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Abstract

This paper discusses dynamic properties of data structures under
insertions and deletions. It is shown that, in certain circumstances,
the result of n random insertions and m random deletions will be
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'{ the word 'random' and under various constraints on the order of insertions

and deletions.
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Deletions that Preserve Randomness

When we try to analyze the average behavior of algorithms that operate
on dynamically varying data structures, it has proved to be much easier to
deal with structures that merely grow in size than to deal with structures
that can both grow and shrink., In other words, the study of insertions into
data structures has proved to be much simpler than the study of insertions
mixed with deletions. One instance of this phenomenon is described in (5],
where what looks like an especially simple problem turns out to require
manipulations with Bessel functions, although the data structure being
considered never contains more than three elements at a time.

Occasionally an analysis of mixed insertions and deletions turns out
to be workable because it is possible to prove some sort of invariance
property; if we can show that deletions preserve "randomness" of the
structure, in some sense, the analysis reduces to a study of structures
built by random insertions. The purpose of this note is to investigate
some simple properties which imply various kinds of insensitivity to
deletions.

Let us say that a data organization is a class of data structures

together with associated algorithms for operating on these structures; for
example, consider binary search trees together with algorithms for searching
them, inserting into them, and deleting from them. We shall restrict
attention to data organizations which depend only on the relative order

of the keys of items being inserted and deleted; in other words, if we

consider the two data structures formed by the sequence of operations

Al(xl) s A2(X2) 3 ooy l\q(xn) .,

Al(yl) ’ AQ(yE‘) ) eeey Ah(yn) 2;
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where each Ak(x) means either 'insert an element with key x' or 4

tdelete an element with key x ', the two sequences should produce ;

isomorphic data structures if x5 << xj holds whenever vy = yj g for

all i and J . Such data organization schemes are quite common:

f; Binary search trees with or without height-balancing or weight-balancing
[7], 2-3 trees [1], leftist trees [7], and binomial queues [8] all have
this property because they operate entirely by making comparisons on

keys.,
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2. Preliminary Definitioms.

Let I(x) denote the operation 'insert an element with key x'
and let D(x) mean 'delete an element with key x'. We shall be dealing
with sequences of operations
Ay(x1) 5 A(%5) 5 eees A (X))
where each A, is I or D, and where each insertion I(xj) introduces
an element xj which is distinct from xl""’xj-l ; at least this holds
with probebility 1 . Furthermore D(xj) will make sense only if Xy
has previously been inserted and not yet deleted; in particular, the number
of D's must never exceed the number of I's; counting from left to right.
Since we are assuming that the relative order of keys is all that
matters, not their precise value, it suffices to restrict attention to keys
{l,2,...,n} when there have been n insertions., If Vs ¥preees ¥y is a
sequence of n distinct keys, let
p(yl Yo eee yn)
be the canonically reordered permutation of {1,2,...,n} obtained by mapping
the j-th smallest key into the number j . For example,
p(8ne~/5) = L213,

o Xpp¥greees X is a permutation of {1,2,...,n} , we write
S(xl Xy ees xn)
for the data structure obtained after the sequence of insertion operations
I(xl) I(x2) I(xn) .
Finally we write
R(xl Xy ees xn\j) = Yy eee Y1

if the operation of deleting j from S(xl X5 eee xn) and renumbering yields
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is a permutation of {l,...,n-1} , and 1< j<n.

structure S(yl...yn_l) , where X, X. ...X_  1is a permutation of {1,2,...,n},

yl see yn_l

It is possible for several input permutations to yield the same
structure; in other words we might have S(xl Xy ene xn) = S(xi x2' xr'l)
T f 1] : . .
although Xy X5 eee X # %] X} «.. X} . In this case the R notation is
not uniquely defined, since any permutation Yy o0 Y1 yielding

S(yl n-l) could be used as the value of R(x1x2 cee xn\j) A

e

However, we will assume that a particular Yy eee Vo1 has been selected

g ' - - o ' ' s .

E | in each case. Thus, if S(xl Xy eee xn) = S(xi X5 00 xn) we might wish
to define R(x Xy eee xn\,j) # R(xi X} eee xr'l\j) even though it will be
E | s ( 1 .

i true that S(R(xl Xy eeo xn\g)) = S(R(x:L X5 ees xn\g)) . Some of these

definitions of R will be better than others; a typical theorem to be

s

proved below states that deletions will preserve a certain kind of randomness

if it is possible to define the R function in a certain way.
The R function can be used to define a deletion operation on
permutations in the following way. Let =n be any permutation of n

distinct elements (not necessarily integers), and let u be the j-th

[[ smallest element of . ., Then we define m\u (with respect to a given R
H function) to be the unique permutation of the elements of = other than u
E; such that

’f o(m\u) = R(p(M\J) -

E For example, let n = 3325 and R(4213\2) = 132 ; then n/3 =255 .
£

3
.
f
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2 Examples.

Perhaps the simplest kind of data structure is an unordered linear
list, where an insertion is done by simply appending the new element at
the right of the list and a deletion is done by deleting the element and
closing up the space it occupied. Then S(xl Xy eoo xn) is the linear
llst (Xl,xe,...,xn) ) aIld R(Xlxg... Xn\J) = p(xl.-o xk_lxk+l LRI xn)
where X, = J . In this system the representation preserves all information
about the order of insertion.

At the other extreme we might consider a sorted linear list, in which
S(xl Xy eee xn) = (1,2,...,n) for all permutations X Xy e X of
{1,2,+4.yn} . In such a system R(xlx2 xn\,j) can be defined to be
any permutation of {1,...,n-1} that we wish, as a function of X Xy ewn X
and J .

In between these extremes lie many other regimens, and binary search
trees prcvide a simple but interesting example. This system defines
S(xlx2 “os xn) as the empty binary tree if n = 0, otherwise S(xl Xy een xn)
consists of a root and two subtrees; the left subtree is S(p(yl s ym))

. . ' ' '
and the right subtree is S(p(yl s r'1-l+m)) , where (yl TP AR AR yn_l_m)
are respectively obtained from Xy eoe X by striking out all elements
(> X)5 < xl) . Furthermore R(x1x2 ol xn\j) = p(x:L e Xy 1 Xpq v xn)
or p(xl...xl_le_l...xn) » where x, = J and x, = jtl if j<n;

1
here X ig deleted 1f J=n or ([ <k , otherwise X, is deleted.

For example,

s(123) = \ , s(132) = >.

s(213) = S(231) = /\
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8(312)=< ) 8(321)=/ ;

and deletion is defined as follows when n

R(123\1) = 12 ,
R(132\1) =12 ,
R(213\1) = 12
R(231\1) = 12 ,

R(312\1) =21

-

R(321\1) = 21 ,

R(123\2) =
R(132\2) =
R(213\2) =
R(231\2) =
R(312\2) =
R(321\2) =

21

2l

21

21

R(123\3) = 12
R(132\3) = I2
R(213\3) =21
R(231\3%) = 21
R(312\3) = 12

R(321\3) = 21
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Bie Deletion Sensitivity and Insensitivity.

From an intuitive standpoint, we wish to show that certain data
organizations satisfy theorems of the following general character:

"Given a sequence of operations containing n random insertions and m
random deletions, in some order, the result is a random data structure
on n-m elements; i.e., it has the same probability distribution as we
would have obtained by doing n-m random insertions.”

The first such theorem was proved by T. N. Hibbard [3], who showed
that binary search trees have the following property: create a binary
tree by inserting n distinct elements in random order, then delete one
of them chosen at random (each being equally likely). Then the resulting
tree shapes have the same probability distribution as we would have generated
by inserting n-1 distinct elements in random order. We shall call this

”

one-step deletion insensitivity, abbreviated " I*Dr . (The motivation

for this abbreviation will come later; it essentially means "any number
of random insertions followed by one random deletion".)

Our definitions make it fairly clear that a data organization has the
I*Dr property if and only if it is possible to define the R function so
that, for each n , the nen! values of R(xlx.2 «eex \J) comprise each
of the (n-1)! permutations Yy eee V1 exactly n® times. For example,
the tableau above for binary search trees with n =3 shows "12" and "21"

each occurring 9 times.

Proof': The "if" part is obvious., Conversely, consider a data structure
0 which is equal to S(yl... yn-l) for exactly s different
permutations Yy eee Vo1 of {l,...,n-l} . The I*Dr property

ctates that n random insertions followed by one random deletion

chould produce this data structure with relative frequency s ;




. 1 .‘
in other words, the ne.n! values of S(R(xlXQ "'xn\\”)) a8 X X, eee X

ranges over the n! essentially different insertions and the n essentially
different deletions should include the given structure o exactly nzs
times. By redefining R(xlxé ...xh‘\j) if necessary we can ensure that
each of the s permutations Yp eee ¥,y oOCCUTrs exactly n2 times.

The I*Dr property might seem to be all that one needs to guarantee

insensitivity to any number of deletions, when they are intermixed with ;

insertions in any order. At least, many people (including the present

author when writing the first edition of (7]) believed this, and the subtle

fallacy in this reasoning was apparently first pointed out by Gary Knott

in his thesis {6]. Before we proceed to study stronger forms of deletion

insensitivity, it is important to understand why the problem isn't entirely
‘? ' trivial, so we should look at binary trees more closely.

Consider the following process:

1) Create a binary search tree by starting with the empty tree
and inserting three independent random real numbers, uniformly
distributed between O and 1 .

(ii) Delete one of these three numbers, selected at random (i.e.,
each is selected with probability 1/3 ).

(iii) Insert a fourth independent random real number uniformly

distributed between O and 1 .

Since the binary search tree organization has the I*Dr property, we know
that the tree remaining after step (ii) will be like a random tree after
two, insertions; i.e., .//. and .\\. will be equally likely.

; Furthermore it ic easy to verify that the element x inserted in step (iii)

ic equally likely to be smaller than, between, or larger than the two




elements remaining after step (ii); for example, the probability that

x will be the smallest remaining element is 1/3 . Therefore the

insertion in (iii) would seem to behave as the random insertion of a

third element into a random two-element tree,

Yet when we analyze carefully what happens after steps (i), (ii),
(iii) have been performed, we find that the tree .,/’\\‘ is obtained
with probability 25/72 , not 1/3 . (See [5] for a detailed study of
this process. )

The fallacy comes from the fact that the probabilities for the result
of step (ii) and the relative position of x in step (iii) are not
independent. If we are given the fact that the result of step (ii) was
.\\‘ » the conditional probability for element x to be smaller than
the two remaining elements turns out to be 15/56 y not 1/3 s since this
arises when x 1is the smallest of all four elements (probability 1/4 )
and when x was second smallest but the smallest was deleted (probability
1/h times L4/9 , since L4 of the 9 cases where R(glx2x3‘\j) = 12
have j =1 ). Therefore, inserting a random element in [0,1] is not
equivalent to inserting a number with probability 1/3 of being smaller
Z;! ' than the two remaining, even though a random element in [0,1] does
have (unconditional) probability 1/3 of being smaller than the two

remaining.
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k.  Further Definitions. ]

The above example shows that deletion insensitivity is not as simple o

as it may seem at first, so we need to be somewhat careful in our treatment. }

In this section we shall define several types of insertions and deletions

which lead to types of insensitivity that seem to be of importance. The ;

following shorthand notations will prove to be convenient:

I stands for insertion of a random real number from some continuous
distribution; for example, the distribution might be uniform on the
interval [0,1] . Each random number inserted is assumed to have the
same distribution, and it is to be independent of all previously
inserted numbers. Thus, if we look at n such random numbers
X1s¥pseees X, 5 the n! possible orderings p(xlx? ...xn) are equally

i likely, and the particular distribution involved has no effect on the

behavior of the data organization.

i stands for insertion of a random number by order, in the sense that
the new number is equally likely to fall into any of the d+l intervals
defined by the d numbers still present as keys after previous
i{i insertions and deletions; this is to be independent of the history
«; by which these d numbers were actually obtained. The example in

the previous section shows that this is a different concept from Ir s

e i it is a somewhat artificial kind of random insertion, but it may be a
E N sufficiently good approximation to reality in some applications, and

it agrees with Ir before any deletions have taken place.
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stands for a "biased" insertion of a random real number obtained as
follows: Generate an independent random number X with the exponential
distribution, so that 1-e7* is the probability that X < x . Insert
the number X+t , where t denotes the key most recently deleted

(or O if there have been no prior deletions). Such insertions arise
naturally in priority queue disciplines, where the element with

smallest remaining key is always chosen for deletionj; the keys can be
thought of as specific moments of time when events take place. In

this interpretation the exponential deviate X represents a random
"waiting time", so that X+t is the time when a newly inserted event
will be deleted if the most recent deletion occurred at time t .
(Another way to produce biased insertions is to generate a uniform

real number X in [0,1] and to multiply it by the most recently
deleted key, or by 1 if there were no prior deletions. This corresponds
to the above distribution if the largest key is always deleted, since

it is essentially isomorphic under the mapping f(x) = -log x .)

stands for a random deletion, in the sense that if d keys are present

each is chosen for deletion with probability 1/d .

stands for a deletion by relative order or rank, in the sense that if
d keys are present and if some number j between 1 and d is
specified, the j-th smallest element is deleted. Such a J 1is specified

in advance for each deletion.

stands for "priority queue" deletion, the special case of DO in which

j is always equal to 1 .,

P




D stands for a deletion by relative age, in the sense that if d keys
are present and if some number k between 1 and 4 1is specified,
the k-th oldest element (the one which has been present k-th longest)

is deleted. Such a k 1s specified in advance for each deletion.

stands for a "fifo" deletion, the special case of Da in which k is

always equal to 1 .

D stands for a "lifo" deletion, the special case of Da in which k 1is

always equal to the current value of 4 .

Using these abbreviations we shall talk about four different kinds of

deletion insensitivity:

I'D means any number of insertions followed by one deletion;
1*D* means any number of insertions followed by any number of deletions;
1°p1" means any number of insertions, followed by one deletion, followed

by any number of insertions;

(I,D)* means any number of insertions and deletions, arbitrarily intermixed.

(Of course we also require that deletions never outnumber insertions.) The

I's and D's will have subscripts to identify their type; for example,
(Ir,Df)* stands for any number of insertions of random uniform numbers
intermized with fifo deletions. In the first two cases ID and I'D",
however, no subscript will be given to the I's since it is easy to see that
(Ir,IO,Ib) are all equivalent until the first deletion has occurred.

We would like to say that a data organization has the (Ir,Df)*
property if operations (Ir’Df)* always produce an essentially random data
structure; a data organization might similarly have the I*Dr property, and
co on, These intuitive notions might be formalized as follows, in

12

M“




terms of the R function for that data organization: Consider a sequence

of operations

Al(ul) ’ A2(u$2) 3 eee ) 'L\n+n(um+n)
which includes n insertions and m deletions; each Ai(ui) is an

insertion or deletion of a given type (e.g., an Ir or a Df ). We define

a permutation T of the u's remaining after i steps as follows:

T is the null presentation;

if Ai(ui) is an insertion, nois w g followed by w3

if Ai(ui) is a deletion, #, is the permutation :ri_l\ui defined

in Section 1 above.

In other words the R function gives us a way to convert deletions on
the given data structures to deletions on permutations of the keys. Each
permutation L has the property that the data structure obtained after i

steps is exactly the same as the structure which would be created by inserting

the elements of =, in order from left to right (without deletions).
For example, consider the operation sequence
1(0.5), 1(0.2), 1(0.6), D(0.5), 1(0.L4)

on binary search trees; then

T = 0.5 0.2 6,6 , n, = 06 B8 | T = 0.6 0,2 Ok

since p(nh) = R(213\2)=121.
After n insertions and m deletions we will obtain some permutation

Tatn of the remaining n-m elements, An R function will be called

incensitive to deletions if the elements of Tntn oTr€ in random order
after such a cequence of random insertions and deletions, i.e., if the

resulting permutations p(ﬂm+n) of {',es.yn-m} are uniformly distributed.

REF R TR RO g
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According to this formal definition, it should be clear for example
that a data organization has the I*Dr property if and only if it has
an. R function which is I*Dr deletion-insensitive., On the other hand
our definition uses only the R function, not the S function, so we
are actually distinguishing between different permutations which might
yield the same data structure after insertion; we are therefore talking
about rather strong forms of deletion insensitivity. This aspect of our

model is discussed further in Section 9 below.

1k
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S Reducing the Number of Cases.

With three types of insertions, six types of deletions, and four ways
to combine them, we have defined 6+ 6+ 18+18 = L8 types of deletion
insensitivity, namely I'D_, I'D s e0e I*D:, I s vin s BB I 5 sin s LD % of
(1,005 (T Do)*, MR Dt)* . But many of these are uninteresting,
since (for example) biased insertions are probably meaningful only in
connection with priority queue deletions, type Dq .

It is well-known that the exponential distribution is "memoryless", in

the sense that if X is an exponential deviate and if we are told that

X > x4 , the conditional distribution of X-Xq given this knowledge is

again exponential. This suggests that (Ib,Dq)* is actually equivalent

to (Io,Dq)* , a fact which was first proved rigorously by Jonassen and
Dahl in their study of priority queue algorithms [4]. Therefore we need
not consider Ib any further.

A sequence of random operations with insertions of real numbers can
be converted to a discrete probability space in a simple way, because our
data organization is assumed to depend only on comparisons between distinct
keys. If there are n insertion operations of type Ir , We can assume
without loss of generality that the numbers inserted are the integers
{l,2,...,n} in some order, and that each of the n! permutations is
equally likely. On the other hand, suppose that the insertions are of

type Io » where the structure contains respectively d d2""’dn elements

l,
just before each insertion; then the number of equiprobable cases to
consider is (dy+1) (d2+l) T (dn+l) . Furthermore if we are doing m

random deletions of type Dr s, with respectively di,...,d& elements

present before the deletions, we should multiply the number of equally




probable types of insertions by di... dé , the number of different ways

to specify the deleted keys. ;
For example, consider again the sequence of operations IrIrIrDrIr
discussed in Section 3; we have n=4 , m=1, 4 =3, so the number

of equally probable ways the algorithm might behave is n. xdi ...di =

2hx3 =72 ., In 25 of these ways the resulting data structure is 0//\\\9’
agreeing with our claim that the probability of this tree is 25/72 .
Furthermore it turns out that the final permutation p(ns) will be 231

in 13 cases; this confirms that the probability of obtaining '//.\\b ’
given that the tree after the deletion was .\\' (i.e., given the 3€

cases with p(nh) =12 ), is 13/36 . On the other hand if the operations

z

had been I I IDTI , we have n =14, dld2d3dh =0122, m=1, 4 =3,
so the number of equally probable ways the algorithm might behave is
1e2e343 xdi....dﬁ = 54 . Under this model (which corresponds to the fallacy
discussed in Section 3), the tree .//'\\‘ occurs with probability 1/3 ;
in fact, it is not difficult to prove that the R function given for binary
search trees is (IO,Dr)* deletion insensitive, by writing down the
reasoning which might have led us to believe (fallaciously) that it was
(I Dr)* deletion insensitive.

Tt is impossible for an R function to be I:DqI: deletion insensitive,
In fact, this is obvious, for the operations IrIqu;r lead to six
equiprobable values of ), (namely 235, 32, 25, 31, 32, and 31 ),
hence p(“h) = 12 with probability 1/3 and p(ﬂh) = 21 with probability 2/3.
This holds for all R functions, since R(xlxg\j) is forced to equal 1 .
Since D_ is a special case of DO s no R function can be I;DOI; deletion

insensitive either, much less (Ir,Do)* . Fortunately such types of

incensitivity do not seem to be very important in applications.
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The fact that I'D specifies a smaller class of operations than
"D or I*DI*, and that these in turn are smaller than (I,D)* , means

for example that

* *_ ¥ *
(Ir,Dr) = TD = ID. ;

any R function which is (Ir,Dr)* insensitive is also I:D: , etc.
Similarly the fact that Dq is a special case of DO means that
insensitivity under DO implies insensitivity under Dq ;3 and insensitivity
under D, implies insensitivity under both Df and Dt . Furthermore,
insensitivity under either Do or Da implies insensitivity under Dr 5
since Dr corresponds to a sum of disjoint cases with the ji's or ki's
varying in all di possible ways.

Thus there are many obvious implications between the various types
of deletion insensitivity which remain to be investigated; and we will

find that many of these are actually equivalent to each other,

The first equivalence result is, in fact, obvious:

Lemma 1. Let D be Dr ’ Do or Dq . Then

*
(I40)° » IDI; © ID & ID ,

Proof. Since (IO,D)* %10 21D, and (IO,D)* = I:;DI: I D, it remains
to show that I:D = (IO,D)* ;3 i.e., we need only prove that one-step deletion
sensitivity implies full (IO,D)* insensitivity. But this is obvious since
we can prove that p(ni) is uniformly distributed after an I, insertion if
p(ﬂi_l) was, and one-step insensitivity implies that p(xi) is uniformly
distributed after deletion if p(ﬂi_l) was. Thus p(ﬂi) is uniformly

distributed for all i . 0O
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Similarly when D is Da - Df 2 Or Dt we have I'D & IODIO 3
but T'D" need not be equivalent to these, since the first deletion

For example, the

might "confuse" the ages of the remaining elements.

reader should have little difficulty constructing R functions which

* * ¥
are I Dl insensitive but not I Dl insensitive.
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0. Necessary and Sufficient Conditions.

We can make further progress in understanding deletion insensitivity
if we convert the definitions into properties of the R function. Let
Pn be the set of all permutations on n elements; and if x is such a
permutation, let X be its k-th element, from left to right, for

i1<k<n. If xePn and yePn_l, we write

[x\J = ¥l
for the function of x, j, and y which is 1 if R(x\Jj) =¥ »
otherwise O . In terms of this notation, the following lemma is an

immediate consequence of the definitions:

Lemma 2. M R function is

* .
(a) I D. insensitive if and only if 24 [xX\j = y] = n°, for all
XeP
Il<j<n
yePn_l and n>1;
(v) I*Do insensitive if and only if 2 [x\j =y] = n, for all
xeP
n
yePn_l and 1> >1 3
(e) I*Dq insensitive if and only if 2 [x\l1=y] = n, for all

yeP, 1 and n>1;

(a) I*Da insensitive if and only if 2 [x\%, = ¥y] = n, for all

yePn_l and n_>_kzl;
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n ., for all

*
(e) 1 D. insensitive if and only if 2 [x\x, = y)
XeP
n

y'ePh_l and e >1 3
(£) I*Dz insensitive if and only if ¥ [x\x, =y] = n, for all
xeP
n

yel and Rn>1l. 0B

n-1

Clearly (b) = (c), (d) = (e) and (f), and (b) or (d) = (a), as we already
knew. Furthermore it is easy to see that these are the only implications
between the six types; we might have (e) and (f) and (c) but not (a), etec.

The next result is less obvious, possibly even surprising, since it
states that a comparatively weak form of deletion insensitivity is

equivalent to a comparatively strong property.
Theorem 1. I'D_ e T DI\ e (L 4D )* .
—_— o s s A

Proof. i S t only show that I.D I.= 1"
roof. ince (Ir’Dr) = I.D I , we must only show hat I DI = T D

* *
and IDoa(Ir,Dr) .

Assume first that a given R function is I:DrI: deletion insensitive,
and consider the sequence of operations I:Drlr for some fixed n . Any

of the ne(n+l)! equally probable realizations of such operations defines
a sequence of permutations TyreeesTin such that p(ﬂn+2) is a
uniformly distributed permutation on {1,2,...,n} ; hence every possible
permutation p(nn+2) occurs n(n+l) times. Let p(nn+2) = ¥p e Y1y
and T . = yi... ﬁ_lyﬁ s where Yy = Jj » and suppose that t is the
element missing from yi... yﬁ » where 1 <t <n+l ; then ¥y = y{ or

yi-l according as yi <% or yi >t ., The number of ways to obtain

p(Mep) = ¥y eeeVpq¥y 30
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b L Ix\(t-) = ply, see ¥, 4)) } + Z Bt =ply,seey, o))
1<t <ntl XeP 1 n-l XeP 3 Rl
ts]

L [E\te=ply;eeey, )1+ Z [2\j= oy, .. ]
% B, e =1 XN = p(yy eee¥yg)

1<t <n

2
il [x\J = gly, ssey. )]
xe.Rn PY1 n-1

by Lemma 2(a), since R is I*Dr deletion insensitive; and this equals
n(n+tl) by assumption. Therefore R is I*DO deletion insensitive by
Lemma 2(b).

Now acssume that a given R function is I*Do deletion insensitive,
and concider any given sequence of operations Al(ul), sk Am+n(um+n)
corresponding to n I, 's and m Dr's, where there are respectively
di,...,d& elements present before the deletions., Any of the n!ii ...dﬁ
equally probable realizations of such operations defines a sequence of
permutations Tpewes o s where the keys inserted are {1,2,...,n} in
csome order, and we wish to prove that each of the (n-m)! possible values
of plr...) oeours nidl ...dﬁ/(n-m): times. Let z;,...,z  be the

mn XL

elements deleted, so that MnZl et 4y 1S @ permutation of the n

elements inserted. We will prove that each of these n! permutations

po—- ' [ s
occurs exactly dl"' dm times.

In order to avoid cumbersom notations, a single example should suffice

to explain the basic idea. Suppose the sequence is

L Ly Ip Tp T Dp 10 D D I Ty

\
)




sothat n=8, m=3%, didédi =55L4 , and suppose we want to count
how many realizations will yield w1y, =5 1637 and 212p25 = 82k .

Working backwards, we must have n9 = 5 1.6 5 n8 = a permutation on
{1, 45,6} such that rt8\1+ =%y, L =28 permutation X Xp X X) Xg
on {1,2,4,5,6} such that n?\2 = g, and T o= a permutation on
{xl, x2,x5,xh,8} such that rrs\a = X XA By Lemma 2(b) the
number of choices for e is L , and for each g there are 5
suitable 1% 's, and for each rL7 there are 5 suitable rrs T

hence there are d]'_déd_); solutions. It should be clear that this

method of proof is completely general. (O

This completes a characterization of deletion insensitivity

involving Dr 3 DO , and Dq : We have three classes

* * * *_*
(IO,Dr) * IDY = 10 « TD

* * * L, e * * * *®
(IO,DO) & IPp3, » Ih, ' ID w 1D = (Ir,Dr)

(1 D)* *_ ¥ *
o’ Dq o IquIo © IDq o IDq

. * * * * * § 4
and (Ir’ DO) - (Ir’Dq) s IDI. s 10T are impossible.

" S I




Ts Age-sensitive Deletions.

Let us now consider Da more closely.

Theorem 2. An R function is I;DaI: deletion insensitive if and only

if, for 1 < j,k<n and all 3ferh_l , there exists a unique Xxe Pn

such that x =Jj and R(x\j) =y .

Assume first that a given R function is I:DaI: deletion insensitive,
and consider the sequence of operations IgDaIr for some fixed n , where
the deletion operation removes the k-th element inserted. Any of the
(n+1)! equally probable realizations of such operations defines a sequence
of permutations TreeesTin such that p(T(n+2) is a uniformly distributed
permutation on {1,2,...,n} , hence every possible permutation p(nn+2)
occurs n+l times. Now argue as in Theorem 1 with the extra restriction
that xe Pn is such that Xy is the element being deleted; using
Lerma 2(d) we find that the number of ways to obtain p(nn+2) =¥y eee ¥, 1Y,
is

n+ 2 [x\j= p(yl"'yn-l)]
Xe Pn

X =3
when y = J > hence the condition in Theorem 2 is necessary.
Conversely, assume that the stated condition holds, and consider a
given sequence of operations 0 1°°P  vhere Da deletes the k-th element

rar

inserted. For example, the squence might be I.I.I1II.D.1I1, with

n=7,p=5, and k=4 . The number of realizations which yield

ng = 314572 1is the number of permutations x of {1,3,4,5,6} such

that x, = 6 and x\6 = 3145 ; and by hypothesis there is just one

such x . There are seven choices of ng with p(n8) =314562 , and

2 Tl e




each such choice occurs once., This argument clearly generalizes to

*__*
prove that R is IrDaIr deletion insensitive, [J

* * %
Corollary. I.D,I,. = (Ir,Dr) .

Proof. The condition of Theorem 2 is much stronger than the condition

*
for I D, in Lemma 2(b), since the latter requires only that the equation
R(x\j) = y have exactly n solutions when j and y are given. lNow

apply Theorem 1. ([

The condition of Theorem 2 is not strong enéugh to prove (Ir’ Da)l
insensitivity, which seems to be very strong property indeed. The author
*
has been unable to construct any R functions which are (Ir, Da)

insensitive except those which satisfy the following strong requirement:

Condition Q. For each 1 <k <n there exists a permutation qy e+ 7

of {l,..ok-1,ktloc0,n}  such that R(xlxg...xn\xk) = p(qu...x

|
41

In other words, deletion of the k-th element inserted will permute the

other elements in a way depending only on k , not on their values.

This condition may not be necessary, but it is at least sufficient

to prove what we want:

¥
Theorem 3., An R function which satisfies Condition Q is (Ir’Da)

deletion insensitive,

Proof', Consider the operation sequence

Tp Tp Iy Ly T Dy T D Dy Tp Ty

where the three Da 's respectively have k =2, 3, 4 , and let us count

how many realizations will yield Ty = 51637 after deleting the elements

2L




82L4 in this order. Suppose the eight insertions are 292025 2), 25 25 % 2g

respectively, a permutation of {1,2,...,8} ; we will show that the z's are
uniquely determined by these assumptions. For concreteness, let us

suppose that some of the permutations implied by Condition Q are
xlx2x3xhx,5\x2 = %X XoX) 5 xlxe)%xhxs\xh = x2x5)%xl ,» and

xlx2x5xh\x2 = %X X) . Then we know that T = 202523225 5 Zp = 8,

N = Z3ZqZoZ) 5 TG = ZzZyZ5Z)Zg 2y = 2, mng= 21262525 1 Zg = Lok

g = ZgZyZz 5 Ty = Z5ZyZzloZg = 51637 3 hence Zq eee 2g = 1862543 17.

This argument clearly generalizes to prove the theorem, since there is
always a unique realization for each choice of Ttn and the sequence

of elements deleted, for each choice of k's in the Da operations. (O

There is an interesting way to weaken Condition Q to obtain a somewhat
weaker kind of deletion insensitivity, yet one which is stronger than that

of Lemma 2(d):

Condition Qu* For each 1 <k <n there exists a sequence of n permutations

(ql’lcoo ql,n—l)’ eeoe ) (qn)l... qn.’n_l) Of {l’l.o,k"l,k+l’...’n} With
the following property: For all yePn_l there exists a permutation

py eee P, Of {1,...,n} , possibly depending on y , such that

p(xl cee xk-l )(-1(_'_1 coe xn) =Y and )Lk = j inrplies

eee X .

R(xl...xn\xk) = p(x

)
» 1 yn-1
% %,

In other words, when we delete the k-th element inserted the result is
one of n specified permutations of the remaining elements; and if the
remaining elements are held fixed, while X, Truns through all n possible

values relative to them, the results run through these n specified




permutations in some order. Condition Q implies Condition Qb s Since

the n specified permutations might be identical.

This rather peculiar condition seems to be just what is needed to

prove the following slightly weakened form of Theorem 3.

Theorem 4, An R function which satisfies Condition Q, is (IO,Da)’

deletion insensitive.

Proof. As in the previous proofs, it is mcst convenient to consider a

more~or-less random example which is sufficiently general to be convincing

without the introduction of elaborate notation. Consider the operation
sequence

IoIoIoIoIoDanDaDanIo

where the three D 's have k=2, 4, 4 , respectively. There are
le2e3ehe5.54he5 realizations of this sequence; we will show that 5.5.L
of them will yield any given value of p(nll) . For example, suppose
p(nll) =31425 , There are 5 choices for the g-permutation in the
first deletion; let us choose one of these, and assume for example that
- " — : = tololteol

the deletion takes ns = ZlZEZBZhZS into T = ZlZEZBZh = zszlz5zh .
In other words, one of the g-permutations for n=5 and k=2 is
assumed to be 3154 ., (If 3154 occurs as two or more of the
g-permutations we also choose the subscript j such that

L) = : o ikia Neon
(3,1,5,4) = (qj,l’qj,Q’qj,B’qj,h) 3 thus, there are 5 distinct choices
poccible even when the g-permutations are not distinet.) Then if
n, = zizezézﬂzé we must delete the L-th oldest element, which is zé
(cince it equalc Zg ); again we have 5 q-permutations to choose from,

and let uc suppose that the g-permutation for the second deletion yields

26
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Ny = z']'_zgz;zﬁ = zl"zizézé 3 we similarly shall choose one of the L

C

g-permutations now available for the last deletion and suppose that it
: a2 Myt 1y nmy n
yields g = z7'25 2.3 = Zp2),2) .
To make p(ﬂu) = 31425 we now can work backwards and identify
the relative sizes of various elements: Since p(n9) =213 , we know
that p(z.'x'.zaz"'_) =321 . This value of y together with Condition Q

n

allows us to determine p( ”8) ,» since each possible value of 25 relative

to zi, zg, zﬂ corresponds to one of the predetermined choices of
g-permutation once p(zizg zﬂ) is known. In our case p(n8) must be
4312 , 4321 , 4231 , or 3241 , and our choice of g-permutation
subscript tells us which of these occurs, say 4231 ; then

p(Zi z) 2], zé) = 2143 and we can similarly reconstruct p(&z) , which
might be 21354 , In the same way p(:t6) = 2134 implies that
p(zlz3zhz5) = 1243 ; and we can use this knowledge to find p(ns) 3

say 21354 ., Each I0 insertion has now been characterized, thus each

of our 5+5¢4% choices has led to a unique realization such that

Although Io is a somewhat artificial type of random insertion,
Theorem 4 is interesting because (Io, Da)* insensitivity implies I*D;
insensitivity, and this special case is not artificial.

Let us conclude our theoretical investigations by considering
briefly the fifo and lifo deletion types, Df and Dt « I1f the R

function satisfies
R(xlx2 s xn\xl) = p(x2 Ry xn)
it ic obviously (Ir,Df)‘ insensitive; note that this condition might

hold even though neither Condition Q nor Qo are satisfied, in fact the

i - -
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weak condition of Lemma 2 (a) might not even hold. On the other hand
when the R function does not satisfy the above formula, there appear
to be no interesting conditions which guarantee I*D; insensitivity,
other than the condition Qo we have already discussed. (We might have,
say, R(xlx2 A xn\xl) = p()% Xy X), eee xn) and R(x1 Xy eee xn\xg) =
p(xlx.), o xn) ; these conditions lead to (Ir,Df)* insensitivity
without the full generality of Condition Q, but they don't seem to be
very interesting.) Essentially the same remarks hold also for lifo-

deletions, if R does or does not satisfy

R(%) eee X %\ xn) = p(xl ‘o xn_l) 5

b3
&
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£
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Oe Applications.

Let us finally apply these theorems to some important data organizations.
Sorted and unsorted linear lists have every possible type of insensitivity
to deletions, but this is obvious without the above theory,

Binary search trees provide what is perhaps the most interesting
application. We have already mentioned that Hibbard [3] originated this
theory by essentially proving that the R function defined in Section 2
above is I*Dr insensitive. Knuth [7, answer to exercise 6.2.2-13]
observed that it is in fact I*Da insensitive, and then Knott [6] went
much further, proving that Hibbard's R function is (Io,Da)* insensitive.
In particular, if we do n random insertions, followed by m < n fifo-
deletions, the resulting tree has the shape distribution of a binary tree
after n-m random insertions. This is a difficult theorem to prove,
perhaps the "deepest" result about a data structure which had been obtained
by anyone before 1975.

It is possible to establish Knott's theorem using the above theory;
in fact, much of that theory was motivated by what he did. We want to
chow that the binary search tree organization satisfies Condition Qo’

Let k<n be given, and for 1 < { <n let

l.oo(k-l)(k+l)oo|n 5] if lsk;

q eee J - =
£, 1 £yn-1 1ooo (k=1)2(ktl) oos (2=1)(241) ssenn , 4if 2>k,

Let y = YyeeeVp1€ Pn be given, and let 2y eee 2y g be the inverse

permutation, so that J o It is not difficult to verify that

J
Condition Q% holds with the permutation defined by

23 9 b zj &K
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Thus binary search trees are (IO, Da)* insensitive to deletions
using Hibbard's method. On the other hand we have seen that they are
not (Ir’ Dr)* insensitive, so by Theorem 1 they are not even I*DO
insensitive.

Suppose we define deletion in a different way, essentially by
interchanging left and right in Hibbard's method: Let
R(xlxg... xn\J') = p(Xl... X1 Kepq v xn) or p(xl... X, 1 Xpep oo xn)
where X, = Jd g = =J-1 if j > 1 , and where X is deleted if

£
j=1 or £ <k, otherwise X, is deleted. (For example, this changes
R(L32\1), R(312\3) to 21 and R(213\2),R(231\2) to 12 in the
table of Section 2.) This function is (Io, Da)* insensitive to deletions,
and it also satisfies Lemma 2(c) so it is (I, Dq)* insensitive as well.
Furthermore, like Hibbard's function it possesses (Ir’ Dl)* insensitivity.
We can also verify (Ib, Dq’Dl)* insensitivity, if the I‘b insertions
are biased by the most recent Dq (not Dl ) deletion. (Is it
» p,)" insensitive in this sense?)
Jean Vuillemin [8] has recently defined a useful type of data

(Ib, D

organization which he calls binomial gueues, and Mark Brown (2] has shown

that they are highly insensitive to deletions. In fact, Brown proved that
the corresponding R function satisfies Condition Q hence it is (Ir, Da)*
and (Ir,Dr)* insensitive.

The leftist tree structures developed in 1971 by Clark Crane (see
[7, Section 5.2.3]) unfortunately do not share such nice properties, In
fact, the corresponding function R(xl X5 )Qs X), \J) has a pronounced bias
towards %21 and 231 except when j =1, and the function
R(xl %o X X), Xg \1l) is extremely biased. Therefore leftist trees are quite
censitive to deletions, and it will probably be very difficult to analyze
them. In fact, the analysis for pure incertions is already very formidable.

Cimilar remarks apply to balanced trees.

30
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9. Degeneracy.
We have defined deletion insensitivity only in terms of the R

y function, but when many different permutations lead to the same data

f : structure (i.e., if they yield the same S value) it might be possible
i to have deletion insensitivity that cannot be carried back to any R
function for the organization. For example, when the data structure

consists of a sorted linear list, the S function is essentially constant,

so we trivially have (Ir,Do)* insensitivity; but we have observed that

no R function can have this property.

E i
E In other words the conditions we have derived in Theorems 1 and 2

are sufficient but not necessarily necessary for insensitivity. An example

2 % : : : ¥ ¥ e
can be given of a data organization which is IrDrIr insensitive when

the S equivalences are considered, yet it is not I*Do insensitive:

Let R(xl... xn\xk) = p(xl... X 1 ¥y o xn) for n 43,
R(Xlxg)%\l) =12, R(X1X2%\2) =21, R(123\3) = R(132\3)

T T

R(231\3) = 12,

T

]

R(213\3) = R(312\3) = R(321\3) = 21 ; and let S(xl... xn) S(yl...yn)

if and only if Xq eeo xn = yl... yn or n >3 and xh... xn Yy, eee ¥y
and  8(p(x%y%;5)) = 8(p(yy¥,¥5)) , where 5(132) = 5(231) and
S(312) = s(321) . The operations I IIDq leave a nonrandom result;

but I?DrI? clearly produces a random structure when n # 3 , and this

can be verified also for n =3 . Thus Theorem 1 is not true when we

o

take the S equivalences into account.

It appears unlikely that any conditions weaker than those discussed
in the above lemmas and theorems will be useful for proving deletion
insensitivity in practice. Furthermore it is not difficult to see that
the existence of an R function satisfying the six respective conditions
in Lemma 2 is, in fact, both necessary and sufficient for the six
corresponding kinds of 1D insensitivity. (We proved this for I*Dr in

Section 3,)
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