examining ail balanced trees with n nodes and showing that
their height cannot be large, we might assume we have a tree of a certain "height and show that the
number of nodes cannot be small. The restated problem is to see, given h which represents the
height of some balanced tree, how small n can get.

A good idea when starting to think about a mathematical problem is to think about some simple
cases. Simple cases for this problem are small trees. The smallest tree with height 0 has no nodes,
the smallest with height 1 has one node, and the smallest with height 2 has two nodes. In the
smallest tree of height 3, one subtree would have height 2 and the other height at most 2; since the
tree 1s balanced, the height of the other subtree 1s at least 1. Constructing the smallest S-height-tree
from the smallest 2- and I-height trees, we see it has four nodes. For h-4, n27.
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We now have the sequence of n values 0,1,2,4,7, corresponding to h=0,1,2,3,4. The sequence isn’t
immediately recognizable, although we might notice that consecutive differences form the Fibonacci
sequence. We also notice a recurrence for n values: ny, the minimal number of nodes in a balanced
tree with height h, 1s n,_, + n,_, + 1 (the last term represents the node for the root). This recurrence
is easier to work with if we add 1 to each side; we then have (1+n,) =(1+n,_) + (1+n,_,). Sure
enough, ny =F, -1, where F_ is the mth Fibonacci number. Some facts about Fibonacci numbers
let us finish the proof: For positive m, F 2 ¢™", where ¢ is the golden ratio (1+v3)/2, a number
which satisfies ¢h=¢h* + ¢h% Hence n 2 F,,,-12 é"!-1, and h <log(n+1)/logé- 1. The constant
c can be easily computed from the latter relation.

Preserving the balance of the tree requires some extra work when inserting new nodes; the tree
needs to be shifted at points of imbalance, starting from the bottom up. There are two cases to
consider, both displayed in Figure 3: the insertion is made in the right subtree, rooted at B, and
either the right subtree or the left subtree of B 1s higher. (Other cases are reflections of these two.)
The tree 1s rotated as shown in Figure 3. To keep track of how balanced atree is, we need an extra
field In each record containing the height of the corresponding subtree. Better yet, if space is a
crucial consideration, we might make the field a “balance indicator” with value +1 1f the right
subtree is higher (by 1), -1 if the left subtree is higher, and O if the two subtrees are equally high.
Such refinements are unimportant when we are only looking for order-of-magnitude upper bounds,
however; we are instead looking for clean algorithms, not optimized when the optimization provides
only at most bounded speedup. For similar reasons we need not change recursion to iteration if we
don’t mind a bounded slowdown.

0 A B o

a 0 B Ao vy

8 ¥v p 8
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X o é a B BY |

8 v
Figure 3 — rebalancing operations

The rebalancing operation preserves the symmetric ordering, and affects no nodes of the tree above
node A since the height of the new tree is the same as the height of A was. This property assures
that rebalancing will not propagate through a non-zero-balanced node, a fact which will be used in
the insertion algorithm in Figure 4.
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procedure SINGLELEFTROTATE (reference ptr (NODE) R);

| Counterclockwise single rotation. Former root is R, new root will be Bj
begin “SINGLELEFTROTRTE”

p tr (NODE)B;
B-!R(A); ! Point B at now root, thrn adjust baianco, ranks, and links;

| BALANCE [R]«| BALANCE 1B) «8; | RANK [8] « | RANK[R)+! RRNK (B)
IRIAJ«IL IBY; ILIBI«R;
AB ! Ropiace root;
end “SINGLELEFTROTRTE” 3

procedure DOUBLELEFTROTATE (reference ptr (NODE) R); B

| Counterclockuise double rotation, Former rootisR, new root uiltbeX.B In Figure 3 It IR[R)
beg in “OOUBLELEFTROTRTE”

p tr (NODE) Xi
X'L{IR{R)]; ! Point X at new root, thrn adjust balances, ranks, and links;
if |BALANCE(X)=8 then !BRLANCEIR) . !BALANCE IIR{A])«8

eise if IBALANCEIX}=-1 then begin !BALANCE [A)«8; IBALANCE(IRIR))el en d

else begin !BALANCE [R]«-1; !BALANCE (!R(R)) «8 end;
IBALANCELX) @ @
IRANKTIR{AI)«RANK IR{AII-IRANK([X]; 'RANKIX]«!RANKIX]+!RANK (RA);

ILUIREAYI «IRIX] 3  IRIXI«!RIR); RIA ILIX)3 ILIX) +R
ReX | Replaco root;
end “DOUBLELEFTROTATE”;

procedure REBRLANCE (reference pir (NODE)A; Boo Iran DIRECTION) 3
! Decides how to rebalance thr tree. DIRECTION is thedirection of imbalance;

begin "REBRLANCE"

If DIRECTION=LEFT thrn | Tree is left-heavy so rotate clocknise;
i f IBRLANCE UL [R})=~1 t hr n SINGLERIGHTROTATE (R) wise DOUBLERIGHTROTRTE (R)

eise ~ I'Tree is right-heavy so rotate counterclockuise;
i f IBALANCEC('RIA)I=1 t h e n SINGLELEFTROTATE (R) eo ise DOUBLELEF TROTRTE (R)

end "REBRLRNCE";

recursive Boo loan procrdurr INSERT(integer POSITION; ptr (NODE) NENNODE ;
reference ptr (NODE) TREE)

!. This routine inserts the node NEWNODE into the balanced trees TREE Just before position POSITION.
The neu node is always inserted as a loaf. [INSERT returns true or false based on whether or not the

insertion increases thr height of TREE}

begin “INSERT”

| f TREE then | Not yet down to leaf level—decide which subtree to insert Into;

i f POSITION<!RANKITREE] then | Insert into left subtres;
begin

'RANK [TREE]« IRANKITREE} +1; ! One more element in oft subtree;
| f INSERT(POSITION,NENNODE, !L (TREE]) then
Height of left subtree h a s increased;

| f BALANCE (TREE)=-1 then I Tree is too left-heavy;
begin REBALANCE (TREE,LEFT); RETURN (aise) and

else | { IBALANCEITREE)=B then | Tree is laf t-hoavy snough;
bog in IBRLANCE [TREE)«-1; RETURN(true) end

elise | Tree w as right-heavy;
begin BALANCE (TREE) «8; RETURN (faise) end

| Otherwise subtree height didn’ tincrease—just PD a SS the word ony
else RETURN(false)

end

_ else | Do the same things for tho rightsubtres)
i f INSERT (POSITION-!RANKETREE) ,NEUNODE, IR{TREE]) then

if VBRLANCE {TREE}=] then begin REBALANCE (TREE,RIGHT) ;RETURN(false) @ nd
else if IBALANCEITREE)=08 then brgin 'BALANCE TREE) «1; RETURN (true) end
® ise begin IBALANCE [TREE] +8; RETURN (false) rnd

else RETURN (false)

else | He’'ve reached the bottom of the tree [with POSITION=1), so Insert the new node;
beg in TREE~NEWNODE; RETURN( true) rnd

end “INSERT”;

Figure 4 — Sail code for insertion to a height-balanced tree
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One might wonder whether relaxing the height-balance requirement would speed up operations on
the tree. Karlton et al. [2] described the performance of trees in which the subtree heights may
differ by k21, and came to the conclusion that I is best. Other kinds of balancing have also been
investigated. Aho, Hopcroft, and Ullman [1] describe algorithms for 2-3 trees, for which each
non-leaf has two or three descendants and every path from the root to a leaf 1s of the same length.
Insertion, deletion, etc. aye analogous to the operations for height-balanced trees. Knuth in [3] also
discusses weight-balanced trees, for which the number of nodes in the right subtree approximately
equals the number of nodes on the left. ~ Such trees may require slightly less space than
height-balanced trees, but usually the weight balance is harder to maintain.

References:

[1] A ho, A.V, Hopcroft, J.E., and Ullman, J.D., The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Mass., 1974, sec. 4.9-4.12.

[2] Karlton, P.L,, et al., “Performance of Height-Balanced Trees”, Comm. ACM 19,1 (Jan. 1976),
pp. 23-28.

[3] Knuth, D.E., The Art of Computer Programming, Addison-Wesley, Reading, Mass., 1973, sec.
6.2.3.
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Notes for November 4, 1976

Topics of today’s discussion:
1. more ways to approach problem 3;
2. a related problem: counting in base 2 in bounded time per step;
3. a case study of problem solving.

For problem 3 we wish to find a data structure for which the operations of insertion, deletion, and
search for the kth highest element all take time Oflog k). Last time we discussed balanced trees, for
which these operations take time O(log n), where n 1s the size of the tree; today we discussed
modifications to balanced trees which might improve the running time. We also considered today
the problem of counting in base 2, doing a constant amount of work at each step; the problems are
related because the carry operation in addition and the borrow operation in subtraction are
somewhat analogous to the tree-balancing operations for balanced trees. In general we are
exploring a previously unsolved research problem, and we are going to illustrate our thought
processes by recording the false starts we made and the ways we recovered.

A data structure for problem 3 must work in particular for the first element in the ordering;
accessing the first element must take time O(I), that 1s, bounded by a constant. Hence if we use a
balanced tree, we should store small numbers (assuming we order elements by the size of their keys)
where they are easy to access. (Note that problem 3 may be interpreted in two ways: either as
search, insertion, and deletion of the kth smallest key in the data structure, or as search etc. of
element k where the data structure contains elements I, . . . . n.) One way would be to store the small
numbers near the top of the tree, as in Figure la. To reach the kth element in this tree, we would
examine the binary representation of the number and descend through the left or right subtree of a
node depending on the parity of the appropriate bit. Clearly the time to access k 1s bounded by
c-log k, ¢ representing the overhead of deciding which branch to take; but it 1s not at all clear how
this data structure could be kept in such nice order if arbitrary additions and deletions were allowed,

I 3

7 N, / N

SN! =a
/ \

) Figure I — Balanced trees in which a search for k takes O(log k) time

Suppose that information in the tree is stored in symmetric order, like in the examples we considered
fast time. In a balanced tree the “Jeftmost” leaf can be an arbitrary distance from the root—Of(log n),
where n is the size of the tree-but we might succeed by saving not only a pointer to the root of the
tree as- usual but also a pointer to the leftmost node, and having two-way links throughout the tree.
(A good principle, if time is more important than space: when something is hard to access, save a
link to it.) Figure 1b contains an example of such a tree. Will it work? If we could prove that the
root 1s always near the middle of the tree, then all keys on the right side of the tree would be at least
n/2; it would take log n operations to reach the top and log n to reach the bottom-at most

2+(log(n/2) + log 2) operations to reach any node on the right side of the tree. But we can’t prove
that; if the tree has the least possible nodes in the left subtree (something like F,) and the most
possible in the right (something like 2h), then the rank of the root tends toward 0 as the size of the
tree increases. Fortunately we don’t need to prove that the root is near n/2. We merely notice that if
we go up m levels, we need go down at most 2m, so somehow the amount of work we do is
proportional to the depth of the smaller of the two portions of the tree.
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We see that it’s probably a good idea to study “bad” trees, those which are worst cases in some
respect. In general, it 1s a good idea to start thinking about a problem at a low level in order to
build up intuition about how the problem might be solved; by familiarizing ourselves with the
concepts of the problem, we become able to think of them in higher-level terms. (We may encounter
a similar situation when programming. We determine “primitive” operations which we know we can
implement, and build up the rest of the program in terms of these primitives. Compare the
top-down bottom-up discussion in the notes of October 28.) Our low-level thinking will involve
"miniproblems” which when solved give us more information about just what concepts are needed to
solve the larger problem. In this case, the miniproblems involve bad trees.

We can state an algorithm for accessing the kth element in the tree structure described above. We
go up the tree, stopping just before the first node whose rank n, exceeds k, doing this in m steps.
We then go down the right side of the tree until we find k, taking no more than. 2m steps. We
know, since the tree is balanced, that m = O(log n ) 2 O(log k). This relation in itself doesn’t help us
much, since the mequality goes the wrong way; how can we get an equality in the right direction?
We know that if k 1s in the right part of the tree, n, isn’t much bigger than k. We can also note
that if we stop climbing the tree just one step earlier, we’ve used m-1 steps, where m- 11s bounded
by the log of some number a, (the rank of the prior node), and n, 1s less than or equal to k. We
have m-1 = O(log n,) s O(log k), the bound we want; the total time we spend is 3m and therefore is
also O(log k).

We need now to consider insertion into our data structure. What we’d like to do 1s find the place to
do the insertion, and then just make some kind of local fix. Considering some examples will help
turn up possible difficulty. Suppose we insert into position 1, many times. Eventually the left side
of the tree will fill up and the tree will need to be rebalanced at its root; to do this, though, we will
need to go all the way up the tree, and we can’t do this in constant time.

Another miniproblem we might consider 1s that of counting in base two, with the constraint that we
do a constant amount of work at each step. If we just use the digits 0 and 1, we see that adding one
to a number n occasionally results in a lot of carries, taking time proportional to the length of n.
One 1dea 1s to code the numbers so that only a few digits change at any step; the carrying operation
1s essentially being deferred until later. A code in which successive numbers differ by only one digit
1s called a Gray code, and we could use it if we could figure out in constant time which digit was the
next to change. (There is a tricky way to do this [1], but Knuth suggested not pursuing this since it
1s so tricky it probably won’t generalize to our maxiproblem.) Another idea is to use a redundant
representation for numbers, say, using the digits 0, I, and 2. Since most numbers (although not

- all-e.g., not 11... I) would have multiple representations in this system, maybe we could pick for each
number the representation that minimizes the work we must do.

Studying this counting problem is useful because the difficulty presented by carries is similar to that
presented by tree-balancing in our other problem. Carries that don’t affect much of the number
‘correspond to insertions that don’t affect much of the tree. Eventually, the number “fills up” just
like the tree did, and fixes must be made farther left in the number and farther up the tree. Also, it
1s always worthwhile to look for representations of a problem which can be handled more
conveniently. In this case, it’s probably easier to deal with numbers and sequence lengths than with
limbs of trees, and for many problems it’s possible to change the notation used, or the representation
of the data, or some other feature in order to view the problem in a different (brighter) light. The
art of devising analogous but simpler miniproblems 1s an important part of research work.
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Using binary numbers a,..a,, we get a carry out of a, half the time, a carry out of a, % of the time,
and so on; this averages to one carry for each addition we perform, but the average includes the bad
cases where many carries are done. What we want 1s to spread out the work we do so as to do only
a little, maybe just one operation, at each step, and the redundant number representation may make
this easier. We note that additions to O or I are easy; only adding to 2 now causes a carry.
However, a 2 can be changed to a 10-a “difficult” case becomes two potentially easier cases. One

possibility is to fix up a 2 after each addition. The resulting sequence is 0, 1, 2 fixed to 10, 11,
12-20,21-101,102-110, 111, 112420, 121-4201, 202. Now what? We need to do two things. First,
we must decide what 2 to fix up when we have a choice. Second, we must prove that the fixup
never leads to more than a constant amount of work; fixing up the rightmost 2 in the sequence 22..2
1s just as bad an operation as the worst case of the binary number system.

Assuming we {ix the leftmost 2 in the number (apparently as good a choice as any), we want to
determine the maximal amount of work to be performed at each step. We’ll use the following
procedure for addition: first fix up the leftmost 2 by changing x2 to (x+1)0, then add 1 to the
number by changing O to 1 and x 1 to (x+1)0. This should result in one carry at each step (fixing
the 2) and one carry every other step (from the last digit). We note that if x 1s 2 in the latter case,
the carry will propagate, and we hope that won’t happen; unfortunately it may, in the sequence
1TH LIEN 1120, 1111201, 1112010, 1 12001 1, 1200020, 2000021, 10000030 (illegal). A patch to the
algorithm: fix the rightmost instead of the leftmost 2. The following sequence results: 0, 1, 10, 11,
20, 101, 110,111, 120, 201,_1010,1011, 1020, 1101, 1110, 111, 1120, 1201, 2010, 10111, . ..

The algorithm we have so far is
Rule One: (Fix a 2.) Find the rightmost 2 if there 1s one, and change x2 to (x+1)0.
Rule Two: (Increment the number.) If the rightmost digit is 0, change it to 1; otherwise in the

last two digits, change x I to (x+1)0.
The last digit alternates between 0 and I. Rule Two never causes a carry into a 2 because a 2 in the
next-to-last position 1s fixed by Rule One. We need only worry about carries from applying Rule
One, 1.e. consecutive 2’s in a number. How can consecutive 2’s arise? From an application of Rule
Two: 212xx-220xx. And how did 212 happen? From an application of Rule Two: 2112x-2120x.
(So far we ignore the effects of Rule One.) Showing that consecutive 2’s cannot occur reduces to the
problem of showing that 2112 cannot occur, and this problem doesn’t seem any easier.

Looking at the sequence of numbers (after extending it a bit: iooi, 10020, 10101, 10110, 10111,
10120, 10201, 11010, 11011, 11020, i 1101, 11110, ii ii, ii 120, 11201, 12010, 20011, 100020, . . .), we

might be able to figure out a formula for the digits and prove using that formula that 2’s can’t occur
consecutively (one student did this-see below). We saw by looking further ahead in the sequence
that it was possible to generate two 2°s (1 11 111, 111120,11 1201, 112010,120011, 200020, etc.) so we
do have to deal with the 2’s somehow. If we can’t figure out a formula, we might try to show a
minimum distance between 2’s. Or we might note that 2’s seem only to precede O’s and try to prove
that. This last seems the easiest to check. It 1s also a stronger statement than what we were trying to
prove before, and illustrates a good problem-solving procedure: if an induction isn’t working,
strengthen the induction hypothesis.
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It indeed turns out that any 2 must be followed by a 0. Application of Rule One changes x02 to
x 10 and x 12 to x20, 1t will fail when x 1s a 2, and now we have to rule out 202. Once again we
strengthen the induction hypothesis: between any two 2’s are at least two O’s, and every 2 is followed
by a 0. To prove this, we look at the first number n for which it 1s not true, along with the number
n-1 immediately preceding it. First, if there are two O’s between any two 2’s and each 2 1s followed
by a 0 in n- 1, each 2 will also be followed by a 0 in n. If not, the exception-21 or 22-arose either
from Rule One fixing a 2 in 202 or 212, or from Rule Two adding to 211 or 201 to get 220 or 2 10.
The first case and half of the second 1s ruled ‘but by the induction hypothesis. If n-1 ended with
201, the 2 would have been fixed up by Rule One since there’s no rwm for any other 2 to interfere.
Next we show that between any two 2’s in n are at least two 0's. If not, we have the pattern
2011 1... 12 in n. Again there are two cases depending on how the latter 2 was created. If from Rule
Two, then before the addition we had 20111..114; either Rule One should have fixed that 2 or

there was some other 2 which violated the induction hypothesis. If the latter 2 came from Rule
One, then n-1 contained the pattern 2011 1.112 which was changed to 20111..120. Such a pattern
violates the induction hypothesis.

The strengthened inductive solution above was not discovered during class. One of the students
began working on his own and essentially found a pattern for the behavior of the kth digit from the
right. The pattern turns out to be even simpler for a related sequence we were simultaneously
considering:

Rule One’: Same as Rule One.
Rule Two’: If the rightmost digit is 0, change it to I; otherwise change it to 2. (It can’t be a 2

because Rule One’ has already acted.)
This sequence begins 1, 2, 11, 12, 21, 102, 111, 112, . . . ; the rules are somewhat more elegant, and
only one carry 1s done per step instead of 1.5 carries per step in our previous method. Since the
rules are more elegant, the analysis of this sequence can be expected to be a little simpler, and since
the carries are done at the average rate we can expect any difficulties with 2°s to show up faster. It
turns out that the rightmost digits alternate 1, 2, I, 2, .., the next-to-rightmost digits go 0,0, 1,1, 2,
0,1,12 « «= the next go at just half speed of these, and so on. (Thus the positions where 2’s are
“fixed up” in this latter sequence 1s just the sequence of positions needed to generate Gray code with
constant time per step, so we have stumbled into another approach to the problem solved in [1]!)

Both procedures give us a way to count, doing at most two operations at each step (an
implementation of either method would use a stack to keep track of the rightmost 2). Counting with
numbers corresponds to insertion at the left in trees; although a general solution to problem 3 will
require us to consider deletions and arbitrary insertions, this miniproblem perhaps sheds some light
on how to go about it.

Referenci:

(1] Bitner, J.R., Ehrlich, G. and Reingold, E.M., “Efficient Generation of the Binary Reflected
Gray Code and Its Applications”, Comm. ACM 19,9 (Sept. 1976), pp. 517-521.
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Notes for November 9, 19 76

Topics of today’s discussion:
L. counting either forward or backward in constant time’ per step;
2. use of cellular automata to model a process which moves from state to state.

Last class we discussed the problem of counting in constant time; in today’s class, we studied the
more general problem of either incrementing or decrementing (the choice being arbitrary) in
constant time. The emphasis of last class was on finding a good counting algorithm; we tried several
approaches, failing and recovering a few times. This time we worked on a generalization of an
algorithm we’d previously found, concentrating on proving it correct. The proof used the concept of
a cellular automaton, with which the state changes resulting from incrementing and decrementing
could be represented conveniently.

Just as a redundant number representation gave us flexibility in the addition problem of fast class,
it should help us when we need to do both incrementing and decrementing in constant time. We
will use the digits {1,0,1,2} to represent numbers (where 1 1s “minus one”). It 1s possible to add and
subtract in bounded time using just the digits 1, 0, and 1-computers have been built which-use this
ternary number system (see [1])—-but we add the extra digit to simplify the problem. |

We will also attempt to generalize one of the incrementing algorithms we discovered last time; th=
algorithm we will consider 1s the following.

Rule One: Fix the rightmost carry or borrow if one exists.
Rule Two: Add or subtract one as desired.

Fixing a carry consists of converting x2 to (x+1)0 as before; to fix a borrow, we change xi to (x-1)1.
We will show that x will not be 2 when a carry 1s fixed, nor 1 when a borrow is fixed.

Some initial observations are in order. First, we can’t just count backward by reversing the way we
counted forward. Our incrementing algorithm of last time maintained a stack to keep track of 2’s to
fix up; to subtract by undoing an add would involve “unpopping” this stack and would not be easy
to implement. Second, it really 1s in our interest to fix a carry or borrow at each step. Although, for
Instance, it’s less work to decrement a 02 than a 10, it 1s more work to increment the 02; we don’t

know what operation will come next, so biasing the algorithm in favor of adds or subtracts 1s
probably a bad idea. Thus, it 1s reasonable to consider the algorithm stated above.

Our first concern 1s whether or not the algorithm works. For the problem of last time, which
irivolved only addition, we could find a pattern in the counting sequence, but that will not be
possible here. (One of the nice features of this problem is that it requires a more powerful proof
technique, which we discuss below.) Another way, which we also used last time, 1s to find an
invariant which 1s true for any numeral our algorithm would produce.

To fix: a borrow, we change xi to (x-1)1; if x is i, we have an error, so it should be the case that ii
can never occur. Our first stab at an invariant: no numeral contains consecutive 1’s (or consecutive

2’s). Consecutive i’s could have resulted from fixing 10f, which could have resulted from fixing
1001, and so on; soon the rightmost 1 has run off the end of the string, an impossibility. Last time
we used the “successive approximation” technique to home in on an invariant; the resultis some
statement about which patterns of digits may occur between two 1’s, and which patterns may occur
between two 2’s. Determining the correct variant 1s probably a tedious process, however, because
of the constant annoyance of dealing with what’s going on in the right-hand part of the digit string:
where 1s the next 1? what’s between the two 1’s? when does the second 1 get fixed up? what
happens when it does, and can anything get in the way? and so on. We want to {localize our
examination of the problem, to represent the problem in such a way that changes in the string five
or ten or twenty digits to the right can be ignored or treated in a convenient way.
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Suppose we think of the digit positions as people (or machines, depending on how we feel about
anthropomorphizing computers) holding up cards; these people talk only to their neighbors,
receiving messages from their right and delivering messages to their left. Each message 1s either
Fixup, add one, or subtract one. The action taken by a person holding a given card and
receiving a given message 1s specified by the table of Figure 1.

Person holds card 2 0 1

Message 1s ADD 1 New card: ? 2 0
Action: ERROR PUSH POP

Message 1s SUB 1 New card: l 0 1 ?
Action: POP PUSH ERROR

Message 1s FIXUP New card: 0 0 1
Action: SEND + SEND F SEND F SEND -

POP POP

Figure I — transition table for counter

The error action does the appropriate thing. A push saves the location of a 2 or 1 on a stack; pop
takes the location off the stack. The send action transmits a message to the person on the left (e.g.
“SEND +" means to send the message “ADD 1”). Initially, all people start out holding a zero card.
Messages, alternately fixup and either add or sub, are input at the right. The transition table is
not quite an accurate description of the counting process, since the propagation implied for the
fixup operation doesn’t occur (the location of the rightmost 1 or 2 1s kept on the stack), but it 1s a
good enough model for the purpose of proving the algorithm’s correctness.

The table in Figure 1 describes a cellular automaton, a model of computation introduced by John
von Neumann. A general cellular automaton is two-dimensional; like Turing machines, cellular
automata can compute all computable functions. Cellular automata seem especially useful as models
for parallel processes found in large computing systems, for computing systems which can simulate
their own behavior, and for biological reproduction; they are discussed in [2] and [3].

| F (F] F [F] { FI-)

+ + +

error | 1 2 hd error

Fb

Figure 2 — transition diagram for counter (output from a cell is specified in brackets)
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Figure 2 contains a transition diagram for each cell of our automaton; digits correspond to states in ---
the diagram. We need to show that the automaton never reaches the error state, that 1s, that it
never tries to add to a 2 or subtract from a I. For the rightmost cell it suffices to show this for the
input sequence (F{+|-})* described by the algorithm-a fixup, followed by a + or -, followed by a
fixup, and so on-and we can do that, but this argument would not be sufficient to show that the
other cells never get into the error state, because the messages they receive need not strictly alternate
between fixups and +/-'s. Therefore we need to find a more flexible criterion which will guarantee
that the error state cannot occur. Several adds or subtracts in a row certainly lead to error, since no
fixups are done to avoid overflow. If we forbid, say, two consecutive adds or subtracts, can we ever
wind up in the error state? Well, an error caused by incrementing can only come from adding to 2,
and the only way to reach 2 1s by adding to I; hence at least two adds in a row must be input to
cause such an error. Similarly, only from two consecutive subtracts can a decrementing error arise.
Can errors arise indirectly, as a result of two adds or subtracts being transmitted? We easily see by
examining Figure 2 that a fixup or subtract command must separate any two adds which are
transmitted, and a fixup or add 1s sent between any two subtracts. We have shown that for any
sequence of +°s, -'s, and F’s which contains neither two consecutive +’s nor two consecutive -’s, a cell
of the automaton will function without errors, and it will transmit a sequence of +’s,-'s, and F’s
without consecutive +'s or -’s. This argument does not quite characterize the set of inputs which
don’t cause errors, but it does show that our algorithm works.

So what have we done? We have proved that certain sequences of commands (each command being
either add 1, subtract 1, or fixup), when applied to the digit string consisting of all zeros, yield a
string of legal digits. We were able to determine “good” command sequences, using a cellular
automaton model of a digit string, by examining each digit position locally, ignoring for the most
part what was happening to other digits farther down the line. Among the “good” sequences are
those generated by our counting algorithm. The semantics of our algorithm guarantee that the
resulting digit string will represent the correct value; the algorithm, therefore, 1s a way to count,
either incrementing or decrementing, in constant time per step. We noted last time that incrementing
a binary number could be interpreted as insertion at the left of a balanced tree. Today’s algorithm,
as a generalization of the counting algorithm of last time, suggests a method of handling deletions

from a tree as well as insertions.

We observed earlier that the cellular automaton did not accurately model the processing of fixups.
The implementation of our algorithm includes an optimization: keeping the fixup location on a
stack to avoid fixup propagation. More generally, we might associate with each position x a pointer
to the next 2 or 1 to the left, in order to allow additions or subtractions of more than 1. Apparently
no work has been done on formalizing optimizations of this kind within the framework of cellular
automata. Such a formalization, if it existed, could be applied to other computer algorithms; for
example, coroutines in a program can be modelled by a cellular automaton, and it would be nice to
have a way to represent optimizations of the coroutine structure.

When ‘we apply the counting algorithm to balanced trees, we encounter another difficulty: our
assumption that integer operations are performed in constant time. For large enough integers, this
assumption is clearly in error, and a factor of log,n (k some large constant) representing the length
of the number creeps into our “constant time” operations. Paradoxically-since we’re interested in
behavior of the algorithm for large n, which 1s exactly where we get into trouble-we ignore the
problem, since the unreal theoretical model we are using is actually most relevant to practical
programming.
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The similarity between counting and tree maintenance 1s perhaps more obvious if we use {0,1,2,3} to
represent numbers, instead of {1,0,1,2}. Each digit might then have a meaning of, say, the number
of items in a tree, or the number of balanced trees in a group of trees. Ail nonnegative numbers are
still representable (interesting digression: Wwe can represent ail positive base ten integers using the
digits {1,2,..,A= 10)) but we no longer have a way of representing negative numbers. Figure 3
contains the corresponding transition table; examining it as before, we see that any input sequence
which starts with an add, which contains neither consecutive adds nor consecutive subtracts, and for

which the number of adds exceeds the numberof subtracts, yields a legal digit string.

0 2 3

ADD 2 3 error

SUB error 0 I 2

FIX 2(-1] (F] IF] 10+]

Figure 3 — transition table for base two counter using digits {0,1,2,3}

References:

[1] Avizienis, A., “Signed-digit number representations for fast parallel arithmetic”, IRE Trans.
Electronic Computers 3 ( 196 1), pp. 389-399.

[2] Burks, A.W. (ed.), Essays on Cellular Automata, University of Illinois Press, Urbana, lilinois,
1968. -

[3] Codd, EF. Cellular Automata, Academic Press, New York, 1968.
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Comments on solutions to problem 3
incorporating notes from November 11 and 18, 1976

Several different solutions to problem 3 were submitted; two representative solutions are described
and compared.

Solution A, using a balanced tree (Don Knuth)

Nodes in the tree are stored in symmetric order; each node contains a key or a rank field indicating
the size of its left subtree as in [3]). There is also a header node which points to the root of the tree.
The left path of the tree (including the header node) 1s doubly linked, and a pointer to the leftmost
node is maintained. Nodes not in the left path are labelled +, -, or +, as in {3}; a node’s label
indicates its balance factor, respectively either +1, -1, or 0. The header node is iabelied R. Other °
nodes in the left path may be iabeiied +, -, * B, or C. Here B stands for “borrow” and indicates a
height deficiency; it labels a node whose balance factor 1s 0 and whose parent node’s balance factor
1s (erroneously) based on the assumption that this node’s height is one more than it really 1s. The
code C stands for “carry” and indicates a height surplus; it labels a node whose balance factor 1s -1
and whose parent node’s balance factor is (erroneously) based on the assumption that the node’s
height 1s one less than it really is.

The insertion algorithm introduces C’s into the left path, and the deletion algorithm introduces B’s.
The fixup algorithm in turn eliminates them, either by moving them up the left path or by
rebalancing the tree. A fixup uses one of the following transformations:

nr m> oe (single right rotation, node removed from left path)
Ce=>- ¢ (no rotation; merely moves C up)
C + => — (no rotation; merely corrects balance factors)
CB => - - (no rotation)
C R=>-R (corrects balance factor)
B-=> ® B (no rotation)

Be=> 0 + (no rotation)

B+=> ® «Bore-Bor-+- (single or double left rotation, depending on the
OF ee + Or. -+ state of subtrees, with new node inserted into

left path)
B C e>e- (no rotation)
BR=> @® R (corrects balance factor)

Examples of these transformations are given in Figure 1.

Several operations are used to maintain the balanced tree. The operation “fixup” finds the leftmost
B or C and applies one of the above transformations there; or, if there are no B’s or C’s, “fixup”
does nothing. This takes bounded time since positions of B’s and C’s can be kept on a stack
(leftmost on top). The operation “fix B" does a fixup only if there is a B on top of the stack; “fix
C" does a fixup only if there is a C on top of the stack. The operation "moveup” consists of
alternating “fixup” and “compare” where the comparison stops at the first node x from left to right
such that the desired node is in the left subtree of x (the header node insures that x exists). The

fixup insures that the node being compared 1s never C or B. We could also do the fixup only if we
encounter a C or a B. The operation “search” consists of "moveup” plus a search in the left subtree
of x. The operation “insert” consists of "moveup” plus an insertion into the tree x; then if x=R and
subtree x has grown in height (it must now be - since the insertion goes into the left subtree), we do
the “fix C” operation twice and then label x with a C. The operation “delete” consists of "moveup”
plus a deletion in the tree x; then if x#R and subtree x has decreased in height (it must now be ® ),
we do the “fix B” operation and then label x with a B.
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Note that no transformation covers the cases of two adjacent B’s or two adjacent C's. We now show
that these cases will never arise. In fact, the following two conditions are invariant between search/ |
insert/delete operations:
(i) After a B there 1s a C or a . before the next B.

(ii) After a C there is a B or at least two -’s before the next C.

The fixup transformations clearly have no effect on (i) and (ii). Furthermore after we do a “fix B”
operation it 1s clear that if the top of the stack is now a B, then that B 1s preceded by a e . After we
do one “fix C" operation, the top of the stack is either B or there is a - preceding the first C; after
we do two “fix CG" operations, the top of the stack is either B or there are two -’s preceding the first
C. (If the “fix C" operation was C- => . then by (ii) another - is “uncovered”.) Therefore when
msertion and deletion change x to C or B the invariants are preserved.

Using these two invariants, we can prove that the kth node can be accessed as required in O(log k)
time. Let m be the number of fixup-compare cycles during the moveup operation until node X is
found; thus m 1s the length of the left path of X. We showed in the notes of November 4 that the
height of X is O(iog k). Thus m = O(log k) and the “search” operation takes O(log k) steps. Since
“insert” and “delete” add only bounded time to “search”, the total running time is bounded by
O(log Kk).

For an example of how the tree 1s built, we’ll examine the case of multiple insertions into the
beginning of the tree. The following sequence results, assuming that the moveup operation does
nothing.

KR

*R *C--R *C--CR *C--C-R ® C--CR

CR 0 CR «Co--R 0 OT «Ce+--CR
. +C-R * R AE +C-+R *C-+CR

o R 0 (R Ce-R o(CeeeR Coee-R

After every fourth step we get ® C**a where ® Ca occurred earlier, so the right part (corresponding to
the top of the tree) of the sequence repeats % as quickly, then 1/16, and so on. The tree after m
insertions, where m 1s a power of two, 1s a “complete” binary tree, perfectly balanced except for an
extra node stuck on the left.
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Solution B, using a list of 2-3 trees (based on that of Janet Roberts)

This solution uses 2-3 trees, described in [1]. In a 2-3 tree, the lengths of paths from the root to the
leaves are equal. This property 1s maintained by having two different kinds of nodes, 2-nodes and
S-nodes; 2-nodes have two subtrees and contain one key, and 3-nodes have three subtrees and
contain two keys.

Insertion into a 2-3 tree 1s done only at its leaves. If the appropriate leaf LL 1s a ‘L-node, it 1s made
into a S-node. Otherwise it becomes two 2-nodes and the insertion must be propagated up the tree.
If all nodes along the path between L and the root are S-nodes, the root itself splits to two 2-nodes
and the tree increases in height.

Deletion 1n a 2-3 tree 1s somewhat more complicated, since 1t may take place anywhere within the
tree. A nonleaf may replaced by its successor or predecessor (both are leaves) and the leaf deleted.
A leaf 1s deleted by removing it and moving in a key from its brother to replace it. If the brother
was a 2-node, it has no keys to spare; the two nodes, together with a key from their parent, may be
combined into a single node. If the parent was a ‘L-node, the process 1s repeated. If this process
results in deleting a key from the root, and the root 1s a 2-node, the tree decreases in height.

The data structure for this solution 1s a list of groups of 2-3 trees. The group of trees at position h
in the list contains-between one and six 2-3 trees of height h. Trees in each group are ordered-e.g.
all keys 1n tree #1 are less than the smallest key in tree #2. The trees are separated by predecessor
keys to simplify maintenance operations. Keys are stored in all nodes of each tree (i.e. there are no
“dummy nodes”), in symmetric order. A sample structure 1s shown in Figure 2.

Also maintained are two lists of pointers as shown at the top of Figure 2: one list containing
pointers to groups which contain six trees, the other containing pointers to groups which contain
only one tree.

To insert a key into the structure, we begin by finding the appropriate tree. Insertion into the 2-3
tree proceeds normally; the only problem arises when the tree fills up (the root then contains three
keys) and the height must increase. There are two cases. If there 1s room in the current group (i.e.
it contains fewer than six trees), the tree 1s split in two; the left half replaces the old tree, the right
half becomes a new tree, and the key which would have become the new root in straightforward 2-3
tree nsertion 1s made the predecessor key of the newest tree. If the new tree 1s the sixth tree of the
group, a pointer to the group 1s added to the list of pointers mentioned above. If, on the other

- hand, the group of trees overflows into seven trees, trees #6 and #7 are combined, along with the
predecessor key for tree #7, to form a tree of height h+1. This tree is added to the beginning of the
h+ 1st group; the predecessor key for tree #6 is moved to become the predecessor for the new tree.
The pointer list for groups which contain six trees 1s then modified according to rules presented
below. An example of overflow processing is shown in Figure 3a, with four trees displayed instead
of seven In order to keep the example small.
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Carry out of position h into h+1. Before:

A B C DE F.C H I
group h
subtree

ht=h-I FAN
J K L ™,N

group h+l |
subtree

ht = h |

After:

A B C D

group. h |
subtree

ht = h-I .

E H J K L M,N
group hi] J \ ZA JN
subtree _ F,G i

| Borrow into position h from h+ 1. Before:

A B,C

group h |
subtree

ht = h-I|

D F H 1,J

group h+l / \\
subtree E G |

CT ANAN
After:

A B,C D E F G

group h | |
subtree ANE

ht = h-1 |

H I,J

group h+l |
subtree

ht = h

Figure 3 — processing of carries and borrows in Solution B (only four trees are used instead of seven)

635



The problem for deletion occurs when the key’s removal causes its tree to decrease in height; when
this happens, the one key in the root is forced to move down a level. This tree 1s combined with
one of the adjacent trees in the group if possible. If the adjacent tree had two keys in its root, one
of its subtrees 1s concatenated with the deficient tree, and the size of the group stays the same;
otherwise the two trees coalesce into one, and the size of the group drops by one. If the deficient
tree 1s the only tree in the group, it 1s combined with the smallest tree from the next higher group.
If there are no trees in the next higher group, the single tree either splits into trees which are added
to the next lower group, or else receives a carry from the next lower group. The pointer list for
groups which contain one tree 1s then modified according to rules presented below. Figure 8b 1s an
example of borrow processing.

The rules for using and updating the two pointer lists are similar to rules we’ve already discussed
for adding and subtracting powers of two in a redundant binary number system. We may view the
structure as a digit string, where a digit represents the number of trees in the corresponding tree
group. The operations we use to add and delete trees from the structure are done in such a way
that only one “carry” or “borrow” 1s done at each step. There are two invariants which insure that
no two carries or borrows appear “too close” to each other, and hence that carries and borrows
propagate no more than one place:

Invariant I: Between any two 6’s in the digit string 1s at least one 1, 2, 3, or 4 which we will
call a buffer digit for the 6s.

Invariant 2: Between any two I's in the digit string 1s at least one 3, 4, 5, or 6, and there 1s at
least one 3, 4, 5, or 6 to the right of every 1 unless the structure contains only one
element. The 3’s, etc. are buffer digits in this context.

A carry out of some position 1s done to “fix up” a 6; it transforms x6 to (x+1)4 by combining the last
two trees in the group, with their predecessor keys, into a 2-3 tree of the next greater height. A new
6 may be created 1n the process if x was 5, but the buffer digit for the old 6 still left-buffers the new
one, and the 4 just created buffers the new 6 on the right.

A borrow into a position is done to fix up a 1. There are several cases. If there 1s a next higher
group to borrow from, its first tree is split into two or three trees, depending on whether the root 1s a
2-node or a S-node; this converts x | to (x-1)3 or (x-1)4. If the I is leftmost in the iist and a 2

Immediately follows it, a borrow 1s done for the next lower position; the larger tree 1s split and
added to the lower group, converting 1-12 to 1-4 or 1-5. If any other digit follows the I (note that the
next digit cannot also be a I), a carry is done from that position, converting 1-1x to F2(x-2).

To add a tree mto position s of the list, we must consider also the positions of nearby 6’s and buffer

digits. (A group will be identified by the digit representing the number of trees it contains.) Let d,
be the digit at position s before the addition, and d’, be the digit at position s after the addition.
(Positions in the digit string are numbered right to left, starting at 1-the zero position will indicate
an imaginary digit at the right of the string.) Let t be the position of the first 6 to the right of d,, r

the position of the first 6 to the left of d,, and q the position of the second 6 to to the left of d (t
may be zero and q and r e if no such 6’s exist). Also let x be the position of the leftmost buffer
digit (1, 2, 3, or 4) separating d, and d, (x is only used when d,=5). We have one of the situations
shown in Figure 4; rules for addition are expressed in Table 1.

6 ... 635355 buffer ... d, ... 6 6 ... 6555 d,=5 ... buffer ... 6
q r X S t qg r S X t

Figure 4 — cases for addition
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d, d’, carry, out of position ..,
case i 2 r

case ii 2 3 r

case iii 3 4 I

case iv 4 J r

case v 5, x>s 4 s (Figure 4a)
case vi 5, X<s 6 r (Figure 4b)
case vii 6 5 S

Table 1 — rules for addition of one into position s

To see that these rules preserve Invariant 2, we need only note that no new 1’s are created by
addition, and anywhere a 3, 4, 5, or 6 was acting as a buffer between two 1’s, there 1s still a 3, 4, 5,
or 6. To verity Invariant 1, we will analyze the cases. Cases f-iv present no problem, since the
fixup at position r provides a buffer digit if one 1s necessary. For case v, a new 6 which may
appear as d’,,, is buffered by d on the left and d’, (=4) on the right. Also, a buffer digit at d,, may
have disappeared, but the 4 in d, will assume its role. Case vi merely moves a 6 right past a
sequence of 5’s, not affecting buffer relationships. In case #ii, a buffer digit at d,, 1s removed, hut
so was the 6 it was buffering.

~The rules for removal of a tree from position s are much like those listed above for addition.” The
rules preserve both invariants, and the proof proceeds in the same way as the proof for addition.

We now show that insertion or deletion of the kth key can be done in time O(1og k). Either process
begins with moving down the list of groups to find the group containing the kth key. Group sizes
increase exponentially, so this operation 1s done in time O(log k). Simultaneously, the two lists of
pointers to groups which are too heavy or too light are scanned; for whatever group contains the
kth key, this scanning yields pointers to the heavy and light groups on its left, again in O(iog k)
operations. Properties of 2-3 trees allow us to find the kth key within its group in O(iog k) time.
Once we’ve found the key, insertion or deletion may just involve changing a few links. The worst
case, however, arises when the group structure needs to be changed; this involves updating the
pointer lists, and constructing or dissecting 2-3 trees. Elements of the pointer lists are either
removed (when a 6 or | is completely fixed up) or incremented (when a 6 or I is merely moved
over), and this operation 1s done in constant time. Operations on the 2-3 trees are also done in
constant time as described before.

67



Nu

Other solutions and ways of arriving at them

Discussions in previous classes (see notes of 11/2,11/4, and 11/9) yielded several ideas for attacking
problem 3, the most important being the use of balanced trees to achieve fast access,” and the use of
redundant representation to allow fast worst-case insertion and deletion. However, there were still
many details to be resolved: whether there should be one balanced tree or many; what kind of
balanced tree to use (AVL or 2-3, for example); how to implement redundancy. The two solutions
just described are extremes in some sense, in that they resolved all these details differently; other
solutions, which combined features of solutions A and B, were equally interesting. Possible paths to
a problem solution are described below.

The method used to increment or decrement a binary number, derived in the discussion of 1 1/9, we
can generalize to a method for adding | into or subtracting I from any digit position of the number,
1.e. adding or subtracting a power of two. Our resulting algorithm might alternate fixups with adds
and subtracts, as in the previous method. But where do we do the fixups? If, say, only the last 2 in
the digit string is fixed up, we could get in trouble from repeated insertions at the beginning of the
string. One answer 1s to {ix up all 2’s and 1’s in the digit string to the right of the insertion/deletion
position k; there are no more than log k such trouble spots, and fixups are done in constant time, so
that can be done quickly enough. Another answer is to {ix up trouble spots around the point of
insertion/deletion, so that it may be made in conditions of calm rather than turmoil. We have a
choice between the following two algorithms for insertion into position k:

Algorithm I: Move left from the end of the digit string, fixing up 2’s and 1’s until
reaching position k. (There are at most log k fixups.) Increment or
decrement the kth digit as desired; no carry or borrow happens because a 2
or a 1 in position k has been fixed up. Then do (at least) one more fixup,
just as we did a fixup after performing an addition or subtraction in the
algorithm of 11/9.

Algorithm II: Increment or decrement the kth digit as desired. (This may tead to
underflow or overflow.) Then fix up either the new kth digit, or some
other nearby digit, in order to insure that no two consecutive digits can
cause each other trouble.

Solution A used a variant of Algorithm I; Solution B, Algorithm II. Algorithm II involves more
special cases but appears to do less work, and it was consequently more difficult to prove correct.

Once we’ve figured out an appropriate generalization to the increment/decrement algorithm, we
need to decide on a data structure to which it may be applied. A doubly-linked height-balanced
tree with an additional pointer to the leftmost node was suggested in the notes of I 1/4 as a
possibility; search time, at least, 1s good for this kind of tree, and it’s as good a start as any. Each
node on the left path of such a tree 1s associated with a quantity which exponentially increases as
the tree 1s climbed: the number of nodes in its left subtree. The various states of the trees on the

left path (i.e., their balance factors) are somewhat analogous to strings of digits in a redundant
number system, since the local balancing transformations are like the local carrying transformations
(except that balancing may shorten or lengthen the string). Thus the slightly unbalanced nodes C
and B are analogous to the 2’s and the 1's in redundant binary numbers.

Our last major design decision involves our method for updating the structure; to what extent do we
translate the binary number algorithms into our solution? Fixup operations in most solutions
exactly paralleled fixups for addition and subtraction in a redundant binary number system. Our
choice for representation of redundancy, however, may lead us to reject the direct translation of the
binary number operations. Suppose, for example, we use a balanced tree whose left path contains
nodes which may be slightly unbalanced; it 1s unlikely that the rotation transformations we’d use to
fix up such a tree correspond exactly to arithmetic fixups.
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Our solution has now taken shape. We have selected both a data structure and a representation of
redundancy within the structure, and we have a fair-to-middling idea, derived from our discussions
of binary counting, of how to update the structure. We now examine the consequences of our initial
selections.

Suppose the kth node on the left path of our data structure points to a list of one, two, three, or four
balanced trees of height k. For easy access of nodes within a given list, we order the trees of the list:
the nodes of tree #1 are all less than those of tree #2, etc. The left path then represents a string
consisting of digits {1,2,3,4}.

We must devise “incrementing” and “decrementing” algorithms for creating and deleting trees within
a list, along with “carrying” and “borrowing” algorithms for transferring trees between lists. When
tree «1 fills up, we want to overflow into tree #2, either a new tree or the tree #2 which already
exists. From a “full list”-one containing four trees-we want to remove some trees, combine them
into .a bigger tree, and add the new tree to the next higher list. For deletion we will want to coalesce
trees within a list, or else split up a tree into smaller trees to be added to the next smaller list.
Furthermore, we want to perform these operations in constant time if possible, since the number of

fixups done by Algorithm I before an insertion or deletion is proportional to log k. Straightforward
algorithms for splitting or concatenating arbitrary AVL trees take time O(log n), where n is the size
of the tree ([2]), summarized in {3]), but there are a number of ways to speed them up at the expense
of some pointer space. The use of dummy nodes at nonleaves in the tree, for instance, makes
splitting and concatenation trivial (although it makes insertion and deletion much more difficult).
Keeping pointers to the first and last nodes in an AVL tree also simplifies concatenation, since the
pointers allow easy access to some node which can be made the root of the new larger tree.
Separator keys between trees of the same height would serve the same function. Neither technique,
however, 1s useful for dividing an AVL tree into two other trees one less in height; assuming we
stick to a direct implementation of a binary counting algorithm, we therefore still have no way to
“*borrow” in constant time.

This observation suggests that we might adopt a more flexible algorithm for borrows and carries,
which for instance might allow splitting a tree of height h into trees of height h-1 and h-2 and
adding one to each of the next two digit positions. The resulting invariant, if one exists, would be
more complicated than the invariants for Algorithms I and II. The observation also suggests that
the AVL tree 1s an inappropriate data structure for situations in which the height of the tree plays
an integral part. Another data structure, 2-3 trees, was described in the notes of 11/2 and may be
more appropriate for this solution attempt. Path length from root to leaf in a given 2-3 tree 1s

- constant, so deleting the root results in trees which are ail the same height. The keys stored in each
node serve the function of separator keys for the subtrees. Concatenation and division can be done
quickly when they occur as a result of msertion and deletion.

Several solutions, including Solution B, used 2-3 trees. Typically, the data structure was a list of
lists of trees, the top-level list corresponding to the left path of the AVL tree described earlier.
(Mike Piass, however, noticed that the top-level list could be incorporated into a slightly-modified
2-3 tree whose left path contained nodes with 0, 1, 2, or 3 keys. Algorithms for maintaining his tree
thus had to deal with only one type of data structure.)
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Solutions which used lists of trees along with direct implementation of one of Algorithms I and II
failed to handle one possibility correctly: deletion from the leftmost (largest) tree. Continued
deletion from this tree would eventually make it too small for its position, resulting in a borrow-but
from where? The borrow must be from the right rather than the left; it’s equivalent to a carry out
of the next position. This bug, if noticed, can be fixed in one of two ways: patching the proofs for
invariants to account for the special action, or expanding the number system to allow even more
redundancy than before. Solution B is the result of the latter fix; attempts at patching the proofs
seemed only to grossly complicate them.

Another way to represent redundancy is to vary the height of each node along the left path between
certain bounds; Alex Strong did this, using AVL trees. Concatenation of trees involves joining
them with a root, then rotating if necessary; the proof that this preserves balance (in constant time)
is long, containing many cases, but easy to understand.

A third way we might implement redundancy 1s by expanding the possible balance factors. One
obvious way to do this is to add extra balance factors tt and --, meaning unbalanced by two on the
right or the left. We wish, however, to make the balance factors local to the nodes of the tree; we
would not, for instance, want an insertion at the beginning of the tree to affect nodes far up the tree,
since this insertion must be done 1n constant time. Solution A bases the balance factor of a node on

the assumed heights of its subtrees. Carolyn Talcott’s solution used balance factors {+,-, ® ) but also
associated with each node on the left path a possible “pending carry” which’augmented the node’s
balance factor. Both these solutions used tree transformations to process carries and borrows. Both
also maintained invariants which insured that left- and right-heavy nodes would not bunch up.

Students whose solutions used lists of trees were able to view the problem at a higher level of
abstraction than those who tried other structures. Updating operations for tree lists need not be
concerned with properties of individual nodes in the structure; they need merely know that the trees
split and combine in various specified ways. Other solutions necessitated more attention to the
details of defining basic terms, enumerating cases, deducing invariants, and testing. Common
mistakes in approaches which used a single tree for the data structure mvolved imsufficient attention
to detail: an inadequately specified invariant, so that one was never quite sure what was properties
the algorithm was maintaining; an incompletely specified fixup routine, or incorrectly ordered fixups
vis-a-vis Insertion and deletion; omission of fixup cases in proof of the algorithm.

Testing one’s algorithm was probably difficult no matter what approach was used. The answer, of
course, 1s to prove it correct, but some people have an emotional need for experimental evidence;
also, correct fixup sequences and invariants are more easily inferred from a batch of data than from
introspection. Most algorithms were too complicated to implement on the computer, at least given
the time constraints of students in the course. The single-tree data structure had an advantage here
of being simple to manipulate, and therefore possibly programmable; trying to keep track of
rotations by hand, however, could have easily proved frustrating. Repeated insertion at the
beginning of the data structure was typically the worst case, since it had to be performed in constant
time (insufficient for massive structural renovation).
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Summary

This problem had never been solved before, not even by Knuth when he assigned it; consequently it
illustrated a number of interesting and typical facets of research. For its solution, we first considered
a related problem into which the problem we had could be mapped. It’s not unusual for an
alternate representation of a problem to exist-the hard part is to find it-and by examining, the
problem in a different light we often develop some insight into how to solve it, especially with

regard to the types of proof techniques that will work.

Our next step was to determine the relevant properties of the related solution. We discovered that a
redundant representation would be useful, and we saw that algorithms we used for carries and
borrows could be applied to the resulting data structure.

Data structures for this problem all involved some form of balanced tree, but the AVL trees
described in class were found in some cases to be inappropriate. A literature search (at least
through [3]) was then required to see what other kinds of balanced trees there were. Searches
through the literature are of course an integral part of most research.

Defining the basic terms of the solution came next: what a fixup did; when fixups occurred; what
invariants were maintained. This task was difficult; testing these components of the solution was the
main way of seeing that they worked, and refinement of one condition or another was often
necessary. (When Knuth was asked if he had any insights into how he came up with Solution A,
he replied as follows: “I kept fiddling until there were no more loopholes, guided only by loose
analogies based on the proof techniques I was getting familiar with. Also I was watching a movie at
Festival Cinema at the time; this may have helped.*) It was important to state the basic properties
of the algorithm and data structure exactly, and several solutions contained bugs resulting from
sloppiness of basic definitions.

Thus, one needs careful attention to detail at the low level of prwi, while being guided, by high
level 1deas about the overall goals and interrelationships of problem components. In this way the
low level details can be “parsed” into conceptual structures that allow us to keep afloat.

Fmally, research does not stop with the solution to the problem; the next question is, what more can
be done with the ideas we have just gained. In this case there was an excellent spinoff to problem
3, namely a paper to be published by Leo J. Cuibas, Edward M. McCreight, Michael F. Piass, and
Janet R. Roberts entitled “A New Representation for Linear Lists”. In this paper the authors
discuss lists with a finite number of fingers pointing to positions of interest; it takes O(ftiog k) steps

) to access, insert, or delete at distance k from one of { fingers. We considered the special case of one
finger pointing to the beginning of the list. The solution in this paper 1s based on B-trees (a
generalization of 2-3 trees), of order 24 or more, and it would be interesting to see if a
smaller-overhead solution based on AVL trees could be found.
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Notes for November 16, 1076

Topics of today’s discussion:
1. algorithms for manipulating and combining tradeoff lists (to be used for problem 4);
2. coroutines.

Many networks in the real world (e.g. computer systems, gas pipeline systems, irrigation systems) are
centralized, in that they consist of a central node connected to remote sites. There are normally
many ways to construct the links between sites in the network; each possible way costs a certain
amount, and yields a performance level commensurate with the cost. We can represent the ways to
build each link as a list L of delay vs. cost tradeoff pairs:

where d,>d,>...>d and c, <c,<...<¢c,. L will be called a tradeoff list; the pair (dc) indicates
that the jth option for constructing the link associated with L costs ¢; but results in delay d.,.
Problem 4 involves finding an overall tradeoff list for the network, given the tradeoff lists for each
link. A tradeoff pair in this overall list will represent, for the corresponding implementation, its
total cost along with the maximal delay encountered for a transmission from the central node to any
other site. (This problem is discussed in [2]; algorithms for join and sum are also described.)

We make two assumptions before proceeding. One is that we can represent the network by a tree
rooted at the central node;-. The other 1s that nodes introduce zero forwarding delay-for a message
from node 1 to node 3 through node 2, for instance, the total delay will be the sum of the delays
along the links from I to 2 and from 2 to 3.

3

1 8 2 Cc

o——————0

a b AN0 4

L, =(150,6), (139,9), (118,14), (87,2 I), (75,30)
L, = (6 7,6), (62,10), (52,15), (39,23)

L, = (120,13), (111,17), (92,23), (66,29)

Figure 1- sample network

Figure I shows a small network, along with the tradeoff lists associated with each link. Each
tradeoff list contains delay/cost pairs, in order of decreasing delay-for instance, it costs only 6 units
to get a large (150) delay through link a, but at higher cost the delay can be reduced. Delays are
always in decreasing order and costs in increasing order in tradeoff lists. If in some tradeoff list
there were two tradeoff pairs (d,c) and (d,c,) such that d, 2 d, and ¢,2¢, option j would be either
the same as or clearly inferior to option i since it costs at least as much yet introduces as much or
more delay; such uneconomical options are therefore left out of the tradeoff lists. We will speak of
one option absorbing another; in the above example, option i absorbs option j. Given two pairs (d,c)
and (d’,c”), there are nine possibilities:
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c’ c=c’ coc’
d<d’ (d’,c") (d',c)

absorbed absorbed

d=d’ (d’,c") either (d,c)
absorbed absorbed absorbed

dod’ (d,c) (d,c)
absorbed absorbed

So the only cases where one does not absorb the other are when d<d’ and ¢>¢” or d>d’ and c<c’. If
(d,c) absorbs (d’,c’) and (d’,c’) absorbs (d"’,c’"), then (d,c) absorbs (d”’,c”’). Given a large set of pairs,
the ones which are not absorbed by any others are mutually incomparable, so they can be arranged
into a tradeoff list {d,c,), . . .. (d,.c,) as defined above. We can find this tradeoff list by removing any
pair (d,c) that 1s absorbed by any other, until this operation is no longer possible; it doesn’t matter
which order we do the removal, since we simply want to find those pairs not absorbed by any other
pairs. (Think about it.)

So we wish to construct an overall tradeoff list for the network, in order to find a minimum cost

implementation for its links such that the delay time from the root to any node is at most some given
value D. One way to do this would be to just try all possible combinations of options for the
individual links, and see what results. This naive method would take far too long to be practical.

Another way is to-break the tree into subtrees, find the overall tradeoff lists for the subtrees, and
then combine them somehow into the overall list. Once we find the overall tradeoff list LL for a

subtree, we can treat that subtree as an edge represented by L; if we find ways to combine tradeoff
lists for edges, we can find the overall tradeoff list merely by reducing the subtrees of the root to
edges and then combining them. An edge in the tree 1s oriented with respect to the root of the tree:
its “head vertex” 1s closer to the root, and the “tail vertex” is farther away. Two edges are connected
either head-to-head or head-to-tail. We will derive algorithms for combining tradeoff lists in each
of the two cases.

An example of head-to-head adjacency is the subtree of the tree of Figure I with vertices 2, 3, and
4, and edges ¢ and d. We will call the tradeoff list of this subtree the join (abbreviated v) of the lists
for 1ts constituent edges. To see how to compute it, we can pick an option for each edge and see
what the resulting delay and cost 1s for the tree. The delay 1s measured from the root, so it’s the
maximum delay of the two options; the cost 1s obviously the sum of the two costs. So we compute
L.vL, as follows: The first tradeoff pair is (max( 120,94),13+8)=(120,21). The pair (120,13) from L_

_ may now be discarded; (120,2 I) will absorb (120,13)v(any other pair from L,), since the delays for
these new pairs will remain 120 but the costs will increase. Moving along, we compute the next
tradeoff pair-(max( 111,94),17+8)=( [ 11,25)—and remove (I 11,17) from L,. The third pair will be
(max(92,94),23+8)=(94,31), and (94,8) is removed from Ly; And so on. We finally reach the end of
L. by computing the pair (max(66,61),29+26) and removing (66,29) from L.. At this point we know
we’re done, since any option for LvL, must have delay at least 66; this means, for instance, that if
L4 contained an extra pair, say (40,40), it would be ignored. The resulting tradeoff list is (( 120,21),
(111,25),(94,31),(92,35), (86,4 1), (80,47), (66,55)). We can prove by an easy induction that this sort of
algorithm works, i.e. it produces a legal tradeoff list. Furthermore, it uses O(sum of the lengths of
L. and L,) operations, an improvement on the naive algorithm which joins each option of L_ with
each option of L,, and then discards each pair absorbed by another pair in the list. To code the
algorithm, we need to worry about the boundary cases-when one or the other list 1s empty-and also
the case when the delays of the “top” pairs are equal: we discard both pairs in that case. Figure 2
contains the coded algorithm, written In a Lispish dialect of Sail, where list 1s a record structure
containing three fields (integer delay, cost; list rest).
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recursive list procedure join(listL,M);
begin
if L=null or M=null then return(null)
else if delay{ L]}>delay[M] then

return(newlist{delay[L],cost[L]+cost[M], Jjoin(rest[L],M))) i
else if delay[ L ]J<delay[M] then

return(newlist(delay[M],cost[L]+cost[M], Jjoin(L,rest[M])))
else if delayfLl=delay[M]then }

return(newlist{delay[L],cost[L]}+cost{M], join(restfL],rest[M])))
end ;

Figure 2 — code to construct LvM

Head-to-tail adjacency is somewhat more complicated. An example from Figure 11s the subtree
with vertices 0, 2, 3, and 4, and edges b, c, and d; if we assume that we’ve replaced LvL, by L,, we
now wish to compute the sum L,+L,. For any choice of options for the two edges, the total cost is
the sum of the individual costs as before; the delay is also the sum of the two delays, since a

transmission from the root to a leaf 1s delayed in its travel both through edge b and through one of
edges c or d. Figure 3 contains a table of sum pairs for L, and L,.

(120,21) (111,25) (94,31) (92,35) (86,41) (80,47) (66,55)

(67,6) (187,27) (178,31) (161,37) (159,41) (153,47) (147,53) (133,61)
(62,10) (182,31) 173,35) (156,41) (154,45) (148,51) (142,57) (1 2 8 . 6 5)
(52,15) (172,36) (163,40) (146,46) (144,50) (138,56) (132,62) (118,70)
(39,23) (159,44) (150,48) (133,54) (131,58) (125,64) (119,70) (105,78)

Figure 3 — sum pairs for L,+L,, where L =L vL,

We noted previously that certain areas of the L-by-M table for LvM could ‘be ignored. When the
top tradeoff pair P of L had a larger delay value than the top tradeoff pair Q of M, PvQ would
absorb the rest of P’s row; when Q’s delay value was higher, PvQ absorbed the rest of Q’s column.
There appears to be no analogous optimization for computing L+M (see Figure 4), so we will just
straightforwardly generate the table and systematically remove absorbed pairs.

(120,21) (111,25) (94,31) (92,35) (86,41) (80,47) (66,55)

(67,6) (187,27) (178,31) (161,37) TT KER TT TTR
(62,10) ARR (173,35) (156,41) (154,45) kx N kk R ® kK
(52,15) (172,36) RRR (146,46) (144,50) IT 11 (118,70)
(39,23) 31 RAK (133,54) (131,58) (125,64) 37 (105,78)

Figure 4 — sum pairs for L+L, with absorbed pairs removed

In order to construct a single tradeoff list from the table, we will use a subsidiary function union.
The union of two tradeoff lists has its own interpretation: it 1s the list of “best case” options (say, for
choosing the data link to procure from between competitors A.T.&T. and G.T.E.). To compute the
union of L and M, we essentially put them together and remove all absorbed options; and to do this

efficiently, we take advantage of the ordering property of tradeoff lists as follows. We remove pairs
from the tops of L and M until neither top pair absorbs the other; we then remove the least costly
top pair from L or M, add it to the end of the list to be returned by union, and repeat. The
algorithm is coded in Figure 5. :
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recursive list procedure union(1istL,M);
begin
if L=nu11 then return(M) comment Don’t return null thistime;

else If M=null then return(L) comment Use “other supplier” instead;
else If delay[L]}>delay[M] then

if cost[L J2cost[M] then comment Top M pair absorbs top L pair;
return{union(rest[L],M))

else return(newlist(delay[L],cost[L], union(rest{L],M)))
else if delay[L]<delay[M]then -

if cost[L]scost[M] then comment Top L pair absorbs top M pair;
return{(union(L,rest[M]))

else return(newlist(delay[M],cost[M], union(L,rest[(M])))
else If delay[ L]}=delay[M] then comment More costly pair gets absorbed;

return! 1f cost[ L]2cost[M] then union(rest{ L },M)
else union(L,rest[M]))

end ;

Figure 5 — code to construct LuM

The union of two tradeoff lists 1s clearly also a tradeoff list. Now that we have a procedure to
construct the union, we can compute the sum of two lists:

L+M = union((d+d’,ctc’) |(d,cleL,(d"c")eM}.
This 1s just the union of the rows of the table of sums of individual options.

So, using the Jofn and sum procedures, we can combine edges of the tree, starting at the leaves and
working in toward the root. For the tree of Figure 1, this process computes the tradeoff list
represented by the expression (LW(Ly+(L.vL,)). Both the join and sum operations are
associative—(L v(L,v..v(L,_vL,))) = (L,v..vL,), the union of all the joined pairs in the L -by-...-
by-L, table, and (L +(L +..4+(L,_ +L) =(L+..4+L,)—s0o we may perform these operations in any
order when, for instance, a vertex in the tree has three or more sons. We eventually reduce the tree
to a single edge and a single tradeoff list, which list represents the tradeoffs for the entire tree.

A solution to problem 4 will not only compute this overall tradeoff list, but it will also keep track of
how each option in the list was derived in order to be able to reconstruct the various
implementations for the network as desired. Ways to do this bookkeeptng will be discussed later.

Analysis of our procedures for manipulating tradeoff lists leads us to several other questions; Are
our procedures optimal (in terms of. time or space used)? How much can we optimize processing by
varying the order in which tradeoff lists are combined? How long, on the average, will the
intermediate tradeoff lists be? We leave the latter two questions to the curious reader; the first,
however, leads us to the study of coroutines.

Procedures we are used to in Algol are always dynamically nested, so that a subroutine completes
execution (in the sense that it can’t be reactivated except by starting it over) before returning to its
caller. This requirement that procedures are always resumed in a last-in, first-out order imposes an
asymmetry between the calling procedure and the called procedure. Suppose we relax this
requirement, so that procedures A and B can call each other, with A proceeding from where it left
off when B returns and vice-versa. We have thus removed the asymmetry between caller and
callee; such “symmetric subroutines” are called coroutines. Whenever a coroutine is activated, it
resumes execution of its program at the point where the action was last suspended.
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We now apply the concept of coroutines to problem 4. Recall that to join two lists, we removed the
top pair of one list or the other until one of the lists became empty; the remaining pairs in the other
list were ignored. Hence it would have been nice not to have computed them at all. We can set up
a coroutine for each tradeoff list which generates options in the tradeoff list as they are needed;
there 1s then one coroutine for each leaf in the tree, along with at least one coroutine for each
nonterminal vertex. Whenever we need to know another option at the root, we query its
descendants, who query their descendants and so on as required.

This application is best illustrated by an example. Consider the tree of Figure I, and associate
coroutines with its vertices as follows:

Coroutine 0 computes the overall tradeoff list-( 1's list) v (2’s list), briefly 1v 2.
Coroutine I computes L,.
Coroutine 2 computes 6 + 5.
Coroutine 5 computes 3 v 4.
Coroutine 3 computes L..
Coroutine 4 computes Lg
Coroutine 6 computes L,.

To answer the question “Give me your next,” coroutine 0 will request pairs from I and 2, and join
them. Coroutine 1 returns its next: (1506). Coroutine 2 asks 5 and 6 for their next pairs in order
to return their sum. Coroutine 6 returns (67,6); coroutine 5 gets the next from 3—(120,13)—and the
next from 4—(94,8)-saves the latter, and returns (120,21). Coroutine 2 then returns (187,27), and 0
returns (187,33).

We encounter a complication when computing the sum of two lists L and M: at some point we will
want not the next pair from L, but some previous pair. To avoid this difficulty, we rewrite our list
of coroutines as follows:

o -1v2

1 -L,
2—-7u8 We’ve expanded the + routine here.
b-3v +4

3 -L,
4 —L,
6 -L,
7 — scalarsum of (120,21) and 6; (120,21) is the first column in the original sum table.
8-94+5

9-L, A new copy of L,,
We now continue processing. Next(7) is (182,31), produced from (62,10). Next(8) is (178,31), derived
from next(9) and next(5) (soon to come). Next(9) is (67,6), starting over in L,. Next(5) is (111,25),
derived from next(3) and the saved value from the previous call to 4. Next(S) is (111,17)—3 has now
been called twice. Back in 2, the union of (182,31) and (178,31) is computed; (182,31) is discarded
since (178,31) absorbs it, and next(?) is requested again. Coroutine 4 returns (172,36), calling 6 again
in the -process, and 2 outputs (178,3 1). Next(O) is then (178,37). There are still details in this
example to be cleaned up; these will be discussed later.

Coroutines are described in more detail in [3] and [4], and especially in [1]. They are quite useful
in simulations of parallel processes, and are implemented in, e.g., the Simula language. In this case
we are actually using semicoroutines, where there is an asymmetric tree-structured relationship
between caller and callee: the caller resumes the callee at the point where the caliee last left off, and
the callee always returns to its caller. This important special case of coroutines is worth noting since
it seems to arise more frequently than the general case.
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Comments on solutions to problem 4

A solution to problem 4 had essentially two components: the data structure to represent the network
and the tradeoff lists, and the algorithms to manipulate the tradeoff lists. The program’s space
requirement seemed to be its limiting factor; hence the data structure had to be compact and the
algorithms efficient, to minimize memory usage (and save time on garbage collection of records).

Most programs created a tree for tradeoff lists: each node in the tree was a record, representing a
single tradeoff pair, which contained the delay and cost of that pair along with some links indicating
how the pair was computed. The algorithms given in class for combining tradeoff lists yielded
programs which needed around 120 pages of memory to build this data structure.

A refinement of the sum algorithm (implemented by Jim Davidson/Carolyn Talcott, Anne Gardner,
and Alex Strong) resulted in a significant reduction of the program size, to 50 pages or fewer.
Recall that the sum of tradeoff lists L and M is just the list of pairs P+Qfor P in LL and Q in M,
with absorbed pairs removed. The unimproved algorithm involved computing, for each pair in L,
the scalar sum of that pair with M, and then the union of the scalar sum with the union of previous
sums; the scalar sum operation created many tradeoff pair records which would be absorbed in later
union operations. The improved algorithm avoided this inefficiency. It examined only the “top” of
each scalar sum list at any one time, and did not create new records for this examination. It

considered the sum lists in parallel, removing the top pair in each list as 1t was added to the result
or absorbed by the top pair in some other list. Thus the only records created were those actually in
the sum. The algorithm is outlined in Figure 1.

(TOPS Is al ist of pointers Into the scalar sum lists, each pointer Indicating the pair currently
being considered In the list, along with the two tradeoff pairs from which It was derived. The answer
it accumulated in RESULT, which starts out null.)

Initialize TOPS and RESULT! TOPS initially has pointers to the tops of al columns In thls table.
While TOPS Is nonempty, repeat the following:

Find the lexicographical ly smallest value of the pair COST{P},DELRY{P) among all pointers P in TOPS;

let BESTP be apcinter for which this minimum occurs. (Lexicographic order means dictionary-) ike
order: find the smallest cost, and the smallest delay for thls cost.)
Rdd the tradeoff record (MINCOST,MINDELRY,ancestors of BESTP) to the end of RESULT.
Update each pointer P In TOPS as follows;

White BESTP absorbs P, do the following:
Advance P to the next palr In the corresponding scalar sum.
If P falls off the end, remove P from TOPS and exit this Inner loop.

He turn RESULT.

Figure I — improved sum algorithm

This algorithm 1s essentially an n-fold union algorithm for taking the union of the n columns of the
table; 1t 1s a generalization of the 2-fold union algorithm in Figure 5 of the lecture notes from
November 16, which almost makes the case of general n appear simpler than the case n=2! To
prove that it works, one must only verify that (i) no pair is discarded unless it is absorbed by some
other pair (this 1s obvious) and (11) the output of the algorithm 1s a tradeoff list (this is easy to show,
since the pointer update operation gets rid of all pairs with costlPJscosttBESTP] and also all pairs
with delay[PJzdelay[BESTP]). Conditions (i) and (i1) are necessary and sufficient for the validity of
a umon algorithm.
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Two other solutions (those of Bengt Aspvall and, to a lesser extent, Wolf Polak) were organized
around coroutines, as mentioned in the notes. Bengt implemented coroutines using Sail
processes-his coroutines were recursive procedures, which transferred control using the RESUME
and SUSPEND statements. His program proceeded along the following lines. The main program
lowered its priority so as not to get in the way of initialization, and then set the initialization process
going at the root of the tree. Each node in the tree set up its tradeoff list, sprouted processes for its
sons, and then suspended itself. When all nodes were initialized, the main program regained
control, and then requested tradeoff pairs from the root, which requested pairs from its descendents
as necessary. The coroutine for each node returned its next pair if 1t was a leaf; otherwise it called a
join or sum routine, which cocalled the node’s sons. Wolf’s program implemented a coroutine-like
solution by keeping in each tradeoff list a pointer to the next tradeoff pair to be returned from that
list. For “elementary” tradeoff lists-1.e., those corresponding to the edges of the tree-the pointer
indicated one of the tradeoff pairs; for other tradeoff lists, the pointer was usually at the end,
signalling that the remaining tradeoff pairs had not yet been constructed. (Wolf in addition
discovered an interesting algorithm for producing the sum. He generated each pair P’ from the
previous pair P by searching up and to the right, then down and to the left of P in the table. The
search seemed fairly efficient.)

Coroutines in Sail-like code for computing the join of two tradeoff lists, and for generating pairs of
a tradeoff list, are given in Figure 2. These routines are based yet another coroutine solution by
Knuth. His program kept track of the program counter via a global variable, and represented each
node as a record containing the local variables of the corresponding coroutine. The main part of
the program was a case statement, each of whose component statements represented a state in Join,
sum, etc. The most subtle part of this solution was a coroutine to compute the sum of two lists, since
this coroutine need not completely generate the two tradeoff lists, even though the result will always
contain the sum of the last pairs; the reason 1s that the full sum need not be computed unless the
caller wants to see it.

PTR(LIST) COROUTINE JOIN(PTRILIST) L,M); PTR (LIST) COROUTINE L INKLIST(PTR (NODE) L),
BEGIN “JOIN” BEGIN “LINKLIST”

PTR (PRIR) P,Q; WILE L«NIL 00
P« NEXT(L); @ « NEXT(M); BEGIN
WHILE Pxsentine! AND Qusentinei DO CORETURN(F IRST (L));

If DELRY IP) <DELAY (@} THEN L « REST(L)
BEGIN END;

CORE TURN (NEWPRIR (DELAY [0] , COST (P)+COST[0))); CORETURN (sentinel)
Q « NEXT E N D "LINKLIST";
END

ELSE

BEGIN

CORE TURN (NEHPRIR (DELRY [P} COST [P] +COSTIQ) ))
IF OELRY [P) =DELRY [Q) THEN Q « NEXT (M1)
P+ NEXT(L)
END;

CORETURN (sentinel)

END "JOIN";

Figure 2 — coroutines for computing LvM and “elementary” tradeoff lists

Other programs contained other interesting features. The solution of Jim Davidson and Carolyn
Talcott represented the tree for each tradeoff pair as a string; their program ran fastest of any, and
this may have been one of the reasons. (The speed of all these programs 1s of course dependent on
the particular fmplementation of Sail. Running times varied between 13 and 68 seconds; times were
measured during a period of light load.) The Marsha Berger/Brent Hailpern/Rich Pattis program
used a field in their representation of the network to indicate whether join or sum was needed at
each node; this eliminated some extra function calls. They also implemented routines which
beautifully displayed the implementation of the network for a given maximum delay.
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And some programs even had bugs, all the result of carelessness. We encounter here the difficulty
of not being able to check the answer by hand; how can we be sure our answer 1s correct? For
problem 4, there were several good debugging techniques to use:
(a) Consistency checks. A -procedure-to see if the result of a join or sum operation 1s a legal

tradeoff list 1s easy to write, and would have caught bugs in two programs. Furthermore,
checks for mternal consistency should be designed into any nontrivial program, not just added
as afterthoughts.

(b) Test cases which are easy to check by hand-for problem 4, simple trees with large tradeoff
lists, and complicated trees with trivial tradeoff lists. A bug in one program only appeared at
a node with three or more sons, but it would have been easy to catch with a four-vertex test
case. One can also make test cases easier to generate by using flexible data structures; a linked
list, for example, would have been easier to initialize for various test tradeoff lists and
networks than an array. Once again, the debugging should be designed into the program
from the beginning.

(¢) Trace information. Useful especially when combined with (a) and (b)-not too useful for a
production run.

(d) The execution profile (which was required for this problem). In general, the execution flow
summary 1s most useful for determining if the program is completely tested-has every section
of code been executed at least once? Also, execution counts which are abnormally large are
sometimes hints of bugs in the program. Sail’s PROFIL program unfortunately presented
several bugs of its own to some of the people who used it for this assignment.
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Notes for November 30, 1876

Topics of today’s discussion:
L. approaches to problem 5;
2. shortest path algorithms;
3. application of a generalized shortest path algorithm to problem 5.

The problem of generating optimal machine code to compute arithmetic expressions, while obviously
important in practice, 18 also interesting from a theoretical standpoint. Most likely there are no “fast”
algorithms which produce optimal code, even on a simple computer, for arbitrary arithmetic
expressions. Today we discussed a heuristic approach to this problem, using an algorithm which is
useful for several other applications as well.

Specifically, we wish to find for problem 5 a code-generation procedure for simple assignment
statements which can be applied to machines of various architectures. Aho, Johnson, and Ullman
showed in [2] that the optimal code generation problem for machines with one type of register and
expressions containing common subexpressions 1s NP-complete; for this reason, we will restrict
ourselves to compiling expressions whose variables are all distinct. However, we will also consider a
more realistic machine model: a target machine with two or more different kinds of registers.

Dynamic programming 1s one method we might use to attack the problem. Code to compute ae8,
where e 1s some operator, can usually be partitioned into the code to compute (I, the code to compute
8, and the instructions to combine them; the problem of generating code for a®f can be broken down
into the subproblems of generating code for 8, then a. in [1], Aho and Johnson describe a dynamic
programming algorithm for code generation. With each subtree S of the expression tree in question,
they associate an array of costs, each element of which represents the smallest number of instructions
necessary to compute S using a program with certain properties. The minimal cost element of the
expression tree corresponds to the optimal code for the expression; they then generate it.

However, the dynamic programming approach runs into trouble for machines with two or more
different types of registers, say, for floating-point and fixed-point operations. Transfers between
registers of different types cause the difficulty: to compute a value vin r,, we might try to compute
it in r, and then use the instruction r,er,; to compute v in r, we would consider computing it in r,
and then moving it to r,, Thus we hit a loop, and we must work somewhat harder to reduce the
problem to smaller, already-solved subprobkms.

: In finding a shortest path in a graph, we would also encounter potential loops (corresponding to
cycles in the graph). Shortest-path algorithms, however, typically avoid the problem by working
backward from the destination, treating the graph as a tree, since no shortest path will visit a vertex
twice. For example, an algorithm by Dijkstra to find the shortest path from a starting vertex s to a
-destination vertex t-a nonnegative “distance” value 1s associated with each edge-assigns to each
‘vertex v its mtnimum distance from t. It does this by finding the neighbor of v for which the
distance travelled from v through that neighbor to t 1s minimal. Vertices are evaluated in the order
of their proximity to the destination, Dijkstra’s algorithm can be generalized; it is a special case of a
method described by Knuth in [3]. Knuth’s algorithm deals with a context-free language, and it
reduces to Dijkstra’s algorithm when the context-free language 1s regular. The terminal strings on
right-hand sides of productions roughly correspond in Knuth’s algorithm to the “destination” in
Dijkstra’s; Knuth’s algorithm works backward through the nonterminal symbols in the
corresponding grammar to find, say, the height of the shortest parse tree in the grammar, or the
kngth of the shortest string in the language.
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As an example of how Knuth’s algorithm works, we consider the shortest path problem of Figure 1.
In this example, the edges of the graph are mapped onto the productions shown, and a cost is
assigned to the nonterminal on the left hand side of a production whenever that production 1s used.
Each parse tree for the context-free grammar given in Figure 1 represents a path from some vertex
of the graph to the destination: S > A> B > T = t represents the path from S to A to B to T, and
the cost of this derivation is ¢«(S)= c(A)+ 1 =c(B}+7+1=c(T)+3+7+1 =1 I (the length of the
corresponding path). The shortest path from S 1s then represented by the least costly parse tree
rooted at S. It is found by assigning to each nonterminal-here, each vertex of the graph-the
minimal cost of a parse tree rooted at that nonterminal, and working backward. In our example,
vertex B gets value 3, D gets value 5, A 6, and S 8; hence the desired shortest path goes from S to A
to D to B to T. (If we let the algorithm run a little longer, C gets the value 9.)

A B prod cost prod cost
O=————0 SC c {S)=c(C})+2 C-+S c(C)=c(S)+2

7 S +A c(S)l=c(A)+41 C =» A c (C)=c(A) +3

1 3 A=+S c (A)=c(5)+1 C-»0 c (C)=c(D) +5jd \ A->B c (A) =c(B}+7 D->A c (0) =c (A) +1
SO 31 1 2 old A=» C c (A)=c(C) +3 D-B c (0)=c(B)+2

A-D c (A) =c(D) +1 0-C Cc (D)=c(C)+5
2 (3 BA cBl=c(A)47 D>» T c(D)=c(T)+6

\ > BD c (B)=c(D) +2 T at c(T)=0
Oo ————0 BT c{B)=c(T)+3

C D --

Figure 1 — productions for shortest path problem

In. this example, no more than one nonterminal occurs on the right hand side of any production.
The same method, however, works in the case of a general context-free grammar, and Knuth’s
algorithm generalizes Dijkstra’s in much the same way as trees generalize linear lists. The formalism
is useful in many situations. An application of dynamic programming, which reduces a problem to
subproblems, often corresponds to some context-free grammar, where the right-hand sides of the
productions represent the subproblems. The context-free formalism extends this to cases allowing
loops.

Incidentally, one occasionally runs into applications of the shortest path problem in the real world.
It turns out, for instance, that the cheapest way to go the length of the Massachusetts Turnpike is to
get off at certain exits and get on again (here we’re looking for the cheapest path). One can
perhaps make some money in the world currency markets by considering the graph in which the
vertices are pounds, dollars, francs, etc., and the edges are the logarithms of the conversion rates
between two currencies, and finding negative-sum cycles using known algorithms for shortest paths.

The running time of either shortest path algorithm is proportional to the square of the number of
vertices. If the graph contains edges with negative distances, both Dijkstra’s and Knuth’s algorithms
fail. However, if there are no negative-sum cycles, the shortest path can be found in O(n?®) time,
where n 1s the number of vertices. (If there 1s a negative-sum cycle, the shortest path would of
course go round and round it forever.)

Back to problem 5. The code produced for a given expression may be viewed as a string generated
by productions of a context-free grammar, and the generalized shortest path algorithm applied to it.
Suppose we wish to evaluate the expression a-bec (whose expression tree has nodes labelled a,
representing a-bec, and 8, representing bec); one of the productions might be the following:
(x) [ar] > [ar] [Br] "rer 1] To evaluate «in r,, first evaluate a in r,, then 8

in r,, then put their difference into r,.
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: The set of productions 1s determined both by the architecture of the target machine, and by the -
| expression being evaluated. Certain of the nodes of the tree might correspond, for example, to
| multiplications; for each node, there would be productions which represent the ways of computing
| the product into each of the registers of the target machine using a multiply instruction. With each
; . production we associate a cost in the obvious way; in (x), the cost of computing « in r, would be the

cost of loading a into r,, plus the cost of computing 8 in r,, plus the cost of doing the subtraction.
| We also need constraints to avoid clobbering reserved registers-once t, is loaded, we don’t want to
| overwrite its contents until e& is computed-so (x) would more likely be rewritten as

[a,r)> [a, r )[B, 1,1] rer 1"
where the notation [8,r,;r,r, ..] means to compute 8 inr, without using the registers r,r,, etc.

Instructions for the IBM 704 are given in the handout for problem 5. (We ignore the CLS, CHS,
and FDV instructions for now.) The productions for the expression a-bec are listed in Table 1.
The cost of computing some quantity e in a register or memory location 1s represented by the
function c; c{e,Q), for instance, is the cost of computing a in register Q, The letter M designates any
memory location.

[a, M]= [a, A]"STOM" There are five such productions, ‘one for each
node in the expression tree. The cost 1s the cost
of computing a in A~c(a,A)—plus 4.36, the time

_ taken by the STO instruction.
[a, MJ=[a, Q) “STQ M” Five such productions. Cost =c{«,Q)+4.36.
[a, Al» {a,M] “CLA M” Five productions. Cost =c(a,M)+4.36.
a, Q} +(e, M] “LDQ M” Five productions. Cost =c{e,M)+4.36.
[a+8, AT [a, M][B,A] “FAD M” Zero productions, since no additions will be

performed. Cost = c{a,M)+c(8,A)+ 13.95.
[a+8, AT (8, MJ la, A J“FAD M" None of these either. Cost =c(8,M)+c{a,A)+ 13.95.
[a-B, AJ>»(B,MJ[a, AJ “FSBM” One production, since subtraction only takes place

at one 1node in the tree. Cost =

c(8,M)+c(a,A )+ 13.95.
[axB, A) » [«, M] [8, Q) "FMP M" One production, since there’s only one

multiplication. Cost = c{e,M)+c(8,Q)+25.29.
[ax8, A 1 [8 M][a, Q) "FMP M" One production. Cost = ¢(8,M)+c(a,Q)+25.29.
(a, A) la, Q)"XCA" Five productions. Cost =c(a,Q)+2.18.
[a, Q} = [a, Al “XCA” Five productions. Cost = c{a,A)+4.36.
[variable, MJ = Three productions, one for each variable. Cost =

0.

Table 1- productions to compute a-bec on the IBM 704

We now start at the bottom of the expression tree, determining for each node the minimal cost of
computing the associated quantity into register A, register Q, and memory. We wish eventually to
find the cheapest way to compute a-bec into memory. So we begin: a, b, and c¢ are already In
memory, so it costs nothing to put them there and 4.36 to load them into A or Q. The cheapest way
to put b-c into A 1s to load b into A and then multiply; this costs 29.65. Computing the product into
Q or memory 1s most cheaply done by computing it into A first. The same 1s true for the
subtraction. Figure 2 shows the expression tree for a-be¢; the minimal costs found for each node are
given, along with the corresponding code to compute a-bec.
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M: 52.32

B A: 47,96Q: 58.14 LDQ ¢

FMP b

| STO THMP1

| LDA a
M: © M: 34.81 } FSB THMP1

B A: 4.36 B A: 23.65 S70 dQ: 4.36 Q: 31.83

/ AN M: 8
8 At 4.36 ] A: 4.36U: 4.36 Cl: 4.36

Figure 2 — results of applying the generalized shortest path algorithm to dea-b-<c

The code sequence given in Figure 2 is not the best possible: the sequence CLS c¢, XCA, FMP b,
FAD a, STO d costs only 50.14. For better results we need more productions to work with,
representing more programming tricks. Not all programming tricks will be expressible in a
context-free grammar; optimization of common subexpressions, for example, 1s difficult to specify in
context-free productions. Other complications arise from different types of registers. We need to
keep track of equivalence classes of subsets of registers, and side effects of certain operations (e.g.,
division) make this task even harder. Although we cannot always be sure we have found the best
code, we can be sure that the above approach yields the best program in a fairly large class of
possible ones.
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Notes for December 2,1976

Topics of today’s discussion:
L. another case study in problem solving;
2. pinning down the problem;
3. a heuristic algorithm;
4, a dynamic programming algorithm;
J. an improved dynamic programming algorithm.

| The problem discussed today was posed by Professor Leland Smith of the Music Department: given
| a sequence of bars of music, to spread them as evenly as possible on a page of the musical score, in

a given number of lines. The class considered various ways to attack the problem, eventually
settling on the dynamic programming approach.

| Professor Smith’s score editing system (implemented on the A.l. Lab computer) contains a “score
| justification” feature, which takes a sequence of bars of music and fills a page of a score with them.
| There are three constraints which the justification algorithm must satisfy: (I) a bar of music cannot

| be spread over two lines of the score; (if) lines in which the notes are squeezed together look bad, so
there should be as few of such lines as possible; and (i) all lines of the page must be filled, as

| evenly as possible. Input to the algorithm will be a sequence of integers, each of which will
| represent a bar containing the specified number of notes, and the number of lines to fill. Figure 1

contains examples of the desired output. Justifying music is much like justifying text; in both
| situations, “words” are spread over a line with spaces added in between, and it is easier to expand
| the words than to compress them. The main difference is that when justifying text, there is usually
| no chance to compress words, so it 1s no problem to find the minimum number of lines on which the

text will fit comfortably.

31415 3 3141

92 141 59

653 59 26
2653 53

good solution, three lines bad solution, four lines better solution, four lines

Figure 1 — possible output, given the input 3141592653

To better understand the problem, we recast it in mathematical terms. We are given n bars to be
split over k lines, and we want to split them “optimally”. Just what criteria will we use to determine
optimality? Well, one property of a solution is its variance from a perfect solution; this quantity
arises frequently in statistical applications, and is expressed mathematically as >(s,-u)*. Here pis
the average number of notes on a line, and s,; 1s the number of notes on the jth line. The number s,
can itself be expressed as a sum: 3 (a,|b,si<b,,,). The numbers b, in the sum specify the positions
in the sequence where the line boundaries occur. There are k+ 1 of these, since there are k lines, and
n+ 1 places at which boundaries can be set, either between two numbers or before the first number
or after the last, so b=1<b,<...<b <b, =n+ 1. 1it turns out that numbering the possible
boundaries from 0 to n and indexing the b’s from 0 to k simplifies matters somewhat, so we have

s;= > (a,|b,_<isb, where b=0<b, <... <b,, <b,=n)
What we might look for, then, is the solution with the mimmimum variance, i.e., the solution for which
= (s,-m)* 1s smallest, where §, is the sum given above.
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We note two things about this formulation of the problem. First, the solution with minimum
variance might be a horrible one if the sequence 1s sufficiently perverse. Second, there may be two
or more solutions with the same variance, and so far we have no way of choosing among them.
Such solutions may not all be equally good, since some of them may contain more compressed lines
than others. Hence we also need some way of expressing our preference for expanding bars. We
might consider, Instead of or in addition to the variance, some error function which differentiates
solutions better by minimizing the length of the longest line or by maximizing the length of the
shortest line. |

Expanding the sum for the variance yields the expression 8; - 20s, + ka®. The last two terms
in this expression are constant for a given sequence (note that since the sequence is given,
probability distributions are not relevant), so the only variable quantity is the >s,’. By changing
this term, we can distinguish between solutions whose variance values are identical; replacing 2>°s;?
by =>'s;}, for example, results in higher values for solutions with long lines, and thus minimizing
> s, would be a good heuristic for minimizing the length of the longest line.

Once we’ ve determined a criterion to use in comparing solutions, we can think about an algorithm
for producing them. We might try the hill-climbing heuristic of generating an initial layout of the
music, then incrementally improving the solution if possible by moving the line boundaries back
and forth. The hill-climbing technique produces a locally optimal solution; the best from a set of
such locally best solutions may be chosen as an approximation to the optimal answer, or it may be
used to generate constraints for more initial guesses to which hill-climbing may be applied.
Hill-climbing 1s one of the basic tools of the heuristic programmer’s ‘trade.

A heuristic algorithm, however, will not always guarantee us the best possible answer, and so it’s
worthwhile to explore the problem a bit further. Our choice (at least temporarily) for a “best”
solution will be one whose longest line contains as few notes as possible. One way to get the optimal
solution, of course, 1s to examine all the solutions. A “brute force” algorithm is too slow, however,
since there are too many ways-binomial(n-1,k-I), to be exact-to split the n bars onto k lines.
Another possibility is the branch-an &bound method. We choose where to break the first line, then
the second and so on, finally coming up with a solution whose longest line contains p notes; we then
backtrack (branching), choosing different line boundaries, rejecting partial solutions which are
bound to lead to complete solutions with an interval of more than p notes and updating p
(bounding) whenever we find a complete solution whose longest line contains fewer than p notes.
When traversing the tree of possible solutions, however, we would find that many of the nodes
represented identical subproblems (e.g., no matter what way we put the first three bars on the first
twd lines, we still have to put the remaining n-3 bars on the remaining k-2 lines). Once again, it
appears, we've encountered an application for dynamic programming.

So we start from the bottom of the solution tree and work up. We will find it convenient to let
subproblems start at the beginning of the input sequence a,, . . . . a,,; hence we let L(n,k) be the length
of the longest line in the best layout of the first n bars of the sequence on the first k lines of the
score. We have

(1) Link) = min max §; = min max(L{mk- 1), a, +.+a),
O<b,c... <b<n 1Sjsk 1Smen

i.e., for any solution whose final line break is at position m, either the last line (a,,,+,, . . . . a.) is longest,
or one of the previous lines is. Computation of, say, L(3,2) for the sequence 3141592653
proceeds as follows:

L(3,2) = min{max(L(m,1), a, +..+3,)} for m= 1,2 |
. =min{max(L(1, I), a,+a,), max(L(2,1),a,)}

= min{max(3,5), max(4,4)} = min{5,4} = 4

86



Table I contains values of L(n,k) for k=1,2,3,4 for this sequence; Figure 2 lists a program to compute
them.

3 14 15 9 2 6 5 3

3 4 8 9 14 23 25 31 36 39
3 4 5 8 14 14 17 22 23

- = 4 4 5 9 11 14 14 14
- 4 5 9 9 9 11 14

Table 1 — values of L(n,k) for the sequence 31415926353

comment L[n,1] and L[k,k] have previously been initialized;
for ke 2 step 1 until 4 do

. for n « kl step 1 until 10 do
a begin

L[n, kJ a very large number ;
SUM +a[n]; comment SUM will be the sum of a,,, through a,,;
for m « n-1 step -1 until k do
comment Compute the minimum as in 1;

begin |
1f L[n,k] > max(L[m,k-1],SUM) then L[n,k] « max(L[m,k-1],SUM);
SUM « SUM + afm]

- end

end ;

Figure 2 ~ code to compute L values

Computing L. with the recurrence relation (1) leads to this O(kn?) algorithm. Can we do better?
Well, it would be nice to avoid computing the table entries for layouts that wouldn’t ever be selected
(e.g., LIn,1) for small a,). There is no obvious way to do this. If we examine the values of Table 1,
we might guess that L(nk) is related in some easy way to L{n-1k): the L values, are apparently
nondecreasing in n, and in some cases L{n,k)=L(n-1k). If L{n,k) could be computed from L(n-1k),
we would have an O(kn) algorithm instead of O(kn?). It turns out that this is the case.

First, we can prove that L{nk)sL(n+1,k), using induction on k, then n. For some m, L(nk) =

max(L(m.,k- 1),a,,+..+a). For some m’, L(n+ Lk) = max(L(m'k-1), a,+.+a,,,). We assume that
L(n,k)>L(n+ 1k), i.e., that max(L(m,k- I), a, +..+a,) > max(L{m"k- I), a,,,,+..+a,,) There are two
cases: either m<m’, or m’<m. If the former, we have L{(m’k-1)2L(m,k-1) by induction. That
implies that max(L(m,k-1),a,,+.+a)= a, +.+a, and that a, +..+a, is greater than both L(m’ ,k-1)
and a. +..+a,,,-but that means that choosing m’ would have led to a smaller value for L(n,k), a
contradiction. If m’<m, we have a, +.+a, >a, +.+a, so max(L(mk-1)a,, +.+a)= L(mk- 1),
and L(m,k-1) is greater than both L(m"k-1) and a, +.+a,, ,—again that leads to contradiction, since
choosing m’ would have led to a smaller value for L(nk).

We see that m 1s the “crossing point” of the sequence of L values with the sequence of sums. We
can show (via case analysis on the max function) that m need never decrease as we go from L(n,k) to
L(n+ 1,k). Intuitively this is clear-to go from L{(nk) to L(n+ 1k), we add a,,+, to the last line, and if it
doesn’t fit we move the boundary between (k-1)st and kth lines over to the right. Code for the
resulting algorithm is given in Figure 3; the running time is O(kn) as expected. This kind of
improvement is not unusual in dynamic programming applications.
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comnent. LASTLEFTMOSTInk] is the position mt 1 of the leftmost number in the kth line, in an
optimum layout of the first n bars into k lines. LASTLINESUMInk] is the number of
notes in the last line for the best [nk] layout. The [kk] entries in these arrays and the L
array, along with the L{n,I J entries, are initialized before processing begins:
LASTLEFTMOSTI(kk Jk, LASTLINESUMI{kk)ealk J, L[1,1)<al1], LIn,1)J<L{n-1,1}+aln],
and L{kkJemax(L{k- 1 k- 1 Jalkl);
for k«2 stepl until kmax do

for nek+1 step 1 until nmax do
begin

comment Add aln J to the last line;
LASTLINESUM[n,k] + LASTLINESUM[n-1,k]J+a[n];
LASTLEFTMOST[n,k] « LASTLEFTMOST[ n-I, k);
while LASTLINESUMIn,kJ>L[ LASTLEFTMOST{n,k]-1,k~-1]

and L[LASTLEFTMOST{n,k],k-1]J<LASTLINESUM[n,k] do

comment If adding aln] makes the last line too big, and moving the line boundary
doesn’t mess things up, then move it over one;

begin

LASTLINESUM[n,kd + LASTLINESUM[n,k]-a[ LASTLEFTMOST[n,k]];

LASTLEFTHOSTL n,k] « LASTLEFTMOST[n,k J+1end;

L{n,k] « max(L[LASTLEFTMOST(n,k]-1,k~-1], LASTLINESUM[n,k])
end;

Figure 3 — better code to compute L values

The values of LASTLEFTMOSTI[nk] can be used to construct the optimum assignments. The
space for the other arrays L. and LASTLINESUM can be reduced to two rows since row k depends
only on row k-l. Similar algorithms would work with other definitions of “best justification”.
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Notes for December 7, 1976

Topics of today’s discussion:
1. some history about the development of optimization techniques in compilers;
2. practical considerations with respect to optimization;
3. current research areas.

Discussion today centered around the philosophy of code optimization in compilers: why it was
considered important, why it has been deemphasized in some compilers, and where research in
techniques for optimization 1s headed.

Knuth and Trabb-Pardo [6] and Rosen [9], in their surveys of the development of programming
languages, note the concern of the designers and users of computer languages with the object code

 : their compilers produced. In the early days of computing, this concern was the main obstacle to
acceptance of high-level languages. Since memory constraints were severe and uninterrupted
computing time was a scarce resource, it was thought that tight coding was a necessity, and that the
time a programmer spent writing and debugging a program was of minor importance compared to
the efficiency of the result. The middle 1950's, therefore, saw the development of compilers which
employed sophisticated algorithms for generating efficient object code.

Work in Russia produced a compiler called IIT (“Programming Program”) in 1955 for the STRELA
computer. This compiler performed local optimizations on source language expressions to minimize
the number of instructions generated to compute them. It avoided recomputing common
subexpressions within a single formula. It also produced efficient code to evaluate Boolean
expressions, using DeMorgan’s rules to compute, say, (paq) v =(rv=-s) via the tree in Figure 1.
Details about the successor to this compiler may be found in [4].

T T

T F F F

F
F

Figure 1- efficient way to compute (pag) v ~(rv=s)

"IBM in 1957 released the first Fortran compiler (described in [1)), for the IBM 704. Fortran’s
mathematical notation, its provisions for formatted input and output, and its other programmer
conveniences were certainly among the reasons for its enthusiastic acceptance. However, the
Fortran I compiler on the 704 also went to great lengths to produce code as good as a human
machine-language programmer could produce. It optimized subscript computation for array
accessing within nested DO-loops. Its algorithm for optimizing register allocation used information
from a flow analysis of the entire program and a simulation of the program’s behavior. (FortranI
contained FREQUENCY statements which permitted the programmer to specify how often each
branch in an IF statement would be taken; this facility, along with the compiler’s simulation phase,
was removed from later versions of Fortran.)

Later compilers applied even more ambitious techniques. The Balgol compiler for the Burroughs
220 was the first to use clever data structures for its internal storage; in this way it could compile
much faster than had ever been done before, yet it did extensive local optimization. The Fortran
compiler for the Univac LARC (Livermore Advanced Research Computer) carried local
optimization techniques to the ultimate by, e.g., rearranging expressions via various arithmetic
identities, to take maximal advantage of the LARC’s 100 arithmetic registers and 99 index registers.
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Few current compilers make use of sophisticated local optimization techniques. For one thing, some
optimizations may lead to numerically incorrect computations. For example, P+QJ(R/S) might be
transformed into P+Q+S/R, to replace a slow division by a faster multiplication; however, different
values may arise from the two computations as a result of roundoff error. A nother example:
sometimes-when X 1s small-the expression 1.0-X 1s more accurately computed as .5+(.5-X).
Secondly, most programs don’t really need local optimizations. Knuth determined, in a study [5] of
typical Fortran programs, that complicated expressions rarely appear in programs, and hence
sophisticated techniques to optimize long expressions would be infrequently used.

The most important reason for deemphasizing optimization of any kind, however, became obvious
as experience with programming was gained. Programs (unlike the mythical goddess Athena) do
not burst forth from the mind of the programmer completely correct; a program is compiled many
times during the debugging process, and effort spent on optimization of an undebugged program is
wasted. Hence most IBM systems, for example, provide compilers like WATFIV and PL/GC, which
emphasize fast compile time and thorough diagnostic facilities, along with FORTRAN H and the
PL/ I Optimizing Compiler.

Features of several current programming systems allow source-level optimizations, which the user
may introduce as desired. Sail, for instance, contains both high-level and low-level constructs. It
usually turns out that most of a program’s processing occurs in around three percent of its code; mn a
Sail program, this “core” could be converted into low-level STARTCODE routines for maximum
speed. Algol 68 provides constructs designed for easy optimization, allowing one, say, to increment
an array element with the statement Alllex+l. (Unfortunately these constructs are not always
reasonably implemented.) Other tools make it easy to determine just where optimizations will be
most fruitful. The execution profile, derived either from periodic probes by a monitor into the
running program or from explicit trace instructions inserted into the program at compile time, is
such a tool, and is provided in the Algol W and Sail systems. One typically notes where a program
1s spending most of its time, optimizes that section of code, then reruns the program and analyzes it
some more. Several such repetitions may yield an impressive improvement in the program’s running
time; Knuth applied this process to the CDC Fortran compiler and-in two hours-improved its
performance by a factor of 4.

Research on methods for code optimization continues. The main shortcoming of today’s optimizing
compilers 1s their failure to recognize globally accessed information and keep it in registers
throughout execution if possible. Recent progress toward removing this shortcoming was made in
Hanan Samet’s thesis [IO], for which he implemented a system to determine when two Lisp
programs computed the same result; thus the output of two compilers, one an optimizing compiler,
can be compared to see if the two sets of code have the same effect. Advances in hardware and
software technology create areas for other research. Compilers for computers with parallel and
pipelined architectures must produce code which can use these machines efficiently; see, for instance,
[7] which describes research in this area at the University of Illinois. Doug Clark, in his thesis work
(see [3]), has been one of the few to study how much compilers can benefit from a cache memory.
Software-related research areas include development of optimizers for very high-level languages,
which need not only to produce efficient code, but also to pick optimal algorithms and data
structures to represent high-level constructs in the language. Groups at the University of Rochester
and New York University (cf. [8) and [11]) are investigating techniques for data structure selection
for very high-level languages. The PSI Program Synthesis System being developed at Stanford (see
[2)) incorporates selection of optimal data structures and algorithms for the system’s internal very
high-level language for modelling programs.
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Notes for December 9, 1978

Topics of today’s discussion:
L. the effects of machine architecture on production schemata to be generated for problem 5;
2. extension of the shortest-path approach to other code generation problems;
3. use of a priority queue in a fast implementation of the shortest-path algorithm;

4, register usage during computation.

Class discussion today covered several topics related to problem 5. One way to apply Knuth’s
generalized shortest path algorithm to problem 5 involves considering a set of production schemata
which represents the instructions of the target computer (this was described in the notes of
November 30); we attempted to extend this approach, to cover code generation for conditional
expressions and optimization of common subexpressions. We compared the production sets for the
two machines given in the problem 5 handout. We also discussed Knuth’s fast implementation of
the shortest path algorithm using a priority queue (or heap) to store productions yet to be examined,
and computed a formula for the number of registers needed to compute a given arithmetic
expression.

The schemata for the two machines of problem 5 differ mainly in two ways. For the first machine
(the IBM 704), we need never save old values in registers: there are only two In the first place, and
there are no instructions which compute a result using both the registers. On the second machine
(which resembles the CDC 6000), ail the arithmetic instructions use two registers as operands, so it

makes sense to save temporary results therein. Overwriting the temporary values before they’re used
is a bad idea, of course, and one way to account for registers which contain temporary results is to
have a “registers in use” field in each nonterminal. The left hand side of a production for the CDC
machine will then have the form

[expression, register, (available registers)],
where the “expression” 1s merely a pointer to a node in the parse tree for a given expression, and
“register” 1s either X 1, X2, or X3. The set of available registers will include the destination register.
Using this representation in general results in twelve nonterminals for each node in the parse tree.

The second difference arises from the structure of the addition and subtraction instructions on the

two machines. For the IBM machine, the subtract operation 1s not symmetric; when the first
operand is already in memory, it 1s faster to compute the negation of the second operand and then
add the two. Hence we keep track of the sign of each expression in the productions for the IBM
machine: nonterminals are of the form [expression, #location], where “location” is either memory,
register A, or register Q. The CDC machine, on the other hand, requires both operands of a
subtract operation to be in registers; if neither operand contains a unary minus, the order in which
they are loaded depends only on the number of temporary registers needed to compute each
operand, and productions for this machine need not account for the sign of an expression. Unary
minus operators do not appear in problem 5; if they were present, we would have to add an extra
component on our CDC solution, in order to compile optimal code for such expressions as
~((a-8)+7).

A digression: the unary minus operator has also dirtied up parsing techniques through the years.
Floyd, in his article [1} on precedence grammars, was forced to handle the unary minus in an ad Aoc
manner. Wirth, however, combined and extended the notions of precedence grammar and phrase
structure grammar in [4], and designed an algorithm for parsing the more general grammar. More
recently, Pratt [2] has devised an even nicer way of doing precedence parsing.
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We may wonder, having considered an algorithm for optimizing arithmetic expressions, if the
algorithm can be adapted in some way to handle conditional expressions (if... then, ..e1se).
This could be more difficult, since a truth value is not specified by the contents of some register but
by the position of the program counter or the state of the machine at a given point of -execution.
We wish to compute the expression if B then a else 8 into register A, so our first guess for a
production schema might be

[if B then a else 8, A, . ..]

> [B, CCJ]if CC then go to L1;la,AY jump L2; label L1:(8, AJ label L2:
Here CC 1s a condition code and the label operator specifies a location which will be the operand of
some jump Instruction.

Possible problems with this schema lie in two areas. The first are notational: the best notation
allows us to see the important concepts clearly, and the use of a condition code, for instance, may
obscure some feature of a better production schema. The other difficulties are operational: use of
this schema may prevent us from generating optimal code in some cases. A possible notational
change would be to introduce a nonterminal which combines "[B,CC] if CC then go toL1;" into
[B, true to L 1]. Operational difficulties arise if we consider the case when a is [if B’ then a’ else 8°];
then our method generates a jump to a jump. Associating a jump with each instruction, then
making some of the jumps null, 1s a possible fix. We might also have an implicit label at the end of
each production, for example:

[if B then a else 8, A, L2)-[B,CCl1Ff CC then go to L1;[a, A, go to L2]([8, A, L2].
Does this work? ‘There will always be two cases: processing either “falls off the end” or exits
prematurely from the code we generate. The labels of the target instructions may either be listed in
the productions or left implicitly specified. Further consideration of the problem should be
interesting; it 1s therefore left to the reader.

We might also consider using our method to avoid recomputing common subexpressions. This
problem in general 1s NP-complete. However, given an expression which we know we want to
check for, we can set up productions whose left hand sides contain the expression and thereby
optimize the computation.

Once the production set 1s decided on, 1it must be processed. Knuth’s algorithm chooses, from a list
of unevaluated productions, the production whose cost 1s minimal. The list may be maintained in
various ways; Knuth’s impkmentation of the algorithm used a priority queue, or heap, in order to
access the minimal cost production as quickly as possible. The term “heap” was introduced by
J.W.J. Williams in his description [3] of the sorting algorithm “Heapsort”. The elements of an array

; X form a heap if X[[k/2[JsX[k] for Is] k/2J<ksn; hence X[1] is less than or equal to both X[2] and
X(3), X[2]J<X[4] and X[2])sX[5]}, and so on. The heap represents a binary tree whose root is its
minimal element, and whose subtrees are heaps. Keys are entered into the heap at the bottom, then
sifted up to their proper position. Deletion from the heap occurs at the root; this leaves a hole at
the beginning of the heap which 1s moved to the end by sifting elements up. (Cf. the Peter
-Principle: “In a hierarchy, every employee tends to rise to his level of incompetence.) This sifting
operation may be implemented in two ways: either by reconstructing the heap from the top down,
leaving a hole somewhere near the end of the heap, filling that hole with the last element and
sifting it back up; or by taking the last element and, by starting at the beginning of the heap and
comparing in turn with the two descendents, sifting it down. The two methods of deletion are
illustrated in Figure 1.
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2 3 => 6 3 = 6 3 = 4 3

6 7 4 7 4 4 7 6 7

4 ) 2

2 3 = 2 3 = 4 3

6 7 4 6 7 6 7

Figure I — deletion of element "1" from a heap

Knuth’s solution to problem 5 stored, in a heap, productions whose right hand sides had been totally

evaluated. The statement |
do production~heapout until value[ 1hs[production]]>cost[production]}

produced the desired minimal cost production (all productions were given an lhs value of », and an
lhs value smaller than the current cost indicated that the corresponding nonterminal had already
been evaluated).

We may observe that ignoring instruction costs in the program leads, for a given arithmetic
expression, to the solution which computes it in the fewest number of instructions. Furthermore, if

there is only one instruction that performs a certain operation (e.g. multiplication or division), then

the running time of that instruction does not affect the optimum code, since we will do the
instruction a fixed number of times anyway. We have noted, however, that there are some ways to
compute b-c+d in four instructions on the IBM machine that are quicker than others.

The main optimization effort for the CDC machine went toward avoiding the use of ‘temporary
storage; the more quantities we could keep in the three registers, the better, since the machine’s
arithmetic instructions operate only on register operands. We might ask, then, how many registers
are required to compute a given expression. Some examples:

a*b+ced requires two registers;
(ab+ced)«(e-f+g+h) requires three registers.

These turn out to be the smallest expressions (i.e. having the least number of operators) which
require two and three registers respectively. These expressions also correspond to complete binary
trees. We may observe that to force use of four registers, we double the number of variables needed
to force three registers. To determine r(a op 8), the number of registers needed to compute an
expression a op B, we use the formula

r{a op 8) = max(r(a), r(8)) if r(a) = r(B)
« max(r(a), r(B)) + 1 if r(a) =r(B).

References:
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316-333.

[2] Pratt, V.R., “Top Down Operator Precedence,” Proc. ACM Symp. on Pringiples of
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[3] Williams, J.W. ]., “Heapsort,” CACM 7,6 (June 1964), pp. 347-348.
[4] Wirth, N. and Weber, H., “Euler: A Generalization of Algol and Its Formal Definition,”

CACM 9,1 (January 1966), pp. 13-23.
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Comments on solution8 to problem 6

The suggested method for solving problem 5 involved four parts: (a) construction of the parse tree
for the input expression; (b) association of productions with the nodes of the parse tree; (c)
application of the generalized shortest path algorithm to find the minimal cost computation of the
expression; and (d) code generation for that implementation. Parts (a) and (d) involved only
straightforward tree construction and traversal techniques; these parts were fairly easy.

For part (b), we needed first to determine a set of production schemata which would represent the
instructions of the target machine; examples of such schemata were discussed in the notes of
November 30 and December 9. Once a reasonable set of schemata was found, it was a good idea to
prune the set of productions that resulted, and this could be done in a variety of ways. For instance,
all costs for the leaf productions-those which computed the value of a variable-could be

precomputed, and the leat productions discarded. More complicated pruning of the production set
required examination and sometimes alteration of the expression parse tree. The number of
registers needed to compute an expression can be determined from the height of its parse tree, and it
1s normally a good idea to first compute the operand which requires the most registers, when there is
a choice. For an addition, which is symmetric, we would determine the optimal order of
computation of the operands; using this information, we can avoid generating productions which
represent evaluation in the opposite order. Also, unary minus signs can be propagated down to the
bottom of the parse tree; in this way, some minus signs may be eliminated, and no code efficiency
need be lost. o

Further reduction of the number of productions depends strongly on characteristics of the target
machine like instructions which always operate on specific registers. An example from the IBM
computer 1s the divide instruction; since the register Q always contains the result, the cheapest way
to compute the desired quantity in register A must be to compute it in Qand transfer it immediately
afterward (rather than, say, load it from memory). These machine-dependent characteristics could
have been input to a solution program by using a more general facility for describing the target
machine. No one did this, although several programs implemented some of the other optimizations
just described.

The shortest path algorithm could be implemented as follows.
I. Imtialize the “evaluated list” of nonterminals to empty, and the cost of each nonterminal to eo.
I1. Repeat the following until the top of the parse tree enters the evaluated list:

a. For each production lAs-rAs for which lAs is not yet in the evaluated list but all
nonterminals within rhs are, repeat the following:
1. Determine the cost associated with (As by summing the costs of the components of ras,

and let this cost be C.

2. If C <costliAs]) then set cost{iAs] to C.

b. Choose, out of the as-yet-unevaluated nonterminals, the one whose cost 1s minimal, include
it in the evaluated list, note this inclusion in each production whose right hand side
contains {As, and remember the production that produced the minimal cost.

Depending on the data structure used, the updating step in Ib either merely processed a linear list
or else required a search. The other complicated part of the algorithm was the choice (in Ib) of the
nonterminal to enter the evaluated list. It was worthwhile to maintain the unevaluated nonterminals

in a “priority queue” data structure. One such structure was a heap, discussed in the notes of
December 9. Examples of optimum code produced by the algorithm appear in Figure 1.

]
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(i)a « b-c-d

IBM 704 CDC 6000

A « -C XleC

Ae Q X2+d

A«Q=xd Xl« XI « x2
A«<A+bD X2« bh

a «A x3 « x2 =X]

a + x3

(ii) a « b -(c-(d/(ef+g-h))[ ((i-j)(k+1) + m/n))

IBM 704 CDC 6000

A em x2« f

Qe«A/n Xl +e
tl « Q x3 « Xl % x2
A «i X2 + g

AeA - Xl «h

t2 « A Xl « x2 = XI

A « Kk x3 + x3 + Xl
A «A+ 1 Xl]« d

Ae Q x3 « Xl / x3

Ae Q2r t2 Xl +c
Ae A +t] x3 « X]| - x3

tl « A te x3

Q+«e X2« k
A«Q=xf X1« 1
t2 « A x3 « x2 + Xl

Qe«g X2 +]
A- Q = h X]« i

A «A+ t2 x2 «Xl~- x2

t2 «A x3 + x2 * x3

A +d X)& nn

Ae Q Xle«XI / x2
AeA-~-¢ x3« x3 + Xl
Q«A/ tl] Xl +t
A» Q Xl « X1/x3

Ae«A+D X2 «Hb
ae«A x3 « x2 = Xl

a« X3

Figure 1 — optimal code generated by solutions to problem 5
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Appendix 1 -- data for problem 1

Eurasia

36, -6 37,-7 37,-8 39,-9 43,-9 43,-2 46,-1 48,-5 50,1 53,6
54,9 57,8 57,10 55, 11 54,14 55,20 59,23 60,30 60,24 61,21
64,21 66,25 66,22 65,21 64,18 60,18 57,16 56,13 60,11 58,8
59,5 62,5 64,10 70,20 71,30 68,40 69,58 78,105 75,113 72,132
73,145 70,162 70,178 66,-170 65,-173 66,-179 64,177 62,179 60,170 60,167
59,164 54,162 51,157 58,156 60,163“ 62,163 59,156 59,143 55,135 53,142
48.140 43,134 43,132 40,127 36,129 35,126 38,126 40,125 39,122 41,122
39,118 38,119 38,123 35,119 30,122 25,119 22,114 21,107 19,106 16,109

12,109 8,105 10,105 14,101 9,99 7,101 6,104 1,104 4.102 6,100
8,98 13,98 17,97 16,94 18,94 23,91 16,80 13,81 10,79 7,77
17,73 22.72 21,70 25,66 25,58 27,56 26,53 30,50 30,48 24,52
24,54 26,56 24,57 22,60 17,57 13,44 21,39 29,35 31, 32 32,35
37,36 37,28 41,26 40,23 38,25 36,22 38,21 40,20 42,20 45,13
43,15 40,19 41,17 39.18 38,16 40,16 43,11 44,11 45.9 43,7
44,3 42,4 40, -1 39.0 37,-2 36,-6

Africa 4,-8
-34,18 -17,12 ~-12,13 -5,12 -1,9 4,10 6,2 31.30- 12,-16 21,-17
28.-14 30,-10 36,-6 37.10 33,11 31,20 33,21 vayuw 29,33 10,44
12,51 5,49 -3,40 -16,40 -20,35 <-25,36 -27,33 -29,32 ~-34,27 -34,18

Madagascar -
-12,49 -25,47 -25,43 -17,43 -12,49

North America

8,-78 9,-79 7,-80 8,-83 13,988 14,-91 16,-95 15,-97 20,-106 21,-105
31,-113 32,-115 23,-109 25,-112 26,-112 28,-115 28,-114 33,-118 34,-121 40,-124
48,-125 58,-137 61,~147 55,-164 58,-158 59,-164 62,-166 64,-161 65,-168 66,-162
68,-166 71,-157 70,-140 69,-115 72,-125 77,-124 83,-65 75,-80 68,-67 66,-61
62,-66 64,-78 65,-74 67,-72 70,-80 67,-80 62,-93 59,-94 57,-92 55,-82
52,-81 51,-79 55,-80 656,-78 59,-79 62,-78 61,-70 59,-70 58,-67 60,-65
52,-55 50,-60 50,-66 46,-59 43,-66 45,-66 43,-70 42,-71 41,-70 41,-73
39,-74 35,-76 32,-81 30,-82 26,-80 25,-81 ¢28,-83 230,-84 30,-85 31,-86
30,-90 29,-89 29,-95 ¢28,-97 22,-97 19,-95 19,-91 21,-90 ¢21,-87 16,-88
15,-83 11,-83 9,-81 10,-79 8,-77

South America

11,-75 12,-71 11,-69 11,-62 7,-58 5,=-52 4,-51 0,-5% -3,-40 -5,-35
-8,-35 -13,-38 -20,-40 -23,-42 -26,-48 -28,-48 -35,-53 -35,-58 -37,-56 -39,-57

. -39,062 -41,-62 -41,-65 -45,-65 -46,-68 -47,-65 -50,-69 -53,-68 -55,-65 -54,-73
-49,-76 -37,-73 -19,-71 -15,-75 -14,-76 -7,-80 -6,-81 -5,-82 -4,-80 -3,-81

1, -80 3,-78 5,-77 8,-78

Greenland

-60,-43 61,-48 67,-53 70,-50 76,-60 7/6,-68 78,-71 81,-63 84,-30 81,-~15
'70,-22 68,-27 68,-32 66,-36 65,-40 60,-43

Australia

-11,142 -26,153 -28,154 -38,150 -39,143 -38,140 -33,138 -35,136 -32,134 -32,129
-34.,124 -34,120 -35,117 -34,115 -32,116 -22,113 -18,122 -14,127 -15,129 -12,131

-12,137 -15,136 -18,14]1 -11,142

Great Britain

58,-5 57,-7 56,-5 55,-5 55,-3 54, -4 54,-3 53,-3 53, =5 52,-4
52,-5 51,-3 50,-5 51,1 51,0 52,2 56,-3 57,-2 57,-5 58,-3
58, -5
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Ireland

55,-6 55,-8 54, -8 54,-10 53,-9 52,-10 51,-9 52,-6 55,-6

TREE Sea48, 53 45,57 40,50 37,49 37,55 42,55 45,51 46, 54 48,53

Iceland

67,-16 66,-21 67,-23 65,-22 65,-24 63,-19 65,-14 67,-16

Black Sea

47,32 43,27 41,29 42,35 41,38 42,42 45,36 44, 34 47,32

Japan

46,142 43,140 39,139 34,130 31,130 35,140 42,141 44,146 46,142

Cuba

23,-81 22,-85 22,-80 20,-77 21,-74 23,-81

Haiti, Dominican Republic
20,-73 19,-72 18,-75 18,-69 20,-70 <20,-73

Borneo

2,109 3.111 4.116 2,118 7,117 2,109

New Zealand 5
-46,172 -47,166 -42,169 -41,174 -46,172 -35,173 -39,173 -42,175 -38,178 -35,173

New Guinea

-3,141 -1,131 -9.141 -8,145 -11,151 -7,148 -3,141

Si y. Ind 1

5,889P0T2, 106°"-8.%28 -5,106 -2,107 5,95

Antarctica

-63,%9 -73,77 -72,102 -74,100 -73,127 -77,-165 -71,-170 -66,-138 -67,-82
-69,-74 -66,-53 -70,9 -79,52 -63,59
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Appendix 2 -- data for problem 4

There are four kinds of tradeoff lists in the network:

#1: 120,13 111,17 92,23 66,29 54,36 40,45 31,58

#2: 186,16 161,25 157,35 123,51 111,68 96,86 65,113
#3: 300,17 278,23 235,37 171,50 151,74 141,97 133,127
#4: 399,24 371,41 313,59 235,92 196,131 152,169 131,222

The network has fifty vertices, numbered 1 thru 50. The rootis number 17. The arcs of the

network are defined by forty-nine procedure statements of the form datafu,v,t), meaning that the
path from u to the root first goes through v, and the corresponding tradeoff list is st. Here are the

forty-nine data statements, which you might simply wish to insert into your Sail program:

data(1,41,3); data( 18,37,2);
data(2,24,3); data(19,30,2);
data(3,42,2); data(20,50,3);
data(4,13,3); data(21,16,3);
data(5,37,2); data(22,43,2);
data{6,46,3); data(23,10,1);
data(7,23,4); data(24,47,2);
data(8,23,3); data(25,18,1);
data(9,19,2); data(26,38,2);

data(10,17,2); data(27,22,1);
data(l1l1,9,3); data(28,46,1);
data(12,50,4); data(29,42,2);
data(13,48,3); data(30,25,1);
data(14,30,4); data(31,9,2);
data(15,5,2); data(32,28,4);
data(16,44,2); data(33,6,2);

data(34,15,2);
data(35,47,4);
data(36,23,4);
data(37,23,1);
data(38,20,1);
data(39,22,1);
data(40,2,4);
data(41,46,4);
data(42,34,3);
data(43,16,2);
data(44,28,1);
data(45,23,3);
data(46,49,2);
data(47,17,1);
data(48,28,3);
data(49,24,1);
data(50,30,1);
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