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1.0 1

CHAPTER |
INTRODUCT!ON

The research described in this thesis is part of 1 coniinuing effort, at the Stanford
Fand-eye project, to develop the capabilities for a machine to analyze fcenes of complex ob jects
and manipulate these ob jects for tasks such as part assembly. Much of the past work in three-
dimensional scene analysis has concentrated on scenes containing poiyhedral ob jects only. This
thesis is concerned with machine generation of symbolic descriptions for three-dimensional
complex, curved ob jects and their recognition based on these descriptions. The complexity of the
ob jects viewed Is typified by toy animals such as a horse and a doll, and by hand tools such as a
hammer. (The reader may wish to glance through the figures in chapter 7 for a sampling of the
scencs these programs work with.) Our concern here will be with the shape properties of an ob ject
only. Other cues such as color and surface texture have not been used.

Previous Work:

The problem of ob ject recognition has received extensive attention in the literature on
Pattern Recognition ([Dudal), though the emphasis has been on the recognition of two-
dimensional patterns. Analysis of three-dimensional scenes from their two-dimensional camera
images presents the following difficulties: the two-dimensional image of the ob ject changes with
the viewing angle; when multiple ob jects in a scene occlude each other, only parts of some ob jects
will be seen in the camera image, and also the occiuding ob jects need to be separated from cach
other. A non-convex object can partially occlude itself. Additionally, in our system we have
allowed paits of an object to be articulated (i.e. move with respect to the other parts). The
classical pattern recognition methods have not been concerned with such variations and have only
considered statistical variations of a fixed pattern.

A popuiar paradigm in pattern recognition has been that of Templat- Matching.
Template matching consists of matching an nput pattern with a model pattern, kncwn as a
template, on a point to point basis. The matching is usually performed at the level of irput
measurements, eg. the intensity levels in the image or the vaiues in a range matrix. A simple
metriz, such at ihe root mean square of the differences, or the correlation of the image and the
tamplate establishes the quality of the match. Such template matching is directly applicable only if
the image of the entire scene is Invariant, eg for two-dimensional patterns. Some flexible template
matching schemes have been suggested ([Widrow)(Fischler]. Parts of such a template are
allowed to be moved with respect to the others. Comparison of the observed scene with such a
template finds the best “distor:ion” of the template required to match with the scene. These
techniques, utilizing point to point matcaing of the model pattern and the scene are difficukt to
extend for the expected variations of three-dimensional scenes. Further, template matching does
not provide usefui similarity and difference descriptions, such as two ob jects are similar but for a
missing mb in one.

The early work on three-dimensional scene ana'ysis simplifiad the problem by restricting
to homogeneous polyhedral objects. In a now classical work, Roberts ([Roberts 63]) extracted edge
information freis simple polyhedral scenes and compared the resulting description; with possible
projections of stored models for cbject recognition. With multiple objects in the scene, many
combinations of known models were tried. It i1s clear that for an increasing number of models,
these techniques s00n become computationally infeasible.
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The attention then turned to the problem of “Body separation”, ie. separaiion of
occluding bodies in a scene (See (Guzman), [Falk) and (Wakz)). Grape ({Grape]) combined the
separation of bodies with recognition, by removing parts of the scene recognized as belonging to a
known body. All of these techniques were designed to work with polyhedral objects only, and
extensively use the properties of edges and vertices. ‘Though some impressive results have been
reported (IWahz), (Grape]), and perhaps some useful abstractions can be made, the specific
techniques used fail to generalize to a wider class of ob jects.

Among previous work on curved objects, BK.P. Horn ((Horn)) presented techniques for
extracting three dimensional depth data from 2 TV image, using reflection characteristics of the
surface. Krakauer ((Krakauer]) represented ob jscts by connections of brightness contours. Ambler
et al ((Ambler)) describe experiments with simple shapes, inclusiiiiy curved ob jects, using relations
within a two-dimensional image. However, none cf these efforts really addresses the problem of
“shape” representation and description. Work on outdoor scene analysis is aiso concerned with
non-polyhedral objects ([Ba jsy), [Yakimovsky]), but again no attention has been paid to shape
analysis.

M\

Our work is based or initial work of G.J. Agin ana T.O. Binford ([Agin 72, 73],
[Binford]). Binford proposed a new representation for complex objects by segmentation into
primitive parts described as Generalized Cylinders (and cones), which are defined by a space
curve, known as the axa:, and a set of cross-sections along this curve. The shape and the size of
the cross-sections may change ccntinuosly along the axis. Agin :uilt a laser ranging system to
measure the three-dimensional positions of the points on an object surface. The 3-d position
information helps resolve ambiguities caused by occlusion. (This system only measures the 3-d
positions of points on the surface “isible to the camera.)

\

Agin described prelim.ina‘i‘ry efforts at generating descriptions from the three-dimensional
range data. However, these deicription techiiiques were unstructured; only isolated part
descriptions were generated anc nct related to each other to make up a complete body. Further,
the description of individual parts had some major deficiencies. In particular, some d- -iptions
merged nearby but distinct parts. [n this thesis, we present new description techniques that are
different conceptually and in implementation. They generate adequate segmentation and part
descriptions for an object and are 2 major advance over the previous work. The segmentation
techniques are general and work without a pricri knowledge of the the object being viewed.
Structured, symbolic descriptions are generated based on these segmentations.

Approach:

The techniques described here use the same representation and laser ranging system.
These are briefly described in chapter 2 and section 2.1, to allow an independent reading of this
thesis. The remainder of this thesis represents the author’s own contributions. (Note that this
thesis consistently uses the first person plural)

(ke chosen representation i3 designed to cope with the groblems of 3-d scene analysis
mentioned earlier. The major component of the chose., representation is the Structure of the
ob ject, defined by the connectivity pattern of its sub-parts. This structure is invariant with the
viewing angles, except for the absence of some parts in a particular view due to occlusion
(computation of this structure from certain viewing angles may be difficult). However, some
ob jects are reasonably described as having akternate structures (details in chapter 6). In such cases,
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we just store the akternative descriptions of the same model; each cescription is examined
independently for recognition. The expected number of such alternates is small. Articulation of a
limb is easily described by its relation to other limbs. Our recogrition procedures use descriptions
generated from the observed data in terms of this representation.

Two descriptions are matched in their structure as well as the details of the sub-parts.
Nore that since we have segmented descriptions of the scene, the matching proceeds directly and
does not have to try various “distortions” of the model description. Recognition 15 by picking the
model which matches best with the observed description. Our system has a limited amount of
indexing capability, ie. a list of similar ot jects can be retrieved from the memory using the
descriptions of the current obects, anc comparison with each known model is not necessary.
Models for recognition are obtained by storing machine generatei descriptions of the ob jects.
Such a structure of visuai models is known as a Visual Memory.

Among the contributions of this thesis are: the technigues for segmenting *he ob ject into
sub-parts from rhe observed data; the structure of the symbolic descriptions and techniguies for
generating such descriptions; and methods for efficient recognition from these descripiions
including indexing. Working programs for the presented techniques have been written. (Al of
the described programs run without hur.» intervention.)

In the next section, we present an overview of our methods and discuss the adequacy of
our techniques.

I.1 AN OVERVIEW

The conventional .:put for computer vision programs hzs been (he output of a TV
camera or a digitized photograph. A camiera image is two dimensional, whereas the space viewed
is three-cimensional. The picture information is incomplete in the sense that the cepth of the
points in the image cannot be directly inferrec. We use a laser triangulation ranging method that
gives us direct three-dimensional information about the points in the image; this method is briefly
described in chapter 3.

Representation of an object by segmenting it imo simpler sub-parts represented as
generalized cones i3 discussed in chapter 2. Primitives other than generalized cones are also
suggested but have not been used in our system. Each sub-part will also be referred to as a Piece;
various pieces connect at a joint. The connectivity of the sub-parts of an object defines the
structure of the ob ject.

Techniques:

The bilock diagram of Fig. 1.1, describes schematically the processing of the range data.
Following is an overview of these processes.

Construction of the boundaries of the cbjects in the scene has been found to be useful
in structuring ke processing of the surface range data in our system. Depth discontinuities are
used to determine ob ject boundaries, and correspond to the normal notion of ob ject boundaries.
The ranging method provides us with an outer boundary that 15 not sensitive to gray level
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variations on the surface of the body. Boundary detection in TV images has proved to be a
difficult problsm, evan with a restricton to polyheiral objects only. The boundaries separate
difierenit bodies in the scene; however, touching objects are not necessarily separated. This
important case has been ignored. In occluded (including self-occluded) scenes, some connected
parts of an ob ject riay not appear connected. (Bouncary organization is discussed in chapter 3)

Techniques for segmenting an oo ject into sub-parts and generating the descrictions for
a part as generalized cones by specifying an axis and cross-sections are not immediate fiom the
chosen representation itself. Development of these techniques has been an important part of this
work. Use of object boundaries has been important in these echniques Our segmentation
procedure starts by finding lacal coner and then cxtends these local cones over largz: ar2as of the
ob ject continuously, allowing the axis direction and the cross-sections to change smoothly. The
extension terminates at discontinuities. Each extended cone offers the choice of a segmented sub-
part of the object. This segmentation procedure often generates multiple cone descriptions for
some areas of the body. Based on chosen simplicity criteria, preferred descriptions are selected
from the many alternatives. The result is not necessarily a unique description. Multiple
description; hypothesis are generated and eramined by the recognition procedures. (Details ai¢ in
chapter 4.)

Symbolic descriptions of an object are generated, aiming to capture its Impo:tant shape
properties. They consist of the connectivity relations of the sub-parts, and summary de:criptions of
the sub-parts and their joints. Global descriptions depend on the relations of many sub-part; and
joints, eg. bilateral syrmetry. (See chapter 5 for details)

Matching routines compare ivo descriptions to determine their differences. Recognition
consists of choosing a previously stored descriptien that matches best with the current description.
T he matching relies heavily on the structure of the ob ject but also uses the metric properties of
the sub-parts. Partial matches are necessary to recognize objects with occluded parts.
Articulations of limbs are ignored; objects with different limb articulations are recognized to be
the same. Efficient matching between two description structures results by the use of semantic
knowledge about the descriptions, eg. the use of distinguished pieces (defined in chapter 5) and
the p. sservaticn of the order of the pieces at a joint (section 3.2).

The models used for recognition are not ideal models, we save a machine generated
description of the object (any major errors are removed interactively). “Learning” techmiques to
eenerate more complete models are suggested but have not been investigated in detail.

A small number of important “features” of the symbolic descriptions are used to index
into v sual memory to retrieve models with similar descriptions. Indexing is necessary if the world
of objects 10 be encountered is large in number. In that case, we cannot afford to compare the
observed duscription with every other known description. Details of indexing, model acquisition
and matching are covered in chapter 6.

(NOTE: The dexription and recugnition chapters contain some techniques that have
not been implemented in programs. These are nxcluded to provide ideas for further extensions of
this work, and to indicate the passibilities ut improved performance. The techniques not
implemented are clearly delineated. The follnwing chapters of this thesis are organized so that an
introductory section contains the important co wepis of the chapter and the details are provided in
subsequent sub-sections. Appendix 2, contain. 2 concise summary of the techniques used and has
the siznificant program details)
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Performance:

The results of our implementation efforts have been encouraging, We are able to
generate "clean” symbolic descriptions. T he recognition programs can recognize ob jects with limbs
articulated to various positions (ard various viewing angles). Useful descriptions result for scenes
containing multiple objects with a moderate amount of occlusion and the partially occluded
ob jects are recognized by their partial descriptions. The methods described here are applicable to
TV image processing, If suitable boundaries can be obtained.

It is our view thar the important elements in judging the perfcrmance of recognition
programs for the types of scenes considered here are the classes of scenes for which the programs
work successfully We do not have enough data for meamingful statstical results, but instead
present the results of our programs on several different scenes (in chapter 7). We have used six
ob jects for our experiments and present results on 16 different views (3 of them containing two
objects). An analysis of the performance as related to the various scene characteristics is
presented. /e believe that these results represent a significant break from the worid of
polyhedral ob jects of the past. Section 7.2 discusses the speed and memory requirements of our
programs.

Mare work is needed on inccrporating primitives othe: than generalized cones in our
programs for adequately describing many complex objects. We think that with the suggesied
additions, the programs offer polential of being useful in “real” applications to tasks such as
industrial automation (particularly for "visual feedback”).

Ott.er Paradigms:

The flow of our precessing of the scene proceesis in a fairly "bottom up® or héerarchical
fashion. The necessity of a A-terarchical control, with much :nteraction between different levels is
widely behieved to be necessary for complex visual tasks ([(Winston 71)), in agrezment with current
psychological theories about human visual perception ((Gregory)). In the chxprers on dcscription
and recognition, we indicate how such heterarchical control might be addied to our programs,
particutar examples are those of redescrinton anc verification. The lack of such heterarchical
control in the current programs is attribu ed to the large effort that had to be spent in the
construction of the current description anc matching routines. The performance of the current
programs is just adequate to distinguish bet veen a doll and a toy horse. We believe, that addition
of verification and goal-directed low level * scription of such features as termination of parts will
greatly add to the power of the system.

More recently, Freuder ((Freuder 72a,73b]) has argued for the necessity of the intimate
use of goal directed knowledge ac all levels of description, in contrast to the paradigm of
generating descriptions and matching them to models. The author feels that this is desirable;
however, a principal problem to be overcome is the selection of the model to guide the
descriptions. In special restricted applications, such as lookig for a specific ob ject, this knowledge
may be easily available. In 2 more general situation, however, we believe that descriptions of the
complexity described here need to be generated before a likely model can be retrieved from the
memory. Local descriptions can potentially match a very large number of objects and are unlikely
to be useful in guiding further descriptions.

The techniques presented here may be considered as modules that would e useful for
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addition of other primitives or be adapted for specific applications using a different control
structure. These modules should also be of direct use for extension to more complex scenes, such

as heavily occluded scenes.
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CHAPTER 2
REPRESENTATION

We are interested in the description of the “shape” of an object, and in the recognition
of an nb ject based on its shape descriguion. The term “Shape” has intu:tive meaning for us, but it
defies a precise definition. The dictionary equivalents of form or extent are equally imprecise. We
are then interested in descripticas that capture our intu‘tive notions of what shape descriptions
should be like. An array of positions of points on the surface is a complete description of the
ob ject and useful for some purposes, but it hardly describes what one generally thinks of as shape.

Among the cesirable attributes for a shape representation are: the representation should
describe a set of shapes compactly and simply, and sheuld allow for determination of similarities
ag well as differrnces between :wo shapes. Incremental changes in an object should reflect as
incremental chaiges in the cescription. Many “universal® representations have been proposed, e.g.
expansions ir. orthogonal series such as moments or Fourier series, or descriptions of surfaces by
two-dimensional splines. These representations contain no sense of segmentation into parts. Local,
incremenial change of shape does not result in a local or incremental change in its expansion in
an orthogonal series. It is unlikely that a single representation will be suitable for describing all
shapes; we present a representation that describes a certain, hopefully wide and useful, class of
shapes simply and compactly.

It seems to us, that any intuitively appealing shape description must represent complex
ob jects by segmentztion into simpler sub-parts. The segmentation criteria could be simplicity of
sub-parts (i1s a function of what a simple primitive is), articulation characteristics (each moving
volu ne is a ceparate part) or be based on our knowledge of the construction of the ob ject (such as
knowledge about certain parts having been attached to others). This segmentation and the
connectivity relations of the sub-parts comprise the “Structure” of the ot ject, hence our use of the
term “Structured Deriptions™. Segmentation aliows for incremental changes of object to be
described incrementally.

Primitives may be surface descriptions or volume descriptions (for the simpler case of
polyhedral objects, edge descriptions suffice). For three-dimensional objects, the volume
primitives provide more intuitive segmentations. Surface discontinuities are usually not a good
Dasis for segmentation. For some ob jects a particular surface is of special importance, eg. many
parts might attach along a flat surface. In such cases the representation should use a combination
of surface and volume dexcriptions.

We use Ceneralized Cones as main primitives: other primitives are allowed. The
representation chosen has been previously described in [Binford) and [Agin 721 Here, in sec. 2.1,
we present only a brief summary, reflecting cur interpretation of it, and to allow an independent
reading of this thesis. Symbolic c.escriptions of these parts, their joints and the complete ob ject are
discussed in chapter 3.

2.1 GENERALIZED CONE PRIMITIVES

An object is represented by segmenting it intd sub-parts. Different parts attach at a
Joint. A sub-part may have its own sub-parts, depending on the amount of detail to be
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represented. This provides a hierarchical representarion allowing for varying amount of detail to
be stored. A decompotition of a human shape is as shown in Fig. 2.1. The human shape is
represented as being composed of two legs attached to one end of the body and the two arms ar
the head attached to the other end of the body. Arms can be further represented as consisting of
upperarm, forearm, and the fingers of the hand.

HEAD

ARM ARM
JOINT

80DY

A

Fig. 2.1 Segmentation of a Human Form into Sub-parts

The principal representation for the primitive pans in our system is by generalized
cones; other primitives are allowed. A generalized cone is riefined by a space curve, called the axis,
and normal cross-sections along this axis. The cross-sections may be any planar area, and the
cross-section shape may ~hange along the axis; the function describing these cross-sections is calied
the cross-section function. If the cross-sections do not change along the axis then the generatud
volume is a generalized cylinder. Formally, the volume described by sweeping of the cross-section
along the axis has been formulated as Generalized Translational Imvarignce by Binford
([Binford)). We impose the following constraints on the axis ana the cross-sections:

1) The cross-sections must be normal to the local axis.
2) The axis must pass through “corresponding” points of the crass-sections.

The points of the cross-sections (0 be used as corresponding points need to be chosen.
Intuitively, we want these points to be the “centers™ of the cross-sections. The centers of gravity
seern to be appropriate and are taken to be the ideal choice for the corrzsponding points (note this
choice is being made as a matter of definition). The choice <! corresponding points may follow
from additional constraints on the generalized transiaticnal invariance. The centers of gravity
require the knowledge of complete cross-sections for their computation. In section 4.1 we present
another choice of corresponding points that are more direcily computed and approximate the
centers of gravity.
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The constraints stated abave do not necessarily determine a unique axis, cross-section
description for a given volume. Eg. a rectangular solid could be described by axes parallel to any
of its three sides. However, for an unterminated straight, circular cylinder these conditions do
determine a unique description, corresponding to the usual choice of axis. Some axis, cross-section
descriptions are preferred to others, as discussed further in sec. 4.5. The problem of locating axis
without access ta the complete cross-sections will be discussed 1n sec. 4.1.

Note that this representation has not specified an algorithm for segmentation of an
ob ject into sub-parts. Each segmented primitive is to te a simple and continuous generalized cone;
the conditions for determining simplicity and Zontinuity will be ‘urther established in sec. 4.9,
Even with specified continuity conditions, segmentation of an object is not straight forward and
our technique is described in chapter 4.

The choice of generalized cones as primitives is attractive for describing shapes with an
axis along which the cross-sect:on varies smoothly. This is often true of elongated shapes (but not
restricted to them). Elongated shapes are commonly found in both man-made and naiural ob Jects,
eg. limbs of animals, machine shafts, iegs of a table, handle of 2 hammer etc , and a large class of
ob jects can be convenicntly described as being built of generalized cone parts. A program dealirg
with a wider class of objects will alsc need additional primitives, such as planes, spheres, and
surfaces.

The shape of a primitive consists of the shapes of s axis, the shapes of the cross-
sections along this axis A cross-section can be describad by techniques of segmentation into
primitive two dimer:sional “cones”, i.e. the same representation methods can be scaled down from
three dimensions to two dimensions. The shape descriptions of the axis and the cross-section
function are problems of dexcription in on: dimension. Again, segmentation into primitives,
perhaps linezr or “continuous™ segments, suggests itsell. The detail of these shapes in the
representation can vary with the use that they are put to, we have not concentrated on these
details here. We have mainly been interested in the structure of an object and use only crude
descriptors to represent the shape of the individual primiives. These descriptors are discussed in
Sec. 5.1.

Objects with holes can be described in terms of the solid matter that they are made of,
but descriptions in terms of holes are simpler and carry more semantic information. The holes are
viewed 23 negative volumes, and can be described as negative generalized cones (or as one of the
other primitives listed in sec. 2.2).

The chosen axis, cross-section representation has similarities with the Btum medial axs
transform ({Blum]). The main difterences are as foliows. The Blum transform is sensitive to small
changes in the boundary or tke surface (a small disturbance causes mapor excursior:s of the axis)
whereas for the generalized cone a small dusturbance merely perturbs the focal cross-sections.
Computation of the Blum tiansform requires knowledge of complete surface, our method is
content to compute the partial cross-sections. The Rlum transform 15 a “transform”, ie. it yields a
unique representation for given data, whereas muktiple cones can describe the same volume
effectively (eg. a rectangular solid may be represented by axes in any of the three orthogonal edge
directions). Non-uniqueness of the representation is not viewed as a disadvantage, but rather an
important advantage allowing for alternative descriptions. The Blum transform is well defined,
however, while the description mechanisms described here are sull evolving. A more detaited
comparizon may be found in [Agn 2]
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2.2 OTHER PRIMITIVES

Some shapes need 2 complex cross-section function when described as generalized cones.
Description in terms of other primitives may be simpler. In the following we suggest additional
primitives. This list is only meant to widen the class of shapes that can be well described.

Spheres: Though spheres can be represented by an axis, cross-sections representaticn,
they do not have a preferred direction of elongation, and description as a sphere is simpler. Pafs
of spheres can be described a3 terminat:c spheres.

Surfaces: We have argued for the desirability of volume representations. However, for
some ob jects, a particular surface has special meaning and description in terms of this surface 1s
preferred. Eg. the top of 2 table may be described as a thin cylinder or as 2 flat surface. Surface
descriptions are likely to be useful for objects made of thin material, such as folded sheet metal.
Surfaces are also useful in describing terminations of cones.

Terminations: A cylinder (cone) terminated by a surface not normal to its axis can be
described as a cone with a tapering cross-section function near the termination. However, a much
simpler description is as a cylinder (cone) and a terminating surface.

The programs we present use generalized cone primitives exclusively. Future
incorporation of other primitives is compatible with the methods used. These primitives suffice
for many shapes, eg. toy animals, hand tools, and some machine parts (shafts). A major class of
objects that is hard to describe by primitives discussed here is that of complicated castings.
perhaps there are no simple representations for such shapes. We have nr implemented
important surface descriptions, but think that with the addition of such & primitive, useful
descriptions can be generated for a large number of objects encountered in applications such as
industrial automation.
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CHAPTER 3
DATA ACQUISITION AND BOUNDARY ORGANIZATION

In this chapter we describe the technique used to directly measure three dimensional
positions of points on the turface of an object and inference of ub ject boundaries from this data.
Also discussed is the separation of a scene into different bodies, using the derived boundaries.

Humans are able to view photographs easily and infer depth information from a single
pictare using many rues, such as texture gradients, shadows, highlights etc. However, machine
implementations of these depth inference techniques constitute significant research problems by
themselves. Our decision to use direct depth ranging was as an expedient, so that we could
investigate the problems of shape descriptions  Note, that we do not have “complete™ information
about an object, only the positions of point: on the visible surface. Most of the “perception”
problems thus remain. It has turned out that many of the techniques developed can be applied to
TV image data, and even provide clues for attacking this problem.

In sec. 3.1, we briefly describe a lasér triangulation ranging method, originally developed
by (G.J. Agin and T.O.Binford. The geometry of the current setup is different from that
described in [Agin 72], however the description of details 1s sull applicable. A reader familiar
with Agin's ranging method may skip sec. 3.1. A similar ranging method has also been described
in [Shirai]l. Some other methods of depth ranging are discussed in [Earnest]

3.1 LASER TRIANGULATICN RANGING

Ranging by laser triangulation 1s similar, in principle, to ranging using a stereo pair of
pictures, with one camera replaced by a known source of light. Consider an ob ject illuminated by
a single light beam of known position and orientation (Fig. 3.1). The camera image consists of
Just the one illuminated point. 1 the camera is calibrated ((Sobei)), the ray from the image to the
ob ject point is known. Since the illuminating beam is also known, the position of the ob ject point
can be directly detesmined by triangulation. Position information for the whole object can be
obtained by scanning the object by a number of known rays. However such a scan requires a
large number of beam positions and would be slow.

Consider the illuminating light beam to be replaced with a plane of light, of known
position and orientation. The plane intersects the object along a planar curve, and this curve
forms an image on the camera screen. With each point on this :mage, we can associate a ray to the
ob ject, as before. Now, the intersection of this ray with the hght plane uniquely determines the
position of the object point Thus we can determine the 3-d position of each point in the image of
the ifluminated part of the object. The scanning of the complete ob ject now involves sweeping
known planes across it, which is significantly faster than scanning with a point beam.

_ The apparatus used for generating scanning light planes is shown schematically in Fig.
3.2. Light from a laser is diverged to a plane beam by a cylindri<al lens. The diverged beam is
reflected by a mirror which can be rotated about an axus, to generate different output planes.
These planes all pass through a common line, but near the ob ject they may be considered nearly
parafiel, but displaced in pasition. The camera looking at the ob ject sees only the laser light, either
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OBJECT

LIGHT
SOURCE LENS
CENTRE

Fig. 3.1 Schematic View of Triangulation Ranging

by proper contrast ad justment or by placing an interference fiker in front of the lens. The light
plane is scanned across the object and the corresponding images on the camera screen are
recorded. The plane positions are known by a calibration procedure znd three-dimensional
positions of the points on the image can be computed

Surfaces that are parallel to the light plane, are measured with poor accuracy. To
counter this. we choose another orientation of the light plane, obtained by rotating the cylindrical
lens in the path of the laser beam, and sweep the object with planes of this new orientation (by
rotating the mirror). The optimum angle between the two orientations is 90 degrees, however
hardware limitattons of our apparatus frequently limit the allowed angle to about 45-80 degrees

Out data input thus consists of two series of scans; each series of scans consists of nearly
paraflel but displaced light planes, and the two orientations are at an angle of between 45-30
degrees. Figs. 3.3 shows the two series of scans for a doll. Each frame of a scan consists of the set
of points in the camera image that have non-zero brightness. With each frame is associated a
transform matrix. Given an image point in the frame, this matrix can be used to generate the
three-dimensional posiion of the corresponding object point (use of homogeneous coordinates
([Roberts 65]) alows the transformation to be a simple matrix mukiplication operation, see [Agin
72] for details).
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The triangulation angle, i.e. the angle between the light source and the camera at the
ob ject 1s typically about 45 degrees For such a setup, the resolution of the ranging system (relative
error) is about 1 mm at a distance of | meter. This system is sub ject to occiution from two angles;
the observed surface of the object must be visible from the camera view-poin:, and also not be in
a shadow from the laser point of view. Thus for a circular cross-section, we are able to see only
about 120 degrees of the cross-section. We have a trade-off of shadows for accuracy in deciding
on a triangulation angle.

The speed of the data acquisition is intrinsically limited by the time required to read
the TV camera for each plane position. We have not attempted to minimize the data acquisition
time and the scanming of an obect typically takes a few minutes. Applicabihty of “grid coding”
schemes to speed up the ranging process is discussed later, in sec. 12

This method of depth ranging is attractive because of the direct measurement of range.
The author was experimenting with sterec measurement of depth at the beginning of this
research ([Nevatia)). The problem of finding corresponding regions in two scenes is a time
consuming and error-prone operation there, and the author was easily converted to using this
ranging method so that work could concentrate on the problems of shape description. (The
description techniques to be described are equally applicable to range data obtained by other
means.) Baumgart ({Baumgart]) describes some techniques for data acquisition using multiple TV
images. Other relevant work on stereo depth measurement may be found in (Hannah)] and
{Levine)

The present implementation with a He-Ne laser, limits the hue of the ob jects whose
range can be measured. Use of a bright white light source or a multicolored laser scurce would
alleviate this problem. The main disadvantage of the method is in the shadows caused bv wide
angle triangulation (a much smaller triangulation angle would stilt be useful). Range of the
apparatus s limited by the power required to project a plane, even with relatively efficient
imaging devices, such as silicon target multiplying tubes.

3.2 BOUNDARY ORGANIZATION

The data from the laser scans of the scene consist of two series of scans. Each tcan
consists of several frames. Each frame 13 composed of the poiats of non-zero brightness in a single
TV image (corresponding to one posiion of the illuminating light plane). These points
correspond to the parts of the object iluminated in that particular frame. The three dimensional
positions of these points are computable by use of the known calibration information.

Each frame contains a number of connected segments, corresponding to continuous
surfaces of the objects scanned. A discontinuity in the ob ject surface appears as a discontinuity in
the camera image of the laser scan. The space discontinuities also correspond to the ob ject
boundaries (as viewed from the particular angle). Thus the outer boundaries of an ob ject can be
constructed from the extremities of the connected segments in the laser scans. The notion of a
boundary as defining the extremes of the continuous surface, agrees with the normal concept of a
boundary (as opposed to texture or color bounda. ies for example). However, in some instances of
touching objects this process will result in boundaries which include parts of more than one

ob ject.
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Fig. 84 Boundary Constructed from the Scans in Fig. 3.3
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The processing of the input data requires locating the connected segments in a frare,
and locating their extremities. {deally, the points in a segment would connzct to form a thin curve.
However, due to several factors including the finite width of the illuminating plane and vidicon
blooming, these points form ar area, several raster units wide. A “thin" curve approximation to
this area is obtainad (a:l laser scan pictures presented in this thesis display thinned scans). Some
thinining techniques were presented in [Agin 72) Alan Borning has implemented improved
thinning techniques and they have been used for pictures here. These thinning techniques are not
of direct interest here ard no jurther details are provided.

7 ne extremities of such segments are linked (by straight lines) to form a complete outer
boundary for the objecis in the scene The details of the algorithm for constructing such
boundaries and also the jikely sources of errers have been relegated to Appendix I. The reader
may assume the laser scans and a brundary (o be the inpul for the algorithms described in the
succeeding chapters. An example of the boundary output Is shown in Fig. 3.4 (from the laser
scans of Fig. 3.3).

The construction of such a boundary provides a useful and convenient way of
structuring the data. Body separation and detection of holes follow immediately from the
boundary data (details of body separation are discussed in sec. 3.3). The boundary is believed to
be of importance for humin visual perception ({Artneave)). The description routines presented in
the succeeding chapters rely heavily on the use of such a boundary, and this information alone is
sufficient for many applications including recognition of many scenes. The performance
improvements of our description routines over previous work ([Agin 72]) are strongly dependent
on our use of the boundary data (see Chapter 4). {Note that we do not generate descriptions of
the boundary per se, rather descriptions of the volume outlined by the boundary.)

3.3 BODY SEPARATION

Separation of multple objects in a scene from the object boundaries is direct. These
boundaries correspond o depth discontinuities in ob ject space. Each isolated set of boundaries
defines a body that is connecied in space. This set contamns more than one boundary if the body
has holes. However, parts of a ronnected body may not always seem conrected, because of
shadows or occlusion. We have a paruial body separation; a body may be split in more than one
piece, but all separate todies have been isolated. However, bodies which touch are not necessarily
segmented. E.g. consider the TV image in fig. 3.5, the Yaser scans for this scene are shown in fig.
36 and the boundary output in Fig. 3.7 (more examples are presented in chapter 7). The
separation of the left doll leg from the snake is difficukt in the TV image, but the separation of
this snake from the upper part of the leg is immediate from the boundary data. Note that the
fower part of the leg is seen as connected Lo the snake, as the two objects touch and no depth
discontinuity is observed. (If the lower leg were not connected to the snake. it would still appear
separated from the rest of the doi) More sophisticated segmentation techniques will be required
for separating touching objects. The uroblem is related to that in inf2rring body segmentation in
monocular scenes and has not been in® estigated here.
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Fig. 35 ATV Picture of a Doll and a Snake
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Fig. 36 Laser Scans for the Scene of Fig. 3.5
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Fig. 3.7 Boundary Derived from the Scans of Fig. 36
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CHAPTER ¢
BODY SEGMENTATION AND PRIMITIVE DESCRIPTIONS

Our description scheme 15 based on describin_ an object in terms of simpler sub-parts
Generalized cones are used as primary primitives; other primitives such as planes and spheres are
necessary, but have not yet been implemented. Generalized cones can describe arbatrarily compiex
shapes. Simplicity criteria need to be specified to permit their use in segmentation. We segment
an object Into generalized cones with a “smooth™ axis and cross-section function, i.e. the axis
direction and the cross-sections along the axis change continucusly. Continuity is a natural basis
for segmentation, but it 18 clear that the resulting segmentation into primitives will depend
strongly on the specification of the continuity conditions. We do not expect a perfect segmentation
for every object, in the sense in which humans would segment it. Context must be used to join
some segmented parts or further segment a part at some higher leve!. Alternate descriptions are
used when multiple description hypotheses are reasonable. (The recognition programs examine
the multiple hypotheses ana select the one that matches best)

In thus chapior we discuss the techniques that generate a number of alternate
segmentations anc the basis for caoosing among the alternatives. The following chapter covers
further symbolic descriptions for the selected segmentations. The body separation was discussed
in sec. 3.3, in this chapter, we will be concerned with descriptions of one body.

The chosen representations do not provide a direct computational procedure for
generating segmented descriptions from the input data, unlike fransform representations, eg the
Blum transform or the Fourier Transform. (Local descriptions can be directlv computed in our
representation by fitting coiies to the tocal data) Continuity and simplicity conditions are usable
for examining the acceptability of a cone description. However, no a priort knowledge of the axes
diractions, axes shapes, the cross-section sizes or the cross-section functions is available.

Our segmentation technique proceeds In two parts. First, the areas of the body that can
be described by local cones are determined by the use of the “projection” technique (discussed in
Sec. 42). The second part improves on the axes of the local cones d=termined by projections and
thon extends these local cones, by allowing the axes directions to change smoothly (as discussed in
Sec. 4.3). Such extensions allow tracing of slowly curving cones. The extensions terminate if the
cones cannot be extended continuously, exther having reached the end of the ob ject, a cross-section
discontinuity or an axis discontinuity. Other cone description methods are discussed in section
44

A number of local cones are generated and then extended. Each extended cone
represents a possible segmented sub-part. Many local cones are likely to extend to common parts
of a bedy. Thus a number of alternate segmentations are suggested. We choose among the
suggested descriptions and retain a small set of alternate descriptions. The result 1s not necessarily
a unique description for an object, but neither do we wish ta retain all possible combinations.
Simple preference criteria select preferred descriptions. Among two descriptions for the same area,
we prefer a long cone to a short cone; and prefer cyhnders to cones. Descriptions of areas
contained in areas described by other cones are eliminated. When a clear choice is not available,
akernate descriptions are made. The choice of segmentations 15 discussed in section 4.5. The
selection procedures used are local Larger context, eg the context of a joint for chotce of local
descriptions has not been investigated. This has been satisfactory for scenes of moderate
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complexity; more global choice 15 clearly useful. In section 4.5, we also discuss techniques of
redescription of parts with more context, likely to be useful for improved descriptions.

Our descripiion procedures use only the boundary of the object. The 3-d data has been
utilized in constructing the boundary from the depth discontinuities. We also use the 3-d po:ition
of the points on the boundary. We compute only thase points of a cross-section that lie cn this
boundary, and no assumptions are made about the shape of the cross-section apriori. The
remainder of the crass-section can be computes on demand. (See sec. 4.1 for locating the axis of a
cone from only partial knowledge of the cross-sections.) The details of the cross-sections have not
been useful, because of the limitations on the visible part of the cross-sections and the errois of
ranging (s=e sec. 4.3). Also, we feel that the detatis of the interior are of secondary importance,
useful for making finer distinctions. This is in agreement with psychological evidence about
human perception; crude boundary tnformation is enough for many recognition tasks ({Attneave)).
The boundary does depend on the viewing angle, but the results produced are relatively
insensitive to the viewing angle over a wide range. Note that we do not make descriptions ot the
boundaries themselves (viewed as space curves), rather of the volume outhned by the boundaies.
Use of the boundary permits us to use the same techniques of analysis for processing data frum
TV images only. The boundary must now be obtained from intensity information. However,
boundaries from intensity snformation are difficult to obtain and unrehiable. The problem of
body separation must also be solved by other means. (This problem 1s similar to the probler:: «f
separating touching ob jects.)

In previcuc work ([Agin 72]). Agin has described procedures to geneiate cone
descriptions. However, majpor shortcomings of these techmques limit their performance on
moderately complex scencs, making them unusable for further extensions Hiz methods fit
cylinders of circular cross-sections to ine visible surface of the object. These methods had no well
defined notion of a part, and a cylinder wouid often include ivw.o proximate but distinct parts of
an object, such as two fingers of a glovc. Such errors cannot be easily corrected at a higher level
by use of context. No attempt was made to connect the separate cones to form an ob ject in Agin’s
work. Our description process 1s more structured because of its use of boui.dary. Our techniques
are conceptualiy different and thei. development has required a large investment of effort. They
exhibit substantially improved performance; some examples are presented in sec. 43. Our
programs are also substantially faster, as we aeed to work only with the boundary of an ob ject.
Also, our methods do not assume any particular crosi-seciion shapes, whereas Agin’s methods were
restricted to circular shapes.

Each cone description 1s represented by a list of axis points and normal cross-sections
along this axis. Summary descriptions for each cone include the length of its axis, the average
width of the cross-sections and the ratio of the length to the width.. The cross-section function is
approximated by a linear function and an average cone-angle is computed. These summary
descriptions arc :srussed 1n more detail in section 5.1.

4.1 CONE DEFINITIONS

The generalized cone representation has been discusssed earhier (sec. 2.1). The
constraints on an axis, cross-section description were defined to be tha! the cross-sections must be
normal to the local axis and that the axis must pase through correspending points of the cross-
sections. Choice of centers of gravity for corresponding points was considered.



4.1 CONE DEFINITIONS 2¢

However, the center of gravity of a cross-section cannot be computed without the
knowledge of the complete cross-section. We see only the fron: of the cross-section. If cross-section
shapes were limited, we could estimate the complete cross-section by fitting these various shapes.
An alkternative approximation woulkd be to use the center of gravity of the visible cross-section. In
this implementation, we compute only the two end-points of a cross-section (those on the bounda:y
but with known three-dimensional pasitions) and use the mid-point of the line poining these two
end-points. This method of determining corresponding points gives a closer approximation to the
center of gravity for the case of circular cross-sections. Fig. 4.1(a) shows the axis obtaw.od by
Joining the centers of gravity of the vistble parts of the cross-sections and Fig. 4.1(b) shows the
axes ob:ained from the mid-points of the ends of the visible part of the cross-sections. The axis
in Fig. 4.1(b) coincides with the desired central axis. However, in our system less than half the
cross-section is visible and the approximation is nox perfect.
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Fig. €1 Two choices for Axis Points

For computing cone descriptions, we have taken the mid-point of the ends of the visible
part of the cross-sections as our choice of the corresponding points. This is taken 1o be the
definition for axis, cross-section descriptions, (ie. we require the axis to pass through these points).
Note that this choice of corresponding points will cause a cone axis to be located in somewhat
different positions with varying viewing angles, though the variations will be small for elongated
parts. Our recognition programs ao not rely on the precise location of such axes and are
insensitive (0 such variations.

4.2 LOCAL CONE SAMPLES: MCTHOD OF PROJECTIONS

As the firgt step in finding cones describing an object, we find loca) cones describing
small areas of the object. If two consecutive parallel cross-sections have the property that their
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mid-peints join in a line which s normal to .~ croas-seccions, then this line and the cross-
secticnis comprise 2 local cone by our Aefiniens of a generalized cone. We find local cones
satisfying these conditions, by constructing cross sections normal to eight equally spaced directions,
by using “projections” as described below.

Consider a particulsr projection direction, 33y X, having a specified orientation with

respect to the object. We wish to find Jocal cones with axis pointing along this direction. Rotate
the image (about the origin) so that X; coincides with the unrotated X-axis. Fig. 4.2 shows the

doll of fig. 3.4 5o rotated by 45 degrees (X, is pointing horizontallj). Now construct cross-sections
normal to the rotated X,, spaced 10 raster units apart (the complete picture is 330 units wide), by

forming p2irs of points on the oppcsite sides of the boundary. As example see (pl.02) and (p3,p4)
in Fig 42. Note, soni crass-sections in this figure are not exactly vertical; this is because of coarse
sampling of the houndary ana iack of interpolation between boundary points. If two consecutive
cross-sections satisfy the condition that the line through their mid-points is within a specified
angle (22.5 degrees) of X;, we have found a local cone {actually an approximaticn to one). One

local cone may contain more than Iwo cross-sections, if other consecutive cross-sections satisfy the
constraints in successive pairs. Fig. 4.3, shows the axes obtained from the cruss-sections of Fig. 4.2.
(The axes are shown by double lines and the associated boundaries are shown in heavy fines.)
These are the parts of the object that have local cone descriptions with the axis pointing in the
chosen projection direction. Fig. 4.4, shows all local axes obtained from projection in eight
different directions for tnis object (sach 22.5 degrees apart). More program details are d-3cribed
in Appendix 2.

The parameters used for this method were determined empirically. The accuracy with
which the axis can be determined (within 22.5 Jegrees of the projection direction in the above
description) is dependent on the spacing between (wo neighboring cross-sections and the expected
random variations in the boundary. Also, if the axis needs to be determined more accurately, we
need to project in more directions. However, the techniques described in the next section for
refining the axes directions are more efficient. Four projection directions are usually adequate for
finding 1 local cones of interest (with the chosen accuracy range). eight directions provide
enough redundancy. The choice of spacing of the cross-sections along the projection direct:on 1s
by a trade-off between the spatial resolution with which the local cones can be determined and the
accuracy of the axis direction.

The resulting segmentation for an object is directly dependent on the local cones
generated by projections. The projection methods are successful in finding local cones for
elongated parts of an object. Local cone generation for non-elongated parts (with length to width
ratio of less than 0.5) is not reliable.

4.3 EXTENSION OF LOCAL CONES

The projections provide us with a number of local cones and their approximate axes
directions. In this section we describe a procedure to improve the axes directions and extend the
cones as far as possible continuously (a concise dexcription of the algorithms and more
impleme-tation details are in Appendix 2). Extensions of a cone allow the axis direction to
change smoathly.
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Fig. 42 Cross-sections from Projection in a Chosen Direction
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Fig. 43 Local Cones Generated from Fig. 4.2
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Axis Refinemen:.

The axis refining process is irerative. We start from the list of axis points for the local
cones provided by the progections. A siraight hine is fit to these points to approximate the axis.
We construct the corresponding cross-sections, normal to the axis at the axis poin:s, by finding
intersections with the boundary. Only the end-points of these cross-sections are computed. The 3.
d pasitions of these end-points are used. The distances from the axis of the mid-points of chese
new cross-sections are computed. If the mid-points lie on tne axis, then the axis and the cross-
sections satisfy tive requirements of describing a cone. For real data, this requirement can only be
expecied to be sausfied approximately. We accept an axis, cross-section descripiion, if the average
distance of the mid-points from the axis 15 less than a threshold. (This threshold is set to the 5-d
distance corresponding to 2 raster units, and s related tc tiie expected random variations 1n
determining the mid-points.) 1 the threshold is exceeded, we fit a straight hne through the mid-
points of the new cross-sections to define 2 new axis and iteraie. The number of allowed
sterations 15 set at % (we accept the resulting axis. cross-sections after 8 iterations). This process
diverges when the a.is direction changes to the extent that new cross-sections can ot be
generated by computing intersections with the parts of the boundary that the process began with.

Convergence of this iterative process 1§ easy o see for a circular cylinder o1 cone for a
wide range of starting directions For a straight circul=: cylinder, consider starting with any set of
paraliel cross-sections, the line joining their mid-points immediately converges to the desired axis
Similar convergence follows for a regular cone, but for more general cones the procise convergence
criteria have not been worked out. Empirizaily, the described process has been fourd to converge
for elongated parts. When convergence fails, it 1s conc'uded that the part has no good description
as 2 cone with the axis in the prescribed direction. Tmis part may be later described as a cone
with some other axis. Some areas may have no good cescriptions in terms of cones and no cone
descriptions m:ght result for them. Description of such parts requires other primitives and 15 not
considered in this work.

Cone Extensions.

Once an axis, cross-section description of a part is found, we try to extend the cone
continuously over a larger part of the body. We extrapolate the axis at either end by a small
distance (the choice of step size is discussed later). A cross-section normal to the local axis 1s
constructed at this point and its intersections with the boundary are computed. 1If no intersections
can be found extension terminates. (This indicates an end of the object or a sharp turning of the
boundary).

Tesys are made to determine whether this cross-section is acceptable as follows. The
distance of its mid-point from the extrapolated axis 1s computed. If this distance is larger than a
threshold (3-d distance corresponding to 4 picture units) then we make a modified guess at the
extrapolated axis, by including this new mid-point and recompute a normal cross-section. (We
have found it satisfactory to just accept the new recomputed cross-section and not iterate on this
phase.) Fig. 4.5 shows an extended cross-section on a curving cylinder that is not acceptable, but
provides a new direction for the axis and a new acceptable cross-section. This procedure allows
us to trace the axis for a smoothly curving ob ject.

The new cross-section is then tested for continuity of width with the previous cross-
sections (the continuity evaluation 1s specified later). If the new cross-section 18 acceptable, further
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Fig. 45 Extensionof a Cone

extension is attempted by iteration of the above described process. If a discontinuity is detected
than the extension terminates. (Actually, befure rerminating, extension at half the initial step size

is attempted.)

As example, when the local cones of Fig. 4.4 are extended this way, cones of Fig. 46
resuk (the axes of the cones are shown in this figure). Note the mukiphcity of cones particularly
for the head. For the other parts, various local cones have converged to rearly identical cones and
are barely distinguishable in the figure. Each cone offers » potential segmented sub-part (choice
of segmentations is discussed in sec. 15).

After termination of a piece, a check is made S see if the end of the object was also
resched. We check whether the part of the boundary beyond the last cross-section is largely
contained in a small extension of the cone. Part of the boundary may be beyond the last cross-
section in the 2-d image but not in threc-dimensional space. One instarce of this is when a cone
is terminated by a plane face. Example, see Figs. 4.7 (shows generated cones) and 4.8 (shows laser
scans), the plane face on the hammer head i3 detected as a tesmination for the cone describing the
head (piece P1).

This extension method is ad hoc, and the choice of parameters used determines how far
a cone will be extended. Precise properties of the extended cone aie difficult to determine and the
success of the method has only been tested empirically. The following discusses some effects of the

parameter choices.

The step size used in the extension process is important. We choose the step size to be
proportional to the radius of the cylinder at this point ( 0.05 o the current radius, bounded by an
absolute minimum and maximum step size). We expect to find elongated pieces and hence wider
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pieces are also expected to be longer. If extension fails we reduce the step size by a haif an¢ try
again. If this fails t0o, we stop. Obviously, many smaller step sizes could be tried, at the cost of
additional computation. The local axis direction is determined by fitting a straight line to a smal)
number (5) of nzarby axis points. These methods allow us to trace slowly curving parts of a piece,
but may fail when the curvature is large. Higher level routizes evaluate such segmentations and
two disconnected parts may be connected based on context.

Evaluation of the acceptaoility of a new cross-section is designed to detect drastic
discontinuities and context must be used for finer distinctions. A parabola is fit to a small
number of previous cross-section widths and the width of the new cross-section is predicted. The
actual width 1s allowed to differ from this predicted width by a fixed proportion (0.25).
Boundaries constructed by our programs are frequently slightly jagged, because of misalignment
of two laser scans and errors in computing segment end-points (see Appendix 1). This forces us to
relax the continuity conditions for a cone, to avoid termination because of these small bounda:y
fluctuations.

No exphcit checks are made for the siope of axis to be continuous If the cone curves
too sharply. we find no boundary intersections for the extended cross-section and the cone
terminates. Thus cones with an elbow, eg. a human arm (see sec. 5.7 for elbow joints), will be
segmented at the elbow depending on the curvature of the axis there. The next leve) programs
are able to discover a segmentation at an elbow, and generate an akternative description merging
the two (sec 4.5). The converse process of segmenting a cone at the elbow has not been used in our
system; its implementation is direct.

The thresholds for cross-section continuity and step size were picked intustively and
ad justed empirically. A more analytical approach to such choices i1s not clear. Perhaps, single
thresholds are not sufficient and alternate descriptions with different theresholds would be
helpful. However, we believe that a general program should be insensitive to the choice of such
thresholds. At least a partial solution is in the use of wider context for making segmentation
decisions, such as later merging of two pieces separated at this level.

Chotce of such segmentation criteria 1s a general problem that occurs in many domains
e.g. linear approximations to a curve. We can do a better segmentation if we can look at the
whole data globally, rather than just use local continuity criteria. We will then be able to make
some use of context in deciding on the segmentation points. In the present case, this may be
accomplished by using very loose constraii.ts in cylinder tracing and then further segmenting the
resultant piece. We may use the techniques commonly used for fitting straight line segments
([Duda, chapter 9)), to the axis and to the cross-section function. Usually, these methods attempt
to keep the maximum error within a specfied bound. Further segmentation decisions are
meaningful only tn the context in which they are to be used and hence must be made by the
routines thai use this segmentation daia.

Extensions are found for all local cones suggested by intial segmentation. Thus many
parts of the body will be included in more than one description. This allews us to compare
alternatives and choose on the basis of wider context (see section 4.5).

These cone description routines only need to compute the end points of the cross.
sections. The computation of the interior points of the cross-sections from the surface range data is
straight forward. We have not used these interior points because of the difficulties in using
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detailed description of the cross-sections in our system. Only part of these cross-zecticiis is seen.
The light source and the carera axis form an angle of 30-60 degrees, limiting the visible part of a
circular cross.section to 120 degrees. Also, the cross-sections are small for ob jects of a size
conveniently used with our scanning apparatus. The visible part of these cross-sections is nearly
flat and the ranging errors become significant in the description of their shape. We use perceived
width as the basic descriptor.

Some summary descriptors are used to describe the gross shape and the size of a piece.
We have used the length of its axis, the average cross-section width, the ratio of the iength to the
width and an average cone angle. More details on symbolic descriptions of the pieces are
presented in section 5.1.

Performance:

We present results on some scenes that were also used by Agin in previous werk {[Agin
72]). Figs. 49 and 4.10 show the results of our programs on a glove and a horse. Agin's
description programs merged parts of the index finger and the little tinger in the glove, ana the
body of the horse extended to include the tail (we have no: reproduced the piccorial result: of
Agin's work). Our description methods join the various cones to form complete ob jects as
described in chapter 5, whereas Agin’s descriptions only described isolated parts. Our progranms
are also substantially faster, as we need to work only with the boundary of an object. Also, our
methods do not assume any particular cross-section shapes, whereas Agin’s methods were restricted
to circular shapes.

Our programs give satisfactory performance on scenes of complexity illustrated here
(more examples will be presented in chapter 7). If a sub-part is elongated, it is well described by a
cone and our programs are usually successful in finding such descriptions. Some extensions, such
as when other sub-parts interfere, cannot be made properly without the use of this contextual
information (sec. 45). This advice is bes: supplied from the higher level routines. A weakness of
the programs is the failure to verify that the computed cone description in fact describes a cone.
We may describe a plane surface as a surface of a cone whereas it may be better viewed as a
termination of some other cone or just a flat surface. Design of special routines io detect such
cases needs to be investigated.

4.4 OTHER CONE DESCRIPTION METHODS

Iteration is used for accurate location of the axes of cylinders in the methods of the
previous section. An alternative to iteration s [0 find a best cone that fits the given boundary
segments. The cone axis must be constrained to a certain form such as straight or parabolic, and
the cross-seciion function may be limited to be linear locally. A best fit in the least square sense,
with these constraintz, will give us the axis and cross-section function directly.

Differential Geometry (IO™Niell]), is concerned with descriptions of surfaces located in
three dimensional space and may be relevant to the generation of the desired cone descriptions. It
characterizes surfaces by a small number of variables, mainly using local curvature. The author
briefly investigated the use of principal curves, which are the directions of minimum and
maximum curvature. The temptation of using the principal curves lies in the fact that they are
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intrinsic to the surface, and are not sensitive to obscuration or viewing angles (the visible part of
them of course is). For the case of circular cylinders and cones, maximum curvature curves
coincide witn our choice of cross-sections. However, for more general cones, nc such simple
relations exist. E.g. for an elliptical cone, the maximum curvature curve is not even planar. (This
curve can te easily constructed by observing that it must be normal to the generating line in the
tangent plane, 23 two principal curves are always orthogonal. The principal curve goes towards
the apex starting from the major axis and returns after reaching the minor axis).

Comptation of curvaiure requires the use of second derivatives of the local surface,
and can be strongly affected by ranging errors. We experimented with programs to search for
directions of minimum curvature by defining "average” curvature over a short distance. The
average curvature along a given direction over a chosen length was computed by measuring
“bending” defined as the maximum excursion of surface points 1n between, from the line joining
the given end-points. Moderate success was obtained for those parts of an object that were
elongated. For such parts the curvature changes slowly, and the measurement of average
curvature is better justified.

The author was unable to find any simple relations between the chosen generalized cone
representations and the entitier used in Differential Geometry. For this reason and the above
stated difficulties of computing derivatives, the subject was not pursued further. However, the
principle curvature directions may still be useful in choosing among alternate descriptions, e.g. in
choosing a preferred axis direction for a thin disk (the elongation direction is not the preferred
direction here).

4.5 CHOICE OF SEGMENTATIONS

The cone description routines generate a number of possible sub-paris. Many of these
cones share common parts of the object and hence are not ali compatible with one another (eg.
see the various cones for the legs and the arms of the doll in Fig. 46). However, some
gegmentations are more appealing, intuitively, than ochers. We aim to choose 2 small number of
segmentations into sub-parts, the sub-parts 2 one sagmentation being compatible. We prefer
cylindrical and elongated descriptions. Pieces with length to width ratic lower than a threshold
are discarded, provided they overlap with some other pie&s.

The simplest form of overlap occurs when a part is described more than cnce because
the cone extension programs starting frem different local coires, converged on nearly the same
cones. Eg. see the two cones describing the left arm of the doll in Fig. 46 (the axes of the two
cones overlap a lot and are barely distinguishable in the figure). The various descriptions here
are equivalent and we may choose any one. We prefer the lon;=st cone. Some cone descriptions
are terminated prematurely, due to a local discontinuity of the boundary. Another cone describing
the same area may nut be broken. If a cone is completely or largely included in another cone, we
retain the containing cone only.

Another class of conflicting descriptions is caused by the effects of corners. Consider the
two dimensional exaniple of a rectangle, Fig. 4.11, showing axes of various cones by dashed lines.
It may be described by cylinders with axes along the sides, or by axes bisecting the corners.
Among the cylinders with axes along the sides, we choose the more elongated one, i.e. one having
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the larger length to width ratio. The “corner” cone is included in the longitudinal cylinder, or
small extensions of this cylinder. The latter case occurs when another cylinder is present near the
corner and prevents the longitudinal cylinder from extendiing to the end. We choose to ignore the
description which is contained in the other. More details of these computations are provided near
the end of this section.

Sometimes, no clear choice can be made between two alternate piece descriptions. Eg.
the head of the doll in Fig. 46 is nearly spherical and many axes directions are equaily good. In
such cases we may retain the various alternatives and make multiple descriptions (this example
should really be described by a sphere primitive). Current programs pick one of the akernatives
only, but the data structures allows easy addition of «lternates. (Note the following describes an
instance where we do use alternate descriptions.)

Application of the above selection c-iteria results in the selected segmentation of Fig.
4.12 for the doll of Fig. 46 (the algorithm is stated precisely in Appendix 2). Note the parts in
Fig. 4.12 are numbered in an arbitrary orcer. Both arms and legs are described by more than one
cone each initially. Note that the small cones describing the feet of the doll were computed ro be
contained in the leg and do not appear in the final choice. Cone P5 describing the top of one leg
was not judged to be included in the extension of P6 (but an alternative description merging the
two is also generated as dexcribed in the following). The shoulder piece in Fig. 4.6, is contained in
the extensions of the body piece and hence does nat appear in Fig. 4.12. Such computation is not
very robust. Shortly, we describe a technique of redescription which would be more reliable.

Use of local discontinuities for making terminition decision: ir the cone description
process resukts, sometimes, in premature termination. A part is thus broken into two parts
separated by a small discontinuity between the two parts. If such two parts extend into each cther
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continuously, we generite an alternative description that creates a new part combining the two
parts. For example in Fig. 4.12, P5 anc P6 are merged nto a single part. Such decisions to
consider this entire volume as one piece can not be made by our primitive description routines, as
they look for local discontinuities only, and have no notion of an isolated, small discontinui.y.
(This merging actually takes place after "joints” of selected pieces have been computed. Jonts are
discussed in sec. 5.2 and the detatls of merging in section A22B of appendix 2)

Extension of some pieces 1s terminated by the interference of other pieces attached to
this piece. The extended cross-sections begin to include parts of the othir pieces. For example in
the description of the aoll in Fig. 46, the piece describing the body of :he doil does not extend
into the shoulder area, the extension being inhibited by the presence of the arms Descriptions of
such pr: - can be improved by redescr:bing the cone primitives using a modified boundary,
generated by “cutting off" interfering pieces. This redescription technique has not been
implemented; use of the boundary by ‘'he cone description routines permits 2 direct
implementation. Some redescriptions of primiives may also benefit from being guided by more
specific information provided to the cone descriotion procedures, such as a prescribed axis
direction or the cross-section widths.

Another example of alternative segmentations and chosen segmentations is shown in
Figs. 4.13 and 4.14. More examples of final segmentations are presented in chapter 1.

In the rest of this section are presented some details of the programs used for selection
of segmentations.

The extent of a piece is defined by the boundary segments of its two sides. We use the
boundary segments to determine the amounts of overlaps of two pieces. Boundary overlaps are
easier to compute, but not as closely related to the desired geometrical computations as area
overlaps. Eg. in Fig. 4.13, the doll body 1s described by two cones with nearly orthogonal axis;
these cones share substantially the same area but no common boundary' (Correct choices were
made in this case, only because one of the pieces was discarded due to its very low length to width
ratio) Normally, the area computations require significantly larger amount of computation than
the boundary computations. However, when evaluating the area overlap of two cones here, the
approximations of the cones by their axes points and cross sections are already available, ie. 1ne
areas to be compared have been segmented in sequential trapezoidal strips. This reduces the
complexity of the required computation. We have used boundary overlaps, but judge the
implementation of area overlaps necessary for increased performance in further work. For this
implementation, a cone is considered to be completely included in another if a large part (> 0.75)
of boundary segment of its two sides is included in the other.

If complete inclusion does not occur, the maximum distance of one conflicting piece
from the other 15 computed. If this distance 1s a small fraction of the length of the including picce,
then inclusion is assumed. If only one side of a piece is included in the other, but the piece is not
elongated or is very conical, it is eliminated.

These overlap resolving methods are simp.e but work well for our examples. We expect
significantly better performance if the techniques of redescription by removing some parts and the
computation of cone overlap by using areas instead of boundary were to be used. Addit:on of the
redescription techniques would not require any modifications of the core description routines. they
need to be s:mnly supplied with modified boundaries. !nterfering part: can be easily determined
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when :he joints for this piece are computed (sec. 5.2). However, we must make judgements about
which pleces are already well described and can be cut-off, and which others need redescription.

46 OTHER DESCRIPTIONS OF PRIMITIVES

We have discussed the description of objects by generalized cone primitives. Some
objects or some parts of these objects are not well described this way and other primitive
descriptions must be used. These additional primitives may be used in conjunction with cone
descriptions or may be completely independent. We will discuss only a few additions that may be
found useful in furtier work.

I. Planes: Planar surfaces are frequently present in machined objects and are not
necessarily parts of cylinders. Sometimes, they occur as terminations of cylinders and our methods
are able to notice this, if the terminations are nearly orthogonal to the axis. More generally, we
should identify the planar parts of the surfaces and evaluate whether they form terminations and
their suitability for being described as parts of cylinders.

2. Spheres and Bowls: Spherical objecis may be described by an axis, cross-section
description, but no preferred axis directions exist and it is simpler to describe them as spheres.

3. Holes. Holes may be described by describing the volumes enclosing them or sometimes
more conveniently as negative volumes. Description of negative volumes is the same as that of
positive volumes and the same description methods apply. In particular, holes may be described as
negative cylinders.
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CHAPTER &
SYMBOLIC DESCRIPTIONS

From the chosen segmentations of zn object, we aim to generate structured, symbolic
uescriptions attempting to capiure the “important™ shape characteristics of the object. The
descriptions contain enough information for recognition of the objects and for indexing into a
visual memory for similar ob jects. Other uses for these descriptions may be in computations for
manipulation, stability or for acquisition of models. We consider the ability to generate useful
symbolic descriptions as the central issuc of this thesis. Utility and performance of programs for
applications, such as recognition, depend directly on the ability to generate {and manipulate) these
descriptions.

The segmented parts connect at joints. The joints and the parts deterr:ine the structure
of the object. Description of this connectivity structure is 2 major component of the ob ject
description. Object descriptions contain descriptions of the parts, the joints, and their
relationships, using global as well as local propertics. The local descriptors provide details of the
individval parts, and their shape. Joint descriptors depend on the angular, positional aad the size
relations of its constituent parts. Global descriptors depend on relations among larger number of
parts; e.g. the detection of bilateral symmetry in an ob ject structure.

A major goal of these descriptions is to aid in recognizing an object a3 Lelonging to a
class of models, and to be able to make detailed Lomparisons within a class. The structure is the
most important de.criptor used. The details of Lhe parts are used to make finer distinctions. The
descriptions are hierarchical; varying amounts of detail can be added to the basic descriptions.
Our descriptions of the joints and the pieces are limited because of the problems of using
descriptors that are not invariant with viewing angles and limb articulations, and because of the
need for better low level (cone description) routines to aliow better symbolic descriptions.

In our system, only conet have been used for describing parts. These cones are allowed
to attach to the other parts of the ob ject, to form joints, at each end only (no joints along the sides
of two cones are allowed). Such joints can be defined by an area not included in any piece
description. A number of pieces are connected to a joint. Connectivity of various parts is easily
inferred from the boundary. Connectivity relations are a very central part of the descriptions of
an object. Some parts are partly shadowed and their connections to other parts are not directly
known. They appear isolated and we must hypothesize their connections. (Eg. two legs of the
horse in Fig. 4.10) We have implemented siraple hypotheses mechanisms; other mechanisms are
suggested (see section 5.4). These hypotheses are further examined in the process of matching
with models.

Different pieces and joints are represented as symbolic entities. Connectivity relations of
the ob ject may be viewed as graph relations with joints as nodes of the graph and pieces as the
arcs between them or vice versa. Eg. the graph structure for the doll of Fig. 4.12 is shown in Fig.
5.1. (This graph shows pieces P5 and P6 as merged into one. The "B" and "H" pieces are
distinguished as explained later). The graph shows the two arms and the head of the doll joined
to the body at one end and the two legs joined to the other end. (Note, the informarion about
connection of the head to the body is missing in Fig. 4.12; the graph shown here is idealized.)
Various descriptors are attached to both the joints and the pieces. Relations other than
connectivity also exist between various pieces and joints. Data structures for symbolic descriptions
are presented in Appendix 3.
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Descriptions are generated for the pieces and the jints of an object. Details of piece
descriptions are iimited by the rather sparse data that is available for cross-sections. The axes of
pieces are not 50 accurate near the ends of the pieces, because of the effects of other connecting
pieces; this affects the accuracy of the piece descriptors and also the joint descriptors which rely
on the angle between the pieces.

Major descriptors for a piece are based on its relative size. We use the length of its
axis, the widths of the cross-sections, and the ratio of the axis length to average cross-section
width (elongation). The cross-section function is approximated linearly. This is equivalent to
specifying an “average” angle for the apex of the cone. Some qualitative descriptors such as
straight axis, conical or cylindrical, regular or irregular are computable directly from the piece
axis and cross-section data, but have not been used.

Joints are dexcribed by the relationships of the parts attached to them. Angular,
positional and relative size relations of the parts are used. The number of pieces at a joint and
iheir relative sizes are noted. The fype of a joint is described, for example a T-joint or a neck
joint. However, these descriptions are not invariant to limb articulations, making their utility for
recognition. programs very limited. The different joint types aim to reflect different possibie
physical constructions for the joints, but the inference of the constructions from the descriptions is
difficuk. :

The global descriptions aim to describe the important characterisiics of the whole ob ject
or of some large portions of the ob ject. it is common for a large number of narrow parts to attach
to a wider part, in natural as well as man-made ob jects Eg. the arms and the legs of a doll aitach
to the body. As a consequence it is useful to consider a a size hierarchy based on the widths of
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the cross-sections of a part. The largest part is at the lowest level and attached parts at successive
higher levels. The matching process need only match pieces at the same level. (In an occluded
scene, only the relative levels may be known. Then matching between different levels has to be
tried, preserving the relative order.)

Our implementation of size hierarchy is in computing the large pieces of the cb ject and
considering these to be distinguished. Other distinguishing characteristics for a plece car. be
defined: we use the property of a piece being very long, in comparison to other pieces of the same
object, eg. the handle of a hammer. These distinguished pieces help in making immediate
correspondences between two descriptions during matching for recognition; the matching process
starts by matching pieces with similar distinguishing characteristics.

Planes of bilateral symmetry {or an ob ject are searched for. Tests for similarity of two
pieces are based on their gross properties. Knowledge of distinguished pieces helps in limiting the
search for symmetry planes, as these pieces have few or no symmetrical pairs. Symmetry
computations are complicated by occlusion. Some parts may be hidden completely or partially.

Appendix 3 includes the details of the data structures used for symbolic descriptions.

5.1 PIECE DESCRIPTIONS

Summary descriptions for a piece are used to describe the size and the  ross shape of a
piece. Such descriptors, both qualitative and quantitative are useful for quick, crude matching of
two pieces. These descriptors are computed from the more detailed axis, cross-section descriptions.
The axis has been represented by a list of points that define a space curve and the cross-sections
by their end-points. This detailed information can be used for point to point matching of two
pieces.

The important size summary descriptors used are the axis length, the average cross-
section width, and the ratio of the length to the width. Elongated pieces (length to width ratio >
3.0 say) are of part:icular interest. They are “well defined” and unlikely to appear spuriously in
descriptions. A linear approximation to the cross-section function is made. This corresponds to
fitting a linear cone to the pisce and the cone angle is used as a descriptor. Matching procedures
use the cone angle to differentiate between cylindrical and conical pieces. We also retain
information about the ends of a piece, consisting of the location and the direction of the local axis,
and the local widths of the cross-sections.

In the following we suggest some techniques that would be useful for further
descriptions of the cone axes and cross-sections. These have not been implemented in our system
and the reasons for not using them are given.

The axis of a part 15 a curve in three-dimensional space and.normal curve description
techniques are applicable to its description. The axis ma; be approximated by a set of curves,
such as straight lines or splines. Choice of the segmentation points, or the positioning of the knots
in the spline fit case, 1s crucial to good description. Segmeniation points should be at
discontinuities; points of inflection and high curvature change are obvious choices.
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The cross-sections are a planar area, they may be described by segmentation of this area
inta two Jimensional “cone” primitives, in a manner analogous to the segmentation of three
dimensional ob jects. In fact, the same programs can be exiended to hzndee the two dimensiona!
case. Such segmentation would permit us to handle compley shapes for cross-sections with
discontinuities and csrners, as i a fluted cross-section, for example. The cross-section function,
i.e the function describing the changes in the cross-sections along the axis can also be described
by segmentation, say by piecewise linear functrons. Currently, we approximate the cross-section
function by a single linear funcuion

Such techmiques for describing the axes and the cross-sections are useful. However we
have not concentrated on these, hbeheving that they represent independent numerical analysis
problems, not central to the prablems of object desciption.  Also, the data about the cross-sections
in the present implemcntation is hmitec, and the segmentation procedure is hkely to be unrehable.
Some grass shape properttes about the aves, and cross-sections, such a5 straight axis, conical or
cylindrical part, regular or wregular, convex, flat or concave cross-sections can be obtained
directly, but many of these descriptors require the use of a threshoid judgement, eg. between a
straight and a curved axis. We have not used such descriptors either.

52 LINKING OF PIECES AND JOINT DESCRIPTIONS

In our representation. we are interested 1n describing the joinis between different parts.
The description of parts has been restricied to generalized cyhnders; w2 further testrict a cone to
join the other parts at one of its two ends only. This 1s rather restricive, eg. a hammer cannot be
described as a handle connecting to the middle of the hammer head, but the head needs to be
describad as two pieces which connect at the handle. However, this resiriction has not been very
important for the objects cons:dered here and leads to a very simple algorithm for connecting
pieces. Other ways of joining parts can be easily added.

For this situation, a joint 15 adequately defined by an area which is not included 1n any
piece cescriptions, and by the pieces which ad join this area. The constr:ction of a joint area is
very simple using the boundary: we start at one end of some piece and move along the boundary
until we come to another piece. then <\ip across the new piece and continue along the boundary in
the same way uniil we have returned io the starting point. Our path defines the pint, it consists
of ends of pieces and boundary segments between them. These boundary segments are null if the
ad joining pieces overlap. In an extreme case, where all connecting pieces intersect, the joint area
may be .cro. We find new joints until ends of all piec2s that do not terminate at the end of an
object have been included Fig 52, shows the joimnts obtained for a dol), from the pieces skown in
fig. 412, 1a this way (the joint areas are shown shadowed). Note that the jonts ) and ]2 are
between gieces that do not overlap. joint |3 1s beiween two overlapping pieces and joint j4 has
only one attached piece (this pnece failed to extend to the end of the leg).

Symbolic descriptions of a joint contain the order of pieces connected at a joint and a
domunant psece, which s the widest piece of the joint. The order of pieces is not invariant to
viewtng angles since the parts are connected on a two dimensional surface, which does not have a
useful invariant ordering. However, for many objects, partscularl; when the parts occur along a
plane curve, the order is preserved for other viewing angles; our recognition pregrams assume this
order preservation.
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In the following, we describe other joint descriptors that were implemented but have not
been used in recognition for reasons stated later.

We describe the joints by “types”, however these classes are not mutually exclusive, and
new type additions <an be made withou: affecting the old ones. We have tried to define joint
descriptors that correspond to different ways the joints are formed In the picysical construction of
ob jects. However the inference of the construction from the descriptions is no. well understood.

A catalog of various descriptors and their definitions follows.

T-joint: Two pieces are collinear and continuous and connected to a third, non-collinear
piece. Tha two collinear pieces are allowed to appear merged in a single piece (Fig.
5.32). An example is the joint of a hammer handle to its head.

Fork Juint: One piece is “opposite” all other pieces, ie. a half-plane separa‘es this one
piece and the others (Fig. 5.3b) An exampie is a human hand.

Neck joint: Two pieces with different cross-sections, but with axis continuity (Fig. 5.3¢).
An example is a human neck.

Elbow joint: Two similar but non-collinear pieces (Fig. 54d). txamples are human
elbow and knee.

Cross-section Conservation: between a large piece and attached smaller pieces (Fig. 5.3¢.
E.g. both human leg cross-sections are conserved at the torso.

Coplanarity: All constituent limb axes are coplanar.

Programs for computing the joint descriptors follow the above definitions directly.
However, some approximations must be used, partly for lack of complete information in a scene
and partly to be insensitive to the errors of low level descriptions. The axis directions are ill
defined near the ends of a piece; hence angular judgments are inaccurate. We see only part of the
cross-sections and use the perceived widta for those descriptors tha: need cross-section
information.

Collinearity of two pieces must be computed for T-joint descriptions. We use the
continuity of axes directions and cross-section widths. Continuity of boundary near and between
the ends of the two pieces would provide a better continuity check (the boundary on one side of
these two pieces must be continuous for a T- joint). Loose constraints (upto 30 degrees) are used
on axes directions for determimnation of collinearity.

Of the above mpint types, the fork and the coplanar joints aie dependent on the limb
articulations  Also, our cone descriptior. routines do not 2iways provide satisfactory axes
directions near the joints. These descriptors would be of obvious value for non-articulated ob jects
or in some cases where the articulation limits were known. Determination of cross-section
conservation requires seeing all the pieces of the joint. These teasons have prevented the use of
joint types for recognition.

If the object is known to have a T-joint formed by connection of one piece in the
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middle of ancther piece, then this descriptor is invariant and could be used for recognition. In the
current implementation, our models do not have such information.

53 OB!ECT DESCRIPTION

The descriptors used for individual pieces and joints have been discussed; we also make
descriptions for a complete ob ject. These descriptions aim to capture the important features of
many pieces and joints of the ob ject and their relationships, and be useful for recognition. The
connectivity relations between pieces and joints are known; we nave a description nt the ob ject
that may be viewed as a graph structure. We now aim to characterize the important parts of this
structure.

Simple descriptors are the number of joints and the number of pieces. The number of
elongated pieces (length to width ratio greater than a threshold) is also used, sirce it is less
sensitive to segmentation differences (but still sub ject to variations caused by occlusion).

The large pieces in an ob ject description are distinguished, as there are only a few of
these. (If limbs are formed by a large piece splitting off into many pieces, it results in a clear
discrimination between larger and smaller pieces.) The pieces can also be distinguished by other
characteristics, we have used the property of a piece being more elongated than the cthers, eg. the
handle of a hammer. Only similar distinguished pieces may be matched for recognition, allowing
for efficient matching between two descriptions (see chapter 6).

We note whether a distinguished piece has pieces attached on both ends; their number,
and their sizes relative to the distinguished piece. 1f pieces at ane end of the piece are very
different than at the other, such as being at least twice as wide or twice as long, this description is
alsc associated with the distinguished piece. This helps in “orienting” the distinguished pieces in
raatchuing.

Bilateral symmetry is often found in natural and man made objects, and planes of
bilateral symrnetry are useful descriptors. For a bilateraity symmetric ob ject, sub-parts must occur
in symmetrical pairs, unless they lie along the plane of symmetry. If the axes of all parts of an
object are coplanar, this common plane is also a symmetry plane (front/back), such symmetry
planes are not of much interest and are not described. The distinguished pieces of an object do
not normally have a paired piece. In this case the symmetry plane must pass through the axis of
this piece, or be normal to this axis and divide the distinguished piece in symmetrical halves.

The search for symmetry planes is confined to those passing through the axes of the
distinguished pieces. At each end of the distinguished piece we look for symmetric pairs of limbs.
The symmetry plane must pass between a symmetric pair. Once such a pair 13 found, the
symmetry plane is constrained. If more than one pair of limbs is symmetric to each other, a few
akernative planes are possible. We only need (o test the symmetry of other limbs relative to these
planes. This aids in determining the connections of shadowed limbs (Cf. sec. 5.4).

To evaluate object symmeiry, we ‘need to evaluate limb similarities. We have only
simple descriptors for individual pieces. The similarity test is based only on the lengths and the
widths of the limbs. Matching of two pieces by comparing their crass-sections at each point along



LR OBJECT DESCRIPTION 52

their axes would give better discrimination. Articulation of imbs is aliowed; this articulaticn need
not be symmetric, thus the bilateral symrmetry .omputations are limited to using the attachment
points. Some parts are chadowed and cheir attachment is unknown, we include them in symmetry
evaluations using the hypothesized attachment points (Cf. sec. 5.4). If symmetry is found. it
provides further weight for connections of the shadowed parts. However, similarity of the limbs
in shadow to the other limbs is difficult (o dexrmine.

Our evaluations for symmetry are admittedly crude, however it Is felt that when
symmetry is discovered, it is not lkely to be accidciatal and can be a useful descriptor.

54 LINKING OF Si{!ADOWED PARTS

We have a partial body separation into groups of connected pieces. Some pieces have
no connections, because of occlusion and shadows. Eg. two of the legs of the horse in fig. 4.10.
Connecuvity of these pieces cannot be known directly, we can only hypothesize possible
connections. The shadow regions are known from the knowledge of the position of the light
source. Clues for connections are obtained from prox:mity and symmetry. Semantic knowledge
such as stability and support refations would be helpful. Some ob jerts will not be stable wirhour
the connection of isolated parts, eg. a horse cannot stand on only the right front and the night
rear leg. The stability problem 15 difficult since only the front surface of the object is seen. We
have not used stability consideraions.

If multiple ob jects are present in the scene, we musi estimate what body an isolated piece
is connected to. Even if only one object is known to be in the scene, we must estimate its
attachment points.

The light beamn and the camera axis are not collinear. A poirt in space is invisible if it
is occluded from eithe: the camera or the laser view. Some improvements could be obtained by
usin_ a camera image in addition to the laser scan data. The position of the light source is
known and the shadow regions are computable. The parts that zast shadow on other paris are
also known. The connection of the isolated part to any other part mu:t be through a shadowed
or an occluded region. However, this does not uniquely determine the connections. Use of
monocular inf-rmation, using the surface description from the visible part could help resolve
some ambiguities.

Let us consider the case where only one ob ject 15 preserit in the scene; if more than one
object is in the scene, we make hypotheses about connections to each cbject n the scene. We
restrict ourselves 1o finding connections of the shadowed limbs to the existing joints anly, more
general procedures will clearly be needed for further extensions of this work. Shadows are hikely
to be caused when thare are many limbs at a joint. The distance of an 1solated part from all
joinis of the object is found, and the nearest one is picked. This joint is hypothesi-ed to be the
attachment of this isolated piece. Venfication by extending the isolated piece to intersect the
P joint ‘s not used because of imprecise knowledge of axis direction near the end,
particularly for a shadowed limb.

Hypotheses generated by proximity analysis are used when computing bilateral
symmetry (Cf. sec. 5.3). If symmetry is found, we interpret it as further evidence of the
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hypothesized connections. These connection hypotheses are taken as only weak evidence for
inking Thus, for the purposes of recognition, we ignore the isolated pieces first, and try to verify
the connections suggested by the model (this assumes that a corract model 15 avaslable). If the
programs were acquiring modeis without human assistance, we would want to use multiple views
{(matching of two descrijitions is discussed in sec 6.2).

For analysis of heavily occluded scenes, where few connected structures are found
imtially, more sophusticated mechanisims for hypothesizing connections will be necessary. Some
segmentation and line completion techniques irom the work on the analysis of polyhedral ob jects
are apphcabie. Edge and cross-section cont.nuity provide eviderice for connection and T-pints
suggesc segrientation. Eg. in fig. 4.14, the left leg of the doll is split in two parts because of the
occlusion caLsed by the snake and hypotheses for connecting them could test for continuity (here
the problem is further complicated by the touching of the snake and the lower part of the leg).
We have not made any attempts at such analysis and consider it a prime problem for extensions
of this research.

%5 JOINT/PART SEMANTICS

The physical construction of a Joint constraing the articulation of its parts. A ball and
socket joint has different articulations than a hinge joint. The joinc descriptions do nox uniquely
determine ine physicai constructions, but are suggestive. We offer some speculations about what
00 ject characteristics might be suggested by some joint descriptors.

Nurmally, we see cioss-sections from one point of view, and know their width in one
direction; little is known about the width in the orthogonal direction. We may assume the two
widths to be the same, but sometimes we can make a better hypothesis. Consider jpints where
cross-section is conserved between one large piece and several, say n, small similar pieces, and the
attachment point of small pieces to the joint lie approximately in a straight line. For example,
consider the joint of fingers and paim of a glove. It is reasonable to guess in such cases that the
cross-section of the large pis:e is elongated in the perceived direction by a factor of nto l. (see
Fig. 5.Xe)).

Some estimates about the invariance of joint descriptors can be made. Generally, those
descriptors depending on angular relationships will change. Size related descriptors are more
constant eg. neck joints and cross-section conservation. Our attempts at estimating himb
articulation characeristics from the joint descriptors derived from the observed surface have not
been successful.
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CHAPTER 6
RECOGNITION

Recognition of ob jects has been one of nur major goals. It also provides a measure of
the effectiveness of our description mechanisms. We regard the probiem of recognition as a
problem of comparing descriptions of two ob jects; recognition is taken to be the process of
discovering whether the observed description is a description of some previously seen or known
object. We believe that the most effective procedure is to verify that the observed description is
compatible with the model. Guessing of a suitable sub :lass of models 15 an important and
difficult part of the recognition process.

The matching procedures must take into account the following difficulties. We allow
for arbitrary scale changes of an object and articulation of its imbs. Descriptions generated for
an object are not entirely invariant to viewing angles and articulation. The amount of self-
occlusion varies. There are missing pieces ar< less frequently, extraneous pieces. Only the “front”
of an object is seen and the cross-sections for the parts are only partially known. Non-circular,
partial crass-sections are sub ject to change with different viewing angles. It is necessary to be abie
to make partial matches. when some parts of the ob ject are invisible. It 1s felt, and hoped, that in
spite of these variations, enough 15 "seen” to distinguish the scene, for most viewing angles.

For recognition, the programs need to have access to a store of model descriptions.
Memory models may be constructed by storing previous machine generated descriptions, or put in
by hand. Manual construction of the models may be either by making measurements of the
physical ob ject, or by supplying the description of an idealized ob ject; however, the manual input
of models is tedious. Machine generated models may use one or more views of an object. Models
obtained from one view will usually be incomplete, as only parts of an object are visible; other
views must be used to obtain more information. We usually construct the models by storing a
description of .he object from a single view; these descriptions are modified interactively to correct
for errors.

Some ob jects can be well described in more than one way. For example. Fig. 6.1 shows a
segmentation for the same glove asin Fig. 4.9 (part of the palm of the glove was not visible in the
fatter figure). The two descriptions have a different structure; in one description all five fingers
are attached to one end of the palm, while in the other the thumb is attached to the other end.
Here, we store both descriptions. During reccgmtion, we match with each description
independently and choose the one which provides a better match. In our implementation, a user
makes the decision about the use of multiple, independent descriptions (the different descriptions
still being generatad by the machine). Automating this process 15 a natural “learming” proble. In
sec. 6.8, we discuss how more complete models may be acquired by the machine.

Some of the ob ject descriptors used in our system can be usefully viewed as defining a
graph structure, with the joints as nodes and pieces as arcs, or vice versa. Descriptions of preces
and joints can be associated with the nodes and arcs as labels, or properties. Relations between
two parts can be expressed as relation arcs; representation of relations between more than two
parts is not 30 convenient. Our interpretation of this graph is more than just as a “syntactic”
description. Many “semantic” properties are represented in it. by the choice of descriptors used for
the constituent pieces, the joints and their relationships, and the use of the distinguished pieces
(see ch. 5). We treat the connectivity information about an ob ject as describing a graph structure,
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however not all ob ject descriptors are embedded in this graph form (eg. the bilateral symmetry
descriptors).

The recognition problem could be ccnsidered as a graph matching problem that finds
the best partial match. Most of the genera! graph matching algorithms are concerned with the
problem of determining complete graph isomorphisms, they provide a yes/no answer and no
measure of partial match 1s used. They are clearly of little use for our purposes, with the expecred
variations in graph structures. Some partial graph matching algorithms have been proposed. A
good survey of these techniques is provided in {Barrow). Ambler et. al. ((Ambler)) describe a new
*maxim ' clique® matching techmique, which finds the maximal self-consistent set of
corres; dences between the two graphs. We feel that the general partial graph matching
procedures can be .nade to work for many cases, and that the graph interpretation for the
descriptiuns is a useful one, but that treating the problem as a pure graph matching problem 1s a
wrong emphasis, and does not lend to easy use of heuristics and scene semantics. It 15 hard to
include knowledge about the best uses of descriptions in a graph representation alone; the graph
ratching procedures treat the matching of all nodes “umiformly”, and use of contex: 1s difficult,
e.g. we may want to match two parts (nodes) in pairs only, or insist on certain nodes being in a
particular order. We will describe matching procedures, that do match the two connection graphs.
However, the matching is guided by knowledge about the nature of the descriptions used.

We have attempted to make the object descriptions correspond to our intuitive
descriptions; this allows us to use intuition and introspection for developing heuristics for use in
matching. Humans, normaily generate much more complex descriptions and use much more
knowledge in their perception, however, when presented with a "stick figure” that corresponds to
our machiie descriptions, (eg. see fig. 6.2), they have little trouble in identifying the objects. We
can examine, introspertively, some of the processes used. Our programs rely heavily on the
structure of the object and relative sizes of its parts, 50 do humans; the articulation angles are
important for people but limited stored models prevent the programs from using them. Humans
undoubtedly also use some complex mechanisms, such as an cvaluation of the stability of the
oo jects; however, such mechanisms are hard to isolate and implementation 15 difficult because of
their complexity and lack of relevant knowledge. It is easy to provide specific knowledge about
specific ob jects; the difficulty is in incorporating knowledge that is likely to be useful for at least 2
significant “micro world™. Models for classes of ob jects, such as the class of four legged animals
would be useful.

Our paradigm for recngnition is as follows (Cf. the recognition block in Fig. i.l). We
use important features of the symbolic descriptions to index into memory models to find a sub-
class of similar models and compare the description of the object with the descriptions of these
models (section 6.7). Each comparison generates a difference description. We pick rhe preferred
difference descriptions, based on the sinularities -sf structure and the similarities of ine individual
parts and their relations. This is the process of direct matching (section 6.2). Verification would
consist of checking whether the differences between the model and the object descriptions can be
“explained” in a satisfactory way, using redescription of parts if necessary. (Verification methods
are discussed in section 6.6 and redescription methods in chapter 5 neither have been
lmplcmemed.) If a satisfactory match is not found, new members from the visual memory can be
obtained by indexing with a modified description code. We have defined different levels of the
matching process: indexing, direct matching, verification and redeicription.

The ob ject description is matched with the de:criptions of each model suggested by the
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Fig. 62 Stick Figures of Two Ob jects

indexing mechanism. The result of a match 13 a description of the differences (and not just a
numerical value). We believe that for complex descriptions a simple weighted nhumerical
evalvation is not sufficient; passing on symbolic differences allows other procedures to use more
context in making a decision. Of course, at the final decision stage, some overall assessment must
be made, but at any intermediate stage, symbolic structured differences are much more useful. It
helps find similarities as well as differences, such as a new ob ject is similar to the ones we have
sesn before, but differs in some small respect. We think this would be essential to a “learning”
scheme. Availability of explicit differences is also important, if verification and redescription is to
be attempted.

Matching of the object description with a selected model description involves the
matching of the two description structures and the details of the parts of the two structures.
Knowledge of scene semantics guides the matching process. The matching begins by maiching
similar distnguished pieces. Order of pieces at two joints are preserved during matching. A
match description contains pairs of joint matches, pairs of piece matches and hsts of unmatched
parts. With each matched pair is associated a description of the quality of that match; joint
matches note the number of missing or extra pieces and piece mathes note an evaluation of the
match of various piece descriptors. All matched joints are required to have consistent connectivity
relations.
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Partial structure is sufficient, in many cases, for identificaticn. For heavily occluded
scenes, generatad either by multiple ob jects or by the self-occlusion of a single object viewed from
a particular angle, the structure of the ob ject is not directly available; various alternate structure
hypoiheses must be generated and investigated. Our programs do not handle such extreme
situations; these problems are further discussed in sec. 6.4.

Parts of the objects are compared on the basis of their metric properties; these
descriptors are subject to some variations with the viewing angle. The length of the limbs is
independent of the viewing angle. not all of this length is always seen, however. Shadow
information tells us whether this is so, and such limbs can be treated differently. The visible part
of the cross-sections changes, but for maost cross-sections the variations are small, moreover, if the
cross-sections in the mode! are completely determined, partial cross-sections can be matched. In a
limited context of matching one part to a restricted number of other parts, these descriptors are
usually distinct enough to provide adequate discrimination.

To pick a best match, we have to choose between two difference descriptions. Our
decision routines attempt to choose on the basis of gross differences in the structure first and use
details of the matches later, as necessary. Due o the expected variability in the descriptions of the
same object, we make a choice only If the two difference descriptions are clearly different,
otherwise multiple choices are ieported. If alternative descriptions exist for an object (or the
model), then the descriptions having the best match are selected. (Note, in the current
implementation the alternative descriptions for an ob ject are limited to merging of two separated
pieces. The models may have more than one independent description )

Further decisions require a verification™ of whether the two descriptions could
reasonubly represent the same object. by trying to find explanations for the differences. For
example, verification may explain the occlusion of a missing piece or check the functional
requirements of the model. Redescription of parts is necessary to explain some of the differences.
We have not used any verification techniques; some are suggested in Sec. 6.6.

In the following, we first present an example first, and then discuss the details of
matching and indexing. Appendix 2 has a concise summary of the algorithms used.

6.1t AN EXAMPLE

An example of matching a description is presented here. Some of the operations
mentioned here are described in more details in the following sections. Fig. 6.3, thows the
boundary for a doll and its piece segmentation, and Fig. 6.4, its connection graph. Note that one
arm and one leg of the doll are not connected to the rest of the ob ject, but the arm is hypothesized
to connect to the arm joint and the leg to the leg pint. The body and the head are labelled as
two distingudshed pieces, being the two large pieces in the description.

The indexing process suggests matching this description with the stored descriptions of
a doll and a harse (among the objects known to the program). Here, we will discuss match:ng
with a doll in detail.

The connection graph fur the doll model is shown in Fig. 5.1. The head and the body
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Fig. 6.3 A View cf a Doll

are again the disunguished pieces. The body as a distinguished piece is two-ended (connected at
both ends) in both descriptions and the head one-ened (connected at one end only). The
matching starts by matching um.lar distinguished pieces and a two-ended ob ject piece can not
match a one-ended model piece. Thus the initial choices are:

1. object body with model body.

2. ob ject head with model head.

3. ob ject head with model body.

Consider the first alternative, 1.e. matching the object body with the model body. The
match of these two pieces is acceptable. Two choices are possible for matching the joints:
a). the c¢i:ject arm joint with the model arm joint;
and the ob ject leg joint with the model leg yoint.
or
b). the ubject arm joint with the model leg joint;
anc the ob ject leg joint with the model arm joint.

The matching programs explore both alternatives. Consider option (a), and the details
of matching the two arm jonts.

The object doll arm joint has only two pieces besides the body attached to this joint
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Fig. 64 Connection Graph of the Doll in Fig. 6.3

(head and cne arm), whereas the model description has three. These two lists are matched with
each other, in direct and reversed nrders. For each order, the head matched with head and the
arm vith an arm gives the minimum total piece match error. (Piece match error is a numerical
evaluation of the differences in the relative sizes of the pieces and is described in sec. 6.3). The
Jeft arm of the ob ject matcaing with the left arm of the model gives a marginally better match; we
have no real strong discrimination between thz two orders here. Note that the information about
the angle between *he limbs is not used, since the model does no: have any information about
articutation himits. Having settled on these matches, the programs note that the model has one
extra arm and the ob ject has an isolated arm, that could be connected to the joint being matched.
This match is tried and found to be satisfactory and is retained.

Matching of the two leg joints proceeds similarly. In this case the isolated ob ject leg is
shadowed and its perceived width 1 smaller than the corresponding leg in the model description.
However, it is known that the ob ject leg is shadowed along its width and is allowed to match with
the larger model piece.

Now, examine the matching of the joints as in akernative (b) above, i.e. matching the
ob ject leg joint with the model arm joint and vice-versa. The matches obtained are: the ob ject leg
with a model arm at one end; and the object arm with a model leg, and the object head with
another model leg at the other end.

A choice is made between akernatives (a) and (b) now. The average piece error is
clearly better for choice (a), (the ratio 1s > 2:1). The main discrimination was made by the
mismatch of head and leg for the akternative (b).

Other possible distinguished piece matches are tried. Matching the ob ject head and the
model head, ends up in a match that is identical to the above match. The other alternative of
matching the object head with the model body is carried out, but turns out to be clearly inferior,
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as no possibl« matches can ke found for the object leg if the connectivity relations are (o be
followed. For the curr.nt example, the initial piece matches have used all t':e pieces and the
oints of the two descriptions, and no extensions of the matches to the other joints are needed f
the descriptions included the uetails of the hands at the enc of the arms, we would extend the
matches to the hands now) Correct correspondence of the parts results from the maiu:hing of
these two descriptions.

The ob ject description 15 also matched against the model of a hor::, and the following
piece matches result as the best mazch between the two: the doil body with the hoisc body, the left
doll leg wirh a rear horse leg, the right doll leg with the horse tail, the right doll a-m with a front
horse leg, and the doll head with the horse neck. No matches are found for the isolated coll arm,
nor for one rear leg, one front leg and the head of the horse.

The connectivity relations of the matches with a doll and a horse are identical, as they
should be. More parts are missing in the match with the horse, but we allow for the possibuiity of
the parts to be hidden. The choice between the two matches is niow based on the errors of piece
matches. Maich with a doll 1s preferred. However the discrimination 15 not strong enough to re ject
the other possibility. The output of the matching routines 1s shown ir Fig. 6.5 The models that
match with the description are shown in a preferred order. For mawh with each model are
shown the assignment of the ob ject pieces (as 1n fig. 6.%) with the pieces in the model (the names
of these pieces are shown). The head of a doli and the neck of the horse do not niatch well,
however the error evaluation generated by the piece mitch routines is not strong enough to make
an unequivocal overall choice. Added discrimination requires more careful matching of the
individual pieces. If articulation himits of the models were know: to the models, the informauon
about the angles between imbs would provide clear discrimination for this example.

Results for more scenes and canclusions drawn are presented in the next chapter. The
following sectiuns describe the matching proces:es in more derail.

6.2 MATCHING WITH A MODEL

Consider matching an obect description with a particular, selected moael description. In
the following, we assume the model description to be just a previously encountered ob ject
description. All parts of the ob ject are assumzd to be present in the model, however, not all the
details of a part are known. The full cross-s=ctions of the parts of a model are not known, but
only ihe perceived width from a particular viewing argle. We permit the limbs of an ob ject to be
articulated, but the present models contain no information about the limits of articulation. In
section 6.8, we discuss how improved models may be acquired.

The matching problem is to make the best correspondences between the two descriptions
and gene.ate a description of the remaining cifferences. The problem is combinatorially difficult
if all possible correspondences are tried; further the evaluation of such undirected matches is
difficult. The number of alternatives considered 15 hmited by starting the matching process by
matching only similar distinguished pteces in the two descriptions (distinguished pieces were
described in sec. 5.3).

The widths of thess pieces are used to normalize the scale of the complete object and
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matches in preferred order
poLL
PRINTING PIECE CORRESPONDENCES
P3 ARM
P4 HEAD
PE ARM
Pl BODY
P2 LEG
NO MATCH FOUND FOR THE FOLLOWING PCS O THE OBJECT

hone

NO MATCH FOUND FOR THE FOLLOWING PCS OF THE NMCOEL
LEG
HORSE

PRINTING P1ECE CORRESPONDENCES
P1 BODY
PS5 COMB_REAR_LEG
P2 TAIL
P3 FRONT_LEG
P4 NECK

NO MATCH FOUNO FOR THE FOLLOWING PCS OF THE OBJELT
none

NO MATCH FOUND FOR THE FOLLOWING PCS OF THE MOOEL
HEAD

REAR_LEG
FRONT_LEG

Fig. 6.5 Matching Results for the Doll of fig. 6.3
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are not used for a similarity test. We require an approximate match of the elongation and cone
angle descriptors. A piece may be connected either on one side only, or on both sides. Such pieces
are called one-ended and two-ended respectively. A two-ended piece in the ob ject description is
not matched to a one-ended piece in the model but the reverse 15 allowed; we expect the ob ject
description to have no more pieces than the model. The distinguishing characteristic of the two
pieces must match; if one piece is elongated so must the other.

Consider the matching of two distinguist.ed pieces ODP (ob ject) and MDP (model). Let
the joints at the ends of ODP be C]I and OJ2 and at the ends of MDP be M]I and M )2
These joints can be matched in two ways: 1) OJI with M]1 and OJ2 with MJ2; or 2) OJ1 with
MJ2 and OJ2 with M]J1. f one end of each main piec# is unsymmetrical then the corresponding
ends are matched. Otherwise, the choice of ends to match is based on the quality of joint matches
in the two alternatives.

Now cons:der the matching of joints in the two descriptions, with the specified
correspondenc: of one piece from each joint. With each joint is associated an ordered list of
pieces corninected to it. The order of the piece; was determined by the position along the boundary
of the cbject. This order 1s not necessarily invariant with the viewing angle: however, we assume
it to be so. (Note that since we are using distinguished pieces, the number of alternatives
considerad s suitably small that all matches without preserving order could be avaluated.) The
piece; ot the joints are maiched in the same order and reversed order. Cre order 15 picked 7 'm
the re.ults. We are not able to differentiate between views of an object from the “front™ or the
"back”, thus a human left hand 15 not distinguished from a right hand. Such disunctions
normally need finer detai's of the surface or the cross-sections than are available to us from our
t ardware/software system, eg. information about nose and eyes is useful in disunguishing the
front of a human. Some improvement in resolution could be achieved by selective verification
(sec. 6.6).

Matching of two pieces generates a description of their differences. The sizes of the
pieces arc normalized ty the given scales (used throughout one complete match). We note the
differences in the various piece descriptors. The descriptors used are: length, width, length to
width ratio (redundant), cone angle and the number of connected pieces. We also generate a
numerical evaluation based on a non-linear weighting of these differences, and call this the “error”
of the match. (Details of the evaluation function are discussed in sec. 6.3)

If one of the pieces 15 a complex piece, 1.e. made up of a combination of pieces, then we
match the whole piece as well as its components to the other piece and pick the pair that matches
best. For example, our model of a horse contans two alternative descriptions of the rear legs; as a
single piece or segmented in top and bottom pieces. If in some view of the horse, the whole leg is
seen, it gets matched to the single leg piece in the model, but if only the top of the leg is seen it
gets matched to the piece in the model describing that part of the leg.

In joint matches, the number of pieces at the twa joints i1s not necessarily the same. We
want to pick piece matches so that each piece in the smaller list 1s matched to one piece in the
larger list (no duplicate matches) and the total match is opuimal. Matching error for a list match 1s
the sum of the errors of its component piece matches and 1s the criterior used for choosing
between list matches. We match lists in the direct and the reversed directions and chnose on the
basis of resulting total errors. In this case a simple numerical evaluation sui‘ices, since all other
differences are the same. Details of the piece list matching procedure are discussed in section 6.3.
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The description of differences for a joint match consists of the following: the total
matching error of the associated pieces, maximum of the piece match errors, lists of unmatched
(extra) preces and missing pieces. These descriptors summarize a joint match, the piece match
descriptors are also carried along with the joint match allowing the decision routines to have
access 1o them. Note that we have not used the differences in angles between the pieces of the
joints. We have no infoimation about the allowed articulations of the himbs of a model and so
assume all possible articulations. For recogmiuion of unarticulated objects, these angles woulid
obvinusly provide powerful discrimination. The descriptions of jouint types have also not been
useci as some of them depend on limb articuiations and also because of the inadequacies of low
level descriptions (sec. 52). The nature of the maiching mechanism allows easy addition of such
infarmation to the programs in the future.

After the various distinguished pieces and their end joints have been matched we
attempt 10 choose between the matches (decision routines in section 6.5). If some matches are
clearly preferable to others we retain only those. All acceptable matches are then “extended” to
include the rest of the preces and joints of both the ob ject and the madel. For each pair of piece.
that have been matched, we match the joints at the unmatched ends and continue until all joints
and pieces have been matched (some joints and pieces have to be matched with null joints and
null pieces). This procedure assures the matching af the joints in the two descriptions to have
consistent connectivity relations, if the graphs matched have no loops, as 1s the case for all the
ob jects considered here. More generally, we expect the ob ject piece connection graphs to have very
few loops; our method can easily be extended by first detecting the loops and disconnecting them,
then performing the extensions of the .atch as described and then rechecking the connectivity
relations demanded by the loops. Afte: the matches have been extended, we attempt to choose
among the various matches again and the best of them is the representative match with this
particular model.

Partial matching proceeds in a very natural way in the processes described here We
match those parts that are visible and make a note of the parts in the model that are not seen 1n
the current scene. Decisions about the importance and the plausibility of the missing parts 1s left
to the decision routines (sec. 6.5). Of course, the discrimination of the matching procedures
decreases as the number of parts seen decreases.

We have used the order of pieces relative to a distinguished piecs and assumed that
these distinguished pieces are vist-le. In scenes where these distinguished pieces are hidden, we
have circular lists of ordered p.eces and a larger number of possible matches will need to be
investigated. With the resolution of our setup, we do not normaily see the details at the ends of
pieces, which could be advantagecusly used for disciminating between pieces (e.g. the hand at the
end of a human arm). Some improveme:t could be obtained by better procedures to examine
piece terminations, in the process of the piece descriptions. In this section, we have been
considering matching against a given model; however, the difficult problem with partial
information is to select suitable models to match against. The problem of matching occluded
scenes is further discussed in sec. 6.4.

6.3 MATCHING OF OBJECT PIECES

In this section, we discuss the dotails of the matching of »ieces, the basis for choosing
arong piece matches, and the optimal matching of two lists of pieces.
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Matching of two pieces involves comparing their piece descriprors. We associate a
description of the differences with the piece match (a LEAP item, differences stored as datum of
the item) and also generate a weighted numerical error based on the differences. The numerical
error 15 useful for choosing 1 limited contexts.

The most important characteristic compared is the connectivity of the piece> to be
matched. Piece matches are called as sub processes of a joint match process, and the points at one
end of the pieces to be matched are given. We compute the difference in the number of pieces
attached at the other ends of these pieces, this difference 1s called connectivity difference. The
connecuvity difference is posiive if the ob ject piece has more pieres connerted to 1t than the
model piece; such a match will necessarily leave sore picces of the ob ject unmatched and 1s thus a
poor match even without further context. 1f the model piece has more pieces connected to 1t than
the ob ject piece, then the connectivity difference is set 10 zero; the model is allowed to have extra
preces. Only “well-def ined” pieces are used for computing the connectivity differences, a piece 1s
well-defined 1f 1t 1s elongated (length to width ratio larger then 3.0) or if it 15 a distinguished
piece.

“The scale of the two pieces to be maiched is normalized by given factors (the sizes of
the pieces first matched in the overall match). Differences in width, ratio of length to width and
cone angle are computed and their weighted sum is used for a numerical evaluation of the erior
of the match. This error function is used only to find gross metric differences between 1wo
descripuons and the choice of the specific function is not of much importance (some reasons for
the chotce are explained later).

The error func.ion is computed as follows (modifications for matching shadowed pieces
are covered later):

Where:

d,, = Width difference
« ABSOLUTE (Width - Wdtho)

d, = Length to Width Ratio difference
= (Length_Width_Rauo;) / (Length_Width_Ratiog)
ifd, < 1 thend, = hd,

d, = Cone angle difference
« ABSOLUTE (Cone angle| - Cone_angieo)
(All angles in radians)

fw(dy) = dy

f rJdr)-- If d,< 1.0 then 0.0 else
if d,> 5.0 then 1.0 else 0.1(d.. - 1)
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fe(dc)= 1f de< 0.1 then 0.0 else
if d¢> 0.3 then 1 clse d, .

In the ahove evaluations, lower and upper thresholds have been set for cone angle
differences and length to width ratio differences. If the lower threshold is not exceeded, the
differences are not cons:dered significant and do not contribute to the error value. If the upper
threshold is exceeded, it indicates a very poor match and the error contribution (- set to a value
(1.0 in both cases) much larger than expected in a good match. Reasons for the choice of relative
weights in this function are discussed later.

If an ob ject piece is shadowed. the piece descriptors for the complete piece are unknown,
and the quality of its match with a model piece is difficult to establish. We assume that an
arbitrary amount of the piece may be obscured. In the above error computations, if the wic:th of
the shadowed piece is smaller than that of the model piece being matched with, the width error
component (f,,(d,,)) 1s iaken to be zero. Average width has been used here; if part of the piece is

unshadowed then the use of the width of the unshadowed pzrt would give improved resuits. The
cone angle and the length to width ratio for a shadowed pirce are not known reliably and are not
used for determining the match error. However, the connectivity difference is computed in the
same way. The information about the shadowed piece having excess pieces connected to it 1s still
equally significant.

The selection of the error function has been ad hac; it is based on our expectations of
reliability and invariance of various descriptors. We expect the width of a piece to be known
reliably (but dependent on the viewing angle), while tne length, and hence the length to width
ratio, and the cone angle tend to be sensitive o description methods. An improvement would be
to assign the weights for each piece match separately, depending on some context e.g. for matching
with a very long piece the elongation ts important and should be given more weight. A more
complete model of the ob jects might specify what the essential qualities requir~d for a piece are
and influence the weighting. Standard, statistical parameter setting techniques ({Duda)) may be
useful in determining these weights, if no context is used.

The shapes of the piece axes (straight, circular etc.) have not been used for matching,
primarily because the pieces encountered in the objects we consider have been mostly straight.
The cross-section shapes have not been matched, since these are noi known very well in the
present implementation. We have also ot compared the cross-section functions in a very detailed
way; we merely fit a straight line to one, to determine an average cone angle. A more subtle
evaluation could compare the individual cross-sections along the axes of the two pieces and build
differences; this is expected to catch local differences of shape better than our averaging process.
The major difficulty would be caused because of the quality of the boundary data, which adds a
significant error to the cross-section widths, masking any fine systematic differences.

To select between two piece matches, we first compare the connectivity differences. 1f
one match has a higher connectivity difference (which corresponds to excess object pieces) than
the other, then that match is rejected. If conrectivity difference is the same, we pick the piece with
the lower numerical evaluation. This piece selection method is very local and is used in limited
contexts only (in selecting piece matches when list of pieces at two joints have to be matched).
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MATCHING OF PIECE LISTS:

Consider the matching of two lists of pieces, in a given order; the lists may have
different number of pieces. Let the two lists be Pe {p|, pg. .. P} and Q= {qy. 32, - qp}. and let

m s n. We want to pick piece maiches so that each piece in the shorter list, P, is matched to one
piece in the longer list, Q. One piece can match with only one other piece. The relative order of
pieces must be maintained, ie. if p; matches q i and p;,; matche; qy then j < k. This

requirement constrains the matching of a piece, p; in P, to be matched to q i in Q, such that i - (n-
m) s j s i« (n-m). Each p; must be matched to a different 9 A complete t7ee search with these

constraints could be made to find the best assignments, as the number of 1 ces involved is small
(say s 5). However, we use the following procedure which is faster: Eve the match of each
piece p; in P to each potential matching piece q; in Q (with the noted constraints between i and )

and arrange the matches in a list ordered by the preference of thesc piece matches (piece match
selection was discussed earlier). For each piece compute a match sensitivity ratio (to be defined
shortly), indicating how tast the match quality for this piece deteriorates as its matching piece is
changed. Assign the piece with the highest sensitivity ratio its best match. Remove the matched
pieces from further consideration, by removing matches involving these pieces from the piece
match lists, and update the sensitivity ratios. Repeat this until all pieces in P have been matched.

Let us now specify the match sensitivity ratio. Some pieces are left with only a single
match, either initially or after some piece assignments have been fixed; in such cases, we set the
sensitivity ratio to an arbitrary high value, MAXRAT, assuring that this piece will be assigned a
match first. Normally, the sensitivity ratio is the ratio of the second best match eiror to the best
match error. However, if the abject piece is shadowed, the sensitivity ratio is set to its lowest
value. The match quality of a shadowed piece is not known reliably, and its match selection 1s
deferred to be last. If the connectivity difference of the two alternatives is different, the sensitivity
ratio is set t0 0.1 « MAXRAT, so that this piece wiil be assigned its best match immediately after
the single match pieces have been matched (this applies for a shadowed piece match as well). If
the piece is a "well defined" piece, the ratio is doubled (s0 that the well defined pieces are matched
earlier).

A piece list match is characterized by the sum of individual piece match errors. To
choose betwzen two orders of matching two lists (direct and reversed), we compare the total errors
for the two orders; if one order is clearly better (error ratio > 2) then pick the lower errcr :raich,
otherwise make a decision pased on the lower maximury piece error. A numerical piece error
suffices for selection here, since the rest of context is the sanie for ‘he two orders.

Many objects we consider are bilaterally symmetric; their limbs form symmetric pairs.
For such objects, the matching of piece lists could b: improved by matching the pairs
simultaneously; the above described procedure finds matches for each limb separately.

6.4 OCCLUSION AND SHADOWS

Parts of an object may be occluded by other parts of the same ob ject, or by the parts of
another object in a multi-object scene. In such cases, ihe description prczacures provide some
isolated sub-structures, each such sub-structure consisting of a number of connected pieces, and
some isolated single pieces. We regard each sub-structure as a separae ob ject. The isolated pieces
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may be parts of one of these ob jects or be singie piece objects. Description routines also generate
hypotheses for connections of these isolated pieces to the joints of ob jects. based primarily on
proximity and symmetry (Sec. 5.4). At the stage of matching, we are able to further examine the
validity of these hypotheses, Ly examining whether such pieces are present in the moael but not
in the ob ject description. We discuss the handling of these isolated parts assuming that connected
parts of the ob ject provide enough data to make partial matches.

The matching begins by comparing a connected sub-structure, recarded as an ob ject,
with memory models, ignoring the isolated pieces that possibly attach to this object. At each joint
match between the object and the model, we examine whether the model joint has some pieces
that have not been matched. If so. the pieces hypothesized to connect to the current ob ject joint,
if any, are matched with these extra model pieces. Since the connectivity hypotheses are weak,
such matches are accepted only if the pieces match well. (Matching of a shadowed piece with a
model piece was discussed in sec. 6.3) The matching error 1s required to be less than the
maximum matching error of the other pieces at this joint. A more satisfactory resolution would
be 1o use more sophisticated matching techniques, such as to determine whether the visible part of
the shadowed limb matches with some part of the model limb. If a suitable match i¢ found, then
this isolated piece is regarded as being attached to the proposed joint (in the context of
hypothesizing this ob ject to be the model ob ject), and 15 hereafter included 1n the evaluations for
quality of the overall match. This process is repeated for each propused object in the scene. (A
converse procedure, that assumes the hypothesized connections first, and verifies them by
matching with memery models, has the advantages of starting the matching with a larger, more
selective structure, and will be particularly useful for heavily occluded sce..es where little sub-
structure is immediately available. A combination of both methods is likely to be used for
difficult scenes.)

isolated pieces that remain unmatched by the described procedure are matched with
single piece objects. Further treatment of the pieces that remain unmatched is difficult. The
current programs simply igno.e them anc identify the remaining obj~cts. Several alternatives are
possible: after an ob ject has been identified and some pieces are missing, we may accept even poor
matches for these pieces now. Redescription of these pieces and a closer examination of shadows
will perhaps be necessary for a better treatment; we have not investigated this. Some parts are
split in two because of occlusion from another part, eg. one leg of the doll 'n Fig. 4.14 is seen as
two separate parts beciuse of the occlusion caused by the srake. Continuity of such parts could
now be examined with the knowledge of the corresponding model piece (such as the length of the
model piece is close to the length of the combined piece). This technique has not been
implemented.

The foregoing presumes that encugh parts of an object are seen as connected to
est. Hlish a good match with the models; this may not be so for heavily occluded scenes. Some
con jectures about such conditions are offered here. Iu such instances the matching process and
the description process must work more closely together. the matching process supplying more
information for description hypotheses. Some hypotheses for connections and continuations of
parts can be generated at the description level, “bottom up”. by examining continuity. We can use
the continuity of surface, axes of parts and the cross-sections. Three-dimensional position
information will greatly aid in the deteimination of these continuities. Alternatively, given a
model description to match against, we can attempt to find parts of the pieces that fit well with
the model (“top down approach”). A combination of the two methods will probably be used.



6.4 OCCLUSION 69

It 15 our feeling that the major problem is to select a suitable set of likely modeis based
on the initial descriptions for these occluded scenes, to keep the combinatorics withir: control
Unfortunately, the resolution of our system does not permit us to see the details of the ends of
parts, which could be used to suggest likely models. More refined piece descriptors would also be
helpful here. Finally, we think that global context must be used to aid the selection of models
here, i.e. we must hiave some idea of what we are looking for, when we see a complicated occluded
scene.

An example with shadowed pieces was discussed In sec. 6.1. Some results for scenes with
multiple ob jects are presented in chapter 7.

6.5 SELECTION OF A MATCH

Recognition requires a selection between two ob ject matches. The selection procedures
are the same, whether all the joints of the ob ject have been matched or not. These procedures can
be called at any stage of the matching process to determine whether a preferred match exists,
allowing incorporation of matching “strategies”. For example, our programs attempt to select first
when only the initial two pieces and their joints are matched and later when the whole ob ject is
matched.

The two descriptions of the same ob ject are not expected to be identical, and so we must
have a way of choosing between two non-empty difference descriptions. In general, the problem
of deciding what differences are more important than the others is dif ficult. One solution for this
problem is to try and find unacceptable differences; descriptions are effective to the extent that
such large differences can be found between most ob ject descriptions. Our preference scheme first
attempts to find major differences in the structure of the two descriptions, if large differences are
found, further evaluation is not necessary. Finer distinctions, between similar structures, are made
on the basis of individual part matches. If increased resolution were available. better
discrimination could be obtained by examining details. eg. by examinaticn of the ends of legs and
hands of amimal shapes. The choice of preferences is heuristic, and i3 expected to apply to a wide
class of objects. Possibilities for other preferences to be specified in the models of the ob jects will
be discussed. Also, it would be easy for the decision preferences to be determined by the calling
programs in our case, because of the availability of structured symbolic differences at the decision
sage.

Each ob ject match description contains a list of jpint matches and piece matches. Some
local selection decisions about what pieces to match have already been made. Global choice is
attempted here. The selection is based on finding large differences, otherwise no choice is made.

The main structural difference looks¢ for is the number of pieces in rhe cb ject that are
not matched by the model (consistency of the connectivity relations is already assured by the
matching procedures). We are assuming th.e models to be complete and the excess pieces are
considered to be a major discrepancy. We choose the match with fewer excess pieces. For these
evaluations only well defined pieces are considered (elongated pieces only). Thic helps make the
selection insensitive to small extraneous pieces, that may sometimes be generated during the
description process. ‘The sum of the connectivity differences (sec. 6.3) gives the number of ob ject
pieces that are not going to be matched by the model and is useful even when all the jint
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matches have not been completed. We completely ignore any .nissing pieces, presuming them to
be hidden. A more sauhisticated process should investigate whether this is possible. (Simply
preferriug the match with fewer missing pieces will always result 1n picking the simpler of the two
models that share a common structure, eg. the structure of a horse is similar to that of a doll with
an extra limb for tail, and this preference scheme will tend to pick a doll, for those views of the
horse in which the tail is not visible. It is difficult to combine the number of missing pieces with
the other measures of match quality)

If no structural differences are found, we compare the evaluations of the piece matches
of the two ob ject matches. For each ob ject match the average and the maximum piece match error
is computed. Average error is an indication of the overall fit of the various pieces and the
maximum error Is useful when two objects are similar but differ markediy in a single piece. If
either of these quantities differes significantly (by a ratio of 2 to I) between ti.e two matches, we
select the match with the lower error. Average error is considered before the maximum error.

If no clear diiferences are obtained, we pick the match with the lowest average error or
the lowest maximum error, depending on which provides the greater discrimination (larger ratio),
but mark the selection as low confidence.

The decision procedure described here relies on general considerations and gross
differences. We do not make any decisions based on model specific information. Part of the reason
is in our use of loose models. The models are just previous descriptions with minor modifications.
More specific information could be added to the models either by hand or by a description
learning scheme (IWinston)). If the models specified the necessity of certain relations to hold, we
could check for them here. These relations can be of the form of certain ratios of sizes of the
limbs, necessary similarity (or dissimilarity) of the limbs etc. No angle information has been used
in making decisions, since the articulation limits are unknown. If added resolution were available,
we could examine the confusing parts in more detail, eg. examine the structure at the ends of the
parts.

66 VERIFICATION

Procedures to choose between two matches were described in the last section.
Additionally, it is desirable to test further the adequacy of a match. Our decision procedures insist
on a minimal quality of the match (such as no extra well defined pieces) but no attempt is made
to explain the remaining differences. Since there is likely to be more information in a model than
in the object description, a more general system should try to “verify” model information in the
object description. This seems to be the case in human perception ([Posner)). Redescription of
some parts may explain some of the differences; the description of model pieces is known and the
description procedures can test whether a similar description can be obtained for the ob ject pieces.

We have not impiemented verification and redescription procedures. In the following
we suggest some verification techniques.

1. Examine the missing and extra pieces: Can the invisible piece be hidden for some
permizsible articulation of this piece and the known articulations of the visible pieces ? Can
the extrareous pieces be included in the other pices by redescription ?
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2. Can the metric differences of two matched pieces be explained? The perceived width of a
piece changes with the viewing angle; examine whether the width is consistent with the
present viewing angle. (For such verification, the mie! needs to have information about the
complete cross-sections) Sometimes, a piece is terminated prematurely because of a local
discontinuity in the boundary and its length measurement is faulty, now we can redescribe
this piece with different continuity conditions to determine whether it can be matched better
with the model piece.

3. Model specific data: check any specific relations that must hold for this particular ob ject
(among the visible parts). These relations may be based on the functional requirements of
the ob ject.

4. Support and stability relations: check whether the ob gect could be stable with the proposed
piece assignments. This is difficult with only partial information about the ob ject.

5. Increase Resolution: Our System is bmited in resolution; however, if higher resolution were
available, we might no: want to process the whole scene at this higher resolution. After
matching, we have specific high resolution features that we need to verify. This may involve
gathering new, high resolution data from the scene, or just to make use of such data in parts
of the description phase. (Increased resolution will require the use of a narrower light beam
and finer image sampling; increasing the effective stereo angle is not practical because of
additional shadow problems.)

6.7 INDEXING INTO VISUAL MEMORY

In this chapter, we have discussed the matching of an object description with a given
model description, and also the choice between two such matches. If the number of models known
is small, for recognition we can simply match the current object description with each known
model and choose the best match. However, as the number of models increases, the computation
required increases proportionately, and indexing to locate a sub-class of similar models becomes
necessary. In our system, we have experimenied with a small number of models only, but the
number of models can be increased indefinitely, in principle. In the following, we describe some
preliminary efforts at indexing and also discuss how more powerful indexing method; may be
implemented.

For indexing, some important “features” are abstracted from a complete ob ject
description. These features may be viewed as forming a “feature vector” or a "description code”.
Note that two models may have the same feature vector and differ in the detailed descriptions.
These features are used only to locate promising similar descriptions, and not to establish a
detailed match. Models with exactly the same description code can be located efficiently by
:tandard Aashk coding techniques. We have chosen those features of an ob ject description that are
insensitive to changes in the viewing angles and limb articulations. However, some variations do
occur because of occlusion and description accuracy. We do not expect to find a memory model
with the same description code, but instead look for those models whose desctiption code is close
to the observed code.

The problem of finding 2 similar code is similar to the problem of finding a best match
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(with Hamming distance) discussed by Minsky & Papert ((Minsky). pp. 222 - 225). They
con jecture that the solution of this problem requires the equivalent of a complete search of the
memory. Rivest ([Rivest]) presents a statistical analysis claiming that for reasonable distribution of
the codes in the description space, a simple search around the observed code has a high
probability of finding a match in a rather small number of steps. However, these methods have
treated the problem of searching for best maich a; a general combinatorial search problem. For
our problem of indexing, the generated descriptions have some semantic content :0 them, which
can be used advantageously for searching. We can use the knowledge of the descripiions o
decide which descriptors are likely to be insensitive to change and also which ones may be In
error for this particular description.

Our paradigm for indexing is as follows. One or ure description codes are generated
for an ob ject description (also an object may have muliple descriptions). The models with the
same description code are retrieved from the memory. Based on the knowledge of descriptors and
possible errors, the description code is changed and new models with the modified code are
retrieved. The number of changes made to the description code may depend on the confidence of
the various components and the process could be stopped if 2 suitable match was found. However,
becaue of the difficulties of judging the adequacy of a match, we have not chosen to stop the
indexing process until all reasonable alternatives have been tried.

The choice of features used for indexing has been based on their invariance. For the
class of scenes considered in this thesis, we have been assuming that one or more of the
distinguished pieces of an ob ject is present in any scene. This has lead to a choice of descriptors
of the distinguished pieces for indexing. Each distinguished piece generates a separate code for
indexing, and the presence of any distinguished piece in the scene is sufficient for proper
indexing_ i.e. indexing is possible from partial views. The choice of descriptors used is further
constrained by the desire to use only those descriptors that can be represented by integer values,
preferably binary. Use of real valued descriptors such as the relative widths of the pieces at the
end is more difficult. A possible approach is to quantize the real values; however we have not
used such descriptors,

Following is a list of descriptors for a distinguished plece that are usable for indexing:
1. Connectivity of the distinguished piece (connected at one end or both).

2. Conical or cylindrical disunguished piece (conical being defined by the average cone angle
exceeding a threshold).

3. The type of the distinguished piece, eg. long or wide.
4. Shape of its cross-section; flat or curved, concave or convex.
5. Shape of the axis; is it straight ?

6. Regularity of this piece (cross-section function of a regular part has some simple
geometrical shape)

We have used only the first three of these descriptors, primarily because the programs
for generating the other descriptors have not been impiemented (see sec. 5.1 for choice of piece
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descriptors). Also, the computatirns of regularity cannot be reliably made with the quality of data
currently available to our progiams. We have used the descriptors of the distinguished pieces
only. However some dwscripors for the whole ob ject may be usefully included in the description
code, eg. whether any of ihe pieces 15 regular. We have not used any joint descriptors for
indexing here, because ot their variability as discussed before (sec. 5.2).

Further efficiency :n retrieval of the models is gained by using the number of pieces
attached a° the either ends of a distinguished piece. Let N be the number of attached pleces at

one end and Ny at the other, and further let No s N|. The models with the same description

code are store:! in a list, which 1s retrieved during indexing. This list is ordered in a descending
order with the number N1 corresponding to the particular distinguished piece. During retrieval,
we search along this list for those mocels that have more attached pieces than the observed
description piece. The models must have at least as many pieces as the object for an acceptable
match. When the first model with les: pieces is encountered, the rest of the list need not be
considered. Further improvement wou'd result in ordering the sub-list of models with the same
value for N by the value of No. On the average, these two orderings should reduce the number

of models to be ronsidered by a factor of two each.

In the current implementation, we index into memory for a description code
corresponding fo each distinguished piece. If the object piece is one-ended, it can match with a
model with a two ended distinguished piece and this alternative is also used to index. Other
perturbations to the description code cold be based on the ccnfidence of the descriptors, e.g. if in
the description of the distinguished piece the observed cone angle is close to the ti:reshold then we
should try its description, both as comcal and non-conical; we have not used this. The number of
entries required grows expenentially with the number of descriptors that need to be perturbed,
and must be chosen carefully. Our experiments with indexing did not advance enough to study
this in detail. In the following we present an analysis of expected indexing efficiencies, based on
some simplifying assumptions.

The retrieval efficiency of the indexing scheme is dependent on the number of
descriptors used. Let n be the total number of descriptors and assume all descriptors to be binary
valued. Also assume that on the average m of these descriptors have value I. If this number is
assumed to be exactly m, the number of pos:ible codes is the binomial coefficient Cp, . Consider
the :i:uation where the number of modeis in the memory is much larper than the number of
possible model codes. In this case each model ccde is expected to have a long list of models
attached to it and each probe into memory is expected to sicceed in retrieving some models. Let '
be the number of descriptors that are doubt/ul and need to be perturbed. Then, the number ot

entries made is 2/ (assuming independence of these descriptors). The reduction in the number of
models considered in this case is the number of possible codes, divided by the number of entries

made, ie. (c,,'m)/(zl). A further improvement by a factor of ¢ can be expected by ordering the list
as described above.

As example, if n were 6 (as enumerated in the list of descriptors above) and m was 3,
Com*" 10. The best possible improvement factnr is then 40, modified by the number of needed

entries. For our implementation with n= 3, and m= _ or 2, the expected improvement is still equal
to 12. Considering the preliminary nature of these efforts, we feel that the results are
encouraging. Note that our expectation of indexing efficiency Is predicated on the belief that the
ob jects will be evenly distr:buted over the chosen descriptors.
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Consider the example of the doll discussed in section 6.1 (Fig. 6.3). The set of models
used cor ists of: a horse, a doll, a glove, a ring, a snake and a hammer. The distinguished pieces
for the .esent view of the doll are the body and the head. Using descriptors of the body, the
irdexing programs pick out the doll and the horse as the similar models (the other models do not
have enough attached par’s o their distinguished pieces). However, using the head of the doll,
the hammer mode! is also picked out as a likely model. Note that if the shadowed arms were
connected to the body, this suggestion would not have been made. The hammer is quickly
rejected as a [ .ssible match, by comparing the total number of pieces of the ob ject. This number
could also have been used as a descriptor for indexing by further ordering the model lists by this
number.

Current implementation of indexing sufferes from the inadequacies of our descriptive
techniques, though we think that some improvements can be made by techniques already
discussed (see chapter 7, for a summary). Use of real valued descriptors would also aid in
improving the effectiveness of indexing, eg. we could use the relative sizes of the pisces and the
angles between them. Our indexing scheme is designed to work with occluded scenes and partial
views. However, situations with heavy occlusion are not considered. With a limited number of
models, the analysis of occluded scenes is somewhat simpler, as various models can be “fit” to the
observed data. With a large number of models, it becomes necessary to generate enough “bcttom
up” descriptions, so that a list of likely models can be efficiently indexed.

6.8 MODEL ACQUISITION AND LEARNING

For recognition, we need a collecion of model descriptions. These models may be
previously seen descriptions (visual memory) or be input by hand. The latter alternative is tedious
and not used. We construct models by saving a previous description of an ob ject, which is then
interactively modified to correct for errors. A suitable viewing angle is chosen so that a maximum
of the object is seen. Additional information, as necessary, is added tc the model so that all parts
of the object are present, but not all details of the parts are known. T* - ¢ “Il cross-sections of the
parts of a model can not be determined from a single view. We stot. _ .ij the perceived width
from the particular viewing angle. The observed angles between the pieces at a joint are known,
but not their articulation characteristics. In some cases, we use independent descriptions generated
by two different views, as in the example of a glave discussed earlier. Such models have been
satisfactory for our purpose; following are suggestions on how more complete models may be
acquired automatically.

Information about the unseen parts of an object can be obtained by using multiple
views of the object. To combine the information from several views, we have to be able to find
common links in various views. If the object stays in the same physical position for the different
views, or is moved by a precisely known amount (eg. by being rotated by a known angle on a
turntable), then the linking problem is simpler, since we know the three-dimensional positions of
points on the visible object surface. We can assemble data from the separate views before
generaring any symbolic descriptions, but must “register” the various views whose absolute
calibration may be in error. Akernatively, we can describe each scene, and then match the
descriptions of the various views. The different views can, for example, be used to complete the
cross-sections for parts. We can use the knowledze about the limbs being in fixed potitions here.
Akernately, if many views are used, the differences from view to view can be made arbitrarily
small and the correspondence problem becomes trivial.
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Views with different amounts of limb articulations car e used to learn the articulation
characteristics. The matching procedures can be the ones we have presented, with the exc: ption
of not assuming that either of the descriptions fo be compared is more complete than the other.
Since the descriptions will not be “perfect”, the matching procedures must decide about which
parts of the descriptions are acceptable, based on the compatibility of the d:iferent views. Parts
found in several views are clearly more credible. The learning examples need not use views with
heavy amounts of occlusion, making the task of description and matching easier. When two very
different descriplions are generated for twe same object (eg. glove in Figs. 49 and 6.1), the
programs will need to decide wherher both of them 2re acceptable or whether one 1s an erroneous
description  This decision may depend on whether one description can be transformed into the
other, without changing the shape of the object. (An alternative to storing both descriptions
would be to have the matching programs attempt such a transformation.) Acquisiion of cuch
knowledge 1s “learning” In a non-trivial sense. We think that the present matching procedures can
be casily extended to accomplish this.

A different class of model characteristics, requiring certain relatons to hold iur 1
particular model, can be learned by examination of different “examples”, as suggested Dby
[Winston]. These relations may, for example, be required metric relations of some parts or
required symmetry of parts. Winston's procedures find similarities and differences between
different examples and abstract necessary relations for a certain model. We are able to generate
similar difference descriptions. However, Winston relies heavily on each desctiption being perfect
(no missing or extra lines in the descriptions) 2nd extension to imprecise descriptions will require
addition of prefecence criteria.

We have not investigated these learning problems, and suggest them as important
problems for further research.
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CHAPTER 7
RESULTS AND CONCLUSIONS

Some results for different techmques described were presented earlier. Here we present
more results on other scenes to illustraie their performance range. We summarize the strong and
the weak points of our techniques and impiementaiion, and discuss some ideas for related, further
research.

7.1 RESULTS

Figs. 7.1 thru 7.15, show results at various leve!s of processing. These include the results
of boundary routines, preliminary segmentations and axis, zross-section descriptions, selected piece
segmentations and the output of the recognition routine.. The segmented scenes show the axis of
the cones. The matching results show the models selected by the indexing and a preferred
ordering of these models as a result of matching (one or more models may be included;. For each
such match, the figures also 10w the correspondences made between the pieces of the ob Ject and
the pteces of the model. In e following we discuss in detail th~ performance characteristics of
the various processes, by examining the results.

Use of three-dimencional data is very effective In separating occluded bodies; the
separation is a natural outcume of the boundary organization process (see Figs 7.3 and 7.5
compare witk: the TV pictures in Figs. 7.1 and 72). However, touching ob jects are not necessarily
separated, e.g. part of & doll leg and the snake in Fig. 4.14 are seen as a single ob ject.

The quality of the boundary output is affected by the following factors. The end points
of the two series of laser scans do not always 11atch well causing the boundary to be Jagged. A
particularly noticeable example is in Fig. 7.6. The thinning process is also poor in location of the
end points of short seginents. More serious problems can occur it the scan data itself is poor. If
the hue of the ob ject is complementary to that of the illuminating light (or it has dark spots), the
TV image of the scan has false discontinuities. Use of 3 white light or multi-color laser wou'd
soive this problem in many cases. Reflections from the object can give rise to spurirus image
points. Combining TV image data with the laser scan data should hclp with the above problems.
The boundary definstion iz of course limited by the resolution of the appa:aius.

The segmentations for an object are chosen from several alternatives. Previously, in
figs 4€ and £.13 we presented the alternative cones for two scenes. Figures in this chapte* show
only the selected cones. Choosing among alternate descriptions invalves computatior af the
averlap of two descriptions. We have used boundary overlap as the measure of piece overlap,
area overlap is more robust and closer o the desired measure. Area overlaps can be compured
without substantial overhead because of the nature of the data (tie areas are described by an axis
and normal cross-sectiuns}. Prope: resolution of some aiternates requires redescription techniques
and was discussed in sec. 4.5.
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Fig. 71 ATV Picture of a Horse and a Ring

Fig 72 A TV Picture of a Horse and a Doll



Fig. 7.8 Segmentation of Scene Corresponding to Fig. 7.1
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THE MODELS SELECTED BY INDEXING:

HORSE
ooLL
GLOVE

matches in preferred order
HORSE
PRINTING PIECE CORRESPONDENCES

P9 NECK (Note PS is the piace formed by merging P3 and P6)
P2 BODOY

P4 FRONT_LEG

Pi TAIL

NO MATCH FOUND FOR THE FOLLOWING PCS OF THE 0BJECT

nona

NO MATCH FOUND FOR THE FOLLOWING PCS OF THE MOULEL
HEAD
REAR_LEG
FRONT_LEG
COMB_REAR_LEG

Fig. 74 Recognition Resukts for Horse in Fig. 7.3

79
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Fic. 7.5 Segmenration of Scene Corresponding to Fig. 72
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Fig. 76 A View of a Horse
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THE MODELS SELECTED 8Y INDEXING:

HORSE
DOLL
HAMMER

matches in preferred order
HORSE
PRINTING PIECE CORRESPONDENCES

P1 800Y

P2 TAIL

P3 TOP_REAR_LEG
PS FRONT_LEG

P4 NECK

P7 HEAD

NO MATCH FOUND FOR THE FOLLOWING PCS OF THE OBJECT
P6

NG MATCH ~OUND FOR THE FOLLOWING PCS OF THE MODEL
B0OTTOM_REAR_LEG
REAR_LEG
FRONT_LEG

ooLL

PRINTING PIECE CORRESPONDENCES
P1 BOOY
P2 LEG
P3 LEG

PS ARM
P4 HEL)

NO MATCH FOUND FOR THE FOLLOWING PCS OF THE OBJECT
P6
P7

NO SATCH FOUND FOR THE FOLLOWING PCS OF THE MODEL
ARM

Fig. 7.7 Recognition Results for Horse of Fig. 76
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Fig. 79 Another View of a Dol

' THE MODELS SELECTED BY INDEXING:
HORSE
00LL
matches in preferred order
pooLL
PRINTING PIECE CORRESPONDENCES
P3 B00Y
P?7 LEC
P6 LEGC
P4 ARM
PS ARNM

NDPEATCH FOUND FOR THE FOLLOWING PCS OF THE OBJECT

MJ"E:S:H FOUND FOR THE FOLLOWING PCS OF THE HMODEL

Fig. 7106 Recognition Resuits for the Doll in fig. 79
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Fig. 711 A Glove

THE MODELS SELECTED BY INDEXING:

HORSE
GLOVE

matches in preferred order

GLOVE

PRINTING PIECE CORRESPONDENCES

Pl
P3
PS
P4
P2
PE

PALM
MIDOLE_FINGER
LI TTLE_FINGER
INDEX_F INGER
FORE_FINGER
THUB

'O MATCH FOUND FOR THE FOLLOWING PCS OF THE OBJECT

none

NO MATCH FOUND FOR THE FOLLONING PCS OF THE MIDEL

none

Fig. 712 Recognition Results for the Glove in Fig. 7.11
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Fig. 7.13 Another View of a Doll

Fig. 711 Another Hammer
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Fig. 7.15  Ancther View of a Horse
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In the cone description process, the local cones are extended unti' they encounter a
discontinuity. The discontinuity 1s defined locally, as an abrupt change of the cross-section. T he
local continuity defimtion works well with cylindrical parts, where the cros.-section 1s constant or
varies slowly. Parts segmented by a lecal discontinuity are merged in later processing, eg. in Fig.
4.10, pieces P4 and P7 describing the top and the bottom of a leg are merged into a single piece
as an alternative description (Also Pi and P2 in Fig. 78). The converse, of splitting a piece into
sub-parts later can also be useul, but 1s not implemented. More eftort 18 needed for a better
global continuity analysis which takes into account the roughness of the boundaries.

The descrigtions of the axes are generaily satisfactory in the central parts of a piece.
Near the joint of a piece with other pieces, the descriptions can be affected by attempted
extensions into parts of the other pieces, leading to either premature termination of a piece
description or distortion (curlirg) of the axis near the end: eg. see the end of piece P3, in Fig.
.13, near the joint with the body. This also affects those joint descriptors that rely on the
angular relations of the paits. Improvement of such descriptions will require detection of this
effect and perhaps redescription after removal of the interfering parts. We are able to detect
orthogonal terminations of a piece, eg. the face of the hammer in Fig. 4.7. Proper description of
other terminations will require special routines. More attention also needs to be pawd ro
descriptions near the ends of pieces, eg. description of a hand terminatine an arm. However, more
resolution is necessary for the implementation of such descriptions

The resuiting selected descriptions are satisfactory on the whole, the segmeritations being
consistent with the desired. intuitive descriptions. We believe that the results shown here ar» for
a wide enough variety of scenes, that the success of the programs is not attributable to their
tuning for the specific scenes, and that sumilar performance can be expected ot scenes of similar
complexity. The description programs have not resulted in any major “extraneous™ piece
descriptions. The recognition programs ignore small extra pieces (such as the piece P8
representing a foot 1n Fig. 7.9).

The connections aniong the pieces are easily inferred from the boundary. Symbolic,
summary descriptions are generated for the pieces and the joints of an object, as discussed in
sections 5.1 and 52. The jint descriptions relying on angular relations of the parts have not
been very useful for us, because of the above mentioned uncertainities of the axes directions, and
the allowed articulations of the parts. The bilateral symmetry computations rely on very crude
measures for part similarities and need improvement.

For occluded scenes, the separation of disjint bodies is adequate (except for the
separation of touching objects) The hypotheses for connections of occluded parts are based
primarily on proximity. implementation of more sophisticated techniques requires improved part
descriptions (eg. more accurate axes directions). K nowledge of support and stability 1elations can
be of value here. No hypotheses are generated for the Ginuity of a part split into two sub-parts
by an occluding part. Eg. in Fig. 4.14, one of the legs of tie doll is split into two parts because of
the ucclusion caused by the snake lying across the lag. Such cennection hypotheses will be essenizl
for scenes with heavier occlusion than considered "ore.

A dark supporting surface (background) has been used for our scenes. The separation
of parts of the supporting surface from the ob jects is not expected to be very difficult when using
three-dimensional position data. This problem 1s includec in the problem of separaung touching
ob jects, but could benefit from the use of special routines, such as searching for planar surfaces.
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The modals used for recognition are not ideal, but previously generated descriptions of
the objects. No effort has been put in “lezrning” more complete models. We have used only a
small set of models for our recognition experiments. However, the recognition programs are not
written for this particular set of models and are expected to work well with other ob jects, that are
well described by the zhosen representation. Also, since recognition 18 strongly dependent or: the
structure, it is felt that addition of objects with different structures will not adversely affect the
performance of these programs ,1ssuming that adequate descriptions are generated) For the
following examples, the set of models used consisted of the following: a doll, a horse, a glove. a
snake, a ring and a hammer.

The discrimination of the recognition programs is good between ob jects with different
structures. E.g. the glove in Fig. 7.11 is easily recognized by the programs (matches with the zlove
model generated from descriptions of fig. 4.9). Discrimination of objects from parual structure
descriptions depends on the amount of the structure seen. Eg. the recognition of horse in Fig. 76
is unambiguous but not in Fig. 7.5, and the doll in Fig. 7.9 is also recognized without any
confusion. For objects with similar structures, eg a doll and a horse, relative sizes of the parts are
used for recognition. With unrestricted limb articulations, the angular relations of the parts have
not been useful. For certain viewing angles, the relative size information is not adequate for
clearly picking one model over the other (remember, our models are incomplete). In such
instances, the multiple choices are reported in their preferred order. Eg. the horse in Fig. 7.3 is
reccynized even though only a partial vie' is seen, but the identification of the horse in Fig. 7.5
is not clear (choices f doll and horse are . cported, the doli being the marginally preferred choice).
Identification of ina:vidual parts 18 an integral part of the recognition process. This mat.es the
problem of further verifying the multiple choices easier (we have not implementect any
verification techniques). Note the many articulated views of the same doll, in Figs. 4.12, 6.3 and
7.13; and a view of another doll in fig. 79.

Iis some instances the b jects are identifiec correctly, but the part identifications are in
error. Eg. in Fig. 76, the tail and the rear lag of the horse have been interchanged (see the output
in Fig. 7.7). This is because the decision was based purely on the metric sizes of these parts (the
lengths, widths, and the cone angles), and the models had no information about the attachment
ponts of these limbs or the support relations. Shadows can cause part of the structure to be
obscured. Eg. in Fig. 4.14, the head of the doll is not seen as connected to the doll body. Without
this connection, the recoznition programs interchange the identification of the arms and the legs
(because of the interpretation of the shoulder piece as head). An hypothesis suggesting connection
of the head to the body is generated, but is not examined by the recognition programs because of
the above inconsistency. If the head is connected to the boly first (by manual intervention),
proper identification of the arms and the legs results, with the shoulder piece being classified as
an unimportant extraneous piece (since it 13 not elongated). This example suggests that more
"bottom-up” processing of hypothesized connections is likely to be necessary for complex, occludec
scenes.

The performance of the recognition programs could be improved by use of more
detailed models. Some improvement could also be obtained by more detailed matching of
individual parts, instead of just matching the average descriptors. Of course, the use of other
data, such as surface color and texture, would simplify many discriminations (eg. doll us horse).
Such data can be obtained from the TV image.

The indexing procedures are successful in working with partial views of an ob ject and
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retrieving a list of similar models. The indexing process is “robust™ in this sense. Effectiveness of
indexing depends on the amount of the ob ject seen, ie. the number of suggested similar models is
smaller when a larger amount of the object is visible. E.g. only horse and doll are suggested as
models to be matched against for both the dolls in Fig. 7.5 and 7.9, but the horse in Fig. 7.5 is
matched against a doll, a horse, and a hammer. We have used only a few descriptors for
indexing; more descriptors need to be added. The number of models used for our experiments is
too small to provide meaningful statistical results.

Only generalized cone primitives have been implemented in our description programs.
Addition of other primitives, particularly planes, will help in extending their range. We have also
not concentrated i the descriptions of objects with holes. The detection of the holes from the
boundary information available to us is direct. The modification of the descriptions of the solid
part in terms of these holes i1s more complex.

The speed and memory requirements of our programs are discussed in the following
section.

7.2 EXECUTION TIMES AND MEMORY PEQUIREMENTS

In the following we present the run times and program sizes ‘or the various stages of
processing in our system. All execution times are run iimes for a PDP-10, KA-10 processor,
running under the Stanford Monitor \unpaged) and the programs sizes are for 36 bit words.
Estimates of processing times for improved versions of these programs are offered.

The time required for acquiring the laser scan data is essentially determined by the time
taken to read a TV frame, and store the non-zero intensity points. We allow | second between
reading of two frames due to vidicon lag (image persistence). Currently, the time required to scan
a scene is about 2-¢ minutes. Intrinsically, the time required is limited to that needed for the
reading of multiple TV images. With currently available imaging devices, each frame could be
processed in 2-3 TV field times (to allow for persistence), and a typical scene requiring less than
200 scans would take less than 10 secs.

Much more time is spent in the preliminary processing stages of the program, than at
“higher” levels. This is consistent with the reduction of amount of data at higher levels. Thinning
of laser scans takes two to five minutes of runtime, proportional to the number of points in the
scans. The program size is about 20K. Computation for thinning is not expected to be reduced
by large factors. However, thinning of different laser scans 1s independent of each other ana
processing times could be reduced by parallel processing if such processors were available. In our
implementation, we use thinning only to locate the end points of segments for linking in a
boundary. Unthinned data could be used instead.

The execution time for linking the segments in a boundary depend on the size of the
picture. E.g. the horse in Fig. 4.10 required 20 secs whereas the picture in Fig. 36 required only 8
secs. The program size is about 20K. The major portion of this processing time is tpent in
computing the intersections of the two sets of laser cross scans (appendix 1). Such computations
would normally be proportional to the product of the number of segments in the two scans
However, the use of la.er calibration information limits the number of cross scans that need to be
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investigated for intersection with . given scan. The computation time is thus proportional to the
product of the number of scans and the average tength of a scan. In Appendix 1, we have
outlined a method for comy :ting intersections d-rectly by using o large men.ry array (21.5K) for
recording the scans at each point in the image plare. The time required for computation of
intersections will be that required to access this array once for each point in the laser scans. For
an average scene containing 10,000 points of non-zero brightness, this time is expected to be less
than | second. Note that this time will be only a linear function of thc number of ponts.

Projection in each directicn takes an aveiage of 5 secords We projecc in 8 directions,
requiring about 40 seconds. The computation time is prooortional to the number of boundary
points for the object. The programs are about 30K in size, but the temporary data storage
requires upto an aaditional 50K. Much of this storage could be reduced by more efficient coding
of the present programs. The major proportion of the execution time for the projection
operations is spent in computing the cross-sections, such as shown in Fig. ¢2. We think this
computation can not be reduced significantly, but the projections in different directions are
independent and could be computed simu:taneously on parallel processors.

The extension of the local cones generated from the projections requires about 45
seconds each for objects in figs 46 2nd 413, The time required to compute these axes 1
proportional to the total number of cross-sections computed, which 1s proportional to the length of
the 2xes of the cones. Processing time could be reduced by sampling the axes at coarser intervale.
Some parts of the ob ject are described by nearly identical, multiple cones resulting from differeic
local cones, eg. see the legs In Fig. 4.6. Such duplication could be detected, in some cases, Defcre
the extension of the cones by examining the containment of the axes of the local cones. The
extension of different cones is independent of each other and thus amenable to paralle!
processing. The size of these programs is about 30K. Our cone description routines are about an
order of magnitude faster than those described by Agin ({Agin 72)), this imrrovement comes from
our use of the boundery rather than the points on the surface in the description process.

The resolution of overlapping cones and the symbolic descriptions of the chosen parts
requires less than five seconds for the examples presented here. The matching of a description
with one model requires less than 2 seconds. Indexing reduces the number of models to be
matched against, in our case to 2 or 3 (the time required for indexing itself is insignificant). With
a large model base and no indexing, the matching times would become the ma jor component for
recognition. [n our implementation, this stage of the processing requires the least time. The
symbolic description and recognition programs run in about 60K of memory (the running size of
the programs will go up with an increase in the number of models).

The processing speed of the current programs is far from being in “real time"; the
average time for complete processing being about 510 minutes (including the data acquisition
times). However, with the speed up of data acquisition and elimination of thinniny, this time can
be reduced to about % minutes. These programs have not been optimized for run time efficiency
and improvements can be expected by such optimization, eg. the elimination of array bound
checking and machine coding cf the inner loops.

These execution times are, of course, dependent on the speed of the hardware processor.
Already, processors five times faster than the processor used for our experiments are available at
reasonable costs (eg. PDP11/45). Processing times of as low as 30 seconds are thus currently
feasible. As most of the time is spent in processing that can be done independently and in
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parallel, multiple processors can be used to reduce this processing time in direct proportion to the
number of such processors. With the expected decrease in *“e cost of such processors, near real
time computation of our aigorithms will be feasible at reasonable costs.

The total size of our programs is about 150K, with additional data storage ranging upto
50K, depending on the scene. Much of the processing is sequential and only parts of the
programs need reside in the memory at one time. Our system monitor does not permit *his and the
programs are run as several smaller programs. The size of the programs is not expected to be a
major constraint with the use of modern techniques of paging monitors.

7.3 FURTHER RESEARCH

Severai improvements in the performance of our programs can be obtainec. by
implementation of techniques suggested .reviously (in chapters 4, 5 and 6). In summary, the
important ones are:

1. Redescription of parts aiter the descriptions of the neighboring parts are known.
2. Use of more detailed models of the ob jects, perhaps for specific applications.
3. Verification methods for resolving recognition ambiguities.

4. Incorporation of primitives suck. as spheres and flat surfaces; and better descriptions of
piece terminations

5. Improved resolution from the hardware setup.

In the following are suggestions for further research, related to our work, and to extend
the results of this research.

The major need is to extend the results fur scenes of higher complexity, such as heavy
occlusion or unfavorable viewing angles. Analysis of such scenes is likely to follow a modified
control structure. Surface continuity hypotheses will need to be generated at an early stage and
communication between different levels will need to be more extensive. Analysis would be helped
by Incorporation of knowledge such as support and stability. Use of such knowledge with only
partial information about the ob jects is unclear.

Simpler analytical techniques ma, suffice for apolications to visual feedback where much
information is at hand about the expected ob ects in the scene. Visual feedback has been found to
be of great utility in previous attempts at manipulation aimed for industrial automation
applications ([Gil1). (Bolles]). Incorporation of primitives other than generalized cones is likely to
be necessary for ob jects encountered in industrial applicatione.

Learning of model descriptions by using several views of the same object and by
comparison with other ob jecis is a description learning problem. Winston ([(Winston]) approached
this problem for the domain of polyhedral ob jects; we feel that the current domain is richer and
presents further important problems. The descriptions generated here are not necessarily periect
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(these problems correspond to missing or extra lines in Winston's case) and some of the relations
are metric.

Even though we g=:her complete three-dimensional data about the visible surfaces of an
ob ject, our programs are able to work with merely the houndary data. Such data can, in principle,
be obtained from the TV image alone. For situations where the use of laser ranging is not
acceptable, the camera image may be the only available input (this sill coes not preclude the use
of depth information obtained by a stereo pair of pictures). We do not expect a 2 analysis to be
easy, but still feel that our techniques offer hopes of making it feasible.

The extraction of boundary information does not require compleie three-dimensional
position information. Grid coding techniques suggest possibilities of extracting boundaries more
simply and quickly. Will and Pennington (IWil)) have desciibed experiments with shining
various grids on polyhedral ob jects and direct extract:nr., of plane faces. Consider shining a gid
of alternate sark and bright lines on an object. ‘I he extremities of the lines on the ob ject can be
used to construct the boundaries. However, some ambiguities occur because of coincidence of
segments from different lines in the projecting grid (this confusion is what prevents ihe direct
position measurement of all points on the surfaca by shining a singie pattern on the ob ject).
Output from shining a rectangular grid is equivalent to that obtained by considering all the laser
scans for ane scene from our current apparatus at the same time. Fig 3.3, shows the laser scans
for a doll; some scans appear to go unbroken from the head of the doll to the body because of the
comncidence of segments from different laser positions. The individual scans, not shown in the
figure here, show clear discontinuities and the boundary shown in Fig. 3.4, separates the head and
the body. (Note the head and the body are separated because of depth discontinuities from the
particular viewing angle) Coding of hght patterns on the grid can be used to reduce such
ambiguities. For any cc.e, some set of surfaces will give erroneous resukts. The requirements of a
grid code for just extracting the bound~ry information and nct necessarily proviae complete range
information may be simpler.

7.4 CONCLUSIONS

Research in the area of descripticn and recognition for realistically complicated scenes is
preliminary and our programs are not of direct use for applications such as industrial automation.
However, we feel that a beginning has been made into extending computer vision techniquss to
curved and complex objects. We think that our techniques aie generalizable, and that for
restricted applications at least, extensions of our techniques can be made to work. The
periormance of techniques presented in this thesis was discussed in detasl in sec. 7.1, and
cuggestions for improvements provided in sec. 7.3. Here we summarize and discuss how our
methods relate to some broad issues in computer vision and artif icial intelligen-e.

1. Representation: The power of our programs (or lack of it) is strongly dependent on shape
representation. In our experience, the chosen primitives have been useful for the class of
objects used in our experiments. We think that they will apply to a broad class of indust:iai
objerts and animal shapes. We were able to describe objects at varying levels of detail and
differentiate between gross and fine details. The primitives allowed the articuiation of limbs
to be expressed naturally, and we are able to recognize objects with such articulations. The
only intermediate representations of interest were a representation of 2-d image space and a
representation of the boundary, particulary proximity on the boundary.
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2. Segmentation: The segmentatior problem consists of segmenting different objects in a
scene and segmenting an object wnto sub-paris. The body separation problems becomes
simpler with the use of depth data but still remains a fundamental problem (as for the cases
of touching bodies and supporting surfaces). Ir this thesis, we have ignored this probiem.
The notion of continuity is basic to our segmentation of a body into parts. In our case, we
have used the discontinuities of a cone descripiion. In the context of the chosen
representation, we have been successful in finding gross discontinuities. Better continuity
formulations may result in more useful and finer segmentation, and pretent an important
research problem. In our opinion, the low level techniques are necessary, but not all
problems need be resolved at that level; the final segmentation decisions can only be made in
the context in which they are to be used. The ability to generate alternative descrigtions is
crucial. We suggested some redescription techniques in the context of a joint.

3. Indexing: Our approach to recognitic has been through making descriptions. The
descriptive stage seems necessary if the system is to have any indexing capabilities. Some
approaches to indexing were pretented in this thesis; we believe it to to be a major and
difficult step in the recognition process, and generally necessary betore “high level”
knowledge can be used (discussed in more detail iater).

4. Matching of Descriptions: Our recognition of objects is by matching two description
structures. The description structures contain many descriptors and relations among them.
We believe that similarity of such structures can not be adequately evaluated solely by a
metric defined on the various descriptors. In our programs, we have chosen to make
descriptions of differences and evaluate the differences in the context of the task of
recognition (such as, could the two descriptions belong to the same ubject in spite of the
diffecences by "explaining” t:.. differences). Thus, a three legged horse would be recognized
as a horse, assuming the fourth leg to be hidden. Such comparison is essential for
recognition from partial informacion. Also, note that segmented models are essential for such
evaluations. The ultimate resolution of the differences must depend on the goals of the
program. Wher. confronted with a nurple cow, output of a2 matching process should be that
it sees an ob ject with the shape of a cow but the color is in discrepancy. Whether the ob ject
should be called a cow or not, must depend on what additional checks can be made and what
is the purpose (of making such a decision). For recognition, greater power is available from
including model-driven verification tests, eg. by checking the feet of a korse to distinguish it
from a doll.

4. Computational Complexity: The amount of computational «*fort required is intimately
relate o the two-dimensional (three-dimensional) nature of the +isual processing. Operations
such a3 finding proximity in a piane or space are inherently expensive, but necessary, e.g. for
boundary organization, and finding boundary correspondences for the cone descriptions.

8. Implkementation effort: An important issue in vision reszarch is the effort required for
implementation. Our programs are large and have required considerable investment of time,
though they address only a smail part of the vision problem (we have dealt with shape only).
We believe that at least pat of the reason for is in our use of a fanguage like SAIL (or
LISP), which operates at too low a level for visual operations. A special “high level” language
will aid the system building process.
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Use of High Level Knowlecge:

Some alternative paradigms, suggesting the use of “high level* knowledge and goal
directed (“top down") techniques have been suggested recently. In one form {{Tennenbaum]), this
Knowledge is used to limit the search, such as by assuming that the telephones are found on tables
in an office and by using the knowledge that a table top is easy to find. Another suggestion has
been to .se hypotheses generated from a very simple description of the scene (or parts of a scene)
to guide further descriptions ((Freueder 73ab)). We think that the principal issue .n the use of
high level knowledge to guide a vision process, is the generation of a workai:ly small number of
hypotheses about the scene (or the ob ject). We discuss the various techniques in the context of
the following tasks.

1. The visual environment is limiied and well known. The properties of ob jects (such as
color) and their approximate locations are known (and no unknown objects are in the
environment). Example: a selected office scene.

2.The visual environment is limited and relatively well known. Most of the objects and lvose
spatial relations among them are known. However, the scene<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>