
ADAQ040538 (7
THE ANALYSIS OF A PRACTICAL AND NEARLY OPTIMAL

PRIORITY QUEUE

by

Mark R. Brown

STAN-CS-77-600

MARCH 1977 DDC

JN 14 10

C
COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

leyL ane we -

Os Nc
a

The Analysis of a Practical and Nearly Optimal

Priority Queue

Mark R. Brown

Abstract.

The binomial queue, a new data structure for implementing priority

queues that can be efficiently merged, was recently dlscovered by Jean

Vuillemin; we explore the properties of this structure in detall., New

methods of representing binomial queues are given which reduce the storage

overhead of the structure and increase the efficiency of operations on it.

One of these representations allows any element of an unknown priority

queue to be deleted in log time, using only two pointers per element of

the queue, A complete analysis of the average time for insertion into

and deletion from a binomial queue is performed. This analysis is based

on the result that the distribution of keys in a random binomial queue

is also the stationary distribution obtained after repeated insertions

and deletions.

An abstract notion of priority queue efficiency is defined, based on

comparison counting. A good lower bound on the average and worst case

number of comparisons is derived; several priority queue algorithms are

exhibited which nearly attain the bound. It is shown that one of these

algoritims, using binomial queues, can be characterized in a simple way

based om the mmber and type of comparisons that it requires. The proof

of this result involves an interesting problem on trees for which

Huffman's construction gives a solution.

~The printing of this paper was supported in part by National Science
Foundation grant MCS 72-03752 A053, by tha Office of Naval Research
contract NOOOlhk-76-C-0330, and by IBM Corporation. Reproduction in
whole or in part is permitted for any purpose of ihe United States

Government. .

Acknowledgments

I would like to thank Robert Tarjan, both for acquainting me with

binomial queues and for many useful discussions relating to this work;

Danald Knuth, for prompting me to write up my results and for pointing

out innumersble improvements to them; Phyllis Winkler, for making the

task of writing much easier through her encouragement and excellent

typing; and Andrew Yeo, for reading the finished product. Sam Bent,

Daniel Roley, Lyle Ramshaw and Terry Roberts have also contributed to

my efforts in an essential way. Finally, I am pleased to acknowledge

the National Science Foundation's financial support of my graduate study.

_—/

: pt”)
Cs ta

gf \

11

Table of Contents

Chapter One, Priority Queues . . + « « o o » o + 6 0 0 o ¢ 0 » + 1

1.1 Priority Queue Applications ., . +» ¢ ¢¢ « a + ¢¢ 2« o 3

1,2 PriorityQueue Structures + + « ¢ ¢ ¢ ¢ + o ¢ oo €

1.5 Summary of the Results . , » + ¢« ¢ ¢ ¢ ¢ ¢ ¢ 0 so os oo 0 + & 11

Chapter Two. Implementation and Analysis of Binomial Queue

AlgOTithMS « + « o ¢ o o ¢ 6 o oe a ¢ oa 06 6 06 5 0 0 1h

2,1 Binomial Trees, Forests, and Queues . . +. « « + ¢ « « » » 11>

5.5 Binomial Queue ALOTATHME + + « 4 0 obo 0 meebo on 21
2,3 Structures for Binomial Queues . . + + + + os o + + so o « 28

2.4 Random Bincmial QUEUES « « o « o « o 0 6 0 0 6 ¢ 0 oo 0 so 3D

2.5 Analysis Jf Binomial Queue Algorithms + + . . » U5

Chapter Three. The Complexity of Priority Queue Maintemance . . . 57

3,1 A Setting for Priority Queue Complexity . « o« « « + + + « 58

3,2 Upper Bounds + + + ¢ ¢ ¢ o 0 © « oo 0 «a 6 6 0 0 0 0 0 0 oo 62

3.5 LOWEr BOUNAS « o o « « o o ¢ o « o o 0 » 0 «a a as oo a oo Ok

3, A Characterizationof Binomial Queues . . + « + « + + o « 06

3,5 DIBCUBBION + + « « ¢ o os 6 6 ¢ 0 0 os 0 ov 0 0 os oa 1D

RELEIENCEE « ©» o ¢ os o ¢ ¢ os o 6 6 0 ¢ s 6 6 s 6 a vo 0000 0vase 12

Appendix. Friority Queue Implementations. . . « « + oo ¢ ¢ vo & 78

1. SATL Dxplementations . . « o « o 0 oo 0 0s 0 00065 00 18

1.1 Binomial Queue using Strurture R . . « « = « « « o « 78

1.2 Binomial Queue using Structure KX . « ¢ oo oo os « « B3

2, FAIL Implementations . . « « o ¢ s ¢ ¢ ¢ 0 0 ac 0 0 0 6 ¢ 0 R

2.1 Binomial Queue using Structure R . « « + ¢« «+ s+ « « ¢ XR

| 111

Chapter One. Priority Queues

A priority queue is a structure for maintaining a coll ction of

items, each having an associated key, such that the item with the

smallest key is easily accessible, More precisely, if Q 1s a priority

queue and x is an item containing a key from a linearly-ordered set,

then the following operations are defined:

Insert (x, Q) 20d item x to tha collection of items in Q .

DeleteSmallest(Q) Remove the item containing the smallest key

among all items in Q from Q ; return the

removed item.

These actions are referred to informally as insertion and deletion.

A mergeable priority queue is a priority queue with the additional

property that two disjoint queues can be combined quickly into a single

queue. That is, the operation

union(T,Q) Remove all items from T and add these items

to Q

is defined when T and Q are mergeable priority queues; this operation

is informally referred to ac merging T into Q. AW pair of priority

queues can be merged by using repeated applications of Imsert and

DeleteSmallest , but we reserve the qualification "mergeable” for those

griority queues which can be merged quickly: merging should not require
"examining a positive fraction of ti» items in the queues.

The new results of this thesis, contained in Chapters 2 and 3, are

concerned with a particular mergeable priority queue, and with priority

queues in general, Chapter 1 is an introduction to the subject of

1

priority queues, and it should provide background for the later

chapters.

The priority queue was not recognized as a fundamental). 2aiva structure

until quite recently. Several nontrivial .riority queue organizations

were developed for different spplicationc before the uvsefulness of a

priority queue as an abstraction was pointed out by Knuth in 197% [28].

It follows that a good introduction to this subject requires not only a

study of the data structures and their asscc.ated algorithms, but also

an appreciation of the diverse applications ‘n which priority queues

are useful. We will devote Sectiun 1,1 to a survey of thase applications,

and describe the krown priority queue structures in Section 1.2.

Finally, in Section 1.3 we present a summary of the results to be

proved in Chapters 2 and 3. }

2

1.1 Priority Queue Applicationrc.

Possibly the earliest application »f priority queues was in the

implementation of simulation programming languages. Such languages are

typically structured around an "event list” which is a record of actions

to be perform=d at given instants of simulated time [2;5;15;30;34].

Thus adding a new action to the event list corresponds to an Insert, and

executing the earliest event on the list requires a DeleteSmallest.

An event list generally has extra features which are not part of

the definition of a priority queue. One of these is the FIFO property:

events with equal times must be performed according to a FIFO discipline,

in which the first event entered into the list is the first to be executed.

In some situations it is important to be able to remove an arbitrary

event (not just the earliest) from the list; in other cases, the ability

to locate the event to be executed immediately before or after a given

event may be necessary [41].

Mother early application of priority queues was in sorting and

selection problems. The idea of selection sorting [11;17;28, Section 5.2.3]

is to repeatedly remove the smallest of a ccllection of items and move

this item to an output area; hence we can accomplish a selection sort

by first filling a priority queue using successive Insert operations,

and then emptying the queue by using DeleteSmallest repeatedly.

Priority queues also play a role in external sorting [28, Section 5.k.l].

Mny external sorting methods use a technique called replacement selection

to form initial runs (sorted subsequences) amd to merge runs together;

replacement selection is based on alternating insertions and deletions

from a priority queue. (Because the queue size does not change during

3

replacement selection, the full generality of a priority queue is -ot

required,)

A typical selection problem is to find the I largest of n numbers,

when n is much larger than k . One solution to this problem begias by

inserting the first k number: ‘nto a priority queue. Then for as lcag

| as there are numbers which have not been inserted, we insert a new number

into the queue and then delete the smallest number from the queue. When

this process terminates, the k largest numbers are contained in the queue

[28, exercise 6.,1-22]., This selection technique is used in an algorithm

for rendom sampling [27, algorithm 3..4,2R].

An obvious apovlication of priority queues, and one which helps

| motivate their name, is in job scheduling according to fixed priorities.

In this situation jobs with priorities attached enter a system, and the

job of highest priority is always the next to be executed. Examples of

this procedure occur in operating systems and in industrial practice,

though in both cases the restriction to fixed priorities may be violated

in order to ensure fair scheduling (that is, to prevent a low-priority

job from being delayed indefinitely).

Priority queues arise naturally in certain numerical iterations,

One scheme for adaptive quadrature maintains a priority queue of

subintervals whose union constitutes the interval of integration; each

subinterval is labeled with the estimated error committed in the numerical

integration over it. In each step of the iteration, the subinterval with

the largest error is removed from the gueue and bisected. Then the

numerical integration is performed over these two smaller subintervals,

which are inserted into the queue, The iteration stops when the total

estimated error is reduced below a prescribed tolerance. This global

L

strategy is intended to result in subintervals over which the errors are

roughly equal in magnitude [33].

It has been discovered that the use of fast priority queues can improve

the efficiency of some well-known graph algorithms. In Kruskal's algcerithm

for computing minimum spanning trees, the procedure of sorting all edges

and then scanning through the sorted list can be replaced by inserting all

edges into a priority queue and then successively deleting the smallest

edge [24]. If the priority queue is implemented properly this improves

the algorithm on most graphs. Other ideas, one of which involves a good

mergeable priority queue implementation, have led to more improvements

in minimm spanning tree algorithms [3319]. Similar applications have

been found for priority queues in shortest path problems [18320].

Finally, there is a collection of good algorithms which fall into

none of the categories above but which depend on priority queues,

Chartres' prime number generator uces a priority queue in a scheme to

reduce its internal storage requirements [28, exercise 5.2.3-15]. B. L. Fox

has mentioned that priority queues are useful in implementing some discrete

programming algorithms {10}. Huffman's optimal code (mstruction operates

on a priority queue in just the opposite mamner from the numerical

iteration discussed above: it repeatedly selects the two smallest

elements from a queue, combines them, and inserts the result back into

the queue [26, pp. 4O0-hO5]. (For this problem, there is actually 8
better implementation which uses pre-sorting instead of priority queues.)

The last of these algorithms that we will mention is the Hu-Tucker

ortimal binary search tree construction, whose asymptotic running time

was greatly improved by using a good implementation of mergeable

priority queues [28, pp. k39-hhk],

p

1.2 Priority Queue Structures.

The most obvious priority queue structure is certainly the linear

1ist, If we keep a priority queue as a list of elements in arbitrary

order, then an insertion consists of appending a new item to the front

of the list, and a deletion requir:s searching the entire list to find

the smallest key. (This is a mergeable priority queue since with

linked lists, two queues can be merged in constaat time.) A slightly

more subtle method is to keep the list of elements sorted according to

their keys; then a deletion is performed by removing the first item

from the 1ist, and an insertion requi-es searching down the sorted list

to locate the proper place for the new element.

The sorted linear list was the structure first used to implement event

1ists, so it is not surprising that this structure can perform the extra

operations required for event lists, and that it has the FIFO property.

Both of the linear list schemes are easy to implement and are quite

efficient when the queue size is small, But both schemes have the

drawback that their running time for a single primitive operation grows

: linearly with the number of entries in the queue. A deletion from an

unordered list always requires order m steps when there are m items

in the list; an insertion into a sorted list requires O(m) time on the

average, whether the list is maintained in consecutive storage locations

or in linked form. (Sorted list insertion can be made to run faster if

the input has & known FIFO or LIFO tendency.) So both of these methods

are slow when m is large.

A new priority queue scheme was discovered in 1964 by Arne Jonassen

and Ole-Johan Dahl [21]. It represents a priority queue as a special

type of binary tree, which they call a p-tree. Any node of a p-tree having

6

a null left link must also have a null right link, and the keys in a

p-tree appear in increasing order when the tree is traversed in postorder.

By adding two extra links to each node, it is possible to perform

a deletion from a p-tree in constant time. Insertion requires O(m) steps

in the worst case, but the analysis in [21] shows that an average

insertion takes only O(log m)° time. (The analysis applies only to

a queue constructed by successive random insertions, but empirical tests

indicate that deletions do not significantly affect the cost cf subsequent

insertions.) The p-tree structure has the FIFO property, and seems very

well suited to event list applications.

In 196k, J. W. J. Williams introduced a data structure called a

heap in connection with his heapsort algorithm [28, pp. 145-1k9]. The

heap structure uses a linkless representation of a complete binary tree,

storing the root in location 1 and the offspring of the node in location

k in locations 2k and 2k+l . A heap is further characterized by the

requirement that the key contained in any node must be no larger than the

keys of its offspring; a tree with this property is said to tc heap-ordered.

It is easy to see that in any heap-ordered tree, the smallest key appears

in the root. Deletion from a heap requires O(log m) time on the average,

and insertion takes O(log m) steps in the worst case but only 0(1)

on the average [37]. Robert W. Floyd has demonstrated a bottom-up

method which creates a heap containing m elements in O(m) time [9].

Heaps are not difficult to implement, and they use storage efficiently

since no space is needed for pointers within the structure. Items must move

in order to perform insertions and deletions, so if the jtems are long it is

more efficient to store pointers in the heap, instead of the items themselves,

7

A potential drawback of heaps is that they require a sufficiently large

block of contiguous storage to be allocated in advance. It is possible

to represent heaps as linked binary trees, with an upward pointer in

each node, but this loses much of the simplicity of the method.

A scrted list becomes a practical priority queue structure

for large N , given an efficient way of performing insertions into such

a list. The balanced tree structure of Adel’ son-Velskii and Landis leads

to such an efficient sorted list representation, as described in {4;28,

pp. 463-468). Both insertion and deletion can be performed in O(log m)

steps. The algorithms are unfortunately quite complicated, but they

should be useful in large problems when all of the flexibility that

balanced trees offer is needed, An analogous sorted list representation

is possible with 2-3 trees [1, pp. 155-157].

The leftist tree, a mergeable priority queue structure based on

binary trees, was discovered in 1971 by Clark A. Crane {L4; 28, pp. 150-152].

A leftist tree is heap-ordered, and satisfies the further condition that

the shortest path from any node to a leaf may always be found by following

right-links. This explains the designation "leftist", since these treas

are generally slanted toward the left,

The basic operation on leftist trees is merging. It is possible to merge

two leftist trees with a totel of m nodes in 0(log m) steps; to maintain

the leftist structure during the merge it is necessary to keep an extra

field in each node which records its minimum distance from a leaf,

Ain insertion is accomplished by merging a single node into the tree;

deletion is performed by removing the root and merging its two offspring.

Thus individual insertions and deletions take O(log m) cteps, and

insertions and deletions take constant time in the case that insertions

8

obey a stack discipline, The leftist tree operations are not difficult

to program, but since they require more time and space than corresponding

heap operations it seems that leftist trees are only candidates for

applications where fast merging is required.

Another mergeable priority queue was proposed in 1974 by Aho,

Hopcrof't, and Ullman [1, pp. 152-155]. The queue is based on 2-3

trees, a close relative of balanced trees. A 2-3 tree is a tree in |

which each non-leaf vertex has 2 or 3 sons, and all leaves appear |

on the same level, For the mergeable priority queue, assign items to |

the leaves of the 2-3 tree, and assign a label to each internal node |

v which gives the value of the smallest key contained in the leaves of |
the subtree rooted at v .

With this structure it is possible to perform insertions, deletions,

and merges in O(log n) steps. The algorithms are only described

informally in [1], and are rather involved although not difficult to

follow, Although no careful study has been performed, it seems likely

that this priority queue is harder to implement, requires more storage

(because no items are stored in the internal nodes), and runs more

slowly than leftist trees. The main reason for interest in this structure

is that it supports a claim that anything is possible with 2-3 trees.

The binomial queue, a data structure for implementing mergeable priority

queues, was discovered in 1975 by Jean Vuillemin [42]. The structure
is a special type of forest, each of whose trees is heap-ordered; this

forest can be represented as a binary tree. Chapter 2 considers this

structure in detail, and concludes that binomial queues are preferable

to leftist trees in most applications of mergesble priority queues. They

9

are also useful in other priority queue applications, particularly if

the capability of deleting an &a:bitrary item from the queue is necessary.

If we assume that the keys in our queue are a subset of {1,2,...,m},

then some interesting specialized priority queue structures are possible,

A heap-like structure due to LutLer C. Abel [28, p. 153] represents such

a queue using only 2m-1 bits of memory; it requires O(log m) steps

for insertion and deletion, regardless of how many items are in the queue.

A tree structure discovered by P. van Emde Boas [40] allows insertions and

deletions in O(log log m) steps, but the crossover point between this

structure and the more straightforward 0(log m) methods has not been

determined.

10

1.3 Summary of the Results.

The previous section presented a maze of structures for implementing

priority queues; how can we choose among them? It is not always possible

to base such a choice on nicely quantifiable factors, since programming

time and the number of times a program 1s to be used may weigh heavily

in the consideration. The peculiarities of particular algorithm: may

turn out to be significant advantages or disadvantages in a given

situation; the good performance of leftist trees when insertions

follow a stack discipline may be essential to solve some problem efficiently,

or the sequential allocation required by heaps may be impossible

within a certain programming system, We have attempted to convey a

feeling for these factors in the discussion of the preceding section,

In spite of these difficulties, it turns out that in many cases our

choice of structures should be based on quantities such as how fast a given

implementation will run, and how much storage it will use. The storage

requirement is usualiy obvious, but the running time, especially

"typical" running time, is generally more difficult to predict. It is

possible to gain some feeling sbout the running time by executing the

program several times on "random" inputs, but this procedure is unsatisfactory;

it cannot give any significant increase in our understanding of the algorithm

being tested. A method which can give us more insight is to determine the

expected running time nathematically, under some plausible definition of

vhat is meant by "random" inputs to our algorithm, This approach is

called the analysis of an algorithm [26, Section 1.2.10].

Jdeally, then, the following chapter should contain analyses of all

of the algorithms mentioned in the previous section. But analysis turns

11

out to be very difficult for complicated priority queue structures.

One reason for this is that the structures tend to degenerate from

their "random" state (the state brought about by consecutive random

insertions) when they are formed by a sequence of insertions and

deletions, Such delet] n sensiti+ity tends to complicate the analysis

[23]. (Analyses of p-trees [21] and heaps [28337] have been performed

for the case of insertions only.)

Chapter 2 considers one priority queue structure, the binomial

queue, in detail. When this structure was introduced by Vuillemin [L2],

it seemed to be of interest primarily due to its intrinsic beauty and

simplicity. We show that the beauty of this structure is much deeper

than was previously appreciated, by proving that a random binomial queue

remains random even when deletions occur. This result allows us to

perform a complete analysis of binomial queues,

We also demonstrate in Chapter 2 that the binomial queue is of

greater practical importance than was previously acknowledged. We start

by giving new methods for implementing binomial queues which improve the

spe2d and reduce the storage requirements of the structure; one method

allows any element of an unknown priority queue containing m elements

to be deleted in 0(2>g m) time, using only two pointers per element of

the queue. We then compare the running time of a good implementation of

binmial queues with the time used by other mergeable priority queues, and

see that binomial queues are superior in most applications. This

comparison is aided by our analysis of binomial queues, which allows the

binomial queue implementation to be tuned for the best performance.

There are enough good priority queue structures in existence to

make one wonder how fast any priority queue acheme can run. In general

12

it seems impossibly difficult to prove results about the minimm number

of instructions that must be executed, or memory references performed,

in order to accomplish a given task. But interesting optimality results

have been proved about sorting, selection, and other problems within more

restricted models of computation [28, Section 5.3]. This sort of

investigation generally comes under the heading of "computational

complexity".

Chapter 3 is concerned with cptimality results about priority queues,

a subject which has never previously been addressed. We define the

efficiency of a priority queue scheme in terms of the number of inter-key

comparisons it requires, and prove good upper and lower bounds on

] priority queue efficiency within this model. We also show that a

] certain form of the binomial queue algorithm, which is close to being

optimal in our model, can be characterized in a simple way in terms of

| the number and type of comparisons it requires.

The Appendix contains implementations of the binomial queue

algorithms in a high-level language. IL also contains some of the

assembly language implementations used to make the performance

camparisons in Chapter 2.

13

Chapter Two. Implementation and Analysis of

Binomial Queue Algorithms

The principal results of this chapter were summarized briefly in the

previous section. In Section 2.1 we define the binomial queue structure

in rather abstre~t terms, and in Section 2.2 we give informal descriptions

of algorithms operating on this structure. No references to binomial

queue implementations are made in these two sections; to a large degree,

the conceptual simplicity of binomial queues depends on our ability to

. think of them in this abstract manner.

Section 2.3 presents several structures which can be used to implement

binomial queues. While the original structure proposed for this purpose |

was a binary tree, none of our new structures are; several advantages are |

gained from abandoning the standard representation.

In Section 2.4 we define the notion of a random binomial queue, and

prove that randomness is preserved in a wide variety of situations. Our

analysis of binomial queue algorithms, based on these insensitivity

results, is contained in Section 2.5; the end of that section contains a

comparison of mergesble priority queue methods.

In what follows we use the terminology for trees given in [26];

in particular, the offspring of any node in a tree are ordered, while

in an oriented tree they are unordered,

1k

2.1 Binomial Trees, Forests and Queues,

For each k > O we define a class B, of ordered trees as follows:

-- Any tree consisting of a single node is a Bj tree, (1)

-- Suppose that Y and Z are disjoint B, , trees for (2)

k>1. Then the tree obtained by adding an edge to make the
root of Y become the leftmost offspring of the root of 2

is a By tree,

A binomial tree is a tree which is in class By for some k ; the

integer k is called the index of such a binomial tree, Binomial trees

have appeared several times in the computer literature: they arise

implicitly in backtrack algorithms for generating combinations [32];

By through B) trees are shown explicitly in an algorithm for prime
implicant determination [36]; a By tree is given as the frontispiece
for [26]; and oriented binomial trees, called 5 trees, were used by

Fischer in an analysis of set unio. algorithms [8].

It should be clear from the definitiom above that all binomial trees

having a given index are isomorphic in the sense that they have the same

shape. Figure 1 on page 19 illustrates rule (2) for building binomial

trees, snd Figure 2 displays the first few cases.

An alternative construction rule, equivalent to (2), is often

useful: |

-- Suppose that Z .).cerZ, Aare disjoint trees such that 2, (2)
isa B, tree for 0<2<k-l. Let R be a ncde whichis
disjoint from each z, . Then the tree obtained by taking R

as the root end making the roots of Zp1700 00 the offspring

of R, left to right in this oxder, 1sa B, tree,

15

Figure 3 illustrates rule (3) for building binomial trees. The

equivalence of (2) and (3) follows by indvction un k .

For future reference we record sume properties of binomial trees,

including the nroperty which originally motivated their name:

Lemmy 1. Let Z be a Bo tree. Then

(1) Z has ok nodes;

(11) 2 has (%) nodes on level 1 ,
Proof, Trivial induction cn k . U

For each m > 0 we define a binomial forest of size m to be un

ordered forest of binomial trees with the properties:

-- Tre forest contains m nodes, (L)

-- If a B, tree Y is to the left of a B, tree 2 in the (5)
forest, then k > f . (That is, the indices of trees in the

forest are strictly decreasing fram left to right.)

Since by (5) the indices of all trees in the forest are distinct,

the structure of a binomial forest of size m can be encoded in a bit

string b,b, ; ...by such that by; is the nunber (zero or ame) of B,
trees in the forest. By lemma 1, the number of nodes in the forest is

Tb 29 5; hence b_ Db ese ® is just the binary representation of =n.

This shows that a binomial forest of size m exists for each m> O,

and that all binomial forests of a given size are iscmorphic. Figure 4

shows some small binomial forests.

16

Lemna 2. Let F be a binomial forest of size m > 0 . Then

(1) The largest tree in F is a Bl 1g m) tree;
(i1) There are y(m) = (# of 1's in binary representation of m)

trees in F ; this is at most | lg(m+l)) trees;

(111) There are m-y(m) edges in F .

Consider a binomiai forest of size m such that each node has an

associated key, where a linear order < is defined on the set of possible

key values, This forest is a binomial queue of size m if each binomial

tree of the forest is heap-ordered: no offspring hac a smaller key than

its parent. This implies that no node in a tree has a smaller key than

the root. Figure 5 gives an example of a binomial queue.

To avoid dwelling on details at this point, we shall defer discussion of

representations for binomial queues until later sections. The timing

bounds we give here and in the next section can only be fully justified

by reference to a specific representation, but the bounds should be

plausible as they stand.

The following propositions relating to binomial queues are essential:

Leama 3. Two hegp-ordered B, trees can be merged into a single

hesp-ordered B,,, tree in constant time,

Proof. We use construction rule (2). The merge is accomplished by

first comparing the keys of the two roots, then adding an edge to make

the larger root become the leftmost son of the smaller. (Ties can be

broken in an arbitrary way.) This process requires making a single

17

comparison and adding a single edge to a tree; for an appropriate tree

representation this requires constant time. (J

Lemma 4, Let T be a heap-ordered B, tree, Then the forest

consisting of subtrees of T whose roots are the cifspring of the root

of T is a binomial queue of size o*_1 .

Proof. This follows immediately from construction rule (3) and the

fact that subtrees of a heap-ordered tree are heap-ordered., {J

18

Figure 1. Construction of a binomial tree.

B, By E if
E,

By,

Figure 2. Small binomial trees.

19

'®

C ®

Z

{26-1

Figure 3. Alternative construction of a

binomial tree,

Oo 1 ‘ ’. ~ J O

size 1 size 2 size 3 size 4 size 5

Figure 4. Small binomial forests.

‘1 3

2L
Figure 5. A binomial queue of size 5

(with integer keys).

20

2,2 Binomial Queue Algorithms.

In order to implement a mergeable priority queue using binomial

queues, we must give binomial queue algorithms for the operations

Insert , DeleteSmallest and Union which were introduced in Chapter 1,

In the following informal description of the algorithms we let ||Q||

denote the number of elements in a queue Q .

Consider first the operation Union(T,Q) , which merges the elements

of T into Q. If |IT|| =t and ||Q|| = q » then the process of merging

the binomial queues for T and Q is analogous to the process of adding

t and q in binary. We successively "add" pairs of heap-ordered By

trees, as described in Lemma 3, for increasing values of k . In the

initial step there are at most two By trees present, one from each queue.

If two are present, merge (add) them to produce a single B, tree, the

carry. In the general step, there are at most three B, trees present:

one from each queue and a carry. If two or more are present we add two

of them and carry the result, a Beil tree, Each step of this procedure
requires constant time, and by Lemma 2 there are at most

max(| 1g(t+1) | , L1g(gt1) |) steps. Hence the entire operation requires

O(max(1og||T||, 10g|iQ]])) time. Figure 6 gives an example of Union with

binomial queues.

Given the ability to perform Union , the operation Insert(x,Q) ,

which adds item x to queue Q, is trivialto specify: Just let X

be the binumial queue containing only the item x , and perform Union(X,Q) .

By this method, the time required for an insertion into Q is O(log ||q}|) .

The operatior DeleteSmallest(Q) 1s a bit more complicated. The

first step is to locate the node x containing the smallest key. Since

21

x 1s the root of one of the queue's By, trees, it can be found

by examining eacl' of these roots once. By Lemma 2 this requires

O(log ||Q]]) time,

The second step of a deletion begins by removing the heap~ordered

B, tree T containing x from the binomial queue representing Q .

Then T is partially dismantled by deleting all edges leaving the root x ;

this results in a binomial queue T' of size o%-1 , as suggested by

Lemma 4, plus the node x which will be returned as the value of

DeleteSmallest ,

The final step consists of merging the two queues formed in the

second step: the gueue T' formed from T , and the queue Q' formed

by removing T from Q . Since each queue is smaller than ||qQl| , the

operation Union(T',Q') requires O(log ||Q)|} time; therefore the entire

deletion requires O(log ||Ql|) time. Figure 7 gives an example of

DeleteSmallest with binomial queues.

In some situations it is useful to be able to delete an arbitrary

element of a priority queue, not just the smallest. It is possible to

accomplish this with binomial queues by generalizing the tree-dismantling

step of Deletedmallest , Suppose x is the node ‘0 be deleted,

where x 1s contained in the By, tree T . Referring back to Figure 1,

ve can decampose T into two B , trees Y and Z, Now x lies in

either Y or Z, snd it lies in Y if and omly if the root of Y is

on the pathfrom x to the rootof T . S50 we remove the edge joining Y

and Z , save the tree which does not contain x , and repeat the process

on the tree containing x until x stands alone as a B, tree. When

the process terminates, k subtrees have been saved, and they constitute a

22

binomial queue of size 25-1 . (Note that when x is the root of T ,

this procedure just deletes all edges leaving Xx .) The deletion is

completed with a final Union , as before; the same time estimates also

apply as long as we can delete each edge in constant time during the

tree-dismantling step.

It is interesting to note that the time bound given for the Insert

| operation can be substantially improved if we study the effect of

several consecutive instructions. Consider the sequence of instructions

Insert (x;,Q)3 Insert(x,,Q); vee } Insert (x,,Q) .

The time for each insertion is just 0O(1) + O(number of edges created

by the insertion) . If ||Q]| = m initially, the number of edges created

by this sequence of instructions is (mtk-v(mtk))- (m-v(m)) =

k+ y(n) - v(imk) by Lemma 2, Hence the time for k insertions into a

queue iz O(k) + O(k+ v(m) - v(m*k)) = O(k+ log m) if the jueue has

size =m initially.

As mentioned in Section 1.2, leftist trees and 2-3 trees can be

used to implement mergeable priority queues. The time bounds for Insert,

DeleteSmallest and Union using these structures have the same order of

magnitude as those given above for binomial queues. But for both of these

structures, insertions must be handled in a special way in order to achieve

the O(k+1log m) time bound for a sequence of Insert instructions, The

naive spproach, that of inserting elements individually into the leftist

or 2-3 tree, can cost about log(ktm) per insertion fcr a total cost of

o(k log(ktm)) . The faster spproach is to buffer the insertions by

maintaining the newly inserted elements as a forest of trees with graduated

5

sizes, such as powers of two, Then insertions cau be handled by

balanc:d merges, Just as with binomial queues. Individual merge:

require more than constant time, but the time for k insertions

comes to O(k+ log m) .

2h

A: [ol size3 = (11),13

A: A 2h 1 ®=2l size 7 = (111),26 O25 25 —

zr

(a) Binomial queues of size 3 and 7 to be merged for UNION operation.

11 1

| é— carryYy 21

1 ’13

2h 22 114

261 25 l 23 —_—27 0)

(b) After merge of B,'s; result is carry.

12 1

22 (1 133 H

2 1

26 25

21 e —
10

opt!

I.
(c) After merge of B, 's.

0H

4

111
12 11

[1010ee 13 2l

26AE27

(d) Merge completed.

Figure 6. Binomial queue Union operation.

26

1 | 32 7! 6 5h

(a) Binomial queue of size €., Node 1 is to be deleted,

3

I ¢—— remainder of original queuey)

2 C6 ¢— children of deleted node

I.
(b) Two queues which result fram removing node 1.

2 C6

3 él "5

(c) Resulting queue of size 5 after merging.

Figure 7. Deletedmallest on a binomial gueue.

44

2.3 Structures for Binomial Queues.

In implementing binomial queues our objectives are to make the

operations described in the previous section as efficient as possible

while requiring a wlnimum of storage for each node. As usual, the most

appropris*e structure may depend on which operations are to be performed

most frequently.

Since a binomial queue is a forest, it is natural to represent it

as a binary tree [26], But not all orientations of the binary tree links

allow binomial queue operations to be performed efficiently. Evidently

the individual trees of the binorial forest must be linked together

from smaller to larger, in order to allow "carries" to propagate during

the Union operation. But in oraer to allow two heap-ordered binomial

trees to be merged in constant time, it seems necessary that the root

of a binomial tree contain a pointer to its leftmost child; hence the

subtrees must be linked from larger to smaller. This structure for

binomial queues was suggested by Vuillemin [42]; we shall call it

structure V . An example of a binomial queue and its representation

using structure V is given in Figure 8(a).

The time bounds given in the preceding section for Insert ,

DeleteSmallest , and Union can be met using structure V , provided

that the queue size is avallable during these operations. The queue size

is necegsary in order to determine efficiently the sizes of the trees in

the queue as they are being processed. (The alternative is to store in

each node the size of the tree of which it is the root; this will generally

be less useful than keeping the queue size available, and it will use more

storage.) In what follows we shall assume that the queue size is available

28

as part of the gueue header; the other component of the queue header

will be a pointer to the structure representing the queue.

One drawback of structure V for binomial queues is that the

direction of the top-level links is special. This means that in this

representation, the subforest consisting of trees whose roots are offspring

of the root of a binomial tree is not represented as a binomial queue

(as would be suggested by Lemma L); the top level links are backwards.

Structure R , the ring structure shown in Figure 8(b), eliminates this

problem, In this structure smaller trees are always linked to larger

ones, except that the largest tree points to the smallest. Downward

links point to the largest subtrees, as before. It appears that

structure R is slightly inferior to structure V for insertions, but

is enough better for deletions to make it preferable for most priority

queue applications. Structure V has same advantages for implementing

the fast minimum spanning tree algorithm [4], since the ordering of

subtrees helps to limit stack growth in that algorithm. (The stack can

be stored in a linked fashion using the deleted nodes, thereby removing

this objection to structure R .)

Reither of the struciures described so far allows an arbitrary node

to be deleted from a binomial queue, given only a pointer to the node.

It is evident that in order for this to be possible, the structure must

contain upward pointers of some sort which allow the path from any node

to the root of the tree containing it to be found quickly. It must also

be possible to find the queue header, since it will change during a

deletion.

29

Simply adding a pointer from each node to its parent node (to the

queue header in case of a root) in structure V results in a structure

which allows arbitrary deletions to be performed. An example is given

in Figure 9(a). Starting from any node in this structure, it is possible

to follow the upward links and trace the path to the root of the binomial

tree containing the node. The upward link from the root leads to the

queue header, wtich we assume is distinguishable in some way from a queue

| node. Once the path to the root is known, the top-down deletion

procedure described in the preceding section can be applied.

Walle the top-down deletion process is easy to describe, a more

efficient bottom-up procedure would be used in practice, It is also

essential to understand the bottom-up procedure in order to comprehend

now alternative structures can be used, In the initial step of the

bottom-up procedure we save all of the trees whose roots are offspring

of the node to be deleted, and call this node the path node. In the

general step the path node was originally the root of a B tree within

the binomial tree being dismantled; its parent was the root of a BP tree,

and we have saved By_1s¢245B, trees so far. We first save the B, tree
formed by the right siblings of the path node, taking the path node's

parent as a root. Then we save the :- WETERTFR PRY trees which are left

siblings of the path node, and make the parent of the path node the new

path node. When the path node becomes the root, the process terminates.

The forest of trees saved by this process is the same as that created by

the top-down process, and the remaining steps of the two algorithms are

identical.

30

Figure 9(b) shows a modification of structure R which allows

| arbitrary deletions to be performed. This structure keeps an upward
pointer only in the leftmost node among a group of siblings, and this

pointer indicates the right sibling of the parent of nndes or this level.

Note that the rightmost sibling in any family has no offspring, so the

parent's right sibling always exists when needed. It is not too hard to

convince oneself that the bottom-up deletion procedure just described

can be performed on this structure,

Figure 9(c) shows a method of encoding the previous structure which

uses only two pointers per node. The regularity of the binomial tree

structure allows us to recover the information about which "child" pointers

actunlly point upward, as follows: the rightmost node in any of the

horizontal rings has no offspring (except perhaps on the top level of the

forest), co its "child" pointer goes upward. If a node is an only child,

or is the right sibling of a node having an only child, then it is one of

these rightmost nodes. A node is an only child if and only if it is its

own left sibling, so it is possible to test efficiently whether or not a

"child" pointer goes upward. The upward pointer convention in Figure 9(c)

is slightly irregular at the top levels; here the decoding depends on our

ability to distinguish the queue header from other nodes.

Structure K , another structure which allows arbitrary deletions

using only two pointers per node, is shown in Figure 9(d). This structure

contains some null links, and seems to require less pointer updating per

operation than the structure in Figure 9(c). Note that a path from an

arbitrary node to the queue header can be found by always following "left"

links, some of which go upwards. To move to the right on a given level

we Just follow the child pointer and then the "left" pointer,

31

(2) y

2) (© (8 i)

3) 6 @

O

oO © Lu)

(2)%(6)—(8) 10,

GG) (U

(3)

(a) A binomial queue and its representation using structure Vv.

eC

FOO» ©
0. 2o¥0)

Lh

(b) A representation for the same queue using structure RR.

Figure 8. Structures for binomial queues.

32

Queue header ——p | _1L
1

LA ettermemeas———

® .

27)
»7, 7 | |

cL, ' '
CX -= ry e

[|

dd - | od
n

)

)

¢
’

@

(a) Structure V with upward pointvers.

ed ~

’ a I Se —-—
J -—@ ®

adilPed EAD
-— >

- -

~~ = ”

~ /’

7 id
[4 L J LJ

F&F» CC
/

/
”

«

(b) Structure R with upward pcinters.

33

|

"eI ~ -
| ~ -~

~N ~~
| N ~
Qf

J {

CFO 9
7 7 \

JS / \ J

CH CY
-

7
/

®

(¢) A structure with only two pointers per node.

|

|

[J — ©
a

a - ad
= = -

o : C) 0

_ ~~ rdrd

[[J

Ve

| /

(a) Structure K.

Pigure 9. Structures for binomial queues allowing arbitrary deletions.

3h

2.4 Random Binomial Queues.

We define a random binomial queue of size m to be the queue formed

by choosing a random permutation of {1,2,...,m} and inserting the

permutation's elements successively into an initially empty binomial

queue. (By a random permutation we mean a permutation drawn from the

space in which all m! permutations are equally likely.) Equivalently,

a random binomial gieue of size m is formed fram a random binomial

queue of size m-1 by choosing a random element x from

(5 13, cee y m-3], inserting x into the queue, and renumbering the
queue such that the keys come fram {1,2,...»m} and the ordering among

nodes is preserved.

This definition of a random queue is simple, yet is not artificial.

The second statement of the definition, which says that the m-th random

insertion falls with equal probability into each of the m intervals
defined by keys in the queue, is equivalent to another definition of

random insertion which arises from event list applications. In these

situations, a random insertion is obtained as follows: generate an

independent random number X from the negative exponential distribution,

in which the probability that X <x ir 1-6 X, Then insert the number

Xtt , where t is the key most recently removid fiom the queue (0 ir

no deletions have taken place). Here { 4g interpreted as the current

instant of similated time, and X is a random "waiting time" to the |

occurrence of some event. The fact that this definition of a random

insertion is equivalent to the one we have adopted was proved by Jonassen

and Dahl [22]; it follows without difficulty from the well-known

"nemoryless” property of the exponential distribution.

35

Our goal in this section is to study the structure of random binomial

queues. The gross structure of such a queue is already evident; we

obcerved earlier that all binomial forests of a given size are isomorphic.

But more information about the distribution of keys in the forest is

necessary to fully analyze the performance of binomial queue algorithms.

For example, in order to analyze the behavior of DeleteSmallest it

is necessary to determine the probability of finding the smallest element

in the various trees of the binomial queue. It is also important tc

determine whether or not a random queue stays random after a DeleteSmallest

has been performed, since if this is true then the analysis of random queues

may apply even in situations where both insertions and deletions are used

to buiid the queue.

Our first observation is that the insertion algorithm shows e certain

indifference to the sizes of the elements inserted.

Lemma 5. Let P= PyPyees Pp be a permutation of {1,2,...,m} . Then
in the binomial queue obtained by inserting Py2Pose+esPp successively

into an initially empty queue, the tree containing Py is determined by
J for J =1,2,e0e,m

Proof. We proceed by induction on m . The result is obvious for

m=1. For m>1, let t= 2182) be the largest power of two

less than or equal to m . After the first f elementsof p have

been inserted, the queue consists of a single B 1g m) tree. later
insertions have no effect on this tree, since it can only be merged with

another tree of equal size. Hence the first (elements of p must

fall into the leftmost tree of the queue. Furthermore, since the

leftmost tree is not touched, the remaining m-2 insertions distribute

36

the last elements of p into smaller trees as if the insertions were

into an empty queue, “his proves the result by induction. 0

A quicker but les: suggestive proof of Lemma 5 simply notes that

camparisons between keys in the insertion algorithm only affect the

relative placement of subtrees in the tree being constructed. Such

comparisons never determine which tree is to receive a given node,

What the given proof of Lemma 5 says is that the input permutation

P can be partitioned into blocks whose sizes are distinct powers of two,

such that the ok elements of block by, form a By tree vhen all m
insertions are complete, The sizes of these blocks decrease from left

to right, just as tne sizes of trees in the forest decrease. (Ancther

priority queue structure with this sort of indifferent behavior is an

unsorted linear list; with the linear list, the blocks are all of size

one.)

The deletion algorithm exhibits a similar dependence on when the

deleted item was inserted, and a similar indifference to key sizes. What

the following lemma states is that if we delete an element from a binomial

queue, then the resulting queue is the same as we obtain by never inserting

the element at all, but permuting the elements that we do insert in a

manner which depends only on when the deleted element was inserted,

lemma 6. Let pw P)Py---P be a permutation of {1,2,...,m}.

Then there is a mapping r = rym from {1,2,...,m-1]} onto

{(1,2)00053-1,341,...,m) such that the result of inserting Py Ppeee Py

into an initially empty binomial queue and then deleting p3 is identical
to the result of inserting Pr(1) Pr(2) coe Pr(m-1) into an initially
exply binomial queue,

bY|

Yroof., We basically mimic the procedure for deleting Py and then read
the mapping from the result. The exact mapping depends on arbitrary

choices made during the merging process and would be tedious to exhibit

for general Jj and m, so we will give an example of the construction

for m=10, J=3, First the input is divided into blocks as

described above.

[0O®00000](]1[00][] .

Then the block ccntaining Jj , which holds all elements of the binomial

tree T containing J in the queue, is further divided to exhibit the

subtrees produced when T is dismantled.

[(00)e(0)(0000)]i[][00](} .

This division clearly depends only on m and J.

Following the dismantling step is a merging step. One possible

strategy for this merge is as follows. If the dismantled binomial tree

T was the smallest tres in the original queue, then no merging is

required. Otherwise combine the smallest tree in the original queue with

the forest just obtained by dismantling T . This produces a new tree

which has the same size as T had, plus a forest of small trees; the

merge is then complete. The same effect would be created (in the case

we are considering) by reinserting all nodes in the order

(0000)(00)(00](0) .

To see this, just simulate the insertion process on this input. The

intermediate trees created during this process correspond to trees involved

in the merge. (Note that tne r map is far from being uniquely

determined.) [J

38

llere again we can draw an analogy with the unsorted linear list,

which obviously has the behavior stated in the lemma.

Armed with this result, we can determine the effects of various

types of deletions on random binomial queues.

Theorem 1. Let Q be a random binomial queue of size m . Suppose

that py, > the k-th element inserted in the process of building Q,

13 deletel from Q and Q is renumbered. Then the resulting Q is

a random binomial queue of size m-1l .

Proof. Consider the mi equally-likely permutations used to buiid Q .

when the k-th element of each permutation is discarded and the permutation

renumbered, each of the (m-1)! possible permutations occurs m times,

The same is true if some fixed rearrangement of the permutation is made

just before the renumbering. Hence by Lemma 6 the mi! queues obtained

by inserting all possible permutations of length m and then deleting -

the k-th element (and renumbering) are just m copies of the (m-1):

queues obtained by inserting all permutations of length m-1. (J

Theorem 2. Let Q be a random binomial queue of size m . Suppose

that k , the k-th smallest element iuserted in the process of building Qq,

is deleted from Q and Q is renumbered, Then the result.ng Q is a

random binomial queue of size m-l,

Proof. Consider the m! equally-likely permutations used to build Q .

Por fixed J , there are (m-1): of these permutations with py = Kk;

if we ignore Py and renumber, we get all (m-l)! possible permutations
of {1,2)ee.ym-1} . The same is true if same fixed rearrangement of the

39

permutation is made before renumbering. Hence by Lemma 6 the (m-1)!

queues obtained by inserting all permutations of length m with pi" k

and then deleting k (and renumbering) are just the (m-1)! queues

obtained by inserting all permutations of length m-l . This is true

for each J , so the result follows. J

Corollsery 1. If a random element (or randomly placed element) of the

input is deleted from a random binomial queue of size m , the result

is a random binomial queue of size m-1 .

Proof. The two statements are obviously equivaient; they follow

immediately from Theorem 1 or Theorem 2. (J

These results are sufficient. to show that binomial queues stay random

in many situations. The most important of these is when a queue is formed

by a sequence of n random Insert operations intermixed with m <n

occurrences of DeleteSmallest , arranged so that a deletion is never

E attempted when the queue is empty. Theorem 2 shows that a DeleteSmallest

rspplied to a random queue leaves a random queue; a random Insert also

preserves randomness. So under the most reasonable assumptions for

priority queues, binamial queues can be treated as random. This is our

rationale for assuming random binomial queues in the analysis of the

next section.

A similar argument shows that random binomial queues result when

intermixed random deletions are performed; a simple argument appealing

to Lesma 6 shows that intermixed deletions by age (how long an element .

has been in the queue) also lead to random queues, These types of |

deletions, especially deletions by age, are somewhat artificial for priority

queues,

vo |

It is natural to ask whether randomness is preserved by the merging -

of binomial queues. Suppose that a random permutation of length m is

given; its first k elements are inserted into one initially empty

binomial queue, and the remaining m-k elements are inserted into

another. Then each of these gueues is a random binomial queue, and the

argument used to prove Lemma © shows that the result of merging these

queues is also random as long as some fixed choice is made about which

two trees to "add" when three are present during the merge. So in this

sense merging does preserve raxdomness,

Sensitivity to deletions has been studied in the context of binary

search trees by Knott [25]. The model used there considers a random

insertion 1 . be the insertion of a random real number drawn independently

from some continuous distribution (for example, uniform on the interval

[0,1] .) This definition is not equivalent to ours; Theorem 1 and

Corollary 1 hold for deletions from binary search trees, but this does

not imply that a tree bullt using intermixed random deletions is random.

In fact, as Knott first noted, binary search trees are sensitive to

deletions in this model,

Binomial queues, however, are not sensitive to deletions in the

search tree model, In a general study of deletion insensitivity, Knuth

showed that Theorem 2 implies.insensitivity to random deletions, and

Leama 6 implies insensitivity to del=tions by age in this model [29].

Binomial queues are sensitive to deletions by order (e.g., DeleteSmallest)

in this model, but unsorted linear lists, as well as practically all other

algorithms, are also sensitive to these deletions. So even with this

alternative definition of a random insertion, random binomial queues

tend to remain random when deletions are present.

hl

At this point it might seem that nothing can destroy a random

binomial queue: This is not true; a de” tion based on knowledge of the

structure of the queue (or equivalently, knowledge of the entire input)

can easlly introduce bias. For example, random queues of size L are

distributed as shown:

pr = 1/3 pr = 1/3 Pr = 1/3

If we now delete the rightmost child of the root and renumber, we get:

Pr m= 1

This isn't random; random binomial queues of size 3 have the distributicn

pr = 1/3 pr = 1/3 pr = 1/3

Since the analysis of binomial queue algorithms performed in the next

section is based on random binomial queues, we are interested in the

distribution of keys in these queues. Ry Lemma 5, the probability that

h2

a given element (e.g. the smallest) of a random permutation lies in a

given binamial tree is simply the probability that the element lies in

a certain block of positions within the permutation. Thus the p >bability

that the j-th largest element in a binomial queue of size m lies in a

By tree is just 2%/m s assuming that a By tree is present in a queue
of size m . This decomposition ¢f the input into blocks reduces the

study of random binomial queues to the study of random heap-ordered

binomial trees (i.e., random binomial queues of size 0%)e

As we observed earlier, the smallest key in a heap-ordered binomial

tree must be in the root. The distribution of larger keys is not so

highly constrained. The following result characterizes the distribution

of keys without explicit reference to the n! possible input permutations.

Theorem 3. Let a configuration of a heap-ordered B, tree be any

assignment of the integers 1, 2) 000,2% to the nodes of a B tree such
that the tree is hesp-ordered, Then in a random heap-ordered B, tree

all NCH* configurations are equally likely. (That is, there are
~(27)-1

(2%)-1
2 distinct input permutations which generate each possible

configuration.)

Proof. We proceedby induction on k . The result is obvious for k= 0.

Assume that for k= j there are 2(2%)-1 permutations of (1,2) e0ey29]
vhich give size to each possible canfiguration.

Now consider any fixed configuration X of a Byia tree. This tree

can be decomposed into the two By trees Y and Z , as shown in
Figure 1. By the argument of Lemma 5, any permutation giving rise to

’

configuration X must consist of two blocks, one producing Y and the

other Z ; these bloc'.s may appear in either order, since the relative

position of Y and Z is determined by which tree contains the smallest

key. By the induction hypothesis there are o(2)-1 arrangements of
the keys in tree Y which give rise to Y , and similarly for Z . GOO

there are 0.p(@0)-1 5(20)-1 = NCb! permutations which produce X .
Since this holds for any X , the result follows, U

In the inductive step above, we can note that the element 1 is

equally likely to be contained in the first or the second block of a

permutation producing X . This leads to an easy inductive proof of the

proposition that the i-th inserted element 1s equally likely to fall into

each of the o* nodes of a random heap-ordered B, tree.
Unfortunately, Theorem 3 does not help much in determining the exact

distribution of keys in a random binomial tree, There are fewer

configurations than permutations, but the number of configurations still

increases rapldl,- with k .

hh

2.5 Analysis of Binomial Queue Algorithms.

We are now prepared to analyze the performance of Insert and

DeleteSunllest , when implemented using binomial queues; this will

allow a comparison with other priority queue organizations. The binomial

queue implementation to be analyzed is based on structure R , discussed

in Section 2.3 and pictured on page 32. The priority queue structures

to be used for comparison are the heap, leftist tree, sorted linear

list, and unsorted linear list,

For each of the five structures, the operations Insert and

Deleteimallest have been carefully coded in FAIL, a PDP-10 assembly

language (the binomial queue and leftist tree implementations appear in

Appendix A.) By inspecting these programs, we can write expressions for

their running time as a function of how often certain statements are

executed. It then remains to determine the average values of these factors.

The running times (in memory references for instructions and data)

of the binomial queue operations are

Insert == 16 + 19M + 2E + 6A

DeleteSmallest -- 38+ 11B+ 6T+ UN- 2L+ 45+ 1hyU+ 2X

vhere

M 1s the mumber of mergss required for the insertion;

E is the mmber of exchanges performed during these merges in order

to preserve the heap-order property;

A is 1 if M= 0, and O otherwise;

B is 1 if the queue contains no B, tree, and O otherwise;

T is the number of binomial trees in the queue;

h5

N is the number of times that the value o! the smallest key seen so

far is changed during the search for the root containing the smallest

key;

I is 1 if the smallest key is contained in the leftmost ruot, and ©

otherwise;

S is the number of offspring of the root containing the smallest key;

U is the number of merges required for the deletion; and

X is the number of exchanges performed during these merges.

(To keep the expression for DeleteSmallest simple, certain unlikely paths

through the program have been ignored. The expression above always

overestimates the time required for these cases.)

As a first step in the analysis we note that several of the factors

above depend only on the structure of the binomial queue Q and not on the -

distribution of keys in Q . Since the structure of Q is determined

solely by its size, these factors are easy to determine. For example, if

Q has size m then evidently M 1s the number of low-order 1 bits in

the binary representation of m, and A = 1 if and only if m is even.

Clearly B= A , and by Lemma 2 we can see that T = v(m) .

: These factors are a bit unusual in that they do not vary smoothly

with m . For example, when m= 2.1 wehave M=T=n , While for

m=2" this changes to M=0 and Te1 . Since in practicewe are

generally concerned not with a specific queue size m but rather with a

range of queue sizes in the neighborhood of m , it makes sense to average

the performance of our algorithms over such a neighborhood.

Factors A and M can be successfully smoothed by this approach;

averaging over the interval ([m/2, 2m] gives an expected value of

h6

z+ o(3) for A and 1 + o 282) for M. This agrees well
with our intuition, since it says that about half of the integers in

the interval are even, and that one carry is produced, on the average,

by incrementing a number in the interval.

Properties of the factor T = y(m) have been studied extensively.

Fram [35] we find that

[2= 163 =) | < Tx) < ELE n | ,1<k<m

where each bound is tight for infinitely many m ; it follows that our

neighborhood averaging process will not campletely smooth the sequence

v(m) . But we have bounds on an "integrated" version of v(m) , so

differentiating the bounds puts limits on the average growth rate of

v(m) . Carrying out the differentiation gives

c ps VE. 2 2

hich is about what we expect: half of the bits are 1 , on the average.

The remaining uncertainty in the constant term is about .21 .

While this averaging technique fails to smooth the sequence v(m)

completely, there are other methods which succeed, There is no single

"correct" method for handling problems of this type: different techniques

ney give different snswers, and the usefulness of a result depends on how

“natural” the smoothing method is in a given context. The more powerful

averaging techniques which succeed in smoothing v(m) seem artificial

in connection with our analysis, but the results are quite interesting

mathematically, Iyle Ramshaw {39] has shown that

MT

om) 5 Bm. (BEL): EEL oss
using logarithmic averaging [7]; his rezult is bared on the detailed

analysis of’ TY w(k) peri:cimed by Hubert Delange [CC]. The
1<k:im

naturalress oi. logarithmic averaging is indicated by the fact that

it also .eads to the logarithmic distribution of leading digits which

has been observed empirically [38;27, Section L.2.4], and the fact

that it is consistent with several other averaging methods (such as

repeated Cesarc summing) when those methods define an average.

"his analysis of tractor T completes the purely "structural

analysis; the remaining factors depend on the distribution of keys in

the queue, For the average-case analysis we shall assume that Q 1s

a random binomial queue of size m and that the insertion is random.

These assumptions are well justified by the discussion of Section 2.4.

The factors E and X are easy to dispose of. Since we only merge

trees of equal size, our randomness assumption says that an exchange is

required on half of the merges (on the average). More precisely, if

there are n merges then the number of exchanges is binomially distributed

with mean n/2 and variance n/4 . The number of merges is Just M in

the case of E, and U in the caseo.® X .

The factors IL and S are also easy to analyze, We noted in

Section 2.4 that the probability of having the queue's smallest key in

a given iree is just proportional to the size of the tree. Therefore if

there is a binomial tree of size ok in a queue of size m , this tree

contains the queue's 3 est key with probability 2% /m o« The root of

such a binomial treevak offspring by Lemma 1, so the =xpected value
68

of 3 is 2 F(m) where
k

k>0 :

While it seems hard to find a simpler closed form for F(m) , it is

possible to derive good wpper and lower bounds.

Lemma 8. The function F(m) defined above satisfies

fmlgm-2m1 < Fm) < |mlgm| , m>1, and the upper bound is

tight for infinitely many values of m .

Proof. (This argument is similar to the one used to prove Theorem 1

in [25].) From the definition of F(m) , if m = 2° then

?(m) - r(2%) - k.25 = Wm gm .

It is al30 clear from the definition that

p(2%+i) - r(2%) + P(4) ’ 0<ic< ok .

The upper bound on F(m) is evidently attained whenever m is a

power of two. It therefore holds when m= 1 , and assuming that it

holdsup t© mn = 2X, we have
k k |

Pimti) = P(27)+ P(1) (0 <1i<2v)

<mlgmn+1ilgi

< (wi) 2g(we1)

So the upper bound holds for all m by induction.

Te) |

The lower bound on F(m) holds when me 1 , and whenever m is

a power of two. Suppose that a bound of the form)

Fm) >mlgm-cm

is true for some c¢ >0 and all m< 2° . Then
k k

F(mti) = F(27)+ F(1) (0<i<2)

>mlgm+ilgi-ci

It follows that if the inequality

mlgm+ilgl-ci > (mi) lg(mi) - cmd) (0 <1 < 2%)

holds, the lower bound will hold for all m by induction. Replacing i

by xm and simplifying gives another inequality which implies the result:

x 1g x > (1x) 1g(l+x) - c (0<x<1l) .

But it is easy to verify that x lg x - (+x) 13(1+x) is decreasing

on [0,1] , so we can take x = 1 to determine c= 2 . (A tight lower

bound can be found by using the value F(2%-1) = (x-2)2%+2 .) Q

According to these bounds, the average value of 5 lies between

lg m-2 and lg m . Lyle Ramshaw [39] has show that the logarithmically

averaged value of £ 1s

Hn) lgm -C
vhere

cals IT r 142: 009
n2l js2°

50

The expected value of L 1s plig m] /m , which is between 1/2

and 1,

Factor U is closely related to S , The pumber of merges required

is equal to the number of trees (i.e., S) created by removing the node

containing the smallest key, minus the number of these trees which are

not merged. Since the first merge must take place with the smallest

tree remining in the original forest, we see that the number of trees

excluded from merging is equal to the number of low-order OQ bits in m,
Since the least significant bits of m are distributed almost uniformly,

the average value of this quantity 8S-U is the same as the average value

of M.

Factor N is more interesting. One way to search for the smallest

root in the forest is to use the key cantained in the rightmost root as

an initial estimate for the smallest key, and then scan the forest from

right tc left, updating the estimate as smaller keys are seen, Since the

trees increase in size from right to left, trees in the left of the forest

are more likely to contain the smallest key; thus the estimate of smallest

key wiil be changed often during the scan, To be more precise, the

expected number of changes while searching a forest of size |

ma (bb _,.eedy), 18 | N

51

2 Pr(estimate changes when the B, tree is examined)
0<k=:n

b= 1

(number of nodes in the B, tree)

© o<k<n (total number of nodes in all B, trees examined, 0 < £ < k)

b, =1

oK
= A —_— .

0<k<n 2 2

b =1 0sts K
b,=1

when m = 20-1 this has the simple form

n-1

ETRE> 7 "1

| | 1 1/1 ,1, 1 1

(ede 1) (3b 2 «1

= B2+i(a-1)+ 00"
e 2

where A= p> gh e 1.00C09 qs .
k>1 2-1

(The constant «a also arises in connection with Heapsort; see 28, 5.2.3(19)]).)

A search strategy which intuitively seems superior to the one Just

described is to search the forest from left to right; for the above example

the expected number of changes is reduced to

1,11, 1 1 -n= + = + t geet ——— x a=1+0(27) .
5 7B B_y

But this strategy is not practical; the links point in the wrong direction.

With structure R we can improve the search by using the key contained in

the leftmost root as our initial estimate in a right to left search. This

makes the expected number of changes in a queue of size oM.1 equal to

1,2. A RN SN te
M1) Mla Plan "1 2a

By writing this sum in reverse order we can derive its asymptotic value:

"1 PP PRR MELD) 2141

1/2 , AA, _ 1/8 1/16 N , 1/2"
= =n -n -n 1 1 -n eee -n

1-2 1-2 1-5-2 l-1-g-2 5%2

1,1 1(1 1 1 -n/2 -n/2- (3-3-3(tEY CT) Je o(2 7/7) + o(2)
g+3la -3)+ 0?)= 2 2

where a = J, ~~ = 1.2649... .
k>0 Z74l

(The constant ®' arises in connection with merge sorting; see [25,

exercise 5.2.4-13].) So the expected value of this factor is about

1.13 for large n ; by modifying the search in this way we have

effectively removed part of the inner loop. |

This completes the analysis of Insert and DeleteSmallest for

binomial queues. By plugging our average values into the running time

expressions given above and simplifying, we get the results for binomial

queues shown in Figure 10. A much simpler analysis [26, pp. 94-99] gives

the corresponding results for sorted and umsorted linear lists (also

shomn in Mgure 10.)

2

Friority queue algorithms based on heaps and leftist trees have

not been completely analyzed; partial results are known for heeps

[28:37] but not for leftist treec, Therefore experiments were performed

to determine the average values of factors controlling the running time

of these algorithms, Leftist trees and heaps are deletion sensitive,

so the averages were taken from stationary structures (obtained after

repeated insertions and deletions) rather than fram random structures.

Figure 10 gives the experimentally determined running times for leftist

trees and heaps,

These results indicate that binomial queues completely dominate

leftist trees, Not only do binomial queues require one fewer field per

node, they also run faster, on the average, for m > 4 when the measure

of performance is the cost of an Insert followed by a Delete .

Linear lists are of course preferable to both of these algorithms for

small m , but binomial queues are faster than unsorted linear lists,

on the average, for m > 18 at a cost of ome more pointer per node. So

the binomial queue is a very practical structure for mergeable rriority

queues,

In some applications the queue size may constantly be in a range

which causes the insertion and deletion operations an binomial queues to

run more slowly than our averages indicate, due to the smoothed average

we computed, If the queue size can be anticipated then dummy elements

added to the queue might actually speed up the algorithms, At the expense

of complicating the algorithms it is also possible to maintain a queue as

two binomial forests in such a way that each insertion is guaranteed to

take only constant time. But the binomial queue algorithms as they stand

still dominate algorithms using leftist trees, even if the laftist tree

Sh

operations have average-case ruming times and the binomial queue

operations always take the worst-case time. The only advantages which

can apparently be claimed for leftist trees is that they are easier to

implement and can take advantage of any tendency of insertions to follow

a stack discipline,

The comparison of binomial queues with heaps and sorted linear lists

is also interesting. The heap implementation stores pointers in the

heap, instead of the items themselves; this is the usual approach when

the items are large and should not be moved. In this situation heaps

are slightly faster than binomial queues on the average, znd considerably

faster in the worst case, Heaps also save one pointer per node, so it

seems that heaps are preferable to binomial queues when fast merging is

not required. Binomial queues have an advantage when sequential

allocation is a problem, or perhaps when arbitrary deletions must be

performed. Sorted linear lists are better than both methods when m

is small, but heaps are faster, on the average, vhen mn > 30.

25

average case running times when |Q| =m .

queue Insert(x,Q) DeleteSmallest(Q) 1Insert(x,Q); DeleteSmallest(Q)

binomial queue 39 22 1g m + 19 22 1g m + 58

leftist tree 17 1gm+ 35 35 1gm = 27 52 1g m + 8

linear list 19 bm + 2 1g m + 20 ém + 2 1g m+ 39

heap 52 181gm +1 18 1g m + 33

sorted list 3m + 17 15 3m + 52

worst case running times when |Q| =m.

queue Insert (x, Q) DeleteSmallest(Q) Insert(x,Q); DeleteSmallest(Q)

binomial queue 21 1lgm+16 30 1g m + 46 51 lg m + 62

leftist tree 321gm+23 64 lgm- 7 96 1g m + 16

linear list 19 Om + 15 om + 34

neap 121gm+1% 18 1gm+ 16 30 1g m + 30

sorted list ém + 20 15 fm + 35

Figure 10. Comparison of methods.

56

Chapter Three. The Complexity of Priority Queue Maintenance

The inherent complexity of sorting, selection, and related problems

has been studied extensively [28]. The complexity of inserting and deleting

jtems from a priority queue has not received such attention, possibly

because the individual operations take constant time in certain cases,

Priority queues may be used to perform sorting, however; hence it is clear

tnat there is some limit to the average efficiency of a sequence of priority

queue operatioas,

In Section 3.1 of this chapter we develop a definition of priority qucue

efficiency, based on the average number of comparisons required to execute

a certain fixed pattern of insertions and deletions. We evaluate some

known priority queue algorithms in Section 3.2 to obtain upper bounds on

the average and worst case behavior of priority queues. In Section 3.35 we

prove lcwer bounds on the average and worst case efficiency; these bounds

are exact for infinitely many queue sizes,

One of the priority queue algorithms discussed in Section 3.2, based

on binomial queues, has a simple characterization which is proved in

Section 3.4: it is the only algorithm which compares only "unbeaten"

nodes (nodes which are smaller than all nodes in the queue with which

they have been compared) and which takes a number of comparisons independent

of the key values involved, The proof given for this result uses a lemma

involving two extremal problems on trees; we show that Huffman's construction

(16326, pp. 402-405] solves these problems. This is especially interesting

since une problems lie cutside the large domain for which Huffman trees

were proved optimal in [13],

We conclude the chapter with a discussion of possible generalizations

and open problems in Section 3.5.

|

3.1 A Setting for Priority queue Complexity.

We shall investigate the complexity of priority queues in the

following context. Initially we are given a priority queue containing

m elements. We then perform an infinite number of cycles which consist |
of first deleting the smallest element of the queue, and then inserting

a new element into the queue. A typical cycle of this infinite proces.

is represented pictorially in Figure 1. (Tt i: easy to imagine other

settings in which to study the complexity of oriority queues, but we

defer discussion of this topic until Section 3...)

Our measure of the performance of a priorit;r queue will be based on

the number of comparisons made between keys during the above process.

Therefore we restrict our attention to priority queue methods which are

based entirely on the linear ordering among keys. This means, for example,

that none of our methods may perform arithmetic on keys, We shall further

assume that all keys are distinct, so that there are only two possible

outcomes from any comparison.

Note that because we make so few assumptions about what goes on inside

a priority queue, it is possible that the number of comparisons used oa

any particular cycle is zero. A deletion takes no comparisons if the

smallest element is known prior to the deletion, and an insertion takes

no comparisons if the queue just stores the inserted node without looking

at it. In order to cope with this sort of anomaly, we use as our measure

of cost the number of comparisons per cycle averaged over infinitely many

cycles. More precisely, if a method uses C(n,m) comparisons to perform

n cycles on a queue of size mm, then its limit cost per cycle is

| Im glam) . We denote by Q(m) the minimum limit cost per cycle
n-+-o

58

which suffices (in the worst case) to maintain a priority queue of size m .

We define Q(m) to be the minimum average limit cost per cycle, where

insertion into each of the m intervals bounded by the m-1 key values

in the queue is taken to be equally likely during each cycle.

Because we are averaging the number of comparisons over many cycles,

it is possible to make a further assumption about the internal structure

of our priority queues: we may assume that at the beginning of each cycle

the smallest element of the queue is known. This is a valid assumption

because it just amounts to charging the previous cycle for whatever

comparisons are required at the start of a cycle to determine the

smallest. Since we are averaging over infinitely many cycles this cannot

change the result.

This additional property allows us to make a slightly less abstract

interpretation of the situation. The state of a priority queue at the

beginning of a cycle can be represented as a directed acyclic graph,

vhere the arcs indicate comparisons which have been made in the process

of maintaining the queue. An arc leads from a node with key K, toa |

node with key Ky if the comparison K, : Ks was made and Ks < K, was
the result. As indicated in Figure 2, the graph has a single source node,

containing the. smallest key, at the start of each cycle. Then this node

is removed from a graph, corresponding to deleting the smallest element

of the queue, and a new node is added to the graph. This node is inserted

into tr~ queue by performing enough comparisons (adding directed arcs) to

again determine the smallest element (obtain a graph having a single source).

29

=> + 0b 3 t} DeleteSmallest smallest element
a priority queue
containing m elements

0 + =
t Insert

new element

Figure 1. A priority queue cycle.

60

/ | NN
DE

© ONO

O

(a) The start of a cycle (comparisons to be lost by deletion of smallest
are shown dashed),

® DO. CG

O OO

©

(b) After removal of the smallest node and introduction of the inserted
node (5),

©

© ONG
©

(c) Insertion complete (added comparisons are shown avy).

Figure 2, Directed graph interpretation of a priority queue cycle,

61

3.2 Upper Bounds.

Upper bound on Q(m) are provided by the priority queue structures

described in Section 1.2. Heaps and leftist trees each require about

2 lg m comparisons, in the worst case, for a cycle on a queue of size m .

Queues based on balanced trees also require at least c¢ lg m comparisons

for some constant ¢ > 1 , in the wurst case. But some queue structures

reduce the coefficient of 1lgm to 1.

One such structure is the sorted linear list. The smallest element

of such a list can be deleted using no comparisons; an insertion into a

1ist of (m-1) items requires at most [1g m1 comparisons, using

binary search. It follows that Q(m) < (lg ml] . More detailed analysis

of binary search [28, p. 194] shows that the average number of comparisons

required is lg m+ (1+ 0-2% where OO = [lg m] -1g m ; hence

Qe) < lg m+ (1+0-2% . The function (1+6-2°) is nonnegative and

has a maximum value of about 0,0861 for © in the range 0<0 <1,

There is good reason to feel uneasy about these bounds, since when

this priority queue is implemented using simple linked or sequential list

structures its average running time for a cycle is O(m) . Fortunately

theie is a more legitimate structure which gives exactly the same

comparison bounds as & sorted linear list: the "loser-oriented" tree

used for replacement selection [28, p. 253). Using this structure, the

running time for a cycle is proportional to the number of comparisons

performed.

A third structure which gives a good upper bound is a variant of

the binamicl queue. The stanlard binomial queue algorithms given in

Section 2.2 can require about 2 lg » comparisons for DeleteSmallest ;

62

it may take lg m to find the smallest, and lg m to merge its

offspring back into the forest. An Insert operation also requires

up to lg m comparisons, so an entire cycle may take about 3 lg m

comparisons.

To reduce the number of comparisons required by a binomial queue

cycle, add nodes containing the key +o to the queue, making the queue

size oF vhere k= [lgm] . Then at the start of a cycle the queue

consists of a sirgle heap-ordered B tree, and the DeleteSmallest

operation requires no camparisons. Tie following Insert uses k

comparisons, so this method requires exactly [lg m] comparisons per

cycle, This shows that Q(m) < [lg m1 , giving the same bound on the

worat-case number of comparisons per cycle as was given by the sorted

linear list (or loser tree). Since this binomial queue algorithm

requires a fixed number of comparisons per cycle, independent of key

values, it does not give any better bound for Q(m) than its bound for

Q(m) .

: G3 |

3.% Lower Bounds.

One approach to lower bounds on the number of comparisons required

to maintain a priority queue is to analyze the possible internal states

of the queue at the start of each cycle. This is possible under certain

restrictions, as shown in the next section, but to get a general lower

bound seems to require a different sort of argument which takes advantage

of the long-term averaging present in our model,

It turns out to be quite easy tc prove a good lower bound on Um) .

Suppose that a priority queue of size m requires C(n,m) comparisons,

on the average, to perform n cycles. The number of equally-likely

outcomes of these zycles is mn , since there are m equally-likely

relative sizes for each of the n keys inserted during the cycles. So

by the same decision-tree argument used to prove lower bounds for sorting

[28, p. 194], the average number of comparisons required to determine

which outcome has occurred is at least n lgm . But it is possible to

determine this outcome by observing the outputs of the n queue cycles

and sorting the m keys which remain in the queue. Hence

nlgn < C(n,m)+ 0(m log mn)

80

Ign < iim C(o,m) + Of log ») - ox) .
n=

This also implies that Q(m) >lgm.

We can summarize the results of this and the previous section as

follows.

6h

Theorem 1. The functions Q(m) and Q(m) defined in Section 3.1

satisfy

lgm < Qm) < gm] , and

lgn < gm) < lgm+ (1+0-2°) ,

vhere 0 = flgml -lgm. 0

65

7.4 A Characterization of Binomial Queues.

The foregoing results show that binomial queues ='e optimal when

the queue size is a power of 2 . When the queue size 1s not a power)
of 2 , then dummy nodes can be added as described in Section 3.2 to make

binomial queues nearly optimal; in the rest of this section, we shall

use the term "binomial queue" to refer to such a structure.

We have seen that linear lists and loser trees also require lg m

comparisons per cycle when m = ok , 580 binomial queues are not the only

optimal structure for this problem. But neither linear lists nor loser

trees are the basis for a practical priority queue algorithm, We have

already noted that comparisons do not reflect the actual running time

of a priority queue using a sorted linear list; loser trees work well

for replacement selection but are awkward to use vhen the priority queue

size may change with time. Our comparison model evidently does not capture

the factors which make a given priority queue scheme difficult to implement.

It seems extremely difficult to evaluate the true complexity of data

structuring problems; the linking sutamaton [31] appears to be a good

setting for such questions, but few results have been obtained for this

model. A more limited approach, closer in spirit to the comparison-counting

model of camplexity, is to restrict our consideration to algorithms such

that the underlying structures must be easy to implement, Suppose that

the only elements which may participate in comparisons are those which

are not known to be larger than sny other element of the queue. In terms

of our directed graph description of a priority queue, such elements have

no entering edges; they are candidates for being the smallest element in

the queue. We call comparisons between such elements tree comparisons,

66

since they preserve the property that the directed graph structure of the

queue is a tree. (It is not hard to see that a queue which makes a non-tree

| comparison can eventually have an internal structure which is not a tree.)

Since a tree is much easier to represent and operate on than an arbitrary

directed graph, this restriction may be a reasonable one.

We conjecture that binomial queues are uniquely optimal (in the sense

of providing the tightest upper bound on Q(m)) among all priority queue

algorithms which make only tree comparisons. The following result is a

weakened form of this conjecture.

Theorem 2. The only priority queue which makes only tree comparisons and

which makes a number of comparisons per cycle depending only on the queue

size is the binomial queue.

Proof. We consider two algorithms to be the same if their directed graph

structures are the same after each comparison. Suppose that an algorithm

makes k = k(m) comparisons per cycle on a queue of size mm, At the

start of each cycle the smallest element is known, so let the number of

edges leaving this node at the start of the i-th cycle be d, « Then during

the i-th cycle the algorithm must determine which of d,+1 nodes (the d,
which lost to the smallest, plus the inserted node) contains the smallest

key. By the restriction to tree comparisons this tekes exactly d,
comparisons; hence d, = k on every cycle. Thus it suffices to show that
any tree comparison algorithm in which the smallest node (henceforth called

the root) has a fixed mmber k = k(m) of offspring for a queue of size m

- en. $8 the same as the binomial queue algorithm.

We are therefore led to consider adversaries which attempt to make the

degree of the root fluctuate. It will be helpful to first consider two

67

shipler adversaries: one which attempts to maximize the degree of the

root on a single cycle, and another vhich attempts to minimize it, Since

max is an increasing function of its arguments, a maximizing adversary

can do no better than to maximize the degree of the node which is smaller

at each comparison; similarly, the minimizing adversary will minimize this

quantity. If the two unbeaten nodes to be compared have degrees d, and

d, then the maximum (minimum) resulting degree is max(d,,d,)+1

(min(d,, d,)+1) . What strategy can the algorithm usze to minimize the

degree of the root against a maximizing adversary, or maximize this

quantity against a minimizing adversary?

It is useful to abstract this question into a problem on extended

binary trees: we are given a vector (Ws Wys eee >¥) of k+l real-valued

weights, corresponding to the degrees of the k+l nodes to be compared,

and a function f which may be max or min . For any binary tree having

k+l external nodes we associate a real-valued cost with each node. The

weights wv, are assigned as costs to the external nodes, and the costs of
internal nodes are computed via the rule: if the two offspring of a node

have costs u and v then the cost of the node is 1+ f(u,v) . Hence the

cost of an internal node is just the degree of the node which wins the

corresponding comparison under the adversaries considered above. We define

the cost of the resulting binary tree to be the cost of the root, so our

problem is to find a binary tree of minimum cost when f = max, or maximum

cost hen f = min . Weshall call such trees optimal.

One method of constructing an appropriately labeled binary tree is to

use Huffman's algorithm [16]. The first step in this procedure is to select

the two smallest weights from the vector (Woo Ws Wns 0c esWy)) 88Y W,

68

and vy Then solve the problem for the k weights

(1+ £(Weyy Wy)s Woy .eeyW,.) . Finally, replace the external node containing

1+ (Wy w,) with the binary tree

Cr toy)>

k3

The tree which results from this procedure is called a Huffman tree.

Lerma1, A Huffman tree is optimal when f = max and when f = min ,

Proof. (This proof is similar to the proof thai Huffman trees have

minimum weighted external path length, given in [25, p. U03]; a different

proof for the case f = max is given in [14].) We argue by induction

on k , the result being obvious vhen k = 0, It is sufficient to show

that when Xk > 0 , there is an optimal tree T in which the two smallest

weights, say Yo and wv; , are contained in external nodes which are

offspring of the same inte:iaal node, To see why this is enough, first

note inat by the induction hypothesis, the reduced problem of finding an

optimal tree for the weights (1+ fv vy)Wns ous s¥,) 1s solved by

Huffman's algorithm. Call the Huffman tree for the reduced problem R ;

then the cost of R is not worse than the cost of T because a solution

to the reduced problem, which R solves optimally. is imbedded in T .

But the tree Rf differs from the Huffman tree for the original problem

only in the replacement of ane external node, which does not change the

cost of the root. Hence the Huffman tree for the original problem ic

optimal,

69

A second observation is that the cost of a tree is actually determined

solely by the levels on which the weights Wy» WyseaesW, appear, The cost

of the root is simply £2, + LAY, I+ Wy, soe y tw) where 2, is the

level on which weight Ww, appesrs in an external node,

We shall prove that the two smallest weights, Ls and w, » may both

appear on the deepest level in an optimal tree, Since there are at least

two external nodes at this level and weights on the same level can be

rearranged arbitrarily, this will give the result, Suppcse that L/

appears at level 1, and that vy > w, appears at level L > ly

Consider the case f = max ; the effect of LA and vy on the cost =r

of the root is to guarantee that r > max(2 +v, Lytwy) = Lv, . If

w, and vs are exchanged, these nodes only force

r > max(f +v, , 1,+v,) < Fal ; 80 the switch can only reduce r ,

In the case f = min , we have r < min (£5tW, 244s) = Itw, before)

the switch, and r < min(1"vo » Lo+vy) > It¥, after, so the exchange
can only increase r. (OJ

Using Lemma 1, we can construct the more complicated adversary needed

to establish a strong restriction on the algorithms which make a fixed

number of comparisons per cycle.

Lemma 2. A necessary condition for an algorithm using only tree

comparisons to have a fixed degree k at the root at the start of each

cycle is that the out-degrees of the offspring of the root ve k-1,k-2,...,1,0

at the start of each cycle.

Proof. Buppose that the degrees of the root's offspring, listed in

decreasing order, are 4.128% pre ery dy « We define an adversary which

70

causes the degree of the root to differ from k if the above degrees are

not k-1,k-2,...,1,0 . The strategy ..pends on the first left-to-right

discrepancy between the two sequences. Suppose (1s the largest index

such that d, ¥ 1 ; then there are two cases according to the relative

sizes of d, and ? ,

Case1, d, >t. The adversary attempts to maximize the degree cf the

root. Since offspring with degrees k-l,k-2,...,2+1 , and d, > +l

are present, along with the inserted node of degree 0 , it is easy to

see by Lemma 1 that even when the algorithm uses an optimal strategy

against the maximizing adversary, the resulting degree is > ktl ,

Case2, d! < 2 » The adversary attempts to minimize the degree of the

root unless a premature comparison occurs; the i-th comparison is premature

if it involves dy where J > max(i-l,!) . Informally, this means that
to avoid a premature comparison, the algorithm must first perform a series

of f+1 comparisons involving only the newly inserted element of degree O

and the (+1 trees whose roots have degrees d, <d, <... <d,6<1?.

This results in a single tree which is compared with the root of degree

doy = {+1 ; the result of this is then compared with the root of degree

d,.o = +2 , and so on until a single tree remains.

If no premature comparison occurs, them by Lemma 1 the tree which

results from the first set of (+1 comparisons has degree < f , so the

final result has degree < k-1 , If a premature comparison occurs then

the adversary changes to a maximizing strategy on that comparison and for

all those which follow. An argument similar to the one used in Case 1

shows that the resulting degree is then > ktl . (J

71

We can finally nrove the theorem, First noie that if the offspring

of the root have out-degrees k-1l,k-2,...,0 , then comparicons must .

proceed as in the binomial queue algorithm in order to guarantee that

the root's degree remains at k . That is, the inserted node is compared |

to the degree O offspring, then this result is compared to the degree 1

offspring, and so on. This follows from Lemma 1 using either the

maximizing or minimizing adversary.

Now order the offspring of each node in the directed graph structure

of the queue by their out-degrees, decreasing from left to right. Find

a structure arising during the operation of the given priority queue

algorithm which differs from the binomial queue structure at some point,

such that this discrepancy is as shallow (close to the root) as possible.

The discrepancy can't occur at the root, and it can't occur at an offspring

of the root by Lemma 2. If it occurs deeper in the tree, then one cycle

of the queue can move it toward the root as shomn (X is the subtree

containing the mismatch);

(*) —s A@ js N N

} 2) [x]
This contradicts the assumption that the discrepancy was shallowest, and

completes the proof, (J

It seems quite unlikely that an exhaustive analys'< of this kind

can prove the conjecture stated above,

72

5.5 Discussion.

| Huffman trees were originally used to find an extended binary tree

| solving the problem

min 145 <n 1,
The proof of Lemma 1 shows that Huffman's algorithm also finds trees which

optimlze

min max (¢$y)
1<i<n

and

max rg (25+w,) .
The first of these problems can be interpreted as a scheduling problem on

| n parallel processors: we have n Jobs with running times Wisp eee) Wp

whose results must be cambined pairwise, at unit cost, before a final

answer is obtained. Huffman trees minimize the time to compute the final

answer in this situation. Both problems can be interpreted in terms of a

circuit-design problem: we have n devices with propagation delays

WysWos eer Wy whose outputs must be combined pairwise, at unit delay,
to give a single output. One Huffman tree minimizes the maximm

propagation delay; the other maximizes the minimm delay. The latter

property can be significant if the circuit is part of a pipeline,

There are as many possible settings for priority queue complexity

as there are applications of priority queues. The one ctosen here is

simple, yet seems representative. An obviaus generalization 1s to allow

the queue size to fluctuate in a regular fashion between two videly-spaced

values, such as m snd m/2 , In this situation our lower bound on Q(m)

(p)

becomes 1g m-1g(e/2) , and the upper bounds on Q(m) and Q(m) given

by sorted linear lists are again nearly tight. But the loser tree and

binomial queue structures used to prove upper bounds in the simpler

model do not apply in this situation, since they do not grow and shrink

gracefully. It would be interesting to find a structure which is nearly

optimal in the more general model and can actually be implemented to run

in time proportional to the number of comparisons,

It is an open problem to improve upon the upper and lower bounds on

Q(m) or Q(m) when m is not a power of 2 . It would also be

interesting to prove results to the effect that arithmetic on keys cannot

help, in the worst case or on the average, vhen the key space is large

compared to the queue size; results of this kind have been shown for

selection problems [43;13]). When the key space is restricted to the

integers fron 1 to m and arithmetic on keys is allowed, then the

priority queue operations can be implemented to run in 0(log log m)

time [LO].

Our sbstract study of priority queues hes shown that binomial queues

of size m= ok are & particularly simple snd efficient structure for

implementing alternating insertions and deletions, such as occur in

replacement selection. When =m is not a power of 2 , fewer than 1lgn

dumay nodes must be added to make the queue behave as such, since the

algorithms never look below a node containing an infinitely large key.

Hence binomial queues may be a useful alternative to loser trees for

replacement selection,

4

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, The Design
and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass.
(1974).

[2] J. N. Buxton, ed,, Simulation Programming Languages, North-Holland,
Amsterdam (1968).

[3] David Cheriton and Robert Endre Tarjan, "Finding Minimum Spanning
Trees,” SIAM Journal on Computing 5, 4 (December 1976), 72L-Th2.

(4] Clark Allan Crane, "Linear Lists and Priority Queues as Balanced

Binary Trees," Ph.D. Thesis, Computer Science Department, Stanford

University, STAN-CS-7#2-259, February 1972.

[5] Ole-Johan Dahl and Kristen Nygaard, "SIMULA - An ALGOL-Based

Simulation Language," C.ACM 9, 9 (1966), 671-678.

[c] Hubert Delange, "Sur la Fonction Sommatoire de la Fonction

({Somme des Chiffres))," L'Enseignement Math. 21, 1 (1975), 31-47.
[7] Persi Diaconis, "Examples in the Theory of Infinite Iteration of

Summability Methods," Stanford University Department of Statistics

Technical Report No. 86, May 1976.

[8] Michael J. Fischer, "Efficiency of Equivalence Algorithms," in

Raymond E, Miller and James W. Thatcher, eds., Camplexity of Computer
Computations, Plenum Press, New York (1972).

(9] Robert W. Floyd, "Algorithm 245: Treesort 3," C.ACM 7, 12
(December 1964), 701,

[10] B. L. Fox, "Accelerating List Processing in Discrete Programming, "
Jo ACM 17, 2 (April 1970), 383-38.

[11] Edward H. Friend, "Sorting on Electronic Computer Systems," J.ACM 3,
(1956), 134-168.

{12] Frank Fussenegger and Harold N. Gabow, "Using Comparison Trees to

Derive Lower Bounds on Selection Problems," Proc. 17th Annual Symp.
on Foundations of Computer Science, Houston, Texas, 1976, 178-182.

[153] C. R. Glassey and R. M. Karp, "On the Optimality of Huffman Trees,"
SIAM J. Appl. Math, 21 (1976), 368-378,

[1k] Martin C. Golumbic, "Combinatorial Merging," IEEE Transactions on

Computers, C-25 (November 1976), 116k-1167.

7

[15) G. Gordon, "A General-Purpose Systems Simulator," IBM Systems

Journal 1, September 1962, 18-32,
[16] Devid A. Huffman, "A Method for the Construction of Minimum

Redundancy Codes," Proc. IRE LO (1951), 1098-1101.

[17] Kenneth E. Iverson, A Programming Language, John Wiley, New York

(1962), 223-227.

[18] Ellis L. Johnson, "On Shortest Paths and Sorting," Proc. 253th Annual

Conference of the ACM, 1972, 510-517.

[19] Donald B. Johnson, "Priority Queues with Update and Finding Minimum

Spanning Trees,” Information Processing Letters 4, 3 (December 1975),
53-57,

[20] Donald B. Johnson, "Efficient Algorithms for Shortest Paths in Sparse

Networks," J.ACM 24%, 1 (Janaury 1977), 1-13.

[21] Arne Jonassen and Ole-Jchan Dahl, "Analysis of an Algorithm for

Priority Queue Administration,” BIT 15 (1975), 109-422.

[22] Arne Jonassen and Ole-Johan Dahl, "Analysis of an Algorithm for

Priority Queue Administration,” Math. Inst., Univ. of Oslo (1975).

[23] Arne T, Jonassen and Donald E. Knuth, "A Trivial Algorithm Whose

Analysis Isn't," submitted for publication.

[24] A. Kerschenbawm and R. Van Slyke, "Camputing Minimum Spanning Trees

Efficiently,” Proc. 25th Annual Conference of the ACM, 1972, 518-527.
[25] Gary D. Knott, "Deletion in Binary Storage Trees,” Fh.D. Thesis,

Computer Science Department, Stanfort University, STAN-CS-75-491,

My 1975, 9 pp.

[26] Donald E. Knuth, The Art of Computer Programming, Vol. 1, Fundamental

Algorithms, Addison-Wesley, Reading, Mass. (1973).
[27] Donald E. Knuth, The Art of Camputer Programming, Vol. 2, Semimmerical

Algorithms, Addison-Wesley, Reading, Mass. (1971).
[28] Donald E. Muth, The Art of Computer Programing, Vol. 3, Sorting

andSearching, Addison-Wesley, Reading, Mass. (1973).
[29] Domald E, Kwth, "Deletions that Preserve Randomness,” Computer

Science Department, Stanford University, STAN-CS-76-58%, D"cember 1976.
(30) Donald E, Bmth and John L. McNeley, "SOL - A Symbolic Language for

General Purpose Systems Simulation,” IEEE Transactions on Computers

BC-13, 4 (196k), LOl-ho8,

76

[31] A. N. Kolmogorov and V. A. Uspenskii, " K opredeleniio algoritma,"
[On the Definition of Algorithms], Uspekhi Mat. Nauk. 13, 4 (1958),

3-28, mnglish Translation in Amer, Math. Soc. Transl. II Vol. 29
(1963), 217-2L5,

[32] Derrick H, Lehmer, "The Machine Tools of Cambinatorics," in

Edwin F. Bechenbach, ed., Applied Combinatorial Mathematics,

John Wiley, New York (1964).

[33] M. A. Malcolm and R. B. Simpson, "Local Versus Globai Strategies

for Adaptive Quadrature," ACM Transactions in Math, Software, 1, 2

(June 1975), 130-146,

[34] H. Markowitz, B. Hausner, and H. Karr, SIMSCRIPT, A Simulation
Programming Language, Prentice-Hall, Englewood Cliffs, N, J. (1963).

[35] MM. D. McIlroy, "The Number of 1's in Binary Integers: Bounds and

Extremal Properties,” SIAM Journal on Computing 3, 4 (December 197k),
255-261,

[36] Eugenio Morreale, "Computational Complexity of Partitioned List

Algorithms," IEEE Transactions C-19 (May 1970), L21-428.

[37] Thomas Porter and Istvan Simon, "Random Insertion into a Priority
Queue Structure,” IEEE Transactions SE-1 (September 1975), 292-298,

[38] Ralph A. Raimi, "The First Digit Problem,” Amer. Math. Monthly 83,
7 (1976), 521-538.

[39] Lyle Ramshaw, personal communication.

[WO] P. van Emde Boas, "Preserving Order in a Forest in Less Than

logarithmic Time," Proc. 16th Annual Symp. on Foundations of
Camputer Science, Berkeley, Calif. 1975, 75-84.

[41] Jean G. Vaucher and Pierre Duval, "A Comparison of Simulation Event

List Algorithms," C.ACM 18 (1975), 223-230.

[42] Jean Vuillemin, "A Data Structure for Manipulating Priority Queues,"
CoACM (to appear). |

[43] andrew C.-C. Yao, "On the Camplexity of Comparison Problems Using
Linear Functions," Proc, 16th Annual Symp. on Foundations of
Computer Science, Berkeley, Calif., 1975, 85-89,

(4

Appendix, Priority Queue Implementations

1. SAIL Implementations.

l.1 Binomial Queue using Structure R.

COMMENT Priority queue routines using structure R for binosal trees.

Notes on the subset of SAIL used here:

1} ‘e’ is the exchange operator.
2) ‘HORE "bn"' causes the loop on block named "bn" to be exited.
3) RCCORD_POINTER parameters are passed by value.

About programming style:
These routines are not intended to oe an easy intoductien to binomial queues.
Instead they are meant to he 3 quide to efficient implementation of binomial
queue operations, as might be accomplished in assembly language. This means
that in thece procedures a large amount of state is kept mplicitly in the
flon of control, rather than in program variables, We have not atteuptec
to perform other optimizations, such as the assignment of registers, cince
thece can be performed without a global understanding of the algorithms,

About mnemonics:

ldenti fier names are intended to convey meaning when possible, but have
also been kept reasonably short. Names are generally a concatenation of
short tags which are abbreviations of something meaningful: Rt for root,
Nxt for next, etc. Capitalization is used to delimit the tags, so "the
nen rightmost root” is written neuRtsRt. Happy reading!;

~~ BEGIN "BinomialQueue"
REQUIRE " {tt <>" DELINMI TERS;

RECORD _CLASS Node

(RECORD_POINTER(Node) ISibling!, IChild!; INTEGER Key!)

COMMENT Abbreviations for Node fields:
DEFINE 1Sibling = INode: ISibling'l;
DEFINE IChild = INode: Child!)

DEFINE Key - iNode:Key'!l;)

RECORD_CLASS QueuveHeader (RECORD_POINTER (Node) leftmostRoot; INTEGER Size);

BOOLEAN PROCEDURE ODO (INTEGER i);
RETURN(: LAND 1);

78

PROCEDMIRL Insert (RECORD_POINTER (Node) x; RECORD_POINTER (QueueHeader) 0):
BEGIN "Insert"

RECORD POINTER (Node) rtmRt. nxtRt;
INTEGER s;

8 + (UucucHeader:SizelQ);

IF s » 8 THEN rtwRt « 1Sibling[GueueHeader:lef twos tRoot Ql;

IChildix) « NUL RECORD;
IF OM) (s) THEN BEGIN

“The rightmost tree in q consists of a single node; merge it into x. (The merge
nf 8's ic treated specially to eliminate a test from the inner toop.)"

NxiHt « 1SiblinglrtmRt)
IF Kouylx) > KeylrtmRt) THEN x « rtmRt:
IChildix) « rimRt;
ISiblinglrtmRt) « rtmAt;
WILE TRUE DO BEGIN "Mergel oop”

“twHt « nxtRt: 8 « 8/2;
IF ~0l0(s) THEN DONE *"Mergel oop”;
"The rightmost tree remaining is the same size as x; merge it into x,"
nxtRt « 1SiblinglrteRt], |IF Keylx] > KeylrtmRt) THEN x « rtmRt;
ISiblinglrteRt) « 1SiblinglIChild(x]);
ISiblingliChildIx)) « rtmRt; |
IChitd{x] « rtmRt

END “Nergel.oop”
END;
IF s = 0 TN BEGIN

"The entire forest has been merried into x. (The forest size Is a power of tuo.)"
ISiblingIx) « x3 . |
QueueHeader: lef tmostRoot[Q) + x

END

ELSE BEGIN

“Some of the original forest remains; x is the rightmost root in the new forest."
Sibling (QueueHeader: leftmostRoot(Q)) « x;
ISiblingIx]) « rteRt

END:
QueucHeader:Size (9) « QueueHeader:SizelQ) + 1;

END “Insert”:

79

RE CORD POINTER (Node) PROCETRIRE DeleteSmal lest {RECORD_POINTER (QueueHeader) 0);
BEGIN “Ue leteSmal lest”
RECORD POINTLR (Nodel (fmRt, rtwRt, smallest, pred, succ, smal lestPred, rimChild,

neokitafit, mrglree, nxtlirecs
INTLHER «, enallestKey:
Vfnfit « Uuecuelleader: leftmostRoot (Ql rimRt « ISiplinglifeRt)
s + OueucHeader:Size lll

IF 1emhit = tot THEN BEGIN "There is only one tree in the forest.”
“Bicburnn the root, and make the nen forest from its sons.”
ema) leet oo fms

Orenrtleadert lef tmostRoot (UW) « Child{1 fuRt]
END “lle e ie only ene tree in the forest.”
ELSE BELIN “There are tuo or more trees in the forest,”

“Search tor the nade containing the smallest key in the queue."
ait inal fmRE) « NULL_RUCORD; “flark the leftmost node to stop scarch.”
emallectKey « KeylitmRt)l; pred « (felt; succ « risRt;
DO BEGIN

It emallecstKey 2 Keylsucc) THON BEGIN
Amal lewtKey « Keylsucclt smallestPred « pred END;

pred ¢ succ: suee + 1Siblinglsucc)
END UNTIL cucc » NULL_RECORLU:
sualivet ~ 1Siblinglsmatiesttred]

: If enailest = NULL_RECORD THEN BEGIN "The rightmost root is smaliest.”
emalieat « rimHt;
I+ OH) ts) THEN

"The rightmost tree is a sing node; just remove it from the forest.”
1SintinaltfmRt) « 1Sinlinglsmatlest]

ELSE BEGIN To
"lhe sons of the rightmost root become the smallest trees in the nen forest."

] Siping(1 feRt) « 1SiplingliChildlsmallest)]y
1ISivtingfiIChiidismalltest)] « ISiblinglsmal lest} ‘

END

eND "The rightmost root is smallest.”
ELSE BEGIN "A root other than the rightmost is smallzst,”

“Iie trer containing this root must be replaced. A replacement tree is formed
bhp merging the rightmost tree in the forest with the children of the rcmoved
riot Chi bdren which are smaller in size than the rightwost tree become the
emaliest trees in the ncu forest.”

rinChite « 1Sipling(IChilalswallest];
1Sipting{IChitdismaltest]] « NULL _RECORD; "Mark leftmost child to stop scan.”
IF 000s) THEN BEGIN

“The queue size uas even before the deletion, so some children of the
removed root uill move up to become the smallest trees in the new forest.
Gean through the children until mrglree, the one which will merge uith
the rightmost tree in the forest, is reached.”

nev teit » rteChi td;
ww - 8/23
WHILE -000(s) DO BEGIN |

cimChild + I1Sibling{rtaChiidls 8 + 8/2 END:
wrgliree « 1SiblinglirteChiidly
I+ smailestPred = rtmHt THEN

“The tree to the right of the removed root is the rightmost tree, and thus
ili be consumed in building the replacement tree. So the replacement’'s
predecessor will be the leftmost child which moves up.”
emallestPred « rtaChiid

FLSE

“{ ink the children into the right of tha forest nou, since their Sibling
ic not the replacemeni and is therefore known,®

1SiblingfrtaChila) « 1Siblinglrtelt)

80

ENO

ELSE BEGIN

"The queue size is odd, so ali children of the removed root will be used
to make the replacement.”

: newRtmRt « ISiblinglrtewRt);
IF emallestPred = rtmRt THEN

“The replacement tree will be the rightmost tree in the neu forest; hence
neuRtmRt and smallestPred cannat be given true values nou. Flag
this uith smaltestPred = NULL_RECORD."

emal tes tPred « NULL RECORD: :
*Perfom the first merge. The merge of B@'s is handled specially in order
remove a test from the inner loop.”

meglrce « ISiblinglrtmChitd); |
IF KeylrtoRt) > KeylrtuChild) THEN rteRt « rtaChi ld;
IChildirtmRt) « rtmChild;

ISiblinglrtmChild] « rtmChild
ENO);

"Complete the merge.”
WHILE mrgtree » NULL_RECORD DO BEGIN |
nxtlree « ISinlingimrglireel;
IF KeylrtmRt] > KeylmrgTreel THEN rtoRt « mrglree:; |
ISiblinglmraTree) « 1Sibling(IChildirtsRt]));
1ISibline[IChildirteRt)) « mrglcee;
IChi ld rtmRlt]) « mrglree;
w grec « nxtTree;

EN{I;

"lt remains to fix up some links betueen roots in the forest: 1) ISibling link
from leftmost root to rightmost root, 2). ISibling link from replarement tree
te the next larger tree, and 3) Sibling link to replacement tree from the
next smaller trec, Hany forms of degeneracy ae possible...”

IF smallest = [feRt THEN BEGIN

"The leftmost tree was replé-ed, so link from header must be fixed."
Queueticader: le ftmostRoot(Q) « rtaRt;

IF smallestPred =» NULL_RECOR[: THEN
"The replacement tree is the only tree in the forest: 1), 2), and 3) are
identical.”

ISibling(rtmRt) « rteRt
ELSE BCGIN

"There ie another tree in the forest, besides the replacement: 1) and 2)
are identical,”

ISiblingirteRt) + neuRtmRt;
ISibling(smallestPred] « rimRt

ENO

END :
ELSE BEGIN

"There is a tree larger than the replacement, so 2) can be filled in nou.”
ISintinglrteRt) « ISibling{smaliest]);
IF smallestPred « NULL_RECORD THEN

"There is no tree smalier than the replacement: 1) and 3) are identical.”
1ISibling{|faRt) « rteRt

&I.SE BFGIN

“The nondegenerate case: 1), 2), and 3) are distinct.”
ISipling(i fut) « newRtuRts
ISiblingismallestPred] + ~tmRt

END

END

END "A root other than the rightmost is smallest.”
END “There are two or more trees in the forest.”;
OQucuctcader:Size{d) « QuecucHcader:SizelQ) - 13

ISiblingismaliest] « IChiid{smallest]) + N'_c_RECORD;
RETURN (smallest)

END “DeleteSmal lest”

&L

PROCEINIRE Union (HECORD_POINTER (Queuetieader) T, 0);
BEGIN "Union"

RECORD POINTER (Node) ARRAY Bx {1:3};
INTEGER i
COMMIENT Bk ie a stack of Bk trees which is accumulated for each staye of

the “addition”. "Carries" are propogated through Beil). The integer i
ie. the stack pointer, i.e., 1 is the number of trees in the stack.:

RECGHD POINT R{(Nade) rT, rQ, rF, dummy;
COWUENT +f points lo the largest tree in the result forest uhich has been

genet dled,s
INTTGERR «1, «00s
el « (ucreteader:Sizell); IF 5128 THEN rT « 1Sinling (QueueHeader:Ie ftmostlHoot LT];
el + Uucuetleader:Sicel0r; IF s048 THIN rQ + 1Sibt ing {QueueHeader: lef tnosthoot 1Q))
dummy « NW _RCCORD(Node); rF « dummy;

io Hy

"The binary addition algorithm,”

"The BB trees are handled specially to remove tests from the inner loop.”
IF ODLit<1) THEN BEGIN

iv i4l: Bkli) « rT rl « 1SibtinglrT) END;
IF 0DD{<Q@) THEN BEGIN

pe 41: Bkli) « 0: rQ « 1Sibling{rQ) END;
IT + + 1 THEN BEGIN

ISiblinalrl) « Bk()1; rF « Bkil); i « © END;
IF + =» 2 THIN BEGIN

IF Keglbk [11] >» KeylBk{2}) THEN Bil] « Bx (2);
IChitdlbk (11) « BkiZ];

1GintinglBe(21) « Br i2]; |
[| .

END;
eT « sT/2: sl « eli/2;

"The general step.”
WHILE (<7 « 8) v (sQ « 8) DO BEGIN

If OOD(cT) THEN BEGIN

i « 1413 Bkli) « rT: rT « 1SiblinglrT) END;
IF ONDE) T'7N BEGIN |

i + +1: okli) « rQ: rl « 1Sibling(r@) ENO;
IF (i = 1)» v (i = 3) THEN BEGIN

1Siblinalr'l « Beli); rF « Bhi): i « i-1 END;
IF + = 2 THEN BEGIN

If KeufBk(i}) > KeylBk(2)} THEN Bk(1] « Bk(2];
iISiblingBk {2)) « 1SiblinglIChild(Bx{1)]];
1ISinling{(1ChildiBk(1])] « Bkl2);
IChildiBx{1}) « Bki2)g
I |

END;
el « aT/2; 80 « 80/2 :

END:

"Handle a carry off the end, if present,”
IF + «] THEN BEGIN

ISibtino(rF) « Brill: rF + Bkil] END;

"Link the result into OQ, and clear out 1."

ISiptingrF) « 1Siblingldummyl;
"At thic point the dusimy node can be explicitly deal located to save GC's.”

Queur-Header: 1enftmostRoot (GQ) + 73UueuetisadersSizelQ) + Queuetieader:SizelT]l + Queueticader:Size(Ql);
Queuchicader; IcftmostRoot11) « NULL_RECORD;
OQueueHcader:Sizell) « 8;

END "Union"

82

1.2 Binomial Queue using Structure K.

COMMENT Priority queue routines using structure K for binomial trees.

Notes on the subsct of SAIL used here:

1) ‘«' is the exchange operator.
2) C‘DONONE "tn"' causes the loop on block named "bn" to be exited.
3) KtCORD_POINTER parameters are passed by value.

About programming style:
These routines are not intended to be an easy intoduction to binomial queues.
Irstead they are meant to be a guide to efficient implementation of hinomial
cucue operations, as might he accomplished in assembly language. This means
that in these procedures a large amount of state is kept implicitly in the
flout of control, rather than in program variables. We have not attempted
to perform othar optimizations, such as the assignment of registers, since
these can be performed without a global understanding of the algorithms,

About mnemonica:

Identifier names are intended to convey meaning when possible, but have
also heer kept reasonably short. Names are generally a concatenetion of
short tacs which are abbreviations of something meaning ul: Rt for root,
Nxt for next, etc. Capitalization is used to delimit the tags, so “the

nes rightmost root” is written ne:RteR t, Happy reading!

BEGIN "BinomialQuerue”
REQUIRE "{} <>" DELINI TERS;

RECORD_CLASS Node
(RECORD_POINTER(ANY_CLASS) I1Sibling!;s RECORD_POINTER (Node) IChild!; INTEGER Key!)

COMMENT The ISibling! field is declared ANY_CLASS because it must refer to records
of class OueueHeader as well as class Node. SAIL does not handle forward
RECORD CLASS declarations correctly.

COMMENT Abbreviations for Node fields:

DEFINE 1Sibling = INode: ISibling!l; .
DEFINE IChild = (Node: IChild'ls

GEF INE Key = (Node:Key!ls

RECORD_CLASS QueueHeader
(RECORD_PUINIER (Node) 1Sibling!, IChild!; INTEGER Size);

COENT It is essential that I1ISibling! have the same offset in both Node and
Queuetleader, since the condition ISibling! « NULL_RECORD is what distinguishes
header nodes from others. In some programming languages (e.g. Simula) there are
faclilties for declaring such restrictions explicitiy.s

BOOLEAN PROCEDURE ODO (INTEGER i)
RETURN(i LAND 1):

83

FROCEINK! Insert (RECOR() POINTER (Node) x; RECORD_POINTER (QueueHeader) QJ;
BEGIN “Ineert”

RECORD, FOINTER (Node) rtmRt, nxtRty
INTEGER «:

s « [im ueHeader:SizelQ);
rtmiit + QueucHeader: IChi id! (Q];

IChi td (x) « NULL_RECOFD;
IF G00) THON BCGIN

"The rightmost tree in 0 consists of a single node; merge it into x. (The merge
of A's is treated specially to eliminate a test from the inner loop.}"

ax tlt « ISiblinglrtmiRt];
IF Kiglx) > Kegletafit) THEN x « rimRit;
IChilcdix] « rtmRts

WHILE TRUE DO BEGIN "Hor ael.oop®
r tlt» nxtHt: 8 « «70%:

IF 000) THEN DONE "Nergeloop™y
“The: rightmost tree remaining is the same size as x3 merge it into x,”
hx it « (Siblinalrtmiit]
It Kegix]l >» Keulrtmiit) THEN x » rimRt;
ISiblingICH 1d lrtmRt)) « 1IChildIx]:
1ISibbing{IChild(x]] « rtaRt;
IChilcdix] « rtmRt

EHD “Mer acl.oop”
| ISiblinglIChiidix)) « Q

END:

QuecHeader: 1IChi tld! [Q) « xg
IF « - 8 THEN

“The entire forest has becn merged into x. (The forest size is a pouer of tuwo.)"
ISintingi{x] « @

ELSE BLGIN

"home of the original forest remains; x is the rightmost root in the nen forest.”
ISiblingix] « rtnRts
ISibting[IChiId (rteftt]] « x

END;

QueueHeader:Size (Q) « QueueHeader:SizelQ) + 1;
END "Insert";

84

RECORD MUINTER (Node) PROCEDURE DcleteSmal'est (RECORD_POINTER (QueueHcader) U);
BEGIN "[n-leteSmallest”

RECORD POINTER (Node) rtaRt, euaiiest, p, rtmChild, rightRtT, neuRtmHt, mrglree,
nxtlrec;

INTEGER «, smallestKey:
rimit + QueueHender: Child! (Q1y s + QueueHeader:SizelQ)s

"Search for the node containing the smallest key in the queue,”

smalle.t « rimiit; smallestKey « Keylsmailest)
p + ISiblinglemaliests;:
WHILE 1Sibtinag(pl = NULL_RECORD DO BEGIN

IF smallentkey > Keylpl THEN BEGIN
emallest « pp: smallestKey « Keylsmal lest] END;

p= 1Siblinalp)
END;

"Merge the offspring of the smallest node with the rightmost tree in the
forest, unless the rightmost tree contained the smallest.”

rtmChild « IChildlsmaltlest]:
IF rtmChild = NULL_RECORD THEN BEGIN “"smaiiest is.a 88."

"The deletion can be completed nou.”
IF « - 1 THEN
N.-ueHleader: ICH 1a! [Q) « NULL_RECORD

El SE BEGIN
Queuslicader:IChi 1d! {Q) «~ 1Siblinglsmaliest);
Sib! ing (IChild[1Sibling(smallest))) « Q

END

END “cmallest is a BO."
ELSE RIGIN "smallest is not a BO."

“Find the rightmost child of the smallest node.”
WHILE IChildirtmChilid) = NULL_RECORD DO

rtmChild « I1SiblinglIChildlrtaChild));
IF smaltest = rteRt THEN BEGIN “smal lest is the rightmost root."

"The deletion can be completed now.”
Queueteader: ICRI td! (Q) + rtwChi ld;

ISibling(IChitdlsmallest]) + 1Sibling{emal lest))
IF 1Sivlinglsmal lest) « O THEN

1ISibling{IChildlISinlinglemalliest]])) « IChildismallest)
END “«mallest is the rightmost root.”
ELSE BIGIN "smallest is not the rightmost root.”

"Sed up for the merge.”

rightRtT « 1Sibling'IChild({smallest]]);
ISibtingliChildlsmaliest)] « NAL_RECORD; “fark leftmost child.”
IF -0liDts) THEN BEGIN

“Ihe rightmost tree is not a BO, so some children of smallest will
oe the smallest trees in the neu forest.”

nevi tet « rtaChild;“+ 85/703

WHILE -O0D0(e) OO BEGIN
rtaChild « 1SiblinglrtaChildly 8 « 8/2 END;

mrglree « 1SiblinglrtaChildly
IF rightRtT = rteRt THEN
rightRtT « rtaChild

EL.St BEGIN

ISiblinglrtaChild) « 1SiblinglrtaRt);
12101 ina [1Chi 19L1Sibl ing lr taRt))) « rtnChild

END |
END

85

tot BEGIN

“The rightmost trec ic 3 B8, go it combines with all of the children .
af smallest to form the replacement tree.”

IF rightBtT = rtefit THEN
rightRtT « NULL_RLCORD

f1SE BEGIN |)

noufitnRt « 1ISiblinglrtmfiit],
ISiblingUIChildneuRteRt]) « OQ

t NO);

“Perform the first merge, The merge of BO's is handled specially in order
climinate a tect {rom the inner loop.”

we lee « 1SibEingrtmChild);
If Keglrtmfitt] > KeylrtmLhildl THEN rtoRt « rteChi ld;
Chald lr twit) « rtnChild;

| FF

"Complete the merge.”

WHILE mralree = NULL_RECORD DO BEGIN
nxtTree « 1SiblinglmrgTreel;
IF KeglrtmRt) > Keylmrglree)l THON rtuRt « mrgliree;
1ISiblingliChildimrgTree)) « IChild(rtmRt)
1ISibling(IChild{rtmRt]] « mglree;
IChildlrtmRt) « mralree;
mi-ggTrec « nxtlree;

END:

"Link the tree created by the merge into the forest.”

1ISiblinglrteRt) « I1Sibling(smaliest);
IF iISiblinglsmallest) « Q THEN

1ISirling[IChi1dISinlinglsmallest))) « rtmRt:
IF rightRtT « NULL _RECORD THEN BEGIN
Oueuciicader: IChi id! (U] « rteRts
1ISivlinglIChildirteRt)] « Og

END

fi.9L BEGIN

UueueHe adders ICH dU IU] « newRtelt;

1ISibtinalrightRtT] « rteRts
1Sipl ina LIChi Id fr teit)) « rightRtT

FNL

ERD "cmailest is not the rightmost root.” |
END "emalicet is not a BB.%;
QueueHeader:Size ll) + Queuciicader:Size(d) ~ 1;

1ISibling(emaliest) « IChildismal lest) « NULL _RECORD;
RETURN (smal lest)

END “DeleteSmal lest”;

mop open (DYSos] Ry ie ee CUT
86

Rt CORN POINTER (QueueHeader) FROCEDURE Delete (RECORD_POINTER (Node) x);
BEGIN "Uelete"

RE CURD PUENTE (QueueHc ader) Q;

RECORD POINTER (Node) p, rtmHt, rightRtT, leftRt1, pN, Fr, Tr, neuRtmAt, mrglree,
nxtiree;

COMIENT Here T denoter the tree containing x, and Tr the tree which replaces T:
RECORD POINTER (Node) ARRAY pathli:18); COMMENT 18 is lgl(max queue size) + 1;
INTLGER i, s, iSave:
LABEL Neraef orests, DeleteReturn:

"Climb out of the binomial queue to reach the queue header; save the trail
of nodes vicited in the path’ array.”

Pb « x3 i ¢ 0B;
WHILE p » NIKI_ RECORD DO BEGIN

i « 4): pathlil « p; p+ 1Sibling{p)] END;
Q « path): i + i-1y
8 + UucueltleadlersSizell); rtmwRt « QueueHeader:IChi ld! 1Q):

"How did ue get to the queue header? There are tuo possibilities: cithe:
from the Child of the rightmost root, or from the leftmost root."

IF pathli) = IChildlrteRRt) THEN BEGIN

"x ic a non-root node in the rightmost tree.”
rightiit] « NULL_RECOROD;
be fthtT « 1Sibling{rtmRt);
PN « rtmRt

END

ELSE REGIN

"Fithetr x is the root of the rightmost tree, or it is in some tree other than
the rightmost. Locate the root of the tree containing x.”

WHILE TRUE OOD BEGIN “RootSearch”
IF i-2 < @ THEN BEGIN "x is a root."

"The dismantling of the tree containing x can be completed nou.”
Ie ftRtT « 1Siblinglix): : |
IF IChitclx) « NURL_RLCORD THEN BEGIN “x is a B88."

"The deletion can te completed now."
If = ~) THEN

(hs:ueHeader: IChi 1d) [Q) « NULL_RECORD
ELSC BLGIN

Oucuctieader:IChi ld! (Q) + leftRtT;
ISiHlinglIChildlleftRtT)) « Q

END:

GOTO (eleteReturn

END "x is a BO."
rightfttT « ISiolingl{IChiidix)); IF rightRtT = Q THEN rightRtT « NULL_RECORD;
Fr « IChildix); 1SiplinglFr) « NULL_RECORD;
HHILE Cnild(Fr) » NULL_RECORD OO Fr « I1SinlinglIChildiFr]);
GOTO MergefForests

END) “x is a root."
IF IChildipathl(il} = pathli-2} THEN DONE "RootSearch™;
EES|

END “RootSearch";
"x is 8 non-root node in some tree other than the rightmost.”
piN * pathii);
rightRtT « pathli-11; leftRtT + ISinlinglpNl: i « i-2

END;

"Ue are here to dismantle the tree containing the node x; x is not the
ront of this tree, since that special case mwas handled above.

The dismantling proceeds top douni large trees ars generated before small

87

onca. At each step, there ic a forest of trees already saved, linked from
emalier to larger, in Fr, There is also a node on the 'true’ path from x to
the root of the tree containing x, in pN. Each step begins by finding the
path node on the level on the next lower level. Any trees to the left of
thie loner path node are added to the forest: then a tree formed from PN
and the trees to the right of the lower path node is added. Then the lower
path nade becomes pN, and the process repeats on the new level until the
level of node x 18 reached.

When the dismantling begins, pN is the root of the tree containing x
And bie an index in path such that IChildi{pN) = pathii}.*™

Fr « NLL RECORD;
WHILE THLE UO BEGIN “Downl oop”

1Save + ag

WHILE TRUE DO BEGIN “Rightl.oop®
It i-2 = 8 THEN DONE "Dounloop”:
HE 1Childipathlil) = pathli-2) THCN DONE "RightLoop";
ie i-1

END "Riahtl oop”
If iSave « + THEN BEGIN

ISinlinulpathiiSavell « Fr; Fr « pathli+l) END;
IChitdipN]) + pathli-1): 1SiblingIpN] « Fr; Fr « pi;
pho pathlily ie i-2

ENC “Dinend oop”,
IF iSave » 1 THEN BEGIN

ISiblinalpathliSave)l) + Fri; Fr « pathi2] END;
ISitlinalpN) « Fr; Fr « pN;

IF iChildlx) = NMULL_RECORD THEN ICid (pN] « NULL _RECORD
ELSE BLGIN

ICHTd pl) « 1ISiblingIChi Idx);
1ILiblinaltChildix]) « Fr; Fr « IChildix};
HHILE IThitd(Fr] « NULL_RCCORD DO Fr « 1Sibling(IChildIFr])]

ENC:

Pergct orentss

"The variables passed from above are rimRt, rightRtT, leftRtT, Fr, G, and s."

IF rightRtT - NULL_KECORD THEN BEGIN "the righteost tree was dicmant led.”
"lhe deletion can be completed now.”
Queurleader: IChila! (Q) + Fr;
WHILE 1SinlinalFr) » NULL_RECORD DO BEGIN

1ISiblinglIChild1SiblinalFr))) « Fry Fr « ISiolinglFr) END;
ISiblinalkr) « lettRtT; [FF 1eftRtT « Q THEN ISibling(ICnildlieftRtT)) « Fr

END “the rightmost tree was dismantled.”
ELSE BEGIN "a non-rightmost tree was dismantled.”

"Set up to merge Fr with the rightmost tree.”

Tr « rtmRt;
IF -d00D(s) THEN BEGIN

“The queue cize is even before the deletion, so some trees in Tr’
“ill move up to become the smallest trees in the new forest.”

nerfitnllt « Fry |
So 8/3

WHITE -({D(s) DO BEGIN

Sibling [IChitd[ISibling(Frl)) « Fry Fr « ISiblinglFr),
r. oo &/2 END

mglree « ISiblinglfr);
IF rightttT « rtefit THEN
rightHtT« Fr

88 .

1 SE BOGIN

1ISibling(Fr) « 1SiblingirtmRt);
1Sitsl ing LIChi ld lISibling(rtmRt))) « Fr

FIND

END
ELSE BEGIN

"The qurue size is odd, so all children of the removed root will be used
to make the replacement.”

IF right] » riwlit THEN
ciahtit] « NULC RCCORD

El SE BEGIN

nel tedit o 1SiblinalrtmHt)
tGinhinaliChildinculltett)] « Q

END:

"Perform the first merge. The merge of B8's is handled specially in order
speed up the inner loop.”
malree « I1SiblinglFr)g
IF Keullr) > Keylfe) THEN

Tr o Fr

ihitdlir) « Frs
FN;

"Complete the merge.”

WHILE mrglree « NULL _RICORD DO BEGIN
nxtTree « ISiblinglmrglreels :
IF Keyllr) > Keulmrglireer] THEN Tr « wrgliree;
1Sibling(IChildlmrglrec)) « IChildiTr);
1ISiblingIChild(Tr)) + mrglree;
IChildlTr) « mrglree;
mglree « netirees

ED;

"The met ge is couplete; [ink the new tree Tr into the forest.”

1ISiblinglTr) « leftktT: IF leftRtT » Q THEN I1Sibling(IChildlieftRtT)) « Trg
IF rightRtT = NULL_FECORD THEN BEGIN
hructieadert (Child! (GQ) « Try

ISibting[IChitdlTr)) « Q
END

ELSE BEGIN

Queuctieader: IChl id! [Q) + newRtaRts

en OF nolrightRtD) « Tr; 1SiblinglIChild(Tr)) + rightRT
END “a non-rightmost trec was dismantled.”

DeleteRe turn:
OucucticaderiSizeld) + Queuveleader:SizelQ) - 1;
ISiviinglix) « IChildix) « NILL_RECORD;
RE TURN (0)

END "Delete":

89

FPHOCEDIE Union (RECORD POINTER (Queuetiedcier) 1, Ul:
Bt GIN "thhion®
i CORE POINTER (Node) ARRAY Bkll:3):
CINTHGER ag

COMMENT Bk ie a stack of Bk trees which 1 acc umuiated for each staue of
the "addition, “larcies™ are propagated theouyh Bkill, The inteyer |
Lo lhe tack pointer, d.e., it 1s the nue of trens in the stack.

RECHED FUINTER(Nooe) oT, ri, rf, dummy;
COMMENT oF points to the largest trec in the recult forest which has heen

crectwer ated,

IHTLGER 1, «ff
«1 ¢« Wpantender:Siceilly rls Queuetic anders ICH Td! LT);
of) « UueueHeader:Sizeluls rl + Uueuelleader: tiChitd! {Q)
dummy «+ NtHHL CORD (Neue);
rF « dummgs |
i « 0;

"The binary addition algorithm,®

“The (# trees are handied specially tu remove tests from the inner loop.”
IF Oi) NEN BEGIN
ie ial: lil o F131 +e {Sibling(rTl ENG;

IF ODD(=Q) TIN BEGIN
Pe i+: Bk) + rQ; rQ iISiblinglry) END:

IF i = 1 THEN BLGIN
1Sibtinglrf) « Del): rf « Bkllly i « 8 END:

IF i + 2 THEN BEGIN
If KenlBkll)) > Key(Br (21) THEN Bkll) ~ Ok (2)
hit (Brill) « Bri?
oe)

CN0;
sl « «1/27 <Q « «U/Zs
“The: oe ne al otep”
WHILE (1 « 0) v (sO » 8) 0) BEGIN

IF (oT) THEN BEGIN
i + ie): BRLi) « rl; rT + 1SinlinglrT] END:

IF 0UD(=1) THEN BEGIN
i. jel: Beli) « rQ; +0 « tSiblingleQ) ENDs

IF (i » 1) v ti = 3 THEN BEGIN
iGinlinglrF) « Bklilg 1ISiblinglIChildiBk[il)] « rf;
rb oo Bids 1 « i=]

31 11 |
IF &# = 2 HIN BEGIN

IF KeulBk (11) > Keyli (2)] THEN Bk U1) « Bu (2]s ~~
1SiblinaliChita {Br (231) = IChildlBhil)]; |
1ISiblinaglIChildlBL11)]]) « Bri2); (-—)
IChildlik(l]) « BkiCls _

END |
el ov 61/2; S01 « 80/2 —_——

(4), (N oo"Mandle a carry off the end, if present.” <-.
IF i = J THE-N BIGIN pO

1Sintinglrt) » Baill; =~]
1Ginl ine lIChi ld IBRI111) « rf; w a
rb « Br(l) -~

ty

“Link the result into Q, and clear aut T.° —

1ISintingleF) « OQ; yr)
QueueHeader: IChi td! [Q) « 1Sibling (dusmy) ‘-

| 90

"At this point the dummy node can be explicitly deallocated to save (C's “
IF Child QueueHeader: IChi ld! (Q]1) « NURL_RECORD THEN

1Sivling (IChi Ld (QueueHeader: IChi 1d! [Q1)] « QO;
Qucucticader:SicelQ)l « QuecucHeader:SizelT) « QueuveHeader:Size (QQ):
QueucHeader: Child! [T) « NLL_RECORD;
Queucticader:Sizelll « 8B;

ENO "Union"

rg ST I. mY r :

C21 RwWihalneee 0

91

Ce FAIL Implementations.

2.1 Binomial Queue using Structure R.

TITLE B03

WIRTIL Binomial queue priority queue routines using structure H.

ENTRY INS_BG,0CL_0Q

sHeqgisters:

$GAIL E+] 1SAIL result reqister for typed procedures.
$SAIL Pel? ;SAIL regular PUL.

tNode Fields:

tHeader node:

HL MOST. 0 ;Pointer to root of leftmost tree in forest.

$5178 1] iFulluord intener count of number of elements in qurue.

Queue element (binomial queue) node:
CHILD. 0B sPointer tu leftmost child of this node (right half).
dl STHL ING-~+0 sPointer to next sib to left of this node (left hit),

11f no left sib, then points to rightmost sib inate,
YKEYeo |] sFulluord integer or real key (i.e., node prinityl.

: Trap handlers: |
$INS_LEL:HALT 1Here on insertion into queus with SIZE < 0.
OEL _UFL:HALT iHere on deletion from queue with SIZE < ©,

92

Ce FAIL Implementations.

0,1 Binomial Queue using Structure R.

Tine 0a

WMIRTIL Binomial yueue priority queue routines using structure H.

ENTRY INS_BQ,DCL_BQ

Registers:

SAIL Red 1GAIL result register for typed procedures.
$SAIL_ P17 :SAIL regular PUL.

iNode Fields:

| ¢ Header node:
LAOSTB iPointer to root of leftmost tree in forest,
$G)7E~ sFul luord integer count of number of elements in queue.

:Queue element (binomial queue) node:
JLUHILD. +B iPointer to leftmost child of this node (right half).
$l STBL ING-+-0 :Pointer to next sib to left of this node (left half).

116 no left sib, then points to rightmost sib inctear),
KE Yeo |] Ful luord integer or real key li.e., node priority).

sTranp handlers: |
JINS_ULH | :HALT tHere un insertion into queue with SIZE < 0.
GOEL _UN L:HALT iHere on deletion from queue mith SIZE < 8.

pS ~

BEGIN INS_BQ 1Binomial queue insertion

103+ 0
Tle | |

Ue 2 |
Xe- K|

| Re 4 + LMOST_ROOT
HMR. 5 1 RMOST_ROOT
NXTR« 6 ¢ NEXT_ROOT
Se 7

Sle Sql

iprocedure INSERT (reference (NODE) X:
fINS_BQ:HRZ Q,-1(SAIL_P) : reference (QUEUEHEADER) Q);

ADOSG S,SIZE (Q) +S « SIZE(Q) « SIZE(@) + 1
JRST INS_LFL 1if S < @ then ERROR endif
HOVE LR, LMOST(Q) tLMOST_ROOT « LMOST(Q)
HI RZ RIR,LSTBLING(LMR) :RMOST_ROOT « LSIBLING (LMOST_ROOT)
HItRZ X,-2(SAIL_P)
SE1ZH LSIBLING(X) sLCHILD(X) « NIL;
| SHC S,-1

ABEL SEL, H_DONE 1if even(S) then (Handle first merge specially.)
HLRZ NXTR,LSIBLING(RHR) tNEXT_ROOT « LSIBLING (RMOST_ROOT)
MOVE 18,.KEY (X]}

CAMLE TO,KEY{RIMR) gs if KEY(X) > KEY(RMOST_ROOT)
EXCH X, RMR $ then X «» RMOST_ROOT endif
Hi{RM KR,LCHILD(X) s+ LCHILD(X) « RMOST_ROOT
MIVSM RMR,LSIBLING (RMR); LSIBL ING (RMOST_ROOT) + RMOST_ROOT:
MOVEL RMR, (NXTR) : RMOST_ROOT «~ NEXT_ROOT
| SHC S.-1 1 S «$872
JARMPL S1,.M_DONE 1 loop while even(S):

M_LOOP: HI RZ NXTR,LSIBLING (RFR); NEXT_ROOT « LSIBLING(RMOST_ROOT)
HIVE 18, KEY (X)

CALE TO,KEY (RMR) 3 if KEY(X) > KEY (RMOST_ROOT)
fF XCH X.RIR 3 then X « RMOST_ROOT endif
HRRZ T1,LCHILO(X) 3 Tl « LCHILDX)
HRM RR. LCHILD (X) 3 LCHILO(X) « RMOST_ROOT
Hi RZ TO, LSIBLING(T]) T@ + LSIBLING(T1)

HILA RR, LSIBLING(T1) LSIBLING(T1) « RMOST_ROOT
HLA T8.LSIBLING (RMR) ¢ LSIBL ING (RMOST_ROOT) « 18
HOVEL RR, (NXTR) 3 RMOST_ROOT « NEXT_ROOT
LSHC S.-1 $ S «8/2
JRFGE S11, LOOP { repeat |

endif;
MOONE: JFMPN SS. LINKIN $3if S = 1 then

MOvEN X,LMOST(0) ¢ LMOSTO) « X; :
HN X.ASIBLINGIX) 3 LSIBLING(X) « X
JRST EXIT ielse

LINKIN: HL X.LSIBLING(LIR) 3 Lo LIST ha) - NgHan AR.LSIBLING(X) LSTELING (X) - T_ROOTsend

 EXITs SLB SAIL_P, (3,,.3)
JRST e3(SAIL_P)
BEND INS_BQ joend (INSERT)

PB

fi GIN DEL_BQ ;:Binomia)l queue deletion

168 8
1]. py
(Je 3

{tLe 4 «L MOST_ROOT

NiiMRe 6 +; NEW_RIMOST_ROOT
tC 7 {MERGE_CHILO
FERED. 10 +HESULT_PRED
HIC + 11 s RMOST_CHILD
Te 13

} Ge Gal
: HI ST_KEY-TO

FRED T1

GCC IC

NL + S «NEXT _CHLID

sreference (NODE)! procedure DeleteSmal lest

*DEL BQ: HRR2 3, -1{SAIL_P) : {reference (QUEUEHEADER) Q):
GOSGE 5,SIZE(Q) 1S «~ SIZE(Q) « SIZEQ) - 1%
JRST (EL_UFL :11f S <« 0 then ERROR endi
MOVE LMR, LM0ST IQ) +LMOST_ROOT « LHOST (DQ);
tL RZ RMR. LSIBL ING (LMR) :RMOST_ROOT « LSIBLINGILNOST_ROOT);
CAIN RR, (LR) s if LMOST_ROOT « RMOST_ROOT then

1 (The forest consists of 2 single tree, uhose root
: contains the best key in the forest. Remove the
« root, making the neu forest from its children,
{ and ue're done.!

JRST (HOVE! SAIL _R. (LMR):DEL_BQ ~ LMOST_ROOT;
HRRZ 18,LCHILO(LMR)
MOVEM 10,LNOST{Q);LMOSTID) « LCHILD(LMOST_RODT)
JRST EXIT) |

(elise
1 (The forest consists of more than one tree;

: { search the roots of these trees for the best key.
1 Scan the forest from right to (eft, but use the
{ best key in the leftmost tree as an estimate of
: the best key in the forest.)

HLL RHR.LSIBLING(LR) 3 LSIBLING(LMOST_ROOT) « NIL}
MOVE DEST KEY, KEY (LMR); BEST_KEY ~ KEY(LHOST_R00T);
MOVE]! PRED, (LMR) t+ PRED « LMOST_ROOT;
MOVE! SICC, (RHR) t+ SUCC + RMOST_ROOT:
JST S_LOOF

NEU_BST: MOVE BFST_KEY,KEY (SUCC)
(WVEL RI'GED, (PRED)
HOVE! PRED, (SLCC)

HL RZ S1ICC,LSIBL ING (SUCC)
MME SUCC,S_DONE : loop until) SUCC = NIL:

S_LOOP;: CAML BEST_KEY,KEV(SUCC); if BEST KEY 2 KEY (SUCC)
JHST NEW_BST 3 then BEST _KEY « KEY ({SUCC):

t RESULT_PRED ~ PRED
endif;

MOVEL PIED, (RCC) 8 PRED +» SUCC;
tLRZ SUCC,LSIBLING (SUCC); SUCC « LSIBLING (SUCC)
ANN SUCC,S_LOOP 1 repeats

S_OONLC ; i: SAIL_R,LSTBLING (RPRED 1 CEL 80 + LSISLING(RESULY_PRED)¢
JREN SAIL_LRNOT_RM : if DEL_BQ = NIL then

t (The best key is in the root of the smallest
| t tree In the forest. [1 this root has children,

ok

3 then they move up to become the ronts nf the
3 smal lest trees in the forest, and we're done.|

HOVE | SAIL_R. (RMR) : DEL_BQ « RMOST_ROOT;
JPL S1,SN_BEST : if even(S) then

: {The best key is in an SB tree (uhich is
: distinct from the leftmost tren.) Remove
: the SO and fix link from the leftmost tree.

SO_BEST:Hl RZ 18,1 SIBLING(SAIL_R)
HEL 18,LSIBL ING (LHF) ; LSIBLING (LMOST_RODT) « LSIBLING(DEL BN)
JRST EXIT ; else

: {The best key has children. Link them into
] the right of the forest.}

SN_BEST:HRRZ T1,LCHILD(SAIL_R)
Hh RZ 18,LSIBLINGI(T}) -
HELM 14,LSIBLING (LMR); LSIBLING (LMOST_ROOT) «LSIBLING (LCHILD (DEL _BQ))
HI.RZ T0,LSIBLING(SAIL _R)

HRA HM 18,LSIBLING(T]) LSIBLING(LCHILD(DEL_BQ)) «~ LSIBLING(DELBQ);
JST EXIT : endif

t+ else

NOT_RnM: : {The best key is in the root of some tree other
: than the rightmost in the forest. Children of

: this root which are smaller than the rightmost
: tree will move up into the forest: the other
; children Will combine with the rightmost tree
: to form a replacement tree.)

HIRZ T1,LCHILO(SAIL_R)

HLRZ RMC,LSIBLING(T]); RMOST_CHILD + LSIBLING(LCHILD(DEL_BQ));
‘ {Mark end of children-list.!

HLA T1,LSIBLING(T1) ; LSIBLING (LCHILD(DEL _BQ)) « NIL:
JUEWGE S1,S_EVEN) if odd (S) then

: ISome, but not ¢ 1, children of best root
: will move up to be roots in the forest.}

S_0DD: HOVE] NRIR, (RMC) g NEW_RTHOST_ROOT ~ RMOST_CHILD:
1 SHC S.-1 : S « $/2;
JUGE SE, C_DONE { loop while odd(S):

C_LOOP: HLRZ RMC,LSIBLING (RMC) ¢ RMOST_CHILD « LSIBLING(RMOST CHILD);
L SHC S.-1 { S « S/2
JA¥L S1,C_LOOP 3 repeat;

C_OONE: HLRZ MC,.LSIBLING (RC); MERGE_CHILD « LSIBLING(RMOST_CHILD)
: (Now RMOST_CHILD i= -~eally the leftmost
3 which will move up. MERGE_CHILD is the
: rightmost child which rill participate in
: the merge to produce a replacement tree.}

CAIN RPRED, (RMR) : if RESULT_PRED « RMOST_ROOT then
3 {LSIBLING tink from RMOST_CHILD ic same

: $ as LSIBLING link to replacement tree.
JRST {(MOVE] RPRED, (RIC); RESULT_PRED « RMOST_CHILD

JRST M_LOOP) else
$ iLink children into forest now.|

HLRZ T8,LSIBLING (RR) ; LSIBLING (RMOST_CHILD) »
HRLMN T0,LS18L ING (RIC) ; LSIBL ING (RMOST_ROOT)
JRST M_LOOP 3 endif

3 else |
: {The rightmost tree in the forest is an S8.
3 This will combine with all children of the
3 best root to produce the replacement tree.

S_EVEN: HLRZ NRIR,LSIBL ING (RMR) ; NEW_RTMOST_ROOT LSIBLING (RMOST_ROOT) ;
CAIN HHRED, (RMR) 3 if RESULT_PRED = RMOST_ROQT then

3 {The replacement tree will be the rightmost
3 in the neu forest, so the LSIBLING link

: from the leftmost root will be the LSIBLING |
: 3 link to the replacement tree.)

% |

MOVE | RI'HED, 8 $ RESULT _PRED «+ NIL
{ endif

: IThe merger of tuo SB8°s is a special case,
H handled here.l

th Rn. NC, LSIBL INGURIN) MERGE CHILD « LSIBLING(RMOST_ CHILD ;
10Y 10.KEY (FI)

(CAMLE TA, KEY (R10) : if KEY(RNOST ROOT) > KEY(RNOLT CHILO)
[CH HR, RIC : then RIOST _RUOT « RMOST CHUL D endif;
HIRI ROC, LCHILD(RIW) LOHILORHOST ROOT) « RIWOST_CHILDS
VSM RIC, LSTBLING(RIC) ; LSIBL ING (RMOST CHILD) « RMOST_CHILD;

3 LCHILD(RMOST_CHILD) « NIL;
$ endif

: INow finish the merge.!
JARWE CM DONE : loop until MERGE _CHILD = NIL:

M_LOOP: HL H/ NC,LSIBLING (RC) NEXT CHILD « LSIBLING(MERGE _CHILD) ;
HOVE 18,KEY (RIR)

CAMLE 10, KEY (FC) : if KELY(RMOST_ROOT) > KEY(MERGE _CHILD)
EXCH RHR, MC : then HHOST ROOT « MENGE CHILD endif;
HiikZ T1.LCHILD(RIR) Tl « LCHILD(RMOST_ROOT)
HRM NC. LCHILD(RIWVD 4 LCHTLD(RNOST_ROOT) « MERGE _CHIL Ds
Hl R/ 18,LSIBLING(TLI T@ « LSIBLING(T]);
HIILM AC.LSIBLINGI(T]} LSIBLING(T1) « MERGE CHILO;
HOLM 18, LSIBLING(MC) LSIBL ING (RERGE_CHILD) « TO;
MOVE] MC, (NC) : MEHGE _CHILD « NEXT_CHILD
JUMEN MC, H_LO0P : repeat

: : Ilts time to tie up the loose ends...
M_DONE: CALE SAIL _R, (LMR) 3 if OEL_BQ « LMOST_ROOT

LN R_N_LM 3 “then
RLM: IKWEM BHR.LBOST(G) 3 LMOST (OQ) « RMOST_KOOT;

MUH'N RPRED,.43 : if RESULT PRED « NIL
HLH RIN, LSICLING (RIIR) § then LSIBLING (RMOST_ROOT) « RNMOST_ROOT.
JHST EXIT $ else

HEL NiTIR,LSIBL ING (RMR) 4 LSIBLING(RMOST_ROOT) « NEWRTHOST_ROOT;
HLH RMR, LSIBL ING (RPRED) 3 LSIBL ING (RESULT_PRED) « RMOST_ROOT
JRST EXIT $ endif

$ else

R_N_LH: HWLRZ T8,LSIBLING(SAIL_R)
HLH 10.1 SIBL ING (RMR) ; LSIBLING(RMOST_ROOT] « LSIBLING(DELBQ);
JIN RPRED, (+3 3 if RESULT _PRED = NIL
HLH RMR, LSIBLING (LR) ; then LISBLING (LROST_ROOT) « RMNOST_ROOT
JRST EXIT 3 else
HILH AMR, LSIBL ING (RPRED) ; LSIBLING (RESULT_PRED) « RMOST_ROOT:
HRN NRMR,LSIBL ING (LIRR) 3 LSIBLING(LBOST_ROOT) NEW_RTMOST_ROOT

3 end)f
t endif

t: endif
tendif;

EXIT: SETZM LSIBLINGISAIL_R);LSIBLING(DEL _BQ) «~ LCHILD(DEL_BQ) «~ NIL;
SLB SAIL _P, (2,,2)

: JRST e2{(SAIL_P)
BEND DFL_B0 tend 10EL_BQI;

2.2 Leftist Tree.

TITLE LT

SIBTTL Leftist trec priority queue routines.

ENTRY INS_LTY,0ELLI

tReqgisters: :

$5A0L Re) :GAll result register for typed proreiures,
SAIL Pel? ;SAIL regular PUL.

tNode fields:

iHeacler nodes
+HOOT«e- @ iPointer to roo! of leftist tree.
$S12Eee 1] tFulluord integer count of number of clements in qucue,

{Queue element (leftist-tree) node:
J0IST.. 8 iLlength of shortest (rightest) path from this node to NIL.
JLEFTee 1] :Pointer to left child of this node (left half).
$11GHT~+] tPointer to right child of this node (right half),
KEY eo 2 sFultuord integer or real key li.e., node priority).

1 Trap handlers:

SINS_UFL:HALT tHere on insertion into queue with SIZE « 8.
SOBEL _UFL:HALT ;Here on deletion from queue with SIZE s 8.

bf

Leftist trec insertion and deletion.

WH]. 3 tHeqgisters uscd for linkage with MRS_LT
$Ule 4 shy INS_LT, DEL_LT,
JH 15

BEGIN IG LT

CINMIENT e Procedure ta merge tuo leftist trees. Called by JSP N.MRGLT,
sith the trees to be merged in Pl and Q1; returns with result tree in Pl.
This procedure uses AC DIST to eliminate special checks for NIL in the
rebalancing phase; thas UIST should not conflict with ACs uhich the caller
expects to be preserved: SAIL_P, SAIL _R, Q, and N. o

He. 1)
Tle (3

Ke. 11
{le- 7

MRG_LT: sreference (NODE) procedure MRG_LT
1 {reference (NODE) P,Q);

| : {The "rightmerge” phase merges the rightmost paths
| sof P and U into a single path, p.eserving the

sproperty that keys decrease froa the root touard
: the leaves. Since the next phéise will want to
s traverse this path from the leaves touard the root,
ithe path is linked upuard, using the RIGHT field.

| :Al the end of this phase, R points to the lowest
.node on the ncu path, and P contains a “leftover”
i tree which mill become a child of R.}

MOVE | R,0 tR « NIL: |
JST (NL.OOF sloop until ONIL or PNIL:

QstaLL: HIRHZ T1.RIGHT (Ql)
tdiRN R,RIGHT (G1)
HOVE] R, (Ql) |
MOVE | a1, (11)

) DNLOOP: WE Q),ONIL + if @ = NIL then ONIL endif;
HUWE PL ENIL ¢ if P « NIL then PNIL endif)
tWE K.KEY{P})
CALE K,KEY(Q]) : if KEVY(P) < KEY(Q] then
JRAT SHALL

PSMALL: HIRRZ 11,RIGHT (P]) : T « RIGHT (P)}
HIRAM R.RIGHT (P1} : RIGHT (P) + R;
HOvel rR. (Pl) $ RP;

NOVEL Pl, (11) 3 A |
JRST ONLOOP

1 else

COMMENT ¢ see OSMALL e¢ T « RIGHT(D)
$ RIGHT (OQ) « Ry
H Re Qs
t Q«171

| s endif
jrepeat;
s then

PNIL: MOVE] P1,(Q1) s PNIL => P + Qt 0 « BIST(P)s
ONJL: MOVE D.DIST PL) : ONIL => D « DIST(P);

{onds
s {The "rebalance" phase marches up the path
jcreated by the rightmerge, interchanging the
i left and right children of nodes as necessary
jlo guarantee that the result is leftist. At the
send, Pl points to the result.)

98 |

MOVE | nisr.a +DISTINIL) = 8;
GT LL OOF sloop untii R « NIL:

NOsWl Ici: novel 0,1a
HER F1,RIGHT(R)

MOVEUT: vit DL, DIST A(R)

novel Fl, (R)
HOVE | K, (01)

UPLOOK': RIE K, (N)

HRRZ QL. RIGHT (R) s+ OQ +~ RIGHT(R); {Here Q is the next higher nnde on
HR. 11,LEH THR) { the path, P is our partial result and ie leftist,
CAM 0,0157(71) t and D = DIST(P). Ue may need to interchange tie
JRGT NOSUWT TCH $ children of R,|

SWI TCH: tnvl ND, OIST(T]) ¢ if D> DISTILEFT(R)) then {lo the interchange.
HOVE] 0.10) 3 D« DISTILEFT(R)) + 1:
HIT TL.RIGHT (R) 3 RIGHT(R) « LEFT(R):
HRI Hl LEFT(R) H LEFT(R) « P
JRST MOVEWP

: else [No interchange is needed.|
COMIENT eo see NUSHITCH eo; D«D4+ 1;

: RIGHT (R) « P

s endif;

s+ INou cumpiete R and move up the path.!

COIMWIENT e sce MOVEUP eo DISTR) « 0;
i: ReQ
repeat

[ND HIG LT send IMRG_LTH;

BCGIN INS_L

1- 0

0 2

iprocedure INSLT(reference(NODE) X:
*INS_LT:HIRZ 0,-1(SAIL_P) t reference (LT_QUEUE) Q);

AQSG SIZE (Q) :SIZE(Q) « SIZE(Q) + 1; :
ST INS_UFL 1if SIZE(Q) < @ then ERROR endif;
MOVE £1 ,R0O0T (Q)

1iNRZ 01,-2(SAIL_P)
{WWE | 1.1
BOVEM T,0057(Q1) tDIST(X) « 1;
SETZI RIGHT (G1) sLEFT(X) « RIGHT(X) « NIL;

JSP N.HRG_LT
OVEN PL ,ROOT(Q) ¢ROOT(Q) « MRG_LT(ROOT (Q) ,X)
SUB SAIL_P, (3,.3]
JRST e3(SAIL_P)

BEND INS_LT tend (INS_LTi:

HEGIN DEL_LT

(2e- 2
treference (NOt) procedure DEL_LT

NOEL _LT:1RRZ 0.-1(SAIL_P) t (reference (LT_QREUE) QQ)
SOSGE SIZE (Q) (SIZE) ~ SIZED - 1;

JST ¢L_UFL tif SIZE) < 8 then ERROR endif;
HOVE SAIL_R,ROGI(Q) ;DEL_LTY « ROOT(Q); -
11374 01 RIGH: (SAIL _R)
tt RZ P1,LEFT(SAIL_R)
JOP N.MRG_LT
INVER P] ROOT (Q) tROOT (AQ) « MRG_LT(LEFT(ROOT(Q)),RIGHT (ROOT (Q)))
SUB SAIL_P, (2,.2])
MGT e2 (SAIL_P)
Bf ND DEL_LT send WEL_LTI;

99

Unclassified . |
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) ’

REPORT DOCUMENTATION PAGE FING FoR
. REPORT NUMBE 2. GOVT ACCESSION NO Df

: i.-

(6 The analysis of a practical andsy opvinn) technical, March 1377iorit ewe, ° Zz - FOREASOANNO-SAOwANcz aprioritygu . 7% | 'STAN-CS-T7-90“J
“J7. AuUTHOR(e) PE CONTRACT OR GRANT NUMBER(S)

10 Mark R. Jprown hé NGOYLY-T76-C-9338, L—
, Wo HSF-Mcs-72-9 314!
9. PERFORMING ORGANIZATION NAME AND AODRES - J. OU L NT, . , VASK

Stanford University AL / 1/5 , ANEA & FORK UNIT NUMBERSComputer Science Department P-Stanford, Ca. 94305 —

11. CONTROLLING OFFICE NAME AND ADDRESS JN men]Office of Naval Research aren 2977- 3
pepprtnent of ths Navy kiki
. MONITORING AGENCY NAME & ADDRESS(/! different from Controlling Office) 18. SECURITY CLASS. (of this report)

ONR Representative: Philip Surra

Durand Aeronautics Bldg., Rm. 165 Unclassified

Stanford University DECE ATSIFICATION/COWNGRAGING
16. DISTRIDUTION STATEMENT (of this Report)

releasable without SRLasions on dissemination-~> .

G, Techn \ cal rept,
17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, if different rem Rep-.rt)

19. KEY WORDS (Contivwe on reverses side if necessary and identify by block mmmber)

analysis of algorithms |

Ny 20. ABSTRACT (Continueon reverse side if weceossary and ideniity by block number)
The rope ts,he binomial queue, a new data structure for implementing priority
: queues that can be efficiently merged,) vas AN an dgcovered by JeanVuillemin; we explore the properties oF TRS structure” in detail. New

methods of representing binomial queues are given which reduce the storage’
overhead of the structure and increase the efficientcy of operations om it.
One of these representations allows any element of an unkmown priority
qusue to be deleted in log time, using only two pointers per element of _» ...o,

OD ,ons3473 cotmon oF t wov ¢* 1s OBSOLETE Unclassified

OP£20 == :

Unclassified : .

SECURITY CLASSIFICATION OF THIS PAGE(Whaen Data Enieved)

the queue, A complete analysis of the average time for insertion into
and deletion from a binomial queue is performed. This analysis is based
on the result that the distribution obtained after repeated insertions
and deletions.

An abstract mdtion of priority queue efficiency is defined, based on
comparison counting. A good lower bound on the average and worst case
number of comparisons is derived; several priority queue algorithms are
exhibited which nearly attain the bound. It is shown thet one of these

algorithms, using binomial queues, can be characterized in a simple way
based on the number and type of comparisons that it requires. The proof
of this result involves an interesting problem on trees for which
Huffman's construction gives eo solution,

Unclassified

SRCUNITY CLASRIMICATIONOF THD PAGRIER Dale Bniwed

