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: 1 Ap3ITRACT

: In this paper, we will present and analyze an algorithx for finding x and ) : }
such that Ax = )Bx, where A and B are n x n Exatrices. The "algorithe does :
not require matrix inversicr, and may be used when either or both matrices are |

> singular. Our method is a generalization of Rutishauser's IR =etsnod for the
] standard cige:.. ue prodlexm Ax = )x and closely resembies the QZ algorithe

3 given by Moier a 4 Stexart ‘or the generalized problem given stove. ‘mlike the “

; QU eigoriin=, which uses ortnogonal transforzations, our =ethcd, the IZ algorithm, :
x uses eiereriary transforreations. When either A or B is complex, our method

saculd be more efficient. .
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PD A GENERALIZATION OF THE Lk ALGORITHM

TO SOLVE AX =) BX |

a3 BY

Linda Kaufman

1) Abstract

In this paper, we will present and analyze an algorithm for

finding x and ) suck that -

3) |

Ax = 3 Bx (1)

where A and B are n x n matrices. The algorithm does not require oo

” matrix inversion, and may be used when either or both matrices are

singular. Our method is a generalization of Rutishauser's LR method [17] J

for the standard eigenvalue problem Ax = )\x and closely resembles the ‘

\ & QZ algorithm given by Moler and Stewart [10] for the generalized problem

given above. Unlike the QZ algorithm, which uses orthogonal transfor-

mations, our method, the IZ algorithm, uses elementary transformaticns. |

@ When either A or B is complex, our method should be more efficient.

£) |
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| The LZ algorithm is based on three observations: ~)
4 1) If L and M are nonsingular matrices, the eigenvalue osroblems ;

| LAMy = ALBMy and Ax =ABx have the same eigenvalues and their eigen- |5 vectors are related by x = My. - 3
3 2) If A is a triangular matrix with diagonal elements os

= r]

and B is a triangular matrix with diagonal elements g57 then for each

iy, 1 =1,2y=--,n, a/B; is an eigenvalue of the generalized problem if g70- ;
If for some i, Bs is zero, then the polynomial, determinant (A-AB) , |
is of degree less than n. If os is not zero and the corresponding

Bs is zero, we say that infinity is an eigenvalue. If for =zme 1,

| both os and B; are zero, then det(A-AB) vanishes for all values

% of A, and every scalar is an eigenvalue of Ax =)ABx . :

E 3) There exist matrices I, and M such that LAM and LEM are 3

upper triangular and L and M are the products of lower triangular and

3 permutation matrices.
3 The first two observations should be obvious; the third requires :
y explanation. In [18] .jtewart shows that there exist two unitary matrices

3 U and V such that

i A’ = UAV and B’ = uPmv

. are upper triangular. The symbol ut indicates the conjugate transpose :
of the matrix U. We nan certainly write :

i | Ulas RL and V as MS :

vhere S and R are both upper triangular matrices and I and M are ;
1 products of lower triangular and permutation matrices. The matrices :

3 RIA rg = LAM and rR 1p/g™d = LBM &re both upper triangular and hence ;
4 verify our observation.
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: ° The LZ algorithm has three parts. In the first part, the matrix :
3 A 1s reduced to upper Hessenberg form, i.e. 8, 3 =0 for 17> j+i,

i and B is simultaneously reduced to triangular form. The first stage |

® of the LZ algorithm is very similar to the first stage of the Moler-

{ Stewart algorithm, and they may be freely substituted for each other.
i The advantage of using our method is that it is about 5/2 faster; the

| ; ® advantage of theirs 1s numerical stability. The second stage of the LZ algorithm1 | 1s a generalization of the LR algorithm and iteratively reduces A to

i triangular form while preserving the triangularity of B. The last part :
| 9 of LZ obtains the eigenvectors of the triangular matrices and transforms :
i them back into the original coordinate system. Throughout the algorithm :
1 stabilized elementary transformations (see Wilkinson [19], p. 164) are : :
3 ® used to insure numerical stability. These transformations are the

products of lower triangular matrices and permutation matrices, and

] are easy tc compute and easy to use. The permutation matrices are :

i ¢ designed to help minimize the loss of accuracy in numerical operations. | :
¥ A further explanation of the stabilized elementary transformations uced | :
& | in the heart of the LZ algorithm is contained in the notation scction ;

® at the end or this introduction. | !

3 I. BACKGROUND I
: 8 As Lancaster { 8] and Gantmacher [6 ] point out, the generalized |
| eigenvalue proolem often occurs in the physical sciences. Many mechan- :
3 ical and electrical systems are governed by a differential ecuation of

s the tom ;
: C¥ + Dx + Ex = 0

1 ¥ 2 i
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| where C, D, and FE are n x n matrices and the solution is expected to
1 hav- the form x(t) = €"’x(0). Solving the ordinary differential equation

entails finding the eigensystem of :
3 3
; 5 1

5 (AC +AD + E)x =O :

(| If no camping occurs and the D term is missing, the problem is like :
A the one given in (1) in 22. If the system is damped and the D term 5
A 2

1 is present, the problem can be reconstructed to have the form of (1) :
: where now A is the matrix 2

g D I

3 C 0 3

| :2 |
pe | I.
| and B is the matrix J
be | 4

E- EE 0

3 0 I 3

;
|) In any problems, especially those which describe physical systers, 5

} A and B have sone spacial structure and most of the algorithms in the :
: literature are designed for matrices heving specific properties. In [ 9, T

; Martin and Wilkinson have given a method for A,B symmetric and B positive :

definite. Crawford { 2] he: presented a modification of that algorithm :

; vhen B is a band matrix. In [7], Golub, Underwood and Wilkinson describe :
: 3

z a version of the Lanczos algorithm for £,B symmetric and B positive definite. ;
3 3

: Fix and Heiberger [ 3] have a method designed for illconditioned B which i

3 requires the determination of the rank of certain submatrices in A and B. i

If symmetry and positive definiteness are not present and B is well con- {
-1 2

ditioned, the eigensystem of Ax = ABx can be found by forming B A and $

determining the eigensystem of B Lax = Ax, for wnich there exist 3
i

severel good methods. For a nearly singular B, Peters and Wilkinson [15] :
2

; " :

a
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3 2 describe an algorithm which approximates the null space of B. This {
Xe

\ e epproach involves determining the rank of submatrices which is often difficult
to do exactly on a finite precision computer.

3. Recently Moler and Stewart [ 10] have presented an algorithm for |
1 PS 50lving the generalized eigenvalue problem which may be used regardless
2 of the coraition and structure of the two matrices. Our algorithm

; resembles the QZ algorithm in that we generalize Rutishauser's LR

: 1 PS algorithm { 17} in the same way “hat Moler and Stewart generalize Froncis's
: QR method [5 ] for the standard eigenvalue problem Cx = Ax. Before

: ; we describe our algorithm in detail and discuss its relationship to the

| ® QZ method perhaps it is best to review the QR and the LR methods. In
practice, the LR method for the problem Cx = Ax 1s essentially:

1 | i) Reduce C to upper Hessenberg form using similarity
; ® transformations.
: 2) Determine a shift 1.

: | 3) Find L, a product of stabilized elementary transfor- |
® mations, and R, an upper triangular matrix, so that

L(C - 121) =R.

LY Set C to wert. The matrix C will ve upper Hessenberg. |

® 5) If the subdiagor.al elements of C are rot negligible,

return to 2. |

6) The eigenvalues of %he original matrix are the diagonal |
® elements of C.

The shift A 1s used Lo speed up the algorithm, which converges |
according to the ratios of the shifted eigenvalues. In practice, the shift i |

9 usually an eigenvalue of the lowest 2 x 2 subtlock on tne diagonal of |
C which has not been triangularized. This policy often gives a good 3

> ¥

® ;



i approximation to an eigenvalue of the whole matrix. |

| The basic QR method is approximately the same as the LR method !
3 with an orthogonal matrix Q replacing the matrix IL in steps 3 and bk.

In practice a double shift implicit version of the QR method is used in :

which steps 5 and 4 read

5) Find Q, an orthogonal matrix, and R, an upper triangular

1 matrix, such that

R=ql=Q(C -2I) (C ~ AI) where a and 2 Lo

| are complex conjugate shifts or a pair of real shifts.
| 4) Set C to ca. |
§ Only the first column of T is ever explicitly formed.

| The main advantage of the double shift algorithm is the preser-
| vation of real arithmetic for real matrices. The Q7 elgorithm also has oo

y this property. Vith the double step GR and QZ methods the final matrix

1s not necessarily triangular, but may have 2 x 2 submatrices on the

diagonal which must be resolved. The LR and the LZ ..gorithms do not |

limit them-elves to real arithmetic but avoid tie 2 x 2 problem. Double |
shift LR and LZ methods are not found in practice because of the lack of

a theoretical basis. Francis [D2 ] has proved “hat one iteration of the j

implicit double shift QR method is equivalent to two iterations of the |

/ basic QR method. His theorem is based on the uniqueness of orthogonal

| transformations which reduce a given matrix to triangular form with |

positive diagonal elements. This unicquerzss property is missing for

stabilized elementary transformations.

3



’ II. The LZ Algorithm as a Generalization of the IR Algorithm {

: 2 The LZ algorithm iz motivated by the LR method described sbove where
3 : the matrix C is AB. However, we do not assume that pt exists. Co
2 Briefly, our algorithm is: |

- § $ 1) Reduce A to upper Hessenberg form and B to triangular :
3 form. : |

: : 2) Find a shift a. | |
4 » 3) Find matrices L and -M, stabilized elementary trans-

1 formations, such that L(A - AB) is upper triangular and
gE LBM is upper triangular. |

. ? 4) Set A to LAM and B to LBM. The new A will be upper i
: : Hessenberg. I: : 5) If the subdiagonal elements of A are not negligible, return to 2. i
x ’ 6) The i 0 eigenvalue is a../b,, if b.. is nonzero. i
q Again the shift is used to hasten the convergence of the algo- i

; rithm. In practice it is usually a solution of the lowest 2 x 2 sub-

18 ® problem cn the cdiagenal of A - AB which has not been triangularized. : ]
: If the matrix C in the LR method is aB™L, then the matrix L | |
; in the third step of the LR method is precisely the metrix L in the :
x ® third step of the LZ method if both algorithms employ the same pivoting ,

3 strategy. This fact is verified by denoting the left hand transformation 1.

1 in the third step of the LZ algorithm by IL and noticing that

1° I(c - AI) = T(aB™" - a1) i.

= T(a - AB)B™ od

: an upper triangular matrix. Thus L is also e transformation which 1
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i 3
i 3
i : :
3 . 3
2 . . . 2

2 { 2 - A LI 4 » 3 . y — p

; triarngularizes C€ - AI; and'if the pivoting strategy is the same, L ;
z ' ' ’ A

is the transformation IL in step 3 of the method IR. y

3 Moreover,it can be shown that che two algorithms produce ~ ;

: correspoiiding iterates. If CC’ denotes the. next iterate in the LP :
: . ’ . ] ;

algorithm and A’ and B’ sre the iterates in the IZ algorithm, ;

3 then in the IR ‘algorithm yo ” y
: . . 2

Ey 3
: ' ut

: and in the LZ algorithm :

3 : : -1 -1_-1_-1 ./ :
3 : AB’ 7 = LaMM "BL :
: ; :
: -1_-1 3

< k
: ~1 f

4 = ICL ~ :
3 ] " ! - 5
| : ~ In Chapter One we will present .~u algorithms. The first is a :

;

A straight generalization of the LR method. The second is an implicit :

{ scheme in which only the first column of A - AB is actually formed. :3 The second scheme requires fewer operations and is more stable. :
3 ;

E III. KOTATION :

: ; :
© 3 To simplify the explanation in the remainder of this paper, we

z introduce the following symbols: ?

| For a complex scalar o, [ja]l will denote |Im(x)| + |Re(er)] - :
4 lof] corresponds to the 1 norm of «o, if ao 1s considered as a vector 3: |

32 : in the complex plane. : ;

: ": ’ . . . . 3
2 In general, the (i,j) element of the matrix A will be denoted )

: . CL . . ms 3

i: by 85 If a matrix A is the Kin element in a sequence of matrices, 32 : 5
4. it will be designated by A and its (i,j) element will be designated 3

¢ 1] :
gi 2
¥ §

: | 7
3 3
£3 8 3

~

oli ' a
; 1

; $

: |
: = a TF me [ET bo — vo — Lo zk 25s N ~ . ) 2
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£, will denote the subset of the set of stabilized elementary ) J

i) matrices described in Wilkinson [ig] having the form i :
i @ .th :
: - 1 cclumn ;

J th 1 =: i rOW =o 1 3 i
1 ;

iy 9 Ts
he tl ,

% ;

| » where Ti < 1, or the form Lo
13 i column pos

1 1 x
3 : . th ;3 1 row =e 0 1 2 Do

» where if) Ri < 1. Blank spaces indicate zeroes. y

} When a matrix is multiplied on the left by a matrix of §£, of the first form | :
only its i+15¢ row is changed, but when a matrix is multiplied on the | |

left by a matrix of £. of the second form, its i and i+l” rows are first
Co interchanged and then a multip.e of the new he row 1s addea to the :

yr 41°Tow. | ;

i We will often use a member of Ls to annihilate an element in :

| the 1435 row of a matrix. For example, we may want to zero as41 j |’ :

3 If either the current a . or a,. is nonzero, then there exists
9» it+l,J iJ |

3 a unique member of £. which will annihilate a., . . Specifically, i
5 - -c ayy CR

i s i ry lirstif 2541, J is less than or equal to | 8s 5 | » we use a matrix o the :

| > form where HI is 8541, 3 24; ; otherwise, we use a matrix the |i iven by =~a../a... . . n the current . : |: second form with 1, glven by 3; 5/8543 3 1f botn the 3541.3 |
and a,3 are zero, then any member of £, will leave a zero in i415ru

-% @
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: ms will denote the subset ot stabilized matrices having the 1:
: form 5i*® column ‘

; thK 1 TOW =m 1 g
on . 1 +] | HiT
&

3 :

: vhere |u| <1, or the form
.th

Eo 1 column

3 1 4

; 1

3 1 TOW «=~ Hy 1 3 2
oo :

wnere <1. ,
lhe I

When a» matrix is multiplied on the right by a matrix of the first CL

2 form, only its i” column is changed, but when a matrix is multiplied ]th st b
: on the right by a matrix of the second form, its i and i+l 3

1] | colwnns are interchanged and a multiple ot’ the new 3+15t column is E:
Fo | : 4

bi added to Lhe 3 Lh column. :

1 The set, T will denote Lhe set of matrices in upper triangular 3
xX A

| form. If A is in T , then a, 3 = 0 for i> j. The set fg will
i |

{ denote the set of matrices in upper Hessenberg form If A is in %& , :i
k: | then a.. =0 for 12> j+l. j

i Each iteration of the LZ algorithm invo.ves multiplying matrices LA 39by preduct of transformations. In our discussion of the LZ algorithm 3

the symbol A’ will usually denote the matrix A after all the trans-

formations for one iteration have been applied to it. The symbol A¥ E

will represent the matrix A after some but not all of the transfor- 4

mations for one iteration have been applied to it. J

3 10
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1 CHAPTER ONE |
3 In this chapter we shall describe the LZ algorithm in detail. i

I }

3 8 As mentioned in the introduction, the algorithm has 3 sections:

q 1) Reducing B to triangular form and transforming A to upper |

2 Hessenberg form.
EE: | ! . i
18 2) Iteratively reducing A to triangular form while preserving ;

i

NE the triangularity of B. |

q 3) Finding the eigenvectors of the triangular system and |

5 9 transforming them into the eigenveclors of the original |
4 system. i

To obtain the eigenvectors of the original system all the right |
3 » hand transformations must be accumulated, for if L and M are nonsingular |
_ matrices and |
-

: LAMy = ALBMy |
oe 0 then |

i Ax = ABx

where x = My. Thus, if y is an eigenvector of the triangular system, |
9 My is an eigenvector of the original system.

i In the second section of this chapter, where we present the

: iterative section of the algorithm, we will describe two algorithms.

9 The first methed is an explicit scheme which, if pt existed, would be |1 -

4 quite like the IR algorithm for AB 1 The second algorithm is a more |
| stable implicit scheme. In the third section we prove that the two 3

| ’ algorithms geuerate and use the same transformations.
i 11 |
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I. INITIAL REDUCTION TO HESSENBERG-TRIANGULAR FORM

In this section an algorithm will be described that reduces a

matrix A to upper Hessenberg form and reduces a matrix B to trian- i
| gular form by applying the same elementary transformations to both

matrices.

The first step is the standard Gaussian elimination process with i

| partial pivoting as described in Forsythe and Molter 4]. We find a
matrix L, the product of elementary and permutation matrices such that

LB is upper triangular, and then replace A and B by LA and LB, respec- )
: tively.

In the next stage we reduce A to an element of ¥ while main- ,

taining the triangularity of B. We begin by choosing an element L 3

: from £1 SO that replacing A by L _4A puts a zero in the (n,l)
: position of A. Multiplying B on the left by L _, introduces a new ~
i nonzero element in the (a,n-1) position of B. If pivoting had been

1 necessary, B would still have the same form. Thus A and B now look

3 like
§ A B

YX XX X XX XXX

; XX XXX 0X XXX
XX XX a OCXXX

XXXXX 000XX

OX XXX 00C0XX 3

i We now focus on B, and choose a matrix M_, from Mya so that

1 setting B to BM _, and A to AM, returns B to triangular form and mainteins
1 the zero we introduced into A. Thus we have } |

12
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1 I | | |

XXXXX XXXXX oo
i |
: XXXXX | OXXXX Co i

| | XYXXXX 00XXX |
XXXXX : 000XX | ]

2 8 : |

3 OXXXX | 0O000X oo |

The process is continued until A is in ¥. As edch element in’

: $G A is zeroed using a row transformation, a nonzero element is intrcduced |
; on the subdiagonal of B whizi must be immediately arnihilated using a

1 column transformation. Elements are eliminated from A in the order given below:
1
2 X X X X xX -

: X XX ¥ X | Co |
: x- X X X X

: 1 Cx x | Co

& Note chat pivoting maintains stability but do:s not affect the | :

: zero structure of the two matrices any more than a ‘nonpivoting algorithm | |

i & There are other ways to annihilate elements of A and B which |

; might be more efficient or more stabte for any given problem. One such | |
| method involves reducing vo B to an elament of 5 and then using column |

§ E> transformations to reduce A to an element of ¥. The SR ~lements, | | |
- which are introduced on the subdiagonal of B by the column transfor- 1

mations, are eliminated using row transformations. Elements of A would | |

A 9 be zerued in the order given below: | | | || 13 | Co a.



oo | Xx x x x | | | . :

: i | . | } .
This algorithm would certainly be more efficient than the first :

1 : method described if B ‘were the identity matrix and if A were the : Co : |

al | 11110 . :

3 | 1 1100 | | Co
i | 1 1.00 0 oo
1 EE \1 0 0 0 ©

Both algorithms just. described require about 130°/6 mltipli- :

cations and 1307/6 additions. In termsof the first method the opera- !
. : tion count can be broken down in the following way: :

| | | | | Additions + Multiplications R
| | 1) Redu-zing B to triangular form |

| Transformations on A no/2 ;

Transformations on B n/3 |
2) Reducing A to an element of ¥ and pre-

: : | serving the triangularity of B | : :

1 a) To eliminate elements in the 5h
y column cf A oo ER |

| Transformations on A (2n-j) (n-i-j) Co ;

bo | Transformations on B (n+2) (n~1-j) |
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b) Total 2nd step | b
| 3

o Transformations on A 5p/6 ;
Transforma’ ions on B ro/2 3

If the eigenvectors are requested, then, as we explained at the begin- ?

o ning of this chapter, the product of the M's must be accumulated. This 3
requires n’/2 additions and w/o multiplications. 3

i
In comparison, the first part of the QZ algorithm requires %

c 170°/5 multiplications, To/5 additions, and n° square roots. If 2
eigenvectors are also desired . the QZ algorithm expends an additional :

sn/2 multiplications and 5n°/2 additions.

G It is interesting to compare the above figures with the number 3
of operations needed to form AB and reduce this matrix to Hssserberg 3

form. If iterative refinement is not done, the basic process requires :

G about 13n”/6 multiplications and 131,°/6 additions or the same number 1
2 3

required for the first section of IZ. If eigenvectors are desired, :

: n’/2 extra multiplications and w/2 additions are needed. The figures E

Py in this paragraph assume nonunitary transformations are being used. :

The following table summarizes the cost of using the initial

: part of the three algorithms. 3

c
Summary oi Uperation Counts ;

Without Eigenvectors With Eigenvectors 5

+ X square + X squere E

7

12 1500/6 1300/6 0 1600/6  160°/6 0 3
f

z 5

QZ 34/6 34n°/6 n° 4300/6 h3n’/6 n° Ci
-1 3

: AB 30/6 1300/6 0 60/6 160°/6 © 3

15 {g
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| II. FINDING THE E(GENVALUES |
In this section we give an algorithm for determining the zigen-

values of the problem Ax = A Bx where A is upper Hessenberg and B is

; upper triangular. As in Moler's and Stewart's QZ algorithm, the method ]

: entails iteratively reducing A to upper triangular form while preserving

the triangularity of B.

Each iteration of the iterative procedure is essentially:

1) Find a shift A which could be a [fb or an eigen-

value of the lowest 2 by 2 subproblem of A - AB. |

2) Find a matrix L such that L(A - AB) is upper triangular.

: 5) Find a matrix M such that LBM is upper triangular. |

4) Set A’ to LAM and B’ to LBM. A’ will be in ¥. |

Most of this sectic1 discusses the construction of L and M and |

their application to our matrices to satisfy the requirements given above. :

If the matrix T derotes A - AB, then it is obvious that LAM = LTM + ALM

and that LAM is in ¥ if and only if LTM is in %.

Each iteration begins vith an A which has ro zero subdiagonal

elements. If after the iteration A’ has a zero on its subdiagonal. we can ;

deflate the problem an! wo.k on a lower dimensional subproblem. Hence

the purpose of each iteration is to drive the elements on the subdiagonal

A’ closer to zero. In Chapter 2 we will specify conditions under which

the process,we are about to describe,accomplishes this goal.

16 |

;
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= § In the 'explicit' version of the algorithm, we start an iteration

: 3 by forming T = A - AB. Since A is upper Hessenberg and B is upper i

: triangule:, our matrices look like ;

: : T B :
uN XXXXX XXXXX :

i 8 XX XXX 0X XXX ;

3 0X XXX 00XXKX :

x 00XXX 000XX :

= tb 8 000XX 0000X

J We now select an element L, from £ so thet replacing T by LT zeroes the :
= element in the (2,1) position of T. Then replacing B by LB introduces a :
A nonzero element in the (2,1) position of B. T and B now have the form

XX XXX X XXX X

0X XXX YX XX X !

A 0X XXX 00XXX

) 00XXKX 000XX

E: O000XX 0000X |

3 \

3 Our attention is now turned to B, and My is chosen from my SO

2K that replacing B by BM, yields a triangular matri.. The application of

3 My to T is deluyed. We now return to T and annihilate Lo by an
element L, in £5 Applying the same transformation to B produces

AE

XXXX1X XXXXX

ARS OX XXX 0XXXX

\4 00XXX 0X XXX

5 00XXX 000XX |

= 1 8 000X X 0000X
E:, x7
die EEaaaie aaE Ea ELAN ATs out



2 O75 Sd AEDS In Ei A a a i A Ya A ee EE LE cateai a a EERe Sl :

{ The matrix M, is now applied to T and M, is chosen from 3 :

i so that BM, is in J. The matrices T and B now look like |
1 ;

XXXXX XXXXX :

| XXXXX OXXXX
OO0XXX OO0 XXX

\ 00XXX 000XX 3

; 000XX D000X Cd

3 It is important to notice that the element 1 is zero. :
Future transformations will not touch this element, and hence it will -

remain zero throughout the iteration. rurthermore, the situation had

not been influenced by the form of M)> i.e. whether pivoting had been :
: necessary to stably zero b,, .

§ In general, row transformations are applied to T and B simul- 3
taneously but columi: transformations are applied first to B. If we

write M as MM, co Mo 1 then as we apply M, to B we apply M. 1 to ]
k T. Each row transformation will zero an element of T and introduce a

1 nonzero on the subdiagonal of B. Similarly, each column transformation :
} returns B to triangular form while introducing a new nonzero element on f

; the subdiagenal of T. Delaying the application of the right transfor- :
y mations to 1 ensures us that the new nonzero element producea will nct

4 affect future row transformations on T, i.e., T will remain in %. According : :
4 to the aw of association of multiplication of matrices the delay iz legal. ;

In summa ‘y, the explicit algorithm for each main iteration step is given by: 3

3 Set TtoA -)B for i=1,2, ..., n-1. -

: 1) Find ag to stably zero Lis1,4 and set T to LT and B to L;B. ]
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Find M. to b ero . an . :GS 3) M; to stably z bi41,i © d set B to BM,
: Set T to TM ..
a. n-i :

|b 3et A to T +}. i

: E As in the LR algorithm, the subdiagonal elements of A should
g 3 ,

EE become small and approach zero at a rate determined by the ratio of tne

eigenvalues. By using a shift A , we hope to hasten the process. ]
: : There is only one major drawback to the algorithm just described: 9

a it is potentially unstable. If the shift A is large relative to the :
. 8 ge

. § size of the elements of A, information needed to find future smal: i

: v eigenvalues can be lost when T is explicitly formed. This viil occur i

ef when the shift is computed from the lower 2 x 2 submatriy of 48 2nd i:
¢ f &
oN i

EB much smaller elements appear in the bottom of B Th=n ia tha top oi 2. i

2 1° The following example indicates the deteriorszvion chat can :

- occur with the explicit algorithm. The relatives residucl is the guentity ’

; . i
i ! - | fl] ¢3° .”

E12 18; Ax os Bi /(] 8 Al, + log] 18) }

E, th ;
2 § where Bs is the 1 diagonal element of the {ital “rianmular mat. ix 1

E § IBM and a. is the ji diagonal element of the final veia.gular matcix

3 : IAM. The significance of this quantity is that we have really solved

2 the problem PB(A+E)x = a(B*F)x . The i h eigenvalue is given by &./B. .
x h ~~ ~~ 3’ LL

3 | 3 This problem was done on an IBM 360 machine in double precision.

4
A 3

1.0 2.0 2.9 1.0 10.0 15.0
k ri ]

: 5.0 5.0 6.0 0.0 1.%157% 1.2107
s -15
: 0.0 7.0 8.0 0.0 0.9 1.*10" "7

a N



~)

Eigenvalue Relative Residual
I

-.69999199994 36334 *10°* 7242069776452181%10 {
: -2

114287 020424 9628%10° .86434635693672128%10
| 0.0 .266666666666666T7

According to these results, zero is an eigenvalue of the problem,

which controdicts the fact that A is nonsingular, and in two instances

the relative residual is so large that their corresponding eigenvalues .

must solve a problem which cannot be considered close to the original
J

’

d problem.

The instability mentioned above can be avoided if T is never

3 formed. We will now describe an implicit algorithm which works with A
pi

2 and B directly. When this new method was applied tv the above example,

a the following resuits were obtained:
+3

“4 Eigenvalue Relative Residual
1 1 -1
: - 69999200034 9999% 10° L464406751978657%*10 1

| -1

-.100015 1831564210" .60369307054T7L78%10 1
] -16

.183673576484812 .1:9715391676453%10

: The small relative residuals indicate that the eigenvalues solve

i a problem which is close to the original eigenvalue problem.
: _

: We note that with the standard eigenvalue problem Ax = AX,

Gershgorin's thcorem 119) assures us that computing the shift from the

eigenvalues of the lower 2 by 2 of A will not give us a shift larger
i

; than the norm of A.

20

§
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In our description of the new implicit algorithm transformations

Efe will be denoted by L, and M, but, as we shall prove, the implicit and

: explicit algorithms are essentially equivalent, in the absence of roundoff

| / error, and except in one instance, the L's of the implicit algorithm ‘are
; = the L.'s of the explicit algorithm. The same is true for the M.'s. .

; The implicit algorithm begins by forming the same Ly that was |
formed in the explicit algorithm from CINE by, a,, and A. : Co

: to The matrix L, is app-*ed to A and B and obviously ‘the same nonzero | | |
3 : element is introduced in the (2,1) position of B as in the explicit | |
: : algorithm. M, 1s again formed so that BM, is in JT , but | .
3 3 this time, M, ic also applied to A. At this point A and B look Jike

: A B | oo

3 ; X XX XX | XX XXX | |
5 ¥

 * X XX X X OX XXX |
3 X2XXX © 00XXX | :
Eb 00XXX 000XKX

Ef 0O00XX 0000 X |

: Vie now select L, from f.. 50 that LA 15 in ¥ . When L, is | :
: $ applied to B, a new nonzero element is introduced in the (5,2) position |
; of B which 1s then annihilated by M,. | :

In general, row transformations return A to upper Hessenberg

4 form and intrcduce a nonzero element on the suodiagonal of B.

FE. Column transformations return B to upper triangular form and
; produce a nonzero element on the second subdiagonal of A. In contra:

4 3 to what occurs in the explicit aigoritim, in the implicit method, cc'v n
1 transformations are app.ied simultaneously to both matrices. Tn mo
E detail each iteration of the implicit algorithm is given by:
Ar 21



| | 9, |
;

| CL) set Y to a); -kbj, and 6 to a, . ;
: 2) If [8] > |v], L, is the element of g, using pivoting with

| my =-v/85 otherwise L, is the element of £, withcut pivoting with "
LY = -§/Y. Set Arto L,A and B to L,B. Set 1 to 1. |

| 5) Fird M,,an elerent of 7., to stably zero bit1,1 and set A
| to AM, and B to BY,. If i = n-l, stop.

: 4} Set i to i+l. Find L, ,an element’ of £5 to stably

| | -2ero 8541,i-1 and set A to L.A aud B to L.B. Return
| to 3. ’

For the implicit method , about 20° multiplications and on

: \ additions are required per iteration. If eigenvectors are also requested, :
3 : : ;

i re multiplications and n° additions must be spent to accumulate :
the M's. .In contrast, the QZ algorithm requires 180° additions, 130° ;

‘multiplications and 3n square roots per iteration, and 8r° additional /

| multiplications and additions if eigenvectors are requested. However, :
. it should be pointed out that to keep the arithmetic in ‘he resl domain

| for real matrices, each QZ iteration is a double step. Thus a fairer |
comparison might be to compare one QZ iteration tq two LZ iterations and |

to keep in mind that even for real matrices LZ uses complex arithmetic.

: For complex matrices a single shift version of QZ is probably preferable :
to a double shift version of QZ. A single shift QZ iteration would :

require 6n° multiplications and 6n° additions and 2n square roots and an |
extra 30° mltiplications and 30° additions if eigenvectors are requested.

| These statistics seem to indicate that the LZ method is the more efficient

| than the QZ method for complex matrices. |

{ | | | :
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q It is also interesting Lo compare each iteration of the LZ i y

3 algorithm with each iteration of the standard LR algorithm as given in Dv
[17]. The standard LR requires n additions and 2 multiplications Co

: £

- . . 2 . . . ry {

: per iteration, and na more multiplications and n= more additions if eigen-

: s vectors are requested. Thus the basic LZ algorithm does twice as much
: work per iteration as the LR method, but only 3/2 times as much work ;

when the accumulation of matrices to obtain eigenvectors is considered. |

= 3 : The operation counts given above can be summarized as follows: |

OPERATION COUNTS PER ITERATION :

5 Xx Without With :
Ey Eigenvectors Eigenvectors '

= + X roots + X roots |

q P *LZ, one n° 0 nS zp° 0 :
4 Double QZ 130° 130° in 21n° 21n° 3n | ;

] *Single QZ 60° 6° 2n n° | n° 2n 4
s *LR n° n° 0 on’ on 0 ¥

; Always uses complex arithmetic. 3

The operation counts reported for the double QZ algorithm are :

3 those given in [10]. If the left eigenvectors of the problem with :

g transposed A and B are computed, ar opposed to the right eigenvectors

of the original problem, then the left hand transformations must :

: be accumulated and only 180° additions and 180° multiplications are

3 required per iteration. |

‘Le 25
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III. PROOF OF THE EQUIVALENCE OF THE IMPLICIT AND EXPLICIT SCHEMES 1

| In this section we will prove that the explicit and implicit | i
: ;

: schemes ,described in the previous section,generate and use the 3a
same transformations. :

- 3

: Theorem. Let IL d : : : : - }
ms. 223 an M, represent the transformation in the implicit

method and Ls and M, represent the transformations in the explicit i

method. If the next iterate is A’ and a’3,51 is nonzero for j < i,3J= ¢
5

then for j <i, L, =L, and M. = M.. 3
y =J J =J J $
; . . ¥

3 Proof. The proof is by induction on J. By construction L, is equal
; to L, and is equal to M.. We assume that = and =1 to) 1 L =L an M =M for

k < j, and let :

1 * = co 3
b A bya LAM). Mi 3
X g

b B¥* = L. ] [] LI BM LJ] * M. :
1 -

i

J-1 LIM Mo :
i 4

: 3
; A* T* B* 3

: XX XXX XX XXX XXXXX 3
5

XXXXX XXXXX OXXXX ;
th 3

E J row-e0XX XX O00 XXX O0 XXX i
IE SI A tr Va Fs ty vy typ ¥

E OOO0XX ODOO0OXX O000X !

| 2k 4
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52 9 Because T = A - AB, we must have |
FE A% = THM, . + AB¥
Xs, HB j-1

Ek: 3 which implies that

> X A¥¥ = L_A¥ = L_ THM, + A L_B¥,
3 & J J J-1 J
i

3 . . * . He
i ® We know that LT, is in %. Since LB is also in¥ , A

: § must also be in A . But in the implicit method L. is the transformation from £5 |

v & which returns A¥ to upper Hessenberg form and if either a¥ +1,3-1 orBr ed R -
K:

 £ a¥, . is nonzero, there is only one element belonging to £. which
EE Jsi-1 3
5 can accomplish this. Oince transformations to A occuring after L3 do

TB not affect the j-17 column of A, the element a’s j-1 is nonzero onlyou » py «= i

EB if a¥¥_ | 1s nonzero. Since a: sq is zero only if both
i E » Jad=+ Jad”

3 ; a¥_. | and a¥*, . are zero, the hypothesis to our theorem
Hq Jrd-1 J+l,j-1
3 assures us that there is only one transformation from £5 which couid

$ ® return A*¥ So an element of %. Since both L. and L, belong to £3

353 we know they must be identical. By construction M, and M, must also be |
EE identical and therefore we have proved our tlLeorem by induction. B |
1 If a’, . 1 is zero then we have no assurance that row and15g dsd”™

g: column transformations subsequent to M, 1 in the explicit and implicit
=X algorithms are identical, but this is of little consequence. In fact,

8 8 the best policy in both algorithms is that as soon as a permanent zero
, / . .

3 is detected on the subdiagonal of A , then the iteration should be

3 discontinued and work begun on a2 problem of lower dimension. If in

3 ) both methods, this policy were adopted, tnen the algorithms would be
+ equivalent up to roundoff error.

s
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Iv. FINDING THE EIGENVECTORS

: After A and B have been reduced to triangular form, the eigen-~ ht

1 vectors can be easily determined. let «,, and B, denote the diagonal

p elements of the triangularized A and B and let Ys denote the corres-
> ponding eigenvector, that is =

: A-oaB =0

3 The components y,3 of vy, can be obtained by solving this% ~~

x triangular system as follows:

yi5 = 0 for 1i<J ~

3 =1 for i=

Vt Tae YBa moby)§H 13 (eps, J ik © 93 ik’ ky
N; k=i+1 .

p The jth eigenvector of the original system can be found by
%

§: multiplying y3 by M.
If the denominator in the above formula is zero, then it is

: replaced by macheps *(J All + || BJ). The denominator is zero when tne
£ § th and 50 eigenvalues are equal. If the numerator is also zero,

3 then linearly irdependent solutions will be produced. However, if the |

: numerator is not zero, then y3 will hesve large components and :
after normalization Yq and y3 will be nearly linearly dependent.

: This occurs when the eigenvalue does not have a full set of eigenvectors. ;

1 See Peters and Wilkinson{[16] for further discussion. :
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| CHAPTER TWO So Lo ;

| CONVERGENCE RESULTS | | |
$ In this chapter we will prove several convergence theorems , each A

1 of which restricts the problem in some way. A theorem might specify some | |
property of the eigenvalues themselves or characterize the matrices L and | |

3 | s M. Usually both types of restrictions are given. Many of the theorems |
] refer to a nonshifting or constant shifting version of the IZ algorithm.

3 We have found that in most instances when a shift policy has not worked, : | |
s the method has been using the same shift for each iteration. ,The chapter ends |

with a partial listing of 5 x 3 examples for whica the current algorithm, |
: which uses a sclution of the lower 2 x 2 problem of Ax = ABX as a shift, | |
] $ well not converge without the use of an appropriate ad-hoc shift. \ :
: We + 211 use Parlett's [11] terminology and say that a metrix is | J

an Unreduced Hessenberg matrix (UM) if it.is an upper Hessenberg matrix

s and none of its subdiagonal elements is zerp. To simplify our proofs
: i

we wlll assume ws are working with the algorithm in its explicit form. |
’ The matrices will be n x n, and unless stated otherwise, we willassume

| s that A is a UHM . id B is triangular. For uniformity we will assume that

the 0 iteration in the algorithm is given by : : | | | |
| 1) Find a shift Ay |
: s 2) Form T_ =A, -3%,B. :
: kK K K k i

5) Find L, such that LT, is triangular.

4) Find M, such that LBM is upper triangular. ;

: ’ 5) Set By, = LB Ap, = LIM FAB. | Co :
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is a product of matrices coveens and is a

: Ly P Ly n-1%,n-2 Lea Me }; , product of matrices M. Gc coca where gach is an’ >
+P Mel Me, 2 Me, n-1 ¢ Di ,1 RCI

4] “ . 2

= element oi £s , and each M 5 is in ms as described in the notation sec- p!© 3

. . ] i 1 gi

3 tion of the introduction. In this chapter the multiplier in Ly n will |* ’ * J . . ',

3 : be denoted by 1 and the multiplier in M, g will be denoted by : dk,i ? . ~ p

7 In many of our theorems we will drop the iteration subscript and g

z * designate the matrices A 5B; etc. by A, B, and the matrices Act1> Bi’ oo :H ] - , ow

¥ etc.:by A’, B’. The matrices L ; and M_, will be denoted by L, and Cs
EH. . ’ ? : :

3 M. respectively, and their corresponding multipliers by LM and pi
J : . ) : : } 4
4 : ] ] , 4
Ni 1 . ) . . 3

: 1 2 a
! ‘ PY

Fa 2

. * x

:

: ' z

" \ b . - :

=

28 3
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: I. DEFINITION OF CONVERGENCE 4

: t § In general the algorithm will be said to be "convergent" if, as Kk
| approaches infinity, one of the elements on the subdiagonal of Ay 2u- 1

i hd - - 3
: EK approaches zero or if for some finite k, one of the elements on the :

: p

 & subdiagonal of A, is zero. Because of the interrelationships that exist J: :
B - 3

x between AT Lys and M, , we will also regard the algorithm as convergent := K 2

: if -one of the following conditions is satisfied: :
z i

1 8 1) As k increases, one of the elements on the subdiagonal of :

- T, approaches z:ro; or for some finite k , one of the elements 3
a ) . 4

; on the subdiagonal of TI, equals O . :
r 33 ) :

RR 8 2) For a fixed i, as k increases, Le 5 approaches :S : R i
: 4

the identity matrix. K

: EK 3) For a fixed i, as k increases, Ms approaches :
> ;

ER © the identity matrix. :

: The reason for the first criterion is that in the explicit algo- )

| rithm the subdiagonal elements of A, and T, are identical. The reason :K K

i ® for the sccond criterion is that if £{k) . 1s zero, then L . will |:a i+l,1 51 :

El be Lhe idenbily matrix, and the reason for the third condition is that

X (k+1) |
: il M, . 3a T, then a. ! will be zero.

3 4 It should be emphasized that when we say IZ converges, we :

3 mean that the problem can be divided into two subproblems of lower :

E dimension. We do not necessarily mean the algorithm can find all

: 4 the eigenvalues.

ls _—= Fgoe . IT TSR PETTY, ae Sr EZ...
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: II. SINGULAR MATRICES

We begin by proving a theorem which substantietes our claim that )

: LZ works even when B is singular. 3
3 Theorer 1: If B is -~ingular, the LZ algorithm converges in at most 3
A --

4 n iterations if exact arithmetic is used.

: Proof: If B is singular, one of its diagonal elements must be :

; zero. If b . is zero, then applying L, to B will not change the 9

: in the (2,1) position of B. Thus M; will be the identity matrix I and 2

3 the LZ algorithm will converge immediately. 3

| Now let us assume that bss =0 and i>1 and let us look :
? at the 2 by 2 matrix formed by the j-15¢ and ha rows and columns of |: B. It will look like

3 a b
} N

: 0 © ;

| x
x

If L: involves pivoting this matrix will become :
0 O 3

: b
a b 3

| 5

3
. and, independent of the form of M, ,, the O will remain in the (i-1,1-1) :
4

| position. Future transformations of B during this iteration will not :
: affect this O. :
: If L; 1 does not involve pivoting, then we get

a b 3

LFISLILFI Ly I :

; 3
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; f
bos

: f a is zero . i e identity matrix b, . is O. ! i
I is ’ M4 is the identity ix and i-1,i-1 i 4

: .th . st Lo
G If b is zero, then M. 1 permutes the i and i-l colums, and

bs lil is also 0, If bb is nonzero and a is nonzero, then
rl = 4 = :

: b, . . is either a-(q. .a/(f. .b))b or b-(. .b/n. .a))b . In :{ i-1,i-1 ( i-1 AUP )) My Moy )) :
1 Fy either case, it is zero if the arithmetic is exact. Again future trans-

: formations on B during this iteration can not affect the ze.o in the :
: (i-1,i-1) position. !

1 K5 ) :
We see that with each iteration, a zero on the diagonal of B 2

: moves up one row. Within n-1 iterations it must reach the (1,1) :

position, at which point the algorithm must converge in one iteration. I k

The following lemmas consider the case in which B is nearly }

: singular. The quantity € is assumed to be a small number relative to :

the norm orf B. :

[emma 1: IF b, 5 FF for i > 1 and L, , involves pivoting .v 3 :
& :

then b’. . <
Ho'sp51 < Hdl

Proot: If B represents the matrix

§

8 i=1 j=" (! ! io i:

Ll hh " i1l edTe wenn bo . ¢ and bho . oO, Tha, Db . Will either r

j i-1,1 i-l,i~l j-l,i-1 | :. ? . i FEN
3 ’ . . \ < i 3

be € orp. .€, and sincefjp. [<L, jb EL will be sli] :
5 :

1 |

werma <2 If pp 0 =€ ‘for 1 >1 and L. . does not involve :

pivoting, then

: . ead —— 3
jb j-1,i-11 = Nn. Il x

. 31 A
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1 Proof: If B® is the matrix

: L. .L. .o LBM. ...M :| i-17i-2 171 i-2
then we may write 3

3 *

b” = a b , =D :
i-1,1-1 i-1,3 3

4 If M: 4 does not involve pivoting, then ;
: ab 2
3 b? = a 0 1-1 ~4
3 +7. ,b
% € Ni-1 2
: a

3 _ ag ___€ . LE
: B +T. bb 7. (€ . ;: €+Mi2° Tia +N

es and hence 3
1 |p’ I <I ~S—.
3 1-1 5

: If M, , does involve pivoting then :
He 3
i ’ ] «bb ~ (el. DL)n .oon 3

5 The »revious two lemmas indicate that small elements on the {
Fs Pe£i

& diigonal ¢f B creep up the diagonal of B. The next lemma gives us an 3

3 idea of what occurs when the small element reaches the tov of B. 2

32 :

5:

ks F;

¢ 2
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Lemma3: If ol®) € and and do notis 1,1 hein 34 My
] involve pivoting for i < j, then there are constants cy and a, such that :
1 (k+3) (k+j) _ 4 J
3 b) 1 = ¢4€ and a 2,1 d€

: : for § > O. :
: ) Proof: Our proof is by induction on j. For j = 1, the :
=} hypothesis to our lemma implies that ;

1 € Men :
: ? b (K) 5 (K)

EF 22 FT Tgi1P12 4
E yr § which means that

A (k+1) ¢ (k) 3EE = + = € 4

- £ by 5 (1 chy 5 ) N :
: EB and if I, , does not involve pivoting 0: , ;

1¥ :
3 (k+l) 4 (K) (k) |
he a = +4 = &

I 2,1 € to Me,1t1,2 ) = 4€

4 and if Ly 2 does involve pivoting :
>. JF g
: 3

{

I . 2 (EFL) = ne -d €. 3
= ASN} h gic 1 3

2 If we assume our lemma is true for j, then 4

1&4

1 I PIN635) :
= § heeg1 = "4E7 ty E

: ® which means that ]

; IHL, (k+j)
d.c. t

ho = 55 / 1,1 |3 k+j,1 NCEE) I b (K+ :
20 2,2 'k+j,1 1,2

: = cet! |

5 33

p \ 9
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3 so that

Ei (k+j+1) (k+3) y =3 b = €(c. + cb ) = ¢.,4€ "

: 1,1 J 1,2 Jl
: . ,. does nct use pivotin
c If Lets 52 P &
: (e341) | gna Gerd) oo gk): 8,1 ce 2,2 K+j,1°1,2

j+l |
z =d,.,.,6Y .

: Jtl

ivotin
If Ly 2 uses piv g

; (x+j+1) ocd (KH) _ 4 G1)2,1 = 552 mt «8 |

: Our lemma did not state the size of the elements cs and 94

: and there is no guarantee that they will be small.x}

: Our next theorem is 2 counterpart ff Theorem I. We note that B

might be singular.

: Theoren2: If T is singular, i.e. A is an eigenvalue of the

| problemAX = ABX, then the LZ al:oriihn converges in one step in exact

arithmetic.
4

Proof: he Circsh n= cojums of‘FF omcl. be linearly independent.

or clse some subdiagonal clement of T would be zero thus implying T is

H not a UHM. The algorithm constructs a nonsingular matrix L such that

IT = R, an upper triangular matrix. Since the first n-1 columns ofT

3 are linearly independent, the first n-1 columns of R must also be,

Similarly, since T is singular, R must also be. This means that the

| Jast column of R may be written as a linear combination of the first

n-1 columns, and because the last component of each of the first n-1

columns of R is zero, the last component of its nh column must also y
{

i be zero. Hence the last row of R is 0, the null vector.
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Now in the next step of tne algorithm we construct M so that | |' ¥ - - ’ . | 2
> B B’ = IBM is upper triangular and set A’ = T/ + kB’ where T° = ITM. i

- - -  ] T f )
Since the last row of R is @ , the last row of T' must also‘be §, | !

and hence 3’ must be sero. B ; j +3
n.n-1 3

| Our theorcms and lemmas indicate that in the future we can safely 33
: 3

ignorc problems where either A or B is singular. However, we would :
like 10 include singular cases in the next few theorems wherever :

. re!

| possible,oecause many of these theorems not only guarantee convergence, 3

they also give some hints about rates of convergence, |3
: | : ;

. . 4

x

3

| :
- : 3

:
pr!

9 : - }
1 4

9 i 1 Ly "
a i

| J
> 35 F
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In his section, we shall prove several global convergence

Lhcorems. Most of our results refer to a constant shifting algorithm, although i

in practice our shifts are usually different for each iteration. How- , :

ever, we have often found that when a shift policy has not worked, the

: same shift is being used for each iteration. Thus, our theorems do

have practical significance although they do not refer .o any actual

implementation of IZ. ; :
E

We begin by proving four similar theorems. They all consider ;
I : ’ 2

- : 3

5 ri B . T and {5S 4| the scquences of matrices {hd ’ { cf ’ {1} s { of ’ { of { 3 :
:

: _ ) Co
| | | where Ty Ay MK for some calar Ay

: htt :
= LB M ) 4

SI " and I, and M are nonsingular for all’ k and S,_ and B,_ are upper
. . " l :

: Lrianpular for all Kk.

: + Theor.m': |i B is non.imrular, 3

! Ve = Ly L, REEEEEERNS ’ ;
;

an :
' _ -1 ~-1 -1 $

| | U, = 5. By Smug SiR)
" then : | :

: VU =(A-.B)B (Ar, BB L....(aa BBL. j
: KK i k=l 1 :

b!
: :
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: Proof’: Since 7

£9 — —

Te = Dei) = MB My

and :
gt i gl r* ;

to k Mea1 Bn Ika ;
» H 5:

: we have #
1 Ek4 - | = _ -1 -— J

| TB © = hea (By mABIB Dy | 3
1 E
: =vt a, -aB)B Ny | 3

k-1'"1 K' 171 "k-1 | 3

which implies :: N |
1 Ve TB = (A -A BIBT, | 3

3

E how Vie = Veale SB Ugo) |;

AT }
= Vier kB Yeon |q »

i F3 "= Vg-1TkBi Yg-1

: = (A -AB)B" VU, x

2s C (a “lo, -1 _ SP 2 | i¥ (A =A B)BET(A -A BIB ....(A -2,B)B (A -2,;B)E. E
| .

3 § p

Corollary 5.1. If the conditions of Theorem 3 are satisfied |

cl © and A, =p for all k, then V,e, is in the direction of ((a - 0B)E Ye, | :-1. k 2

3 Proof. By Theorcm 3. vu, = ((A - pR)B ~)™. Since U, is ;
i 1 = 1 a

i upper triangular, Uce, 1,151 > end hence 3

| 2 3
1 57 :
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{ (k) 1,k i ;| = - = . pe

: Vi 1,1 £1 ((a pB)B ) £1 E
: yd

3

3

Theorem L. If A -);B is nonsingular for all i, then 3

; -1 -1 _ -1 1 ~1 3uv, =B(A -AB) B(A -2,B) ....B(A -2B)". :

: The proof of the above theorem parzllels that of the previous theorem. :
; 3

Corollary 4.1. If the conditions of Tneorem U4 are satis- ;

5 fied and A =p for all k, then Ve is in the direction of ;
:

m - ”

(a - pBT) IBN)e . :
{ ~1N Z

: Proo.’. By theorem k ;

-1-1 ~1.k ;u vos [B(A - pB) 7] :

; which means that k
| -T, ~T T  _Ty-1_T\k
4 1 = - . pe

: VU. = ((A" - pB") BB)
- Fy

Since Uy is the product of upper triangular matrices, the matrix p =U" must be 3
E: lower triangular wnich implies that Pe = ok) e_ and hence , 3
; k~n n,n ~n ;

2 -T _(k) (aT T\-1_T\k B x
VRS) el = (A - 0B) TB) Co

3

: If the matrices described above represented the matrices in a ;

j ) 7
version of the LZ algorithm, which did not allow row interchanges, then 2

; 5

3 for all k, the matrix Vi would be unit lower triangular. ;
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: Theorem 5, If B is nonsingular,

23 |¥ IT - - | ( -L ~-1i Uy Bl +1 Bye SAREE EEETERE. S¢ |
3 ; and

3 3 Ww, =MM... Mp

cB then

ES _ ka - “1p “Lp
Pp WU = BIA; -A,B)BTHA; -1,iB)... . BrMA, - 2B). |

| § Proof. Since

3 Te = Dey (Byoy = MB Mey |

a. and |3 -1 -1
: log nel

: | Be = MeiBeiila

3 3 we have

Ek I PE ==1 __1 _ -—
BOT = Me Benn (Ay =MB1 My

bX . — - ~1 -
iN Wieo1BI H(A = ABW |
gE)

gq which implies |

. We Bg Ty = BHA - ABW, |
by 17 = -1 1 t

3 Now Mx = Wo MB Silk |
4 = W ~lp117ts ©= WyMM BL SU
IRS

a -_ 17 1m ET

= "e180 Teka ;

1K =B (A -NB WU

; = BL (a - AB VBL (aA - Ay _3B ). . . BLA -).B).
: ) :
EL 3 39 :
AN
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c | BE

! 3
H 4
: ¥

i J
| Corollary 5.1. If the hypothesis of Tneorem $ is satisfied and ;] - - » -1 k E

| Ap =p for all k, then We, is in the direction of (B™(A - pB)) e,- :

3 Proof. By Theorem 5 :

3 WU = (B-1aA - oB))E.
: k k
] :

2 - ET 4 - > IT fi — —=(k) z
Z Since Up is a product of upper triangular matrices, Ug, = Uy 8 :

4 which means thet
74 {

E, W m =(B (A ~pB)) e,.: xk 1,1 8 (B7(A ~pB))e,

N ;

: Theorem 6. If A -A,B is nonsingular for all i, then :

3 —1 -1 -1 -1 -1 :

a Ux Wye (A A ) ( Ao ) ( k ;

: The proof of this theorem parallels that of the previous theorem. Note ;
: vy

E that this theorem does not assume that B is nonsingular. :

4

Ht adn opm : To rere oaauciandiiigi hic : Yr gem Reroa eyed
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= Corollary 6.1. If the hypothesis of Theorem 6 is,satisfied ;

and A, =p for all k then We is in the direction of (B (al -pB) He . "1.

: Proof’. By Thzorem 6 ;

=-1 1 -1 \k oo

( ' . ' !

: | which means that : I
: “RT TT -\k

We Uy = (57(a « pB)T) 3

K Since U, is a vroduct of upper triangular matrices, QU: is lower ;

| triangular and Q equals 9,h En’ This in turn implies that 1

15 T (k) rT, 7 7-1k ® |i - Ty-1yk : : :

: B Wye 9,n En = (B (A i PB ) 7) n to

2 3 If we again relate the above theorems to the LZ algorithm, then W, | BE

would be unit lower triangular if column interchanges were not permitted. : 5be 3 t , ] .

$ If D is a diagonal matrix with diagonal elements d ,d,,...d_ |:

; then the Moore-Penrose pseudo inverse.of Db, is the diagcnal matrix,denoted by i[] " . |

D , with elements 21525500002 where |

{ Zs 1/d, if a, 1 nonzero |
E and 2; = 0 if d, 1s zero. |

E ’ « 211 Avra bes Xz Fn . . & - - + i
3 we wiii GE€NCWE Oy ¥ val projection matrix b D.
] . . ; ' .

i

8 1 for i =J amd d; is nonzero. : i
3 $ .. = < .

1J
0 elsewhere :

| TI ase dD El i) aiiic REET eS or)ce ~ & PATE
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i

. The next main theorem is a modification of one that appears in 3

| Wilkinson [19] and Parlett [11] among other places. Our version of the ~
theorem extends their results to cover singular matrices. If a matrix ?

i

! ) . , i ul

X 1s said to have an LU decomposition, then there exists an upper ° to :
3 H \ g

:

i . . : . :
§ : triangular matrix U and a lower triangular matrix L such that X = LU. : 1

* This decompasition is unique. I

3 v . H * ' . . : 3

; Theorem7. If F is amatrix with eigenvalues of distinct : ER

! © modulus satisfying 3
3

d > d > . . PY ] pi

2 | : N : 3
and if" b can be written as XDY where Y=X"y D.is the diagonal 3

:
= p . Jf -

5 matrix of eigenvalues and Y has an IU decomposition and ¥ has an 3
: 3

k LL decomposition LU. then the lower triangular factor of the IU ;

B + decomposition of Fr goes to L$ as kw, :
) . i “i

: ‘ . 3
} ' ' 3

- [4

| !

| To facilitate the proof of Theorem7, we first present a :
' ; ’ ] p
few lemmas. - y

% . . J

Lemma4. If L is a lower triangular matrix ani D is a diagonal : -

| matrix whose elements satisfy :
Ja)> la l> >a >a | = =1 ’ . . LJ e :

5
iB L2 :

| " ‘ i
j ;

| |:; 3

¥
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E10 F :
: Lhen Di, = DID bh, :

2

: . . [a] }
) Proof. If § = DL, then s; 5 =0 for j>1i or i>m ;

wk N sd !
and S. = d,4. . elsewhere. :

% Now the last n-m columns of § are zero because for Jj > m, ‘

: s. . =0 for i>m :

-
and

2 S. «+ =0 for i<j, i.e. for i < m. ;

4 . . + :
Multiplying S by D D zeroes the last n-m columns of S and leaves the

'irst m columns untouched. Since the last n-m columns of S are

+

fi already zero we have § =S8SD D or

-¢ DL = DID D.

: Lemma 5. Let L be a unit lower triangular matrix, and let
133

; D be the matrix oi Lemma 4, and kK 4k
: Gy =D LW 3
i

[4

Ek @ then G -¢ +I where E00 as k 0x.
Kk Kk k

3 (x) oo .
E/ Proof. If ey,; is the (i,j) element of G,, thenb J

tio

Eis ..
nN

7 L.  . (a./4.) elsewhere .
NP 1,J 1 J

¥

2 EY

3 43

;
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1

The fact that |dg/d| <3 for i> j and j<m 3

aud d fd, - L for 1i<m, toputher with the fact that L is unit lower

vriangular implies that 8: 3 =1l for j<m and :
KB) 0 for 4 <

3 bi or j<i and j< m as k approaches infinity. Thus ;

| Gy =¢ + E where E —- 0 as k approaches infinity. | ;
Lemma 6. If U is an upper triangular matrix and D is :

the diagonal matrix of Lemma 4. then
USD =4§UD .

: Proof: If G = Ub, then :

g .= 0 for jg->om or i>] :

: and g. .= u., . elsewhere. :
g: | 1,J 1,J :

h. .= 0 for j>mor i>] :

| and n. .= u., .d, elsewhere. :
3 1,J 15d J ;

| The formulae just given for he 3 are exactly those which |3 J :

would be given for es 3 where E = UD. Thus H = E. Moreover, the last’

: n-m rows of E are zero so that ¢E = E. Thus

; $5 =H or ¢up = gD. ® |

2 Wz can now give the proof of theorem 7.

a Proof of theorem 7: Assume the eigenvalues of the matrix
F are of distinct moduli and assume F can be written as F = XOX |

: where D is the diagonal matrix of eigenvalues and both X and xt

1 have LU decompositions. Let LU, be the IJ decomposition of
X and let LV, be the LU decomposition of xT. It can be easily shown
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| k k_-1 3
3 that ¥o= Xb X %

= XD LU :
CQ _ DNL p ER by Lemma kb. | 3

3 y y |

- _ K +K - y 4

If G, = D LD , then by Lemma 5 G, $ + EB where E, goes to O as | ;
2K k goes to infinity. | 2
: || Thus, Fr = X(§ + DyME :

= + ;1K LU (¢ EDU
. ’

: _ i | 2

: | = L (# + uEd UD by Lemma 6. | 3

E Since U EU goes to 0 as k goes to iniinity, § + UE goes | 4
e | to #8 as Kk -o0. Because § 0D, is upper triangular, the lower ] ;|

3 triangular factor of P approaches L ¢ as k becomes large. | | X
|
|

i

E Theorem 8 : If 2
: —_— 4

(1) B is nonsingular :2
#

a3 (2) LZ is used with a constant shift p. :

: (3) The quantities AF for 1 =1,2,...n have distinct moduli :
5 (4) Either no row pivoting 1s required and there exists a matrix 3

X such that (A - pB)B = = XDX = where D is diagonal and 4
: Z

-1 cas C3

both X and X = have LU decompositions or no column : ;
3

pivoting is required and there exists a matrix X such that | 2- - -1 3
: ® B La - pB) = XDX 1 where D is diagonal and both X and X 4
) 4

: have LU decompositions, | 3. 4 A

: then LZ converges. 3 4
~

- 3



| Proof: We let F = (A - pB)B and apply Theorem 7 and find that ;
: | as k increases, the lower triangular factor of the LU decomposition
he 5

: of F: approaches L§ . By Theorer 3 this lower triangular factor 1s :
_ yg 7-1 7-1 :

: given by Ve If vi L$ and Vier +» L# and Vis = Vi Lp , then L
3 must be approaching the identity matrix which means that IZ is convergent. :

2 If F=B (A -pB) then by invoking Theorem 7 and Theorem 5 i

we see that M, must be approaching the identity matrix as k + «» which .

: means that LZ is convergent. ¢ :

3 The condition that both X and xT have LU decompositions :
Fo - -1 :
| is partially satisfied since both (A - pB)B lL ana B (A ~ pB) are

unreduced Hessenberg matrices. Parlett [14] has proved that if F is a UHM, :

F< | then there exists a matrix X such that XJX is the Jordan canonical

Ei form of F and X ! has an LU decomposition. ;

The condition on the distinctness of the moduli of

the eigenvalues can be relaxed somewhat. Wilkinson's [ 19] treatment |
3 i . ;

2 of multiple eigenvalues for the LR algorithm can be applied directly
to the LZ algorithm.

gl 46 :
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 § IV. ITERATION AND LZ.

j

: § Theorem 8 indicates that with a constant shift :
Tw ) 3

" the LZ algorithm converges for problems with shifted eigenvalues of distinct :

: moduli if row pivoting is not required or if column pivoting is not :

| . required. Some of these rest.ictions can be weakened by investigating the :

x relatioiships between LZ and various iterative procedures. This approach |
x has been taken by Poole [ 13], Perlzit and Kahan [12], and Buurema [1] ,

EE in studying the QR algorithm.

x: Let us consider the LZ algorithm with constant shift p for :
3 3

i E the problem having eigenvalues ); and let us demote , -p by d. S
_- t ~

: : and assume that the {A;}'s are ordered so that »

1 dl 20a 2... 20a]. i3 3

4 Theorem 9. If any of the following 4 conditions is satisfied | ;

3 then the algorithm converges. | :
5

: ® 1) |d,| #£ EN -N is not orthogonal to the right eigen-

vector of (A - oB)B associated with d | and row pivoting is ! :
; (k) |

never one to zero t} 1 for all k. |/ <> :
: L

; - } 1} 1 ¢r -— R

; * 2) df #£ la, _y! , ¢ is not orthogonal to the left eigen iCK vector of B(A - 0B) , associated with 1/d and row pivot'ng
F: is never done to zero ¢ (k) for all k. :
: n,n-1 :

3 2 3) | 4, # AN > 8 is not orthogonal to the right eigen-
4 vector of 21a - nB) associated with d 1 and column pivoting :
: is never done in zeroing oS*) for all Kk. ; |
4 s 4) 1d | # [dq > e 1s not orthogonal to the left eigen- (|
? vector of (A - Ne: associated with 1/d_ and column :

: pivoting is never uone to zero o{k) 1 for all k. C7 3
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p Proof. The proof of (1) entails looking at the power method 3

: for solving (A - PB)x =q Bx given by §

| 1) Set Xo to e, and k to O. / 3
} -

| 2) Find y such that By = x |nr Lad

| 3) set z to (A -pl2)y .

7 h) set x... = zlizll - 3

i If [[%,, = XII is small then stop;
3 otherwise, set kK to k+l and return to 2. ”

: If | 44>] d_| and g, is not orthogonal to the left eigenvector of

3 (A - pB) pt corresponding to d,> then the power ‘rathod converges and 3
4 X, Will be that eigenvector. We note that x, 1s in the direction g

& of ((A - pB)B™)%e,, which, according to Corollary 3.1, is also the |
5 direction of Vie - Thus if the power method converges, it should be 3
g clear that

4
3 4

V, ,e, =¢c Ve +F° i
; k+1%1 © Sk'kS1 7 ck (2 - 1) :

) where Ci 1s some scalar and 4 + 0 as kg +4 ow, Z

: Si vo. = VIE ;: nce Vy.4 1% 4

=1 1-1 -1
: and L = so 0 ves eee - i IN .
: k Le al 2 he n-1 where Li ,i st F4 :

| which means that i either has the form :
1 8 :

Mk,1

: 0 :
. X :
; 0 :

' 0 :

| 48 F
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¢ | | 3
or the form | :

) ' 5 1
- } p

& My, 1 * * * * *
1 H : ' ; y

© _
0 X :

o : Lg

v : 4g
. i A

6 | Pg

then either | c,d
RI

& Viett®1 5 M&S Te, 1Vic2 (2 -2) _

or Vv = - . Lo

e151 7 Vi The, 1Y%%1  ]
If pivoting is never done to zero tj 3 then equation 3

tao . 3

(2-2) holds for all k and Vie, 1S linearly independent of the other 3

| columns of V., and if equation (2-1) is also satisfied, 1 must 5

be approaching O and I 1 must be approaching the identity matrix, 3
i.e. the LZ algarithm must be converging. If equation (2-1) holds but :

E

: the first column of Vv, is approaching a multiple of the ‘second column :
of Vio then we cannot assert that IZ will converge. It is possible: 3

: . 2

for equation(2-1) to hold without L 1 converging to the identity matrix.

. ¥

: The proof of (2) entails looking at an inverse iteration scheme . ;
for finding x such that (aT - pB')x =d3 x . The iteration scheme can :
be summerized as follows: , 3

Re

COX

1) Set Xo tog,» Kk TO 0. :
-

m T T Po
z) Find z such that (A~ -pB’)z = Bx -

| {3
$ 3) If z is large, stop. 1

4

L) Set 9% to zl] |! , kK to k+l, go to 2. : ¥
4G 3

2 4 3

. p p
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| It ER < ja}1 and £n is not orthogonal to the left eigenvector of
i | B(a - 08)! corresponding to 1/d , then the inverse iteration scheme |

will converge and z will be that eigenvector. The vector x is always d

; in the direction (aT - pB) Ble , which, according to Corollary 4.1,
iF - |

| is also the direction of Vite Hence if the inverse iteration scheme go
: converges, then for large k ve may write :

| | =P eT :
: | Co Vir1®n © Ck Sn tT Ik (2-3) ,

where Cr is some scalar and fe approaches § as k approaches infinity. ;

: Since Vier = Ve Ly

| | CT LT a.

3 l : .

1. = * oT ( I ) here ¥ is a dense matrix SI—- T Len-1 4 ¥ PT

} :

| then either n-2 .: -T _ p=T -= V + c,V =

; Vil *n k on Menor, J kJ (2-4)

= = = + B 3
3 or : Vo+1&n 3 ¢Vi €J. Te, n-1% *n :
E j=1

3 *  wiere ohe cj'S are products of the multipliers involved in the iteration
: step.

i | If pivoting is never done to zero ek) , then equation (2-4) :; sux )

1 holds for all k and the last column of vi’ must be linearly independent
4 of the other columns of vl . In this case if equation (2-3) is satisfied, :
E: then TM, 4 must be approaching zero and LZ must be converging. If ;: a3 Lo ".

3 | | 50
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] $ equation(? -3) is satisfied but the last column of Ve is approaching
3 s 7 -T 4

; 8 linear combination of the other columns of V,, as fast as it is converging ]
; A

A to an eigenvector then we cannot assert that IZ will converge.

E 3
E: §
: The proofs of (3) and (4) closely resemble those of (1) and 3

] : (2). For (3) we consider the inverse iteration method for finding x |
A

i & such that Bx = g(A - pB)x and use corollary 5.1. For (4) we consider 3
Zz ~ ~ nm - Z
2 the power method for determining x such that B™ (AF - 0B) 1, =q.x and ;

: § use corollary 6.1. B :

‘£8 Theorem 9 requires more elaboration. It would seem that because 3

the matrices Vy and Wo, have determinant 1 for all k, the linear depen- :
= dence of the columns of these matrices and their inverses should not be :

E73 3 an issue. However, if we look at the singular values of these matrices

: we can get a different picture of the situation. It is possible for these

Rk: matrices to become singular at the same rate as one of their columns is

< E $ anoroaching an eigenvector. If the last two columns of v, al’e approaching 3
{
3

= B the same vector, then we cannot asswae that pivoting will stop and the

alporitiun will converg. This fact is brought out by the follcwing :

3 e 2 by 2 example.

. Let B be the identity matrix and A the real matrix |
§

: a © ?
b 0 |

1 LE
: where | bj > | al > 0. If LZ is applied to the above problem with f

51 3
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| 8o/ bys as the shift policy, the shift is always O, and A and B | :

3 are left unchanged by each iteration and the algorithm does not. converge. J 1
3 The least singular value of vo is given by the smallest eigenvalue
| value of :

: ¢

k | aC p
| b y 4

3 . . k 3
: which is t= where ;

8° a pe
| e+— Iw |1¥2*r—= 4
; t = b b %AP JE — 3

E:

p. Since 0 < ja/b| <1, |t| <1, which means that as k increases, vit :
| approaches a singular mati ix and hence its columns become multiples of ~

| each other. :
%

3 It is ironic that we seem to rasquire that ey be nonorthogonal to 3
¥ 3

6: a right eigenvector of a UHM and that e be nonorthogonal to a left :

2 eigenvector of a UHM. If the situation were reversed, there would be :
: ;

no problem, for if e were perpendicular to a right eigenvector of a UHM 3
: then the eigenvector must be 8. ;

3

| The last interesting fact about Theorem 9 is that it suggests j
; | pivoting schemes which should converge although perhaps very slowly. 3
| . :
1 If we find that pivoting is necessary to stably zero 4 or b :
| 2,1 2.1, %
4 we could change the shift so that pivoting is no longer necessary. We

3 could then view the matrices as representing a new problem, and hope- ; 3
; fully the two new largest eigenvalues do not have the same modulus.
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: ] This section contains a partial listing of 3 x 3 examples for

| { ® which the TZ algorithm will not converge when the shift is the eigen-
E: : value of Lhe lowest 2 x 2 subproblem of Ax = ABXx closest to :

: | aJb . The counterexamples share several characteristics:2 $

] : 1) The subdiagonal eiements of A and the matrix B repeat
] 2 themselves every third iteration. :
; s 2) Row and column pivoting are necessary at each stage of the
3 process.
2 3) The shift is the same for each iteration.

; ’ The first property guarantees nonconvergence. The second

E x property is a neccessary condition for the first property: if at some

1 : stage pivoling is not required to maintain numerical stability, then
3 i 3 cycling will not continue as beforza. The third property indicates
E : that the constant shifting hypothesis of Theorem 8 is realistic in terms
[ of actual computation. In fact, a constant shift may be useful in -

: 4 $ practice z35 3 warning c“ ngnconvergence., It is significant that no
: condition is specified for the eigenvalues of a problem. There are

] ! counterexamples in which all the eigenvalues are of distinct modulus.
3 : . The first class of examples is the basic one. In this case the
3 : matrices initially look like

AL ; i

3 : a b Cc & 0 0 \

E . 0 ) g s ’]; | P 0 £ 0 0 0 m; 23
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v where the following conditions hold:
he J)

E
la] < |b] las/g| < |f] lan/g| < [cl ,

|as/h| < {gl |am/g| < || la | < |e! {

4 le] < If] | bmh/ (g£)| < |e |om/s| < |el

: ow£1 < |g! [om (e£3] < }=} [0] < el.

If B is the identity matrix and A is the matrix

1 2 3
; } :

L 0 0 :

0 5 0 :

then the above conditions are satisfied.

For problems in class 1 the shift is zero for each iteration.

After one iteration the matrices are

A B :

as/g bhm/(fg) n s OO © |

f 0 0 0 m 0

: After two iterations the matrices look like )

am/ ¢g bhm/(cs) f m 9) 0

c 0 0 0 g 0

0 h 0 o o si. |

After three iterations the matrices return their original forms.

The second class of examples consists of those problems whiah :

fall into the first class after one iteration but initially look like Z
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: A B | | :

X y ry m p: aq C :

| I<] < le Cv -Re<in
 § Ip - 5 8] <n] | a- (vy - ST d)s/h| < [nm]. | |

| s The first shift is O and after one iteration the matrices of this ;

 K class have the form Co :

K - : /

- & s a b c ig 0 0 ;

E h 0 0 0 S 0 | k
: § 0 f 0 0 0 m :

= where a and b are complicated expressions. :

3 The third class of counterexamples includes problems in which A

1 . and B are initially given by
: A B | |

$f a b c m £ a

4 h d 0 0 m 0 |
3 1

0 f d \O 0 mJ.

3 : The shift is d/m and after shifting, 855 and 83 are zero. If. a &
Els this new . problem is in class 2, then in one iteration before the shift |

EB has been added back A and B would look like
X y h m 0 0

A f 0 0 0 m ol}

18
0 Cc 0 0 0 m

o5 , |
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}

i ! ;

: I £

where.x and y are again nonsimple expressions. Shifting back sets ;
i * : i . P| i

a,,, and a,, to d. From here it should be clear that the matrices5 } Fars ) H Z

: will repeal themselves every.third iteration if their elements satisfy
[] 1 ¥ [] , al
4 . :

i the appropriate magnitude relationships.

If in the previous example, a,,' were initially zero, the
: v ;

first shift would again be d/m . Performing one iteration and

shifting back set the element a,, to d and revert us to the previous or

example. |

i . : :

These counterexamples indicate that assuming the algorithm :
; :

: uses a constant shift is reasonable znd that given

this assumption, the structure of L and M is important. The above ;

examples were all constructed by assuming that pivoting was necessary [

oo to maintain stability at every step of the algorithm. Indeed if -

: pivoting ceases at some stage, then "cycling" will not continue as

SE before. It is coubtful that without an analysis of a given shift

| strategy we can weaken significantly the criteria given earlier for global

convergence. Moreover, it is extremely doubtful that such an analysis :

could give us more than assymptotic convergence results. :

t -
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; APPENDIX

| $ NUMER1CAL RESULTS AND FORTRAN PROGRAM
3 ; The algorithm described in Chapter 1 has been implemented
; : in a Fortran program. The program is designed to find the eigensystem for
; 2 complex matrices, and consists of two subroutines which must be called
1 separately. The first subroutine,GELHES, reduces A to upper Hessenberg
4 form and B to upper triangular form. If A and B are already in these
? ; $ fcrms and no eigenvectors are required, then calling GELHES is unnecessary.

: : The seccnd subroutine GLR finds the eigenvalues and, if requested, the
E eigenvectors of the system. The parameters involved in the subroutine

: calls are described in the comments at the beginning of each subroutine.
; Both subroutines use the subroutine RABS to compute the norm of a
4 : complex number.

3% : 3 It should be emphasized that the variable MACAEPS is machine
3 dependent. It is gl? where the machine gives t digits in base g. It :

E : is set for the IBM 360 double precision mode.
; ; 8 Our program has been finding eigenvalues which correspond to

; problems close to the given problems: our relative residuals have always |
; : veen lone to the precision of the machine. |
: 8 For our test cxamples the total number of iterations has been

; roughly 5 times the order of the matrices. In general, for a matrix
3 : of order n, the time required on the IBM 360 model 67 in Fort: an H,opt=2,

1 i s has been about 75mwmilliseconds if eigenvectors are computed and bn
: miliiceconds if they are noe.

E Xs
<8 57



3 The example given below were generated using integer arithmeti. ]
5 by multiplying two bidiagonal matrices by random nonsingulsr transformations. The :
| problems were run on che IBY 300 Fortran G compiler. The relative ;

1 residual is the quantity :

g | Bs AXs = aX; | ® :

| le; [1all, + lol [1B], |
where oo. and g, are the i diagonal 2lements of the triangularized |

i A and B and Xs is the id eigenvector.

In the first example A has rank 4 and B has rank 3 and their 3

3 null spaces intersect. Since the rank of B is less than the rank of A,

there is an eigenvalue which might be regarded as infinite because a ;

small perturbation in B would yield a large eigenvalue. Indeed an :

eigenvalue of 10° was found. The problem is also “ill -disposed”,

because for any vector x in the intersection of the null spaces,

any scalar A will satisfy Ax - ABx , and may be consider.d

an cigenvalue of the problem. The example also has three :

penuine, finite ciprenvalues which the aljrorithm was able to find accurately :

up to the precision of the machine despite the presence of the two

spurious eigenvalues. 3

In the second example there are two double roots. The first i
: corresponds to a quadratic elementary divisor and, as expected, is

{ accurate only up to the square root of the machine precision. The :

| second corresponds to two linear elementary divisors and is accurate
3 almost up to the machine precision. :

58 :
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: Example 1 3

4 8 THE MATRIX A: 31
575.+ =116.1 205.4 =460.1  =30,+ 456.1 ho.+ =352,1 =165.+ =332.1 }3

! 356.4 =356.1 305.4 =324,1 -G70,+ 184,10  730,+ -200,1  235.+ 100.1 |3: 345,.+ -19%.1  590.+ =-440,1 -400,+ 352,01  €25.+ =-412,1 -100.+ ~-1G.| |E 210.4 =200,1 =215.+ 298,01 199.+ =-292.1 =115,+ 258,01 115.+ 24.1 {;Es -545.+ 156,01 =115.,+ 282.1  =30,+ =276,1 =h0,+ 222,01 115.+ 248.1 i- 3

x THE I'ATRIX 8B: :
: § 69.+ =307.1 3%8.+ 504.1 -6R2.+ =Ff12,1  143,+ 567.1 36.+ L463. i
: § 241, + 7.1 he,+ 102.1 28.+ 36.1  139.+ 63.1  -76.+ -468.12
is 219.+ =333.1  70.+ 558.1  =8,4 =504.1 167.4 S€7.1  -2L.+ -72,1 3. B 4S.+ 414,| 96,+ -675.1 =56.+ 630.1 130.+ -693.1 =52,+ 1 | f -91.+ 189.1 =112.+ -207.1 76.+ 396.1 =177.+ =252.1 -3.+ 37201 4

F, TRUE EIGENVALUE i1 II'FIMITE EIGENVALUE |.
: 2 -0,5000000009005000 99+  0.5%0000000000050D 00 | 3

2 | 3 -0.500000090009009D 00+ -0,502000000020009D 09 | : 8
x kL 0.16GGRGEGEGHGGRTD 01+ -0, 6GGAGRE6G66G667D 09 | E
E 5 ANY SCALAR ¥

I ALPHA icb 1 -0.183210R59328370D 03+ =-0,20621255635A078D 03 | |
: 2 -0.139921151742°98D0 03+ =-9,1137853972€3304D 01 |
: 3 =n,052373476326618D 93+ -0.371434242540361D 03 | | §
= £ Lo N,143909000009000D 03+ =0,701000390020900D0 03 | | 3
i § 5 -0,146368201952383N-12+ ©.571615032831263D-1h | | 3
Fo BETA BE
: ¥ 1 =0.5751379273G7557D-13+ =0.778236003625250D-14 | E
: E »  A,1307932077792F50 935+ 0_.1L11599n5715531D 03 | ¥
: £ 3 n,1013217771%a3¢6720 Nhe =0,27093923378625CD 935 | b 3
5 ' ~.0197000000000000 N3+ =7,.353002930a09000n00 03 3

 § fT =0,157564233160012D-12+  =0, 2201747090 24G90D-13 | i
=f s C1IPRTEN © IGEIVALUE 3
: § 1 N,367KARS5N50A5896D 16+ N,305726254812RG5D 16 |EE ° .p,57470743900A0N0010 Ne 0 550960900090099D 90 i
: F 3 =p, narNaNaaaqeNan 004+ -9,500000094000000100 00 | /

x: L  N,1FGREATCCHGRAETD NI+ =), GERGEGGGSG6E6GED ON |
: § 5  0,.907730603550031D 08+ ~=2,16027604259141640 00 | 3
: fg RELATIVE ERROR RELATIVE RESIDUAL NG. OF ITERATIONS 13
: | 1 ©£.99200%9222759010 07 O,405556314306225D-16G 9 3
: B 2 5.h%579C629765757°R-15 9.9G1773509713645D-16 0 §

3 2.L7124478SKHA56R92ND-15 0,1124h23015856551190-15 1 :
LN BGTANRINTEST2I7D-15 2,1073G6L02630V787D-15 7
5 3.0 3.929915101€6€4 4390-16 0

2 &

x 59

2



) ARETE . 5 NT 5 ok IN STEN EIS LELyem Ae gov: = Ir. SHS A pe 1ONEEta3 gn FCT Gi J A 1x = irN LE an, A p verve Sharh

i — CTT TTT TTT Treee -

2 ; 3

3 Example 2

E | “ONLITEAR DIVISOR }Ei THE MATRIX A: 4
3 311.+ -339.1 397.+ -993,1 ee +=-1032.1 =250,+ 240,1 -112,+ =-F72,1
1 64.,+ =-272,1 =10%53,+ 128.1 127.+ -694,1  £83,+-1009.1  1%%.,+ -30&.|
1 -124,+ 429,01 ~=253.,+ 1023.1 81.+ 176.1 E79.+ =5604,1 -3.+ 1124,
; 99,+ «776.1  531.,+ 11,1 115,+ =132,1 =377.+ 843.1  =7h4.+ 4b, :

3 -125.+ =709,1 =5G60.+ 1057.1 153.4 164.1  458%,+ 52.1 135.4 212.1

3 THE MATRIX 8B:

3 180.,+ 11,1  360.+ 47,1 72.+ 104.1 =180.+ 0.1 =l4h,+ 96,1 3
2 168, + 5.1 =546,+ GO.,1  210,+ 46.1 588.,+ 24.1  =42.,+ 96.1 ;

90.+ =61.1 <=h50.+ =47.1 139.+ =40.1  459.+ =.| -F.+ =124,|

h2.+ 0,1  33G.,+ =51.,1 =2h.,+ 19.1 =258,+ =-56,1 -F0,+ I,|

4 12,+ 77, =354.,+ =R5,1 Gh.+ =22,1 312,+ =52.1 30,4 =28.1

7 ON
YZ Co E

3 TRUE EIGENVALUE ND ;
1 0,110FGREGHG6GFGTD 01+ =0,133333333333333D 01 | “82 :

7 2 0,1166FGG6GGGRAG7D 01+ =-0,133333333333333D 01 | >» 3
3 =0,900000900002000D0 91> 0,.100009009000000D 01 | y.

§ Hh =0,9006000900000000 01+ -0,109200900000003D N1 | \

: 5 =0,0005900090000000 01+ -0.1200C6503000900D 91 |
ALPHA] 1 =0,22022525932F7250 Oh+  4,253194871729475D0 04 | |

2 =0.G700835451237LGGR 03+  4.72970421220L0A0D 03 | :

: 3 -0,42221796411156138D0 03+ N,152AR88091F55233D 0h | ]
4 N,13N2G7144237219N N3+  N,5°7°47A%3142187D 93 | ;

. 5 =0,7145601533504013D 91+  N,715131183396420D 02 | :
- BETA p

: 1 =C,1393Ff720°283029D0 Oh+  9,5273630329225330 01 | 3
2 ~0,5527C151714526020 23+ =n, 136LE252249%453D 02 | d
3 T.6575715471942510 N24 -A,1701137513592120 93 | :

- L =0,270323:135710L4D N24  =0.7232312797612030 92 | ;
5 n,.13192950235172520 n+ =0,7259549759%2893N0 N1 |
CONPUTED EIGEIVALUE :

1  N,11AG6FGERES237220 01+ =0,13333333527273€0 01 | y
: 2 9 LICACACGGRTROALIIN 91+ =-0,1333333316579310 01 | El

3 =0.,70900060000009000 01+ 1,17119999990999820 03 | ks

ho =f,9099205090000290 91+ -0,9999999993999570 00 | 3
; 5 =0,909000000099970D 61+ -0,929992992999578D 00 | i

RELATIVE ERROR RELATIVF RESIDUAL 10. OF ITERATIONS

1 2,773333756125041D-09 0,539711056255343D-1FR 0 :
! 2 0.7233387294790970=0"  5,585091199667 4290-15 1 3
: 3 0,2512779232133100-18  2,161571532177435D-15 3 3

hn N.5392659657239820-15 2, 127435297£958550-15 1 :

j 5 0,22204450402603]10-10 N°2019465227364460D-16 1

:
x: 60

1

ASRS ttt2 5 ACN Be CY 252 sm ira AX ANIA 8 SMA rr ore eo.



$ TRIPII re ——  ~ . . . . . ; SR Ce a emt me a rr AACOR 3 7
1 BY ;

: SUBROUTINE GELHES(ND,NeA+8+WANTXXo EPSA EPSB) xC
5 C THIS SUBROUTINE REDUCES THE COMPLEX MATRIX A TO UPPER i

E ¢ HESSENBERG FORM AND REDUCES THE COMPLEX MATRIX B TO $ § C TRIANGULAR FORM i.
§ C a.

C INPUT PAKAMETERS: Po
: § C , 1

EES C ND THE RUW DIMENSION OF THE MATRICES A,B+X
FE C Lo
: } CN THE ORDER UF THE PROBLEM

: | o A A COMPLEX MATRIX ,

. Pe C B A CUMPLEX MATRIX :
C

C WANTX A LUGICAL VARIABLE WHICH IS SET TO TRUE. IF »
: k C THE EIGENVECTORS ARE WANTED. OTHERWISE IT SHOULD
: F C BE SET TU FALSE.

3 Iw C JUTPUT PARAMETERS:

C A ON OUTPUT A IS AN UPPER HESSENBERG MATRIX, THE :

- § C ORIGINAL MATRIX HAS BEEN DESTROYED ;

: C b AN UPPER TRIANGULAR MATRIX, THE URIGINAL MATRIX ;
FO o HAS BEEN DESTROYED

pe
; C X CONTAINS THE TRANSFURMATIONS NEEDED TO COMPUTE Cl
: C THE EIGENVECTURS OF THE ORIGINAL SYSTEM Cl

C |

C EPSA THE NORM OF ASTHE PRECISION OF THE MACHINE

3 C Co
: ¢ EPSB THE NURM UF B*THE PRECISIUN OF THE MACHINE |

C .

C¥se* THE VALUE OF MACHEP [5 MACHINE DEPENDENT se*se« |
Cees[T |S SET FUR THE IBM 360 MACHINE, DOUBLE PRECISION*s%&%
¢ :

2 JPY C PROBLEMS wiTH THIS SUBROUTINE SHOULD BE DIRECTED YO: Po
c

C LINDA KAUFMAN 5
o SERRA HOUSE i

: C COMPUTER SCIENCE DEPARTMENT } -
: C STANFORD UNIVERSITY i

COMPLEX *16 Y,A(ND,NO)¢B{ND¢ND)4X (ND,ND} |
REALFE ANIoONIsCoRABSD,ELSAEPS;MACHEP ; ANORM . BNORM 1

3 LUG ICAL WANTX
4 NM1=N-1 3

C 3:
bis C  CUMPUTE EPSA,EPSH 1

Et i



= lt :

: MACHEP=2.22D~-16 €

BNORM = 0. 3
00 S I=],N . a

3 IF (1.NE.l) ANI = RABS(A(I,1~-1))

1 DO 3  J=I,N ;
| Al = ANI + RABSIA(L4d)) :
5 BNI = BNI + RABS(B(Ied)) Cg
2 3 CONT ENUE 3

IF (ANI.GT.ANORM) ANORM = ANI :
IF (BN1.GT.BNORM) BNORM = BNI j

| 5 CONTINUE :
3 IF (ANORM.EQ.O.) ANORM= MACHEP ( i

{J EPSA = MACHEPSGANDORM

| EPSB = MACHEP®BNORM i
yd C . P

- C REDUCE B TO TRIANGULAR FORM USING ELEMENTARY TRANSFORMATIONS

Eo DO 30 I=1,NM1 ;

: IPl=]+¢]) 3
: DO 10 X=IPl,N :

C=RABS(B(Ks1)) 3
: IF (C.LE~D) GU TO 10 :

3 V=C
| 11sK
| 10 CUNT INUE 3

IF (D.EQ.0U.DO) GO TO 30 b
IF 'DeLE.RABS(BLI,1))) GO TO 15 :

: DO UL J=]l,N x
.=All oJ ) 3

3 AlleJd)=Al11,J) 3
1 11 A ILeJd)=Y 3

D0 12 J=I,N 3
2 Y:8L1,Jd)
3 BiloJi=B(ll J) 3

| 12 B(ilyJ)=Y g
15 D0 20 J=1P1,N 3

; Y=B1Je1)/BLi,1) J
IF (RABS1Y).EQ.0.00) GO TO 20 :
DO 18 K=1,N 3

E 18 AlJoK)=ALJyK)~YEAL] KK) :00 19 K=IP1,N :

l 19 BJ oKI=BLJoK)-YOB(1oK) :
/ 8(Jsl )={0.0090D0) 3
3 20 CONT INUE 2
| 30 CONTINUE

; C INITIALIZE X d”

; IF (.NOT.WANTX) GO TO 40

i 62
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'E

00 38 I=1,N | |
CB DU 37 J=1,N j :
: 37 X({I1¢J)=00.D004G.00) 313 38 X(Iel)=(1.00+0.0D0) . bi

Cc

: E Cc REDUCE A TU UPPER HESSENBEKG FORM | i5, C . i 1 /

. § 40 NM2=N-2 | bg
Ek IF (NM2.LT.1) GO TO 100 HE
"Is DO 90 J=1,NM2 D3

JM2=NM1-J  }

tb JPLl=J+l Pg
E § DO 80 li=1,JdM2 3

i I=N+1-11 -
: § iML=[-1 : 3| 3 IF (RABS(A(IsJ)).LE.RABS(A(IM1,J))) GO TO 50 Po; DO 45 K=JgoN ] : 3

1 Y=A(I,K) a. | , i
A{LoK)I=A(IML,K) : ;

 B 45 ACIMLoK)=Y “4

 E DO 46 K=IM1l,N :
is Y=81L,K} .
FE BlIoK)=BLIML,K) : : v3
: 46 BLAML,K)=Y :

: E YSACIoJ)/ACIML, J) EE
 § DO 52 K=JPL,N : Cg
E: 4 52 A(T oK)=A(1 oK)-YEALIM] 4K) 3
3 A€l+J4)=(0.000,0.00) Pj
q DU 4 K=IMl,N 3
b: 54 BUI ¢K)=B(iosK)-YEB{IML,K) p
: Cc TRANSFORMATION FROM THE RIGHT :
: 58 IF (RABS(B(I,iM1)).LE.RABS(B(I,I))}) GO TO 70 :
3 4 DOU 60 K=1,1 :

3 60 BK, IMl)=Y !
DO 64 K=1,N | ;

k Y=A(K,]) ;
kl 2 A(Ke 1 )=2A(Ko IML) ¥
3 6% A(Ky IML) =Y ©

[F (.NOT.WANTX) GO TO 70 | 3
1 DO 68 K=]1,N 4

ir Y=X(K, I) t 3
: 3 X({Kel)=X(KyIML) ?
18: 68 X{KolML)=Y i
3 70 IF (RABS(B(I,IM1)).EQ.0.D00) GO TO 80 :
F Y=B(l,iML)/8(1,1) :
; DU 72 K=1,1M1 3 i

: 72 BIKo IML)=B(K, IML)~-YB(Ko I) 3
3 BI yIML)={0.00,0.00) 13

74 ACK, IML) =A(KoIML)-YSA(K, 1) .
t IF i .NOT.WANTX) GO TO 80 23

DO 76 K=1,N ¥
pr’ Fi ol I
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E 16 KCK INL) =XLK ; IML) -YEX(Ky]) |
: 80 CONTINUE :
: 90  CUNTINUE
; 100 RETURN i |

3 . SUBRUUY INE GLRUNDNNyAsBo®¢Xe ETERoEPSA)EPSBoWANTX ¢E IGA, EIGB) :
2 C . \ y

3 | C THIS SUBROUTINE SOLVES THE GENERALIZED EIGENVALUE PROBLEM
C A X- = LAMBDA B X ]

3 C WHERE A IS A CUMPLEX UPPER HESSENBERG MATRIX OF GRDER NN AND 8 IS ;
; C A COMPLEX UPPER TRIANGULAR MATRIX OF ORDER NN
gC CC

E C INPUT PARAMETERS

= C H I

- C NU ROW DIMENSION UF THE MATRICES A¢ByXoITER,EIGA,EIGB :

E C NN URDER OF THE PRUBLENM :
a : C . 3

3 CA AN NN X NN UPPER HESSENBERG COMPLEX MATRIX :

5 C8 AN NN X NN UPPER TRIANGULAR COMPLEX MATRIX 3
= C

. C * ERROR RETURN, IF. AFTER 30 ITERATIONS, THE NORM OF THE
E o SUBDIAGONAL UF A HAS NOT SHOWN A SUFFICIENT DECREASE :
: C

» C X : CONTAINS TRANSFORMATIONS TO OBTAIN EIGENVECTORS OF :
: C ORIGINAL SYSTEM

| C [IF GELHES HAS NOT BESN USED, X SHOULD BE THE IDENTITY MATRIX
e | ¢
3 . CC WANTX LOGICAL VARIABLE WHICH SHOULD BE SET TO TRUE. IF EIGENVECTORS :

: C ARE WANTED. OTHERWISE IT SHOULD BE SET TO FALSE
C i

C EPSA THE NORM UF A TIMES THE MACHINE PRECISION. NEED NOT BE

3 C SET IF GELHES HAS BEEN USED
: C EPSB THE NORM OF B YIMES THE MACHINE PRECISION. NEED NOT

C BE SET IF GELHES HAS BEEN USED
3 o

C OUTPUT PARAMETERS :

E | CW THE ITH COLUMN CONTAINS ‘THE ITH EIGENVECTOR IF EIGENVECTORS ARE
SI REQUESTED
= C ;
El C ITER AN INTEGER ARRAY OF LENGTH NN WHOSE ITH ENTRY CONTAINS THE NUMBER
| o OF ITERATIUNS NEEDED TO FIND THE ITH EIGENVALUE )
- ¢ | 3
2 C EIGA AN NN ARRAY CONTAINING THE DIAGONAL OF A ]

E C EIGB AN NN ARRAY CUNTAINING THE DIAGONAL OF 8 i

3 C |

: C THE ITH EIGENVALUE CAN BE FOUND BY DIVIDING EIGA(I) BY EIGB(I) 3
3 C WATCH DUT FOR EIGB(I) BEING ZERO 5

c ;

2 Cesssssss THE QUANTITY MACHEP [S MACHINE OEPENDENTS#sss3sss 1

3 Cossssssse [7 {3S SET FOK THE [BM 360, DUUBLE PRECISION®essssss :
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| C

: C PROBLEMS WITH THIS SUBROUTINE SHOULD BE DIRECTED YO i

C LINDA KAUFMAN i
: ¥ = o SERRA HOUSE, COMPUTER SCIENCE DEPARTMENT i
: E C STANFORD UNIVERSITY :

C :

| C i
: LOMPLEX*16 AIND,ND) ,8(NDyND),EIGAIND)EIGBI(ND) :

2} COMPLEX®L6 S oT enoeVeloeDCMPLXCDSQRTTS
Eo INTEGER ITER(NU) |

: COMPLEX*16 ALFM,BETMyDySLoDENy ANN,ANMLN, ANM1M] |5} REAL*8 EPSAEPSBeSSROLD NEN ]
EB COMPLEX*16 X{ND,ND) i
: 8 REAL¥8 MACHEP/2.22D-16/,00,01,D2+E0¢E1,RABS ,0ABS |:
: 3 LOGICAL WANTX IE

i N=NN |
> IF (N.LE.1) GO TO 100 }
3 10 11S=0 by

NM1=N—-1 |
11 D0 12 LB=2,N {i

: zo L=N+2-LB i: IF(RABS(A{LsL—1))LE.MACHEP®*(RABS(A(L~1,L-1))
« +RABS{A(LsL)))) GO TO 13 i;

2 12 CONTINUE
: L=1 ;

3 13 IF{L.Eu-N)} GO TO 100 :
IF IF (1T75.L7.30) GO 10 20 :
] IF (ITS.67.30) GO TO 16 ;
3 OLU=0.D0 :

E DO 15 [=1,NMl |3 15 OLO=0LD+RABS{(A(I¢1l,1)) |
GO TU 20 }.

2 BR 16 NEW=0.00 |
DO 19 I=1,NM1

5 19 NEW=NEW+RABS(A(I+1,1))
A IF (NEW.GT.0.5%0LD) RETURN 1

: ULD=NEW
3 C

25 C CHECK FOR 2 CONSECUTIVE SMALL SUBDIAGONAL ELEMENTS
2 L :¥

: 20 IFIN.EQ.L+1) GU TO 25 :
; D2=RABS (A(N—-14N-11))
3 EL=RABS(A(N,N-1})
3 O01=RABS (A(N,N}) .

: : 3 NL=N-(L+]1) |= DO 24 MB=lgsNL
M=N-MB :

3 EO=E1l :
9 EL1=RABS(A(M,M-1)) :
: DO=01
A Ey’ D1=02
; D2=RABS(A(M-1,M-1)) 3
: [F(EUSEL.LE.MACHEP*D1%({D0O+DL+D2)) GO TO 26 |
3 24 CONTINUE

3 65 ;
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] 25 MN=L : :
4 26 CONTINUE ?C !

IFLITS.EQ.10.0R.ITS.EQ.20) GO TO 38

x Cc :

: C COMPUTE SHIFT AS EIGENVALUE OF LOWER 2 BY 2 ' :
5 ANN=A{(NyN) 2
3 ANMLN=A (NM1 oN) 3
; ANMLM1=A(NML,NML) 3
; S=ANN®B(NML ¢NML )-(A(N,NML) ) *B(NM1,N) 3

: W=A(NgNML)®B (NyN)®( ANMLN®S(NML,NM1) ~ SE
: I BUNML,NI*ARNMIML1) p
: Y=(ANM1IM1&B (N¢N)-S)/2. 3
: Z=COSQRT(Y*Y+N) 4
; IF (RABS(Z) .£EQ.0.D0) GO TO 36 3
; DO=Y/Z :
; IF(00.LT.0.D0) Z=-L 3

36  DEN=(Y+#Z)*B{NML,NM1)*B(N,N) 3

: W=A(M M)SDEN-B(MyM) *( (Y+Z)*S—K) 3
‘ {=A(M#+]1,M)*DEN A
{ GO TO 40
: C

C AD-HOC SHIF: A

: 38 WxA(NyN-1) :
: Y=A(MN=14N-2) 4

W=A(MyM)-DCMPLX(RABS( Ww)  RABS(Y))*8( MyM) 3
? I=A(M+]l,M) dg

40 CONTINUE 3
ITS=]TS+i 3

C 4

C FIND L AND M AND SET A=LAM AND B=LBM %

: NP1=N+] 3
: LURL=L :
: NNORN=N 4

IF (4NOT.WANTX) GO TO 42 3

: LORLI=1
: NNURN=NN {

: 42 DO 9C 1=M,NM1 3
: J+]

: C 1
C FIND ROW TRANSFORMATIONS TU RESTORE A TO 3
C UPPER HESSENBERG FURM. APPLY TRANSFORMATIONS 5
C TO A AND 8 7

C , 3
IF (1.EQ.M) GO TO 50 5

. w=Alloli~-1) :
lzA(Jy I-11) :

50 If (RABS (w).GE.RABS(Z)) GUO TO 6G ;
C :

C MUST PIVOT Lo
C

Du 55 K=],NNORN :

66

)
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; Y=A( 14K) F

J All yK)=Al JK) <
: Ald oK)=Y 4

c 1 Y=B(1,K)} 3; 24 Bll K)=B(JoK) |:
- x 55 B(JK)=Y 5

3 E Y=Ww/d I¢ IF (1.GT.M) All 1-1)=A(Je1-1) 3
t GU TO 62

: : 60 Y=1/ :FE 2 3 62 IF (RABS{Y).EQ.0.00) GO TO 65 3
: DO 64 K=1,NNOXN :
20 ALJ oKI=A(JsKI-Y*A(1,K) 3
EL 64 BJ sKI=BLJI)K)-Y*B({1,K) :
E IF {1.GTeM) A(J9y1-1)=(0.00,0.00) 2

C i
ELS C PERFORM TRANSFORMATIONS FROM RIGHT TO RESTORE 8 TO 3

C  TRIANGLULAR FURM :

Ey C APPLY TRANSFORMATIUNS TO A :

= 65 IF (RABS(B(Js1)).EQG.0.D0) GO TO 11 §
J IF {RABSIB(JsJ)).GE.RABS(B(J,1))) GO TO 80 5
' < C :

F C MUST PIVOT COLUMNS
C :

’ DG 70 K=LORL,.J :
: : Y=A({K,J) §
2 A(Kod)=A(Ky1) 4
= AlK,1)=Y :
= Y=B(KsJ) ;
| BAK J)=B(Ko1)
E 70 B(K¢ I1)=Y
2 IF {1.EQ.NM1) GO TO 75 g
3 ¢ i Y=A(J¥1l,J) |:

- HE A(J+Lle31=A0J¢], 1) x
2 Ald+l,1)=Y E

E 75 IF(.NUT .WANTX} GO TU 80 |
E DO 78 K=1,NN 5

Po X(Kedl=X(Kol) ;
FE -- 78 X(KeI)=Y :
fd 80 I+ (RABS(B(Js11).EQ.0.00) GO TO 90 :
: L=B(Jy11/8(d0J) |
2 DU 82 K=LURL,J |

rf AlKyL)=A{K,1)-L*%A(K,J)
SE 82 B(Kel)=B(Kol)-L*¥B(Kod)

' BlJel)=(0.00,0.D0)
: IF (i.LT.NML) A(L+2,0)=A(1#2,1)-2%A(142,J)
. [IF(.NOT.WANTX) GO TU 90

; DU 85 K=1,NN

| 85 X(Ky1)=X{Ky I)=2%X(Ky J)
: 90 CONTINUE

EC - GO TU 11

: 100 CONTINUE

Ed 67
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I 3

)3
: EIGA(N)=A(N,N) :

: EIGBIN)=B(N,N): IF (N.EQ.l1) GO TU 11u ;

ITER(N)=ITS :

N=NM1

4 IF (N.GT&L) GU TO 10
2 ITER(1)=0 ;

: GU TO 100
ol

; Cc FIND EIGENVECTURS USING B FOR INTERMEDIATE STORAGE 3
: Cc

£ 110 IF .NOT.WANTX) RETURM ;] M=NN |: | 115 CONT INVE 3
| ALFM=p (MM) |

| BE (M=B(MsM) ;: B(MyM)=(1.00,0.00)
| L = M-1 j
= IF (L.Eu.0) GO TO 140
3» 120 CONTINUE

E | LL = L+l

E DO 130 J=LlsM 3
| SL = SL ¢ (BETM®A(L,J)-ALFM®B(L,J))*B(J,M) 8
| 130 CONT I NUE 3
: D = BETMeA(L L)-ALFM*B(L,L)
= IF (RABS(D)<EQe.Q0.) D = (EPSA+EPSB)/2. :

F B(LyM) = -SL/D :
L =L-1 :

: 140 IF (L.GT.0) GO TO 12u ]
¥: M=M-1 3

4 C TRANSFORM TO ORIGINAL COCRDINATE SYSTEM 3

; | M = NN :
Cc 200 CONTINUE 3
3 D0 220 I=1,4NN :

3 DO 210 J=1.M 3
3 S = S + X{I,J)%B(JsM) 3

210 CONTI NUE ;
# X(LyM) = § :
2 220 CONTINUE :
3 M= HM] 3
g IF (M.GT.0) GO TO 200

o :

2 C NORMALIZE SU THAT LARGEST COMPUNENT = 1. bo
E c

| M = NN 5
: 230 CONTINUE 2

DO 235 [=14NN | ]
$ R = RABSIX(1,M)) bo
§ IF (R.LTLSS) GO TO 235 :
:
; 68 :
: E

I LC oc Fc on % a seid AIS fo nH AR A LF AAlr?ttm Ra’ IN a> <1 50> 150 issCai jai a w= Je IY —— ~ of



: TT as RI a RI A ETE is Oe To SET AB rT I EC TF ER so BR 2 A Ea a a Ee RRA =

se _ emirntt ———————————IT TWTETEEPA :

» 3 ;
: . a K

; _ | | a»
E SS = R : ;

D = X(X,M) Lo i 2
235 CONTINUE | | ;,|

s IF (SS.EQ.0.00) GO TO 24S Fs
D0 240 I=1,NN (

: X{LoM) = X(I,M)/D a.
240 CONT INUE g Co

: 245 M = M-] a

F IF (M.GT.0) GO TO 230 x
1 4 RETURN RE

3 END | Co ’ |
1 I" REAL FUNCT iON RA3S*8(L) :
3 COMPLEX*16 1,21

3 REAL*8 T.2) ,DABS EE : :
; EQUIVALENCE (Zi, T(1)) Co
: LI=1 :

RABS=DABS(T(1))+DABSITL2))
18 RETURN

3 : | | N

LE Co | |
3

i - . :
E i

p : 3
. 3

: |

: :

; _ {
i}

5 ES : :

1k: 69 1
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