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Abstract.,

The binomial queue, a new data structure for implementing priority
queues that can be efficiently merged, was recently discovered by Jean
Vuillemin; we explore the properties of this structure in detail. New
methods of reprecenting binomial queues are given which reduce the storage
overhead of the structure and increase the efficiency of operations on it.
One of these representations allows any element of an unknown priority
queue to be deleted in log time, using only two pointers per element of
the queue. A camplete analysis of the average time for insertion into
and deletion from a binomial queue is performed. This analysis is based
on the result that the distribution of keys in a random binomial queue
is also the stationary distribution obtained after repeated insertions
and deletions.

An abstract notion of priority queue efficiency is defined, based on
comparison counting. A good lower bound on the average and worst case
number of comparisons is derived; several priority queue algorithms are
exhibited which nearly attain the bound. It iz shown that one of these
algoritims, using binomial queues, can be characterized in a simple way
based cn the mmber and type of comparisons that it requires, The proof
of this result involves an interesting problem on trees for which

Huffman's construction gives a solution.
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Chapter One. Priority Queues

A priority gueue is a structure for maintaining a coll:ction of

items, each having an associated key, such that the item with the
smallest key is easily accessible, More precisely, if Q 1is a priority
queue and x is an item conta.ning a key from a linearly-ordered set,

then the following operations are defined:

Insert(x, Q) 28d item x to tha collection of items in Q .
DeleteSmallest(Q) Remove the item containing the smallest key
among all items in Q from Q ; return the

removed item.

These actions are referred to informally as insertion and deletion.

A mergeadble priority queue is a priority queue with the additional

property that two disjoint queues can be combined quickly into a single

queue, That is, the operation

union(T, Q) Remove all items from T and add these items

to Q

is defined vhen T and Q are mergeable priority queues; this operation
is informally referred to as merging T into Q. Any pair of priority
gueues can be merged by using repeated applications of Insert and
DeleteSmallest , but we reserve the qualification "mergeable” for those
‘rior:lty queues which can be merged quictly: merging should mot require
.emininc a positive fraction of ti:» items in the queues.
The new results of this thesis, contained in Chapters 2 and 3, are

concerned with a particular mergeable priority queue, and with priority

queues in general., Chapter 1 is an introduction to the subject of



priority queues, and it should provide background for the later
chapters.

The priority queue was not recogrized as a fundamenta). 2aia structure
until quite recently. Several nontrivial .riority queue organizations
vere developed for different espplicationc befure the uvsefulness of a
priority queue as an abstraction was pointed out by Knuth in 1973 [28].
It follows that a good introduction to this subject requires not only a
study of the data structures and their asscc.ated algorithms, but also
an appreciation of the diverse applications in which priority queues
are useful. We will devote Sectiun ),1 to a survey of th2se gpplications,
and describe the krown priority queue structures in Section 1.2.

Finally, in Section 1.3 we present a summary of the results to be

proved in Chapters 2 and 3.



1.1 Priority Queue Applicationc.

Possibly the earliest application »f priority queues was in the
implementation of simulation programming languages. Such languages are
typically structured around an "event list” which is a record of actions
to be performzd at given instants of simulated time [2;5;15 330;34].

Thus adding a new action to the event list corresponds to an Insert, and
executing the earliest event on the list requires a DeleteSmallest.

An event list generally has extra features which are not part of
the definition of a priority queue. One of these is the FIFO property:
events with equal times must be performed according to a FIFQ discipline,
in which the first event entered into the 1list is the first to be executed.
In same situations it is important to be able to remove an arbitrary
event (not just the earliest) from the list; in other cases, the ability
to locate the event to be executed immediately before or after a given
event may be necessary [4l].

Another early application of priority queues was in sorting and
selection problems. The idea of selection sorting [11;17;28, Sectiom 5.2.3]
is to repeatedly remove the smallest of a ccllection of items and move
this item to an output area; hence we can accomplish a selection sort
by first filling a priority queue using successive Insert operations,
and then emptying the queue by using DeleteSmallest repeated.ly._

Priority queues alsoc play a role in external sorting [28, Sectiom 5.k4.1].
Meny external sorting methods use a technique called replacement selection
to form initial runs (sorted subsequences) and to merge runs together;
replacement selection is based on alternating insertions and deletions

from a priority queue, (Because the queue size does not change during



replacement selection, the full generality of a priority queue is .ot
required. )

A typical selection problem is to find the I 1largest of n numbers,
when n is much larger than k . One solution to this problem begins by
inserting the first k number: ‘nto a priority queue. Then for as lc1g
as there are numbers which have not been inserted, we insert a new number
into the queue and then delete the smallest number from the queue. When
this process terminates, the k Jargest numbers are contained in the queue
[28, exercise 6,1-22]. This selection technique is used in an algorithm
for rendom sampling [27, algorithm 3.4,2R].

An obvious apvlication of priority queues, and one which helps
motivate their name, is in job scheduling according to fixed priorities.
In this situation jobs with priorities attached enter a system, and the
job of highest priority is always the next to be executed, Examples of
this procedure occur in operating systems and in industrial practice,
though in both cases the restriction to fixed priorities may be violated
in order to ensure fair scheduling (that is, to prevent a low-priority
job from being delayed indefinitely).

Priority queues arise naturally in certain numerical iterations.

One scheme for adaptive quadrature maintains a priority queue of
subintervals whose union constitutes the interval of integration; each
subinterval is labeled with the estimated error committed in the numerical
integration over 1it, In'ea.ch step of the iterstion, the subinterval with
the largest error is removed from the gueue and bisected. Then the
numerical integration is performed over these two smaller subintervals,
which are inserted into the queue., The iteration stops when the total

estimated error is reduced below a prescribed tolerance. This global
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strategy is intended to result in subintervals over which the errors are
roughly equal in magnitude [33].

It has been discovered that the use of fast priority queues can improve
the efficiency of some well-known graph algorithms. In Kruskal's algerithm
for computing minimum spanning trees, the procedure of sorting all edges
and then scanning through the sorted list can be replaced by inserting all
edges into a priority queue and then successively deleting the smallest
edge [24]. 1If the priority queue is implemented properly this improves
the algorithm on most graphs. Other ideas, one of vhich involves a good
mergeable priority queue implementation, have led to more improvements
in minimum spanning tree algorithms [3;19]. sSimilar applications have
been found for priority queues in shortest path problems [18;20].

Finally, there is a collection of good algorithms which fall into
none of the categories above but vhich depend on priority queues,

Chartres' prime number generator uces a priority queue in a scheme to
reduce its internal storage requirements {28, exercise 5.2.3:15]. B. L. Fox
has mentioned that priority queues are useful in implementing some discrete
programming algorithms [10], Huffman's optimal code ¢ mstruction operates
on a priority queue in just the opposite mammer from the numerical
iteration discussed above: it repeatedly selects the two smallest

elements from a queue, combines them, and inserts the result back into

the queue [26, pp. kO0-hO5]., (For this problem, there is actua.;l.l.y a
better implementation which uses pre-sorting instead of priority queues.)
The last of these algorithms that we will mention is the Hu-Tucker

ortimal binary search tree construction, whose asymptotic running time

was greatly improved by using a good implementation of mergeable

priority queues [28, pp. k39-hhk],



1.2 Priority Queue Structures.

The most obvious priority queue structure is certainly the linear
list, If we keep a priority queue as a list of elements in arbitrary
order, then an insertion counsists of appending a new item to the front
of the list, and a deletion requir:s searching the entire list to find
the smallest key. (This is a mergeable priority queue since with
linked lists, two queues can be merged in constaat time.) A slightly
more subtle method is to keep the list of elements sorted according to
their keys; then a deletion is performed by removing the first item
from the 1ist, and an insertion requi-es searching down the sorted list
to locate the proper place for the new element.

The sorted linear list was the structure first used to implement event
1ists, so it is not surprising that this structure can perform the extra
operations required for event lists, and that it has the FIFO property.
Both of the linear list schemes are easy to implement and are quite
efficient when the queue size is small, But both schemes have the
drawback that their running time for a single primitive operation grows
linearly with the number of entries in the queue. A deletion from an
unordered list always requires order m steps when there are m items
in the list; an insertion into a sorted list requires O(m) time on the
average, whether the list is maintained in consecutive storage locetions
or in linked form. (Sorted list insertion can be made to run faster if
the input has & known FIFO or LIFO tendency.) So both of these methods
are slow wvhen m is large.

A new priority queue scheme was discovered in 1964 by Arne Jonassen
and Ole-Johan Dahl [21]. It represents a priority queue as a speclal

type of binary tree, shich they call a p-tree. Ay node of a p-tree heving



a null left link must also have a null right link, and the keys in a
p-tree appear in increasing order when the tree is traversed in postorder.
By adding two extra links to each node, it is possible to perform
a deletion fram a p-tree in constant time. Insertion reguires O(m) steps
in the worst case, but the analysis in [21] shows that an average
insertion takes only 0(log m)2 time. (The analysis applies only to
s queue constructed by successive random insertions, but empirical tests
indicate that deletions do not significantly affect the cost cf subsequent
insersions.) The p-tree structure has the FIFO property, and seems very
well suited to event list applications.
In 1964, J. W. J. Williams introduced a data structure called a
heap in connection with his heapsort algorithm [28, pp. 145-1L9]. The
heap structure uses a linkless representation of a complete binary tree,
storing the root in location 1 and the of fspring of the node in location
k in locations 2k and 2k+l . A heap is further characterized by the
requirement that the key contained in any node must be no larger than the
keys of its offspring; a tree with this property is sald to bc heap-ordered.
It is easy to see that in any heap-ordered tree, the smallest key appears
in the root. Deletion from a heap requires O(log m) time on the average,
and insertion takes O(log m) steps in the worst case but only 0(1)
on the average [37]. Robert W. Floyd has demonstrated a bottom-up
method which creates s heap containing m elements in O(m) time [91].
Heaps are not difficult to implement, and they use storage efficlently
since no space is needed for pointers within the structure. Ttems must move
in order to perform insertions and deletions, so if the items are long it is

more efficient to store pointers in the heap, instead of the items themselves.



A potential drawback of heaps is that they require a sufficiently large
block of contiguous storage to be allocated in advance. It is possible
to represent heaps as linked binary trees, with an upward pointer in
each node, but this loses much of the simplicity of the method.

A scrted list becomes a practicel priority queue structure
for large N , given an efficient way of performing insertions into such
a list., The balanced tree structure of Adel'son-Velski; and Landis leads
to such an efficient sorted lict representation, as described in [4;28,
pp. 463-468]., Both insertion and deletion can be performed in O(log m)
steps. The algorithms are unfortunately quite complicated, but they
should be useful in large problems when all of the flexibility that
balanced trees offer is needed, An analogous sorted list representation
is possible with 2-3 trees [1, pp. 155-157].

The leftist tree, a mergeable priority queue structure based on
binary trees, was discovered in 1971 by Clark A. Crane {Li; 28, pp. 150-152].
A leftist tree is heasp-ordered, and satisfies the further condition that
the shortest path from any node to a leaf may always be found by following
right-links. This explains the designation "leftist", since these treas
are generally slanted toward the left,

The basic operation on leftist trees is merging. It is possible to merge
two leftist trees with a totel of m nodes in 0(log m) steps; to maintain
the leftist structure during the merge it is necessary to keep an extra
field in each node which records its minimm distance from a leaf,

Au ingertion 1s accamplished by merging a single node into the tree;
deletion is performed by removing the root and merging its two offspring.
Thus individual insertions and deletions take O(log m) cteps, and
insertions and deletions take constant time in the case that irsertions



obey a stack discipline. The leftist tree operations are not difficult
to program, but since they require more time and space than corresponding
heap operations 1t seems that leftist trees are only candidates for
applications vhere fast merging is required.

Another mergeable priority queue was proposed in 1974 by aho,
Hopcrof't, and Ullman [1, pp. 152-155]. The queue is based on 2-3
trees, a close relative of balanced trees., A 2-3 tree is a tree in
which each non-leaf vertex has 2 or 3 sons, and all leaves appear
on the same level, For the mergeable priority queue, assign items to
the leaves of the 2-3 tree, and assign a label to each internal node
v which gives the value of the smallest key contained in the leaves of
the subtree rooted at v .

With this structure it is possible to perform insertions, deletions,
and merges in O(log n) steps. The algorithms are only described
informally in [ 1], and are rather involved although not difficult to
follow. Although no careful study has been performed, it seems likely
that this priority queue is harder to implement, requires more storage
(vecause no items are stored in the internal nodes), and runs more
slowly than leftist trees. The main reason for interest in this structure
is that it supports a claim that anything is possible with 2-3 <irees.

The binomial queue, a data structure for implementing mergeable priority
queues, was discovered in 1975 by Jean Vuillemin [L42]). The stln;.cture
is a special type of forest, each of whose trees is heap-ordered; this
forest can be represented as a binary tree. Chapter 2 considers this
structure in detail, and concludes that binomial queues are preferable

to leftist trees in most applications of mergeable priority queues. They



are also useful in other priority queue applications, particularly if

the capability of deleting an &:'bitrary item from the queue is necessary.
If we assume that the keys in our queue are a subset of (1,2,...,m},

then some interesting specialized priority queue structures are possible.

A heap-like structure due to LutlLer C. Abel [28, p. 153] represents such

a queue using only 2m-1 bits of memory; it requires 0(log m) steps

for insertion and deletion, regardless of how many items are in the queue.

A tree structure discovered by P, van Emde Boas [L4O] allows insertions and

deletions in 0(log log m) steps, but the crossover point between this

structure and the more straightforward O(log m) methods has not been

determined.



1.3 Summary of the Results.

The previous section presentec a maze of structures for implementing
priority queues; how can we choose among them? It is not always possible
to base such a choice on nicely quantifiable factors, since programming
time and the number of times a program is to be used may weigh heavily
in the consideration. The peculiarities of particular algorithm: may
turn out to be significant advantages or disadvantages in a given
situation: the good performance of leftist trees when insertions
follow a stack discipline may be essential to solve some problem efficiently,
or the sequential allocation required by heaps may be impossible
within a certain programming system, We have attempted to convey a
feeling for these factors in the discussion of the preceding section,

In spite of these difficulties, it turms ocut that in many cases our
choice of structures should be based on quantities such as how fast a given
implementation will run, and how much storage it will use. The storage
requirement is usualiy cbviocus, but the running time, especially
"typical” running time, is generally more difficult to predict. It is
possible to gain some feeling about the running time by executing the
program several times on "random" inputs, but this procedure is unsatisfactory;
it cannot give any significant increase in our understanding of the algorithm
being tested. A method which can give us more insight is to determine the
expected running time nathematically, under some plausible definition of
vhat is meant by "random" inputs to our slgorithm. This approach is
called the analysis of an algorithm [26, Section 1.2.10].

Tdeally, then, the following chapter should contain analyses of all
of the algorithms mentioned in the previous section. But analysis turns



out to be very difficult for complicated priority queue structures.
One reason for this is that the structures tend to degenerate from
their "random" state (the state brought about by consecutive random
insertions) when they are formed by a sequence of insertions and
deletiouns, OSuch deleti n sensitivity tends to complicate the analysis
[23). (An-dyses of p-treec [21] and heaps [28;37] have been performed
for the case of insertions only.)

Chapter 2 considers one priority queue structure, the binomial
queue, in detail. When this structure was introduced by Vuillemin [L2],
it seemed to be of interest primarily due to its intrinsic beauty and
simplicity. We show that the beauty of this structure is much deeper
than was previously appreciated, by proving that a random binomial queue
remains random even when deletions occur. This result allows us to
perform a complete analysis of binomial gqueues.

We also demonstrate in Chapter 2 that the binomial queue is of
greater practical importance than was previously acknowledged. We start
by giving new methods for implementing binomial queues which improve the
spesd and reduce the storage requirements of the structure; one method
allows any element of an unknown priority queue contalning m elements
to be deleted in O(l>g m) time, using only two pointers per element of
the queue. We then compare the running time of a good implementation of
bincmial queues with the time used by other mergeable priority queues, and
see that binomial queues are superior in most applications., This
comparison is aided by our analysis of binomial queues, which allows the
binomial queue implementation to be tuned for the best performance,

There are enough good priority queue structures in existence to

make one wonder how fast any priority queue scheme can run. In general
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it seems impossibly difficult to prove results sbout the minimm number
of instructiona that must be executed, or memory references performed,
in order to accomplish a given task. But interesting optimality results
have been proved about sorting, selection, and other problems within more
restricted models of computation [28, Section 5.3]. This sort of
investigation generally comes under the heading of "computational
complexity".

Chapter 3 is concerned with cptimality results about priority queues,
a subject vhich has never previously been addressed. We define the
efficiency of a priority queue scheme in terms of the number of inter-key
comparisons it requires, and prove good upper and lower bounds on
priority queue efficiency within this model. We also show that a
certain form of the binomial queue algorithm, which is close to being
optimal in our model, can be characterized in a simple way in terms of
the number and type of comparisons it requires.

The Appendix contains implementations of the binomial queue
algoritims in a high-level language. IL also contains some of the

assembly language implementations used to make the performance
camparisons in Chapter 2,



Chapter Two, Implementation and Analysis of

Binomial Queue Algorithms

The principal results of this chapter were summarized briefly in the
previous section. In Section 2.1 we define +he binomial queue structure
jn rather abstre~t terms, and in Section 2.2 we give informal descriptions
of algorithms operating on this structure. No references to binomial
queue implementations are made in these two sections; to a large degree,
the conceptual simplicity of binomial queues depends on our ability to
think of them in this abstract manner.

Section 2.3 presents several structures which can be used to implement
binomial queues. While the original structure proposed for this purpose
was a binary tree, none of our new structures are; several advantages are
gained from abandoning the standard representation.

In Section 2.4 we define the notion of a random binomial queue, and
prove that randomess is preserved in a wide variety of situations. Our
analysis of binomial queue algorithms, based on these insensitivity
results, is contained in Section 2.5; the end of that section contains a
comparison of mergesble priority queue methods.

In vhat follows we use the terminology for trees given in {26];
in particular, the offspring of any node in a tree are ordered, while

in an oriented tree they are unordered,
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2.1 Binomial Trees, Forests and Queues,

For each k > O we define a class By of ordered trees as follows:

-~ Any tree consisting of a single node is a B, tree, (1)

-~ Suppose that Y and Z are disjoint B, , trees for (2
k>1. Then the tree obtained by adding an edge to make the
root of Y become the leftmost offspring of the root of 2

is a Bk tree,

A binomial tree is a tree which is in class B, for some k ; the

integer k is called the index of such a binomial tree., Binamial trees
have appeared several times in the computer literature: they arise
implicitly in backtrack algorithms for generating combinations [32];
Bo through B trees are shown explicitly in an algorithm for prime
jmplicant determination [36]; a By tree is given as the frontispiece
for [26]; and oriented binomial trees, called 5 trees, were used by
Fischer in an analysis of set uniow algorithms [83.

It should be clear from the definitiom above that all binomial trees
having a glven index are isomorphic in the sense that they have the same
shape. Figure 1 on page 19 illustrates rule (2) for building binomial
trees, snd Figure 2 displays the first few cases.

An altermative constructiom rule, equivalent to (2), is often

useful:

== Suppose that 21:-1""’20 are disjoint trees such that zl )
isa B, tree for 0 <2 <k-1. Let R be a ncde wvhich is
disjoint from each z, . ‘Then the tree obtained by taking R
as the root end making the roots of 2, jsecerZg the offepring
of R, left to right in this order, is a Bk tree,

15



Figure 3 illustrates rule (3) for building binomial trees. The
equivalence of (2) and (3) follows by indvction vn k.
For future reference we record sume properties of binamial trees,

including the vroperty which originally motivated their name:

Lemmas 1. ILet Z be s B tree., Then
(1) Z has X nodes;

(11) 2z has (l;) nodes on level I .
Froof, Trivial induction cn k. O

For each m > O we define a binomial forest of size m to be an

ordered forest of binomial trees with the properties:

- Tre forest contains m nodes, (h)

-- If a B, tree Y is to the left of a B, tree Z in the (5)
forest, then k > f . (That is, the indices of trees in the

forest are strictly decreasing fram left to right.)

Since by (5) the indices of all trees in the forest are distinct,
the structure of a binomial forest of size m can be encoded in a bit
string b,b, ;... Dy such that bJ 4{s the number (zero or ome) of B;]

trees in the forest. By Lemma 1, the number of nodes in the forest is

z ‘n:j-a"l
120

This shows that a binomial forest of size m exists for easch m >0,

; hence b Db

PATRRIL bo is just the binary representation of =m .

and that all binomial forests of a given size are iscmorphic. Figure 4

shows some small binamial forests.



Lesma 2. Let F be a binomial forest of size m > 0. Then
(1) The largest tree in F is a Bng m tree;
(i1) There are v(m) = (# of 1's in binary representation of m)
trees in F ; this is at most | lg(m+l)) ‘trees;

(111) There are m-y(m) edges in F .
mf. C’OViQuS. D

Consider a binomisi forest of size m such that each node has an
associated key, where a linear order < 1is defined on the set of possible

key values, This forest is a binomial queue of size m if each binomial

tree of the forest is heap-ordered: no offspring has a smaller key than
its parent. This implies that no node in a tree has a smaller key than
the root. Figure 5 gives an example of a binomial queue.

To avoid dwelling on details at this point, we shall defer discussion
representations for binomial queues until later sections, The timing
bounds we give here and in the next section can only be fully justified
by reference to a specific representation, but the bounds should be
plausible as they stand.

The following propositions relating to binom’al queues are essential:

Lama 3. Two hesp-ordered Bk trees can be merged into a single

hesp-ordered By, tree in constant time,

Proof. We use construction rule (2). The merge is accomplished by
first comparing the keys of the two roots, then adding an edge to make
the larger root become the leftmost son of the smaller. (Ties can be

broken in an arbitrary way.) This process requires making a single

17
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camparison and adding a single edge to a tree; for an appropriate tree

representation thls requires constant time.

Lemma 4, Let T be a heap-ordered B, tree, Then the forest
consisting of subtrees of T whose roots are the cifspring of the root

of T is a binomial queue of size 2k-l .

Proof. This follows immediately from construction rule (3) and the

fact that subtrees of a heap-ordered tree are heap-ordered,



i

Figure 1. Construction of a binomial tree.

|
32 rM

B
By

By,

Figure 2. Seall binomial trees.
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Figure 3. Alternative construction of a
binomial tree.

size 1 size 2 size 3 size 4 size 5

Figure 4. Small binomial forests.

Figure 5. A binmmial queue of size 5
(with integer keys).



2,2 Binamial Queue Algorithms,

In order to implement a mergeable priority queue using binomial
queues, we must give binomial queue algorithms for the operations
Insert , DeleteSmallest and Union which were introduced in Chapter 1,
In the following informal description of the algoritims we let ||Q||
denote the number of elements in a queue Q .

Consider first the operation Union(T,Q) , which merges the elements
of T into Q. If |IT|| =t and ||Q|| = q , then the process of merging
the binomial queues for T and Q is analogous to the process of adding
t and q in binary. We successively "add" pairs of heap-ordered By
trees, as described in Lemma 3, for increasing values of k . In the
initial step there are at most two Bo trees present, one from each queue.
If two are present, merge (add) them to produce a single Bl tree, the
carry. In the general step, there are at most three By trees present:
one from each queue and a carry. If two or more are present we add two
of them and carry the result, a Bk+1 tree, Each step of this procedure
requires constant time, and by Lemma 2 there are at most
max(| 1g( t+1) j , | 1g(qtl) ) steps. Hence the entire operation requires
O(max(Log|iT|| » 20g|iQ]])) time. PFigure 6 gives an example of Union with
binomial queues,

Given the ability to perform Union , the operation Insert(x,Q) ,
which adds item x to queue Q, is trivial to specify: Just let X
be the binumial queue containing only the item x , and perform Union(X,Q) .
By this method, the time required for an insertion into Q is 0(log ||q]]) .

The operatior. Deletefmallest(Q) 1s a bit more complicated. The
first step is to locate the node x containing the smallest key. Since



x 1s the root of ocne of the queue's Bk trees, it can be found
by examining eacl' of these roots once. By lLemma 2 this requires
0(log ||Q||) time.

The second step of a deletion begins by removing the heap~ordered
B, tree T containing x from the binomial queue representing q .

Then T 1s partially dismantled by deleting all edges leaving the coot x ;
this results in a binomial queue T' of size 2%-1, as suggested by

Lemma 4, plus the node x which will be returned as the value of
DeleteSmallest .

The final step consists of merging the two queues formed in the
gecand step: the gqueue T' formed from T , and the queue Q' formed
by removing T from Q . Since each queue is smaller than ||@| , the
operation Union(T',Q') requires O(log ||Q)]} time; therefore the entire
deletion requires O(log ||Ql|) time. Figure 7 gives an example of
DeleteSmallest with binamial queues.

In some situations it is useful to be able to delete an arbitrary
element of a priority queue, not jJust the smallest. It is possible to
accomplish this with binomial queues by generalizing the tree-dismantling
step of Deletedmallest , Suppose x is the node ‘o be deleted,
where x 1s contained in the Bk tree T . Referring back to Figure 1,
ve can decompose T into two B, ; trees Y and Z, Now x liee in
either Y or Z, snd it lles in Y 1if and omly if the root of Y is
on the path fram x to the root of T . S50 we remove the edge joining Y
and Z , save the tree which does not contain x , and repeat the process
on the tree containing x until x stands alone as a Bo tree. When
the process terminates, k subtrees have been saved, and they comstitute a



binmmial queue of size ok . (Note that when x 1s the root of T,
this procedure just deletes all edges leaving x .) The deletion is
completed with a final Uhlon , as before; the same time estimates also
apply as long as we can delete each edge in constant time during the
tree-dismantling step.

Tt is interesting to note that the time bound given for the Insert
operation can be substantially improved if we study the effect of

several consecutive instructions. Consider the sequence of instructions

Insert(:&,q); Inaert(xg,Q); ven} Insert(xk,Q) .

The time for each insertion is just 0(1) + O(number of edges created
by the insertion) . If ||Q]| = m initially, the number of edges created
by this sequence of instructions is (mtk-v(mtk))- (m-v(m)) =

k+y(m) - v(mk) Dby Lemma 2. Hence the time for k insertions into a
queue ic  O(k)+ 0(k+ v(m) - v(m*k)) = O(k+log m) if the queue has
size m initially.

As mentioned in Section 1.2, leftist trees and 2-3 trees can be
used to implement mergeable priority queues, The time bounds for Insert ,
Deletesmallest and Union using these structures have the same order of
magnitude as those glven above for binamial queues. But for both of these
structures, insertioms must be handled in a special way in order to achieve
the O(k+1log m) time bound for a sequence of Insert Iinstructions, The
naive spproach, that of inserting elements individually into the leftist
or 2-3 tree, can cost about log(ktm) per insertion fcr a total cost of
o(k log(ktm)) . The faster approach is to buffer the insertions by

maintaining the newly inserted elements as a forest of trees with graduated



sizes, such as powers of two. Then insertions cau be handled by
balanc:d merges, Just as with binomial queues. Individual merge-
require more than constant time, but the time for k insertions

comes to O(k+log m) .
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Figure 6. Binomial queue Union operation.
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rigure 7. Deletedmallest on a binomial queue.



2.3 sStructures for Rinomial Queues.

In implementing binomial queues our objectives are to make the
operations described in the previous section as efficient as possible
while requiring a winimum of storage for each node. As usual, the most
appropris*e structure may depend on which operations are to be performed
most frequently.

Since a binomial queue is a forest, it is natural ‘o represent it
as & binary tree [26]., But not all orientations of the binary tree links
allow binomial gueue operations to be performed efficilently. Evidently
the individual trees of the binorial forest must be linked together
from smaller to larger, in order to allow "carries" to propagate during
the Union operation. But in oraer to allow two heap-ordered binomial
trees to be merged in constant time, it seems necessary that the root
of a binomial tree contain a pointer to its leftmost child; hence the
subtrees must be linked from larger to smaller. This structure for
binomial qieues was suggested by Vuillemin [42]; we shall call it
structure V . An example of a binomial queue and its representation
using structure V is given in Figure 8(a).

The time bounds given in the preceding section for Insert ,
DeleteSmallest , and Union can be met using structure V , provided
that the queue size is available during these operations. The queue size
is necegsary in order to determine efficiently the sizes of the trees in
the queue as they are being processed. (The alternative is to store in
each node the size of the tree of which it is the root; this will generally
be less useful than keeping the queue size available, and it will use more

storage.) 1n what follows we shall assume that the queue size is available



as part of the gueue header; the other component of the queue header

will be a pointer to the structure representing the queue.

One drawback of structure V for binomial queues is that the
direction of the top-level links is special. This means that in this
representation, the subforest consisting of trees whose roots are offspring
of the root of a binomial tree is not represented as a binomial queue
(as would be suggested by Lemma L4); the top level links are backwards.
Structure R , the ring structure shown in Figure 8(b), eliminates this
problem, In this structure smaller trees are always linked to larger
ones, except that the largest tree points to the smallest. Downward
links point to the largest subtrees, as before. It appears that
structure R is slightly inferior to structure V for insertions, but
is enough better for deletions to make it preferable for most priority
queue applications. Structure V has same advantages for implementing
the fast minimum spanning tree algorithm [ 4}, since the ordering of
subtrees helps to limit stack growth in that algorithm, (The stack can
be stored in a linked fashion using the deleted nodes, thereby removing
this objection to structure R .)

Reither of the struciures described so far allows an arbitrary node
to be deleted from a binomial queue, given only a pointer to the node.
It is evident that in order for this to be possidle, the structure must
contain upward pointers of some sort which allow the path from any node
to the root of the tree containing it to be found quickly. It must also
be possible to find the queue header, since it will change during a

deletion.



Simply adding a pointer from each node to its parent node (to the
queue header in case of a root) in structure V results in a structure
which allows arbitrary deletions to be performed., An example is given
in Figure 9(a). Starting from any node in this structure, it is possible
to follow the upward links and trace the path to the root of the binomial
tree containing the node. The upward link from the root leads to the
queue header, wtich we assume is distinguishable in some way from a queue
node. Once the path to the root is known, the top-down deletion
procedure described in the preceding section can be applied.

Wnile the top-down deletion process ir easy to describe, a more
efficient bottom-up procedure would be used in practice. It is also
essential to understand the bottom-up procedure in order to comprehend
now alternative structures can be used, In the initial step of the
bottam-up procedure we save all of the trees whose roots are offspring
of the node to be deleted, and call this node the path node., 1In the
general step the path node was originally the root of a Bk tree within

the binomial tree being dismantled; i{ts parent was the root of a B, tree,

]
and we have saved Bk-l""’BO trees so far. We first save the Bk tree
formed by the right siblings of the path node, taking the path node's
parent as a root. Then we save the Bk+l""’Bt-1 trees which are left
siblings of the path node, and make the parent of the path node the new
path node, When the path node becomes the root, the process terminates.
The forest of trees saved by this process is the same as that created by
the top-down process, and the remaining steps of the two algoritims are

identical.
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Figure 9(b) shows a modification of structure R which allows
arbitrary deletions to be performed., This structure keeps an upward
pointer only in the leftmost node among a group of siblings, and this
pointer indicates the right sibling of the parent of nodes or this level,
Note that the rightmost sibling in any family has no olfepring, so the
parent's right sibling always exists when needed. It is not too hard to
convince oneself that the bottom-up deletion procedure just described
can be performed on this structure,

Figure 9(c) shows a method of encoding the previous structure which
uses only two pointers per node. The regularity of the binomial tree
structure allows us to recover the information about which "child" pointers
actunlly point upward, as follows: the rightmost node in any of the
horizontal rings has no offspring (except perhaps on the top level of the
forest), co its "child" pointer goes upward. If a node is an only child,
or is the right sibling of a node having an only child, then it is oae of
these rightmost nodes. A node is an only child if and only if it is its
own left sibling, so it is possible to test efficiently whether or not a
"child" pointer goes upward. The upward pointer convention in Figure 9(c)
is slightly irregular at the top levels; here the decoding depends on our
ability to distinguish the gueue header from other nodes.

Structure K, another structure which allows arbitrary deletions
using anly two pointers per node, is shown in Figure 9(d). This structure
cntains some null links, and seems to require less pointer updating per
operation than the structure in Figure 9(c). Note that a path from an
arbitrary node to the queue header can be found by always following "left"
links, some of which go upwards. To move to the right on a given level
we Just follow the child pointer and then the "left" pointer,
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(a) A binomial queue and its representation using structure V .

(b) A representation for the same gqueue using structure R .

Figure 8. Structures for binamial gqueues.
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2.4 Random Binmmial Queues.

We define a random binamial queue of size m to be the queue formed

by choosing a random permutation of {1,2,...,m} and inserting the
Permutation's elements successively into an initially empty binomial
queue. (By a random permutation we mean a permutation drawn from the
space in which all m! permutations are equally likely.) Equivalently,
a random binomial gieue of size m is formed fram a random binomial
queue of size m-1 by choosing a random element x from
{%, 1%, ceey m-%}, ingerting x into the queue, and renumbering the
queue such that the keys come fram {1,2, essym} and the ordering among
nodes is preserved.

This definition of a random queue is simple, yet is not artificial.
The second statement of the definition, which says that the m-th random
insertion falls with equal probability into each of the m interve;ls
defined by keys in the queue, is equivalent to another definition of
random insertion which arises from event list applications. In these
situations, a random insertion is obtained as follows: generate an
independent random number X from the negative exponential distribution,
in which the probability that X < x ir 1-¢"F, Then insert the mumher
Xtt , where t is the key most recently removed from the queue (0 1if
no deletions have taken place). Here . +s interpreted as the current
instant of simulated time, and X is a random "wvaiting time" to the
occurrence of some event., The fact that this definition of a random
insertion is equivalent to the one we have adopted was proved by Jonassen
and Dahl [22]; it follows without difficulty from the well-kmown

"nemoryless” property of the exponential distributiom.
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Our goel in this section is to study the structure of random binomial
queues. The gross structure of such a queue is already evident; we
obcerved earlier that all binomial forests of a given size are isomorphic.
But more information about the distribution of keys in the forest is
necessary to fully analyze the performance of binomial queue algorithms,

For example, in order to analyze the behavior of DeleteSmallest it

is necessary to determine the probability of finding the smallest element
in the various trees of the binomial queue. It is also important tc
determine whether or not a random queue stays random after a DeleteSmallest
has been performed, since if this is true then the analysis of random queues
may apply even in sitnations where both insertions and deletions are used
to buiid the queue.

Our first observation is that the insertion algorithm shows e certain

indifference to the sizes of the elements inserted.

Lema 5. ILet pwm PyPpeee Py be a permutation of {1,2,...,m} . Then
in the binomial gqueue obtained by inserting PysPos e+ e3Py successively
into an initially empty queue, the tree containing p:J is determined by

J for J =1,2,¢0e)m &

Proof. We proceed by induction on m . The result is ocbvious for
m=l. For m>1, let l--2l-18m-j be the largest power of two
less than or equal to m . After the first ¢ elements of p have
been inserted, the queue consists of a single BL]-G m tree. Iater
insertions have no effect on this tree, since it can only be merged with
another tree of equal size. Hence the first ¢ elements of p must
fall into the leftmost tree of the queue. Furthermore, since the
leftmost tree is not touched, the remaining m-# insertions distribute
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the last elements of p into smaller trees as if the insertions were

into an empty queue. "his proves the result by induction. (O

A quicker but les: suggestive proof of Lemma 5 simply notes that
comparisons between keys in the insertion algorithm only affect the
relative placement of subtrees in the tree being constructed. Such
comparisons never determine which tree is to receive a given node.

What the given proof of Lemma 5 says is that the input permutation
P can be partitioned into blocks whose sizes are distinct powers of two,
such that the 2k elements of block bk form a By tree when all m
insertions are complete, The sizes of these blocks decrease from left
to right, just as tne sizes of trees in the forest decrease. (Ancther
priority queue structure with this sort of indifferent behavior is an
unsorted linear list; with the linear list, the blocks are all of size
one. )

The deletion algorithm exhibits u similar dependence on when the
deleted item was inserted, and a similar indifference to key sizes. What
the following lemma states is that if we delete an element from a binomial
queue, then the resulting queue iz the same as we oLtain by never inserting
the element at all, but permuting the elements that we do insert in a

mamner wvhich depends only on when the deleted element was inserted.

lemma 6. Let pw Py Py-ee By be a permutation of {1,2,...,m}.

Then there is a mapping r = rym from {1,2,...,m1}) omto
[1,2,...,3-1,.1-&1,...,1] such that the result of inserting Py Ppeee Py
into an initially empty binomial queue and then deleting p 3 is identical
to the result of ingerting pr(l) pr(a) voe pr(-_l) into an initially
exply binomial queue,

by



Froof. We basically mimic the procedure for deleting pJ and then read
the mapping from the result. The exact mapping depends on arbitrary
choices made during the merging process and would be tedious to exhibit
for general J and m, so we will give an example of the construction
for m=10, J=3 ., First the input is divided into blocks as

described usbove.
[00000000][][00][] .

Then the block centaining j , which holds all elements of the binomial
tree 1 contalning Jj in the queue, is further divided to exhibit the

subtrees produced when T is dismantled.

[(00)e(0)(0000)I{][o0](] .

This division clearly depends only on m and J .

Following the dimmantling step is a merging step. One possible
strategy for this merge is as follows. If the dismantled binamial tree
T was the smallest tres in the original queue, then no merging is
required. Otherwise combine the smallest tree in the original queue with
the forest just obtained by dismantling T . This produces a new tree
vhich has the same size as T had, plus a forest of small trees; the
merge is then complete. The same effect would be created (in the case

we are considering) by reinserting all nodes in the order
(0000)(00)[00](0) .

To see this, just simulate the insertion process on this input. The
intermediate trees created during this process correspond to trees involved
in the merge. (Note that tne r map is far from being uniquely
determined.) [
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Here again we can draw an analogy with the unsorted linear list,
which obviously has the behavior stated in the lemma.
Armed with this result, we can determine the effects of various

types of deletions on random binomial queues.

Theorem 1. Let Q be a random binomial queue of size m ., Suppose
that Py > the k-th element inserted in the process of building Q,
i3 deletel from Q and Q is renumbered. Then the resulting Q is

a random binomial queue of size m-1 .

Proof. Consider the m! equally-likely permutations used to buiid Q.
When the k-th element of each permutation is discarded and the permutation
renumbered, each of the (m-1)! possible permutations occurs m times.
The same is true if some fixed rearrangement of the permutation is made
just before the renumbering. Hence by Lemma 6 the m! queues obtalned
by inserting all poseible permutations of length m and then deleting
the k-th element (and renumbering) are just m copies of the (m-1)!

queues obtained by inserting all permutations of length m=1 . 0O

Theorem 2. Let Q be a random binomial queue of size m . Suppose
that k , the k-th smallest element inserted in the process of building Q,
is deleted fram Q and Q is renumbered. Then the result.ng Q is a

random binomial queue of slze m-1 .,

Proof. Consider the m! equally-likely permutations used tobuild Q.
For fixed J , there are (m-1)! of these permatations with py = Kk ;
if we ignore Py and renumber, we get all (m-1)! possible permutations

of {1,2).¢.ym-1} . The same is true if same fixed rearrangement of the
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permutation is made before renumbering. Hence by Lemma 6 the (m-1)!
queues obtained by inserting all permutations of length m with p 3" k
and then deleting k (and renumbering) are just the (m-1)! queues
obtained by inserting all permutations of length m-1l . This is true

for each Jj , so the result follows.

Corollsry 1. If a random element (or randomly placed element) of the
input is deleted from a random binamial queue of size m , the result

is a random binomial queue of size m-1 .

Proof. The two statements are obviously equivaient; they follow

immediately from Theorem 1 or Theorem 2. [

These results are sufficient to show that binomial gueues stay random
in many situations. The most important of these is when a queue is formed
by a sequence of n random Insert operations intemmixed with m <n
occurrences of DeleteSmallest , arranged so that a deletion is never
attempted when the queue is empty. Theorem 2 shows that a DeleteSmallest
rnpplied to a random queue leaves a random queue; a random Insert also
preserves randomness. So under the most reasonable assumptions for
priority queues, binomial queues can be treated as random. This is our
rationale for assuming random binomial queues in the analysis of the
next section.

A similar argument shows that random binomial queues result when
intermixed random deletions are performed; a simple argument appealing
to Lesma 6 shows that intermixed deletions by age (how long an element
has been in the queue) also lead to random queues, These types of
deletions, especially deletions by age, are somevhat artificial for priority
queues.



It is natural to ask whether randomness is preserved by the merging
of binamial queues. Suppose that a random permutation of length m 1is
glven; its first k elements are inserted into one initially empty
binomial queue, and the remaining m-k elements are inserted into
another. Then each of these gueues is a random binomial queue, and the
argument used to prove Lemma 6 shows that the result of merging these
queues is also random as long as some fixed choice is made about which
two trees to "add" when three are present during the merge. So in this
sense merging does preserve raadomness.

Sensitivity to deletions has been studied in the context of binary
search trees by Knott [25). The model used there considers a random
insertion 1 . be the insertion of a random real number drawn independently
from some continuoue distribution (for example, uniform on the interval
[0,1) .) This definition is not equivalent to ours; Theorem 1 and
Corollary 1 hold for deletions from binary search trees, but this does
not imply that a tree bullt using intermixed random deletions is random.
In fact, as Xhott first noted, binary search trees are sensitive to
deletions in this model.

Binomial queues, however, are not sensitive to deletions in the
search tree model, In a general study of deletion insensitivity, Knuth
showed that Theorem 2 implies.insensitivity to random deletions, and
Lesma 6 implies insensitivity to delstioms by age in this model [29].
Binomial queues are sensitive to deletions by order (e.g., DeleteSmallest)
in this model, but unsorted linear lists, as well as practically all other
algorithms, are also sensitive to these deletions. So even with this
altermative definition of a rendom insertion, random bincmial queues

tend to remain random when deletions are present.
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At this point it might seem that nothing can destroy a random

binomial queue! This is not true; a de” tion based on knowledge of the

structure of the queue (or equivalently, knowledge of the entire input)

can easlily introduce bias. For example, random queues of size L are

distributed as shown:

Pr=1/3 pr=1/3 Pr=1/3

If we now delete the rightmost child of the root and renumber, we get:

g@

This isn't random; random binomial queues of size 3 have the distribution

A S
pr = 1/3 pr=1/3 pr=1/3

Since the smalysis of binomial queue algorithms performed in the next
section is based on random binomial queues, we are interested in the

distribution of keys in these queues. By Lemma 5, the probability that

k2



a given element (e.g. the smallest) of a random permutation lies in a
given binamial tree iz simply the probability that the element lies in
a certain block of positions within the permutstion. Thus the p sbability
that the j-th largest element in a binomial queue of size m 1lies in a
By tree is just 2k/m » assuming that a Bk tree is present in a queue
of size m . This decomposition of the input into blocks reduces the
study of random binomial queues to the study of random heap-ordered
binomial trees (i.e., random binomial queues of size ok )e

As we observed earlier, the smallest key in a heap-ordered binomial
tree must be in the root. The distritution of larger keys is not so
highly constrained. The following result characterizes the distribution

of keys without explicit reference to the n! possible input permutaticns.

Theorem 5. Let a configuration of a heap-ordered B, tree be any
assigmment of the integers l,'(.’,...,"(zk to the nodes of a Bk tree such

that the tree is heap-ordered., Then in a random heap-ordered Bk tree

k
all -(?—L configurations are equally likely. (That is, there are
(25)-1
2

k
2(2 )-1 distinct input permutations which generate each possible

configuration,)

Proof. We proceed by induction on k . The result is obvious for k= O .,

Assume that for k = § there are 221 permatations of {1,2,...,29]
which give size to each possible canfiguration.

Now consider any fixed configuration X of a Bjﬂ tree. This tree
can be decomposed into the two BJ trees Y and Z, as showm in

Figure 1. By the argument of Lemma 5, any permutation giving rise to
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configuration X must consist of two blocks, one producing Y and the
other Z ; these blocl.s may appear in either order, since the relative
position of Y and Z is determined by which tree contains the smallest

Jy-
key. By the induction hypothesis there are 2(2 )-1

arrangements of
the keys in tree Y which give rise to Y, and similarly for Z . ©So

@)1 N1 _ ¥hHa

there are 2.2 2 permutations which produce X .

Since this holds for any X , the result follows. U

In the inductive step above, we can note that the element 1 is
equally likely to be contained in the first or the second block of a
permuiation producing X . This leads to an easy inductive proof of the
proposition that the i-th inserted element 1s equally likely to fall into
each of the 21‘ nodes of a random heap-ordered Bk tree.

Unfortunately, Theorem 3 does not help much in determining the exact
distribution of keys in a random binomial tree., There are fewer
configurations than Jermutations, but the number of configurations still

increases rapldly with k .
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2.5 Analysis of Binomial Queue Algorithms,

We are now prepared to analyze the performance of Insert and
DeleteSunllest , when implemented using binomial queues; this will
allow a comparison with other priority queue organizations. The binomial
queue implementation to be analyzed is based on structure R , discussed
in Section 2.3 and pictured on page 32. The priority queue structures
to be used for comparison are the heap, leftist tree, sorted linear
1list, and unsorted linear list.

For each of the five structures, the operations Insert and
Deleteimallest have been carefully coded in FAIL, a FDP-10 assembly
languege (the binomial queue and leftist tree implementations appear in
Appendix A.) By inspecting these programs, we can write expressions for
their running time as a function of how often certain statements are
executed. It then remains to determine the average values of these factors.

The running times (in memory references for instructions and data)

of the binomial queue operations are

Insert = 16 + 19M + 2E + 6A

DeleteSmallest -- 38 + 11B+ 6T + 4N - 2L + 45 + 1hy + 2X

M 13 the mumber of merges required for the insertion;

E is the mmber of exchanges performed during these merges in order
to preserve the heap-order property;

A is 1 if M= 0, and O otherwise;

B 4s 1 if the queue cantains no By tree, and O otherwise;

T 1is the number of binomial trees in the gqueue;
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N is the number of times that the value o! the smallest key seen so
far is changed during the search for the root containing the smallest
key;

L is 1 if the smallest key is contained in the leftmost ruot, and O
otherwise;

S is the number of offspring of the root containing the smallest key;

U is the number of merges required for the deletion; and

X is the number of exchanges performed during these merges.

(To keep the expression for DeleteSmallest simple, certain unlikely paths
through the program have been ignored. The expression above always
overest.mates the time required for these cases.)

As a first step in the analysis we note that several of the factors
above depend only on the structure of the binomial queue Q and not on the
distribution of keys in Q . Since the structure of Q is determined
solely by its size, these factors are easy to determine. For example, 1if
Q has size m then evidently M 1is the number of low-order 1 bits in
the binary representation of m, and A= 1 1if and only if m is even.
Clearly B = A , and by Lemma 2 we can see that T = v(m) .

These factors are a bit unusual in that they do not vary smoothly
with m . For example, when m = 2n-l wve have M=T = n , vhile for
1:1-2n this changes to M= 0 and Te 1 . Since in practice we are
generally concerned not with a specific queue gsize m bdut rather with a
range of queue sizes in the neighborhood of m , it makes sense to average
the performance of our algorithms over such a neighborhood.

Factors A and M can be successfully smoothed by this approach;

averaging over the interval [m/2, 2m] gives an expected value of



2
with our intuition, since it says that about half of the integers in

l+ o(%) for A and 1+ O(}gﬁ—m) for M, This agrees well

the interval are even, and that one carry is produced, on the average,
by incrementing a number in the interval.
Properties of the factor T = y(m) have been studied extensively.

From [35] we find that

[Bs(in)] =, g0 s [een)

where each bound is tight for infinitely many m ; it follows that our
neighborhood averaging process will not campletely smooth the sequence
v(m) . But we have bounds on an "integrated" version of v(m) , so
differentiating the bounds puts limits on the average growth rate of

v(m) . Carrying out the differemtiation gives

P(wnr - 68) < T, < 3(%2057)

vhich is about what we expect: half of the bits are 1 , on the average.
The remaining uncertainty in the constant term is about .21 .

While this averaging technique faile to smooth the sequence v(m)
completely, there are other methods which succeed, There is no single
"correct” method for handling problems of this type: different techniques
nay give different enswers, and the usefulness of a result depends on how
"natural® the smoothing method is in a given context. The more powerful
averaging techniques which succeed in smoothing w(m) seem artificial
in connection with our analysis, but the results are quite interesting
mathematically, Iyle Ramshaw [39] has shown that
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v(m) & -1-52—“‘+(52-5-,1;) : BE . 057575

using logarithmic averaging {'7); his recult is baced on the detalled

analysis of' bD v(k) perisimed by Hubert Delange [€]. The
1<k <m

naturalress o. logarithmic averagiig is indicated by the fact that

it also ieads to the logarithmic distribution of leading digits which
has been obsarved empirically [38;27, Section 4.2,4], and the fact
that it is consistent with several other averaging methods (such as
repeated Cesarc suming) when those methods define an average.

This analysis of tractor T completes the purely "structural"
anaelysis; the remaining factors depend an the distributlon of keys in
the queue. For the average-case analysis we shall assume that Q 1is
a random binomial queue of size m and that the insertion is rendom.
These assumptions are well justified by the discussion of Section 2.4,

The factors E and X are easy to d.:l.spose of. Since we only merge
trees of equal size, our randomness assumption says that an exchange is
required on half of the merges (om the average). More precisely, if
there are n merges then the number of exchanges is binomially distributed
with mean n/2 and variance n/4 . The nurber of merges is just M 1in
the case of E, and U 1in the case o.® X .

The factors L and S are also easy to analyze, We noted in
Section 2,4 that the probability of having the queue's smallest key in
a given iree is just proportional to the size of the tree, Therefore if
there is a binomial tree of size 2k in a queue of size m , this tree
contains the queue's 1 est key vith probability Ek/m o The root of

such a binomial tree k offspring by Lemma 1, so the sxpected value
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of 3 is %F(n) vhere

F(n) = T b k2™ .
k>0

Ns (btb’_l- L] .bo)a

While it seems hard to find a simpler closed form for F(m) , it is

possible to derive good wpper and lower bounds.

Lemma 8. The function F(m) defined above satisfies

(mlgm-2m1 < Fm) < |mlgm| , m>1, and the upper bound is

tight for infinitely many values of m .

Proof. (This argument is similar to the one used to prove Theorem 1

in [25].) From the definition of F(m), if m = 2° then
m) = P(25) = k2F = mlgm .

It is al3o clear from the definition that
re"1) -« P +P1) , o<1<2® .

The upper bound on F(m) is evidently attained whenever m iz a
power of two. It therefore holds vhen m = 1, and assuming that it
holds up to a = 2", we have

P(uei) = P(2%) + P(1) (0 <1 <2¥

<mlgn+4ilgi

A

(m+i) lg(mti) .

8o the upper bound holds for all m by induction.
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The lower bound on F(m) holds when m e 1 , and whenever m is

a power of two. Suppose that a bound of the form

F(m) >mlgm-cm
is true for some c > 0 and all mgzk . Then

k k
Fimi) = F(2°) + F(1) (0<cic<2y)
>mlgm+ilgi-ci .

It follows that if the inequality

mlgm+ 11g'i - ci > (i) lg(mti) - c(m+i) (051<2k)

holds, the lower bound will hold for ell m by induction. Replacing i

by xm and simplifying gives another inequality which implies the result:

x 1g x > (l#x) 1g(l+x) - ¢ (0<x<1) .
But it is easy to verify that x 1g x - (1+x) 13(l+x) is decreasing
on [0,1] , so we can take x = 1 to determine c= 2 . (A tight lower

bound can be found by using the value F(2k-1) = (k-2)2k+2 .) Q

According to these bounds, the aversge value of 5 lies between
lgm-2 and lgm . Lyle Ramshaw [39] has shown that the logarithmically

averaged value of 8 is

E(E). &« lgm -C

vhere

50



The expected value of L is olle ®l/m , which is between 1/2
and 1.

Factor U is closely related to S , The pumber of merges required
is equal to the mmber of trees (i.e., S ) created by removing the node
containing the smallest key, minus the number of these trees which are
not merged. Since the first merge must take place with the smallest
tree remining in the original forest, we see that the number of trees
e:scluded from merging is equal to the number of low-order O bits in m.
Since the least significant bits of m are distributed almost umiformly,
the average value of this quantity S-U is the same as the average value
of M.

Factor N is more interesting. One way to search for the smallest
root in the forest is to use the key cantained in the rightmost root as
an initial estimate for the smallest key, and then scen the forest from
right to left, updating the estimate as smaller keys are seen, Since the
trees increase in size from right to left, trees in the left of the forest
are more likely to contain the smallest key; thus the cstimate of smallest
key wiil be changed often during the scan. To be more precise, the
expected number of changes while searching a forest of size

A= (bn bn-l “ee b°)2 is
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A Pr(estimate changes when the B trec is exemined)
k-

(&

(number of nodes in the By tree)
B o<k<n (total number of nodes in all B, trees examined, 0 < ¢ < k)
bkzl
2k
= 5 : .
o<k<n z 2
bkl:l O;ISK
=1

when m = 2"l this has the simple form

?.4-}.4-_8_4» +2n-1
57 1LY oy
l1.,1.,1 1 1.1 1 1
= (-2+—2+—2+,..+—2)+—2(-3+—7+3-+...+-——2n-l

+

1 -
- % 5 (@-1) + o(2 7y

1
vhere Q= &, ~— = 1.60009 ... .
k_>_l 2 -1

(The constant « also arlses in connection with Heapsort; see {28, 5.2.3(19)].)
A search strategy which intuitively seems superior to the one just

described is to search the forest from left to right; for the above example

the expected number of changes is reduced to

31'+%+%+“’+2n1_1 = a-1+o0(2™) .

But this strategy is not practical; the links point in the wrong direction.

With structure R we can improve the search by using the key contained in
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the leftmost root as our initial estimate in a right to left search. This
makes the expected number of changes in a queue of size 21 equal to

ne2 nel
1 + 2 + 4 P 2 2
n-1

n-l n-l +
2" 1 2™ o4l 2%Tebens) 21 2"

By writing this sum in reverse order we can derive its asymptotic value:

A . on-2 . 1
P T L BEP LR PP P TS o1y
n
- 1/2n + 1/&n + ile —+ 1/i6 — 4t 1/2 .
1-2 1-2 l-E-Q l-u-g-e 5 2

' 1
where aQ = z T‘ - 1.26,‘1‘9... .
k>0 27+l

(The constant «' arises in connection with merge sorting; see [25,
exercise 5.2.L4-13].) So the expected value of this factor is about
1.13 for large n ; by modifying the search in this way we have
effectively removed part of the inner loop.

This completes the analysis of Insert and DeleteSmallest for
binomial queues. By plugging our average values into the running time
expreasions given above and simplifying, we get the results for binomial
queues shown in Figure 10. A much simpler analysis [26, pp. 94-99] gives
the corresponding results for sorted and unsorted linear lists (also

shown in Pigure 10.)
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Friority queue algorithms based on heaps and leftist trees have
not been completely analyzed; partial results are known for heeps
(28;37] but not for leftist trees, Therefore experiments were performed
to determine the average values of factors controlling the running time
of these algorithms, Leftist trees and heaps are deletion sensitive,
so the averages were taken from stationary structures (cbtained after
repeated insertions and deletions) rather than from random structures.
Figure 10 gives the experimentally determined running times for leftist
trees and heaps,

These results indicate that binomial queues completely dominate
leftist trees, Not only do binomial queues require one fewer field per
node, they also run faster, on the average, for m > 4 when the measure
of performance is the cost of an Insert followed by a Delete .
linear lists are of course preferable to both of these algorithms for
small m , but binomial queues are faster than unsorted linear lists,
on the average, for m > 18 at a cost of one more pointer per node. 8o
the binomial queue is a very practical structure for mergeable rriority
queues,

In some applications the queue size may constantly be in a range
vhich causes the insertion and deletion operations an binomial queues to
run more slowly than our averages indicate, due to the smoothed average
we computed. If the queue size can be anticipated then dummy eclements
added to the queue might actually speed up the algorithms, At the expense
of complicating the algorithme it is also possible to maintain a queue as
two binomial forests in such a way that each insertion is guaranteed to
take only comstant time. But the binomial gqueue algorithms as they stand
still daminate algorithms using leftist trees, even if the leftist tree
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operations have average-case ruming times and the binomial queue
operations always take the worst-case time. The only advantages which
can apparently be claimed for leftist trees is that they are easier to
implement and can take advantage of any tendency of insertions to follow
a stack discipline,

The comparison of binomial queues with heaps and sorted linear lists
is also interesting. The heap implementation stores pointers in the
heap, instead of the items themselves; this is the usual approach when
the items are large and should not be moved, In this situation heaps
are slightly faster than binomial queues on the average, =nd considerably
faster In the worst case, Heaps also save one pointer per node, so it
seems that heaps are preferable to binomial queues when fast merging is
not required. Rinomial queues have an advantage when sequential
allocation is a problem, or perhaps when arbitrary deletions must be
performed. Sorted linear lists are better than both methods when m

is small, but heaps are faster, on the average, vhen mn >30 .
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gqueue
binomial queue
leftist tree
linear list

heap

sorted list

queue
binomial queue
leftist tree
linear list

neap
sorted list

average case running times when
Insert(x, Q) DeleteSmallest(Q)
39 22 1gm + 19
17 1gm+ 35 35 lgm - 27
19 fm+ 2 1gm + 20
32 181gm+1
3m + 17 15

worst case running times when

o) = m .

Insert(x,Q); DeleteSmallest(Q)

22 1g m + 58
52 1gm+ 8
ém+ 2 1lg m + 39
18 1g m + 33

3m + 52

o == .

Insert(x,Q); DeleteSmallest(Q)

51 lgm + 62
% lgm+ 16
9m + 34
30 1g m + 30
fm + 35

Insert(x, Q) DeleteSmallest(Q)
211gm+ 16 301gm + 46
321gm+ 25 6hlgm -7
19 9m + 15
21lgm+1 181lgm+ 16
ém + 20 15

Figure 10. Comparison of methods.
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Chapter Three., The Complexity of Priority Queue Maintenance

The inherent complexity of sorting, selection, and related problems
has been studied extensively [28]. The complexity of inserting and deleting
items from a priority queue has not received such attention, possibly
because the individual operations take constant time in certain cases,
Priority queues may be used to perform sorting, however; hence it is clear
tnat there is some limit to the average efficiency of a sequence of priority
queue operatioas.

In Section 3,1 of this chapter we develop a definition of priority qucu«
efficiency, based on the average number of camparisons required to execute
a certaln Tixed pattern of insertions and deletions., We evaluate some
known priority queue algorithms in Section 3.2 to obtain upper bounds on
the average and worst case behavior of priority queues. In Section 3.5 we
prove lcwer bounds on the average and worst case efficiency; these bounds
are exact tor infinitely many queue sizes,

One of the priority queue algorithms discussed in Section 3.2, based
on binomial queues, has a simple characterization which 1s proved in
Section 3.4: it is the only algorithm which compares only "unbeaten"
nodes (nodes which are smaller than 21l nodes in the queue with which
they have been compared) and which takes a number of comparisons independent
of the key values involved, The proof given for this result uses a lemma
involving two extremal problems on trees; we show that Huffwan's comnstruction
{16326, pp. LOR-405) solves these problems. This is especially interesting
since .ne problems lie ocutside the large domain for which Huffman trees
were proved optimal in [13].

We conclude the chapter with a discussion of possible generalizations
and open problems in Section 3.5.
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3.1 A Setting for Priority Queue Complexity.

We shall investigate the complexity of priority queues in the
following context. Initially we are given a priority queue containing
m elements. We then perform an infinite number of cycles which consist
of first deleting the smallest element of the queue, and then inserting
a new element into the queue. A typical cycle of this infinite process
is represented pictorially in Figure 1. (It i: easy to imagine other
settings in which to study the complexity of oriority queues, but we
defer discussion of this topic until Section 3...)

Our measure of the performance of a priorit;r queue will be based on
the number of comparisons made between keys during the above process.
Therefore we restrict our attention to priority queue methods which are
based entirely on the linear ordering among keys. This means, for example,
that none of our methods may perform arithmetic on keys, We shall further
assume that all keys are distinct, so that there are only two possible
outcomes from any comparison.

Note that because we make so few assumptions about what goes on inside
a priority queue, it is possible that the number of comparisons used on
any particular cycle is zero. A deletion takes no comparisons if the
smallest element is known prior to the deletion, and an insertion takes
no comparisons if the queue just stores the inserted node without looking
at it. In order to cope with this sort of anomaly, we use as our measure
of cost the number of comparisons per cycle averaged over infinitely many
cycles. More precisely, if a method uses C(n,m) comparisons to perform

n cycles on a queue of size m, then its limit cost per cycle is

IIn &gﬂ- « We dencte by Q(m) the minimm limit cost per cycle

n-e
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which suffices (in the worst case) to maintain a priority queue of size m .
We define (-z(m) to be the minimum average limit cost per cycle, where
insertion into each of the m intervals bounded by the m-1 key values
in the queue is taken to be equally likely during each cycle.

Because we are averaging the number of comparisons over many cycles,
it is possible to make a further assumption about the internal structure
of our priority queues: we may assume that at the beginning of each cycle
the smallest element of the queue is known. This is a valid assumption
because it just amounts to charging the previous cycle for whatever
comparisons are required at the start of a cycle to determine the
smallest. Since we are averaging over infinitely many cycles this cannot
change the result.

This additional property allows us to make a slightly less abstract
interpretation of the situation. The state of a priority queue at the
beginning of a cycle can be represented as a directed acyclic graph,
vhere the arcs indjcate comparisons which have been made in the process
of maintaining the queue. An arc leads from a node with key Ki to a
node with key KJ if the comparison K :KJ was made and K; < KJ was
the result. As indicated in Figure 2, the graph has a single source node,
containing the: smallest key, at the start of each cycle. Then this node
is removed from a graph, corresponding to deleting the smallest element
of the queue, and a new node is added to the graph. This node is inserted
into tr~ queue by performing enough comparisons (adding directed arcs) to
again determine the smallest element (cbtain a graph having a single source).
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> b +0
DeleteSmallest

t
t smallest element
a priority queue
containing m elements

~

0 + P = >
1 Insert

new element

Figure 1. A priority queue cycle.



SN

/7 |\

(a) The start of a cycle (comparisons to be lost by deletion of smallest
are shown dashed),

@

(v) After removal of the smallest node and introduction of the inserted
node (5).

(c) Imsertion complete (added comparisons sre shown wavy).

Figure 2, Directed graph interpretation of a priority queue cycle,
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3.2 Upper Bounds.
Upper bound on Q(m) are provided by the priority queue structures

described in Section 1.2. Heaps and leftist trees each require about
2 1gm comparisons, in the worst case, for a cycie on a queue of size m .
Queues based on balanced trees also require at least c lg m comparisons
for some constant ¢ > 1 , in the worst case. But some queue structures
reduce the coefficient of 1lgm to 1.

One such structure is the sorted linear list. The smallest element
of such a list can be deleted using no comparisons; an insertion into a
1ist of (m-1) items requires at most [1lg m]1 comparisons, using
binary search. It follows that Q(m) < [lg m] . More detailed analysis
of binary search [28, p. 194] shows that the average number of comparisans
required is lgm+ (1+ 0-20) where O = [lgm] -1g m ; hence
Qm) < lgm+ (1+0-2°) . The function (1+o-2°) is nonnegative and
has a maximum value of sbout 0,0861 for @ in the range 0<0 <1,

There is good reason to feel uneasy about these bownds, since when
this priority queue is implemented using simple linked or sequential list
structures its average running time for a cycle is O(m) . Fortunately
theie is & more legitimate structure which gives exactly the same
comparison bounds as & sorted linear list: the "loser-oriented" tree
used for replacement selection [28, p. 253). Using this structure, the
running time for a cycle is proportionul to the number of comparisons
performed.

A third structure which gives a good upper bound is a variant of
the binomicl queue. The staniard binomial queue algorithms given in
Section 2.2 can require about 2 lg ®» comparisons for DeleteSmallest ;



it may take lgm to find the smallest, and lg m to merge its
offspring back into the forest. An Insert operation also requires
up to lgm comparisons, so an entire cycle may take about 3 lgm
comparisons,

To reduce the number of comparisons required by a binomial queue
cycle, add nodes containing the key +o to the queue, making the queue
size 2k where k= [[lg m] . Then at the start of a cycle the gqueue
consists of a sirgle heap-ordered Bk tree, and the DeleteSmallest
operation requires no camparisons. Tie following Insert uses k
camparisons, so this method requires exactly [lg m] comparisons per
cycle, This shows that Q(m) < (lgm1 , giving the same bound on the
worst-case number of comparisons per cycle as was given by the sorted
linear list (or loser tree). Since this binomial queue algorithm
requires a fixed number of comparisons per cycle, independent of key
values, it does not give any better bound for Q(m) than its bound for
Qm) .
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3.3 Lower Bounds,

One approach to lower bounds on the number of comparisons required
to maintain a priority queue is to analyze the possible internal states
of the queue at the start of each cycle. This is possible under certain
restrictions, as shown in the next section, but to get a general lower
bound seems to require a di fferent sort of argument which takes advantage
of the long-term averaging present in our model,

Tt turns out to be quite easy tc prove a good lower bound on Q(m) .
Suppose that a priority queue of size m requires C(n,m) comparisons,
on the average, to perform n cycles. The number of equally-likely
outcomes of these :xycles is n" , since there are m equally-likely
relative sizes for each of the n keys inserted during the cycles. So
by the same decision-tree argument used to prove lower bounds for sorting
(28, p. 194]), the average number of comparisons required to determine
shich outcome has occurred is at least n lgm . But it is possible to
determine this outcome by observing the outputs of the n queue cycles

and sorting the m keys vhich remain in the queue. Hence

n lgm < C(n,m)+ 0(m log n)

80

en < T Symtomlgm) _ 5y |
< . ,

N=-®

This also implies that Q(m) >lgm .
We can summarize the results of this and the previous section as

follows.



Theorem 1. The functions Q(m) and Q(m) defined in Section 3.1
satisfy
rls m] ? and

lgm < Q(m)

I
A

lgm < @m) < lgm+ (1+0-2%)

n

vhere 0= [lgml-1gm. O



3.4 A Characterization of Binomial Queues.

The foregoing results show that binomial queues ='.e optimal when
the queue size is a power of 2 . When the queue size is not & power
of 2, then dummy nodes can be added as described in Section 3.2 to make
binomial queues nearly optimal; in the rest of this section, we shall
use the term "binomial queue" to refer to such a structure.

We have seen that linear lists and loser trees also require lgm
comparisons per cycle when m = 2k , 50 binomial gueues are not the only
optimal structure for this problem, But neither linear lists nor loser
trees are the basis for a practical priority queue algorithm, We have
already noted that comparisons do not reflect the actual running time
of a priority queue using a sorted linear list; loser trees work well
for replacement selection but are awkward to use vhen the priority queue
size may change with time. Our comparison model evidently does not capture
the factors which make & given priority queue scheme difficult to implement.

It seems extreamely difficult to evaluate the true complexity of data
structuring problems; the linking autamaton [31] eppears to be a good
setting for such questions, but few results have been obtained for this
model. A more limited approach, closer in spirit to the comparison-counting
model of camplexity, is to restrict our considerstion to algorithms such
that the underlying structures must be easy to implement. Suppose that
the only elements which may participate in comparisons are those which
are not known to be larger than sny other element of the queue. In terms
of our directed graph description of a priority queue, such elements have
no entering edges; they are candidates for being the smallest element in

the queue. We call comparisons between such elements tree comparisons,




since they preserve the property that the directed graph structure of the
queue is a tree. (It is not hard to see that a queue vhich makes a non-tree
comparison can eventually have an internal structure which is not a tree.)
Since a tree is much easier to represent and operate on than an erbitrary
directed graph, this restriction may be a reasonable one.

We conjecture that binamial queues are uniquely optimal (in the sense
of providing the tightest upper bound on Q(m) ) among all priority queue
algorithms which make only tree comparisons. The following result is a

weakened form of this conjecture,

Theorem 2. The only priority queue which makes only tree comparisons and
which makes a number of comparisons per cycle depending only on the queue

size is the binomial queue.

Proof. We consider two algorithms to be the same if their directed graph
structures are the same after each comparison. Suppose that an algorithm
makes k = k(m) comparisons per cycle on a queue of size m, At the
start of each cycle the smallest element is known, so let the number of
edges leaving this node at the start of the i-th cycle be d:l « Then during
the i-th cycle the algorithm must determine which of d;+1 nodes (the d
which lost to the smallest, plus the inserted node) contains the mmallest
key. By the restriction to tree comparisons this takes exactly di
comparisons; hence di. = kK on every cycle. Thus it suffices to show that
any tree comparison algorithm in which the smallest node (henceforth called
the root) has a fixed number k = k(m) of offspring for a queue of size m
is the same as the binomial queue algorithm.

We are therefore led to consider adversaries which attempt to make the
degree of the root fluctuate. It will be helpful to first coasider two
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slipler adversaries: one which attempts to maximize the degree of the
root on a single cycle, and another vhich attempts to minimize it, Since
max 3is an increasing function of its arguments, a maximizing adversary
can do no better than to maximize the degree of the node which is smaller
at each comparison; similarly, the minimizing adversary will minimize this
quantity, If the two unbeaten nodes to be compared have degrees dl and
d, then the maximum (minimum) resulting degree is m(dl,d2)+l
(m.n(dl,de)'bl) . What strategy can the algorithm ugse to minimize the
degree of the root against a maximizing adversary, or maximize this
quantity sgainst a minimizing adversary?

It is useful to abstract this question into a problem on extended
binary trees: we are given a vector (vo,vl,...,vk) of k+l resal-valued
weights, corresponding to the degrees of the k+1 nodes to be compared,
and a function f which may be max or min . For any binary tree having
k+l external nodes we associate a real-valued cost with each node. The
weights w,

i
internal nodes are computed via the rule: 1if the two offspring of a node

are assigned as costs to the external nodes, and the costs of

have costs u amd v then the cost of the node is 1+ f(u,v) . Hence the
cost of an internal node is just the degree of the node which wins the
corresponding comparison under the adversaries considered above, We define
the cost of the resulting binary tree to be the cost of the root, so our
problem is to find a binary tree of minimm cost vhen f = max , or maximum
cost vhen f = min . We shall call such trees optimal,

One method of constructing an appropristely labeled binary tree is to
use Huffman's algoritim [16]. The first step in this procedure is to select

the two smallest weights from the vector (wy,Wy,¥o,...oW) , 8&Y W,



and v, . Then solve the problem for the k weights
(1 + f(wo,wl),we,...,wk) . Finally, replace the external node containing

1+ f(wo, wl) with the binary tree

The tree which results from this procedure is called a Huffman tree.
Lemma 1, A Huffman tree is optimal when f = max and wvhen f = min .

Proof. {This proof is similar to the proof that Huffman trees have
minimum weighted external path length, given in [26, p. 403); a different
proof for the case f = max is given in [14].) We argue by induction

on k , the result being obvious wvhen k = 0 . It is sufficient to show
that when X > 0, there is an optimal tree T in which the two smallest
welghts, say Yo and v, , are contained in external nodes which are
offspring of the same inteiaal node, To see why this is enough, first
note inat by the inductiom hypothesis, the reduced problem of finding an
optimal tree for the weights (1+ f('o"l)"Q’ ""'k) is solved by
Huffrman's algorithm. Call the Huffman tree for the reduced problem R ;
then the cost of R is not worse than the cost of T because a solution
to the reduced problem, which R solves optimally. is imbedded in T .
But the tree R differs from the Huffman tree for the original problem
only in the replacement of one external node, which does not change the
cost of the root. Hemce the Huffman tree for the original problem ic
optimal.
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A second observation is that the cost of a tree is actually determined
solely by the levels on which the weights Wy WyseeepW, appear. The cost

of the root is simply i‘(!o+ Vs I3¥ Wy eees B v W) where t is the

level on which weight v; appears in an external node,

We shall prove that the two smallest weights, L) and v,

appear on the deepest level in an optimal tree, Since there are at least

» may both

two external nodes at this level and weights on the same level can be
rearranged arbitrarily, this will give the result. Suppcse that Y
appears at level Ly and that wj > ¥, appears at level tJ > L .

Consider the case f = max ; the effect of L and wJ on the cost »r

of the root is to guarantee that r > ma.x(lohvo, 13+wj) - ldwd . If
v and UJ are exchanged, these nodes only force

r zw(ldﬂo, lo+vJ) <1 *vy 4 8O the switch can only reduce r .

J
In the case f = min , we have r < min(loﬂfo, !Jﬂvd) = Lotw, vefore
the switch, and r < min(2 Yo 2 lOﬂrJ) > Igtw, after, so the exchange

can only increase r . (J

Using Lemma 1, we can construct the more complicated adversary needed
to establish a strong restriction on the algorithms which make a fixed

aumber of comparisons per cycle.

Lamma 2. A necessary condition for an algorithm using only tree

comparisons to have a fixed degree k at the root at the start of each

cycle is that the out-degrees of the of{spring of the root ve k-1,k-2,...,1,0
at the start of each cycle.

Proof. Buppose that the degre2s of the root's offspring, listed in

decreasing order, are dkcl'dk-a'“"dl'do « We define an adversary which
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causes the degree of the root to differ from k if the above degrees are
not k-1,k-2,...,1,0 . The strategy _:pends on the first left-to-right
discrepancy between the two sequences. Suppose ¢ 1is the largest index
such that 4 ! ¥ 1 ; then there are two cases according to the relative

sizes of dl and ! .,

Case 1, d, > . The adversary attempts to maximize the degree cf the
root., Since offspring with degrees k-l,k-2,,..,2+1 , and dl > 1+l
are present, along with the inserted node of degree O , it is easy to
see by Lemma 1 that even when the algorithm uses an optimal strategy

against the maximizing adversary, the resulting degree is > ktl ,

Case 2, d P < ¢ . The adversary attempts to minimize the degree of the
root unless a premature comparison occurs; the i-th comparison is premature
if it involves d‘1 where J > max(i-1,!) . Informally, this means that

to avold a premature camparison, the algorithm must first perform a series
of ¢+1 comparisons involving only the newly inserted element of degree O
and the ¢+1 trees whose roots have degrees dof d1 L eee < d‘ <t,.

This results in a single tree vhich is compared with the root of degree

d = {+1 ; the result of this is theu compared with the root of degree

~1

d = f+2 , and so on until a zingle tree remains.

2
If no premature comparison occurs, them by Lemma 1 the tree which
results from the first set of ({+1 comparisons has degree < ! , so the
final result has degree < k-1 , If a premature comparison occurs then
the adversary changes tc a maximizing strategy on that comparison and for
all those which follow, An argument szimilar to the one used in Case 1

shows that the resulting degree is then >ktl . (O
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We can finally rrove the theorem., First no.e that if the offspring
of the root have out-degrees k-1l,k-2,...,0 , then comparicons must
proceed as in the binomial queue algorithm in order to guarantee that
the root's degree remains at k . That is, the inserted node is compared
to the degree O offspring, then this result is compared to the degree 1
offspring, and so on. This follows from Lemma 1 using either the
maximizing or minimizing adversary.

Now order the offspring of each node in the directed graph structure
of the queue by their out-degrees, decreasing from left to right. Find
a structure arising during the operation of the given priority queue
algorithm which differs from the binomial queue structure at some point,
such that this discrepancy is as shallow (close to the root) as possible,
The discrepancy can't occur at the root, and it can't occur at an offspring
of the root by Lemma 2. If it occurs deeper in the tree, then one cycle
of the queue can move it toward the root as shomn (X is the subtree

containing the mismatch);

This cantradicts the assumption that the discrepancy was shallowest, and
campletes the proof, (]

It seems quite unlikely that an exhaustive analys'< of this kind

can prove the conjecture stated above,
T2



3.5 Discussion.
Huffman trees were originally used to find an extended binary tree

solving the problem

mn 2 t

oW .
1<i<n 11

The proof of Lemma 1 shows that Huffman's algorithm also finds trees which
optimize

min max “1+w1)
1<i<n

and

max min (2.+w,) .
1<i<n 1

The first of these problems can be interpreted as a scheduling problem on
n parallel processors: we have n jobs with running times LUTATAETI &
vhose results must be cambined pairwise, at unit cost, before a final
answer is obtained. Huffman trees minimize the time to compute the final
answer in this situation. Both problems can be interpreted in terms of a
circuit-design problem: we have n devices with propagation delays
¥yrVoseser Wy whose outputs must be combined pairwise, at unit delay,
to give a single output. One Huffinan tree minimizes the maximm
propagation delay; the other maximizes the minimm delay. The latter
property can be significant if the circuit is part of a pipeline.

There are as many possible settings for priority queue complexity
as there are applications of priority queues. The cne closen here is
simple, yet seems representative. An obviaus generalization is to allow
the queue size to fluctuate in a regular fashion between two widely-spaced
values, such as m snd m/2 , In this situation our lower bound on Q(m)

»



becomes 1g m-1g(e/2) , and the upper bounds on Q(m) and Q(m) given
by sorted linear lists are again nearly tight. But the loser tree and
binomial queue structures used to prove upper bounds in the simpler
model do not apply in this situstion, since they do not grow and shrink
gracefully. It would be interesting to find a structure which is nearly
optimal in the more general model and can actually be implemented to run
in time proportional to the number of comparisons,

Tt is an open problem to improve upon the upper and lower bounds on
Q(m) or Q(m) when m is not a power of 2 . It would also be
interesting to prove results to the effect that arithmetic on keys cannot
help, in the worst case or on the average, when the key space 1s large
compared to the queue size; results of this kind have been shown for
selection problems [L3 ;13]. When the key space is restricted to the
integers fron 1 to m and arithmetic on keys is allowed, then the
priority queue operations can be implemented to run in 0(log log m)
time [4O].

Our sbstract study of priority queues has shown that binomial queues
of gize n = 2k are & particularly simple and efficient structure for
implementing alternating insertions and deletions, such as occur in
replacement selection, When = is not a power of 2 , fewer than 1lgn
dumy nodes must be added to make the queue behave as such, since the
algorithms never look below a node containing an infinitely large key.
Hence binamial queues may be a useful alternative to loser trees for
replacement selection.
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Appendix, Priority Queue Implementations

1. SAIL Implementations.

1.1 Binomial Queue using Structure R,

COMMENT Priority queue routines using structure R for binon al trees.

Notes on the subset of SAIL used heres
1} ‘e’ is the exchanye operator.
2) CHOHE "bn"' causes the loop on block named "bn" to be exited.
3) RCCORD_POINTER parameters are passed by value.

About programming style:

These routines are not intended to oe an easy intoductien to binomial queues.
Insteacd they are meant to be a quide to efficient implementation of binomial
queue operations, as might be accomplished in assembly language. This means
that in these procedures a large amount of state is kept ‘mplicitly in the
flon of control, rather than in program variables. HWe have not atteupted

to perform other optinizations, such as the assignment of registers, cince
thece can be performed without a global understanding of the algorithms,

About mnemonics:
ldentiftier names are intended to convey meaning when possible, but have
also been kept reasonably short. Names are generally a concatenation of
short tags uwhich are abbreviations of something meaningfuls Rt for root,
Nxt for next, etc. Capitalizatior is used to delimit the tags, so "the
neu rightmast root” is written neuRtaRt. Happy reading!;

BEGIN "BinomialQueue”
REQUIRE " {} <>" DELINITERS;

RECORD_CLASS Node
(RECORD_POINTER (Node) ISibling!, IChild!; INTEGER Key!);

COMMENT Abbreviations for Node fields:s

DEFINE 1Sibling = INode: ISibling!');

DEFINE IChild = {INodes IChild!)y

DEFINE Key - {Node:Key!l; )

RECORD_CLASS QueueHeader (RECORD_POINTER(Node) leftmostRoot; INTEGER Size):

BOOLEAN PROCEOURE ODO(INTEGER i)y
RETURN(i LAND 1)
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PROCEDURL Insert (RECORD_POINTER (Node) x; RECORD_POINTER (QueueHeader) Q) ;
BEGIN "Incert”

RECOKDI POINTER (Node) rtmRt, nxtRtg
INTEGEK «;
8 « (ucueHeader:SizelQ);

IF 5 » 8 THEN rtmRt « 1Sibling(GueueHeader: e ftuos tRoot Qj;

IChildix) « NI RECORD;
IF 000D(s) THEN BEGIN

“The riahtmost tree in q consists of a single node; merge it into x. (The mer ge

of H0's is ‘treated specially to eliminate a test from the inner toop.)"
nxtHt « 1SiblinglrtmRt);

IF Koylxd > Keylr twRt) THEN x « rtaRt:
IChildix) « rimRt;
ISiblinglrtmRt) « rtmAt;
WHILE TRUE DO BEGIN "Mergel oop*®
“tmRt « nxtRt; 8 « 8/2;
IF 000 (s) THEN DONE "Mergeloop”;
"The rightmost tree remaining is the same size as x; merge it into x."
nxtRt « 1SiblinglrteRt],
IF Keylx] > KeylrtmRt) THEN x o rtwRt;
ISiblinglrteRt) « 1Sibling[IChildIx]);
ISiplingliChildIx)) « rtwRt;
IChitdix) « rtmARt
END “Nergel.nop”
END;
IF & = 9 THCN BEGIN
"The entirc forest has becn merried into x. (The forest size is a power of two.)"
I1ISiblingIx) « x .

QueueHeader: leftmostRoot Q) « x

ELSE BEGIN

“Some of the original forest remains; x is the rightmost root in the new forest."”
I1Sibling [QueueHeader: leftmostRoct Q)] « x;
1ISiblinglx] « rteRt
ENO: .
QueucHeader:SizelQ) « QueueHeader:SizelQ) + 1;
END “Insert”;
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RECORD PUINTER (Nade) PROCETRIRE De:leteSmal lest (REC(IRD,_POINTER(Dueudleader) [P}
BELON "L leteSmallest”
RECORD POINTLR(Nodel fmRt, rtmRt, swallest, pred, succ, swallestPred, rtmChild,
nevkitaiit, nrglree, nxtlrees
INTLHER o, snallestKey:
) fmfit . Queuelleader: leftmostRoot (@13 rimRt « 1SiblinglifuRt)y
s » OucucHeader:tSize lUls

IF 1emfit = rtmRt THEN BEGIN "There is only one trce in the forest.”
“tichur i the root, and make the nen forest from its sons.”
emallect o 1fmktg
Qreortleader s lef tmostRoot [U) « 1Chi td {1 {uRt]

END “Hur e ic only cne tree in the forest.”

ELSEL BEILIN “There are tuo or more trees in the forest.”

“Searnch tor the nodg containing the smallest key in the gueue.®

1hittinal )l teRY) o NULL_RLCORD; “flark the leftmost node to stop scarch.”
cmallectKey « KeylitmRt); pred « |fmRts  succ « rimRt;
DO BEGIN
It cmallestKey 2 Keylsucc) THEN BEGIN
Anallestkey + Keylsuccls smallestPred « pred END;
prod ¢ succ:  suec « 1Siblinglsuce]
END UNTIL eucc = NULL_RECORL:
enuadivet ~ 1Siblinglsnallestbred] s
If cnailest = NULL_RECORD THEN BEGIN "The rightmost root is smallest.”
emallest ¢ rtmRt:
It O (s) THEN
"“The rightmost tree is a sing node; just remove it from the forest."
ISintinaltfmRt) « iSinlinglsmaiiest]
ELSE BEGIN
"“The sons of tne rightmost root become the smallest trees in the new forest.”
1Sibting (1 fwRY) « 1SiblingliChildlswal lest)])
1ISinting(IChi idismaltest)) « 1Siblinglswallest])
END
tND "The rightmost root is smallest.”
ELSE BEGIN "A root other than the rightmost is smallzst,”
“The trer containing this root must be replaced. A replacement {ree is formed
by merging the rightmost tree in the forest with the children of the rcmoved
riat Chibdren which are smaller in size than the rightwost tree become the
cmaltest trces in the ncu forest.” '
rinChild « 1Sibling(IChildiswallest]]s
1Sinling[IChi ld{smal lest]] « NULL_RECORD: "Hark leftmost child to stop scan, "
IF ~0(D(s) THEN BEGIN
“Ihe queue size uas even before the deletion, so some children of the
removed root uill move up to become the smallest trees in the neu forest.
Gean through the children until mrglree, the one which uill merge nith
the rightmost tree in the forest, is reached.”
nrwlteit = rteChi ld;
n - 8/2%
WHILE -000(s) D0 BEGIN
rimChild » 1Sipling(rtaChiidls 8 « 8/2 END:
wrgirece « 1SiblinglrtaCniid)g
It smaillestPred = rimRt THEN
*The tree to the right ot the removed root is the rightmost tree, and thus
will be consumed in building the replacement tree., So the replacement’s
predecessor witl be the leftmost child which moves up.”
ematlestPred « rtmChiid
ELSE
“{ink the children into the right of tha forest nou, since their ISibling
it not the replacemeni and is therefore known,*
1SiblingfrtaChild) + 1SiblinglrteRt]
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CNO
ELSEC BEGIN
“The queue size is odd, so all children of the removed root will be used
to make the replacement.”
neuRtmRt « ISiblinglrtwRt]);
IF emallestPred = rtmRt THEN
"The replacement tree uill be the rightmost tree in the neu forest; hence
neuRtmRt and smallestPred cannot be given true values nou. Flag
this uith smallestPred = NULL_RECORD."
emal testPred « NULL_RECORD: .
MPerform the first merge. The merge of B8's is handled specially in order
remove a test from the inner loop.”
wrglrce « 1SiblinglrtmChitd) '
IF KeylrtoRt) > KeylrtuChitd) THEN rteRt » rtnChild;
IChild(rtmRt]) « rtmChild;
ISiblinglrtaChild) « rtuChild

END;

“Complete the merge.”

WHILE mrglree » NULL_RECORD DO BEGIN
nxtlree « ISinlingimrgTreel;

IF KeylrtmRt] > KeylmrgTreel THEN rtaRt « wmrglree;
ISiblingImraTree) « ISiblinglIChiid(rtaRt]);
1ISiblina[IChildirteRt)) « mrglcee;

IChildirtmRt) « mrglree;

w gTrec « nxtTree;

ENCI;

"It remains: to fix up some |inks betueen roots in the forest: 1) ISibling link
trom leftmost root to rightmost root, 2). ISibling lipk from replarement tree
te the next targer tree, and 3) 1Sibling link to replacement tree from the
next smaller trec, Hany forms of degeneracy a~e possible...”

IF smallest = |fmRt THEN BEGIN

"The leftmost tree was reple-ed, so link from header must be fixed."
Queuelicader: leftmostRoot (Q) « rtaRt;
IF smallestPred - NULL_RECOR: THEN
"Thie replacement tree is thc only tree in the forest: 1), 2), and 3) are
identical.”
ISiblinglrtmRt) « rteRt
ELSE BIGIN
"There is another tree in the forest, besides the replacement: 1) and 2)
are identical,"
ISibling(rteRt) + neuRtmRt;
M;Sibling(uallest?rodl « rtmRt
E

ENO
ELSE BEGIN
“There is a tree larger than the replacement, so 2) can be filled in nou.”
ISinting(rtmRt) « ISibling{smaltest);
IF swmallestPred « NULL_RECORD THEN
"There is no tree smalier than the replacement: 1) and 3) are identical."
ISibling(I fmRt) « rteRt
&I.SE BEGIN
*The nondegenerate case: 1), 2), and 3) sre distinct.”
ISipting(i fuRt) + newRtuRt;
ISiblinglsmal lestPred] « ~tmRt
END
END
END "A root other then the rightmost is smallest.”
END “There are two or more trees in the forest.”;
Oucucticader:Size{d) « GQueucHeader:SizelQ) - 1
ISiblingfsmaliest] « IChildismallest] « N'.._RECORD;
RETURN (smallest)
END “"DeleteSmallest”s



PROCEOURE Union (HLCORD_POINTER (Queuetieader) T, Q)3
BLGIN "Union"
RECORN POINTER(Node) ARRAY Bkl1:3);
INTEGER i
COMMIENT Bk ies a stack of Bk trees uhich is accumulated for each stage of
the "addition". "Carries" are propogated through Bki{ll. The integer i
i the stack pointer, i.e., i1t is the number of trees in the stack.:
RECGRD POINTIR(Node) r T, rQ, rF, dummy;
CORUENE ¢f points Lo the largest tree in the result forest uhich has been
gener dted. s
INTEGEE o1, <)
61 o UucneHeader:Sizell)l;  IF sT1#8 THEN rT « 1Sib!ing ([QueueHeader: IreftnostHoot [T])
eQ + Uucuctleader:SizelDlr; IF 0.8 THIN rQ « (Sibling{QueueHeader: leftmosthoot (Q1)
dummy « NIW_RCCORD(Node): rF « dummy;
i«

"The binary addition algorithm, ™

“The BB trees are handied specially to remove tests from the inner loop."
IF 0DU(<1) THCN BEGIN
i i+l BeIi) « rT3 r1 « 1SibtinglrT] ENOs
IF 0D0(<Q) THEN BIGIN
ie i4l: Bkli) « c0:; rQ « 1Sibling{rQ) END;
IT &+ - 1 THUN BEGIN
1ISiblinalrf) « Bk(1); rF « Bkil); i « ® END;
IF i+ = 2 THIN BEGIN
IF Keylbkt1)) » KeylBk(2)) THEN Bril) « Bk(2)3
IChitdlbk(11) « BriZ];
1HintinglBk(21) « Bri2];
[
END:
8T « s1/2: o0 « l1/2;
*The general step.”
WHILE (<7 =« 8 v (sQ » 81 DO BEGIN
If OID(sT) THEN BEGIN
i« 141t BRli) « T3 T = ISiblinglrT) ENDy
IF DD6sQ) T 7N BEGIN
i« i+l oklil « rQ: rO « 1Sibling(r@) END;
IF (i = 1) v (i = 3) THEN BEGIN .
1Sibtinalr’s « Blils rF « Bkli)s i « i-1 END;
IF i = 2 THEN BEGIN
IF Keu(Br(1)) > KeylBki{2)} THEN Bk (1] « Bk(2]3
1ISibling(BR{2)) « ISiblinglIChild(Bx{1)]};
1Sinling (1IChi 1dBk(11)] « Bkl2]}
1IChi 1d(Br{l}) « Bki2)y

ie1
ENO;
el « 8T/72; o0 «~ 0/2
END:

"Handle a carry off the end, if present,”
IF i « ) THEN BEGIN
1ISivting(rF) « Bkﬂ): rf « Bkil] END;

*Link the result into Q, and clear out T1."

ISintingIrF) « 1S5ibting(dummyl 3
"At thic point the dusimy node can be explicitiy deal located to save GC's.”
Queusr-Headers teftmostRoat Q) « :E:
UueuetlsadersSizelQ) « Queuetleader:SizelT] + OQueustieader:Size ()
Gueuchicader; IcttmostRoot (1) « NULL_RECORD;
OueueHcadersSize{l) « B

END "Union™g



1.2 Binomial Queue using Structure K.

COMMENT Priority queue routines using structure K for binomial trees.

Notes on the subhsct of SAIL used here:
1) '«' is the exchange operator.
2) C'DONONE "vbn"* causes the loop on block named "bn" to be exited.
3) HKtCORD_POINTER parameters are passed by value.

About proaromming style:

These routines are not intended to be an easy intoduction to binomiai queues.
Irstead they are meant to be a guide to efficient implementationr of binomial
aqucue operations, as might he accomplished in assembly language. This means
that in these procedures a large amount of state is kept implicitiy in the
flou of control, rather than in program variables, HWe have not attempted

to perform othar optimizations, such as the assignment of registers, since
these can be per formed without a global understanding of the algorithms,

About mnemonica:
ldentifier names are intended to convey meaning when possible, but have
also beor kept reasonably short. Names are generalliy a concatenetion of
short tacs uhich are abbreviations of something meaning’ul: Rt for root,
Nxt forr next, etc. Capitalization is used to delimit the tags, so “the
ned rightmost root” is written newRteRt. Happy reading!;

BEGIN "BinomialQuerue”
REQUIRE *{}<>" DEL IMITERS;

RECORD_CLASS Node
(RECORD_POINTER(ANY_CLASS) ISibling!; RECORD_POINTER(Node) IChild'; INTEGER Key!)s

COMMENT The ISibling! field is declared ANY_CLASS because it must refer to records
of class OueueHeader as well as class Node. SAIL does not handle foruard
RECORD_CLASS declarations correctliy.s

COMENT Apbreviations for Node fields:;
DEFINE 1Sibling = INode: ISibling')s
DEFINE (Child = {Node: IChild'ls

GEFINE Key » [Node:Key!ls

RECORD_CLASS QueueHeader
(RECORD_POINTER(Node) 1Sibling!, IChild!; INTEGER Size)s

COMMENT 1t is essential that 1Sibling! have the same offset in both Node and
Queueteader, since the condition I1Sibling! « NULL_RECORD is what distinguishes
header nodes from othere. In some programming |anguages (e.g. Simula) there are
factilties for declaring such restrictions explicitiy.s

BOOLEAN PIROCEDURE ODD (INTEGER i)
RETURN (i LAND 1):



PROCE(NFY  ITneert (RECORD_POINTER (Node) x; RECORD_POINTER (QueueHeader) Q)
BEGIN “Incert”

RECORD, POINTER (Node) rtmRt, nxtRt
INTECFRR <

s « lwueHeader:SizelQ);

rtmiit + QuecucHeader: IChi id! {Q);

IChild(x) « NULL_RECOFD;
IF GO0 (<) THON BEGIN

"The rightmost tree in Q consists of a single node; merge it into x. (The merge

of BA's is treated specially to eliminate a test from the inner foop.}”
axtRt « 1Siblinglrtmit);

IF Koglx) > Keyletulit) THEN x o rimRtg
Ithitdix] « rtmRty
WHItE TRUE DO BEGIN "Her ael.oop®
y bt o nxtHt; s ¢ /0%
I -000 (<) THEN DONE "Heracloop™s
“Ttoe riahtmost tree remaining is the same size as x; merge it into x,”
nx iRt « (Siblinalr tmitt];
It Keglx] > KeulrtmRt) THEN x » rtwilt;
1ISinling[IChi1d[rtmRe)) « ICHhildx];
1Sibting{IChitd(x]] « ritsRty
1Chilaix] « rtmRt
END “ter acl.oop”s
1ISibtinglIChiidix)) « Q
END:
QuencHeader: IChi1d' Q) « x3
IF « - B8 THEN
“Ihe entire forest has becn merged into x. (The forest size is a pouer of tuo.)"™
1ISinting{x] « @
ELSE BLGIN
"Gome of the original forest remaings x is the rightmost root in the nen forest."
1ISintingix) « rimRt;
1ISinlingUIChi Id(irteitt)] « x
END;

QueueHeader:Size (Q) « QueueHeader:SizelQ) + 1;
END "lnsert”;



RE.CORD MUINTER (Node) PROCEDURE DeleteSmal'est (RECORD_POINTER(QueueHcader) Q)
BFGIN "[-lcteSmallest”
RECORD. POINTER (Node) rtsRt, euuiiest, p, rtaChild, rightRtT, neuRtmRt, mrglree,
mutlrec;
INTERER &, amallestKeuys
rtmit + QueueHeader: IChild! (Qly s « QueueHeader:SizelQls

"Search for the node containing the smallest key in the queue,”

smallc.t « rimiit; swallestkey « Keylsmailest)s
p + I1Sintingfemalliests;:
WHILE 1Sin!ina(pl » NULL_RECORD DO BEGIN
IF smalleotkey > Keylpl THEN BEGIN
smallest « p:  smallestkey « Keylswallest] END:
p = I1Siblinalpl)
END:

“Merge thc oftspring of the smallest node with the rughtmost tree in the
forest, unless the rightmost tree contained the snailest.

rtaChild « 1Childismallest]:
IF rtmChitd = NULL_RECORD THEN BEGIN “smaiiest is.a B8."
“The deletion can be completed now.”
IF « - 1 THEN
N.:-ueHeader: IChi 1o [Q] « NULL_RECORD
Bl St BEGIN
Queuelieader: 1IChi 1! (@) ~ 1Siblinglsmaliest);
1Sib! ing (1Child[1Sibling(smallest)]) « Q
END
END “emallest is a B8."
ELSE RIGIN "smallest is not a BB."
"Fint the righimost child of the smallest node
WHILE IChild(rtmChild) = NULL_RECORD DO
rtmChild « ISlblmgllChildlrti:hlld]];
IF smaltest = rteRt THEN BEGIN auallest is the rightmost root."
*The deletion can be completed nou.”
Oueueteader: IChitad! (Q) « rtmChild:
1ISibling (IChitdsmal lest)]) + ISibling(emallest)s
IF 1Sivlinglsmallest) « O THEN
l'woblmn(lChnld(lSmlmn(uallestlll « IChildlsmal lest)
END "cmallest is the rightmost root.”
ELSE BEGIN *smallest is not the rightmost root.”

"Set up for the merge.”

rightRtT « 1Sibling'IChild{smallest]]}
ISibting(IChildlsmal lest])] « NULL_RECORD; “Mark leftmost child.”
1F -0D(s) THEN BEGIN
*The rightmost tree is not a B8, so some cthr.n of smaliest will
ve the smallest trees in the neu forest.”
nouitteitt « rtaChilas
5 & 5/1:‘
WHILE -000(e) OO BEGIN
rtaChild « 1SiblinglrtaChildls s « o/2 END;
wrglree « 1SiblinglrtaChildly
IF rightRtY = rteRt THEN
rightRtT « rtaChild
tL.SE BEGIN
I1ISiptinglrtaChild) « 1SiblinglrtaRt)y
1ISintingIChi1d{1SiblinglrteRt]]] « rtaChild
cHD
END



LISt BEGIN
“The rightmest trec ic a B8, to it combines with all of the children
af emallest to form tne replacement tree.”
IF rightRtT « rtmitt THEN
vightRtT « NULL_RLCORD
1St BREGIN
neulitnlt « 1Siblinaletmiitly
1ISiblingUIChi ld{neuRteARL]) « @
END;
“Perform the first merge, The merge of BO's is handled specially in order
climinate a tect from the inner loop.”
wglree « 1SipEingrtnChild);
If Keylrtmitt]l > KeylrtnLhildl THCN rtoRt o« rtnChild;
IChildlr tmit] « rtnChilds
trieg

"Complete the merge.”

WHILE mralree = NULL_RECORD DO BEGIN
nxtlree « I1SiblinglmrgTreel ;s
I KeglrtmRt) > Keylmrgireel THCN rtuRt « mrgirees
1SintinglIChildinrgTree)) « IChildlrteRE);
1Sisling(IChitd{rtwRt]) « mrglree;
IChildrtmRt) « mralree:;
megTree « nxtiree:

END:
"Link the tree created by the merge into the forest.”

1ISiblinglrtoRt) « 1Siblinglsmalliest);
IF iSivlinglsmallest) « Q THEN
1ISining[IChiI1d11Siblinglsmallest))) « rtuRt:
IF rightRtT = NULL _RECORD THEN BEGIN
Oueucliicaders IChi I d! (U] « rtaRty
1GiblingLIChildirteHt)]) « Q;
END
[ioE BLGIN
QueueHeaders 1ICHhI 10 U] « newRtel Y
1SibtinalrightR1T] « rteRts
1Sibling [IChi Idir teft)) « rightRtT
]
N0 “emallest is not the rightmost root,”
END "emalicat is not a BB.";
QueueHeader:Size Ul « QueuciicadertSize (U] - 13
1Sibling(emal lest) « IChiidIsmallest) « NULL_RECORD:
RETURN (smal lest)
END “DeleteSmallest™;

i)LJ v #"shﬂlﬁnjhh

AR Cﬂ")\{
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Rt CORD FOINTER (QueueHeader) FROCEQURE Delete (RECORD_POINTER(Node) x):

BEGIN "Uelete"”
RECUBD. PUENTE R (QueueHc ader) Q;
RECORL POINTER (Node) p, rtmHt, rightRtT, leftRtT, pN, Fr, Tr, neuwRtwRt, mrglree,

mtirees

COMIENT Here T denotes the tree containing x, and Tr the tree uhich replaces T:
RECORD_FPOINTER (Nade) ARRAY pathl[i:18); COMMENT 18 is lg(max queue size) + 13
INTLRER i, s, iSave:
LABEL Mergef orests, DeleteReturn:

"Climb out of the binomial qurue to reach the queue header; save the trail
of nodes vicited in the 'path’ array.”

p e xs i« B
WHHILE p » NI RECORD DO BEGIN
i« i4d: pathli) « p; p e 1ISinling{p] END;
Q «~ pathli): i « i-1y
8 + UucueHeader:Sizelll; rtwRt « QueueHeader: IChild! [Q);

"Hou did we get to the queue header? There are tuo possibilities: cithe:
from the IChild of the rightmost root, or from the leftmoet root."

IF pathli) = IChild(rteRt) THEN BEGIN
"x it a non-root node in the rightmost tree.”
righthiitl « NULL_RECORD;
leftHtT « 1Sibling{rteRt);
PN « rimRt
END
ELSE REGIN
“Fither x is the root of the rightmost tree, or it is in some tree other than
the rightmost. Locate the root of the tree containing ».*
WHILE YRL[ 00 BCGIN “RootSearch”
IF i-2 < @ THEN BEGIN "x is a root.”
"The dmnantlmu of the tree containing x can be completed nowu."”
leftRLT « 1Siblingix)s
IF 1IChitdix) « NULL_FRLCORD TPEN *GIN x is s Ba."”
"The deletion can he completed now.
IF = - ) THEN
(hs:ueHeader: IChi 1d' [Q) « NULL_RECORD
ELSC BCGIN
Oucuctieader: IChild! (Q) + leftRtT;
1SinlinglIChi ldl1eftRtT]) « Q
END:
GOT0 [eleteReturn
FND "x is 8 BO.";
rightfitT « 1SiolinglIChildix)); IF rightRLT = 0 THEN rightRtT « NULL_RECORD;
Fr « IChildix); 1SiblinglFr) « NULL_RECORD;
HHILE iCnild(Fr) « NULL_RECORD 00 Fr « 1SiblinglIChildiFr]);
¢oT10 ﬂerchornts
FND) "x is a root.”
IF Il‘hxldlpathlall - mlhli-Zl THEN DONE “"RootSearch™;
(IS |
END “HootSearch"
“u is 8 non-root nods in some tree other than the rightmost."”
pN « pathii);
rightRLT « pathli-1}; leftRtT « 1SiolinglpN}: i « i-2
END;

“He are here to dismantle the tree containing the node x; x is not the
roat of this tree, since that special case was handled above.

The dismantling proceeds top doun: large trees ars generated before smail

87



onca, At each step, there ic a forest of treces already saved, linked from
smalier to larger, in Fr, There is also @ node on the ’true’ path from x to
the root of the tree containing x, in pN. Each step begins by finding the
path node on the fevel on the next louer level. Any trees to the left of
thic louer path node are added to the forest: then a tree formed from PN

and the treecs to the right of the lower path node is added. Then the louer
path nade becomes pN, and the process repeats on the new level until the
level of node x is reached.

Hhen the disnontling begins, pN is the root of the tree containing x
Ak i an imdex in path such that IChild(pN) « pathii}.*

Fr « NILL RECORDS
HHILE THUE U0 BEGIN “{iounloop”
1Gave + g
WHILF TRUE 00 BEGIN “Rightt.oop®
It i-7 = 8 THEN DONE “UounLoop™:
o 1Chitdipathlil) = path(i-2) THCN DONE “RightLoop";
i« -l
END "Riahtl eop”;
If iSave ¢ i THEN BEGIN
ISinlinulpath{iSavel) « Fr; Fr « patnli+l) END;
IChildIpN] « pathli-1]: 1Sibling[pN) « Fr;. Fr « pN;
phle pathlid; i e i-2
END “Dounl onp®
IF iSave » 1 THEN DEGIN
ISiblinalpathliSavel) « Fr; Fr « path(2] END;
ISivlingipN) « Fr; Fr o« pN;
IF 1Chilalx) = NULL_RECORD THEN 1Ci id[pN] « NULL_RECORD
ELSE BLGIN
CHi T lplN] « 1Sibling[IChi1dEx) 3}
1ICiblinaltChildix]] « Fry Fr « IChildix);
HHILE 1Thitd(Fr] « NULL_RCCORD DO Fr « ISibling[IChiIdIFr))
ENDI;

Mergct orcentss
“The variables passed from abcve are rimft, rightRtT, leftRtT, Fr, G, and s."

IF rightRtT - NILL_KECORD THEN BEGIN " the righteost tree was dicmantlied.”

“lhe deletion can be completed now.”

QueurHeader: IChila! Q) « Frg

HHILE 1SinlinglFr) » NULL_RECORD DO BEGIN

1ISiblinglIChildlISiblinalFr])) « Fry Fr « ISiblinglFr} END;

1ISiblinalkr) « leftRtT; |F ieftRtT « O THEN I1ISibtinglICniidlieftRtT]) « Fr
END “the rightmost trece was dissantied.”
ELSC BIGIN “a non-rightmost tree uas dismantled.”

"Set up to merge Fr with the rightmost tree.”

Tr « rteRt;
IF -00(s) THEN BEGIN
“The queue cize is even before the deletion, so some trees in Tr'
#ill move up to become the smaliest lrees in the new forest."”
netfitmlit « Frg
s v 8/
WHITE -(D(s) DO BEGIN
ISibling[IChild[ISiblinglFr})) « Fry Fr « ISiblingl(Fr);
e o &/2 ENDy
wmeglrec « 1Sinhinglfr);
IF rightRYT « rtmfit THON
tightHtT « Fr :



LI ST RIGIN
ISiblinglFr) « 1SiblinglrtmRt);
1Sibling(IChildlISibling(rtmRt))) « Fr
£ ND
END
EFLSE BFGIN

*The queoue size is odd, so all children of the removed root will he used

to make the replacement.”
IF riahtRE] - rimbt THEN
riahtitT « NULC RCCORD
El SE BEGIN
neoHteltt o« 1SiblinglrteHt)
tGinhingLIChi IdineRtelit)) « Q
END:

"Ferform the first merge. The merge of B8's is handled specially in order

speed up the inner loop,”
mqlrece « 1SiblinglFr);
IF Keullir) > Keylfr) THEN
Tr o frg
IChitdlir) « Frg
FHD;

"Complete the merge.”

WHILE mrglree « NULL_RCCORD DO BEGIN
nmxtTree « ISiblinglmrglreels
IF KeylTr) > Keylmrgirer) THEN Tr o wrglree;
1Sibling LIChildlmrgTrec)] « ITHhildITr);
1Sibling (IChild{Tr)) « mrolree;
1IChildTr) « mrglree;
mglree « nxtirees

131 (N

"The mer e is complete; link the neuw tree Tr into the forest.”

1ISiblinglTr) « lefthtTs IF 1eftRtT » Q THEN iSibiinglIChild[leftRtT)) « Tr;

IF rightRtT » NULL_FECORD THEN BEGIN .
Ohsc:uchieadert IChi1d! (B) « Try
1ISibting [IChitdlTr)) « Q
END
EL SE BEGIN
Queuetieader: IChi Id! [Q) - newRtaRts
E".!Sibling(riyltﬂﬂl « Try 1SiblingIChiLd(Tr)) « rightRAT

END "2 non-rightmost treec uas dissantled. "

DeleteReturn:
QueucticadersSizel0Y « QueueHeader:SizelQ) - 13
1ISiLvlinglx) « IChildlx) « NLL_RECORD;
RE TURN (Q)

END "Dolete”s



FPROCEOHEL Haion (HFF(IHU_P('lN](’_H(OueueHeauur) 1, U

BEGIN "Union”
K CORE POINTER (Node)  ARKAY Bkl

CINTHGER i
Bk ie o stack of Bk trees whic
are propogated traouyh Beill,

corui il

te "additien®. “larcie-”
i e ntack pointer, d.ee,
RECUED FOINIERNoe) o T, v, rf

L

Cont N

et ated, s

1F points to the larges

3):
b 15 accumuiated for each stape of
The inteyer i

t iu the nuuner of trers in the stack.s
. tummys
st trec in the recult forest which has heen

INTLOER T, ofly
r1 « Queuet aters IChITdY LT)

&1 o WaueHender:Siceille
o) « UueucHeadee:Sice (s
dummy « NEW Kt CORD (Noue);
rF o« dummys

i v 0

rQ « Queucetieaders (IChitd! (@)

*The binary addition algorithm,®
“The B8 treen are handled specially tu renove tests from the inner loop.”

I Oftige1) 1HEN BEGIN
Pe idly Twlil o £l rl e
IF 00U(=Q) TILN BEGIN
Poe i+l BRI - O3 rQ -
IF i = 1 THEN BEGIN
1Sibtinglri) o D1y rf «
IF i - 2 THEN BEGIN
If KenlBkil)]) > KeylbBw (1)
Chita(Brtll) « BriYl;
e )
CND;
sl o« 172y <G« U/23
“The e neral step”

WHILE (<1 » @) v (sO » 8) [0

ISinbling(r1}l END;
iSiblinglry) END;
Bkllly i « 8 ENDy

THEN Bk (1) «~ Dk (2]3

BEGIN

1 o0(=T) THEN BEGIN
rT « 1SinlinglrT]l  END:

ioe 14d: Brii) -~ 1
IF 0U0(<N) THEH BEGIN

ie i4ls Beli) « rQ: v

I (io» 1) v ti = 30 THEN
15inlinglrF) « Bklily
vh oo BRlid: 4 & -t

131 11

IF Key
1Sibiing

IChitldlitk(11) « BkiZ);
-1

END:
sl « 8Q/2

el o« o1/2;

Ny
“Handle a carry of{ the end, it present.”

IF i = ) THEN BFGIN
1Sintinglrt) « Brilly
1GintingLIChi1dIBx1111)

b o« Bx(l)
ENDs

“Link the result inte Q,

1SintingleF) « O;
QueueHeader: IChitd! [Q) «

}IF i = 2 HEN BEGIN

ARk (11) > Keylik(2)] THEN Bk 1) » B (2]
HChitalBr(23)) = IChildiBRil)]);
15iblinal1IChildIBR11)1] « Bri2);

U « (Sibling(rQ) ENDs

BEGIN
ISiblinglIChildiBrlil)] « rFy

[ )

-:3'

kS

« rFy ::“’f':
-

-~

and ¢l T =

gr ut T.°

clear 2u —
(,.-A‘\

1Sibsl ing [dusmy) 1 52{5’

90



"At this point the dummy node can be explicitly dcallocated to save (C's "
IF tChildiQueueHeaders IChi 1d! (Q]) « NLL_RECORD THEN

1Sinting (1Chi td (QueueHeader: IChi1d! [Q1)] « Q;
Qucucticader:SicelQ) « BucucHeader:SizelT] + QueueHeader:Size(Q):

QueucHeaders IChi ld! {T) « NLL_RECORD;
Queucteader:Sizelll « 83

END "Union"s



Ce FAIL Implementations.

2,1 Binomial Queue using Structure R.

TIILE  ba

GIARTIL Binomial queue priority queue routines using structure H.

ENTRY  INS_BQ,DCL_BQ

IGAIL_Fe)
ISAIL P17

HLMOST..0
$S17E- 1

HCHILD. . B
4 STRLING--0

VKEYe oo ]

$INS_UF L tHALT
$DEL_UNLiHALT

iHegisters:

1GAIL result reqister for typed procedures.
iSAIL regular PUL.

+Node Fields:

tHeader node:
iPointer to root of leftmoat tree in forest.
iFulluord intedcer count of number of elements in gurue.

;Queue element (binomial queue) node:

stPointer tu leftmost child of this node (right half).
iPointer to next sib to left of this node (left hnif),
;1f no left sib, then points to rightmost sib incte o,
sFulluord integer or real key (i.e., node primityl.

:Trap handlers:
1Here on insertion into queus with SIZE < 0.
tHere on dcletion from queue with SIZE < @,



2e FAIL Implementations.

2,1 Binamial Queue using Structure R.

e oa
SURTIL Binomial gueue priority gueue routines using structure H.

ENTRY INS_BQ,DCL_BQ
sRegisters:

$SAIL _Re] 1SAIL result register for typed procedures.
$SAIL_bPe17 :SAIL regular PDL.

iNode Fields:

:Header node:
HLH0ST-8 iPointer to root of leftmost tree in forest.
$S17E~0 ) sFul luord integer count of number of elements in qurue.

;Queue element (binowial queue) node:
SLCHILD. - B iPointer to leftmost child of this node (right half).
1 GIBL ING-«0 iPointer to next sib to left of this nade (left haif),
116 no teft sib, then points to rightmost sib inctenrd,
$KEYe oo ) 1Ful luord integer or real key li.e., node priority).

sTrap handlers:.
$INS_LH L sHALT tHere un insertion into queue with SIZE < 0.
GOEL _Ur L:HALTY tHere on deletion from queue with SIZE < 8.



HGIN

18-
Tle
(7

Xe-

L 1R
HMR«~
NX TR«
Qe
Sle

+INS_BQ: HIRZ
AOSG
RS
neve
HE R2
HIRZ
stz
| SHC
QAL
HLRZ
MOVE
CAMLE
EXCH
HIRM
HOvSH
MOVEL
| SHC
Juey

H_LOOP: H RZ
tHIVE
CAILE
FXCH
HRRZ
HRM
Ht RZ
HHLM
L
HOVE |
LSHC
JRFGE

M_DONE: JNPN
HOVEN
HiLN

JRST
LINKIN: HRLR
Han

EXIT: SUB
JRST

BEND

INS_BQ

PNONEWN—®

+*
-

Q. -1(SAIL_P)
S,SIZE (Q)
INS_LFL
LIR,LHOST ()

1Binomial queue insertion

+LMOST_ROOT
1RMOST_ROOT
tNEXT_ROOT

.procedure INSERT (reference (NODE) X:

reference (QUEUEHEADER) Q)

'S « SIZE(Q) « SIZE(Q) + 1
1if S < @ then ERROR endif
sLMOST_ROOT « LMOST(Q)

HHR LSIKLING (LMR) sRMOST_ROOT « LSIBLING (LMOST_ROOT)

X, -2 (SAIL _P)
LSIBLINS(X)
5, -1
si,H _DOMNE

{LCHILD(X) « NIL;

t1if even(S) then

N)(IR L.LSIBLING (RMR) {NEXT_ROOT « LSIBLING (RMOST _ROQT)

18,KEY (X}
10,KEY {(RIR)
X, RIR
HR,LCHILD{(X)

3 if KEY(X) > KEY(RMOST_ROOT)
: then X « RMOST_ROOT endif
+  LCHILD(X) « RMOST_ROOT

RMR,LSIBLING (RMR) ; LSIBLING(RMOST_ROOT) « RMOST_ROOT:

{Handle first merge specially.}

R, (NXTR) : RMOST_ROOT ~ NEXT_ROOT
..—l i S+ 872
S1.M_DONE 1 loop while even(Sl):
?XTR.L?I?LI'(;(RI‘R): NEXT_ROOT « LSIBLING(RHMOST_ROOT)
8,KEY (X
10, KEY (RtR) : it KEY(X)} > KEY(RMOST_ROOT)
X.RIR s then X « RMOST_ROQOT endif
11,LCHILO(X) 1 Tl « LCHILO OO
RIR . LCHILD (X) 3 LCHILD(X) + RMOST_ROOT
TO,LSIBLING(T]) T8 + LSIBLING(T])
RIR,LSIBLING(T]) LSIBLING(T1) « RMOST_ROOT
T8.LSIBLING (RMR) ¢ LSIBLING (RMOST_ROOT) « T8
RIR, INXTR) 3 RMOST_ROOT « NEXT_ROOT
S,-1 t S « 8§72
S1,H_LO0OP t repeat

tendi f;
S.LINCIN 1if S s 1 then
X,LMOST(0) t LMOST(D) « Xy
X.LSIBLING(X) 3 LSIBLINGOX) « X
(3401 ielise
X.LSIBLING(LIR) 3 LSIBLING(LMOST T) « Xg
AR,LSIBLING(X) ; LSIBLING(X) « T_ROOV

sendi f
SAIL P, (3,,3)
e3(SAIL_P)
INS_BO 1ond (INSERT)



MGIN DEL_BO :Binomia) queue deletion
108 8
11 Py
(e 3
{ . 4 + L MOST_ROOT
IR, 5 +RMOST_RNOOT
NEHR- 6 © ;NEW_RIMOST_ROOT
e 7 +MERGE_CHILOD
FI'RED. 10 sHESULT_PRED
HIC~ 11 ;RMOST_CHILD
T 13
Gle Sql
HI ST_KEYTO
PRED- Tl
aKce- e
NU« S +NEXT_CHLID
sreference (NODE} procedure DeleteSmallest
*DEL _BQ:HRR2 a,-1(SAlL_P) : {reference (QUEUEHEADER) Q):
SOSGE  5,SIZE(Q) 1S « SIZE(Q) « SIZE(D - 1
JRST OEL_UFL +if S < 8 then ERROR endify
MOVE LMR,LNOST Q) +LNOST_RODY « LHOST (D)
HLRZ FMR.LSIBLING (LMR) :RMOST_ROOT « LSIBLING{LMOSY_ROOT) ;
CAIN AR, (LMR) ;i f LMOST_ROOT = RMOST_ROQT then
: iThe forest consists of 2 single tree, uhose root
: contains the best key in the forest. Remove the
+ root, making the neu forest from its children,
and ue're done.}
JRST {HOVE] SAIL_R. (LMR);DEL_BQ ~ LNOST_ROOT;
HRAZ 18,LCHILO(LMRI
MOVEN  70,Lh0ST (Q);LMDST(Q) « LCHILD(LMOST_ROOT)
JRST EXIT)
1else
: (The forest consists of more than one treec;
+ search the roots of these trees for the best key.
1+ Scan the forest from right to left, but use the
1 best key in the leftwost tree as an estimate of
: the best key in the forest.}
HLLIM RMA.LSIBLING (LPR) s LSIBLING (LMOST_ROOT) « NiLg
MOVE DEST_KEY,KEY(LUR); BEST_KEY » KEY(LMOST_ROOT);
MOVEl  PRED, (LMR) + PRED « LMOST_ROOT;
MOVEL  SUCC, (RtR) + SUCC « RMOST_ROOT:
NsT S_LOOFP
NEU_BST: MOVE BFST_KEY,KEY (SUCC)
(UVEL  RI'RED, (PRED)
POVED  PRED, (SLICC)
HLRZ SICC, LSIBL ING (SUCC)
WHFE  SUCC,S_DONE t loop unti) SUCC » NiL1
S_LO0P; CAL BEST_KEY,KEV(SUCC): 1 BEST KEY 2 KEY {SUCC)
JHST NEW_BST H then BEST_KEY « KEY(SUCC);
3 RESULT_PRED ~ PRED
] endif}
MNOvEl  PHED, (SUCC) : PRED » SUCC;
HLRZ SUCC,LSIBLING (SUCC) s SUCC « LSIBLING (SUCC)
ANPN  SUCC,S_LOOP 1 repeat;
S_DONC ; :.E,;Ré gaui_a.tsw.lwmonu-l,au « LSIBLING(RESULT_PRED) ¢
JAREN  SAIL_LR,NOT R 1 it DEL_BQ = NIL then

% {(The best key is in the root of the smallest
t iree in the forest. [ this root has children,

ok



HOVETL
JuRfL

SO_BEST:H RZ

HILY
JRST

SN_BEST:HRRZ

NOT_RnM:

S_000:

C_LOOP:

C_DONE :

S_EVEN:

ti RZ
HIWLH
HI.RZ
HRL K
JRST

HHRZ
HLRZ

HLLRM
JUWGE

HOVE]
SHOC

JUHEGE

HLRZ

L SHC

JURPL

HLRZ

CAIN

..HSI

HLRZ
JRST

HLRZ
CAIN

then they move up to become the ronts of the
smallest trees in the forest, and we're¢ done. )
DEL_BQ « RMOST_ROOT;
if even(S) then
{The best key is in an 5@ tree (uhich is
distinct from the leftmost trer.) Remove
the SO0 and fix link from the leftmost tree.!

SAIL_R. (RIMR)
S§1,5N_BEST

18,1 SIBLING(SAIL_R)

18,LSIBL ING (LR} ; LSIBLING(LMOST_ROOT) « LSIBLING (DEL_BA)
ExIT : else
: {The best key has children, Link them into
} the right of the forest,}

T1,LCHILD(SAIL_R)
T18,LSIBLING(T})
10,LSIBLINGILMA); LSIBLING(LMOST_ROOT) ~LSIBLING (LCHILD (DEL _BQ) )
T70,LSIBLING (SAIL_R)
10,LSIBLING(T]) ; LSIBLING(LCHILD(DEL_BQ)) « LSIBLING(DEL_BQ) ;
EXIT endif

else

{The best key is in the root of some tree other
than the rightmost in the forest. Children of
this root which are smaller than the rightmost
tree will move up into the forest: the other
children will combine with the rightmost tree
to form a replacement tree.)

11,LCHILO(SAIL_R

1]

H

)

! fMark end of children-list,.}
i

H

+

!

]

)

AMC,LSIBLING(T]) RMOST_CHILD « LSIBLING (LCHILD(DEL_BQ));
T1,LSIBLING(T]) LSIBLING (LCHILD(DEL_BQ}) « NIL:
S1,S_EVEN if odd(S) then
iSome, but not ¢ 1, children of bect root
will move up to be roots in the forest. !}
NRIR, (RIC) NEW_RTHOST_ROOT « RMOST_CHILD;
S.-1 S « S/2;
S1,C_DONE loop while odd(S):
RMC.LSIBLIMS(RI“C t RNOST_CHILD « LSIBLING(RMOST_ CHILD) ;
S.-1 ; S « S/2
S1,C_LOoP repeat;
Mc, LSIBLIMB(RNZD MERGE_CHILD « LSIBLING (RMOST_CHILD),
: (Now RMOST_CHILD is really the leftmost
i which uill move up. MERGE_CHILD is the
3 rightmost child which nill participate in
$ the merge to produce 8 replacement tree.|
RPRED, (RMR) t if RESULT_PRED = RMOST_ROOT then
3 ILSIBLING tink from RI‘DST CHILD ic same
3 as LSIBLING link to replacement tree. |}
{MOVE] RPRED, (RIC); RESULT_PRED « RMOST_CHILD
JRST n_LOOP) else
t iLink chiidren into forest now.|
T8,.LSIBLING (RMR) ; LSIBLING (RMOST_CHILD) «
T9,LSIBLING (RIC) ; LSIBL ING (RHOST_ROOT)
M_LooP : endif

H else

: iThe rightmost tree in the forest is an SO.

$ This will combine with all children of the

] best root to produce the replacement tree.l
NRIR,LSIBL ING (RI'R) ; NEW_RTMOST_ROOT « LSIBLING (RMOST_ROOT);
HHFRED, (RMR) $ it RESULT PF€D RMOST_ROQT then
$ iThe replacement tree will be the rightmost
: in the new forest, so the LSIBLING [ink
3 from the leftmost root uill be the LSIBLING
3 link to the replacemsent tree.)

b



n_LOOP:

M_DONE :
R_LNM:

R_N_LH:

EXITs

Hive |

th R/
NOvE
CAMLE
[ x(H
T HT]
IMIVEM

MWL
H R/
HOve
CAMLE
tEXCH
iRz
HRRM
Hl RY
MM
HILN
MOVE ]
JUNEN

CAIE
ST
INIVER
N
e
JHGT
HELH
L
JRST

H.RZ
HIRLH
JREN
HRLN
JRST
HILH
HeLn

RIHED, B ! RESWT_PRED « NIL
1 endify
: tThe merger of tuo S8°s is a special case,
s handled here.|
NC,LSIBLUINGURIC) ¢ MERGE _CHILD « LSIBLING(RHOST_CHILDI ;
10.KEY (FIR)
TO,KEY (F10) 3 if KEY(RIDST_RODT) > KEYA(RUOAT CHILO)
RHR, RIC : then RHOST_RUOT o RMOST_CHILD erdifg
RUC, LCHILD(RIW) LOHILDRHIOST _ROOT) « RIOST_CHILDS
RIC, LSTBLING (RIC) ; LSIBL ING (RMOST_CHILD) « RMOST_CHILD;
: LCHILD(RMOST_CHILD) « NIL;
: endif;
: iNow finish the merge.!
1, M_DONE : loop untit NERGE_CHILD = NIL:
NC,LSIBLING(IIC) NEXT_CHILD « LSIBLING (MERGE_CHILD) ;
108,KEY (RIR)
198,KEY (IC) : if KELY(RMOST_RCOOT) > KEY(MERGE_CHILD)
RIR,MC H then KHOST _ROOT « MEHGE_CH!LD endif;
T1,LCHILD(RIR) T] « LCHILD(RMOST_ROOT)
NCLLCHILD(RIWDY LOHTLD(RNOST_ROOT) « MERGE_CHIL D
10,LSIBLING(T1) T8 « LSIBLING(T]);
MC,LSIBLING(T]]) LSIBLING(T1) « MERGE_CHILO;
18,LSIBLING(MC] LSIBLING (FERGE _CHILD) « T@;
HC, (NC) : MLHGE _CHILD « NEXT_CHILD
M, H_Loor : repeats
: F tlts time to tie up the loose ends...!
SAIL_R, (LMWR) 3 if DEL_BQ - LMOST_ROOT
R_N_LM $ then
RIR, LMOST (G} H LMOST(O) « RIVIST_KOOT;
RERED, .43 ! if RESULT_PRED « NIL ’
RN, L‘Ql[‘.LlNG(R?R); then LSIBLING (RMOST_ROOT) « RNOST_ROOT.
EXIT else
NitIR, LSlBLlNG(R"R); LSIBLING(RMOST_ROOT) « NEW _RTHOST_ROOT;

MR, LSIBLIMS(RPRFDH LSIBLING(RESULT_PRED) « RMOST_ROOT
FXIT ’ endif

1 else
T0,LSIBLING(SAIL_R)
19,1 SIBL ING(RMR) ; LSIBLING(RMOST_ROOT) « LSIBLING{DEL_BQ);
RI'RED, . +3 fl it RESWT_PRED = NIL
?ﬂ;l LSlBLlNG(Llﬂl; then LISBLING (LHOST_ROOT) « RMOST_ROOT
X171 else
AR, LSlBLlM;(RPREDI; LSIBLING (RESULT_PRED) « RMOST_ROOT:
NAMR, LSIBLING (LIR) 3 LSIBLING (LMOST nnmmeu RTN)ST _ROOT
H endi f
H endi f
1 endif
tendif;

LSIBLING (SAIL_R) ;LSIBLING (DEL_BQ) « LCHILD(DEL_BQ) « NIL;
SAIL_P, (2,,2)

@2 (SAIL_P)

DFL_B] tend IDEL_BQI;



2.2 Leftist Tree.

TITLE LT
SUBTTL Leftiet trec priority queue routines.

ENTRY  INS_LT,0EL U

tRegisters:
$5A1L R :SAll result register for typed prare‘fures,
$SAIL_Pe17 1SAIL regular PUL.

iNode Fields:

sHeacdler node:

$HOOQT o 0 iPointer to roa' of leftist tree.
3S1ZEes ] tFulluord integer count af number of clements in qucue.,
10ucue element (leftist-tree) nodes
J0IST.e 8 ilength of shortest (rightest) path from this node to NIL.
SLEFTee ] :Pointer to left child of this nodc (left half),
RIGHT~+] sPointer to right child of this node (right half).
$KEYe o 2 sFuliuord integer or real key li.e., node priority).
1Trap handlers:
SINS_UFL:HALY sHere on insertion into queus with SIZE « 8.
$DEL _UFL:HALT iHere on deletion from gueve with SIZE < 8.



RG_LT:

QSHALL :

PSHALL ;

PNIL:
ON]L:

sLeftist trec insertion and deletion.

e 3 iHegisters used for linkage with MRS_LT
{Ule 4 shy INS_ LT, DEL LT,
e 15

BGIN  THG_LT

CUMENT e Procedure to merge tuo leftist trees. Called by JSP N.MRGLT,
silh the trees to be merged in Pl anod Q1; returns uwith result tree in Pl.
This procedure uses AC DIST to eliminate special checks for NIL in the
rebalancing prase; thus DIST should not conflict with ACs which the cailer
expects 1o be preserved: SAIL_P, SAIL_R, Q, and N. o

H. <

Tle 13

Ke- 11

{e- 7
ireference (NODE) procedure MRG_LT
1 {reference (NDDE) P,Q);
: iThe "rightmerge” phase merges the rightmoct paths
s0f P and U into a single path, p.eserving the
sproper ty that keys decrease froa the root touard
:the leaves. Since the next phéise uill want to
ttraverse this path from the leaves touard the roct,
1the path is |inked upnard, using the RICHT field.
:Al the end of this phase, R pointe to the louest
inode on the neu path, and P contains a "leftover”
s tree which uill become @ child of R.}

vt |l R,0 1R « NIL;

JR3T UNLOOP s loop until ONIL or PNIL:

HinZ T1,RIGHT (GQ1)
iR R,RIGHT (Q1)
HOVEL R, (@l

nevel QL (T1)

JE  Q1,0NIL : if Q@ = NIL then QNIL endif;
JHUFE  PLENIL ¢+ if P « NIL then PNIL endify
tWIVE K.KEY{P))

CANLE  K,KEY(QI) : if KEY(P) < KEY(Q] then

JRST OstaLL

HItRZ 11,RIGHT(P1) H T « RIGHT(P)}
1AM R.RIGHT (P} s RIGHT(P) « Rs
HOVEL R, (P1) s Re«P;
MOVEL  P1,(T1) 3 PeT
JRST DNLOOP

COMENT ¢ seec DSMALL ¢

3 else

s T « RIGHTIQ)

t RIGHT (@) « Rg

3 Re Qs

H Q17
s endif
jrepeat:
s then

nOvEL  P1,1(0Q1) s PNIL «> P « Qs O « DIST(P);

MOVE D.DISTIP1) : ONIL => D + DIST(P);
sendsg
s iThe "rebalance” phase marches up the path
tcreated by the rightmerge, interchanging the
1left and right children of nodes as necessary
110 guarantee that the resuit is leftist. At the
send, Pl points to the result.!
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novelr  niIst,e :DISTINIL) = B;
ST LELOOP sloop until R « NIL:
NOsWIoE:novel 0,14
HERN #1,RIGHT (R
MOVEU,: tuovin O, 0IST(R)
nover P, (R)
NOVELD K, (0)
UPLOOF': BI'E K, (N)
HRRZ QL. RIGHT (R} : O+~ RIGHT(R); {Here Q is the next higher nnde on
H R/ 11,LEFTHR) t the path, P is our partial result and i« leftist,
CAMG 0,017 (T11) t and D = DIST(P), Ue may need to interchange the
RS NOSUWI TCH t children of R,
SWITCH: MoVl D,0IST(]) t if D> DISTILEFT(R)) then {0lo the interchange.|
hovel  0.1(0) : D« DISTILEFT(RI) + 13
Hro TL.RIGHT (R) : RIGHTIR) « LEFT(R);
HRL T 1 LEFTIR) H LEFTIR) « P
JR3T HOVELP
s+ else [No interchange is needed. |
CUMMENT o see NUSHITCH o DeD4+ 1
3 RIGHT(R) « P
: endif;
:+ INou cumplete R and move up the path.!
COITIENT e see NOVEUP o ngT(m « 0
; « R:
i ReQ
srepeat
HE-ND (a I send MAG_LTI;

BCGIN  INS_L

1« 0
Q- 2
iprocedure INS_LT(reference(NODE) X;
*INS_LT:HRRZ 0,-1{SAIL_P) : reference({lT_QUEUE) Q);
AQSG SIZE(Q) :SIZEQ) « SIZE(Q) + 13
ST INS_UFL 1if SIZE(Q) < @ then ERAROR endi f;

MUVE £1,R00T Q)
1iRRZ 01,-2(SAIL_P)

hovel 1,1

BOVER 17,0157 Q1) 1DIST(X) « 1}

SETZIt  RIGHT(@)) +LEFT(X) « RIGHT(X) « NIL;
JIsp N.HRG_LT

ovent  P1L,ROOT(@) $RODT(Q) « MRG_LT(ROOT (Q) ,X)

a8 SAIL_P, (3,,3]
JRST e3(SAIL_P)

BCND INS_LT tend (INS_LTis
HEGIN  DEL_LT
Q- 2
sreference (NOCE) procedure DEL_LT
MEL_LT:IRRZ 0.-1(SAIL_P) t (reference (LT_REUE) Q)
SOSGF SIZE(Q) 1SIZE(Q) « SIZEW@® - 13
ST eL_UFL 1if SIZE(Q) < O then ERROR endif;

HOVE SAIL_R,ROGT(Q)  ;DEL_LT « ROOT(Q); -

11374 01, RIGH: (SAIL_R)

td R2 P1,LEFT(SAIL_R)

JoP N.MRG_LT

NvEn  P1,ROOTIQ) sROOT (A} « MRG_LT{LEFT(ROOT(Q)) ,RIGHT (ROOT (Q)))
SLR SAIL_P, (2,,2)

st e2(SAIL_P)

BFND DEL_LT tend IDEL_LTi;
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