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: 3 Deletions That Preserve Randomness

1 | : Donald E. Knuth
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3 Abstract

3 : This paper discusses dynamic properties of data structures under |

2 insertions and deletions. It is shown that, in certain circumstances, 1

E | the result of n random insertions and m random deletions will be ;

equivalent to n-m random insertions, under various interpretations of :

3 | i the word 'random' and under various constraints on the order of insertions 3

3 2 and deletions.

3 3 Index Terms: Analysis of algorithms, binary search trees, data organization, J}
E deletions, priority queues. |
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J Deletions that Preserve Randomness E

a | When we try to analyze the average behavior of algorithms that operate i
3 . on dynamically varying data structures, it has proved to be much easier to 1
F | deal with structures that merely grow in size than to deal with structures i
} | that can both grow and shrink. In other words, the study of insertions into i
1 : data structures has proved to be much simpler than the study of insertions |
>. J mixed with deletions. One instance of this phenomenon is described in [5], ¥
: ; where what looks like an especially simple problem turns out to require
3 | manipulationswith Bessel functions, although the data structure being :
3 | considered never contains more than three elements at a time. i
3 Occasionally an analysis of mixed insertions and deletions turns out £

J to be workable because it is possible to prove some sort of invariance J
f | property; if we can show that deletions preserve "randomness" of the 1
} structure, in some sense, the analysis reduces to a study of structures :
i - built by random insertions. The purpose of this note is to investigate

J some simple properties which imply various kinds of insensitivity to {
. | deletions.

. : Let us say that a data organization is a class of data structures

1 i together with associated algorithms for operating on these structures; for |
i | 3 example, consider binary search trees together with algorithms for searching |
2 3 them, inserting into them, and deleting from them. We shall restrict

4 £ attention to data organizations which depend only on the relative order
: | 7 of the keys of items being inserted and deleted; in other words, if we

3 ; consider the two data structures formed by the sequence of operations
; i A(x) 5 (5) 5 wens A(X) "WRIT ws

t 3 : 3 NF 4 "



3 where each A, (x) means either 'insert an element with key x' or |
3 'delete an element with key x ', the two sequences should produce 5

8 isomorphic data structures if x. < %, holds whenever Yi Ss Y; y for 1
9 all i and j . Such data organization schemes are quite common:

: Binary search trees with or without height-balancing or weight-balancing }

d [7], 2-3 trees [1], leftist trees [7], and binomial queues [8] all have :

4 this property because they operate entirely by making comparisons on :

«gh ' 5

Eo :



| | 2. Preliminary Definitions.
| § Let I(x) denote the operation 'insert an element with key x' ]
: | . and let D(x) mean 'delete an element with key x'. We shallbe dealing

with sequences of operations

Ay(2) 5 B02) 5 ees 5 A (3) :

A | where each A; is I or D, and where each insertion I(x,) introduces |
| an element x; which is distinct from x),...,x;; ; at least this holds |

with probebility 1 . Furthermore D(x) will make sense only if x4
1 has previously been inserted and not yet deleted; in particular, the number 3
i of D's must never exceed the number of I's; counting from left to right.

4 Since we are assuming that the relative order of keys is all that

| : matters, not their precise value, it suffices to restrict attention to keys 1

| {1,2,...,n} when there have been n insertions. If Ys ¥pr every, is a

1 - sequence of n distinct keys, let 1

: : (yy ¥p eee Vp)
; be the canonically reordered permutation of {1,2,...,n} obtained by mapping

the j-th smallest key into the number Jj . For example, |

/- o(8 ne29)= L213.

i Ir X12 Xs eeasX is a permutation of {1,2,...,n} , we write 5
| : (x Xo eee Xp)

: ; for the data structure obtained after the sequence of insertion operations :
3 I(x) I(x) «ev T(x) © |

| ; Finally we write

y nn R(x Xp soe x, \J) = Yq ees poi :

1 = if the operation of deleting Jj from 5(xq Xn eee Xp) and renumbering yields

Wo 5



| structure (yy ey Yp-1 , where Xq Xp eee Xo is a permutation of {1,2,...,n} , :
yy ese ¥,_, is a permutation of {1,...,n-1} , and 1 <j <n.

It is possible for several input permutations to yield the same 3

] structure; in other words we might have S(x4 Xo ees x) = s(x] XS eee x!) }
; t ft ? . . . 3

: although Xx; X, ees X # X] X5 «eo Xo In this case the R notation is

not uniquely defined, since any permutation Yy eer Yp1 yielding ]

3 S(yq ee ¥,.1) could be used as the value of R(x; %, cer x, \J) ,
3 However, we will assume that a particular Yy +++ ¥p.1 has been selected 3
| . a -— 1 J 1 . . o
| in each case. Thus, if s(x Xp es x) = S(x; X5 00 x’) we might wish

to define R(X) X5 eee X \J) # R(x} X) ees % N34) even though it will be :

: | true that S(R(x; Xy eee x \J)) = S(R(xg X5 eee x: \J)) . Some of these
definitions of R will be better than others; a typical theorem to be

| proved below states that deletions will preserve a certain kind of randomness 3

| if it is possible to define the R function in a certain way. ]
| The R function can be used to define a deletion operation on 3
F 3
; permutations in the following way. Let =n be any permutation of n 3

| distinct elements (not necessarily integers), and let u be the j-th ;

: smallest element of . . Then we define a\u (with respect to a given R
‘| function) to be the unique permutation of the elements of =n other than u 4

1 such that 3
4 o(m\u) = R(p(M\J) » E
1 For example, let =n = 3325 and R(k213\2) = 132 ; then nf3 = 255 . 3

| =

3 | b



: 2. Examples. ;

E f Perhaps the simplest kind of data structure is an unordered linear

q list, where an insertion is done by simply appending the new element at

: the right of the list and a deletion is done by deleting the element and 1

closing up the space it occupied. Then S(x,y Xy eee x) is the linear

list (X19 Xr eer X) » and R(x) X5 eee x \ J) = p(Xq eon Xp J Xpyiq eee X) i
where x= J . In this system the representation preserves all information 1

| about the order of insertion.
2 At the other extreme we might consider a sorted linear list, in which

| s(x, Xp oo x) = (1,25...,n) for all permutations Xp Xy eee X of :

| {1,2,+..,n} . In such a system R(x; x, ANE x, \ J) can be defined to be
] any permutation of {1,...,n-1} that we wish, as a function of xq Xy eee X 3

. and J . J

| " In between these extremes lie many other regimens, and binary search 1
trees prcvide a simple but interesting example. This system defines :

| (xq X5 "os x) as the empty binary tree if n = 0, otherwise (x; Xp eee x) 4
E consists of a root and two subtrees; the left subtree is S(p(yq vos Yy)) |
E i

x : " ' 1 !
and the right subtree is S(p(yy “o's Yen) , where (v1 cee 9 YY vee Ys 1m)

2 are respectively obtained from Xq eee X by striking out all elements

3 (2% 2 x1) . Furthermore R(X) X5 eee x \ J) = p(Xg eee Xp 3 Xppq eee X)
3 or p(X) eee X, 1X, 5 eee X) » where x, = J and x, = j+tl1 if j <n;

1 r here X is deleted 1f J=n or 1 < k , otherwise X, is deleted. 3
: For example, :

g oa (213) = S(231) = NN



: and deletion is defined as follows when n= 3% : |

R(123\1)=12 , R(123\2)=12 , R(1L23\3)= 12 ; |

R(132\1) =12 , R(32\2)=12 , B(I32\3)=12 ; |

} R(213\1) = 12 , R(213\2)=21 , R{(213\3)=21 ; |
i R(231\1} = 12 , R(E31\2)=21 , R{(231\3)=21 ; |

| RG12\1) =21 , R(312\2)=21 , R(G1l2\3)=12 ; :

| RE2I\1) =» 2) 5, R{(321\2)=21 , R{Z321\3)=21 . :

| |

| Fo
* 3



| 5. Deletion Sensitivity and Insensitivity.
| . From an intuitive standpoint, we wish to show that certain data |

organizations satisfy theorems of the following general character:

; "Given a sequence of operations containing n random insertions and m |
£ random deletions, in some order, the result is a random data structure

| on n-m elements; i.e.,, it has the same probability distribution as we: would have obtained by doing n-m random insertions.”

The first such theorem was proved by T. N. Hibbard [3], who showed i

| that binary search trees have the following property: create a binary
tree by inserting n distinct elements in random order, then delete one i

| of them chosen at random (each being equally likely). Then the resulting
| tree shapes have the same probability distribution as we would have generated r
| by inserting n-l1 distinct elements in random order. We shall call this 1
' | . one-step deletion insensitivity, abbreviated " I'D, " + (The motivation 4
| for this abbreviation will come later; it essentially means "any number t
| of random insertions followed by one random deletion.) t

| Our definitions make it fairly clear that a data organization has the i
, I'D, property if and only if it is possible to define the R function so |
b | that, for each n , the nen! values of R(X; X, oe x, \J) comprise each

; | of the (n-1): permutations Vy eee Vpo1 exactly ne times. For example,
| the tableau above for binary search trees with n = 3 shows "12"and "21" 1
1 3 each occurring 9 times. J

2 ; Proof’: The "if" part is obvious. Conversely, consider a data structure :

PE ! p ¢ which is equal to S(yq eee v1) for exactly s different

| : " permutations yq eee¥V,7 ©f {l,..e;n-1} + The I'D, property
: 1 ctates that n random insertions followed by one random deletion

: : chould produce this data structure with relative frequency s ;



in other words, the nen! values of S(R(xy 2, +00 x \J)) as Xq X5 eeeX |

1 ranges over the n! essentially different insertions and the n essentially |

3 different deletions should include the given structure © exactly ns : |
4 times, By redefining R(%) X5 eee x \J) if necessary we can ensure that
i each of the s permutations Yy+re Yn occurs exactly ne times. :
1 The I'D, property might seem to be all that one needs to guarantee :
3 insensitivity to any number of deletions, when they are intermixed with |
y insertions in any order. At least, many people (including the present :
] | author when writing the first edition of (7]) believed this, and the subtle

: fallacy in this reasoning was apparently first pointed out by Gary Knott J
in his thesis [6]. Before we proceed to study stronger forms of deletion

3 insensitivity, it is important to understand why the problem isn't entirely
| trivial, so we should look at binary trees more closely. |
{ Consider the following process: 1

(1) Create a binary search tree by starting with the empty tree . E

3 and inserting three independent random real numbers, uniformly

5 distributed between O and 1 . ;
p | (ii) Delete one of these three numbers, selected at random (i.e., |
; each is selected with probability 1/3 ). 1

| (iii) Insert a fourth independent random real number uniformly
3 distributed between O and 1.

| Since the binary search tree organization has the ID, properly, we Know 3

| Bd that the tree remaining after step (ii) will be like a random tree after -| two, insertions; i.e., Wa and i will be equally likely. .
| | : Furthermore it ic easy to verify that the element x inserted in step (iii)
3 | ic equally likely to be smaller than, between, or larger than the two



i i da Sd

: elements remaining after step (ii); for example, the probability that
] x will be the smallest remaining element is 1/3 . Therefore the
3 v insertion in (iii) would seem to behave as the random insertion of a

3 third element into a random two-element tree,

Yet when we analyze carefully what happens after steps (i), (ii),

i (iii) have been performed, we find that the tree v5 is obtained
4 with probability 25/72 , not 1/3 . (See [5] for a detailed study of
; this process.)

The fallacy comes from the fact that the probabilities for the result

3 of step (ii) and the relative position of x in step (iii) are not
] independent. If we are given the fact that the result of step (ii) was

i ho , the conditional probability for element x to be smaller than

9 the two remaining elements turns out to be 13/36 , not 1/3 , since this

; | : arises when x is the smallest of all four elements (probability 1/4 )

1 and when x was second smallest but the smallest was deleted (probability
: 1/4 times L/9 , since Lk of the 9 cases where R(xp %5%5 \ J) = 12
j have j= 1 ). Therefore, inserting a random element in [0,1] is not

equivalent to inserting a number with probability 1/3 of being smaller

A | than the two remaining, even though a random element in [0,1] does

| have (unconditional) probability 1/3 of being smaller than the two

4 remaining.
| p

a. Rs
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; |
§ 4. Further Definitions. i

; | The above example shows that deletion insensitivity is not as simple I
| as it may seem at first, so we need to be somewhat careful in our treatment. i

. In this section we shall define several types of insertions and deletions £
which lead to types of insensitivity that seem to be of importance. The F

3 following shorthand notations will prove to be convenient: F

3 L. stands for insertion of a random real number from some continuous 1
1 distribution; for example, the distribution might be uniform on the 3
] interval [0,1] . Each random number inserted is assumed to have the

] same distribution, and it is to be independent of all previously
1 inserted numbers. Thus, if we look at n such random numbers I
§ 13

1 | X13 XnseeesX, , the nl! possible orderings px) X5 vee X,) are equally i
1 | ‘ikely, and the particular distribution involved has no effect on the t

behavior of the data organization.

I, stands for insertion of a random number by order, in the sense that

the new number is equally likely to fall into any of the d+l1 intervals
® v

y | defined by the d numbers still present as keys after previous !

| insertions and deletions; this is to be independent of the history
Z by which these d numbers were actually obtained. The example in |
ge the previous section shows that this is a different concept from 1, ;
1 : it is a somewhat artificial kind of random insertion, but it may be a |

sufficiently good approximation to reality in some applications, and |

] it agrees with 1, before any deletions have taken place.
?



% 4 |

I stands for a "biased" insertion of a random real number obtained as 4

1 | follows: Generate an independent random number X with the exponential
| 2 distribution, so that 1-e"% ig the probability that X < x . Insert
4 the number X+t , where t denotes the key most recently deleted :

i (or O if there have been no prior deletions). Such insertions arise |
: naturally in priority queue disciplines, where the element with

3 smallest remaining key is always chosen for deletion; the keys can be
J thought of as specific moments of time when events take place. In

: | this interpretation the exponential deviate X represents a random

J "waiting time", so that X+t is the time when a newly inserted event
: will be deleted if the most recent deletion occurred at time t .

; (Another way to produce biased insertions is to generate a uniform :
1 | real number X in [0,1] and to multiply it by the most recently

deleted key, or by 1 if there were no prior deletions. This corresponds |

] : to the above distribution if the largest key is always deleted, since
; it is essentially isomorphic under the mapping f(x) = -log x .) ]

2 D.. stands for a random deletion, in the sense that if d keys are present
2 each is chosen for deletion with probability 1/4 . :
i. |

2: D, stands for a deletion by relative order or rank, in the sense that if

a d keys are present and if some number Jj between 1 and 4d is :
A : specified, the j-th smallest element is deleted. Such a J is specified |

3 : in advance for each deletion. 3
} h : B, stands for "priority queue" deletion, the special case of D, in which 1
: ; J 1s always equal to 1.
i § -



J D, stands for a deletion by relative age, in the sense that if d keys

: are present and if some number k between 1 and d is specified, 5

R the k-th oldest element (the one which has been present k-th longest)

; is deleted. Such a k is specified in advance for each deletion.

2 Ds stands for a "fifo" deletion, the special case of D, in which k is
5 always equal to 1 ,

3 D, stands for a "lifo" deletion, the special case of D, in which k 1s

| always equal to the current value of 4d . |

J Using these abbreviations we shall talk about four different kinds of

¥ deletion insensitivity: |

I'D means any number of insertions followed by one deletion; }

3 10 means any number of insertions followed by any number of deletions; | i

3 1"p1” means any number of insertions, followed by one deletion, followed E

3 by any number of insertions; |

i {1,0)* means any number of insertions and deletions, arbitrarily intermixed.

| (Of course we also require that deletions never outnumber insertions.) The J

5 I's and D's will have subscripts to identify their type; for example, r

| (1,5Dp)" stands for any number of insertions of random uniform numbers ' 3

| intermized with fifo deletions. In the first two cases I'D and ID", 13
-~ however, no subscript will be given to the I's since it is easy to see that \
j ,

- (I,,I,1,) are all equivalent until the first deletion has occurred. (
| :

inl * ’

A We would like to say that a data organization has the (I,5Dp) %

property if operations (1, Dp) always produce an essentially random data 3

structure; a data organization might similarly have the I'D, property, and i
co on, Thece intuitive notions might be formalized as follows, in

I.. ——



terms of the R function for that data organization: Consider a sequence

p ’ of operations

3 | ' A(uy) 5 Aus) 5 eens Ap(a,) |

3 which includes n insertions and m deletions; each A; (u;) is an i
- insertion or deletion of a given type (e.g. an 1, or a De ). We define

bs a permutation Tt of the u's remaining after 1 steps as follows:

3 T is the null presentation;
| if A (u,) is an insertion, n is 4 followed by uo

if A; (u;) is a deletion, #1; 1s the permutation Tp \Us defined

1 in Section 1 above, J

b In other words the R function gives us a way to convert deletions on

; | the given data structures to deletions on permutations of the keys. Each

: permutation has the property that the data structure obtained after i J

' steps is exactly the same as the structure which would be created by inserting 4
the elements of Ts in order from left to right (without deletions). |

: For example, consider the operation sequence E

1 | 1(0.5) ; 1(0.2) 5 1(0.6) , D{05) , I(Ou})
y, on binary search trees; then :

i Mt, = 0.5 0.20.6 , mo = 0.60.2 , ng = 0.60.20.k , ¢
4 since p(m,) = R(213\2) = 21 .
| : After n insertions and m deletions we will obtain some permutation i
| : Nein of the remaining n-m elements. An R function will be called :
: : incengitive to deletions if the elements of Tn ore in random order

| : after such a cequence of random insertions and deletions, i.e., if the :

| ' ; resulting permutations p(n,) of {',...,n-m} are uniformly distributed.

E 13



| According to this formal definition, it should be clear for example

1 that a data organization has the I'D, property if and only if it has «

i a. R function which is I'D, deletion-insensitive. On the other hand |

ph our definition uses only the R function, not the S function, so we 3

3 are actually distinguishing between different permutations which might :

4 yield the same data structure after insertion; we are therefore talking ;

- about rather strong forms of deletion insensitivity. This aspect of our

4 model is discussed further in Section 9 below.
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5. Reducing the Number of Cases.

1 : With three types of insertions, six types of deletions, and four ways
| . to combine them, we have defined 6+ 6+ 18+18 = 48 types of deletion

insensitivity, namely I'D, , I'D, a! I'D}, I'D, tee 3TD 225 444s IDhoy ; |

3 (ID) > (1,,D,) oie (2,00, . But many of these are uninteresting, |
3 since (for example) biased insertions are probably meaningful only in

3 connection with priority queue deletions, type Dy .
i It is well-known that the exponential distribution is "memoryless", in
: | the sense that if X is an exponential deviate and if we are told that |

X > Xq , the conditional distribution of X=X5 given this knowledge is

| again exponential. This suggests that (TD) is actually equivalent
to (Top Dg)” , a fact which was first proved rigorously by Jonassen and

4 Dahl in their study of priority queue algorithms [4]. Therefore we need
3 : not consider I any further.

. A sequence of random operations with insertions of real numbers can

] be converted to a discrete probability space in a simple way, because our |

. data organization is assumed to depend only on comparisons between distinct |
- keys. If there are n insertion operations of type Ip y We can assume |

b | : without loss of generality that the numbers inserted are the integers ' 1
3 : {1,254405n} in some order, and that each of the n! permutations is |
2 : equally likely. On the other hand, suppose that the insertions are of

1 : type 1, , where the structure contains respectively dysdnyy ecard elements ]
a ? just before each insertion; then the number of equiprobable cases to

5 | ; consider is (d;+1) (do+1) ‘oe (d,+1) . Furthermore if we are doing m |
5 | y : random deletions of type D_,, with respectively dj,...,d elements |

5 : present before the deletions, we should multiply the number of equally :

1 cool 15
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3 probable types of insertions by di eee d the number of different ways

i to specify the deleted keys. ;

y For example, consider again the sequence of operations LA lvPuis :
: discussed in Section 3; we have n=4, m=1, d =3 , so the number

p of equally probable ways the algorithm might behave is mn. xdj ... a. = :
] 2h x3 = 72 + In 25 of these ways the resulting data structure is vO, : 3
4 agreeing with our claim that the probability of this tree is 25/72 . i
i Furthermore it turns out that the final permutation p(n) will be 231 }
1 in 13 cases; this confirms that the probability of obtaining TN 3 ;

| given that the tree after the deletion was ji (i.e., given the 3€

: | cases with p(m) = 12 ), is 13/36 . On the other hand if the operations |
: had been IT IDI , wehave n=1h, d,d,dd) =0122, m=1, df =7, |
1 so the number of equally probable ways the algorithm might behave is

| 1e2¢3e3 xd) eee d= 54 , Under this model (which corresponds to the fallacy }
| discussed in Section 3), the tree « \\ occurs with probability 1/3 ; 4

in fact, it is not difficult to prove that the R function given for binary ]

search trees 1s {z.,0,.3* deletion insensitive, by writing down the
; reasoning which might have led us to believe (fallaciously) that it was |

: | (14D) deletion insensitive. ]
1 It is impossible for an R function to be ID I, deletion insensitive, :
1 In fact, this is obvious, for the operations LIS lead to six | 3
1 equiprobable values of mT), (namely 23, 32, 23, 31, 32, and 31 ), £
3 | hence o(m,) = 12 with probability 1/3 and p(m),) = 21 with probability 2/3. Ia

1 This holds for all R functions, since R(x,%,\J) is forced to equal 1. :
: | since Dy is a special case of Dy » no R function can be 120 1% deletion ;
i | insensitive either, much less (I5D,)" « Fortunately such types of :

incencitivity do not ceem to be very important in applications. ¢



| The fact that I'D specifies a smaller class of operations than 3
1 0 or orf , and that these in turn are smaller than (1,D)* , means

| . for example that 1
: (1, D,.) , TD. - I'D, :

any R Shaion which is (1,,9,)" insensitive is also ID. sy etc, :
Similarly the fact that D, is a special case of D_ means that |
insensitivity under D_ implies insensitivity under Dg ; and insensitivity

: under D, implies insensitivity under both De and D, . Furthermore,

| insensitivity under either Dor D, implies insensitivity under D. » :

| since D.. corresponds to a sum of disjoint cases with the Jy 's or k, 's
| | varying in all di possible ways.
| | Thus there are many obvious implications between the various types |

‘ of deletion insensitivity which remain to be investigated; and we will

| find that many of these are actually equivalent to each other,

| ; The first equivalence result is, in fact, obvious:
Lemma 1. Let D be D., Dj or D . Then :

(1,0) =» Ti’ =» 0° =» Tp .

: | . ol *_¥ * * *__* *
; | Proof. Since (I,,D) TD =»>TD, and (ID) = IDI = ID, it remains
2 a to show that ID = (1,0) ; 1.€.y, we need only prove that one-step deletion |
| t sensitivity implies full (1,,D)" insensitivity. But this is obvious since
3 we can prove that p(n.) is uniformly distributed after an I insertion if |
3 p(n 9) was, and one-step insensitivity implies that p(n, ) is uniformly

| ; ' distributed after deletion if p(n,;) was. Thus p(n,) is uniformly |
PP distributed for all i . UO |

E 3 |



anit : * RE :
: Similarly when D is D, » De , Or D, we have I'D =) IRA - :
2 but I'D* need not be equivalent to these, since the first deletion |

: might "confuse" the ages of the remaining elements. For example, the

3 reader should have little difficulty constructing R functions which
.- * * * :

4 are ID, insensitive but not I D, insensitive. :

z ]

pK i 18 y



Oe Necessary and Sufficient Conditions.

4 We can make further progress in understanding deletion insensitivity

| \ if we convert the definitions into properties of the R function. Let

| Pr be the set of all permutations on n elements; and if x is such a |

permutation, let Xp be its k-th element, from left to right, for

| 1<k<n. It xeP and YEP, 4 we write |
[x\J = ¥]

for the function of x, j, and y which is 1 if R(X\J) =¥ » |

| otherwise O . In terms of this notation, the following lemma is an

immediate consequence of the definitions: |

Lemma 2. An R function is |

* E

| (a) 1'D, insensitive if and only if ZT [x\j=v] = n° , for all |
xebP }

n ]

l<j<n J

. y € Pa and n> 1 ;

(b) I'D, insensitive if and only if XL [x\j =y] = n, for all |
Xe P E

n 1

a | :

fo yeP,.1 and n>gJ>1; ]

1 (¢) I'D. insensitive if and only if © [x\l=y] = n, for all :| . < xeP E

Eo % . :
ke 3 y€ Fp.1 and n > 1 5 {

I (d) I'D, insensitive if and only if IT [x\g =y] = n, for all
| J. Xe¢ Pl ]

| : YeF,..q and n>k>1;



pl |

| :

| (e) ID, insensitive if and only if b [x\x, = yl] = n, for all
xebP ]

n 3

a yeP 1 and n>1;

: (f) I'D, insensitive if and only if 2 [x\x,=y] = n, for all

: yeP, and n>1. O |

3 Clearly (b) = (ec), (d) = (e) and (f), and (b) or (d) = (a), as we already |
I

| knew. Furthermore it is easy to see that these are the only implications
| between the six types; we might have (e) and (f) and (c) but not (a), etc. :

The next result is less obvious, possibly even surprising, since it

: | states that a comparatively weak form of deletion insensitivity is |

| equivalent to a comparatively strong property.

: metre 0 rrr rrr |

p £ ai * »* * nl " * ¥* + || roof. ince (I. D,) = 1.DI , we must only show that IDI = TD

b ard LD, (I, D,) : |
| Assume first that a given R function is IDI deletion insensitive, 3

4 and consider the sequence of operations IDIv for some fixed n . Any 1

i of the ne(ntl)! equally probable realizations of such operations defines

a a sequence of permutations ,eeesT such that p(t 40) is a
K

1 uniformly distributed permutation on {1, 2) cess} 3 hence every possible 3
‘ | permutation p(T yn) occurs n(n+l) times. Let JCPY = ¥p eee Vy1Vy
IN - ' ' =n ‘ 1

and Tap = Yq eee Yn ? where Yn = d # and suppose that t is the |

B" element missing from yi coe » where 1 <t < n+l ; then y; = yi or i

Ei ps y;-1 according as Yi <t or Vi >t . The number of ways to obtain 1
N p(Mp4p) = Vp eee ¥p¥p 18 :



| . 1<t<ntl XeP XeF |
Ee - ii n n s

9 > 3 t 53 :

XxeP Xe?
4 n n

1<t<n

a ¥ PY n-1
xeP |

i n

Ti }
: by Lemma 2(a), since R is I D, deletion insensitive; and this equals

| n(n+tl) by assumption. Therefore R is I'D, deletion insensitive by
: Lemma 2(b). |

i | Now assume that a given R function is I'D deletion insensitive,
and consider any given sequence of operations Aq (uy) 5 “avy Brrr) :

| . corresponding to n I.'s and m D's, where there are respectively :
Ais ecard elements present before the deletions. Any of the ned ves 4. ]

:
equally probable realizations of such operations defines a sequence of

3 permutations Myreees or » where the keys inserted are {1,2,...,n} in
: ! :
| come order, and we wish to prove that each of the (n-m)! possible values i

: :

| + ] L] ' ! 3

| | of om , ) occurs nid)... dr/(n-m). times. Let z,,...,z be the
Ba | ’ elements deleted, so that =n _ 2. ... 2 1s a permutation of the n i
E, - : mn 1 m |

| i elements inserted. We will prove that each of these n! permutations

8 H occurs exactly dy ees dy times.
| | . In order to avoid cumbersom notations, a single example should suffice i

a | : to explain the basic idea. Suppose the sequence is 3

Rr . Le Ip Ip Ip 1 Dp 1. Dp Dp 10 1, |



: sothat n=8, m= 3, 4454, = 55L4 , and suppose we want to count |
how many realizations will yield =m; =51637 and 212,25 = 82% . |

a Working backwards, we must have Ty =516 , Ty = a permutation on |

3 {1,4,5,6} such that ng \l =Tg, Wu =a permutation Xq Xo Xs X) Xo :

3 on {1,2,4,5,6} such that 1,\2 = ng, and T= a permutation on :

3 {x5 X53 X35 %) 8] such that 15 \3 = X)X5%X) By Lemma 2(b) the
: ~ number otf choices for QQ is L , and for each Tg there are 5 :

1 suitable 's, and for each To there are 5 suitable 's, ]
E | hence there are djdld; solutions. It should be clear that this i
3 method of proof is completely general. Od i

This completes a characterization of deletion insensitivity :

involving D, , D_ and D, : We have three classes :
¥ ;

3 * *5 * * pik *5 |(I, D,.) » 154, * 1 r © 1 r E

* * * LE * * * ¥ E

(15D,) = IDI, ® ID, » ID, = pI, =» (1.0) :

* * * * * * i

: (140) » IDI, =» ID, » ID, :

p | " * A, ¥_ _* . : 3
4 and (I. D3)" (I. Dy) » IB1, » IDI, are impossible. 3



> | 7. Age-sensitive Deletions. ;
| Let us now consider D, more closely. |

¥ | Theorem 2. An R function is 1D I deletion insensitive if and only |

1 if, for 1L< J)E<n and all ye Pat » there exists a unique Xxe¢ 2.

4 such that x_= J and R(x\J) = y . 1

" Assume first that a given R function is Ip. deletion insensitive,

: and consider the sequence of operations 10%, for some fixed n , where |

| the deletion operation removes the k-th element inserted. Any of the :
(n+l)! equally probable realizations of such operations defines a sequence

J of permutations my,...,7% ,, such that JEP is a uniformly distributed |

3 permutation on {1,2,...,n} , hence every possible permutation p(n.)

occurs n+l times. Now argue as in Theorem 1 with the extra restriction

| that xe¢ P is such that Xo is the element being deleted; using .

3 Lemma 2(d) we find that the number of ways to obtain p(n nr) = ¥y eee ¥,_ 19, |

n t

2 | when y = J, hence the condition in Theorem 2 is necessary. |

3 Conversely, assume that the stated condition holds, and consider a |

given sequence of operations nr P where Dy deletes the k-th element

g- { inserted. For example, the sequence might be 11.11.1011. with |

n=7,PpP=5, and k= U4 , The number of realizations which yield L

3 | ’ tg = 3 14572 is the number of permutations x of {1,3,L4,5,6} such ;
Pr 3 J

CE. that x) = 6 and x\6 = 3145 ; and by hypothesis there is just one :

i : . such x . There are seven choices of ng with p(ng) = 314562 , and



3 hai id Te :

! | each such choice occurs once, This argument clearly generalizes to i
4 AE |

| prove that R is ID. 1. deletion insensitive, [J |

E Corollary. IDI. = (ID,Yo. 3

4 Proof. The condition of Theorem 2 is much stronger than the condition ]

: for ID, in Lerma 2(b), since the latter requires only that the equation

. R(x\d) = y have exactly n solutions when j and y are given. Now 3
k apply Theorem 1. (J

1 The condition of Theorem 2 is not strong enough to prove (I. D) :
3 | insensitivity, which seems to be very strong property indeed. The author r

has been unable to construct any R functions which are (I, D,) 3

insensitive except those which satisfy the following strong requirement: ]

- Condition Q. For each 1 <k <n there exists a permutation Gy e+e 97 | 8

of {1,.4.;k-1,kt1,,.,.,,n] such that R(x Xp eee X \ x) " p(x, oe "q, a | b: 1 -1 3

EF | In other words, deletion of the k-th element inserted will permute the | 1

a other elements in a way depending only on k , not on their values. E

: | This condition may not be necessary, but it is at least sufficient 3

5 to prove what we want: 3

a Theorem 3. An R function which satisfies Condition Q is (I_,D,) :
3 . deletion insensitive, E

Proof. Consider the operation sequence E

y 1 Ip I Ly Ip D, Ip D, D, Iy Iy a

A where the three D_'s respectively have k =12,3, 4 , and let us count ;

3 how many realizations will yield nq = 51637 after deleting the elements :



82L4 in this order. Suppose the eight insertions are 21 2525 2), 25 2 2 2g
| | . respectively, a permutation of {1, 2, ¢s435) 5 we will show that the z's are 3

| uniquely determined by these assumptions. For concreteness, let us

1 suppose that some of the permutations implied by Condition Q are

XXni Fg Ny = KX FoR) BX IFHoT), = XK, 5 and

Xp XXX) \Xp = XzXpX) Then we know that Ts = 2025232)25 5 Zp = 8, |

| N= 2329262) 5 To = 2329227)2¢ 5 2) = 2, mngs= 20262523 3 ZG = yh, :

1 Tg = 2521235 Tp= 2521222728 = 5 1637 ; hence Zy eee 2g = 18625437,
4 This argument clearly generalizes to prove the theorem, since there is |

always a unique realization for each choice of Ln and the sequence

1 of elements deleted, for each choice of k's in the D, operations. (J |

| There is an interesting way to weaken Condition Q to obtain a somewhat |

1 : weaker kind of deletion insensitivity, yet one which is stronger than that |

3 | of Lemma 2(d):

s Condition Q,. For each 1 <k <n there exists a sequence of n permutations |

§ | (a7, CCN G1, nal) 3 e000) (ay,1 eee 4, n-1) of {1 eeeyk-1,k+1, esssn} with |
- the following property: For all yeP _, there exists a permutation
8 - |

> | py +seP, Of {l,...,n}, possibly depending on y , such that

= o(%] es Xp 1 Xpep1 oo x) =y and x = J implies |

A In other words, when we delete the k-th element inserted the result is 3

. one of n specified permutations of the remaining elements; and if the "3

3 | remaining elements are held fixed, while X, runs through all n possible

: = values relative to them, the results run through these n specified 3

3 3



|

4 permutations in some order. Condition Qimplies Condition YU » Since
|
Ee 1 .

| the n specified permutations might be identical.

5 This rather peculiar condition seems to be just what is needed to

3 prove the following slightly weakened form of Theorem3.

A Theorem 4. An R function which satisfies Condition Q is 5,0.) |
rT |

a deletion insensitive,

: Proof. As in the previous proofs, it is mcst convenient to consider a

: more-or-less random example which is sufficiently general to be convincing i

1 without the introduction of elaborate notation. Consider the operation

: sequence |

| Iololo lola Pals Dy Dy 15 Ig
¢ |

where the three D_'s have k =2, 4, 4 , respectively. There are

3 1e2e%eke545.4e5 realizations of this sequence; we will show that 5.5.4 J

| of them will yield any given value of p(y) . For example, suppose |

| o(ny;) = 31425 , There are 5 choices for the g-permutation in the

: | first deletion; let us choose one of these, and assume for example that

| 5 v - : IR I TE |
the deletion takes i; = Zy BBs 2) 2g into Ty = Z125%5 2), = 2521 25%), .

| In other words, one of the g-permutations for n=5 and k =2 is
| h

. assumed to be 3154 , (If 3154 occurs as two or more of the 1

| g-permutations we also choose the subscript Jj such that |
. (3,1,5,4) = (93,12 95,2093,32 95,1) s thus, there are 5 distinct choices
8 poccible even when the g-permutations are not distinct.) Then if : 4

: = 212'ot oto! 5 - . : me } 3
3 Ty = 2{23232)25 We mu t delete the L-th oldest element, which is 2 -
: (cince it equalc Zg ); again we have 5 g-permutations to choose Irom, 3

.

and let uc suppose that the g-permutation for the second deletion yields -

{i 26 .



| ng = 2) 20% 2), = 2),21%5 Zp 3; we similarly shall choose one of the L |
| g-permutations now available for the last deletion and suppose that it |

yields ny = 2y'25" 23" = Zn2),2y .

1 To make p(my7) = 31425 we now can work backwards and identify |
: the relative sizes of various elements: Since p(y) = 213 , we know |

that p(z3232y) = 321 . This value of y together with Condition Q_

; allows us to determine p (1g) » since each possible value of 2 relative 1
3 to zy ’ Zp ’ Z), corresponds to one of the predetermined choices of :

3 | g-permutation once plz] zy z) is known. In our case p (ng) must be :
1 4312 , 4321 , 4231 , or 3241 , and our choice of g-permutation

subscript tells us which of these occurs, say 4231 ; then

1 o(2z1 2} 2}, zg ) = 2143 and we can similarly reconstruct p (1) , which J

| might be 21354 , In the same way p (mg) = 2134 implies that :

) p (21252), 25) = 1243 ; and we can use this knowledge to find p(s) ’

: . say 21354 . Fach I insertion has now been characterized, thus each
of our 5+5«4% choices has led to a unique realization such that

1 o(ny,) = 31425. O |

| Although 1, is a somewhat artificial type of random insertion,
| Theorem L is interesting because (Ip D) insensitivity implies I'D,

of insensitivity, and this special case is not artificial. :
| Let us conclude our theoretical investigations by considering |

1 A briefly the fifo and lifo deletion types, Da and D; If the R ]
: function satisfies

3 | R(X) Xp 000 X \%q) = p(X;000 Xx)
: : it ic obviously (I. D) insensitive; note that this condition might

| hold even though neither Condition Q nor Q_ are satisfied, in fact the |



{ weak condition of Lemma 2 (a) might not even hold. On the other hand

3 when the R function does not satisfy the above formula, there appear |
3 *_*
- to be no interesting conditions which guarantee 1 De insensitivity, .

3 other than the condition QR we have already discussed. (We might have,

1 say, R(x, Xy ens x \X;) = Jes Xo X), eee X,) and R(x, Xp one x \ X,) = |
: p (xy Xz cee X,) ; these conditions lead to (I. De) insensitivity
3 without the full generality of Condition Q, but they don't seem to be :

3 | very interesting.) Essentially the same remarks hold also for lifo-

] | deletions, if R does or does not satisfy :

‘ g



8. Applications.

4 Let us finally apply these theorems to some important data organizations.

Sorted and unsorted linear lists have every possible type of insensitivity

| : to deletions, but this is obvious without the above theory, :

3 Binary search trees provide what is perhaps the most interesting
1 application. We have already mentioned that Hibbard [3] originated this

3 theory by essentially proving that the R function defined in Section 2

1 above is 1D, insensitive. Knuth [7, answer to exercise 6.2.2-13]

: observed that it is in fact I'D, insensitive, and then Knott [6] went :
: much further, proving that Hibbard's R function is (I, 2.Y insensitive. |
3 In particular, if we do n random insertions, followed by m <n fifo-

deletions, the resulting tree has the shape distribution of a binary tree

after n-m random insertions. This is a difficult theorem to prove,

: | perhaps the "deepest" result about a data structure which had been obtained i

] by anyone before 1975.
p It is possible to establish Knott's theorem using the above theory;

in fact, much of that theory was motivated by what he did. We want to

: chow that the binary search tree organization satisfies Condition Qp*

1 Let k <n be given, and for 1 s4<hnh let ]

lees (k=-1)(k+1l) euemn , if £<Kk;

| HEI Aen E Looe (R=1YE( KEL) ous (£-1)(4+1) suum, if 2 > Kk.

- Let y = yy eee ¥pgo1€ En be given, and let Zq eee Zh 1 be the inverse
4 permutation, so that y, = J . It is not difficult to verify that |

; | Condition Q holds with hi permutation defined by 4

E Py = Byrd yo. Af Z, 2k 3;

3 4 k y if Jem



: Thus binary search trees are (I, D) insensitive to deletions
1 using Hibbard's method. On the other hand we have seen that they are i

not (I. D,.)" insensitive, so by Theorem 1 they are not even I'D, . |
3 insensitive. | |

Suppose we define deletion in a different way, essentially by
1

interchanging left and right in Hibbard's method: Let

3 R(X) Xp eee X \J) = p(Xg eeaxy 1% 70a x) OF p(Xge0eX,(%X, 4000%) 1
1 where x, = J and x, = j-1 if j > 1, and where x_ is deleted if

| j=1 or ££ <Xk, otherwise X, is deleted. (For example, this changes
| R(132\1), R(312\3) to 21 and R(213\2),R(231\2) to 12 in the }

1 table of Section 2.) This function is (I, D,.)" insensitive to deletions,

] and it also satisfies Lemma 2(c) so it is (I, by) insensitive as well.
Furthermore, like Hibbard's function it possesses (I. D,)" insensitivity. 1

] We can also verify (I; Dy? Dp," insensitivity, if the I insertions
: are biased by the most recent Dy (not D, ) deletion. (Is it

(Is Dy 0.) insensitive in this sense?)
: Jean Vuillemin [8] has recently defined a useful type of data }

: organization which he calls binomial queues, and Mark Brown [2] has shown :

: that they are highly insensitive to deletions. In fact, Brown proved that :
the corresponding R function satisfies Condition Q, hence it is (I, D,)

3 and (I. D,.)" insensitive, |3 The leftist tree structures developed in 1971 by Clark Crane (see 4
1 [7, Section 5.2.3]) unfortunately do not share such nice properties. In 3
: | fact, the corresponding function R(xq X, X, X), \J) has a pronounced bias : .
: towards %21 and 231 except when Jj =1, and the function i
| R(x%q Xs %5 X), Xs \1l) is extremely biased. Therefore leftist trees are quite ’ iF

| cencitive to deletions, and it will probably be very difficult to analyze 3

L them. In fact, the analycis for pure incertione is already very formidable. ;

oe 30



9+ Degeneres. |

We have defined deletion insensitivity only in terms of the R

: function, but when many different permutations lead to the same data

j | : structure (i.e., if they yield the same S value) it might be possible |
I to have deletion insensitivity that cannot be carried back to any R |
} function for the organization. For example, when the data structure

| consists of a sorted linear list, the S function is essentially constant, 3
so we trivially have (I. D,)" insensitivity; but we have observed that

| no R function can have this property. :

| In other words the conditions we have derived in Theorems 1 and 2 | J
are sufficient but not necessarily necessary for insensitivity. An example

| can be given of a data organization which is IDI, insensitive when
| the S equivalences are considered, yet it is not I'D, insensitive:

| | Let R(Xp eee x\) = p(X] eee Xp1% 1e0eX)) for ngs,
| R(x) %,%\1) = 12 , R(x) %,%;\2) =21, R(123\3) = R(132\3) = R(231\3) = 12, :

| 3 R(213\3)= R(312\3) = R(321\3)= 21 ; and let S(%X) eee x) = 5(¥q vee vy) 3
if and only if X eee X = Yq eee¥, or n>3% and X) soe X = Y) eee Vo |

| and 8(p(x)%%5)) = 5(p (y1¥,¥5)) , where 5(132) = S(231) and
S(312) = 8S(321) . The operations III D, leave a nonrandom result; |

3: but 0 Re clearly produces a random structure when n # 3 , and this | ]
: i can be verified also for n = 3 . Thus Theorem 1 is not true when we :

» take the S$ equivalences into account. i
| It appears unlikely that any conditions weaker than those discussed | 3
] | § in the above lemmas and theorems will be useful for proving deletion F
& | : insensitivity in practice. Furthermore it is not difficult to see that ;

: ’ the existence of an R function satisfying the six respective conditions 3
| : in Lemma 2 is, in fact, both necessary and sufficient for the six
: | corresponding kinds of I'D insensitivity. (We proved this for I'D, in
: 3 Section 3.) ;
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