STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM - 218

STAN-CS-73-393

PROOF TECHNIQUES FOR RECURSIVE PROGRAMS

BY

AD772063

JEAN E. VUILLEMIN

SUPPORTED BY

ADVANCED RESEARCH PRGJECTS AGENCY
ARPA ORDER NO. 2494 -
PROJECT CODE 3D30

OCTOBER 1973

COMPUTER SCIENCE DEPARTMENT
Schoo! of Humanities and Sciences
’ STANFORD UNIVERSITY

eproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
Springfield VA 22151

Proof Techniques for Recursive Programs

Jean Vuillemin

Abstract

The concept of least fixed-point of a continuous function can be
considered as the unifying thread of this dissertation.

The connections between fixed-points and recursive programs are
detailed in Chapter 2, providing some insights on practical implementa~
tions of recursion. There are two usual characterizations of the least
fixed-point of a continuous function. To the first characterization,
due to Knaster and Tarski, corresponds a class of proof techniques for
programs, as described in Chapter 3. The other characterization of
least fixed points, better known as Kleene's first recursion theorem,
is discussed in Chapter k. Tt has the advantage of being effective

and it leads to a wider class of proof techniques.

The views and conclusions contained in this document are those of the
author and should not be interpreted as representing the official policies,
either expressed or implied, of the Advanced Research Projects Agency of
the U.S. Govermment.

This research was supported by the Advanced Research Projects Agency, Dept.
of Defense under contract DAHC 15-73-C-0435

Reproduced in the USA. Available from the National Technical Information
Service, Springfield, Virginia 22151.

ib

Acknowledgments

First of all, I am grateful to Dana Scott, Robin Milner, and
David Park who, by their respective works, made this thesis possible.
I am deeply indebted to:

Donald Knuth for his reading of the manuscript; his
criticisms of Chapter 2 led to rewarding improvements
in the generality of the results.

Zohar Manna for his constant encouragement and help; he has
been a model adviser throughout my work.

Robin Milner for all the things I learned from him, and
the many interesting discussions we had.

T also want to thank my friends Jean Marie Cadiou, Ashok Chandra,
Cyril Grivet, Gilles Kahn, Lockwood Morris, Steve Ness, Mark Smith,

and Phyllis Winkler who all helped me in their many different ways.

ii

Introduction .
Chapter 1. Scott's Theory of Computation
1. Daba-Types . + v ¢« v ¢ 6 v v v v v o s v o 0 .
2. Computable Functions Over Data-Types .
5. Fixed~Points « « v« v v v v v v 4 4« s e s e e W
Chapter 2. TFixed Points and Recursion . « « « « . .
1. Computations of Recursively Defined Funchions
1.1 Description of Lang S and Lang P
1.2 Conventions and Notations .
1.5 Computation Rule . « v ¢« v v ¢ ¢« o ¢ o o &
1.4 Computation Lattice of a Program
2. Correct Implementations of Recursion .
2.1 Tncorrect Computation Rules .
2.2 Safe Computation Rules« . « « &
3. An Optimal Impliementation of Recursion in Lang S .
3.1 Never Do Today What You Can Put Off Until
TOMOTTOW + o & v o o o o o o o o +
5.2 Optimality of the Delay Rule
3.5 Sequential Functions
Chapter 3. Proofs Based Upon Monotonicity . « « + + .+ « .
1. A Formal System for the Time Being
1.1 Synbax
1.2 Semantics ¢ o . . .

Table of Contents

1.7 Axioms and Rules of Inference

1.4 Soundness .

1ii

\O = W

15
15
15
16
18
20

22

33

Sh
41

L1
ks
L6
53
55
55
54
5k
56

2. Justification of Some Proof Techniques
2.1 Description of a Flowchart Language
2.2 The Inductive Assertions Technique .
2.5 Termination of Programs
Chapter 4. ©Proofs Based Upon Continuity
1. Description of ICF
1.1 Synbtax o ..
1.2 Axioms and Rules « . .
1.5 Some Remarks About the Logici.
1.4 Some Examples of Proofs .
2. Modelling Some Proof Technigques Within ICF
2.1 Structural Induction . . « . . « . .
2.2 Truncation Induction
ConCluSIon « « v o ¢ & o o o o o « o 2 e . o
References . e« .

1.5 Pragmetics « « v v v e v e e e

1.6 A Possible Weakness of the System

iv

-

o7
61

n
6l
67
68
70
71
71
72
Th

81
81
88
ol
95

Introduction

The goal of this work was to study and hopefully compare in a
precise way the various techniques for proving properties of programs
existing in the literature. Tt soon turned out that nothing interesting
could be sald if one did not state precisely what the various methods
really are within a common logical system. A perfectly adequate system
for doing so was the Logic for Computable Function of Milner [18], which
is based on the work of Scott [29] and [30].

In this framework, proof techniques fall rather nicely into two
classes: for the first class, which includes the methods of Burstall [1],
Floydv[Y], Hoare [9], Manna-Pnueli [16], the semantics needed for validating
the techniques only demand that programs be interpreted as monotone
functions in the sense of Scott [29]; for methods in the second class,
such as those of Scott [30] and Morris [2%], programs must be interpreted
as continuous functions.

The methods in the second class are then "more powerful' in that
they can be used for justifying the other techniques; furthermore,
provided that all methods are expressed within the same logical system,
we can exhibit properties of programs which are provable with the
proof-techniques in the second class, and not provable with the techniques
in the first class, and not vice-versa.

Before studying the various proof techniques, we present a minimal
background in Scott's Theory of Computation in Chapber 1. One of the
points of the theory which we thought needed clerification was the

relations between the abstract notion of least fixed-point and the

concrete notion of trace of a program. Chapter 2, which is the most
original part of this thesis, is devoted to this question. We believe
that Theorems 1, 3 and 4 are new while Theorem 2 is a generalization
of a result by Cadiou [2].

In Chapter 3, we study the proof-technique in the first class. The
formal system used is original, although a mere adaptation of Milner's
ICF to a different semantic domain. Reduction of the proof technigques
presented to the rule of fixed-point induction are due to Park [26].

In Chapter 4, we describe reductions of some methods to the rule
of induction of Scott [30]; some of these reductions are also used,
implicitly or explicitly in deBakker-Scott [6], Scott [30], Milner [18],

and Milner-Weyrauch [21].

Chapter 1. SCOTT'S THECRY OF COMPUTATION

In this chapter, we shall present an overview of Scott's theory
of computation, whose goal was to give a "mathematical as opposed to
"operational” semantics for high-level programming languages. Only the
parts of the theory which are relevant to this dissertation will be
described. In particular, one of Scott's most impressive achievements
was to construct a model for the A-calculus, which in turn provides a
mathematical semantics for programming peculiarities such as self-modifying
machine codes or procedures taking other procedures as arguments. We
shall not concern ourselves with this problem, and the kind of procedure
we are willing to consider has a definite type -- a function from
individuals teo individuals, or a functional from functions to functions,
ete. Limited as it is, the theory that we shall describe is nevertheless
powerful enough not only to describe the semantics of non-trivial subsets
of any programming language, but also to justify all the existing proof
techniques for those languages. The presentation of this chapter, whose
only purpose is to make the thesis more or less self-contained, is based
on Scott [29] except for some minor technical details.

We assume that the reader has some knowledge of.elementary lattice

and recursion theories.

1. Data Types
As a first step, let us consider some examples of what one would
like to call data types:

(a) the boolean values true and false;

(b) the set of integers;

(¢) the n-dimensional arrays of integers;

(d) the set of subsets of integers;

(e) the set of computable partial functions over some data-type;

(f) the set of non-negative real numbers.

Some of those sets contain as elements objects like total functions or
irrational real numbers, which we shall call "infinite elements". They
cannot be described entirely, but one can give better and better finite
approximations to what they reélly are. For example, the intervals
(3,47, [3.1,%.2], [3.14,3.15], ... form a sequence of approximations
of w .

This suggests that data-types ought to be partially ordered sets.

The notation X = y means that x approximates y , and T must
therefore be a reflexive, transitive and antisymmetric relation over
the data-type. For example, if A and B are some subsets of the
integers, A C B means that A is a subéet of B . Similarly, for
any two iptervals [x,x'] and [y,y'] of non-negative real numbers
[%,x'] = [y,y'] will mean that x <y and y' <x', i.e., [y,y']
gives us a better idea of where the real number lies than [x,x']
Considering now two integers k and £ , we do not wish to say
that one is an approximation of the other. However, it may be the

case that k 1s not explicitly known, but has to be determined as

the result of some computation. As we all know, this computation may
never terminate, in which case k i1s said to be undefined; we denote
this by k =UU and clearly UU = £ for any £ . We use g different
equality sign " = " in order to avoid confusions with the regular
equality " =" over the integers. Here, x =y means that xC y
and y = x , while x =y is true whenever x and y are the same
integer. TFor example, 1 =1 and 1 =1 are both true, while UU = 1
ig false and UU = 1 is undefined. To be precise, one should write
(UUI = 1) =UU, where the subscripts are here to remind us that uu,
is an undefined integer, while UUB is an undefined boolean.

To clarify those ideas, it i1s helpful to describe more precisely

the partial orderings over our favorite data types.

(a) TFor the boolean values, the data type looks like B FE B
\‘UU/

b

where N\ means that b covers a , i.e., aC b with a #b
a

and aZ c = b for some ¢ implies either a

ill
O
Q
>
(@)
il
o

(b) Although there are infinitely many integers, the corresponding

data type is not much richer:
1 2 cen n
=
\UU
Data types of this kind, where elements are elther completely specified

or undefined will be called discrete.

(¢) The data type of pairs of Boolean has already a richer

structure:
(T'T, TT>><<TT ST (FF, TT>><<FF, FF)
(TT,UU) (UU, T?<<UU,FF> (FF,UU)

\\UU/

(&) 1In the data type of subsets of some set, A T B means that A

is a subset of B ; the least element UU is the emply set.

(e) As indicated before, the elements of the data type of real
numbers are closed intervals [x,x'] with O <x <x' and
[x,x'] C [y,y'] whenever x <y and y' <x' . It is convenient
to complete the real line with an element <« , thus allowing [7.1, ®]
for example, to be a real number. The interval [0,x] reflects a

complete lack of information and should therefore be identified with

the undefined real TUU .

(f) If B/ is a data type partially ordered by Eﬁ , The partial
functions mapping £ into & are ordered by:

fog iff f(x) Sp g(x) for all x in 5 .

The minimal element TUU is the partial function which is everywhere

bF-b

~

undefined, i.e., UU(x) = UU for all x in 4 .

Infinite Elements as Limits

Let us contemplate again the sequence

(3,41, [3.1,3.2], [3.14, 3.15], We would like to be able to

define w as the "limit" of these intervals. Abstractly, this will

*
require that any chain—/

X, Cx,.C...Cx,&x, .C...
-1 - il =

has a limit y in the data type B , which is the least-upper bound

of the xi's , that is, xj Cy for every J and, for any z in the

data type, x,E z for every Jj dimplies yC z . We write y = X,

U
J i>0

According to this notation, in the data-type of real numbers

[1,2]

il

U [i/(i+1),(2i+1)/i] and for sets of integers,
1>0

{k|k is 0dd} = U {1,3,...,2i*1} . Let us define the constant
1>0

1 for any integer x , while one(UU) = UU ;

il

function one as one(x)

this function can also be defined as a limit of partial functions

one = U [Ax. if x < i then 1 else UU]

Computability

Asking that the infinite object U X, be computable will
i>0

require that the X themselves be computable. We therefore postulate
the existence of an effectively given subset E of the data type 5,
such that any element of /& is the limit (not necessarily effective)
of some chain of elements of ® . Such a set E will be called a
recursive basis of /5 . TFor example, a data-type in which there are

no infinite ascending chains (booleans, integers, arrays) is its own

f/ Strictly speaking, we only need denumerable chains to have a limit.
However, when data-types have a denumerable basis (see below),
requiring that countable chains have limits implies that any chain
(and in fact directed set) also has a limit.

7

basis provided that it is recursive. The finite sets of integers
constitute a basis for the set of subsets of the integers. Similarly,
the set of functions which are undefined for all but a finite number
of arguments is a basis for the data type of partial functions.
Finally, a basis for the real numbers is the set of rational-end-point
intervals.

We can remark that the recursive basis of a data type H must be
denumerable. Consequently, all of its elements being obtained as
limits of denumerable chains in the basis, £ itself has at most a
continuum number of elements. In particular, since there are at most
denumerably many computable objects (i.e., objects defined as limits of
effectively given chains), a non-denumerable data-type will possess
many non-computable elements.

We can summarize the above discussion by the postulate

A data-type is a partially ordered set with a

minimal element, possessing a recursive basis

and in which every ascending chain has a 1limit.

Note: This notion of data-type is slightly different from the one
advocated by Scott [29], namely that data-types ought to be complete
lattices. The main technical reason for this choice was the difficulty
which seems to arise for defining our notion of sequential function

in Chapter 2, with complete lattices.

2. Computable Functions over Data Types

The next step is to consider programs as functions mapping data
types into data types, and to derive some mathematical properties of

such functions.

Programs as Monotone Mappings

Let f be a partial function computed by some program. Whenever
the input x is less defined than the input y , the output f(x) must
be less defined than f£(y) , i.e., x =y implies £(x) C f(y) . This

motivates the hypothesis that functions computed by programs are monotonic

mappings over the data type.

Examples
— The successor function [Ax. x+1] over the integers is monotone

if we choose UU+1 = UU .

— The conditional if p then x else y where

if UU then x else y = UU
if TT then x else y = X
if FF then x else y =y
is monotone with respect to p , x and y . (A function of several

variables is monotone when it is monotone in each of its arguments.)

— As for sets, the functions A U B and A N B are both monotone

in A and B .

— The following definition of division over the reals makes it

a monotone function:

ol
e
~
"
e
1l

[5;,%%] where

% = 0 and X -5 for all xcl[0,x]

Programs as Continuous Mappings

As it stands now, the theory is already quite.adequate for
expressing and proving properties of programs, and Chapter 3 describes
some results which can be derived from the assumption that mappings
between data-types are monotone functions.

However, we are still missing an essential property of computable
functions. Knowing the values of a monotone function over the basis of
a data-type does not determine in general its values over the data-type.

For example, the function

AURB if A or B is finite
funny-union(A,B) =
N if A and B are infinite

where A and B are two subsets of N , is monotone but clearly not
computable.

Intuitively, the value f(x) of a compubable function f at an
infinite object x should be obtained as the limit of the values
f(xi) over the finite approximation X, of x . More precisely, let
us consider an arbitrary chain

e . CTCe, ... Ce Ce

il

n nt+l
of elements in the basis of the data type. Since f 1is monotone, the

set {1 >0 f(ei)} is also a chain

f(eo) = f(el) C ... = f(en) C f(en+l) =

10

and the computability of f demands that

£ u = it f(e '
(nzoen) 2 (e,) (a)

A monotone function satisfying equation (a) for arbitrary chains will

be called continuous. We shall therefore postulate that

Computable functions are continuous mappings between

data~types.

Again, a function of several arguments is continuous if it is continuous.

in each of its arguments.

Examples

— The function [Ap,x,y. if p then x else y] is continuous.
Addition of two integers, union of two sets, division of reals are also
continuous operations. The functional [AF.[Ax. if x = O then 1 else x.F(x-1)

over the data-type of natural numbers is continuous, both in F and in x .

— Let us define the mappings @x p(x) and ¥x p(x) which associate
a boolean to each function p from natural numbers to booleans as

follows:

I}

— ax p(x) is equal to TT if p(n) =TT for some natural
number n and equal to UU otherwise.

— vx p(x) is equal to TT if p(n) = TT for all natural
numbers n # UU and equal to UU otherwise.

We shall verify that [Ap.(dx)p(x)] is continuous while [Ap.(¥x)p(x)]

is monotone but not continucus in general. Let inE <o © D,

C =L,
=P

i+l =

11

be a chain of partial predicates over the natural numbers. We easily

il

verify that (U p)(x) = U ((x)) . Now, it (U p)(x)
i>0 i>0 i>0

U pi(x) =TT for some x , there must exist an i, such that 1 >1
i>0

ti

implies pi(x) TT ; otherwise, either (U pi)(X) = FF and again there

i>0

is an 1

o Such that p, (x) =FF or (U pi)(x) = UU and pi(x) =UU

0 i>0

for all i . In all cases we have (Ex)(U pi)(x) =

U (Hx)pi(x) and
1>0 i>0

d is indeed continuous. One shows that ¥V is monotone in a similar way
and the chain pi(x) = (x < i) provides a counterexample to the continuity
of V¥ .

Let us now discuss some properties of continuous functions. First
of all, it is possible to define a topology over data-types such that a
function is continuous in the above sense if and only if it is continuous
in the topological sense (see Scott [31]). Without describing the
topology, we can nevertheless say that a subset X of the data-type 5
is directed if for all x,yeX , there exists a zeX such that xC z
and y = z . Together with the existence of a denumerable basis for 5,
the fact that continuous functions preserve limits of denumerable chains
implies that continuous functions also preserve least-upper-bounds of
directed sets. Continuous functions do not however preserve least-upper-

bounds or greatest-lower-bounds (when they exist) of arbitrary sets.

12

3. Fixed Points

Let f be a function over a data-type £ . We say that =xep is

a fixed-point of f if x = f(x) ; we say that y is the least-fixed-

point of f if y = f(y) and vy C x for any other fixed-point x .
Note that, whenever it exists, the least-fixed-point of £ must be

unique; we shall denote it either by ux.f(x) or by x

P
Theorem (Kleene). Any continuous function over a data-type B has
a least-fixed-point Xp and
x.= U 1 (W)
n>o

Proof. .Here £ (UU) means £(f(...(f(UU))...) (n times) and, by
n
monotonicity of f , the set {f (UU)} for n>0 is indeed a chain. We first

prove that U fn(UU) is a fixed point of £ . This is easy since
n>0

(U) = U o) = U PUU) by continuity of £ .
n>0 n>0 n>0

We now prove that U £ (UU) must be minimal. Let v be an
n>0

arbitrary fixed-point of f , i.e., v = f(y) . It is easy to prove by

induction that fn(UU)tg vy for any n . The conclusion U fn(UU)gg v
n>o0

follows immediately.
O

Examples
— 1In any data type, UU = [py.y] and x = [py.x]

It T

il

Af.[Ax. if x = O then 1 else x.f(x-1)]

il

and o = M. [Ax. if x > 100 then x-10 else f(f(x+11))] over the

natural numbers,

15

n+l(UU)

i
>
&
H
H>

then 17T x <n then x! else UU]

i

and On+l(

UU) = [Ax. if x > 100 then x-10

else if x-100 > -n then 91 else UU] ;

il

therefore, f (Ax.x!] and f0 = [Ax. if x > 100 then x-10 else 91]

From these examples, the reader may already suspect that there
must be a relation between recursively defined functions and least
fixed points. The next éhapter will be entirely devoted to this

question.

14

Chapter 2. FIXED-POINTS AND RECURSION

The object of this chapter is to detail the connections between
fixed-points of continuous functionals and recursively defined functions
in a very simple programming language. We first illustrate that the
semantics of recursively defined functions will depend on the implemen-
tation. A careless implementation of recursion will introduce unnecessary
computations, which may even prevent the program from terminating.

A general criterion for the correctness of an implementation will be
proved. We then describe an implementation of recursion which is botﬁ
correct and optimal in a general class of sequential languages and
therefore constitutes an attractive alternative to both "call by value"

and "call by name'.

1. Computations of Recursively Defined Functions

Before defining a computation rule, we must describe two programming
languages, lang S and lang P . Although those two languages were
chosen for their extreme simplicity, their use of recursion is as general
as any, and the results of this chapter provide some insight into

semantics and implementation of more complex programming languages.

Lang S permits only sequential computations, and corresponds

precisely to a certain "typed" subset of Algol or LISP.

Lang P requires some parallel operations, and thus departs from
more classical programming languages, although we could undoubtedly

write an interpreter for lang P in any of those classical languages.

15

1.1 Description of lang S and lang P

Syntax
Both languages have the same syntax:

{program) ::= F(X ..,Xn) <= {(term)

17
(term) ::= AlfAEI...
x|

FIGl((term 1, ..., {(term pl>)

le((term 1y, ., (tem pk>)
|F((term 1), ..., (term n))
We limited ourselves to a single recursive equation, the extension
of the results in this chapter to systems of mutually recursive
equations being straightforward.

Here, Al’AQ""’Gl""’Gk denote fixed constants and functions
respectively. It is convenient to use a more standard syntax, e.g.,
F(X) <= IF X = O THEN 1 ELSE X.F(X-1) instead of
F(X) <= Gy (P (%80) 54,6, (X,F(G5(X)))) -

The meaning of a program will be a continuous mapping in
[ﬁlx "'Xﬁh - p] where each j& and f are some data-types; for
simplicity, the ﬁi‘s will be identical to F unless explicitly

specified.

Semantics of terms in lang P

The meaning of a (term) is a (continuous) functional
xf.hxl,...,xﬁy((term)) where the semantic function . is defined
inductively as follows:

(1) A(A)) = &, where aieﬁ

)

16

(11) S(X) = x;

(111) (G, ((bemn 1), ..., (tern D)) = g (A (bemm 1)), ...,#((tern D))

b
where is some continuous function in [ﬁAk - 5]

Ex
(iv) L(F({term 1), ...,{term n)))

f(A((term 1)), ...,2({(term n))) .

Here we have to prove that this is continuous, i.e., that continuous
functions are closed under composition,)-abstraction and fixed-point
operation. The reader can find these proofs either in Scott [30] or in

Milner [19].

Semantics of Terms in lang 8

The semantics of lang 8§ 1is defined in precisely the same way as
that of lang P , the difference lying in restrictions on the interpreta-
tion of base functions. In lang S , we require functions to be sequential,
i.e., roughly that thelr arguments can be computed in sequence. We shall
give later a precise definition of this notion. For expository purposes,
however, we shall 1limit ourselves for the moment to studying a particular
sequential language.

The data-types on which our particular lang S 1s computing are

discrete, i.e., they look like:

b or B[tt f

ay @y e & ... \\& z//
\\\\\>&“///// uu
In what follows, we use w instead of uu g and (in place of u%ﬁ—nﬁ
in order to help the eye avoid type confusions. Among the base functions,
we point out a particular one, denoted IF-THEN-ELSE whose interpretation

is the usual conditional, i.e., if uu then x elsey =w ,

if tt then x else y = x and if ff then x else y =y .

17

A1l other base functions are required to be strict, i.e.,
g.(veywy...) =w : they are undefined as soon as at least one of their
arguments becomes undefined. They are meant to correspond to the
"hardware'" functions: add , addone , test-for-equality ,

It will be shown that all functions definable in lang S are

sequential. The symmetric OR defined by the table:

| o | e | e
X

uu uu tt uu
x OR Yy

tt tt tt tt

ff uu tt f

i}

or the symmetric nmultiply ¥ where O%x = x¥0 = 0 are not sequential,

and are therefore not definable in lang S , nor in Algol for that matter.

Semantics of Programs in both lang 8 and lang P

The functional 7T = xf.xxl,...,xﬁy(<term>) as defined in lang S
or lang P can be shown to be continuocus. It must therefore have a
least fixed-point fT and it would be nice to define the meaning M of
the corresponding program as W({(program)) = fT
This is unfortunately not true for all implementations of recursion,

and our goal will be to characterize the implementations for which the

computed function is equal to this least fixed-point.

1.2 Conventions and Notations

The reader has already noticed that syntactic entities are denoted

by upper case‘letters, while the assoclated semantic objects are

represented by the corresponding lower-case letters. We shall keep this

convention throughout this chapter. For example, if T 1is the temrm

18

IF X = O THEN 1 ELSE X.F(X-1l) , then its meaning t 1is

Af.Ax if x = O then 1 else x.f(x~1) , where = in this last expression
means the equality function over the natural numbers, O the number_ o,
etc.

From now on, we use upper case letters other than A , D, X, F
and G to denote (syntactic) terms. If T and S are terms, we denote
by T{S/Xi} the result of replacing all occurrences of the letter Xi
by the term S in T . By T{P/F} , we mean the term obtained by
replacing in 4 all subterms of the form F(Tl,...,Tn) by
P{Tl/Xl,...,Tn/Xn} . For example,

if T = Gl(F(Xl,F(Xl,Xz)),Xl) and P = G(F(XQ,X:L))
then T{F/F} = G, (G(F(G(F(X5%7)),X))),%y)

Whenever we only wish to substitute P for some occurrences of F

in T , we rename, say F the occurrences that we shall substitute

l 2

and F2 the others. The result of the substitutions is then

T{P/Fl,F/Fe} . The same kind of notation also applies to semantic terms.
We use F(X) and f(x) as abbreviations for F(Xl,...,Xn) and
f(xl,...,xn) respectively.
Also, it will be convenient to consider only programs F(X) <= P
where P is of the form G(Pl,.
that each of the letters ¥ , X

..,Pb) with the additional restriction
l""’Xn occurs at least once in P .
That is, P 1is required not to ignore any of its program variables,
to depend upon F (i.e., to be recursive) and not to be of the

uninteresting form F(X) <= F(T ...,Tn) . The main results of this

l?
chapter generalize without this restriction, but the proofs are made

longer by an addition of special cases.

19

1.3 Computation Rule

A computation rule ¢ is an algorithm for selecting some occurrences
of the letter F in each term. For any such rule and input D , we

construct the computation sequence TO,T .,Tn,... of the term T

1
by the program F(X) <= P as follows: T, = T{D/X} and T,,, is the

result of substituting P for the F's chosen by ¢ in Ti . TFor
example, if P = IF X < 2 THEN X ELSE F(X-1) + F(X-2) , the computation

sequence of F(X) according to "call-by-value” for input X = 2 is:

TO =E(2)
T, = IF 2 < 2 THEN 2 ELSE F(1) + F(0)
T, = IF 2 < 2 THEN 2 ELSE (IF 1 < 2 THEN 1 ELSE F(0) + F(-1)) + F(0)
Ty = IF 2 < 2 THEN 2

ELSE (IF 1 < 2 THEN 1 ELSE F(0) + F(-1)) +

IF O < 2 THEN O ELSE ®(-1) + P(-2)

T = = e ee =
L T5 Ty

(Here, F(1l) dis in fact an abbreviation for F(2-1) , etec.)

In Tn , we underline the F's selected by the computation rule
for substitution. It is interesting to see precisely how the underlined
F is selected in this last example. For this purpose, we must introduce
the notion of simplification. The simplification mechanism is discussed
at length in Cadiou [2], and we refer the interested reader to this
work. 1In our particular example, it is possible to define a simplifi-

cation mechanism AT simpl(T) such that

20

simpl(T.) = F(2)

o

simpl(T F(1) + F(0)

l)

sﬂmMTQ = 1+ F(0)

simpl(TB) = simpl(Th) = ... =1

(Note that now, F(1l) is no longer an abbreviation since simpl(2-1) = 1

The rule "call-by-value'" then selects the leftmost-innermost
occurrence of F in simplified terms. Similarly, "call-~by-name"
selects the "leftmost-outermost" one.

In its most general form, simplification can be an extremely
powerful computation tool. For example, if our program is
F(X) <= IF X = O THEN O ELSE F(X-1) it is perfectly all right to use
F(X) - 0 as a simplification rule over the natural numbers, and there
is no room left for substitutions! Our purpose however is to study
computations which are performed by substitutions and not by
simplifications.

We must therefore restrict the power of simplifications which we
allow, and, for this purpose, we merely borrow Cadiou's notion of

standard simplifications (see Cadiou [2] for a precise definition).

Roughly, standard simplifications force us to know everything about
base functions, and nothing a priori about the recursively defined
function F , since simplifications of the type F(D) - A, are not
permitted. 1In effect, we have to compute without any "built in" value
of the recursively defined function, stored for example in memory from
a previous computation.

We will not study standard simplifications in lang P , since this

would require describing completely the data-type on which computations

21

2

are performed but we will describe them in lang S .

For all constants A..,..
il

exists a standard cimplification of the type

"Aip and base function Gp there

Gp(Ail’ .. .,Aip) - Aj
In effect, this says that the values of the base-functions over the domain
are known, and these functions are total. Accordingly, the conditional
admits the simplifications

IF TRUE THEN B ELSE C - B and

IF FALSE THEN B ELSE C - C

These are the only standard simplifications in lang S and we say

that a term is simplified when all of its subterms have been simplified.

1.4 Computation Lattice of a Program

Instead of considering computaticn sequences for each input and
computation rule, we can apprehend the set of all possible computations
in one infinite diagram.

For example, the computation diagram of the term F(F(X)) by the

program F(X) <= G(X,F(Fr(X))) looks like

22

((XLI X)DI X)) D ((XILX)DAd ¢ (X ocw

,

(X1 €X)Dd

2

((XEIX)DILKT)D

Axﬁm ((Xqa8¢ vaacwvw

(XAAL (XALX)D)D

(XAIIKA)D

25

A computation rule is then an algorithm for selecting a path in such
a graph for each input. This computation diagram has a very rich

structure which we shall now study.

Computation of a term according to P

We say that B - C or simply B - C whenever C can be obtained
P !

by substituting P for some occurrences of F in B .

* *
The notation B - C or B - C means that there exists a

P
finite sequence of terms DO’Dl""’Dm such that DO =B, Dm =C
and Di ;Di+l for 0<i<m.
Definition

The computation diagram of T by P is the set of terms U such

*
that T - U , partially ordered by <« where B <(C whenever B
Lol P = > rucfaever

Mgk
o

It is clear that < is reflexive and transitive. In order to prove
that it is also antisymmetric, we notice that, if B 55 C , the size
lic|| (where size is, say the number of symbols) of the term C is
strictly larger than the size of B if at least one substitution has
been performed (this is due to our restriction on P). It follows
that B 5C and C 5B implies B = C

Clearly, the computation diagram of T by P has the Church-Rosser
property of the A-calculus. (This follows from the work of Rosen [28]
for example.) However, it also has a property which is not true of the

A-calculus, namely:

2k

Theorem 1

The computation diagram of T by P is a lattice u_nder the

ordering < , and we shall name it the computation lattice of T by P .

*
Proof. —/ In order to study the structure of the computation diagram of

a term TO by a program P , we need to relate the structure of C teo

*
that of B when B - C
P

Lemma 1

* *
(i) A, »C if and only if C = A, and X, -»C if and only if C = X.
1 1L — J J

(ii) Gi(Bl

*
5e++.B_) »C if and only if C = G.(C;,...,C_) and
P, _ iv’l p,’ ——
1 1

2
B. »-C, for 1<i<p. .
1 i - 7 =71

(iii) F(Bl,...,Bn) - C if and only if C _F(Cl,...,Cn) with B; ~C,

) *
for 1 <i<n or P{Bl/Xl,..., Bn/Xn} - C

Proof. Claims (1) and (ii) are easy and we only prove (iii).
*
If B = F(Bl, ...,Bn) - C and C is not of the form F(Cl, ""Cn) s
*
there must be a point in the computation B - C where the outermost F
* *
of B is substituted, i.e., F(Bl,...,Bn) - F(B]'_,...,Br‘l) -

P{B"/X e BY/X ¢ with B! - B (and therefore B £ g) for
1 e e} i i i i

1’
any 1 <i<n.
*
It follows from our definitions that B, - B'j'_ for 1 <i<n

implies P{B,/X B /X } % prer/x .» B"/X_} and consequently
B ER R S o 0} S TAt R s s U o)

*
P{B:L/Xl s ey Bn/Xn} ~C , as claimed in (iii). In order to get the

*
—-/ I am grateful to Jean-Marie Cadiou for his help with this proof.

25

other part of the implication (iii), we simply notice that

F(B ..,Bn) - P{Bl/Xl,..., Bn/Xn} by substituting P for the ouber

1

F in F(Bl,...,Bn) . _

If B <C , we can define a distance dist(B,C) between B and C

as follows:

(i) if B B and dist(B,C) =0 ;

1
=
Y

or B = Xj then ¢C

(ii) 4if B = G.(B

1(Bps-e By) then C =Gy(C

. 5 l,...,cpi) with B, <C,

for 1 <i<p, and dist(B,C) = max {dist(B.,C.)} 3
1<j<p. o
—Y ="
(iii) 4if B = F(Bl,...,Bn) then (by Lemma 1), either C = F(cl,...,cn)
and dist(B,C) = max {dist(Bi,Ci)} or
1<i<n

P{B,/X; +++» B /X } <C and dist(B,C) = 1+dist(P{B,/X;,-.-,B /X 1,C)

It is easily seen that the distance between any two terms B <C 1is

finite.

Lemma 2

If B = F<Bl’”"Bn> , C = F(Clﬁ"’)cn) > B' = P{Bl/Xl:“-;Bn/Xn}

and C' = P{C./X, ,...,C /X then B <C implies B' <C' and
and /%y 50050 /%) fhen B <C implies B' <C' and

dist(B',C') < dist(B,C) .

Proof. By a straightforward induction on HPH , one proves that

dist(P{Bl/Xl,..., Bn/Xn},P{Cl/XJ',..;,Cn/Xn}) <]-iﬁfgn{dist(Bi,Ci)} >

hence dist(B',C') < dist(B,C) .
O]

26

We now start the proof of Theorem 1:
For any two terms B, C in the computation diagram of T by P,

we must show the existence of min(B,C) and max(B,C) such that

and for any Q and H

/
\

Q < min(B,C)

implies and

\/

max(B,C) <H

Existence of max(B,C)

We shall describe an algorithm for computing max(B,C) and then
prove the correctness of this algorithm: let 0(B,C) be defined
recursively as

(i) O<B:B> =B ,

(31) 9(Gy(Bys - v 5By)56 (CpsevsCl)) = G (9(By,Cy)5 e v 50 (B 5C)

=

|
e}

H
3

1l

(155) O(F(Bp, - +B),F(Cyy - ,CL)) = FE(BLLC,), 00 (B,0))

..,Bn),G(C

l,...,cp)) G(P{Bl/Xl,...,Bn/Xn},G(Cl,...,CP)) =

G(G(Cl,...,Cp),F(Bl,...,Bn)) 5

(v) in all the other cases, 0(B,C) yields an error symbol, (say a

German gothic letter) which is not part of our set of letters.

27

We shall prove that o(B,C) = max(B,C) in two parts:

Part 1. For any terms T , B , C

B B

*
T N implies :f\x
N, C/"

The proof is by induction on couples (dist(T,B) + dist(T,C),|T||) ordered

o(B,C)

lexicographically by < . Assuming the result to be true for all
triples T' , B' , C' with (dist(T',B')+dist(T',C"),||Tt||) <
(aist(T,B) + dist(T,C),|[T||) , we prove it for T , B, C by a case

analysis on the structure of T .

Case 1. T=A, or T =X,
Ya25c L 1 3
* *
By Lemma 1, T -B and T -C implies T =B and T =C ; hence

* *
B =C =0(B,C) and indeed B - 0(B,C) and C - o(B,C) .

) .
Py
By Lemma 1, B = Gi(Bl,...,Bpi) and C = Gi(cl,...,cpi) , with
* *
T, »B; and T, -C, for 1<i<p, . Since dlst(Ti,Bi)+-dlst(Ti,Ci) <

Case 2. T =G, (Ty,..-,T

dist(T,B) + dist(T,C) and HTiH < |t} for any 1<i< p; » the
* *
induction hypothesis tells us that B, - o(B.,C,) and C, - 0(B.,C.)
1 17 1 1 1»1
for each 1 <1i < p; - Regrouping everything, the conclusion

* *
B - 0(B,C) and C - 0(B,C) then follows from the definition

)

O(Gi(Bl,...,Bpi),Gi(Cl,...,Cpi)) = Gi(U(Bl,Cl),...,O(Bpi,Cpi

Case 3. T = F(Tl,-..,Tn)

By symmetry, we only need consider the subcases:

28

Case 3.1. B = F(Bl,...,Bn) and C = F(Cl,...,Cn)

The proof is similar to that of Case 2.

Case 3.2. B = F(Bl,...,Bn) and C = G(Cl,...,cp) .

Let T' = P{T,/X ,..., T /X } and B' = P{B;/X,,..., B /X 1} -
* *
By Lemma 1, we know that T' - C and Ti - Bi for 1 <1i<n, hence

*
T' - B' . By Lemma 2, we know that dist(T',B') < dist(T,B) . Since
dist(T',C) < dist(T,C) , we can apply the induction hypothesis to the

% *
terms T', B',C, i.e., B' -0(B',C) and C - o(B',C) . Since
B - B' and 0o(B,C) =o(B',C) by definition of o , we have established

* *
that B - o(B,C) and C - d(B,C) .
Case 3.3. B = G(Bl,...,Bp) and C = G(Cl,..,,Cp)
*
Let T' = P{Tl/Xl, ce s Tn/Xn} . By Lemma 1, we know that T' - B

*
and T' -C . Since dist(T',C) < dist(T,B) and dist(T',C) < dist(T,C) ,
*
we can use the induction hypothesis in order to get B - o(B,C) and

*x
C -»o(B,C) .

Paxrt 2. For any terms B , C , @

~,
Ve

C

Q implies o(B,C) <@

The proof is by induction on (dist(B,q) +dist(C,q),llly -

Case 1. Q=A:.L or Q=XJ.

*
Then Q =B =C =0(B,C) and o(B,C) - q .

29

Case 2. @ = F(Ql,...,Qn) or Q = Gi(Ql,...,Q.p) where Gy is not G .
i

The proof goes mutatis-mutandis as that of Part 1, Case 2.

Case 3. Q = G(Ql,...,Qp)

We only need consider the cases:

Case 5.1. B = G(Bl,...,Bp) and C G(Cl,...,C)

Back to Case 2.

Case 3.2. B = F(Bl',...,Bn) and C = G(Cl,...,c)
Let B' = P{Bl/Xl,...,Bn/Xn} . Since dist(B',C) < dist(B,q) ,

*
we know by the induction hypothesis that o(B',Q) = 0(B,C) - @ .

Case 3.3. B = F(Bl,...,Bn) and C = F(cl,...,cn) .
Let B' = P{Bl/Xl,...,Bn/Xn} and C' = P{cl/xl,...,cn/xn} .

The induction hypothesis tells us that o(B',C') % Q . One then proves

by induction on ||P|| that o(B',C') =

O<P{B1/Xl PR Bn/Xn}’P{'Cl/Xl’ tre Cn/Xn>} = P{G(Bl)cl)/xl) M G(Bn)cn)/xn} *
We conclude the proof by noticing that o(B,C) - o(B',C?) since

o(B,C) = F(9(B15C;)5---50(B_,C) ~ P{o(B),Cq)/X 5--.50(B,C)/X,) =

o(B,C1) -

Existence of min(B,C)

For any terms B , C in the computation diagram of T by P the
set L |L‘§ B, L <C} of lower bounds of B and C is not empty

because T < B and T <C and it is finite. We know from elementary

lattice theory that, if any two elements in a partially ordered set have

a least-upper-bound, any non-empty finite subset also has a least-upper-

30

bound. We then define min(B,C) as max{L|L <B,L <C} and verify

easily that min has all the desired properties.

O

Relation Between the Computation Lattice and the Data-type of Continuous

Functions over .0

In order to characterize computed partial functions in terms of the

semantic interpretation of a given computation lattice, we notice that

Lemma C

For any terms B, C in the computation lattice of T by P,

B <C implies b(Q) Cec(Q) .

Proof. The proof is straightforward by induction on HBH :

If B ¢ and b(Q) =c(Q) .

1l
1

A, or B =X. then B
1 dJ

It

If B = Gi(Bl,...,Bpi) , then ¢ Gi(cl,...,cpi) and we know by
induction that bj(Q) = cj(Q) for 1<Jj<p, - Since

[XXl,...,xpi,gi(xl,...,xpi)] is monotone with respect to any of its

arguments, b(Q) = g; (by(Q)s .50y (Q)) = g;(cy(Q)s--sey () = c(q).
1 1

Finally, if B = F(Bl,...,Bn) then b(Q) = c(Q) -

In particular, to any computation sequence TO —»Tl - ... T =T

according to some rule ¢ and input D , we associate the chain
£(2) (@) () (D) ... St (D) St (D) S s

The corresponding computed partial function ¢ is therefore

characterized as: ¢ =Ad U tn(Q)(a) .
n>0

31

From these definitions follows an easy generalization of a theorem

of Cadiou [2]:

Theorem 2 (Cadiou)

Any fixed-point of the equation f = p(f) is an extension of any

function computed by the program F <= P .

Proof. For any natural number m , let P" be defined as PO = F(X)
and BT = P{FY/F} . It is easily seen that p (Q) = p(p(...p(Q)...))
(i times). Since Cadiou [2] proved that for any computation sequence

= i
TysTys--+>T, where T, = F(X) we have T; <P for all natural

numbers i , it follows from Lemma C that ti(Q)gg p(Q) for all i .

The function p being continuous, £ = U p(Q) , hence +.(Q) = f

P oiso S

for any i . It follows that ¢ = U t.(Q) o f_ and, since f Cf
P oiso? - P P

for any fixed-point f of p , the conclusion cb = £ holds.

2. Correct Implementation of Recursion

In this section, we try to characterize the computation rules
such that ap = fp for any program F <= P , called fixed-point

computation rules.

Here are some compubtation rules we shall consider, both in lang 8
and lang P :

(1) Call by value: substitute for the leftmost-imnermost occurrence

of F after simplifications.

(2) cCall by name: substitute for the leftmost-outermost occurrence

of T after simplifications.

(3) Parallel innermost: substitute for the occurrences of F having

all of their arguments free of F's

(k) Parallel outermost: substitute for all the F's which do not

oceur in any argument of another F .

(5) Free argument: substitute for all the occurrences of F having

at least one of thelr arguments free of F's after simplifications.

(6) Full substitution: substitubte for all the occurrences of F .

2.1 Incorrect Computation Rules

Proposition 1.

In lang P, the rules (1), (2), (3) and (5) are incorrect.

Proof. Consider the program F(X,Y) <= IF X = O THEN O ELSE
F(X+1L,F(X,Y))*¥F(X-1,F(X,Y)) where * 1is the parallel multiplication

function O%x = x*0 = 0 . The least fixed-point over the integers

25

(considered as a discrete data-type) of the corresponding functional
is the zero function Ax,y if x = w then w else O . The computation
of F(1,0) wusing (1), (2) or (3) is infinite. As for rule (5), we
can take the program F(X) <= X.F(F(X)) in the data-type of sequences

of letters as a counter-example. -

Proposition 2 (Morris [23])

In lang S the rules (1) and (3) are incorrect.

Proof. Consider F(X,Y) <= IF X = O THEN O ELSE F(X-1,F(X,Y)) . The
corresponding least fixed-point over the non-negative integers is again
the constant function O while the computatioh of F(1,0) using rules

(1) or (3) is infinite. ‘.) _

2.2 Safe Computation Rules

We now define the class of safe computation rules, and show that
they correspond to "correct" implementations of recursion.

Let ¢ Dbe a computation rule and B an arbitrary term in the
computation lattice of T by P . 1In order to describe the effect

of & on B, we rename Fl the occurrences of F selected for

substitution by ¢ in B for some input D , and F. the others.

2

Definition

We say that (¢ 1is a safe computation rule if, for any term

B{F/Fl, F/FE} in the computation lattice of T by P and for any

b{Q/fl)Q/fg}(a) *

input D , b{Q/fl,fp/fE}(c-i)

5k

Intuitively, the computation is safe if the values of the F's
which are notsubstituted (renamed F2) are insufficient: as long as
more information is not obtained about the other arguments (the Fl's)>
the information about B cannot be improved.

In order to clarify this definitilon, let us prove the safeness of

some of our computation rules.

Proposition 3

In leng S , the rules (2), i.e., call-by-name and (5), i.e.,

free argument are safe.

Proof. By induction on ||C|| where C = simpl(B) : we first notice
that, because of the semantic definition of lang S , 1f F occurs

in C then c(Q)(a)

It

w (remember that C has been simplified and,
when a simplified term has the form IF Cl THEN C2 ELSE C5 , we must
have F occurring in C

1)

Case C

Ai then any rule is safe.

Case C

I

Gi(Cl,...,C) . The letter F occurs necessarily in C ,
1

otherwise we could simplify further. Since both rules select at least

one F on such terms, we know by our previous remark that

c{/f), £/7,3(8) = w = clo/fy o/ £,3(d)

Case C = F(Cl,...,Cn) . The safeness of rule (2) is straightforward

since the outermost F is substituted. For the same reason, rule (5)
is safe if at least one of the Ci is constant. If none of the Ci’s
is constant, then ci{Q/fl, fp/fg}(a) =g for 1<i<n and we must

prove that fb(w,...,w) = . This is ensured by imposing in lang S

55

that all program variables X -»X ~ occur in simpl(P) hence

170"

T e
p(w> :‘D)

1

i
€

P(fp) (wy«eesw)

Proposition 4

The rules (4), i.e., parallel outermost and (6), i.e., full

substitution are safe in both lang S and lang P .

Proof. By induction on ||B||

1l
ja=3

Case B Any rule is safe.

Case B

i

G:‘_(Bl""’Bpi) . By induction, bi{Q/fl, fp/fz}(d) =
bi{Q/fl, Qz/fg}(ﬁ) for 1 <i<p in both cases, hence safeness is

also satisfied on b

Case B = F(Bl,...,Bn) . Both rules select the outermost F hence

b{Q/fl 2 fyfg}(a) =Ew= b{Q/flJ Q/fe}(a) ¢

a

Note that the computation rules that we already recognized as
incorrect are all unsafe. In order to prove that safe rules are

correct, we need the following technical lemma;

Lemma S

If ¢ is safe, then B SC and min(3,Q) = min(C,Q) imply

a(q)(d) = v(Q)(d) for any terms B , C and Q in the computation

lattice of T by P, and input D .

36

Proof. Let us first determine some properties of the min of two

terms:

Lemma 3

(l) IE_E(G]_(B]_) b '}Bpi))Gj_(Cl} M .)CPJ_)) = G‘i(l'_n_i_n(Bl,Cl) > .,m—iE(Bpi,Cpi))

(ii) QiE(P{Bl/Xl, cees Bn/xn},e(cl,...,cp)) = P{Ml/Xl',...,N%/Xn}

where M "Mn are such that

10
F(Ml,...,Mh) = Q;E(F(Bl,...,Bn),G(cl,...,CP))

Proof. Property (i) is easy and property (ii) follows from the fact

* * %
fm¢P%ﬂy””%mgam'amyﬁp“&M%}mml%a%
for 1 <i<n implies that M' = P{M:'L/Xl, cees lel/Xn} where

* *
M, - M! - B, for 1 <i<n.
i i i -7 = 3

We now prove Lemma S: Let us rename Fl the occurrences of F

selected by ¢ in B and F, the others. ILet M = min(B,Q) = min(C,q)

We first prove by induction on (dist(M,B) +dist(M,C),|M||) that

Q < B{F/F,, Pm/FE} for some natural number m . (Here P means

P{Pm_l/F} for m >0 and P = F(Xl,...,Xn))

It

Case M = A, or M X.
1 J

In this case, M =B =C =Q and we can choogse m = 0 .

Case M = Gi(Ml,...,Mbi)

By Lemma 1, B = Gi(Bl,...,BPi) , C = Gi(cl,...,cpi) and
Q=6 (@ ...,Qpi) . By Lemma 3, M, = mln(Bi,Qi) = m:Ln(Ci,Qi) for

o7

1 <i<p . It follows by induction that @, < Bi{F/Fl, Pmi/Fg} .

We can then choose m = sup {mi} in order to get
1<i< P;

Q <B{F/F,, P/F,} -

M)

Case M = F(Ml, ceesM

By definition of min , we need only consider the cases:

Case B = G(Bl, . .,Bp) and. Q = F(Ql, .. .,Qn)

Let M' = P{M, Xl,...,Mn/Xn} and

Ml' Q' = P{Q /Xy e e Q, /X,} + By Lema 3,
/ \ M' = min(B, ') = min(C,Q') - By Lemma 2,
B Q dist(M',B) + dist(M*,Q") < dist(M,B) + dist(M,q)
! ’ g0 we know by induction that
C Q'

Q' < B{F/Fl, Pm/FE} and, a fortiori

o <B{F/F, Pm/FE} for some m .

Case B = F(B, ...,Bn) and Q = G(Ql, “"QJP)

Since min(B,Q) = min(C,q) , the term C is also

M
l of the form C = F(Cl,...,Cn) . Let
Mf
\ MY o= POy /Xy .., M /XY, B = P{B/X) 5.0y C /X]
Q and C'= P{Cl/Xl s ey cn/xn} . By Lemma 3, we

know that M' = min(B',) = min(C',Q) .

38

By Lemma 2, dist(M',B')+dist(M',Q) < dist(M,B) + dist(M,Q) ,
and the induction hypothesis tells us that Q < B'{F/F,, Pm/Fg}
Since the outermost F has not been selected by ¢ in B then
B' <B{F/F,} . Our last case is then treated since
o <B{F/F , P,
It is now easy to finish the proof of Lemma S.
For any m , p(0Q)C £, implies i/ f, pm(Q)/fE} = o{0/f, £/%,) -
By choosing m large enough, we know that q(Q) = b{Q/fl, pm(Q)/fg}
and therefore q(Q) = b{Q/f,, fp/fg} . Since (¢ is safe,
b{/ T, fI/fe}(a) = b(Q)(d) and the conclusion q(Q)(d) = b(Q)(d)

follows.

0
Theorem 3
Any safe rule is a fixed-point rule.
Proof. In the computation lattice of T, = F(D) by P, let
TooTyseesTpsees and 8,850,585 (where SozzTo) be the computation

sequences corresponding to respectively some safe rule (¢ and the
full substitution rule. Since sn(Q) = p(Q) then

U s (Q) = U p(q) =f_ . We know by Theorem 2 that ¢ _(d) = f£_(d)
n>0 n>0 P p P

and it is therefore sufficient to show that U s (Q)(d) = U tn(gz)(a) ,
n>0 n>0

in order to prove =f .
Y C? D

Let Sn be an arbitrary term in SO,Sl,... . Since there are only
finitely many minorants of Sn in the computation lattice, there exists

some m such that min(Tm,Sn) = min(Tm+l,Sn) . The rule ¢ being safe,

it follows from Lemma S that sn(Q)(a) = tm(Q)(a) » hence

29

O

As a corollary, rules (2) and (5) are fixed-point in lang 8 and

rules (4) and (6) are fixed-point rules in both lang S and lang P .

Lo

5. An Optimal Implementation of Recursion in lang S

Among the correct implementationg of recursion, we now try to
determine which ones are efficient. This proves unsuccessful in
lang P , but we shall describe an implementation of recursion for
Jang S which turns out to be optimal.

We already know that, in lang S , "call-by-name" is a fixed-point
rule, while "call-by-value" is not. However, "call-by-name" is not an
efficient way of computing. For example, in the program
F(X) <=<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>