Stanford Artificial Intelligence Laboratory July 1077

Memo AIM-235 1

Computer Science Department
Report No. STAN-CS-77-432

A Users Manual for FOL

by

Richard W. Weyhrauch

Research sponsored by

Advanced Research Projects Agency

COMPUTER SCIENCE DEPARTMENT
Stanford University

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY August 14, 1977
MEMO AIM-235.1

STANFORD COMPUTER SCIENCE DEPARTMENT

REPORT NO. STAN-CS-76-432

by
Richard W. Weyhtauch

Abstract:

This manual explains how to use of the proof checker FOL, and supersedes all previous
manuals. FOL checks proofs of a natural deduction style formuiation of first order
functional calculus with equality augumented in the following ways:

(i) it is a many-sorted first-order logic in which a partiai order over the
sorts may be specified;

(ii) conditional expressions are allowed for forming terms

(iii) axiom schemata with predicate and function parameters are allowed
(iv) purely propositional deductions can be made in a single step;

(v) a partial model of the language can be built in a LISP environment
and some deductions can be made by direct computation in this model;
(vi) there is a limited ability to make metamathematical arguments;

(vii) there are many operational conveniences.

A major goal of FOL is create an environment where formal proofs can be carefully
examined with the eventual aim of designing practical tools for manipulating proofs in pure
mathematics and about the correctness of programs. This includes checking proofs generated
by other programs. FOL is also a research, tool in modeling common-sense reasoning
including reasoning about knowledge and belief.

We are grateful to the many people who have contributed 1o this project. They include John McCarthy, Bill Glassmire, Ashok Chandra,
Chris Goad, Bob Filman, Juan Bulnes, Andrew Robinson and Arthur Thomas.

The research described here was supported by the Advanced Research Projects Agency of the Office of the Secretary of Defense
under contract MDAS03-76-C-0206.

The views and lusi tained in this document are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of the Advanced Research Projects Agency or the US. Government.

Reproduced in the USA. Available f r 0 m the National Technical information Service, Springfield, Virginia 22161. This document is on disk
as FOLMAN.PUB[DOC,RWW]eSU-AL

FOL Manual Page 1

CONTENTS

1 SOME INTRODUCTORY REMARKS . . .« o o o o e e e e e e]

2 WHAT IS AN FOL LANGUAGE? ¢ ¢ cvevennnnns S S ettt 2
3 TERMS, AWFFS AND WEFS + v v svvvennneennnes e 4
L I 1 = Y .. 4
3.2 AWFFS . o o 4
B3 WS . o 4

4 PROOFS USING FOL - -« vttt ettt et ettt e e e e e e e e e e e e e e e e 6
4.1 An FOL proof of (PPQAPIRN(POQAR)o 6

5 THE COMPUTER PROGRAM FOL . . . oottt e e e e e e e e 9
5.1 How to run FOL at Stanford oottt et e e e e e e e e e e e e 9
5.2 General information on the features of FOL -« v v vttt ittt ettt e 10
5.2.1 INdividual SYMDOIS « « o vttt e e e e e e 10
5.2.2 Prefix and Infix notation - . - - o« o i e 10
5.2.3 Extended notion of TERMSottt 10
5.2.4 The Equality of WFFS . . . 10
5.2.5 VLs and subparts of WFFs and TERMs 10
5.2.6 SORTS . . o vttt 11
5.2.7 Semantic AtACHMENT « « ottt et et e e e e 11
5.2.8 Syntactic SiMPlifiCation » + e s v v st eenerearesnosanssssstnsnssesnssonsnesasss 11
5.2.9 Decision procedures P 11

6 LANGUAGE SPECIFICATIONo e e e e e e e e e e e e e e e e e 12

B.1 DeClarations . . .o v i e e 1 2

Page ii FOL Manual

6.2 SORT mManipulationttt e e e 15
6.2.1 Default SORT deClarations.. oo ute e e e 15
6.2.2 MOREGENERAL declaration.. e 15
6.2.3 EXTENSION declarations. v oo oo e e e e e e 15

7 THE GENERATION OF NEW DEDUCTION STEPS e 17

74 AXIOMS . . se it e e e s e 17
7.1.1 Using axioms as axiom S€hemas 18

7.2 ASSUMPLIONS « « « v v v v et et e et et e e e e e e 19

7.3 Basic introduction and elimination rules e e 19
7.3.1 Summary of the basic rules.. e e e e 20
7.3.2 AND (A) FUIBS-. . « « « « o et ettt e e e e e 21
783 OR (V) TUIBS « « o v v e ettt e et e e e e e e e e e e 23
7.3.4 IMPLIES (D) TUIES « -+« vt ettt e et et e e 25
7.3.5 FALSE (FALSE) FUIES « - - vt ottt et e et e e e e 26
7.3.8 NOT (m) FUIBS -+« « c v v e e e e et et e e e e e e e e e e e e 27
7.3.7 EQUIVALENCE (B) TUIES -« « « « v o ettt e et et e e e e e e e e e e e e e e 29
7.3.8 QUANLIfICALION FUIBS -« « « « vttt ettt ettt 30

7.3.8.1 Quantification example . - -« ..ot 30
7.38.2 UNIVERSAL QUANTIFICATION (V) FUIES -« « « « « v v e eee e e e e e e e e e e 31
: 7.3.8.3 EXISTENTIAL QUANTIFICATION (3) rules - -« oo v v 32

7.4 The TAUT and TAUTEQ COMMANGS - - - -+« v v oveeee et et e e et e e e 36
75 The QUANT COMMANG « - - « « « o v et e e e e e e e e e e 38
7.6 The DISTRIB COmMMAaNnd - -« -t v v ittt e e e e et e e e e e e e e e e e e e e e e e 38

7.7 The SUBSTITUTION COMMEANG -« « « vt v vt ettt et e e et et e e e e et et e e e e e et e et 40

FOL Manual : Page iii

7.8 The MONADIC cOmMmMAaNnd s s s s ssssvvessesrsssssssnosssssssssessassossosnsconssos v 41
7.9 Semantic Attachment and Simplification - - - - - L 42
7.9.1 A technical explanation Y 43
7.9.2 Declaring representation Names « - - -« v vt it ettt i e 45
7.9.3 The ATTACH COMMANG -« . oottt e e e e ettt e e et e et ettt ettt 45
7.9.4 Setting default representations - oot ittt e 46
7.95 The SIMPLIFY COMMANG - - - « =« « o e ot et et e 48
7.9.6 Auxiliary FUNCTION definition « -« « o v v v vt 48
7.10 syntactic simplification 49
7.10.1 Making a simplification Set 51
7.10.2 Example of syntactic simplification e 53
8 ADMINISTRATIVE COMMANDS e s e e s e e e e e e e 56
8.1 The LABEL command «...... e essaanss T 56
8.2 File Handling commands « «veovesessssnsnns I 56
8.21 The FETCH COMMANG « « - « -« « o« x o« et et e e e e e e e e e e et e et e e 56
8.22 The MARK COMMANG - -+« t vttt ettt ettt e e e e e 56
8.2.3 The BACKUP COmMMaANd - - -« « v ottt et e 57
8.2.4 The CLOSE COMMANG - - - -« oo e e e e e e e e e e e e 57
8.3 The COMMENT command . . - - « « = « « v v o o o 0 e s it i st r st e e 58
84 The CANCEL command e e e 58
85 The SHOW command Ce et 58
8.6 The EXIT commaNnd s« v o vverseronnnsonssssssssssassssasersessans e r s 59
8.7 The TTY and UNTTY COMMANGS - « « « « « v et m e et et e et e e et e e 60
8.8 The SPOOL Command 60

Appendix A FORMAL DESCRIPTION OF FOL . .ottt ittt i i i e i i 61

Page iv

Appendix B THE SYNTAX OF THE MACHINE IMPLEMENTATION OF FOL

BIBLIOGRAPHY

FOL Manual

FOL Manual ‘ Page 1

Section 1 SOME INTRODUCTORY REMARKS

FOL is a computer program which checks derivations in an arbitrary first order language. This
sounds very technical but it simply means that there are restrictions on the language that we use to
write sentences. A description of the allowable ones is given in the following sections. In this
section | briefly describe how FOL is used. Examples of proofs are given in sections 4.1 and 3.3.8.

FOL can be used in two ways. Proofs can be done interactively using the computer to check each
step or commands may be written on a file and processed when FOL reads the file. Usually both
modes are used during the same proof. The principal content of this manual is a description of the
commands that FOL accepts.

The checking of a proof has several parts. First, the particular language you are going to use must
be specified to FOL. This is accomplished by the declaration commands. These have three
functions: they specify which identifiers are to be the different kinds of syntactic elements of your
language, they describe part of the sorting mechanism, and they tell the scanner about infix
operators and binding powers. The details are found in the section on declarations.

After you have specified a language, FOL can read sentences (usually called well formed formulas or
WFFs). The first WFFs normally read into FOL are the axioms of the theory you are considering.
For example, if you are interested in set theory you might fetch the file KELLEY. AX[AX,RWW].
It contains all the declarations and axioms for Kelley’s version of set theory [Kelley 1955). Of
course you are free to make up any system of axioms you want. Notice FOL will not check whether
your axioms are consistent; it only checks the correctness of the derivations you make. After you
read in (or type at the console) the axioms of your theory, you are ready to check a proof.

. The rules of inference of FOL allow you to generate new proof steps from those you already have.
The basic set of rules consists of an introduction and an elimination rule for each of the logical
connectives and each of the quantifiers. There are also other commands, like TAUT and
TAUTEQ which combine some of these basic rules into powerful techniques for producing new
proof steps. The basic rules are an implementation of a system of first order logic called natural

deduction [Prawitz 1965).

For the new user of FOL a good place to begin reading this manual is section 4.1. There it gives
, some examples of FOL proofs and some complete dialogues with the program. Other more
extensive examples can be found in Filman and Weyhrauch [1976]). The primer can be thought of
as a companion volume to this manual, as it contains extensive examples and lots of hints on
actually using FOL. This manual (I hope) has a correct and fairly complete description of the
facilities of FOL. In addition it contains a detailed description of the syntax of its commands. A
description of how to run the FOL program at the Stanford Artificial Intelligence Laboratory is

found in section 5.1.

T he metamathematical notions mentioned will be refered to by words in the following font: e.g. SYNTYPE,
INDVAR, WFF. These notions will play a greater role in later versions of FOL.

Page 2 FOL Manual

Section 2 WHAT IS AN FOL LANGUAGE?

The FOL user specifies a first-order language by making a set of DECLARATIONs(see Section 6.1).
The proof-checking system then generates a proof checker and a collection of rules specific to that

language.

DECLARATIONsin FOL are similar to declarations in a programming language in that they introduce
symbols and tell how they will subsequently be used both syntactically and semantically. FOL does
not yet have a block structure so that all declarations are permanent. When block structure allowing
declarations local to a block is added, the idea that declarations determine a first order language will

have to be modified.

An FOL language is determined by specifying a way of building up expressions, called well formed
formulas or WFFs, from collections of primitive symbols. In FOL these classes of symbols are called

SYNTYPEs. They are:
I. logical constants:

a) sentential constants - SENTCONSTs: FALSE, TRUE
b) sentential connectives -SENTCONNs: =,A, v, D,=
C) quantifiers -QUANTs: V, 3

2. sets of variable symbols:

a) individual variables --INDVARSs.
b) individal parameters -INDPARSs.

3. a set of n-place predicate parameters -PREDPARSs.

These symbols are used to form those sentences common to all FOL languages. Sometimes a
language L may also contain symbols which are intended to have interpretations which are fixed

relative to the domain of the interpretation. Examples are: "¢" in set theory, "=" in first order logic
with equality, "0" and "Suc” in arithmetic. These are represented by

4. sets of constant symbols:

a) individual constants -INDCONSTS.
b) n-place operation symbols -OPCONSTSs.
¢) n-place predicate constants -PREDCONSTS.

In addition one can

5. declare @ PREDCONST P to be a SORT. This means that its ARITY is one and that something has
property P,i.e. 3x.P(x).

6. restrict a symbol to belong to some SORT.

FOL Manual v Page 3

7. designate a partial order to hold among some of those PREDCONSTs which have been declared to
be SORTS.

8. specify the range and domain of OPCONSTSs to range over particular SORTS.
These last four facilities allow the FOL user to talk about different kinds of ob jects; just as he can’
in informal proofs. Consider integers and even integers. By 5 above these can be thought of as two
SORTs of objects. 6 allows us to say that all even integers are integers. ‘7 can be used to declare that
plus is a function from integers to integers and therefore from even integers to integers (by 6).
Using 5 we can express the result that the sum of two even integers is an even integer (and so by 6
also an integer). The FOL notation for such assertions is given in section 62.3 on SORTS.

Page 4 FOL Manual

Section 3 TERMS, AWFFS AND WFFS

Sect ion 3.1 TERMs

tis an FOL TERM if either
1.11s an INDPAR, INDVAR, or an INDCONST, or
2. tis f(t b5 ..0t), where f is an OPCONST of ARITY n and §;is a TERM, or

3.1is (1F A THEN t, ELSE t,), where A is a WFF and t;,t, are TERM.

Sect ion 3.2 AWFFs

A 1is an atomic well-formed formula or AWFF if
1. A is one of the SENTCONSTs FALSE or TRUE,
2. A is P(t},...tp) where P is a PREDPAR or a PREDCONST of ARITY n.

Section 3.3 WFFs

The notion of well-formed formula or WFF is defined inductively by:
1. An AWFF is a WFF.
2.1f A, B and C are WFFs, then so are:
(AAB), (AvB), (AoB), (A=B}, ~(A) and (IF A THEN B ELSE CJ.
3.1f A is a WFF, then so are Vx. A and 3x. A provided that x is an INDVAR.

The main symbol or mainsym of a’ WFF of the form (ArB), (AvB), (A>B), (A=B), -~ (A), Vx. A and
3x. Ais A, v, >, & -, V, 3 respectively. The scope of some occurrence of a SENTCONN or a QUANT in a
WEF A is that part of A which has this occurrence as its mainsym. An occurence of an INDVAR x in a-
WFEFF A, is bound or free according as the occurrence belongs or does not belong to the scope of a
QUANT that is immediately followed by an x.

The above notations are entirely conventional in mathematical logic except for the conditional
expression (IF A THEN t; ELSE t;). Its value as a term is that of t; if A is true and that of t,
otherwise. The notation is eiiminable, but it makes the description of computable functions much
more straightforward.

The notations A[tex] and Afte~u), where A is a WFF, t, u TERMs and x an INDVAR, are used to denote
the result of substituting x or u, respectively, for all occurrences of t in A (if any). In contexts where a
notation like A[tex] is used, it is always assumed that t does not occur in A within the scope of a
quantifier that is immediately followed by x. The notation A{x«t], denotes the result of substituting t
for all free occurrences of x.

The notation A[a+x,x+t] means the result of first substituting x for & and then t for x. To denote
simultaneous substitution we use A[a+xsx«t].

FOL Manual Page 5

In FOL there are many ways of referring to WFFs and TERMs which already appear in a proof. The
syntax for these constructs is found in Appendix B.

Page 6 FOL Manual

Section 4 PROOFS USING FOL

An FOL derivation is a sequence of proof steps each of which is a valid consequence of the collection
of facts already asserted. We refer to facts within the context of a given derivation as VLs. Each VL
has a name which specifies a WFF W as well as information as to how W came to be part of this
particular derivation. Three different types of names for VLs are LINENUMs, LABELSs and AXIOM

N a mes.

Each RULE listed below has the following form. It takes some set of WFFs and VLs and produces a
new step. The LINENUM of this step is the name of this VL and can be used to refer to it.

A derivation starts by making some ASSUMPTIONS or stating AXIOMs and then using the RULEs of
inference to generate new steps. We now give an examples to show the structure of FOL proofs.
Other proofs can be found throughout the manual. Section 7.3.8 is an example using all of the
quantifier rules.

In this and all succeeding-sections examples of interactions with the computer will appear indented.
Thosel i nes which are typed by the user wi llbe preceeded by f ive stars "sockxkx"
and appear in the same font as this sentence. The lines typed by the computer will

appear like this.

Sect ion 4.1 An FOL proof of ((P=2Q)A(P=R))>(P=QAR)

Below is a proof of the propositional tautology: ((P>Q}A(PoR))>(P>QaR). It would usually be
done in a single step using the TAUT command (see section 7.4) but is included here to illustrate
the use of FOL.

The proof shows that if P implies CI and P implies R, then P implies QaR. The informal argument
goes as follows: suppose we know (P>Q) n(PoR) then we know both P>@Q and PoR. So if’we assume
P we can conclude both @ and R, i.e. QAR. Therefore from P>Q and PoR we can conclude P> (QaR},
dropping our assumption of P. Finally we conclude ((P>Q)A(P5R)>(P>(QAR))) without any
assumptions at all. The FOL, proof is written below. Please look at this proof carefully as it is in
this section that a detailed description of what FOL prints and what it means is most clearly
explained. One way to follow this proof is to actually try it on the computer. How to do this is
explained in section 5.1.

“sorokkDECLARE SENTCONST P QR;

This specifies the FOL language we are using has three SENTCONSTs, P, @ and R. Making
declarations is essential. Failure to declare an identifier is the most common reason for a syntax
error. The second set of five stars is the FOL prompt “character”. It means that it understood your
last command and it is waiting for you to type more. If you make an error it attempts to say what it
thinks is wrong. Don’t worry, you can’t break it by making errors.

*pikASSUME (PoQ) A (PoR)

FOL Manual Page 7

1 (P2Q)A(PR) (1)

This step says assume [know ((P>Q) A{P>R)). FOL responds by printing a LINE. Each LINE typed
by the computer contains: I) a LINENUM, which, labels that LINE; 2) the WFF representing the result
of applying the RULE typed by the user on the line above; 3) a list of numbers representing those
LINEs of the proof on which the WFF depends. Note that an assumption only depends on itself. The
LINENUM 1is the VL, or the name for that LINE of the proof.

sokkknE 11
2 PpQ (1)

This is an example of the RULE AND elimination. The "AE" is the rule name. The “1” after the rule
name is the VL 1, i.e. the first LINE of the proof. It is the VL that the rule applies to. The second “1”

says conclude the first conjunct. All together this command reads do an and elimination on line one
of the proof picking the first conjunct. FOL then creates a new LINE, which it labels 2, and which,
asserts the first conjunct of LINE one. Note that the VL | appears in the list of dependencies.

sorkkknE T T:ﬂZ;
3 PR (1)

This is another example of AND elimination. It asserts the second conjunct of LINE one. The
syntax used is an alternative to the one above and is included here to introduce you to FOL subpart

designators. They are explained in detail in Appendix B. The Yisa special label for LINENUMs.
It means two LINEs from the end of the proof. Similarly for any other number of up arrows. There

is more use of this construct in the proofs below. The colon following the "™ is one of the most
important concepts in FOL. It can be thought of as a function on VLs which retrieves the WFF

associated with the VL. *: is the same as 1: is the same as ((P2@)A(PoR)). Any VL foilowed by a
. is a WFF and NOT a VL. WFFs cannot be used where VLs are expected. This distinction is also
explained in appendix B.

*okkkASSUME Py
4 P (4)
soksakof o+ T3

5Q (14)
—LLE
6R (14)
sxkxkknl 5 B3

7 QAR (1 4)

sokkko]l 4 9

Page 8 FOL Manual

8 P>(QAR) (1)

sopkko] 15°
9 ((P>Q)A(PoR))>(P>(QAR))

Look at the LINE begining with 7 in the above example. 7 is its LINENUM, QAR is the WFF on this
LINE, and the derivation of GAR on’ this LINE depends on the assumptions 1 and 3. This LINE was
generated by the specifying as a RULE AND introduction using LINEs 4 and 5. On LINE 8 when
IMP LIES introduction is applied to LINEs 3 and 7, LINENUM 3 has been removed from the list of
dependencies of the new LINE. This corressponds to the informal idea that the truth of the
conclusion no longer need the discharged assumption. There are five rules that discharge
assumptions. They are IMPLIES introduction, OR elimination, NOT introduction, NOT elimination
and EXIST introduction. The exact details of what assumptions are eliminated can be found in
each of the individual’descriptions of the RULEs. On LINE 10 assumptions are again discharged and
the theorem is proved. I repeat: this theorem is a tautology and therefore can be proved in a single
step using the TAUT rule and should usually be done that way when using FOL.

FOL Manual Page 9

Section b THE COMPUTER PROGRAM FOL

Sect ion 5.1 How to run FOL at Stanford ’

FOL is invoked at the Stanford Al Lab by typing R FOL to’ the monitor. To save an entire session

you want to continued later type the command EXIT;’ to FOL, followed by SAVE <filename> to the .

monitor. To restart type RU <filename> to the monitor and you will be where you left off.

FOL commands fall naturally into several classes:

1. Commands for defining the first-order language under consideration; that is to say,
commands for making declarations;

2. Commands for creating new’ VLs. These' include making AXIOMs, assumptions, and
applying the RULES of inference to generate new steps in a derivation;

3. Administrative commands, which do not alter the state of the derivations, but enable
various book-keeping functions to be carried out.

In this manual the syntax of FOL is described using the following notion of pattern. Those form the basic
constructs of the FOL parser.

1. Identifiers which appear in patterns are to be taken Morally. :
2. Patterns for syntactic typos are surrounded by angle brackets. Thus <wff> is a WFF.
3. Patterns for repetitions arc designated by:
REPR[<pattern>] means n or more repeated PATTERNS.
If a REPn has two arguments then the second argument is a pattern that acts as a separator. So that
REPI[<wff>,,] means one or more WFFs separated by commas.
4. Alternatives appear as ALT[<PATTERNI>| ... |<PATTERNm].
ALT[<wff> |<term>] means either a WFF or a TERM.
5. Optional things appear as OPT[<pattern>]
REP2[<wif>,0PT[,]] means a sequence of two or more WFFs optionally separated by commas.
These conventions are combined with the comparatively standard Backus=Neur Form description.

Page 10 FOL Manual

Section 5.2 General information on the features of FOL

Sect ion 5.2.1 Individual symbols

In FOL INDVARs may appear both free and bound in WFFs.INDPARs, however, must always appear
free. Natural numbers are automatically declared INDCONSTs of SORT NATNUM. The only kind of
numbers understood by FOL are natural numbers, i.e. non-negative integers. -3 should be thought
of not as an individual constant, but rather as the prefix operator -, applied to the INDCONST 3.

Sect ion 5.2.2 Prefix and Infix notation

FOL allows a user to specify that binary predicate and operation symbols are to be used as infixes.
The declaration of a unary application symbol to be prefix makes the parentheses around its
argument optional. The number of arguments of an application term is called its ARITY.
Section 6.1 describes how to make such declarations.

Sect ion 5.2.3 Extended notion of TERMs

In addition to ordinary application terms, FOL accepts several other kinds of TERMs. There are
three kinds of bracket TERMs: those surrounded by square brackets [], those surrounded by curly
brackets {,}, and those surrounded by angle brackets <,>. These are the only expressions in FOL
that do not have a fixed number of arguments; Quote TERMs are individual constants for s-
ex pressions. They appear in proofs as any s-expression preceeded by a"’" symbol. FOL also
parses comprehension expressions of the form {x|P(x}}. A detailed description of the syntax of these
TERMs and more examples are found in Appendix B.

Sect ion 5.2.4 The Equality of WFFs

FOL always considers two WFFs to be equal if they can both be changed into the same WFF by
making allowable changes of bound variables. Thus, for example, the TAUT rule will accept
Vx.P(x)>Vy.P(y) as a tautology if x and y are of the same SORT.

Section 5.2.5 VLs and subparts of WFFs and TERMs

FOL as implemented offers very powerful and convenient techniques for referring to objects in a
proof: essentially, any well-formed expression has a name, and can be manipulated as a single entity.
As explained above a VL is a part of a derivation. The syntax of naming VLs is very extensive and
a review of it will be left to Appendix B.

FOL Manual ' Page 11

Section 5.2.6 SORTSs

The declaration of SORTs, and specification of a partial order over them, constitutes a major feature
of FOL from a computational point of view. It was the first major difference of FOL from the

usual formalisms for first order logic.

Scct ion 5.2.7 Semantic Attachment

The semantic attachment mechanism of FOL is one of its most novel features. It allows a user to
describe to the proof checker some computational information about the theory he is examining and
allows him to make conclusions using this computational information rather than using the FOL
rules of inference.

Section 5.2.8 Syntactic Simplification

This is a powerful’ syntactic simplifier which alows a user to specify aset of equations as
simplification rules and then to simplify any expression by continually performing replacements until
no more are possible.

Section 5.2.9 Decision procedures

FOL presently has three decision procedures implemented. TAUT decides if WFFsate propositional’

tautologies. TAUTEQ is like TAUT but takes equalities into account. MONADIC decides
monadic predicate calculus statements.

Page 12 FOL Manual

Section 6 LANGUAGESPECIFICATION

The first step in specifying a first-order theory is the description of the language which is to be used.
This is done by defining the symbols of the language, using the declaration commands. These
commands specify which symbols are to be variables, constants and predicate or function symbols.

Section 6.1 Declarations

As we mentioned above, the first thing that a user of FOL must do is to define the FOL language to
be considered. Every identifier in a proof must be declared to have a SYNTYPE. Only nine of these
types can be declared by the user. They are:

l. SYNTYPE 1

a) INDVAR (individual variables)
b) INDPAR (individual parameters)
c) INDCONST (individual constants)
d) SENTPAR (sentential parameters)
e) SENTCONST (sentential constants)

2. SYNTYPE2

a) PREDPAR (predicate parameters)

b) PREDCONST (predicate constants)

c) OPPAR (o era ton parameters or function parameters)
d) OPCONST (operation constantsor function constants)

Al identifiers of SYNTYPE2 require one or more arguments.

Declarations are fixed within a proof and once made they cannot be changed.
DECLAREALTIREPlI<simpldec> OPT[,]]|REPL[<applidec> OPT[,1] 3 ;

There are two kinds of SYNTYPEs, those of symbols which take arguments, SYNTYPE2s, and those
which-do not, SYNTYPEls.

<syn type 1> t= ALT(<indsym> <sen tsym>]
<syntype?> t= ALT(<predsym> <opsym>]}

The idea of SORTsis to allow a user of FOL to restrict the ranges of function to some predetermined
set. This corresponds to the usual practice of mathematicians of saying let f be a function which
maps integers into integers. in FOL a SORT is just a PREDCONST of ARITY 1, i.e. a property of
individuals. The effect of this informal restriction to integers is achieved in FOL by

FOL Manual Page 13

sorkkkDECLARE PREDCONST INTEGER 1;
followed by
sokxxkDECLARE DPCONST + (INTEGER, Il‘hEGER) =]NTEGER;

A PSEUDOSORT is an identifier which has not yet been declared but is assumed to be a PREDCONST of
ARITY1 and is declared such because of the context in which it appears. If INTEGER had not been
separately declared above, in its appearance in the second command it would have been considered
to be a PSEUDOSORT and declared accordingly. There is one special PSEUDOSORT, i.e. the PREDCONST
UNI VERSAL. This represents the most general SORT and is the default option whenever SORT
specifications are optional. In declarations it can also be abbreviated by "s". The
MOSTGENERAL command explained in the next section, can be used to change the name of the

MOSTGENERAL SORT.
<pseudosort> := ALTI <identif ier> | = |

There are two kinds of declarations: simple declarations. and application declarations. Simple
declarations define objects which do not have arguments; in the present structure of FOL, these
objects are INDVARs,INDPARs, INDCONSTs, SENTPARs, and SENTCONSTs. Application declarations
define objects with arguments; this class includes PREDPARs, PREDCONSTs, OPPARs, and OPCONSTS.

The BNF formulation of the declaration syntax is

<s imp | dec> 1= <syntypel> <idlist> OPT[¢ <pssudosort> |

<app | dec> 1= <syntype2> <idlist> <argdec> OPTL [<bpdec> |]
<argdec> 1= ALTL <argsort> | <natnum>)

<argsort> t= ALTL : <sortrep> ALTI(=|+4] <pseudosort> |

(<sortrep>) ALT(=]4) <pseudesort> |
<sor trep> t= REP1{ <pseudosort> ., OPTIALTIe|,)] |

<bpdec> t = ALTL <rbp> | <rbp> < Ibp> | <lbp> <rbp> | INF | PRE 1
<rbp> ts R+ <natnum>
<lbp> t2 L+« <natnum>

Examples of simple declarations:

*xxkxkDECLARE INDVAR x y 23
*%xxkkDECLARE INDVAR a b ¢ € Set, A B Ce Class: |

sxxkDECLARE SENTCONST P1P2Qs
Examples of application declarations:

sxkkkDECLARE OPCONST EXP (NATNUM, NATNUM) =NATNUM [L+858 R-880];
The meaning of this declaraion is that EXP is an OPCONST, it has two arguments (ARITY 2), both of
which are of SORT NATNUM. It also has a value of SORT NATNUM, and is to be used as in infix
operator with a right binding power of 800 and a left binding power of 850. This could also be
declared by

Page 14 FOL Manual

»xxxkDECLARE OPCONST EXP:NATNUMeNATNUM-NATNUM (L858 Re8881 ;
Simpler declarations can be made if you don’t wish to specify so much information.
xx3kkDECLARE OPCONST EXP: NATNUHQNATNUMATNU‘I (I WE;
declares EXP the same as above but uses the default infix bindihgs Re«500, L-550.
sorkokkDECLARE OPCONST EXP (NATNUM, NATNUM) =NATNUM;

simply makes EXP an ordinary applicative function, so you must type EXP (a, b) rather than (a EXP
b). Further simplification can be made if less sort information is wanted

*xkxkDECLARE OPCONST EXP (NATNUM, NATNUM)
makes the value of EXP have the SORT UNIVERSAL (the MOSTGENERAL SORT), and

sxxkxDECLARE DPCONST EXP 2;
just says it has ARITY 2. Of course

sorkkDECLARE OPCONST EXP 2 [INF1;
sorkkkDECLARE OPCONST EXP 2 (L850 R«8081;

have the obvious meaning. This section has illustrated most of common ways of making
declarations. There are some other examples scattered throughout this manual.

FOL Manual Page 15

Section 6.2 SORT manipulation

There are several commands which affect the SORT structure.

Sect ion 6.2.1 Default SORT declarations

MOSTGENERAL o @ wooe
NUMERALSORT <sort> i
CUBRACKETSORT <sort> i
ANRRACKETSORT <sort>
SQBRACKETSORT <sort> 3
SEXPRSORT <sort>3

In FOL certain TERMscome’with predeclared SORTs; numerals become INDCONSTs of SORT NATNUM,
comprehension terms, curly bracket TERMs (sometimes called finite set TERMS) and angle bracket
TERMs (sometimes called n-tuple TERMSs) have SORT CLASS, quote TERMs have SORT SEXPR, and the
. default MOSTGENERAL SORT is the PREDCONST UNIVERSAL. ‘This is also the default SORT of square

“bracket TERMs. The effect of the above commands is to replace these default SORTS with those

specified by the user.
Sect ion 6.2.2 MOREGENERAL declaration

MOREGENERAL <sort>2{<sort_list>}}
For example,

»xkxxMOREGENERAL CHESSPIECE 2 {WHI TEPIECE, BLACKPIECE! 3
is equivalent to the axioms

V x . (VHITEPIECf(x) > CHESSPIECE(x))
V x. (BLACKPIECE(x) > CHESSPIECE(x))

where CHESSP | ECE, WHI TEPI ECE and BLACKPI ECE are previously declared SORTs. Another typical.

example would be the declaration of classes to be MOREGENERAL than sets. The MOREGENERAL
declarations establish a partial order among SORTs. The effect of this partial order on the quantifier
rules is explained in section 7.3.8.4.

Sect ion 6.2.3 EXTENSION declarations

EXTENSION <sor t><ext_set>}

<ext_set> 1= <primext> REPB[ALTIU|N|/) <primext> |
<primext> t= ALTL <sort> | { <indconstlist> | |

Page 16 FOL Manual

where each of the SORTsin the <primext> already has an EXTENSION defined. For example,

soppkDECLARE INDCONST BK € BKINGS, WK ¢ WKINGS;
sxkkDECLARE PREDCONST KINGS 13

*xxxxkEXTENSION BKINGS {BK1 3

Extension of BKINGS is (BK)

*xk0kEXTENSTON WKINGS (WK1 3

Extension of WKINGS is (WK)

xxkEXTENSTON KINGS WKINGS v BKINGS;

Extension of KINGS is (WK BK)

The initial declaration declares BK to be of SORT BKING, and WK to be of SORT WKING. The command
EXTENSION BKINGS {BK}; says that BK is the only object which satisfies the predicate BKINGS;
similarly, the command EXTENSION KINGS BKINGS U WKINGS; says that the only objects which
satisfy the predicate KINGS are those in the union of the extensions of BKINGS and WKI NGS, i.e. BK
and WK. This is equivalent to the introduction of the axioms:

V x . (BKINGS(x) = (x=BK))
V X . (WKINGS(x) = (x=WK))
Vx. (KINGS(x) = ((x=BK v x=WK) A -=(BK=WK)))

By itself, this command has no effect, but the semantic simplification mechanism (Section 7.9) uses
these axioms.

The facts about integers and even integers mentioned in section 2 are expressed by the declarations:

sxorkxkDECLARE PREDCONST EVENINTEGER (INTEGER) ;
xxxxxMOREGENERAL INTEGER 2 {EVENINTEGER} 3
i sxxkxDECLARE OPCONST +: INTEGER®INTEGER-INTEGER [INF] ;
xxxkxDECLARE INDVAR el €2 €3 ¢ EVENINTEGER,;
aokkkkAXTOM EVEN: Vel e2.3e3. el+e2=e3;
, EVEN: Vel e2.3e3.(el+e2)=e3

FOL Manual Page 17

Section 7 THE GENERATION OF NEW DEDUCTION STEPS

Sect ion 7.1 Axioms

AXIOMs play the same role as ASSUMPTIONS, but they do not appear in the dependency list of any step
of a deduction, nor are they printed when you show the proof. Thus derivations are always relative
to an unmentioned theory. When a theorem creating mechanism is available this will change. The
syntax for defining an axiom is:

AXIOM <axiom> 3

where

<axiom> t= <axnam> 1 <ufflist>

Each WFF in WFFLIST is given a name by FOL. This name is generated by taking the AXNAM and
concatenating an integer to it. For example, if the AXNAM is GROUP then they will be given the
names GROUPI, GROUP2,.... These can then be used to refer to particular axioms. An AXNAM
is a VL and may be used in any context that that expects one. If WFFLIST only contains one WFF that
ax iom is called AXNAM.

NOTE: The syntax calls for two semicolons!!!!

Ex amples:

sxxkxDECLARE SENTPAR P,Q,S;

sokkkAXIOM Pls (P> (@>P)),
{So (Po>Q) o> ((SoP) > (SQ)),
((PoFALSE) oFALSE) oP 33

This creates the axiom P 1. It generates three additional subaxioms P 1l={(P>(Q>P)),
P12=(S>(P>Q)) 5((S5P)>(S>Q)) and P 13= ((Po>FALSE)SFALSE)oP. At the moment no checking is
done for the consistency of axiom names. You lose if you create conflicting ones. Axioms cannot

be gottten rid of, so be careful; Numbers are not legitimate AXNAMS.

Page 18 FOL Manual

Section 7.1.1 Using axioms as axiom schemas

There are no special rules for axiom schemas, merely an extension of the use of the rules already
given. Namely, an axiom schema is simply an AXIOM containing a PREDPAR or an OPPAR.

An axiom can be used anywhere a VL can by using an AXREF. ‘This is of the form
AXNAM [PP;«XX;,...PPeXX,] and its syntax is described in the section on VLs. An AXREF can appear
anywhere a VL can. In the form AXNAMIPP;XX,,.,PP,¢XX,], the PP; are PREDPARs or OPPARSs
appearing in the axiom, and the XX; are propositional functions assigned to these parameters. The
assignments are done successively rather than simultaneously.

An XX;is aWFF or TERM preceded by 2, any number of INDVARs and a "." (period). Thus, e.g. A xy
2.<wif>. The ARITY, p, of the PREDPAR or OPPAR must be less than or equal to the number of
variables following the A. The indicated X-conversion on the first p variables is done automatically,
The error message NOT ENOUGH LAMBDA VARIABLES means p is too large. The remaining variables
are treated as parameters of the. entire axiom, and the instance of the axiom returned is the
universal closure of the axiom with respect to these parameters.

The *’ notation, explained in appendix 7.9, can be used to name the WFF associated wih this axiom.
The SUBPART designators can then be used in the same way as they are with other VLS.

Example of using axiom schemas:

soxkkkDECLARE PREDPAR P |;DECLARE INDVAR n;

*****DECLARE PREDCONST 2 2 [INF];DECLARE OPCONST t 2 [INFJ;
xxxxkAX10M INDUCTION: P (8)AVn. (P (n)oP (n+1))5¥Yn.P(n);;
INDUCTION: P(0)AYn.(P(n)>P(n+1))>VYn.P(n)

*kkxkDECLARE INDVAR a b;

sokrkkn]l INDUCTION [Pedb a. a+b2bl;

1 Ya.(((a+0)20AVYn.((a+n)2n>(a+(n+1))2(n+l)))>Vn.(a+n)2n)
sxkkknl INDUCTION [PeAb. Ya. a+b2b] ;

2 (Va.(a+0)20AVYn.(Ya.(a+n)2noVYa.(a+(n+l))2(n+l)))o¥n a.(a+n)2n
sorkkkn] INDUCTION [Pedb n. n+b2bl;
3Vn.(((n+0)20AYnl.((n+nl)2nl>(n+(nl+1))2(nl+1)))>¥nl.(n+nl)2nl)

FOL Manual Page 19

Section 7.2 Assumptions

ASSUME <ufflist> 3

The ASSUME command makes an assumption on a new line of the deduction for each WFF in
WFFLIST. Note that assumptions depend upon themselves.

Examples:

»orkkASSUME PaQs

1 PAQ (1)
sorkkkASSUME PAQ, PAR;
2 PnAQ (2)

.3 PaR (3)

Section 7.3 Basic introduction and elimination rules

The general form of a RULENAM is
<rulename> t= <logconsty RLTI I | E)
where 1 stands for introduction and E for elimination. The format of a command is:

<rule> := <rulename> <|inenuminfo> ;

The LINENUMINFO is different for each RULE. This is explained below. We will use # to stand for
an arbitrary VL. In the description of some of the RULES it is necessary to distinguish among several
VLs. In this case we write #1,02,... We will write

Al Al
rather than
Al <vi> A <vi>

-Alternative alphabetic RULENAMs will be gtven in parentheses after the standard ones. These
‘usually correspond to other frquently used names for these rules. Thus MP (modus ponens) or UG
(universal generalization) can be used, instead of oI or VL

If there is no syntactic ambiguity any comma appearing in these rules is optional. This will not be
mentioned explicitly in the following sections. Thus a ," appearing in arule specification it is to be
thought of as OPTL).

Page 20

Sect ion 7.3.1 Summary of the basic rules

FOL Manual

The inference rules consist of an introduction (I) and an elimination (E) rule for each logical
constant. This page is included for reference as each rule is discussed fugther on. The letters within
parentheses indicate that the inference rule discharges assumptions of thg form.

Al 3] B aE)
AAB

vl) a]
RvB AvB
(R)

oD B oE)
A>B

YD)] VE)
VX. Rlaex)

n Rixet) 3E)
Ix.R
(R)

B §) FALSE -£)
-A

FD -A A =5)
FALSE

el) R>B BoR =E)

AzB

RAB AAB ,
AoB i
Y '
) ®

Aixet)

(Aix<al)
Ix.R B

Restriction on the ¥i-rule: 2 must not occur in any assumption on which A depends.

Restriction on the 3E-Rule: a must not occur in 3X.A, in B, or in any assumption on which the

upper occurrence of B depends other than Alxeal

FOL Manual Page 21

Section 7.3.2 AND (A) rules .

Introduction rule

Al (Al) (nB) N

-e

‘The LINENUMINFO for Al is any parenthesized conjunctive expression in which all con juncts are VLs.
If no parentheses appear (even in a subexpression) association is to the right, thus sA(sasas)As
means #A((#n(#A#))As). AND is always a binary connective. The "&" and "," are alternatives to the

A" symbol. The dependencies of a line are those LINENUMs mentioned.

*kKKKASSUME P, Qs
1 P (1)

2 Q (2)
xxkokxnl 1,23

3 PAQ (1 2)
sokknl 1 (2 1)

4 PA(QAP) (1 2)

Elimination rule
AE(AE) # OPTC ALTIL,|:13 ALTI1]2] <subpart>] ;

1 picks out the first conjunct, 2 picks out the second conjunct and SUBPART picks the appropriate
subpart. For the definition of SUBPART see Appendix B. The dependencies of the result are the
same as those of .

*x¥kkASSUME Pa (GAR) 3
1 Pa(QAR) (1)
sokkknE 1 13

2P (1)

sokkrknE T 2

3 QAR (1)

xokkknE 1: H2H2;

Page 22

4 R (1)

Note the various possible syntaxes. Each of these commands could be replaced by an appropriate
TAUT command; eg., the above command AE 1 s #2#23 could be replaced by TAUT QaR1;.

FOL Manual Page 23

Section 7.3.3 OR (v) rules

Introduction rule

VI(0]) (Hv<uf f>v<uf f>): :

ORs may be parenthesized just like ANDs, but at least one disjunct must be a VL. Any VLs given
will cause the dependencies of that line to be included in those of the conclusion. As with AND,
association is to the right and OR is binary.

sorxxxASSUME P;
1P (1)

wopkkkvl 1, (PVR)

2 Pv(PVR)y (1)

Elimination rule

vE(OE) # o, H2

3

#is the VL on which a disjunction AvB appears #1 and #2 are both VLs such that
#1l: and #2: are both equal to the WFF C. The conclusion of this rule is the WFF
c. The dependericies of the conclusion are those of # along with thoee’of #1 which
are not equal to A and those of #2 not equal to 8. Remember two WFFs are equal
if they differ only by a change of bound variable. In the example two different
commands are g i ven. Note how the dependencies arc treated in each case.

sxxxxkASSUME PV, P, Q;

1 PvQ (1)

2 P (2)

3Q (3)

sorkokko] -Q, 2;

4 =P (2)

*xkASSUME =03

5 -Q (5)

Page 24 FOL Manual

soiokkF I 3,8
6 FALSE (3 §)

wookFE P
7P (35)

swockkol 5o8

8 ~xP (3)
wirkkvE 1,4,8;
9 -P (1)
soecionvE 1,8,43
10 -QoP (1 2 3)

TAUT could replace t‘l‘r\e introduction command, but if a TAUT were used in .the
elimination rule, the resulting VL would have extra dependencies :

*ock TAUT 0P 1,4,8;
11 (~Q>P) (1 4 8)

FOL Manual Page 25

Section 7.3.4 IMPLIES (o) rules

Introduct ion rule

ol (DED) ALTL #o# | <uff>ol]
The difference betueen #># and <uff>o# is that in the former case dependencies of
the conclusion which are equal tothe hypothesis are deleted. A comma is an
alternative to the ">" symbol, In other styles of presenting first order logic
this rule is often called the deduction theorem.

*oxxxxASSUME Py

1 P (1) .

sokkkxo] P, 13

2 PoP (1)

skl 151

3 PoP

Elimination rule

SEMMP) # , #

The order i n w hic h the arguments are specified is irrelevant. This is the
classical rule modus ponens. The dependencies of the conclusion are the union of
the dependencies of both Vis.

sokxkkASSUME PoQ, P
1 P2Q (1)

2 P (2)

sokkorkdE 1, 23

3 Q(12)

The elimination rule can be replaced by TAUT, but TAUT will not remove thosa
dependencies removed bt the >l rule.

Page 26 FOL Manual

Section 7.3.5 FALSE (FALSE) rules

Introduct _ion rule

Fl. # , #2 ;

I f #1 is of the form A, then #2must be of the form-A (or the other way around).
The ¢conctusion is just the WFF “FALSE". Its dependencies are the unionof th os e
of #1 and #2.

*k0kASSUNME -P, P3
1 =P (1)

2 P (2)
e

3 FALSE (1 2)

xxxxx | 2Py
4 ~P (2)
sxxnexo] T8
5 Po>——P

Elimination rule

FE #, ALT [#1|<uff>];

#must be of the WFF "FALSE". A neuw line is created with either #1: or the WFF
specified by the al ternative., Thisrule says that anything follousfrom 3
contradict ion. The dependencies (there had better be some or your theory is
inconsistant) are just those of #.

. *kkkxkASSUME FALSE;

1 FALSE (1)

xkxkxFE PA-P3
2 PA-P (1)

FOL Manual Page 27

Section 7.3.6 NOT (-) rules

Introduction rule

~I(NID # ., ALTD #l1 |<uff>]) ;

must be the WFF “FALSE”. The conclusion of the rule is the negation of #1: or
"the WFF, The dependencies of the conclusion are those of # minus the ones equal
t o #1:o0r WFF,

*kkxxkASSUME -P;
1 =P (1)
sokkkASSUME P;
2P (2)
—— G

3 FALSE (1 2)
xxxxx_ |0 P,

§ =P (2)
sorkkro] 13

5 Po——P

El imination rule

-E(NE) #) ALTL #1 | <uff> 3

must be the WFF *“FALSE”. #1 or WFF must have the form -A. The conclusion i s
A. The dependencies are those of #,minus any equal to -A. If this rule is
omi tted (or simply not used) and only the introduction and elimination rules are
used the proof is intuitionisticly valid.

sokkxxkASSUME —~-P, -P;

1 =P (1)

2 =P (2
sokdorkF] 1 2;

3 FALSE (1 2)

Page 28 FOL Manual

wokkkkNE 23
4 P (1)

sokrko] 1,0

5 ==Po>P

FOL Manual Page 29

Sect ion 7.3.7 EQUIVALENCE (%) rules

Introduction rule

=l(ED # |, H2

Either #1 is of the form A>B and #2 is of the form B>A or vice versa. The
ggcnclusion is A=B. The dependencies are the union of the dependencies of #1 and
*kmokkASSUME FALSESP
1FALSESP (1)
soxkkkASSUME PoFALSE;
2 PoFALSE (2)
sokkkk=] 1 2
3 FALSE*-P (1 2)
El imination rule

=sE(EE) # , ALT{ ALTD5]1] | ALTIc|2)]

I f# is of the form A=B then the first al ternative produces A>B, the second BoA.
The dependencies are those of #.

sooxxxkASSUME Ps-~-Py
1P=~=P (1)

sololokksE 15
2 Po~=P (1)
——— c

3 PP (1)

Page 30 FOL Manual

Section 7.3.8 Quantification rules

Sect ion 7.3.8.1 Quantification example

akxkkDECLARE INDVAR x y; DECLARE INDPAR a b; DECLARE PREDPAR P 2;
JHRKKASSUME. V. Ty P (x, y) AVX g (P {x,) P Ly, %)) 3 '
1 Vx.3y.P(x,y)aA¥x y.(P(x,y)oP{y,x)) (1)
sxkkknE 1 13
2 VYx.dy.P(x,y) (1)
sxokkknE 1 23
3 Vx y.(P(x,y)>P(y,x)) (1)
*xxkkVE 2 a; ~
4 3y.P(a,y) (1)
*xxkxVE 3 a-b;
5 P(a,b)>P(b,a) (1)
- oxkkkk3E 4 by

6 P(a,b) (6)
s++4+DE B3
7 P(b,a) (16)
aokkkkAl 6 7 ;
8 P(a,b)aP(b,a) (1 6)
wokkxkd] 8 beys
9 3Jy.(P(a,y)aP(y,a)) (1)

TFEEFEV] 9 aexs
10 Vx.3y.(P(x,y)aP{y,x)) (1)
sorkkko] 15103

11 (Vx.3y.P(x,y)a¥x y.{P{x,¥y)oP(y,x)))o¥x.dy.(P{x,y)aP{y,x))

FOL Manual - Page 31

Section 7.3.8.2 UNIVERSAL QUANTIFICATION (V) rules

Introduction rule

V 1 (UG) # , REPL1[OPTIALT [<indvar>|<indpar>) «] <indvar> , OPT{,1]);

Several simultaneous universal generalizations on e can be carried out with this command. For
each element of the list (either x or a«X) a new universal quantifier (Vx) is put at the front of
(with x for all free occurrences of a in the second case) and a new line of the derivation is created.

Remember there is a restriction on the application of this rule, namely the newly quantified variable
must not appear free in any of the dependencies of .

In the example step 10 is a universal generalization of step 8. There is nothing free in the WFF on
line 1 (line 9’s only dependency) so the generalization is legal. Notice that the “a” was changed to an
"x". “a” cannot serve as a bound variable, as it is an INDPAR.

Elimination rule
VEWS) # , «<terml ist> ;

Universal specialization uses the terms in the <termlist> to instantiate the universal quantifiers in the
order in which they appear. If a particular term is not free for the variable to be instantiated a
bound variable change is made and then the substitution is made. The variable created is declared

to be an INDVAR of the correct SORT.

Line 4 and 5 of the example were created by this rule.

Page 32 FOL Manual

Section 7.3.8.3 EXISTENTIAL QUANTIFICATION (3) rules

Introduction rule

31 (EG)# , REP1(OPTl<term> ¢} <indvar> OPTl<occlist>],O0PT(,1] ;

The list following « tells which TERMs are to be generalized. If the optional <term>'is present, it is
first replaced by <indvar> at each occurrence mentioned in the <occlist>. The WFF on # is then
generalized and the next thing in the list is considered. Notice that no use can be made of an
<occlist> if there is no TERM present. The machine will ignore such a list in this case. The
dependencies of the conclusion are just those of .

<occl ist> = OCC <natnumiist>

In the example existential introduction is done on line 9 of the proof. This is the most interesting
line of this example. You will note that the dependencies of this line are not as described above
because of the previous existential elimination. This is explained below.

sxxxxDECLARE PREOCONST F 1,
###4*DECLARE INDVAR x y;
sokkkk TAUT F (x) v—-F (x) 3

1 F(x)v=F(x)

sokkd] 1, xey OCC 2 ;

2 3y.(F(x)v=F(y))

FHEEEV] D xg

3 VX. Jy. (F (x)v-F (y))

Elimination rule

JEES) # , REPI1 [ALT(<indvar>|<indpar>J,0PT(,1]

The implementation of this rule is the most radically different from the formal statement given
above. This rule corresponds in informal reasoning to the following kind of argument. Suppose we
have shown that something exists with some particular property, e.g. 3y.P(a,y). Then we say “call
this thing b”. This is like saying ASSUME P(a,b). Then we can reason about b. As soon as we
have a sentence, however, that no longer mentions b, it is a theorem which does not depend on what
we called "y" but only on the dependencies of the existential statement we started with. Thus we

FOL Manual Page 33

can eliminate P(a,b) from the assumptions of this theorem and replace them with those of the
assumptions of 3y.P(a,y)

The machine implementation thus makes the ‘correct assumption for ‘you, remembers it and .

automatically removes it at the first legitimate opportunity. Several eliminations can be done at once.

In -the example an existential elimination was done creating step 6. This line actually has as its
REASON that it was ASSUMEd. Line 8 thus depends on it. When the existential generalization was
done on the next line, b no longer appeared and so line 6 was removed from the dependencies of
line 9. A user should try to convince himself that this is equivalent to the rule stated at the
beginning of this manual.

Page 34 FQL Manual

Section 7.3.8.4 Quantifier rules with SORTs

The following table describes the effect of the quantifier rules in the presence of $ORT and
MOREGENERAL declarations, such that p is of SORT P, qis of SORT Q and r is of SORT R, and R is
MOREGENERAL than Qand Qis MOREGENERAL than P

YE Yq.R(g) Yq.R(q) ¥q.R (q)
Alp) A(g) QA(r)oR(r)
Vi A(q) LECY A(g)
Vp.R(p) Vq.R(q) error
3t 3q.A(g) 3g.A(q) 3q.A(q)
------ -M-w--- 1]
error Alg) Alr)
31 Ay Ay Rig)
S~ mmmmmE e p-m----
P (q)>3p.R(p) 34.A(q) Ir.A(r)

A's an example, consider the following FOL proof:

xxxxxDECLARE PREDCONST CHESSPIECE WHITEPIECE BLACKPIECE 1;
sokorkDECLARE INDCONST black white ¢Colors

sxxxkDECLARE OPCONST color:CHESSPIECE+Color;

soxnokDECLARE INDVAR p ¢ CHESSPIECE,wp € WHITEPIECE,bp ¢ BLACKPIECE;

xxxxkAX10M COLOR: Vwp. (color (up) =white),
* Vbp, {color (bp) =black) ; ;

: COLOR: COLOR1: Yup.color (up) =uhite
COLOR2: Vbp.color (bp)}=black

sxkxkx¥Ye COLORI wup;
1 color({wp)=zwhite
sxkxx¥Ye COLORI p;
2 WHITEPIECE(p)>color(p)=white

In general, if universal specialization is applied to a formula with a term whose SORT is

FOL Manual Page 35

MOREGENERAL than the quantified variable, the result of the specialization is an implication asserting
that if the term is of the proper SORT, then the specialization holds. if the variable is MOREGENERAL
than the term, then the usual WES is returned. Corresponding results hold for the other quantifier
rules. .

Page 36 FOL Manual

Section 7.4 The TAUT and TAUTEQ commands

TAUTOLOGY rule

T A UT<uff>, cvllist>y

This rule decides if the WFFs follows as a tautological consequence of the WFFs mentioned in the
VLLIST (the notion of VLLIST is defined in Appendix 2). In this case WFF is, concluded and its
dependencies are the union of the dependencies of each WFF in the VLLIST. We think this algorithm
is fairly efficient and thus should be used whenever possible.

TA UTEQ rule

TA UTEQ implements a decision procedure for the theory of equality and n-ary predicates, n20. Its
syntax is the same as the TAUT rule:

TAUTEQ <uffs,<vilists;

This rule decides if WFF follows from the WFFs mentioned in VLLIST in the above-mentioned theory.
Thus, anything that can be proven by TAUT can also be proven by TAUTEQ but TAUTEQ
runs more slowly than the TAUT rule.

skxxxDECLARE PREDCONST P 1G 1;
xxxkxDECLARE OPCONST f1;
####*DECLARE INOVAR a b
sxxxkTAUTEQ a=b> (P (a) =P (b)) ;
1 a=bo(P(a)=P(b))
xxkxkTAUT a=b> (P (a) P (b)) ;
Not a tautology
sk TAUTEQ a=bof (a) =f (b) :

- Not a tautology

The formula a=b>(P(a)sP(b)) cannot be proven propositionally: TAUT would simply rename (a=b)
to a new PREDPAR with ARITY O, say PI, P(a) to P2, and P(b) to P3, and then try to prove
P 15(P2=P3). The formula (a=b)>f(a)=f(b) cannot be proven by TAUTEQ since TAUTEQ does not
know about the arguments of functions.

FOL Manual

Page 37

As mentioned before, any inference by one of the basic propositional rules can also be performed by
TAUT. The difference is that TAUT sometimes handles dependencies unsatisfactorily, as in the

following example:

*kxkkDECLARE PREOCONST P Q1; DECLARE INDVARXY Z;3

sokxskkDECLARE SENTCONST A Bs
*RAkkkASSUME AvB, ASYX. P (X) ,BoYX.P(X) ,A,B;

1 AVB (1)
2 ASYX.P(X) (2)
3 BaVX.P(X) (3)
4 A @)
58 (5)_

©owkxkkoE & 24

6 VX.P(X) (2 4).

sorkkkoE 5 3

7 VX.P(X) (3 5)

skskdokkVE T x ;

8 P(X) (2 4)
Aok YE T x ;

9 PXy 3 5
*okxxxvE 1,8,9:
10 PX) (1 2 3)

sk TAUT P(X) 1,2,3,8,9;
11 PX) (12345)
F*okxkk TAUT P(X) 1,2,3;5

Not a tautology

Page 38 FOL Manual

Sect ion 7.5 The QUANT Command

Quantification rules

There are three new FOL commands which affect WFFs with quantifiers. They are PUSH, PULL,
and QUANT. PUSH works on WFFs with an initial negation sign followed by any number of
quantifiers. It pushes this, and any other negation symbols it might find, through these quantifiers
making the necessary changes until the matrix of the formula is reached. PULL does the opposite,.
namely it pulls negations out to the front of the formulas.

The syntax for these commands is

PUSH <vi>;
FULL <vi>:

The QUA NT command is much harder to explain. It tries to do “correct quantifier manipulations”,
but the phrase in quotes is not clearly defined. Its syntax is

QUANT <uff> , <vi> 3

The meaning of this command is similar to TAUT. It says verify that the WFF follows from the
given VL by quantifier manipulations. PUSH and PULL are just special cases of this rule. First
there are some restrictions on the form of the WFF compared to that of the VL. They must be

propositionally similar or there is no hope of applying this rule. If there are no equivalences, this
means that the two must be identical when

1) quantifiers are dropped

2) terms are replaced by #s.

3) negations are pushed in to AWFFs

4) implications (A>B) are changed to disjunctions (~AvB)

Thus —=(A(t1)vB(x)) is propositionally similar to =A(f(x))a-~B(t3) but not to =(B{x)vA(tl)).

dm.S(m)>3Im. (VK. (k<m>-~S(k))AS(m)) follows from -¥m.=S{(m)>=¥m.(Vn.(n<m>S(n))>S(m)) by
QUANT.

Sect ion 7.6 The DISTRIB command

Since FOL accepts the following alternatives to WFFs and TERMs.

<uff> 1= <condw> 1= | F <uff> THEN <ufi> ELSE <uff>
<term> 1= «condt> iz | F <uff> THEN <term> ELSE <term>

the DISTRIB rule can be used to distribute function and predicate symbols over conditional
expressions.

FOL Manual Page 39

DISTRIB A <indvar> .<applexp> <condt> ;

Where <indvar> is an INDVAR, <applexp>is an application expression, i.e. either a
PREDSYM or an OPSYM fol | owed by an argument iist of TERMs, and <condt>i s a
-condi tional expression which is a TERM,

The effect of this rule is to distribute the application symbol over the
conditional expression on the arguments specified by the individualvariable.

Examp | es:
soookkDISTRIB AX.F (X) IF TRUE THEN Y ELSE Z;
1 F(IF TRUE THEN Y ELSE Z)=IF TRUE THEN F(Y) ELSE F(Z)
*xxxxDISTRIB AX. P (Y, X, X) IF TRUE THEN F(Y) ELSE F(Z);

2 P(Y,IF TRUE THEN Y ELSE Z,IF TRUE THEN Y ELSE Z)=
IF TRUE THEN P(Y,F(Y),F(Y)) ELSE P(Y,F(Y),F(Y));

Page 40 FOL Manual

Section 7.7 The SUBSTITUTION command

This command al lows. you to take a |ine wi th an equation on it and substitute i ts
right side for its left side in some other Iine. Its syntax is

SURST #1 IN #2 OPTL O C C <ordernatnumiist>];

#1 can have ei ther = or = as its major connective. |If no occurence list. is
specified then al | possible substitutions are made. If you want to substitute the
left side of #1 for the right side the command is

SUBSTR #1 IN #2 OPT[OCC <ordernatnuml ist> 3

I n order to rep I ace t, by t, within the occurrence of 13 in (IF A THEN t3 ELSE ty), it isn’t
necessary to prove that t;=tp, but only A 2t;= tp, and the SUBSTITUTION command uses this
fact in a generalized form:

Namely, if #1 has the form wifowtf ;swit, or wifot =1, the substitution is made only if TAUTEQ
proves that Powif, where P is the precondition of the left hand side of the equality.

The precondition of any subexpression of an FOL expression is then the conjunction of the
preconditions of those parts of the. conditionals which contain the subexpression. In a conditional,
IF P THEN Q ELSE R, the precondition of the THEN part is P and the precondition of the ELSE
part is —-P.

For example, in the WFF IF P THEN (IF Q THEN a ELSE b) ELSE b The first occurrence of b has
precondition PA-Q, the second occurrence -P.

Ordinarily, f(x) cannot be substituted for y in ¥Yx.F (x,y) as the x in f(x) would then become
bound, i.e. f(x) is not free for y in ¥x.F (x,y). FOL automatically handles this conflict of bound
variables in a substitution; those occurrences of a bound variable which will cause a conflict are
c-hanged. Thus, if one tries to substitute f (x) for y in ¥x.F (x,y) the generated substitution instance
will be ¥x1.F(x1,(f(x}). Here the newly created variable will have the same SORT as x. |

The ‘new’ variabte is created by considering the ‘old’ variable to have.two parts: a prefix which is
the identifier up to and including its last alphanumeric character, and an index, either empty or a
positive integer. The new variable which is generated will have the same prefix, and an incremented
index. For this purpose, an empty index is considered to be ‘0’

FOL Manual Page 41

Section 7.8 The MONADIC command

MONA DIC rule

MONADIC<uff>, <vilist>;

This rule implements a decision procedure for the monadic predicate calculus; i.e., it will decide
whether WFF follows from VLLIST whenever the formulas involved contain only unary predicates.
More generally, this command will always attempt to decide whether VLLIST implies WFF. Of course,
this will not generally work, but it does work in many cases. If the decision procedure succeeds, WFF
is concluded and dependencies are the union of the dependencies of each WFF in the VLLIST.

#+*DECLARE PREOCONST P 1;DECLARE SENTCONST A;

HoKAKK
*okiokDECLARE INDCONST C; DECLARE INDVAR X3

KKK
*30kkkMONADIC YX.P(X)oP(C) s

1 YX.P(X)oP(C)
*okaokMONADIC VX, (AmP (X)) AIX.P(X) > Ay
2 (VX.(A=P(X))A3X.P(X))oA

Page 42 FOL Manual

Section7.9 Semantic Attachment and Simplification

FOL is intended to express a variety of methods of human reasoning. Though the word
“reasoning” usually connotes a logical deductive process of using facts and assertions to obtain
conclusions, much of human intelligence relies more upon observation than upon deduction. We
look at a book. The book is seen to be “green”, as an immediate observation, not as a deduction
involving, say, analysis of wavelengths of light and sensory receptors in the eye. Similarly, humans
cross streets without conscious analysis of the traffic flow, add numbers without resorting to basic set
theory, and play chess without considering each move in terms of the geometry of the board.

Any system which hopes to express a variety of reasoning processes therefore needs a method of
doing purely computational tasks. In FOL, the simplification mechanism provides this ability.
These routines have two parts. First, FOL's ATTACH command permits the user to define a
correspondence between the various constants (function symbols, predicate constants, individual
constants) of his language and corresponding objects in the programming language LISP. Second,
facts about the LISP structure can be used directly in the proof via the SIMPLIFY command,
eliminating the necessity of a possibly complicated deduction. For example, obvious attachments to
the function symbol + and to the individual constants 17,34,51 would allow one to conclude 17+34=51
in one step, instead of computing 34 successors of 17. In order to explain this more clearly we first
give an informal account of the technical details.

The declarations made by an FOL user specify a first order language L=<P,F,C>, where P is the list
'of PREDCONSTS, F the list of OPCONSTs, and C is the list of INDCONSTs. A model for such a language
is a structure M=<D,P",F",C’'> where D is a set, and P',F’, and €' are lists of predicates’ over D, functions
onD, and individuals of D such that the ARITYs of the symbols in P and F match the ARITYs of the
predicates and functions at the corresponding positions in P’ and F’. The idea here is that the
language L is used for making statements, about structures such as M. In particular, when the user
writes down a theory in FOL, he generally has in mind some particular model for his language, and
the axioms of his theory are intended to express the properties of this particular model. The fact
that FOL’ is actually a LISP program running in a LISP environment inspires the following idea:
some parts of a models for an FOL languages can often be expressed computationally in the sense
that the elements of D can be represented by s-expressions, and the predicates and functions on D
can be represented by LISP functions and predicates. It should then be possible to use the
tomputationai representation to aid FOL deductions concerning the model. For example, suppose
the theory we are interested in is first order number theory, and the model that we have in mind is
the set of natural numbers together with the operations of successor, addition and multiplication.
The numerals have natural representations as LISP numbers, and the functions in question have
#«PLUS I, *PLUS,and *TIMES as their LISP counterparts. As mentioned above it should then be
possible to use the computational representation to provide swift deductions of such statements as
25+37=52.

The semantic attachment facility in FOL allows the user to set up these computational
representations of his subject matter, and to use this representation to aid deduction in FOL. This
ability is achieved by using the ATTACH and SIMPLIFY commands. The ATTACH command
allows FOL OPCONSTs, PREDCONTS, and INDCONSTs to be attached to the corresponding kinds of
LISP objects. The SIMPLIFY command allows the attachment information to be used in deduction:

FOL Manual Page 43

when the user gives a TERMas the argument to SIMPLIFY, any attachments which may exist to the
symbols in that TERM are looked up, and if possible, the value of the TERM in the computational
representation is computed; finally, if an FOL TERM with that value can be found, the equality of the
TERM with its simplified version is asserted as the next line of the proof: SIMPLIFY behaves in an
analogous manner if given a WFF rather than a TERM as its argument. With the above overview in
mind, let us proceed to the details.

Section. 7.9.1 A technical explanation

Given a language L=<P,F,C> and a model M=<D,P",F’,C'>, we define an interpretation function I which
gives, for each TERM 1of Lin which no free variable occurs, the individual in D which t denotes. In
particular we define the interpretation of an INDCONST c to be the individual ¢’ in D, and where f is
an OPCONST, and the interpretations of TERMst,,.t, are defined, we inductively define the
interpretation of the TERM f {(t} /t5,.. ., 40 to be f'(1{t) 114z), ..., 1(t)). We may extend the
interpretation function to formulas (again without free variables) over L by defining | (w) to be the
object TRUE exactly” when the formula w is true of the model (for a technical definition see Kleene
[19681). When f' is the function in a model corresponding to the OPCONST f in L, we will also say
that f' is the interpretation of {, and similary for PREDCONSTSs. Now we define a computational model
to be an object K=<D',P",F",C">, where it is understood that D’ is a set of s-expressions, and P”,F",and
C” are lists of LISP predicates, functions, and s-expressions respectively, with the appropriate
restrictitions on ARITYs. From the extensional point of view, a computational model is for ‘a language
is just like a set-theoretic model for a language, except that we do not require that the functions and
predicates concerned be total; that is functions and predicates may be undefined (non-terminating)
for some elements of D'. We define an attachment map rtt from terms and formulas of L into K in a
manner exactly analogous to the definition of I above. We have one last map to worry about, the
map rep which gives, for each object in the domain D’ of the computational model M, the object it
represents in the domain O of the model M. Now we may define precisely the meaning of
attachments made in the FOL system: The attachment of an INDCONST c to an SEXPR C signifies
that ¢ and C represent the same object in the model, that is to say, H(¢)=rep(C). Similarly, the
attachment of an OPCONST f to a LISP EXPR or SUBR F signifies that the result of applying F to
an SEXPR C which represents an individual c¢ in the model, is a SEXPR which represents the
individual f’(c) in the model. The analogous statements hold for attachments to PREDCONSTs. The
above conditions are equivalent to the statement that the following diagram commutes.

FOL TERMs

att

LISP sexpr ~————s Domain of model
rep

Page 44 FOL Manual

The semantic simplifier given an FOL TERM, attempts to compute its attachment, and to find a
simpler TERM with the same attachment. if it succeeds, the simplified TERM is returned. For
example, we might associate with function symbols the corresponding LISP functions. The OPCONST
+ might be semantically attached to the LISP function, PLUS, and the INDCONSTs1 and 2 (i.e. the
numerals) attached to the numbers 1 and 2, so that an evaluation of 1+2 in the LISP representation
of the model would give the number 3 as an answer - the simplifier would then return the INDCONST
3.

The attachment mechanism allows several representation of the model by LISP SEXPRs to be in
force at the same time. I will seek to motivate this aspect of the.attachment facility by means of an

example: consider a theory of chess which includes a general theory of lists as a subtheory (this
subtheory would be applied in arguments about lists of pieces, lists of game positions, and so on).

The intended model of such a theory includes at least two kinds of objects: chess positions, and lists.

Lists and positions form disjoint domains in the model, though it may be possible to build lists of
chess positions. If we are going to build a computational representation of this model, we will need

to represent positions and lists by s-expressions in such a way that no s-expression represents both a
list and a position. The natural representation of a chess position as an s-expression is as a list of
eight lists, each of which--is a list of eight piece names (one of which is “empty” or some such), and
the natural representation of lists as s-expressions is the direct representation as LISP lists. This
representation scheme cannot be used, since it will not be possible to decide whether a given list of
eight lists of eight piece names represents a chess board or a list of list of pieces. That is to say, the

map rep will not be well defined. It is of course not hard to solve this problem by the use of some
slightly fancier coding, but a general solution to the problem of disambiguating computational
representations is available: Suppose that the intended model of an FOL theory T includes the
disjoint domains D,,..,D,, and suppose further that we have a different coding function for each of
these domains. That is we have n different representation functions rep, which map the domain of
s-expressions into the domain of the model, with the property that the range of rep; is a subset of D;.
Then it is possible that a single s-expression s codes two different objects d,d; in the model, but as
long as we know what coding function rep; to apply, there is no ambiguity. Then the definition of
the att map may be extended to take account of the possibility of multiple representations in the

folloing way: The domain of the att map will still consist of the set of FOL terms and formulas, but
its range will now lie in the set of pairs of the form, <representation function,s-expression>. The
soundness condition for the att map is now that, when att(t)=<rep,s>, we have rep(s)=i(s). In order to
specify this new more complicated att map, the user of the FOL system must give representation
information concering his attachments. Specifically, each representation function must be given, a
name, and when the attachment to an INDCONST is given, the name of the associated representation’
function must be given as well. Similarly, when the attachment F to an OPCONST f is specified, the
(names of the) representations of its arguments and of the value it returns must be given, and when
the attachment to a PREDCONST is specified, the representations of its arguments must also be
specified. The significance of specifying that the representations of the arguments and value of the
attachment F to an OPCONST f are RyRp..R, and R, respectively, is that
RU(F(A | Ag AN=A'(R| (A|),R2(85),..,R(AR,)), where f is the interpretation of f, whenever A,,..,A, are
SEXPRs in the domains of R;,.,R, The same holds for attachments to PREDCONSTs, mutatis
mutandis. Given the attachments with representation information for individual symbols, the map
att on the domain of terms and formulas is defined inductively in the obvious way: If f is attached to

F,and the declared representations of the arguments of F are Ry,Rp,...R,, and terms t;,t,,...t, have

FOL Manual Page 45

attachments with representations Ry,Ry,...Ry then att(f(t;to,...t))=F (att(t)),att(t,),..att(t,)). Under this
definition the diagram above commutes for each individual representation function.

Note that if the representation of the attachment. of any term t does not match that of its place in the.
argument list, then F(att(t,),att(t,),..,att(t,)) cannot be expected to represent the interpretation of
f(t},..,ty). The reason for this is that the correctness of a computation which purports to represent a
mathematical function depends on the representation of the arguments of the function as data
objects. For example, no one would expect a floating point multiplication algorithm to behave
correctly if its arguments were encoded as integers rather than floating point numbers.

Finally, note that the attachment map, as well as the EXPRs which represent functions, may be
partial. The user is never required. to provide an attachment for any FOL symbol, nor is any
attachment to an OPCONST or PREDCONST required to be complete. The simplification mechanism
will use whatever information is available, but it never dies because of insufficient information.

Sect ion 7.9.2 Declaring representation names

The representation maps from LISP objects to the intended model may be given names by use of
the declaration command. Representation names may be any sequence of characters which is
accepted by the FOL parser as a token (the user would do well not give his representations weird
names which might interfere with the parsing of the statements in which the name might appear.
For example "}" doesn’t make it as a REPNAM.) The following syntax is used:

DECLARE REPRESENTATION REP1 [<randomtoken>];

Since the model itself appears no where in the FOL system, there is no need for the user to give any
detailed information about the nature of the representation maps which he has in mind. All that is
necessary is that he give each such map a name so that he may refer to it at will.

Section 7.9.3 The ATTACH command

Attachments to FOL symbols are made using. the ATTACH command. The syntax for this
command is:

*ATTACH ALTI[<predconst>|<opconst>|<indconst>]
OPTIALT [TO Jto|=]e|x]]

OPTE "{" ALT (<REPNAM>]| s for INDCONSTS
(<REPNAM1>, . . ., <REPNAMNn>] | s for PREOCONSTS
[<REPNAML >, .,] , <REPNAMn> = <REPOUT>] + for OPCONSTS-
H N]
<sexpr>;

where

Page 46 FOL Manual

<s_expr> 1= ALTL <atom> | (<s_exprlist> OPTi<dotend>)) };
<s_exprlist> 1= REP1U <s_expr> |

<do tend> =, <sEXpr>

<atom> 1= ALTL <identifier> | <numerai>]

The effect of the command is that the FOL symbol appearing as the first argument is attached to the
SEXPR. If the FOL symbol is a PREDCONST or OPCONST, then the SEXPR must be either an atom
which names an already existing LISP function or predicate (i.e. the atom has an EXPR or SUBR
on its property list), or a LAMBDA expression. The ARITY of the FOL symbol in these cases should
match the number of arguments accepted by the attached LISP function.

There are two optional arguments to the ATTACH command. The first specifies whether or not the
attachment should be regarded as “going in both directions”, and is only meaningful if the FOL
symbol is an INDCONST. A two way attachment has the effect of telling the simplifier that, whenever
SEXPR is computed as the LISP representation of a TERM, then the attached FOL symbol should be
returned as the simplified version of that TERM. That is to say, if the FOL INDCONST A is attached
“both ways” to the SEXPR S, then, not only is S the LISP representation of A, but Ais the preferred
FOL name of the (model value denoted by the) LISP object S. The manner in which the argument
specifies whether the attachment goes both ways is as follows: TOto, and - indicate a one-way
attachment, while » and % indicate a two-way attachment. If the argument is left out, then a one-way
attachment is assumed.

The second optional argument specifies the representation information associated with the
attachment: If the attachment represents an individual, then [<REPNAM>] specifies that the name
of the representation map for that attachment is <REPNAM>. If the attachment represents a
predicate, then [<REPNAM I>,.<REPNAMnR>] gives the names of the representations expected for
the arguments of the attachment. If the attachment represents a function, then
[<R EPNAM 1>,.<REPNAMn>=<REPOUT>] specifies that the names of the representations

" expected for the arguments of the attachment are <REPNAM I>,.,.<REPNAMn> respectively, and
that the name of the representation of the output is <REPOUT>. The character * may occur
anywhere where a representation name is expected. The effect is that the default representation
name for the context in which the representation name occurs is used. The default specification
facilities for representation names are described in the next section.

Sect ion7.9.4 Setting default representations

The REPRESENT command may be used to associate representation names with SORTs, with, the
effect that the representation name associated with a SORTis used whenever ‘an attachment is made
to a symbol “involving” the given SORT, and no representation name is specified directly. To be
more precise, each FOL symbol has a collection of slots: an INDCONST has one slot, whereas an
OPCONST of ARITY Nhas N+1 slots,: its output, and its arguments. At the present time each symbol
may have one piece of SORT information and one piece of representation information associated with
each of its slots. The result of associating a SORT s with a representation r via the REPRESENT
command is that, whenever an attachment is made where no representation is given directly for a

FOL Manual Page 47

slot of the symbol being attached to, and the SORT of that slot is s, then representation of that slot is
set to r. The purpose of this command is to allow the user to set up a convenient set of defaults for
representation information; nothing can be accomplished -with the command that could not- be
accomplished without it, given sufficient patience on the part of the user. The syntax for the
. command is:

REPRESENT ALT ('x|’{ REP1 [<SORTSYM>] "1] AS <REPNAM>;

The effect of REPRESENT commands is cumulative; at any given time a SORT has the default
representation most recently assigned by a REPRESENT command. Note that the effect of one
represent command can overide that of a previous REPRESENT command. If a % appears instead
of a list of SORTs, then <REPNAM> becomes the “default default”. The effect of this is that
whenever an attachment is made to a symbol involving a given SORT, and no representation name is
specified, and there is no defualt representation for the SORT, then the default default ,if any, is used.
If no default default has been assigned, and no representation name has been specified in any other
way, then an error message will be printed out at the time of the attempted attachment. The
REPRESENT # command can be repeated with the effect that the effect of the fast such command is
overridden.

There are two sets of canonical attachments to INDCONSTs in effect in any FOL system. Each of the
numerals (i.e. the INDCONSTs 8,1,2,...) has the LISP integer which it denotes as its canonical
attachment; the representation name for all canonical attachments to numerals “NATNUMREP”.
Similarly each of the quote INDCONSTs (e.g. *(AB)) is attached to the s-expression which it
denotes,with the representation name “SEXPREP”. The canonical attachments are two-way
attachments.

Jm

Page 48 FOL Manual

Sect ion 7.9.5 The SIMPLIFY command

The SIMPLIFY command makes use of information concerning attachments, sorts, and extensions
in computing a simplified expression which is equivalent to its argument. The syntax of the
command is:

SIMPLIFY [ALT <uff>|<vi>] <term> 3

The simplifier then attempts to find an expression in the language which corresponds to this
evaluated entity. In the case of VLs and TERMS, the original expression is returned, set equal to its
maximally simplified form; if a TERM exists in the language for the simplification, then that forms
the right hand of the equality. (The simplifier is aware that NATNUMs and LISP numbers
correspond to each other). In the case of WFFs if the result of simplification is a truth-value, the WFF
or its negation is returned, whichever is appropriate.

If a LISP error is encountered during simplification, an error message is given.
Examples of the use of these commands are found in the primer.

The method employed for simplification is roughly as follows: if A is a TERM having the form
f (t, Ap-ty), then (recursively), the sorts, attachments, and simplified FOL expressions of t;,ta,...t, are
computed. (Of course,it is not always the case that all of this information can be determined). The
same information concerning A is computed in the following manner: if fhas an attachment whose
argument representations match the representations of tt,,..,tythen the attachment to A is computed
by applying the attachment to f to the attachments of t t5,..4. The sort of A is determined in the
obvious manner: if the sorts of §f5,...t, match the argument sorts of f, then A has the output sort of
f. The simplified FOL expression for A is the “inverse” attachment to the attachment to A if such
exists, and f applied to the simplified versions of t jt,,..t, otherwise. Thus when simplifying a
complicated TERM, we first simplify its subparts, and then use the information so obtained to simplify
the TERM.

Sect ion 7.9.6 Auxiliary FUNCTION definition

FUNCTION <function-s_expr>;

This allows the definition of <function-s_expr> as an auxiliary LISP function. If the function
definition is a legal <s_expr> which is not a legal LISP function definition of the DE or DEFPROP

sort, an error message will be given.

FOL Manual Page 49

Sect ion 7.10 syntactic simplification

The basic idea of syntactic simplification is repeated substitution of selected equalities and
equivalences into a given expression. More “precisely, let E be a set of universally quantified
equations and equivalences, so members of Elook like Yx.(t;=ty) or Vy.(F,=F5), where X and y
represent variable sequences, t; and tp represent FOL TERMSs, and Fy and F, represent FOL WFF. A
match, or immediate simplification, of an FOL expression EXPR consists of replacing an occurrence
of t,[xu}(F [y«v]) in EXPR by t5[x+u] (Fa[y+v]), where u (v) is a sequence of TERMs.

The following example from a correctness proof for the McCarthy-Painter compiler, is’ (the
formalization of the correctness statement for constant expressions, where the variables have the
following intended meanings:

c represents constants of the source language;

i and j represent machine locations;

ssv and osv represent source language state vectors
and object language state vectors, respectively;

vl represents variables of the source language.

Consider half of the base case of the induction:

Ve issv osv. (Yvl.{vl1OCCURSIN co(loc{vl)<inssvevi=osvelocivl)))
(%) . >(compute(compilelc, i}, osv) eac=ssvec
AYj. (j<iocompute(compilelc,i),08v)ej=osvej)))

(%) is a direct consequence of elementary logical facts together with the following axioms defining
source language state vectors, the compiler, and the “load immediate” instruction of the object

language:

Vssv c. ssvec=c; ,

V ci.compile(c,i)=mkli(c);

Yc osv.compute(mkii (c),o08v)eacs=c;

V c osv j.compute(mkii(c),osv)e)=osve]j,

The direct proof can be thought of as reducing (%) to TRUE by the following sequence of left-to-right
substitutions (immediate simplifications):

compilelc,i)=> mkl ilc)
compute(mk!| i (c),osv)eac => ¢
8SVeC => ¢

c=Cc => TRUE

compilelc,i)=w> mkli (c)
compute(mk! i (c),osv)ej => osvej
osvej=osvej => TRUE

j<idDTRUE => TRUE

Vi.TRUE =>TRUE

TRUEATRUE -=> TRUE

Vvl1. (v10CCURSIN co(loc(vi)<inssvevli=osveloc(vl)))DTRUE=> TRUE
Vosv.TRUE=> TRUE

Page 50 FOL Manual

Vssv.TRUE=> TRUE
Vi.TRUE => TRUE
Ve. TRUE => TRUE

FOLs syntactic simplification commands implement- (a version of) this repeated substitution
algorithm. There are essentially two subtleties involved in formalizing the procedure exemplified
above: (1) There may be more than one equation (or equivalence) whose left half matches a given
expression, so one has to establish a precedence hierarchy for matching. (2) What order does the
algorithm use to consider the subexpressions of a given expression e?

FOLs solution to the first problem is the following ordering on expressions:

Each simplification expression (i.e., left half of an equation or equivalence) is regarded as a
linear string of atoms. Each atom is either:

(1) a constant (which is not bound by the universal quantifiers in the prefix);
(2) an old variable (which is bound by the universal quantifiers in the prefix and
which has occurred before in the linear string);
(3) a new variable (which is bound by the universal quantifiers in the prefix and
which has not occurred before in the linear string).

If we think of concatenating different atoms to a given initial string, then the atoms have the

precedence ordering
constants ¢ old variables < new variables

and expressions are ordered lexicographically in accordance with the ordering on atoms.

Let’s consider, for example, the precedence relations among the simplification expressions f(a,b,b),
f(a,b,c), f(a,a,x), f(a,x,x), f(a,x,y), f{x,x,x), and f(x,x,y), where f,8,be are constants and x,y are variables.
The last four expressions are linearly ordered:

f(a,x,x) < f(ax,y) < f(x,x,x) < '(xvxuy)

and each of the first three expressions is less than f(ax,x) and incomparable to the other two of the
first three expressions:

f(a,b,b) < f(a,x,x)

f(a,b,c) < flaxx)
f(a,a,x) < f (a,x,x)

Together with transitivity, these inequalities completely define the precedence relation.

FOLs syntactic simplification code basically considers subexpressions of e in the usual left-to-right
order. The exceptions occur after a subexpression @' has been matched (and substituted for). The

FOL Manual Page 51

algorithm then begins again at the subexpression one level above e'. Consider the above example
from the McCarthy-Painter compiler. - After making the match compilelc,i) => mkli(c),the
algorithm begins again with the expression e “~compute (mkii(c),osv).e" does not simplify, and
the algorithm attempts (unsuccessfully) to match all the subexpressions of e" before considering the
expression compute (mk Ii(c), osv)eac. Then, after making the match compute (mk 1i(c) ,08v) ®ac
=> ¢, the algorithm starts again at the expression c=ssvec. The subexpression ssvec matches (and
is replaced by c), whereupon the algorithm begins again with the reduced expression c=c.

The syntactic simplification algorithm has the usual problems of rewrite rules. A typical difficulty is
the possibility of infinitely recurring substitutions; e.g., if one uses 1=1+48 as a simplification equation,
the algorithm will attempt to make this substitution without end. Longer less obvious loops are also
possible. An example that actually occurred is the equations

1=succ(9)
Yn.succ(n) =n+1
vn. 8+n=n

which cause any occurrence of “1” to be replaced by “I” forever.

- Section X10.1 Making a simplification set

One thing a user must do is to explain which VLs will be used as rewrite rules. The set of rewrite
rules is called either the match tree or the simplification set. There are two commands for
manipulating match trees.

DECLARE SIHPSET <token>;
creates an empty match tree, i.e., one with no rewrite rules, which has <token> as its name.
<match-tree-name> «<simpset-expr>;

creates a’ match tree containing the specified rewrite rules. Existing simplification sets can be
augmented usind a command like

HTREE « HTREE u<simpset-expr>;

Simplification set expressions are defined by the syntax below, where "," means to take the union of
the given expressions. The binding powers of ", , "v" and "\" are that "," binds least strongly, "\"
has an intermediate binding power, and "v" is strongest.

Page 52 FOL Manual

<simpset-expr> t= | <vl list> | | <simpset> |
<simpset-expr> , <simpset-expr> |
<simpset-expr> U <simpset-expr> |
<simpset-expr> \ <simpset-axpr>

A VL which is a universally quantified equation or equivalence will be used as a rewrite rule in the
obvious way; ‘that is, in simplifying an, expression, every instance of the left-hand side of the
equation will be replaced by the corresponding instance of the right-hand side. A VL, v of some
other form will be used as a rewrite rule v=TRUE. If v is also of the form ¥x.M, where Vx represents
the (maximal) prefix of universal quantifiers and Mis the matrix (so that M is NOT an equation or
equivalence), then M=TRUE will be used as a rewrite rule.

There is a standard match tree, LOGICTREE which’ contains the rewrite rules corresponding to the
following basic logical equivalences:

P ATRUE =P
P AFALSE = FALSE
TRUE AP = P
FALSE AP = FALSE
P v TRUE _= TRUE
P v FALSE £P
TRUE v P = TRUE
FALSE v P s P
P > TRUE = TRUE
P > FALSE =-P
TRUE > P EP
FALSE >P- = TRUE
- TRUE = FALSE
- FALSE = TRUE
X =x = TRUE

VX. TRUE = TRUE -
VX. FALSE = FALSE
3X.TRUE.” . = TRUE
3X.FALSE = FALSE

Once an appropriate match tree has been defined, the user may invoke the simplification routines by
the command

REWRITE ALTI[<vi>|<term>|<uff> 3 0OPT[BY <simpset-expr>];

The different alternatives have significantly different effects on the proof: (1) rewriting a VL generates
a new! proof step which is the maximally rewritten form of the given VL; (2) rewriting a TERM t
generates a proof step t=t, where t' is the maximally simplified form of t; (3) rewriting a WFF w
generates a proof step waw', where w’ is the maximally simplified form of w, except that if w
simplifies to TRUE, the new proof step is simply w. In the latter two cases, the dependencies of the
new proof step are the dependencies of the YLs which were actually used in the simplification; in the
first case the dependencies also include the dependencies of the given VL. If the command does not
specify a simplification set expression, the given expression will be simplified according to the basic
logical rewrite rules contained in LOGICTREE.

FOL Manual Page 53

At present there is no FOL command for showing the rewrite rules contained in a match tree.

Section 7.10.2 Example of syntactic simplification
The following is an example using the syntactic simplification commands.

sxkkkDECLARE SENTCONST P;
xxkxxDECLARE INDCONST A B;
sxxkkDECLARE INDVAR X Y3
sxxxxDECLARE OPCONST F 2 G 1;
sookAXTOM F: YX.F (X,A) =A,
* VX.F(X,X)=G(X),
* VX Y.F(X,Y)=Y;;
F : Fl: Y%.F(X,A)=A.

F2: VX.F(X,X)=6(X)

F3: VX Y.F(X,Y)=Y
srkxkASSUME F1:,F2: ,F3:3
1 VX.F(X,A)=A (1)
2 YX.F(X,X)=6(X) (2)
3 VX Y.F(X,Y)=Y (3)
sxxxxREWR] TE F (A,A) BY {F1,F2,F3}1
4 F(A,A)=A
*kokkkREWRI TE F (A,A) B Y (F2,F3};
5. F(A,A)=G(A)
sxkkREWRT TE F (A, A) BY (F3};
6 F(A,A)=A
sxxxREWRITE F (A,A) B Y (1,2,3};
7 FAA=A (1)
skkkREWR]T TE F (A,A) BY (2,3}
8 F(A,A)=6(A) (2)

Page 54

saokxxREWR]I TE F (A,A) BY {3}

9 F(A A=A (3)

*x¥0kxREWRITE F(B,B) B Y {1,2,3};

1 0 F(B,B)=G(B) (2)

soxkREWRI TE F (B,B) B Y {1,313

11 F(B,B)=B (3)

*xkREWRITE F (B,B) BY {113

This expression does not Simplify. Sorry.
*kxkkDECLARE SIMPSET MTTEST;

sxxkkREWRITE -TRUE BY NTTEST;

This expressiap does not simplify. Sorry.
sxkxxREWRI TE -TRUE BY LOGICTREE;

12 ~TRUE=FALSE

sxxkkREWR T TE TRUES (PoX=X) BY LOGICTREE:
13 TRUES(P>X=X)

*xkxxkMTTESTe (1,2,3)3

sokkkkREWR]T TE F (A, A) BY MTTEST;

14 F(A,A)=A (1)

*okkkkREWRT TE F (A, A)=A BY MTTEST;

15 F(A,A)=A=A=A (1)

sokkxxkREWRI TE F (A,A)=A BY MTTEST U LOGICTREE;
16 F(A,A)=A (1)

okdokkREWRITE F (A,A)=G(A) BY HTTEST U LOGICTREE;

17 F(A,A)=G(A)=A=G(A) (1)
s»oxxxxREWR] TE F (B,B) BY HTTEST;

FOL Manual

FOL Manual Page 55

18 F(B,B)=G(B) (2)

sokkkREWRI TE F (B,B) =G (B) BY HTTEST U LOGICTREE:

19 F(B,B)=6(B) (2)
xxxkkREWRI TE F (B, B) =G (B) AF (A,A)=A BY HTTEST ULOGICTREE;
20 F(B,B)=6(B)AF(A,A)=A (1 2)

sxxxkREWR] TE F (A, A) BY MTTEST\{1};

21 F(A,A)=6(A) (2)

xxkokREWRTTE F (A,A) B Y MTTEST\ {1,215

22 F(A A=A (3)

soxxxkREWR] TE F (A, A)=A BY (MTTEST\ (1,2})V LOGICTREE;
23 F(ALA=A (3)

sokxkxREWRT TE F (A, A) =A BY MNTTEST\(1,2lV LOGICTREE;
24 F (A, A)=AsA=A (3)

Page 56 FOL Manual

Section 8 ADMINISTRATIVE COMMANDS
These commands manipulate the proof checker but donot directly alter the current deduction.

Scct ion 8.1 The LABEL command

L A B E LALTI <ident> | <ident> = <iinenum>] }

In the first case the next line the proof checker generates will get the label IDENT. In the second the
LINENUM mentioned will become labeled by IDENT. Labels are alternatives to VLsand can be used in
any place that the syntax expects them. When you use the same label in this command twice the

second LINENUM specified is the one used from then on.
Sect ion 8.2 File Handling commands

Section 8.2.1 The FETCH commarrd

FETCH <filename> OPTI[FROM <markl> | OPT | TO <mark2> 3

The FETCH command reads the file <filename>, and executes any FOL commands in this file. FOL
accepts standard Stanford file designators. If mark specifications are present, the file is only read
within the limits which they specify. The default FROM/TO are the beginning and the end,
respectively, of the file. The commands read during a fetch are not printed in the backup file.
FETCHes may be nested to a depth of 10. An example of a FETCH command is shown in the
description of the MARK command.

Sect ion 8.2.2 The MARK command

MARK <token > s

This command has no effect on the proof, but simply places a mark in the file which the FETCH ,
command can use to delimit reading of the file. For example, suppose that the file A[FOL,RWW]
contains the following commands:

DECLARE SENTCONST P Q3
ASSUME PAQ;
. MARK 1;
nE 15
MARK 2:

nE TZ;

FOL Manual Page 57

One can invoke these commands in the sequence shown below. Note that it is also possible to
produce the following proof with the single command FETCH A [FOL,RWW]; in which case the MARK

commands will simply be ignored.

sokkFETCH A [FOL, RWW) TO 13

¥x
L2 2]

1 PAQ (1)

XXX
sorkkkFETCH A [FOL , RWW] FROM 1 TO 2;

kAR
2 P (1)

*k%k¥
sxxkxFETCH A [FOL, RWW] FROM 2 :

Xkx%

3 Q (1)

xx%¥

Section 8.2.3 The BACKUP command

BACKUP <file name> 3

When FOL is initialized; a file called BACKUP.TMP is automatically created. All console input
from the user is saved on this file. This command closes the current backup file, and opens a new

one with the specified file name. Caution: ir deletes any file of the given name.

Section 8.2.4 The CLOSE command

CLOSE :

This closes and reopens the backup file. Normally the backup file is written every five steps in the
proof, but this command enables the user to save the state of his deduction at any point.

Page 58 . FOL Manual

Section 8.3 The COMMENT command

COMMENT <delimiter><text> <delimiter>

When typed at the top-level, this inserts any text between the delimters into the backup file; if it
appears in a FETCHed file, the text is ignored. Of course, the delimiter must not appear in the text.
Scction 8.4 The CANCEL command

CANCEL OPT [clinenum>];

This cancels ali steps of a deduction with LINENUMs greater than or equal to LINENUM. For example,
CANCEL 23; deletes step 23 and all later steps. Thus you can remove unwanted steps from a
deduction provided they are all at the end of the PROOF. If no LINENUM is specified, only the last line
is cancelled.

Sect ion 8.5 The SHOW comimand

The SHOW command is used to -display information generated by FOL. The intent of the
present command is to allow you to. display information about a derivation at the console and save it
on a file. The integer after the FILENAME becomes the linelength while this command is active.

SHOW <showtype> OPTE -+ <filename> OPT[<NATNUM> 1] ;

DECLARATIONS OPT [<decinfo>

<showtype>:=ALT[PROOF OPT{ <rangetist> |
STEPS OPTL <rangelist> |

PRF OPT(<rangeiist> |

AXIOM OPT[<axnamlist>]

|

|

|
|
I
|
GENERALITY OPT(<geninfo> |
COMMANDS }
LABELS OPT[<iabelinfo> |)
<rangel ist> 1= REP1{<rangespec>,0PT(,]}
<rangespecy := ALT{ OPTL <1 inenum> 1 : OPT(<1 inenum> 1 | <linenum>)
<dec info> := REP1(ALTL <syntype> OPT{ € <sort>) |
<folisym> |
SORTS }, OPT(,)]
. <geninfo> :=REPL[<sort>, OPT(,}1]
. <label info> := REPLL ALT{ <label> | <rangespec>) , OPT{,] |

RANGESPEC may be of the form 23 or 23:65 or :65 or 34: or even :. Its meaning is either a single
LINENUM or a range of LINENUMs. If a number stands alone it simply means this number. If there
are two numbers separated by a colon, the range is from the first to the second. If numbers do not
appear on either side of the colon then the default of O or the last line is assumed. An FOLSYM is
any declared identifier and the SHOW command returns appropriate syntactic information.

FOL Manual

Examples are:

skxkSHOW PROOF 1; 2: 5,163+ FOO. BAZ [SET, RWW] 22;

Page 59

this writes lines I, 2t0 5, 16 to the last line of the proof onto the file FOO.BAZ[SET,RWW] with a

linelength of 22.
skkkkSHOW PROOF ;

displays the proof on the console.

The next example shows the kind of syntactic information displayed by a “show declarations”

command.

xxxkxSHOW DECLARATIONS, EMPTY x + < carry front binaryplus;
EMPTY is -INDCONST of sort BYTES
x is INDVAR of sort INTEGER

+ is OPCONST

The domain is INTEGER @ INTEGER, and the range is INTEGER[L&<650R«600]

< i s PREDCONST
The domain is INTEGER e INTEGER[Le350R«300]

carry is OPCONST
The domain is BYTES © BYTES, and the range is BYTES

front is OPCONST.
The domain is BYTES, and the range 18 BYTES[R«950]

No declaration for binaryplus

soxkkkSHOW DECLARATION SORTS:
shows all the PREDCONSTs of ARITY | (i.e. all of theSORTS)

Section 8.6 The EXIT command

EXIT;

This command returns the user to the monitor in a state appropriate for saving his core-image.

Page 60 FOL Manual

Section 8.7 The TTY and UNTTY commands

TTY OPT [<new name list>);

This command makes it possible for FOL to be used from terminal without the full Stanford
character set and over the ARPA network. It creates synonyms for the FOL sentential connectives
and quantifiers. Ifa<new name list> appears it must contain seven names, which then become the
default input and output names for A, v, 3,~, & V, and 3, respectively. The original quantifiers and
connectives will still be accepted for input, but all output will use the new names.

If the <new name list> is omitted, the last used <new name list> is assumed. If no <new name list>

has be used in this proof, then the following default <new name list> is assumed.
Original symbol Neu sgmbo |

OR
IMP
-NOT
IFF
FA

E X

LM @

for example,

TTY % + - -e ALL EXISTS:

would declare -+ as a synonym for A, + for v, etc.
UNTTY 3

This command returns the user to the original names for the connectives and quantifiers, and deletes
any the new definitions.

Sect ion 8.8 The SPOOL Command

SPOOL <filename>;
XSPOOL <fil ename>;

These cause the <filename> to be spooled on the appropriate device (LPT or XGP).

FOL Manual Page 61

Appendix A FORMAL DESCRIPTION OF FOL

The non-descriptive symbols of FOL divide into SYNTYPE:s as follows:

1. Individual variables - INDVAR. There are denumerably many individual variable symbols. We
use x,y,z as meta-variables for them;

2. Individual parameters - INDPAR. There are denumerably many individual parameter symbols.
As meta-variables we use a,b,c;

3. n-place predicate parameters - PREDPAR. For each n there are denumerably many predicate
parameter symbols. An n-place PREDPAR is said to have ARITY n;

4. Logical constants:
a) Sentential-constants - SENTCONST: FALSE and TRUE.
b) Sentential connectives - SENTCONN: =, A,v,>, =,
¢) Quantifiers - QUANT: V and 3;

A particular FOL language is distinguished from a pure first order language by declaring certain
constant symbols. These have the SYNTYPEs:

1. Individual constants - INDCONST;
2. n-place predicate constants - PREDCONST. Each n-place PREDCONST has ARITY n;

3. n-place operation symbols - OPCONST. Like PREDPARs each has an ARITY. Some authors call
OPCONSTs function symbols;

Each SYNTYPE is assumed to be disjoint from all others.
TERMs

tis a TERM in FOL if either
1.t is an INDPAR, INDVAR, or an INDCONST, or
2. tis f(t },tp .uty), Where f is an OPCONST of ARITY n and t; is a TERM.

WFFs

A is an atomic well-formed formula or AWFF if
1. A is one of the symbols “FALSE” or “TRUE”,
2. A is P(t,,..tp) where P is a PREDPAR or a PREDCONST of ARITY n.

The notion of well-formed formula or WFF is defined inductively by:

Page 62 FOL Manual

I. An AWFF is a WFF.
2.If A and B areWFFs, then so are (AaB), (AvB), (A>B),(A=B), and -(A).
3.If A is a WFF, then so are ¥x.A and 3x.A provided that x is an INDVAR.

The usual definitions of free and bound variables applgl and can be found in any standard logic text
(e.g. Mathematical Logic by S.C. Kleene). Below the usual conventions for omitting parentheses will
be used.

SUBFORMULAS

The notion of SUBFORMULA is defined inductively
1. A is a SUBFORMULA of A.
2. If BAC, BvC, BoC, B=C, or -~B is a SUBFORMULA of A so are B and C.
3. If Vx.B or 3x.B is a SUBFORMULA OF A, so is Bltex].

The notations Altex] and Alteu), where A represents a WFF, t, u TERMs and x an INDVAR are used
to denote the result of substituting x or u, respectively, for all occurrences of t in A (if any): In
contexts where a notation-like Altex] is used, it is always assumed that t does not occur in A within
the scope of a quantifier that is immediately followed by x. The notation A[x«t), denotes the result
of substituting t for all free occurrences of x.

The notation Alaex,Xx«t] means the result of first substituting x for a and then t for x. To denote
simultaneous substitution we use Alaex;xet].

FOL Manual

Appendix B

Page 63

THE SYNTAX OF THE MACHINE IMPLEMENTATION OF FOL

In this manual the syntax of FOL will be described “using a modified form of the MLISP2 notion of pattern.

These form the basic constructs of the FOL parser.

1. Identifiers which appear in patterns are to be taken literally.

2. Patterns for syntactic types are surrounded by angle brackets.

3. Patterns for repetitions are designated by:

REPO[<pattern>] means 0 or more repeated PATTERNS,
REPn[<pattern>] means n or more repeated PATTERNS.

If aREPO or a REPn has two arguments then the second argument is a

pattern that acts as a separator.

So that REP1[<wff>,]) means one or more WFFs separated by commas.

4. Alternatives appear as ALT[<PATTERND|...K<PATTERNn>]

ALT[<wIf>Kterm>] means either a WFF or a TERM
5. Optional things appear as OPT[<pattern>]

REP2[<wff>,OPT[,]] means a sequence of two or more WFFs optionally separated by commas.
These conventions are combined with the standard Backus Normal Form notation.

Basic FOL symbols-

In an attempt to make life easier for users, the FOL parser makes more careful distinctions about
the kinds of symbols that it sees than the previous description indicated.

<indsym> t= ALT{ <indvar> | <indpar> | <indconst>

<indvar> 1= <identifier>

<indpar> iz <identifier>)

<indconst> := ALT(<ident i f ier> |
<integer>]

<opsym> :x= ALY [<oppar> <opcons t>)

<oppar> iz <identifier>

<opconst> = <ident if ler>

<preop> t= <opsym>

<infop> t= <copsym>

<app lop> s <OpSym>

<predsym> : = ALT{ <predpar> | <predconst>)
‘<predpar> 1 = <identifier>

<predcons t> : = <ident if ier>

<prepred> = <predsym>

<infpred> ts <predsym>

<app lpred> t= <predsym>

<sentsym> := ALTL[<sentpar> | <sentconst>)
<sentpar> t= <identifier>
<sentconst> := ALT(FALSE |

TRUE

<ident If ier>]

|
jdeclared INDVAR
sdectared INDPAR
sdeclared INDCONST
yno declaration necessary

; dsc laced OPPRR

;declared OPCONST

sRRITY 1 and declared PREFIX
$ARITY 2 and declared INFIX
$ARITY n and not dsclarsd

; INFor PRE dsc

sdeclared PREDPAR

jdeciared PREOCONST

$ARITY § and declared PREFIX
$ARITY 2 and declared INFIX
$ARITY n and not declared

3 INF or PRE dec

jdeclared SENTPRR

jdeclared SENTCONST
3 INF or PRE dsc

Page 64 FOL Manual

<sentconn> 1= RALTL ~| NOT | jnegation
v | OR | jdisjunction
A | & | RAND | ;conjunction
> | + | P | ;implication
H

| & | EQUIV) jequivalence

<prelog> t=ALTE-} NOT 1
<intlog> t= RLTC v JOR | A | & |RND | o]) INP | 2| | EQUIV I

<quant> :a ALTIV|FORALL| 3} EXISTS)

TERMs

The FOL syntax for TERMs allows for both prefix operators and binary infix operators, as well as
the usual function application notation. Any undeclared identifier can be declared an operation
constant (OPCONST) using the DECLARE command. With proper declaration the following are

TERMs:
f(x+-y,g(xsy+2))
CAR

car(x,y)
{ROBOT,BOX1,DO0R} U {ylVx.P(g(x,¥))}
powerset(<A,B,C>)

<term> 1= ALT[<indsym>
<applterm>
<prefixterm>
<infixterm>
<settorm>
<n_tupleterm>
<comp term>
(<term>)
<app!term> 1= <applop> (<terml ist>)
<prefixterm» = <preop> <term>
<infixterm> t= <term> <infop> <term>
<setterm> txa | <termlist> ol
<ntupleterm> 1= < <termlist> >
<comp term> 1= al <indvar> | <wff> al

s e

<termlist> te REPLI[<term> , OPTL,]]

These are illustrated above and may be used at any time. Other additions may occur from time to
time.

A WFFs

AWFFs are formed similarly, but cannot be nested,

<anff> := ALTL <basautf> |
<app lauff> |
<preanff> |
<infauff> 1

FOL Manual Page 65

<baseautf> 1= ALTL <sentsym> |

<predpar>) gwuith ARITY &
<applanff> 1= <applipred> (<termiist>)
<proauff> t= <prepred> <lerm> "
<infauff> tz <term> <infpred> <term>

Examples of AWFFs are

{A,B,W}e{X|IZ.WeZAZe X}
<a,b> = {{a},{a,b}}
f(x,y)= ‘car(cons(x,y))

Equality is treated as any other predicate constant, but the system knows about the substitution of
equals for equals. It does not know that A=B is usually interpreted as ~{A=B), but treats it as any
other predicate symbol.

WFFs

<ufi> 1= ALTI <standard first order logic formuias |
~ <vi> t OPT(<subpart>] OPT [<subst_oper>]]

The syntax for WFFs allows the following abbreviations and options.

The primitive logical symbols are:

<uff> t= ALTL <primuff> | <prewff> | <infuff>]

<primwff> 1= ALTL <auft> | <quantuit> | (<uft>))

<preutf> t= <prelog> <primifi>

<infuff> 1= <primiff> <inflog> <primiff>

<quantuff> 1= <quantprefix> <smalluffi>

<quantpref ix> 1= ALTI(<quant> REPL[<indvar> 1 . |
(<quant> REPI{ <indver> |) |

<smalluff> t= REPO[<prelog>) <primuff>

Parentheses may be omitted and them association is to the right. As is usual conjunction binds the
strongest, followed by disjunction, implication and equivalence. Negation, as well as both quantifiers,
bind to the shortest WFF on their right. Thus ¥x .P(x)oP(x) will parse as (Yx.P(x))oP(x) not as
Yx.(P(x)oP(x)) !

We can write adjacent quantifiers of the same type together, so Vx .Yy.P(x,y) can be written Vx
‘y.P(x,y). FOL also accepts (Yx)}(Yy)P(x,y) or (Vx ¥)P(x,y) for ¥x.Vy.P(x,y).

Subparts of WFFs and TERMs

Within a deduction there is a completely general way of specifying any subpart of any TERM or WFF
already mentioned. We accomplish this by means of a SUBPART designator. Derivations consist of
WFFs, each of which has a LINENUM. The WFF which appears on this line is designated by following
it with a colon. If

Page 66 : FOL Manual

10 Vx y.(P(f(x))>Q(h(x,y)))

is line 10 of some derivation then 10: represents the WFF on that line, i.e. VX
y - (P(f (x))2Q(h(X, y))). Furthermore, subparts of sucha WFF can be designated by a SUBPART
designator.

<subpart> := REPI{ # <integer>]

The integer denotes which branch of the subpart tree you wish to go down. Quantified formulas and
negations have only one immediate subpart, called #l. The other sentential connectives each have
two. For predicates and function symbols the number of immediate subparts is determined by their
ARITYs. Any conflict with these will produce an error. Thus

10:#1 = Yy.(P(f(x))2Q(h(x,y)))
10:#2 = ERROR

10:#1#1#2#1 = h(x,y)

10:#1#1#1#2 =" ERROR (P has ARITY 1).
10:#1#1#1#1#1 = X

Substitutions in WFFs and TERMs

Onceyou have named a WFF, you can use a substitution operator to perform an arbitrary
substitution.

<subs t _oper> := [REP1l<subst!lIsti>,OPT[:]))
<substlistl> 1= ALTL <term> + <term> | <uff> « <ufi>)

Examples:

10:#1[x<ROBOT] = Vy.(P(f(ROBOT))>Q(h(ROBOT,y)))
10:#1#1[f(x)<ROBOT:Q(h(x,y))eP(x)] = P(ROBOT)2P(x)
10:#1#1#1#1[£ (10:#1#1#2#1#1)«ROBOT] = ROBOT
10:#1[xef(y)] = Vyl.(P(F(f(y)))>Q(h(f(y),y1))).

Note: the substitution operator changed the bound variable in the last example. T his prevented the y in
f(y) from becoming bound. See section on substitutions.

WFFs and TERMs thus have the following alternative syntax:

<uff> : = <vi> 1 OPT{ <subpart> OPT(<subst_oper> })

. <term> 1= <vi> t OPT[<subpart> OPT(<subst_oper> 1]

There is an ambiguity as SUBPART may produce only a WFF where a TERM is necessary (or the other
way around). FOL checks for this’and will not allow a mistake. Such a subpart designator can be
used whenever the syntax calls for a WFF or TERM.

A nother label for handling well-formed expressions is the VL

FOL Manual Page 67

<vl> 1= ALT[<integer> | <labei> OPTIALTI +|-) <integer>)
<axret> REPL1{t))}

The optional + or - <integer> after a label designates an offset from the mentioned label by the
amount designated, ¥

The last alternative has not been previously mentioned. Its meaning is the n-th previous line, where
n is the number of " signs.

Page 68 FOL Manual

Bibliography.

Filman, R.E. & Weyhrauch, R.W.(1976) ‘A FOL Primer’ Stanford University: Artificial Intelligence
Laboratory Memo 288.

Hayes, P.J(1974) ‘Some problems and non-problems in representation theory’ in Proceedings A.1.S.B.
Conference, Sussex, England

Kelley, J.L{ 1955) ‘General Topology’, (Princeton, New Jersey: D. Van Nostrand Company, Inc.)
K leene, S.C. (1968) M athematical Logic, John Wiley & Sons, Inc. New York

KK reisel, G{ 197 la) ‘Five notes on the application of proof theory to computer science’, Stanford
University: IMSSS Technical Report 182

K reisel, G(1971 b) ‘A survey of proof theoryII’ in (J.E.Fenstad,ed.) Proceedings of the Second
Scandinavian Logic Symposium(Amsterdam: North-Holland)

McCarthy, J(1963) ‘A basis for a mathematical theory of computation’, in Computer Programming
and Formal Systems, (Amsterdam: North-Holland)

McCarthy, J. & Hayes, P.J.(1969) ‘some Philosophical Problems from the Viewpoint of Artificial
Intelligence’, in (D.Michie,ed.) Machine Intelligence,7 (Edinburgh: Edinburgh U.P.)

Prawitt, D 1965) ‘Natural Deduction - a proof-theoretical study’, (Stockholm : Almqvist & Wiksell)

