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Chapter 1

INTRODUCTION

Early computer vision research was mainly concerned with operations
on pictures--such as encoding, enhuncement, and edge detection [Rosenfeld,
1969a) --and with analysis of single images--for example, interpreting images
containing bodies from a known set of objects [Roberts, 1963; Guzman, 1968).

Early matching work  fell into the domain of pattern
recognition--matching a description of an idealized object against
descriptions generated from analysis of an image containing that object.
Some pixel-by-pixel matching was done in matching a template of an
alphanumeric character against oictures of hand-printed characters.
(Rosenfeld ([1969b and 1973) provides excellent surveys of the |iterature for
single image processing.)

Stereo vision was for a long time the domain of psychologists and
physiologists, whose interests were in understanding human stereo vision
[Julesz, 1961). The major use of stereo was in photogrammetry--converting
aerial photographs to contour maps, usually by optical methods [Bouchard and
Moffitt, 1365).

Eventually, computer stereo image processing became attractive.
Julesz [1963) saw it as a method of studying human stereo perception.
Computer photogrammetry techniques were developed and used to deal with
telemetered image data from satellites. Image processors began to use stereo
to determine depth information [Quam et. al., 1972).

All ot these applications required efficient ways of matching areas
of one picture with the corresponding areas of another, similar picture.
Quam [1971) developed a spiraling, stepping algorithm %o facilitate his
aligning of Mariner spacecraft images ‘or variable feature detection. Barnea
and Silverman [1972] reported a sequential decision algorithm which they used
in matching weather satellite photos. Other general investigations of
matching have been done by Fischler [1971) and by Fischier and Elschlager
(1971).

STATEMENT C* THE PROSLEM

What is matching? By matching, we mean the process of iinding, for a
given sub-area (uwindow) of an image X, the sub-area of image Y which -ontains
point for nolnt the same intensity information. Matching should not be




confused with mapping. Mapping implies that there is some general function
(Ty,ly) = #{Ix,Jx) uwhich gives the position of corresponding points in image
Y for a given set of points in image X, Matching is a toecial case of
mapping--the case in uhich the mapping function is a simple translatior of
axes, (ly,Jy) = (Ix,dx} + (Ti,Tj) within the area buing matched.

This thesis is concerned with matching, not mapping. Therefore, we
are limited to those areas of pairs of images which do not bhave large
perspective changes from one view to the other. This condition is met by
small angle sterec and by distant objects in larger angle stereo pairs. UWe
must also exclude areas of images representing objects which themselves move
or are moved so as to present diffeiring projections to the camersas.

Similarly, we vi‘! also limit ourselves to high-quality pictures, i.e., those
uithout scratcies or other blemishes on the negatives, those having lou
noise, etc, These limitations assure that our target areas will have

matching candidate areas.

The subject of this thesis is as follous: given tuo images of a
scene, constrained as above, use the information in the pictures to match
target area A of image X with its corresponding candidate area in image Y
We will discuss general techniques for matching, efficient methods by uwhich
matching can be done, some of the problems that can occur uhen matching real
data, and ways of extending matching areas. In addition, we will describe
some of the algorithms uhich have been implemented to use these techniques,

DESIGN OF THE INVESTIGATION

Picture processing is, for the most part, an applied science. [t
seeks to show that something is possible, not by formally proving that it can
be done, but by doing it. In keeping with this spirit, this dissertation
will contain no formal proofs of existence, termination, correctness, or
running time. It will contain discussions of techniques and algorithms and
reports on how well these techniques work when implemented.

There is, underlying all techniques presented in this thesis, a very
basic philosophy. Machine vision will in the near future be usec for those
tasks which man can do but doesn’t want to, such as assembly |ine drudgery,
or those tasks which he wants to do but can’t, such as exploring inhospitable
planets. In the first case, the structure of the task environment is well
knoun and can be used to make the performance of the task more efficient.
This is the problzm addressed =nd approach used by the Hand-Eye group at the
Stanford Artificial Intelligence Project (Feldman, 1963). In the second
case, the structure of the environment is only crudely knoun, hence can only
loosely be used to expedite the task.

It is this latter variety of problem for which the techniques of this
thesis were to be designed. Consequently, we will avoid whenever possible

R




overspecialization through the use of particular assumed structure or
semantics in the completion of our tasks. Our techniques may not bas as
pouer ful as those using such information, but they will be more general.

Host of the techniques described in this thesis have been programmed;
those which have nrot will be so noted. The photographic illustrations in
this thesis are derived from visual output generated by these programs on a
television monitor. No photographic trickery has been done; what the reader
sees is roughly what a person opzrating that program would see on his
moni tor.

OEFINITIONS

Some of the terms from the field of computer vision which are used in
thie thesis are defined belou.

Picture--a tuo-dimensional array of integer values which represent the light
intensities of a scene at some set of grid points.

Point--one of the array elements of a picture.

Pixel-~{contraction of picture element) a point in a picture.

Color picture--a set of three pictures, representing the red, green, and blue
filter components of a color photograph or a color television

picture.

Image--the set of pictures representing a photograph--one picture for a
black-and-white photograph or three picturee for a color photograph.

CONVENTIONS OF PICTURE PROCESSING

In keeping wWith the conventions used in the television industry,
pixels are identified by their (l,J; positions with respect to the upper
left-hand corner of the picture, which has position (8,8). The I-dimension
increases to the right:; the J-dimension increases downward,

The intensities at each pixel are represented by numbers from 8
through k = 2" - 1, with @ representing no light, or black, and k
representing full light, or white, Pixels are stored packed, as many as will
fit per word of computer memory.
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NOTATIONAL CONVENTIONS

As in normal programming usage, the following compromises with
standard mathematical notation have been made.

Scuare root signs are replaced by the function SQRT.
The ralsed dot for multipllication is replaced by .
The folliowing mathematical conventions are used.

Summation signs are indicated by a sigma. The variable uhich is being summed
over is written below the sigma. When exact ranges for the summation
are to be given, they are glven as a boolean expression in the place
of the summation variable., The function being summed is written to
the right of the sigma. Parentheses are used only when necessary to
avoid confusion.

Examples: X and p X;
i asi<h

The mean of a variable is indic;ated by overbar notation.

Z X

x|

21
i

OTHER CONVENTIONS

Illustrations are numbered with Arabic numerals within chapters and
are prefaced by the chapter number, e.g. the flrst illustration in Chapter 3
is Illustration 3-1. All illustrations for a given chapter appear together
at the end of the chapter. Prints of the original data appear in Appendix A.

Equations are numbered with lower case Roman letters within chapters
and are prefaced by the chapter number, e.g. the flirst equation in Chapteir 2
is Equation 2-a.
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Chapter 2

BASIC AREA MATCHING YCOLS AND TECHNIQUES

Suppose one has been given two digitized photographs which were taken
of the same scene, but which differ in some respect, such as point of view.
Consider the problem of using a computer to determine whict area of picture Y
(candidate area) best matches a given area of picture X (target area).

Ceometrically, two areas match if they both are projections of the
same three-dimensional piece of scene. Intuitively, two areas match if they
"look the same". Computationally, two areas match if a caiculated measure of
match betueen them is sufficiently optimal.

CORRELATION

Since we are dealing with tne probability of a match occuring, some
statistical measure is desirable as the measure of match. The common measure
for this is discrete correlation,

COR = 2 X; x VY,
i
which can be normalized by the means of tre samples

COR =3 (X; -X)x(Y; -V)
i
or by the second moments of the samples

I X; *xY;
COR - '
SORT( I X;2 x 3 v;2 )
or by both. | |
TOX; -X)x (Y, -V)
COR = — l

SORV( Z ( X; -X)2 %X (Y; -V)2)
i i

The last is the nicest to work with, since is has an absolute value
less than or equal to one, and its absolute value equals one if and only if
X; = ax¥; + b for all i.




DIFFERENCE MEASURES

Also used are measures based on the difference between the samples
over the two areas, such as root-mean-square error,

RMS = SORT( 1/n Z (X; - Y12 )
i
which can also be normalized by the means of the samples.

RMS = SQRT( 1/n 2 ( ( X; -X) - (Y; =Y ) )2) (2-a)
i
Absolute difference is also used.

AD = I |X; - Y| 7n
i
It too can be normalized by the means.

AD=X | (X; -X)-=(Y;-Y)]|/n
i

The caiculation of normalized absolute difference, however, requires
two passes over the data--one to calculate the sample means and one to sum
the absolute differences wuwhich include these sample means. All other
measures mentioned here, including normalized correlation and normalized RMS,
can be calculated in one pass over the data. What distinguishes normalized
absolute difference from the rest is the presence’ of summations both inside
and outside of the absolute value sign. Absolute value is not a linear
operator, therefore effectively foils the algebraic manipulations of
summations which permit the other normalized measures to be calculated in one
pass. Because of the added inconvenience of a second pass over the data,
normalized absolute difference is rarely used.

Both RMS and absolute difference yield values betueen zero and a
number bounded by the largest (ifference betueen the samples, which is in
turn bounded by the maximum poss.ble intensity at a pixel.

COMPARISON OF THE MEASURES JF MATCH

Perhaps at this point a few words should be said about the rel&tive
merits of correlation, RMS, and absolute difference as measures of match.

RMS and absolute difference are clearly related. There is 2:30 a
relationship between normalized RMS and normalized correlation. In the
following, let

TOLY) «Z (X; -X)x(Y; -YV) .
i
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Correlation can nouw be expressed as

T(X,Y)
COR O .
SART( TOX,X) x T(v,Y) )

Equation 2-a expands to

RIS = SORT( 1/n I C (X; - X 12 2%( X; = X% Y¥; =V ) 4 (Y, -V )2 ) )
i
= SQRT( 1/n ( T(X,X) - 2%T(X,Y) + T(Y,Y) ) ) .

Hence, we have
TOGX) + T(Y,Y) - n x RMS?

COR = .
2 % SART( T(X,X) x T(v,Y) )

Being rulated, correlation, RMS, and absolute difference might be expected to
give similar results when used as the measure match.

The ciheapest measure of match, in terms of the numter of instructions
required to implement it, is absolute difference. Two samples which match
exactly have an absolute difference of zerc. It may be the case, however,
that the pixel intensities in the candidate area equal those in the target
area plus a constant (offset), that is, Y; = X; + b. In this case, the
absolute difference betueen the two intuitive matching areas would be
non-zero, perhaps greater than the absolute cifference for some other area
uhich is similar, but not intuitively the matching area.

Normalized RMS takes care of this problem by subtracting the means of
the two areas from each of the intensity values within the samples, It
trades a little more time in the calculation of the measure of match for more
flexibility in its application.

Suppose, however, that the pixel intensities from the matching area
are equal to a constant factor (gain) times the intensities from the target
area, plus some constant offset, tha. is, Y; = axX; + b, The value of RMS
over matching areas in this case is non-zero. This can result in rejection
of a matching area should some non-matching but relatively similar area
contain data which has a relative gain of one.

Normalized correlation, 2!'though more expensive, is designed to
handle both a constant gain anc a constant offset. Subtracting the means
removes the problem of the offset; dividing by the variances takes care of
the gain. This can lead to multiple match candidates if several areas of
different relative gains and offsets resemble each other. Houwever, this
merely introduces impostors, it does not discard true matches.
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Becauss relative gain and offset are frequently present in digital
stereo images, the author prefers normalized cross-correlation to the other
measures of match, and has developed matching techniques centered around
correlation. However, if gain and offset are not a problem, or are knoun and
can be taken into account in the calculation of the difference measures, then
the techniques presented in this thesis can be adapted to normalized RMS or
absolute difference. Since the techniques f this thesis were developed and
criginally implemented with correlation, they are discussed in terms of
correlation.

FAST FOURIER TRANSFORMS FOR CONVOLUTION

Fast Fourier convolution is often mentioned as a tool for matching,
It is a method for caiculating the I XY term used in correlation and RMS
error somewhat morz efficienily.

This Z XY term is the discrete convolution of the two samples; the
Fourie~ transform of this convolution is equivalent to the product of the
Fourier transforms of the tuo samples, Thus it is possible to do the
summation by taking the transforms of the tuo sampies, multipiying them, then
taking the inverse Fourier transform of the result. If this is done for a
target area out of picture X and all of picture Y, the result is an array,
each element of which contains the value of tre convolution between the
candidate area centered at that point and the target area.

With the fast Fourier transform, it ic possible to dc a transform of
a sample of m = 2" points in time proportional to m log2 m [Singleton, 1967].
Let N be the maximum dimension of picture X and W be that of the windou being
matched. QOue to the aliasing problem, it is necessary that m be not less
than N+d [Cooley, et. al., 1967], as well as being a power of two. If we let
L be the constant necessary to bring N+d up to 2", then the I XY for N2
correlations can be done in time proportional to (N+W+L)2 log2 (N+l+L)2 by
the FFT method, as compared to time proportional to N2W? for the direct
computation. Of course, for normalized correlation or normallzed RMS, it is
still necessary to compute X X, Z X2, Y, and I Y2 directly, and to combine
them in order to calculate each of tr.z measures of match. Employing sliding
sums to calculate these terms adds time proportional to N?; time proportional
to N* is also added to combine the sums for calculating the measures of
match,

Which method is faster for a givern problem will depend on the valuee
of N and W and the constants of proportionality, wWhich depend on the
Implementations. [llustration 2-1 compares the FFT approach with the dires’
approach for the implementations used at Stanford A.I. and sevaral values of
N and W.




AREA SAMPLING

Considerabie time is wasted in calculating the measure of match over
all the pixels in every candidate area in the second picture. Like most
smarches, the search for a match spends most of its time failing--calculating
tne measure of match for areas that don’t match. 1f one can reduce the
amount of time spent failing, a significant saving will result.

Barnea and Silverman [1972) observed that, for most candidate areas,
it becomes obvious after a small fraction of the points in the area have been
processed that the measure of match is going to have a non-optimal value. 1If
processing of that area is aborted when the area’s non-optimality is
discovered, a considerahle savings of time results.

Toward this end, they propose the following sequential decision
algorithm. Start calculating the measure of match, taking corresponding
pairs of sample elements out of the tuo areas in pseudo-random order. At
intervals, monitor the value of the measure of match. If at any time the
measure is non-optimal according to their decision criteria, discontinue the
calculations and discard the area as non-matching. Otheruise, continue
adding in samples randomly until either the whole area has been included or
the measure becomes non-optimal.

Barnea and Silverman claim that this algorithm is up to 58 times
faster than matching by ordinary correlation techniques. Ur‘ortunately, they
do not separate the savings due to their using absolute difference as the
measure of match from the savings due to the algorithm itself. Quam
[unpublished research, 1373) finds, in onz particular application, that their
algorithm used with normatized RMS is five to ten times as fast as ordinary
normal ized correlation techniques.

Reducing the number of points handled in some of the sample areas is
one side of the coin. The other side represents the possibility of not
calculating that measure of match for every candidate area in the second
picture.




N

168
1508
200
258
380
358
400
450
500

100
158
260
250
300
3568
400
450
5060

Illustration 2-1.

points with a picture of N? points.

W

Direct method.

11

31.4600
78.7850
125. 8400
196.6258
283.1408
385.3850
503. 36008
£37.0658
786.5000

13

43.3400
98.8658
175.7600
274.6250
395.4608
538.2658
703.0408
889.7858
1898.5000

15

58.50808
131.6258
234.0000
365.6250
526.56800
716.6250
936. 0000

1184.5250
1462.5000

17

75.14080
169. 0658
300.5600
469.5250
676.2600
9208. 4658

1202.2400
1521.5850
1878.5000

FFT of the window and the FFT of Picture Y,
needed for N? complex multiplies to form the product.

11

36.7082
167.7722
167.7722
754.9747
754.9747
754,9747
754.9747
754.9747
754.9747

13

36.70882
167.7722
167.7722
754.9747
754.9747
754.9747
754.9747
754.39747

3355. 4432

15

36.70082
167.7722
167.7722
754.,9747
754.9747
754.9747
754,9747
754.9747

3355. 4432

17

36. 76862
167.7722
167.7722
754.9747
754.9747
754.9747
754.9747
754.9747

3355. 4432

Tabulated values are 8.088826 N? W? seconds.

139

93.86008
211.1850
375.4400
586.6250
844,7400

1149.7850
1501.7668
1900. 6650
C46.5000

13

36.7002
167.7722
167.7722
754,9747
754.9747
754.9747
754.9747
754.9747

3355.4432

21

114.6600
257,9850
458.6400
716.6258
1831.9400
1404,5850

. 1834.5600

2321.8650
2866.5000

"FFT method. Tabulated values are 0.800888 % 4( N+W+L 12 log2( N+W+L ) seconds,
ie. 2 FFT’s--one for the windou, one to inverse FFT the product of the
This neglects the time

21

36.70082
167.7722
167.7722
754.9747
754.9747
754.9747
754,9747
754,9747

3355.4432

These tables compare the relative efficiencies of the
direct method and FFT for calculating the convoiution I XY of a window of W2

The constants of proportionality are

derived from machine language codings on the PDP-10 at Stanford A.l. by Lynn
Quam (direct method) and Don Destereicher (FFT).
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Chapter 3

SEARCH STRATEGIES AND REFINEMENTS

The idea of shortening a search by "pruning" the search Jpace is not
a new one. Heuristic search has been a part of artificial intelligence from
the beginning [Nilsson, 1372). The basic idsa is simple: arrange the search
in such 3 way that entire sets of solutions are considered at once. Attach
to each set some way of measuring whether or not it has a good chance of
containing the desired solution. Work in detail on only those sets which
show promise., Whenever possible, work first on those sets which show most
promise.

With most pictorial data, tnere is a fair amount of local coherence.
By this, we mean that an area centered at one pixel does not usually difer
greatly from an area centered at a neighboring pixel. An alternate
expression of this would be to say that most pictorial data consists
primarily of lou frequency information. This makes it possible to use one
candidate area as a representative of a set of areas centered at adjacent
points. The evaluation of some computationally inexpensive measure of
agreement over the representative area serves as the evaluation of the set.

A number of variations on this technique can be used in pruning the search
for a match.

GRIDOING

Consider for a moment the surface formed by plotting correlation as a
function of position of candidate area centers in the vicinity of the
matching 'candidate area. Because of the local coherence of most target
areas, this correlation surface usually falls off gradually as one moves away
from the matching area’s center. (See Illustration 3-1). Therefore, in the
immediate vicinity of the peak in a correlation surface which indicates a
match, the correlations will usually be above some threshold.

One can take advantage of this fact by calculating the correlations
between the target area and candidate areas centered at points on an n by n
grid over picture Y. For suitable n and threshold, it is clear that one of
the grid candidates must lie someuhere on the match peak above the
significance threshold. By searching in detail the immediate vicinity of any
o-id candidate showing a significant correlation, one can locate the match
peak. This is the technique of gridding.

If one uses an n by n grid on an N by N picture and finds k
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correlations above the significance threshold 0O, one calculates about
(N/n}? + k*n? correlations of area W? in finding the match. In comparison,
the direct method requires N? correlations to locate the match. Since in
most cases, k is small, gridding results in a savings of a factor of n? over
the direct method.

The success of gridding, of course, lies in the choice of n and of qQ,
which influences k. Exanining the first pair of correlation cross sections
in I'llustration 3-1, ue see that for Q=.5, n must be 1, but if Q=.1, n can be
S. For the second nair, Os.5 means n=6, and O=.1 means n=18. The allowable
values for n and O are not only interconnectsd, but also depend on the
individual correlation peak.

However, when we begin our search for a match and are ready to set n
and 0, we do not yet knou what the correlation peak will look |ike. We do
know that, under ideal conditions for matching, the target area will very
closely resemble its match. [If the matching area ex ctly duplicated the
target area, then the correlaticn surface would be identical to the
autocorrelation surface. (See Appendix B.) In practice, this precise
equivalence does not hold; houever, the correlation and ' autocorrelation
surfaces do resemble each other (Sss |Illustration 3-2). Hence the
autocorrelation peak can glve a good indlcatlon of the proper n and O for a
givei, target area. Extracting this information can ba done by inspection, by
fitting a second order surface to the correlation peak and measuring its
parameters, or by examining the Fourier transform of the data.

In theory, gridding will aluays work, since the worst it can do is
degenerate to the standard method of evaluating the correlation at every
point uhen nsl. In practice, howevsr, gridding is not used if the
autocorrelation peak indicates a grid spacing of 1 or 2. . Such an
autocorrelation peak can otcur if the target area contains mainly high
frequency information, as is the case in the distant treee along the skylline
in the Lab pictures. (See the copies of the original data in Appendix A,
coordinates (112,28)in the first image and (113,26) in the second, wlndow
radius=7.) It also occurs in extremely noisy Images and ie a feature of eome
artiflcially generated images [Julesz, 1961 and 1963).

REDUCTION

One technique for utilizing local coherence to make the amount data to be
handled more manageable is reduction [see e.g. Kelly, 1970). In our
application, this means making a new pair of picturee by spatially reducing
the originals--effectively replacing m by m squares of pixels by one pixel
having the average intensity of that square. Appropriate areas are then
matched in the reduced pictures. Finally the correlatlon peaks for the areae
found to match best In the smaller pictures ars searched In the origlinal,
higher =~zzclutlon plctures.

12
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Doing an m by m spatial reduction on the pictures means that there
are nou (N/m)? potential areas for the reduced target area to match instead
of N?, a savings of a tactor of m? in the number of correlations to be
calculated. If the target area is to represent the same objects, then Its
size is also recuced from W? to (W/m)2? pixeis. This resuits in a savings of
a factor of m? in the correlation calculation ioop, for an overail savings
factor of m*.

It the target area is not very big to start with, reducing the images
may cause the target area to no longer represent a valid statistical sample.
I[f one is not constrained to matching any particular area, but can enlarge
the effective area to maintain a vali‘i sampie slze in the reduced plctures,
then reduction can be used. The savings factor will depend on the exact size
of the uindow which must be L-3d, but should be someuhere between m? and m*.

As with gridding, there is an additive term of kxm? fuli scale
correlations necessary to determine the location of the unreduced match.
Here, k depends on hou many areas within the reduced second image will
resemble the reduced target area, which is difficuit to predict. There is
also the overhead of reducing the two images, but this can ofte. be combined
With some other necessary processing.

The success of reduction depends on the choice of m, which In turn
depends on the information within the picture. Intuitively, f most of the
information in the picture iies in features which are p pixels wide, then one
does not wWish to reduce the picture oy a factor of p or greater.
Computationally, if the Fourier transform of the picture reveals that a
significant part of the power is in spatial frequencies higher than N/p, one
should reduce the picture by a factor of less than p. In general, one shouid
avoid reduction by a factor sufficiently large to change the spatial
frequency or information content of the pictures. One Hay to check on this
is to examine the autoscorrelation peak in both the original and reduced
pictures. [f the peak is much narrower in the original than in the reduced
image, too much reduction has happened.

If one allous the choice of m to be determined by the data, then in

theory, reduction will always work. since it simply degenerates to the
standard method for m=l, If a larger than recommended reductlon is
employed--for example to cecrease noise--then the possibillty exlsts that the
technique of reduction will tail to produce the proper match,

SIMILARITY

The technique of similarity differs from previously descr|bed
techniques in that it does not use correlation as the basls for pruning the
search for the match. The idea behind gimilarity ls simple--if two areas
match, then statistical measures calculated over them, euch as means and
varlances, should be simllar.

13




To employ the basic technique of similarity, one first calculates a
vector of statistics for the target area and for each of the candidate areas.
The most promising candidate areas are those which have vectors of statistics
similar to the vector for the target area, as determined by a weighted
distance metric. Then the correlation values betueen the target area and
those candidate areas are used to decide which promising candidate area is 3
the matching area. ‘

Comparing similarity to the s*andard method is not as simple as
comparing gridding or reduction. We can no longer just count the number of
correlations calculated, since most of the time involved in using similarity
is spent doing things other than correlating.

Calculating the statistics over N? areas in picture Y with slliding

sums Will requlre time proportional to N?. The constant of proportionality
will, of course, depend upon how many statistics are calculated and upon the i
statistics themselves. For instance, on the POP-18, it takes 8.525 ms per :

pirel to calculate S stalistics--mean and variance of intensity and vector {
me¢an (2 components) and variance of color--for a color image. It takes B.145

ms per pixe! to calculate 2 statistics--mean and variance of intensity--for a
black-and-uhite image.

Comparing the r statistics in the target vector to the r statistics
in N* candidate vectors will require time proportional to rxNZ, Example: it
takes 8.175 ms to compute a weighted distance metric for 5 statistics and f
store the resulting distance; it takes 8.875 ms for 2 statistics. Sorting n :
distances to order the areas by houw promising they are requires i
8.0878x%(log n)*(n + log n} ms. Finally, calculating the correlations for the 1
k most promising areas, using a uwindow of area W?, requires B.B65%kxl2 ms,
By comparison, it takes B.865*N?x4? ms to calculate all of the correlations
1 directly.

To better illustrate the comparison, consider matching a 21 by 21 iy
area out of a 158 by 158 picture, let kelB, and use the 5 component vectors
Ly from color images. For this example, it would require about B45 seconds to

' compute the correlations nrecessary to determine the match virectly;
@ similarity spends about 11.8 seconds calculating the vectors, 3.9 seconds
calculating the distances, 25.2 seconds sorting them, and 8.3 seconds
calculating the % correlations, for a total of about 41.2 seconds, 4
representing a savings factor of about 16.

i

-

As savings factors go, 16 is neither trivial nor wonderful. So far,
houever, ue have implemented similarity in a brute force style comparable to
the direct method for finding the match. It is possible to refine simllarity
in order to make it much more efficient,

=

We have pointed out before that most images have a local coherence
which causes area-based measures sucl: as mean and variance to change slouly
as the area center is moved by one or two pixels. This means that we really

—_ =
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do not need to calculate the distances between ths target area vector and
vectors for areas centered at every point in the second image. We can allow
an area centered at one point to represent those areas centered at adjacent
points and apply heuristic search methods.

For instance, one could sort only those vectors of statistics which
fall on an m by m grid, reducing the number of distances uhich must be
calculated and sorted to (N/m)2. Then, from the most promising k such grid
points, one could hill-climb in the vector distance space until one found the
most promising vectors, which would be checked via correlation to dete. mine
: the match. Here ue spend the same amount of time calculating the vectors,
but only 0.175%(N/m) 2 ms calculating distances,
8.070%(1og2 (M/mi2)*(log2 (N/m)2 + (N/m)2 ms sorting the distances,
8.175%k*m? ms calculating distances for the hill climb of promising vectors,
and 0.065%kxd2 ms doing the correlations for these promising hill tops.

Suppose that ue set N=150, W21, k=10 as before and let mw=18. As
hbefore, ue spend 11.8 seconds calculating the vectors, 0.84 seconds
calculating grid point distances, 3.13 seconds sorting these distances, D.18

seconds calculating distances for the hill climbs, and B.38 seconds doing the
correlations for these promising hill tops. This is an overhead of 11.8
seconds, plus 0.65 seconds per match. For only one match, this gives a
savings factor of slightly over 5B8. if the overhead is spread among 20

matches, the savings factor goes up to over 508!

This technique has not been implemented, houWever, because of the
large amount of storage memory it requires, In addition to the 150% B6-bit
intensity values of the second image (Which amounts to 3,758 computer words),
that are needed for the brute force correlation method, this method also
requires 5%1508* 36-bit numbers to store the vectors for the second image.
This amounts to 112,588 additional words of computer memory, which on most
systems is hard to come by. Our speedup of a factor of 588 is acccmpanied by
a very large increase in the space required to do the job.

Nou, instead of keeping all of our vectors of statistics from every
point, we only keep them for areas centered on an m by m grid over the second
picture. The most efficient way to do this for the yeneral case is still
with sliding sums. Recording only every m-th vector in both directions means
that this now takes B.065%N2 + 0.889%(N/m}2 ms for the black-and-uhite and |
0.340%N? + B,185%(N/m)2 ms for the color vectors described earlier. This
time we calculate (N/ml2 distances and sort them as before. For the best k
distances, we employ some form of local correlation search to cover that m by
m area, ihich potentially holds the match.

For N=158, We2], krlB, and m=10 as before, we nou spend 7.69 seconds
forming the vectors. For each target area, we spenc 8.84 seconds calculating
the distances and 8.13 seconds sorting them, I|f we calculate all m2
correlations for each of the k promising areas, We Will sperd 28.67 seconds
in the correlation loop. Employing gridding or some other form of efficient
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correlation search can redice this term significantly. Realistically, if we
share the overhead among 28 matches and do about 158 correlations in
searching the most promising areas (see I|llustration 3-3}, then matching one
target area will take around 4.85 seconds, a savings of a factor of
approximately 138 over the direct method. The extra space required is a mere
5%152 36-bit words, or 1,125 words, 3 reasonable amount.

Clearly, similarity is a very complicated technique whose relative
efficiency depends on a great number of things. The overhead depends heavi ly
on the number and type of statistics used, which will depend on the data and
the ingenuity of the experimenter in using it. An increased number of
complex statistics makes the overhead greater and increases the amount of
time spent calculating the distance measures. But, as Illustration 3-3
shows, having more statistics in the vector can reduce the number of areas
which look promising, hence tine number of correlations: which must be
calculated.

The type of statistics used can affect the success of similarity.
Averaging measures such as mean and variance have the advantage of being
quick and easy to calculate, fairly insensitive to noise, and, as noted
before, wusually insensitive to small changes in position. In general,
statistics that average are prefered to those that count or those that
difference.

The calculation of the distances for the vectors and the sorting of
the vectors depend on the number cf representative areas, hence on the
gridding over which the representative areas are taken. Too small a gridding
results in a large number of vectors to be compared and sorted; too large a
gridding may let the matching area go urrecognized because it fell between
two representative areas which didn’t resemble it. As with the grid spacing
for correlation gridding, the best way to set this grid spacing is to examine
the vector surfaces for the neighborhood of the target area.

The technique of similarity usually works, but rnot always. 1f the
pictures are very homogeneous, 2|l areas will be similar, resulting in many
candidate areas to be searched via correlaticn, hence little savings. If the
pictures have much fine detail or are noisy, then the candidate gridding may
be so fine that the technique loses ity usefulness.

The presence of objects which have moved relative to their
backgrounds in the second image may cause the technique of similarity to fail
completely for some target areas. For instance, consider the pair of areas
in the barn pictures (see Appendix A for the originals) which are centered in
the trees to the left of the telerhone pole, and have the pole itself in the
right half of the areas. These areas will match very well. However, if it
should happen that the representative area which has its center physically
closest to that of the matching area contains a part of the foreground post,
it will not be similar to the target area. Because that representative area
is not similar, it wWill not be searched and the match will be missed.
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Indeed, any condition uhich causes the matching area to require a finer
similarity grid than the target area will endanger the success of similarity,

CAMERA MOPELS

So far, ‘s have been discussing methods of reducing the search which
do not assume anything not directly contained in the picture data. This was

the case for our data; houever, in general we will knou someuhat more about
our pictures. A reasonable design constraint on a picture-taking system is
that it recoru hou it was oriented when it took the pictures. This

information enables one to model the relative positions ard orientations of
the cameras.

1f complete camera model information is not knoun, as it was in our

case, it still is possible to derive a workable model from the pictures
themselves. Several things are knoun to be undeciuable given just the
informatiorn in the pictures. AbLsolute position, for instance, is not

derivable; it requires external knouledge such as measurements made when the
picture was taken or recognition of some landmark in the picture, Likeuwise,
it is impossible to say exactly how large or how far away a glven object is
without measurements or landmarks to establish scale.

It is possible, however, to derive relative positions aid relative
sizes for objects in the pictures. This is done by assigning an arbitrary
position and orientation to one of the cameras and by fixing some distance,
such as the distance between the cameras. With these hypotheses and a
suitable number of point-pair matches derived by the previously ment oned
techniques, the relative orientations of the cameras and positions of objects
which appear in both pictures car be calculated.

Theoretically, if one has N unknouwns in the camera model and N
constraints in the form of matching point pairs, one can obtain a closed form
solution for the camera model. In practice, the constraining equations dc
not usually permit analytical solution. Therefore, a more common technique
is to approximate the unknouns by least-squares techniques, either in closed
form or by numerical nethods. By either method, one needs at least N/2 point
pairs. The locations of these pcint pairs within the images and the location
in 3-space of the points they represent is important. If these point pairs
are concentrated in one area of the image or if they represent 3-dimcasional

points wki 1 are all coplanar, then N/2 point paii« is not sufficient. For
numerical least-squares approximation of the camera model parameters, the
author |ikes to have at least tuwice as many point pairs as there are

parameters to be derived, and to have these pairs well distributed in both
images.,

Several different approaches have been taken to the prob'em of
deriving camera models from picture information. (See, e.g. [Sobel, 13781)
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Since this author was faced with pictures for which no camera model was given
and since no available model derivation code was applicable, yet another
camera model derlvation method has been developed.

This author’s approach is based on searching for the camera mrdel
Wwhich minimizes a least-squares measure of camera model error. Each pair of
matching areas is first characterized as a pair of points--the centers of the
areas. For every proposed camera model in the search, each pair of points is
placed on the image planes of the cameras, and the ~ays from the principal
points of the cameras through these image plane points are calcuiated. The
error is a function of hou close these pairs of rays come to each other in
3-space, normalized by the mean distance to the point of approach. (A
mathematical explanation of this measure appears in Appendix C.)

This author, not being a numerical analyst, implemented a very
unsophisticated function minimlzer to search for the best cimera model for a
given set of points. That program showed that the technique would work, but
was slow and unreliable. The calculations presented in Appendix C have since
been re-prog ammed by another student, Donaid Gennery, whose program works
very reiiably and quite fast. It is his program which has derived most of
this author’s camera models.

For the purpose of limiting the search space, it matters not Whether
the camera model is given or derived. The existence of a camera model makes
possible another search-reduction technique.

With a camera model, it is possible to constrain the search for the
matching area to a line in the second image. To do this, the target is
characterized by a point, usually its center of mass. This point is
projected through the first camera as a ray in 3-space. The 3-dimensional
point corresponding to the original point in the image plane must lie n this
ray. The ray is now back-projected into the second camera becoming a line
segment on the second image plane (uhose exact equation is derived in
Appendix C). Since the 3-dimensional point was on the ray, its projection
into the second image plane must lie on this line segment,

With this knouledge, it is no* necessary to search the entire picture
for a match; searching along the line segment will suffice. Illustration 3-4
shous for two different areas of the barn pictures a target area in the first
Image, its center point, the line which this point projects to, and the
matching area found by searching along the line segment. This technique
reduces the search space in an N x N picture from the N2 candidate areas
centered at the points of the picture to the N or fewer candidate areas
centered on the points of the line segment. Performing a one-dimensional
analog of the technique of gridding along the line can result in an
additional savings of a factor of m, the grid spacing.

Techniques involving camera models will work whenever a camera mode|
exisls, but their efficiency in reducing the search depends on the accuracy
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of the camera model. An exact camera model will give the line exactly. A
moderately inaccurate camera model will usually put the |ine in the right
area, although some local searching may bs necessary. The better the model,
the smaller the local search.

WORLD MODELS

1f, in addition to a camera model, there exists a model for the
world, then it is possible to preaict precisely uhere the center point of the
matching area will be. The ray from the first camera will intersect the
world model at a 3-dimensional point uwhich can be back-projected into the
second camera, giving the center point of the predicted match.

Even a fragmentary world model can reduce the search significantly.
For instance, knowledge of the posi}ion of the ground p'ane |limits the depth
at which an object can lie [Falk, .963]. Thus the matching certer point is
constrained to lie on that part of the back-projected |line segment between
the points which represent the camera and the ground plane.

1f the world model is not given, it is still possible to derive it
from the matched area pairs. Houever, derived world models are more often
the result of the matching procass, not the means for its improvement.

One trivial sort of world model which doss not require a camera model
(al though it can be used With one) is the continuity assumption. 1t consists
merely of assuming that if areas A and R are adjacent In the first image,
then their matches uill be adjacent in the second image. This, of course,
reduces the search space considerably--to the immediate neighborhood of the
last match found.

Hou effective the use of world models is depends on the accuracy of
the model. Small errors in the model may make little difference in tne
predicted position of the match. Large errors, like assuming continuity near
a depth discontinuity will cause no match to be found. In this case, a
retreat must be made to one of the more general techniques of matching.

Each of the techniques described in this chapter results in a fairly
large savings when matching areas in stereo images. Combining two or more of
them increases the savings. The author has had excellent cuccess uith
programs combining reduction, similarity, and gridding end uith ones
combining reduction, camera models, and gridding. (See Chapter 6 for
descriptions of some of the programs.} The author has not implemented any of
the uorld models save the continuity assumption (sees Chapter 5), but the
Hand-Eye group at Stanford A.l. wusss the ground plane model to good
advantage, and Bruce Baumgart [unpublished research, 1972] has done some work
with exact world models.
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Illustration 3-1. Tuo sets of correlation cross sections, -raphing
CX,Ix,Jdx; ¥, ly+dl,Jy) against dl and C(X,Ix,Jx3V,ly,Jy+d)) against dJ. (See
Appendix B for an explanation of the notation.) Most correlation surfaces are
like these, falling off gradually as one moves auway from the match peak.
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I1lustration 3-2. The top row contains graphs of COG Ix, dxs Y, Ty+dl, Jy)
against dl and C(X,Ix,x;Y,ly,Jy+dJ) against dJ, as before. Bottom row
contains graphs of C(X, Ix,Jx;X, Ix+d]l,Ix) against dl and C(X, Ix,Jx;X, Ix, Ix+dJ)
against dJ, i.e. ths autocorrelation cross ssctions for the same target area.
Like these, most match correlation closely rsssmble their autocorrelation
peaks.
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LAB PICTURES INTENSITY COLOR

AREA APEAS  COR. AREAS  COR.

IX JX TRIED CALC. TRIED CALC.
145 25 4 30 1 30
85 25 11 523 3 124
65 25 2 85 1 42
25 25 19 675 4 252
65 45 5 242 3 148
25 ) 6 338 2 2
165 5 9 408 3 126
45 5 1 61 1 61
25 85 2 114 2 135
65 5 4 182 3 188

Illustration 3-3. Tabulated results of correlation searches using the search
reduction technique of similarity with correlation gridding In the promising
areas. The first two columns give the area center in the first Lab picture;
the second two tell hou many promising areas were found and how many
correlations were calculated for the black-and-wh!te vectors described in the
text; the third tuo give the number of promising areas and correlations
calculated for the color vectors described. The color vectors are usually
worth the increased time needed to calculate them. Either set of vectors

results in a significant reduction in the amount of time needed to find the
match.
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lIllustration 3-4. Tuo pairs of barn pictures, showing camera model! searches
for a match. In each pair, the first image shous the target areas with their
central points; in the second image the line to which the center point
projects is shoun, along with the matching area and its center,
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Chapter 4

UNMATCHABLE TARGET AREAS

Careful analysis of the techniques discussed so far wlli show that,
in addition to the assumptions stated in Chapter 1, we have been mak ing one
other, unstated assumption, We have assumed that there existe eome

windou-based algo~ithm by which all target areas can be matched.

Unfortunately, there are entire classes of target areas which do not
fit this assumption, i.e., uhich require global techniques to determine uhich
area is their intuitive match. These fall into two major groups--those which
can be detected before matching ic attempted and those which come to light
only when ratching fails.

DETECTABLE BAD TARGETS

The first group of unmatchabie target areas are thoss containing date
which is by its very nature unmatchable. These unmatchable areas can be
detected before matching is attempted by examining the target data.

Low Information

When the target area contains little or no information, matching that
area is impossible by area-based measure-of-match techniques. For example,
consider a window taken out of the cloudiess sky of the barn pictures. Baeed
on just the information in that window, it is impossible to sa,;, precisely
which piece of sky in the second image matches this area. In the absence of
noise, a lou-information target area will match almost any lou-information
candidate area, for there is nothing in the target to distinguish which
candidate it really matches. '

An area of low information is an area of low variance. This le
perhaps the most computationally expedient way of dctermining whether or not
an area has sufficient information to be matchable. In the presence of
noise, this technique may fail, eince nolse creates variance. In this case,
some other test, such as the presence of an edge, should be used.

An area of low information will also have an autocorrelation peak
which, except for a value of 1.8 at zero displacement, will be almost flat.
(INllustration 4-1 shous the correlation and autocorrelation graphs for an
area of the sky in the barn pictures.) This flatness can be recognized by
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inspection of the peak, or, if more precise determination is desired, a
bivariate normal distribution surface (Freund, 1962) can be fitted to the
peak and the parameters of the curve examined. Any area having a very flat
autocorrelation peak is unsuitable for matching.

Linear Edge

When the target area has a single linear edge across it with little
or no information on either side of this edge, matching is very difficult.
An attempt to match such a target will show that the area matches quite well
Hith candidate areas all along the edge in the second image.

This condition is observable in the autocorrelation peak. (See
I'llustration 4-2) 1f one fits a bivariate normal dis*ribution surface to the
autocorrelation and examines the contours of this surface, one discovers that
the peak is reaily a ridge aligned with the edge.

1f we use only the information in the target area, there is nothing
to resolve which candidate along the edge is the rea! match. Target areas
displaying this property must be regarded as unmatchable unless further
information, such as a camera model or a set of other matches to tle to, Is
available,

Pre-processing of a target area to determine whether or not it is
suitable for matching is expensive. However, if one compares this expense
Wwith the expense of searching futilely for a match, such pre-processing
becomes wor thuhile.

TARGETS WHICH 00 NOT MATCH

The second group of unmatchable target areas are those uwhose
counterparts simply do not exist in the second image, due to relative motion
betueen the camera and part or all of the scene. Such unmatchabilities
cannot he detected by examining either picture alone, but are discovered enly
after the expense of attemp:ing to match has been incurred. Since, in this
case, the target area has no proper match, the candidate area having the
highest correlation will bo an incoriect match. It is desirable to be able
to detect these incorrect tatchings as they occur.

If tuo areas do not match, the correlation betueen them should be
low. 1t seems reasonable, therefore, to detect bad matches by seeing |f the
best correlation obtained was too low. Matters are complicated by the fact
that some good matches have lou correlations. In fact, for almost any palr
of pictures and fixed threshold, it is possible to find either a target area
for which there is a bad match with a correlation above that threshold or a
target area whose pﬁoper match has a correlation belouw the threshold.
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So, how does one distinguish betueen good matches with |ow
correlations and bad matches? As previously stated, the correlation peak for
@ proper match should very closely resemble the autocorrelation peak for the
target area. In particular, if ue have restricted our target areas to those
with distinct autocorrelation peaks, a flat or chaotic correlation peak is an
indication of a questionable match.

The fact that the correlation and autocorrelation peaks should be
similar can be used to derive an autocorrelation threshold for the match
correlation. By examining the autocorrelation surface at points near the
summit of the autocorrelation peak, it is possible to predict what the
correlation should be. (See Appendix B.) Any match below this
autocorrelation threshold is highly suspect.

Of course, global information, such as continuity from neighboring
points can also be used to determine the credibility of a match.

NON-UNIQUE MATCHINGS

A related problem is that of multiple matches. Since we have not
specifically limited the subject matter of our pictures, it is possible that
rmore than one of some object can appear in the pictuices., |f several of these
objects appear against similar backgrounds, a target area can quite
reasonably have not one hut several matches.

If several areas match the target area, they can be expected to all
have about the same correlation. [If they are good matches, all of them
should be greater than the autocorrelation threshold for the target area.
Therefore, to detect multiple matches, one checks to see if there is more
than one correlation above the autocorrelation threshold. If so, one checks
how well they group. If the top few correlations above the autocorrelation
threshold are roughly the same in value, multiple matches are indicated.
This can be confirmed by checking to see if the multiple candidates correlate
well with each other.

It only the information in the areas is present, an area wijth more
than one match indicated is no more ueeful than an area with no match
indicated, since in neither case has the location of the match been
determined. Additional, wore global information in the form of a camera
model| or other matches to tiv to can be used to resolve the ambiguity.

WHAT TO DO WHEN A TARGET WON'T MATCH PROPERLY

For some of the target areas which won’t match properly using measure
of match techniques, there is nothing that can be done. Target areas whose
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matches fall out of the field of view of the second camera are clearly in
this class. Target areas of low information cannot be matched reliably,
therefore are assigned to this class. Target areas containing distortion due
to perspective change by definitlon do not have matches, therefore are also
assigned to this class. The unly reasonable thing to do with targets of
these varieties is to give up on them.

Other types of unmatched target areas may be matchable by some
different algorithm, probably utilizing more global information. 1f, for
instance, We are employing the similarity heuristic, and it fails for some
reason, it may be that pure gridding will find the match. Ambiguous matches
and linear edges betueen areas of low information {(which can be thought of as
extended ambiguities) can usually be resnlved by algorithms which employ
additional information, such as a good came-a model.

Having a camera model enables one to find the |ine segment in the
second image which corresponds to the center point of the turget area. 1If
one of the proposed candidate areat has a center point that lies within one
pixel of this line segment, then the match is resolved. This algorithm fails
if more than one proposed candidate lies within one pixel of the magic |ine
segment, ie. if two or more of the nominated objects are approximately
coplanar uith the two camera principal points. This is a fairly common
occurrence, since a man-made wWorld containing identical objects is likely to
have these objects on a flat surface.

The presence of a set of other matches can also be used to resolve
ambiguities., The target area will have some spatial relatlonship to the
target areas of the set; the match is the proposed candidate whict most
closely approximates this relationship with the candidate areas of the match
set [Fischlar and Elschlager, 1971]1. O0f course, carv must be exercised in
the choice of the set of points. If, for instance, one’s anchor points are
all in the foreground in the barn pictures, and one is try ng to match the
fence posts across the field, one will get a meaningless answer. The anchor
point pairs used should be at the same depth as the target area to guarantee
correct results,

In the case of depth discontinuities, one could employ edge
techniques [Hueckel, 19639] to segment the target area into regions. These
irregular areas could then have matching attempted on each of them
separately, using masked correlation or pointer correlation. (See Appendix
B.)

Various methods exist for handling individual unmatchable target
areas. In each case, it is first necessary to determine which variety of
unmatchabillty one has, then apply the proper method. Quite often, this is
done by the experimenter peeking; that |s, the experimenter figures cut what
kind of unmatchability he has and tells the "algorithm" what to do.

This author has found, however, that the best thing to do with an
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unmatchabl!e tar jet area is to give up on it and try a different target area.
Eventually, target areas th2t have good matches will come along. (If not,
the experimentesr SHOULD peek to see |f he has the right two pictures!) With
good matches, the technique of region growing becomes appiicable. Most of
the problems reia‘ed to unmatchable areas can be soived or yreatly simpiified
by the use uf region g owing.
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Chapter 5

EXTENDING MATCHES

In Chapter 3, we mentioned the continuity assumption as a crude form
of world model which greatly shortened most searches for a match when there
was an adjacent match available, This continuity assumption forms the basis
for the technique of extending matches.

REGION GROWING: THE BASIC TECHNIQUE

Under the continuity assumption, if the target area centered at

{Ix,Jx) matches the candidate area centered at (ly,Jy), then one would expect

the four adjacent target areas {Ix+l,Jx), (Ix-1,Jx}, (Ix,Jx+l), anu (Ix,Jx-1)

to match the four adjacent candidate areas (ly+l,Jy), (ly-1,Jy) (ly,.ly+l),

and (ly,Jy-1), respectively. 1f (Ix,Jx}) matches (ly,Jy), then the

correlation betuween these two areas represents the peak of the correlation

. surface and is greater than the autocorrelation threshold for (Ix,Jx)

l mentioned in Chapter 4 and described more thoroughly in Appendix B. 1f the

four adjacent expected matches are indeed matches, then each of them should

] meet this same criterion. Once one of the expected matches meets the

[‘ criterion, then the paired areas adjacent to it become expected matches,
etc., and a rcgion of constant (dl,dJ) « (ly,Ju) - (Ix,Jx) is groun.

{ Expressed more formally, given a criterion for judging whether or not
. a point belongs within a region and at least one point at which that
; . criterion is met, the following algorithm extends the region.
; . 1. Push onto the stack at least one point which meets the criterion.
}

2. Pop one point off of the stack and examine the points lying above, belou,
3 right, and left of it. Examining a point consists of first checking
to see if it is marked as having been processed: if so, nothing
further is done to it. Otherwise, if it meets the criterion of the
| region being groun, then it is marked GOOD and pushed onto the stack,

else it is marked BAD and not pushed.

|

3. Continue step 2 until the stack is empty.

Marking the points not only leaves behind a record of which are good
and which are bad matches, but also keeps the algorithm frum repeating work
which has already been done. Since there are only a finite number of points
available to try, this avoidance of repeated work guarantees that the
algorithm will terminate.
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EXPEDITING REGION GROWING

As its criterion for a match having occurred, the preceding algorithm
uses the fact that uwe are at a correlation peak and that the maximum
correlation is greater than the autocorrelation threshold. For each match
pair, this requires ten correlations--nine to determine if the expected match
1 is indeed a correlation peak and one to calculate the autocorrelation
thresho!d.

In practice, eight of the nine correlations are not usually needed.
The autocorrelation threshold is derived from expected values of the
correlation surface at one pixel displacement from the match. In most caees,
the actual correlation at one pixe! displacement ie lower than the expected
correlation at that displacement, so that the only part of the correlation
surface uwhich lies above the autoccrrelation threshold is the match peak
itself, Testing to see that the correlation |Is greater than the
autocorrelation threshold is usually a sufficient criterion for determining
whether or not the expected match is indeed a match.

The correlation betueen the proposed matching areas and. the

autocorrelation threshold for the target area still need to be calculated.

These tuo measures each require covering the target area while forming sums.

It the sums for both measures are calculated together in one pass over the

. data, the target area need only be covered once, rather than tuice. Thus the

combination of the correlation and autocorrelation will take about
threas-quarters of the time necessary for calculating both separately, or
[ approximately 1.5 times as long as an ordinary correlation,
I'] This is effectively the optimum technique for determining a match.

It requires only 1.5 correlations, as opposed to N? correlations for the
direct method, a savings of a factor of N2,

o EXTENDING MATCHING REGIONS

s

i In our revised algorithm, an area center would be marked BAD if its
correlation were not greater than its autucorrelation. For such pointe, the

I. pair of areas may or may not represent a correlation peak.

& l1f the pair of areas does not represent a correlaticn peak, ‘the
= continuity assumption need not have bee violated. It could well be i1-a.
i this particular part of the scene is cor tinuous, but that the normal to the
] surface is at a moderate angle to the cimera principal axes. Thie can cause

a gradual change in (dl,dJ) as one mov:s across the picture. If thic ie the
case, then a ehort local search should reveal the correlation peak which
represente the match. For this purpose, ueing one "loop" of the epiraling
eearch eubroutine MATCH, described in Appendix B, worke quite well.
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. Once the peak is found, it may or may not pass the autocorrelation
threshold. [f it does, then this new pair of (Ix,Jx) and (ly,Jy) becomes a
candldate for the application of the region gronwing algorithm, and the region
continues to expand. Illustration 5-1 shous one of the results of this
ex'ended region grower.

Any pair of areas that represents a correlation peak but does not
pass the autocorrelation test remains unmatched for the present, 'since in
theory that target area has a match elseuwhere, which a later region grouwing
Will locate.

HOW REGION GROWING SOLVES THE PROBLEMS

In Chapter 4, we promised that region growing would solve, or at
least simp!ify, most of the problems encountered in matching., MWe divided the
unmatchable areas into tWwo categories--those, such ae ambiguities and depth
discontinuities, which could be matched or partially matched by special means
and thoee which simply had no match, whether due to obscurations,
distortions, or changes in the field of view. The problem was that, except
for ambiguities, we had no way of telling which variety of unmatchability a
given target area might be. If a given target wouldn’t match, "peeking" was
the only way of telling whether the area wae a depth discontinuity which
should be segmented or an obscuration which should have no further time
wasted on it. Region growing from a few good matches spread about the
picture helps here.

Suppese, for instance, a target area which previcusly failed to match
now falls within a region of groun matches. If the target falled to match
because of an ambiguity, whether one caused by multiple objects or a |Inear
edge, thie ambiguity has been resolved. If the target area dldn’t match
because of a failure of the heuristics, the difficulty has nou been
surpaesed.

Suppose the unmatched target |ies just outside of a grown region. 1If
target areae leading up to the unmatched target should match candidate areas
leading to the edge of the image, then the intuitive match for our unmatched
target area falls out of the field of view of the second camera. In a
similar fashion, an unmatched target whose intuitive match has Leen obscured-
can nou be detected; target areas leading up .to the unmatched target will
match candidates that lead into a region of candldates having a different
matching (dl,dJ)--that of the obscuring object.

If the unmatched target lies in the midst of a "hole" in a groun
region, then a moving object which hae disappeared, such as the man on the
eteps in the lab pictures, is indicated. If the unmatched target liee near
the edger of two grown regions with rather different matching (dl,c¢.)), then
chances are that the unmatched target contains the depth dlscontinuity
between these tuo regione.
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For most paris of most allowable pairs of sterec Images, the
continuity assumption holds, so region growing can usually match almost all
of the areas of most pairs given just a few "starter" matches. For sxample,
all of the matchable area of ths lab pictures can be groun from one match in
the background; in the canyon pictures, three matches are required--one on
the background canyon wall, one on the foreground promontory, and one on the
pinnacle at the right.

Because of ths area-based nature of matching, region growing stops
when the area reaches a depth d.scontinuiiy or touches 2 distorted region.
In the finished products, such as Iliustration S5-1, what is displayed is the
outer line of center points which ths region grower found not to match.
Consequently, tnese products do not prscisely outline depth discontinuities
or areas of distortion, but fall W pixels away from these edges, where W is
the area radius. However, if one is willing to iterate around the edges
using smaller and smaller values of W, then clossr and closer approximations
of these outlines can be found [Levine, 1373].

Thus we see that region growing not only makes it easy to distinguish
what type of unmatchability one has, but also doss what matching or partial
matching ies needed. This is why ws claimed that region growing would solve
or simplify all of the problems attendant to unmatchabilities.

GROWING UNIFORM REGIONS

Indeed, match extsnsion region growing helps with all of the
unmatchable areas save thoss due to low information. As we noted in Chapter
4, areas of low information tend to bs arsas of low varlance. Once such an
area has been located in the first imags, ths techniqus of region grouing can
bs used to mark that rsgion so that future attempts at matches can be
forewarned of ths condition.

For this application, the region growing algorithm presented in this
chapter need only be modified slightly., As its criterion for a good point,
the uniform region grower will uss ths fact that the variancs over the area
centered at that point is below a given threshnld. Thus instead of comparing
areas out of two images and continuing grouth if thsy match, uWwe are
evaluating an area in a single picturs and growing |f that area Is of lou
variance.

As lllustration 5-2a shows, uniform regions groun by this method will
stop a bit short of their edges, since any point whoce area touches the edge
will have a highsr variance, thus be rsjscted. Whethsr this is bad or good
depends on whsther the ussr wantsd to delimit the entira uniform region or
only that part of it which had too little information to match upen.

1f the desired effect was that ot !llustration 5-2b then a somewhat
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different criterion needs to bs employed. Low variance means that the
avsrage squared difference batween the intensity at a pixel and the mean
Intensl ty over the area |s small. For an arsa to have a small variance, most
of thsss differencss at individual pixels must be small, Hence, we
substitute into the uniform region growing algorithm the critsrion that the
absolute differencs betueen the intensity at a point and the mean intensity
over the uniform region be small.

Whether the mean intensity is taksn over all of the region grown so
far or only over a local part of the region depends on whether the user
wishes the uniform region grouwer to stick strictly to a particular intensity
or allow it to follow shading. or to allow it to follow gradual changes in
intensity or color, such as occur in a clear summer sky. Houw small the
absolute dl fference in intensities must be at each point is based. on hou much
variation is expected (or desired) within the area to be groun, and can
either be a constant or a statistical msasurs, such as a multiple of the
standard deviation of the intensities within the area. Which uniform region
grouwer one uses, of course, :pends upon the sffect uhich ths user wishes to
produce,
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Illustration S5-1. Tuo pairs of pictures with overlays to shou regions
delimited by the extended region grower. In the barn pair, the foreground
post has been outlined; in the canyon pair the nearest spine of the
foreground promontory is shoun. Each of these regions consists of several
cub-regions at s ightly different displacements.
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Illustration 5-2. Uniform regions delimited by the region grower. Part (a)
shous regions groun by the variance-over-a-uindou method; part (b) shows the
same regions grouwn by the deviation-from-the-mean method.
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Chapter 6

ALGORITHMS AND EXAMPLES

So far, we have presented a variety of techniques, mentioning oniy
briefly hou they might be used. In this chapter, we discuss algorithms which
use these techniques ard give examples of their resul ts.

INDIVIDUAL MATCHES

Sets of individual matches can be used for a variety of things. They
can be used to align data for furtier processing such as differencing [Quam,
1971). They can bhe used to derive camera models (see Appendix C). MWith a
camera model, a pair of matching points can be used to determine the relative
depth to an object in a scene (see Appendix C). Matches and a camera model
make it possible to create a 3-dimensional world model [Baumgart, unpublished
research, 1973).

For most applications, there is no need to match particular areas.
What is needed is a set of matches that are well distributed in both images.
Since very precise matches are usually needed for modelling work, It will be
necessary to interpolate discrete matches in order to determine the exact
translation. (See Appendix B for a discussion of the need for and techniques
of interpolation.) Whenever possible, one should choose the target areas so
that matching will be easy and interpolation uwill be accurate.

Choosing a Targst Area

Interpolation is most accurate if the match peak is well behaved--not
too flat, not too sharply peaked, a~d definitely not multi-modal. Since the
correlation peak should closely resemuie the autocorrelation peak, target
areas should be limited to those with well behaved autocorrelation peaks.
The target areas uhose autocorrelation peaks can be easily fitted by a
bivariate normal distribution surface are most likely to yield accurate
interpolated match displacements.

Requiring well behaved autocorrelation peaks will also exclude
targeta which wlll be hard to match. Flat autocorrelation peaks due to low
information, sharp peaks due to only high frequency Information being
present, and multi-modal peaks due to ambiguities will all be avoided.

To make matching easy, target areas should first of all contain
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sufficient information. Therefore, only areas having a variance above .~ e
threshold should he considered. A reasonable strategy Is to flrst maich
those target areas that have the highest varlance. Of course, high varlance
can indicate the presence of sharp edges, so each such target area should be
checked to see that it is not crossed by a strong |Inear edge between two low
var iance areas.

If similarity is to be employed in matching, 8 quick perueal of the
vectors for the representative areae in the second Image can be informative.
For instance, if the second image contains lots of green areas, but only a
few Ted ones, then one ca: get some matches cheaply by first matching target
areas with red in them.

rogram COutline

vl = —

A program which is to produce a set of well distributed good matches
might proceed ae followus.

INITIALIZATION. First of all, reduce both Images and dlivide them
into representative areas the size of the correlation windoue to be ueed.
(Unless othernise stated, all of the steps that follow are to be carried out
in the reduced pictures.} The areas in the first image may simply cover the
picture; those in the second image should be on a finer grid eo that they
overlap significantly. (See Illustration 6-1) Then calculate the vactors of
statietice for these representaiive areas. Hietogram each of tha componants
of tha vectors for each picture.

RANK TARGET AREAS. Now, do any of the component histograms show only
a feu targets areas having some property (like being red)? Do at leaet that
number of candidates show that property (if not, some of the target arsae
will be out of t-~3 field of view in the second image, hence unmatchable).
Put any areas whicn seem likely to be easy to match at the head of a |let of
target areas to be tried.

Next, eort the remaining target areax by their variance. Flace those
ulth variances above the louw Information threshold on the list. Also sort
the candidate areas by variance and remove 2ny with too low variance. Sinca
He have removed the low variance target arras, it is unlikely that any of the
low variance candidate areas wlll be needec. Start matching targets off the
top of the |lst.

TARGET MATCHING. For each target area, check (o esea if its
autocorralation surface ie wusl|l behavsd. If eso0, westablish tha
autocorrelation threshold and grid spacing paramete-s for that targat area
snd continus. |f not, discard ths area and try the next one.

Calculate the similarity measure betueen the targat area and sach of
tha ramaining candidate areas and sort them. Start on the most likaly araa.
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Usina the grid spacing established for that target. grid ine candidate areas
and ook for a correlation above the noise threshold. Then search the
immed ate neighborhocd for the best correlation (or simply employ MATCH,
descr Ibed in Appendix B}.

If ambiguous matches are not anticipated to be a problem, stop
examining candidate areas as soon as a candidate is found that has a "
correlation above the target area’s autocorrelatior threshold. Otheruise,
continue examining areas until the msasurs of similarity becomes too
dissimilar. [f no candidate had a correlation that was high enough, forget
that target area.

Now go back into the original, full resolution pictures.
Re-determine the autocorrelation threshold for the full resolution target
area. Re-optimize the correlation for each of the promising canuidate areas.
Test these correlations for bad matches and ambiguity. Discard the target
area if it fails these tests, otherwiss interpolate tne match in the full
resolution pictures and record it. Go on to the next target area,

Continue matching target areas in this fashion until enough matches
with the proper spatial distribution ars obtained or the |ist of matchable
areas is exhausted. Take the results and do your thing with them.

The algorithm described here has not been implemented in totality,
however, most of its pieces have been implemented. Reducticn of images is
accomp | ished by a program called PICSEE by Lynn Quam. The initialization and
sorting of target areas is done by the author’s program VECTDO which
calculates the color vectors described ir. Chapter 3 or VECTBO vhich does the
black-and-white vectors. The target matching is done by the author’s program
NEWPTS. Flinal decisions in the full-scals imagss are done Ly tiic author’s .
program REFINE. All of these programs are uritten in the SAIL dialect of '
ALGOL [vanLehn, 1973) at the Stanford Artificial Intelligence Project. i
Critical inner loops are wurittsn in START_CODE, an embedding of POP-18 '
assembly language into SAIL.

Illustration 6-2 shous a set of matches produced by this system of
programs and run through the author’s program DEPTH to figure the depthe at
each point pair in meters,

A COMPLETE MATCHING

The ultimate combination of matching techniques occurs in an
algorithm for creating a complete matching. Such an algorithm puts together
all of the techniques we have developed and shous hou they interrelate.

We begin kith the algorithm described in the first section of thie
chapter. This gives us a set of precise interpolated matching aresae. Ue
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feed the point palrs to a camera model de~ivation routine which returne a
camera model.

Next uwe seek low variance regions and employ one of the uniform
region grouwere described in Chapter 5 to color these regions unmatchable,
All region growing is done in an auxiliary "picture" which we will uee to
keep track of the parte of the first image that we have proceeeed and to
record the matches which have been made.

The matches which determined the camera model are then
un-interpolated--that ie, they revert to the discrete form.they had before
interpolation--and put onto a stack of regions to be extended. A match palr
le popped off of thie etack and passed to the reglon grower for extending
matchee. Ae the region grower proceeds, it marks in the areas it growe In
the recording plcture and in a second auxillary plcture which keeps track of
which area centers in the second Image have heen matched.

When the region grower finishes each sub-region having the same
dieplacement (d(,dJ), a cleanup algorithm goes around to all of the points
marked BAD on that round. So that future growings can have a chance to work
on them, they are re-marked as being unmatched and placed on the etack of
palrs of points uaiting to have the region grower applied.

Each pair of points taken off of this stack ie re-MATCHed (see
Appendix B) to find the correlation peak, which is compared to the
autocorrelation threehold. Point pairs uwhich pass this criterion, and
haven’t been overgroun by some previous extension, are paseed to the region
rrouer, untll the stack of point paire awaiting the region grower becomes
empty.

When the original set of matches has been exhausted, we begin looking
In the recording picture for areas which have not been marked. For a
repreeentative point in the midst. of euch a region, Wwe attempt matching ueing
the camera model ae deecribed In Chapter 3. In thle caee, we can further
limit our eearch along the back-projected line in the second image with the
knowledogs that eome of the points in the second image have already been
matched, hence do not need to be considered. For each match found this way,
the region grower ie etarted up again. This continuee until all of the
unmatched arsas have either been examined or are smaller than some crltlcal
eize, below which ue do not bother with them.

Ae yet, this algorithm has not been Implemented as a whole. However,
most of the parte do exist s separate programs which communicate with each
other via disk fllee of data. In additlion to the programs described In the
last section for finding a set of well-distributed matchee, we uee CAMERA,
uwritten by Oonald Gennery at Stanford A.l. to determine the camera model
corresponding to our set of point pairs, The finding and marking of lou
variance areas |s done by the author’s progrem LOWINF, The actual extenslion
of reglons from a flle of matching arsa centers is done by the author’s
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program MGROW., The camera model search for matching point paire is

) implemented by the author’s program CAMSCH. As with the programs from the

-] last section, these uwere uritten in SAIL on the PDP-10 at the Stanford
Artificial Intelligence Laboratory.

Illustration 6-3 shous the results of the author’s program EMAKE on a
complete mapping generated by this system of progranms.
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1llustration 6-1. Yard pictures, w.th overlaid grids for target and
candidate areas. Notice that the candidate areas are on a much finer grid
than the target areas. A typical target and the representative candidate
which most closely resembles it are indicated by squares.,
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Illustration B-2. Barn pictures, shouing a set of matches produced by
NEWPTS. The dots indicate the center points of the matching areas; the
numbers by the dots give the distances in meters from the first camera to the
3-dimensional points which correspond to the point pairs.
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Illustration 6-3. The canyon pictures, showing a complete matching. The
outlines shouw major depth discontinuities and delimit areas which could not
be matched.
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Chapter 7

CONCLUSION

It was the purpose of this thesis to investigate techniques by uhich
areas of one picture could be matched wlth the corresponding areas from the
second image of a stereo pair. MWe started with the assumpticn that ue had
tuo images of the same scene uwhich differed somewhat, but the majority of
which could be matched (as opposed to mapped, which is a different procese).
That is, we treated those parts of the scene for uhich no gfoss dietortione
had been introduced hetueen the tuo vieus. Our objective of making matches
efficiently (ie. uwithout calculating the correlation betusen the target area
and candidate areas centered at every polnt in the 3econd picture), was to be
reached by presenting techniques by which this could be accomplished.

“‘ - ACHIEVEMENTS

In thls thesis, we have presented tools and techniques by which areae
in one picture can be efficient|y matched with the corresponding areas in the
second picture.

We have discussed three measures of match uhich are suitable for thie

i purpose, normalized cross-correlation, rcot-mean-square error and absolute
‘difference. In addition to the ordinary one dimensional versions of these

‘ measures, we have documented correlation for use in two dimenslons, derived
i color or vector correlation, maskcd correlation, and weighted correlation,

and explained function correlation, which can be used for mapping. We have

i discussed some properties and relative efficiencics of the baeic measures.
l. We have mentioned the existing techniques of fast Fourier convolution and
sampling for making the calculation of these basic measures more =fficient,

. but pointed out their shortcomings. it is our position that our techniquee
‘ have none of these shortcomings and are more efficient that theee other
b me thods.

i We have discussed several methods for pruning the search for a match.
t , Gridding and reduction each give a savings factor of n?, where n depende on
the data in the images, hut is typically 3 (savings factor is 8) for gridding

[ﬂ and S to 18 (savings factor is 25 to 188) tor reduction. Similarity glves a
. savings factor of 188 to 158 for the author’s data. Camera models give a

savings factor of N, the uidth of the plcture--typically about 288. World
n model assumptions can result in a savings factor of almost N2, the area of
i the plcture--typically 18,808 to 4@, 200,




For those who do not have camera models given, 1= have included the
mathematics necessary to convert a set of matchings into a workabie camera
tiodel. We have also included calculations which use this modei to find the
depth of the 3-dimensional point corresponding to a given pair of image
points,

We have discussed. the fact that, with real data, not all target areas
are matchable. UWe have given methods by which some of the major typee of
these unmaichabilities can be detected in the original data. Since some
unmatchable targets cannot be detected directly, ws have developed methods
for detecting when a proposed match is not real ly a mawin

We have discussed region growing techniques which can be used to
extend matching areas. Because these are based on the contlnuity assumptlion,
a sort of low level world modei assumption, they are quite efficient methods
of finding matches. We have aiso presented region growing techniquee which
can be employed to delimit uniform regions in one image.

Finally, we have presented two aigorithme demonstrating how the
abetract techniques we have developed and documanted can be combined to
per form useful functions in the processing of stereo images.

APPLICATIONS

Some of the techniques of this thesis have aiready been adapted for
use in various artificial intelligence and robotics tasks. In addition to
the author’s programs mentioned in Chapter 6, the reduction, gridding, and
eimilarity techniques and the uniform region growing have been incorporated
into programs for servo-ing a computer driven cart [Quam, undocumented
research, 13973]. Gridding and the continuity assumption form the basis for
programs in a feasibllity study for automating photogrammetric etudies of the
planet Mars during the 1975 Viking mission ([Quam, unpublished research
proposal, 1373]. The complete matching techniques described in Chapter 6
Wi ll undoubtedly play a part in this application, also.

Applications of multiple image processing also o¢cur in medicai
research. The registration of time-lapse x-rays for further processing is
only one of many possibilitles.

Another eventual appllication |s pianetary exploration. For
inhospitable environments and extreme distances, on-board computer processing
of images wili be vital to mission success. '
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AREAS FOR FURTHER INVESTIGATION

In the process of our investigations, we have dlscovered a number of

areas which need more work, as wel| as several interesting extensions of our
work.,

The field of area mapping is for the most part untouched. We have
scratched the surface with this thesls on matching and our brief comments in
Appendix D. Much more can and should be done In this field. Complete,

separate investigations of techniques for motion and near-field sterec are
needed.

We have excluded ncise from our data. There needs to be exteneive
work on the effects of noise on matching. Also in nesd of exploration are

the techniques for alignment of regions by boundary matching, touched upon in
Appendix D. :

We leave these as challenges to future investigators.
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Appendix A

THE IMAGES

The techniques and algorithms described in this thesis have been
developed and tested using principally four pairs of pictures, uwhich are
described and presented in this section. Other pairs of picturee have had
isolated techniques used on them, but not sufficiently to warrant their being
presented here.

The images used were mainly of outdoor scenes. Some contained

~ man-made objects uwhile others did not. The main criterion for selecting

these particular pictures to work with was that they were avaiiable and that
they had a certain esthetic appeal to the author.

Due to the limited facilities avaiiable for printing this thesie, it
is not feasible to reproduce the images in color. Consequentiy, the
illustrations presented here are black and white vsrsions of the images used.

THE BARN PICTURES

The first and most used pair of pictures is of a barn and field near
the author’s home. The barn, a rather rustic building of unpainted wood with
a tin roof, appears at the left of the picture. In the foreground ie a etock
fence of woven. wire topped by 3 strands of barbed wire hung on hand-split
fence posts. Due to the relative camera motion betueen the two images of the
etereo pair, ons of these fenceposts appears at ths right of the first image
rnd at the left of the second.

The area in front of the barn is covered with green grass, on which
rest several abandoned objects, including tuo barreis, a laun chair, and a
bench lying on its side. The shadow of a tree behind the camera and to the
right faile diagonally across this grassy area.

The grassy area extends into the distance. 1t is crossed by several
fences, one of boards near the barn and the rest of the eame materials as the
foreground fence. The land rises somewhat; ths skyline ie a ridge about 128
meters from the camera positions. Tuwo groves of oak trees cover most of thie
ridgu. A telephone pole stands in the small open area on the skyline between
the tuwo grovss.

The originai photographs were 35 mm color slides. The cameras were
hand held in the field; the distance between the two camera positione ie
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slightly over one meter. The slides were photographed under standard red,
green, and blue filters to produce black and white negatives, which were then
digitized commercially. The rasulting 8088 by 1288 pixels of data wusre
Hindowed to remove a light leak in the lower portion of the foreground fence
and spatially reduced by a factor of five to produce 158 by 158 imagee.
Illustration A-1 shous tne intsnsity picturss, mads by avsraging the red,
green, and blus component pictures.

The colors in the picture are mostily blues, greens, and brouns., The
sky ie a clear, saturated blue; the tin on the roof has a blue tinge. The
traes and the foreground grass are green. The barn and fence poets are a
rusty broun, while the grass in the distance is yellouish brown.

frn= barn pictures have been used as both color and intensity images.
They are the most referred to images in this thesis, partiy because they were
the first images tried, partly because they present so many different
prob ems and exercises for matching, and partly because they are the author’s
favor ' tes among the images used.

Actually, the b=-:. L.ctures violate ‘ne hypothesis that the change in
point oif vieuw does not significantly change the perspective of the scene.
The barn door is half-again as wide in the second image ae it is in the
first, a significant change. Thess changes, along with the “"moved"
foreground post, are uhat make this pair of picturss difficult, hence
valuabls.

THE LAB PICTURES

The second pair of pictures is of Stanford University’s D. C. Pouers
Laboratory, where the Artificial Intelligence Project is housed, and where
the author works. The laboratory building crosses the picture in the middle
distance. Behind it is a row of eucalyptus trees, through which the skylins,
a ridge about five miles away, can be sesn.

The immediate foreground is a roaduay. Between 'he road and the lab
building is a parking lot filled with a variety of cars. A grassy area is
immediately in front of the building, divided by a concrete ualk with eteps.
A feu cars ars parked on this grassy arsa slightly Isft of the center of the
images. Due to the slight time difference betwesn the actual taking of the
two photographs, thsre is a man walking doun ths etsps in the first picture
who does not appsar in the sscond picture. Also, ons parking space has been
emptied and another fillsi i that time interval.

Lighting is from overhsad, with the sun slightly in front of the
camera. Thus ths near faces of the building, cars, and even the treee are in
ehadou. Some reflection occurs from automobile windshielde. 3Since the day
was elightly enoggy, shadous ars slightly diffuse and ths dietant hills
hardiy vieible.
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The original photographs were 35 mm color slides. The camerae uwere
hand held in the field: the distance between the two camera poeitions is
approximately ten meters. The slides were photographed under standard red,
green, and blue filters to produce black and white negatives, which were then
digitized commercially. The resulting 1200 by 888 pixels of data were
windowed to remove a light leak at the right end of the building and
spatially reduced by a factor of five to produce 158 by 1508 images.
Illustration A-2 shous the intensity pictures, made by averaging the red,
gre=n, and blue component pictures.

Co.crs are predominantiy blues and yellous. The shadous on the trees
and building override their true colors with a blue tinge. Most of the cars
in the lot are blue, grey, or white; the station Wagon in the first row is
red, but again its color is !argely masked by the shadowed near side and the
glare off of the hood. The grass. areas are yellow, with some green along
the walkuay.

The lab pictures have been used as both color and intensity images.
In spite of the wide separation batween the cameras, all of the objects are
far enough away to avoid problems with perspective distortio:n. Houever, the
presence of many man-made objects of uniform color and having |inear edges
makes this pair of pictures interesting.

THE CANYON PICTURES

The third pair of pictures were taken from the rim in Bryce Canyon
National Park of one of their sandstone formations. In the middle distance
are pinnacler and a narrow spine of c.roded sandstone running across the
picture. In the far distance is the other side of the canyon with sparse
evergreen trees clinging to it. Lighting is from the right, castinb many of
the faces of the pinnacles into shadow.

The original photographs were 35 mm color slides. The cameras were
harnd held in the field; the distance between the two camera positions is
approximately fifty meters, The slides were digitized by use of a special
illuminating attachment to one of the A.I. Lab Hand-Eye television camerae.
The pictures in Illustration A-3 are rull ecale 188 by 128 windows out of the
middle of the originals, to pick up the most challenging features,

This was a particularly interesting pair of pictures from an
artificial intelligence point of view. Using only the intensity information,
humans were, for the most part, unable to pick out the exact location of the
edges of the mid-ground formations, Color information helped, since the
backgrqound formations are yellou-orange, while the midground ones are more
red; also the green of the trees helped to distinguish them from dark shadowe
in crevasses. Still, some edges required looking at both of the color
picturee before people could locate them exactly. The challenge wae to see
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whether the matching and depth discontinulty algorlthme could do wel i Wwith
only stereo Intensity information.

THE YARD PICTURES

The fourth palr of pictures Is of a portion of the area around the
author’s home. Part of the cinder-block garage wall is visible at the right
side of the picture, with ivy growing u» it., A board fence evtends from the
corner of the building across the picture. Pyracantha bushes obscurs the
fence at the left edye of the picture. The fence is broken in the middle of
the picture by a wooden gate, which is standing open, away from the camera.
There is a2 small rug hanging on the gate, a pair of gloves on the fence, and
@ jar sitting on the gate latch post.

Tuo large firewood logs ara in the foreground in the middle of the
picture, one lying on its side and one standing on end. The one on end has
an ax handle lying across it; the ax head is embedded in the top of the log.
An automobile wheel lies betueen the upright log and the ivy. There ie a
plastic dish-pan upside doun under the pyracantha nearest the gate. The roof
line of another building is visible just over the fence., Tree tops form the
background of th2 picture.

The original photographs were 35 mm black and white negativee. The
cameras were hand held in the field; the distance betueen the two camera
positions ie approximately one meter, The negatives were digitized
commerciaily, and the 888 by 1280 pixels of data were windowed eiightly and
spatially reduced by a factor of flve to produce 228 by 168 imagee.
I'llustration A-4 shous the resulting images.

Again, parts of this pair violate the hypothesis of no perepective
distortion. Specifically, the foreground logs and the ax handle show
signhificant differences in orientation in the two images. However, the other
parts of the images make excellent material for matching. Like the canyon
pictures, humans have some difficulty separating the background from the

foreground in this pair, particularly where the pyracantha bushes blend into
the background trees. :
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The barn pictures.

Illustration A-1,
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Illustration A-3. The canyon pictures.
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I1lustration A-4,

The yarrd pictures.
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Appendix B

BASIC CORRELATION TOOLS

For the purposes of this thesis,
areas will be normalized cross-correlation.
between areas that are rectangular
2m+l x 2n+l windows.
center point,

the measure of match between two

It wlll ordinarily be calculated
in shape and have odd dimenslons, le.
This makes it easy to characterize the area by its

In this and the foll .«ing appendices,
conventions are used.

the following mathematical

Vectors are indicated by an arrow over the capital Iztter which names the
vector, e.g. A is the vectir named “A". Unit vectors are indicated
- by a hat ~ over the lower case letter which names the vector, e.g. a

is the unit vector named "a". Specific 2- and 3-dimensional vectors
may be written out (x,y) or {x,y,2), respectively.

Vector dot product is indicated by a raised dot °.

The norm or length of a vector A is denoted by | A |.

The mean of a vector quantity A is denoted by A.

Exporentials of the quantity e (the base of

natural logarithms) are
represented by using the function EXP.

AREA CORRELATION

The basic measure of match is the "
in most elementary statistics books.
our notation, thls correlation is

correlation coefficient" discussed
(For exampis, see Freund (1982]) In

TUX -X)x (Y, -V)
i

COR =

= = (B-2a)
SARTL Z ( X; - X )2 %3 (Y, -V )2)

Foi: our purposes, A; and Y; gre Intenslty values at corresponding pixels
Within the rectangular uindous. This Is Implemented as




COR = C{ X,Ix,Jdxs Y,1y,Ju) (B-b)

b3 )3 { XUx+i,dx+j) = X )x( YIysi,Jysj) - V)
-msism -ngjsn
SORT( ( Z )3 ( XUxed,Ix+j) - X )2)
-msism -ngjsn .
x (I b3 ( Y(ly+i,Jdy+jd - Y )2) )

-msism -ngjsn

where (Ix,Jx) and (ly,Ju) are the centers of the target and candidate areae,

respectively., Since this is rathor cumbersome to write, we will abbreviate
it with the notation of Equation B-a, leaving the center points and the fact
that i ranges in two dimensions over the (2n+1)x(2m+l) pixele in the

surrounding Windous implicit. The means, of couree, are calculated over thie
same area.

This is our ordinary form of corratation, It ie primarily ueeful in
an application uhere each image consists ot .ne (black-and-white) picture.

COLOR CORRELATION

In the case of color images there are three pictures involved. Since
the color images we currently are working nith were obtained by digltizing
three black and uhite picturee wuhich resulted from photographing an ordinary
color elide under red, green, and blue filters, respectively, we ehall
coneider the components of our color plcturee to be red, green, and blue,
which we will symbolize as R, G, and B,

It ie eomewhat more convenient to think of a color plcture P as one
array of vector-valued points (PR,PG,PB) inetead of three separate arrays of
ecalar-valued pcinis PR, PG, and PB, This suggeets regarding the text-book
version of  nor.-.lized cross-correlation, Equation (B-a), ae the
one-dimensional case of a vector function . ’

SR =R (7 -V

VCOR =

SORT( S | X; - X |2 %X |V -7 |2)
i |

Coneidering only the numerator of VCOR, and letting X; be (XR,XG,XB) ;
and ¥; be (YR,YG,YB);, we have




Al
| U
t ! -
_ |
| ]
E
| ] (R =R (7 -V)
3 A e
F i =X ( (XR,XG,XB); - (XR,XG,XB) ) ¢ { (YR,YG,YB); - (YR,YG,YB) )
i ’ |
: r  mE . = e
' = 2 ( XR;j-XR, XG;-XG, XB;-XB ) * ( YR;-YR, YG;-YG, YB;-YB )

! |
“ = I (XR;-XR)X(YR;-YR) + (XG;-XG)*(YG;-YG) + XB;-XB)*(YB;-Y8)
f i
) If we notice that all three terms within this sum ‘are the same in

form and change the definitlon of | so that It ranges over all components ae
well ae all elements of components, we geg
| - « T (X -X)%x(Y; -V)
|

which is the numerator of the formula for ordinary correlation Equatlon
(B-a). By sImilar manipulations, the two terms ir the denominator of VCOR
become the same as the two terms in the denominatur of Equation (B-a). Thie
means that color correlation is really a dressed up form of ordinary
correlation. This is convenient, for it means that color correlation will

have all of the properties that ordinary conrrelation has bteen observed to
have.

MASKED CORRELATION

Obviously correlation need not be restricted to rectangular wirndowus;
the correlation coefficient can be calculated over any eample, regardiesse of
shape. The only reason for usino 'he rectangular windous was that |t s

easier to set up indicca to cover a rectangular area than to make Indices
trace out an arbitrarily shaped area.

To do correizcion over oddly shaped areas, It is first neceseary to
implement a way of covering arbitrarily shaped areas easily. Toward this
end, the idea of & correlation maskh has been instituted. The mask consists
of a rectangular /irray M uhich completely covers the area of interest and is
fllled with ones In the area of Interest, and zeros elsewhere. In effect, M
s a template toir the irregular area. '

To use the mask, one sets up Indices to cover the rectangle, as iIn
\ ordinary correlation, then uses each point of the maek as a predicate to tell
whether or not to Include the corresponding pixels in the sums for the
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correlation coefficient. Mathematically, this is equivalent to multiplying
each term of the sums by the corresponding term of the mask, that is

T (X -X)x(Y; -Y)
i |Mi=1

MCOR =~ —
SQRT( I (X; -X)2x I (Y; -Y)2)
i|M;a1 1|M;=1

IM % (X -X)x(Y; -Y)
i

SORT( I M; % ( X; -X )2 xIM; x (Y; -YV)2)
i i

uhe're it is understood that ths summations necessary to calcuiate the means
are done only over the valid part of ths mask.

When e attempt to use a zero-one correlation mask to match the top
of the foreground fence post in the barn pictures, We discover that the
masked post correlates best with a piece of the barn wall bsiow and t2 the
right of the Intuitive match. Using the inverse of this correlation
mask--keeping the background and masking out the post--works fine; the trees
and sky match up as ons would intuitively expect them to.

Wrat is the difference betussn thess tuo cases? In ths second caee,
us are attempting to remove an intruding object and match around 1t. UWe
don’t care what shape the object is; ws merely want to get rid of it.

In the first case, ve are attempting to match a specific object with
definite boundaries. In masking out ths background, we havs aiso masked out
the fact that the post has edges, turning the post into a pisce of wood which
matches the wood of the barn as well as it matches its true counterpart in
the second image.

In order to match specific objects, it is necessary to somehou retain
information about the boundaries of the objecte. One way to do thie tis,
rather than maeking out everything outside the areae of intereet with zeroee,
e instead weight the corrsiation so that all of ths window is considered,
but the areas of interest influsncs the correlation mors than does their
background.

WEIGHTED CORRELATION

This suggests replacing ths zsro-ons correlation mask M by a weight maek W,
yielding,




SUx (X3 -X)x (Y -V)
: ‘
WCOR =

SARTL Z U * (X; =X )2 2T U x (Y -TV)a)
i : i

' This necessitates changing the nature of the mean used from the
crdinary averaging mean to a weighted mean. Thus, instead of using

He want to use

Indeed, when the correlation mask for the foreground post is fiiied 1ith ones

! and sevens, instead of zeroes and ones, the algorithmic match is the same as
the intuitive match: post matches post. ’

In addition to being used in moet template match ng, WCOR can aleo be
used to place arbitrary weights in a windau, as shown in lilustration B-1.

PCINTER CORRELATION

Most correiation is implemented in a very orderly fashion. A pointer
i ~ starts at the upper left-hand corner of the rectangie to be covered and moves
! _ across the row of pixeis. When it gets to the right edge of the rectangie,

it returns to the ieft edge in the nex! rou.

. The reason for this ie
i efficiency.

No matter whether the pixeis are placed one per word (or fixed-length
byte) or are packed and unpacked by speciai byte handling instructione, the
most efficient way to access an area of bytes is to have a pointer which one
increments. The efficiency consideration pretty well constrains one to
scanning iines of the picture.

Correiation does not demand this. Ajij that correiation requiree ig
to be given paire of points, one out of each picture, which are then
incorporated into the sums. Another Way to implement correiation is to firet
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not as a tool for characterizing the image data, but as a tool

determining what correlation values might be expected for a given target
area,

set up a table of pointers, then simply run a secondary pointer doun the
table of polnters. Implemented in this fashlon, correlation becomes

I(XIP;) -X)x(YIP;) -V)
i

PCOR =
SORT( Z ( XIP;) - X )2 %3 (YIP; -V )2)
i i

where i now ranges over the table of pointers, and the mear.s are calculated
from this same set of pointed X and Y.

Once one has accepted the extra cost caused by looking up the pointer
before one can use it, other benefits become obvious. For instance,'ue are
no longer tied to rectangular areas. Once the pointers are set up, it is
immaterial what shape they cover--hexagons, circles, trapezoics, and even
grossly irregular shapes are all the same to this correlation. Thils does
away with the need to cover a rectangular template which tells whether or not
to include a given point in the correlation. Since as much as half of a
template is not used most of the time, not having to consider those points at
all could result in a vast speedup of correlating Irregular areas.

This form of correlation also makes it possible to correlate in
plctures ulth known distortions. ' The polnters are simply set up to take the
distortion mapping into account. For Instance, it one picture is known to
have a scale-factor difference from the other, the target area can be coverad
bu polnters at unlt spacing while the candldate area |s covered by pointers

determined by the scale factor. Any other known dlistortlon can be handled
similarly.

One can even access the plixels In &n area randomly, say to implement
a Barnea and Silverman type sampling algorithm. All that |s needed are tuwo
parallel tables of pointers generated in some pseudo-random order.

AUTOCORRELATION

In signal processing, ths autocorrelation function is an Important
tool for characterizing the frequency content of a signal. The fact that,
for suitably constrained signals, the Fourler transform of the
autocorrelation function is the power-dens!ty spectrum of the signal explalins
why an examination of the autocorrelation peak can give such a good
Indication of the presence of extremely high or low frequency components in
the Image ([Lathi, 1968). Our main Interest In autocorrelation, however, is

for




! Let:A(lx,Jx;di,dj) denote the correiation betueen an area of picture
! X centered at (Ix,Jx) and an area of picture X centered at (Ix+di,Jx+d}). In
B ] the notation of Equation B-b, this |ls expressed as
H

Allx, Idi,dj) = CO X, Ix,Ix; X, Inedi,Ix+d] )

If the two images were identical except for a constant transiation
(Ti,Tj), gain A, and offset B--ie. Y[i,j] = A % X[i+Ti,j+Tjl+ B for all
i (i,]) in the images--then the correlation and autocorrelation surfaces would
l be exactly lIdentical. For a pair of areas centered at (Ix,Jx) and (ly,Jy)
which are an intuitive match, we would have

Allx,dx;di,dj) = CU X, Ix,dxs Y, lytdi,Jy+dj ) (B-c)
for all (di,dj) uwithin the two images.

Thie is rarsly the case, since most data of interest will have more
meaningful changes betueen the two images than a constant translation, gain,
and offset. However, when wue assunred that there is little or no dietortion
over windous of the size being correlated, we effectively postulated that the
changes betueen the tuo images are small locally. Consequentiy, whilie
Equation B-c usually will not hold for all (di,dj) within the two images, it
might be expected to hold within the immediate vicinity of the matching area
centers.

Now, we knouw that correlation of (Ix,Jx) wWith areas centared at
points around (ly,Jy) yields values not greater than the correlation ulth
(ly,Jy), ie., for B<|(di,dj)]|<2,

A BT i At
[

COX,In,dxs Y, lysdl,Jysdj ) s CO X, Ix,dx5 Y, ly,Jdy ) {(B-di)

for It was the fact that we were at a correlation peak which helped to
determine (ly,Jy) to be the match. Substituting Equation B-c into the left
side of Equation B-d, we have for B<|(di,dj)|<2

v

-4 Allx,Jdx;dl,dj) s CO X, Ix,Jdxs Y,1y,Jdy )

ie. that the match correlation is not less than any of the immediate
nelghboring A(lx,Jq;dl,dj).  Consequently, we would expect that the
correlation ie not Iess than the maximum of these autocorrelations, that is,

| S——

-

4 4 CUX,Ix,Jdxs Y,ly,Jdy ) 2 MAX A(lx,Jdxsdi,dj)
0<| (d1,dj) | <2

Experimentation has showun that the match ccrrelation meets thie
criterion for some 98% of the good matches found. In addition, the i
correlation at false matches falis to meet this criterion for about 95% of
the cases examined.
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A related measure, an autocorrelation calculated between the target
area and a copy of itself crsated by displacing different parte of the
correlatlion windou in different directions as shown in Illustration B-2 also
Horks quite well as a floating threshold. This measure has the advantage
that it can be caltulated in one pass over the data, rather than the 8 paseee
required to calculate the 8 neighboring autocorrelations for measures based
on Allx,Jdxidi,dj) for B<|(di,dj)|<2. Effectively, this threshold measures
how well the target area correlates with a slightly distorted version of
itself. A large number of other distortion patterne can also be ueed.

This autocorrelation threshold passes about 98% of the good matches
found, and rejects approximately 99% of the false matches encountered. 1|t is
this threshold which ie most commonly used in region growing, both becauee of
its ease of calculation and its accuracy of prediction. Unfortunately, we do
not know why it eeems to function better,

We have discussed autocorrelation in terms of the standard area
correlation. Of course, if anothsr form of correlatior ls used to determine
the match, then the autocorrelatioy must use that same tupe of correlation,
be it maeking, weighting, or pointer correlation. Similarly, if the measure
of match used is not correlation at all, but one of the dlfference measures,
then the "autocorrelation" becomss the "autodifference". Only the formula

for calculating the "automeasure" changes; the mechanice of the procees
remain the same.

Autocorrelation has a number of uses. As We mentioned in Chapter 3,
the autocorrelation peak can be used to determine the proper Hidth of the
grid for the search rcduction technique of gridding. The value of the
autocorrelation threshold can also be included in the vectors used in the
technique of similarity, since similar areas really ought to have similar
autocorrelations. Autocorrelation surfaces help to determine whether or not
a glven target area is suitable for matching. HMost valuvable, perhaps, ie

deciding whether or not a match Is good, either for ieolated matchee or for
region grouing.

THE MATCH SUBROUTINE

Another basic part of correlation usage is the local strategy used to
search for a matching point in an area thought to be promising. Most of our
algor|thms for determining whether or not an area is promising are based on
whether the center of the area looks promising. Therefore, it makes senees,
When considering the area in detail, to look first at pointe near the center
and gradually work out toward the edges of the area. MWe have alrsady
observed that the correlation nesd not be calculated at every point of . an
area--calculating the correlation over a grid is adequate.

Based on these observations, the following local search algorithm wae
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devised (Quam, 1971] to seek the highsst correlation wlthin a square area.
The algorithm is Implemented as a subroutine cal'!ed MATCH, which takes four
arguments. The first tuo are the coordinates of the center point of the area
to be searched; uwhen the routine rsturns, these variables contain the
coordinates of the point found to have the highest correlation. The third
argument glves the radius to which ths search wlll be carrled out; the fourth
tells what value of ~correlation ie to be the threshold for search
termination.

As shoun by Illustration B-3, the search starts at the center point
of the candidate area, then sp -als outward In the pattern Indicated. At
each polnt marked with a %, the correlation is calculated with the target
area. The point having the highest correlation found so far is kept track
of. Should the correlation excesd the preset thresho!d or the search radius
be reached, the search stops spiraling and goes into hill-climbing mode at
the polnt which had the highest correlatlon.

In hill-climbing mode, the 2lgorithm examines the correlation at each
of the elght points Immediately surrounding the present point, and moves to
the polnt which has the highest correlation. This loop is repeated untl |
there Is no higher point to move to, i.s. the summit of the hill has been
reached.

The grid for the spiral is dotern}ned by a table within the routine.
Orlginally, Quam set the table so that ths algor|thm used a grid spacing of 2
for ths first loop, 3 for the nsxt 3 loops, 4 for 2 loops, then 5. This
author has Implemented a version which uses a constant grid spacing for all
loops, which is communicated by a global variable MGRID. This parameter is
set by a routine which examines ths autucorrelation peak, as explained in
Chapter 3.

THE LMATCH SUBROUTINE

MATCH ie a two-dimensional ssarch strategy. MWhen the  area of
interest has been confined to a liny, hoWwever, we nreed a one-dimensional
version, LHATCH. LMATCH has five argu™snts, The first four are the sama as
for MATCH, except that the center point is sxpressed as a real point lying on
the glven line. The fifth argument is ths slope of the glven Iline.

The search starts by calculating the correlation at the picture point
closest to the glven center point. It then moves n units up the llne from
the glven starting polnt and calculatess the correlation at the closest
plcture point, then repeate this n units doun the |lne from the starting
point, then 2n units up the line from the starting point, then 2n down, then
3n up, thsn 3n doun, etc. Agaln, n is determined from the autocorre'ation
and communicated by MGRID.
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Like MATCH, LMATCH kesps track of the best correlation found so far
and exits from this "ping-pong" spiral when it reaches the radius or finds a
correiation above ths threshold. From ths point having the best correlation,
it goes into "inchuorm" climbing mods, moving along the line in the uphill
direction until it can’t go up any more. Then it goes into the
tuo-dimsnsionai hiil climb of MATCH, just in case the line was a littie off
and the matching point is not exactly on the iine.

INTERPOLATION

It should be noted that ali of ths above techniques use correlation
over arsas centered on inteysr points in ths picture. In practice, however,
the proper match (in the sense of the candidate area which represents the
same piece of the scene as the target arsa) for a given target will be an
area csntered on a point in Picture Y with non-integer co-ordinates. Since
the only correlation valuss which are availabie are those at integer points,
eome form of interpolation is neceesary uhsnever high precision is desired.

Therefore, ths final opsration on a match destined. to be used for
depth, camera modei, or world mode! determination is an interpolation. We
would iike to fit a function of the form

EXP( - (AXDI? + B*DJ + CxDI*DJ + DADJ? + EXDJ + F) ) (B-e)

to the correlation values C( X, Ix,Jdx; Y, 1y+Dl,Jy+DJ ) for (DI,DJ) within some
radius of the matching csnter points. To do this, we fit the polynomial
A¥D[? + B¥Dl + CxDI*DJ + D*DJ? + EXDJ + F to the iogarithm of the correlation
values. Soiving this function for a maximum gives the interpoiated
non-integer center point for the matching arsa in Picture Y.

When a mode! of the autocorreiation surface is desired, this same
exponential fitting procsss s app!lied. Rather than being used to
interpoiate the autocorreiation, this sxponential surface is used as an
approximation to the autocorreiaticr peak. Examination of the coefficients
of Equation B-e provide an sasy way to determine the width of the peak,
whether for calculation of the grid spacing or determination of the
euitabiiity of the area for matching.
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lilustration B-1.,




- T eem——— e aw. " '}
PSR G — ﬂl

il lustration B-2. A sketch shouing the manner in which a window could be
distorted to determine an autocorrelation threshold over it. Pixele uithin
the four areas spaced ahout the center point C as shoun in the ieft drauing
are correlated with pixels in the areas spaced about C as shown in the right
drawing.
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liiustration B-3. A representation of the search pattern for the subroutine
MATCH. The algorithm begins at the center point and spirais outuard
foilowing the arrous and calculating correlations at the points marked %, [t

! etope epiralling when it finds a sufficiently high correiation or reaches the
{ radiue of the spiral, )
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Appendix C

CAMERA MOOEL CALCULAT!ONS

For our purposes, a camera modei consists of seven numbers which
specify the principal distances of the two camsras and the poeition and
orientation of the sscond camera with respect to the first. (The principai
distance of a camera is the distance betueen its image piane and ite
principai point aiong its principai axie as shoun in Iliustration C-1). Thie
appendix containe the mathematics used in deriving and utilizing camera
modeis.

DERIVATION OF CAMERA MGDEL EQUATTONS

{ We begin by arbitrarily placing a left-handed 3-dimensionai
; co-ordinate system on the worid in the following manner. The origin of this
o co-ordinate system is the principai point of the first camsra. The principal
axis of the camera bscomes the z-axis of the world. The scale of the
co-ordinate system is such that one unit equais the width of one pixal on the
= " image piane. (See lilustration C-1) )
M3thematicaily, the principai point has position (8,8,8);: a point on
) the principal axis is rer-esented by d*/0,8,1), and the image piane hae the
equation z=Fl, The I- and J-axes of the first camera piane are paraiiei to
the X- and Y-axes of the reference co-ordinate system, respectiveiy, and in
L] the plane z « Fi, that is,
— T = (8,8,F1) + Ixx(1,8,8) and J - (8,0,F1) &+ Jxx(8,1,0) ]
| 1

The principai point of the second camera is the point in 3-space

r deecribed by the bassiine distance D, which is the distance between the ;
l , principal points of the two cameras, and by two angies, al and a2. When the 1
. firet camera has been panned by ul radians, then tilted by a2 radians, ite 4

) principal axis wiil point down the baseiine toward the principai point of the
l eecond camera. (Sec iiiustration C-2)

Mathematically, panning is equivaient to a rotation about the Y-axis;
tiiting ie equivalent to a rotation about the X-axis. The vector U is
obtained by taking the vector (8,0,1), pre-multipiying it by the matrix
Rx(a2), representing a rotation of a2 degrees about the X-axie,

- o

pre-muitipiying tihis resuit by the matrix Ry(al), representing a rotation of 1
| al about the Y-axis, and finaiiy muitipiying this quantity by the scaiar 0,
l.e.




U = Dx( Ry(al)*( Rx(a2)%(9,8,1) ) )

= Rylal) * Rx(a2) * (8,8,D)

st A i e o o B o

B i [ T
COS(al) @ SIN(al) 1 e o 8
= 8 1 @ |x|8 cost2) SIN2) 8
~SIN(al) B COS(al) B -SIN(a2) C0S(a2) 1
_ J L 4 L J

b L b it Y -

where matrix multiplication is denoted by * and done in the usual fashion.
Performing these multiplicqtions, ue have

U = Dx( SIN(al)*C0S(02), SIN(02;, COS (a1)*COS (a2} ) (C-a)
The principal axis of the second camera
angles B1 and B2. When the first camera has been p
tilted by B2 radians, its axis parallels the axis o
lilustration C-3) A point zn the principal axis
vector U + sxf, where s is the distance from the pr
a unit vector in the direction of the principai axis

is described by tuwo more
anned by 1 radians, then

f the second camera. (See

is given by the position

incipal point U, and A je
of the second camera,

Mathematically, R is expressed by pre-muitipiying the vector (é,e,l)
by the appropriate rotation matrices Ry(B1) and Rx(B2), I.e.

R = Ry(B1)x( Rx(B2)x(8,8,1) )

= Ry(p1) * Rx(82) x (8,0,1)

_ R 1 -
COS(B1) @ SINBL) | |1 @ 8 8
. @ 1 8 |[x|8 cos siNg) | x| @
-SIN(B1) @ COS(B1) B -SIN(B2) COS(62) 1

L J Lu | i

Performing these multiplications, we have

het SIN(B1)%COS(82), SIN(B2), COS (B1)*C0OS (B2) )

The image piany of the second camera is the rlana perpendicuiar to
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the principal axis at distance F2 from the principal point. (See
I1lustration C-3) According to a standard analytic jeometry textbook
{Schuartz, 1968), the plane perpendicular to the vector 8 and passing through
the polnt P has the equation

¢ ((xy2) -P)a=B .

Our image plane is defined to be the plane perpendicular to the
principal axis A and passing through the point 0 + F2xh, Substituting these
for B and P, respectively, ylelds

Ao ((xyz) -0-F2xh) =0

The actual orientation of the second image plane is described by the
angle B3 through which the first imags plane must roll (after having been
panned and tilted to make the principal axes parallel) in order to make the
internal co-ordinate axes of the ¢irst cemera agree uWith those of the second
camera. (See Illustration C-4) Let the [- and J-axes of the second camera
plane be represented by the unit vectors ? and g, respectlvely.

The orientations of ¥ and ¢ depend on the pan and tilt angles @1 and
B2, as well as the roll angle @3. Mathematically, a roll is equivalent to a
rotation about the Z-axis. Let Ry(Bl) be the rotation matrix corresponding
to panning by B1, Rx(B2i be the rotation matrix corresponding to tilting by
B2, and Rz(B3) be the rotation matrix corresponding to rolling by @83, i.e.

Cos(p1)

SIN(B1)
Ry(pl) = ) 1 ) ,

-SIN(p1) @ COS(p1)

L |

1 > )
Rx (82) = @ CoS(p2) SIN(B2) , and

8 -SIN(B2) CO0S(p2)

L J
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COS(B3) SIN(B3) @

Rz(B3) = | -SiN(B3) COS(B3) @ .

0 8 1

then we can express f and g as

? = Ry(B1) * Rx(B2) * Rz(B3) x | B8 | and

g = Ryl(Bl) * Rx(82) x Rz(B3) * | 1 .

Multiplying out these matrices in the usual fashion gives

t- COS (B1)*COS (B3) +SIN (B1)*SIN (B2) *SIN (83) ,
-COS (B2) *SIN(B3),
COS (B1)*SIN(B2)*SIN (83) -SIN(B1)%COS (B3) )
g = ( COS (B1)*SIN(B3) -SIN (1) *SIN(82) %COS (83) ,
COS (82)xCOS (B33},
-SIN(B1)*SIN(B3) -COS (31) *SIN(B2) %COS (83) )

The 1- and J-axes for the sscond camera radiate from the point
d+ FZ*ﬁ, 80 we have

T =0+ F2%h + 1yx? and J = U+ F2xh + Jyxg ,
To derive a camera model, one takes a set of pairs of points found to

be matches and sunarches in the space of Fl, 72, al, a2, 1, B2, and B3 for
the values of these parameters which bes. accounts for these point-pairs.
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Actual determination of the model is done by least-equares. minimization of
the measure of camera model error presented below. As in most least-squaree
: technlques, the number of point-pairs must be greater than N/2, uhere N is
the number of parameters being sought, and should be independent points, i.e.
no three co-linear in the image planes and no four representing co-planar
’ points in 3-space. In practice, the number of rellable pairs available, p,
] should satisfy p 2 2N, or in our case of N=7, p 2 14, The program wuhich

1 derlves the camera mode! sets an upper |Imit of 188 on the number of paire
3 which can be ueed.

CAMERA MODEL ERROR MEASURE

i S n el

; There are many error measures possible. The one presented here |Is
f the average of the error in match for each of the polnt-pairs, calculated in
the image plane. To calculate the error in match for each point-pair, we
first use the first camera principal point to project point x of picture X
into space as a ray, then use ti'e second camera princinal point for the
hypothesized camera mode! to project this ray Into the second image plane as
a 2-dimensional line segment, and finally evaluate the distance in the second
image plane between this |ine segment and the matching point y of picture Y.

Point x of Picture X is the point (Ix,Jx) in the plane of the first
camera, which is the point § = (Ix,Jx,F1) in 3-space. The projection of this
point into space is the ray from the principal point of the first camera,
(8,0,8), through 3. In paramete-ized vector form, this ray is r*8, r>Fl,

Ueing the principal point of the second camera, this ray i3 projected
into the image plane of the second camera. Perhaps the simplest way to
cerive this is to pick two arbitrary points on rx8 and project them into the

.second camera image plane, then calculate the 2-dimensional line betueen
them,

To facilitate this, first consider projecting an arbitrary point @ in
3-space into the plane P (in our case, the image plane of the second camera)
perpendicular to the vector h (oirection of the principal axis of the second
camera) at the point € = U + F2%h (irtersection of principal axis and second
image plane! using the point U (principal point of the second camera) as the
principal point of the projection. Clearly, the projected point lies at some

d:stance t along the line from 3 to U, eo can be described by the posltlon
vector G’ = U + tx(d-U).

We would like to express G’ in terms of the vectors ? and 3 uwhich are

ortho-normal and lie In the image plane P, That Is, we would like to know |
and J such that

O+F2eh + 108 4 g a0+ to( §-0) or

16t + Jag = t2( G -0 ) - F2sh .



Dotting both sides of this vector equation by ? gives
[ (1%t +J0rg) o ¥ = (tx(Q-0)-F2¢h) o 7,

; Expanding thie, and using the fact that ? is a unit vector and e
l perpendicular to both h and g, we have

l=tx(d-0) 1,

{- Had we dotted both sides of the equation by g, we wouid have

b ot o il o2 ou et o _onhll e s riinl Slagt

' Jetx(G-0)¢g.

Dotting both sides by h would give
tx(3-0)+hR-F2e0 or
tx(3-0) +h=F2 or

] t=-F2/(83-0)°h .

Sutstituting thie expression for t into the expressions for 1 and J, we have

(d-0) ¢ (d-0) g
{ . | « F2 % ———— and J = F2 ¥ ——m—— :
(d-0):+h (d4-0: ¢ R
{
' Nou ue are ready to project tuo arbitrary points on the ray r*8 into
\ the plane P using the above equations. In the co-ordinates cf the second
image plane, the points c8%5 and c1*S become the points (x8,y8) and (x1,yl}),
i . . reepectively, uhere : . v
= (cex8 -0) ¢ ¢ (S -0) g
] (x0,yB) « ( F2 % , F2 % ) and :
t (coxs -0) « R (w8 -0) ¢+ R
;b
- (ci#8 -0) « ¢ (cis§ -0) g , -
: : (Xl,ul) O ( FZ x » Fz x ) . E
| U (e -0) ¢+ R (c1a -0) ¢ h 1
! ‘ According to our analytic geometry text (Schuartz, 1968), the |
| equation for the 2-dimensional line through thess tuo points is ]
(yl - yo )
y-yl e ————x {x-x1) or
(x1 - x8) |

(yl - yB ) % x4+ ( xB - x1) %y + (yo*xl - ylxx@) « 8 ,

e S —

Evaluating ( yl - y8 ), we have
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(c1s§ -U) + g (coxS -0) + §
(yl -yd ) =F2 x - F2 x
(c1x5 -0) « R (coxS -0) ¢ h

(c1%5-0)eg x (cB*S-U)h - (cB*S-0)+§ * (c1%3-0) +h

= F2 x
(c155-U)eh x (c028-0) *h

(cl - cB) x ( 5+h x Jeg - Seg x Ueh )
= F2 % .
: (c1%5-U) oh x (cBxS-0) +h

Similar manipuiations give

(cl - cB) x ( Se? xJeh - Seh x0ot)
( xB - x1 ) = F2 x .
(c155-0) *h x (cx8-0) ¢h

Substituting into ( x1xy® - ylxx® ), we have

(clx§ - 0)+? (cenS - Deg
( x1xyd - ylkxB ) = F2% * F2x —
(c1x8 - 0)+h (c8x8 - U)+h

(c1%8 - 0)+§ (cBsS - 0)?
- F2x x F2x -
(c1x8 - D) +h (coxS - U)*h

(c1#5-0)+? x (cOsS-0)+g - (c148-0)+g x (cOsE-1)) %

- an*
(c1*8 - D) eh x (cB*S - D)+R

(el - c@) % ( Seg x Ue? - 8ot % 0eg )
« F22 x .
(c1%8 - 0)+h x (coxS - )R

Now, substituting these terms into the equation for the line gives

(c1 - cB) * ( Seh x Jeg - Seg x Ueh )
F2 % xXx +
(c1x8-0) A x (cBx3-0)+f

{cl - c@) x ( 8% x Ueh - SR x[e?)
F2 % xy +
{c1x8-U)eh x (cBx8-0)*A

(€l - c@) x ( Seg x Qe? - §o? x Uog )
F22 x -0 ]
(c158-U)*h x (cOs3-0) 4
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Factoring out common terms and dividing by them gives

( Seh % OUeg - SegxTUeh ) % x 4

(8¢ % 0eh - SehxUe?) %y +

(GegxUet -8t %) xF2=0 . (C-b)
the desired line segment in the second image.

The error for that point-pair is the square of the minimum distance
between this |line segment which corresponds to the point x and the point y
which matches the point x. (See Illustration C-5)

DEPTH RANGING

Once one has a camera model, it Is reiatively trivial to find .the
distance from either of the cameras to an obiect in 3-space represented by a
point-pair. One has the points (Ix,Jx) and (ly,Jy). The ray from the
principal point of the first camera through (Ix,Jx) . given by the vector
r¥{Ix,Jdx,F1). The ray from the principal point of the eecond camera through
(Iy,Jy) ie given by

U+ 8 x( F2xh + Iyxt + Jyxg ) (C-c)

Due to minor errors in measurements of camera model parameters or in
interpoiation of the matching center point, these two ray. may not intersect.
Using the camera model, we can correct for this. We first back-project the
point x into the second image plane, giving us the line of Equation C-b.
Now, instead of the point (ly,Jy), we decree the point (ly’,Jy’) which is on
this line and which is the shortest distance away from (ly,Jy) to be the true
matching polnt. This gives us the ray

U+ s %x( Foxh + Ty’*? + Jy’xg ) ‘ (C-d)
in lieu of Equation C-c.

To simplify the notation in the folliowing derivation, let

B = (Ix,Jx,F1)

d e F2xh + Ty’'*? + Jy'xg .
We know that the intersection of r * P and U+ s *x 3 exists; that is the
definition of (ly’,Jy’). Therefore, we need oniy soive for the r and s

such that r *x P a0 + s x @ . The two necessary constraints are obtained by
dotting both eides of this equation by P or by @, le.
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(rxPF) e Pa(D+esxl) ; ¢ and

(rxP)eGe(0+sx{) 4 E
These are equivalent to

r % PP = UsP + s x 3P and

r % PeG « UeG + s x G- .

Solving this equation for s gives the distance of the 3-dimensionai point
from the sacond camera

C Uelx PeF - 0P P
8 ~ = ’

deP % Pod - PP x Q-0

while solving the above system for r gives the distance from the first camera
Uel x TP - DPxiLu
GeF x Ped - PP x Gel

rm=

DERIVATION OF TWO MATCHING LINES

With a camera model, it is possible to place tuo lines, one in each
picture, into correspondence. To see this, consider the two principal points
of the cameras, (8,0,8) and U.

These two points, plus any third point, determine a plane in 3-space.
1f we call the third point S, then this plane has as its normal the vector §
x () and goes through the point (8,8.8). Our analytic geometry text teils us
that the equation of a plane with normal N through the point P is

Ne((xyz -F)=0

Therefore the equation of the plane determined by (8,8,8), U, and 5 hae the
equation

(8§xU) » (x,y,2z) =8 (C-e)

Except in a few degenerate cases, this plane intersects both of the
camera image planes. The intersection of this piane with the second image
plane in terms of that plane’s coordinate system is given in Equation C-b;
the Intercection with the first image plane z = F1 is

(8§xU) ¢+ (x,y,Fl) =0 (C-f)




Consider also the intersection of the plane of Equation C-e with the
scene. All of the points of this curve lie on the plane of Equation C-e,
obviously; therefore all of the projections of thess points onto the second
image plane lie on the lins of Equation C-b and all of the projections onto
the flret image plane lie on the line of Equation C-f. Thus all of the
pointe on one |ine map to points on the other |ine.

Clearly, S can be almost any point. The mosi convenient such point
is usually (Ix,Jx,F1), the centsr point of the target zrea.




Principal Axis

Image Plans

///’-__i Principal Distance
-

Principal Paint

V

Illustration C-1. One of our simplified cameras in the standard position and
orientation.
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First Camera

I'llustration C-2. The firet camera, panned and tilted to point to the
principal point of the second camera.




Tilt Angle

Parallal Principal Rxes

First Camara

Camsra Bassline
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\

Second Camera \

Somad S om 5 s an e b
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Illustration C-3. The first camera panned and tilted so its principal axis
parallei. the principal axis of the second camera. ‘
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= 7 First Image Plane--Original Orlentation

Rall Angle

Camera Bazaline

Eirst Image Flane--
! Rotated to Parallei Orlentation

of Second Image Plane

Second Image Plane

Illustration C-4., The first camera ima
ge plane rclled
camera image plane. P ed to parallel the second
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Sacond Camera Image Plane
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' IHiustraticn C-5. The error for a point pair (Ix,t% « (Iy,Jy) is the
. ’ distance from (ly,Jy) to the iine in the second image which rorresponds to
,‘ L (IK'J)‘)'
3
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Appendix D

DISTORTION

Intuitiveiy, if the parts of the two pictures which represent a given
object differ in anything but position, then the object has been distorted
from one view to the other. For our purposes, if, for displacements (di,dj)
within some window and corresponding points (Ix,Jx)} and (Iy,Jy) in the tuwo
images, the point (Ix+di,Jx+dj) does not correspond to the point
(ly+di,Jy+dj), there is distortion over that windou.

MATHEMATICAL DESCRIPTION

To express this mathematically, we start with two points in 3-space,
R and §. According to the raicuiations in Appendix C, these points project
to

Ref R
Al = ( Rix, Rly ) = ( —F1 , —4F1 ) and
Aok Aok
g 8]
81 « { Slx, Sly ) = ( —aF1 , —4F1 )
Sek 8ok

in the firet image plane and

(R-U )t ( R-0 ) g
f2 « (R2x, R2y ) = ( —————F2 , ——4F2 ) and
( A-0 )R ( -0 R

( -0 )¢ ( 5-U)eg
82 «  82x, S2y ) = ( *F2 , *F2 )
( §-0)°h ( 8-U0)-R

in the second image plane.

Suppose We Iat § be the reference point, that is, we set
(S1x,S1y) = (Ix,Jx) and (52x,52y) = (ly,Jy). Also, liet (Rix-S51x,Rly-Sly) be
the (di,dj) of our intuitive definition. There is distortion if the point
which corresponds to (Ix,Jx) + (di,dj) is not (ly,Jdy) + (di,dj), that ie

( R2x, R2y ) = ( S2x, S2y ) + ( R1x-Slx, Riy-Sly ) or
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{ S2x, S2y ) - ( R2x, R2y )} + ( R1x-Six, Rly-Sly ) = B or

{ R1x-S1x-R2x+52x, R1y-Sly-R2y+S2y ) = B

We define this iast vector to te ﬁ, the distortion vector.

TRSRET @ - PP .

For non-trivial camera models and windows larger than a single point,
it is unlikely that this vector will be exactly zero for all of the {di,dj)
uwithin tha window. Conssquently, there wlll almost aluays be distortion in a
centinuous image.

However, we are dealing, not with continuous imagee, but with images
which are represented by discrete arrays. When, in such an array, the
deeired image point falls betueen elewents of the image array, there are two
things which can be done. One can approximats the deeired pixel by
interpolating the neighboring a~ray elements, or one can simgly uee the array
eiement vhirh is closest to the desired point. In corrulating, the latter ie
the more conmon practice.

The vector D1 = A1 - 81 will ordinarily be such that if its taii ie
placed on an integer point of the array, its head will also fail onto an
integer point. If the vector 02 = R2 - 32 is placed uith ite tail on the
same integer point as 01, its head will probably nct fall on the head of 0.
However, if the head of 02 fails within 1/2 pixel in each co-ordinate of the
head of 01, we can not really tell the difference in position. Thus, for a
discrete image, we can say that there is no distortion if, for ail {di,dj)
within the nindow, the x- and y-components of 0 are both iese than 1/2 pixel.

LIMITING DISTORTION

Distortior ‘s algebraically a very complicated quantity, for it
depends on thirteen parameters--the nan and tilt angles which describe the
direction to the sacond camera, the pan, tilt, anu roil angles uhich describe
the orientation of the szcond camera, the two focal lengths, and three
parametere each tu describe the reiative 3-space points R and S. Graphing
the distortion as a function of ali 13 of theee parametere ie obviouely not
feaeibie; the graph is imposeible to rapresent phyeically and exceesiveiy
large to tabulate.

If one holds all but one of the parameters constant, one can use the
limitation on the components of the distortion vector to solve for limits on
the laet parameter which will guarantee that iie distortion ie small. This
ie possible analytically (see [Fischler, 1971) for a treatment of change of
focai length and for second camera roll angle), but le usually rather meeey,
hence not very illuminating. To give a feel for the resuite for particular
parametere, lilustration D-1 tabulates eome of the dietortions for the camera
modei of the barn pictures with different object positions and orientatione.
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The barn camera model is aimost the standard side-by-side stereo
modei. The second camera is placed at 81 degrees of pan from the ¢i: st
camera and .6 degrees of tilt, that Is, to the right of the first caiera,
slightly forward of Its position, and a littie bit higher. Its pointing data
is -3.2 degrees of pan, -1.3 degrees of tiit, and -1.4 degrees of roli, that
ig, it is pointed siightiy to the left (back toward the first camera), down a
little, with a minor clockuise rolti,

The first group of data tabulates the distortion for tuwo points in
the first image plane (-50,18), which is on ths corner of the barn door, and
(-55,5), which is (-5,-5) pixels away. The depths to the corresponding
3-space points are kept equai, that is, the 3-space points are both on a
piane perpendicuiar to the first camera’s principal axis. As this depth
increases from one meter to 100 meters, we observe the resuiting changes in
the distortion,

The second group of data uses a different pair c¢f points in the first
image, (19,108) and (17,i7)--the point on the skyline where the trcees shou
somewhat ¢* a notch and a point (7,7) pixels away. For a depth of 18 meters
at (10,108}, we vary the depth at (17,17} on either side of 10 meters and
observe the resuits.

In the third group of data, we have used the saiie first point (18,10)
and varied the vector to the second point, in effect examining the effect of
varying the window radius from 1 to 10 pixels. For each pair of points, ue
have determined (to tuwo decimai piaces) the depth at which the two 3-space
points would have to lie (both at ths same depth) in order to produce
distortion of just iess than half of a pixel,

It is hoped that this tabie will give some feel for the reiatlion
between depth, window size, object orientation, and distortion. Those
wishing to draw specific conclusions about the allowabie wWwindou size, etc.,
for their oun data are advised to program the mathematics of the iast section
and produce simiiar tables for their cawera model, since the distortion
vectors wlil change considerabiy with changes in the camera mode! parameters,

Under the definition of the iast section, depth discontinuitiee are
distortions. However, such discontinuities are effectively translatione,
Wwhich our algorlithms can handie once they are located, so we will exclude
depth discontinuities from the foiiowing discussions.

SMALL DISTORTIONS

For known smail rotations and scaie factor changes it is possibie to
choose the correiation uindow to be distortion-free (Fischier, 1971). This
is done by calculating at what radius the globai distortion causes pixels of
matching windows to get one pixel out of registration, yielding iocal
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distortion. Any wWindow which would fit into a square of this radius will be
distortion-free, at least from this source of distortion.

For other minor distortions, weighting the correlation window ae
ehown in Illustration B-1 may also help. (See Appendix B for an .explanation
of weighted correlation.) Essentially, this says that ue are most interested
in having the center nf the ccrrelation window matich up, and, while it would
be nice to have the outer parts match up, it should not greatly effect the
correlation if they do not.

GROSS DISTORTIONS

But what about large rotations and scale factor changes? Large

distortions will cause matching to fail, since it causes the matching process
to compare points which do not correspond. When enrmugh points do not
correspond, the correlation uwill f:ll below the confidence level, and the
areas wWwill fail to match., This necessitated our restrictions on the kind of

pictures we can handle.

However, some of these restrictions can be |ifted. The main
technique for this ccnsists of figuring out what caused the problem and
compensating for it. Let us consider some of the causes of large dietortions
and see what can be done about them.

Global Rotations and Scale Factor Changes

Global rotations and scale factor changes--those affecting the whole
picture--are caused by a relative roll of one caiera about its focal axis and
by differences in the focal lengths of the cameras, respectively. Pairs of
pictures having these distortions are somewhat rare. The human prejudice for
order usually results in multiple photographs of a sczne being taken with
identical cameras and lenses, and with both cameras held upright.

There exists the case in which the pictures were taken by a machine,
such as an independent roving vehicle. However, a reasonable design
constraint on such a machine is for it to monitor its orientation wWith
respect to the world, and report how much roll ie present if it must change
angles. One would also expect to know if the focal length of one camera
differed from that of the other. Given this data, it is possible to
decalibrate the pictures, that is, put them into the same orientation and
scale (Quam, 1971].

In the rare case in which gross rotations or scale factor changee are
present but of unknown magnitude, it is still possible to get rid of them.
All that Is required is to determine the rotation and scale factor chiange.




If the locations cf enough pairs of points were known, the global
rotation and scale factos change could he computed by least
techniques as a part of the camera model (See Appendix C).
collecting several pairs of corresponding points. Since we have assumed that
distortions exist, we cannot use matching techniques, which depend on
distortion, to find these point pairs,

squéres
This requires

| om

One possible method for discovering these correspondences is to
extend the correlation technique. Instead of merely searching among al |
possible translations of the window, Iy = Ix + Cl and Jy = Jx + CJ, we could
alsc searches among all possible rotations and scale factor changes,

1Y = Sx( COS(B)xIX + SIN(B)%xJX )} + CI and

JY = Sx(-SIN(B)xIX + COS(B)*JX ) + CJ

These new dimensions, S and 8, will have to he quantized in order to make the
searches finite. The window size used for the correlation will determine the
maximum quantization possible without having to worri, about distortion.

This search in 4 variables will be very long and slow; some method of
shortening it is almost manditory. The technique of reduction will still
uork if the size of the window can be reduced along uith the picture.
Gridding uill also still work for the translation part of the search, and is
inherent in the quantization of the rotation angle and scale factor.
Similarity will work only if the properties put intc the vectors are
invariant under rotation and scale factor change. Camera model| searches are
not applicable, since we have no camera model. (If we did, we would know the

the relative rctation and focal lengths, and wouldn’t be looking for them the
hard way.)

Another method which will give the rotstions and scale factor changes
directly was suggested by Lynn Quam. It calls for locating some object or
area lying entirely in both pictures and finding its boundary. This could be
accomplished by flat region growing (see Chapter S5} for an area of
variance, by conventional edge techniques [Hueckel, 1972), or by more
sophisticated region growing techniques [Yakimovsky, 1973). The boundary is
then tabulated as distance from the center of mass of the area vs. angle from
some reference direction. It is nouw possible to correlate the resul ting
function tables to find the optimal displacement (i.e. angle) which aligns
them. Once the rotational alignment is determined, the tabulated distances
at corresponding points on the boundaries can be used to derive the scale
factor change, as could the ratio of the perimeters.

loW

To the knouledge of this author, these ti:chniques have not been
implemented. Since totally unknoun camera ro!l and focal length change tend

to be the exception, rather than the rule, this author leaves the solution to
someone who has the problem.




Local Scale Factor Changes

Loca! scale factor changes occur because the object is closer to one
camera than to the other. This is particularly noticeable in forward motion
stereo, as might be taken by a vehicle rolling along some path. [f the
approximate local scale factor is known, it can be taken into account, and a
correlation function which does mapping insiead of matching can be employed
to determine the area correspondence. (See Appendix B for descriptions of
matching and mapping correlation.)

The idea of finding boundaries and thue determining the relative
scale factor chinge is still feasible; houever, it requires knowing where the
object is in bith pictures. Since this might well be the information we are
trying to determine, this approach is usually not practical.

A second technique recently implemented by Quam uses a camera mode |

Given a camera model and a pair of points, it is computationally rather
simple to determine the distance from each camera to the point in 3-space
corresponding to those tuwo points (See Appendix C). For each proposed
mapping, these distances are calculated using the center points of the
proposed corresponding areas. From these distances and the focal lengths,
one calculates the effective difference In scale betueen the tuo areas so
that mapping tables can be set and the correlation evaluated.

When the object lies at the same distance from both cameras, wut with
a face at a large angle to the camera baseline, scale distortirn occurs
primarily in one dimension in the image--the dimension most nearly parallel
to the camera baseline. For instance, in the barn pictures the barn face is
distorted from one view to the other, but the distortion is primarily
horizontal--the direction of the camera baseline. This suggests making the
correlation window more narrow In the direction of the camera baseline in
order to reduce distortion to allow matching to take place.

Most other distortions cause the two images to contain different
projections of the object. In general, it is unlikely that more than a small
part of an object so distorted can be matched. Mapping 1 possible, cf
course--1F one has a 3-D model of the object, knows the o iginal 3-space
position and orientation of the object and how it changed, anc has a reliable
camera model. However, if one already knows that much about the scene, there
is little point in dolng matching, or any other vision work.




For a given pair of points (Ir,Jr) and (ls,Js), examine the distortion
vector (Dx,0y) as a function of depth, r-depth = s-depth, i.e.

all of the 3-space roints are in a plane perpendicular
first camera’s principal axis,

(Ir,Jr) r-depth (1s,Js) s-depth Dx

-50 10 1.800 -55 § 1.000 -.127
-50 18 1.500 -85 § 1.500 -.113
-G8 18 2.00880 -85 § 2.008 -.099
-58 18 5.008 =55 § 5.00880 -.B65
-56 10 10.0080 -85 § 10.000 -.051
-50 18 15. 008 =55 § 15.0088 -. 046
-50 18 20.900 . =55 § 208.9008 -. 044
-50 10 50.008 =56 § 50.0800 -.848
-59 18 1068.000 -55 S5 100.0088 -.038

For a given pair of points and r-depth, examine the distortion
as the s-depth varies.

(Ir,Jdr) r-depth (1s,Js) s-depth Dx
16 10 10.009 17 17 10,060 .515
16 10 18.900 17 17 18.050 474
18 10 19.000 17 17 18.900 272
10 10 19.0800 17 17 9.920 -.138
18 19 10.0660 17 17 9.820 -.472
19 180 18.000 17 17 9.810 -.514

For given (Ir,Jr) and r-depth = s-depth, find approximate depth at which

to the

Oy

-QSBS
'0387
-0186
.917
.882
.183
113
132
.138

vector

Dy

-.028
-.027
-0823
e 815
-.809
‘0888

the maximum distortion of .5 occura for a variety of (ls,Js),

(Ir,Jdr) r-depth (1s,Js) s-depth Ox
19 19 .380 11 11 .380 -.024
19 18 .610 12 12 .619 .185
10 18 .820 13 13 .829 .176
16 10 1.0308 14 14 1.830 .231
10 19 1.220 15 15 1,220 . 281
19 .0 2.248 20 20 2,240 .5080

[1lustration D-1. A table of the distort!nan vectors in the barn pictures for
different object positions and orientations, The depths given are in moters

and repreeent the z-coordinate of that particular 3-space point.

)

Dy

. 487
.492
. 499
. 496
499
<448

e i ik i s bt
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