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: Chapter 1

INTRODUCTION

1 Early computer vision research was mainly concerned with operations |
: on pictures--such as encoding, enhuncement, and edge detection [Rosenfeld,

1969a) --and with analysis of single images--for example, interpreting images
containing bodies from a known set of objects [Roberts, 1963; Guzman, 1968).

Carly matching work fell into the domain of pattern :
recogni tion--matching a description of an idealized object against ;
descriptions generated from analysis of an image containing that object. ;

. * L] * .  ;

| Some pixel-by-pixel matching was done in matching a template of an
alphanumeric character against »ictures of hand-printed characters.

1] (Rosenfeld ([13639b and 1973] provides excellent surveys of the |iterature for |

3 single image processing.) t

| Stereo vision was for a long time the domain of psychologists and
physiologists, whose interests were in understanding human stereo vision

| [Julesz, 13961]. The major use of stereo was in photogrammetry--converting
aerial photographs to contour maps, usually by optical methods (Bouchard and ;

Moffitt, 1365]. i

| Eventually, computer stereo image processing became attractive. :
| Julesz [1963] saw it as a method of studying human stereo perception.

Computer photogrammetry techniques were developed and used to deal with '
[ telemetered imaye data from satellites. Image processors began to use stereo

| i. to determine depth information [Quam et. al., 1972]. i

| All ot these applications required efficient ways of matching areas :: of one picture With the corresponding areas of another, similar picture. :
| Quam [1371] developed a spiraling, stepping algorithm ‘0 facilitate hie

1 aligning of Mariner spacecraft images ‘or variable feature detection. Barnea 1

i and Silverman [1972] reported a sequential decision algorithm which they used
| § in matching weather satellite photos. Other general investigations of

. matching have been done by Fischler [1971] and by Fischier and Elschlager |

L | [1971]. :

: [ STATEMENT C° THE PROSLEM |LE} . |

What is matching? By matching, we mean the process of {inding, for a |
: [ given sub-area (window) of an image X, the sub-area of image Y which -ontains ’

* point for nolnt the same intensity information. Matching should not be

| |
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confused with mapping. Mapping implies that there is some general function J
(Ty,y) = f(Ix, Ix) which gives the position of corresponding points in image |
Y for a given set of points in image X. Matching is a toecial case of
mapping--the case in uhich the mapping function is a simple ti anslatior of
axes, (ly,Jy) = (Ix,dx) + (Ti,Tj) within the area buing matched.

This thesis is concerned with matching, not mapping. Therefore, we ]
are limited to those areas of pairs of images which do not have large
perspective changes from one view to the other. This condition is met by
small angle sterec and by distant objects in larger angle stereo pairs. We

] must also exclude areas of images representing objects which themselves move
or are moved so as to present differing projections to the camera3s.,
Similarly, we wi'! also limit ourselves to high-quality pictures, i.e., those

] without scratcie= or other blemishes on the negatives, those having lou
noise, etc, These limitations assure that our target areas uil| have

: matching candidate areas.

The subject of this thesis is as fol lous: given tuo images of a
scene, constrained as above, use the information in the pictures to match
target area A of image X with its Corresponding candidate area in image Y
We will discuss general techniques for matching, efficient methods by which

| matching can be done, some of the problems that can occur when matching real
. data, and ways of extending matching areas. In addition, we will describe

some of the algorithms uhich have been implemented to use these techniques,

j DESIGN OF THE INVESTIGATION

] Picture processing is, for the most part, an applied science. |t
1 I seeks to show that something is possible, not by formally proving that it can
p ¥ be done, but by doing it. In keeping with this spirit, this dissertation

Will contain no formal proofs of existence, termination, correctness, or
’ running time. It will contain discussions of techniques and algorithms and| reports on how well these techniques work when implemented,
. There is, underlying all techniques presented in this thesis, a very

basic philosophy. Machine vision will in the near future be used for those
& tasks which man can do but doesn’t want to, such as assembly |ine drudgery,
} or those tasks which he wants to do but can’t, such as exploring inhosaitable

" i planets. In the first case, the structure of the task environment is well :
a known and can be used to make the performance of the task more efficient.

This is the problem addressed =nd approach used by the Hand-Eye group at the
| Stanford Artificial Intelligence Project (Feldman, 1969). In the second
< case, the structure of the environment is only crudely known, hence can only| i loosely be used to expedite the task.

# : [ It is this latter variety of problem for which the techniques of this |
thesis were to be designed. Consequently, we will avoid whenever possible
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overspecialization through the use of particular assumed structure or |
semantics in the completion of our tasks. Our techniques may not be as
poder ful as those using such information, but they will be more general.

Most of the techniques described in this thesis have been programmed;
h those which have rot will be so noted. The photographic illustrations in

. this thesis are derived from visual output generated by these programs on a
| television monitor. No photographic trickery has been done: what the reader

sees i8 roughly what a person operating that program would see on his
| moni tor.

DEFINITIONS

| Some of the terms from the field of computer vision which are used in
thie thesis are defined below.

Picture--a two-dimensional array of integer values which represent the light
: intensities of a scene at some set of grid points.
¥

| Point--one of the array elements of a picture.
Pixel-~(contraction of picture element) a point in a picture.

X Color picture--a set of three pictures, representing the red, green, and blue
filter components of a color photograph or a color television
picture,

] g Image--the set of pictures representing a photograph--one picture for a |

~ black-and-white photograph or three picturee for a color photograph.

i CONVENTIONS OF PICTURE PROCESSING
[. | :

: In keeping with the conventions used in the television industry, :
pixels are identified by their (l,J; positions with respect to the upper

= left-hand corner of the picture, which has position (8,8). The I-dimension :

= increases to the right; ihe J-dimension increases downward,

l. The intensities at each pixel are represented by numbers from 8 '
| through k = 2" - 1, with B representing no light, or black, and k li

} representing full light, or white. Pixels are stored packed, as many as will
; fit per word of computer memory.

k

|

. gi 1
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| NOTATIONAL CONVENTIONS

: As in normal programming usage, the following compromises with |
standard mathematical notation have been made. ]

Scuare root signs are replaced by the function SQRT,

The ralsed dot for multiplication is replaced by x.

The following mathematical conventions are used.

Summation signs are indicated by a sigma. The variable which is being summed |
over is Written below the sigma. When exact ranges for the summation

are to be given, they are given as a boolean expression in the place
of the summation variable. The function being summed is written to |

] the right of the sigma. Parentheses are used only uhen necessary to |
: avoid confusion.

Examples: 2X; and 2 X;

| i asi<b
y The mean of a variable is indicated oy overbar notation. |

| 2X

Xo —

k OTHER CONVENTIONS |

| i Illustrations are numbered with Arabic numerals within chapters and |
f 5 are prefaced by the chapter number, e.g. the first illustration in Chapter 3

¢ is Illustration 3-1. All illustrations for a given chapter appear together

: at the end of the chapter. Prints of the original data appear in Appendix A.

Equations are numbered with lower case Roman letters within chapters |

| | and are prefaced by the chapter number, e.g. the first equation in Chapter 2 :‘ ‘gs Equation 2-a.

an
t 4 |

, ~
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Chapter 2

BASIC AREA MATCHING TSOLS AND TECHNIQUES

; Suppose one has been given two digitized photographs which were taken
of the same scene, but which differ in some respect, such as point of view.
Consider the problem of using a computer to determine whictk area of picture Y
(candidate area) best matches a given area of picture X (target area).

Geometrically, two areas match if they both are projections of the i
same three-dimensional piece of scene. Intuitively, two areas match if they 3

) "look the same". Computationally, two areas match if a caiculated measure of
3 match between them is sufficiently optimal. :

| CORRELATION

1 | Since we are dealing with the probability of a match occuring, some
p statistical measure is cdesirable as the measure of -atch. The common measure
- for this is discrete correlation,

; COR = 2 X; * VY;

L. which can be normalized by the means of tke samples

3 COR =3 (X; -X) x (Y; -V)
1 LS

or by the second moments of the samples

i 2X; x,
: ;

, - COR wo ——m m8 m8 ——

| | SORT( X X;2 x 3 v;2 ) |) i [

: - or by both.

. OX; =X) x (vY;, -V)
|

| COR I — .. SORV( Z ( X; -X)2 xX (Y; -Y)2)

| |1

| The last is the nicest to work with, since is has an absolute value
less than or equal to one, and its absolute value equals one if and only if

[ . X; = axyY; + b for all i.
LR * 5
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DIFFERENCE MEASURES

Also used are measures based on the difference betueen the samples
over the two areas, such as root-mean-square error,

RMS = SOQRT( 1/n 2 (X; = Y;42 )
(

which can also be normalized by the means of the samples.

RMS = SQRT( 1/n 3 ( (X; -X) = (Y; =V) )2) (2-2)
i

Absolute difference is also used. :

AD = 2 |X; - Y;| 7/n ‘
i 4

It too can be normalized by the means.

AD =X | (X; -X)-0(Y;-Y)] /n

| iThe caiculation of normalized absolute difference, however, requires
tuo passes over the data--one to calculate the sample means and one to sum

the absolute differences which include these sample means. All other

: measures mentioned here, including normalized correlation and normalized RMS,
can be calculated in one pass over the data. What distinguishes normalized
absolute difference from the rest is the presenceof summations both inside

i A and outside of the absolute value sign. Absolute value is not a linear

operator, therefore effectively foils the algebraic manipulations of f
13 summations which permit the other normalized measures to be calculated in one

1 pass. Because of the added inconvenience of a second pass over the data, ;

normalized absolute difference is rarely used. |-

Both RMS and absolute difference yield values between zero and a

: number bounded by the largest (ifference between the samples, which is in :

y turn bounded by the maximum poss ble intensity at a pixel. |
COMPARISON OF THE MEASURES JF MATCH

} Perhaps at this point a few words should be said about the reletive

[ merits of correlation, RMS, and absolute difference as measures of match. ;* RMS and absolute difference are clearly related. There is 2:30 a |
; relationship betueen normalized RMS and normalized correlation. In the

following, let

’ TX,Y) «2 (X; -X)x(Y;-Y) ,

6
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Correlation can now be expressed as

TIX,Y)

coke ——m7m/m8m8m7 |

] SART( TX,X) x T(y,Y) )

| Equation 2-a expends to
RIS= SORT( 1/n2 ( OX; - X12 2%x(X;=X Ix( ¥; =F) + (VY; -V)2))

i

= SART( 1/n ( TUX,X) - 2%xT(X,Y) + TLY,Y) ) 1)

: Hence, we have

TOGX) + T(Y,Y) - n x RMS?

COR e ——m——/—m—nonroonoaono—

2 % SART( T(X,X) x T(v,Y) )

Being related, correlation, RMS, and absolute difference might be expected to
give similar results when used as the measure match.

The cneapest measure of match, in terms of the numtar of instructions
1 required to implement it, is absolute difference. Two samples which match

exactly have an absolute difference of zerc. It may be the case, however,
that the pixel intensities in the candidate area equal those in the target
area plus a constant (offset), that is, Y; =X; + b. In this case, the
absolute difference betieen the two intuitive matching areas would be
non-zero, perhaps greater than the absolute cifference for some other area

{ which is similar, but not intuitively the matching area. i

Normalized RMS takes care of this problem by subtracting the means of :
|. the two areas from each of the intensity values within the samples, It

trades a little more time in the calculation of the measure of match for more |
1 flexibility in its application.

| i. §
Suppose, however, that the pixel intensities from the matching area 4

X are equal to a constant factor (gain) times the intensities from the target t| area, plus some constant offset, tha. is, Y; = a%X; + b, The value of RMS
: over matching areas in this case is non-zero. This can result in rejection
¢ of a matching area should some non-matching but relatively similar area ;

A contain data which has a relative gain of one.
be |

Normalized correlation, 2'though more expensive, is designed to |
[ handle both a constant gain and a constant offset. Subtracting the means |
. removes the problem of the offset; dividing by the variances takes care of |the gain. This can lead to multiple match candidates if several areas of

! different relative gains and offsets resemble each other. However, this
’ merely introduces impostors, it does not discard true matches.
| .

B
7
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Because relative gain and offset are frequently present in digital
stereo images, the author prefers normalized cross-correlation to the other

measures of match, and has developed matching techniques centered around
correlation. However, if gain and offset are not a problem, or are known and

can be taken into account in the calculation of the difference measures, then
the techniques presented in this thesis can be adapted to normalized RMS or

| absolute difference. Since the techniques ‘f this thesis were developed and |
| criginally implemented with correlation, they are discussed in terms of |

correlation.

FAST FOURIER TRANSFORMS FOR CONVOLUTION

Fast Fourier convolution is often mentioned as a tool for matching.
It is a method for caiculating the Z XY term used in correlation and RMS ;
error somewhat moru efficieni!y.

This 2 XY term is the discrete convolution of the tuo samples; the ]
Fourie~ transform of this convolution is equivalent to the product of the |
Fourier transforms of the two samples. Thus it is possible to do the

| summation by taking the transforms of the two sampies, multiplying them, then |
taking the inverse Fourier transform of the result. If this is done for a

target area out of picture X and all of picture Y, the result is an array,
: each element of which contains the value of tre convolution between the

candidate area centered at that point and the target area.

With the fast Fourier transform, it is possible to dc a transform of

a sample of m = 2" points in time proportional to m log2 m (Singleton, 1967]. i
Let N be the maximum dimension of picture X and W be that of the windou be ing

[ matched. Oue to the aliasing problem, it is necessary that m be not less
is than N+W [Cooley, et. ai., 1967], as well as being a power of two. If we let

L be the constant necessary to bring N#d up to 2", then the I XY for N2

5 correlations can be done in time proportional to (N+W+L)? log2 (N#J+L)2 by |
| the FFT method, as compared to time proportional to N2W? for the direct

computation. Of course, for normalized correlation or normalized RMS, it is
r- still necessary to compute I X, Z X2, ZY, and I Y2 directly, and to combine

them in order to calculate each of tr.z measures of match. Employing sliding ;
: sums to calculate these terms adds time proportional to N?; time proportional
: . to N* is also added to combine the sums for calculating the measures of ]

| | match.
Which method is faster for a given problem will depend on the valuee

| of N and W and the constants of proportionality, which depend on the 1
: Implementations. Illustration 2-1 compares the FFT approach with the direz? E

approach for the implementations used at Stanford A.I. and several values of |

[ N and W. ;

LL :
v
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AREA SAMPLING

Considerable time is wasted in calculating the measure of match over ;
all the pixels in every candidate area in the second picture. Like most 1
smarches, the search for a match spends most of its time failing--calculating
‘ne measure of match for areas that don’t match. If one can reduce the

amount of time spent failing, a significant saving Will result.

Barnea and Silverman [1972] observed that. for most candidate areas,
3 it becomes obvious after a small fraction of the points in the area have been

processed that the measure of match is going to have a non-optimal value. If
processing of that area is aborted when the area's non-optimality is |
discovered, a considerable savings of time results.

Toward this end, they propose the following sequential decision |
algorithm. Start calculating the measure of match, taking corresponding
pairs of sample elements out of the two areas in pseudo-random order. At

; intervals, monitor the value of the measure of match. If at any time the J
measure is non-optimal according to their decision criteria, discontinue the |
calculations and discard the area as non-matching. Otherwise, continue |

adding in samples randomly until either the whole area has been included or
the measure becomes non-optimal.

Barnea and Silverman claim that this algorithm is up to 50 times
pa faster than matching by ordinary correlation techniques. Ur‘ortunately, they

do not separate the savings due to their using absolute difference as the
measure of match from the savings due to the algorithm itself. Quam

4 [unpublished research, 1373) finds, in on2 particular application, that their
algorithm used with normalized RMS is five to ten times as fast as ordinary |

| normalized correlation techniques. :
Reducing the number of points handled in some of the sample areas is

T . one side of the coin. The other side represents the possibility of not :

| calculating that measure of match for every candidate area in the second
picture. |

:

| f
F

i
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{ Direct method. Tabulated values are 8.000826 N? W? seconds. :
3 .

| W 11 13 15 17 13 21

| 1866 31.4600 43.9488 58.5808 75.1488 93.8688 114.6508 |
150 708.7850 98.8650 131.6250 169.0650 211.1850 257.9850
280 125.8400 175.7600 234.0000 300.5600 375.4400 458.6400
250 196.6258 274.6250 365.6250 469.5250 586.6250 716.6258

380 283.1400 395.4608 526.5800 676.2600 844.7400 1031.9400 i

| 350 385.3850 538.2658 716.6250 328.4658 1149.7850 1404.5850 t
490 503.3600 703.0400 936.0000 1202.24080 1501.7668 . 1834.5600 t

] 450 637.0658 883.7858 1184.5250 1521.5858 1900.6650 2321.8650 }
§ 500 786.5000 1098.5000 1462.5000 1878.5000 2C46.5000 2866.5800

| "FFT method. Tabulated values are 8.088888 % 4( N+W+L )2 log2( N+W+lL ) seconds,
3 ie. 2 FFT’s--one for the window, one to inverse FFT the product of the

FFT of the window and the FFT of Picture Y. This neglects the time
needed for N? complex multiplies to form the product.

W 11 13 15 17 19 21
N K

i

i 100 36.7002 36.7002 36.7002 36.7002 36.7002 36.7802 ;
; 0 150 167.7722 167.7722 167.7722 167.7722 167.7722 167.7722 :

260 167.7722 167.7722 167.7722 167.7722 167.7722 167.7722 E
250 754.9747 754.9747 754.9747 754.9747 754.9747 754.9747 |

| 300 754.9747 754.9747 754.9747 754.9747 754.9747 754.9747 |
i ’ . 350 754.9747 754.3747 754.9747 754.9747 754.3747 754.9747
; . 400 754.9747 754.9747 754.3747 754.3747 754,3747 754,9747
i 450 754.9747 754.9747 754.9747 754.9747 754.9747 754,9747

| . S00 754.3747  3355.4432 3355.4432 3355.4432 3355.4432  3355.4432

} Illustration 2-1. These tables compare the relative efficiencies of the
Y direct method and FFT for calculating the convoiution I XY of a window of W?2

points with a picture of N? points. The constants of proportionality are
| - derived from machine language codings on the PDP-10 at Stanford A.l. by Lynn
b Quam (direct method) and Don Destereicher (FFT).
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Chapter 3

SEARCH STRATEGIES AND REFINEMENTS

The idea of shortening a search by "pruning" the search Jpace is not
a new one. Heuristic search has been a part of artificial intelligence from
the beginning (Nilsson, 1372). The basic idsa is simple: arrange the search

| in such a way that entire sets of solutions are considered at once. Attach
to each set some way of measuring whether or not it has a good chance of
containing the desired solution. Work in detail on only those sets which
show promise. Whenever possible, work first on those sets which show most

| promise.

3 With most pictorial data, teere is a fair amount of local coherence.
By this, we mean that an area centered at one pixel does not usually dif er
greatly from an area centered at a neighboring pixel. An alternate ;
expression of this would be to say that most pictorial data consists

| primarily of lou frequency information. This makes it possible to use one
candidate area as a representative of a set of areas centered at adjacent
points. The evaluation of some computationally inexpensive measure of

1 agreement over the representative area serves as the evaluation of the set. |
A number of variations on this technique can be used in pruning the search

| for a match. :

Be {

| i GRIDDING |
Consider for a moment the surface formed by plotting correlation as a

| : function of position of candidate area centers in the vicinity of the 1
| matching ‘candidate area. Because of the local coherence of most target i

areas, this correlation surface usually falls off gradually as one moves away
3 [ from the matching area’s center. (See Illustration 3-1). Therefore, in the i

[ immediate vicinity of the peak in a correlation surface which indicates a :
‘ match, the correlations will usually be above some threshold. |

| |

| One can take advantage of this fact by calculating the correlations I
. between the target area and candidate areas centered at points on an n by n E

§] grid over picture Y. For suitable n and threshold, it is clear that one of J
; the grid candidates must lie somewhere on the match peak above the !
a ¥ significance threshold. By searching in detail the immediate vicinity of any |

| 21d candidate showing a significant correlation, one can locate the match |
| [ peak. This is the technique of gridding.

If one uses an n by n grid on an N by N picture and finds k

| | |
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correlations above the significance threshold 0, one calculates about

(N/n}? + k*n? correlations of area W? in finding the match. In comparison,
the direct method requires N? correlations to locate the match. Since in
most cases, k is small, gridding results in a savings of a factor of n? over |
the direct method.

The success of gridding, of course, lies in the choice of n and of a,
which influences k. Examining the first pair of correlation cross sections
in Illustration 3-1, we see that for Us.5, n must be 1, but if Q=.1, n can be

| 5S. For the second nair, (U=.5 means ns6, and Q=.1 means n=18. The allowable
values for n and 0 are not only interconnectsd, but also depend on the :
individual correlation peak.

| However, when we begin our search for a match and are ready to set nand 0, we do not yet know what the correlation peak will look ike. We do
| know that, under ideal conditions for matching, the target area will very

closely resemble its match. If the matching area ex ctly duplicated the
target area, then the correlaticn surface would be identical to the
autocorrelation surface. (See Appendix B.} In practice, this precise
equivalence does not hold; however, the correlation and autocorrelation

| surfaces do resemble each other (Sss Illustration 3-2). Hence theautocorrelation peak can glve a good indication of the proper n and Q for 3
givei. target area. Extracting this information can be done by inspection, by
fitting a second order surface to the correlation peak and measuring its
parameters, or by examining the Fourier transform of the data.

| In theory, gridding will always work, since the worst it can do is
Ll degenerate to the standard method of evaluating the correlation at every

point when n=l. In practice, however, gridding is not used if the
] autocorrelation peak indicates a grid spacing of 1 or 2. Such an
| autocorrelation peak can otcur if the target area contains mainly high

frequency information, as is the case in the distant treee along the skyline |
-» in the Lab pictures. (See the copies of the original data in Appendix A, :| coordinates (112,208)in the first image and (113,26) in the second, window '
‘ radius=7,) It also occurs in extremely noisy Images and ie a feature of eome
, artiflcially generated images [Julesz, 1961 and 1963).

=» REDUCTION
[
: One technique for utilizing local coherence to make the amount data to be

: handled more manageable is reduction [see e.g. Kelly, 1970]. In our

[| application, this means making a new pair of picturee by spatially reducing
the originals--effectively replacing m by m squares of pixels by one pixel
having the average intensity of that square. Appropriate areas are then

[] matched in the reduced pictures. Finally the correlat!on peaks for the areae
found to match best In the smaller pictures ars searched In the original,

| higher ~zZclutlon pictures.

12 h
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Doing an m by m spatial reduction on the pictures means that there |
are nou (N/m)? potential areas for the reduced target area to match instead
of N?, a savings of a tactor of m® in the number of correlations to be

| calculated. [If the target area is to represent the same objects, then Its
; size is also reduced from W? to (W/m)? pixeis. This resuits in a savings of

a factor of m? in the correlation calculation ioop, for ar overall savings
: factor of m*. |

: If the target area is not very big to start with, reducing the images
| may cause the target area to no longer represent a valid statistical sample.
3 If one is not constrained to matching any particular area, but can enlarge

the effective area to maintain a vali‘i sampie slze in the reduced plctures,
| then reduction can be used. The savings factor will depend on the exact size

of the window which must be u:3d, but should be somewhere be tueen m* and m*.

As with gridding, there is an additive term of kxm? ful scaie
correlations necessary to determine the location of the unreduced match,
Here, k depends on hou many areas within the reduced second image will
resemble the reduced target area, which is difficuit to predict. There is
also the overhead of reducing the tuo images, but this can ofte. be combined

1 With some other necessary processing.
The success of reduction depends on the choice of m, which In turn

| depends on the information within the picture. Intuitively, f most of the} information in the picture lies in features which are p pixels wide, then one 4
does not wish to reduce the picture by a factor of p or greater.

I Computationally, if the Fourier transform of the picture reveals that a p
| significant part of the power is in spatial frequencies higher than N/p, one ]

| should reduce the picture by a factor of less than p. In general, one should
i " avoid reduction by a factor sufficiently large to change the spatial

| frequency or information content of the pictures. One Hay to check on this 4
: is to examine the autocorrelation peak in both the original and reduced 3
. pictures. If the peak is much narrower in the original than in the reduced 1
| image, too much reduction has happened. 1

If one allows the choice of m to be determined by the data, then in ¥
li theory, reduction will always work. since it simply degenerates to the: 1 1] standard method for m«l. If a larger than recommended reduction is !

| emp|oyed--for example to decrease noise--then the possibillty exlsts that the :

[ technique of reduction will fail to produce the proper match, ;

| SIMILARITY | :
The technique of similarity differs from previously descr |bed

techniques in that it does not use correlation as the basis for pruning the
search for the match. The idea behind similarity Ils simple--if two areas 1
match, then statistical measures calculated over them, euch as means and 1

I var|ances, should be siml lar, i
. 13

g N, :



: ps a— ’

To employ the basic technique of similarity, one first calculates a
vector of statistics for the target area and for each of the candidate areas. |
The most promising candidate areas are those which have vectors of statistics

similar to the vector for the target area, as determined by a Weighted
distance metric. Then the correlation values between the target area and E
those candidate areas are used to decide which promising candidate area is }

: the matching area. E

Comparing similarity to the s*andard method is not as simple as E
comparing gridding or reduction. We can no longer just count the number of ]

correlations calculated, since most of the time involved in using similarity |
is spent doing things other than correlating.

Calculating the statistics over N? areas in picture Y with sliding
sums Will require time proportional to N*. The constant of proportionality
will, of course, depend upon how many statistics are calculated and upon the
statistics themselves. For instance, on the PDP-18, it takes 8.525 ms per .

3 pivel to calculate 5 statistics--mean and variance of intensity and vector |
mcan (2 components) and variance of color--for a color image. It takes 8.145 |
ms per pixel! to calculate 2 statistics--mean and variance of intensity--for a

| black-and-uhite image.
| Comparing the r statistics in the target vector to the r statistics

in N?* candidate vectors will require time proportional to r*N3, Example: it |
takes 8.175 ms to compute a weighted distance metric for S statistics and

, store the resulting distance; it takes 8.875 ms for 2 statistics. Sorting n
distances to order the areas by hou promising they are requires

| 8.870%(log n)*(n + log n) ms. Finally, calculating the correlations for the |
4 k most promising areas, using a window of area W?, requires B.065*kxW2 ms,By comparison, it takes B8.065%N?%2 ms to calculate all of the correlations :

- | | directly.
| i]

i To better illustrate the comparison, consider matching a 21 by 21
s [7 area out of a 156 by 158 picture, let kelB, and use the 5 component vectors }
| | from color images. For this example, it would require about B45 seconds io
) compute the correlations nrecessary to determine the match airect ly;

1 similarity spends about 11.8 seconds calculating the vectors, 3.9 seconds
I | calculating the distances, 25.2 seconds sorting them, and 8.3 seconds i

calculating the k correlations, for a total of about 41.2 seconds, {i

. representing a savings factor of about 16. |i 1 I As savings factors go, 16 is neither trivial nor wonderful. So far, 3
however, we have implemented similarity in a brute force style comparable to i

| the direct method for finding the match. It is possible to refine simi larity ;in order to make it much more efficient. ;

: We have pointed out before that most images have a local coherence :

ll which causes area-based measures such as mean and variance to change slowly
as the area center is moved by one or two pixels. This means that we real ly ]

§
1 |



do not need to calculate the distances betueen the target area vector and

vectors for areas centered at every point in the second image. We can allow

an area centered at one point to represent those areas centered at adjacent

points and apply heuristic search methods.

For instance, one could sort only those vectors of statistics which

fall on an m by m grid, reducing the number of distances which must be

calculated and sorted to (N/m}2, Then, from the most promising k such grid

points, one couid hill-climb in the vector distance space until one found the

most promising vectors, which would be checked via correlation to dete. mine

the match. Here we spend the same amount of time calculating the vectors,

| but only 8.175% (N/m)? ms calculating distances,
8.070% (log2 (M/mi2)%x(log2 (N/m)? + (N/m)? ms sorting the distances,

B8.175%k*m? ms calculating distances for the hill climb of promising vectors,

and B.065%kx¥U2 ms doing the correlations for these promising hill tops.

Suppose that ue set N=158, We«2l, k=10 as before and let m=l10. As

| hefore, we spend 11.8 seconds calculating the vectors, 0.84 seconds

: calculating grid point distances, 3.13 seconds sorting these distances, 0.18

seconds calculating distances for the hill climbs, and 8.38 seconds doing the

| correlations for these promising hill tops. This is an overhead of 11.8seconds, plus 0.65 seconds per match. For only one match, this gives a

: savings factor of slightly over SB. 1{f the overhead is spread among 20

matches, the savings factor goes up to over 5008!

i This technique has not been implemented, however, because of the

| } large amount of storage memory it requires. In addition to the 1582 B-bit

i | intensity values of the second image (Which amounts to 3,750 computer words),

; bs that are needed for the brute force correlation method, this method also
requires 5%158% 36-bit numbers to store the vectors for the second image.

| This amounts to 112,508 additional words of computer memory, which on most' systems is hard to come hy. Our speedup of a factor of S88 is acccmpanied by
a very large increase in the space required to do the job. |

| Nou, instead of keeping all of our vectors of statistics from every
point, we only keep them for areas centered on an m by m grid over the second

. picture. The most efficient way to do this for the yeneral case is still :with sliding sums. Recording only every m-th vector in both directions means

| ’ that this now takes B8.065%N2 + 0.880%(N/m)2 ms for the black-and-white and

| B.340%N? + B.185%(N/m)? ms for the color vectors described earlier. This

§ time we calculate (N/m)? distances and sort them as before. For the best k
¢ | distances, we employ some form of local correlation search to cover that m by

m area, hich potentially holds the match.

] | For N=150, We21, kr18, and m=10 as before, we nou spend 7.69 seconds
forming the vectors. For each target area, we spend 0.84 seconds calculating

t the distances and 8.13 seconds sorting them. [If we calculate all m2

-_ I correlations for each of the k promising areas, we Will sperd 28.67 seconds
in the correlation loop. Employing gridding or some other form of efficient

1



i»

| J

correlation search can reduce this term significantly. Realistically, if we
share the overhead among 28 matches and do about 158 correlations in

searching the most promising areas (see Illustration 3-3), then matching one
target area will take around 4.85 seconds, a savings of a factor of
approximately 138 over the direct method. The extra space required is a mere
5%152 36-bit words, or 1,125 words, 3 reasonable amount.

Clearly, similarity is a very complicated technique whose relative

efficiency depends on a great number of things. The overhead depends heavi ly
on the number and type of statistics used, which will depend on the data and

the ingenuity of the experimenter in using it. An increased number of

complex statistics makes the overhead greater and increases the amount of

time spent calculating the distance measures. But, as Illustration 3-3

shows, having more statistics in the vector can reduce the number of areas

which look promising, hence tne number of correlations: which must be
| calculated.

: The type of statistics used can affect the success of similarity.
Averaging measures such as mean and variance have the advantage of being
quick and easy to calculate, fairly insensitive to noise, and, as noted

before, usually insensitive to small changes in position. In general,
statistics that average are prefered to those that count or those that
difference.

The calculation of tne distances for the vectors and the sorting of
the vectors depend on the number cf representative areas, hence on the

by . gridding over which the representative areas are taken. Too small a gridding
results in a large number of vectors to be compared and sorted; too large a }

; ’ gridding may let the matching area go unrecognized because it fell between

two representative areas which didn’t resemble it. As with the grid spacing
1 for correlation gridding, the best way to set this grid spacing is to examine :

. the vector surfaces for the neighborhood of the target area. |

; 2] The technique of similarity usually works, but not always. If the f
| |, pictures are very homogeneous, all areas will be similar, resulting in many :

| candidate areas to be searched via correlaticn, hence little savings. If the i
1 pictures have much fine detail or are noisy, then the candidate gridding may |

: | he so fine that the technique loses its usefulness.
ny B The presence of objects which have moved relative to their :

backgrounds in the second image may cause the technique of similarity to fail
* completely for some target areas. For instance, consider the pair of areas
Lo in the barn pictures (see Appencix A for the originals) which are centered in

| the trees to the left of the telephone pole, and have the pole itself in the
4 right half of the areas. These areas will match very well. However, if it

i should happen that the representative area which has its center physically

i I closest to that of the matching area contains a part of the foreground post, |: i it will not be similar to the target area. Because that representative area

| is not similar, it will not be searched and the match will be missed. I,
1
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i Indeed, any condition which causes the matching area to require a finer
similarity grid than the target area will endanger the success of simi larity.

CAMERA MODELS

So far, 2 have been discussing methods of reducing the search which
do not assume anything not directly contained in the picture data. This was
the case for our data; houever, in general ue will know somewhat more about

; our pictures. A reasonable design constraint on a picture-taking system is
that it recoru hou it was oriented when it took the pictures. This
information enables one to model the relative positions ard orientations of
the cameras,

If complete camera model information is not known, as it was in our

case, it still is possible to derive a workable model from the pictures
| themselves. Several things are known to be undeciuable given just the

information. in the pictures. Absolute position, for instance, is not
derivable; it requires external knouledge such as measurements made when the

A picture was taken or recognition of some landmark in the picture. Likewise,

| it is impossible to say exactly how large or how far away a given object is: without measurements or landmarks to establish scale. |

It is possible, however, to derive relative positions aad relative

sizes for objects in the pictures. This is done by assigning an arbitrary
. position and orientation to one of the cameras and by fixing some distance,

such as the distance between the cameras. With these hypotheses and a
‘.. suitable number of point-pair matches derived by the previously mentioned

techniques, the relative orientations of the cameras and positions of objects
which appear in both pictures car be calculated.

|

] Theoretically, if one has N unknowns in the camera model! and N
: constraints in the form of matching point pairs, one can obtain a closed form
| solution for the camera model. In practice, the constraining equations dc

not usually permit analytical solution. Therefore, a more common technique
. is to approximaté the unknouns by least-squares techniques, either in closed

form or by numerical .ethods. By either method, one needs at least N/2 point
| . pairs. The locations of these pcint pairs within the images and the location

- in 3-space of the points they represent is important. If these point pairs
are concentrated in one area of the image or if they represent 3-dimcasional

8 points whi 1 are all coplanar, then N/2 point paii« is not sufficient. For
n numer ical least-squares approximation of the camera model parameters, the

: ! I author likes to have at least twice as many point pairs as there areé parameters to be derived, and to have these pairs well distributed in both

i 8 images.
ll Several different approaches have been taken to the problem of

deriving camera models from picture information. (See, e.g. (Sobel, 1978))

| 17
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Since this author was faced with pictures for which no camera model was given
and since no available model derivation code was applicable, yet another
camera model derivation method has been developed.

This author’s approach is based on searching for the camera mrdel
which minimizes a least-squares measure of camera model error. Each pair of
matching areas is first characterized as a pair of points--the centers of the

| areas. For every proposed camera model in the search, each pair of points is
piaced on the image planes of the cameras, and the ~ays from the principal
points of the cameras through these image plane points are calculated. The

. error 1s a function of hou close these pairs of rays come to each other in
3-space, normalized by the mean distance to the point of approach. (A
mathematical explanation of this measure appears in Appendix C.)

This author, not beinga numerical analyst, implemented a very
unsophisticated function minimizer to search for the best ccmera model for a
given set of points. That program showed that the technique would work, but
was slow and unreliable. The calculations presented in Appendix C have since
been re-prog ammed by another student, Donald Gennery, whose program works
very reliably and quite fast. It is his program which has derived most of

| this author’s camera models,
For the purpose of limiting the search space, it matters not whether

the camera model is given or derived. The existence of a camera model makes
possible another search-reduction technique.

: With a camera model, it is possible to constrain the search for the
matching area to a line in the second image. To do this, the target is

cx characterized by a point, usually its center of mass. Thie point is i
| ! a projected through the first camera as a ray in 3-space. The 3-dimensional 1| } point corresponding to the original point in the image plane must lie n this

l. ray. The ray is now back-projected into the second camera becoming a |ine :
| segment on the second image plane (whose exact equation is derived in ]

| Appendix C). Since the 3-dimensional point was on the ray, its projection ii into the second image plane must lie on this line segment. i
13

; With this knouledge, it is no* necessary to search the entire picture i|, for a match; searching along the line segment will suffice. Illustration 3-4 i
| shows for two different areas of the barn pictures a target area in the first |

q - Image, its center point, the line which this point projects to, and the
| matching area found by searching along the line segment. This technique :

| - reduces the search space in an N x N picture from the N2 candidate areas

| Lo. centered at the points of the picture to the N or fewer candidate areas icentered on the points of the line segment. Performing a one-dimensional
. analog of the technique of gridding along the line can result in an

. additional savings of a factor of m, the grid spacing. |
-n i. Techniques involving camera models will work whenever a camera model
- exisls, but their efficiency in reducing the search depends on the accuracy

i 18
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: of the camera model. An exact camera model will give the line exactly. A
moderately inaccurate camera model will usually put the line in the right
area, although some local searching may bs necessary. The better the model,

; the smaller the local search. :

| WORLD MODELS |
lf, in addition to a camera model, there exists a model for the

world, then it is possible to precict precisely uhere the center point of the |
, matching area will be. The ray from the first camera will intersect the :

wor ld model at a 3-dimensional point which can be back-projected into the

second camera, giving the center point of the predicted match.

Even a fragmentary world model can reduce the search significantly.
For instance, knowledge of the position of the ground p'ane limits the depth
at which an object can lie (Falk, ’969]. Thus the matching certer point is
constrained to lie on that part of the back-projected line segment between

the points which represent the camera and the ground plane.

| 1f the world model is not given, it is still possible to derive it
] from the matched area pairs. However, derived world models are more often

the result of the matching process, not the means for its improvement.

One trivial sort of world model which dors not require a camera model

| (al though it can be used with one) is the continuity assumption. It consists
L] merely of assuming that if areas A and BR are adjacent In the first image,

then their matches uill be adjacent in the second image. This, of course,

: reduces the search space considerably--to the immediate neighborhood of the

1 last match found. . i
: Hou effective the use of world models is depends on the accuracy of

| the model. Small errors in the model may make little difference in tne |
‘ predicted position of the match. Large errors, like assuming continuity near

a depth discontinuity will cause no match to be found. In this case, a
retreat must be made to one of the more general techniques of matching.

| Each of the techniques described in this chapter results in a fairly

| large savings when matching areas in stereo images. Combining two or more ofi them increases the savings. The author has had excellent <cuccess uith
programs combining reduction, similarity, and gridding end with ones

| : combining reduction, camera models, and gridding. (See Chapter 6 for

| descriptions of some of the programs.) The author has not implemented any of
: the world models save the continuity assumption (see Chapter 5), but the

| | Hand-Eye group at Stanford A.l. wusss the ground plane model to good
: I advantage, and Bruce Baumgart [unpublished research, 1272] has done some work

| . with exact world models.
19
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Illustration 3-1. Tuo sets of correlation cross sections, raphing

[ CX, Ix, dx; Y,ly+dl,Jy) against dl and C(X,Ix,Jdx;Y,ly,Jy+dJ) against dJ. (See
2 ha Appendix B for an explanation of the notation.) Most correlation surfaces are

I like these, falling off gradually as one moves away from the match peak.
! 20
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ll Illustration 3-2. The top rou contains graphs of CX, Ix,JdxsY, ly+dl, Jy) |
against dl and C(X,Ix,MhgV,ly,Jy+dJ) against dJ, as before. Bottom row :
contains graphs of C(X,Ix,Jx;X,Ix+d]l,Ix) against dl and C(X, Ix,Jx;X,Ix, Ix+dd) :

[ against dJ, i.e. ths autocorrelation cross ssctions for the same target area. iLike these, most match correlation closely rsssmble their autocorrelation

peaks. |
[
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LAB PICTURES INTENSITY COLOR
AREA APEAS COR. AREAS COR. |

1X JX TRIED CALC. TRIED CALC. |
145 25 i 30 1 30

85 25 11 823 3 124 |
65 25 2 85 1 42 125 25 10 675 4 252 I
65 4S S 242 3 140 |

25 5 6 338 2 92 i
185% S 9 408 3 126 k
45 5 1 61 | bl I

: 25 85 2 114 2 135
65 S 4 182 3 188

| Illustration 3-3. Tabulated results of correlation searches using the search
reduction technique of similarity with correlation gridding In the promising

I areas. The first tuo columns give the area center in the first Lab picture; 3| ~ the second tuo tell hou many promising areas were found ‘and how many :
correlations were calculated for the black-and-wh!te vectors described in the

. text; the third two give the number of promising areas and correlations
calculated for the color vectors described. The color vectors are usually I

; . worth the increased time needed to calculate them. Either set of vectors
| results in a significant reduction in the amount of time needed to find the

match.
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: Illustration 3-4. Tuo pairs of barn pictures, showing camera model searches |

| for a match. In each pair, the first image shous the target areas with their3 central points; in the second image the line to which the center point

3 projects is shoun, along with the matching area and its center, |
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Chapter 4

: UNMATCHABLE TARGET AREAS

| Careful analysis of the techniques discussed so far wlli show that, {
in addition to the assumptions stated in Chapter 1, we have been mak Ing one I
other, unstated assumption. We have assumed that there existe eome
window-based algo~ithm by which all target areas can be matched.

Unfortunately, there are entire classes of target areas which do not
fit this assumption, i.e., which require global techniques to determine which |
area is their intuitive match. These fall into two major groups--those which
can be detected before matching ic attempted and those which come to light
only when ratching fails.

| DETECTABLE BAD TARGETS
FI The first group of unmatchabie target areas are those containing date

; | which is by its very nature unmatchable. These unmatchable areas can be
detected before matching is attempted by examining the target data.

Low Information

| When the target area contains little or no information, matching that
. area is impossible by area-based measure-of-match techniques. For example, |

consider a window taken out of the cloudiess sky of the barn pictures. Baeed
) on just the information in that window, it is impossible to say precisely
| which piece of sky in the second image matches this area. In the absence of

noise, a lou-information target area will match almost any lou-information
y candidate area, for there is nothing in the target to distinguish which

candidate it really matches. |

. - An area of low information is an area of low variance. This le
perhaps the most computationally expedient way of actermining whether or not

: an area has sufficient information to be matchable. In the presence of
} noise, this technique may fail, since nolse creates variance. In this case,

$ some other test, such as the presence of an edge, should be used. [
i 1

An area of low information will also have an autocorrelation peak |
| | which, except for a value of 1.8 at zero displacement, will be almost flat.: (Illustration 4-1 shows the correlation and autocorrelation graphs for an
LB area of the sky in the barn pictures.) This flatness can be recognized by

24
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inspection of the peak, or, if more precise determination is desired, a
Hl bivariate normal distribution surface (Freund, 1962) can be fitted to the

peak and the parameters of the curve examined. Any area having a very flat
autocorrelation peak is unsuitable for matching.

Linear Edge

When the target area has a single linear edge across it with little
or no information on either side of this edge, matching is very difficult.
An attempt to match such a target will show that the area matches quite well
with candidate areas all along the edge in the second image.

This condition is observable in the autocorrelation peak. (See
Illustration 4-2) If one fits a bivariate normal dis*ribution surface to the
autocorrelation and examines the contours of this surface, one discovers that
the peak is really a ridge aligned with the edge.

lf we use only the information in the target area, there is nothing
to resolve which candidate along the edge is the rea! match. Target areas
displaying this property must be regarded as unmatchable unless further
information, such as a camera model or a set of other matches to tle to, Is

- available.

| Pre-processing of a target area to determine whether or not it is
] suitable for matching is expensive. However, if one compares this expense

| With the expense of searching futilely for a match, such pre-processing
| becomes wor thuhi le.

\ TARGETS WHICH 00 NOT MATCHa

[| The second group of unmatchable target areas are those whose d |
‘ i counterparts simply do not exist in the second image, due to relative motion |

between the camera and part or all of the scene. Such unmatchabilities

% cannot he detected hy examining either picture alone, but are discovered cnly: [| after the expense of attemp:ing to match has been incurred. Since, in this
: case, the target area has no proper match, the candidate area having the

ro highest correlation will bo an incorvect match. It is desirable to be able

E 1] to detect these incorrect tatchings as they occur.>

3

Y : If tuo areas do not match, the correlation between them should be |
[I low. It seems reasonable, therefore, to detect bad matches by seeing If the

best correlation obtained was too low. Matters are complicated by the fact
that some good matches have lou correlations. In fact, for almost any palr

[ of pictures and fixed threshold, it is possible to find either a target areafor which there is a bad match with a correlation above that threshold or a
target area whose proper match has a correlation below the threshold.

25
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| | So, how does one distinguish betueen good matches with |ou || i correlations and bad matches? As previously stated, the correlation peak for
a proper match should very closely resemble the autocorrelation peak for the
target area. In particular, if we have restricted our target areas to those

. with distinct autocorrelation peaks, a flat or chaotic correlation peak is an
indication of a questionable match.

| The fact that the correlation and autocorrelation peaks should be
] similar can be used to derive an autocorrelation threshold for the match

correlation. By examining the autocorrelation surface at points near the
summit of the autocorrelation peak, it is possible to predict what the
correlation should be, (See Appendix B.) Any match below this

| autocorrelation threshold is highly suspect.

: Of course, global information, such as continuity from neighboring
points can also be used to determine the credibility of a match.

NON-UNIQUE MATCHINGS

| | A related problem is that of multiple matches. Since we have not
specifically limited the subject matter of our piztures, it is possible that

| : more than one of some object can appear in the pictures. |f several of these
L] objects appear against similar backgrounds, a target area can qui te

reasonably have not one but several matches.
f

| If several areas match the target area, they can be expected to all
have about the same correlation. [If they are good matches, all of them

: should be greater than the autocorrelation threshold for the target area.
| Therefore, to detect multiple matches, one checks to see if there is more

‘ than one correlation above the autocorrelation threshold. 1[f so, one checks
Lo how well they group. If the top few correlations above the autocorrelation

threshold are roughly the same in value, multiple matches are indicated.
4 This can be confirmed by checking to see if the multiple candidates co~relate

well with each other.

} | If only the information in the areas is present, an area with more
than one match indicated is no more useful than an area with no match

TC indicated, since in neither case has the location of the match been
; ll determined. Additional, wore global information in the form of a camera
i model or other matches to tiv to can be used to resolve the ambiguity.

| WHAT TO DO WHEN A TARGET WON'T MATCH PROPERLY

ll For some of the target areas which won't match properly using measure
of match techniques, there is nothing that can be done. Target areas whose

x [ 26
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| T matches fall out of the field of view of the second camera are clearly in
this class. Target areas of low information cannot be matched reliably,

] ’ therefore are assigned to this class. Target areas containing distortion due
to perspective change by definition do not have matches, therefore are also

| assigned to this class. The only reasonable thing to do with targets of
’ these varieties is to give up on them. |

| Other types of unmatched target areas may be matchable by some i
; Lo different algorithm, probably utilizing more global information. If, for

instance, We are employing the similarity heuristic, and it fails for some

reason, it may be that pure gridding will find the match. Ambiguous matches |
and |inear edges between areas of low information (which can be thought of as ]

extended ambiguities) can usually be resnlved by algorithms which employ
additional information, such as a good came-a model.

Having 2 camera model enables one to find the line segment in the ;

second image Which corresponds to the center point of the target area. If

one of the proposed candidate areas has a center point that lies Within one

] pixel of this line segment, then the match is resolved. This algorithm fails ;
; if more than one proposed candidate lies within one pixel of the magic |ine

’) segment, ie. if two or more of the nominated objects are approximately| : coplanar with the two camera principal points. This is a fairly common
occurrence, since a man-made World containing identical objects is likely to

| | . have these objects on a flat surface.
The presence of a set of other matches can also be used to resolve ;

i ambiguities. The target area will have some spatial relationship to the

i target areas of the set; the match is the proposed candidate whic most |
closely approximates this relationship with the candidate areas of the match

| v set [Fischler and Elschlager, 19711. Of course, care must be exercised in

| | the choice of the set of points. If, for instance, one’s anchor points are
} * all in the foreground in the barn pictures, and one is try ng to match the A

a fence posts across the field, one will get a meaningless answer. The anchor

point pairs used should be at the same depth as the target area to guarantee
$ correct results, ]

ll In the case of depth discontinuities, one could employ edge4 techniques [Hueckel, 1363] to segment the target area into regions. These

irregular areas could then have matching attempted on each of them |
1 separately, using masked correlation or pointer correlation. (See Appendix
| B.)

Various methods exist for handling individual unmatchable target
ll areas. In each case, it is first necessary to determine which variety of

unmatchabillty one has, then apply the proper method. Quite often, this is

done by the experimenter peeking; that |s, the experimenter figures cut what

[i kind of unmatchability he has and tells the "algorithm" what to do.

I This author has found, however, that the best thing to do with an
27
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|
Lo unmatchabl!e tar jet area is to give up on it and try a different target area.

Eventually, target areas th2t have good matches will come along. (If not,
| y the experimentasr SHOULD peek to see If he has the right tuo pictures!) With

good matches, the technique of region growing becomes applicable. Most of

| the problems reiated to unmatchable areas can be soived or yreatiy simplifiedby the use uf region growing.

| :

y | ||

[
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: Illustration 4-1, Correlation and autocorrelation graphs for an area of ‘lou |
inform. ‘on, showing the two-dimensional flatness of such peaks. Ch
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strong |inear edge, showing the one-dimensional fiat. ¥:ss of such peaks. |
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: Chapter 5

EXTENDING MATCHES

In Chapter 3, we mentioned the continuity assumption as a crude form
; of world model which greatly shortened most searches for a match when there

| was an adjacent match available. This continuity assumption forms the basis
for the technique of extending matches.

REGION GROWING: THE BASIC TECHNIQUE

] Under the continuity assumption, if the target area centered at

(Ix, x) matches the candidate area centered at (ly,Jy), then one would expect
4 the four adjacent target areas (Ix+l,Jx), (Ix-1,Jx), (Ix,Jx+l), anu (Ix, Jx-1)

| to match the four adjacent candidate areas (ly+l,Jy), (ly-1,Jdy) (ly,.ly+l),and (ly,Jy-1), respectively. 1f (Ix,Jx) matches (ly,Jy), then the
correlation between these two areas represents the peak of the correlation

: surface and is greater than the autocorrelation threshold for (lx, Jx)
{ mentioned in Chapter 4 and described more thoroughly in Appendix B. 1f the

four adjacent expected matches are indeed matches, then each of them should
meet this same criterion. Once one of the expected matches meets the

x criterion, then the paired areas adjacent to it become expected matches,
etc., and a rcgion of constant (dl,dJ) « (ly,Jdy) - {Ix,Jx) is grown.

Expressed more formally, given a criterion for judging whether or not

PT a point belongs within a region and at least one point at which that

) . criterion is met, the following algorithm extends the region. |]
|i ‘ 1. Push onto the stack at least one point which meets the criterion. |

-

| 2. Pop one point off of the stack and examine the points lying above, below, |§ Li right, and left of it. Examining a point consists of first checking

; to see if it is marked as having been processed: if so, nothing
; 1 further is done to it. Otherwise, if it meets the criterion of the
: | region being groun, then it is marked GOOD and pushed onto the stack,

: else It is marked BAD and not pushed. |
li 3. Continue step 2 until the stack is empty.

| Marking the points not only leaves behind a record of which are good

ll and which are bad matches, but also keeps the algorithm frum repeating workwhich has already been done. Since there are only a finite number of points
available to try, this avoidance of repeated work guarantees that the

I algorithm will terminate.
31
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EXPEDITING REGION GROWING

As its criterion for a match having occurred, the preceding algorithm
uses the fact that we are at a correlation peak and that the maximum

correlation is greater than the autocorrelation threshold. For each match

pair, this requires ten correlations--nine to determine if the expected match
is indeed a correlation peak and one to calculate the autocorrelation
threshold.

In practice, eight of the nine correlations are not usually needed.
: The autocorrelation threshold is derived from expected values of the

correlation surface at one pixel displacement from the match. In most caees,
the actual correlation at one pixe! displacement ie lower than the expected
correlation at that displacement, so that the only part of the correlation

surface which lies above the autoccrrelation threshold is the match peak
itself, Testing to see that the correlation Is greater than the

autocorrelation threshold is usually a sufficient criterion for determining
whether or not the expected mutch is indeed a match.

| _ The correlation between the proposed matching areas and theautocorrelation threshold for the target area still need to be calculated.

| : These tuo measures each require covering the target area while forming sums.
: If the sums for both measures are calculated together in one pass over the

' data, the target area need only be covered once, rather than twice. Thus the

combination of the correlation and autocorrelation wil! take about

' thren-quarters of the time necessary for calculating both separately, or
{. approximately 1.5 times as long as an ordinary correlation,

I 1; This is effectively the optimum technique for determining a match.
It requires only 1.5 correlations, as opposedto N2 correlations for the

tC direct method, a savings of a factor of N2,
-

‘- EXTENDING MATCHING REGIONS

| 1) In our revised algorithm, an area center would be marked BAD if its
: correlation were not greater than its autocorrelation. For such pointe, the |

. pair of areas may or may not represent a correlation peak. |

. lf the pair of areas does not represent a correlaticn peak, ‘he
al " continuity assumption need not have bee violated. It could well be i1-a. |
} this particular part of the scene is cor tinuous, but that the normal to the
ad surface is at a moderate angle to the cimera principal axes. Thie can cause |

: a gradual change in (dl,dJ) as one mov:s across the picture. If thic ie the |
¢ EB I case, then a ehort local search should reveal the correlation peak which

{ represente the match. For this purpose, ueing one "loop" of the epiraling
eearch eubroutine MATCH, described in Appendix B, worke quite well.

Wie

283
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i . Once the peak is found, it may or may not pass the autocorrelation

J! threshold, [If it does, then this new pair of (Ix,Jx) and (ly,Jy) becomes a
‘ candidate for the application of the region growing algorithm, and the region |

] continues to expand. Illustration 5-1 shows one of the results of this

: ex'ended region grower.

| Any pair of areas that represents a correlation peak but does not

1 pass the autocorrelation test remains unmatched for the present, 'since in

] theory that target area has a match elsewhere, which a later region growing
Will locate.

HOW REGION GROWING SOLVES THE PROBLEMS

In Chapter 4, ue promised that region growing would solve, or at

j least simp!ify, most of the problems encountered in matching, We divided the
unmatchable areas into two categories--those, such ae ambiguities and depth

| discontinuities, which could be matched or partially matched by special means

and thoee which simply had no match, whether due to obscurations,

: distortions, or changes in the field of view. The problem was that, except
| for ambiguities, we had no way of tellirg which variety of unmatchabi | i ty a

given target area might be. If a given target wouldn’t match, "peeking" was

: the only way of telling whether the area wae a depth discontinuity which
3 | J should be segmented or an obscuration which should have no further time

wasted on it. Region growing from a few good matches spread about the

[ picture helps here.

L. Suppese, for instance, a target area which previcusly failed to match
} now falls within a region of grown matches, If the target falled to match

| because of an ambiguity, whether one caused by multiple objects or a |lInear :- edge, thie ambiguity has been resolved. If the target area didn’t match
because of a failure of the heuristics, the difficulty has nou been

I surpaesed.-&

Suppose the unmatched target |ies just outside of a grown region. If
3 target areae leading up to the unmatched target should match candidate areas

| leading to the edge of the image, then the intuitive match for our unmatched
§ target area falls out of the field of view of the second camera. In a
f - gimi lar fashion, an unmatched target whose intuitive match has Leen obscured:
| | can nou be detected; target areas leading up .to the unmatched target will
i match candidates that lead into a region of candidates having a different
- ws matching (dl,dJ)--that of the obscuring object.

J If the unmatched target lies in the midst of a "hole" in a groun
region, then a moving object which hae disappeared, such as the man on the

[ eteps in the lab pictures, is indicated. If the unmatched target |iee nearthe edger of two grown regions with rather different matching (dl,¢.)), then

chances are that the unmatched target contains the depth discontinuity

I between these two regione.
! 33
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1 For most paris of most allowable pairs of stereo Images, the
1 continuity assumption holds, so region growing can usually match almost all

of the areas of most pairs given just a few "starter" matches. For sxample, |
: all of the matchable area of ths lab pictures can be groun from one match in

the background; in the canyon pictures, three matches are required--one on :
| the background canyon wall, one on the foreground promontory, and one on the

pinnacle at the right.

| Because of ths area-based nature of matching, region growing stops

when the area reaches a depth d scontinuiiy or touches 2 distorted region.

| In the finished products, such as Iliustration 5-1, what is displayed is the

| outer line of center points which ths region grower found not to match.
| Consequently, tnese products do not precisely outline depth discontinulties
. or areas of distortion, but fall W pixels away from these edges, where W is

the area radius. However, if one is willing to iterate around the edges

using smaller and smaller values of W, then clossr and closer approximations
of these outlines can be found (Levine, 1373].

Thus we see that region growing not only makes it easy to distinguish

what type of unmatchability one has, but also doss what matching or partial

| matching is needed. This is why ws claimed that region growing would solveor simplify all of the problems attendant to unmatchabilities.

| GROWING UNIFORM REGIONS

| Indeed, match extsnsion region growing helps with all of the: unmatchable areas save thoss due to low information. As we notsd in Chapter

4, areas of low information tend to bs arsas of low variance. Once such an
re area has been located in the first imags, ths techniqus of region growing can

1 bs used to mark that rsgion so that future attempts at matches can be
forewarned of ths condition.

: | For this application, the region growing algorithm presented in this
chapter need only be modified slightly. As its criterion for a good point,

- the uniform region grower will uss ths fact that the variancs over the area
centered at that point is below a given threshold. Thus instead of comparing

i areas out of two images and continuing growth if thsy match, Wwe are

Co evaluating an area in a single picturs and growing |f that area Is of lou

| variance.H

| As Illustration 5-2a shows, uniform regions grown by this method will
stop a bit short of their edges, since any point whose area touches the edge

ll will have a highsr variance, thus be rsjscted. Whether this is bad or good
depends on whether the ussr wantsd to delimit the entir2 uniform region or

I only that part of it which had too little information to match upcn.
1f the desired effect was that ot Illustration 5-2b then a somewhat

34
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_., different criterion needs to bs employed. Louw variance means that the
| avsrage squared difference batueen the intensity at a pixel and the mean :

g Intensity over the area |s small. For an arsa to have a small variance, most

of thsss differencss at individual pixels must be small, Hence, ue J

substitute into the uniform region growing algorithm the critsrion that the

tJ absolute differencs betueen the intensity at a point and the mean intensity
over the uniform region be small.

| Whether the mean intensity is taksn over all of the region grown so |}
far or only over a local part of the region depends on whether the user |

wishes the uniform region grower to stick strictly to a particular intensity :
or allow it to follow shading. or to allow it to follow gradual changes in :
intensity or color, such as occur in a clear summer sky. Hou small the |
absolute dl fference in intensities must be at each point is based. on how much 3

variation is expected (or desired) within the area to be grown, and can :
: either be a constant or a statistical msasurs, such as a multiple of the |

standard deviation of the intensities within the area. Which uniform region
grower one uses, of course, 23pends upon the sffect which ths user wishes to

produce.

§
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E Illustration 5-1. Tuo pairs of pictures with overlays to shou regions
1 delimited by the extended region grower. In the barn pair, the foreground

[ post has been outlined: in the canyon pair the nearest spine of the: foreground promontory is shoun. Each of these regions consists of several
cub-regions at s ightly different displacements.
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| Illustration 5-2. Uniform regions delimited by the region grower. Part (a)
: shous regions groun by the variance-over-a-uindou method; part (b) shows the

same regions grown by the deviation-from-the-mean method.
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{ | Chapter 6

ALGORITHMS AND EXAMPLES

oF So far, we have presented a variety of techniques, mentioning only
briefly hou they might be used. In this chapter, we discuss algorithms which
use these techniques ard give examples of their results,

INDIVIDUAL MATCHES

Sets of individual matches can be used for a variety of things. They
can be used to align data for furtier processing such as differencing [Quam,
1971). They can be used to derive camera models (see Appendix C). With a

q camera model, a pair of matching points can be used to determine the relative

| depth to an object in a scene (see Appendix C). Matches and a camera mode|make it possible to create a 3-dimensional world model [Baumgart, unpublished
| research, 1373].

1 For most applications, there is no need to match particular areas.
What is needed is a set of matches that are well distributed in both images.
Since very precise matches are usually needed for modelling work, It will be
necessary to interpolate discrete matches in order to determine the exact

! translation. (See Appendix B for a discussion of the need for and techniques
i of interpolation.) Whenever possible, one should choose the target areas so ‘

! | that matching will be easy and interpolation will be accurate.

Choosing a Targst Area |

interpolation is most accurate if the match peak is well behaved--not

{ too flat, not too sharply peaked, a~d definitely not multi-modal. Since the

|. correlation peak should closely resemuie the autocorrelation peak, target j
areas should be |imited to those with well behaved autocorrelation peaks. ¢

y The target areas uhose autocorrelation peaks can be easily fltted by a
bivariate normal distribution surface are most likely to yield accurate ;

R interpolated match displacements. {

i || Requiring well behaved autocorrelation peaks will also exclude |
targets which wlll be hard to match. Flat autocorrelation peaks due to lou

i information, sharp peaks due to only high frequency Information being ;

|| : present, and multi-modal peaks due to ambiguities will all be avoided. t
| To make matching easy, target areas should first of all contain

\



sufficient information. Therefore, only areas having a variance above  ~ 6
| threshold should he considered. A reasonable strategy Is to first maich

those target areas that have the highest variance. Of course, high varlance |
can indicate the presence of sharp edges, so each such target area should be
checked to see that it is not crossed by a strong |Inear edge between two lou

| var iance areas.

If similarity is to be employed in matching, 8 quick perueal of the 3
vectors for the representative areae in the second Image can be informative, :

For instance, if the second image contains lots of green areas, but only a ;
few Tred ones, then one can get some matches cheaply by first matching target ;
areas with red in them. :

ProgramOutline

A program which is to produce a set of well distributed good matches

might proceed ae fol lous.

INITIALIZATION. First of all, reduce both Images and divide them |
into representative areas the size of the correlation windowe to be ueed.
(Unless othernise stated, all of the steps that follow are to be carried out

in the reduced pictures.) The areas in the first image may simply cover the |

picture; those in the second image should be on a finer grid eo that they
overlap significantly. (See Illustration 6-1) Then calculate the vactors of

statietice for these representavive areas. Hietogram each of tha componants
of tha vectors for each picture.

RANK TARGET AREAS. Now, do any of the component histograms show only

a feu targets areas having some property (like being red)? Do at leaet that 3
number of candidates show that property (if not, some of the target aresae

will be out of t-3 field of view in the second image, hence unmatchable). |
Put any areas whicn seem likely to be easy to match at the head of a |let of J

] target areas to be tried.

Next, eort the remaining target area: by their variance. Flace those 3
| wlth variances above the low Information threshold on the list, Also sort 1

the candidate areas by variance and remove 2ny with too low variance. Sinca

ue have removed the low variance target arras, it is unlikely that any of the :
low variance candidate areas wlll be nesdec. Start matching targets off the

x top of the |lst.

TARGET MATCHING. For each target area, check to sea if its
autocorralation surface ie wusll bshaved. If so, establish tha 4

autocorrelation threshold and grid spacing parameters for that targat area
snd continus. |f not, discard ths area and try the next one. 1

Calculate the similarity measure between the targat area and each of ]
tha ramaining candidate areas and sort them, Start on the most |ikaly araa.
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| Usina the grid spacing established for that target. grid ‘ne candidate areas bi
i. and ook for a correlation above the noise threshold. Then search the !

immed ate neighborhocd for the best correlation (or simply employ MATCH, |
descr Ibed in Appendix B}. :

Ls

if ambiguous matches are not anticipated to be a problem, stop ¥
examining candidate areas as soon as a candidate is found that has a |

correlation above the target area’s autocorrelatior threshold. Otheruise, EF
| continue examining areas until the msasurs of similarity becomes too i

dissimilar. [If no candidate had a correlation that was high enough, forget
that target area.

Nou go back into the original, full resolution pictures. ;
Re-determine the autocorrelation threshold for the full resolution target

area. Re-optimize the correlation for each of the promising canuidate areas. 3

Test these correlations for bad matches and ambiguity. Discard the target 3
area if it fails these tests, otheruwiss interpolate tne match in the full 4

resolution pictures and record it. Go on to the next target area. ;

: Continue matching target areas in this fashion until enough matches |

| with the proper spatial distribution ars obtained or the list of matchableareas is exhausted. Take the results and do your thing with them,

| The algorithm described here has not been implemented in totality,
however, most of its pieces have been implemented. Reducticn of images is
accomp| ished by a program called PICSEE by Lynn Quam. The initialization and |

| sorting of target areas is done by the author’s program VECTDO wWhich+ calculates the color vectors described ir. Chapter 3 or VECTBO vhich does the :

black-and-white vectors. The target matching is done by the author’s program

| NEWPTS. Final decisions in the full-scals images are done Ly tic author’si Li program REFINE. All of these programs are written in the SAIL dialect of E
i ALGOL [VanLehn, 1973) at the Stanford Artificial Intelligence Project. 1

um ) Critical inner loops are urittsn in START_CODE, an embedding of PDP-10 :
| |! assembly language into SAIL. ]

| 4 Illustration 6-2 shous a set of matches produced by this system of || programs and run through the author’s program DEPTH to figure the depthe at }
each point pair in meters,

i A COMPLETE MATCHING r
|

The ultimate combination of matching techniques occurs in an

? algorithm for creating a complete matching. Such an algorithm puts together
| ” all of the techniques we have developed and shows hou they interrelate.

J We begin with the algorithm described in the first section of thie
chapter. This gives us a set of precise interpolated matching areas. Ue

| 40
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| i| : feed the point pairs to a camera model de~ivation routine which returne a
: camera model.

| Next we seek low variance regions and employ one of the uniform: region grouwere described in Chapter 5S to color these regions unmatchable.
: = All region growing is done in an auxiliary "picture" which we will uee to

| keep track of the parte of the first image that we have proceeeed and to
; record the matches which have been made.

The matches which determined the camera model are then

: un-interpolated--that ie, they revert to the discrete form .they had before
interpolation--and put onto a stack of regions to be extended. A match pair

le popped off of thie etack and passed to the region grower for extending
matchee. Ae the region grower proceeds, it marks in the areas it growe In
the recording plcture and in a second auxiliary picture which keeps track of
which area centers in the second Image have been matched.

| When the region grower finishes each sub-region having the same
3 dieplacement (<f,dJ), a cleanup algorithm goes around to all of the points
: marked BAD on that round. So that future growings can have a chance to work
i on them, they are re-marked as being unmatched and placed on the etack of

: palrs of points waiting to have the region grower applied.

{ 1 Each pair of points taken off of this stack ie re-MATCHed (see
Appendix B) to find the correlation peak, which is compared to the

1 { : autocorrelation threehold. Point pairs uhich pass this criterion, and
- haven't been overgrown by some previous extension, are paseed to the region

; i rrouer, untill the stack of point paire awaiting the region grower becomse| 4 empty.
; [ When the original set of matches has been exhausted, we begin looking

L! in the recording picture for areas which have not been marked. For a
repreeentative point in the midst of euch a region, we attempt matching ueing

f the camera model ae deecribed In Chapter 3. In thle caee, we can further| limit our eearch along the back-projected line in the second image with the
knouledgs that eome of the points in the second image have already been

1 matched, hence do not need to be considered. For each match found this way,
| | the region grower ie etarted up again. This continuee until all of the

) unmatched areas have either been examined or are smaller than some critical

I eize, below which ue do not bother with them.
Ae yet, this algorithm has not been Implemented as a whole. However,

: most of the parte do exist ¢s separate programs uhich communicate with each

ll other via disk fllee of data. In addition to the programs described In thelast section for finding a set of well-distributed matchee, we uee CAMERA,
Written by Oonald Gennery at Stanford A.l. to determine the camera model

| corresponding to our set of point pairs. The finding and marking of Ionvariance areas Is done by the author’s program LOWINF., The actual extension

of regions from a flle of matching arsa centers is dono by the author’s

L 41
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| oo program MGROW. The camera model search for matching point paire is
| implemented by the author’s program CAMSCH. As with the programs from the0 last section, these Were uritten in SAIL on the POP-10 at the Stanford

| Artificial Intelligence Laboratory.

| |
: l Illustration 6-3 shous the results of the author’s program EMAKE on a

complete mapping generated by this system of programs.

|

|
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; l11lustration 6-1. Yard pictures, w.th overlaid grids for target and

| li candidate areas. Notice that the candidate areas are on a much finer gridthan the target areas. A typical target and the representative candidate

which most closely resembles it are indicated by squares,
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: Illustration 6-2. Barn pictures, showing a set of matches produced by
| | NEWPTS. The dots indicate the center points of the matching areas; the |

numbers by the dots give the distances in meters from the first camera to the |

| I 3-dimensional points which correspond to the point pairs. |
1. |
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1 ll Illustration 6-3. The canyon pictures, showing a complete matching. The
: outlines shou major depth discontinuities and delimit areas which could not

; I be matched.
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Chapter 7

CONCLUSION

; It was the purpose of this thesis to investigate techniques by which
J areas of one picture could be matched with the corresponding areas from the

second image of a stereo pair. We started with the assumpticn that ue had

tuo images of the same scene which differed somewhat, but the majority of

which could be matched (as opposed to mapped, which is a different procese).
: That is, ue treated those parts of the scene for which no gross dietortione

j had been introduced betueen the tuo views. Our objective of making matches

efficiently (ie. without calculating the correlation betusen the target area
and candidate areas centered at every point in the second picture), was to be

reached by presenting techniques by which this could be accomplished.

| ACHIEVEMENTS
3 In this thesis, we have presented tools and techniques by which areae

} in one picture can be efficiently matched with the corresponding areas in the

: second picture.

We have discussed three measures of match which are suitable for thie

g ‘ purpose, normalized cross-correlation, rcot-mean-square error and absolute
‘difference. In addition to the ordinary one dimensional versions of these

! | measures, we have documented correlation for use in tuo dimensions, derivedi color or vector correlation, maskcd correlation, and weighted correlation,

and explained function correlation, which can be used for mapping. We have
3 discussed some properties and relative efficiencies of the baeic measures. |

1 We have mentioned the existing techniques of fast Fourier convolution and
sampling for making the calculation of these basic measures more sfficient,

. but pointed out their shortcomings. it is our position that our techniquee
have none of these shortcomings and are more efficient that theee other

§ + me thods.

| : lle have discussed several methods for pruning the search for a match.
bs | Gridding and reduction each give a savings factor of n?, where n depende on

the data in the images, but is typically 3 (savings factor is 3) for gridding
| and 5 to 18 (savings factor is 25 to 1808) tor reduction. Similarity glves a

‘ savings factor of 188 to 158 for the author’s data. Camera models give a

: savings factor of N, the width of the plcture--typically about 208. World
Tr) model assumptions can result in a savings factor of almost N2, the area of

| Li the plcture--typically 18,888 to 48,808.
| I
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For those who do not have camera models given, i= have included the

| mathematics necessary to convert a set of matchings into a workabie camera ktiodel. MWe have also included calculations which use this modei to find the F
depth of the 3-dimensional point corresponding to a given pair of image 3
points,

We have discussed. the fact that, with real data, not all target areas |
; are matchable. We have given methods by which some of the major typee of |

: these unmaichabilities can be detected in the original data. Since some
unmatchable targets cannot be detected directly, we have developed methods |

, for detecting when a proposed match is not real ly a mawci, ]

1 We have discussed region growing techniques which can be used to |
extend matching areas. Because these are based on the continuity assumption, ;
a sort of low level world modei assumption, they are quite efficient methods ;
of finding matches. We have aiso presented region growing techniques which :

| can be employed to delimit uniform regions in one image.

Finally, we have presented two aigori thm demonstrating how the :
abetract techniques we have developed and documented can be combined to

| per form useful functions in the processing of stereo images, |

| : APPLICATIONS

| Some of the techniques of this thesis have aiready been adapted for || | use in various artificial intelligence and robotics tasks. In addition to
= the author’s programs mentioned in Chapter 6, the reduction, gridding, and |

eimilarity techniques and the uniform region growing have been incorporated
| into programs for servo-ing a computer driven cart [Quam, undocumented

; i research, 1373]. Gridding ard the continuity assumption form the basis for
programs in a feasibllity study for automating photogrammetric etudies of the ,

: [ planet Mars during the 1975 Viking mission (Quam, unpublished research 1' 1 Ll proposal, 1973]. The complete matching techniques described in Chapter ©
Will undoubtedly play a part in this application, also. A

| ll Applications of multiple image processing also occur in medicai
research. The registration of time-lapse x-rays for further processing is 3

a I only one of many possibilities. i
1 Bs Another eventual application Is pianetary exploration. For 1

, inhospitable environments and extreme distances, on-board Computer processing
| of images wili be vital to mission success. || J

47 ]
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J 3AREAS FOR FURTHER INVESTIGATION

ol In the process of our investigations, we have discovered a number of |
| areas which need more work, as well as several interesting extensions of our 1

| work.
The field of area mapping is for the most part untouched. We have

scratched the surface with this thesis on matching and our brief comments in
Appendix D. Much more can and should be done In this field. Complete, |
separate investigations of techniques for motion and near-field stereo are
needed. |

We have excluded noise from our data. There needs to be exteneive
work on the effects of noise on matching. Also in nesd of exploration are

| the techniques for alignment of regions by boundary matching, touched upon in

: We leave these as challenges to future investigators.

|

’ pd

|
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Appendix A

! | 4 THE IMAGES

| The techniques and algorithms described in this thesis have been
developed and tested using principally four pairs of pictures, which are

described and presented in this section. Other pairs of picturee have had

isolated techniques used on them, but not sufficiently to warrant their being
presented here.

The images used were mainly of outdoor scenes. Some contained

~ man-made objects while others did not. The main criterion for selecting
these particular pictures to work with was that they were avaiiable and that
they had a certain esthetic appeal to the author.

Due to the limited facilities avaiiable for printing this thesie, it
is not feasible to reproduce the images in color. Consequentiy, the

4 illustrations presented here are black and white versions of the images used.

I THE BARN PICTURES
{

g The first and most used pair of pictures is of a8 barn and field near

i the author’s home. The barn, a rather rustic building of unpainted wood with
: a tin roof, appears at the left of the picture. In the foreground ie a etock ,

fence of woven. wire topped by 3 strands of barbed wire hung on hand-split
i fence posts. Due to the relative camera motion between the two images of the

} etereo pair, ons of these fenceposts appears at ths right of the first image :

Sr | i rnd at the left of the second.
The area in front of the barn is covered with green grass, on which |

" rest several abandoned objects, including tuo barreis, a laun chair, and a

| | bench lying on ite side. The shadou 2f a tree behind the camera and to the
right fails diagonally across this grassy area. :

|

1 The grassy area extends into the distance. It is crossed by several
fences, one of boards near the barn and the rest of the eame materials as the |

i foreground fence. The land rises somewhat; ths skyline ie a ridge about 120 |
meters from the camera positions. Tuo groves of oak trees cover most of thie |
ridgu. A telephone pole stands in the small open area on the skyline between |
the two grovss. :

ll The originai photographs were 35 mm color slides. The cameras were :
hand held in the field; the distance between the two camera positione ie

L 49



il

LL

. slightly over one meter. The slides were photographed under standard red, k
green, and blue filters to produce black and white negatives, which were then

| | digitized commercially. The rysulting 888 by 1200 pixels of data wusre §
Windowed to remove a light leak in the lower portion of the foreground fence

| and spatially reduced by a factor of five to produce 158 by 158 imagee. |
Illustration A-1 shows the intsnsity picturss, mads by averaging the red,

green, and blus component pictures.

The colors in the picture are mostly blues, greens, and brouns. The

sky ie a clear, saturated blue; the tin on the roof has a blue tinge. The
| traes and the foreground grass are green. The barn and fence poets are a

rusty brown, while the grass in the distance is yellowish brown.

he barn pictures have been used as both color and intensity images.

They are the most referred to images in this thesis, partly because they were
the first images tried, partly because they present so many different

prob ems and exercises for matching, and partly because they are the author’s ;
favor tes among the images used. 4

Actually, the b=>r.. pictures violate ‘ne hypothesis that the change in

point of view does not significantly change the perspective of the scene.
| . The barn door is half-again as wide in the second image ae it is in the

. first, a significant change. Thess changes, along with the "moved"
foreground post, are what make this pair of picturss difficult, hence
valuabls.

by :

THE LAB PICTURES

i ' j
The second pair of pictures is of Stanford University’s D. C. Powers

3 Laboratory, where the Artificial Intelligence Project is housed, and where :
] the author works. The laboratory building crosses the picture in the middie t

| distance. Behind it is a row of eucalyptus trees, through which the skyl ins,
| [ a ridge about five miles away, can be sesn. |
rr & : The immediate foreground is a roadway. Between (he road and the lab
E , building is a parking lot filled with a variety of cars. A grassy area is :

i | immediately in front of the building, divided by a concrete walk with eteps.p | 4 A feu cars ars parked on this grassy arsa slightly Isft of the center of ths
J . images. Due to the slight time difference betwesn the actual taking of the |

| : two photographs, thsre is a man walking down ths etsps in the first picturewho does not appsar in ths sscond picture. Also, ons parking space has been 1
E § . emptied and anothsr fillsid ii that time interval,

§ I Lighting is from overhsad, With the sun slightly inn front of the
camera. Thus ths near faces of the building, cars, and even the treee are in

H ehadou. Some reflection occurs from automobile windshielde. 3JSince the day
[ was elightly enoggy, shadows ars slightly diffuse and ths dietant hills |

: hardly vieible. I

[ | y
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The original photographs were 35 mm color slides. The camerae were
hand held in the field: the distance between the two camera poeitions is
approximately ten meters. The slides were photographed under standard red,
green, and blue filters to produce black and white negatives, which were then
digitized commercially. The resulting 1208 by 888 pixels of data were

| windowed to remove a light leak at the right end of the building and
spatially reduced by a factor of five to produce 158 by 150 images.

1 Illustration A-2 shows the intensity pictures, made by averaging the red,
gre=n, and blue component pictures.

Co.ors are predominantly blues and yellows. The shadous on the trees
and building override their true colors with a blue tinge. Most of the cars
in the lot are blue, grey, or white; the station wagon in the first row is i

! red, but again its color is !argely masked by the shadowed near side and the
glare off of the hood. The grass. areas are yellow, with some green along
the walkuay.

; The lab pictures have been used as both color and intensity images. |
In spite of the wide separation batween the cameras, all of the objects are
far enough away to avoid problems with perspective distortio:. However, the

t presence of many man-made objects of uniform color and having linear edges

| : makes this pair of pictures interesting.
|

1 E THE CANYON PICTURES |
iJ

" The third pair of pictures were taken from the rim in Bryce Canyon
-. National Park of one of their sandstone formations. [n the middle distance

’ are pinnacles and a narrow spine of croded sandstone running across the
picture. In the far distance is the other side of the canyon with sparse

| evergreen trees clinging to it. Lighting is from the right, casting many of| 4 the faces of the pinnacles into shadow. |

1 | | The original photographs were 35 mm color slides, The cameras werehard held in the field; the distance between the two camera positions is i
approximately fifty meters, The slides were digitized by use of a special

€ illuminating attachment to one of the A.l. Lab Hand-Eye television camerae.
| The pictures in Illustration A-3 are rull ecale 188 by 128 windows out of the :

middle of the originals, to pick up the most challenging features. ]

This was a particularly interesting pair of pictures from an 3
| . artificial intelligence point of view. Using only the intensity information,

4 humans were, for the most part, unable to pick out the exact location of the :
| [ edges of the mid-ground formations. Color information helped, since the

i background formations are yellow-orange, while the midground ones are more 3
red; also the green of the trees helped to distinguish them from dark shadowe

l in crevasses. Still, some edges required looking at both of the color 1
picturee before people could locate them exactly. The challenge wae to see 1

| 51 |]
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; : whether the matching and depth discontinulty algor!thms could do weli with
| only stereo Intensity information.

THE YAfiD PICTURES

1 The fourth palr of pictures Is of a portion of the area around the
author's home. Part of the cinder-block garage wall is visible at the right

3 |. side of the picture, with ivy growing ur it, A board fence extends from the
Corner of the building across the picture. Pyracantha bushes obscurs the
fence at the left edye of the picture. The fence is broken in the middle of

; the picture by a wooden gate, which is standing open, away from the camera.
There is a small rug hanging on the pate, a pair of gloves on the fence, and

] a jar sitting on the gate latch post.

Two large firewood logs ara in the foreground in the middle of the
picture, one lying on its side and one standing on end. The one on end has

| an ax handle lying across it; the ax head is embedded in the top of the log.
An automobile wheel lies between the upright log and the ivy. There ie a

, plastic dish-pan upside down under the pyracantha nearest the gate. The roof
3 line of another building is visible just over the fence. Tree tops form the

background of the picture.

| . The original photographs were 35 mm black and white negativee. The
{ LL. cameras were hand held in the field; the distance between the two camera

positions ie approximately one meter, The negatives were digitized
Commerciaily, and the 888 by 1200 pixels of data were windowed eiightly and| spatially reduced by a factor of flve to produce 220 by 168 imagee.

| Illustration A-4 shows the resulting images.

Again, parts of this pair violate the hypothesis of no perepective | W
. distortion. Specifically, the foreground logs and the ax handle show

significant differences in orientation in the two images. However, the other ¥
| parts of the images make excellent material for matching. Like the canyon

i pictures, humans have some difficulty separating the background from the po
foreground in this pair, particularly where the pyracantha bushes blend into 1

| the background trees. r

3
\ p

’ 52 |

T_T os amlanithe - - pros : o> . . @



| f=]

H -

1 N

5 .

i a
! po

i

x . f

: mat. RE eB ERRE :

lL or ed fy
: | REaE STR i : 4

REY :1 SOR i Ari : 3 a w 2 Ww lin. fi all 1

a :

. i

1

:
$

a BE SpE LT 8

8 | A To 1

.

ng -

i "

| Illustration A-1. The barn pictures. |

= ;

: WN |



Ba y

i

i
i

! i Le .

{ !

Ld

» Ld

i

H

i i

| | I
|: f

i |

E ¥ i

»

k

;
i a

i

eR J: | rR A hl a ie

i . al oe fd Wd te acs Fl = (og . _ AL

|

[ Ld ]

¥ 4

|

i i

L i : ¥ 5

i Wh EE 4 : [Fi ry wc YL Theta ERT HI aad OT

1 I i Tustration A-2, he lab pictures,

i

Ld



|

:

| /

1 | i Illustration A-3. The canyon pictures. |



x | i ——— i —— A A A i A AB a aSa rn eli SL ann i8acta rm mi mtrm me mnt me gE3. _ he

1 | 8

i |]

- TU. y

I | A

” 1

, 2 .
, w ’ iL

lB ‘ |

' r ' -

| | |

SEE
; |

EB | y fcr E
| pe

goa :

: [s= 3 |
i | » .

a

i Illustration A-4, The yard pictures.
I

|

Nr 56
kK ™ |



bo

Appendix B ]

3 i BASIC CORRELATION TOOLS

| For the purposes of this thesis, the measure of match betueen tuo
areas will be normalized cross-correlation. It Will ordinarily be calculated
between areas that are rectangular in shape and have odd dimensions, le.
2m+l x 2n+1 windows. This makes it easy to characterize the area by itscenter point.

) In this and the foll «ing appendices, the following mathematical1 conventions are used.

| Vectors are indicated by an arrow over the capital |z2tter which names the
] vector, e.g. A is the vectir named "A", Unit vectors are indicated

- by a hat ~ over the lower case letter which names the vector, e.g. 2
is the unit vector named "a". Specific 2- and 3-dimensional vectors
may be written out (x,y) or (x,y, 2), respectively.

| Vector dot product is indicated by a raised dot °.
3 i The norm or length of a vector A is denoted by A |. ]

The mean of a vector quantity A is denoted by A.
[ :

Exporentials of the quantity e (the base of natural logarithms) are E
i represented by using the function EXP. 3

:

| : AREA CORRELATION |
- The basic measure of match is the "correlation coefficient" discussed

] in most elementary statistics books. (For exampis, see Freund (1962)) |[n 1
our notation, thls correlation is §

SOX =F) x (YY; -V) |
COR == (B-a) 2

y SART( 2 ( X; -X)2 xT (vy; -V)2)

| For our purposes, A; and Yi ere Intensity values at corresponding pixels
| Within the rectangular windows. his Is Implemented as ]

d "1 ' o
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COR = C( X,Ix,Jx; Y,ly,Jy) (B-b) |

3 5 ( XUx+i,dx+j) = X Ix Y[Iysi,Jy+j) = V)

J -mSism -nsjsn | |

: SORT( ( 2 TU XIhal, dnt) =X 2)

-msi<m -nsjsn |
; x (2 TU YlIy+i,Jdy+jd -Y D2) )

; -msism -nsjsn 3

where (1x,Jx) and (ly,Jy) are the centers of the target and candidate areae,

respectively, Since this is rather cumbersome to write, we will abbreviate
it with the notation of Equation B-a, leaving the center points and the fact

that i ranges in two dimensions over the (2n+1)%*{2m+l) pixele in the i
surrounding Windows implicit. The means, of couree, are calculated over thie

| same area.

This is our ordinary form of corratation. It ie primarily ueeful in
an application where each image consists ot .ne (black-and-white) picture.

| COLOR CORRELATION
| In the case of color images there are three pictures involved. Since

| ol the color images we currently are working tith were obtained by digltizing |

three black and white picturee which resulted from photographing an ordinary |

< color elide under red, green, and blue filters, respectively, we ehall
| coneider the components of our color plzturee to be red, green, and blue,

which we will symbolize as R, G, and B.

i It ile eomewhat more convenient to think of a color plcture P as one
array of vector-valued points (PR,PG,PB) inetead of three separate arrays of

: ] ecalar-valued pcintia PR, PG, and PB. This suggeets regarding the text-book
| version of nor. -.lized cross-correlation, Equation (B-a), ae the

one-dimensional case of a vector function

. _ a ~ |

1 | SUR =F) (7 -F)
[

| VCOR » —m—mM8M8Mm8m8mMmM™ —— ™/ ————— eee- SORT( Z| X; -X 2 xT | V, -¥|3) | ;
3 - 0 i |

| i Coneidering only the numerator of VCOR, and letting X; be (XR,XG,XB); :
and Y; be (YR,YG,YB);, we have i
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i TOR =X) eo (Vy -V)
i

1 = 2 ( (XR,XG,XB); - (XR,XG,XB) } * ( (YR,YG,YB); - (YR, YG, YB) ): ‘

| | = 2 ( XRy-XR, XG;-XG, XB;-XB ) * ( YR;-YR, YG;-YG, YB;-YB )
= I (XR;-XR)X(YR;-YR) + (XG;-XG)*(YG;-YG) + :XB;-XB)*(YB;-YB)

(

1f we notice that all three terms within this sum ‘are the same in
form and change the definition of | so that It ranges over all components ae
well ae al! elements of components, we get

«aT (X; =X) x (VY; -V)
!

y which is the numerator of the formula for ordinary correlation Equation
| fed (B-a). By similar manipulations, the two terms ir the denominator of VCOR
LI EE become the same as the two terms in the denominator of Equation (B-a). Thie |

| | means that color correlation is really a dressed up form of ordinary
 { - correlation. This is convenient, for it means that color correlation will
bj have all of the properties that ordinary correlation has Leen observed to

| | have.

q I MASKED CORRELATION |
| Obviously correlation need not be restricted to rectangular windows:
H I the correlation coefficient can be calculated over any eample, regardiese ofh shape. The only reason for usino ihe rectangular windows was that It |s

easier to set up indices to cover a rectangular area than to make indices ]

4 i trace out an arbitrarily shaped area. 3
To do correl~cion over oddly shaped areas, It is first neceseary to |

implement a way of covering arbitrarily shaped areas easily. Toward this :
| end, the idea of 7 correlation mash has been instituted, The mask consists

= of a rectangular /rray NM which completely covers the area of interest and is |
1 | fliled with ones In the area of Interest, and zeros elsewhere. In effect, M \

| | Is a template toi the irregular area. i
To use the mask, one sets up Indices to cover the rectangle, as In

- ordinary correlation, then uses each paint of the maek as a predicate to tell
| whether or not to Include the corresponding pixels in the sume for the

a
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© correlation coefficient. Mathematically, this is equivalent to multiplying i

| each term of the sums by the corresponding term of the mask, that is
5 (XK =X) k(Y;=F) 1

: i |M;=1 :

] SGRT( 3 (X; -K)2%x 3 (Y; -YV)2)
: i |Mi=1 FM; =1

] i |
SM x (X; -X)x (YY; -Y)
[ L

: i] CT ————— }
: SQRT( IM; x (X; -X)2%xIM; x (Y; -Y)2) ’
1 i i

where it is understood that the summations necessary to calcuiate the means |
are done only over the valid part of ths mask. |

$

| When ue attempt to use a zero-one correlation mask to match the top

of the foreground fence post in thes barr pictures, We discover that the
masked post correlates best with a piece of the barn wall bsiow and tv the :
right of the intuitive match. Using the inverse of this correlation
mask--keeping the background and masking out the post--works fine; the trees

| and sky match up as ons would intuitively expect them to.
8 What is the difference betussn thess two cases? In ths second caee,

: ue are attempting to remove an intruding object and match around it. We

i | don’t care what shape the object is; Ws merely want to get rid of it.
) In the first case, ue are attempting to match a specific object with

] | definite boundaries. In masking out ths background, we haves aiso masked outjd the fact that the post has edges, turning the post into a pisce of wood which |
; matches the wood of the barn as well as it matches its true counterpart in

|| the second image.
} | In order to match specific objects, it is necessary to somehow retain

: I information about the boundaries of the objecte. One way to do thie is,

| ; | rather than maeking out everything outside the areae of intereet with zeroee,
-. t¢ instead weight the corrsiation so that all of ths window is considered, |

but the areas of interest influsncs the correlation mors than does their

| background.

x | | WEIGHTED CORRELATION
ey |

This suggests replacing ths zsro-ons correlation mask M by a weight maek UW,

yielding,

: || } 66
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| SU x (X; -X) x (Y -7)
: woe «== -

| | SRT ZL; * (X; =X )2 x TU; x (Y; -V)2)
; : i

| This necessitates changing the nature of the mean used from the
crdinary averaging mean to a weighted mean. Thus, instead of using

2 X; |
i

X = —

2 1

i

He want to use

2 W; x X;
, i

X @ ——vr—

| 2 W;

: Indeed, when the correlation mask for the foreground post is fiiied ith ones
and sevens, instead of zeroes and ones, the algorithmic match is the same as

: the intuitive match: post matches post.

| In addition to being used in moet template match ng, WCOR can aleo be a
used to place arbitrary weights in a Windiw, as shown in lilustration B-1.

| | PCINTER CORRELATION

-

g | Most correiation is implemented in a very orderly fashion. A pointer
5 § I starte at the upper left-hand corner of the rectangie to be covered and moves ]] | across the row of pixeis. When it gets to the right edge of the rectangie,

it returns to the ieft edge in the nex! row. The reason for this ie

| T efficiency. ]
] No matter whether the pixeis are piaced one per word (or fixed-length

| byte) or are packed and unpacked by epeciai byte handling instructions, the
most efficient way to access an area of bytes is to have a pointer which one |
increments. The efficiency consideration pretty well constraine one to| scanning iines of the picture.

Correiation does not demand this. Aii that correiation requiree is |

| to be given paire of points, one out of each picture, which are then |: 3 incorporated into the sums. Another Hay to implement correiation is to firet

| :Ld 61
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| : set up a table of pointers, then simply run a secondary pointer doun the
4 table of pointers. Implemented in this fashion, correlation becomes

, IZ (XIP;) =X )x(YIP;) -V)
: : |

cR 0 —rn—e—m————m———m—muuuv

SAQRT(Z ( XIP;) -X)2 x3 (YIP: -Y)2)
:

| where i now ranges over the table of pointers, and the mear.s are calculated
from this same set of pointed X and Y.

Once one has accepted the extra cost caused by looking up the pointer
before one can use it, other benefits become obvious. For instance, We are

4 no longer tied to rectangular areas. Once the pointers are set up, it is
immaterial what shape they Ccover--hexagons, circles, trapezoids, and even
grossly irregular shapes are all the same to this correlat!on. This does
away with the need to cover a rectangular template which tells whether or not
to include a given point in the correlation. Since as much as half of a
template is not used most of the time, not havingto consider those points at |

| all could result in a vast speedup of correlating Irregular areas.

This form of correlation also makes it possible to correlate in
1 plctures wlth known distortions. ' The pointers are simply set up to take the

| distortion mapping into account. For Instance, it one picture is knoun to
co have a scale-factor difference from the other, the target area can be coverad

| bu pointers at unit spacing while the candidate area |s Covered by pointers §
| determined by the scale factor. Any other known distortion can be hand | ed
‘oo similarly. 1

| One can even access the pixels In in area randomly, say to implement |- J a Barnea and Silverman type sampling algorithm. All that Is needed are two
parallel tables of pointers generated in some pseudo-random order.

| . AUTOCORRELAT ION
] | In signal processing, ths autocorrelation function is an Important
E | tool for characterizing the frequency content of a signal. The fact that, 3

for suitably constrained signals, the Fourler transform of the 3-» | autocorrelation function is the power-dens!ty spectrum of the signal explains :
E | why an examination of the autocorrelation peak can give such a good
] r Indication of the presence of extremely high or low frequency components in |
| | the Image [Lathi, 1968). Our main Interest In autocorrelation, however, is |
= not as a tool for characterizing the image data, but as a tool for

| determining what correlation values might be expected for a given target ;

| | J 62 Tr
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ey | Ji
Let:A(lx,Jx;di,dj) denote the correlation between an area of picture |

X centered at (Ix,Jx) and an area of picture X centered at (Ix+di,Jdx+dj). In

| | the notation of Equation B-b, this Is expressed as r
i

| | Allx, Iidi,dj) = COX, Ix, dx X, Indi, xsd] ) F
] If the two images were identical except for a constant transiation
1 (Ti, Tj), gain A, and offset B--ie. VY[i,j) = A %x X[i+Ti,j+Tjl+B for all

(1,]) in the images--then the correlation and autocorrelation surfaces would

| be exactly Identical. For a pair of areas centered at (Ix,Jx) and (ly,Jy)
which are an intuitive match, we would have

] All, dxsdi, dj) = COX, Ix, dx; Y, ly+di,Jysdj ) (B-c)

for all (di,dj) within the two images.

Thie is rarzsly the case, since most data of interest will have more

- meaningful changes between the two images than a constant translation, gain,
and offset. However, when ue assured that there is little or no dietortion

over windows of the size being correlated, ue effectively postulated that the
changes between the tuo images are small locally. Consequentiy, while

! Equation B-c usually will not hold for all (di,dj) within the tuo images, it
: might be expected to hold within the immediate vicinity of the matching area

i centers.
] :

| ¥ Now, we know that correlation of (Ix,Jx) with areas centared atpoints around (ly,Jy) yields values not greater than the correlation wlth :

=» ] (ly,Ju), ie., for B<|(di,dj)]|<2, j
| | COX, Ix, dns Y,lysdl,Jysdj ) s COX, In, Jdx; Y,1y,Jdy ) (B-di) |’ -

| for It was the fact that we were at a correlation peak which helped to
determine (ly,Jy) to be the match. Substituting Equation B-c into the left

y | I side of Equation B-d, we have for B<| (di,d]) | <2 i
4 Allx,Jdx;dl,dj) s COX, Ix, In; Y,ly,Jy )

1 i ie. that the match correlation is not less than any of the immediate
neighboring A(lx,Jx;dl,dj). Consequently, We would expect that the i

= | correlation ie not less than the maximum of these autocorrelations, that is, 1
}¥, i CO X,Ix,Jdxs Y,ly,Jdy) 2 MAX Allx,Jxsdi,dj)

B<| (dl,dj) |<2 3

4 i Experimentation has shown that the match ccrrelation meets thie |
criterion for some 398% of the good matches found. In addition, the 4
correlation at false matches falls to meet this criterion for about 95% of $

| the cases examined.ry ! .
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| ‘ A related measure, an autocorrelation calculated between the target
area and a copy of itself crsated by displacing different parte of the 3| correlation window in different directions as shown in Illustration B-2 also
works quite well as a floating threshold. This measure has the advantage

| that it can be caltulated in one pass over the data, rather than the 8 paseee
| required to calculate the 8 neighboring autocorrelatione for measures based |

’ on Allx,Jdxidi,dj) for B<|(di,dj)]<2. Effectively, this threshold measures
; how well the target area correlates with a slightly distorted version of

itself. A large number of other distortion patterne can also be ueed. !

This autocorrelation threshold passes about 98% of the good matches
found, and rejects approximately 99% of the false matches encountered. It is
this threshold which ie most commonly used in region growing, both becauee of
its ease of calculation and its accuracy of prediction. Unfortunately, we do
not know why it eeems to function better. v

We have discussed autocorrelation in terms of the standard area |

correlation. Of course, if anothsr form of correlatior Is used to determine :
the match, then the autocorrelatioy must use that same type of correlation,
be it maeking, weighting, or pointer correlation. Similarly, if the measure :
of match used is not correlation at all, but one of the dl fference measures,
then the "autocorrelation" becomss the "autodifference". Only the formula

4 for calculating the "automeasure" changes; the mechanics of the procees 1
| remain the same.

Autocorrelation has a number of uses. As We mentioned in Chapter 3,
the autocorrelation peak can be used to determine the proper Width of the y
grid for the search rcduction technique of gridding. The value of the |

| i autocorrelation threshold can also be included in the vectors used in the
| technique of similarity, since similar areas really ought to have similar

autocorrelations. Autocorrelation surfaces help to determine whether or ‘not
| a glven target area is suitable for matching. Most valuable, perhaps, ie

deciding whether or not a match Is good, either for ieolated matchee or for

: i region growing.

| THE MATCH SUBROUTINE
3 Another basic part of correlation usage is the local strategy used to

search for a matching point in an area thought to be promising. Most of our
| algorlthms for determining whether or not an area is promising are based on

; whether the center of the area looks promising. Therefore, it makes senes,
: BB when considering the area in detail, to look first at points near the center

| and gradually work out toward the edges of the area. We have already
| observed that the correlation nesd not be calculated at every point of an

area--calculating the correlation over a grid is adequate.
;

: 1 Based on these observations, the following local search algorithm wae
|

ns ’
|

Tm ssn" ee,
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oC " devised (Quam, 1971] to seek the highsst correlation wlthin a square area.

| { | The algorithm is Implemented as a subroutine cal'!ed MATCH, which takes fouri 1 arguments. The first two are the coordinates of the center point of the area
to be searched; when the routine rsturns, these variables contain the

| | coordinates of the point found to have the highest correlation. The third| voLd argument glves the radius to which thes search wlll be carried out; the fourth
tells what value of “correlation ie to be the threshold for search

| : termination.
i As shown by Illustration B-3, the search starts at the center point

of the candidate area, then sp -als outward In the pattern Indicated. At

each point marked with a *, the correlation is calculated with the target
area. The point having the highest correlation found so far is kept track
of. Should the correlation excesd the preset thresho!d or the search radius

be reached, the search stops spiraling and goes into hill-clIimbing mode at
the point which had the highest correlation.

In hill-climbing mode, the 2lgorithm examines the correlation at each

of the elght points Immediately surrounding the present point, and moves to
1 the point which has the highest correlation. Thies loop is repeated unt!|

there Is no higher point to move to, i.s. the summit of the hill has been
| reached.

] : The grid for the spiral is determined by a table within the routine.
Originally, Quam set the table so that ths algor|thm used a grid spacing of 2

p for the first loop, 3 for the next 3 loops, 4 for 2 loops, then 5. This
i author has Implemented a version which uses a constant grid spacing for all

; | loops, which is communicated by a global variable MGRID. This parameter is
4 set by a routine which examinesths autucorrelation peak, as explained in

| | Chapter 3. |
~ THE LMATCH SUBROUTINE |

i
. $ MATCH ie a tuwo-dimension?! ssarch strategy. When thearea of

interest has been confined to a |iny, however, we reed a one-dimensional
version, LHATCH. LMATCH has five argursnts. The first four are the same as

y for MATCH, except that the center point is sxpressed as a real point lying on
the given line. The fifth argument is ths elope of the glven |ine.

i 1

| i The search starts by calculating the correlation at the picture point
| : closest to the glven center point. It then moves n units up the |ine from

1 the glven starting point and calculates the correlation at the closest

: | picture point, then repeats this n units down the line from the starting
| point, then 2n unite up the |ine from the starting point, then 2n down, then

3n up, then 3n down, etc. Again, n is determined from the autocorre'ation

| and communicated by MGRID.

| 65



Like MATCH, LMATCH kesps track of the best correlation found so far y
3 and exits from this "ping-pong" spiral when it reaches the radius or finds a 1

| ! correiation above ths threshold. From ths point having the best correlation, j
it goes into "inchuorm" climbing mods, moving along the line in the uphill

4 direction until it can’t go up any more. Then it goes into the |
E two-dimsnsionai hiil climb of MATCH, just in case the line was a littie off

: and the matching point is not exactly on the iine.

] INTERPOLATION

: It should be noted that all of ths above techniques use correlation
over arsas centered on integer points in ths picture. In practice, however,
the proper match (in the sense of the candidate area which represents the

3 same piece of the scene as the target arsa) for a given target will be an
area csntered on a point in Picture Y with non-integer co-ordinates. Since

: the only correlation valuss which are availabie are those at integer points,
3 eome form of interpolation is necessary whsnever high precision is desired.

Therefore, ths final opsration on a match destined. to be used for
§ depth, camera modei, or uorld mode! determination is an interpolation. MWe

| would iike to fit a function of the form
4 EXP( - (AXDI2 + BXDJ + CADIXDJ + DADJ? + EXDJ + F) ) (B-e)
] to the correlation values C( X, Ix, Jx; Y,1y+Dl,Jy+0J ) for (DI,DJ) Within some
2 radius of the matching csnter points. To do this, we fit the polynomial ]

AO]? + BDI + CxDIXDJ + D*DJ? + ExDJ + F to the logarithm of the correlation !

] values. Soiving this function for a maximum gives the interpoiated |non-integer center point for the matching arsa in Picture Y.

i When a mode! of the autocorreiation surface is desired, this same
| exponential fitting procsss is applied. Rather than being used to

] | interpoiate the autocorreiation, this sxponential surface is used as an
Sy : approximation to the autocorreiaticr peak. Examination of the coefficients

of Equation B-e provide un sasy way to determine the Width of the peak, {
whether for calculation of the grid spacing or determination of the3 ] euitabiiity of the area for matching.

3 H '

|

| | 1
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1111111111111111111
1111111111111111111

: Ld 1133333333333333311
] 1133333333333333311

1133333333333333311
1133355555666633311
1133365665555588833311.
11333E£5555656655833311
113335657776586833311
113335557775858633311
11333656565777568633311
1133355555656566833311
113335555556565633311
11333656555558868633311
11333333333353333311
1133333333333332311
1133333333333333311

: 1111111111111111111
11111113111111111111

| Linearly usighted window.
1111111111111111111
1111111111111111111
112223322222222222211

| 1122222222222222211
i 1 122222222222222211

11222646666666622211
J 1122264646464 64646664622211

112226664644446422211
| 112224448884644646422211

| 1122266464888466422211F | |) 112226466888446422211
| 1122264464644646464646422211 || : 0 1122264666646466622211

| 1122264646646666662221°j 1122222222222222211 |
1122222222222222211
1122222222222222211

| 1111111181711 111111| 1111111111111 111111

| Exponentiaily weighted window.
t

E | lilustration B-1. Windows of wsights, such as might be used when minor
distortions are present.

el|
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1 : Illustration 8-2. A sketch showing the manner in which a window could be A

distorted to determine an autocorrelation threshold over it. Pixele within 1]
the four areas spaced about the center point C as shoun in the ieft drawing |

: are correlated with pixels in the areas spaced about C as shown in the right
drawing. | :
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l[iiustration B-3. A representation of the search pattern for the subroutine
MATCH. The algorithm begins at the center point and spirais outward |
foilowing the arrows anc calculating correlations at the point. marked %, [It
etope epiralling when it finds a sufficiently high correiation or reaches the |

| radiue of the spiral,
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CAMERA MOOEL CALCULATIONS |

| For our purposss, a camera modei consists of seven numbers which |
! specify the principai distances of the two camsras and the poei tion and | 8

orientation of the sscond camera with respect to the first. (The principal | 2
: distance of a camera is the distance between its image piane and ite
- principal point aiong its principai axis as shown in [liustration C-1). Thie

appendix contains the mathematics used in deriving and utiiizing camera

: modeis., ]

| DERIVATION OF CAMERA MGDEL EQUATTONS

We begin by arbitrariiy placing a left-handed 3-dimensionai
: co-ordinate system on the worid in the following manner. The origin of this

} co-ordinate system is the principai point of the first camera. The principal }
axis of the camera bscomes ths z-axis of the world. The scale of the

| co-ordinate system is such that one unit equais the width of one pixal on the 3
" image piane. (See lilustration C-1)

i 13 thematically, the principal point has position (8,8,8): a point on || the principal axis is rer-esented by d*/0,8,1), and the image piane hae the
| equation z=Fl, The I- and J-axes of the first camera piane are paraiiel to | of

the X- and Y-axes of the reference co-ordinate system, respectiveiy, and in |
the plane 2 « Fl, that is,

I I « (8,8,F1) + Ixx(1,0,0) and J = (8,0,F1) + Jxx(8,1,0)
The principal point of the second camera is the point in 3-space |

ro deecribed by the bassiine distance D, which is the distance between the

| principal points of the tuo cameras, and by tuo angies, al and a2. When the
oh firet camera has been panned by al radians, then tilted by a2 radians, ite :

: principal axis will point down the baseiine toward the principal point of the :
| eecond camera. (See iiiustration C-2) -

Mathematically, panning is equivaient to a rotation about the Y-axis; |
| tiiting ie equivalent to a rotation about the X-axis. The vector U is }

: obtained by taking the vector (0,0,1), pre-multipiying it by the matrix :
Rx (a2), representing a rotation of a2 degrees about the X-axie, |
pre-muitipiying tis resuit by the matrix Rylal), representing a rotation of | |
al about the Y-axis, and finaiiy muitipiying this quantity by the scaiar D, p
i.e

! |
§ o =

nw jiu.iSH
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i - ;

| U = D*( Ry(al)*( Rx(a2)%(8,8,1) ) ) :
= Rylal) * Rx(o2) * (@,8,0) |

COS(al) ®@ SIN(al) 1 8 8 8: :
" ~ 1 8 | 8 COS(a2) SIN(a2) | x 8

-SIN(al) 8 COS(al) 8 -SIN(a2) COS (a2) 1

where matrix multiplication is denoted by * and done in the usual fashion.
Per forming these multiplications, Wwe have

0 = Dk( SIN(al)*COS (a2), SIN(a2), COS (al)*C0OS(a2) ) (C-a)
The principal axis of the second camera is described by two more

angles 81 and B2. When the first camera has been panned by £1 radians, then
tilted by #2 radians, its axis parallels the axis of the second camera. (See

| lilustration C-3) A point an the principal axis is given by the position §
| vector U + s*h, where s is the distance from the principal point U, and A je

a unit vector in the direction of the principai axis of the second camera,

; Mathematically, h is expressed by pre-muitipiying the vector (@,8,1) ;tJ by the appropriate rotation matrices Ry(Bl) and Rx(B2), I.e,
i |

: T A = Ry(Bl)x( Rx(B2)%(8,8,1) ) 3
3 ;

| = Ry(Bl) x Rx(B2) x (0,08,1) E

I COS(B1) @ SIN(AL) 1 8 8 8 | :
: | . - 8 1 ¢) * | 8 COS(B2) SIN(B2) | x 8

| -SIN(B1) @ COS (pl) 8 -SIN(B2) COS(82) 1
gy | L Ce

Performing these multiplications, ue have || | h = ( SIN(BLIXCOS (82), SIN(B2), COS (B1)%COS(32) )|

| The image pianc of the second camera is the n!2ans perpendicuiar to

TT.i akSs HRa A i hh als is



the principal axis at distance F2 from the principal point, (See
[1lustration C-3) According to a standard analytic 7Jeometry textbook
(Schuartz, 1968), the plane perpendicular to the vector B and passing through |

| the polnt P has the equatior A
i . | |
\ 8° ((xyz2 -P)=B ,

Our image plane is defined to be the plane perpendicular to the
| principal axis h and passing through the point U + F2xh, Substituting these |

for B and P, respectively, ylelds

| Ae ((xy,2) -U-Fxh) = 0
| ¥

: The actual orientation of the second image plane is described by the :
angle B3 through which the first image plane must roll (after having been
panned and tilted to make the principal axes parallel) in order to make the
internal co-ordinate axes of the first cimera agree With those of the second
camera. (See Illustration C-4) Let the [- and J-axes of the second camera

plane be represented by the unit vectors ? and g, respectively. 1

A The orientations of § and g depend on the pan and tilt angles 1 and

| B82, as well as the roll angle $3. Mathematically, a roll is equivalent to a| rotation about the Z-axis. Let Ry(pfl) be the rotation matrix corresponding
| to panning by #1, Rx(B2i be the rotation matrix corresponding to tilting by

: g2, and Rz(@3) be the rotation matrix corresponding to rolling by 83, i.e.
L.

| cos(fl) o aw | ’
Ry(pl) = 0 1 9 ,

Ho -SIN(B1) © |
t.

1

| 1 e B :

{ Rx(82) = | 8 COS(B2) SIN(B2) , and

8 -SIN(B2) COUS(p2)

| 4
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} ; ]

: ;|

COS (83) SIN(G3) ©

| Rz(B3) = | -SiN(B3) COS(B3) @ | .
: 0 ¢) ]

| then we can express f and g as

: # = Ry(B1) = Rx(B2) x Rz(B3) * | 8 | and

1 8

| g = Ry(Bl) * Rx(B2) * Rz(B3) * | 1
1

Multiplying out these matrices in the usual fashion gives |

; | te ( COS (B1)%COS (B3)+SIN(B1)%xSIN(B2)%SIN (83),
-COS (32) %xSIN(B3), :

3 . COS (B1)*SIN(B2)xSIN(83) -SIN(B1)%*COS (33) ) :
: | g = ( COS(B1)*SIN(B3)-SIN(B1)*SIN(B2)*COS(83),

COS (32) *COS (33), 13

! -SIN(B1)%SIN(B3)-COS (31) %SIN (82) %COS (33) )
' !

| . The I- and J-axes for the sscond camera radiate from the point |
U + F2xh, so we have ;

[= 0 + F2xh + 1yx? and J =U + F2xh + Jyxg ,

! fo derive a camera model, one takes a set of pairs of points found to |

be matches and snarches in the space of F1, 2, al, a2, fi, B82, and 33 for {
the values of these parameters which bes. accounts for these point-pairs. i

|
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. Actual determination of the model is done by least-equares. minimization of
: the measure of camera model error presented below. As in most least-squaree

techniques, the number of point-pairs must be greater than N/2, where N is :
the number of parameters being sought, and should be independent points, i.e.

| no three co-linear in the image planes and no four representing co-planar
| points in 3-space. In practice, the number of rellable pairs available, P,
| should satisfy p 2 2N, or in our case of N=7, p 2 14. The program which4 derives the camera model sets an upper Iimit of 188 on the number of paire |

| which can be ueed.
J CAMERA MODEL ERROR MEASURE

: There are many error measures possible. The one presented here Is
the average of the error in match for each of the polnt-pairs, calculated in
the image plane. To calculate the error in match for each point-pair, we

| first use the first camera principal point to project point x of picture X
into space as a ray, then use tie second camera princinal point for the
hypothesized camera mode! to project this ray Into the second image plane as
a 2-dimensional |ine segment, and finally evaluate the distance in the second
image plane between this |ine segment and the matching point y of picture Y.

| Point x of Picture X is the point (Ix,Jx) in the plane of the first
1]. camera, which is the point § = (Ix,Jx,F1) in 3-space. The projection of this

point into space is the ray from the principal point of the first camera,
(0,8,0), through S. In parameterized vector form, this ray is r*8, r>F1,

N | | Ueing the principal point of the second camera, this ray is projected
into the image planc of the second camera. Perhaps the simplest way to |

: r clerive this is to pick two arbitrary points on rx8 and project them into the
.second camera image plane, then calculate the 2-dimensional | Ine between

- ’ them,

Fd To facilitate this, first consider projecting an arbitrary point @ in |; i : 3-space into the plane P (in our case, the image plane of the second camera)
1 perpendicular to the vector h (airection of the principal axis of the second

{ camera) at the point C = U + F2%R (irtersection of principal axis and second
F | | image plane! using the point U {principal point of the second camera) as the

principal point of the projection. Clearly, the projected point lies at some |
d:stance t along the line from 3 to U, eo can be descr |bed by the poeltlion |

b vector G’ = OU + tx(l-U). §
| g

We would like to express 8’ in terms of the vectors ? and § which are !
] or tho-normal and lie In the image plane P, That ls, we would like to know |
4 and J such that

1 U+F2eh + 128 + Uxg «a 0 4 to( J-0) or

Ist+ Jeg = t2( 0-0) - Fuh.

p



i.J f .

: |

28
| Ootting both sides of this vector equation by f gives

| (If + Jig) « ¥ = (tx(Q-0) -F2%h) + ¥,
: | Expanding this, and using the fact that ? ie a unit vector and ee

| | perpendicular to both h and g, we havs
| 1 = te( 8-0) «?, |

| § Had we dotted both sides of the equation by g, Wwe would have
; | Je tx(G-0) +g. |

Dotting both sides by h would give

tx(d-0) ch-F2e-8 or

tx(d-0) «fh =F2 or

: t-F2/(8-0) +h .

| Substituting thie expression for t into the expressions for | and J, we have1 (g-0) ¢ (8-0) +g
| by | = F2 % ——————— and J=F2 ¥ ————8— :

| " (d-0) +h (4-0: «Hh
rE |

| Now ue are ready to project two arbitrary points on the ray rad into

1 \ the plane P using the above equations. In the co-ordinates cf the second
1 image plane, the points cB8%S and c1*S bscome ths points (x8,y8) and (xi,yl),

} : reepectively, where - v

L. (cBxS -0) « ? (cox5 -0) + g |
} om (%B,UB) o ( F2 ¥—— BT Bie— and :

Bu | (cows - 0) «A (ced - 0) « h |
Le

| (cisS -0) « ? (cis§ -0) «+g |

g | | (xl,yl) « ( F2 % —————r » FZ X ) y || Ll (c1#8 - 0) + A (clad -0) +h :

| | According to our analytic geometry text (Schwartz, 1968), the |equation for the 2-dimsnsional line through thess tuo points is |

Li (yl - yo)

y-yl es ————— x (x = xl) or

( x1 - x8) |
(yl - yd) x x + (xB - x1) * y+ (Yokxl - yl*x@) « 9 :

Evaluating ( yl - y@ ), we have
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(cla - 0) + § (cond - 0) + § |
(yl - yd) os F2 Xx —m—————————— _F2 % ————m———

| (c1xS -0) +h (cosS -U) +h

(c125-0)eg x (cB*S-U)eh - (cBxS-U)eg x (c1%8-0)+A
3 -fF2%«6 .

(c1x5-U)eh x (cOx5-0)+h

| (cl - cB) x ( S*h x Jeg - Seg x Uh)
mF X--r———

| (c1%5-0)oh x (cBx3-U)+h

| Similar manipulations give

(cl - cB) x ( 5% x Jeh - Seh x Jo?) ;
(x8 - x1) «a F2X —mM0m——— |

(c1*5-0)eh x (cBx3-0)¢h

| Substituting into ( xlxyB - ylxx@ ), we have

i (18 - 0)? (cS - [ef |
1 ( x1%yd - yl&xB ) = F2A———-— ¥ F2R———— |

(c1x8 - 0) +h (cBxS - 0) +h

| (c1%5 - 0) +g (cBsS - 0)?
- F2X———————— x F2%————

| | (c1xS - 0) +h (c0xS - 0) +h |

| : (c1#5-U)+ F x (cOxS-U)eg - (c1¥8-U)+g x (c0x5-0)+3 | |
bo | I a a EE ————— ee — )
| (1a - Doh x (coxd - D0) oh | | |

| (cl- cB) * ( Seg x Ue? - Se? x Jeg) |
| | «Ff——

| | (c198 - 01h x (cons - 0) oh |
| i Now, substituting these terms into the equation for the line gives :

: (cl - cB) * ( SA x Jeg - Seg x Uh) 3
| RRx—muur—o_ x x + 4

(c1%3-0)+h x (cB*S-0)f

| | (cl - c@) * ( 8o% x Usk - 8h x Uo?) |
. FEW vmm———————— fC A 4 ;

(c1x5-U)+h x (cBxS-0)+h 3

| (cl - cB) % ( §og x Ue? - Se? x 00) |
FPR § em —— QW |

(c135-U)oh x (couS-0)+f



Factoring out common terms and dividing by them gives

( Goh x Ug - Segx Uh) xx + 1

| (Go? x oh - Sohne?) xy +

( SegxiUe?t -StxlUeg) xF2=0 (C-b)

| the desired |ine segment in the second image. 3

The error for that point-pair is the square of the minimum distance

| betueen this line segment which corresponds to the point x and the point y ]
which matches the point x. (See Illustration C-5) 5

| DEPTH RANGING
1 Once one has a camera model, it is relatively trivial to find . the

| distance from either of the cameras to an obiect in 3-space represented by a ]

| point-pair. One has the points (Ix,Jx) and (ly,Jy). The ray from the
principal point of the first camera through (Ix,Jx) [. given by the vector

31 : rx(Ix,Jx,F1). The ray from the principal point of the eecond camera through

(ly,Jy) ie given by

bu! U0 + 8 %( F2%h + 1yxf + Jyxg ) (C-c)

| | Due to minor errors in measurements of camera modei parameters or in| interpolation of the matching center point, these two ray. may not intersect.

| Using the camera model, we can correct for this. We first back-project the

. | point x into the second image plane, giving us the line of Equation C-b.Lc Now, instead of the point (ly,Jy), we decree the point (ly’,Jy’) which is on ,

this line and which is the shortest distance away from (ly,Jy) to be the true

| matching point. This gives us the ray
= U+ 8 %( F2xh + Ty’*? + Jy’*q ) ~~ (C-d) |

I | in lieu of Equation C-c.
To simplify the notation in the foliowing derivation, let

P a (Ix,Jx,Fl)

| G = F2xh + Ty’*? + Jy’'*xg .

-
We know that the intersection of r *P and U + 8x @ exists; that is the

; definition of (ly’,Jy’). Therefore, we need oniy soive for the r and s
such that r xP «aU + s x 3 . The two necessary constraints are obtained by
dotting both eides of this equation by P or by @, ie.
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Rp A

| : (rxP) + Pa(D+exd) «FP and
(rxP) ele (U+exd) +d

These are equivalent to

a. r x PoP = UsP + s x (GP and

rk Pel « UG + 8 x Ged .

|

Solving this equation for s gives the distance of the 3-dimensionai point
: from the sacond camera

: | Usd x BoP - eB % Bed
8. WT —————————————

deP x Ped - PoP x §¢0

while solving the above system for r gives the distance fom the first camera

Ue % GeP - UP x Lu

: PN ————————————————"

| de % Bod - BB x Ged
: a DERIVATION OF TWO MATCHING LINES | |

i. J

With a camera model, it is possible to place tuo lines, one in each

| picture, into correspondence. To see this, consider the two principal points
: of the cameras, (0,8,08) and U.

These tuo points, plus any third point, determine a plane in 3-space.

| 1f we call the third point S, then this plane has as its normal the vector §
: x 0 and goes through the point (8,0 8). Our analytic geometry text teils us \
| that the equation of a plane with normal N through the point P is

Ne ((xyz2 -F)=0

{ ij Therefore the equation of the plane determined by (8,8,8), U, and § hae the |
equation

(S x0) + (x,y,z) = 8 (C-e)

Except in a few degenerate cases, this plane intersects both of the

camera image planes. The intersection of this piane with the second image
: plane in terms of that plane’s coordinate system is given in Equation C-bg

the Intercection with the first image plane z = F1 is

(SxU) « (x,yFl) = 0 (C-f)
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Consider also the intersection of the plane of Equation C-e with the
scene. All of the points of this curve lie on the plane of Equation C-e,
obviously; therefore all of the projections of thess points onto the second

: image plane lie on the lins of Equation C-b and all of ths projections onto
| the flrst image plane lie on the line of Equation C-f. Thus all of the

| pointe on one |ine map to points on the other |ine.
Clearly, 5 can be almost any point. The mosi convenient such point

| is usually (Ix,Jx,F1), the centsr point of the target zrea,

|

|

l |
l .

:



3 W Principal Axia z 7
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\ Principal Distance :

| | T) £
! ] Principal Paint

f

[1 %

3 Illustration C-1. One of our simplified cameras in the standard position and N .
{ orisntation. x
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| Pan Angle -
t .

| amerd Baseline
I

~ Principal Point of
| - Tilt |

| | pu TH - ings Second Camera. ~~

Fi be |rst Camera ~

| oH |

8

Illustration C-2. The firet camera, panned and tilted to point to the :
principal point of the second camera.
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wg |
| 7A gle 7 |-

| Tilt Angle

| |
! | , => Parallel Principal Axes
| J

| | ‘ ~ Firit CamaraI| - Camera Baseline
1

| 1

3 | Second Camera

! |

|

| lilustration C-3. The first camera panned and tilted so its principal axis

paral lei. the principal axis of the second camera. |

|
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3 : 4 Tr r 1 First Image Plane--Original Orientation

Rall Angle

5 \

3 |

| . Camara Bamaline |i = ~~R ;

: | { | Vit Image Flone-- |
! Rotated to Parallel Orientation

| | of Second Image Plane :
3 ‘ *

| | Second Image Plane

| Illustration C-4. The first camera ima |ge plane rclled to parall

| camera image plane. P el the second

| | 83 |
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| ; |

[ Second Camera Image Plane 3

EH . Back-projecied Line

| | me Error |
| Hatching Point (ly,Jy)

vl

¢

I1lustraticn C-5. The error for a point pair (Ix,tx; « (Iy,Jy) is the
: distance from (ly,Jy) to the iine in the second image which rorresponds to

3
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Appendix 0 3

DISTORTION |

| Intuitively, if the parts of the tuo pictures which represent a given
object differ in anything but position, then the object has been distorted

i from one view to the other. For our purposes, if, for displacements (di,dj)
within some window and corresponding points (Ix,Jx) and (ly,Jy) in the two |

images, the point (Ix+di,Jx+dj) does not correspond to the point :
(Iy+di,Jy+dj), there is distortion over that window. 2

MATHEMATICAL DESCRIPTION |

To express this mathematically, we start with two points in 3-space, 1
; HB and 3. According to the raicuiations in Appendix C, these points project ]

1 Ret fe] | ;
El Al = ( Rix, Rly ) = ( —x*F1 , —F1 ) and

: fk RK :

: Sei Se) |

| || S1 = { Six, Sly) = ( —=*F1 , —x%F1 ) IF | Sek 8K

| | | in the first image plane and | |
( A-U )o? ( A-U ) eg F

: | 2= ( R2x, R2y) = ( ————AF2, —————4F2) and| . | ( R-U )+h ( A-U )+h :

| | ( 8-03 ( 8-U eg“1 §2 «  S2x, S2y ) = ( ———*F2 , —————%F2 ) |

| ( §-0)°h ( 5-U)-h
i in the second image plane,

| | Suppose ue iat § be the reference paint, that is, we set
| (S1x,Sly) = (Ix,Jx) and (S2x,S52y) = (ly,Jy). Aliso, iet (R1x-Slx,Riy-Sly) be

the (di,dj) of our intuitive definition. There is distortion if the point
, which corresponds to (Ix,Jx) + (di,d]) is not (ly,Jy) + (di,dj), that ie

{

( R2x, R2y ) =» ( S2x, S2y ) + ( Rix-S1x, Riy-Sly ) or

§



| ( §2x, S2y ) - ( R2x, R2y ) + ( Ri1x-Slx, Riy-Sly ) =» 8 or

| ( R1x-S1x-R2x+S2x, R1y-Sly-R2y+S2y ) = B j

We define this last vector to Le 0, the distortion vector. |

] For non-trivial camera models and windous larger than a single point,
| it is unlikely that this vector will be exactly zero for all of the (di, dj)

Within ths window. Conssquently, there will almost always be distortion in a 3
continuous image.

However, we are dealing, not with continuous imagee, but with images ;
which are represented by discrete arrays. When, in such an array, the 3
deeired image point falls between elewents of the image array, there are tuo

| things which can be done. One can approximate the deeired pixei by |
interpolating the neighboring a~ray elements, or one can simply uee the array ;
eiement vhirh is closest to the desired point. In corrulating, the latter ie |

3 the more Conmon practice.

The vector D1 = Rl - 51 will ordinarily be such that if its tail ie :
placed on an integer point of the array, its head will also fail onto an

| integer point. If the vector U2 = R2 - 52 is placed with ite taii on the :same integer point as 01, its head will probably nct fall on the head of 01.
| However, if the head of 02 fails within 1/2 pixel in each co-ordinate of the

] dg head of 01, we can not really tell the difference in position. Thus, for a
discrete image, we can say that there is no distortion if, for ail (di,dj) :

i Within the window, the x- and y-components of 0 are both iese than 1/2 pixel.
’ LIMITING DISTORTION i

i H
i.

Distortior 's algebraically a veru complicated quantity, for it |
y depends on thirteen parameters--the nan and tilt angles which describe the

: | direction to the sacond camera, the pan, tilt, anu roll angles which describe
’ the orientation of the sccond camera, the tuo focal lengths, and three

re parametere each tu describe the reiative 3-space points R and S. Graphing
Lo the distortion as a function of ali 12 of theee parametere ie obviouely not

| ‘ feaeibie; the graph is imposeible to represent phyeically and exceesiveiy
large to tabulate.

| If one holds all but one of the parameters constant, one can use the
| limitation on the components of the distortion vector to solve for limits on

the laet parameter which will guarantee that ie distortion ie small. This
| ie possible analytically (see [Fischler, 1971) for a treatment of change of

focal iength and for second camera roll angle), but le usually rather meeey,
i hence not very illuminating. To give a feel for the resuite for particular

parametere, lilustration D-1 tabulates eome of the dietortions for the camera
{ modei of the barn pictures with different object positions and orientatione.

1 []
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|

The barn camera modei is aimost the standard side-by-side stereo |

modei. The second camera is placed at 81 degrees of pan from the ¢i: st 1

: camera and .6 degrees of tilt, that Is, to the right of the first cai era,
| slightly forward of its position, and a little bit higher. Its pointing data

] is -3.2 degrees of pan, -1.3 degrees of tiit, and -1.4 degrees of roli, that |

ig, it is pointed siightiy to the left (back toward the first camera), down a
fittle, with a minor clockuise roll.

The first group of data tabulates the distortion fsr two points in
the first image plane (-50,10), which is on ths corner of the barn door, and

(-55,5), which is (-5,-5) pixels away. The depths to the corresponding |
| 3-space points are kept equal, that is, the 3-space points are both on a

plane perpendicuiar to the first camera’s principai axis. As this depth

increases from one meter to 100 meters, we observe the resulting changes in
the distortion.

| The second group of data uses a different pair cf points in the first

image, (18,18) and (17,i7)--the point on the skyline where the trees shou

somewhat cf a notch and a point (7,7) pixels away. For a depth of 18 meters
} at (10,10), we vary the depth at (17,17) on either side of 10 meters and

| observe the resuits,
a In the third group of data, we have used the saiie first point (10,10)

and varied the vector to the second point, in effect examining the effect of

varying the dindow radius from 1 to 10 pixels. For each pair of points, ue

have determined (to two decimai piaces) the depth at which the two 3-space
points wouid have to lie (both at ths same depth) in order to produce

- distortion of just less than half of a pixel.

f It is hoped that this tabie will give some feel for the reiation :
between depth, window size, object orientation, and distortion. Those

wishing to draw specific conclusions about the allowabie window size, etc.,

: for their oun data are advised to program the mathematics of the iast section
: | | and produce similiar tables for their cawera model, since the distortion

- vectors ulil change considerabiy With changes in the camera mode! parameters, ’

Under the definition of the iast section, depth discontinuitiee are

distortions. However, such discontinuities are effectively translatione,
| which our algorithms can handie once they are located, so we Will exclude
A depth discontinuities from the following discussions.

SMALL DISTORTIONS

For known smail rotations and scaie factor changes it is possible to
: choose the correlation window to be distortion-free [Fischier, 1971). This

is done by calculating at what radius the globai distortion causes pixels of

] matching windows to get one pixel out of registration, yielding iocal

{ .
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distortion. Any Window which would fit into a square of this radius will be

distortion-free, at least from this source of distortion. |

For other minor distortions, weighting the correlation window ae

ehown in Illustration B-1 may also help. (See Appendix B for an .explanation

of weighted correlation.) Essentially, this says that ue are most interested

in having the center nf the cerrelation window maich up, and, while it would

be nice to have the outer parts match up, it should not greatly effect the

correlation if they do not.

GROSS DISTORTIONS

But what about large rotations and scale factor changes? Large
distortions will cause matching to fail, since it causes the matching process |

to compare points which do not correspond. When enrugh points do not :
correspond, the correlation will fill below the confidence level, and the

areas Will fail to match. This necessitated our restrictions on the kind of

| pictures we can handle.

| | However, some of these restrictions can be |ifted. The main
technique for this ccnsists of figuring out what caused the problem and

compensating for it. Let us consider some of the causes of large dietortions
and see what can be done about them,

Global Rotations and Scale Factor Changes

Global rotations and scale factor changes--those affecting the whole
picture--are caused by a relative roll of one caiera about its focal axis and

. by differences in the focal lengths of the cameras, respectively. Pairs of
pictures having these distortions are somewhat rare. The human prejudice for

order usually results in multiple photographs of a sczne being taken with
| identical cameras and lenses, and with both cameras held upright.

There exists the case in which the pictures were taken by a machine,

| such as an independent roving vehicle. However, a reasonable design
constraint on such a machine is for it to monitor its orientation with

respect to the world, and report how much roll ie present if it must change
angles. One would also expect to know if the focal length of one camera

| differed from that of the other. Given this data, it is possible to
decal ibrate the pictures, that is, put them into the same orientation and

scale (Quam, 1971).

In the rare case in which gross rotations or scale factor changee are
present but of unknown magnitude, it is still possible to get rid of them. |

All that |s required is to determine the rotation and scale factor change.
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lf the locations cf enough pairs of points were known, the global
rotation and scale facto: change could be computed by least squares

| techniques as a part of the camera model (See Appendix C). This requires
collecting several pairs of corresponding points. Since we have assumed that

| distortions exist, we cannot use matching techniques, which depend on |owu
distortion, to find these point pairs,

One possible method for discovering these correspondences is to |
extend the correlation technique. Instead of merely searching among all
possible translations of the window, ly = Ix + Cl and Jy = Ux + CJ, we could
also searches among all possible rotations and scale factor changes.

1Y = Sx( COS(B)xIX + SIN(B)xJX ) + CI and

: JY = Sx(-SIN(B)xIX + COS(B)%JX ) + CJ

EE These new dimensions, S and 8, will have to he quantized in order to make the
searches finite. The window size used for the correlation will determine the
maximum quantization possible without having to worri, about distortion.

This search in 4 variables will be very long and slow; some method of

| shortening it is almost manditory. The technique of reduction will stillork if the size of the window can be reduced along with the picture.
Gridding will also still work for the translation part of the search, and is |
inherent in the quantization of the rotation angle and scale factor,
Similarity will work only if the properties put inte the vectors are
invariant under rotation and scale factor change. Camera model searches are
not applicable, since we have no camera model. (lf we did, we would know the
the relative rctation and focal lengths, and wouldn’t be looking for them the
hard way.)

Another method which will give the rotztions and scale factor changes
directly was suggested by Lynn Quam. Jt calls for locating some object or
area lying entirely in both pictures and finding its boundary. This could be
accomplished by flat region growing (see Chapter 5S) for an area of | oul
variance, by conventional edge techniques [Hueckel, 1972], or by more
sophisticated region arowing techniques [Yakimovsky, 1973). The boundary is
then tabulated as distance from the center of mass of the area vs. angle from
some reference direction. It is nou possible to correlate the resulting
function tables to find the optimal! displacement (i.e. angle) which aligns
them. Once the rotational alignment is determined, the tabulated distances
at corresponding points on the boundaries can be used to derive the scale
factor change, as could the ratio of the perimeters.

To the knouledge of this author, these ti:chniques have not been
implemented. Since totally unknoun camera roll and focal length change tend
to be the exception, rather than the rule, this author leaves the solution to
someone who has the problem.
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Local ScaleFactor Changes

Loca! scale factor changes occur because the object is closer to one
camera than to the other. This is particularly noticeable in forward motion

| stereo, as might be taken by a vehicle rolling along some path. [If the 1
approximate local scale factor is knoun, it can be taken into account, and a |

| correlation function uhich does mapping instead of matching can be employed
to determine the area correspondence. (See Appendix B for descriptions of 1
matching and mapping correlation.)

The idea of finding boundaries and thus determining the relative 4
scale factor chinge is still feasible; however, it requires knowing where the
object is in bith pictures. Since thic might well be the information we are j
trying to determine, this approach is usually not practical. ]

A second technique recently implemented by Quam uses a camera model

Given a camera model and a pair of points, it is computationally rather |

, simple to determine the distance from each camera to the point in 3-space
corresponding to those tuo points (See Appendix Cl). For each proposed
mapping, these distances are calculated using the cente points of the ]
proposed corresponding areas. From these distances and the focal lengths,
one calculates the effective difference In scale betueen the two areas so

that mapping tables can be set and the correlation evaluated.

When the object lies at the same distance from both cameras, out with |
a face at a large angle to the camera baseline, scale distortirn occurs
primarily in one dimension in the image--the dimension most nearly parallel |
to the camera baseline. For instance, in the barn pictures the barn face is i
distorted from one view to the other, but the distortion is primarily |
hor izontal--the direction of the camera baseline. This suggests making the :
correlation window more narrow In the direction of the camera baseline in L
order to reduce distortion to allow matching to take place.

Most other distortions cause the two images to contain different
projections of the object. In general, it is unlikely that more than a small
part of an object so distorted can be matched. Mapping i possible, cf |
course--1F one has a 3-D model of the object, knows the o iginal 3-space 1

position and orientation of the object and how it changed, anc nds a reliable ]
| camera model. However, if one already knows that much about the scene, there

is little polnt in dolng matching, or any other vision work. :
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For a given pair of points (Ir,Jr) and (ls,Js), examine the distortion
vector (Dx,Dy) as a function of depth, r-depth = s-depth, i.e.
all of the 3-space rLoints are in a plane perpendicular to the
first camera's principal axis.

(Ir,Jr) r-depth (Is,Js) s-depth Dx Dy !

-50 10 1.000 55 5 1.008 -.127 -.565
-50 10 1.508 -55 65 1.500 -.113 -.307

: -58 10 15.000 55 5 15.0080 -.846 .183
-50 10 20.000 -55 5 28.0080 -.046 ,113
-50 10 G8. 0008 55 § 50.000 -.0480 .132
-50 10 100.200 -55 5 108.0080 -.038 .138

For a given pair of points and r-depth, examine the distortion vector
as the s-depth varies. :

| | | (Ir,Jdr) r-depth (ls,Js) s-depth Dx Dy |
: 1

| 10 10 10.000 17 17 18.060 .515 -.828
10 10 10.000 17 17 18.058 474 -,827

10 10 10.0880 17 17 10.900 272 -.823 |
10 10 10.0080 17 17 9.980 -.138 -.015
10 10 10.000 17 17 9.8280 -.472 -.089
18 18 10.000 17 17 9.8180 -.514 -.008

For given (Ir,Jr) and r-depth = s-depth, find approximate depth at which
| the maximum distortion of .S occurs for a variety of (ls,Js).

p | (Ir,Jr) r-depth (Is,Js) s-depth Dx Dy

18 190 . 380 11 11 . 388 -.0246  .487

| 19 10 .610 12 12 610 105,492
; 18 10 . 828 1313 . 820 176  ,499

10 10 1.038 14 14 1.830 231  .436

| 10 10 1.220 15 15 1,220 281 .499
10 0 2.248 20 28 2.240 500 .448 !

Illustration D-1. A table of the distortion vectors in the barn pictures for

different object positions and orientations, The depths given are in moters
and repreeent the z-coordinate of that particular 3-space point.
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