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1y APITRACT
In this paper, we will present and analyze an algorithm for finding x and )
suck that Ax =)Bx, where A and B are n x n matrices. The ‘algorithe does
not require matrix~ inversicr, and may be used when either or both Eatrices are
singuler. -Our method is a generalization ¢of Rutishauser's IR setsod for the ;
standard cige:. uue problem Ax = )x and closely resembies the QZ algorithe ‘
given by Moler a 4 Stexart for the Eeneralized problem given above. “mlike the “
Q zigorith=, which uses ortnogonal transformations, our methcd, the 1Z algoritam, :
uses elerxertary transforretions. When either A or B is complex, our metrcd :
snculd be more efficient.
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A GENERALIZATION OF THE LK ALGORITHM

T0 SOLVE AX = ) BX

BY

Linda Kaufman

Abstract

In this paper, we will present and analyze an algorithm for

finding x and ) suck that

Ax = 3Bx (1)

where A and B are n x n matrices. The algorithm does not require
matrix inversion, and may be used when either or both matrices are
singular. Our method is a generalization of Rutishauser's LR method (17]
for the standard eigenvalue problem 55 = AX and closely resembles the
QZ algorithm given by Moler and Stewart [10] for the generalized problem
given above. Unlike the QZ algorithm, which uses orthogonal transfor-
mations, our method, the IZ algorithm, uses elemenzary transformaticns.

When either A or B is complex, our method should be more efficient.
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The LZ algorithm is based on three observations:

1) If L and M are nonsingular matrices, the eigenvalue oroblems
LAMy = ALBMy and Ax =ABx have the same eigenvalues and their eigen-

vectors are related by x = My.

2) If 2 1is a triangular matrix with diagonal elements a5
and B is a triangular matrix with diagcnal elements ai, then for each
I
If for some i, g, 1is zero, then the polynomial, determinant (A-AB) »
is of degree less than n. If oy is not zero and the corresponding
B; is zero, we say that infinity is an eigenvalue. If for =zme i,
both o; and g, are zero, then det(A-AB) vanishes for all values

of ), and every scalar is an eigenvalue of Ax = ABx .

3) There exist matrices I and M such that LAM and LEM are
upper triangular and L and M are the products of lower triangular and

permutation matrices.

The first two observations should be obvious; the third requires
explanation. In [18] 3tewart shows that there exist two unitary matrices

U and V such that

A’ = UHAV and B’ = UHBV

are upper triangular. The symbol UH indicates the conjugate transpose

of the matrix U. We oan certainly write
UH #4s RL and V as MS

vhere S and R are both upper triangular matrices and L and M are

products of lower trianguler and permutation matrices. The matrices

R = 1M and R7'B’S™! = LBM are botn upper triangular and nence

verify our observation.

n

iy i=1,2y+==yn, ai/ai is an eigenvalue of the generalized problem if Bi#o-
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The LZ algorithm has three parts. In the first part, the matrix g

= 341 f
zsti:j 0 for 1> j+,

and B 1is simultaneously reduced to triangular form. The first stage

A 1is reduced to upper Hesseuberg form, i.e.

VRN

of the LZ algorithm is very similar to the first stage of the Moler-

Stewart algorithm, and they may be freely substituted for each other. é
The advantage of using our method ic that it is about 5/2 faster; the

advantage of theirs is numerical stability. The second stage of the LZ algorithm
is a generalization of the LR algorithm and iteratively reduces A to i
triangular form while preserviug the triangularity of B. The last part
of LZ obtains the eigenvectors of the friangular matrices and transforms
them back into the original coordinate system. Throughout ihe algorithm

stobilized elementary transformations (see Wilkinson [19], p. 164) are :

used to insure numerical stability. These transformations are the

products of lower triangular matrices and permutation matrices, and

(RN NI PP R O v

are easy tc compute and easy to use. The permutation matrices are
designed to help minimize the loss of accuracy in numerical operations.

A further explanation of the stabilized elementary transformations uced ti

~aln

in the heart of the LZ alporithm is contained in the notation section

a2t the end o1 this introduction. .
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I. BACKGROUND

As Lancaster { 8] and Gantmacher [6 ] point out, the generalized

eigenvalue provlem often occurs in the physical sciences. Many mechan-

BT R T AV I W

ical and electrical systems are governed by a differentisl ecuation of

the torm

CX¥ +Dx + 8x =0
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where C, D, and E are n x n matrices and the solution is expected to

hav< the form x(t) = ektx(o). Solving the ordinary differential equation

entslls finding the eigensystem of
2
(A\“C+AD +E)x =0

If no camping occurs and the D term is missing, the problem is like
the one given in (1) in A2. If the system is damped and the D term
is present, the problem can be reconstructed to have the form of (1)

where now A is the matrix

D I

C 0
and B is the matrix

-E 0

0 I

In rany problems, especially those which d2scribe physical systers,
A and B have sone spacial structure and most of the algorithms in the
literature are designed for matrices having specific properties. 1In [ 9;
Martin and Wilkinson have given a method for A,B symmetric and B positive
definite. Crewford { 2] hec presented a modification of thnat algorithm
vhen B is a band matrix. In [ 7], Golub, Underwood and Wilkinson describe
a version of the Lanczos algorithm for £,B symmetric and B positive definite.
Fix and Heiberger [ 3] have a method designed for illconditioned B which
requires the determination of the rank of certain submatrices in A and B.
If symmetry and positive definiteness are not present and B is well con-
ditioned, the eigensystem of Ax = ABx can be found by iorming B-lﬂ and
determining the eigensystem of B-lﬁx = Ax, for wnich there exist

seversl good methods. For & nearly singular B, Peters and Wilkinson [15]
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describe an algorithm which approximates the null space of B. This *

gpproach involves determining the rank of submatrices which is often difficult

PP R

to do exactly on a finite precision computer.

Recently Moler and Stewart [ 10] have presented an algorithm for
30lving the generalized eigenvalue problem which may be used regardless
of the coraition and structure of the two matrices. Our algorithm
resembles the QZ algorithm in that we generalize Rutishauser's LR
algorithm { 17] in the same way “hat Moler and Stewart generalize Froncis's
QR metrod [5 ] for the standard eigenvalue problem Cx = Ax. Before
we describe our algorithm in detail and discuss its relationship to the
QZ method perhaps it is best to review the QR and the IR methods. 1In
practice, the LR method for the problem Cx = ix 1s essentially:

i) Reduce C to upper Hessenberg form using similarity
transformations.

2) Determine a shift ).

3) Find L, a proiuct of stabilized elementary transfor-
mations, and R, an upper triangular mairix, so that
L(C - 21I) =R.

L) get C to LCL-l. The matrix C will ve upper Hessenberg.

5) If the subdiagoral elements of C are rot negligible, g
return to 2. §
6) The eigenvaluec of Lhe original matrix are the diagonal

] elements of C.

.. Lh- Vs Slome  colnd Al AAsmecsmwmmn

mL _ L2 .ox -~ E 3P Ao Ea semaad cowm - > ot de Lo e
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according to the ratios of the shifted eigenvalues. 1In practice, the shift i

usually an eigenvalue of the lowest 2 x 2 subblock on tne diasgonal of

C which has not been triangularized. This policy often gives a good

5
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approximation to an eigenvalue of the whole matrix.

The basic QR method is approximately the same as the LR method

TWRTAT

with an or*hogonal matrix @ replacing the matrix L in steps 3 and 4.

YT TFTTRSY

In practice a double shift implicit version of the QR method is used in

which steps 5 and 4 reaé

3) Find Q, an orthogonal matrix, and R, an upper triangular

matrix, such that

R=qr=Q(C -2I) (C ~2I) where » and A -

R TSR e S AT Y RS T PR TV e T

are complex conjugate shifts or a pair of real shifts. ;
L) set C to chT.
Only the first column of T is ever explicitly formed.
The main advantage of the double shift algoritim is the preser-
vation of real arithmetic for real matrices. The Q7 algorithm also has
this property. Vith the double step GR and QZ methods the final matrix
is not necessarily triangular, but may have 2 x 2 submatrices on the
diagonal whirh must be resolved. The LR and the LZ ..gorithms do not
limit them:elves to real arithmetic but avoid tie 2 x 2 problem. Double
shift LR and LZ methods are not found in practice because of the lack of
a lheoretical basis. Francis [9 ] has proved ‘hat one iteration of the i
implicit double shift QR method is equivalent to two iterations of the
basic QR method. His theorem i; based on the uniqueness of orthogonal
transformations which reduce a given matrix to tiriangular form with
positive diagonal elements. This uniguen:ss properiy is missing for

stabilized elementary transformations.

6
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II. The LZ Algorithm as & Generalization of the IR Algorithm

The LZ a}gorlthm iz motivated by the LR m?thod described sbove where
the matrix C is AB-l. However, we do not assume that B.l exists.
Briefly, our algorithm is: ' i
1) Reduce A to upper Hessenberg form and B to triangular

form.

2) Find a shift a.
3) Find matrices L and ‘M, stabilized elementary trans- :
formations, such that L(A - AB) is upper triangular and
LBM is upper trianguler. |

L) Set A to LAM and B to LBM. The new A will be upper
Hessenberg. ; . i
5) If the subdiagonal elements of A ére not negligible, return to 2. :
6) The e eigenvalue is aii/bii if " b, is nonzero.

Again the shift is used to hasten the convergence of the algo-
rithm. In practice it is usually a solution of the lowest 2 x 2 sub-
problem cn the ciagenal of A - AB which has not been triangularized.

If the matrix C 1in the LR method is AB-l, then the matrix L
in the third step of the LR method is precisely the metrix L in the
third step of the ILZ method if both algorithms employ the same pivoting
strategy. This fact is verified by denoting the left hand transformation

in the third step of the LZ algorithm by L and noticing that

E(AB’l -I)

T{(C - aI)

(A - xB)s’l

upper triangular matrix. Thus L is also e transformation which
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tgiangularizes C - AIL; and'if the piveting sfratvgy 1s the same,

is the transformation L in step 3 of the method IR.
Moreove;,.it can be shown that che two algorithms produce

corrcsponding.itgrates. ir ¢’ densté; the.next:iterate in the LR

algorithm and A’ and B’ are the iterates in the IZ algorithm,

then in the IR 'algoritim ..

¢’ = wrt
and in the LZ a}gorithm |
a3t - rate it
, '= a1t
o

In Chaptér One we will present au algorithms. The first is a
straight generalization of the LR method. The second is an implicit
scheme in which only the first column of A - AB is actualiy formed.

The second scheme requires fewer operations and is more stable.
ITI. KOTATION

To simplify the explanation in the remainder of this paper, we

introduce the following symbols:
For a complex scalar o, |lofl will denote |Im(a)| + |Re(a)].

llof] corresponds to the 1 norm of o, if o 1is considered as a vector

in the complex plane.

In general, the (i,j)th' element of the matrix A will be denoted
by ay ;e If a matrix A is the kth element in a sequence of matrices,

it will be designated by Ak and its (i,j) element will be designated

by agj‘) .
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£i will denote the subset of the set of stabilized elementary

matrices described in Wilkinson [ 19] having the form
.th

W cclumny
N
.th 1
i TOW == l
T«

1
1

where ”nﬂi < 1, or the form

. th
1 row —»

where ”nin < 1. Blank spaces indicate zeroes.

When a matrix is multiplied on the left by a matrix of §£. of the first form
only 1its i+1$t row is changed, but when a matrix is multiplied on the

. . ti .., st .
left by a matrix of £i of the second form, its i % and i+1°° rows are first

interchanged and then a multip .e of the new itn row is added to the

t
i+1s TOW. _

We will often use a member of £i to aunnihilate an element in

the i+1St row of a matrix. For example, we may want to zero an j°
2

If either the current zaL:H_l"j or aij is nonzero, then there exists

a unique member of ¢, which will annihilate a . . Specifically,

341 S
-tedv

second form with 7, given by -aij/ai+l,j . If both the current 2541, 3
i zero in
and aiJ are zero, then any member of £, will leave a ai+l,J
9
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3 ﬂ& will denote the subset ot stabilized matrices having the
form

. ith column

: 1

: t 1

9 i TOW =emt 1

A L “'i 1 N

vhere ”pi“ < 1, or the form

th
i rowee

wnere ”p.” < 1.
i

O RN Rty Xabi st ¥ » AN

When a2 matrix is multiplied on the right by a matrix of the first
form, only its ith column is changed, but when a matrix is multiplied

on the right by a matrix of the second form, its i'" and 1+15%

B U b ol B AR AL

. . . . .. St .
columns are interchanged and a multiple ot the new i+l column ig

Lh

added Lo the i column,

The 5ef, T will denote Lhe set of matrices in upper triangular
form. If A is in T , then ai,j =0 for i> j. The set & will
denote the set of matrices in upper Hessenberg for— If A is in % ,

then a.. =0 for 1i> j+l.

3

J

Each iteration of the LZ algorithm inv..ves multiplying matrices o

2t LA Ny AN A A A WL MNP S Vi £ S ot AT

uct of transformations. In our discussion of the LZ aigorithm
the symbol A’ will usually denote the matrix A after all the trans-
formations for one iteration have been applied to it. The symbol A¥
will represent the matrix A after some but not all of the transfor-
mations for one iteration have been applied to it.

10
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CHAPTER ONE

In this chapter we shall describe the LZ algorithm in detail.
As mentioned in the introduction, the algorithm has 3 sections:
1) Reducing B to triangular form and transforming A to upper
Hessenberg form.
2) Iteratively reducing A to triangular form while preserving
the triangularity of B.
3) Finding the eigenvectors of the triangular system and
transforming them into the eigenveclors of the original
system.
To obtain the eigenvectors of the original system all the right
hand transformations must be accumulated, for if L and M are nonsingular

matrices and

LAMy = ALBMy
then

Ax = ABE

where x = My. Thus, if y is an eigenvector of the triangular system,
My is an eigenvector of the original system.

In the second section of this chapter, where we present the
iterative section of tne algorithm, we will describe two algorithms.
The first methcod is an explicit scheme which, if B-l existed, would be

quite like the LR algorithm for AR, The secoma algorithm is a more

stable implicit scheme. In the third section we prove that the two

algorithms geuerate and use the same transformations.

11
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I. INITIAL REDUCTION TO HESSENBERG-TRIANGULAR FORM

In this section an algorithm will be described that reduces a
matrix A to upper Hessenberg form and reduces a matrix B to trian-
gular form by applying the same elementary transformations to both
matrices.

The first step is the standard Gaussian elimination process with
partial pivoting as described in Forsythe and Molei\} 4], We find a
matrix L, the product of elementary and permutation matrices such that
LB is upper triangular, and then replace A and B by LA and LB, respec-
tively.

In the next stage we reduce A to an element of % while main-
taining the triangularity of B. We begin by choosing an element Ln-l
from g , so that replacing A by L__,A puts a zero in the (n,1)
position of A. Multiplying B on the left by Ln-l introduces a new
nonzero element in the (i1,n-1) position of B. If pivoting had been

necessary, B would still have ihe same form. Thus A and B now look

like
A B
YXXXX XXXXX
XXXXX OXXXX
XXXXa 0CXXX
XXXXX 000X%XX
OXXXX 00C0XX

Ye now focus on B, and choose a matrix Mn-l from zmbd.so that
setting B to BMn_l and A to AMn_l returns B to triangular form and mainteins
the zero we introduced into A. Thus we have

12
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‘ A . B
: XXXXX XXXXX
;’ a t t
: XXXXX OXXXX
p XYXXX 00XXX
3 B H
3 XXXXX ! 000X X
4 £
OXXXX 0000X
. 1
é The process is continued until A is in #&. As edch element in’ }
5—5 - i
3 G A is zeroed using a row transformation, a nonzero element is intrcduced
2 on the subdiagonal of B which must be immediately arnihilated using a
column transformation. Elements are eliminated:from A in the order given below:
&
XXX ¥x x '
!
e X XX x X i
] xj-x X X X :
kR & L. S .
3 ’ X? x§ X X X 1
: 6
Xl Xh X X X
& Note that pivoting maintains stability but do:s 'not afféct the '
zero structure of the two matrices an& more than a nonpivoting algorithm

s would. . .

& There are other ways to annihilate elements of A and B which
§ might be more efficient or more stabte for any given problem. One such
i method involves reducing o B to an element of 3 and then using column
'i F +3 transformations to reduce A to an element of ¥. The nrnzero ~lements,

which are introduced on the subdiagonal of B by the column transfor- ]
mations, are eliminated using rav transformations. Elements of A would

be zerved in the order given below:

R TE SRACLYICMR P YT
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T

X X X X X

X X

X6 X X X X

>
>

XX ox X

‘ XXX x

This algorithm Qould:certainly be more efficient than the first

method described if B ‘were the identity matrix and if A were the

matr;x
11111
11110
' 11100
11.00 0
‘ 16000

Both algorithms just described require about 15n§/6 multipli-
cations and l§n3/6 additions. In terms of the first method the opera-

tion count can be broXen down in the following way:

Additions + Multiplications

1) Reduting B to triangular form

Transformations on A n5/2
Transformations on B . : n§/5

2) Reducing A to an element of ¥ and pre-

serving the triangulariiy of B

a) To eliminate elements in the jth
column cf A . ek
Transformetions on A (en-3) (n-i-3)
Transformations on B (n+2) (n~1-3)

T T EETETATTTTTT PR ~W‘1
- - R |
5
3
'
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b) Total 2nd step
Transformations on A 5n5/6
Transforma’ ions on B r5/2
If the eigenvectors are requested, then, as we explained at the begin-
ning of this chapter, the product of the M's must be accumulated. This
requires n’/2 additions and /2 multiplications.

In comparison, the first part of the QZ algorithm requires
17n°/5 multiplications, 1Tn/5 additions, and n° square roots. If
eircnvectors are also desired . the QZ algorithm expends an additional
sn°/2 miltiplications and 3n°/2 additions.

It is interesting to compare the abore figures with the number
of operations needed to form AB_l and reduce this matrix to Hessernberg
form. If iterative refinement is not done, the basic process requires
about 15:?/6 multiplications and 151?/6 additions or the same mumber

required for the first section of LZ. If eigenvectors are desired,

n5/2 extra multiplications and n3/2 additions are needed. The figures

in this paragraph assume nonunitary transformations are being used.
The following table summarizes the cost of using the initial

part of the three algorithms.

summary ol Uperation Counts

,JWW’WMMW‘W%WWWWYMWﬂl’?"\'ﬂ?&‘m- oot

Without Eigenvectors With Eigenvectors
+ X square + X squere
roots roots
12 1500/6  13n°/6 0 160°/6  160°/6 0
QZ 3hn5/6 5hn5/6 n° h}n:/6 hjn;/G n°
a7t 130/6  1369/6 0 160°/6  160°/6 0
15
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II. FINDING THE Ei{GENVALUES

s irad A as

In this section we give an algorithm for determining the zigen-
values of the problem Aﬁ = Agﬁ where A 1is upper Hessenberg and B is
upper triangular. As in Moler's and Stewart's QZ algorithm, the method
entails iteratively reducing A to upper triangular form while preserving

the triangularity of B.

Each iteration of the iterative procedure is essentially:

TINTYH WD

1) Find a shift A which could be ann/bnn or an eigen-
value of the lowest 2 by 2 subproblem of A - AB .
2) Find a matrix L such that L(A - AB) is upper triangular.

3) Find a matrix M such that LBM is upper triangular.

4) Set A’ to LAM and B’ to LBM. A’ will be in ¥.

Most of this sectic 1 discusses the construction of L and M and
their application to our matrices to satisfy the requirements given above.
If the matrix T derotes A - AB, then it is obvious that LAM = LTM + ALEM
and that LAM is in % if and only if ILTM is in %.

Each iteration begins vith an A which has ro zero subdiagonal
elements. If after the iteration A’ has a zero on its subdiagonal, we can
deflate the problem anl wo.k on a lower dimensional subproblem. Hence
the purpose of each iteration is to drive the elements on the subdiagonal

A’ closer to zero. In Chapter 2 we will specify conditions under which

the process,we are about to describe,accomplishes this goai.




triangulea:; our matrices look like

T
XXXXX
XXXXX
OXXXX
00XXX

000XX

nonzero element in the (2,1) position of B.
T
XXXXX
OXXXX
OXXXX
00XXX

000X X

element gz in ;2

Our attention is now turned to B, and M

B
XXXXX
OXXXX
00XXX
000XX

0000X

T and B now have the form

B
XXXXX
XXXXX
00XXX
000XX

00900X

1

Ml to T is deluayed. We now return to T and annihilate

152

In the 'explicit' version of the algorithm, we start an iteration

by forming T = A - AB. Since A is upper Hessenberg and B is upper

We now select an element Ll from Ll so thet replacing T by LlT zeroes the

element in the (2,1) position of T. Then replacing B by LB introduces a

is chosen from '/7(1 so

that replacing B by BMl yields a triangular matria. The application of

by an

. APplying the same transfcrmation to B produces

4
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The matrix Ml is now applied to T and M2 is chosen from m2

E’ so that BY, is in T. The matrices T and B now look like
3
E T z
?
: XXXXX XXXXX
E XXXXX OXXXX
3 00XXX 00XXX
; \ 00XXX 000XX
‘ 000XX 2000X
1t is importent to notice that the element t}l is zero.
Future transformations will not touch this element, and hence it will

remain zero throughout the iteration. rurthermore, the situation had

not been influenced by the form of Ml, i.e. whether pivoting had been

necessary to stably zero b2l .
In general, row transformations are applied to T and B simul-

taneously but columu: transformations are applied first to B. If we

write M as M1M2 . e Mn-l’ then as we apply Mi to B we apply Mi-l to

T. Each row transformation will zero an element of T and introduce a

nonzero on the subdiagonal of B. Similarly, each column transformation

returns B to triangular form while introducing a new nonzero element on

the subdiagcenal of T. Delaying the application of the right transfor-

mations to T ensures us that the new nonzero element produced will nct

affect fvture row transformations on T, i.e., T will remain in % . According

+n +h- ‘aw nf
L4 d L AX A - . T o

In summa 'y, the explicit algorithm for each main iteration step is given by: E

Set TtoA ~-»B for 1=1,2, ..., n-1.

1) Find I, to stably zero t, and set T to L.T and B to L.B.
i i+ i i

1,1

18
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2) If i>1, set T to T, , - y
o 3) Find M, to stably zero bi+l,i and set B to BM,.
Set TtoTM_ ..
1 n-i
: 3et A to T + 1%
& As in the LR algorithm, the subdiagonal elements of A should
3 become small and approach zero at a rate determined by the ratio of the ;
E eigenvalues. By using a shift A , we hope to hasten the process. 2

& There is only one major drawback to the algorithm just described:

PO

vy Lok

it is potentially unstable. If the shift A is large relative to the

-y

size of the elements of A, information needed to find future smali

¢

eigenvalues can be lost when T is explicitly formed. This vill occur

when the shift is computed from the lower 2 x 2 submatriy of AB = 2nd

AT MR R hmes s e AW wmes v s A swAr
ST -

PO AN

much smaller elements appear :n the bottom of B thzn in tha tor i B.

i
oo o rer
"

The following example indicates the deteraorsziion chat can

occur with the explicit algorithm. The relative residuci 15 the guentity

S N T R T}

2 1B3A% - o i BRI /([ps| AL, * fos] ¥ Bi,,)

where Bi is the ith diagonal element of the fijal “riangulsr mat. ix

S IBM and a; is the ith diagonal element of the final ve¢ia.gular matcix
IAM. The significance of this quantity is that we have realiy szoived
the preblem B(A+E}5 = a(B+F)f’. The i'R eigenvalue is given by ai/si

This problem was done on an IBM 360 machine in double precision.

A 3
1.0 2.0 2.9 1.0 10.0 15.0
pr .
k.0 5.0 6.0 0.0 10107 1x107
0.0 7.0 8.0 0.0 0.9 1.%107°7
19
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Eigenvalue Relative Residual

- 6999919999k 36334 ¥10° 7242069776452181%10 ™
-.1142870204249628%1 &

0.0 .26666666666665667

.864 5&65695672128*10'2

According to these results, zero is an eigenvalue of the problem,
which controdicts the fact that A is nonsingular, and in two instances
the relative residual is so large that their corresponding eigenvalues
must solve a procblem which cannot be considered close to the original

problem.

The instability mentioned above can be avoided if T is never
formed. We will now describe an implicit algorithm which works with A
and B directly. When this new method was applied tv the above example,

the following resulits were obtained:

Eigenvalue

Relative Kesidual

- .6999920005&9999*102 1 L464406751978657 x10” Y
-.1400015 18515642%107 .603693070547578%10™ 1
.18367 5576484812 149715591676453%10™20

The small relative residuals indicate that the eigenvalues solve

a problem which is close to the original eigenvalue problem.

We note that with the standard eigenvalue problem Ax = 1x,

Gershgorin's thcorem (19) assures us that computing the shift from the

eigenvalucs of thne lower 2 by 2 of A will not give us a shift larger

than the norm of A.
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é In our description of the new implicit algorithm transformations

i ’ T

g P will be denoted by Li and Ei but, as we shall prove, the implicit and

explicit algorithms are essentially equivalent, in the absence of roundoff

TR7ANT

error, and except in one instance, the Ei's of the impliicit algorithm :are

RART,

the Li's of the explicit algorithm. The same is true for the gi'sl

(Uil

The implicit algorithm begins by forming the same Ll that was

formed in the explicit algorithm from g and A.

11 P11 821
The matrix Ll is appl<ed to A and B and obviously ithe same nonzero

element is introduced in the (2,1) position of B as in the explicit

algorithm. Ml is again formed so that BM, is in T , but

1
this time, Ml is also applied to A. At this point A and B look like

A = B
XXXXX | XXXXX
XXXXX 6xxxx_. .
X2 XXX " 00XXX
00XXKX 000XX , _ :
000XX 0000X |

Ve now select &2 from L., 50 that LA i3 in' ¥ . When 5’-2 is
applied to B, a new nonzero element is introduced in the (5,2) position
of B which is then annihilated by ﬂ2. ' :

In general, row transformations return A to upper Hessenberg
form and intrcduce a noszero element on the suodiagonal of B.

Column transformations return B to upper triangular form and

produce a nonzero element on the second subdiagonal of A. In contrs: i

to what cccurs in the explicit aigorithm, in the implicit method, cc'v n
transformations are app.ied simultaneously {o both matrices. Tn mou

detail each iteration of the implicit algorithm is given by:

21
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1) get Y to a,, -kbj, and & to ay, p

2) 1f | 8] > |v¥]» L, is the element of £, using pivoting with
ql =-Y/8; otherwise L,

N, = -6/Y. Set Aito L

SEARELE i - AR A, 3t s i - L

is the element of zl withcut pivoting with

lA and B to LlB' Set 1 to 1.

5) Fird M, ,an elerent of M., to stably zero by and set A

1,1

to Aﬂi and B to BM If i = n-1, stop.

—i M
4 set i to'i+l. Find Li,ah element’ of £ to stably 1

[

-2ero  a,.

i+1,i-1 and set A to LiA aud B to LiB. Return

PSS N N R St e wen B
o

to 3.

For the implicit method, about 2n° multiplications and 2n°

additions are required per iteration. If eigenvectors are also requested,

Al et P Aok i il AT S B AL AR

n? multiplications and n2 additions must be spent to accumulate :

the M's. .In contrast, the QZ algorithm requires 1jn? additions, 15n2 é
_multiplications and 3n squbre rooés per iteration, and 8n2 additional
multiplications and additions if eigenvectors are requested. However,

it should be poigted.out that to keep the arithmetic in ‘he real domain
for real matrices, each QZ iteration is a double step. Thus a fairer
comparison might be to compare one GZ iteration tq two Lz iterations and
to keep in mind that even for real matricés LZ uses complex arithmetic.

' :Fbr comple; matriges a single shift version of QZ is probably preferable
to a d?uble shift version of Qz.‘ A single shift QZ iteration would
require 6n° mul%iplications,and 6n° additions and 2n square roots and an
;xtra 5n? multiflications and 5n? addiéions if eigenvectors are requested.
These statistics seem to ind}cate that the LZ method is the more efficient

than the @Z method for complex matrices.
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It is also interesting Lo compare each iteration of the LZ

s sa e o W s,
ETRRRUPIN

algorithm with each iteration of the standard LR algorithm as given in

The standard LR requires n2 additions and r? multiplications

(171.

o g ¢

. . 2 fevs R
per iteration, and n~ more multiplications and n° more additions if eigen-

vectors are requested. Thus the basic LZ algorithm does twice as much

work per iteration as the LR method, but only 5/2 times as much work ;

T 4P RS =PIV TR, TR LT 7 TSR L)

when the accumulation of matrices to obtain eigenvectors is considered.

2 Al C

3 s The operation counts given above can be summarized as follows:

Ml meU s wenan

OPERATION COUNTS PER ITERATION

those given in [10].

*
Always uscs complex arithmetic.

The operation counts reported for the double QZ algorithm are

If the left eigenvectors of the problem with

required per iteration.

25
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transposed A and B are computed, a: opposed to the right eigenvectors
of the original problem, then the left hand transformations must

be accumuilated and only 18n2 additions &and 18na multiplications are

E } 8 Without With
3 Eigenvectors Eigenvectors i
{ Square Squaie é
A + X roots + X roots g;
*1Z 2n® 2n” 0 3n° 307 0 %2
pouble @z | 130° | 131 3n 21 | ol 3n ¥
¢
*Single QZ 6n° 60° 2n 9n2 9n2 2n i

*LR n2 n2 0 2n2 2n2 0 E
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III. PROOF OF THE EQUIVALENCE OF THE IMPLICIT AND EXPLICIT SCHEMES

In this section we will prove that the explicit and implicit
schemes,described in the previous section,generate and use the

same transformations.

Theorem. Let -Iij and y-j represent the transformation in the implicit
method and Lj and Mj represent the transformations in the explicit

method. If the next iterate is A’ and a’ 3541 is nonzero for j < i,
yj-

then for <iji, L,=L,and M, = M..
€ 3 <1 Ly =1; and M, = M,

Proof. The proof is by induction on J. By construction &l is equal

to Ll and _}_1_1 is equal to Ml' We assume that -I-'k = I.k and !k = Mk for

k < j, and let

* = . . . . . * 13
B =L e o LM M

J=1
T - X
TS L LT M
A [, A
s
A* T* B*
XX XXX XXXXX XXXXX
XXXXX XXXXX 0XXXX
5P row =0 X X X X 00XXX 00XXX
LU S A1 LENLE I SRV § tyy o By
0O00XX O0O0OX X 0000X
L——;jth':olumn 4 J
2k

S e N BT TR T T S g R T Voo B 7 o YO e SO B Ty R R e R T T " LR T e TRy o i T 598, FE.Z:WVF“

PV TIPS I8 PO T TP Iverr WV

s

D R TR I A N e

S

R IR

L

UL, R TN TR I T A X DR L [P TA W, TG X

TR

AT 1.

LA LA R TS S OVIS RTINS 11 € R RIS R TN WCIL s S TP

]
o




S R S N e S T St R A e N

— E —

g

Because T = A - AB, we must have

* =
A% = TRL )+ ABX

which implies that

¥ = L_A¥ = L. T*M,
A J JI j-1

+ AL_B¥,
J

We know that LJT*Mj-l is in ¥. Since LJB* is also iny , A**

must also be in ¥ . But in the implicit method Lj is the traasformation from j:j

which returns A* to upper Hessenberg form and if either a*J. +1,5-1 or
3j-

9 a*j i1 is nonzero, there is only one element belonging to J:J. which
S e P X
~:‘ * can accomplish this. Gince transformations to A occuring after L 5 do
: not affect the j-lSt column of A, the element a'j -1 is nonzero only
=
**

is zero only if both

if a¥¥*, 1s nonzero. Since a,. .
Jsd=1 J»d-1

X

* * i
a 3,3-1 and a 541,3-1 are zero, the hypothesis to our theorem

assures us that there is only one transformation from _\‘,J. which couid

’ ® return A* S0 an element of #. Since both Lj and _QJ. belong to £,j’

; we know they must be identical. By construction Mj and MJ. must also be
‘ _‘;'7 identical and therefore we have proved our theorem by induction.l
;; r o If alj,j-—l is zero then we have no assurance that row and

column transformations subsequent to Mj-l in the explicit and implicit
algorithms are identical, but this is of little consequence. In fact,
¢ s the best policy in both algorithms is that as soon as a permanent zero
is detected on the subdiagonal of A', then the iteration should be
discontinued and work begun on a2 problem of lower dimension. If in

) both methods, this policy were adopted, tnen the algorithms would be

equivalent up to roundoff error.

e,
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Iv. FINDING THE EIGENVECTORS

After A and B have been reduced to triangular form, the eigen~

vectors can be easily determined. ILet « and B, denote the diagonal

J,
elements of the triangularized A and B and let yj denote the corres-

-

ponding eigenvector, that is
A-o.B =0
(Byh - o4B) 3, '

The components of vy, can be obtained by solving this

Y13 b
triangular system as follows:

=0 for i<

=1l for 1=}

Yig ” _@Jai-ajﬂ E P32k = %) ¥y
k=i+1

fOr i = 3-1,3.2,00011

th

The J eigenvector of the original system can be found by

maltiplying by M.

y

~J
If the denominator in the above formula is zero, then it is

replaced by macheps *(j|A||  + [IB|| ). The denominator is zero when tne

ith and Jth eigenvalues are equal. If the numerator is also zero,

then linearly irdependent solutions will be produced. However, if the
numerator is not zero, then Y

~J
after normalization and will be nearly liinearly dependent.
¥y Xd

will hsve large components and

This occurs when the eigenvalue does not have s full set of eigenvectors.

See Peters and Wilkinson[16] for further discussion.
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CHAPTER TWO

CONVERGENCE RESULTS

' .
H

In this chapter we will prove several convergence theoremé; each
' '

of which restricts the problem in some way. A theorem mighP specify séme
property of the eigenvalues themselves or characterize the matrices I and
M. Usually both types of restriétions are given. Many of the theorqms
refer to a nonshifting or constant shgfting version of the-IZ algorithm.
We have found that in most instances when ; shift policy has not worked,
the method has been using th; same shitt for each iteration. ,The chapter ends
with a partial listing of 5 x 3 examplé§ for whic? the current algorit?m,
which uses a sclution of the lower 2 x 2 problem of Ai'é ABx as a shift,
will not converge without the use of an app;opriate ad-hoc shift. v

We * 211 use Parlett's [ 11] terminology and say that a metrix is
an Unreduced Hessenberg matrix (UHM) if it.is an upper Hessenberg matrix
and none of its subdiagonal elements is zerp. To simplify our proofs
we will assume w: are working with the algorithm in its expiicit form.
The matrices will be n x n, and unless stéted otherpise, we will.assume
that A is a UHM . d B is triangular. fbr uﬁiformity we will assum: that
the kth iteration in the algofithm is given by

1) Find a shift A, . ‘

2) Form T, = A - B

-~

o

3) Find ik such that ka is triangular.

,.‘ ':\"’ sue . ey |_'( . Y . a2 r.
4) Find 1, such that L B M is upper ifiangular.

5) Set, B .. =L B M

-

= I*K'I.KMK ¥ )‘kBkH.'

K+ 1 ¥k Prel
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T L isa p;oduct'of matrices L n-1lk,np" " o L,y and M isa

1 product of matrices Mk 1 Mk o Mk n lwhere gach Lk i is &n ' |
> > = L

,
7

L

element or zi , and each Mk i is in 7}1]._ as described in the notation sec- jﬁ
2 3
tion of the introduction. In this chapter the multiplier in L4 will :
. . s+ ',
be denoted by 1 and the muitiplier in Mk . will be denoted by %
' k,i »1 ) N 3
Pr,i ° _ 3
, In many of our theorems we will drop the iteration subscript and £
! : . ’ E
} . ] :
designate the matrices Ak’Bk’ etcl. by A, B, and the matrices Al;+l’ B-k+1’ | E
: ’ ’ . . <
etc.:by A7, B’. The matrices I‘k,i and Mk,i will be denoted by Li and

Mi respectively, and ‘thei‘r corresponding multipliers by 1) i and p i

e

- ~ ~ -, ». " ’ ety
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I.

DEFINITION OF CONVERGENCE

appr

In general the algorithm will be said to be "convergent" if, as k

oaches infinity, one of the elements on the subdiagonal of Ak

approaches zero or if for some finite k, one of the elements on the

subd

iagonal of Ak is zero. Because of the interrelationships that exist

between Ak’Tk’Lk’ and Mk , we will also regard the algorithm as convergent

if -0

ne of the following conditions is satisfied:
1) As k increases, one of the elements on the subdiagonal of
Tk approaches z<roj; or for some finite k , one of the elements
on the subdiagonal of Tk equals O .
2) PFor a fixed i, as k increases, Lk,i approaches
the identity matrix.
3) For a fixed i, as k increases, Mk,i approaches

the identity matrix.

The reason for the first criterion is that in the explicit algo-

rithm the subdiagonal elements of Ak and Tk are identical. The reason

for the sccond criterion is that if tgk) . 1s zero, then Lk . will
i+l,i s1
be Lhe identily matrix, and the reason for the third condition is that
(k+1)

il Mk i iz T, then g
b

mean

> 4 will be zero.
i+l,i

It should be emphasized that when we say IZ converges, we

that the problem can be divided into two subproblems of lower

dimension. We do not necessarily mean the algorithm can find all

the eigenvalues.

29
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II. SINGULAR MATRICES

Fad

We begin by proving a theorem which substantistes our claim that

LZ works even when B is singular.

ATV

Theorer 1: If B is r~ingular, the LZ algorithm converges in at most
n  iterations if exact arithmetic is used.

Proof: If B is singular, one of its diagonal elements must be

PO A RN e I TP AN, TS WD,

zero. If bll is zero, then applying Ll to B will not change the O

in the (2,1) position of B. Thus M

atsaxicn)

will be the identity matrix I and

.

1
the LZ algorithm will converge immediately.

SAORWIT

E Now let us assume that bii =0 and i>1 and let us look
i at the 2 by 2 matrix formed by the i-15¥ and i rows and columns of
B. It will look like
a b
) O O .
Ifr Li-l involves pivoting this matrix will become :
0 0
a b g
:
and, independent of the form of M, ,, the O will remain in the (i-1,i-1)
position. Future transformations of B during this iteration will not
affect this O.
If Li-l does not involve pivoting, then we get

a b

LIS PR I8



is zero, Mi-l is the identity matrix and bi-l,i-l is 0.

v If b is zero, then M., permutes the ith and i-1°° colums, and

If a

b, . isalso 0, If b 1is nonzero and a 1is nonzero, then
i-1,i-1
i i - - b/1. b .
bi-l,i-l is either a (ni_la/(ni_lb))b or b (ni-l /nl_la)) In
Fy either case, it is zero if the arithmetic is exact. Again future trans-

formations on B during this iteration can not affect the ze.,o in the

(i-1,i-1) position.

We see that with each iteration, a zero on the diagonal of B
moves up one row. Within n-1 iterations it must reach the (1,1)
position, at which point the algorithm must converge in one iteration.l

The following lemmas consider the case in which B is nearly
singular. The quantity € is assumed to be a small number relative to

the norm of B.

lemma 1:  IF b, ;4 TF for i > 1 and L; , involves pivoting
A b

4 . '

Lhen | b i-l,i-ll| < 4]

Proot: 1f B* repr~sents the matrix

A PRI 7Y P

x
Lhen b, ¢ o 0 9, CThuae, will either

. b’ .
i-1,1 i-L,i-1 T i-1,i-1

be € orup, €, and sincejjp; [ < L, b'i_ will be sji€] .

1,1-11

ierma 2: If p =€ ‘for i>1 and L. . does not involve
o i,1 i-1
pivoting, then
' ; €
Hoya,a-dl s gy

A

o5

P L AL S Y

2ry
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Proof: If B* is the matrix

Lo qLi pe » » <DBMp. o . WM 5

then we may write
* * =b
1-1,i-1 i-1,31

% *
= S b.
b ii-1 ni'la b i,i i-1
If Mi-l does not involve pivoting, then

N,.12 b
€+M;1°

'
bY1,4-1 =a-

a€ € T5-18

€+1,0 TNy,  (€+m;_3P)

and hence
' €
"5 el S g 0
If Mi-l does involve pivoting then

- b - (‘mi-.lh)”/(ni-l“)

n'. .
i1-1,43-1

The »revious two lemmas indics%e that small elements on the

™ 1Y
3

h3
1]
L]
[}

idea of what occurs when the small element reaches the too of B.

gives us an
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., (k)
Lemma 3: Iif bl,l = ¢ and Lk+i,l and Mk+i,l do not
involve pivoting for i < j, then there are constants cj and dj such that

 (k+3)

(k+j) _ J
1,1 =4

= C.€ and a .
J 2,1 JE
for j > O.
Proof: Our proof is by induction on j. For j = 1, the

hypothesis to our lemma implies that

) € The,n _
B, 57 =ce
’ N RN )
2,2 k,171,2
which means that
(k1) _ ¢ (k)
+ = €
bl,l (1 cbl’2 ) ¢y

and if Lk 2 does not involve pivoting
2
k

k
2,1 € )

( -
Me,1t1,2 ) = 4€

and if Lk 5 does involve pivoting
b

(k+1) e (k)
a R N P
;..),l /,,‘_ lE

If we assume our lemma is true for j, then

= =d «j (k+vj )
o1 = 794€7 o
which means that
J¥L (k+j)
d.c,
. - 7
k+j,1 - -
I JkE) . p(kH)
2,2 'k+j,1 1,2

c€J+l

AR,
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so that

k+j+1 - k+ J)
b:f_,la ) E(C + Cb( ) = J"'l

If Lk+j > does nct use pivoting

Kj+l) 1 (}+ ) £ (B+3)
é;j ) - J+( ! *’“K+.3112 )

j+1
eI*,

If Lk,2 uses pivoting

Jrl
dj +l€ * .

il

(k+3+l) = cedtl ¢ (x+3)
21 52

Our lemma did not state the size of the elements c'j and dj

and there is no guarantee that they will be small.

Our next theorem is 2 counterpart f Theorem 1. We note that B

might be singular.

Theoren 2: If T is singular, i.e. A is an eigenvalue of the
problem AX = kBi, ther the IZ al:orithm converges in one step in exact
arithmetic,

Prootr:  The Cirsh n=1 cojums of 1 migl. be Linearly independent.
or olse gome subdiagonal elemeni of T would be zero thus implying T is
not a UHM. The algorithm constructs a nonsingular matrix L such that
IT = R, an upper triangular matrix. Since the first n-1 columns of T
are linearly independent, the first n-1 columns of’ R must also be.
Similarly, since T is singular, R must also be. This means that the
Jast column of R may be written as a linear combination of the first
n-1 columns, and because the last component of each of the first n-1

columns of R is zero, the last component of its nth colurn must also

be zero. Hence the last row of R is eT, the null vector.

3k

e = .
P e ey e ey e e e I e - TR
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Now in the next step of the algorithm we construct M so that

B’ = LBM is upper triangular and set A’ = T’ + kB’ where T° = LTM.

Since the last row of R is eT, the last row of T’ must also'be QT, ) . i

and hence 3’ must be zero.l
n.n-1 :

Our theorcms and lemmas indicate that in the future we can safely

1 1)

SACTBa R AT BTN A

ignorc problems where either A or B is singular. However, we would

like 10 include singular cases in the };ext few theorems wherever

PSRRI PAPHILE S

possible,because many of these theorems not only guarantee convergence,

they also give some hints about rates of convergence,

Tores
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i 1II. GLOBAT CONVERGENCE

In  his scetion, we shall prove several global convergence

FYPRNI PRSP W ORI W

heaesmy

theorems. Most of our results refer to a constant shifting algorithm, although

J-r o wma

in pract'.ice our shifts are usually differen:t for each iteration. How-
! : : )

ever, we have often found that when a shift policy. has not worked, the

ERITCRS TP T RN

+ same shift is beirg used for each iteration. Thus, our theorems do

RN PP

have ;Qracticé.l significance although they do not refer Lo any actual

implementation of IZ. i

, We begin by. proving four similar theorems. They all consider

the scq'uencés of matrices {A‘k} y {Bk} , {-f‘k} , {{} , {Tk} and {Sk}
|
‘; . | | wherc T}; = A‘K - )‘kq( for some scalar }\k
Py = B

Bk+1 — LkBkMk ‘ )

[UTTTIRREY JUFRUINVY DI IR 3 AR

1ok

>
1
.

w
il
o
wrha Aad. o2t

. _— S = LTy

and T‘k and ﬁk are nonsingular for all’ k and Sk and Bk are upper

[T e

Lrianpular for all k.

3 © Theorm : I B' is non.ingular,

ani

then

- . ) - .
v U = (A -A.B )B. (A=A BB ....(A ,B)B

~
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Proof: Since

T =

K

and

we have

-1
By

which implies

-1
Ve TkBgl = (4 -A, B )BTV,

L 1Ay = AB ¥ )

_ A
1t

= L1 (Aey - 2B DB T

-1 -1
Vi-1(8) - A BBV

1°

-1
} - T -1
Now kak = vk-lLk Skuk Uk-l

-1 -1

= T
VieerTe Tl By

B -1
- vk-lTkBK Ug-1

Corollary 5.1.

and Ak =p for all k, then Vk e

-1
(A - AB )Bl

-1
(A - A, B )B

U1

Ve-1Y%-2

(A -xr BB

-1 -1
oL e-+(A -2,B)B(A -1,B)E .

If the conditions of Theorem 3 are satisfied

1 is in the direction of ((A - pB)B-l)kgl-

-1k
Proot. By Theorem 3. V U = ((A - pR)B ~)". Since U, is

upper triangular, ngl =

k 'k
(k)

ul 1 91 » and hence
51 =

37
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(k) R |
Vi 1 2 = ((A-0B)B7)e
Theorem 4. If A -A;B is nonsingular for all i, then

-1 -1 _ -1 1 -1
Uk]vk =B (A -AlB) B (A —sz) ....B(a ka).

The proof of the above theorem parzllels that of the previous theorem.

Corollary k.1l. If the conditions of Tneorem b are satis-

ficd and A, =p for all k, then V;Tgn is in the direction of
T P\ -1 T\k
((A" -pB) B )e.

Proo.’. By theorem &

UVt = (B - pB) 1"

which means that

‘TU'T = ((AT

-1 T)k
k 'k

\'s B)

Since Uk is the product of upper triangular matrices, the matrix P, EU;T must be

k
. U _ (k)
lower triangular wnich implies that stn = pn,n ey and hence
-T _(k) - T T.-1_T\k .
Pron Sa ((A" - pB") "B)7e -

If the matrices described above represented the matrices in a
version of the Lz algorithm, which did not allow row irterchanges, then

for all k, the matrix Vk would be unit lower triangular.
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Theorem 5. If B is nonsingular,
kTl - "l * 'l "'l
g o= gl gt sy
and
W= MM, M
then
w,U_ =B Xa B)B- YA, -1, .B)). . . .BHA -2A.B.).
k'k 1 ‘1 1751V T Mkt 1 v T AR
Proof. Since
Ty = Loy (Beon = MBeo1 My
and
-1 -1
Al g Rl
Bem =M 1Bl o
we have
lp =%t p-l - i
Bo Ty = MiBily (B ) - By My
: 1,
1 W BTHAL - AgBy W
g
g which implies
- -1 _
W lBlek Bj(A - B )W,
‘ —
3 Now w0, =W, B8 Te
. = AL,
16
, = W1 B Tk
; = B‘l(A ~\,B W
R & X- U k-1
- gl(p - 1ea -
; =B(A -2\B)BF(A -1, ;B).

TS o b n s
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Corollary 5.1. If the hypothesis of Tneorem 9 is satisfied and

A

x =P for all k, then W, 1is in the direction of (B‘l(A - pB))kgl.

It Wi apIAe, b 347 afugfly SN AR g a3b o ity

Proof. By Theorem 5
WU = (B-1(aA - pB))k.
: k'k

‘ . - . . . = _ _ =(k)
2 Since Uk is a product of upper triangular matrices, kal = ul,l &

S8 A tY ANV AL IV £ ¥ Vs YA LA S ar P

which means thet

v, wlk) e, = (3Ha - pB)) e, - |

O T T P S

BAL 2R

PP TIR APR Y TR )

T Y SIS

Theorem 6. If A -\B is nonsingular for all i, then

2 =1 -1 _ -1 -1 ) -1 :
3 U W= (A -AlB) B(A -xQB) B. .. .(a ka) B .

- The proof of this theorem parallels that of the previous theorem. Note

40
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corollary 6.1. If the hypothesis of Theorem 6 is,satisfied : .
and A, =p for all k then W;Tgn is in the direction of (1‘3'1'(.4T -‘pBT)"l)kgn.

Proof. By Thoorem 6

=]
:!_a
|

"L = (& - ¢B)B)¥

which means that ) ; . ' . 3

W];%}—{T ) -T ) k

(7(a « oB

Since ﬁk is a vroduct of upper triangular matrices, Qk%ﬁ;? is lower -

triangular and Qk [ equals qgk% &,- This in turn implies that
3

WL (x) e = (BT(A.‘T _ thl’)-l)k . 1 |

k qn,n ~n -n°

It we again relate the above theorems to the LZ algorithm, then ﬁk : ' |
would be unit lower triangular if column interchanges were not permitted.
s ' ' :

: H

. i
If D is a diagonal matrix with diagonal elements d1,d.9,...dn

i

14
then the Moore-Penrose pseudo inverse.of D, is the diagcnal matrix,denoted by

+
D , with elements 21’22""'zn where

= . if 4, is n )
z; ,l/d1 if a4, 15 onzero
and 2z, = O if d, is zero.
i i
]
! -
. .+ '
by & the  projection matrix D D.
1 for i=j and di is nonzero.
$.. = :
1)

0 elsewhere
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£ » . The ;ext main theorem is a modification of one that appears in %

: Wilkinson [19] and Parlett [1;] amgng other places. Our version of the - %

theorem extends their' results to cover singular matrices. If a hatfix ' %

. 3

X ié said Po have an LU decomposifion, thev there exists én upper g

; x Vgriangu;ar matrix U &nd a lower trihngular‘matrix L such that X = LU. é
1 * This decompasition is unique. ; : b,

Theorem 7. If F is g matrix with eigenvalues of distinct

' ' modulus satisfying

|dl|>|d2|>....>|dn|_>_o, ' : .- )

"and if F can be written as XDY where Y = X-l, D . is the diagonal

.
s AZT IR Y A I AL € A A B ) a2 e S AN

matrix of eiéenvalues and Y has an LU decomposition and ¥ has an

L%, decomposition piUx, then the lower triangular factor of the LU !

decomposition of fk goes to L as k4w,
. i

ot h e anT A Y, ey 1 Ak Al TStk G iR

To fecilitate the proof of Theorem 7, we first present a

few lemmhas.

et

PRETRE

SRRV PRI I SR VRN

Lenma 4. If L is a lower triangular matrix and D is a diagonal

s

matrix whose elements satisfy

Hay > al> . .. >|dm|>|dm+l| =. . .=l

N .
.
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' l’h‘." l)]: = “ll” I).
Proot'. It & = DL, then S5 j =0 for j>i or i>m
) J
y and s. .= d.4. . elsewhere.
& : 1,3 i*i,5
Now the last n-m columns of S are zero bescause for Jj>m,
: s, ., =0 for i>m
e 1,7
anda
S, =0 for i< j, i.e. for i< m.

i,J

P
‘ Multiplying S by D+D zeroes the last n-m columns of S and leaves the
first m columns untouched. Since the last n-m columns of S are
2 already zero we have § = SD+D or

DL = DID'D. l

Lemma 5. Let L be a unit lower triangular matrix, and let

D be the matrix oi Lemma 4, and K +k
Gk =D W ;

- 0 1y o . () S - -~
2 then G, -¢ + I where - as k -»x

Proof. If g(k) is the (i,3) element of G,, then

i, k’

Ofor i<j or j>m

o (6)- y

ij s
n

A ; (di/dj) elsewhere .

b
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The fact Lhat |di/dj| <4 for i J and j<m

and dj/di - L for i< m, topether with the fact that L is unit lower
I (k)
triangular implies that g,j\j =1 for j<m and

(k) .
gij -0 for j<i and j<m as k approaches infinity. Thus
Gk =¢ + Ek where Ek —» 0 as Kk approaches infinity. l
Lemma 6. If U 1is an upper triangular matrix gand D is

the diagonal matrix of Lemma L4, then
U§D=4%UD .,

Proof: If G =B, then

g .= 0 for j>m or i>j

and g. .= u, . elsevhere.

if H = GD, then

h. .= 0 for j>mor i>j
1,J
and h. .= u, @, elsewhere.
1,J 1,d J
he formulae just given for h, . are exactly those which

sd

i
would be given for ey j where E = UD. Thus H = E. Moreover, the last
2

n-m rows of E are zero so that &E = E. Thus

¢ =2 or 2w =wD. ®

Wz can now give the proof of theorem 7.

Proof of theorem 7: Assume the eigenvalues of the matrix
F are of distinct moduli and assume F can be written as F = xnx'l
where D is the diagonal matrix of eigenvalues and both X and x'l

have LU decompositions. Let Lxe be the LU decomposition of

X and let LyUy be the LU decomposition of X-l. It can be easily shown
LYy

[RPTRTRTI SRR S TR V. SX ]
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-1
xn X

Je
= )] U
X0 LU
XDkLyD+kaUy by Lemma 4.

that

_ K oFK = '
If Gk =D LyD , then by Lemma 5 Gk & + Ek where Ek goes to O as

k goes to infinity.

Thus, fk

X(s + Ek)DkUy

LXUX(§ + Ek)DkUy

s s =

-1
Lx( ¢+ UBU )le)}‘uy by Lemma 6.

. -1 © ne e -1
Q
Since UxEka goes to 0 as k goes to infinity, & + UxEka goes
to 8 as k -»2o0. Because QE&D Uy is upper triangular, the lower

triangular factor of F}’ epproaches in as k becomes large. .

Theorem 8 : 1If

(1) B is nonsingular

(2) 1Z is used with a constant shift p.

(3) The quantities A4-p for i =1,2,...n have distinct moduli

(4) Either no row pivoting 1s required and there exists a matrix
X such that (A - pB)B-l = XDX~ ' where D is diagonal and

-1 .
both X and X = have LU decompositions or no colimn

- ———

pivoting is required and there exists a matrix X such that
- - -1
- B (A - pB) = XDX™* where D is diagonal and both X and X
have LU decompositions,

then LZ converges.

SRS RFVEI SF PR RIS L ASK L AR H TR XTI [ONPRRV ST L TR LA S TON S TEA N TGt TR FENTR TR B W EHOTD




e r — o -
b R B T S R L P L S T T o S T S TP T AV I S ST § Uit ™, «1«:!%7;:3,&5%.:':7%.,. .
&

A

H

{
~
[N SN T

PRI R AN RN T

-] .
Proof: We let F = (A - pB)B ~ and apply Theorem 7 and find that

RSV YIS

as k increases, the lower triangular factor of the LU decompesition

of F* approaches L§. By Theorer 3 this lower triangular factor is

TN m A Lem i o AR T

given by V.. If Vi L and Vo L¥ and V., = ki;l, then T.;l

must be approaching the identity matrix which means that 1LZ is convergent.
If F= 1?'ml(A - pB) then by invoking Theorem 7 and Theorem 5 ;

we see that -ﬁk must be approaching the identity matrix as k + « which E

means that 1LZ is convergent. | i

The condition that both X and X * have LU decompositions :
is partially satisfied since both (4 - pB)B-:L and B-l(A - pB) are :
unreduced Hessenberg matrices. Parlett [14] has proved that if F is a UHM,
then there exists a matrix X such that XJ)(.l is the Jordan canonical

form of F and X T has an LU decomposition.

The condition on the distinctness of the moduli of
the eigenvalues can be relaxed somewhat. Wilkinson's [ 19] treatment

of multiple eigenvalues for the LR algorithm can be applied directly !
to the LZ algorithm.

46
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IV. ITERATION AND LZ.

Theorem 8 indicates that with a constant shift

the LZ algorithm converges for problems with shifted eigenvalues of distinct
moduli if row pivoting is not required or if columr pivoting is not
required. Some of these rest.-ictions can be weakened by investigating the
relatiouships between LZ and various ilerative procedures. This approach
has been taken by Poole [ 13], Parlzit and Kahan [ 12], and Buurema [1 ] Z
in studying the QR algorithm.

Let us consider the LZ algorithm with constant shift p for

the problem having eigenvalues Aj and let us denote Ay =P by di

and assume that the {Ai}'s are ordered so that

|dl|.>.|dd|?.---'2|'dn| *

Theorem 9. If any of the following 4 conditions is satisfied

PESPIN. SRV RS

then the algorithm converges.

1) ]dll # !uel, g is not orthogonal to the right eigen-
vector of (A - pB)B-l associated with d | and row pivoting is
never .jone to zero tgki for all k.

)

2) !dn‘ # ;dn_lg, ¢, 1is not orthogonal to the left eigen-

PZC IO VY PRI JRU T S PTAU S

vector of B(A - pB)'l, associated with l/dn and row pivot 'ng
is never done to zero t(k) for all k.
n,n-1

3) |dl| # !62[, e, is not orthogonal to the right eigen-

iated with d_ and co

vector of B-l(A - pB) assoc

is never done in zeroing b2

} # |dn-l;’ e, is not orthogonal to the left eigen-

e
k) for all k.
,1

b) e

vector of (A - pB)-lB associated with 1./dn and column

for all k.

pivoting is never done to zero bﬁkg 1
,n~
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Proof. The proof of (1) entails looking at the power method
for solving (A - PB)x =q Bx given by

1) Set X, to e, and k to 0. /

2) Find y such that By = X -

5)Set z to (A-pi)y .

o SR U LY HCRIE S L e bt s AR

k) set x .. =zlizll -
If|[§k+l - 5k“ is small then stop,

otherwise, s2t k to k+l and return to 2.

el i

e

If |dl|>|de] and e, is not orthogonal to the left eigenvector of
(a - pB)Bﬂl corresponding to dl’ then the power T~thod converges and
X will be that eigenvector. We note that X, is in the direction

of ((a& - pB)B-l)sgl, which, according to Corollary 3.1, is also the

L A A Bl e N S E s A I

direction of ngl. Thus if the power method converges, it should be

clear that Q

Virf1 = Vs t I (2 - 1)

where ¢, 1is some scalar and f, + 6 as k 4 o,

k k ~
= v -1
Since vk+l = kLk
T-1 _ _-1.-1 -1 .
and Lk = Lk,lLk,e"°'°""Lk,n-l where Lk,i is in £i

vhich means that f;l either has the form

1 g*
Tk,1
0
X
0
0
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0 X }
1 H
o i
3 N :
0 i :
then either ;
% Veel1= B T T+ (@ -2) 3
;
or v = - ',
1% = Y Te, k%1 - g,
F < i (k) _
If pivoting is never done to zero t; ) then equation
L, .
(2-2) holds for all k and Ve, is linearly independent of the other .
c colunns of V,, and if equation (2-1) is also satisfied, L must
, s .
be approaching O and Lk,l must be approaching the ideéntity matrix,
i.e. the LZ algarithm must be converging. If equation (2-1) holds but
< the first column of Vk is approaching a multiple of the 'second column
of Vk, then we cannot assert that LZ will convérge. It is possible:
for equation(2-1) to hold without Loy converging to the identity matrix.
b
s The proof of (2) entails looking at an inverse iteration scheme
for finding x such that (AT - pBl)x =dBTx . The iteration scheme can
be summzrized as follows:
T :
1) Set X5 to e > k to O. |
s Ty, _ T 1
2) Find z such that (A" -pB)z = B'x_ - ;
3 - is 1 t i
3) If z is large, stop. %
L) set ¥, o gﬂ[g“ , kK to k+l, go ta 2. %
- 3
<
TN

or the form
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It Id | < |d : | and e is not orthogonal to the left eigenvector of
n n-1 ~n

B(A - pB)-l corresponding to l/dn , then the inverse iteration scheme

will converge and z will be that eigenvector. The vector X is always

in the direction (AT - pBT)‘lBTgn, which, according to Corollary k4.1,

is also the direction of V.Tgn. Hence if the inverse iteration scheme

k

converges, then for large k ve ﬁay write

.
. Vira®n = %'k & T Lk (@ -3)

where Sy is some scalar and gk approaches § as k approaches infinity.

- «T =T
Since vkEi = Vk Lk
f o op . I T _ s
and Lk = Lk,l ,2"""pk,n;1 where Lk,i is in £1
] ' ' 6; ]
= oo ( T ) ¥ is a d trix
- — where X is a dense ma
eT l I’l{,n-l
3
then either n-2 .
: -T -T -
= V + v 2=
V41 Sn k on ﬂk,n_lgzléj k-J (2-4)
T e g T
. = = - + =
or Vi+1Sn ;g;éjvk &5, Te,0-1% Sn

wh;re che cJ's are grod;cts of the multipliers involved in the iteration
step.

. If pivoting is never done to zero ti?i-l , then equation (2-))
holds for all k and the last column of Vi? must be linearly independent
of the other colans of V;? . 1In this case if equation (2-3) is satisfied,

then nk,n-l must be approaching zero and LZ must be converging. If

50
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-T
equation(2-3) is satisfied but the last column of V. 1s approaching
X

a linear combination of the other columns of V;T as fast as it is converging

to an eigenvector then we cannot assert that LZ will converge.

The proofs of (3) and (4) closely resemble those of (1) and
(2). For (3) we consider the inverse iteration method for finding x
such that Bx = g(A - pB)x and use corollary5.1. For (4) we consider
the pover method for determining x such that B~ (AT - pB') 1x =q.x and

use corollary 6.1. l

Theorem 9 requires more elaboration. It would seem that because
the matrices Vk and wk have determinant 1 for all k, the linear depen-
dence of the columns of these matrices and their inverses should not be
an issue. However, if we look at the singular values of these matrices
we can get a different picture of the situation. It is possible for these
matrices to become singular at the same rate as one of their columns is
avoroaching an eigenvector. If the last two columns of V;T ai'e approaching
the zame vecbor, then we cannot asswae that pivoting will stop and the
algorithn will converg: . This facl is brought out by the follcwing

2 by 2 example.

Let B be the identity matrix and A the real matrix

where bl > |al > 0. If LZ is applied to the above problem with
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&!.,2/b22 as the shift policy, the shift is always O, and A and B
are left unchanged by each iteration and the algorithm does not converge. )
The least singular value of V;? is given by the smallest eigenvalue
value of
= \J
1 -a/b \*
a2
-a/b 1+ 5
b )
. . k
which is t where
2
a a a
2 + —— | 2 +
b2 o | b°

Since 0 < ja/b| <1, |t| <1, which means that as k increases, V;?
approaches a singular matiix and hence its columns become multiples of .
each other.

It is ironic that we seem to resquire that e be nonorthogonal to

a right eigenvector of a UHM and that e, be nonorthogonal to a left

eigenvector of a UHM. If the situation were reversed, there would be
no problem, for if e were perpendicular to a right eigenvector of a UHM

then the eigenvector must be 8.

-~

The last interesting fact about Theorem 9 is that it suggests
pivoting schemes which should converge although perhaps very slowly.
If we find that pivoting is necessary to stably zero ta,l or b2.l,
we could change the shift so that pivoting is no longer necessary. wé

could then view the matrices as representing a new problem, and hope- g

fully the two new largest eigenvalues do not have the same modulus.
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COUNTEREXAMPLES

This section contains a partial listing of 3 x 3 examples for
which the¢ T2 algorithm will not converge when the shift is the eigen-
value of Lhe lowest 2 x 2 subproblem of Ax = ABx closest to

a n/b . The counterexamples share seversl characteristics:
nn nn

1) The subdiagonal elements of A and the matrix B repeat
themselves every third iteration.

2) Row and column pivoting are necessary at each stage of the

e T T A T B T L S st ) X A i L e

process.

"o N

3) The shift is the same for each iteration.

et

The first property guarantees nonconvergence. The second

property is a nccessary condition for the first property: if at some
stage pivoling is not required to maintain nuerical stability, then
cycling will not continue as befora., The third property indicates

that the constant shifting bypothesis of Theorem 8 is realistic in terms
of actual computation, In fact, a constant shift may be useful in -
practice ¢35 3 warning c“ nonconvergence, It is significant that no
condit ion is specified for the eigenvalues of a problem. There are
countcrexamples in which all the eigenvalues are of distinct modulus.

The first class of examples is the basic one. 1In this case the

matrices inilially look like




where the following conditions hold:

la] < |n| las/e ] < || |an/g | < el
|as/n| < {gl |aw/&] < || la | < ||

o] < fe| |oa/ (6)| < |e| Jbn/s| < |l
ow/ £ < |g |om/ (e£3] < 1=} o] < el

3
B
|
;:é

If B is the identity matrix and A is the matrix

1 2 3
L 0 0
0 5 0

; then the above conditions are satisfied.

For problems in class 1 the shift is zero for each iteration.

ol

After one iteration the matrices are

A B
as/g bhm/(fg) h s 0 O
f 0 0 0 m 0
0 c 0 0 0 g .

Afier two iterations the matrices look like

A B

am/ g bhm/(cs) f m O O

c 0 0 0 g 0

0 h 0 0 0 sl

After three iterations the matrices return their original forms.

The second class of examples consists of those problems whiah

fall into the first class after one iteration but initially look like
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class have the form o

A B
a b c g 0 o
h 0 0 0 s 0
0 f 0 ' 0 0 "'m

where a and b are complicated expressions.

The third class of coimtere:xamples includes problems in which A

and B are initially given by '

A B
a b c m £ q
h d 0 , o m o0
0 £ d | \O 0 m/.

The shift is d/m and after shifting, &,, and 3,; are zero. If

this new .problem is in class 2, then in one iteration before the shift

has been added back A and B would look like
X y h m 0 0

£ 0 o}l 0 m 0

0 0

Ggige aoa Y TS

A B I
X y Yy m P q
e d 0 o g 0
0 h 0 (0] (0] I3
- : x l .
%] < fel oy -Ea<in
o - % 8] < |m| © | e (v - T d)sfh| < |nl, x
The first shift is O and after one {temtion thé matrices of this

PEY Ty W

P
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b
M
£
i
M
3
4
4
i
i
4
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where. x and y are again nbnsimple expressioqs. Shifting béck sets

a,

<

%4

will repeal themselves every.third iteration if their elements satisfy

the appropriate magnitude relationships.

If in the previous example, a22

first shift would again be d/m . TPerforming one iteration and

! were initially zero, the

o

shifting back set the element 8sn to d and revert us to the previous

example.

These counterexamples indicate that assuming the algorithm
uses a constant shift is reasonable znd that given
this assumption, the structure of L and M is important. The.above
examples were all constructed by agsuming that pivoting waé necessary
to maintain stability at every step of the algorithm. Indeed if
pivoting ceases at some stage, then “cycling" will not continue as

beforeﬂ It is coubtful that without an analysis of a given shift

strategy we can weaken significantly the criteria given earlier for global

convergence. Moreover, it is extremely doubtful that such an analysis

could give us more than assymptotic convergence results.

sy 0 and a, to d. From here it should be clear that the matrices

M L Saa CENS bt T s
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APPENDIX

NUMER1CAL RESULTS AND FORTRAN PROGRAM

The algorithm described in Chapter 1 has been implemented
in a Fortran program. The program is designed to find the eigensystem for
complex matrices, and consists of two subroutines which must be called
separately. The first subroutine,GELHES, reduces A to upper Hessenberg
form and B to upper triangular form. If A and B are already in these
fcrms and no eigenvectors are required, then calling GELHES is unnecessary.
The seccnd subroutine GLR finds the eigenvalues and, if requested, the
eigenvectors of the system. The parameters involved in the subroutine
calls are described in the comments at the beginning of each subroutine.
Both subroutines use the subroutine RABS to compute the norm of a
complex number. )

It should be emphasized that the variable MACHEPS is machine
dependent. It is Bl-t where the machine gives t digits in base g. It
is set for the IBM 360 double precision mode.

Our program has been finding eigenvalues which correspond to
problems close to the given problems: our relative residuals bave alwajys
veen ¢lone to the precision of the machine.

For our test cxamples the total number of iterations has been
roughly 35 times the order of the matrices. In general, for a matrix
of order n, the time required on the IBM 360 model 67 in Fort:an H,opt=2,
has been about 750milliseconds if eigenvectors are computed and Ao

milidecornondc 3
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The example given below were generated using integer arithmeti.:

by multiplying two bidiagonal matrices by random nonsingular transformations. The

problems were run on che IR 360 Foriran G compiler. The relative

residual is the quantity

| B3 8% - of | @

RIS T T SRR S FOYS TS XTpwEn

tesl H1all, =+ logl 11BI1,

th
where oy and p; are the i diagonal =lements of the triangularized

A and B and Xs is the ith eigenvector.

In the first example A has rank 4 and B has rank 5 and their

null spaces intersect. Since the rank of B is less than the rank of A,

there is an eigenvalue which might be regarded as infinite because a
small perturbation in B would yield a large eigenvalue. Indeed an

eigenvalue of 1016 was found. The problem is also “ill -disposed”,

because for any vector X in the intersection of the null spaces,

any scalar A will satisfy Ax - ABx , and may be considerc.d

an cigenvalue of the problem. The example also has three
renuine,'inite cipenvalues which the alyrorithm was able to find accurat ely
up to the precision of the machine despite the presence of the two
spurious eigenvalues.

In the second example there are two double roots. The first
corresponds to a quadratic elementary divisor and, as expected, is
accurate only up to the square root of the machine precision. The
second corresponds to two linear elementary divisors and is accurate

almost up to the machine precision.
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Example 1
THE MATRIX A:

575.+ =-116,1 05,4+ =460,
.;55.+ "356.' 3\')5.+ -321‘0
345,+ =192, 1 500,+ =440,
21n,4+ =200,1 =215.+ 298,
-545,+ 15A,1 -115.+ 282,

THE I'ATRIX B:
69.+ =3°07.1 33.+ 504,
241 .+ 7.1 b2.+ 102,
219.+ =333,1 70.+ 558,
45.+ b1k, 1 96,4+ =675,
-91.+ 189.1 =112.+ -207,

TRUE EIGENVALUE
IMFIMITE EIGENVALUE

-0.50000000090050006 99+
-0,500000090309000D N0+
NIGGARERGGE06GGARTD 01+

BA
-0,183210R133238370D

03+

—
-~

8E

W) e

—

(%2 )

YT NN e

1
2
3
L
5 ANY SCALAR
p
1
2
3

A i = =\

-0,.1599211517422930 05+
-D GL2373476326613D 03+

N, 143901600009000D N5+
-0,14E3622019523°3N=-12+

-0,5751379273G7557N-13+
7.1307432977792F50 05+
"L1013372771%366020 0N
f,212700500000009D N5+

-3, 157F64233166312D-12+

CyPRTEN CIGEIVALGE

NOSEARARSNSINSROED 16+
-p,52% 090000010 Ne
-, narnanaaqagnnnn 00+

NVIFCREARTLCOHRRRETD N1+
N,99273060535500310 N0+

RELATIVE ERROR
#.,10290592237L9010 07
S.L579CC207657577=-15
T.0712847858R5692D-15
N URT90RYNT6EST 27 TD-15
J.0

-30.+ 4L56,.1 ho,+
-670,+ 1841 730,+
-n00,+ 352,1 €25,+

199.+ -292.1 -115,.+

-30,+ =276,1 -h0,+

-G2.+ =Ff12,1 143, +

28.+ 36,1 139, +
-8.+ =504 1 167 .+

-56.+ 630.1 130,.+

7G.+ 596,1 =177.+

0.520000000000030D 00
-3,5020090000000009D 09
-0, 66566R666666667D 09

-N,296212E5635A07C8D 03
-0,1157853972€3304D 01
-0.371438242540361D 03
-0,701009390023000D 03

0.5716150832881263D~1h

-N,77833600362525nD=-14

N, 1E1059905715531D 03
-3.27093123378625€D 93
-7.35300290200200r0 03
=0, 2201747290 24630D-13

N, 30572625431 2RG5D 11
n.55016009000000990 90
-9.,50n001709096009009D 00
-0.AEGGECG6S66C6CED 0N
-0,1027€2435314L16LR 09
RFLATIVE RESIDUAL
N, 605556314396225D-16
1.9€1773503715645D~16
9.1124301586551199-15
N,19736L0263N0787D-15
3.923315101€41430D-16
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-165.+ =332.1
235.+ 199.1
-100.+ =-16.1
115.+ 24,1
115.+ 243.1
36.+ LG63.1
-76.+ -468.1
=24+ -=72.1
-52.+ 18.1

=3.+ =372.1

OF ITERATIDS

i

3
3
2
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Example 2

E | NONLENEAR DIVISOR
THE  MATRIX A

311.+ =339,1 397.+ =993, 1 0S.+=1932.1 =250+ 240,1 -112.+ =-F72,1
6h.+ <272,1 =-1053.+ 1738.1 127.+ -694.,1 c33,+-1209. 187 .+ -80E.1
-12h,+ 429,101 -853.+ 10231 81.+ 176,1 £79.+ =564,1 =3.+ 112h.1
2.+ <776, 1 531.+ 11.1 115.+ -139.1 =377.+ 843.1 =74+ L, |
=125.+ =709,1 <5G0,+ 1057,1 153,+ 1641 452, + 52.1 155.+ 212.1

SLI WS mELs iy, bt

THE NATRIX B:

v,

180,+ 11,1 360.+ W7, 72,+ 104,101 -180.+ 0.1 =lb4hL,+ 96,1
163.+ 5,1 =546,+ 69,1 210, + L6, | 588.+ 24,1 -42,.+ 6.1
90.+ =61,1 =u50,+ =47,1 132,+ =~40,1 L59,+ b “6.+ =124,
h2.+ f0,1 336.+ =51,1 =24, + 17,1 =~258.,+ =56.1 -60,+ b,
12,.+ 77, =354,+ =G5,1 GG+ =22,1 312,+ =52.1 30.+ =28.1

xS ANt

TRUE EIGENVALUE
D,11CFRERGRGGGORELTD N1+ -0,133333333333333D 01
0.1166C6G6G66FHG7D 01+ =-9,1333333333333330 01
-0.,2n9000500002000D 01> 0.100003000000000D 01
=7,99060099000000¢0 01+ -0,10920093020000903D 91
=0.,990590000000000D 01+ =-0.1900C6507000900D 91

=
=
DWW
-
>

-0,22022525932F724D O+ %.253194371729470 04 |
-0,G700835412374LG6GR 03+ 3.729ul102000a00D 03
=0,422279641115513D N3+ N,152R883991F5523%3D 94 |
!
!

LAt M T 20 Y D ot b A o A Are 8 AESUXA e

N,130ET71H4L257219D N3+ N,50577°476%53142187D0 23
=0, 218G015335040130 91+ N,715931133396420D 02

=C,1395F720°20023052°D O+ 7,52736303%922535n 01
=0, 5527028071452 020 a3+ =0 156RE2SR202%3453D 02
TLERTS571547196251D N2+ -0,1701137513592120 03
=0,27052535135710640 N2+ -0,7232312797612930 12
1,13519296003512520 0NN+ -0,7259449759828930 N1
COUPUTED EIGENVALUE

0
ga ]

A dioH-{v WO
>

1 N.11IRGEGRAESR37220 01+ -0,133333335272873€0 01 |
2 VT AICRCECCATRIGTIID N1+ -0,1335333316579310 01 |
30 =0,7900060000000000 N1+ 7,7119909990999850 03 |
Lo =",a03909369000029D0 91+ -n,2299999933390957D 00 |
S =0.909000000990373D &1+ -0,9727992392999578D €0 |
RELATIVE ERROR RELATIVF RESIDUAL (0. OF ITERATIDNS
1 7,70335337561280D-01% N.539711256255343D0-1F 0
2 DTA53387294796970=0", G.O585071190607 820017 1
3 nN,2712279232133100=14 2,164571532177435D-15 3
) D.53938590572319820~15 7.1274836297#95855D0-15 1
5 N.222044504025031n-114 n.AN19465227544600-16 1
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SUBROUTINE GELHES(NDyNsAsBoWANTX 9 Xy EPSA¢ EPSB)

THIS SUBROUT INE REDUCES THE COMPLEX MATRIX A TO UPPER
HESSENBERG FORM AND REDUCES THE COMPLEX MATRIX B TO
TRIANGULAR FORM '

N A A et s A
N .

INPUT PAKAMETERS:

ND THE KUW DIMENSION OF THE MATRICES A,BeX i

N  THE ORDER OF THE PROBLEM

A A COMPLEX MATRIX -

B8 A CUMPLEX MATRIX

WANTX A LUGICAL VARIABLE WHICH IS SET T0 .TRUE. IF .
THE EIGENVECTORS ARE WANTED. OTHERWISE IT SHOULD

BE SET 10U .FALSE.

JuTPUT PARAMETERS:

C et

A ON OUTPUT A IS AN UPPER HESSENBERG MATRIX, THE
ORIGINAL MATRIX HAS BEEN ODESTROYED

b AN UPPER TRIANGULAR MATRIX, THE ORIGINAL MATRIX
HAS BEEN DESTROYED

X CONTAINS THE TRANSFURMATIONS NEEDED TO COMPUTE ;
THE EIGENVECTURS OF THE ORIGINAL SYSTEM .

EPSA THE NURM OF A*THE PRECISION OF THE MACHINE

EPSB THE NURM UF B*THE PRECISIUN OF THE MACHINE

2N ol ol alaN oY aNa sl sl ol al sl ol ol e el aN ool el s a N aN o N aRa N o ol o N o o¢

C#s%x THE VALUE UF MACHEP [5 MACHINE DEPENODENT ss%s2s%
Coekxx®[] S SET FUR THE [IBM 360 MACHINE, DOUBLE PRECISION#*s3%%%

PROBLEMS wlTH THIS SUBROUTINE SHOULD BE DIRECTED TO:

LINDA KAUFMAN

SERRA HOUSE

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY

occCcoOaOne

COMPLEX #16 Y, AIND,ND)¢BIND¢ND) X (ND,ND) :
RCALFE ANIoONI»CoRAUSID(EPSAG;EPSR  MACHEP . ANORM. BNORM g
LJGICAL WANTX 3
NMl=N-1

¢
C CUMPUTE EPSALEPSH

Fade n e o L [ R

P2 S Y Y Ry =T




C
C
c

10

11

12
15

18
19
20

30
C

MACHEP=2,22D~-16
ANORM = O,
BNORM = O,
00 S I=],N
ANI = O,
IF (1oNE<l) ANI = RABS(A(lI,1I-1))
BNI = 0,
00 3 J=1oN
ANL = ANl + RABS(A(19J))
BNI = BNl ¢ RABS{(8(14J))
CONT INUE
IF (AN1.GT.ANORM) ANORM = AN]
IF (BNI.GV.ODNORM) BNORN = BNI
CONTINUE
IF (ANORM.EQ.0QO«) ANORM = MACHEP
EPSA = MACHEPCANORM
EPSB = MACHEP*BNORM

REDUCE B TO TRIANGULAR FORM USING ELEMENTARY TRANSFORMATIONS

DO 30 I=1,NM]
D=0.000
1P1=]1+]
DO 10 X=IPLl,N
C=RABS(BI(K,1))
IF (C.LE-D) GU TO 10
D=C
11=K
CUNTINUE
IF (0.EQ.0.D0) GO TO0 30
IF "DelLE.RABS(B(1,1))) GO TO 15
00 U J=l,N
=All4J)
AtlJd)=Al11,J)
(W {Iledd=Y
DO 12 J=1,N
Y:8(1,4)
BileJdd=Bllled)
B¢il,J)=Y
DO 20 J=[P1,N
Y=BlJoeI)d/BULi,l)
IF (RABS1Y).EQ.0.00) GO TO 20
00 18 K=l 4N
AlJoK)}=ALJ o K)-YEALL,K)
DO 19 K=]IP]1,N
BlJoK)=BlJoK)-YEB({4K)
8{Js1)=10.00,0.D0)
CONTINUE
CONTINUE

C INITIALIZE X

c

IF (.NOT.WANTX) GO TO 40
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00 38 I=1,N ' ;
- E DU 37 J=1,N 3
: & 317 X(I14J)=(0.00¢0.00) 1
E 38 X(Iel)=(1.00,0.000)

1 C .

% : c REDUCE A TU UPPER HESSENBEKG FORM

3 s C i

40 NM2=N-2 ; !
IF (NM2.LT.1) GO TO 100 : :
D0 90 J=1,NM2 :
JM2=NM1-J
JPl=J+]
DO 80 lI=1,JM2 :
I=N#1-11 ’

iMiI=[-1 :
IF (RABS(A(IsJ))<LE.RABS(A(INL,4))) GO TO 50 i
DO 45 Kx=J,¢N 3
Y=A(l,K) :
A(LK)=A{1MLl,K)
45 ACIML,K) =Y
DO 46 K=IM1l,N :
Y=81{1,K) i
BlIsK)=B(IMLl,K) ‘
46 BliIMl,K)=Y
50 IF (RABS(A(I+J)).EQ.Q0.D0) GO TO 58
Y=AC(L9J)/A(IML,J)
D0 52 K=JPl,N
52 AlL oK)=A(1 oK)~ Y‘A(IHI'K)
A€l 9d)=(0.000,0.00)
DU 54 K=[Ml,N
54 B(I ¢+K)=B({sK)- Y'B(lﬂltK)
C TRANSFORMAT 1ON FROM THE RIGHT
58 IF (RABSE(B(I,1IM1)).LE.RABS(BI(I, I))) GO 70 70
DO 60 K=1,1
YaB(Kel) .
BIKs1)=B(K,IM1)
60 BIKyIML)=Y
D0 64 K=1,N
Y-"A(K. I'
AlKy L )=A(K,oIM1)
64 A(KyIMLl) =Y
[F (JNOT.WANTX) GO TO 70
DO 68 K=],N
Y=X{(K,1[) t
X{KyL)=X(KyIM1)
68 X{KelM1l)=Y
70 IF (RABS(B(I,IM1)).EQ.Q0.D0) GO TO 80
Y=B(L,IML)/8(1,1)
DU T2 K=1,1M1 3
72 BIKo IML)=B (Ko IM1)-Y$B(K, 1) !
B(IiML)={0.004,0.00) i
DU 74 K=1,N . i
74 A(K, IML)=A(K,IML)-Y*A(K, 1)
IF {.NOT.WANTX) GO TO 80
00 76 K=1,N

XL Y 8 (X KD g S dia Sty
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76 XK IML)=XLK  IMEI =Y XK, )
80 - CONTINUE
90  CUNTINUE
100 RETURN !

END :

SUBRUUT INE GLRUNDsNNpAsBo®oXs ITERsEPSA)EPSB o WANTX 9E IGAoELGB)

THIS SUBROUTINE SOLVES THE GENERALIZED EIGENVALUE PROBLEM

A X- = LAMBDA B X
WHERE A IS A CUMPLEX UPPER HESSENBERG MATRIX OF ORDER NN AND B IS
A COMPLEX UPPER TRIANGULAR .MATRIX OF ORDER NN

INPUT PARAMETERS

ND ROW DIMENSION UF THE MATRICES A¢ByXoITER,EIGA,EIGB

'2XaksXkakakziskakskakalalalaRakaNaksial s el alaXaaala ool o ol aN o o N aR aRa N e ol a ol o N ol aN o N o R o N N o N o)

NN ORDER OF THE PRUBLEM
Al AN NN X NN QPPER'HESSEHBERG COMPLEX MATRIX

8 AN NN X NN UPPER TRIANGULAR COMPLEX MATRIX

* ERROR RETURN; [F. AFTER 30 ITERATIONS, THE NORM OF THE
SUBDIAGONAL UF A HAS NOT SHOWN A SUFFICIENT DECREASE

X : CUNTAINS TRANSFORMATIONS TO OBTAIN EIGENVECTORS OF
ORIGINAL SYSTEM
IF - GELHES HAS NOT BESN USEDy X SHOULD BE THE IDENTITY MATRIX

MANTX LOGICAL VARIABLE WHICH SHOULD BE SET TO .TRUE. IF EIGENVECTORS
ARE WANTED. OTHERWISE IT SHOULD BE SET TO FALSE

EPSA THE NORM UF A TIMES THE MACHINE PRECISION. NEED NOT BE
SET IF GELHES HAS BEEN USED

EPSB THE NORM OF B TYIMES THE MACHINE PRECISION. NEED NOT
BE SET IF GELHES HAS BEEN USED -

OUTPUT PARAMETERS

L] THE ITH COLUMN CONTAINS 'THE ITH EIGENVECTAOGR IF EIGENVECTORS ARE
REQUESTED :

ITER AN INTEGER ARRAY OF LENGTH NN WHOSE ITH ENTRY CONTAINS THE NUMBER
OF ITERATIUNS NEEDED TO FIND THE ITH EIGENVALUE

EIGA AN NN ARRAY CONTAINING THE DIAGONAL OF A ¥
EIG8 AN NN'ARRAY CUNTAINING THE DIAGONAL OF 8

THE ITH EIGENVALUE CAN 8t FOUND BY DIVIDING EIGALI) BY EIGB(I)
WATCH DUT FOR EIGB(LI) BEING ZERO

Cessssrtes THE QUANTITY MACHEP [S MACHINE OEPENDENT#*sss%sss
Cesssssses [T [S SET FOK Tuﬁs}ﬁﬂ 360, DUUBLE PRECISION®*s3s%ss
]
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C
C PROBLEMS WITH THIS SUBROUTINE SHOULD BE DIRECTED YO
C LINDA KAUFMAN
Cc SERRA HOUSE, COMPUTER SCIENCE DEPARTMENT
C STANFUORD UNIVERSITY
C
C
LOMPLEX*16 AIND,ND) 8B(NDyND),EIGAI(ND)EIGBIND)
COMPLEX®*L6 SsToneYeZoDCMPLX,CDSQRT TS
INTEGER ITER{(NUL)
CUMPLEX®*16 ALFM,BETMyDySLsDENy ANN,ANMLN, ANM1M]
REAL*B EPSAEPSB¢SS R ,OLD(NEMW
COMPLEX*16 X{(NDyND)
REALT8 MACHEP/2.24D-16/,00,D1 4D29E04EL,RABS ,0ABS
LOGICAL WANTX
N=NN
C
IF (NJ.LE.1) GO TO 100
10 11S=0
NM1l=N—-1
11 DO 12 LB=2yN
L=N+2-LB :
IF(RABS(A{LsL=1) ) LE.MACHEP*{RABS(A(L-],L~-1))
. *RABSLA(L,L))))

12 CONTINUE

L=1

13 IF{L.EW=N) GO TO 100

IF (1TS.LT.30) GO T0 20
IF (ITS.6T7.50) GO YO 16
OLL=0.00
DO 15 I=1,NM1

15 OLO=0LO+RABS{A(I*1l,1))
GO Tu 20
16 NEW=0.00

DO 19 I=1s4NM1

19 NEW=NEW+RABS{A(L+1,1))

nNeCoo

IF (NEW.GT.0.5%*0LD) RETURN 1
ULD=NEMW

CHECK FOR 2 CONSECUTIJIVE SMALL SUBDIAGONAL ELEMENTS

0 IFINLEQ.L+]1) GU TO 25

D2=RABS (A(N-1,N-11})
EL=RABS(A(N,N-1})
O01=RABS (A(N,N})
NL=N-(L#+])
DO 24 MB=14NL
M=N-MB
EO=Et1l
€ 1=RABS{A(M,M-1))
LO=0D1
D1=02
D2=RABS(A(M-LsM-1))
IF(EU*EL .LEJMACHEP®DL*(DO+DL+D2)) GO TO 26

24 CONTINUE

6%

GO 10

AR T LT R E
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3
M
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. 26  CONTINUE
E c

IFLITS.EQ.10.0R.ITS.EQ.20) GO TO 38

: c
E C COMPUTE SHIFT AS EIGENVALUE OF LOWER 2 BY 2
c
ANN=A(NyN)
ANMIN=A(NM]1 sN)
ANMLM]1=A(NM]1,NML1)
ﬁ S=ANN*®BI(NML yNM1 )-(A(N,NML1) ) *B(NML,yN)
{ W=A(NgNML)*B (NyN)*( ANMINEB(NML o NM1) -
I BUNM]l,N)*ANMIM])
Y=(ANMLMI*B(NsN)-S) /2.
L=COSQRT{Y®RY#+N)
[F (RABS(Z) .£EQ.0.D0) GO TO 36
DO=Y/Z
IF‘DOOLTCOODO, l==/
36 DEN=(Y+Z)#*B {NML ,NM1 )*B(N,N)
W=A(M M)SDEN-B(My M) *( (Y+.)*S-H)

Hid) ;8

T AT 7R o f e TSR R Y AL BT

( L=A{M+1,M)*DEN
1 GO TO 40
: (o
' C AD-HOC SHIF:
c

Cane e

38 W=A(NyN-1)
Y=A(N-LoN=-2)
W=A(M M)-DCMPLXIRABS W) s RABS(Y))*B( My M)

I=A(M+1,M)
490 CONTINUE
ITS=]TS+]
C
C FIND L AND M AND SET A=LAM AND B=LBM
C
NP 1=N+]
LUR1=L
NNORN=N
IF (4NOT.WANTX) GO TO 42
LOR1=]
NNURN=NN
42 D0 9C 1=M,NM1
Jxl+l
C

C FIND RONW TRANSFORMATIONS TO RESTORE A TO
C UPPER HESSENBERG FURM. APPLY TRANSFORMATIONS

C TO A AND B

c
IF (1.EQ.M) GO TO 50
w=A{lyi~-1)
L{=AlJyi-1)
50 If (RABS (w).GE.RABS(Z)) GU TO 6G
c
C MUST PIVOY
C

Du 55 K=],NNORN
66
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1
j

Y=A(14K) ;

] A(L sK)=ALJ oK) é

E A(JoK)=Y 4

f Y=B(1,K} k

E Bll K)=B(Je¢K)

£ 55 B(J oK)=V 3

£ V=Ww/l :

§ IF (1.GTM) A(Lyi-1)=A(Jel~1) E

£ GU TG0 62

i 60 Y=1/u

: 62 IF(RABS(Y).EQ.0.00) GO TO 65

DO 64 K=1,NNOXN
AlJ +K)=A(JsK)-Y*A(],K)

64 B(JsKI=BlJyK)}-Y*B(i,yK)

IF (1.GTM) A(Jyi-1)=(0.00,0.00)
C
C PERFORM TRANSFORMAT IONS FROM RIGHT TO RESTORE 8 TO
C TRIANGLULAR FURM
C APPLY TRANSFORMATIUNS TO A

o
i
§
i
{

edo B AO LD AV AL K87 T L3 VA 1A DD i A Lot £ kA Yy FEA ERA LR 1A

C
65 IF (RABS(B(Js1)).EQG.0.D0) GO TO 11
IF {RABS(B(J,J)).GE.RABS(B(Jo1))) GO TO 80
C
C MUST PIVOT COLUMNS !
C :
D0 70 K=LORL,J ;
Y=A(K,J) :
AlKyJ)=A(K, 1) y
AlK,I)=Y i
Y=B(KsJ) §
B(KeJ)=B(Kyl) E
70 B(Ky1)=Y i
IF {I1.EQ.NML) GO TO 75 ;
=A{J*1l.J) X
AlJtlsad=a(J*l, 1) |
A(J+1,1)=Y :
75 IF(.NUT.WANTX} GO TU 80 E
DO 78 K=1,NN i
Y=X(KyJ) :
X{KeJ)=X(Kygl) :
78 X(Kos1)=Y :
80 IF (RABS(B(Je11}).EQ.0.D0) GO TO 90 :

L=BlJ,1)/80Jed) '
DU 82 K=LURLsJ *
A‘K'I,=A‘K|l)‘L‘A(K'J, )
82 BIKe1)=B(KsI)-L%B(Ked)
BlJel)=10.00,0.00)
IF (P.LTNML) AlL42,0)=A(142,1)-2%A(1%2,4)

IF(.NOT.WANTX) GO TU 90 |
DU 85 K=1¢NN
85 X(Ky 1) =X(Ky [)=28X (Ko J)
90 CONT INUE
GO TU Ll

C
100 CUNTINUE

67
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EIGAIN)I=A(N,N)
EIGBIN)I=B(N,N)

IF (N.EQ.1) GO TU 110
ITERIN)=ITS

N=NM]

IF (N.GTsL) GU TG 10
ITER(1)=0

GU TO 100

C
C EIND EIGENVECTURS USING B FOR INTERMEDIATE STORAGE
C
 §

10 IF{.NUOT.WANTX) RETURM
M=NN
115 CONTINVE
ALFM=A(M,M)
BETM=B(M,M)
8(MsM)=(1.D0,0.00)
L = K-l
IF (L.EQ.0) GO TU 140
120 CONTINUE
Ll = L+l
SL = 0.
DO 130 J=L1l.M
SL = SL & (BETM®A{L,J)-ALFM®B(L ,J) )*B(JoM)
130 CONT I NUE
D = BETMsA(L,L)-ALFMsB({L,L)
IF (RABS(D)<EQ.0.) D = (EPSA+EPSB)/2.
B(LsM) = -SL/D
L =L-1
140 IF {(L.GT.0) GO TO 120
M=M-]1
IF (M.GT.0) GO TO 115

&0V e O B 1T A L b,

FATL NN L Py

1y

ST T RNRT IOV LI

C
C TRANSFORM TO ORIGINAL COORDINATE SYSTEM
Cc
M = NN
200 CONTINUE
00 220 I=1,NN
S =0.
DO 210 J=1.M
S =S ¢ X{l,J)1%8(J4oM)

210 CONTI NUE
XK{lyM) = §
220 CONTINUE
M= M)

IF (M.GT.0) GO TO 200

c
C NORMALIZE SU THAT LARGEST COMPUNENT = 1. '
L
M = NN
230 CONTINUE
$S = 0.

D0 235 I=14NN
R = RABSIX(1I,M))
IF (RLTSSS) GO TO 235

68
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$$ = R : : '
D = X(X,M) -, :
235 CONTINUE ' '
s IF (SS<€Q.0.00) GO 10 245
DO 240 I=1,NN’
X{IeM) = X(I,M)/D
240 CONT INUE .
245 M= M1 . . ‘
IF (M.GT.0) GO TO 230
: RETURN '

&
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: REAL FUNCTiON RABS*8(4) 3

COMPLEX*16 I,27 o

REAL*8 Ti2) ,DABS : :

EQUIVALENCE (Z4,T (1)) :

L1=2

RABSSDABS(T(l))fDABS(TGZ))
z RETURN

END
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