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i. INTRODUCTION.

In recent years there has been a greatly increased level of conversation

between students of psychology, snd of artiliciel intelligence{Al). This increase seems

to stem, on the one hend, from Als partisl acquiescence to the notion that

psychological evidence, particulerly ae couched in the models due to

Neisser(Neisser,1967), Norman{Norman,1970) and others, may have 8 place in its own

thinking sbout cognitive processes, and on the other, from a spreading appreciation on

the part of psychologists of the potential virtues of the computational metaphor. This

letter movement hes beer particularly evident in the literature on memory

structures(e.g. Anderson & Bower,1973), but seems as yet not to have hed significant

impact upon studies of the perceptual process. That the study of the mechanisms of

perception of resl-world scenes (which we sharply distinguish from the reading |
process) i* not widespread in experimental psychology at the present moment seems

pertly to be a matter of fashion and, mere importantly, to be dus to the apperent

unavailability of powerful information-processing concepts on o par With those

concerning the organization of memory.

in this essay, we wish to suggest thet recent advances in the construction of

artificial vision systems provide some pointers to such an inlormetion-processing

theory, end thet the time is ripe for en effort to ifkegrate computations ideas end

empiricel investigation. In attempting to further this suggestion, we outline whet we

think to be some of the salient end potentially fruitful concepts which Al has

generated; we review whel we take to be soms pertinent investigations which have
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appeared in the psychological literature; and we attempt to Jather these two threade

together to begin weaving the fabric of a coherent informetion-processing epproach

to the perception of the visual world.

it would be wise at this point to make clear our concern over the problem

raised by the different hardwere structures available to artificial and natural vision

systems: our arguments will stress commonality of computationsl processes, rather

than any features of the implementation of these processes, whether in a digital

computer or the brain. We think it worthwhile, however, to devole some effort to

suggest.ng how processing which may be essentially serial in an artificial system mav

have its nature altered when it is considered in the context of the (at least partly)

parallel mechanisms available to the brain.
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2. DEFINING THE PROBLEMS.

in his section we attempt to set out what we think to be the major problems

to whose solution an information-processing theory of percsption should aspire. A

large number of thess problems stem from a roslisstion that a large part of

perception is not concerned wilh recognizing sbjects which may siready have appeared

in the repertoire of our experience, but rather with the descriprion of scenes. That is

to say, the problem is that of transtorming a large body of sensory deta, for example,

intensity, colour and texture at a large set of points within the visual field, into a

more compact description or representation of the scene being viewed, so that this

description may be incorporated into, and interact with, the large corpus of

it."~*mation, both visual and non-visual, which may siresdy be stored in memory. Our
cleim is that this view of the nature of perceplion, uncontroversial though it mey

seem at first glance, immediately reduces the usefuiness of a large body of

techniques, historically labelled ‘pattern classification’, end largely based on template

matiching, which were developed for recognition of simple, planer geometric petterns

such av asiphenumeric cheracters. Furthermore, it ecuggeste the necessity for

representational formalisms which capture in some smooth way the whole range of |
sensory and symbolic information to which humens have access.

Several questions must immediately be asked of this data-description process:

{8) just which perceptual constructs ara sbstracted from the sensory dats;

(b) what is the computationsl structure of this process ef sbetractinn which

gives rise to these constructs; |
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(c) how long are ihe retinal and edge dats, etc, stored? Are they kept in

short-term memory during some verification process, or lor calculation of motion

parallax;

(c) sre tha date discarded at all, in fost, or do we remember images for long

periods? If not, just what form doas the representation in long-term memory take
which allows the reconstruction of the mental images with which we are subjectively

familiar? Is the representation purely pictorial in rature, or purely symbolic, or does it

have some of the characteristics of both? We conjecture that at the basic level of

representation, there is no sense in making a distinction between the pictorial end

symbolic. Wh:n we say ‘pictoridd’ we do not mean to suggest that the representation
is isomorphic to a retinal image; rather, that the representation is a graph-like

structure whose nodes represent pictorial elements (e.g. edges, vertices, regions,

volumes, &c.). These nodes may have verbal labels associated with them.

We approach our task initially vie a fairly detailed examination of some possible

stages in the processing of visual information: what kinds of deta are needed at the
verious stages”; whet kinds of descriptive comtructs can each stage generate on its

own? what help is needed from higher level processes? Our suggestion is that a

sirictly hierarchical structure, such as might be inferred for instance from the original
ideas of Hube! and Wiesel Hubel & Wiesel,1968), is not sppropriste for the task in

hand. A visuzl sysiem which consists of a discrete set of anelyticsl stages, eech

encoding its own specialized conclusions for communication 10 an immediate superior,

cannot, we argue, perform the kinds of computations necessary for the understanding
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of visual input. The alternative structure is Aeterarchical, which is to say thst there is

no strict linear ordering of computationai steps in a heterarchicel system, information

flow can be bi-directional - advice and queries from more preximal stages can

influence the behaviour of more distal stages. We might note in pessing that such an

organization seems to be implied by several neurophysiological studies which have
recently come to hand. Horn and Hill(Horn & Hill,1969) demonstrated gravitational

(presumably vestibular) effects on the properties of visual orientation detectors in

cat striate cortex; Spinelli and his colleagues (Spinelli, Starr & Barrett, 1968), in a

serics of studies, hava demonstrated an influence of auditory and someesthetic stimuli

on the shapes of retinal receptive fislds; and other studies have shown chenges in

relinal receptive field sizes with changing activity in the oculo-motor system -

(accomodation). Such effects are consonant with the idea that context effects cen

alter the behaviour of even the most elementary stages of perceptual analysis.

We should also take note here that several recent experimental studies have

suggestad that the hierarchical mechanisms proposed by Hubel and Wiesel to account |

for the spperent progressive specislization of properties amongst visual cortical cells

(from simple to complex io hypercompiex) may not be correct. Hoffmen end

Stone(Holfman & Stone,1971Hoftmen,1973) in » study of correlations between

receplive-field properties and conduction velocities of such cells jound, firstly, that

ol least 40 percent of complex celis are activated monosynaplically by fast afferent

fibers with delsy times of 1-2 msec, while simple and hyper-complex cells are not

activated mono-synepticelly by fast afferents, but some preportion is activated meno-
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synaptically by slow fibers (3-5 msec.). Secondly, they have shown that fast and slow

fiber activity is relayed separately in the lateral. genicuiste nucieus. They have

suggested that simple, complex and hypercomplex cells process visual information in

parallel rather thin in the serial manner proposed earlier.

We actusiiy want to make the strong claim that visusi analysis of scenes such

as we see in every-day life is much more difficult than one might at first assume, and

that the very richness of the information available to us impotes significant

constraints upon the nature of an analytical system which is sbie 10 cope with il.

Consider some of the simpiast problems:

(a) the volume of data: at present the Hand-Eye project at Stanford uses for its

visual sensor a television camera which generates data consisting of a four-bit (i.e.

16 grey-level) description of light intensity at each of avout 330 by 260 points. The

camera generates these data at about one scen every 50th. of a second but it takes

far longer to analyse it even tc the fairly primitive level thet we have achieved so

far. The appiication of en edge-operstor to each of these 80,000 points takes a

minimum of 150 microseconds/point on our present machine. When une redlizes

further thet this volume of snelysis may have to be dine on each of seversl stereo

pictures (for depth by correlation), with colour, it is easy to see that processing time

can gel out of hand quite rapidly. Compare this with the human visual system, which

has 200ut an order of magnitude more resciving power, and yet manages to do much |
more in a small fraction of a second. Naturally, the human system has much more
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specidlized hardware, but we hope that tha point will emerge thal even so the dats

volume problem is considerable;

(b) noise: the human ec i3 nothing like & perfect camera, bul has considerable

optical and electrical defects, anisotropies in resolution and abberatics wiiects;

(c) the eyes are not fixed: they move both with the rest of the body frame and

independently in thoir orbits. Why is it then that the visual world eappears to be

stabilised under these movements? Helmholtz (Heimholtz, 1963) pointed out thet

passive movement of the eyeball causes a disconcerting shift in the perceived field,

end Brindley and Merton(Brindley & Merton, 1960) showed that the apparent stability

is not due to feechback from puorricceptors in the orbital muscles themselves, but

rather to correciion for the movement at a much highar level, in. ving direct

interaction. of the oculo-motor and visual centers: |

(d) variable view point: three-dimensional objects, uniike charscters on ¢

piece of paper, can present many and varied appearances. Because of the fact

that we are separated from them in three-space, distortions are caused by the

phenomenon of derspective. 'f we are are going lo design a visusl system , we hava to

hove some fairly scphisticated way of recognising objects from various

viewpoints, snd even making predictions about the appesrances of parts of |

objects that we coer't see. Thet is to say, we must have en efficient way of mapping

the visual appearance onto descriptions which we airsady have stored. We heve to

develop ways of dealing wilh transformations which are trensistionsl end

rotational, enc! simultaneously deal with scale changes as we approech or recede |
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from objects. For an approach based on mai hing features from templates in amy

simple-minded way, in a three-dimensional world, the obscuration of one object by

another yields yst another fatal difficulty. Just how difficult and subtle problems of

ttwee-dimensionsl visusl geometry sre is suggested by the fect thet it was not

until the Renaissance that artists (da Vinci,1956;Alberti,1547) were able to

({ormulate rules for the naturdlistic representation of space in painting Painting and

art in general raise another issue, which is the inverse of the problem of everyday
scenes - that of the certoon Why is it that so much visual information cen be

conveyed by a few strokes of the brush or pen? What sre the mechanisms which

allow us to fill in? Art reveals moe! clearly the issue 0i interpretation of pictures

(see for example the excellent discussion by Gombrich(Gombrich,| 960). Remember

the duck/rabbit cartoon (Wittgenstein,l953), and Boring’s Young Women/Old Heg

(Boring,1 942) drawing, as we!l as examples of figure-ground confusions which ere all |

aspects of the very difficult question of multi-stabie stsles in vision, which

crops up both in depth-perception end in mterpreting line drawings se three |
dimensionalobjects. Why does the Necker Cube spperenily have rwe sleble throe-

dimensional interpretations, ss well as the perfectly simple two-dimensionsl one?

What are the factors which decide which of the stable states we lend in, |

and why is it so difficult to switch from one state to another?

Actually we hope thet it will becomes clear later that the three-dimensionelity

of the worldis a help rather then s hindrance to scene ensiveis. Techniques

have been developediNevatia & Binford, 1973) for ueing depth information alene
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for the segmentation of scenes containing curved objects and these same workers

have proposed a volume-based representation for such objects. We discuss this in

more detail in Section 5;

(e) variability in lighting: light con be of many colours and intensity, and come

from one or more sources, as well as being reflected off some surfaces onto adjacent

ones. This again is 8 source both of annoyance and information. it's annoying thet

one has to keep changing the characteristics of one’s sensory mechanism ¢!l the

time - one has to adapt for varying light levels. On the other hand, if one knows

something about the lighting situation one can use information from shadows and

shading {0 reconstruct some aspects of tha shapes of ubjects. A later section will

discuss some of the problems which arise in judging. the colours of object under

these kinds of ditficulties. That too will be an example where thars are some quite

good informetion processsing models which are borne out by peychophysical dela

Now that we have laid out some of the difficulties,we should comment on whet

wo teke to be the correct and incorrect methods for coping with them The baie
thrust of our srgument will be that naive, brute-force metheds such ee those

developed in the field of pattern classification for recognising printing, hand-writing, |

bubble-chamber photographs and 80 on just will not do at all for analycing tha kinds

of scenas with which hamens sre normaly confronted There seem te be some very

striking parallels here with attempts at machine urderslending of neturel

language. At the beginning of the sixties, pecple in thet field and linguists of the MIT

School, e.g Chomeky, Fodor, Katz and their colleagues, thougit thet the way to
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describe natural language understanding systems (whether machine or human) was

to write sophisticated context sensitive generative grammars of one kind or another.it

soon became clear that this purely syntactic way of going about things did not seem

to work. Language is net wholly a system of rewriting rules applied 0 base

symbols to produce terminal strings. It is instead a system for conveying

information. And information is not measured in terms of bytes: its significance (its

content) is very dependent upon the circumstances surrounding its utterance

and reception. It is dependent upon a wider kind of context than the transformational

grammarians had in mind - the context is the state of the world pertaining at the

time somebody savs something and this state of affairs can involve oll kinds of

non-linguistic factors. So recently there has been 2 much more serious effort to

develop truly understanding language processors (e.g.Winograd,1973). Exactly this

kind of historical pattern has been apparent in the psychology of visual perception,

but over a longer time scele. (t may seem paradoxical in view of their well known

antipathy that, loosely speaking, the late 19th. century behaviourists were kin In

their spirit to the generative syntaclicists, in stressing the purely atomistic structural |

festures of their respective phenomens . The GCestaltist reaction went to the |
opposite extreme of stressing the whelistic features of perception to the detriment

of the possibility of partitioning the perceptual process inlo pieces suiteble for |
empirical investigelion
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Before going further, we must clarify our notion of ‘level of analysis’. Ws have

already introduced the notion of a heterarchical system without defining what we

mean by a ‘level’ or ‘stage’ within such a system. There saem to be two useful ways

of formulating such a definition:

the first involves a dependence on the type of date which a process accepts as its

input. According to such a criterion, processes dealing with raw intensity data (retinal

receptors,bipolars, etc.)are at the very lowest level; those which deal with edges are

at a higher level, but are themselves subordinate to processes which take more

global input (from several regions of the visual field, for example);

the second way depends upon the amount of ‘advice’ (i.e.iMersction from processes

ot its own or a higher level) that a process needs in order successfully to accomplish

its task. By tnis criterion, the lateral inhibition and Retinex processes that we shall

shortly describe are at a different level from, for instence, a region-associstion

process.(in fact, for consistency, we rate the level derived by this criterion ee

inversely proportional to the advice it needs). |

In a heterarchical system, as we have described it, the clean notion of level we

have just laid out becomes clouded; 8 better measure is perhaps the informetional

connectivity of a process, i.e. a measure on the number of sources from which it

derives sdvice and instruction. Crudely spesking, the less advice thet a process

needs, the more likely it is to have an efficient implementation in 8 pereliel, se

opposedto a serial, sy stem. Of course, advice may itself be treated as dete.
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3. AN ANALYSIS OF LOW-LEVEL MECHANISMS.

In this section, we will look in detail at the kinds of information processing which

might occur at some early stages in the visual pathway; in particular, we ask of each

of these stages what it cen achieve on its own, with no guidance from other

processes occurring at the same or higher levels (using ‘levels’ in the rather careful

sense that was laid out in the previous section). This analysis will also reflect upon

the arguments concerning serialism vs. parallelism which we brought up in that

section. We may find that there ars some processes which can spparently be carried

out completely at one level (and presumably implemented efficiently in parallel

hardware); while, in looking at other processes, ws will conclude that they cennot

function without information from other stages, and perhaps in the last instance

without non-visual information about the nature of the world.

(a) Edges:

Neurophysiological studies suggest that cells in the mammalian visual cortex

extract edges from retinal data (eg. Hubel & Wiesel,l968). However, edges

between regions of umform intensity are only one useful perceptual construct. The

surfaces of heir, leaves, feathers and foam have irregular texture, es do other

surfaces. Gibson has of course argued thet textures snd gradients of texture are

important perceptual constructs (Gibson, 1950). Al hes only recently begun to desl

with textured scenes; these studies are discussed in Section 3c. Since our
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perceptual goals sre interpretations in torms of objects and their spatial

relations, stereo and motion parallax depth perception can also provide

information most closely related to these perceptual goels. These abilities are

apparently developed at birth (Bower, ). Perhaps other visusi learning depends on

the segmentation structure provided by depth perception. Al studies on depth ere

discussed in Section 3d.

Natural scenes ususlly contain objects with well-defined surfece boundaries.

The retinal projections of such scenes are patchworks of areas of obscuring objects.

Some edges correspond to houndsries between objects, some to interior edges of

objects, others to surfece merkings, others to shadows and reflections. All

signity festures of potential interest, but there is no direct connection between

intensity boundaries and the spatial interprotations which are the perceptual goal.

Thus, it is possibla to find intensity discontinuities on a local bests, even though some

edges with low contrast will be missed. It is not possible to find the “meaningful

edges” on a local basis, i.e. to make a “perfect line drawing”. (This ons reason why

recent successes in the development of higher level segmentation sigorithms heve

nol made the perceptusl problem redundant - oll have been dependent on being

provided with prefect line drawings ee input) Present techniques of finding
intensity discontinuities require extensive calculation and ere not reslly sdequete.

We expect thet performance approsching humen visusl acuity innerentlycen only be

achieved at greet computationsl cost (e.g. the retina hes 1000 times es many cells es

our TV images have resolution elements), and thet subslentisl economies mm
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computation sre possible only using sampling strategies which ignore much of the

image. Thus, sampling coarsely allows detection of extended boundaries, from which

many finer details (but not all) can be determined For many problems of interest,

however, those reduced abilities are adequate. In future, vision analysis programs

will have to devote much attention to stratezies which take account of extension in

space or continuity in time, or for which context greatly limits the resolution

necessary.

in this section we prefer to discuss boundary finding (for regions without

texture) in terms of computational components: local edge operators and edge

organization procedures. In the biological system, the local acige operators are

Hubei-Wiesel cells, defined over small disks (ypically 1 degree of arc in the

monkey). These cells are strongly directional, having an angular resolution of 5

degrees. There are approximately 20,000 such calls in the striate cortex. A

romputational equivalent is the Hueckel operator (Hueckel, 1871), defined over a

small disk. This operator is dire-tional in that it calculates moments of the intensity

function in a few directions and determines the direction of best fit of a single edge

on the disk. We can estimate the computational cost of sampling a picture

coersely with this operator. We want to detect edges at ail orientations. Since our

initial concern is with festures which are considerably spatially extended we can get

away with samplingat only a few positions slong edges,but must sampleat many

positions perpendiculer lo anedge. it is enough to apply the Hueckel operator
at every other point slong widely separated verticl and horizontal lines. Let us say
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we use 8 horizontal and 8 vertical lines. At about 7 msec. per application, this

amounts to 15 seconds for a 256 by 256 image, or SO seconds in three colors with

stereo views. This is about a factor of 20,000 slower than comparable human

operations, for much coarser resciution (about a 1000 times fewer points).

What should be the design criteria for a local edge operator? Such an operator

describes the light intensity surface over a small disk by a step function normal to

a line through the disk. its utility is measured by its sensitivity and computational

cost for a specified error rate (e.g sensitivity defined by the contrast

required for S0% positive responses at an edge, for a threshold set for 5% false

positives where there is no edge). We can model light intensity st an edge by

the edge signal with detector noise adcied Detector noise may be confounded with

surface specks and markings. The former may be readily modelled on the basis of |

electrical or electro-physiological analysis but the latter is basically a signal which

may or may not be significant; the contrast of such specks may be arbitrarily large: to

attempt to eliminate response to them by simply raising thresholds would lower

sensitivity. They are systematic phenomens or. a local scale, but ore

characterised by the fact that they are not extended it must be left lo the edge

organization process to desl with such specks. }

There is a straight-forward tradeoff between sensitivity on the one hand,

and computation cost and resolution on the other. This suggests the use of a range

of sizes of operators, with sizes coverning the spectrum from the dimensions of

specks to those for extended odges. Unfortunstely, since the Hueckel operator is
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sensitive primarily to the intensity gradient, non-uniform illumination, predominantly

from reflections, can cause it to return false positive results over an entire surface.

The biological system is known to be insensitive to smooth gradients; lateral inhibition

serves to eliminate these effects. An edge operator using this technique has been

designed by Horn and Binford (Horn & Binford, 1973). A valuable elucidation of its

possible manifestation is given by Horn and by Marr (Horn, 1974; Marr, 1974)

To what extent is improvement in sensilivity possible for local edge

operators? The Hueckel operator requires a threshold only 1.5 times optimum (we

assume that the difference of means across an edge is nearly optimal). If we assume

that two muitiply-add operations per point is minimal, the Hueckel operator is about a

factor of 4 siower than optimal. There seems little room for dramatic improvements
in the computational behaviour of such edge operslors. Finding edge fragments is

local in the sense that the support of the calculation is a smell disk.

One operation of edge organization is also local: that of finding edge fragments

which are near to each other and have similar slopes. Little is known from physiology

about mechanisms for the organization of edge information from Hubol-Wiese! cells.

One conjecture is thet their output goes directly to form a Fourier transform We

argue ister against the wlility of that conjecture. There are many models from

machine perceplion. One of these is the boundary of » connected regions another is

the edge-following technique; the edge af aach point contains directionelity
information which snables an operator to be applied only in regions which are

predicted to have edges traversing them
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Local edge operators are useful for curves which are locally straight over the

disk of the operator. For a large disks, the intensity surface will usually be more

complex than a step-function There are many more possibilities in the cese of

several lines, of curves, or of small textural features. One way of coping is to find

optimal curves which maximize some local contrast function (e.g. the gradient along

the curve). That approach is very expensive computationally because of the

enormous number of possible enumerations of adjacent paints, but by nestly

enumerating combinatorics and by use of continuity, the expected shape of the curve,

and heuristic search, these techniques have been made feasible in situstions such as

analysis of x-rays, in which the shape of the curve is known in advance

Combinatorics can be minimized by a two step process of local edge hy-othesis

by thresholding the output of e loca! edge operator foilowed by edge orge-ization.

We assume that sucl. stages follow the Hubel-Wiesel cperstors in biological systems.

There are two global techniques which work well for straight lines: clustering of edge

fragments in the space of line parameters (angle snd minimum distance) (Perkins &

Binford, 1973); and local ciustering of edge fragments projected slong a veriely of

directions. For curves, no economical equiveient has been found.

Other techniques are local; the simplest of these is the region greming form of

edge orgenizetion Clearly, the bourdery of the set of points which all satisfy

region-predicate is an edge. Thus region growing is a perticuler simple form of edge

organisation, which lacks a notion of smoothness which would serve to bridge gape.

The sim of the edge organization process is to link edge fragments which are nearby
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and have similar slopes. This may be done in an edge following mode (Tenenbaum &

Pingle, 1971), in which the edge operator is used to track slong edges, or in its

parallel equivalent, when the edge operator is applied in 8 raster scan; edge

fragments as they are found are linked to one of a number of nearby unterminated

edaes. It appears lo be difficult to extend the computation of a region uniform in

intensity to regions uniform in the spatial distribution of features. We feel that these

difficulties are related in part to the inherent computations complexity associsted

with two-dimensional geometry.

{b) Colour:

Given a receptor mechanism sensitive at three conveniently spaced

wavelengths, such as is available ir the retina, one might think thet it would be »

relatively easy matter to arrive at judgements of the colewrs of points or

regions within a scene. Unfortunately this is not the case, because the mapping

from physical stimulus space (i.e. that containing wavelength and intensity) to

sensation space is not an isomorphism. Two operations which are somewhat different

are colour matching on the one hand, and colour naming on the other. The former is a

resolution problem, while the latter involve the important phenomenon of cour

consfancy.

One of the most elegant demonstrations that the relslionship between flux

al various wavelengths of reflected light and the associated colour sensations

is not straigntforward was given by Edwin Lend in his Willies Jomes Loclures ot
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Hervard (see Land & McConn,1971). His experimental subject was a pastel drawing of

a street scene by Jeanne Benton, which included a green awning on one side and a

red door on the other. Light at a long wavelength (650nm) was shone onto the

awning, while light of a middle wavelength (540nm) was shone onto the door in such a

way that the same long wave flux came from the centre of the awning and the

centre of the door, and similarly for the medium wavelength. in other words, the

total flux incident on the retina from the two regions was identical in

_ intensity and wavelength mixture. in long wavelength light alone the door appeared

very light and the awning aimost black, and the reverse was true in middie

wavelength light sione. However in the mixture of light, the awning appesred green

and the door appzared red! Land in his Retinex theory (op.cit) proposed thet the

colour of objects is determined by their lightness computed al three distinct

wavelengths. The lightness of a region is an estimate of its reflectance at given

wavelength after high-pass filtering has been performed to remove siow changes in

incident flux. This is based on the intuition that changes in reflectance are abrupt (at

object bounderise) while illumination changes are more gradual. Thus eress thet

ave lighter in iong wavelength and dark in middle wavelength light s/weys look red,

independently of the actusl wavelength distribution in the reflected light. Areas

that look lightat medium wavelengths and dark in long always are perceived ase

being green

The Retinex operation sliows a deemphasisingof shedows and gradue

brightness changes across uniform coloured regions, and slso corrects for
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colour casts, since the colour of any one region is not judged absolutely, but

relative to the perceived colours of ils near neighoours. A program has been

developed by one of us which simulates this model of colour analysis (Thomas,1974).

it looks at the scene through thvee filters, and uses the lightness data at these

wavelengths to construct a colour triangle: the extremes of intensity at each

wavelength define the vertices and the white point. This program has had some

success in dealing with lighting situations involving colored shadows and other difficult

casts, and has been found to pass at least some standard tests for anomalous color

vision.

Horn (Horn, 1974) and Marr (Mgrr,1974) have investigated the wav in which the

Retinex operation which we described may be implemented in artifical and natural

visual systems, and the formulation of the Retinex operation that we have above is

essentially due to Horn. Marr has suggested that one function of the retina is the

computation of the Retinex lightness function along four channels (roc! and 3 coloured

cones) simultaneously, and has shown how the structureof the reting may be adapled

tor thus purpose.

The Retinex operation is clearly well-adapted to beirg carried out by special
peraitel-processing hardware, being essentially a one-tevel process, independent of

any particular knowledge about the scene being looked at.
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(c) Texture:

Less effort has been devoted in Al to outdear scenes than to toy

scenes, probably because the problems are more difficuit in the former. What does

seem clear is that schemes for handling natural scenes which depend on

detecting the edges of uniform intensity are inadequate: what sre needed are

mechanisms for the analysis of depth and texture. The enelysis of texture is a

particularly difficult problem.

First of all there can be @ hierarchy of textures within a scene. Secondly, it is

very difficult to arrive at satisfactory descriptors of textural features. That texiure

and related components are important in human vision is obvious from studies on

the frequency characteristics of the visual system. Texture is o spatisl-domain |
phenomenon, but there have been some proposals lo treat it in the Feurier domain. A

problem with such iransformations is that they ars esseniially bulk descriptors: thy

smear out spatisl information. We will trest this point further below. An ides

description of texture has to be multi-level, so that both small locel features and

lorger ones which, say form boundaries, can be captured by it.

Campbell and others (e.g Campbell & Robson, 1968) heve demoistrsted

peychophysically thet visusl thresholis are directly reisted to the spatial frequency

components of the stimulus field They also showed thet there are cells in the

cot striate cortex which are highly seiective for the spatial frequency of gratings

over a wide range of frequencies. Polien (Pollen & Lee,1971) demonstrated thet the
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simple cells described by Hubel and Wiesel are sensitive bothto the stimulus area

and to its brightness, the implication being that the data from a single simple cell

cannot therefore provide a unique characterisation of a stimulus. He went on to

claim that the visual cortex operates by a technique of strip integration which cen

be described a~ an operation in the Fourier domain. We take the view that the so-

called Fourier theory of vision’ is of limited utility in a visual system.

The Fourier transform model of vision is a version of the template matching

paradigm, which holds that the primary task of a visual system is recognition, i.e.

matching an image (of an isolated object) with templates ‘:um previous images.

The templates could be portions of images ~~ juantities derived from images, such as

moments or Fouriar coe!! cients. The set of problems motivating this peradigm is

classification of isolated, two-dimensionai forms among a small set of possibilities:

character recognition is typical. We have contended that template matching is

inadequate for the visual requirements of a human; unfortunately, the Fourier model

is not very effective even for template matching. A model for template matching is:

portions of previous images are matched against similar portions of the current

image. But what pert of the origina image should be taken as 8 template? NR

appears that the visual system is a system capable of segmentation rather then a

template matching mechanism. The templates couid be supplied by revelation,

or inferred from another (non template matching) facility euch es motion. In the
tempiatle-matcning paradigm, the chief difficulty is the computations! effort in matching

templates to scenes involving rotation, dilation and lraneletion of objects. But
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these are only the simplest problems: we contend that real world visual problems

involve articulation, obscuration, and judgments of similarity of objects which are |

arbitrarily difterent according to non-trivial metrics of template matching. The class

of cups is not identified by any unique global shape or by enumeration, but by being

open containers (capable of holding liquid) of a certain volume. Thus, similerity

depends on a description of three-dimensional form; similarity judgments often also

dr ind on facilities segmentation snd local deecription. Even within the

template matching paradigm, the Fourier transform model hes serious

difficulties. The Fourier transform is equivalent to the original image; it is useful

only if there are grest simplifications in the frequency domain The supposed

advantage of the Fourier transform is translational invariance. However, the
transform is translationelly inverient only for periodic functions. Objects are finite

and images are finite. In this case, the transforms are position dependent. Another
difficuty is thet if there are several objects in a scene, the Fourier transform

dependson oll of them Tha spalis template metching ot least sliows some

locelization to the template.

Experiments show that linear systems analysis is useful for describing

the responses of the visual system to various stimuli. Further, there appeer

to be seperate chennels with about one octave width The slternstive,thet the

system acts ss a single linear filter, seams like a straw man set up only to be

knocked down in view of the wide range of tasks facing the views eyttem.

Experiments show thet the detection threshold for square weaves can be predicted
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adequately from the component of the fundamental frequency. Further, square

waves are distinguishable from sine waves only at contrasts such that the third

harmonic is above threshold. These results do not discriminate agains! an edge

detection 1hechanism, however, since the ratios of sensitivities for square wave to

sine wave would be very similar, and whatever means is used to

discriminate Jetween the two stimuli must give similar results, i.e. must be

dominated by the third harmonic. Any edge detector of fixed size must have a

frequency response with approximately one octave width if for example, the spatial

weighting is unity across the detector, the response is zero for sine waves with

period half the width and the response is half for sine waves wilh period twice

thc width,

In the light of tnese misgivings, we must take some pains to seperate out those

features of a Fourier-domain description which sre ussfu and those other |

conjectures which have little support, either theoratical or experimental. An attempt |

to define useful textursl descriptors is an simultanaously an sttempt tc deal with

problems of pattern grouping and proximity in an n-dimensional feature space.

Experimental studies of proximity have been carried out by Julesz (Julesz, 1971), by

Shepard (Shepard,1964), KruskeKKruskal,1964) ond others. Shepard and his

colleagues have developed some powerful scoling techniques for extracting

important stimuus dimensions from data about sensory judgements, and Julesz

applied them lo judgements of similarity of visual textures; His findng was thet the

most dominant festures were Dbrightnessicontrast) anc orientation. Bajcsy’s
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\Bajcsy,1972) work atiempted to use some techniques in the Fourier domain to

describe such important features, and derived a way of mepping the information from

the power spectrum of a scene into textural properties in the spatial domain.

Obviously the power spectrum of a scene is invariant under translation (if one

ignores windowing effects stemming from the finite character of images), but not

under rotation, so it provides a way of specifying directionality. The phase spectrum |

on the other hand can be used io specify position in the scene. She was able lo

show how such a powerful set of descriptors for texture could be constructed ard ]

used in an algorithm for region growing. The decision problems are quite difficult,

since what is essentially involved in expanding regions is a large number of

judgments about proximity in n-space. The shea representation that she used

allows one to formalise the transition from local judgments to more global structures,

the whole process being imbedded in a hypothesis making/ verification paradigm. Her

program was able to extract significant textural information from outdoor ecenes

involving trees, water, grass and so on, and use this information to sagment the

scene in natural ways. She also devoted some thought to the significance of texture

gradients in the estimation of depth, along the lines suggested by Gibson {op.cit)

(d) Depth:

The measurement of depth is another good candidete for a process which may

essentially be cerried out in parallel with little information other than the raw

intensity data from two seperate viewpoints a smell angle apart. The pioneering
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work of Julesz(op.cit.)has shown clearly that stereoscopic depth information may be

gained in the absence of monoculer fzatures by a bulk correlation between images

from the two eyes. Of course, in normal vision, many other cues interact with this

straightforward computation (for example, monocular features, movement parallax,

perceived size and interposition). Global features, and assumptions concerning the
overall structure of the scene can be expected to help in removing local ambiguities.

Blakemore, in an ex.remely interesting study (Blakemore,1370) has shown that the

cat’s visual cortex has a joint feature/depth representation, in that all orientation-

specific columns of binocularly-driven cells are of either a constant-depth type, i
viewing a thin sheet of visual space, a few degrees wide, at a given distance, or of a /

constant -direction type viewing a cylinder of visual space directed towards the inter-

ocular axis. The binocularly activated cells were optimally stimulated by disparities of

about 0.3 deg. horizontelly and 0.7 deg. vertically, and the receptive field sizes were

comparable to monocularly activated cells. Adjoining columns of depth-specific cells

differ by about 0.6 deg. while constant-directicn columns differ by about 4 deg. So

there are probably about 500 constani-depth end 300 constamt-direction columns

covering the entire visual field.

A program has been written ot the Stanford Al Laboratory (Pingle &

Thomas,]1 974) which carries out a feature-driven bulk-correlation able to achieves a

reso. tion of about Imm. al one metre. R is envisioned that this program will

perform a crude 3-dimensional segmentation of a visual scene as a preface to further

analysis.
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4. THE INTERMEDIATE LEVEL.

In this section we move on to consider the possible behaviour of a vision

system which has been provided with the kinds of information which we discussed

above. In particular, we will be concerned with separating the segments of objects

fram the background and from each other, and with their association into coherent

three-dimensional bodies. The stress will be on the weslth of possible partitionings

which are possible for any reasonably interesting scene, and with the enormous

computational problems which arise from a failure to introduce an adequate anc

systematic semantics for pictures, where by ‘semantics’ here we meen a set of

interpretative rules consonant with the largs body of facts, both intuitive end

intellectual, which human observers bring to bear upon their percepts.

The psychological literature on perception of scenes is rather confused,

end is really concerned only with perception of characters (alone and in context)

and line drawings of 3J-dimensional objects: only a very few studies have ever

been done on perceplion of real world scenas containing lerge numbers of objects

against a complex background (e.gBicderman,1972; Biederman Glass & Stecy,] 973)

Some of the eerlies! ond most significant studies of the perception of
figures were those on perception of retinally stabilised stimuli, beginning with

those si Pritchard et.al (PritchardHeron & Hebb, 1969) end of McFarland

(MacFariand, 1968). When images of line drawings are optically stebilised on the

retina, so that they do not move relalive to the receptor surface when the syes
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move, the figures ave at first perceived normally, but soon the perceived image

begins to disintegrate end eventually disappears altogether. This is obviously

because of the fatigue of the receptors. What is interesting is thet the figures

do not disappear wholistically, but rather the parts disappear independently = the

first things to go are vertices, followed by iine segments. One might therefore

imagine that vertices and line segments form the urimitive structures in perception.

One might go on to suggest that a good way of studying the perception of line

drawings would be to carry out eye-tracking studies, and this was indeed done by

Kaufman and Richards (Kaufman & Richards, 1969). They did show that acute-angled

vertices are better allractants of visual fixation than obtuse ones. However they

also showad thet in figures subtending less than 10 deg. of visual angle, very little )

scanning if eny is done. Instead the eyes tend to fixate rigidly upon some point

within the envelope of the figure. To be more exact, fixation was predominently upon

that point which would form the centre of gravity of the object, were it three-

dimensional. Even al this primitive staze within the visusl process, prejudices about

the interpretation of the line drawing are airsady affecting the perceptusl mechanism.

Other studies have examined the notion that three dimensionality and simplicity

are {wo orgonisstional principles which are somehow inhoret in the visusl

process. These {wo principles are but facets of the old Gestalt Pracgnenz law,

which said that scenes are perceived according to the simplest interpretation which is

compatible with the sensory data Hochberg and McAlister (Hochberg &

McAlistor,]1953) conducted some experiments on the perception of line drawings
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representing a cube in various orientations (due originally to Kopfermann). The clear

cut result of their study was that the figure possessing the best symmetry as

a two dimensional pattern was ‘rast otten seen as a cube (drawing (a) in Figure 1.)

This leads to a connection with the rules of symmetry much discussed by the Gestalt

psychologists. Consider the kinds of organisational groupings that are going on in

figure 2 (after Altneave,1968). The case of the clusters of triangles is a very

interesting one - considered in iscialion, any one of these triangles can appear to

point in one of three directions. But when considered as clusters , all the triangles in

a group appear lo point in the same direction (even though this dominant direction

changes from time to time). The conclusion from phenomena such as these Is

that the perceptual system cannol simultaneously employ more than one axis of

symmetry. Attneave (op. cit) pointed out that when the triangles are viewed from

an acute angle, they optically become isosceles, bul perceptually they keep their

ambizuity of direction He suggested that the reason for this is that competition

between the various axes of symmetry is going on not af the level of the retinal

projection but rather within an internal model cf 3-dimensionsl space. He further

suggested that this internal model may consist of a Cartesien framework, wherein

groups of figures such as those above may be described in two ways:

(a) in terms of local (figural axes)

(b) in terms of the difference between the figural axes ond the

general axes of the visual field,

The Praegnanz principle would then dictate thet the descriplion chosen in a
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particular case would be that which 1 simplest in terms of the orientation axes.

Attneave has done some other stuses suggesting that we do indeed have some

representation of three dimensicnality in our perceptual world models. These

involved showing thst the apparent tridimensional orientation of a cubical

figure (represented by a line drawing) is determined by tendencies to make the

object as simple as possible. For example, a figure such as that in Fig3 could

represent any cf a large number of possible parallelopipeds: however if one assumes

that this figure is a slented symmetrical cube, then quite uniquely, the perceived

angles a8 and + are all equal and right-angles. This homogeneity of angles conveys a

simplicity to the figure snd therefore it should, according to the minimal

complexity principle, be perceived usually as a cube (Attneave&Frost,] 969) '
Another interesting example of a possible organisational principle operaling

in the perception of polyhedra has been suggested by Perkins (Perking,1 968) in his

analysis of the possible configurations that may be sssumed at cubical corners. Some

combinations of three lines meeting at a3 vertex iook like corners of cubes,

Figure 4 about hers

while othersdo nol. Why is that? Obviously this phenomenon is governed

to some extent by context, but there is also an internal principle operating. R

seems a reasonable empirical conclusion to say that ‘three lines meeting al 2

vertex form an acceptable representation of a two-faced cubical corner it and

only if it contains 2 angles less than or equal to SO deg. whose sum is greater then
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or equal to 90 deg.’ We can then calculate which three line configurations form

viable corners.

This little study by Perkins is a foretaste of the things we will talk about

next: attempts by designers of artificial vision systems to derive systematic rules for

segmenting scenes, particularly those containing configurations of regular polyhedra.

We hope that corollaries with the psychological evidence that has just been

presented will become evident.

The earliest work in this field was done by Koberts (Roberts, 1965) who

concentrated on segmenting and recognising scenes containing only blocks of various

regular shapesThe input was in the form of perfect (i.e. noiseless) line

drawings.

Adoto Cuzman’s work (Guzman,1968) was a considerable edvance, since it

was the rircl attempt to impart some meaning to the parts of pictures (meaning in

terms of the relationships between ports). This approach mitiguted the problems

with the template matching apprcach which was underlying in Roberts’ program.

Guzmen’s program is two-pass: on le first pess it gathers local svidence about

vertices ; the second pass attempts to use this evidence to achieve & pl.usible

segmentation of the scene. Again the input was a noiseless line drawing The

local eviderwe was based on cerfair heuristics concerning possible

configurations of plane regions al vertices.

Figure 5 about hers
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Each type of possible veriex contributes information about the relations

between neighbouring regions. The “arrow” link provides evidence for some

connection between the two regions on either side of the shaft. The "fork"

configuraticn provides evidence for linkage between the three contiguous

regions. The "TEE" junction offers evidence of occlusion Internally, the

relationships between faces is represented symbolically by associated lists. At the

lowest level, any two regions with a link between them are considered to be part of

the same body. This can lead to trouble when fortuitous coincidences accur: the

answer to this liberclity of region association is to require that there be two links

between the regions before they are considered to belong to each other. Some

inhibitory heuristics were also used: for instance, there had to be compatibility of

interpretation between vertices belonging to the two ends ci a given line. Guzman’s

program worked quite well on scenes which contained large numbers of bodies in

arbitrary configurations, but was bothered by holes and other non-convexities.

Further, ard more important, it was very poor at segmenting pictures which were

missing deta, 2.g line-segments, Falk (Fa'k,1970) approached this problem by

using Guzman type heuristics for associating edges rather then regions. He was the

able to use the verification methods we discussed earlier in connection with

edge-following tc predict the position of lines in the scene: here is a classical |

example of the kind of methodology that we have been advocating - & (fairly) |

high-level program concerned with analysing regions into bodies is able ta induce

the lowest levels of the vision process to lock again for edges in sensitive and
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cricial locations. For analysing real pictures, this method is quite superior to

Guzman’s.

Huffman (Huftmar,1571) and Clowes have, independently, investigated in a

systematic way the possible configurations of trihedral vertices seen from a position

of non-singular perspective, classifying edges as Convex, Concave and Obscuring.
Figure 6 about here

Such a labelling system immediately imposes quite stringent restrictions on

the possible interpretations of the vertices in this cube. They were able to show

that only six L vertex labellings and three each of fork and arrow lsbellings were

possible given the above kinds of constraints. In his paper on impossibie Objects

(op.cit), Huffman points out that there is a similarity between the problem cf

attaching razlisable lsbels to an arbitrary picture and that of parsing a sentence

in a language: he is able to suggest that the resson impossible objects ere so

difficult to understand is that they are the embodiments of illegal parsings . Waltz

(Whaitz,1972),in his recent thesis, developed these ideas further: he expanded the set

of possible lsbellings to teke into account shadows end other vagaries of

illumination, and introduced a filtering mechanism involving resolution of conflicting

information (rom neighbouring edges as well as a few heuristics concerning legal

lighting situations, etc. which allowed his program to converge rapidly onto a

plausible interpretation, rather than carrying out a depth-first search of sll the

possible Huffman (abellings.
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5. A GATHERING TOGETHER.

This section will attempt to draw genera! conclusions from the detailed pointe

that have been made above, will iay out some suggestions for description schemes

for rea! scenes. and iii go on to contend that these arguments have revelance for

the contemporary controversy in cognitive psychology about the nature of mental

representation.

Given the initial point of view that the major perceptual problem is that of

description rethar then recognition, severs! conceptual difficulties arise which do not

seem to have received the attention we think they deserve, either in the

psycho'ogical literature or in designs for artificial vision systems. They are, firstly,

that of attention : the problem of deciding at what leval of snalysis (in the sense of

Section 2) to approsch a perceptual task; and, secondly, that of werriving of

representational formalisms which caplure in some smooth way the imaginal and

symbolic aspects of humen descriplion schemata.

‘By “description” we do not usually mean verbal descriplions: we mean an
abstract deta structure in which are represented features, relations, functions,
reference to other processes and other information. Besides representing tAIRgs
and relations between things, descriptions ofiem contain information about fhe
relative importance of features to one another, ¢.g. which features are to be
regarded as essential end which are macly ormemmial’ (Minsky
Papert,i9?2)

The attention probiem is intimately bound up with the particular gosls of the

system at any given moment. For example, in driving a car, one's attention is normally

devoted to the road directly in front, but sny unexpected motion in the periphera:
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visual field receives immediate rctic~ In Al, this behaviour has been captured by the

notion of a ‘demon’, i.e. a high-priority interrupt process which, when activated by a

specific event (e.g. motion) can stop whichever computation is presently in progress

and cause some other process to be run to deal wiih the interrupt. This would seem

to be easily implementable in a natural vision system whers problems of scheduling

are reduced by the inherent parallelism. Most attempts at the development of

artificial vision systems have devoted their efforls to extremely detailed analysis of

the whole visual field, involving the aztual recognition of every visible object, usually

by matching against some protc-lype which has been learned and stored in memory.

This prototype-matching matching approach, which is in some ways a generalization of

the template-matching techniques which we scorned earlier, 8iso fails to meet nur

second criterion of adequacy, in that it is not easily expanded to a smooth

representational formalism: it is overly concerned with localized features, at the

expense o/ understanding larger-scale characteristics of a visugl scene.

We will discuss three approaches which begin to escape these apperent

defecls: the first, described by Binford (NevatisdBinford, 1973), involves a

generalised volume description of curved objects; the cecond, due !e Winston
(Winston, 1970) is the beginning of an attempt to describe the relations beiiveen

objects in 8 scene; and the third is Minsky's recent suggestion concerning the notion

of frames (Minsky, 974)

A representation useful for the work of Binford et al. with complex objects was

chosen to salisfy design criteria which are relevant to human percept'on The
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representation must be generative, that is, a rich set of shapes should be

conveniently generated from locsl primitives. For that to be effective, the

"representation should have a segmentation into parts, which themssives may

be formed of other parts. For the part/whole segmentation to be effective, the

primitive parts must be naturally defined and computationally adequate. In this

case it was decided to define primitive parts by continuity. This implies that

the primitives are volume primitives and not surface primitives, since surfaces are

discontinuous for objects with what we conveniently think of as a single part (e.g.

a block).

The representations depend upon segmentation to describe complex objects

in terms of parts. The representations’ are graph-structured; nodes correspond to i

parts, while arcs correspond to relations between parts. Parts may be compound

parts, i.e. graphs of the same form. Relations include relative position and

orientation, degrees of freedom, symmetry end any special knowledge avaiisble.

The topological operations of culling and pasting are used in joining parte.

Normally, we think of holss as made by cuts and protuberances as mede by pa.ting. B

Primitive parts are arm-like, described as “generalized local cones”. These

parts are described formally in terms of “generalized local translations!

invarisnce”, appropriate to parts whose cross sections change slowly slong some

space curve. A general cylinder is formed by an arbitrary cross section transisted

along a straight line. A cone has a linear variation of cross section along this exis. If |

the scale of the cross section is varied smoothly along the ads, we have whet might |
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be celled a local cone. If the cross section is allowed to vary by distortion or rotation,

and the axis is allowed to be a pace curve, then we have "generalized local cones”.

These are ihe volumes swepl oul by taking an arbitrary cross section snd

trenslating it along a space curve, mesnwhile varying the cross section while

holding the cross section normal to the path.

Figure 7 about here

Cross sections are represented in the same fashion in two dimensions as

objects are in three dimensions. Again, parl/whole segmentelion is crucial. It is

required that parts be defined by continuity. Thus the parts must be area perts, not |

curve parts, since curves are discontinuous for plane figures which we normally

think of as having a single pert. The primitives are. described by a cross section
(one-dimensional) varying smoothly along a plane curve.

Figure 8 about here

Each element has a local coordinate system Each joint comteine the

transformation necessary to go from the coordinate system of one element to

that of the other. This process of segmentation allows non-unique representations,

and permits us a choice of simple representations; we can regard the non-

uniqueness as sn adventage in the light of our comments shove sbout the attentional

problem.

Figure 9 about here

The basic philosophy of Winston's work is two-fold:
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(a) thet learning is a process of constructing compact descriptions of the

meaningful relationships between objects in the world; and

(b) thz' such description construction is not to be achieved by a statistical

learning pa: 3digm, but rather by judicious teaching, i.e. the choice by a teacher of

examples which reveal the crucial features of a relation-description. Very

importantly, it may involve exposing the learner toc what Winston has called ‘near-

misses’; situations which differ from the one another in some singularly crucial way.

Figure 1C about here

Figure 10 shows the kind of data structure that Winston's program constructs

to describe the spatial relationships involved in a simple pedestal. One of the most

crucial relations in this construction is that of support - a feature which is absent

trom the ‘near-miss’ examples. The role of the teacher in this case Is to reintorce

by means of sucn exemples the crucial relationships which obtain in the scene.

Obviously there can be a hierarchy of relations which can be exiibited by such

examples, some of which are more crucial than others.

in this work, and in that of Binford, we think that there are the beginnings of a

viable and fruitful theory of scene descriptions based on structural descriptions in

which the topology is manifest. Developmentsl studies of human perception,

particularly by Piaget and his colleagues (Pisget&inhelder,18967, have of course

revealed that the ability to construct toplogical descriptions occurs earlier then a

more metric and geometric ability. Minskylopcit) in an interesting paper, has
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developed the notion of a ‘frame’ which is essentially a generalization of Winston's

scheme nerticularly adapted to revealing at its top level those features of a situation

which are believed to be most important:

‘Seeing is based on the use of Frame-Systems. A frame-system is a data-
structure for representing a steveolype situation - like being in a certain kind of
room. Attached to this structure are several kinds of information. Some of this

information is about what one expects to happen next. Some is about whet to do
if expectations are not conjirmed.

Collecticns of related frames are linked together into Frame-systems. The
effects of important actions are mirrored by transformations between the frames
of a system.’ (Minsky,1974)

We do think however ihat the essentially non-metrical character of Minsky’s

frames is somewhat unsatisfactory. His argument seems hased on the belief that

‘people do not seem to have much metrical abiity vis-a-vis three dimensional

imagery’ (Minsky, op.cit.); this does net fit well with the studies of Attneave that we

discussed above, which seem to demonstrate the contrary.

This difficulty leads us naturally to discuss ihe relationship between symbolic

and pictorial methods of representation, and in particular the nature of mental

imagery. Of late, there has been considersble controversy in the literature

(represented by Minsky’s paper discuseed above, and Ly an elegant discussion due to

Pylyshyn (Pylyshyn,i372)). We will not, in this essay, devote detailed discussion to

this problem: a paper is forthcoming by one of us (AJT) which grgues, contre Pylyshyn,

that mental imager is a valid phenomenological concept,and thet while it may be

true that the general nature of memory structure is that of a symbolic network, it
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does not therby follow that either the subjective experience of imagery or the

considerabie bcdy of structural investigation, e.g. by Shepard (Shepard,1971) and

especially by Cooper (Cooper,1973) on mental imagery tasks involving random

three-dimensional forms, is thereby to be faulted The argument is basically that the

symbolic/ pictorial distinction is a functional and computational one, and that some
form of the dual-code hypothesis advocated, for example, by Posner (Posner,1972) is

a likely beginning of a satisfactory theory. The major question is whether it is correct

to think of perception as a combination of a distal stimulus and a mental imgge

thereof, and conversely whether the perceptusl machinery is « ‘ive during pictorial

imagining. Advocates of a dual-code type of hypothesis(e.g. Bower,1972) have

argued in favour of a commonality of generation of both pictorial and linguistic

structures. Powerful and interesting evidence for a role of perceptual concepts in

linguistic operations comes from studies of acquisition of language by children.

Postal’s Universal Semantic Primitives Hypothesis (Postel,1966) makes the claim

that linguistic primitives must reflect closely the primitive relationships extant in

the organism’s world, while Bierwisch (Bierwisch,1969) has made the point that not

only must a child have such a set of primitives, but he must also learn to recognise

them for what they are. E.Clark (Clark,1971) has suggested that at en early stage

a child who is just beginning to use words does not know their full meaning, but

rather identifies them initially with only a few features of the meaning, which are

criterial for its use of the words. From our point of view here, the crux of her

hypothesis lies in the nature of such features:
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‘...the first semantic features that a child uses are liakle to be derived from the
encoding of his percepts... at a later stage, as the child learns more abou!
the structure of Ais language as a whole, he will learn which percept-derived
features play a particular linguistic role, end which are relatively
redundant (Opcit.)

For example studies on over-extension of relational terms (e.g. the use of the

term ‘dog’ to name all four-legged animals, independently of size, &c.) sre particularly

interesting: when two words are closely related, e.g. more/less, same/different,

before/after, the tandency in confusion of use by a child is towards the use of the

unmarked member of the pair in place of both meanings. in the studies by Piaget and

others on over-extended use of synonyms eg. boy/brother, there is a suggestion

that the tendency is to use such words synonymously until the relevent

discriminating features are learned and added to the lexical entry. H.Clerk

(HClark,1971) has carried this way of thought as far as to suggest that an

isomorphism exists between the linguistic and perceptual domains. He proposes that

asymmetries seen in the use of pairs of polar adjectives e.g. big/small, tell/short,

in front /behind are due to analogous asymmetries which exist in the visual field. It is

as if there existed reference points within this field, about which directions

tend to be defined as either positive or negative, depending on their

perceptual predominance. .
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6. CONCLUDING REMARKS.

We hope that, throughout the preceeding sections, the reader has been able to

trace the two skeins of our argument:

(a) that a vision system, whether natural or artificial, cannot function in the

absence of a twu-way flow of information to and from almost every stage of analysis;

and

(b) that the crucial problem in understanding or designing such systems must be

the formulation of a representational formalism which captures both perceptual and

ron-perceptual information, and sllows a smooth transition between them. We have

sketched what we take to be the beginnings of such a formalism, but we find that we

have to admit that even these beginnings sre at present quite incomplete and

unsatis‘actory.

Our hope is that this paper will have gone some way towards reducing any

difficulty due to terminological and conceptual differences which exist between Al and

psychology, and which have inhibited a potentially fruitful discourse.
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FICURE CAPTIONS

Figure |

Possible configurations of tri-hedral vertices. Only some are convincingly perts of a
cubical body(after Kopfermann)

Figure 2

Ambiguous triangle configurations (after Altneave(1968)). The equilateral triangles
appear in one of three orientations depending on the dominant symmetry axis of the
whole group.

Figure 3

Constraints on the perception of a parsieiopiped as 8 cube (after Attnesve &
Frost(1969))

Figwe 4

Some further constraints on the perception of cubical corners{after Perkine(1968))

Figure 5

Linking regions using Guzman’s scheme (atter Guzmen(1 968)

Figure 6

Hutfman labelling scheme or 3-dimensional polyhedra: plus marks a convex sedge,
minus a concave edge and an errow marks edges where only one face is visible of
the two which make up the edge{sfte: Huffmen(1971))

Figure 7 |

Binford Generalized Cylinder representation for a screwdriver (after Agin(1972)

Figure 8

Laser ranging data for a toy doll (from Nevatia(1974))

Figure 9

Segmentation of a toy doll along seversl axes, derived from the range dete of Figure
9 (from Nevatiel1974))
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Figure 10

A structural description of a simple pedestai(after Winston(1970})
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