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The Dependence Graph for Bases in Matroids

Stein Krogdahl

Abstract

This paper discusses a certain graph, called the "dependence greph"
("the DFG"), that can be defined naturally for a given independent set

in a matroid. We are mainly concerned :/ith the DRG of bases, and we

stud what the DFG of a base tells about the matroid. We show that

there is a nice connection between the DFG and duality, and between

the DFG and connectivity for matroids. ‘This last fact leads to an

algorithm for determining the connected components of a matroid and

also to one for computing a circuit containing two given distinct

elements in the same such component. A simple algorithm using

depth-first search is given for solving this last problem for graphic
matroids.

Keywords: bases in matroids, bipartite graphs, matroid connectivity
algorithms, matroid dependence.

This research was supported by The Norwegian Research Council for
Science and the Humanities. Printing costs were supported in part |

by National Science Foundation gramt GJ 36873X and by the Officeof Naval Research contract NR + Reproductionin whole or |
in part is pemitted for any purpose of the United States Goverment.



This peper c.scusses & certain bipartite graph that can naturally

be defined for an independent set in a matroid. This gravh is here

called the "dependence graph" of the independent set, but it occurs

in [6] under the name "simple border graph”.

“he dependence graph of an independent set exposes to a certain

extent how this set is located within its "environment', the set it

spans. This graph is important in Lawler'r matroid intersection |
algorithm [7], and its properties make up the fundamentals for the

combinatorial proof given for the algorithm in [¢]. Lawler has also

conjectured that the "matroid parity problem" is solvable in polynomial

time, and dependence-graphs may well Sturn out to be important also

here. (The "matroid parity problem™ is to find the greatest set of

pairs constituting an independent set in a matroid where the elements

are partitioned into pairs.)

An interesting property of the dependence graph of any base of a

matroid is that it very nicely reflects the structure of conneciavity

in the matroid. This leads to a simple algorithm for finding the

connected components of a matroid, that is described in Section 6.

As the title of this paper indicates, we shall mainly be concerned

with the dependence greph of bases. This is, however, not a very strong

restriction, as any result obtained for this special case directly

applies to any independent set considered as a bare of its span.
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The dependence graph of a base 1s closely related to Whitney's

concept of a "strict funiamental set of circuits" in [10], and Lemma 10

in Section 7 is more or less a translation of one of his theorems for

such circuit-seis into the language of this paper. 'fhe proof, however,

is different.

2. Basic Concepts

In the following we will consider the basic properties of matroids

as known. However, to settle the terminology we give a brief survey of

~~me definitions and theorems from this theory below. A nice introduction

to matroid theory is given in Whitney's original paper {9].

Throughout the paper we will take the freedom of writing e

instead of {e} when thie is obvious from the context. The cardinality

of a set A will be denoted [A] .

A matroid is defined on a finite set E Dy a family of subsets

of E , called the "independent" subsets of E , that obey the following

axioms:

(1) §# is independent;

(11) any subset of an independent set is independent;

(111) for any set A C E , all maximel independent subsets of

A have the same cardinality.

The common cardinality mentioned in (iil) is called the "rank" of A,

written " r(A) ".

A get which is not independent is said to be "dependent”. The

minima. dependent sets are called “circuits”. No circuit is properly

contained in ancther, and if Cc, and C, are circuits such that

ecC,y NC, and e, €CyC, , then there is a circuit in C,UC,-e

containing e
2



For all ACE the maximal set S such that ACSCE and
r/A) = r(S) is well defined, and this set is called the "span" of 4 ,

written " sp(A) ®. The elements in sp(A)-A are exactly those

e¢E-A such tnat there is e circuit in AUe containing e . If

IC t is independent and ec sp(I)-I , then IUe contains a unique

circuit, which we shall denote " Cle,I) ".

A maximal independent set is called a "base". All bases have the

same cardinality r(E) , and if B, and B, are different bases, then

for each e, ¢ B,-B, there is an e, ¢ B,-B, such that B, Le,-e, is
also a base.

A matroid is obviously de“ermined 1f its set of bases is given.

It turns out thet the set of base-complements (in E) for a matroid M |

form the basge-set of another matroid, which is called the "dual" matroid

of M.

We also need sume elementary graph-theory and we use the following

terminology. A graph is a finite set of "nodes", together with a set

of "arcs", each being an unordered pair of distinct nodes, called its

"endnodes”. A subset P of the nodes of a graph G is said to be a

"partitioning set of G" if each arc of G has "me endnode in P and

one outside. If u graph has a partitioning set P then it is sald to

be "bipartite", and then the set of nodes outside P also forms a

partitioning set.

A "matching® in a graph is a subset L of its arcs such that each

node occurs a8 an endnode of at most one arc of L . A set N of nodes |

is said to be "covered" by a matching IL if each node in N occurs as

an endnodeof an arc in L . In Section U4 we will use the following

well-known theorem due to P. Hall (ef. [2)):
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Theorem. If GC is a bipartite graph and P is a partitioning set

¢f G , then there is a matching in G covering P if amd only if for

each P' C FP the set Q' of nodes reachable by following an arc from P' ,

is such that |P'| < |Q'] -

2. Definition of the Dependence Graph.

Let M be a matroic over a set E , and assume that ICE 1s

independent. The "dependence-graph of I" (written “the DFG of 1",

or only " DPG(I) ") is defined as the following bipartite graph G .

Te nodes of G are (in one-to-one correspondence with) the elements

of E, and I is a partitioning set of G . There is an arc in G

between e, cI and e,eE-I if and only if e, ¢sp(I) and e; cC(ey, I) .
When we draw a dependence graph we will usually have the nodes

frcm I at the bottom. As an example let M be the graphic matroid

defined on the arc set of the graph below, and let I = {a,b,c,d,e} ,

which 1s marked by double lines.

r £ h 1
» Oo

. 7
® 9 (0)

Se o ’
& b c a e

A graphic matroid and the DFG of f{a,b,c,d,e} .
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L. The DFG of a base, and what it tells about other bases

The following rather obvious lemma shows that the DFG of a base could

have been defined fully within the framework of bases.

Leama 1. If B is a base of a matroid and e, €B and e, ¢ E-B s then

there is an arc between e¢; and e, in DFG(B) if and only if

BUe,-e, is alsc a base.

Procf. If there is an arc between e, and e, in DRG(B) , then we )

will destroy the only circuit in BUe, by removing e - Thus

BUe,-e, is independent, and therefore also a base.

Conversely, if there is no arc between e and e, then BUe,-e,

will contain the circuit C(e,,B) and can therefore not be a base. J

Lemma 1 tells us that the DFG of a base B describes, and is

described by, the set of bases that differ from B in exactly one element.

That this in general is not enough to determine all bases (and thus the

full structure) of the matroid is demonstrated by the following example.

We define two aatroids on the set {a,b,c,4] . N, isthe graphic

matroid of the graph pictured below, and N, is the matroid where all

sets of cardinality less than or equal to 2 are independent . ‘In doth

M, and MW, , the set {a,b} 1s a base and the DFG of {a,b} is the

one pictured below in both matroids. However, M, and N, are not 7
equalas {c,d} is a dase in M, tut mot in N, . -



e . a

| a b

The graph defining M, . The DFG of {a,b] in M, and M,.

We may obtala a feeling for how "little" the DFG of a base says

about the matroid by observing that the number of different DPGs on n

ncdes srows not faster than oe ) . However, D. Knuth has shown in [5]
that the number of essentially different matroids over a set with n

JP -2 log, n+ O(log log n)
elements is as big as 2 » which grows

considerably faster.

In spite of these facts it turns out that the DFG of a base points

out a much larger class of sets that must be bases than those covered

by Lemma 1, and exactly how large this class is, is described in Lemma 6.
However, the proof of the fact that any set not covered by this lemma

is "unreliable as a base" is for convenience postponed to Section 7.

We will also (and first) describe those sets that under no circum-

stances can be bases, by giving a condition that all bases must obey.

This condition will immediately be shown to be as strong as possible.

In the following lemmas, matchings in the DFG of a base will be |
important. If L is a matching in the DFG of a base B , thenwe will

denote the set of its endnodes outside B as " OUT(L) * and the zet

of those inside B as " IN(L) ". The set BUOUT(B) - IN(B) will be

denoted L(B) . Obviously |our(L)| = |m(L)| amd |L(B)| =~ |B] .



We start out with the condition which ail bases must obey, and we |

first prove a slightly more general result than we need. |

Lemma 2. Let B be a base and I an independent set of a matroid.

Then there is a matching L in DPG(B) such that OUT(L) = I-B and

IN(L) € B-I .

Proof. By P. Hall's theorem it is enough to show that, for any

| I'c I-B, the set J' of nides in B-I that are reechable from

I' by arcs in DPG(B) will satisfy |I'| < |o'| .

For each I1I' we have

3 no u cer) ) :eel’

This implies that I'U(BNI) c sp(J'U(BNI)) . Since both I'U(BNI)

and J'U(BNI) are independent we must have

II'u(BNI)| < |J'U(BNI)| . This implies |I'| < {J'| , which is

vhat we vanted. (J

As all bases have the same cardinality, we immediately obtain this

lemma (which was probably first jroved by Magnanti in (8 ])s

Leama35. Jet B and B' be two bases of a matroid. Then there is a

matching L in DPG(B) such that OUT(L) = B'~B and IN(L) = B-B' .

To show that this conditica is the strongest possible, we prove

the lama below. Note that the followinglemma also proves that for oo

any bipartite graph G with a designated partitioning set B , there

is a well-defined base-richest matroid over the nodes of G , such that

B is a base of this matroid and G is the DRG of 3B . | |



Lema 4. Let G be a bipartite graph and let B be one of its

partitioning sets. Then the set 8 = {L(B) |L is a matching in G}

forms the set of bases of a matroid over the node-set of G . (Here we

allow IL to be empty, so that BeBS .)

Proof. We could here prove directly that the axioms for bases are

true. However, the constructions needed have been done once and for all

in a more general setting by Edmonds and Fulkerson in [1]. Here they

prove that if H is a graph and E is a subset of its nodes, then

the subsets of E that can be covered by a matching in H will form

the independent sets of a matroid on E .

The appropriate H for our case is obtained from G by adding an

arc wit: endnode b' from each node beB . Further we let E be all

nodes in this graph except the old b-nodes, letting b' be their new

representa’ ives. That the Edmonds/Fulkerson construction on this graph

yields the msatroid in the lemma is now fairly easy to see, and the

details are left to the reader. The following illustration may clarify

the construction:

ay ., . a, a LT SY 8, ., 8, ag a
0 o) (o

VRA/ YTYY
: b, b, b, by b; b b} bs bf bg

G H

The matching indicated in G shows that {8,,8,,b,,0,,,5:] isin 8.

The matching indicated in H shows how the corresponding set {a,,a,,bl,bf, bl}
occurs as a base of the matroid described above. [J
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We now turn to the problem of characterising those sets that the

DFG of a base B points out as bases. Let B' be a set such that

|B'{ = |B] . By Lemma 3 we imow that if B' has any chanceof

being a bace, there must be a matching L 4in DRG(B) such that

B' = L(B) . It tums out that the only time we can really conclude that

B' is a base is when there is only one matching L such that L(B) = B' .

A matching 1 which 4s such that no other matching has exactly

the same IN- and OUT- set will be called "clean". However, since we

want to use this condition in different forms, ve will first define

cleanness in a rather obscure way, and then prove that this is equivalent

to the above condition, and also to a third form which will turn out to

be perhaps the most useful one. |

Let L be a matching in the DFG of a base B. We will say that L

is "clean" if every submatching L' of L 4s such that there exists

a node in IN(L') whose only arc to nodes in OUT(L') 4s the one

in L' . A simple cycle in DRG(B) whichis such that exactly each

second arc is in IL is called an "L-alternating cycle". (In [6] this

is calleda "main cycle inducedby L".) We provethe following lemma.

Lemma 5. Let L be a maiching in the DR; of some Dase B of a matroid.

Then the following three statements are equivalent:

(a) L 1s clean.

(b) There is no matching L' in DFG(B) such that TN(L) = IN(L') ,

OUT(L) = OUT(L') and Lf L* .

(c) The DIG of B has no L-alternating cycle.

9



Proof.

(a) » (b). By the definition of cleanness we can see that if

IN(L) and OUT(L) are given, then the process of choosing arc by arc

a matching that covers exactly these sets can only be done in one way,

since there is always an arc in the remaining set that has to be choscn.

(b) = (c). Suppose there were an L-alternating cycle in DFPG(B) ,

with arc-set C . Them (LUC) -(LNC) would be ancther matching

obeying all the requirements of L' in (b).

(¢) = (a). Suppose L is not clean. Then there is a submatching

L' of L such that each node in IN(L') has arce to at least two

nodes in OUT(L') . Start at any node in OUT(L') and follow the arc |

in L' from here to the "corresponding" node in IN(L’) . Then

take any other arc to another node in OUT(L') , and repeat the process

again. By the finiteness of L' we must eventually come back to a

node in OUT(L') which ve have seen before, and then an L-alternating

cycle is formed. [J

We are now ready to prove the result claimed above.

lemma6. If L 4s a clean matching in the DFG of a base B of some

matroid, then L(B) is a base.

Proof. By the original definition of cleanness we can pick an arc ack

with endnodes e, « IN(L) and e, € OUT(L) such that there is no arc

from e, to any nodein oUT(L)~e, - This means that e, does not

occur in the circuit C(e,I) for any node e ¢ OUT(L) ~e, .

By Lawma 1 the set BP’ = BUe,-e, is also a base, and since the
circuits mentioned above are not touched by this interchange, the arcs

10



from nodes in OUT(L) -e,, are the same in DFG(B') as in DRG(B) .

Thus the matching Lea reoccurs in DFG(B') and it is clean here as

it was in DPG(B) . Thus by an inductive argument on the size of L,

we can conclude that L(B) is a base. O

Not surprisingly, it is also true that if 1L is a clean matching,

then L will reoccur "upside down" in DFG(L(B)) , but we leave the

proof of this to the interested reader. (A proof occurs in [6].) This

is not generally true if L is not clean, even if L(B) is a base.

The remaining question now is whether Lemma 6 covers all sets that

must be bases. Unfortunately the set 8 = {L(B) |L 1s a clean matching

in DFG(B)} does not generally form the base-set of a matroid. This can

for example be seen by studying the following bipartite graph:

d e f

E-B

a b c

Here B, = {a,d,e}] and B, = {c;e,f] are both in 8 . However, to

conform to the base-axioms, there would have to be an element in

B,-B, = {c,£] that could replace a in B, . But neither {c,d,e}

nor {f,d,e}] are in 8 , showing that 8 is not the base set of a matroid.

Thus the "base-poorest” matroid is not nicely well-defined as is

the base-richest. The proof that Lemma 6 still is the best possible

(in a little weaker sense) is postponed to Section 7, where the necessary

tools are developed.

11



5. Duality and the DFG of a Base

The relation between the DF; of a base and duality is the following

simple one.

Lemma (. If B 1s a base for a matroid M on E , then the DPF; of the

base E-B in tbe dual matroid M* is the same as the DFG of B in M,

considered "upside down".

Proof. This is a direct consequence of Lemma 1 and the fact that

the bases of M* are exactly the complements of the bases of M .

The relation between the DFG and duality will be investigated

further in Section 7.

6. Connectivity

In this section we will prove a simple relation between connectivity

in matroids, and the usual graph-connectivity in the DFG of some base in

the matroid. This relation will naturally point out a simple algorithm

for computing the connected components of a matroid.

By using Whitney's original definition of connectivity in matroids

(in terms of rank-relations) the relation we shall prove would be rather |

evident. We will, however, give a presentation in terms of circuits,

which will also yield an algorithm for finding a cammon circuit of two

elements if they lie in the same commected component.

We will say that two elements of a matroid are "connected” if there

exists a circuit containing them both. This relation is obviously

symmetric, and we will define it to be reflexive. That is, an element

that occurs in no circuit is connected to itself and nothing else.

That it also is transitive follows from this lemma:

12



Lemma 8. In a matraid let C, and C, be circuits such that

C,NC, £@ , and let e and e, be elements such that e, ¢C,<C,

and «,.C,=<C,y . Then there is a circuit in C, UC, containing both

e, and e, .

Proof. The proof 1s by induction on lc, uc, | : the lemma holds

vacucusly when |cjuc,| <2 .

“or the inductive step choose an element e Cy NZ, » and a circuit

a in Cy C,-e containing e - If e, €Csy then we are done. If

not, we can use the induction hypothesis on C, and Cy y except when

C=C = C. . In this case we pick a circuit Cy, in C,UC,-e
~nt a r Bd V

toth avoid e we have Ic uc), | < lc, uc, | . Thus we can use the
induction hypothesis again.

Thus the relation of being connected is an equivalence-relation,

and the equivalence classes with respect to this relation are usually

called the "connected components" of the matr-oid.

Note that the connected components of & graphic matroid are identical

to the 2-connected components of the arcs in the underlying graph.

However, the connected components of a graph as used below are the

equivalence-classes of nodes with respect to being connected by a

single path. To avoid confusion we will call this last type of

connectivity in graphs "G-connectivity", while connectivity in

matroids is called "M-connectivity". The corresponding connected

components will be called "G-components" and "M-componenis" respectively.

Lemma 9. If B is a base of a matroid, then the G-components of

DFG(B) are identical to the M-components of the matroid.

15



Proof. Suppose e and e' , ef e' , are in the same G-component

of DFG(B) . Then we can obviously find a sequence e,,e,,...,e from

E-B such that e eC(e,B) s» e'eC(e,B) and C(ey_,sB) NC(e,,B) IX
for 1 =1,2,...,n. Thus e and e' are in the same M-component.

To obtain the lemma we must also prove that there are no circuits

in the matroid containing elements from two or more G-components.

Therefore suppose there exist such circuits, and choose one of them, C., ’

such that |C,-B| 1s minimal. Obviously |[C,-B| >1 . Suppose C, has

elements from the G-components of DFG(B) , Ky, and K, , such that C,

has an element e, in K,-B . We know tha C, £ C(e;,B) since all

elements of C(eysB) are in K, . Choose e,cC,NK, , and choose a

circuit C, in Cy Uc(eys B) -e, containing e, . Obviously then

Ic,-Bl < |c;-B| . However, C, must also have an element in

C(eyyB)=C, ck ,a contradiction. [J
Note that through Lemma [7 this lemma gives a nice demonstration of

the well known fact that the M-components of a matroid and its dual are

the same.

Now supposea matroid is givem over E such that there is a

poiynomial time algorithm for deciding whether a given set is independent

or not, taking |E| as the "size" of the problem. Then, given any

dependent set, we can find one of its circuits by scamming through its

elements once, pushing out those that do not make the remaining set

independent. Thic gives a simple polynomial time algoritim for finding

C(e,B) if e and B are given, and for findingthe DF: of B .

We can now give an algorithm for computing the M-components of a

matroid based on Lemma 9. The algorithm needs a data-structure that

keeps the elements of E divided into disjoint subsets, and it needs

1h



an operation " MERGE(a,b) ", a,b ¢E , that will unite the subsets

containing a and bd if they are in different subsets, and otherwise

do nothing. There are very efficient data structures and algorithms

available for this problem (see [UL], page 354).

when we start the algorithm, we have each element of E in {its

own subset. We look at each element of E once in any order, and as

we proceed we build up a base for the matroid in a set B (which

initia’iv is empty), by adding to B each element e we meet that

makes BUe independent. On the other hand, when we meet an element

e such that Bue 1s dependent we compute C(e,B) , and perform

MERGE(e,e') for each e' ¢C(e,B)-e .

That the partition of E yields the M-components of the matroid,

when all elements have been treated, is a direct consequence of Lemma J.

We will now show that the proof of Lerma 8 gives a polynomial time

algorithm for finding a circuit containing two given distinct elements

e, and e, whenever they are in the same M-component. To decide if

they are, we first use the above algorithm to find the M-components, and

if 21 and e, are in the same component, it is also eary to construct

a "chain" of circuits Co?Cq2e=sCy such that e, eC, and e, eC, y and

C,_,NCy f#, 1=21,2...,0. If possible, ve also “shortcut” this
chain until further shortcuts are impossible.

The last step is nov to “perform” Lemma 8 repeatedlyon neighboring

Cy 's to "shrink" them into one circuit without breaking the chain,
until only one circuit is left.

This obviously solves the problem in polynomial time, if Lessa 8

ig "performable" in polynomial time. To see that it is, we first

describe how to find a circuit in a set ACE ~ontaining one given

15



element ecA . First build a maximal independent set I for A-e

in the same way as we built the base B in the last algoritim. If

IUe is dependent, we compute C(e,I) and use this; if Ile 1s

independent, there 1s no circuit of the type we want.

With this construction in mind it is easy to see that the proof

of Lemma 8 directly yields a polynomial-time algorithm for finding the

circuit that the lemma itself asserts the existence. The detalls are

left to the reader.

Simplifications of these algorithms in the case of graphic

matroids are discussed in Section 9.

7. Matroids Induced from Vector-spaces

Suppose VY is a vector-space over some field F , and let E De

a finite subset of ¥ . If we define a subset of E to be independent

if end only if it is linearly independent in Y , then basic theorems

from linear algebra tell us that these define a matroid on E . Let

us call this the "induced matroid® of E .

If we fix some independent r-tuple B = CIFLNREY from VY
that spans E then each element ecE can naturally be represented as

an element e' in F . We will ccnsiderthe elements of F as

colimns, and these columns also form a vector-space in their own right.

In this vector-space the elements E' = {e' | ecE] will induce the same

matroid az E did in VY , quite independent of the choice of the set B .

If G is a bipartite graph, we define an "F-labeling of G" to be

an assignment of non-zero values fram F to the arcs of G .

let E be the node-setof G, let BCE be a partitioningset

of G and supposean F-labeling of G is given. We can them in a
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natural way associate elements of oa y Yr = |B] , to each node in G

such that B is a base of the matroid induced by these elements, and

such that the DPG of B in this matroid is G . We first arrange

the nodes of B in some order TL VERE , and to node by we

associate the column bs with a "1" in position "i", and with zeroes
elsewhere. To each node a ¢E-B we associate the column

Tr

a' = 2 q_,b' , where gq is the label of the arc between a and
1-1 ail al

b, if it exists, else it is zero. As an example, look at this picture
(F are the real numbers).

L 0 0 0 0

0 3 2 0 0
-2 0 0 0 1

0 0 -3 0 -1

‘ - 0 E-B

Nd 3 1
G 4 A

B

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

We leave it to the reader to verify that the DFG of B in the

induced matroid is indeed equal to G . We further notice that any set

of r independent vectors from any vector-space over F used as bs ’

i=1,...,r , (computing the "a'"® 'g by the same formula) would induce

the same matroid over E .

Conversely; let E be a finite set of vectors from a vector-space

over F, and let B be a base for the induced matroid M . Since then

every element of E-B is a unique linear expression in elements from 3B,

we see that the elements of E define a natural F-labeling of the DIG

17



of B, such that the matroid M will reoccur by using the construction

above on this labeling of the DIG of B .

Thus, for any F-labeled bipartite graph G and for any partitioning

set B of G there is a natural F-induced matroid on the nodes of G

such that B is a base and G = DPG(B) . It is also possible to

construct any matroid induced by elements of a vector-space over F

in this way (but there are generally many labelings inducing the same

matroid).

As an PF-labeling completely determines a matroid when G and B

are given, we should be able to characterize the rest of this matroid

directly from the labeling. The following lemma should then come as no

surprise.

Lemma 10. Let M be the matroid defined over the nodes of the bipartite

graph G by a given labeling from F and a given partitioning set B,

and let A be a set of nodes such that |A]| = |B] . Then A is a base

for M if and only if det(Q) # O , where Q is the quadratic matrix

in F formed by letting ic A-B index its columns and J c¢B-A its

rows and defining the element yy of Q as the label of the edge
between i and J 4f it exists, and otherwise zero.

Proof. Let us associate with each node of G the "natural element

fron FF , r = |B| , and let us do the orderingof B that was necessary

for this such that the elements of B-A comes first. Let us further |

order the columns associated with elements of A such that those

associated with elements in A-B come first and such that the rest

follow in the same order as BNA was ordered above. The rows of A

will then constitute this matrix:

18



A-B ANB

BNA A

o
1

Here Q 45 the matrix in the theorem and Z can contain anything. We

know that the rows of this matrix are indeperdent (which is equivalent

to A being a basc in M ) if and only if its determinant is not zero.

From the special structure of the matrix it follows that this is true

if and only if det(Q) A#0 .

It may be instructive to observe how Lemmas 3 and € could be proved

for this type of matroids from Lams 10.

We notice that if A is a base and ve want to find DPG(A) with

its labeling, then we must invert the matrix pictured above. We also

notice with interest that the condition in Lemma 10 is invariant with

respect to replacing B by E-B, since det(Q) = det(Q’) . This |

immediately leads to the following lemma.

Lema 11. Let G be a bipartite graph with a labeling froma

field F, and lot B be a partitioning set of G . Then the matroid

definedover the set E of nodesin G with respectto B is the dual

of the matroid defined on E with respect to E-B (by the seme

labeling). |
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We conclude this section by proving the earlier announced fact

{hat Lemma t is best possible. This will follow from the lemma:

Lemma 12. Let § be a bipartite graph with 2 partitioning set B

and a matching [ that is not clean. Then there is a matroid over the

nodes of (G such that B is a base, DPG(B) = GC , and such that L(B)

is not a base.

Proof. We will construct a labeling on G from the real number: such

that the matrix ( defined "between" the two cts IN(L) and OUT(L)

(indexing the rows and columns respectively) as in Lemma 10 is such that

det(Q) = C . This will be done by making a (nonempty) subset of the

columns of Q sum to zero.

Since L is not clean we know by Lemma 5 that G contains an

L-alternating cycle, and let L' be the subset of IL that occurs in

cne such cycle. We note that from each node in IN(L') there go at

least two arcs to nodes in OUT(L') . This is as we want it, but we

also want L' to be such that all nodes in IN(L) that are reachable

(by an arc) from OUT(L') are also in IN(L') . To obtain this we

extend L' by repeating the following operation until it no longer has

any effect: Let X be the set of nodes in IN(L) that are reachable

from OUT(L') , and extend L' euch that IN(L') = X (and such that 1°

is still a submatching of I ). When this stops, as it must by the

finiteness of 1 , ther L' obviously fulfills both the requirements

we gave above (see illustration below). We now label each arc hetween

IN(L') and OUT(L') with a nonzero number such that for each node in

IN(L') the labels of the arcs to nodes in OUT(L') will sum to zero.

(This is possible since there are at least two such arcs from each node
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in IN(L') .) We can now complete the labeling in any way we want, and

we observe that the sum of the columns of Q associated with the nodes

in OUT(L') will sum to zero. -

L

®, 1 1 Sa ® ®

1 > < _
® ® 1 17 1D © N C

—
initial 1!

a ———
1' after extension

An example of the construction described in the text above.

8. Binary Matroids |
A matroid is said to be binary if it is induced by a finite set

of vectors from a vector-space over GF(2) (the field of integers

modulo2 ). As Whitney provedin [9], such a matroidis fully determined

by the DFG of some base. In our setting this is evident, since there is

only one labeling from GF(2) of a given bipartite greph. Thus we can

give a necessary and sufficient comdition for a matching L in the DFG |

of some base B cf suoh a matroid to be such that L(B) is a dase.

Lemme 13. Let B be a base ia a binary matroid and let L be a matching

ig PIG(B) . Then L(B) is a base if and only if for every noneaply

subset = C OUT(L) thereis a node in IN(L) from which there 1s an

odd smmbex of ares ate X .



Proof. We prove that the negations of the two statements are equivalent.

First suppose there is a set X C OUT(L) such that from all elements

in IN(L) the number of arcs to X is even. It is then evident that

the sum (module 2) of the columns in Q (as defined in Lemma 10,

letting A = L(B) ) corresponding Lo this set, is zero. Thus det(Q) =0 ,

and L{(B) is not a base.

Conversely, suppose that L(B) is not a base, which by Lemma 10

{implies det(G) = O . Then there must be some subset of the columns

of Q such that their sum is zero, since 1 1s the only nonzero

constant. It is then easy to verify that the set X C OUT{L) corres-

ponding to this set of columns must be such that all rodes in IN(L)

has an even number of arcs into X . OJ

That the condition in Lemma 13 is also invariant with respect to

turning the graph "upside down" 1s not quite transparent, but it must

be true by Lemmas 10 and 11. This can be considered as a theorem in

graph-theory whose proof relies on the fact that det(Q) = det (Q7) for

all square matrices over GF(2) .

9. Graphic Matroids

"Graphic matrcids" are binary matroids induced by a set of columns

fram GF(2)% , each having exactly two "1"s and (r-2) "O"s. We

usually then identify each "row" with a node in a graph, and each columm

with an arc between the two nodes where it has its "1%s. Obviously

this graph (or "multigraph”, since multiple arcs may occur) fully

determines this matroid (since the order of the rows is irrelevant),

and for each graph there is such a matroid. However, different graphs

may correspond to the same matroid.



It is well known that the circuits of such a matroid correspond to

(the arcs in) the simple cycles of the graph, which means that an arc-set

is independent if and only if it contains no cycle. Also, the connected

components of a graphic matroid correspond to the 2-connected components

of the graph.

Suppose a graphic matroid is given by a corresponding greph, and

suppose we want to find the DFG of some base (which we are free to choose)

of this matroid (as for example in the M-component-algorithm treated in

Section 6). The best way to do this will generally be to use "depth-

first search" ("DFS"), where you search along arcs and always complete

the search from the latest found nodes before you go back to search from

an earlier found one. (See !9].) It is then natural to keep the nodes

on the path in the search-tree from the start-node to the current one,

in a stack with the start node at thc bottom. Then, whenever you meet

an arc e which forms a cycle with the arcs picked for the base B

(that is, makes Bie dependent) then the "other" endnode of e will

always be on the stack, and the rest of the arcs in the cycle formed

(that is, C(e,B)-e ) will be exactly those om the path formed by the

nodes on the stack above (and included) the other endnode of e .

This makes the construction of a dase ani its DFG very simple, and

if we study what further simplifications can be done with the M-component-

algorithm given in Section 6 using this construction, we see that Hoperoft

and Tarjan's DFS-algorithm given in [9] for finding the 2-connected

components of a graph comes out rather naturally.

We shall also see that we can modify this algorithm so that it

finds a common cycle of two given axcs A and B (A £ B) from the

seme 2-connected component. This version of the algorithm can also easily |



determine if A and B are in the same 2-connected component, but for

the time being, let us assume that they are. In the following description

we will use the same terminology as Tarjan uses in [9].

To fcrce the search to produce a spanning tree that is good for

our purpose, we use thefollowing simpie deviation from r_ndom choice.

We start out the cearch in an endnode of one of our arcs, say A , and

we choose arc A ac the first one to follow. Let us call the start-node

"r" and the oth:r endnode cf A "ss". Latcr, whenever we come to a

new node, we first check if it 1s an endnode of B , and if so, we choose

to follow B first. We will call the node from where we I'irst see B

"t£" and the other endnode ¢f B we call "ul.

Considerations in [9] then tell us that we will find B before

we backtrack alongs A , which means that A 1s the first arc on the

path from the root r to node t in the spanning tree. We also know

thet B will be included in the spanning .ree.

In this version we need no stack except the cne that keeps track

of the nodes in the tree between the rcot and the current node. When

we see arc B for the first time (in node t ) we set up a link-chain

from the rootnode r through the spanning tree to node t by using

the contents of this stack. For this purpose we have a pointer-field

ABLINK in each node, which is now set to point towards t for all nodes

on the stack. Let us call the sequence of nodes from node r through

the spanning tree to node u (both included) the "AB-chain®.

The nodes also have the integer-fields "NUMBER" and "LOWPT", and

we fill these exactly as Tarjan does in [9] as the search proceeds.

That is, in NUMBER we put consecutive growing numbers as we see the

nodes for the first time, and in LOWFT of a node x we record the
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lowest NUMBER-field found in a node reachable from x by going further

out in the spanning tree zero or more steps, and then following one

frond. In our version we also keep track of the path to the node

numbere. IOWFT, by including and maintaining a pointer-field "LOWLINK"

that points out the "direction" we followed tc find this node.

Tarjan has proved in [9] that for any node x on the AB-chain

(except r and s ) the node y numbered with IOWPT of x also will

lie on the AB-chain, y willbe nearer the root r than x , and

there will be at least cne node between x and y on the AB-chain.

This leads to the following obscure strategy for finding a path P

(with no arcs, but perhaps some nodes, used twice) from node u to

the root r .

We start out from node u by first remembering its LOWPFT, and then

following INWLINKs until we find the node with this NUMBER. Then ve

test if we are in node r , and if we are not, we follow ABLINK one

step, notice the LOWPT-value here, and start out following LOWLINKs

again repeating the process. We stop when we find the root r .

Let us say x, (= u),X,, esx is the sequence of nodes where we

noticed LOWPT and started following LOWLINKs, and let y,,¥,) rees¥ (= Tr)

be the corresponding sequence of nodes where these searches succeeded.

(We show below that these sequences really make progress towards the

root of the tree so that r is eventually found.) This process can

for example lead to something like this:
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Q ®

——— 0 0 0 *e——6@

®

C 0

In this picture the LOWLINKs and the ABLINKs we have followed

are marked with single and double arrows respectively. From earlier

commente we now that each Yi 2 i =1,2...,n will lie nearer r

than y, _, (taking Yo = t ). This also implies that when we start

following LOWLINKs from an Xs 3 i =2,%2,...,n , we must "leave" the

AB-chain at the latest at yy1-27 for if we followed 1t tO Xy.1 we

would automatically be led back to vy1-1 ° which we are not.

Thus r must eventually be reached, and it is easy to see that

if Q is the set of arcs connecting the AB-chain (including A and B )

then (PUQ) -(PNQ) is a simple cycle containing A and B .

We finally observe that if A and B are not in the same

2-connected component, then this algorithm will either backtrack

through A without finding B , or the process of constructing P

will go into a loop. Both these situations are easy to detect. |

We end this paper by posing an apparently unsolved problem.

We know that a binary matroid is determined by the DFG of one of its

bases, and we may ask for an algorithm that determines if a certain

bipartite graph G , with a given partitioning set B , is the DIG of a

graphic matroid, and if so builds a graph representing this matroid.
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Obviously we can treat each connected component of G alone, and it

is not difficult to see that the problem is equivalent to this: Given

a set of arcs A and a family D of subsets of A . If possible, put

the arcs of A together to a tree such that each set in D constitutes

a path in the tree. This is an easily stated combinatorial problem that

may be interesting in its own right. If we know that the dual matroid

is graphic and we know a representing graph (that is, if the problem

is positively answered and solved for the graph G above, with respect

to the complement of B ) then we know we can solve this problem, as it

then becomes equivalent tc determine if a graph is planar. For this

problem a very efficient algorithm exists, see [3].

Added in Proofreading

It turns out that W. T. Tutte has treated thc above problem in the

following two papers:

- "An algorithm for determining whether a given binary matroid is

graphic," Proceedings of the AMS, 11 (1960), 905-917.

- "From matrices to graphs," Canadian Journal of Math., 16 (1964),

108-127.

It also turns out that an algorithm for finding the M-components of

a matroid which is essentially equal to the one described on pages 1h and

15 bere, is given in W. H. Cunningham's Fn.D. thesis, "A combinatorial

decomposition theory," University of Waterloo, 1974, page 5.16.
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